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ABSTRACT 

This work mainly deals with i t e r a t i v e methods and 

t h e i r rates of convergence, for the solution of non-linear 

ordinary d i f f e r e n t i a l equations. 
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11. 

INTRODUCTION 

In Chapter 1, an explanation of previous work relevant to the 

study of i t e r a t i v e methods for solving non-linear d i f f e r e n t i a l 

equations i n Chebyshev series i s given, and an account of methods of 

assessing and accelerating the convergence of i t e r a t i v e , processes. 

In Chapter 2 a detailed account i s given of various methods: 

Picards and variations, Runge-Kutta, Newton linearisation and Lie 

series. Their application to a number of equations and numerical 

results i s also included. 

In Chapter 3, analysis of rate of convergence of i t e r a t i v e 

methods of solution, based on the behaviour of the error functions 

of each method, i s given. 

In Chapter 4, numerical and graphical comparisons of theoretical 

and experimental evaluation of the rate of convergence of i t e r a t i v e 

methods are given. 
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Chapter 1 

Introduction 

I n t h i s chapter previous work relevant to the study of i t e r a t i v e 

methods for solving nonlinear d i f f e r e n t i a l equations i s described. 

Since the methods considered are mostly based on the use of Chebyshev 

expansions, a b r i e f summary of the properties of Chebyshev pol)momials 

i s included as the f i r s t section (1.1). The next section (1.2) 

describes methods which have been suggested for the solution of 

d i f f e r e n t i a l equations and also of integral and i n t e g r o - d i f f e r e n t i a l 

equations, and i n section (1.3) an account i s given of methods of 

assessing and of accelerating the convergence of i t e r a t i v e process. 

(1.1 .^0)Properties of Chebyshev polynomials 

(1.1.1) Definitions: 

( i ) T (x) = cos(n cos"^ X), - 1 ^ x ^ + 1 n 
( i i ) T"(X) = T ( 2 x - l ) , 0 ^ X ^ 1 n n 

Since any f i n i t e range of values of x can be transformed to any other 

f i n i t e range by a linear change of variables only the f i r s t d e f i n i t i o n 

i s used, i.e. x i s taken i n the range -1 s x ^ + 1. 

(1.1.2) Recurrence Relation: 

• T ,(x) - 2x T (x) + T . (x) = 0 r+1 r r-1 

(1.1.3) Product formula: 

T^(x) Tg(x) = %{T^^g(x) - T (x)} 

13 FEB 1974 j 
, SEnioN y 



(1.1.4)Integration: 

T (x) 
•I r 

dx = 

from which 

-1 

T^(x), 

%T2(x), 

T (x)dx = <J r 

r+1 

T^(x) + 1, 

r = 0 

r = 1 

T (x) 

r = 0 

%(T2(x) - 1), r = 1 

^ I T ' 

(1.1.5) Orthogonal properties; 

r 
: i ) 

TT for r = s = 0 
T (x) T (x) 
^ ^ dx =<[TT/2 for r = S ?̂  0 

-1 
0 for r ?̂  s 

( i i ) for n > 0 and r , s ̂  n 

^ \ ( x . ) T ^ ( x . ) = 
j=0 

n, r = s = 0 or n 

^, r = s 0 or n 

0, r ^ s 

\ 
where x^ = cos for j = 0,1,2, 

Note: The double prime on summation symbol here and elsewhere indicates 

that the terms with s u f f i x j = 0 and j = n are to be halved. We shall 

s i m i l a r l y use a single prime on the summation symbol when only the term 

with s u f f i x j = 0 i s to be halved. 



For example^ 
n 
V" 

/ . X ) U. = %U + U, + + U , + %U 
( i ) ^ J o 1 n-1 n 

j.=0 

n 
y u . = % u + u , + + u , + u 
Li I o 1 n-1 n 
j=0 

(1.1.6) E x p l i c i t expressions for the f i r s t few Chebyshev polynomials: 

T (x) = o = 1 

T^(x) = = X 

T2(x) = = 2 x 2 - 1 

T^U^ •• = 4x^ -3x 

T^(x) = = 8x^ - Sx^ + 1 

T^(x) = = lOx^ - 20x^ + 5x 

Tg(x) = 6 4 = 32x° - 48x^ + 18x^ 

(1.1.7) Inverse relations giving powers of x i n terms of Chebyshev 
polynomials: 

1 = T (x) o 
X = Tj^(x) 

x^ = h(T (x) + T-(x)) o Z 

X = ^(3T^(x) + T3(x)) 

x^ = %(3T (x) + 4T-(x) + T,(x)) o z ^ 

x^ = (lOT^(x) + 5T3(x) + T^U)) 

x^ = ^ (lOTg(x) + 15T2(x) + 6T^(x) + Tg(x)) 



(1.1.8) Calculation of Chebyshev coefficients: 

( i ) I f f ( x ) i s continuous and of bounded variation i n the 
range (-1, +1), then f ( x ) can be expressed i n the form of an i n f i n i t e 
series 

f( x ) = %A T (x) + A,T, (x) + 
o o 1 i 

= y A T (x) 
L-i r r 
r=0 

which i s u n i f o r m ^ l y convergent throughout the range. Using the 

orthogonal property (1.1.5)» 

r TT J 
+1 f(x)T (x) 

dx 
1 / i : ? 

n 2 = - f(cose) cos re de 
TT J 

This i s a familiar representation i n the theory of Fourier Series, 

Here i t i s used occasionally for confirmation purposes. 

( i i ) The use of the orthogonal property of the summation 
n 
y T (x.)T ( x . ) , i s of more practical use than integration; r J S J 
j=o 

i t s application i s carried out as follows, 
m 

Define ^ r " I I " ^ ^ " " j ^ " ^ r ^ " " j ^ ' r = 0,1, 
j=o 

m 
= 2 y " f (cos j ^ ) COS ^ , m Z_i m m 



X. = COS ( j = 0,1, m) 
J ™ 

Then 
P (x) = y 'c T (x) with n < m i s the least square n Z_i r r 

r=o 

approximatjion to g(9) = f(cose) over the m + 1 equally spaced points 

Q = ^ with the truncated series weights h at the beginning and end and m 
1 elsewhere; and i f m = n then 

m 
P (x) = ) C T (x) m Z_i r r m 

r=o 

i s the Chebyshev expansion which takes the same values as f ( x ) at each 

. = cos ^ J m of the m + 1 points x = cos -{J^, j = 0,1, m 

(1.1.9) Summation by recurrence: 

The Chebyshev series 

f ( x ) = )^'A^T^(X) 
r=o 

may be truncated after any term, say the (n + l ) t h to give an approximation 

to f ( x ) , an upper bound 
00 

r=n+l 

for the truncation error being ascertainable at a glance. The 

approximating f i n i t e series may be evaluated i n two ways 



( i ) I f the series i s f i r s t rearranged i n the form 

f (x) = CQ + Ĉ x + + Ĉ X" 

I t can be Evaluated for any given value of x by the familiar process of 

nested m u l t i p l i c a t i o n . This consists of computing successively the 

quantities d^, d^ ^, , d^ defined by 

dj. = X d^+i + Ĉ . r = m, m-1, 1,0 

d . = 0 n+1 

Then f ( x ) = d 
o 

( i i ) I t i s possible, however, to evaluate f ( x ) by recurrence 

d i r e c t l y from the Chebyshev coefficients Â . We form successively 

b„, b , , b from 
n n - i o 

1,0 

b , = b „ = 0 n+1 n+2 

then f ( x ) = hih^ - h^) 

(1.2,0) The use of Chebyshey polynomials i n solution of d i f f e r e n t i a l equations; 

I n considering the use of Chebyshev polynomials i n solution of 

d i f f e r e n t i a l equations, i t i s necessary to record f i r s t the effect of 

d i f f e r e n t i a t i n g or integrating a Chebyshev series and hence the relations 

which exist between the coefficients i n the series for a function and 

i t s derivative or i n t e g r a l . 



(1.2.1) D i f f e r e n t i a t i o n : 

I f f ( x ) = X'A^T^(X), f'(x) = ^'Cj.T^(x), 
r=o r=o 

then Ĉ ^ = ^ 2(2s + 1) A^^,^^, for r =0,1, 
s=r 

^2r+l = ^ 2(2s + 2) A2g^2' = 
s=r 

For the truncated series 
n-1 

P(x) = ^ 'A^T^(X). P'(X) = ^ ' c j ^ ( x ) 
r=o r=o 

C 1 = 2nA n-1 n 

^n-2 = 2(n-l) A ^ _ ^ 

C^.l = 2r A ^ + Ĉ ^̂  for r = 1,2, , n-2 

(1.2.2) Integration: 

I f f ( x ) = y A T ( x ) , rf(x) dx = y b T (x) + b V 
L 

r=o r = l 

where b^ i s an arbitary constant, and 

For the truncated series ^ ^ ^ j ^ 

P(x) = ^'A^T^(X), Jp(x)dx = ^ b^T^(x) + b^ 

r=o r = l 



A 
"̂'̂  ^n+1 = 

b. 2n 

\ = i ^ V l - V l ^ ' ' = n-1 

For the interpolating series P(x) = i:"A^T^(x) the results are similar 

with A^ replaced by %Â . 

(1.2,3) Integration of a function: 

Clenshaw and Curtis (1960) [3] suggested as a procedure 

for integrating a function f ( x ) defined and well behaved i n the range 

-1 ^ X ^ +1, that, using (1.1.4) and ( i i ) of (1.1.8). 

X ^'^^ 

' f ( t ) d t = y b T^(x) 
-1 r=o 

m m 
with f ( x ) = \ " I I " ^ ^ ' ^ j ^ ^ r ^ ^ ' j ^ "̂'̂  

r=o j =o 

X. = cos and then b's and A's are related as i n (1.2.2) with 
J in 

(-l)j+^A. 
'o - I - ^ - ^ 

j ^ l 
n, 

Similar expressions hold i f f (x) i s written as ) A T (x) with n < m. 
Z_i r r 
r=o 

This method expresses the i n d e f i n i t e integral as a Chebyshev series. 

Elgendi (1969) [4] suggested a dif f e r e n t approach, he connects 



pX 
the values of the integral f ( t ) d t at the points x. = -cos m 

( j = 0,1, ....,m) with the values of the function at the same points so 

that 

J f ( t ) d t j = B [ f 

where B i s a square matrix of order (m+1) and f i s the colimin vector 

whose elements are f . = f(-cos This evaluates the integral at a 
J itt 

series of points instead of producing i t s Chebyshev coefficients. I f 

f ( x . ) i s calculated at the points x. =-cos and represented i n the J 3 m 

form of a Chebyshev series 
m 
I Vr^^^' 
r=o 

then f, A are connected by 

f = T A 

where 

f = 

f ( x ) o 
f ( x ^ ) 

f ( x ) m 

A = 

m 

and 

T = 
^^o^^o^ 
%T^(x^) 

hTU) T (x ) o m 1 m 

(x„) m o 
^T^(x.) m 1 

m m 



Then i f 

F(x.) 

m+1 
F(x) = f f ( t ) d t = y b T (x) 

r=o 

m+1 
= ' j f ( t ) d t = y b T (x.) J Z-i r r J 

r=o 

10. 

and F.b are connected by 
A.* A. 

F = T'b (1) 

Where.. F = F(x^) 

F(x^) 

F(x ) m 

b 
A 

m+1 

and 

T' = 
W W V i ^ V 

an (m+1) x(m+2) matrix 
Also from (1.2.2) the coefficients b^'s and Â 's have the r e l a t i o n 

b = MA (2) 



11, 

where 

M = 
0 
hi 

-h 
0 

1 
6 

0 

-k 

0 

h 0 

(-1)"+^ 
2(m^-l) 
0 

an (m+2) x (m+1) matrix. 

The relations (1) and (2)..will y i e l d 

F = T'b = T'M A 
A A A 

= N A 
A 

where N = T'M i s a square matrix of order (m+1) and can be shown to be 

non-singular. 

Hence 

and 

Therefore 

where 

and 

A 

T A = TN"-̂ E 

= f 

F = (TN"^)"^ f 

= B f 
A 

B = (TN~^)"^ i s a square matrix of order (m+1) 

X. r J r 1 f ( t ) d t = B f . 
J L A J 

-1 
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The main advantage of t h i s method i s that for a certain value of m the 

elements of the matrix B can be evaluated once and for a l l independent 

of the particular function f ( x ) . The method i n fact gives alternative 

quadrature formulae to those obtained by the usual f i n i t e difference 

methods. 

(1.2.4) Use of Chebyshev expansions i n solving equations: 

Any method i s designed to produce a series solution of 

f i n i t e degree m; ^ 

y^"\x) = y AT (x) ( i ) . i _ i r r 
r=o 

which approximates i n some sense, the exact solution 
CO 

y(x) = )^A^T^(x) ( i i ) 
r=o 

Suggested methods for linear systems are described b r i e f l y so as to 

i l l u s t r a t e the ideas which can then be applied to non-linear systems. 

(1.2.5) Direct methods (linear systems): 

The idea of these methods i s to reduce the solution of the 

equation to a comparison of Chebyshev expansions. From ( i i ) above and 

using the result i n (1.1), i t i s possible to express y'(x), Jy(x)dx, 

and x^y(x) i n similar form; hence any linear d i f f e r e n t i a l equation with 

polynomial coefficients may be reduced to a set of linear equations 

1% A = R "rs s r 
s=o 

and any linear boundary condition adds a further equation 

A = C 
' r r=o 



13. 

I n i t i a l or boundary value problems, i n which y may be a scalar or 

vector quantity, a l l f a l l into t h i s scheme; the solution i s then 

obtained by solving a r e s t r i c t e d set 
m , m , 
) Q A = R , y D A = C 
u rs r r Z_i r r 
s=o r=o 

The method i s described i n i t i a l l y by Lanczos (1938) [5] and 

developed by Clenshaw (1957) [6] and Fox (1962) [ 7 ] . In Scraton (1965) 

[ 8 ] , i t i s extended to the case where the coefficients are not polynomials 

but may be approximated by a (low degree) polynomial, and further 

extensions to general boundary conditions are treated i n Snell (1970) 

[ 9 ] . ^knibb and Scraton (1971) [lO] apply the same idea to replace a 

p a r t i a l d i f f e r e n t i a l equation by a set of ordinary d i f f e r e n t i a l 

equations i n the Â . The truncation error as estimated by varying m, 

i s described i n [7] and by P h i l l i p s (1967) [11]. 

(1.2.6) Collocation Methods: 

In these methods the equation i s sa t i s f i e d exactly at a 

set of M selected points. I t i s then not necessary to express each 

term i n the equation i n a Chebyshev series, and thi s enables a wider 

variety of equations to be tackled. Any iJth order linear d i f f e r e n t i a l 

equation 

d^ "P-̂ ' 
'P dxP "P-̂  dx^ 

reduces, on substituting 
00 

y = I 'a^T^(X) 
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and using results i n (1.1) to 

^ = r ( x ) 
r=u 

Where the Q^(x) are functions of the q^(x) and are linear i n T^(x) 

This i s now required to be exact at x., j = 0,1, m and hence A's J 
s a t i s f y 

00 ̂  
I Q,(x.)A^= r(x.: 
r=o 

together with boundary conditions which, as before, produce 

y D A = C L r r 
r=o 

A l i m i t e d set of these equations are again solved giving R^j^ftj^j 

This method was suggested by Lanczos (1938) [5] and developed by Clenshaw 

and Norton (1963) [12] and Wright (1964) [13]. The selection of 

variable points x^ i s discussed by Osborne and Watson (1968) [14]. 

Oliver (1969) [15] gives a discussion of the truncation error. Proposed 

sets include the extrema.(^T (x) ( i e x. = cos — ) or the zeros of 
^ m — X m 

T _ , i ( x ) , i . e . (x. = c o s ^ ^ ^ i i i ^ ) . 
^ 2(m+l) 

(1.2.7) Linear integral equations; 

Linear integral equations can be treated by techniques 

which contain elements of both direct and collocation methods. Thus 

i n the Fredholm equation 

y(x) - X J. K(x,s) y(s) ds = f ( x ) 
•1 
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E l l i o t (1963) [20] suggests taking for y the truncated Chebyshev expansion 

n Z A T (x) and determining the (n+1) A'sby satisfying the equation r r 
r=o 

at the (n+1) points x^ = cos — . This gives the equation 

r=o -1 r=o 

for i = O j l , n, - 1 ^ x, s ̂  1 

The Kernel K(x^,s) may now be approximated by the interpolating 

polynomial of degree N i n the form 

N 
K(x.,s) = Y 

r=o 

N „ 

HWere br^^O = | I K(X., COS ^ ) cos(-Ef-) 

and so the Fredholm equation i s replaced by n+1 equations 

n , 1 ^ " 
f ( X . ) = I A^T^(x.) -X J { I " b^(x.)T^(s) I ' ApTp(s)}ds 

r=o -1 . r=o p=o 

for i =0,1, ,n. 

Which, using the product formula (1.1.3) and the de f i n i t e integral 

formula 
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+1 
T (u) J r 

2 ( - l ) r+1 

du = < 
-1 0 

for even r 

for odd r 

may be reduced to a set of linear equations in the A^. 

Elgendi (1969) [4] suggests a method based on the relation described 

in (1.2.3) between the integral values and the function values. I f F 
A 

i s the (m+l)th order column vector of values of 

' ^ f(u)du, X. = -cos — ( i = 0,1 m) and f 
J 3. m A 

-1 

i s the vector values of f ( x ^ ) , then 

F = B f 

In p a r t i c u l a r 
1 ^ 

r i n F , = f(u)du = ) B . .^1 f(-cos — m+1 J L m+1,1+1 m 
-1 i=o 

Thus 1 
J K(x,s) y(s)ds = 2, V l , i + 1 ' ^ ^ ^ • ^ i ^ y^^'i^ 

i=o 

which for x = x^ , 
/•••m 

=•' r v i , i + i ' ^ ^ ^ j ' ^ ^ 
i=o 

. [ c ' J ' f [ y ] 

The Fredholm equation then becomes 
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or 

[y ] - X[C^j^]^[y] = [ f ] 

( I - XC)[y] = [ f ] 

and so [ y ] (the vector of y at the points x^) may be determined. 

(1.2.8) Nonlinear d i f f e r e n t i a l equations: 

Direct or collocation methods would lead i n this case to 

nonlinear equations i n the A's. For the direct method these would 

re s u l t from expressing the nonlinear terms as Chebyshev series, for the 

collocation method, from expressing the values of the nonlinear terms 

at the selected points i n terms of the Chebyshev coefficients. The 

solution w i l l thus involve i t e r a t i o n . 

An alternative approach which has been adopted, i s to use a linear 

i t e r a t i v e process on the whole solution ( i . e . on the vector of A's, i f 

Chebyshev expansions are used); methods suggested are based on Ficards 

i t e r a t i o n (Clenshaw and Norton (1963) [12], Wright (1964) [13]) or a 

Newton l i n e a r i s a t i o n (Norton (1964) [ 1 6 ] ) . The Picards idea has also 

been applied to nonlinear integral equations e.g. by Wolfe (1969) [17]. 

A f u l l discussion of each of these methods w i l l be given i n the next 

Chapter. 

Another method suggested by Weyl (1942) [18] i s to linearise the 

d i f f e r e n t i a l equation i t s e l f ; the Chebyshev collocation method can be 

applied to t h i s and results are described i n Chapter 2. 

Recent work on tilw series generalises these methods and i s 

described i n Chapter 3. 

The factor^interest i n a l l these methods i s the speed of 

convergence of the i t e r a t i v e process to the truncated Chebyshev series 
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solution. Comparison may also be made between these and other methods 

which are b r i e f l y mentioned. 

(1.2.9) I t e r a t i v e use of Runge-Kutta method for boundary value 
problems: 

The Runge-Kutta method i s a standard method for solving 

i n i t i a l value problems, by transforming into simultaneous f i r s t order 

equations and using these to integrate from one end of the range of the 

independent variably to the other. Details of t h i s method are given i n 

many books on numerical analysis such as [19]. 

The procedure i s also adopted for solving boundary value problems-

This requires an i t e r a t i v e process i n which the equation i s solved as an 

i n i t i a l value problem and the unknown i n i t i a l values are successively 

approximated as functions of the values at the other boundary or 

boundaries. An example i s given i n the next Chapter. 

( l . a 0) The 'Qrderi^ofrrConvergence 

I t i s natural to consider f i r s t the d e f i n i t i o n of the rate of 

convergence of an i t e r a t i v e sequence of scalars x^, x^, .... 

I f the sequence converges to <j, and 1^ = x^-^and i f 

(1.^^) - -
where p i s real tends to a non zero constant C, then p i s the 

order of the sequence and C i s the asymptotic error constant (see e.g. 

Traub p.9 [ 2 6 ] ) . The information needed can also be quantified, by 

w r i t i n g a for the number of new evaluations required per i t e r a t i o n , and 

then the informational efficiency Eff ,can be written as a combination of 

p and a; p/o or p̂ '̂ " have been suggested. 
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I n the case of an i t e r a t i v e solution of a d i f f e r e n t i a l equation i n a 

single variable we have successive iterates y^°\x), y^^^(x) .... y^'''^(x). 

and a true solution y ( x ) . As above, write the error 

e^^\x) = y^^\x) - y(x) 

Then discussion of the error i n th i s form w i l l require the evaluation of 

some error norm of which the usual ones are 

j.b pb j.b 2 pb 
= e(x) dx / dx, L_ = e (x)dx / dx, 

or L = max e(x)|, a ^ x ^ b. 

A relationship may then be obtained as above between the norms of 

successive i t e r a t e s . 

I f the solution of the d i f f e r e n t i a l equation i s obtained as a 

Chebyshev series, however, the iterates each give r i s e to a vector of 

Chebyshev coefficients, Â ^̂  and the relationship becomes. 

(i+1) = 

(1.3.1) Error estimation of i t e r a t i v e methods: 

For the various i t e r a t i v e methods suggested i n section (1.2), 

the solution to the d i f f e r e n t i a l system that we hope to achieve i s of 

the form ^ 
y(x) = y a T (x) 

i - j r r 
r=o 

of f i n i t e degree N, which approximates the exact solution 

y*(x) = ^ A^T^(x) 
r=o 
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to some desired accuracy over the range (-1, +1). The upper bound on the 

error function e(x) [15] i s given by 

:(x) = y(x) - y (x) 

N, 
= I (a,-A^)T/x) - [ A ^ T ^ ( X ) 

r=o N+1 

N 

r=o r=N+l 

At any stage, when selecting N for which 
00 

N+1 

i s small enough to be neglected, e(x) can be expressed as 

N 
e(x), = Y. Vr^""^ 

r=o 

where e^ ( r = 0,1, , N) are the Chebyshev coefficients of the error 

function e(x). I f after r iterations we define the vectors â '̂ ^ and 

e^^^ such that 

( r ) _ o 
( r ) 

( r ) 
^^^^ o 
( r ) 

'N 
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Then f u i aiiiji f i r s t order^ i t e r a t i v e method, we have the representation 

^(r+1) _ ^ ( r ) ̂  , a - M a + b 
A A A 

•Where M (which w i l l i n general be a function of jl|) i s a square matrix of 

order (N+1) and independent of the coefficients a^ (r = 0,1, N), 

and b i s a constant vector. I f the method i s consistent then A, the 
A 

vector of the required solution, s a t i s f i e s A = MA + b, so by subtracting 
A A A 

these relations we get 

A 

A 

where e^°^ i s the error vector i n the approximation a^°\ 
A ^ 

(1.3.2) The rate of convergence; 

I f M (the i t e r a t i o n matrix) i s non deficient, then we can 

show, by expressing e^°^ i n terms of the ei^-vectors of M, that the 

i t e r a t i v e process converges for any i n i t i a l approximation a^°\iff 

the spectratradius of M i s less than 1, where the spectral radius 

p(M) = max|\(M)|. 

In general whether M i s deficient or not, we have 

| |e<'>| | .<l |M'^| | | | e ' ° > | | 
A A 

where the norms are defined by 

( i ) l|e|| = [ | e j 2 + | e j 2 + 

( i i ) | |M| I = max{eigenvalue of (M^M)}^ 

( i i i ) p.(M) ̂  •• |M| 
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The average rate of convergence over r iterations R^(M) i s defined by 

R (M) = -log] IM'̂ I | / r . 

This being the average decrease in l o g | | e l | at each ite r a t i o n . 
T^ 

Since the Rayleigh quotient ^ , has a maximum value of p (M) for a l l x, 
X X 

we have that i f ê '̂ "̂ ^̂  = M ê '̂ ^ then 

^(r+1) - ( r ) 
, ( r ) T J r ) ^ 

equality holding only i n the case where e^'^^^^ and ê '̂ ^ are eigenvectors 

of M. 

For an expansion in orthogonal functions 0^(x), such that 
pi 

u)(x)0 (x)0 (x) dx = 0, r ?t s 
tJ IT S 

= K r = s r 

I t may be noted (Fox and Parker, p.44 [26] that for any function f 

we have, writing 

| | f | | = I J (u(x)f^(x)dx| /, 
•1 

N 
f | ^ = y K C ^ + ( f - t , f - t ) - wher« ' ZJ r r n n * 

r=o 

N 

•̂ n = I^r^^-^ 
r=o 
N 

I t follows that | | f | | ^ > Yj\^t^ ^° ̂ ^^^ ̂ ^^^ ̂ ^^^ definition of 
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norm the function has a larger norm than the vector of i t s Chebyshev 

coefficients. I n f a c t , for the error function e(x) and i t s Chebyshev 

expansion N 
^ 11j.Tj.(x) we have 

0 -k 9 2 2 2 J (1-x^) ^ e''(x)dx> 2T1̂  + 15 + + \ 

(1.3.3) Acceleration Techniques: ' 

Forwdny problems, however^iterative methods may f a i l to 

converge or converge too slowly to be useful. For such cases acceleration 

procedures of the form x = f ( x , x x .) have been proved to 
2 

be successful, i n particular the well known Aitken's 6 -formula. The 

terms x^, x^^j ^ , of the sequence of solutions can be either scalar 

q u a l i t i e s or arrays. The main object of this section is to discuss 

appropriate procedures to accelerate slowly convergent or non-convergent 

solutions of both types. 

(1.3.4) The e-Algorithm. (Shanks 1955. Wynn 1956,1962) 

Let the sequence of scalars x^, (r = 0,1,2,...) be linked 
( r ) 

with the sequence such that 

o r 

Then the e-algorithm defines the quantities e.̂'̂^ to sa t i s f y the r e l a t i o n 
s 

' ^iif^^^r'-u'-'y'. -".^ 
s = 0,1, 
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I f the sequence x^ i s slowly convergent then this r e l a t i o n provides 

a sequence s^^^ which when associated with ê '̂ ^ = x can be far more ^ 2s o r 
rapid. 

Regarding ê '̂ ^ as scalar quantities, we have s 

( r ) _ (r+1) ^ 
=1 - «-l (r+1) ( r ) S - 'o 

^ + 1 - \ 

and e ( r ) _ (r+1) ^ 
2 " ^ ^ (r+1) ( r ) 

' i • h 

^r+1 - \^+2 
2^+1 - \ - ^+2 

2 
which i s i n fact Aitken's 6 -formula. I t can be shown, Johnson (1971) 
[21] that ê '̂ ^ i s found by f i t t i n g the hyper plane 

2p 

\ = '̂o + " ' l ^ ^ + l - ''2^^+2 - ̂ + 1 ^ + "'p^^+p - ^ + p - l ^ 

where the a's are determined by the (p+1) lots of values of 

[ x ^ , ^j.^i> > X _̂ 3> ^ ~ P- Then a^, the intersection of 

th i s hyper plane with 6̂  = 0, s = 1,2, ,p, i s e^p^. I f the terms x^ 

are p a r t i a l sums of a formal power series given by 

00 
f(Z) = ^ A/ 

i=o 
j 

X. = T A.Z^ for some Z j Z-i 1 o o 
i=o 
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then i t can be shown, Genz (1973) [22] that 

4K = '^+jlf(Z)^^o^ 

Where [ K , K+j]f(2)^^o^ Fade's approximants to f(Z) i n the form 

[ K , K+j](Z) = J Pj. Z / { I + E q^Z*} evaluated at Z = Ẑ . 

So the e-Algorithm can be used to compute Fade approximants for 

some fi x e d points. 
Also i f X, i s a sequence whose terms are given by 

P 

i = l 

w i th I P J > IP2I > iPpI 

then el°^ = x, where x i s the l i m i t of the sequence x 2p J 

(1.3.5) The E-Algorithm 

Alternatively l e t the sequence x^ have the terms 

''r' \ + l ' *••• "̂'̂ ^ ^^^^ 

I f X = a i s the solution of (3), and i f for x^ = a + e we can have 

the expansion 
2 

f(of + e) = a + Ce + 0(e ) 

Then i t follows ([23]) that either 

E (a + e) = a + 0(e"'^^) for C ?t 1 n 

or E^(a + e) = « + ;j^r e + O(a^) for C = 1 
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Where E ( x ) sa t i s f i e s the recurrence relations n r 

E ( x ) = X o r r 

E ( x ) = E Ax + n r n-1 r+1) 

n-1 

i=o 

n-1 

L=0 
This is»^erred to as E-Algorithm which i s very much related to e-Algorithm 

since 

E„(x^) = e2n^ " = 

In applying t h i s approach to the case i n which ê '̂ ^ and x , x 
S IT IT r*X 

are sequences of slowly convergent arrays and i n particular vectors, the 

main inte r e s t w i l l be focussed on the terms which concern the inverse 

of those vectors. 

P. Wynn (1962) [24] has considered several p o s s i b i l i t i e s regarding 

the inverse of a vector { x ^ ] . 

( i ) The primitive inverse {-4-3 which deals with each component of 

e separately, t h i s i s equivalent to the simultaneous application of 
s 

the scalar e-algorithm to each component of e^'^^ 
s 

( i i ) The Samelson-inverse of a vector which defines the inverse of a 

vector x by 
-1 = { I ^ V i ^ } ^ ^ 1 ^ n ^ 

i = l 

where x = (x, ,x-, ,x^) and x i s the complex conjugate of x , 
/\. 1 / n r L 
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(1.3.6) The Extrapolation algorithm; 

This i s an alternative to the e-algorithm, based on fewer 

evaluations of the o r i g i n a l sequence. I f the basic i t e r a t i o n i s of the 

form 
Ẑ ^̂  = GZ^ 

and i f we define a coupled pair of i t e r a t i v e sequences and such that 

where G i s an operator, then Anderson (1965) >[25] has established the 

extrapolation algorithm which defines x^^^ as a f u n c t i o i ^ x ^ ^, x\ ^ 

and y^, so that the sequences x^ and y^ converge more rapidly, than the 

basic sequence z\ 

Define a residual vector r''" by 

L L L r = y - X 

L L ^ A, 1-1 L, u = x + 8 ( x - x ) 

= y + 0 (y -

= :^(v^ - u\ v ^ - u b 

where the inner product of two N-vectors u and v i s defined by 

N 
(u,v) = X v i"i 

1=1 

ŵ  being a non-negative weighting factor. 

The parameter 9^ i s chosen so as to minimize the linearized 

residual R̂ . 
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e = (r , r - r ) / ( r - r , r - r ) 

L+1 = u + P (v - u J, and i f p = 1 then 

L+1 t 
X = V 

t ^ A, L-1 U = y + 9 (y -

and V -u = r + P (r - r ~ 

Here the choice of the parameter 9 i s to make the vector ( v ^ - u^), 

orthogonal to r ^ " ^ - r \ and so to minimize i t . 

This method i s suggested as an alternative means of vector 

extrapolation for many-component vectors, where the components may not 

be regarded as independent. For such cases the e-algorithm demands an 

equivalent number of ite r a t e s , whereas the above method only uses two. 

In the work which follows, the main i t e r a t i o n methods, Picard and 

Newton and theif variants and extrcmao, are described i n d e t a i l . They 

are applied to a number of standard d i f f e r e n t i a l equations and the 

results are analysed. The solutions were a l l carried out afresh, 

although some of the same equations and methods have been described i n 
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the l i t e r a t u r e , because (a) the descriptions do not contain enough 

d e t a i l for rates of convergence to be analysed and (b) i t was desirable 

to test a l l methods .under the same computing conditions. Computing was 

carried out on an IBM 360-67 and a l l programming was i n single-precision 

so that the results may be considered r e l i a b l e to say six significant 

figures. 

The rates of convergence of a l l processes are analysed from the 

numerical results; estimated rates for the various methods are also 

obtained i n some cases where practicable, by linearising the effects, 

and also by the usual expansion approach. 
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Chapter 2 

Introduction 

I n t h i s Chapter a detailed account i s given of various i t e r a t i v e 

methods, Picard and variations, Runge-Kutta, and Newton linearisation. 

These are applied to a number of equations and the numerical results 

are given. 

(2.0) Picard's Method 

Consider the f i r s t order d i f f e r e n t i a l equation of the form 

y' = f(x,y) 
(2.0.1) 

y(§) = 11 

Ince (1953) [28] had shown that any d i f f e r e n t i a l equation which expresses 

the derivatives of highest order e x p l i c i t l y i n terms of the lower order 

derivatives and the independent variable, can be expressed by a system of 

equations and hence any such d i f f e r e n t i a l equation can be written as a 

combination of equations of type (2.Q1). I f equation (2.Q1) i s replaced 

by the system 

y'(x) = f { x , y._^(x)3 (2.0.2) 

for i = 1,2, 

Iftiere f (x, y^ ^) represents a function of a l l the dependent variables, an 

i t e r a t i v e process i s produced. Picard's i t e r a t i v e method uses (2.0*2) i n 

the form of the integral equation 

pX 
y.(x) = T1+ J f [ x , y._^(x)3dx (2.0-3) 

5 
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This i s the basis of the existence theorem for ordinary i n i t i a l value 

d i f f e r e n t i a l equations and can be shown to converge under general 

conditions. 

(2.1) Clenshaw-Norton Procedure 

C. Clenshaw and H. Norton (1963) [12] have set up an i t e r a t i v e 

procedure based on the use of Chebyshev series i n Picard's i t e r a t i o n , 

applicable to the solution of both linear and non-linear ordinary 

d i f f e r e n t i a l equations. The f i r s t step i n constructing the solution of 

(2.0.1) i s then to represent y^ ^^(x) (the i n i t i a l approximation to the 

solution of (2.0t2)), by a truncated Chebyshev series of degree N: 

r=o 

iJhere the coefficients A (r = 0,1 N) are known. The series 
r 

may be evaluated at the points 

x^ = cos ^ , s = 0,1, , M 

where M i s the number of sub-intervals taken i n the range - 1 ^ x ^ + 1 , 

using the recurrence procedure (1.1.9). Now l e t 
N ( 

f { x , y . _ ^ ( x ) } = ^^^^^^^ (2.1.2) 
r=o 

then the r i g h t hand side of a given d i f f e r e n t i a l equation i n the form 

(2.0i) represents an algorithm for computing the values of f(x,y^_j^) for 

any (x,y) i n the region of i n t e r e s t , such that 
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^ f - s ^ i - l ^ ^ ^ ^ = S 

at X = cos ̂  , s = 0,1, M 
s n 

and by the aid of the orthogonal property of summation we get 

M 
A' r 

„ S f TT 
= z; ) C cos - i - (2.1.3) 

M ^ s M s=o 

for r =0,1, N 

and hence 
N 

y'(x) = ^ Â  T^(x) 
r=o 

The in t e g r a l formula 

for r = 1,2, , N+1 

w i l l provide the Chebyshev coefficients Â ^̂ ^ of the series 

N+1 

r=o 

The i n t e g r a l equation (2.1.4) does not give Â ^̂  which i s the constant 

of integration. The boundary condition y(?) = 1) w i l l y i e l d Â ^̂  such that 
( i ) ( i ) (i) 

= 2T1 + 2(A^T^(|) + A^T^d) + + V l V l ^̂ ^̂  A 

N+1 
Then the series Y Â ^̂  T (x) represents an improved approximation to 

Z_i r r 
r=o 

the required solution. 
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This process may be repeated u n t i l each member of the current set of 

coefficients d i f f e r s from the corresponding member of the previous set by 

less than a prescribed amount, that i s taken as a measure of accuracy 

required. 

Then Clenshaw-Norton procedure can be outlined as follows: 

( i ) The Chebyshev series for the i n i t i a l approximation y^^.j^^^) 

i s eval'oted at the points x^ = cos (s = 0,1, ,M). 

( i i ) The values of f( x , y ^ ^) are then computed at the same points 
STT 

( i i i ) The coefficients Â  (r = 0,1,. N) of the series 

f( x , y . ,) = ) A' T (x) are hence calculated. 1—i r r 
r=o 

( i v ) New set A^^\ fo r r = 0,1, , N+1, are obtained using the 

int e g r a l formula (2.1.4), and the given boundary condition namely 

y(§) =11. 
N+1 

The solution y, (x) = ^ Â ^̂  T^(x) i s then aqljLeved and this sequence of 
r=o 

operations represents one cycle. 

To i l l u s t r a t e the procedure, we consider i t s application to the 

solution of 

Example 1: y' + y = 0 

y(0) = 1 

which has the solution y(x) = ei^ 
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Let the i n i t i a l approximation X^^x) = ^ A^T^(x) to be 1-x, so that 

y (0) = 1, then 
o 

r=o 
, (V) = i. cnen o 

y (x) = 1-x = %(2.0) T (x) - 1.0 T, (x) o o 1 
and so 

Â  = 2.0, Â  = -1.0 

In t h i s example f ( x , y ) = -y (x) provides an algorithm to compute the 
o o 

values of f(x,y^) = SÂ  T^(x), where we f i n d that 

Â  = 2.0, A| = 1,0 

A' = A' = 0 
2 3 

and hence using the integral formula, we get new set of coefficients 

Â  (r = 0 , 1 , n+1) where 

Aj = = -1.0 

A' - A' 1 3 A„ = ^ ^ = 0.25 2̂ 
and 

K 

Ao = 2 ( 1 + 1 ( - 1 ) " ' ̂ 2r^ 
r = l 

2(1 + Â  - A^ + ) 

= 2.5 

(where K = F^T^l the max integer ^ . 
L 2 J 2 2 , 

Therefore the new approximation :^(x) -

%(2.5)T (x) - T, (x) +0.25 T ( x ) . o i ^ 

is 
r r 

r=o 
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By repeating t h i s process we obtain the 7th Order Chebyshev series 

approximation to e i n the range (-1, 1) shown i n Table 1. 

I t i s clear from t h i s process that after each i t e r a t i v e cycle the 

order of the approximation i s increased by 1 and so for i ̂  N the 

approximation y^(x) i s merely the truncated Taylor's series for e 

rearranged appropriately. For the general case th i s would not be so, for 

i f we f i x N and continue the process, the coefficients converge to the 

true values less the truncation error. This truncation error can be 

reduced by increasing N, e.g. 

N Z' (i) Â  T^(x) i s rearrangement of the truncated Taylor 
r=o 

series for e"'', i t i s clear that i t s maximum error occurs at x = - 1 . 

I f N = 5 then t h i s error i s given by 

5 
e 

r=o 

= e - 2.716 

= 0.00162 

I n contrast comparison of the coefficients Â ^̂  with Â  shows that the 

error of yAx.) can be reduced; as the number of iterations increased, to 

r=o r-6 

= 0.00017 

where 10 i s the number of i t e r a t i o n s . 
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Bxample 2: 
2 y l = y 

y(0) = h 

Here, l e t y (x) = % ( 1 + 2) 

N .1 

r=o 

and N has the values 3,4, , 15 

The solutions obtained are shown i n Table 5, which includes Â  of the 

solution y(x) =21;̂  = X Vr^^^ 

Example 3: 
2 

y' = X - y 

y(0) = -0.72901 

y^(x) = -0.72901 (1 + x) 

N 

and l e t N have the d i f f e r e n t values as the above example, the solutions 

are l i s t e d i n the Table 6. Where the number of iterations required to 

obtain the approximations Â  i s indicated on the superscript on Â  i n 

those tables. 
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(2.2) Second Order Equations; 

Clenshaw-Norton i t e r a t i v e procedure enables us to attack a wide 

class of d i f f e r e n t i a l equations, but at this stage we are r e s t r i c t e d to 

non-linear d i f f e r e n t i a l equations of boundary-value type of the form 

y"(x) = f{x,y(x),y'(x)3 (2.2.1) 

with y ( - l ) = a, y (+1) = P 

I t should be noted that convergence does not necessarily occur for 

boundary-value problems but must be investigated for each problem. 

Method of Solution; 

Let the i n i t i a l approximation to the solution of (2.2.1) be 

represented by 

r=o 

i n the range - 1 ^ x ^ + 1 . Such that 

Also l e t 
N 

y l - i ( - > = I ' A;(-I) T,(x) 
r=o 

where the coefficients Â "̂'''̂  Â ^̂ "'̂ ^ (r = 0,1 ,N) are of known 
values. 

Then the series y^.^Cx) = 2A^^"^^Tj.(x) and yl_^U) = 

can be evaluated at the points x^ = cos (s =0,1, M) by the aid 

of a rec^urrence procedure similar to (1.1.9). Hence the values of 
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f [ x , y . j^(x), y^ j^(x)3 are computed by a given algorithm, for any values 

of (x,y,y') i n the required region, and thus the coefficients Â  of the 

series 

y" = f { x , y._i(x)", y'_i(x)3 = I A;: T̂ (X) 
r=o 

can be computed d i r e c t l y using the summation formula 

M / f cos —rr-r M Z_. s M 
s=o 

for r = 0,1, ,N and where f = f { x , y. , (x ) y l (x ) } . 
S S X~J. " S X*"X s 

The relations 

2r A' = A" , ^ A"̂,; r = 1,2,....,N r r-1 r+1 

2r A = A' , - A'' , • r = 2,3, ,N 

r r-1 r+1 

and the given boundary conditions w i l l enable us to produce the new sets 

of coefficients Â^̂  and Â^̂^ and hence 

y.(x) = ^ Â^̂  T^(x) 
r=o 

N 

r=o 

These new series for y^(x) and y|(x) could be used to start another cycle 

of the i t e r a t i v e procedure. To i l l u s t r a t e t h i s , we consider Van der Pol's 

equation as an example 
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2 1 
Example 4 y" = ^(1-y )y' - Ye ̂  

y ( - l ) = 0, y(+l) = 2.0 

Here l e t N . 
• («) 

r=o 
10) («!) 

= %(A^T^(x) + A^T^(x) 

Now y (-1) = - ÂJ* = 0 
o o 1 
y (+1) = + Â;* = 2 
o O 1 

( * ) lo) la) (0) <o) 

and from these we get Â  = 2.0, Â  = 1.0 and A2 = Â  = = Â^ = 0. 

i.e. y^(x) = %(2.0)T^(x) + T^(x) 

= 1 + X 
and hence l e t y^(x) = 1, so that ^ = 2.0, = 0.0, Â  = Â  = = 
Aj^ = 0.0. 

Then Picard's method w i l l produce new sets of coefficients '̂̂  and 

(r = 0,1,....,N) where A'^, and are deduced from the boundary 

conditions such that 

i'^ = 2-2(Â ^ + i^;; + Â^ + ) 
o 

i j = 1 _ d'l + + + 

N 

r=o 

The process has sett l e d to a reasonable approximation after 10 iter a t i o n s , 

and the coefficients Â  of the approximation 
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N ̂  
y(x) = Y A^T^(x) 

r=o 

tilhere N was taken to be equal to 17 are shown i n Table 7. Here the 

truncation error i n y(x) i s so small as to be ineffective, while a 

si g n i f i c a n t build of round-off error i s expected due to the repeated 

evaluation of the functions y ( x ) , y'(x) and f{x,y,y'}. 

Example 5; 

Consider the problem 

y" + X^y = 0 

y ( - l ) = 0, y(+l) = 1 

I t has the solution y(x) = sin X(l+x)/sin 2\ i n the range -1 s x ^ 1 

for \ ^ ^. 

l e t y^(x) = k(.l + x) 

(where = 1, = k, = = Â j = 0). 

be our i n i t i a l approximation to the required solution, t h i s being the 

simplest polynomial which s a t i s f i e s the given boundary conditions. 

Taking X = 1.25 the method of Picard i t e r a t i o n gave the values 

which are l i s t e d i n Table 2 which includes for comparison the leading 

coefficients Â  i n the f i n i t e Chebyshev series for y(x). 

Example 6: As i n example 5, with 

X > I 
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The results for t h i s are given i n the Appendix. The solution 

diverges; explanation and treatment via acceleration prpcedures are 

discussed i n the next Chapter. 

In t h i s example i f we consider the case X = 2, the solutions 

obtained by Picard's are given i n Table 3 which also includes Â  of the 

solution 
N, 

y(x) = ^A^T^(x) 
r=o 

The process was terminated after 10 i t e r a t i o n s , and the degree of the 

approximations was fixed to be (N = 9). In this case, however Picard's 

method was diverging and hence i t f a i l e d to get a reasonable approximation 

to the solution y ( x ) . Clearly t h i s indicates that convergence i s not 

secured for a wide class of problems when Picard's method i s used. 

(2.3) Application to Integral equations; 

A similar approach can be used for problems o r i g i n a l l y formulated 

as i n t e g r a l equations. Thus Wolfe (196"9) [17] used the truncated 

Chebyshev series 
N 

y(x) = IA^T^(X) 

The coefficients Â  (r = 0,1, ,N) are i n th i s case determined 

i t e r a t i v e l y by 

+1 
yg^^(x.) = yg(x.) + \ j K ( x . , t ) y g ( t ) dt (2.3.1.) 

-1 
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N I 
where y (x) = ^ A^^^T^(x) 

f ( x . ) = y^(x.) 

For each x^ = cos ̂ » = O'̂ ' K ( x ^ , t ) i s approximated by a 

polynomial i n t o f degree M of the form 

K ( x . , t ) = Y ^^'^^ 

r=o 

M 

" ^ ' " i ' • 5 r-^'-i- Tf> '-f 
s=o 

f o r ( r = 0,1,....,M) 

Hence equation (2.3.1) becomes 

1 M 
(X.) = y ( x . ) + X J { I b j ^ ( t ) ^ A ( ^ N ^ ( t ) } d t ''s+r 

-1 r=o r=o 

the s e r i e s i:"b^T^(t) and S'A^^^T^(t) are m u l t i p l i e d together and the 

i n t e g r a t i o n can then be c a r r i e d out using (1.1.3) and (1.1.4). Therefore 

f o r each x^ = cos ^ s + l ^ ^ i ^ determined, and hence the Chebyshev 

expansion t a k i n g these values can be found as 

^•A^^-^I^T^(X) 
r=o 

using the property o f summation (1.1.6), where 

i=o 

and these are used i n (2.3.1) t o continue the i t e r a t i o n u n t i l 

convergence i s reached. 
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This method can be e a s i l y extended to the s o l u t i o n of V o t t e r r a 

equation 

y ( x ) = f ( x ) + \ K ( x , t ) y ( t ) dt 
-1 

y ( - l ) = Y 

No f u r t h e r work has been done on t h i s method i n t h i s t hesis and i t i s 

included here only f o r completeness. 

(2.4) Weyls Method: 

Weyl (1942) [18] suggested an i t e r a t i v e method f o r s o l u t i o n of 

equations o f the general type 

y^^+^\x) + f ( x . y . y ^ ' • ^ ^ y ( ^ > = 0 ^^-"^-^^ 

or y ^ ^ + l > ( x ) f f ( x . y y^^^'^^y^^^ = g(x.y, y^^^^^ (2.4.2) 

where y^'^^(x) denotes the r t h d e r i v a t i v e of y ( x ) . 

I f the problem i s an i n i t i a l value one, f o r example i f y ( 0 ) , y ' ( 0 ) , . . . , 
( r ) 

y (0) are known, s o l v i n g the equation as a l i n e a r d i f f e r e n t i a l equation 

i n y^'^^ using approximate values f o r y,y', i n f and g, produces 

an i t e r a t i v e procedure which i s known to convergejUtwe^ 

r.X 
,dx 

y f ! i u ) = y ^ ' ' ^ 0 ) e ' (2.4.3) 'i+1 
pX 

nX J f^dx _J f^dx 

or y [^J(x) = (y^^'^O) + J \ e dx} e (2.4.4) 

St 
( r - l ) 

wherey^ i s the i t h i t e r a t e and f ^ = f ( x , y ^ , y | , .ŷ ^ ) andj[g^. 
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The values of y^^-|^^\ ^ i + 1 ^ ^ ' ' ^ i + l obtained by successive 

r a t i o n . The procedure may also be used f o r boundary value problems, 

but here convergence i s not guaranteed. 

The method may be applied to any equation which i s l i n e a r i n two 

d e r i v a t i v e s . For example the equation to which i t was f i r s t applied. 

y i i i + y yu = 0 

w i t h y(0) = y'(0) = 0, y"(0) = 1 

produces i t e r a t e s ^0 ~ ^ 
2 

ŷ ' = 1 g i v i n g ŷ ^ = % x 

1 3 
y^ = exp(-^ X ) , and so on. 

I t can be seen t h a t , t h i s method i s , when g = 0, simply a v a r i a n t o f 

Picard's method produced by a change of v a r i a b l e . 

I f 
l o g ŷ '̂ ^ = U 

i s s u b s t i t u t e d i n t o 

+ fy^'^^ = 0 

i t becomes 

U' + f = 0 

and Picard's method applied to t h i s would produce, w i t h U(0) known 

(= l o g y^^'^O)) 

" i + 1 = " ( 0 ^ - J ^ i ^ -
o 

which gives ^ 

4+1 ^ y^'^^(O) e as i n (2.4.3) above. 

When g # 0 a f u r t h e r approximation i s introduced. Picard's method now 

would gi v e , w i t h the same s u b s t i t u t i o n 



o 
e 

f .dx 

and from (2.4.6) 

-U -U(0) ° = e . e 
J f . d x ^Jg.e dx 

.dx 
1 

y < " ( 0 ) 
e 

s u b s t i t u t i n g t h i s approximation i n (2.4.7) gives 

,dx 
* ft 

- f.dx , f.c 
( r ) r ( r ) ^ ^ 
ill " ^ { y (0) + J g i e dx-
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" i + 1 " • l^i^^ "^J Si^y (2.4.6) 

r" ( r ) 

y^^'^O)- 1 + g. e % x + I- (2.4.7) 
V. J 1 J 

which i s (2.4.4). 

The Use of Chebyshev Series i n Weyls Method; 

We now consider the d e t a i l s involved i n c a r r y i n g out the i t e r a t i v e 

procedure w h i l e representing the functions which are used i n (2.4.4) by a 

polynomial approximation i n the form of the f o l l o w i n g series: 

N. 

k=o 

N 

k=o 



y j ( x ) = I'A;;VX) 
k=o 
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( r ) , . y^ (x) 

N 

k=o 

N. 

k=o 

f ( x ^ y . , y ' , . . . . , y ! ' ^ - ' ^ ) = I'b* \ W 
k=o 

N, 

g(x, y,.y:.....y,^^-'^ = I \ W 
k=o 

Given the Chebyshev series f o r y f ' ^ ' ^ ^ y^~^\ > y ! j y^> we 
(s) 

c a l c u l a t e the Chebyshev se r i e s f o r f ^ and g^. The values o f y 

(s = 0,1, r-1) can be computed at the po i n t s = cos 

( j = 0,1, ,N) using the recurrence formula (1.1.9) and hence the 

values o f f ^ and g^ are evaluated at each o f the (N+1) p o i n t s . 

Using the orthogonal property o f summation (1.1.8) we obt a i n the 
Chebyshev c o e f f i c i e n t s bj^, (k = 0,1, ,N) such th a t 

N.. 
. ( r - 1 ) , 
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and 

f o r k = 0,1, ,N. 

Now l e t : 

where 

\ = I I 8 ( x . . y . ( x . ) . . . . y ^ - ^ > ( x . ) ) T ^ ( x . ; 

( i ) F(x) = f f . 
X 

dx 1 o 

N 

k=o ° 

N+1 

k=o 

^0 = 2(b2 \ ( - l ) ' " " ^ b^^) r > 0 

2rd^ = b^_^ - b^^^, r = 1,2, , N-1 

V l 
2N 

"N+l 2(N+1) 

( l i ) E(x) = EXP(F(x)) 

k=o 

( i i i ) H(x) = ^ \ \ ( x ) 
k=o 

= + EXP(-F(x)) 
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Thus ev a l u a t i n g F ( x J at the points x^ = cos ( j = 0»1 .N) w i l l 

enable us t o / c a l c u l a t e the Chebyshev series f o r E(x) and H(x) 

( i y ) K(x) = E(x) g^ 

N 
f 

k=o 

Where t h i s series may be approximated by one of the f o l l o w i n g methods: 

(a) M u l t i p l y i n g the series E(x) = \ °^ 
k 

ser i e s g^ = ^ '''k̂ ^̂ * c a r r i e d out using the r e l a t i 
k 

T^(x) T ( x ) = ^ + „|(x)3 m n " '• mfn |.m-n|. •' 

and then equate c o e f f i c i e n t s of Tj^(x) of both sides of ( i v ) to 

c a l c u l a t e the c o e f f i c i e n t s K̂^ (K = 0, 1, .., , N). 

(b) Evaluating K ( x j ) = E(x,.) g{xj,y^(x.-,), , y^^'^"'^^(xj)} at the 

p o i n t = Cos ^ ( j = 0,1, N) and use the summation formula 

( i i ) of (1.1.8). to o b t a i n Kj^. 

X 
(v) G(x) = f K(x) dx 

o"' 
N X 

k=0 o 
N+1 

k=0 
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Where 

1Q = 2 (k2 - k^ + kg- ( - l ) ' ' ' ^ ^ K2^), r > 0 

1 = K , - K , r = 1,2, N-1 
r r - 1 r+1 ' 2r 

2N 

h 
2 (N+1) 

N 
• 1 

k=0 
( v i ) Q(x) = ^ q k \ ( x ) = H(x).G(x) 

Where t h i s series i s approximated by e i t h e r method (a) or ( b ) . 

Hence 

y^^'^x) = y^^'^O) H(x) + Q(x) 
i + 1 

k=0 

i s known, and successive i n t e g r a t i o n would provide the s o l u t i o n y ( x ) 

to the o r i g i n a l problem. 

To summarize the procedure described here, we note t h a t the r i g h t 

hand side of equation (2.4.3) or (2.4.^ i s reduced to a truncated 

Chebysher series of known c o e f f i c i e n t s . This series i S then i n t e g r a t e d 

using (1.2:2), where a set of (N+1) simultaneous equations i s formed i n 

the (N+1) unknown c o e f f i c i e n t s . The s o l u t i o n o f these equations gives an 

improved approximation y£^j^(x) = E'^^^^^ ^° s o l u t i o n of the 
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d i f f e r e n t i a l equation and where t h i s may be used to s t a r t another 

i t e r a t i v e cycle. 

The essence of t h i s method i s demonstrated by considering 

i t s a p p l i c a t i o n t o the f o l l o w i n g examples; 

Example 2: (Norton 64) 
2 

y' = y 

y(0)= i 

Which has the s o l u t i o n y ( x ) = •'•/(2-x) i n the range - 1 ^ x ^ +1. 

We reduce t h i s problem t o the J'orm 

y' + f ( x , y ) y = g(x,y) 

Where f ( x , y ) = -y, g(x,y) = 0 

The i t e r a t i v e process w i l l have the form 

^ i + l ^ ^ ^ = ^ ( 0 ) 1° 

= 4 e 

Taking the i n i t i a l approximation 
N 

k=o 

= i ( l + f ) 

and N has the values 3, 5, 7. the process converged to a reasonable 

s o l u t i o n a f t e r only 10 i t e r a t i o n s . The s o l u t i o n s i n the c o e f f i c i e n t s 
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A^ (k = 0 , 1 , ....N) are shown i n t a b l e ( 5 ) . Compared w i t h the 
K N 

V 1 c o e f f i c i e n t s A of the s o l u t i o n y ( x ) = > A T ( x ) = / ( 2 - x ) , obtained r z_; r r 
r=o 

N 

j = o J 

Example 3: (Norton 1964) 

2 

y' = x-y 

y(o) = -0.72901 

This can be rearranged i n the form 

^ i + l ^ ^ ^ + f ( x , y ^ ) y^_^^ = g(x,y^) 

where f ( x , y ^ ) = y ^ ( x ) and g(x,y^) = x 

The i t e r a t i v e process w i l l be 

r* r" 
- y.dx „ y.dx oJ • ' i f.« oJ •' i 

y.^^(x) = e [ J ^ ^ - 0.72901} 

o 
N 

Taking y ^ ( x ) = -0 .72901 ( 1 + | ) = A^T^(x), we get the r e s u l t s 
r=o 
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shown i n t a b l e ( 6 ) , compared w i t h the r e s u l t s obtained by Norton (64) . 

Example 4 : Van der Pol's equation 

y = T f d - y )y - ~ i 6 y 

y ( - l ) = 0 , y (+1) = 2 

This can be arranged i n the form 

y" + f ( x , y )y' = g(x,y ) 
i + 1 ^ i + 1 ^ 

where f ( x , y ^ ) = - ^ ( 1 - y ^ ) , 

and g(x,y ) = " " y,-
^ 16 

I f we take "^Q^^^ ~ 1 + x 
N 

r=o 

Then 
2 

f ( x , y . ) = | ( l - ( l + x ) 2 ) = f + f -

N 
2^b^T„(x) 

r 
r=o 

= KV4)TQ(X) + I T^( x ) + I T2(x) 

and g(x.y.) = - - 1 6 ^ 1 ^ ^ ^ 
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16 
N 

^ Cl+x) 

= y c T ( x ) 
Z-i r r 
r=o 

¥- b ^o-fe^i^-^ 

^0 = - ^ 1 = - 46' s = = s = 0-

Thus Weyls process can be s t a r t e d from these i n i t i a l values and the 17th 
Icn. 

Order ChebysheV series approximated obtained i s shown i n table ( 7 ) . 

Example 5; 

y" + \^y = 0 

y ( - l ) = 0, y ( + l ) = 1 

This has the form 

i . e . 

2 
y" + f ( x , y ) y ' = g ( x , y ) , f ( x , y ) = 0, g(x,y) =-\ y 

r r* 
" f.dx J£ „ f.dx 

y'^^(x) = ê ** ^ [ J g . e ^ dx + y ' ( 0 ) } 

-^fo dx . ^fo dx 
= e °*' [ J g. e°'' d x + y'(0)3 

X 

J-xS.dx + y'(0) 

^ i + l ( x ) = { - T y dx + y ' ( 0 ) } dx + y(0) 
o o 

Which i s Picards method f o r the s o l u t i o n of the above. 
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(2.5) Use of Runge-Kutta method f o r boundary value problems: 

Consider the s o l u t i o n of Falkner-OLLiu equation of the form. 

y"'(x) + y ( x ) y " ( x ) + p ( l - y ' ( x ) ^ ) 

w i t h the boundary con d i t i o n s y ( 0 ) = 0, y'(0) = 0, y'(<*>) = i . 

and. 3 = constant (0.01) i n the range 0 ^ x ^ eo. 

I n order to use Runge-Kutta procedure, y"(0) i s also required. 

Therefore the i t e r a t i v e process employed here i s to improve approximate 

values of y"(0) u n t i l y'(») = 1, 

( i ) Let y"(0) = 

( i i ) Apply R-K using i n i t i a l values y ( 0 ) = 0, y'(0) = 0, and 

y"(0) = and record y'(oo), say U^ 

( i i i ) l e t again y"(0) = V̂ ^̂ ^ such th a t V̂ ^̂ ^ ==V^ 

( i v ) Apply R-K, using the i n i t i a l values y ( 0 ) = 0, y'(0) = 0, 

and y"(0) = V̂ ^̂ ^ and record y'(oo), say U^^j^ 

By l i n e a r i n t e r p o l a t i o n 

" 2 - V l - ^ r 

and f o r r = 1, 

( v ) Calculate V^^2 using the above r e l a t i o n 

( v i ) Apply R-K using y ( 0 ) = 0, y'(0) = 0, y"(0) = V^^2 '̂̂ ^̂  

record y' (oo) 

( v i i ) i f y'(oo) = 1, then s o l u t i o n i s achieved, else set r = r + 1 

and go back to step ( v ) . 
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U n f o r t u n a t e l y the e f f i c i e n c y of t h i s method depends e n t i r e l y , 
i n t h i s case, on the i n i t i a l gussed - values of y " ( 0 ) , and so convergence 
i s considerably slower i f the i n i t i a l values of y"(0) are not anywhere 
near the r i g h t s o l u t i o n . 

For the s o l u t i o n of the above equation, the i n i t i a l values 

of y"(0) were taken as =-.95, V̂^ = 1.05, The i n t e r v a l of i n t e g r a t i o n 

was h = 0.1 over the range 0 ^ x ^ 20, Only s i x i t e r a t i o n s were needed 

to o b t a i n the s o l u t i o n to 5 d.p. shown i n table (8b), 

2,6 Newtons Method 

For the system y' = f ( x , y ) , we assume f ( x , y ) to be a f u n c t i o n of y 

re g u l a r i n a region which includes the s o l u t i o n and our approximation to 

i t f o r every value of x i n the range (-1, +1). 

A small change 6y i n y gives f o r m a l l y 

(y + 5y) = f ( x , y + 5y) 

= f ( x , y ) + 6y | ^ ( x , y ) + 0 ( 5 ^ ) 2.6.1 

We define a sequence {Y^} of approximations to the s o l u t i o n y ( x ) 

by considering the leading terms i n Taylor-series expansion f o r f ( x , y ) , 

suggesting the Newtons i t e r a t i o n formula 

Y'(x) = f ( x , Y . _ , ) + (Y.-Y._^) f (x,Y..^) 2,6.2 

I.e. 

n ^ ^ ^ - ^ i l f ( ^ ' V l > = ^ ^ ^ ' V l ^ - \.l f ^ ^ ' V l ^ 2.6,3 
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For each i t e r a t i v e cycle, a p a r t i c u l a r s o l u t i o n y^(x) = v ( x ) of the 

inhomogeneous l i n e a r equation (2.6.3) may be c a l c u l a t e d , to which i s 

to be added a m u l t i p l e \i U(x) of the s o l u t i o n U(x) of the homogeneous 

equation, 

" ' i ( - > - " i f ( - ' y i . i > = 0 

The f a c t o r |i i s chosen so t h a t the r e s u l t i n g i t e r a t e y^(x) = V(x) + 

|i U(x) s a t i s f i e s the given boundary c o n d i t i o n . 

Norton Procedure: 

Norton (1964)[(6] has made use of Chebyshev series i n Newtons 

i t e r a t i o n (2.63), simply by representing the functions which are used 

i n (2.W) and hence d e r i v i n g r e l a t i o n s between the c o e f f i c i e n t s i n 

Chebyshev series 

y . ( x ) = I A^i^ T^(x) 
r 

I 

yi.i(x)= Y kj^-'^\(x) 
r 

I 

y'i(x) = V''̂  
r 

f(x,y._^) = y b^ T^(x) 
r 
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By s u b s t i t u t i n g these expressions i n equation (2.63), we have 

Y A'^^^ T (x) - (Y C T ( x ) ) (Y A^^^^T^(x)) 
i—iL r t _ r r t _ i r r 
r r r 

r r r 

2.6.4 

Products of Chebyshev polynomials T ( x ) T ( x ) may be dealt w i t h i n 
IT S 

the usual way, however Norton has found t h a t the s i m p l i f i c a t i o n produced 

by t a k i n g only the f i r s t term o f the series J| C^T^(x) gives s a t i s f a c t o r y 

r e s u l t s . We may then simply equate the c o e f f i c i e n t s o f T^_j^(x) and 

T^_l_j^(x) i n the r i g h t and l e f t members of (2,6A) to obtain the formulae 

_ I 

where Co i s the f i r s t term of ^ C ^ T ^ ( x ) . 

Also using the r e l a t i o n 

2r A = A' , - A' r = 1,2, N, 2,6-5 
r r - 1 r + i 

I f on the r i g h t hand side of (2,6-5) we s u b s t i t u t e the expressions f o r 

A'̂ '̂  ̂  and A''̂ ^̂ , we derive a set of N l i n e a r algebraic equations i n 

A These equations may be w r i t t e n i n the form 
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I Co (A^J^^ - A^ll) - 2r Ar^^^ = 2.6.6 

where = ( b ^ ^ - b^_^) + | Co (A^^J^^ Â '̂̂ X̂ r = 1,2. N. 

Quantities such as A^^^\ Â ^̂ ~̂ ^ for r >N which occur i n the above 

r e l a t i o n are assumed to be zero. 

Then Norton i t e r a t i v e process can now be outlined as follows; 

( i ) Given the coefficients A ^^~^\ ( r = 0, 1 , N) i n the series 
N r 

y^_l^(x) =Y A ( x ) , we evaluate y._.,(x^) at the points 
r=0 ^ ^ ^~ 

x» = Cos S7t (s = 0, 1, M) by using a formula similar to (1.1.9) 
M 

of Chapter 1. 

( i i ) At the same points we compute the values of f ( x ,y. .) and ̂  (x ,y. 
s 1 ~ i Oy s 1" A 

for (s = 0, 1, , M), 

( i i i ) The coefficients b^ ( r = 0,1, ,N) i n expression f(x,y^_j^) 

= ) b T (x) are now derived using the formulae r r 

M , 

s=0 

M , 

s=0 where 

and 
^s " M ^ i - l ^ ^ ^ s ^ ^ s = 0,1, , M -1 
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N 
( i v ) The c o e f f i c i e n t ^ Co of j^(.7i,y. ,) = ) G T (x) i s given by 

Ov i~ i £_] r r r=o 

Co = ) C' T Cx ) L s o s 
s=0 

where 
4 = i ^ ( ^ ' V l ^ ^ s ^ ^ ' s = 0,1. M-1 

and 

Equations (2.6,6) produce one solution of i«»nhomogeneous starting with 

zero c o e f f i c i e n t s , and one of homogeneous sta r t i n g with unit coefficients. 

These two solutions are combined to determine |i such that the boundary 

condition i s sa t i s f i e d . 

I t should be clear from the description given that the Newton process 

i s exact when applied to a linear equation, i f i s retained as a 

function of x. To i l l u s t r a t e the Norton i t e r a t i v e procedure we 

consider the example 2; 

y' = y ^ y(0) = | 

Where t h i s has the solution y(x) = (^2^x) region -1 s x s 1, 

We take N = 5 and consider the Chebyshev series to the i n i t i a l 

approximation y (x) i s of the form o 

N , 
(0). 

r = l 

= I (1 + f ) 
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then A^(°^ = 1.0, V ° ^ = 0.25. Â ^̂ ^ = ....= A/°^ = 0 

and hence 

f^-'^o^ = ^o = l V r ( - > 

where b^ = , b^ = 0.25, ^2 " and b^ = b^ .... = b^ = 0. 

and N 

r=o 

with CQ =2.0, C^ = 0.5, = = C^ = 0. 

only C- i n th i s case i s considered for ^ ̂ ^'Vo^-

Then the process can be started from 

Aj<°> = 0.25, V ° ' = .A3"» = 0 

and CQ = 2. 

Hence P̂  = (b^^^- b^.,) + A C^ (A^^J - A^°^^), ( r = 1, .... 5 ) 

can be calculated, and so we have 

Pi = i . P2 = 0, P3 = . = ^5 = ° 

Equation (2.66) can be rearranged i n the form 

V i = V i - ^ ' ^ ^ + V ^̂  = 1' N 
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Where the solution of this nonhomogeneous equation can be generated by 

rec^ursive solution s t a r t i n g with E^^^ = ̂ ^_^2~ °» "̂'̂  ̂ O'^l ' ̂ N-1 
can be calculated i n succession from 

\-l " V l + 2r + ' ^'^ ^ 
such that 

3 
^0= 16 

\- \ 
E = 
^2 32 

Similarly s t a r t i n g with Ê ^̂ ^ = 0, F̂^ = 1, and employing the 

corresponding homogenous r e l a t i o n ; 

^ - 1 = ^ + 1 + ^ ' ' ̂ ' ^ 

we derive a sequence [F^} such that, for N = 5 

F = 0 ^N+1 ^ 

•̂N ~ 
^N-1 = N̂-2 = «^ = 

We may now construct a solution 

Â ^̂ ^ = E^ + liF^ r = 0,1 ,N 

1 - E + 2E2 - 2E^ 
where u = := TC^—r~o^; -̂s determined so that the 
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function y(x) = ) A ^̂ T̂ (x) sa t i s f i e s the boundary condition 
X LJI r r 

y(0) 4 . 
* The resu l t of t h i s example i s shown i n table (5), 

2.7 Second Order Equations; 

The extension of Newtons method for the equation 

y"(x) = f(x,y,y') I.IW 

i s given by 

y " i + l - 8 ( x ) y ' i + i - h(x)y.+i = f(x,y.,y'.) - g(x) y'.-h(x)y. 

where g(x) = (x»yi>y' 

and h(x) = (x,y^,y'^). 

Norton procedure for th i s system i s as follows: 

Let the functions occuring i n the above be represented by these 

series 

r=o 

r 

y ' i . i W = \ a; T^(x) 
r 

y'.(x) = ̂ .A; T^(x) 
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y".(x) = Z A"̂  T^(x) 

I 

^ ( ^ ^ ' ^ i - l ' ^ ' i - l ^ = I 

h(x) = Y C^Tr^x) 
r 

g(x) = C; T^(x) 
r 

For s i m p l i c i t y only the f i r s t constant term i n each of the Chebyshev 

expansions of h(x) and g(x) w i l l be considered. 

Substituting these expressions i n (2. 7>1) and equate coefficients of 

T^(x) we obtain the r e l a t i o n . 

where 
A " - i c ' A ' - i c A = p Mim 

r ^ o r r 

P_ = b_- i C 'a ' - |C^a_, r = 0, 1, ....N r r ' ^ o r "or 

using the relations 

2r = A'̂ .̂  - A-^^^. r = 2 N 

the above equation may be w r i t t e n as the following system of recjurrence 

equations 

^ o V l = V r + 1 + 2r (2A^' - Ĉ ' A^) + 2 (^^^,-?^_,) 



64. 

and every solution of this system may be expressed as the sum of one 

pa r t i c u l a r solution E^, E'^ for r = 0, 1, N and linear 

combination of the independent solutions of the corresponding 

homogeneous system 

^o V l = V r + l + 2r (2A'^-C^' A^) 2.7-3 

^ • r - l = ^ ' r + l - * - 2 - \ 

Here we need to construct two solutions of this system, F^, F'^ 

and Ĝ , G'̂  (say) which tend to zero as r tends to i n f i n i t y . We 

then determine the constants \i and v i n the expression 

A = E +|iF + vG r r ^ r r 

to ensure that the i t e r a t e y^(x) = Aj.T^(x) sati s f i e s the prescribed 

boundary conditions. ^ 

Example 4 Van der Pols' equation 

y"(x) = I ( l - y ^ ) y ' - j^y 

y ( - l ) = 0, y ( + l ) = 2 

I n i t i a l l y l e t 

r 
1 + X 

|(2) T_(x) + T,(x) 
o 

and 

y'^(x) = 1 
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Then fCx.yo.y'o^ = i ^ ^ - ^ ^ ^ ^ ' o " 16 ̂ o 

I 
= XVr^'^^ 

g(x) =|i,(x,y^,y'^) = | ( l - y , ' ) 

I 

Hence the process can be started from 

o 
C 

1, SL^ = • • • • 

«'l= 0, a'2 = = = a' 
9 , . 1 1, 

^ - - I 6 ' ^2 -• " 8' ̂ 3 -
1 c 

o 
" " 4 

= 0 

o " 1 ° 2 •••• " N 
3 

and then P̂  = b^- |C'^a'^ - | ĈO.̂  

can be computed for ( r = 0, 1, , N). 
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Now the recurrence relations ^ can be solved easily by l e t t i n g 

V l = ̂ N + l = °' N̂ = ̂ 'N = 

21 i 

Similarly equations ^ are solved, when sta r t i n g with 'P-^^^-^ = 

^'N+I = V l = ̂ 'N+1 = 0. = f\ = = 1 and G'̂  = - 1 . 

The values of Â  given by Â  = E^ + H F^ + v Ĝ  for r = 0,1, N 
are determined so that the constants \i and v are chosen to ensure that 
the approximation y^(x) = ̂  A^T^(x) sa t i s f i e s the given boundary conditions, 

r 

From the set of coefficients A^ ( r = 0,1, N) we can compute 

the coefficients A'̂  ( r = 0,1, N) by l e t t i n g A'̂^̂^̂  = A'̂^ = 0 and use 

the r e l a t i o n A'̂._̂^ = Â ^̂ ^ + 2r Â  ( r = N, N-1, , 1). and hence 

we use the new sets A , A' to st a r t another i t e r a t i v e cycle. 
r' r 

The solution we have obtained for Van der Pols equation i s given i n 

the tables (7a), with various values of N, 

2,8 Recursive Procedures when C i s small: o 
When i s small, and moye-over when N (the degree of the wanted 

approximation) i s large, both solutions of the nonhomogeneous rel a t i o n , 

E^ and F^ and subsequently F'^, Ĝ  and G'̂  become very large and hence 

a bu i l d up of errors can swamp the desired solution. 

The following modification due to G.F, M i l l e r [16] overcomes this 

d i f f i c u l t y . 

(a) For f i r s t order equations the sequence [F^] may be computed as 

before. I n place of [ E ^ ] , however we compute for K = N, N-1, 1, 
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sequences ' ( r = K-1, K ,N+1) satisfying the relation 

such that °' V l " ° 
(k) (k) Given the sequence [E } we compute the quantity E _ and hence r k~ 1 

(k-1) 
the new sequence [E ^ ] from the r e l a t ions 

where 

E (k) ^ ^(k) + ^ (p . p )^ 
k-1 \+i ̂  c ^ k+1 

o 

E = E ('̂^ - a F r r Tc r 

7 ^ r = K,K+1,....,N 

and 
\ = \ - *^o \ 

«k - \ - l / \ - l 

Thus each sequence i s obtained from i t s predecessor by subtracting 

a multiple of [Fj.}. We f i n a l l y obtain a solution [E^^^^] with the 

desired property that i t i s not dominated by {F^}. Finally the 

solution with the desired property i s given by E^ = E^ 

we may construct a solution 

(1) and hence 

A^ = E^ + H F^, r = 0,1,, ,N 

(b) For second order equations, afi i n the case of f i r s t order equations 

there may be cancellation consequent upon the use of A^ = E^ + |JF^ + vG^ 

to obtain A^ when Ĉ  i s small. Here the sequences [F^} and {F^'} are 
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68, 

C B = C B - + 2r (2B' o r-1 o r+1 r 
B' = B',, + 2r B r-1 r+1 r 

C B ) o r 

for r = N, N-1, 1 

Starting with F„ = F'„ = 1 and F„,, = F', = 0. To obtain a N N N+1 n+1 
second solution {G^3> which i s essentially d i s t i n c t from {F^}, 

[F'^3 we compute sequences [G^}, [G'^} for r = K-1, K, ....,N and 

K = N,N-1, ,1 from the relations 

M _ c(N) _ o S+1 ^ N ° 
p'(N) _ , p'(N) _ n 
% - 1' ̂  N+1 - ° 

C Gi^] = C G^l^J + 4K G;̂ )̂ o k-1 o k+1 k 
p'(k) _ _'(k) 
^ k-1 " ^ k+1 

_ (k-1) _ - (k) 
^ r - ^ r " Fr 
, '(k-1) _ , '(k) = G 

r = K-1,K,, ,N 

where Vk 
(k-1) 

i s chosen so that G, . 
k-1 

= 0 

Fi n a l l y we take Ĝ  = GJ^\ and Ĝ ' = Ĝ '̂ ^̂  

To obtain a solution [E^}, {E'^} of the nonhomogeneous system 

C A = C A ^, + 2r (2A'^ - Ĉ ' A ) + 2 (P - P ) o r-1 o r+1 r o r r+1 r-1 
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A' , = A',, + 2r A r-1 r+1 r 

for r = N, N-1, ,1 

which i s not dominated by fF^}, [F'^J ^y {G^}> [G'^3> calculate 

sequences [E^^'^^}, fE'^^*^^}, ( r = K-1,K, N) and K = N, N-1, 1, 
(k) (k) *boJe concurrently with sequences [G^ }> {G'̂ . ] from the table relation 

p '(k) _ (k) 
^k-1 " ^ k+1 

E (k-1) = E - a F - G ('^-l) r r r '̂k r 
r = K,K+1, N 

where and are determined so that 

(k-1) E'(k-l) ^ 
^k-1 ^ ^ k-1 ° 

(k-1) 
and since 1 = 0, we have 

B - (E '̂ ^̂  - a.F' ) / G '̂ ''"̂ ^ ^k ^ \ - l "k^ k-1^ ^ V l 

F i n a l l y the solution with the desired property i s given by 

\ = E/1) and E'̂  = E ^ ^ l ^ 
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Example 3; 

2 The problem y' = y 
= 1 y(0) = 

The solutions obtained by taking - g (1 + ^) for various values of 

N and applying the M i l l e r ' s modifications, are l i s t e d i n table (5a) 

compared with the solutions of the same problem without the modifications. 

2.9 Lie series: 

Recently H. Knapp and G. Wanner (1968) [29] have published a 

report i n which they have established a general i t e r a t i v e process based 

on a perturbation method, making use of the theory of Lie series. 

For the numerical solution of ordinary d i f f e r e n t i a l equations of the form 

y'.(x) = f . [ x , y . ( x ) , , y^(x)} 2.9.1 

for i = 1, 2, n 

and y.(x^) = y.^ 

An exact formula i s 
s 

is 
X 
o 2.9 .2 
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R^g(x) being a remainder term given by 

o 

where y^(x) i s an approximation to y(x) such that 

and 

y'i^x) = f ^ ( x , y j , , y ^ ) , i = 1, ,n 2.9.4 

f'^l^x.y = i + i 2.9,5 

D2 = (D^ - D), 

Treating for s i m p l i c i t y the case when y i s a scalar and the equation 

i s y'(x) = f ( x , y ) , the Sth order i t e r a t i v e process derived from Lie 

series i s then 

y„l(.) - y,(.) + I / fV°y)f.y(5) ̂ 5 2.9..6 
QFO XQ ' 0 

where y^, y^^^ are the r t h , r + l t h iterates respectively. Details 

are given i n [29] of the application of this method to various 

d i f f e r e n t i a l equations including example 2. I n the applications quoted, 

Chebyshev series were not used, a Taylor series expansion was taken as 

the f i r s t approximation to the solution and this was improved once. The 

integrations i n the Lie series expansion were carried out using Gauss 

quadratiljfe, and the solution was developed step by step using a controlled 



72. 

step size. An additional f a c i l i t y i s the use i n boundary value 

problems of the connection matrix which calculates the derivatives of 

the functions at the far boundary with respect to the chosen i n i t i a l 

values. The far boundary conditions can then be sat i s f i e d by solving 

for the i n i t i a l values using Newton's method rather than the linear 

secant method i n the Ri/^e Ktftta section. 

The equations treated were 

(a) y' = 1 - e"^ (Sin x - Cos x ) , y(o) = 0 

(b) y| =. y2 , yi(o) = o 

y'2 = y i ' y2(o) = ^ 
(c) y' = y^, y(0) = 1 (Example 2) 

(d) y' = -xy3 y(x^) = y^ 

(e) A r e s t r i c t e d three body problem 

( f ) A boundary value problem 

y'l = y'2 = exp(yj^), y^(0) = y ^ ( l ) = 0, with 

correction v ia Newtons method. 

Since i t e r a t i v e methods were not used the results are not applicable 

to consideration of rates of convergence; information is available 

on the improvement arising from one step, but only i n the solution at 

pa r t i c u l a r values of x, obtained using d i f f e r e n t step lengths. I n 

example 2, using a Lie series of order 3, an error of 3.14 i n y(0.9) 

from the Taylors series i s reduced to an error of 3 x 10 i.e. 

a reduction factor of lo"'''̂ , but this i s based on a step by step 
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approach using 23 steps from x = 0. 

I t does appear that Lie series could be used as the basis of 

higher order i t e r a t i o n processes instead of as a once for a l l correction. 

The given system i s based on an elaborate computorised recursive generation 

of derivatives of the functions based on a set of standard elementary 

functions i n order to evaluate the terms D̂ ^ and D2 D̂ ;̂ an approach 

using Chebyshev series might be more economical. Thus the Lie series 

may be capable of development to y i e l d Chebyshev i t e r a t i o n methods of 

higher order than Newton. However no further work has been done on 

these lines i n this thesis. 

The rates of convergence of these processes w i l l be considered i n 

the next chapter and the numerical results obtained above w i l l be analysed 

i n the l i g h t of t h i s i n Chapter 4. 



74. 

Chapter 3 

(3.0) Analysis of Rate of Convergence of I t e r a t i v e Methods of Solution 

(3.1) Behaviour of the error function: 

Given an i t e r a t i v e process which i s described by yj.^j^(x) = 

F [ y ^ ( x ) } , where F i s some operator, and a true solution y(x) and error 

functions e^(x), e^^j^(x) so that y^(x) = y(x) + e^(x), then 

y^+i^x) = y(x) + e^^^(x) 

= F{y/x)3 

= F[y(x) + e^(x)} (3.1.1) 

and i f the r i g h t hand side of (3.1.1) i s expandible i n the form 

F(y+e^) = F(y) + G(y,e^) 

and since y(x) = F{y(x)3, then 

e^^^(x) =G{y(x), e^(x)} (3.1.2) 

This i s the general r e l a t i o n governing the rate of convergence of the 

i t e r a t i v e method. I f the e^(x) for r = 0,1, are expressed as a 

truncated Chebyshev series then the re l a t i o n (3.1.2) w i l l be expressible 

i n the form 

where Â ^̂  i s the vector of Chebyshev coefficients and the behaviour of 

the process w i l l depend on the matrix H (which w i l l i n general be a 

function of ^ ) . For the solution of the f i r s t order ordinary d i f f e r e n t i a l 

equation y' = f(x, y ) with y = y^ at x = x^, the following methods may 

be analysed 
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(a) The Zeroth order Lie Series,is 

y^^^U) - y^(x) f f ( V < 5 » 5 , y ^ ( 5 ) "5 
= y J x ) + [f(§,yJ - f(§,yJ}d§ 

r o t J. xo 
X 

= y (x) - f i(g,yjdl + \ f ( l , y j d g r <j r ij r xo xo 

° xi 

where y (x) = y + f(?>y )d§ by d e f i n i t i o n and therefore r o J " r 

^ r + l (x) = y(x^) + Jf(§,y^)d? xo 

(which i s Picard's i t e r a t i v e process for i n i t i a l value problem 

y' = f ( x , y ) ) . 

I . e . y(x) + e (x) = y(x^) + j f { 5 , y+e^Jd? 
xo 

= ^o 
xo 

I f ^ (x,y) i s bounded, then i t i s possible to ensure ||\+lM < I I \ I I 

that the convergence of the process can be guaranteed, by taking (x-x^) 

s u f f i c i e n t l y small. The remainder term i n the Lie series formulation 

gives the same estimate of the error i n an alternative form. 
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(b) The f i r s t order Lie series: 

The i t e r a t i v e method based on f i r s t order Lie series is 

y^,,(x) = y^ + Jf(§,y^)d? + / ( x - 5 ) [ f ( 5 , y ^ ) - y;(?)] ^ dz 
xo xo 

and the remainder term i s known to be 

Hence 

y' i s estimated as f(x,y^) + J j f ( f , y j . ) - y ^ | J - (|,yj.)d? 
^ xo ^ 

and the error term' i n y' i s , w r i t i n g y^ = y + and expanding 

X 
I f + f f - ( f + e f + %e^ f + ) 

J L X y X r xy ^ r xyy -r+1 
xo 

- ( f + e^fy + fyy + . . . . ) ( f y + e^fy + ) } d? 

e (§)• f + f ^ + f d^ - ^ e^(^)- 3f„f ̂  + J r ̂  I xy y yyJ ^ J r - L y yy 

f f + f } d§ yyy xyyj 

(c) Newton's Method; 

The error i n the Newton i t e r a t i o n formula may be determined 

d i r e c t l y . Since 

^ r + l " ^(''•yr^ + ^ r + l ^^^'^r^ " ^ r ̂  ^""'^r^' ''̂  ̂ '̂'̂  

0X1 expanding 
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2 3 { e e -, 
e f + - f f + • r y 2 yy 6 yyy J 

2 
, e > 

+ (e , - e ) f + e f + i + • 
' r+1 r ' l y r yy 2 yyy J 

i.e. e;^^ - e^^^F = -% e^ f ^ ^ - i e^ f ^ ^ ^ + 

where F = ̂  (x,y^), and since e^ = e^^^ = 0 at x = x^ 

th i s gives 

5. 
r+1 I- ' r yy 3 r yyyJ 

3 nX ^ P ' 
'yyy} Â ^̂ '̂  J>(?')d?' J f - i e^ 
•'̂•'•̂  xo xo xo 

f ^ d|" + 
yyy-

^^+1 = ^ Syy • 3 < 'yyy ^ '4 ^^'^r> 'yy " 3 ^ 

yyyJ ' "y - xo- - - xo 

yyyJ 
2 

with a leading term i n e^^^ of -%e^ f ^ ^ . 

I f however the Newton formula i s used i n the form 

^ r + l = ' ^ ^ ' ^ r ^ ^ ^ ^ ^ ^ r + l " ^ r ^ 

where |j i s a constant ( = 5 " ^^o'^o^^' ^^^^ 
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2 e 
e' = Lie , + e f + - f f„„ + - pie 
r+1 r+1 r y 2 yy r 

2 
e 

e 

giving ^ 

^r+1 " ®r J { ^ (?>y)} ^ leading term 
xo 

= e |/f + f f ^ 4| r J*-xy yyJ ^ xo 

(d) Weyl's method: 
The i t e r a t i v e process for the homogeneous equation y' = yF(x,y), 

y = y at X = X i s of the form 
F(x,y )dx 

where y)dx 
y(x) = y -e o 

then log y _ , i ( x ) = log y + jF(x,y^)dx 
xo 

and 

^ + 1 = ŷ '̂ ^ J ^^^^ 37 (̂ 'ŷ '̂ ^ 
xo 

This can be compared with Picard's method for the same problem 

y' = yF(x,y) = f ( x , y ) , for which the error has been found to be 
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S+l = J ̂  57 xo 

= f e^(§) {F(?,y) + y(§) ^ (§,y)} d§ 
xo 

2 
For example, consider the equation y ' = y , y = l a t x = 0 which has the 

bF 
solution y(x) = l / ( l - x ) . Then ^ = 2/(l-x) and with i n i t i a l solution 

2 
y^(x) = 1 + X where e^(x) = -x 

>f 
( i ) I n Picard's i t e r a t i o n y , i ( x ) = y + f(x,y )dx r + i o J r xo 

,x 
y^^j^(x) = 1 + J (l+x)^dx 

o 
. 2 1 3 = X + x + 3 X 

2 3 

therefore the error function w i l l be e^^j^(x) = . 

6f 
Here we have ̂  = 2y so that the estimated error i s 

-2x^(l+x)dj 
~ t 

2 3 , = - 3 X + 

( i i ) Weyl's i t e r a t i o n 
f(x,y^)dx 

^ r + l ^ " ^ = ^o " 

f(x,y) = y and so 
»x 
J (l+x)dx 

= e^- r > 
2 2 0 = l + x + x + | x 3 + 
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1 3 
Therefore ^^.^j^^x) = - — x and also the estimated error function w i l l be 

px 5f 
e (x) = y(x) J e (x) ̂  (x,y)dx 

o y 

1 f'' 2j 
= -f-. r -X dx (1-x) J o 

3 3 , 
= - ^ ( l + x + x + ) 3(l-x) 3 

3 x_ 
3 

( i i i ) Newton's formulation gives. 

^;+l - 2a+x) y^^, = -d+x)' 

which with ŷ ^̂ ^ = 1 at x = 0, .gives 

2 3 4 4 5 y^^j^(x) = l + x + x + x + x +"5X 

1 5 
^ + 1 = - 5 ^ 

This corresponds to the expression already obtained i n (c) 

L 2 ^ 4 e' = -% e f = -X r+1 r yy 

( i v ) Modified Newton formulation gives, 

, x 2 - 1 

for which the solution i s , 

2 3 , 4 y^^j^(x) = l + x + x + x + ^ x 
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and so ®r+l^^^ ~ 

which i s derived from the leading term 

2 r"" ( f + f f )d^ J xy yy • -X 

o xy yy 

= -2x3 

(v) Lie series gives, 

yj._^^(x) = 1 + J (1+5) V + 2 J ( x - ? ) | ( l 4 f ) ^ - l j ( l - f f ) d f 

2 3 , 4 = l + x + x + x + i x + 

and so ^r+l^''^ ~ 

2 since e^(x) = -x + , the expression for the error of (b) gives, 

= r (-§̂ )|̂ ŷ  + 2y^}d| + with a 

r 
»x 

'r+1 " 
3 

leading term -2x . 
In general i t would be expected that the exact Newton formulation 

2 with error E = -h& f , would be more accurate than Lie series, with en r yy 
an error 

5„ = f e (?) | f + f f + f ^ j d ^ * xo'' r ^ I xy yy yJ 
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since 

E = e (x) f | f + f f \dZ mn r ^^J L xy yyJ -

r^'r 21 E„ = e (x) • f + f f + f d? £ r J L xy yy yJ xo 

X 5' I 
y J y xo xo •' 

= E + e (x) f f ^ d^ - f f e'(5)d^ mn r _J y ^ J y r = -xo xo 

f.X n5' 
e' (?') d§'. f «i r ij xo xo 

df 

Table 3.01 

Method Picard's Weyl's Modified Newton Exact Newton Lie Series 

e ^, (x) r+1 
2 3 

- 3 ^ 
3 

-X 
3 

1 5 
- 5 ^ 

(x) 
r+1 

-2x2 2 
-X 

4 
-X 

(3.2) Relation between Newton's Method and Lie Series: 

The expression for i t e r a t i o n v ia f i r s t order Lie series 

y^^^(x) = f(x,y^) + j''{f(5.y,.) - y;(5)} ̂  (Z.y^)dz 

may be transformed to give the Newton i t e r a t i o n form with extra terms; 

we have 

'r+1 (x) = f(x , y ^ ) + A^^.yr^ ^ (5,yr)d| - [^^CS.y^)]^^ 

+ f y r ^ ^ ^ ^ i ^ f ^ ^ ' y r ^ } 
xo 
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f(x.y^) + J y;^ i ̂  (?.y,) a; + J |tC5.y,)-y;^.i(?)} sf "5 
XO xo L xo 

X 

XO 

f (x,y^) + y^^i ̂  (x,y^) - y^ ̂  (x.y^) - Jy^^^(5) 
xo ^ 

xo xo 

The f i r s t three terms give the Newton i t e r a t i o n formula. The 

additional terms vanish under the two assumptionsj 

( i ) y^^i^V ~ f(?»yj,(§))> the Picard approximation 

( i i ) f>f . . r — = constant. 
by 

(3.3) Runge-Kutta Method, boundary value; 

An equation solved with one i n i t i a l condition missing and 

determined from the corresponding value gives r i s e to a functional 

r e l a t i o n from 5, the i n i t i a l value, to T], the boundary value 

11 = f (|) 

:ive and then the solution of T] = f ( | ) =1]^ can be carried out by i t e r a t i 

methods. I f the derivative f ' ( 5 ) i s known or can be estimated as i n the 

Lie series development discussed, Newton's method can be used, otherwise 

the easiest thing i s to use the secant method and this i s known to have 
a 

10 62 

order 1.62 and asymptotic constant depending on - f ' / f • ' . An analysis 

of the numerical results of Runge-Kutta calculation i s given i n the 

next Chapter. 
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(3.4) Divergent sequences made convergent: 

For a particular example (example 6) the Picard method i s found to 

produce a divergent sequence (see Table 3). The explanation may be given 

simply, 
2 

In solving y" + \ y = 0, using the boundary conditions y ( - l ) = 0, 

y d ) = 1, the following sequence of approximations are obtained 
y^(x) = ^(1+x) 

2 2 
y^(x) = (% + ^ ) ( 1 + x) - 1^(1 + x)3 

2 4 2 2 
y2(x) = + - + V^* 

(1 + x)3 +1^(1 + 5^)^ 

The coe f f i c i e n t of the f i r s t term i n (1 + x) thus produces increasing 

numbers of terms of the power series expansion of \ cosec 2\, which i s 

divergent for X > The e- Aljgorithm can now be used to provide a 

siffli for t h i s expansion . 

Let ^ = % , r = 0,1,2, ,N 

Applying the e-Algorithm 

(m) (m+1) 
% + l - % - l ^~Mr) 0^ s - 0 , 1 , 

®s ~ ®s m = 0,1 ,• 

where, e2g^;is found"to converge to the ri g h t solution Â  of y(x) = i:'A^T^(x). 

(3.5) Convergence of i t e r a t i v e methods, matrix analysis: 

When the function i s being described by a vector of Chebyshev 

coefficients A, i t e r a t i v e methods may be reduced to the form 
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Â '̂ "̂ ^̂  = M Â '̂ ^ + b, or alternatively 
A /V A 

(r+1) „ ( r ) e = M e 

Our objectives by using t h i s , are to construct an i t e r a t i o n matrix 

M independent of the elements of the vectors k^^\ Â'̂"̂ ^̂  or ie^^^^\ 
A A A ^ 

( r ) 
e of the Chebyshev coefficients of two consecutive approximations 
A 

obtained by the i t e r a t i v e process. Then one can show that the i t e r a t i v e 

method converges for any i n i t i a l approximation A^°^ i f and only i f p(M) 
(the spectral radius of M) i s less than 1, where p (M) = max X (M) |, 

and hence the rate of convergence R^(M) which i s defined by the equation 

R^(M) = - l o g ^ l l M j j , ||M|| > jx 

Such a matrix can be formed exactly for linear equations; for non­

linear equations an approximation i s obtained by linea r i s i n g . Details 

of the matrix for general f i r s t order equation for the various methods 

are derived below and then eigenvalues are investigated for the 

p a r t i c u l a r equations discussed. 

(3.6) Derivation of i t e r a t i o n matrix: 

(1) Picard's Method: 

(a) Exact analysis, linear equations: 

I f y (x) = y k[^^ T.(x) and f(x,y) = P(x)y + Q(x); 
y-o 

N̂  
then f(x , y ^ ) = P(x) ^ Â ^̂^ T̂  (x) + Q(x) 

I f P(x), Q(x) are polynomials of low order or can be f i t t e d by such 

polynomials, t h i s reduces to 
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N 
f(x,y^) = ^ sj'^^ T j(x) d i r e c t l y ; i n any case this form 

can be derived, i f necessary by using collocation to expand P(x) Tj(x) 

for each j . 

The B?'̂ ^ are linear i n the Â'̂'' so that B'''''' = R k^''^ where R i s ( r ) _ „ . ( r ) 

independent of r. 

Then Picard's method 

pX 
^r+1^^^ = J f(x,y^)dx + y(o) 

corresponds to 
Â '̂ ^̂ ^ = S B̂ '̂ ^ + b 

where 
^(r+1) 
^ i 

(r+1) 

- ± IB^^) ( r ) l 

, . ̂  , ( r + l ) .(r+1) y(o) + A2 - A^ 

Then 

The f i r s t row of S, Ŝ ^ i s given by 

, [ j / 2 ] ( - l ) L J ^ ^ J ( i - l ) f ( - l ) J + l l 
j ( j - 2 ) 

A = T 
y(o) where Z i s (h 0 -1 0 + 1 . . . . ....) 

0 0 \ 0 5 
12 

-

s = -k 0 h 0 0 0 0 

0 -k 0 k 0 0 0 

0 0 
1 
6 0 1 

6 0 

0 0 -% 0 0 
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for j > 2 and b i s the vector b^ = 2y(o), b^ = 0 for i ?̂  0. Hence the 

Picard process corresponds to the i t e r a t i v e procedure 

^(r+1) ^ ̂  ^ ( r ) ̂  ^ 

where M, the i t e r a t i o n matrix i s SR. 

(b) Non-linear equation: 

The procedure may be applied to non-linear equations by 

l i n e a r i s i n g the derivative i n the neighbourhood of the true solution. 

S remains as above. 

fif'^^ = B.(A^'^^), a functional relationship depending on f, however 
1 X A 

w r i t i n g Â '̂ ^ = + being the true solution value, we may put 

B?'̂ ^ =B.(c.) + y ^ I e['^ 1 Lbk. >a j 

°^ B^""^ = B(a) + Q ê ''̂  
A 

Then the Picard process corresponds to 

A^^+^^ = S B (a) + S Q ê '̂ ^ + b 
A 

and the error relationship i s 

ê '̂''"̂^ = S Q ê '̂ ^ so that M i s now SQ 

The i t e r a t i o n matrices for various N for the f i r s t order equations 

dealt with have been analysed, and then maximimi eigenvalues determined. 

The following Table 3.02 shows the results. The i t e r a t i o n matrix M of 
2 

example 3 (y' = x - y ) has the elements m̂ ^ where 



88 

m 
bB. 1 

i j " * ^ i j SIT A = a J ^ 

and hence the eigen values have the same absolute values as shown i n 

the Table 3.02. 

Table 3.02 

- N 
Example 1 
max1X1 

Example 2 
max 1X1 

Example 3 
max|?i 1 

4 0.4564 0.4233 0.4233 

5 0.4510 0.3709 0.3709 

6 0.4496 0.3260 0.3260 

7 0.4497 0.3033 0.3033 

8 0.4497 0.2492 0.2492 

9 0.2367 0.2367 

10 • 0.2134 0.2134 

11 • 0.2134 • 

12 • • 

13 0.4497 0.2134 0.2134 

Second order equations can be t r e a t e d i n a precisely similar way. 

(2) The same sort of analysis can be carried out for Newton's method. 

Since t h i s i s exact for a linear equation, nonlinear equations only w i l l 

be considered. 
2 

The problem y' = y , y(o) = h has the solution y(x) = l/(2-x) i n 

the range -1 ̂  x ̂  1. Hence for any N 
f(x,yj.) = y,. 
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and 
b = 

b, = 

b_ = 

N 

r 

2 2 2 ^< + 4 + + 
V l + ̂ ^2 + + V l 

^ + V 2 + \ 

so that b - %C A , r = 0,1, ,N 
r o r 

b - A , since c =2.0 r r ' o 

and i f A = a + S, then lin e a r i s i n g 

P = R S + K + 0(6 ) 

where bA. T A = Of 
2-'- ^ ~ 

which gives as above 

R = '^o-i 

Of, 

2cy, 

^0 + °'2-l 

cŷ  +a3 

2(y„ 

«0 + 



Newton's process w i l l be, 

and so the solution vector E s a t i s f i e s 

B E = L P 

where 
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B = 1 

0 

0 

-2 

1 

0 

0 

-4 

1 

0 • • 
-1 0 

-6 -1 

1 

-2(N-1) 
1. 

L = -1 

0 

0 

0 

-1 

0 

1 

0 

-1 

0 

0 

1 

0 
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and s i m i l a r l y the homogeneous solution vector F satis f i e s F - 2rF + 
A r-1 r 

F^^j^ - 0, r - l.....,N-l 

B F = S where S i s the vector S, = 0 , i < N, S = 1 
A A A i N 

The boundary condition y(o) = h now means A = E + |j, E where p, must 
A A 

s a t i s f y 

i . e . E + ij, F = k 
A A 

Where " °' °' °' 

T / T 
Thus n = - Z E)/| (Z F), and substituting for we have, 

A / A 

F(^ - Z^E) 
A = E + 
A A (z"̂  F) 

.1 
= B L P + (Z^ B " S) 

f \h - Ẑ  B"̂  L P • 
•I- r i \ *- A J 

-1 -1 T -1 ~1 _ B L - B S Z B L h P + terms independent ©f P. 
— L A A J 

and so the i t e r a t i o n matrix i s found, substituting for P, to be M = QR 
A 

where R i s given above. I t i s the eigenvalues of this matrix which 

determine whether and how rapidly the i t e r a t i o n process converges. 

The matrix Q determined from the above analysis has been calculated 

for various N. Examples for N = 4, N = 8,N = H, are given (see 

p r i n t o u t ) . These are independent of the function f , which only 

determines the matrix P. I t i s clear that Q becomes very ill- c o n d i t i o n e d 
A 

for high order N, the values decreasing i n magnitude very s i g n i f i c a n t l y 

from the f i r s t row onward. I t might be conjectured that the use of such 
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a matrix would lead to unsatisfactory performance. The eigenvalues of 
2 

M = QR are as l i s t e d for the example 2 (y' = y , y(o) = k), i n Table 

3.03. 
Table 3.03 

N max X 

4 0.1619 
5 0.1164 
6 0.0980 
7 0.0910 
8 0.1050 
9 0.1889 
10 0.3085 
11 0.5235 
12 1.1905 
13 3.7060 
14 -

^ 15 -
16 

(3 ) Modified Newton's Method: 

The modi-fied Newton's method was devised so as to overcome the 

disadvantage of the Newton's process. I t i s awkward to write down the 

matrix Q formally for t h i s case, but i t can be developed automatically 

and comparison values are given for N = 4 , 8, 11. 

A table of eigen values of M = QR, i s given below for the same 
2 

equation (y' = y , y(o) = h). 
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N max \ 

4 0.1160 
5 0.0607 
6 0.06117 
7 0.06671 
8 0.06939 
9 0.07059 
10 0.07107 
11 0.07126 
12 0.07131 

0.07133 
! 1^ 0.07134 

15 0.07134 
16 • 

17 • 

18 • 

The results obtained here on the r e l a t i v e performance of the 
various methods are checked i n the next Chapter by direct comparison 
with numerical results. 
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Chapter 4 

(4.0) Numerical Results on Rates of Convergence; 

As a numerical check on the previous analysis, we take the r a t i o 
(m) 

— ; — T T - as an estimate of rate of convergence, when the process has (m-i; 

converged s u f f i c i e n t l y for the components to be uncoupled from each other, 
(m) (m) (m) 
o 1 n By taking the average of , , , 

over a set of m's and subsequently the mean value of this average, we 

can have better estimates. 

I n practice i t may be observed that a computer subroutine for 

calculating the rat i o s 

.(m) 
! l for ^ =0,1,2, 
(m-1) m = 0,1,2 
r 

f a i l s at the stages where ê "*̂  tends to zero. Hence one should treat 
t h i s with caution. Omitting few terms of both ends of the sequence 
^^(m)/^(m-l)j 

one would expect a reasonable approximation. 
2 

For example we choose the problem y' = y , y(0) = k. The previously 

obtained maximum eigenvalues of the i t e r a t i o n matrices corresponding to 

Picard's and Newton's methods are l i s t e d i n Table 4.0.1 below, and 

compared with convergence r a t i o obtained for both methods as described 

above. 
In the table, N represents the degree of Chebyshev approximation used. 



Table for the comparison of estimates of maximum eigenvalues 
2 

for the solution of y' = y , y(0) = %. 

Table 4.0.1 
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Picard's Method Newton's Method 

max| e-value| Av. Ratio| N max |e-value| Av. Ratio 

0.4233 - 4 0.1619 0.1520 
0.3709 0.3282 5 0.1164 0.0830 
0.3260 0.2690 6 0.0980 0.0710 
0.3033 0.2642 7 0.0910 0.0980 
0.2492 0.2555 8 0.1050 0.0840 
0.2367 0.2567 9 0.1890 0.0890 
0.2134 0.2566 10 0.3090 0.2480 
0.2134 0.2566 11 0.5240 0.5300 

• 
12 • 

> 13 t 

I • 14 • • 
i 15 •1 * 

(4.1) Examples and Figures 

In what follows, rates of convergence ( i . e . - log(javerage ratic|) 

or -log(max|e.value|)) are given for the examples already discussed. 

Where possible, theoretical and numerical estimates are compared. 



Example 1; 
y' + y = 0, y(0) = 1 

Table 4.1.1 
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N max e-value R 
P 

4 0.4564 0.7844 
5 0.4510 0.7963 
6 0.4496 0.7994 
7 0.4497 0.7992 
8 0.4497 0.7992 
9 
10 

The rate of convergence of Picard's method estimated by theoretical 
approach (reduction). 

( i n t h i s case the theoretical estimate i s exact). 
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Example 2: 
y- = y ^ y(0) = h 

(a) The rates of convergence estimates of i t e r a t i v e methods by the 

theoretical approach. 

Table 4.1.2a 

N 1 a 1 
P 

«N 

4 0.8597 ; 1.8208 2.1542 
5 0.9918 ''\ 2.1507 2.8018 
6 1.1208 2.3228 2.7941 
7 1.1930 2.3969 2.7073 
8 1.3895 2.2538 

; 
2.6680 

9 1.4409 1.6660 
1 

2.6508 
, 10 1.5446 i 1.1744 1 2.6440 
11 1.5446 • 0.6463 

1 
2.6415 

12 1 2.6407 
1 13 • 1 2.6404 
\ 14 
I 

j 2.6403 
15 1 2.6403 
16 

\ • 
17 ii 

\ • 

R - Rate of convergence of Picard's method 
P 

Bljj - Rate of convergence of Newton's method 

R^ - Rate of convergence of Modified Newton's method 
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(b) The rates of convergence estimates of i t e r a t i v e methods, by the 

average r a t i o technique 

Table 4.1.2b 

N \ 
4 1.8837 
5 1.1282 1.5552 . 2.4920 
6 1.3094 1.9215 2.6513 
7 1.3310 1.9104 2.3250 
8 1.3645 1.8887 2.4808 
9 1.3626 1.8905 2.4250 
10 1.3599 1.8897 *1.3964 
11 1.3601 1.8910 *0.1201 
12 1.3604 1.8913 *0.6340 
13 1.3602 1.8913 
14 1.3602 • 

15 1.3604 1 

16 1 i 
17 • 

Rp - Rate of convergence of Picard's method 

R̂  - Rate of convergence of Weyl's method 

Rjj - Rate of convergence of Newton's method 

Notes 

( i ) I n Picard's and Weyl's methods, rates of convergence for N = 4 

were not obtainable, because solutions by both methods are not 

stable i n the early stages. The rate of convergence of Picard's 

for N = 5 was calculated by desk machine. 

( i i ) * the rates of convergence of Newton's method were not available 
for N > 11 because solutions were then not possible. 
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y' = x-y , y(0) = -0.72901 

Table 4.1.3 

N ^Pl ^P2 

1.0904 4 0.8597 0.6157 
1.1582 5 0.9918 0.8449 
1.1057 6 1.1208 1.1325 
1.1056 7 1.1930 1.1648 
1.1058 8 1.3895 1.2067 
1.1071 9 1.4410 1.2062 
1.1068 10 1.5446 1.2078 
1.1067 11 1.5466 1.2057 
1.1068 12 1.5446 1.2094 
1.1068 13 1.5446 1.2076 
1.1068 14 1.5446 1.2071 

R̂  - The rate of convergence of Weyl's method estimated by 
average r a t i o technique. 

Rpj^ - The rate of convergence of Picard's method estimated by 
the theoretical approach. 

Rp2 - The rate of convergence of Picard's method estimated by 
average r a t i o technique. 
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Example 4; 
The Van der Pol's equation 

y" = % ( i - y 2 ) y ' -

y ( - l ) = 0, y(+ l ) = 2 

Table 4.1.4 

N ^N 

2.3667 5 4.5330 
1.5232 6 4.7560 
2.1459 7 5.5240 
2.2452 8 4.7870 
2.2574 9 4.8220 
2.2428 10 4.7790 
2.2455 11 4.8250 
2.2515 12 4.9380 
2.2450 13 4.7960 
2.2431 14 4.8470 
2.2450 15 4.8790 
2.2450 16 4.7740 
2.2450 17 4.7210 
2.2429 18 4.7680 

Rp - The rate of convergence of Picard's method estimated by 
the average r a t i o technique 

Rj ^ - The rate of convergence of Modified Newton's method by 
the same technique 
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y" + = 0, y ( - l ) = 0, y(+l) = 1 

for X = , 1.25 < | 

Table 4.1.5 

N Average Ratio 

5 0.0320 3.4052 
6 0.0332 3.4055 
7 0.0457 3.0850 
8 0.0457 3.0849 
9 0.0416 3.1797 
10 0.0416 3.1797 
11 0.0413 3.1860 
12 

f 

0.0413 3.1860 
1 

1 

Rp - The rate of convergence of Picard's method estimated by 
experimental technique (average r a t i o ) . 
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Example 6: 

y" + X y = 0, y ( - l ) = 0, y(+l) = 1 

f or X = 2 > ^ 

Table 4.1.6 

N Average r a t i o Re 
4 0.5643 0.5722 
5 0.3543 1.0376 
6 0.2875 1.2465 
7 0.2049 1.5852 
8 0.1763 1.7356 
9 0.1781 1.7254 
10 

t 

0.1779 1.7261 

• 

R - the average rate of convergence of e-algorithm estimated 
e 

experimentally (average r a t i o ) . 

This example shows the average rates of convergence of the e-

algorithm applied to a divergent sequence of solutions i n Chebyshev 

coe f f i c i e n t s , that obtained by Picard's method (see Table 3 of appendix) 

In t h i s case one would expect a higher r a t e i of convergence, but since 
2 

the f i r s t e which i s (Aitken's 6 -formula) gave a good approximation to 

the answer (see Table 4), the rates of convergence of the rest of e's 

then became very low. However,investigation for rates of convergence 

of each e ^ o u l d have been carried out, Vn^V vO^vi not VUtru^iat-

\ji voor^»<v)U;Ve, slŵ Cc 4Ua. errors ftV UtLy sUccjtS Weye So Sv^cU . 
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(4.2) Comparison between i t e r a t i v e methods; 

I t i s of interest to compare the applications of the present 

i t e r a t i v e methods to a simple i n i t i a l value problem. Accordingly the 

comparison was made i n the case of the f i r s t order equation 

y. = y(0) = 1/2. 

The Picards program gave the solution i n Chebyshev series of 

degree 10 to this problem i n the range -1 ̂  x s 1 to 6 decimal places, 

i n 10 cycles. This implies a t o t a l of about 5,000 multiplications. 

Weyls i t e r a t i o n i n Chebyshev series requires a t o t a l of about 4,800 

mult i p l i c a t i o n s over 10 cycles to secure the desired accuracy. 

Norton (1964) [16] gave an estimation of 20,000 multiplications 

i n 12 cycles for Newtons method's solution of degree 25 to the above 

problem, and 2,560 multiplications for Runge-Kutta method. Our 

estimate of multiplications required for Newtons method i s 5,600, 

and f o r the modified Newtons method i s 6,500 i n 10 cycles. I t should 

also be noted that i n both modified Newton and Newtons methods, 

evaluation of an extra function ( ) i s required. 



Table 4.2.1 
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Method Rate of convergence 
= R 

no. of multiplications 
per cycle = n 

Efficiency 
= R/n 

Picard's 1.5446 500 3.1 X 10'^ 

Weyl's * 1.8897 480 3.9 X lO""' 

Newton's 1.1744 560 2.1 X 10"^ 

M. Newton's 2.6440 650 4.1 X lO'^ 

Runge-
Kutta - t o t a l multiplications 

= 2,560 -

* Rate of convergence of Weyl's method was estimated by 

experimental technique (average r a t i o ) . The others were 

calculated t h e o r e t i c a l l y (Reduction). 

To summarise the rate of convergence of a l l i t e r a t i v e methods, 

for the examples considered, we take the degree of the approximate 

solutions N to be 10 and construct a general Table 4.2.2 below, which 

contains the theoretical and the experimental approximations of the 

rates of convergence (R). 
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Table 4.2.2 

Method Picard's Weyl's Newton's Modified Newton's 

Examples ^Pl ^P2 ^^1 ^^2 hi ^ 2 ^ 1 ^ 2 

Example 1 0.80 - - - - - -
Example 2 1.54 1.36 - 1.89 1.17 1.40 2.64 -
Example 3 1.54 1.21 - 1.11 - - - -
Example 4 - 2.24 - - - - - 4.78 

Example 5 - 3.18 - - - - - -
Example 6 - - - - - - -

(4.3) The order of Convergence of Runge^^Kutta method: 

The error functions e^(x), r = 0,1,2, , i n the solution of 

Falkner-Dtegn equation 

y"' + y y " + p ( l - y ' ^ ) = 0 

y ( 0 ) = 0, y'(0) = 0, y'(oo) = 1, p = 0.01 

by Runge-Kutta, are calculated for x = 0, 1, 2, ... The estimated 

values of a (the order of convergence) defined by the relations 

e - = K e r+1 r 

or log h r + i l = log |K| + Of log |ej.| 

where K i s a constant, are calculated by p l o t t i n g graphs of log le^^.^1 

against log |e^| for r = 0,1,2, , which are tabulated below. 
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The average order of convergence of Runge-Kutta is approximated 
by (a = 1,82). 

This compares well with the theoretical estimate of order of 
convergence of the Secant method [26] which is a = 1.62, 

Conclusions 
Methods of solution of nonlinear differential equations have been 

compared, both numerically and theoretically, in their performance 
on a set of particular equations. 

Picards method is the simplest and the most well-balanced method, 
and i t is rather efficient due to the fact that the process involves 
less evaluation of the functions y(x), f(x,y) that cuts down a 
considerable build up of round-off errors through the computation. 
Efficiency factor^ range from (3.1 x 10 )A • Convergence is guaranteed 
for i n i t i a l value problems. Boundary-value problems, for example in the 
case y" + \̂  y = 0 for \ > may not converge. The failure of 
convergence in this case can be easily rectified using the 
e - algorithm technique. 

Weyls method is noted for i t s significant success in obtaining 
solutions for i n i t i a l value problems of the form 

yi^L - ^r yriV^ = °' = y.(0) = .... = y(0)("-2>= 0,y(0)(^-P 1. 

For boundary value problems convergence of this method is not assured. 
I t is a variant of Picard's method obtained by a transformation of the 

_3 
variable. I t has an efficiency of 3.9 x 10 ^ exawv̂ U. 2-
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Newtons method, theoretically, is the most efficient method of a l l , 
but due to involvement of a great number of multiplications and 
evaluation of considerable number of functions, a build-up of round-off 
errors effects the f i n a l outcome of this process; a modification improves 
this but requires further multiplications. I f the degree of the 
required approximations are large enough, Newtons method converges 
faster than Picards when convergence holds, and often provides the 
most powerful technique to secure convergence in a wider class of problems. 
The efficiency of modified Newtons is 4.1 x 10~ Ci«.ftx»ApU 2 • 

The Lie series formulation has been shown to generalise a l l these 
methods and to provide a family of iterative methods of a l l orders. 

A method of analysis based on evaluating a linear approximation to 
the iteration matrix connecting successive vectors of Chebyshev coefficients 
has been tested and i t s numerical results are found to compare reasonably 
with the results provided by carrying out the iteration. I t is hoped 
that this idea might be developed to give information about the behaviour 
of these iteration methods on general classes of equations. 
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APPENDIX 

Table 1 
Picards Solution of y' = -v. y(0) = 1 

r A 
r 

A 
r 

,(10) A r A 
r 

0 2.531240 2.53142 2.532143 2.532132 
1 -1.130220 -1.130336 -1.130337 -1.130318 
2 0.270830 0.271496 0.271497 0.271495 
3 -0.044260 -0.044323 -0.044322 -0.044337 
4 0.0052077 0.005471 0.005471 0.005474 
5 -0.000525 -0.000551 -0.000551 -0.000543 
6 0.000046 0.000046 0.000045 
7 -0.000002 -0.000002 -0.000003 
8 • 0.000000 0.000000 0.000000 
9 . -0.000000 -0.000000 
10 0.000000 0.000000 
11 t 

• 

-0.000000 -0.000000 



Table 2 
Solution of y" + \\ = 0. y ( - l ) = 0. y ( l ) = 1. \ = 1.25<-? 

r ,(20) A 
r r Picards' 

0 2.048282 2.048396 
1 0.538073 0.538073 
2 -0.542529 -0.542591 
3 -0.038850 -0.038850 
4 0.018635 0.018637 
5 0.000784 0.000784 
6 -0.000248 0.000248 
7 -0.000007 -0.000008 
8 0.000002 0.000001 
9 0.000000 0.000000 
10 

• 

• 

Solution y(x) = sin X (l+x)/sin 2\ 

N 

r=o 
N 

= i r ^ ^ ^ ^ V x , ) . r = 0 . 1 . 
i=o 
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Table 4 
e- Algorithm for the solution of y" + X y = 0. y ( - l ) = 0. 

yd ) = 1, \ = 2 

r ®2r 4r 
(o) 

^6r 
(o) 

^8r A 
r 

0 -0.714288 -0.538744 -0.538003 -0.538006 -0.538010 
1 0.631577 0.634247 0.634250 0.634247 0.634252 
2 0.750002 0.847370 0.847851 0.847834 0.847859 
3 -0.142856 -0.141805 -d.141806 -0.141822 -0.141805 
4 0.000000 -0.081698 -0.081699 -0.081689 -0.081691 
5 0.007743 0.007740 0.007740 0.007742 
6 0.000000 0.002892 0.002889 0.002890 
7 • -0.000193 -0.000193 -0.000192 
8 4 -0.000000 -0.000058 -0.000053 
9 0.000000 0.000000 -0.000000 0.000003 0.000003 

0.000000 

Solution y(x) = sin X(l+x)/sin 2\ 
N 

A - 2 V" 
r N 

i=o 
I 2̂  y(x.)T^(x.), r = 0,1,....,N 



Table 5a 

N = = 8 N = 10 

Newton M.Newton Newton M.Newton 
r ,(10) A ,(10) A ,(10) A ,(10) A 

r r r r 
0 1.153809 1.154306 1.164063 1.154975 
1 0.308837 0.309206 0.310059 0.309540 
2 0.082596 0.082827 0.083496 0.082957 
3 0.022141 0.022186 0.022476 0.022233 
4 0.005924 0.005936 0.006027 0.005958 
5 0.001554 0.001557 0.001611 0.001596 
6 0.000261 0.000262 0.000406 0.000423 
7 0.001881 0.001881 -0.000008 0.000093 
8 0.000160 0.000160 0.001596 -0.000065 
9 0.000110 0.001391 
10 0.000000 0.000082 
11 
12 

Newton's method gave unstable solutions for this 
problem when N > 12 



Table 5 
Solution of v' = y . v(0) = h 

r A 
Picard \ Weyl 

Ar 
M.Newton 

A 
r 

0 1.154687 1.154713 1.154305 1.154696 
1 0.309395 0.309408 0.309206 0.309395 
2 0.082901 0.082905 0.082827 0.082883 
3 0.022213 0.022215 0.022186 0.022214 
4 0.005952 0.005952 0.005936 0.005975 
5 0.001595 0.001596 0.001557 0.001596 
6 0.000427 0.000429 0.000423 0.000408 
7 0.000114 0.000116 0.000093 0.000114 
8 0.000032 0.000037 -0.000065 0.000049 
9 0.000009 0.000008 0.001391 0.000008 
10 0.000000 0.000000 0.000082 0.000000 
11 0.000000 0.000000 0.000000 0.000000 

The solution y(x) = "JJZ^ 

N. 

r=o 

N 

i=o 



Table 6 
Solution of y' = x-y . y(0) = -0.72901 

r 
^(13) 
r 

Picard's 
,{U) 
r 

Weyl's 
,(11) 
r 

Newton's (Norton 64) 
0 -1.331811 -1.331804 . -11331820 
1 -0.565767 -0.565764 -0.565775 
2 0.065562 0.065562 0.065558 
3 -0.012310 -0.012310 -0.012312 
4 0.002575 0.002575 0.002575 
5 -0.000560 -0.000560 -0.000560 
6 0.000124 0.000124 0.000124 
7 -0.000028 -0.000027 -0.000028 
8 0.000006 0.000006 0.000006 
9 -0.000001 -0.000001 -0.000001 
10 0.000000 0.000000 0.000000 
11 -0.000000 
12 0.000000 • 

13 0.000000 i 
< 

14 0.000000 0.000000 0;000000 

This problem has the formal solution, (Norton 1964), 

y(x) = A'(x)/A.(x) 
where A^(x) is the Airy integral given by 

GO 

A.(x) = - r cos(-^t^ + xt)dt 
1 IT _J J 



Table 7a 
Solution of y" = %(l-y ^ ) y ' - y ( - l ) = 0, y(+l) = 2 

N = 3 N = 10 
Newton M.Newton Newton M.Newton 

r ^(10) ^(10) ^(10) ^'(10) 
r r r r 

0 2.066008 2,066482 2.050637 2.068076 
1 1.023438 1.022152 1.027443 1.023983 
2 -0.033004 -0.033241 -0.031566 -0.032795 
3 -0.0234386 -0.022152 -0.025146 -0.024856 
4 -0.001544 -0.001367 
5 0.000914 0.000901 
6 0.000148 0.000137 
7 -0.000025 -0.000026 
8 -0.000009 -0.000009 
9 0.000000 0.000000 
10 0.000000 0.000000 
11 
12 
13 
14 
15 
16 



Table 7 
Solution of y" = ^(l- y ^ ) y ' - j^, y ( - l ) = 0, y ( l ) = 2 

r 
^(10) 
r 

Picard's 
r 

Weyl's 

^(10) 
r 

Mod, Newton's 

0 2,068066 2,068054 2.068076 
1 1,023980 1,023978 1.023982 
2 -0.032794 -0.032795 -0.032795 
3 -0.024856 -0.024858 -0.024856 
4 -0.001367 -0.001369 -0.001367 
5 0.000901 0.000897 0.000901 
6 0,000136 0.000132 0.000137 
7 -0.000026 -0.000015 -0.000026 
8 -0.000009 -0.000006 -0.000009 
9 0.000000 -0.000005 0.000000 
10 0.000000 -0.000003 0,000000 
11 -0,000004 • 

12 -0.000006 
13 -0.000005 
14 -0.000005 
15 -0,000004 
16 -0,000003 
17 -0.000001 
18 0,000000 -0.000000 0,000000 



Table 8 
Solution of y'" + yy" + 0(l-y' ) = 0 
y(0) = y'(0) = 0, y'(co) = 1, 3 = 0.01 

(a) 
r 0 1 2 3 4 5 

V 
r 

0.950 1.050 0 49437 0.49437 0.48277 0.48244 

U 1.62147 1.73797 0 89664 1.01811 1.00050 1.00000 
r 

(b) 

r 
1st iteration 6th iteration 

r 
y(x^) y'(x ) r y"(x ) r y(x ) r y'(x^) y"(x ) r 

0 . 0.0 0.0 0.95 0.0 0.0 0.48244 
1 0.466230 0.91018 0.80595 0.23771 0.46832 0.43679 
2 1.699440 1.46716 0.28967 0.89889 0.82254 0.25101 
3 3.250250 1.59183 0.02948 1.81121 0.97065 0.06483 
4 4.849380 1.60272 0.00393 2.80020 0.99994 0.00643 
5 6.453740 1.60578 0.00255 3.79960 1.00000 0.00024 
6 8.060690 1.60804 0.00202 4.79959 1.00000 0.00000 
7 9.669680 1.60988 0.00168 4.79958 1.00000 0.00000 
8 
y; 

11.280350 1.61143 0.00143 6.79958 1.00000 0.00000 

19 29.006310 1.62034 

1 

0.00056 17.79957 1.00000 -0.00000 
20 30.687510 1.62147 0.00054 18.79957 1.00000 -0.00000 



PRINT OUT 

- represents the matrix Q of Newton's method 

- represents the matrix Q of Mod. Newton's method 

of order 5 (N=4) 

0. 2659E 00 0 .5319E 00 -0 . 4044E 00 -0.8310E 00 0. 1382E 00 
0. 5651E 00 0 .1302E 00 -0 . 6094E 00 r0.2659E 00 0. 4433E--01 
0. 1357E 00 0 .2715E 00 -0 . 1856E 00 -0.2992E 00 0. 4982E--01 
0. 2216E--01 0 .4432E--01 0. 1330E 00 -0.6925E--01 -0 . 1551E 00 
0. 2770E--02 0 .5540E--02 0. 1662E--01 0.1163E 00 -0 . 1939E--01 

of order 5 (N=4) 

-0.4993E--02 -0.2631E 00 -0.1710E--02 0.2514E 00 0.7118E-02 
0.0 0.0 0.0 0.0 0.0 

-0.4993E--02 0.2409E--01 0.3445E--02 -0.1522E--01 . -0.6431E-01 
-0.2240E--02 0.5237E--01 0.6840E--02 -0.5408E--02 -0.2847E-01 
0.2497E--02 0.1765E--01 0.3973E--01 0.1871E--01 0.3513E-01 

of order 9 (N=8) 

0.2661E 00 0.5321E 00 -0 . 4036E 00 -0.8253E 00 0. 1873E 00 
0.4961E 00 -0.7422E-01 -0 . 8750E 00 -0.9000E 01 
0.5652E 00 0.1303E 00 -0 . 6090E 00 -0.2633E 00 0. 6621E--01 
0.2224E 00 -0.7031E-01 -0 . 5000E 00 -0.8000E 01 
0.1357E 00 0.2715E 00 -0 . 1855E 00 -0.2986E 00 0. 5464E--01 
0.4932E-01 -0.7812E-02 0. 0 -O.IOOOE 01 
0.2217E-01 0.4434E-01 0. 1330E 00 -0.6893E-01 -0 . 1524E 00 
0.2797E-01 -0.5371E-02 -0 . 7812E--02 -0.3750E 00 

3106E--01 0.2737E-02 0.5474E-02 0. 1642E--01 0.1150E 00 -0 . 3106E--01 
-0.1190E 00 0.1172E-01 -0 . 2686E--02 -0.3906E-01 
0.2715E-03 0.5429E-03 0. 1629E--02 0.1140E-01 0. 9610E--01 

-0.2002E-01 -0.9743E-01 0. 7980E--02 -0.2930E-02 
-02 0.2249E-04 0.4498E-04 0. 1349E--03 0.9445E-03 0. 7961E--02 

0.8118E-01 -0.1396E-01 -0 . 8181E--01 0.5783E-02 
-03 0.1599E-05 0.3198E-05 0. 9595E--05 0.6717E-04 0. 5661E. -03 

0.5773E-02 0.7012E-01 -0. 1026E--01 -0.7069E-01 
3538E -04 0.9995E-07 0.1999E-06 0. .5997E. -06 0.4198E-05 0. 3538E -04 

0.3608E-03 0.4382E-02 0. ,6186E. -01 -0.4418E-02 



^2 of order 9 (N=8) 

-0.4398E-08 -0.2631E 00 -0.1874E-02 0.2508E 00 0.5579E-02 
0.1167E-01 0.1863E-02 0.6234E-03 0.1580E-03 
0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 

-0.4398E-08 0.24OE-01 0.3281E-02 -0.1576E-01 -0.6585E-01 
-0.7473E-02 -0.3266E-02 -0.7496E-03 -0.2114E-03 
0.1759E-07 0.5257E-01 0.7494E-02 -0.3226E-02 -0.2232E-01 

-0.4666E-01 -0.7448E-02 -0.2500E-02 -0.6284E-03 
-0.1099E-06 0.1641E-01 0.3564E-01 0.5074E-02 -0.3336E-02 
-0.1457E-01 -0.3550E-01 -0.6365E-02 -0.1966E-02 
0.8971E-06 0.3772E-02 0.1104E-01 0.2838E-01 0.4477E-02 

-O.1870E-02 -0.1061E-01 -0.2853E-01 -0.5521E-02 
-0.9081E-05 0.7940E-03 0.2599E-02 0.8609E-02 0.2372E-01 
0.4132E-02 -0.1188E-02 -0.8254E-02 -0.2371E-01 

-0.3046E-05 0.1674E-03 0.5727E-03 0.2052E-02 0.7060E-02 
0.2035E-01 0.3646E-02 -0.1275E-02 -0.8167E-02 
0.6867E-05 0.3863E-04 0.1357E-03 0.5001E-03 0.1830E-02 
0.6453E-02 0.1957E-01 0.9589E-02 0.1883E-01 

of order 12. (N=ll ) 

0.2661E 00 0.5321E 00 -0.4036E 00 -0.8253E 00 0.1865E 00 
0.4961E 00 -0.6641E-01 -0.2500E 00 0.2000E 01 0.1600E 02 

-0.4096E 04' -0.6554E 05 
0.6644E-01 0.5652E 00 0.1303E 00 -0.6090E 00 -0.2633E 00 0.6644E-01 

0.2244E 00 -0.3125E-01 -0.2500E 00 0.0 0.0 
-0.2304E 04 -0.2458E 05 
0.1357E 00 0.2715E 00 -0.1855E 00 -0.2986E 00 0.5466E-01 
0.4907E-01 -0.1172E-01 0.0 O.IOOOE 01 0.0 

-0.1024E 04 -0.2048E 05 
0.2217E-01 0.4434E-01 0.1330E 00 -0.6893E-01 -0.1524E 00 
0.2802E-01 -0.4150E-02 -0.1562ET01 -0.6250E-01 -0.2000E 01 

-0.1120E 03 -0.2048E 04 
0.2737E-02 0.5474E-02 0.1642E-01 0.1150E 00 -0.3106E-01 

-0.1190E 00 0.1186E-01 -0.1465E-02 0.1172E-01 0.6250E-01 
-0.9000E 01 -0.1280E 03 
0.2715E-03 0.5429E-03 0.1629E-02 0.1140E-01 0.9610E-01 

-0.2002E-01 -0.9742E-01 0.8057E-02 0.4883E-03 0.1953E-01 
-O.IOOOE 01 -0.1600E 02 

0.7961E-02 0.2249E-04 0.4498E-04 0.1349E-03 0.9445E-03 0.7961E-02 
0.8118E-01 ^0.1296E-01 -0.8181E-01 0.599tE-02 0.1709E-02 

-0.6250E-01 -0.2000E 01 
0.5661E-03 0.1599E-05 0.3198E-05 0.9595E-05 0.6717E-04 0.5661E-03 

0.5773E-02 0.7012E-01 -0.1025E-01 -0.7043E-01 0.4639E-02 
-0.7812E-02 -0.3750E 00 

0.3526E-04 b.9961E-07 0.1992E-06 0.5976E-06 0.4183E-05 0.3526E-04 
0.3596E-03 0.4367E-02 0.6165E-01 -0.7838E-02 -0.6181E-01 
0.3174E-02 -0.2344E-01 

0.1954E-05 0.5518E-08 0.1104E-07 0.3311E-07 0.2318E-06 0.1954E-05 
O0.1992E-04 0.2420E-03 0.3415E-02 0.5497E-01 -0.6189E-02 
-0.5508E-01 0.1953E-02 

0.9745E-07 0.2753E-09 0.5506E-09 0.1652E-08 0.1156E-07 0.9745E-07 
0.9938E-06 0.1207E-04 0.1704E-03 0.2742E-02 0.4958E-01 

-0.5017E-O2 -0.4977E-01 



of order |2 (N=l l ) contd. 

0.1251E-10 0.2503E-10 0.7508E-10 0.5256E-09 0.4430E-08 
0.4517E-07 0.5487E-06 0.7744E-05 0.1246E-03 0.2254E-•02 
0.4523E-01 -0.2262E-02 

^2 of order 12 (N= 11) 

-0.1095E-13 -0.2631E 00 -0.1874E-02 0.2508E 00 0.5579E--02 
0.1167E-01 0.1863E-02 0.6234E-03 0.1580E-03 0.4493E--04 
0.1175E-04 0.6413E-06 
0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 
0.0 0.0 

-0.1095E-13 0.2404E-01 0.3281E-02 -0.1576E-01 -0.6585E--01 
-0.7473E-02 -0.3266E-02 -0.7496E-03 -0.2115E-03 -0.5628E--04 
-0.1497E-04 -0.3826E-05 
0.4381E-13 0.5257E-01 0.7494E-02 -0.3226E-02 -0.2232E--01 

-0.4666E-01 -0.7448E-02 -0.2500E-02 -0.6282E-03 -0.1711E--03 
-0.4579E-04 -0.1245E-04 
-0.2738E-12 0.1641E-01 0.3564E-01 0.5074E-02 -0.3336E--02 
-0.1457E-01 -0.3550E-01 -0.6366E-02 -0.1967E-02 -0.5086E-•03 
-0.1375E-03 -0.3693E-04 
0.2234E-11 0.3772E-02 0.1104E-01 0.2838E-01 0.4477E--02 

-0.1869E-02 -0.1061E-01 -0.2853E-01 -0.5509E-02 -0.1628E--02 
-0.4270E-03 -0.1150E-03 
-0.2262E-10 0.7939E-03 0.2599E-02 0..8608E-02 0.2372E--01 
0.4129E-02 -0.1198E-02 -0.8290E-02 -0.2383E-01 -0.4844E--02 

-0.1294E-02 -0.3685E-03 
0.2737E-09 0.1675E-03 0.5733E-03 0.2055E-02 0.7069E--02 

L^0.2038E-01 0.3767E-02 -0.8380E-03 -0.6786E-02 -0.2045E--01 
-0.4317E-02 -0.1221E-02 
-0.3854E-08 0.3653E-04 0.1270E-03 0.4672E-03 0.1706E -02 
0.5992E-02 0.1786E-01 0.3442E-02 -0.6217E-03 -0.5736E. -02 

-0.1791E-01 -0.3893E-02 
-03 0.6194E-07 0.8247E-05 0.2881E-04 0.1069E-03 0.3966E -03 

0.1459E-02 0.5197E-02 0.1589E-01 0.3160E-02 -0.4774E -03 
-0.4950E-02 -0.1589E-01 

-04 0.4830E-07 0.1849E-05 0.6835E-05 0.2491E-04 0.9267E -04 
0.3448Ei-03 0.1274E-02 0.4581E-02 0.1430E-01 0.2856E -02 

-0.5978E-03 -0.5076E-02 
0.2338E -04 -0.5085E-07 0.2919E-06 0.1419E-05 0.6144E-05 0.2338E -04 

0.8799E-04 0.3283E-03 0.1218E-02 0.4418E-02 0.1419E -01 
0.7005E-02 0.1383E-01 
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2.?. 

2.0 

».* - I 1 

i . • I 
<̂  5 f 7 ? q ID »l l i 1% 'U . 14' M 

R experimental rate of convergence of Picards method 

w 
" Weyls 

" Newtons 

f o r the solut ion of 

y ' = y l y(0) = V 2 



Figure (3) 

2.0 ̂  

1-4 

I . Z -

i . O 

'i 

4 

* * 

I I 1 1 1 1 1 -

S t 1 i 1 '0 '» 12 '3 I f 

R •pl 

P2 

w 

theore t ica l rate of convergence of Ficards method 

experimental rate of convergence of Picards method 

experimental rate of convergence of Weyls method 

f o r the solut ion of 
y ' = x-y^, y(0) = -0.72901 



Figure (4) 

/ 

, a a e e O n " " 

- 1 ^ , , 1 < I T 1 > " - 1 ^ 

5 6 -J J <} W n 12 13 11̂  l i- ' I 

R - Experimental rate of convergence of Picards method 

R 
mn 

Experimental rate of convergence of modified Newtons method 

f o r the solut ion of 

y" = la-yh r - y 
y ( - l ) = 0, y d ) = 2 



Figure (5) 

- Q o s e o o -

- I 1 1 1 i 1 i i i 1 r -

R Experimental rate of convergence of Picards method f o r the 

solut ion of 

y" + ^^y = .0, y ( - l ) = 0, y (+1) = 1 

and \ = 1.25 < ^ 



Figure (6) 

I t * 

- O 0 0 O B 0-

1-2 

1.0 

6- £ 

C M -I 

c 2 

IC II '2- .'̂  "V 

R - the average rate of convergence of the e - Algorithm 
e 

estimated experimentally (average r a t i o ) . 


