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Short Term Unit Commitment as a Planning Problem

Abstract

Josh Campion

‘Unit Commitment’, setting online schedules for generating units in a power

system to ensure supply meets demand, is integral to the secure, efficient, and

economic daily operation of a power system. Conflicting desires for security of supply

at minimum cost complicate this. Sustained research has produced methodologies

within a guaranteed bound of optimality, given sufficient computing time.

Regulatory requirements to reduce emissions in modern power systems have ne-

cessitated increased renewable generation, whose output cannot be directly con-

trolled, increasing complex uncertainties. Traditional methods are thus less efficient,

generating more costly schedules or requiring impractical increases in solution time.

Meta-Heuristic approaches are studied to identify why this large body of work

has had little industrial impact despite continued academic interest over many years.

A discussion of lessons learned is given, and should be of interest to researchers

presenting new Unit Commitment approaches, such as a Planning implementation.

Automated Planning is a sub-field of Artificial Intelligence, where a timestamped

sequence of predefined actions manipulating a system towards a goal configuration

is sought. This differs from previous Unit Commitment formulations found in the

literature. There are fewer times when a unit’s online status switches, representing a

Planning action, than free variables in a traditional formulation. Efficient reasoning

about these actions could reduce solution time, enabling Planning to tackle Unit

Commitment problems with high levels of renewable generation.

Existing Planning formulations for Unit Commitment have not been found. A

successful formulation enumerating open challenges would constitute a good bench-

mark problem for the field. Thus, two models are presented. The first demonstrates

the approach’s strength in temporal reasoning over numeric optimisation. The sec-

ond balances this but current algorithms cannot handle it. Extensions to an existing

algorithm are proposed alongside a discussion of immediate challenges and possible

solutions. This is intended to form a base from which a successful methodology can

be developed.
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Chapter 1

Introduction

1.1 What Is Unit Commitment?

A power system consists of many power stations, each containing a single or multiple

generating units. There are a few hundred units in the UK network [1], and thou-

sands in some US networks [2]. These units, or subsets of these units, are controlled

centrally by a System Operator (SO). Whilst some types of generating units such

as hydro power can come online and begin supplying power to the grid in minutes,

others such as coal and nuclear take many hours to warm up before they can be-

gin feeding power into the network [3, Chp 2]. Because of this, system operators

and utilities companies must know well in advance when to bring a generating unit

online.

Unit Commitment is an optimisation problem, specifically, scheduling which gen-

erating units will be online at what times, in order to meet electricity demand over

a given horizon subject to the many physical constraints on a power system [3, Chp

5]. The problem can vary in many ways, by including different subsets of operat-

ing constraints, some minimise the cost of generation, others optimise profit in a

competitive market.

Economic Dispatch is the name for the intrinsically linked sub-problem of the ex-

act output for each generating unit, for each time period that unit is online [3, §3.1].

Again there are many constraints and variants. A version of Economic Dispatch is

performed as part of Unit Commitment to assess the cost of a specific scheduling of

1



1.1. What Is Unit Commitment? 2

units.

Even though Economic Dispatch is calculated for the full planning horizon in

Unit Commitment, final unit outputs are not set by the values in the Unit Commit-

ment solution but by more complex Economic Dispatch algorithms run closer to real

time. This is because Unit Commitment is a very complex optimisation problem

and solving with full complexity would be infeasible given current technology. Also

final power outputs at time of delivery should be based on more up to date forecasts

of customer demand. This means the key part of the solution for Unit Commitment

is not the outputs of the generators, but the online schedules produced for each unit.

In principle one could implement Rolling Unit Commitment, where Unit Commit-

ment is recalculated at regular intervals throughout the time horizon, increasing the

accuracy of the outputs produced. In practice market reforms would be required

in many operating areas for this to take place, and such action takes much time to

implement. The current market schedules relating to Unit Commitment for some

US operating areas can be found in [4].

Unit Commitment is an extremely important problem to the power industry,

one that is integral to the secure, efficient, and economic daily operation of a power

system. The operational cost of running a power system over just one day is huge,

and with rising oil and gas prices the cost is ever increasing. Coupling this with

customer, political, and regulatory, demands for lower prices has lead the industry

towards an obsessive need to optimise every aspect of the system. Committing

one portfolio of units over another could have very expensive consequences for the

operational cost of that day, so ensuring the correct portfolio is chosen is imperative.

Mathematical Optimisation is a huge field of research, and consequently Unit

Commitment implementations have become more and more sophisticated. Nev-

ertheless, industrial applications still require parallel computing on clusters of ma-

chines to produce acceptably accurate results within practical time frames [5]. Early

implementations could not claim optimality but the past 15 years has seen a huge

uptake in Mixed Integer Programming (MIP) implementations for Unit Commit-

ment solved using Branch and Bound1, able to find a solution within a guaranteed

May 8, 2014
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gap to optimality given sufficient time.

A mathematical optimisation problem specifies an objective function, the value

of which is to be maximised or minimised over a set of decision variables given a

collection of constraints imposed on the value of those decision variables. In a MIP,

some of those variables take continuous values, others are restricted to take only

integer values.

Much research has lead to fast solution algorithms for certain kinds of optimi-

sation problems, where the objective function is linear or Quadratic in all decision

variables, known as Linear Programming (LP) or Quadratic Programming (QP)

problems. The simplex algorithm for LPs and Interior Point Methods for QPs are

both efficient algorithms [6, Chp 3, 4] .

The Branch and Bound solution process involves repeatedly solving similar LPs

or QPs throughout search. A MIP with either a linear or quadratic objective func-

tion, known as a MILP or MIQP, can make use of the above algorithms to solve

their subproblems. The simplex algorithm can be ‘warm started’, meaning a solu-

tion which is close to optimal can be provided dramatically reducing search time to

the true optimal. Interior Point Methods do not see such a dramatic reduction when

warm starting. MILPs exploiting Simplex therefore gain a solution time advantage

over MIQPs. For this reason much of the literature on Unit Commitment focuses

on linear formulations, as shall be the case throughout this document.

To express Unit Commitment as a MILP it is necessary to discretise the time

horizon, typically into 30 or 60 minute intervals. For each generating unit in the

system, and each time period in the horizon, there is a binary decision variable

representing whether that generating unit is online, and a real valued decision vari-

able representing the proposed output of the generating unit. A proposed output is

necessary to calculate a prospective cost.2

1Branch and Bound is the name of an algorithm for solving optimisation problems. Discussed

in further detail in Section 2.2 it is often used synonymously with Branch and Cut in the literature,

although there are technical differences between the two, discussed on p23.
2See Appendix A.1 for a description of a basic MIP implementation created for test purposes

and solved with a commercially available solver.
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The assumption that a unit’s power output and total customer demand is con-

stant over each period and changes instantaneously, is made. This is far from reality

but as mentioned earlier, the exact power outputs of units are not set by Unit Com-

mitment, only the online and offline schedules are set here3, and this approximation

is realistic enough that it is unlikely to affect the online schedules for each unit, and

significantly reduces the complexity of the problem.

Whilst industrial applications for the past decade have focussed on solving the

MIP formulation of Unit Commitment with Branch and Bound, there have been

many other methods proposed in the academic literature. Mostly meta-heuristic

methods, these can have fast solution times but lack the bound to optimality offered

by Branch and Bound. Consequently the work has had little impact on industrial

practices, as discussed in depth in Chapter 3.

There has been much success within academia and industry tackling many as-

pects of Unit Commitment, but open problems remain. Looking to the future, there

are more factors affecting unit commitment than ever before. In the next 10-30 years

large rises in variable renewable generation (VG) such as wind and solar farms is

expected [7, §2.6], necessitated by regulatory commitments to reduce carbon emis-

sions. These are “non-controllable” generators, providing electricity, the amount

and timing of which is stochastic and beyond the operator’s control.

Increased uptake of smart appliances, electric cars and other so called, “control-

lable loads” is also expected [8]. These are customer demands for electricity, but

where the SO has some control over when the load is to be served, allowing more

efficient use of VG. An SO can wait until variable generation outputs are realised,

then serve controllable loads with excess renewable generation rather than serving

them immediately with expensive thermal generation.

The uncertainty in time of availability, and scale of availability, of VG and con-

3Different networks have different market structures and Unit Commitment may be also be re-

calculated closer to real time meaning that some schedules may change from the initial calculation.

As many networks have quite different market structures most market specific optimisation criteria

are tackled solely by the network operator and so are not widely considered in the literature and

in academia as it would have a very restricted field of application.
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trollable loads bring increased uncertainty to a problem which previously had very

little, as demand patterns have always been very well understood when aggregated

out over a large network. This extra uncertainty is in the net demand, and also the

temporal aspects of the problem. These changes have a large impact on the Unit

Commitment problem and are discussed further in Chapter 2.4, and motivate study

into more flexible solution methodologies.

1.2 What is Automated Planning?

Automated Planning, also interchangeably referred to as ‘AI Planning’ and simply

‘Planning’, is concerned with sequencing actions to achieve goals. It therefore lends

itself well to problems where the actions achieving the goal, the order of the actions,

or some associated cost of actions are important.

More formally it is a field of Informatics concerned with generating action se-

quences to transform a system from an initial state to a goal state. Originally

systems could consist solely of true / false facts and a state was a specific configura-

tion of those facts. An action could manipulate the system by altering those true /

false facts, and could be applied to a given state if and only if a set of ‘preconditions’

held true.

A problem would be to specify an initial state and some desired goal facts. A

solution to a planning problem would consist of a sequence of actions, the cumulative

effect of which would alter the facts in the initial state such that all goal facts became

true.

Since its conception as a field many advances have been made. An ability to

express types of objects allowed for a more natural expression of planning problems.

Facts could now be global or associated with a given object and actions could have

restricted applicability to only certain types of objects. Problem instances could be

expressed in terms of multiple objects, with their properties modelled as facts.

Further advances to planning, such as the ability to encode numerical quantities

into a state and encode temporal information such as action durations and exogenous

events, enable problem descriptions to become very rich and realistic.
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This description now is analogous to intuitive descriptions of real-world problems.

Consider the problem of tasking a fleet of vehicles to deliver a collection of packages

from source locations to destination locations. The domain might consist of vehicle

objects, perhaps multiple types of vehicles each with different properties such as

speed and cost, package objects perhaps of different size so only certain vehicles

can transport certain combinations of packages, locations with relative distances

and connectivity to other locations. Actions would involve loading vehicle with

packages and moving vehicles between locations. For real-world problems such as

this a planning formulation becomes a very natural one to express. Expressing this

as a MIP for example, would be rather convoluted and unintuitive.

A planning formulation for Unit Commitment would have an object representing

each unit, the actions would be bringing a unit online or offline, and the output

values of each unit can be encoded into the world state. This model appears more

intuitive than a MIP model, and as planning has shown strong performance on

temporal problems it may be an interesting and novel approach to the problem. A

more detailed introduction to Automated Planning can be found in Chapter 4.1.

Discussions of the applicability of planning to Unit Commitment as well as planning

model proposals can be found in Chapters 5 and 6.

1.3 Motivation for Study

As the power systems continues to evolve so too must Unit Commitment, and current

solution methods in industry and academia have shortcomings when faced with these

challenges.

A MIP formulation has the weakness that accurately representing the customer

demand, especially once wind power integration is considered, requires a reasonably

fine discretisation of time. Contrastingly, time constraints on the minimum online

and offline duration of a unit mean that some units must be committed for a whole

day, or most of a day, at a time so their temporal scheduling is already fixed, whilst

even peaking units will only come online at most two or three times a day. This

means that most of the binary decision variables for a generating unit are redundant

May 8, 2014



1.3. Motivation for Study 7

once one decision has been made early in the planning horizon. Reasoning about

those excess variables unnecessarily extends a branch and cut solution process.

The difficulty for many meta-heuristic methods proposed in the literature is ran-

domly generating feasible solutions to begin or iterate the search process. Most

meta-heuristics contain a stochastic element which determines the next set of can-

didate solutions to use in the search process. The complexity of the constraints in a

Unit Commitment problem however do not lend themselves well to this approach as

random changes to the integer decision variables will more often than not result in an

online schedule which violates the minimum online and offline physical constraints

of a generating unit, which typically encompass multiple decision variables.

The time spent generating infeasible solutions, and reasoning that they are in-

feasible, extends the solution time and reduces the benefit of a fast meta-heuristic

method over Branch and Bound, especially when the extra cost incurred through

being further from optimality is considered. To overcome this many methods impose

soft constraints, and penalise but do not disallow these infeasible solutions. Whilst

this aids the solution process it is not representative of the definitive constraints

necessitated by the Unit Commitment problem.

These existing methods come under more serious threats when considering the

difficulties introduced by the future power systems discussed earlier. The problem

becomes harder to model as a MIP, with stochastic formulations often intractable

where Branch and Bound solution times extend beyond what is practical. The

claimed faster solution times from Meta-Heuristic methods become more desirable

in a stochastic setting where multiple runs are required, however as discussed in

Chapter 3, it appears that a lack of consistent empirical evidence of this, no bounds

to optimality and the difficulties in handling certain constraints are still off-putting

to industry.

Whilst brute force and increased computing power will find a solution, there is

a clear opportunity for a more flexible, scalable, and elegant solution methodology

tailored for a problem with such temporal complexity and uncertainty.

As mentioned above, an LP can be solved very quickly, and so it is the inte-

ger aspect of Unit Commitment as a MILP which drastically increases the solution
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time. The integer aspect of the problem is the online scheduling, for which a large

number of binary variables are required for relatively few changes of online status.

Determining which generating units to bring online at what times is perhaps more

naturally expressed as a temporal planning problem. Most Unit Commitment sched-

ules can be expressed with far fewer actions than binary decision variables required

in a MILP.

With regards to meta-heuristic weaknesses, the complex temporal constraints

that meta-heuristics have difficulty handling, are replaced with 2 simple actions in

a Planning Model, from which the constraints are guaranteed to be enforced. This

definitive removal of infeasible solutions is necessary for a solution methodology to

be a consideration for practical implementation in industry.

Despite a large and sustained amount of academic interest for Unit Commit-

ment with algorithms other than Branch and Bound there has been little impact

on industrial practices. When proposing an alternative solution method to such

an important industrial application it is necessary to assess and understand why

previous practices were dismissed and current practices taken up. The field of Unit

Commitment with Meta-Heuristics is so large and varied but with little industrial

impact that its study, and a reflection upon contribution, is instructive to those pur-

suing new methodologies, to researchers aiming to further methodologies towards

industrial uptake and to surveyors interested in the chronological development of

Unit Commitment.

Finally there is a clear separation of the temporal and numeric aspects of the

problem which could be exploited effectively using Automated Planning. Planners

have been developed to perform heuristic search based on relaxed (less complex)

variants of the main problem being solved. A natural relaxation of Unit Commit-

ment is to fix subsets of the binary decision variables and solve the resulting LP,

indeed this is an integral part of the branch and cut solution process.

This relaxation is a natural fit for a planning solver, which can reason effectively

about temporal problems but less so about numerical optimisation. Supposing a

planner were to perform reasoning about the temporal online schedules and receive

guidance on optimisation from an external LP solver, each sub-problem would be
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handled by a solution methodology well suited to the type of sub-problem being

solved. Another PhD project in the same consortium project funding this research

is demonstrating the effectiveness of planners incorporating external solvers into the

solution process [9].

1.4 Contributions

The contributions of this thesis are four fold:

• A critical review of the literature solving Short Term Thermal Unit Commit-

ment with Meta-Heuristic Algorithms discussing short comings of the research

and possible reasons for the lack of industry uptake is presented in Chapter 3.

• A formulation of Unit Commitment as a planning problem which could be

solved by an ‘off-the-shelf’ planner (i.e. without specific modifications) that

supports the appropriate language constructs is presented in Chapter 5.

• A formulation of Unit Commitment as a planning problem exploiting the sep-

aration between numeric and temporal sub-problems discussed is presented in

Chapter 6, detailing why this model may be advantageous.

• A discussion of extensions to an existing planner which may enable the sepa-

rated model to be solved is given in Chapter 6.4.

The work on solving Unit Commitment is vast, and whilst there are other surveys

in the literature ( [10–13]) a more critical appraisal on Meta-Heuristics can provide

a valuable point of discussion. With industrial focus solely on Branch and Bound, it

is not only important to recognise the fact that the work appears to have had little

industrial impact, but also to discuss why that might be the case.

The work discussed is evaluated on the realism of the model proposed, the

breadth of test cases presented, comparison to other work, and any discussion of

how to model further complications not handled. Of particular importance are the

constraints respected and model size. Branch and Bound algorithms find optimal

solutions quickly for smaller models with a representative set of constraints, so a

May 8, 2014



1.4. Contributions 10

contribution claiming short solution times should be verified on models of the scale

Branch and Bound would stall, not test systems alone.

Planning differs from all existing Unit Commitment methods the author is aware

of in its formulation of problems using actions, not being based on a MIP. This re-

formulation into states and actions can be beneficial to Unit Commitment which

typically suffers from problems of dimensionality. Much planning research has fo-

cussed on satisficing algorithms to quickly find feasible solutions. These can be

guided by metrics but aren’t designed with optimisation in mind.

The first planning model presented, which can be run on an appropriate existing

planner, demonstrates this fallibility. A discussion of the performance on very small

instances confirms the planner has poor optimisation performance, stalling on very

small instances.

The author is unaware of this formulation being presented in the literature before

and due to the difficult nature of expressing complex real-world problems as planning

problems, this represents a contribution to the planning community. It is proposed

to be a model from which an efficient solution algorithm for Unit Commitment could

be developed, and highlights an opening in the existing planning literature.

Motivated by the specific problems of the first model, full details of the separated

planning model and given. As this cannot be correctly handled by an existing

planner, possible extensions to an existing planner are discussed which may result

in the performant and efficient solution of Unit Commitment. This contribution is

again of more value within the planning, where it may provide a starting point for

discussions of how to efficiently tackle a whole class of problems similar in nature

to Unit Commitment.

These contributions are more directly in the field of Automated Planning than in

Power Systems Engineering. However planning represents a modern field of problem

solving with much less time to develop than mathematical programming. Unit

Commitment can be used as a benchmark problem in the field from which methods to

tackle many advanced problems in Power Systems Engineering could be developed.

Indeed there have been examples in the literature of planning tackling other Power

Systems problems [9, 14, 15], and it is hoped that interest in the problem will lead
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to advancements in both fields.

1.5 Structure

This thesis is structured as follows. Chapter 2 presents an Introduction to Unit

Commitment in more detail, beginning with a brief survey of the chronological

development of Unit Commitment and a detailed discussion of the emergence of

MIP with Branch and Bound in industry. The chapter concludes with a discussion of

challenges facing Unit Commitment model formulations and solvers looking forward.

Chapter 3 contains the aforementioned critical review of meta-heuristic methods.

Chapter 4 begins with an introductory overview of the core concepts in Automated

Planning necessary for the discussion of planning models throughout the remainder

of the thesis. Following the introduction is a detailed discussion of the work in the

literature focussed on planning for optimisation. Highlighted are the indications

that planning may successfully tackle Unit Commitment, and that it is an excellent

problem to strengthen the development of planning in a direction which has typically

received less interest within the planning community.

Chapters 5 and 6 present the two aforementioned models concluding with a dis-

cussion of the extensions required to enable an existing planner to tackle this prob-

lem. Chapter 7 concludes by summarising the key outcomes from each contribution.

The appendices present full expositions of model formulations and algorithms dis-

cussed, but not detailed, in the text.
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Chapter 2

Unit Commitment

There has been much work in the literature regarding Unit Commitment. Being

an integral part of power system operation over many decades, this problem has

regularly featured as a demonstration of the capabilities of new algorithms (discussed

in Chapter 3).

Whilst academically there has been a diversification in the number of different

methods for solving Unit Commitment a full review of the field should also consider

industry practices. This can be difficult as individual companies and system opera-

tors may be reluctant to give information which would jeopardise their intellectual

property. Instead, events such as FERC technical conferences [16,17], bring together

experts from academia and industry, from which an overview of current practices

can be drawn.

As discussed in Chapter 1, Unit Commitment is changing. Increased variable

generation and controllable loads bring increased uncertainty to a problem which

previously had very little, as demand patterns have always been very well understood

when aggregated out over a large network. The uncertainty in time of availability,

and scale of availability, of variable generation is a large challenge to SOs who must

accommodate accordingly. Generation not realising forecasted levels risks a drop in

security and potential loss of load. Unexpected high levels of Variable Generation

could lead to high curtailment of the renewables necessary to achieve a low carbon

network.

A formulation including high levels of variability is known as Stochastic Unit

12
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Commitment. A successful formulation of this problem, which can scale to real-

world applications of RTOs has not yet been successfully demonstrated. With reg-

ulatory commitments to reduce emissions and incorporate renewables, a successful

implementation is a key focus within the community.

This chapter presents a more in-depth introduction to the problem, then surveys

the advances in Unit Commitment from initial implementations, to state-of-the-art

industry practices. Methods for tackling upcoming changes to Unit Commitment

and the power system more generally are also discussed.

2.1 A Unit Commitment Problem

It is not possible to define Unit Commitment by a single problem instance. In

essence, as discussed in Chapter 1, the problem is to determine which generating

units in a power system to take online or offline, at what times, to ensure supply

meets predicted demand. Due to the very high costs involved in power generation

this should be done at minimum cost. In practice the problem is constrained by the

many physical complications that surround running a power system.

Different generating units have very different and complex physical characteris-

tics, to model them all would make the problem very complex. Furthermore, the

power grid and its topology imposes more physical constraints on the system due

to the physical laws of electricity flow. To model the entire grid topology and all

of its physical constraints would render even a system with a low number of units

intractable. Thus, simplifications are made to the problem when it is being used in

various situations.

For academic purposes running with relatively low computing power, many com-

plications are ignored allowing for illustrative examples to highly certain features

of a given (often implementation specific) model formulation or algorithm. In prac-

tice, system operators will have much more computing power available and thus be

able to handle more complex constraints. Computing power is not the sole factor

determining the level of realism to consider. Modern networks continue to increase

in size and complexity and so the increases in computing power continue to be met
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by increased problem complexity.

The time until the decisions of the unit commitment schedule are implemented

is an important factor in deciding which constraints are worth modelling. In day-

ahead Unit Commitment (considered throughout this project), where the schedule is

being calculated 12-48 hours ahead of the horizon being considered, the forecasts for

what demand will be are not 100% accurate. As such, calculating the power flows

throughout the network (which are dependent on the places of generation and load

not just amount of generation and load) would be an unnecessary complication. In

a situation where the decision of which units to bring online are being made much

closer to the times when the unit will come online, network considerations become

much more important.

Suppose the operator needs to bring online more generation that can ramp up

quickly as demand is higher than anticipated during the morning ramp. If most

of the demand is centred around London, in the south of the network, the losses

incurred from utilising extra generation in the north of the network might make

such units less desirable than units in the south. In a situation such as this where

the predicted demand levels are much more certain than in a day-ahead situation,

network topology is much more important to consider.

Another factor in determining how realistic a problem can be tackled is the size

of the system being considered. In the day-ahead scenario, most generating units

in the system would be available to come online or offline at some point during the

period of consideration. This means the number of units to consider is very high,

increasing the combinatorial complexity of the problem. As such constraints such as

network topology and advanced unit characteristics make the problem intractable

due to its sheer size.

In the case above where network topology is important, the time period under

consideration is likely to be much shorter, reducing the number of units which are

able to respond in the necessary time frame. Fewer units reduces the combinatorial

complexity and thus allows the specification of more complex constraints before the

problem becomes intractable.

As mentioned previously, Economic Dispatch is the problem of determining the
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amount of generation provided by each generating unit for each point in time. In a

day ahead scenario, the forecasted demand is subject to significant changes which

would alter the results of Economic Dispatch, were it to be run much closer to

time of dispatch (real time). Also, when calculating the exact outputs of each unit,

complications introduced by network topology should be considered. It is not simply

losses but also problems such as real and reactive power balances and frequency

control which play a major role in power system security on a minute by minute

time scales. As such, despite Economic Dispatch being calculated as part of Unit

Commitment, it is not these values that are used. More complex algorithms are run

closer to real time.

The Economic Dispatch used as part of Unit Commitment is simply to provide

guidance on which scheduling of units should be most economical given predicted

demand. Performing Economic Dispatch with all possible constraints would be

needlessly complicated and would render the problem intractable. There would be

no additional advantage in the day ahead setting, when there is still time to perform

such complex calculations closer to real time when demand is more accurately known

and problem is smaller (as fewer units are able to respond on such a time frame, as

discussed above).

For the above reasons, a single Unit Commitment problem definition cannot be

given. It is beyond the scope of this project to discuss any and all such constraints

which could be included as part of a the Unit Commitment problem. As an intro-

duction for readers not familiar with Power Systems Engineering, an overview of

typical features in a day-ahead time frame which is complex enough to represent an

academic challenge but is not so complex to be intractable is given below. The inter-

ested reader should refer to more specialised resources for more detailed discussions

of the many situation specific problem requirements.

A Typical Problem Specification

Suppose a planning horizon of 24 hours is to be considered. Then, for each generating

unit in the system it should be decided over which intervals each unit is to be online.

In order to demonstrate the economic benefit of a given scheduling, proposed outputs
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for each unit should be given for each online period.

There are costs associated with starting units up, others incurred for the unit

being online and marginal costs related to the output of the unit. Another cost

to be included could be the value of lost load, where demand could be allowed to

exceed supply but at a, typically very high, cost. Modern formulations can also

take into account various renewable energy incentives, green house emission taxes

and the possibility of network storage, where electricity can be over generated and

stored to be deployed at very short notice at later times.

One objective is to minimise the total of these costs over the whole planning

horizon. Other objects could consider generator bids for the prices of generation

at certain levels of generation. Such a formulation is typically specific to a certain

system as market strutters often differ between operating areas.

There are many constraints needed to ensure the model matches reality reason-

ably well. These include things such as:

• The minimum time a unit must remain online or offline for once it comes online

or offline.

• An ability to bring a unit back online or offline for quicker, but at a different

cost dependent on the time since the unit was last online or offline.

• The minimum and maximum possible outputs of a unit.

• The amount by which the output of a unit can vary over a given length of

time, known as the ramp rate.

• Any pre-determined periods of availability for a given unit, such as for sched-

uled maintenance or as a result of decisions from previous planning periods.

• Any spinning reserve requirements1.

• In certain circumstances, any network topology constraints.

1Spinning reserves are requirements for the system to be able to increase or decrease its com-

bined output at any given time in the planning horizon to allow it to respond quickly to any
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2.2 Classical Unit Commitment

Unit Commitment was being tackled as early as the 1960s [18], with attempts to

assess hour-by-hour generation for a whole power system, rather than minimising

the cost of running groups of units, as had been seen in prior work. Ranking the

units according to a priority function, and dispatching according to the rule ‘Switch

off a generating unit if it will not be needed in the next x hours for serving demand

or providing spinning reserve’. The ranking of these units was known as a Priority

List.

The difficulty of this approach is prioritising the units to give accurate solutions,

as well as determining the set of ‘x hours’ associated with each unit. The necessity

to re-prioritise the units for different parts of the day also posed difficulties, i.e. high

demand vs low demand, and to account for seasonable variabilities. This method

was highly heuristic, but could be solved with the limited computing power available

during early work on Unit Commitment.

Since the original demonstrations of speed and solution quality from Priority

Lists, standalone and combined with multiple heuristics, a vast amount of Meta-

Heuristic methods for solving Unit Commitment have been presented. These are

considered extensively in Chapter 3.

Dynamic Programming approaches were another early method for tackling Unit

Commitment [19, 20]. This Mathematical Programming approach can theoretically

reach an optimal solution but suffers from the ‘Curse of Dimensionality’2in practical

applications. In a basic forward Dynamic Programming approach to Unit Com-

mitment each possible combination of units being on or off for a time period is

considered a state, and the least cost state is expanded to the next time period

where each possible combination at that time period is considered and the least

cost expanded. This continues until the problem is solved. Certainly at time of

unforeseen circumstances. This is typically achieved by running certain fast response units below

their maximum output and above their minimum so they have spare capacity to quickly ramp up

or down. The spinning reserve can be a fixed amount or dependent on the demand. The level of

reserves is typically at the discretion of the system operator.
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publication, and even with modern computing power, this approach quickly runs

into memory issues. Backwards Dynamic Programming is also possible.

To address this, heuristics are used to guide the search and various approaches

to state space reduction have been presented. Assuming these heuristic and reduc-

tion techniques are reasonable, guaranteed optimality is lost but the gap to it will

hopefully be small.

State space reduction techniques have been numerous. Methods include:

• decomposing the problem in smaller, more manageable sub-problems [21]

• grouping units to reduce the combinatorial element of the search [22]

• truncating the space expanded at each step, only considering switching on

those units within a certain portion of a Priority List [23,24].

Other hybrid approaches were developed in an attempt to counteract the weaknesses

of one method with the strengths of another. [25] demonstrated an iterative approach

to generating a Priority List by re-prioritising the list of units based on their contri-

bution to previous solutions. This brought increased computing requirements over

static Priority Lists but reduced requirements over full Dynamic Programming, as

the problem was simpler. The hybrid system was a success over both previous meth-

ods, producing cheaper schedules then Dynamic Programming alone an achieved up

to 30 times speed up.

Lagrangian Relaxation was another popular method for solving Unit Commit-

ment when computing power was limited [26]. In Lagrangian Relaxation (see for

example [27]) the constraints from a linear programming problem are separated. One

group of the constraints is incorporated into the objective function as a penalty, with

each assigned a weight, known as a Lagrange Multiplier. This reduces the number

of constraints on the problem and produces the relaxed variant. Solving the re-

2When a problem is solved by enumeration of feasible scenarios or solutions, the number of such

scenarios or solutions increases, often exponentially, with the number of variables. A high number

of variables results in too many scenarios or solutions to enumerate in a practical time frame. This

is known as the ‘Curse of Dimensionality’.
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laxed variant can provide a lower (upper) bound on the optimal value of the original

minimisation (maximisation) problem.

A related problem variant, known as the Lagrangian Dual of the problem can

also be tackled. The highest value of the relaxed problem comes from the values of

decision variables coupled with the lowest feasible values of the lagrange multipliers.

Iteratively solving minimisation with respect to the lagrange multipliers with feasible

values for the decision variables allows the solution of the relaxed problem (a lower

bound on optimality) to converge towards true optimality.3

Lagrangian Relaxation requires more computing power than earlier methods but

can produce higher quality solutions in practical situations [29]. Typically it is the

hardest constraints in an LP, such as those linking decision variables, which are

separated from the problem and become penalty terms in the objective function. In

Unit Commitment the relaxed constraints are typically demand and reserve [29–32]

removing the hard constraints which couple units.

The increased accuracy of Lagrangian Relaxation came in part from its sys-

tematic approach, iterating towards a global optimum based on a provable upper

bound on gap to optimality. Figure 2.1 illustrates this. The realised solution to the

Lagrangian Dual converges towards an optimum for the Lagrangian Dual problem.

From this solution a feasible solution can be generated. Assuming a good generation

scheme the feasible solution converges towards the optimum of the original problem

as the dual problem converges to its optimum [29].

Complications to overcome when implementing Lagrangian Relaxation include

initial values for the Lagrange multipliers, the scheme to update the lagrane multipli-

ers for each iteration, and generating a feasible, integer, solution from the relaxed,

continuous, dual solution [33]. Another difficulty when implementing Lagrangian

Relaxation for Unit Commitment is its lack of flexibility. Adding new constraints to

the model requires recalculation of the dual problem. In turn, this can necessitate

changes to the Lagrange multipliers and their update scheme, as well as complicating

the generation of feasible solutions [2].

3A more detailed introduction to Lagrangian Relaxation can be found in [28, Chp 3].
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Figure 2.1: Sketch demonstrating the iterative nature of solving Lagrangian Relax-

ation, recreated from Figure 1 in [29]. The lower curve represents the value of the

dual function. Point A would be this value for the values of the Lagrangian Multipli-

ers specified. Point B represents the optimal values of the Langrangian Multipliers,

which may or may not be calculable. Point C represents the solution to the original

problem with the values of the Lagrangian Multipliers as specified. Point D repre-

sents the optimum of the original problem. As the search progresses, point A should

approach B. Then C, generated from an increasingly accurate A should approach

D, thus converging towards the global optimum.
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The bound to optimality and convergence properties of Lagrangian Relaxation

led to considerable industry uptake once adequate computing power became avail-

able [34, p2]. Many Lagrangian Relaxation implementations [26,30] used the bounds

from the dual problem in a Branch and Bound setting. These were outperformed by

later Lagrangian Relaxation implementations [32], which did not require the over-

head of the Branch and Bound search by ensuring the relaxed solutions are very

close to feasible solutions of the original problem.

The Branch and Bound setting was not abandoned however. First introduced

in 1960 for discrete programming [35], the idea is to eliminate areas of the search

space based on relaxations providing provable bounds on the original problem. For

a Mixed Integer Programming (MIP) problem such as Unit Commitment, a suitable

relaxation is to let all discrete variables become continuous. It should be intuitive

that for a minimisation problem4 no integer solution can be lower than its relaxed

continuous optimum. The relaxed solutions can thus be used as lower bounds on

optimality.

When solving for a binary MIP, one branches the complete problem into two sub-

problems by assigning a given decision variable 0 in one variant and 1 in the other5.

These two sub-problems are relaxed for all other decision variables and solved. The

relaxation with the lower objective is this then branched on a different decision

variable, creating two further sub problems. The minimum of all sub problems’

objective functions is branched until either all branches have been expanded, or a

found integer solution can be proven to be lower than anything that can occur on

other open branches.

For a complex problem such as Unit Commitment this formulation has an im-

mediate benefit. Unlike Lagrangian Relaxation, Branch and Bound does not exploit

4Maximisation is possible by noting that no integer solution can be higher than the relaxed

solution. Search is altered by branching on the sub-problem with the highest objective.
5Branching on continuous variables is also possible. Suppose a relaxation gave x = 4.75, one

would then branch by adding the constraints x ≤ 4 and x ≥ 5. As x is integer this retains all

feasible solutions and partitions the solution space into regions which will be bounded in the same

way as the binary variables discussed in the main body of text.
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problem structure and the relaxation requires no change to the problem’s formula-

tion, neither in constraints or objective function. Exploiting problem structure can

be of benefit, reducing solution times and enabling an algorithm to tackle problems

it would not otherwise be able to solve. However, it can also be a negative, in that it

reduces flexibility of the algorithm. There are many variants of Unit Commitment

with different sets of constraints for different reserve strategies, piecewise linear vs

constant start up times, different cost models, including different types of plants

such as hydro and storage, to name a few. Whilst many Lagrangian Relaxation

algorithms required considerable modification to handle new constraints [2], contin-

uous relaxation in Branch and Bound requires no modification, allowing for much

faster development of advanced formulations of the problem, detailed below.

The downside of a Branch and Bound approach is the time and memory re-

quired to solve the relaxations. It requires more memory than Lagrangian Relax-

ation, whose relaxations typically reduce coupling allowing smaller subproblems to

be independently calculated. As computing power continued to increase, relaxing

the Unit Commitment MIP to a continuous LP became more feasible. A major

reason for the efficacy of this approach is that the simplex algorithm used to solve

the continuous relaxation for linear formulations could be warm started, dramat-

ically reducing the solution time of each relaxation [6, Chp 3]. This continuous

relaxation, rather than converting to a Lagrangian Relaxation dual, gave a more

tractable solution process compensating for the relaxation being harder to solve.

Furthermore, with the advancements of multi-core and parallel computing, the in-

herent parallelism of simultaneously solving subproblems on different branches can

be exploited.

Analogous to the difficulty of updating the Lagrange multipliers and selecting the

decision variables in Lagrangian Relaxation, Branch and Bound has the difficulty

of deciding which variables to branch on. It should be clear that without accurate

guidance the search process could enumerate all variables, and for large scale prob-

lems, become intractable, as was the downfall of practical Dynamic Programming

implementations. In practice, software such as Gurobi and CPLEX have efficient

pre-solvers which simplify the problem by taking advantage of problem structure
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reducing the chance of intractability.

A major step in preventing the curse of dimensionality afflicting Branch and

Bound came from Padberg and Rinaldi [36]. They added extra constraints known

as Cutting Planes to a MILP formulation prior to running Branch and Bound to

find a solution. The resulting algorithm is termed Branch and Cut, although the

two terms are often used interchangeably in modern literature.

An optimal solution to a linear program lies on an extremity of the feasible

region. In a MIP, the feasible region of the continuous relaxation encompasses all

feasible integer solutions to the problem. The cuts are made to remove non-integer

extremities from the feasible region so the relaxation will produce a predominantly

integer solution.

The difficulty of this method is in determining what these extra constraints are.

The cuts in Padberg and Rinaldi’s work were added with specific knowledge of the

Traveling Salesman domain being studied, however commercial packages began to

develop preprocessing methods which could add similar cuts to generic problems [34,

p158].

By adding extra cuts as a pre-processing stage to Branch and Bound, the enu-

meration of states in the branching phase is greatly reduced. Coupling this with

a fast solution method, the warm starting simplex algorithm for linear problems,

allows problems such Unit Commitment previously thought of as intractable, to

be solved as a MILP without translating into another form. The increased flexi-

bility of Branch and Bound coupled with high levels of accuracy meant it became

the standard approach for tackling deterministic short term Unit Commitment in

industry.

2.3 Modern Unit Commitment

Today a Mixed Integer Programming (MIP) formulation solved using Branch and

Bound is the standard method for Unit Commitment for many system operators.

PJM was the first major power system operators in the US to implement such a

model for Unit Commitment [37], taking their system live in 2004. It was expected
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to save around $60 million dollars annually as a result of the more optimal solu-

tions. In 2009 the California Independent System Operator (CAISO) followed suit

and introduced a MIP model for day-ahead Unit Commitment [4], projecting savings

of around $52 million. Following a market redesign in 2009, Southern Power Pool

(SPP) also introduced a MIP model for day ahead market clearing. ERCOT intro-

duced a MIP model of Unit Commitment after their market redesign in 2009 [38].

As of 2011 PJM, CAISO, SPP, ERCOT, the Midwest Independent Transmission

Operator (MISO), the Independent System Opertaor for New England (NE-ISO) all

implemented MIP models for some form of Unit Commitment [4, p18,20]6. The New

York Independent System Operator (NYISO) is launching its MIP implementation

in 2014.

It would appear that there was slow uptake of MIP models for Unit Commit-

ment, with NYISO still not using one. A plan for NYISO had long been in the

works but there are many complications to overcome when implementing a MIP

model. As mentioned above, the correct market structure must be in place before

day-ahead UC can be used. Market reforms can only come after long periods of

negotiations and trials with all parties involved, including SOs, suppliers, regulators

and legislators. [5] also mentions the difficulties of migrating existing systems, such

as Energy Management Systems, still necessary for operation from old hardware to

a more modern setup, typically involving dedicated clusters of PCs. New solvers

also have to be integrated with those existing systems.

These American Regional Transmission Operators (RTOs) are a good barometer

for the state-of-the-art as they are all not-for-profit organisations with a high level

of transparency through FERC. They are also manage some of the largest operator

areas in the world [2]. Thus, if technologies perform well on those systems it is likely

they perform well, and are in use, in many other smaller systems as well.

MIP modelling for Unit Commitment was not always commonplace. Due to a

lack of computing power as other methods such as LR and DP were being used in

6Of the other US FERC ISOs, find information about Unit Commitment procedures for Ontario

IESO and AEISO was unavailable. Official information with regards to NBSO could also not be

found, however work strongly suggests a MIP implementation would be beneficial [39]
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industry for Unit Commitment, the prevailing opinion was that a MIP formulation

was simply too slow to be of practical use. The 1999 “DIMACS/EPRI Workshop on

Next Generation of Unit Commitment Models” was seen as a turning point [2] for

MIP models. Bixby, who later went on to create the Gurobi optimisation system,

presented work on commercially available systems such as CPLEX and XPRESS-MP

which implemented the then recent theoretical work on cutting planes and integer

programming techniques to improve performance of MIP algorithms [40].

The conference was followed up by a book of technical papers [34], the first of

which summarised the recent improvements in MIP solution methods by assess-

ing the performance of various algorithms on a Unit Commitment problem. They

showed an improvement in solution time from 1687 seconds to 98.1 seconds for the

then-latest version of CPLEX [34, p6-7].

There was also some small scale industry usage of MIPs beginning to emerge

at this time too [34, Chp 9]. A Belgian Utility company created a reduced model,

where some of the binary variables are fixed via a sub-problem solved using Lagrange

Relaxation, and solved that via a MIP solver. The software XPRESS-MP, used

at time of publication by Northern Ireland Electricity, also employed a MIP to

optimally solve a reduced version of the problem.

Also of note is that a reasonably competitive Genetic Algorithm (GA) was also

presented in that publication [34, Chp 11]. Comparable to integer programming

in terms of solution time at time of publication, GAs have seen continued interest

within academia. This avenue has not been picked up by industry however, implying

the desire for optimality or at least a provable bound to optimality is highly desired

by industry.

Since the ’99 conference, MIP solution algorithms continued to develop strongly.

Streiffert, Philbrick, and Ott presented their work developing the PJM MIP model,

the first to be used on a regional scale, in a 2005 paper [2]. They credit the flexibility

of the MIP model solution methodology as being an advantage for Unit Commit-

ment. Additional constraints and model parameters can be easily added without any

changes required to the solution methodology, whereas LR requires recompilation of

the Lagrangian dual, which is a complex problem.

May 8, 2014



2.3. Modern Unit Commitment 26

Results were very competitive but also similar to specialised LR methods. The

benefit is the MIP can be extended and altered easily without much modification and

more complex systems, (“combined cycle units, hydro unit commitment, ancillary

services, etc.” [2, p8]) can be considered with little modification to the algorithm.

At time of publication CPLEX 9 had been developed and incorporated pre-solve

techniques, advanced heuristics and cutting planes. Cutting planes became a great

avenue of research resulting in impressive solution time gains for Unit Commitment.

The feasible region for an Integer Programming Problems (IPP) is a discrete set

of points in solution space, whereas continuous problems have a continuous feasible

region, defined by the inequality constraints. The solution to linear optimisation

problems is achieved at an extremity of this solution space where two or more of the

planes generated by the inequalities meet. If one can define the set of inequalities for

which each vertex is an integer feasible solution, then the IPP can be solved as an LP.

Defining this set of inequalities is at best exceptionally computationally intensive

and at worst not possible. The continuous region defined by the cutting plane

inequalities is known as the ‘Convex Hull’. Expressing an optimisation problem as

a convex hull drastically reduces the computation time, as a the solution to the

continuous problem will also be the integer solution as illustrated in Figure 2.2.

Rajan and Takriti introduced a Unit Commitment model in 2006 [41] with extra

inequalities describing the convex hull for the minimum up and down times of gen-

erating units. These extra inequalities, despite requiring further binary variables,

reduce the solution time by formulating a continuous search space that is in part

close to the convex hull. There extra inequalities and binaries do increase the model

size (reducing compactness), but the tighter formulation is beneficial and results in

a net decrease in solution time.

Recent work by Ostrowski et al [42] presented a set of inequalities which describe

the convex hull for the power generation sub-problem of Unit Commitment. This

again brought a reduction in solution time. Finally, recent work by Morales-España

et al [43] (2013), combines these formulations. Typically a complex MIP model has

to make a tradeoff between tightness and compactness. The model introduced in [43]

is simultaneously tighter, by introducing all cutting planes from aforementioned
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Figure 2.2: Schematic illustrating the convex hull of an integer optimisation problem.

Consider maximising 3x2 − y for x and y integer. The problem can be expressed

as in either the blue or red box. The region defined by each set of constraints

contains the same integer feasible points. Solving a continuous relaxation of the

blue problem will give the solution x = 5.7, y = 5.6. In this trivial example it is

easy to see the integer solution is x = 5, y = 6, however supposing there were more

variables it would be unclear what integer values to set these to, and on what to

branch. The solution to the continuous relaxation of the red problem is x = 5, y = 6,

which is also integer so no further reasoning is required. Because each vertex in the

region defined by the constraints in the red box is an integer solution, regardless of

the function to maximise or minimise, the solution would also be an integer solution.

Thus the red equations define the convex hull of the problem.
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papers to close the solution space around the convex hull, and more compact than

both, with fewer binary variables and constraints. Test cases on systems from 10s of

units to hundreds are presented with the Tight-Compact formulation outperforming

(in solution time and gap to optimality) previous formulations from the literature

[43, p8] in all but 1 case.

These advances combine to create a hugely competitive formulation for short

term thermal Unit Commitment, and it is difficult to imagine another technology

which could provide such a level of accuracy in a similar time frame. However, just

as the techniques for solving Unit Commitment have evolved the problem itself has

increased in complexity. Changes to the grid and power generation portfolio mix

have lead to increased uncertainty in the Unit Commitment problem. Quantifying

that uncertainty and incorporating it into a successful Unit Commitment formula-

tion is a crucial next step for the power industry. A failure to tackle this problem

would result in a system operating either insecurely or at very high cost.

2.4 Handling Increased Variable Generation

Electricity generation accounted for ∼24% of carbon emissions in 2006 and one point

projection of electricity consumption expects an increase of 77% from 2006 levels by

2030 [44]. EU governments demand a reduction to 20% below 1990 levels by 2020

as part of the 20-20-20 climate change initiative [45]. This is clearly not possible

without a dramatic decarbonisation of the electricity network. Wind generation in

the UK alone has grown to 10 GW at time of writing (see [46] for latest statistics)

and is projected to increase to 30-45GW by 2030 [47, 48]. The variability of wind

and other renewables is in stark contrast to entirely controllable traditional power

systems [49]. To reduce the curtailment of wind power SOs must predict wind power

output and reduce scheduled thermal output accordingly, adding stochasticity to the

UC problem.

Controllability of traditional generation allowed Unit Commitment to be mod-

elled as a deterministic optimisation problem, as discussed above. The aforemen-

tioned changes mean traditional formulations of the problem should be reconsidered
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to take the variability and non-controllability of renewable resources into account.7

One commonly proposed method in the literature for dealing with this is to

combine Stochastic Unit Commitment and Rolling Planning.

The principle behind Stochastic Unit Commitment is to discretise the potential

outcomes of a stochastic process at a future point in time, e.g. the wind output in

1-3 hours. Each discrete scenario is weighted by a probability and given a cost value

based on a Unit Commitment policy. These costs are summed to find the expected

cost for that policy. The policy which minimises this expected cost is the solution.

The first demonstration of Stochastic Unit Commitment on the approximate scale

that would be required in practical applications was seen in 1996 [50], although

industry is yet to implement the method due to technological limitations, discussed

below.

Rolling Planning is where Unit Commitment is recalculated at regular intervals

throughout the horizon utilising updated forecasts for the time remaining. Com-

bining Stochastic Unit Commitment and Rolling Planning for Unit Commitment

is very effective as forecasts of the most variable stochastic process, the wind, im-

prove dramatically over a 24 hour period, and recalculating Unit Commitment takes

advantage of this improved accuracy.

In 2006 Barth, Brand, Meibom and Weber [51] proposed one of the first models

to be used on a realistic large scale system incorporating many market constraints of

real world implementations. The model was based on hourly descriptions of demand,

generation and transmission, incorporating 4 electricity markets (day ahead electric-

ity, day ahead automatic reserve, 1 hour ahead intra-day electricity, and intra-day

non-spinning reserve). Included in this model are variables for wind power producer

bids8, multiple wind power forecasts and actual wind outputs. These variables are

the stochastic quantities taking values from the scenario tree to complete the sum

of expected costs, and the process is repeated every three hours to take advantage

of the expected improvements in forecast.

7Note that traditional UC formulations could remain unchanged if larger reserve requirements

were imposed, however this would increase cost dramatically.
8In reality the prices of generation are not fixed a priori, as is the case when Unit Commitment
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Large cost reductions are seen in [51, 55] (2006, 2007) using this method on a

simulated multi-region area modelling Scandinavia, Denmark and Germany. The

same system, coined Wilmar, is used to analyse the Irish system in [56,57] (2009,

2011) where savings of around 0.25% over the deterministic solution are shown.

One reason to highlight these studies is the inclusion of real wind forecasts for

the horizon considered in [51, 55] compared to generated forecasts and scenarios

in [56, 57]. A model is more likely to demonstrate larger savings if it is predicated

on a distribution that the data used is generated from. In reality the wind forecast

errors may not follow this distribution and both savings and system security will

be reduced. Thus, if forecasts are generated rather than taken from historical data,

then the savings presented could be exaggerated. It is important ensure these are

representative of real world applications including High Impact Low Probability

events.

Another difficulty when assessing the efficacy of Stochastic Unit Commitment

is the deterministic model used for comparisons. In the work on Wilmar, the

authors also give a full description of the model formulation used, in some cases (see

for example [58] the unit commitment formulation is not given. If the model used

is unrealistic or the baseline model is comparatively less well developed than others

in its field, proposed cost savings may be exaggerated.

One downside of these methods which could prevent the realisation of the claimed

savings is that the discretisation can not capture the extreme events from the tail

of distributions that cause critical problems which should be hedged against. For

example in [51,55] the first 3 hour period is assumed deterministic, the next 3 hour

period has 5 outcomes and the final period (can be 3-21 hours depending on the stage

of rolling planning) has 10 outcomes, just two further deviations from each previous

scenario. Hedging against deviations from these 10 outcomes is done by setting

is presented in much of the literature. Each generation company puts a bid forward for the cost

of their generation and, depending on the market structure, a fixed price for generation is found.

The stochastic nature of wind power means that bidding for wind power produces can be more

complex than for thermal power producers. See [52–54] for examples of Wind Power Producer

optimal bidding policy.
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reserve requirements based on the wind forecast error being in the 90th percentile.

Clearly the true characteristics of a distribution cannot be captured with such a

sparse discretisation.

This highlights the ever-present trade off within Stochastic Unit Commitment;

too many scenarios and the complexity of the problem increases to intractable levels,

too few and High Impact Low Probability (HILP) events aren’t captured. This can

cause critical problems. 2008 saw ERCOT call for a Emergency Electric Curtailment

Plan because of such an event [59]. Unexpected losses of conventional generation and

higher than average customer demand, both due to severe weather, combined with

a short duration high magnitude drop in wind generation. The event drew much

attention because of the role wind power played in it. A failure to compensate for

these HILP events would lead to more cut offs, to more customers, more frequently.9

With governments in many countries including the US and UK committed to

20% [60] and 25% [46] wind power and renewables penetrations respectively in the

grid there is a pressing need to develop Stochastic Unit Commitment methods that

are not just theoretically promising but tailored for real world SOs based on current

market structures with current equipment levels, to be in use within the decade.

The most recent two FERC technical conferences, where academics and industry

expects gather to present and discuss the latest challenges with regards to optimi-

sation in power systems, specifically sought out contributions in the field of stochas-

tic modelling for Unit Commitment. Much of the work discussed below is still in

progress and is based on presentations made publicly available online [16,17].

Of particular interest are the industrial presentations, the results of which are

less frequently published than academic papers in journals. A large collaboration

project between Sandia National Laboratories, ISO-NE and multiple universities is

underway. The key goal is extending the state-of-the-art in Stochastic Unit Com-

mitment from tens of units to low hundreds of units, tackling SO scale problems

using real-world data in practical run times [61–63].

9These HILP events could be compensated for with large reserves online, this would however

be very costly, contrary to the goal of using Stochastic Unit Commitment to minimise cost whilst

minimising curtailment of renewables.
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One key theoretical goal is the ability to specify a rigorous confidence interval

for solution optimality, i.e. what is the probability that the solution given is subop-

timal by more than x%. The team presented the problem and outlined their goal

at the 2012 FERC conference [61] which was followed up in 2013 by two further

presentations [62,63].

The first of those presentations outlined theory of how to define a rigorous con-

fidence interval in a Stochastic Unit Commitment problem. As the problem is now

intrinsically linked to the multiple scenarios it is important to ask how confident one

is in the solution presented. The team use historical data of the forecasted load and

error in that load interpolated with regression splines to generate an hour load data

pattern and error distribution for each hour. There are no assumptions as to the

distribution of this error as it comes from the epi-spline interpolation. This avoids

the pitfall discussed above where using generated data can exaggerate savings.

The practical difficulty is of course choosing the historical data to sample from,

an unrepresentative set for the upcoming weather forecast will not give good results.

How to sample from the data such that the scenarios in the sample to be interpolated

are a representative collection of scenarios (i.e. chosen to based on what is forecasted

for the horizon of interest, not randomly chosen), and what the minimum sample

size necessary to give accurate results is, are both open questions.

The key driver of that theoretic work is to provide representative and realistic

inputs to the Stochastic Unit Commitment problem. The second presentation at

FERC 2013 demonstrated successful implementations utilising initial results from

the theory. The WWEC-240 test system used contained 240 bus bars and 140

generators representing a real-scale SO problem. The load forecast model was taken

from historical ISO-NE data from 2011 and the wind data came from the EWITS

wind data study, both of which were scaled appropriately with a wind penetration

of 10%.

Given the scale of the project they have been able to run tests on clusters of

computers, similar to the workstations SOs would have available to use. The test

systems presented were limited and designed to be illustrative rather than represen-

tative. For the no-wind test, with 50 scenarios for load, the stochastic solution gave
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approximately a 1.5% saving over the deterministic solution. The 10%-wind case

only had 10 load and 10 wind scenarios, which were acknowledged to be too few.

No cost results were given but it was noted that solution time on the cluster only

increased by around 12%, remaining solvable in practical situations.

It is important to remember these are interim results and indicate that there is

great potential for Stochastic Unit Commitment, with practical solution times of

around 10 minutes and tangible cost benefits on real-scale problems. Of course this

work is not alone. IBM, developers of the ILOG CPLEX system, are looking to

tackle problem variants around 1500 units in scale [64] and Princeton University is

working on a Stochastic Unit Commitment model for PJM [65].

With work on practical systems ongoing in collaboration with industry, there has

been much academic interest in developing systems and models which overcome some

of the theoretical restrictions of initial Stochastic Unit Commitment formulations.

As mentioned above there is an inherent tradeoff between numbers of scenarios

in a tree and the quality of the solutions presented. Recent work by Sturt and Strbac

[66] (2012) develops a Stochastic Unit Commitment model based on user specified

quantiles of error. Depending on the user’s desires the model could be extremely

risk averse, including quantiles 0.95, 0.99 and 0.999 in the scenario generation, or

more focussed on utilising all the available renewable generation by including lower

quantiles such as 0.01, 0.05, 0.1. It is clearly down to SO’s discretion as to how

risk averse or ‘green’ the agenda is for that commitment schedule but this flexibility

caters for many situations and would be beneficial.

The system is also designed for year long Unit Commitment simulations and there

are many simplifications with this in mind. Of note is the empirical suggestion that

later decision are of very little importance in a rolling commitment setting. There

appeared to be little loss in quality when system state was modelled constant for

extended periods in the latter stages of the planning horizon.

Supposing this system is accurate enough and that enough High Impact Low

Probability events are covered by the high quantiles specified, the authors suggest

that this system reduces the amount of spinning reserve required on the system. This

claim is however predicated on the error distributions being accurate. The author
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is unaware of definitive wind forecast models which a consensus of the academic

and industrial communities deem correct. Predicating system security on weather

models which could well be fallible in High Impact Low Probability events, the very

events reserves are put in place to cope with, is of itself a risky strategy.

There is much theoretical work presenting frameworks which remove the need for

scenario trees (see for example [67,68]) however many of these still rely on forecast

error distributions and other probabilistic quantities which again do not have a

consensually approved practical realisation.

To overcome the practical difficulties of implementing some of the scenario and

error forecast distribution models, work by Yu et al in collaboration with ISO-NE is

based on a different principle [69]. Research suggests (see for example [70]) that on

the 24 hour timescale, typical of Day-Ahead Unit Commitment, hourly wind output

can be modelled as a Markov Chain. The transition probabilities for this Markov

Chain are precomputed and a collection of states is precomputed

In traditional Stochastic Unit Commitment on specifies a series of scenarios,

each of which specifies a value for net demand for each time period and is treated

as a single (weighted) deterministic problem. Here the authors encode the wind as

being in n states from much lower than expected up to much higher than expected,

and transition probabilities are calculated based on historical data. A new MIP

incorporating these transitions into both the constraints and objective function is

solved using Branch and Bound.

The authors compare their approach to deterministic scenarios and a traditional

stochastic model with multiple scenarios. A selection of the results for a 309 unit

system are shown in Table 2.1, taken from the ISO-NE network with historical wind

data scaled to 20% penetration. They demonstrate that removing the need for a vast

scenario tree can result in a drastic reduction in the number of penalised scenarios.

The authors also show an ability to handle High Impact Low Probability events

such as the 2008 ERCOT incident discussed above. With scenarios and probabilities

generating High Impact Low Probability events, their Markovian Model incurs 68%

fewer penalty scenarios with only a small increase in cost over the traditional SUC

paradigm.
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Markovian Scenarios Deterministic

Solution Time (s) 117 361 4

Cost ($) 10,857 10,504 13,206

Penalty Scenarios 80 253 250

Table 2.1: Results for various Stochastic Unit Commitment methods, demonstrating

how techniques which are not restricted by scenarios tress can be competitive in

solution time and system security.

These were only small test system but could be computed efficiently, reaching a

0.2% gap to optimality on a modern laptop. Supposing this model can be scaled up

and network constraints effectively incorporate this may provide a faster and more

secure alternative to tradition SUC paradigms.

Finally, work by Alvarado presented at FERC 2013 [71] proposes the idea that

the traditional way of considering Stochastic Unit Commitment is not the correct

way. All work discussed above minimises an expected cost given some distribution or

statistical representation of many scenarios that may happen, resulting in an optimal

commitment. Alvarado et al suggest that this is an inflexible and impractical way

of describing the problem.

They propose that an optimal strategy, not single commitment schedule, is what

should be sought. A trivial example was presented demonstrating how splitting into

scenarios encodes the explicit assumption that the future is certain throughout that

scenario. This results in sub-optimal solutions for anything other than an exact

realisation of a given scenario.

The Markovian model above also manages to negate this assumption by encod-

ing all possible transition values from a given state into its constraints, but any

transitions not in the model again are missed. The difference in the strategy case

is that rather than the solution being a fixed schedule, the solution is a conditional

commitment schedule. For each time period, an action based on the probability dis-

tribution of a given possibility is stated eg. supposing high wind is realised variables

take one set of values, supposing low wind they are another set. A modified LR

solution method is proposed and a MIP is acknowledged as a possibility for future
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research.

Conclusions

Much of the theoretical work discussed is clearly at an early stage and eventual com-

petitiveness is unknown, however the ideas presented highlight that there are clearly

many issues to overcome in developing Stochastic Unit Commitment to securely and

efficiently incorporate high penetrations of variable generation. Markovian models

demonstrate a promising possibility of overcoming the limitations of scenario tress

and a strong ability to handle High Impact Low Probability events without vast

increases in solution time. There will inevitably be difficulties in developing these

methods, perhaps insurmountable, however the above ideas represent alternative

avenues of research which could prove fruitful.

Whilst this work highlights the many open problems that remain, existing com-

mitments to green energy require an immediate step forward beyond the highly

efficient deterministic work presented in Section 2.3. Work such as the Sandia Na-

tional Laboratories collaboration demonstrate quantifiable economic improvements

over existing methods on real-world large-scale systems. They also concede there is

much work left to do to run the systems with enough scenarios to encompass enough

High Impact Low Probability events to ensure security levels remain acceptable.

To conclude, a Branch and Bound MIP implementation of Stochastic Unit Com-

mitment has much promise but cannot yet operate at the scales currently required.

This is a similar situation which preceded the widespread take up of Branch and

Bound implementations, where despite academic promise and a guarantee of opti-

mality, the problem sizes required could not be solved within a practical timeframe.

Thus there is again the opportunity for new methods to tackle Unit Commitment

in interesting ways. The use of Markovian and other methods which do not use

discrete scenarios have demonstrated potential, as have new ways of thinking about

the problem, trying to determine strategies rather than a single schedule. As market

restructuring may be required to fully incorporate some systems dependent on rolling

re-scheduling, it may be some time before Stochastic Unit Commitment is widely

used in industry.
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Chapter 3

Short Term Thermal Unit

Commitment with

Meta-Heuristics

3.1 Introduction

Deterministic, short term, thermal Unit Commitment is typically formulated as

a Mixed Integer Programming (MIP) problem. Classical methods of solving this

include the Priority List (PL) Method [18], Dynamic Programming (DP) [19], La-

grangian Relaxation (LR) [29] and Branch and Bound [2] (see Chapter 2.2 for a dis-

cussion of industry practices for Unit Commitment). Priority Lists and Lagrangian

Relaxation are fast algorithms, but can be sub optimal. Branch and Bound can con-

verge to an optimal solution given enough time, whilst Dynamic Programming offers

good solution quality but very poor scaling. Despite long solution times Branch and

Bound is the method most commonly accepted to be the industry standard as dis-

cussed in Chapter 2.

These classical algorithms can be performed in a strict ordering, with no random

components and are so named Deterministic Algorithms. Typically their perfor-

mance can be improved by estimating which parts of the state space will be best to

explore next. This estimation is known as a Heuristic. In Branch and Bound this

could be deciding which variables to branch from. Heuristics can be deterministic or
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have random components so may not produce the same solution and route through

search space each time they are run.

Meta-Heuristic Algorithms are a class of typically problem independent non-

deterministic algorithm used to guide search in mathematical optimisation problems

towards near-optimal solutions [72, p3]. Despite being used for many years, a single

formal definition does not seem evident in the literature, however Meta-Heuristics

appears to be an umbrella term for any algorithm which combines multiple sim-

ple heuristics or search methods in a non-problem-specific manner. [72] selects 4

definitions from a selection of authors and summarises some the key features:

• Typically non-deterministic.

• Provide no guarantee of optimality but can increase search-space coverage.

• Can include ‘learning’ features to improve accuracy throughout search.

• Are typically used in situations where computational resources are limited.

Examples of such algorithms include Genetic Algorithms, Simulated Annealing and

Tabu Search. Due to their non-problem specific nature and lower memory require-

ments many such algorithms have been applied to Unit Commitment.

There is a vast body of work in the literature covering all aspects of Unit Com-

mitment. Surveys of most approaches presented have also been published (see for

example [12, 13]). These give general introductions to the algorithms used, high-

lighting prominent authors and articles, as well as brief overviews of some strengths

and weaknesses.

As discussed in Chapter 2, industrial applications have moved from classical

methods such as LR and DP to Branch and Bound approaches. At the time of

Branch and Bound emerging as the new industrial standard, Meta-Heuristic methods

such as Genetic Algorithms were also being presented [34, Chp 11], but did not attain

the same level of popularity.

Since these early implementations there have been many improvements to the

methods used, but still no industry take up. Much of the modern literature in this
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sub-field assumes Branch and Bound has inherent weaknesses that cannot be over-

come; their solution times on realistic scales are intractable. They are then dismissed

claiming the inherent optimality cannot be reached in practical timeframes.

As described in detail in Chapter 2 this is certainly not the case, and there are

no signs of current Branch and Bound methods being replaced with Meta-Heuristic

algorithms. Having established a recurring feature of little industrial take up and

interest, it must be asked why this is so. There is thus an opening within this field

for a more in-depth review, discussing more than just the work presented.

It is important to assess work not just on general strengths and weaknesses,

but on tangible demonstrations of practical applicability. Some keys areas within

Unit Commitment are realism of model formulation and scale of the test systems

presented. The MIP formulation is inherently complex and the key features respon-

sible for the complexity of the problem should not be excluded.

A unit’s change in output between time periods is constrained by its ramp rate.

This constraint couples time periods and thus decision variables, greatly increas-

ing the number and complexity of the constraints in the MIP. If new work fails to

include these constraints and does not propose methods, or even intent, to tackle

these physical constraints in future work, there is a clear barrier to both practi-

cal implementation and demonstrations of increased performance over Branch and

Bound.

Due to the complexity of Unit Commitment some instances are inherently easier

to solve than others, which is more clearly exposed in larger problem instances. The

generation portfolio of the system also plays an important role in determining the

ease of solution. In order to show a robust and high level of problem coverage1, an

algorithm must demonstrate performance over a wide range of problem instances,

preferably adaptations of real-world demand data, which is freely available in most

cases.

1Large, high quality, problem coverage is essential for Unit Commitment as a high quality

solution must be found for every day for the many years the algorithm would theoretically be in

use. This will inevitably encompass a huge range of seemingly improbably combinations of factors

making the problem instance seem obscure and pathological but still likely to occur. The results

May 8, 2014



3.1. Introduction 40

The inherent stochastic nature of many meta-heuristic algorithms, and lack of

a bound to optimality to use as a stopping criteria, mean that multiple runs of

the solution algorithm can produce varying quality results. To benefit a reader

unfamiliar with the field of meta-heuristics, the variation in solution quality for

individual problem instances should be made clear and transparently discussed.

This would ensure an inherent distrust in methods lacking a bound to optimality is

not exacerbated by a solution method demonstrating at best, mixed performance.

As discussed in Chapter 2, the convex hull of some sub-problems within a Unit

Commitment formulation are known, and have been since the mid 2000s. These

allow many mid-sized systems2 to be tackled on a single home PC. It is therefore

not unreasonable to expect any relatively modern work to compare performance

to Branch and Bound, which by this time was clearly emerging as the industry

standard.

Due to the volume of work on Unit Commitment it should be evident that many

methods with differing strengths and weaknesses exist. Not discussing burgeoning

academic methods could also be seen as an oversight. A new method inevitably

cannot compete against well established industrially developed algorithms. Despite

this there may be reasons, theoretical or empirical, to suggest it could be success-

ful if given similar levels of investment, and should be included in truly rigorous

comparisons.

Thus it is important not just to compare with old versions of the same or similar

class of algorithm, but also to the wider academic community and current practices of

industry. Without those comparisons one cannot assess how beneficial or detrimental

the proposed method is. Furthermore it may appear to a reader that the work is

not wholly aware of the field it sits in, lessening the impact of the work.

Clear demonstrations of benefits over existing methodologies are of critical im-

portance to the power industry, where new methods undergo rigorous case studies

and multi-year trial periods before being implemented [5]. Not including illustrative

of our test system included such an instance which can be seen in Appendix A.1.1.
2See Appendix A.1.1 for a description of the test systems developed for this project which

included up to 50 unit systems solved in under 30 minutes using a commercially available solver.
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comparisons does not facilitate fair assessments of proposed algorithms.

Such oversights are detrimental to researchers, whose progress in a given sub-field

may go unnoticed, and have ramifications throughout the community. Researchers

in similar fields cannot fairly assess what the state-of-the-art in a given class of algo-

rithm is, and so may make oversights in the comparisons performed when presenting

their own systems. This can lead to a lack of transparency in the field, confusion as

to the overall state-of-the-art and thus, the progress of the field as a whole. An un-

clear message cannot bring change to industrial practices. This reduces the impact

of the work as well slowing potential developments in the power systems commu-

nity, where work of potential could be dismissed rather than invested in to develop

systems from academic promise to practical implementation.

Below some of the prominent literature in the field of Unit Commitment using

Meta-Heuristic algorithms is surveyed. Only short term Unit Commitment (up

to 36 hours in advance) minimising cost, not maximising profit in a competitive

environment, is considered. Local searches are surveyed in §3.2, §3.3 surveys global

searches, with hybrid methods surveyed in §3.4. Finally, §3.5 concludes the critical

review discussing weaknesses in this field and how its impact has had less effect on

industry than desired.

What becomes clear is that whilst many articles in the field show academic

promise individually, a lack of consistency in model formulation, benchmark algo-

rithms and no discussion of current practices, are key oversights potentially at the

heart of why this field has not progressed towards practical interest and implemen-

tations.

This review is of benefit to those looking for an overview of this field, such as new

researchers to both Unit Commitment and Meta-Heuristics, to researchers within

the field looking for examples of common pitfalls when presenting new approaches to

this problem, and to more experienced researchers looking for an overview of what

issues could need addressing to increase the possibility of industry uptake.
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3.2 Local Searches

Local searches slightly vary feasible solutions at each iteration, so each new candidate

is within a neighbourhood of its parent Because of the small step changes, optimum

solutions can be found quickly providing the initial feasible solution is close to the

optimum. Generating an initial feasible solution close to the global optimum so a

local search can find it is difficult. Also, memoryless local searches will often get

stuck in a local minima.

3.2.1 Simulated Annealing

Simulated Annealing is a search algorithm generally employed in discrete search

spaces first formulated independently in [73] and [74], presented as a Monte Carlo

method of solving traditional optimisation problems based on the apparent random

fluctuations and permutations seen in statistical mechanics.

Annealing is the physical process of heating and controlled cooling of a metal.

When heated the electrons have different spin states, if cooled in the correct way

the resulting configuration of spin states has the minimum energy. In combinatorial

optimisation we observe that a feasible solution is analogous to a configuration of

the spin states, and the metric cost is analogous to the total energy. A control

parameter is introduced to play the role of the cooling process.

The algorithm proceeds from an initial feasible solution by probabilistic gener-

ation of a neighbour, or candidate solution, and probabilistic acceptance of that

solution until either a desired accuracy is reached or a computation resource (time,

memory etc) is exceeded. The method of variation of a candidate solution is typ-

ically different for each implementation whilst acceptance is always controlled by

the cooling parameter, forming a “Cooling Schedule”, which heavily influences the

convergence of the algorithm.

Strengths (+) and Weaknesses (-):3

3The discussions of strengths and weaknesses throughout this document are our own assessments

of the papers.
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+ Probabilistic acceptance of higher cost solution prevents stalling in local min-

ima.

+ Not memory intensive as has no memory (i.e Xi is forgotten once Xj is ac-

cepted)

+ General applicability [75] means much of the literature can be applied to Unit

Commitment.

+ Highly flexible. Varying neighbour generation and probabilistic acceptance

functions allows for fast local, or more accurate global, search.

- The often mentioned theoretical result of achieving global optimum with prob-

ability 1 as the cooling schedule extends [76] has little impact on practical

implementations due to the time require to implement the complete schedule.

- Can spend much time generating infeasible states that must be reasoned about.

- Problem specific generation functions and parameter tuning is required for

competitive performance.

Zhuang and Galiana [75] presented one of the first large scale applications of

Simulated Annealing to Unit Commitment, using test systems of 100 units. They

claimed their implementation was significantly faster than Branch and Bound and

Dynamic Programming, and whilst slower than Lagrangian Relaxation, it allowed

for the specification of more complex constraints.

Implementation was basic. The initial solution was generated using a priority

list method, variation from a candidate solution was implemented by changing the

output of a unit i at time period t and adjusting as few other units as possible

to ensure the constraints4 are still respected, and the cooling schedule removed a

constant amount from the cooling parameter at each iteration. A minimum value

for the cooling parameter was used as a stopping parameter.

4As in many early Simulated Annealing implementations only a subset of constraints we con-

sidered and rigorously adhered too. A feasible solution in [75] was one where generation limits,

min up and down times and must run / unavailability constraints are observed.
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Results in this initial implementation were mixed with the authors noting that

in some cases the iterative improvement method (i.e. Simulated Annealing without

the random acceptance of a more expensive solution) required much fewer iterations

to converge to a very good solution. As noted above this is highly dependent on the

starting state of the algorithm as iterative improvement will not ‘climb’ out of a local

minima. The method gave solutions of higher quality than Lagrangian Relaxation

as expected. No comparison to branch and bound or dynamic programming was

given, which is to be expected given the lack of available computing power at time

of publication.

Complications included generating the set of feasible solutions (solved via having

constraints categorised as easy or hard and allowing the algorithm to consider a

solution respecting the easy constraints as feasible). Time periods are considered

independent (i.e. no ramp rates are considered). This early algorithm showed

promised at the time of publication but clearly further advances were needed to

make this a competitive solution method.

Other implementations added more complexity such as non-linear constraints

and different cooling strategies (see [77] for example) or tweaking the acceptance

of modified states by probabilistically accepting lower cost states (see [78] for ex-

ample), but it was Simopoulos and colleagues who moved the Simulated Annealing

algorithms forward. They developed a more advanced algorithm to that in [75] but

at the same scale, 100 units, whose main contribution is as one of the first Simulated

Annealing implementations to take ramping constraints between time periods into

account.

Ramping rate constraints introduce coupling between the time periods. These

constraints break the independence of each output variable, with each one now

dependent not just of static bounds (minimum / maximum generation) but also on

the value of other decision variables. For a MIP this requires increased reasoning

about each variable increasing the computation time, whilst for a meta-heuristic

algorithm it complicates the state variation / generation sub-problem, as the random

variations will not typically be wholly contained by the range of acceptable outputs

at the next time period.
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It is tackled in [79] by having the Simulated Annealing algorithm tackle only

the on / off scheduling and performing a version of Economic Dispatch to impose

ramping constraints. [80] takes the method forward by dynamically selecting the

exact solution method for the economic dispatch subproblem.

The on / off scheduling is initially developed in [79] and extended later in [80].

Explicit parameter tuning is used to improve performance and three rules of state

variation are given. The cooling schedule is also more sophisticated given by Cp,k+1 =

αCp,k, where α is less than 1.5

The results showed that the adhering to ramping constraints adds a significant

premium to the operation cost, highlighting that implementations which don’t model

all features will give misleading cost comparisons between methods. Results are

given for systems of 20-100 units in size, again proving the plausibility of Simulated

Annealing as a Unit Commitment method. Costs are shown to be generally com-

petitive against Lagrangian Relaxation and a selection of meta-heuristic algorithms

but the gap to an optimal (or near optimal) Branch and Bound is not considered.

Simopoulos et al.. extended their work later in the same year by implementing

non-deterministic reserve levels [82]. This paper demonstrated the flexibility of Sim-

ulated Annealing and its ability to handle complex constraints but no comparisons

to other methods were made so an analysis of Simulated Annealing’s competitiveness

with these extra complexities cannot be made.

Simulated Annealing used on its own has had significant attention but higher

quality results can be obtained by using it as part of a hybrid system. This is

a direction research of Unit Commitment has taken recently, and is discussed in

Section 3.4.

3.2.2 Tabu Search

Developed by Glover between 1986 and 1990 [83–85] Tabu Search is a local search

with an embedded memory structure used for combinatorial optimisation. The

memory structure consists of short-, intermediate-, and long-term structures. Rather

5This is a common cooling schedule with typical values between 0.85 and 1 [81].
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than moving forward by varying a single feasible solution some neighbourhood of the

current feasible solution is considered and the next candidate solution is chosen as

the best in that neighbourhood. Short-term memory structures retain the previous

solutions which become taboo states, so the previous solution is not included in the

new candidate solution’s neighbourhood. Intermediate and long-term structures are

used to bias the search towards predetermined high quality solutions are to reset a

search should it become stuck in a plateau. These are typically problem specific.

Strengths (+) and Weaknesses (-):

+ Not necessarily a stochastic method as moves towards best solution in each

neighbourhood, therefore does not necessarily suffer from the wide variability

found in other stochastic methods.

+ Not required to be linear cost functions unlike MIPs whose solution process

becomes much more complex for higher order cost functions.

- Parameter tuning for size of neighbourhoods required otherwise requires pro-

hibitive amounts of memory. Sometimes attributes of a solution become taboo

rather than a whole solution increasing the effect of the tabu and reducing the

memory footprint.

- Only works in discrete problems spaces as real valued search is vanishingly like

to re-generate a previous solution so there is little benefit a taboo list. Com-

petitive Unit Commitment algorithms often separate the discrete scheduling

from the continuous dispatch so this general weakness is less of a concern.

Mori and Usami were the first to implement a Tabu Search for Unit Commitment

in [86] and [87]. Both of these methods were only tested on small systems of 10 units

but became among the first attempt at a ‘hybrid system’, necessitated by the integer

only nature of the algorithm.

Another ‘pure’ Tabu Search implementation can be found in [88], published in

1998. This time moderately sized systems are tested (up to 26 units, 24 periods).

One key contribution of this more in depth publication is the discussion of 4 different

approaches to creating the Tabu List as well as varying sized lists. This highlights
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the need for domain specific alternations to the black-box meta-heuristic algorithms

to gain competitive performance. Of note here also is the use of a quadratic pro-

gramming regime to solve the economic dispatch, which would allow (given modern

computing power) the specification of very complex constraints should ‘pure’ Tabu

Search continue to be developed.

In 2001 Mori and Matsuzaki [89] took the domain specialisation further by using

a Priority List of generating units to restrict the generated neighbourhood of each

candidate solution, thereby increasing the efficiency of the search. The authors

report improvements of Genetic Algorithms and Simulated Annealing on an IEEE

54 unit system. This is a notable achievement and further demonstrates the need

for domain specialisation. Lagrangian iteration is used for economic dispatch. For

fair comparisons between Tabu Search algorithms it should be clear that the same

economic dispatch algorithm should be used so comparisons between papers is not

entirely unbiased.

These early papers were published with little computing power so a lack of com-

parisons is understandable. They highlighted that the search method was feasible

and unlike many other classes of meta-heuristic algorithm, the complex constraints

of unit commitment could be modelled well as they can be tackled by a separate

economic dispatch algorithm. Unfortunately further specialising the tabu-search

and combined with traditional mathematical programming methods does not seem

to be an avenue explored by the community. Instead Tabu Search has been used

extensively combined with other meta-heuristic methods, more details can be found

in Section 3.4.

3.3 Global Searches

The global methods discussed below all maintain a collection of candidate solutions.

This has a memory cost above the local searches but combined with an often larger

random component means the search is less likely to stall in a local minima. The

larger fluctuations of a global search mean that more of the state space can easily

be covered and the starting state has less impact on the final solution. On the other
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hand it can also mean that re-runs of the same algorithm with the same starting

state can have much larger discrepancies. Care is needed when assessing the solution

quality of these methods to ensure the spread of results is clearly documented.

3.3.1 Genetic Algorithms

Genetic Algorithms are a class of Evolutionary Programming Algorithms; algorithms

which find solutions to optimisation problems by mimicking natural selection. In

general the algorithms proceed from an initial feasible solution through mutation of a

single or selection of candidate solutions to generate a new ‘population’ of candidate

solutions. A metric is defined which determines the ‘strength’ of a solution. A

selection of the strongest solutions are kept and a new population is generated

through a crossover (‘breeding’) algorithm which takes characteristics from multiple

solutions. Each member of this new population may also mutate individually before

the process starts over.

As with other meta-heuristic algorithms, performance is dependent on the muta-

tion process. Population sizes and the size of the pool of ‘strong’ solutions to ‘breed’

from also has a big impact on the performance of a Genetic Algorithm.

Strengths (+) and Weaknesses (-):

+ Searches a selection of points in each iteration not a single point due to popu-

lation and breeding sizes. Each mutated solution impacts how future solutions

will be generated so is more than a collection of parallel local searches.

+ Parallelises well allowing practical problems of large size to be solved using

PC clusters.

- Assessing the fitness of each member of a population can be very time con-

suming so in some cases only samples of the population are assessed.

- Initial population generation can be difficult and time consuming in problems

such as Unit Commitment where randomly generated solutions will likely be

infeasible. Biasing the initial population generation is possible but a uniformly
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random collection is still needed for good coverage of solution space and con-

vergence time.

- Constraints are represented by cost violations i.e. hard constraints are not

necessarily observed.

- Parameter tuning (for generation sizes, breeding size, breeding algorithm pa-

rameters etc) is required to get the best performance and the optimum value

of each parameter will likely vary for different problem instances.

- Two sources of random-ness (mutation and cross over) mean that on problems

where optimality cannot be reached practically (such as Unit Commitment)

the solutions converged upon can vary quite largely in terms of quality.

Genetic Algorithm implementations of Unit Commitment began as early as the

mid 1990s (see [90–92] for example). [91] is a very basic implementation typical of

first attempts at using meta-heuristics for unit commitment. No heuristic is used

for guidance, performance is only tested on a 6 unit system (later tested on a 9

units system in [92]), Economic Dispatch is considered only to ensure supply levels

are above demand and no coupling between time periods is considered. Standard

crossover and mutation algorithms were used.

In these early papers favourable comparisons to Lagrangian Relaxation are made

but the lack of realistic constraints and small system size means these models are

not promising on their own. They highlight that using general methods within a

meta-heuristic will rarely provide an accurate solution quickly.

Kazarlis et al. [93] presented a Genetic Algorithm implementation around the

same time (1996) as the above methods with domain specific genetic operators.

These operators cross and mutate large segments of the solution rather than indi-

vidual entires, which will often generate invalid solutions which break the min on /

off constraints. Figures 6-8 therein show the dramatic improvement in convergence

to the global optimum over a standard implementation. The authors then impose

progressively stricter penalties for constraint breaking and Figure 9 therein shows

how this further improves performance.
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[93] also presents good rigorous testing results. Systems of up to 100 units

are compared with Lagrangian Relaxation and Dynamic Programming (the main

contenders given available computing power at time of publication). For each system

(10, 20, 40, 60, 80, 100 units) 20 runs were completed (as each run can produce a

different solution due to the random nature of the mutation). For systems of 60 units

or more the Dynamic Programming could not produce a valid solution (reportedly

due to the complexity of satisfying the time constraints in a Dynamic Programming

Algorithm) and every Genetic Algorithm ran gave a higher quality solution then

Lagrangian Relaxation. No comparison is given to Branch and Bound but given

the computing power available at the time of publication this is not surprising.

Altogether, this is a much more competitive and complete implementation than

many in this field.

An Evolutionary Programming Algorithms (essentially a Genetic Algorithm with-

out crossover algorithms) was developed in 1999 in [94] and also tackles systems up

to 100 units in size, suggesting that meta-heuristics do indeed have good scaling

properties, backing up the results shown by Kazarlis et al.. What is apparent here

and throughout the literature however is a lack of common test models and algo-

rithms to allow fair assessment of an algorithm’s quality. There are a wealth of

papers not mentioned here which all claim to solve the Unit Commitment problem

with very similar methods, but without a rigorous comparison against other meth-

ods explicitly in the presenting paper it is impossible to assess their quality and

claims of success.

Damousis et al. [95] present a novel formulation of the MIP and solve for 20-100

unit systems using a Genetic Algorithm. Rather than encoding the on / off state for

a generating unit as as string of binary variables, they use a string of integers. If a

unit is to be off for 13 periods, on for 22, then off for 13 periods it would be encoded

as (−13, 22,−13). Ramping rates are considered and a significant improvement in

solution time over a binary coded Genetic Algorithm is shown. Only comparisons

to Lagrangian Relaxation are made despite publication in 2004 when a Dynamic

Programming and Branch and Bound would both be plausible on the smaller test

systems.
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It is therefore hard to judge the solution quality of this method, but it would

seem to be a competitive formulation for meta-heuristic. By avoiding mutations

creating strings such as 0, 1, 0, 1 states which clearly violate minimum on and off

times will never be generated. Unfortunately few papers use this formulation so a

good idea of the competitive-ness of this method is unknown. This points to a lack

of common benchmark problem formulations and solution methods so the relative

performance of algorithms and MIP formulations can be transparently compared.

Senjyu and colleagues also developed a standalone Genetic Algorithm [96] with

domain specific mutation operators shortly after the above methods (2006). Their

operators were more sophisticated, for example by ensuring the mutation of solutions

where there was only a deficit in power for a short while only turned on units with

short minimum on times. This method was later refined in [97] to give increased

solution accuracy. Both implementations were tested on systems of up to 100 units

but are only tested against another Genetic Algorithm and Evolutionary Program-

ming implementation, so few rigorous comparisons about relative performance can

be drawn.

One common theme of the work discussed above is how continued refinement and

specialisation to a domain can dramatically improve the performance of a meta-

heuristic method. General ‘black-box’ algorithms, whilst can be applied to Unit

Commitment, do not perform well. This suggests that specialised Genetic Algo-

rithms could prove to be a good solution technique for Unit Commitment.

Unfortunately, rather like the work on Simulated Annealing, ramping constraints

between periods are rarely considered, with Senjyu claiming that Economic Dispatch

without ramping constraints is already the most computationally intensive part of

the algorithm. Rudolf and Bayrleithner [98] develop a Genetic Algorithm which

uses Lagrangian Relaxation to perform ramp-rate constrained Unit Commitment

but it is only tested on an 8 unit system with import and export contracts. Whilst

academically interesting their method is only tested on too small a system to be

realistic and takes longer to converge than the reported MILP used to verify the

quality of the solution, so has little practical impact.

Standalone Genetic Algorithms can therefore be shown to be competitive com-
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pared to a Lagrangian Relaxation implementation on a simplified model of the

problem, but their practical implementation is limited. They have however been

a common part of hybrid meta-heuristic algorithms, see Section 3.4 for details.

3.3.2 Particle Swarm Optimisation

First introduced by Kennedy and Eberhart in 1995 [99], Particle Swarm Optimisa-

tion is another optimisation method inspired by nature, this time by the motion of

large swarms of animals such as flocks of birds and shoals of fish. The principle is

that a member of a swarm will tend to move from is current position in the general

direction of the swarm, with a little random fluctuation. This is transferred into

an optimisation model by having each solution as a vector which updates at each

iteration by mutating towards the global best, and its previous best solution. Unit

Commitment is a binary optimisation problem, so unless carefully constructed oper-

ators are used it will suffer the same problems as early Genetic Algorithm methods

with solutions with randomly dispersed 0s and 1s violating the minimum on and off

times.

Strengths (+) and Weaknesses (-):

+ Unlike Genetic Algorithms it can easily handle continuous variables so is a

more flexible solution method.

+ Parallelises well providing communication between parallel architectures is ef-

ficient.

- Like Genetic Algorithms assessing the fitness of the population can be ex-

tremely time consumings due to the large size needed for good results.

- Handles constraints through penalty functions.

- Binary mutation can easily lead to isolated 1s violating minimum on / off

times unless specialised mutators are used.

Many implementations of Particle Swarm Optimisation for Unit Commitment

have been given in the literature but few solve a realistic size of problem with a
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realistic set of constraints. Gaing [100] proposed one of the first implementations,

with two systems of 10 and 26 units. No domain specific operators were used

and a unit’s ramp rates between time periods were not considered. None-the-less

solution quality was shown to be generally 5-10% better than the Genetic Algorithm

implementation of [93] as the Genetic Algorithm would converge prematurely despite

its domain specific operators.

Ting et al. [101] produced an implementation shortly after Gaing which used

binary Particle Swarm Optimisation for the unit scheduling and real valued Particle

Swarm Optimisation for the Economic Dispatch sub problem. Their results were

favourable compared to those given in [93] for other meta-heuristic and classical

methods.

The authors claim their “results clearly show the HPSO [Hybrid Particle Swam

Optimisation] is very competent at solving the UC problem in comparison to other

existing methods.” However, ramp rates between periods are not considered, solu-

tions times are not discussed, and the test system is only 10 units in size. The

authors give no reason to assume successful scaling of the problem and that the

temporal coupling of unit loading won’t destroy the performance of their algorithm.

By 2006 at the time of this article’s publication, many other meta-heuristic and

classical methods had proven performance on much more realistic systems, this

highlights how some work does not appear to be fully aware of the state-of-the-art

in the field it sits in.

Logenthiran and Srinivasan [102] developed a promising Particle Swarm Optimi-

sation implementation and their work details and compares different Particle Swarm

Optimisation implementations; Binary, Improved Binary, and Particle Swarm Op-

timisation with Lagrangian Relaxation. Ramp rates are considered in this imple-

mentation and systems up to 100 units are tested, but there is only comparisons

between Lagrangian Relaxation and different Particle Swarm Optimisation models.

Pappala et al. [103, 104] develop a Particle Swarm Optimisation algorithm with

the same novel integer formulation of the MIP used in [95]. Like [95], the authors

had fixed number of integers in [103] but this was restrictive so variable particle

size Particle Swarm Optimisation is implemented in [104]. This has the benefit of
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reduced variables (reducing the integer section of the particle by up to 88%) and

prevents the mutation and cross over operators creating a schedule with isolated 1s.

Ramp rates are considered and all constraints are imposed using penalty functions.

In the latter paper the authors run tests on systems ranging from 20-100 units,

which are compared with other published meta-heuristic algorithms. The Variable

Dimension Particle Swarm Optimisation compared favourably producing cheaper

schedules than the 4 comparison algorithms, all also Meta-Heuristic algorithms, on

3 out of 5 occasions and 2nd out of 5 in the other 2. This work seems very promising

and it would be interesting to know how close the meta-heuristic solutions were to

a branch and bound solution, as well as comparative time to solve between each

meta-heuristic and branch and bound.

Both the work by Pappala et al. and Logenthiran and Srinivasan demonstrate

that Particle Swarm Optimisation may be a suitable for practical applications of Unit

Commitment. Both were published in 2010 so are modern implementations and a

lack of comparisons to Branch and Bound lessen their impact. It would be interesting

to test these algorithms against Branch and Bound and Genetic Algorithms as the

impression given is that their Particle Swarm Optimisation implementations produce

higher quality solutions than Genetic Algorithms but can take considerably longer.

The trade off between solution time and solution quality compared to successful

Genetic Algorithms and Branch and Bound over a range of demand profiles would

be an interesting study.

3.4 Hybrid Algorithms

It is intuitive that combining a local and global search can remove some of the

weaknesses of either method. Typically a local search is embedded within a part

of the global search to make a random process biased towards producing higher

quality solutions. Whilst these hybrid methods form a large part of the literature

the applicability of most of the methods has not yet been rigorously shown, with

small test systems and unrealistic models being the main culprit.

Some of the earliest hybrid methods were developed to improve the performance
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of dynamic programming. As early as 1989 an expert system (where certain deci-

sions are made to mimic the actions of an experienced schedule form a heuristic)

was incorporated within a dynamic programming algorithm [105]. In this early

stage of meta-heuristic unit commitment this hybrid provided the rigour of dynamic

programming with a reduced computing requirement by providing pre- and post-

processing to the Dynamic Programming algorithm.

In [106] an artificial neural network acts as a preprocessor to the dynamic pro-

gramming algorithm by creating an initial schedule which reduces the search space

of the Dynamic Program to only search those states which the neural network has

deemed non-certain.

As many of the above algorithms showed early promise, the community quickly

began developing hybrid methods which combined algorithms of contrasting prop-

erties to overcome conceptual weaknesses of each method.

In 1997, Huang and Huang published a Unit Commitment algorithm combining

a Genetic Algorithm with Dynamic Programming and a neural network to generate

the initial feasible solution [107]. Tests were run on a model of the Taiwanese

Power System with 43 generating units and showed only a slight improvement over

the uncombined methods. None-the-less, using Genetic Algorithms to enhanced a

meta-heuristic algorithm became very popular.

Mantawy et al. [108] published a more successful hybrid algorithm. A Genetic

Algorithm was enhanced with Simulated Annealing, by using the Simulated Anneal-

ing acceptance test to determine the next generation, and Tabu Search to generate

the remaining new population. A 10 unit and 26 unit system was tested and was

found to produce slightly cheaper solutions compared to each algorithm on its own

and the combination required much fewer iterations to converge (10-25%) than a

standalone Genetic Algorithm.

Following in a similar vein to Huang and Huang, Cheng and colleagues developed

a Genetic Algorithm with Lagrangian Relaxation [109] which scales up to 100 units

but again ramp rates are not considered. The solution times for this algorithm are

given however and appear to be approximately linear which is a positive indication

that hybrid meta-heuristics could be a practical solution methodology.

May 8, 2014



3.4. Hybrid Algorithms 56

Later hybrid algorithms were developed which could successfully handle ramp-

ing constraints. In 2002 another Hybrid Genetic Algorithm Lagrangian Relaxation

algorithm was developed [110] which does handle unit ramp rates between time pe-

riods and runs tests based on the IEEE RTS-96 test system, featuring 96 units [111],

without network considerations . A hybrid Simulated Annealing and Genetic Al-

gorithm in 2004 [112] was shown to produce higher quality solutions than classical

Lagrangian Relaxation, Dynamic Programming and other meta-heuristics with (in

some cases greatly) reduced solution time on systems up to 40 units in size.

As with [101] some of the hybrid algorithms make claims of competitiveness

unaware of surrounding work. In 2005 [113] present a Particle Swarm Optimisation

Algorithm combined with Lagrangian Relaxation claiming their results on 4-10 unit

systems show the “feasibility” of this method. With other meta-heuristic algorithms

solving much larger systems at this time a more realistic test model is required to

demonstrate that Particle Swarm Optimisation as a field has higher potential than

was already demonstrated by Gaing in [100].

Work by Jenkins [114] can be criticised for the same pitfalls as above however

it also discusses an important point which is a weakness of many meta-heuristic

algorithms. Jenkins presents four hybrid algorithms two of which are praised for

their improved accuracy and speed of convergence over the original work by Zhuang

and Galiana [75] and by Mantawy [77]. He also explains that these new methods

are more robust, providing good performance over a wider range of parameter val-

ues than previous work. Parameter tuning can be time consuming and problem

dependent so a hybrid algorithm which requires less tuning or can perform well over

a large set of problem instances with little alteration to parameter values clearly

brings an worthwhile contribution to the field.

Similarly to the work in [88], Bavafa developed an algorithm which combines

meta-heuristic search for unit scheduling with mathematical programming for eco-

nomic dispatch [115]. This work, published in 2009, is a good example of how

meta-heuristics have progressed. The IEEE 26 unit 24 bus test system is used,

which is relatively small considering sizes used by other authors by this time, but

ramp rate constraints, real power constraints and dynamic spinning reserve are all
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considered. As with [88], this highlights how combining meta-heuristics with math-

ematical programming can produce some of the strongest hybrid systems able to

solve semi-realistic problems.

3.5 Discussion

Many different meta-heuristic algorithms have been used to solve Unit Commitment

in the literature. Despite being able to solve a version of Unit Commitment with

little modification to the standard methodology, many of the algorithms published

in this area are very uncompetitive without using domain specific operators.

Much of the initial work into Unit Commitment with Meta-Heuristics was done

at a time when computing power was both expensive and limited. The quality

of classical methods such as Lagrangian Relaxation left a relatively large gap to

optimality and the need to find more accurate algorithms with little extra computing

power was clear. The key work detailed above filled this gap and proved competitive

at time of publication. For more modern work however, better MIP formulations

and increased computing power are readily available. Branch and Bound is rarely

used as a comparison and modern papers should remedy this as it is commonly

accepted to be the industry standard.

It is generally claimed that meta-heuristic algorithms provide faster solutions

than deterministic and classical algorithms, although in many cases scalability has

not been properly studied and comparisons to Branch and Bound solutions within

a known bound of optimality has not been done. Extending an established meta-

heuristic algorithm by embedding another has been a popular approach to improve

solution quality, combining a search with strong local search properties with one

with strong global search properties. This generally improves solution accuracy

without adversely impacting solution time but again has not been tested on realistic

system sizes, or compared with Branch and Bound for optimality. These oversights

combine to weaken the generic claim that meta-heuristic algorithms offer a solution

methodology with only small gaps to optimality which is compensated for by very

fast solution times.
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Branch and Bound can run until a pre-specified maximum bound from optimality

is reached. It has been suggested that a gap of around 0.1% is acceptable for day

ahead Unit Commitment [2]. If the demonstrated variability of a meta-heuristic

implementation is greater than this, then it is highly likely that many of the solutions

found by the candidate algorithm will be further from optimality than this. The

probability of this occurring cannot be accurately quantified. Thus strong empirical

evidence of variability less than this would seem required for industry to begin to

consider such a method. Unfortunately this is lacking from much of the research.

3.5.1 Branch and Bound and Industry

In all of the above literature industry standards are rarely discussed. Availability

of exact details is limited, probably due to a need for industry to protect the con-

fidentiality of their own class leading methods against competitors. Despite this,

common practices can be found, as discussed in Chapter 2.3. However, a collection

of models and algorithms representative of industry practices which could be used as

a fair means of comparison for novel solution methods would clearly be beneficial to

researchers in this area. It would allow researchers to assess how competitive their

methodology is, and the wider academic community to assess the state-of-the-art in

each sub-field.

Modern PCs have enough power to run Branch and Bound for Unit Commitment

Problems of a reasonably realistic size. Furthermore, clusters of workstations can

be constructed relatively cheaply, so optimal or near optimal Branch and Bound

solutions can be found, and is a common implementation in industry [5, 62]. For

meta-heuristic methods to remain relevant modern literature must include more

than comparisons with methods such as Lagrangian Relaxation, whose justification

for use is negated by the recent rise in readily available computing power.

Highlighting further the oversight of modern papers which do not compare with

Branch and Bound is the availability of work such as [2] which describes in full

detail a model representative of industry practices. Therein the fundamental model

underlying the system used by PJM, which went live in 2004, is discussed but not

enumerated. Whilst this does not provide a specific model which meta-heuristics
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researchers could copy, it is a clear indication that this is a method demanding

serious consideration and comparison to.

Since the emergence of Branch and Bound systems such as the PJM implemen-

tation for RTOs, Branch and Bound should have been a factor in most research

into Unit Commitment. 2006 saw two further well received papers present efficient

formulations of MIPs solved using Branch and Bound [41, 116]. These two papers

should have highlighted not only the possibility of modelling Unit Commitment as

a MIP and solving with Branch and Bound without the need for super computing

and clusters, but also the necessity for comparison to qualify for consideration by

industry.

Full details on the advances in MIP and Branch and Cut with regards to Unit

Commitment can be found in Chapter 2. Details of the MIP formulation intended

for comparison within this project can be found in Appendix A.1.

3.5.2 Benchmark Models and Algorithm

One recurring feature evident throughout this review is that there are no common

model formulations. This makes it difficult to draw comparisons between different

authors on a level playing field. It would therefore be beneficial to have a collection

of models which can be seen as a set of community benchmarks. The issue of

benchmarks for Unit Commitment was also discussed in [117] and a method for fair

comparisons was presented but has not been taken up by the community.

Like IEEE network models, benchmark MIP model formulations and example

algorithms for each class would facilitate transparent comparison between publica-

tions without overlooking model discrepancies. Multiple model formulations and

algorithms could be used, with different models highlighting specific aspects of the

problem. More advanced methods would tackle models with advanced reserve re-

quirements and warm starting units whereas novel and untested algorithms would

be compared with early versions of state-of-the-art algorithms on simple models.

The availability of code or precompiled binaries to all in the field would go fur-

ther, allowing researchers to test each established method against their own on the

same workstation, so relative solution times could be accurately discussed alongside
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solution quality. In [118] the authors compare their model (on systems of 20-100

units) with Lagrangian Relaxation and an Integer Programming Algorithm. Whilst

they can compare costs the authors acknowledge that they can only speculate that

the computation time of their algorithm may be considerably longer than either

method. A means of verifying this would facilitate clearer assessments of the com-

petitiveness of their method.

The problem is further highlighted by comments such as “the DP method is ca-

pable of finding the global optimal solution, and the method has been utilized as a

benchmark method recently” [101] (2006) and “Currently, LR method is a widely ac-

cepted algorithm in real power system scheduling which is considered as a benchmark

for comparing the results.” [102] (2010). Whilst potentially consensual within the

meta-heuristic literature, these claims are false at the time of publication. They are

also not consistent within the meta-heuristic literature, as no standard Lagrangian

Relaxation or Dynamic Programming algorithms are described. Also strong imple-

mentations of Lagrangian Relaxation and Dynamic Programming have been known

to be out performed by meta-heuristics on large systems as early as 1996 [93], al-

though they have not been developed into industry applications.

Work such as [41–43] provide state-of-the-art implementations with theoreti-

cal underpinnings guaranteeing fast convergence and optimality. In lieu of specific

industry examples these MIP formulations seem extremely well suited to become

benchmark models.

3.5.3 Conclusion

As many constraints are not tackled by most meta-heuristic methods and comparison

to industry accepted procedures is severely lacking the impact the field is likely to

have on industry is limited despite the academic interest. A collection of benchmark

models and algorithms which clearly illustrate the potential of the methods presented

in this review will both increase competitiveness and quality of the work within

the academic community and drive the field towards more industry uptake and

applicability.
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Chapter 4

Planning for Optimisation

4.1 Introduction To Planning

Automated Planning, also interchangeably referred to as ‘AI Planning’ and sim-

ply ‘Planning’, is concerned with sequencing actions to achieve goals1. It therefore

lends itself well to problems where the actions achieving the goal, the order of the

actions, or some associated cost of actions are important.

The archetypal planning example is the “Blocks World” problem. Consider the

task of reordering one configuration of distinguishable blocks to another configura-

tion, as in Figure 4.2. The initial state is A on B on C on the table. The goal is to

have C on B on A on the table.

To make this a full planning problem all possible facts, known as Propositions

or Predicates, which can be true or false, are listed, as in Table 4.1. The ways

in which this system can be manipulated must also be listed. These are known as

Actions, and each requires specification of Preconditions, facts which must be

true for an action to be applied, and Effects, the results of applying this action.

A State, or World State, is a combination of propositions representing a config-

uration of the world being considered in this planning problem. A planning problem

specifies an initial state, which must fully define the system to be manipulated. Of-

1The following is a general introduction to the field of AI Planning. For a more complete and

rigorous introduction to the subject references [119,120] are recommended reading.
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ten referred to as the Goal State, the goal of a planning problem is a combination

of propositions which are to be true for the problem to be considered solved. The

goal does not have to fully define a state, as an initial state does. The goal could

be just “C on A”, in which case there are many goal states.

An action can be applied to a state if and only if the the preconditions for that

action are true in that state. The result of applying an action to a state is to assign

each predicate the value given in the effects of an action. Any predicate not listed

in an action’s effects remains unchanged. To schedule actions to achieve goals is to

reason about which actions should be applied to the initial state, in what order, to

manipulate the predicates in such a way that the goal propositions are true in the

resulting state.

The algorithm which searches for the sequence of actions which transform the

initial state into a goal state is known as a planning algorithm, or Planner. One can

intuitively think of a planner as searching a graph of all possible world states. In the

initial state, only a subset of actions will be applicable. Each applicable action can

be thought of as an edge, leading to a new node, a new world state. Extrapolating

each of these states with their applicable actions creates new edges and nodes, and

a full graph of all possible states can be created. Full enumeration of this graph in

order to search it would be time consuming and resource intensive, for the 3 block

problem this graph would consists of 22 nodes and 42 edges, illustrated in Figure

4.1. Instead multiple approaches to generating and traversing only parts of this

graph have been implemented in the literature.

The solution is a path through this graph from the initial state to a goal state.

The edges in this graph form a sequence of actions, known as a Plan. For the 3

block problem, a suitable plan would be:

unstack A from B

put down A

unstack B from C

stack B on A

pick up C

stack C on B
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A
B
CA

B
C

A B C

A
B

C

A
B

C

A
B
C

A
B
C

A B

C

A

B

C

A

B C
stack B on A

unstack B from A

stack C on B
unstack C from B

stack B on C
unstack B from C

stack A on B
unstack A from B

pick up A
put down A

pick up A
put down A

pick up C
put down C

pick up B
put down B

pick up C
put down C

Figure 4.1: A partial enumeration of the search space for a 3 block ‘BLOCKS’

domain. The four branches not shown will be variants of the two inner branches.

Each node represents a state. In this example each action can be undone with a

second action, represented by the direction arrows. The complete graph would have

22 states and 42 unique edges i.e. an edge only going in one direction as it represents

a single action.
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A

B

C

(a) Initial State

C

B

A

(b) Goal State

Figure 4.2: Figure illustrating a Blocks World problem with a valid initial state,

which describes the state in its entirety, and a goal state which specifies facts which

must be true, but does not require full specification of the state.

The main methods for tackling planning problems are introduced through the

remainder of this section. Section 4.2 presents a more detailed survey of planning

through the development of key planners in the literature. The chapter concludes

by assessing the benefit of attempting to tackle Unit Commitment with Automated

Planning.

4.1.1 Modelling Planning Problems

Typing and Grounding

The Blocks World problem illustrated above is a very simple example, however it

should be clear from Table 4.1 that enumerating all the possible predicates and

actions can be quite numerous. In Blocks World there are O(n2) predicates and

actions, for n blocks.

To make modelling planning problems easier, objects Types are introduced.

Define a block type object, then the predicates and actions can be easily listed, as

in Table 4.2. Now there are 5 types of predicate and 4 types of actions, regardless

of the number of blocks being considered. This allows for a separation between a

type of planning problem and the specific problem instance.

A planning Domain defines all the object types, predicate types and action

types, where each predicate and action can be absolute or take parameters. A
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Predicates

A on B

A on C

B on A

B on C

C on A

C on B

hand empty

A in hand

B in hand

C in hand

A on the table

B on the table

C on the table

A clear

B clear

C clear

(a)

Actions

Unstack A from B

Preconditions: Effects:

hand empty ¬ hand empty

A clear ¬ A clear

A in hand

B clear

Stack A on B

Preconditions: Effects:

A in hand ¬ A in hand

B clear ¬ B clear

A on B

A clear

hand empty

(b)

Table 4.1: (a) All possible Propositions for a 3 block Blocks World problem. (b)

Example actions from the Blocks World domain. Preconditions are required to be

true in a world state for an action to be applicable. The effects are the changes to

propositions resulting from applying an action. Other actions are required for each

pair of blocks, and actions for picking up blocks from the table and putting blocks

down on the table.
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Predicates
〈block〉 on 〈block〉
〈block〉 in hand
〈block〉 on the table
〈block〉 clear
hand empty

(a)

Actions
Unstack 〈block A〉 from 〈block B〉

Preconditions: Effects:
hand empty ¬ hand empty
〈block A〉 clear ¬ 〈block A〉 clear

〈block A〉 on 〈block B〉 ¬ 〈block A〉 on 〈block B〉
〈block A〉 in hand
〈block B〉 clear

Stack 〈block A〉 on 〈block B〉
Preconditions: Effects:
〈block A〉 in hand ¬ 〈block A〉 in hand
〈block B〉 clear ¬ 〈block B〉 clear

〈block A〉 on 〈block B〉
〈block A〉 clear

hand empty

Pick up 〈block〉
Preconditions: Effects:
〈block〉 on table ¬ 〈block〉 on table
〈block〉 clear ¬ 〈block〉 clear
hand empty ¬ hand empty

〈block〉 in hand

Put Down 〈block〉
Preconditions: Effects:
〈block〉 in hand ¬ 〈block〉 in hand

〈block〉 on table
〈block〉 clear
hand empty

(b)

Table 4.2: (a) lists all predicates in the blocks world domain using typing. (b)
Lists all actions in the blocks world domain using typing. Typing is more succinct
than enumerating all possibilities and allows separation of the domain and problem
instances.
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planning Problem defines all objects of each type for that instance, and the con-

figuration of the initial and goal states. When a planning problem and goal are

combined, all predicates are generated from all types of predicates, and all actions

from all types of action. This is known as Grounding the predicates and actions.

Planners ground the problems before search but this abstraction is very helpful

during modelling.

Planning problems are formally described using an Action Language. There are

various languages with varying levels of expressive abilities. The simplest planning

problems, including that detailed above, stem from research at the Stanford Re-

search Institute in 1971 [121], who proposed the STRIPS problem solver to tackle

autonomous navigation. The term later came to encompass any problem of the type

defined within that work.

More formally, a STRIPS problem can be defined as [122, p256] a tuple 〈P,A, I,G〉

where

• P is the set of predicates

• A is the set of actions, each defined to be a tuple 〈ρ+, ρ−, E+, E−〉 where

– ρ+ ⊆ P is the set of predicates which must be true for this action to be

applicable

– ρ− ⊆ P is the set of predicates which must be false for this action to be

applicable

– E+ ⊆ P is the set of predicates which become true after applying this

action

– E− ⊆ P is the set of predicates which become false after applying this

action

• I ⊆ P defines the initial state. Predicates in I are assumed true, those not in

I are assumed false.

• G = 〈G+, G−〉 defines the predicates which must be true (G+) and those which

must be false (G−) in a world state for it to be a goal state.
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In 1987, Pednault propose a more expressive language, ADL. This contained

many differences to STRIPS including negative preconditions, object types (dis-

cussed below), and actions with conditional effects [123]. Initial states in ADL

could now contain predicates with unknown values. Later developing into the larger

field of probabilistic planning this advancement has great importance when devel-

oping systems for online use. Technical details of probabilistic planning are beyond

the scope of this project but an introduction can be found on page 80.

Planning Domain Definition Language, PDDL, was developed in 1998 [124] with

the goal of standardising planning languages in preparation for the International

Planning Competition (IPC) (see Section 4.1.3 for details). As that competition

developed so did the expressive ability of the language, with new features for each

competition bringing an update to the language. There have also been many non-

competition extensions to the language, typically developed by an individual re-

search team for a specific domain and purpose (see for example [125, 126]). Due to

its wide spread use, especially within the IPCs, it is the language used throughout

this project.

PDDL Introdution

To provide a general introduction to PDDL, the above Blocks World planning prob-

lem is detailing in PDDL here2. A PDDL domain file is defined as such by the

opening line

(define (domain BLOCKS)

This opens the definition file and assigns this domain a unique identifier. When

a problem file is specified it is assigned a domain name, this identifier indicates

problems and domains are intended to be compiled together. For ease of parsing,

each entity in PDDL is enclosed in parenthesis. The entire domain definition is

enclosed as such, hence the leading ‘(’. The matching closing ‘)’ completes the

domain definition.

2Language specifications for all versions of Pddl can be found in references [124,127,128]
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The domain definition then continues by listing any objects and their types. In

Blocks World there is only one type of object, a block, so its inclusion is optional,

but in more complex domains discussed later there can be many object types.

(:types block)

The :types code indicates we are listing the object types used in this domain.

Predicates and actions which take parameters are then required to detail what type

of object their parameter is.

A hierarchy of types can be defined. The following is taken from the IPC 2002

competition domain ‘Depots’3

(:types place locatable - object

depot distributor - place

truck hoist surface - locatable

pallet crate - surface)

The ‘-’ indicates there is a hierarchy between the types on the left and the right, the

left hand types being subtypes of those on the right. An action or predicate which

lists a parameter as place can take either a depot or distributor. Conversely

a subtype parameter cannot take its super type. In this domain this allows the

specification of a global Drive action which can be between any two place objects.

After declaring the types used in the domain, the predicates must be listed.

(:predicates (on ?x ?y - block)

(ontable ?x - block)

(clear ?x - block)

(handempty)

(holding ?x - block))

The section specifier :predicate instructs the reader that the following are predi-

cates. Each predicate is enclosed in parenthesis, parameters are denoted by a ques-

tion mark. If a parameter is followed by a ‘-’, all parameters preceding the type

3The IPC 2002 and two competition data is no longer available online but was provided for this

project by the competition organisers.
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specification up to another type specification are assumed to be of that type. In

this example the on predicate requires two parameters each of type block, whereas

handempty requires no parameters as it is not object specific.

Finally each action is to be defined.

(:action pick-up

:parameters (?x - block)

:precondition (and (clear ?x) (ontable ?x) (handempty))

:effect (and (not (ontable ?x))

(not (clear ?x))

(not (handempty))

(holding ?x)))

The :action specifier separates this element of the domain definition, enclosed in

parenthesis, and the three elements of an action are all subsequently defined. The

parameter has a type specifier in the same syntax pattern as a predicate. Precondi-

tions and effects have their own specifiers and each is proceeded by a collection of

predicates. When used in this context, the predicate is listed with a parameter tak-

ing the same name as one from the list of parameters. No type specifier is required

as each parameter should take a unique name in the parameter specification.

It should be clear from the above example and Table 4.2 how the remaining

actions of the Blocks Domain are given.

A specific problem instance is conventionally defined in a second file, allowing for

multiple problem instances to use one domain file. This makes it easier to automate

and allows researchers to run applicable problem instances without requiring specific

knowledge of complex domains, perhaps developed by colleagues.

A problem instance file for the Blocks Domain could be as follows:

(define (problem BLOCKS-3)

(:domain BLOCKS)

(:objects A B C - block)

(:init (clear A)

(on A B)
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(on B C)

(ontable C)

(handempty))

(:goal (and (on C B) (on B A))))

It begins with a definition statement similar to the domain file. The :domain speci-

fier must link to the domain definition identifier used in the domain file and indicates

compatibility. The :object specifier enumerates all objects of each type in this in-

stance.

The initial state is given with the :init specifier. Here each predicate listed is

true. One could write (not (on A C)) to fully define the initial state. Including

all negative predicates would lead to unnecessarily long problem definitions and so

any predicate not listed is assumed false.

The goal state is defined using similar syntax to action preconditions and effects.

The :goal specifier is followed by a union of predicates indicated by ‘and’, with

each predicate inside parenthesis. This concludes the basic introduction to PDDL.

Further details will be added for temporal and numeric features and full PDDL

specifications can be found in references [124,127,128].

The purpose of defining a common language is not just for ease of communica-

tion between researchers, but also to facilitate sharing domains and problems and

comparing computer simulations. If all planning problems are expressed using a

common language, planning software only needs to be able to parse one language

and common libraries can be shared. This means researchers have to spend less

time working on parsing code and more time developing planning algorithms and

software, speeding up the development of the field. Furthermore it removes the need

for researchers to develop their own languages with concerns of expressive ability,

efficiency and reusability. It is also key to the International Planning Competition

(IPC), which provides a set of benchmark problems for clear comparisons of the

state-of-the-art in planning. Further details of the IPC are given in Section 4.1.3.

As mentioned above, to help make parsing easier PDDL, each section is enclosed

by matching parenthesis ( ... ). This includes everything from action predicates

to the whole PDDL file. Also, key word specifiers such as type, precondition,
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action etc are all prefixed with a colon, :. This helps the parsing code by intro-

ducing a rigorous specification to the language.

Another helper for the planner is the :requirements specifier. This comes after

the domain definition line and lists the features of PDDL that the domain uses. In

simple STRIPS problems there are few specifiers, BLOCKS requires only :typing.

These requirement specifiers help to separate the development of domains and the

development of planners.

As planning developed as a field many new features were added, discussed in

more detail below. PDDL and other languages expanded to incorporate these new

features. The requirement specifiers allow existing planners to gracefully exit if new

constructs cannot be handled when tackling modern domains, rather than crashing

with unexpected behaviour.

A further benefit is to facilitate development of feature specific planners. Whilst

numeric fluents and durative actions (detailed below) were both introduced in 2002

as part of PDDL 2.1 for the 3rd IPC [127], temporal and numeric planning have very

different requirements. Successfully tackling each feature separately required much

research before the two could be handled together. Much research is still ongoing

and is discussed further in Section 4.2.

Requiring a planner to handle all possible features of the language would have

stalled the development of the field. It would also prevent the development of spe-

cialised planners. As detailed below, handling both temporal and numeric features

of a planning problem requires much advanced reasoning. Many problems will only

require the modelling of one or the other, and so more efficient planners can be

developed which only hand one or the other.

For this reason whilst many problems can be expressed in PDDL, there is no

guarantee that a planner exists which can tackle that domain. This highlights

how Automated Planning as a field is still in relative infancy compared to other

methods such as Mathematic Programming. It is thus important to have realistic

expectations about the immediate applicability and performance of Planning on a

domain such as Unit Commitment, which has received much attention from highly

developed methodologies over many decades. There are however many reasons to
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be optimistic about it as an approach, discussed further in Section 4.3 and Chapter

5.1.

4.1.2 Numeric and Temporal Planning

Whilst many problems can be expressed purely propositionally (variants of logistics

planning, planning factory operations and card games were all tackled in the 2nd

IPC [129]), more realistic problems typically require numeric features or a timeline.

A realistic logistics domain may contain different transport methods which achieve

tasks in different time periods with different fuel cost. It is then practical to search

for the solution which minimises cost whilst respecting deadlines.

The introduction of temporal and numeric features to Pddl 2.1 marked a sig-

nificant increase in the scope of problems that could be modelled as Planning prob-

lems [127] over existing languages. The community proceeded to develop increas-

ingly complex domains which could be constructed using PDDL and its later vari-

ants.

This section explains the concepts behind numeric and temporal planning in

more detail.

Numeric Planning

Sometimes referred to as Planning with Resources, planning with numeric quan-

tities presents a number of challenges. The first is state representation. Suppose

a world state definition is extended from a subset of true predicates to be a tuple:

〈P ,V〉 where V := {vi} represents a collection of numeric variables. Whereas a

purely propositional state space can be fully enumerated as all possible subsets of

predicates, the variables in V could take any range of values, integer or continuous.

Careful thought for how the search graph is constructed is necessary. The second

is the heuristic used to search the graph, which is discussed in further detail below

and in Section 4.2.3.

It is important to think about the reasons numerics are being integrated into

the planning framework alongside addressing how they are integrated. The first

key reason for introducing numerics into the planning framework is to constrain the
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problem to a realistic use of resources. There are many real world problems where

something can only be done if there is sufficient resource available.

A typical Logistics domain can be found in the 2nd IPC held in 2000 [129]. This

has the requirement specifiers :strips and :typing so is purely propositional. In

it, multiple packages are to be delivered to multiple locations by trucks or airplanes.

As there are no numerics the planner cannot schedule actions based on distances or

fuel costs, quantities which would be important in real world applications.

The 2002 IPC introduced a more realistic logistics domains [130, p46] including a

numeric variant. Packages now had weights associated with them, and vehicles had

weight limits. This introduced a much more realistic component to the problem,

namely assigning the right packages to the right vehicles.

Numerics in Pddl 2.1 are known as Fluents but represented with the :function

specifier. They are listed after the predicates and use the same syntax. The following

is taken from the 2002 numeric ‘Depot’ domain4:

(:functions

(load_limit ?t - truck)

(current_load ?t - truck)

(weight ?c - crate)

(fuel-cost))

The restrictions on loading the vehicles are then incorporated into loading ac-

tions.

(:action Load

:parameters (?x - hoist ?y - crate ?z - truck ?p - place)

:precondition (and (at ?x ?p) (at ?z ?p) (lifting ?x ?y)

(<= (+ (current_load ?z) (weight ?y)) (load_limit ?z)))

:effect (and (not (lifting ?x ?y)) (in ?y ?z) (available ?x)

(increase (current_load ?z) (weight ?y))))

4The IPC 2002 and two competition data is no longer available online but was provided for this

project by the competition organisers.
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The syntax for numeric expressions in Pddl is perhaps not the most natural for

reading but is easier to parse in code. An expression is defined as a relation or

operator sign followed by two fluents or other expressions. The key words increase,

decrease and assign apply the second object to the first in the intuitive manner.

Relational operators are used for preconditions and operators or key words are used

for effects. A full exposition of the syntax can be found with the original language

specification [127, Chp 3-5].

In the above example, the precondition

(<= (+ (current_load ?z) (weight ?y)) (load_limit ?z))

is equivalent to the algebra

l(z) + w(y) ≤ L(z)

where l(z), L(z) are the current load and maximum capacity of the vehicle z and

w(y) is the weight of the package y. Similarly the effect

(increase (current_load ?z) (weight ?y))

is equivalent to the algebra

l′(z) = l(z) + w(y)

The final fluent in this domain (fuel-cost) hints at the second key reason for

introducing numerics into the planning framework; to provide a metric on which to

assess plan quality. In the Depots domain a Drive action increases fuel-cost by a

fixed amount, independent of the places driven between and the vehicles driving.

This could be more realistic by extending the IPC Depots domain, adding further

fluents (distance ?x ?y - place) and (mile_cost ?v - truck). The Drive ac-

tion could then have the following effect

(increase (fuel-cost) (* (distance ?x ?y) (mile_cost ?v)))

Each drive action now has a more realistic cost function.

To specify that this cost function should be taken into account when constructing

the plan a plan metric, on which quality is tested, must be specified for the problem.

This is done in Pddl 2.1 using the :metric specifier in the problem definition. The
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metric can be any numeric Pddl expression but planners may only support a subset

of expressible functions, only linear functions for example.

Adding the line

(:metric minimize (fuel-cost))

to the problem file will mean plans with lower fuel costs will be preferred. Support for

metrics, especially complex functions, is a problem in planning, with many heuristics

and search algorithms unsuited to this kind of optimisation. Discussed further in

Section 4.2.3.

Temporal Planning

The 3rd IPC in 2002 presented many domains which also had natural temporal

extensions. It is common for a real world problem to have some interest in the

temporal aspects of a plan. A simple factory scheduling may not be concerned with

how long processes take as there may only be one process to achieve one goal so

minimising construction time may not be a problem. A more realistic variant would

be to say that there are multiple products requiring the same machinery and how

can processes be scheduled to minimise construction time of a series of different

products.

One common temporal domain, used in the IPC and earlier, inspired by space

projects is to schedule the actions of various rovers to perform set actions and convey

those results back to a base station [130, p49] [131, §12]. Travelling between locations

takes time, as does warming up equipment to complete tasks. The problem is made

complex by the restriction that communication can only occur at certain times

(representing when satellites are aligned and visible). Tasks must the scheduled

concurrently to ensure the most information can be gathered for each communication

period, i.e by warming correct equipment whilst other tasks are completing to ensure

other tasks can begin with minimal gaps.

In Pddl actions which take time are known as Durative Actions. In a tem-

poral domain each action gets a timestamp applied to it when added to the plan,

and has either a duration specified in the domain or is instantaneous and therefore
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as a duration ε close to 0, necessary for technical reasons of implementation. The

plan is now a sequence of actions each with a timestamp and a duration sitting on

a continuous timeline. Planning without explicit reference to a timeline is formally

referred to as Sequential Planning, and planning allowing concurrent execution

of actions at the same time step, but not mapping to a timeline, is referred to as

Parallel Planning, separating it from this more complete approach to handling

time and duration, referred to as Temporal Planning.

Durative actions take parameters in the same way as instantaneous actions. The

duration can be fixed, parameter dependent, or within a range of time. Note that a

range must have an upper bound. Examples include

d = 5

d = 2 + 3 ∗ 〈function〉

〈expr〉 ≤ d ≤ 〈expr〉

Action preconditions now have 3 qualifiers attached to them. The condition

must hold at either the start of the action, throughout the actions duration, or at

the action’s end. For an action occurring at time t and running for a duration of d,

the precondition qualifiers for a predicate p act as follows

at start =⇒ p is true at time t

over all =⇒ p is true though out the open interval (t, t+ d)

at end =⇒ p is true at time t+ d

An action effect, e, has similar qualifiers

at start =⇒ e is applied at time t

at end =⇒ e is applied at time t+ d

The syntax for durative actions is a natural extension of instantaneous actions,

expressed in Pddl 2.1 as

(:durative-action <action_name>

:duration (<relation> ?duration <expression>)
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:condition ( and

(at start (<condition>))

(over all (<condition>))

(at end (<condition>)))

:effect ( and

(at start (<effect>))

(at end (<effect>))))

where <relation> is <=, =, >= and a range is expressed using the same ‘and’ syntax

of effects and preconditions. Multiple conditions and effects can be listed.

Two further constructs which are common in more complex temporal domains are

Timed Initial Literals and Timed Initial Fluents. These specify a predicate

or numeric effect which occurs at a specific point in the time line. Expressed in

the problem file, the syntax specifies a specific time in the timeline and the effect,

typically occurring after the initial state has been declared.

(at 10 (<predicate>))

(at 15 (<expression>))

where <predicate> and <expression> take the same syntax as action effects.

Temporal Planning is very expressive in Pddl 2.1 and many problems which are

easy to express are quite complex to solve. One particular difficulty is Required

Concurrency, discussed further on page 106. Formally defined by Cushing et

al. [132], required concurrency is where one action must be scheduled during the

execution of another. This typically arises when one action requires a resource

which is only made available throughout the duration of another action.

The following ‘Match Domain’ (detailed in [133, p13] for example) is a simple

example.

(define (domain Match)

(:requirements :durative-actions)

(:predicates (fuse_broken)

(fuse_fixed)

(match_unused)
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(have_light))

(:durative-action light_match

:duration (= ?duration 10)

:condition (and (at start (match_unused) ))

:effect ( and (at start (have_light))

(at start (not (match_unused)))

(at end (not (have_light)))))

(:durative-action mend_fuse

:duration (= ?duration 8)

:condition (and (fuse_broken)

(over all (have_light)))

:effect (and (at start (not (fuse_broken)))

(at end (fused_fixed)))))

(define (problem simple_match)

(:domain Match)

(:init (fuse_broken)

(match_unused))

(:goal (and (fuse_fixed))))

The problem is trivial and the solution is to schedule mend_fuse between the start

and end of light_match. Despite this many of the techniques initially developed to

tackle temporal planning would incorrectly solve this problem, and planners which

can treat this rigorously have only recently emerged [132,134]. This highlights how

modelling planning problems and developing algorithms to solve them can both be

challenging.

Finally, a domain can combine numeric and temporal features. A more realistic

logistics domain may contain different transport methods which achieve tasks in

different time periods. It may then be a requirement to minimise cost but respecting

temporal deadlines. The modelling requirements of such problems combine the

syntax for temporal and numeric planning presented above. The interaction between

numeric resources on a continuous timeline however requires complex reasoning [133]

and is discussed further in Section 4.2.3.
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Advanced Planning

Automated Planning has developed beyond temporal and numeric planning. All the

examples above assume a fully observable and deterministic world. More realistic

models may include unknowns in the initial state, partially observable world states,

non-deterministic effects and ADL-style conditional effects based on state realisa-

tion. These topics are beyond the technical scope of this report but are introduced

here for completeness.

In Planning Under Uncertainty or Probabilistic Planning action effects

are grouped and one of the groups occurs with a given probability. This allows

for problems with probabilistic effects in fully observable worlds to be described.

Examples from the IPC in 2004 include logistics domains where vehicles may not

end up in the correct places and airport models where passengers may end up on

the wrong flights [135].

The motivation for planning under uncertainty was more clearly realised two

years later. As noted in the conference literature for the 2006 IPC, the main reason

for considering planning under uncertainty is for use as part of an online decision

making process [136, p4]. The planner’s role would be to take a domain representing

some ongoing process, and given the current state and a set of goals, produce a

plan, the first few actions of which would be enacted before re-planning based on

the realisation of those actions.

Related to planning under uncertainty is Machine Learning. This is the idea

that any automated system solving a problem with some notion of quality will

improve its performance as the number of problems solved increases (see [137, p2]

for a more formal definition). Moving to an online non-deterministic setting, an

automated system can update aspects of the model and / or data about the world

based on observations and realisations of actions. Whilst it is used in everyday

software such as email spam filters and handwriting and speech recognition [138, p1-

2], it has only recently begun to be incorporated into planning frameworks.

The IPCs in 2008 and 2011 both had learning branches but these were more for

initial plausibility testing, data analysis and identification of any key directions to

focus future research [139]. Domains included probabilistic variants of archetypal
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planning problems such as blocks world, logistics and space applications.

Modern applications include work where planners would interact with people

[140, 141]. Inherently non-deterministic but unable to be modelled by probabilistic

functions this work presents its own challenges. One example from the latest Inter-

national Conference on Automated Planning and Scheduling (ICAPS) is a planning

system used as a bartender interacting with customers [141]. The tasks the planner

should perform are relatively simple but inferring what those tasks are from human

interactions requires more complex reasoning and modelling.

Other work demonstrates a system designed to help vulnerable people complete

potentially dangerous day to day tasks [140]. Ironing, cooking and running baths can

all be potentially dangerous should a person, such as a dementia sufferer, leave them

unfinished. The planning system is required to schedule the tasks but not interfere

with the patient, instead providing gentle reminders at critical points allowing the

patient to feel in control. The system has to learn and respond to unexpected human

actions and individual patient traits to ensure they remain safe.

Both Machine Learning and Planning Under Uncertainty are important if Auto-

mated Planning is to be used as part of an online system, which would be the case

were planning to be proposed as a suitable method in a Rolling Unit Commitment

setting.

Searching for a Plan

The modelling of planning problems has been discussed in detail, however the search

process has received less attention. This is because there are many different ap-

proaches, and few established best practices. Many algorithms, especially tackling

complex domains, display good performance on only a small number of domains.

There are however some regularly used approaches introduced here, but many are

specific to a given planner and details are left to the more indepth literature review

in Sections 4.2.2 and 4.2.3.

Planners can have different search criteria. Searching for any feasible plan, is

known as Satisficing Planning [142, p552]. A satisficing planner presented with a

:metric in the planning problem may use this metric to guide search but does not
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provide a guarantee of producing the best plan with respect to that metric.

An Optimal Planner is a planner which guarantees to find the plan with the

best possible value of that metric. Optimal planning has received much attention,

as detailed in Section 4.2.2, but has made little progress in temporal or numeric

planning. As such optimal planners that have been developed typically minimise

the number of actions in a plan, known as minimising the make-span of the plan.

There are multiple methods for searching for a plan. State Space Planning

searches the graph of world states as described above. Common algorithms include

Enforced Hill Climbing and A* search (see Chapter 6.3 for a detailed introduction

to the algorithm used in the Popf planner). As important as the algorithm used to

search the graph is the heuristic used.

Most planners make use of a Relaxed Planning Graph (RPG) heuristic. This

is a simplified version of the full world state space graph created from the current

state in the search and expanded under simplifying assumptions until a goal state

is reached in this simplified space. Properties of this simplified graph are used as

guidance to inform the search of the true graph. Example simplifying assumptions

and heuristics employed in the literature are discussed in Section 4.2.3.

Partial Order Planning allows actions already added to the plan to be pro-

moted (or demoted) to earlier (or later) positions in the plan throughout the search

process. Search can start from an empty or pre-populated (but inconsistent) plan,

and advances by making alterations at each step to fix any inconsistencies, such as

missing goals, unsatisfied action pre-conditions or mutex relations5 [143,144].

There have been many other approaches to planning including Constraint Satis-

faction [145,146], Model Checking [147,148] and translating to other existing solution

methodologies including Satisfiability [149] and Integer Programming [150].

5A mutex relation is a group of contradictory facts that cannot be simultaneously true. In

planning a predicate cannot be both true and false. In the preprocessing phase of many planners

mutex relations are analysed by considering action effects and what groups of predicates can never

be simultaneously true or false.
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4.1.3 The International Planning Competition

The International Planning Competition (IPC) was set up alongside the Interna-

tional Conference on Artificial Intelligence Planning Systems (AIPS) in June 1998.

Its goal was initially to help unify planning research through the introduction of

a common language, Pddl, help identify research goals to widen the scope of the

field by identifying and collating challenging benchmark problems, and advertise

the progress of the field to the wider community [151]. The competition has since

matured to provide a forum for rigorous comparison between the state of the art in

Automated Planning on challenging benchmark problems [130].

Since the first competition it has become a biennial event driving forward the

development of Automated Planning and empirical methodologies for tackling in-

creasingly complex real-world problems. The following discussion of the IPC is based

on summary publications analysing the results of the competitions [130,142,151–153]

and official competition websites [154].

The competition procedure was to present a series of planning domains created

by the competition organisers to the planning community. Planners would then be

submitted and the organisers independently run those systems on the same worksta-

tion. This allowed the development of domain specific planners, whose algorithms

were coded with knowledge of the problem. This was removed in the 4th compe-

tition in 2004 to focus on general applicability rather than specific systems, which

was deemed more useful to the wider community.

The planning system for Unit Commitment presented in Chapter 6 is a domain

specific system, with a specific heuristic making use of a inherent properties of the

domain. It is hoped that the ideas presented will motivate further research into

similar domains and that a more general domain-independent approach could be

developed, as has been shown throughout the development of recurring entrants in

consecutive IPCs [142].

As well as providing an exposition of the state of the art at time of occurrence, the

competition summaries noted above enable a chronological study of the development

of planners. The competition initially focussed on sequential planning [151,152] both

satisficing and optimal. IPC 3 in 2002 introduced numeric and temporal planning
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and began the focus on real world applications [130]. Separating satisficing and

optimal planners marked the diversification of the field.

There were two types of planners entered in IPC 3, ‘automatic’ planners which

required no extra input for each domain, and ‘hand crafted’ planners which required

some developer input for each individual domain. Here we only discuss the auto-

matic planners as hand-crafted planners fell out of favour due to the extra work

required to maintain, update, and tailor to each domain, and were omitted from

later competitions [142, p523].

Increasing domain breadth continued with later competitions. Since the 4th IPC

in 2004 there have been multiple tracks in the competition alongside the determinis-

tic planning considered in this project [154]. The 4th competition had a probabilistic

planning track [142, p520] and introduced Probabilistic-PDDL (PPDDL).

Alongside widening the breadth of domains, IPC 4 also specified a focus on more

realistic domains stating that a key feature of these benchmark problems should be

to be oriented at applications [155]. This can be seen in that the key oversight of

the 2002 Satellite Domain6, which was stated to be not considering that the antenna

on earth are only visible to the satellites, and therefore can only communicate with

earth, during certain time windows, was incorporated into the domain and included

in the 2004 competition.

Later competitions began adding other language features rather than pushing

further towards tackling real-size optimisation problems. The 5th competition in

2006 [153] introduced Pddl 3.0 allowing for specification of soft goals and prefer-

ences. Plan quality may not simply be finding the best metric value of a plan. A

logistics planner may prefer solutions using one type of vehicle because it is easier

to repair or a route because it is less likely to be congested. These do not have

numeric consequences that could be easily encoded into a planning domain and so-

lutions which do not respect these desires are still valid plans. Encoding these as

soft constraints or preferences allows the user to guide the planner in domain specific

ways without requiring recoding of the planning code to make the planner domain

6A description of some key domains from the competitions can be found in Section 4.2.1.
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specific.

The 5th, 6th and 7th competitions all featured planning under uncertainty and

machine learning, mentioned above. The 7th competition in 2011 also introduced a

series of new domains extending the temporal complexity of benchmark problems.

Required concurrency was introduced above, however this subtle complexity had not

been featured in the IPC before 2011 as it had not been formalised. It is note worthy

that older features must be revisited to correctly consider complexities and subtleties

found later in the fields development. It may be that a more optimisation focussed

approach to planning presented by the Unit Commitment problem and discussed

in Chapters 5 and 6 may provide insights into numeric planning not previously

considered.

Whilst each competition does present awards for the ‘best’ planners that par-

ticipated, this is not main purpose of the competition. As mentioned above, the

original purpose of the competition series was to facilitate comparisons, set up a

framework for a common set of benchmark problems, and to measure the overall

progress of Automated Planning as a field [151, p1]. Later the focus was to drive

the direction of the community towards a certain goal, such as featuring real-world

applications in IPC 4 [155], and plan quality in IPC 5 [153, p620].

There has been no consistent way of scoring the participants throughout compe-

tition iterations, and the difficulty of developing a fair scoring system was acknowl-

edged in the original competition [151, p48]. Most competitions ranked planners

based on plan quality, problem coverage, and solution time. Some organisers went

to great lengths to base this on rigorous statistical analysis [130, Chp 4]. Others

acknowledged it was more of an intuitive decision considering scaling properties

alongside easily measurable quantities such as solution time and plan quality [142,

p541]. Overall the awards are useful for identifying those systems which provide

great performance over a wide range of problems. These are not intended to deter-

mine whether one system is categorically better than the other, simply to spur on

competition and further the development of the field.

Multiple tracks within the IPCs has enabled a wider variety of problems to be

modelled and solved using Automated Planning. These have branched into features
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of planning which are beyond the scope of the topic of this thesis and are presented

here for completeness only. It should also be noted that not all aspects of planning

are covered by the competition. For example recent competitions focussed more

on temporal than numeric domains and optimal planning has received much less

attention than in early competitions.

Nevertheless, the competition still reflects the overall focus the community and

provides an excellent opportunity to study the development of planning. What

follows is a more detailed discussion of work relevant to modelling Unit Commitment

with planning, specifically temporal and numeric planning with a focus on plan

quality.

4.2 Planning For Optimisation

As discussed above, the IPC is an excellent set of benchmark problems. It highlights

the state-of-the-art, community’s interests and perceived challenges in the field of

Automated Planning. In what follows a more detailed introduction to the topics

of Optimal and Satisficing planning is presented. Each introduction is followed by

an analysis of the performance of that class of planner throughout IPC iterations,

taking specific interest in those domains similar to Unit Commitment.

Unit Commitment as a planning problem is a temporal-numeric domain with

trivial proposition goals but an important plan metric. Full details are given in

Chapters 5 an 6. As the IPC covers a wide range of problems, the published con-

clusions drawn from those competitions are based on the whole problem set. To

understand the performance of planners on problems such as Unit Commitment,

attention is restricted to a selection of domains outlined below. In some cases this

analysis does not align with IPC competition conclusions. It becomes apparent

that the modern direction planning has taken is not towards problems such as Unit

Commitment, despite early interest and promise in this area.
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4.2.1 Modelling Realistic Domains

Satellite Domain

IPC 3 in 2002 saw the introduction of the Satellite domain [130, p47], [155]. Inspired

by, and developed through discussions with, NASA, the domain represents the real-

world problem of satellites making observations, recording data and sending that

data back to earth.

The two most relevant variants7 are the, ‘hard-numeric’ and ‘complex’ variants.

In the hard-numeric variant, the propositional goals were very simple to achieve,

but the problem metric was to minimise a linear combination of make-span minus

the information sent back. The ‘complex’ domain added parameter dependent du-

rations, not fixed durations for each action name. In each of these variants the goal

predicates were trivially achieved so the planner must reason about plan quality

rather than plan feasibility.

IPC 4 introduced a more realistic variant of the problem where communication

between the Satellite and earth could only happen in certain windows of availability.

This new variant is quite close to the Unit Commitment problem. It has a metric

dependent on numeric fluents, set in a temporal domain including variable durations

and requires support for Timed Initial Literals. Despite this domain being present

in the early stages of the IPC, there are few other domains in the competition with

such a combination of features.

The data for IPC 3 is no longer available so a re-analysis of the problems tackled

is not possible. For IPC 4 the original problem files can be found online [156].

The complex variant in IPC 4 minimises make-span with the numerics only used to

model constraints. This leaves the only domain close to Unit Commitment as the

time-windows supplement of the complex Satellite Domain.

The problems for this domain range in size from 1 satellite, with 1 instrument

operable in 3 modes, 6 directions in which to observe and 1 time window, to 10

7Each domain in the competition had multiple variations designed to be of increasing complexity

allowing for comparison between new planners, established ones and an analysis of what aspects

of a problem make it hard to solve.
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satellites with 1 to 3 instruments each, each operable in 5 modes, with a total of

205 directions to observe and 44 windows to send information back in. This covers

a large range of instances and the larger sizes represent a real world challenge.

Airport

Another realistic domain from IPC 48 is the Airport domain. The problem is to

schedule the movements of planes from parked, to a specific runway segment, to

taken-off. The most complex domain modelled all actions with durations, and had

periods where runway segments could not be used, i.e. planes arriving as well as

departing. There are no numerics but interesting temporal features including Timed

Initial Literals.

The hardest instances were a half, and full model of Munich Airport (MUC),

and make this one of a few available domains tackling a problem necessitated by

industry. This is a very complex temporal problem for a planner, and what in reality

would be the key objective, to minimise the total travel times of all planes not just

the time of departure for the latest plane, could not be modelled in the competition

version of Pddl 2.1 [155]. This highlights how simply modelling realistic domains

as planning problems, before specifying and solving problem instances, is a complex

challenge.

Below the results of this domain are detailed (see Sections 4.2.2 and 4.2.3),

showing a distinct disparity between the first half of problem instances, deemed

‘toy’ models, and the latter half based on MUC. The ‘toy’ problems are up to 44

segments with 6 planes and 3 time windows, whereas the half MUC domains have

302 segments and 6 windows. This is a huge jump and some tougher ‘toy’ problems

may have enabled an analysis of the limits the current planners could be pushed to.

For reference, the toughest full MUC model contained 457 segments, 15 planes and

10 windows. This was proposed as a typical situation for MUC [142, p542].

8A description of each domain discussed from IPC 4 can be found in [155]
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Rovers

The Rovers Domain, first seen in IPC 3 (2002) [130, p5], is another domain in-

spired by potential space applications. Here the planner is tasked with scheduling

the movements of a planetary rover to collect samples, take observations and com-

municate that data back to a main base. The temporal aspects of the domain are

scheduling movements and scientific tasks, and the numeric aspects are managing

energy level and recharging. The optimisation is to minimise the total time taken

to get all the observations.

This domain was also included in and extended in the 5th IPC in 2006 [153,

p636] and included a temporal-numeric variant. The original files and results are

available for this domain [157]. This variant does not require minimisation of a

fluent based metric (only make-span) but does require the planner to reason about

the interactions of fluents with time, as the recharge action’s durations is dependent

on current resources, the energy remaining, at the time of application.

Problems range in size from 1 rover, 4 waypoints and 2 objectives, to 14 rovers,

100 waypoints and 11 objectives (among other objects). Again this requires very

good scaling from the planners to tackle all problems.

Power Supply Restoration (PSR) Problem

Another domain which highlights the challenge of modelling a real world problem

as a planning problem is the Power Supply Restoration (PSR) domain from IPC

4 [155]. It attempts to model the problem of re-supplying parts of a distribution

network in a power system after a fault has occurred. The domain includes actions

to open and close switches and circuit-breakers, the problem goal being to plan a

sequence of switches which results in a reconfigured network such that all sources

are unaffected by the fault and a problem-specific set of lines have power restored

to them.

The key disparities between this model and the full problem are an assumed

full observability, numeric aspects such as capacity constraints and breakdown costs

being ignored, and no optimisation. The modelling difficulty for the planner is

that the pre-solve stage for a planner is to ground all the actions. Here the networks
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modelled (ranging in scale such that “the largest instances are of the kind of size one

typically encounters in the real world” [155, p5]) become intractable when grounded.

Again, this shows that modelling real world domains presents many challenges to

the community.

Travelling and Purchase Problem

The Travelling and Purchase Problem (TPP) only included in the 5th IPC [153,

p640] [158] is a generalisation of the Travelling Salesman problem. In this domain

the planner must schedule the movement of a buyer to various markets to buy

various amounts pre-specified stock. The objective is to obtain all necessary stock

and minimise a weighted sum of the time taken to obtain the stock and the price paid

for that stock. This is a temporal and numeric problem with a clear optimisation

goal.

This problem was included as it is has been proposed as a benchmark in other

areas of computer science and is NP-Hard [153, p641], [158]. IPC 5 tackled problems

ranging from a single depot, market truck and batch of goods to 10 markets, 4 depots,

10 trucks, and 25 types of goods. Again this shows a wide selection of problem sizes.

The Chemical Pathways Problem

The Pathways domain in IPC 5 [153, p638] [159] is inspired by modelling sequences

of chemical reactions as actions. Each reaction consumes and produces different

quantities of a substance. The goal is to produce a pre-specified amount of a selection

of substances and the objective is to minimise a linear weighted sum of the amount of

input substances and the total duration of the reactions. This problem is a realistic

numerically focussed optimisation and it is unfortunate it was not included in later

iterations of the competition to push performance on this type of domain.

Problem sizes ranged from 16 simple and 10 complex starting substances to 58

simple and 337 complex substances. The domain is based on the processes for rep-

resenting the “Molecular Interaction Map of the Mammalian Cell Cycle Control and

DNA Repair Systems” [153, p638]. It is unclear whether the problems themselves

fully reflect the complexity of the molecular processes however the problems provide
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a range of scales to test most planners.

Transport Domains

As discussed in Section 4.1.2 transportation and delivery domains are natural plan-

ning problems, able to be described purely propositionally or including a variety of

interacting temporal and numeric variables and constraints. There has been a vari-

ant in IPC 1 [130, p45], 2 [129], 3 [130, p46], 5 [153, p642] [160], 6 [161] and 7 [162].

The goal has be propositional, i.e. purely deliver all packages, or to minimise either

time taken, fuel spent, cost, or a weighted sum of all of these.

In IPC 5 the problem is purely temporal with preferences and constraint variants

to stress the features of Pddl 3 introduced for that competition. In IPC 6 a temporal

numeric variant is included which models varying package size, vehicle capacity,

maximum fuel capacity and distance dependent fuel consumption to constrain the

temporal minimisation to a more realistic model but is not part of the metric.

IPC 7 in 2011 introduced a variant called Nomystery, of note because there is an

intrinsic, known, optimal solution to the problem produced by a “domain specific

optimal solver” [162]. This allowed the organisers to push the initial amount of fuel

to a level close to the minimum amount needed to solve the problem and test plan-

ners’ ability to tackle highly constrained problems. This domain was non-temporal

so will not be considered here as in practice there is usually much more capacity

online in Unit Commitment than there is demand so it is not highly constrained in

the same sense.

Openstacks

The Openstacks domain is another domain which has seen multiple entries in the

competition. This is a combinatorial optimisation problem first introduced in IPC

5 [153, p635], [163] with a temporal-numeric variant. It is a common optimisation

problem put forward as Constraint Programming benchmark and is NP-hard [153,

p635], [163]. It involves scheduling a collection of machines to produce a selection

of products to fulfil multiple orders. Only one machine can be used at once, and

once production for one product from an order has begun, a ‘stack’ must be created.
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This stack must remain open to ‘store’ the products for that order until production

of all items in that order is complete.

The traditional optimisation goal is to schedule the production of each product

so that all orders are fulfilled but the maximum number of stacks open at any point

is minimised. The temporal aspect of the problem is to ensure that the correct

orders are being completed simultaneously whilst the numeric aspect is to keep the

number of stacks to a minimum.

The metric in the metric-time variant of the IPC 5 competition [157] is to min-

imise a linear weighted sum of the number of open stacks and total time of pro-

duction. The IPC 6 [161] and 7 [164] variants include a numeric version with soft

constraints so orders can be sent without fulfilling each requirement but this incurs a

penalty. Production also has a cost, but the minimisation is to minimise make-span,

not a numeric objective.

In the most relevant IPC 5 variant problems range from 10 orders of 10 product

types to 50 orders and 50 product types.

The 6th and 7th International Planning Competitions

The Domains for IPC 6 are split into the following categories: sequential satis-

ficing, sequential optimal, temporal satisficing and net benefit optimal9. Both se-

quential streams are for non-temporal domains and so are not considered here. Of

the temporal satisficing domains the following have numeric variants: model train,

woodworking, elevator, transport and openstacks (discussed above).

The model train domain requires the scheduling of trains around various seg-

ments of track. The numerics are to specify train sizes and location and are not the

focus of optimisation.

The woodworking domain models the processing of wood scheduling jobs such

as sanding and varnishing using a variety of machines. The numerics are to model

9For the Sixth International Planning Competition, termed IPC-2008, there does not appear

to be a summary publication, as available for IPC 3 [130], 4 [142] and 5 [153]. The domain files

and results for IPC-2008 are available online [161, 165]. The analysis that follows is based on my

interpretation of those.
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small problem specific features and are again not used for optimisation.

The elevators domain tasks a fleet of varying speed elevators with transporting

passengers from origin floors to destination floors. The numerics are used to model

capacity constraints with the objective to minimise the time taken. These have an

impact on the optimisation problem which is to minimise total overall time. Larger

elevators taking larger groups to close destinations will be faster than resending

smaller elevators, however this is still a temporal optimisation problem not numeric.

This domain was also included in IPC 7 however the numeric variant was dropped

[166].

Domains of IPC 7 focussed heavily on parallelism and required concurrency10 as

discussed in Section 4.1.3 and no domains with numeric optimisation were included.

Temporal vs Numeric Optimisation

Many domains, such as the IPC 6 and 7 Openstacks variants, the IPC transport

variants, IPC 7 elevator, trains and woodworking domains, can be grouped together

in that the numeric features are not the objective part of the optimisation but the

constraining part.

In what follows problems such as these shall be referred to as ‘temporal optimisa-

tion’ as the numeric fluents do not feature in the objective function. It is important

to distinguish this type of problem from a ‘numeric optimisation’ where the fluents

involved are directly included in the objective function to be minimised.

An example of purely temporal optimisation is the Airport domain, and later

make-span minimising Satellite domain variants. An example of numeric optimisa-

tion would be the Chemical Pathways domain and ‘complex’ variants of the Satellite

domain featuring in IPC 3.

In a planning problem, the heuristic used to guide the search is critical to the

solution time and metric quality of the plans produced. A planner designed with

temporal optimisation in mind will reason very differently to one not concerned with

10As with IPC 6, there does not appear to be a summary publication for IPC 7. A summary of

domains is available [166] and the domain and problem files themselves can be found in [164].
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time but with numeric optimisation.

It is important to note that the majority of the temporal-numeric domains en-

countered throughout the IPC are temporal optimisations and as such a planner’s

ability to perform numeric optimisation has not been explored by the community

to the same extent. This implies the current collection of heuristics and search

algorithms have not been developed with numeric optimisation in mind.

Problems such as Unit Commitment which are driven primarily by cost place

much more emphasis on the value of the objective function rather than the time

at which actions will be scheduled. For planners to be able to tackle real world

problems featuring numeric optimisation, more research into domains such as those

highlighted above may be required.

4.2.2 Optimal Planners

One key planning system which produced plans that were provably optimal with

respect to make-span was Graphplan [167]. Its problem representation and search

method inspired the popular Relaxed Planning Graph heuristic and many plan-

ners referenced throughout this review. Later, Haslum and Geffner generalised the

heuristic in Graphplan, detailing a family of admissible heuristics calculating in-

creasingly accurate lower bounds at the cost of increased computation time [168].

The functions are denoted h2, h3, . . . hm. h2 was the heuristic found in Graphplan,

and h∗ is often used to denote this family of heuristics. Full details are beyond the

scope of this project and can be found in [168].

In this sense a planner could be run in different settings to either provide more

accurate searching or provide faster but less accurate solutions. This heuristic was

used to estimate the cost to go within an Iterative Deepening A* search (IDA*)

so their planner, HSPr*, could find provably optimal plans for non-temporal, non-

numeric planning problems.

Variants of this HSP family of planners were entered into most IPC events. Two

optimal variants were entered into IPC 4; HSP*a and TP4-04. They are of particular

note in that they are the only optimal planners the author is aware of to handle

both temporal and numeric domains. The two variants are identical apart from the
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heuristic. TP4 uses the h2 variant of the h∗ heuristic and HSP*a uses a variant

which calculates a (still admissible) relaxed version of hm where m > 2.

A detailed analysis of the domains from IPC 4 was conducted by Haslum shortly

after the competition [169] with a bug fix version of HSP*a and showed that the

relaxed heuristic is not always beneficial but in some domains can provide a large im-

provement. Unfortunately both versions were still not competitive on non-numeric

temporal domains where other systems were competing.

Other attempts at creating optimal planners included translating the planning

problem into other forms where known algorithms could find optimal solutions. The

first non-specialised approach to be widely successful was the satisfiability (SAT)

approach, when Kautz and Selman introduced SATPLAN in 1992 [149].

SAT problems are assigning boolean variables in boolean formulae values to make

the overriding expression true. SAT solvers are a very active area of research and

so translating planning problems into SAT problems yields a whole field of research

to tackle them with.

After the success of SATPLAN, the authors developed Blackbox [170] which au-

tomatically translated a STRIPS planning problem to a SAT problem. An updated

version of Blackbox, SATPLAN-2004, was later entered into the pure-STRIPS part

of IPC 4 and was awarded first place in the optimal stream [142].

Non-temporal non-numeric planning problems can be seen to naturally have a

parallel in SAT problems, however there appears to be no work formulating temporal

or numeric planning problems as SAT problems.

Another example of a planner using another field of research is CPT [145], which

translates the planning problem into a Constraint Satisfaction problem informed

by the h2 heuristic, which in turn is solved. Multiple iterations of CPT have been

entered into the IPC since IPC 4. CPT2 in IPC 5 introduced a better pruning tech-

nique during search [153, p646], CPT 3 and 4 continue this progress however lacked

direct competitors as the optimal temporal track was removed from the competition

due to lack of entries [146].

In an attempt to assess the competitiveness of the CPT family of planners, Vidal

performed a review of CPT4 against time-of-publication state-of-the-art SAT based
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parallel11 planners [146]. CPT4 comes 3rd in terms of problem coverage behind

SASE and the latest version of SATPLAN, however is generally comparable in terms

of computation time. As there are no competitors for optimal temporal planning

CPT 4 is only compared with CPT 3 and shown to have favourable coverage and

performance.

After IPC 4 the optimal stream reduced to non-temporal non-numeric domains

and to my best knowledge no further numeric-temporal versions of the HSP family

of planners able to tackle temporal numeric domains have been developed. This

indicates that there is perhaps not much community interest in optimal planning as

other areas of mathematics and computer science indicate better performance with

regards to provably optimality.

Performance of Optimal Planners within the IPC

The relative performance and coverage of optimal planners in IPC 3 and 4 is sum-

marised. Due to the aforementioned reduction in participation in the temporal

optimal stream of IPC below these were the only competitions available for analy-

sis.

IPC 3 had optimal planners competing alongside satisficing planners: Semsyn

[171] and TYPSYS [172], Graphplan based optimal planners, and TP4 [173]. Semsyn

in this iteration could handle STRIPS and Numeric domains, TYPSYS could handle

STRIPS and SimpleTime domains (where durations are not situation dependent but

fixed per action), and TP4 could handle Numeric, SimpleTime, Time and Complex

(where durations are situation dependent and there are other numeric resources as

well as time) domains.

In the two semi-realistic domains of IPC 3 (Satellite and Rovers) only TP4 could

compete. Of these problem instances, coverage was so low12 that the statistical

11Parallel planners here refer to a subset of temporal planning problems which are not as expres-

sive as other forms. Actions can be ran alongside others (i.e. 3 actions can run at time step 1) and

actions can take multiple time steps, however start and end preconditions cannot be expressed.

See [132,146,167] for examples of parallel planning.
12Individual results files from IPC 3 are no longer available however the total coverage for Semsyn,
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analysis performed in [130] ranked the planner so low we cannot assess the quality

of the satisficing planners against the results of TP4. This demonstrates why optimal

planners were separated from satisficing planners in later competitions.

The results from IPC 3 lead to the suggested dismissal of Graphplan based

planning [130, p51]. However, for the majority of the previous IPC domains, it was

demonstrated that finding a provably optimal solution is a different complexity to

finding a feasible solution; the latter being polynomial and the former being NP-

Complete [142, p522]. With this in mind the 2004 competition saw optimal planners

moved to a second stream allowing for a clearer analysis of how optimal planners

perform relative to each other.

IPC 4 contained many interesting domains based on realistic applications. An

updated version of Semsyn was entered into IPC 4 this time tackling numeric do-

mains. The success ratio increased from 8% in IPC 3 [130, p8] to 40% in IPC

4 [142, p538] demonstrating that there is perhaps unrealised potential within opti-

mal temporal planners if they were developed to the same level as satisficing systems.

In the Airport domain non-temporal results are good especially from SATPLAN.

All ‘toy’ instances are solved by most planners but as scale increases the optimal

planners suffer, with SATPLAN solving 7 of the half MUC systems and 3 MUC

scale of problems and all others only solving 3 instances [142, p543].

For the more realistic temporal variant, CPT could solve all of the toy instances.

TP4 could solve 12 of the toy variants, with the problem instances with more planes

proving more problematic than larger airports13. TP4 could also solve the simplest

of half MUC scale problems with only 1 plane.

For the satisficing planners tackling this domain, in all instances either LPG

tuned for quality or LPG as entered in IPC 3 tuned for quality gave the best metric,

with the better metric coming from the version which happened to take the longest

TYPSYS and TP4 was 8%, 12% and 13% respectively. In comparison, the lowest coverage for a

satisficing planner was 49% [130, p8].
13HSP*a’s performance was as good as but never better than TP4 and as it had less coverage

and the competition version contained bugs in its implementation [169, p249] so has been omitted

from discussion
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time to solve. As LPG for IPC 4 has better coverage, that is used as a comparison.

Table 4.3 shows the metric values attained by CPT14 and LPG. It also shows

the time taken to achieve that value. In almost all the cases where the satisficing

planner, LPG, finds the optimum value, surprisingly, CPT is faster at finding this

value. However, in those instances when CPT finds an optimal solution and LPG

doesn’t, LPG is much faster. Problems 16, 17 and 18 see LPG find a solution that

is 4.3%, 7.3%, 8.5% worse than CPT but at a time that is 7.9, 10.6 and 16 times

faster, taking seconds instead of minutes. LPG on domain 20, with the most planes

of a toy problem, yields a solution 43% higher than the optimal but CPT takes 20

times longer.

Results are therefore mixed from this domain. Whilst for small instances CPT is

genuinely the better option, clearly outperforming others, its reduced coverage and

inability to tackle even the 1 plane variants of the half MUC and MUC domains

weaken its impact on real world planning problems. With all other optimal planners

being outperformed by satisficing ones it is understandable that community interest

diminished.

Non of the optimal planners supported the Timed Initial Literal language con-

structs, so none could attempt the most realistic version with windows of availability.

The Power Supply Restoration domain is non-temporal and non-numeric and

whilst coverage is very good on small instances across the selection of Optimal

Planners [142, p557], again they cannot handle the language constructs of the more

realistic problems.

In the Satellite domain, only the 8 smallest instances of temporal problems could

be solved by CPT, whilst HSP*a and TP4 could only solve 4 of the first 5. For the

temporal-numeric problems CPT could not compete as it does not handle numerics.

HSP*a and TP4 could only solve the same 4 out of 5 problems.15

Despite each optimal planner generating equal solutions, they were bettered by

14In the instances TP4 could solve it achieved the same value but took longer to solve so it has

been omitted from discussion.
15It would be good to compare to the IPC 3 results however these files are no longer available

online.
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1 2 3 4 5 6 7 8 9 10

CPT 64 185 200 127 227 232 232 394 402 126

LPG 64 185 200 127 227 232 232 394 402 126

%

CPT 0.03 0.03 0.19 0.12 0.26 2.71 2.5 20.45 34.79 0.1

LPG 2 2 2 4 4 6 6 10 11 5

CPT vs. LPG 0.02 0.02 0.10 0.03 0.07 0.45 0.42 2.05 3.16 0.02

11 12 13 14 15 16 17 18 19 20

CPT 228 228 230 390 262 393 399 435 413 435

LPG 228 232 230 390 262 410 428 472 413 625

% 1.75 4.33 7.27 8.51 43.68

CPT 0.4 5.3 5.2 36.5 34 110.4 180.4 399.6 208 543.3

LPG 5 7 7 11 8 14 17 24 89 27

CPT vs. LPG 0.08 0.76 0.74 3.32 4.25 7.89 10.61 16.65 2.34 20.12

Table 4.3: Table showing the metric value attained and CPU secs taken to attain it

for the optimal planner CPT and satisficing planner LPG in the Temporal variant

of the Airport domain without Timed Initial Literals for windows of availability.

We see that for simple problems CPT is genuinely the better planner finding the

optimal solution in less time, but for more complex problems (14, 15, 19) it is slower

to find the optimal. When LPG does not find the optimal it gets close within a

much shorter time frame.
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1 2 3 4 5 6 7 8

CPT 135.5 156.311 65.198 122.24 105.26 64.824 60.202 74.024

TP4 135.5 156.311 65.198 105.26

LPG (3) 129.58 152.28 55.25 115.24 97.72 67.1 59.84 83.3

LPG (4) 129.5 187 55 127.83 121.08 120.54 77.9 115.13

(a) Results for the Temporal Domain

1 2 3 4 5

TP4 135.5 156.13 65.2 105.26

LPG (3) 129.5 152.3 55.3 115.2 97.72

LPG (4) 133.97 181.05 60.88 145.47 125.05

(b) Results for the Temporal-Numeric Domain

Table 4.4: The metric values and CPU secs for a selection of satisficing planners

(LPG as in IPC 4 and LPG as in IPC 3) and optimal planners (CPT and TP4)

on the temporal and temporal-numeric variants of the Satellite domain from IPC 4.

Results show the poor relative performance of the optimal planners demonstrating

the complexity of supporting all features the syntax is capable of.
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one or both of the LPG variants in 6 out of the 8 temporal, and all 4 of the temporal-

numeric, variants. Table 4.4 shows these results.

This highlights that some planners can only handle a subset of the language

constructs, and may not handle them correctly. CPT requires a simplification to the

full complexity of durative actions specifiable by the Pddl 2.1. These simplifications

lead to situations where incorrect solutions are found, and highlights that whilst

the algorithms and heuristics may be theoretically optimal the implementations

of the model may not fully reflect that, and of course the model itself may have

inherent simplifications. As always when considering optimisation problems one

must be aware that the solution given is only optimal under certain assumptions

and restrictions.

The same occurs for Semsyn in the numeric non-temporal variant of Satellite,

the only optimal planner to tackle it. Conference organisers were unsure why, but

results demonstrated that LPG produced solutions of a higher quality [142, p562].

In IPC 5 there were many interesting Temporal-Numeric Domains (§4.2.1) how-

ever only 1 of the 6 optimal planners entered could handle temporal constraints (an

updated version of CPT). None of the planners entered could handle both temporal

and numeric domains [153, p645], so there are no results to compare here. In IPC 6

and 7 the optimal track only considered sequential problems, i.e. problems with no

temporal durations, due to lack of entries for the optimal-temporal track [146].

Conclusions on Optimal Planning

From this brief overview of optimal planners it should be clear that the community

has taken them in a direction away from the kind of problems this project is fo-

cussing on. Early optimal planners competing in IPC 3 and 4 compared favourably

in the time taken to find the optimal solutions that could be found on small prob-

lem instances. However, satisficing planners still found those solutions and as these

solution times were generally small anyway this gain on its own has little impact.

The significantly reduced coverage of optimal planners compared to the best sat-

isficing planners, especially on realistic domains and problem instances, gives little

indication that pursuing them further would have been fruitful.

May 8, 2014



4.2. Planning For Optimisation 102

That the community has restricted the scope of optimal planning competitions

to sequential problems in later IPCs shows planning has not been pushed towards

provably optimal numeric optimisation. That is not to say plan quality has been

ignored, indeed Section 4.2.3 highlights the many systems where plan quality has

been a major concern.

It can also be seen from tracking the benchmark problems in the IPC that it is

very hard to support many of the language constructs, such as Timed Initial Literals

and the full complexity of concurrent durative actions. There also appears to have

been little work on incorporating numerics into the optimal planning framework.

TP4 was the only such optimal planner which competed, and it compared favourably

with neither the other optimal planners or the best satisficing planners.

Perhaps interest has wained in optimal planning, because even in pure STRIPS

problems in many cases the problems can be translated into a form where planning

based approaches perform worse than pre-existing methods, as demonstrated by

CPT’s performance against SAT based planning. This indicates than planning’s

real strength lies in tackling domains that are difficult to model in other forms, such

as concurrent temporal-numeric domains.

Finally, there is an intrinsic difficulty in applying the h* heuristic, which could

be developed to include temporal and numeric goals to a problem such as Unit

Commitment. When formulated as a planning problem (see Chapter 5.2.3) Unit

Commitment has a dummy goal to ensure the planner creates a plan for the whole

horizon. This is very similar to the hard-numeric and complex-time problem in-

stances in the Satellite domain which contained language constructs not supported

by any optimal planner entered into any IPC. The h* heuristic is calculated based

on the cost of achieving sets of goals and their preconditions. Even if there were

accepted admissible ways of incorporating the necessary numerics to model Unit

Commitment as a planning problem into the h* heuristic, it is probable that there

are too few goals in the natural formulation for the relaxation to be effective. The

requirement to perform actions in a Unit Commitment domain is in response to

Timed Initial Fluents and reasoning about those in an admissible way within a

Planning framework is work that appears not to have been done.
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To work around this problem and put Unit Commitment in a form more suited to

the h∗ heuristic one could introduce predicates served_di, implying demand period

i has been satisfied, the achievement of which forms the problem goal. This however

would require actions to set these predicates to true. A formulation of such actions

which does not result in a huge increase in the number of actions, thereby removing

the idea that there are fewer actions and decision points in a planning problem than

a MIP model, eludes the author.

As optimal planners have only demonstrated performance on small problem in-

stances and less realistic sequential domain variants, with demonstrable fallibility

within those, attention is now restricted to satisficing planners.

4.2.3 Satisficing Planning

Satisficing planning has been very popular due to its ability to tackle more realistic

domains by handling the full complexity of language constructs. By definition,

these planners give no guarantee of optimality as the heuristics are not admissible

and algorithms not optimal. Where the current industry practices (see Chapter 2.3)

include a method which does provide an upper bound gap to optimality, and gets

very close to that optimal solution, it is important that any method which does not

provide a provably optimal bound is rigorously compared to its competition.

Many satisficing planners make use of a Relaxed Planning Graph (discussed in

Section 4.1.2), first presented in [167]. They differ through the heuristic computed

using this graph and the search algorithm implemented. One heuristic is to estimate

the number of actions until the goal is achieved by propagating only the add effects of

actions from the current state until all goal predicates are achieved. This estimation

was first presented independently by [174,175]. This is an attempt to find the plan

with either the lowest ‘make-span’. This is an extremely popular heuristic and has

been employed by numerous planners since publication [122,133,176,177].

It is complex to incorporate temporal and numeric properties into this planning

graph, but as the formulation has proven to be so popular it is work that has been

done, indeed planners must tackle these issues if they are to concern themselves with

realistic domains as discussed in §4.2.1.
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Hoffmann extended the idea of ignoring delete lists to incorporate numeric fluents

into the relaxed plan framework, enabling the same basic algorithm from FF [122]

to be applied to numeric problems. His planner, Metric-FF [176], first competed

in IPC 3 in 200216 and was very successful and influential [130] with 5 out of the 12

satisficing planners competing in IPC 4 being extensions of FF or its heuristic [142].

His algorithm enabled a planner to attempt to find a plan with the shortest make-

span whilst respecting numeric constraints. Metric-FF also supported Pddl 2.1’s

semantic ability to express a metric representing plan quality. This specifies that

the resultant plan should minimise a given numeric quantity17. There are various

restrictions on the objective function including linearity and more crucially, the

ability for the objective function to “be transformed ... into an additive action cost

minimisation” [176, p318]. This means that each action is assigned a cost based

on the numeric consequences of the action’s effects to the objective function. This

means that to the planner instead of an action ‘costing’ 1 step and therefore simply

adding 1 to the make-span, it costs an amount dependent on the terms of the linear

objective function affected and how they are affected.

The algorithm then proceeds as normal with the relaxed planning graph being

formed as before but now the relaxed plan with the lowest make-span is the relaxed

plan with the lowest expected increase to the objective function. In Metric-FF

this is the state which is expanded next in the search, the idea being that always

choosing the action which will appear to give the lowest metric cost will produce a

high quality plan.

This heuristic is not admissible and so there is no guarantee of optimality or of

finding a gap to optimality. The relaxed plan is formed by ignoring negative effects,

the reinstatement of which, if necessary, could greatly add to the cost of the plan.

Thus having the lowest relaxed cost does not guarantee a low actual cost.

Another early planner that strives for plan quality using this additive action

cost minimisation approach is LPG [144]. LPG differs from FF and Metric-FF

16The term Metric-FF was introduced by Hoffman in [176] after the competition however the

FF variant in IPC 3 was acknowledged to be Metric-FF.
17Maximisation is supported but treated by multiplying the objective by -1 and minimising.
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as it uses Partial Order Planning. It uses a stochastic local search, which could

be a disadvantage for Unit Commitment as solution variability will be an issue (as

discussed in Chapter 3). Conversely, an advantage of LPG and partial order planning

for Unit Commitment might be that it could be warm started with a plan from a

priority list or other very fast method. LPG and its later incarnations were very

successful, particularly in IPC 4 where, as discussed below, they produced many

plans of optimal quality.

Temporal Planning

Like numeric planning, temporal planning has many subtleties and complexities.

As mentioned above, more complex features of temporal planning, such as required

concurrency and continuous change (see below), have developed as the field matured.

The idea of Parallel Planning could be seen as the first representations of tempo-

ral planning. Knoblock was one of the first researchers to formalise parallel planning,

defining it to be a plan where independent actions could be ran in parallel assum-

ing enough workers could be found [178]. Consider a mechanic who has to mend

a vehicle. The tasks can be grouped to fetching the necessary tools, using them

to fix various car parts and returning the tools. Whilst fixing some parts may be

predicated on the fixing of others, the fetching and returning of tools can be all be

done in parallel assuming enough workers. The plan would thus be to fetch the tools

in the first step and return all the tools in the last step, even if each of those time

steps contained multiple actions.

This differs from the previously described notion of planning where one action

is “indivisible and uninterruptible”, defined as Atomic Planning [178, p98]. Early

planners such Graphplan [167] and Blackbox [170] plan in this way. It has a natural

affinity with partial order planning, where formal ordering of the actions is not

finalised until search is complete.

By utilising the affinity with partial order planning more expressive temporal

solvers were developed. IxTeT is a partial order planner developed in 1994 [179].

Being one of the earlier temporal planners it had to define its own input language

and had to balance how expressive it was with the efficiency of search. As such it was
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not so competitive when modern planners and the IPC competitions were introduced

[131, p34]. Driven by interest in space applications, HSTS, EUROPA and Aspen are

further examples of early temporal planners with specific input languages [131, p34].

These planners required domain specific user input to achieve efficient search, rather

than being generic solvers.

All were acknowledged to have rich representation languages for the types of

search performed by the planners. PDDL 2.1 was introduced for the 3rd IPC in

2002 [127, 130] as it was hoped a common language would expedite the develop-

ment of temporal planners and widen the scope of the field18. The durative action

formulation discussed in Section 4.1.2 allowed for start, end and overall precondi-

tions and start and end effects making it more expressive than parallel planning and

combining some features of the above early temporal planners.

Many temporal planners have been developed to support this Pddl variant,

including partial-order planners [143], more advanced planning-graph planners ex-

tending Graphplan and Blackbox [144], and Optimal Planners such as TP4 and

HSP*a discussed above among others.

Despite the expressive abilities of PDDL 2.1, it is was later found that most of

these temporal planners and temporal domains from IPC competitions prior to IPC

6 were incomplete, and did not correctly handle all classes of temporal problems.

Cushing et al. [132] formally defined the notion of required concurrency and noted

that most existing planners could only handle temporal problems which could be

solved by decomposing the problem into a non-temporal problem (i.e. what actions

to perform) and then scheduling them once an order has been found (i.e. when to

perform those actions).

LPGP was one of the first planners to correctly handle required concurrency, sep-

arating the logical structuring (what actions to perform) and the scheduling (when

18There remains ongoing discussions throughout the community about the best way to express

different kinds of temporal problems. A debate on the merits of the different proposals for express-

ing temporal problems is beyond the scope of this work. Pddl 2.1 was chosen for this project as it

was the input language used by the only planner I was aware of able to handle all the requirements

for a planning formation of Unit Commitment (see Section 4.3.1 for further details on this).
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to perform those actions) but reasoning about both throughout search [180]. It does

so by using a Graphplan based search for the logical structuring with tighter mutex

relations and maintaining a collection of linear constraints representing temporal

relations between actions.

Another approach handling required concurrency is Crikey [131]. The approach

used here is a forward chaining state space search where temporal relations and

maintained in a Simple Temporal Network, a formalised set of constraints similar to

that used in LPGP. It is discussed in more detail in Chapter 6.3. Crikey is of note

as it developed into very competent planners, Popf and Colin, which are proposed

as suitable planners for tackling Unit Commitment in Chapter 6.

Temporal-Numeric Planning

One reason for the success of the above planners was their ability to handle both

temporal and numeric structures. There are a class of temporal problems where

numeric change is dependent on temporal structures, known as problems with con-

tinuous processes. In Pddl they are represented by the ‘#t’ construct which implies

the increase or decrease is not an instantaneous change to the value of the fluent,

but an instantaneous change to the rate of change of the fluent. All numeric effects

discussed so far are assumed to have an instantaneous effect. However for many

realistic problems the numeric effect should be continuous over a period of time.

This presents a challenge for planning, especially methods relying on decompos-

ing the logical and scheduling components of a temporal problem mentioned above.

A sequence of actions which holds sequentially may not be valid in the presence

of continuous numerical processes, where numeric conditions may become violated

during an action’s execution. To ensure numerical validity throughout the temporal

duration of the plan, the numerical constraints and conditions must be captured

alongside the temporal constraints.

Pddl+, an extension of Pddl 2, allowed exogenous processes and events to

instigate continuous change. These occurred outside of the action framework, i.e.

their occurrence was predetermined and not scheduled by the planner. It is therefore

possible to model complex temporal-numeric real world processes in Pddl. The
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Chemical Batch Processing Problem was proposed as a benchmark problem for

Pddl+ [181]. It models the production of chemicals, saline solutions in this instance,

and contains a mix of discrete and continuous processes with complex non-linear

dynamics.

UPMurphi [147] is the planner proposed to solve the Chemical Batch Process-

ing Problem. UPMurphi was used to test initial models of Unit Commitment as a

planning problem, an in-depth description of the planner and implementation can

be found in Chapter 5.3. UPMurphi is able to solve planning problems with con-

tinuous processes using the discretise and validate approach. Rather than directly

handling the continuous processes, the plan is validated at iteratively finer time

granulations to ensure the current dynamics do not validate the original problem

constraints.

An earlier, more traditional planning approach was Kongming [182]. Developed

in 2008, it is an extension of a Graphplan approach containing a mathematical

programming sub-solver to handle continuous processes. The authors demonstrate

the capabilities of their system on an Autonomous Underwater Vehicle (AUV). The

limiting factor of the Graphplan approach is that the planning graph becomes in-

tractable when the plan size required grows too large. The online system of the AUV

avoids this issue as only a few actions are required to be planned before replanning

will occur.

Colin, a temporal numeric planner capable of handling continuous linear pro-

cesses [133], manages temporal and numeric actions by replacing the set of temporal

constraints in Crikey (discussed above) with an LP incorporating both temporal

and numeric constraints. When a discrete change occurs to the rate of change of a

numeric variable the LP constraints are updated19. In this way multiple actions can

apply continuous changes to a single fluent, overcoming a major weakness of early

temporal-numeric planners such as Zeno and Optop [133, p20]. Empirically it has

demonstrated much stronger performance than Kongming. It is more effective than

UPMurphi as it has an inbuilt heuristic, whereas UPMurphi requires a heuristic to

be built into the planning model, which whilst offering flexibility, makes the planner
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less generically applicable.

Unit Commitment is a problem which requires continuous numeric change in the

ramping of units. Changes to variables, specifically the total supply, is instigated by

multiple actions, namely the ramping up and down of multiple units. Colin is the

most capable planner demonstrated in the literature that has these requirements.

Since their original publications, the development branches of Popf and Colin

have merged as they contained much duplicate reasoning. For this reason, the latest

version of Popf, supplied by Maria Fox and Derek Long, was to be used for testing.

Full details of Unit Commitment as Planning using these planners can be found in

Chapters 5 and 6.

Performance of Satisficing Planners within IPC

IPC 3 in 2002 was the first time planners competed in a metric setting. Metric-

FF and LPG were two stand out planners from that competition with Metric-

FF consistently outperforming other entrants in solution time [130, p21] and LPG

consistently outperforming other entrants in solution quality [130, p23]. In all of

the STRIPS categories LPG was shown to be equal second for solution time, on

Numeric domains second only to FF and in simple-time and temporal domains it

was the fastest.

The analysis showed that LPG was an extremely strong planner, receiving an

overall award for the best automated planner. FF also garnered a strong reputation

and an award for the best performance in the numeric domains [130, p9]. The full

data set for IPC 3 is no longer available and so a re-analysis restrict to just the

realistic domains considered here is not possible.

Results from IPC 3 on the ‘hard-numeric’ and ‘complex’ variants were disappoint-

ing with only the hand-coded planners performing (both equally) well [130, p10,11].

The two other planners capable of solving these variants, MIPS and FF, solved all

instances (as they were propositionally trivial) but with poor plan quality.

19A full description of the LP constructed by Colin to ensure temporal and numeric validity

can be found in [133, Chp 8].
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Although the results for IPC 3 are unavailable, LPG from IPC 3 remained a

satisficing entrant in IPC 4 for which the entire data set is available [156,183]. LPG

was deemed an overall second for speed, and first for quality, in IPC 3. In IPC

4 LPG-TD was awarded two first places for the two types of temporal domains,

implying it retained its performance well.

Coverage and performance for the complex variants of the Satellite domain im-

proved slightly from IPC 3 to 4, as can be seen from the results in Figure 4.3. This is

in contrast to other domains such as the Airport domain discussed below which saw

a great improvement. This implies that the numeric side of planning has received

less attention than other aspects. This appears to be a common theme throughout

IPC iterations.

The planner SGPLAN appears in all IPC iterations from IPC 4 onwards showing

good performance across many domains. It searches for a plan by decomposing the

planning problems into smaller sub-problems [184]. Any inconsistencies are resolved

as the sub-plans are amalgamated.

The make-span data for SGPLAN, was not analysed in [142], only the solution

time and number of actions, which is the default for SGPLAN to minimise. To

give a fair comparison on the realistic domains considered here, this data has been

compiled from the raw results files [183] and can be seen alongside the LPG-TD and

LPG data in the two graphs show in Figure 4.3.

What we see here is that whilst the solution time is orders of magnitude shorter

for SGPLAN the make-span of the plan, which was the goal metric in the IPC 4

complex variant, is much longer so the quality of the resultant temporal plan is

worse.

Figure 4.4 shows the data for the most realistic variant, which includes a numeric

metric and windows of availability for communication. It reveals SGPLAN again has

increased coverage and solution speed over the other competitors. One can analyse

the plans generated by SGPLAN to see that this time plan quality is comparable and

occasionally better than LPG. Also, LPG can be configured for speed and then only

lags slightly behind SGPLAN. It is important to understand in what configuration

the planner was run before assessing the over all performance.
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Figure 4.3: Relative performance of LPG in IPC 4 and SGPLAN against LPG in IPC
3. Lower values are better. This demonstrates LPG making a small improvement
and SGPLAN solving orders of magnitude faster but dropping solution quality up
to an order of magnitude relative to the two LPG variants.
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Figure 4.4: Actual performance of LPG in IPC 4 against SGPLAN. LPG 4 has a
huge disadvantage with regards to time, but can be configured differently (LPG-
S) to achieve times close to SGPLAN, with comparable solution quality. In this
domain variant the metric appears to be have been considered by SGPLAN, with
plan quality comparable to, and sometimes better than, LPG 4. May 8, 2014
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It should be noted that in the non-numeric time windows problem the organ-

isers state that SGPLAN has a “clear advantage” [142, p562] over LPG-TD. This

indicates that much emphasis was put on problem coverage, solution time, and tem-

poral problems, rather than the combined temporal-numeric domains with numeric

optimisation goals - the type of domain required to model Unit Commitment.

The Airport domain was highlighted because it featured real-world domains ne-

cessitated by industry. The key question is whether those domains were successfully

tackled. Graphs in Figure 4.5 show that coverage is really very good. Solutions up

to problem 44 (457 segments, 5 planes, 10 windows) are found within the 30 minute

time limit of the competition. SGPLAN and LPG-TD had by far the best coverage

for this domain variant [142, p545] and so are the only ones depicted. The strong and

comparable performance on realistic domains by both planners with quite different

search strategies highlights the strength of temporal planners.

The interesting features of the Rovers domain were the action durations depen-

dent on numeric fluents. Problems ranged from 1 rover, 4 waypoints and 2 objectives,

to 14 rovers, 100 waypoints and 11 objectives (among other objects). This was am-

bitious coverage and performance in IPC 3 cannot be easily assessed due to the lack

of raw data already mentioned.

In the IPC 5 Rovers Domain, SGPLAN gave the best coverage but for a price in

solution quality [185]. For problem numbers 20 and upwards solution times strayed

above minutes and SGPLAN was the only planner able to find a solution. For

quality, another planner, YochanPlan, appears the best but coverage and solution

time were both poor. Given Unit Commitment shares some of the key features of

this domain these results may be discouraging for a full planning model for Unit

Commitment, such as the first model presented in Chapter 5.

The three other domains with temporal-numeric variants in IPC 5, the last

competition to feature such domains, were the Travelling and Purchase Problem

(TPP), the Chemical Pathways Problem and the Openstacks problem.

The Metric-Time variant of TPP only saw SGPLAN giving competitive perfor-

mance. MIPS solved 6 instances and no others competed, where as SGPLAN solved

39 of 40 instances. No graphs / tables are given as there are no comparisons to other
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Figure 4.5: Results of the two best performing satisificing planners in IPC 4, LPG
and SGPLAN, for the Airport Domains. In contrast to the temporal-numeric domain
of Satellites the results for this domain remain close even for the more complex
problems (higher problem number) implying that technologies for temporal planning
have advanced further. May 8, 2014
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planners to be made. The goal of SGPLAN is always to minimise make-span and

perhaps coverage is so good because it is not actually performing the optimisation,

unlike MIPS which is, and is therefore getting stuck.

The same accusation can be made of SGPLAN in the Pathways Metric-Time

variant. SGPLAN finds valid plans for all problem instances however plan quality

is worse than MIPS for the 1 instance MIPS solves.

The performance in the Metric-Time variant of Openstacks however implies that

plan quality by SGPLAN is respected. The graphs in Figure 4.6 shows that metric

quality for SGPLAN on the 9 instances MIPS also solved was better. It also showed

significantly faster solution times by 2 orders of magnitude. A more detailed anal-

ysis of these two domains and others would be required to understand under what

circumstances SGPLAN performs well.

Conclusions on Satisficing Planning

Performance on purely temporal domains was very good, and temporal planning

as a whole seems a very promising method. With suitable adaptations it could be

leveraged to tackle Unit Commitment. The Airport domain was of particular inter-

est as it was at a scale comparable to real-world situations. Undoubtedly modern

versions of SGPLAN ran on modern computers could tackle the full MUC problems

to a high standard.

There are many reasons to believe that the lack of guaranteed optimality from a

satisficing planner does not imply a large gap to optimality. The fact that the satis-

ficing planner LPG could solve temporal problems to the same level as the optimal

planner CPT in the Airport domain is encouraging. Furthermore, the closeness of

results in that temporal domain and the satellite domains when an optimal solution

was unknown suggest a convergence towards the optimal solution. The fact that

satisficing planners found optimal plans in domains where optimal planners were

successful gives some intuitive (though unquantifiable) confidence that in domains

where optimal planners are not successful or do not compete, when planners with

very different search algorithms and heuristics produce very similar solutions, these

act as an informative upper bound on the optimal solution. In cases where results
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Figure 4.6: Results for the Temporal-Metric variant of the Openstacks domain from
IPC 5. Results show that clearly SGPLAN has an advantage but if it is not per-
forming the correct optimisation (as discussed in the main body text) then this per-
formance could be misleading, implying planning performance on temporal-metric
domains lags behind purely temporal domains. May 8, 2014
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vary quite dramatically no such intuitions can be claimed.

It should be noted that low problem coverage would not be acceptable for plan-

ners tackling Unit Commitment. It is essential that every problem be solvable to a

point, even Branch and Cut algorithms stall on some awkward problem instances

(see Appendix A.1.1). Thus if satisficing planners can demonstrate strong perfor-

mance on a subset of instances, and fast solution times on those that show weaker

performance, this is still a valid contribution and the features of those problem

instances which posed a problem can be analysed further.

Finally, the ability to have variants of the same planner (HSP variants, LPG 3,

4) tuned and consistently performing for speed and coverage is encouraging for the

flexibility of the system.

It is harder to assess the performance of satisficing planners on temporal-numeric

domains with numeric optimisation. There appears to have been much less community-

wide interest in these domains despite encouraging signs (see below for more details).

Given the complexities of adapting the existing technologies to model these variants,

it is not surprising that there were less participants able to even attempt those prob-

lems. The few entrants able to tackle them showed promise and improvements (eg.

LPG 3 to 4, SGPLAN iterations). In the case of CPT in later competitions, the

domain changes meant these planners were compared against others on a slightly

uneven playing field. In some cases this resulted in unjustified demotion of abil-

ity, which perhaps slowed development of those promising systems. Whatever the

reason, this area has not been exploited quite so much as others.

Whilst satisficing planners have shown potential in temporal-numeric domains

this area has not been explored as deeply as purely temporal domains. This presents

an opportunity for a strong temporal planner already adapted to tackle numerically

constrained temporal optimisation, to be supplemented with additional features

to strengthen its numeric optimisation performance. Through this work, initial

thoughts on how this could be done for Unit Commitment are presented.
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4.2.4 Conclusions on Planning for Optimisation

From this overview of benchmark problems relating to planning for optimisation it

appears there have been great improvements in in problem coverage and solution

time in non-temporal non-numeric domains for optimal planners. However, the lack

of realistic problem coverage and relative performance on temporal-numeric domains

compared to the best satisficing planners means they are currently not viable for

domains like Unit Commitment. The apparent lack of optimal planners since TP4

and HSP*a which support temporal-numeric domains indicates that this is a less

active area of planning research than satisficing planning.

On purely temporal domains satisficing planners have been able to reproduce the

results of optimal planners where problem coverage overlaps. Given that satisficing

planners have much greater coverage than optimal planners one cannot assess their

quality on those domains where other solution methods do not exist. However, it

is intuitive and not unreasonable to think that that they provide a reasonably close

approximation when many results from different planners agree.

There were also discussions in post-competition literature regarding the difficulty

of producing domains inspired by real-world applications. The airport domain,

praised for its real-world scaling, did not fully represent the true problem, with the

temporal minimisation applying to a subtly different quantity to the real world goal.

This highlights the difficulty of modelling real world problems with planning.

It was also noted that many of the numeric features of the PSR problem could

not be modelled at time of publication. Work by Piacentini et al [9] demonstrates

modern approaches to tackling complex numeric problems, by linking to a specialised

external solver from within a temporal planning framework. The success of this work

demonstrates the feasibility of a similar method for Unit Commitment, proposed in

Chapter 6.

Just as the introduction of Timed Initial Literals allowed the expansion of the

Satellite domain to become more realistic, the introduction of Timed Initial Fluents

should also allow, and indeed encourage, the formulation of domains such as Unit

Commitment. Complex temporal-numeric domains such as this could become future

benchmark problems.
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Whilst planners can tackle certain problem instances to optimality, there has

been less focus on driving the field in the direction of numeric optimisation in a

temporal domain. Interesting problems such as Rovers (2002, 2006) and Satellite

(2002, 2004) feature simple numeric goals but place a large focus on solution quality

relating to numeric quantities. These, nor similar domains, have appeared in later

competitions.

The domain variants for Openstacks (2006, 2008, 2011) also reveal shift in fo-

cus with the minimisation metric changing from a combination of minimising the

number of stacks and total time to minimising make-span. Also telling is the reuse

of certain domains over others. Chemical Pathways and TPP were both interesting

real-world domains in which only one planner successfully competed. Inclusion in

later competitions to test the optimisation qualities of new SGPLAN and MIPS

iterations would be welcomed and promote research into numeric optimisation in a

temporal domain.

As the competition progressed through the years its scope naturally expanded

but has not gone deeper into numeric optimisation. It is clear from collating this

review how the number of domains with numeric optimisation variants has dropped

with each competition iteration.

The diminishing interest in those kinds of domains in later competitions is disap-

pointing. As noted above, for many real-world problems that are difficult to model

using other techniques20 the inclusion of features such as probabilistic planning, soft

goals and preferences, and incorporating machine learning help to widen the scope

of problems planning can handle. This allows it to be one of few solution methods

able to tackle such domains.

Whilst there is not an abundant collection of temporal-numeric domains with

numeric optimisation as benchmarks in the IPCs, there are enough to pique interest.

The research above suggests that with adaptations, planners could successfully tackle

20Domains which would be difficult to model using other methods including the Airport domain,

planning the complex interactions of simultaneous printer jobs [186], planning the manufacturing

process of LCD displays [187], and a Home-Monitor system to interact with vulnerable people

helping them complete of day to day tasks [140].
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Unit Commitment.

Unit Commitment is a problem with known optimal solutions and an easily

satisfiable goal, if one does not consider optimisation. The survey above indicates

some precedence that these kinds of problems are both non-trivial and of interest

to the planning community.

The inclusion in the IPCs of known hard domains such as Openstacks and TPP,

the real world applications of Satellite, Rovers, Airport and Chemical Pathways, and

the modelling of complex domains such as PSR which could not be fully modelled at

time-of-publication, shows the community’s desire for planning to tackle real world

problems, not just conceptual problems, solely of academic interest.

A widening of interests, continued inclusion of new features coupled with retained

support and much active research in original and previous streams in the IPCs shows

that the planning community is growing in active participants and research output.

The fallibilities of the optimal planners CPT and Semsyn not handling the full

complexity Pddl, and the refocussing of the IPC 7 competition on temporal domains

with required concurrency, show that this field is still relatively new and developing.

Both this ambition and increased widening interest are promising signs that the

Unit Commitment problem will be received well by the community and that further

work in this area would likely follow. With this in mind the following section details

the specific features of Unit Commitment that make it an interesting challenge for

Automated Planning.

4.3 Novelty of Unit Commitment to the Planning

Community

It appears from this review that whilst numerical optimisation within a temporal

domain has seen less attention than other aspects of planning, the potential to tackle

these problems has been demonstrated. As many real world problems demonstrate

complex temporal structure with a goal of numeric quality this is an area it would be

beneficial for planning to expand into. Unit Commitment is an excellent candidate

for demonstrating and testing this potential.
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Forming this model was non-trivial and full details are given in Chapters 5 and

6. Two very different approaches are presented, one being solvable by any planner

handling the required constructs, and one which requires a dedicated solver. There

is thus a debate to be had over the merits of both approaches.

Much emphasis is placed on the general applicability of planning algorithms

in the literature, creating black-box solution methods. These would favour the

approach demonstrated in Chapter 5 where the problem could be handed to any

planner. This has the advantage of the community developing planners with a high

problem coverage over a much wider class of domains. Thus research not dedicated

to Unit Commitment can bring performance gains to the problem.

There is also an advantage in developing a domain specific system. Domain

specific adaptations to Meta-Heuristic methods (see Chapter 3) showed much im-

provement in solution quality over more generic approaches. Whilst these systems

may have coverage in a reduced class of domains, the solution quality in the domains

tackled is likely to be much higher.

Perhaps a focus on general black box applicability has restricted the breadth

of problems planning presented and tackled as part of the IPC, and thus restricted

development of specialised planners which have not received the same exposed gained

from participation in the IPC.

Chapter 6 details a domain specific approach for Unit Commitment with plan-

ning. Whilst this is only applicable for this problem the general techniques could be

abstracted out after further research. This would open up a whole class of problems

focussed on numerical optimisation that could be tackled in a similar manner, as

was the case in [188] discussed in more detail below. Successful implementations of

domain specifics planner can help to expand the scope of planning as a whole, which

is clearly of benefit to the community.

This problem also represents a real-world example of interesting language con-

structs which have received less attention than others. Exogenous processes are

critical for modelling many problems, especially in engineering. These represent the

impact of systems the planner is not reasoning about on the system it is reasoning

about.
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In many examples, especially examples from power systems engineering (such as

the PSR domain above, and work such as [9, 14, 15]), these processes bring about a

numeric effect. Modelling these is a simple extension of Timed Initial Literals which

have been included in ICP domains since 2004 and have received much attention.

There is work in the literature that handles TIFs (see for example [188]) however

the new problems throw up new challenges, previously not considered. Popf, a

very established planner, had bugs in its handling of TIFs discovered during de-

velopment of the first planning model. This demonstrates that existing language

constructs used in new settings can still throw up interesting challenges and provide

opportunities for the development of novel planning approaches.

Furthermore the planning community has shown an interest in real world prob-

lems such as Unit Commitment, and has shown success at handling problems within

the field of power engineering. Work by Bell et al [14,15] presented a successful im-

plementation of planning to reduce the cost of a system widely used to manage

the tasks of a power substation. The planning approach produced plans of a lower

cost and with fewer actions, reducing wear and tear of equipment, than the existing

system.

Work mentioned above by Fox, Long and Magazzeni [188], presented a problem

similar to Unit Commitment. There a single demand was to be served by a collection

of batteries over a given horizon. Unit Commitment includes some key complexities

over the battery problem which would represent a considerable advance for planning

technologies if successfully solved.

Firstly, Unit Commitment requires the concurrent scheduling of units to serve

the demand. As discussed above, correct concurrent reasoning is complex. In the

case of Unit Commitment it greatly increase the combinatorial element of serving the

demand at any instance. This increases the branching possibilities at each decision

point placing more emphasis on having an efficient and effective heuristic to ensure

the branches are evaluated quickly and the only the most promising ones expanded.

Secondly, the goal in Unit Commitment is more complex than in the battery

problem. The cost in Unit Commitment is the metric, the duration of the plan is

fixed to the given horizon, whilst in the battery problem the goal is to maximise
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the total time taken. This is a goal that has featured in many benchmark planning

problems and was very effectively tackled in this case. The costs involved in Unit

Commitment which contribute to the metric are themselves very complex to model,

discussed further in Chapter 5.2.4.

The Battery problem also represents a case where a domain specific heuristic

can be generalised. The authors cast their problem into a general class featuring a

“monotonically decreasing resource” where “the longest plan is required” [188, p78].

This advocates the developments of domain specific solvers, which after theoreti-

cal work classifying the problems tackled, can being generalised to a wider set of

problems.

The scale of Unit Commitment is much larger. [188] considers problems of up

to 8 batteries whereas for Unit Commitment the test systems proposed start at 6

units, and small scale realistic implementations would be for around 50 units, and

large scale industrial implementations are for hundreds of units. Increasing from 8

to tens or close to a hundred units is likely to introduce many complications which

cannot be predicted a priori.

Finally Unit Commitment represents a problem with a goal featured but not fully

explored in the planning literature. The planning horizon is essentially fixed and

the goal focusses entirely on plan quality based on a numeric metric. The was very

similar to the Satellite problem mentioned above, and alters the temporal reasoning

required from the planner. As discussed in Chapter 5.4 the relaxed planning graph

framework does not appear effective in providing guidance for this highly numeric

problem, and new options are proposed.

To conclude, Unit Commitment represents a real-world temporal-numeric do-

main which has not previously been explored in planning. It has many interesting

features including required concurrency, complex relationships between goal con-

straints and TIFs, and a fixed planning horizon with a strong focus on numeric plan

quality. Existing methods provide bounds to optimality which facilitates an accu-

rate assessment of the performance of a planning approach. Therefore this problem

represents an excellent opportunity to demonstrate the flexibility and potential of

planning. It also has the potential to extend the scope of planning in a different
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direction than is currently the focus of the community.

4.3.1 Choice of Planners

Timed Initial Fluents are not specifiable in any competition version of PDDL (see

the 2011 IPC specification [189] and note that <init-el> has no equivalent to

the Timed Initial Literals construct (at <number> <literal(name)>) for Timed

Initial Fluents). Furthermore there are few planners with documented supported

for timed initial fluents. Overall, the choice of planners to develop is restrictive.

The satisficing planner, POPF was chosen to be extended, as Piacentini et al [9]

were developing a version to support Timed Initial Fluents alongside an exogenous

heuristic, necessary for the modelling of Unit Commitment.

As background, POPF2 competed in IPC 7 and came an overall 4th in the

temporal satisficing domains21 and so was a good base from which to think about

developing a system to handle Unit Commitment. Piacentini et. al [9] developed a

system with similar planning requirements to those necessary for Unit Commitment

at the same time as this work.

Presented at the International Conference on Automated Planning and Schedul-

ing (ICAPS) in 2013, the work received an award for the best student paper in

the novel applications stream, further demonstrating the community’s interest in

real-world problems such as the one presented therein, and Unit Commitment.

21Table 4.5 shows the ‘score’ for POPF2 in each domain, which position it was in and the score

of the best planner taken from the results available in [190]. The totals for each planner were

summed to form an overall ranking. More details on how the results were calculated can be found

at [190].
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Criteria Ranking Score vs Best Planner

Number Solved 4th 119 vs 145 yahsp2-mt

Solution Time 3rd 89.31 vs 136.23 yahsp2-mt

Quality 3rd 110.45 vs 126.5 daeyahsp

Time + Quality 4th 114.12 vs 138.45 yahsp2-mt

Overall 4th 432.88 vs 531.05 yahsp2-mt

Table 4.5: Table showing the comparative scores from IPC 7 of POPF2 against

other entrants in the temporal-satisficing domains. The entrants above POPF2

were satisficing evolutions of the HSP planner family.
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Chapter 5

Initial Planning Model

5.1 Motivation

Chapter 4.3 presented a discussion of why studying Unit Commitment as a Planning

problem would represent a contribution to the planning community. Below, some

key reasons why a planning approach for Unit Commitment would be beneficial from

a Power Systems Engineering perspective are presented.

• The key part of Unit Commitment is the temporal online / offline schedules

produced, not the exact unit outputs, and planning has very strong temporal

reasoning as demonstrated through Chaper 4.2.

• The main feature of a MIP formulation for Unit Commitment that makes

the problem hard to solve is the number of binary variables with complex

constraints covering them. These all come from the temporal sub-problem,

implying a weakness of the MIP is a strength of planning.

• Unlike most Meta-Heuristics approaches presented in the literature (discussed

in Chapter 3), a planning approach uses an entirely different formulation of

the problem. Thus it does not inherit the discretisation problem seen in a MIP

model, which other meta-heuristics do.

• Analysing a MIP solution to form schedules and thinking about how these

would be applied in practice reveals that there are clearly fewer times when
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a unit’s online status switches, an event requiring an action in the power

system, in the final schedule than binary decision variables in the MIP. The

action formulation of a planning implementation is therefore a more natural

fit to this problem than a large collection of binary variables forced over a

discretisation of time.

• Practical approaches for Stochastic Unit Commitment are still in development.

There are many interesting implementations of planning handling uncertainty,

suggesting that a more sophisticated implementation than just performing

multiple runs is a possibility. Before such complex planning systems can be

developed, an efficient formulation of deterministic Unit Commitment is re-

quired.

Before detailing proposed planning models, these points are expanded for clarity.

First consider the temporal side of the problem. Suppose one was to manually solve

the problem of finding online / offline schedules for a unit. An intuitive approach

would be to decide on the times one would switch on a unit, and how long it was

on for, i.e. when one would switch a unit off. Approaching the problem asking “at

12:00 midnight will it be on or off? At 1:00am will it be on or off? At 2:00 am ...

etc.” seems less natural.

Supposing no knowledge of research in either planning or MIP formulations one

would attempt to solve the first of these formulations, which adheres closely to the

structure of the planning problem. Planning as a discipline is much newer, and

has consequently received much less attention, than MIPs and Branch and Bound.

Simply because it has not yet had a chance to demonstrate the breadth of ability

demonstrated by modern MIP solvers, backed as the are by multi-million dollar

companies, should not dismiss it from consideration a priori when the formulation

would appear more natural.

The solutions produced and overall solution methodology are also more succinct

than a MIP. Consider a peaking unit with low start up cost but high marginal

cost, minimum online time of 2 hours and minimum offline time of 1 hour. This

type of unit will typically be used only during the morning ramp and evening peak.

As detailed in Appendix A.1 a MIP model would have variables o(u, i) for i =
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i 1 2 3 4 5 6 7 8 9 10 11 12

o(u, i) 0 0 0 0 0 0 1 1 1 1 0 0

... 13 14 15 16 17 18 19 20 21 20 23 24

o(u, i) 0 0 0 0 1 1 1 1 0 0 0 0

(a)

360 switch on(u) [120]

600 switch off(u) [60]

960 switch on(u) [120]

1200 switch off(u) [60]

(b)

Table 5.1: Possible schedule for a peaking unit (one which can be brought online

quickly, typically only remaining online for a few hours at a time, used primarily

to serve periods of peak load) with minimum online time of 2 hours and minimum

offline time of 1 hour, used during the major morning and evening ramps in demand.

(a) would be a MIP representation and (b) a planning representation. The periods

representing minimum online and online times are in bold type. They highlight how

a Planning expression of a Unit Commitment schedule is more natural than a MIP

expression.
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1 . . .m denoting the time period and u indexing the unit. A planning model would

determine timestamped actions.

Table 5.1 gives the same solution for this unit over a 24 hour horizon. Supposing

the search in the planner can be correctly guided and implemented efficiently it

only has to reason about 4 decision points with regards to this unit. Branch and

Bound has to solve for 24 binary variables. Whilst the cuts and constraints detailed

in Chapter 2.3 tightly group some of the variables to ensure minimum online and

offline times are respected, all others must be reasoned about. In the case of this

peaking unit, more variables are not covered by minimum online / offline constraints

than those that are.

The planner however will append a switch_on action to the plan, whose dura-

tion is forced to the minimum online period (see below for further details), so this

constraint is enforced without the need for additional constructs. The same occurs

for the switch_off action. A further and perhaps more rewarding benefit is that

once these actions have been applied, the online status of the unit remains in a

steady state. The planner does not have to re-evaluate online status at fixed time

intervals, which the Branch and Bound solver would have to consider.

The object-action paradigm of planning and resultant solution appear a more

natural fit for Unit Commitment as well as being more intuitive to understand, and

motivates the development of this initial method. A first attempt at modelling Unit

Commitment as a planning problem is presented in the remainder of this chapter.

The key features are discussed using the Pddl for the domain. Full code can be

found in Appendix B.2.

5.2 The Model

5.2.1 Temporal Constraints

A planning approach was in part motivated due to the simple and rigorous way in

which the temporal constraints on generating units can be modelled. Two simple

actions replace the complex constraints in a MIP that some meta-heuristics have

difficulty enforcing. There, minimum online and offline constraints are often relaxed

May 8, 2014



5.2. The Model 130

during state generation as the random elements of the search will most likely generate

states which violate them. This causes extra reasoning and slows the search down

(further details are given in Chapter 3). In a Branch and Bound setting, much

research was needed to efficiently tighten the minimum online and offline constraints

(as discussed in Chapter 2.3). As discussed below, a Planning formulation would

not suffer from the same complications surrounding these critical constraints.

The switch_on and switch_off actions are set to be the length of the minimum

online or offline period respectively and a system of predicates is used to ensure that

one of these actions cannot be interrupted by another. This simple formulation is

all that is required to enforce these constraints. Mechanisms to improve solution

speed, such as the cuts introduced by Rajan and Takriti in [41] or domain specific

mutation operators as in Meta-Heuristics (see [93] for example), are not necessary.

Predicates on and off, representing the generating unit’s online status, are

switched with the actions switch_on and switch_off, shown in Figure 5.1. Clearly

before a unit can come online through switch_on it must be offline. The sec-

ond precondition canSwitchOn is a flag which is negated when a unit comes on

and only becomes true again with the effect (at end (canSwitchOn ?u)) of the

switch_off action. Similarly switch_off has a precondition canSwitchOff only

made true by the effect (at end (canSwitchOff ?u)) of switch_on. In this way

switch_off must follow the end of switch_on. By fixing durations of switch_on

and switch_off to the minimum online and offline durations respectively each unit

is forced to be online / offline for at least its respective minimum online / offline

period. This is illustrated in Figure 5.2.

The benefit of this action choice is that the constraints are enforced but the

actual online and offline times of a unit are not fixed. There are no upper bounds

on the time a unit can be left online or offline for as the actions don’t negate the

precondition they switch. The actions themselves however do have a fixed duration,

not expressed as an inequality, making for simpler more efficient reasoning by the

planner.
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(:durative-action switch_on

:parameters (?u - unit)

:duration (= ?duration (minimumOnTime ?u))

:condition ( and

(at start (off ?u))

(at start (canSwitchOn ?u)))

:effect ( and

(at start (on ?u))

(at start (not (off ?u)))

(at start (not (canSwitchOn ?u)))

(at end (canSwitchOff ?u))

(at start (assign (output ?u) (generationMin ?u)))

(at start (increase totalCost (costStartUp ?u)))

))

(:durative-action switch_off

:parameters (?u - unit)

:duration (= ?duration (totalOffTime ?u))

:condition ( and

(at start (on ?u))

(at start (canSwitchOff ?u)))

:effect ( and

(at start (not (on ?u)))

(at start (off ?u))

(at start (not (canSwitchOff ?u)))

(at start (assign (output ?u) (generationMin ?u)))

(at end (canSwitchOn ?u))))

Figure 5.1: The two actions responsible for switching the online status of a unit and

enforcing the temporal constraints.
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Figure 5.2: The two actions switch on and switch off can be scheduled to give any

length online and offline periods despite having fixed duration. The temporal con-

straints are enforced using the predicates canSwitchOn and canSwitchOff.

5.2.2 Modelling Supply and Demand

This initial model includes the exact output for each generating unit in the system.

A fluent output is associated with each unit and a total supply fluent are used to

model this and the overall supply.

To have variable changes in output requires an action with a variable duration.

Two actions, ramp_up and ramp_down (Figure 5.3) alter the output and supply

fluents at a fixed rate per minute with variable duration. This allows the planner

to set the output of a unit to any level thus performing the Economic Dispatch

sub-problem.

The formulation of these actions is reasonably standard. Note however the nec-

essary inclusion of the #t implying a continuous process. It is not possible to specify

an action which sets the value of a fluent to a value to be determine at run-time.

Therefore it is not possible have an action with no duration that instantaneously

ramps the unit to a value between its minimum and maximum, as occurs in a MIP

solution.

These actions are complex to reason about as they require continuous reasoning

about the #t parameter. This action construct therefore requires complex and time

consuming reason, and is an influential factor motivating the development of the

second model presented in Chapter 6.
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(:durative-action ramp_up

:parameters (?u - unit)

:duration (<= ?duration (/ (- (generationMax ?u)

(output ?u)) (rampRateUp ?u)))

:condition ( and

(over all (on ?u))

(over all (not (rampingDown ?u)))

(over all (<= (output ?u) (generationMax ?u))))

:effect ( and

(at start (rampingUp ?u))

(at start (increase (supply) (output ?u)))

(at start (increase (totalCost) (+ (* ?duration (output ?u))

(* (* 0.5 ?duration) (- (+ (output ?u)

(* (rampRateUp ?u) ?duration)) (output ?u))))))

(increase (output ?u) (* #t (rampRateUp ?u)))

(increase (supply) (* #t (rampRateUp ?u)))

(at end (not (rampingUp ?u)))

(at end (decrease (supply) (output ?u)))))

(:durative-action ramp_down

:parameters (?u - unit)

:duration (<= ?duration (/ (- (output ?u) (generationMin ?u))

(rampRateDown ?u)))

:condition ( and

(over all (on ?u))

(over all (not (rampingUp ?u)))

(over all (>= (output ?u) (generationMin ?u))))

:effect ( and

(at start (rampingDown ?u))

(at start (increase (supply) (output ?u)))

(decrease (output ?u) (* #t (rampRateDown ?u)))

(decrease (supply) (* #t (rampRateDown ?u)))

(at end (not (rampingDown ?u)))

(at end (decrease (supply) (output ?u))))))

Figure 5.3: Actions representing a unit’s ramping. These alter output and supply
and a fixed rate per minute but with variable duration allowing the planner to
perform Economic Dispatch.
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(:durative-action envelope

:parameters ()

:duration (= ?duration 1440)

:condition (and

(at start (> supply demand))

(over all (> supply demand))

(at end (> supply demand))

(at end (complete))

(at start (preconditionToStart)))

:effect (and

(at end (demandServiced))))

Figure 5.4: Action to enforce the system balancing constraint. Predicates are used

to ensure this action is scheduled at the same time as Timed Initial Fluents updating

the demand.

5.2.3 Balancing Supply and Demand

Customer Demand is represented by a fluent demand and updated using a series

of Timed Initial Fluents given in the problem file. Balancing supply and demand

is enforced by the temporal action envelope, Figure 5.4. envelope has a fixed

duration equal to the length of the planning horizon and requires the fluent supply

discussed above, to be greater than the fluent demand throughout its duration.

The action contains three more predicates which combine to ensure this action

is run for the first x minutes of the planning horizon, assumed to be the same

period as the Timed Initial Fluents updating demand. The goal requires the two

predicates demandServiced and complete to be true. demandServiced is initially

false and only set to be true by envelope, forcing the planner to run this action.

complete is initially false and set true using a Timed Initial Literal at the end of

the planning horizon. The condition (at end (complete)) of envelope ensures

this action is not run too early. In the problem file (precondition-to-start)

and (at 0.005 (not (precondition-to-start))) coupled with no action set-
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ting precondition-to-start to true means the planner must schedule the action

envelope in [0, 0.005). As this action must run and has a duration the entire length

of the planning horizon, the constraint (over all (> supply demand)) is always

enforced.

5.2.4 Modelling Cost

Finally the cost is to be modelled. The No Load cost is linear in the duration of

the action. This can be seen in Appendix B.2 and is modelled as a simple increase

start effect in the actions ramp_up, ramp_down. As the action must have ended

before the plan will be considered complete, it makes no difference whether the cost

is incremented at the start or end of the action.

These two actions alone do not account for the times when a generating unit’s

output remains static. In order to ensure the marginal and no load costs can be

incremented during these times there must also be a third action.

The generate action can be seen in Appendix B.2, and increases the total cost

by the no load cost incurred during that action’s duration. There is however no

intrinsic reason for the planner to schedule this action, as all it does is increase the

cost, negatively impacting the metric in the problem goal.

This necessitates the deduction of a unit’s contribution to the overall supply

at the end of a ramp or generate action. By removing the output of a unit from

the total supply at the instantaneous end of an action necessitates the immediate

addition of another action. All three ramp and generate actions increment the total

supply with the unit’s output so if there are no breaks in a schedule between these

units then the supply will remain above demand and the problem solvable, forcing

the planner to schedule these actions. This is a workaround which complicates the

planners reasoning, and is a key factor to the development of the second planning

model.

The marginal cost is more complex. As the ramps are being modelled as a

continuous increase, it would be ideal to model the costly similarly. The amount by

which to increase output and supply when ramping up is linear:

g(u, t) = g(u, t0) + t ·R+(u) (5.2.1)
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where g is the output and t0 is the time the action is started, t is the variable of

concern as the duration is the variable the planner is resolving to find.

The updates for the cost however are nonlinear. The marginal cost of ramping

up from g0 to g1 in time d is given by:

Cramping(u) = Cmarginal(u) ·
[
d g0 +

1

2
(g1 − g0)d

]
(5.2.2)

g0 is the output at the start of the action and g1, the final output, is dependent on

the duration. Expanding this expression shows this cost is quadratic in the duration

as well as containing a product of two variables, duration and g0.

Cramping(u) = Cmarginal(u) ·
[
d g0 +

1

2
((g0 +R+(u)d)− g0)d

]
(5.2.3)

= Cmarginal(u) ·
[
d g0 +

1

2
R+(u)d2

]
(5.2.4)

The same equations are easily calculable for ramping down. Only linear expressions

can be handled in Popf at time of development, meaning the marginal cost of

ramping cannot be accurately calculated. This was another contributing factor

in pursuing the second model presented in Chapter 6, discussed in more detail in

Section 5.4.

5.3 Soving Unit Commitment using UPMurphi

The only planner available at time of development able to handle all of the features

required in the above Unit Commitment model without modification to the planning

code is UPMurphi.

The initial goal was to use the Popf planner, which has better concurrent and

continuous reasoning than UPMurphi. At time of development Popf could not

handle the Timed Initial Fluents interacting with the overall constraint of supply

being greater than demand. Since this initial development, work by Piacentini et

al [9] has enabled Popf to handle this aspect however there remain open problems.

The non-linear marginal cost during ramping remains a problem.1 The decision was

made to run initial tests using UPMurphi.

1The model as presented here would also crash Popf as the negative over all conditions in the
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UPMurphi is a planner which implements a ‘discretise and validate’ approach.

This means that time is dynamically discretised, an action applied and the resulting

state checked for validity.

The search implemented is an A* search based on the heuristic value in each

state. The state with the highest heuristic value is the next state expanded, to

which all actions are applied. The resulting states are added to the explored tree of

states and the state with the highest heuristic is again advanced.

Unlike a traditional planner where a predefined heuristic function is applied to

each state, having the heuristic value as a variable in the state, free to be modified

by any action, gives greater flexibility with the heuristic. See section 5.3.1.1 for a

discussion of the most successful heuristic and how it was applied to a subset of

problems.

As UPMurphi handles time using the discretise and validate approach, durative

actions such as ramping are split into start and end actions. Consequently as states

are resolved in the ‘check’ stage of applying an action, the non-linear costs can be

incremented as part of an instantaneous start or end action.

This leads to the set of actions being as in Figure 5.5a and predicates and fluents

being as in Figure 5.5b and Figure 5.5c. Of note over the Pddl model presented

above is the “Pass Time” Action, specific to a UPMurphi implementation, which

advances the time state variable and performs the validation. The validation checks

none of the hard operating constraints are violated, and if they are, removes the

state from search tree.

5.3.1 Model Development With UPMurphi

This section details the mode development process and qualitative results of running

the above planning model on UPMurphi. Domain formulation always has an im-

pact on problem performance and so altering the action structure and manipulating

the UPMurphi search process was done hand in hand in an attempt to find the

ramping and generate durative actions are not handled correctly. This can be avoided by using

extra predicates however have been omitted from the model description here for clarity.
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Action

Pass Time

Start Ramp Up

Stop Ramp Up

Start Ramp Down

Stop Ramp Down

Switch On

Switch Off

(a) Actions

Predicates

Online

Ramping Up

Ramping Down

(b) Predicates

Fluents

Output

Timers

. . .

(c) Fluents

Figure 5.5: A list of boolean predicates, numeric variables (fluents) and actions used

in the UPMurphi AI Planning model. Note that the Timers represents a suite of

numeric variables which track how long a unit has been on / off for, ramping for,

when each of those actions occur etc. to allow for tight preconditions as discussed

in 5.3.1.3.

best overall planning system. The problems used for testing and development of

this model were all variants of the systems given in Appendix A.1.1, using 4-12 gen-

erating units in various test portfolios with the demand data outlined in Appendix

A.1.1.

5.3.1.1 UPMurphi Heuristic

The heuristic function at a node n in an A* search is typically the cost to

reach the node n plus the expected remaining cost to reach the goal. This did not

provide an informed search as there is no quick and (moderately) accurate way to

estimate the remaining cost to go, and the total cost of plans towards the end of

the planning period were so much greater than those at the start that the planner

simply enumerated all of the early plans before moving forward in time.

A weighting of the total cost so far given the time of the current state did not

appear to improve the search even when only one unit was necessary to serve the

load. This is potentially down to the cost being in the order of 106 and time being
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in [0,1440] so the cost overwhelms the time weighting.2

To study the effects of changing the heuristic, Economic Dispatch problems were

studied (problems where the units initially on could serve the entire load profile).

A ‘greedy’ heuristic was developed based on the current cost per minute of a plan

given the current load being served weighted with the proportion of the planning

horizon remaining (see Appendix B.1 for details).

This heuristic was tested, and coupled with the preconditions discussed in sec-

tion 5.3.1.3, proved effective for problems of up to 10 units where none of those units

needed switching off or further units switching on. The unit loading matched (bar

symmetric units) the outputs from the MIP model and solution times were com-

parable. Whilst this is positive for the development of the planning model it is of

course redundant as a standard LP (not MILP) could easily solve large deterministic

Economic Dispatch problems. The difficulties of adapting this heuristic to dispatch

problems are discussed in section 5.3.1.4.

5.3.1.2 Dynamically Discretising Time : The “min timer” Function

“Pass Time” advances time to the next point an action may need to be applied.

One downside of UPMurphi’s dynamic discretisation experienced throughout test-

ing was that if the discretisation was too narrow too often, the state space grew

exponentially and the search essentially stalled with many states all appearing iden-

tical to the planner. As theoretically an action may be applied at any point in time

one could potentially advance a state by anywhere from 1 min to 30 minutes (a

typical gap between time points in Unit Commitment MIP Models) however this

creates a huge amount of near identical states.

To overcome this a min_timer function was developed to calculate when the

nearest point in time a corrective action could be applied is. This value was the

amount to advance by, and if informative, allows for all ‘sensible’ actions to be tested

and fairly evaluated without generating a vast intractable state space. Explicitly,

for the Economic Dispatch problems studied to develop the heuristic, the minimum

2Dramatic scaling could be implemented but a scheme that worked well in multiple problem

instances was not found.
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time the planner could advance by was taken as the minimum of:

• the time until the load changes

• time until the system globally ramps below the current demand

• time until the system globally ramps beyond the next demand

• times restricted by individual ramping units

• the minimum time the system can wait until some ramping could have to occur

to reach the next demand level

This min_timer function, illustrated in Figure 5.6 was thought to be a key area

of development if this implementation were to succeed. If it over estimates the time

until the next action point, avoiding action to critical situations (such as ramping

beyond limits or ramping unnecessarily high) may not be taken and states will be

incorrectly missed. If it under-estimates the time many excess states are explored

increasing both memory usage and solution time.

In the small Economic Dispatch problems used to aid development of the heuris-

tic, this proved effective reducing the solution times on the small test systems used.

What was found was that when large models were used to stress the system, too

many states were still being generated despite this more domain specific way of

performing the dynamic discretisation. The resulting poor scaling to real scale

problems is prohibitive for Unit Commitment where typical systems will require up

to a hundred units or more.

5.3.1.3 Pruning Through Pre-Conditions

Effective use of an actions’s preconditions to prevent the planner from creating states

which will necessarily be either duplicates or lead to dead ends should reduce the

explored portion of the state space reducing solution time.

The start and stop ramping actions were thus modified to make use of knowledge

of the domain, preventing the planner from creating states guaranteed to be dead

ends once time is passed. The conditions are:
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(a) (b)

Figure 5.6: Schematic illustrating how the standard UPMurphi approach and

min timer approach differ. In the standard approach UPMurphi will apply all ac-

tions to a state, including advancing time by a series of decreasing intervals, checking

each state for validity, as in (a). In this way, if an action is applied and then time

advanced by a large amount breaking a constraint, the finer granularities will arrive

at a state where the action has still been applied but only advanced slightly further

down the time line, so necessary actions to resolve what would break the constraint

can be taken. In the Unit Commitment problem the number of time steps to at-

tempt would be very large as many combinations ramping actions could be used

between each change in demand, and switching actions will have to be tested too.

This results in a huge state space and is not efficient. Instead time is only advanced

by one amount, dynamically calculated in the min timer function, as in (b). This

reduces the state space over the default approach.
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• If the current output is such that ramping for 1 minute3 would cause it to be

outside of its operating limits, then ramping cannot occur.

• If supply is such that ramping down for one minute would mean demand is no

longer below supply then ramping down cannot begin.

• Starting / stopping ramping for the same unit cannot directly follow stop-

ping / starting ramping unless some time has elapsed to prevent states being

generated which could occur from leaving a unit ramping.

• If current supply is never exceeded by future demand, global ramping up

(combined total of ramp rates being positive) cannot occur as this will never

be optimal.

It was found that effective use of preconditions preventing duplicate states im-

proved solution time greatly. If one were to continue developing this model to dis-

patch units (rather than advancing to the separated model of Chapter 6), restricting

when units could be switched on or off (based on more than just the minimum on /

off times) would be crucial to attaining competitive performance against the MIP.

5.3.1.4 Dispatching Units

The heuristic detailed above is a greedy heuristic but provided an efficient and

effective heuristic for Economic Dispatch problems. Dispatching units requires some

notion of look-ahead, i.e. it is not just the instantaneous start up cost that will affect

which unit should be switched on, but how costly it will be for the unit to serve the

extra load over much longer periods of time.

Accounting for this in the heuristic proved challenging. When the start up cost

was included in the cost per minute calculation given in Appendix B.1, the heuristic

value was dwarfed by this amount and search never returned to that state. Not

3As we are storing time as an int to reduce memory usage this “for 1 minute” is required as

if the unit is not at its boundary but would reach it in less than a minute the planner may keep

trying to ramp even though it is not possible.
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including the start up cost in the heuristic meant the unit with the lowest marginal

cost was always the one to be turned on.

The min_timer function discussed above was left unchanged when considering

unit dispatch. As units could theoretically go online or offline at any point in the

planning horizon, a switch_on or switch_off action would always be applicable.

A simplifying assumption, that a unit could only go online or offline at the same

moment as a demand change, was made to prevent state explosion during search. As

the min_timer function already took the demand change time points into account,

unit dispatch did not need to be accounted for there. It is possible that this model

formulation choice impacted performance of the planner, however for the reasons

discussed below (see Section 5.4), it was thought that there was more promise in

developing a dedicated system (detailed in Chapter 6) than in pursuing this aspect

further.

Another complication is to take into account how long the unit serving the

surplus needs to be on for. If demand is only high for a short period of time a

more expensive unit which can turn off quickly is preferable. Creating a heuristic

with good performance retaining elements of the myopic case, which can also reason

over the longer periods of time required when considering unit start up proved

challenging and an effective solution was not found.

5.4 Conclusion from the UPMurphi Implementa-

tion

This model demonstrated that Unit Commitment can be modelled as a planning

problem and be solved to an extent with ‘off-the-shelf’ planners. As discussed above

performance gains could not be found, thus this model cannot be deemed a success.

One key reason could be that the formulation of the ramping and generate ac-

tions to model the Economic Dispatch sub-problem are both complex and a little

convoluted. The output of a unit cannot be variably altered by an instantaneous

action. The only way to model the actions so the planner can alter the output of a

unit is by using a linear increase in a variable duration action. This is the formula-
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tion used however requires the planner to support the #t language construct. This

is complex to handle and could contribute to the long solution times.

Accurately modelling the costs involved also proved problematic. To track the

marginal cost an action, during which the unit’s output would be constant, had to be

included in the model. The marginal cost could not be included in the switch_on

action as the output was changing dependent on the other actions being concur-

rently scheduled. This meant a generate action had to be included, the purpose of

which was to be scheduled between the ramping actions to increment the total cost

correctly.

With either a ramping or generate action being scheduled for the entirety of

the time the unit is online, the no-load cost could be incremented in each of those

actions. This meant that the switching actions did not need variable durations and

could be modelled as discussed in Section 5.2.1.

However it forced extra complexity into both the model and the reasoning pro-

cess. The motivation for using a planning formulation was the natural action formu-

lation reducing the number of decision points. By forcing these three actions to be

directly sequentially scheduled for all times the unit is online increases the number

of decision points and reduces the impact of the more efficient temporal reasoning.

Finally the cost of ramping could not be accurately modelled in Popf. A

workaround is to assume the marginal cost throughout the ramp is the marginal

cost as if it were running at the output at the start of the action throughout the

actions duration. This is not ideal but implies similar instantaneous marginal cost

increases inherent in the MIP model, where the output and cost changes instanta-

neously at point of demand change. Here the ramp down assumption is the same.

The instantaneous ramp up is an over estimate compared to the MIP as ramping

up occurs before the demand changes.

The less accurate cost model and current restrictions in Popf at time of devel-

opment meant this model could not be tested on Popf. To begin investigating the

possibility of implementing a planning system it was decided initial tests would be

conducted using UPMurphi.

Two key difficulties found when testing UPMurphi likely to have been respon-
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sible for the poor performance were implementing an effective look-ahead heuristic

and the reliability and flexibility of the min_timer function.

The heuristic was either inherently myopic and therefore less informative, or

inefficient to calculate. Given the complexity of the model and therefore how often

the heuristic was being evaluated, it would not be beneficial to implement a more

accurate heuristic.

The dynamic discretisation accelerated by min_timer worked well in the small

test systems however heavily relied on the deterministic nature of the problem. As

the move to stochasticity would be done using machine learning on deterministic

cases this may not prove to be a problem. However this discretisation method may

prove ineffective as the number of units grows and the points at which actions could

occur increases.

The function could also incorporate an element of human error. By hard coding

a set of potential points of interest there is the possibility of missing a point in time

when it would be beneficial to apply a corrective action. Due to the limited testing

that was able to be performed it is unknown to what extent this would hinder the

search, or whether it was overwhelmed by other elements.

Note that these last two issues are specific to the UPMurphi model and should

not discourage the use of a planning approach. However, all these elements combine

to demonstrate that a ‘full’ description of Unit Commitment as a planning problem

is not yet feasible. Looking at the reasons for this reveal that it is the numeric

sub-problem, attempting to solve Economic Dispatch, which is at the heart of the

problem. The complex cost models, convoluted action structure they require and the

extra decision points these introduce appear to be the biggest barrier to a successful

implementation.

Motivated by this, the following chapter proposes a domain specific Automated

Planning system for tackling Unit Commitment. The key feature is separating the

two sub-problems, removing the Economic Dispatch dispatch sub-problem from the

planning search, instead receiving guidance on optimality from an external solver.
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Chapter 6

A Separated Planning Model

6.1 Motivation

The use of planning for Unit Commitment has been predicated on both the tem-

poral structure of the problem and the temporal reasoning abilities of planners, as

demonstrated in the literature (see Chapter 4.2). Whilst the temporal part of the

solution is the key part, it is intrinsically linked with the numeric aspect used to

confirm the cost of a proposed scheduling of units.

Mathematical programming has an indisputable advantage with regards to solv-

ing a linear optimisation problem. Whereas the temporal aspects of the problem can

be thought of as fitting more naturally into a planning formulation, the numerics

fall naturally into a mathematical optimisation framework.

As expected from the review of planning literature in Chapter 4.2 and evidenced

in Chapter 5.3 by the planner stalling with even simple problem variants, numerical

optimisation is not a strength of planning. Fortunately there is a clear separation

in Unit Commitment between the temporal and numeric sub-problems. Supposing

an effective separation could be implemented this approach could enable planning

to tackle the temporal sub problem and receive guidance on optimisation from an

external solver.

Studying the domain from the previous chapter, reveals a clear separation be-

tween those actions representing the temporal aspects of the problem, and those

representing the numeric aspects. switch_on and switch_off schedule the units
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and envelope ensures the actions are run over the same periods as the Timed Initial

Fluents representing demand. These three actions therefore represent the tempo-

ral aspects of the problem. ramp_up, ramp_down and generate all track the units’

output, system supply and attempt to track the cost.

The ramp_up and ramp_down actions were the real difficulty in scheduling, as

they could be applied at almost anytime. Creating a heuristic which meant the

planner didn’t schedule ramping as late as possible proved problematic, forcing

fastest ramping units to be used. To remedy this the min_timer function was used

in the UPMurphi implementation, but this still had problems.

Similarly the generate action was a work-around rather than a natural expres-

sion of the problem. In order to track the no-load cost ramp_up and ramp_down

actions were supplemented with a generate action to ensure the cost is tracked.

Whilst this could be modelled it was inefficient and is likely to have slowed the plan-

ner’s reasoning down by increasing the number of applicable actions at all points in

time.

Furthermore, these three actions all had variable durations, and had to be sched-

uled to be ran at the exact same times as the switch_on and switch_off actions.

This required more complex reasoning, for simultaneous actions and variable dura-

tions. Whilst planning mechanism have been developed to handle these constructs,

they are complex and increase solution time. It would therefore appear to be benefi-

cial to remove these three actions from the planning model i.e. remove the numerical

optimisation side of the problem.

One key motivation for attempting to model Unit Commitment as a planning

problem was the reduced number of actions compared to the number of variables

in a MIP formulation. The scale of this reduction and impact it had on search in

the previous model was dubious due to the planner performing Economic Dispatch

through the ramp_up, ramp_down and generate actions. Removing these actions

removes the near infinite number of branching possibilities from reasoning about

frequency and duration of those actions. Intuitively this may reduce the reasoning

required within the planner.

Clearly these actions cannot be removed unless replaced by another mechanism.
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Considering how a basic MIP Branch and Bound solver tackles the problem high-

lights a parallel to a planning approach which could be exploited. A Branch and

Bound solution process typically will solve multiple relaxations of the problem, where

a subset of the binary on off variables are fixed, becoming parameters not decision

variables, and others are relaxed to become real on [0,1] not integer in {0,1}. As-

suming a MILP, gives a relaxation as an LP, which can be solved quickly. The result

of this LP informs the MILP search which nodes in the search are more promising

than others.

In a typical planning methodology implementing a forward state space search,

a state is reached and a heuristic tackles a relaxed variant of the problem. The

solution to the relaxation informs the planner which nodes in the search are more

promising to expand next. This is a direct parallel of the Branch and Bound process.

The sub-problem being handled by the actions ramp_up, ramp_down, and generate,

which include the ramping constraints, the outputs and supply are the same that

are being solved by the LP in the Branch and Bound process.

It can be seen that in the MIP, these constraints and variables are used to assess

the cost and guide the search. This is the same task as a heuristic in planning models.

Supposing a dedicated heuristic can be developed to provide accurate guidance on

the cost impact of the temporal actions and integrated within the existing temporal

reasoning of a planner, an efficient planning methodology which does not suffer from

the same problems seen in the model described in Chapter 5 could be developed.

As a result of the poor initial tests running the full Unit Commitment model on

UPMurphi, and the above reasoning, the decision was made to pursue a separated

model where the Economic Dispatch sub-problem is removed from the model. The

planner must now communicate with external solvers to perform dispatch, check

state validity, and update a metric to ensure the planner is guided towards optimal-

ity. This external solver must be developed and integrated with the planner before

performance can be analysed and improved.

Finally, there has been a wealth of work on modelling Unit Commitment as a

mathematical programming problem and it would be wise to use some of that work

if possible. The second model presented below takes advantage of this vast body of
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work in the literature by using existing relaxations.

Below, how this separated model changes from the model described in Chapter

5, is highlighted. Initial thoughts on what is required from the heuristic function,

how one would integrate this within a planning system and immediate barriers to

implementation are also discussed.

6.2 The Model

In this separated model with Economic Dispatch removed the predicates are

reduced to:

(on ?u - unit) (off ?u - unit)

(canSwitchOn ?u - unit) (canSwitchOff ?u - unit)

(complete) (demandServiced) (precondition-to-start)

As before predicates on and off represent the generating unit’s online status

and are switched with the actions switch_on and switch_off, shown in Figure 6.1.

Clearly before a unit can come online through switch_on it must be offline. The

second precondition canSwitchOn is a flag which is negated when a unit comes on

and only becomes true again with the effect (at end (canSwitchOn ?u)) of the

switch_off action. Similarly switch_off has a precondition canSwitchOff only

made true by the effect (at end (canSwitchOff ?u)) of switch_on. In this way

switch_off must follow the end of switch_on. By fixing durations of switch_on

and switch_off to the minimum online and offline durations respectively each unit

is forced to be online / offline for at least its respective minimum online / offline

period. This is illustrated in Figure 6.2.

The benefit of this action choice is that the constraints are enforced but the

actual online and offline times of a unit are not fixed. There are no upper bounds

on the time a unit can be left online or offline for as the actions don’t negate the

precondition they switch. The actions themselves however do have a fixed duration,

not expressed as an inequality, making for simpler more efficient reasoning by the

planner.
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(:durative-action switch_on

:parameters (?u - unit)

:duration (= ?duration (minimumOnTime ?u))

:condition ( and

(at start (off ?u))

(at start (canSwitchOn ?u)))

:effect ( and

(at start (on ?u))

(at start (not (off ?u)))

(at start (not (canSwitchOn ?u)))

(at end (canSwitchOff ?u))

(at start (increase maxSupply (generationMax ?u)))

(at start (increase minSupply (generationMin ?u)))))

(:durative-action switch_off

:parameters (?u - unit)

:duration (= ?duration (totalOffTime ?u))

:condition ( and

(at start (on ?u))

(at start (canSwitchOff ?u)))

:effect ( and

(at start (not (on ?u)))

(at start (off ?u))

(at start (not (canSwitchOff ?u)))

(at end (canSwitchOn ?u))

;;

(at start (decrease maxSupply (generationMax ?u)))

(at start (decrease minSupply (generationMin ?u)))))

Figure 6.1: The two actions responsible for switching the online status of a unit and

enforcing the temporal constraints.
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Figure 6.2: The two actions switch on and switch off can be scheduled to give any

length online and offline periods despite having fixed duration. The temporal con-

straints are enforced using the predicates canSwitchOn and canSwitchOff

Unlike the original model, supply is handled by the external solver so the exact

outputs of the generating units are not considered by the planner. In order to make

sure almost all states generated are able to be correctly scheduled by the external

solver, the maximum possible output of all generating units is required to be greater

than the current demand.1

This constraint is enforced by the final temporal action envelope, Figure 6.3.

envelope has a fixed duration equal to the length of the planning horizon and

requires the fluent maxSupply, updated through switch_on and switch_off, to be

greater than the fluent demand, updated through a series of Timed Initial Fluents

set in the problem file.

The action contains three more predicates which combine to ensure this action is

run for the first x minutes of the planning horizon, assumed to be the same period

as the Timed Initial Fluents updating demand. The goal requires the two predicates

demandServiced and complete to be true. demandServiced is initially false and

only set to be true by envelope, forcing the planner to run this action. complete

is initially false and set true using a Timed Initial Literal at the end of the planning

horizon. The condition (at end (complete)) of envelope ensures this action is

not run too early. In the problem file (precondition-to-start) and at 0.005 not

(precondition-to-start)))— coupled with no action setting precondition-to-start

1This assumes no reserve requirements. Reserve requirements are not being considered in this

model and should be built in once a successful solver has been developed.

May 8, 2014



6.2. The Model 152

(:durative-action envelope

:parameters ()

:duration (= ?duration 1440)

:condition (and

(over all (> maxSupply demand))

(at end (complete))

(at start (preconditionToStart)))

:effect (and

(at end (demandServiced))))

Figure 6.3: Action to enforce the system balancing constraint. Predicates are used

to ensure this action is scheduled at the same time as Timed Initial Fluents updating

the demand.

(:action dummy_cost

:parameters ()

:precondition ()

:effect (and (increase totalCost 1)))

Figure 6.4: Action to ensure the totalCost fluent, to be updated internally after

external Economic Dispatch is performed, is not turned constant in preprocessing

to true means the planner must schedule the action envelope in [0, 0.005). As this

action must run and has a duration the entire length of the planning horizon, the

constraint (over all (> maxSupply demand)) is always enforced.

The final action in this model is a dummy action, Figure 6.4. The preprocessing

step in Popf, intended for use to solve this problem, removes from consideration

any actions that may never be fired and any fluents / predicates which can only

remain constant. This dummy action increases the totalCost fluent by 1. As the

problem file specifies totalCost as the metric to minimise this action will never

be called by the planner but prevents the preprocessor from setting the variable as

static so it can be updated internally once the external dispatch solver completes.

This is a very simple model and removes the need for the planner to consider the
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Economic Dispatch optimisation problem which stalled the search in the previous

model. The external solver will provide guidance on optimality and the hope is

that delegating optimisation to a mathematical programming solver will be the key

to unlocking optimality and performance from an AI Planning approach to Unit

Commitment.

6.3 The POPF Algorithm

A more formal explanation of how a planning problem is expressed and solved in

Popf is presented here. Popf contains some complex concepts having evolved

through a family of planners of increasing complexity. The evolution can be thought

of as a STRIPS planner, FF [122], extend by Metric-FF [176], Crikey 3 [134]

and POPF [177]. The following descriptions are based on those from the original

publications relating to each planner.2

6.3.1 STRIPS Planning Problems

A basic planning problems is a STRIPS problem3. This contains a set of boolean

propositions p ∈ P and actions which change these propositions a ∈ A. Define

the set off all possible configurations of boolean propositions as S, and as defined

in [176, §2] a world state is a set of propositions which are assumed true i.e.

s ∈ S, s ⊆ P (6.3.1)

All propositions in the subset P\s are assumed false. An action is a triple of subsets

of P ,

a := (ρ(a), E+(a), E−(a)), ρ(a), E+(a), E−(a) ⊆ P (6.3.2)

where ρ(a) are those propositions which must be true for the action to be applied,

E+(a) is the set of propositions which are true after the action has been applied,

and E−(a) is the set of propositions which become false after the action has been

2Other planners and features are omitted for simplicity, to focus only on those features necessary

for modelling Unit Commitment
3The STRIPS language is named after the STanford Research Institute Problem Solver
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applied. E+(a) and E−(a) are known as the Add and Delete effects of action a,

and ρ(a) as the Precondition set.

The effect of an action a applied to a world state s can therefore be defined as:

result(s, a) =

s ∪ E+(a)\E−(a) ρ(a) ⊆ s

undefined otherwise

(6.3.3)

The effect of a sequence of actions 〈a1, . . . , am〉 can be defined recursively as:

result(s, 〈a1, . . . , am〉) =

result
(
s ∪ E+(am)\E−(am), 〈a1, . . . , am−1〉

)
ρ(am) ⊆ s

undefined otherwise

(6.3.4)

The effect of the empty sequence is given by result(s, 〈〉) = s.

A STRIPS Task is given by a 4-tuple (P , A, I, G), where I ⊆ P is the initial

state and G ⊆ P is the goal state, both should be non-empty. The solution to the

task is the sequence of actions

π := 〈a1, . . . , am〉, such that G ⊆ result(I, π) (6.3.5)

If no such sequence of actions exists the problem is unsolvable.

Let each world state s ∈ S be represented by a node on a graph. An edge

connecting s and s′ exists if and only if there exists an a ∈ A such that ρ(a) ⊆ (s)

and s′ = s ∪ E+(a)\E−(a). A search graph can be easily defined, and one can

implement basic searches on this graph.

The Popf family uses an Enforced Hill Climbing algorithm. Here the graph

is not constructed a priori, instead the algorithm iterates through each applicable

action in the current state in a breadth first search manner until a state with a lower

heuristic value than the current state is found. The action achieving this state is

appended to the plan i.e. the graph is expanded along that edge. The algorithm

repeats until the goal is reached. If no such action is found the algorithm either fails

or a backtracking routine is implemented. In Popf, if Enforced Hill Climbing fails

either a Best First or A* search is used, both of these require more memory and

time but are more likely to find a solution.
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The basic heuristic of the Popf family is based on a forming Relaxed Planning

Graph which can be solved quickly. As an example, consider the following definition

[176, §2.1]:

Definition 6.3.1. Assume a STRIPS Task (P ,A,I,G). Define the relaxation of an

action a as

a+ := (ρ(a), E+(a), ∅) (6.3.6)

The relaxation of (P , A, I, G) is then (P , A+, I, G) where A+ := { a+ : a ∈ A }.

A sequence 〈a1, . . . , am〉 is a relaxed plan for (P , A, I, G) if 〈a+
1 , . . . , a

+
m〉 is a plan

for (P , A+, I, G)

From a state s, all states in the Relaxed Planning Graph (RPG) R(s) (the

graph of all states reachable by all relaxed actions) will form a non-decreasing subset

of P , as no proposition will ever be falsified. Thus the distance to the goal can be

estimated as the number of actions in the relaxed plan.

6.3.2 Crikey and Crikey 3

Crikey is a temporal planner that can reason about time and duration but not

about numeric properties [131]. Crikey is particularly strong in that it reasons

correctly about required concurrency. Crikey also supports actions with variable

durations.

There are two broad situations in which required concurrency can arise: in-

teractions between activities in the domain or a deadline which forces actions to

be compressed. Concurrency from compressing actions can be found be creating

a non-temporal plan and then scheduling the actions afterwards but as detailed

in [191, §2], in many cases this will be an inefficient way to generate the plan. Re-

quired concurrency from interactions between activities in the domain means that

the planning cannot be separated from the scheduling and a new representation of

durative actions should be built.

Crikey 3 builds on the Crikey framework adding support for numeric quanti-

ties and a more efficient model for temporal constraints. The updated state repre-

sentation and state succession are presented below.

May 8, 2014



6.3. The POPF Algorithm 156

In the initial planning model for Unit Commitment there is both required concur-

rency (the generate and ramping actions concurrently with the switch_on action)

and variable durations (amount of time to ramp for), which complicates reasoning.

A second model does not contain these features so an explanation of how they are

handled is omitted.

Temporal Representation

In Crikey and Crikey 3 a Simple Durative Action da is defined as a tuple

da := ( C`, C↔, Ca︸ ︷︷ ︸
start, overall and

end conditions

, E+,`, E+,a︸ ︷︷ ︸
start and end

add effects

, E−,`, E−,a︸ ︷︷ ︸
start and end

delete effects

, ∆︸︷︷︸
duration

) (6.3.7)

which form a set of all durative actions

da ∈ A∆ ⊆ A (6.3.8)

The notion of durative actions requires an introduction of a time scale. During

search this is represented as a series of temporal relationships. Actions are fixed to

a definite timeline once planning is complete. The following definitions formalise

these ideas.

Definition 6.3.2. A durative action is split into two Snap Actions

a` = (C`, E+,`, E−,`) (6.3.9)

aa = (Ca, E+,a, E−,a) (6.3.10)

Definition 6.3.3. A Temporal Constraint is a constraint of the form

xa − yb {≤, <,>,≥} d (6.3.11)

where xa, yb are start or end timestamps of snap actions a, b and d is a cap on their

separation from durative action conditions. Temporal ranges and equalities can

be captured through conjunctions of temporal constraints. We denote a preceding

(succeeding) b with a ≺ (�) b and call this a Partial Ordering.
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Definition 6.3.4. A collection of temporal constraints is known as a Simple Tem-

poral Network (STN). An STN is said to be consistent if there exists a consistent

temporal embedding (see below).

Definition 6.3.5. A Temporal Embedding is a map f : A → R where the section

of R mapped to represents the times at which the actions will occur. A Consistent

Temporal Embedding for the instant actions π in an STN S is a map such that

a ≺ b =⇒ f(a) < f(b) ∀ a, b ∈ π (6.3.12)

and for all durative actions, da ∈ π, with snap actions, a`, aa,

f(aa)− f(a`) = ∆ (6.3.13)

A plan, π, is now an ordered sequences of instantaneous and start / end snap ac-

tions (which can be resolved to durative actions) for which the temporal constraints

form a consistent simple temporal network.

World State Representation

A world state is now required to encode the information about temporal constraints,

and also any over_all conditions of the durative actions, C↔. Define a durative

triple

e(da) := 〈a`, i,∆〉 where


a` is a start snap action of da

i ∈ {1 . . . |π|}

∆ ∈ R

(6.3.14)

to be a triple of a start snap action, the step in the plan at which this snap action

was added, and the duration of the action.

A state in Crikey 3 is defined to be a triple of all currently true propositions, a

set of durative triples of the open durative actions whose start snap actions but not

end snap actions have been added to the plan, Ao
∆, and a set of temporal constraints:

s = 〈F,E, T 〉, where


F ⊆ P

E = {e(da)}da∈Ao
∆

T = {xa − yb {≤, <,>,≥} d}

(6.3.15)
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State Progression

State progression in this temporal setting is to apply either an instantaneous action,

or a start / end snap action. An instantaneous action a is applicable if its precon-

ditions ρ(a) ⊆ F and its effects do not invalidate any of the over_all conditions of

any open durative actions. Supposing the action is applicable the result is

s′ = result(a, s) = (F ′, E, T ) where F ′ = (F ∪ E+)\E−

Appending a snap action to a plan has the following effects

s′ = result(a`, s) = (F ′, E ′, T ) where

F
′ = (F ∪ E+,`)\E−,`

E ′ = E ∪ 〈a`, i,∆〉

s′ = result(aa, s) = (F ′, E ′, T ′) where



F ′ = (F ∪ E+,a)\E−,a

E ′ = E\{e ∈ E|aa corresponds to e.a`}

T ′ = T ∪ {t(i)− t(e.i) = e.∆

|aa corresponds to e.a`}

The tests for applicability and state representations now require more memory.

Temporal Search

Search in Crikey is as before, where the set of all applicable actions now includes

the set of all applicable start and end snap actions as detailed above. The heuristic in

Crikey 3 and Popf is complex and is replaced in the proposed procedure for Unit

Commitment, so is not detailed here. Relevant information can be found in [177, §5].

The STN is resolved by enforcing that each step in the plan is separated by an

arbitrary minimum amount, ε > 0, i.e.

Tf = T
⋃
i>1

{t(i)− t(i− 1) ≥ ε} ∪ {t(1) ≥ 0}

and solved using standard techniques.

In Popf the search is still forward chaining, but incorporates ideas from partial

order planning. This has the benefit of better reasoning with deadlines, or Timed

Effects (see below) [177]. The concept of partial ordered planning is that actions
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A
B
C

Figure 6.5: Schematic illustrating the benefit of partial order planning. Suppose

a, b, c and d are all durative actions with the temporal constraints as in the figure. In

a total order planning algorithm the planner may arrive at point A before considering

the Timed Initial Literals enforcing the final two constraints. It would then have to

back track, possibly attempting point B, before arriving at the only valid solution,

C. In a partial order planning scheme, the temporal order of d in relation to b and

c is not set until the end of search when all constraints will have been added to the

STN, thereby avoiding backtracking and unnecessarily extending search.

are not committed to the order they are initially added in the plan. In all search

methods mentioned above, if an action is added to the search at the third step, no

new action can change its timestamped order, it will always be executed third. In

partial order planning this is not the case.

Specifically in Popf, the planner is allowed to demote and promote actions

already added to the plan to a lower or higher timestamped order. Consider a plan

consisting of 4 actions a, b, c, d, such that a must precede b, which must precede

c, and d must occur after a but does not interact with either b or c. The orders

〈a, d, b, c〉, 〈a, b, d, c〉 and 〈a, b, c, d〉 are all valid. A partial ordering scheme like that

used in Popf will not commit the order of these actions until the end of the search.

This is beneficial as it may be that later actions require a late implementation

of d and thus a total order planner would have to backtrack past either of the first

two orders in order to find the correct later scheduling, as illustrated in Figure

6.5. Popf would simply add the later constraint to the STN when the requirement

became apparent, preventing unnecessary backtracking.
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6.3.3 Supporting Numerics

The Popf family incorporated numeric support from Crikey 3 onwards, however

much of the support is very technical and supports complex language constructs

stripped out of the Unit Commitment problem in the second formulation. Avoiding

this costly reasoning allows the planner to focus on the temporal structure of the

problem. Presented here is an introduction to how the numerics are handled in the

Popf family, omitting technical constructs not needed for handling the second Unit

Commitment variant.

Analogous to the set of propositions p ∈ P , define a set of continuous real valued

variables vi, {vi} := V ∈ Rn, where n is the number of fluents. The world state is

now appended, becoming a 4-tuple

s = 〈F,E, T, V 〉

Numeric effects supported by Popf are discrete pre-determined effects, situation

dependent discrete effects, and, as of Colin, non-discrete continuous linear effects.

Define a Numeric Effect as

e(vi) := vi {=,= vi + ,= vi − } x {+,−,×,÷} y (6.3.16)

where x, y can be other variables or constants, thus assigning (‘=’), increasing

(‘= vi+’) or decreasing (‘= vi−’) the fluent variable vi by the value of the right

expression. An action, durative or non-durative, is appended with numeric effects

for some subset of fluents, Ṽ ⊆ V

a := (ρ(a), E+(a), E−(a), Ev(a)) where Ev(a) = {e(vi)}vi∈Ṽ (6.3.17)

Crikey 3 was the first planner to support reasoning about numeric effects with

required concurrency [191]. Resources which are only available during a durative

action’s execution are not lost in the snap action and durative triple formulation, but

would be in the compressed durative action formulation of other earlier planners.

Discrete changes update the world state as propositional changes do, and can

also be placed in the start and end effects of durative actions. Continuous changes

are those which are specified using the #t construct. Colin, which followed Crikey
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3, supported continuous changes and encodes them into an LP which is solved in

conjunction with the STN to ensure the temporal numeric interactions are valid.

This process is detailed in [133, §8].

Timed Effects

Two important constructs in the Unit Commitment problem which remain in the

second model are Timed Initial Literals, to model initial online / offline periods,

and Timed Initial Fluents, to model the demand profile. These are handled using

dummy actions. These dummy actions are added to the plan at a step i by amending

the facts F or fluents V and appending the temporal constraints

T ′ = T ∪ {t(i)− t(a0) = τ}

where τ is the time of the timed effect, a0 is a dummy action representing the start

of the planning period (t(a0) = 0) and the dummy action is applicable only once

earlier TILs have been appended to the plan.

Significant modifications to the Relaxed Planning Graph formulation are neces-

sary to reason about the temporal, numeric and timed effects features. In the second

planning model presented here the heuristic is domain specific and not based on an

RPG so their discussion is omitted, but can be found in [133, §9].

6.4 Extending the POPF Algorithm for Unit Com-

mitment

Based on the above discussion the search process can be described as follows.

1. Construct the initial world state to encode just the facts that are initially true

and the fluents assigned default values as given in the problem. There are no

initially open durative actions and no temporal constraints giving an initial

state as

s0 := 〈F0, ∅, ∅, V0〉

The initial plan is also empty

π0 = 〈 〉

May 8, 2014



6.4. Extending the POPF Algorithm for Unit Commitment 162

2. Define i = 0. si ← s0, πi ← π0.

3. Calculate the heuristic of the current state, hi ← h(si). In Popf, the heuristic

function is an estimated distance to the goal state as found from the Temporal

Relaxed Planning Graph.

4. From the Temporal Relaxed Planning Graph, construct the set of useful ac-

tions as those in the relaxed plan from the current state whose preconditions

are satisfied in the current state, i.e.

Ah ← { a ∈ πTRPG : ρ(a) or C`(a) or Ca(a) ⊆ si.F }

5. Iterate through all applicable actions in a breadth first manner as follows. For

a ∈ Ah

(a) If a is not applicable, advance a. Go to Step 5a.

(b) Apply the action a i.e s′ ← result(a, si)

(c) If the new STN, T ′, is not consistent, advance a. Go to Step 5a.

(d) Evaluate the heuristic. h′ ← h(s′).

(e) If h′ < hi,

si+1 ← result(a, si)

πi+1 ← 〈πi, a〉

i← i+ 1

Go to Step 3.

(f) Else advance a. Go to Step 5a.

The separated model discussed in Section 6.2 requires a custom heuristic to check

state validity and calculate a heuristic. To achieve this there are two key areas to

address, the heuristic and the state validity. These are performed in Steps 3, 5d and

5c.

Supposing the planning problem wholly encodes propositional and numeric va-

lidity in its applicability test then Step 5c necessarily removes any invalid states. In
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this separated model of Unit Commitment a further test is required. The envelope

action only requires that the maximum possible supply to be greater than demand,

this does not imply the current online / offline schedule can create a valid dispatch

schedule.

If the current schedule cannot be dispatched in such a way that demand is met,

most likely due to ramping constraints not encoded in the model, the state should

be dismissed as invalid. This is also the place to increase complexity when looking

to increase the realism and complexity of this model. Network constraints could

be built into the checking procedure increasing the realism of the problems tackled.

This checking is done assuming all temporal decisions have been made, so these

parts of the problem are simpler than building them into a MIP formulation.

State validity can be efficiently checked as part of the heuristic function, the

requirements of which are discussed in detail below.

6.4.1 Heuristics

Running this model on Popf unchanged is not representative as there is no notion

of production cost in this model. The first step to implementing this model is to

design and construct a domain specific heuristic. This would calculate the exact

cost of scheduling the temporal decisions made so far, and the expected cost to go,

the sum of which would be used as a heuristic. Use of a complex heuristic without

implicit increases in solution time is made possible due to the fewer decision points

in the search resulting from the removal of ramping and generate actions.

The complications include:

1. Grounding the temporal decisions made so far

2. Efficient modelling and solution of the dispatch assuming the grounded tem-

poral decisions

3. Efficient estimation of the cost to go

4. Possible extraction of helpful actions

May 8, 2014



6.4. Extending the POPF Algorithm for Unit Commitment 164

Performing Dispatch for Cost So Far

Of the above complications, (2) is perhaps the simplest. The time horizons for this

will be as far through the planning period as the planner has searched. This will

almost always be much less than the full horizon and so solution times should be

short. One could simply take the MIP model in Appendix A.1 and have the binary

variables fixed according to the actions already scheduled in the plan. This then

becomes an LP with the complex constraints (A.1.6) - (A.1.18) removed. This also

means that the final stages of the plan will perform the dispatch for the problem,

the solution of which can be outputted alongside the plan.

The downside of this is in the sheer number of LPs to be solved. Potential ways

to overcome this would be to look back only up to 6 hours. If validity is to be checked

at each action point then once a plan spans 18 hours, the validity of the first 12

hours of the plan should be confirmed and it is unlikely any action will break that

validity. There is a chance of breaking the validity given that the partial ordering

can alter the temporal ordering of the actions but intuitively this seems unlikely.

Another option is to reduce the amount of checking to be done. Simplistically

one could use the algorithm for calculating the ‘cost to go’ part of the heuristic (see

below) and only run an LP either at fixed intervals in plan steps or fixed intervals

throughout the planning horizon i.e. every 5 action steps or first time the plan

exceeds 3, 6, 9, 12 etc hours. Of course the checking schemes should be varied and

studied to see what tradeoffs can be made at this point in the algorithm.

It is likely that a more simplistic heuristic would result in poorer guidance,

although this would have to be tested to be confirmed. A compromise may be

to choose the next candidate greedily, only comparing the ‘cost to go’ part of the

heuristic in Step 5d.

Given the Enforced Hill Climbing algorithm used in the first pass of Popf’s

search, where the comparisons are between all actions stemming from the same

partial plan, this approximation would be equal to the full heuristic. State validity

could then be checked at intervals as discussed above.

This ‘cost to go’ only approximation would probably prove quite poor in an A*

search situation, the second pass of Popf’s search. It is likely the behaviour would
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be very similar to that seen in UPMurphi, where plans earlier in the horizon have

a much larger cost to go than those towards the end. It is likely the planner would

again be inherently drawn towards choosing those plans with a later span over those

with better earlier decisions.

One would infer that for fast searches, where a feasible solution found quickly is

desirable, Enforced Hill Climbing combined with the approximation checking validity

at intervals would provide a considerable time saving by dramatically reducing the

number of LPs to solve. In a more optimisation focussed framework however, A*

with the more accurate cost so far provided by an LP would seem to be the better

approach. These approaches are illustrated in Figure 6.6. Full testing of both of

these situations should be done before any conclusions can be drawn.

Moving from the theory of this part of the algorithm to its implementation in

code, there is work to be done to extract the model in the preprocessing stage of the

code to reduce communication overhead. Much of the model (the units and their

characteristics, the demand profiles etc) is static throughout the plan and should

not be transferred between solvers each time if possible.

A close study of the CPLEX or COIN external APIs is required to ensure com-

munication between solvers does not disproportionately lengthen the solution time.

One possibility would be not to consider each applicable action singularly, but batch

process calculating the heuristic for 5 different actions. This may reduce the effect

of any bottlenecks caused by communications but may also lengthen the solution

process as an Enforced Hill Climbing algorithm has the benefit of quickly moving

up any path which appears better.

The possibility of warm starting the LP based on previous solutions should also

be considered and any solution time reduction weighed against the memory overhead

required in storing previous solutions. There may well be a great reduction in

solution time as most queries will only vary slightly from state to state having only

advanced a little further in time.

This is also an easy place to implement parallelism by combining batch processing

of heuristic calculations and warm starting the LP solvers. Warm starting from

previous solutions would intuitively bring a lot of performance with little effort on
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(a) (b)

Figure 6.6: Schematic illustrating two differing search frameworks. Suppose the

search is at state 0, then if h1 < h0 search advances to state 1. Otherwise h2 is

calculated and the search continues in this way. There is no cost associated with

reaching the initial state so h1 and h2 are the costs of reaching their respective states

and the expected cost to go from that state. Similarly, suppose we are expanding

from state 2, then h5, h6 and h7 are all the cost of reaching state 2, plus their action

costs and remaining cost to go. Given that the planning model does not handle

costs, and the cost of the switch on action is not just the cost of bringing a unit

online, but also the cost of its expected contribution to generation, these specific

action costs cannot be singled out. They are however included in the simple cost to

go heuristic outlined in the body of the text. This is again the case when expanding

state 5, assuming h5 < h2. h8− h12 are all the cost of reaching h5 plus the expected

cost to go once the respective actions have been applied. Thus in an Enforced Hill

Climbing framework only the expected cost to go is needed as the cost so far will

be the same for each state being compared. Contrastingly, in an A* search the cost

to go from state 10 will be much less than from state 4, but the cost so far will be

higher, as it is further along the timeline. As these will be compared in an A* search,

using only the cost to go will be misleading, as it was in UPMurphi. Instead both

the cost of reaching that state and the expected cost to go should be included in

the heuristic to give a fairer comparison.
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the programmer’s behalf as commercial parallel solvers are readily available and

little planning code would be altered.

These implementation issues are all avenues to consider once complication (1)

has been successfully addressed.

Estimating Cost To Go

Complication (3) is striking a balance. In essence the cost to go is the cost of schedul-

ing for the remainder of the planning horizon, which is simply Unit Commitment

where the decisions made so far are committed and the planning horizon is shorter.

The balance is in choosing an algorithm which is very fast but accurate enough to

be representative.

It is not quite a case of choosing from the existing portfolio of Unit Commitment

algorithms. Many important decisions in the Unit Commitment planning horizon

are to be made around the time of the morning ramp. The Cost to Go at this point

is still over 15-18 hours and so the problem is still reasonably large. Even older

priority list methods implemented techniques involving dynamic programming to

improve their accuracy [25].

Building solvers for these techniques into the heuristic would be both complex

and inevitably result in suboptimal algorithms and implementations, and possibly

programmer error. Using another external solver would introduce more commu-

nication overheads and reduce readability and maintainability of the code. For

practicality reasons it is therefore better to use a very simplistic algorithm for the

heuristic, which will inherently be quicker to solve and easier for the researcher to

implement, debug and maintain.

A priori it is also unclear what the effect of various heuristics would be as prob-

lems such as this have received less attention in the literature than planning problems

using more conventional Relaxed Planning Graph approaches. Thus, it is best to

test a wide portfolio of heuristics to study what advantages and disadvantages each

has. Such testing facilitates informed decisions on which routes to pursue further

for tackling larger, more realistic problem instances.

For Unit Commitment as a heuristic we have the freedom to do things such as
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• estimate for a shorter period

• decrease the granularity of the demand profile either statically (only use 90

minute discretisation) or dynamically (for the next 3 periods use 30 minute

granularity, for the following 3 use 60 minute etc.)

• remove constraints for simplicity

It should be clear that the impact of each of these relaxations on different heuristics is

unknown. The criteria for the algorithm as a heuristic is to provide good guidance.

In essence this is just clear differentiation between which solutions are better, or

more promising, than others. The solution is not required to be a truly realistic

and accurate assessment of the cost to go, just indicate situations which are more

promising than others.

When discussing the Temporal Relaxed Planning Graph used in Crikey 3, [191],

it is emphasised that the new heuristic retains planner completeness, which requires

a planner to never incorrectly remove a state believing it to be either a dead end

or invalid. It is not immediately clear that the relaxation of the Unit Commitment

problem and the proposed heuristics discussed here retain this property. A more

in-depth study is required to assert this.

Many approaches will have to be attempted and trialled over a variety of problem

instances to determine which heuristic gives the best balance between performance

and accuracy.

A first attempt presented here is a very simplistic approach. A ‘greedy’ determin-

istic Unit Commitment algorithm can be as in Figure 6.7. In essence this algorithm

chooses the next unit to deploy based purely on having the lowest marginal cost.

This basic heuristic does not consider the ability to bring a unit offline, minimum

online / offline periods or ramping rates but does provided an estimate for the cost

to go and is easy to encode efficiently. It is not too complex to extend the algorithm

in Figure 6.7 to include the above oversights, see Appendix B.4.
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1. Split the set of generating units into two sets, G, C, for those currently online

(Genervating) and those currently offline (Cool). Order these sets by marginal

cost such that G0 is the lowest marginal cost of the units in G and C0 is the

lowest marginal cost in C.

2. Let

• D(i) be the demand for period i

• g(u, i) be the output from each generating unit

• S(i) =
∑

u∈G g(u, i) be the total output

• δi = S(i)−D(i) be the power deficit

3. Let i← 1 be the first period.

4. Set g(u, i)← Gmin(u) for all u ∈ G. Update S(i) and δi. Set u← 0.

5. Assign Outputs:

g(u, i)← max
[
min(Gmax(u), δi), Gmin(u)

]
Update S(i) and δi.

6. If δi ≥ 0 { if i = N { stop } else { i← i+ 1, Go to Step 4 } }.

7. If u < |G| − 1 { u← u+ 1, go to Step 5 }

8. Switch On Additional Units:

(a) Remove C0 from C and insert into G. Let v′ be its sorted index in G.

(b) Set g(v′, i)← min(Gmax(v′), δi). Update S(i) and δi.

(c) If δi ≥ 0 { if i = N { stop } else { i← i+ 1, Go to Step 4 } } else { Go

to step 8 }

Figure 6.7: A first attempt at a heuristic which determines the units to deploy next

in order of marginal cost.
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Helpful Actions

Implemented in the Popf family since FF, the reduction of the set of actions over

which to test for successors from all of those that are deemed applicable to a ‘helpful’

subset has been demonstrated to improve performance [122]. It therefore seems

appropriate to consider how helpful actions could be extracted from a relaxed Unit

Commitment solution, given that the Relaxed Planing Graph framework has been

removed.

Initial thoughts would be to restrict attention to those units which are used

in the relaxed solution, exactly as Popf determines helpful actions in a temporal

setting. The downside of this is that the proposed Unit Commitment heuristic does

not have the sophistication of the Temporal Relaxed Planning Graph in Popf and

intuitively would present a less considered, more restrictive subset of actions than

should be used at this early stage in development.

As helpful actions are primarily to speed up reasoning and do not alter plan

accuracy, their consideration should be brought in only once a heuristic providing

accurate guidance has been developed.

Grounding the Simple Temporal Network

The final difficulty mentioned, (1), is translating the actions in the plan thus far to

concrete binary variables.

Currently the time reached in the planning horizon is determined by the next

upcoming Timed Initial Fluent. There has not been any work in this project on

translating the actions added to the partial plan so far into fixed time periods for

use in calculating the cost so far.

One option could be to resolve the STN as is done at the end of planning,

however this will likely be very time consuming. A possibility of warm starting the

STN solution may be available but has not been investigated. For initial testing this

may not be a problem if the Enforced Hill Climbing search is used in conjunction

with the simple heuristic discussed above. This allows for delaying dispatch until

the STN is resolved once planning is complete. This has not been tested and will

likely contain many issues in itself but is a starting point from which the model can
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be developed.

6.5 Next Steps

This chapter proposed a model for solving Unit Commitment using Automated

Planning. It removes many of the causes of the difficulties seen in the first model

presented in Chapter 5.4. The optimisation which stalled the search in the previous

model is removed from the planner’s consideration, leaving a temporal problem

constrained by numerics.

It is hoped this model coupled with the discussions on how and why it has been

constructed in this way will form a good starting point for other researchers looking

to model Unit Commitment with Automated Planning. The discussions on possible

theoretical areas which could lead to poor performance, and immediate challenges

to implementation should begin to form a road map for how to develop this model

further.

To clarify this road map, the first requirement is to ensure the simplistic heuristic

in Figure 6.7 has an effect on the plan. Initial tests indicated that the resolution of

the STN was not correctly influenced by this heuristic. As illustrated in Figure 6.8

the switch_on actions were arbitrarily assigned to either end of the feasible time

scale. If the wrong end happened to be assigned the switch would occur at the

wrong time. This led to some cases appearing as if the heuristic had no effect whilst

the real cause was not the heuristic but the STN solver. Weighting the resolution

of the STN to the correct boundaries, thereby consistently ensuring the heuristic is

utilised, should be a first step towards improving this model.

Next, improving the cost to go heuristic should be considered. Whilst A∗ frame-

work discussed above can provide more accurate guidance, having just the cost to

go could still be effective in the Enforced Hill Climbing framework. It is hoped that

the extra complexity discussed previously can all be incorporated into the ’greedy’

heuristic and give more credibility to the heuristic from a Power Systems Engineering

perspective.

An assessment of Enforced Hill Climbing with just Cost to Go against A* with
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Figure 6.8: Schematic Illustrating the STN resolution problem. Suppose the current

maximum supply is M , and a single unit u can be brought online at any time in the

planning horizon and will cover the shortfall. The Timed Initial Fluent represented

by t0 will add the constraint ton = t(switch on(u)) ≤ t0 to the STN. Similarly the

heuristic would indicate that u can be switched off once the Timed Initial Fluent rep-

resented by t1 has been activated, adding the constraint toff = t(switch off(u)) ≥ t1

to the STN. This gives the following regions for the switch on and switch off ac-

tions: ton ∈ [0, t0] and toff ∈ [t1, H]. The optimal solution is ton = t0 and toff = t1,

i.e. a switch on should be resolved to the end of its feasible region, and a switch off

to the start of its interval. The STN solver within Popf should be influenced to

ensure this occurs correctly.
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Cost so Far + Cost to Go should follow an accurate Cost to Go heuristic. There may

be a increase in accuracy using the A* approach but the cost of grounding the STN

and solving either LPs or other dispatch algorithms on the solution time should be

investigated. Perhaps both avenues could be developed. When rapid re-calculation

of committed units is required, in the event of system failures for example, a fast

Enforced Hill Climbing framework could be used. In Day-Ahead situations where

accuracy is more important and solution times can be longer, and A* framework

could be more applicable.

Once these basic principles have been address the model should be pushed for

efficiency. Efficient communication. opportunities for efficient solutions through

warm starting sub-algorithms, and preprocessing to remove unnecessary overhead

at each iteration, should all be investigated to ensure the basic algorithm achieves

its potential and is not slowed by implementation details, rather than algorithmic

details.

Long term goals should include more realistic Unit Commitment models, such as

reserve setting, large uncertainty in net demand from renewables, and controllable

loads. It may be that more realistic modelling features can all be built into the

state checking process. Supposing the planner can reason about the overall temporal

structure efficiently, sub-algorithms and external solvers for the heuristic may be able

to perform validity checking under more realistic constraints, but in less complex

formulations than when incorporated into a MIP model. This may result in an

overall efficiency gain.

Planning under uncertainty has received much attention in the literature. Due

to the lack of off-the-shelf planners that could be effectively used to tackle basic Unit

Commitment, it is necessary to build a solid foundation for simpler instances. From

this foundation techniques on uncertainty can be brought in, however it is beyond

the scope of this project.
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Conclusions

7.1 Motivations

Unit Commitment is an integral problem to the power systems industry, crucial for

its secure and economic daily operation. For this reason it has received much at-

tention from industry and academia for many years. Major changes are underway

in power systems around the world, altering fundamental operational paradigms.

Commitments to increasing the amount of renewable energy used for generation

necessitates an increase in Variable Generation. As penetrations increase, its con-

tributions must be incorporated into the Unit Commitment problem.

It is widely accepted that a failure to compensate for the variability in this

generation will either lead to curtailment of renewable sources, removing the benefit

of incorporating it, or more units online for reserves, greatly increasing the cost

of generation for that period. Instead the variable generation must be accounted

for and thermal generation scaled down accordingly. The stochastic nature of this

generation means the contribution to supply from renewable sources is uncertain,

especially in the day-ahead time frame. In order for the system to remain secure this

uncertainty must be accounted for and any shortfalls from overestimating renewables

hedged against.

Quite how this can be accomplished is not known. Current proposals are varied,

and further research is a major focus of industry and academic attention in relation

to Unit Commitment right now. Despite high levels of attention, industrial scale ap-
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plications have not been sufficiently demonstrated and academic approaches remain

laboured.

The vast majority of the literature on Unit Commitment uses a MIP formulation

or other form of time discretisation. Automated Planning is a relatively new field

of Informatics expressing problems in a different way. Whilst there has been less

focus on handling complex mathematical optimisation style problems, a category

which Unit Commitment falls into, it is very well suited for expressing real-world

problems with interesting temporal constraints and complexities, a category which

Unit Commitment also falls into.

The object-action formulation of planning problems is well suited to the temporal

aspects of the Unit Commitment problem. A fine discretisation of time is required

to accurately model the impact of variable generation, necessitating a large number

of binary decision variables in a MIP formulation. Contrastingly there are only a

few times in the planning horizon when a units online status switches. This contrast

in granularities has a large impact on the scale of the MIP problem but does not

affect the complexity of the planning domain.

Automated Planning has not received the same level of attention as Mathemat-

ical Programming approaches and so does not have the same breadth of expertise

demonstrated throughout the literature. Despite this there have been successful

implementations of complex real world problems being tackled and implemented in

industry implying planning is a viable avenue for research.

Being a relatively new field has the advantage for researches that there are per-

haps more avenues to explore than areas which have seen much more sustained

attention. Unit Commitment appears naturally suited to a planning approach and

the planning community has demonstrated an interest in tackling other problems

in Power Systems Engineering. Recent attention in the community has centred on

complex temporal problems and handling uncertainties.

Following research such as that presented in Chapter 6.4 this problem could be

tackled by Automated Planning and a successful implementation would provide re-

newed evidence for the promise of numerical reasoning within a complex temporal

domain through planning. Academic conferences and events within the planning
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community have stressed the desire to tackle real world problems. Unit Commit-

ment is a highly important real world problem that could return attention in the

community to real world problems with a focus on numerical optimisation.

7.2 Contributions

This thesis has endeavoured to present Unit Commitment as an integral problem to

the power system industry, for which unknowns and open questions remain. There

is much interest in both academia and industry, however there is not always a corre-

lation between the latest advances in academia and uptake in industry. With this in

mind initial work on creating an Automated Planning model for Unit Commitment

has been presented, outlining where benefits over existing methodology may come

from. This sections details the outcomes from these areas of study.

7.2.1 Study of Metaheuristics: Lessons Learnt

As discussed in Chapter 2.3, its was around 1999 when Branch and Bound began

to gain widespread popularity for Unit Commitment. Over the following decade

most large System Operators made use of the formulation. Throughout the previ-

ous decade however Meta-Heuristic methods for Unit Commitment such as Genetic

Algorithms [93], Tabu Search [88], and Simulated Annealing [77] were all demon-

strating viability if not proven performance (see Chapter 3 for a complete discus-

sion). Despite continued academic interest in the field uptake in industry has not

been seen.

As this thesis attempts to provide initial discussions on Automated Planning for

Unit Commitment, an approach not seen in the literature thus far, it is important

to analyse why the academic literature on Meta-Heuristic approaches has not re-

ceived industry interest. There has been much success in applying many different

Meta-Heuristics to simple instances of the problem. There have however been key

shortcomings in developing those systems to meaningful scales, and in presentations

of competitiveness.

Tangible demonstrations of practical ability through realistic model formula-
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tions and real world test systems were stated as key factors missing from much

Meta-Heuristics work. Unit ramp rates are easily defined in a MIP formulation (see

Appendix A.1 for example) but many Meta-Heuristics approaches did not consider

them. Key reasons for this were the complexity in generating feasible solutions dur-

ing search under these constraints and increases to the solution time. Modern work

in certain sub-fields tackled these issues but often retained the recurring oversight

of not comparing to Branch and Bound.

In a field as competitive and diverse as Unit Commitment, comparisons with a

variety of successful methods should be presented. Much research demonstrated im-

provements over previous attempts of the same class of algorithm (i.e. a new Genetic

Algorithm over older Genetic Algorithms), but failed to consider other approaches.

Branch and Bound had demonstrated strong performance on large systems whilst

modern research into Meta-Heuristics was ongoing. Test systems presented in much

of that work (20-40 units in size) could have been tackled by Branch and Bound,

and this omission could be a serious factor in the low impact the field has had on

industry.

The reason this omission is so important is it represents a lack of awareness

of industry practice and state-of-the-art in Unit Commitment. Failure to mention

industry practices, or dismissal of those practices for incorrect reasons, will surely

weaken the impact of the work in the eyes of industry practitioners considering

new approaches. Chapter 3.5.2 proposed a repository of Unit Commitment model

formulations to use as benchmark formulations representing the state-of-the-art in

the field, analogous to IEEE test systems for various uses in Power Systems research.

This would ensure all researchers were aware of advances in the field such as the

convex hull research discussed in Chapter 2.3.

Going further, common algorithms for each class, Branch and Bound, Lagrangian

Relaxation, Genetic Algorithms etc. would easily allow researchers to compare their

proposals with a wide variety of existing, high performance, approaches. Clearer

comparisons on recognised benchmarks facilitates strong development of a field and

clearer analysis of promising directions for future research, as demonstrated by the

success of the International Planning Competition (discussed in Chapter 4.1.3). Such
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resources would perhaps provide a platform from which Meta-Heuristic algorithms

can develop and gain industry uptake.

As Automated Planning has not been attempted for Unit Commitment, this

work could also encounter similar problems to the Meta-Heuristics work discussed

above. In taking this work forward, the surveys of Classical Methods (Chapter 2.2),

Industry Practices (Chapter 2.3), and Meta-Heuristics (Chapter 3) should be used to

form a representative collection of algorithms on which to compare performance. The

model proposed in Chapter 5 considered many key aspects of the Unit Commitment

problem formulation, and where omissions occurred (such as reserve requirements

and inaccurate cost models) they were highlighted and possible resolutions discussed.

The final model proposed in Chapter 6 utilises a dedicated sub-solver. This could be

extended to consider very complex model formulations including the early oversights

and other features such as network constraints. This approach could therefore be

very flexible. Whilst tangible demonstrations of industry applications have not been

shown, steps to indicate why they may be achievable have been taken. In this way it

is hoped some of the lessons learnt from the critical review of Meta-Heuristics have

been taken into account.

7.2.2 Unit Commitment as Planning: Lessons Learnt

Chapter 4.3 discussed in detail potential benefits to the planning community of

developing an Automated Planning approach for Unit Commitment.

The analysis of the International Planning Competitions and the competing sys-

tems revealed that whilst planning for numeric optimisation in a temporal framework

has been tackled to some extent, there has been a shift in focus. In some real-world

temporal domains, such as the Airport, Rovers, and Satellite Domain, the compet-

ing planners could find optimal solutions and had excellent problem coverage, even

when tackling domains with complex constructs such as Timed Initial Literals. The

quantity and complexity of numeric domain variants lessened throughout competi-

tion iterations, implying a move towards temporal complexities such as concurrent

reasoning and planning under uncertainty.

The community has previously displayed an interest in Power Systems Engi-
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neering problems. IPC benchmark domains including the PSR problem and work

such as [9,14] and the inclusion of a summary of the work presented here at ICAPS

2013 [192] all demonstrate a desire of the planning community to tackle real-world

engineering problems. Justification for researching a planning approach to Unit

Commitment can be drawn from the work on battery schedules [188] which contains

many similarities to the Unit Commitment problem; an exogenous load is to be

served with a limited resource. Key complexities of Unit Commitment over that

work include:

• The concurrent scheduling of multiple sources of resource, increasing the com-

binatorial complexity.

• The ability to vary the amount of resource provided, increasing the numerical

complexity.

• More complex cost functions.

• A fixed timeline and numeric goal (to minimise cost over a given period),

rather than maximising total battery life, which is purely temporal.

These complexities represent a significant increase in difficulty over the battery

problem and so a successful implementation would represent a contribution to the

planning community.

The IPC praised planners with high problem coverage and general applicability.

With this in mind a planning model in which the entire problem was modelled was

developed in Chapter 5. Modelling difficulties arose, but it appeared the model was

too complex for a planner to tackle unmodified. This lead to the development of

the Separated Model presented in Chapter 6. Whilst this goes against the idea of

general applicability praised in the IPC, it mirrors the development of the solver

for the Battery problem. There a domain specific solver was developed before the

authors generalised the approach to a specific class of problems. Supposing the

extensions presented in Chapter 6.4 are successful, it is possible a more general

solver can be developed to tackle all problems of a similar structure, i.e. numeric

optimisation over a fixed horizon. This would represent a significant contribution to
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the planning community, allowing planning to be a strong candidate for those early

temporal-numeric domains not tackled for some time.

Chapter 5.1 then presented a detailed discussion of why Automated Planning

would be a suitable candidate for Unit Commitment from an engineering viewpoint.

The following ideas were highlighted:

• The finely grained temporal discretisation necessary for modelling demand

contrasts with the much longer time frames a generating unit must typically

remain online or offline for.

• The strength of planning in temporally complex problems demonstrated through-

out the literature review in Chapter 4.2.

• The object-action formulation is a more natural fit, with less online / offline

switch actions that MIP binary variables.

• Planning under uncertainty is receiving a lot of attention and the may provide

efficient alternatives to costly Stochastic Unit Commitment processes, but be-

fore they can be applied a solid foundation tackling deterministic cases should

be sought.

A model was developed to begin initial testing. Due to certain constraints the

only planner available to tackle the model was UPMurphi. This highlights the

lack of planners able to tackle such a problem, and the contribution successfully

handling this domain would represent. Full details are discussed in Chapter 5.3.

The key lessons learnt from attempting to solve this model were as follows:

• The complexity of modelling the costs requires more complex planners, of

which there are few, and the complex language constructs required (Timed

Initial Literals, Timed Initial Fluents and ‘#t’ Continuous Processes) inher-

ently extend the solution time.

• Enumerating all possible time points for switching actions and ramping actions

is huge and not beneficial. Developing a system to efficiently find the correct

subset (e.g. dynamic discretisation) appears instructive on small systems but
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becomes too complex on large systems where the discretisation becomes very

fine.

• Myopic optimisation is unsuited for Unit Commitment where the full opera-

tional cost for a unit’s online duration should be taken into account, not just

how much it costs to start up. An informative heuristic, whose use remains

efficient when the frequency of its calculation is as high as it is when ramping

actions are being considered, could not be found.

The above points combine to negate the perceived benefit of a planning ap-

proach. The removal of a fine time granularity and a reduced number of action

points to consider in search are both lost in this model. Thus a second model which

retained the planning advantages was developed in Chapter 6. The actions tracking

individual unit output and cost were removed from the model and a simple numeric

constraint was imposed over the entire planning horizon. This formulation has the

following benefits over the initial model:

• Most of the actions from the original planning model are removed, reducing

the state space (as the number of applicable actions is greatly reduced over

the initial model) reducing reasoning time at each step as applicable actions

are typically tested in a breadth first search manner.

• From a planning perspective this is a temporal problem with numeric con-

straints (min / max generation levels within bounds of Timed Initial Fluents).

Any optimisation comes curtesy of the heuristic and external solver making

this a domain typical of many in the IPC iterations.

• The custom heuristic (presented in Chapter 6.4), intended to test state validity

and provide guidance on plan quality, can utilise existing work. The method

presented is a simple algorithm but can be extended to use existing efficient

Priority List methods. State validity can be incorporated utilising the vast

body of work on linear LPs and Economic Dispatch. Reserves and network

considerations can be included for varying levels of complexity and realism.
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As the cost, the key feature for optimisation, was now removed from the planner’s

consideration, running tests on such a model would not be instructive. Instead a

simple, domain specific heuristic was proposed. Initial work on implementing this

approach using Popf revealed the following key points:

• Two separate approaches using different heuristics and search algorithms could

be used.

– An A* approach considering both cost so far and cost to go would intu-

itively provide a more accurate search at the cost of increased memory

usage and solution time. Current barriers to implementation are ground-

ing the temporal actions in the partial plan, communicating efficiently

with an external solver such as CPLEX to avoid bottlenecks and efficient

warm starting to quickly solve the LP.

– An Enforced Hill Climbing approach would avoid the need to calculate

the cost so far, removing the barriers to implementing the A* search.

Attempting to implement this revealed the STN problem (see below).

• The STN, a key feature in the temporal strength of Popf, needed adaptations

to correctly work with the heuristic returned. The exact timestamp of an

action was not always resolved to correct end of its feasible interval, resulting

in sub-optimal plans.

• The number of states expanded during search was greatly reduced over the

original model.

This model represented a significant step forwards over the original and whilst time

did not permit the completion of a planner able to tackle this model, significant

steps were made. Chapter 6.5 details the above problems and possible solutions in

further detail.

This thesis has presented two separate approaches for tackling Unit Commitment

using Automated Planning. The motivations for each have been made clear and

attempts to solve them have demonstrated that successfully handling this problem

would push the boundaries of planning research. The complexity of the models
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presented and the barriers encountered in attempting to solve them demonstrate

that modelling Unit Commitment as a planning problem is itself non-trivial, and

represents a contribution to the planning community. It is hoped that the problems

encountered and discussions on possible resolutions can facilitate the development

of and extended version of Popf to solve small test systems.

Rigorous testing against systems taken from the surveys presented should give

a clear indication of whether Automated Planning is a viable approach in terms

of solution quality and solution time. From here, more realistic models including

reserves and larger test systems can be tackled. It is in these larger test cases where

Branch and Bound has increasingly long solution times. Thus it is here where

planning should demonstrate a reduction in solution time with comparable solution

quality in order to be considered a viable option over Meta-Heuristics and alongside

Branch and Bound.

Further work in this area may also reveal ways in which the techniques used to

solve this problem can be abstracted. Unit Commitment is a numeric optimisation

in a temporal domain with a fixed timeline and complex constraints. Successful

abstraction of domain specific features of a Unit Commitment solution methodology

would highlight new opportunities for novel approaches to other problems with these

features. In this way separated models for temporal numeric problems using a hybrid

Automated Planning and Mathematical Programming approach could be used for

a wide class of problems, expanding the scope of Automated Planning as a field.

Finally utilising emerging research into planning under uncertainty could see an

online planning approach to Unit Commitment with high levels of variable genera-

tion to rival Stochastic Unit Commitment, an area of critical importance to power

systems of today. It is hoped that the research presented in this thesis has high-

lighted ideas, and can provide a starting point, from which both Automated Planning

and Unit Commitment can benefit.
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Unit Commitment Appendices

A.1 A Typical MIP Formulation

A MIP formulation solved using Branch and Bound is perhaps the most common

approach to Unit Commitment today. Aspects of the formulation have been referred

to throughout this thesis and so it is beneficial to make a typical formulation explicit

here.

Formulation

This is a large and complex optimisation problem. The formulation given includes

the constraints on the convex hull of the minimum online / offline subproblem as

detailed in [41], which was published in 2006 and so should be a standard model

for comparison in all modern implementations. Newer work [42, 43] tightens the

formulation further but given its publication in 2012 and 2013 is less well known

than [41] and has not been included here for discussion. The model in [43] repre-

sents the state-of-the-art in MIP models and is therefore the one which should be

used for detailed model comparisons, however adds little illustrative benefit to an

introductory description such as this.

• n generating units (indexed below with u for clarification), each with the

following characteristics

– A fixed start up time tu,start. Having been switched off, this is the amount
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of time it takes for the generating unit u to come online and output power.

During this time no power is output, and after this time the output is

the minimum stable generation level (see below).

– A fixed switch off time tu,off. Having been switched on, this is the amount

of time it takes for the generating unit u to come offline. The generating

unit u must be outputting its minimum stable generation level (see below)

before it can be switched off, and once switching off begins no power is

output.

– A fixed minimum run and minimum off time, tu,min on, tu,min off. Once

a unit is switched on (off) it must remain on (off) for at least tu,min on

(tu,min off).

– A minimum stable generation level Gmin,u. The generating unit u cannot

output less power than this.

– A maximum stable generation level Gmax,u. The generating unit u cannot

output more power than this.

– The maximum increase (decrease) in output of a generating unit u is

equal to Ru,+(−) MW / min. This is known as the ramp rate.

– A start up cost Cu,start. The cost of switching on a generating unit u.

– A no-load cost Cu,no-load. The cost of having the generating unit u online

regardless of output.

– A marginal running cost Cu,marginal. The per MW cost of output from the

generating unit u.

• The portfolio of generating units must serve a deterministic demand over a

period of length T . The output from all generating units must be greater than

the demand at all times.

• The demand should be served at the lowest cost.

• Any combination of generating units is permitted so long as the total supply

is greater than the demand.
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• A cold start (with all units off) is not assumed. Instead, the system will have

an initial configuration given by the end state of the previous day. Switching a

unit on or off near the end of the day will mean it may not serve the full tu,min on

or tu,min off in that same day. This creates starting parameters tu,initial on and

tu,initial off which will be fixed for a given problem instance. These parameters

can also define must run generation by setting tu,initial on = T .

Indices

• U := {u} : The set of generating units, to be indexed by u

• i = 1 . . .m : Indexes the time periods over which generation and demand are

assumed constant.

• ti : points in continuous time such that t0 = 0, tm = T and there are m distinct

time intervals [ti−1, ti).

Parameters

• ∆t = T/m : The time granularity, such that ti + ∆t = ti+1 and ti = i ·∆t.

• Gmin(u) : the minimum stable generation level of the generating unit u

• Gmax(u) : the maximum stable generation level of the generating unit u

• Ru,+(−) : the maximum ramp rate of the generating unit u. Ru,± ≥ 0

• Tswitch on(u), Tswitch off(u) ∈ {0, . . . ,m} : fixed times to switch a generating

unit u on or off, these are in number of time periods to remove the need for

floor or ceiling functions within the constraints.

• Tmin on(u), Tmin off(u) : minimum running times and off times for the generating

unit u

• Ttotal off := Tswitch on(u) + Tmin off(u) + Tswitch off(u) : defining a total off pe-

riod reduces the number of binary decision variables needed and simplifies the

formulation of the constraints. See [116] who first introduced this idea.

May 8, 2014



A.1. A Typical MIP Formulation 187

• Tinitial on(u), Tinitial off(u) : from the previous day a unit may still be required

to be left on or off for a while.

• Cu,start, Cu,no-load, Cu,marginal : the costs as defined above for the generating unit

u

• D(i), i = 1, . . . ,m : the demand for period i

Decision Variables

• o(u, i) ∈ {0, 1} : binary flag for whether or not a generating unit is on during

period i

• y(u, i) ∈ {0, 1} : binary flag indicating the unit has turned on at period i.

This is used to tighten the feasible region of the search space as demonstrated

in [41]. o(u, i)− o(u, i− 1) = 1 =⇒ y(u, i) = 1

• z(u, i) ∈ {0, 1} : binary flag indicating the unit has turned off at period i. This

is used in conjunction with y(u, i) to tighten the feasible region of the search

space as demonstrated in [41]. o(u, i)− o(u, i− 1) = −1 =⇒ z(u, i) = 1

• g(u, i) ∈ {0} ∪ [Gmin(u), Gmax(u)] : the exact output of the generating unit u

during period i

• c(u, i) : cost incurred by bringing the generating unit u online for period i,

i.e. at time ti−1. The need for this is brought about by the simplification of

Ttotal off(u). See the start up cost constraint section for clarification.

Objective

Minimise the total cost:

minimise
m∑
i=1

∑
u∈U

[
g(u, i) ·Cmarginal(u) ·∆t+o(u, i) ·Cno load(u) ·∆t+ c(u, i)

]
(A.1.1)
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Constraints

Balanced: ∑
u∈U

g(u, i) >= D(i) ∀ i (A.1.2)

Generation Limits:

g(u, i) ≥ o(u, i) ·Gmin(u)

g(u, i) ≤ o(u, i) ·Gmax(u)
∀ i, ∀ u (A.1.3)

Ramp rates:

g(u, i+ 1) ≤ g(u, i) + ∆t ·Ru,+ + (Gmax(u)−∆t ·Ru,+)y(u, i+ 1)

g(u, i+ 1) ≥ g(u, i)−∆t ·Ru,− − (Gmax(u)−∆t ·Ru,−)z(u, i+ 1)
∀ i < m, ∀ u

(A.1.4)

Start Up Cost:

c(u, i) ≥ y(u, i) · Cu,start ∀ i, ∀ u

c(u, i) ≥ 0 ∀ i, ∀ u
(A.1.5)

Minimum on time:

Tinitial on(u)∑
j=1

o(u, j) = Tinitial on(u) ∀u ∈ U (A.1.6)

n+Tmin on−1∑
j=n

o(u, j) ≥ Tmin on(u) y(u, n) ∀ u ∈ U ∀ n ∈ Ton mid(u) (A.1.7)

m∑
j=n

[o(u, j)− y(u, n)] ≥ 0 ∀ u ∈ U ∀ n ∈ Ton end(u) (A.1.8)

where

Ton mid(u) = {i|i ∈ {Tinitial on(u) + 1, . . . ,m− Tmin on(u)}} (A.1.9)

Ton end(u) = {i|i ∈ {m+ 1− Tmin on(u), . . . ,m}} (A.1.10)

As the total-off variable has been introduced the switch off time, minimum off
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time and switch on time are all dealt with in the constraints:

Tinitial off(u)∑
j=1

o(u, j) = 0 ∀ u ∈ U (A.1.11)

n+Ttotal off−1∑
j=n

[1− o(u, j)] ≥ Ttotal off(u) z(u, n) ∀ u ∈ U ∀ n ∈ Toff mid(u)

(A.1.12)

m∑
j=n

[1− o(u, j)− z(u, n)] ≥ 0 ∀ u ∈ U ∀ n ∈ Toff end(u)

(A.1.13)

where

Toff mid(u) = {i|i ∈ {Tinitial off(u) + 1, . . . ,m− Tmin on(u)}} (A.1.14)

Toff end(u) = {i|i ∈ {m+ 1− Tmin off(u), . . . ,m}} (A.1.15)

Tight Constraints added as in [41] :

o(u, i− 1)− o(u, i) + y(u, i)− z(u, i) = 0 ∀ i > 1 ∀ u ∈ U (A.1.16)

n∑
j=n−Tmin on(u)+1

y(u, j) ≤ o(u, n)
∀ n ∈ [max(Tinitial on(u) + 1, Tmin on(u)),m]

∀ u ∈ U

(A.1.17)

o(u, n) +
n∑

j=n−Ttotal off(u)+1

z(u, j) ≤ 1
∀ n ∈ [max(Tinitial off(u) + 1, Ttotal off(u)),m]

∀ u ∈ U

(A.1.18)

A.1.1 Summary of Results

For illustrative purposes a series of tests were ran on a desktop PC. 12 demand

profiles from 2009 UK demand data were selected at regular intervals throughout

the year to give a small sample possible demand profiles. They are based on the half

hourly demand data for GB available from the National Grid website [193]. The data

used is the 1st of each month of 2009. During 2009 the peak load was 58,554 MW

and the min load was 19,556. The data was scaled such that the peak demand was

just satisfiable in all cases but the systems would be stretched. In smaller systems

the problems are trivial if this is not the case, typically being solvable using 1 unit.
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5 generation portfolios were drawn up with 6, 12, 17, 34 and 51 units. The 6

unit system data was from taken [58] and the 12 unit data included 6 additional

units with properties similar to those in the 6 unit system. The 17, 34 and 51 unit

systems were 1/3, 2/3 and all of the units from the Irish All Island Grid Project,

the data for which is publicly available [194].

The above model was implemented in the commercially available AIMMS pack-

age, which calls the well known CPLEX solver. CPLEX was able to solve this

problem to optimality in a number of cases, Table A.1 gives details of these prob-

lems and solutions. For portfolios of size 34 and above optimal solutions were not

found. These results are given in A.2.

These results demonstrate that the method is not only feasible on single work-

stations but also competitive. All solution bar 1 is found in under an hour, and

the ability to run the solver in parallel to easily speed up the solution process, as

occurs in industry, should clearly indicate to all researchers in the field that a MIP

implementation should be compared against in any research.
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ID
Unit Count
(Capacity)

(MW)

Peak
Demand

(%)
Vars (Ints) Constrs Solution Time

1 6 (300) 48 1441 (864) 2634 0.109
2 52 0.109
3 49 0.109
4 50 0.094
5 44 0.187
6 39 0.172
7 50 0.125
8 35 0.125
9 45 0.109
10 51 0.093
11 46 0.188
12 59 0.172

13 12 (600) 48 2881 (1728) 5219 1.014
14 52 0.421
15 49 0.499
16 50 0.234
17 44 0.968
18 39 0.327
19 50 0.281
20 35 2.091
21 45 0.406
22 51 0.374
23 46 1.342
24 59 0.421

25 17 (2,726) 48 4081 (2448) 7333 51.558 (00:00:52)
26 52 54.819 (00:00:55)
27 49 30.124 (00:00:30)
28 50 5.008 (00:0:05)
29 44 4.462 (00:00:04)
30 39 1.155 (00:00:01)
31 50 30.654 (00:00:31)
32 35 1.966 (00:00:02)
33 45 1.826 (00:00:02)
34 51 13.931 (00:00:13)
35 46 7.722 (00:00:08)
36 59 114.442 (00:02:54)

Table A.1: Table summarising the problem statistics for a series of demand profiles
on generating portfolios of increasing size. There were 12 distinct demand profiles
taken from UK data for 2009. These were scaled down from an assumed initial
generating capacity of 60 GW to a system of 300 MW. The profiles were then scaled
up by the amount of generating capacity increase. These problems were all reported
as being solved to optimality.
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Appendix B

Planning Appendices

B.1 UPMurphi Heuristic in More Detail

As discussed in Chapter 5.3 using the total cost plus some estimation of the future

cost (which would never be either accurate or provably admissible and appreciably

different for each state) proved ineffective. Instead a ‘greedy’ heuristic was tried.

As each ‘interesting’ action is durative the heuristic is calculated before (and after)

each durative action over the time period that durative action will (or did) cover.

Let the Section Cost be the cost of operation over the past ∆t minutes in state n,

given by

S(n,∆t) :=
∑
u

[
Cno load(u)∆t+ Cmarginal(u)g(u)∆

− I{ramping up,u}(∆t∆tR
+
u /2)

+ I{ramping down,u}(∆t∆tR
−
u /2)

]
where g(u) is the output of the unit u at the end of the period ∆t. Let the Projected

Section Cost be the cost of operation over the coming ∆t minutes in state n, given

by

S̃(n,∆t) :=
∑
u

[
Cno load(u)∆t+ Cmarginal(u)g(u)∆t

+ I{ramping up,u}(∆t∆tR
+
u /2)

− I{ramping down,u}(∆t∆tR
−
u /2)

]
193
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where g(u) is the output of the unit u at the start of the period ∆t.

UPMurphi is set to prefer those states with higher heuristic values, so a simple

option would be to set T := −S(n,∆t) where ∆t is the time just passed, or when a

ramp has begun T := −S̃(n,∆t) where ∆t is the minimum time the unit will ramp

for (see below). Clearly this is biased towards actions with shorter durations but

the cost per minute, as given by

T :=

−S(n,∆t)/∆t if time has passed

−S̃(n,∆t)/∆t if projecting a cost

(B.1.1)

made good first attempts at the heuristic. In both cases t is at the start of the period

given by ∆t, as this removes weighting bias when comparing passing time for a long

period of time and passing time having ramped down (typically a smaller duration

and so the weighted discount for the later plan will be more than the discount for

the cost, not the desired behaviour). On small problem instances these gave good

performance however in larger instances the search stalled. It did so as the demand,

and therefore the cost per minute, was much greater later in the day than at the

start of the day. This meant that once a certain point in the day was reached the

search backtracked to earlier, less optimal plans.

Weighting the heuristic with some notion of time and the demand being served

at that moment in time would prevent this unnecessary backtracking behaviour.

The scale of time is closer to that of cost per minute than of total cost but is that is

still dependent on the portfolio size. Weighting as a proportion of the total planning

horizon is independent of portfolio size and proved effective.

As time progresses through a typical planning horizon the demand increases so

the cost per minute will also increase. The time weighting alone does not compensate

for the fact that a later optimal plan serving a higher load will have a higher cost per

minute than an earlier suboptimal plan serving a lower load. Defining the heuristic

as a weighted cost per minute given the demand removes this bias towards times

with lower demand whilst the time weighting continues to prevent the planner from
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stalling in the search. The following heuristic proved effective.

T :=

−
S(n,∆t)
∆tD(t)

· H−t
H

if time has passed

− S̃(n,∆t)
∆tD(t)

· H−t
H

if projecting a cost

(B.1.2)

B.2 Full Unit Commitment Model : Pddl

This is the domain expressed in Pddl. As explain in the text this was converted

to a UPMurphi model as at time of development Popf was unable to solve this

problem due to the non-linear cost of ramping and the Timed Initial Fluents coupled

with the overall envelope constraint.

B.2.1 Domain

(define (domain UnitCommitment)

(:requirements :typing :fluents :durative-actions :timed-initial-literals

:negative-preconditions :duration-inequalities)

(:types unit)

(:predicates

(on ?u - unit)

(off ?u - unit)

(canSwitchOn ?u - unit)

(canSwitchOff ?u - unit)

(complete)

(demandServiced)

(precondition-to-start)

(rampingUp ?u - unit)

(rampingDown ?u - unit))

(:functions

(supply)

(demand)

(totalCost)

;; unit parameters

(output ?u - unit)

(generationMin ?u - unit)

(generationMax ?u - unit)

(costStartUp ?u - unit)

(costNoLoad ?u - unit)

(costMarginal ?u - unit)

(rampRateUp ?u - unit)
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(rampRateDown ?u - unit)

(minimumOnTime ?u - unit)

(totalOffTime ?u - unit))

(:durative-action switch_on

:parameters (?u - unit)

:duration (= ?duration (minimumOnTime ?u))

:condition ( and

(at start (off ?u))

(at start (canSwitchOn ?u)))

:effect ( and

(at start (on ?u))

(at start (not (off ?u)))

(at start (not (canSwitchOn ?u)))

(at end (canSwitchOff ?u))

(at start (assign (output ?u) (generationMin ?u)))

(at start (increase totalCost (costStartUp ?u)))))

(:durative-action switch_off

:parameters (?u - unit)

:duration (= ?duration (totalOffTime ?u))

:condition ( and

(at start (on ?u))

(at start (canSwitchOff ?u)))

:effect ( and

(at start (not (on ?u)))

(at start (off ?u))

(at start (not (canSwitchOff ?u)))

(at start (assign (output ?u) (generationMin ?u)))

(at end (canSwitchOn ?u))))

(:durative-action envelope

:parameters ()

:duration (= ?duration 1440)

:condition (and

(over all (> supply demand))

(at end (complete))

(at start (precondition-to-start)))

:effect (and

(at end (demandServiced))))

;; To be ran for the times when the unit is generating a flat amount

(:durative-action generate

:parameters (?u - unit)

:duration (<= ?duration 1440)

:condition ( and
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(over all (on ?u))

(over all (not (rampingUp ?u)))

(over all (not (rampingDown ?u))))

:effect ( and

(at start (increase (totalCost) (* ?duration

(+ ( * (output ?u) (costMarginal ?u)) (costNoLoad ?u) ))))

(at start (increase (supply) (output ?u)))

(at end (decrease (supply) (output ?u)))))

(:durative-action ramp_up

:parameters (?u - unit)

:duration (<= ?duration

(/ (- (generationMax ?u) (output ?u)) (rampRateUp ?u)))

:condition ( and

(over all (on ?u))

(over all (not (rampingDown ?u)))

(over all (<= (output ?u) (generationMax ?u))))

:effect ( and

(at start (rampingUp ?u))

(at start (increase (supply) (output ?u)))

(at start (increase (totalCost) (* ?duration

(+ ( * (output ?u) (costMarginal ?u)) (costNoLoad ?u) ))))

(increase (output ?u) (* #t (rampRateUp ?u)))

(increase (supply) (* #t (rampRateUp ?u)))

(at end (not (rampingUp ?u)))

(at end (decrease (supply) (output ?u)))))

(:durative-action ramp_down

:parameters (?u - unit)

:duration (<= ?duration

(/ (- (output ?u) (generationMin ?u)) (rampRateDown ?u)))

:condition ( and

(over all (on ?u))

(over all (not (rampingUp ?u)))

(over all (>= (output ?u) (generationMin ?u))))

:effect ( and

(at start (rampingDown ?u))

(at start (increase (totalCost) (* ?duration

(+ ( * (output ?u) (costMarginal ?u)) (costNoLoad ?u) ))))

(at start (increase (supply) (output ?u)))

(decrease (output ?u) (* #t (rampRateDown ?u)))

(decrease (supply) (* #t (rampRateDown ?u)))

(at end (not (rampingDown ?u)))

(at end (decrease (supply) (output ?u))))))
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B.2.2 Problem

Below is a typical problem file. All units and their characteristics must be detailed

here. The non-unit-specific variables supply and totalCost must be initialised to

the correct values as the model only updates them.

(define (problem ucp_no_ramp_test)

(:domain UnitCommitment)

(:objects u0 ... - unit)

(:init

(off u0)

...

(canSwitchOn u0)

....

(= (output u0) 0)

(= (generationMin u0) 60)

(= (generationMax u0) 150)

(= (costStartUp u0) 20000)

(= (costNoLoad u0) 500)

(= (costMarginal u0) 20)

(= (rampRateUp u0) 2)

(= (rampRateDown u0) 2)

(= (minimumOnTime u0) 100)

(= (totalOffTime u0) 100)

...

(= (supply) 0)

(= (totalCost) 0)

(precondition-to-start)

(at 0.005 (not (precondition-to-start)))

(at 1440 (complete))

;; Init Timed Initial Fluents for demand

(at 0 (= (demand) 1024))

...

(:goal (and (complete) (demandServiced)))

(:metric minimize (totalCost)))

B.3 Separated Unit Commitment Model : PDDL

B.3.1 Domain

(define (domain UnitCommitment)
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(:requirements :typing :fluents :durative-actions

:timed-initial-literals :negative-preconditions)

(:types unit)

(:predicates

(on ?u - unit)

(off ?u - unit)

(canSwitchOn ?u - unit)

(canSwitchOff ?u - unit)

(complete)

(demandServiced)

(precondition-to-start))

(:functions

(minimumOnTime ?u - unit)

(totalOffTime ?u - unit)

(maxSupply)

(minSupply)

(demand)

(totalCost)

(generationMin ?u - unit)

(generationMax ?u - unit)

(costStartUp ?u - unit)

(costNoLoad ?u - unit)

(costMarginal ?u - unit)

(rampRateUp ?u - unit)

(rampRateDown ?u - unit))

(:durative-action switch_on

:parameters (?u - unit)

:duration (= ?duration (minimumOnTime ?u))

:condition ( and

(at start (off ?u))

(at start (canSwitchOn ?u)))

:effect ( and

(at start (on ?u))

(at start (not (off ?u)))

(at start (not (canSwitchOn ?u)))

(at end (canSwitchOff ?u))

(at start (increase maxSupply (generationMax ?u)))

(at start (increase minSupply (generationMin ?u)))))

(:durative-action switch_off

:parameters (?u - unit)

:duration (= ?duration (totalOffTime ?u))

:condition ( and

(at start (on ?u))
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(at start (canSwitchOff ?u)))

:effect ( and

(at start (not (on ?u)))

(at start (off ?u))

(at start (not (canSwitchOff ?u)))

(at end (canSwitchOn ?u))

(at start (decrease maxSupply (generationMax ?u)))

(at start (decrease minSupply (generationMin ?u)))))

(:action dummy_cost

:parameters ()

:precondition ()

:effect (and (increase totalCost 1)))

(:durative-action envelope

:parameters ()

:duration (= ?duration 1440)

:condition (and

(over all (> maxSupply demand))

(at end (complete))

(at start (precondition-to-start)))

:effect (and

(at end (demandServiced))))

)

B.3.2 Problem

(define (problem ucp_no_ramp_test)

(:domain UnitCommitment)

(:objects u0 u1 u2 - unit)

(:init

(off u0)

...

(on u1)

...

(canSwitchOn u0)

...

(canSwitchOff u1)

...

(= (maxSupply) 100)

(= (minSupply) 50)

(= (generationMin u0) 60)

(= (generationMax u0) 150)

(= (costStartUp u0) 20000)

(= (costNoLoad u0) 500)

(= (costMarginal u0) 20)

May 8, 2014



B.4. Priority List Algorithm 201

(= (rampRateUp u0) 2)

(= (rampRateDown u0) 2)

(= (minimumOnTime u0) 100)

(= (totalOffTime u0) 100)

...

(precondition-to-start)

(at 0.005 (not (precondition-to-start)))

(at 1440 (complete))

;; Init Timed Initial Fluents for demand

(at 0 (= (demand) 1024))

...

)

(:goal (and (complete) (demandServiced)))

(:metric minimize (totalCost))

)

B.4 Priority List Algorithm

Below, an extension of the Priority List Algorithm detailed in Chapter 6.4.1 which

includes the ability to switch the units off and optionally obey ramp rate constraints

is presented. The differences are in the manipulations to the sets used and the

complexity of the functions setting the outputs. Once implemented it is hoped this

algorithm will provide more accurate costs but have similar solution times.

1. Split the set of generating units into two sets, G, C, for those currently online

(Genervating) and those currently offline (Cool). Order these sets by marginal

cost such that G0 is the lowest marginal cost of the units in G and C0 is the

lowest marginal cost in C.

2. Let

• D(i) be the demand for period i

• g(u, i) be the output from each generating unit

• S(i) =
∑

u∈G g(u, i) be the total output

• δi = S(i)−D(i) be the power deficit
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• R+(u), R−(u) be the maximum and minimum amounts by which a gen-

erating unit’s output can ramp between time periods.

3. Let i← 1 be the first period.

4. Set g(u, i)← Gmin(u) for all u ∈ G. Update S(i) and δi. Set u = 0.

5. Assign outputs...

(a) ...without Ramp Rates:

g(u, i)← max
[
min(Gmax(u), δi), Gmin(u)

]
(b) ...with Ramp Rates:

g(u, i)← max
[
min

[
min

(
Gmax(u), g(u, i− 1) +R+(u)

)
, δi
]
,

max
(
Gmin(u), g(u, i− 1)−R−(u)

)]
Update S(i) and δi.

6. If δi ≥ 0

(a) Switch Off Units:

Set uM = G|G|. If S(i)− g(uM , i) > D(i)

g(uM , i) = 0, G ← G\{uM}, C ← C ∪ uM , Go to Step 6a

(b) if i = N { stop } else { i← i+ 1, Go to step 4 }

7. If u < |G| − 1 { u← u+ 1, go to Step 5 }

8. Switch On Additional Units:

(a) Remove C0 from C and insert into G. Let v′ be its sorted index in G.

(b) Set g(v′, i)← min
[
max

[
Gmin(v′), δi

]
, Gmax(v′)

]
. Update S(i) and δi.

(c) If δi ≥ 0 { if i = N { stop } else { i← i+ 1, Go to Step 4 } } else { Go

to step 8 }
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