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ABSTRACT

This thesis investigates factors that can be used to predict the success or failure of

students taking an introductory programming course. Four studies were performed to

explore how aspects of the teaching context, static factors based upon traditional learn-

ing theories, and data-driven metrics derived from aspects of programming behaviour

were related to programming performance.

In the first study, a systematic review into the worldwide outcomes of programming

courses revealed an average pass rate of 67.7%. This was found to have not significantly

changed over time, or to have differed based upon aspects of the teaching context, such

as the programming language taught to students.

The second study showed that many of the factors based upon traditional learning

theories, such as learning styles, are context dependent, and fail to consistently predict

programming performance when they are applied across different teaching contexts.

The third study explored data-driven metrics derived from the programming be-

haviour of students. Analysing data logged from students using the BlueJ IDE, 10

new data-driven metrics were identified and validated on three independently gathered

datasets. Weaker students were found to make a greater percentage of successive errors,

and spend a greater percentage of their lab time resolving errors than stronger students.

The Robust Relative algorithm was developed to hybridize four of the strongest data-

driven metrics into a performance predictor. The novel relative scoring of students

based upon how their resolve times for different types of errors compared to the resolve

times of their peers, resulted in a predictor which could explain a large proportion of

the variance in the performance of three independent cohorts, R2 = 42.19%, 43.65%

and 44.17% - almost double the variance which could be explained by Jadud’s Error

Quotient metric.

The fourth study situated the findings of this thesis within the wider literature, by

applying meta-analysis techniques to statistically synthesise fifty years of conflicting

research, such that the most important factors for learning programming could be

identified. 482 results describing the effects of 116 factors on programming performance

were synthesised and consolidated to form a six class theoretical framework. The results

showed that the strongest predictors identified over the past fifty years are data-driven

metrics based upon programming behaviour. Several of the traditional predictors were

also found to be influential, suggesting that both a certain level of scientific maturity

and self-concept are necessary for programming. Two thirds of the weakest predictors

were based upon demographic and psychological factors, suggesting that age, gender,

self-perceived abilities, learning styles, and personality traits have no relevance for

programming performance.



This thesis argues that factors based upon traditional learning theories struggle to con-

sistently predict programming performance across different teaching contexts because

they were not intended to be applied for this purpose. In contrast, the main advantage

of using data-driven approaches to derive metrics based upon students’ programming

processes, is that these metrics are directly based upon the programming behaviours of

students, and therefore can encapsulate such changes in their programming knowledge

over time. Researchers should continue to explore data-driven predictors in the future.

Keywords: programming, predictors, learning strategies, programming behaviour,

compilation behaviour, error quotient, watwin, robust relative, meta-analysis.
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Chapter 1

Introduction

In this chapter we set the context for the research which will be presented in this thesis.

Background information is first presented and motivations for examining predictors of

programming performance are discussed. The three research objectives of this thesis

are discussed, and an overview of the four research questions is presented. Finally, this

chapter briefly discusses the contributions of this thesis and lists the publications which

arose from this work.



2 Background

1.1 Background

The demand for skilled programmers is constantly increasing on a global scale. Recent

projections from the United States Bureau of Labour Statistics [186] suggests that

the growth of computing careers is set to continue through 2020, and that various

computing skills will be in strong demand for the foreseeable future. For example, the

job market for systems software developers is projected to increase by 32% by 2020,

application developers by 28%, and database administrators by 31%.

A fundamental entry requirement for many of these computing careers are strong

programming and software engineering skills. However, the global education system

is still not producing enough graduates with the skills required to satisfy these fu-

ture labour demands. Within the US, the number of available high school computing

courses have decreased by 17%. Although enrolment in computing courses has seen a

slight increase over recent years, retention is still a problem, and the number of ma-

jors awarded per US computer science department is still half that it was in the year

2000 [217]. Because of this, it is estimated that of the future 1.4 million jobs that are

to be be created in computing fields, only 30% will be filled by 2020 [90].

To address this labour shortage, governments throughout the world are in the pro-

cess of bringing programming into the classroom environment, so that students can be

better prepared to meet the future demands of a digital economy. In the US, Barack

Obama has called for high schools to “create classes that focus on science, technology,

engineering and math - the skills today’s employers are looking for, to fill jobs right

now and in the future” [90].

Within the United Kingdom, a major drive is currently underway to introduce pro-

gramming as part of core curriculum of subjects. Prior to 2014, the UK government

are aiming to have after school “Coding Clubs” introduced into at least 25% of Pri-

mary Schools [35]. From September 2014, UK schools will replace the Information and

Communication Technology (ICT) course with Computing. Pupils aged 5-7 will be

expected to understand “what algorithms are” and how to “create and debug simple

programs”. By the age of 11, pupils will have to “design, use and evaluate computa-

tional abstractions that can model the state and behaviour of real-world problems, and

physical systems” [43].

Classroom instructors are naturally concerned about the proposed changes. A re-

cent poll of UK secondary school teachers showed that 74% of current ICT teachers do

not believe they have the right skills needed to deliver the new computing curriculum,

and fear that they have neither the time, or ability, to learn the new skills that they

require, to teach programming to students [44].
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Given the introduction of compulsory programming courses into ordinary classroom

environments throughout the world, there is a greater need than ever to develop an

understanding of precisely which aspects of the external teaching context, and which

characteristics internal to students are influential on their programming ability.

Identifying struggling programming students can be challenging. Introductory pro-

gramming courses generally have a high student-to-lecturer ratio, an average of 50:1 or

greater in the case of our University, and often lecturers do not know how well students

are performing until after they have completed the first formal assessment. This may

not take place until several weeks after the course has started, and given potentially

high enrolment numbers, it can take an instructor a considerable amount of time and

effort to process these assessments. Even if an assessment was indicative of overall

performance, by the time it was processed, it may be too late for struggling students

to withdraw, or for instructors to intervene to prevent students from failing [16].

This is a cause of great concern for computer science educators, and unsurprisingly

over the past fifty years these concerns have led to an abundance of research focusing

on identifying predictors of programming performance. As well as identifying charac-

teristics that can be used to predict struggling students without the need to use formal

assessments, other motivations for exploring such predictors include [32]:

1. Exploring relationships between programming and other cognitive abilities.

2. Providing automated interventions for students based upon their characteristics,

such as different compilation feedbacks based upon prior knowledge.

3. Advising students on major selection.

4. Improving programming classes for non-computing majors.

5. Determining the importance of different characteristics that influence the ability

of students to acquire programming skills.

Numerous predictors have been explored over the past fifty years. The majority of early

work conducted during the 1960’s and 1970’s focussed upon using standardized pro-

gramming aptitude tests as predictors of performance. Popular instruments included

the IBM Programmer Aptitude Test (IBM PAT), and the Computer Programmer Ap-

titude Battery (CPAB). Predictors researched during these eras included: arithmetic

reasoning, letter series reasoning, and figure classification [3, 8, 30]. However, despite

measuring students’ levels of programming aptitude, no single instrument or character-

istic emerged as a conclusive predictor of performance.
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This led to an expansion of the types of characteristics explored, and during the 1980’s

and 1990’s, researchers expanded the search for predictors to include academic, cogni-

tive, demographic, personality, and psychological traits. These included: performance

in academic courses (with an emphasis on math [161] and science [159]), spatial abil-

ity [91], intellectual development, gender [113], personality style (Myers-Briggs [202])

and learning styles (Kolb’s LSI [42]). As with the previous two decades, no single

characteristic emerged as a conclusive predictor of programming performance.

During the 2000’s, researchers mainly repeated efforts of the previous two decades

and continued to explore various academic, cognitive, and psychological predictors of

performance. These included: comfort level [210], self-efficacy [189] and learning strate-

gies [16]. Again, the majority of predictors explored were found to be incapable of

consistently predicting performance across different teaching contexts.

During the 2010’s, researchers began to apply data-mining and statistical techniques

to big data which was directly logged from an IDE and described students’ programming

behaviours [82, 200]. These predictors have shown more promise than the previously

explored predictors, possibly due to their data-driven nature.

Whilst an abundance of predictors have been explored over the past fifty years, the

main shortcoming of research to date is that the identified predictors cannot perform

consistently when they are applied in a range of different teaching contexts. Researchers

examining predictors of programming performance have a tendency to judge the value

of a predictor, based upon the statistical significance of how the predictor performed

on a single sample of students, working within a single teaching context. However,

this approach is problematic, as verification studies of the same predictor in a different

teaching context have a tendency to yield inconsistent results [200].

Consider the often cited predictor of Math performance. Using the SAT Math

instrument to measure this ability, [203] reported a strong correlation of r(88) = .51

between the math and programming performance of college students. [91] reported a

similar moderate correlation of r(32) = .48. On the other hand [3] reported a weak

correlation of r(50) = .13, and [80] reported a weak correlation of r(45) = .13.

Varying findings of this nature can be found for almost all of the predictors examined

to date. In other words, despite fifty years of research, there is still no general consensus

among researchers on which factors can support students to learn programming. This

is of greater concern to computer science educators nowadays given the introduction

of programming lessons into early classroom environments. Without an understanding

of such factors, it becomes extremely difficult to design and implement any effective

pedagogical tools or strategies, which can automatically be applied to identify and

better support the weakest students.
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1.2 Research Objectives

The wider motivation of this thesis is to help students succeed in programming. This

thesis investigates factors that can be used to predict the success or failure of students

taking an introductory programming course. Both factors that can be measured prior

to, and during a course are examined. These factors are classified into three broad

groups: external aspects of the teaching context, factors based upon traditional learning

theories, and data-driven metrics derived from aspects of programming behaviour.

The factors that are examined for use prior to course commencement include those

which are based upon aspects of the teaching context, and those which are derived from

traditional learning theories. These factors are generally measured by using surveys and

are mainly static in nature. In other words, these factors mostly remain unchanged

in response to changes in students’ programming knowledge (e.g. math background).

Such factors may be influential on course performance, and could be applied to advise

students on their likelihood of success prior to their enrolment.

In contrast, the metrics that are examined as predictors for use during a course are

data-driven in nature. Instead of being based upon data gathered from surveys, these

metrics are based upon analysing data that is directly gathered from an IDE which

captures the programming process of students. The data gathering involves collecting

snapshots of source code and error messages, usually when students’ perform actions

such as saving the project they are currently working on. This data then enables

the utilization of data-driven approaches for illuminating the symptoms of struggling

students based upon aspects of their programming behaviour (e.g. repeating errors).

The broad research question which will be explored in this thesis is:

Which factors can be used to predict the success or failure of students taking

an introductory programming course?

Consequently the three research objectives (RO) of this thesis, are defined as follows:

RO1: To explore which aspects of the external teaching context can influence

the performance of students taking an introductory programming course.

RO2: To explore which internal factors derived from traditional learning

theories can be predictive of the performance of students taking an introduc-

tory programming course.

RO3: To explore which data-driven metrics based upon analysing the pro-

gramming behaviour of students within an IDE, can be predictive of the

performance of students taking an introductory programming course.
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These three research objectives were selected so that both external (teaching context)

and internal (student characteristics) influences on programming performance would be

explored. Derived from the work conducted later in this thesis, a framework showing

the interacting internal and external factors which are under investigation is shown in

Figure 1.1. The design of this framework is based upon our results from later in the

thesis, and justification of its design can be found in Section 7.4. The framework is

only presented at this stage to illustrate to the reader which factors will be under inves-

tigation in the remainder of this thesis. In the remainder of this section, motivations

for including each of the three research objectives are discussed.

RO1: Exploring Aspects of the External Teaching Context

RO1: To explore which aspects of the external teaching context can influence

the performance of students taking an introductory programming course.

The first group of factors that will be explored are taken from the external teaching

context. These aspects can include the country in which the course was taught, grade

level of the institution, cohort size, and the programming language taught. It is well

known that educational practices and assessment criteria can vary across different con-

tinents. We therefore hypothesized that the these factors would have a moderating

effect on students’ successes (pass and failure rates) of programming courses.

RO2: Exploring Factors Derived from Traditional Learning Theories

RO2: To explore which internal factors derived from traditional learning

theories can be predictive of the performance of students taking an introduc-

tory programming course.

The second group of factors that will be explored are traditional predictors of program-

ming performance, which describe the internal characteristics of the students. These

include predictors derived from learning theories and predictors that are based upon

aspects of academic background and performance in different subjects. These internal

characteristics are always measured by requiring students to complete a series of test

instruments or surveys which are then utilized to form predictions.

Although such predictors have been the focus of research over the past fifty years,

there are two major shortcomings of previous research concerning the generalisability

of such predictors to a range of different teaching contexts. The first problem is that

there is a distinct lack of verification of predictors across different contexts. Researchers

examining predictors have a tendency to judge the value of a predictor based upon
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Figure 1.1: Theoretical framework of factors which will be explored by the studies
performed in this thesis. The dotted lines indicate interacting factors between different
classes of predictors and were identified in Chapter 7.
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the statistical significance of the results on a single sample of students. This links

to the second problem, which is when predictors are applied within different teaching

contexts, they have a tendency to yield inconsistent results. In this thesis, we argue that

this is because predictors considered to date are fundamentally limited by their static

nature. That is, the traditionally measured attributes do not change in response to an

increase in programming knowledge, and therefore cannot be consistently predictive of

programming performance across a range of different contexts over time.

RO3: Exploring Data-Driven Metrics Derived from Aspects of Pro-

gramming Behaviour

RO3: To explore which data-driven metrics based upon analysing the pro-

gramming behaviour of students within an IDE, can be predictive of the

performance of students taking an introductory programming course.

The third group of factors are data-driven in nature, and are designed to be applied

during a course for autonomously monitoring students’ programming processes. Instead

of being based upon data gathered from surveys, these metrics are based upon analysing

data that is directly gathered from an IDE which captures the programming process as

students’ write programs. The data gathering involves collecting snapshots of source

code and error messages, usually when students’ perform actions such as saving the

project they are currently working on. This data then enables the utilization of data-

driven approaches for illuminating the symptoms of struggling students based upon

aspects of their programming behaviour, e.g., the number of errors that students have

made, or the time which they take to resolve errors when compared to their peers.

The main benefit of data-driven metrics based upon how students’ solve program-

ming errors, or whether they pay attention to code quality, is that, they are directly

based on their regular programming activities of a student, and therefore can reflect

changes in their learning progress over time. This is not the case for the traditional

predictors explored over the past fifty years, such as age, gender, and high school per-

formance, which remain static within the context of a course.

These metrics could be also applied to drive an expert system, so that students

exhibiting struggling symptoms could be provided with appropriate pedagogical inter-

ventions when required. Such interventions would be difficult to provide using tradi-

tional predictors based upon learning theories, and would be incapable of automatically

adapting to changes in a student’s learning progress over time. Researchers have only

recently begun to explore such data-driven predictors, and to date there has been no

comparison of the performance of such predictors against the previous body of research.
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1.3 Research Questions

To satisfy the three research objectives, this thesis conducted four successive quanti-

tative studies which formed the basis of the four research questions. These research

questions are:

RQ1 To what extent are students’ programming performances influenced by aspects

of the teaching context, including: year, country, grade level of the institution,

cohort size, and the programming language taught in the course? (RO1)

RQ2 Which traditional learning theories describing the psychological and cognitive

aspects of learning, and which aspects of students’ academic backgrounds are

predictive of their programming performances? (RO2)

RQ3 Which data-driven metrics derived from data describing students’ programming

behaviours are predictive of their programming performances? (RO3)

RQ4 How do factors based upon traditional learning theories, academic background,

and programming behaviours, compare when they are used to predict students’

programming performances across different teaching contexts? (RO2, RO3)

To present an overview to the reader RQ1 was answered by performing a systematic

review of the literature on programming education. From the available literature, data

describing the worldwide pass and failure rates of programming courses was extracted,

and analysed by grouping the data based upon aspects of the teaching context.

RQ2 was based upon examining the relations between 34 predictors based upon

traditional learning theories with the programming performance of one sample (n = 39)

of students studying the 2012/13 introductory programming course at our University.

These predictors were selected either as previous research had yielded inconsistent

results, or, because no researcher had attempted to verify previous findings.

RQ3 was based upon exploring the data gathered from the BlueJ IDE which de-

scribed the programming activities of three samples of students taking the programming

course at our university. Samples were taken from 2011/12 cohort (n = 37), 2012/13

cohort (n = 45), and 2013/14 cohort (n = 59). Based upon our experiments, several

aspects of programming behaviour which predicted performance were identified.

RQ4 was based upon performing a thorough meta-analysis to integrate the results

from previous research with the results of this thesis. Based upon this study, 482

individual results describing 116 predictors were statistically synthesised, illustrating

to researchers precisely which factors are the most critical for programming success.
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1.4 Contributions

This thesis makes six major contributions to our understanding on the relevance of

different factors for supporting students to learn programming. These are:

• Systematic review into the worldwide failure rates of programming courses and

an exploration into whether aspects of the teaching context moderate the failure

rates. Previously, only a single study [13] had attempted to provide any quanti-

tative evidence to support the often cited claim of high worldwide programming

failure rates.

• Evaluation of 34 traditional predictors based upon learning theories. These pre-

dictors had previously only been explored in a limited number of teaching con-

texts, or previous results were inconsistent. Re-evaluating these predictors in our

context contributes to the knowledge on their context dependency, and provides

evidence on their wider applicability as enablers of programming success.

• Identification of 10 new data-driven predictors based on aspects of programming

behaviour. Five of these predictors were based upon the percentage of different

types of compilation pairings that were logged from students. A further five

predictors were based upon the percentage of lab time students spent working on

different types of pairings. Nine of these predictors were statistically significant,

but more importantly, and unlike the traditional predictors, were found to yield

consistent results on three independently gathered datasets.

• Development of a data-driven predictive algorithm (Robust Relative) which pre-

dicts the programming performance of students based upon quantifying four as-

pects of their programming behaviour. The algorithm incorporates a novel scoring

technique where students are relatively penalized based upon how their resolve

times for different types of error compares to the resolve times of their peers.

This allows both the difficulty of resolving different types of errors, and the stu-

dents own programming abilities to be taken into account. A regression analysis

showed that the scores produced by the Robust Relative algorithm could consis-

tently explain a large amount of the variance in the performance of three samples

of students, R2 = 42.19%, 43.65% and 44.17% - almost double of the variance

explained by Jadud’s Error Quotient and the predictors based upon traditional

learning theories. This suggests that programming behaviour, in particular error

resolve times are important predictors of performance.
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• Present the findings of a thorough meta-analysis, which aimed to synthesise over

fifty years of conflicting quantitative research into predictors of programming

performance. The comprehensiveness of this study can be highlighted from the

number of predictors which were identified from the analysis. From the sys-

tematic review phase, 482 previous results describing the relations between 116

predictors and programming performance were extracted from relevant articles.

Meta-analysis techniques were then applied to statistically synthesise the findings

of multiple studies which had examined the same predictor of programming per-

formance across different teaching contexts, revealing the most important factors

for programming success. By utilizing the Random Effects model [78], the results

of the meta-analysis can be generalised to different teaching contexts, regard-

less as to differences in setups (e.g. language taught) or aspects of the students

themselves (e.g. prior experience). In other words, the meta-analysis answers

the overall question of this thesis by identifying the factors which enables certain

students to develop programming skills whilst other students endlessly struggle.

• Applied knowledge transformation by classifying the 116 predictors which were

identified from the meta-analysis into a six class theoretical framework. This

framework was applied to consolidate the meta-analysis findings by highlighting

which types of factors are more relevant to programming than others, and could

be applied by future researchers to derive practical applications.

This thesis also makes several minor contributions to knowledge, which are presented

alongside the studies documented in Chapters 4-7. Examples include:

• Quantitative evidence suggesting that the failure rates of programming courses

have not substantially changed over time.

• A predictive model built using the context independent predictors that were based

upon traditional learning theories which we identified in this thesis.

• Validation of the previous research into the most common types of errors which

novice programmers generate.

• Comparison of the data-driven predictors and the predictors based upon tradi-

tional learning theories which were explored in this thesis.

• To provide a synthesized benchmark on the effects of different predictors on pro-

gramming, which future researchers can compare their results with.
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1.5 Thesis Organisation

This thesis is structured using 8 chapters, including the current chapter, and comprises

research undertaken at the University of Durham over the period from October 2010

to March 2014.

• Chapter 2 provides background information relating to the three research ob-

jectives of this thesis. The difficulties of learning to program from a theoretical

perspective are first discussed. Previous research into predictors based on tradi-

tional learning theories and programming behaviours are presented.

• Chapter 3 presents the research methodology employed by this thesis. The

methods used to answer the four research questions are discussed, and the statis-

tical tests used throughout this thesis are outlined.

• Chapter 4 explores whether aspects of the external teaching context have a

moderating effect on the success rates of programming courses. Data describing

the outcomes of 161 worldwide courses was gathered through a systematic review

process and analysed.

• Chapter 5 evaluates 34 predictors based upon traditional learning theories and

their relation to the programming performance of a sample of students from our

context. Based upon these results, a context-tuned regression model is presented.

• Chapter 6 explores predictors based upon programming behaviour. Using three

datasets describing the logged programming activities of three cohorts from our

context, 10 new predictors based upon programming behaviour are identified.

Based upon these findings, we propose a predictive algorithm, designed to quan-

tify several aspects of programming behaviour which describes how desirable a

student’s programming behaviour has been over the duration of a session.

• Chapter 7 presents a comprehensive systematic meta-analysis of the quantita-

tive prior research into predictors of programming performance, and attempts to

resolve the conflicting findings which have plagued the research over the past fifty

years. A total of 482 results describing the relations of 116 distinct factors with

programming performance are synthesised. Based upon our results, a six class

theoretical framework of factors predictive of programming is proposed, which

highlights to researchers the most important factors for programming success.

• Chapter 8 concludes and summarises the contributions of this thesis and dis-

cusses possible directions for future work.



Publications 13

1.6 Publications

The work presented in this thesis appears in the following peer reviewed publications:

• C. Watson and F.W.B. Li. Failure Rates in Introductory Programming Revisited.

In Proceedings of the 19th ACM Conference on Innovation and Technology in

Computer Science Education (ITiCSE ’14), pages 39-44, 2014, ACM.

Best Paper Award.

• C. Watson, F.W.B. Li, and J.L. Godwin. No Tests Required: Comparing Tra-

ditional and Dynamic Predictors of Programming Success. In Proceedings of the

45th ACM Technical Symposium on Computer Science Education (SIGCSE ’14),

pages 469-474, 2014, ACM.

• C. Watson, F.W.B. Li, and J.L. Godwin. Predicting Performance in an Intro-

ductory Programming Course by Logging and Analyzing Student Programming

Behavior. In Proceedings of the 13th IEEE International Conference on Advanced

Learning Technologies (ICALT ’13), pages 319-323, 2013, IEEE.

Outstanding Paper Award.

The following publications are in preparation for submission, or currently under review:

• C. Watson et al., Meta-Analysis of Fifty Years of Research into Predictors of

Programming Performance. ACM Transactions on Computing Education.

• C. Watson et al., Watwin Revisited: An Exploration of Students Programming

Behaviour in BlueJ. IEEE Transactions on Education.

• C. Watson and A. Vihavainen. The CS1 Failure Rate Phenomenon. ACM In-

roads.

Parts of this thesis are referenced or extended by the following publications:

• A. Vihavainen, J. Airaksinen, and C. Watson. A Systematic Review of Ap-

proaches for Teaching Introductory Programming and their Influence on Success.

In Proceedings of the 10th ACM Conference on International Computing Educa-

tion Research (ICER ’14), pages 19-26, 2014, ACM.

• C. Watson, F.W.B. Li, and J.L. Godwin. BlueFix: using Crowd-Sourced Feed-

back to Support Programming Students in Error Diagnosis and Repair. In Pro-

ceedings of the 11th International Conference on Advances in Web Based Learning

(ICWL ’12), pages 228-239, 2012, Springer.





Chapter 2

Background

In 2001 McCracken et al., [117] published a multi-national, multi-institutional study

of the programming abilities of students following their completion of either a first or

second programming course. 216 students from four different universities completed

an identical assessment of programming skills. This assessment was composed of three

problem solving exercises based upon arithmetic expression evaluation (e.g. prefix

notation). The researchers felt that these problems would be solvable by students taking

any computer science program, but the results were surprising. Students performed

terribly on the assessment, and only scored an average of 22.89/110 points. The main

question which followed from this study was why did the students perform so badly?

Lister et al., [100] hypothesised that one of the reasons why students performed

badly was because the assessment asked too much of them. A new instrument consisting

of 12 multiple choice questions was designed to assess programming ability based upon

two dimensions. In the first part, students were tested on their ability to predict the

outcomes of executing a small fragment of code. In the second part, students were

tested on their ability to identify the correct fragments to complete a block of code to

achieve a specific outcome. 556 students from 7 different countries participated. The

results showed that students fared better than those under the McCracken study, but

an average score of 60% was still disappointing. The question still remains, why did the

students perform so badly?

In this section we provide background material for the studies which were per-

formed in this thesis. Firstly, general terminology on programming concepts are de-

fined. Secondly, the difficulties of learning to program from a theoretical perspective

are discussed. Following this, predictors based upon traditional learning theories which

will be applied in our teaching context are discussed. Finally, a review of data-driven

predictors which are based upon programming behaviours is presented.
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2.1 Definitions and Terminology

We first briefly define concepts which are referred to throughout the remainder of this

chapter. These definitions are based upon the detailed descriptions provided in [146].

Types of Programming Languages

There are many different types of programming languages. We briefly define three

types which are relevant to this thesis.

• Object-Oriented (OO) Programming is based upon the fact that in our daily lives

we interact with thousands of “real world” objects, and each of these objects have

their own set of capabilities which we utilize. Example languages include Java

and C++. Generally OO languages consist of the following features:

– Classes and Objects. A class consists of both the variables needed to define

the computer representation of an object, and the methods which are needed

to interact with it. Informally, the class can be thought of as a “master

template” and an object a copy of the template with specific settings. For

example, a Ball class could contain a variable to store the size of a Ball.

By creating instances of the Ball class, it is possible to create many Ball

objects from the same class, but by changing the value of the size variable,

it is possible to create an infinite amount of different Ball objects.

– Inheritance is an OO feature which allows classes to reuse the variables and

methods provided in another class. For example, a specialised BeachBall

class can inherit the methods and variables to store BeachBall size by inher-

iting these aspects from the Ball class.

– Polymorphism and Overloading. Different kinds of objects often have similar

methods. Similarly, the same operator in a language can have different

meanings depending on what data types it is being applied to. For example,

the “+” operator in Java is overloaded and can be applied for both String

concatenation, and numerical addition.

– Encapsulation refers to the ability to keep the detailed workings of a class

private, which in turn promotes program reliability. Many OO languages

make use of libraries of classes which provide programmers with a small

core of essential features (such as math routines). The underlying imple-

mentations of these classes are hidden from the programmer, but once they

understand the capabilities of different classes then it becomes straightfor-

ward to understand the overall operation of the program.
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• Procedural Languages are based upon the execution of set of statements which

are executed in sequence, although branching (if statement) and repetition of

statements (loops) can be used to control the program until a required condition

is satisfied. An example of a procedural language is C.

• Functional Languages differ to procedural languages in that the values of functions

are not assigned to variables. Instead the functions are manipulated directly

together with the data items which are arranged in lists. These languages have

been suggested as advantageous to programmers who prefer to state problems in

a more purely mathematical way. An example of a functional language is LISP.

Programming Process

The process of creating a program generally involves several steps, including:

• Program Design refers to the process of developing a mapping between the ex-

pected functionality of the program and the syntax used to construct it.

• Program Generation refers to the process of writing syntax to build a program.

• Compilation refers to the converting of a program written in a source language,

and generating an equivalent program which is capable of running on a computer.

• Execution refers to the running of the program following a successful compilation.

• Debugging refers to the process of identifying errors in programs. Syntax errors

can prevent the successful compilation of the program. Runtime errors can termi-

nate program execution following a successful compilation. Semantic errors refer

to differences between the expected and actual behaviour of the program.

Tools for Program Implementation

Generally, two types of IDE’s (Integrated Development Environment) can be used:

• Professional Development Tools, such as Netbeans, are industry standard tools

which can be used to construct complex programs. These tools usually feature a

text-based editor for entering syntax, and provide numerous support mechanisms

to the programmer such as debugging assistance and code completion.

• Novice Friendly Environments, such as BlueJ, are tools which are targeted specif-

ically at novice programmers. They are generally less complex than the profes-

sional development tools and offer less advanced support features.



18 The Difficulties of Learning to Program

2.2 The Difficulties of Learning to Program

It has been stated that it can take up to 10 years to transform a novice programmer

into an expert [153, 212]. In this section we briefly discuss some of the theories which

have been put forward to explain why programming is widely perceived to be such a

difficult skill to learn. These include difficulties relating to program comprehension and

generation, the programming language used in the course, threshold concepts, mental

models, multiple skills, teaching methodology and differences in students’ abilities.

2.2.1 Program Comprehension

Program comprehension describes the cognitive processes which are applied by stu-

dents in order to understand programs. It is a particularly important skill for novice

programming students to master, as a large proportion of their learning is reliant upon

their ability to comprehend example programs [206].

Several strategies which programmers employ to comprehend and build a mental

representation of programs have been identified. These include top-down strategies,

bottom-up strategies, opportunistic strategies, and integrated metamodels [163].

Top-down strategies describe program comprehension as the process of reconstruct-

ing knowledge about the domain of the program, and then mapping this knowledge

to the source code. Rather than studying programs line by line, programmers form a

hypothesis about the general nature of the program, and then verify and refine their

hypothesis by examining the source code for the presence of specific functions and

structures [23]. In contrast, bottom-up strategies describe program comprehension as

the process in which programmers start with individual code statements, and contin-

ually group these statements into higher level abstractions until a complete mental

representation of the program is formed [137,179].

Other researchers reject the notion of either a dominant top-down or bottom-up

strategy. Opportunistic strategies describe programmers who adopt a top-down or

bottom-up strategy depending upon the nature of the task they are trying to per-

form [104]. Integrated metamodels further refine this notion by describing program

comprehension in terms of a domain, program, situation, and knowledge base, which

programmers utilize to comprehend source code through applying a hypothesis driven

set of how, what, and why conjectures [98,179].

The main difficulty of programming comprehension for novice students is that all

four of the comprehension strategies we have discussed require skills and knowledge

which they may not necessarily have. Knowledge of the problem domain is one of

the advantages that experts possess over novices, even if they know no more about
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the programming language than novices, they also know about the problem domain

and can utilize that knowledge to help them comprehend programs [153]. In contrast

novices are limited to surface level and superficially organised knowledge as they lack

detailed mental models, fail to apply relevant knowledge, and approach problems line

by line, rather than applying meaningful program chunks and structures [212].

The expertise required for program comprehension appears to differ based upon

the type of programming language. Wiedenbeck et al., [206] compared the program

comprehension skills of novice students studying Pascal to novice students studying

C++. In the case of short programs, no overall differences in the comprehension skills of

students was found, but the C++ subjects were superior to Pascal students in answering

questions about program function. In the case of large programs, the Pascal students

outperformed the C++ students both in terms of overall score, and on each of the

individual task scales (operations, control flow, data flow, functions). They suggested

that the problem was that novices had a tendency to focus upon understanding the

program domain, rather than the problem domain. This causes great difficulties when

trying to use C++ where the entire premise of object oriented languages is to enable

students to focus upon the problem domain.

2.2.2 Program Generation

Even if students are able to comprehend example programs, previous research has sug-

gested that there is little correspondence between the ability of students to comprehend

a program, and their ability to actually write one [212]. These difficulties are possibly

exemplified by the fact that even after passing an introductory programming course,

students can still struggle to design and implement basic software systems [55].

In early work Rist [151] identified several differences in the approaches to program

design adopted by intermediate and novice students. Intermediate students were found

to design programs by retrieving almost complete code blocks from memory, and ex-

panding and integrating these block to form a program in a top-down manner - working

from the beginning of the program to the end. However students who are working on

a problem which they have not encountered before do not have any blocks available in

memory, and are forced to develop a program by linking knowledge fragments together,

block by block, in a bottom-up approach.

Venables et al., [188] suggested that the programming skills of novice students

are developed in a hierarchical manner. As students gain proficiency in code tracing,

their ability to comprehend and explain code develops. When students are reasonably

competent at both code tracing and explaining, the ability to systematically write code

then develops.
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2.2.3 Choice of Programming Language

The programming language which is taught in the course is widely believed to have a

direct effect on the amount of difficulties which novice students face. There has been

a great deal of debate over the most appropriate choice of paradigm and language for

introducing programming to novices [136].

We first consider the choice of paradigm. Historically many programming courses

were taught using procedural languages such as C [99], but these languages also came

with many criticisms. Mody [127] observed that students encountered significant diffi-

culties when transitioning from C to a higher level language. He also raised concerns

over the impact C had on the approaches students took to learning in other courses.

In particular, data structures was described as a course which had degenerated into a

set of pointer exercises, rather than focussing upon implementing discrete structures.

Tang [45] also criticised teaching C as a first programming language, stating that stu-

dents with little to no programming knowledge are easily overwhelmed by the complex

pointer and address operations the language requires.

Unsurprisingly in modern times procedural languages have mostly been replaced by

object-oriented (OO) languages such as Java and C++ [48]. The original motivation

behind this paradigm shift was to lower the learning curve for novice programming stu-

dents. By creating programs using virtual objects, in theory students would only have

to understand the problem domain in order to design the computer implementation.

However, this was quickly found not to be the case, and researchers such as Robins [153]

suggested that programming using an OO language can in fact be more difficult than

using procedural languages, due to the conceptual difficulties that novices face when

performing this task. Novices can easily become confused when identifying objects and

are hindered by identifying objects that are not useful to solving the specific problem.

Wiedenbeck et al., [206] suggested that the distributed nature of OO programs (i.e.

spreading functionality across a set of interacting objects) leads to a harder learning

curve than for procedural languages. They found that students studying OO languages

were superior to students studying procedural languages when answering questions

about program functions. However, procedural students were superior to OO students

when answering questions about program comprehension. They suggested that the OO

paradigm may need to be taught after novices have gained some experience with basic

programming concepts, such as data types, assignment, branching or looping.

Clark, MacNish and Royal [38] compared Java to procedural languages such as

Pascal. They noted that one of the difficulties of teaching OO programming is that

students are usually required to work on relatively small scale projects, and may struggle

to appreciate the problems that OO programming tries to address, e.g. polymorphism.
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Biddle and Tempero [18] examined the potential issues of using Java as a language to

teach novice programmers. Although not commenting on whether the OO paradigm

was itself reasonable for teaching novices, they concluded that the high level of Java

may be detrimental for novices who first need to understand the fundamentals of data

and control in order to understand how computing works. A number of pitfalls that

educators must be aware of when teaching Java to novices were also presented, such as

the differences between primitive and object types, and the separation of interface and

implementation is undermined.

Other researchers have studied the appropriateness of different OO languages for

teaching programming to novices. Generally, the main issues which arise across all

studies is that general purpose OO languages such as Java or C++ have not been

designed specifically for educational purposes, and therefore may be less effective at

teaching novices than using those languages which have specifically been designed for

this purpose (e.g. LOGO, Scratch, Alice, or Eiffel) [136].

Hadjerroult [69] compared the teaching of Java to C++ as a first programming

language. He concluded that although file handling was more difficult in Java than in

C++, the majority of shortcomings of both languages concerned the general difficulties

associated with learning the OO paradigm [153].

Kölling [89] presented 11 requirements of a well designed programming language

for teaching purposes. Applying these principles to evaluate C++, Smalltalk, Eiffel

and Java, Kölling found that each language had shortcomings. C++ failed to meet

almost all of the requirements, with the most serious criticism being the lack of type

safety. Smalltalk was found to have a lack of static typing. Eiffel was criticised for the

complexity of the language. Java was criticised for the lack of clear distinction between

primitive and object types for novice students. However when considering experience

reports from instructors in addition to the language evaluations, he concluded that OO

languages were seen unequivocally as a powerful and valuable teaching tool. The main

difficulty reported was switching from the procedural languages to the OO paradigm,

such as decomposing a problem into appropriate objects.

Manilla and de Raadt [109] performed a similar study to Kölling [89]. Analysing

the work of previous creators of languages that are intended specifically for teaching

(LOGO, Pascal, Python, Eiffel) a total of 17 requirements of a well designed program-

ming language were defined. These requirements were then applied to evaluate the

appropriateness of 10 different languages used for teaching novice programmers. Eiffel

and Python were found to satisfy the most requirements (15), and were closely followed

by Java (14) and C++ (11). Although designed specifically for teaching novices, the

LOGO (9) and Pascal (7) languages were among the lowest ranked by the study.
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2.2.4 Threshold Concepts

Another explanation as to why programming is difficult for novice students to learn is

because there are a number of threshold concepts that are associated with programming.

Meyer and Land [122] proposed that within academic disciplines, there are a number

of troublesome concepts (thresholds) which can hinder the students’ learning progress

until these concepts are mastered. The threshold concepts usually correspond to the

core concepts within a discipline, which provide a potentially transformative point in

students’ understandings of the entire discipline. Generally, threshold concepts are:

• transformative: they significantly transform how a student perceives a subject,

or part thereof, and perhaps even causes a shift in personal identity.

• integrative: they connect concepts in ways that were previously unknown to a

student by exposing their interrelatedness.

• irreversible: they are difficult for a student to unlearn, making the transformation

of knowledge unlikely to be forgotten or undone.

• boundary markers: they mark boundaries in the conceptual space between disci-

plines or schools of thought.

• troublesome: potentially very troublesome for a student to overcome, for any of

a variety of reasons including conceptual complexity and counter-intuitiveness.

Understanding the OO paradigm has been identified as a threshold concept [22], and

authors such as Luker have argued that that learning OO programming, “requires

nothing less than a complete change of the world view” [106]. There are numerous other

concepts which are transformative of the way which students’ perceive computing, and

programming in particular [215]. Examples include:

• Pointers, in particular when used as parameters [22].

• Distinction between classes and objects [56].

• Recursion [158].

• Polymorphism [129].

• Distinction between the existence of a program as code, and its existence as a

dynamic execution time entity within a computer [172].

• Object interaction [172].

• Abstraction, in particular modularity, decomposition and information hiding [128].
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2.2.5 Mental Models and Misconceptions

Other researchers have explored how novices mental models relate to their learning of

programming concepts. In general, the bulk of research into mental models and pro-

gramming performance has suggested that novice programmers can struggle to under-

stand programming concepts as they lack a clear mental model of how their programs

relate to the underlying system [153].

Mayer [111] suggested that the use of concrete models to present the computer

system and encouraging novices to describe technical information in their own words can

help them to solve problems which are not explicitly taught within the course. Pea [135]

hypothesised that students’ misconceptions across a range of different programming

languages may stem from a mental “superbug”. He found that three different types of

misconceptions could be attributed to students incorrectly believing that the computer

has intelligent interpretive powers, and is capable of automatically going beyond the

code which students supply to help them achieve their goals.

Boulay [21] suggested that many of the misconceptions novice students make about

variables could be caused by the misapplication of analogies in materials. As an ex-

ample, the analogy of using a box as a place to store variables could lead students to

build the wrong mental model that a variable can hold more than a single value at

a time. He also suggested that novices can find the syntax and underlying semantics

of a programming language difficult to understand as they lack knowledge about the

capabilities of a computer. In other words, their mental models about the machine

they are trying to program is inadequate for their learning requirements.

Perkins and Simmons [139] noted that novices can also foster misconceptions about

the names of variables, describing a case where students studying Pascal incorrectly had

the notion that by naming a variable “largest” that the computer would automatically

know to store the largest of a series of numbers it reads into that variable because it

understands the semantic unit “largest”.

Bayman and Mayer [11] asked a sample of novice programming students to ex-

plain the steps that a computer would take to execute a range of statements written

in BASIC. They found that students held several misconceptions relating to variable

assignment, initialisation, storage, and printing. For example, students believed the

equals symbol in a statement was an equality. They suggested programming practice is

often insufficient to teach novices programming, as long as their underlying conceptions

are still limited by an inaccurate mental model of the computer.

Fleury [62] examined the correctness of mental models of parameter passing which

were held by Pascal students. Several misconceptions were identified e.g. when the

value of a local variable is changed the value is then available throughout the program.



24 The Difficulties of Learning to Program

Ma et al., [107] examined mental models of assignment (of values and references) held

by students who had completed a Java programming course. On course assessments,

the students who held correct mental models were found to significantly outperform

students who held incorrect models. The concerning finding of this study was that

33% of students who completed the course still held incorrect mental models on value

assignment, and only 17% of students held correct models of value assignment.

Dehnadi and Bornat proposed a performance predictor based upon mental model

consistency [49], although later studies suggested the predictor struggled to generalise

to other teaching contexts [19,33].

More recently Kaczmarczyk et al., [86] identified four types of misconceptions that

were common to novice programming students. These included misunderstandings on

the relationships between language elements and underlying memory usage, the process

of while loop operation, the object concept, and debugging.

2.2.6 Multiple Skills

Another source of difficulty concerns the fact that programming is not simply a single

skill which can easily be acquired. Rather, it is a complex cognitive activity where

competence can only be developed through mastery of the entire programming work

flow [153]. Boulay [21] suggested that the five potential sources of difficulty facing

novice programming students include:

• Orientation: developing a general understanding of what kinds of problems can

be solved by using programs, and the advantages of learning the skill.

• The Notional Machine: developing a mental model about the machine that they

are learning how to control with the programming language.

• Notation: mastering the syntax and semantics of the formal language they are

trying to understand.

• Structures: after mastering notation, students attempt to master structures or

plans, which can be used to achieve small-scale goals (e.g. computing a sum).

• Pragmatics: learning the skill of how to specify, develop, test, and debug a pro-

gram using whatever tools are available.

The difficulty is that none of these skills are entirely separable from the others. Stu-

dents will be unable to satisfy the pragmatics until they have an understanding of the

notation. It is thought that some of the difficulties that novice programmers faced can

be attributed to the students ineffective attempts to deal with all difficulties at once.
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2.2.7 Teaching Methodology

Other difficulties that novices face can stem from an inappropriate teaching method-

ology. Gomes and Mendes [64] raised several criticisms over the approaches which are

generally used to teach programming. Firstly, there is the classic criticism that the in-

struction is not personalised, and that students are not provided with useful immediate

feedback during problem solving. Secondly, it is difficult for students to understand

program dynamics when instructors rely upon using static learning materials. Thirdly,

the teaching of programming tends to be focussed upon the syntactic correctness of

programs, rather than promoting problem solving using a programming language.

Studies have also shown a disparity between which concepts instructors believe

students find difficult, and the concepts which students themselves believe are difficult.

For instance, Lahtinen et al., [94] conducted an international survey of over 500 students

and instructors to get opinions about the difficulties of programming. They found

students felt confident to study alone and that instructors perceived course contents

as more difficult than the students did themselves. They suggest that one of the main

difficulties facing novices is the lack of effective problem solving materials.

These results were comparable to a similar study by Milne and Rowe [126] who found

that instructors and students agreed on the most difficult concepts, but instructors

scored them as more difficult than students.

2.2.8 Differences in Student Abilities

Finally novices face the challenge of learning in an environment where the abilities of

their classmates can vary considerably. Jenkins [83] suggests that the wide range of

students who take programming courses can make it difficult for instructors to teach

programming at a rate which keeps all students sufficiently engaged. Even for novice

students, Robins et al., [153] suggest that there is a clear distinction between what

you may class as an “effective novice” (i.e. does not need much support), versus an

“ineffective novice” (i.e. cannot learn without an excessive amount of support which is

detrimental to their classmates).

Gomes and Mendes [64] also suggest that different students will have different prob-

lem solving abilities, and motivations. Unlike the other subjects which students may

be studying, programming is not a single skill which can be learned from a textbook.

It even takes a considerable amount of effort for a novice to write and understand a

basic “hello world” program. Essentially, the effort required to produce a compilable

program, combined with the lack of instant gratification could have a negative effect

on students motivation and cause them to suffer from a lack of persistence.
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Figure 2.1: Predictors which researchers have examined over the previous fifty years.
Interacting factors were determined by related studies in the literature, and are shown
on the diagram by using dashed arrows (further detail is presented in Section 7.4)

.

2.3 Predictors based upon Traditional Learning Theories

Exploring the relations between traditional learning theories and programming perfor-

mance has been the focus of research for over fifty years. Many researchers have ex-

plored how various academic, psychological, demographic, behavioural, and cognitive

factors relate to the programming performance of students. Most recently, researchers

have begun to explore data-driven predictors, which describe how the programming be-

haviour of students relates to their performance. An example of some of the predictors

which have been under investigation is shown in Figure 2.1.

Whilst numerous predictors have been examined over the past fifty years, previous

research has been limited by both a lack of verification of predictors in different teaching

contexts, and the conflicting results which are commonly reported when verifications
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take place. Due to these issues there is no general consensus among researchers on which

factors support students in developing programming skills. This makes it extremely

difficult to design and implement any effective pedagogical tools or strategies which

can be applied to identify and support the weakest students.

In this subsection, we present some evidence of the inconsistent findings surround-

ing the predictors which will be evaluated in our teaching context. This subsection is

not intended to serve as a complete guide on predictors of programming performance.

The remaining predictors (such as those based upon programming aptitude) are pre-

sented in Chapter 7, where we performed a substantial meta-analysis to synthesize the

findings of multiple studies that have examined the same predictors across different

teaching contexts. The comprehensiveness of the work can be highlighted from the

number of predictors which are included in the analysis. From the initial review, 482

previous research results describing the relations between 116 predictors and program-

ming performance were synthesised and classified into a theoretical framework of factors

predictive of programming performance.

For now, we ask that the reader accepts our conjecture that inconsistent findings

are common across almost all of the traditionally explored predictors, and that further

evidence supporting this claim will be presented later in this thesis (Chapter 7).

2.3.1 Cognitive Predictors

Several researchers have considered the impact of various cognitive characteristics on

the learning of programming. These characteristics are based upon the various mental

processes that influence the ways in which learners think and learn, and the cognitive

learning styles and strategies that learners employ to make knowledge and skill ac-

quisition possible. The influence of different cognitive factors have been well explored

over the past fifty years, however they are also one of the classes of predictor where

researchers have reported a high number of inconsistent results. The relations between

two forms of cognitive characteristics and programming performance will be explored

in our teaching context: learning styles and learning strategies.

Learning Styles

A learning style describes how learners perceive, interact with, and respond to different

learning situations. The implication of learning styles is that different learners will

respond uniquely to different teaching approaches, and in order for instruction to be

most effective, the teaching approach employed should be as closely aligned with an

individual’s learning style as possible.
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Kolb’s Learning Styles Inventory (LSI) consists of four distinct styles, which are based

on a four-stage cycle of learning. Kolb’s model describes learning as a continual cycle

of involvement, where learning commences with concrete experiences and is followed

by a period of reflection, observation, and application of those experiences in differ-

ent situations to solve problems. Based on the four quadrants of the cycle, there are

four corresponding learning styles: converger, diverger, assimilator, and accomodator.

Research on the relations between Kolb’s model and programming performance has

yielded inconsistent results. Considering the assimilator dimension, Corman [42] found

no relation between scores obtained on the assimilator dimension and the program-

ming performance of a sample of 83 university students, r = .06. On the other hand,

Chammilard and Karolick [36] reported a weak negative correlation, r = -.13, on a

sample of 877 students, and Campbell and Johnstone [29] reported a moderate correla-

tion, r = -.36, on a sample of 74 students. The exact relation between Kolb’s LSI and

programming performance is therefore unclear and warrants further exploration.

The Gregorc Style Delineator also consists of four distinct learning styles, which are

based upon perceptual quality and ordering ability. Perceptual quality is used to define

learners on two dimensions: concrete, which describes learners who prefer to learn from

authentic experiences, and abstract, which describes learners who prefer to use their

own intuition for learning. Ordering ability is further used to classify concrete/abstract

learners on two further dimensions: sequential, which describes learners who prefer to

learn from information presented in a logical sequence, and random, which describes

learners who prefer to receive information in their own way. Two studies have pre-

viously explored the relations between Gregorc’s Style Delineator and programming

performance, and as with studies which explored Kolb’s LSI, inconsistent results were

reported. Considering the scores obtained on the abstract/sequential dimension, Lau

and Yuen [95] reported a weak correlation, r = .13, on a sample of 217 high school stu-

dents. Two years later, the experiment was repeated, and Lau and Yuen [96] reported

a moderate correlation, r = .30, on a sample of 131 high school students. The exact

relation between Gregorc’s Style Delineator and programming performance is therefore

unclear and warrants further exploration.

Learning Strategies

A learning strategy describes the techniques and methods that learners employ to sat-

isfy the learning objectives of a course. They differ from learning styles, as they describe

techniques that learners employ in specific learning situations, rather than characteris-

tics describing the general approach to learning that they adopt. The learning strategies

that learners adopt can vary depending on the nature of the academic tasks that they
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are required to perform. It follows from recent research that learners who possess a

high level of motivation, and use efficient learning strategies, are more likely to satisfy

learning objectives and be more successful than their counterparts who do not [34].

Self-regulated learning is one form of learning strategy. Self-regulated learning is

an active constructive process whereby learners set goals for their learning and moni-

tor, regulate, and control their cognition, motivation, and behaviour, guided and con-

strained by their goals and the contextual features of the environment [143]. The

Motivated Strategies for Learning Questionnaire (MSLQ) is an instrument designed to

measure a learner’s motivations and self-regulated learning in classroom contexts. It is

based on a cognitive view of motivation, and is composed of two sections: a motivation

section and a learning strategies section [14]. To date, only Bergin and Reilly [14] have

explored the relations between the scores obtained on the MSLQ scales and program-

ming performance. Using a sample of 34 University students, several strong correlations

were reported, including: critical thinking, r = .58, self efficacy, r = .57, task value,

r = .54, and resource strategy (effort), r = .62. Whilst these results are encouraging,

they are only derived from a single teaching context, and we currently do not know

whether these findings are generalisable to different teaching contexts.

2.3.2 Psychological Predictors

Other researchers have considered the impact of various psychological characteristics

on the learning of programming. These characteristics are based upon the various

non-cognitive factors that influence the ways in which learners think and learn. They

describe the personal characteristics of the student, describing how they differ from,

or are similar to others, in a non-cognitive sense, such as in terms of their personality,

self esteem, or self efficacy. The influence of different psychological factors have only

been recently explored over the past ten years, therefore a lack of verification is the

limiting factor of research in this area. The relations between two types of psychological

predictors and programming performance will be explored in our teaching context:

affective characteristics and behavioural characteristics.

Affective Characteristics

Affective characteristics generally describe the emotional state of a learner, and include

factors that can reflect their feelings and attitudes during the learning process. The

relations between two different affective characteristics and programming performance

will be explored in this thesis. Several researchers have suggested the importance of

self-esteem as a critical component for learning. As a result, teachers have focused
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efforts on boosting the self-esteem of learners, working on the assumption that if their

self-esteem can be improved, then it will in turn foster improved learning outcomes.

The benefits of self-esteem can be divided into two categories: enhanced initiative and

pleasant feelings. Enhanced initiative comes from the observation that people with high

levels of self-esteem tend to be more confident and willing to speak up in groups, and

to be critical of the group’s approaches. Pleasant feelings comes from the observation

that people with high levels of self-esteem claim to be more likable and attractive, have

better relationships, and to be less stressed than people with low self-esteem. However,

whether these benefits can lead to an enhanced learning performance is still the subject

of much debate [9, 10].

The Rosenberg Self-Esteem Scale is one of the most widely used instruments used

to evaluate an individuals self-esteem. The instrument consists of a 10-item scale that

assesses an individual’s feelings of self-worth when the individual compares themselves

to others. Only one previous study to date has attempted to identify the relation

between programming performance and self-esteem. Bergin and Reilly [14] reported a

moderate correlation, r = .36, between the scores obtained on Rosenberg’s Scale, and

the programming performance of a sample of 54 University students. However, we do

not know whether this finding holds in a different teaching context.

The second affective characteristic which will be explored in this thesis is attribu-

tional style. An attribution describes the reason that people perceive to be the cause

of events that are related to themselves or others. An attributional style defines the

consistent way in which people tend to account for the outcomes of these events. Sev-

eral studies suggest that the types of attributions and both the expectancy beliefs and

emotions that learners experience as a result of the attributional process can deter-

mine their future behaviours [5,211]. One of the classic attributional style models was

proposed by Weiner [201], who defines the processes through which learners form attri-

butions in terms of two dimensions: locus of causality, and stability. Locus of causality

refers to whether the cause of an event was perceived to be internal or external to

the learner. For instance, if a learner believed that they failed an exam because they

lacked ability, then this would be an internal cause. The stability dimension refers to

whether the cause of event can change over time. Stable causes are those that tend to

influence events and behaviours consistently over time and situations. Unstable factors

are comparatively easy to change over time, such as the amount of effort exerted to

complete a task. Based upon the four combinations of stability and locus of control,

four attributions are derived: luck, ability, effort, and task difficulty.

To date, only three studies have explored the relations between attributional style

and programming performance. Whereas Henry et al., [74] reported a weak positive
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correlation, r = .25, between attributions to task difficulty and the programming per-

formance of 45 University students, Wilson and Shrock [210] reported a weak negative

correlation, r = -.20, on a sample of 105. Other inconsistencies are common. Wilson

and Shrock also reported a weak positive correlation, r = .19, between attributions

to effort and performance, whereas, Ventura [190] reported no relation, r = .06, for a

sample of 249 students. This suggests that the relations between attributional style

and programming performance are unclear and warrants further investigation.

Behavioural Characteristics

Behavioural characteristics generally describe aspects of a learners day to day behaviour

that can influence their learning progress. In our teaching context two behavioural

characteristics are explored: hours worked in a part time job, and lecture attendance.

Only a single study to date has reported any correlations between lecture attendance

and programming performance. Allert [1] reported a weak correlation, r = .12, between

these two variables on a sample of 139 University students. The relation between hours

spent working in a part time job and programming performance has also only been

explored by a single study. Bergin [16] reported no correlation, r = .05, between these

two variables on a sample of 30 University students.

2.3.3 Academic Predictors

There has been considerable interest in developing an understanding of the wider influ-

ence that programming skills can have on a student’s performance in related academic

subjects, with an emphasis on Math and Science. As with the previously discussed

predictors, there are also a high number of inconsistent findings.

Previous Programming Experience

Although the intuitive notion would perhaps be that previous programming experience

would be advantageous to students’ taking a programming course, previous research has

yielded inconsistent results on the benefits of prior experience. Jones and Burnett [84]

reported a moderate correlation, r = .44, between the presence of prior programming

experience and the programming performance of 49 University students, and simi-

lar correlations were reported by Wiedenbeck [205], r(120) = .27, and Sheard [164],

r(51) = .28. However, other researchers have reported no-to-weak correlations, in-

cluding: Byrne and Lyons [28], r(110) = .10, and Ventura and Ramamurthy [189]

r(256) = .06. A possible explanation is that all students reach a similar level of pro-

gramming ability after completing a course.
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Academic Background

As with the previous predictor groups, inconsistent results can be found across a range

of academic predictors. Capstick [30] reported a strong correlation, r = .58, between

calculus and programming performance of 24 University students, whereas Stein [178]

only reported a moderate correlation r(160) = .20. An initial study by Koubek [91]

found a strong correlation, r(134) = .62, between chemistry and programming per-

formance, whereas a later study only revealed moderate correlations, r(606) = .31.

Whipkey [203] identified a strong correlation, r(88) = .73, between high school GPA

and programming performance, whereas Werth [202] found no relation, r(58) = .07.

2.3.4 Context Independent Predictors

In terms of identifying context independent predictors of programming performance, a

multi-national, multi-institutional study was conducted in 2004 using students from 11

different institutions (based in Australia, New Zealand, and Scotland). Four diagnostic

tests were used to measure different traits of the students. These included: paper folding

test (spatial visualization and reasoning ability), map sketching (ability to articulate

decisions), phone book searching (ability to articulate a search strategy), study process

questionnaire (deep or surface approaches to learning). The findings of this study

were that spatial visualization was associated with success, along with adopting a deep

learning approach, being able to articulate a search strategy in detail, and map drawing

style (landmark, route, or survey) [168,169,184]. Whilst these studies were interesting,

they also take considerable effort to perform. As such the majority of experiments into

predictors of CS1 performance usually take place across considerably different contexts,

often yielding considerably different results [198].

2.3.5 Hybrid Predictive Models

In this section, we have shown that the majority of predictors which will be examined

in our teaching context have yielded considerably varying results when they are applied

in different teaching contexts. However, it has long been recognised that constructing

predictive models based upon different combinations of predictors can yield stronger

results than when the predictors are considered singularly. Examples of such models

are shown in Table 2.1. As with the performance of the predictors when considered

singularly, it can be seen that there is a great deal of variation in the models which have

been explored by previous research. Different predictors are almost always featured in

different regression models, possibly suggesting that different factors are more relevant

for programming in different teaching contexts than others.
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2.4 Predictors based upon Programming Behaviour

Exploring the relations between the kinds of mistakes which students make, and how

they go about the process of developing programs has been the subject of research for

some time. However the recent upsurge in data-driven approaches for automatically

gathering data and analysing behavioural patterns has provided researchers with new

insights into the novice programming process. In this section we briefly review previ-

ous studies which have examined the relations between programming behaviour and

programming performance. An overview of studies is shown in Table 2.3.

2.4.1 Stoppers, Movers, Tinkerers

Much of the early research into programming behaviour was conducted through obser-

vational studies. Piech et al., [141] note several studies which took place to examine

the relations between novice programmers and specific programming constructs such

as variables [160], looping [171], and methods [88].

In a prominent example, Perkins et al., [138] observed novice students writing

LOGO programs. They found that when writing programs to solve basic problems,

students’ exhibited three types of programming behaviour. These were:

• Stoppers are students who simply stop working on a problem when they lack a

clear direction of how to proceed. When faced with a problem to which they have

no solution they feel at a complete loss and are unwilling to explore the problem

any further.

• Movers are students who will keep trying, experimenting, and modifying their

code in the hope of eventually solving the problem. Unlike stoppers they can

use feedback about errors effectively and have the potential to solve the current

problem by gradually working towards the correct solution.

• Tinkerers are students which could be labelled as ineffective movers. They are not

easily frustrated by a program which fails the first time, they like to experiment

with their code by making changes, and they also hold the belief that a problem is

solvable. However, they differ from movers as they will try to solve a programming

problem by writing some code and then making small changes in the hopes of

getting it to work. These changes are not always systematic and almost random

in nature, which can make the problems students are facing worse.

They also found that students’ attitudes to mistakes are an important factor in their

progress, and those who are frustrated by their mistakes or have a negative emotional

reaction to making errors are more likely to become stoppers.
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The main shortcoming of observational studies of this nature is that they take consider-

able effort to run. Nowadays, many researchers have elected to explore the programming

behaviour of students by augmenting various systems to gather data by using on-line

protocols. The data logging typically involves adding various extensions to IDE’s and

operating systems to capture and relay data which describe students’ programming

processes. This usually includes collecting snapshots of source code, either by a de-

fined interval, or when students’ perform actions such as saving the project they are

currently working on, which then enables the creation of data-driven approaches for

finding characteristics that contribute to students’ success. The main benefit of data-

driven approaches based upon how students solve programming errors, or how they

schedule their time, and whether they pay attention to code quality, is that, they are

directly based on the regular programming activities of students, and therefore can

directly capture changes in their learning progress over time. This is not the case for

the more traditionally explored predictors, e.g. learning styles or personality traits.

Possibly one of the earliest studies was performed by Spohrer and Soloway [177] who

augmented the operating system of the VAX 750 that students used to store copies of

each syntactically correct Pascal programs which they compiled. Exploring the traces

of 158 students over three problems, they found that just a few types of bugs accounted

for the majority of mistakes in students programs, implying that educators can most

effectively improve their students’ performances by changing instruction to address and

eliminate the high frequency bugs. Many bugs arise as a result of plan composition

problems, i.e. difficulties in putting problems together, and not as a result of construct

based problems, i.e. misconceptions about different language constructs [176].

2.4.2 The Errors that Students Make

Since then, considerable effort has been placed into applying data-driven techniques to

explore how the types of syntax errors which students make relate to their programming

performance. On the most basic level, many studies have attempted to identify the

types of errors which students make (e.g. [79, 81, 82, 181]). The most common errors

identified by these studies are shown in Table 2.2.

It is interesting to note that the types of errors which students make appears to

be consistent across different teaching contexts, and it is common knowledge as to

which types of error occur most frequently [51]. Additionally, the bulk of errors which

students make could be classified as “syntax errors”, relating to unknown variables,

classes, packages, and methods. These could easily be attributed to basic typos, or the

fact that students are not taking sufficient care when coding [123].
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Previous Researchers

Error [82] [81] [79] [181]
1 unknown variable • • • •
2 ; expected • • • •
3 unknown method • • • •
4 unknown class • • • .
5 illegal start of expression • • . •
6 ) expected • • • •
7 incompatible types • • • •
8 missing return statement . • . •
9 unknown constructor . . . .
10 <identifier> expected • . • •

Table 2.2: Most common errors identified by previous researchers.

2.4.3 Compilation Behaviour

Moving on from basic analysis into the types of different errors which students make,

other researchers have explored automatically gathered datasets to identify patterns of

novice programming behaviour. As this thesis explores the programming behaviour of

Java students, this section will briefly discuss some of the research which has focussed

upon exploring Java programming behaviour at the compilation level.

In an early study, Jadud [81] explored the edit-compile cycle of 63 novice pro-

gramming students. Each time students compiled their code within the BlueJ IDE,

a snapshot of the code being compiled would be collected, along with various meta-

data (e.g. timestamp, username, location). They found the five most common errors

accounted for 58% of all errors encountered by students whilst programming: missing

semicolons (18%), unknown variable (12%), bracket expected (12%), illegal start of ex-

pression (9%), and unknown class (7%). They also found that students had a tendency

to recompile rapidly following an unsuccessful compilation.

In a follow on study, Jadud [82] proposed an algorithm designed to quantify sev-

eral aspects of programming behaviour into a performance predictor. This was known

as the Error Quotient (EQ), and is an algorithm which scores the programming be-

haviour of students based upon the frequency of errors encountered, and how successive

compilation failures over a session compared in terms of error message, location, and

edit location. The scoring scheme is applied to sets of consecutive compilation event

pairings, which is then averaged based upon the total number of pairings logged from

students. Initially data was collected from 161 students. This sample was then re-

duced to 96 students by removing those who had not used the public laboratories at

least three times for working on their programs. The error quotient was then run on
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a further reduced sample of 56 students taken from the 2004/05 academic year only.

Two regressions showed that the error quotient scores were a significant, but weak pre-

dictor of average assignment scores (R2 = 11%) and final exam scores (R2 = 25%).

No verification regressions using data gathered from the remaining 40 students were

presented, although a histogram showed that the error quotient scores were normally

distributed for the entire sample. Jadud suggests that the poor quality fits can be at-

tributed to student cheating, missing assignment data, or an incomplete representation

of programming behaviour. In this thesis, we will argue that the third reason is correct,

but also that there are several flaws associated with the methodology utilized by the

error quotient algorithm which limits its ability to accurately reflect the programming

behaviour of students.

The main methodological flaw of the Error Quotient is that the compilation pairings

scored by the algorithm are constructed using the natural order that compilation events

occurred during a session. However, this approach is flawed as it assumes that either

students only work on a single source file, or work on multiple files in a linear manner.

Suppose that a student received an error when compiling file ’A’, and in their next

action, they successfully compiled file ’B’. As the error quotient constructs pairings

based upon the order that events occurred during a session, it would incorrectly mark

the error in file ’A’ as resolved. In reality, the student simply compiled a different file.

As a student’s Error Quotient is averaged by using the sum of every pair from a session,

having a large proportion of invalid 0 scoring pairings like this, can lower their Error

Quotient, inaccurately reflecting their performance.

Tabanao, Rodrigo, and Jadud [182] attempted to determine whether at-risk Java

programming students could be identified based upon aspects of their programming

behaviour. Data was gathered from 124 students who used the BlueJ IDE over five lab

sessions. Based upon their mid-term exam scores, students were classified into three

groups: high performing (n = 25), average (n = 76) and at-risk (n = 23). Significant

differences were found between the three groups in terms of: the total number of errors

encountered (more errors for lower performing), the total counts of a few specific types

of the most common errors (more occurrences for lower performing), the time spent

between two successive compilations (higher performing spent longer between compi-

lations), the error quotient scores (higher for lower performing). A set of regressions

were performed by using these four factors. Although the error quotient emerged as an

influential predictor, it could only account for a moderate amount of the variance in

performance (R2 = 29.7%, p < .01) and all of the regression models failed to accurately

predict the at-risk students.
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Rodrigo et al., [155] conducted an interesting experiment where data gathered from the

BlueJ IDE was supplemented with human observations, describing the affective and be-

havioural states of 40 programming students. Based upon the mid-term exam scores,

significant relations were found for the percentage of observations where students ex-

hibited confusion (r = -.43), boredom (r = -.39), and IDE related on-task conversation

(r = .32). A regression based upon these factors could account for a moderate amount

of the variance in performance (R2 = 34.7%, p < .05). They also found that several

aspects of programming behaviour were related to performance, including: the num-

ber of pairs of successive compilation errors (r = .33), the number of pairs with the

same edit location (r = .34), the number of pairs with the same error location (r =

.30) and the number of pairs with the same error (r = .30). However, a marginally

significant regression based upon these factors could only account for a small amount

of the variance in performance (R2 = 12.0%, p = .09).

As a follow on experiment from [155], Rodrigo and Barker [154] attempted to detect

student frustration based upon aspects of their programming behaviour. These aspects

included the average number of successive compilations with the same edit location,

average number of successive pairs with the same error, the average time between

compilations, and average number of errors. Although achieving significant results, the

strength of the correlation was weak (r = .31). Additionally the model failed to detect

frustration on a per-lab basis, suggesting that the approach required a substantial

amount of data before it could yield accurate results.

2.4.4 Supplementing Compilations with Testing Data

To build a fuller picture of students programming behaviour, other researchers have

supplemented snapshots gathered at compile time, with data gathered while students

performed debugging tasks (e.g. performing invocations or unit tests).

Norris et al., [133] developed the ClockIt extension for the BlueJ IDE which ex-

tends the data collection which was performed by Jadud [82] by also logging package

and invocation events. Package events are logged when students open or close packages.

Invocation events are logged when students instantiate objects and invoke methods of

objects which are on the interactive workbench. These events can be considered as

evidence of students performing runtime testing on their code. The main purpose of

ClockIt was to provide visualizations which show instructors and students statistics re-

lating to project development. An initial case study which used the snapshots gathered

from three students (strong, average, weak) suggested that the percentage of compi-

lation errors and types of compilation errors were related to performance. The weak

student had 15% errors which were based upon invalid method declarations, whereas
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the other students did not encounter this error. The number of compilation attempts

also appeared to be related to performance, with the most compilations made by the

strongest student and the fewest by the weakest student.

Fenwick et al., [59] continued to explore the data logged from ClockIt. Using data

which described the programming activities of 110 students, they found that more than

50% of the time students would generate a follow up compilation within 30 seconds,

which confirms the result of [81]. The percentage of most commonly occurring errors

logged from students was found to decrease over time as they were replaced by more

advanced errors. Students who started working on assignments early outperformed

students who started close to the deadline. Additionally those students who worked

over frequent short sessions outperformed those who worked a single long session.

Murphy at al., [130] developed the Retina tool which performs similar data logging

as ClockIt, except it can integrate with BlueJ, Eclipse, and the javac compiler. Retina

distinguishes itself from ClockIt by providing recommendations to students on how

they can improve their programming based upon the behaviours that the rule-based

tool identifies. For example, advising students to work in smaller intervals when a

high number of errors are recorded per compilation. Examining the snapshots which

were gathered from a sample of 48 students, it was found that students who made

fewer compilation errors were awarded higher semester scores. Students who spent less

time working on the assignments tended to score higher than the students who spent

longer on the assignments. Additionally they found that the highest rates of errors per

compilation occurred between 1am and 4am, which suggests that those students who

work later at night tend to make more frequent mistakes than those working earlier.

2.4.5 Massive Datasets and Data Mining

The main limitation of studies into programming behaviour is that they are often

conducted on a small scale nature, and only use participants at a single institution.

To address these shortcomings, researchers have proposed the use of multi-institutional

massive datasets and data mining techniques, to enable the identification of behaviours

that are related to performance across different contexts.

Utting et al., [187] describe a modification to the BlueJ IDE which enables the

collection of data from students throughout the world. The initial results of this project,

called Blackbox are presented by Brown et al., [25] which verified the already well

established research into the most common types of errors which students make.

In a very recent study, Brown et al., [24] surveyed 76 educators on their beliefs

of the most common mistakes which students make, and verified these beliefs using

data gathered from the Blackbox project. Over 14 million compilation events were
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screened for evidence of 18 instances of students misunderstanding syntax, type errors,

and semantic errors. They found that educators only had a weak consensus over the

types of errors which students made, and that years of teaching experience did not

appear to have any effect on these perceptions. This finding corroborates with the

already discussed work of Milne and Rowe [126] and Lahtinen et al., [94].

Although impressive in terms of the amount of data which has been captured by

the Blackbox project, the types of analysis which can be performed by using this

dataset are currently limited by the lack of an outcome measure. In other words,

whilst a great amount of data has been collected, there is no indication as to whether

the data is collected from a particularly poor or strong programming student. This

makes applying standard statistical analysis into the correlations between different

programming behaviours and performance difficult. It is possible that data mining

techniques could be applied to address this limitation, as there have been attempts to

utilize data mining techniques to identify different types of programming behaviour.

For instance, Piech et al., [141] used data mining techniques to analyse how pro-

gramming students’ progress through a Karel the Robot assignment. Snapshots were

gathered from 238 CS1 students whenever they saved or compiled code in Eclipse. To

measure progress over successive snapshots, a program distance metric based upon the

weighted sum of abstract syntax tree changes and application program interface call

dissimilarity was developed. This metric was then applied to cluster different coding

states into high-level milestones by using Hidden Markov Models (HMM). Clustering

the paths which students took through the HMM by using a k-means algorithm, they

found that the development paths were predictive of students’ midterm grades. But,

there was no indication that the paths generalised to more complex assignments.

Vihavainen [192] applied data mining techniques to data gathered from 152 Java

students who programmed using the Netbeans IDE over a six week period. A total

of 200 measures of programming behaviour were considered. For each measure, the

overall median, average, minimum, maximum, deviation were caculated, in addition

to: the remaining time to deadline, time between snapshots, edit distance between

snapshots and coding quality metrics taken from PMD and Checkstyle and FindBugs.

Students were classified into three categories: pass, fail, excellent. Applying a non-

parametric Bayesian classifier (B-Course) they found that “Minutes to Deadline” was

a positive factor - students who started to work late on projects were more likely to

fail the course than students who started early. Other positive factors were found for

amount of indentation errors in the code. After two weeks of programming, the students

classification (pass, fail, excellent) can be identified with 68% accuracy. At the end of

the course (6 weeks), the final accuracy is 78%.
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2.4.6 CVS Repositories

Instead of collecting data at compile time through IDE’s, other researchers have anal-

ysed data gathered in Concurrent Versions System (CVS) Repositories. These ap-

proaches typically explore project level snapshots (i.e. complete snapshots of the entire

project, rather than snapshots of the specific file being compiled).

Spacco et al., [174] developed Marmoset, which is an automated project snapshot,

submission, and testing system which can integrate with Eclipse. Marmoset collects

snapshots at a finer level of granularity than ClockIt or Retina, by committing a project

snapshot to an individual CVS repository each time students save their projects. Feed-

back is generated for students based upon JUnit tests, but the system also supports

static code analysis and bug detection by using FindBugs, PMD, and CheckStyle. An

initial analysis used data gathered from 73 students to examine the accuracy of the

bug detection tools. However, when attempting to explore the programming behaviour

of students they found that the CVS representation was inadequate for encapsulating

program histories and proposed a relational schema to address these issues.

Continuing this work, Spacco et al., [173] explored data which described the pro-

gramming activities of 96 CS2 students over the duration of six assignments. They

found that students preferred to work between the hours of 4pm and 6pm. They also

found that the majority of assignment work was done within 48 hours of the deadline.

A regression revealed a significant, although very weak relationship between the time

of the first logged snapshot and final score in the assignment (R2 = 9.0%, p < .01). A

second regression revealed a borderline relationship between the total estimated time

spent working on each assignment and final score (R2 = 1.0%, p < .05).

Mierle et al., [123] have also used CVS repositories to identify programming be-

haviours. 166 features were extracted from the projects which students submitted, and

were grouped into three categories: CVS repository data (e.g. average number of revi-

sions per file), source code metrics (e.g. number of while loops), and higher level bad

practices computed by PMD (e.g. empty if statements). Of the 166 features examined,

only 3 had a significant correlation with performance. These included the total num-

ber of characters in the diff text between successive revisions, and the total number

of times that a comma was followed by a space. The most significant correlation was

for the total number of lines of code written. How early a student starts assignments,

and how close to the deadline that they submitted was not predictive of performance.

As the extra metrics based upon coding style and quality (PMD) were unrelated to

performance, the authors concluded that contrary to the beliefs of many instructors

that student work habits have very little effect on their performance, so long as they

eventually do the work.
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2.4.7 Online Submission Systems

Other researchers have explored the projects which students upload (either manually or

automatically on specific events) to project submission systems. These systems differ

to the CVS repositories by providing students with feedback on their work, such as the

number of automated test cases their projects passed.

Edwards et al., [57] have used data gathered from the Web-CAT system to explore

the programming behaviours of students. Web-CAT is an automated grading system

which provides students with feedback on coding assignments based upon static code

analysis and test coverage analysis. Data was gathered from three programming courses

over a five year period. The submissions of 633 students were analysed by using a

binary classification based upon ability: high achieving (grades A/B), and low achieving

(grades C/D/F). Several statistically significant differences were found between the two

groups. The total number of submission attempts was found to be slightly lower for the

higher group (average 13.7 attempts) than the lower group (average 14.9 attempts). The

time of the first submission attempt was found to be substantially earlier for the higher

group (average 65.5 hours before deadline) than the lower group (average 27.9 hours).

The time of the last submission attempt was found to be substantially earlier for the

higher group (average 29.5 hours before deadline) than the lower group (average 12.5

hours). The amount of time spent between the first and last submissions was found to

be slightly lower for the higher group (average 36.1 hours) than the lower group (average

40.2 hours). No significant differences were found between the non-commented lines of

code written by either group.

Expanding on this work, Allevato and Edwards [2] have applied data mining tech-

niques to the data gathered from the Web-CAT system. Continuing to explore the

differences between high and low achieving students they found that both groups of

students are characterised by increasing the number of methods and complexity of their

code between successive submissions. But, the low achieving students were also found

to remove entire methods from their solution, and then removing entire test cases as

well. This may suggest that when weaker students encounter errors, they find it easier

to start coding again from scratch.

Bosch et al., [20] have also examined the code submissions which students made

to an online grading system. As with [2, 57] the correctness of students solutions was

determined by verifying that the correct output is generated for specific and randomly

generated test cases. Data was collected from 192 students from six semesters of a

C/C++ CS1 course, completing 75-80 assignments each. Programming behaviour was

measured using both process metrics and source code metrics. Process metrics included

work sessions (time students spent programming over a session), iteration interval (time
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between submissions) and work time (time students spent working on an assignment).

Source code metrics included the number of non-commented lines of code written, cy-

clomatic (McCabe) complexity (number of linearly independent paths of execution in a

program) and declared variables (count of the number of variables which are common

to CS1 programs, int, float, double, boolean, long, unsigned, char, String). They found

that half of all submissions occurred within two minutes of the previous submission,

and approximately one third of all submissions occurred within one minute of the pre-

vious submission. Applying the source code metrics they found that students tended

to submit solutions which were of greater complexity than they actually required. This

excess possibly stems from the iterative approach which they adopted to problem solv-

ing, identifying and correcting one problem at a time and persisting until no problems

are apparent. The other explanation is that it indicates that novice students lack a

complete understanding of concepts like State Space and Boolean Algebra. When try-

ing to repair solutions which didn’t quite work, students would increase the complexity

of their solutions by introducing additional control flow structures.

Helminen et al., [72] explored the programming behaviour of students using on-

line submission systems at a finer granularity than previous approaches. Instead of

analysing the programming behaviour of students as they made complete submissions,

they examined traces of students direct interactions with a web based Python IDE.

Exploring the traces of students over three assignments, they found that students used

automatic feedback provided by the system sparingly, and made active use of the con-

sole for both testing their code and exploring language features and libraries. Two

main testing strategies were identified. Either students would attach test code at the

end of their program and run it each time they ran their code, or they would just run

their program and then test its functionality via the console. However concerns were

raised over the loss of information by using this approach, as one third of the students

confirmed that they almost always first wrote and ran their code in other tools (e.g.

Eclipse) before submitting via the web based environment.

Helminen et al., [73] in a related study explored the programming behaviour of

students working in an online environment to solve Parsons programming problems.

In these assignments students had to correctly order and indent a given set of code

fragments in order to build a functioning program that met the requirements. Aggregate

graphs were constructed to illustrate all the possible solution paths for each of the five

assignments. Analysing the data gathered from students studying two programming

courses, they found that students had a tendency to add code fragments in a linear

manner and follow a top-down approach but that there were a lot of small variations

in the solution paths suggesting that some guesswork must be present.
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2.5 Summary

In this chapter, we have presented background material relating to the studies that are

presented in this thesis.

The difficulties of learning to program from a theoretical perspective were discussed,

which highlighted eight possible reasons as to why students can struggle to learn to pro-

gram. These reasons ranged from an inappropriate teaching environment to difficulties

in establishing clear mental representations of the underlying machine students are

trying to program.

Following this, evidence of the conflicting findings surrounding a range of predictors

based upon traditional learning theories were presented. These predictors form a subset

of the 116 predictors which are examined in detail in Chapter 7.

Finally data-driven predictors which are based upon programming behaviour were

reviewed. This highlighted the main types of behaviour identified by previous research,

such as the relations between programming performance and aspects of coding quality,

types of errors made, and descriptive data relating to the time of submissions and hours

spent coding.

The Error Quotient [82] currently remains the only predictive algorithm which has

been designed to predict programming performance based upon quantifying multiple

aspects of programming behaviour. However, there are several methodological limita-

tions with the algorithm which we will attempt to address as part of our work. An

interesting aspect of programming behaviour which appears to have been overlooked

by previous research is to consider how much time students take to resolve different

types of errors compared to their peers. We hypothesise that such a measure would

provide a natural way of relatively ranking students and possibly be predictive of their

performance.

In the next chapter, the research method is presented which will discuss the methods

employed to answer the four research questions of this thesis.



Chapter 3

Research Method

This chapter presents an overview of the research methods which are used in this thesis.

Section 3.1 presents an overview of the three research objectives which were previously

detailed in the Introduction chapter. Section 3.2 presents an overview of the four

research questions that were explored in this thesis. Section 3.3 describes the teaching

context of our University from which participants for the studies were gathered. Section

3.4 describes the motivations for including each research question. An overview of the

method used to answer each question is presented, along with research sub-questions

which were used to guide each study. As four considerably different techniques and

samples were used to answer each of the research questions, the research methods are

detailed alongside the experimental results within each corresponding chapter. Section

3.5 outlines statistical techniques which are used in this thesis.
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3.1 Research Objectives

This thesis investigates factors that can be used to predict the success or failure of stu-

dents taking an introductory programming course. Both factors that can be measured

prior to, and during a course are examined. The broad research question which will be

explored in this thesis is:

Which factors can be used to predict the success or failure of students taking

an introductory programming course?

Consequently the three research objectives (RO) of this thesis, are defined as follows:

RO1: To explore which aspects of the external teaching context can influence

the performance of students taking an introductory programming course.

RO2: To explore which internal factors derived from traditional learning

theories can be predictive of the performance of students taking an introduc-

tory programming course.

RO3: To explore which data-driven metrics based upon analysing the pro-

gramming behaviour of students within an IDE, can be predictive of the

performance of students taking an introductory programming course.

The motivations behind each of these objectives were described in the Introduction

chapter of this thesis. To briefly refresh the reader, the first category of factors that

will be explored are those from the teaching context. These factors can include the

country in which the course was taught, the programming language that was taught to

students, and the grade level of the institution.

The second category of factors that will be explored are derived from traditional

learning theories and students’ academic backgrounds. Although such predictors have

been the focus of research over the past fifty years, there are two major shortcomings of

previous research concerning both a lack of verification and the lack of generalisability

of such predictors to a range of different teaching contexts.

The third category of factors that will be explored are data-driven predictors which

are based upon analysing data that is directly gathered from an IDE describing the

programming behaviours of students. Such approaches have shown more promise than

the traditional predictors, but research into these predictors is still in its infancy.

To satisfy the three research objectives, this thesis conducted four successive quan-

titative studies which formed the basis of the four research questions. These research

questions are described in Section 3.2 and a visual overview showing how these questions

related to the research objectives is presented in Figure 3.1.
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3.2 Research Questions

In order to ensure that each of the three research objectives (RO) are satisfied in this

thesis, this section summarises four research questions (RQ) that will be explored. The

four questions which will be answered in this thesis are as follows:

RQ1 To what extent are students’ programming performances influenced by aspects

of the teaching context, including: year, country, grade level of the institution,

cohort size, and the programming language taught in the course? (RO1)

RQ2 Which traditional learning theories describing the psychological and cognitive

aspects of learning, and which aspects of students’ academic backgrounds are

predictive of their programming performances? (RO2)

RQ3 Which data-driven metrics derived from data describing students’ programming

behaviours are predictive of their programming performances? (RO3)

RQ4 How do factors based upon traditional learning theories, academic background,

and programming behaviours, compare when they are used to predict students’

programming performances across different teaching contexts? (RO2, RO3)

To present an overview to the reader RQ1 was answered by performing a systematic

review of the literature on programming education. From the available literature, data

describing the worldwide pass and failure rates of programming courses was extracted,

and analysed by grouping the data based upon aspects of the teaching context.

RQ2 was based upon examining the relations between 34 predictors based upon

traditional learning theories with the programming performance of one sample (n = 39)

of students studying the 2012/13 introductory programming course at our University.

These predictors were selected either as previous research had yielded inconsistent

results, or, because no researcher had attempted to verify previous findings.

RQ3 was based upon exploring the data gathered from the BlueJ IDE which de-

scribed the programming activities of three samples of students taking the programming

course at our university. Samples were taken from 2011/12 cohort (n = 37), 2012/13

cohort (n = 45), and 2013/14 cohort (n = 59). Based upon our experiments, several

aspects of programming behaviour which predicted performance were identified.

RQ4 was based upon performing a thorough meta-analysis to integrate the results

from previous research with the results of this thesis. Based upon this study, 482

individual results describing 116 predictors were statistically synthesised, illustrating

to researchers precisely which factors are the most critical for programming success.
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Figure 3.1: Overview of the research conducted within this thesis, showing how the
three research objectives related to the overall research theme, and how each of the
four research questions were related to the research objectives.

3.3 Teaching Context

As the four samples of students that were used in this thesis were taken from three

different cohorts studying the programming course at our university, it is first necessary

to discuss the similarities and differences between the teaching contexts of each year.

To briefly summarise, the learning content and materials provided to all three cohorts

were mostly identical. The main differences between each year of the course were in

terms of assessments, with the largest difference being the replacement of the final

exam from the 2011/12 course with a final project for 2012/13 and 2013/14 courses.

As a result of these changes, and as the use of exams has been widely criticised as an

accurate means to measure programming ability [46, 50, 101, 102, 105, 118, 140], we use

the students overall coursework performance as the criterion variable of the studies.
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3.3.1 Learning Content and Materials

The introductory programming module at the University of Durham was designed to

teach Java to students of varying abilities, and assumed no prior knowledge. Teaching

took place over nineteen weeks and covered variables, I/O, methods, conditionals, loops,

lists, arrays, along with inheritance and exception handling. The majority of students

were CS majors, although increasing numbers of elective students came from other

disciplines, such as Physics. The course was delivered through a traditional approach.

Students were supported through two weekly lectures that introduced concepts (op-

tional attendance), and a weekly two hour lab session (compulsory attendance) where

students would practice solving problems using the BlueJ IDE. Students only received

one problem sheet per week, usually consisting of three progressively difficult tasks.

We note that the in-lab demonstrating staff who were responsible for marking and

supporting students were the same two postgraduates for all three years.

In both the 2011/12 and 2012/13 courses, the lectures were shared by two members

of academic staff. However, one member of staff left following the completion of the

2012/13 course, and the 2013/14 course was taught solely by the remaining lecturer.

As a result, there are differences between the examples used in the lectures for 2013/14

course the other two courses. We note that although the examples used in the course

were not the same for each year, the underlying concepts that they were designed to

teach were identical for all three cohorts.

3.3.2 Assessment Components

An overview of the assessments used in the course are presented in Table 3.1. The

composition of assessments which formed the overall course marks varied over the

years. All three cohorts were required to complete a first term written exam, a practical

project, and a second term practical exam. Examples of each of the assessments are

included in the Appendix.

Lab Assignments

Table 3.2, presents an overview of the assignments which students completed during

their weekly two hour lab sessions. As can be seen from this table, there was consider-

able overlap in the assignments that students of all three cohorts completed. 10 of the

assignments were identical for all three courses, and 13 of the assignments were identi-

cal for the 2012/13 and 2013/14 courses. Across all three courses, there were only five

assignments which were never repeated for another year, these were: 2011/12 (Scanner,

GUI), 2012/13 (Cryptography, Further Inheritance), and 2013/14 (Biogram).
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Table 3.1: Table showing the weightings of the various assessment components for all
three cohorts. All of the assessments were summative unless stated otherwise, a dash
(-) indicates that an assessment was not used in the course during a given year.

Component 2011/12 2012/13 2013/14

Coursework

(60% module)

T1 Bench Test 25% 25% 33%

T1 Project 25% 25% 33%

Collection Exam Formative Formative -

T2 Bench Test 40% 40% 33%

Weekly Labs 10% 10% Formative

Finals

(40% module)

Final Exam 100% - -

Final Project - 100% 100%

Table 3.2: Table showing the assignments/concepts that were covered in the weekly
lab sessions for all three cohorts. Lab assignments that were not reused are shown in
italics. Labs reserved for course assessments are shown in bold.

Lab 2011/12 2012/13 2013/14

1 No Practical No Practical No Practical

2 No Practical Intro to BlueJ Intro to BlueJ

3 Intro to BlueJ Java Turtle Java Turtle

4 Java Turtle HiLo Game Biogram

5 HiLo Game Cyber Pets HiLo Game

6 Cyber Pets Cryptography Free (Catch Up Lab)

7 T1 Project ArrayLists ArrayLists

8 T1 Project Expressions Expressions

9 ArrayLists T1 Project T1 Project

10 Christmas Exercises Christmas Exercises Christmas Exercises

11 Collection Exam Collection Exam T1 Project

12 Static Static HashMaps

13 Palindrome Hash Maps Palindrome

14 Scanner Palindrome Static

15 Inheritance Inheritance Inheritance

16 Abstract Classes Further Inheritance Abstract Classes

17 Exceptions Abstract Classes Exceptions

18 GUI T2 Bench Test T2 Bench Test

19 T2 Bench Test Exceptions Final Project
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Term 1 Bench Test

The first term bench test was usually conducted half way through the first term (typ-

ically around week 5/6), and forms the basis of a one hour written exam that takes

place during the usual lecture slot. For all three years, the exam was closed book. The

tasks involved and concepts assessed in this component were:

• 2011/12: Temperature monitoring program. Two classes were provided. Students

were required to identify the scope of variables (16%), draw an object diagram

(24%), write code to calculate an average using a loop (32%), and design a new

class based upon the two provided classes (28%).

• 2012/13: Dice roll game. Two classes were provided. The tasks involved and

marks awarded per question were identical to the 2011/12 bench test but with

the theme of a dice roll game.

• 2013/14: Bank. Unlike previous years, students were required to identify and

correct errors in a provided Java class (50%). The remaining tasks were similar

to previous years, and required students to design a new class with appropriate

fields and constructors (10%), a method to deposit cash (10%), a method to

withdraw cash (20%), and a method to calculate the average value of withdraws

since cash was last added to the machine (10%).

Term 1 Project

The first project was usually released towards the end of the first term (typically around

week 7/8), and forms the basis of a small project in which students are typically de-

signed to implement 4-5 classes and create a small program based upon concepts covered

in the first term labs. The objectives of these projects were for students to demonstrate

their knowledge of defining classes, fields, constructors and methods in Java; using ap-

propriate types, including collections; implementing basic algorithms using collections;

and devising appropriate test cases. The tasks involved in this component were:

• 2011/12: Fault Injection. This project required students to intentionally propa-

gate Java programs with errors, in order to explore two hypotheses: “The Java

type system helps to identify programming errors at compile-time instead of run-

time”, and, “It is difficult for compilers to identify correctly what programming

errors have been made and where”. The project involved students writing pro-

grams that could automatically mutate code (such as removing random lines using

the Scanner object), and then writing a report on their findings in relation to the

two hypotheses (100%).
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• 2012/13: Phone Company. This project required students to implement three

classes that represented a phone company. For each of the three classes (Phonecall,

Phone, and Person), the students were provided with a specification describing

key fields and methods, which they then were required to complete (75%). Fi-

nally, students were required to implement appropriate testing methods (25%) to

demonstrate that their programs satisfied the specifications.

• 2013/14: Earthquake Monitoring. This project required students to implement

three classes that represented an earthquake monitoring system. The project was

largely similar to the one that was used in 2012/13, and again required students

to implement three classes (75%) and develop appropriate testing methods (25%).

Term 2 Bench Test

The second term bench test was usually conducted at the end of the second term

(typically around week 18/19), and forms the basis of a two hour open book practical

exam that takes place within the weekly lab session. The bench test was practically

identical for each year, with the bulk of marks (85%) being awarded for identical tasks

each year. The tasks involved and concepts assessed in this component were:

• 2011/12: Online Learning Environment. The student was provided with a single

class representing a Person, and they were required to implement: two subclasses

of Person (Staff and Student) using inheritance (40%), a custom list class to store

instances of the subclasses (30%), a hashcode function (10%), a search function

for an array (10%), and a method to to ensure that their custom list contained

no duplicated entries (10%).

• 2012/13: Online Learning Environment. The questions were identical to the ones

used in 2011/12, however the final question on writing a method to to ensure that

their custom list contained no duplicated entries was removed, and the marks

redistributed to implementing a hashcode function (15%), a search function for

an array (15%).

• 2013/14: Online Sales Environment. The questions were identical to the ones

used in 2012/13, however the scenario was changed to an online sales environment.

The writing a search function for an array question was replaced by writing a

method to to ensure that their custom list contained no duplicated entries (10%)

from the 2011/12 bench test.
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3.4 Research Methods

In this section the motivations for including each of the research questions is presented.

Research sub-questions which were used to guide each of the studies are stated and the

methods employed to answer each of the questions are briefly discussed. As a range of

different quantitative methods are used in this thesis, for clarity, the detailed description

of the research methods used to answer each question, are presented alongside the

results in the corresponding chapters of this thesis.

3.4.1 RQ1: Failure Rates in Introductory Programming

RQ1: To what extent are students’ programming performances influenced by aspects of

the teaching context, including: year, country, grade level of the institution, cohort size,

and the programming language taught in the course?

Motivation

Before exploring predictors of programming performance with the intention of identi-

fying at-risk students, it was important to establish the proportion of struggling pro-

gramming students that existed on a worldwide scale.

Therefore the aim of this study was two fold. Firstly, this study aimed to provide a

solid motivation for our further research into predictors of programming performance.

Secondly, this study aimed to explore whether certain aspects of the teaching context

were influential on the programming performance of students.

Over the past half decade, the perceived high failure rates of programming courses

have provided a staple motivation for research into programming education. An abun-

dance of generalizations of high failure rates within the literature reinforces the notion,

and research is now at the point where the high failure rates in programming courses

have transformed from folklore into a widely accepted fact.

However, whilst high failure rates are an often cited motivation for research into

programming education, only a single study to date [13] has attempted to provide any

quantitative evidence to support the claim that high programming failure rates exist on

a worldwide scale. This is problematic, and a lack of hard facts on the outcomes of pro-

gramming courses can have implications for both instructors and students. Instructors

of failing courses may accept their shortcomings as “that’s just the way programming

courses are”, and make no attempt to alter their practice to improve the pass rates.

Likewise, potential students may be easily put off from taking the course to start with,

which will not help to satisfy future labour demands of a digital economy [186].
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In short, when asked whether there is worldwide failure rate problem our response is

that we simply do not know. Evidence of high failure rates [53, 92, 144, 152, 159, 214]

and low failure rates [4,32,61,170,183,195] can easily be located in the literature, and

the only study to date that has attempted to quantify programming failure rates is

limited by only reflecting course outcomes at a single point in time.

There is still a need to further examine other sources of evidence on the failure

rate phenomenon. Only by expanding the work of [13] can a more accurate picture

on the worldwide state of programming courses be drawn. If it could be established

that the failure rates of programming courses are high, have not changed over time,

and that aspects of the teaching context do not have a substantial moderating effect

on failure rates, then this may suggest that the internal characteristics of students are

more influential on their ability to acquire programming skills. This would serve as

a motivation for thesis research questions: RQ2, RQ3, and RQ4, which explore the

variations in programming performance based upon student factors.

Research Sub-Questions

To answer RQ1, the following sub-questions were answered:

1. What are the worldwide pass rates of introductory programming courses?

2. How do the pass rates of introductory programming courses compare over time?

3. Are pass rates moderated by any aspects of the teaching context, including:

(a) Country in which the course was taught.

(b) Programming language that was taught in the course.

(c) Size of the cohort: small (< 30 students), large (≥ 30 students).

(d) Grade level of the institution: university or other.

Method

In order to answer these research questions, we performed a systematic review of re-

search on programming education conducted over the past fifty years to identify as

many reported pass and failure rates of programming courses possible.

A statistical analysis was then performed on the pass rate data that was extracted

from relevant articles. The first research question was answered by computing the

mean pass rate on all the extracted data. The second and third research questions

were answered by grouping pass rates into bins based on the moderating variable under

investigation, and then performing a one-way ANOVA on the grouped data.
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3.4.2 RQ2: Traditional Predictors based upon Learning Theories

RQ2: Which traditional learning theories describing the psychological and cognitive

aspects of learning, and which aspects of students’ academic backgrounds are predictive

of their programming performances?

Motivation

Based upon the results from RQ1, we were motivated to start exploring the possible

student characteristics which may be predictive of programming performance. For al-

most fifty years, researchers have explored how traditional learning theories and aspects

of the students’ academic backgrounds relate to their programming performance.

But despite over fifty years of research, almost all of the characteristics based upon

traditional learning theories have failed to consistently predict the programming perfor-

mance of students across a range of different teaching contexts. This is problematic, as

without understanding which factors enables students to become good programmers, it

becomes difficult to design and implement any effective pedagogical tools or strategies

which could be applied to identify and better support the weakest students.

The aim of this study was to determine whether any relationships existed between

performance and a range of characteristics which have only been evaluated in a small

number of teaching contexts. This allowed us to explore whether these characteristics

were also limited by the same context dependency as their predecessors, and to evaluate

their wider applicability as enabler of programming ability. The second purpose of this

study was to determine whether a subset of these predictors could be combined to form

a context independent multivariate model, that could be used to predict performance

across a range of different teaching contexts.

Research Sub-Questions

To answer RQ2, the following sub-questions were answered:

1. Are there any correlations between the predictors examined in this study and pro-

gramming performance? If applicable, are these findings consistent with previous

research, or inconsistent, suggesting a context dependency?

2. Are any categories of predictor more strongly correlated with programming per-

formance than others?

3. Are any predictors either singularly or additively useful for predicting the perfor-

mance of students studying an introductory programming module?
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Method

We first had to identify a set of predictors that had only been evaluated in a small num-

ber of teaching contexts. The motivation behind this decision was two-fold. Firstly, it

is reasonably straightforward to find a pair of conflicting results for any of the predic-

tors previously trialled in multiple teaching contexts. Therefore, we were interested in

exploring whether the mostly unverified predictors also suffered from the same context

dependency as their predecessors.

Secondly, the thesis RQ4 is answered by performing a thorough meta-analysis of

previous quantitative research. In order to statistically combine studies to estimate

how a predictor would perform when it is applied across a range of different teaching

contexts, at least two results are required. Verifying a selection of previously unverified

predictors meant that we could include a greater range of predictors in the meta-

analysis, which allows us to explore how a wider range of characteristics relates to

programming performance.

In total 34 predictors were selected and grouped into seven different categories

under three broad headings. These included: academic predictors (previous program-

ming experience, previous academic experience), psychological predictors (attributional

style, behavioural characteristics, self-esteem) and cognitive predictors (learning styles,

learning strategies and motivations). Six instruments were used to collect data from the

participants. These included: an in-house designed background questionnaire, Weiner’s

attributional style questionnaire, Rosenberg’s Self-Esteem Scale, Kolb’s Learning Style

Inventory, Gregorc Style Delineator, and the Motivated Strategies for Learning Ques-

tionnaire. These instruments were completed by 39 students (36 male) sampled from

the 2012/13 introduction to programming cohort at our University.

The first research question was answered by calculating Pearson’s correlations be-

tween the students’ programming performances and the scores they obtained on each

of the six instruments. These results were compared to previous research if available

to judge the context dependency of a predictor. This was evaluated by using a vote

counting approach based upon how the strengths of the correlations obtained by this

study compared to those reported by previous research.

The second research question was answered by determining whether there were any

significant differences between the mean correlation strengths of the seven types of

predictor that were explored in this study.

The third research question was answered by performing two stepwise regressions.

The first regression was used to evaluate whether any combination of the characteristics

explored in this study were predictive of performance. The second regression was

performed to evaluate combinations of the context independent predictors only.
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3.4.3 RQ3: Data-Driven Predictors based upon Programming Be-

haviour

RQ3: Which data-driven metrics derived from data describing students’ programming

behaviours are predictive of their programming performances?

Motivation

The main shortcoming of predictors derived from traditional learning theories is that

they are rarely found to consistently predict the programming performance of students

across a range of different contexts. We argue that the reason for such large variations

in results is because the predictors examined to date have not specifically been designed

for this purpose. Additionally the predictors are static in nature, and therefore cannot

reflect changes in the students programming knowledge over time. The traditionally

measured attributes (e.g., learning styles) also cannot easily be changed.

Possibly inspired by the push towards big data analysis, researchers have begun to

explore data-driven predictors which are based upon analysing data directly logged from

an IDE, which describes the programming activities of students. The data gathering

involves collecting snapshots of source code and error messages, usually when students

perform actions such as saving the project they are currently working on. This data

then enables the utilization of data-driven approaches for identifying programming

behaviours that are predictive of student performance.

The main benefit of data-driven approaches based upon how students’ solve pro-

gramming errors, or how they schedule their time, and whether they pay attention to

code quality, is that, they are directly based on the regular programming activities of a

student, and therefore can directly reflect changes in their learning progress over time.

This is not the case for more traditional predictors explored over the past fifty years,

such as age, gender, which remain static within the context of a course.

Whilst recent research has explored the possibility of displaying statistics on be-

havioural aspects to instructors so that a manual invention can be made, only Jadud [82]

has attempted to quantify several aspects of programming behaviour into a perfor-

mance predictor. This was known as the Error Quotient (EQ), and is an algorithm

which scores the programming behaviour of students based upon the frequency of er-

rors encountered, and how successive compilation failures over a session compared in

terms of error message, location, and edit location. Although previously used by several

studies, the EQ was shown to be a weak predictor of performance. This could be due

to several flaws concerning the incompleteness and inaccuracy of the method which we

attempt to address and expand upon in this work.
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Research Sub-Questions

To answer RQ3, the following research sub-questions were answered:

1. How do the datasets gathered in the Durham teaching context compare to those

used in previous research?

2. Which aspects of the students ordinary programming behaviour are associated

with their programming performance?

3. Which aspects of programming behaviour can be combined, and scored, into an

overall predictive measure of programming performance?

4. How do the measures proposed in this chapter compare in terms of accuracy and

explanatory power over the duration of the entire course?

5. How do the measures based on programming behaviour compare to the predictors

based upon traditional learning theories explored in Chapter 5 of this thesis?

Method

Data describing the programming activities of three different cohorts of students taking

the programming module at our university (2011/12, 2012/13 and 2013/14) was gath-

ered through the use of an on-line protocol added to the BlueJ IDE. Each time students

compiled code on a university PC, the extension would log a snapshot of the code be-

ing compiled, along with the students username, a timestamp, event type (compilation

success or failure), and the error message reported with line number (if applicable).

Similar data was logged for invocation and package events.

The first four research sub-questions were answered by exploring how different as-

pects of the students’ programming behaviour were related to performance, by calculat-

ing correlations and performing multiple regressions. The datasets were first cleaned,

and a procedure was developed to construct a set of consecutive compilation pairings,

which could be used to analyse the students programming behaviour in terms of suc-

cessive compilations. For instance, if in one compilation the student received an error,

in the next compilation, did the student receive the same error? Had they solved the

error? How long did it take them? How many changes did they make to the source code

between compilations? Specifically, measures based upon the percentage of different

compilation pairings, and resolve times were considered in this research. The final re-

search question was answered by comparing the correlation strengths of the predictors

identified in this study to those we identified in thesis RQ2.
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3.4.4 RQ4: Meta-Analysis of Fifty Years of Research on Factors that

can Predict Programming Performance

RQ4: How do factors based upon traditional learning theories, academic background,

and programming behaviours, compare when they are used to predict students’ program-

ming performances across different teaching contexts?

Motivation

The obvious question concerning any research conducted into predictors in this thesis is:

how do these findings compare to the research on predictors that were not examined

within this thesis? To address this, and to synthesise over fifty years of conflicting

results on predictors of programming performance, we performed a meta-analysis.

Meta-analysis is a form of systematic review, in which the quantitative results from

several studies are statistically combined in order to generate a more precise estimate

of an effect under investigation. In an individual study, the units of analysis are in-

dividual observations, whereas in a meta-analysis the units of analysis are the results

of individual studies (i.e. predictors in different teaching contexts). Compared to a

simple narrative review, a meta-analysis offers several advantages. These include:

1. Increased statistical power of detecting the magnitude of an effect when compared

to the power of individual studies.

2. Improved precision of the measurement of an effect.

3. Combining data from conflicting studies to determine whether an effect exists.

4. Less prone to bias, based upon a systematic review process.

Given the inconsistent findings of studies that have explored predictors of programming

performance over the past fifty years, meta-analysis would seem to be an appropriate

technique to resolve such conflicts. Only by statistically combining research across

different teaching contexts, can researchers develop a true understanding of precisely

which factors are most important for making successful programmers.

In this study, meta-analysis techniques are applied to synthesize the findings of

multiple studies that have examined the same predictor of programming performance

across different teaching contexts, such that conclusions on the general effectiveness

of different predictors can be made. Although commonly applied within the medical

and psychological domains, to our knowledge, this study represents the first attempt to

apply meta-analysis techniques to statistically synthesise over fifty years of conflicting

research into factors predictive of programming performance.
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Research Sub-Questions

To answer RQ4, the following sub-questions were answered:

1. Which factors have researchers examined as predictors of programming perfor-

mance over the past fifty years?

2. Which factors are the most predictive of programming performance?

3. Which factors are the least predictive of programming performance?

4. Which classes of factors have the strongest and weakest effects on programming

performance?

5. What conditions moderate the effectiveness of the predictors?

Method

The research sub-questions were answered by applying the random-effects meta-analysis

procedure presented in [31,78]. The main advantage of this procedure is that it allows

inferences to be made about the larger set of studies from which the studies included

in the meta-analysis are assumed to be sampled from (whether such studies currently

exist or not). Like many meta-analyses, this study followed several steps:

1. Locating all possible studies.

2. Screening potential studies for inclusion using preset criteria.

3. Coding all qualifying studies based upon their methodological and substantive

features.

4. Calculating effect sizes for all qualifying studies for further combined analyses.

5. Carrying out comprehensive statistical analyses covering both average effects, and

the relationships between effects and study moderators.

After completing the systematic review, we performed knowledge transformation by

classifying the 116 identified predictors into a six-class theoretical framework of factors

predictive of programming performance. The results of the meta-analysis were then

considered within the context of the proposed framework. Based upon these results,

we suggest which skills and characteristics are the most important to make a successful

programmer, and suggest which skills instructors should focus upon teaching students to

improve their programming performance. Thus, answering the original overall question

of this thesis which factors can be used to predict the success or failure of students

taking an introductory programming course?
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3.5 Statistical Techniques

Analysis of the data involved employing a number of commonly used statistical tech-

niques, including Pearson correlation coefficients, stepwise linear regression, analysis of

variance, and t-tests for independent samples. In order to satisfy some of the underly-

ing assumptions of these techniques equality of variance and normality tests were also

performed. Our meta-analysis involved a number of statistical techniques which are not

commonly used, such as the computation of an effect size, and sample heterogeneity.

The techniques employed in this thesis, included:

1. Assumption Testing

• Shapiro Wilk test of normality (W )

• Levene Test for Equality of Variances

2. Association

• Pearson’s Product Moment Correlation Coefficient (r)

• Spearman’s Rank Correlation Coefficient (rs)

3. Prediction

• Multiple linear regression

• Stepwise regression

4. Differences Between Groups

• Independent samples t-test

• One-Way Analysis of Variance (ANOVA)

5. Meta-Analysis

• Effect Size Calculations

• Effect Size Corrections

• Meta-Analytic Model Fitting

• Statistical Analysis Procedure

For readers interested in more detail on these techniques, definitions and discussions

are presented in Appendix 1.
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3.6 Summary

This chapter has presented an overview of the four research questions which will be

answered in this thesis, and has shown how these research questions related to the

original three objectives which were stated in the Introduction. The motivations for

including each question were discussed, and the methods employed to answer each

question briefly discussed.



Chapter 4

Failure Rates in Introductory

Programming

A modified version of this chapter appears in the following peer-reviewed publication:

• C. Watson and F.W.B. Li. Failure Rates in Introductory Programming Revisited.

In Proceedings of the 19th Annual Conference on Innovation and Technology in

Computer Science Education (ITiCSE ’14), pages 39-44, 2014, ACM.

Best Paper Award.

Despite several studies citing the high failure rates of introductory programming courses

as a motivation for research, the majority of available evidence on this phenomenon

to date is anecdotal in nature, and only a single study has attempted to provide any

quantitative evidence on the worldwide failure rates of programming courses.

In this chapter we contribute substantial quantitative evidence on the often cited

high failure rates of introductory programming courses, by performing a systematic

review of introductory programming literature, and analysing pass rate data extracted

from relevant articles. Pass rates describing the outcomes of 161 CS1 courses that ran in

15 different countries were analysed. A mean worldwide pass rate of 67.7% was found.

Moderator analysis based on aspects of the teaching context revealed significant, but

not substantial, differences based upon grade level of the institution, country, and size

of the cohort. However, pass rates were found not to have improved over the past ten

years, or based upon the programming language taught in the course. This chapter

suggests that aspects of the teaching context are not substantial moderators on student

success in programming, and possibly the root cause of the failure rate phenomenon

may be related to internal characteristics of students.
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4.1 Introduction

Learning to program can be an incredibly difficult task, to the point where the phrases

“failure rate” and “programming course” are almost synonymous [13]. Indeed, a brief

review of the literature highlights widespread concerns alluding to the perceived high

failure rates of programming courses. It is not uncommon for researchers generalize

these concerns into a worldwide problem. For instance:

• Mancy [108]: “Nonetheless, such low pass rates indicate that students experience

difficulties with programming and anecdotal evidence confirms this.”

• Ma [107]: “The high failure rates in programming courses are not surprising if

students still do not understand these basic programming concepts at the end of

courses.”

• Bergin [14]: “It is well known in the Computer Science Education (CSE) com-

munity that students have difficulty with programming courses and this can result

in high drop-out and failure rates.”

• Bornat [19]: “Substantial failure rates plague introductory programming courses

the world over and have increased rather than decreased over the years.”

• Shuhidan [165]: “High attrition and high failure rates in foundation-level pro-

gramming courses undertaken at tertiary level in Computer Science programs,

are commonly reported.”

• Porter [145]: “Many Communications readers have been in faculty meetings where

we have reviewed and bemoaned statistics about how bad attrition is in our intro-

ductory programming courses for computer science majors (CS1). Failure rates

of 30% to 50% are not uncommon worldwide.”

• Guzdial [67]: “Rumors of high failure rates in introductory computing courses

(typically referred to as CS1 in reference to an early curriculum standards re-

port) are common in the literature and in hallway discussions at conferences such

as the ACM Special Interest Group in Computer Science Education (SIGCSE)

Symposium.”

• Hoskey [76]: “Numerous studies document high drop-out and failure rates for

students in computer programming classes.”

• Guzdial [68]: “Start asking around - we’re hearing about drop-out/failure rates in

CS1 courses in the 15 to 30% range.”
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However, whilst high failure rates are an often cited motivation for research into pro-

gramming education, only a single study to date [13] has attempted to provide any

quantitative evidence to support the claim that high programming failure rates exist

on a worldwide scale. This is problematic, and a lack of hard facts on the outcomes of

programming courses (henceforth CS1) can have implications for both instructors and

students. Instructors of failing CS1 courses may accept their shortcomings as “that’s

just the way programming courses are”, and make no attempt to alter their practice to

improve the pass rates. Likewise, potential students may be easily put off from taking

the course to start with, which will not help to satisfy future labour demands [186].

There are also implications for researchers of programming education, and for the

research that is conducted in this thesis. Specifically, establishing the worldwide per-

centage of failing programming students so that a solid motivation could be provided

for looking into the characteristics that were affecting students’ performances. It also

was important to determine whether aspects of the external teaching context, such as

the language taught in the course, were influential on performance. If it could be es-

tablished that worldwide programming failure rates have not drastically improved over

time, and that aspects of the teaching context do not have a substantial moderating

effect on the failure rates, then this may suggest that internal characteristics of students

are more influential on their ability to acquire programming skills.

Chapter Contributions

The purpose of this study was to establish a solid motivation for our research, and to

explore whether factors of the external teaching context were moderators on students’

programming performance. This chapter answers the following thesis research question:

RQ1: To what extent are students’ programming performances influenced

by aspects of the teaching context, including: year, country, grade level of

the institution, cohort size, and the programming language taught in the

course? (RO1)

The contributions of this chapter are:

1. To expand the findings of the only study to date which has attempted to provide

quantitative evidence on the failure rates of CS1. Our results suggest that the

failure rates of CS1 are 32.3%, and have not substantially changed over time.

2. A moderator analysis of 161 failure rates, from 15 different countries based upon

five key aspects of the teaching context. The results suggest that only the grade

level of the institution, country, and cohort size moderate the failure rates of CS1.
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4.2 Related Work

Over the past half decade, the perceived high failure rates of CS1 has provided a staple

motivation for research into programming education. An abundance of generalizations

of such failure rates within the literature serves to reinforce the notion, and research is

now at the point where the high failure rates of CS1 have transformed from folklore,

into a widely accepted fact. Scholars are very willing to generalize high failure rates into

a worldwide problem, without considering evidence from beyond their own institutions.

As part of our work within this chapter, we have been able to locate articles report-

ing high CS1 failure rates for institutions based in: Australia 58% [125], Brazil 55% [53],

Canada 53.5% [159], China 18.9% [195], Finland 62.0% [92], Germany 55.3% [144],

Indonesia 51.4% [214], New Zealand 48.0% [152], Portugal 76.9% [120], South Africa

50.0% [148], Spain 53.0% [60], Taiwan 22.6% [37], UK 57.6% [66], and USA 65.0% [134].

These findings support the notion of high CS1 failure rates on a worldwide scale.

On the other hand, we found it equally straightforward to identify evidence of

low CS1 failure rates, for institutions based in: Australia 4%, 7% [183], Canada 9%,

11%, 12% [61], China 5.9%, 7.0%, 7.5% [195], Denmark 4.4% [33],UK 4.0%, 6.0%,

9.7% [4], and USA 5.6%, 6.7%, 10% [170]. These findings reject the notion of high CS1

failure rates on a worldwide scale, yet researchers continue to selectively cite this as a

motivation for work (e.g. [14, 49,67,68,76,107,108,145,165]).

The question therefore arises, as to what exactly are the worldwide pass and failure

rates of CS1, and whether any aspects of the teaching context moderates these rates?

To date, only Bennedsen and Caspersen [13] have attempted to answer this question.

Around 2005, [13] sent a short survey to the authors and panel participants of five

CS educational conferences: Koli Calling ’04, ICALT ’04, ACEC ’04, SIGCSE ’05 and

ITiCSE ’05. The survey was designed to collect data on the outcomes of the CS1

courses at each respective researcher’s institution. A total of 63 usable responses from

researchers in 15 different countries were received, representing a response rate of 12.3%.

The main findings of their study were:

1. The worldwide average pass rate of CS1 was estimated to be 67%.

2. Pass rates vary by cohort size: small cohorts 82%, large cohorts 69%.

3. Pass rates vary by grade level of the institution: colleges 88%, universities 66%.

4. Pass rates are independent of the type of language taught: object-orientated,

imperative, and functional were found to have an almost identical pass rate.
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However, there were several limitations of the study which we attempt to address and

expand upon in our work. Firstly, the Bennedsen and Caspersen study provided a useful

snapshot on the worldwide state of CS1 outcomes. But this snapshot only covered a

single point in time, representing courses that ran around 2005. The study provides no

evidence as to whether or not the pass rates of CS1 have improved over time, possibly

in response to newer languages or tools that can lower the learning curve for novice

programmers. e.g. IDE’s targeted specifically at novices, such as BlueJ, or game-based

learning tools, such as Greenfoot. If the pass rates have not improved over time, then

this may imply that there are certain fundamental (threshold) concepts that students

must gain an understanding of, and that adjusting context factors does not improve

the likelihood of the students mastering these concepts.

Secondly, the authors acknowledge that their sample may be insufficient to make

generalized conclusions on the worldwide state of CS1. Outcomes of only 63 courses

taken from 62 different institutions were analyzed, and it is perhaps interesting to

consider why 87.7% of the contacted authors failed to respond. One possibility is that

the non-responding authors had higher failure rates than they wished to report. This

would mean that the worldwide failure rate of CS1 could be higher than [13] estimated.

The reverse is also a possibility.

Thirdly, although researchers from 15 different countries responded, the sample

of 63 responses was heavily dominated by institutions from the United States. 66%

of responses came from USA institutions, with the remaining 14 countries providing

(mainly) 1-2 responses each. It is well known that educational practices can consider-

ably vary by country, and using such a dominated sample makes generalization of the

findings to a worldwide scale difficult.

Fourthly, the findings were based upon a survey that was sent to selected authors

of only five conferences on CS education. This is a narrow target group, and inevitably

omits a great deal of evidence on pass rates that remains unexplored, published in the

proceedings of other conferences and journals. By exploring these additional sources of

data, a fuller picture on the worldwide outcomes of CS1 courses may be obtained.

In short, when asked whether or not aspects of the teaching context influence the

success rates of CS1, our response is that we simply don’t know. Evidence of high and

low failure rates can be located in the literature, and the only study to date that has

attempted to estimate the worldwide failure rates has several shortcomings. There is

still a need to further examine other forms of quantitative evidence on this phenomenon.

Only by expanding the work of [13] can a more accurate picture on the worldwide state

of CS1 be drawn, and if the failure rates are found to be high, then a solid motivation

can be provided for further research into the cause.
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4.3 Research Design

Our work is based upon performing a systematic review of the available literature on

CS1 education, and then performing an analysis of the course outcomes extracted from

relevant articles. The ideal approach for performing a study of this nature would be

to consider both failure rates published within the literature, and to perform direct a

survey of institutions and professional bodies. However, the low response rate of 12.3%

that Bennedsen and Caspersen reported suggests that performing similar survey may

be unsuccessful. Nevertheless, by only seeking failure rate data from the CS1 literature

in this study, it allows us to analyse a previously unexplored source of data which can

be considered complementary to the previous study by Bennedsen and Caspersen.

4.3.1 Research Questions

To answer thesis RQ1, the research questions that will be explored in this chapter, are

defined as follows:

1. What are the worldwide pass rates of introductory programming courses?

2. How do the pass rates of introductory programming courses compare over time?

3. Are pass rates moderated by any aspects of the teaching context, including:

(a) Country in which the course was taught.

(b) Programming language that was taught in the course.

(c) Size of the cohort: small (< 30 students), large (≥ 30 students).

(d) Grade level of the institution: university or other.

4.3.2 Data Collection Method

The motivation for the work in this chapter arose whilst we were working on an upcom-

ing meta-analysis which synthesized fifty years of research on predictors of performance

(Chapter 7). Whilst we were collating literature for this study, we found that the actual

evidence on the widely cited high failure rates of CS1 was sparse at best. As such, a

proportion of the data that was used for the analysis in this study, was extracted from

articles that were identified for use in the meta-analysis. However, simply using articles

that were identified for this specific purpose would only represent a narrow range of

research on CS1 education. We therefore carried out a series of supplementary searches

in order to extract additional data from the wider literature base of CS1 research.

In this section, we outline the thorough search and inclusion procedure that was

followed to identify as many pass and failure rates from the CS1 literature as possible.
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Study Coding

To answer the research questions, the following data was coded from each study:

1. Course details: year, programming language, language class.

2. Institution details: name, grade level, country.

3. Totals and percentages: n, pass, fail, withdraw, fail/withdraw.

4. Article details: publication source, year, name, author.

Exclusion of the Teaching Context

Details on the possible teaching approaches used in the courses were not explored

as part of this study. There were two reasons for this. Firstly, the main objective of

thesis RQ1 was to validate the findings of the moderating factors which were previously

examined by Bennedsen and Caspersen (which did not include the teaching context).

Secondly, the actual teaching approaches used by different programming instructors

were not widely reported, which made conducting a study into the effects of different

interventions on pass rates difficult. We felt that it was more important to analyse a

larger sample where information on the teaching methodology was not coded, instead

of using a reduced sample where information on the teaching methodology was coded.

It is conceivable to hypothesise that the teaching methodology used may have an

impact on the performance of students, we attempted to examine the impact of different

teaching approaches on improving programming pass rates in a follow on study from

the work presented in this thesis (see [193]).

In conjunction with the University of Helsinki, we performed a quantitative sys-

tematic review on articles describing introductory programming teaching approaches,

and analysed the effect that various interventions can have on improving the pass rates

of introductory programming courses. This study took a different approach to the one

presented in this thesis, as we examined pre- and post- intervention pass rates (i.e. the

improvement in pass rates as a result of changing the teaching methodology).

Out of the studies examined, on average, the pre-intervention pass rate was 61.4%,

and post-intervention 74.4%. No statistically significant differences between the ef-

fectiveness of the teaching interventions were found. However, marginal differences

between approaches were identified. The courses with relateable content (e.g. using

media computation) with cooperative elements (e.g. pair programming) were among

the top performers with CS0-courses, while courses with pair programming as the only

intervention type and courses with game-theme performed more poorly when com-

pared to others. Although not significant, these interventions were still able to improve
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pass rates by a minimum of 10%, suggesting that although they were not as strong as

the other interventions in this study, they were still beneficial when compared to the

traditional lecture and lab approach they replaced.

Initial Search Using The Meta-Analysis Articles

The search criteria and process used to perform the meta-analysis is presented in Sec-

tion 7.3.2. Disappointingly, only 12 of the articles included in the meta-analysis pro-

vided quantitative data on the failure rates of their respective CS1 courses, which were

extracted for analysis in this study.

Secondary Searches

As our meta-analysis was focused upon a narrow area of CS1 research (predictors of

performance), it was necessary to conduct supplementary searches in order to identify

other articles that provided quantitative evidence on the pass and failure rates of CS1.

We hypothesized that an abundance of such data would be found within articles that

described interventions designed to improve the performance of CS1 students.

As such, the initial search process was repeated with the same restrictions and

repositories as the meta-analysis, but the following search criteria was used: (Pass

Rate OR Failure Rate OR Success Rate OR Withdraw OR Completion OR Dropout

OR Improving) AND (Programming OR Programming Course OR Introductory Pro-

gramming OR CS1). After removing articles which did not provide the quantitative

data required by this study, 42 additional articles were identified and added to the

sample of 12 articles identified from the initial search.
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Figure 4.1: Bar chart showing the number of CS1 outcomes coded for each year. Dif-
ferent decades are indicated by different colors.

4.3.3 Description of the Sample

After verifying that data describing the same course had not been double coded, the

final sample consisted of 54 articles. These were in the form of: 37 conference papers

(68.5%), 11 journal articles (20.3%), 3 theses (5.6%), 2 unpublished reports (3.7%), and

1 book chapter (1.9%). From these 54 articles, the outcomes of 161 CS1 courses were

coded using the coding scheme previously presented. A distribution of the number of

outcomes coded for each year is shown in Figure 4.1. As can be seen, the outcomes de-

scribe CS1 courses that ran between the years 1979-2013, but the majority of outcomes

(129, or 80%) were for courses that ran from 2003 onwards.

The outcomes used in this study described courses that ran in 51 different insti-

tutions, across 15 different countries. The geographical distribution of outcomes used

in this study, compared to Bennedsen and Caspersen [13] is shown in Figure 4.2. To

compare both samples, the sample used by this study was less dominated by a single

country. In the sample used by [13], 66% of outcomes were from US institutions, and

the remaining 33% were from institutions across 14 other countries.

Our sample was less dominated by a single country, with 63% of outcomes coming

from 14 different countries. USA institutions contributed 37% of the outcomes, followed

by Australia 17%, Finland 15%, and the UK 10%. Both samples had 10 countries in

common, with the difference being pass rates from Indonesia, China, Brazil, Taiwan,

Denmark included in our sample, but pass rates from Netherlands, Greece, Germany,

Belgium and Sweden were not included in our sample. However, as these differences

in countries represent less than 15% of the pass rates used by either samples, their

presence or absence is unlikely to be influential on the overall results.
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(a) This Study (b) Bennedsen and Caspersen [13]

Figure 4.2: Geographical distribution of the CS1 outcomes used by both studies.

4.4 Results

In this section, the results in relation to the research questions are presented.

4.4.1 Worldwide Pass Rates of Programming Courses

The first question addressed by this study, was to determine the worldwide mean pass

and failure rates of CS1. Figure 4.3 shows the distribution of the pass rates used by

this study, alongside the pass rates reported by [13]. As can be seen from this figure,

the distribution of pass rates used by this study followed a normal distribution, which

was confirmed by a Shapiro Wilk test, p > .05. The proportions of each pass rate range

was similar to those reported by [13]. The modal pass rate range of 61-70% was found

to be comparable to [13], and the majority of pass rates (61%) were concentrated in the

range of 50-80%. As with [13], the pass rates of CS1 were found to vary considerably

by institution, ranging from a low of 23.1% to a high of 96%.

The mean worldwide pass rate of CS1 found by this study was 67.7%, which is

practically identical to the 67% mean pass rate reported by Bennedsen and Caspersen

[13]. It can be debated as to whether or not a sample that was based on the outcomes

of only 161 CS1 courses across 15 different countries is representative of the worldwide

state of CS1. In response, we suggest that when this finding is considered in conjunction

with the similar result found by the independent [13] study, that an average CS1 pass

rate of 67% may be close to the mean figure across other countries. Using our sample

to estimate a 95% confidence interval for the population mean, suggests that the true

worldwide pass rate of CS1 lies somewhere between µ = 65.3% to 70.1%.
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Figure 4.3: Pass rates of this study compared to Bennedsen and Caspersen [13]

The natural question which follows, is what happens to the remaining 32.3% of students

who do not pass CS1? To answer this question we attempted to extract and analyze

explicitly stated failure, withdrawal, and failure/withdrawal rates that were stated by

articles. Disappointingly, this information was largely unstated, and only 42 failure

rates were explicitly stated as such. Analyzing these 42 failure rates only, and comparing

them to the overall sample of 161 rates, a comparable mean failure rate of 30.5% and

comparable pass rate of 67.2% were found. The remaining 2.3% presumably represented

students who withdrew or failed to complete the course.

Whilst we can state that 32.3% of students did not pass CS1, we cannot say whether

this figure represents failures, withdrawals, or a combination of both. In the remainder

of this study, we therefore assume this figure to represent a notion of failure to pass.

4.4.2 Pass Rates of Programming Courses over Time

The second question explored in this study was to determine whether the pass and

failure rates of CS1 have changed over time. Grouping the 161 pass rates by the

year in which the course was run, a one-way ANOVA was performed. There were no

outliers in any of the groups, as assessed by the inspection of a box plot. Shapiro-Wilk

tests confirmed that the pass rates were normally distributed for each year, p > .05,

and homogeneity of variances was confirmed by Levene’s test, p = .11. The one-way

ANOVA showed that there were no statistically significant differences in pass rates of

CS1 for any of the years that were covered by this study, F (21, 139) = .486, p = .97.

As shown in Figure 4.4, the mean percentage of non-passing students has remained

generally constant for the years that were examined by this study. The mean percentage

of non-passing students ranged from 53.5% to 17.4%. Two thirds of the years examined

had a rate of non-passing students of between 25% to 33%. Given the increased amount
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Figure 4.4: Bar chart showing the mean percentage of non-passing students for each
year that was covered by this study. Different decades are indicated by different colors.

of tools that are available to support novice programming students, it is interesting to

see that there have been no significant changes in the pass rates of CS1 over time. This

finding may suggest that internal, rather than external factors are more influential on

students programming performance, in that no matter how well supported students are

in their learning by advances in pedagogy and technology, programming failure rates

have remained practically constant over time.

4.4.3 Moderating Aspects of the Teaching Context

We were therefore motivated to consider whether any external aspects of the teaching

context moderated the pass and failure rates of CS1 over time.

Country

We first examined the pass and failure rates in relation to the country in which the

course was taught, as it is well known that educational practices and assessment criteria

can vary across different continents. Grouping the 161 pass rates by country, a one-way

ANOVA was performed. The previously stated assumptions were satisfied. Shapiro-

Wilk tests confirmed that the pass rates were normally distributed for all countries,

p > .05, with the exception of Canada, p = .03. However, as violations of normality

do not substantially effect the Type I error rate, an ANOVA is considered to be rel-
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Figure 4.5: Bar chart showing the mean percentage of non-passing students by the
different countries that were covered by this study.

atively robust against such violations [110]. Homogeneity of variances was confirmed

by Levene’s test, p = .15. The one-way ANOVA revealed statistically significant dif-

ferences in pass rates of CS1 based upon the country in which the course was taught,

F (14, 146) = 4.58, p < .001. To confirm that the non-normality of the Canada pass

rates had not impacted on the ANOVA result, we also ran a Kruskal-Wallis H test,

which confirmed that the pass rates of CS1 were statistically significantly different

based upon the country in which the course was taught χ2(14) = 46.23, p < .001.

Post-hoc analysis was conducted using the largest five groups, due to a minimum

size restriction to run the test. The conclusions previously reported from the ANOVA

were unaffected. Tukey’s HSD test showed significant differences between pass rates

in Finland, with: Australia, p = .04, Canada, p < .001, and USA, p = .01.

Examining Figure 4.5 it can be seen that the mean percentage of non-passing stu-

dents varies considerably by country. Portugal was found to have the lowest mean

pass rate (37.9%), followed by Germany (44.7%), and Brazil (45%). China (11%) and

Denmark (6%) were found to have the lowest percentage of non-passing students. But,

these findings were obtained using a small sample, n ≤ 5, and cannot be generalized.

In terms of the four countries which made 80% of the sample, Finland was found

to have the lowest pass rate (n = 24, M = 57.7%) and the pass rates of the USA

(n = 59, M = 70.9%), UK (n = 17, M = 69.3%), and Australia (n = 28, M = 68.3%)

were comparable. We hypothesized that on larger samples, the pass rates for each

country would tend towards a comparable range, as was the case with the pass rates

reported from our five largest country samples.
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Programming Language

There has been much debate among CS1 educators as to which language is the most ap-

propriate for introducing students to programming. Considerable discussion has taken

place within the literature on whether adopting an objects-first, or imperative first

approach, can lower the learning curve for novice students (e.g. [26, 58]). It is also

accepted that different languages have different syntactical complexities. For example,

novice-specific languages such as Scratch do not require students to develop an under-

standing of pointers, fundamental to learning C. We therefore hypothesized that the

programming language taught to students would moderate the pass rates of CS1.

The 161 pass rates that were identified in this study were grouped into 9 different

categories. Our sample was dominated by Java courses, which represented almost half

of the pass rates (46.6%). The remaining pass rates were grouped as follows: C (4.3%),

Python (10.6%), C++ (6.8%), Visual Basic (1.9%), Fortran (1.9%), Novice Languages

(Scratch, Karel, 6.2%), Other/Standalone Languages (8.1%), and Not Stated (13.7%).

A one-way ANOVA was performed. The previously stated assumptions were sat-

isfied. Shapiro-Wilk tests confirmed that the pass rates were normally distributed for

all languages, p > .05, with the exception of Python, p = .02. Levene’s test however

showed that the variances were heterogeneous, p = .01. As a result, an ANOVA was

performed using Welch’s test to take into account the unequal variances among each

group of languages. The one-way ANOVA revealed no statistically significant differ-

ences in pass rates of CS1 based upon the programming language that was taught in

the course, Welch’s F (8, 18.74) = 1.26, p = .31. To confirm the violation of normal-

ity had not impacted on the result, we ran a Kruskal-Wallis H test, which confirmed

that the pass rates of CS1 were not statistically significantly different based upon the

programming language that was taught in the course χ2(8) = 11.01, p = .20.

Examining Figure 4.6 it can be seen that the mean percentage of non-passing stu-

dents does not seem to vary by programming language taught in the course. The

percentage of passing students appears to be lower for C (n = 7, M = 61.1%) and

C++ (n = 11, M = 56.2%) however the differences are not significantly different to

the other languages whose pass rates were all in the range 65% to 75%.

Cohort Size

The size of a cohort will have a natural impact on the level of support that a student

receives. We therefore explored whether the size of the cohort acted as a moderator.

Out of the 161 pass rates used in this study, data on the size of the cohort was only

available for 101 (62.7%) of the outcomes that were included in this sample.
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Figure 4.6: Bar chart showing the mean percentage of non-passing students by the
different programming languages taught by courses covered by this study.

An independent-samples t-test was run to determine if there were any differences in

the pass rates between studies that reported the number of students on the course, and

those studies that did not report this. The t-test showed no statistically significant

differences between the pass rates of the two groups, t(159) = .97, p = .33.

To verify previous work, we replicated the binary classification used by [13]. The

101 pass rates were divided into two groups based on cohort size into: small, n < 30

students, k = 10, and large, n ≥ 30 students, k = 91.

A one-way ANOVA was performed. The previously stated assumptions were sat-

isfied. Shapiro-Wilk tests confirmed that the pass rates were normally distributed for

both groups, p > .05. Levene’s test however showed that the variances were heteroge-

neous, p = .02. As a result, an ANOVA was performed using Welch’s test to take into

account the unequal variances among each group of pass rates. The one-way ANOVA

revealed statistically significant differences in pass rates of CS1 based upon the size of

the cohort, Welch’s F (2, 27.23) = 6.78, p < .01.

A practical difference of almost 15% of the mean pass rate between small cohorts

(n = 10, M = 80.1%) and large cohorts (n = 91, M = 65.4%) was found. This finding

confirms the result of [13], who also found higher CS1 pass rates for smaller cohorts

(82%) than larger cohorts (69%). The implication is that small group teaching may be

the most effective way of delivering CS1.

The weakness of these results is that they depend upon the binary classification

that was used to partition pass rates into two distinct groups. Correlations on the

other hand would show whether or not there were any direct associations between the

number of students enrolled on a course, and the overall pass rate. To explore this

hypothesis, a Spearman’s rank-order correlation was used to assess the relationship

between these two variables. Spearman’s was chosen in this instance over Pearson’s
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to handle the non-normality of the number of students enrolled on the course, as was

confirmed by a Shapiro Wilk test, p < .05. Preliminary analysis using a scatterplot

showed a weak linear relationship between the two variables. This was confirmed, when

a weak correlation between the number of students enrolled on a course and the pass

rate of CS1 was found (n = 101, rs = -.17, p = .10). This suggests that whilst the size

of the cohort is associated with the pass rate of CS1, it is only a weak moderator.

Grade Level of Institution

Finally, we explored whether there were any significant differences between the pass

rates of universities and other educational institutions (colleges, high school). Our

sample consisted of 145 university courses and 16 from other institutions.

A one-way ANOVA was performed. The previously stated assumptions were sat-

isfied. Shapiro-Wilk tests confirmed that the pass rates were normally distributed for

Universities, p > .05, but not for the pass rates from other grade levels, p = .01. Ho-

mogeneity of variances was confirmed by Levene’s test, p = .20. The one-way ANOVA

revealed statistically significant differences in pass rates of CS1 based upon the grade

level of the institution, F (1, 159) = 11.62, p < .001. To confirm that the non-normality

of the pass rates from other grade levels had not impacted on the ANOVA result,

we also ran a Mann-Whitney U test, which confirmed that the pass rates of CS1

were statistically significantly different based upon the grade level of the institution

U = 543.01, z-score = -3.49, p < .001.

The results on our sample for universities (n = 145, M = 66.4%) and other grade

levels (n = 16, M = 79.9%) confirm the findings of [13], who found the pass rates for

universities to be lower than other institutions (66% and 88% respectively).

4.5 Discussion

The findings of this chapter confirm the results of the small study conducted by Benned-

sen and Caspersen [13]. Compared to [13], this study found an almost identical mean

worldwide pass rate of CS1 courses of 67.7%, and comparable results were found based

upon cohort size, and institutional grade level. The additional contributions of this

study have been to show that CS1 pass rates can vary by different countries, that

pass rates have not changed considerably over time, and that pass rates are largely

unaffected by the programming language taught in the course.

The implications for practice are that the best teaching approach for CS1 may be

one based upon using small groups, and replacing traditional university approaches

(e.g. lectures) with classroom based instruction.
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The natural question that follows on from this study, is whether or not an average pass

rate of 67.7% in CS1 is considered to be low? When considering the figure on its own,

we share the sentiments of [13], in that 67% is not an alarmingly low pass rate. On

the other hand, when considering this figure within the wider context of CS education,

we have a different view. Enrollment and retention of CS majors are well known

problems [12]. Within the UK for instance, statistics provided by the higher education

funding council (HEFCE) show that out of all the available STEM degrees, Computer

Science is the only subject where enrollment has consistently declined between the

academic years 2001/2002, and 2011/12. A decline in enrollment numbers from 67,896

to 45,158, or 33% [75]. American institutions reported similar declines [217].

Part of this decline may stem from the reputation of Computer Science being a

difficult course. If the pass rates can be improved and struggling students provided

with assistance, then this may lead to an increase in enrolment numbers, and possibly

increased retention. If an estimated 2 million students are currently enrolled worldwide

in computing courses worldwide [13], then an improvement in the pass rate of only

5%, would lead to an additional 100,000 students graduating with the skills required

to satisfy the future labour demands of a digital economy. Therefore whilst we do not

believe that a 67.7% pass rate is alarmingly low, we also believe that there is consid-

erable potential for improvement and a need to understand which internal factors are

hindering the ability of so many students from understanding programming concepts.

4.5.1 Threats to Validity

Finally we discuss the threats to validity of this study. Whilst the sample of outcomes

used by this study was over double the size of the sample used by [13] (98 more out-

comes), it is still debatable as to whether or not it is representative of CS1 courses

on a worldwide scale. [13] reported that in 1999, there were over one million students

enrolled in computing courses across 72 different countries. In this study, we were only

able to identify outcomes from 15 different countries, which means that we lack data

from the majority of the countries in the world. Only by collecting such data can our

results be further validated on a worldwide scale. On the other hand, when considering

the results in conjunction with the findings of [13], our findings are consistent, and

therefore may be close to the actual results in the population of CS1 courses.

The second threat to validity concerns the sources of the data used. Whilst [13]

surveyed authors of selected conference papers and panel attendees directly via email,

our data has come from a systematic review process. It is possible that the data used

by [13] was already published in the articles that we have used in this study, in which

case, 63 of our outcomes may represent data that has already been analyzed by earlier
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work. However we believe this is unlikely, as 83% of our sample came from articles

published during a different time period to the authors contacted by [13], and only 2

articles were included from conference authors that [13] contacted. Also whilst [13]

was based entirely on grey literature, ours was based entirely on published works. It is

possible that our results may suffer from publication bias - as there may be a reluctance

among authors and institutions to publish high failure rates, and the actual pass rate

of CS1 may be lower than our study has indicated. This is also a limitation of the [13]

study. It can be argued however that the reverse is also true.

The third threat to validity concerns the pass criteria of the individual courses that

have been included in this study. Studies within the UK generally defined “pass rate”

as consisting of those students who had scored over 40% in the course. However, other

studies defined “pass rate” as consisting of those students who had scored at least a

‘C’, and others defined “pass rate” as consisting of those students who had scored any

grade apart from an ‘F’. Other studies did not supply details at all. Therefore this

study unavoidably has to assume that a consistent notion of “pass rate” exists and

holds valid across the different teaching contexts covered by this study.

From an interesting discussion which followed the presentation of this study at

the ITiCSE ’14 conference, two more threats were identified. The fourth threat to

validity concerns the assessment criteria used in the course. The assessments used

to measure programming performance will differ by context, and it is possible that

failing students in one context would have passed if completing assessments taken from

another. However, there is also the possibility of instructors treating CS1 as a “CS filter

course” where intentionally difficult assessments are set, which are designed to remove

those students who are not committed to majoring in CS before they completely failed

the entire course.

The fifth threat to validity concerns the differing educational practices throughout

the world. For example, in Greece, several resits of a module are permitted, whereas in

our UK institution, only a single retake of a failed module is allowed. Germany which

was found to have the second highest failure rate in this study (55.3%) allows students

to enrol in higher education courses to receive benefits such as free transport. Such

students rarely attend courses and expectedly fail or withdraw before the final exam.

These drop-outs are classified as “failing” in our study, but they may not have actually

taken any assessments. However until researchers begin to provide more details on the

actual break down of non-passing students, we cannot explore the percentage of students

who have outright failed compared to the percentage of students who withdrew. We

can however state that 67.7% did pass.
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4.6 Conclusion

Despite several studies citing a motivation for research as the “high failure rates of

introductory programming courses”, the evidence on this phenomenon to date, was at

best anecdotal in nature. Before conducting any research which is intended to assist,

or identify failing students in programming courses, it is important to determine the

proportion of such students that actually exist, and whether any aspects of the teaching

context act as moderators on programming performance. This provides us with a solid

motivation for further research into predictors of programming performance.

In this chapter, we answered the call of for more substantial quantitative evidence on

the often cited high failure rates of introductory programming courses, by performing

a systematic review of introductory programming literature, and analysing the data

extracted from the identified articles. Pass rates describing the outcomes of 161 different

CS1 courses, that ran across 15 different countries were extracted from the literature

and analysed. The mean worldwide pass rate of CS1 that was found by this study was

67.7%, which is practically identical to the 67% mean pass rate reported by Bennedsen

and Caspersen. Further analysis revealed significant, but not substantial, differences in

pass rates by moderators including the country in which the course was taught, grade

level of the institution, and size of the cohort, p < .01. But, neither the programming

language taught, or the year in which the course ran were found to moderate the pass

rates. Although we have identified aspects of the teaching context that can have a

significant moderating effect on the pass rates of CS1, the differences themselves were

not substantial. As such, the fundamental question as to why two thirds of students

can acquire programming skills, whilst one third of students endlessly struggle remains.

There is a need to identify and assist such students as early as possible. If factors

that can influence programming performance can be identified, then they could be

applied for the purpose of predicting weaker students before any assessments have taken

place. This would allow such students to withdraw, or to be provided with additional

support to assist their learning progress, without the need to complete formal exams

which can take a considerable amount of both time and effort for an instructor to

process. As aspects of the external teaching context do not seem to substantially

effect course outcomes, in the remainder of this thesis we will explore whether internal

characteristics of students can influence their programming performance.





Chapter 5

Traditional Predictors based

upon Learning Theories

A modified version of this chapter appears in the following peer-reviewed publication:

• C. Watson, F.W.B. Li, and J.L. Godwin. No Tests Required: Comparing Tra-

ditional and Dynamic Predictors of Programming Success. In Proceedings of the

45th ACM Technical Symposium on Computer Science Education (SIGCSE ’14),

pages 469-474, 2014, ACM.

Factors derived from traditional learning theories and academic background has been

the focus of research into predictors of programming performance for over fifty years.

But previous research efforts have struggled to reveal factors which can consistently

predict programming performance across a range of different teaching contexts. Even

in the case of the often cited predictors such as math background, results vary consid-

erably. As such, there is still no consensus on which factors influence students’ abilities

to learn programming.

In this study, the relations between the programming performance of 39 students

at our University, and a set of 34 mainly unverified predictors based upon traditional

learning theories are examined. Using stepwise regression, several predictors were com-

bined to produce a context-tuned regression model, which could explain 35.9% of the

variance in performance. However, when only considering the predictors that per-

formed consistently across a range of contexts, the model could only explain 21.4% of

the variance. This chapter argues that predictors based upon traditional learning the-

ories yield inconsistent results when they are applied in different contexts because they

are unrelated to the regular programming activities of students, and therefore cannot

reflect changes in the students’ programming knowledge over time.
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5.1 Introduction

In the previous chapter, we presented the widespread concerns among researchers over

the worldwide high attrition and failures rates of CS1, and we showed that on average,

one third of a cohort fail to pass an introductory programming course. We also showed

that fundamental aspects of the teaching context, such as the programming language

taught to students, do not moderate the overall failure rates of this course. The ques-

tion which follows on from these findings has been the subject of much debate among

researchers of computing education for the past fifty years, and will form the subject of

the remainder of this thesis. That is, if aspects of the external teaching context, such

as the programming language taught to students, does not have a moderating effect

on the failure rates of CS1, and the failure rates of CS1 have not improved over time,

then which internal characteristics of certain students enables them to easily acquire

programming skills, whilst other students endlessly struggle?

Identifying struggling programming students can be challenging. Introductory pro-

gramming courses generally have a high student-to-lecturer ratio, an average of 50:1 or

greater in the case of our University, and often lecturers do not know how well students

are performing until after they have completed the first formal assessment. This may

not take place until several weeks after the course has started, and given potentially

high enrolment numbers, it can take an instructor a considerable amount of time and

effort to process these assessments. Even if an assessment was indicative of overall

performance, by the time it was processed, it may be too late for struggling students

to withdraw, or for instructors to intervene to prevent students from failing. This is a

cause of great concern for computer science educators, and unsurprisingly over the past

fifty years these concerns have led to an abundance of research focusing on identifying

predictors of programming performance. As well as identifying characteristics that can

be used to predict struggling students without the need to use formal assessments,

other motivations for exploring such internal predictors include [33]:

1. Exploring relationships between programming and other cognitive abilities.

2. Providing automated interventions for students based upon their characteristics,

such as different compilation feedbacks based upon prior knowledge.

3. Advising students on major selection.

4. Improving programming classes for non-computing majors.

5. Determining the importance of different characteristics that influence the ability

of students to acquire programming skills.
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Whist an abundance of predictors have been explored, the limitation of research to

date is a distinct lack of verification across different teaching contexts. Researchers

examining predictors of programming performance have a tendency to judge the value

of a predictor, based upon the statistical significance of how the predictor performed

for a single sample of students, working within a single teaching context. However,

this approach is problematic, as verification studies of the same predictor in a different

teaching context have a tendency to yield inconsistent results [200].

Consider the often cited predictor of Math performance. Using the SAT Math

instrument to measure this ability, [203] reported a strong correlation of r(88) = .51

between the math and programming performance on a sample of college students. [91]

reported a similar moderate correlation of r(32) = .48. On the other hand [3] reported

a weak correlation of r(50) = .13, and [80] reported a weak correlation of r(45) = .13.

These varying findings stress the importance of verifying predictors across a range

of different teaching contexts, but also raises questions over the generalisability of any

research into predictors. No matter how well designed individual studies are, the results

of such individual studies are often insufficient to provide conclusive answers to ques-

tions of general importance. Only by evaluating the performance of different predictors

across a range of teaching contexts, can the context independence of a predictor be

judged, and thus, its wider usefulness as an enabler of programming ability be judged.

It is also possible that no characteristic when considered singularly is predictive of per-

formance. If a set of context independent predictors could be identified, then they could

be combined to construct a predictive multivariate model, which could be applied for

the purpose of pre-screening potentially weaker students without the need for formal

assessments, or, applied for training purposes (e.g. improve Math ability to improve

programming ability).

Chapter Contributions

The purpose of this study was to explore the relations between programming perfor-

mance and a set of 34 mainly unverified predictors based upon traditional learning

theories. Based upon our results, a context-tuned regression model was constructed to

predict the performance of programming students across a range of different teaching

contexts. This chapter answers the following thesis research question:

RQ2: Which traditional learning theories describing the psychological and

cognitive aspects of learning, and which aspects of students’ academic back-

grounds are predictive of their programming performances? (RO2)
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The contributions of this chapter are:

1. To evaluate the context dependence of 34 predictors that are based upon tradi-

tional learning theories, demographic, or academic background.

2. To present a predictive model based upon the context independent predictors

identified in this study. This model could explain a moderate amount of the

variance in performance (R2 = 21.4%) of 39 programming students in our context.

5.2 Related Work

Unsurprisingly over the past fifty years concerns over the high failure rates of program-

ming courses have led to an abundance of research focusing on identifying predictors

of programming performance.

Numerous predictors have been explored. The majority of early work conducted

during the 1960’s and 1970’s focussed upon using standardized programming aptitude

tests as predictors of performance. Popular instruments included the IBM Programmer

Aptitude Test (IBM PAT), and the Computer Programmer Aptitude Battery (CPAB).

Predictors researched during these eras included: arithmetic reasoning, letter series

reasoning, and figure classification [3, 8, 30]. However, despite measuring a student’s

level of programming aptitude, no single instrument or characteristic emerged as a

conclusive predictor of performance.

This led to an expansion of the types of characteristics explored, and during the

1980’s and 1990’s, researchers expanded the search for predictors to include academic,

cognitive, demographic, personality, and psychological traits. These included: per-

formance in academic courses (with an emphasis on math [161] and science [159]),

spatial ability [91], intellectual development, gender [113], personality style (Myers-

Briggs [202]) and learning style (Kolbs [42]). As with the previous two decades, no

single instrument or characteristic emerged as a conclusive predictor of performance.

During the 2000’s, researchers mainly repeated efforts of the previous two decades

and continued to explore various academic, cognitive, and psychological predictors of

performance. These included: comfort level [210], self-efficacy [189] and learning strate-

gies [16]. Again, efforts were largely unsuccessful and the search continued.

During the 2010’s, researchers in the area followed the increasing trend of explor-

ing “big data”, and began to apply data-mining and statistical techniques to analyse

various forms of autonomously gathered data, describing aspects of a student’s ordi-

nary programming behaviour. Predictors in this class have shown more promise than

previous methods, and will be further explored in detail later in this thesis.



Research Design 95

5.3 Research Design

There were two main purposes of this study. The first purpose was to determine

whether any relationships existed between the programming performance of students

and a range of predictors based upon traditional learning theories and academic back-

ground. These included: previous programming experience, previous academic expe-

rience, attributional style, behavioural traits, self-esteem, learning styles and learning

strategies. These predictors were selected as the majority had only been evaluated

in either a single or small number of contexts, or there was considerable variance in

the results reported by previous researchers. Evaluating these predictors in our teach-

ing context allows us to explore whether they are also limited by the same context

dependency as their well explored predecessors.

The second purpose of this study was to determine whether the context independent

predictors we had identified could be applied to form a multivariate predictive model,

capable of accounting for a large percentage of the variance in performance. Combining

the predictors which have performed consistently across a range of different teaching

contexts supports the likelihood of the model generalising to further teaching contexts.

5.3.1 Research Questions

To answer thesis RQ2, the following sub-questions were answered:

1. Are there any correlations between the predictors examined in this study and pro-

gramming performance? If applicable, are these findings consistent with previous

research, or inconsistent, suggesting a context dependency?

2. Are any categories of predictor more strongly correlated with programming per-

formance than others?

3. Are any predictors either singularly or additively useful for predicting the perfor-

mance of students studying an introductory programming module?

5.3.2 Participants

In total 39 students (36 male) from the 2012/13 cohort completed the instruments used

by this study. A priori analysis was carried out to verify that no significant differences

existed between the mean overall scores of the class on the reference criterion, and those

who agreed to participate in this study. Test assumptions of normality (Shapiro-Wilk

test) and equality of variance (Levene’s test) were satisfied, and a t-test showed no

significant differences between the performance of those who participated in this study

(t(55) = 1.21, p = .26) and the remainder of the cohort.
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5.3.3 Instruments

Six instruments were used to collect data from the participating students. These in-

cluded: an in-house questionnaire designed to gather data on students prior academic

experiences, an attributional style questionnaire based upon Weiner’s model, Rosen-

berg’s Self-Esteem Scale, Kolb’s Learning Style Inventory, Gregorc’s Style Delineator,

and the Motivated Strategies for Learning Questionnaire (MSLQ).

The background questionnaire gathered data on students’ genders, high school GPA,

college GPA, lectures attended per week, previous math courses and grades, previous

science courses and grades, and prior programming experience (in terms of the years

of experience and longest program written for each language they reported).

Attributional styles were measured by replicating the method used by Cantwell-

Wilson [211], which used an instrument measuring students based upon the four di-

mensions of Weiner’s attributional style model [201].

Self esteem was measured by using Rosenberg’s Self-Esteem Scale. The scale con-

sists of ten questions where respondents answer how their self-esteem relates to a specific

situation using a four point scale, ranging from strongly agree to strongly disagree. To

replicate the only study to date that used this instrument we also reworded the standard

questions to be based upon a programming context [14].

Kolb’s Learning Style Inventory (LSI) was the first learning style instrument used

in this study. The questionnaire consists of a set of twelve sentences where respondents

rank order four completions on a scale of one to four. The LSI provides scores (range 12

to 48) for an learner’s predisposition toward concrete experience, reflective observation,

abstract conceptualization, and active experimentation. The Gregorc Style Delineator

was the second learning style instrument we used. The instrument consists of a set of

ten sentences where individuals rank order four completions on a scale of one to four.

The highest score among the four dimensions determines the dominant learning style.

The Motivated Strategies for Learning Questionnaire was used to measure the mo-

tivations and learning strategies of students based upon fifteen different dimensions:

six based upon motivational aspects and nine scales based upon learning strategies.

The scales can be used together, but given their modular design, they can also be

administered individually, using a scale of one to seven.

5.3.4 Criterion Variable

We used the students overall coursework mark as the measure of programming perfor-

mance. This consisted of a weighting of marks obtained on a mid-term exam (25%),

project (25%), a practical exam (40%), and weekly programming exercises (10%).
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5.3.5 Predictor Variables

The relationships between 34 predictors and the programming performance of students

from our context were examined. These included:

1. Previous Programming Experience: has prior experience, number of languages

previously studied, longest program written, years of experience.

2. Previous Academic Experience: college grades: physics, chemistry, maths; uni-

versity grades: discrete math, calculus, GPA: college, high school.

3. Attributional Style: scores for 4 scales corresponding to Weiner’s model.

4. Behavioural Characteristics: lectures attended, hours worked in a part time job.

5. Self-Esteem: overall score on Rosenberg’s Self Esteem Scale.

6. Learning Styles: 8 scores taken from Kolb’s and Gregorc’s Instruments.

7. Learning Strategies and Motivations: 12 scales taken from the MSLQ.

Definition of Context Dependence

The correlations were classified based upon [47], who defined five strength categories:

• no association (r < .10)

• weak (.10 ≤ r <.30)

• moderate (.30 ≤ r <.50)

• strong (.50 ≤ r <.80)

• very strong (.80 ≤ r ≤.1.0)

In this study, the context dependence of a predictor was judged by considering the

strengths of the correlations based upon the classification above. We considered both

vote counting and variance to make a judgement. If a clear majority strength existed

across the results for a predictor then it was classified context independent. For exam-

ple, if the correlations for one predictor were: .63, .62, .57, .40, then the predictor would

be classified as context independent on the basis that three of the results suggested this

predictor was strong, and only a single result disagreed.

On the other hand, if no clear majority strength exists across the results for a

predictor, then it was classified as context dependent. For example, if the correlations

for one predictor were: .02, .10, .23, .47, .48, .61, .71, then there is no clear majority

class, and the results range from no association to strong association.
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5.4 Results

A Shapiro-Wilk test confirmed that the scores obtained by the sample on the criterion

variable were normally distributed, p > .05, with a mean score of 66.7% (SD = 10.3%).

In the remainder of this section, the findings on the relationships between each of the

predictors and programming performance is presented, and compared to the results of

previous researchers.

5.4.1 Performance of the Cognitive Predictors

Overall results showing the correlations of the cognitive predictors explored by this

study with programming performance are presented in Table 5.1.

Learning Styles

In total 38 participants completed both of the learning style instruments. No significant

correlations, p > .10, were found between any of the four Kolb LSI dimensions and

programming performance. The results on each dimension were: concrete experience

(accomodator) r = -.18, p = .29, reflective observation (assimilator) r = -.07, p = .69,

abstract experimentation (diverger) r = .14, p = .39, and abstract conceptualization

(converger) r = .10, p = .53. As can be seen from Table 5.1, these results are within the

range of previous work [29,36,42], suggesting that there is little to no relation between

the dimensions of Kolb’s LSI with programming performance.

Results for Gregorc’s Style Delineator were more interesting. No significant correla-

tions between scores on the concrete/random dimension and performance were found,

r = -.14, p = .39. But moderate, marginally significant correlations were found for

each of remaining dimensions, including: abstract/random r = -.33, p = .05, con-

crete/sequential r = .27, p = .10, and abstract/sequential r = .29, p = .08. Our

findings are consistent with the previous two studies [95,96] that have explored the use

of Gregorc’s Delineator as a predictor, who reported similar moderate correlations for

the concrete/sequential dimension r(218) = .35, and an identical moderate correlation

r(131) = .30 for abstract/sequential dimension. This suggests that certain dimensions

of Gregorc’s Delineator may perform as a reasonable predictor of performance.

Learning Strategies

All 39 students completed the MSLQ. Only 2 studies to date [14,16] have explored the

relations between programming performance and scores on the various motivational and

learning strategies scales on the MSLQ. Compared these studies an identical strong
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Table 5.1: Table showing the correlations (r) of the cognitive predictors explored by this
study with programming performance, and compared to prior research if applicable.
(* p < .10, ** p < .05, *** p < .01).

Category and Predictor Previous
Research,
(r)

Our
Study,
(r)

Context
Dependent

References

Learning Styles
Kolb’s LSI

Converger (AC) .15, .15, .26 .10 No [29,36,42]
Diverger (AE) .02 .14 No [42]
Accomodator (CE) -.16, -.23 -.18 No [36,42]
Assimilator (RO) -.36, -.13, .06 -.07 Yes [29,36,42]

Gregorc’s Style Delineator
Concrete/Sequential .35 .27 * No [95]
Abstract/Sequential .13, .30 .29 * No [95,96]

Learning Strategies (MSLQ)
Critical thinking .57 .28 * Yes [16]
Total metacognitive .54 .14 Yes [16]
Resource strategy; Effort .62 .28 * Yes [16]
Resource strategy: Peer .37 -.06 Yes [16]
Total resource strategy .56 .04 Yes [16]
Task value .44, .54 .06 Yes [14,16]
MSLQ total .49 .22 * Yes [14]
Intrinsic goal orientation .51 .33 * Yes [14]
Total self-efficacy .54 .54 *** No [14]

correlation for the self-efficacy dimension was found, r = .54, p < .01. Marginally

significant correlations were found for: intrinsic goal orientation, r = .33, p = .04,

critical thinking r = .28, p = .08, resource strategies: effort r = .29, p = .08, and

MSLQ total score r = .22, p = .09. These findings confirm the research by [14,16] who

suggested that students who perform well in programming courses have high levels of

intrinsic motivation and self-efficacy.

However the findings of this study differed on a number of dimensions. No signifi-

cant correlations were found between the total scores on the resource strategies scale,

r = .05, p = .76, task value scale, r = .06, p = .70, and the metacognitive strategies

scale, r = .15, p = .37, was found to have a significantly lower correlation than previous

researchers reported.

These findings suggest that whilst certain aspects of the learning strategies employed

by students are related to programming performance, further research is required to

identify precisely what the most significant dimensions are across a range of different

contexts.
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5.4.2 Performance of the Psychological Predictors

Overall results showing the correlations of the psychological predictors explored by this

study with programming performance are presented in Table 5.2.

Affective Characteristics

All 39 students completed Rosenberg’s self-esteem scale. A weak, but not significant,

relation between score obtained on the instrument and programming performance was

found, r = .13, p = .42. Only one other study to date [14] used Rosenberg’s instrument

to examine the relationship between self-esteem and programming performance. How-

ever a moderate correlation between these two variables, r(54) = .36, was reported.

The differing results between this study and prior research suggests that self-esteem

may be a context dependent predictor.

All 39 students completed the background questionnaire section on their attribu-

tions of success. To date only 3 studies [74,190,211] have explored relationships between

attributions and performance. Significant, p < .05, but weak, correlations were found

between performance and attributions of success to task difficulty, r = -.10, and at-

tributions to effort, r = .07. A moderate and marginally significant correlation was

found for attribution of success to luck, r = -.31, p = .05, and a moderate, significant

correlation was found for attribution of success to ability, r = .40, p < .05.

The correlations reported by this study are consistent with, and within the range

of correlations reported by the previous three studies on attributions to: task difficulty,

r = -.20 to .20, and effort, r = .07 to .16. However much stronger relations for both

attributions to ability, r = .07 to .16, and attributions to luck, r = -.22 to .05, were

found. These conflicting results suggest that further research on how attributions of

success relate to performance is required.

Behavioural Characteristics

All 39 students completed the section of the background questionnaire designed to

gather data on behavioural characteristics. Interestingly, no relationship was found

between the number of lectures attended and the performance of students, r = .02,

p > .10. This may suggest that lectures do not provide a good means to teach pro-

gramming, assuming that students had accurately reported their attendance.

Only 7 students had a part time job. A strong negative correlation was found

between the hours students worked in a part time job and programming performance,

r = -.64, p < .01. Although significant, this result must be interpreted with caution

due to the very small number of students who actually had a part time job.
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Table 5.2: Table showing the correlations (r) of the psychological predictors explored by
this study with programming performance, and compared to prior research if applicable.
(* p < .10, ** p < .05, *** p < .01).

Category and Predictor Previous
Research,
(r)

Our
Study,
(r)

Context
Dependent

References

Self Esteem
Rosenberg’s Self Esteem .36 .10 Yes [14]

Attributional Style
Luck -.22, -.19, .05 -.31 * No [74,190,211]
Effort .06, .19, .22 .07 ** No [74,190,211]
Task Difficulty -.20, -.05, .25 -.10 ** Yes [74,190,211]
Ability .08, .08, .16 .40 ** No [74,190,211]

Behavioural Characteristics
Lectures attended .12 .02 No [1]
Part time job hours .05 -.64 ** Yes [202]

5.4.3 Performance of the Academic Predictors

Overall results showing the correlations of the academic predictors explored by this

study with programming performance are presented in Table 5.3.

Previous Programming Experience

All 39 students completed the background questionnaire section on prior programming

experience, of which 15 students reported prior experience.

A t-test revealed significant differences in the performance those students who had

prior programming experience prior to enrolling on the course (n = 15, M = 71.7,

SD = 10.5) and those students who did not (n = 24, M = 64.3, SD = 10.7),

(t(37) = 2.12, p < .05). These findings are consistent with previous research such

as [205], but contradict research such as [14,190].

Further analysis showed more interesting relations between prior experience and

performance; however none of the following measures were significant, p > .05. The

number of languages that a student had previously studied weakly correlated with

performance, r = .24, the longest program that a student had written prior to enrolment

on the course also weakly correlated, r = .15, and surprisingly years of programming

experience negatively correlated with performance, r = -.20.

An explanation for these findings could be that self-taught students have developed

bad practices, and when formally assessed are penalised. The other explanation is that

students have overrated their own experiences on the questionnaire and that years of

experience was not the best measure of programming experience.
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Table 5.3: Table showing the correlations (r) of the academic predictors explored by this
study with programming performance, and compared to prior research if applicable.
(* p < .10, ** p < .05, *** p < .01).

Category and Predictor Previous
Research,
(r)

Our
Study,
(r)

Context
Dependent

References

Prior Programming
Has Prior Experience .03, .06, .10, .23,

.25, .27, .28, .32,

.44

.13 ** Yes [16, 28, 70, 84,
164, 189, 190,
205,210]

Number of Languages .05, .07, .29 .24 Yes [87,159,190]
Longest Program .25 .15 No [147]
Years Experience .06 -.20 Yes [15]
Longest Java Program -.10 .01 No [189]

Academic Background
College Physics .40, .50, .61 .31 Yes [91]
College Chemistry .31, .45, .52, .54,

.55, .56, .62
.27 No [91]

College Math .19, .40, .44, .43,
.50, .51, .55, .61

.20 No [52,91]

University Discrete .37 .06 Yes [204]
University Calculus .21, .33, .58 .21 * No [30,178,204]
College GPA .20, .21, .25, .30,

.37, .68
.37 No [8, 42, 77, 132,

159,202]
High School GPA .07, .26, .39, .46,

.73
.27 * Yes [65, 159, 189,

202,203]

Academic Background

To establish the relationship between previous academic experience in mathematics and

science, the achievable grades for each subject were ranked, with the highest rank given

to the highest possible grade, and the lowest rank given to the lowest possible grade. No

significant correlations were found, p < .05, between either: grades in college physics,

r(24) = .31, chemistry, r(13) = .27, math, r(26) = .20, university discrete math grade,

r(13) = .06, or college GPA, r(33) = .21. But, marginally significant correlations were

identified between performance and university calculus grade, r(24) = .37, p = .06, and

high school GPA, r(36) = .27, p = .10.

These findings are consistent with previous research that suggest generally academic

background factors can be weakly correlated with programming performance [14, 28]

and that grades obtained in calculus courses are more strongly related to programming

performance, than grades obtained in discrete courses [178].
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5.4.4 Overall Performance of the Predictors

To answer the first and second research questions, correlations were found between

programming performance and all but 8 of the predictors that were examined by this

study. These predictors were found not to belong to any particular category, and

included 2 academic, 4 cognitive, and 2 psychological predictors.

Out of the remaining 26 predictors that were found to correlate with performance,

19 were found to only weakly correlate (.10 ≤ r < .30), 5 were found to moderately

correlate (.30 ≤ r < .50), and 2 were found to strongly correlate (.50 ≤ r < .70).

The average strength of correlations were comparable across all groups, with mean

correlations of: academic M = .20, cognitive M = .20, and psychological M = .23.

When considering these results along with related work on the predictors that were

not examined by this study, these results suggest that in general, traditional predictors

are only at best weakly related to the programming performance of students, and that

their general influence on programming performance to be doubtful.

Whilst the majority of predictors were only found to weakly correlate with per-

formance, it is more important to consider whether any predictors yielded consistent

results across a range of different teaching contexts, and therefore, would suggest their

usefulness in constructing a predictive model that could potentially be used to pre-

dict weaker students across a range of different teaching contexts. When considering

the context dependence of the predictors examined using our results and the avail-

able literature, 18 predictors were found to yield correlations of varying strengths with

programming performance, and therefore were classified as being context dependent.

The most notable example found by this study was the learning strategies and motiva-

tions predictors, where only a single predictor (self-efficacy) was found to be consistent

with previous research. This emphasises our original motivation for work, in that, no

matter how statistically significant a set of results are, unless the performance of tra-

ditional predictors are verified across a range of different teaching contexts, the wider

applicability of a predictor cannot be judged.

Table 5.4 shows the top context independent predictors identified by this study.

Disappointingly, only five of the predictors examined yielded an average moderate cor-

relation strength, and whilst the remaining 14 predictors were determined to perform

consistently across a range of teaching contexts, the average strength of their corre-

lations were weak at best. We note that no particular category of predictor signifi-

cantly outperformed another, although, more psychological predictors were found to

be context independent, but, consistently unrelated to performance across the range of

contexts examined, with average correlations in the range of .07 ≤ r ≤ .19.
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Table 5.4: Table showing the strongest five context independent predictors identified by
this study, compared to the average correlation strength reported by previous research.

Predictor Category Previous
Research, (r̄)

This
Study, (r)

MSLQ Total self-efficacy Cognitive .54 .54
College Physics Academic .42 .31
University Calculus Academic .36 .21
College GPA Academic .34 .37
Gregorc Concrete/Sequential Cognitive .31 .27

5.4.5 Regression Analysis

Two stepwise regression analyses were performed to determine whether any combina-

tions of the predictors examined were indicative of performance.

The first regression was performed to evaluate whether any combination of predic-

tors from the six instruments used by this study (including new predictors which were

not compared to previous research) were indicative of programming performance. Con-

sideration was given for all the predictors examined in this study, with the exceptions

of: academic background (apart from GPA) and hours worked in a part time job, due

to the small number of students with results for each of these predictors.

The full model of MSLQ Self Efficacy, MSLQ Elaboration, and MSLQ Help Seeking

(Model 3) was found to be statistically significant and could account for a moderate

amount of the variance in performance, adjusted R2 = 35.9%, F (3, 29) = 6.97, p <.01.

The addition of MSLQ Elaboration to the model (Model 2) led to a statistically signif-

icant increase in R2 of 10.8%, F (1, 30) = 4.64, p < .05. The addition of MSLQ Help

Seeking (Model 3) also led to a significant increase in R2 of 14.6%, F (1, 29) = 7.26,

p < .05. These results suggest that a model based on three dimensions of the MSLQ

are a moderate predictor of performance in our context.

However it is more important to construct a generalisable model that could pre-

dict the programming ability of students across a range of different teaching contexts.

Therefore, a second regression was performed to evaluate whether any combination of

the context independent predictors identified by this study were indicative of program-

ming performance. A model consisting of only MSLQ Self Efficacy was found to be

statistically significant, but could only account for a smaller amount of the variance in

performance than the previous model, adjusted R2 = 21.4%, F (1, 38) = 11.35, p < .05.

This result suggests that whilst we can construct a fine-tuned model for predict-

ing performance in our context, that it is difficult to construct a generalisable model

based on traditional predictors alone, even when those predictors appear to perform

consistently across different contexts.
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5.5 Discussion

For almost fifty years, researchers have examined how factors based upon traditional

learning theories can be predictive of the students’ programming performance. How-

ever, out of the previously unverified predictors that were examined by this study,

only self-efficacy, r = .54, p < .01, was found to significantly strongly correlate with

performance.

In this study, we constructed a context-tuned regression model that could explain

35.9% of the variance in the programming performance of our students. However, when

only considering the predictors that performed consistently across a range of contexts,

the model could only explain 21.4% of the variance. Accurately predicting weaker

students with such a large proportion of unexplained variance would be difficult.

We believe that the reason for such varying results is that the predictors based

on traditional learning theories examined over the past fifty years are fundamentally

limited by their static nature, and therefore, they cannot reflect changes in students’

learning progress over time. The predictors examined to date cannot change in response

to increases in the students’ programming knowledge, and therefore are incapable of

predicting programming performance across a range of different teaching contexts. e.g.

improvements in programming does not lead to changes in knowledge of chemistry.

It can be argued that the timing of applying some of the measures is important. For

example, a students programming self-efficacy may be higher at the end of a course after

they have mastered programming concepts. However the bulk of measures explored

are static, and cannot directly tell an instructor whether a student has mastered the

threshold concept of object-oriented programming.

Nevertheless, possibly inspired by the push towards big data analysis, researchers

have begun to explore more data-driven predictors, which instead of being based upon

data gathered from static tests, are based upon analysing data which is gathered from an

IDE, describing the programming behaviours of students. The data gathering involves

collecting snapshots from students source code, either by a defined interval, or when

students’ perform actions such as saving the project they are currently working on,

which then enables the creation of data-driven approaches for finding characteristics

that contribute to students’ success. For instance, the number of errors that students

have made, or the time which they take to resolve errors when compared to their peers.

The main benefit of data-driven approaches based upon how students’ solve pro-

gramming errors is that, they are directly based on the regular programming activities

of a student, and therefore can directly reflect changes in their learning progress over

time. This is not the case for more traditional predictors explored over the past fifty
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years, such as age, gender, and high-school performance, which remain static within

the context of a course, whereas changes can be observed in students’ programming

behaviours. Such predictors could be also applied to drive an expert system, so that

students can be automatically provided with appropriate interventions when required.

Such interventions would be difficult to provide using traditional predictors based upon

learning theories, and would be incapable of automatically adapting to changes in stu-

dents’ learning progress over time.

In defence of the predictors based upon traditional learning theories which re-

searchers have previously explored, it can be argued that the majority fail to predict

programming performance because they were never actually designed for this purpose.

For instance, it is a reasonable expectation that learning style models would not be

strongly associated with programming as their main motivation was to influence teach-

ing methods, rather than predict the programming knowledge of students. On the

other hand, even if a test based predictor was relevant, then the static limitation still

remains. Tests would have to be repeated consistently overtime which is both cum-

bersome to students and instructors alike. The automated nature of the data-driven

predictors however would mean they would not suffer from the same limitation.

5.5.1 Threats to Validity

Finally we acknowledge the limitations of this study. There are numerous difficulties

associated with identifying predictors of programming performance.

The main threat to validity of this study is that the results are drawn on predictors

that have only been examined in a small number of contexts, most in less than four.

Should a predictor be trialled across a greater number of contexts, it is possible that

eventually, it will be found to be context independent. However, we note that when

examining the previous body of research on predictors which have been trailed across a

greater number of contexts, the inconsistencies remain, and we have no reason to believe

that this will not hold true for any of the predictors that this study has examined.

Additionally, although we have proposed a regression model in this study which was

based upon the factors we determined to be context independent, there is no certainty

that this will map to different teaching contexts until it its trailed within them. There is

also the limitation of over-training the model based upon our chosen criterion variable.

Furthermore, there are numerous predictors which were not examined as part of this

study. If a different set of context independent predictors could be identified from the

literature and incorporated into the model, then a greater percentage of the variance

may have been accounted for, than the model developed on the limited number of

predictors that were examined in this study.
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5.6 Conclusion

In the previous chapter, we showed that aspects of the external teaching context do not

moderate the overall success rates of programming courses, and that the failure rates

have remained constant over time. In this chapter, we began to explore the possible

internal characteristics of students based upon traditional learning theories which may

be predictive of their programming performance.

For almost fifty years, researchers have examined how such characteristics are pre-

dictive of programming performance. However previous research struggled to identify

any factors which are predictive of programming performance across a range of different

contexts, and on the rare occasion when a predictor is found to perform consistently,

it is usually only found to be weakly associated with performance at best.

In this study, we constructed a context-tuned regression model that could explain

35.9% of the variance in the programming performance of our students. However, when

only considering the predictors that performed consistently across a range of contexts,

the model could only explain 21.4% of the variance. The question remains as to which

factors are accounting for such a large proportion of the unexplained variance.

We believe that the reason for such varying results is that the predictors based

on traditional learning theories examined over the past fifty years are fundamentally

limited by their static nature, and therefore, they cannot reflect changes in students’

learning progresses over time. The predictors examined to date cannot change in re-

sponse to increases in students’ programming knowledge, and therefore are incapable

of predicting programming performance across a range of different teaching contexts.

In the next chapter of this thesis, we begin to explore data-driven predictors that

are based upon analysing data which is directly gathered from an IDE describing the

programming behaviour of students.





Chapter 6

Data-Driven Predictors based

upon Programming Behaviour

A modified version of this chapter appears in the following peer-reviewed publication:

• C. Watson, F.W.B. Li, and J.L. Godwin. Predicting Performance in an Intro-

ductory Programming Course by Logging and Analyzing Student Programming

Behavior. In Proceedings of the 13th IEEE International Conference on Advanced

Learning Technologies (ICALT ’13), pages 319-323, 2013, IEEE.

Outstanding Paper Award.

The purpose of this study was to identify data-driven metrics, which could illumi-

nate the symptoms of struggling students based upon aspects of their programming

behaviour. Unlike previous research, our metrics are validated by using three inde-

pendently gathered datasets from students taking a first programming course, which

supports the generalisability of the findings to other teaching contexts.

Initial results showed that weaker students are characterised by spending a greater

percentage of their lab time resolving errors than their peers and by making a greater

percentage of successive errors than their peers. Based upon these results, we developed

the Robust Relative algorithm, which quantifies several metrics into a performance pre-

dictor. The novel relative penalizing of students based upon how their resolve times for

different types of error compares to the resolve times of their peers resulted in a stronger

predictor than any of the previously identified metrics when considered singularly. The

regression analysis showed that the Robust Relative scores could significantly (p < .01)

explain a large amount of the variance in the performance of all three samples of stu-

dents, R2 = 42.19%, 43.65% and 44.17%, accounting for almost double the variance in

performance than explained by the Error Quotient.
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6.1 Introduction

The main shortcoming of predictors derived from traditional learning theories is that

they are rarely found to consistently predict the programming performance of students

across a range of different contexts. We argue that the reason for such large variations

in results is that the predictors examined to date have not specifically been designed

for this purpose. Additionally the predictors are static in nature, and therefore cannot

reflect changes in the students’ programming knowledge over time. The traditionally

measured attributes (e.g., learning styles) also cannot easily be changed.

Another shortcoming is that the traditionally explored predictors also require stu-

dents to complete batches of lengthy test in order to gather predictive data. For

instance, the Motivated Strategies for Learning Questionnaire from which predictors

based upon learning strategies are derived, requires students to answer 80 questions on

a 7 point scale. The problem with these tests is that neither students want to complete

them, nor do instructors want to process them. It is therefore common to administer a

test only on a single occasion reflecting the state of students at a single point in time.

But even if a test was repeated the fundamental characteristics which it is designed to

measure are still static in nature and unrelated to programming.

Possibly inspired by the push towards big data analysis, researchers have begun to

explore driven predictors which are based upon analysing directly logged from an IDE,

which describes the programming activities of students. The data gathering involves

collecting snapshots of source code and error messages, usually when students’ perform

actions such as saving the project they are currently working on. This data then enables

the utilization of data-driven approaches for identifying programming behaviours that

are predictive of student performance.

The main benefit of data-driven approaches based upon how students’ solve pro-

gramming errors, or how they schedule their time, and whether they pay attention to

code quality, is that, they are directly based on the regular programming activities of a

student, and therefore can directly reflect changes in their learning progress over time.

This is not the case for more traditional predictors explored over the past fifty years,

such as age, gender, which remain static within the context of a course.

As well as being able to dynamically identify struggling students, such predictors

can be also applied to drive an expert system, so that students can be provided with

appropriate interventions when required. Such interventions would be difficult to pro-

vide using traditional predictors and would not be capable of adapting to changes in a

student’s learning progress over time.

To date, only Jadud [82] has attempted to quantify several aspects of programming
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behaviour into a performance predictor. This was known as the Error Quotient (EQ).

Although previously used by several studies, the EQ was shown to be a weak predictor

of performance. This could be due to several flaws concerning the incompleteness and

inaccuracy of the method which we attempt to address and expand upon in this work.

Chapter Contributions

The purpose of this study was to identify data-driven predictors of programming perfor-

mance, which could yield consistent results when applied to multiple datasets. Unlike

previous research, our findings are validated by using three independently datasets

gathered from students taking the programming module at our university (2011/12,

2012/13 and 2013/14). This increases the likelihood of the predictors generalising to

different teaching contexts. This chapter answers the following thesis research question:

RQ3: Which data-driven metrics derived from data describing students’

programming behaviours are predictive of their programming performances?

(RO3)

The contributions of this chapter are:

1. Validation of the previous research into the most common types of error which

novice programmers generate.

2. An exploration of the relations between the resolve times of different types of

errors and student performance.

3. Identification of 10 new data-driven predictors. Unlike previous research 9 of

these predictors yielded significant consistent results on all three datasets.

4. Development of the Robust Relative algorithm, which quantifies several aspects

of programming behaviour into a predictive score. Unlike previous research the

algorithm incorporates scoring based upon both the frequency and resolve times

of different types of errors. The novelty of the algorithm is to relatively pe-

nalize students based upon how their resolve times for different types of errors,

compares to the resolve times of their peers. Unlike previous methods (such as

the Error Quotient), the algorithm yielded consistently strong results on three

independently gathered datasets (R2 = 42.19%, 43.65% and 44.17%).

5. Verification of the performance of the Error Quotient on the three datasets.

6. Comparison of the data-driven predictors identified in this study with the predic-

tors based upon traditional learning theories which were explored in RQ2.
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6.2 Related Work

Researchers have explored automatically gathered datasets to identify patterns of novice

programming behaviour. As this thesis explores the programming behaviour of Java

students, this section will briefly discuss some of the previous research into Java pro-

gramming behaviour.

Jadud [82] proposed an algorithm designed to quantify several aspects of program-

ming behaviour into a performance predictor. This was known as the Error Quotient

(EQ), and is an algorithm which scores the programming behaviour of students based

upon the frequency of errors encountered, and how successive compilation failures over

a session compared in terms of error message, location, and edit location. The scor-

ing scheme is applied to sets of consecutive compilation event pairings, which is then

averaged based upon the total number of pairings logged from students. Initially data

was collected from 161 students. This sample was then reduced to 96 students by re-

moving those who had not used a public laboratories at least three times for working

on their programs. The error quotient was then run on a further reduced sample of

56 students taken from the 2004/05 academic year only. Two regressions showed that

the error quotient scores were a significant, but weak predictor of average assignment

scores (R2 = 11%) and final exam scores (R2 = 25%). No verification regressions using

data gathered from the remaining 40 students were presented, although a histogram

showed that the error quotient scores were normally distributed for the entire sample.

Jadud suggests that the poor quality fits can be attributed to student cheating, missing

assignment data, or an incomplete representation of programming behaviour. In this

thesis, we will argue that the third reason is correct, but also that there are several

flaws associated with the methodology utilized by the error quotient algorithm which

limits its ability to accurately reflect the programming behaviour of students.

Tabanao, Rodrigo, and Jadud [182] attempted to determine whether at-risk Java

programming students could be identified based upon aspects of their programming

behaviour. Data was gathered from 124 students who used the BlueJ IDE over five lab

sessions. Based upon their mid-term exam scores, students were classified into three

groups: high performing (n = 25), average (n = 76) and at-risk (n = 23). Statistically

significant differences were found between the three groups in terms of: the total number

of errors encountered (more errors for lower performing), the total counts of a few

specific types of the most common errors (more occurrences for lower performing),

the time spent between two successive compilations (higher performing spent longer

between compilations), the error quotient scores (higher for lower performing). A set

of regressions were performed by using these four factors. Although the error quotient
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emerged as an influential predictor, it could only account for a moderate amount of the

variance in performance (R2 = 29.71%, p < .01) and all of the regression models failed

to accurately predict the at-risk students.

Rodrigo et al., [155] found that several aspects of programming behaviour were

related to performance, including: the number of pairs of successive compilation errors

(r = .33), the number of pairs with the same edit location (r = .34), the number of

pairs with the same error location (r = .30) and the number of pairs with the same

error (r = .30). However, a marginally significant regression based upon these factors

could only account for a small amount of the variance in performance (R2 = 12.00%,

p = .09).

As a follow on experiment from [155], Rodrigo and Barker [154] attempted to detect

student frustration based upon aspects of their programming behaviour. These aspects

included the average number of successive compilations with the same edit location,

average number of successive pairs with the same error, the average time between

compilations, and the average number of errors. Although achieving significant results,

the strength of the correlation was weak (r = .31). Additionally the model failed to

detect frustration on a per-lab basis, suggesting that the approach required a substantial

amount of data before yielding accurate results.

The main limitation of studies into programming behaviour is that they are often

conducted on a small scale nature, and only using the participants at a single institu-

tion. This can make it difficult to identify patterns of programming behaviour that are

predictive of performance. To address these shortcomings, Utting et al., [187] describe

a modification to the BlueJ IDE which enables the collection of data from students

throughout the world. The initial results of this project, called Blackbox are presented

by Brown et al., [25] which basically verified the already well established research into

the most common types of errors which students make. Although impressive in terms

of the amount of data which has been captured by the Blackbox project, the types of

analysis which can be performed by using this dataset are limited by the lack of an out-

come measure. In other words, whilst a great amount of data has been collected, there

is no indication as to whether the data is collected from a particularly poor or strong

programming student. This makes applying conventional statistical analysis into the

correlations between different quantitative behaviours and performance difficult.

Therefore, in this work we will explore programming behaviour using three indepen-

dently gathered datasets within the same teaching context. This allows us to correlate

different types of behaviours against different student performances. We also note that

our experiments and data collection began before the Blackbox dataset was available.
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6.3 Research Design

The first purpose of this study was to identify aspects of students’ programming be-

haviours which are predictive of their programming performance. In particular this

thesis focusses upon exploring both frequency and time based metrics as predictors.

The second purpose of this study was to determine whether a subset of the predictors

could be combined to form a multivariate scoring algorithm, which could be applied for

the purpose of automatically predicting programming performances. Such a predictor

would have the advantage of not requiring students or instructors to process batches of

static tests, and would be capable of describing how desirable, or undesirable a student’s

programming behaviour is over the duration of a course. The algorithm performs well

on limited data, performs consistently on multiple datasets, and explains more of the

variance in performance than the predictors based upon traditional learning theories.

This brings us onto the third purpose of this study, which was to compare the

predictors based upon programming behaviour to the predictor based upon traditional

learning theories which were explored in Chapter 5. Additionally, the performance of

the programming behaviour predictors in terms of explanatory power and correlation

strengths will be examined over the duration of the entire course.

To explore programming behaviour, three datasets describing the programming

activities of three different cohorts of students taking the programming module at our

university (2011/12, 2012/13 and 2013/14) were gathered through the use of an on-line

protocol added to the BlueJ IDE (further described in Section 6.3.2).

6.3.1 Research Questions

To answer thesis RQ3, the following research sub-questions were answered:

1. How do the datasets gathered in the Durham teaching context compare to those

used in previous research?

2. Which aspects of students’ programming behaviour are associated with program-

ming performance?

3. Which aspects of programming behaviour can be combined, and scored, into an

overall predictive measure of programming performance?

4. How do the measures proposed in this chapter compare in terms of accuracy and

explanatory power over the duration of the entire course?

5. How do the measures based on programming behaviour compare to the predictors

based upon traditional learning theories explored in Chapter 5 of this thesis?
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6.3.2 Criterion Variable

When we performed our original study [200] only two datasets sampled from the

2011/12 and 2012/13 cohorts had been gathered. In this thesis, we have chosen to

update our experiments by using an additional dataset which we have recently gathered

during the 2013/14 academic year. Due to the differences in the assessment compo-

nents that were undertaken by each cohort of students (Table 3.1), it was necessary to

redefine our criterion variable to take into account only those assessments that were

completed by all three cohorts. Assuming that task difficulty and marking were also

consistent, this would allow us to explore the relations between programming behaviour

and a consistent measure of performance for three cohorts.

The weighting of assessment components was selected based upon the 2013/14 co-

hort, as they were the only cohort to only undertake the three assessments that have

formed the criterion variable exclusively. Therefore, the measure of programming per-

formance in this study is defined as a weighting of the students performance on the:

Term 1 bench test (33%), Term 1 project (33%), and Term 2 bench test (33%). This

allows the programming behaviour of all participants to be measured at the start,

mid-point, and end of the course.

6.3.3 Data Collection Method

The exploration of programming behaviour that was carried out in this study relied

upon the automatic collection of source code written by students while programming.

In the past, such a method has been referred to as following an on-line protocol [82],

as the gathered data did not rely upon a researcher directly observing students, but

rather a computer which automatically reported students interactions with it.

We chose to gather this data automatically from the BlueJ IDE. Using the BlueJ

extensions framework, a plugin was developed to gather data describing students’ pro-

gramming behaviours in a non-invasive and non-visible way. Listeners were added to

capture the following five types of events when they occurred:

• Compilation: type of event (success or fail), line (if error), message (if error),

class, filepath, source code snapshot.

• Invocation: class, filepath, method, invocation status (normal exit, exception exit,

user terminated exit), object name, package name, parameters, results.

• Package: package name, event type (open or close).

• Startup and End : event type (start or end).
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Compilation events were captured when students compiled either an individual file, or

entire project, via the keyboard shortcut or clicking on the compile button in BlueJ.

In addition to the event specific data, meta-data was gathered for each event. This

included the date, timestamp (to the nearest second), students username, and project

name.

One of the challenges involves selecting the most appropriate level of granularity

which data is to be captured at. At the highest level, data could be captured at the

project level, such as only capturing events when students choose to build the entire

project. However, it is known that novices can compile code quickly [82] and capturing

events at this level of granularity would fail to capture a large number of events. At the

other end of the extreme is to capture events on the keystroke level. The disadvantage

of this approach however is the extreme levels of noise that are inherent to a dataset of

this nature. As such, and in line with prior research [82,182] we have chosen to capture

data on the snapshot level. Only when students triggered one of the five previously

listed types of events was a snapshot logged for analysis.

Before collecting data, students were first required to complete a written faculty

approved ethics form which outlined the nature of the study. Participants were free

to opt-out or opt-in at any time through the extension menu in BlueJ. If consent was

provided, then a student’s username was added to the extension which would start

logging their programming activities as an encrypted xml file in a student’s personal

network space. This file described their programming activities over a session, and

would be instantly copied over to a departmental file store on the starting or closing of

BlueJ. The file would then be decrypted and processed into a departmental database.

6.3.4 Data Preparation and Cleaning

We initially had to determine how the data that we had logged from students could

be meaningfully analysed. We first adopted a traditional document analysis approach

by developing a Code Browser tool, to visualise the students activities in BlueJ during

a session (Figure 6.1). The tool was useful in assisting us to identify aspects of pro-

gramming behaviour that were undesirable - i.e. failing to move students towards a

compilable solution. But, manually screening logs was a time consuming process, and

our objective was to derive automatically distillable measures of behaviour.

Previous research [82, 182] has considered this problem by analysing a student’s

programming behaviours in terms of a set of successive compilation event pairings. In

this work, we also utilize pairs of events because they are more interesting than events

taken singularly. Considering pairs of events for instance allows us to explore whether

the student could resolve an error and how their code evolves over time.



Research Design 117

Figure 6.1: Screenshot of the Code Browser Tool which we developed to assist us in
visualizing students’ programming activities logged through our BlueJ extension. The
classes the student interacted with during a session are shown on the left hand side,
and squares represent events being executed. Red indicates a compilation error, Green
indicates a compilation success, and Purple indicates an invocation. The researcher
could obtain more detailed information on the events by hovering over them, and could
zoom into an area of interest by selecting an area of the graph.

The previous approaches [81] to constructing these pairings however had several short-

comings which are addressed by our data preparation method, outlined as follows:

INPUT: Set of compilation events {c1, c2, ..., cn} and invocation events {h1, h2, ..., hk}
logged from the student’s programming session.

1. Pair Construction. For each file that a student compiled during a session, or-

der the logged compilation events by timestamp and construct a tuple of suc-

cessive compilation event pairings {{c1, c2}, {c2, c3}, ..., {cn−1, cn}}. Previous re-

searchers [82,182] constructed compilation pairings based upon the natural order

that compilation events occurred during a session. However this fails to take into

account the possibility of a student working on multiple files simultaneously, and

can lead to an inaccurate representation of their programming behaviour. For

instance, suppose we had two compilation events c1, c2 from two distinct files.

If the event type of c1 was “fail” and the event type of c2 was “success”, then
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Figure 6.2: Example cases where errors would be inaccurately marked as resolved by
previous approaches of building compilation pairings.

the compilation pairing {c1, c2} would incorrectly convey that the error associ-

ated with c1 was resolved. In reality, the student simply compiled a different file.

Three examples of this can be seen in Figure 6.2. If we constructed pairings by

using the same technique of previous research, the errors in the Restaurant class

at 15:49:30, the Restaurant class at 15:50:00, and the Tables class at 15:53:00

would be incorrectly marked as resolved, due to the student successfully compil-

ing a different file following these compilation errors. Constructing pairings on a

per-student, per-session, per-file basis allows us to address this issue.

2. Pair Pruning. Remove each event pairing {cx, cy} where the source code snap-

shots of cx and cy are identical as these pairings consist of identical compilation

events, and can artificially inflate the total number of pairings produced. These

pairings can arise from either a “compile all files” feature of an IDE, or from

the student repeatedly attempting to compile the same file without making any

changes. To take into account superficial changes that may have been made by

the student between compilations, such as adding comments, modifying layout,

or renaming identifiers, rather than performing string matching directly on the

code snapshots, we first tokenize the snapshots using the BlueJ lexical analyser.

Tokenized snapshots are then compared with comments removed.
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3. Filtering Commented and Deletion Fixes. Remove each event pairing {cx, cy}
which is a commented or deletion fix. Although deleting and commenting large

blocks of code to resolve errors can yield compilable code, these actions also

provide little evidence that a student understands how to correct the underlying

error. These actions can also be performed quickly, and therefore the time taken

to resolve an error in this manner may not be representative of the time taken

to correct the underlying error. Deletion fixes were detected and removed by

computing the diff score between the tokenized code snapshots of cx and cy. If

the count of insertions and changes excluding comments are 0, and the number of

deletes are > 5 [199], then we consider the pair to be a deletion fix. This threshold

was chosen as it allows genuine fixes such as removing an extra bracket to still

be recognised as a valid fix. Commented fixes were detected by extracting the

region of code surrounding the error location of cx, and using a regex expression

to determine if the same fragment has only become commented in cy.

4. Error Message Generalization. Generalize the error messages within each compi-

lation pairing {cx, cy} to remove identifier information. This has the advantage

of allowing different classes of error to be profiled, rather than focussing on spe-

cific messages. For example, “cannot find symbol - variable pet” is generalised to

“cannot find symbol - variable”. Using the data gathered from all three cohorts,

regex expressions to generalize over 120 different errors were created and applied.

5. Time Estimation. Estimate the amount of time that a student has spent working

on each compilation pairing {cx, cy}. As we construct compilation pairings on a

per-file basis, we need to take into account the possibility of a student spending

time working on other files between the compilation events cx and cy. Therefore,

for each file in a session we first construct a combined sequence of invocation and

compilation events ordered by timestamp. For all {cx, cy}, if there exists an event

li, such that the timestamp of cx > li > cy, then we estimate the time spent on

{cx, cy} as the difference between the timestamps of cy and li. The assumption

is that a student has stopped working on the source code of cx, and has either

instead worked on the source code of li or spent time invocating the code of li.

For instance, consider the example logged data shown in Table 6.1. These logs

would yield the following compilation pairings:

Square: {{c1, c3}, {c3, c4}} Pet: {{c2, c5}, {c5, c6}, {c6, c7}}.

Estimating the time spent on {c3, c4} is performed by calculating the difference

between the two timestamps the student has no events logged for other files

between the two compilations. The same is true for the {c5, c6} pairing.
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Table 6.1: Example Logs of Two Files to Illustrate Pair Construction

Event ID Event Time Square.java Pet.java
c1 15:31:30 Fail

c2 15:32:45 Success

c3 15:33:15 Fail

c4 15:34:00 Success

c5 15:35:15 Fail

c6 15:36:00 Fail

h1 15:40:30 Invocation

c7 15:41:00 Success

When calculating the time the student spent working on the {c6, c7} pairing, we

need to take into account the time the student spent performing the invocation

i1. Therefore, the estimated time the student spent on {c6, c7} is calculated as

15:41:00 - 15:40:30 = 30 seconds, rather than 15:41:00 - 15:36:00 = 300 seconds.

OUTPUT: Set of compilation pairings for the student’s programming session.

The motivation behind the majority of the steps included in our preparation process

is intuitive. For example, the removal of duplicate pairings makes sense as they do

not add any additional information to a students behavioural profiles. The filtering of

commented and deletion fixes is less intuitive. This was primarily motivated by our

own direct observations of the students programming activities in the lab - in that we

noticed that students (or demonstrators intervening) would sometimes comment out

non-compiling code in order to work on a different problem with a compilable program.

It is possible that some behaviours have been lost by this preparation process, although

the actual percentage of pairings removed by this stage was minimal (< 5%).

In addition to the data cleaning which was performed, we also performed two further

acts of data cleaning on the sets of compilation pairings. Firstly, all compilation pairings

where the student was estimated to have spent more than 300 seconds between events

were removed. The rationale behind this decision was that it was unlikely for the

student to have spent 5 minutes working to resolve an error, when previous research

has suggested that most errors are resolved in under two minutes [51, 82, 182]. We

therefore assumed that students who have spent longer than five minutes to have gone

off task and were no longer programming.

Secondly, although our extension was able to capture data whenever the student

performed actions in BlueJ, we have restricted the data used in our analysis to only
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those logs which were gathered during the students regular assigned lab sessions. As

can be seen from Table 3.2, the content of the lab sessions was mostly identical for all

cohorts, and we hypothesised that students of similar ability in different cohorts would

elicit similar programming behaviours when they were required to complete the same

tasks. By restricting the data used to those gathered from lab sessions only, it meant

that programming behaviour of students would be analysed on the same tasks each

week, i.e. from one introductory programming lab session per week, rather than two,

three, or four labs depending on the number of elective modules the student studied.

6.3.5 Datasets and Participants

In addition to data cleaning, we also removed students from the samples of each cohort

for two reasons. Firstly, any student who failed to complete any of the assessment

components which composed the criterion variable were excluded from this study. This

decision was taken to ensure that we were exploring programming behaviour using a

measure that was consistent to all students (i.e. performance on three assessments).

Secondly, any student who failed to attend a minimum of three lab sessions was

excluded from this study. The rationale behind this decision was to follow the rec-

ommendation of previous research [82] in that attempting to profile students in cases

of data scarcity would be difficult, and that a minimum of three observations would

provide a more meaningful analysis. We note that all of these cases arise in a missing

completely at random nature (MCAR) [103], as the students who had data logged from

less than three sessions had elected to use their own laptops during the lab sessions

and logging data on their personal hardware was not possible.

Following the exclusion of 7 students for the above reasons, our final sample con-

sisted of 141 students spread across three cohorts. An overview of the performance

of each cohort on the criterion variable is shown in Table 6.2 and a distribution of

the marks is shown in Figure 6.3. Performance on the criterion variable was normally

distributed (Shapiro-Wilk test, p > .05), ranging from a low of 42.0 to a high of 97.7

(M = 71.6, SD = 12.3). 82 students scored a 1st class (≥70%) or above on the criterion

variable, 53 scored a 2nd class (50-69%), and 6 students scored a 3rd (40-49%).

In terms of the data which was used for this study, we made the decision to only

use the data which was gathered up to and including the final assessment forming

the criterion variable (Term 2 Bench Test). The rationale behind this decision was to

exclude any additional data which was gathered after the final assessment had taken

place, such that data describing the students future programming behaviours was not

used to predict their performance in the past. Due to the nature of lab tasks further

data exclusions were applied, which will be discussed in the context of each year.
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Table 6.2: Descriptives of the participating students from all cohorts

Cohort Consent Missing
Criterion

< 3
Labs

Sample
n

Mean
Mark

SD 1sts
(70%)

2nds
(50%)

3rds
(40%)

2011/12 41 1 3 37 66.4 10.8 16 19 2
2012/13 47 0 2 45 72.2 14.3 28 13 4
2013/14 61 0 2 59 74.4 10.6 38 21 0

All 149 1 7 141 71.2 12.3 82 53 6

2011/12 Dataset

Performance on the criterion variable was normally distributed (Shapiro-Wilk test, p >

.05), ranging from a low of 45.0 to a high of 82.3 (M = 66.4, SD = 10.8).

The logging plugin was added to BlueJ at the start of week 4, and data was logged

from consenting students until week 19. Data gathered from weeks 7 and 8 while the

students were completing the fault injection assignment (Section 3.3.2) was discarded.

No data was gathered during week 11 as the collection exam was conducted during the

lab. After exclusions, this leaves data from 13 weeks for analysis (4-6, 9-10, 12-19). On

average, students attended a total of 11.3 (SD = 2.2) lab sessions.

2012/13 Dataset

Performance on the criterion variable was normally distributed (Shapiro-Wilk test, p >

.05), ranging from a low of 42.0 to a high of 95.3 (M = 72.2, SD = 14.3).

Data was logged from consenting students from week 2 until week 19. No data was

gathered during week 11 due to the basis of the collection exam taking place. Data

gathered from week 19 was discarded as the final assessment took place during week 18.

After exclusions, this leaves data from 16 weeks for analysis (2-10, 12-18). On average,

students attended a total of 12.3 (SD = 3.4) lab sessions.

2013/14 Dataset

Performance on the criterion variable was normally distributed (Shapiro-Wilk test, p >

.05), ranging from a low of 52.0 to a high of 97.7 (M = 74.4, SD = 10.6).

Data was logged from consenting students from week 2 until week 19. Data gathered

from week 19 was discarded as the final assessment took place during week 18. After

exclusions, this leaves data from 17 weeks for analysis (2-10, 10-18). On average,

students attended a total of 14.9 (SD = 3.2) lab sessions.
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Figure 6.3: Distribution of the performance of all participating students n = 141.

Summary

In order to explore whether these were any significant differences in the performance of

each cohort, a one-way ANOVA was performed. There were no outliers in any of the

groups, as assessed by the inspection of a box plot. Shapiro-Wilk tests confirmed that

the pass rates were normally distributed for each year, p > .05, and homogeneity of

variances was confirmed by Levene’s test, p = .08. The one-way ANOVA showed that

there were statistically significant differences between the performances of each cohort,

F (2, 138) = 5.26, p = .01. Tukey post-hoc analysis revealed that only performance of

the 2011 and 2013 cohorts was statistically significant, p = .01.

Considering the activities which students were performing whilst their data was

being logged, it can be seen from Table 3.2 that data was logged while all three cohorts

completed at least 11 identical activities. In other words, the behaviours that are

explored in this study are derived from data that was gathered while all three cohorts

were completing identical activities at least 70% of the time.

As previously discussed, the assessments also showed a similar degree of consis-

tency for all three cohorts, and students received similar learning materials each year.

The high degree of consistency in terms of activities, assessment, and learning mate-

rials across all three cohorts would allow us to rule out the possibility of these factors

explaining differences in the programming behaviours of each cohort. Additionally,

it supports us in concluding whether or not the factors explored in this chapter are

derived from programming behaviour, rather than the result of students completing

different activities, assessments, or studying different materials.
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6.4 Results

6.4.1 Descriptive Statistics of the Datasets

To answer the first research question, descriptive statistics of all three datasets were

derived and compared. In a study of this nature, it was important to consider both

internal consistency between the datasets, and external consistency of the datasets we

gathered with those used in previous research. Descriptive statistics are considered in

terms of both the frequency of different types of errors, and the time that students have

taken to resolve different types of error. In this study, resolving an error is determined

by using the compilation pairings previously constructed. If the generalized error of

the first event is different in the second event, or if the second event was a successful

compilation, then the error is classified as resolved.

Error Frequency

In total 56,046 compilation events were logged from the 2013/14 cohort, 40,802 compi-

lations from the 2012/13 cohort, and 26,598 compilations from the 2011/12 cohort. The

number of compilations which resulted in errors were 26,117 (46.6%) for the 2013/14

cohort, 20,700 (49.2%) for the 2012/13 cohort, and 13,889 (52.2%) for the 2011/12

cohort. These figures are comparable across our datasets, and consistent with previous

research on the percentage of compilation errors encountered by students (e.g. 49%

errors [51], 41% errors [155] and 50% errors [79]).

Figure 6.4 shows the most commonly occurring errors found in all three datasets. As

can be seen from this figure, there was a good degree of internal consistency between the

three datasets, with comparable percentages of each error recorded for all three cohorts.

The most commonly occurring error in all three datasets was an unknown variable,

followed by missing semicolon, and unknown method. Errors relating to unknown

identifiers (variables, methods, classes, constructors) could account for approximately

one third of the errors in all datasets. As more complex IDE’s such as Netbeans

provide auto corrective features to avoid these errors, we note that the most commonly

occurring errors found in our datasets may be different to those gathered from a more

complex IDE. Nevertheless, the most commonly occurring errors showed a good level

of consistency in our context, possibly arising from the fact that data was logged whilst

all cohorts were completing identical activities during at least 70% of the labs.

Table 6.3 compares the most commonly occurring errors in the three datasets used

by this study to previous research. Again, a high degree of consistency was found, with

at least 7 of the commonly occuring errors found by this study having been found in

the errors most commonly found by previous researchers.
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Figure 6.4: Most common errors found in the three datasets used by this study.

Table 6.3: Most common errors found in the three datasets used by this study, compared
to most common errors found by previous researchers.

Previous Researchers This Study

Error [82] [81] [79] [181] 2011/12 2012/13 2013/14
1 unknown variable • • • • • • •
2 ; expected • • • • • • •
3 unknown method • • • • • • •
4 unknown class • • • . • • •
5 illegal start of expression • • . • • • •
6 ) expected • • • • • • •
7 incompatible types • • • • • • •
8 missing return statement . • . • • • •
9 unknown constructor . . . . • • •
10 <identifier> expected • . • • • • .

Errors in Common 8 8 7 8 10 10 9
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Table 6.4: Median (Md) and Interquartile Range (IQR) of the resolve times in seconds.

2011/12 2012/13 2013/14

Error n Md IQR n Md IQR n Md IQR
1 unknown variable 1301 13 20 1849 12 19 2307 14 21
2 ‘;‘ expected 933 5 5 1458 5 6 2300 5 4
3 unknown method 570 18 30 892 17 37 1079 17 30
4 unknown class 482 12 15 518 12 16 795 13 15
5 illegal start of expression 231 14 30 430 16 33 523 15 31
6 ‘)‘ expected 309 10 15 412 11 13 487 11 16
7 incompatible types 282 14 23 510 16 21 558 16 28
8 missing return statement 265 14 30 450 15 34 497 15 29
9 unknown constructor 216 25 43 267 28 52 328 28 57
10 <identifier> expected 247 12 23 320 14 27 433 13 29

Resolve Times

Table 6.4 shows the median resolve times for each of the most common errors by cohort.

We selected the median as a robust measure of central tendency as the distributions of

resolve times were left skewed. The resolve times for each of the errors were comparable

across all three cohorts. To confirm that the resolve times of each of the errors were

consistent across all three cohorts, ten Kruskal-Wallis H tests were performed.

Significant differences were found for two cases. Firstly, there were significant

differences in the distributions of resolve times for the <identifier> expected error

(χ2(2) = 7.14, p = .03). Post-hoc analysis showed the differences were between the

2011/12 and 2012/13 cohorts. Secondly, significant differences were found in the dis-

tributions of resolve times for the ‘;‘ expected error (χ2(2) = 7.14, p = .03). Post-hoc

analysis showed the differences were between the 2012/13 cohort and both other co-

horts. In the remaining 27 pairwise comparisons, no significant differences were found

between the distributions of the resolve times of the most common errors. This suggests

a high level of consistency in terms of resolve time across all three datasets.

We next explored whether there were any significant differences between the time

students took to resolve different types of errors. Three Kruskal-Wallis H tests showed

significant differences in error resolve times for the 2011/12 cohort, (χ2(9) = 944.24,

p < .001), 2012/13 cohort, (χ2(9) = 1317.97, p < .001), and 2013/14 cohort,

(χ2(9) = 2191.25, p < .001). Post-hoc analysis revealed significant differences in the

resolve times of each type of error with at least four other types of error. If we consider

the amount of time that a student takes to resolve an error as the measure of the errors

difficulty, then this would suggest that different errors are more difficult for students to

resolve than others, and these difficulties are consistently observed in all three datasets.
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6.4.2 Relations between Different Error Types and Performance

To answer the second research question, based upon the descriptive statistics of our

datasets we hypothesised that two types of programming behaviour would be related

to student performance - error frequency and error resolve time. We chose to start our

exploration into programming behaviour by considering these two metrics.

Prior research by [82] suggests weaker programming students are characterised by

producing a high number of compilation pairings where both events are errors, and

a high number of pairings where both events are the same type of error. [155] also

explored these aspects, and found weak-moderate correlations for the total number of

compilation pairings where both events are errors, r = .32, the total number of pairings

with the same error, r = .30, and for the average number of errors produced r = .27.

The weakness of these results is that they are not standardized against the total

number of pairings which have been logged for a student. Unlike previous research, we

found no relation between total number of errors with student performance, r = .07.

However, the students in each of the three cohorts had data logged from a different

number of sessions. Also, from the sessions in which data was logged, some students

will have attended, and compiled more often than others, and factors such as this need

to be taken in to account when exploring programming behaviour.

In our study we also explore the relations between performance and the different

types of pairings which are logged for students. However, unlike prior research the

counts of these pairings are standardized as a percentage of the total number of pairings

logged for each student. This allows factors such as students attending a different

number of sessions, or compiling more frequently than others to be taken into account.

We first explored frequency based metrics, based upon the percentage of different

types of pairings which were logged for each student. Table 6.5 shows correlations

between these metrics and the performance of all three cohorts. Figure 6.5 shows

scatter plots of these metrics on the combined sample of all three cohorts (n = 141).

In contrast to the traditional predictors which were explored in Chapter 5, an

abundance of moderate-strong correlations were found. Using the full sample, n = 141,

a strong negative correlation was found between performance and the percentage of

error to same error pairings r = -.52, p < .01, and a moderate negative correlation was

found for the percentage of error to any error pairings r = -.45, p < .01. The percentage

of events in the form of two successive successful compilations was found to moderately

positively correlate with performance, r = .40, p <. 01.
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(a) Error to Same Error, r = -.52 (b) Error to Different Error, r = -.34

(c) Error to Any Error, r = .-45 (d) Success to Success, r = .40

(e) Error to Success, r = .26

Figure 6.5: Scatter graphs showing the combined correlations between percentage of
different types of pairings with the performance of all three cohorts, n = 141.
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Table 6.5: Table showing the correlations (r) of performance with the percentage of
different types of pairings logged for students (* p < .10, ** p < .05, *** p < .01)

2011/12 2012/13 2013/14 Combined

From To r(35) r(43) r(57) r(139)
Error Same Error -.56 *** -.52 *** -.51 *** -.52 ***
Error Different Error -.30 ** -.38 *** -.29 ** -.34 ***
Error Any Error -.49 *** -.46 *** -.40 *** -.45 ***
Error Success .22 * .29 ** .17 * .26 ***
Success Success .36 ** .52 *** .36 *** .40 ***

Examining the results for all three cohorts, it can be seen that the results are consis-

tent across all three years in terms of correlation strengths, with the exception of the

the percentage of events in the form of two successive successful compilations, which

showed a slightly higher correlation for the 2012/13 cohort than the other two cohorts.

Nevertheless, these results reinforce previous research, and demonstrate that weaker

students are associated by making a greater percentage of repeated errors than their

peers, and having a smaller percentage of successive successful compilations.

Regression Analysis

Encouraged by the strengths of the correlations, we next explored whether factors based

upon the percentages of different types of pairings could be used to predict performance.

A series of linear regressions were performed and the results are presented in Table 6.6.

As can be seen from this table, in terms of the combined sample, the percentage of

pairings which corresponded to two successive identical errors could explain a moderate

amount of the variance in performance (F (1, 139) = 51.91, p < .01, R2 = 27.19%).

This was closely followed by the percentage of pairings which corresponded to any two

successive errors (F (1, 139) = 35.43, p < .01, R2 = 20.31%), the percentage of pairings

which corresponded to any two successive successful compilations (F (1, 139) = 26.32,

p < .01, R2 = 15.92%), and the percentage of pairings which corresponded to error to

a different error (F (1, 139) = 18.01, p < .01, R2 = 11.47%). These regressions also

appeared to yield comparable results on all three individual datasets.

Whilst these regression models could account for a moderate amount of the variance,

the error rate was higher than anticipated, and RMSE’s of above 10 were found across

the board. It is possible that on more data, the RMSE’s will lower. Nevertheless, six

of these models could account for more than the 21.4% of the variance in performance

than the model based upon context independent predictors presented in Chapter 5.
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Table 6.6: Table showing the results of the regressions based upon the percentage of
different types of event pairings logged for students.

2011/12 2012/13 2013/14 Combined

From To R2 RMSE R2 RMSE R2 RMSE R2 RMSE
Error Same Error 31.03 9.32 26.90 11.80 26.50 9.05 27.19 10.49
Error Different Error 8.93 10.42 14.33 12.82 8.15 10.11 11.47 11.57
Error Any Error 24.12 10.52 21.36 11.39 16.34 10.39 20.31 10.98
Error Success 4.99 9.77 8.59 12.22 3.05 9.65 6.73 11.18
Success Success 12.80 10.09 27.51 13.08 12.86 9.73 15.92 11.28

Performance Over Time

To answer the fourth research question, we next considered how the strengths of the

correlations and regressions changed over time, and whether metrics based upon pairing

frequency could be used to predict student performance using limited data. As data was

logged from a number of different labs for each cohort, results are presented on a per-

cohort basis. Figure 6.6 displays the strengths of the correlations between percentage

of different pairings and performance, using all available data up to and including the

current session (i.e. the predictions made for week six are made using all data gathered

during the previous six weeks).

For the 2011/12 cohort, none of the correlations reached moderate levels until 5 labs

of data was logged. After the 5th lab, the percentage of error to same error pairings

began to moderately correlate with performance, r = -.34, and steadily rose to within

its peak correlation after a further 2 labs. The percentage of error to any error pairings

took 7 labs to reach a moderate correlation of r = -.36. The percentage of error to

success pairings peaked at this time, r = .35, but declined over the remainder of the

course. The remaining metrics did not peak until the final 2 labs.

For the 2012/13 cohort, the percentage of success to success pairings reached a mod-

erate correlation after 4 labs, r = .35, and continued to slowly rise over the remainder

of the course. None of the remaining four factors reached a moderate correlation until

after 7 labs. The percentage of error to same error pairings reached a moderate corre-

lation after 7 labs, and the percentage of error to any error pairings reached a moderate

correlation after 8 labs. As with the 2011/12 cohort, the percentage of error to success,

and percentage of error to different errors rose slower over the course, and did not peak

until the final two labs of the course.

For the 2013/14 cohort, the correlations rose more rapidly than the other two co-

horts. All of the correlations reached moderate levels after 4 labs, and showed no

substantial increases in the strength of the correlations over the duration of the course.
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(a) 2011/12 Cohort

(b) 2012/13 Cohort

(c) 2013/14 Cohort

Figure 6.6: Correlations between the percentage of different types of error pairings and
performance over the duration of all three courses.
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6.4.3 Resolve Times as a Predictor

One aspect of programming behaviour which previous research has not considered as a

predictor is the amount of time that students take to resolve errors. Research by [51]

showed that the resolve times of different types of error can vary based upon student

ability, but, they did not use this variable as a predictor of performance.

We next explored the percentage of lab time which students spent working on

different types of pairings. As with the frequency based metrics, we elected to use

percentages as a means to standardize the data logged for students against the number

of sessions they attended. This was calculated by summing the total time students spent

working on all pairings to estimate total lab time, and then calculating the percentage

of time spent working on different types of pairings as a percentage of this total. Table

6.7 shows correlations between these metrics and the performance of all three cohorts.

Figure 6.7 shows scatter plots of these metrics on the combined sample of all three

cohorts.

Similar to the results on the relationships between the percentage of different

types of pairings and performance, a number of strong correlations were found for

the percentage of time that students spent working on different pairings. The per-

centage of lab time that students spent on error to same error pairings was found to

strongly negatively correlate with performance r(139) = -.53, p < .01. This correlation

was consistent across all three cohorts, yielding correlations for the three datasets of

r(35) = -.59, r(43) = -.56, and r(57) = -.48. Percentage of lab time spent working on

error to any error pairings was found to moderately negatively correlate with perfor-

mance, r(139) = -.42, p < .01. The percentage of lab time spent on two successive

successful compilations was found to moderately positively correlate with performance,

r(139) = .38, p < .01. This implies that not only are stronger students characterised

by making a greater percentage of successive errors than their peers, but they also

are characterised by spending a greater percentage of their lab time working on these

errors.

Regression Analysis

We also considered performance of the time based metrics over time. A set of linear

regressions were performed and the results are presented in Table 6.8.

As can be seen from this table, in terms of the combined sample, the percentage

of lab time spent working on error to same error pairings could explain a moderate

amount of the variance in performance (F (1, 139) = 56.65, p < .01, R2 = 27.85%).

This was closely followed by the percentage of lab time spent working on error to
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(a) Error to Same Error, r = -.53 (b) Error to Different Error, r = -.42

(c) Error to Any Error, r = .-51 (d) Success to Success, r = .38

(e) Error to Success, r = -.02

Figure 6.7: Scatter graphs showing the combined correlations between the percentage
of lab time students spent working on different types of pairings with the performance
of all three cohorts, n = 141.
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Table 6.7: Table showing the correlations (r) of performance with the percentage of
lab time students spent working on different types of event pairings. (* p < .10, ** p <
.05, *** p < .01)

2011/12 2012/13 2013/14 Combined

From To r(35) r(43) r(57) r(139)
Error Same Error -.59 *** -.56 *** -.48 *** -.53 ***
Error Different Error -.30 ** -.52 *** -.40 *** -.42 ***
Error Any Error -.51 *** -.57 *** -.47 *** -.51 ***
Error Success .10 .06 -.10 -.02
Success Success .26 * .43 *** .41 *** .38 ***

Table 6.8: Table showing the results of the regressions based upon the percentage lab
time students spent working on different types of pairings.

2011/12 2012/13 2013/14 Combined

From To R2 RMSE R2 RMSE R2 RMSE R2 RMSE
Error Same Error 35.21 9.11 31.08 11.56 22.89 9.27 27.85 10.45
Error Different Error 8.93 10.36 26.99 11.59 16.04 9.67 17.50 11.17
Error Any Error 26.12 27.66 31.94 10.65 21.64 28.45 26.19 20.23
Error Success 0.94 9.53 0.35 11.17 0.96 9.34 0.04 12.29
Success Success 6.94 10.60 18.69 14.11 16.93 10.50 14.67 11.36

any error pairings (F (1, 139) = 49.32, p < .01, R2 = 26.19%), percentage of lab

time spent working on error to different error pairings (F (1, 139) = 29.49, p < .01,

R2 = 17.50%), and percentage of lab time spent working on two successive successful

compilations (F (1, 139) = 23.88, p < .01, R2 = 14.67%). No relations were found

between performance and the percentage of lab time students spent working on error

to success pairings (F (1, 139) = .04, p = .81, R2 = .07%).

Whilst these regressions could account for a moderate amount of the variance, the

regression results appeared to vary based upon the cohort. For instance, the percentage

of lab time spent working on two successive errors could explain 35.21% of the variance

performance of the 2011/12 cohort, but only 22.89% of the variance in the performance

of the 2013/14 cohort. Nevertheless, nine of these models could account for more

than the 21.4% of the variance in performance than the model based upon traditional

predictors presented in Chapter 5. Additionally three metrics - percentage of lab time

spent working on error to any error pairings, percentage of lab time spent working on

an error to different error pairings, and percentage lab time spent working on error to

same error pairings, could explain a greater amount of variance than their frequency

based counterparts. This may suggest that percentage of lab time spent working on

different pairings is a stronger predictor than those based upon frequency of events.
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Performance Over Time

To answer the fourth research question, Figure 6.8 displays the strengths of the corre-

lations between the percentage of lab time spent working on different types of pairings

and performance, for all the labs from which data was logged.

For the 2011/12 cohort, none of the correlations reached moderate levels until 5

labs of data was logged. After the 5th lab, the percentage of lab time spent working on

error to same error pairings began to moderately correlate with performance, yielding

r = -.33, and steadily rose to within its peak correlation after a further 2 labs. The

percentage of lab time spent working on error to any error pairings also took 5 labs

to reach a moderate correlation of r = -.34, and continued to rise over the duration

of the course. The remaining metrics did not peak until the final 2 labs, although

the percentage of lab time spent working on error to different error pairings reached a

correlation of r = -.27 after 6 labs.

For the 2012/13 cohort, the percentage of lab time spent working on error to same

error pairings took 7 labs to reach a moderate correlation, r = -.35, whereas it only

took 4 labs for moderate correlations to be found for the percentage of lab time spent

working on error to any error, r = -.33, and error to different error pairings, r = -.32.

The percentage of lab time spent working on two successive successful compilations did

not begin to moderately correlate with performance until the second term (9 labs).

For the 2013/14 cohort, the percentage of lab time spent working on error to any

error began to moderately correlate with performance after 3 labs, r = -.30, error to

different error after 4 labs, r = -.34, error to same error after 4 labs, r = -.40, and any

two successive successful compilations after 5 labs r = -.32.

Comparison of Frequency and Time Based Metrics

Both the frequency and time based metrics correlated moderately with the performance

of students across all cohorts, which raises the question as to whether one dimension is

more important for predicting programming performance than the other.

Examining the correlations of all three cohorts in Tables 6.5 and Table 6.7, both

time and frequency based metrics performed similarly for all five types of pairings.

But, the metrics based upon time reached a moderate correlation earlier in the course,

and yielded stronger correlations than the frequency based metrics on 13 results (65%).

This suggests that time is a more important factor, when the metrics are considered

singularly. In the remainder of this chapter, a hybrid algorithm which combines several

of these metrics into a single predictor of performance will be presented.
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(a) 2011/12 Cohort

(b) 2012/13 Cohort

(c) 2013/14 Cohort

Figure 6.8: Correlations between the percentage of time spent working on different
types of error pairings by students and performance, over the duration of all three
courses.
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6.4.4 Developing a Predictive Algorithm

We had identified that both the frequency of different types of pairings (e.g. repeated

errors), and the time spent working on different types of pairings (e.g. resolving errors)

were moderately to strongly associated with programming performance.

To answer the third research question, we next decided to explore whether a hybrid

model based upon several metrics could account for a greater proportion of the variance,

than when the same metrics were considered on a singular basis. But, different forms

of programming behaviour can be considered to be more undesirable than others. For

example, constantly repeating the same error could be considered to be worse than

making and resolving an error, as repeating errors shows no learning on the students

part. Also, if students are spending a large percentage of their lab time resolving errors,

then it provides evidence that they are struggling to overcome the syntax barrier.

If several factors could be algorithmically combined and scored to yield a single

measure of how undesirable students’ programming behaviours are, then it may provide

a more effective means of predicting performance than considering the metrics on a

singular basis. In the remainder of this section we present an algorithm which we have

developed which is designed to fulfil this requirement by applying a scoring scheme to

penalize students based upon different aspects of their programming behaviour.

Component Selection

In the first instance, we had to decide which aspects of undesirable programming be-

haviour to incorporate into our scoring algorithm. We were interested in the Error

Quotient [82] which proposed a scoring algorithm based upon the frequency of different

types of events. Based upon this research, and in conjunction with our own results

on the relations between different types of pairings and performance, we selected the

following frequency based components for our algorithm: repeated full error message,

repeated generalised error, and repeated error location. These factors will be scored by

applying a set penalty for their occurrence.

Our research in the previous section demonstrated that metrics based upon the

time spent working on different types of pairings yielded stronger correlations than

the frequency based metrics. We were keen to exploit these findings as we believed

that including a scoring dimension based upon resolve time would yield a considerably

stronger algorithm than one based on the frequency of events alone.

However, two factors needed to be taken into consideration when determining how

to penalise students. Firstly, certain errors are more difficult for students to resolve

than others. Significant differences in resolve times were found for the most commonly
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occurring errors (Table 6.4), and it is important to consider the difficulty to resolve an

error when penalizing students based upon their resolve time. Secondly, students of

different abilities can take longer to resolve different types of errors than others [51].

It follows that high performing students can take a considerable amount of time to

resolve relatively straightforward errors, and in some cases, low performing students

can resolve certain types of error quicker than high performing students. If we were

to simply apply an arbitrary penalty based upon whether the student has resolved an

error in an arbitrary good (e.g. ≤ 4 seconds) or arbitrary bad (≥ 7 seconds) amount

of time, it would fail to take into account both the students ability to resolve an error,

and the relative difficulty to resolve different types of errors.

To take these factors into account in our algorithm we included a scoring dimension

based upon error resolve times, where students are relatively penalized based upon

how their resolve times for different types of error compare to the resolve times of their

peers. As time distributions are generally skewed, we penalize the students resolve

times based upon the use of robust median-based statistics [208].

For each type of error, a distribution of resolve times is constructed by using all

the available pairings data for the student and their peers. This distribution is used to

define what resolve times are to be considered “normal” for a particular type of error,

to which the students resolve time will be compared against. Outlying resolve times are

removed by applying the robust 2MADe (Median Absolute Deviation) approach [208].

A penalty is then selected based upon how the students resolve time compares

to the inter quartile range of the distribution. If the students resolve time is within

the lowest quartile of the distribution, then a student resolved an error faster than

their peers - so we select a low penalty. If a student’s resolve time is in the upper

quartile, then they resolved an error slower than their peers the highest penalty is

selected. Otherwise, a student’s resolve time is within the inter quartile range, so a

medium penalty is selected. The advantage of scoring students in this manner is that

we can implicitly take into account the relative difficulty of resolving different types of

error, and judge the students ability by comparing their resolve times to their peers.

Additionally it allows the bounds for penalties to be derived from the actual behaviours

of the students, rather than specifying an arbitrary penalty for different types of errors

which may not hold across different teaching contexts.

For example, consider the penalty bounds of the most common errors displayed in

Table 6.9. Suppose that a student from the 2011/12 cohort took 4 seconds to resolve

an unknown variable error. Compared to their peers, this time ranks in the lowest

quartile, and a low penalty would be selected. However, if the student took 30 seconds,

then this time ranks in the highest quartile, and a higher penalty would be selected.
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Table 6.9: Low (L) and High (H) penalty bounds (seconds) of the most common errors.
Medium penalties are applied for times between the low and high bounds.

2011/12 2012/13 2013/14

Error L H L H L H
1 unknown variable 8 21 7 18 7 22
2 ‘;‘ expected 4 7 4 7 4 6
3 unknown method 9 26 8 26 9 31
4 unknown class 7 17 7 19 7 19
5 illegal start of expression 7 22 8 27 7 21
6 ‘)‘ expected 6 16 7 17 5 13
7 incompatible types 9 25 9 23 8 19
8 missing return statement 8 25 9 28 8 21
9 unknown constructor 12 43 12 52 12 47
10 <identifier> expected 7 19 8 25 6 18

Deriving Fair Penalties

Common to machine learning techniques we first classified our three datasets into the

roles of training (2013/14 dataset), validation (2012/13 dataset), and testing (2011/12

dataset), based upon their sample sizes. To derive appropriate penalties, we used a

genetic algorithm. The objective was to identify a set of penalties which could maximise

the variance explained on the training and validation datasets, by building a regression

model based upon the scoring of students’ programming behaviours and their course

performance. The specific conditions of the algorithm are described as follows:

1. Population. The initial population consisted of 250 randomly generated arrays of

six integers (representing one penalty for each component in the algorithm).

2. Crossover. Single point crossover. One crossover index was randomly selected.

The array from index 0 to the crossover index was copied from one parent, the

remaining penalties were copied from the second parent to form the child.

3. Mutation. Chromosome switching. Two indexes were randomly selected, and the

penalties from these indexes switched if mutation occurred (10% chance).

4. Fitness. Fitness was defined as the variance explained by applying the penalties

to the training dataset + the variance explained on the validation dataset (i.e.

R2
training +R2

verification).

Our aim was to identify a set of penalties which could maximise the variance explained

on the validation dataset, but if the same penalties could also explain a substantial

proportion of the variance on the previously unseen test dataset, then it may suggest

the generalization of our algorithm to other teaching contexts.
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Multiple runs of the genetic algorithm were conducted, generally for 300 generations

each time. After this number of generations, we noticed no substantial increases in

the fitness of the population. A number of optimization techniques were applied. We

initially experimented by ensuring at least 25% of the population met a minimum level

of fitness (R2
training + R2

verification ≥ 40) which ensured there were fit parents available

for the first generation. At the end of each generation, the top 10% of parents from

the previous generation were also retained and seeded into the child population. This

combined population was sorted by fitness, and the instances with the worst fitness

dropped until the new population was the same size as the initial population.

After our initial runs of the genetic algorithm, several possible combinations of

penalties were identified which all yielded comparable fitness levels on both training

and validation datasets. To select the penalties for use in our algorithm, we explored

how each of the fittest penalty combinations performed at an early stage in the course

when limited data was available. The final penalties selected for the algorithm could

explain the most amount of variance in the training and validation datasets after 5 labs

of data had been gathered (the typical amount of labs that students completed before

the first assessment took place).

Differences to our Original Watwin Algorithm

The algorithm which is presented in this thesis improves upon our previously published

version [200] in several ways. The reason we have elected to revise aspects of our

algorithm was to address some of the limitations which we identified, and to take

advantage of the availability of the larger dataset gathered from the 2013/14 cohort.

The components included in the algorithm (Figure 6.9) remain identical to our orig-

inal version. The first difference concerns the penalties which are applied. Originally,

penalties were selected through the use of a brute force search of a restricted parameter

space using a single dataset. This approach however has the limitation of over fitting

penalties to a single dataset. By using a genetic algorithm to search for penalties which

hold on two independent datasets, we reduce the likelihood of this limitation occurring.

Secondly, in the original algorithm, the resolve time penalty bounds were based

upon the use of a mean resolve time and using standard deviations to define the bounds.

But this approach was sensitive to deviations from normality, and using percentiles to

specify the penalty bounds allows us to address this shortcoming. For example, on

smaller datasets where the standard deviation is larger than the mean resolve time, the

lower penalty bound could be a negative time, which is impossible. By changing our

approach to use robust median based statistics, rather than mean based, it increases

the likelihood that our approach will not be effected by this shortcoming.
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Robust Relative: A Predictive Algorithm of Programming Performance

Combining the work of the previous sections, our revised algorithm (named Robust

Relative) for predicting performance in a programming course is described as follows:

INPUT: Set of compilation events {c1, c2, ..., cn} and invocation events {h1, h2, ..., hk}
logged from the student’s programming session.

1. Prepare a set of pairings by applying the procedure presented in Section 6.3.4.

Pairings where the first event is a compilation success should be removed.

2. Quantify Programming Behaviour

• Score each compilation pairing by using scoring algorithm (Figure 6.9).

• Normalize each score by dividing by 16 (the maximum possible score).

• Average the normalized scores of all pairings.

OUTPUT: The mean average of all pairing scores, that is taken as the student’s Robust

Relative score for the session. A score of 0 indicates that the student encountered no

errors over a session. A score of 1 indicates that every compilation ended in an error,

and that the student spent longer than their peers between different compilation events.

The closer the score to 0, the stronger the students ability.

Figure 6.9: The scoring algorithm used by Robust Relative algorithm, showing the
penalties which were identified through applying the genetic training algorithm.
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Table 6.10: Table showing the results of the regressions based upon the Robust Relative
and Error Quotient algorithms.

2011/12 2012/13 2013/14 Combined

Algorithm R2 RMSE R2 RMSE R2 RMSE R2 RMSE
Robust Relative 43.65 8.23 44.17 10.83 42.19 8.16 41.21 9.73
Error Quotient 24.49 9.53 25.43 12.52 23.59 9.38 25.10 10.80

Difference R2 19.16 18.74 18.60 16.11
Improvement (%) 78.23 73.69 78.82 64.18

Overall Results

To evaluate the predictive power of our algorithm, linear regressions were performed. As

the penalties used in the scoring algorithm were derived by using the 2013/14 training

and 2012/13 verification datasets only, the strength of our algorithm can be judged

based upon its performance on the independent 2011/12 test dataset.

Overall results are presented in Table 6.10. As can be seen from this table, the

scoring of programming behaviour by the Robust Relative algorithm could account for

a large proportion of the variance in the performance of all three cohorts.

For the 2013/14 dataset used for algorithm training, we found that a linear re-

gression could explain a large amount of the variance (F (1, 57) = 41.60, p < .01,

R2 = 42.19%). The final RMSE of the model was 8.16. As this dataset was used for

the purposes of training and identifying appropriate penalties, strong results are to be

expected.

For the 2012/13 dataset used for algorithm verification, we found that a linear

regression could explain a large amount of the variance (F (1, 43) = 33.74, p < .01,

R2 = 44.17%). The final RMSE of the model was 10.83. Finding consistent results on

a second dataset is encouraging, suggesting the further generalisability of the algorithm.

Using the 2011/12 dataset for algorithm testing, we found that a linear regres-

sion could again explain a large amount of the variance (F (1, 35) = 27.25, p < .01,

R2 = 43.65%). The final RMSE of the model was 8.23. The comparability of the re-

sults on an independent dataset suggests the generalizability of our algorithm to similar

teaching contexts. This notion is strengthened by the consistency of our datasets both

internally, and externally against those gathered by previous researchers, suggesting

that certain elements of programming behaviour encapsulated by our algorithm may

consistently hold across different teaching contexts.
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We also ran the Error Quotient algorithm on our datasets. Consistent with previous

research, we found the Error Quotient to be a weak-moderate predictor of perfor-

mance [82, 155]. The explanatory power ranged from a low of 23.59% to a high of

25.43%. We note that similarly to our Robust Relative algorithm, the Error Quotient

yielded comparable results across all three datasets. However, our Robust Relative

algorithm was able to explain an additional 19.16% of the variance in the performance

of the 2011/12 cohort, an additional 18.74% of the variance for the 2012/13 cohort,

and an additional 18.60% of the variance for the 2013/14 cohort. This suggests that

incorporating a dimension based upon resolve time can account for substantially more

of the variance in performance, than an algorithm that is based upon error frequency

alone.

Results Over Time

It is important to consider how our algorithm performs over the duration of a course,

as predicting performance at the end of a course leaves little room for an instructor to

provide an intervention to prevent a struggling student from failing.

Results are presented in Figure 6.10. As can be seen from this figure, both of the

algorithms appear to be data-driven, explaining less of the variance in performance

across all three cohorts at the early stages in the course when data is scarce.

For the 2013/14 cohort, the variance explained by Robust Relative rose sharply,

accounting for approximately 40% of the variance after six labs. The Error Quotient

rose sharply over the first four labs, however showed no substantial improvements in

explanatory power over the remainder of the course, remaining around 20% until the

final lab. For the 2012/13 cohort, the variance explained by Robust Relative rose more

steadily over the entire duration of the course, and could account for 30% of the variance

by the sixth lab. The Error Quotient rose at a comparable rate to Robust Relative,

however, consistently could only account for approximately 20% less of the variance

over the duration of the course. For the 2011/12 cohort, both algorithms struggled

to explain any of the variance over the first four labs. During the fifth lab, Robust

Relative jumped to 20% explanatory power which increased to 30% after another two

labs. The algorithm held steadily around the 30% mark for a further six labs, only

rising to above 40% in the final labs. The Error Quotient struggled to explain any of

the variance until the seventh lab, when it could account for 10% of the variance in

performance. The explanatory power then steadily increased over the remainder of the

course. Considering that the 2011/12 dataset consists of fewer logged lab sessions than

the other two datasets, the increases in explanatory power are comparable to the other

two datasets after a similar number of labs had been conducted.
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(a) 2011/12 Cohort (b) 2012/13 Cohort

(c) 2013/14 Cohort

Figure 6.10: Variance explained by the Robust Relative and Error Quotient algorithms
over the duration of the course.

Table 6.11: Results of running the Error Quotient using the Robust Relative Penalties.

2011/12 2012/13 2013/14

Algorithm R2 R2 R2

Robust Relative 43.65 44.17 42.19
Error Quotient 24.49 25.43 23.59

Error Quotient using Relative Penalties 26.32 25.31 25.38
Improvement 1.83 -0.12 1.79
Difference in R2 to Robust Relative 17.33 18.86 16.81
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6.4.5 Comparative Analysis

Finally, we compared the variance explained by the algorithms to the frequency and

time based metrics explored earlier in this chapter. We also answer the fifth research

question by comparing the correlation strengths of the metrics explored in this chapter

to the predictors based upon traditional learning theories explored in Chapter 5.

Comparing Robust Relative to the Error Quotient

The main methodological flaw of the Error Quotient is that the pairings scored by

the algorithm are constructed using the natural order that compilation events occur

during a session. As previously discussed, this approach is flawed as it assumes that

either students only work on a single source file, or work on multiple files in a linear

manner. But, we have found that students do not work like this. Applying the pair con-

struction process used by the Error Quotient, we found that 7,927 (35.4%) pairings for

the 2011/12 dataset, 10,937 (29.9%) pairings for 2012/13 dataset, and 16,322 (32.7%)

pairings for the 2013/14 dataset, contained compilation events from two different files.

This has serious implications for the validity of the approach. For instance, when

examining pairings corresponding to fully resolving an error (i.e. having event types in

the form {error, success}) we found that in 742 (20.3%) pairings for 2011/12 dataset,

911 (16.5%) pairings for the 2013/13 dataset, and 1057 (15.5%) pairings for 2013/14

dataset, the events were actually from two different files. All of these cases were scored

as if a student had resolved an error, whereas in reality, they had simply compiled a

different file. As a student’s Error Quotient is averaged by using the sum of every pair

from a session, having a large amount of possibly invalid 0 scoring pairings can lower

their Error Quotient, inaccurately reflecting their performance.

The Error Quotient also removes all pairings where the source code between events

is unchanged. but by constructing pairings on a per-session basis, it is possible for the

source code similarity to be invalidly calculated by using two different files. Additionally

there are no measures taken to check superficial changes made to source code can be

incorrectly flagged as semantic changes. There are also the fundamental differences

between the two algorithms to consider, such as the inclusion of metrics based upon

the time spent between different events. The Error Quotient also fails to take the

difficulty of resolving different error into account, and scores all errors equally.

The Robust Relative algorithm could account for a larger percentage of the vari-

ance in performance in the early stages of the course when data was scarce, and by

the end of the course the algorithm could explain almost double the variance of the

Error Quotient. An interesting question arises as to whether this improvement is the
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result of incorporating a dimension based upon error resolve times or the result of ap-

plying different penalties which may fit our teaching context better. To explore this,

we reran the Error Quotient using the penalties used in Robust Relative. As can be

seen from the results presented in Table 6.11, Robust Relative still comfortably out-

performed the Error Quotient. The additional source of variation concerns the manner

in which the compilation pairings were constructed. However, in previous work we

demonstrated that this also yields no significant improvement in the Error Quotients

performance [200]. With these two factors seemingly having no moderating effect on

the Robust Relative performance, it appears that the inclusion of the time dimension

is the contributing factor for the difference in the performance of the two algorithms.

Comparing the Frequency Based Metrics to the Algorithms

Figure 6.11 shows the variance explained by both Robust Relative and the Error Quo-

tient compared to the frequency based metrics previously explored in this chapter.

As can be seen from this figure, for all cohorts the Robust Relative algorithm could

account for the largest amount of variance in performance after four sessions, and

remained the top metric through to the end of the course. The interesting trend which

can be observed from these graphs is that the Error Quotient is outperformed by the

percentage of error to same error pairings on all three datasets. In addition, percentage

of error error to any error outperforms the Error Quotient on the 2011/12 dataset, and

the percentage of success to success pairings outperforms the Error Quotient on the

2012/13 dataset.

Comparing the Time Based Metrics to the Algorithms

Figure 6.12 shows the variance explained by both Robust Relative and the Error Quo-

tient compared to the time based metrics previously explored in this chapter.

As can be seen from this figure, for all cohorts the Robust Relative algorithm could

account for the largest amount of variance in performance after four sessions, and

remained the top metric through to the end of the course. As with the frequency based

metrics, the Error Quotient was outperformed by several metrics. For the 2011/12

cohort, the Error Quotient was outperformed by the percentage of lab time spent

working on error to same error pairings, and error to any error pairings. This may

confirm that time is a stronger factor than error frequency when exploring predictors

of programming performance. Additionally, the Error Quotient was outperformed by

all metrics apart from percentage of lab time spent working on error to success pairings

and success to success pairings.
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(a) 2011/12 Cohort

(b) 2012/13 Cohort

(c) 2013/14 Cohort

Figure 6.11: Figures showing the variance explained by both Robust Relative and the
Error Quotient algorithms compared to the frequency based metrics previously explored
in this chapter.



148 Results

(a) 2011/12 Cohort

(b) 2012/13 Cohort

(c) 2013/14 Cohort

Figure 6.12: Figures showing the variance explained by both Robust Relative and the
Error Quotient algorithms compared to the time based metrics previously explored in
this chapter.
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Figure 6.13: Comparing the correlation strengths of the predictors based upon program-
ming behaviour (PB) against the predictors based upon traditional learning theories
(T) which were explored in Chapter 5.

Comparing all Programming Behaviour Metrics to Traditional Predictors

Combining this research with the results from the previous chapter, Figure 6.13 com-

pares the correlation strengths of the predictors based upon programming behaviour

with the predictors based upon traditional learning theories which were explored in

Chapter 5. The strongest 20 predictors are presented.

As can be seen from this figure, whilst 9 of the traditional predictors were found

in the top 20, the strength of their correlations with performance were mostly in the

weak-moderate range. In contrast, 11 of the 12 predictors based upon programming

behaviour were found in the higher moderate-strong range, with 4 predictors strongly

correlating and 6 predictors moderately correlating with performance.

The wider implication of this research is that traditional predictors are substantially

less effective at reflecting the programming ability of students than the automated

data-driven predictors explored in this chapter. The data-driven approaches developed

in this chapter offer a more accurate method of prediction. Whereas the results for

traditional predictors were found to be mostly inconsistent and context dependent,

the programming behaviour metrics identified by this study performed consistently on

three independent samples of students. But further research is required to validate

these results in wider contexts (e.g. multi-national, multi-institutional studies).
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6.5 Discussion

We briefly contrast the main benefits and drawbacks of using data-driven approaches

for predicting programming performance.

The main advantage of using data-driven approaches to derive metrics based upon

students’ programming processes, is that these metrics are directly based upon the

programming behaviours of students, and therefore can encapsulate changes in their

programming knowledge over time. This is not the case for some of the more tradition-

ally explored predictors over the past fifty years, such as gender, which remain static

within the context of the course.

The second advantage of using predictors derived from programming behaviour is

that they require no additional workload for either instructors or students. All of the

metrics identified in this chapter require neither students to complete batches of lengthy

tests, or for instructors to process them. Also as the identified metrics are based upon

students’ ordinary programming activities, any instructors wishing to trial data-driven

metrics in their contexts do not have to change their curriculum to incorporate any

specific exercises. Students can simply complete their regular programming tasks, and

predictions formed from the data gathered from their IDE of choice.

The third advantage of using predictors based upon programming behaviour is that

their automated nature allows them to be applied practically to drive an adaptive expert

system, so that students can be provided with appropriate pedagogical interventions

when required. For instance, by using the Robust Relative scores proposed earlier in

this chapter, a system could be developed to provide different levels of compilation

feedback to struggling students. Such interventions would be difficult to provide using

traditional predictors and would not be capable of adapting to changes in a student’s

learning progress over time. The downside is that one would have to consider the

impact of performing an intervention to change the behaviour of a struggling student

on their future performance predictions.

On the other hand, the main strength of these predictors is also their main limi-

tation. Although predictors based upon programming behaviour can explain a large

proportion of the variance in performance, these predictors also required several ses-

sions of data to be gathered before their explanatory power started to rise. We found

that several of the time and frequency based metrics required at least six sessions of

data before they moderately correlated with performance (12 hours). Even our Robust

Relative algorithm which quantified several metrics into a single predictor required at

least four sessions of data before moderately correlating with performance (8 hours).

In Chapter 5, we found that several dimensions extracted from the MSLQ strongly
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correlated with students performance (e.g. self efficacy r = .54). This instrument only

required students to complete 80 questions, and took us roughly four hours to process.

But, we note that although yielding a strong correlation such instruments would be

impractical to repeatedly issue to students over the duration of the course. Whilst

the programming behaviour metrics are clearly data-driven and perform less well when

data is scarce, we note that they still comfortably outperform the majority of metrics

based upon traditional predictors explored in Chapter 5, most of which were shown to

weakly correlate with performance (Figure 6.13). Essentially the timing of the applica-

tion of either traditional or data-driven predictors is critical to their success, but this

limitation is more prominent for the data-driven predictors.

6.5.1 Threats to validity

The first set of limitations concern the Robust Relative algorithm. Although we used

a classic training, validation, and independent test approach for selecting penalties,

there remains no certainty that the algorithm will perform comparably in different

teaching contexts which use different measures of assessment. This issue is akin to

the difficulties of mapping weighted multiple regression models based upon traditional

predictors from one teaching context to another. Inevitably, local differences in con-

texts will result in variations in model performance, and even though our algorithm

performed comparably on an independently gathered dataset from our context, there

are no guarantees it will perform similarly in other contexts. We do however note that

it would be straightforward for researchers to repeat our training process, and possibly

by working with researchers in different contexts could a set of context independent

penalties be identified (i.e. a set of penalties which yield strong results across different

contexts despite of the differences in IDE or assessments). It is possible that due to the

similarities between our datasets with ones used by previous researchers, the unweighed

percentage based frequency and time metrics may perform more consistently in other

contexts than the Robust Relative algorithm.

Secondly, there are no guarantees that the metrics examined in this thesis hold for

other programming languages. The choice of language and IDE may indirectly influ-

ence the programming behaviours which are exhibited by the students in our context.

For example, as BlueJ does not provide any automatic compilation or autocorrective

features, the IDE may force students to manually compile their code more often than

if they were using a full IDE such as Netbeans. An exploration of how these metrics

perform in environments using different tools would be useful future work.

Thirdly, there was a lack of data from failing students in our sample. In the case

of all three datasets, the majority of students performed strongly on the criterion
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variable, scoring ≥ 70%, and only 6 students scored ≤ 50%. This may have resulted in

the training bias of the Robust Relative algorithm to successful students, and it may

struggle to identify weaker students. The metrics identified in this study also could

suffer from this limitation, and may perform differently when they are applied to a

sample with a wider spread of marks. There is no way of exploring this limitation

without data from failing students, however the significant strong strengths of the

correlations support the notion that a general trend exists.

Finally, although several data-driven metrics have been identified which can il-

luminate the symptoms of struggling programming students, the actual underlying

behavioural causes remain explored for future work. For example, what underlying

behaviour caused them to repeat errors? This study would involve a new qualitative

analysis, possibly exploring the mental models and misconceptions which students hold

which cause them to exhibit certain programming behaviours.

6.6 Conclusion

In this chapter we have identified ten metrics based upon students’ programming be-

haviours and their relations to performance in an introductory programming course.

We also developed an algorithm designed to quantify programming behaviour into an

overall score, measuring how desirable or undesirable aspects of students’ programming

behaviour has been over the duration of a course.

In contrast to previous work which predict performance by analysing indirect back-

ground, psychological or cognitive traits, our algorithm predicts a student’s perfor-

mance by quantifying directly logged data, describing aspects of their programming

behaviour, which we have shown to correlate with performance. This supports pre-

dictions that can evolve over time reflecting changes in a student’s learning progress,

without the need to use traditional static tests, that often yield inconsistent results.

The novelty of this algorithm is to relatively penalize a student based upon the

amount of time they take to resolve specific types of error compared to their peers. An

evaluation showed our algorithm was a consistent predictor, explaining 43.65%, 44.17%,

and 42.19% of the variance in performance of three independent samples of students,

which was almost double the variance explained by the Error Quotient.

The results are encouraging, and the implication of this study is that predictors

based upon aspects of programming behaviour may be one of the strongest predictors

of performance. Researchers should continue to explore their potential further, and

work is essential to verify the performance and applicability of such predictors across

a variety of teaching contexts.



Chapter 7

Meta-Analysis of Fifty Years of

Research into Predictors of

Programming Performance

A modified version of this chapter appears in the following peer-reviewed publication:

• C. Watson et al., Meta-Analysis of Fifty Years of Research into Predictors of

Programming Performance. ACM Transactions on Computing Education

under review.

To synthesise fifty years of conflicting research on factors that are important for pro-

gramming, in this chapter, we perform a meta-analysis of 482 individual results de-

scribing the relations of 116 distinct factors to programming performance. Based upon

our results, a six class theoretical framework of factors predictive of programming is

proposed, which highlights to researchers the most important factors for programming

success that are known at this time. The results showed that factors based upon

demographic, aptitude testing, and psychological factors had the weakest effects on

programming. Factors based upon programming behaviour and cognitive factors, were

found to have the strongest effects. The implication from this synthesis is that the most

effective way of pre-screening at-risk students is through applying a test of self-efficacy,

and then to continually monitor the students progress automatically based upon their

programming behaviour.
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7.1 Introduction

In Chapter 5 we explored predictors of programming performance that were based upon

traditional learning theories. In line with previous research, the predictors were found

to yield inconsistent results when applied in different teaching contexts. In Chapter

6, we explored data-driven predictors of programming performance - which unlike the

traditional predictors that were explored in Chapter 5, were found to yield consistent

results on three independent datasets gathered within the same teaching context. These

predictors also outperformed the traditional predictors explored in Chapter 5.

Whilst these results are encouraging, the obvious question is how do these findings

compare to the body of research on predictors that were not already explored in this

thesis? Given that previous research contains many inconsistent findings, a narrative

review would be inappropriate. Therefore, we performed a substantial meta-analysis

of the past fifty years of research on predictors of programming performance.

Meta-analysis is a form of systematic review in which the quantitative results from

multiple studies are statistically combined, in order to generate a more precise estimate

of an effect under investigation. In an individual study, the units of analysis are individ-

ual observations, whereas in a meta-analysis the units of analysis are the results from

individual studies (i.e. predictors in different teaching contexts). Compared to a simple

narrative review, a meta-analysis offers several advantages, such as increased statistical

power of detecting the magnitude of an effect, improved precision of the measurement

of an effect, combining data from conflicting studies to determine whether an effect

exists, and is less prone to bias due to the systematic review process. Only by statis-

tically synthesising the conflicting findings of predictors applied in different teaching

contexts, can researchers develop a true understanding of precisely which factors are

most important for making successful programmers.

Chapter Contributions

This meta-analysis quantitatively integrates findings from the primary research on pre-

dictors of programming performance, for students taking a programming course in

a school, college, or university. In this study, meta-analysis techniques are applied

to synthesize the findings of multiple studies that have examined the same predictor

of programming performance across different teaching contexts, such that conclusions

on the general effectiveness of different predictors can be made. Although commonly

applied within the medical and psychological domains, to our knowledge, this study

represents the first attempt to apply meta-analysis techniques to statistically synthe-

sise over fifty years of conflicting research into predictors of programming performance.
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This chapter answers the following thesis research question:

RQ4: How do factors based upon traditional learning theories, academic

background, and programming behaviours, compare when they are used to

predict students’ programming performances across different teaching con-

texts? (RO2, RO3)

The contributions of this chapter are:

1. To systematically review and synthesize fifty years of research on predictors of

programming performance, conducted between the years 1964-2014.

2. To perform knowledge transformation by classifying the predictors identified from

the systematic review phase into a theoretical framework. This supports re-

searchers to rapidly identify the most important factors for programming, and to

derive practical applications.

3. To apply meta-analytical techniques to resolve conflicting results on different

predictors, such that the importance on different factors for programming success

across different teaching contexts can be determined.

4. To explore sources of moderation and heterogeneity in effect sizes, to verify our

earlier findings on the influence of the teaching context on performance.

5. To provide a synthesized benchmark on the effects of different predictors on pro-

gramming, which future researchers can compare their results with.

7.2 Related Work

In terms of identifying context independent predictors of programming performance, a

multi-national, multi-institutional study was conducted in 2004 using students from 11

different institutions (based in Australia, New Zealand, and Scotland). Four diagnostic

tests were used to measure different traits of the students. These included: paper folding

test (spatial visualization and reasoning ability), map sketching (ability to articulate

decisions), phone book searching (ability to articulate a search strategy), study process

questionnaire (deep or surface approaches to learning). The findings of this study

were that spatial visualization was associated with success, along with adopting a deep

learning approach, being able to articulate a search strategy in detail, and map drawing

style (landmark, route, or survey) [168,169,184]. Whilst these studies were interesting,

they also take considerable effort to perform. As such the majority of experiments into
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Table 7.1: Table showing examples of inconsistent findings of research into predictors
of programming performance, that were not previously explored in this thesis.

Original Result Verification Result

Class and Predictor n r ST Ref. n r ST Ref. Diff.

Age 21 .53 S [116] 93 -.01 N [131] .54
Gender 32 .35 M [65] 83 .04 N [42] .31
IBM PAT Arithmetic 39 .75 VS [30] 63 .23 W [113] .52
IBM PAT Figures 68 .43 M [8] 46 -.04 N [30] .47
CPAB Reasoning 30 .56 S [209] 49 -.03 N [209] .59
IBM PAT Overall 106 .56 S [17] 46 .16 W [30] .40
CPAB Overall 30 .42 M [209] 49 .08 N [209] .34
Wolfe PAT 93 .70 VS [213] 33 .17 W [213] .53
SAT Math 92 .37 M [97] 50 .05 N [3] .32
Ability (Attributional Style) 39 .40 M [198] 105 .08 N [210] .32
Luck (Attributional Style) 39 -.31 M [198] 45 .05 N [74] -.36
Programmer Self Efficacy 120 .37 M [205] 247 .04 N [189] .33
Assimilator (Kolbs LSI) 74 -.36 M [29] 83 .06 N [42] -.42
Active (Solomon-Felder ILS) 61 .34 M [216] 84 -.02 N [37] .36
Group Embedded Figures 154 .40 M [108] 83 .05 N [42] .35
Intellectual Development 23 .80 VS [93] 353 .12 W [7] .68
Mental Model 75 .48 M [147] 142 -.07 N [32] .55
High School English 32 .45 M [91] 99 .08 N [28] .37
High School Science 35 .57 S [28] 616 .18 W [159] .39

Notes
ST : Strength of effect on performance: VS: Very Strong, S: Strong, M: Moderate, W: Weak,
N: No effect.

predictors of CS1 performance take place across considerably different contexts, often

yielding considerably different results [198].

The applications of meta-analysis techniques within the computing domain are rare.

More commonly systematic reviews are performed, most notably in software engineer-

ing (e.g. [27,54,85]). Two systematic reviews into CS1 education have been performed

by ourselves, and focussed on exploring the worldwide CS1 pass rates [197], and the

impact of different teaching interventions on improving CS1 pass rates [193]. In ad-

dition to the evidence already presented in RQ2 results, Table 7.1 presents examples

of inconsistencies that are common within the literature on predictors of programming

performance. The widespread nature of such inconsistencies would suggest that per-

forming a meta-analysis would be worthwhile, to resolve such conflicting findings.
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7.3 Research Design

There were three aims of this study. The first was to set the findings of this thesis

on the relations between programming performance with traditional learning theories

(Chapter 5) and programming behaviours (Chapter 6), within the greater context of

quantitative research conducted over the past fifty years. The second aim was to

apply unbiased meta-analysis techniques to statistically synthesise 482 results, enabling

generalizable conclusions on the true effects and relevance of 116 different factors to

programming. The third aim was to perform knowledge transformation by deriving

a theoretical framework of interacting factors predictive of programming performance,

from the results of the meta-analysis.

7.3.1 Research Questions

To answer thesis RQ4, the following sub-questions were answered:

1. Which factors have researchers examined as predictors of programming perfor-

mance over the past fifty years?

2. Which factors are the most predictive of programming performance?

3. Which factors are the least predictive of programming performance?

4. Which classes of factors have the strongest and weakest effects on programming

performance?

5. What conditions moderate the effectiveness of the predictors?

Like many previous meta-analyses, this study follows several key steps: (1) locating all

possible studies; (2) screening potential studies for inclusion; (3) coding all qualifying

studies based upon their methodological and substantive features; (4) calculating effect

sizes for all qualifying studies for further combined analyses; (5) carrying out compre-

hensive statistical analyses covering both effects, and the relationships between effects

and study moderators. In the remainder of this section, the systematic review and

statistical analysis procedures employed are presented in detail.

7.3.2 Systematic Review and Data Extraction

An overview of the systematic review and data extraction procedure is presented in

Figure 7.1. This will be discussed in further detail in the remainder of this subsection.
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Figure 7.1: Overview of the Systematic Review and Data Extraction Procedure

Literature Search Procedure

Given the increased time and cost in identifying and retrieving grey literature, no

researchers were directly contacted to request unpublished work (most meta-analyses

are characterized by this limitation [114,175]). A search of all articles published between

the years Mar. 1960 - Mar. 2014 was carried out. Initial electronic searches were made

of the following databases, repositories, and websites: (1) ACM, (2) IEEE, (3) Science

Direct, (4) Wiley Online, (5) Taylor & Francis, (6) JSTOR, (7) SAGE, (8) PsycNET,

(9) EThOS, (10) ProQuest, (11) DART, (12) Trove. Following this, further searches

were made using (1) Google Scholar, (2) ISI Web of Knowledge, (3) ERIC, in an attempt

to identify both published and unpublished work which was not indexed by the initial

12 repositories. A final search was conducted by manually screening the indexes of

selected publications, including: (1) Computers & Education, (2) British Journal of

Educational Technology, (3) Transactions on Education, (4) SIGCSE, (5) ITiCSE, (6)

ICER, (7) ICALT, (8) Review of Educational Research, (9) Journal of Educational

Computing Research, (10) Journal of Educational Research.

Keywords were identified by two researchers, and a strategy using the operators

AND and OR refined the searches, and ensured that an exhaustive search was con-

ducted. Specifically the search criteria used was: (Predict OR Predictors OR Predicting

OR Identifying OR Indicators OR Influence OR Correlates OR Factors OR Traits OR

Tests OR Relationship OR Behaviour) AND (Performance OR Aptitude OR Ability

OR Success OR Training OR Achievement OR Outcomes OR Learning) AND (Pro-

gramming OR Programming Course OR Introductory Programming OR CS1).
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Criteria for Exclusion

As the initial electronic searches identified a total of 1378 abstracts, the studies in

this meta-analysis were subjected to a two-stage process of screening for inclusion. In

the first stage exclusion coding was performed based upon abstract content. This was

performed by two researchers, based upon the following three criteria:

1. The study appears to involve students taking a programming course.

2. The study appears to discuss traits/tests that relate to programming performance.

3. The study reports quantitative findings.

Articles that were not clearly outside the exclusion criteria were given the “benefit of

the doubt”, and retained for further screening. 1071 articles (78%) were eliminated

based on the exclusion coding. During this initial screening, 864 articles (80%) were

removed as they failed to discuss traits or tests that relate to the programming ability

of students, and the remaining 157 (20%) articles were removed due to violations of the

remaining criteria. The inter-coder reliability was strong (Cohens κ = .88), indicating

a very good level of agreement between the two researchers.

Criteria for Inclusion

In the second stage, an inclusion coding was performed by two researchers using the

full texts of the remaining 307 articles, and using the following ten criteria:

1. The participants were students taking a programming course.

2. The course must be taught in either a school, college, or university (CS1).

3. The course may use any generally available programming language, but should

not use any study specific, or pseudo language.

4. The course should teach all students using the same method.

5. The study was quantitative in nature.

6. The study contained sufficient statistical data so that an effect size between a

predictor and programming performance could be computed.

7. The study could have taken place in any country, but results reported in English.

8. The study should provide sufficient details of the instruments used to gather data

on each predictor examined, such that a study could be replicated.
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9. The study used programming performance as the criterion variable.

10. The study states the measure the programming performance of students.

The motivation for using the majority of the inclusion criteria above should be intuitive.

Studies that did not use any generally available programming language were excluded

due to the difficulties for researchers to replicate the study conditions. These languages

are also limited as they are unlikely to be used by the general population.

In total, 254 articles (83%) were eliminated based upon the inclusion criteria. Dur-

ing the inclusion screening, 87 articles (35%) were eliminated as they examined the

effect of an intervention on student performance, 64 articles (25%) were eliminated as

they were not quantitative in nature, and 52 articles (20%) were eliminated as they

failed to provide sufficient statistical data for effect size calculation. The final 51 articles

(20%) were eliminated due to violations of the remaining six inclusion criteria.

Restricting a literature search to electronic databases can result in missing as many

as 50% of published studies [41]. Therefore footnote and cited reference searching were

performed on the 53 articles using Google Scholar. This lead to the identification of an

additional 4 articles, yielding a total of 57 articles, covering 89 distinct studies.

Study Coding

Statistical data was extracted from each article so that an outcome effect for each

predictor of programming performance could be calculated. Individual study features

were coded to aid examination of methodological and substantive characteristics that

may contribute to variations in the effect sizes among studies. Two researchers coded

each study in unison according to the following coding scheme:

SC1 Types of publication: published and unpublished.

SC2 Publication period: 1960s, 1970s, 1980s, 1990s, 2000s, and 2010s.

SC3 Mean cohort size of each predictor examined: small (n < 50), medium (50 ≤ n <
100) and large (n ≥ 100).

SC4 Gender composition: male dominated (≤ 45% female), female dominated (≤ 45%

male), balanced, or not stated.

SC5 Grade level: school, college, university.

SC6 Introductory or first year course: yes/no.

SC7 Programming language: Java, C, C++, C#, Python, Pascal, Fortran, others.
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SC8 Criterion variable: overall letter grade, overall numerical score, exam perfor-

mance, coursework performance, performance on standalone test(s), others.

SC9 Grade composition: coursework dominated (≤ 45% exam), exam dominated (≤
45% coursework), balanced, or not stated.

Quality Assessment

As the bulk of articles used in this meta-analysis used a correlational design, the quality

assessment indicators were developed to be consistent with this type of design, and

formed a subset of the previously applied inclusion coding criteria. Specifically, the

following 8 indicators of study quality were applied:

QC1 Research question(s) clearly stated.

QC2 Participants of each study were described, and information provided on at least

one demographic or background trait.

QC3 Grade level of institution where the study took place was stated.

QC4 Instruments used to collect data on each predictor examined were described to

the point that the study could be replicated.

QC5 Programming language taught by the course was stated.

QC6 Composition of materials used to measure programming performance was stated.

QC7 Criterion was based on assessments used in the course.

QC8 Sample size: n ≥ 25, for each predictor examined.

Quality criteria was applied to measure whether any differences in study quality mod-

erated the effect sizes. All studies satisfied at least 5 of the quality criteria, and none

were removed based on quality assessment.

Description of the Sample

From the 57 articles that were identified during the search, a total of 627 observed

outcomes were coded. Disappointingly 145 of these outcomes had to be removed, as

they represented predictors which were only examined by single studies, and therefore

meta-analysis techniques could not be applied to them. The final sample therefore

consisted of 55 articles, describing 80 studies, and 482 observed outcomes.
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Table 7.2: Summary Table of the Sample of Studies based upon the Coding Criteria

Study Coding Study Coding

Category Class n % Category Class n %

Publication Published 80 100 Year 1960s 2 2.5
Status Unpublished 0 0 (SC2) 1970s 14 17.5
(SC1) 1980s 28 35

1990s 2 2.5
2000s 28 35
2010s 6 7.5

Cohort Size Small 24 30 Gender Male 20 25
(SC3) Medium 23 28.8 (SC4) Female 3 3.8

Large 33 41.2 Balanced 2 2.5
Not Stated 55 68.8

Grade Level University 66 82.5 CS1 Yes 72 90
(SC5) Colleges 6 7.5 (SC6) No 8 10

Language Java 19 23.4 Criterion Overall Letter 31 38.7
(SC7) Fortran 14 17.5 (SC8) Overall Numerical 28 35

Basic 7 8.8 Standalone Tests 8 10
Pascal 7 8.8 Exam Score 6 7.5
Multiple 7 8.8 Coursework Score 3 3.8
C++ 6 7.5 Average Letter 2 2.5
Cobol 3 3.8 Average Numerical 2 2.5
Others 17 21.4

Grade Exams 26 32.5 Study 5 points 18 22.5
Composition Coursework 6 7.5 Quality 6 points 22 27.5
(SC9) Balanced 2 2.5 (QC) 7 points 35 44.8

Not Stated 46 57.5 8 points 5 5.5

Notes For an overview of the predictors explored by each of the 80 studies, see Table 7.3.

Summary statistics of the sample based upon the coding criteria are shown in Table

7.2. An overview of the data coded from each study and the predictors examined is

shown in Table 7.3. As can be seen from Table 7.2, all of the studies included in the

sample were published. The majority of studies were published during the 1980s and

2000s (70%), and the mean cohort size per predictor examined was found to be large

(45.5%). The majority of studies were conduced in Universities (82.5%) at introductory

level (90%). The majority of students were taught Java (23.4%) and performance was

measured by either overall letter or numerical score (73.7%). The grade composition

was stated by less than half of the included studies (42.5%), but when stated, the

majority of grades were dominated by exams (32.5%). The average study quality was

high, with the majority satisfying 7 quality criteria (44.8%).
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7.3.3 Meta-Analysis Procedure

A statistics consultant from the Durham Wolfston Institute was contacted for advice

on an appropriate meta-analysis procedure to apply. An overview of the procedure

applied in this study [31,78] is shown in Figure 7.2, and will be detailed in this section.

Figure 7.2: Overview of the Meta-Analysis Procedure Applied by this Study

Model Selection

Most meta-analyses are based on sets of studies that are not exactly identical in their

methodology and/or the characteristics of their sample. Differences in the methods and

sample characteristics can introduce variability (heterogeneity) among effect sizes that

cannot be explained through random sampling fluctuations alone. One way to model

this heterogeneity is to treat it as purely random. This leads to the random effects

meta-analysis procedure [31,71,78,156] which is applied by this study.

The main difference when compared to the fixed effects procedure is that rather

than assuming there is only one true effect size, the random effects procedure assumes

that there is a distribution of true effect sizes (arising from differences in methods and

sample characteristics), and that the overall true effect can be calculated by averaging

the effects within this distribution. Similar to the fixed effects procedure, a weighting of

effect sizes is applied. However the random effects weighting does not discount effects

from the smaller studies by giving them a smaller weight, and the impact of larger

studies is also less pronounced. The trade off of this weighting is larger variance. As

long as the between studies variation is non-zero, the variance, standard error, and

confidence interval of the true effect will always be larger than an estimate calculated

by using the fixed effects model.
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The main advantage of the random effects model is that it allows unconditional infer-

ences to be made about the larger set of studies, from which the studies included in the

meta-analysis are assumed to be sampled from (whether such studies currently exist or

not). For this reason, the random effects model is most applicable when the objective

of a researcher is to accumulate data from a series of studies that have been performed

under a number of different conditions. i.e., supporting the generalizability of results

with the trade-off of less precise effect estimates (wider confidence intervals) [149].

Effect Size Measure Selection

As this study mainly examines linear relationships between two continuous variables,

or in some cases, a dichotomous and continuous variable, Pearson’s r was selected as

the most appropriate measure of effect size. This measure was selected as it provides

a number of advantages over alternative measures that are based upon standardized

mean difference (Cohen’s d or Hedges’ g), such as familiarity and flexibility [31]. When

studies did not directly report their effects in terms of Pearson’s r, a number of standard

conversion formulae were applied based upon available data (see Appendix A.5.1).

Handling of Multiple Effects Reported by a Single Study

One of the assumptions of meta-analysis is that each of observed effects are independent

from others. However, this assumption is often violated, and the non-independence of

observations can lead to inflations in the calculated effect sizes [63]. This arises through

two situations and is usually handled by exclusion or averaging techniques [157].

In the case of studies which reported the outcome effect of a predictor on multiple

criterion variables, a single outcome effect was included in the meta-analysis. This was

chosen based upon the amount of assessment that was used to measure the programming

performance of students. Measures based upon overall course performance were given

first preference, followed by performance on coursework, exams, then standalone test(s).

The rationale behind this decision was that performance across a range of assessment

components were more likely to be indicative of ability than measures which were based

upon fewer assessments. Coursework assessments were given preference over exams

due to the fact that exams have been widely criticised as an accurate means to assess

programming performance and only focus upon surface level knowledge [118,198].

In the case of studies which reported multiple outcome effects on a single criterion

variable (e.g. math performance, prior experience, and spatial ability all correlated

with overall performance), neither averaging or exclusion techniques were appropriate

for this meta-analysis. Simply averaging the outcome effects for math performance and
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spatial ability would not make sense, as they are two unrelated traits. As the purpose

of this study was to include as many different predictors as possible excluding one

predictor over another also could not be justified. Therefore each pairwise combination

of a predictor and criterion variable were treated as an independent study, and to ensure

that the independence assumption was not violated, an individual meta-analysis was

performed on a per-predictor basis.

Artefact Corrections

Artefact correction attempts to adjust outcome effects to take into account imper-

fections in instruments. This allows conclusions to be formed about the associations

among particular predictors, rather than among the instruments that were used to

measure the predictors [78]. In this meta-analysis two forms of artefact correction were

applied: unreliability and artificial dichotomization (see Appendix A.5.2).

Statistical Approach

The statistical analyses were performed using the metafor package for the statistical

software R [191]. To ensure that the independence assumptions of meta-analysis were

not violated, observed outcomes were meta-analytically combined on a per-predictor

basis, to calculate effects (ESr̄) for various predictors on programming performance.

Observed outcomes were initially coded from each article using r. For cases where

r was not directly reported standard conversion formulas were applied to estimate r

using the available statistics (see Appendix A.5.1). The reported dichotomous effects

were adjusted to have consistent polarity (e.g. studies that reported effects for gender

were adjusted based upon the coding used for males and females). Artefact corrections

for unreliability and artificial dichotomization were applied along with Fisher’s z to r

transformation to normalize the distribution of effects and so that the sampling variance

could be estimated (see Appendix A.5.2).

The true effect of each predictor was then estimated using the random effects model

(see Appendix A.5.3). For each effect, if the test of heterogeneity (Q) was significant,

and the number of studies, k ≥ 5 [31], then moderator analysis was performed within

the general regression framework using the 9 properties that were coded from each

study and study quality score (Table 7.2). Finally, a Zr to r back transformation was

applied for reporting the true effect and confidence interval for each predictor.

In line with recommendations by [31,40], a small effect size is indicated by a ESr̄ ≥
.10, moderate effect by ESr̄ ≥ .30, strong effect by ESr̄ ≥ .50, and very strong effect

by ESr̄ ≥ of .60.
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7.4 Theoretical Framework

To answer RQ1, such that researchers can develop an understanding of which factors are

predictive of programming performance, we propose a six class theoretical framework

of interacting factors. This is shown in Figure 7.3, and an overview of the predictors

examined by each study is presented in Table 7.3.

Figure 7.3: Framework of internal factors that are predictive of programming perfor-
mance. Interacting factors were determined by related studies in the literature, and
are shown on the diagram by using dashed arrows.

As can be seen from this figure, the theoretical framework consists of six classes of

predictors, based upon: demographic, aptitude, cognitive, academic, psychological,

and programming behaviour. The interacting factors were not added arbitrarily. In

most cases, the interactions were intuitive and determined through related works on

learning theories, and further detail of their derivation will be presented at the end of

this section. In the remainder of this section the classes of the framework are defined

in detail, and example predictors of each sub-class are provided.
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7.4.1 Aptitude Predictors

This class consists of predictors that are based upon tests intended to measure the

learners readiness to learn specific concepts or skills. For example, a high aptitude in

math would suggest that a student is ready to learn more math concepts on the basis

of demonstrating their knowledge of the basic precepts for learning math. Within our

framework, aptitude is divided into two broad subclasses:

1. Programming Aptitude.

Subclasses: Arithmetic, Letter and Other Reasoning, Overall Measures.

Many early researchers used logic and arithmetic reasoning tests to predict pro-

gramming potential. This class consist of predictors that are based upon such

tests. Instruments include: IBM Programmer Aptitude Test (IBM PAT) and

Computer Programmer Aptitude Battery (CPAB). Predictors include: perfor-

mance on the IBM PAT letter reasoning, and CPAB diagramming scales.

2. Academic Aptitude.

Subclasses: Math Aptitude, English Aptitude.

This subclass consists of predictors that are based upon performance on tests of

academic aptitude, specifically English and Math. The instruments used by pre-

dictors in this subclass include SAT and ACT tests. Example predictors include

performance on the SAT Math and SAT Verbal tests.

7.4.2 Academic Predictors

This class consists of predictors that are based upon the academic performance of

learners in various subjects. Within our framework, academic predictors are divided

into two broad subclasses:

1. Subject Specific Performance.

Subclasses: Math, English, Science, Prior Programming, Other Subjects.

This class consists of predictors that are based upon performance in various sec-

ondary and further education courses. Instruments include: High School and

College exams. Predictors include: High School Science performance, and Prior

Programming Experience.

2. General Performance.

Subclasses: Overall College Performance, Overall High School Performance.

Whereas the first subclass was based upon subject specific performance, this

subclass was based upon overall measures of academic performance. Predictors

included: High School GPA and College GPA.
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7.4.3 Cognitive Predictors

This class consists of predictors that are based upon the various mental processes

that influence the ways in which learners think and learn, and the cognitive learning

styles and strategies that learners employ to make knowledge and skill acquisition

possible. The influence of different cognitive factors has been well explored over the past

fifty years, however this is also one of the classes of predictors where researchers have

reported a high number of inconsistent results. There were three cognitive subclasses:

1. Learning Styles.

Subclasses: Kolb LSI, Soloman-Felder ILS, Gregorc Style Delineator.

A learning style describes how learners perceive, interact with, and respond to

different learning situations. The implication of learning styles is that differ-

ent learners will respond uniquely to different teaching approaches, and in order

for instruction to be most effective, the teaching approach employed should be as

closely aligned with an individual’s learning style as possible. Learning style mod-

els will usually describe the degree to which a learner ranks on a particular scale.

This class consists of predictors that are based upon three instruments: Kolb LSI,

Soloman-Felder ILS, and the Gregorc Style Delineator. Predictors include scores

on LSI scales: sequential, visual, accomodator, and concrete-sequential.

2. Learning Strategies.

Subclasses: Expectancy components, Resource management components, Value

components, Metacognitive strategies, Overall measures.

A learning strategy describes the techniques and methods that learners employ

to ensure that they satisfy any required learning objectives. They differ from

learning styles as they describe the specific techniques that a learner employs,

rather than characteristics describing the learners general approach of knowledge

acquisition. The instrument used by all predictors within this subclass was the

Motivated Strategies for Learning Questionnaire (MSLQ). Predictors include: in-

trinsic goal orientation, critical thinking, and control of learning beliefs.

3. Cognitive Style and Skills.

Subclasses: Cognitive style, Specific cognitive skills.

A cognitive style describes the way in which learners obtain, organize, and apply

knowledge. This subclass also consists of specific cognitive skills. Instruments

used by predictors in this class include the Group Embedded Figures Test, and

the Watson-Glaser critical thinking test. Predictors include: clarity of mental

model, spatial ability, and level of intellectual development.
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7.4.4 Psychological Predictors

This class consists of predictors that are based upon the various non-cognitive factors

that influence the ways in which learners think and learn. They describe the personal

characteristics of the learner, describing how they differ from, or are similar to others, in

a non-cognitive sense, such as in terms of their personality, self esteem, or self efficacy.

Within our framework, psychological predictors are divided into three subclasses:

1. Affective Traits.

Subclasses: Attributional style, Self perceived abilities, Self efficacy.

Affective traits generally describe the emotional state of a learner, and include

factors that can reflect their feelings and attitudes during the learning process.

Considerable research has been conducted over recent years on the influence of

affective factors on the learning process, most notably on the trait of self-efficacy,

or the belief in one’s own abilities. Three subclasses of affective traits are exam-

ined. The instruments used by predictors in this subclass include: Rosenberg’s

Self Esteem Scale and the Computer Programmer Self Efficacy Scale. Predic-

tors include: attribution of success to luck, self perceived problem solving ability,

comfort level, level of self esteem, and self efficacy.

2. Personality.

Subclasses: Thurstone temperament schedule, Myers-Briggs type indicator.

Personality traits describe the frequency or intensity of the learners feelings,

thoughts, or behaviours, relatively against other learners. Classically in Psychol-

ogy there are five personality factors: openness, conscientiousness, extraversion,

agreeableness, and neuroticism. In this study, studies used two instruments to

measure the personality type of learners: Thurstone Temperament Schedule, and

Myers-Briggs Personality Type Indicator (MBTI). Predictors in this category in-

clude scores on various personality scales, such as: the degree to which a learner

was impulsive, and the degree to which a learner was orientated towards judge-

ment or perception styles.

3. Behavioural Traits.

Subclasses: None.

This subclass consisted of predictors that were based upon the behavioural as-

pects of learners which can either directly, or indirectly, influence their learning

progress. The instruments used by studies in this category were mainly in-house

questionnaires. Predictors include the amount of lectures attended, hours worked

in a part-time job, and the percentage of time spent in the lab.
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7.4.5 Programming Behaviour Predictors

This class consists of predictors that are based upon analysing aspects of the program-

ming behaviour of learners. Unlike the other classes in the framework, these classes do

not require formal test instruments, and are based upon analysing data logged directly

from an IDE describing the programming activities of learners. Within our framework,

the programming behaviour predictors are divided into three subclasses:

1. Event Based Metrics.

Subclasses: Percentage based metrics, Frequency based metrics.

This subclass consists of predictors that are based upon the types of compilation

pairings [200] that were logged for learners during a programming session. These

pairings describe how the learners programming behaviour changes in response to

a sequence of consecutive compilation events. Two subclasses are used to classify

these event based metrics. The first is based on raw count of specific types of

event pairings, and the second is based on the percentage of different events a

learner encountered, relative to all the events they encountered. Predictors in this

category include: percentage of successive errors and average number of errors

encountered.

2. Time Based Metrics.

Subclasses: Percentage based metrics, Frequency based metrics.

This subclass consists of predictors that are based upon the percentage of lab time

that learners spent working on different compilation pairings. Two subclasses are

used. The first was based on the total amount of lab time learners spent working

on different types of pairings, and the second was based on the percentage of lab

time learners spent working on different types of pairings. Predictors include:

percentage of lab time spent in error, and average time between compilations.

3. Algorithmic Based Metrics.

Subclasses: Overall quantification.

The third subclass consists of predictors which use algorithmic approaches to

weight and combine different aspects of programming behaviour into an overall

performance predictor. Predictors include: Error Quotient and Robust Relative.

7.4.6 Demographic Predictors

Many researchers in the field of education have considered the impact of demographic

characteristics on the learning process. These include: age, race, and religion. Within

this meta-analysis, two demographic factors: age and gender are explored.
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Table 7.4: Example interacting factors within the theoretical framework classes. Many
of these are hypothesised based upon the systematic review we performed.

Interacting Classes Interacting Predictors

Class A Class B Predictor A Predictor B

Demographic Aptitude Age SAT Math
Cognitive Age Intellectual Development
Academic Age High School GPA

Aptitude Academic SAT Math College Math
Cognitive CPAB Diagramming Spatial Ability
Psychological ACT English Self Perceived Writing

Cognitive Aptitude Group Embedded Figures
Test

CPAB Diagramming

Academic Intrinsic Goal Orientation College GPA
Psychological Self Efficacy CPSE
Prog. Behaviour Mental Model Percentage of Errors

Academic Aptitude College English ACT English
Cognitive College GPA Self Efficacy
Prog. Behaviour Prior Prog. Experience Time to Resolve Errors

Psychological Aptitude Self Perceived Math ACT Math
Cognitive CPSE Self Efficacy
Prog. Behaviour Problem Solving Total Number of Success-

ful Compilations

Prog. Behaviour Psychological Percentage of Successful
Compilations

Self-Efficacy

Cognitive Total Repeated Errors Mental Model
Academic Total Compilations Prior Prog. Experience

7.4.7 Identifying Interacting Factors

Table 7.4 presents examples of the interacting factors in the theoretical framework. For

the most part, these interactions were hypothesised based upon the literature we exam-

ined as part of the systematic review process. For instance, a level of aptitude measured

using the SAT Math instrument was believed to infulence academic math performance,

on the basis the level of math aptitude can suggest students are ready to learn more

math concepts. As no study has examined interacting factors with programming be-

haviour, we hypothesized interacting factors with psychological traits (self-efficacy),

academic traits (prior programming), and cognitive traits (mental models).
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7.5 Results

To answer the remaining research questions, results from the meta-analysis are explored

within the context of the theoretical framework. Note that for clarity, the Figures used

to display the results of the meta-analysis for each class of the framework (Figures 7.4

to 7.9) have had negative effects inverted (i.e. absolute effect sizes are shown). This

allows the strengths of different effect sizes to be visually compared on the same scale,

rather than displaying both positive and negative effects. Different colours are used to

represent negative effects. The actual effect sizes are shown in Tables 7.5 to 7.10.

7.5.1 Aptitude Predictors

Results are presented in Table 7.5 and Figure 7.4. In total 101 observed outcomes were

coded from 38 studies which described 16 aptitude predictors. Of these predictors,

11 were classified into our theoretical framework as being based upon programming

aptitude and 5 were classified as being based upon academic aptitude. The mean of

the effect sizes which resulted from the meta-analysis suggests that aptitude factors are

a weak predictor of programming performance (ES r̄ = .239, SD = .136). 10 predictors

(63%) were found to have a weak effect on programming performance and 2 predictors

(13%) were found to have no effect. Only 3 predictors (19%) were found to have a

moderate effect and 1 predictor (5%) to have a strong effect.

Programming Aptitude

A total of 49 outcomes describing 11 predictors based upon programming aptitude

were coded. The mean of the effect sizes which resulted from the meta-analyses of

predictors in this subclass, suggests that programming aptitude has a weak effect on

programming performance (ES r̄ = .284, SD = .128). The magnitude of effects were

found to vary based upon the four programming aptitude subclasses, but the majority

of the 95% confidence intervals for effects of this subclass suggests that factors based

upon programming aptitude are weak predictors of performance (Figure 7.4).

The 2 predictors that were based upon arithmetic reasoning yielded mixed effects.

Whilst the IBM PAT arithmetic dimension had a moderate effect on performance

(ES r̄ = .396, p < .01), the equivalent CPAB number ability dimension only had a

weak effect on performance (ES r̄ = .163, p < .05). The 2 predictors that were based

upon letter reasoning both yielded weak effects on performance, although the IBM

PAT letter series dimension (ES r̄ = .257, p < .01) yielded a stronger effect than the

equivalent CPAB letter series (ES r̄ = .147, p = .06). The 4 predictors that were based

upon other forms of reasoning (e.g. logical) also yielded mixed effects.
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Figure 7.4: Chart Showing Meta-Analysis Results for the Aptitude Predictors

Out of the 3 predictors that were based upon overall score on programming aptitude

tests, the Wolfe PAT was found to have a strong effect on performance (ES r̄ = .560,

p < .01), the IBM PAT was found to have a moderate effect (ES r̄ = .388, p < .01),

whereas the CPAB was found to have a weak effect (ES r̄ = .216, p = .07).

It is unclear as to why the Wolfe PAT produced a stronger result than the other two

aptitude tests we examined. One reason could be that the Wolfe PAT was specifically

designed for students, whereas the CPAB and IBM PAT were designed for professionals.

The tasks therefore may be more tailored towards students’ abilities.

Academic Aptitude

A total of 49 outcomes describing 11 predictors based upon academic aptitude were

coded. The mean of the effect sizes which resulted from the meta-analyses of predictors

in this subclass, suggests that academic aptitude has a weak effect on programming

performance (ES r̄ = .138, SD = .101).

Out of the 2 predictors that were based upon Math aptitude, performance on the

ACT Math instrument yielded a weak effect on programming (ES r̄ = .126, p < .05),

and the performance on the popular SAT Math instrument (ES r̄ = .281, p < .01)
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Table 7.5: Meta-Analysis Results for the Aptitude Predictors

Sample Meta-Analysis

Predictor k n SM ES r̄ CIL CIU z p

Aptitude
Programming

Arithmetic Reasoning
IBM PAT Arithmetic 6 316 52 .396 .222 .546 4.24 .01
CPAB Number Ability 3 172 57 .163 .011 .308 2.10 .04

Letter Reasoning
IBM PAT Letter Series 6 316 52 .257 .149 .360 4.55 .01
CPAB Letter Series 3 172 57 .147 -.006 .293 1.89 .06

Other Reasoning
IBM PAT Figures 6 316 52 .208 .055 .351 2.66 .01
CPAB Diagramming 4 236 59 .349 .179 .498 3.90 .01
CPAB Reasoning 4 236 59 .291 .090 .469 2.80 .01
CPAB Verbal Meaning 3 172 57 .157 .005 .302 2.02 .04

Overall
IBM PAT Overall 7 422 60 .388 .271 .495 6.07 .01
CPAB Overall 2 79 39 .216 -.020 .430 1.79 .07
Wolfe PAT 5 360 72 .560 .388 .694 5.56 .01

Academic
Math Aptitude

SAT Math 23 4028 175 .281 .238 .322 12.29 .01
ACT Math 3 278 92 .126 .007 .241 2.08 .04

English Aptitude
SAT Verbal 22 3678 167 .194 .162 .225 11.78 .01
ACT English 2 79 39 -.047 -.270 .180 -.40 .69
SRA Verbal 2 120 60 .046 -.290 .372 .26 .79

Notes
k: number of studies, n: number of participants, SM : mean sample size, ESr̄: weighted
effect size, CIL: 95% confidence interval (lower), CIU : 95% confidence interval (upper), z:
test of effect size, p: significance of effect size.

was found to have the strongest effect on programming performance out of any of

the predictors that were based upon academic aptitude. The narrow 95% confidence

interval of the SAT Math effect (CIL = .238 to CIU = .322) suggests that the true

effect in the population is weak, with a high degree of confidence.

Out of the 3 predictors that were based upon English aptitude, only performance

on the SAT Verbal instrument yielded a significant weak effect (ES r̄ = .194, p < .01).

As with the SAT Math instrument, the confidence interval was narrow (CIL = .162 to

CIU = .225) suggesting that the true effect in the population is weak at best.
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7.5.2 Academic Predictors

Results are presented in Table 7.6 and Figure 7.5. In total 144 observed outcomes were

coded from 42 studies which described 19 academic predictors. Of these predictors,

16 were classified into our theoretical framework as being based upon subject specific

performance and 3 were classified as being based upon general performance. The

mean of the effect sizes which resulted from the meta-analysis suggests that academic

factors are a weak predictor of programming performance (ES r̄ = .275, SD = .143).

8 predictors (42%) were found to have a moderate effect, 8 predictors (42%) were found

to have a weak effect, 2 predictors (11%) were found to have no effect, and 1 predictor

(5%) was found to have a strong effect.

Subject Specific Performance

A total of 114 outcomes describing 16 predictors based upon subject specific perfor-

mance were coded. The mean of the effect sizes which resulted from the meta-analyses

of predictors in this subclass, suggests that subject specific performance has a weak ef-

fect on programming performance (ES r̄ = .270, SD = .153). The magnitude of effects

were found to vary based upon the five subject subclasses.

For the predictors which were based upon performance in Math, the strongest effect

was found for overall college Math (ES r̄ = .481, p < .01). The narrow 95% confidence

interval for this predictor (range: CIL = .446 to CIU = .515) suggests that the true

population effect of College Math on programming is moderate to strong. The weakest

math based predictor was units of high school math completed (ES r̄ = .185, p < .01).

This may suggest that knowledge of specific higher level concepts encountered at college

level and that a certain level of mathematical maturity beyond high school is beneficial

for programming.

This is possibly confirmed by the results for English and Science performance

which also found stronger effects for college based subject performance than high

school performance. College chemistry (ES r̄ = .502, p < .01) and college physics

(ES r̄ = .484, p < .01) both returned comparable moderate-strong effects. High school

science (ES r̄ = .273, p < .01) returned a weak effect. College English (ES r̄ = .282,

p < .01) returned a weak effect, but high school English (ES r̄ = .191, p < .01) returned

a weaker effect.

The interesting results for this section concern prior programming, which has often

been cited as an enabler of success in programming courses. The presence of prior

programming experience was found to have a weak effect on programming performance

(ES r̄ = .178, p < .01), whereas specific knowledge of Java and C++ were found to
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Figure 7.5: Chart Showing Meta-Analysis Results for the Academic Predictors

have no effect. This possibly suggests that the experience students had prior to taking

a programming course was insufficient, or that prior experience in one language was not

sufficient to transfer to the learning of another. Another explanation is that possibly

self-taught programming students who have developed bad practices, and have been

penalized on their performance when assessed within a formal course.

General Performance

A total of 30 outcomes describing 3 predictors based upon general subject performance

were coded. The mean of the effect sizes which resulted from the meta-analyses of

predictors in this subclass, suggests that general subject performance has a moderate

effect on programming (ES r̄ = .302, SD = .098).

High school GPA was found to have the strongest effect on programming

(ES r̄ = .388, p < .01), and a similar moderate effect was found for College GPA

(ES r̄= .326, p < .01). High school rank was only found to have a weak effect on pro-

gramming (ES r̄ = .194, p < .01). This is possibly due to the fact this measure depends

upon relatively ranking a single cohort, whereas High School GPA is based upon scores

obtained on standardized exams which are consistent across different contexts.
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Table 7.6: Meta-Analysis Results for the Academic Predictors

Sample Meta-Analysis

Predictor k n SM ES r̄ CIL CIU z p

Academic
Subject Specific Performance

Math
College Calculus 4 679 169 .315 .245 .382 8.42 .01
College Discrete 2 363 181 .360 .267 .447 7.12 .01
College Math 15 3183 212 .481 .446 .515 23.06 .01
High School Math 18 3967 220 .301 .256 .343 12.72 .01
Units of High School Math 4 871 217 .185 .120 .249 5.49 .01
Most Advanced Prior Math 4 202 50 .291 .119 .446 3.26 .01

English
College English 3 607 202 .282 .167 .389 4.68 .01
High School English 16 3484 217 .191 .156 .226 1.45 .01

Science
College Chemistry 9 2049 227 .502 .435 .564 12.49 .01
College Physics 4 633 158 .484 .384 .572 8.40 .00
High School Science 17 3448 202 .273 .233 .313 12.74 .01

Prior Programming
Has Prior C++ 2 462 231 .096 .004 .186 2.05 .04
Has Prior Java 2 462 231 -.043 -.134 .049 -.92 .36
Has Prior Experience 10 1085 108 .178 .097 .256 4.26 .01

Other Subjects
High School Social Studies 2 79 39 .349 .134 .532 3.11 .01
High School Foreign Lang. 2 715 357 .076 .002 .148 2.02 .04

General Performance
College Performance

College GPA 7 1055 150 .326 .189 .452 4.49 .01
High School Performance

High School GPA 6 1085 180 .388 .189 .556 3.69 .01
High School Rank 17 3143 184 .194 .124 .262 5.35 .01

Notes
See Table 7.5 for list of abbreviations.
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7.5.3 Cognitive Predictors

Results are presented in Table 7.7 and Figure 7.6. In total 76 observed outcomes were

coded from 24 studies which described 27 cognitive predictors. Of these predictors,

10 were classified into our theoretical framework as being based upon learning styles,

12 were classified as being based upon learning strategies, and 5 were classified as

being based upon specific cognitive style and skills. The mean of the effect sizes which

resulted from the meta-analysis suggests that cognitive factors are a weak predictor of

programming performance (ES r̄ = .274, SD = .142). 12 predictors (45%) were found

to have a weak effect, 10 predictors (37%) were found to have a moderate effect, 3

predictors (11%) were found to have no effect, and 2 predictors (7%) were found to

have a strong effect.

Learning Styles

A total of 35 outcomes describing 10 predictors based upon learning styles were coded.

The overall results for this subclass suggests that learning styles have a weak effect

on programming (ES r̄ = .159, SD = .089). Although we found the magnitude of

the effects to vary based upon the three different learning style models from which

the predictors were derived, we also found that the 95% confidence intervals of the 10

effects (Figure 7.6) were narrow, and that all but one of the intervals indicated that

the true effects for predictors based upon learning styles are weak at best.

The 4 predictors that were based upon dimensions of Kolb’s LSI showed weak effects

for the students tendency towards the: accomodator (ES r̄ = -.167, p < .01), assimilator

(ES r̄ = .130, p < .01) and converger dimensions (ES r̄ = .240, p < .01). The 95% confi-

dence intervals for these predictors were narrow (mean range:

CIL = .119 to CIU = .236) suggesting that the true effects of learning styles from

this model are weak. No effect was found for tendency towards the diverger dimension

(ES r̄ = .059, p = .53), but the result was not significant.

The 4 predictors that were based upon dimensions from the Solomon-Felder ILS

showed comparable effects. Weak effects were found for the students tendency towards

the active (ES r̄ = .198, p < .01) and visual (ES r̄ = .112, p = .10) dimensions. However,

no effects were found for either tendency towards the sensing (ES r̄ = .075, p = .25) or

sequential dimensions (ES r̄ = .065, p = .25). The 95% confidence intervals for these

predictors were also narrow (mean range: CIL = .053 to CIU = .227) suggesting that

the true effects in the population of programming students are weak at best.

The 2 predictors that were based upon dimensions from the Gregorc Style Delin-

eator showed stronger effects than those based upon the previous two models. A weak
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effect was found for the students tendency towards the abstract-random dimension

(ES r̄ = .208, p < .01). The only moderate effect for any of the learning style predic-

tors was found for the students tendency towards the concrete-sequential dimension.

Possibly learning styles struggle to effect programming performance as they have

not been specifically designed to measure programming knowledge. Also, there has

been criticism over the relevance of learning styles to any discipline, suggesting that

most learning style models are flawed [39,150].

Learning Strategies

A total of 25 outcomes describing 12 predictors based upon learning strategies were

coded. The overall results for this subclass suggests that learning strategies have a

moderate effect on programming (ES r̄ = .356, SD = .108). All of the predictors in

this subclass were based upon dimensions of the MSLQ. Due to the small number of

studies and samples that have explored predictors based upon learning strategies, the

95% confidence intervals of the 12 effects (Figure 7.6) are wider than the predictors

that were based upon learning styles.

The predictors based upon expectancy components returned mixed effects. A weak

effect was found for the students control of learning beliefs scale (ES r̄ = .223, p = .07),

and the strongest effect for all of the cognitive predictors was found for the students self

efficacy (ES r̄ = .555, p < .01). This is consistent with literature outside of programming

which has suggested that self efficacy is a critical component for learning performance.

However the the 95% confidence interval was wide (range: CIL = .367 to CIU = .700),

suggesting that the true effect for self efficacy on programming could be anywhere

between moderate to very strong.

The predictors that were based upon resource management returned mixed effects.

Weak effects were found for peer (ES r̄ = .152, p = .34) and time (ES r̄ = .278,

p < .05). Moderate effects were found for effort (ES r̄ = .465, p < .01) and total

resource management (ES r̄ = .319, p = .10). This suggests that effectively scheduling,

planning, and managing study time can have an effect on programming performance

and that students who commit to completing their study goals, even when there are

difficulties or distractions are more likely to succeed. This could be interpreted in terms

of the students ability to persevere through programming threshold concepts [121].

The 5 predictors that were based upon the value components and metacogni-

tive strategies scales all returned significant moderate effects (range: ES r̄ = .352 to

ES r̄ = .432, p < .05). This suggests that the students perceptions of the course ma-

terial in terms of interest, importance, and utility, along with the degree to which the

student perceives herself to be participating in a task for reasons such as challenge,
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Figure 7.6: Chart Showing Meta-Analysis Results for the Cognitive Predictors

curiosity, mastery has an effect on their programming performance. Additionally the

degree to which students report applying previous knowledge to new situations in order

to solve problems, reach decisions, or make critical evaluations with respect to stan-

dards of excellence also has an effect. This makes sense if we consider that learning

programming generally depends upon students mastering a set of progressively more

difficult concepts in order to solve increasingly complex programming problems [200].

Cognitive Style and Skills

A total of 16 outcomes describing 5 predictors based upon cognitive styles and skills

were coded. The overall results for this subclass suggests that these predictors have

a moderate effect on programming (ES r̄ = .312, SD = .163). The 95% confidence

intervals of the 5 effects (Figure 7.6) were comparable to the previous subclasses.

The predictors within this subclass were found to have a weak effect on performance,

apart from level of intellectual development (ES r̄ = .397, p < .05), and spatial ability

(ES r̄ = .553, p < .01) which returned a strong effect comparable to the self efficacy

component of the learning strategies subclass.
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Table 7.7: Meta-Analysis Results for the Cognitive Predictors

Sample Meta-Analysis

Predictor k n SM ES r̄ CIL CIU z p

Cognitive
Learning Styles

Kolb
Accomodator 3 998 332 -.167 -.227 -.105 -5.29 .01
Assimilator 4 1072 268 -.130 -.188 -.070 -4.24 .01
Converger 4 1072 268 .240 .182 .296 7.97 .01
Diverger 2 121 60 .059 -.123 .237 .63 .53

Soloman-Felder
Active 5 1208 241 .198 .095 .296 3.75 .01
Sensing 4 331 82 .065 -.045 .173 1.15 .25
Sequential 4 331 82 .075 -.054 .202 1.15 .25
Visual 4 331 82 .112 -.020 .239 1.66 .10

Gregorc
Abstract Random 3 386 128 .208 .099 .312 3.70 .01
Concrete Sequential 2 255 127 .337 .223 .442 5.54 .01

Learning Strategies (MSLQ)
Expectancy Components

Control Learning Beliefs 2 72 36 .222 -.016 .436 1.83 .07
Self Efficacy 2 72 36 .555 .367 .700 5.08 .01

Resource Management
Effort 2 73 36 .465 .200 .667 3.28 .01
Peer 2 73 36 .152 -.157 .433 .96 .34
Time 2 73 36 .278 .046 .481 2.33 .02
Total Res. Management 2 73 36 .319 -.069 .623 1.62 .10

Value Components
Intrinsic Goal Orientation 2 72 36 .418 .201 .596 3.62 .01
Task Value 3 106 35 .356 .102 .566 2.71 .01

Metacognitive Strategies
Total Metacognitive 2 73 36 .352 .049 .596 2.26 .02
Planning and Regulating 2 73 36 .370 .148 .556 3.18 .01
Critical Thinking 2 73 36 .432 .208 .613 3.61 .01

Overall Measures
MSLQ Overall Score 2 72 36 .353 .127 .545 3.00 .01

Cognitive Style and Skills
Cognitive Style

Group Embedded Figures 4 1172 293 .253 .142 .357 4.39 .01
Specific Cognitive Skills

Intellectual Development 4 455 113 .397 .073 .646 2.37 .02
Spatial Ability 2 76 38 .553 .375 .697 5.25 .01
Watson-Glaser Critical 3 145 48 .146 -.021 .305 1.72 .09
Mental Model 3 348 116 .207 -.060 .446 1.52 .13

Notes
See Table 7.5 for list of abbreviations.
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7.5.4 Psychological Predictors

Results are presented in Table 7.8 and Figure 7.7. In total 99 observed outcomes were

coded from 20 studies which described 35 psychological predictors. Of these predic-

tors, 20 were classified into our theoretical framework as being based upon affective

traits, 11 were classified as being based upon personality, and 4 were classified as being

based upon behavioural traits. The mean of the effect sizes which resulted from the

meta-analysis suggests that psychological factors are a weak predictor of programming

performance (ES r̄ = .151, SD = .103). 19 predictors (54%) were found to have a weak

effect, 13 predictors (37%) were found to have no effect, and only 3 predictors (9%)

were found to have a moderate effect.

Affective Traits

A total of 64 outcomes describing 20 predictors based upon affective traits were coded.

The mean of the effect sizes which resulted from the meta-analyses of predictors in this

subclass, suggests that affective traits have a weak effect on programming performance

(ES r̄ = .137, SD = .116). The magnitude of effects were found to vary based upon the

three affective subclasses, with the 13 effects based upon self perceived abilities pro-

ducing the narrowest confidence intervals of the entire subclass (Figure 7.7), indicating

that the true effects for predictors based upon self perceived abilities are weak at best.

The 4 predictors that were based upon dimensions of Weiner’s attributional style

model showed little relations to programming. Weak effects were found for the: ability

(ES r̄ = 115, p < .05), effort (ES r̄ = 107, p < .05), and luck (ES r̄ = -.184, p < .01)

dimensions. No effect was found for attributions to task difficulty (ES r̄ = -.063, p =

.19) on programming performance. The 95% confidence intervals for these predictors

were narrow (mean range: CIL = .039 to CIU = .209) suggesting that the true effects

in the population of programming students are weak. Again, this instrument was not

designed to predict programming performance, possibly resulting in these weak effects.

The 13 predictors that were based upon students self perceived abilities also showed

little relations to programming. Of these 13 predictors, 9 predictors: leadership, artis-

tic, management, mechanical, personal relations, public speaking, reading, spatial abil-

ity, and writing ability, all showed no effects on programming performance (ES r̄ <

.10). The 95% confidence intervals for these predictors were narrow (mean range: CIL

= .090 to CIU = .177) suggesting that the true effects in the population of programming

students are weak at best. It is interesting to note that the result for self perceived

spatial ability (ES r̄ = .084, p = .07) contradicts the result for formally tested spatial

ability in the cognitive predictors subsection (ES r̄ = .553, p < .01). This could be due
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to a lack of student understanding of the meaning of the term. However, the result for

self perceived spatial ability was not significant. The results for self perceived math

(ES r̄ = .271, p < .01), science (ES r̄ = .249, p < .01), and problem solving (ES r̄ = .194,

p < .01) abilities are consistent with the results previously presented in the academic

predictors subsection.

The 3 predictors which were based upon various instruments designed to measure

self efficacy were found to show weak relations to programming, although these relations

were stronger than the previous two affective subclasses. Both scores on the Computer

Programmer Self Efficacy Scale (ES r̄ = .219, p < .01) and Rosenbergs Self Esteem Scale

(ES r̄ = .270, p < .05) were shown to have a weak effect on programming performance.

Comfort level (ES r̄ = .472, p < .01) was shown to have a strong effect on performance.

These results are consistent with the previous strong result on self efficacy and learning

strategies that reported in the cognitive predictors subsection (ES r̄ = .555, p < .01),

suggesting that a certain element of self belief and confidence is a necessary attribute

for success in programming.

Personality

A total of 26 outcomes describing 11 predictors based upon personality were coded.

The mean of the effect sizes which resulted from the meta-analyses of predictors in

this subclass, suggests that personality has a weak effect on programming performance

(ES r̄ = .179, SD = .099). The magnitude of effects were found to vary based upon

the two instruments used to measure personality attributes, with the 7 effects based

upon the Thurstone Temperament Instrument showing stronger effects on programming

(ES r̄ = .229, SD = .089) than those 4 effects that were based upon the Myers-Briggs

Type Indicator (ES r̄ = .090, SD = .026).

For the predictors that were based upon dimensions of the Thurstone Instrument,

only the students tendency towards the sociable (ES r̄ = -.303, p < .01) and impulsive

(ES r̄ = -.379, p < .01) dimensions showed moderate effects on programming perfor-

mance. The remaining dimensions all showed weak effects. This suggests that students

who are patient, plan, and persevere with programming are likely to succeed.

For the predictors that were based upon dimensions of Myers-Briggs Type Indicator,

only borderline weak effects were found for the students tendency towards the judge-

ment (ES r̄ = -.121, p = .07) and sensing dimensions (ES r̄ = .100, p = .14). Neither of

these effects were significant, but they do suggest that there are little relations between

the personality aspects measured by Myers-Briggs Instrument and programming, given

that all four dimensions only showed borderline weak effects.
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Figure 7.7: Chart Showing Meta-Analysis Results for the Psychological Predictors

These results suggest that personality traits are only weakly related to programming

performance, but none of the personality instruments were designed explicitly for the

purpose of measuring programming performance. It is also possible that students are

able to succeed in programming regardless as to their personality type.

Behavioural Traits

A total of 21 outcomes describing 8 predictors based upon behavioural traits were

coded. No effect was found for the number of lectures attended (ES r̄ = .099, p = .19)

on programming performance. A weak effect was found for percentage of time spent

in the lab (ES r̄ = .139, p = .28), however the 95% confidence interval of this result

was wide, and this conclusion cannot be generalised to a true effect with reasonable

confidence. Hours spent working in a part time job whilst indicating a weak effect

on performance (ES r̄ = .210, p = .42) also suffered from a wide confidence interval.

The only significant result of this subclass was found for computer gaming experience

(ES r̄ = -.125, p < .05), which showed a weak negative effect on programming per-

formance. However the 95% confidence interval suggests that there could be no true

effects.
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Table 7.8: Meta-Analysis Results for the Psychological Predictors

Sample Meta-Analysis

Predictor k n SM ES r̄ CIL CIU z p

Psychological
Affective Traits

Attributions
Ability 4 438 109 .115 .020 .207 2.37 .02
Effort 4 438 109 .107 .012 .199 2.21 .03
Luck 4 438 109 -.184 -.274 -.091 -3.85 .01
Task Difficulty 4 438 109 -.063 -.157 .032 -1.30 .19

Self Perceived Abilities
Leadership 3 465 155 -.010 -.136 .116 -.16 .88
Artistic 3 465 155 .009 -.083 .100 .19 .85
Athletic 3 465 155 -.120 -.214 -.024 -2.45 .01
Management 3 465 155 .086 -.006 .176 1.84 .07
Math 3 465 155 .271 .184 .354 5.94 .00
Mechanical 3 465 155 .091 -.001 .181 1.95 .05
Relations 3 465 155 -.023 -.115 .068 -.50 .62
Problem Solving 3 465 155 .194 .104 .280 4.18 .01
Public Speaking 3 465 155 .034 -.102 .169 .49 .62
Reading 3 465 155 .043 -.056 .140 .85 .40
Science 3 465 155 .249 .161 .333 5.43 .01
Spatial 3 465 155 .084 -.008 .174 1.80 .07
Writing 3 465 155 .096 .004 .186 2.05 .04

Self Efficacy
Rosenberg Self Esteem 2 93 46 .270 .066 .452 2.58 .01
Comfort Level 3 385 128 .472 .390 .547 9.95 .01
CPSE 4 526 131 .219 .072 .356 2.91 .01

Personality
Thurstone Temperament

Active 2 100 50 -.161 -.349 .040 -1.58 .12
Dominant 2 100 50 -.229 -.410 -.031 -2.26 .02
Emotionally Stable 2 100 50 -.184 -.370 .016 -1.80 .07
Impulsive 2 100 50 -.379 -.538 -.194 -3.87 .01
Reflective 2 100 50 .240 .043 .419 2.37 .02
Sociable 2 100 50 -.303 -.474 -.110 -3.03 .01
Vigorous 2 100 50 -.112 -.305 .089 -1.09 .27

Myers Briggs Type Indicator
Extraversion 3 229 76 -.063 -.192 .069 -.93 .35
Judgement 3 229 76 -.121 -.248 .011 -1.80 .07
Sensing 3 229 76 .100 -.032 .229 1.49 .14
Thinking 3 229 76 .077 -.055 .207 1.15 .25

Behavioural Traits
Lectures Attended 2 178 89 .099 -.050 .244 1.30 .19
Percentage Time in Lab 2 65 32 .139 -.114 .376 1.08 .28
Part Time Job Hours 2 630 315 .210 -.300 .626 .80 .42
Gaming Experience 3 335 111 -.125 -.230 -.017 -2.27 .02

Notes
See Table 7.5 for list of abbreviations.
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7.5.5 Programming Behaviour Predictors

Results are presented in Table 7.9 and Figure 7.8. In total 43 observed outcomes were

coded from 5 studies which described 17 predictors based upon programming behaviour.

Of these predictors, 8 were classified into our theoretical framework as being based upon

event based metrics, 6 were classified as being based upon time based metrics, and 3

were classified as being based upon algorithmic based metrics.

The mean of the effect sizes which resulted from the meta-analysis suggests that

factors based upon programming behaviour are a moderate predictor of programming

performance (ES r̄ = .378, SD = .165). 7 predictors (40%) were found to have a

moderate effect, 4 predictors (24%) were found to have a weak effect, 5 predictors (29%)

were found to have a strong or very strong effect, and 1 predictor (6%) was found to

have no effect. This is perhaps unsurprising given that the predictors in this class have

been explicitly designed for the purpose of predicting programming performance, and

are based off data describing the students own programming process.

Event Based Metrics

The mean of the effect sizes which resulted from the meta-analyses of predictors in

this subclass, suggests event based metrics have a moderate effect on programming

performance (ES r̄ = .351, SD = .101).

Considering the different types of pairings that students produced over a session (as

a percentage of all pairings), a moderate negative effect on performance was found for

the percentage of pairings representing two successive errors (ES r̄ = -.443, p < .01),

and a strong negative effect was found for the percentage of pairings which represented

repeated errors (ES r̄ = -.526, p < .01). The 95% confidence interval of this result

(range: CIL = -.392 to CIU = -.639) suggested that the true effect in the population

could be moderate to very strong. Similar effects were found when considering raw

frequency counts. A moderate negative effect on performance for total number of

repeated errors (ES r̄ = -.317, p < .01), and for the total number of pairings which

contained at least one error (ES r̄ = -.313, p < .01).

In contrast, the percentage of pairings representing two successful compilations was

found to have a moderate positive effect on performance (ES r̄ = .414, p < .01). This

suggests that in general, weaker programming students are characterised by producing

a greater percentage of repeated errors than stronger students, possibly indicating that

they are unable to overcome the syntax barrier to produce compilable code. This is

problematic, given that until novices can overcome the syntax barrier, they have no

means of obtaining feedback on the semantic correctness of their code at runtime.
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Figure 7.8: Chart Showing Meta-Analysis Results for the Programming Behaviour
Predictors

Time Based Metrics

The mean of the effect sizes which resulted from the meta-analyses of predictors in

this subclass, suggests time based metrics have a moderate effect on programming

performance (ES r̄ = .333, SD = .220).

Considering the amount of time students spent working on different types of pairings

(as a percentage of their total lab time), results comparable to the event based metrics

were found. A strong negative effect was found for the percentage of lab time that

students spent working on pairings in the form of two successive errors (ES r̄ = -.513,

p < .01), and a strong effect was found for the percentage lab time students spent

working on two repeated errors (ES r̄ = -.535, p < .01). As with the previous subclass,

a moderate positive effect was also found for the percentage of lab time students spent

working on pairings representing two successful compilations (ES r̄ = .380, p < .01).

This suggests that not only are weaker students characterised by having a greater

percentage of repeated errors than stronger students, but also that weaker students will

spend a larger percentage of their lab time trying to overcome these errors.



194 Results

Table 7.9: Meta-Analysis Results for the Programming Behaviour Predictors

Sample Meta-Analysis

Predictor k n SM ES r̄ CIL CIU z p

Programming Behaviour
Event Based Metrics

Percentage Based Metrics
Error to Error 3 141 47 -.443 -.569 -.296 -5.47 .01
Error to Different Error 3 141 47 -.322 -.465 -.162 -3.83 .01
Error to Same Error 3 141 47 -.526 -.639 -.392 -6.72 .01
Error to Success 3 141 47 .222 .055 .377 2.59 .01
Success to Success 3 141 47 .414 .263 .545 5.06 .01

Frequency Based Metrics
Pairings Containing an Error 4 246 61 -.313 -.432 -.183 -4.58 .01
Total Repeated Errors 3 122 40 -.317 -.472 -.143 -3.49 .01
Average number of Errors 3 122 40 -.257 -.420 -.078 -2.79 .01

Time Based Metrics
Percentage Based Metrics

Error to Error 3 141 47 -.513 -.628 -.377 -6.52 .01
Error to Different Error 3 141 47 -.235 -.453 -.017 -1.10 .27
Error to Same Error 3 141 47 -.535 -.646 -.403 -6.87 .01
Error to Success 3 141 47 .020 -.167 .171 .03 .98
Success to Success 3 141 47 .380 .225 .516 4.59 .01

Frequency Based Metrics
Time Between Compilations 2 164 82 .221 .069 .363 2.83 .01

Algorithmic Based Metrics
Overall Quantification

Error Quotient 5 321 64 -.482 -.563 -.392 -9.20 .01
Watwin Score 3 141 47 -.582 -.683 -.458 -7.64 .01
Robust Relative 3 141 47 -.657 -.743 -.549 -9.05 .01

Notes
See Table 7.5 for list of abbreviations.

Algorithmic Based Metrics

The mean of the effect sizes which resulted from the meta-analyses of predictors in this

subclass, suggests algorithmic scoring methods have a strong effect on programming

performance (ES r̄ = .573, SD = .088), possibly as they encapsulate several aspects of

programming behaviour into a single performance predictor. The Error Quotient was

found to have a moderate effect on programming (ES r̄ = -.477, p < .01), and Watwin

Score was found to have a strong effect on programming (ES r̄ = -.630, p < .01).

The Robust Relative scores were found to have a very strong effect on programming

(ES r̄ = -.657, p < .01), yielding the strongest effect of any of the 116 predictors.
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7.5.6 Demographic Predictors

Results are presented in Table 7.10 and Figure 7.9. In total 21 observed outcomes were

coded from 17 studies which described 2 predictors based upon demographic factors.

The mean of the effect sizes which resulted from the meta-analysis suggests that fac-

tors based upon demographic factors are not predictive of programming performance

(ES r̄ = .015, SD = .008). No effect was found for either gender (ES r̄ = -.009,

p = .74) or age (ES r̄ = .020, p = .70) on programming. The 95% confidence intervals

were narrow (range: CIL = -.083 to CIU = .123), suggesting that whilst the true effect

of age may be borderline weak, gender has no effect on programming performance.

Figure 7.9: Chart Showing Meta-Analysis Results for the Demographic Predictors

Table 7.10: Meta-Analysis Results for the Aptitude Predictors

Sample Meta-Analysis

Predictor k n SM ES r̄ CIL CIU z p

Age 7 1005 143 .020 -.083 .123 .39 .70
Gender 14 2656 189 .009 -.045 .064 .33 .74

Notes
See Table 7.5 for list of abbreviations.
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Table 7.11: Results of the Moderator Analysis

Heterogeneity Tests Possible Moderators
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Heterogeneous

IBM PAT Arithmetic 6 16.4 .01 55.1 . . . . . . . . .
Wolfe PAT Overall 5 15.1 .01 71.8 . . . . . . . . .
Age 7 16.2 .01 4.3 . . . . . . . . .
High School Math 18 37.1 .01 49.2 • . . . . • • . .
SAT Math 23 43.6 .01 46.8 . . . . . • . . .
College Chemistry 9 38.5 .01 69.9 . . . . . . • . .
College GPA 7 23.6 .01 74.0 . • . . . . . . .
High School GPA 6 39.1 .01 78.4 . . . . . . . . .
High School Rank 17 51.9 .01 73.0 . . . . . • . . .

Notes
• Indicates that the effect is significantly moderated by the possible moderator, p < .10.

7.5.7 Moderator Analysis

Results of the moderator analysis are shown in Table 7.11. In total 18 predictors

satisfied the k ≥ 5 criteria, and of these predictors 9 were found to be heterogeneous

(Qt, p < .10). The results of the analysis showed that neither year, gender, grade

composition, or grade level of the institution were found to moderate the effects.

In one case, the programming language was found to marginally moderate the

effects (p < .10), and in three cases the cohort size was found to marginally moderate

the effects (p < .10). These results are consistent with the findings presented in Chapter

4 of this thesis, which showed marginally significant differences in the pass rates of CS1

courses based upon these two moderators. The criterion variable was also found to

moderate the failure rates in two cases (p < .10). The cause of variation for 4 of the

9 predictors however remains unknown, suggesting that there are additional uncoded

aspects which may moderate the performance of predictors in different contexts.

It is interesting to note that none of the effects were significantly moderated

(p < .05) by the coding criteria, which may suggest that other predictors are unaf-

fected by the nine coded aspects. However, unless further studies are conducted, there

is no method of confirming this hypothesis.
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7.6 Discussion

Overall results presenting the strongest 15 predictors are shown in Table 7.12, the

weakest 15 predictors are shown in Table 7.13, and the mean strengths of effect sizes

found for each class are shown in Table 7.14.

To answer RQ2, out of the top 15 predictors which were identified by this study, we

found that 7 predictors (47%) were based upon programming behaviour, 4 predictors

(27%) were based upon cognitive factors, 3 predictors (20%) were based upon academic

factors, and 1 predictor (6%) was based upon aptitude testing. This suggests that the

strongest predictors of programming performance found over the past fifty years are

those that are based upon programming behaviour. This is perhaps unsurprising, as

these predictors are based directly upon the factors that are indirectly measured in

programming assessments (e.g. whether the student can produce a compilable solution),

and are capable of directly reflecting aspects of the students programming knowledge.

Self efficacy and comfort level were also among the top predictors. This suggests that

an element of self belief, or self concept is necessary for programming. This can be

recognised in terms of students willingness to persevere in experimenting with their

individual solutions to complex programming problems. The presence of college math,

physics, and chemistry, among the top predictors suggests that a level of scientific

maturity is required to be a successful programmer.

To answer RQ3, out of the weakest 15 predictors which were identified by this study,

we found that 10 predictors (67%) were based upon either demographic or psychological

factors. Additionally, 2 cognitive predictors based upon learning styles were among the

weakest predictors. These results suggest that self perceived abilities, learning styles,

and personality traits have little relevance for programming success. Age (ranked 111)

and gender (ranked 114) both ranked among the worst predictors identified over the

past fifty years, suggesting that neither of these factors have any influence on the

students ability to understand programming.

To answer RQ4, we found that the factors which were based upon aspects of pro-

gramming behaviour were the most predictive of performance. Out of the 17 predic-

tors in this class, 11 predictors (65%) were found to have moderate to very strong

effects on performance. The cognitive and academic predictors were found to have

a comparable effect on programming. 82% of cognitive predictors were found to

have a weak/moderate effect, and 84% of academic predictors were found to have a

weak/moderate effect on programming. The majority of aptitude predictors (63%)

were weak, over one third of the psychological predictors (37%) were found to have no

effect, and no effects were found for any of the demographic predictors.
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Table 7.12: The Overall Strongest 15 Predictors found by this Meta-Analysis

Predictor Meta-Analysis

Predictor Class k n ES r̄ CIL CIU p

1 Robust Relative Prog. Behav. 3 141 -.657 -.743 -.549 .01
2 Watwin Score Prog. Behav. 3 141 -.582 -.683 -.458 .01
3 Wolfe PAT Aptitude 5 360 .56 .388 .694 .01
4 Self Efficacy Cognitive 2 72 .555 .367 .700 .01
5 Spatial Ability Cognitive 2 76 .553 .375 .697 .01
6 Error to Error (Time) Prog. Behav. 3 141 -.535 -.646 -.403 .01
7 Error to Same Error (Event) Prog. Behav. 3 141 -.526 -.639 -.392 .01
8 Error to Same Error (Time) Prog. Behav. 3 141 -.513 -.628 -.377 .01
9 College Chemistry Academic 9 2049 .502 .435 .564 .01
10 College Physics Academic 4 633 .484 .384 .572 .01
11 Error Quotient Prog. Behav. 5 321 -.482 -.563 -.392 .01
12 College Math Academic 15 3183 .481 .446 .515 .01
13 Comfort Level Cognitive 3 385 .472 .390 .547 .01
14 Effort (Res. Management) Cognitive 2 73 .465 .200 .667 .01
15 Error to Error (Event) Prog. Behav. 3 141 -.443 -.569 -.296 .01

Notes
See Table 7.5 for list of abbreviations.

Table 7.13: The Overall Weakest 15 Predictors found by this Meta-Analysis

Predictor Meta-Analysis

Predictor Class k n ES r̄ CIL CIU p

101 Sequential Cognitive 4 331 .075 -.054 .202 .25
102 Sensing Psychological 4 331 .065 -.045 .173 .25
103 Task Difficulty (Attribution) Psychological 4 438 -.063 -.157 .032 .19
104 Extraversion Psychological 3 229 -.063 -.192 .069 .35
105 Diverger Cognitive 2 121 .059 -.123 .237 .53
106 ACT English Aptitude 2 79 -.047 -.270 .180 .69
107 SRA Verbal Aptitude 2 120 .046 -.290 .372 .79
108 Reading (Self Perc.) Psychological 3 465 .043 -.056 .140 .40
109 Has Prior Java Academic 2 462 -.043 -.134 .049 .36
110 Public Speaking (Self Perc.) Psychological 3 465 .034 -.102 .169 .62
111 Relations (Self Perc.) Psychological 3 465 -.023 -.115 .068 .62
112 Age Demographic 7 1005 .020 -.083 .123 .70
113 Leadership (Self Perc.) Psychological 3 465 -.010 -.136 .116 .88
114 Error to Success (Time) Prog. Behav. 3 141 -.020 -.167 .171 .98
115 Gender Demographic 14 2656 .009 -.045 .064 .74
116 Artistic (Self Perc.) Psychological 3 465 .009 -.083 .100 .85

Notes
See Table 7.5 for list of abbreviations.
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Table 7.14: Summary of effect sizes by class sorted by mean strength (ES r̄)

Predictor Class Predictor Strengths

Predictor Class TN ES r̄ SD None Weak Moderate Strong V. Str.

1 Prog. Behaviour 17 .378 .101 1 4 7 4 1
6% 24% 40% 24% 6%

2 Academic 19 .275 .143 2 8 8 1 .
11% 42% 42% 5% .

3 Cognitive 27 .274 .142 3 12 10 2 .
11% 45% 37% 7% .

4 Aptitude 16 .239 .136 2 10 3 1 .
13% 63% 19% 5% .

5 Psychological 35 .151 .103 13 19 3 . .
37% 54% 9% . .

6 Demographic 2 .015 .008 2 . . . .
100% . . . .

Notes
TN : number of predictors included in each class of the theoretical framework.

7.6.1 Practical Implications for Teaching

This study has provided much needed quantitative evidence on the influence of different

factors on programming performance and has synthesised over fifty years of conflicting

quantitative results. Contrary to folklore, neither gender nor age were found to have an

effect on programming. Whilst performance in scientific subjects at college level were

found to have an effect on programming, the corresponding performance in scientific

subjects at high school level were found to have a much smaller effect. Commonly ap-

plied aptitude tests were found to be only weakly associated with performance. Factors

based upon learning styles and personality yielded weak to no effects. The strongest

effects were found for predictors based upon programming behaviour.

The practical implications for teaching are that successful programming students are

characterised by high levels of self efficacy, have performed well in college level science

subjects, and exhibit traits of desirable programming behaviour. This would imply that

in order to rapidly identify at risk students before assessments take place, pre-course

screening could be performed by using test based on self efficacy (e.g. MSLQ [14]), and

then to monitor the students programming behaviour by using an overall algorithmic

metric (e.g. Robust Relative Score [196]). We hypothesise that a regression model

based upon these factors would provide a reasonable performance predictor.
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7.6.2 Implications and Applications of the Framework

Figure 7.10 shows the resulting theoretical framework with the strongest fifteen pre-

dictors of programming performance which were identified by this meta-analysis. The

primary purpose of the framework was to consolidate the meta-analysis findings into a

logical hierarchy. We now close this discussion by considering possible practical appli-

cations for the framework.

Figure 7.10: Updated theoretical framework, displaying the strongest fifteen predictors
found by this meta-analysis. Interacting factors were determined by related studies in
the literature, and are shown on the diagram by using dashed arrows.

One application could be to apply the theoretical framework to other computer science

modules. Programming is not just a single skill, which is required by a single course.

Many other modules as part of a computer science degree require programming skills,

(e.g. Networks) and it would be interesting to determine whether the fifteen factors on

display can be applied to predict performance in these modules.

Additionally, the framework could be applied by other researchers to continue with

systematic development of their own predictors in the domain of computer program-

ming. The framework has highlighted certain “key types” of predictors which are

worthy of exploration, and it is likely there are undiscovered predictors in each of the

strongest categories which may support acquisition of computing knowledge.
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7.6.3 Threats to Validity

Although this study identified 482 observed outcomes for inclusion in the meta-analysis,

a number of validity concerns can be raised, which are discussed in this section.

Firstly, we note the unavoidable limitation that the assessment criteria and learn-

ing objectives will vary between different studies. Studies within the UK generally

defined a pass boundary at 40%, whereas other studies from the USA defined a pass

boundary at 50%. As 31 of the included studies measured performance using overall

letter grade, concerns can be raised over such differing grade boundaries of different

studies. Therefore this study unavoidably has to assume that a consistent notion of

programming performance exists and holds valid across the different teaching contexts.

But, we note that this a common limitation of studies of this nature (e.g. [193, 197])

and that meta-analysis techniques are designed to take into account such limitations.

Secondly, the teaching approaches that were used for different studies were rarely

explicitly stated in a very detailed fashion. For the most part, it was implied from

the articles that the current approach was one based upon a traditional lecture and

lab approach, but this is not certain for all studies. It is possible that the teaching

approach could account unexplained variance in the moderator analysis.

Thirdly, although the number of observed outcomes is high at 482, the final num-

ber of selected studies, k = 80 is low, especially when considering that introductory

programming courses have been studied for decades. A major concern in our case is

the possibility of selective reporting, but despite looking for sources of gray literature

via generalized searches, our efforts were largely unsuccessful. It is possible that this

work suffers from a publication bias, a common limitation of meta-analyses [31,71].

Fourthly, 145 observed outcomes were dropped from the dataset as they represented

predictors which had only been examined by single studies, and therefore meta-analysis

techniques could not be applied. It is possible that these predictors may perform

similarly to some of the ones included in this analysis, but, there is no way of confirming

this hypothesis until the predictors have been trialled in different contexts.

Fifthly, there is the fundamental limitation of meta-analysis in that qualitative

evidence cannot be included. A number of studies were also dropped as they failed to

provide sufficient statistical data (e.g. [168,169]). As with the previous case, if sufficient

data was provided then these predictors could have been included in the analysis.

Sixthly, although the number of students contributing observations for each pre-

dictor was large (n ≥ 60), the actual number of studies were mostly low, and only

18 predictors reported having greater than 5 observations. This resulted in wide confi-

dence intervals for multiple predictors, but only by trialling predictors in more contexts

can the bounds be tightened and a more precise estimate of the effect be calculated.
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7.7 Conclusion

Previous research has been limited by both a lack of verification of predictors in differ-

ent teaching contexts, and the conflicting results which are commonly reported when

verifications take place. Due to these issues there was no general consensus among re-

searchers on which factors support students in developing programming skills. Without

understanding which factors are the most important for success, it becomes extremely

difficult to design and implement any effective pedagogical tools or strategies which can

be applied to identify and support the weakest students.

In this chapter, we have attempted to resolve over fifty years of conflicting find-

ings on the relevance of different factors for programming performance by performing

a substantial meta-analysis. This has enabled the synthesis of findings from multiple

studies which have examined the same predictor in different teaching contexts, allowing

researchers to make generalisable conclusions on the relevance of different factors for

programming which are independent of aspects of their teaching contexts (e.g. pro-

gramming language taught) and aspects of their students (e.g. learning styles).

In total, 482 previous research results describing the relations between 116 pre-

dictors and programming performance were identified and classified into a theoretical

framework. These included predictors that were based upon aptitude, psychological

factors, cognitive factors, academic background, demographic factors and program-

ming behaviour. The results suggest that the strongest predictors of programming

performance which have been found over the past fifty years are those based upon pro-

gramming behaviour. However, several of the traditionally measured attributes also

featured among the strongest predictors. The presence of self-efficacy and comfort

level suggests that an element of self belief, or self concept is necessary for program-

ming success. The presence of college math, physics, and chemistry among the top

predictors reinforces anecdotal evidence that a level of scientific maturity, or scientific

thinking, is a necessary skill to become a successful programmer. Two thirds of the

weakest predictors were based upon demographic and psychological factors. These re-

sults showed that self perceived abilities, learning styles, personality traits, age, and

gender, have little relevance for programming success.

The implication from this study is that to rapidly identify at risk students before

assessments take place, an initial screening can be performed by considering the stu-

dents academic background and results from a test based upon self efficacy. Following

this, the predictors based upon programming behaviour, in particular the Robust Rel-

ative algorithm, could be applied to autonomously monitor the students programming

behaviours, alerting instructors of at risk students or providing interventions.
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Conclusion and Future Works

This thesis has detailed four studies which were performed to identify factors which

can influence programming success. These factors included aspects of the teaching

context, traditionally explored learning theories, and data-driven predictors based upon

aspects of programming behaviour. This thesis then detailed a meta-analysis of fifty

years of research which was performed to synthesise the conflicting findings on the

relevance of different factors for the learning of programming, and has identified a

subset of predictors which have the largest influence on programming performance.

This concluding chapter summarises the contributions made and provides suggestions

for possible future directions of the work.
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8.1 Contributions

The studies performed in this thesis make several novel contributions to the body of

research on programming education, and predictors of programming performance.

Quantitative Evidence on the Failure Rates in Programming Courses

The first major contribution of this thesis was to provide substantial quantitative ev-

idence on the worldwide pass and failure rates of programming courses. Before the

research was conducted in this thesis, only a single study to date [13] had attempted

to provide any quantitative evidence to support the often cited claim, that high failure

rates plagued programming courses on a worldwide scale. This study was limited, as

it only considered 63 failure rates from a single point in time.

To address these shortcomings we chose to exploit an unconsidered source of failure

rate data, by performing a systematic review of the research on introductory program-

ming education. Analysing this data, this thesis made three novel contributions. First,

this thesis provided an estimate of the worldwide pass and failure rates of programming

courses (Section 4.4.1). Secondly, this thesis then explored whether failure rates had

changed over time (Section 4.4.2). Thirdly, this thesis explored the impact of different

aspects of the teaching context on the failure rates (Section 4.4.3).

Investigation into Predictors based upon Traditional Learning Theories

The second major contribution of this thesis was to evaluate the context dependency of

predictors which were based upon traditional learning theories. Verification studies are

not performed very often, as researchers have a tendency to judge the value of predictors

based upon the statistical significance of the results of a single sample of students. This

is problematic, as when predictors are trailed in different teaching contexts they have

a tendency to yield inconsistent results (Sections 5.1 and 7.2).

To address this shortcoming, we examined 34 predictors which had only been

explored in a limited number of teaching contexts, or where previous research had

yielded inconsistent results. These predictors included previous programming expe-

rience, previous academic experience, attributional style, behavioural characteristics,

learning styles, and, learning strategies and motivations (Sections 5.4.1 to 5.4.3). By

re-evaluating these predictors in our context, this thesis contributes to the knowledge

on whether these predictors are context dependent like their predecessors, and eval-

uates their wider applicability as enablers of programming success. The additional

contribution of this study was to perform a regression analysis to develop a predictive

model based upon the context independent predictors (Section 5.4.5).
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New Data Driven Predictors based upon Programming Behaviour

The third major contribution of this thesis was to identify a set of data-driven predic-

tors which are based upon the programming behaviours of students. Throughout this

thesis we have argued that almost all of the predictors which are based upon tradi-

tional learning theories perform inconsistently in different teaching contexts, as they

are incapable of reflecting changes in a student’s programming knowledge over time.

Recently researchers have begun to explore predictors which are based upon analysing

data which is gathered from an IDE describing the programming behaviours of stu-

dents. These approaches are still in their infancy and very few studies on the relations

between programming behaviour and programming performance had been conducted.

In this thesis we have identified 10 new data-driven predictors based upon aspects

of programming behaviour. Five of these predictors were based upon the percentage of

different types of compilation pairings that were logged from students (Section 6.4.2).

A further five were based upon the percentage of lab time students spent working on

different types of pairings (Section 6.4.3). Nine of these predictors were statistically

significant, but more importantly, and unlike the traditional predictors, were found to

yield consistent results on three independently gathered datasets.

Development of a Data Driven Predictive Algorithm

The fourth major contribution of this thesis was to develop a hybrid algorithm which

could weight and combine several data-driven predictors to form an overall score, de-

scribing how undesirable a student’s programming behaviour had been over the duration

of a session. Previously the Error Quotient [82] was the only algorithm designed for this

purpose. But there are several flaws concerning the incompleteness of the algorithm

which limit its ability to accurately reflect the programming behaviour of students.

To address these shortcomings, we extended our previous work [200] by developing

the Robust Relative algorithm (Section 6.4.4), which scores students based upon four

aspects of their programming behaviour. These aspects take into account both error

frequency and resolve times. The originality of our algorithm is to incorporate a novel

scoring technique of relatively penalizing students based upon how their resolve times

for different types of error, compares to the resolve times of their peers. This allows both

the difficulty of resolving different types of errors, and the students own programming

abilities to be taken into account. The algorithm was shown to yield consistently strong

results when applied on three independently gathered datasets (Section 6.4.5) and the

results from the meta-analysis placed the scores yielded by the algorithm among the

strongest quantitative predictors identified over the past fifty years (Section 7.6).
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Synthesising Fifty Years of Conflicting Quantitative Research

The fifth major contribution of this thesis was to statistically synthesise fifty years of

conflicting research into predictors of programming performance. Previous research has

been limited by both a lack of verification of predictors in different teaching contexts,

and the conflicting results which are commonly reported when verifications take place

(Section 7.2). Due to these issues there was no general consensus among researchers

on which factors support students in developing programming skills. This is of greater

concern nowadays given the introduction of programming into ordinary classroom en-

vironments. Without understanding which factors are the most important for success,

it becomes extremely difficult to design and implement any effective pedagogical tools

or strategies which can be applied to identify and support the weakest students.

To address this issue, we performed a substantial meta-analysis which aimed to

resolve over fifty years of conflicting quantitative research into predictors of program-

ming performance, by applying meta-analysis techniques to synthesize the findings of

multiple studies that have examined the same predictor of programming performance

across different teaching contexts. This enables researchers to make generalizable con-

clusions on the relevance of different factors for programming performance, that are

independent of both aspects of the teaching context and characteristics of the students

themselves. The comprehensiveness of the work can be highlighted from the number

of predictors included in the analysis. From the initial review, 482 previous research

results describing the relations between 116 predictors and programming performance

were identified. These included predictors that were based upon aptitude, psychological

factors, cognitive factors, academic background, demographic factors and programming

behaviour (Sections 7.5.1 to 7.5.6). The additional contribution of this work was to

provide a synthesized benchmark on the effects of different predictors on programming,

which future researchers can compare their own results with.

Development of a Theoretical Framework

The sixth major contribution of this thesis was to perform knowledge transformation

by classifying the 116 predictors which were identified from the meta-analysis into a six

class theoretical framework (Section 7.4). This framework was applied to consolidate

the meta-analysis findings by exploring which types of factors are more relevant to

programming than others (Section 7.6). The extended framework (Figure 8.1) accounts

for both factors which are internal to students (Chapters 5, 6, and 7), and factors from

the teaching context (Chapter 4) and could be applied by future researchers to derive

practical applications.
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8.2 Research Questions

This thesis satisfied the three research objectives (Section 3.1) by answering all four of

the research questions. The answers to the four research questions are briefly discussed

in relation to the wider body of work and the proposed theoretical framework.

RQ1: Failure Rates in Introductory Programming

RQ1: To what extent are students’ programming performances influenced

by aspects of the teaching context, including: year, country, grade level of

the institution, cohort size, and the programming language taught?

Section 4.4.1 first estimated the worldwide pass rates of programming courses to be

67.7% (SD = 15.5%, 95% CI: 65.3% to 70.1%). This complements the main finding

of the smaller survey performed by Bennedsen and Caspersen [13] who estimated the

worldwide pass rate to be 67%. Examining the data based upon the moderating aspects

of the teaching context (Sections 4.4.2 and 4.4.3) yielded the following results:

• Year. No significant differences were found in pass rates over time, p = .97.

Failure rates were found to be consistently between 25% and 33%.

• Country. Three significant differences between the pass rates of Finland with

Australia, p = .04, Canada, p < .001 and USA, p < .01. No significant differences

were found between the pass rates of the remaining 15 countries.

• Grade Level. Significant differences were found between the pass rates of univer-

sities (n = 145, M = 66.4%) and other grade levels (n = 16, M = 79.9%)

• Cohort Size. Significant differences were found between the pass rates of small

cohorts (n = 10, M = 80.1%) and large cohorts (n = 91, M = 65.4%). However

a Spearman’s correlation only found a weak association between the number of

students enrolled in a course and pass rates, rs(101) = -.17, p = .10.

• Programming Language. No significant differences were found between the pass

rates based upon programming languages, although the pass rates were lowest for

courses which taught C (n = 7, M = 61.1%).

These results imply that aspects of the teaching context do not have a substantial

moderating effect on the programming performance of students. The more interesting

finding which was contributed by this thesis was that the pass rates of programming

courses have not substantially changed over time. This implies that student level factors

may be responsible for failing students.
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RQ2: Traditional Predictors based upon Learning Theories

RQ2: Which traditional learning theories describing the psychological and

cognitive aspects of learning, and which aspects of students’ academic back-

grounds are predictive of their programming performances?

Section 5.4.1 explored the associations between performance and predictors which were

based upon cognitive factors. These included learning styles and learning strategies.

Examining learning styles, weak correlations were found for the scores obtained on the

concrete/sequential r = .27 and abstract/sequential r = .29 dimensions of Gregorc’s

Style Delineator. For learning strategies, correlations were found for MSLQ total score

r = .22, critical thinking r = .28, and resource strategy (effort) r = .28. A moderate

correlation was found for intrinsic goal orientation r = .33. A strong correlation was

found for total self efficacy r = .54.

Section 5.4.2 explored the associations between performance and predictors which

were based upon psychological factors. These included attributional style and be-

havioural characteristics. Examining attributional style, a weak correlation was found

for attribution of success to task difficulty, r = -.10. Moderate correlations were found

for attribution to luck, r = -.31, and attribution to ability, r = .40. Considering be-

havioural characteristics revealed a strong negative correlation found for hours spent

working in a part time job, r = -.64.

Section 5.4.3 explored the associations between performance and predictors which

were based upon academic factors. These included subject specific performance, grade

point average, and prior programming experience. Having prior programming experi-

ence appeared to weakly support programming performance, r = .13, and overall High

School GPA revealed a similar weak correlation, r = .27. A moderate correlation was

found for university calculus grade r = .37.

When considering the context dependence of the predictors, 18 predictors were

found to be context dependent. Out of the context independent predictors identified by

this study, only five of the predictors examined yielded an average moderate correlation

strength. The remaining 14 context independent predictors were found to yield weak

correlations at best. The regression analysis conducted in Section 5.4.5 showed that a

moderate amount of the variance in performance could be accounted for (R2 = 21.40%,

p < .05) when considering only context independent predictors. However when using

all of the predictors examined in this study, a regression could explain a large amount

of the variance in performance (R2 = 35.90%, p < .01). This suggests that it is difficult

to construct a generalisable model upon traditional predictors possibly because they

were not designed for the purpose of predicting programming performance.
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RQ3: Data Driven Predictors based upon Programming Behaviour

RQ3: Which data-driven metrics derived from data describing students’

programming behaviours are predictive of their programming performances?

Section 6.4.2 explored the associations between performance and the compilation pair-

ings which were logged from students. Five significant (p < .01) correlations were

found (Figure 6.5) which showed that weaker students are associated by making a

greater percentage of successive errors than their peers, and a smaller percentage of

successive successful compilations. The regression analysis showed that the percentage

of error to same error pairings which were logged from students could explain a mod-

erate amount of the variance in performance (R2 = 27.19%, p < .01). This was closely

followed by the percentage of error to any error pairings (R2 = 20.31%, p < .01).

Section 6.4.3 explored the associations between performance and the percentage of

lab time students spent working on pairings. Four significant (p < .01) correlations were

found (Figure 6.7) which showed that weaker students are characterised by spending

a greater percentage of their lab time resolving errors than their peers. The regression

analysis showed that the percentage of lab time spent working on error to same error

pairings could explain a moderate amount of the variance in performance (R2 = 27.85%,

p < .01). This was closely followed by the percentage of lab time students spent working

on error to any error pairings (R2 = 26.19%, p < .01), error to different error pairings

(R2 = 17.50%, p < .01) and two successful compilations (R2 = 14.67%, p < .01).

Section 6.4.4 presented the Robust Relative algorithm which computes a score de-

scribing how undesirable a student’s programming behaviour was over a session. The

novel relative penalizing of students based upon how their resolve times for different

types of error compares to the resolve times of their peers, along with the hybridization

of four metrics of programming behaviour, resulted in a stronger predictor than any

of the singularly considered metrics. The regression analysis showed that the Robust

Relative scores could significantly (p < .01) explain a large amount of the variance in

the performance of all three samples of students, R2 = 42.19%, 43.65% and 44.17%.

As with many of the metrics explored in this study, the consistent results found on

all three datasets suggests the generalisability of these predictors to different contexts.

The comparative analysis conducted in Section 6.4.5 (Figures 6.11 and 6.12) showed

that the Robust Relative algorithm could account for the largest amount of the variance

in performance when limited data was available (four sessions). The metrics based upon

the percentage of lab time students spent working on pairings explained a larger amount

of the variance in performance than those based upon the percentage of different types

of pairings. This suggests that time is a more important predictor than frequency.
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RQ4: Meta-Analysis of Fifty Years of Research on Factors that Can

Predict Programming Performance

RQ4: How do factors based upon traditional learning theories, academic

background, and programming behaviours, compare when they are used to

predict students’ programming performances across different teaching con-

texts?

Chapter 7 synthesised 482 results which described the relations between 116 predictors

and programming performance across multiple teaching contexts. These predictors

were classified into a six class theoretical framework and discussed in Section 7.4.

The majority (63%) of the 16 aptitude predictors explored in Section 7.5.1 were

found to have a weak effect on performance. Over one third (37%) of the 35 psycho-

logical predictors explored in Section 7.5.4 and both of the 2 demographic predictors

explored in Section 7.5.6 were found to have no effect on performance.The 27 cognitive

predictors explored in Section 7.5.3 and the 19 academic background predictors explored

in Section 7.5.2 were found to have a comparable effect on programming. 82% of cog-

nitive predictors, and 84% of academic predictors were found to have a weak/moderate

effect on programming. The 17 predictors based upon aspects of programming be-

haviour that were explored in Section 7.5.5 were found to have the strongest effect on

programming performance. Out of the 17 predictors in this class, 11 predictors (65%)

were found to have moderate to very strong effects on performance.

Section 7.6 summarised the strongest and weakest predictors found by this meta-

analysis. Almost half (47%) of the strongest 15 predictors were based upon program-

ming behaviour. Out of the remaining 8 strongest predictors, 4 (27%) were cognitive

predictors, 3 (20%) were academic predictors, and 1 (6%) was based upon aptitude test-

ing. These results suggest that the strongest predictors of programming performance

which have been found over the past fifty years are based upon programming behaviour.

Additionally, 5 of the strongest predictors were identified by the experiments conducted

to answer RQ3 of this thesis. However, several of the traditionally measured attributes

also featured among the strongest predictors. The presence of self-efficacy and comfort

level suggests that an element of self belief, or self concept is necessary for programming

success. The presence of college math, physics, and chemistry among the top predictors

reinforces anecdotal evidence that a level of scientific maturity, or scientific thinking,

is a necessary skill to become a successful programmer.

Two thirds (67%) of the weakest 15 predictors were based upon demographic and

psychological factors. These results showed that self perceived abilities, learning styles,

personality traits, age, and gender, have little relevance for programming success.
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8.3 Implications for the Theoretical Framework

The framework of factors displaying the results of this thesis is shown in Figure 8.1.

External Factors

RQ1 examined the influence which factors from the teaching context had on program-

ming performance. Only cohort size and grade level of the institution were found to

significantly moderate performance. Based upon these results, the wider implication

for practice is that the best approach for teaching programming may be one which is

based upon using small groups, and replacing traditional university approaches with

classroom based instruction. This ties in with research on small group teaching, and the

use of pair programming to improve the performance of programming students [119].

Although not statistically significant, there were differences between the failure rates

of courses which taught C and courses which taught Java (Figure 4.6). This ties into the

literature on the difficulties of learning different types of languages from a conceptual

perspective [45,99,127,136]. The fact that the year in which the course was taught did

not significantly moderate performance perhaps alludes to the presence of threshold

concepts in programming [22, 106, 121] in that no matter how well supported students

are by advances in pedagogy, there are still fundamental programming concepts for

which the learning barrier cannot be easily lowered.

Internal Factors

RQ2, RQ3, and RQ4 examined the factors which are internal to students. Of the

six classes proposed in the framework, the results from the meta-analysis showed that

certain programming behaviours, cognitive, and academic predictors were relevant.

Specifically, the implications from these findings is that successful programming stu-

dents are characterised by high levels of self efficacy, have performed well in college

level science subjects, and exhibit traits of desirable programming behaviour.

To rapidly identify at risk students before assessments take place, we suggest that

an initial screening can be performed by considering the students academic background

and results from a test based upon self efficacy. Following this, the predictors based

upon programming behaviour which have been identified in this thesis, in particular the

Robust Relative algorithm, could be applied to continually and autonomously monitor

the students programming behaviours. Due to their automated nature, the use of

programming behaviours could be applied to alert instructors when students appear to

be at risk, or to provide an automated pedagogical intervention to support them, such

as adapting the compilation feedbacks they receive [199].
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Figure 8.1: Updated theoretical framework, displaying the strongest fifteen internal
factors from the meta-analysis, and the two influential external aspects of the teaching
context identified by this thesis.
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8.4 Limitations

The limitations of the four studies which have been performed in this thesis were

discussed in Sections 4.5.1, 5.5.1, 6.5.1 and 7.6.3. We briefly discuss the limitations

which run through the entire thesis.

The main limitation of this thesis is that it has explored quantitative evidence

only, and no qualitative evidence has been included. However, this was an appropriate

decision based upon the nature of this study. This thesis made use of substantial quan-

titative evidence from previous research in order to develop an understanding of which

trends existed between different types of predictors and programming performance.

Identifying such a trend would have been near impossible by using qualitative evidence

only, due to the varying measurement techniques which would have been performed by

different studies. Most of the quantitative predictors explored in this study were based

upon standardised testing instruments which increases the reliability of the findings.

The second and unavoidable limitation of this thesis is that the the assessment

criteria and learning objectives will vary between the different studies we have analysed.

Studies within the UK generally defined a pass boundary at 40%, whereas other studies

from the USA defined a pass boundary at 50%. Therefore this thesis unavoidably has

to assume that a consistent notion of programming performance exists and holds valid

across the different teaching contexts. But, we note that this a common limitation

of studies of this nature and that meta-analysis techniques are designed to take into

account such limitations.

8.5 Future Directions

There are numerous potential directions for future work in this area. In this section we

provide suggestions for future work within the area.

Identifying Further Data Driven Predictors

The data-driven predictors which were based upon analysing aspects of programming

behaviour were among the strongest predictors examined over the past fifty years (Sec-

tion 7.6), and their automated nature provides several advantages over the traditionally

explored predictors based upon learning theories. It would seem to be worthwhile for

future researchers to continue to identify programming behaviours which are predic-

tive of programming performance. Most research to date has only been conducted at

single institutions on a small scale. In contrast the Blackbox project which collects

data from worldwide users of the BlueJ IDE provides an opportunity to explore the
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programming behaviours of thousands of students working worldwide across different

teaching contexts [25]. However one of the main limitations of Blackbox is the lack of

outcome measure in the dataset, making it difficult for researchers to know whether

the data they are analysing is taken from a high or low performing student. Until this

issue is addressed, researchers will be limited in the depth of analyses which they are

able to perform using the Blackbox dataset.

Exploring the Context Dependency of Data Driven Predictors

One of the weaknesses of the data-driven predictors which we identified in Chapter 6

is that they have only been explored in our teaching context. Whilst the results of the

meta-analysis suggest that these predictors will perform comparably in similar teach-

ing contexts, it would be worthy to explore how they generalise to different teaching

contexts which use different teaching approaches, tools, and programming languages.

We are currently working with the University of Helsinki to explore this hypothesis.

Developing Practical Applications

There are numerous possible practical applications of the data-driven predictors and

algorithms which have been identified in this thesis. One possible application could be

to apply the predictors in an intelligent tutoring system, to automatically adjust the

levels of compilation feedbacks provided to students.

Feedback is regarded as having one of the most important influences on learning

and motivation. When learning to program students are guided on the correctness of

their syntax by compiler feedback. However standard compiler feedback is designed

for experts - not novices, and often fails to match their current level of conceptual

knowledge, making it difficult to understand. Although programmers can often en-

counter cryptic messages which are difficult to resolve, most related disciplines have

not paid much attention to this aspect, because it is felt that programmers should

adapt to compilers [185]. In contrast most pedagogical theory places a strong emphasis

on adaptation to the individual to make instruction most effective [167]. Additionally

as most compilers are context-sensitive, the same error feedback can be presented for a

range of different underlying causes. In essence, if we consider the principles of effective

feedback from a pedagogical perspective (such as precision) [167], the feedback which

is supplied to novice programmers from the compiler offers the exact opposite of what

they require [199]. By using the data-driven metrics identified in this thesis, it could

be possible to design a feedback system which is capable of pre-emptively providing

support to weaker students who are displaying undesirable programming behaviour.



Future Directions 215

Applications of the Predictors to other Computer Science Modules

It would be useful to determine how effective the strongest predictors identified in this

thesis are at predicting performance in other computer science modules, for example,

Introduction to Python or Discrete Mathematics. Programming is only one skill which

students must master in order to be awarded a computer science degree. If a subset

of predictors could be identified which predict performance in several computer science

modules, then it may be possible to construct a model which can predict students who

are at risk of failing their entire degree. Such a predictive model would be a highly

significant contribution to the education community. It would highlight which factors

and skills are the most important for “computer science thinking” and could possibly

be applied for the purpose of identifying and improving the weak skill sets of weaker

students which may cause them to drop out.

Impact of Different Teaching Approaches on Programming

One aspect of the teaching context which we did not explore in this thesis was the teach-

ing methodology employed by instructors. Whilst numerous studies suggest approaches

that provide effective means of teaching programming, no study had attempted to quan-

titatively compare the impact that these approaches can have on improving the pass

rates of failing programming courses. Without any quantitative evidence on the rela-

tive strengths of different approaches, the research community as a whole will continue

to lack a clear consensus of precisely which methodologies provide the most effective

means of teaching programming and saving failing programming students.

In conjunction with the University of Helsinki and following on from the research

presented in Chapter 4, we have published a quantitative systematic review on arti-

cles describing introductory programming teaching approaches, and analysed the effect

that various interventions can have on the pass rates of introductory programming

courses. The results showed that on average, teaching interventions can improve pro-

gramming pass rates by nearly one third when compared to a traditional lecture and

lab based approach. While no statistically significant differences between the effective-

ness of teaching interventions were observed, marginal differences do exist. The courses

with relatable content (e.g. using media computation) with cooperative elements (e.g.

pair programming) were among the top performers with CS0-courses, whilst courses

with pair programming as the only intervention type and courses with game-theme

performed more poorly when compared to others [193].
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Deeper examination of Programming Behaviour

Another good direction for future work would be to perform a qualitative analysis

of programming behaviour to identify the true underlying causes of the symptoms of

struggling students based upon aspects of their programming behaviour. For instance,

although frequently repeating errors is data-driven metric which can be used to infer

that a student is displaying signs of struggling behaviour, the actual underlying cause of

this behaviour was not explored within this thesis. By developing a deeper understand-

ing of the underlying cause of the symptoms of undesirable programming behaviour, a

more accurate and practical intervention system could be developed.

Although the penalties selected within the Robust Relative algorithm were derived

through using a machine learning approach and validated on multiple datasets, there re-

mains the question as to why different penalties were selected for the components. e.g.,

the exact reason why making two successive errors with the same location was awarded

a higher penalty than repeating the exact error type remains for future exploration.

8.6 Summary

This chapter has summarised the research presented in this thesis, and has discussed

the contributions, limitations, and possible directions for future works. This thesis has

provided much needed quantitative evidence on the worldwide outcomes of program-

ming courses, explored the impact of aspects of the teaching context on performance,

and has statistically synthesised over fifty years of research by applying unbiased meta-

analysis techniques. The data-driven predictors which were identified in this thesis

have shown considerable potential as predictors of programming performance by yield-

ing consistent results on three independent datasets. This thesis can be considered to

be a precursor to the valuable multi-national, multi-institutional studies which must

follow. Only by performing such studies, can the relevant factors explored and metrics

identified in this thesis be verified across a more varying set of contexts, and thus, truly

generalisable predictors be identified.

This thesis argued that factors based upon traditional learning theories struggle to

consistently predict programming performance across different teaching contexts be-

cause they were not intended to be applied for this purpose. In contrast, the main

advantage of using data-driven approaches to derive metrics based upon students’ pro-

gramming processes, is that these metrics are directly based upon the programming be-

haviours of students, and therefore can encapsulate such changes in their programming

knowledge over time. Researchers should continue to explore data-driven predictors in

the future.
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A.1 Assumption Testing

The Shapiro Wilk test of normality (W ) tests the null hypothesis that a sample,

x1, ..., xn comes from a normally distributed population and is recommended for small

or medium sized samples (n ≤ 100). The test is given by:

W =
(
∑n

i=1wix(i))
2∑n

i=1(xi − x̄)2
(A.1)

where n is the number of observations, X is the original data, X ′ is the ordered data,

and X̄ is the sample mean of the data. The constants wi are given by:

w1, ..., wn = MV −1[(M ′V −1)(V −1M)]−
1
2 (A.2)

where M denotes the expected values of the standard normal order statistics for the

sample, and V is the corresponding covariance matrix. When W = 1, the sample follows

a perfect normal distribution. If the test statistic is non-significant, p > .05, then the

distribution of the sample is not significantly different from a normal distribution, and

parametric tests can be used. If the test statistic is significant, p < .05, then the

distribution of the sample is significantly different from a normal distribution, and

either data transformations, or non-parametric equivalent tests can be used.

The Levene Test for Equality of Variances tests the null hypothesis that the

variances across k subgroups are equal. Given a variable Y with a sample size N

divided into k subgroups, where Ni is the size of the ith subgroups, the Levene test

statistic is defined as:

W =
(N − k)

(k − 1)

∑k
i=1Ni(Z̄i − Z̄ij)

2∑k
i=1

∑Ni
j=1(Zij − Z̄i)2

(A.3)

where Zij = |Yij− Ỹi.|, and Ỹi. is the median of the i-th subgroups, Z̄i are the subgroup

means of Zij , and Z̄.. is the overall mean of Zij . The median is recommended as

the choice of Ỹi., to provide good robustness against many types of non-normal data

without sacrificing power. If the test statistic is non-significant, p > .05, then there

are no differences between the variances of the subgroups. If the test is significant,

p < .05, then homogeneity of variances cannot be confirmed, and a correction needs to

be applied to the results. In the case of an one-way ANOVA, this includes reporting

the results of a Welch ANOVA and using a Games-Howell post-hoc test instead of the

conventional Tukey post-hoc test.
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A.2 Association

Pearson’s Product Moment Correlation Coefficient (r) measures the strength of

the linear relationship between two continuous variables. It is based on the assumption

that both variables are interval or ratio based, and are samples from populations that

follow a normal distribution. Given two n dimensional vectors, X = X1, ..., Xn and

Y = Y1, ..., Yn, the Pearson’s correlation coefficient is calculated by:

r =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√

(
∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2
(A.4)

The value of r can range from -1.0 representing a perfect negative linear relationship,

to 1.0 representing a perfect positive linear relationship. A value of 0 indicates no

relationship between two variables. The strengths of the relationships between X and

Y that are between these values are classified in this thesis based upon the guidelines

of [47], who defined the following interpretations of the absolute value of r:

• no association, |r| < .10.

• weak association, .10 ≤ |r| < .30.

• moderate association, .30 ≤ |r| < .50.

• strong association, .50 ≤ |r| < .80.

• very strong association, .80 ≤ |r| ≤ .1.0.

If the test statistic is non-significant, p > .05, then there is insufficient evidence to

conclude that a linear relationship between X and Y exists in the population. If the

test is significant, p < .05, then there is sufficient evidence to conclude that a linear

relationship between X and Y exists in the population. If there are violations of

assumptions, then the non-parametric Spearmans-Rank Correlation Coefficient (rho)

may be calculated instead, which has a similar interpretation to r as above.

A.3 Prediction

Multiple linear regression is used to assess the relationship between a continuous

dependent variable (Y ) and a combination of several continuous independent variables

(X = X1, ..., Xn). It can be applied for two main purposes. Firstly, to determine

how much of the variation in the dependent variable can be explained by the indepen-

dent variables. Secondly, to predict new values for the dependent variable given the
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independent variables. Regression requires that a number of underlying assumptions

are satisfied, including: a linear relationship between the dependent variable and each

of the independent variables exists (scatter plot), no significant outliers (box plot),

homoscedasticity (scatter plot), independence of residuals (Durbin-Watson), normally

distributed residuals (Shapiro-Wilk) and no multicollinearity between independent vari-

ables (rxy < .70). The regression equation is given by:

Ŷ = A+B1X1 +B2X2 + ...+BnXn (A.5)

where Ŷ is the predicted value on the dependent variable, the X values represent

the independent variables, the B values are the regression coefficients, representing

the amount the dependent variable Ŷ changes when the corresponding independent

variable changes one unit, A is the intercept with the y-axis, representing the value

of Ŷ when all the independent variables are 0. The regression line is commonly fitted

through a least-squares method, where a line of best fit is calculated by minimising the

sum of squares of the actual values Y and the predicted values Ŷ . The quality of a

regression model can be judged based upon several aspects.

The F -ratio is used to determine whether the proposed regression model fits the data

well, and is the ratio of the mean regression sum of squares, to the mean residual sum

of squares. The null hypothesis of this test is that the multiple correlation coefficient,

R, is equal to 0. What this also means is that at least one regression coefficient (except

the intercept) is statistically significantly different to zero. If the test-statistic is not

significant, p > .05, then it can be concluded that the model is unreliable, and that

there is a lack of linear fit. If the test-statistic is significant, p < .05, then it can be

concluded that the model is reliable, and that there is linear fit.

The root mean squared error (RMSE) describes the absolute fit of the regression

model to the underlying dataset in terms of how close each of the observed data points

(Yi) are from the models predicted values (Ŷi), providing a good measure of how accu-

rately the regression model can predict the actual response. The lower the RMSE the

better the fit the model is to the dataset. But, the precise definition of what constitutes

to be a good RMSE depends upon the purpose for which the model is developed.

The coefficient of determination (R2) represents the proportion of variance in the

dependent variable that can be explained by the independent variables. Generally

the greater the percentage of variance that is accounted for by the model, the more

accurate the predictions can be. However, there is a risk of over-fitting a model if too

many independent variables are added. R2 can be interpreted similarly to Pearson’s r

as follows:
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• no effect (R2 ≤ .02)

• weak effect (R2 ≥ .03)

• moderate effect (R2 ≥ .10)

• strong effect (R2 ≥ .25)

• very strong effect (R2 ≥ .65)

Stepwise regression is a variation of multiple linear regression where independent

variables are added to the model in sequence (rather than simultaneously), and then

are assessed as to whether they have a significant role in explaining the variance of the

dependent variable. If adding an independent variable contributes to the coefficient

of determination, then it is retained, but all other variables in the model are then re-

tested to see if they are still contributing to the success of the model. If they no longer

contribute significantly they are removed. The advantage of this technique is that it

usually results in smallest possible set of independent variables included in the model,

without significantly impacting on the coefficient of determination. If the variable

does not contribute, then it may be possible to use fewer independent variables in the

regression model and still maintain a good level of prediction. Thus, this approach

reduces the likelihood of overfitting a model to a large set of independent variables,

which is a risk of multiple regression.

A.4 Differences Between Groups

The independent samples t-test is used to determine whether there are any dif-

ferences between the means of two independent groups on a continuous dependent

variable. It is based on the assumptions that each group’s data is approximately nor-

mally distributed and that there is homogeneity of variances across the two groups. If

these assumptions are satisfied, then the t-test can be calculated by using:

t =
x̄1 − x̄2√
S2

1
n1

+
S2

2
n2

(A.6)

where x1 and x2 are the given values of both groups, S1 and S2 are the standard

deviations of both groups, and n1 and n2 are total number of values of both groups.

If the test statistic is significant, p < .05, then the difference between the population

means is zero. If the test statistic is non significant, p > .05, then the difference between

the population means is not zero.
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If assumptions are violated, then sensitivity analysis can be conducted by running an

equivalent non-parametric test, Mann-Whitney U test, and providing that both tests

lead to the same conclusion, the t-test will still be valid for the analysis.

The One-Way Analysis of Variance (ANOVA) is used to determine whether there

are any differences between the means of two or more independent groups, and can be

considered as an extension to the t-test. It is based on the assumption that each

group’s data is normally distributed, and that there is homogeneity of variances across

the groups. As a rule of thumb, it is recommended that an ANOVA is only conducted

when each group consists of at the very least six values. If these assumptions are

satisfied, then an ANOVA F -ratio can be calculated by using:

F =
between group variance

within group variance
=

∑
i ni(X̄i − X̄)2/(K − 1)∑
ij(X̄ij − X̄i)2/(N −K)

(A.7)

where X̄i is the sample mean of the ith group, ni is the number of observations in the

ith group, X̄ denotes the overall mean of the data, and K denotes the number of groups,

Xij is the jth observation in the ith out of K groups and N is the overall sample size.

If the test statistic is significant, p < .05, then at least one group mean is different, and

a Tukey post-hoc test can be conducted to identify any significant differences between

groups. If the test statistic is non significant, p > .05, then all group means are equal

and no post-hoc tests need to be conducted.

If the assumption of homogeneity of variances is violated, then a robust version of

the ANOVA, such as Welch’s ANOVA needs to be performed, and post-hoc analysis

performed using a Games-Howell test, rather than the conventional Tukey post-hoc

test. If multiple assumptions are violated, then sensitivity analysis can be conducted

by running an equivalent non-parametric test, Kruskal-Wallis H test, and providing

that both tests lead to the same conclusion, the one-way ANOVA will still be valid for

the analysis.
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A.5 Meta Analysis

The following section outlines the statistical analysis procedures that were used to

perform the meta-analysis that was conducted as part of this thesis. Other details of the

methodology such as descriptions of the literature search methodology and description

of the resulting sample are discussed in the relevant chapter.

A.5.1 Effect Size Calculations

As this study mainly examines linear relationships between two continuous variables,

or in some cases, a dichotomous and continuous variable, Pearson’s r was selected as

the most appropriate measure of effect size in this thesis. This measure was selected

as it provides a number of advantages over alternative measures that are based upon

standardized mean difference (Cohen’s d or Hedges’ g), including:

• In the case of studies that use a t-test or F -ratio, calculating a corresponding

Pearson’s r only requires the inferential test value and degrees of freedom to be

reported. This allows a converted effect size to be more accurately calculated for

studies that fail to report this data.

• The same equations are used to compute r for independent sample, and repeated-

measures inferential tests, whereas different formulas are necessary when comput-

ing g or d.

• r is already familiar to most students and researchers and as such, a number of

studies already report their findings using r. In other words, less conversions of

reported effect sizes are required than in the case of using g or d.

• r is more suitable for describing an association between two continuous variables

than g or d. [31].

When studies did not directly report their effects in terms of Pearson’s r, a number of

conversion formulae were applied based upon available data. These included:

• Independent t-test

r =

√
t2

t2 + df
(A.8)

• Independent F -ratio

r =

√
F(1,df)

F(1,df) + df
(A.9)
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• 2 x 2 (i.e. 1 df) contingency χ2

r =

√
χ2

(1)

n
(A.10)

• Probability levels from significance tests

r =
Z√
n

(A.11)

• Standardized mean difference, Cohen’s d

r =

√
d2

d2 + 4
(A.12)

• Standardized mean difference, Hedges’ g

r =

√
g2nenc

g2nenc + (ne + nc)df
(A.13)

where Z is the standard normal deviate, not Fisher’s z-transform, n is the total sample

size, nc is the size of the control group, ne is the size of the experimental group, df is

the degrees of freedom.

A.5.2 Effect Size Corrections

Artifact correction attempts to adjust the effect sizes calculated from a study to take

into account the imperfections in the measurement instruments that were used. This

allows conclusions to be formed about the associations among constructs, rather than

among the instruments that were used to measure constructs [78]. There are two com-

mon forms of artifact correction in addition to applying Fisher’s z to r transformation.

Generally, corrections to effect sizes take the following form:

Effect Size (ES) =
ESobserved

αcorrection
(A.14)

Standard Deviation (SD) =
SEobserved

αcorrection
(A.15)

Unreliability refers to non-systematic error that occurs during the measurement process

that arise from sources of error that are beyond the control of instruments used to

measure a construct. For example, the same instrument can be used to measure a
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construct across different teaching contexts or lab conditions, but the instrument itself

does not take these different conditions into account [78]. Unreliability can be corrected

by applying the following formula:

αunreliability =
√
rxx (A.16)

where rxx is the reliability estimate of a variable xx, such internal consistency of a

measure Cronbach’s α, or inter-rater reliability, Cohen’s κ.

Artificial dichotomization refers to splitting a variable that is naturally continuous

into two distinct categories. For example, measuring programming ability in terms

of pass or fail instead of using an overall numerical course mark. As artificially di-

chotomizing a variable that is naturally continuous can attenuate associations that this

variable has with others, corrections for artificial dichotomization can be performed by

using:

αdichotomization =
φ(c)√
PQ

(A.17)

where P and Q are the proportions of each group, and φ(c) is the normal ordinate at

the point c.

Fisher’s z to r transformation (Zr) is commonly applied to satisfy two assumptions

for meta-analytic methods. Firstly, many meta-analytic methods assume an approxi-

mately symmetrical sampling distribution of observed outcomes about a given popula-

tion. However in general, the sampling distributions of correlations are skewed. Fisher’s

z to r provides an effective normalizing transformation, yielding an almost symmetrical

distribution of transformed correlations, and satisfying one of the assumptions required

by meta-analytic techniques. However, this is not the main purpose of applying the

transformation. Another assumption of meta-analytic methods is that the sampling

variances of the observed outcomes are approximately known. However, calculating

the sampling variance using Pearson’s r requires knowing the true correlation coeffi-

cient, which isn’t always known. Fisher’s z to r transformation provides a means of

approximating the sampling variance without requiring knowledge of this population

correlation coefficient, allowing the second assumption of meta-analytic methods to be

satisfied [31]. Fishers z to r is calculated using the following formula:

Zr =
1

2
ln

(
1 + r

1− r

)
(A.18)
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A.5.3 Meta Analytic Model Fitting

In general, there are three meta-analytic models that can be used to compute an overall

effect size. These are the fixed, random, and mixed effects models [31,71,78,191].

Fixed Effects Model

The fixed effects model is defined as:

ESi = θ + εi (A.19)

In the fixed effects model, the effect sizes for each study ESi are assumed to be a

function of two components, namely a single population effect size θ, and the deviation

of this study from the population effect size εi. Generally, the population effect size is

unknown, and is instead estimated by using a weighted average of the effect sizes, using

the studies that are included in the meta-analysis. The weighting (w), that is applied

to each study is defined as:

wi =
1

SEi
2 (A.20)

where SEi is the standard error of the effect size estimate, for study i. The fixed effects

model assumes that all studies included in the analysis share a true common effect

size, and that differences in effect sizes between different studies are due to random

sampling fluctuations alone. It is appropriate to use this type of model if a sample of

effect sizes is Heterogeneous. Whether a sample is heterogeneous can be determined

by the following formula:

Q =
∑

(wi(ESi − ES
2
) (A.21)

and the magnitude of heterogeneity (I2) can be found by:

I2 =


(

(Q− (k − 1))

Q

)
× 100 if Q > (k − 1)

0 if Q ≤ (k − 1)

(A.22)

The main limitation of the fixed effects model is that unconditional inferences cannot

be made about the larger set of studies from which the studies included in the meta-

analysis are assumed to be randomly sampled from. For this reason, the fixed effects

model is most applicable when the objective of the researcher is to compute a common

effect size, that is to be generalized to identical studies of the same population, both

in terms of the characteristics of the sample, and methodology used.
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Random Effects Model

Most meta-analyses are based on sets of studies that are not exactly identical in their

methodology and/or the characteristics of their sample. Differences in the methods and

sample characteristics can introduce variability (heterogeneity) among effect sizes that

cannot be explained through random sampling fluctuations alone. One way to model

this heterogeneity is to treat it as purely random. This leads to the random effects

model, which is defined as:

ESi = µ+ ϑi + εi (A.23)

The main difference compared to the fixed effects model is that rather than assuming

there is a single population effect size, there is actually a distribution of population effect

sizes (due to differences in methods and sample characteristics), and that an overall

effect size can be calculated by averaging the effects within this distribution. To reflect

this, the single population effect size estimate used by the fixed effects model (θ) is

decomposed into two parameters: a measure of the central tendency of the distribution

(µ), and the reliable deviation of each study, from the mean of the distribution of

population effect sizes (ϑ). As with the fixed effects model, a weighting of effect sizes

is applied, however the weighting of the random effects model is defined as:

w∗i =
1

τ2 − SE2
i

(A.24)

where τ2 represents the population variability in effect sizes and is calculated by:

τ2 =


Q− (k − 1)

(
∑
wi)−

(
∑
w2
i )

(
∑
wi)

if Q ≥ (k − 1)

0 if Q < (k − 1)

(A.25)

which can be applied to calculate the Random effects mean effect size:

Zr =

∑
w∗Zr∑
w∗

(A.26)

with the Random effects mean standard error:

SEZr
=

√
1∑
w∗

(A.27)

Compared to the fixed effects weighting, when assigning weights to different studies in

the random effects model, information in the smaller studies is not discounted by giving
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it a smaller weight. The goal is to estimate the effects in a range of populations, so a

weighting is applied, but the overall estimate is not overly influenced by any one effect

size. Larger studies still receive a larger weighting, but the weighting is more evenly

distributed across the rest of the studies included. Larger studies are still influential, but

the impact is much less pronounced. Similarly, smaller studies have a larger weighting

than in the fixed effects model, and can influence the overall effect. The trade off of this

weighting is that variance in the random effects model is defined as variance within a

study, plus variance between studies. As long as the between studies variation is non-

zero, the variance, standard error, and confidence interval will always be larger than

an estimate using a fixed effects model. However, the main strength of the random

effects model is that it allows unconditional inferences to be made about the larger

set of studies, from which the studies included in the meta-analysis are assumed to be

randomly sampled from (whether such studies currently exist or not). For this reason,

the random effects model is most applicable when the objective of a researcher is to

accumulate data from a series of studies that have been performed under a number

of different conditions. The subjects or interventions have differed in ways that can

impact on the results, and a single true effect size cannot be assumed. Essentially the

strength of the random effects model is generalization to a population of studies, with

the trade off of less precise point estimates (wider confidence intervals).

Mixed Effects Model

Mixed effect models extend random effect models by allowing the inclusion of one or

more moderators (study level variables) in the model, that may account for at least part

of the heterogeneity in the true effects. These models combine moderator analysis from

the fixed effects model, with the generalizability of the random effects model. Analysis

in the mixed effects model follows the logic of moderator analysis within a general

regression framework. However, these models include additional terms representing

population variability in effect sizes, above and beyond systematic variability accounted

for by moderators as well as sampling fluctuations. The general equation for mixed-

effects models can be represented by the following equation:

ESi = β0 + β1(X1) + β2(X2) + ...+ ϑi + εi (A.28)

where β0 is the model intercept, X1, X2... are moderator variables, and β1, β2... are

the regression coefficients of the moderator variables. In the mixed effects model, τ2

denotes the amount of residual heterogeneity among the true effects. That is, variability

among the true effects that is not account for by the moderators included in the model.
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Introduction to Programming Bench Test

Dr N.S. Holliman

10th November 2011

The Scenario

A max-min thermometer stores the current and the maximum
and minimum temperatures over a given time interval.

This bench test concerns two Java classes called :
Thermometer and Simulation.
Code listings of these can be found at the end of the document.

Note: In the following questions, when asked to write or
rewrite elements from the classes, you only need to write down
the parts required, all unchanged code can be omitted.

1
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Questions

1. The resetMinMax() method in the class Thermometer

makes use of two variables min and max. What is the
scope of each of these variables? [2 marks]

How does this contrast with the scope of the variable
tempNow used in the method newSample()? [2 marks]

2. Draw an object diagram using UML that depicts the ob-
ject structure when the testThermometer method is run-
ning. [6 marks]

NOTE: ensure your diagram clearly depicts all object in-
stances that have been created and includes the attribute
fields.

3. Extend the Thermometer class so that it calculates and
stores the average temperature since the last reset, in-
clude an accessor method to return the current average.
[8 marks]

4. Design a new class, RainGauge, that can accept regular
readings of rainfall to the nearest 0.1 cm and keeps a total
value since the last reset.

Write source code that includes a constructor method to
initialise instances of the class and a mutator method that
can be used to update the total value. [4 marks]

Add an accessor method that returns the total rainfall
since the last reset. [3 marks]

2
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Java source code for the min-max thermometer.

public class Thermometer

{

private int min ;

private int max ;

private int current ;

public Thermometer()

{

resetMinMax();

}

public void newSample(int tempNow)

{

current = tempNow ;

if (current < min)

min = current ;

if (current > max)

max = current ;

}

public void resetMinMax()

{

min = 0 ;

max = 0 ;

}

public String toString()

{

return "Current temperature: " + current + "\n" ;

}

}

SOURCE CODE CONTINUES ON THE NEXT PAGE

3
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public class Simulation

{

private Thermometer minMaxThermometer ;

public Simulation()

{

minMaxThermometer = new Thermometer() ;

}

public int takeMeasurement()

{

return (int)( Math.random() * 20.0 ) - 10;

}

public void testThermometer()

{

int current ;

current = takeMeasurement() ;

minMaxThermometer.newSample( current ) ;

current = takeMeasurement() ;

minMaxThermometer.newSample( current ) ;

current = takeMeasurement() ;

minMaxThermometer.newSample( current ) ;

}

}

END OF SOURCE CODE.

4
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IP: Coursework specification - 
assignment earthquake 

Outline 

This work is due for electronic submission through duo by 2.00 on Monday 
27th January 2014. It contributes 20% to the final mark for this module. 

Objectives 

The objectives for this coursework are for you to demonstrate that you can 

• Define classes, fields, constructors and methods in Java 
• Use appropriate types, including collections 
• Implement basic algorithms using collections 
• Devise appropriate test cases 

Scenario: Earthquake monitoring 

Earthquakes can have devastating effects when they occur, and although it is 
known that they are more likely to occur in some places than in others they 
are almost impossible to predict. In order to help scientists understand 
earthquakes better, an international monitoring system is in place to record 
where earthquakes occur and how powerful they are. Earthquake strength is 
measured by the ‘magnitude moment’: earthquakes of magnitude three or 
lower usually imperceptible but those with magnitude seven and over can 
cause serious damage over large areas. National seismological observatories 
record earthquakes that occur, although different observatories were set up at 
different times, so the period over which historical data is available varies 
from place to place. 
 

Problem Specification 

When a method to find something is required, the value should be returned as 
a value from the method, not printed to the terminal.  
 
(25%) Define a Java class Earthquake with appropriate fields, methods and 
constructors to store and retrieve information about the 

• magnitude 
• position (latitude and longitude) 
• year of the event 
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(25%) Define a Java class Observatory with appropriate fields and 
constructors to store and retrieve 

• name of the observatory 
• the name of the country in which it is located 
• the year in which earthquake observations started 
• the area covered by the observatory (in square kilometres) 
• a list of Earthquake events that it has recorded. 

Include methods to find: 

• The largest magnitude earthquake recorded by the observatory 
• The average earthquake magnitude recorded at the observatory 
• The average number of earthquakes recorded per year at the 

observatory 
• A list of all earthquakes recorded at the observatory with a magnitude 

greater than a given number 

(25%) Define a Java class Monitoring which holds information about all 
observatories. Include methods to find 

• the observatory with the largest average earthquake magnitude 
• the largest magnitude earthquake ever recorded 
• a list of all earthquakes recorded magnitude greater than a given number 
• the observatory with the fewest earthquakes per year on average 

Testing 

(25%) Each class chould include a testing method which 

• test each method and checks that it executes it correctly 
• reports to the user via the console (i.e. System.out) when tests are 

passed or failed 

You do not need a separate test for each method: one test may cover two or 
more methods. 

Submission 

You need to submit, via duo, the source code (.java files) for your classes. 
 

Steven Bradley 2013-12-03 
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Introduction*to*Programming*
Week*18*Bench*Test*Thursday*13/3/2014*
*
To#be#carried#out#during#practical#slots#
Complete#all#of#the#tasks#below,#or#as#many#as#you#can#during#the#time.#
Submit#all#your#code#via#duo#(IP#Week#18#bench#test)#before#you#leave#the#lab.#
You#may#refer#to#your#notes#and#to#other#onEline#materials.#
You#may#use#bluej#or#any#other#tool#to#develop#your#program.#
You#may#not#contact#other#students#during#the#test#by#whatever#means.#
#
Here#is#the#definition#of#a#Java#class#Person,#which#is#to#be#used#within#an#onEline#sales#
environment.#
#
#
public class Person 
{ 
    private String forename; 
    private String surname; 
    private String email; 
     
    public Person(String fname, String sname){ 
        forename = fname; 
        surname = sname; 
    } 
     
    public String getName(){ 
        return forename + " " + surname; 
    } 
     
    public String getEmail(){ 
        return email; 
    } 
     
    public void setEmail(String address){ 
        email = address; 
    } 
     
    public String toString(){ 
        return getName() + " (" + getEmail() + ")"; 
    } 
} 
#

236 Example Term Two Bench Test

B.3 Example Term Two Bench Test



Tasks*
1. (40%)#Define#two#new#subclasses#of#Person#called#Staff and#Customer.#All#

staff#have#an#alphanumeric#staff#ID#and#optionally#a#member#of#staff#that#
manages#them.#All#customers#have#an#account#number#which#is#a#positive#whole#
number.#Include#for#each#class##

• A#constructor,#which#takes#the#forename,#surname#and#staff#ID/customer#
account#number#as#parameters.#

• Get#methods#for#fields.#
• A#toString()#method#which#includes#the#name,#email#address#and#

staff#ID/customer#account#number.#
For#the#Staff#class#only,#define:#

• A#method#for#adding#a#customer#to#the#client#list#of#a#member#of#staff.##
• A#method#for#assigning#a#manager#to#a#member#of#staff.#

2. (20%)#Each#member#of#staff#has#a#client#list#of#up#to#30#customers#that#they#are#
responsible#for#looking#after.#Adapt#your#Staff#class,#defining#field(s)#and#
method(s)#for#adding#a#client#(i.e.#customer)#to#a#member#of#staff#including#a#
check#that#hey#have#no#more#than#30#clients.#Define#a#custom#checked#exception#
class#which#should#be#used#to#report#if#the#condition#is#violated.#

3. (20%)#Write#a#main#method#for#the#Staff#class#which#tests#the#behaviour#of#
adding#a#client,#including#what#happens#when#the#client#list#size#is#too#large#and#
only#just#small#enough.#

4. #(10%)#The#customer#relationship#management#(CRM)#system#requires#that#
everything#it#considers#(staff,#customer,#products#etc)#should#have#its#own#
unique#code.#Adapt#the#Person,#Staff#and#Customer#classes#so#that#the#
Person#class#defines#a#new#abstract#method#uniqueCode()#which#returns#
unique#string#for#each#Staff#or#Customer#object.#For#example,#if#a#customer#
has#an#account#number#of##123456#then#the#unique#code#for#that#customer#
should#be#“Customer123456”.#

5. (10%)#Adapt#the#Person#class#so#that#when#a#HashSet#of#Person#objects#is#
made#that#there#are#no#duplicate#people#in#the#set,#even#if#two#distinct#Person#
objects#with#the#same#unique#code#are#added#to#the#set.#Remember#that#
HashSet#uses#the#hashCode()#method#and#the#equals()#method,#and#
that#any#two#objects#that#are#equal#must#have#the#same#hash#code.#E.g.#after#
your#modifications#the#following#code#should#print#“Set size 1”#

#
    HashSet<Person> s = new HashSet<Person>(); 
         s.add(new Staff("S P", "Bradley", "007")); 
         s.add(new Staff("Steven", "Bradley", "007")); 
         System.out.println("Set size " + s.size()); 
#
#
When*you*have*finished*don’t*forget*to*submit*all*of*your*code*via*duo.*Feel*free*to*
submit*partially*complete*work*if*you*run*out*of*time.*
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CS1011: Introduction to Programming:  
Practical 4: Teaching Week 5 
 
Instructions:  
BlueJ is available on the ITS machines in the laboratories. 
 

Level 1: Modelling a Class 

Develop on paper a class diagram that represents the problem below. Your 
model should consider the following points: 

What data do you want to store?  
What operations do you want to perform? 

HiLo Game In this game, the player has to guess a number. For each guess, 
they are told whether the number is higher or lower than their guess. The 
number of guesses may be limited, and the range of numbers to guess from 
could be altered. While the model should lead to a representation of the game 
that a user can play, you should also consider including a computer player. 
Think about the different styles of computer player, you could have a good 
player, or a poor player. 

You should propose the following in your model of your game, making sure 
you understand what each of the parts within the declarations and signatures 
mean: 

Field declarations  
Method signatures  
Constructor signature(s) 

 

Level 2: Implementing Your Model 
 
Now try to implement the class that you modelled in above. You should do this 
in a new BlueJ project, so on the BlueJ menu, select Project -> New Project 
and save it in your file space. 
 
Create a new class by selecting New Class on the left hand side. This will 
give you a choice of different types of class types that can be implemented in 
Java, but for the time being we are just concerned with the first type. Give 
your class a name and click Ok. 
 
When you open the editor for the new class you will see a lot of default code 
that BlueJ automatically includes to illustrate a field, constructor and method, 
along with the matching JavaDoc - comments describing what the class and 
methods do. While you may want to use these as a guide to get started, the 
best option is to clear out the contents of the class to start with a clean sheet. 
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Writing the class: Add in the class declaration with the curly brackets that will 
contain all the fields and methods for the class Add in the fields with their data 
types that you defined in your model. Pick the simplest method/constructor 
first to gradually build up the functionality in your class 
 
Hint: To produce a random number, the following expression can be added 
into a method in your class: 
int randomNumber = (int)(Math.random() * upperLimit); 
This expression will give you a random number from 0 to upperLimit - 1. If you 
want the range to be from 1 to upperLimit, simply +1 onto the end of the 
expression. 
 
Note: The method Math.random() returns a value of type double between 
0 and 1. This is multiplied by the range we want to select from, and then cast 
into the int data type using (int). This removes any numbers after the 
decimal place so will always round down. 
 
Remember, when comparing two Strings use the boolean expression: 
string1.equals(string2); 

 

Level 3: Extending Your Implementation 
Add in a GameManager class that records outcomes from the game you 
implemented above and can play repeated games (using the computer 
player). The two coins project used earlier in the course may help here. 
Think about the different statistics you can produce, e.g. average number of 
guesses in HiLo (can you beat the computer). 
 
For your implementation, draw an object diagram that depicts the object 
structure that is created when part way through a game.  
 
While we have not yet covered looping over code in the lectures, you may find 
it useful to be able to repeat segments of code using a loop. An example of a 
for loop that can be included in a method is shown below. Before using it, 
make sure you understand each part: 

for(int i=0; i < upperLimit; i++) { 
// body of for loop 
} 
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Appendix D

Publications

The publication which arose from this work can mostly be accessed via Google Scholar:

• https://scholar.google.co.uk/citations?user=yK64l0cAAAAJ
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