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ABSTRACT

The main idea of the following pages is to review
the Al particle. They set out to explain the prbblem, to
show the attempts done in this field and to compare the
_ different interpretations of different authors. In 6rder
.to do this we use resonances and duality as our tools of
investigation. /

In chapter one, we give a general discussion on
resonances. We show what we mean by a resonance, what the
characteristics o} resonances may bg, and the ways by which
resonances are determined. Some mié-leading terminologies
and interpretations which qccur_iﬁ ghis area are also
discussed. In fhe second part, an explanation of su(2),
SU(3) and quark models has been done. There, the concept
- of exotic states énd their different types are shown.

| In chapter two, a sketch of the-A1 particle, since
the time 1t.wés discovered till the recent time when dif-
. ferent types of models have been given in order to resolve
or, at least, to clarify and exp;ain the mystérie of the
P enhancement'is drawn. Also the Al's,future and a -

simple test, which invokes data to remove the Al ambiguity

are given.

In chapter three, the idea of duality has been dis-
.cussed. How duality has altered tﬁelconcept of resonances,
what the conflict with the earlier interference model 1s;:
- the Veneziano model and finally the effect of duality on

the Al problem are discussed,

In chapter four, we extend the discussion of chapter

three. The excellent discussion by E.L. Berger (1971) 1is




given heré. His sgggested model-may make the s1tuation of
.the Al clear, His discussion encourages people to believe
that thé Al ﬁight pe a kinematical effect, Finally, we
-conclude Sy giving a brief.feVIeﬁ of the present status

-of the A, enhancement.



 CHAPTER 1
“. A genéral discussion on resonances
and

~ particle classification schemes

PART ONE.
A general discussion on resonances

’

/

1.1~ INTRODUCTION

IWhét is a resonance? To answer let us begin with the idea of
a 'bound state'. These states exist for example in'potential scat-
tering theory where th;y occur as poles in the scattering amplitude.
These poles lie on the positive energy axis below the'physical th-
reshold. In relativistic scattering theory one can have poles that
arise through !'forces' (i.e. are bound states) and also possibly
" some that are simply added to the S matrix. We do not distinguish
beﬁween these and.regard them all as 'particles’'. |

In potential scattering it is possible to weaken the potential
- 80 that'the bound state pole moves a b o v e the physical threéhold.
It then becomes an unstable particle'ana can decay into its cons-

tituents. This decay is characterized by an average life-time Z.

é . PP""‘- . - : ép\me
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As loﬁg as ¥ is resonably large we can observe these unstable par-

~ ticles in'essentiaily the same way as we observe stable particles,

~ for example by tracks in a bubble chamber, Clearly whether a part-
‘icle is stable or unstable depends on its mass ahd the mass of other
'Iparticles.(and also on various conservation rules). It is not -a
fundamental property of the particle, so it is‘natural to regard
stable and unstable particles as being objécts of the same kind,
(they are usually referred to simply as 'particles').-The pole cop=-
responding to an unstable particle is below real axis* (becﬁuse of

] unitarity). A physica; understanding of |
' why.a resonance pole must occur on an E.

unphysical sheet, below the real axis,

results from considering the Fourier tr- ' ~~

ansform of the resonant amplitude as a

function of time. As a resonant system
18 going to decay after a time t,the time dependence exp(-iErt) in-
. plies that Im Er 3must be negative.

Particles Wﬁich decay by weak interactions, for exémple,

A— eV,

T— Ky,
have life-time of the order of 10~75e¢. and so such particles can
be seen. However, it turns out that particles that decay by elec-

tromagnetic interactions,e.g.,
A — 7
g AT,
‘or strong interactions,e.g.,
' P ———t T

b ——> N,

* These poles,i.e., the resonance  poles, should be nearby poles.
That is, they should not be located far from the real axis, as

" otherwise, they are not detectable.

W, |
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have lifetime T about 10”-°sec. and 10™<’sec. respectively, so that

_.they do not travel'faf enough to be observed as particles. In fact,

'-'étrongiy-decaying particles do not travel outside the range of nuc~

lear £0rce(3J10'130m). The question then arises as to how such par-

ticles must be observed, It is clear that we cénnot obgserve thenm

| difectly,'since.they.are off the real energy axis where we cannot do
ewperiments. However a pole near the real axis is likely to give
rise to a peak in the cross-section (we discuss the form of this in -
qection 1.2), so we expect to see evidence for resonance by looking.
for bumps in amplitudes as functions of energy variables. .
Two questions méy arise now:

i) Are there poles which are not resonances of the above type ?

i1) If we see a:bump, does it belong to a 'pole' ?

Later in this chapter, we are going to come bdack to the second ques-
.tion in a way. We would like to add here, in connection with these
" questions, that there are systems for which the situation is not so
-simple, that is, some resonances do noﬁ correspond to poles of S, and
on the other hand; some poles of S do not correspond to resonances
(Taylor,1972; paée 2141, (Caluccl & Ghirardi,1968). .
Genefally, there are tw6 tyves of processes in which resonan=-
-‘ces appear. These are formation and production mechanisms. The fig-

- ures below clarify the concept of the mechanisms :

| A‘(mc) -

- __ "roluc\‘iovl\
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Perhaps it is worth mentioning that no mesonic resonances, unlike
the production mechanisms, have been seen experimentally in fornme
ation processes so far. This is not too surprising since the only
procesces which arq.experimentally possible and which have the
correct qhantum numbefs are ﬁ? experiments, If the baryon and
antibaryon annihilate to form mesons then the availaple energy is
such that on? is Iikély tb be in a region where resonance overlaps

strongly .50 that individual states will not be seen. .

1.2- RESONANCE DETERMINATIONS

Now ‘that we know what a resonance is, let us see the ways of

its determination. In this section we will be studying the Dalitz

- plot, the Argand diagf&m and -the Breit-Wigner formula.,

l.2.1- Dalitz Plot. o ‘

A particularly useful technique in the stuéy of resonances
in praduction expériments, iﬁvolving three particles in_the final
state, is the Dalitz plot. In‘this plot each event is represented
by a point. The Dalitz diagram is frequently made in terms of the

effective mass* square of particle pa1r§. The alternative 1is to

* The effective mass, Bopes of a group of i particles is defined
as:
' 22(1125000,1)

2
eff )

(?1 TPy teee + P

(2 )2 -(T p)?
n=l n n=l -Bn

where p:j is the four momentum of Jth particle.



'pIOt number of events against the effective mass of three final par-
ticles. One can show (Martin-Spearman,1970; page 163) that phase
'spece alone predicts a uniform distribution of points within the
boundary of an effective mass plot. Supposing that two (2 and 3) of
the three final particles (1,2,3) form a resonant state of mass M*,
then we expect a concentration of events to lie along the straight

2

line s,, = M*~

23 :
A modification of the plot is often useful for a large number

across the effective mass plot.

of final particles. For instance, in the reaction ab——s 1234, one.

2(1,2)
eff

one for a three particle finel state and the other for the case of -

plots m against ngg’#). In figures 1 and 2, tﬁo Dalitz plots
four -particle final state have been repreeepted.
"l,2.2= The Breit-Wigner formula*. | |
_ As ﬁe saw before, the most familiar type of unphysical sheet
pole lies at a complex point, say P, in the s-plane, slightly be-
low the physical region, e.g. at a position SP = 8p = ir , where 7
' is_a small’ positive and real quantity._To consider the physical ef-
fect of this'pole; let us expand B |

~ &(s8) = (s-8p) Tj(s)
in a power series about the point s=8p

. B(e)=E(sp) + (8-8p) g'(sp) + ... (1.1)
The'remainder of this expansion, that is the dot terms are some-
times called the 'background! of the resonance. The series (1.l) is
convergent in a circle that includes part of the physical region as

shown in figure Se

As ¥ is a small quantity, we may assume that for s (physical)

* Another approach to derive the Breit-Wigner formula is given by
,Hughes(1972)._--f' _
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idue of the pole and the backgrdund which differ,-not the position,

near sp we can write
g(s) = g(s )
which in.turn leads us to the famous Breit-Wigner resonance formila

T5(8) 5 fogr 5 B(ep)/(agme-t®) o
i
\

from which one easily identifies the conventional parameter P as
[

% '
P: ’K‘/(SR) o

Unitarity (for partial wave amplitudes)

Inm TJ(s) = % Tj(s) 2
demands that the residue function must be of the form of
8s)~ =2D (5 7,

And time reversal makes the residue function ‘to be real.

As was mentioned before, one of the experimental indications
of the existence of the'resonences is the peaks in cross sections as
a function of energy. However, the Breié-Wigner formula is a means
by which we can extrapolate down the physical region (i.e. the peak
of the cross section from the deta) to unphysical sheet pole (i.e.
the theoretical resonance) in order to calculate the, paramegers of
the resonances. The extrapolation can be and'sometimes is improved\

by keeping more terms in the expansion (1.1). Note that the location

parameters of a resonance, i.e. Sy andl‘, do not depend on the par-

ticular mechanism in which the resonance is observed. It is the res-

1l.2.3~ Argand Diagram.,

We. know that one can expand the sesttering améiitude F(s,cos )
of any pProcess of the form ab—% cd in a series of partial wave amp- -
litudes which are functionslof only one of the variables. For example
for the scattering of spinless particles one can write

F(s,cos8) = T. (23+1)T (s)PJ(cose) (1.2)
where @ and J are the center ofjmgss scattering angle and the total

angular momentum, respectively. Evidently this.series cannot con-




verge for all s and 0, for PJ with J a positive integer (including
zero) is an entire function of cos@ (~t), since the partial wave is
' independent of 6, that is, it.is holomorphic, free of singularities
for finite t, therefore F(s,cos®) can have no singularities in cos®
; (~t). But the series will break down at the nearest (t) singularity.
The domain of convergence of a Legendre polynomial expansion such as
. this.one (eq. 1.25 is the interior of the largest ellipse, the Leh-

mann ellipse. This can be drawn ih the cos® plane with +1 as foci

:__ and with the semi-major axis cosf such that it does not enclose any

singular'points of the amplitudet This is a well known result in co-
mplex variable theory (see, for-example, Titchmarsh, 1939).
The expansion (1.2) is certainly appropriate for those partial
waves for which there occur resonance states in the energy range con; .
' sidered, and for which the partial wave amplitudes are therefore ra-
pidly varying. In such an expansion it is necessary to restrict the
lnumber cf partial waves to those for“which the partial wave analysis
-l gite an acceptable fit to the data. A 'quasi reason' for the trun-
.fcating of partial'waves-is to suppose Abe the range of the force of -
the longest range contributlng to the scattering (alh since the lon-
gest range 'interaction comes from‘uﬁf'
the exchange of one pion). Consi- . o ,‘#
dering the diagram below, if the

- c.m. gysfem
particles are to interact, they

must come within a distance Aof each other. Therefore if the distance
between the particles at the point of nearest anproach is less than ﬂ
then the angular momentum of the two particle system cannot exceed

Aq Guhq) So ‘the ‘jth partial wavb will only contribute to the scat-

!

¥ l'.n’ tu.r‘timla.r, the oa.ra‘es_ l'slca\varsen? for all hky.i_c'ea-l 0.



tering when the centerfof mass three-mmmentum is greater than or

. equal to a value of about hl (1 (q).

| The Argand diagram provides-an elegant way_of describing the
Iénergy dependence of a partial wave amplitude TJ' The diagram is
plotted in a two coordinate system with the imaginary part of.the

" partial wave ampiitude against the real part of it. Let us take the
background térms of the smattering amplitude as well as the resonant
term into considemation before anfexblanation of the Argand diagram,
By bgckgroundlscattering we mean the non resonant scattering in the
resonafing partial waves plus the other partial waves. In this energy
_ region the scattering amplitude F(s,cos®) takes the form

By
F(s, cose)=¥-—e P,(cosb) + B(s cosf)
1

34
where Mi 1s the mass value for resonance i, Ji its angular momentum
and B(s, cosO) is the _background amplitude.

For simplicity and as the elastic scattering is of particular

. interest let us consider this speclial case. Thue, following Dalitz

”and Moorhouse (1970), F
_ J

- .“SJ-=-BJ;+ i f;%f eXP(2ibJ)p
where, . -
By =& ( Ny,) exp(2iy, ),
R = Eo - H

and X j and "ZA are given in the reference, but we need not worry about

E

them. Here we have used S, instead of Fel(s,cose)'of (1.2). Conver=

_ J
ting S matrix to'T, which is defined as
B | ;= Sy-1
21

. we may ‘write the amplitude in the form (Michael, 1966)

J = -%i(B -1) +Y exp(ZiIB)exp(ic)simo'




e ————— — =

where“l = %-\(l and o~ is the reoonance phase defined by

| E tan o = M/2(E -E) ~
The background term may be written as .
-%i(BJ-l) =‘YBsinSB exp(iSB) (1.3)

with Tp {1 .
For phenomenological analysis, it is usual to adopt the form

Tj = —¥i(7 exp(ZiS )=1).
The equation above shows that in an Argand diagranm for 7 _l i.e.
for elastic scattering, 2Tj lies on a circle with the center along
the imaginary axis with coordinates (0,%) and radius 3. For inelastic
processes, 'Z becomes less than one and, therefore, 2’1‘j moves in
from the circie. '
We shall be concerned with the case where the background scattering
is energy independent. That is to say,“ZB and CB are constants. Now .
with the above information and the equations in hand, we have repre-
gented the parameters as well as the amplitudes in an Argand plot in
figure three. As another example, in fig. 4, we have given four typi-
cal resonance configurations (Donnachie, 1970).

Let us see now if there are other mechanisms which generate
circles in the Argand diagram, and if any, how one can interpret them,

Schmid(1968) has shown that the pértial wave projection of a crossed

~channel Regge pole contribution can result in partial wave amplitu-

des which generate circles in the Argand diagram as energy increases.
These circles are named 'Schmid loops'. It is natural (and perhaps

straightforward) to think of these loops.as rgpresentative of reson=

ances., But -the situation is not so simple;”In fact there have been

. various objections, (Collins et al,1968; Alessandrini et al,1968;and

many others(for the other references see|Schmid (1969)), to this

interpretation and it has been proposed to consider these circles as
something different from resonance circles. Schmid (1969) has removed
the objections. He has shown that the Regge pole exchange is not

tanother mechanism' as Collins et al would say, that produces 100ps;

rather, it is the usual mechanism (the 'force') that produces the




resonances. This is what duality states. We refer the reader to cha-

pter three for a detailed discussion on duality. Briefly, duality ex-

' .presses the relation between two descriptions of the hadronic scatt-

ering amplitude : at low energy, the description by direct channel
(i.e. s-channel) resonance is useful, end'on the other hand, the ex-
change of Regge poles (i.e. t-channel) is more convenient at high en-
ergies. So, in some average sense, the s-channel resonances are the
t-chaonel Regge exchanges and vice versa.

Another crucial point in identifying Schmid loops with reson-

ances is the fact that these loops do not contain poles.'directly’,

- corresponding to resonances in the second sheet. We cam get rid of

this simply by noting that duality is some sort of approkimation and -

we should not expect to have all the detailed information. Let us N

give a rough example : - T
Consider the process 71‘*_ R — 7" where u-channel is exotic

(no resonanoes) and t-channel is equivalent to s-ohannel.lThe Vene-

ziano rodel* in this case is (Schmid, 1970)
A= -c(l-a) M (r-4)/ M(1-o - )

"where d;:% + 8. We easily see that P(l-«g)_has poles at db=l,2,3,....

Let us perform a dispersion relation at fixed t. Because of the poles,

_ the dispersion integral simplifies and becomes a sum of pole terms

CAls,t) = f ds:ﬁ"‘gg%;-'—
= Z‘ ———— P, (2)

iMszi

where D is the discontinuity (_i-}— (A(s'+i¢,t)-A(s'-1¢,t))) along

the s-channel and z=cosf«t. Now, when the dispersion integral in s

diverges, one needs subgtraction,constents;e.g.:ao+als. However, these

* For a description of the Veneziano model see, however, the third

'chapter.
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'Now, is 1t not possible that the S matrix might have several different

11

constants in s are functions of t, 329 théy will contain the pole
(here, the ppole) :
| 'ao+als = 2P1(zt)/(M§ -t) .
This 1s what we meant by 'indirect®.

In the final part of this section we would 1like to see how one
can get the resonance parameters from an Argand diagram, Many criteri#

have been suggested for this purpose :

1) Maximum Modulus. If the background is negligible, then the reson-

ance mass 1s correlated with the maximum of lTJ(s)l o

.2) Top of the Loop. In the case of elastic scattering (1) reduces to

the fact that the top df the loop gives the resonance mass.
3) Maximum Velocity. Provided dB/ds is very small, then velocity
qu/dsl in the Argand plot is maximum at resonance energy position

(s=s,.), - .
! Phillips and Ringland (1970) tested these criteria iq a Veneziano
model for ®¥--%W where the resonance parameters were known exactly. Thei
conclusions were , '
1) For the most prominent resonances all criteria give'good results, ’
2) The velocity criterion is consistently good, until resonances overla
strongly.
3) The modulus criterion is not very reliable,
4) The Im T criterion works well in many cases, although the usual just-
ification- real residues -is not true in general.
1.3~ SOME POSSIBLE QUESTIONS

Here we briefly discggs the possibfé questions that may arise

from the previous notes.
i) S matrix poles. We saw that resonances are the poles of S matrix.

|
kinds of poles, of which only one category is appropriately associated
with particles ? To answer, Chew(1966) introduces the idea of
Ychannel invariant+®, He says that all simple poles in individual -

* The channel invariant is the square of the total energy in the c.m.
system of the channel.




channel invariants are of a simple basic type.

ii) Threshold Enhancements., A state close to threshold (like an
s-wave bound state) causes a large cross-section which is called

a threshold enhancement. An example of this situation is shown in
Fig. 6. The term 'threshold enhancement'! is often used with the
implication that one is not dealing with a 'true' particle. If,
howefer, extrapolation around the branchpoint clearly indicates

the existence of a pole, this sitﬁation, therefore, must correspond
to a particle state. The essential point is that, in principle,

data of sufficient accuracy will always answer this question. We
would like to add that most of the threshold enhancements have tur-
ned out to be reflections of nearby poles. And when poles are abs-
ent, threshold effects are usually too weak to be observable.,

1ii) Peaks and Resonances. Is a simple peak assoclated with several
different sets of quantum numbers a resonance ? We know that the
quantum numbers of the particle are the quantum numbers of the cou-
pled channels*, If the S matrix possesses an exact symmetry, rota=-
tional invariance'say, then there exist multiplet of equivalent
channels and therefore multiplets of equivalent poles. One, howev;r,
can say that the multiplets are different particles of exactly the
same mass and other quantum numbers (each multiplet to be conside=-
red as Ane particle) . We see that such a convention has no confu-
sion when there exists an exact, and completely understood, symme=-
try. Controversy arises when approximate or accidental degeneracies
are available.It seems better to say that each different simple pole

corresponds to a different particle. But occasionally one hears the

# Coupled or communicating channel is in the same sense that if suf-
ficient energy were available, the particle could decay into this

channel.,
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ferms 'particle! or 'resonance'.eﬁployed in refering to a 'bump!
-that detailed analysis has shown to be associated with two or more
different poles of the S-matrix lying near each other. This is a
misleading terminology that creates confusion. Unless an exact sym-
metry is involved, each simple pole of the S matrix is in principle
separately identifiable and may be assigned a definite set of con-’
_eerved quantum numbers.

REBBERRABRRREN /

"PART TWO

K Partieie classification scheme

Je pense qu'il y aurait intérét a
introduire dans 1'étude des phénomdnes
physiques les considération sur 1la

symmétrie familidre aux cristallogr-
aphee;' h |
Cooa Piérre Curie

1.4- INTRODUCTION

| .The discovery of such a wealth of apparantly 'elementary' par-
_ticles stimnlated new activity in the search for a pattern amongst

_ ihem, as a first step towards the understanding of their nature. Since
1956, when Sakat; preposed his model, great emphasis has been laid
on-ihe'symmetries of the various particles, and a certain amount of

' ~order has ndﬁ emerged.out of what appeered previously to be a‘rather :

' eﬁaetic'situation. The:particles are classified in certain sets, and

i. * 1LL°“§°&MJ10\°}¢ﬂdbuuuo‘qpmqniﬁus|ncﬁeu«ne—~nu4&.oﬂimr wvaﬂﬁrmALo
__Ud*-ﬂchua—vsdwa%u'afm~ .
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as a result, some of their bééié'prdperties are no longer indepen=-
dent., : '
In this part, we propose to study SU(2) and SU(3). We shall

see how particles can be classified. At the end, quarks and quark

model will be discussed.

1.5~ GROUP SU(2)

Let \Yj(j=1,2,...,N) be an N-component field. An infinitesi-

mal rotation in isospin space prodﬁces the transformation W—ar%*?

. where the matrix 2(, with unitarity, can be written as

U = ei¢U
where ¢ is the (real) phase and U is the modulus of U.

We shall restrict the matrix U to be unitary as well as uni-

_hbdular. That is

ot =M= 1,  detl = 1.

wa, instead of talking about rotations in isospin space, one can

- work with these matrices, U.

The set of these. unitary, unimodular matrices forms the group

SU(2). From the gxﬁerience of rotation in Euclidean space, let us

3

7 U= exp(% JZ=%. hdj 89,3 )

where Gej are three .real parameters, the angles of rotation about

write U as

the axis_in isdspin épace. The three N by N matrices Tjj are hermi-

tian and traceless and are called the generators of the group.

ILef'us_suppose'N=2. An infinitesimal rotation in isospin space

o s B8
q-(P). with .1 0
n/ -+ 1.0

Lis_‘

R .




q — Uq = exp(i zz 50,)(2).
. 3= l
Here 75 are 2x2 ‘matrices which can be taken as Pauli matrices. But
. following Hendry (1965) we shall use the generators Ay , the linear
.f combination of Pauli matrices, defined by

: -Explicitly they are .
| 3 o0\ . o "0

. Ai:( _=_13 A§,= )EI_
' o -3/ 7\l 0

0 1 . : ' 3 o\ :
1 z,( )
A, = I A = I, .
| 2 (o _o) ot 2\ - 3 3
. of which only three are independent, since Ai + AS = 0, The right

hand side Justification will be more clear if we operate A on the

’A

doublet (g). It is interesting to see that A,_ obey the commutation

relation : .

' R~ A] AR
[AV,AJ, fstf'sf y .

Now we shall see in a moment that, besides the two dimensional rep- -
'resentetion of SU(2), we are able to find representations with dif-
ferent_dimeneionalities. The clue is to take the direct product of

the doublet q with, say, a new doublet q defined by

- I - 15 B S
- P ' ' ~+ -1 0
q = _' : with : .
| o \A - O
~ then we get . - _
TN PP np _ _ [+ o\ - [¥(pp-nn) np
axq=|_ _ |= 3 (pp+nn) + . S
Pn  nn . \0 1, pn ~%(po-nn)
o where the first part 1s an 1sospin singlet with 13=0 “and the latter
' is an isospin ‘triplet with I3 = -1 0. Thus 2 x 2=1 + 3, By forming

several direct products we construct irreducible representations of

- 8U(2) with differeﬂt diﬁensionalities. These are; 1,2,3,...; that is




all integers.

1.6- THE GROUP SU(3)

'As we saw, SU(2) has only two conserved quantities. But we
have another conservation rule namély the consefvation of stran-

gness., In order to 1nc1ude it into the scheme we must extend. 'sU2,

o JThe simplest way of extending SU(2), as was proposed by Sakata in

. 1956, is to cpnsider transformations on a new three component ob-

© " jectject (Sakaton) ':. o /
13 B S
P T
qd=|n with -+ -1 0 .
0 0 -1

A rotation in the corresponding new hypercharge produces the tran-

- sformation q-—» Uq. Here too, U is unitary and unimodular. The set

" of these U matrices forms the group SU(B).

As before we would like to write U as

| = exp( %:3 AJ c03)>

- where .the generatgrs of SU(3) are traceless, hermitian matrices. We

~ shall call a'linéar combination of AJ by AS .and define them as

. _ (A )ij 8 GVJ - 1/3 Sﬁysij' ; with in"s]"s\‘=112’30.
Explicitly they are
2/3-0 0 _ 0 1 0 - fo -0 1
N1 oy S | _ 1
Ay ={ 0 -1/30)=Q , A={0 0 O0f=TI,,As=[0 O
| 0 0°'-1/3 0O 0 O 0 0 O
, /0 0 o0y 1/30 O o o0 0
., o _ _
M1 0 ofsr, aHo 23 0 , A§= 0 0 1},
0 0 0 0 0 -1/3 0 o0
0o 06 O 0 0 0 1/30 ©
A{ ={o 0 o , A<lo o osu_, A§= 0 -1/3 0 E-Y
1 0 0 o 1 ol o 0 2/

A8 theré are two 1ﬁde§endent diagonal generators 80 we have two’



conserved quanfitieé. We defiﬁe:them as* |

*(41-' AS) = 0 - o "the third component

i
L I
WL

2" . 3 g
. 0 0 0 . . of isospin"
1/30 0
-Ag .= 0 1/3 0 =Y 7 nuthe hypercharge",
| : 0 0 =2/3 '
The Ge;l-Mann-NishiJimg relation links hjpercharge with Q and 13,
" this is oo
| Q=I5+ ¥
where - . ' (1.4)
. ' Y =

B + S, _ .

ﬁsingfthe equation (1.4) we get the following

Y [1 |1, B S Q
p[1/3 |+ | % 173 10 2/3
q={nf 1/3 | - | 1/3 [ 0 173
A-273T0 0 1/3 | -1 | -1/3

p|[-1/3 [ % | - [-1/3 [ 0 | =273 |
adn|-1/3 | % | § | -1/3 | 0 [ 173
[A2735[0 [0 |3 [T | 173

We see that q and q do not correspond to physical particles since
_ their Y, B and-Q are not integral. We shall call q and q quark and
anti-quark respectively, and the table above shows the properties

of them. It is possible to show q and q in a two dimensional plot,

" usually called a weight diagram : - | Y
| . - R PR
Quark's weight diagram . I
.o -ll‘ |I‘ 3
e A

* In the original Sakata model the hypercharge was defined as
—-A§+2/3 (See, e.g., Carruthers,1966;page 37). As Sakata model has

imet several difficulties(e.g. the parity of thel ; see Hughes,1972;
page 206) we need not consider the early model, From now on we shall

discuss the eight fold way.
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-_Anti_quark's weié% diagram | N (Q

A practical use of weight diagfams is in decomposing a direct pro-
.duct . of reprééentations to the irreducible ones. For example :
3x3=1+8, "

This produdt is of special interest, since all the mesons found ex=-

e perimentally can be 'reproduced' by this method, in other words,

'_ mesons transform like quark—antiquark pair under SU(}) Some exam;
| ples are given in Table 1. _
In the same way, we see that baryons can be constructed by~qqq
3x3x3=1+8+28+10.
. Some examples are given in Fig. 7. This méans that baryons are clas-'
| sified in singlets gnd-octets like mesons as well as decuplets.

. 1.6.1- Labeling of SU(3)

I

b I I and -2, forn a subgroup SU(Z)i of SU(3), since they

o satisfy the SU(Z) commutation relations among themselves, and also

commute with Y. Thus.
| sU(2); x U(1)y C SU(3)
where U(l)Y is simply the one elemenf group. This indicates that SU3 .
can be uniquely labelled by IZ, I and Y. '

‘ -Another- alternative for labeliimg the group SU(3) _comes from
.%'the fact that |

SU(Z)U X U(l) C SU(B)

" that is to label by U2, U; and Q. |

* Another way of labelling is V-spine Since, however, it is of

no physical interest, we shall not consider it here. The properties

J




of I_and U spins are easily understobdhfros the commutation rela-
tions (Carruthers, 1966; page 38)

- (1.1

v, 4]

;whicﬁ, in turn, show that member of an I-spin multiplet have the

0o -

0

'lsame hypercharge and.the members-of ﬁ-spin multiplet have the same
chapge.
1.6.2- Mass Formula - - /;

Obviously pure'SU(j) is broken by some unknown weaker mecha-
nism but in such a way that I and Y are still conserved, since the

masses of the particles in each representation are not equal. If one

o assumes_the simplest form for the symmetry breaking interaction,

" then one can derive the Okubo mass formula for fermions and for bos-
. ons* 3
- 2
M-MO+M1Y+M2(I(I+1)-4,LY)
n= ms o 2 (I(T + 1) - tYZ)
These formula give the Gell-Mann—Okubo mass relations for

" baryon octet | [ﬁ; MN + Mg B%M + }M:
" pseudo scalar mesons mi %m% + %mn
vector mesons i*”= %ﬁ?8'+'%qf " 8 15 mixture of ,
_ _ : v : of the octet=*.,"
baryon decuplet MN*' MY* = MY* - ME, = MH, - Mn‘.

1 1
" We: summarize some of the applications of SU(3) as follows H

i) Grouping of the particles and resonances into the SU(}) represen-

* The use of the (mass) for fermions and the (mass) for bosons in
these formulae was suggested by R.P. Feynman. It is relatgd to the
fact that in the Lagrangian the mass term for bosons is m ? 1: and

for fermions M9V .

*+ The idea of mixing was proposed by Sakurai in 1962 who proposed

also a mixing parameter in the form of the 'mixing angle', The mix-

ing parameters are :
' W) = [Vy} coso + |V8) sin 6
\Wt)= |Vg ) cos6 - [Vl) sin® .

The mixing angles for the pseudo scalar mesons, vector mesons and
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tations 1, 8, 10.
ii) Coupling of variou; particles together which yields relation-

ships between coupling constants.

resentation.

)

\
ii1i) Relations between the masses of the multiplets of each rep- ‘
Finally, in order to get higher J mesons one can make use of
orbital excitations., Generally higher excitations can be obtained

by radial excitation, orbital excitation or by addition of qg pairs.

These excitéd states are all unstable against strong decays and are

observed experimentally as resonances.

"1.7- QUARKS, QUARK MODELS AND EXOTIC RESONANCES

What is a quark? Rubbish, trash, curd, filth,... are the

equivalents that any Geihan dictionary would give. The word 'quark’

" was taken by Gell-Mann* for the first time in 1964. The name 'quark!

essentially appeared when Gell-Mann and independently Ne‘eman propo-
sed an alternative, similar to that of Sakata, in classifying parﬁi-
cles. In this'model, as we saw earlier, the particle structure is |
expressed in terms of the allowed values of isospin and strangeness
using the three basic objects having baryon number B=1/3 and third

integral electric charges. These strangely established ‘particles®#!

are playing the roles of 'building blocks!. Since mesons and baryons

can be constructed by the combination of quarks and antiquarks, that

tensor mesons are :10?#,:39?9 and :29?9 respectively. These

’
mix (1,7) , (w,9) and (f,f').
» The word ‘quark' was taken by Gell-Mann from James Joyce's novel
‘Finnegan's Wake'. e
## Ve shall consider quarks to be physically existing particles., Alt
ough lots of theorics have been given in which no assumptions has
been made on their presence, and even no experiments so far has been
successful to trap them, there is still no reason why they should no
exist. Their failure in showing up themselves in experiments does no

_mean anything except that they are not found by these experiments |




Eq and qqc respectively, Quarks are-strongly interacting particles,

We would expect quarks to be surrounded by meson clouds like other
;h'hadrons. However some simple predictions, for éxample the approxi-.
mate ratio of ¢,’F’-3/2 for the proton, neutron magnetic moments
follow simply from the assumption that the quarks have Just their,”
' Dirac magnetic moments (Morpurgo 1969).

The assumption that baryons are. made of three spin i objects
suggests the conclusion that the lowest lying baryon states must

have spln a half and three halves and the same parity in agreement

with experiment. Examinatlon of the quantum numbers of experimental-

1y observed resonances shows that they are limited to those values
predicted by this naive quark model. States with forbidden quantum

numbers are called exotic. The exotic resonances are not in one or

eight representations for mesons and not in one, eight or ten rep- .

resentations for baryons There are three kinds of exotic states'
These are

i) Mesons or baryons with IBY values not found in the quark-anti-

quark or three quark systems. This is usually refered to as exotic -

- states of the first kind,

ii)'Mesons with odd CP and natural parity, and 0~ mesons (exotic i

'-states'of the second kind)._ o LT .

iii) Baryons with unnatural orbital parity P= (-)L+1, where L is

R fthe total orbital angular momentum of theifquarks (which of course

‘—'\.

o is not 'observable' and depends upon the model), See Lipkin (1970).

If exotic states exist, then for a given spin, they 1lie higher

'in mass and couple less strongly to the known channels than non-

'exotic.resonances. Their absence in a reaction 1mplies constraints B

'fon the imaginary parts of ‘the scattering amplitude in crossed chan-

E *There is another type of exotiec state when taking SU(6) into consi-

deration., As we did not and shall not talk about SU(6) therefore we

should .not worry about it.

— S~

S



.nels. These constraints, in terms of duality diagrams, are repre-

sented by direct lines corresponding to their quark and antiquark
content, lines cannot change their character or double back on

themselves, and lbgal diagrams contain two lines and three lines

A e - e m— .

in mesonic and baryonic channels respectively,

{
i
!
)

The absence of exotic states has been used as an input in

- theoretical calculations with super-convergence and FESR* to obtain
a number of interesting results. Their absence is introduced into

the sum rules

N
S ' Im A(¥,t) dv = £ (N,t) - 0{v4{ N
0

by setting the left hand side equal to zero for sum rules with
exotic s-channel quantum numbers, and the right hand side equal

to zero for channels having exotic t channel quantﬁm numbers,

Some indirect evidence against exotic resonances can be fbund
from the absence or presence of forward or backward peaks in the
angular distribution of certain reactions :

Two body reactions lead in general to both a forward peak and a

backward peak, usually interpreted as*being due to meson and bare

yon exchange respectively. Now what one can observe is that both in

meson and in baryon exchange the corresponding forward or backward

* See the duality chapter,




to hadron physics. Whether it is only the algebraic structure of
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peak disappears whenever it would correspond to the exchange of
an exotic particle. This is shown in figures 8, 9, 10. However,
the quark model offers the only description for the absence of
the exotic states so far,

Nuch effort has bveen given into correlating the spectrunm

obtained from quarks and all the observed hadron states, particu-
larly the baryons. This has acheived considerable success althoug
some obescurities remain. We refer to the recent review by Dalitz

(1973) for details.
The situation of the quark model is as follows.

1) The outstanding success of the quark model has been in defining
the exotic states;’
ii) The model has been used to obtain many results which are in
good agreement with experiment : resonance spectroscopy, high
energy scattering and reactions, electromagnetic and weak coupling
All of these are in the domain of IB¥ Physics(i.e. symi;tries),
(Lipkin, 1969). ' ‘
1ii) No useful results in the domain of stu Physics (dynaﬁics) hav
been obtained from the quark model, e.g. interactionms, scattering
a@plitudes are known and are considered as free paraheters in any
dynamical calculations.
iv) There is no theoretigal prediction for the mass of the quark,
The success of the predictions_;ndicate atAleast that the

quark model has an underlying algebraic structure which is relevant

the model which is relevant or whether there are real physical

quarks is still not clear at present. If the quarks exist they

answer one queation about the regularlties in the observed quantum
numbers of the low lying hadron spectrum. But they pose a new

question: Why do all the observed hadron states have integral

charge and baryon number ?

w———Y ithea
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We end up this chapter by drawing a quark diagram of MB -%.MB,
Fig 32(b),(for a detailed discussion see chapter three).

The selection rule obtained from this figure is : If only one
quark in a baryon is responsible for the tpansition producing

& resonance, the two other quarks are 'spectators' and must re-
main in the same state in the resonance.as in the initiél baryon.

This is in good agreement with'experiment°

ﬁ*ﬂ*****#_**ﬂ'l’ﬁ*.**
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" CHAPTER 2
A1 and the Deck effect .

The_reaction n?p-—v'n+n7n?p was studied at 3.65(Gev/c) by Gold-
haber et al ip 1964. They observed an anomalj in the mass distribut-
ion of the pw% system. Their result indicated that the majority of the
events involved some resonance phenomenon between the outgoing parti-
cles, through different intermediate channels (Table 2). The most pr-
ominent feature of the M(T rx~) distribution was fo production (Figure
11) defined by O.65(M(R7n'){ 0.85 Mev, These events proceed with com-
parable cross sections through'fhe channels ]?p-—#jp + N'++ and xﬁp
—-¢-jpn+p. In the second channel, 1b, the formation of‘fo mesona pro=
ceeds via large momentum tranafefé td fhe bion-nucleon system, It was
in this channel that a strong enhancement in the distribution of MQfﬁ?
in the mass region 1.00 to 1.40 Gev was observed. They refered to this
enhancement as the formation of a state A+ according to w?p -—-A+p.
which breaks up aé A+-q»fpn;. In figure 12 the projection of events,
excluding the N*++ band, on the Ma(Jpnf) has been shown. It was in.
thié projection that the A+ enhancement effect over phase space predi-
ctions was noted, It is noteworthy that all 6f the n?nr mass doublefs

inside the.ﬁo band (double fevents) contribute considerably to the At
enhancement, This raises the question whether the A" enhancement might

be related to a dynamical effect favouring double formation. Note th-
at the A+ state is produced with small four momentum transfer to the
proton, Aa. In figure 13 the peaking at small values of Aa for the re-

gion of the at enhancemenf is eyident. Also peaks in the 37\ mass dis-
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tribution had been represented for the first time in a similar re-

- gion by Bellini et al (1963). A possible interpretation of the ob-

servétion is that there 1s a resonance in the ntfo system. Then the
relevant parameters as had been estimated were (Goldhaber et al,
1964); E L2 Gev; ' ,=0.35 Gev, g-parity=-1, Isl or 2 (see later
this diécussiqn). ! '
Further investigations showed that what was-previously repo=
rted as one resonance was in faet, two resonances. Chung et al (
1964) studied the TP interaction in W p—s A% 7 p and found that
the n'n?x' effective mass distribution showed two clearly resolved
peaks above the 3T phase space background. This 1is shown in Fig 14.
_The first peak is at 1090 Mev with full width Félso Mev, the second
at 1310 Mev with P=80 Mev. These two -peaks nowadays are refered to
as Al and'A2 respectively. It has been suggested that the first pe-
.ak, Al, arises from the kinematical effect, as we shall discuss in

a moment, and the second one, Aa, is a true resonance.

2.1- THE DECK EFFECT

The discussion of this effect was stimulated by the discovery

of the A, meson as a peak in the stpectrum near“qpthreshold. In his

1
earlier work, Deck suggested the diagram of Fig 15 to'explain the
state enhancement. There, he assumes that the reaction n+p-—q ntgp
— 1?pn?n? proceeds principally via peripheral collislons which are

dominated by one pion exchange (OPE).’ The cross section assgg&gted

with Fig 15 is (Deck, 1964),

' -t2 w2
- 2 2 max max 2
dg g2 my, = " e 2 auf -A(-t") 1_g
5 = GF) 3 (a0 | 4(-¢7) e B U
du hFI > 5
'tmi_n wo
| (=) (2.1)

2))2

. (a - b/B(A -w



27

where R

FI = M1 By, P, is the invariant flux,

gz/lm?r-l.8 is the 7RY effective coupling constant,
- 2 - .
of = (q+ Q)" = A'- Beosf, + ¢ sind, cos¢‘2

%A - B cose2 15 the square of total c.m. energy
- of the n~p systenm,

dG‘rN

' dc'
_?\Zappears when we approximate —= i (m exp(}\t )y
2 ——
t™ = - ,
} (ql Pl) ’ ;
u? = (q+q2)2.
2 R S S I R PI- S 2.2 2, 2+
(-t?) = =202 (W -Mf) = WPy - (WEaion®) u® 2
min '

| ('wz-z(Mlmz) wl (M 2)2)'2’ .(u‘*-a(wsz) u + (Wa-Mf)z)"}). ‘
w2 = (p, + pa)z,
‘a,b,A,B and ¢ are positive functions of WZ, u2 and ta,

2
“nax= A * B

w§= some constant= 2,70 Gevz,
92. ¢2 are the spherical angles of 'gzrelative- to P, at 9,9, center
of mass system. The other notations are given in Fig 15.

In deriving (2 1) these approximations have been made :

i) On mass shell M’RN have been equated by the off mass shell a.mpli-

tude MrN'

11) w2 A - B cos®,
iii)w is supposed to be sufficiently high' w (-.Ja are excluded from
2.

these calculations (ws 2. 70 Gev

The solid curve of Fig 16 represents a plot of da'/du2 as a fun-
ction of the center of mass energy of the ®psystem for A= 6 (gev/c)'fe
P,=3.65 Gev/c and w3=2.70 (Gev)2. Note that the shape of the function

do"/du2 is rather insensitive to the-value chosen for wo’ and that as
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the incident pion momentum is increased the peak should ‘become
ilarger add hroader, in“other words, bpeaks are energy dependent,

. Fig. 17 is a sketch of the data of Goldhaber et al (1964) at the'
pion laboratory momentum cited above. The total cross section
obtained in this way is about ¥ mb, which is almost 30 times smal
ler than the experimerntal value, '

Later in 1965, Maor and O'Halloran improved the calculation
of,Dech, simply by removing the third approximation cited above
(only the events with values of in the N* resonance band were.

-excluded) Figure 18 represents their calculated mass spectrum of

| ua; with P,=3.65 Gev/c. The estimated total cross section was 22"
mb, Ahd as Deck had shown, the calculated peaks did not fall in ,3

~definite angular or isotopic spin states, More improvement came' B

o :when the second approximation was removed by Deutschmann et al (

1966). Their result showed that in this way broader peaks at the :
.:higher momenta were produced and that the position of the peak was

”always at about 1100 Mev, independently of incoming energy but that

- .the width of the peak increased with increasing energy.
_'if_ - A better more realistic OPE diagram in studying the sanme
B reaction was given by Aderholz etﬁal (ABBBHL Colleboration, 1965)
. (Fig. 19). A comparison.of the model with: the available data has
E been made in Fig.20. There curves reproduce the general shape of . .
_the distributions quite well, In the Al region the OPE model gives
oa peak which is not as narrow and as high as the experimental one.
So far all the discuSSions were on the basis that the Al ia a.
kinematical enhancement (as the OPE models indicate). The fact that
' :_-the Al enhancement has not been seen in other modes, though othors
are energitically possible, give additional weight to the .idea that
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'§§?}é:ié@jé:iﬁ@iﬁ?ﬁtﬂ;fﬁg“f};i ?:\jJa But soon afterwords Deutschmann
et gl presented results from a study of 8 Gev/c n+p interactions
which ﬁere not compatible with the interpretation of the Al as a
kinematical effect."Theif result is shown in Fig 21. There, the ex-
perimental distribution was fitted with two Breit-Wigner curves for.
the two enhancements plus a background (the solid line). The peak
observed af 1076214 Mev contains sixty per cent of the events in the

A, region and the presence of this peak above background is consis-

1
. tent with the description of the Al'as a resonance (The remaining
forty bér cent is the background).

Another improvement;in Deck's mﬁdel appears when sne Reggeizes
the exchanged pion. This has been done by Berger (1968). The basic
assumption he makes is that 'RN-—vl‘fN proceeds primarily via doubly
peripheral collisions (Fig 22), where i‘and ii are Regge pole excha-
nges and corresponding trajectories are & ’q__. The amplitude rele-

"vant to the figure, supposing the pion isIexzianged in the second leg

and a non Regge exchange for the first one (the pomeron can be excha-

nged here), is

J(t,)
IM)2 = g2(m2 - 4D} (Ton (8, ))2(1+a)2 exp(At,) 2
, : g mJ’ -m‘R ;\0 TN sl - . l 2(1-005“)
Cor _ . _ 20,
(1 (sa-tl-m:- EE; (mf -m2 -t,)(ty tp - ﬂf))) ’

where

2 2 R 2 2
_(q+q1) y 8,20 f(q+q2) ,,tl?gqlfpl)",.?2=(q2-P2) ’

A= (s, - (ay - 128y - (my + 1%,

52/412&2.2 is the effective -mrf coupling constant,

dpis the pion trgJectbry}




Jg(té) is a smooth function normalized to unity at t2=m§,

ahﬁ(sl) is fixed at 29mb.

Figure-23 shows the comparison of the results of the Deck and Berger
type calculations fdr two different incident pion momenta,

2.2- OTHER EXPERIMENTS

The A, has been produced in many other reactions. Figure 24

1
shows the %' x ¢ mass spectrum from the reaction A p—s PX T K X £
at 16 .Gev/c where the A, is observed (French, 1968). In figure 25

‘the result of Anderson et al is shown where théy have studied R P
.= pB~ at an incident h0mentum of 16 Gev/c (B~ is the missing mass
meson with negative charge). The enhancement near the Ai region is
clear, Their calculations show that the Ai has mass M=1.115+ 0.020
Gev/c2 and [7= 0,098 + 8:8%3 Gev/c. The other experiment performed
by Grennell et al (1970) shows a well defined peak at 1120 Mev which
is also consistent with a fqn' decay mode and which is well separa-
ted from the Aé (Fig 26). Their estimate of T varies from 100 to 300
Mev according to what value the background is assumed to take. A
calculation made by Nasroilah (1970) to compute the width of the Ai
mesbn frbm curreﬁt algebra gives|1=75 Mev, The other observations:
of_fﬁe Al have been made in the reactions
| | k*p — x'pr'r” (2°)

K'p — Kopr'm'r

K'p — prR'R (x%)

-K"'p';— Ko ar” (7%
at energies betweén 9 ana_iZ.B Gev/c. But the test made by Rabin et
| al (1970) §howed ﬁo Al bump in any of theFf four reactions. This

casts doubt on the:conclusion of .the observation of the A, in these

s . ' cooL . fhu




reactions. It is interesting to quote that a bump between the Al
and the Aa, usually denote§ by A1.5’ has been reported which has
a mass of about 1190 Gev (Lamsa et al, 1988). Abolins et al str-
engthen the assignment of the 1sospin of the A1 to be one (Abol-
ins et al, 1966). o

"The Al mainly decay; into ¢ but Al - éX 15 also possisle-
and proceeds via p-wave (€ is the s-wave daughter ofj>). But, so
far this decay has not been seen éxperimentally.

To ciose this section we quote the discussion of Roberts (
1971): The closé-éimilarity of the energy depeﬂdence-ot the crosé
sections for Aliahd Aa prodﬁc?ion, Fig 27, suggests that since Aa
is well kndwn to be produced by ¢-f exchange, then the possibility
qf the same exchange genergting the-Al seems likely.

. 2.3- THE A, NONET -

1 :
A nonet with JPC=1++ in Al ﬁass region fits well into the

quark model 3P1 (L=s=1). We callﬁfhis the 'Al nonet', There are can-
didateg for the otﬁer members of the nonet,but none of them afe cer=-
 tain(Table 3). Thé:Q is also contaminated by kinematic background,
while the spiﬁ-papify of the I=0 candidates,i.e. D(1285) and D'(lﬁaa)
_ié not well determined. There have been suggestions for the M(953) as

anofher possible candidate; In Table 4 the decay modes of the A1 no-

net have been given. Table 5 is devoted to A nonet cross sections.

2.4=- ARGUMENTS ON THE Al AND ITS FUTURE

In the final section of the chapter we summarize the argum-
- ents for the Ai being a resonance and/or background. At the end we
“will have some discussion on the Al's_future. In. the next chapter,
after introducing the idea of duality, we shall see ﬁha; duality

says'abbut the_dit:erent interpretations of the Al.
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2.4.1-'Argumente For A Resonance.

o i) Quark model. As discussed above.

2.4.2- Arguments For Kinematic Enhancement (Diebold, 1972).

i) Good fits. Reggeized Deck calculations can give good agreement
with the many mass distributions observed.

1i) Helicity conservation. The angular distributions for kinematic
effects give approximate t-channel helicity conservation. If the en-
_-hancement were a resonance, one ﬁight have expected s-channel heli-
city conservation. This argument has a weak spot, since R—> Al may

‘be different from these processes because of the spin change 0 — y
iii) Possible O .enhancement. The 0~ p-wave p% distribution peaks

up at low mass with roughly the same shape as the Al, but only 10 or
15 per cent of the intensity. One interpretation of this effect is
_thaf the Deck diagrams are contributing to more than just the s-
wave. One might also imagine thet through some.inadequacy in analy-
" sis a small fraction of the 1% events are leaking into the 0~ results.
2,43~ The Future Of The A,. ' o S

It seems clear that any definitive study of the 1** resonan-
.-ces-predieted by the quark model is going to have to come from chan-
nels'with reduced background. Such channels are more difficelt to
find than.one might imagine. There have been suggestions that hyper-
" charge exchange reactions such as K ne—— AIj\may be the best place.
'te look for an Al resonance. Or, as Fox and Hey (1973) have propo-
sed one can search in photon induced processes. Its expected cross
section can be estimated reliably.by a pole extrapolation; failure
to observe it with the predicted size would be unambiguous evidence

against its existence (the cross section for wp—-— Aln at E =4.7 Gev




is O.5[Ab). However there is no report of Tp —> AIn as yet., Another
'experi'mental test for the Al has been long ago' proposed by Rosenfeld
(1965). He shows that if the A is a true resonance, and if there is

not too much interference in its decay, then

e T I I SRR N o S T AN S o d Yo 3
'--} : ¥ : 0 & % R * . _
By contrast, :L_f .t'he Alzbump results from the OPE diagram then we ex-
pect o / |
| 0 oy ':. 01 R LA o5
where _o_~1' , '0'2_ and 0'3 .are the.fexperiyne_ntally kpbwn TN scattering cro- -
ss-gsections : Q‘i(n*n _—-‘vl7t°p, 0'2(1:+p ;#R+p), 'dé(t'p -t p) rese

pectively.
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CHAPTER 3
.Duality

_ What 1s.dua1ity ? The term 'duality' appeared in physics about
half a century ago.. There, it was used to clafify the concebt of |
wave-matter connection. This is named 'old duality' these days. The
'new duality' is almost sii yeérs/old. This connects the degcription
qf the scattéring amplitude in two different channéls as we shall
discuss now. | | |

Duality expresses the relation between two descriptions of the
hadronic scattering amplitude : At low energy the description by di=-
rect channel resonances is simple and useful (Fig 28(a)). At low ene=
rgy the data show promiqenf peaks as a function of energy, and one
can tgy the appfoximati;n of resonance saturation, that is, of ne-
glecting the non resonating background. The second description is the
'_ éxchange of Regge poles, and is useful at high energy where typical

features are forward peaks and energy dependence s* (Fig 28(b)). The
twd descriptions a;e very different; resonance formation corréspohds
to poles in the s‘channel; Régge exchange to péles in the t-channel.
Dualify says that there are direct relations between these two des=
criptions, tﬁat they,are equivalent in a certain sense. Fach of the
_ iwo dekcriptions is by itself ah approximation to a complete-descri;
ption'(Table 6). The éont?overs& arises only when one makes appfoxi-
ﬁations. ,'. - I .
Dualiiy takes its most precise meaning in the frame-work of

finite energy sum-rules.(FESR).;They'are consistency conditions im-
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posed by analyticity on functions that can be expanded at high ene-
-sgies ())N) as a sum of Regge poles. Let us see how one can derive '
FESR for the two particle processes;

It is convenient to use the variables) _SL}; % and t, where m.is the -

mass of the target. The amplitudes A:(ﬂ,t), even or odd under (s-u)-
crossing (y—> -¥), are assumed to satisfy fixed f dispersion rela-

tions in

Ai(i,t)%l avt Tmad(yY,8) (55 & 749) S (3.1)
where the ¥! integral has discrete (pole) contributions for O (y{M
-and continuum contribuiions for v')M. Equation (3.1) is equivalent
to Cauchy's theorem applied to a function that is analytic in the cut
Yy plane, apart from isolated poles on the real axis. Now, suppose -

that for )¥l) N, A—Ci t) can be written as an expansion in Regge poles

‘(or. power law -berms) :

AE(y,E) = REGE) L (YW
'where ()
- t
RE(Y,t) ='l}/3:,(t)v3 : (i;ﬁgfﬂ;‘g) ,

then the difference b(y,t)=A(Y,t) - R(Y,t) satisfies (3.1) and van-
ishes for ,Y,) N. Furthermore the integral on the right hand side of
(3. 1) vanishes for y')V. By considering y)N and expanding the deno-
minators in y'/y, this dispersion relation for (¥,t) ylelds the set

of integef moment FESR :

N _ N -

( “ay F Imady,e) = § ay 5" In BEOY,0) (3.2)
) : )

.where n=0,2,4,+.. for A— and n=1l,3,%,... for A*. since the right

hand side of (3.2) involves only powers of Y , the integral can be

-
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. done explicltly and one finds
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| o (t)
S

N J
_ ny-B=1 %, /3 (t) N
N Sd» ey ImA(9 t)_zl' (3.3)

n = 0 j o<(t)+n+1'

 This is the so0 called finite energy sum rule relqtion and relates
‘the low energy properties of a scattering amplitude, expressed as
~an integral up to y=N, to the high energy properties in ﬁermé of

- Regge poles (or perhaps something more complicated). The exchange -

Regge trajectories can be considered as built up from direct chan-
nel resonances, Conversely, Regge exchange already includes the

resonances in an average sense. This is the Dolén, Horn, Schmid

(1967,1968) duality also referred to as global ‘and average duality.
It is interesting to note that if a secondary pole or a cut is un-

-important in a high energy fit above N,  then this singularity is

unimportant to exactly the same ekteht iﬁ the low energy sum rules

for the various moments, In brief, therefore, resonances in the s

~channel and Regge poles in the t channel appear as two complemen-

"tary ways to describe é two body amplitude. FESR are hot restric-

ted to cases where the amplltude is convergent at infinity., It is

only necessary that the amnlitude should have a known asymptotic

‘behaviour, It is of course'obvious that FESR cannot tell us whet-

her a given singularity is a pole or a cuf;_they are, howgver,usa

'a.éfuy ip}distinguishing between particular specific models.  ' t |

It is'possibie-to deduce o(t) from the ratios of different .

"moment sum rules directly

sn(tz)'"= a(t) +mos 1
_sm(§):_ a(t) +n + 1

‘that is,cl(t) can be deduced by taking the first two nonvanishing




i moments, It is advisable to work.separately with the odd and the
evén moment sum rules, since one of these families contains the
wrong slgnature nonsense poles fhat db ﬁot affect the observable
amplitude. Once &(t) is determined, one can go on and determine
A(t) from the various Sy

. An advantage of thelFESR method over conventional fits is-
| thaf the input amplitudes, e.g. the A' and B 7N amplitudes, are
already decomposed into their spiﬂ'components,-whereas the high
energy da/dt data only enables us to find A' 2 and B 2, and
the signs of the amplitudes cannot be determined.

3.1- DUALITY AND INTERFERENCE MODEL

Earlier than the time duality was proposed, an alternativg
"~ -description for the scatfering amplitudes in the intermediate en-
ergies had been introduced which was named the finferference mo=
. del!, The interference model represents the scattering amplitude
'F as the sum of direct channel resonance amplitude F es . and cros=-
sed channel exéhangé amplitude FR'g (Fig.29) in the interméaiate
energy region (Barger and Cline, 1967),

' F=F, +F

Regge °
In contrast, Dolen et al (1968 ) show that the correct prescrip-
tion should be,

F = TFres * Fregge <Fres>
B where (Fres)denotes the locally averaged resonance amplltude. As
it is seen the term (Fres) has not been included in the interfer-
ce model. If all resonances enter with the same sign, then (Freg)
Z 0 and the interference model 1nfolves double counting. On the

other hand, if the resbnances_enter with alternating signs and com-
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parable strength, then (F}es‘}ao.and the interference model agrees
with the duality prescription. A similar argument can be found
elsewhere (Schmid, 1970).

3.2- APPLICATION OF FINITE ENERGY SUM RULES

?here are three ways in whiéh one can use.the FESR;
i)_One can use the information about the Regge terms implied from
the high energy data as an input in order to determine parameters
of the s channel resonances, |
ii) Similar to (i) but to use the low energy data as an input to
predict the exchanged Regge poles.
iii) various sum rules can be used together with the high energy
data to provide a better over-all determination of the Regge para- -

meters,

343= DUALITY AND ITS EVOLUTION

i) Schmid's calculation (1968) of the s channel partial wave pro=-
jections of B~ ampliﬁude given by P -exchange yielded resonance

like circles on the Argand diagram as was discussed in chapter 1.
ii) Exchange degeneracy. It is well known in votential scattering
that the presence of Majorana exchange forces causes the force to
be different in even a;A odd 1 states;'giving rise to two distinct

families of bound states or resonances, Conversely, the absence of

exchange forces implies that states with even and odd 1 values can

be treated together. In the language of Regge poles this means that

trajectories will be exchange degenerate, with even and odd signa-

" ture poles really being one Regge pole. In other words, the absence




- of resonance in-one channel implies the coincidence of exchanged
trajecsofies with opposite signatures and a relation between their
residus functions. The assumption of exchange degeneracy for the.
" mesons correlates well with the presence or absehce of resonances
.in the direct channel,

.111) The special role of the pomeron ﬁegge pole. From the empiri-
cal observations that the differential cross section do/dt is clo-

=8 which in, turn implies that all the ampli-

selx proportional to s
tudes are essentially real st_high energles (a ¢ N), Harari in 1968
made the qonjectufe that for all.processes the normal Regge trajec-
tories (P;,j,w,Aa) are assoclated, in the sense of FESR and duslity,
. wifh the direct channel resonances aldne, and the pomeron is asso- |
. ciated with only the background (Harari, 1970), Evidence in support
of Harari's idea comes from the phase shift analyses of XN scatte-

' ring (Jaskson, 1969; 1970).
3.4=- THE VENEZIANO MODEL

An explicit crossing symmetric function, which satisfies the
FESR and exhibits duality, has been given by Veneziano (1968). For
'simplicity we shall discuss the Veneziano representation for the s
channel N —i amplitude. In this case the t channel is iden-
tical to the s channel, and the u channel is exotic (I=2). Once the
pomeron contribution has been removed we expect the leading contri-
Bution_to be ﬁhs\f-f exchange degenerate trajectory in both channels.

The simplest functional form which has an infinite set of s-
'cﬁannsl'poles lying on a trajectory Ns(s),'with the poles appearing
when & _ €N, isl’(l-ds(s)). Since an identical behaviogr-in the t-

. channel is required one can try
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D Me,) =@ - (e -a(e)),
‘but this wquld'héve a double pole at every s = t point where both
7“; and.c(t are integral.fIt is easy t6 remove these poles by divi-

ding by .
. [ (1= (8)) (1%, (¢))

V(S,t) =g
M1 - (s) =% (t))

' where g is an arbitrary constant giving the scale of the couplingé.
This function has pole lines at fixed s and.at fixed t, where the
dtg are integers, and lines of ze;os running diagonally through the
intersections of the poles.(Fig 30)., In deriving the Veneziano mod-
'-fel, besides exchange degeﬁeracy, a zero width approximation is as-

_ sumeq-(i.e..resonances are approximéted by poles on the real axis).

The asymptotic behaviour of the model may be obtained by mea- _

ns of
- M%) ——> :(ax)‘} e~ X x"‘%
. Kb 0O
- - M@ - x) =%/sinxx
_yhich.yield : :ﬁ' .'1g(a (s);ut(t) -11Nt(t)
V(s,t) > L e - .

M (o, (£)) sin(Ra,(t))

So, iftxs(s) is a linear function.o( 8, Ns(s)g (0) +u's, we end up

' ﬁith Regge behaviour

. o(t(t)
V(s,t) ~ (o' 8) .
The asymptotic form of the amplitude displays several features. The
' o (t)
first is the power:law behaviour s as just mentioned. The sec-

ond is the specification of the scale parameter 84 in (s/so) (t) as

the reciprocal of the slope of the trajectory. The third feature is

. the_preéehce in V(s,t) of the phase exp(-1R(t)) as expected from



duality argument. A final aspect is the factor of &(t) in the num-
'E-erator. This is the 'ghost killing' factor ‘that eliminates a pert-'
R _icle'of JP=0* from the leading trajectory.

. However interesting and useful the Veneziano amplitude is,

there are two important drawbacks of the Euler B function (Jacob,

1969) : |
- ' S,
B(ol(8),&(t)) = V(at(s),%(t)) = LoUB)=L gy (t)-1,,
B ) o
I 3 (3.4)
= F(—d(s))[1(-d(t)) _ , (3.5).

P (=d(s) -el(t))

1) The_satellites. One can add arbitrary regular function of x to
the integrand of (3.4) such as
B'(ol(8), (t)) = (f(x) dx x

' : o
- "without having altered the properties of the model. This is equi-

~a(8)-1 (5 _ yoi(t)-1

valent to write

s, oo« o it
N,M + -}

These many possible terms, which differ from the leading one (3.5)
by the fact that the first few poles in s or (and) t are missing .
are called satellités. There is at present no way to limit thie am-
biguity in any general sense.

- 1i) The unitarity problem. At present it is impossible to remedy

'‘the incompatibility of (3.4) with unitarity in any fully satisfac-

tory way.

3.5- DUALITY DIAGRAMS

The ramifications of duality and the absence of exotic res-
‘onances in all channels can be codified neatly by means of duality
diagrams (Harari, 1969, Rosner, 1969) The rules for drawing a legal

diagram are extremely simple :

ot
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- i)-Tﬁere are'thrée tyﬁes'of lines corresponding to p, n, A quarks.
Lines do not change their identity. |
_ ii) Every external baryon islrepresented by three lines running in
the same dipectioné._ |
- 111) EVgry external meson 1s repr§sént9d.by £wo lines running in
the 6pposit¢ directions. ’ | |
" iv) The two ends of a simple line cannot belong to the same exter-
. nal particle. L o |
v) In any B=1 channel (s,t or u) it is possible to cut the diagram
 1nto.two, by cutting tﬁree quark lines. Similarly, in any mesonic
‘channel we should be able to split the diagram by cutting only two
.lines. |

If the diagram can be dfawﬁ so that no lines cross, the dia-
gram is said to be planar and exhibits duality in the two channels
(Fig 31). If the diagram contains lines-that cross, it is non pla-
na} and will possess intermediate states that are exotic. Planar
duaiity diagrams lead to high energy amplitudes with imaginary parts,
while non planar diagrams imply purely real amplitudes at high ener-
gy. As an example, in Fig. 32 diagrams describing meson meson scat-
tering and backward meson baryon scattering are illustrated. Similar
duality diagrams can be drawn for procesées such as meson=baryon
—> meson-meson-baryon (Fig 33). |

One should pay a special attention to the role of the pomefon
in dﬁality-diagrams. For example K+p and pp scatterings are control-
.led #t-high energies by the pomeron so that we cannot allow the
§oméron td be dual to resonances. Qne possible reason for this_ is

that its slope seems to be smaller than other trajectories. There-




fore dual models should be constructed for amplitudes from which
the pomeronchuck contribution has been removed (Collins, 1971;1972).
" The duality diagrams make no reference to characteristics

such as spin, and this in turn makes the duality diagrams limited.

3.6- DUALITY,DECK EFFECT AND THE A

' Earlier in this chapter we saw that high energy Regge beha-
viour is consistent with low energy resonance behaviour only if ex-
trapolation of the smooth Regge representation down to low energj
glves a certain semi-local average over the resonance peaks. In other
words, what is usually called the peripheral approximation to a re-
action amplitude must; without containing poles in the energy -plane
ih a rough sense, renreeent the resonances, Chew and Pignotti (1963)
argue that the Deck peripheral model for the reaction TN —= RfN
(Fig 34) explaining a peak in the final‘@pmass spectrum without ex~
plicit insertion of a resonance therein, fails to imply the absence
of a resonance. On the'contrary, dualit& means that when peripheral
models predict large cross sections at low subenergies (i.e. energy
'of a subsystem) there probably are resonances present,

- However, they observe that the concept of duality makes empty
a discussion of whether there 1is an Al or just an enhancement by
]some peripheral mechanism :'Qesonanees are-éenerated by peripheral
exchanges. The Regge (or elementary) pion exchange amplitude is the
- appropriate high energy description of the Tpsystem. ‘Yhen extended
down to:threshold it provides an average description of that mass
region; If the smooth average is large at low mass, duality reqni-
res the existence of resonances. Some more detailed discussion will
be made in the following chapter, . |
@Eeeeeeeee .
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CHAPTER 4 °

Further investigations and conclusion

| Previously we-saw a sﬁccessful.Deck model deseriptior of Al-
‘1ike objects would, through an extension of the duality hypothesis,
support ehe contention that these enhancements were mainly resonant
"in nature., ﬁere, we wish to study fhis in some more detail.
_ The Deck model for the reaction EN—TYN ras been given in
Fig 34, corresponding to a double Regge pole representation which
is valid when both of the WN and Af final subenergles are large. Sup=-
. pesing that one can keep fixed all the relevant variables except the.
Rf subenergy, one gets a singly peripheral description. Now one can
argue'dualitf reasoning : If the Deck model is accurate for large
values of the TJ subenergy, duality requires the model to yield a
~semilocal averaée description of the cross section at low values of
this eueenergy. . |
Let us assume factorization of the amplitude on its variables
as either qne.or the other become large :- |
Meg, o spy) ~ &, (5g,) Ban' Sen)
where Regge behaviour on each factor is assumed for,. say, sﬁ‘f)Nl:f end

SWN)'ERN : |

. g (S ) ~ C ("I'ol)

ol
7‘)’%’
()~ S22,
wN N wN 1N“

'_ Keeping s WN fixed at a value greater then N*N’ duality says that a

certain average of gﬁ? EE?) over the-range SEP below NWP will be gi-
~ven by (4.,1), The result will .ot be altered if we keep s rather than

SaN fixed. Now, suppose 8 to be sufficiently large that an lies ab-



_ové.N*N'for“all s, below N , .then )

Y ‘f _
. 2
| A(swf y .8) s’ﬁ;ge gv(sv Co (s (S’SU’-)) .
We define the amplitude
- 2 ‘
A(sﬁy,s) (s N(s sf )) A(sf ,8) (4.2)

which exhibits the duality phenomenon when averaged over low SEP
'at fixed (large) s. Since the term in brackets of (4.2) is positive
definite and smoothly varying, we conclude that an average of A(SEP ’

s) itself over the low s region/ with s fixed at a large value is

P

correctly given by the double Regge representation., This is the de=-

sired result, | :
Since for singly peripheral models the prediction of large

'lpw energy cross sections corresponds to the presence of resonances,

the same 1s 1likely for multiply peripheral models., Thus, Dock's

| -éalculation mighf bo described as a prediction of the Al ! |

On the pfher hand, however interesting the reqult may be, there

' are some objections to the above discussion. The first one is that

duality relates imaginafy parfs pf'Regge exchanges to resonances,

? pion exchange gives primariiy a real exchahgé amplitude. Chew and

" pignotti (1968) extend the applicétion of duality in order to make

statéments about l_AI2 and not about Im A. This extension has little

support from the v;f& well known 2 =——» 2 ﬁrocgsses. Therefore, éince

" the ﬁeal part of the t chaﬁnel Regge aﬁplitude is not related by -

duality to fhe low mass s channel amplitude, there may be only a

fortuitoﬁs agreemen@_between the Reggei;ed Deck model and the low

_.mass enhancements. | N |

Another objection is due to Cohen et al (1972). They study the

two reactions
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Rt ap—ats fo +p (4.3)

2 4p— + 9 +p. | (4.4)
"They uge Reggeized Deck model as.a framework to compare the dual
regime of (4.3) wifh the identicé.i kinematic region in the 'cha-
rge exchange! reaction (4.4). Ih order to compare thé data with
" the pfedict;ons of a Reggeized Deck calculation, they restrict th- '
.eir_sample of events to the kinematic region appropriate to the

model, i.e., £ (05 GevZ, t (0.5 Gev’

— R Reap
The square of the matrix glement displayed in figures 34 and 35 is

and M )156ev._

8 _ /N 2“» q2
'M| q B(s'm) 1l- =COST, (s /s ) 9 (dt dm)exp
where q is the momentum of the pion from the p decay, calculated
- in the rest frame of the f» B(s,,) is a function which describes the
. fline shape,dR =t -ma; 5 el Gevz,/.%is gome constant and is the
—f

product of form factors plus couplings at the ¢ vertex, 5, is the

square of invariant mass -of the x N system; 9 is the momentum of N

2
. 2, d%a .
tn the RN rest frame, 8,=8 3 -t"-'fi‘ -m; and (————dt i )'exp is the

experimentally measured on-mass shell w p elastic scattering cross

. sgction for reaction (4.3) and the charge exchange cross section for

#"p —>2°n for reaction (h.4). |
| | The‘fﬂ'masé spectra for the selected events from both the rea-
ctions (4.3) and (4.4) are shown in Fig 36. It is surbrising that

- these simple calculations pr9vide an adequate representation of both
the shape and the magnitude of the doubly charged Al mass region in
reaction (4.4)(F;s'36b5. Thua'thpleimilarity of the shapes of the

- two fighreél*fafmthééé'twq;rqacﬁiqﬁ;! neér-fhé A, reglon leads us to

ERTIN -
. T -
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- gness.tnat this doubly cherged-tpanticle'(A;').alsq exists in the
react;on (n.h) in the-same way as AI exists in the reaction (4.3).
The_coneisfency found between the Reggelzed Deck calculations

| and the-characteristics observe§ for lew mass enhancemente (e.ge Al) '
were cited as confirming evidence for the equivalence of the reson=«
.ant'end the.Regge descriptions of these objects. However, the close
agreement between the calculated and the experimentai spectra for
fhe exotic enhancement in reaction (4.4) suggests a re-examination
of the 'simple' dual interpretation of the success of the Reggelzed
' Deck'model, as, otherwise, the result would show the existence of an
exotic meson (I=2).

| In brief, Cohen et al conclude that one cannot use the Chew,
Pignotti argumenf for tne support of the resonant interpretation of
Al like particles, unless one aieo accepts the existence of exotic
' meson resonances. Therefore the situation of the Al remains unclear

:and debates go on.

" 4.1- A DUAL MODEL FOR THE A,

_ ;. Dual models'present us with an opporfunity to resolve the pro-'
blem. Let us study the diagram in Fig 37.which is due to Berger(l97l).
For the case of Al production in the reaction AP —Y YD, particles - '
are identified in parentheses. The Al is a threshold enhancement in
the (23) system. The dual amplitude for the reaction ab —> 123 sh-
ould contain all known resonances.present in the final state. For

‘ﬁ instance; in the (23) channel, there may be an Aa_resonance as nell
as all recurrences of the pion. Furtheremore, the amplitude will

have a pion excnange pole in the tb3 yariable whieh supplies the us=-

. ual Deek background. Working in the dual framework'has.the advantage
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thét.both Regge exchange terms and'direct channel resonances appear
in the amplitude in an explicitly-dual manner. In principle, there-
fore, ne'have_an excellent.framework in which to ask whether fits to
.experimental distributions require an Al resonance and/or an Al tra-
jectory. Note that the mere existence of dual models does not solve
the-problem of nhefher the Al is a resonance. Only the data can de-
cide, and so we must fit the data, Before that, we are free to con- .
struct amplitudes which have explicit Al resonance poles as well as
amplitudés which explicitly do not. However, we are not free to le=-
ave out pion exchange,'since pions are known to exist, The dual fra-
meworh allows us to construct amplitudes which are meant to be a pr- -
oper description of pion exchange, both in the high energy region
and néar threshold. |

| Unlike hhe other'papers on dual models for diffraction dis-
‘sociation (Pohorski and Satz,1970; Bartsch,1970), which assume that
threshold'enhancements must be represented as resonance poles, Ber=-
ger dispels this notion in his model. He explicitly assumes that
:there is no pole in the Al region, In the diagram of Fig 37, pomeron
exchange couples the upper pp vertex to the lower dissociation one.
- Since we want to have no direct channel poles near the =g threshold
trajectory as well as the first recurrence pole of the pion

1l
'trajectory is excluded.

The amplitude relevant to the figure 37 where spin dependence

is ignored and which has .no-. resonances near, the Al location is

olp. | '
A-n _ﬂ‘y_p : c 312 exp(atal)(B ( °§\~(tb3) l- °§’(tb2 +

By ( o4 (s 3),-* (t 3))+...-) (4.3)




whére the dots sfand for terms which are necessary to enforce cros=
sing symmetry but we need not consider them here, The only term
which.is crucial in determining the xp mass distribution near thre-
'.éhold is the first one. .The second term contributes in generating

. the signature factor for the exchanged pion.

In the high energy limit, 525 —ﬂrd», with tb} fixed, equation

(4.3) becomes  _,

A —p O 5:2 °"P("‘t 1)(1*;-?#&(%3);). s:;(tb})F(

g - Pleeg(ty5))
which-in'turn shows the'correét.Regge behavior associated with a
doubly peripheral (7,P) exchange graph. Using ﬁn(t)=o.9(t-mi), ﬁf(t)
=o.5+o.9t and<¥P=l, the normalized cross section da/thr computed
. from (4.3) is given in Fig 38 which is in good agreement wifh data.

Thus, the A, bump can be explained perfectly well, purely as pion

1
exchange background, even within-an.expliciﬁ dual framework.,

: Aslit is implied, in calculating the amplitude (4.3), several
approximations have been made : Ignorence of spin dependence; the
;pbmeron (since it is'nbt-an ordinary Reggé trajectory in dual-modél,"
if it‘were dual to resonanceé, then exotic states would exist); and,
of coufse, unitarity. Better agreement can be acheivedlif any of
.thesa approximations is handided, |

o . e e
To have a nice ending we discuss the following :

A bump is observed at about 1.4 Gev in the®N invariant mass spec-

, trum in 7t production experiments at high energy in pp —>p + (RN)
processes_and is often intgrpreted.ab a resonance. One can ask 1if

HEREER




this bump 1is due to a resonance. Therefore, as in the case of the

A, , there are two ways of interpreting the 1.4 Gev bump; one regards

1’
the-peak_as a resonance with an appropriate background, and the other
regards it as a kinematical effeet, It is worth mentioning that a
.Deck type moeel can show the existence of the bump, |

Kaglyama and Masayuki (1970) give a model (Fig 39) which is
based on the Deck type model, The two other alternative figures which
are equally valid are shown in figure 40, However one can show that
. the contributions from these two figures to Si and Pi are of almost
-the same'magnitude and of opposite signs. Therefore, the resultant

‘is due to Fig 39, where,heglecting the spin dependence, the appro-

'_priate amplitude can be written as
: > .

T = (q,) (3 ‘E'Ef:A"‘a)" o ) ()2 Pul-s0iPe DD}y |

| | 8 » Tgulpy)

where gWN(t) is the t dependence factor of the differential cross

section -(do/dt? = A exp(-btZ)) and Fp(p®) is the form factor of the

off mass shell pion and is normalized to 3%3 at A2=-p@, g2/4n=14.?.
To support the idea of a major part of the bump having a kine- .

maticai,nature, one can say that this bump has not been seen in the

" photo- or ehectron-pion production, such as

R e

'-or e +p-—-)e+(1!+N)+

et high energyr Besides, if we have a process where the Deck mecha-

nism doee not work, the 1.4 Gev bump will disappear. The X p invariant

mass in P -—M'R p may be such an example. In this process the

| backward scattering of n x at high energy works but not the diffrac-




tion scattering. If the backward'scattering of m?x? is dominated
by a f Regge pole and the backward differential cross section is
pronortional fo'the_factor exp(-Bta), where t is the four momentum
" transfer from the outgoing no to the incident X, there is also
some kinematic constraints on the distribution of the final pan-
'ticles. Thus, the bump is neither the‘pure resonance nor the av-_:
enege of some resonances but the kinematical effect due to the

- diffraction scattering at least for its major part,

| On the other hand, if the Chew-Pignotti line of reasoning
.holds true, the dissociated syetem will be controlled ny the ﬂ§
-Regge-pole. Two invariant mass spectra are different: the R+n o
combination has the 1.4 Gev bump but the x " p combination.does not.
_The difference between the two combinations comes from the dif=-

: ference of the Regge pole exchange between the incident © (R )
and the dissociated m°(n") so that this means that the 1.4 Gev
bnmp is genErated mainly by the interaction between one of the -

; dissociated particles and the other initiel particle, that 1is,

the bump is almost the kinematical effect.

» * *

4 3- SUMMARY AND CONCLUSION

. As we saw in chapter two, the Al appears as an enhancement
jus£ above Ry threshold. For some time, it was thought that the
Al wes a weak resonance eupported by allarge kinematic (Deck)
'.backgreund;,This interpretation is difficult because both 'reso-
nance' and backgnound appear' to have JP=1+. On the other hand,

the.full width of the Xp mass distribution generated in the simple

- “Deck model is not es-narrow as that of peaks observed experimen-



7 tally; thus, it wés also difficult to beleive the entire peak to
be kinematic background. This objection was removed by Berger (
'1968). He showed that if the pion in the Deck diagram is Reggei-
zed, theﬁ tﬁe predicted mass distfibution is a resonable repres-
‘entation of the data. Chew and Pignotti (1968) subsequently in-
_voked_duaii@y to assert that a kinematic enhancement, generated -
by particle exchénges is equivalent to a resonance, This state=-
meﬁt would define the ambiguity out of existence, if there were
not é few unusual ramifications. One of the most important ones;
as we saw earlier in this chapter, is the implication of exig:
tence of exotic resonances (Cohen et al, 1972),

Most of the present discussions center around the kinenm-
atical interpretatibn of Ay This, in turn, although it does not
prove anything, gives us the feeling that perhaps the Al is real=
li a kiﬂematic gnhancément ! On the other hand, one should not
' forget the Breit-Wigner resonance fit of Fig 21.
| _In conclusion, the result of Cohen et al encourages us to

state that as far as no exotic states are found, the kinematical

interﬁretatibn of the Al seems to be stronger,
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Fig 1.
Fig 2.

Fig 3.

FIGURE CAPTIONS

Dalitz plot for 'p — n *¢% at 8 Gev/c, showing enhance-
ment at large Xp mass, including the Al and A2 bands.
A triangle Dalitz plot+£or K+p-—-9' K+p7€nF for 10 Gev/c ka-
ons. The K*(890) and A" "(1236) resonances are obvious.

An Argand diagram which exhibits all of the parameters of the

- relevant text. :

Fig 4.

Fig 5.
Fig 6.

- Fig 7.

- Fig 8.

Fig 9.
_Fig 10.
Fig 11,

Fig 12.

Fig 13.

Typical resonance configurations; (a) pure Breit-Wigner,r‘el)
%FtOt; (b) pure Breit-Wigner,l‘el( }FtOt; (c) Breit-Wigner
with attractive background; (d) Breit-Wigner with repulsive
background,

The circle of convefgence of the Breit-Wigner expansion.

Unphysical sheet pole lying on the real s-axis bélow the low=-
est threshold. :

SU(3) classification of particles (Bacry, 1967). It is inter-

.esting to see that in the meson case particles and antiparti-.

cles appear in the same multiplet whereas this is not true
for baryons. )

Forward and backward peaks in 7t+p —» k*s*. Here one can
have either a non exotic meson or a non exotic baryon.

‘Purely forward peak in K p —» RN,

Purely backward peak in Tp— K27,

Scatter pléts of the effective mgss_d}stribution for the two
particles composite in ®* p —> X pn n . The mass projections
are also shown.

The projection of events on the Ma(fom?) in the reaction ¢'p-
—> f°x*p when N*** 15 excluded.

The gxX enhancement.

The effective mass distribution for R+n'nf combinations for
events with M(R*p)_outside the N*** interval. The smooth cur-

. ves represent 37t phase space normalized to events outside the

Fig 15.
Fig 16.

Fig 17.

Fig 18.

peaks.

Single particle exchange diagram giving rise to a kinemati-
cal peak in the Rp mass spectrum { the Deck effect).

Piot of the differential cross éection obtained from the dia-
gram of Fig 15. B

Comparison of data of Goldhaber et al (1964) and calculated

. Deck diggram_in Al region.

Impfoved Deék-type calculated curve of Maor and O'Halloran.




Fig
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Fig
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Fig.
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Fig
Fig

- Fig

Fig

19. A more realistic diagram proposed to expiain the Al.

20, ghree pion effective mass distribution for reaction x?p——#

Rﬂ'fp with both p7t+ mass outside the N* region (1.12 to 1.32
Gev)., The curve shows the one pion exchange prediction.

21.. A resonance fit tox'p —> pa'p® —= pr'a nt at & G°"/ c.

22. Reggelized Deck diagram,

23, Comparison of Deck- and Berger-type model for the reaction
RN —rn pN at two different incident energies.

24, Production of A, in the reaction T p —— PER'K ™ 7 «

25. Missing mass spectrum plotted versus M2 for the reaction x'ﬁ
—> pB” for M _{1.88 Gev at an incident momenta of 16 Gev/c.
B . .

-B' denotes the missing mass meson with negative charge.

26. '1_‘hree pion effective mass distribution with events in the [_\“
(1238) region removed.

27. Cross section for Ai and AE production as a function of py .

The lines correspond to an energy dependence given by a tra-
jectory with o{(0)=0.55 . '

28, The descriptions of the hadronic scattering amplitude in (a)

s=channel, (b) t-channel.
29. A diagram'showing the interference model. -

30, The Veneziano amplitude in the s-t plane. The poles occur
where ot (s) andX(t) pass through positive integers, and the
lines of zeros connect the pole intersections diagonally in

.. order to prevent there being double poles. '

31.. Regge exchange diagram éﬁd the duality diagram for, (a) *°p

— K° A (backward), (b) K'n —>nx"A (forward). (a) is a planar
duality diagram, while (b) is a non planar one. .

32. Diagrams for, (a) meson-neson scattering, (b) forward meson-
. 'baryon: scattering, (c) backward meson-baryon scattering. The
s and t channel intermediate states are marked by dashed lines.

33, (a) Diagram for MB—3> MMB and, (b) < (f) its various alter-
native descriptions. Every one of the five descriptions (b)
to (f) may, in principle, be a complete picture of the ampl-
itude. They should .be - summed over all possible intermediate.
states (Bl’-Bz’ My, M,, MB); which are marked by dashed lines

. in (a)ﬁ

34..A diagram'representing the Deck doubly peripheral model for -
_-- the reaction ®Xp —>XpP. T - _




Fig 35. The exchange diagram for ®™n —»R"9 p.

Fig 36. invariant mass distributions for those Ry events fitted by
- the model described in the text.

Fig 37. A diagram illustrating diffraction dissociation of hadron b
into system (23). Symbol P denotes pomeron exchange.

Fig 38. The histogram of the cross section versus invariant mass of

' x-.Po from the reaction 27 p —>1t",f°p at 20 Gev/c. The solid
curve is obtained from a dual model which, as described in
the text, has no resonance poles in the Al region,

Fig 39. The dominant diagram for the diffraction dissociation madel,

Fig 40. The other two possible diagrams for the diffraction dissocia-
tion model similar to that of Fig 37.
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