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ABSTRACT

In this work we examine n-dimensional Riemannian
manifolds with k~harmonic metriecs. Ruse's invariant is
shown to be a function of one member of a set of two-point
invariants; these are the symmetric polynomials of the
eigenvalues of an endomorphism of the tangent space at a
fixed point (base point) and of the eigenvalues of the inverse
endomorphism, These endomorphisms compare the metric tensor
at the base point with the pull-back from a variable point
via the exponential mapping. If the k-th symmetric polynomial
is a function of the two-point invariant distance function
alone, the manifold is k-harmonic at the base point.
k-harmonic manifolds are k~harmonic at all base points;
thus they form a generalisation of harmonic manifolds.
We prove for general Riemannian manifolds:

(1) they are harmonic if and only if n-harmonic;

(2) all k-harmonic manifolds are Einstein spaces.
For simply cbnnected Riemannian symmetric spaces we are able
to derive the matrix of the required endomorphism explicitly.
We investigate whether these spaces are k-harmonic either
for all k or else for no k and prove the former if the rank
is one, For symmetric spaces of rank greater than one no

firm conclusion is reached.
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INTRODUCTION

Harmonic Riemannian manifolds have been studied since 1930
when HoS.Ruse investigated the form taken by the "elementary"
solution of the generalised Laplace's equation on an analytic
Riemannian manifold. If'ﬂ.(po,p) is half the square of the
geodesic distance from a fixed base point, Py’ to a general
neighbouring point, p, a manifold is harmonic at Py if the
elementary solution is a function of {lalone, If this is
true for every base point then the manifold is defined to be
harmonic. An alternative definition requires Ruse's two-
point invariant function, /o(po,p) be be a function of () alone.
A paper published in 1968 by T.J.Willmore [16] shows that
Ruse's invariant is a function of one of the elements in a.
set of n two-point invariants, ak(po,p) (k =1, oes, n).

T is the kth symmetric polynomial of the eigenvalues of the
matrix;(o(po,p), representing a linear endomorphism of the
tangent space at P, and Gk is a function of p; however if

it is a function of () and otherwise independent of p then

the manifold is defined to be k-harmonic at P.e The manifold
is k-harmonic if it is k-harmonic at every base point. 1In
1970 K. E1 Hadi in an unpublished thesis [4] defined k~harmoniec
manifolds in terms of a(po,p), the inverse ofto(po,p). We
see that Ruse's invariant is one in a set of two-point
invariants and hence that the concept of k-harmonic Riemanﬁian

manifold is a generalisation of harmonic Riemannian manifold.
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This th;sis attempts to assess how much is yet known about
k~harmonic manifolds.

A summary of basic information regarding general harmonic
spaces is given in Chapter I. The chapter starts with a section
on affine and Riemannian connections followed by examination
of the exponential map, normal coordinates and normal tensors;
these are necessary tools for the development of our theory,
Alternative definitions for harmonic manifolds are given as
well as two infinite sets of necessary and sufficient conditions
for a manifold to be harmonic: the Copson and Ruse equations
which are expressed in terms of normal tensors and the equations
of A.J.Ledger where curvature tensors are used. Properties
of harmonic spaces show that they are more general than the
spaces of constant curvature yet form a proper subset of the
sét of .Einstein spaces. We conclude the chapter by showing
that all decomposable manifolds with positive-definite metric
are locally flat,.

AJ.Lichnerowicz has conjectured that all Riemannian
manifolds with positive-definite harmonic metric are locally
symmetric. Chapter II provides the basic properties of
symmetric spaces necessary for the examination of harmonic
symmetric spaces; these are established using mainly the
approach of Soﬁelgason [5]. Theorems of A.G.Walker [14] and
A.J.Ledger [7] on harmonic symmetric spaces are given in
Chapter III. Examination of Jacobi fields leads to the

concept of globally harmonio spaces as defined by A.C.Allamigeon [1].
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The first three chapters serve as introductory back-
ground to the study of k-harmonic Riemannian manifolds.
Chapter IV begins with a comparison of the definitions of
El Hadi and Willmore; distinction is made between k-harmonic
spaces of the positive type and of the negative type. A
list of investigations into properties of k-harmonic spaces
is given. All k-harmonic spaces are shown to be Einstein,
Harmonic spaces are shown to be (-1)~harmonic, i.é., 1-harmonic
according to Willmore's definition; the author belie;es the
converse of this result to be false, but no counterexamples
have yet been found.

For general Riemannian manifolds computation of the
relevant matrices and the symmetric polynomials of their
eigenvalues is far from simple, But in the symmetric case
use of the Jacobi equations shows that if p is a point on
the unit geodesic sphere centre Py the eigenvalues are
functions of sectional curvatures along plane sections spanned
by pairs of elements of a particular form of orthonormal
basis of the tangent space at P, In the case of symmetric
spaces of rank one it is known that the holonomy group is
transitive on the unit geodesic sphere centre po; from
this we deduce that the eigenvalues are independent of p
and hence that symmetric spaces of rank one are k-harmonic
for all k. A.J.Ledger has proved that no symmetric spaces
of rank greater than one are harmonic; it is likely also
that these spaces are not k-harmonic for any k, but this is
not yet proved. Hence the truth of the conjecture that
symmetric spaces are either k-harmonic for all k or else

for no k remains open.



CHAPTER I
HARMONIC SPACES

1.1 Affine and Riemannian connections
Let M be a differentiable n-dimensional manifold, By C°(M)
we denote the set of all real-valued differentiable functions
on M, Let £,z € C*=(M) and A€ IR, IR being the set of real
numbers. Defining the operations f + g, Ag, £g pointwise,
it is easy to verify that C*°(M) is an algebra over R.
A vector field, X, on M is an endomorphism of C°°(M) which
is also a differentiation, that is, X is a map C=(M) > C™°(M)
with the properties
(1) “ XAf +/‘g) = AX(£) + px(g) for Ap e Ry
f,e e C>(N),

(2) X(rg) = £(Xg) + (Xf)g for £,8 e C=(N).
By D’(M) we denote the set of all vector fields on M, Ve
define the three operations:

(X,Y) => X+ Y given by (X + Y)(f) = X£ + YF,

(g,X) —> gX  given by (8X)(£) = g(Xf), and

(A,X) —> AX  given by (AX)(f) = A(x£).
Clearly D1(M) is a vector-space over [R. Ve also define
the Lie derivative with respect to X as the endomorphism of
D1(M) given by

O (X) :¥ —> [X,Y] where [X,Y]is the vector field

[x,Y] i —> x(¥£) - ¥(X£),
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Choose p € M and X € D (M) The linear mapping

xp if —> (X£)(p) of C° (M) into _IR is a tangent vector to M
at p.

= {Xp X e D1 (M)} is an n-dimensional vector' space, the tangent
sSpace to M at p. Alternatively we may define a tangent vector
to M at p as follows:
A curve is a €™ mapping I —> M whereI is an open interva;il of IR .
Let « be any curve through p, that is p =<x(t°) for some t_e I,
X 3L =3 M, If f e C(M), then (f ox) € C*®(I).
Define <x (t )(f) = (f oo()'(t ) = df o)

at t=t ¢
Letting t vary in I, it is easy to verify that o (t) satisfies

(4) and (2) and hence is a vector field on the submam.fold o (I)
of M, O(Q(to) is a tangent vector to M at p. Hence every
curve through p defines a member of Mp. _

Let M,N be C° manifolds, A mapping 4>:M —> Nisa
diffeomorphism if

(1) (’) is biﬁective,

(i1) 4>and 4;1 are both differentiable.
Let ¢:M —> Nbe C® and pe M. Given xpe Mp’ the mapping
(%)p(xp) :¢®(N) —» IR given by (%)pxp g —> Xp(g o4
(g & C°°(N)) is a tangent vector to N at (Hp).
IFXeD (M) and Y € D1( c|>(M)) then X and Y are $-related if

To(p) ° (%)pxp for all p € M.

U is the domain of an allowable coordinate system, (x ),

if U is an open subset of M and there exists a C°° mapping ¢



with the properties:

(1) ¢ is a homeomorphism U —> V, where V is an open
subset of JR", and

(12) fi1g—> (x'(q), +ees x() (g e W,
If f € C(M), then f o 4>-1 is a real valued function with domain

Vo Let pe U, We denote by Eﬁk(p) the real number ik-(f 0 43-3 .
ox ox ¢(p)

Then the map f —> aLk(p) is a tangent vector at p denoted by

dx
l(p)., It can be shown that —b—(P), coey j'(P?} is a
k x! ¥x"

ox
basis of Mp. If we write -—bi for the mapping p —> -b-E(p)
ox

ox
2 . .
then {g, ceses 5%;} is a basis for D1(U).

An affine connection on M is a rule V which assigns to
each X € D' (M) an endomorphism VX of D' (M) satisfying
(3) fo+gY = fo + gV;, and
(4) Vi (£Y) = £VY + (x6)Y,
where X,Y. &€ D1 (M) and f,5 & coo(M) .
Let U be the domain of an allowable coordinate system (xi) and

{ei = —B'i-, i=1, ...,n} be the corresponding basis for D1 (v,
ox

Then there exist functions, | | :Ij-k (i,jsk =1, eoey n) on U
such that

k
(5) veiej - rijeko
These connection coefficients are not components of any tensor,
for if (ya) is any other allowable coordinate system on U with

]
connection coefficients, [ :c, it is easy to verify using (3),



(4) and (5) that the transformation equation is

Mo 22 bx a5 i D& o8
(6) be ~ ¢t jk + b, ¢y k

%% dy 3 2y oy° ox
let V,W e D'(), VW is the covariant derivative of W with
respect to V., If V= f e; and W= 3 e then

_ i b k i J
Vo = (r i + f )e
x

In particular, if we substitute V = 5;‘ e where Si’ is the

Kronecker 'delta', we obtain the classical expression for

covariant differentiation:

Kk j
5k1= (VW) a's-"’ l—llag.
’ Bx

Let oI —>M be a curve. 4 vector field X(t) on o« is said

to be parallel along « if Vm (x(t)) =0 for all t € I,
Daresies a100g X o /

Let U be the domain of a coordinate system, (x~), such that
U > «(J) where J< I, Writing xi(t) = x(A(t)) and

x(t) = Xi(t) —bT we obtain the differential equations
ox

i
— + |—-|k dex = O (k= 1, cocoy n)
. a8 conditions for X to be parallel along K.

oK is a geodesioc on M if V% oe = O. Ina coordinate system

this means that

& prxatad |
a2 g a4

Ir V is an affine connection on M we define the torsion and



.8 urvature tensor fields by
V(¥) = Vi(®) - [x,1],
VeV =V Vi - Ve

Clearly T € D12(M), that is, T is a tensor field of type (1,2).

(X,Y)

R(X,Y)

We also have R € Dy(M), If {o,} is a basis of vector fields
in a domain U, then we define the components of T and R by
T(ei’ej) = qu] ek and
h
R(ei,ej)ek = Rkij e, o

Ir [ei,ej] = el;j ey, it is easy to verify that

Tl;j =|—.ﬂi‘g'rll.;i 'h °1i‘.i » and
1 . h m h m m h
Rkhij =>%i%. 'B—g-ff T R Y R =

Let M be a C*manifold. Mis a Riemannian mapifold if there
exists a tensor field g e Dg(M) satisfying

(1) &(X,Y) = g(Y,X) for all X,Y € D' (¥),

(is) gp is a positive defirte form on Mp X Mp for
allpe M, If in (ii) we replace 'positive definite' with
'non-degenerate' we have a pseudo-Riemannian manifold. Generally
in this thesis we will understand 'Riemannian' to includs
'pseudo-Riemannian',

The fundamental theorem of Riemannian gecmetry states that on
a Riemannian manifold there exists a unique symmetric connection,
V/, the Riemannian connection, satisfying:

(a) the torsion field is zero,

ieee, [(X,¥Y] = VY - VX for all X, e D' (M)



(b) g is invariant under parallel translation,
 dees, g=Oforanlxen'(w) ([5], p.s8)
\V being symmetric means that FI: r'k (i,3,k = 1, eeo, D)o
From (a) it follows that all the constants cI;J. are zero.
Ir (xi) is an allowable coordinate system on M -with domain U,

we define the components of g with respect to (xi) by

2 2
835 = s(ax " 7 for 1,5=1, ceo, e

Let M be a Riemannian manifold with metric g The mapping
#:M —> M is an isometry if

(1) 4: is a diffecmorphism,

(i1) g is invariant under $, (¢°g = g)

i.eo, 8(X,Y) = g(¢uX, p¥) for all X,Y in o' (u).

1.2 The exponential map, normal coordinates and normal tensors
Let M be a C° manifold with affine connection and p  an?

arbitrary point of M. W, a neighbourhood of M, is said to be
si_mfgile c-ox-uvex if for all distinct points p,q of W there exists
a unigue geodesic (pq) joining them and lying wholly in Wo Let
(xi) be an allowable coordinate system on NP , a simple convex

o
open neighbourhood of Poe We say that Np is a normal

°
neighbourhood of Py Ir Mp is the tangent space to M at P,
0
we define the mapping Expp U —> N, (U being an open neighbourhood
o o]

of O in M, ) as follows:
o

Let p € Np and o be the unique geodesic parameteiised

0
so that «(0) = pand &(1) = po If x,(0) = X then the mapping



X —> p is the exponential mapping at Po and Expp X= p,

o
U is then the domein of Exp (= Exp_ ) withthe required rangs N .
ExpiU —> Np is a diffecmorphism, As { —b; (p o)} is the basis
o - ox

of Mp resulting from (x') we have X = y~ ;%(po) for all
o _ x

X€M ., The mapping N —> [R" given by
Py Po
1 n
p = Exp(X) = (y', ve0s ¥y ) assigns a normal coordinate

system with origin P, to Np o« The normal coordinate system
o

(yi) is derived from the allowable coordinate system (xi).,

Let ¢ be a diffemorphism of M and X & D' (M), We define
another vector field 1{7s by the assigmment p —> ((ﬁe) 4,-1 (p)(X4>-1 (p))o
Suppose that for all vector fields X,Y € D' (M) we have

(VXY)‘P = qu,Ydf. 4; is said to be an affine transformation
of M with respect to V and V is invariant under 4>.

If L is a geodesic and «#an affine transformation then
v‘,“é%‘b = (V°‘a°(‘)¢ = 0, that is, (43 o) is also a geodesiec.
We deduce that 4) commutes with Exp,

.00, (Exp4>(p°) 0 an)x = o Exppo)x for all X & Mpo.

Further if X(t) is parallel on «, then (x(t))4’ is parallel
on (4> 0 o),
Let U be a normal neighbourhood of p & M and let X #0

be fixed in Mp so that Exp X € U, The mapping 31 —> U
)

given by t —> Exp tX is clearly a geodesic through Pys where

I is an open neighbourhood of IR such that o({I) c U, If {yl}



is e normal coordinate system origin P, derived from the
system fxl} on U cand X = A" —a-.;(po) , we have
ox
J _ o Jd id ., . .

ye(tx)) = ¥ (Exp tABxi (Ps)) = tA. Hence in

normal coordinates geodesics through .Po are of the form
i L

(1) y(t) = N

i i i . .
Now dy- (0) = A", but {A"} being components of X for the basis

dt

2 - aty | (ad
{;x—i(po)}of Mpo, it follows that ( 3t )o = (3% )o. Hence

_entries of the transformation Jacobian of M are

P
0

bxi i
(2) (—3 o = Sj.
2y
LetXeMpbe suchtha.t:p=Ex‘p}[e-Np « Then the
e . ¥o o
_ . (a Exp)xs(Mpo)x -> Mp can be written as a

Elinear map Mp -_— MP by identifying the tangent space at a

i o

i

point of a vector space with the vector space itself. Suppose

that t is the matrix of this map with respect to given bases.

The following conventional notation will be used to denote the.

entries of this matrix ([46], p.1052 ):

Greek suffices will be used for components of elements of Mp ’
- o

®M  and tensor products of these spaces (vectors and tensors

o
"ot pon); Roman suffices will indicate components of vectors

and tensors "at p". So with respect to the bases { ;}:} of
x

M and {—a-}of M (%i=1, eoo, n) we write t = (t:.'()..
Po i P

£ is also the matrix of the dual map, (°Exp)x=°Mp -—>°Mp with
+]

respect to corresponding bases {ax"} and {ax*}. For if u = (u:'()



-9-

is the matrix of the dual map and we choose O = (6%) e U
and ¥ = (Y*) e Mp , the relation

(CBR L) = B((@R)(Y), gives us
uiBiY“ = Bitin. Teking O and Y as basis elements we obtain
u=t,

The map Exp U —> Np being a diffeomorphism, it follows
from the inverse fuiction :heox'em for manifolds that (d Exp)x
is @ linear isomorphism. Hence t has an inverse, £ = (t-;‘).

Let U be a normal neighbourhood of P € Mend (yi) the
normal coordinate system origin P, and domain U, The affine

connection ®V has coefficients %[ J.'k. From (1) we know that

the solution of the d:l.fferentlal equatlons for geodesics

2.1
.y 1oad @t
(3) 22 " Mxa e = O

is y1 = A\t (Al fixed, i = 1, .00, n). Hence we have
e i Jak
at pot ( ij)o')\ A

through P, W deduce

O. As this holds for all geodesics

api =
(4) eri), = o
Let T;;"' be components of any tensor field with respect

to an allowable coordinate system (xi) and °T;';”' its components
with respect to the derived normal coordinate system (y )» Then

using (2) we have

ijece 1 0oo
(5) <Tp3...,>o = (¢ pi..,)o

Affine normal tensors are defined at P, s follows:

i K]
(6) (Ajkl..p)o = (3....31 er o» Whered = B—F.,

Note that the connection coefficients, #[" 3k are components of



a tensor (unlike | 3k)' For let (x), (x'*) be allowable
coordinate systems with domains U, U' and (y7), (y'*) the

corresponding normal coordinates origin Py’ where poé Untu',
k

O <
On a geodesic through P, ¥ have %— = ';‘L )
W0 Kk b
m ( ) , whence we have y= = ( oy . Hence.
12 k
b—y——; = 0 and from 1.,4(6) we obtain
y' oy’
a j k
o epe, - EtElwt

Repeated differentiation of (7) and evaluation at p, shows that

we are justified in asserting that (Aj'-kl...p)o is a tensor.
Suppose now that M is an n-dimensional Riemannian manifold

and (yi) a normal coordinate system origin p  in a normal

neighbourhood W, Writing ¢g = ("gij) for the metric tensor,

we have d52 = ,°gijd.vidy‘i|. The differential equations

for geodesics are given by

2.1 . J .k
_d_;g_ ¥ @ ?j.k %}- %Z— = 0, where the connection
ds

coefficients are Chrlstoffel symbols, It follows that along

. ic @ .Q‘L.QY_ = : o
any geodesic ng ds ds e, where e is the indicator of

the geodesic,

A necessary and sufficient condition that (y) be a

normal coordinate system.is
og v = (o J

(8) gy = (%g;;)y ([111, pp11,12).

We define Riemannian normal tensors at P, by
¢ = ¢ ij @ ijy . s
( g.kl..p)o ('ap....'alak g )o’ where (®g ) is the inverse
of g» Using a method outlined by O.Veblen [1 5] we will obtain
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relationships between Riemannian and affine normal tensors.

We first note the relation

(9) A.:;kl = Rkl .), where (R ) is the curvature
tensor, °g-1 = (%g J) being invariant under parallel

translation, we have

o id - o dd c|Zi.ahj Ojaih_
(10) 8" x Dkg Y Fhkg + r‘hkg = 0,
Using (4) and (10) we have -
ogl
My (g,
Differentiating (10) partially with respect to yl, we obtain
i iy, hJ i hj
(12) 2,008 « (20 )0e  + o[, (0,%8™)

. in . ih
+ 31"[_';31{)“6 +°F’ﬁk(3 °g ) = 0, and

- i .
(13) (oald), = -2+ Al 0™
Using (9):
- 2
(12). (“sla)o(“s o = H®,).,
where B'kl gih hkl are components of the Ricci tensor

of type (0,2). We continue differentiating partially with
respect to ym, yn, co9 @ValUating at Py’ contracting and using
relations obtained earlier, thus getting a sequence of relations
between Riemannian and affine normal tensors at p_ like (14)
above. The next two relations are

(15) (%8, ) ("6 tn) = BBy ), and

(16) (%3 )oCe i) = & ' Wh) (00 - 2, )

+ 48 A;mn)o(Ahkl) (%, ) (%€ ) o5

where. §' denotes summation over the three terms: subscript 1 for
the first normal tenmsor in the prodict, m;n for.second(as above);

m for first, 1,n for second; n for first, 1l,m for second,
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1.3 The distance function and Ruse's invariant

Let M be a Riemannian manifold and W a normal neighbourhood.

Let p ,p € W. We define the distance function, W X W —>[R

by .

(1) N(p,p) = %er,

where r = d(po,p) is the length of the unique geodesic arc (pop)

and e is the indicator of the metric. Clearly lisa symmetric

function and being defined independently of any coordinate

system is a two-point invariant function. If (pop) is non-

null and p = Exp sX, where X € Mp is a unit vector, then

,0 o
we have r = |g. Let (') be the coordinates of p with
respect to a normal coordinate system centre P, and X = X* —%(po).

Then y".L = X's and (°gij)°xix" = e

Hence we obtain

(2) L) = 7 (°ay;)y Yy,

s : s = -D-'_.Q = @ i
Differentiating, ﬂj = 'Dy'j = ( gi,j) 7

= %, y', using 1.2(8).

We deduce,

I R

i
. ij

that is, g J.QJ. = 8 %‘SL ’

where d/ds denotes differentiation along the geodesic arc (pop).
(3) being a tensor equation , we have

() lJ-Q dsl, where (x ) is any coordinate

system in W, (4) is derived by considering P, fixed and varying

the point with coordinates (x), namely p, If however we fix
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p and vary the point with coordinates (x*), namely P,s the

symmetry of 9K gives us
- §

(5) g“p.ﬂb = -S%J:f' °

The negative sign follows since differentiation along the

geodesic arc (ppo) is - E%“ In the case of normal coordinates

origin P, We have

(6) o= ety = 20,
202
where %0, = ==,
B AP

(The distinction between coordinates (yi) and (y*) must be
clarifieds In the case of allowable coordinates on W with
fixed origin, (¥*) and (xi) are the coordinates of the variable -
points Py and p respectively. However with normal coordinates
origin p_, (y*) and (yi) are both coordinates of p, but are
used to distinguish the respective cases:

(1) p, Vvarying and p fixed,

(ii) p, fixed and p varying).

Now ﬂ(po,p) being a function of the coordinates (x*) of P,

and (xl) of p we can obtain an n x n matrix with entries
22N

-n-od. NN

0™ x

Define J = det (ﬂui) and its modulus by [J].

The diseriminant function or Ruse's invariant is

NCA
(7 /o(PO:P) = TJT ’

where g = det(gij) and g = det(gup). It is immediately
evident that © >0 ([A1], p.18). ,o(po,p) is a two-point

invariant function symmetric in P, and p. We obtain a simpler
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form for /a in terms of normal coordinates as follows:

o o™
sﬁﬂ'&i - i;_ , from (5)’

whence

2(yys ooos ¥,)
(8) R ) -

3_(x1, so0oy xr? °

But from the transformation formula for tensors,

eg(?(.‘l’1 9 ocoy .Yn))z

5(::1, evoy xn)

/0=/§_21’=f8_—§. As %g = g at p, we have
(9) /OEE

Notes (1) Equation (8) shows that ({2 “i) is non-

and so

&

singular, an assumption made in the definition of /0.
(i1) Prom (9) is deduced

(10) L ~>18sp —>p,

We now derive a connection between the Laplacian AZ'O'

and/o for fixed p  and variable p. Using Azﬂ. = “_n.::i

and (3) we have
i . Lk

(11) ‘ﬂ],.j = 6'3' + ‘l"’;.'ky and

A,() n + ka_EE log.fg

y

k 2
n + 9 log ©»
Lxe

- i
In any ellowable coordinate system (x) this is

(12) _ Azﬂ = n + ﬂk-a-fﬁ 10810.

We note that Azﬂ-—> nasp=>p,
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1.4 Definition of harmonic Riemannign manifolds

We give three equivalent definitions for harmonic Riemannian

man:ifolds. Let M be an analytic Riemannian manifold and
P, & Y. W'is a normal neighbourhood centre P, Then M is
& harmonic Riemannian manifold if independ:ntly of p ° either
(1) there exists a non-constant solution of Laplace's
equation, Azu = 0, in W which is a function of (1= _n.(po,p)
but otherwise is independent of p e W; or
(ii) Azﬂ is a function of = ﬂ(_%,p) but is
otherwise independent of p € W; or |
(di1) L= /o(po,p) is a function of {1, but is otherwise
independent of p.
If M is harmonic, the solution of Laplace's equation u = \lf(ﬂ.)
is known as the glementary function and the function Abﬂ= A(2)

is known as the characteristic function. See Elﬂ s PPo 35=40

for the equivalence of the three defintions. In establishing
this equivalence, the following relations between the elementary
function, the characteristic function and Ruse's invariant are

derived for an n-dimensional harmonic space:

‘ 1l
( (1) = f dw + B,
1) -Jr A T o @

where a,A,B are arbitary constants,

(2) X)) = n-+ Zﬂa‘h IOg,o(ﬂ), and
0
(3 P = em jox_‘“iz:w_n au,

By virtu® of the symmetric property of /o, namely /o(p,po) = /o(po,p)
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we deduce that the three functions ¥({1), Y(£2) and /o(.Q) are
independent of base point, Poe As an example of harmonic

spaces, it can be shown that all Riemannian spaces of constant
curvature are harmonic ( [11], pp.26~30). The characteristic

function and Ruse's invariant are given by

(%) XD = 1+ (n-1)/2Keot 420,
_ [sin® JEKD S
(5) P - (---—-zm 5,

where K is the curvature of M and n the dimension,
A special case of harmonic manifolds occurs when the
characteristic function and hence also Ruse's invariant are

constant - the sim harmonic manifolds., Again three equivalent

definitions are given. Let M be any n~dimensional harmonic
space. Then M is simply harmonic if either

(1) the elementary function %‘(.Q) is given by

nA
Y1) - a/[)% + B  (n>2)
Alogﬂ_+ B . (n=2),

where A,B are arbitrary constants, or

(ii) the characteristic function, {({1), is constent, namely
X(.Q) = n, or

(1i1) Ruse's invariant, /J(_Q) ,- is constant, namely

Io(.ﬂ.) = 1,
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1.5 Conditions for harmonic manifolds

Two -sets of conditions have been depived for a Riemannian
manifold to be harmonic.
I Copson and Ruse eguations (EHJ 2.,5). These equations
were first obtained without proof in 1940, but the proof was
given by A. Lichnerowicsz in 1944 [8]. Relations between
affine normal tensors and metric tensors are derived as follows:

Let M be any analytic Riemannian manifold and P € M,
N is a mormal neighbourhood of P, with normal coordinate
sy:tem (yi). (*gij) is the I!Ietric tensor and (“F’g‘k) the
Christoffel symbols. From 1.3(11) we deduce

AyL= (D = n v o™

M being analytic we can expand "F ;L_k in a Maclaurin series.

Using the definition of affine normal tensors this becomes

(v -]
AQ >4l )y Teveuy ¥
= n + -+ a. . Y oeedY
2 Lorl ik kyeelk o
since (A;j)o = 0, Letpe Np have coordinates (yl) and
0 .
P = Exp Xs, where s = d(po,p) and X = (x‘) (3 Mp is a unit
. o

vector, We have oo
(1) Azﬂ- = n 4 & r! (Aijk,lkz...kr)oxx verek T

Suppose now that M is harmonic. Then AZ'O' = X(—Q) can

be expanded in a neighbourhood of P, in the Maclaurin series

o0

2. 21t
t=0

Z s_ffsf’)((*)(o) sZ for [d) < s,

1
1:=021:..

A0
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where the indicator, e, satisfies ("gij)o]{l}[‘j = e, Hence,
i 626 /(1) ke,
(2) A QL = ;.-X (0) (%6 5, )geere (%8, )x%..x <7,
t=0 ° NS 2t-.2k2t-1

From the uniqueness of the Maclaurin series we obtain the Copson

and Ruse equations valid for all P, € M:

= o
(3,) Ak 2 b,"835,
(5 ) A::L . = 0,
2 le1k2
(5 ) A?. = h S(og. 9 ...@g ),
2t-1’ 13K, ook o e 5 Eak, Bttt By, Koy
(3 ) A:? - = 00
2t 1Jk1....k2t

Here S denotes summation is taken over all permutations of the

free indices and

. W)
) Pt Mer

Now X{{1) being independent of the base poant p , it follows
that X(t)(o) and hence all h, are independent of p and are

constants on M.

II Ledger's recurrence formula. These conditions first
derived in 1954 by A.J.Ledger relate curvature and metric
tensors in any allowablecoordinate system. An outline of the
derivation of this formula is given below. For details see
[11) a.s.

W is a simple convex neighbourhood of a Riemannian

manifold M and (x") any allowable coordinate system on W.

For po(xl)° fixed in W we consider the geodesic,d, joining p
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to p. Por |s|<§ in W we have corresponding to (1) the

Maeclaurin series

(5) Ay =

r!i ¢ °

Here ¢, = (o* AZ'Q)s=O’ where D is the absolute derivative
along the geodesic o

If M is harmonic, comparison of (5) with (2) gives the

conditions
2t
(6) P i
Jk,eeek,, o = 2t(2t)! A;.
| 2t=1 2t idkyeeeky
= 2t(2t)!h, S(g., ccoeg ),
£k, Kot -2Kotm
2t
(D %, _
Jk1ooo¢k2tc2t+1 - 0,
t 2t A v jacFl Kot
W‘here 32. = 'b ﬂxaax s0000 3x and h is given
Jjk eeok r
1 2t =1
by (4).

The following definitions are made:
Let (T?].') be any analytic tensor-field on W. We write T = Dm(‘l‘:;)

and tr T = Ti. The matrices A and I are defined by A= (-Qij)
9

and J] = (]I:) = (Riljxkxl). Then we have

(FA,0), = (0713,

tr (-/Lr)os

since trace and absolute derivative commute. Now

(]
I

(o trA)o

tr I = n.klxkxl, vhere (B.kl) is the Ricei tensor. We

differentiate the relation .Qkuk = 2[)twice covariantly,
’
first with respect to xl, then with respect to xJ, use the

Ricci identity and obtain



sh, = S - A% + A
Applying the operator D and using Leibniz's theorem we have

s/ + rAr = szﬂr + 2rsﬂ;__1 + o(r - 1)

r
r
B qzo(q)AqAr-q + A
Evaluation for s = O and the particular case r = 1 gives (‘/11)0 = 0.

Hence Ledger's recurrence formula holds for eyery point
p.e M:
° r=2

(8) (c+ DA, = cl=z-0I _, - ZL(Z)A'qAr-q (r32).
¢

™1

To obtain the curvature conditions for a harmonic manifold

we put r= 2,3’ eso. in (8).

For r = 2 in (8) we have A2 £71] , whence

_ 2 J
tr I = 3njkxxk.

oo

02 = _trA2 =

Substituting t = 1 in (6) gives ‘-3* Rjk = 8h1gjk,

ioeo’

(91) Rjk = k1gjk, where k, = 6h,.

For r = 3 in (8) we have -A3 = gﬂ:‘, whence

ik k
c5 = 1::-/33 = 2tr I - ¢ Rjk1,k2xx X2,

Substituting t = 1 in (7) and changing notation gives

(92) Ri.j,k + Rjk,i + Rkl,.] = 0.
Similarly from r = 4 in (8) and t = 2 in (6) we have

D q =
(93) S(Rijq R klp) = k2 s(gi.]gkl)"

Also

R, - gP q = = = i



P q Tr . QP q
(9.) (32 ijq B R + 9R Rklp,n)

q kir = mnp ijq,m

= kss(sijgklsmn) (r =6, t =3 in (6)).
Further conditions, (9;), (97), .o+ cdn be derived but the

calculation becomes progressively more involved.

1.6 Properties of harmonic spaces

In this section theorems on harmonic spaces will be stated
mainly without proof,
The mean value theorems for harmonic functions in harmonie

spaces of positive~definite metric were published by T.J.Willmore

in 1950,

The-dr.em- 1- Let M be a harmonic space of positive-definite metric
and u be a function harmonic in a neighbourhood U. Let P, € U
and S(po;r) be any geodesic sphere centre P, and radius r >0

such that S(po;r) c U, Then if /u(u;po;r) is the mean value of

u over S = S(po;r) given by

/.A(u;po;r) = Lu dvn_‘/J;dvn_,‘s

where dvn - is the volume element in S, we haveg

/u(u; pgi ¥) = ulp)e.

(There are -two.forms ofl-conve_rse__o_ff Theoren 1.

Theorem 2 Let M be a harmonic space of positive-definite metrie
and u be a function of class 2 on a neighbourhood U such that
for all py e U, plu;pg; r) = u(p),

then u is a harmonic function ip U,
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Theorem 3 Let M be an analytic Riemannian manifold with
positive~definite metric, Suppose that for every function u
harmonic in any neighbourhood U of M we have /x(u; Py r) = u(po)

then M is a harmonic manifold,

For proofs of Theorems 1 to 3 see [14] 2.4

Theorem 4 All harmonic manifolds are Einstein manifolds.

Proof See 1.5 (91).

Definitions (1) A Riemannian manifold is conformally flat if

it is locally conformal to a flat manifold.

(2) A Riemannian manifold is of normal hyperbolic
metric if the signature of its fundamental quadratic form is
+ (n = 2), where n is the dimension of the manifold, (Here
sighature is defined as the number of positive minus the number of

negative terms when the quadratic form is diagonalised).

T'h'e'or.em 5 All harmonic manifolds of dimension 2 or 3 are of
constant curvature.

Proof Let M be a two-dimensional harmonic manifold.

Then the curvature is given by

Bap L Mz
811822 ~ E1282 & €1j
i = - o M bei i i nif
since g R i gij 1242 being an Einstein manifold we

deduce immediately that K is constant on M
It can also be shown that all three-dimensional

Einstein spaces and all n-dimensional conformally flat Einstein
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spaces are of constant curvature. This will complete the proof

of Theorem 5 and give:

Theorem 6 All conformally flat harmonic manifolds are of

constant curvature.

Theorem 'Z. All harmonic manifolds with normal hyperbolic metriec
are manifolds of constant curvature.
This theorem was first proved by A.Lichnerowicz and A.G.Walker

in 1945; the proof can be found in [11] pp. 68=71.

As & corellary to Theorems 5,6 and 7 we have:
Theorem 8 If a simply harmonic manifold has one of the following
properties, then it is locally flat:

(1) it has dimension 2 or 3, or

(ii) it is conformally flat, or

(iii) it is of normal hyperbolic metric.

Theorem 9 Every simply harmonic manifold of positive-definite
metric is locally flat,

Proof See [11] p.T1.

The set of harmonic manifolds contains the set of manifolds of
constant curvature as a subset. It is itself a proper subset
of the set of Einstein manifolds. That it is a proper subset

can be shown by the following example,

Example Let M be the 4-dimensional Riemannian manifold

with metriec

s> = 2duadv + 2R‘_=(e21kuxv.2)du2 + Idz}z,



where z = x + iy, k is a constant and Re(_) means 'real part

of's Writing x1 = X, x2 =Yy, x5 = u, xl+ = v, the metric

tensor has matrix

02A

and zero matrices of order 2 respectively and A = { of 1),

(gi.j) = (12 02), where I,, O, are the identity

1 0
where £ = £(x',x%,x°) = ((x)? = (x)P)cos 22’ - 2 x'x? sin 2’
M is of normal hyperbolic metrioc; however it is not of constant
curvature. (For example:
0, but
R2323 Cafss T Epgfyp - 21 a00))

From Theorem 7 we deduce that M is not harmonic.

.3 )
Byspz = 2810 27, gy 835 = 8y383

= 2 c0S8 2kx5,

It is easy to verify that the Riceci tensor is identically zero

and hence M is an BEinstein manifold which not harmonic.

1.7 Descomposable harmonic spaces

Let M1 and M2 be Riemannian manifolds of dimension m and m'

respectively, Let n = m + m' and consider the product space
M = M1 X M2. This is given a Riemannian structure as
follows:

(i) Let p = (qor) € M. If Nq, N, are neighbourhoods of
q,r respectively in M1, M2 respectively, then Np = Nq X Nr

is a neighbourhood of p in M,

(ii) For each point p in the topological space M, a coordinate

system (x') can be given which can be considered as the product
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L
of two systems of coordinates (x™) in M, and (x*) in M
Let p = (qo,r) € M. Then we useé the following notational
convention for coordinates:

1’2’ sooy Il

p has coordinates (x') i

1’2, L] m;

q has coordinates (x®)

1,2, eooco0y m'

| ]
r has coordinates (x= ) o'

ords' = m+1’ m‘"2, eoo0y Mo

The coordinate system (xi) on M is said to be decomposable.

(iii) M is given the metric

2 i J
ds” = g dx ax?,
that is,
\J 1]
(1) 1’ = gdixP + gupdix e’

where the two sums on the right of (1) give the metrics on M,

and M_ respectively.

2
Definition A Riemannian manifold is decomposable if it is
locally isometric to the product of two Riemannian manifolds.

Let M = M, X M_be a decomposable Riemannian manifold

1 2
and T = (T::‘s]'":) be a tensor field on M, For any given
component T;:'": we can substitute a Greek letter which is

either unprimed or primed. For example we can substitute
Xforiif1gigmor ' foriifm+ 1 sign Hence
the components of T can be partitioned into three classes:
(a) The first class of T is the set of components for
which every substitution is unprimed.
(b) The second class of T is the set of components for

which every substitution is primed.
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(¢) The mixed class of T is the set of components for

which some substitutions are unprimed and some are primed.
Clearly the three classes are invariant under a decomposable
coordinate transformation, In particular if one of the three
classes is empty in one decomposable coordinate system, it is
empty in all decomposable coordinate systems,
Definition A tensor field T on M = M1 X M2 is seperable if
in a decomposable coordinate system the mixed class of T is
empty. T is decomposable if it is seperable and its first
class depends only on variables of M1 ~and its second class
only on variables of M2.
If T is decomposable each non-empty class defines a
tensor field on M1 and M2. The sum, contraction and contracted
product of decomposable tensor fields are decomposable. In

particular the metric, curvature, Ricci and affine normal tensor

fields are decomposable.

Theorem 10 Every decomposable harmonic manifold is simply

harmonic,

mo_f'_ This is a modification of the proof of A.Lichnerowicz [8].
Let M = M‘| X M2 be a decomposable harmonic

manifold, Let (yi) be a normal coordinate system origin p_,

which is decomposable into the normal coordinate systems,

(y*) origin q, and (y**) origin r. M being harmonic the

Copson and Ruse equations are valid and using the notation of

1.5 we have for t > 1

)

) i - & & &
(2) A = b s( 8jk1 € 1 o286

ik eeokyy y 23 2t =252t -4
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Now let t » 2 and suppose that we substitute a positive even
number of both unprimed and primed Greek letters for the 2t

letters Jj, k1, eooy k2t-1° Normal tensors being decomposable,

the component on the left of (2) is zero, but the factor of

ht on the right is not identically zero. For example,

if t = 2,
A:}P‘F“'P' = ll-hz (agdpagd\l‘gl + ogeux'ugpﬁ' + °5¢F|°5Fdl)s

which implies that h 0 O(’P = 1, so0oy M

@ L]
2 guﬁ gﬁlp'

oL',p' = M1, eey N o
We deduce that ht =0 for t > 2 and hence that
(3) ')((t)(o) = 0 (t »2), where Y({2) is the

charactéiistic function of M,

Lichnerowicz derived an (incorrect) inequality relating
’)((1)(0) and /)((2)(0). The correct version due to T.J.Willmore
is
(1) XDn? < - 2720 - ).

From (3) and (4) we deduce that 'X(t)(o) = O0fort )1 and
hence that X({) = n.

Q.e.d.
An alternative argument (see [11] pp. 214-216) cna be summarised
as follows:$

Consider a decomposable normal coordinate system on M = M1 X M2
origin p_ = (qo’ ro) and let p = (q,r) be in the corresponding
" normal neighbourhood of Py Let ﬂ, .(21 ’ flz and /0, /Q' ’ /02

denote the distance and discriminant functions in M, M1 and

M 2 respectively.
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It is easy to verify

(5) 0 =0 + 0,

(6) £ =P /°2

Suppose now that M is harmonic so that f is essentially a

function of ). alone, From equations (5) and (6) it follows
that this is possible if and only if

/01 = constant, /02 = constant.

An objection to the argument above runs as follows:
Suppose that there exists an m-dimensional Riemannian
manifold, M 4 whose characteristic and discriminant functions

are expressed in terms of the distance function, _()_1 , by
X2
/01((21)

Suppose further that there exists an m'-dimensional Riemannian

m + 2.(21 and
2

manifold, M"z, such that
[}
'XZ(‘QZ) mﬂ-r 2 .().2 and
, 52
%) R
Clearly M* 1and M ,are harmonic and so is their product, M°,

Further relations (5) and (6) are satisfied, but M? is a
decomposable harmonic manifold which is nor simply harmonic.
It is not easy to see ‘'a priori' why manifolds M* 1 and M°2

with these characteristic and discriminant functions cannot

exist,
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CHAPTER II

SYMMETRIC SPACES

2.1 Iéometrx groups of Riemannian manifolds

Let M be any analytic Biemannian manifold. I(M), the set of
all isometries of M, is a group under composition of mappings,
known as the isometry group of M. We give I(M) a topology,J,
the compact-open topology, as follows ([5], p.167)s

Let C and U be respectively compact and open subsets
of M and let

w(c, U) = {g: &(c) < U, g e I(M)}.

J is the smallest topology containing all the sets w(c, U);
it has a countable basis, {), consisting of all finite inter-
sections of sets of the form W(-5i, Oj), where {Oi} is a
countable basis of the topology of M, each 0i having compact
closure.([5], p.167 Lemma 2.1).
There are four fundamental properties of I(M):
(i) The group multiplication,.I(M) X I(M) —>» I(M) is continuous.
(ii) The inverse mapping, I(M) ~> I(M) is continuous.
(iii) The group action, I(M) X M —> M is continuous.
(iv) I(M) is locally compact.
From (i) and (ii) we deduce that I(M) with the compact-open
topology is a topological group ([3], p. 26). Properties
(1) to (iv) can be proved using sequences (see [57, pp. 167-169).

We will give alternative proofs for (i) and (iii).
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Proof of (i) Let B be any member of {1 and define
B* = {(g,h): gh e B, (g,h) e I(M) X I(M)}.
Clearly B® is non-empty. We show that B® is open.
Ghoose (go’ho) €B®, Now B being a basis element, there
exist: an integer, N, and sequences [i1, coooy :'LN}, {31, 0soy 'jN}
such that

B = Aw(ﬁi,oj).

r=1 r r
For each r, we have
h® — g 10, , i.e., b0, and (g 0. )" are
0’1 o 3.’ > Tori o "J,

disjoint closed sets. Now M being a metric space is normal.
Hence there exist sequences of non-empty open sets Hr and Kr

- - _ - 4 '
such that Hr N Kr =d, Hr:> 1’100ir and Kr > (go Ojr) -

(r =1, ooy N) (see, for example [6], p.41, Theorem 2-6).

65 being compact and g, 8 homeomorphism, it follows that

r
c = Hr is compact,

r
- _1 _
Thus h0, ¢ H cC cg, o‘j (r =1, ceop, N
b o r
Now define
A A G
u, = [} w(c,, ojr), u, = [ w(oir, Hr).

Clearly (go, ho) €U, XU,and U X U, is open in the product

topology. Further let (g, h) e U1 X U2. Then

en(0; ) c g, c80, <0, (r=1, ..., §
I'N r
1,80, gheQ1 WO, ,0,) = B.

r JI‘

Hence, U1 X U2 is an open subset of B* and B® is open.
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Proof of Siii! We will show that the mapping

£3(g;p) —> g(p) of I(M) X ¥ into M is continuous.

Let U be open in M and choose any (go,po) in £ (v).

Denoting by N(p; s) the open sphere centre p and radius s, then
there exists r > O such that N(go(po); r) cU, The sets

%, ~ W({p }, Me,(py); r/2)) and .NPo = Np; r/2)

are open in I(M) and M respectively.

Hence O X N is an open neighbourhood of (go,po) in I(M) X M
(o] o]

and a subset of £ (U), which proves the continuity of f.

To summerise: I(M) is a locally compact topological transformation
group of M. In general I(M) is disconnected. We will denote
by G the identity component of I(M), that is, the component

containing e = idﬂ'

2.2 Symmetric Spaces

Let M be a C°° manifold with affine connection V. Let

P, € M and Np be a normal neighbourhood of Pge Forp € Np
0 0

let o be the unique geodesic parameterised so that Xp(o) =p,

and b’p(1) = pe Then if g = Xp(-1), sp0 is the mapping

N —> N givenby s (p) = q- Alternatively s_ , the

Po Po Po Po

geodesic symmetry at p , is the mapping Expp (x) = Expp (=x)
o o

for XeM . Hence if (y') is a normal coordinate system

o .
with origin Py?

s (5, eees ¥ = (75 cees ¥
0
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2 s
Note that s 1is involutive, i.e., s = id but s i o
o

° "

Definition {1) A C* manifold with affine connection, M, is

an affine locally symmetric manifold if for every point P, of M,

the geodesic symmetry, sp » is an affine transformation of a
o
normal neighbourhood of Pye

Let M be an affine locally symmetric manifold and F be
a tensor field of odd degree, i.e., F is of type (r,t), where

(r+t) is of odd parity. let p e M and let X1, esoy Xr € Mp
o

w1 ’ ...,'a%: e I°‘Mp be arbitrary contravariant and covariant
o
vectors. We have

55 5 s
0y voy X, 70, W T0,00,0 Po)

°p
F(x
p(

o 1

NCTRE VTR

Fpo(.x1, o009y -xr, - 1’ o009 'Ll)t)

t
(’1)” Fpo(x1’ o006y xr, 0)1’ ooo,wt)o

Hence F = 0 on M. In particular if T and R are the tc;rsion
and curvature tensor fields respectively, T and VR are of degree
3'and 5 :respectively and thence T .20 and VR =0,

The converse statement is also true ([5], pp.164-165).

Hence ¢

A C® manifold with an affine connection is affine

locally symmetric if and only if T = O and VR = O.

Definition (2) A C° manifold with affine connection, M, is

a (globally) affine symmetric manifold if for every point

P, of M, the geodesic symmetry, sp , is an affine transformation
o

of M,
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These definitions extend naturally to Riemannian manifolds.

Definition (22 A Riemannian manifold, M, is a Riemannian

locally symmetric manifold if for every point Py of M, the

geodesic symmetry, sp » is an isometry of a normal neighbourhood
)
of poo
All Riemannian locally symmetric spaces are affine

locally symmetric, since isometries are affine transformations.

Definition (4) A Riemannian manifold, M, is a Riemannian
globally symmetric manifold if every point Py of M is an
isolated fixed point of an involutive isometry of M,

Let M be a Riemannian globally symmetric manifold and
a—po be an involutive isometry with isolated fixed point Poe
We will show that a‘o = spo and hence that every Riemannian
globally symmetric space is locally symmetric. This will
also show that we could have equivalently have defined Riemannian
globally symmetric spaces to be Riemannian manifolds in

which all geodesic symmetries are global isometries of M,

ioeo, Sp € I(M) for all poe M,

o
Proof that - _= s i is an isolated fixed point of
frool thet 7, =B Since p P
o , there exists a normal neighbourhood, Np of P, in which
o ' o
O'P (p) #pifp# P,e Choose p # p, in Np and suppose that
o o
p = Expp X (Xe Mp ). Writing T for the linear endomorphism
o o
ao of M , we see that M = V, + V_ (direct sum)
where X, = 3(X + T(X)) € V,, X, = HX - T(X)) eV,

and X = X1 + xzo



Suppose that V, # 0 and contains 4 # 0. Then there exists
an open neighbourhood (t,t,) of 0 in /R such that

Xx = {q:q:Exp tX,tel(t,t )} is a subset of N .,

1 Pq 1 172 Po

XX is a geodesic arc in Np all of whose points are invariant

1 o
under ¢ since T(x1) = X, , which is contrary to hypothesis.
o
= 0, T(X) = =X and 01‘, is the geodesic symmetry.
()

Hence V1

The converse of the result above is not generally true.
However a Riemannian locally symmetric space is globally
symmetric provided it is complete and simply connected
{[5], p. 187)o 1In the case of e Riemannian globally symmetric
space, M, we have seen in 2,1 that the isometry group, I(M),
is a locally compact topological transformation group of M,

It can be shown further that I(M) can be given an analytic
structure compatible with the open-compact topology in which
it is a Lie transformation group ([5], p.171.). It is also
known that A(M), the group of affine transformations of a

C*™ manifold with affine connection, is a Lie transformation

group ([5], p.229).

2.5 Isotropy subgroups and involutive automorphisms
Let M be an affine symmetric manifold and A(M) be the Lie group

of affine transformations of M, A(M) is transitive on M.
For let p,q € M and m be the mid-point of the unique geodesic
arc (pg), i.e., if we parameterise (pq) so that y(0) = p,

b,(,l) = q, then K(%) = m, We have sm(P) = Qo
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Now let G be the identity component of I(M). s, is not
necessarily in G, but we show that G is transitive on M.

For, with m defined as above, let T = .smsp. Then Tm(p) = Qe
Letting q tend to p on the geodesic arc, we see that Tm and

e = id, lie on a continuous arc in A(M) and hence that T € 6.
The affine transformation, Tm, is called the trgnsvection
with base ‘292° Clearly the set of all transvections is a
transitive subgroup of G;

Fix-po in M, We define the isotr®py subgroups of A(M)
and G at Py > H and Hrespectively as the subgroups of trans-
formations leaving P, invariant. The choice of P, is immaterial,
For let pe M, p # p,» and let Hp and Hp be the respective
subgroups at po The mapping h —>» smhsm esteblishes the
isomorphisms E(po) ¥ ﬁp and H(po) z Hs where m is the mid-point
of (pop). Clearly H and H are closed subgroups of A(M) and
G respectively.

G being transitive on M and H a closed subgroup of G,
we ca&n write M = G/H by identifying the element g(po) with
the left coset gH in G/H, Hence all symmetric spaces are
homogeneous spaces. |

Let M = G/H be a symmetric space. Writing s for the
geodesic symmetr;}, spo, we consider the mapping g:A(M) —> A(M)
given by o(g) = sgs. Clearly ¢ is an involutive (inner)
automorphism of A(M). But- by considering the curve (¢ o X)’

where ¥ is a curve in G joining g € G to e, we deduce that

0 is an automorphism of G. Let G = {8“7(8) =8, 8 € G.}
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and (Gd_)ebe its identity component., We have:

(a) Hc G, Given h € H and p in a normal neighbourhood of

P, in M, since geodesics through p, are mapped into geodesics
through p_ (see’ p. 7), we obtain the relation

sh(p) = hs(p). Hence h e Gy
(v) (G"')e < H Given g € (Gf)e , there exists a continuous
curve K:E),ﬂ —> G, parametrised so that b’(o) = e and bz(1) = g
If T is the actionof Gon M, | = (T o b’) is a continuous
curve in M joining p_ to p = g(po). If t € [0,1] we have

(sy(t))(p,)

(X(t)S)(po), since X(t) € Gy
G @)

Hence | is invariant under s. P, being an isolated fixed

point of s implies that g € H,

Combining (a) and (b) we have the result that H lies
between Gy and the identity component of G,. This motivates
the following definition,

Definition Let G be a connected Lie group and H a closed
subgroup & G, (G,H) is a gymmetric pair if there exists
an involutive automorphism,d” , such that (G'o-)e c HcGp
where G, is the ‘subgroup of G invariant under ¢ and (G"')e

is the identity component of Ggv

2.4 The Lie algebra of G
Let M = G/H be a blobally symmetric space and e = idy. We

make an algebra from the vector (tangent) space, G, as follows:

let X,Y.€ G. The left-invariant vector fields XY
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on G are formed by left-translations: if g e G, i'g = dLg(X),
where Lg:G ~—> G is given by Lg(a) = ga, If 'fg = dLg, then
we define [X,Y] = [’i,ﬂe = (3F - Tr'ii')e. G_ with the bracket
operation (X,Y) ——> E(,YJ we denote by P the Lie algebra of G.
Alternatively, g is the vector space of all left-invariant
vector fields with the bracket given by (X,¥) —> [:i',?j = Ei’i]e
(these vector fields are uniquely determined by the tangent
vectors i'e’ ?e)"

Let H be tﬁe isotropy subgroup of i)‘oe M, Then H is
a Lie subgroup of G sihce it is a closed suﬁgroup of G
([3], pe135). Further A, the Lie algebra of H, is a Lie
subalgebra of ([5], p.102).

Let X € g be fixed (X # 0). The set {tX:t e/R}is a
one~parameter subalgebra of y and is the tangent space at e
to a one-dimensional submanifold of G; this submanifold is
a curve yy [R—> G and is a subgroup of G by the Lie subgroup-
subalgebra correspondence. We parameterise so that Xx is a
group monomorphism, that is, ¥ (t + t') = ) (t) y5(t') (t,t'e R),
Xx(o) = e, We define dbfx(o) = X.  The mapping exptg—> G

given by tX —> Xx(t) is the exponential map of g in G.

The subgroup {exp tX:ite ’R} is called the one-parameter subgroup

corresponding to X.

Now let z’>:K1 — K2 be a homomorphism of Lie subgroups,

K1 and K2, of G A general theorem of Lie group theory states
that if K, é are the Lie algebras of K , K, then the linear

map (dﬁ)e:@ - k2 is a Lie algebra homomorphism ([3], p.113).

Let X e E1 and let yy be the corresponding one-parameter
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subgroup (X # 0).. We have%i = X( d ¢) X* Hence it follows:
o () X = Yag £ = E50) = Plexe D).
e
We have shown that the diagram below is commutative.

kﬁ ——"ﬁz

(1) exp l (d@e J/exp

K ——?)—91(2

If A is any automorphism of G, then from (1) we have _
A(exp X) = exp((dA)eX) (xe g) and (dA)e is an automorphism
of g. For x € G, the mapping I(x):g —> xgx-‘l is an inner
automorphism; the derivative, Ad(x) = (dI(x))e is thus an
automorphism of g and hence non-singular. The homomorphism
Ad:G —> GL(g;) is the adjoint representation of G. Ad,(6),
the range of the homomorphism, is clearly a subgroup of GL(g)
known as the adjoint group, If Xe€ g we have

x expX x-1. Defining the adjoint representation

exp(Ad(x)X)

of g, by ad

be shown that ad(X) is the linear endomorphism of g given by

sa(x)(Y) = [5,Y] ([3], p-123). GL(9) being a matrix Lie

(aaa), :j—)y[(y) = (GL(;))identity, it can

group and g\f(g) its Lie algebra, let e be the matrix exponential.
Application @B the exponential to both sides of ad = (4 Ad)e
gives
(2) Y = adem )  (Xe 9.

Let (G,H) be the symmetric pair corresponding to the
globally symmetric space, Mo If H is the isotropy subgroup
at'poe M, then Hc G, where G4 is the subgroup of G invariant

under the involutive automorphism, 0. From (1) we have the
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relation exp((da-)ex) = o(exp X) and hence A ={X e g:(da')ex = x}.

The identity X = (X + (da‘)ex) + (X - (do‘)eX) ensbles us to write

(3) 9= h + m(direct sum), where m:[Xeg:(da')ex = -x}.

mis a subspace of g, but not a subalgebra.

Indeed trom (a0), [X,Y] = [(a) X,(a0) ¥] we have

(%) if X,Y ¢ m, then [X,Y] € A, and

(5) if X em, Y € £, then [X,Y] e m,

The statements, "f is a subalgebra of g", (4) and (5) can be

summarised by

(6) | [4,A) < R, [mm]c R, [m,A] < mana [h,mlcm

2.5 Action of one-parameter subgroups of G

Let (G,H) be the symmetric pair corresponding to a globally
symmetric space, M. We decompose the Lie algebra, g= ﬂi-m,
where h is the Lie algebra of H, the isotropy subgroup at poe M.
We will show that mand Mpo are isomorphic. Let T be the
gationical projection G —» M, given by M(g) = gH (left coset).
Its derivative, (d‘rl')e maps 9) into Mp o
(i) A is the kernel of this linearomapping. For, let

X e ker(am)_ and £ e C(M). Then if t e IR,

tX(f o) = ((dn)e(tx))(f) = 0, which implies that (f o M)
is constant on the one-parameter subgroup of G corresponding
to X. Now choosing £ so that £(p) # f(po) for all p # P,

in a normal neighbourhood Np , we have T(exp tX) = p, and

0
hence X € h, Conversely let X ek and £ e C°(M). As

(exp tX)(p_) = p,» we have
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(e () = [ £loxp t0)(p))] ;g = O Henos X € ker (am,.

(i1) Let Xe Mp » X# 0, X defines a unique geodesic
o
Yx! [R —> M parameterised so that xx(o) = p, and dﬁ(o) = X,

Ir Xx(u) =, (ue /), for each v € [ we have the transvection,
T =g s . The curve | 1t —> T
t PP, t
of G and defines a uhique X € g such that X = al"(0) and

is a one-parameter subgroup

T, = exp(tX). Now (© ol")(t) =T, = spospt = =T,

Hence (da')ef =a o) = -X and so Xe m

(1) and (ii) establish the required linear isomorphism,
¥y(t), the image of exp tX under T; is also the image

of tX under Exp = Expp . Hence (altering notation):

o
(1) Ti(exp tX) = Exp(t(am) X)  (Xe m).
Now let Z & Mp and let Z(t) be the vector field formed by
o
parallel translation of Z along )y (2(t) e MP ). Pixt#0O
t
and define the parallel translations along ¥ by ‘C:Mp 4 Mp
o t
and T' M —3>M , We thus have
Pt/ Py
(2) ©(2) = z(t) = 7a(t/2).
Now s being an affine transformation, parallelism is
Py/2
preserved under (ds ),
t/2
iceo, (ds, ) (2) (e )and(as )  (2(t/2)) are
Pi/2 Po Py/2 Py/2 Py /2
parallel. Hence,
(3) T((@s, )(2(t/2) = (as, )(2).
Py/2 t/2

But sp being the geodesic symmetry at P, /2 we have

t/2
(%) (dsp )(2(t/2)) = - a(t/2).
t/2



-4 -

It follows fram (2), (3) and (4) that (dsp (z) = -17(2).
2

t/
Hence, (d.Tt)(Z) = d(spt/zspo)(z) = TZ,
that is,
(5) (@) = T

Equations (1) and (5) show that the affine connection on
e symmetric space necessarily has the two following properties:
(i) geodesics through the base point p, are orbits under
action of one-parameter subgroups of G,
(ii) given a one-parameter subgroup of G, the action of its
differentials on vectors in Mpo is parallel translation along

the geodesic which is the orbit of Po under the given subgroup,

ice., (dexptX)(2) = 22 (Xem 2¢€ Mp )e
(o]

Definition Let (G,H) be a symmetric pair. For g € G, the
diffeomorphism T{g) 16/H —> G/H is given by Z(g)g'H = gg'H.
The linear isotro oup, H*, is the group of linear trans-
formations (dx(h)) :Mpo -—> Mpo (h € H), where ¥ = G/H and P,
is the coset H.

' We now consider AdG(H), a subgroup of the adjoint group.
Let he Hand Xé ma Then is sp is the geodesic symmetry

(o]
at p, and o"is the involutive automorphism of (G,H), then

a = I(sp ) and we have

(a0)(aa n(x))

d(I(sp h)) (%)

[+)
d(I(hspo))e(X), since H c G,
ad h((aq) (X))

- Ad h (X), since Xe m.



Hence Ad h(X) € m, i.e., Ad h )mis a linear endomorphism

of m¢ This we express by

(6) Ady(H) (m) e m.

Further, for h ¢ H we have T(h) :g(po) =T(g) - hS(Po) = Tr(hsh%)-
Taeking differentials we obtain

(7 (dw(h))p o (am_ = (am)_ o 4Adh,

where both sides dengte linear mappings of my, It is easy

to verify that the groups H* and Ad,(H) are isomorphic.

2.6 Connections and Metrics on Symmetric Spaces

Definition Let G/H be a homogeneous space, with G a connected
Lie group, G/H is reductive if

(1)  there exists a subspace mcg such that 9 = h + m(direct
sum), where ? and h are the Lie algebras of G and H respectively;

(11) ad ()M c m.

K.Nomizu [9] has examined the G-invariant affine connections
on reductive homogeneous s.paces, that is, affine connections
on G/H invariant under left action of G acting on G/H as a
Lie transformation group. He showed that there is a ons-to-
one correspondence between the set of G~invariant affine
connections and the set of connection functions, that is,
thé set of bilinear functions, o(:mx M—>Mwhich are invariant
by Ad(h) (h e H). The correspondence is derived as follows:
There exists a neighbourhood U of e in G with the properties:
(i) U= NXK (topological product);
(ii) dim N = dimm, dim K = dim A;

(111) Kc H , the identity component of H (see [3], po110)
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Under the canonical projection,T , N is diffecmorphic to a
" neighbourhood N* of Py° Given X € m, the vector field X

on W is defined by

_p=ﬂ(c)—9x‘p

(d(’b‘(c))p o (am )X
o]
((dﬂ)e o Ad(c))X, from 2.5(7).

The correspondence between G-invariant affins connections

and connection functions is given by

«(X,Y) = (vx,yv)p (X,Y € m),
(o]

Invariant affine connections can have two properties:
(A1): Let Xemand x(s) = exp sX be the one-parameter subgroup
of G generated by X. If x*(s) = m(x(s)), then x*(s) is a

geodesic of G/H through Py

(a2) : Let x(s) and x*(s) be defined as above and Y € M  Then
parallel translation of (dﬂ‘)eY at p_ along x*(s) is the same
as left-translation of Y by x(s).

If G/H has property (A1), there exists a unique invariant
affine connection with trivial torsion, the canonical affine
connection of the first kind, The connection function is
(1) «(X,Y) = #[x,1] ([5], p.48).

If G/H has property (A2), there exists a unique invariant
affine connection, the canonical affine connection of the second
kind, The connection function is given by
(2) «(X,Y) = O,

If R and T are the curvature and torsion tensor fields for
this connection we have for all X,Y,Z € m

(3) Rz = - [,
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(&) (%Y) = -[x1,, and
(5) VR = VI = 0 ([31, p.49).

Now let (G,H) be a symmetric pair. Clearly from 2.!..(3)
and 2.5(6) G/H is a reductive homogeneous space. Further
the properties (i) and (ii) of p.41 are precisely the properties
(A1) and (42). As [mm]c hthe canonical affine connections
of the first and second kind are identical. Hence on symmetric
homogeneous spaces there exists a unique canonical invariant
affine connection given by the connection functiona(X,Y) = O,
Further this is the ohly affine connection of G/H which is
invariant by the geodesic symmetry at each point. Given

X,Y,Z € m, the curvature and torsion tensor fields satisfy:

(6) r(x,7)z = - [[x,1],2], ‘
(7) T(X,Y) = 0, and
(8) VR = 0.

(Equations (7) and (8) have been obtained in 2.2 by consideration

of the geodesic symmetry).

Symmetric spaces often admit Riemannian metrics. To
establish this, we first assume that G/H has a metric, g.
Now gpo, its value at po = {H}, being invariant by the geodesic
symmetry, spo , induces the canonical affine connection. We
write Q =T¥g , where 11 is the canonical projection. The
relation betwe:n Ad(h), and (d‘l:(h))p , namely 2.5(7), shows
that Q is a metric onm if and onlyoif Q is adjoint-invariant,.

Conversely, any non-degenerate bilinear form on mx m which

is adjoint invariant induces a metric at p o and hence globally
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on M by parallel translation.

Now consider the Killing form, B:gx 9—->=IRgiven by
B(X,Y) = tr(ad X o ad Y)s Let o be any automorphism of 2
Then adxX = X 0 ad X ool | and tr(ac) = tr(ca) (4,C any
endomorphisms) imply

B X ,xY) tr(ad «X o ad &Y)

= tr(x 0ad X oad Y ooL-1)

= tr(ad X o ad Y)

= B(X,Y).
In particular, B is adjoint-invariant. However B is non-
degenerate if and only if X # O implies ad X # O, that is,
if and only if the centre of 9 is 0.,
Definitions A Lie algebra, 9 is simple if it is non-abelian
and its only ideals are g and {0}. gis semi-simple if {0}
is its only abelian ideal, or equivalently if its centre is {o}.
A Lie group is simple or semi-simple if its Lie algebra is
simple or semi-simple,

Hence B is a non-degenerate form on gxg if and only

if G is semi-simple. It is easy towerify that if Xe A and
Yem then B(X,Y) = 0. Hence B, is a non-degenerate form on
Mmx mif and only if G is semi-simple; it induces a G-invariant
metric on G/H known as the Cartan metric. Now given a
Riemannian globally symmetric space M = G/H, it is known that
H is compact in the compact-open topology ([5], p.173).
Hence AdG(H) is a compact subgroup of the adjoint group.

This :result motivates the following definition.
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Definition Let (C,H) be a symmetric pair. Then (G,H) is
a Riemannian symmetric pair if the group AdG(H) is compact.
On pp. 58-}9 we have seen that a Riemannian globally
symmetric space gives rise to the involutive automorphism
8= (da)e of 9 with eigenspaces A and m The symmetry condition

can be expressed in terms of Lie algebras rather than groups.

Definition An orthogonal symmetric Lie algebra is a pair (g, s)
such that

(1) gis & Lie algebra over IR;

(1i) s is an involutive automorphism of s

(iii) R, the set of fixed points of s, is a compactly

imbedded subalgebra of g.
Further, (g, s) is effective if Anz = {0}, where z is the
centre of 9 For example, (g, s) is effective if g is semi-
simple.. Let (g , 8) be an orthogonal symmetric Lie algebra,
G a connected Lie group with Lie algebra 9 and-H a Lie subgroup
of G with Lie algebra A» Then (G,H) is a symmetric pair
associated with g;, s). Further if G is simply connected
and H connected, (G,H) is a Rz.emanman symsetric pair ([5], p.178).

Symmetric spaces can be classified as follows:

Let (G,H) be a symmetric pair associated with the orthogonal
symmetric Lie algebra, (? , 8)e
Definitions 1. (G,H) is compact if 9 is semi-simple and compact.

2, (G,H) is non-compact if 9 is semi-simple and
| non-compact.
3, (G,H) is Euclidean if in the canonical decomposition,

7: A+ m, mis an sbelian ideal ofg:.
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The three classes are characterised by sectional curvature,

Let (G,H) be a Riemannian symmetric pair associated with

(3, 8), where g = h+m, Let S be any two-dimensional subspace
of m and K(S) its sectional curvature.

(1) 1f (G,H) is compact, the1K(S) > O.

(i1) 1f (G,H) is non-compact, then K(S) < O.

(iii) Ir (G,H) is Buclidean, then K(8) = 0. ([5], p.205)

Finally we make the following definition,
Definition Let (G,H) be a symmetric pair associated with the
o;-thogonal symmetric Lie algebra (g, s). The eigenspaces of
s are Aandm (G,H) is irreducible if

(i) g is semi-simple and.ﬁcontains no non-zero ideals
of g;

(i1) the algebra adg(ﬁ) acts irreducibly onm, that is,

ir Eis a subspace of m such that [ﬁ,ﬁ:]c E,

then either K=mor k= fo}.
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CHAPTER III

HARMONIC SYMMETRIC SPACES

31 Harmonic Symmetric Spaces

We first examine how Ledger's curvature conditions for harmonic
space.s can be applied to symmetric spaces.

Let M 5e an n-dimensional globally symmetric Riemannian
manifold ax;d p, any point of M.  Let (xi) be a coordinate
system valid in a neighbourhood W of Py» 80 that for any

XeM , X=X —a—i(po) and v = v(X) = g (X,X), where g
Po ox P Po

is the metric tensor at P,e Consider the endomorphism
Y —> R(X,Y)X of Mp o (Here X is fixed and R is the curvature

0 . .
tensor). This endomorphism has matrix J[(X) = (H:) = (leljxk xl),

~ The following theorem was proved by A.G.Walker in 1946 [1&].

Theorem 1 M is harmonic if and only if the- eigenvalues of JI(X)
are of the form K Vs Vs eeey X Vs where the coefficients

o<1 s seey & are independent of X,

Proof We recall notation used in Section 1.5.

N = (A:) = (.Q::j). IfT = (Tj) is any tensor field on W,

T, = D° (Ti.'). The vanishing of the covariant derivatives of

the curvature tensor field for a symmetric space yields

=

Oforr;1.

The first four values of 'Ar- at p  are Ao = I, A1 = 0,

S

£1T, .A3 = 0 and Ledger's recurrence formula reduces to
r=2
(1) + DA = =Y [VA A, 38 (cfo 1.5(8)).
co0, + AN,
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It is easy to establish by induction using (1) that values
of z\r at P, are

(2) Nyyq =0 (r=1, 2, «0a)

(3) g = (MBI, B, >0 (r=1,2, .00

From 1.5(2) and 1.5(5) we deduce that

k 1

. k
= _ . 1 1
° = tr(zer)o - hr(gk“l‘l)”"(gkrlr)x

that is,

r
(4) tr(ler) = hrV ’
where hr is independent of X for all r if and only if M is
barmonic, Hence, from (3), the necessary and sufficient
conditions for M to be harmonic are

r

te(IF) = X,V (r=1, 2, eos), where the

céefficients Y, are independent of X, Now if 8,5 coey B

are the eigenvalues of I, then tr(II%) = a1r + oeo *+ an?.
We deduce that a, = ot v (i =1, oo, n) and all eigenvalues
are constant multiples of v(X).
Q.e.d.

Fér a simply harmonic manifold, all the constants, hr’ in
(4) are zero, Hence,
Corollary A globally symmetric Riemannian manifold is simply
harmonic if and only if the eigenvalues of IJ(X) are all gzero.

Note that the point of application , Py for theorem 1
is immaterial since if the conditions hold at one point of
application, action of a member of the transitive isometry

group will establish the validity at any other point of the

manifold.

X Tx X
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Definition Let M be any Riemannian manifold and S a connected
submanifold of M, S is a totally geodesic submanifold of M
if, for every p € S, each M-geodesic which is tangent to S at
p is a curve in S, Further if S is a totally geodesic sub=- .
manifold of M, all S-geodesics through p are also M-geodesics
([51, 79, Lemma 14.3). '
Thus S-geodesic: symmetries are derived from M-geodesic
symnetries by restriction. We deduce that all totally geodesic
submanifolds of a locally symmetric space are themselves

locally symmetric.

Definition A subspace,S , of a Lie algebra,g s is a Lie triple
system if X,Y,Z€ S implies EK,L-Y,Z;U € S. For example, if
(g,s) .is an Orthogonal symmetric Lie algebra, the eigenspace,m

with éiéépvalue -1, is a Lie triple system.

Lie'triple systems give rise to totally geodesic sub-
manifolds:of symmetric spaces. For if M =G/H isa gloﬁally
symmetric space, suppose that we identify P, with the coset {H}
and the tangent space Mpo with the subspace mof the Lie algebra
of I(M). Let .S be a subspace of m such that & is a Lie
triple system. Then S = Expp.s has a natural differentiable

o :
structure in which it is a totally geodesic submanifold of M

satisfying Sp =s{[5], p-189).
. o
Definition Let M be & globally symmetric space. The rank of
M is the maximal dimension of a flat, totally geodesic submanifold

of M.
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The rank of a symmetric space could alternatively be
defined in terms of the dimension of a Lie subalgebra. For
a totally geodesic submanifold is flat if and only if the Lie

triple system from which it is mapped is abelian. (2.6(6))

Definition Let 9 be a Lie algebra. A subalgebra ;s of ? is
a Cartan subalgebra if

(1) s is a maximal abelian subalgebra of s

(i1) for each X € «, the endomorphism ad X of g is
sémi-simple , that is, each subspace of g invariant under ad X
has an invariant complementary subspace.

I g is semi-simple then it has a Cartan subalgebra
([5], pe140). Further any two Cartan subalgebras are isomorphic
under an automorphism of ? and hence all Cartan subalgebras
have the same dimension ([5], ps 213)s We deduce that if
g: h + mis the canonical decompogition of the orthogonal
symmetric Lie algebra of the symmetric space M = G/H, then
the rank of M equals the dimension of a Cartan subalgebra of m,

Harmonic symmetric spaces are characterised by their
rank, We know from Chapter I Theorems 9 and 10 that all
decomposable harmonic spaces are locally flat, so we confine
our attention to symmetric manifolds with indecomposable

metrics, i.e., non-Euclidean manifolds.

The'orem 2 Let M be a harmonic globally symmetric manifold
with positive definite indecomposable metric. Then M has

rank equal to one.
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: M This theorem was first proved by A.J.Ledger [7] in 1957.
Writing M = G/H and let o = h + mbe the canonical
decomposition of the Lie algebra. Let N be the subset of G
which maps under the canonical projection, 7; onto W, a
neighbourhood of p = {H} (see pp. 42-43). If U is the
topological product N X K, N and K have Lie algebras mand A
respectively. If g is the metric on W, (™g) is a metric
on U equal to the metric on U induced as a submanifold of G.
Further exp(m) = N, we have seen above that mis a Lie triple

system and so N is a totally geodesic submanifold of G.

Let {ea} (a
e} (1

{ei.} (i' = m1, ..o, m) is a basis for he

1, eee, M) be a basis for 9 such that

1, ees, ) is a basis for mand

Defining the constants of structure, c:b , of g by
(5) [-ea,ebj = ccab e, We have from 2.4(6)
'

(6) ckiJ. - cki.j. - c* g0 = O

Now the Cartan metric on a Lie group is obtained from
the torsion-free (0)-connection with connection function
o((X,Y)‘__:‘-%[X,Y]. This connection is G-invariant and satisfies
condition (A1) on p. 43. The curveture transformation is
given by R(X,Y) = % ad([X,Y]) ([9], p.49).
N being totally geodesic we can express the curvature tensor

on it by components:

1’ o000 s n

(h’i’j’k
a = 1’ esey m).

Let X = xieié m  Then the endomorphism, % ad X, ofg has
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matrix  A(K) = (%) = (3 & 10,
W have, A2 = X calb o oy = (Raijcxix.i)’
that is,
(7) 2 = @F xi) 0
h' iJd

Here we have used the relations (6).

Let the rank of M be 1 and .S be a Cartan subalgebra -of'm.
We choose a basis {ea} ofg 80 that {e1 y soos el} is a basis of S,
Let X = (Xi)e S, X#0, i.e., X = O if i >1, Then a result
of Eo.Cartan states that the eigenvalues of A(X) are fixed
linear combinations of the components, xi. We deduce that
A2 has eigenvalues of the form _
(8) (Z 2° X2 (b =1, ..., u), where the coefficients,
Abi are indep::lzlent of X. Now consider the matrix
() = (nhijkxix'j). Clearly all eigenvalues of [J(X) are
eigenvalues of (A(x))2 and are of form (8).

We now use the hypothesis that M is harmonic. By Theorem
1 we know that all eigenvalues of I[(X) (X # 0) are of form eL'jv(X),

where each o’is independent of X and v(X) = gp (%x,X) >0, since

o
the metric is positive definite. M being indecomposable cannot
J
be flat, so &k °> 0 for some J s 1 'jo < n. Hence the expression
. i .
(ZA 2 s positive definite for all X = (X*) € S. This
i=1

is only possible if the summation is taken over one term,
i.e., the rank of M is one,

Qoe. d.
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j.2 Jacobi fields
Let M be a complete, simply connected Riemannian .manifold
and Pe € M, Let I,J be open neighbourhoods of O in f€and
b«:I —> M be a geodesic through P, parameterised by arc distance,
ieBo, d(b’(s), po) = |sl, s €I. A variation of ¥ is a C
mapping, G:I X J —> M such that

(i) for all € in J the curve Nis = G(s,€) is a

unit-speed geodesic;

() y = ¥

A Jacobi field on y is a vector field X on Xsuch that
there exists a variation G of Xfor which X(s) = g;(-:_ (s,0).
For each s € I we can define an arc a;:J -—> M by

do (€)

o_(€) = 3{6(3) = 6(s,6).  Clearly, X(s) = —— (0),
de

that is, the Jacobi field is given by tangents to the transversals

of b’. We show that X satisfies the variational equations

p’x
(1) _5 f_ R(X’XO)XG = 0,
ds
where D .is the intrinsic derivative on X, R is the curvature

ds
tensor and x,(s) = g-(-: (s,0). Let (x) be a local coordinate

system valid over a neighbourhood of p  containing X(I) s0
- RN _Ai 2

that on x; X(s) = xi(S)D?i i(s) and Xo(s) = A (s)axi. (s)*

Now on y we have g%— = % + r":'j'k*]xk, where (r'gk) are

connection coefficients. However,

. ao_(€) 52 dy.(s)
% - % ae(0) = $ave 8(=:0) = g—e < |e=0’

that is,

(2) FOR A

ds de IE=0'
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Using the Ricei identity ([15), p. 215) we have

i 1 i 1 i h,k.1
LN -x’klx“x = B g,

Hence,

(3) d—:{—e deds)-a T = -R(X,x,,)b«,.
*oxo Dy )

' ds de

From (2) we deduce that on

a:pg. hence
2 2
DX D (b’e)"

« We have from (3)

dsz dsde
2 2
D D
——g - —LI)!; + R(x’x*)x° = 0,
ds deds

The variational equations (1) follow since ¥ is a geodesic.

Let ybe any geodesic on M. By E(K) we denote the
vector space of Jacobi fields on Y The dimension of S(K)
is 2n, If X,Y ¢ E(b') it is easy to verify using the variational
equations and the symmetry and antisymmetry properties of
the Riemannian curvature tensor that

% 81;(8)(&5 o = %(BXm(% Y) '65@)(3-5: X))

o,

where g (s) is the metric tensor at X(s). Hence there
K -]
exist constants C,C' such that
(%) [:4 (s)(ds Xa) = G,
(5) K(s)(ds Y) - SK(S)( X) = ¢,
We define subspaces of E(bf) as follows:

G(U) is the subspace of Jacobi fields on y for which C = 0

in (4). Dim(E(U)) =2n -1,

Eo(K) is the subspace of Jacobi fields on y for mhich

x(0) = 0. Dim(go(b’)) =
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Tl = &~ EQ. ma(E () =n-1
If X e EO(K) then X(0) = O and for all s € I we have
(6) sb,(s)(X(S),bf,(S)) = 0.
Conversely, X(0) = O and for some s, #0
(7 sb'(so)(X(s°) ’K‘(so)) = 0 implies X e E—jo(b«).
For details of the results above, see [1], p.106.
Now let Y e Eo(b«). Suppose that BK(O) = {X1, essy Xn =X,(O)}
is an orthonormal basis of M 0)° Let
Bb'(s) = {X1 (s), ecoy Xn(s) = bf,(s)} be the orthonormal frame

at J(;}){af(‘:gmed by parallel translation of B b'(°) on y. Ve
ds
y*(s) of Y(s) vy v (s) = g s)(Y(s) ,xa(s)), from (6) we have

yn(§) = 0, Writing Ya(s) = ya(s)Xa(s) (a not summed) we

have =0 (a=1, eosy, n). Defining the coordinates

see that Y(s) can be written as the sum of (n - 1) mutually
orthogonal Jacobi fields on

Y(s) = Y1(s) + eee + Yn_1(s) = ya(s)xa(s) (a summed).

Let (xl) be a local coordinate system valid in a neighbourhood
of p_ containing br(I) so that each Xa(s) €B 8) and Y ¢ EO(J)
have components (Xla(s)) and (Yla(s)) respectively.

Denoting g—sby ' we have for eacha, 1 a sn -1,

pyt
a8 _ a,i i a.j
ds (yxa)' * r.i'kyxnxka
DX .
_ .a' i e a - TP |
” -yxa-l-y—-ds -yxa.
DY a
Hence —2—8' =y "xa and using the variational equations
ds
we have

yanxa._-- + ybn(xb’X")K* = 0,
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Thus we deduce the Jacobi equations

(8) ya" + Kabyb = 0 (a =1, oeoy n'1):
where writing R for the Riemannian curvature tensor, the

sectional curvatures, K ., are given by

ab
Kb = Kgp(8) = R(X (8), o (s), X, (s), ya(s)).

We recall that M is a complete, simply connected Riemannian
manifold., Let p o'P € M and [be a unit-speed geodesic joining
P, to P parameterised so that b'(so) = pgs X(s1) = Pe
b; is minimal if L(b') = lso - s1l = d(po,p) (the metric
distance). M being complete, for all P,oP € ¥ there exists
& minimal geodesic arc which joins them. Further all _geodesics
are defined with domain fF, that is, Expp has domain Mpo
and is surjective, °

Let ¥ be the geodesic joining p = 6(80) top = 5(81).

Then we define

(
€ 00,0

E%(K) n %1 (b')

vector space of Jacobi fields on bf

which vanish at p and p. From (7) we have
(9) € .. <& "
The index of the pair ‘s Isl) is the number

')\(K;sos s1) = dim( 650,51(3’))' Clearly from (9), (bf;ao, 51) < n~.

p, end p are gonjugate points on E if (b';so, 31) #0,p # Py

- ) ) .

r Kl{'so,s"] is minimal, there are no conjugate points on the

open geodesic arc Kl(s ,s1)°
)

Let 6~ be a unit-speed geodesic ray from Py with domain
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E),OO) (o(0) = po). Suppose that p,| = d‘(si) is a conjugate
point of p  ono and is such that a‘l [o,d is minimal for
all s < 8,0 Py is the first conjugate point of p, on 7.
The index of o; A(d) is defined by (&) = N (o0, 31).

If p, has no conjugate points on @ we define A(g) =

The locus of the first conjugate point of P, for all geodesic

rays through Py is called the residual locus of p and

.denoted by R,
Py z
Let P, € M and 2 € M o For the geodesic y it —> Expp tz,

o

we define A(Z) = 7\(] ;0, 1) let u e (Mpo)z. Then if

XZ is the path t —> tZ on Mp , the assigmuent x"(t) =
0

at tZ is a linear homogensous vector field on Ez o Letw

be the identif'ication of the wvector space Mpo with the tangent
space at any of its points, We write

X'(t) = ((a Exp, ) )x (t) Thenx'e 60(1z).
Let (x )} be a local coordinate system and X (t) = ’1\1 i(1:).

Then we have,

Wy o (P,
=50 = (_ at + Jkl)‘au g:tc )t-
= == (0), since X (0) = 0.
Hence, g-f;—u(o) = d Exp ( (X (t))t- ) = dExppou, iec€e,
u
(10) D—x-(o) = w(u).

We deduce that the mapping +(M ) - ) (K) given by

4)(u) X" is linear and bi.]ect:l.ve. If K is the kernel of the

- linear mapping (d Exppo)z, then 4) maps K onto 80’1 (b’ )o
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Let M; (2) be the subspace of Mp equal to w(K). Then,
[ o

i (2) - {Boru e €, 4"

Ir {X1 (t), cooy Xn(t)} is a basis of EO(KZ)’ we have

DX DX
(11) { El(o), ceos d—tz‘(o)} is a basis of M;O(Z).

Let Ms (Z) be the orthogonal complement of M1p (z), It
o] (o]

generates vector fields which vanish at XZ(1) but not at Pgs

1080y Ms (z) = {x(0)X e E;(Xz)}.

o

(12) {x,, 0, ..., X (0)} is a basis of Mio.

303 Globally harmonic spaces

Harmonic spaces have been defined globally by A.C.Allamigeon [1].
The definition of Ruse's invariant can be extended to manifolds
with affine connect;‘Lon as well as Riemannian manifolds.

Let M be a G*® simply connected manifold with affine
connection. Let T be the volume element; this is an n-form
invariant under parallel translations. Let P, € MandpeW,
a normal neighbourhood of Pye Define X € Mpo such that
Exppox = po Let U be the domain of Exppo with range W,
Exp“po, ":p is the pull-back of the volume element at p to p
and is identified with an n-form at p. The "ratio" of the
two n-forms at p_ we denote by R(X),
that is,

(1) B "(r)) = RO)T .

o o
Allanigeon defined Ruse's invariant for a geodesic arc in



terms of the function R:U —» IR,

Definition lLet g be an orientated geodesic arc. Ruse's

invariant of g is the number

(2) o) = 2(% (0)).

For all p_,p € W we can define a geodesic arc yi0,4] —> N
parameterised so that U(O) = Py 3(1) =p., IfX =&,(0)
then p(p,,p) = p(y) = R(X).

If M is a Riemannian manifold then for a normal coordinate
system origin P, on W, (y_i), the volume element can be expressed
by T =,/-(_£ng_3)) dy1/\ dy2/\ .../\dyn, where
(ogi.j) is the metric tensor. It is easy to verify using (1)
that /o(p o+P) has the properties of Ruse's invariant as defined

in Section 1.3 (see [1], pp. 99-101).

Definition Let M be a Riemannian manifold. M is globally
harmonic if for every geodesic arg g, Ruse's invariant /O(g)
is a C% function of L(g), the length of g

Iet M be a C*° manifold with affine connection and
possessing a local volume element,z . lLet Pg € Mand K:I —> M
be a geodesic parameter-ised 80 that D'(O) = p o (I is an open
neighbourhood of O in /). We will derive an expression
for 7 applied to a basis of Eo(b/). Let {X1, ey X} be
such a basis. lLet p = X(t) be any point on y. We define
the geodesic arc (pop) by gtz[o,ﬂ ~> M given by gt(s) = X(St)'
Again let Y,(0) = 2 and {u,, <.., u}be a basis of (Mpo)z.
We have n linsarly independent linear homogeneous vector

fields by assigning
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(3) T.(t) = tu; totze EZ (see p.58). 80(01)
has basis {X1(t), eeos X (t)} where

(&) x(t) = (a Exppo)z Y, (t).

As with 3.2(10) we have

(5) 2% (0) = w(ui), where w is the identification

(Mpo)z - Mp . We now have

Ty (8, eey ()

)

(Exp;o'v (£)) (W5 ooes W), by (4)

tnR(tZ)’li)o(wu1, seew ), by (1).

Hence we have

n DX.1 DX
(6) T () wery 1 () = (g )E(ZHO), ooy FHO)).

Theorem 3 Let M be a complete, globally harmonic manifold.

Then there exists a real number L > O (possibly infinite)

and a non-negative integer \ such that for all geodesic rays

the distance to the first conjugate point is always L and the

index is always Ao

Proof (Allamigeon [1]). Let P, € M and o be any unit-speed

geodesic ray from P 8 being defined as at the bottom of

p.60, we have /O(gt) = /°°(t), where =p® oL and (6) reduces to
DX X

(1) TE (1), ooes X(8)) = £P2(R)UFHO), «ov, HO))

for all geodz’}jsie rays from p_» The left hand side of (7)

vanishes if and only if t = O or o(t) and 0(0) are conjugate.

Define L to be the least positive root of the eguation

,0'°(x) = 0, if such a root exists, If on the other hand

i (x) >0 for all x 20, P, has no conjugate points and we

define L = oo and A = O,  Suppose however that L < oc. Then
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it equals the distance along each geodesic ray to the first

conjugate point. Let g be any geodesic ray. We must show

that A = A(0;0, L) cis in fact independent of 0, Let

{%,(t), «oo, X (t)} be & basis of € (0) such that {X,(t), ..., Xy ()}
is a basis of SO,L(O-)' Let l-ii(t) be the vector obtained

by parallel translation of xi(t) along 01[}.,14] (3=1, coe, )

Then from the formula

20 = 1 o B8 - X.(8)
dt gL t -1 i i

(see for example, [5], p.41) we have

DX,
- (¢ = L)== (L) + ¢(t - L) (1 €1 g
xi(t) = dt i
: Xi(L) + ei(t-L) (A+ 1 5ign),
where ei:lR—> Ma'(L) are C° vector-valued functions such
that €,(s) —> 0 as s = 0 (i =1, ..., 0)e

We now have

(X, (£), «oo, X (t)) = X, (t), o.., X (t))
A Dx1 Dx,A v)
= (t = L) Az~(L), ..o (), Xy, (L), ooy X (1)) + O(t - L)',

Using (7) we have
/o°(t) = At - I.)’A + oft - L)l,

where

DX, DX,
L) g ®)s oer g0 X,,@), ..o, xn(L)).

Ae = - DX, DX_
L %(0) ({05 +ees g5 (0))
‘:_n - lfa + 0ot - L)).

(Here we use

Now A is independent of ¢ if and only if 0 < p*(t)< oo for

0 <t <L, that is, if and only if Ay has no singularities
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or geros for any basis of 80(0‘) on any geodesic ray .

(i) as x.(0) =0 (i =1,..., n) we have
: Dxi -1 -1
7-(0) = limy .951: x,(t), where 4>t is the
parallel translation from ¢{0) to o(t). {Xi(t), i21, oo, o}
being a linearly independent set for 0 st <L, we have
DX,
{at—l(o), 1=1, ooy n} is linearly independent. Hence

A, bhas no singularities.
DX
(ii) Put 2 = -L gy(L) and clearly{dt (L), coo, dta'}

is a basis of M:I(L)(Z). {x,,, (1), cee, X (L)} is & besis
of Mo..(L)(Z) (s;e 3.2(11), (12)).
{dt1(L), voos (L), X, (L), voo, X (L)} is hence a basis

of Mo‘(L) and so Aa_ has no zeros,
Qeeodo

From Theerem 3 we can deduce that for a compact, complete, .
globally harmonic manifold all geodesics are closed and of-
length 2L.

For let o be a unit-speed geodesic ray from p o€ M with
(L) = p. p, and p being conjugate 1et‘a"' be another unit-
speed geodesic ray from p  such that (L) = p and
oi(L) = -gz;(L). We define J:[(),ZIJ ~> M by

) a(s) if 0gs gl
g - {0-'(2]’..-3) if L s g2

Then bfis a closed curve from Pye We must show that
a(0) = -X,(zL-)a Let 0 <a <L. Then Xlﬁ_s,ad] is a

geodesic arc of length L and hence joins conjugate points,
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The arc f:@’LJ —> M given by
X(a - s) if 0 £s<a
D"(S) =
J(2L+a -8)ifagsgh
is continuous, of length L, joins J(a) to U(a + L) and hence

is a geodesic arc. J' is C® and the result follows,

Harmonic manifolds of dimension 2 or 3 with positive-
definite metric were shown in Chapter I theorem 5 to be necessarily
of constant curvature .and hence locally symmetric. Further
it is known that harmonic manifolds of dimension 4 with positive-
definite metric are locally symmetric ([11], pp.142-150).

A Lichnerowicz has conjectured that all harmonic manifolds
are necessarily locally symmetric. A.Avez [2] considered
the case of compact, simply connected, globally harmonic

manifolds in Theorem 4 below,

Theorem 4 Let M be a compact, simply connected, globally
harmonic Riemanni;.n manifold with positive-definite metriec,
Tk'1en M is locally symmetric.

Proof M being compact we can defins for f,g e C 2(M) the

global scalar product

<t g > = fo<p) &) T

where T'i’ is the volume element at p € M,

Let P, € M, Then we have seen as a consequence of
Theorem 3 above that all geodesics through p, are closed
and of length 2L; geodesic arcs of length less than L have

no conjugate points, The geodesic symmetry, sp , can be
o
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defined globally on-M as follows: if p e Rp s the residual
0

locus of p_, we have spo(p) =p; ifp ¢ Rpo, spo(p) = q,
where P, is the mid-point of the geodesic arc (pq).

Let f be an eigenfunction of the Laplace-Beltrami
operator Az, that is
(8) (A £)(p) = A(p) (p ek
Fix p € M and let N(p, po) be the elementary solution of
A2N(p, po) = Sp(po), where %(Po) is the Dirac '§'~function.
N(p, po) can be regarded as the potential due to a unit charge
at P, We have by definition of '§':
j;a £(p) SP(PO) ’bi)

<A, p,), £(p) >

Now A2 being a symmetric differential operator ([5], p.387)

f(po)

we have

(9) <Np, p)), (A £)(p)> = £(p ).
(8) and (9) imply

(10) A<M, p)), £(2)> = £(p ).

We write p = 5 (q). Lichnerowicz [8] has shown that
o

’Esp (@ ° % and Allamigeon that N(p, Po) is a function of
o

a(p, po) alone, i.e.,

Ms, (d), p,) = N(a, p,)-

Hence,

£(pg) % N(spo(q), Pg) f(spo(q)) %, (@
o

N, Mar 2) £ls, @) 7,
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that is,
(11) A<N(p, p ), f(xsp (2)> = £(p).
o
Now let h(p) be another eigenfunction of A2 with eigenvalue
- different from A iee.,
(A,p)(p) = /m(p).

From the symmetry of A2 we have

<A2f', h>

<f’ A2h >,

whence, <7\f, h>

<f,/l.h >,
that is, (A -/A)<f,h> = 0.
Thus ’/\;!/;,implies <f,h>= 0,
From (11) we have
<<Np, p_), f'(sp (p)) >, h(p)> = <f, h>= 0,
Let s = d(p, po). In : neighbourhood of p_, N(p, po) = 0(s%™),
The integral < N(p, po), f(sp (p)) > is therefore uniformly

)
convergent in P, o0 M and Fubini's theorem gives

<<N(p, p,)s £(s, (2} hlp,)> =&, py), Blp)> £(s, (p))>
]

[o]
= 0.

But using the symmetry property, N(p, po) = 'N(Po, ),

we have from (10)

h(P) ’

o.

}K N(p, p,), h(p )>

whence, < h(p), f(sp (p))>
o
The function (f o 5 ) is therefore orthogonal to E, the set

o
of eigenfunctions of Az whose eigenvalues are not equal to A,

We know that the set B u{f:Af =Af, f e c2(u)} is dense
in C(M). Consequently, i'(sp (p)) e {f:Azf =Af, £ € CZ(M)}and

(Azf‘)(spo(p)) = Q\f(spo(p)o We put Ep = gspo(p), where
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g is the given positive~definite metric on M and write Z 2
for the Laplacian of g, Hence (sz)(p) = Af(p) and using
(8) we have (ZZ - AZ)(f) = 0,

A result of Kolmogoroff has shown that corresponding
toP e CZ(M) there exists a sequence of finite linear combinations
of eigenfunctions of Az converging uniformly to F, The same
property holds for all partial derivatives of F of order less
than or equal to 2.

Hence, if F ¢ CZ(M),

(12) (T, - 8,)® = o

Fix pd € M and let p be an arbitrary point of M,

Let (yi) be a normal coordinate system origin p derived from
the local coordinates, that is, the metric %g = "(gij) and
the given metric satisfy "‘gp = gp. Now M lieing a compact
metric space is complete ([6], p.81). Hence the coordinate
homeomorphism

$ia = (7'(2)s +ee, ¥°(0)) € R has domain
M-R. lLetX = x*=2: (p) M and defins

. T i J -
Foo® Fyld) = 2% X5 57(a) y°(o), where g M - B,
- k : 2
and Xi = g.]x o We will write Di for Byio

As (,F)(p) = 0 (i=1, ..c, n) we have
(AE) = (aeto0)F 2,(°6 (et *0)I2)(r)
(267, 3,7 (p)
‘agla)pxi xj
gp(x, X).
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From (11) we have

g (X, X) = X, X)o -

SP(’) Gp(s)
As p and X are arbitrary, g = g. Hence M is locally
symmetric. Since M is complete and simply connected, it

is also globally symmetric (see po 3h).

Remark The function F defined near the bottom of p. 67 is
not necessarily globally defined on M and hence does not
belong to CZ(M),
For, let 2 = (Zi) € Mp be any unit vector orthogonal to X,
icee, xizi = 0. Let Y = (gp(x,x))-% X
Define o;:@,L] —> M (a =1, 2) by a;l(t) = ExpptY,
Oé(t) = Expptz. Then 0; and 05 are geodesic rays Jjoining
p to points of Rp’ We have
P(0 (8)) —> 112 g{%,X) as t —>L, but
F(a'z(t)) —> 0,
In the case where Rp is a single point locus, for example,

on 82, there is a singularity at this point,
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CHAPTER IV

k~HARMONIC RIEMANNIAN MANIFOLDS

4.1 Definitions of k~harmonic Riemannian manifolds

k-harmonic manifolds were first defined by T.J.Willmore in
1966 [16]. Let M be any Riemannian manifold and P, € M be
the origin of a normal coordinate system with domain W. We
will use the notational convention of Section 1.2:

Let peW. D(po) and D(p) are the vector spaces of
tensors at Py and p respectively. Greek suffices will be
used for components of members of D(po) and Roman suffices
for components of members of D(p). We denote by

Xp,, P) = Mp ) @ B(p)
the space of bi-tensors over (p o_,_p)_ (see for example,
J.L.Synge, "Relativity: The General Theory," North-Holland,
1964;.pp+48-50).

An example of a bi-tensor is the tensor with components
0. - 2N
«i

it Dxi ’

(1)

where (J(p , p) is the distance function. We also define
o L.
the bi-tensors with components 'Qi = g“FﬂPi, ﬂt‘= g .,

and we note from (1) that () Ly = 'O':i. o

The "pure" bi-tensors (w}), () are defined by

(2) W = _niﬂ".‘,

J J

(3) o = (5
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These are two-point invariant funetions and we have

P
88, ’
where J = det (Qou), g = det (gij)’ g, = det (g‘*F).

det (wj) = det (w'P‘) =

Clearly from 1.3(7) we have
1

P’

() dot () = det () =
where f(po’p) is Ruse's invariant.

Let 0 = O‘k(po,p) denote the kth symmetric polynomial
of the eigenvalues of the matrix (w?). The following is

Willmore's definition:

Definition (12 A Riemannian manifold, M, is k-harmonie at Py
if P, is the origin of a normal neighbourhood W, such that,
if p € Wand () is the distance function, then oic(Po’p) is
a function which depends only upon (L and not otherwise upon
P. M is k-harmonic if it is k-harmonic at P, for all
P, € M.
i ol . . .
The matrices (wj) and (wp) can be interpreted gecmetrically

as follows:

Let P, € M and p € W, where W is a normal neighbourhood

origin p » Then there exists Y € M such that Exp_ Y = p.
° Py Py

The mapping (d Exp ),:(M_ ), —> M _is linear. Let w be
P, Y pyY P
the identification (Mp )Y -ékMp « Then w is a natural
o 0
Linesr isomorphism and the mapping (d Exp, )y © w ) —> U
’ o o

is linear. Let t = (t)) be its matrix., We have shown on

pP. 8-9 that t is also the matrix of the dual map

w o (Exp“)Y:"'Mp - "'Mp . The inverse matrix t~ = (t-;()

(o]
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is the matrix of the linear maps Mp-ﬁ Mp and °Mp — “Mp.
o o
Now let X = (XP) e Mp and consider the composition
o
of linear maps
X =t g t1x® > t9g, 3P 5 gTeIg tixR
B ij B ¥°ii e ¥oijB

Let

o = c(b' Jd i = ol
(5) &g 4 txgijtﬁ gb’hb'ﬁ’

where h.. = t9t (a.';) is the matrix of a linear endo-

5 y 8815°
morphism of Mp as can be seen from the diagram below,

M (tg) M

&
Po (t‘;) P
This diagrem also defines a linear endomorphism of Mp with

matrix (a?].') given by

(6) a:;.' = tig“b'tl;gkj = hikgkj,
where hilc = tit;fg“a’. Using inverses we obtain the inverse
endomorphisms of Mpo and Mp with matrices (b‘;) and (b:)
respectively given by
(7) Vo= (6%t T 0)s, = 57, an
(8) vy = 6Tt he) = & ny
Clearly (a?.].')-" = (bi.') , (a;)-" . (b';) and also
()™ = @B, T = 7).
We note 9.'2 = t-;‘ ai; t‘], and
bg = t bz t‘;.

Hence (a°é) and (ai;.') have equal eigenvalues; likewise (b‘;)

and (b3)°
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Suppose now that we have a normal coordinate system
origin Py Then t;.' = 83.'. From 1.3(6) we have

y* = #N% and so from (2)

w:']' = #ﬂimﬂ; agik:n °.O.F .O.
‘gikag slf SJ-.

“f

But from (8),

bi ‘gik"‘g 3 S

J dFkJ

Hence (wf;) = (bi.') and similarly (w;‘) = (o).

We can also derive the expressions

ﬂi QF’
(10) o5 = (I, Ay
where (7] = (Y7 ama (A7) = D™

LS

(9) a

TINEVIE

K. E1 Hadi has defined k-harmonic spaces somewhat
differently ([4], pp. 88-91).
Let M be a complete Riemannian manifold and

P, € M, Letu eMp be a unit vectors Then for 0 st < oo
o
we define

. |
- |
£, = (d ExPpo)tu o (w(tu)) °, ‘
where w(tu) is the identification (Mp ) tu —_ Mp .

[} [
Let = E tu, £f M —> M is linear.
A tu"p " P

We define h  as the pull-back of g via ftu’

[+)
= M .
i.eo, hpo(X,Y) (f%u gp)(X,Y) for all X,Y € .

We now have two symmetric bilinear forms at P> both non-

degenerate. Hence there exists an endomorphism +tu of Mp
: o
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such that gpo( tux’Y) = h(X,Y) for all X,Y e Mpo.

In fact given a local coordinate system (x ) we have
of _ ¢bf

(1 1 ) (¢tu)p = 8 hxp"

By a‘k(ci)tu) we denote the k°7 symmetric polynomial of the

eigenvalues of (¢tu)° El Hadi makes the following definition,

Definition (2) A Riemannian manifold M is k-harmonic at B,

if aic(‘#tu) is a function of 1 alone,

Comparison of (5) and (11) shows that (4’tu); = a; and

hence -(+tu) and ware inverse matrices. The definitions

(1) and (2) are not equivalent but complementary; each

defines n formally distinct sets of Riemannian manifolds.

We will distinguish between the two types by referring to
k-harmonic manifolds of the positive type or k-harmonic
manifolds of the negative type arising from symmetric poly-
nomials of the eigenvalues of (a';) (i.e., ?Stu) or (b;) (ice., )

respectively.

Definition (3) Let M be a Riemannian manifold and p_ € M.

Let p ¢ W, where W is a normal neighbourhood of Pge If

= X h = h = o (Exp @ h
) ExPpo » let - (wo( ppo)x) g,s Where W
is the identification defined on p.70. lLeta = (a;) be

the matrix of the endomorphism g h' andb = (by) = a”.
(i) M is k-hermonic of thaopositive type at p_ (or
(+k)=harmonic at po) if ¢ = a‘k(a(po,p)), the kP

symmetric polynomial of the eigenvalues of a is a

function of f) alone (1 sk sn).
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(ii) M is k-harmonic of the negative type at P, (or
th

(k) -harmonic at po) if 0'_k = oj_k(b(po,p)), the k
symmetric polynomial of the eigenvalues of b is a

function of {1 alone (1 sk gn).

M is (+k)-harmonic (resp. (-k)-barmonic) if it is (+k)-

harmonic (resp. (-k)-harmonic) at all points p, on K,

Definition (4) (i) M is simply (+k)-harmonic if 0, is constant.
(i1) M is simply (-k)-harmonic if o7, is constant.

4.2 Properties of k-harmonic manifolds
From 4.1(4) it is clear that an n-dimensional Riemannian

manifold is classically harmonic if and only if it is n-
harmonic and if and only if it is (-n)~harmonic., Hence
(+k)- and (~k)-harmonic manifolds can be regarded as general-
isations of harmonic manifolds, It can be conjectured that
the (2n - 2) sets of k-harmonic manifolds (k = +1, ee., +(n = 1))
are all precisely the set of harmonic manifolds. In this
case we would have shown that harmonic manifolds possess
(2n - 2) two-point invariants distinct from Ruse's invariant
whichrare all functions of {1l alone. The conjecture may be
false,

We will adopt the following notation:

Let H(n) be the set of n-dimensional harmonic manifolds;
H(k; n), the set of k-harmonic manifolds of the positive
type and H(~k; n), the set of k-harmonic manifolds of the

negative type. We can list various fields of enquiry.
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A. What subset or equality relations exist between the sets
H(n) and H(+k; n) (1 gk sn)?

B. Gan simply +k-harmonic manifolds be characterised?

C. Can necessary and sufficient conditions for a manifold
to belong to H(+k; n) be given either in terms of affine
normal tensors (cf. Copson & Ruse equations) or in terms
of curvature tensors (cf. Ledger's equations)?

D. Are k-harmonic manifolds necessarily Einstein spaces?
Eo If M is a symmetric manifold can simple conditions that
M e H(k; n) be obtained? What is the rank of k~harmonic
symmetric manifolds? If M e H(k; n) for one value k, does

this imply that M & H(k; n) for all ke {+1, .o., +n}?

Regarding Problem A tyvo results can be immedidely stated.
Theoren 1 - Let M be an n-dimensional Riemsnnian manifold.
The following statements are equivalent:

(i) M is harmoniec.

(ii) M is n-harmonic.

(1i1) M is (-n)~harmonic.

Proof We use 4.1 (h).

Theorem 2. Let M be a harmonic Riemannian manifold. Let 1 £ kgn.
(a) If M is k-harmonic, then M is =(n-k)-harmonic.
(b) If M is (~k)-harmonic, then M is (n-k)-harmonic.
(Symbolically: H(-(n=k); n) < H(k; n) n H(n)
and H(n - k; n) < H(~k; n) A H(n).)

Proof We compare characteristic equations of (a‘;) and (b;)o
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The following result of T.J.Willmore is less trivial

(6], p.1056).

Theorem 3 All harmonic Riemannian manifolds are (-1)=harmonic,
Proof Let P, € M and p ¢ W, where W is a normal neighbourhood
of Pye In the case of normal coordinates origin P, We have
using 1.3(6) the expression for Beltrami's first differential

parameter

A1¢ﬂ = ag"‘me = Og“ y“ yF = 2’_{2.
Dy“ ByP £

Hence for any allowable coordinate system on W with P, and

p baving coordinates (x*) and (xi) respectively, we have

CY
(1) an, = 214,
where [ = g*F D.P = g 20 | ye aifferentiate (1)
P
covariantly with respect to xk s apply the transformation
gpd‘ = (gik) gamp -— Mp and obtain from the i.th component :
i~ i o,
(2) -n-o‘ﬂ = ﬂ (1 = 1’ sooy n).
(2) is differentiated covariantly on both sides with respect
to x! and we obtain

i s i = Al
N,05 + N, ;0 = 1,

whence,
Lot - MO8
®; j e
where in the last term we have interchanged the order of

covariant differentiation, Hence

0'_4 = tr(b?j‘) = AZQ - (Azﬂ)’a().o‘.

Now M being harmonic we have Azﬂ_ = X(f1), where X is the

characteristic function, Thus
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wuUN) - xONTN,

9
i

that is

0y wuW) - 29¢() N from (1),
Qoeodo
Corollary 1 All harmonic Riemannian manifolds are (n-1)-

harmonic,

Proof We use Theorem 2.

Corollary 2 All simply harmonic Riemannian manifolds are
simply (=1)=harmonic and simply (n=1)-harmonic.

Proof X({l) = n implies o, = n, using (3).

The converse of Theorem 3 has not been proved and may indeed
be false. However El Hadi has proved the converse of

Corollary 2. L

Theorem 4 All simply (-1)-harmonic Riemannian manifolds
are simply harmonic.
Proof (Outline) a‘_1 = n implies

A 2.0. - 0% AZ.Q)* = n, Writing
f = Azﬂ - n, it can be shown that the differential
equation

f ¢+ y == = 0 with boundary conditions
f->0asy*=>0 (x Z 1, oee, n) has unique solution
f=0onW,

For details see [4] pp. 99-102

It is highly plausible that all harmonic Riemennian

manifolds are k-harmonic for all k € {#1, cc.o,tn}. We will
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show in 4,6 that compact, simply connected, symmetric harmonic
spaces are k-harmonic for all ko The converse of Theorem 3

may be false but norcounterexamples have yet been found.

4o’ k-harmonic and Einstein spaces

With regard to Problem D of Section 4.2 we are able to reach
a definite conclusion, Use is made of the expressions connecting
affine and Riemannian normal tensors which were derived in

Section 1.,2.

Theorem 5 All (~1)-harmonic Riemannian manifolds are Einstein
spaces.

Proof Let M be a (-1)-harmonic Riemannian manifold. Let

Py € M and W be a normal neighbourhood of Py M being
analytic, there exists a subset U of W which is a neighbourhood

of p_ in which the n’ functions (™), (p € U) can be expanded
gt
( 8 )oo Let

as a Maclaurin series in terms of (‘7'51"])p
o

Xis , where

p have normal coordinates (y). Theny
s is the geodesic distance, d(po,p) and X = (X*) is the unit

tangent vector at p_ defining the geodesic arc (pop). Now

(Ogij)p = (Ogij)o + (akvgij)oyk + (Blakuglc])ox%{_ + ee
. . 2
B TR L PR CRUR T & o SRR (DR
Hence,
i
o, (2 sp) = (b3)

.. s 14 g2
- n v (o ) el 5 e (0 e ) XX T + 0l
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We now use the hypothesis that M is (-1)-harmonic.

0"-1(P°’P) = £(N) = a, * & 82/2 o8, sh/22°2: * 0(86)’

where the coefficients a, are given by

k

. =(dkf.0.) .
k a® Jo

We now compare coefficients of the two Maclaurin series to get

a,o = n;

Coy oD L = O (of. 1:2(11));
(1) (°gij)°(°gf£1)of‘xl = 8,;
(2)  (%8;,) e ) X EE = 0;

(3)(8; )0 (%8 f1andk XXX = 3, and 5o on.
Using equations (1) and 1.2(14), the independence of a, and
X implies that - (R ) X* X' is also independent of X.
But X is a unit vector and so

(By)y = Xy (gg)os where Xy = - 3/2a,.
Py being an arbitrary point of M, it follows that M is an
Einstein space,

Q.e.do

Equations (2) and (3) are necessary conditions for M to be
(+1)~harmonic and merit further examination. The method
is similar to that used to derive the Copson and Ruse equations.
Equations (2) and 1.2(15) yield at Py (and hence on M):

Bk * Buk,1 Y Bap 5O

which is an immediate consequence of the Einstein condition,

(-]

However, using (3) and 1.2(16) we obtain at P,
i i h i J hp
(W) Apgon =28 (A )0 ) - 28 (A, )@ )(%; ) (%)

ik
= k2 S("gkl*gmn).
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We define
= 1(ad h 11 J 2 ) hp

Bean = S'(pq)@ ) + 8'(a0)00 (%) (%)

and use Theorem 5 and the Copson and Ruse equation
< - 4, ®

(5) Mo = 50 %) (1.5(3;))
to deduce that in a harmonic space
(6) Bdan = L s(‘gklegmn)’

wherg L is a constant which - may well be zero., A direct
verification of (6) is by no means obvious. The converse
result, namely that (4) implies (5) end (6) independently
seems very implausible and strengthens belief that the

converse of Theorem 3 is false.

We now prove the general theorem.

Theorem 6 All (-k)-harmonic manifolds are Einstein spaces

for all k, 1 s k sn,

Proof We need an expression for o similar to that for o,

on the bottom of Po780 Let

n
SR (1) e, X = o0

be the characteristic equation of (b;) with real eigenvalues
crs r r
3\1, cooy 'Xn. Writing s = (9\1) + oo (An) and

a = (- )ka‘_k we have Newton's formulae:
a, = 8,

319.1 + 2a2 2

. -
L] .. “.e L L] L] o L] L] L] L L] L] . L] L] o L L] L) o LR L] L] ]

R L e T



These solve to give

bk= 311

-8 -

k

a, = 3
k ki

R 1 .-
bk, 1.84 a:k = ET bk, where

c oo oo s os (k=)

81 %k-2
sk sk4 ® L] [ ] L) ‘. [ ] L ] L] o s1 o
: - _ Y
Expanding, b, = 8,b, _, (kx - 1) 01

(k-2)

..... - - -

o .I 82 £}

Al

where the (k-1) x (k-1) matrix, A, ,

Hence we obtain the reduction formula
(N b =8b , ~&=-1)sp , + (k =1)(k - 2)s,b, _; +

+ (-1)k-ﬂk!,sz]!:__{b,I + (-1)lﬁc!sk.

The term
q
cs q1s 2. e 8 qt, where ¢ is constant and

P P P

1 2 t
Py and q; are positive integers for i e {4, eoey t}, is said
to be of weight w if w = i P;q;- A polynomial is said

i=

to be isobaric of weight w if all of its terms are of weight

w. From (7) an easy induction argument shows that b _and

hence ¢, are both isobaric of weight k. Hence we can write

k

..,

(8) a_-k = °q1’ qt s q1° . qt’
P’q,t P19 °°’pt p1 pt

is such that det Ak_4 = bk
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where summation is taken over all t, p1, sees Pys Qs coesr O
satisfying
(1) tef, ..., k};
(ii) 1 ¢ P, < p2 < o0 <pt < k;
(iii) Qs e+, Q are positive integers satisfying
k 3 ooy
Zpiqi = k and °q1 qt
i=1 Py ooaBy
depending on the combinations {p1, cony pg and {q1, ossy qt}'

are rational numbers -

Now qu = (9\11’ + 9\2" + oees + ’,\np)q (p,q positive integers)
= (tr(b;)p)q
=5 (bi bi ceee b;)q (product of p terms)
that is,
ol = [0 + (g ) e, ¥ X" w0 .
CoLBT e Ca ) ) T v o]

[ + b, ) (*6'0) x*x'n + o] "

ij’e" P.uv’o

-1 u._v 2
= nq - %pq nq (Ruv)ox Xﬂ+ 0(-0- ):

where use has been made of 1.2(14).

If we now define

-4
Bp q = -%pq nt ’
! Q10 "’q.t q1+o..+qt
Ak = °y p n ’
P>q,t 1% °° %
eey t r.
Bk = c‘11 % n 8 ’
P,q,t P1, "’pt J=1 PJsQJ
where r; = g * .o +t g < a0 then clearly Ak’ Bk

are constants for all k € {1, c.0o, n}. Using (8) we have

u 2
(9) o, = A+ B (2 ) X'l + o),
noting that A, = n and B1 =2,

Theorem 6 is now completed on the same lines as Theorem 5.
(]
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We now consider the case of k-harmonic spaces of the positive
type.

Theorem 7 All k~harmonic Riemannian manifolds are Einstein
spaces (k_ >0).
Proof (Outline) Covariant Riemannian normal tensors (instead
of contravarianf type) are derived in terms of affine normal
tensors and hence curvature tensors,
We have

a? = 8; + %(Rijv + Riju)x“xvfl + O(Ilz).
The proof proceeds as in Theorems 6 and'5. For details
see [4] ppo 94~98 where E1 Hadi uses a neater method than
that on pp. 81-82 to show that the expressions A, and B in

 (9) are constants. Indeed, he explicitly evaluates these

coefficients and the following expression is obtained for ot

o = (Af (::)[,% v B2 )X 1'0] + o(n?).

uv’o

4.4 The differential of the exponential mapping for symmetric
spaces

In the case of symmetric Riemannian spaces we will be able

to obtain expressions for a; (k = #1, «s0, +n) in terms of
sectional curvatures. This is because £he differential of
the exponential mapping takes a simple form. This we derive
in two ways: first using the Jacobi equations (3.2(8)) and
secondly outlining a method using an expression of S.Helgason,

Let M be a compact, complete, simply connected, locally
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symmetric Riemannian manifold. We recall that for Riemannian
manifolds, not necessarily locally symmetric, if X:I -3 M

is a geodesic arc through p_, {X1(s), ceoy Xn(s)} is any
orthonormal basis of éo(?f) and Y(s) = ya(s)xa(s) is any
member of §°(K), then the Jacobi equations are

a" b

(1) y + K.y =0 (a=1,..,n4)

where K = K () = R ()(X.(s), yo(s), %,(s), yo(o)).

Now M is locally symmetric and Xis a geodesic. Hence on Y |
DKab(s)

(2) = (VK‘R)(Xa(sB, X"(s)’ X,(s), yu(s)) = 0,

ds
which implies that the coefficients Ka.b are constants on X.

Now Kba = Kab by the symmetry of R and so the matrix K = (Kab)
being real symmetric has real eigenvalues K1 s oooy Kn “°

Let these be arranged so that K, > K2 > eoce >Kn-1' Then

K is orthogonally equivalent to L = dia.g(K1 » eosy K _1).

Let P be the orthogonal matrix such that L = PKP™',  Under
the orthogonal transformation Xa(s) — P:Xb(s) of bases

of go(b’) the Jacobi equations take the form
]
(3) .Va + K .Va = 0 (a=1, eeo, n-1, not summed).

Clearly Ka is the sectional curvature of the plane
section, Sa(s), spanned by xa(s) and b’o(s)i this sectional
curvature is invariant under parallel translation. 1In
order to specify a basis of éo(b«) under which the Jacobi
equations take the simple form (3) we make the following

definition.
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Definition Let P, € M and 2 e Mp be a unit vector., Let

o
KZ be the unit-speed geodesic ray from P, with initial vector

Z. A diagonal basis (or D-basis) of € SXZ! is an orthonormal
. Z

basis, D, = {11(5), cooy Xn_d(s)} of éo(K ) such that for

a#Zb,15a,bgn-t and s >0 we have

R Z( )(xa(s)’ Z(s)’ xb(s)’ Z(s)) = 0,
y (s
where Z(s) is the parallel translate of Z on brz.

A D-basis is ordered if the sectional curvatures Ka = K(Sa)
satisfy K. 2K > .00 2K
Note that on the hypothesis that M is compact we have

K 20 (@ =1, oeoy n=1) (see p.47).

We will now solve the Jacobi equations (3) for an
ordered D-basis of éo(xz) given the boundary conditions

y2(0) = 0 (a =1, ...,n-‘ll).

(1) Suppose K _= 0. We have y*(s) = c(a) s, where each
constant o(a) is independent of s, Hence if

Ya(s) = ya(s)xa(s) (unsummed), we have Ya(s) = s ofa) Xa(s)
and Ya'(O) = cfa) xa(o). . In view of equation 3.2(2) we

may ch_oose the parameter of the variation of UZ defining

Y so that gpo(YA'(O), Ya'(O)) = 1 (@=1, ecop, n)e

Hence

(%) Ya(s) = sXa(s).

(i1) Suppose K _ > 0. Using the boundary conditions as in

(i) we obtain

in(K o)
(5) r - 2D )

jK; a
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. Z
Note that the points Y (%g- (n=1, 2, ¢c0) are all conjugate. If
a

(6) s = =,
"R,

then Kz(so) belongs to the residual locus of p .
Let Q be the rectangle [0,s] x [0,€) where ¢ > O.
For each a = 1, oo, n=1 we define the variation Ga Qq —> Sa
satisfying
. -2 -z, .
(i) Ga(s,O) = D'(a), where U..TR -_ sa.C'Mp is the

o
ray s = sz,

a
de

(w(sZ))(Ua(s)) = sxa(O), where w(sZ) is the identification

26
(ii) I =—= (s,0) = Ua(s) € (Mpo)sZ’ we require

M Mo,
( po)sz - e

Each Ua. is therefore a linear homogeneous vector field on 32,

i.e., a Jacobi field in Sa. We define further the variation

H Exp o G : —> M, Then each Jacobi field Y} (s) on
Z
b

Exp o 82 given by

BHa BGa
Y,(s) = 5(s,0) = (a Exppo)sz o 57(s,0)
is related to Ua(s) by

Y _(s)

(a Bxp, ) (0, (s))
5((a Exp, )5 0 w(s2) " )((X, (0)).

We will write f_, for (d ExPpo)sZ ow(sz) ', Using (4)

and (5) we have
Xa(s), ifk =0

(7) (£,5)(x (0) = sin(/E s)
/K 8

x -
a(s), if Ka> 0.
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We also have
(8) (£,,)(2) = a(s).

An alternative method of obtaining (7) and (8) is to
use a group~theoreticzexpression of S.Helgason for the differential
of the exponential mapping in Riemannian globally symmetric
spaces ([,5], P.180 Theorem 4.1). Let 1T be the canonical

projection G —> M and 1-’,5 be the images of Y,Z under

(an™ = (an)|™. Then oo 1 D=
m _ $ (T)%(Y)
(9) (4 Bxp),(Y) = d(z(exp Z)) o (am o Ly vt

whore (T;)(T) = (ad Z)?

(¥). As (exp sZ) is a transvection
its differential maps vec::':rs in Mpointo vectors in Mp, where
p = Kz(s), by perallel translation and (8) is immediate.

Let X (s) e D, ana X = (am)™'(x)(0). Using 2.6(6)
we have

rE) = [2,[2,58]] = (a0 (s°8(2,2)2),
where X = xa(O).n-‘lHence
l;gpo(n(z,xa)z,xa))% + gpo(n(z,xa)z,z)z

.tin(z,xa,z_,xs)xb - R(%,X ,%,2)3

= - R(z,xa,z,xa)xa, since D, is a D-basis

R(z,xa)z

= =- K x °
aa
Hence we can show by induction that
n,= it n 2
(T X)) = (a7 (&)%),
For Ka > O the following infinite series uniformly convergent
for all s » O is obtained oo (% )nsm
= a
(e &) = (@omp DY), rriayr 5,00

n=0
and (7) is easily deduced.
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4.5 The action of holonomy transformations on Jacobi fields

Let (G,H) be a Riemannian symmetric pair and let M = G/H.

The linear group of transformations of Mpo induced by parallel
translation of frames about all closed curves through P,

is the holonom oup, K. Now if M is irreducible and simply
connected it is known that K is connected and K = H°,

where H* is the identity component of the linear isotropy
group ([5], p.337).

Let Kx be a geodesic ray from Py with X € Mp a unit
. ()
vector. Let V be a variation of b/x 80 that {X} is a ons-
parameter family of unit-speed geodesic rays such that
X .
b; = x o We will write Xe(s) for Xe,(s). Let T ¢ K.

Then there is an element h of H such that T = (d‘c(h))p .

Define X, = T(x(0)) (nM ), X = (am) ™' (x,) (i:m) \
(o]
and XL = (dn)"(x'e) (in m), where as in 4ok (dﬂ)"‘_: (dTr)e A, ‘

m |
Let D, = {X,(s), ..o, an(s)} be an ordered D-basis of

SO(XX). Using 2,5(7) we have X = (ad h)(X)).

Let y,, be the geodesic ray s —> Exp s x'.(0).
€

w(exp Ad(sX,))

(t(h) o m(exp sX )

m(exp s }T'-e)

Y, (s)

m(h exp sX hd')

(&(B) 0 gy (5))(o).

Writing [ for t(h) o L the family {l_;} of geodesic rays

.is the image of {Ke} under the isometry (h) and we correspond

to each Jacobi field Y on y = b'x a Jacobi field Y' onl = %(h) (X)'
Let X' = T(X) end X' = T(X (0)) (@ =1, eeey n4),

Then Bx. = {x'1, coey X'n_1, X'} is an orthonormal basis
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of MP o Now 7(h) maps transversals, 7y of (J'} onto transversals

2 of{r'}, 80 we have for s > O
a2 (€) do (€)

() = S (0) = (os) (7 (0) = 71,
where TK(S) = (dt(h))x(s) :Mx(s) —_— MI"(s) is an isometry
induced by T. Further if x'a(s) is the parallel translate
of X'a on [ we have TK(s)xa(s) = X'(s). Hence,

sp(s)(Y' (s), x'a(s))

8r(s) (TJ(S)Y(S) ’Tb'(S)xa(s))
6 () (X1,

za(s)x'a(s), we have shown

Ir Y(s) = ya(s)xa(s) and Y'(s)
that y2(s) = 2*(s). Further, Dy = {X'1(S), coes X'n_1(s)}
is a D-basis of. éo(bfx'). The components y- and z° must
satisfy an identical Jacobi equation of form 4.4(3). We
deduce that the sectional curvatures, Ka.’ are invariant under T,
Conversely, let Dy {x (8), ooey X (s)} and
Dys = {x'1(s), coos x'n_,'(s)} be ordered D-bases of go(lfx)
and éo(xx'), where X, X' ¢ Mp o Let T be the transformation
of Mpo such that T(xa(o)) = g'a(o) (a =1, eoo, n=1) and
T(X) = X'. Suppose further that K(Sa) = K(s'a), where S_
and S'a are the plane sections spanned by X,Xa and X', X'a
respectivelye. T then induces an isametry of Jacobi fields
in a neighbourhood of P, in M and is therefore itself an
isometry. Hence T € K.

We have proved that if X, X' e M DX and DX' are

ordered D-bases of &£ (K ) and £ (K ), K(Sa) and

K' = K(S'a) and T is the transformation given by T(xa(o)) = x'a(o),

T(X) = X', then K =K' (a =1, 00, n=1) if and only if
a a

T € K, the holonomy group.
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4.6 k-harmonic symmetric spaces

In this final section we investigate Problem E of p. 75 and
attempt to derive conditions for symmetric spaces to be
k~harmonic., Let M be a compact, simply connected, irreducible,
n~-dimensional Riemannian globally symmetric space. Let P, € M
ahd P € W, where W is a normal neighbourhood of Pye We

will derive an explicit formula for a'k(po,p), the symmetric
polynomials of the matrix (a;). Let y be the unit-speed
geodesic ray from p through p. Let s be the arc length
along X and X = xu (0) Thenp = Expp sX. Let DX be an
ordered D-basis of éo(x). If the sec:ional curvatures are

> O with K1 > 0, suppose that Kn—r >0

1 n-4

but Kn-z~+1 = seo0 =Kn-1 = 0, Thenr g rank of Mo In

particular, if M is of renk one, r = 1, i.e., all sectional

K >/K2;...>/K

curvatures are positive. | We evaluate a‘; = g“’hb.p, where

h = (hb,p) is the pull-back of (gij)p :nder Expp:.
Let Y,2 & Mpo. Then h(Y,2) = ((Exppo)gp)(Y,Z)
= 8,(f x(¥).1 4 (2)),

where fsx is as defined on p. 86.

Using 4o4(7) and 4.4(8) we have
(1) n(x,x (0)) = n(x (0),x(0)) = 0, if a #b,

since the D-basis is orthonormal.
sin’(JE )

(2) If K >0, h(X (0),x (0)) = 5

K s
a

We note that n‘(xa(o) ,xa(o)) —>1as s —>0,

(3) IfK =0, h(x_(0),X (0)) = 1.
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(&) h(X,X) = 1.

We thus have the n x n diagonal matrix

s 2 . 2
in ﬁ{_ in“(J/
h = (h‘a = diag(i—L—:;—-s—)’ ose 9 : ( Kn-zz. S)’ 1, ceey 1).
K, s K 3 (r times)

But as {x1 (0), coos Xn_1 (0), Xn(O) = X} is an orthonormal

basis of M , we have
P

5, (5,(0,%,(0) = 5%,
o
Hence, 9 = 2
N sin (,/l-('“_ s) sin (‘ﬁ{n-r s)
(aﬁ) = diag|———5; oo, 5> 15 eees 1).
K1 s Kn-r s
(b;) = (a;)-1 is the diagonal matrix of reciprocals.

The symmetric polynomials can now be written down,
sinz(ﬁ{: s) sinz(,./l_{:_: s)
(51) o}(po’p) = Oa(S,X) = -v-' 2 + o000 + 2 + r.
K, s K s
1 n-r

(sinz(,/i: s) eeo (sinz(,,/Kn_r s)

(5,) o (p,p) = o (s,X) = - P— ) .
g oo K

1 n-r

(sinz(../lq 8) eee (sinz(,,/Kn_r s) )

(S_n) o:n(PosP) a:n(s,x) =

We can now prove Theorem 8.

Theorem 8 All compact, simply comnected, irreducible, Riemannian
globally symmetric spaces of rank one are k-~harmonic for all

ke {11, so0oy 1n}.

Proof Let M be a manifold satisfying the conditions of the
theorem, Choose P, € M and p € W, where W is a normal neighbour-

hood of Py We use a result of M.Berger-(see J.Simons [1 2])

that the holonomy group at Py? H, is transitive on Sn -? the
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unit sphere centre O in M if and only if M is of rank

P
o
one, Thus given X, X' € Sn “? there exists T € H such that
(X) = X'. If Dy is an ordered D-basis of .éo(Kx) then
. X!
DX' = T(DX) is an ordered D-basis of QO(K ) and the
sectional curvatures K, , coo, K are invariant under T

1 n-4
(see 4.5). H being transitive on S,4» it follows that

K1 s scoy Kn - &re independent of X and hence using the equations
(5) we deduce that O'k(po,p) = a’k(s) and so M is k~harmonic .
for all k.

Qoe.ods
Corollary Let M be a compact, simply connected, irreducible,
Riemannian globally symmetric manifold with positive-definite

harmonic metrice Then M is k-harmonic for all k.

Proof We use Theorem 2 of Chapter 3 (p. 51).

We will obtain a simpler proof of Theorem 8 after proving

Theorem 9,

Definition A Riemannian manifold, M, is said to be two-point
homogeneous if for any two point pairs Pqs Py € M, Qs 9, €M
satisfying d(p1 ,p2) = d.(q1 ,q2), there exists an isometry

g € I(M) such that g(p1) = q and g(pz) = Qe

Theorem 9 A two-point homogeneous manifold, M, with positive~
definite metric is k-harmonic for all k.

Proof (T.J.Willmore [16]) Let p, € M and take p, = q, = By
in the definition above., Then there exists an isometry of

M which maps any point on S(po;s), the geodesic sphere centre
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p, redius s (s >0), onto any otherpoint p' on S(po;s).

In terms of’normal coordinates origin Pys We have
| 8y = (699, (g )y
Hence (a}) has the same eigenvalues for all points p on
S(po;s). Thus crk(po,p) is a function of {lalone and ¥ is
k-harmonic for all k.
Q.eodo

Theorem 8 can now be proved using Theorem 9 and the following
result:

Let M be a Riemannian globally symmetric space of rank one.

Then M is a two-point homogeneous space. ([5], p.355).
Note that this alternative proof does not require all the
given conditions for Theorem 8. Indeed if M is non-compact,

then K; > O for some a, and for such a sectional curvature

the solution of the Jacobi equation is

sinh(/:RL s)
(£,)(%,(0) = o (cfo 4ed(7))s
We have sinhz( r_——K1 S) Slnhz( ’_Kn-r s)
(a ) = diag( 2 g oeoy 5 9 eovoy 1)-
-K1 ] . -Kn_r ]

Symmetric polynomials are easily obtained and the proof
given on pp. 91-92 is still valid. We conclude that compact-
ness is not a necessary condition for a symmetric to be

k-~harmonic¢ for all k.

It is highly probable that the converse of Theorem 8

is true, namely that symmetric spaces of rank greater than
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one cannot be k-harmonic for any k. Yet examination of the
equations (5) suggests that the sectional curvatures may

vary in such a way that even t'hough 7 and o, are not functions
of s alone, other symmetric polynomials may be independent

of choice of X. But this is highly unlikely.

If the conjecture that Riemannian symmetric spaces
are k-harmonic for all k if and only if the rank is one,
be true, where can we find an example of a space which is
k-harmonic for k # +n but not classically harmonic? We
would have to examine compact, reductive homogeneous, non-
symmetric Einstein manifolds. For if Avez' Theorem (Chapter
III Theorem 4) is correct these spaces cannot be harmonic.
But here it is unlikely that T will reduce to the simple
form we have in the symmetric case. And even there we

were unable to come to any firm conclusion,
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