

Durham E-Theses

$Functionalised\ tetrathia fulvalenes\ in\ supramolecular\\ chemistry$

Skabara, Peter John

How to cite:

Skabara, Peter John (1994) Functionalised tetrathiafulvalenes in supramolecular chemistry, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/10491/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

This thesis is dedicated to the memory of my brother, Wolodymyr Skabara, without whom I would never have discovered my fascination with chemistry. I am sure that if he was around today he would have been proud of what he has helped to achieve.

DECLARATION

The work described in this thesis was carried out by the author, in the Department of Chemistry, University of Durham, between October 1991 and August 1994. It has not been submitted previously for a degree at this, or any other, University.

MEMORANDUM

The copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent, and information derived from it should be acknowledged. The copyright of this thesis rests with the author.

No quotation from it should be published without
his prior written consent and information derived
from it should be acknowledged.

FUNCTIONALISED TETRATHIAFULVALENES IN SUPRAMOLECULAR CHEMISTRY

Peter John Skabara, B.Sc. (Hons.)

(Graduate Society)

Department of Chemistry

University of Durham

A thesis for the degree of Doctor of Philosophy at the University of Durham

August 1994

ACKNOWLEDGEMENTS

This thesis could not have been completed without the help of the following people, to whom I express my thanks and sincere gratitude:

Dr. Martin Bryce, my supervisor, for his fundamental ideas which have provided me with a successful and most satisfying research project. I am also grateful for the many hours he has spent proof reading this work, as well as the interest and guidance he has shown in assisting me with my career options.

Dr. Adrian Moore for his participation in many chemical discussions and also his assistance in practical matters. I would also like to honour his friendship and acknowledge his useful advice on fatherhood.

Professor Judith Howard, Dr. Andrei Batsanov, Dr. Dimitri Yufit, Dr. Andrés Goeta and Jason Cole (University of Durham) for performing X-ray structural analyses.

Professor Brian Tanner and Dr. Chris Gregory (University of Durham) for magnetic susceptibility data.

Dr. Mike Jones and Miss Lara Turner for obtaining mass spectra, and Mrs. Jarka Dostal for microanalyses.

Dr. Steve Daley, my industrial supervisor, for his advice and ideas, and also Zeneca (FCMO) and the SERC/EPSRC for a CASE award.

The past and present members of Martin's group in Lab. 29 for their participation in social and sporting events. The many visiting European post-docs who have shared my own lab., and have undoubtedly contributed beneficially to my postgraduate education: Dr. Marc Sallé (France), Dr. Thom Hansen (Denmark), Dr. Stefan Wegener and Dr. Reinhold Dieing (Germany).

I would also like to thank my mum and dad, my sister, Halia, my parents-inlaw, Joyce and Colin, and my good friend Syed Shah, for their love and support throughout my time at Durham. Lastly, but by no means least, I would like to thank my wife and best friend Jo for simply being who she is, and also my daughter, Jessica, for shortening my sleeping hours and providing me with more time to think about my chemistry.

Thank you very much.

ABSTRACT

Functionalised Tetrathiafulvalenes in Supramolecular Chemistry

by
Peter John Skabara, B.S.c. (Hons.)

A thesis submitted for the degree of Doctor of Philosophy at the University of Durham

August 1994

Using a range of functionalised tetrathiafulvalene (TTF) derivatives, developed at Durham, the first examples of covalently linked TTF-ferrocene systems have been prepared. The redox properties of these molecules, as studied by cyclic voltammetry, provide evidence that these species are efficient π -electron donors.

Highly reactive 1,3-dithiole Wittig and Wittig-Horner reagents have been used in the synthesis of complex mixed redox-active systems containing ferrocenyl units. A series of [3]- and [4]-dendralenes has also been developed from this synthetic methodology. Cyclic voltammetry shows that tri- and tetracationic states can be achieved with these systems at relatively low potentials.

The potential for vinyl-TTF compounds to undergo [4+2] cycloaddition has been investigated for the first time. The peripheral C=C unit of TTF, together with the adjacent vinylic substituent, is able to act as the diene functionality in Diels-Alder reactions. Remarkably, the π -delocalisation within the TTF moieties is readily disrupted by the addition of strong dienophiles.

The reactivity of lithiated TTF towards aldehydes and ketones has established an array of hydroxy-functionalised TTF, bis-TTF and TTF-ferrocene derivatives. The conducting and magnetic properties of the chloranil charge transfer salt of one of these species is also reported.

CONTENTS

CHA	PTER ONE - INTRODUCTION	1
1.1	ORGANIC METALS	1
1.1.1	Introduction	1
1.1.2	Historical Background	1
1.1.3	TTF-TCNQ	2
1.1.4	Physical Requirements for Conductivity	5
1.1.5	Conduction in Molecular Solids and the Basis of Superconductivity	6
1.1.6	Peierls Distortion in Organic Metals	8
1.1.7	Towards the Ideal Organic Metal	9
1.1.8	Conducting CT Materials Based Upon Chalcogenated Fulvalenes	
	as Π-Donors	10
1.1.8.	1 Analogous 'Core-TTF' Donors	10
1.1.8.	2 The Introduction of Spacer Groups Between the 1,3-Dithiole	
	Ring Systems of TTF Derivatives	18
1.2	MOLECULAR-BASED MAGNETS	24
1.2.1	The Principle of Moments	24
1.2.2	The Magnetic Behaviour of Metallocenes	26
1.3	CONCLUSION	28
THE	PTER 2 - FUNCTIONALISATION OF TETRATHIAFULVAI SYNTHESIS OF COVALENTLY LINKED TTF-FERROCEN	E
	IVATIVES	29
2.1	Introduction	29
2.2	Lithiation of TTF	29
2.3	Chalcogenation of TTF	36
2.4	Use of the Zincate Complex for the Synthesis	
	of Functionalised TTF derivatives	39
2.5	Synthesis of New Functionalised TTF Systems	43
2.6	Covalently Linked TTF-Ferrocene Systems	51
2.7	CV Data and Discussion	58
CHA	PTER 3 - THE SYNTHESIS AND REDOX BEHAVIOUR OF	
EXTI	ENDED TTF-SYSTEMS INCORPORATING FERROCENYL	
UNI	ΓS	63
3.1	Introduction	63
3.2	Extended TTF Derivatives Linked by Ferrocene	63

3.3	Vinylogous TTF Derivatives Bearing Ferrocene Units Peripheral to the Centr		
	Ethylene Bonds	68	
3.4	CV Data and Discussion	80	
СНА	PTER 4 - [4+2] CYCLOADDITION REACTIONS OF VINYL-		
TETI	RATHIAFULVALENE DERIVATIVES	85	
4.1	Introduction	85	
4.2	TCNE Adduct 194: Characterisation and X-Ray structure	85	
4.3	Other Vinyl-TTF Adducts	89	
4.3	CV Data and Discussion	92	
СНА	PTER 5 - NUCLEOPHILIC ADDITION OF TETRATHIA-		
FUL	VALENYLLITHIUM TO ALDEHYDES AND KETONES	95	
5.1	Introduction	95	
5.2	The Efficient Synthesis of Hydroxy-TTF Derivatives	95	
5.3	CV Data and Discussion	105	
5.4	Conducting and Magnetic Properties of Charge Transfer Salt 250	107	
СНА	PTER 6 - EXPERIMENTAL SECTION	109	
6.1	General Methods	109	
6.2	Experimental to Chapter 2	110	
6.3	Experimental to Chapter 3	119	
6.3.1	General Procedure for Compounds 164-166 and 169-172	119	
6.4	Experimental to Chapter 4	124	
6.4.1	General Procedure for Compounds 198-201	125	
6.4.2	General Procedure for Compounds 202-206	126	
6.5	Experimental to Chapter 5	128	
6.5.1	General Procedure for Compounds 217-221, 223-226, 228-230, 233,		
	240 and 245	128	
REFI	ERENCES	135	
APPE	ENDIX 1 - X-RAY CRYSTALLOGRAPHIC DATA	147	
A.1.1	Crystallographic data for 1,1'-Bis[1-(1,3-dithiole-2-ylidene)-ethyl]		
	ferrocene 171	147	
A.1.2	Crystallographic data for 1,1'-Bis[1,2-bis(4,5-dimethyl-1,3-		
	dithiole-2-ylidene)ethane-1,2-diyl]diferrocene 173	150	
A.1.3	Crystallographic data for 1-[3-(5,6-Dihydro-1,3-dithiolo[4,5-b][1,4]-	,	
	dithiin-2-ylidene)diallyl]ferrocene 185	153	

A.1.4	Crystallographic data for 1,1'-Bis[3-(5,6-dihydro-1,3-dithiolo[4,5-b]-	
	[1,4]dithiin-2-ylidene)penta-1,4-diene-1,5-diyl]diferrocene 189	156
A.1.5	Crystallographic data for 1,1'-Bis[3,4-bis(5,6-dihydro-1,3-dithiolo-	
	[4,5-b][1,4]dithiin-2-ylidene)hexa-1,5-diene-1,6-diyl]diferrocene 191	159
A.1.6	Crystallographic data for 2-(1,3-dithiole-2-ylidene)-6-[1-cyclopentadienyl-	
	(cyclopentadienyl)iron]-3a,4,5,6-tetrahydro-1,3-benzodithiole-4,4,5,5-	
	tetracarbonitrile 194:acetonitrile solvate	163
A.1.7	Crystallographic data for 1-[1-Cyclopentadienyl(cyclopenta-dienyl)iron]-	
	1-[2,2'-bi(1,3-dithiolylidene)-4-yl]ethanol 229	167
A.1.8	Crystallographic data for 1,2-Bis[1-cyclopentadienyl(cyclopenta-dienyl)	
	iron]ethene 146	171
APPE	NDIX 2-RESEARCH COLLOQUIA, LECTURES, SEMINARS	
AND	CONFERENCES	174
A.2.1	List of Research Colloquia, Lectures and Seminars	174
A.2.2	List of Conferences Attended	180
APPE	NDIX 3 - PUBLICATIONS	181

CHAPTER 1

INTRODUCTION

1.1 ORGANIC METALS

1.1.1 INTRODUCTION

The possibility for organic materials to exhibit conductivity was first suggested towards the beginning of this century. ^{1,2} Supported by the ability to produce an infinite number of suitable candidates, organic metals are arguably more versatile than their inorganic counterparts. Due to the nature of organic chemistry, such compounds can be modified via molecular fine tuning to yield materials with a range of conductivity values; there is also the possibility of incorporating other components into the molecule to provide, for example, optical or magnetic properties. However, the majority of organic compounds are insulators, and inorganic species massively dominate the field of higher temperature superconducting materials.

Much of the recent work has revolved around different groups of organic conductors: those based upon charge-transfer complexes, conjugated polymers, graphite and its related compounds, as well as organometallic species. This thesis is concerned with the synthesis of new electron donors for the purpose of forming charge-transfer salts (CT salts).

1.1.2 HISTORICAL BACKGROUND

The first organic conducting material ($\sigma_{rt} = ca.1 \, \text{Scm}^{-1}$), an unstable perylene-bromine salt, was reported in 1954 by Japanese workers. Previously, in 1911, superconductivity was first recognised in the metal mercury; in the same year it was predicted that metallic behaviour in a material composed of non-metallic elements could be a possibility. It was thus 62 years later that the prospect of a 'synthetic metal' became reality, when Ferraris and co-workers reported that the CT salt of tetrathiafulvalene (TTF) 1 and tetracyano-p-quinodimethane (TCNQ) 2 - TTF⁺-TCNQ showed a room temperature conductivity value of 500 Scm⁻¹.

1.1.3 TTF-TCNO

During the 1960s a number of CT salts were prepared using TCNQ as the electron acceptor: ⁶ at best these materials were organic semi-conductors. This changed, however, soon after the first published synthesis of TTF 1 by Wudl *et al.* in 1970. ⁷

$$\begin{bmatrix} S \\ S \end{bmatrix} \qquad \qquad \begin{matrix} NC \\ NC \end{matrix} \longrightarrow \begin{bmatrix} CN \\ CN \end{matrix}$$

The preparation of TTF 1 was developed by Wudl for the purpose of producing a better reducing agent than tetrakis(dimethylamino)ethylene 3. Although TTF is a poorer donor than molecule 3 (probably due to the stronger electron-withdrawing effect of the sulfur atoms over the nitrogen atoms, with respect to the central double bond), the former affords radical cations that are much more stable than those derived from structure 3.

The electrochemistry of TTF shows two reversible oxidations (Figure 1.1), the first at $E^{1/2} = +0.34V$ followed by a second at $E^{1/2} = +0.71V$, due to sequential formation of cation radical and dication species (Figure 1.2).

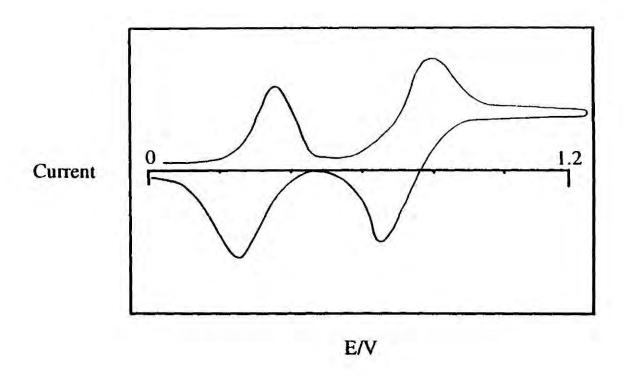


Figure 1.1: Cyclic Voltammogram of Tetrathiafulvalene. Pt working electrode, Pt gauze counter electrode, Ag/AgCl reference electrode, 0.2 mol dm⁻³ Bu^t₄N⁺PF₆⁻, 10⁻⁴ mol dm⁻³ TTF 1 in dry acetonitrile, under argon at 20°C, with iR compensation.

$$\begin{bmatrix} S \\ S \end{bmatrix} \xrightarrow{-e^{-}} \begin{bmatrix} S \\ + S \end{bmatrix} \xrightarrow{-e^{-}}$$

Figure 1.2: Redox Behaviour of TTF

Despite the emergence of this interesting new electron donor, TTF was not reported to be complexed with TCNQ until 1973. The crystal structure of TTF-TCNQ^{8,9} (Figure 1.3) shows 1:1 stoichiometry, with TTF radical cations and TCNQ radical anions aligned in interlocking, segregated stacks. Within the acceptor and donor columns the molecules are laterally displaced, with the exocyclic carbon-carbon double bond lying over the ring of the molecule adjacent to it in the stack.

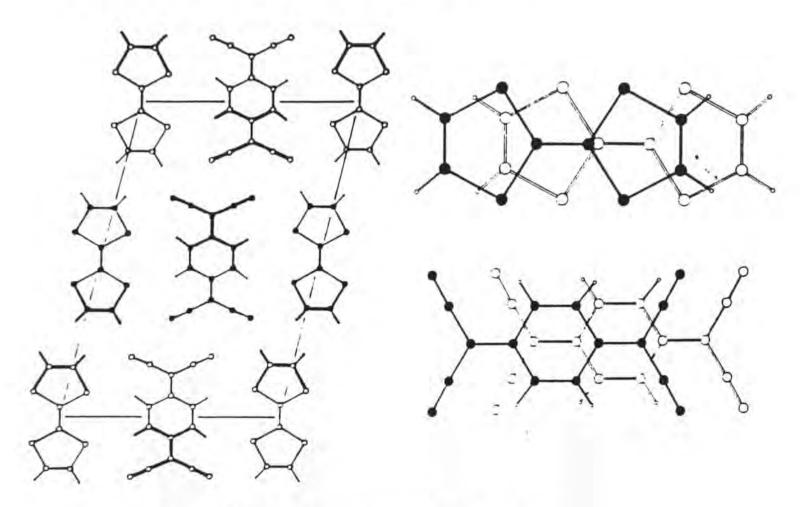


Figure 1.3: X-Ray Crystal Structure of TTF-TCNQ

Charge transfer within the complex is incomplete, based upon infra-red 10 and diffuse X-ray scattering techniques 11 . Statistically, only 0.59 electrons are transferred from each TTF molecule to a corresponding TCNQ unit. Subsequently, the formation of partially filled electron bands gives rise to metallic conductivity within both stacks. Other factors are also thought to favour high conductivity of the TTF-TCNQ salt: both the TTF and TCNQ molecules are of a similar size, possess a high degree of symmetry (D₂h), and are planar, exhibiting good π -delocalisation. Furthermore, the regular 'ring over bond' overlap results in extensive π -interaction along the columns.

1.1.4 PHYSICAL REQUIREMENTS FOR CONDUCTIVITY

Conduction in materials arises from the movement of ions or electrons, with the latter dominating in most cases. It is the valence electrons which are responsible for electron conduction, and not those from the inner core shells. The valence electrons arise from the highest occupied molecular orbital (HOMO), and it is the mobility of these electrons through the solid that determines how effective the conduction is.

If we consider sodium as an example for metallic conductivity, the valence band arising from the 3s orbitals is only half full, because there is only one electron available per atom. With this resulting partially filled band (Figure 1.4a), on excitation the electrons close to the Fermi energy level (E_f - the energy state corresponding to the highest occupied level) can easily jump into the conductance band, the lowest unoccupied molecular orbital (LUMO), thus causing conduction.

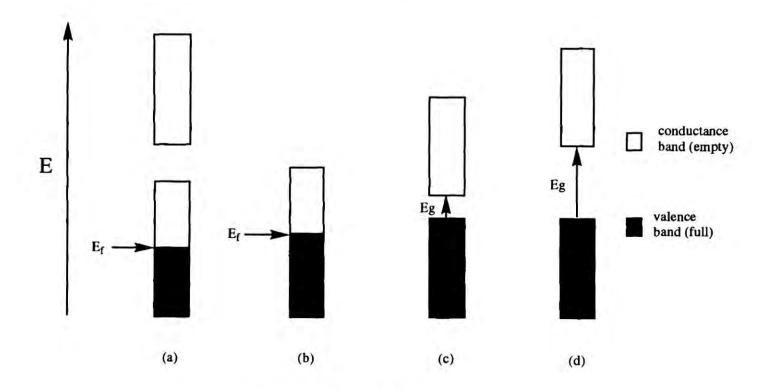


Figure 1.4: Band structures of (a) a metal, (b) a semi-metal, (c) a semiconductor, and (d) an insulator.

With the alkaline earth metals the s band is full (a closed shell state), but there is an overall sp band overlap allowing good conduction (Figure 1.4b). This conductance, however, is reduced compared to Figure 1.4a, since there is a low population of electrons at the Fermi level.

In some cases sp band overlap will not arise, but if the energy gap (Eg) between the bands is sufficiently small then some electrons will be able to jump into the empty conductance band (Figure 1.4c). This process occurs with semi-conducting materials (e.g. Si, Eg=1.1eV).

With other species, Eg is too large for the efficient movement of electrons, and this gives rise to insulators (e.g. diamond, NaCl, Eg>4eV) (Figure 1.4d).

The effect of temperature is an important factor for these materials. In the case of metals, as temperature decreases, crystallinity increases with a reduction in lattice vibrations. This results in more efficient intermolecular overlap, and conductivity will increase.

With semi-conductors and insulators, increasing the temperature induces a Boltzmann-type factor:

where n is the number of charge carriers, and these will increase if Eg is not greater than kT. Subsequently, in this case conductivity increases with temperature due to thermal excitation.

1.1.5 CONDUCTION IN MOLECULAR SOLIDS AND THE BASIS OF SUPERCONDUCTIVITY

If a large number of atoms or molecules congregate to form a polymeric chain or crystalline solid, whose atomic or molecular orbitals provide sufficient interaction or mixing, then an energy gap may form.

For a simple electron rich neutral species, *e.g.* ethylene, the resulting band gap between HOMO and LUMO will decrease as more molecules interact (Figure 1.5).

In an ideal situation where an infinite number of molecules actively participate in molecular orbital overlap, the resulting band gap may be small enough to give rise to a semi-conducting or semi-metallic state.

Conducting CT complexes can be either single-chain conductors (where the anion is a closed-shell species, e.g. Cl, PF₆), or two-chain conductors (e.g. TTF⁺-TCNQ⁻). In each case, however, the complex contains stacks of open-shell radical moieties, which form partially filled bands capable of one-dimensional (anisotropic) conductivity. Up to this point band theory can be used to explain adequately the behaviour of conducting materials. The question remains, however, as to how a 'metallic' species can transgress to a superconducting state.

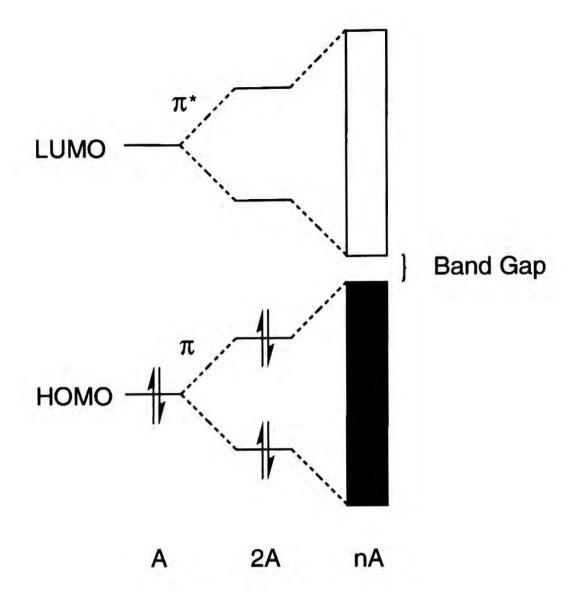


Figure 1.5: MO diagram showing the formation of electronic bands arising from a chain of molecules.

The theory of superconductivity (electrical current flowing with zero resistance), was first postulated in 1957 by Bardeen, Cooper, and Schrieffer, ¹² and is thought to be governed by the highly coordinated motion of electron pairs (Cooper pairs). Both electrons of a Cooper pair move at the same speed in opposite directions, and their properties are sufficiently different from normal electrons to be classed as an entirely different type of particle.

As mobile valence electrons travel through the lattice of a material, an attraction with the positive ions in the structure may lead to a ripple or distortion in the lattice. Thus, as an electron passes through a region, a cluster of positive ions will form at the point of nearest contact. Because the electron moves faster than the rate of vibrational motion will allow the positive species to relax to their normal state, a temporary zone of net positive charge is generated. Subsequently, a second electron can be attracted into the system, and a Cooper pair is formed.

Electrical resistance, produced by the scattering of mobile electrons, is a result of imperfections and thermal vibrations within the atomic lattice. Resistivity, therefore, would be zero at 0K for a perfect regular metallic lattice, since there is no vibrational energy present in the lattice for the scattering of electrons. Once the temperature rises above absolute zero, a small amount of energy is sufficient to cause scattering and subsequent resistivity.

In superconducting materials, however, once the formation of Cooper pairs is achieved, the highly coordinated electrons acquire a unique net momentum. For this net momentum to be broken down, and hence produce scattering, much more energy is required than the binding energy of the Cooper electrons. In addition, due to the synchronisation of the Cooper pairs, a change of state in the momentum of one pair would require a similar change in the states of all other pairs as well. For this reason, superconductivity can remain at elevated temperatures since the energy needed to alter the momentum of Cooper pairs far exceeds the vibrational energy present in the lattice at low temperatures.

1.1.6 PEIERLS DISTORTION IN ORGANIC METALS

The behaviour of anisotropic organic metals was considered by Fröhlich¹³ and Peierls, ¹⁴ who predicted that at low temperature a quasi-one-dimensional metal could not support long-range order, and would be unstable to lattice distortions.

As stated in Section 1.1.5, a stack of open-shell radicals can form a half-filled band, which in turn gives rise to conduction. In the presence of radicals, however, there is always some electronic driving force for dimerisation, and at a critical temperature spin pairing may occur. In consequence, a band gap (known as the Peierls gap) will emerge, separating the bonding and anti-bonding energy levels. Metallic conduction, therefore, will be reduced to a semi-conducting or insulating state.

Parallel to this scenario is the formation of a charge density wave (CDW). As dimerisation takes place, the conducting chain becomes contracted at the points where two radical entities come together, and stretched in the regions they have vacated. This results in alternating zones of high and low charge density, forming a charge density wave. In conjunction with the creation of a band gap this phenomenon is known as the Peierls distortion and is restricted to one-dimensional conducting systems - in a two or three-dimensional system lattice rearrangement of this order would be very difficult to simulate.

Over the past 20 years variable temperature experiments have proved this theory to be correct; as an example TTF-TCNQ exhibits Peierls distortion below 40K, ¹⁵ where the complex is reduced to an insulating state.

1.1.7 TOWARDS THE IDEAL ORGANIC METAL

The key features of highly conducting organic CT materials have been briefly discussed. A more detailed account of the design constraints for organic metals and superconductors has been provided by Cowan¹⁶. In summary, the guidelines for obtaining successful conducting CT salts are as follows:

- 1. Stable open-shell free radical components which form partially filled bands. Alternatively, orbital overlap between neutral molecular species should be sufficient to give increased bandwidths with a substantially reduced HOMO-LUMO energy gap.
- 2. Planar molecules with delocalised π -molecular orbitals to aid effective overlap, and hence band formation.
- 3. Inhomogeneous charge and spin distribution to compensate for the repulsion of like charged species in any one stack.
- 4. Segregated stacks of radical species, since alternating donor-acceptor stacks will contain filled HOMO and empty LUMO bands with large energy gaps.
- 5. An aversion to Peierls distortion.
- 6. Little or no disorder in the structure which would otherwise lead to localised wave functions.
- 7. Donor and acceptor molecules of the same size. It is postulated that this, as well as other factors, contribute to the successful growth of well ordered single crystals of the complex. (N.B. There are several exceptions to this guideline).
- 8. Fractional charge transfer which can minimise Coulombic repulsion.
- 9. Strong interchain coupling to suppress the formation of a CDW.
- 10. A divalent cation and/or anion giving highly polarizable components, also helps to reduce Coulombic repulsion.

1.1.8 CONDUCTING CT MATERIALS BASED UPON CHALCOGENATED FULVALENES AS Π-DONORS

Since its first synthesis in 1970, TTF has initiated the birth of many analogous π -donor molecules. Although not in chronological order, a brief overview of these systems is presented, with respect to increasing complexity of the structures.

1.1.8.1 ANALOGOUS 'CORE-TTF' DONORS

The substitution of sulfur by other chalcogens has been successfully achieved. Although the syntheses of both tetraselenafulvalene (TSF, 4)¹⁷ and tetratellurafulvalene (TTeF, 5)¹⁸ are more chemically demanding than for TTF, the resulting fulvalenes exhibit higher conductivity values on complexation with TCNQ. Indeed, room temperature conductivity values for the TCNQ complexes are 700-800 Scm⁻¹ for TSF, and 2200 Scm⁻¹ for TTeF (c.f. $\sigma_{rt} = 500$ Scm⁻¹ for TTF-TCNQ). The gain in conductivity has been attributed to an enhancement in intrastack π -interactions within the donor regions. This in turn is facilitated by the increasingly diffuse p and d orbitals of the selenium and tellurium atoms, leading to improved π -delocalisation throughout the molecule.

4 TSF, X = Se, R = H 5 TTeF, X = Te, R = H 6 TMTTF, X = S, R = Me 7 TMTSF, X = Se, R = Me

Extending the σ -bond framework of these donors with methyl groups has provided the compounds tetramethyl-TTF (TMTTF, 6), ¹⁹ and tetramethyl-TSF (TMTSF, 7). ²⁰ Tetramethyl-TTeF is still unknown.

Although molecule 6 gave the first example of metallic behaviour with acceptors²¹ (tetrahalo-p-benzoquinones) other than TCNQ, the salts of donor 7 aroused more interest in the field of organic conducting materials. By varying the anion, salts of the general formula $(TMTSF)_2X$ were formed (e.g. where $X = PF_6$, AsF_6 , FSO_3 , ReO_4 , and ClO_4), known as the Bechgaard salts.

These salts display metal-insulator transitions between 10 and 200K. Under hydrostatic pressure, however, $(TMTSF)_2^+PF_6^-$ became the first organic superconductor at 0.9K, 12kbar.^{22a} Under similar conditions, superconductivity was recorded with the remaining Bechgaard salts. One notable exception was the ClO₄ salt, which proved to be a superconductor under ambient pressure at 1.4K.^{22b}

The X-ray crystal structure of (TMTSF)₂⁺BrO₄ can be seen in Figure 1.6.²³ The donor molecules are essentially planar and are stacked in a ring-over-bond fashion. The most striking aspect of the donor columns is that both interstack and intrastack Se--Se distances are very similar. This gives rise to two-dimensionality, rather than the one-dimensionality of TTF-TCNQ, with the advantage that Peierls distortion is more likely to be suppressed. The formation of a three-dimensional array is foiled by the presence of the BrO₄ anions.

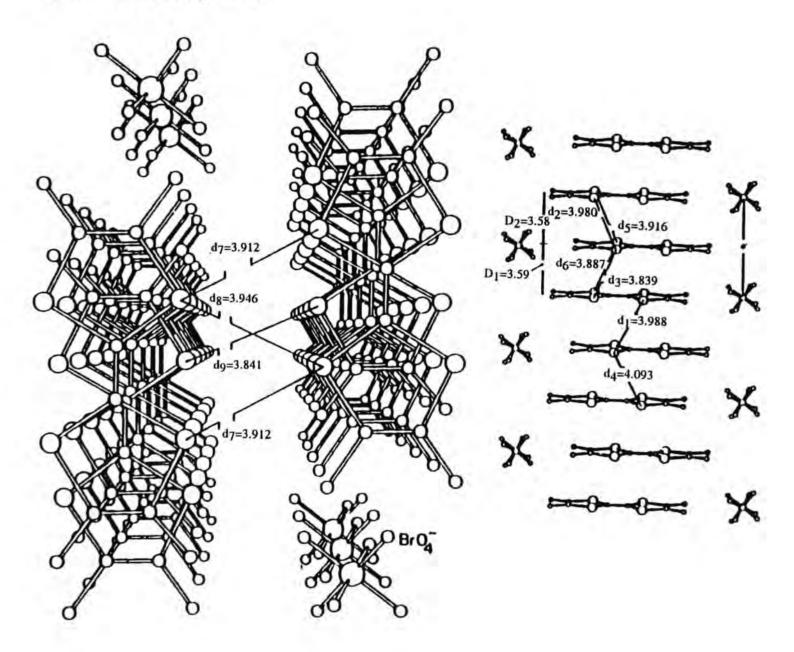


Figure 1.6: X-ray structure of (TMTSF)₂⁺BrO₄. Interstack Se---Se distances are shown on the left, whilst the intrastack distances are on the right.

The hexamethylene derivatives 8 (HMTTF), ²⁴ 9 (HMTSF), ²⁵ and 10 (HMTTeF)²⁶ have also been prepared. The conducting behaviour of the CT salts derived from these donors is inferior, compared to the related tetramethyl derivatives. HMTSF-TCNQ, however, retains its metallic character down to <1K. ²⁷ This is probably due to increased dimensionality resulting from close interstack Se---N contacts.

$$(x \times x \times x)$$

8 HMTTF, X = S 9 HMTSF, X = Se 10 HMTTeF, X = Te

Another possible reason for the failure of the hexamethylene derivatives 8-10 to match up to the tetramethyl donors 6 and 7, is the loss in planarity of the former, due to the incorporation of the methylene bridges, although consideration of salts derived from the donor bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) 11, suggests that this is not the only reason.

11 BEDT-TTF

After the first synthesis of BEDT-TTF in 1977, 28 many salts were prepared from this new exciting donor with impressive results. Indeed, the majority of known ambient pressure superconductors are salts of BEDT-TTF; 29 together with the Bechgaard salts they are the most commonly studied chalcogen-based π -donor materials. A selection of complexes has been tabulated, and are shown in Table 1.1.

CT COMPLEX	CONDUCTIVITY	PRESSURE	REFERENCE
(BEDT-TTF) ₂ ClO ₄ (1,1,2-trichloroethane) _{0.5}	Metallic conductivity 298-1.4K		30
β-(BEDT-TTF) ₂ I ₃	T _c 1.4K T _c 8K	Ambient Anisotropic	31 32
(BEDT-TTF) ₂ ReO ₄	T _c 1.4K	4kbar	33
(BEDT-TTF) ₂ IBr ₂	T _C 2.6K	Ambient	34
κ-(BEDT-TTF) ₂ Cu(SCN) ₂	T _c 10.4K	Ambient	35
κ-(BEDT-TTF) ₂ - Cu[N(CN) ₂]Br	T _C 11.6K	Ambient	36
κ-(BEDT-TTF) ₂ - Cu[N(CN) ₂]Cl	T _c 12.5K	0.3kbar	37
(BEDO-TTF) _{2.4} I ₃	OO-TTF) _{2.4} I ₃ Organic Metal Ambient $\sigma_{rt} = 100\text{-}280\text{Scm}^{-1}$		38
(BEDO-TTF) ₃ Cu ₂ (NCS) ₃	T _c 12.5K	Ambient	39

Table 1.1: Conductivity values of sample BEDT-TTF - type complexes, where $T_{\rm c}$ is the critical temperature at which the material undergoes the transition into a superconducting state.

In the case of (BEDT-TTF)₂ClO₄(1,1,2-trichloroethane)_{0.5} metallic conductivity is retained over a large temperature range; by tailoring the anion of the CT salts, the onset of superconductivity is observed over the range 1.4-12.5K, both at elevated and ambient pressures.

Substitution of two of the peripheral sulphur atoms with oxygen afforded the new donor BEDO-TTF 12. The subsequent CT complex (BEDO-TTF)₃Cu₂(NCS)₃, although inferior to the BEDT-TTF salts, became the first superconductor in this class to contain oxygen.

12 BEDO-TTF

With the Bechgaard salts in mind, it is surprising that no complexes of donors BEDS-TSF 40,41 13 and BEDS-TTF 42 14 exhibit superconducting properties. In particular, the salts (BEDS-TTF)₂I₃ and (BEDT-TTF)₂I₃ are isostructural, with only the latter showing superconductivity, both at ambient and applied pressures.

Clearly there is a subtle difference between the structures of the Bechgaard salts and those of the BEDT-family, notably a deviation in the latter series from one of the guidelines previously outlined by Cowan¹⁶ (Section 1.1.7). The non-planarity of the donor molecule BEDT-TTF, together with the large thermal vibration of the peripheral ethylene bridges, hinders the formation of good π -overlap within face-to-face columnar donor stacks. As indicated from the values given in Table 1.1, however, superconductivity is still observed in these complexes despite this situation.

The best example of this new type of assembly is seen in the X-ray crystallographic structure of the salt κ -(BEDT-TTF)₂Cu[N(CN)₂]Br, Figure 1.7. 42

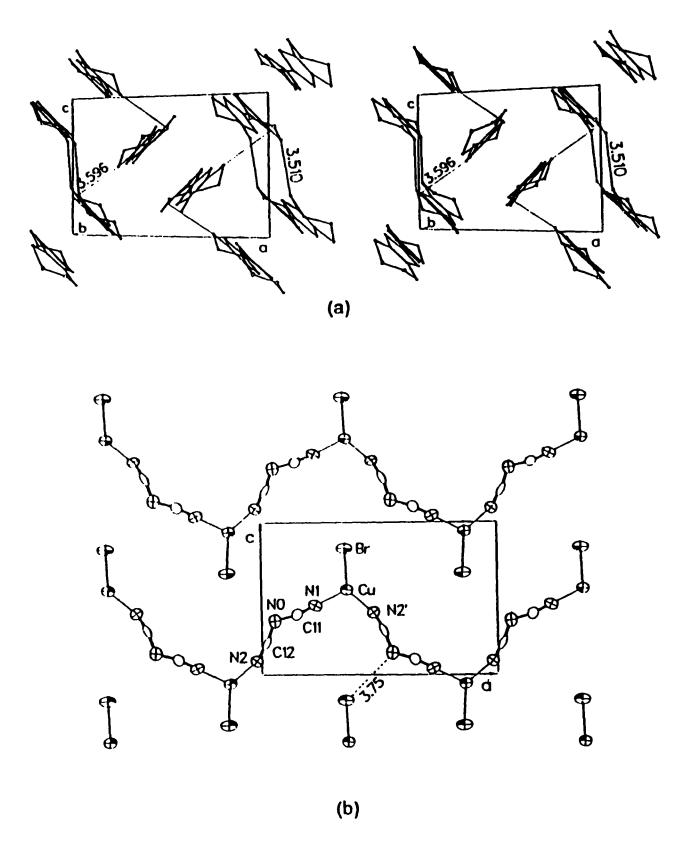


Figure 1.7: X-ray crystal structure of κ-(BEDT-TTF)₂Cu[N(CN)₂]Br

Figure 1.7(a) shows the formation of orthogonal BEDT-TTF dimers (κ -packing), with close intermolecular S---S contacts shorter than 3.60Å. Forming a highly ordered conducting three-dimensional S---S network, the material is able to support superconductivity at higher temperatures than seen previously. Indeed, the salt (BEDT-TTF)₂I₃ forms four different types of stoicheiometric phases - termed α , β , θ , and κ - of which the latter three are superconductors. The anions of these salts

also play an important role. As seen in Figure 1.7(b), insulating linear V-shaped polymeric chains result with the anion; it has been suggested that increasing anion length is responsible for the increase in T_c of the BEDT-TTF salts.⁴⁴ This can clearly be seen on inspection of Table 1.1.

In summary, organic-based superconductors can now be synthesised without relying upon the formation of segregated donor/acceptor stacks. More recently, it has become a major challenge to produce further β , θ , or κ -type CT salts.

Other κ -type dimer structures include (BMDT-TTF)₂Au(CN)₂, ⁴⁵ (MDT-TTF)₂AuI₂, ^{46,47} and (DMET)₂AuBr₂, ⁴⁸ derived from the donors **15**, **16**, and **17**, respectively. The above species provide evidence that a symmetrical donor is not necessary for superconductivity. Indeed, both MDT-TTF and DMET provide superconducting salts, whilst the parent symmetrical donors of the former (TTF and BMDT-TTF) yield, at best, only metallic CT materials.

15 BMDT-TTF

16 MDT-TTF

17 DMET

It is worth noting that extending the π -orbital system, by fusing benzo-rings to the fulvalene framework, does not afford particularly interesting donors. Dibenzotetrathiafulvalene ⁴⁹ (DBTTF, **18**) forms highly conducting CT materials [e.g. (DBTTF)₈(SnCl₆)₃], ^{50,51} but on the whole is a poor comparison to the Bechgaard and BEDT-TTF salts.

18 DBTTF

As a summary, the variable temperature conductivity values of selected organic materials are shown in Figure 1.8.⁵² In direct comparison with the more commonly known conducting materials - copper metal and doped polyacetylene - one can clearly see the Peierls transitions of (TMTSF)₂PF₆ and TTF-TCNQ, as well as the shifts into superconducting states of the salt (TMTSF)₂ClO₄.

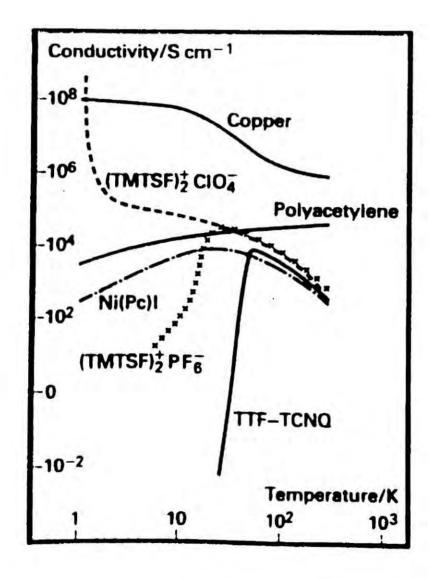


Figure 1.8: Variable temperature conductivity values at ambient pressure for a range of highly conducting materials.

1.1.8.2 THE INTRODUCTION OF SPACER GROUPS BETWEEN THE 1,3-DITHIOLE RING SYSTEMS OF TTF DERIVATIVES

The concept behind the synthesis of vinylogous derivatives of TTF is minimisation of the intramolecular Coulombic repulsion of the dication state, *via* increased separation of the 1,3-dithiole rings.

In 1983, Yoshida *et al.* prepared the donor molecules ethanediylidene-2,2'-bis(1,3-dithiole)⁵³ **19**, and 1,4-butenediylidene-2,2'-bis(1,3-dithiole)⁵⁴ **20**. The redox behaviour of these compounds, and the related dibenzo analogues **21**⁵⁵ and **22**⁵², have been elucidated by cyclic voltammetry and can be seen in Table 1.2.

In comparison with TTF 1 and DBTTF 18, donors 19 and 21 display substantially lower first and second oxidation potentials; the difference between the two redox waves, E_2 - E_1 , is also reduced in the vinylogues. This proves, therefore, that the insertion of Csp^2 -derived spacer groups into the central bond of TTF systems, suppresses Coulombic repulsion and promotes the formation of the dication state at lower applied potentials.

The incorporation of a second pair of Csp² atoms into the spacer region does not correlate to a further reduction in redox values, but induces the 1,3-dithiole rings to act independently of each other. In both cases, a single two-electron oxidation is observed for molecules **20** and **22** (0.22V and 0.47V, respectively).

Similar results are also seen with donors 23 (independently synthesised by three different groups), 56-58 and 24.58 Although BEDT-TTF 11 forms superconducting salts, it is a weaker donor than TTF. The vinylogous derivative 23, however, displays reduced redox potentials comparable to TTF but with a much lower ΔE value. The same also applies to molecule 24, which is the first vinylogous donor of its type to be characterised by X-ray crystallography. Donor 24 is essentially planar with a small amount of puckering at the ethylene bridge. This arrangement is in slight contrast to the non-planar structure of BEDT-TTF 11 which exhibits a bowing in the TTF portion of the molecule, and can be seen in Figure 1.9.

Table 1.2: Cyclic voltammetric data for TTF 1, DBTTF 18, BEDT-TTF 11, and donors 19-25. Pt electrode vs. Ag/AgCl, supporting electrolyte Et₄NClO₄ 0.1M, 20°C, in (a) CH₂Cl₂, (b) CH₃CN.

0.71

0.62

0.23

0.26

0.48

0.36

0.43

0.14

23^b

24^b

25^b

27^b

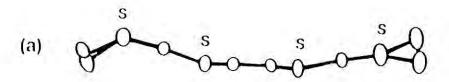


Figure 1.9: Molecular structures of donors (a) BEDT-TTF 11 and (b) molecule 24.

The molecular structures of vinylogous compounds 25,59 and 26⁶⁰ have also been solved. Both compounds are isostructural and stack uniformally with several intermolecular S---S(Se) contacts close to the sum of the van der Waals radii (Figure 1.10a).

Donor 25 forms a 1:1 CT salt with TCNQ (Figure 1.10b), and in its oxidised state adopts a totally different conformation from its neutral structure. The radical cation (Figure 1.10c) is non-planar with respect to the 1,3-dithiole units showing a dihedral angle of ca. 19" between the two five-membered rings. Unfortunately, the 1:1 complex has a mixed-stack structure which leads to low conductivity; the formation and subsequent properties of the vinylogous TTF-TCNQ salts, on the whole, have been rather disappointing.

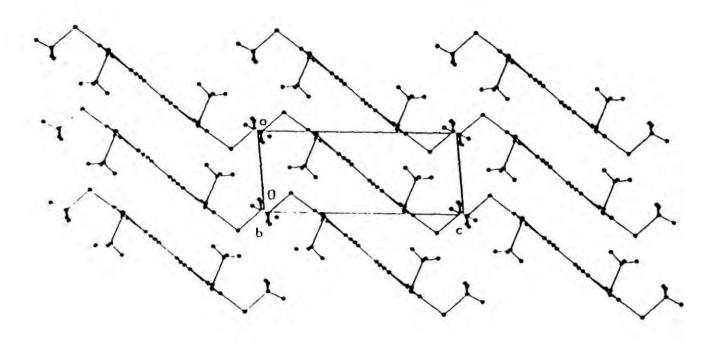


Figure 1.10a: X-ray crystal structure of neutral donor 25.

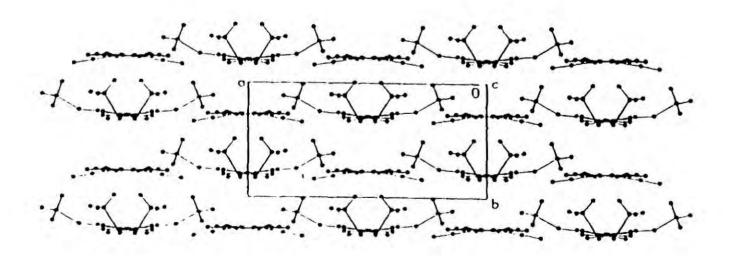


Figure 1.10b: X-ray crystal structure of a 1:1 complex of compound 25 and TCNQ, viewed down the long axes of the molecules.

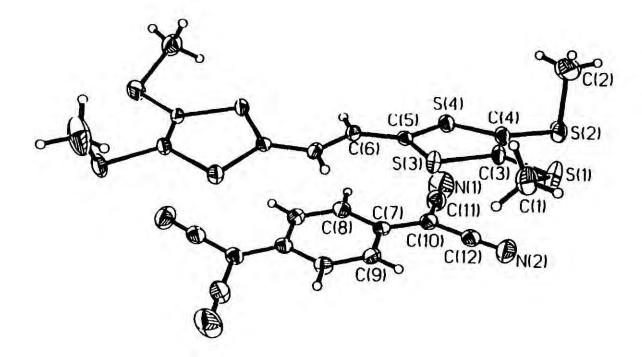


Figure 1.10c: Structure of the cation radical 25⁺ in the TCNQ complex.

The insertion of aromatic rings between the 1,3-dithiole rings has also been the subject of recent work.⁶¹ In contrast to the flexible structures of vinylogous derivatives, these systems provide more rigid molecules, for the successful formation of crystalline organic conductors.⁶²

One of the most interesting donors in this series is molecule 27,63 studied in our laboratory.

From Table 1.2 we can deduce that the anthracene spacer group facilitates a simultaneous two-electron oxidation to the dication state. The oxidation occurs at

+0.34V and is not cleanly reversible, however, reduction of the dication can be detected at +0.07V.

Donor 27 forms a highly conducting 1:4 complex with TCNQ.⁶⁴ The X-ray crystal structures of both the neutral donor and the TCNQ complex are shown in Figure 1.11.

In the neutral state, the donor molecule adopts a 'butterfly' configuration [Figure 1.11(a)]. On translation to the dication state in the 1:4 TCNQ complex [Figure 1.11(b)], the 1,3-dithiolium cations become twisted, and are almost orthogonal to the planar anthracene ring with dihedral angles of 86°. The salt is most unusual because it is the first semi-metallic TCNQ complex based on TTF which adopts such a non-planar conformation. The room temperature conductivity of the 1:4 complex is 60Scm⁻¹, and varies only slightly upon cooling to ca. 90K. Below this temperature, Peierls distortion rapidly predominates with conductivity becoming negligible at ca. 40K.

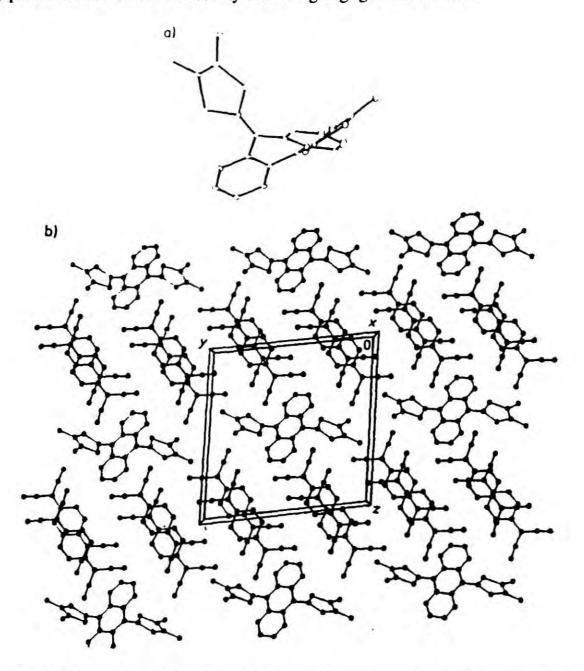


Figure 1.11: X-ray crystal structure of (a) neutral donor molecule 27 and (b) the 1:4 TCNQ complex.

1.2 MOLECULAR-BASED MAGNETS

1.2.1 THE PRINCIPLE OF MOMENTS

Virtually every household in the UK will contain at least one magnetic material in frequent use. Applications of magnets are found in motors and generators, magneto-mechanical equipment (medical implants, frictionless bearings), acoustic devices (loudspeakers, microphones), and information technology (sensors, switches, magnetic resonance imaging, computer hardware/software).65

As discussed in Section 1.1.4, there are several different types of conducting materials (superconductors, metals, semiconductors, etc.). Similarly, a material can be classified in terms of magnetism, by examining its behaviour in the presence of a magnetic field. All substances exhibit a magnetic moment, M, upon application of a magnetic field, H, such that $M=\chi H$, where χ is the magnetic susceptibility - the degree to which a material responds to the field. Magnetic behaviour arises from the intrinsic spin of an electron, since every electron has a minute magnetic moment. The interaction and comparison with other electron spins on adjacent atoms or molecules is an extremely important factor.

In a closed-shell species each orbital will contain paired electrons with antiparallel spins, resulting in zero net spin. The overall magnetic moment, therefore, will also be nil. This situation gives rise to a *diamagnet* (Figure 1.12a), where magnetic susceptibility is actually at a negative value.

In an open-shell species containing at least one odd electron per atom/molecule, the bulk electron spins may form into a random arrangement. Inevitably, there will be some net spin which leads to a weak magnetic moment. Such a material is a *paramagnet* (Figure 1.12b).

At sufficiently low temperatures the spins may approach closely enough for inter- or intra-atomic/molecular spin interaction to take place. Subsequent spin alignment can then take place in three different ways:

- (i) An antiferromagnet will have spins which oppose (Figure 1.12c).
- (ii) A ferrimagnetic material will have antiferromagnetic ordering, but the number of spins on neighbouring sites will be variable (Figure 1.12d). This results in a low magnetic moment.
- (iii) A true ferromagnet (Figure 1.12e) will have spins perfectly aligned in parallel fashion throughout the bulk material. A high value of magnetic moment will be seen in the absence of an applied field. Ferromagnetic coupling is observed when certain materials transpose to a ferromagnetic state on induction of a low magnetic field. Similarly, a metamagnet acts as a more impulsive switch from antiferromagnetism to a ferromagnetic state on application of a comparably higher field.

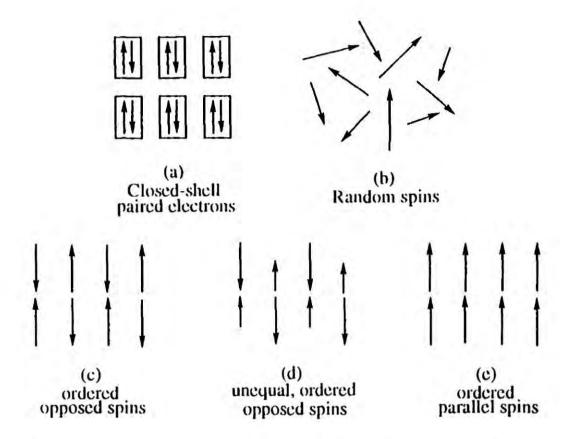


Figure 1.12: two-dimensional spin representations for a) diamagnet, b) paramagnet, c) antiferromagnet, d) ferrimagnet, and e) ferromagnet.

The magnetic behaviour of these different types of materials over a variable field is shown in Figure 1.13.66

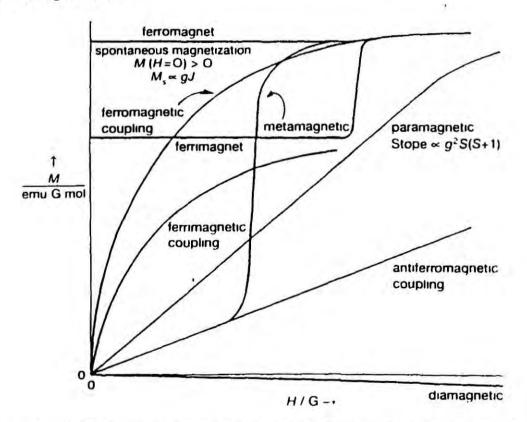


Figure 1.13: Plot of magnetisation (M) as a function of field (H) for several types of magnetic behaviour.

1.2.2 THE MAGNETIC BEHAVIOUR OF METALLOCENES

Molecular based ferromagnets have been postulated since the 1960s. Whereas inorganic magnets prepared by metallurgy possess high density d or f orbital metal spin sites, an organic magnet must contain at least one type of spin site based on s and p orbitals. Organometallic compounds may have the freedom to use either type of electron source.

The McConnell model⁶⁷ for organic ferromagnetic materials is based upon charge-transfer complexes. Ferromagnetic behaviour requires long range spin order throughout the bulk material. This phenomenon is almost exclusive to three-dimensional interactions. There is a fundamental problem, therefore, in the case of CT salts (which at best are predominantly two-dimensional materials), since there is no secure mechanism to prevent antiferromagnetic alignment of electron spins between each donor-acceptor stack.

There is evidence, however, that non-3D associations suffice in certain circumstances. For example, the complex Rb₂CrCl₄⁶⁸ can be broken down to a two-dimensional interacting structure by replacing Rb+ with bulky alkylammonium cations, yet T_c (Curie temperature - the critical point at which ferromagnetism is observed), is not significantly altered. This suggests that the inclusion of CT salts as potential ferromagnets is feasible, and not exclusively reliant upon spin alignment beyond the two-dimensional level.

From this basis Miller and Epstein developed a range of metallocene CT complexes with various electron acceptors. Of the metallocene family, Group 8 transition metals (Fe, Ru, Os) form the most stable 'sandwich-type' structures. Consisting of an 18π fully-paired electron configuration, they possess labile d-orbital electrons available for donation.

The first of the Group 8 metallocenes, ferrocene 28, is more difficult to oxidise (by 0.5V) than decamethylferrocene 29, which forms a CT complex with tetracyanoethylene (TCNE) 30, whereas ferrocene 28 is too weak a donor to reduce this electron acceptor.⁶⁹

Decamethyl derivatives of ruthenium and osmium have provided complexes with TCNE but have been difficult to analyse. The TCNE complex of $[Os^{III} (C_5Me_5)_2]^{+}$ produces various stoichieometries with low susceptibilities, and the subsequent crystals formed have been inadequate for crystallographic studies. ⁷⁰ A problem also arises with the ruthenium analogue, where the subsequent radical cation commonly disproportionates to $Ru^{II} (C_5Me_5)_2$ and $[Ru^{IV} (C_5Me_5)(C_5Me_4CH_2)]^{+}$. ⁷¹

For these reasons, Fe^{II} (C₅Me₅)₂ has proved to be the best and most popular candidate for highly magnetic CT salts.

A range of metallocenes, together with a number of different electron acceptors, has provided with excellent examples of CT complexes displaying a range of magnetic behaviour. 65,66 A selection of these is presented in Table 1.3.

MAGNETIC BEHAVIOUR	<u>T</u> <u>c</u> / <u>K</u>
Diamagnet	444
Paramagnet	
Ferromagnet	4.8
Antiferromagnet	
Ferromagnet	8.8
Ferrimagnet	3.65 (H=0.15G)
Metamagnet	2.55 (H=1600G)
Ferromagnetic couple	6.3 (H=50G)
Ferromagnetic couple	3.3 (H=15G)
	BEHAVIOUR Diamagnet Paramagnet Ferromagnet Antiferromagnet Ferromagnet Ferrimagnet Metamagnet Ferromagnet Couple

Table 1.3: Magnetic behaviour of selected complexes of general formula $[M(Cp/Cp^*)_2][A]$, with critical temperatures (T_c) where applicable; $Cp^*=(C_5Me_5)$.

As seen from Table 1.3, highly magnetic states can be achieved with metallocenes using TCNQ and TCNE as electron acceptors. With respect to T_c , the doublet state decamethylferrocene derivatives are second best only to the triplet state manganese analogues.

1.3 CONCLUSION

A large number of symmetrical and non-symmetrical tetrachalcogenofulvalene derivatives (including the analogous 'stretched' systems), are known to form highly conducting CT materials. Some are even found to be superconducting at below *ca*. 12K. The redox behaviour of the neutral donors is variable and highly dependent upon substituents attached to the periphery of, and within, the fulvalene framework.

In parallel, the metallocenes are also able to form interesting CT complexes. In this case, however, rather than producing conducting salts, they form materials with outstanding magnetic properties. Again, metallocene redox behaviour varies according to substituents.

The study of molecules comprising two different redox centres that are covalently linked is a burgeoning topic within supramolecular chemistry, with applications in molecular electronic devices, sensors, electrocatalysis, and energy conversion.⁷² Current research includes the study of redox behaviour between combinations of organic and organometallic components, e.g., bipyridinium cations, quinones, metallocenes, and metal coordinated macrocycles.⁷³

It is, therefore, a fascinating challenge to covalently link ferrocene and tetrathiafulvalene derivatives. The successful incorporation of such redox systems into one molecule could ultimately foster CT complexes with novel conducting and magnetic properties.

CHAPTER 2

FUNCTIONALISATION OF TETRATHIAFULVALENE: THE SYNTHESIS OF COVALENTLY LINKED TTF-FERROCENE DERIVATIVES

2.1 INTRODUCTION

The functionalisation of TTF is usually achieved by one of two methods. The most direct route is by lithiation of TTF itself, while a more complicated method involves coupling of two 1,3-dithiole-2-one (or 2-thione) units.

This chapter briefly reviews the synthesis of functionalised TTF systems by the above methods, focussing on those derivatives that we have used extensively, and then reports the successful attachment of ferrocene units to the reactive TTF derivatives developed in Durham.

2.2 LITHIATION OF TTF

Green first demonstrated that the hydrogen atoms of TTF are sufficiently acidic for metallation to take place (using equimolar amounts of BuLi or LDA),⁷⁴ thereby pioneering the chemistry of tetrathiafulvalenyllithium (TTFLi) 31. This species is stable under nitrogen, at temperatures below -70°C in ether or THF and is highly susceptible to electrophilic attack. The reactivity of anion 31 was investigated by Green, who presented a number of substituted products in reasonable yields (30-80%; Scheme 2.1).^{74c}

$$\begin{bmatrix} S \\ S \end{bmatrix} \xrightarrow{S} \frac{\text{BuLi/LDA}}{-78^{\circ}\text{C,Et}_{2}\text{O}} \begin{bmatrix} S \\ S \end{bmatrix} \xrightarrow{\text{S}} \begin{bmatrix} S \\ S \end{bmatrix} \xrightarrow{\text{Li}} \end{bmatrix} \xrightarrow{\text{E}} 32-38$$

Scheme 2.1:

Electrophilic Reagent (E)	Reaction Product	Yield (%)	
DMF	TTF-CHO 32	44	
ClCO ₂ Et	TTF-CO ₂ Et 33	50	
CO ₂	TTF-CO ₂ H 34	60	
MeC(O)Cl	TTF-C(O)Me 35	67	
Me ₂ SO ₄	TTF-Me 36	80	
НСНО	TTF-CH ₂ OH 37	34	
Et ₃ O+PF ₆ -	TTF-Et 38	ca. 45	

Lithiation of substituted TTF derivatives is dependent upon the side-chain substituents. T4c Green proved that an electron donating component, such as a methyl group, will reduce the acidity of the adjacent hydrogen on the same dithiole ring. Subsequently, metallation, followed by substitution, will take place on the other ring. Using ethylchloroformate as the electrophile, monolithiation of methyltetrathiafulvalene 36 (Scheme 2.2), afforded compound 39 (35%), while dilithiation of 36 with two equivalents of LDA gave compound 40 (30%).

Scheme 2.2: (i) LDA, ClCO₂Et (1 equiv.); (ii) LDA, ClCO₂Et (2 equiv.).

An electron withdrawing substituent will increase the acidity of the adjacent proton. For example, substitution takes place on the same ring when ethylchloroformate is reacted with the lithiated derivative of compound 33, to give derivative 41 (33%; Scheme 2.3).

$$\begin{bmatrix}
S \\
S
\end{bmatrix}
S$$

$$S$$

Scheme 2.3: (i) LDA (1 equiv.), ClCO₂Et.

We have used the computer program CAMEO to examine the effect that a range of substituents on the TTF frame has on the pK_a values of the remaining protons. It has been shown previously that there is agreement to within 1-2 pK_a units between calculated and experimental values for protons on unsaturated sites adjacent to sulfur. The calculated data for TTF derivatives are collated in Table 2.1 It can be seen that attachment of an electron withdrawing ester or acyl substituent increases the acidity of the adjacent proton by 3 pK_a units; a bromine atom or a methylthio group has less effect, but, nonetheless, the data for these compounds are consistent with deprotonation being favoured at the adjacent site, giving rise to observed 4,5-disubstituted products. According to CAMEO, however, a methyl substituent on TTF does not change any of the pK_a values of the remaining protons.

R	5-H	4'-H	'-Н 5'-Н	
Н	48	48	48	
Me	48		48	
CO ₂ Me	45	48	48	
C(O)Me	45	48	48	
Br			48	
SMe	47	48	48	

Table 2.1: pK_a values of hydrogen atoms in TTF derivatives, calculated using the computer program CAMEO.

At temperatures above -70°C, TTFLi 31 disproportionates to a mixture of TTF and mono-, di-, tri- and tetra-lithiated TTF species. Even at -78°C, small amounts of multi-substituted products are formed. Green found that addition of two equivalents of LDA at -78°C gave the 4,4′(5′)-disubstituted adduct 42 with ethylchloroformate. The 4,5-disubstituted product was not observed.

$$EtO_2C - \left(\sum_{S}^{S} + \sum_{S}^{S} \right)^{CO_2Et}$$

The above results indicate the problems that are frequently encountered during the lithiation of TTF. For optimum yields of mono-substituted derivatives one must strictly adhere to certain conditions: the addition of a precise equimolar amount of LDA or BuLi is vital; the reaction temperature must be kept below -70°C under vigorously anhydrous conditions; the concentration of the ethereal solution should also be sufficiently dilute, to prevent precipitation of TTF on cooling to -70°C, which would result in a higher ratio of LDA (or nBuLi):TTF, leading to multi-substituted products.

A more profitable route to aldehyde 32, developed recently in our laboratory, utilises N-methylformanilide as the formylating agent, rather than DMF, resulting in a yield of 82%.⁷⁶ TTF-carboxaldehyde 32 is highly reactive towards Wittig and Wittig-Horner species; a selection of corresponding derivatives is shown below.

R A B OHC TTF

$$(62\%)^{76}$$

H TTF

R=H, Me, SMe

R-R=S(CH₂)₂S

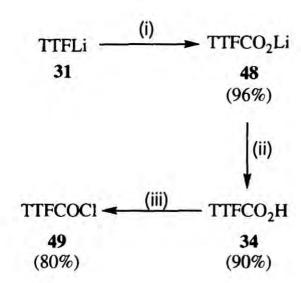
 $(60-90\%)^{77}$

R=Me $(89\%)^{76}$

R=C₁₆H₃₃ $(76\%)^{76}$

TTF

 $(74\%)^{78}$


TTF

 $(53\%)^{79}$

Reduction of 32 with sodium borohydride affords the versatile tetrathiafulvalenylmethanol 37, with an overall yield (75%) much higher than Green's one-pot synthesis (34%) involving formaldehyde and TTFLi 31. As expected compound 37 undergoes classical Williamson syntheses (e.g. to yield 43 and 44),⁷⁶ and reacts well with acid chlorides (e.g. to yield 45 and 46).⁷⁶ The most elaborate of these ester derivatives, which was synthesised very recently, is the third generation dendrimer 47, containing 12 TTF units (Scheme 2.4).⁸⁰

Scheme 2.4: (i) NaBH4, IPA, EtOH; (ii) NaH, PhMe, RI; (iii) RC(O)Cl, NEt3.

An improvement in the yield of TTF-carboxylic acid 34 (86% from 31 on a multi-gram scale), has also been achieved recently by isolating the lithium carboxylate salt 48.76 Acid chloride 49 is thus now available as another reactive TTF building block⁸¹ (Scheme 2.5).

Scheme 2.5: (i) CO2; (ii) aq. HCl; (iii) oxalyl chloride, PhMe, MeCN, DMF.

2.3 CHALCOGENATION OF TTF

The insertion of sulfur into TTFLi 31 affords TTF-thiolate 50, which is a more reactive species than 31. Indeed, the thiolate anion 50 reacts with alkyl halides (whereas 31 does not): alkylation and acylation of 50 yield 51 and 52, respectively⁸² (Scheme 2.6), both of which are synthetically versatile TTF derivatives⁸³⁻⁸⁵ (see Scheme 2.7 for reactions of 51). It is noteworthy that 51 is an analogue of 37.

Scheme 2.6: (i) Elemental sulfur, -78°C, 8h; (ii) bromoethanol; (iii) benzoyl chloride.

Compound 51, generated from 50 and bromoethanol, is a synthetic analogue to alcohol 37, but can be prepared in identical yield by a one-pot reaction. Again, the reactivity of this alcohol has been extensively explored; preliminary examples are shown in Scheme 2.7.

Scheme 2.7: (i) CH₂CRC(O)Cl, NEt₃, dioxane, 20°C, 2h; (ii) Na, PhMe, C₁₈H₃₇I, 20°C; (iii) MeSO₂Cl, NEt₃, dioxane, 20°C, 2h; (iv) NaOEt, EtOH, 20°C, 10h.

Thioester 52 is an important compound as upon the addition of sodium ethoxide in ethanol at -10°C, derivative 52 can be deprotected to the sodium salt of TTF-thiolate 57. Compound 52, therefore, serves as a shelf stable equivalent of TTF-thiolate 50; examples of its synthetic use are the syntheses of molecules 58-60⁸⁴ shown in Scheme 2.8.

Scheme 2.8: (i) NaOEt, EtOH, -10°C, 1h; (ii) MeI; (iii) I(CH2)4I; (iv) I(CH2)3I.

2.4 USE OF THE ZINCATE COMPLEX FOR THE SYNTHESIS OF FUNCTIONALISED TTF DERIVATIVES

In 1927, Fetkenheuer examined the chemical reduction of carbon disulfide by sodium metal. 86 The major product, trapped by alkylation with methylchloride, was assigned as dimethyl tetrathioxalate 62. The precedence for this conclusion arose from direct comparison of the analogous reaction performed by Kolbe 87 in 1868: using carbon dioxide and sodium metal, Kolbe synthesised oxalic acid via its oxalate intermediate. It was not until 1974 that Wawzonek et al., 88 using an electrochemical reduction, correctly identified the product as 4,5-di(methylthio)-1,3-dithiole-2-thione 63 (Scheme 2.9).

$$CS_{2} + 4e^{-} \longrightarrow \begin{bmatrix} S \longrightarrow S \\ S \longrightarrow S \end{bmatrix} 2M^{+} \longrightarrow \begin{bmatrix} (i) \\ S \longrightarrow S \end{bmatrix} SMe$$

$$\begin{bmatrix} S \longrightarrow S \\ S \longrightarrow S \end{bmatrix} 2M^{+} \longrightarrow \begin{bmatrix} (i) \\ S \longrightarrow S \end{bmatrix} SMe$$

$$\begin{bmatrix} S \longrightarrow S \\ S \longrightarrow S \end{bmatrix} 2M^{+} \longrightarrow \begin{bmatrix} (i) \\ S \longrightarrow S \end{bmatrix} SMe$$

$$\begin{bmatrix} S \longrightarrow S \\ S \longrightarrow S \end{bmatrix} 2M^{+} \longrightarrow \begin{bmatrix} (i) \\ S \longrightarrow S \end{bmatrix} SMe$$

$$\begin{bmatrix} S \longrightarrow S \\ S \longrightarrow S \end{bmatrix} 2M^{+} \longrightarrow \begin{bmatrix} (i) \\ S \longrightarrow S \end{bmatrix} SMe$$

$$\begin{bmatrix} S \longrightarrow S \\ S \longrightarrow S \end{bmatrix} 2M^{+} \longrightarrow \begin{bmatrix} (i) \\ S \longrightarrow S \end{bmatrix} SMe$$

$$\begin{bmatrix} S \longrightarrow S \\ S \longrightarrow S \end{bmatrix} 2M^{+} \longrightarrow \begin{bmatrix} (i) \\ S \longrightarrow S \end{bmatrix} SMe$$

$$\begin{bmatrix} S \longrightarrow S \\ S \longrightarrow S \end{bmatrix} 2M^{+} \longrightarrow \begin{bmatrix} (i) \\ S \longrightarrow S \end{bmatrix} SMe$$

$$\begin{bmatrix} S \longrightarrow S \\ S \longrightarrow S \end{bmatrix} 2M^{+} \longrightarrow \begin{bmatrix} (i) \\ S \longrightarrow S \end{bmatrix} SMe$$

$$\begin{bmatrix} S \longrightarrow S \\ S \longrightarrow S \end{bmatrix} 2M^{+} \longrightarrow \begin{bmatrix} (i) \\ S \longrightarrow S \end{bmatrix} SMe$$

Scheme 2.9: (i) MeCl.

Dithiolate intermediate **61** was subsequently isolated by Steimecke *et al.*, ⁸⁹ as the zincate complex **64** (70% yield; Scheme 2.10). Complex **64** is a shelf stable source of dithiolate **61**.

$$2 \left[\begin{array}{c} S \stackrel{S}{\longrightarrow} S \stackrel{-}{\longrightarrow} \\ S \stackrel{-}{\longrightarrow} S \stackrel{-}{\longrightarrow} S \stackrel{-}{\longrightarrow} S \end{array} \right] \stackrel{2}{\longrightarrow} 1$$

$$\left[\begin{array}{c} S \stackrel{S}{\longrightarrow} S \stackrel{-}{\longrightarrow} S \stackrel{-}{\longrightarrow} S \stackrel{-}{\longrightarrow} S \end{array} \right] \stackrel{2}{\longrightarrow} 1$$

$$\left[\begin{array}{c} S \stackrel{S}{\longrightarrow} S \stackrel{-}{\longrightarrow} S \stackrel{-}{\longrightarrow} S \stackrel{-}{\longrightarrow} S \end{array} \right] \stackrel{2}{\longrightarrow} 1$$

$$\left[\begin{array}{c} S \stackrel{-}{\longrightarrow} S \stackrel{-}{\longrightarrow} S \stackrel{-}{\longrightarrow} S \stackrel{-}{\longrightarrow} S \end{array} \right] \stackrel{2}{\longrightarrow} 1$$

$$\left[\begin{array}{c} S \stackrel{-}{\longrightarrow} S \stackrel{-}{\longrightarrow} S \stackrel{-}{\longrightarrow} S \stackrel{-}{\longrightarrow} S \end{array} \right] \stackrel{2}{\longrightarrow} 1$$

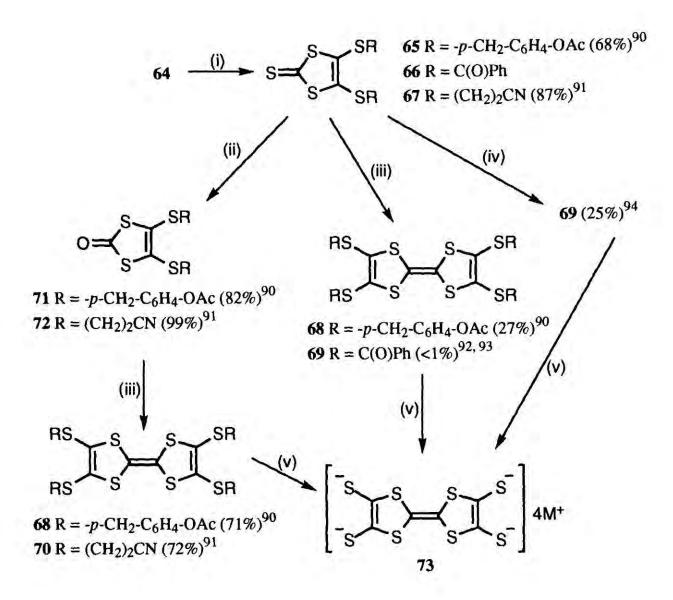
$$\left[\begin{array}{c} S \stackrel{-}{\longrightarrow} S \stackrel{-}{\longrightarrow} S \stackrel{-}{\longrightarrow} S \stackrel{-}{\longrightarrow} S \end{array} \right] \stackrel{2}{\longrightarrow} 1$$

$$\left[\begin{array}{c} S \stackrel{-}{\longrightarrow} S \stackrel{-}{\longrightarrow} S \stackrel{-}{\longrightarrow} S \stackrel{-}{\longrightarrow} S \end{array} \right] \stackrel{2}{\longrightarrow} 1$$

$$\left[\begin{array}{c} S \stackrel{-}{\longrightarrow} S \stackrel{-}{\longrightarrow} S \stackrel{-}{\longrightarrow} S \stackrel{-}{\longrightarrow} S \end{array} \right] \stackrel{2}{\longrightarrow} 1$$

$$\left[\begin{array}{c} S \stackrel{-}{\longrightarrow} S \stackrel{-}{\longrightarrow} S \stackrel{-}{\longrightarrow} S \stackrel{-}{\longrightarrow} S \end{array} \right] \stackrel{2}{\longrightarrow} 1$$

$$\left[\begin{array}{c} S \stackrel{-}{\longrightarrow} S \stackrel{-}{\longrightarrow} S \stackrel{-}{\longrightarrow} S \stackrel{-}{\longrightarrow} S \end{array} \right] \stackrel{2}{\longrightarrow} 1$$


$$\left[\begin{array}{c} S \stackrel{-}{\longrightarrow} S \stackrel{-}{\longrightarrow} S \stackrel{-}{\longrightarrow} S \stackrel{-}{\longrightarrow} S \xrightarrow{-} S \stackrel{-}{\longrightarrow} S \xrightarrow{-} S \stackrel{-}{\longrightarrow} S \xrightarrow{-} S \xrightarrow{$$

Scheme 2.10: (i) ZnCl2, NEt4Br.

Zincate complex 64 can be alkylated or acylated to give, for example, compounds 65-67. Coupling of the thione species can be performed by using alkyl phosphites or dicobalt octacarbonyl, at ca. 60°C (Scheme 2.11). The choice of coupling reagent depends upon the thioalkyl substituents, and yields can vary from zero to ca. 80%. Thione 66 couples in the presence of triethyl phosphite to give TTF derivative 69, but only in a yield less than 1%, whereas the use of Co₂(CO)₈ gives the same product in 25% yield.

Transformation of the thione functionality to a ketone, using mercuric acetate, may lead to a more reactive dithiole species. Thiones 65 and 67 have been converted to ketones 71 and 72 in excellent yields (82% and 99%, respectively). Coupling of dithiole 72 with P(OEt)3 gives compound 70 in 72% yield. A similar result is seen with ketone 71 (giving derivative 68 in 71% yield), whereas thione analogue 65 gives 68 in only 27% yield.

Deprotection of TTF derivatives 68-70 under basic conditions, affords the highly reactive tetrathiolate-TTF species 73. Although the same intermediate can be generated directly from TTF, at -78°C, with four equivalents of LDA and elemental sulfur (tetraselenolate and tetratellurolate can also be prepared with elemental selenium and tellurium, respectively), 95 the longer route is much more economical and can be carried out easily in multigram quantities.

Scheme 2.11: (i) RX, MeCN or Me₂C(O); (ii) Hg(OAc)₂; (iii) P(OEt)₃; (iv) Co₂(CO)₈; (v) Base.

Other functionalised TTF systems derived from coupling reactions include compounds 76 and 77 (Scheme 2.12).83 The coupling of thione 74, however, does not take place; this is a common feature for other alcohol containing dithiole units.

Scheme 2.12: (i) Br(CH₂)₂OH, Me₂C(O), reflux, 10 h; (ii) SOCl₂, DCM, 0°C, 0.5 h, then reflux; (iii) P(OEt)₃; (iv) NaOEt, EtOH, 20°C, 10 h.

Unsymmetrical, functionalised TTF derivatives are more difficult to obtain by the cross-coupling of two different thione (or ketone) dithiole species. Due to inevitable self-coupling reactions competing with cross-coupling, separation of the desired product is often a demanding task. Relevant examples of cross-coupling are shown in Scheme 2.13. Compared to the self-coupling reactions seen in Scheme 2.11, the yields of the cross-coupled products, 80, 81 and 84, are greatly reduced. 83,90 The component ratios of the resulting mixtures are also variable, and are dependent upon the thioalkyl substituents.

Scheme 2.13: (i) P(OEt)₃, PhMe, reflux; (ii) P(OEt)₃, 100°C; (iii) NaOEt, EtOH.

2.5 SYNTHESIS OF NEW FUNCTIONALISED TTF SYSTEMS

To explore further the chemistry of 51 with the aim of obtaining crystalline derivatives for X-ray analysis, urethane derivatives 86 and 87 were prepared from the reaction of alcohol 51 with phenylisocyanate and chloroethylisocyanate, respectively (Scheme 2.14). Donors 86 and 87 are compounds capable of hydrogen bonding, but attempts at forming single crystals proved futile. A highly crystalline TTF derivative containing a hydroxyl group, and exhibiting hydrogen bonding, was finally synthesised; the preparation of this fascinating compound involves a novel type of reaction for the TTFLi 31 species, and, therefore, will be discussed in detail in Chapter 5.

Scheme 2.14: (i) PhNCO, NEt3, DCM, 20°C; (ii) Cl(CH2)2NCO, NEt3, DCM, 20°C.

The reactions of TTF anion 31, with elemental sulfur or selenium (1.5 equivalents), followed by the addition of 1,2-dibromoethane (0.5 equivalents) formed the known donors EDT-TTF 88 and EDS-TTF 89, respectively, in optimised yields of 10-20%. Varying the molar ratios of either LDA, sulfur or dibromoethane, did not improve the yield of EDT-TTF 88. For instance, the molar ratio of 1:1:2:1 for TTF, LDA, S₈ and dibromoethane gave no EDT-TTF 88; a mixture of unreacted TTF and BEDT-TTF 11 was obtained instead.

$$\begin{bmatrix} S & S & X \\ S & S & X \end{bmatrix}$$

$$\begin{bmatrix} S & S & S \\ S & S & S \end{bmatrix}$$

$$\begin{bmatrix} S & S & S \\ S & S & S \end{bmatrix}$$

$$\begin{bmatrix} S & S & S \\ S & S & S \end{bmatrix}$$

$$\begin{bmatrix} S & S & S \\ S & S & S \end{bmatrix}$$

$$\begin{bmatrix} S & S & S \\ S & S & S \end{bmatrix}$$

$$\begin{bmatrix} S & S & S \\ S & S & S \end{bmatrix}$$

$$\begin{bmatrix} S & S & S \\ S & S & S \end{bmatrix}$$

$$\begin{bmatrix} S & S & S \\ S & S & S \end{bmatrix}$$

$$\begin{bmatrix} S & S & S \\ S & S & S \end{bmatrix}$$

$$\begin{bmatrix} S & S & S \\ S & S & S \end{bmatrix}$$

$$\begin{bmatrix} S & S & S \\ S & S & S \end{bmatrix}$$

$$\begin{bmatrix} S & S & S \\ S & S & S \end{bmatrix}$$

$$\begin{bmatrix} S & S & S \\ S & S & S \end{bmatrix}$$

$$\begin{bmatrix} S & S & S \\ S & S & S \end{bmatrix}$$

$$\begin{bmatrix} S & S & S \\ S & S & S \end{bmatrix}$$

$$\begin{bmatrix} S & S & S \\ S & S & S \end{bmatrix}$$

$$\begin{bmatrix} S & S & S \\ S & S & S \end{bmatrix}$$

$$\begin{bmatrix} S & S & S \\ S & S & S \end{bmatrix}$$

$$\begin{bmatrix} S & S & S \\ S & S & S \end{bmatrix}$$

$$\begin{bmatrix} S & S & S \\ S & S & S \end{bmatrix}$$

$$\begin{bmatrix} S & S & S \\ S & S & S \end{bmatrix}$$

$$\begin{bmatrix} S & S & S \\ S & S & S \end{bmatrix}$$

$$\begin{bmatrix} S & S & S \\ S & S & S \end{bmatrix}$$

$$\begin{bmatrix} S & S & S \\ S & S & S \end{bmatrix}$$

$$\begin{bmatrix} S & S & S \\ S & S & S \end{bmatrix}$$

$$\begin{bmatrix} S & S & S \\ S & S & S \end{bmatrix}$$

$$\begin{bmatrix} S & S & S \\ S & S & S \end{bmatrix}$$

Evidently, a new one-pot route to the unsymmetrical donors 88 and 89 has been recognised, and although the yield is only modest, it is considerably shorter than the previous method involving phosphite-mediated cross-coupling of the two 1,3-dithiole half units.⁹⁶

On route to alcohol 51, a new minor product 90 was isolated and by varying the ratios of the reactants an optimum yield of 20% was obtained (Scheme 2.15).

Surprisingly, regioisometric disubstituted products **91** and **92** were not detected in the reaction mixture (TLC and ¹H NMR spectroscopic evidence).

Scheme 2.15: (i) LDA, sulfur, bromoethanol (1:3:10, relative to TTF), Et₂O, -78°C.

The structure of **90** as the 4,5-isomer was inferred from the 1H NMR spectrum, which showed a singlet for the two TTF protons at $\delta 6.35$, whereas the TTF proton adjacent to the pendant group on alcohol **51** is shifted downfield to $ca. \delta 6.45$. Further evidence for structure **90** was provided by ^{13}C NMR data: inequivalence of the central alkene carbon atoms of the TTF frame is unique to the 4,5-isomer; they are observed at $\delta_c 116.9$ and $\delta_c 104.5$.

The disubstituted by-product obtained during the formation of hexylseleno-TTF 93, was likewise assigned structure 94 (Scheme 2.16). The mass spectroscopic fragmentation pattern of compounds 90 and 94 was also consistent with the two substituents being on the same 1,3-dithiole ring.

Scheme 2.16: (i) LDA, selenium, hexyltosylate, -78°C, Et₂O.

We recognised the potential of dialcohol 90 as a building block for new disubstituted TTF systems, and, therefore, sought conclusive proof of its structure from an unambiguous synthesis. As previously mentioned (Section 2.4), phosphite or dicobalt octacarbonyl coupling does not proceed with hydroxyl-containing species, *e.g.* 74, so direct reaction of 95a with 74 was futile. Several protected forms of compound 74 were therefore investigated.

$$S \stackrel{S}{=} \stackrel{R}{=} R$$
 $S \stackrel{S}{=} \stackrel{S}{=} \stackrel{S}{=} OH$

$$95a R = H$$

$$95b R = SMe$$

$$74$$

Diester 96 was prepared by the reaction of diol 74 with acetyl chloride. Coupling of 96 with triethyl phosphite failed to produce tetraester 97, and, together with thiones 95a or 95b, the related cross-coupled diesters 98a and 98b were not obtained (Scheme 2.17).

$$S = S = S = OAC$$

$$S = S = S = OAC$$

$$OAC$$

Scheme 2.17: (i) AcCl, DCM, NEt₃, 16h; (ii) P(OEt)₃, reflux, 45min., (iii) **95a** or **95b**, P(OEt)₃, reflux, 45min.

Attempts were made using Co₂(CO)₈ as the coupling reagent, but again the desired targets 97, 98a and 98b were not achieved. This problem was overcome, however, by the use of the corresponding benzoyl ester 99 which was synthesised from 74 and benzoyl chloride (Scheme 2.18). Phosphite cross-coupling with vinylene trithiocarbonate 95a and ketone 100 failed to produce TTF-derivative 101. Diol 102, however, was obtained from the hydrolysis of diester 103: the latter being synthesised from the phosphite-mediated cross-coupling of 95b and ketone 100 (15% yield).

$$S = S(CH_2)_2OH$$

$$S(CH_2)_2OH$$

$$S(CH_2)_2OC(O)Ph$$

$$S(CH_2)_2OR(O)Ph$$

Scheme 2.18: (i) PhC(O)Cl, NEt₃, DCM, 20°C, 16h; (ii) Hg(OAc)₂, CHCl₃:AcOH 3:1 v/v, 20°C; (iii) **95a**, P(OEt)₃, reflux, 4h; (iv) **95b**, P(OEt)₃, reflux, 4 h; (v) NaOEt, EtOH, 20°C, 0.5h.

Finally, the cross-coupling of vinylene trithiocarbonate **95a** with silyl derivative **104**, followed by removal of the protecting groups, gave a product in modest yield that was identical with compound **90** (prepared in Scheme 2.15) by melting point and ¹H NMR spectroscopic analyses (Scheme 2.19).

$$S = S(CH_{2})_{2}OH$$

$$S(CH_{2})_{2}OH$$

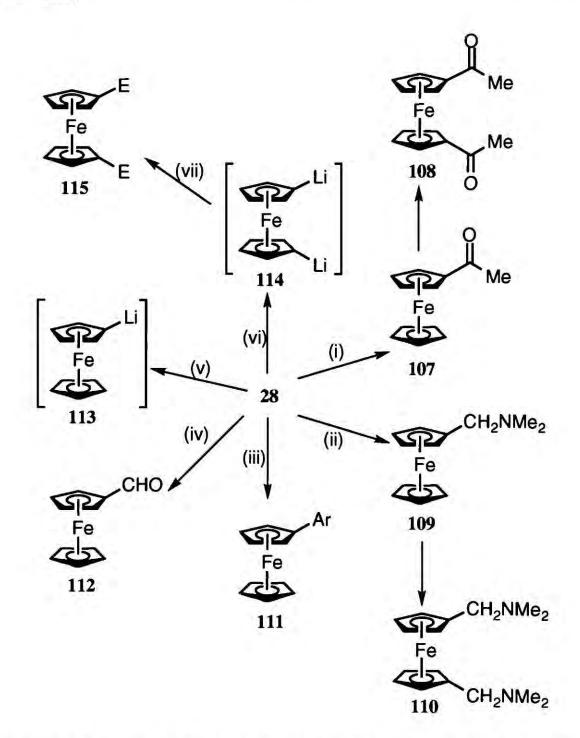
$$S(CH_{2})_{2}OSiPh_{2}^{t}Bu$$

$$S(CH_{2})_{2}OSiPh_{2}^{t}Bu$$

$$O = S(CH_{2})_{2}OSiPh_{2}^{t}Bu$$

$$O = S(CH_{2})_{2}$$

Scheme 2.19: (i) TBDPSiCl, DMF, imidazole, 20°C 16h; (ii) Hg(OAc)₂, CHCl₃:AcOH 1:3 v/v, 20°C; (iii) **95a**, P(OEt)₃, 60°C, 16h; (iv) Bu₄NF, THF, 20°C.


The mechanism for the formation of the disubstituted products 88-90 and 94 directly from TTF is unclear. Disproportionation of TTFLi 31 may occur to yield transient dianion species, however, Green stated⁷⁴ that 4,4'(5')-disubstituted products should predominate. An alternative, and perhaps more likely mechanism does not involve dianion species, but, instead, alkylation of thiolate 50 (and its selenolate analogue) occurs prior to the second deprotonation and chalcogenation of the TTF system. The directing influence of an alkylthio- or alkylseleno-substituent on further substitution onto the TTF ring has not been investigated previously, although Becker et al. assigned a different substitution pattern, namely the 4,4'- or 4,5'-regioisomer, to a bis(ethyltelluro)TTF derivative. 95a

From the CAMEO results presented in Table 2.1, methylthioTTF would favour a second substitution at the 5-position (i.e. on the same ring). Further studies with the CAMEO program gave similar predictions for ethylthioTTF and TTF-alcohol 51 (p K_a values: 5-H = 47, 4'-H = 48, and 5'-H = 48, in both cases). The formation of the 4,5-disubstituted compounds 88-90 and 94 is, therefore, consistent with these results. It is

also likely that lithium coordination to the mono-chalcogenated species plays a role in directing the second metallation to the adjacent site.

2.6 COVALENTLY LINKED TTF-FERROCENE SYSTEMS

The first synthesis of ferrocene 28 was reported in 1951 by two independent groups: Kealey and Pauson, 97 and Miller, Tebboth and Tremaine. 98 It was discovered soon after that this fascinating stable complex could undergo classical organic reactions typical of aromatic species. With a reactivity greater than that of benzene, and more akin to toluene, ferrocene 28 is able to perform, for example, standard Friedel-Crafts and Mannich reactions, electrophilic substitution, Vilsmeier formylation and metallation (Scheme 2.20).

Scheme 2.20: (i) Ac₂O, BF₃;⁹⁹ (ii) Me₂NCH₂CH₂NMe₂, H₃PO₄, AcOH;¹⁰⁰ (iii) ArN₂+; (iv) DMF, POCl₃;⁹⁹ (v) ^tBuLi; (vi) BuLi, TMEDA (or PMDT);¹⁰¹ (vii) electrophile (E+).

Our first attempts to synthesise covalently linked TTF-ferrocene systems involved the preparation of ferrocenylacyl chlorides 118 and 119 from commercially available ferrocenyl mono- and di-carboxylic acids 116 and 117, respectively (Scheme 2.21).

Scheme 2.21: (i) PCl₅, PhMe; ¹⁰² (ii) oxalyl chloride, pyridine, DCM. ¹⁰³

Acyl chloride 118 was reacted with TTFLi 31, and also with TTF-thiolate 50 (via benzoyl derivative 52), to give ketone 120 and thioester 121 (12% and 27%, respectively; Scheme 2.22).

118 +
$$\begin{bmatrix} \begin{bmatrix} S & S & S \\ S & S \end{bmatrix} \end{bmatrix} \xrightarrow{(i)} \begin{bmatrix} S & S & S \\ S & S \end{bmatrix} \xrightarrow{Fe}$$

118 +
$$\begin{bmatrix} S & S & S \\ S & S \end{bmatrix} & \begin{bmatrix} S & S \\ S & S \end{bmatrix} & \begin{bmatrix} S & S \\ S & S \end{bmatrix} & \begin{bmatrix} S & S \\ S & S \end{bmatrix} & \begin{bmatrix} S & S \\ S & S \end{bmatrix} & \begin{bmatrix} S & S \\ S & S \end{bmatrix} & \begin{bmatrix} S & S \\ S & S \end{bmatrix} & \begin{bmatrix} S & S \\ S & S \end{bmatrix}$$
(Generated from 52)

Scheme 2.22: (i) -78°C, Et₂O; (ii) -10°C, Et₀H.

Monosubstituted acid chloride 118 was reacted with TTF alcohols 51 and 90, and also with thione 74, to form esters 122-124 (80%, 60% and 64%, respectively; Scheme 2.23). Unfortunately, the attempted coupling of half-unit 124 with phosphite or dicobaltoctacarbonyl did not furnish the expected tetraester 125; an intractable mixture was obtained.

Scheme 2.23: (i) FcC(O)Cl 118, NEt3, DCM; (ii) POEt3 or Co2(CO)8.

Given the low yield of 120 (Scheme 2.22), the synthesis of 1,1'-bis(TTF-carboxy)ferrocene 126 (from acyl chloride 119 and TTFLi 31) was abandoned.

Reaction of diacid chloride 119 with benzoylthio-TTF 52 did not afford compound 127, however, alcohols 51 and 37 provided TTF- σ -ferrocene- σ -TTF triad systems 128 and 129 (20%, and 65%, respectively; Scheme 2.24).

Scheme 2.24: (i) NaOEt, EtOH, -10°C, 0.5 h, then Fc(COCl)₂ 119; (ii) Fc(COCl)₂ 119, NEt₃, DCM, 20°C.

Alcohol 51 was also reacted with ferroceneacetyl chloride 131, which was prepared from commercially available ferroceneacetic acid 130. TTF-derivative 132, with an extended spacer unit between the redox species, was isolated in low yield (8%), as an orange, waxy solid (mass spectroscopy, NMR and IR evidence). Surprisingly the compound decomposed over a short period of time. It was the only TTF-ferrocene derivative found to be unstable under ambient conditions, perhaps due to the presence of trace amounts of impurities.

COX
$$Fe$$

$$130 X = OH$$

$$131 X = CI$$

$$132$$

To obtain ferrocene-π-TTF derivatives linked via a conjugated spacer unit, the versatile ferrocene Wittig salt 134¹⁰⁴ was prepared (Scheme 2.25). Reaction of the ylide intermediate 135 with TTF-carboxaldehyde 32, and the previously unknown dicarboxaldehyde 136 (known to be a mixture of 4,4'- and 4,5'-isomers from incontrovertible ¹H NMR spectroscopic data), afforded mixtures of the ethene bridged cis/trans derivatives, 137 and 138, respectively. The many isomers of compound 138 proved to be inseparable; the trans-isomer of 137, however, was isolated pure by fractional recrystallisation from toluene with an overall yield of 58%.

FcCH₂NMe₂
$$\xrightarrow{\text{(i)}}$$
 FcCH₂NMe₃ $\stackrel{\text{(ii)}}{-}$ FcCH₂PPh₃ $\stackrel{\text{(iii)}}{-}$ [FcCH=PPh₃]

109 133 134 135

Scheme 2.25: (i) MeI, MeCN, 0°C; (ii) PPh₃, EtOH, reflux; (iii) ⁿBuLi, THF, 20°C; (iv) TTFCHO 32; (v) LDA (4 equiv.), Me(Ph)NCHO (2 equiv.), Et₂O, -78°C (40%).

Scheme 2.26: (i) Me₂NCH₂NMe₂, H₃PO₄, AcOH, 115°C, 20h; (ii) MeI, MeCN, 0°C; (iii) PPh₃, EtOH, reflux.

The preparation of 1,1'-disubstituted ferrocenyl diphosphonium salt 140 was attempted in the first instance from the known diamine derivative 110¹⁰⁵ (Scheme 2.26). Diammonium salt 139 was isolated in 63% yield; nucleophilic substitution by triphenylphosphine, however, did not take place and compound 139 was recovered. The dibromide analogue of 140 was reported by Beer et al., ¹⁰⁶ and was synthesised from the unstable dibromide derivative 142, ¹⁰⁷ which was prepared in turn from 1,1'-bis(hydroxymethyl)ferrocene 141¹⁰⁸ (Scheme 2.27).

Scheme 2.27: (i) PBr3, Et2O, 0°C, 6 h; (ii) PPh3, 16 h.

Treatment of 143 with two equivalents of butyllithium afforded the bisylide 144¹⁰⁶, which was trapped with TTF-carboxaldehyde 32 (Scheme 2.28). From the ¹H NMR spectrum of the resulting TTF-ferrocene derivative 145, a mixture of three isomers is evident. Neither chromatographic nor recrystallisation techniques were able to separate the *trans-trans*, *cis-trans* and *cis-cis* isomers.

Scheme 2.28: (i) ⁿBuLi (2 equiv.), THF, 20°C; (ii) TTF-CHO 32.

2.7 CV DATA AND DISCUSSION

Starting from functionalised ferrocene and TTF derivatives, the generation of a series of new covalently linked TTF-ferrocene compounds has been achieved. Between the redox centres of these molecules are spacer groups of varying lengths; additionally, the intramolecular TTF:ferrocene ratios have been varied: viz. 1:1 (120-122, 132 and 137), 1:2 (123 and 138), and 2:1 (128, 129 and 145). These criteria have provided us with a fascinating collection of novel redox active species, which have been investigated in detail by cyclic voltammetry. The data for these compounds, together with those of other relevant redox-active species are collated in Table 2.3, with a selection of voltamograms presented in Figure 2.1.

With the above TTF-ferrocene compounds the reversible electron transfer oxidations taking place correspond to: TTF \rightarrow TTF+, TTF+, TTF+, and ferrocene \rightarrow ferricinium. In all cases the first oxidation is assigned to TTF \rightarrow TTF+, since non-ferrocene containing TTF derivatives (e.g. 51, 86, 90, 102), exhibit only a slight change in their redox potential, compared to TTF 1. In contrast, substituted ferrocene derivatives (e.g. 116), usually display a significant increase in redox potential.

Identification of $TTF^{+} \rightarrow TTF^{2+}$ and ferrocene \rightarrow ferricinium oxidations requires a more thoughtful approach, with speculative conclusions relying heavily upon model compounds. Results show that the functionalised TTF compounds 51 and 90 possess very similar redox values to TTF 1 and are only slightly higher (by ca. 0.08V in both cases). The data on molecule 86 represent the covalent incorporation of a non-redox active moiety into compound 51. The difference between the redox values of 51 and 86 are negligible; we should be able to conclude, therefore, that any increase in TTF redox potentials arising from the inclusion of a second different redox active centre into a derivative of 51, will be directly due to the second redox species. TTF-ferrocene 122 displays its first oxidation at 0.47V, which is 0.05V higher than for 51. If the ferrocene unit is responsible for this effect, then we can assume the second oxidation of TTF is seen as the redox wave at 0.80V.

In contrast, the TTF units of compounds 120 and 121 have been largely unaffected by the closely linked ferrocene species: both 120 and 121 have almost identical $E_1^{1/2}$ and $E_2^{1/2}$ values to their respective non-ferrocene containing model compounds 147 and 52. The redox wave corresponding to ferrocene in compound 121 has been lost (as expected), in the broad two electron wave at ca. 0.83V, but the ferrocene \rightarrow ferricinium value for species 120 has been raised to 0.90V - on this occasion an effect of the TTF unit on the metallocene.

Molecule	Formula	$\underline{\mathbf{E}}_{1}^{1/2}(\mathbf{V})$	$\mathbf{E_2}^{1/2}(\mathbf{V})$	$\underline{\mathbf{E}_3}^{1/2}(\mathbf{V})$
1	TTF	0.34a	0.71a	
28	FcH	0.36^{a}	1244	1,500
51	TTFS(CH ₂) ₂ OH	0.42a	0.78a	
52	TTFSC(O)Ph	0.45b	0.81b	11/25/31
86	TTFS(CH ₂) ₂ OC(O)NH(CH ₂) ₂ Cl	0.43a	0.79a	0.00
90	$TTF[S(CH_2)_2OH]_2$	0.45a	0.78a	444
102	(MeS) ₂ TTF[S(CH ₂) ₂ OH] ₂	0.49b	0.79b	(
115	FcCO ₂ H	0.79ae	(-2-	
120	TTFC(O)Fc	0.48a 0.38b	0.82a 0.73b	0.90a 0.88b
121	TTFSC(O)Fc	0.45a 0.45b	0.83a 0.73bc	
122	TTFS(CH2)2OC(O)Fc	0.35a 0.47b	0.73a 0.61b	0.80a 0.75b
123	TTF[S(CH ₂) ₂ OC(O)Fc] ₂	0.53a 0.45b	0.75a 0.62bd	0.83a 0.82b
124	see page 53	0.77a		
128	Fc[C(O)O(CH ₂) ₂ STTF] ₂	0.41a 0.37bd	0.73a 0.71bd	0.77a 0.85b
129	Fc[C(O)OCH2TTF]2	0.50^{b}	0.73^{b}	
132	FcCH ₂ C(O)O(CH ₂) ₂ STTF	0.46a	0.87a	
137	trans-TTF(CH) ₂ Fc	0.41a 0.26b	0.62a 0.44b	0.92a 0.77b
138	TTF[(CH) ₂ Fc] ₂	0.38^{b}	0.53bd	0.91^{b}
145	Fc[(CH)2TTF]2	0.40bd	0.71b	0.79bd
146	Fc(CH) ₂ Fc	0.34b	0.55b	
Vinylferrocene	FcCHCH ₂	0.43^{b}	P-12	
147	TTFC(O)Me	0.47a	0.83a	
150	see page 61	0.63b		

Table 2.3: Cyclic voltammetric data; Pt working electrode, Pt gauze counter electrode, Ag/AgCl reference electrode, 0.2 mol dm⁻³ nBu₄N+PF₆-, 10⁻⁴ mol dm⁻³ compound in dry acetonitrile^a or dry dichloromethane^b, under nitrogen or argon at 20°C, with iR compensation. All waves represent a reversible, one electron process except where indicated. ^c Broad two electron wave. ^d Two electron wave. ^e Irreversible wave.

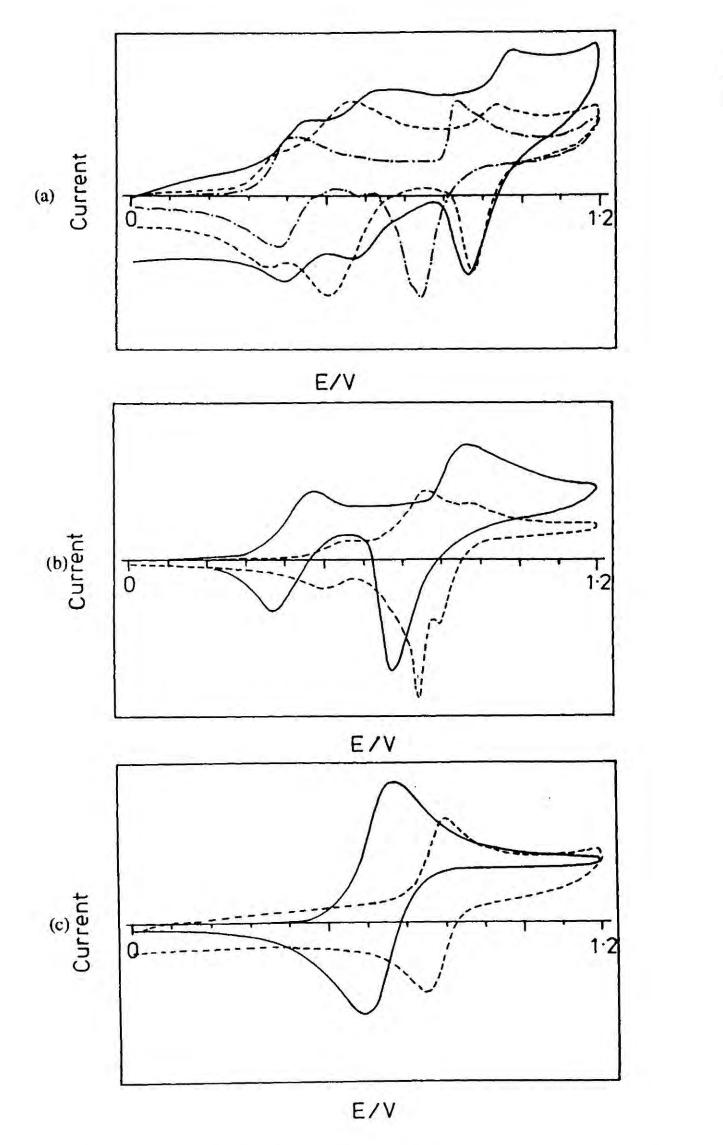


Figure 2.1: Cyclic voltammograms of compounds (a) 137 [---], 138 [----] and 145 [----]; (b) 123 [----] and 128 [----]; (c) 124 [----] and 150 [----].

For the elucidation of the redox behaviour of TTF-ferrocene derivative 123 we have used the model compound 124, which does not contain the TTF system. Assuming that TTF does not affect the ferrocene portion of species 123 (as was the case in 122), the second oxidation of this compound should be attributed to the formation of the ferricinium cation. Again, as for 122, and by comparison with compound 90, the ferrocene units appear to have raised the redox potentials of the TTF species in compound 123.

Similar conclusions to those above can be made for esters 128, 129 and 132. The assignment of oxidation values for compound 137, however, is a greater challenge and is not assisted by the model compound 146 (known to be the *trans* -configuration from X-ray crystallographic evidence; see Appendix 1.8). The redox behaviour of diferrocene 146 is quite unlike the substituted ferrocene systems previously encountered, with $E_1^{1/2}$ and $E_2^{1/2}$ values as low as 0.34V and 0.55V. The accurate assignment of oxidation potentials for 137 is virtually impossible from these results, but if one focuses on the redox value for vinylferrocene (0.43V), then the second redox wave of 137 could be attributed to ferrocene. Further proof of this deduction is gained from the data for compound 138: firstly, the second wave indicates a two electron process; secondly, the values for $E_1^{1/2}$ and $E_2^{1/2}$ are very close together ($\Delta E = 0.15V$) - Coulombic repulsion would not allow the two acting redox centres responsible for these values to be the 1,3-dithiole rings of a common TTF unit.

To elucidate the redox behaviour of compound 145, the bis(1,3-dithiole-2-thione) ferrocene species 150 was synthesised from 1,1'-ferrocene dicarboxaldehyde 109 148 and Wittig salt 149 110 (67% yield, Scheme 2.29). The redox wave corresponding to ferrocene \rightarrow ferricinium in compound 150 (0.63V), can be seen at 0.71V in species 145; in the latter case, the positive shift in the redox potential can be attributed to Coulombic repulsion of the radical cation TTF species, which is absent in derivative 150.

Scheme 2.29: (i) ⁿBuLi, THF, -78°C, 2h, then Fc(CHO)₂ 148.

In conclusion, we can see that when TTF and ferrocene are incorporated into the same molecule some interaction is observed in the redox properties, albeit in an unpredictable way. Furthermore, the attainment of multiply charged species can be achieved within reasonably low potential limits, ranging from 0.26V to 0.92V. The assignment of specific redox activity has been discussed; the reader must take into perspective, however, that unambiguous proof of these conclusions has not been achieved, and that the observations made are 'best-fit' representations.

CHAPTER 3

THE SYNTHESIS AND REDOX BEHAVIOUR OF EXTENDED TTF-SYSTEMS INCORPORATING FERROCENYL UNITS

3.1 INTRODUCTION

TTF systems bearing peripherally attached ferrocene units have been discussed in Chapter 2. The synthesis of two further types of TTF-ferrocene compounds has been achieved, and involves the insertion of ferrocene components into the central C-C π -conjugated regions of extended TTF species. The two structural types consist of: (i) dithiole units which are linked by a π -conjugated bridge system comprising a ferrocene molecule; (ii) vinylogous TTF systems with ferrocene units pendant to the central ethene bridges. Both families of compounds will be discussed separately.

3.2 EXTENDED TTF DERIVATIVES LINKED BY FERROCENE

Highly versatile building blocks for vinylogous TTF systems are the phosphonium salts (151, 152) and phosphonates (153, 154) of 1,3-dithiole species. These units readily undergo Wittig and Wittig-Horner reactions respectively, in good yields, with suitable carbonyl compounds.

The first synthesis of a dithiole phosphonium salt was by Gonella and Cava¹¹¹ (compound 151), while the first phosphonate analogue was prepared by Akiba et

al. 112 (compound 153). A range of similar species (general formula 152 and 154) have since been developed by several independent groups. A wide choice of reagents are available for the synthesis of the Wittig and Wittig-Horner precursors. Beginning with the relevant 1,3-dithiole-2-thione (Scheme 3.1), methylation followed by reduction of the resulting dithiolium cation 155, gives the sulfide species 156. Protonation of 156 results in dithiolium salt 157, which can then be treated with either triphenylphosphine or trialkylphosphite to furnish the phosphonium salt 152 and phosphonate compound 154, respectively. Deprotonation of these species (usually by nBuLi) generates the phosphorus ylide 158 or the phosphonate anion 159, the latter being more reactive towards aldehydes and ketones. In our laboratory we have favoured dimethylsulphate, sodium borohydride and tetrafluoroboric acid as the preferred reagents for steps (i)-(iii), Scheme 3.1.

Scheme 3.1. General synthesis of 1,3-dithiole Wittig and Wittig-Horner reagents: (i) MeX, MeCN/DCM; (ii) hydride, ⁱPrOH, MeCN; (iii) HX, MeCN; (iv) PPh₃, MeCN; (v) P(OR)₃, NaI, MeCN; (vi) Base, -78°C, Et₂O/THF.

Via the generation of phosphonate anions 160-162 and ylide 163, compounds 164-172 have been synthesised (60-80% yield) from commercially available ferrocene derivatives 108 and 112, and the known dicarboxaldehyde 148.

Compounds 168-172, therefore, represent a novel form of 'stretched'-TTF systems. The X-ray crystal structure of derivative 171 has been solved and is shown in Figures 3.1a and 3.1b. The molecule is situated around a two-fold crystallographic axis, with the cyclopentadienyl rings parallel to within 1.3° and staggered by 17.6°. The entire molecule is remarkably non-planar, being twisted by 26.0° around the C(1)-C(8) axis and by ca. 3.4° around the C(6)=C(8) double bond.

The electrochemical properties of compound 164-172 will be discussed at the end of this chapter.

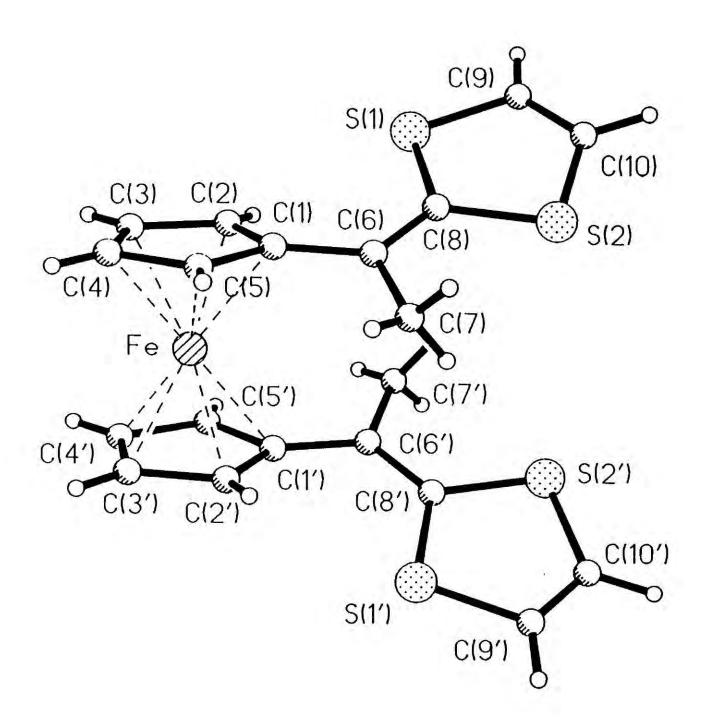
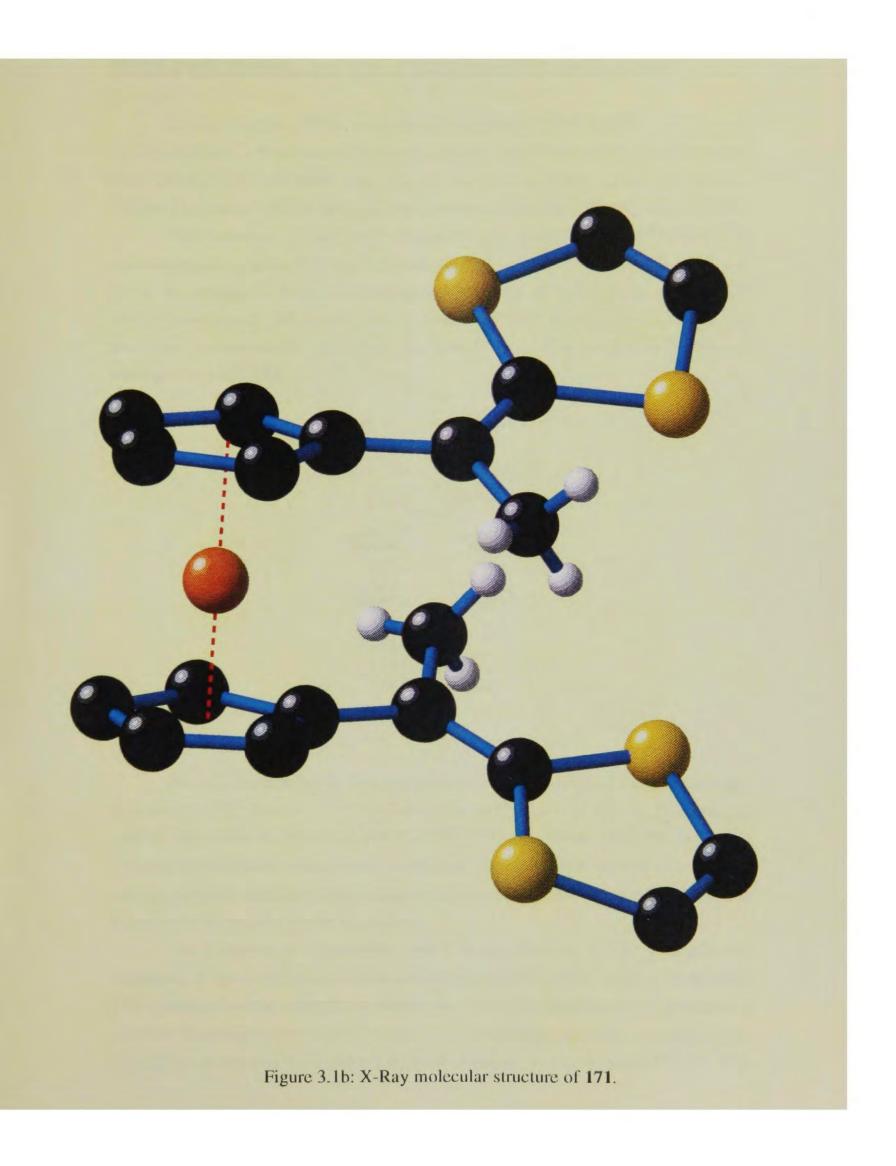
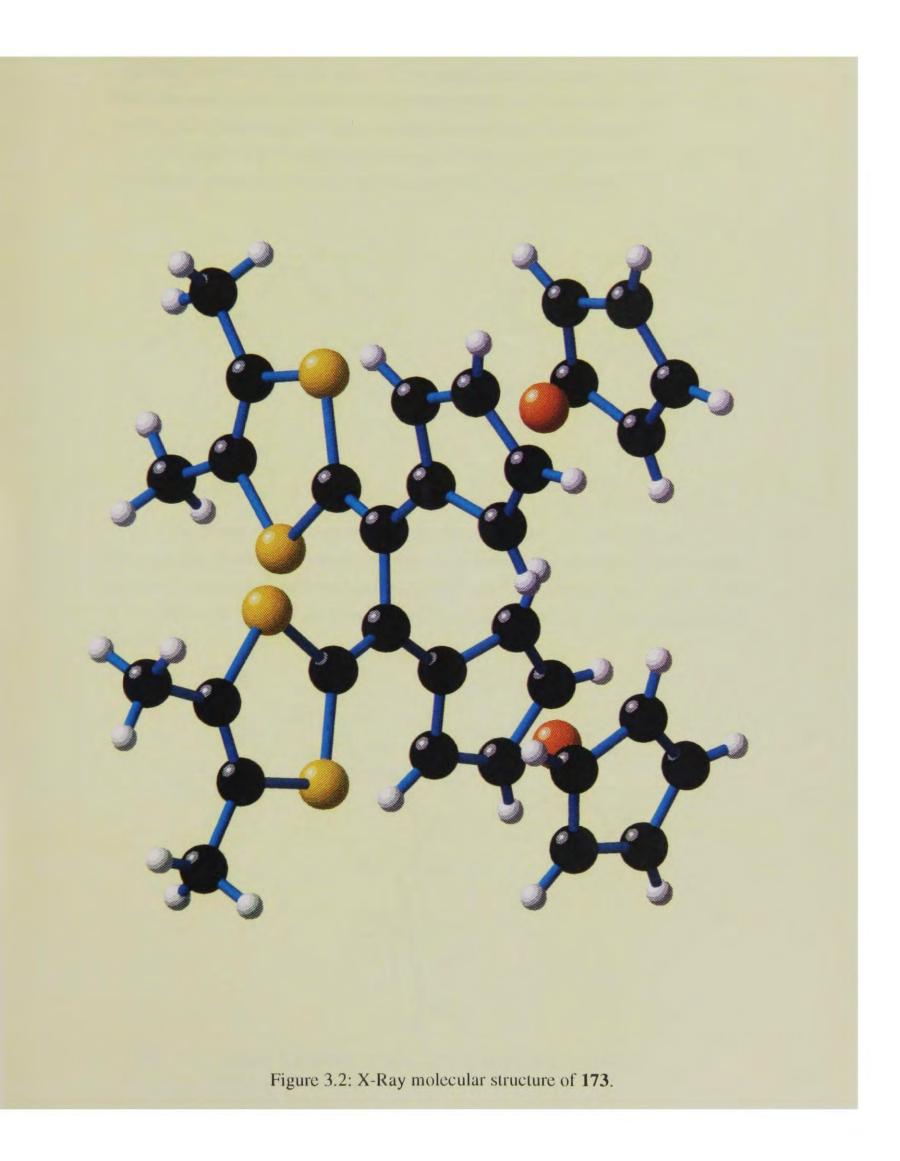



Figure 3.1a: X-ray molecular structure of 171 with crystallographic numbering scheme.

3.3 VINYLOGOUS TTF DERIVATIVES BEARING FERROCENE UNITS PERIPHERAL TO THE CENTRAL ETHYLENE BONDS


During routine NMR analysis of compound 165 a dark orange solid crystallised from a deuterated chloroform solution. The material was clearly different from 165 by TLC and NMR data. Indeed, the mass spectrum of the new product indicated a mass of 654 for the compound, whereas derivative 165 has a mass of 328.

The structure of this new compound was shown to be 173 by X-ray crystallography (Figure 3.2). Figure 3.2 shows that the two ferrocene units are in fact cis to the central C-C bond, with the cyclopentadienyl rings facing away from each other. Consequently, the dimerisation of compound 165 under acidic conditions was attempted in earnest (HCl in ether), and proceeded in 60% yield with the loss of hydrogen to yield 173.

173 R = Me 174 R = H 175 R = CO₂Me

Similar dimerisation of systems containing the 1,3-dithiole-2-ylidene unit has been observed by Daub *et al.*,¹¹³ however, the mechanism for this reaction remains unclear. Treatment of compound **164** with HCl.Et₂O gave dimer **174** (50% yield), yet **175** was not obtained, under similar conditions, from **167**. It would seem, therefore, that the electron withdrawing/donating effects of the R substituents may have some influence in the mechanism for this reaction.

The synthesis of compounds 168-174 has achieved for the first time the attachment of a second different redox-active species to the central region of π -extended TTF systems. Further attempts at synthesising related compounds have produced a series of fascinating products. The study of dendralenes and their unusual cross-conjugated properties have attracted much attention in recent years. 114-117 The

inclusion of redox-active groups into dendralene systems is extremely rare, but is of particular interest if they are able to form stable cross-conjugated radicals. 115 It has been suggested that the controlled electron propagation within these species could be used for the development of soliton switches in molecular electronic devices. 118

A series of [3]- and [4]-dendralenes, 176a-176c and 177a-177b comprising 1,3-dithiole groups, has been synthesised previously in our laboratory. 119

The X-ray crystal structure of compound 176a is shown in Figure 3.3.¹¹⁹ Ring systems A and B are almost coplanar with a dihedral angle of 8.8°, whilst ring C is virtually orthogonal (dihedral angles of 80.0° and 81.7° with respect to rings A and B). Compounds 176-177 produced interesting CV data which will be considered in section 3.4.

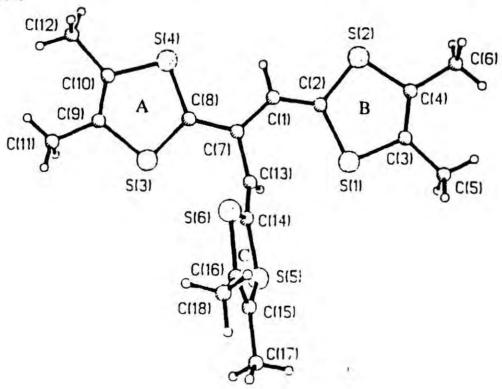


Figure 3.3: X-ray crystal structure of compound 176a.

Analogous [3]- and [4]-dendralenes, with ferrocene units substituting one or more of the dithiole rings, were our targets, with a view to a comparison of structural and electrochemical properties with compounds 176-177.

The first of the extended TTF-ferrocene dendralenes to be synthesised was compound 181: a [3]-dendralene (Scheme 3.2). Dithiolium salt 178 was reacted with the sodium salt of malonaldehyde to form dialdehyde 179. From the addition of 179 to dithiole phosphonate anion 162, aldehyde 180 was produced in 30% yield. 120 Aldehyde 180 was finally reacted with ferrocenyl Wittig reagent 134 to afford the 2:1 mixed dithiole-ferrocene 181 in 54% yield.

Scheme 3.2: (i) MeCN, 20°C; (ii) **162**, ⁿBuLi, THF, -78°C; (iii) FcCH₂PPh₃+I- **134**, BuLi, THF, 20°C.

The low yield of step (ii) (Scheme 3.2), is due to the competitive formation of the tris(dithiole) compound 176b. An improved route to analogous compound 182 was attempted using different methodology.

182

Dithiole derivative 184 can be synthesised from glyoxal and phosphonium salt 183 (Scheme 3.3). 121 Reaction of ferrocenyl phosphonium salt 134 with aldehyde 184 gave ferrocene-dithiole species 185 in 64% yield.

$$CF_3SO_3$$

$$Ph_3P S S S$$

$$O S S S$$

$$I83$$

$$I84$$

$$I85$$

$$I85$$

Scheme 3.3: (i) NEt₃, 40% glyoxal in water, MeCN, 20°C; (ii) FcCH₂PPh₃+I- 134, ⁿBuLi, THF, 20°C.

Recrystallisation of compound 185 from dichloromethane produced the crystalline trans-isomer, whose structure was determined by X-ray crystallography and

is shown in Figure 3.4. The conjugated portion of the molecule, comprising the 1,3-dithiole ring and the cyclopentadicnyl ring is essentially planar. The crystal packing diagram of 185 (Figure 3.5) shows marked S...S intermolecular contacts which are shorter than the sum of the S...S van der Waal's radii (3.6Å), indicating a close-packed structure.

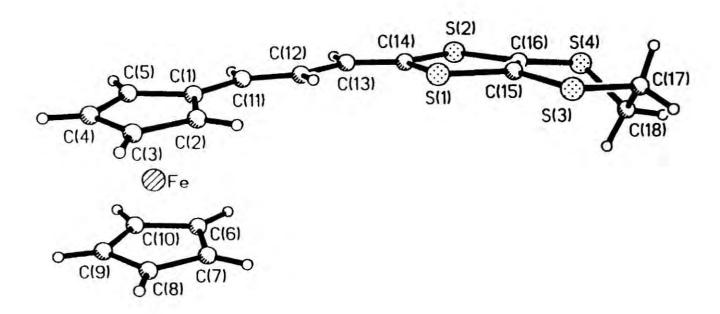


Figure 3.4: X-ray molecular structure of compound 185.

Functionalisation of molecule 185 using Yoshida's method¹¹⁵ for the Vilsmeier formylation of ylidenes (Scheme 3.4), gave compound 186 in 73% yield. Aldehyde 186 which is analogous to tetrathiomethyl derivative 180, has been derived by a different method in a much higher yield. Reaction of 186 with phosphonate anion 188, prepared from Wittig-Horner reagent 187, afforded the 2:1 dithiole-ferrocene [3]-dendralene 182 in 83% yield.

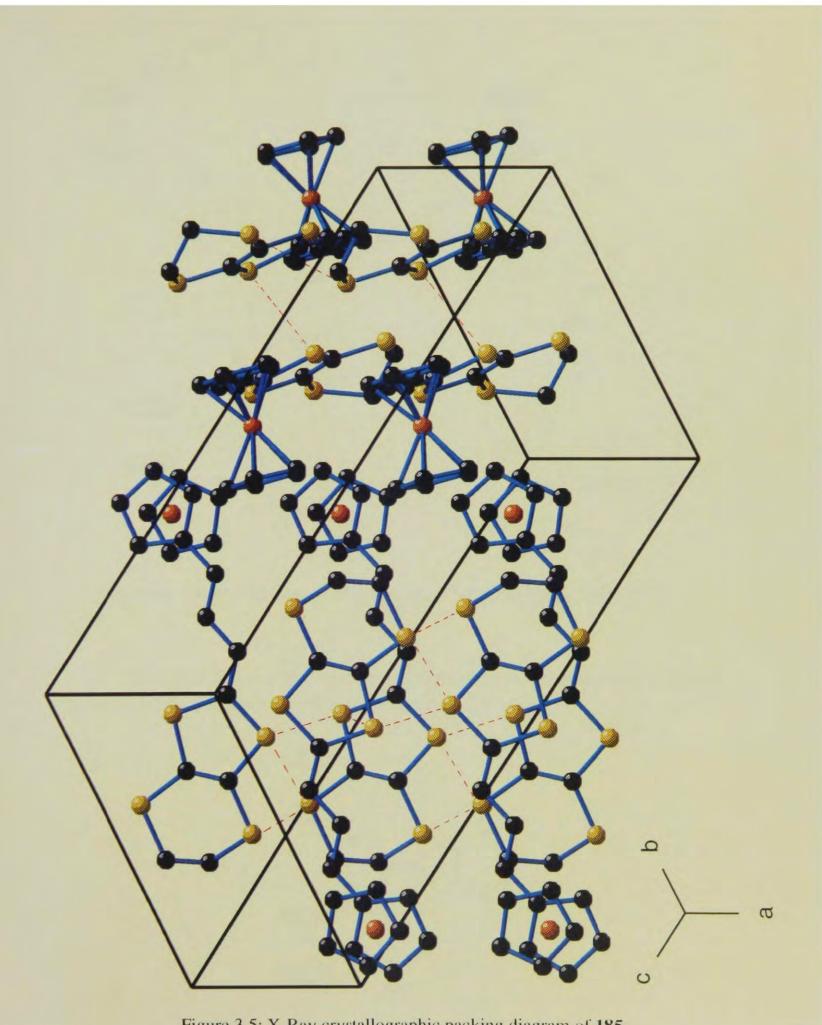
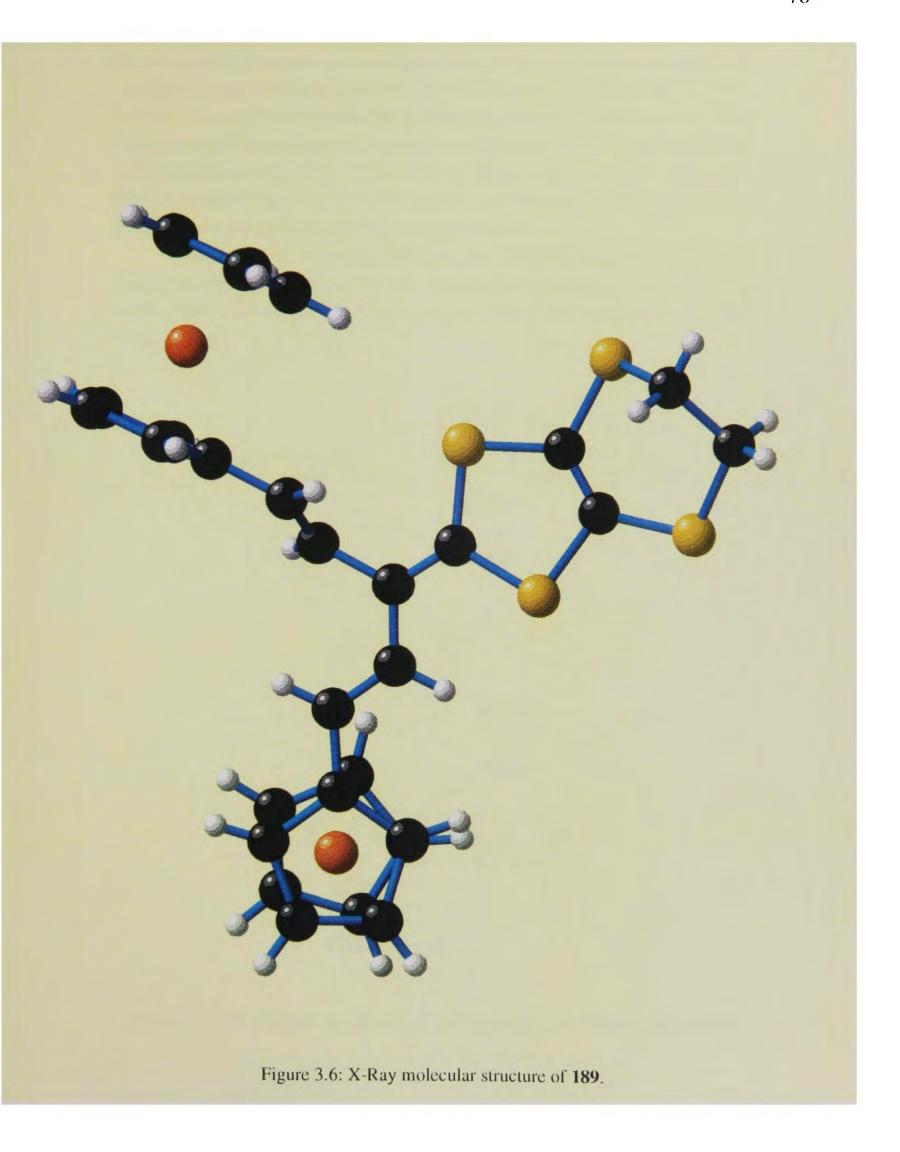
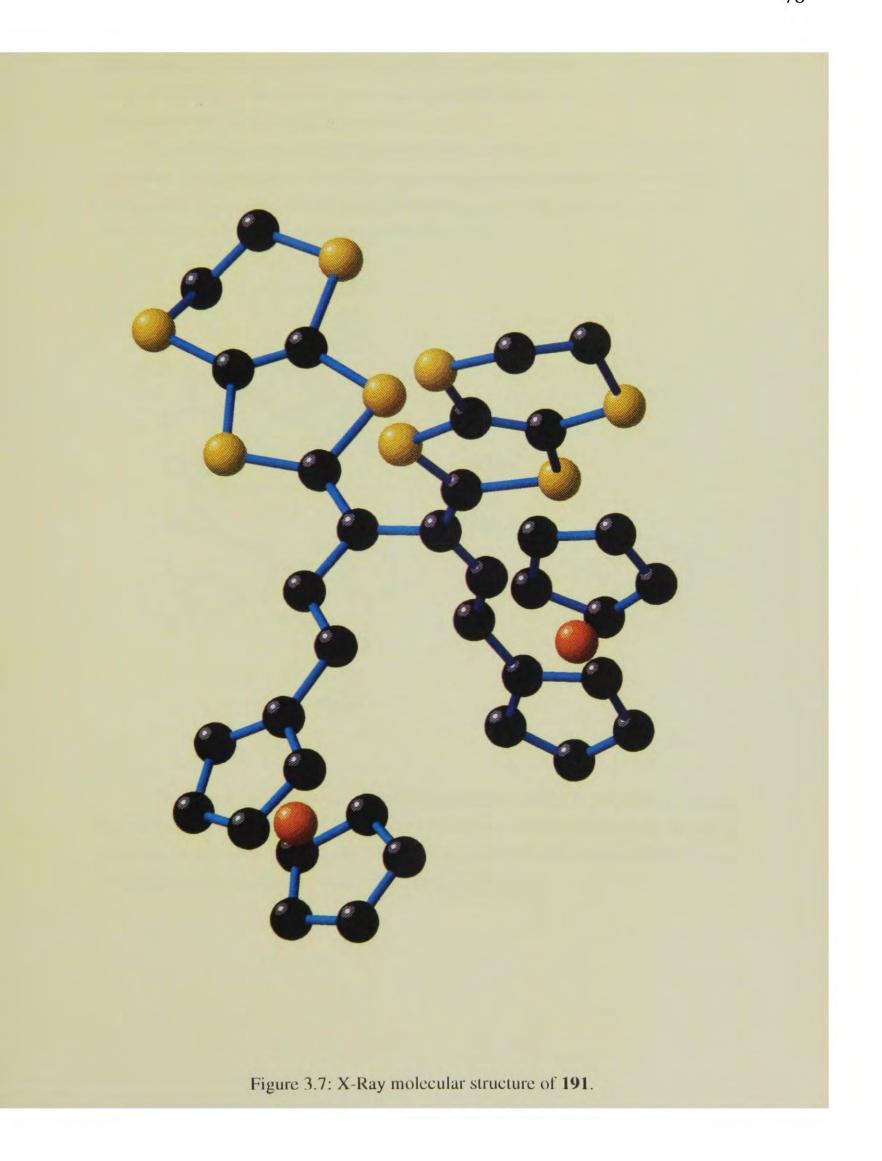



Figure 3.5: X-Ray crystallographic packing diagram of 185.

Scheme 3.4: (i) DMF, oxalyl chloride, 0°C, 15min; (ii) ⁿBuLi, THF, -78°C.


Aldehyde 186 was also reacted with ferrocenyl phosphorus ylide of 134 to give the 1:2 dithiole ferrocene [3]-dendralene 189 in 72% yield.

A mixture of isomers was observed in the ¹H NMR spectrum of compound 189. Recrystallisation from dichloromethane-hexane afforded the all-trans isomer; the configuration was confirmed from its X-ray crystallographic structure which is shown in Figure 3.6. The [3]-dendralene 189 is remarkably similar in structure to the related tris(dithiole)-[3]-dendralene 176a: conjugation and planarity are favoured between one cyclopentadienyl ring and the dithiole ring of 189 (as seen in the X-ray structure of 185). The plane of the second ferrocene unit is also orthogonal to the remainder of the molecule, as is the third dithiole ring in compound 176a.

Formylation of compound 182 gave the functionalised and unstable [3]-dendralene 190 (71% yield) which was isolated and reacted with ferrocene Wittig reagent 134 to afford the 2:2 dithiole-ferrocene [4]-dendralene 191 in 65% yield (Scheme 3.5).

Scheme 3.5: (i) DMF, oxalyl chloride, 0°C, 15min; (ii) 134, ⁿBuLi, THF, -78°C.

Once again, the all-trans isomer was isolated by recrystallisation from dichloromethane-hexane, and confirmed by X-ray crystallography (Figure 3.7). Due to the poor quality of the crystal, however, a detailed discussion of bond lengths and angles cannot be made with good accuracy.

1,1'-Bis{[4]-dendralenyl} ferrocene 192 was another of our intended target molecules. The synthesis of disubstituted ferrocene-dithiole species 193 was achieved (33% yield), by treating ferrocenyl diphosphonium salt 143 with two equivalents of ⁿBuLi, followed by addition of dithiole aldehyde 184.

Unfortunately, in this case, the all-trans isomer could not be isolated. Indeed, the formylation of compound 193 produced a further mixture of isomers as shown by a number of aldehyde peaks in the ¹H NMR spectrum. Further steps leading to the formation of a [4]-dendralene were subsequently abandoned.

3.4 CV DATA AND DISCUSSION

In this chapter we have presented a series of 1,3-dithiole-ferrocene species; the spacer groups between the two different redox centres are composed of either one or three sp² carbon atoms. The CV data obtained (Table 3.1), indicate that the length of the bridging species has some effect upon the redox properties of these compounds. A selection of voltammograms are shown in Figure 3.8.

Dithiole-ferrocenes 164 and 166 both give $E_1^{1/2}$ values at 0.33V and 0.42V, and $E_2^{1/2}$ at 0.75V and 0.85V, respectively. Compound 185 has a similar initial redox value (0.33V), but the second oxidation takes place more readily ($E_2^{1/2} = 0.49V$). There are two possible reasons for this, assuming that the oxidation of the 1,3-dithiole-ylidene sub-unit precedes that of ferrocene: (i) Coulombic repulsion may inhibit the formation of the ferricinium cation, and, therefore, will be more difficult to achieve for the more compact systems 164 and 166; (ii) delocalisation of the radical cation of the primary oxidised species may extend to the cyclopentadienyl ring, resulting in a decrease of electron density within the ferrocene moiety. In the latter case delocalisation may be more pronounced (with respect to 185), in the Cp rings of species 164 and 166 due to the shorter spacer groups of these compounds. The first explanation, however, is the most likely and preferred hypothesis.

Compounds 169-171 display two single-electron reversible oxidations and a third irreversible oxidation at 1.00-1.15V. A striking feature of the data for these compounds is that the first oxidation occurs at an unusually low potential (0.06-0.16V). A possible reason for this behaviour is that the oxidation of the entire delocalised system is observed, involving significant interaction between the two 1,3-dithiole rings and ferrocene. By comparison, compound 193 does not display its first oxidation wave at such a low value, but it does, however, undergo three separate reversible oxidations within a narrow range (0.29-0.67V). These results suggest that compounds 169-171 behave quite differently, in terms of their electrochemistry, than the π -extended analogue 193.

Dimer 173 displays four redox waves between 0.14V and 0.83V. The first value is also quite low and may be due to the high electron-rich state of the molecule as a whole. Remarkably, the fourth oxidation (probably corresponding to ferrocene \rightarrow ferricinium), occurs at a similar value to $E_2^{1/2}$ for compounds 163 and 165; due to the close proximity of charges in the tetra-cationic state of 173, $E_4^{1/2}$ was expected to be much higher.

The [3]-dendralenes 176a-176c display two initial single-electron reversible waves, ¹¹⁹ which correspond to the electrochemical behaviour of simple vinylogous TTF systems (e.g. 19, 21, 23 and 24, Chapter 1). The third oxidation of these species, however, occurs at a much higher potential (ca. 1.2V), and is consistent with

values for isolated 1,3-dithiole-2-ylidene systems. The latter oxidation, therefore, is assigned to the orthogonal dithiole ring of [3]-dendralenes 176a-176c (see Figure 3.3).

COMPOUND	DITHIOLE: FERROCENE	<u>E</u> 1 ^{1/2} /V	<u>E2^{1/2}/V</u>	<u>E₃1/2/V</u>	<u>E4^{1/2}/V</u>
	RATIO				
146	0:2	0.34	0.55		
164	1:1	0.33	0.77		
166	1:1	0.42	0.85		775
169	2:1	0.16	0.47	1.00b	
170	2:1	0.06	0.51	1.05b	
171	2:1	0.10	0.56	1.15b	275
173	2:2	0.14	0.35	0.70	0.83
176a	3:0	0.08	0.33	1.25	-
176b	3:0	0.36	0.49	1.20	
176c	3:0	0.25	0.47	1.24	***
177a	4:0	0.26	0.37	0.69a	3-1-5
177b	4:0	0.23	0.39	0.81a	
180	2:0	0.61b	0.81b		
181	2:1	0.35	0.48	0.65	
182	2:1	0.35	0.50	0.65	
185	1:1	0.33	0.49		
186	1:1	0.38	0.86b	***	
189	1:2	0.26	0.40	0.55	
191	2:2	0.37a	0.61	0.76	
193	2:1	0.29	0.55	0.67	

Table 3.1: Cyclic voltammetric data; Pt working electrode, Pt gauze counter electrode, Ag/AgCl reference electrode, 0.2 mol dm⁻³ nBu₄N+PF₆-, 10⁻⁴ mol dm⁻³ compound in dry dichloromethane, under nitrogen or argon at 20°C, with iR compensation. All waves represent a reversible, one electron process except where indicated. ^a Single two electron wave. ^b Irreversible wave.

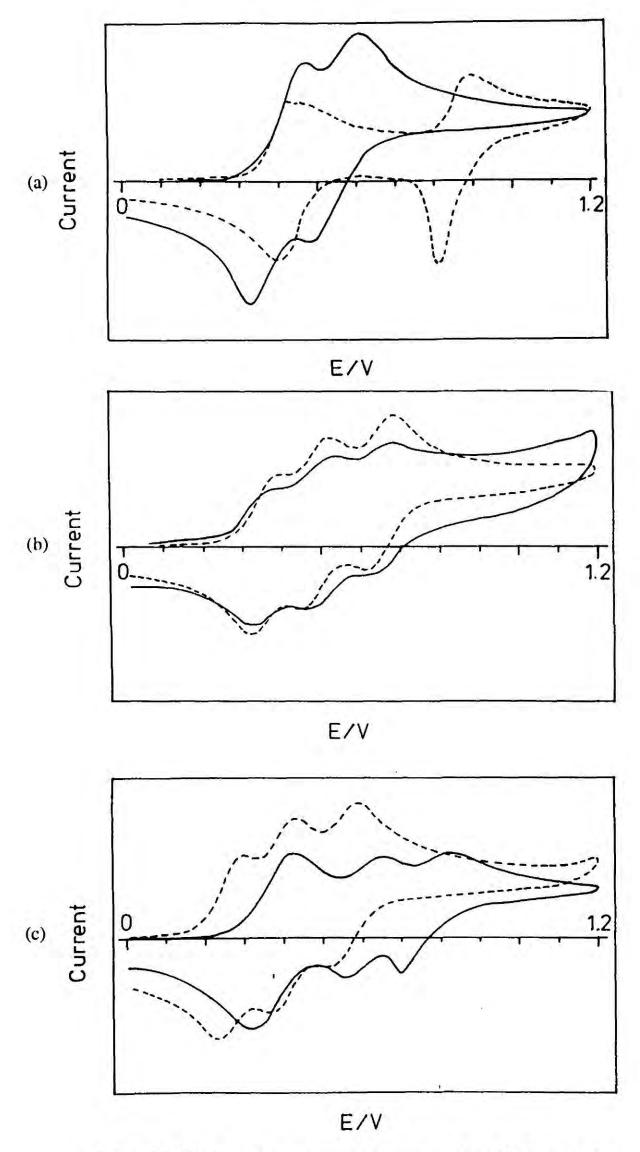


Figure 3.8: Cyclic voltammograms of compounds (a) 166 [----] and 185 [----]; (b) 181 [----] and 182 [-----] (c) 189 [-----] and 191 [-----].

The [4]-dendralenes 177a and 177b exhibit similar $E_1^{1/2}$ and $E_2^{1/2}$ values, ¹¹⁹ but the third oxidation waves represent a reversible two-electron process at much lower values (ca. 0.7-0.8V), than those corresponding to the final waves for compounds 176a-176c. The coalescence of the third and fourth oxidation waves is most unusual with this family of compounds and must be a particular feature of the extensively conjugated [4]-dendralene π -system.

The analogous 2:1 dithiole-ferrocene [3]-dendralenes 181 and 182 display identical electrochemical behaviour to each other. The first two oxidation waves are similar to the methylthio substituted [3]-dendralene 176b, and can, therefore, be assigned to the two 1,3-dithiole units. The third oxidation waves both occur at 0.65V, and are attributed to the formation of the ferricinium cation. These results indicate a planar configuration between the two dithiole rings, with the pendant ferrocenylethene moiety in orthogonal position. This arrangement represents a deviation from other structures of this family of compounds, where planarity predominates between ferrocene and a single 1,3-dithiole species. Unfortunately, crystallographic proof of structures 181 or 182 could not be obtained.

The first two redox values of [3]-dendralene 189 were expected to be similar to those of compound 185. In fact, $E_1^{1/2}$ and $E_2^{1/2}$ for the former were found to be lower by 0.07V and 0.09V, respectively. The third oxidation wave is assigned to the orthogonal ferrocene unit, and is at a lower potential than that of the ferrocene units in 181 and 182 by 0.1V - this is possibly due to the extra spacer length between the redox centres of 189, and, hence, a decrease in Coulombic repulsion.

The 2:2 dithiole-ferrocene [4]-dendralene 191 is rather different from the tetrakis(1,3-dithiole)-[4]-dendralenes 177a and 177b in its redox behaviour. Compound 191 displays a reversible two-electron oxidation wave at 0.37V, followed by two single-electron waves at 0.61V and 0.76V. From the X-ray crystallographic structure of 191, we know that planarity arises once again between one cyclopentadienyl and one dithiole ring. Primary oxidation of dendralene 191 must take place simultaneously at both 1,3-dithiole sites - an unusual feature which is rarely seen in a pair of dithiole species which are separated by only two sp² carbon atoms. The third and fourth waves are responsible for the oxidation of the two ferrocenes, and take place independently at 0.61V and 0.76V; both these values are exactly 0.21V higher than the corresponding final two waves of compound 189 - this increase probably results from the extra Coulombic repulsion arising from one additional 1,3-dithiole unit.

Once again, some of the conclusions made in this section are speculative, relying heavily upon deductions from molecular structure and inter-relating CV data. Due to the complicated nature of dendralene systems, most model compounds were of

no benefit for the assignment of redox peaks. Aldehydes 180 and 186, in particular gave confusing results: irreversible oxidation waves were recorded for the dithiole units of these compounds, and are possibly due to the formation of stable alkoxide radicals. Furthermore, a very low oxidation wave for ferrocene was noted in compound 186 (0.38V); the ferrocene unit, therefore, is a better donor than the dithiole-ylidene, since the latter will be deactivated by the electron withdrawing effect of the aldehyde group. It is also possible that the existence of conformation 186' with a close intramolecular O---S contact will modify the electrochemical behaviour. Consequently, the first oxidation of 186 can be likened to that of *trans*-1,2-diferrocenylethene 146 which displays an initial redox potential at 0.34V.

In summary, we have prepared a series of 1,3-dithiole-ferrocene compounds with fascinating and variable redox properties. The formation of the ferrocene-containing [3]- and [4]-dendralenes, in particular, has established a group of compounds with high donor ability - electrochemical multi-stage redox reactions can be performed on these systems to attain tri- and tetra-cation species in the region of 0.26-0.76V.

CHAPTER 4

[4+2] CYCLOADDITION REACTIONS OF VINYLTETRATHIAFULVALENE DERIVATIVES

4.1 INTRODUCTION

During our attempts to form charge transfer (CT) salts of vinyl-TTF species 137 with TCNQ and TCNE, initial analyses suggested that the materials obtained were not CT complexes but, instead, compounds that were formed by covalent interaction between the donor and the acceptor. Identification of these products has provided a series of compounds representing a novel reaction scheme for TTF derivatives.

4.2 TCNE ADDUCT 194: CHARACTERISATION AND X-RAY STRUCTURE

Mixing equimolar amounts of *trans*-1-ferrocenyl-2-(4-tetrathiafulvalenyl)ethene 137 and tetracyanoethylene (TCNE) 30 in acetonitrile, under reflux, produced a very dark and instantaneous colour change of the solution which is characteristic of a TTF CT complex being formed. Unexpectedly, the mixture quickly turned orange, and after several hours a crystalline solid was deposited. Elemental analysis of this compound indicated a 1:1 adduct, but from IR and NMR data it was clear that the product was not a CT complex. Furthermore, the mass spectrum of the product gave a peak at 543 mass units (DCI), suggesting that a covalent compound had been isolated (RMM 137 + RMM 30 = 542). X-Ray crystallographic analysis showed the product to be the novel Diels-Alder adduct 194 (Scheme 4.1).

Compound 194 crystallises as a 1:1 acetonitrile solvate (Figures 4.1a and 4.1b). A remarkable feature of the structure of 194 is that the π -bonding of TTF has been disrupted. Thus while ring A preserves the usual geometry of TTF, with a slight folding of 5.3Å along the S(3)---S(4) line, ring B contains an sp^3 carbon atom, C(14), and adopts a nonsymmetric half-chair conformation. The fused six-membered ring adopts a twisted sofa conformation, with C(12) and C(13) deviating by 0.16 and

-0.61Å from the C(14)-C(15)-C(16)-C(11) plane. The crystal structure revealed the stereochemistry shown in Figures 4.1a and 4.1b.

Scheme 4.1: (i) McCN, reflux 5mins.

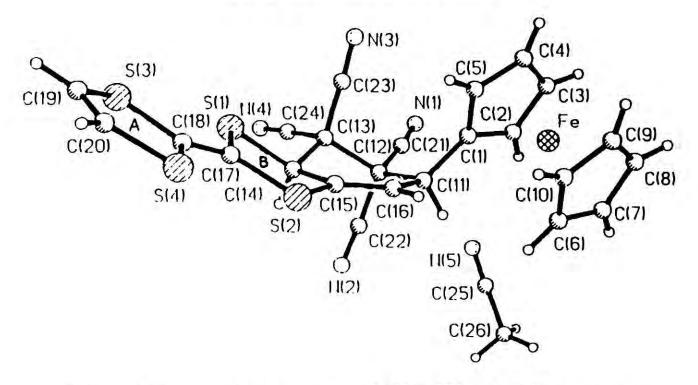
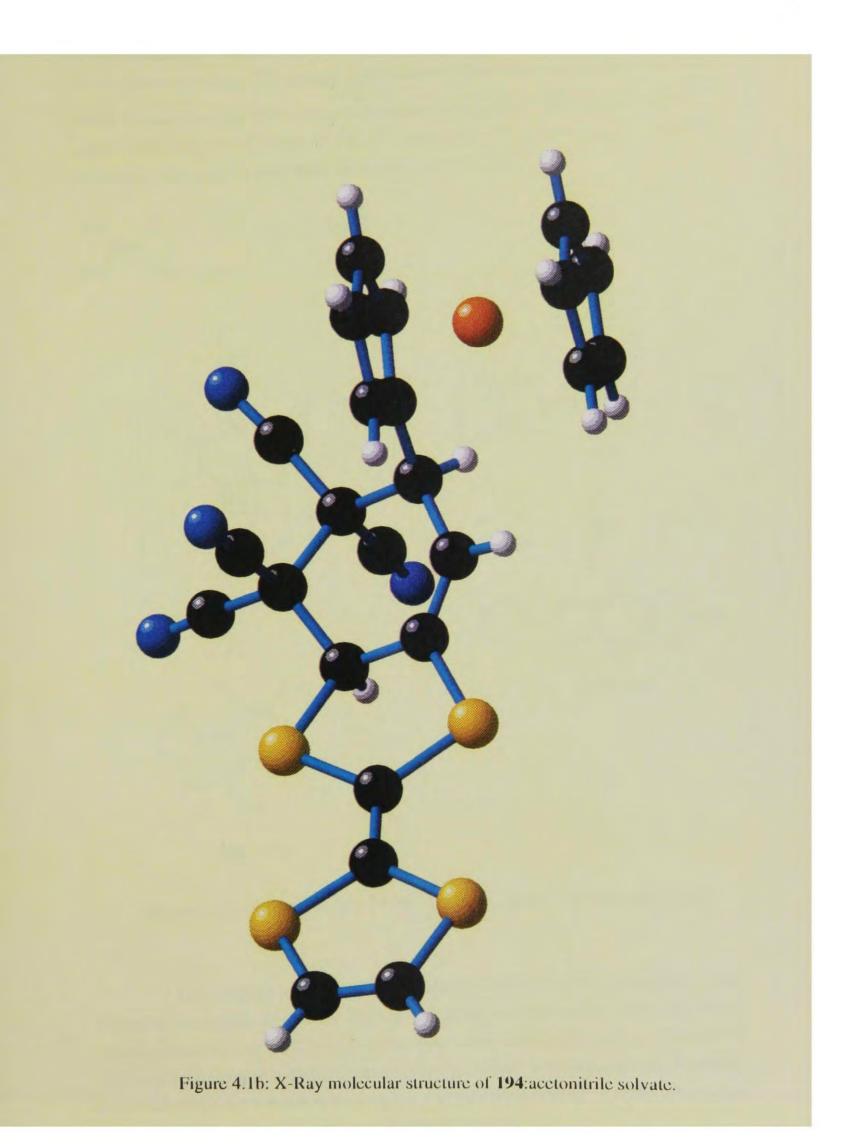



Figure 4.1a: X-ray molecular structure of adduct 194:acetonitrile solvate with crystallographic numbering scheme.

This reaction provides the first example of a [4+2] Diels-Alder cycloaddition to a TTF derivative in which the TTF moiety acts as a diene. There are, however, two recent examples where TTF acts as a 2π electron dienophile: cycloaddition can take place at the central C=C bond of TTF,¹²² and also at the peripheral C=C bond ¹²³ affording adducts **196a** and **196b**, respectively (Scheme 4.2).

Scheme 4.2: (i) toluene, reflux, 2d; (ii) thiophene, reflux, 4h; then 20°C, 12h.

A similar result to Scheme 4.1 was also observed with 137 and TCNQ, under identical conditions. Elemental analysis of the pale yellow product indicated a 1:1 adduct, however, the ¹H NMR spectrum gave broad peaks characteristic of a radical species; the mass spectrum also failed to show an adduct peak, although the possibility of a retro-Diels-Alder reaction occurring under mass spectroscopic conditions cannot be

discounted. The failure to provide conclusive proof for either structures 196a or 196b was rather disappointing, since this would be a rare example of a [4+2] TCNQ adduct.

4.3 OTHER VINYL-TTF ADDUCTS

To explore the generality of the reaction in Scheme 4.1, a modest range of vinyl-TTF derivatives was prepared from TTF-carboxaldehyde 32 and a selection of Wittig salts (Scheme 4.3).

TTF-CHO

32

+

R-PPh₃+X⁻

$$X = Cl, Br or I$$

197 R =H (80%)
198 R =Me (80%)
199 R =Ph (77%)
200 R = p -C₆H₄OMe (83%)
201 R = p -C₆H₄NO₂ (73%)

Scheme 4.3: (i) ⁿBuLi, THF, -78°C, 15mins.

Compounds 197-201 were reacted with TCNE to afford the [4+2] adducts 202-206 (Scheme 4.4). Predictably, the reactions proceed more readily when substituent R is electron releasing (i.e. 137, 200).

Scheme 4.4: (i) TCNE, toluene, reflux, 16h.

The dienophile N-phenyl-1,2,4-triazoline-3,5-dione reacted readily with the vinyl-TTF compounds 137 and 197-200 (Scheme 4.5).

Scheme 4.5: (i) toluene, reflux, 4h.

Unfortunately, a number of products were formed in each reaction (TLC evidence). Mass spectroscopic data gave the correct masses for 1:1 adducts 207-211, but only species 210 and 211 (61% and 33% yield, respectively) were obtained pure. Similar results were obtained using dimethylacetylenedicarboxylate as the dienophile (Scheme 4.6). Early TLC observations indicated the formation of the DMAD adducts 212-216, which decomposed as the reaction time increased. The only product obtained pure was compound 212 which was isolated as a red solid in 46% yield.

Even this compound, however, eventually decomposed over several days, at 20°C. Mass spectroscopy of the crude product mixtures gave peaks corresponding to compounds 213-216, together with additional peaks several hundred mass units higher.

Scheme 4.6: (i) toluene, reflux, 16h.

4.3 CV DATA AND DISCUSSION

The electrochemical properties of the vinyl-TTF species and their adducts, were examined by cyclic voltammetry; the CV data are presented in Table 4.1, with selected voltammograms shown in Figure 4.2. Compounds 196-200 gave standard voltammograms for simple TTF derivatives, with redox potentials slightly higher than TTF itself. Ferrocene species 194 displays two single-electron reversible waves: the first at 0.57V is due to the ferrocene component, whilst the second at 0.77V is typical of an isolated 1,3-dithiole-2-ylidene system.

Molecule	TTF-CH=CH-R	Dienophile	$\mathbf{E_{1}^{1/2}}$	<u>E2^{1/2}</u>
197	Н	112	0.4174b	0.77 ⁷⁴ b
198	Me	375	0.38	0.83
199	Ph	2-1	0.40	0.90
200	p-C ₆ H ₄ OMe	242	0.39	0.85
201	p-C ₆ H ₄ NO ₂		0.43	0.80
194	Fc	TCNE	0.57	0.77
202	Н	TCNE	0.52	1.08
203	Me	TCNE	0.52	
204	Ph	TCNE	0.88	1.45a
205	p-C ₆ H ₄ OMe	TCNE	0.87	1.37a
210	p-C ₆ H ₄ OMe	NPTAD	0.68	1.06
211	Fc	NPTAD	0.47	1.11a
212	H	DMAD	0.61	1.19a

Table 4.1: Cyclic voltammetric data; Pt working electrode, Pt gauze counter electrode, Ag/AgCl reference electrode, 0.2 mol dm⁻³ nBu₄N+PF₆-, 10⁻⁴ mol dm⁻³ compound in dry dichloromethane, under nitrogen or argon at 20°C, with iR compensation. All waves represent a reversible, one electron process except where indicated: a irreversible wave.

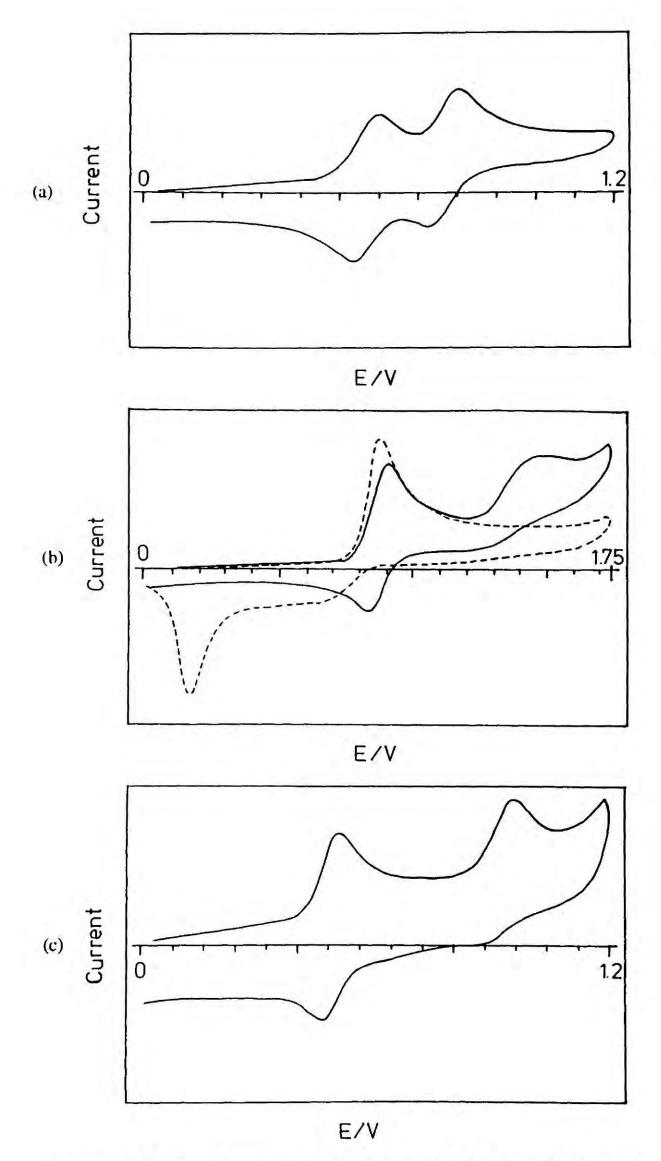


Figure 4.2: Cyclic voltammograms of compounds (a) 194 [---]; (b) 203 [----] and 204 [----]; (c) 202 [----].

Adducts 204, 205, 211 and 212 give one single-electron reversible wave, followed by a second irreversible oxidation peak. The latter is postulated to arise from a product formed by chemical reaction of the cation radical. Compound 202, however, displays one extra peak (at ca. 0.1V), compared to 204, 205 and 212. This occurrence results in $E_1^{1/2}$ and $E_2^{1/2}$ values of 0.52V and 1.08V, respectively, although the $E_{\rm OX}$ - $E_{\rm red}$ are extremely large (0.82V for the first wave, and 0.59V for the second). Such high values are not typical of standard redox species, therefore, some doubt arises whether these peaks are actually related. A similar result is also seen with adduct 203, which displays only one single-electron reversible wave at 0.52V ($E_{\rm OX}$ - $E_{\rm red}$ = 0.75V). In summary, we have presented a collection of CV data which are in some cases predictable, and in others inexplicable. We are able to conclude from these results, however, that the π -delocalisation within the TTF moieties of the [4+2] adducts has been disturbed to the extent that the unique electrochemical properties of the donor have been essentially destroyed.

CHAPTER 5

NUCLEOPHILIC ADDITION OF TETRATHIAFULVALENYLLITHIUM TO ALDEHYDES AND KETONES

5.1 INTRODUCTION

Green^{74c} first demonstrated that TTF organolithium species 31 was a suitable reagent for nucleophilic addition to a carbonyl functionality yielding TTF-CH₂OH 37 (34%), from the reaction with formaldehyde. Remarkably, extension to other aldehydes and ketones had not been reported. In this chapter, we present a series of TTF derivatives prepared from the reaction of TTFLi 31 with a range of aldehydes and ketones. Results show that these TTF-anion reactions can proceed in excellent yield, to give highly functionalised redox active materials.

5.2 THE EFFICIENT SYNTHESIS OF HYDROXYMETHYL-TTF DERIVATIVES

The first new molecules to be synthesised in this family were compounds 217-220 (Scheme 5.1), which were isolated in good yield.

Scheme 5.1: (i) LDA, Et₂O, -78°C, 1h; (ii) RC(O)R', -78°C, 1h, then slowly to 20°C, H₂O.

These initial results established that ketones give a slightly better yield than aldehydes. This is probably due to the stability of the resulting compounds, since the secondary alcohols 217 and 218 are less stable than the tertiary compounds 219 and 220.

One decomposition pathway of the TTF alcohols involved the elimination of water. Compound 221, prepared from TTFLi 31 and cyclohexanone (44% yield, Scheme 5.2), slowly dehydrated under ambient conditions (¹H NMR spectroscopic evidence - the process is efficiently catalysed with the addition of HCl.Et₂O), to the cyclohexene derivative 222.

Scheme 5.2: (i) HCl.Et₂O, DCM, 1h.

We have also studied the feasibility for the TTF anion to perform 1,4-Michael addition reactions. TTFLi 31 and the cuprate complex, TTF₂CuLi 31' (which we assume was formed from the addition of cuprous chloride to 31), were reacted with methylvinylketone (Scheme 5.3); the only compound isolated in both cases was, however, the 1,2-addition product 223 (66% yield).

TTF
$$(i)$$
 (iii) $(i$

Scheme 5.3: (i) LDA, Et₂O, -78°C; (ii) LDA, Et₂O, -78°C, CuCl; (iii) CH₂=CHC(O)Me, H₂O.

TTFLi 31 reacted with carboxaldehyde 32, acetyl-TTF and benzoyl-TTF (the latter two prepared from the reaction of 31 with acetyl chloride and benzoyl chloride, respectively), to produce the bis-TTF compounds 224-226. Although several close-linked bis-TTF compounds (containing chalcogen, alkyl, aryl, silyl, phosphorus and mercuric spacer groups), have been synthesised in recent years, 124-136 none has hitherto been reported which bears functional groups which can be used in further syntheses. Methylation of 224, for instance, can be carried out in 75% yield to give the methyl ether 227 (Scheme 5.4).

Scheme 5.4: (i) TTFC(O)R; (ii) NaH, THF, 20°C, MeI.

Functionalised mixed redox-active systems have also been prepared by reacting TTFLi 31 with ferrocene carboxaldehyde, acetylferrocene and benzoylferrocene, to give compounds 228-230 (Scheme 5.5).

Scheme 5.5: (i) FcC(O)R.

In the structure of compound 229, deduced by X-ray crystallography, the asymmetric unit (Figure 5.1), comprises two molecules linked by an OH---O bond (O---O distance 3.075Å). In molecule A, the hydroxy H atom is directed towards the ferrocenyl moiety and probably forms an O-H---π bond with the unsubstituted Cp ring. There is also the possibility that the hydroxy H atom may be involved in an O-H---Fe bond: both types of hydrogen bonding have been extensively studied and identified by Epstein *et al.*, using IR spectroscopic techniques, with similar ferrocenylcarbinol compounds of general formula FcCH(R)OH.¹³⁷⁻¹⁴¹ In molecule B, whose OH group is engaged in an intermolecular H-bond, the unsubstituted ring is rotationally disordered. In both molecules, the ferrocene unit is almost perpendicular to the TTF ring; stacks are formed parallel to the [1 1 0] direction, with the ferrocene unit of each molecule sandwiched between the TTF moieties of the adjacent molecules, and *vice versa* (Figure 5.2).

The successful syntheses of the TTF alcohols provided us with a possible route towards a directly attached TTF-ferrocene derivative. Buchmeiser and Schottenberger¹⁴² have prepared the dimetallocene 232 in 21% yield, from ferrocenyl alcohol 231 (Scheme 5.6).

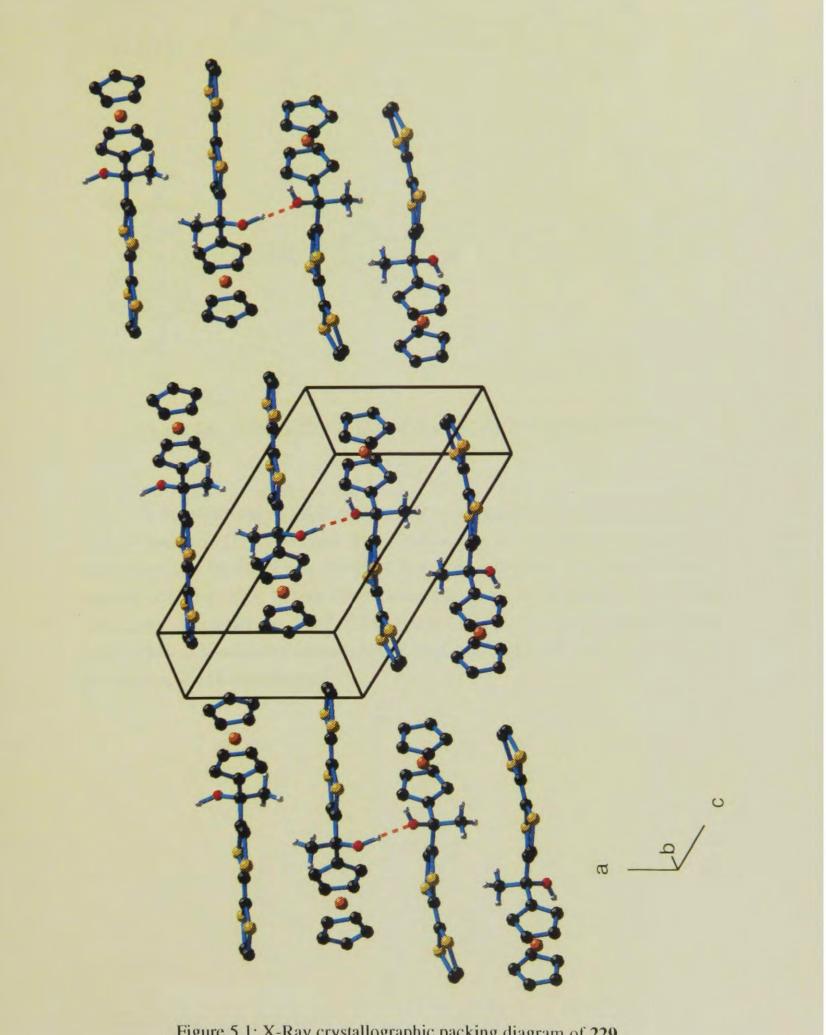


Figure 5.1: X-Ray crystallographic packing diagram of 229.

Scheme 5.6: (i) HBF4, Et2O; (ii) Na/NH3 then H2O; (iii) BuLi, Cp*Ru+.

In the same way, TTF derivative 233 was prepared from the reaction of 31 with fluorenone (77%, Scheme 5.7). Protonation of the hydroxy group, and subsequent loss of water, was attempted with tetrafluoroboric acid and also with a solution of HCl etherate. In both cases a black precipitate was obtained which refused to undergo hydride reduction to 235. Nonetheless evidence for the formation of TTF-cation 234 was provided by the isolation of ethyl ether 236 (33% yield), derived from the reaction of 234 with ethoxide.

Scheme 5.7: (i) HBF4 or HCl.Et₂O, Et₂O, 0.5h; (ii) NaBH4, MeCN, ⁱPrOH; (iii) Na, EtOH.

Another approach towards compound 235 involved the direct reduction of alcohol 233, using lithium aluminium hydride and aluminium chloride. Indeed, both benzoyl-TTF 237 and alcohol 218 can be reduced to benzyl-TTF 238 with the same reagents (Scheme 5.8). Reduction of 233 by LiAlH4/AlCl₃, however, produced a number of inseparable products; consequently, the use of fluorenyl species for the direct attachment of TTF to a ferrocene derivative was finally abandoned.

Scheme 5.8: (i) LiAlH4/AlCl3, Et2O, 20°C.

Because the TTF cations 234 were causing us many problems, our next attempts at synthesising directly-linked TTF-ferrocene compounds utilised the reliable dehydration process (e.g. 221→222) discussed earlier. Cyclopentene alcohol 240 was prepared in 60% yield from the reaction of TTFLi 31 with 2-cyclopenten-1-one 239 (Scheme 5.9). As expected, the 1,4-Michael product was not observed. Acid catalysed dehydration of 240 gave an orange oil in 90% yield; the molecule was assigned structure 242 although the mass spectrum was consistent with monomer species 241. The ¹H NMR spectrum of the product displayed a complex pattern of TTF protons, indicative of dimerisation between two cyclopentadienyl units of 241.

$$\begin{bmatrix} \mathsf{TTFLi} \\ \mathsf{31} \end{bmatrix} + \underbrace{\mathsf{O}} \\ \mathsf{239} \end{bmatrix}$$

$$240$$

$$\mathsf{TTF} \\ \mathsf{TTF}$$

$$\begin{bmatrix} \mathsf{S} \\ \mathsf{S} \end{bmatrix} \\ \mathsf{S} \end{bmatrix}$$

$$242$$

$$241$$

Scheme 5.9: (i) HCl.Et₂O, Et₂O, 20°C, 0.5h.

A similar problem was reported by Rieker et al., 143 who stated that cyclopentadienylferrocene rapidly dimerises even at 0°C. By substituting two of the hydrogen atoms with methyl groups, Plenio 144 found that compound 243 was much more stable, and could be handled at room temperature over several hours.

We, therefore, prepared TTF derivative 246, which was stable at room temperature for several weeks. The reaction of TTFLi 31 with 2,3,4,5-tetramethyl-2-cyclopentenone 244 (Scheme 5.9) gave alcohol 245 in 73% yield (Scheme 5.10), protonation of which, followed by elimination of water, produced 246 in 87% yield.

Scheme 5.10: (i) HCl.Et₂O, Et₂O, 20°C, 1h.

Deprotonation of 246, followed by complexation with Fe²⁺, was attempted using a range of bases and iron salts. Unfortunately, TTF-ferrocene derivative 247 was not detected from any of the methods used; 246 was recovered unchanged.

To probe whether or not dimerisation had taken place with the TTF-cyclopentadienyl derivatives, compounds 242 and 246 were treated, in turn, with dimethyl acetylenedicarboxylate. Only the starting material 242 was recovered after a reaction time of 4 hours in the first instance, whereas the [4+2] adduct 248 was isolated in 89% yield from the reaction with tetramethylcyclopentadienyl-TTF 246 (Scheme 5.11). It is also interesting to note that Diels-Alder [4+2] cycloaddition to 246 did not take place across the vinyl-TTF portion of the molecule.

Me Me
$$CO_2Me$$

S S S Me CO_2Me
 CO_2Me
 CO_2Me
 CO_2Me
 CO_2Me
 CO_2Me
 CO_2Me
 CO_2Me
 CO_2Me

Scheme 5.11: (i) DMAD, PhMe, 50°C, 4h.

5.3 CV DATA AND DISCUSSION

The CV data of a selection of TTF compounds presented in this chapter are collated in Table 5.1, with sample voltammograms shown in Figure 5.2. Two reversible single-electron oxidation waves are seen for each molecule at redox values similar to those of TTF (with the exception of 238 whose two redox values are both higher by ca. 0.3V), with small deviations either side of $E_1^{1/2}$ and $E_2^{1/2}$. Donors 224-226 in each case display a small shoulder at $E_1^{1/2}$ - the second TTF unit is oxidised at a slightly higher potential due to Coulombic repulsion; the second oxidation of each TTF unit, however, occurs simultaneously. Compounds 228-230 display an additional third wave corresponding to the oxidation of the ferrocene unit, 0.47V-0.52V. Finally, the similarity of the voltammogram of compound 248 with TTF itself provides further evidence that the molecule is derived from a [4+2] cycloaddition reaction involving the cyclopentadiene unit, rather than the vinyl-TTF portion (c.f. the voltammograms of various adducts, Figure 4.2).

Molecule	R and R' in TTFCR(OH)R' where applicable	<u>E₁^{1/2}/V</u>	E ₂ 1/2/V	<u>E₃^{1/2}/V</u>
218	H, Ph	0.31	0.70	(
219	Me, Me	0.24	0.63	
220	Ph, Ph	0.35	0.76	1044
221	'Cyclohexyl'	0.27	0.68	
222	see page 96	0.30	0.70	(122
224	H, TTF	0.36	0.76	
225	Me, TTF	0.32	0.74	
226	Ph, TTF	0.36	0.75	444
227	see page 97	0.43	0.85	
228	H, Fc	0.28	0.47	0.72
229	Me, Fc	0.29	0.51	0.75
230	Ph, Fc	0.29	0.52	0.75
233	'Fluorenyl'	0.38	0.79	
238	see page 101	0.60	1.06	-22
245	see page 103	0.37	0.74	4-4
248	see page 104	0.38	0.78	

Table 5.1: Cyclic voltammetric data; Pt working electrode, Pt gauze counter electrode, Ag/AgCl reference electrode, 0.2 mol dm⁻³ nBu₄N⁺PF₆⁻, 10⁻⁴ mol dm⁻³ compound in dry acetonitrile, under nitrogen or argon at 20°C, with iR compensation. All waves represent a reversible, one electron process.

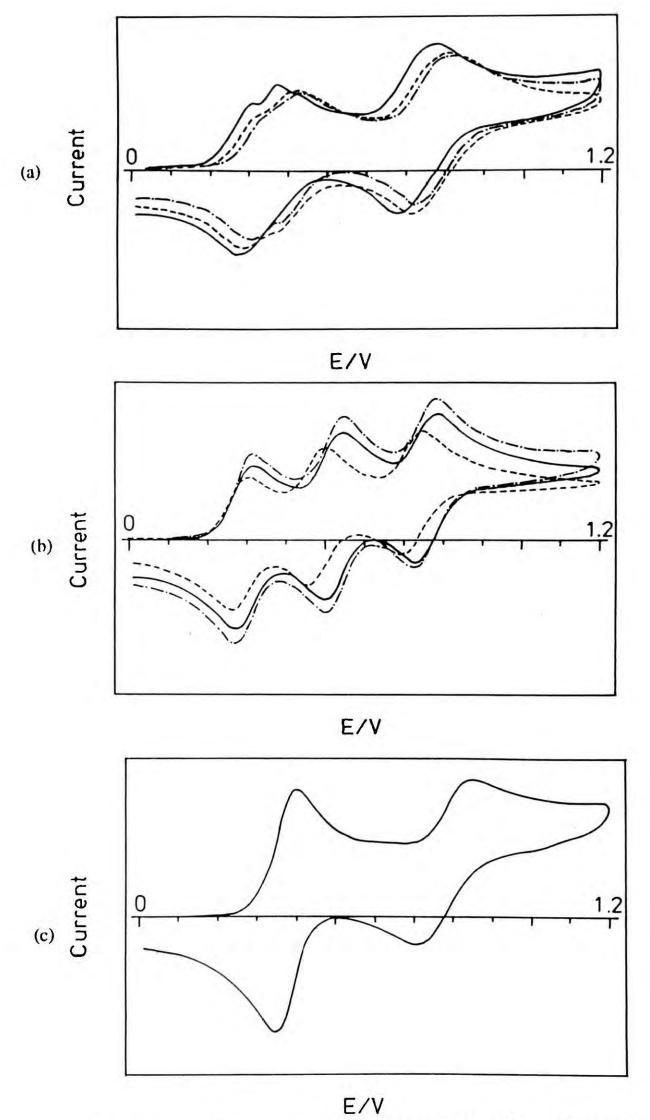


Figure 5.2: Cyclic voltammograms of compounds (a) 224 [----] 225 [----] and 226 [-----]; (b) 228 [-----], 229 [-----] and 230 [------]; (c) 248 [-----].

5.4 CONDUCTING AND MAGNETIC PROPERTIES OF CHARGE TRANSFER SALT 250

Donor 229 formed a charge transfer complex with chloranil 249 to form a salt 250, of 2:1 stoichiometry (229:249). The resulting powder gave a room temperature compressed pellet conductivity of $\sigma_{rt} = 4 \times 10^{-4} \text{Scm}^{-1}$.

249

Variable temperature magnetic susceptibility data have been obtained for 250, and are plotted against temperature as direct (Figure 5.3a) and inverse (Figure 5.3b) functions. The complex shows Curie-Weiss behaviour between ca.90-40K; below 40K the material exhibits some form of ferromagnetic ordering. Further detailed investigations into the magnetic behaviour of 250 and other complexes of 229 are currently being made.

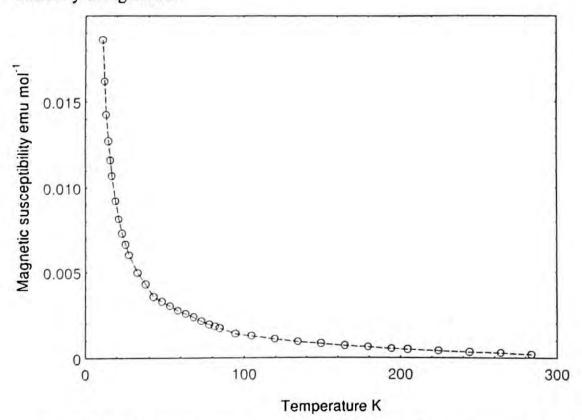


Figure 5.3a: Variable magnetic susceptibility data of complex 250 vs temperature.

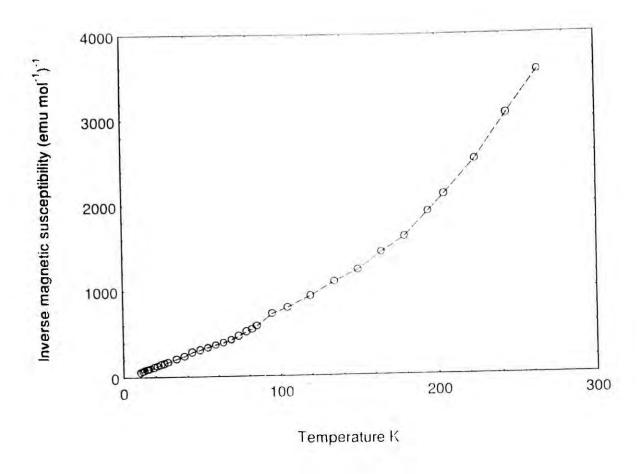


Figure 5.3b: Inverse variable magnetic susceptibility data of complex 250 vs temperature.

CHAPTER 6

EXPERIMENTAL SECTION

6.1 GENERAL METHODS

Melting points were recorded on a Kofler hot-stage microscope apparatus and are uncorrected.

Infra-red spectra were recorded on Perkin-Elmer 377, 547, 577 and 1720 FT-IR spectrophotometers; samples were embedded in KBr discs, Nujol mulls or analysed neat between KBr plates, as indicated.

¹H NMR spectra were recorded on Bruker AC 250, Varian Gemini 200 and XL 200 instruments. ¹³C NMR spectra were recorded on a Varian Unity 500 spectrometer. Chemical shifts are quoted in ppm, relative to tetramethylsilane (TMS) as internal reference (0 ppm).

Mass spectra were obtained on VG 7070E and Varian MAT 311A instruments, with ionisation modes as indicated; ammonia was used as the impingent gas for chemical ionisation mode.

Elemental analyses were performed on a Carlo-Erba Strumentazione.

UV spectra were recorded on a Unicam UV2-100 spectrometer.

CV spectra were recorded using a BAS 100 electrochemical analyser. The experiments were performed in a one-compartment cell with platinum working and counter electrodes and a silver/silver chloride reference electrode. Further experimental detail is given in the corresponding CV section of each relevant chapter.

The conductivity measurement presented in section 5.4 was performed on a powdered sample and was obtained using the two-probe technique; the sample was manually compressed between two steel probes and the sample resistance measured with a Fluke 8000A Digital Multimeter.

Bulk magnetic susceptibility data were obtained using a Faraday balance.

Column chromatography was carried out using Merck silica gel (70-230 mesh) or Merck alumina (activity II to III, 70-230 mesh), the latter neutralised by pre-soaking in ethyl acetate for 24 h.

All reactions were carried out under a nitrogen atmosphere, the inert gas firstly being dried by passing through a column of phosphorus pentoxide. Solvents were dried over and distilled from the following reagents, under a dry nitrogen atmosphere: diethyl ether and THF (sodium metal); toluene (lithium aluminium hydride);

chlorocarbons (phosphorus pentoxide); acetonitrile (calcium hydride); acetone (potassium carbonate); methanol (magnesium methoxide) and ethanol (magnesium ethoxide).

LDA and BuLi were used as solutions in hexanes. All other reagents were reagent grade and used as supplied, unless otherwise stated.

6.2 EXPERIMENTAL TO CHAPTER 2

4-[2-(N-Phenylcarbamoyloxy)ethylsulfanyl]tetrathiafulvalene 86

To a solution of 51^{82} (50mg, 0.18mmol) in dichloromethane (30ml) was added phenylisocyanate (0.018ml, 0.17mmol), followed by triethylamine (0.25ml, excess). The reaction was stirred at 20°C for 24h. Water was added, and the organic layer separated, dried (MgSO₄), filtered and evaporated under reduced pressure. The residue was chromatographed on a neutral alumina column, with cyclohexane-dichloromethane (3:1 v/v) as eluent to afford product **86**, which was crystallised from methanol-ether, as a yellow solid (40mg, 56% yield); m.p. 86-88°C (Found: C, 45.1; H, 3.3; N, 3.9. $C_{15}H_{13}NO_2S_5$ requires C, 45.0; H, 3.5; N, 3.8%); m/z (DCI) 400 (M⁺+1), HRMS found 398.9786, $C_{15}H_{13}NO_2S_5$ requires 398.9550; δ_H (CDCl₃) 7.5-7.1 (5H, m) 6.43 (1H, s), 6.32 (2H, s), 4.38 (1H, s), 4.24 (2H, m) and 3.03 (2H, t, J 6.0 Hz); v_{max} (Nujol)/cm⁻¹ 3345, 2930, 1708, 1531, 1449 and 1232.

4-{2-[N-(2-Chloroethyl)carbamoyloxy]ethylsulfanyl}tetrathiafulvalene 87

To a solution of 51^{82} (80mg, 0.29mmol) in dichloromethane (30ml) was added chloroethylisocyanate (0.025ml, 0.29mmol), followed by triethylamine (0.25ml, excess). The reaction to stirred at 20°C for 24h. Aqueous work-up and chromatography, as described for **86** afforded product **87**, which was crystallised from methanol-ether, as a yellow solid (70mg, 63% yield); m.p. 74-77°C (Found: C, 34.5; H, 2.6; N, 3.8. $C_{15}H_{12}ClNO_2S_5$ requires C, 34.3; H, 2.6; N, 3.6%); m/z (DCI) 388, 386 (M⁺+1), HRMS found 384.8992, $C_{15}H_{12}ClNO_2S_5$ requires 384.9160; δ_H (CDCl₃) 6.43 (1H, s), 6.32 (2H, s), 5.13 (1H, s), 4.27 (2H, t, *J* 6.1 Hz), 3.59 (2H, m), 3.52 (2H, t, *J* 5.2 Hz) and 2.98 (2H, t, *J* 6.2 Hz); υ_{max} (Nujol)/cm⁻¹ 3140, 2962, 1700, 1519,1462 and 1258.

4,5-(Ethylenedisulfanyl)tetrathiafulvalene 88

To an ethereal slurry of anion 31 [obtained from tetrathiafulvalene 1 (250mg, 1.23mmol) and LDA (0.85ml, 1.5M, 1.28mmol)] at -78°C was added elemental sulfur (60mg, 1.84mmol); the mixture was stirred at this temperature for 7h, before the

addition of 1,2-dibromoethane (0.1ml, 1.23mmol). After a further 16h water was added, and the organic layer separated, dried (MgSO4) and evaporated under reduced pressure. Column chromatography on silica gel using cyclohexane-toluene (3:1 v/v) as eluent afforded 88 as an orange solid, recrystallised from dichloromethane-hexane (95mg, 26%); m.p. 199°C (lit. 96 200°C) (Found: C, 32.4; H, 2.1. C₈H₆S₆ requires C, 32.7; H, 2.0%).

4,5-(Ethylenediseleno)tetrathiafulvalene 89

To an ethereal slurry of anion 31 [obtained from tetrathiafulvalene 1 (250mg, 1.23mmol) and LDA (0.85ml, 1.5M, 1.28mmol)] at -78°C was added elemental selenium (145mg, 1.84mmol); the mixture was stirred at this temperature for 7h, before the addition of 1,2-dibromoethane (0.1ml, 1.23mmol). After a further 16h water was added, and the organic layer separated, dried (MgSO4) and evaporated under reduced pressure. Column chromatography on silica gel using dichloromethane-hexane (1:1 v/v) as eluent afforded 89 an orange-brown solid, which was recrystallised from dichloromethane-hexane (83mg, 18%); m.p. 194-197°C (lit. 145 195°C) (Found: C, 33.3; H, 2.7. C₈H₆S₄Se₂ requires C, 33.3; H, 2.8%).

4.5-Bis(2-hydroxyethylsulfanyl)tetrathiafulvalene 90

To an ethereal slurry of anion 31 [obtained from tetrathiafulvalene 1 (250mg, 1.23mmol) and LDA (0.85ml, 1.5M, 1.28mmol)] at -78°C was added elemental sulfur (120mg, 3.75mmol); the mixture was stirred at this temperature for 7h, before the addition of 2-bromoethanol (1.0ml, 15mmol). After a further 16h water was added, and the organic layer separated, dried (MgSO4) and evaporated under reduced pressure. Column chromatography on silica gel using dichloromethane-ethyl acetate (1:1 v/v) as eluent afforded firstly 51^{82} (110mg, 32%) followed by product 90, which was crystallised from methanol as a yellow-orange solid (87mg, 20%); m.p. 98-101°C (Found: C, 33.7; H, 3.4. $C_{10}H_{12}O_2S_6$ requires C, 33.7; H, 3.4%); m/z (DCI) 357 (M⁺+1), HRMS found 355.9091, $C_{10}H_{12}O_2S_6$ requires 355.9162; $\delta_{\rm H}$ (CDCl₃) 6.34 (2H, s), 3.75 (4H, q, J 4.5 Hz), 3.01 (4H, t, J 3.0 Hz), and 2.90 (2H, t, J 6.1 Hz); $\delta_{\rm C}$ (CDCl₃) 128.2, 118.9, 116.9, 104.5, 59.8, and 39.2; $\upsilon_{\rm max}$ (KBr)/cm⁻¹ 3277, 2921, 2860, 1287, 1068 and 642.

4-Hexylselenotetrathiafulvalene 93 and 4,5-Bis(hexylseleno)tetrathiafulvalene 94

To an ethereal slurry of anion 31 [obtained from tetrathiafulvalene 1 (180mg, 0.88mmol) and LDA (0.60ml, 1.5M, 0.90mmol)] at -78°C was added elemental ground selenium (200mg, 2.53mmol); the mixture was stirred at this temperature for 7h, before the addition of tosyl hexane (0.25ml, 1.25mmol). After a further 16h water was added, and the organic layer separated, dried (MgSO4) and evaporated under

reduced pressure. Column chromatography on silica gel using cyclohexane-toluene (3:1 v/v) as eluent afforded a brown oil 93 (40mg, 13% yield) as well as a small amount of 94 (10mg, 2%), also as a brown oil; m/z (DCI) (369, 267, 103) and (533, 281, 103) (M^++1), respectively.

4,5-Bis(2-acetyloxyethylsulfanyl)-1,3-dithiole-2-thione 96

To a solution of 74^{83} (500mg, 1.75mmol) in dichloromethane (30ml) was added acetyl chloride (0.25ml, 3.52mmol), followed by triethylamine (0.5ml). The reaction was stirred at 20°C for 24h. The mixture was washed with water and the organic layer separated, dried (MgSO4), and evaporated under reduced pressure. Column chromatography on neutral alumina using dichloromethane as the eluent afforded **96** as a brown oil (590mg, 91% yield); m/z (DCI) 371 (M⁺+1); δ_H (CDCl₃) 4.29 (2H, t, J 6.3 Hz), 3.13 (2H, t, J 6.4 Hz), and 2.09 (3H, s); υ_{max} (KBr)/cm⁻¹ 2930, 1740, 1385, 1228, 1063 and 1030.

4,5-Bis(2-benzoyloxyethylsulfanyl)-1,2-dithiole-2-thione 99

To a solution of 74^{83} (1.1g, 3.85mmol) in dichloromethane (40ml) was added benzoyl chloride (1ml, 8.61mmol), followed by triethylamine (1ml). The reaction was allowed to stir at 20°C for 24h. Aqueous work-up and chromatography as described for 96 yielded an orange solid, which was recrystallised from dichloromethane-hexane to give 99 (1.18g, 62% yield); m.p. 85-87°C (Found: C, 51.4; H, 3.8. $C_{21}H_{18}O_4S_5$ requires C, 51.0; H, 3.7%); m/z (DCI) 495 (M⁺+1); δ_H (CDCl₃) 8.18-7.30 (10H, m), 4.52 (4H, t, J 6.2 Hz) and 3.23 (4H, t, J 6.2 Hz); υ_{max} (KBr)/cm⁻¹ 1722, 1272, 1112, 1098, 1061 and 709.

4,5-Bis(2-benzoyloxyethylsulfanyl)-1,3-dithiole-2-one 100

To a solution of **99** (750mg, 1.52mmol) in chloroform-acetic acid (3:1 v/v; 80ml), was added mercuric acetate (800mg, 2.51mmol), and the reaction was stirred at 20°C for 2h. The reaction mixture was washed sequentially with water (3 x 30ml), and sodium bicarbonate solution (to neutrality), and then dried (MgSO₄). The solvent was evaporated under reduced pressure, to give crude **100** as a pale yellow semi-solid inseparable from unreacted **99** (TLC evidence) (560mg, 76% combined yield); *m/z* (DCI) 479 (M⁺+1); v_{max} (KBr)/cm⁻¹ 1715, 1664, 1272, 1111, 882 and 711.

4,5-Bis(methylsulfanyl)-4',5'-bis(2-hydroxyethylsulfanyl)tetrathiafulvalene 102

To a solution of sodium ethoxide [generated from sodium metal (0.01, 4.3mmol)] in ethanol, at -10°C, was added 103 (100mg, 0.15mmol). After stirring for 4h at 20°C water was added, the product extracted into dichloromethane, and the organic layer separated and dried (MgSO₄). Column chromatography using silica gel

and ethyl acetate-dichloromethane (1:1 v/v) as the eluting solvent gave **102** as a yellow solid, which was recrystallised from dichloromethane-hexane (60mg, 88% yield); m.p. 111-112°C (Found: C, 32.1; H, 3.5. $C_{12}H_{16}O_2S_8$ requires C, 32.1; H, 3.6%); m/z (DCI) 448 (M⁺+1); δ_H (CDCl₃) 3.77 (4H, t, J 5.3 Hz), 3.03 (4H, t, J 5.4 Hz), 2.45 (3H, s) and 1.62 (2H, s); υ_{max} (KBr)/cm⁻¹ 3320, 2916, 1064, 1047, 890 and 770.

4.5-Bis(Methylsulfanyl)-4',5'-bis(2-benzoyloxyethylsulfanyl)tetrathiafulvalene 103

To a mixture of **100** (contaminated with **99**) (500mg, 1.05mmol) and **95b** (240mg, 1.06mmol), was added of freshly distilled triethylphosphite (3ml). The reaction was stirred under reflux for 4h. The resulting mixture was placed on a neutral alumina column, whuch was flushed with hexane to remove the triethylphosphite. Finally, using dichloromethane as the eluting solvent, **103** was obtained as an orangebrown oil (100mg, 15% yield based on pure **100**); m/z (DCI) 657 (M⁺+1), HRMS found 655.9534, $C_{26}H_{24}O_4S_8$ requires 655.9441; δ_H (CDCl₃) 8.03-7.38 (10H, m), 4.49 (4H, t, J 6.2 Hz), 3.17 (4H, t, J 6.2 Hz), and 2.43 (6H, s); $\upsilon_{max}(neat)/cm^{-1}$ 2921, 1719, 1451, 1269, 1111 and 709.

4,5-Bis[2-(tert-butyldiphenylsiloxy)ethylsulfanyl]-1,3-dithiole-2-thione 104

To a solution of 74^{83} (5.38g, 18.8mmol) in dimethylformamide (60ml), was added ^tbutyldiphenylsilyl chloride (6.2g, 22.5mmol) followed by imidazole (2.6g, 38.2mmol). The reaction was stirred at 20°C for 16 h, after which water was added and the product extracted into dichloromethane. After drying the organic layer (MgSO₄), column chromatography using silica gel and dichloromethane as the eluting solvent gave 104 as an orange oil (13.20g, 92% yield); $\delta_{\rm H}$ (CDCl₃) 7.67-7.38 (20H, m), 3.80 (4H, t), 2.93 (4H, t) and 1.07 (18H, m).

4,5-Bis[2-(tert-butyldiphenylsiloxy)ethylsulfanyl]-1,3-dithiole-2-one 105

To a solution of **104** (13.20g, 17.3mmol) in chloroform-acetic acid (3:1 v/v; 250ml), was added mercuric acetate (9.60g, 30.1mmol), and the reaction was stirred at 20°C for 16h. The reaction mixture was washed with water (3 x 30ml), sodium bicarbonate solution (to neutrality), and finally dried (MgSO4). The solvent was evaporated under reduced pressure, to give **105** as an orange oil inseparable from unreacted **104** (TLC evidence) (10.9g, 84% combined yield); δ_H (CDCl₃) 7.67-7.38 (20H, m), 3.80 (4H, t), 2.93 (4H, t) and 1.07 (18H, m); υ_{max} (KBr)/cm⁻¹ 2920, 2848, 1670, 1430, 1124 and 701.

4,5-Bis[2-(tert-butyldiphenylsiloxy)ethylsulfanyl]tetrathiafulvalene 106 and 4,5-Bis(2-hydroxyethylsulfanyl)tetrathiafulvalene 90

To a mixture of 105 (10.90g, 14.61mmol) and vinylenetrithiocarbonate 95a (1.96g, 14.63mmol), was added freshly distilled triethylphosphite (10ml, excess). The reaction was stirred at 60°C for 16h. The resulting mixture was placed on a silica column, and flushed with hexane to remove the triethylphosphite, then, using dichloromethane-cyclohexane (1:1 v/v) as the eluting solvent, an orange brown solid was obtained which was primarily 106 that was inseparable from a minor amount of other coupling products (TLC evidence) and residual triethylphosphite (1.20g combined yield). After addition of tetrabutylammonium fluoride (20ml, 1.0M, 20.0mmol.) to a solution of this mixture in THF (40ml), the reaction was stirred at 20°C for 16h; water was then added and the product extracted into dichloromethane. The organic layer was separated, dried (MgSO4) and evaporated under reduced pressure. Column chromatography using silica gel and, initially, dichloromethane, then dichloromethane-ethyl acetate (1:1 v/v) as the eluting solvent afforded a yellow-orange solid (2.01g, 39% yield) possessing identical melting point and NMR spectra to compound 90, previously prepared directly from TTF.

1{[2,2'-Bi (1,3-dithiolylidene)-4-yl]carbonyl}ferrocene 120

To an ethereal slurry of anion 31 [obtained from tetrathiafulvalene 1 (250mg, 1.23mmol) and LDA (0.85ml, 1.5M, 1.28mmol)] in ether (30ml) at -78°C was added ferrocenecarbonyl chloride 118^{102} (400mg, 1.61mmol) and the reaction was warmed to 20°C and stirred at this temperature for 4h. The mixture was washed with water and the organic layer separated, dried (MgSO4), and evaporated under reduced pressure. Column chromatography on silica gel using hexane-toluene (3:1 v/v) as eluent afforded 120 as a purple solid, which was recystallised from dichloromethane-hexane (50mg, 10% yield); m.p. 181-184°C (Found: C, 49.0; H, 2.9. $C_{17}H_{12}FeOS_4$ requires C, 49.0; H, 2.9%); m/z (DCI) 417 (M⁺+1); δ_H (CDCl₃) 7.45 (1H, s), 6.34 (2H, m), 4.87 (2H, m), 4.57 (2H, m) and 4.24 (5H, s); v_{max} (KBr)/cm⁻¹ 1593, 1451, 1301, 1137, 772 and 644.

1{[2,2'-Bi (1,3-dithiolylidene)-4-yl]sulfanylcarbonyl}ferrocene 121

To a suspension of 5282 (200mg, 0.59mmol) in ethanol (30ml) at -10°C was added sodium ethoxide in ethanol (from sodium metal, 13mg, 0.57mmol), and the mixture was stirred at -10°C for 30min. Compound 118¹⁰² (300mg, 1.21mmol), was then added and the temperature maintained at -10°C for a further 30min. The reaction was evaporated under reduced pressure, and the residue taken up into dichloromethane. Water was added, the organic layer separated, dried (MgSO₄), and evaporated. Purification using column chromatography on silica gel with cyclohexane-

dichloromethane (3:1 v/v) as the eluting solvent, afforded 121 as an orange solid which was recrystallised from dichloromethane-hexane (70mg, 27% yield); m.p. 159-161°C (Found: C, 45.4; H, 2.7. $C_{17}H_{12}FeOS_5$ requires C, 45.5; H, 2.7%); m/z (DCI) 449 (M⁺+1); δ_H (CDCl₃) 6.54 (1H, s), 6.32 (2H, m), 4.85 (2H, m), 4.56 (2H, m) and 4.28 (5H, s); υ_{max} (KBr)/cm⁻¹ 1731, 1676, 1242, 1048, 806 and 659.

1-{2-[2,2'-Bi (1,3-dithiolylidene)-4-yl]sulfanylethyloxycarbonyl}ferrocene 122

To a solution of 51^{82} (200mg, 0.71mmol) in dichloromethane (30ml) was added ferrocenecarbonyl chloride 118^{102} (300mg, 1.21mmol), followed by triethylamine (0.5ml). The reaction was stirred at 20°C for 24h. After evaporating the solvent under reduced pressure, purification using column chromatography on neutral alumina and dichloromethane as the eluent afforded 122 as an orange solid, which was recrystallised from dichloromethane-hexane (280mg, 80% yield); m.p. 87-89°C (Found: C, 46.5; H, 3.3. $C_{19}H_{16}FeO_2S_5$ requires C, 46.3; H, 3.3%); m/z (DCI) 493 (M⁺+1); δ_H (CDCl₃) 6.47 (1H, s), 6.31 (2H, s), 4.79 (2H, t, J 2.0 Hz), 4.39 (4H, m), 4.21 (5H, s) and 3.06 (2H, t, J 6.2 Hz); v_{max} (KBr)/cm⁻¹ 1697, 1449, 1263, 1121, 761 and 652.

4.5-{Bis{2-[1-cyclopentadienyl(cyclopentadienyl)iron]carbonyloxy}ethylsulfan-yl)}tetrathiafulvalene 123

To a solution of **90** (180mg, 0.51mmol) in dichloromethane (20ml) was added ferrocenecarbonyl chloride **118**¹⁰² (400mg, 1.61mmol), followed by triethylamine (0.5ml). The reaction was stirred at 20°C for 24h. Work-up and purification as for **122** afforded **123** as an orange oil (260mg, 59% yield); m/z (DCI) 781 (M⁺+1), HRMS found 779.9015, $C_{32}H_{28}Fe_2O_4S_6$ requires 779.9011; δ_H (CDCl₃) 6.34 (2H, s), 4.81 (4H, m), 4.39 (8H, m), 4.22 (10H, s) and 3.16 (4H, t, J 6.3 Hz); δ_C (CDCl₃) 172.0, 128.6, 119.5, 117.4, 105.2, 72.0, 70.8, 70.4, 63.3, 62.3, and 35.5; υ_{max} (KBr)/cm⁻¹ 1715, 1460, 1384, 1275, 1133 and 822.

4.5-{Bis{2-[1-cyclopentadienyl(cyclopentadienyl)iron]carbonyloxy}ethylthio)}-1,3-dithiole-2-thione 124

To a solution of 74^{83} (300mg, 1.05mmol) in dichloromethane (50ml) was added ferrocenecarbonyl chloride 118^{102} (700mg, 2.82mmol), followed by triethylamine (0.5ml). The reaction was stirred at 20°C for 24h. Work-up and purification as for 122 afforded 124 as an orange oil (480mg, 64% yield); m/z (DCI) 711 (M⁺+1); $\delta_{\rm H}$ (CDCl₃), 4.83 (2H, m), 4.45 (4H, m), 4.24 (5H, s) and 3.24 (2H, t); $\upsilon_{\rm max}$ (KBr)/cm⁻¹ 2926, 1713, 1462, 1272, 1134 and 1067.

1,1'-Bis{2-[2,2'-bi(1,3-dithiolylidene)-4-yl]sulfanylethyloxycarbonyl}ferrocene 128

To a solution of 51^{82} (500mg, 1.79mmol) in dichloromethane (30ml) was added compound 119^{103} (250mg, 0.80mmol), followed by triethylamine (0.5ml). The reaction was allowed to stir at 20°C for 24h. Work-up and purification as for 122 afforded 128 as an orange solid, which was recrystallised from dichloromethane-hexane (80mg, 11% yield); m.p. 81-83°C (Found: C, 42.3; H, 2.8. $C_{28}H_{22}FeO_4S_{10}$ requires C, 42.1; H, 2.8%); m/z (DCI) 799 (M⁺+1); δ_H (d₆ acetone) 6.82 (2H, s), 6.65 (4H, s), 4.84 (4H, m), 4.52 (4H, m), 4.46 (4H, t, J 6.2 Hz) and 3.23 (4H, t, J 6.3 Hz); υ_{max} (KBr)/cm⁻¹ 1714, 1463, 1277, 1137, 795 and 772.

1,1'-Bis{[2,2'-bi(1,3-dithiolylidene)-4-yl]methyloxycarbonyl}ferrocene 129

To a solution of 37^{76} (500mg, 2.13mmol) in dichloromethane (50ml) was added compound 119^{103} (310mg, 1.00mmol) followed by triethylamine (1ml), and the reaction stirred at 20°C for 16h. After evaporating the solvent under reduced pressure, purification using column chromatography with silica gel and dichloromethane-hexane (2:1 v/v) as the eluent afforded 129 as an orange-red solid, which was recrystallised from dichloromethane-hexane (457mg, 65%); m.p. 182-184°C (Found: C, 44.4; H, 2.7. $C_{26}H_{18}FeO_4S_8$ requires C, 44.2; H, 2.6%); m/z (DCI) 707 (M⁺+1); δ_H (CDCl₃) 6.43 (2H, s), 6.30 (4H, s), 4.96 (4H, m), 4.87 (4H, m) and 4.48 (4H, m); v_{max} (KBr)/cm⁻¹ 3050, 1705, 1458, 1269, 1123 and 653.

1-{2-[2,2'-Bi (1,3-dithiolylidene)-4-yl]sulfanylethyloxycarbonylmethyl}ferrocene 132

To a solution of 51^{82} (200mg, 0.71mmol) in dichloromethane (20ml) was added 131 (300mg, 1.14mmol), followed by triethylamine (0.5ml). The reaction was allowed to stir at 20°C for 16h. Work-up and purification as for 122 afforded 132 as an orange-brown oil (30mg, 8% yield); m/z (DCI) 507 (M⁺+1); $\delta_{\rm H}$ (CDCl₃) 6.43 (1H, s), 6.32 (2H, s), 4.32-4.10 (11H, m), 3.37 (2H, s) and 2.99 (2H, t, J 6.3 Hz).

4,4'(5')-diformyltetrathiafulvalene 136

To a solution of TTF 1 (600mg, 2.94mmol) in ether (50ml) was added LDA (7.9ml, 1.5M, 11.85mmol) at -78°C. After 2h of stirring at this temperature, N-methylformanilide (0.90ml, 7.29mmol) was added, and the reaction was stirred for a further 1h, at -78°C, before warming to room temperature. Water was added to the reaction mixture, followed by conc. HCl (5 drops), and the mixture was filtered through a sintered glass funnel. The precipitate was washed with dichloromethane (5 x 30ml), and finally dried under reduced pressure to give 136 as a dark purple solid needing no further purification (300mg, 40% yield); m.p. >250°C (Found: C, 37.2; H, 1.8. $C_{28}H_{22}FeO_4S_{10}$ requires C, 36.9; H, 1.6%); m/z (DCl) 261 (M^++1); δ_H (d_6

DMSO) 9.54 (2H, s), 8.28 (1H, s), and 8.27 (1H, s); v_{max} (KBr)/cm⁻¹ 1641, 1527, 1232, 1140, 840 and 642.

trans-1-{2-[2,2'-bi(1,3-dithiolylidene)-4-yl]vinyl}ferrocene 137

To a solution of 134^{104} (3.5g, 5.96mmol) in THF (50ml) at -78°C, was added butyllithium (3.7ml, 1.6M, 6.00mmol). After 15min., 32 (1g, 4.31mmol) was added and the reaction left to warm to room temperature for 24h. The mixture was evaporated under reduced pressure, and the residue extracted into dichloromethane. Water was added, the organic layer separated, dried (MgSO4), and evaporated. Purification using column chromatography on silica gel with cyclohexane-dichloromethane (3:1 v/v) as the eluent, afforded a mixture of *cis* and *trans* isomers of 137 (1.28g, 72% yield). The *trans* isomer was isolated pure by fractional recrystallisation from toluene as a purple solid (1.03g, 58% yield); m.p. 186-187°C (Found: C, 52.4; H, 3.5. $C_{18}H_{14}FeS_4$ requires C, 52.2; H, 3.4%); m/z (DCI) 415 (M⁺+1); δ_H (d₆ acetone) 6.77 and 6.69 (1H, d, J 15.8 Hz), 6.65 (2H, s), 6.58 (1H, s), 6.29 and 6.21 (1H, d, J 15.5 Hz), 4.52 (2H, m), 4.32 (2H, m), and 4.14 (5H, s).

4,4'(5')-Bis{2-[1-cyclopentadienyl(cyclopentadienyl)iron]vinyl}tetrathiafulvalene 138

To a solution of 134^{104} (2.0g, 3.41mmol) in THF (60ml), at 20°C, was added butyllithium (2.2m 1.6M, 3.52mmol), and the ylide was left to form for 30min. After this time 136 (300mg, 1.15mmol) was added, and the reaction temperature was raised to 20°C, remaining so for 16h. The reaction mixture was evaporated under reduced pressure, and the residue extracted into dichloromethane. Water was added, the organic layer separated, dried (MgSO₄), and evaporated. Purification using column chromatography on silica gel with hexane-dichloromethane (3:1 v/v) as the eluent, afforded 138 as a dark orange oil (220mg, 30% yield); m/z (DCI) 625 (M⁺+1), HRMS found 623.9441, $C_{30}H_{24}Fe_2S_4$ requires 623.9460; δ_H (d₆ acetone) 6.80-6.02 (6H, m), 4.51 (4H, m), 4.31 (4H, m) and 4.15 (10H, m). The isomers could not be separated by chromatography or recrystallisation.

1,1'-Bis(N,N,N-trimethylaminomethyl)ferrocene diiodide 139

To a solution of **110** (0.90g, 3.00mmol) in acetonitrile (10ml) was slowly added methyliodide [4.5ml, 72.3mmol, in MeCN (10ml)], at 0°C. The reaction was stirred at 0°C for a further 6h. The crude solution was then cooled to -5°C before pouring into ether (100ml). The suspension was filtered, and the precipitate washed sequentially with ice-cold acetonitrile (20ml), and ether (3 x 30ml), to afford salt **139** as a yellow solid (1.10g, 63% yield); (Found: C, 37.4; H, 5.3; N, 4.7. C₁₈H₃₀FeI₂N₂ requires C, 37.0; H, 5.1; N, 4.8%).

1,1'-Bis[(triphenylphosphonium)methyl]ferrocene dibromide 143

A solution of 141 (1.72g, 6.99mmol) in ether (150ml) was cooled to 0°C; phosphorus tribromide (1.10ml, 11.57mmol) was slowly added, and the reaction warmed to room temperature with stirring for 6h. Triphenylphosphine (6.00g, 22.90mmol) was then added and the mixture stirred for a further 16h. The suspension was filtered and the preciptate washed with ether (10 x 50ml) to afford 143 as a yellow solid (3.50g, 56% yield); (Found: C, 64.1; H, 4.8. C₄₈H₄₂Br₂FeP₂ requires C, 64.3; H, 4.7%).

1,1'-Bis{2-[2,2'-bi(1,3-dithiolylidene)-4-yl]vinyl}ferrocene 145

To a suspension of 143 (250mg, 0.28mmol) in THF (50ml) was added butyllithium (0.35ml, 1.6M, 0.56mmol) at 20°C. The ylide was left to form for 30min whence 32 (150mg, 0.65mmol) was added, and the reaction was then stirred for 16h at 20°C. The mixture was evaporated under reduced pressure, and the residue taken up into dichloromethane. Water was added, the organic layer separated, dried (MgSO₄), and evaporated. Column chromatography using neutral alumina and toluene as the eluent afforded an orange oil constituting a mixture of three isomers of 145 as seen by 1 H NMR (75mg, 42% yield); m/z (EI) 642, HRMS found 641.8536, $C_{26}H_{18}FeS_{8}$ requires 641.8524; δ_{H} (CDCl₃) 6.49-5.92 (10H, m) and 4.44-4.23 (8H, m).

trans, trans-1,1'-Bis{2-[(1,3-dithiole-2-thione)-4-yl]vinyl}ferrocene 150

To a suspension of 149^{110} (500mg, 1.02mmol) in THF (60ml) was added ⁿBuLi (0.75ml, 1.6M, 1.20mmol), at -78°C, and the reaction stirred at this temperature for 2h. 1,1'-Ferrocenedicarboxaldehyde 148^{109} (100mg, 0.41mmol) was added and the mixture warmed to room temperature with stirring for a further 16h. The reaction was evaporated under reduced pressure, and the residue taken up into dichloromethane. Water was added, the organic layer separated, dried (MgSO₄), and evaporated. Column chromatography using neutral alumina and dichloromethane-hexane (1:1 v/v) as the eluent afforded 150 as an orange solid, which was recrystallised from dichloromethane-hexane (140mg, 67% yield); m.p. 147-150°C; m/z (DCI) 503 (M⁺+1), HRMS found 501.9077, C₂₀H₁₄FeS₆ requires 501.8769; δ_H (CDCl₃) 6.89 (2H, s), 6.42 and 6.36 (2H, d, J 11.5 Hz), 6.14 and 6.09 (2H, d, J 11.6 Hz) and 4.32 (8H, s).

6.3 EXPERIMENTAL TO CHAPTER 3

6.3.1 GENERAL PROCEDURE FOR COMPOUNDS 164-166 AND 169-172

To a stirred solution of the corresponding species 159 in THF (100ml), at -78°C, was added butyllithium and the reaction allowed to stir at this temperature for 15min. The corresponding ferrocenyl aldehyde or ketone was added, and the reaction warmed to room temperature with stirring for a further 16h. Water was added and the product extracted into dichloromethane. The organic layer was separated, dried (MgSO₄) and evaporated. Column chromatography using silica gel and dichloromethane-hexane (1:1 v/v) as the eluting solvent afforded the desired product. Recrystallisations were performed using dichloromethane-hexane.

1-[(1,3-Dithiole-2-ylidene)methyl]ferrocene 164

Using general procedure 6.3.1 with **160** (1.00g, 4.72mmol), ⁿBuLi (3.25ml, 1.6M, 5.20mmol) and **112** (1.00g, 4.67mmol) an orange solid was obtained (1.15g, 81% yield); m.p. 81-82°C (Found: C, 55.7; H, 4.1. $C_{14}H_{12}FeS_2$ requires C, 56.0; H, 4.0%); m/z (DCI) 301 (M⁺+1); δ_H (CDCl₃) 6.25 (2H, s), 6.16 (1H, s), 4.39 (2H, m), 4.22 (2H, m) and 4.18 (5H, s).

1-[(4,5-Dimethyl-1,3-dithiole-2-ylidene)methyl]ferrocene 165

Using general procedure 6.3.1 with **161** (1.00g, 4.17mmol), ⁿBuLi (2.87ml, 1.6M, 4.59mmol) and **112** (0.89g, 4.16mmol) an orange solid was obtained (1.07g, 78% yield); m.p. 109-111°C (Found: C, 58.7; H, 5.0. $C_{16}H_{16}FeS_2$ requires C, 58.5; H, 4.9%); m/z (DCI) 329 (M⁺+1); δ_H (CDCl₃) 6.01 (1H, s), 4.35 (2H, m), 4.18 (2H, m), 4.15 (5H, s), 1.96 (3H, s) and 1.91 (3H, s).

1-[(4,5-Dimethylsulfanyl-1,3-dithiole-2-ylidene)methyl]ferrocene 166

Using general procedure 6.3.1 with **162** (1.00g, 3.29mmol), ⁿBuLi (2.26ml, 1.6M, 3.62mmol) and **112** (0.70g, 3.28mmol) a yellow-orange oil was obtained (0.84g, 65% yield); (Found: C, 49.5; H, 4.4. $C_{16}H_{16}FeS_4$ requires C, 49.0; H, 4.1%); m/z (DCI) 393 (M⁺+1); δ_H (CDCl₃) 6.10 (1H, s), 4.34 (2H, m), 4.22 (2H, m), 4.16 (5H, s), 2.44 (3H, s) and 2.42 (3H, s).

Dimethyl 1-[(1,3-dithiole-2-ylidene)methyl]ferrocene-4,5-dicarboxylate 167

To a solution of 163 (1.00g, 1.97mmol) and 112 (0.42g, 1.97mmol) in THF (100ml) was added triethylamine (1ml) at 20°C, and the reaction stirred for 16h. After aqueous washing and extraction into dichloromethane, the organic layer was separated, dried (MgSO₄) and evaporated. Column chromatography using silica gel and

dried (MgSO₄) and evaporated. Column chromatography using silica gel and dichloromethane as the eluent afforded 167 as an orange solid, which was recrystallised from dichloromethane (0.72g, 88% yield); m.p. 94-96°C (Found: C, 52.0; H, 4.0. $C_{18}H_{18}FeO_4S_2$ requires C, 51.9; H, 3.9%); m/z (DCI) 417 (M⁺+1); δ_H (CDCl₃) 6.09 (1H, s), 4.34 (2H, m), 4.24 (2H, m), 4.17 (5H, s) and 3.86 (6H, s); v_{max} (KBr)/cm⁻¹ 1733, 1721, 1591, 1436, 1253 and 1018.

1,1'-Bis{dimethyl[(1,3-dithiole-2-ylidene)methyl]-4,5-dicarboxylate}ferrocene 168

To a solution of 148 (240mg, 0.99mmol) and 163 (1.00g, 1.97mmol) in THF (100ml) at 20°C was added triethylamine (1ml, excess), and the reaction stirred for 16h. The mixture was evaporated under reduced pressure. Column chromatography using silica gel and dichloromethane as the eluent afforded 168 as an orange solid, which was recrystallised from dichloromethane (442mg, 69% yield); m.p. 177-179°C (Found: C, 48.5; H, 3.4. $C_{26}H_{22}FeO_8S_4$ requires C, 48.3; H, 3.4%); m/z (DCI) 646 (M⁺+1); δ_H (CDCl₃) 5.92 (2H, s), 4.32 (4H, s), 4.23 (4H, s), 3.84 (6H, s) and 3.83 (6H, s); υ_{max} (KBr)/cm⁻¹ 1735, 1707, 1592, 1428, 1265 and 1029.

1,1'-Bis[(4,5-dimethyl-1,3-dithiole-2-ylidene)methyl]ferrocene 169

Using general procedure 6.3.1 with **161** (1.00g, 4.17mmol), ⁿBuLi (2.87ml, 1.6M, 4.59mmol) and **148** (485mg, 2.00mmol) an orange solid was obtained (622mg, 66% yield); m.p. 161-162°C (Found: C, 56.4; H, 4.8. $C_{22}H_{22}FeS_4$ requires C, 56.2; H, 4.7%); m/z (DCI) 471 (M⁺+1); δ_H (CDCl₃) 5.91 (2H, s), 4.30 (4H, m), 4.16 (4H, m), 1.95 (6H, s) and 1.90 (6H, s).

1,1'-Bis[1-(4,5-dimethyl-1,3-dithiole-2-ylidene)ethyl]ferrocene 170

Using general procedure 6.3.1 with **161** (1.00g, 4.17mmol), ⁿBuLi (2.87ml, 1.6M, 4.59mmol) and **108** (540mg, 2.00mmol) an orange solid was obtained (707mg, 71% yield); m.p. 160-161°C (Found: C, 57.8; H, 5.3. $C_{24}H_{26}FeS_4$ requires C, 57.7; H, 5.4%); m/z (DCI) 499 (M⁺+1); δ_H (CDCl₃) 4.43 (4H, m), 4.21 (4H, m), 1.99 (6H, s) and 1.94 (12H, s).

1,1'-Bis[1-(1,3-dithiole-2-ylidene)ethyl]ferrocene 171

Using general procedure 6.3.1 with **160** (1.00g, 4.72mmol), ⁿBuLi (3.25ml, 1.6M, 5.20mmol) and **108** (590mg, 2.19mmol) an orange solid was obtained (675mg, 70% yield); m.p. 109°C (Found: C, 55.3; H, 4.1. $C_{20}H_{18}FeS_4$ requires C, 55.3; H, 4.1%); m/z (DCI) 443 (M⁺+1); δ_H (CDCl₃) 6.27 (4H, s), 4.43 (4H, m), 4.22 (4H, m) and 2.01 (6H, s).

1,1'-Bis[1-(4,5-dimethylsulfanyl-1,3-dithiole-2-ylidene)ethyl]ferrocene 172

Using general procedure 6.3.1 with 162 (1.00g, 3.29mmol), ⁿBuLi (2.26ml, 1.6M, 3.62mmol) and 108 (405mg, 1.50mmol) an orange-red oil was obtained (545mg, 58% yield); (Found: C, 45.5; H, 4.6. $C_{24}H_{26}FeS_4$ requires C, 46.0; H, 4.2%); m/z (DCI) 627 (M⁺+1); δ_H (CDCl₃) 4.37 (4H, m), 4.20 (4H, m), 2.38 (12H, m) and 1.95 (6H, s).

1,1'-Bis[1,2-bis(4,5-dimethyl-1,3-dithiole-2-ylidene)ethane-1,2-diyl]diferrocene 173

To a solution of 165 (100mg, 0.30mmol) in ether (50ml) was added HCl.Et₂O (0.30ml, 1.0M, 0.30mmol) and the reaction stirred for 24h. Separation of the product by preparative TLC using hexane-dichloromethane (5:1 v/v) as the eluent afforded 173 as an orange solid, which was recrystallised from dichloromethane-hexane (60mg, 60% yield); m.p. >250°C (Found: C, 58.8; H, 4.7. $C_{32}H_{30}Fe_2S_4$ requires C, 58.7; H, 4.6%); m/z (DCI) 655 (M⁺+1); δ_H (CDCl₃) 4.47 (2H, m), 4.38 (2H, m), 4.23 (10H, s), 4.14 (4H, m), 2.02 (6H, s) and 1.94 (6H, s).

1,1'-Bis[1,2-bis(1,3-dithiole-2-ylidene)ethane-1,2-diyl]diferrocene 174

To a solution of 164 (100mg, 0.33mmol) in ether (50ml) was added HCl.Et₂O (0.33ml, 1.0M, 0.33mmol) and the reaction stirred for 24h. Purification as described for 173 afforded 174 as an orange solid, which was recrystallised from dichloromethane-hexane (50mg, 50% yield); m.p. >250°C (Found: C, 56.1; H, 3.8. $C_{28}H_{22}Fe_2S_4$ requires C, 56.2; H, 3.7%); m/z (DCI) 599 (M⁺+1); δ_H (CDCl₃) 6.40 (4H, m) 4.48 (2H, m), 4.38 (2H, m), 4.23 (10H, s) and 4.17 (4H, m).

1-[3,4-Bis(4,5-dimethylsulfanyl-1,3-dithiole-2-ylidene)but-1-enyl]ferrocene 181

To a solution of 134^{104} (600mg, 1.02mmol) in THF (60ml) was added butyllithium (0.7ml, 1.6M, 1.12mmol) and the ylide left to form for 15min. After this time 180^{120} (170mg, 0.38mmol) was added, and the mixture stirred at 20°C for 16h, then evaporated under reduced pressure, and the residue extracted into dichloromethane. Water was added, the organic layer separated, dried (MgSO₄), and evaporated. Purification by column chromatography using neutral alumina with hexane-dichloromethane (3:1 v/v) as the eluent, afforded 181 as a red solid, which was recrystallised from dichloromethane-hexane (1.30g, 54% yield); m.p. 54-56°C (Found: C, 46.5; H, 4.1. $C_{24}H_{24}FeS_8$ requires C, 46.2; H, 3.9%); m/z (EI) 624; HRMS found 623.9157, $C_{24}H_{24}FeS_8$ requires 623.8993; δ_H (CDCl₃) 6.19 (2H, s), 5.89 (1H, s), 4.43 (2H, m), 4.30 (2H, m), 4.17 (5H, s), and 2.46-2.38 (12H, m); λ_{max} (DCM)/nm 261 (ϵ /dm³ mol-¹ cm-¹ 17 200), 288 (38 500) and 374 (32 300).

1-[3,4-Bis(5,6-dihydro-1,3-dithiolo[4,5-b][1,4-dithiin-2-ylidene)but-1-enyl]-ferrocene 182

To a solution of 187 (1.00g, 3.03mmol) in THF (100ml) was added butyllithium (1.9ml, 1.6M, 3.04mmol), at -78°C, and the reaction was stirred at this temperature for 15min. After this time 186 (1.00g, 2.25mmol) was added, the reaction was warmed slowly to room temperature with stirring for a further 16h. The reaction mixture was evaporated under reduced pressure, and extracted into dichloromethane. Water was added, the organic layer separated, dried (MgSO₄), and evaporated. Column chromatography using silica gel and dichloromethane-hexane (1:1 v/v) as the eluent afforded 182 as an orange solid, which was recrystallised from dichloromethane-hexane (1.16g, 83% yield); m.p. 187-189°C (Found: C, 46.1 H, 3.2. $C_{24}H_{20}FeS_8$ requires C, 46.4; H, 3.3%); m/z (DCI) 621 (M⁺+1); δ_H (CDCl₃) 6.20 (2H, s), 5.97 (1H, s), 4.41 (2H, m), 4.28 (2H, m), 4.16 (5H, s) and 3.31 (8H, m); λ_{max} (DCM)/nm 229 (ϵ /dm³ mol-1 cm-1 59 200), 291 (36 500) and 384 (22 000).

1-[3-(5,6-Dihydro-1,3-dithiolo[4,5-b][1,4]dithiin-2-ylidene)diallyl]ferrocene 185

To a solution of 134^{104} (4.00g, 6.81mmol) in THF (100ml) was added butyllithium (4.3ml, 1.6M, 6.88mmol) and the ylide was left to form for 15min. After this time 184^{121} (1.40g, 5.98mmol) was added, and the reaction was stirred at 20°C for 24h. The reaction mixture was evaporated under reduced pressure, and the residue extracted into dichloromethane. Water was added, the organic layer separated, dried (MgSO4), and evaporated. Purification using column chromatography on silica gel with hexane-dichloromethane (3:1 v/v) as the eluent, afforded 185 as a dark red solid, which was recrystallised from dichloromethane-hexane (1.60g, 64% yield); m.p. 148-150°C (Found: C, 52.3; H, 3.9. $C_{18}H_{16}FeS_4$ requires C, 51.9; H, 3.9%); m/z (DCI) 417 (M⁺+1); δ_H (CDCl₃) 6.53-5.66 (3H, m), 4.27 (2H, m), 4.18 (2H, m), 4.03 (5H, s), and 3.22 (4H, s); δ_C (d₆ acetone) 129.8, 127.1, 123.4, 117.4, 111.3, 84.0, 70.0, 69.9, 67.5, and 30.0; λ_{max} (DCM)/nm 261 (ϵ /dm³ mol-1 cm-1 15 000), 288 (12 500) and 374 (20 100).

1-[4-oxo-3-(5,6-dihydro-1,3-dithiolo[4,5-b][1,4]dithiin-2-ylidene)but-1-enyl]ferrocene **186**

To anhydrous dimethylformamide (15ml, excess) cooled to 0°C, oxalyl chloride (0.6ml, 6.87mmol) was added slowly dropwise and the mixture stirred for 5min at 0°C, and then warmed to 20°C, remaining so for a further 30min. After this time 185 (1.4g, 3.37mmol) was added and the mixture stirred at 20°C for 16h. The reaction was quenched at 0°C with aqueous sodium hydroxide (50ml, 1M), and then with water (200ml). Dichloromethane was added (75ml), and the organic layer separated, dried (MgSO4), and evaporated under reduced pressure. Column chromatography using

silica gel and dichloromethane as the eluent afforded **186** as a bright red solid, which was recrystallised from dichloromethane-hexane (1.1g, 74% yield); m.p. 169-172°C (Found: C, 51.3; H, 3.8. $C_{19}H_{16}FeOS_4$ requires C, 51.4; H, 3.6%); m/z (DCI) 445 (M⁺+1); δ_H (CDCl₃) 9.63 (1H, s), 6.70 (1H, d, J 16.1 Hz), 6.48 (1H, d, J 16.1 Hz), 4.44 (2H, m), 4.30 (2H, m), 4.14 (5H, s), and 3.39 (4H, s); υ_{max} (KBr)/cm⁻¹ 1616, 1471, 1425, 1282, 1033 and 832.

1,1'-Bis[3-(5,6-dihydro-1,3-dithiolo[4,5-b][1,4]dithiin-2-ylidene)penta-1,4-diene-1,5-diyl]diferrocene 189

To a suspension of 134^{104} (1.00g, 1.70mmol) in THF (60ml), at room temperature, was added butyllithium (1.1ml, 1.6M, 1.76mmol), and the reaction stirred for 15min before 186 (500mg, 1.13mmol) was added and the reaction stirred for 16h. The reaction mixture was evaporated under reduced pressure, and extracted into dichloromethane. Water was added, the organic layer separated, dried (MgSO₄), and evaporated. Column chromatography using silica gel and toluene as the eluent afforded 189 as an orange solid, which was recrystallised from dichloromethane-hexane (510mg, 72% yield); m.p. 189° C (dec.) (Found: C, 57.5 H, 4.4. $C_{30}H_{26}Fe_2S_4$ requires C, 57.5; H, 4.2%); m/z (DCI) 627 (M⁺+1); δ_H (CDCl₃) 6.37 (4H, s), 4.44 (4H, m), 4.31 (4H, m), 4.18 (10H, s), and 3.35 (4H, s); λ_{max} (DCM)/nm 270sh, 288 (ϵ /dm³ mol⁻¹ cm⁻¹ 35 100) and 394 (23 800).

1-[5-Oxo-3,4-bis(5,6-dihydro-1,3-dithiolo[4,5-b][1,4]dithiin-2-ylidene)pent-1-enyl]ferrocene **190**

Anhydrous dimethylformamide (10ml, excess) was cooled to 0°C, and oxalyl chloride (0.2ml, 2.29mmol) added slowly dropwise; the mixture was stirred for 5min at 0°C, and then warmed to 20°C, stirring for a further 30min. After this time 134 (500mg, 0.81mmol) was added and the mixture was stirred at 20°C for 3h. The reaction was quenched at 0°C with aqueous sodium hydroxide (50ml, 1M), and finally with water (200ml). Dichloromethane was added (75ml), and the organic layer separated, dried (MgSO4), and evaporated under reduced pressure. Column chromatography using silica gel and dichloromethane as the eluent afforded 190 as a red solid, which was recrystallised from dichloromethane-hexane (370mg, 71% yield); m.p. 175°C(dec.); $\delta_{\rm H}$ (CDCl₃) 9.14 (1H, s), 6.32 (1H, m), 6.89 (1H, m), 4.35 (2H, m), 4.27 (2H, m), 4.10 (5H, s), and 3.31 (8H, m); $\nu_{\rm max}$ (KBr)/cm⁻¹ 1610, 1410, 1261, 1103, 1024 and 802.

trans-1,1'-Bis[3,4-bis(5,6-dihydro-1,3-dithiolo[4,5-b][1,4]dithiin-2-ylidene)hexa-1,5-diene-1,6-diyl]diferrocene 191

To a suspension of 134^{104} (1.00g, 1.70mmol) in THF (60ml), at room temperature, was added butyllithium (1.1ml, 1.6M, 1.76mmol), and the reaction stirred for 15min. After this time, 190 (300mg, 0.46mmol) was added and the reaction stirred at 20°C for 16h. The reaction mixture was evaporated under reduced pressure, and extracted into dichloromethane. Water was added, the organic layer separated, dried (MgSO4), and evaporated. Column chromatography using silica gel and toluene as the eluent afforded 191 as a red solid which was recrystallised from dichloromethane (250mg, 65% yield); m.p. 182°C (dec.) (Found: C, 52.3 H, 3.7. $C_{36}H_{30}Fe_2S_8$ requires C, 52.0; H, 3.6%); m/z (DCI) 831 (M⁺+1); δ_H (CDCl₃) 6.30 and 6.23 (2H, d, J 15.2 Hz), 6.00 and 5.92 (2H, d, J 15.5 Hz), 4.39 (4H, m), 4.24 (4H, m), 4.11 (10H, s), and 3.31 (8H, s); λ_{max} (DCM)/nm 290 (ϵ /dm³ mol-1 cm-1 73 700) and 384 (74 200).

1,1'-Bis[3-(5,6-dihydro-1,3-dithiolo[4,5-b][1,4]dithiin-2-ylidene)diallyl]ferrocene 193

To a suspension of 143 (2.00g, 2.23mmol) in THF (200ml), at -78°C, was added butyllithium (3.0ml, 1.6M, 4.80mmol) and the reaction stirred for 30min. After this time 184^{121} (1.00g, 4.27mmol) was added. The reaction was warmed slowly to room temperature, with stirring for a further 16h. The reaction mixture was evaporated under reduced pressure, and extracted into dichloromethane. Water was added, the organic layer separated, dried (MgSO4) and evaporated. Column chromatography using silica gel and hexane-dichloromethane (3:1 v/v) as the eluent afforded 193 as an orange solid which was a mixture of isomers (480mg, 33% yield); m.p. 173-176°C (Found: C, 47.9 H, 3.6. $C_{26}H_{22}FeS_8$ requires C, 48.3; H, 3.4%); m/z (DCI) 647 (M⁺+1); δ_H (CDCl₃) 6.14-5.80 (6H, m), 4.25 (4H, m), 4.20 (4H, m) and 3.31 (8H, s). The isomers could not be separated by either chromatography or recrystallisation.

6.4 EXPERIMENTAL TO CHAPTER 4

2-(1,3-Dithiole-2-ylidene)-6-[1-cyclopentadienyl(cyclopentadienyl)iron]-3a,4,5,6tetrahydro-1,3-benzodithiole-4,4,5,5-tetracarbonitrile **194**

A solution of 137 (50mg, 0.12mmol) in acetonitrile (3ml) was heated until a dark but clear solution was obtained. Similarly, a solution of tetracyanoethylene 13 (15mg, 0.12mmol) in acetonitrile (5ml) was heated until all the solid had dissolved. The two solutions were combined, at 60°C, and refluxed for 5min. The solution was

cooled to 20°C and after 16h the product was filtered and washed with ice-cold acetonitrile. Yellow crystals of **194**.MeCN were harvested for X-ray analysis, together with **194** as a yellow powder (45mg, 68% combined yield). Data for **194**: m.p. >250°C (Found: C, 53.1; H, 2.6; N, 11.1. $C_{24}H_{14}FeN_4S_4$ requires C, 53.1; H, 2.6; N, 10.3%); m/z (DCI) 543 (M⁺+1); δ_H (CD₂Cl₂) 6.54 (1H, m), 6.46 (2H, dd, J 14.1 Hz), 5.00 (1H, m), 4.68 (1H, m), 4.46 (2H, t, J 1.3 Hz), 4.35 (2H, t, J 1.4 Hz), and 4.27 (5H, s); v_{max} (KBr)/cm⁻¹ 3059, 2923, 2364, 2198, 1590 and 1437.

6.4.1 GENERAL PROCEDURE FOR COMPOUNDS 198-201

To a suspension of the respective Wittig salt in THF (60ml) was added butyllithium at -78°C, the reaction stirred at this temperature for 15min whence 32 was added and the reaction temperature raised to 20°C, with stirring for a further 16h. The reaction mixture was evaporated under reduced pressure, and the residue extracted into dichloromethane. Water was added, the organic layer separated, dried (MgSO4), and evaporated once more. Purification by column chromatography using silica gel and toluene as the eluent afforded the desired product, which was recrystallised from dichloromethane-hexane where applicable.

1-[2,2'-Bi(1,3-dithiolylidene)-4-yl]propylene 198

Using general procedure 6.4.1, ethyltriphenylphosphonium bromide (1.0g, 2.70mmol), butyllithium (1.7ml, 1.6M, 2.72mmol) and 32 (500mg, 2.16mmol) afforded 198 as a dark orange oil 1:4 *cis:trans* (420mg, 80% yield); m/z (DCI) 245 (M⁺+1), HRMS found 243.9428, $C_9H_8S_4$ requires 243.9509; δ_H (CDCl₃) 6.58 (2H, s), 6.45 (1H, s), 6.35 (1H, d, J 15.4 Hz), 5.60 (1H, m), 1.81 (3H, dd, J 6.7 Hz).

1-[2,2'-Bi(1,3-dithiolylidene)-4-yl]-2-phenylethylene 199

Using general procedure 6.4.1, benzyltriphenylphosphonium chloride (2.0g, 5.14mmol), butyllithium (3.3ml [1.6M], 5.28mmol) and **32** (1.0g, 4.31mmol) afforded **199** as a purple solid (1.02g, 77% yield); m.p. 124-126°C (Found: C, 54.8; H, 3.2. $C_{14}H_{10}S_4$ requires C, 54.9; H, 3.3%); m/z (DCI) 307 (M⁺+1); δ_H (d₆ acetone) 7.76-7.31 (5H, m), 7.24 and 7.16 (1H, d, J 15.9 Hz), 6.81 (1H, s), 6.66 (2H, s), and 6.51 and 6.43 (1H, d, J 15.6 Hz).

1-[2,2'-Bi(1,3-dithiolylidene)-4-yl]-2-(p-methoxyphenyl)ethylene 200

Using general procedure 6.4.1, p-methoxybenzyltriphenylphosphonium chloride (1.0g, 2.39mmol), butyllithium (1.5ml, 1.6M, 2.40mmol) and **32** (500mg, 2.16mmol) afforded **200** as a dark orange solid (600mg, 83% yield); m.p. 164-167°C (Found: C, 53.5; H, 3.4. $C_{15}H_{12}OS_4$ requires C, 53.5; H, 3.6%); m/z (DCI) 337

 (M^++1) ; δ_H (CDCl₃) 7.34 (2H, d, J 8.6 Hz), 6.87 (2H, d, J 8.7 Hz), 6.75 (1H, d, J 15.7 Hz), 6.35 (4H, m), and 3.82 (3H, s); δ_H (d₆ DMSO) 7.46 (2H, d, J 8.7 Hz), 7.09 and 7.01 (1H, d, J 16.1 Hz), 6.90 (2H, d, J 8.8 Hz), 6.81 (1H, s), 6.73 (2H, s), 6.37 and 6.29 (1H, d, J 16.0 Hz) and 3.74 (3H, s).

1-[2,2'-Bi(1,3-dithiolylidene)-4-yl]-2-(p-nitrophenyl)ethylene 201

Using general procedure 6.4.1, p-nitrobenzyltriphenylphosphonium chloride (1.5g, 3.46mmol), butyllithium (2.2ml, 1.6M, 3.52mmol) and **32** (500mg, 2.16mmol) afforded **201** as a dark purple solid (550mg, 73% yield); m.p. >250°C (Found: C, 48.1; H, 2.7; N, 3.8. $C_{14}H_9NO_2S_4$ requires C, 47.8; H, 2.6; N, 4.0%); m/z (DCI) 352 (M⁺+1); δ_H (CDCl₃) 8.21 (2H, d, J 9.0 Hz), 7.53 (2H, d, J 8.5 Hz), 7.07 and 6.99 (1H, d, J 15.8 Hz), 6.57 (1H, s), 6.45 and 6.37 (1H, d, J 16.6 Hz) and 6.37 (2H, s); δ_H (d₆ DMSO) 8.21 (2H, d, J 8.3 Hz), 7.81 (2H, d, J 8.7 Hz), 7.54 and 7.46 (1H, d, J 16.2 Hz), 7.14 (1H, s), 6.78 (2H, s), 6.59 and 6.51 (1H, d, J 16.0 Hz); ν_{max} (KBr)/cm⁻¹ 1586, 1504, 1338, 1108, 937 and 658.

6.4.2 GENERAL PROCEDURE FOR COMPOUNDS 202-206

To a solution of the respective vinyl-TTF derivative in toluene (10ml) was added tetracyanoethylene 13. The mixture was refluxed for 16h. After evaporating the mixture under reduced pressure, column chromatography using silica gel and toluene as the eluting solvent afforded the desired product which was recrystallised from dichloromethane.

2-(1,3-Dithiole-2-ylidene)-3a,4,5,6-tetrahydro-1,3-benzodithiole-4,4,5,5-tetra-carbonitrile **202**

Using general procedure 6.4.2, vinyltetrathiafulvalene **197** (200mg, 0.87mmol) and tetracyanoethylene **13** (250mg, 1.95mmol) afforded **202** as a yellow solid (220mg, 70% yield); m.p. 190-192°C (Found: C, 46.9; H, 1.7. N, 14.8; $C_{14}H_6N_4S_4$ requires C, 46.9; H, 1.7; N, 15.6%); m/z (DCI) 359 (M⁺+1), HRMS found 357.9253, $C_{14}H_6N_4S_4$ requires 357.9475; δ_H (CDCl₃) 6.39 (2H, dd, J 16.8 Hz), 5.86 (1H, m), 4.89 (1H, m), and 3.86(1H, m); $\upsilon_{max}(KBr)/cm^{-1}$ 3073, 2906, 2254, 1436, 800 and 640.

2-(1.3-Dithiole-2-ylidene)-6-methyl-3a.4,5.6-tetrahydro-1,3-benzodithiole-4,4,5.5-tetracarbonitrile **203**

Using general procedure 6.4.2, 198 (200mg, 0.82mmol) and tetracyanoethylene 13 (110mg, 0.86mmol) afforded 203 as an orange/brown solid (170mg, 56% yield); m.p. 192-194°C; m/z (DCI) 373 (M⁺+1), HRMS found

371.9605, $C_{15}H_8N_4S_4$ requires 371.9632; δ_H (CDCl₃) 6.40 (2H, dd, J 15.3 Hz), 5.90 (1H, m), 4.90 (1H, m), 3.43 (1H, m), and 1.75 (3H, d, J 7.6 Hz); υ_{max} (KBr)/cm⁻¹ 3080, 2914, 2251, 1548, 802 and 655.

2-(1,3-Dithiole-2-ylidene)-6-phenyl-3a,4,5,6-tetrahydro-1,3-benzodithiole-4,4,5,5-tetracarbonitrile **204**

Using general procedure 6.4.2, **199** (200mg, 0.65mmol) and tetracyanoethylene **13** (90mg, 0.70mmol) afforded **204** as an orange/brown solid (170mg, 59% yield); m.p. 106-108°C; m/z (DCI) 435 (M⁺+1), HRMS found 433.9779, $C_{20}H_{10}N_4S_4$ requires 433.9788; δ_H (CDCl₃) 7.49 (5H, s), 6.42 (2H, dd, J 16.6 Hz), 6.14 (1H, m), 4.94 (1H, m), and 4.51 (1H, m); υ_{max} (KBr)/cm⁻¹ 3074, 2930, 2253, 1624, 1190 and 1082.

2-(1,3-Dithiole-2-ylidene)-6-(p-methoxyphenyl)-3a,4,5,6-tetrahydro-1,3-benzodithiole-4,4,5,5-tetracarbonitrile **205**

Using general procedure 6.4.2, **200** (100mg, 0.30mmol) and tetracyanoethylene **13** (40mg, 0.31mmol) afforded **205** as an orange solid (100mg, 75% yield); m.p. 164-166°C; m/z (EI) 464, HRMS found 463.9899, $C_{21}H_{12}N_4OS_4$ requires 463.9894; δ_H (CDCl₃) 7.40 (2H, d, J 8.7 Hz), 6.97 (2H, d, J 8.8 Hz), 6.42 (2H, dd, J 16.3 Hz), 6.11 (1H, m), 4.93 (1H, m) and 4.49 (1H, m); v_{max} (KBr)/cm⁻¹ 3054, 2905, 2250, 1608, 1511 and 1261.

2-(1,3-Dithiole-2-ylidene)-6-(p-nitrophenyl)-3a.4.5.6-tetrahydro-1,3-benzodithiole-4,4.5.5-tetracarbonitrile **206**

Using general procedure 6.4.2, **201** (130mg, 0.37mmol) and tetracyanoethylene **13** (50mg, 0.39mmol) afforded **206** as a brown solid (75mg, 42% yield); m.p. >250°C; $\delta_{\rm H}$ (CDCl₃) 8.34 (2H, d, J 8.8 Hz), 7.72 (2H, d, J 8.9 Hz), 6.44 (2H, dd, J 17.4 Hz), 6.11 (1H, m), 4.97 (1H, m) and 4.63 (1H, m); $v_{\rm max}$ (KBr)/cm⁻¹ 3032, 2916, 2344, 1508, 1340 and 1172.

2-(1,3-Dithiole-2-ylidene)-6-(p-methoxyphenyl)-N-phenyl-3a,4,5,6-tetrahydro-1,3-dithiolo[2,3-c]pyridazine-4,5-dicarboximide 210

To a solution of **200** (250mg, 0.74mmol) in toluene (10ml) was added 4-phenyl-1,2,4-triazoline-3,5-dione (150mg, 0.86mmol). The mixture was refluxed for 4 hours. Column chromatography using silica gel and toluene as the eluent removed excess starting material. Subsequent use of dichloromethane-acetone (2:1 v/v) as the eluent gave **210** as an orange solid, which was recrystallised from toluene (230mg, 61% yield); m.p. 134-137°C (Found: C, 53.9; H, 3.5; N, 7.9. $C_{23}H_{17}N_3O_3S_4$ requires C, 54.0; H, 3.4; N, 8.2%); m/z (DCI) 512 (M⁺+1); δ_H (CDCl₃) 7.40 (4H, m), 6.91

(1H, m), 6.87 (1H, m), 6.36 (2H, dd, J 17.3 Hz) and 5.64 (1H, m); υ_{max} (Nujol)/cm⁻¹ 1775, 1708, 1599, 1501, 1415 and 1254.

2-(1,3-Dithiole-2-ylidene)-6-[1-cyclopentadienyl(cyclopentadienyl)iron]-*N*-phenyl-3a,4,5,6-tetrahydro-1,3-dithiolo[2,3-c]pyridazine-4,5-dicarboximide **211**

To a solution of 137 (100mg, 0.24mmol) in toluene (10ml) was added 4-phenyl-1,2,4-triazoline-3,5-dione (45mg, 0.26mmol). The mixture was refluxed for 4 hours. Purification as described for 210 gave 211 as an orange solid, which was recrystallised from toluene (45mg, 33% yield); m.p. 199-201°C; m/z (DCI) 590 (M⁺+1), HRMS found 588.9494, $C_{26}H_{19}FeN_3O_2S_4$ requires 588.9710; δ_H (CDCl₃) 7.52 (5H, m), 6.92 (1H, m), 6.32 (2H, dd, J 12.3 Hz), 5.82 (1H, d, J 5.9 Hz) and 4.91 (1H, dd, J 6.0 Hz); ν_{max} (KBr)/cm⁻¹ 3066, 2924, 1772, 1719, 1402 and 1281.

<u>Dimethyl 2-(1,3-dithiole-2-ylidene)-3a,6-dihydro-1,3-benzodithiole-4,5-dicarboxylate</u> **212**

To a solution of **197** (200mg, 0.87mmol) in toluene (15ml) was added dimethylacetylenedicarboxylate (0.1ml, 0.81mmol), and the mixture was refluxed for 16h. The solvent was evaporated under reduced pressure, and the residue chromatographed using neutral alumina and toluene as the eluting solvent. The product was recystallised from methanol to give **212** as a red solid, which was recrystallised from dichloromethane-hexane (1.50g, 46% yield); m.p. 146-149°C (Found: C, 44.7; H, 3.1. $C_{14}H_{12}O_4S_4$ requires C, 45.2; H, 3.3%); m/z (DCI) 373 (M⁺+1); δ_H (CDCl₃) 6.31 (2H, dd, J 16.9 Hz), 6.12 (1H, d, J 2.4 Hz), 4.77-4.63 (1H, m), 3.83 (3H, s), 3.78 (3H, s), 3.28-3.15 (1H, m), 2.82-2.65 (1H, m); υ_{max} (KBr)/cm⁻¹ 3060, 2950, 1706, 1541, 1436 and 1286.

6.5 EXPERIMENTAL TO CHAPTER 5

6.5.1 GENERAL PROCEDURE FOR COMPOUNDS 217-221, 223-226, 228-230, 233, 240, AND 245

To a solution of tetrathiafulvalene, in ether (100ml) at -78°C, was added lithium diisopropylamide mono(tetrahydrofuran) (1.05 equiv., 1.5M), and the TTF anion allowed to form over 1.5h. The relevant ketone or aldehyde was then added neat in one portion, and the reaction was stirred at -78°C for a further 1h, before warming slowly to room temperature. Water was added and the organic layer separated, dried (MgSO₄), and evaporated under reduced pressure. Column chromatography on silica gel and

hexane-dichloromethane (3:1 v/v) as the eluting solvent, was used to remove residual tetrathiafulvalene. Subsequent use of dichloromethane as the eluent afforded the desired product. All solids were recrystallised from dichloromethane-hexane.

1-[2,2'-Bi(1,3-dithiolylidene)-4-yl]ethanol 217

Using general procedure 6.5.1, tetrathiafulvalene (600mg, 2.94mmol) and acetaldehyde (0.2ml, 3.58mmol) afforded **217** as an orange oil (440mg, 60% yield); m/z (DCI) 249 (M⁺+1), HRMS found 247.9445, $C_8H_8OS_4$ requires 247.9458; δ_H (d₆-acetone) 6.60 (2H, s), 6.39 (1H, s), 4.67 (1H, d, J 6.5 Hz), 2.92 (1H, s), and 1.38 (3H, d, J 7.0 Hz); ν_{max} (Nujol)/cm⁻¹ 3358, 1715, 1681, 1134, 796 and 733.

[2,2'-Bi(1,3-dithiolylidene)-4-yllphenylmethanol 218

Using general procedure 6.5.1, tetrathiafulvalene (600mg, 2.94mmol) and benzylaldehyde (0.4ml, 3.94mmol) afforded **218** as an orange oil (490mg, 54% yield); m/z (DCI) 311 (M⁺+1), HRMS found 309.9588, $C_{13}H_{10}OS_4$ requires 309.9615; δ_H (CDCl₃) 7.37 (5H, s), 6.26 (2H, s), 6.09 (1H, s), 5.47 (1H, s), and 3.09 (1H, s); v_{max} (neat)/cm⁻¹ 3384, 3066, 1689, 1452, 1015 and 777.

2-[2,2'-Bi(1,3-dithiolylidene)-4-yl]propan-2-ol 219

Using general procedure 6.5.1, tetrathiafulvalene (250mg, 1.23mmol) and acetone (0.5ml, 10.90mmol) afforded **219** as a yellow solid (230mg, 72% yield); m.p. 93-94°C (Found: C, 41.1; H, 3.9. $C_9H_{10}OS_4$ requires C, 41.2; H, 3.8%); m/z (DCI) 263 (M^++1); δ_H (CDCl₃) 6.31 (2H, s), 6.13 (1H, s), 3.22 (1H, s), and 1.53 (6H, s); υ_{max} (KBr)/cm⁻¹ 3295, 2978, 1156, 936, 794 and 758.

[2,2'-Bi(1,3-dithiolylidene)-4-yl]diphenylmethanol 220

Using general procedure 6.5.1, tetrathiafulvalene (600mg, 2.94mmol) and benzophenone (700mg, 3.85mmol) afforded **220** as an orange oil (980mg, 86% yield); m/z (EI) 386, HRMS found 385.9928, $C_{19}H_{14}OS_4$ requires 385.9928; δ_H (CDCl₃) 7.85-7.28 (10H, m), 6.26 (2H, s), 5.86 (1H, s),and 3.24 (1H, s); υ_{max} (neat)/cm⁻¹ 3448, 3062, 1654, 1446, 1279 and 700.

1-[2,2'-Bi(1,3-dithiolylidene)-4-yl]cyclohexanol 221

Using general procedure 6.5.1, tetrathiafulvalene (600mg, 2.94mmol) and cyclohexanone afforded **221** as a yellow solid (390mg, 44% yield); m.p. 92-94°C; m/z (DCI) 303 (M⁺+1), HRMS found 301.9693, $C_{12}H_{14}OS_4$ requires 301.9928; δ_H (CDCl₃) 6.40-6.10 (3H, s br), 2.14 (1H, s), and 1.85-1.55 (10H, m); υ_{max} (KBr)/cm⁻¹ 3260, 3178, 2931, 2856, 1059 and 650.

1-[2,2'-Bi(1,3-dithiolylidene)-4-yllcyclohexene 222

To a solution of **221** (200mg, 0.66mmol) in dichloromethane (30ml) was added slowly HCl.Et₂O (0.3ml, 1.0M, 0.30mmol), and the solution stirred at room temperature for 1h. Column chromatography using silica gel and hexane-dichloromethane (1:1 v/v) as the eluent afforded **222** as a yellow solid, which was recrystallised from dichloromethane-hexane (160mg, 85% yield); m.p. 115-117°C (Found: C, 50.6; H, 4.3. $C_{12}H_{12}S_4$ requires C, 50.7; H, 4.3%) m/z (DCI) 285 (M⁺+1); δ_H (CDCl₃) 6.31 (2H, s), 6.13 (1H, s), 5.78 (1H, m), 2.27-2.18 (4H, m), and 1.69-1.57 (4H, m).

3-[2,2'-Bi(1,3-dithiolylidene)-4-yl]-1-buten-3-ol 223

Using general procedure 6.5.1, tetrathiafulvalene (500mg, 2.45mmol) and methyl vinyl ketone (0.2ml, 2.45mmol) afforded **223** as a yellow solid (443mg, 66% yield); m.p. 69-71°C (Found: C, 44.0; H, 3.8. $C_{10}H_{10}OS_4$ requires C, 43.8; H, 3.7%); m/z (DCI) 275 (M⁺+1); δ_H (CDCl₃) 6.30 (2H, s), 6.16 (1H, s), 6.03 (1H, m), 5.41 (1H, d, J 17.1 Hz), 5.22 (1H, d, J 10.7 Hz), 2.14 (1H, s) and 1.59 (3H, s); v_{max} (KBr)/cm⁻¹ 3284, 3066, 2978, 924, 792 and 642.

Bis[2,2'-bi(1,3-dithiolylidene)-4-yl]methanol 224

Using general procedure 6.5.1, tetrathiafulvalene (250mg, 1.23mmol) and tetrathiafulvalenecarboxaldehyde⁷⁶ **32** (300mg, 1.29mmol) afforded **224** as a pale orange solid (250mg, 47% yield); m.p. 45-48°C (Found: C, 35.8; H, 1.9. $C_{13}H_8OS_8$ requires C, 35.8; H, 1.9%); m/z (DCI) 437 (M⁺+1); δ_H (CDCl₃) 6.40 (1H, d, J 1.2 Hz), 6.32 (2H, s), 5.30 (1H, m), and 2.47 (1H, d, J 4.2 Hz); υ_{max} (KBr)/cm⁻¹ 3420, 3060, 2958, 1636, 1431 and 641.

1,1-Bis[2,2'-bi(1,3-dithiolylidene)-4-yl]ethanol 225

Using general procedure 6.5.1, tetrathiafulvalene (400mg, 1.96mmol) and acetyltetrathiafulvalene ^{74c} (250mg, 1.02mmol) afforded **225** as a pale orange solid (320mg, 70% yield); m.p. 128-130°C (Found: C, 37.1; H, 2.2. $C_{14}H_{10}OS_8$ requires C, 37.3; H, 2.2%); m/z (DCI) 451 (M⁺+1); δ_H (CDCl₃) 6.33 (6H, s), 2.56 (1H, s), and 1.90 (3H, s); υ_{max} (KBr)/cm⁻¹ 3442, 3060, 1654, 820, 786 and 625.

Bis[2,2'-bi(1,3-dithiolylidene)-4-yl]phenylmethanol 226

Using general procedure 6.5.1, tetrathiafulvalene (250mg, 1.23mmol) and benzoyltetrathiafulvalene ¹⁴⁶ (250mg, 0.81mmol) afforded **226** as a pale orange solid (200mg, 48% yield); m.p. 94-96°C (Found: C, 44.6; H, 2.5. $C_{19}H_{12}OS_8$ requires C, 44.5; H, 2.4%); m/z (DCI) 513 (M⁺+1); δ_H (CDCl₃) 7.58-7.40 (5H, m), 6.32 (4H, s), 6.24 (2H, s) and 3.04 (1H, s); υ_{max} (KBr)/cm⁻¹ 3447, 3063, 1654, 795, 713 and 645.

Bis[2,2'-bi(1,3-dithiolylidene)-4-yllmethylmethoxyether 227

To a solution of **224** (90mg, 0.21mmol) in THF (20ml) was added sodium hydride (10mg, 60% dispersion in oil, 0.25mmol), and the mixture was stirred for 1h at 20°C. After this time, methyl iodide was added (0.1ml, 1.61mmol), and the solution was stirred for a further 1h at 20°C. The solvent was evaporated under reduced pressure; column chromatography using silica gel and toluene-hexane (1:1 v/v) as the eluting solvent afforded **227** as an orange solid, which was recrystallised from dichloromethane-hexane (70mg, 75% yield); m.p. 151-153°C (Found: C, 37.5; H, 2.3. $C_{14}H_{10}OS_8$ requires C, 37.3; H, 2.2%); m/z (DCI) 451 (M⁺+1); δ_H (CDCl₃) 6.36 (2H, d, J 1.1 Hz), 6.32 (4H, s), 4.76 (1H, t, J 1.1 Hz), and 3.42 (3H, s).

[1-Cyclopentadienyl(cyclopentadienyl)iron][2,2'-bi(1,3-dithiolylidene)-4-yl]-methanol 228

Using general procedure 6.5.1, tetrathiafulvalene (250mg, 1.23mmol) and ferrocenecarboxaldehyde (400mg, 1.87mmol) afforded **228** as a brown solid (240mg, 47% yield); m.p. 137-139°C (Found: C, 49.0; H, 3.5. $C_{17}H_{14}FeOS_4$ requires C, 48.8; H, 3.4%); m/z (DCI) 417 (M⁺+1); δ_H (CDCl₃) 6.30 (2H, s), 6.12 (1H, s), 5.20 (1H, s), 4.32 (2H, m), 4.25 (7H, m), 2.42 (1H, d, J 3.8 Hz); υ_{max} (KBr)/cm⁻¹ 3550, 3433, 3062, 1090, 641 and 487.

1-[1-Cyclopentadienyl(cyclopentadienyl)iron]-1-[2,2'-bi(1,3-dithiolylidene)-4-yllethanol 229

Using general procedure 6.5.1, tetrathiafulvalene (1.00g, 4.90mmol) and acetylferrocene (1.30g, 5.70mmol) afforded **229** as a yellow solid (1.91g, 90% yield); m.p. 139-141°C (Found: C, 50.2; H, 3.6. $C_{18}H_{16}FeOS_4$ requires C, 50.0; H, 3.7%); m/z (EI) 432; δ_H (CDCl₃) 6.28 (2H, s), 5.96 (1H, s), 4.33-4.19 (9H, m), 2.70 (1H, s), and 1.80 (3H, s); υ_{max} (KBr)/cm⁻¹ 3495, 3074, 2978, 1104, 820 and 642.

[1-Cyclopentadienyl(cyclopentadienyl)iron][2,2'-bi(1,3-dithiolylidene)-4-yl]-phenylmethanol 230

Using general procedure 6.5.1, tetrathiafulvalene (500mg, 2.45mmol) and benzoylferrocene ¹⁴⁷ (500mg, 1.72mmol) afforded **230** as an orange solid (540mg, 63% yield); m.p. 66-67°C (Found: C, 55.5; H, 3.7. $C_{23}H_{18}FeOS_4$ requires C, 55.9; H, 3.7%); m/z (DCI) 495 (M⁺+1), HRMS found 493.9560, $C_{23}H_{18}FeOS_4$ requires 493.9590; δ_H (CDCl₃) 7.42-7.32 (5H, m), 6.29 (2H, s), 5.82 (1H, s), 4.47 (1H, s), 4.33 (1H, s), 4.25 (6H, s), 3.89 (1H, s) and 3.41 (1H, s); υ_{max} (KBr)/cm⁻¹ 3490, 3064, 2922, 729, 644 and 488.

9-Hydroxy-9-[2,2'-bi(1,3-dithiolylidene)-4-yl]fluorene 233

Using general procedure 6.5.1, tetrathiafulvalene (500mg, 2.45mmol) and 9-fluorenone (500mg, 2.78mmol) afforded **233** as a yellow solid (730mg, 77% yield); m.p. 72-74°C (Found: C, 59.5; H, 3.4. $C_{19}H_{12}OS_4$ requires C, 59.4; H, 3.2%); m/z (DCI) 385 (M⁺+1); δ_H (CDCl₃) 7.65-7.25 (8H, m), 6.27 (2H, s), 6.21 (1H, s), and 2.66 (1H, s); υ_{max} (KBr)/cm⁻¹ 3416, 3063, 1448, 768, 743 and 731.

(i) 9-[2,2'-Bi(1,3-dithiolylidene)-4-yl]fluorenate chloride **234**.Cl and (ii) 9-[2,2'-Bi(1,3-dithiolylidene)-4-yl]fluorenate tetrafluoroborate **234**.BF₄

- (i) To a solution of **233** (460mg, 1.20mmol) in dichloromethane (10ml) was added HCl.Et₂O (1.2ml, 1.0M, 1.2mmol). The reaction was stirred for 30min at 20°C before adding ether (100ml). A brown/black precipitate presumed to be **234**.chloride salt was filtered from the reaction mixture (450mg).
- (ii) To a solution of 223 (200mg, 0.52mmol) in dichloromethane (10ml) was added tetrafluoroboric acid, dropwise at 20°C, until deposition ceased. Ether (100ml) was added to the reaction mixture and a brown/black precipitate presumed to be 234.tetrafluoroborate salt was obtained by filtration (170mg).

In each case, satisfactory analysis could not be obtained.

9-Ethoxy-9-[2,2'-bi(1,3-dithiolylidene)-4-yllfluorene 236

To a suspension of **234** tetrafluoroborate salt (100mg, 0.22mmol) in ethanol (20ml) was added sodium ethoxide in ethanol (2.5ml, 0.1M, 0.25mmol), and the mixture stirred for 15min. The solvent was evaporated under reduced pressure; column chromatography using silica gel and dichloromethane as the eluent afforded **236** as an orange oil (30mg, 33% yield); m/z (DCI) 413 (M⁺+1), HRMS found 412.0160, $C_{21}H_{16}OS_4$ requires 412.0084; δ_H (CDCl₃) 7.70-7.28 (8H, m), 6.27 (2H, s), 6.00 (1H, s), 2.99 (2H, q, J 7.0 Hz) and 1.09 (3H, t, J 7.0 Hz).

4-Benzyltetrathiafulvalene 238

To a solution of lithium aluminium hydride (70mg, 1.84mmol) in ether (30ml), was added aluminium chloride (220mg, 1.65mmol) at 0°C. After 5min the ice bath was removed and a suspension of benzoyltetrathiafulvalene 146 237 (500mg, 1.62mmol), in ether (10ml) was slowly added [alternatively, 218 (500mg, 161mmol) can also be used]. The reduction was allowed to proceed over 16h. The ethereal mixture was poured onto ice, separated once the ice had melted, and dried (MgSO₄). Column chromatography using silica gel and hexane-dichloromethane (3:1 v/v) as the eluting solvent afforded 238 as a bright yellow oil [320mg, 67% yield (340mg, 72% from 218)]; (Found: C, 53.0; H, 3.4. C₁₃H₁₀S₄ requires C, 53.0; H, 3.4%); m/z (DCI) 295

 (M^++1) ; δ_H (CDCl₃) 7.43-7.28 (5H, m), 6.71 (1H, s), 6.34 (2H, dd), and 4.20 (2H, s).

1-Hydroxy-1-[2,2'-bi(1,3-dithiolylidene)-4-yl]-2-cyclopentene 240

Using general procedure 6.5.1, tetrathiafulvalene (500mg, 2.45mmol) and 2-cyclopenten-1-one (0.3ml, 3.58mmol) afforded **240** as an orange solid (420mg, 60% yield); m.p. 63-65°C; m/z (DCI) 287 (M⁺+1); $\delta_{\rm H}$ (CDCl₃) 6.31 (2H, s), 6.11 (1H, s), 6.12-6.07 (1H, m), 5.81-5.76 (1H, m), 2.67-2.29 (4H, m), and 2.17-2.01 (1H, m); $\delta_{\rm C}$ (CDCl₃) 143.8, 137.0, 134.8, 119.7, 112.8, 40.1, and 31.7; $\upsilon_{\rm max}$ (KBr)/cm⁻¹ 3396, 3062, 2933, 1733, 1400 and 1164.

3-[2,2'-Bi(1,3-dithiolylidene)-4-yl]-2,4-cyclopentadiene (Dimer) 242

To a solution of **240** (500mg, 1.75mmol) in dichloromethane (20ml) was added HCl.Et₂O (1.75ml, 1.0M, 1.75mmol), and the mixture stirred at 20°C for 15 min. Column chromatography using silica gel and dichloromethane as the eluting solvent afforded an orange oil (420mg, 90% yield); m/z (DCI) 269 (M⁺+1) HRMS found 267.9593, $C_{11}H_8S_4$ requires 267.9509; δ_H (CDCl₃) 6.70-5.41 (12H, m), 3.25 (2H, m), 3.16 (1H, m) and 3.02 (1H, m).

1-Hydroxy-1-[2,2'-bi(1,3-dithiolylidene)-4-yl]-2,3,4,5-tetramethyl-2-cyclopentene

Using general procedure 6.5.1, tetrathiafulvalene (500mg, 2.45mmol) and 2,3,4,5-tetramethyl-2-cyclopentenone (0.4ml, 2.52mmol) afforded **245** as an orange oil (610mg, 73% yield), which proved to be a mixture of *cis* and *trans* isomers, able to be separated by silica gel column chromatography using dichloromethane-hexane (1:2 v/v); m/z (EI) 342; first fraction *trans*: $\delta_{\rm H}$ (CDCl₃) 6.31 (2H, s), 6.20 (1H, s), 2.39 (2H, m), 1.70 (3H, s), 1.65 (3H, s), 1.44 (1H, s) and 0.97 (6H, d, *J* 6.9 Hz); second fraction *cis*: 6.30 (2H, s), 6.03 (1H, s), 1.90 (1H, s), 1.66-1.60 (8H, m) and 1.07 (6H, m); $\upsilon_{\rm max}$ (neat)/cm⁻¹ 3502, 3067, 2964, 796, 733 and 643.

1-[2,2'-Bi(1,3-dithiolylidene)-4-yl]-2,3,4,5-tetramethyl-2,4-cyclopentadiene 246

To a solution of **245** (cis and trans mixture, 200mg, 0.58mmol) in dichloromethane (20ml) was added HCl.Et₂O (0.60ml, 1.0M, 0.60mmol), and the mixture stirred at 20°C for 1h. Column chromatography using silica gel and dichloromethane as the eluent afforded **246** as an orange oil (165mg, 87% yield); m/z (EI) 324, HRMS found 324.0119, $C_{15}H_{16}S_4$ requires 324.0135; δ_H (CDCl₃) 6.33 (2H, s), 5.89 (1H, q, J 7.6 Hz), 2.86 (1H, m), 2.05 (3H, d, J 1.7 Hz), 1.87 (3H, s), 1.80 (3H, m) and 1.12 (3H, d, J 7.5 Hz).

<u>Dimethyl 5-[2,2'-bi(1,3-dithiolylidene)-4-yl]-1,4,6,7-tetramethylbicyclo[2.2.1]-hepta-2,5-diene-2,3-dicarboxylate 248</u>

To a solution of **246** (200mg, 0.62mmol) in toluene (30ml) was added dimethyl acetylenedicarboxylate (0.1ml, 0.81mmol). The reaction was stirred at 50°C for 4h. Column chromatography using neutral alumina and dichloromethane-hexane (1:1 v/v) as the eluent afforded **248** as an orange solid, which was recrystallised from dichloromethane-hexane at 0°C (255mg, 89% yield); m.p. 42-44°C (Found: C, 54.0; H, 5.1. $C_{21}H_{22}O_4S_4$ requires C, 54.1; H, 4.8%); m/z (DCI) 467 (M⁺+1); δ_H (CDCl₃) 6.30 (2H, s), 6.19 (1H, s), 3.77 (3H, s), 3.75 (3H, s), 2.68 (1H, d, *J* 6.3 Hz), 1.92 (3H, d, *J* 1.4 Hz), 1.67 (3H, d, *J* 1.3 Hz), 1.30 (3H, s) and 0.82 (3H, d, *J* 6.30 Hz); v_{max} (KBr)/cm⁻¹ 3069, 2949, 1716, 1432, 1293 and 1236.

2:1 229-chloranil CT complex 250

A solution of **229** (200mg, 0.46mmol) in acetonitrile (25ml) was refluxed for 5min. Similarly, a solution of chloranil **249** (120mg, 0.48mmol) was refluxed in acetonitrile (25ml) for 5min. The two solvated compounds were added together at refluxing temperature, and the mixture refluxed for a further 5min. After cooling to room temperature, **250** was collected by filtration as a black precipitate, and was then washed with cold acetonitrile (Found: C, 46.0; H, 3.2; S, 23.8. C₄₂H₃₂Cl₄Fe₂O₄S₈ requires C, 45.4; H, 2.9; S, 23.1%).

REFERENCES

- 1) H.N.McCoy, and W.C.Moore, J. Am. Chem. Soc., 1911, 33, 273.
- 2) H.J.Kraus, J. Am. Chem. Soc., 1913, 34, 1732.
- 3) H.Akamatsue, H.Inokuchi and Y.Matsunaga, Nature, 1954, 173, 168.
- 4) H.K.Onnes Proc. Acad. Wetenshappen (Amsterdam), 1911, 14, 113.
- 5) J.Ferraris, D.O.Cowan, V.V.Walatka and J.H.Perlstein, J. Am. Chem. Soc., 1973, 95, 948.
- 6) L.R.Melby, R.J.Harder, W.R.Hertler, W.Mahler, R.E.Benson and W.E.Mochel J. Am. Chem. Soc., 1962, 84, 3374.
- 7) F.Wudl, G.M.Smith and E.J.Hufnagel, J. Chem. Soc., Chem. Commun., 1970, 1453-1454.
- 8) T.E.Phillips, T.J.Kistenmacher, J.P.Ferraris and D.O.Cowan, J. Chem. Soc., Chem. Commun., 1973, 471.
- 9) T.J.Kistenmacher, T.E.Phillips and D.O.Cowan, *Acta Crystallogr.*, 1973, **B30**, 763.
- 10) J.S.Chappell, A.N.Bloch, W.A.Bryden, M.Maxfield, T.O.Pöehler and D.O.Cowan, J. Am. Chem. Soc., 1981, 103, 2442.
- 11) R.Comès, 'Chemistry and Physics of One-dimensional Metals', H.J.Keller (ed.), Plenum Press, New York, 1977, 315.
- 12) J.Bardeen, L.N.Cooper and J.R.Schrieffer, Phys. Rev., 1957, 108, 1175.
- 13) H.Fröhlich, Proc. R. Soc. London., Ser. A, 1954, 223, 296.

- 14) R.E.Peierls, 'Quantum Theory of Solids', Oxford University Press, London, 1955.
- 15) P.Coppens, V.Petricek, D.Levendis, F.K.Larsen, A.Paturle, G.Yan and A.D.LeGrand, *Phys. Rev. Lett.*, 1987, **59**, 1695.
- 16) D.O.Cowan, in 'New Aspects of Organic Chemistry 1', Z.Yoshida, T.Shiba and Y.Oshiro (ed.), V.C.H. Publishers, New York, 1989, 177.
- 17) Y.A.Jackson, C.L.White, M.V.Lakshmikantham and M.P.Cava, Tetrahedron Lett., 1987, 28, 5635.
- 18) M.D.Mays, R.D.McCullough, D.O.Cowan, T.O.Poehler, W.A.Bryden and T.J.Kistenmacher, *Solid State Commun.*, 1988, 65, 1089.
- 19) J.P.Ferraris, T.O.Poehler, A.N.Bloch and D.O.Cowan, *Tetrahedron Lett.*, 1973, 2553.
- 20) T.J.Kistenmacher, T.J.Emge, P.Shu and D.O.Cowan, Acta. Crystallogr., 1979, B35, 772.
- 21) J.B.Torrance, J.J.Mayerle, V.Y.Lee and K.Bechgaard, J. Am. Chem. Soc., 1979, 101, 4747.
- 22) (a) K.Bechgaard, C.S.Jacobsen, K.Mortensen, H.J.Pederson and N.Thorup, Solid State Commun., 1980, 33, 1119.
- (b) K.Bechgaard, K.Carneiro, M.Olsen, B.Rasmussen and C.S.Jacobsen, *Phys. Rev. Lett.*, 1981, 46, 852.
- 23) J.M.Williams, M.A.Beno, H.-H.Wang, T.J.Emge, P.T.Copps, N.L.Hall, K.D.Carlson and G.W.Crabtree, *Philos. Trans. R. Soc. London, Ser. A*, 1985, 314, 83.
- 24) R.L.Greene, J.J.Mayerle, R.Schumaker, G.Castro, P.M.Chaikin, S.Etemad and S.J.LaPlaca, *Solid State Commun.*, 1976, 20, 943.
- 25) H.K.Spencer, M.V.Lakshmikantham, M.P.Cava and A.F.Garito, J. Chem. Soc., Chem. Commun., 1975, 867.

- 26) F.Wudl and E.J.Aharon-Shalom, J. Am. Chem. Soc., 1982, 104, 1154.
- 27) A.N.Bloch, D.O.Cowan, K.Bechgaard, R.E.Pyke and R.H.Banks, *Phys. Rev. Lett.*, 1975, 34, 1561.
- 28) M.Mizuno, A.F.Garito and M.P.Cava, J. Chem. Soc., Chem. Commun., 1978, 18.
- 29) T.Ishiguro and K.Yamaji, 'Organic Superconductors', Springer-Verlag, Berlin, 1990.
- 30) G.Saito, T.Enoki, K.Toriumi and H.Inokuchi, Solid State Commun., 1982, 42, 557.
- 31) E.B. Yagubskii, I.F. Schegolev, V.N. Laukhin, P.A. Karatsovnik, M.V. Karatsovnik, A.V. Zvarykina and L.I. Buravov, J.E.T.P. Lett. (Engl. Trans.), 1984, 39, 12.
- 32) J.E.Schirber, L.J.Azevedo, J.K.Kwak, E.L.Venturini, P.C.W.Leung, M.A.Beno, H.H.Wang and J.M.Williams, *Phys. Rev. B.*, 1986, **33**, 1987.
- 33) S.S.P.Parkin, E.M.Engler, R.R.Schumaker, R.Lagier, V.Y.Lee, J.C.Scott and R.L.Greene, *Phys. Rev. Lett.*, 1983, **50**, 270.
- 34) T.J.Emge, H.H.Wang, M.A.Beno, P.C.W.Leung, M.A.Firestone, H.C.Jenkins, J.D.Cook, K.D.Carlson, J.M.Williams, E.L.Venturini, L.J.Azevedo and J.E.Schirber, *Inorg. Chem.*, 1985, 24, 1738.
- 35) H.Urayama, H.Yamochi, G.Saito, K.Nozawa, T.Sugano, M.Kinoshita, S.Sato, K.Oshima, A.Kawamoto and J.Tanaka, *Chem. Lett.*, 1988, 55.
- 36) A.M.Kini, U.Geiser, H.H.Wang, K.D.Carlson, J.M.Williams, W.K.Kwok, K.G.Vandervoot, J.E.Thompson, D.L.Stupka, D.Jung and M.-H.Whangbo, *Inorg. Chem.*, 1990, 29, 2555.
- 37) J.M.Williams, A.M.Kini, H.H.Wang, K.D.Carlson, U.Geiser, L.K.Montgomery, G.J.Pyrka, D.M.Watkins, J.K.Kommers, S.J.Boryschuk, A.V.Crouch, W.K.Kwok, J.E.Schirber, L.Overmyer, D.Jung and M.-H.Whangbo, *Inorg. Chem.*, 1990, 29, 3274.

- 38) F.Wudl, H.Yamochi, T.Suzuki, H.Isotalo, C.Fite, H.Kasmai, K.Liou, G.Srdanov, P.Coppens, K.Maly and A.Frost-Jensen, J. Am. Chem. Soc., 1990, 112, 2461.
- 39) M.A.Beno, H.H.Wang, A.M.Kini, K.D.Carlson, U.Geiser, W.K.Kwok, J.E.Thompson, J.M.Williams, J.Ren and M.-H.Whangbo, *Inorg. Chem.*, 1990, 29, 1599.
- 40) V.Y.Lee, E.M.Engler, R.R.Schumaker and S.S.S.Parkin, J. Chem. Soc., Chem. Commun., 1983, 235.
- 41) R.Kato, H.Kobayashi and A.Kobayashi, Chem. Lett., 1986, 785.
- 42) H.H.Wang, L.K.Montgomery, U.Geiser, L.C.Porter, K.D.Carlson, J.R.Ferraro, J.M.Williams, C.S.Cariss, R.L.Rubinstein and J.R.Whitworth, *Chem. Mater.*, 1989, 1, 140.
- 43) K.Murata, M.Tokumoto, H.Anzai, H.Bando, K.Kajimura and T.Ishiguro, Synth. Met., 1986, 13, 3.
- 44) J.M.Williams, H.H.Wang, T.J.Emge, U.Geiser, M.A.Beno, P.C.W.Leung, K.D.Carlson, R.J.Thorn, A.J.Schultz and M.-H.Whangbo, *Prog. Inorg. Chem.*, 1987, 35, 51.
- 45) P.J.Nigrey, B.Morosin, J.F.Kwak, E.L.Venturini and R.J.Baughman, Synth. Met., 1986, 16, 1.
- 46) G.C.Papavassiliou, G.A.Mousdis, J.S.Zambounis, A.Terzis, A.Hountas, B.Hilti, C.W.Mayer and J.Pfeiffer, *Synth. Met.*, 1988, **B27**, 379.
- 47) A.M.Kini, M.A.Beno, D.Son, H.H.Wang, K.D.Carlson, L.C.Porter, U.Welp, B.A.Vogt, J.M.Williams, D.Jung, M.Evain, M.-H.Whangbo, D.L.Overmyer and J.E.Schirber, *Solid State Commun.*, 1989, **69**, 503.
- 48) K.Kikuchi, Y.Honda, Y.Ishikawa, K.Saito, I.Ikemoto, K.Murata, H.Anzai, T.Ishiguro and K.Kobayashi, *Solid State Commun.*, 1988, 66, 405.
- 49) W.R.H.Hurtley and S.J.Smiles, J. Chem. Soc., 1926, 1821.

- 50) M.Z.Aldoshina, L.S. Veretennikova, R.N. Luboskaya, and M.L. Khidekel, Izv. Akad. Nauk SSSR, Ser. Khim., 1978, 940.
- 51) L.S. Veretennikova, R.N. Lubovskaya, R.B. Lubovskii, L.P. Rozenberg, M.A. Simonov, R.P. Shibaeva and M.L. Khidekel, *Dokl. Akad. Nauk. SSSR.*, 1978, 241, 862.
- 52) M.R.Bryce, Chem. Soc. Rev., 1991, 20, 355.
- 53) Z. Yoshida, T. Kawase, H. Awaji, I. Sugimoto, T. Sugimoto and S. Yoneda, Tetrahedron Lett., 1983, 24, 3469.
- 54) Z.Yoshida, T.Kawase, H.Awaji and S.Yoneda, Tetrahedron Lett., 1983, 24, 3473.
- 55) T.Kawase, H.Awaji, S.Yoneda and Z.Yoshida, Heterocycles, 1982, 18, 123.
- 56) V.Yu.Khodorkovskii, L.N.Veselova and O.Ya.Neiland, Khim. Geterotsikl. Soedin., 1990, 130; Chem. Abstr., 1990, 113, 22868t.
- 57) T.K.Hansen, M.V.Lakshmikantham, M.P.Cava, R.M.Metzger and J.Becher, J. Org. Chem., 1991, 56, 2720.
- 58) A.J.Moore, M.R.Bryce, D.J.Ando and M.B.Hursthouse, J. Chem. Soc., Chem. Commun., 1991, 320.
- 59) M.R.Bryce, A.J.Moore, M.A.Coffin, G.J.Marshallsay, G.Cooke, P.J.Skabara, A.S.Batsanov, J.A.K.Howard and W.Clegg, *Phosphorus, Sulfur, and Silicon*, 1993, 74, 279.
- 60) M.R.Bryce, M.A.Coffin and W.Clegg, J. Org. Chem., 1992, 57, 1696.
- 61) A.J.Moore and M.R.Bryce, J. Chem. Soc., Perkin Trans. 1, 1991, 157, and references therein.
- 62) H.Awaji, T.Sugimoto and Z.Yoshida, J. Phys. Org. Chem., 1988, 1, 47.
- 63) M.R.Bryce and A.J.Moore, Synth. Met., 1988, 27, B557.

- 64) M.R.Bryce, A.J.Moore, M.Hasan, G.J.Ashwell, A.T.Fraser, W.Clegg, M.B.Hursthouse and A.I.Karaulov, Angew. Chem., Int. Ed. Engl., 1990, 29, 1450.
- 65) J.S.Miller and A.J.Epstein, Angew. Chem., Int Ed. Engl., 1994, 33, 385.
- 66) J.S.Miller, A.J.Epstein and W.M.Reiff, Chem. Rev., 1988, 88, 201.
- 67) a) H.M.McConnell, J. Chem. Phys., 1963, 39, 1910;
- b) H.M.McConnell, Proc. Robert A. Welch. Found. Conf. Chem. Res., 1967, 11, 144.
- 68) a) P.Day, Acc. Chem. Res., 1979, 14, 236;
- b) C.Bellito and P.Day, J. Mater. Chem., 1992, 2, 265.
- 69) J.L.Robbins, N.Edelstein, B.Spencer and J.C.Smart, J. Am. Chem. Soc., 1982, 104, 1882.
- 70) D.M.O'Hare, J.C.Green, T.P.Chadwick and J.S.Miller, *Organometallics*, 1988, 7, 1335.
- 71) U.Kolle and J.Grub, J. Organomet. Chem., 1985, 289, 133.
- 72) J.-M.Lehn, Angew. Chem., Int. Ed. Engl., 1990, 29, 1304.
- 73) a) P.L.Anelli, P.R.Ashton, R.Ballardini, V.Balzani, M.Delgado, M.T.Gandolfi, T.T.Goodnow, A.E.Kaifer, D.Philp, M.Pietraszkiewicz, L.Prodi, M.V.Reddington, A.M.Z.Slawin, N.Spencer, J.F.Stoddart, C.Vicent and D.J.Williams, J. Am. Chem. Soc., 1992, 114, 193;
- b) R.W.Wagner, P.A.Brown, T.E.Johnson and J.S.Lindsey, J. Chem. Soc., Chem. Commun., 1991, 1463;
- c) D.N.Blauch and J.-M.Savéant, J. Am. Chem. Soc., 1992, 114, 3323.
- 74) (a) D.C.Green, J. Chem. Soc., Chem. Commun., 1977, 161; (b) D.C.Green and R.W.Allen, J. Chem. Soc., Chem. Commun., 1978, 832; (c) D.C.Green, J. Org. Chem., 1979, 44, 1476.
- 75) A.J.Gushurst and W.L.Jorgensen, J. Org. Chem., 1986, 51, 3513.

- 76) J.Garin, J.Orduna, S.Uriel, A.J.Moore, M.R.Bryce, S.Wegener, D.S.Yufit and J.A.K.Howard, *Synthesis*, 1994, 489.
- 77) M.Sallé, A.J.Moore, M.R.Bryce and M.Jubault, *Tetrahedron Lett.*, 1993, 34, 7475.
- 78) (a) M.Mizatuni, K.Tanaka, K.Ikeda and K.Kawabata, *Mat. Res. Soc. Symp. Proc.*, 1992, **247**, 541; (b) M.Mizatuni, K.Tanaka, K.Ikeda and K.Kawabata, *Synth. Met.*, 1992, **46**, 201.
- 79) M.Fourmigué, I.Johannsen, K.Boubekeur, C.Nelson and P.Batail, J. Am. Chem. Soc., 1993, 115, 3752.
- 80) M.R.Bryce, W.Devonport and A.J.Moore, Angew. Chem., Int. Ed. Engl., 1994, in press.
- 81) C.A.Panetta, J.Baghdadchi and R.M.Metzger, Mol. Cryst. Liq. Cryst., 1984, 107, 103.
- 82) M.R.Bryce, G.Cooke, A.S.Dhindsa, D.Lorcy, A.J.Moore, M.C.Petty, M.B.Hursthouse and A.I.Karaulov, J. Chem. Soc., Chem. Commun., 1990, 816.
- 83) A.J.Moore and M.R.Bryce, J. Chem. Soc., Chem. Commun., 1991, 1638.
- 84) M.R.Bryce, G.J.Marshallsay and A.J.Moore, J. Org. Chem., 1992, 57, 4859.
- 85) A.J.Moore, M.R.Bryce, G.Cooke, G.J.Marshallsay, P.J.Skabara, A.S.Batsanov, J.A.K.Howard and S.T.A.K. Daley, J. Chem. Soc., Perkin Trans. 1, 1993, 1403.
- 86) B.Fetkenheuer, H.Fetkenheuer and H.Lecus, Chem. Ber., 1927, 2528.
- 87) H.Kolbe, Justus Liebig. Ann. Chem., 1868, 140.
- 88) S. Wawzonek and S. Heilmann, J. Org. Chem., 1974, 39, 511.
- 89) G.Steimecke, H.Sieler, R.Kirmse and E.Hoyer, *Phosphorus and Sulfur*, 1979, 7, 49.

- 90) C.Gemmell, J.D.Kilburn, H.Ueck and A.E.Underhill, *Tetrahedron Lett.*, 1992, 33, 3923.
- 91) N.Svenstrup, K.M.Rasmussen, T.K.Hansen and J.Becher, Synthesis, 1994, 8, 809.
- 92) V.Y.Khodorkovskii, Y.Y.Katsen and O.Y.Neiland, Zh. Org. Khim., 1985, 21, 1582.
- 93) H.Poleschner, W.John, F.Hoppe and E.Fanghanel, J. Prakt. Chem., 1983, 325, 957.
- 94) T.K.Hansen, I.Hawkins, K.S.Varma, S.Edge, S.Larsen, J.Becher and A.E.Underhill, J. Chem. Soc., Perkin Trans. 2, 1991, 1963.
- 95) (a) E.Aharon-Shalom, J.Y.Becker, J.Bernstein, S.Bittner and S.Shaik, *Tetrahedron Lett.*, 1985, **26**, 2783; (b) S.-Y.Hsu and L.Y.Chiang, *J. Org. Chem.*, 1987, **52**, 3444; (c) G.Saito, *Pure Appl. Chem.*, 1987, **59**, 999; (d) V.Y.Lee, *Synth. Metals*, 1987, **20**, 161; (e) A.M.Kini, B.D.Gates, M.A.Beno and J.M.Williams, *J. Chem. Soc., Chem. Commun.*, 1989, 169; (f) M.Jorgensen and K.Bechgaard, *Synthesis*, 1989, 207.
- 96) G.C.Papavassiliou, J.S.Zambounis, G.A.Mousdis, V.Gionis and S.Y.Yiannopoulos, *Mol. Cryst. Liq. Cryst.*, 1988, **156**, 269.
- 97) T.J.Kealy and P.L.Pauson, Nature (London), 1951, 168, 1039.
- 98) S.A.Miller, J.A.Tebboth and J.F.Tremaine, J. Chem. Soc., 1952, 632.
- 99) G.D.Broadhead, J.M.Osgerby and P.L.Pauson, J. Chem. Soc., 1958, 650.
- 100) E.G.Perevalova, Y.Ustynyuk and A.Nesmeyanov, Izv. Akad. Nauk. SSSR, Otd. Khim. Nauk., 1963, 1036.
- 101) M.Walczak, K.Walczak, R.Mink, M.D.Rausch and G.Stucky, J. Am. Chem. Soc., 1978, 100, 6382.
- 102) F.S. Arimoto and A.C. Haven Jr., J. Am. Chem. Soc., 1955, 77, 6295.

- 103) F.W.Knobloch and W.H.Rauscher, J. Polymer Sci., 1961, 54, 651.
- 104) P.L.Pauson and W.E.Watts, J. Chem. Soc., 1963, 2990.
- 105) P.L.Pauson, M.A.Sandhu and W.E.Watts, J. Chem. Soc. Org., 1966, 251.
- 106) P.D.Beer, H.Sikanyika, C.Blackburn and J.F.McAleer, J. Chem. Soc., Chem. Commun., 1989, 1831.
- 107) M.Hisatome, M.Yoshihashi, K.Masuzoe and K.Yamakawa, *Organometallics*, 1987, 6, 1498.
- 108) A.Sonada and I.Moritani, J. Organomet. Chem., 1971, 26, 133.
- 109) J.M.Osgerby and P.L.Pauson, J. Chem. Soc., 1961, 4604.
- 110) T.Nozdryn, J.Cousseau, A.Gorgues, M.Jubault, J.Orduna, S.Uriel and J.Garin, J. Chem.Soc., Perkin Trans. 1, 1993, 1711.
- 111) N.Gonella and M.P.Cava, J. Org. Chem., 1978, 43, 369.
- 112) K.Ishikawa, K.Akiba and N.Inamoto, Tetrahedron Lett., 1976, 3695.
- 113) U.Schöberl, J.Salbeck and J.Daub, Adv. Mater., 1992, 4, 41.
- 114) H.Hopf, Angew. Chem., Int. Ed. Engl., 1984, 23, 948.
- 115) Y.Misaki, Y.Matsumura, Y.Sugimoto and Z.-I.Yoshida, *Tetrahedron Lett.*, 1989, **30**, 5289.
- 116) A.Hosomi, T.Masunari, Y.Tominaga, T.Yanagi and M.Hojo, *Tetrahedron Lett.*, 1990, **31**, 6201.
- 117) J.I.G.Cadogan, S.Cradock, S.Gillam and I.Gosney, J. Chem. Soc., Chem. Commun., 1991, 14.
- 118) F.L.Carter and R.E.Siatkowski, in *From Atoms to Polymers, Isoelectronic Analogies*, (ed.) J.F.Liebman and A.Greenberg, VCH Publishers, Inc., 1989, 307.

- 119) M.A.Coffin, M.R.Bryce, A.S.Batsanov and J.A.K.Howard, J. Chem. Soc., Chem. Commun., 1993, 552.
- 120) M.A.Coffin, Ph.D. Thesis, University of Durham, 1992.
- 121) A.J.Moore and M.R.Bryce, Synthesis, 1991, 26.
- 122) H.Hopf, M.Kreutzer and P.G.Jones, Angew. Chem., Int. Ed. Engl., 1991, 30, 1127.
- 123) V.Y.Khodorkovsky, J.Y.Becker and J.Bernstein, Synthesis, 1992, 1071.
- 124) M.L.Kaplan, R.C.Haddon and F.Wudl, J. Chem. Soc., Chem. Commun., 1977, 388.
- 125) J.Ippen, C.Tao-pen, B.Starker, D.Schweitzer and H.A.Staab, Angew. Chem., Int. Ed. Engl., 1980, 19, 67.
- 126) H.Tatemitsu, E.Nishikawa, Y.Sakata and S.Misumi, Synth. Metals, 1987, 19, 565.
- 127) J.Y.Becker, J.Bernstein, S.Bittner, J.A.R.P.Sarma and L.Shahal, *Tetrahedron Lett.*, 1988, **29**, 6177.
- 128) M.Adam, P.Wolf, H.J.Räder and K.Müllen, J. Chem. Soc., Chem. Commun., 1990, 1624.
- 129) N.Thorup. G.Rindorf, K.Lerstrup and K.Bechgaard, Synth. Metals, 1991, 42, 2223.
- 130) M.Jorgensen, K.A.Lerstrup and K.Bechgaard, Synth. Metals, 1991, 56, 5684.
- 131) F.Bertho-Thoraval, A.Robert, A.Souzi and K.Boubekeur, J. Chem. Soc., Chem. Commun., 1991, 843.
- 132) M.Fourmigué and P.Batail, J. Chem. Soc., Chem. Commun., 1991, 1370.
- 133) M.R.Bryce, G.Cooke, A.S.Dhindsa, D.J.Ando and M.B.Hursthouse, *Tetrahedron Lett.*, 1992, **33**, 1783.

- 134) M.Iyoda, Y.Kuwatani, N.Ueno and M.Oda, J. Chem. Soc., Chem. Commun., 1992, 158.
- 135) T.Sugimoto, S.Yamaga, M.Nakai, H.Nakatsiyi, J.Yamauchi, H.Fujita, H.Fukutome, A.Ikawa, H.Mizouchi, Y.Kai and N.Kaneshi, *Adv. Mater.*, 1993, 5, 741.
- 136) M.Fourmigué and Y.-S.Huang, Organometallics, 1993, 12, 797.
- 137) E.S.Shubina, L.M.Epstein, A.I.Yanovsky, T.V.Timofeeva, Y.T.Struchkov, A.Z.Kreindlin, S.S.Fadeeva and M.I.Rybinskaya, *J. Organomet. Chem.*, 1988, **345**, 313.
- 138) E.S.Shubina, L.M.Epstein, T.V.Timofeeva, Y.T.Struchkov, A.Z.Kreindlin, S.S.Fadeeva and M.I.Rybinskaya, J. Organomet. Chem., 1988, 346, 59.
- 139) E.S.Shubina, L.M.Epstein, A.I.Yanovsky, T.V.Timofeeva, Y.T.Struchkov, A.Z.Kreindlin, S.S.Fadeeva and M.I.Rybinskaya, *J. Organomet. Chem.*, 1991, **401**, 133.
- 140) E.S.Shubina, L.M.Epstein, A.Z.Kreindlin, S.S.Fadeeva and M.I.Rybinskaya, J. Organomet. Chem., 1991, 401, 145.
- 141) E.S.Shubina, A.N.Krylov, A.Z.Kreindlin, M.I.Rybinskaya and L.M.Epstein, J. Organomet. Chem., 1994, 465, 259.
- 142) M.Buchmeiser and H.Schottenberger, Organometallics, 1993, 12, 2472.
- 143) C.Rieker, G.Ingram, P.Jaitner, H.Schottenberger and K.E.Schwarzhans, J. Organomet. Chem., 1990, 381, 121.
- 144) H.Plenio, Organometallics, 1992, 11, 1856.
- 145) G.C.Papavassiliou, V.C.Kakoussis, J.S.Jambounis and G.A.Mousdis, *Chemica Scripta*, 1989, **29**, B7678.
- 146) M.R.Bryce, P.J.Skabara, A.J.Moore, unpublished results.

147) N.Weliky and E.S.Gould, J. Am. Chem. Soc., 1957, 79, 2742.

APPENDIX 1

X-RAY CRYSTALLOGRAPHIC DATA

A.1.1 Crystallographic data for 1,1'-Bis[1-(1,3-dithiole-2-ylidene)-ethyl]ferrocene 171

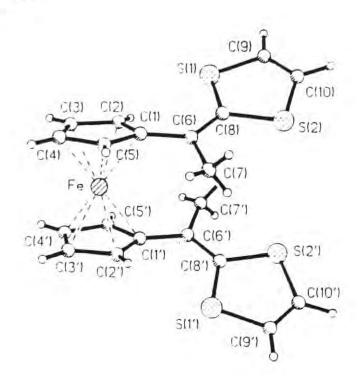


Figure A.1.1: X-Ray molecular structure of compound 171 and crystallographic numbering scheme.

Crystal Data

C20H18FeS4
442.4
red, fragment
0.15 x 0.25 x 0.40
Monoclinic
a = 17.847 (2) Å
b = 10.191 (2) Å
c = 12.849 (2) Å
$\beta = 126.01 (1)^{\circ}$
1890.4 (6) Å ³

Space Group C2/c Z Value 4

Density (calc.) 1.555 mg/m³

F₀₀₀ 912

Absorption Coefficient 1.240 mm⁻¹

Intensity Measurements

Radiation $MoK\alpha (\lambda = 0.71073 \text{ Å})$

Temperature 296 K
2θ Range 5.5 to 55.0°
No. of Reflections Measured Total: 2361

Unique: 2170

Solution and Refinement

Structure solution Direct Methods

Refinement Method Full-Matrix Least-Squares

Residuals: R, R_w 0.056, 0.065

Goodness-of-Fit Indicator 1.90

Fe-C(1)	2.073 (5)	Fe-C(2)	2.049 (7)
Fe-C(3)	2.042 (8)	Fe-C(4)	2.049 (5)
Fe-C(5)	2.046 (4)	S(1)-C(8)	1.760 (6)
S(1)-C(9)	1.744 (7)	S(2)-C(8)	1.770 (4)
S(2)-C(10)	1.723 (10)	C(1)-C(2)	1.433 (7)
C(1)-C(5)	1.432 (7)	C(1)-C(6)	1.463 (6)
C(2)-C(3)	1.432 (6)	C(3)-C(4)	1.411 (9)
C(4)-C(5)	1.436 (7)	C(6)-C(7)	1.509 (10)
C(6)-C(8)	1.356 (7)	C(9)-C(10)	1.307 (12)

C(1)-Fe-C(1A)	108.7 (2)	C(2)-Fe-C(1A)	116.8 (2)
C(3)-Fe-C(1A)	149.2 (2)	C(4)-Fe-C(1A)	169.5 (2)
C(5)-Fe-C(1A)	130.5 (2)	C(2)-Fe-C(2A)	149.5 (3)
C(3)-Fe-C(2A)	168.6 (2)	C(4)-Fe-C(2A)	130.6 (3)
C(5)-Fe-C(2A)	108.5 (2)	C(1)-Fe-C(3A)	149.2 (2)
C(3)-Fe-C(3A)	129.3 (3)	C(4)-Fe-C(3A)	108.0 (2)
C(5)-Fe-C(3A)	116.2 (2)	C(1)-Fe-C(4A)	169.5 (2)
C(2)-Fe-C(4A)	130.6 (3)	C(4)-Fe-C(4A)	116.0 (3)
C(5)-Fe-C(4A)	148.6 (2)	C(1)-Fe-C(5A)	130.5 (2)
C(2)-Fe-C(5A)	108.5 (2)	C(3)-Fe-C(5A)	116.2 (2)
C(5)-Fe-C(5A)	169.2 (3)	C(8)-S(1)-C(9)	95.5 (4)
C(8)-S(2)-C(10)	95.8 (3)	Fe-C(1)-C(2)	68.7 (3)
Fe-C(1)-C(5)	68.6 (3)	C(2)-C(1)-C(5)	107.0 (4)
Fe-C(1)-C(6)	125.9 (4)	C(2)-C(1)-C(6)	128.7 (4)
C(5)-C(1)-C(6)	124.2 (5)	Fe-C(2)-C(1)	70.6 (4)
Fe-C(2)-C(3)	69.3 (4)	C(1)-C(2)-C(3)	108.6 (5)
Fe-C(3)-C(2)	69.8 (4)	Fe-C(3)-C(4)	70.1 (4)
C(2)-C(3)-C(4)	107.8 (5)	Fe-C(4)-C(3)	69.6 (3)
Fe-C(4)-C(5)	69.4 (3)	C(3)-C(4)-C(5)	108.4 (4)
Fe-C(5)-C(1)	70.7 (2)	Fe-C(5)-C(4)	69.6 (2)
C(1)-C(5)-C(4)	108.1 (5)	C(1)-C(6)-C(7)	117.4 (5)
C(1)-C(6)-C(8)	123.5 (5)	C(7)-C(6)-C(8)	119.1 (4)
S(1)-C(8)-S(2)	112.1 (3)	S(1)-C(8)-C(6)	126.5 (4)
S(2)-C(8)-C(6)	121.4 (4)	S(1)-C(9)-C(10)	117.7 (8)
S(2)-C(10)-C(9)	118.1 (6)		

A.1.2 Crystallographic data for 1,1'-Bis[1,2-bis(4,5-dimethyl-1,3-dithiole-2-ylidene)ethane-1,2-diyl]diferrocene 173

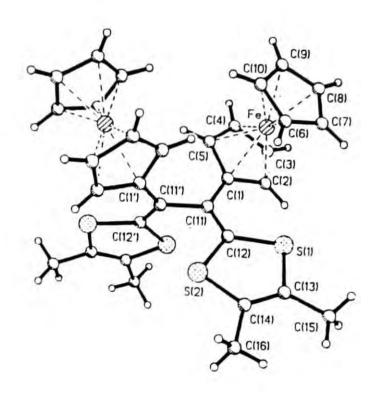


Figure A.1.2: X-Ray molecular structure of compound 173 and crystallographic numbering scheme.

1.397 mm⁻¹

Crystal Data

Absorption Coefficient

C33H31Fe2S4 **Empirical Formula** Formula Weight 773.9 Crystal Colour, Habit orange 0.10 x 0.15 x 0.20 Crystal Dimensions (mm) Crystal System Monoclinic Lattice Parameters a = 21.977(1) Åb = 8.6364(3) Åc = 18.465(1) Å $\beta = 109.459 (1)^{\circ}$ Volume 3304.33 (1) Å³ C2/c Space Group 4 Z Value 1.556 mg/m³ Density (calc.) 1584 F000

Intensity Measurements

Radiation $MoK\alpha (\lambda = 0.71073 \text{ Å})$

Temperature 293 K

2θ Range 3.0 to 60.0°
No. of Reflections Measured Total: 5216

Unique: 3862

Solution and Refinement

Structure solution Direct Methods

Refinement Method Full-Matrix Least-Squares

Residuals: R, R_w 0.059, 0.060

Goodness-of-Fit Indicator 1.29

Fe-(C)1	2.079 (5)	Fe-C(2)	2.047 (5)
Fe-C(3)	2.038 (5)	Fe-C(4)	2.046 (6)
Fe-C(5)	2.047 (6)	Fe-C(6)	2.042 (6)
Fe-C(7)	2.036 (8)	Fe-C(8)	2.051 (7)
Fe-C(9)	2.056 (6)	Fe-C(10)	2.044 (6)
S(1)-C(12)	1.755 (5)	S(1)-C(13)	1.757 (5)
S(2)-C(12)	1.768 (4)	S(2)-C(14)	1.754 (6)
C(1)-C(2)	1.432 (6)	C(1)-C(5)	1.426 (8)
C(1)-C(11)	1.481 (6)	C(2)-C(3)	1.421 (7)
C(3)-C(4)	1.406 (8)	C(4)-C(5)	1.427 (7)
C(6)-C(7)	1.423 (9)	C(6)-C(10)	1.412 (9)
C(7)-C(8)	1.425 (9)	C(8)-C(9)	1.401 (10)
C(9)-C(10)	1.404 (8)	C(11)-C(12)	1.341 (7)
C(11)-C(11A)	1.501 (10)	C(13)-C(14)	1.333 (8)
C(13)-C(15)	1.502 (10)	C(14)-C(16)	1.508(7)
C(01)-Cl(1A)	1.69 (4)	C(01)- $Cl(2A)$	1.84 (4)
C(01)-Cl(3A)	1.61 (3)	C(01)-Cl(1B)	1.80 (4)
C(01)-Cl(2B)	1.73 (2)	C(01)-Cl(3B)	1.66 (4)

C(1)-Fe-C(2)	40.6 (2)	C(1)-Fe-C(3)	68.2 (2)
C(2)-Fe-C(3)	40.7 (2)	C(1)-Fe-C(4)	68.3 (2)
C(2)-Fe-C(4)	68.3 (2)	C(3)-Fe-C(4)	40.3 (2)
C(1)-Fe-C(5)	40.4 (2)	C(2)-Fe-C(5)	68.3 (2)
C(3)-Fe-C(5)	68.2 (2)	C(4)-Fe-C(5)	40.8 (2)
C(1)-Fe-C(6)	107.6 (2)	C(2)-Fe-C(6)	120.3 (2)
C(3)-Fe-C(6)	155.5 (3)	C(4)-Fe-C(6)	162.8 (3)
C(5)-Fe-C(6)	125.4 (2)	C(1)-Fe-C(7)	125.9 (2)
C(2)-Fe-C(7)	107.9 (3)	C(3)-Fe-C(7)	120.6 (2)
C(4)-Fe-C(7)	155.0 (2)	C(5)-FeC(7)	162.8 (2)
C(6)-Fe-C(7)	40.9 (3)	C(1)-Fe-C(8)	163.7 (3)
C(2)-Fe-C(8)	126.6 (2)	C(3)-Fe-C(8)	108.5 (2)
C(4)-Fe-C(8)	120.3 (2)	C(5)-Fe-C(8)	154.8 (3)
C(6)-Fe-C(8)	68.3 (2)	C(7)-Fe-C(8)	40.8 (3)
C(1)-Fe-C(9)	154.8 (2)	C(2)-Fe-C(9)	163.4 (2)
C(3)-Fe-C(9)	126.3 (2)	C(4)-Fe-C(9)	108.3 (3)
C(5)-Fe-C(9)	120.5 (3)	C(6)-Fe-C(9)	67.9 (2)
C(7)-Fe-C(9)	67.9 (3)	C(8)-Fe-C(9)	39.9 (3)
C(1)-Fe-C(10)	120.4 (2)	C(2)-Fe-C(10)	155.1 (2)
C(3)-Fe-C(10)	162.8 (2)	C(4)-Fe-C(10)	125.9 (3)
C(5)-Fe-C(10)	107.9 (2)	C(6)-Fe-C(10)	40.4 (3)
C(7)-Fe-C(10)	68.1 (3)	C(8)-Fe-C(10)	67.5 (2)
C(9)-Fe-C(10)	40.0 (2)	C(12)-S(1)-C(13)	96.9 (3)
C(12)-S(2)-C(14)	96.6 (2)	Fe-C(1)-C(2)	68.5 (3)
Fe-C(1)-C(5)	68.6 (3)	C(2)-C(1)-C(5)	107.0 (4)
Fe-C(1)-C(11)	129.6 (3)	C(2)-C(1)-C(11)	130.3 (5)
C(5)-C(1)-C(11)	122.7 (4)	Fe-C(2)-C(1)	70.9 (3)
Fe-C(2)-C(3)	69.3 (3)	C(1)-C(2)-C(3)	108.1 (5)
Fe-C(3)-C(2)	70.0 (3)	Fe-C(3)-C(4)	70.2 (3)
C(2)-C(3)-C(4)	108.7 (4)	Fe-C(4)-C(3)	69.6 (3)
Fe-C(4)-C(5)	69.6 (3)	C(3)-C(4)-C(5)	107.8 (5)
Fe-C(5)-C(1)	71.0 (3)	Fe-C(5)-C(4)	69.6 (3)
C(1)-C(5)-C(4)	108.5 (5)	Fe-C(6)-C(7)	69.4 (4)
Fe-C(6)-C(10)	69.9 (3)	C(7)-C(6)-C(10)	107.4 (5)
Fe-C(7)-C(6)	69.8 (4)	Fe-C(7)-C(8)	70.2 (4)
C(6)-C(7)-C(8)	107.6 (6)	Fe-C(8)-C(7)	69.0 (4)
Fe-C(8)-C(9)	70.2 (4)	C(7)-C(8)-C(9)	108.0 (5)

Fe-C(9)-C(8)	69.9 (4)	Fe-C(9)-C(10)	69.5 (4)
C(8)-C(9)-C(10)	108.4 (6)	Fe-C(10)-C(6)	69.7 (3)
Fe-C(10)-C(9)	70.4 (3)	C(6)-C(10)-C(9)	108.6 (6)
C(1)-C(11)-C(12)	125.5 (4)	C(1)-C(11)-C(11A)	117.1 (5)
C(12)-C(11)-C(11A)	117.3 (4)	S(1)-C(12)-S(2)	112.3 (3)
S(1)-C(12)-C(11)	126.8 (3)	S(2)-C(12)-C(11)	120.8 (4)
S(1)-C(13)-C(14)	116.8 (5)	S(1)-C(13)-C(15)	116.1 (4)
C(14)-C(13)-C(15)	127.1 (5)	S(2)-C(14)-C(13)	117.1 (4)
S(2)-C(14)-C(16)	116.3 (4)	C(13)-C(14)-C(16)	126.5 (6)
Cl(1A)-C(01)-Cl(2A)	110 (2)	Cl(1A)-C(01)-Cl(3A)	120(2)
Cl(2A)-C(01)-Cl(3A)	112 (2)	Cl(1B)-C(01)-Cl(2B)	107 (2)
Cl(1B)-C(01)-Cl(3B)	113 (2)	Cl(2B)-C(01)-Cl(3B)	111 (2)

A.1.3 Crystallographic data for 1-[3-(5,6-Dihydro-1,3-dithiolo[4,5-b][1,4]dithiin-2-ylidene)diallyl]ferrocene 185

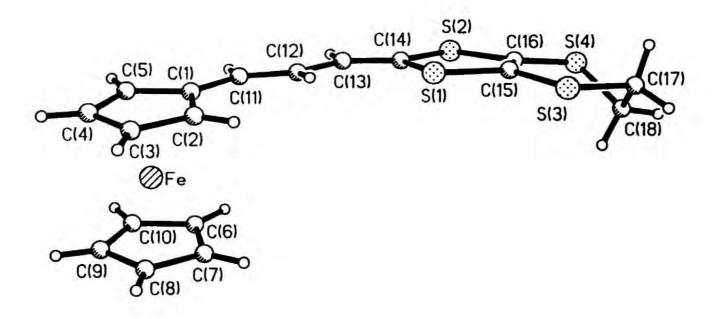


Figure A.1.3: X-Ray molecular structure of compound 185 and crystallographic numbering scheme.

Crystal Data

Empirical Formula C₁₈H₁₆FeS₄

Formula Weight 416.4

Crystal Colour, Habit brown, plate

Crystal Dimensions (mm) 0.08 x 0.20 x 0.40

Crystal System Monoclinic

Lattice Parameters a = 5.985 (2) Å

b = 12.487 (2) Å

c = 22.780 (5) Å

 $\beta = 96.57 (3)^{\circ}$

Volume 1691.3 (14) Å³

Space Group P2₁/c Z Value 4

Density (calc.) 1.635 mg/m³

F₀₀₀ 856

Absorption Coefficient 1.380 mm⁻¹

Intensity Measurements

Radiation $MoK\alpha (\lambda = 0.71073 \text{ Å})$

Temperature 120 K
2θ Range 5.0 to 55.0°
No. of Reflections Measured Total: 4441

Unique: 3879

Solution and Refinement

Structure solution Direct Methods

Refinement Method Full-Matrix Least-Squares

Residuals: R, R_w 0.043, 0.045

Goodness-of-Fit Indicator 1.16

Fe-(C)1	2.067 (5)	Fe-C(2)	2.047 (5)
Fe-C(3)	2.049 (5)	Fe-C(4)	2.037 (5)
Fe-C(5)	2.038 (5)	Fe-C(6)	2.040 (5)
Fe-C(7)	2.048 (6)	Fe-C(8)	2.057 (5)
Fe-C(9)	2.043 (5)	Fe-C(10)	2.058 (5)

S(1)-C(14)	1.771 (6)	S(1)-C(15)	1.770 (5)
S(2)-C(14)	1.759 (5)	S(2)-C(16)	1.760 (5)
S(3)-C(15)	1.748 (5)	S(3)-C(17)	1.809 (5)
S(4)-C(16)	1.769 (5)	S(4)-C(18)	1.815 (6)
C(1)-C(2)	1.433 (8)	C(1)-C(5)	1.440 (7)
C(1)-C(11)	1.447 (7)	C(2)-C(3)	1,423 (7)
C(3)-C(4)	1.421 (8)	C(4)-C(5)	1.419 (7)
C(6)-C(7)	1.404 (9)	C(6)-C(10)	1.422 (7)
C(7)-C(8)	1.428 (8)	C(8)-C(9)	1.431 (8)
C(9)-C(10)	1.416 (8)	C(11)-C(12)	1.355 (7)
C(12)-C(13)	1.438 (7)	C(13)-C(14)	1.342 (7)
C(15)-C(16)	1.333 (7)	C(17)-C(18)	1.510 (8)

C(14)-S(1)-C(15)	95.9 (2)	C(14)-S(2)-C(16)	96.1 (2)
C(15)-S(3)-C(17)	101.4 (3)	C(16)-S(4)-C(18)	98.7 (3)
C(2)-C(1)-C(5)	106.7 (4)	C(2)-C(1)-C(11)	128.0 (5)
C(5)-C(1)-C(11)	125.3 (5)	C(1)-C(2)-C(3)	108.7 (5)
C(2)-C(3)-C(4)	107.9 (5)	C(3)-C(4)-C(5)	108.3 (4)
C(1)-C(5)-C(4)	108.4 (5)	C(7)-C(6)-C(10)	109.1 (5)
C(6)-C(7)-C(8)	108.1 (5)	C(7)-C(8)-C(9)	106.9 (5)
C(8)-C(9)-C(10)	108.7 (5)	C(6)-C(10)-C(9)	107.1 (5)
C(1)-C(11)-C(12)	125.1 (5)	C(11)-C(12)-C(13)	125.5 (5)
C(12)-C(13)-C(14)	124.1 (5)	S(1)-C(14)-S(2)	113.4 (3)
S(1)-C(14)-C(13)	122.8 (4)	S(2)-C(14)-C(13)	123.8 (4)
S(1)-C(15)-S(3)	112.5 (3)	S(1)-C(15)-C(16)	116.7 (4)
S(3)-C(15)-C(16)	130.6 (4)	S(2)-C(16)-S(4)	115.2 (3)
S(2)-C(16)-C(15)	117.8 (4)	S(4)-C(16)-C(15)	126.7 (4)
S(3)-C(17)-C(18)	114.7 (4)	S(4)-C(18)-C(17)	112.0 (4)

A.1.4 Crystallographic data for 1,1'-Bis[3-(5,6-dihydro-1,3-dithiolo[4,5-b][1,4]dithiin-2-ylidene)penta-1,4-diene-1,5-diyl]diferrocene 189

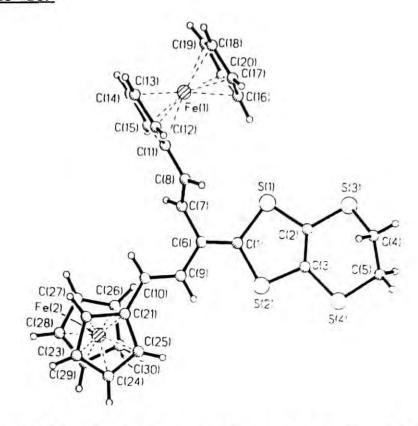


Figure A.1.4: X-Ray molecular structure of compound 189 and crystallographic numbering scheme.

Crystal Data

Empirical Formula	C30H26Fe2S4
Formula Weight	626.45
Crystal Colour, Habit	orange, needle
Crystal Dimensions (mm)	0.52 x 0.10 x 0.05
Crystal System	Triclinic
Lattice Parameters	a = 7.274 (2) Å
	b = 10.122 (3) Å
	c = 19.168 (5) Å
	$\alpha = 77.49 (2)^{\circ}$
	$\beta = 80.94 (2)^{\circ}$
	$\gamma = 71.57 (2)^{\circ}$
Volume	1301.0 (6) Å ³
Space Group	P-1 (No. 2)
Z Value	2
Density (calc.)	1.599 mg/m ³
F ₀₀₀	644

1.456 mm⁻¹

Intensity Measurements

Temperature 150 (2) K
2θ Range 2.58 to 27.50°
No. of Reflections Measured Total: 6305
Unique: 5970

Solution and Refinement

Structure solution Direct Methods

Refinement Method Full-Matrix Least-Squares
Residuals: R, R_w 0.113, 0.240

Goodness-of-Fit Indicator 1.16

Fe(1)-C(11)	2.04 (2)	Fe(1)-C(12)	2.04 (2)
Fe(1)-C(13)	2.07 (2)	Fe(1)-C(14)	2.04 (2)
Fe(1)-C(15)	2.06 (2)	Fe(1)-C(16)	2.03 (2)
Fe(1)-C(17)	2.08 (2)	Fe(1)-C(18)	2.08 (2)
Fe(1)-C(19)	2.03 (2)	Fe(1)-C(20)	2.05 (2)
Fe(2)-C(21)	2.06 (2)	Fe(2)-C(22)	2.04 (2)
Fe(2)-C(23)	2.06 (2)	Fe(2)-C(24)	2.040 (14)
Fe(2)-C(25)	2.056 (13)	Fe(2)-C(26)	2.063 (14)
Fe(2)-C(27)	2.037 (14)	Fe(2)-C(28)	2.05 (2)
Fe(2)-C(29)	2.05 (2)	Fe(2)-C(30)	2.06 (2)
S(1)-C(2)	1.75 (2)	S(1)-C(1)	1.796 (14)
S(2)-C(1)	1.764 (14)	S(2)-C(3)	1.77 (2)
S(3)-C(2)	1.76 (2)	S(3)-C(4)	1.81 (2)
S(4)-C(3)	1.75 (2)	S(4)-C(5)	1.85 (2)
C(1)-C(6)	1.35 (2)	C(2)-C(3)	1.33 (2)
C(4)-C(5)	1.51 (2)	C(6)-C(9)	1.43 (2)
C(6)-C(7)	1.47 (2)	C(7)-C(8)	1.35 (2)
C(8)-C(11)	1.45 (2)	C(9)-C(10)	1.34 (2)
C(10)-C(21)	1.47 (2)	C(11)-C(12)	1.41 (2)
C(11)-C(15)	1.43 (2)	C(12)-C(13)	1.42 (2)
C(13)-C(14)	1.42 (2)	C(14)-C(15)	1.42 (2)

C(16)-C(20)	1.40 (2)	C(16)-C(17)	1.43 (2)
C(17)-C(18)	1.44 (2)	C(18)-C(19)	1.39 (2)
C(19)-C(20)	1.46 (2)	C(21)-C(22)	1.44 (2)
C(21)-C(25)	1.45 (2)	C(22)-C(23)	1.43 (2)
C(23)-C(24)	1.42 (2)	C(24)-C(25)	1.41 (2)
C(26)-C(30)	1.43 (3)	C(26)-C(27)	1.43 (2)
C(27)-C(28)	1.40 (2)	C(28)-C(29)	1.42 (2)
C(29)-C(30)	1.44(2)		

C(2)-S(1)-C(1)	94.9 (7)	C(1)-S(2)-C(3)	95.4 (7)
C(2)-S(3)-C(4)	97.0 (7)	C(3)-S(4)-C(5)	102.6 (7)
C(6)-C(1)-S(2)	122.6 (11)	C(6)-C(1)-S(1)	126.0 (11)
S(2)-C(1)-S(1)	111.3 (8)	C(3)-C(2)-S(1)	118.0 (12)
C(3)-C(2)-S(3)	122.3 (12)	S(1)-C(2)-S(3)	119.2 (8)
C(2)-C(3)-S(4)	130.3 (12)	C(2)-C(3)-S(2)	116.4 (12)
S(4)-C(3)-S(2)	113.1 (9)	C(5)-C(4)-S(3)	111.5 (12)
C(4)-C(5)-S(4)	115.8 (11)	C(1)-C(6)-C(9)	121.4 (13)
C(1)-C(6)-C(7)	121.1 (13)	C(9)-C(6)-C(7)	117.3 (12)
C(8)-C(7)-C(6)	125 (2)	C(7)-C(8)-C(11)	126 (2)
C(10)-C(9)-C(6)	125.9 (13)	C(9)-C(10)-C(21)	123.6 (13)
C(12)-C(11)-C(15)	105.9 (14)	C(12)-C(11)-C(8)	124.8 (14)
C(15)-C(11)-C(8)	129 (2)	C(11)-C(12)-C(13)	111.2 (14)
C(12)-C(13)-C(14)	105.1 (13)	C(15)-C(14)-C(13)	109.8 (14)
C(14)-C(15)-C(11)	108 (2)	C(20)-C(16)-C(17)	110.6 (14)
C(16)-C(17)-C(18)	106 (2)	C(19)-C(18)-C(17)	108.6 (14)
C(18)-C(19)-C(20)	109 (2)	C(16)-C(20)-C(19)	105.8 (14)
C(22)-C(21)-C(25)	106.7 (13)	C(22)-C(21)-C(10)	123.9 (12)
C(25)-C(21)-C(10)	129.4 (13)	C(23)-C(22)-C(21)	108.4 (14)
C(24)-C(23)-C(22)	107.5 (14)	C(25)-C(24)-C(23)	109.3 (13)
C(24)-C(25)-C(21)	108.1 (12)	C(30)-C(26)-C(27)	108 (2)
C(28)-C(27)-C(26)	108 (2)	C(27)-C(28)-C(29)	110(2)
C(28)-C(29)-C(30)	107 (2)	C(26)-C(30)-C(29)	108 (2)

A.1.5 Crystallographic data for 1,1'-Bis[3,4-bis(5,6-dihydro-1,3-dithiolo[4,5-b][1,4]dithiin-2-ylidene)hexa-1,5-diene-1,6-diyl]diferrocene 191

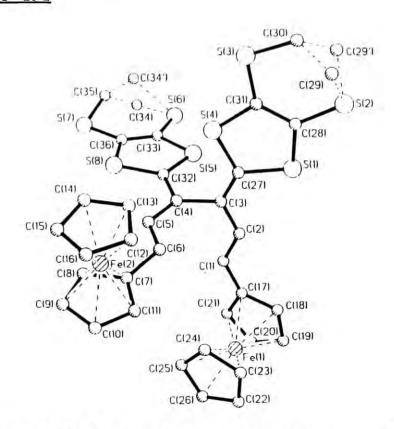


Figure A.1.5: X-Ray molecular structure of compound 191 and crystallographic numbering scheme.

Crystal Data

Empirical Formula C₃₆H₃₀Fe₂O₃S₈

Formula Weight 878.78

Crystal System Monoclinic

Lattice Parameters a = 17.844 (4) Å

b = 11.723 (2) Å

c = 19.966 (4) Å

 $\alpha = 90^{\circ}$

 $\beta = 106.55 (3)^{\circ}$

 $\gamma = 90^{\circ}$

Volume 4003.6 (14) Å³

Space Group P2₁/n

Z Value 4

Density (calc.) 1.458 mg/m³

F₀₀₀ 1800

Absorption Coefficient 1.176 mm⁻¹

Intensity Measurements

Temperature 293 (2) K 2θ Range 2.70 to 22.63°

No. of Reflections Measured Total: 4962

Unique: 4776

Solution and Refinement

Structure solution Direct Methods

Refinement Method Full-Matrix Least-Squares

Residuals: R, R_W 0.172, 0.425

Goodness-of-Fit Indicator 2.30

Fe(1)-C(18)	1.97(2)	Fe(1)-C(19)	1.99(2)
Fe(1)-C(17)	2.05(2)	Fe(1)-C(23)	2.06(3)
Fe(1)-C(22)	2.06(2)	Fe(1)-C(24)	2.08(2)
Fe(1)-C(20)	2.08(2)	Fe(1)-C(26)	2.08(2)
Fe(1)-C(25)	2.09(2)	Fe(1)-C(21)	2.11(2)
S(1)-C(28)	1.71(3)	S(1)-C(27)	1.82(3)
S(2)-C(29')	1.72(7)	S(2)-C(28)	1.73(3)
S(2)-C(29)	1.91(5)	S(3)-C(31)	1.76(2)
S(3)-C(30)	1.82(3)	S(4)-C(27)	1.69(3)
S(4)-C(31)	1.72(3)	S(5)-C(32)	1.74(3)
S(5)-C(33)	1.78(3)	S(6)-C(33)	1.71(3)
S(6)-C(34)	1.95(5)	S(7)-C(36)	1.69(3)
S(7)-C(35)	1.72(4)	S(8)-C(32)	1.74(3)
S(8)-C(36)	1.79(3)	C(1)-C(2)	1.31(3)
C(1)-C(17)	1.45(3)	C(2)-C(3)	1.51(4)
C(3)-C(27)	1.33(3)	C(3)-C(4)	1.54(4)
C(4)-C(32)	1.35(3)	C(4)-C(5)	1.42(4)
C(5)-C(6)	1.35(4)	C(6)-C(7')	1.72(4)
C(6)-C(7)	1.9(2)	Fe(2A)-C(7)	1.91(3)
Fe(2A)-C(8)	1.90(3)	Fe(2A)-C(11)	1.97(3)
Fe(2A)-C(9)	1.95(3)	Fe(2A)-C(10)	2.00(3)
Fe(2A)-C(15)	1.88(2)	Fe(2A)-C(16)	1.86(2)
Fe(2A)-C(14)	2.01(2)	Fe(2A)-C(12)	1.98(3)

Fe(2A)-C(13)	2.06(3)	C(7)-C(11)	1.276(7)
C(7)-C(8)	1.276(7)	C(8)-C(9)	1.276(7)
C(9)-C(10)	1.276(7)	C(10)-C(11)	1.276(7)
C(12)-C(13)	1.276(7)	C(12)-C(16)	1.276(7)
C(12)-C(15)	2.064(11)	C(12)-C(14)	2.065(11)
C(13)-C(14)	1.276(7)	C(13)-C(15)	2.065(11)
C(13)-C(16)	2.065(11)	C(14)-C(15)	1.276(7)
C(14)-C(16)	2.065(11)	C(15)-C(16)	1.276(7)
Fe(2B)-C(8')	1.90(3)	Fe(2B)-C(7')	1.91(3)
Fe(2B)-C(9')	1.95(3)	Fe(2B)-C(15')	1.88(2)
Fe(2B)-C(16')	1.86(2)	Fe(2B)-C(11')	1.97(3)
Fe(2B)-C(10')	2.00(3)	Fe(2B)-C(14')	2.01(2)
Fe(2B)-C(12')	1.98(2)	Fe(2B)-C(13')	2.06(2)
C(7')-C(11')	1.283(7)	C(7')-C(8')	1.283(7)
C(8')-C(9')	1.283(7)	C(9')-C(10')	1.283(7)
C(10')-C(11')	1.283(7)	C(12')-C(13')	1.269(2)
C(12')-C(16')	1.270(2)	C(13')-C(14')	1.269(2)
C(14')-C(15')	1.269(2)	C(15')-C(16')	1.269(2)
C(17)-C(21)	1.42(2)	C(17)-C(18)	1.42(2)
C(18)-C(19)	1.42(2)	C(19)-C(20)	1.42(2)
C(20)-C(21)	1.42(2)	C(22)-C(23)	1.44(2)
C(22)-C(26)	1.44(2)	C(23)-C(24)	1.44(2)
C(24)-C(25)	1.44(2)	C(25)-C(26)	1.44(2)
C(28)-C(31)	1.41(3)	C(29)-C(30)	1.43(6)
C(29)-C(29')	1.58(8)	C(29')-C(30)	1.67(7)
C(33)-C(36)	1.38(4)	C(34)-C(35)	1.40(5)

C(28)-S(2)-C(29)	97(2)	C(31)-S(3)-C(30)	103.6(13)
C(27)-S(4)-C(31)	96.5(13)	C(32)-S(5)-C(33)	95.6(12)
C(33)-S(6)-C(34)	100(2)	C(36)-S(7)-C(35)	102(2)
C(32)-S(8)-C(36)	96.4(13)	C(2)-C(1)-C(17)	127(3)
C(1)-C(2)-C(3)	129(3)	C(27)-C(3)-C(2)	127(2)
C(27)-C(3)-C(4)	120(2)	C(2)-C(3)-C(4)	113(2)
C(32)-C(4)-C(5)	121(3)	C(32)-C(4)-C(3)	115(2)
C(5)-C(4)-C(3)	124(3)	C(6)-C(5)-C(4)	122(3)

C(11)-C(7)-C(6) 130(10) C(8)-C(7)-C(6) 122(10) C(9)-C(8)-C(7) 108.0 C(10)-C(9)-C(8) 108.0(2 C(8)-C(9)-Fe(2A) 68(2) C(9)-C(10)-C(11) 108.01(C(10)-C(11)-C(7) 108.00(7) C(13)-C(12)-C(16) 108.01(C(13)-C(12)-C(15) 72.0 C(16)-C(12)-C(15) 36.0 C(13)-C(12)-C(14) 36.0 C(16)-C(12)-C(14) 72.00(9)) 11) 12)
C(8)-C(9)-Fe(2A) 68(2) C(9)-C(10)-C(11) 108.01(C(10)-C(11)-C(7) 108.00(7) C(13)-C(12)-C(16) 108.01(C(13)-C(12)-C(15) 72.0 C(16)-C(12)-C(15) 36.0	11) 12)
C(10)-C(11)-C(7) 108.00(7) C(13)-C(12)-C(16) 108.01(C(13)-C(12)-C(15) 72.0 C(16)-C(12)-C(15) 36.0	12))
C(13)-C(12)-C(15) 72.0 C(16)-C(12)-C(15) 36.0)
C(13)-C(12)-C(15) 72.0 C(16)-C(12)-C(15) 36.0	
C(13)-C(12)-C(14) 36.0 $C(16)-C(12)-C(14)$ 72.00(9)	
2(10) 2(11) 20.0	21
C(15)-C(12)-C(14) 36.00(6) C(12)-C(13)-C(14) 108.00(3)
C(12)-C(13)-C(15) 71.99(6) C(14)-C(13)-C(15) 36.00(1	0)
C(12)-C(13)-C(16) 36.00(6) C(14)-C(13)-C(16) 72.00(1	1)
C(15)-C(13)-C(16) 35.99(7) C(15)-C(14)-C(13) 107.99(11)
C(15)-C(14)-C(12) 71.99(6) C(13)-C(14)-C(12) 36.0(2)	
C(15)-C(14)-C(16) 35.99(8) C(13)-C(14)-C(16) 72.00(9)
C(12)-C(14)-C(16) 36.0 C(16)-C(15)-C(14) 108.01(5)
C(16)-C(15)-Fe(2A) 69.2(9) C(16)-C(15)-C(12) 36.01(5)
C(14)-C(15)-C(12) 72.0 C(16)-C(15)-C(13) 72.00(6)
C(14)-C(15)-C(13) 36.0 C(12)-C(15)-C(13) 36.00(6)
C(15)-C(16)-C(12) 107.99(11) C(15)-C(16)-C(13) 72.00(6)
C(12)-C(16)-C(13) 36.0 C(15)-C(16)-C(14) 36.00(1	3)
C(12)-C(16)-C(14) 72.00(10) C(13)-C(16)-C(14) 36.0	
C(11')-C(7')-C(8') 108.0 C(11')-C(7')-C(6) 126(3)	
C(8')-C(7')-C(6) 126(3) C(9')-C(8')-C(7') 108.0	
C(8')-C(9')-C(10') 108.0 C(7')-C(11')-C(10') 108.0	
C(13')-C(12')-C(16') 108.0 C(14')-C(13')-C(12') 108.0	
C(13')-C(14')-C(15') 108.0 C(16')-C(15')-C(14') 108.0	
C(15')-C(16')-C(12') 108.0 C(21)-C(17)-C(18) 108.0	
C(21)-C(17)-C(1) 127(2) $C(18)-C(17)-C(1)$ 125(2)	
C(20)-C(19)-C(18) 108.0 C(20)-C(19)-Fe(1) 72.9(9)	
C(18)-C(19)-Fe(1) 68.1(9) C(19)-C(20)-C(21) 108.0	
C(19)-C(20)-Fe(1) 66.3(9) C(21)-C(20)-Fe(1) 71.4(8)	
C(17)-C(21)-C(20) 108.0 C(17)-C(21)-Fe(1) 67.5(8)	
C(20)-C(21)-Fe(1) 69.0(8) C(23)-C(22)-C(26) 108.0	
C(23)-C(22)-Fe(1) 69.5(9) C(26)-C(22)-Fe(1) 70.3(9)	
C(22)-C(23)-C(24) 108.0 C(22)-C(23)-Fe(1) 69.6(9)	
C(24)-C(23)-Fe(1) 70.2(9) C(25)-C(24)-C(23) 108.0	
C(25)-C(24)-Fe(1) 70.2(9) C(23)-C(24)-Fe(1) 69.0(9)	
C(24)-C(25)-C(26) 108.0 C(24)-C(25)-Fe(1) 69.3(9)	
C(26)-C(25)-Fe(1) 69.4(9) C(25)-C(26)-C(22) 108.0	
C(25)-C(26)-Fe(1) 70.1(9) C(22)-C(26)-Fe(1) 69.0(9)	

C(3)-C(27)-S(4)	124(2)	C(3)-C(27)-S(1)	121(2)
S(4)-C(27)-S(1)	115(2)	C(31)-C(28)-S(2)	126(2)
C(31)-C(28)-S(1)	117(2)	S(2)-C(28)-S(1)	117(2)
C(30)-C(29)-C(29')	67(3)	C(30)-C(29)-S(2)	114(3)
C(29')-C(29)-S(2)	58(3)	C(29)-C(29')-C(30)	52(3)
C(29)-C(29')-S(2)	71(3)	C(30)-C(29')-S(2)	112(4)
C(29)-C(30)-C(29')	61(3)	C(29)-C(30)-S(3)	118(3)
C(29')-C(30)-S(3)	108(3)	C(28)-C(31)-S(4)	117(2)
C(28)-C(31)-S(3)	128(2)	S(4)-C(31)-S(3)	114.8(14)
C(4)-C(32)-S(8)	123(2)	C(4)-C(32)-S(5)	121(2)
S(8)-C(32)-S(5)	115(2)	C(36)-C(33)-S(6)	128(2)
C(36)-C(33)-S(5)	117(2)	S(6)-C(33)-S(5)	115(2)
C(35)-C(34)-S(6)	115(3)	C(34)-C(35)-S(7)	118(3)
C(33)-C(36)-S(7)	130(2)	C(33)-C(36)-S(8)	115(2)
S(7)-C(36)-S(8)	116(2)		

A.1.6 Crystallographic data for 2-(1,3-dithiole-2-ylidene)-6-[1-cyclopentadienyl(cyclopentadienyl)iron]-3a,4,5,6-tetrahydro-1,3-benzodithiole-4,4,5,5-tetracarbonitrile 194:acetonitrile solvate

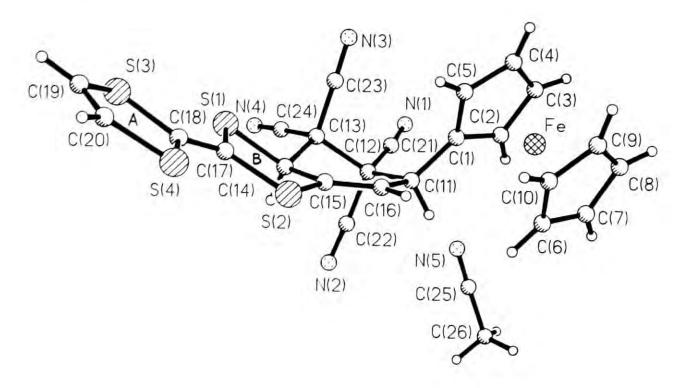


Figure A.1.6: X-Ray molecular structure of compound 194:acetonitrile solvate and crystallographic numbering scheme.

Crystal Data

Empirical Formula C₂₆H₁₇FeN₅S₄

Formula Weight 583.5

Crystal Colour, Habit dark yellow, plate
Crystal Dimensions (mm) 0.10 x 0.45 x 0.50

Crystal System Triclinic

Lattice Parameters a = 7.008 (2) Å

b = 11.660 (3) Å c = 17.065 (4) Å α = 80.43 (2)° β = 82.46 (2)°

 $\gamma = 74.27 (2)^{\circ}$

Volume 1318.2 (5) Å³

Space Group PI Z Value 2

Density (calc.) 1.470 mg/m³

F₀₀₀ 596

Absorption Coefficient 0.914 mm⁻¹

Intensity Measurements

Radiation $MoK\alpha (\lambda = 0.71073 \text{ Å})$

Temperature 293 K

2θ Range 5.0 to 50.0°

No. of Reflections Measured Total: 4503

Unique: 4309

Solution and Refinement

Structure solution Direct Methods

Refinement Method Full-Matrix Least-Squares

Residuals: R, R_w 0.038, 0.047

Goodness-of-Fit Indicator 1.72

Bond Lengths (Å)

Fe-C(1)	2.043 (4)	Fe-C(2)	2.024 (4)
Fe-C(3)	2.035 (4)	Fe-C(4)	2.035 (5)
Fe-C(5)	2.036 (5)	Fe-C(6)	2.030 (5)
Fe-C(7)	2.020 (7)	Fe-C(8)	2.023 (7)
Fe-C(9)	2.032 (5)	Fe-C(10)	2.043 (4)
S(1)-C(14)	1.811 (5)	S(1)-C(17)	1.753 (4)
S(2)-C(15)	1.750 (4)	S(2)-C(17)	1.761 (5)
S(3)-C(18)	1.754 (5)	S(3)-C(19)	1.738 (5)
S(4)-C(18)	1.760 (4)	S(4)-C(20)	1.734 (7)
N(1)-C(21)	1.136 (5)	N(2)-C(22)	1.128 (6)
N(3)-C(23)	1.121 (6)	N(4)-C(24)	1.124 (6)
C(1)-C(2)	1.428 (6)	C(1)-C(5)	1.424 (6)
C(1)-C(11)	1.508 (5)	C(2)-C(3)	1.415 (6)
C(3)-C(4)	1.411 (7)	C(4)-C(5)	1.404 (6)
C(6)-C(7)	1.398 (9)	C(6)-C(10)	1.385 (8)
C(7)-C(8)	1.386 (9)	C(8)-C(9)	1.392 (9)
C(9)-C(10)	1.389 (7)	C(11)-C(12)	1.589 (5)
C(11)-C(16)	1.507 (5)	C(12)-C(13)	1.598 (6)
C(12)-C(21)	1.479 (5)	C(12)-C(22)	1.483 (6)
C(13)-C(14)	1.543 (5)	C(13)-C(23)	1.492 (6)
C(13)-C(24)	1.490 (6)	C(14)-C(15)	1.510 (6)
C(15)-C(16)	1.327 (6)	C(17)-C(18)	1.337 (6)
C(19)-C(20)	1.315 (9)	N(5)-C(25)	1.083 (9)
C(25)-C(26)	1.430 (12)		

C(1)-Fe-C(6)	109.4 (2)	C(2)-Fe-C(6)	122.2 (2)
C(3)-Fe-C(6)	156.3 (2)	C(4)-Fe-C(6)	162.5 (2)
C(5)-Fe-C(6)	126.5 (2)	C(1)-Fe-C(7)	125.7 (2)
C(2)-Fe-C(7)	107.5 (2)	C(3)-Fe-C(7)	120.2 (2)
C(4)-Fe-C(7)	155.2 (2)	C(5)-Fe-C(7)	163.1 (2)
C(1)-Fe-C(8)	161.2 (2)	C(2)-Fe-C(8)	123.3 (2)
C(3)-Fe-C(8)	106.0 (2)	C(4)-Fe-C(8)	120.3 (2)
C(5)-Fe-C(8)	155.8 (2)	C(1)-Fe-C(9)	157.6 (2)

C(2)-Fe-C(9)	160.1 (2)	C(3)-Fe-C(9)	123.7 (2)
C(4)-Fe-C(9)	108.1 (2)	C(5)-Fe-C(9)	122.0 (2)
C(1)-Fe-C(10)	123.1 (2)	C(2)-Fe-C(10)	157.8 (2)
C(3)-Fe-C(10)	160.9 (2)	C(4)-Fe-C(10)	125.8 (2)
C(5)-Fe-C(10)	109.7 (2)	C(14)-S(1)-C(17)	95.2 (2)
C(15)-S(2)-C(17)	96.0 (2)	C(18)-S(3)-C(19)	94.8 (2)
C(18)-S(4)-C(20)	94.3 (3)	C(2)-C(1)-C(5)	107.1 (3)
C(2)-C(1)-C(11)	125.4 (4)	C(5)-C(1)-C(11)	127.5 (4)
C(1)-C(2)-C(3)	108.3 (4)	C(2)-C(3)-C(4)	107.5 (4)
C(3)-C(4)-C(5)	109.0 (4)	C(1)-C(5)-C(4)	108.1 (4)
C(7)-C(6)-C(10)	107.6 (5)	C(6)-C(7)-C(8)	108.4 (5)
C(7)-C(8)-C(9)	107.4 (5)	C(8)-C(9)-C(10)	108.5 (5)
C(6)-C(10)-C(9)	108.0 (5)	C(1)-C(11)-C(12)	113.9 (3)
C(1)-C(11)-C(16)	112.5 (3)	C(12)-C(11)-C(16)	110.4 (3)
C(11)-C(12)-C(13)	111.2 (3)	C(11)-C(12)-C(21)	113.2 (3)
C(13)-C(12)-C(21)	107.6 (4)	C(11)-C(12)-C(22)	109.1 (3)
C(13)-C(12)-C(22)	106.5 (3)	C(21)-C(12)-C(22)	109.0 (3)
C(12)-C(13)-C(14)	108.7 (3)	C(12)-C(13)-C(23)	109.6 (3)
C(14)-C(13)-C(23)	111.4 (3)	C(12)-C(13)-C(24)	109.5 (3)
C(14)-C(13)-C(24)	109.8 (3)	C(23)-C(13)-C(24)	107.8 (4)
S(1)-C(14)-C(13)	110.8 (3)	S(1)-C(14)-C(15)	109.8 (3)
C(13)-C(14)-C(15)	110.1 (3)	S(2)-C(15)-C(14)	113.0 (3)
S(2)-C(15)-C(16)	123.8 (3)	C(14)-C(15)-C(16)	123.2 (3)
C(11)-C(16)-C(15)	126.9 (3)	S(1)-C(17)-S(2)	116.1 (2)
S(1)-C(17)-C(18)	120.6 (4)	S(2)-C(17)-C(18)	123.3 (3)
S(3)-C(18)-C(4)	114.3 (2)	S(3)-C(18)-C(17)	122.3 (3)
S(4)-C(18)-C(17)	123.2 (4)	S(3)-C(19)-C(20)	117.5 (4)
S(4)-C(20)-C(19)	118.8 (4)	N(1)-C(21)-C(12)	175.3 (6)
N(2)-C(22)-C(12)	177.3 (5)	N(3)-C(23)-C(13)	178.3 (4)
N(4)-C(24)-C(13)	178.3 (5)	N(5)-C(25)-C(26)	178.4 (7)

A.1.7 Crystallographic data for 1-[1-Cyclopentadienyl(cyclopentadienyl)iron]-1-[2,2'-bi(1,3-dithiolylidene)-4-yl]ethanol 229

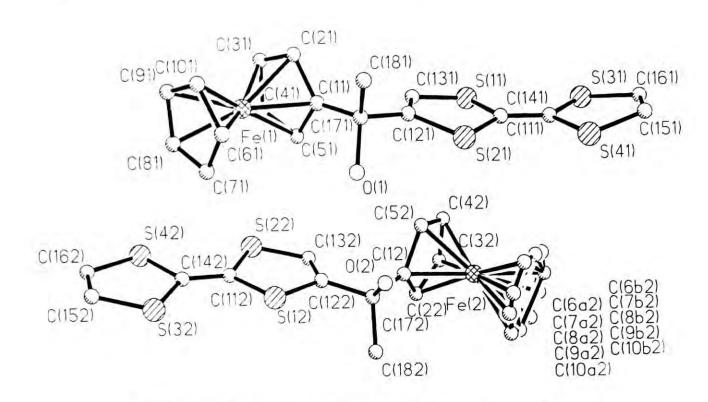


Figure A.1.7: X-Ray molecular structure of compound **229** and crystallographic numbering scheme.

1.306 mm⁻¹

Crystal Data

Absorption Coefficient

Empirical Formula	C ₁₈ H ₁₆ FeOS ₄
Formula Weight	432.4
Crystal Dimensions (mm)	0.27 x 0.26 x 0.07
Crystal System	Triclinic
Lattice Parameters	a = 9.804 (3) Å
	b = 13.579 (4) Å
	c = 15.700 (4) Å
	$\alpha = 102.59 (2)^{\circ}$
	$\beta = 106.32 (2)^{\circ}$
	$\gamma = 108.09 (2)^{\circ}$
Volume	1796.9 (9) Å ³
Space Group	P-1 (No.2)
Z Value	4
Density (calc.)	1.598 mg/m^3
F ₀₀₀	888
	2

Intensity Measurements

Temperature 150 (2) K 2θ Range 2.52 to 25.00° No. of Reflections Measured Total: 6420

Unique: 6129

Solution and Refinement

Structure solution Direct Methods

Refinement Method Full-Matrix Least-Squares

Residuals: R, R_w 0.042, 0.1022

Goodness-of-Fit Indicator 1.04

Fe(1)-C(41)	2.038 (5)	Fe(1)-C(91)	2.044 (5)
Fe(1)-C(61)	2.044 (5)	Fe(1)-C(81)	2.046 (6)
Fe(1)-C(101)	2.047 (5)	Fe(1)-C(71)	2.048 (5)
Fe(1)-C(51)	2.048 (5)	Fe(1)-C(11)	2.049 (5)
Fe(1)-C(31)	2.051 (5)	Fe(1)-C(21)	2.061 (5)
S(11)-C(111)	1.767 (5)	S(11)-C(121)	1.770 (5)
S(21)-C(131)	1.742 (5)	S(21)-C(111)	1.757 (5)
S(31)-C(151)	1.740 (6)	S(31)-C(141)	1.763 (5)
S(41)-C(161)	1.759 (6)	S(41)-C(141)	1.762 (5)
O(1)-C(171)	1.449 (7)	C(11)-C(21)	1.433 (7)
C(11)-C(51)	1.441 (7)	C(11)-C(171)	1.516 (7)
C(21)-C(31)	1.421 (7)	C(31)-C(41)	1.424 (8)
C(41)-C(51)	1.425 (8)	C(61)-C(101)	1.413 (8)
C(61)-C(71)	1,420 (9)	C(71)-C(81)	1.409 (8)
C(81)-C(91)	1.403 (9)	C(91)-C(101)	1.404 (8)
C(111)-C(141)	1.344 (7)	C(121)-C(131)	1.330 (7)
C(121)-C(171)	1.519 (7)	C(151)-C(161)	1.330 (8)
C(171)-C(181)	1.529 (8)	Fe(2)-C(7B2)	1.025 (11)
Fe(2)-C(6B2)	2.033 (9)	Fe(2)-C(10B2)	2.038 (9)
Fe(2)-C(10A2)	2.039 (14)	Fe(2)-C(9B2)	2.042 (9)
Fe(2)-C(9A2)	2.044 (11)	Fe(2)-C(12)	2.044 (4)
Fe(2)-C(22)	2.045 (5)	Fe(2)-C(42)	2.045 (5)
Fe(2)-C(52)	2.048 (5)	Fe(2)-C(32)	2.048 (5)

Fe(2)-C(8B2)	2.051 (10)	S(12)-C(112)	1.762 (5)
S(12)-C(122)	1.764 (5)	S(22)-C(132)	1.739 (5)
S(22)-C(112)	1.770 (5)	S(32)-C(152)	1.729 (6)
S(32)-C(142)	1.761 (5)	S(42)-C(162)	1.739 (7)
S(42)-C(142)	1.771 (5)	O(2)-C(172)	1.445 (6)
C(12)-C(22)	1.436 (6)	C(12)-C(52)	1.440 (7)
C(12)-C(172)	1.516 (6)	C(22)-C(32)	1.421 (7)
C(32)-C(42)	1.418 (7)	C(42)-C(52)	1.417 (7)
C(6A2)-C(10A2)	1.42 (2)	C(6A2)-C(7A2)	1.43 (2)
C(7A2)-C(8A2)	1.39 (2)	C(8A2)-C(9A2)	1.34 (2)
C(9A2)-C(10A2)	1.38 (2)	C(6B2)-C(10B2)	1.446 (14)
C(6B2)-C(7B2)	1.47 (2)	C(7B2)-C(8B2)	1.42 (2)
C(8B2)-C(9B2)	1.40 (2)	C(9B2)-C(10B2)	1.402 (14)
C(112)-C(142)	1.333 (7)	C(122)-C(132)	1.322 (7)
C(122)-C(172)	1.531 (6)	C(152)-C(162)	1.320 (9)
C(172)-C(182)	1.493 (6)		

C(111)-S(11)-C(121)	94.4 (2)	C(131)-S(21)-C(111)	94.3 (2)
C(151)-S(31)-C(141)	95.0 (2)	C(161)-S(41)-C(141)	94.5 (3)
C(21)-C(11)-C(51)	107.3 (4)	C(21)-C(11)-C(171)	124.4 (5)
C(51)-C(11)-C(171)	128.1 (5)	C(31)-C(21)-C(11)	108.3 (5)
C(21)-C(31)-C(41)	108.2 (5)	C(31)-C(41)-C(51)	108.4 (5)
C(41)-C(51)-C(11)	107.8 (5)	C(101)-C(61)-C(71)	108.3 (5)
C(81)-C(71)-C(61)	106.9 (5)	C(91)-C(81)-C(71)	108.8 (5)
C(81)-C(91)-C(101)	108.2 (5)	C(91)-C(101)-C(61)	107.7 (5)
C(141)-C(111)-S(21)	122.9 (4)	C(141)-C(111)-S(11)	122.8 (4)
S(21)-C(111)-S(11)	114.3 (3)	C(131)-C(121)-C(171)	127.2 (5)
C(131)-C(121)-S(11)	116.1 (4)	C(171)-C(121)-S(11)	116.6 (4)
C(121)-C(131)-S(21)	119.2 (4)	C(111)-C(141)-S(41)	122.3 (4)
C(111)-C(141)-S(31)	123.7 (4)	S(41)-C(141)-S(31)	114.0 (3)
C(161)-C(151)-S(31)	117.8 (4)	C(151)-C(161)-S(41)	117.5 (4)
O(1)-C(171)-C(11)	110.1 (4)	O(1)-C(171)-C(121)	105.0 (4)
C(11)-C(171)-C(121)	109.8 (4)	O(1)-C(171)-C(181)	110.7 (5)
C(11)-C(171)-C(181)	111.6 (5)	C(121)-C(171)-C(181)	109.3 (4)
C(112)-S(12)-C(122)	94.8 (2)	C(132)-S(22)-C(112)	94.1 (2)

C(152)-S(32)-C(142)	94.9 (3)	C(162)-S(42)-C(142)	94.2 (3)
C(22)-C(12)-C(52)	107.0 (4)	C(22)-C(12)-C(172)	126.6 (4)
C(52)-C(12)-C(172)	126.0 (4)	C(32)-C(22)-C(12)	108.2 (4)
C(42)-C(32)-C(22)	108.2 (4)	C(52)-C(42)-C(32)	108.5 (4)
C(42)-C(52)-C(12)	108.1 (4)	C(10A2)-C(6A2)-C(7A2)	105.6 (11)
C(8A2)-C(7A2)-C(6A2)	107.5 (10)	C(9A2)-C(8A2)-C(7A2)	109.0 (11)
C(8A2)-C(9A2)-C(10A2)	110.6 (12)	C(9A2)-C(10A2)-C(6A2)	107.4 (13)
C(10B2)-C(6B2)-C(7B2)	106.1 (9)	C(8B2)-C(7B2)-C(6B2)	107.8 (10)
C(9B2)-C(8B2)-C(7B2)	107.8 (10)	C(10B2)-C(9B2)-C(8B2)	110.6 (9)
C(9B2)-C(10B2)-C(6B2)	107.6 (8)	C(142)-C(112)-S(12)	123.2 (4)
C(142)-C(112)-S(22)	122.0 (4)	S(12)-C(112)-S(22)	114.7 (3)
C(132)-C(122)-C(172)	126.2 (4)	C(132)-C(122)-S(12)	116.7 (4)
C(172)-C(122)-S(12)	117.0 (3)	C(122)-C(132)-S(22)	119.6 (4)
C(112)-C(142)-S(32)	123.4 (4)	C(112)-C(142)-S(42)	122.4 (4)
S(32)-C(142)-S(42)	114.2 (3)	C(162)-C(152)-S(32)	118.2 (5)
C(152)-C(162)-S(42)	118.5 (5)	O(2)-C(172)-C(182)	105.3 (4)
O(2)-C(172)-C(12)	112.5 (4)	C(182)-C(172)-C(12)	111.5 (4)
O(2)-C(172)-C(122)	109.6 (4)	C(182)-C(172)-C(122)	109.8 (4)
C(12)-C(172)-C(122)	108.1 (4)		

A.1.8 Crystallographic data for 1,2-Bis[1-cyclopentadienyl(cyclopentadienyl)iron]ethene 146

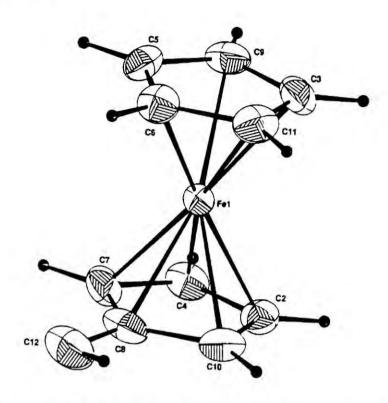


Figure A.1.8: X-Ray molecular structure of compound 146 and crystallographic numbering scheme.

1.74 mm⁻¹

Crystal Data

Absorption Coefficient

Ci jotal Data	
Empirical Formula	C ₁₁ H ₁₀ Fe
Formula Weight	198.04
Crystal Colour, Habit	dark orange, block
Crystal Dimensions (mm)	0.60 x 0.20 x 0.20
Crystal System	Monoclinic
Lattice Parameters	a = 7.642 (2) Å
	b = 10.374 (2) Å
	c = 10.918 (2) Å
	$\alpha = 90.0 (-)^{\circ}$
	$\beta = 105.35 (2)^{\circ}$
	$\gamma = 90.0 \ (-)^{\circ}$
Volume	834.65 (32) Å ³
Space Group	P2 ₁ /n (No.14)
Z Value	4
Density (calc.)	1.576 mg/m^3
F ₀₀₀	408

Intensity Measurements

Radiation $MoK\alpha (\lambda = 0.71073 \text{ Å})$

Temperature 293 K

2θ Range 8.0 to 25.0°
No. of Reflections Measured Total: 3835

Unique: 1818

Solution and Refinement

Structure solution Direct Methods

Refinement Method Full-Matrix Least-Squares

Residuals: R, R_w 0.043, 0.046

Goodness-of-Fit Indicator 1.17

Bond Lengths (Å)

Fe(1)-C(2)	2.040 (3)	Fe(1)-C(3)	2.032 (3)
Fe(1)-C(4)	2.045 (3)	Fe(1)-C(5)	2.039 (3)
Fe(1)-C(6)	2.032)3)	Fe(1)-C(7)	2.031 (3)
Fe(1)-C(8)	2.046 (3)	Fe(1)-C(9)	2.042 (3)
Fe(1)-C(10)	2.040 (3)	Fe(1)-C(11)	2.031 (3)
C(2)-C(4)	1.408 (5)	C(2)-C(10)	1.412 (5)
C(3)-C(9)	1.404 (6)	C(3)-C(11)	1.418 (6)
C(4)-C(7)	1.420 (5)	C(5)-C(6)	1.405 (5)
C(5)-C(9)	1.400 (5)	C(6)-C(11)	1.428 (6)
C(7)-C(8)	1.424 (6)	C(8)-C(10)	1.414 (6)
C(8)-C(12)	1.479 (5)	C(12)-C(12)	1.26 (1)

C(2)-Fe(1)-C(3)	108.5 (1)	C(2)-Fe(1)- $C(4)$	40.3 (2)
C(3)-Fe(1)-C(4)	124.8 (2)	C(2)-Fe(1)-C(5)	157.9 (2)
C(3)-Fe(1)-C(5)	68.0 (2)	C(4)-Fe(1)-C(5)	122.4 (2)
C(2)-Fe(1)- $C(6)$	160.7 (2)	C(3)-Fe(1)- $C(6)$	68.8 (2)
C(4)-Fe(1)-C(6)	156.8 (2)	C(5)-Fe(1)- $C(6)$	40.4 (2)
C(2)-Fe(1)-C(7)	68.2 (2)	C(3)-Fe(1)- $C(7)$	161.1 (2)

C(4)-Fe(1)-C(7)	40.8 (2)	C(5)-Fe(1)-C(7)	107.5 (2)
C(6)-Fe(1)-C(7)	120.6 (2)	C(2)-Fe(1)- $C(8)$	68.3 (1)
C(3)-Fe(1)-C(8)	157.0 (2)	C(4)-Fe(1)- $C(8)$	68.6 (1)
C(5)-Fe(1)-C(8)	123.6 (2)	C(6)-Fe(1)- $C(8)$	106.3 (1)
C(7)-Fe(1)-C(8)	40.9 (2)	C(2)-Fe(1)- $C(9)$	123.1 (1)
C(3)-Fe(1)-C(9)	40.3 (2)	C(4)-Fe(1)-C(9)	108.9 (1)
C(5)-Fe(1)-C(9)	40.1 (2)	C(6)-Fe(1)- $C(9)$	68.0 (1)
C(7)-Fe(1)- $C(9)$	124.6 (2)	C(2)-Fe(1)- $C(10)$	40.5 (1)
C(3)-Fe(1)-C(10)	122.3 (2)	C(4)-Fe(1)- $C(10)$	68.1 (1)
C(5)-Fe(1)-C(10)	160.0 (2)	C(6)-Fe(1)- $C(10)$	123.6 (1)
C(7)-Fe(1)-C(10)	68.2 (2)	C(2)-Fe(1)-C(11)	124.3 (2)
C(3)-Fe(1)-C(11)	40.8 (2)	C(4)-Fe(1)-C(11)	161.0 (2)
C(5)-Fe(1)-C(11)	68.3 (2)	C(6)-Fe(1)-C(11)	41.2 (2)
C()-Fe(1)-C(11)	156.5 (2)	C(8)-Fe(1)-C(9)	160.5 (2)
C(8)-Fe(1)-C(10)	40.5 (2)	C(9)-Fe(1)-C(10)	158.2 (2)
C(8)-Fe(1)-C(11)	120.7 (2)	C(9)-Fe(1)-C(11)	68.1 (2)
C(10)-Fe(1)-C(11)	107.3 (2)	Fe(1)-C(2)-C(4)	70.0 (2)
Fe(1)-C(2)-C(10)	69.7 (2)	C(4)-C(2)-C(10)	108.3 (3)
Fe(1)-C(3)-C(9)	70.2 (2)	Fe(1)-C(3)-C(11)	69.5 (2)
C(9)-C(3)-C(11)	107.8 (3)	Fe(1)-C(4)-C(2)	69.7 (2)
Fe(1)-C(4)-C(7)	69.1 (2)	C(2)-C(4)-C(7)	107.7 (3)
Fe(1)-C(5)-C(6)	69.6 (2)	Fe(1)-C(5)-C(9)	70.0 (2)
C(6)-C(5)-C(9)	108.6 (3)	Fe(1)-C(6)-C(5)	70.1 (2)
Fe(1)-C(6)-C(11)	69.4 (2)	C(5)-C(6)-C(11)	107.5 (3)
Fe(1)-C(7)-C(4)	70.1 (2)	Fe(1)-C(7)-C(8)	70.1 (2)
C(4)-C(7)-C(8)	108.3 (3)	Fe(1)-C(8)-C(7)	69.0 (2)
Fe(1)-C(8)-C(10)	69.5 (2)	C(7)-C(8)-C(10)	107.1 (3)
Fe(1)-C(8)-C(12)	125.3 (3)	C(7)-C(8)-C(12)	133.7 (4)
C(1)-C(8)-C(12)	119.2 (4)	Fe(1)-C(9)-C(3)	69.5 (2)
Fe(1)-C(9)-C(5)	69.8 (2)	C(3)-C(9)-C(5)	108.6 (3)
Fe(1)-C(10)-C(2)	69.8 (2)	Fe(1)-C(10)-C(8)	70.0 (2)
C(2)-C(10)-C(8)	108.6 (3)	Fe(1)-C(11)-C(3)	69.6 (2)
Fe(1)-C(11)-C(6)	69.5 (2)	C(3)-C(11)-C(6)	107.5 (3)
C(8)-C(12)-C(12)	127.0 (7)	, 4	

APPENDIX 2

RESEARCH COLLOQUIA, LECTURES, SEMINARS AND CONFERENCES

A.2.1 List of Research Colloquia, Lectures and Seminars

There follows a list of research colloquia, seminars and lectures that have been addressed by external speakers and arranged by the Department of Chemistry during the period of the author's residence as a postgraduate student.

*Denotes presentations attended by the author.

Academic Year 1991-1992

17.10.91*	Dr. J. A. Salthouse (University of Manchester)
	Son et Lumiere: A Demonstration Lecture.
31.10.91*	Dr. R. Keeley (Metropolitan Police, Forensic Science Dept.)
	Modern Forensic Science.
06.11.91	Prof. B. F. G. Johnson (University of Edinburgh)
	Cluster-Surface Analogies.
07.11.91*	Dr. A. R. Butler (University of St. Andrews)
	Traditional Chinese Herbal Drugs: a Different Way of Treating
	Disease.
13.11.91*	Prof. D. Gani (University of St. Andrews)
	The Chemistry of PLP-Dependent Enzymes.
20.11.91*	Dr. R. More O'Ferrall (University College, Dublin)
	Some Acid-Catalysed Rearrangements in Organic Chemistry.
28.11.91	Prof. I. M. Ward (University of Leeds, I.R.C.)
	The SCI Lecture. Science and Technology of Orientated
	Polymers.
04.12.91*	Prof. R. Grigg (University of Leeds)
	Palladium-Catalysed Cyclisation and Ion-Capture Processes.
05.12.91*	Prof. A. L. Smith (formerly of Unilever)
	Soap, Detergents and Black-Puddings.

11.12.91	Dr. W. D. Cooper (Shell Research)
	Colloid Science: Theory and Practice.
22.01.92	Dr. K. D. M. Harris (University of St. Andrews)
	Understanding the Properties of Solid Inclusion Compounds.
29.01.92*	Dr. A. Holmes (University of Cambridge)
	Cycloaddition Reactions in the Service of the Synthesis of
	Piperidine and Indolizidine Natural Products.
30.01.92*	Dr. M. Anderson (Shell Research, Sittingbourne)
	Recent Advances in the Safe and Selective Chemical Control
	of Insect Pests.
12.02.92*	Prof. D. E. Fenton (University of Sheffield)
	Polynuclear Complexes of Molecular Clefts as Models for
	Copper Bio-sites.
13.02.92*	Dr. J. Saunders (Glaxo Group Research Ltd.)
	Molecular Modelling in Drug Discovery.
19.02.92*	Prof. E. J. Thomas (University of Manchester)
	Applications of Organostannanes to Organic Synthesis.
20.02.92*	Prof. E. Vogel (University of Cologne)
	The Musgrave Lecture. Porphyrins: Molecules of
	Interdisciplinary Interest.
25.02.92	Prof. J. F. Nixon (University of Sussex)
	The Tilden Lecture. Phospha-Alkynes: New Building Blocks
	in Inorganic and Organometallic Chemistry.
26.02.92	Prof. M. L. Hitchman (University of Strathclyde)
	Chemical Vapour Deposition.
05.03.92*	Dr. N. C. Billingham (University of Sussex)
	Degradable Plastics - Myth or Magic?
11.03.92	Dr. S. E. Thomas (Imperial College)
	Recent Advances in Organoiron Chemistry.
12.03.92	Dr. R. A. Hann (I.C.I. Imagedata)
	Electronic Photography - An Image of the Future.
18.03.92*	Dr. H. Maskill (University of Newcastle upon Tyne)
	Concerted or Stepwise Fragmentation in a Deamination-Type
	Reaction.
07.04.92	Prof. D. M. Knight (University of Durham, Dept. of
	Philosophy)
	Interpreting Experiments: the Beginning of Electrochemistry.
13.05.92	Dr. JC. Gehret (Ciba Geigy, Basel)
	Some Aspects of Industrial Agrochemical Research.

Academic Year 1992-1993

15.10.92	Dr. M. Glazer and Dr. S. Tarling (University of Oxford & Birkbeck College)
	The Chemist's Role as an Expert Witness in Patent Litigation.
20.10.92	Dr. H. E. Bryndza (Dupont Central Research)
	Synthesis, Reactions and Thermochemistry of Metal (Alkyl)
	Cyanide Complexes and Their Impact on Olefin Hydrocyanation
	Catalysis.
22.10.92*	Prof. A. Davies (University College, London)
22622000	The Ingold-Albert Lecture. The Behaviour of Hydrogen as
	a Pseudometal.
28.10.92	Dr. J. K. Cockcroft (University of Durham)
	Recent Developments in Powder Diffraction.
29.10.92	Dr. J. Emsley (Imperial College, London)
	The Shocking History of Phosphorus.
04.11.92	Dr. T. P. Kee (University of Leeds)
	Synthesis and Coordination Chemistry of Silylated Phosphites.
05.11.92*	Dr. C. J. Ludman (University of Durham)
	Explosions: A Demonstration Lecture.
11.11.92*	Prof. D. Robins (University of Glasgow)
	Pyrrolizidine Alkaloids: Biological Activity, Biosynthesis and
	Benefits.
12.11.92*	Prof. M. R. Truter (University College, London)
	Luck and Logic in Host-Guest Chemistry.
18.11.92	Dr. R. Nix (Queen Mary College, London)
	Characterisation of Heterogeneous Catalysts.
25.11.92*	Prof. Y. Vallée (University of Caen)
	Reactive Thiocarbonyl Compounds.
25.11.92	Prof. L. D. Quin (University of Massachusetts, Amherst)
	Fragmentation of Phosphorus Heterocycles as a Route to
	Phosphoryl Species with Uncommon Bonding.
26.11.92*	Dr. D. Humber (Glaxo, Greenford)
	AIDS - The Development of a Novel Series of HIV Inhibitors.
02.12.92*	Prof. A. F. Hegarty (University College, Dublin)
	Highly Reactive Enols Stabilised by Steric Protection.
02.12.92*	Dr. R. A. Aitken (University of St. Andrews)
	The Versatile Cycloaddition Chemistry of Bu ₃ P.CS ₂ .
03.12.92	Prof. P. Edwards (University of Birmingham)

	The SCI Lecture. What is a Metal?
09.12.92	Dr. A. N. Burgess (I.C.I. Runcorn)
	The Structure of Perfluorinated Ionomer Membranes.
20.01.93	Dr. D. C. Clary (University of Cambridge)
	Energy Flow in Chemical Reactions.
21.01.93	Prof. L. Hall (University of Cambridge)
	NMR - Window to the Human Body.
27.01.93*	Dr. W. Kerr (University of Strathclyde)
	Development of the Pauson-Khand Annulation Reaction:
	Organocobalt Mediated Synthesis of Natural and Unnatural Products.
28.01.93*	Prof. J. Mann (University of Reading)
	Murder, Magic and Medicine.
03.02.93*	Prof. S. M. Roberts (University of Exeter)
	Enzymes in Organic Synthesis.
10.02.93	Dr. D. Gillies (University of Surrey)
	NMR and Molecular Motion in Solution.
11.02.93*	Prof. S. Knox (University of Bristol)
	The Tilden Lecture. Organic Chemistry at Polynuclear Metal
	Centres.
17.02.93	Dr. R. W. Kemmitt (University of Leicester)
	Oxatrimethylenemethane Metal Complexes.
18.02.93	Dr. I. Fraser (I.C.I. Wilton)
	Reactive Processing of Composite Materials.
22.02.93	Prof. D. M. Grant (University of Utah)
	Single Crystals, Molecular Structure and Chemical-Shift
	Anisotropy.
24.02.93*	Prof. C. J. M. Stirling (University of Sheffield)
	Chemistry on the Flat-Reactivity of Ordered Systems.
10.03.93	Dr. P. K. Baker (University College of North Wales, Bangor)
	Chemistry of Highly Versatile 7-Coordinate Complexes.
11.03.93	Dr. R. A. Y. Jones (University of East Anglia)
	The Chemistry of Wine Making.
17.03.93*	Dr. R. J. K. Taylor (University of East Anglia)
	Adventures in Natural Product Synthesis.
24.03.93*	Prof. I. O. Sutherland (University of Liverpool)
	Chromogenic Reagents for Cations.
13.05.93	Prof. J. A. Pople (Carnegie-Mellon University, Pittsburgh)
	The Boys-Rahman Lecture. Applications of Molecular Orbital
	Theory.

21.05.93	Prof. L. Weber (University of Bielefeld)
	Metallophospha-Alkenes as Synthons in Organometallic Chemistry.
01.06.93*	Prof. J. P. Konopelski (University of California, Santa Cruz)
	Synthetic Adventures with Enantiomerically Pure Acetals.
02.06.93	Prof. F. Ciardelli (University of Pisa)
	Chiral Discrimination in the Stereospecific Polymerisation
	of Alpha Olefins.
07.06.93	Prof. R. S. Stein (University of Massachusetts)
	Scattering Studies of Crystalline and Liquid Crystalline
	Polymers.
16.06.93	Prof. A. K. Covington (University of Newcastle upon Tyne)
	Use of Ion Selective Electrodes as Detectors in Ion Chromatography.
17.06.93	Prof. O. F. Nielsen (University of Copenhagen)
	Low-Frequency IR and Raman Studies of Hydrogen Bonded
	Liquids.
	Academic Year 1993-1994
13.09.93	Prof. Dr. A. D. Schlüter (Freie Universsität, Berlin)
13.09.93	Synthesis and Characterisation of Molecular Rods and Ribbons.
13.09.93	Dr. K. J. Wynne (Office of Naval Research, Washington, USA)
13.09.93	Polymer Surface Design for Minimal Adhesion.
14.09.93	Prof. J. M. DeSimone (University of North Carolina, Chapel Hill)
14,09,93	Homogeneous and Heterogeneous Polymerisations in Environmentally
	Responsible Carbon Dioxide.
28.09.93	Prof. H. Ila (North Eastern Hill University, India)
20.09.93	Synthetic Strategies for Cyclopentanoids via Oxoketene Dithioacetals.
04.10.93	Prof. F. J. Feher (University of California, Irvine)
04.10.23	Bridging the Gap between Surfaces and Solution with Sessilquioxanes.
14.10.93	Dr. P. Hubberstey (University of Nottingham)
11.10.22	Alkali Metals: Alchemist's Nightmare, Biochemist's Puzzle and
	Technologist's Dream.
20.10.93	Dr. P. Quayle (University of Manchester)
-0,50,65	Aspects of Aqueous ROMP Chemistry.
21.10.93	Prof. R. Adams (University of South Carolina)
	Chemistry of Metal Carbonyl Cluster Complexes: Development of
	Cluster Based Alkyne Hydrogenation Catalysts.
27.10.93	Dr. R. A. L. Jones (Cavendish Laboratory, Cambridge)

	Perambulating Polymers.
10.11.93	Prof. M. N. R. Ashfold (University of Bristol)
	High Resolution Photofragment Translational Spectroscopy: A New
	Way to Watch Photodissociation.
17.11.93	Dr. A. Parker (Rutherford Appleton Laboratory, Didcot)
	Applications of Time Resolved Resonance Raman Spectroscopy to
	Chemical and Biochemical Problems.
24.11.93	Dr. P. G. Bruce (University of St. Andrews)
	Structure and Properties of Inorganic Solids and Polymers.
25.11.93	Dr. R. P. Wayne (University of Oxford)
	The Origin and Evolution of the Atmosphere.
01.12.93*	Prof. M. A. McKervey (Queen's University, Belfast)
	Synthesis and Applications of Chemically Modified Calixarenes.
08.12.93*	Prof. O. Meth-Cohn (University of Sunderland)
	Friedel's Folly Revisited - A Super Way to Fused Pyridines.
16.12.93	Prof. R. F. Hudson (University of Kent)
	Close Encounters of the Second Kind.
26.01.94	Prof. J. Evans (University of Southampton)
	Shining Light on Catalysts.
02.02.94	Dr. A. Masters (University of Manchester)
	Modelling Water Without Using Pair Potentials.
09.02.94*	Prof. D. Young (University of Sussex)
	Chemical and Biological Studies on the Coenzyme Tetrahydrofolic
	Acid.
16.02.94	Prof. K. H. Theopold (University of Delaware)
	Paramagnetic Chromium Alkyls: Synthesis and Reactivity.
23.02.94	Prof. P. M. Maitlis (University of Sheffield)
	Across the Border: From Homogeneous to Heterogeneous Catalysis.
02.03.94*	Dr. C. Hunter (University of Sheffield)
	Noncovalent Interactions between Aromatic Molecules.
09.03.94	Prof. F. Wilkinson (Loughborough University of Technology)
	Nanosecond and Picosecond Laser Flash Photolysis.
10.03.94*	Prof. S. V. Ley (University of Cambridge)
	New Methods for Organic Synthesis.
25.03.94	Dr. J. Dilworth (University of Essex)
	Technetium and Rhenium Compounds with Applications as Imaging
	Agents.
28.04.94	Prof. R. J. Gillespie (McMaster University, Canada)

The Molecular Structure of some Metal Fluorides and Oxofluorides:

Apparent Exceptions to the VSEPR Model.

12.05.94 Prof. D. A. Humphreys (McMaster University, Canada)

Bringing Knowledge to Life.

A.2.2 List of Conferences Attended

There follows a list of conferences attended by the author during the period when the research for the thesis was carried out.

June 1993	Science and Engineering Research Council, Graduate School
	(C.R.A.C.), University of Stirling.
August 1993	ESOC 8th Symposium on Organic Chemistry, Barcelona.
	A poster was presented entitled: "Covalently Attached Ferrocene
	and Tetrathiafulvalene Redox Systems".
April 1994	New Electronic Materials, RSC Conference, London.
May 1994	Graduate Symposium, University of Northumberland.
	An oral presentation was given entitled: "Functionalised

Tetrathiafulvalenes in Supramolecular Chemistry".

APPENDIX 3

PUBLICATIONS

Parts of this work contained in this thesis have been reported in the following publications:

- 1) A.J. Moore, P.J. Skabara, M.R. Bryce, A.S. Batsanov, J.A.K. Howard and S.T.A.K. Daley, J. Chem. Soc., Chem. Commun., 1993, 417.
- 2) M.R. Bryce, A.J. Moore, M.A. Coffin, G.J. Marshallsay, G. Cooke, P.J. Skabara, A.S. Batsanov, J.A.K. Howard and W. Clegg, *Phosphorus, Sulfur and Silicon*, 1993, 74, 279.
- 3) M.R. Bryce, A.J. Moore, G. Cooke, G.J. Marshallsay, P.J. Skabara, A.S. Batsanov, J.A.K. Howard, S.T.A.K. Daley, *J. Chem. Soc.*, *Perkin Trans. 1*, 1993, 1403.
- 4) M.R. Bryce, A.S. Batsanov, W. Devonport, J.N. Heaton, J.A.K. Howard, G.J. Marshallsay, A.J. Moore, P.J. Skabara and S. Wegener, Chapter in 'Molecular Engineering for Advanced Materials', Ed. J. Becher, Kluwer, Dordrecht, 1994, in press.