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ABSTRACT

This work mainly deals with iterative methods and
their rates of convergence, for the solution of non-linear

ordinary differential equationms.
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INTRODUCTION

Chapter 1, an explanation of previous work relevant to the

study of iterative methods for solving non-linear differential

equations in Chebyshev series is given, and an account of methods of

assessing and accelerating the convergence of iterative processes.

In
Picards
series.
results

In
methods
of each

In

Chapter 2 a detailed account is given of various methods:

and variations, Runge-Kutta, Newton linearisation and Lie
Their application to a number of equations and numerical

is also included.

Chapter 3, analysis of rate of convergence of iterative

of solution, based on the behaviour of the error functions

method, is given.

Chapter 4, numerical and graphical comparisons of theoretical

and experimental evaluation of the rate of convergence of iterative

methods

are given.
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Chapter 1

Introduction

In this chapter previous work relevant to the study of iterative
methods for solving nonlinear differential equations is described.
Since the methods considered are mostly based on the use of Chebyshev
e;pansions, a brief summary of the properties of Chebyshev polynomials
is included as the first section (1.1). The next section (1.2)
describes methods which have been suggested for the solution of
differential equations and also of integral and integro-differential

equations, and in section (1.3) an account is given of methods of

assessing and of accelerating the convergence of iterative process.

(1.10)Properties of Chebyshev polynomials

(1.1.1) Definitions:

(i) Tn(x) cos(n cos™ ! X), -lsxs<+1

(i) T &) = T (2x-1), 0<x<1
n n

Since any finite range of values of x can be transformed to any other
finite range by a linear change of variables only the first definition

is used, i.e. ¥ is taken in the range -1 < x < + 1.

(1.1.2) Recurrence Relation:

) Tr+1(x) - 2x Tr(x) + Tr-l(X) =0

(1.1.3) Product formula:

T (x) T,(x) = 5{T_  (x) - Tlr_sl(x)}

wAM UNIVESS
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(1.1.4)Integration: r/
Tl(x), r=0
[r e = Jdar,eo, -
T ,(x) T _,(x)
r+l r-1
Mg - a1t >!

N
-~

from which

1(x) +1, r=0
X
[ 1 ax =< %z, 0 - v, r=1
-1
%{Tr_’_l(x) ] Tr_l(x)} e
r+l r-1 2 ’
< r -1
(1.1:5) Orthogonal properties:
1 r’n for r =s =0
f Tr(x) Ts(x)
(i) L = _dx =dn/2 forr=8#0
-1 . 1-x2
0 forr #s
AN
(ii) for n>0 and r, s <n
s
n, r=s=0o0rnmn
‘n
YT (x) T (x) = <5 r=s#o
Tr xj s xj = 7 r =s or n
j=0
0, r#s
AN
where xj = cos i? for j =0,1,2, ..... , I

Note: The double prime on summation symbol here and elsewhere indicates
that the terms with suffix j = 0 and j = n are to be halved. We shall
similarly use a single prime on the summation symbol when only the term

with suffix j = 0 is to be halved.



For exampleg

"

(1) E; U, =% + U1 Foeienn + Un_1 + U
j=0
nl

D) ZU.=%U +U1+ ...... +Un_1+Un
j=0

(1.1.6) Explicit expressions for the first few Chebyshev polynomials:

T (x) =1
o
Tl(x) = x ‘
_ 2

Tz(x) = 2x° -1

T3(x) = 4x3 -3x
T4(x) = 8x4 - 8x2 +1

T5(x) = 10x5 - 20x3 + 5x%
T6(x) = 32x6 - 48x4 + 18x?- 1

(1.1.7) Inverse relations giving powers of x in terms of Chebyshev
polynomials:

1 = To(x)

x = Tl(x)

x2 = B(T_(x) + T,0(x))

x> = KGT 0 + T40))

= RO (0 + 47,00 + T, ()

x> = ¢ (10T, () + ST3(x) + T4(x))

x® = > (10Tg(x) + 15T, (x) + 6T, (x) + Tg(x))



(1.1.8) Calculation of Chebyshev coefficients:

(i) If £(x) is continuous and of bounded variation in the
range (-1, +1), then f£(x) can be expressed in the form of an infinite

series

£(x)

—’EAoTo(x) + A1T1(x) + o.n.

z ArTr(x)
=0

which is uniforms8ly convergent throughout the range. Using the

orthogonal property (1.1.5),

9 +l £(x)T_(x)
N il
r m 3

-1 1-x

n
9 r

= E-J £f(cosB) cos r6 do
o

This is a familiar representation in the theory of Fourier Series.

Here it is used occasionally for conférmation purposes.

(ii) The use of the orthogonal property of the summation
n! "
Tr(xj)Ts(xj), is of more practical use than integration;

j=o
its application is carried out as follows.

m
. 2 . | ]
Define c. = = Z f(xj)Tr(xj)’ r=0,1, ....n

j=o

m .
2"f(cos JE) cos rim s
m m

Jj=o

=N



jm ..
xj = cos i; (j =0,1, .... m)
Then - 1
Pn(x) = E; CrTr(x) with n < m is the least square

r=o

f(cos®) over the m + 1 equally spaced points

approximatgion to g(@)

9= %ﬂ with the truncated series weights % at the beginning and end and

1 elsewhere; and if m = n then
_ :
P ) = ) CT(x)
=0

is the Chebyshev expansion which takes the same values as f(x) at each

of the m + 1 points xj = cos if, j=0,1, .... m.

(1.1.9) Summation by recurrence:

The Chebyshev series

-4}
"t
f(x) = E_A T (x)
r'r
r=o0
may be truncated after any term, say the (n + 1)th to give an approximation
to £(x), an upper bound

[« -]
Y lal

r=n+l

for the truncation error being ascertainable at a glance. The

approximating finite series may be evaluated in two ways



(i) If the series is first rearranged in the form

f(x) = C.+Cx+ ..vvennn. + C X

It can be evalﬁated for any given value of X by the familiar process of

nested multiplication. This consists of computing successively the

quantities dn,:dn_l, ...... , d_ defined by
dr = X dr+1' + Cr’ T =m m-1, ..... 1,0
dn+-1 =0
Then f(x) = do

(ii) It is possible, however, to evaluate f£(x) by recurrence

directly from the Chebyshev coefficients Ar' We form successively

bn, bn-l’ ...... s bo from
b = 2xb_ -b.,+A, r=mn, ... 1,0
Bt T Paz T °
then f(x) = %(b° - b2)

(1.2.0) The use of Chebyshev polynomials in solution of differential equations:

In considering the use of Chebyshev polynomials in solution of
differential equations, it is necessary to record first the effect of
differentiating or integrating a Chebyshev series and hence the relations

which exist between the coefficients in the series for a function and

its derivative or integral.




(1.2.1) Differentiation:

[- -] -}
1 b
If £ = )AT GO, 1) = ) CT (),
r=o r=0
[+ ]
then C2r = 2;2(25 + 1) A2$+1, for r = 0,1,
s=r
o
C2r+1 = EJZ(ZS + 2) A2$+2, for r = 0,1,

S=r

For the truncated series

n n-1
- =,
Px) = ) AT GO, P = ) T (x)
r=o r=0
Cn-l B ZPAn
Cn_2 = 2(n-1) An-l
Cr-l = 2r Ar + Cr+1 forr = 1,2, ..... , N=-2
(1.2.2) Integration:
Q' ca'
_ Ry
If  f(x) = ZArTr(x), jf(x) dx = ) bT (x)+b
r=0 r=1

where bo is an arbitary constant, and

1l
ot
-
N

= 1
b, = (A ) - Ay forrs

For the truncated series n ntl
L AT, [Peoax = )
L,ArTr(x)’ P(x)dx = brTr(x) + bo

r=o0 r=1

P(x)



A

.
and bl T 2D
b - An-l
n Z_n
b = 1 (A - A ), r =1,2 n=-1
r 2r T r-1 r+l”? 3Ty

For the interpolating series P(x) = Z"ArTr(x) the results are similar

with A replaced by %An.

(1.2.3) Integration of a function:

Clenshaw and Curtis (1960) [3] suggested as a procedure
for integrating a function f£(x) defined and well behaved in the range

-1 < x < +1, that, using (1.1.4) and (ii) of (1.1.8).

X m+1
[ewae = ) b100
-1 r=0
m m
" 2 N
with £ = ) AT GO, A = 2 ) "RGOT (x) and
Tr r m 7]
r=o j=o
X, = cos %f, and then b's and A's are related as in (1.2.2) with
%n (-1)j+1A,
b = —1 - 3
o L .2 1
. j =1
j=o
j#l

Similar expressions hold if £(x) is written as E;ArTr(X) with n < m.

r=o
This method expresses the indefinite integral as a Chebyshev series.

Elgendi (1969) [4] suggested a different approach, he connects



X .
the values of the integral j f(t)dt at the points xj = -cos 48

m
-1
(j = 0,1, ....,m) with the values of the function at the same points so
that

[ Jeou] + al]

-1

where B is a square matrix of order (m+l) and f is the column vector
whose elements are f, = f(-cos %f). This evaluates the integral at a
series of points instead of producing its Chebyshev coefficients. If
f(xj) is calculated at the points xj =-cos %f and represented in the

form of a Chebyshev series
m
ArTr(x) ;

r=o

then f, A are connected by

N e

where f(xo) A

£ = f(xl) A = A

f(x ) A
m

and 3 ) r_.. -1
%To(xo) Tl(xo) e %Tm(xo)

T o= AT (k) Ty (x)) 5T_(x))

BT (k) T, (x) 5T_(x)




‘Then if
F(x)

F(x,)
-

and F,b are connected by

F
~

Where..

>

and

Tl

an (m+l) x(m+2) matrix

Ixf(t)dt
-1

X,
j I g(e)ae
-1

T'b

F(xo)

F(xl)

F(x )
m

B

To(xl)

0(xo)

To(xm)

m+1
= ZbrTr(x)
=0
m+l
= brTr(xj)
r=o
(1)
[ 1
b = b
A 0
b1
bm+1
Tl(x ) B Tm+1(xo)
Tl(xl) ..... Tm+1(x1)
Tl(x ) Tm+1(xm)

10.

Also from (1.2.2) the coefficients bf's and Ar's have the relation

b

Ma
"

(2)




11.

[ ]
m+l
where ¥  -% -% P -(_+
2(m ~1)
M =
% 0 -5 0....... 0

[« Y L
o

an (m+2) x (m+l) matrix.

The relations (1) and (2).will yield

F = T'b = TMA
~ ~ ~
= NA

where N = T'M is a square matrix of order (m+l) and can be shown to be

non-singular.

Hence A = Nt F
and TA = TN'lg
= f
Therefore F o= (TN_]')_1 £
= Bf
where B = (TN-l)- is a square matrix of order (m+l)
and



12.

The main advantage of this method is that for a certain value of m the
elements of the matrix B can be evaluated once and for all independent
of the particular function f(x). The method in fact gives alternative
quadrature formulae to those obtained by the usual finite difference

methods.

(1.2.4) Use of Chebyshev expansions in solving equations:

Any method is designed to produce a series solution of

finite degree m;

m 1
(u) _ Z ,
y ‘(x) = | ArTr(x) (i)
r=o0
which approximates in some sense, the exact solution

yx) = ) AT (x) (11)
r=o

Suggested methods for linear systems are described briefly so as to

illustrate the ideas which can then be applied to non-linear systems.

(1.2.5) Direct methods (linear systems):

The idea of these methods is to reduce the solution of the
equation to a comparison of Chebyshev expansions. From (ii) above and
using the result in (1.1), it is possible to express y'(x), I&(x)dx,
and xpy(x) in similar form; hence any linear differential equation with

polynomial coefficients may be reduced to a set of linear equations
® !
z QrsAs - Rr
s=0

and any linear boundary condition adds a further equation

wl

Y ba =
rr

r=o
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Initial or boundary value problems, in which y may be a scalar or
vector quantity, all fall into this scheme; the solution is then

obtained by solving a restricted set
m , m
Z QrsAr - Rr’ z DrAr = ¢
§=0 o r=o

The method is described initially by Lanczos (1938) [5] and
developed by Clenshaw (1957) [6] and Fox (1962) [7]. In Scraton (1965)
[8], it is extended to the case where the coefficients are not polynomials
but may be approximated by a (low degree) polynomial, and further
extensiorns to general boundary conditions are treated in Smell (1970)

[9]. .:Knibb and Scraton (1971) [10] apply the same idea to replace a
partial differential equation by a set of ordinary differential
equations in the Ar' The truncation error as estimated by varying m,

is described in [7] and by Phillips (1967) [11].

(1.2.6) Collocation Methods:

In these methods the equation is satisfied exactly at a
set of M selected points. It is then not necessary to express each
term in the equation in a Chebyshev series, and this enables a wider

variety of equations to be tackled. Any pth order linear differential

equation

q (%) £y 4 q ,x) Ly ... + q (x)y = r(x)

P -1 p-1 (o)

P dx P dx

reduces, on substituting
-]
]
y = z AT (%)
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and using results in (1.1) to
(D'
) o Goa = £
r=u

Where the Qr(x) are functions of the qr(x) and are linear in Tr(x).

This is now required to be exact at xj, j =0,1, .... m and hence A's
satisfy
[
1
z Qr(xj)A = r(x,)
r=o0

® 1]
z; DA = C
rr
r=o
A limited set of these equations are again solved giving HO,QI, ..... ,hm.

This method was Suggested by Lanczos (1938) [5] and developed by Clenshaw
and Norton (1963) [12] and Wright (1964) [13]. The selection of
variable points X, is discussed by Osborne and Watson (1968) [14].

oliver (1969) [15] gives a discussion of the truncation error. Proposed

. . im
sets include the extremam&Tm(x) (ie x, = cos —) or the zeros of

. (2i+l)m
T .(x), i.e. (x, = cos ' &=—).
mtl i 2(m+1)

(1.2.7) Linear integral equations:

Linear integral equations can be treated by techniques
which contain elements of both direct and collocation methods. Thus

in the Fredholm equation

1
y(x) - A I. K(x,s) y(s) ds = £(x)
-1
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Elliot (1963) [20] suggests taking for y the truncated Chebyshev expansion

n ]
}i ArTr(x) and determining the (n+l) A's.by satisfying.the equation

r=o

. im . . .
at the (n+l) points x, = cos %r. This gives the equation

n 1 f' 1 n 1

}Z ArTr(xi) - A J {K(xi,ﬁ) }E ArTr(s)}ds = f(xi)
=0 -1 =0

for i = 0,1,....n, -1< x, s <1

The Kernel K(xi,s) may now be approximated by the interpolating

polynomial of degree N in the form

N
K(xi,s) = ET br(xi)Tr(s)
r=o
N n .,
Where by i) = % 2 R(x;, cos JNE) cos(—EI-F—)
j=0

and so the Fredholm equation is replaced by n+l equations
n , 1 N n
T " 1
£ = ) AT G -r [{ ) b epr e ) AT ()}as
i rr 1 r i"'r PP
r=o -1 . r=o p=o

Which, using the product formula (1.1.3) and the definite integral

formula



N ;
or even r
+1 r2_1
I Tr(u)du = <
-1 0 for odd r
N

may be reduced to a set of linear equations in the Ar'

Elgendi (1969) [4] suggests a method based on the relation described

in (1.2.3) between the integral values and the function values.
is the (m+l)th order column vector of values of

X, .
J' L f(u)du, x, = -cos %’ (i =0,1,....m) and f

-1

is the vector values of f(xi), then

F = B f
In particular
1 m
F = I f(u)du = ' B f(-cos EE)
m+1 m+l,i+l m° .
-1 i=o
Thus 1 m
t
j K(x,s) y(s)ds = Bm+1,i+1 K(x,xi) y(xi)
-1 i=o
which for x = x, W
J fim
Sy
!
; ZBm+1,i+1 K(xj’xi) y(x;)
i=o

e 17 [y

The Fredholm equation then becomes

If F

"

16.
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iyl - Alc1T 1 = (]

or

(1 -r0)[y] = [f]

and so [yj (the vector of y at the points xi) may be determined.

(1.2.8) Nonlinear differential equations:

Direct or collocation methods would lead in this case to
nonlinear equations in the A's. For the direct method these would
result from expressing the nonlinear terms as Chebyshev series, for the
-collocation method, from expressing the values of the nonlinear terms
at the selected points in terms of the Chebyshev coefficients. The
solution will thus involve iterationm.

An alternative approach which has been adopted, is to use a linear
iterative process on the whole solution (i.e.-on the vector of A's, if
Chebyshev expansions are used); methods suggested are based on Picards
iteration (Clenshaw and Norton (1963) [12], Wright (1964) [13]) or a
Newton linearisation (Norton (1964) [16]). The Picards idea has also
been applied to nonlinear integral equations e.g. by Wolfe (1969) [17].
A full discussion of each of these methods will be given in the next
Chapter.

Another method suggested by Weyl (1942) [18] is to linearise the
differential equation itself; the Chebyshev collocation method can be
applied to this and results are described in Chapter 2.

Recent work on t:i-series generalises these methods and is
described in Chapter 3.

The factorlinterest in all these methods is the speed of

convergence of the iterative process to the truncated Chebyshev series
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solution. Comparison may also be made between these and other methods

which are briefly mentioned.

(1.2.9) Iterative use of Runge-Kutta method for boundary value
problems:

The Runge-Kutta method is a standard method for solving
initial value problems, by transforming into simultaneous first order
equations and using these to integrate from one end of the range--of the
independent variable to the other. Details of this method are given in
many books on numerical analysis such as [19].

The procedure is also adopted for solving boundary value problems.
This requires an iterative process in which the equation is solved as an
initial value problem and the unknown initial values are successively
approximated as functions of the values at the other boundary or

boundaries. An example is given in the next Chapter.

(1.3° 0) The -Orderof::Convergence

It is natural to consider first the definition of the rate of

convergence of an iterative sequence of scalars X5 Xy eene Ris oo

If the sequence converges to q, and 1i = xi:&and if

(1, ,)) a
;_li%_ where p is real tends to a non zero constant C, then p is the
(1,)

i

order of the sequence and C is the asymptotic error constant (see e.g.
Traub p.9 [26]). ?hg information needed can also be quantified, by
writing o for the ﬁumbgr of new evaluations required per iteration, and
then the informational efficiency Eff.can be written as a combination of
pt/a

p and o; p/a or have been Suggeétéd.
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In the case of an iterative solution of a differential equation in a
single variable we have successive iterates y(o)(x), y(l)(x) ceen y(i)(x)...

and a true solution y(x). As above, write the error
P = y P -y

Then discussion of the error in this form will require the evaluation of

some error norm of which the usual ones are

b b . oD 2 b
L, = I |e(x)|dx / j dx, L, = I e (x)dx / I dx,
a a a a
‘or L, = maxlé(x)|, a<x<b,

A relationship may then be obtained as above between the norms of

successive iterates.
If the solution of the differential equation is obtained as a

Chebyshev series, however, the iterates each give rise to a vector of

(D)

Chebyshev coefficients, and the relationship becomes,

A F(A(i))

~

(1.3.1) Error estimation of iterative methods:

For the various iterative methods suggested in section (1.2),
the solution to the differential system that we hope to achieve is of

the form - N

y(x) = Z arTr(x)

r=o
of finite degree N, which approximates the exact solution

y*(x) = z ArTr(x)
_r=o
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to some desired accuracy over the range (-1, +l1). The upper bound on the

error function e(x) [15] is given by

e(x) = y(x) -y (x)

N, @
= Y (e A)T () - ) AT ()

r=0 N+1
N ©
]
- Z erTr(x) - EArTr(x)
=0 r=N+l

At any stage, when selecting N for which
©
Z ArTr (x)
N+1

is small enough to be neglected, e(x) can be expressed as

N
e(x), = ) eT (x)
' r=0
where e (r =0,1, ...., N) are the Chebyshev coefficients of the error

function e(x). If after r iterations we define the vectors a(r) and

() .
e

e such that - . - -
a(r) e(r)
NCO NN I LB | °
~ a(r) ~ - e(r)
1 1
(r) elgr)_
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ko Jor
Then fer=mrmy first orderz iterative method, we have the representation
a(r+1) - M a(r) + b

.Where M (which will in general be a function of A) is a square matrix of
order (N+l) and independent of the coefficients a (r =0,1, ....,N),
and b is a constant vector. If the method is consistent then ﬁ, the
vector of the required solution, satisfies é = Mé + E, so by subtracting

these relations we get

STH) ME(r)
r (o)
e

~n

= M

o) . . . . \o
where e( ) is the error vector in the approximation a( ).
A

~

(1.3.2) The rate of convergence:

If M (the iteration matrix) is non deficient, then we can
. (o) . iy
show, by expressing e in terms of the equ-vectors of M, that the
~
. e see: . . o "
iterative process converges for any initial approximation a( ),iff

~

the spectratradius of M is less than 1, where the spectral radius

p (M) = max|A(M)].

In general whether M is deficient or not, we have
IR RIS
~ ~

where the norms are defined by

2 2
(i) ||e|| {|e0| + |e1| + oiennn +|eN|

max{ eigenvalue of (MTM)}%

el |

(i1) | Tl ]

A

(iii) p.(M)
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The average rate of convergence over r iterations Rr(M) is defined by
Rr(M) = -log||M"||/r.

This being the average decrease in log||e|| at each iteration.

xTMx

Since the Rayleigh quotient , has a maximum value of p (M) for all x,

X X

(r+1) _ y (®)

we have that if e then

e(r+1) e (1)

o(T)T o (1)
equality holding only in the case where e(r+1) and e(r) are eigenvectors

of M.

For an expansion in orthogonal functions ¢r(x), such that

l .
j w(x)¢r(x)¢s(x) dx

-1

O, r #s

It may be noted (Fox and Parker, p.44 [26] that for any function £

we have, writing

{] 1w(x)f2(x)dX}%.",

-1

|11

2
1€

N

EZK c 2 + (f-t , f-t ) p Where
rr n n

r=o

N
r=o

N
It follows that ||f| |2 > ercr2 so that with this definition of

o
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norm the function has a larger norm than the vector of its Chebyshev

coefficients, In fact, for the error function e(x) and its Chebyshev

expansion N
2 anr(x) we have
o
1 2,-% 2. 2 2 2
Jl (1-x e (x)dx = 2’[]0 + ’nl + ... + T]N
-1

(1.3.3) Acceleration Techniques: *

Formany problems, however)iterative methods may fail to
converge or converge too slowly to be useful. For such cases acceleration

..... x_. ) have been proved to

procedures of the form x = £(x_, x_ _p

be successful, in particular the well known Aitken's 62-formu1a. The
terms X , X .45 coo-- of the sequence of solutions can be either scalar
qualities or arrays. The main object of this section is to discuss
appropriate procedures to accelerate slowly convergent or non-convergent

solutions of both types.

(1.3.4) The e-Algorithm, (Shanks 1955, Wynn 1956,1962)

Let the sequence of scalars L (r = 0,1,2,...) be linked

with the sequence eér) such that
(r) _
€ = x
o T
(r) _
€ - = 0
Then the e-algorithm defines the quantities eér) to satisfy the relation
(r) _ _(z4D) (r+1) (r)-1
€1 = S5 t (eS - & ) o, =0,l, .....



24,

If the sequence X is slowly convergent then this relation provides

r) (r) _

a sequence eés which when associated with €&, =~ X can be far more

rapid.,

(r)

. r L
Regarding e, ~ as scalar quantities, we have

e(r) - (r+1) + 1
1 €1 (x+1) (1)
€ - €
o 0
- 1
xr+1 - xr
. (r) _ (r+1) 1
and 32 = eo + e(r'l‘l) _ (r)
1 €
x2 - X X
- r+l r r+2
2x - X =X

r+l r T2

which is in fact Aitken's 62-formu1a. It can be shown, Johnson (1971)

(r)

[21] that €2 is found by fitting the hyper plane

x =0 + al(xr+1 - xr) + az(xr+2 - xr+1) + e + ap(

where the g's are determined by the (p+l) lots of values of

{xr, X g0 reeees xr+p}’ r =0,1,....p. Then o, the intersection of
this hyper plane with 63 =0, s =1,2,....,p, is eég). If the terms X

are partial sums of a formal power series given by

«©
i
£(z) = Z Az
i=o
i
xj T = EAiZ; for some Zo
i=o

xr+-p - xr+p—1)
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then it can be shown, Genz (1973) [22] that

(D)

£(z) %)

Where [K, K+j]f(z)(zo) is the Pade's approximants to f(Z) in the form

Ktj K ¢
[K, K+j](2) = ? P 2 /{1 + % q Z } evaluated at Z = Z .
So the e-Algorithm can be used to compute Pade approximants for
some fixed points.

Also if xj is a sequence whose terms are given by

p .
= J
xj p 3 +Zbi Bi
=] .
with |31| > I8yl enennn > Iapl
then ség) = x, where x is the limit of the sequence xj.

(1.3.5) The E-Algorithm

Alternatively let the sequence xj have the terms

X , X .... such that

r’ “r+l’

x4 = f(xr) (3)

If x = @ is the solution of (3), and if for x_ = a-+ewe can have

the expansion
2
flo + €) =a + Ce +0(e")

Then it follows ([23]) that either

n+l

En(a +e)=a+0(¢ ) for C#1

' = 1 2 =
or En(a+e)-a+n+1e+o(a)forc 1
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Where En(xr) satisfies the recurrence relations

E(x) = x

or r
E(x) = E .(x +ot
n'r n-1""r+l)

n-1

-1
0-1 = EJ{[Ei(xr+n-i+1) - E:’.(xr+~n—i):I }

1=0

n-1

- z (B (g = By g 1))
i=o

-1

This isﬂferred to as E-Algorithm which is very much related to e-Algorithm

since
= () -
En(xr) = €, for n = 1,2,.......
In applying this approach to the case in which eér) and X X qseeee

are sequences of slowly convergent arrays and in particular vectors, the
main interest will be focussed on the terms which concern the inverse
of those vectors.

P. Wynn (1962) [24] has considered several possibilities regarding
the inverse of a vector {Xi}.

(1) The primitive inverse {;%} which deals with each component of

(r) *

€ separately, this is equivalent to the simultaneous application of

S
(r).

the scalar e-algorithm to each component of €

(ii) The Samelson-inverse of a vector which defines the inverse of a

vector x by
n -1
-1 - - -
x = { E:(xixi)} (xl, ceeees xn)
. i=1

where X = (xl,xz,.....,xn) and ir is the complex conjugate of X
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(1.3.6) The Extrapolation algorithm:

This is an alternative to the e-algorithm, based on fewer

evaluations of the original sequence. If the basic iteration is of the

form

24 = g2t

and if we define a coupled pair of iterative sequences xL and yl'Such that

L

where G is an operator, then Anderson (1965) [25] has established the
extrapolation algorithm which defines xl'+1 as a functio&ixlrl, xL, y]"-1

and yl; so that the sequences xL and yL converge more rapidly, than the
. L
basic sequence Z7,

Define a residual vector rL by

L L L

r =y -X

and
L xl'+ GL(xl—1 - xL)

y]' + e]'(y]'_1 - yl')

RL = %(VL - ul',_ vl' - uL)

4?_ e

where the inner product of two N-vectors u and v is defined by

w, being a non-negative weighting factor.

The parameter eL'is chosen so as to minimize the linearized

" residual RIT
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- 1. -
Hence _ OL = (r1] rL - rlrl)/(rL - rL 1, r - rl 1)
Define x]"+1 = uL + ﬂl(vL': ul), and if aL'= 1 then
1+ |2
X = v

= y5 4 oty - yh

and vL-uL = r]' + B]'(rl-l - r]')
Here the choice of the parameter @ is to make the vector F - ulj,

orthogonal to r]"_1 - rl, and so to minimize it,

This method is suggested as an alternative means of vector
extrapolation for many-component vectors, where the components may not
be regarded as independent. For such cases the g¢-algorithm demands an
equivalent number of iterates, whereas the above method only uses two.

In the work which follows, the main iteration methods, Picard and

. extensions . . .
Newton and thel variants and extremams, are described in detail. They
are applied to a number of standard differential equations and the

results are analysed. The solutions were all carried out afresh,

although some of the same equations and methods have been described in
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the literature, because (a) the descriptions do not contain enough
detail for rates of convergence to be analysed and (b) it was desirable
to test all methods.under the same computing conditions. Computing was
carried out on an IBM 360—67 and all programming was in single-precision
so that the results may be considered reliable to say six significant
figures.

The rates of convergence of all processes are analysed from the
numerical results; estimated rates for the various methods are also

obtained in some cases where practicable, by linearising the effects,

and also by the usual expansion approach.
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Chapter 2

Introduction

In this Chapter a detailed account is given of various iterative
methods, Picard and variations, Runge-Kutta, and Newton linearisation.
These are applied to a number of equations and the numerical results

are given.

(2.0) Picard's Method

Consider the first order differential equation of the form

£(x,y)

yl
(2.0.1)

y (&) M

Ince (1953) [28] had shown that any differential equation which expresses
the derivatives of highest order explicitly in terms.of the lower order
derivatives and the independent variable, can be expressed by a system of
equations and hence any such differentiél equation can be writtem as a
combination of equations of type (2.01). If equation (2.Ql) is replaced

by the system

y{(x) = f{x, yi_l(x)} (2.0.2)
for i = 1,2, ........

Where £(x, s 1) represents a function of all the dependent variables, an
iterative process is produced. Picard's iterative method uses (2.02) in

the form of the integral equation

X
g, G0 = n+ [ fx, y,_ G0)x (2.0.3)
;
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This is the basis of the existence theorem for ordinary initial value
differential equations and can be shown to converge under general

conditions,

(2.1) Clenshaw-Norton Procedure

C. Clenshaw and H. Norton (1963) [12] have set up an iterative
procedure based on the use of Chebyshev series in Picard's iteration,
applicable to the solution of both linear and non-linear ordinary
differential equations, The first step in constructing the solution of
(2.0.1) is then to represent yi_l(x) (the initial approximation to the

solution of (2.02)), by a truncated Chebyshev series of degree N:-

N
1
y. . (x) = 2 . =
¥ ® AT (x); v, ,(8) M (2.1.1)
r=o
Where the coefficients Ar (r =0,1,.....N) are known. The series
may be evaluated at the points

X = cos %?, s =0,1, ..... , M
where M is the number of sub-intervals taken in the range -1 < x £ +l,
using the recurrence procedure (1.1.9). Now let

N /
£{x,y,_; (0} = zA'rTr(x) (2.1.2)
r=o

then the right hand side of a given differential equation in the form
(2.01) represents an algorithm for computing the values of f(x,yi_l) for

any (x,y) in the region of interest, such that
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]
o

fxg ;1 (x))

[}
0
=]
7]

-
]
|
o
-
—
-
=

at x
s M

and by the aid of the drthogonal property of summation we get

M g
2 1] S;TT
Al': = M Z Cs cos—M— (2.1.3)
s=0 '
for r = 0,1,..... oN
and hence
N
]
1 =
Y = ) AL TG
r=0

The integral formula

= ' - A!
2rA . A - AL (2.1.4)
forr = 1,2,...., N+1 .
will provide the Chebyshev coefficients Ar(l) of the series
N+1

g, = ) AP T ()
r=o

which is the constant

(1)

The integral equation (2.1.4) does not give Aéi)

of integration. The boundary condition y(§) = 1| will yield A such that
) w W (1)
A = 20 + 2(A1T1-(§) + A2T2(§) Foeinennnan + A1 Ten (8))

‘N+1

[
Then the series }; Aél) Tr(x) represents an improved approximation to

r=o

the required solution.
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This process may be repeated until each member of the current set of
coefficients differs from the corresponding member of the previous set by
less than a prescribed amount, that is taken as a measure of accuracy
‘required.
‘Then Clenshaw-Norton procedure can be outlined as follows:
(i) The Chebyshev series for the initial approximation yi_l(x)
st

is evalsted at the points x_ = cos I, (s =0,1, ....,M).

(ii) The values of f(x,yi_l) are then computed at the same points

b3 - cos 28
s M
(iii) The coefficients A; (r = 0,1,.....N) of the series
N,
= ' -

f(x,yi_l) EJ Al Tr(x) are hence calculated.

r=o0
(iv) New set Aél), for r = 0,1,...., N+l, are obtained using the

integral formula (2.1.4), and the given boundary condition namely

y(€) = 1. _
N+1
v,
The solution y, (x) = 2 Ar Tr(x) is then aclieved and this sequence of
i
r=o

operations represents one cycle.

To illustrate the procedure, we consider'its-application to the

solution of

Example 1: y'+y = 0

]
|

y(0)

=X

]
o

which has the solution y(x)
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1
. 1
Let the initial approximation yo(x) = E: ArTr(x) to be 1-x, so that

yo(o)' = 1, then r=o

yo(x) = 1-x = %(2.0) To(x) -1.0 Tl(x)
and so
Ao = 2.0,-A1 =-1.0
In this example f(x,yo) = -yo(x) provides an algorithm to compute the

1
values of f(x,yo) = ZAr Tr(x), where we find that

'
! =
Al = 2.0, A =10

Al
2

A' =0
3

and hence using the integral formula, we get new set of coefficients

A (r = 0,1,.... ntl) where

Al - A
-_0 = _
A1 = 7 1.0
Al - A!
A2 A 0.25
and
K
A =20+ ) (DA
o 2r
r=
=21 +A, - A +..... )
= 2'5
(where K = [E%l] the max integer < E%l)_
) 2,
Therefore the new approximation %(x) = E; ArTr(x) is
r=o

%(Z.S)To(x) - T,(x) +0.25 T, (x).
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By repeating this process we obtain the 7th Order Chebyshev series
approximation to e * in the range (-1, 1) shown in Table 1.

It is clear from this process that after each iterative cycle the
order of the approximation is increased.by lland so for i < N the
approximation yi(x) is merely the truncated Taylor's series for e *
rearranged appropriately. For the general case this would not .be so, for
if we fix N and continue the process, the coefficients converge to the
true values less the truncation error. This truncation error can be

reduced by increasing N, e.g.

SR
Since yi(x) = E;Ail) Tr(x) is rearrangement of the truncated Taylor
 r=o
-X . s .. .
series for e , it is clear that its maximum error occurs at x = -1.

If N = 5 then this error is given by

5
r
RS
r=0

e =
= e-2.716
= 0.00162
In contrast comparison of the coefficients Ail) with A shows that the

error of yi(x) can be reduced; as the number of iterations increased, to
5 ©
ZIA(IO)_A|+Z|AI
r T T
r=o : =6

= 0.00017

where 10 is the number of iteratioms.
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Example 2:
, -2
y =5
y() = %
= X
Here, let yo(x) = 501 + 2)
Nl
= z AT (x)
'r=0
and N has the values 3,4, ......... s 15

The solutions obtained are shown in Table 5, which includes Ar of the

1 -
solution y(x) =2-+x = ZArTr(x).
P
Example 3:
— 2
y = x-Y%
y(0) = -0.72901
yo(x) = -0.72901 (1 + x)

N'

}Z AT (x)
r'r

r

and let N have the different values as the above example, the solutions
are listed in the Table 6. Where the number of iterations required to
obtain the approximations Ar is indicated on the superscript on Ar in

those tables.
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(2.2) Second Order Equations:

Clenshaw-Norton iterative procedure enables us to attack a wide
class of differential equations, but at this stage we are restricted to

non-linear differential equations of boundary-value type of the form
y'(x) = f{x,yx),y' (x)} (2.2.1)
with y(-1) =@, y (+1) = B
It should be noted that convergence does not necessarily occur for

boundary-value problems but must be investigated for each problem.

Method of Solution:

Let the initial approximation to the solution of (2.2.1) be

represented by

N
70 = ) a8 1

r=o

in the rénge -1 < x <+ 1., Such that

yi_l(—l) = a, yi_1(+1) =B
Also let
N 1
N (i-1)
1 = '
yi-l(x) L Ar Tr(x)
r=o
where the coefficients Ail-l), Aé(l-l) (r = 0,1,....,N) are of known
values.
. _ J(i-1) . _ ¢ha(i-1)
Then the series yi_l(x) = ZA_ Tr(x) and yi_l(x) TAL Tr(x)
can be evaluated at the points x = cos %F, (s =0,1,..... ,M) by the aid

of a recqurrence procedure similar to (1.1.9). Hence the values of
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f{x,yi_l(x), yi_l(x)} are computed by a given algorithm, for anf values
of (x,y,y') in the required region, and thus the coefficients A: of the

series

N
Y= Ex, v, G vl ) =) AT
r=o

can be computed'directly using the summation formula

) %5.

n = £ r'STT

Ar M | L fs cos e
S=0

= = ]
for r = 0,1,....,N and where f_. f{xs, yi_l(gs) yi_l(xs)}.

The relations

1 " = n .. =
2r AL =AY ) =AY r=1,2,....,N

2r A Al - A"

- o1 r+1; r=2,3,....,N

and the given boundary conditions will enable us to produce the new sets

of coefficients Ail) (1)

and A; and hence

N
v = ) a1

r=o

N
yy = Yy a® e
r=o

These new series for yi(x) and yi(x)-could be used to start another cycle

of the iterative procedure. To illustrate this, we consider Van der Pol's

equation as an example
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Examgle 4 y" = %(l—yz)y' - 1’—6 y

y(-1) =0, y(+) = 2.0

Here let N
-1 (o)
yo(x) = .ArTr(x)
r=o
&4 )
= %(AgTo(x) + AlTl(x)
- (o (» _
Now yo(-l) = %Ao - A1 =0
(O] (O]
yo(+1) = %Ao + A =2
Q) te) fo) (0 {9
and from these we get A = 2.0, A."=1.0and A, = A, = ...... = =0
o 1 2 3
1.e. y (0 = 5(Q2.0T (x) +T,(x)

= 1 +x

( 0]
and hence let yé(x) = 1, so that Aﬁ = 2.0, X& = 0.0, Kg = Aé = L. =

©

Then Picard's method will produce new sets of coefficients A? and

{ )
Ai (r = 0,1,....,N) where AZ, Az and Aé are deduced from the boundary

conditions such that

(» _ U} ) 0)
Ao = 2-2(A2 + A4 + A6 ot )
0] (1) {) ()
A1 = 1-(A3+A5+A7+ ....... )

>z
]

N
2 2(2r+1) A
2r+1

r=o

The process has settled to a reasonable approximation after 10 iterationms,

and the coefficients Ar of the approximation




I
1=
a>
]
%
N

y(x)

Where N was taken to be equal to 17 are shown in Table 7. Here the
truncation error in y(x) is so small as to be ineffective, while a
significant build of round-off error is expected due to the repeated

evaluation of the functions y(x), y'(x) and f{x,y,y'}.

Example 5:

Consider the problem
y" + lzy =0
y(-1) =0, y(+1) =1

It has the solution y(x) = sin A(l+x)/sin 2\ in the range -1 s x <1

m
for A # 5"

let yo(x) E(1 + x)

NI
r=

(where A = 1, A = %, By = cieeiinnnnn = A= 0).
be our initial approximation to the required solution, this being the
simplest polyﬁomial which satisfies the given boundary conditioms.
Taking A= 1.25'<'g the method of Picard iteration gave the values
which are listed in Table 2 which includes for comparison the leading
coefficients Ar in the finite Chebyshev series for y(x).

Example 6: As in example 5, with

m
A > 2

40.
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The results for this are given in the Appendix. The solution
diverges; explanation and treatment via acceleration prpcedures are
discussed in the nextIChapter.

In this example if we conéider the case A = 2, the solutions
obtained by Picard's are given in Table 3 which also includes Ar of the

solution

N,
y) = ) AT (®)
=0

The process was terminated after 10 iterations, and the degree of the
approximations was fixed to be (N = 9). In this case, however Picard's
method ﬁas diverging and hence it failed to get a reasonable approximation
to the solution y(x). Clearly this indicates that convergence -is not

secured for a wide class of problems when Picard's method is used.

(2.3) Application to Integral equations:

A similar approach can be used for problems originally formulated
as integral equations. Thus Wolfe (1969) [17] used the truncated

Chebyshev series

. N|
yx) = ) AT ()
_ 0]
The coefficients Ar (r =0,1,....,N) are in this case determined
iteratively by

+1
(xi) = ys(xi) + A j K(xi,t)ys(t) dt  (2.3.1.)
-1

Ys+1



N
]
where y (x) = E;A(S)T (x)
. s r r
r=o
f(xi) = yo(xi)
For each x, = cos %g, (i =0,1,....,N), K(xi,t) is approximated by a

polynomial in t of degree M of the form

Mll
2 br(xi) Tr(t)

K(xi,t) =
r=o
M
b (x.) = 2 ETK(x cos Sy cos L2T
i M i’ M M
s=0

for (r = 0,1,....,M)

Hence equation (2.3.1) becomes

M
ys+1(xi) = y(xi) + A _[1{ 2 brTr(t) ZAI(-S) Tr(t)} dt
-1 r=0

r=o .

the series E“brTr(t) and Z'Ais)Tr(t) are multiplied together and the

integration can then be carried out using (1.1.3) and (1.1.4). Therefore

for each x, = cos %F, ys+1(xi) can be determined, and hence the Chebyshev
expansion taking these values can be found as
N
N |
2 A(S+1)T (X)
r r
r=o

using the property of summation (1.1.6), where

A (s+1)
T

2N

N
2 y(x;) T (x,), r=0,1,..... ,N

1=0

and these are used in (2.3.1) to continue the iteration until

convergence is reached.
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This method can be-easily extended to the solution of Volterra

equation

X -

£+ [ Kex,0)y(0) at
1

y(x)

n
<

y(-1)

No further work has been done on this method in this thesis and it is

included here only for completeness.

(2.4) Weyls Method:

Weyl (1942) [18] suggested an iterative method for solution of

equations of the general type

where y(r)(x) denotes the rth derivative of y(x).
If the problem is an initial value one, for example if y(0), y'(0),...,
y(r)(o) are known, solving the equation as a linear differential equation

(r)
y

in , using approximate values for y,y',...... in £ and g, produces

an iterative procedure which is known to converge, nemely

X
= fidx
s = v e (2.4.3)
X X
_ J £dx | £.dx
(r) (x) x . i
or yi+1(x) = {y (0) + oj g; © dx} e (2.4.4)
( &%&k&ﬂg
whereyi is the ith iterate and fi = f(x,yi,yi, ..... A r-l)) andlgi.
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The values of ygr-l) (r-2)

g4l 2 Va1 o e s ¥y, are obtained by successive

ke
#edration. The procedure may also be used for boundary value problems,
but here convergence is not guaranteed.

‘The method may be applied to any equation which is linear in two

derivatives. For example the equation to which it was first applied.
ylll +yy|| =0

y'(0) =0, y'(0) =1

with y(0)
produces iterates Vo = 0
y" =1 giving y, = % x2
1 1
y; = exp(-% x3), and so on.

It can be seen that, this method is, when g = O, simply a variant of

Picard's method produced by a change of variable.

If
log y(r) =0
is substituted into
y(r+1) 4 f},’(r) -0
it becomes
u' +£=0

and Picard's method applied to this would produce, with U(0) known

(= log y(r)(o))

= U(0) —ojfidx

Uin
which gives af;idx
(r) _ _(v) ,
Yigg =7 ) e as in (2.4.3) above.

When g # O a further approximation is introduced. Picard's method now

would give, with the same substitution
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_ ¢ () ,
U, =000 - oindx +J 8,/ (2.4.6)
If dx Jng/y(r) dx
or 35 =y ) e
1ffidx s
- \
= e y(r)(O){l + fgi eV dax +..... } (2.4.7)
(o)

and from (2.4.6)

-n ’I‘
jf.dx an.e_U dx
od i i
e

-U _ e-U(o)_ N

off dx

1
(r)(o)

substituting this approximation in (2.4.7) gives

£ dx . x If dx

5
SRR AL OR S

which is (2.4.4).

The Use of Chebyshev Series in Weyls Method:

We now consider the details involved in carrying out the iterative
procedure while representing the functions which are used in (2.4.4) by a

polynomial approximation in the form of the following series:

N'
yi(x) = ZAka(x)

k=0

N

z' Ay Tl;(x)

k=0

yi(x)
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NI
" = "
yi(x) ZAk Tk(x)
k=0
NI
(r-1) _ E, (r-1)
yi (x) - A-k Tk(x)
k=0
N -
(r) _ 2 (r)
i (x) A Tk(x)
k=o
NI
(r-1) 2
A ! =
f(xssyisyis----:yi ) b‘!l Tk(x)
k=0
Nl
(r-1) z
! =
8(X, ¥is¥iseree¥y ) ¢, T, (®
k=0
Given the Chebyshev series for y(r 1), yir-Z)’ ceee g yi, ;s we
calculate the Chebyshev series for fi and 8- The values of y(s)
(s = 0,1, ...., r-1) can be computed at the points xj = cos %?,
(j =0,1,....,N) using the recurrence formula (1.1.9) and hence the

values of fi and g, are evaluated at each of the (N+l) points.

Us.ing the orthogonal property of summation (1.1.8) we obtain the

Chebyshev coefficients bk’ C (k = 0,1,....,N) such that

(r-l)
i

Zlh:

N,,
y CNRACRN (%)) T (x,)
—o




and

for k = 0,1,....,N.

Now let:
(1)
" where
(ii)
(iii)

E(x)

N+1

E(x)

H(x)

N
2 " (r-1)
X Ei g(xj, yi(xj).... vy (xj)) Tk(xj)

j=o

X
I f. dx
.1
(o]
N
. X
Z b oj T, (x) dx

k=0
N+1

Z' d Tk(x) |

k=0

N;
2 hk Tk(x)
k=0

+ EXP(-F(x))

47.
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N

Thus evaluatf.ng F(xj) at the points xj = cos LI (j =0,1,....,N) will

enable us to calculate the Chebyshev series for E(x) and H(x)

(i&) K(x) E(x) 8;

Nl
Z K, Tk(X)

k=0

Where this series may be approximated by one of the following methods:

(a)

(b)

«
}

. |
Multiplying the series E(x) = Xek Tk(x) by each term of the
k

.
series g ~ ch Tk(x). This is carried out using the relation
. k

Tm(x) Tn(x) =3 {Tm:i-n(x) + Tl.m—nl(x)}

and then equate coefficients of Tk(x) of both sides of (iv) to
calculate the coefficients Kk (K=0,1, ..., N).

(=D

Evaluating K(xj) = E(X'j) g{xj,yi(X_'j),....., A

3)} at the
point X} = Cos ﬁﬁ (j = 0,1, ..., N) and use the summation formula
(ii) of (1.1.8) to obtain K-

X

(v) G(x) = fK(x) dx
: o

N S
= Zl K kai") dx
k=0 o

N+1

|
- Z lka(x)
k=0
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Where
_ _ _ _ r+l
10 = 2(k2 k4+k6 . (-1) K2r),r>o
1r = Kr-1 B Kr-+1 : r=12, ....., N-1
2r
. 4
Iy N
1 = KN
2(N+1)
NI
(vi) Q) = ) qT (® = HE).6H)
k=0

Where this series is approximated by either method (a) or (b).

Hence
P = vy am + o)
i+l
N

Ej a(;) Ty (%)
k=0

is known, and successive integration would provide the solution y(x)

to the original problem,

To_summarize the procedure described here, we note that the right
hand side of equation (2.4.3) or (2.4.9 is reduced to a truncated
Chebysher series of known coefficients, This series i§ then integrated
using (1.2:2), wheré a set of (N+1) simultaneous equations is formed in
the (N+1) unknown coefficients, The solution of these equations gives an

|
improved approximation yi+1(x) = E:aka(x) to the solution of the
k



differential equation and where this may be used to start another
iterative cycle.
The essence of this method is demonstrated by considering

its application to the following examples;

Example 2: (Norton 64)
2
y' = vy
y(0)= %
Which has the solution y(x) = f1/(2-x) in the range -l< x < +1.

We reduce this problem to the Form
y' + f(x,y)y = g(x,y)

Where f(x,y) = -y, g(x,y)= 0

The iterative process will have the form

—J‘fi dx
Yoy ©°

1
s €

Yi41(¥)

Taking the initial approximation

N
i
=0
= 301+

and N has the values 3, 5, 7. the process converged to a reasonable

50.

solution after only 10 iterations, The solutions in the coefficients
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Ak (k = 0,1, ....N) are shown in table §5). Compared with the

'’
coefficients Ar of the solution y(x) = E:ArTr(x) = 1/(2-x), obtained
r=o
by N
y) 'l
Ar = ﬁ / f(Xj) Tr(Xj)
j=o
Nﬁ 1
2 ZE :
= = T (x;)
N L (2-x) 't J
j=o J

Example 3: (Norton 1964)

.
y' = xy

-0, 72901

y(o)
This can be rearranged in the form

/
yi+1(x) + £(x,y,) y;.4 = g(x,y,)

where f(x,yi) = yi(x) and g(x,yi) = x

The iterative process will be

.l rx
8.[ yidx e o ¥39X
yi+1(x) = e {ojlx e dx - 0,72901}
N
Taking yo(x) = -0,72901 (1 + %) -y ArTr(x), we get the results




shown in table (6), compared with the results obtained by Norton (64).

Example 4: Van der Pol's equation
1 2 1 .
y' = gzQ-y)y -5y

y(-1) =0, y (+1) =2

This can be arranged in the form

y' o+ EGy))y' = e(xy)
i+l i+l
where f(x’yi) = - %(1-y2),
and 8(st.) = - l yi
* 16
If we take yo(x) = 1+x
N
1
= Z AT (%)
rr
r=o
Then
1 2 X x2
f(x’yi) = Z(l_(l"l'x) ) = E + 4—-
N|
s
B Z,brTr(x)
r=o

= %K1/4)TO(X) + %-Tl(x) + % Tz(x)

1
and g(x,yi) = -5 y, (x)

52,
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I
16 (14x)
N
A
= C T (x)
rr
r=o0
1 1
= . = -
H-8) Ty - g T (%)
= _1 = _ L = = =
Co = -3 C1 16° C2 oo CN 0

Thus Weyls process can be started from these initial values and the 17th

on
Order Chebyshe¥ series approximated obtained is shown in table (7).

Example 5:
y" + Ay =0

y(=1) = 0, y(+1) =1

This has the form

Y+ Exy)y' = g(xy), £(x,y) =0, glx,y) =y
i,e
. N .
;j‘fidx °j‘fidx
@ = e e ey @)
- jxo dx Jxo dx
e © { J'gi e® dx + y'(0)}
X
= o.J'r "‘zyid-" + y'(0)
X
or (x) = jx{ - f A2y dx + '(0)} dx + y(0)
Vi1 Sy y y

Which is Picards method for the solution of the gbove.




(2.5) Use of Runge-Kutta method for boundary value problems:

SKan
Consider the solution of Falkner-8«esan equation of the form,

y"'(x) + y(x) y"(X)+B(1-y'(x)2) = 0

with the boundary conditions y(0) = 0, y'(0) = 0, y'(w) =1,
and. B = constant (0.0l) in the range O <X < o,

In order to use Runge-Kutta procedure, y"(0) is also required.
Therefore the iterative process employed here is to improve approximate

values of y"(0) until y'(e) = 1,

(1) Let y"(0) =V_
(ii) Apply R-K using initial values y(0) = 0, y'(0) = 0, and
y"(0) = v and record y' (=), say Ur

(iii) 1let again y"(0) =V such that Vr+ =V

1 r
(iv) Apply R-K, using the initial values y(0) = 0, y'(0) = 0,

r+l

and y"(0) = V and record y'(e), say U,

r+l 1

By linear interpolation

)

- Vr+1 (l-ur) - Vr (1- Ur+1

v
r+2 Ur+1 - Ur

and for r = 1,

(v) Calculate Ve using the above relation

2

(vi) Apply R-K using y(0) = 0, y'(0) = 0, y"(0) = Voio and
record y' (=)

(vii) if y'(») = 1, then solution is achieved, else set r = r + 1

and go back to step (v).



55.

Unfortunately the efficiency of this method depends entirely,
in this case, on the initial gussed - values of y"(0), and so convergence
is considerably slower if the initial values of y"(0O) are not anywhere
near the right solution.

For the solution of the above equation, the initial values
==,95, V. = 1,05, The interval of integration

o 1

was h = 0,1 over the range 0 < x < 20. Only six iterations were needed

of y"(0) were taken as V

to obtain the solution to 5 d.p. shown in table (8b).

2.6 Newtons Method

For the system y' = f(x,y), we assume f(x,y) to be a function of y
regular in a region which includes the solution and our approximation to
it for every value of x in the range (-1, +1).

A small change 6y in y gives formally

d -
3 (7 0y) = £(x,y + 8y)

f(x,y) + 6y g—f,(x,y) + 0(62y) 2.6.1

We define a sequence {Yi} of approximations to the solution y(x)
by considering the leading terms in Taylor-series expansion for f(x,y),

suggesting the Newtons iteration formula

- o
vi(x) = £(xY,_ ;) + (YY) dy (x,Y; ;) 2.6.2

: i of
Y]!-(x) - Yi b—y(x’Yi-l) = f(x’Yi_l) - Yi-l by (x’Yi-l) 2-6.3
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For each iterative cycle, a particular solution Yi(x) = v(x) of the
inhomogeneous linear equation (2.6,3) may be calculated, to which is

to be added a multiple p U(x) of the solution U(x) of the homogeneous

equation,

. YN
U i(X) - Ui by (x,yi_l) 0

The factor p is chosen so that the resulting iterate yi(x) = V(x) +

p U(x) satisfies the given boundary condition.

Norton Procedure:

Norton (1964)[6] has made use of Chebyshev series in Newtons
iteration (2.63), simply by representing the functions which are used
in (2.63) and hence deriving relations between the coefficients in

Chebyshev series
E" (1)
- i
yi(x) A c Tr(x)
’ r

¥;1(¥)= E Ar(i'l)Tr(x)

y' = ) a0
r

r

Of

_ v
3; (x’yi-l) - L Cr Tr(x)

r
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By substituting these-expressions in equation (2.63), we have

Y a1 - § e s P e
r

r r

. —." t.-'l ) v' (i-1)
= Yo, 1 - (Fe 1.6 ¢tV
r

r r

2,6.4

Products of Chebyshev polynomials Tr(x) Ts(x) may be dealt with in
the usual way, however Norton has found that the simplification produced
'
by taking only the first term of the series }: CrTr(x) gives satisfactory
results, We may then simply equate the coefficients of Tr-l(x) and
Tr+1(x) in the right and left members of (2.64) to obtain the formulae

) (i) A (i-1)

! = 1 -
A r-1 br-1 + 3 Co (a r-1 r_1 )
|G) = ' ; (i) - (i-l)
Al g TP R 30 (A, -A, )
. ot
where Co is the first term of zJCrTr(x)'
T
Also using the relation
= A! - A! =
2r Ar A -1 A 41’ r=1,2, ..... N, 2,65

If on the right hand side of (2.65) we substitute the expressions for
0

]

r-1

Ar(%). These equations may be written in the form

A and A':a1’ we derive a set of N linear algebraic equations in
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(i) (i) (1) _
2 Co (A el - Ar+1) - 2r Ar = P_ 2,6.6

(131) ,(i-1)

= - 1
where P (b b )+ 1cCo (Ar-l ril

T r+1 r-1 2

(l), Ar(l_l) for r >N which occur in the above

Quantities such as Ar
relation are assumed to be zero.
Then Norton iterative process can now be outlined as follows;

(i-1)
r

(i) Given the ﬁoefficients A , (x=0,1, ,..., N) in the series

] Y
o (x =Z (i-1) ;
Vi1 ) r=OAr Tr(x), we evaluate y, ,(xa) at the points

xp = Cos s (s =0, 1, ...., M) by using a formula similar to (1.1.9)

of Chapter 1,

. . Of
(ii) At the same points we compute the values of f(xs’yi—l) and By (xs’yi-l)

for (s =0, 1, ...., M).

(iii) The coefficients br (r =0,1, ..... ,N) in expression f(x,yi_l)

|
= z;brTr(x) are now derived using the formulae

M ]
=\ . = -
br /. sTr(xs) : r 0,1, ...., N-1
s=0
M,
W
=1
bN 2 Z.. BSTN(xs)
s=0
where
= 2 : = -
Bs = ¥ f(xs, yi-l(xs)) s =0,1, ..... s M -1
and

- 1 e
By = 3 E(xp ¥y () = 5 £CGL oy, 070
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N
. o . df AW L
(iv) The coefficient§ €o of 6;(x,yi_1) = 2JGrTr(x) is given by
r=o
M,
= ) o
€= ) c T (x)
=0
where
¢ _ 2 Of , -
5= ¥ dy (xg>¥;_1(%)); s =0,1, ..... , M-1
and
SRR Y: 1o
CM = M by (styl_l(ﬁd)) M by (-1,.}']-__1(-1)).

Equations (2.6,6) produce one solution of ieenhomogeneous starting with
zero coefficients, and one of homogeneous starting with unit coefficients.
These two solutions are combined to determine p such that the boundary
condition is satisfied.

It should be clear from the description given that the Newton process
is exact when applied to a linear equation, if %5 is retained as a

function of x, To illustrate the Norton iterative procedure we

consider the example 2;

o

y' = yz, y(0) =

Where this has the solution y(x) = TE%;T in the region -1 <x < 1.

We take N = 5 and consider the Chebyshev series to the initial

approximation y (x) is of the form
)

A (0)
r

1

YO(X) Tr(x)

(]
D] 2

X
= '12‘ (1+E)
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(0) _ ., (0) (0) _ _ (O

then A.0 1.0, A1 = 0.25, A2 = = As =0
and hence

£ = 2 5

(x,yo) =y, = Z; rTr(x) _

T

where b = 39 b, = 0.25 b, = L and b, = b =b_=0

0 16 °* 1 *TT 2 32 3 4 ~°°° 5 :
and N

Of _ _ }E'

by (x’yo) = yO = erTr(x)

=0
with Co = 2,0, C1 = 0.5, C2 = ,,.., = 05 = 0.

. , . . Of
only Cb in this case is considered for 3y (x,yo).

Then the process can be started from

) (0) 0) _ _, (0 _
Ao =1, A1 = 0.25, A2 ..... A5 0
®o "' P1°%° P 32 > P3 = - b5 =0
and C0 = 2,
(0) (0)
= - 1 - =
Hence P ( il r-l) + 3C, (Ar_1 A r+1), (r=1, .... 5)
can be calculated, and so we have
_ 15 - = L =p =
Py =33+ 8,=0, B3 =33, P =F;=0
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Where the solution Er of this nonhomogeneous equation can be generated by

recursive solution starting with EN+1 = EN+2= 0, and Eo’El""’ EN-l

can be calculated in succession from

E_,=E  +20E +P,t=12 ... N
such that
-3
Ey = 16
= 1
E1= 8
_-1
E, = 3
By =E, = ... =B, =0

Similarly starting with EN+1 =0, FN = 1, and employing the

corresponding homogenous relation;

Fyap = ©
Fy =1
Fg_, = 10, Fy_, = 8l ...., Fy = 4626

We may now construct a solution

A (D

r =Er+pFr r=0,1,..... 3N

1 - Eo + 2E2 - 2E4
= is determined so that the

where B =
F0 2F2 + 2F




)
function %fx) = Ar Tr(x) satisfies the boundary condition
y(0) = % . r=o
* The result of this example is shown in table (5).

2.7 Second Order Equations:

The extension of Newtons method for the equation
y'(x) = f(x,y,y") 2,71

is given by

Y'ipq - 8y - Ry, = £(ayLyt) - a(x) y';~h(x)y;
Of
where g(x) = 6;,(x,yi,y'i)
and h(x) = X

b'y (xsyisy'i)-

Norton procedure for this system is as follows:

Let the functions occuring in the above be represented by these

series

N,
yi(x) - ZArTr(x)
2 =0
r

¥ (®) = E: 5 T,

' r
y'i(x) = E;A; Tr(x)
r

62.
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Y"i(X) = g A" Tr(X)

f(xsyi_lsy'i_l) = % brTr(x)
|"

hGx) = ) CT (x)
r

gx) = ) ClT (%)
r

For simplicity only the first constant term in each of the Chebyshev

expansions of h(x) and g(x) will be considered.

Substituting these expressions in (2.7l) and equate coefficients of

Tr(x) we obtain the relation,

A" - %C'A'-3CA =P BUVPA

where

P =b-%C'a'-3Ca, r=0,1,...N

using the relations

" _ AN =
Al - A T

2r A
T

= 1 - Al =
2r Ar A -1 A 1’ r 2, ..... sN

the above equation may be written as the following system of recgurrence

equations
= L. ' -
CA_; CA,+t2r (' -C"A)+2( ,-P ;)
! = ! =
A r-1 A r+l + 2r Ar’ r




and every solution of this ‘system may be expressed as the sum of one
particular solution Er’ E'r forr=0, 1, ...., N and linear
combination of the independent solutions of the corresponding

homogeneous system

" '
rtl + 2r (2A r Co Ar) 2,73

>
"

1
-1 A +1 + 2r Ar

Here we need to construct two solutions of this system, Fr’ F r

and Gr’ G'r (say) which tend to zero as r tends to infinity, We

then determine the constants p and v in the expression

A = E +uyF_+ v G
T r r r

Ty
to ensure that the iterate yi(x) = E: ArTr(x) satisfies the prescribed

boundary conditionms. r
Example 4 . Van der Pols' equation
1 2.
" = = - ro_ =
y"(x) 7 (1=y™y" = 1Y
y(-1) = 0, y(+1) = 2
Initially let
L]
= a
yo(x) EZ rTr(x)
r
= 1+x

¥2) T_(x) + T (x)
and

. ylo(x) - 1

64.



Then

and then

' 1. 2., _ 1.
f(x,yo,y o) 4(1 y o)y o 16 yo

B Z b T.(x)
T
- 3 )
= (- g) To(®) - 75 T, (x) -
- of ' - - T
h(x) = Oy (x,yo,y o) 2 Yo¥ 0 T 716
- Zchr(x)
r
= L(-DT - AT, ()
2 870 =71

of , 1 2
80 =L (xyy') = 7=y

a = 2, a = 1, a, =. = ay < 0
a' =2, a=0, a',= =a' =0
b, =%,b1=-%6,b2=-%,b3= ......
€ = - %’ C'o - %

= - 10! ' .
Pr br -é-Coar é-CO.

can be computed for (r =0, 1, ..... , N).

1
8 T (®)

65.
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272
Now the recurrence relations €& can be solved easily by letting

2773
Similarly equations €% are solved, when starting with FN+1 =

=0, F,=F'_=6G 1 and G' = -1,

' = = Q!
F G G N N N N

N+1 N+1 N+1
The values of Ar given by Ar = Er + N Fr + v Gr forr =0,1, ...., N
are determined so that the constants u and v are chosen to ensure that
b ]
the approximation yi(x) = z: ArTr(x) satisfies the given boundary conditions.
r
From the set of coefficients Ar (r =0,1,..... N) we can compute

. ® ] = 3 ! = 1 =
the coefficients A r (r = 0,1,....N) by letting A N1 A'y 0 and use

the relation A' . = A + 2r A (r =N, N-1, ..... , 1). and hence

r=1 r+1
we use the new sets Ar’ A'r to start another iterative cycle,
The solution we have obtained for Van der Pols equation is given in

the tables (7a), with various values of N.

2.8 Recursive Procedures when Co is small:

When Co is small, and moye-over when N (the degree of the wanted
approximation) is large, both solutions of the-nonhomogeneous relation,
Er and Fr and subsequently F'r, Gr and G'r become very large and hence
a build up of errors can swamp the desired solution.

The following modification due to G.F, Miller [16] overcomes this
difficulty.

(a) For first order equations the sequence {Fr} may be computed as

before. In place of {Er}, however we compute for K = N, N-1, ....,1,

| -
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sequences Eik)-(r = K-1, K,....,N+1) satisfying the relation

Co Eio1 = Co By + 4K By +2(Ppep= Py y).
| (k) _ (k) _
such that Ek = 0, EN+1 =0

(k)

(k)} we compute the quantity E k=1 and hence

Given the sequence {Er
(k-1) .
the new sequence {Er } from the relations
(k) 2

E (k) _ E + =— (P

W
k-1 ktl C ktl” Pk-1)

> 9 r =K,K+1,,...,N

where

and _ (k)
% = Ep1 P

Thus each sequence is obtained from its predecessor by subtracting

a multiple of {Fr}. We finally obtain a solution {Er(l)} with the
desired property that it is not dominated by {FrI. Finally the
solution with the desired property is given by Er = Er(l) and hence

we may construct a solution

(b) For second order equations, af in the case of first order equations

there may be cancellation consequent upon the use of Ar = Er + pFr + vG

to obtain Ar when Co is small. Here the sequences {Fr} and {Fr'} are

r
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computed by straightforward application of the recurrence relations

= TN
C,6 B.;=CB_, + 2r (2B, -ClB)
v = n!
B 1 B 1 + 2r Br
for r = N, N-1,,....,1

. . S o = _ ]
Starting with FN F N 1 and FN+1 F ntl 0. To obtain a
second solution {Gr}, {G'r} which is essentially distinct from {Fr},
{F'r} we compute sequences {Gr}, {G'r} for r = k-1, K, ....,N and

K = N,N-1,....,1 from the relations

(N) _ (N) _
Cpp1 = Gy =0
'(N) _ "(N) _
Gy 1, 6 g =0
(k) _ (k) '(k)
Co Gk-l = Co Gk+1 + 4K Gk
(k) _ .'(k)
€ ko176 k41
(k-1) _ (k) = 7o
Gr - Gr - Yk Fr r= K l,K, ..... ,N
"(k=1) _ . '(k) '
k (k-1)
where Yi = 6., / F1 is chosen so that G _, =0
(1) (1)

Finally we take G_=G , and G ' =G
r r T r

To obtain a solution {Er}, {E'r} of the nonhomogeneous system

= ! - ' -
C Ay =C A +2r (28" -C'A)+2(P =P )
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which is not dominated by {Fr}, {F'r} or by {G_}, {G'r}, we calculate

sequences {Er(k)}, {E'r(k)},-(r = K-1,K,..... N) and K = N, N-1,..... 1,

3, for ®

aboue
concurrently with sequences {Gr } from the teble relation

Eéfi - EN(N) B EN+1(N) - EN'(N) =0
% Ek—l(k)= % E(k1)<+1 *2 By - By
Eklik) - E'kiﬁ)
g D o g 0,y g g (D)
r = K,Ktl,.....,N
E'r(k_l) - Er'(k) - akFr' h BkGr'(k—l)
where o and Bk are determined so that
Ek_l(k'l) c= E'éfil) = 0
and since Gk_l(k-l) = (O, we have

- (k)
@ = By /P

_ ' (k) , ' (k-1)
B = B, -oF' )/ G,

Finally the solution with the desired property is given by

E = Er(l) and E' = Er'(l)-
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Example 3:

The problem y! = vy

y(0)

-

The solutions obtained by taking yo(x) =2 (1+ %) for various values of
N and applying the Miller's modifications, are listed in table (5a)

compared with the solutions of the same problem without the modifications,

2.9 Lie series:

Recently H, Knapp and G, Wanner (1968) [29] have published a
report in which they have established a general iterative process based
on a perturbation method, making use of the theory of Lie series,

For the numerical solution of ordinary differential equations of the form

') = f{xy;(x), ..... s ¥,(%)} 2,9.1
for Ci=1, 2, ....,0
and yi(xo) = Y

An exact formula is

s
A 3 (x-g)“ a :
Yi(x) = y;(x) + QZO f ” {D,D yi}g',?(g) d§ + R, ()
X

o
2.9.2
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Ris(x) being a remainder term given by

x . )
- (%~ g)s $+1 _ Sl
Ris(X) j‘ 57 {[D Yilg’y(g) [D yi]§,§(§)} dé 2.9.3
xh
4 )

A
where yi(x) is an approximation to y(x) such that

T (x) = f (9 v), i=1 2.9
y i i ’yls----’yn ] 1 dseeeeeynl . .4
20 2
[D]x’y = bx + f(x’}') by
_d a 0 )
[Dllx,y = 3 + £(x,y) 3& 2,9.5
and
1)2 = (D1 - D).

Treating for simplicity the case when y is a scalar and the equation
is y'(x) = f(x,y), the Sth order iterative process derived from Lie

series is then

] X
- . (x-£)¢%
yr+1(x) B yr(X) + zi j‘ a! {DzDaY}g,x(g) ds 2.9..6

a=0 xQ
-]

where Yps ¥ are the rth, r+lth iterates respectively. Details

r+l
are given in [29] of the application of this method to various
differential equations including example 2, In the applications quoted,
Chebyshev series were not used, a Taylor series expansion was taken as
the first approximation to thg solution and this was improved once, The

integrations in the Lie series expansion were carried out using Gauss

quadratfife, and the solution was developed step by step using a controlled
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step size, An additional facility is the use in boundary value
problems of the connection matrix which calculates the derivatives of
the functions at the far boundary with respect to the chosen initial
values, The far boundary conditions can then be satisfied by solving
for the initial values using Newton's method rather than the linear
secant method in the Rube KMtta section,

The equations treated were

(a) y' = 1-¢e7 (Sin x - Cos x), y(o) =0
(b) yi T Yy ¥(0) =0

Y'9 = ¥qs ¥,(0) =1

(e) y' = y2, y(0) = 1 (Example 2)
3
1 = o =
(d) y xy” y(x) =y,
(e) A restricted three body problem
(f) A boundary value problem

Y'y =¥y ¥, = exp(y), y,(0) = y,(1) = 0, with

correction via Newtons method.

Since iterative methods were not used the results are not applicable
to consideration of rates of convergence; information is available
on the improvement arising from one step, but only in the solution at
particular values of x, obtained using different step lengths, In
example 2, using a Lie series of order 3, an error of 3,14 in y(0.9)
' 15

from the Taylors series is reduced to an error of 3 x 10 i.e,

a reduction factor of 10_15, but this is based on a step by step
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approach using 23 steps from x = O,

It does appear that Lie series could be used as the basis of
higher order iteration processes instead of as a once for all correction,
The given system is based on an elaborate computorised recursive generation
of derivatives of the functions based on a set of standard elementary
functions in order to evaluate the terms Dyv and D2 Dyv; an approach
using Chebyshev series might be more economical, Thus the Lie series
may be capable of development to yield Chebyshev iteration methods of
higher order than Newton, However no further work has been done on
these lines in this thesis,

The rates of convergence of these processes will be considered in
the next chapter and the numerical results obtained above will be analysed

in the light of this in Chapter 4,
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Chapter 3

(3.0) Analysis of Rate of Convergence of Iterative Methods of Solution

(3.1) Behaviour of the error function:

(x) =

Given an iterative process which is described by Yen

F{yr(x)}, where F is some operator, and a true solution y(x) and error

functions er(x), er+1(x) so that yr(x) = y(x) + er(x), then

(x) (x)

y(x) + e

Yr+l +1

F{y (x)}

F{y(x) + er(x)} (3.1.1)

and if the right hand side of (3.1.1) is expandible in the form

F(y+er) = F(y) + G(y,er)
and since y(x) = F{y(x)}, then
er+1(x) = G{y(x), er(x)} (3.1.2)

This is the general relation governing the rate of convergence of the
iterative method. If the er(x) for r = 0,1,.... are expressed as a
truncated Chebyshev series then the relation (3.1.2) will be expressible

in the form

A(r+1) =g A(r)

where A(r) is the vector of Chebyshev coefficients and the behaviour of
the process will depend on the matrix H (which will in general be a
function of ﬂ). For the solution of the first order ordinary differential
equation y' = £(x,y) with y = Y, at x = X, the following methods may

- be analysed
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(a) The Zeroth order Lie Series,is

(%)

X
yr(x) + I (Dzy(g))g’yr(g) dg

yr+1
X0

- A
yr(x) + j{f(g,yr) --f(§,yr)}d§

X0

L I X
y (%) - f‘f(g,yr)dli + xlf(&yr)dg

X0

X
AR CCEAL

X
PA

Yo + Jf(g,yr)dg by definition and therefore
Xo

where yr(x)

~

»

~
|

%
Y4l B y(xo) + ilf(g’yr)dg

(which is Picard's iterative process for initial value problem

y' = £(x,y)).
X
i.e y(x) +e_ (x) = yx) + "Jrf{E, y+e }dg
_ X0

X
Yo T I-{f(g,y) + e % (€,y) + } dg

X0

(x)

e

X o8
j e, (8) 5y (E,y)dE + ...

X0

r+l

Of . sy s .
If 3; (x,y) is bounded, then it is possible to ensure ller+1||'<-|| e ||,
that the convergence of the process can be guaranteed, by taking (x-xo)
sufficiently small. The remainder term in the Lie series formulation

gives the same estimate of the error in an alternative form.
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(b) The first order Lie series:

The iterative method based on first order Lie series is

’ x
o}
Vo) =y, + Jf(E,yr)dE + f?x-§)[f(§,yr) - y,.(8)] 35 dg
X0 X0
and the remainder term is known to be
Of Of Of Of
xr(x—g) 3x &) 35y Gy - 5y )y Vy(i,yr)} dg
o .

Hence

X
. . Of
y£+1 is estimated as ﬁﬂx,yr) + il {f(g,yr)-y;}gy (§,yr)d§

and the error term in y' is, writing =y + e_ and expandin
y s Y, r P g

X
2
' = - -
el Jl{fx+ffy (fx+erfxy+%er fxyy+ ..... )
X0
- (f +ef +%e2f +....0)( +ef + ..... )}dE
ry r yy y ry )

f(er(g){fxy + f§ + fyy}dg - %ﬁj;i(g){sfyfyy +

X0

£f  + f de
yyy = Xyy

(c) Newton's Method:

The error in the Newton iteration formula may be determined

directly. Since

df

r+l Oy (x,y_), we have

QIR

= f(x,yr) +y (x,yr) -y

r

1
yr+1

@n expanding
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2 3
€ r
1 = — —
el 1 {erf + 2 fyy + 6 fyyy T }
2.
r
+ (er+1 e ){f + e yy +5 iEyyy ......... }
| 2 1 3
! - = . -
i.e e 4l % e v -3% fyyy + oo
where F = of (x,y ), and since e = e =0 at x =
Oy Yy r r+l atx =%

this gives

*r, 2 1 3 * 5L 2 1
e = j {a%e £ _-ze f dg + I F(E)dg J{ﬂ%e £ -se
r+l o r’yy 3 r yyy 5 5 ryy 3

3 . gt

- - 2 1
dg' + ' ' - - =

fyyy 3 , F(§)d§XdI F(g )dEde {'% e fyyy 3 e

X0

f g" + ...l
yyy 5
2 1 3 Of jx{ 2 1 3
1 = - - — —— - J—.
or el -% e fyyy 3 e fyyy + dy (x,yr) 3 %er fyy 3 e
X (3
Of J‘ 2 1 3
fyyyde + 353 (x,yr) j oy (E,y_)dE J -%er fyy -3
f dg!
yyy g
with a leading term in e! . of —%ez £ .
r+l r yy

If however the Newton formula is used in the form

= f(x,y ) + wly 4y -y )

1
yr+1 r

where u is a constant (= %5 (xo,yo)), then




78.

2
°r
! = —_— -
e we + erfy +5 fyy + oo we,
2
r
' - —
eril " Merp T j dg {b (§,y)} €+ fyy

giving

x ' .
©d [ Of }
] - — — .
elq "¢ J aE { dy (E,y) dE as a leading term
X0

Sy
e, jxy+ff )4E
X0

(d) Weyl's method:

The iterative process for the homogeneous equation y' = yF(x,y),

L3
&IF(x,yr)dx
e
)

y =7, at x = x  1is of the form

yr+1(x) B
where o '
© v |F(x,y)dx
y(x) =y e
)
_ 3 X
then log yr+1(X) =log'y + JF(x,Yr)dx
X0
e
r+l Jx OF
so that —= = Je (x,y)dx
Yk Ty

and

= y() je () 5 (.94

This can be compared with Picard's method for the same problem

y' = yF(x,y) = f£(x,y), for which the error has been found to be
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X
- fe %

eyl - J% 8; %
X0

X

>
- [ e® {Few +y® 5 @} a.

For example, consider the equation y' = yz, y =1 at x = 0 which has the

solution y(x) = 1/(1-x). Then %% = 2/(1-x) and with initial solution

y_ (x) =1 + x where e_(x) = x>
r r
X
. . v . -
(i) In Picard's iteration yr+1(x) y, + f f(x,yr)dx
X0
X . 2
yr+1(x) =1 + f (1+x)“dx
)
=x + x2 + % x3
. 23
therefore the error function will be er+1(x) = 3% .

d
Here we have 35 = 2y so that the estimated error is

X
>
(x) = ferb—fdx
o y

®r4l
X, .2
_ j-Zx (1+x)dx
o
N
(ii) Weyl's iteration X
oj f(x,yr)dx

yr+l(x) - yo ¢

f(x,y) =y and so
x
f (1+x)dx
o

y .(x) =e
r+1 2

= (% +-§—)

=1 +x + x2 +-% x3 + e
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Therefore er+1(x) = - % x3 and also thé estimated error function will be
e ()=(>fxe<)ﬁ< )
r+1 % yix R X Oy X,y/ax

1 r* o2
= OJ -x dx

3 x3 2
= — = - 3—(1 +X+X Foireinnn.. )

(iii) Newton's formulation gives,

2 1
' - = - |
yia 2(1+x) Vil (1+x)

which with y =1 at x =0, gives

r+l
_ 2 3 4 4 5
yr+1(x) =l+x+x +x +x +7X
80 ®r41 5
e = x4
r+l

This corresponds to the expression already obtained in (c)

2 4

e f =-x
r yy

e' =
r+l

(iv) Modified Newton formulation gives,

(1+x)2 - 2(1+x)

y 2y

! =
r+l r+l

= x2 -1

for which the solution is,

4

yr+1(x) =1+x+ x2 + x3 + % x




81.

and so er+1(x) = -kx

(x) = -

I
N
»

L]
“r+l
which is derived from the leading term

2 X
—x f (f  + £ )dE
S x Y

= -2x

(v) Lie series gives,

X X \
g, (0 =1 +;j (1+6)2ae + zof (x-8){ (14021} (L4 ae

- 4
and so r+1(x) = -kx
3
] = o
er+1(X) 2x
0f ogs
Here £ o= =2 £ = %L _,
y By Ys yy Oy2
since er(x) = -x2 + i , the expression for the error of (b) gives,
x
2 2 2
' = _ .
®r41 i (-§ ){4y + 2y }dg S S with a

leading term -2x3.
In general it would be expected that the exact Newton formulation

2 . . .
with error Een = -%er fyy’ would be more accurate than Lie series, with

an error

Eg, =xojx‘er(§) {fxy + ffyy + fi}dg
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or modified Newton with error

=
]

x
e (x) f {f + ff }dg
m o J Uxy yy.

since

=]
]

X . . .
g = e (x) f {f + £ff + fz}dg
rt e Lry yy 'y

[l [ g e«

X0
X 2 X )
-F +e(x)jf de - ff e! (E)dE
mn T y y r
X0 X0
X n§' 2
- f el (') dg'. J fy dg
X0 X0
Table 3.01

Method |Picard's | Weyl's |Modified Newton | Exact Newton |Lie Series

2 3 -X 4 1 5 4
e (| - 3% 3 ~kx "5 X -%x
a2 2 3 ' 4 3

' - - - - -
er+1(x) 2x X 2x X 2x

(3.2) Relation between Newton's Method and Lie Series:

The expression for iteration via first order Lie series

P

\ _ X ' bf
yr+1(x) = £(x,y.) +on {f(g,yr) - yr(é)} dy (€,y_)dg

may be transformed to give the Newton iteration form with extra terms;

we have
' X Of Of *
yr+1(x) = f(x’yr) + xl\ f(E,yr) 8; (E,Yr)dg - [b_y'(g:yr)]xo |

x g ps
" xj; 7,(® & {5 (€3,)} &
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. ox
oy ) + | v o (e ) dE + rf(g )-y! (§)}ﬁd§
Yr ii Y41 By 7Yy & { Y’ Ve Oy

X
d [Of Of Of
v r® {5 e - Fenn 0 vy, gy )

X
Of Of d
f(x,yr) tYen Oy (x,yr) "V ¥y (x,yr) -deyr+1(§) de

(§E)as + f;r(g)"'g_f' as + f{f(g,yr) -y O} & a

X0 X0

The first three terms give the Newtgn iteration formula. The
additional terms vanish under the two assumptions;

(i) () = f(g,yr(g)), the Picard approximation

yr+1 s

(ii) %5 = constant.

(3.3) Runge-Kutta Method, boundary value:

An equation solved with one initial condition missing and
determined from the corresponding value gives rise to a functional

relation from g, the initial value, to T, the boundary value
M = £(€)

and then the solution of T = £(§) = no can be carried out by iterative

methods. If the derivative f'(£) is known or can be estimated as in the
Lie series development discussed, Newton's method can be used, otherwise
the easiest thing is to use the secant method and this is known to haYF

order 1.62 and asymptotic constant depending on {f"/f'}o'62. An analysis

of the numerical results of Runge-Kutta calculation is given in the

next Chapter.
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(3.4) Divergent sequences made convergent:

F§r a particular example (example 6) the Picard method is found to
produce a divergent sequence (sée Table 3). The explanation may be given
simply,

In solving y" + Azy = 0, using the boundary conditions y(-1) = 0,

y(1) = 1, the following sequence of approximations are obtained

7,(x) = §(1+x)

y, () = G +*—32-)(1 Fx) - %(1 + 03

yz(x) = (% +)‘—32- +-12—)§4)(1 + x) - ?‘672(35 +}‘—:-)-
1+ x)3 + %(1 +x)°

The coefficient of the first term in (1 + x) thus produces increasing

numbers of terms of the power series expansion of A cosec 2\, which is

divergent for A >-§. The e¢- Alpgorithm can now be used to provide a

sum for this expansion.

(m) (m)
Let eo,r = e!-r , T =0,1,2,...... s N

Applying the e-Algorithm

e(m) - e(m+1) 1 s =0.1
s+l s-1 (m+l)  (m) 3Tas e ’
€ - € - .
s s m=0,1,...... s
(m) _
efl = 0
where, eézzis found'to converge to the right solution A_ of y(x) = Z'ArTr(x).

(3.5) Convergence of iterative methods, matrix analysis:

When the function is being described by a vector of Chebyshev

coefficients A, iterative methods may be reduced to the form
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A(r+1) =M A(r) + b, or alternatively
E(r+1) -u (1)

Our objectives by using this, are to construct an iteration matrix

(r)’ A(r+1) or ie(r+1))

~

M independent of the elements of the vectors A
N

r - . . .
i( ) of the Chebyshev coefficients of two consecutive approximations

obtained by the iterative process. Then one can show that the iterative

(o)

method converges for any initial approximation A °) if and only if p(M)
(the spectral radius of M) is less than 1, where p(M) = max I A (M) |,

and hence the rate of convergence Rn(M)-which is defined by the equation
R (M) = -log | [m|], ||| = [r]

Such a matrix can be formed exactly for linear equations; for non-
iinear equations an approximation is obtained by linearising. Details
of the matrix for general first order equation for the various methods
are derived below and then eigenvalues are investigated for the

particular equations discussed.

(3.6) Derivation of iteration matrix:

(1) Picard's Method:

(a) Exact analysis, linear equations:

N’l
If yr(x) =ZA§r) Tj (x) and f(x,y) = P(x)y + Q(x);
yo

N
then £(x,y ) = B(x) 2A§r) T, () + Q)
o

If P(x), Q(x) are polynomials of low order or can be fitted by such

polynomials, this reduces to
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N
1

f(x,yr) = 2; Bgr) Tj(x) directly; in any case this form
)

can be derived, if necessary by using collocation to expand P(x) Tj(x)

for each j.
(r)
]
independent of r.

(r)

are linear in the Aj

(r) _ ¢ A(r)

, where R is

The B so that B

Then Picard's method

X
-yr+1(x) = dI f(x,yr)dx + y(o)
corresponds to
A(r+1) - 3 B(r) +b
where
(r+1) _ 1 [,(r) (r) _
A = o7 1By "B s =L e N
(r+1) _ (r+1) (r+l)

Al = y(o) + A, - A4 .........
so that 7t A(r+1) = y(o) where 7T is 30-10+1........ )
Then 0 =% 0 % 0

S = -% 0 5 0 0
0 5 0 % 0

1 1

0 0 6 0 3

0 0 -3 0

The first row of S, S,. is given by

1]

o oG nieniag
4 3(3-2)
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for § > 2 and b is the vector b = 2y (o), bi =0 for i # 0. Hence the
Fa)

Picard process corresponds to the iterative procedure

AT (0 Ly

where M, the iteration matrix is SR.

(b) Non-linear equation:
The procedure may be applied to non-linear equations by
linearising the derivative in the neighbourhood of the true solution.

S remains as above.

B;r) = Bi(A(r)), a functional relationship depending on £, however
writing Air) =a, + eir), a, being the true solution value, we may put
0B,
Bir) = B, (a) +2ﬁ la e§r)
T3
or 8 = B(a) + q e
Then the Picard process corresponds to
A(r+1) =SB (a) +50Q e(r) +b
and the error relationship is
e(r+1) =5Q e(r) so that M is now SQ
0B,
here q.. = * |
v ij B'Ej' A=g

The iteration matrices for various N for the first order equations
dealt with have been analysed, and then maximum eigenvalues determined.
The following Table 3.02 shows the results. The iteration matrix M of

example 3 (y' = x - yZ) has the elements mij where
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0B, .
ij ij 5Aj A=g

and hence the eigen values have the same absolute values as shown in

the Table 3,02.

Table 3.02
Examéle 1 | Example 2 | Example 3
N ﬁaxlhi max|x|. maxlxl
4 | 0.4564 0.4233 0.4233
51 0.4510 0.3709 0.3709
6 | 0.4496 0.3260 0.3260
7 | 0.4497 0.3033 0.3033
8 { 0.4497 0.2492 0.2492
9 . 0.2367 0.2367
10 y 0.2134 | 0.2134
11 . 0.2134
12
13 | 0.4497 0.2134 : 0.2134

Second order equations can be treated in a precisely similar way.

(2) The same sort of analysis can be carried out for Newton's method.
Since this is- exact for a linear equation, nonlinear equations only will
be considered.

The problem y' = y2, y(0) = % has the solution y(x) = 1/(2-x) in

the range -1 < x < 1. Hence for any N

2
£(x,y) = v,




and

so that

and if

where

NI
=Zb T (X)
r
r
= ka2 2
bo—%Ao+A1+ ....... + Ay
by =AM AL+ ... + A1 A
_ 1,2
b2 = %Al +AA + A 5 Ay
Pr = br - %CoAr, r =0,1,..... sN
= br - Ar’ since ¢ = 2.0
A =ga+ S, then linearising
2
P = RS +K+0(8)
o1
Rij Y |A =g which gives as above
o1
F
%2
%

89.




and Rij = ai+j-2 + °'|i-j|

Newton's process will be,

Ar-1

R, .
ii

= ab + QZi— 1
2r Ar - Ar+1

and so the solution vector E satisfies

where

BE

LP
~

Pr+1

r-1

90.
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and similarly the homogeneous solution vector F satisfies F
r

~

1" ZrFr +

BF = S where S is the vector §, = 0, i <N, SN =1

N ~ i

The boundary condition y(o) = % now means A = E + 3 F where p must

satisfy

5E, - E, +E, - .... +u(sF, - F, +F, ceed) =%

Thus p = (¥ - ZTE) } (ZTF), and substituting for , we have,

F(% - Z'E)
E+2 %2

~

>
]

z! F)

{B—l L - B-1 S ZT B-1 L} P + terms independent @f P.

and so the iteration matrix is found, substituting for E, to be M = QR
where R is given above. It is the eigenvalues of this matrix which
determine whether and how rapidly the iteration process converges.

The matrix Q determined from the above analysis has been calculated
for various N. Examples for N = 4, N= 8, N = 11, are given (see
print out). These are independent of the function f, which only
determines the matrix E. It is clear that Q becomes very ill-conditioned
for high order N, the values decreasing in magnitude very significantly

from the first row onward. It might be conjectured that the use of such
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a matrix would lead to unsatisfactory performance. The eigenvalues of

M = QR are as listed for the example 2 (y' = yz, y(o) = %), in Table

- 3.03.
Table 3.03
N maxlkl
4 0.1619
5 0.1164
6 0.0980
7 0.0910
8 0.1050
9 0.1889
10 0.3085
11 0.5235
12 1.1905
13 3.7060
- 16 -

3) Modified Newton's Method:

14 - .
15 -

The modéfied Newton's method was devised so as to overcome the
disadvantage of the Newton's process. It is awkward to write down the
matrix Q formally for this case, but it can be developed automatically ‘
and comparison values are given for N = 4, .8, 11.

A table of eigen values of M = QR, is given below for the same
equation (y' = y2, y(o) = %).

L]
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Table 3.04

N max|A|

4 | 0.1160

5 | 0.0607

6 | 0.06117
7 | 0.06671
8 | 0.06939
9 | 0.07059
10 | 0.07107
11 § 0.07126
12 | 0.07131
13 | 0.07133
14 } 0.07134
15 | 0.07134
16 .

17 .

18 .

The results obtained here on the relative performance of the
various methods are checked in the next Chapter by direct comparison

with numerical results.
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Chapter &4

(4.0) Numerical Results on Rates of Convergence:

As a numerical check on the previous analysis, we take the ratio
m
@
L
(m-1)
e,
i

as an estimate of rate of convergence, when the process has

converged sufficiently for the components to be uncoupled from each other.

ec(,m) e{m) er(lm)
By taking the average of @) * (@oL) * ottt s ~(@oD)
eo e 1 en

over a set of m's and subsequently the mean value of this average, we

can have better estimates.

In practice it may be observed that a computer subroutine for

calculating the ratios

e(m)

i S
(m-1)
e

r

for

fails at the stages where eim) tends to zero. Hence one should treat
this with caution. Omitting few terms of both ends of the sequence
{eim)/eim-l)} one would expect.a reasonable approximation.

For example we choose the problem y' = yz, y(0) = %. The previously
obtained maximum eigenvalues of the iteration matrices corresponding to
Picard's and Newton's methods are listed in Table 4.0.1 below, and
compared with convergence ratio obtained for both methods as described
above.

In the table, N represents the degree of Chebyshev approximation used.
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Table for the comparison of estimates of maximum eigenvalues

for the solution of y' = yz, y(0) = %,

Table 4.0.1

Picard's Method Newton's Method
max|e-value] | Av. Ratiof| N max |e-value| | Av. Ratio

0.4233 - 4 0.1619 0.1520
0.3709 0.3282 5 0.1164 0.0830
0.3260 0.2690 6 0.0980 0.0710
0.3033 0.2642 7 0.0910 0.0980
0.2492 0.2555 8 0.1050 0.0840
0.2367 0.2567 | 9 0.1890 0.0890
0.2134 0.2566 10 0.3090 0.2480
0.2134 0.2566 11 0.5240 0.5300

. . 12 . ;

] ' 13 . .

' i ' ,

! P 14 : [

‘ 15 - )

(4.1) Examples and Figures
In what follows, rates of convergence (i.e. - logdaverage ratid)

or -log(maxle.valudp) are given for the examples.already discussed.

Where possible, theoretical and numerical estimates are compared,
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Example 1:
y'+y=0,y0) =1
Table 4.1.1

N | max e-value Rp
4 0.4564  0.7844
5 0.4510 0.7963
6 0.4496 0.799%
7 0.4497 0.7992
8 0.4497 0.7992
9
10

R -~ The rate of convergence of Picard's method estimated by theoretical

P

approach (reduction).

(in this case the theoretical estimate is exact).



Example 2:

y' = yz, y(0) =%

(a) The rates of convergence estimates of iterative methods by the

theoretical approach.

Table 4.1.2a
N | R | Ry R
4 | 0.8597 ] 1.8208| 2.1542
5 | 0.9918] 2.1507| 2.8018
6 | 1.1208 | 2.3228| 2.7941
7 | 1.1930 ] 2.3969) 2.7073
'8 | 1.3895 | 2.2538] 2.6680
9 | 1.4409 | 1.6660} 2.6508
10 | 1.5446 | 1.1744 | 2.6440
11| 1.5446 | 0.6463 | 2.6415
12 | C 2.6407
13 L 2.6404
14 | 2.6403
15 | 2.6403
6| 'n
|

Rp - Rate of convergence of Picard's method
RN - Rate of convergence of Newton's method

RMN - Rate of convergence of Modified Newton's method
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(b) The rates of convergence estimates of iterative methods, by the

average ratio technique

Table 4.1.2b
N1 Rp Ry RN
4 1.8837
5 | 1.1282 | 1.5552 2.4920
6 | 1.3094 | 1.9215 2,.6513
7 | 1.3310 | 1.9104 2.3250
8 | 1.3645 | 1.8887 2.4808
9 | 1.3626 | 1.8905 2.4250
10 | 1.3599 | 1.8897 |[*1.3964
11 {1.3601 | 1.8910 |*0.1201
12 |11.3604 | 1.8913 |*0.6340°
13 | 1.3602 | 1.8913
14 | 1.3602 ’
15 |1.3604 ,
16 ' ‘
' )
17
R, - Rate of convergence of Picard's method

P
Rw - Rate of convergence of Weyl's method

RN - Rate of convergence of Newton's method

Notes

(i) In Picard's and Weyl's methods, rates of convergence for N = 4
were not obtainable, because solutions by both methods are not
stable in the early stages. The rate of convergence of Picard's
for N = 5 was calculated by desk machine.

(ii) * the rates of convergence of Newton's method were not available

for N > 11 because solutions were then not possible.



Example 3:
y' = x-yz, y(0) = -0.72901

Table 4.1.3

Ry N1 Ry Rp2

1.0904 | 4 |0.8597 | 0.6157
1.1582 | 5 |o0.9918 | 0.8449
1.1057 | 6 |1.1208 | 1.1325
1.1056 | 7 | 1.1930 | 1.1648
1.1058 | 8 | 1.3895 | 1.2067
1.1071 | 9 | 1.4410 | 1.2062
1.1068 | 10 | 1.5446 | 1.2078
1.1067 | 11 | 1.5466 | 1.2057
1.1068 | 12 | 1.5446 | 1.2094
1.1068 |13 | 1.5446 | 1.2076
1.1068 | 14 | 1.5446 | 1.2071

Rw - The rate of convergence of Weyl's method estimated by

average ratio technique.

RPl - The rate of convergence of Picard's method estimated by

the theoretical approach.

R,, - The rate of convergence of Picard's method estimated by

P2
average ratio technique.




Example 4:
The Van der Pol's equation
2

n = - |

y %(1-y7)y 16

y(-1) =0, y(+1) =2

Table 4.1.4

RP N RMN
2.3667 5 | 4.5330
1.5232 6 | 4.7560
2.1459 7 5.5240
2.2452 8 | 4.7870
2.2574 9 | 4.8220
2.2428 10 | 4.7790
2.2455 11 4.8250
2.2515 12 | 4.9380
2.2450 13 | 4.7960
2.2431 14 | 4.8470
2.2450 15 | 4.8790
2.2450 16 | 4.7740
2.2450 17 4.7210
2.2429 18 | 4.7680

RP - The rate of convergence of Picard's method estimated by

the average ratio technique

RMN - The rate of convergence of Modified Newton's method by

the same technique

100.
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Example 5:
yn + )\2}' = 0, Y('l) = 0, Y(+1) =1
for A = 1.25 <3
Table 4.1.5
N Average Ratio RP
5 0.0320 3.4052
6 0.0332 3.4055
7 0.0457 3.0850
8 0.0457 3.0849
9 0.0416 3.1797
10 0.0416 3.1797
11 0.0413 3.1860
12 0.0413 3.1860
RP - The rate of convergence of Picard's method estimated by

experimental technique (average ratio).




Example 6:

10l1a.

y' + kzy =0, y(-1) =0, y(+1) =1

for A =2>3

2

Table 4.1.6

Average ratio

o e N oy

10

o O O © O O

.5643
.3543
.2875
. 2049
.1763
.1781
1779

e i =

.5722
.0376
.2465
.5852
.7356
.7254
.7261

Re - the average rate of convergence of e-algorithm estimated

experimentally (average ratio).

This example shows the average rates of convergence of the e-

algorithm applied to a divergent sequence of solutions in Chebyshev

coefficients, that obtained by Picard's method (see Table 3 of appendix).

In this case one would expect a higher ratel of convergence, but since

the first e which is (Aitken's 62-formula) gave a good approximation to

the answer (see Table 4), the rates of convergence of the rest of ¢'s

then became very low. Howeverginvestigation for rates of convergence

of each ¢ éould have been carried out, hut o was not -ﬂsmﬁhl'

be worthwhile Swaie ka2  eyvors at P s\-e‘__:-.-)es weve so SweM .

.
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(4.2) Comparison between iterative methods:

It is of interest to compare the applications of the present
iterative methods to a simple initial value problem, Accordingly the

comparison was made in the case of the first order equation

y' = yz, y(0) = /2.

The Picards program gave the solution in Chebyshev series of
degree 10 to this problem in the range -1 < x <1 to 6 decimal places,
in 10 cycles, This implies a total of about 5,000 multiplications.
Weyls iteration in Chebyshev series requires a total of about 4,800
multiplications over 10 cycles to secure the desired accuracy.

Norton (1964) [16] gave an estimation of 20,000 multiplications
in 12 cycles for Newtons method's solution of degree 25 to the above
problem, and 2,560 multiplications for Runge-Kutta method. Our
estimate of multiplications required for Newtons method is 5,600,
and for the modified Newtons method is 6,500 in 10 cycles, It should
also be noted that in both modified Newton and Newtons methods,

evaluation of an extra function ( %5 ) is required.
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Table 4.2.1

Method Rate of :o;vergence no. ;:rmz;zizlic:tions Ef:i;?:ncy
Picard's 1.5446 500 3.1 x 10-3
Weyl's * 1.8897 480 3.9 x 107>
Newton's 1.1744 560 2.1 x 10-3
M. Newton's 2.6440 650 4.1 x 10_3
Runge- _ total multiplications _
Kutta = 2,560

* Rate of convergence of Weyl's method was estimated by

experimental technique (average ratio).

calculated theoretically (Reduction).

The others were

To summarise the rate of convergence of all iterative methods,

for the examples considered, we take the degree of the approximate

solutions N to be 10 and construct a general Table 4.2.2 below, which

contains the theoretical and the experimental approximations of the

rates of convergence (R).
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Table 4.2.2

Method Picard's Weyl's Newton's Modified Newton's
Examples | Rp; | Rpy | Ryn| w2 | Bw1 | Baz Rave | Rz
Example 1§ 0.80 - - - - - -
Example 2| 1.54 | 1.36f - | 1.89] 1.17| 1.40 2,64 -
Example 3} 1.54 | 1.21} - | 1.11} - - - -
Example 4| - 2,24 - - - - - 4,78
Example 5| - 3.18| - - - - - -
Example 6] - - - - - - _

(4.3) The order of Convergence of Runge-Kutta method:

The error functions er(x), r =0,1,2, ...., in the solution of

Skian.
Falkner-8tewr equation

yﬂl + vy yn + B(l' ylz) =0
y(0) = 0, y'(0) =0, y'(») =1, B=0.01
by Runge-Kutta, are calculated for x = 0, 1, 2, ... The estimated

values of a (the order of convergence) defined by the relations

or log ,er+1| = log [K| + a log Ierl

where K is a constant, are calculated by plotting graphs of log |er+1|

against log Ierl for r = 0,1,2,...., which are tabulated below.
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The average order of convergence of Runge-Kutta is approximated
by (a = 1.82),
This compares well with the theoretical estimate of order of

convergence of the Decant method [26] which is a = 1.62,

Conclusions

Methods of solution of nonlinear differentidl equations have been
compared, both numerically and theoretically, in their performance
on a set of particular equations,

Picards method is the simplest and the most well-balanced method,
and it is rather efficient due to the fact that the process involves
less evaluation of the functions y(x), f(x,y) that cuts down a
considerable build up of round-off errors through the computation,

is 3 fov eXawmple P
Efficiency factorg naaga—i;em (3.1 x 10” )A . Convergence is guaranteed
for initial value problems. Boundary-value problems, for example in the

case y" + AZ y =0 for A > may not converge, The failure of

X
2
convergence in this case can be easily rectified using the
¢ --algorithm technique.

Weyls method is noted for its significant success in obtaining

solutions for initial value problems of the form

(n) _ (n-1)

(n-2)_ (n-1)
r+1 = Yr Yri1 ) = 0,y(0)"" =" 1

y =0, y(0)=y'(0)=.... =y(0

For boundary value problems convergence of this method is not assured.
It is a variant of Picard's method obtained by a transformation of the

variable, It has an efficiency of 3.9 x 10_3.]."@,, exa.w«@l{ 2.
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Newtons method, theoretically, is the most efficient method of all,
but due to involvement of a great number of multiplications and
evaluation of considerable number of functions, a build-up of round-off
errors effécts the final outcome of this process; a modification improves
this but requires further multiplications, If the degree of the
required approximations are large enough, Newtons method converges
faster than Picards when convergence holds, and often provides the
most powerful technique to secure convergence in a wider class of problems,
The efficiency §f modified Newtons is 4.1 x 10_34.:5r exaunple 2 -

The Lie series formulation has been shown to generalise all these
methods and to provide a family of iterative methods of all orders.

A method of analysis based on evaluating a linear approximation to
the iteration matrix connecting successive vectors of Chebyshev coefficients
has been tested and its numerical results are found to compare reasonably
with the results provided by carrying out the iteration. It is hoped
.that this idea might be developed to give information about the behaviour

of these iteration methods on general classes of equations.
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APPENDIX

Table 1
Picards Solution of y' = -y, y(0) =1

. Aélo) Aﬁio) Aélo) A

o | 2.531240 | 2.53142 | 2.532143 | 2.532132
1 |-1.130220 |-1.130336 |-1.130337 | -1.130318
2 | 0.270830 | 0.271496 | 0.271497 | 0.271495
3 | -0.044260 | -0.044323 | -0.044322 | -0.044337
4 | 0.0052077 | 0.005471 | 0.005471 | 0.005474
5 |-0.000525 |-0.000551 |-0.000551 | -0.000543
6 0.000046 | 0.000046 | 0.000045
7 -0.000002 |-0.000002 | -0.000003
8 0.000000 | 0.000000 { 0.000000
9 -0.000000 | -0.000000
10 0.000000 | 0.000000
11 ' -0.000000 | -0.000000




Table 2

Solution-of y" + A%y =0, y(-1) =0, y(1) =1, A = 1.25(%
T A(ZO) A
T r
Picards’
0 2.048282 2.048396
1 0.538073 0.538073
2 | -0.542529 | -0.542591
3] -0.038850 | -0.038850
4 0.018635 0.018637
5 0.000784 0.000784
6 -0.000248 0.000248
7 -0.000007 -0.000008
8 0.000002 0.000001
9 0.000000 0.000000
10
Solution y(x) = sin A (l4+x)/sin 2\
N
1
= 2 A T (%)
r
r=o
N
2 -1
A =2 2 y(x) T (%), T = 0,1,..... N



Table 3

Solution of y" + rww =0, y(-1) =0, y(+1) =1, and A = 2 V.W

c >Mov >MHV >MNV >Muv >Mbv >va >va >Muv >va >Mov A_

0 | 1.000000 1.999998 3.583326 6.144426 | 10.295337 | 17.024353 | 27.932968 | 45.617310| 74.286041 | 120.761993 | -0.538010
1 | 0.500000 0.583333 0.613888 0.626024 | 0.630920 0.632902 0.633703 0.634028| 0.634156 0.634266 0.634252
2]0.0 -0.499995 | -1.333330 | -2.687497 | -4.883308 | -8.443119 |-14.214073 |-23.569595 [-38.736145 | -63.323196 | 0.847859
3 0.0 -0.118054 | -0.132175 | -0.137901 | -0.140222 0.141161 | -0.141541| -0.141691 -0.141750 | -0.141805
4 0.041666 | 0.110666 | 0.239582 | 0.439082| 0.762544 1.286929 2.137027 3.515159 | -0.081691
5 0.0 0.006250 0.007133 0.007495 0.007641 0.007700 0.007724 0.007735 0.007742
6 ) -0.001389 0.001530 | -0,008213| -0.015107 | -0.026285| -0.044404 -0.737809 0.002890
7 ' -0.000099 0.000024 | -0.000176 | -0.000186 0.000190 LO.OOOHoN -0.000194 | -0.000192
8 ) 0.0 0.000014 0.000072 0.000148 0.000274 0.000477 0.000807 | -0.000053
910.0 0.0 0.0 0.0 0.0 0.000002 0.000002 0.000002 0.000003 0.000003 0.000003




Table 4

e- Algorithm for the solution of y" + lzy =0, y(-1) =0,

y(1) =1, A =2> g

R R

0 | -0.714288 | -0.538744 | -0.538003 | -0.538006 | -0.538010
1 0.631577 0.634247 | 0.634250 | 0.634247 | 0.634252
2 0.750002 | 0.847370 | 0.847851 | 0.847834 | 0.847859
3 | -0.142856 | -0.141805 | -0.141806 | -0.141822 | -0.141805
4 0.000000 | -0.081698 | -0.081699 | -0.081689 | -0.081691
5 0.007743 | 0.007740 | 0.007740 | 0.007742
6 0.000000 | 0.002892 | 0.002889 | 0.002890
7 -0.000193 | -0.000193 | -0.000192
8 ' . -0.000000 | -0.000058 | -0.000053
9 0.000000 0.000000 | -0.000000 | ©0.000003 | ©0.000003
0.000000

Solution y(x) = sin A(1l+4x)/sin 2A

y(xi)Tr(xi), r =0,1,....,N




Table 5a

Solution of y' = y2, y(0) = %

N=8 N =10
Newton M.Newton Newton M.Newton
. A510) A£10) A§10) A](Elo)
0| 1.153809 | 1.154306 1.164063 1.154975
1| 0.308837 | 0.309206 | 0.310059 | 0.309540
2 | 0.082596 | 0.082827 0.083496 | 0.082957
3| 0.022141 | 0.022186 | 0.022476 | 0.022233
4 | 0.005924 | 0.005936 | 0.006027 | 0.005958
5| 0.001554 | 0.001557 | 0.001611 | 0.001596
6 | 0.000261 | 0.000262 | 0.000406 | 0.000423
7 | 0.001881 | 0.001881 | -0.000008 | 0.000093
8 | 0.000160 | 0.000160 | 0.001596 | -0,000065
9 0.000110 | 0.001391
10 0.000000 | 0.000082
11
12

Newton's method gave unstable solutions for this

problem when N > 12



Solution of y' = yz, y(0) = %

Table 5

r Piﬁgrd w2§1 M.Newton A
0 1.154687 1.154713 1.154305 | 1.154696
1 0.309395 | 0.309408 0.309206 | 0.309395
2 0.082901 | 0.082905 0.082827 0.08&883
3 0.022213 | 0.022215 0.022186 | 0.022214
4 0.005952 | 0.005952 0.005936 | 0.005975
5 0.001595 | 0.001596 0.001557 | 0.001596
6 0.000427 0.000429 0.000423 | 0.000408
7 0.000114 | 0.000116 0.000093 | 0.000114
8 0.000032 | 0.000037 -0.000065 | 0.000049
9 0,000009 0.000008 0.001391 0.000008
10| 0.000000 { 0.000000 0.000082 | 0.000000
11 0.000000 0.000000 0.000000 { 0.000000
The solution y(x) o)

N

= 2 ATTr(X)
r=o

»>
]

2 ' N" 1
r N E; TE:;TT Tr(xi), r =0,1,....,
i=o 1

N



Table 6

Solution of y' = x-y%, y(0) = -0.72901

| A (1D A(D)
Picard's Weyl's Newton's (Norton 64)
‘0| -1.331811 | -1.331804 -1..331820
1| -0.565767 | -0.565764 -0.565775
2| 0.065562 | 0.065562 0.065558
3| -0.012310 | -0,012310 -0.012312
4| 0.002575 | 0.002575 0.002575
5| -0.000560 | -0.000560 -0.000560
6| 0.000124 | 0.000124 0.000124
7 | -0.000028 | -0.000027 -0.000028
8 | 0.000006 | 0.000006 0.000006
9 | -0.000001 | -0.000001 -0.000001
10 | 0.000000 | 0.000000 0.000000
11 | -0.000000 ' '
12 | 0.000000 ,
13 { 0.000000 : ‘
14 | 0.000000 0.000000 0.000000

This problem has the formal solution, (Norton 1964),

y(x) = A{(x)/Ai(x)

where Ai(x) is the Airy integral given by

1 13
p I cos(3t + xt)dt

Ai(X) =
(o]



Table 7a

Solution of y" = %(l-yz)y' -_%gy, y(-1) =0, y(+1) = 2

‘N=3 N =10
Newton M.Newton Newton M.Newton
.Ailp) A510) A£10) A510)
0 2.066008 2.066482 2.050637 2.068076
1 1.023438 | 1.022152 | 1.027443 | 1.023983
2 | -0.033004 | -0.033241 | -0.031566 | -0.032795
-3 | -0.0234386 | -0.022152 | -0.025146 | -0.024856
A -0.001544 | -0.001367
5 0.000914 | 0.000901
6 0.000148 | 0.000137
7 -0.000025 | -0.000026
8 -0.000009 | -0.000009
9 0.000000 | 0.000000
10 0.000000 | 0.000000
11
12
13
14
15
16




Solution of y" = %(l-yz)y' - E%Vs y(-1) =0, y(1) = 2

~Table 7

_ A§10) A510) AﬁlO)
‘Picard*s Weyl's Mod. Newton's

0| 2.068066 | 2.068054 2.068076
1 1.023980 | 1.023978 1.023982
2 | -0.032794 | -0.032795 -0.032795
3 | -0.024856 | -0.024858 | -0.024856
4 | -0.001367 | -0.001369 -0.001367
5| 0.000901 | ©0.000897 0.000901
6 | 0.000136 | 0.000132 0.000137
7 | -0.000026 | -0.000015 -0.000026
8 | -0.000009 | -0.000006 -0.000009
9 | 0.000000 | -0.000005 0.000000
10 | 0.000000 | -0.000003 0.000000
11 ' -0.000004

12 -0.000006

13 -0.000005

14 -0.000005

15 -0.000004

16 -0.000003

17 -0.000001

18 | 0.000000 | -0.000000 0.000000




Table 8

Solution of y™ + yy" + S(l-y'z) =0

y(0) =y'(0) =0, y'(2) =1, § =0.01
(a)
r 0 1 2 3 4 5
Vr 0.950 1.050 0.49437 0.49437 | 0.48277 0.48244
Ur 1.62147 1.73797 0.89664 1.01811 1.00050 1.00000
(b)
lst iteration 6th iteration
r
1 1] 1 "
y(xr) y (xr) y"(x ) y(xr) y (xr) y (xr)
o | o.0 0.0 0.95 0.0 0.0 0.48244
1 0.466230 0.91018 0.80595 0.23771 0.46832 0.43679
2 1.699440 1.46716 0.28967 0.89889 0.82254 0.25101
3 3.250250 1.59183 0.02948 1.81121 0.97065 0.06483
4 4.849380 1.60272 0.00393 2.80020 0.9999% 0.00643
5 6.453740 1.60578 0.00255 3.79960 1.00000 - 0.00024
6 8.060690 1.60804 0.00202 4.79959 1.00000 0.00000
7 9.669680 1.60988 0.00168 4.79958 1.00000 0.00000
8 11.280350 l.61143 0.00143 6.79958 1.00000 0.00000
Y
19 29.006310 1.62034 0.00056 17.79957 1.00000 -0.00000
20 30.687510 1.62147 0.00054 18.79957 1.00000 -0.00000




PRINT OUT

Q1 - represents the matrix Q of Newton's method

Q2 - represents the matrix Q of Mod. Newton's method

Q of order 5 (N=4)

0.2659E 00 0.5319E 00 -0.4044E 00 -0.8310E 00 0.1382E 00

0.5651E 00 0.1302E 00 -0.6094E 00 . '=0.2659E 00 0.4433E-01

0.1357E 00 0.2715E 00 -0.1856E 00 -0.2992E 00 0.4982E-01

0.2216E-01 0.4432E-01 0.1330E 00 -0.6925E-01 -0.1551E 00

0.2770E-02 0.5540E-02 0.1662E-01 0.1163E 00 -0.1939E-01
Q2 of order 5 (N=4)

-0.4993E-02 -0.2631E 00 -0.1710E-02 0.2514E 00 0.7118E-02

0.0 0.0 0.0 0.0 0.0

-0.4993E-02 0.2409E-01 0.3445E-02 -0.1522E-01 . -0.6431E-01 °

-0.2240E-02 0.5237E-01  0.6840E-02 -0.5408E-02 -0.2847E-01

0.2497E-02 0.1765E-01 0.3973E-01 0.1871E-01 0.3513E-01
Q of order 9 (N=8)

0.2661E 00 0.5321E 00 -0.4036E 00 -0.8253E 00 0.1873E 00

0.4961E 00 -0.7422E-01 -0.8750E 00 -0.9000E 01

0.5652E 00 0.1303E 00 -0.6090E 00 -0.2633E 00 0.6621E-01

0.2224E 00 -0.7031E-01 -0.5000E 00 -0.8000E 01

0.1357E 00 0.2715E 00 -0.1855E 00 -0.2986E 00 0.5464E-01

0.4932E-01 -0.7812E-02 0.0 -0.1000E 01

0.2217E-01 0.4434E-01 0.1330E 00 -0.6893E-01 -0.1524E 00

0.2797E-01 -0.5371E-02 -0.7812E-02 -0.3750E 00

0.2737E-02 0.5474E-02 0.1642E-01 0.1150E 00 -0.3106E-01

-0.1190E 00 0.1172E-01 -0.2686E-02 -0.3906E-01

0.2715E-03 0.5429E-03 0.1629E-02 0.1140E-01 0.9610E-01

-0.2002E-01 -0.9743E-01 0.7980E-02 -0.2930E-02

0.2249E-04 0.4498E-04 0.1349E-03 0.9445E-03 0.7961E-02

0.8118E-01 -0.1396E-01 -0.8181E-01 0.5783E-02

0.1599E-05 0.3198E-05 0.9595E-05 0.6717E-04 0.5661E-03

0.5773E-02 0.7012E-01 -0.1026E-01 -0.7069E-01

0.9995E-07 0.1999E-06 0.5997E-06 0.4198E-05 0.3538E-04

0.3608E-03 0.4382E-02 0.6186E-01 -0.4418E-02




Q2 of order 9 (N=8)

-0.5017E_—02

-0.4398E-08 -0.2631E 00 -0.1874E-02 0.2508E 00 0.5579E-02
0.1167E-01 0.1863E-02 0.6234E-03 0.1580E-03
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
-0.4398E-08 - 0.240E-01 0.3281E-02 -0.1576E-01 -0.6585E-01
-0.7473E-02 -0.3266E-02 -0.7496E-03 -0.2114E-03
0.1759E-07 0.5257E-01 0.7494E-02 -0.3226E-02 -0.2232E-01
-0.4666E-01 -0.7448E-02 -0.2500E-02 -0.6284E-03
-0.1099E-06 0.1641E-01 0.3564E-01 0.5074E-02 -0.3336E-02
-0.1457E-01 -0.3550E-01 -0.6365E-02 -0.1966E-02
0.8971E-06 0.3772E-02 0.1104E-01 0.2838E-01 0.4477E-02
-0.1870E-02 -0.1061E-01 -0.2853E-01 -0.5521E-02
-0.9081E-05 0.7940E-03 0.2599E-02 0.8609E-02 0.2372E-01
0.4132E-02 -0.1188E-02 -0.8254E-02 -0.2371E-01
-0.3046E-05 0.1674E-03 0.5727E-03 0.2052E-02 0.7060E-02
0.2035E-01 0.3646E-02 -0.1275E-02 -0.8167E-02
0.6867E-05 0.3863E-04 0.1357E-03 0.5001E-03 0.1830E-02
0.6453E-02 0.1957E-01 0.9589E-02 0.1883E-01
Ql of order ;2 (N=11)
0.2661E 00 0.5321E 00 -0.4036E 00 -0.8253E 00 0.1865E 00
0.4961E 00 -0.6641E-01 -0.2500E 00 0.2000E 01 0.1600E 02
-0.4096E 04 -0.6554E 05
0.5652E 00 0.1303E 00 -0.6090E 00 -0.2633E 00 0.6644E-01
0.2244E 00 -0.3125E-01 -0.2500E 00 0.0 0.0
-0.2304E 04 -0.2458E 05
0.1357E 00 0.2715E 00 -0.1855E 00 -0.2986E 00 0.5466E-01
0.4907E-01 -0.1172E-01 0.0 - 0.1000E 01 0.0
-0.1024E 04 -0.2048E 05
0.2217E-01 0.4434E-01 0.1330E 00 -0.6893E-01 -0.1524E 00
0.2802E-01 -0.4150E-02 -0.1562E-01 -0.6250E-01 -0.2000E 01
-0.1120E 03 -0.2048E 04
- 0.2737E-02 0.5474E-02 0.1642E-01 0.1150E 00 -0.3106E-01
-0.1190E 00 0.1186E-01 -0.1465E-02 0.1172E-01 0.6250E-01
-0.9000E 01 -0.1280E 03
0.2715E-03 0.5429E-03 0.1629E-02 0.1140E-01 0.9610E-01
-0.2002E-01 -0.9742E-01 0.8057E-02 0.4883E-03 0.1953E-01
-0.1000E 01 -0.1600E 02 :
0.2249E-04 . 0.4498E-04 0.1349E-03 0.9445E-03 0.7961E-02
0.8118E-01 ~-0.1296E-01 -0.8181E-01 0.599tE-02 0.1709E-02
-0.6250E-01 -0.2000E 01
0.1599E-05 0.3198E-05 0.9595E-05 0.6717E-04 0.5661E-03
0.5773E-02 0.7012E-01 -0.1025E-01 -0.7043E-01 0.4639E-02
-0.7812E-02 -0.3750E 00
0.9961E-07 0.1992E-06 0.5976E-06 0.4183E-05 0.3526E-04
0.3596E-03 0.4367E-02 0.6165E-01 -0.7838E-02 -0.6181E-01
0.3174E-02 -0.2344E-01
0.5518E-08 0.1104E-07 0.3311E-07 0.2318E-06 0.1954E-05
00.1992E-04 0.2420E-03 0.3415E-02 0.5497E-01 -0.6189E-02
-0.5508E-01 0.1953E-02
0.2753E-09 0.5506E-09 0.1652E-08 0.1156E-07 0.9745E-07
0.9938E-06 0.1207E-04 0.1704E-03 0.2742E-02 0.4958E-01
-0.4977E-01




Q of order 12 (N=11) contd.

0.1251E-10 0.2503E-10 0.7508E-10 0.5256E-09 0.4430E-08
0.4517E-07 0.5487E-06 0.7744E-05 0.1246E-03 0.2254E-02
0.4523E-01 -0.2262E-02

Q, of orderi2 (N=11)

-0.1095E-13 -0.2631E 00 -0.1874E-02 0.2508E 00 - 0.5579E-02
0.1167E-01 0.1863E-02 0.6234E-03 0.1580E-03 0.4493E-04
0.1175E-04 0.6413E-06
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 .

=0,1095E-13 0. 2404E-01 0.3281E-02 -0,1576E-01 -0.6585E-01

-0.7473E-02 -0.3266E-02 -0.7496E-03 -0.2115E-03 -0,5628E-04

-0.1497E-04 -0.3826E-05
0.4381E-13 0.5257E-01 0.7494E-02 -0.3226E-02 -0.2232E-01

-0.4666E-01 -0,7448E-02 -0.2500E-02 -0,6282E-03 -0.1711E-03

-0,4579E-04 -0,1245E-04

-0,2738E-12 0.1641E-01 0.3564E-01 0.5074E-02 -0.3336E-02

-0.1457E-01 -0.3550E-01 -0.6366E-02 -0.1967E-02 -0, 5086E-03

-0.1375E-03 -0.3693E-04 '
0.2234E-11 0.3772E-02 0.1104E-01 0.2838E-01 0.4477E-02

-0,1869E-02 -0.1061E-01 -0.2853E-01 -0.5509E-02 -0.1628E-02

—Q.4270E—03 -0.1150E-03

-0.2262E-10 0.7939E-03 0.2599E-02 0.8608E-02 0.2372E-01
0.4129E-02 - =0,1198E-02 -0.8290E-02 -0,2383E-01 -0.4844E-02

-0,1294E-02 -0.3685E-03 )
0.2737E-09 0.1675E-03 0.5733E-03 0.2055E-02 0.7069E-02

20.2038E-01 0.3767E-02 -0.8380E-03 -0.6786E-02 -0.2045E-01

-0.4317E-02 -0.1221E-02

-0.3854E-08 0.3653E-04 0.1270E-03 0.4672E-03 0.1706E-02
0.5992E-02 0.1786E-01 0. 3442E-02 -0,6217E-03 -0.5736E-02

-0.1791E-01 -0.3893E-02
0.6194E-07 0.8247E-05 0.2881E-04 0.1069E-03 0.3966E-03
0.1459E-02 0.5197E-02 0.1589E-01 0.3160E-02 -0.4774E-03

-0,4950E-02 -0.1589E-01
0.4830E-07 0.1849E-05 0.6835E-05 0.2491E-04 0.9267E-04
0.3448E=03 0.1274E-02 0.4581E-02 0.1430E-01 0.2856E-02

-0.5978E-03 -0.5076E-02

-0.5085E-07 0.2919E-06 0.1419E-05 0.6144E-05 0.2338E-04
0.8799E-04 0.3283E-03 0.1218E-02 0.4418E-02 0.1419E-01
0.7005E-02 0.1383E-01
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Figure 1

theoretical rate of convergence of Picards method for

the solution of

y'+y=0,

y(0) = 1
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Figure (5)

R - Experimental rate of convergence of Picards method for the

P
solution of

y" + Azy =0, y(-1) =0,y (+1) =1

and A =1.25 <
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