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ABSTRACT 

The two channel sta t i c model has been 
found to be exactly and simply soluble f o r 
a range of values of the crossing matrix 
parameter. This thesis rederives the known 
el a s t i c solutions and obtains formal power 
series solutions f o r the i n e l a s t i c elements. 
An unexpected connection between crossing 
and u n i t a r i t y i s discovered, and f i n a l l y , 
equations are derived which indicate that 
i f the two channel model i s extended to a 
multichannel model incorporating i n e l a s t i ­
c i t y , then there w i l l be an i n f i n i t y of 
channelso 



INTRODUGTiaN. 

This thesis deals with the problem of deter­
mining the S matrix which describes meson nucleon 
scattering processeso 

Chapter one commences with a b r i e f outline 
of the problem, followed by a discussion of the 
work of previous authors, a l l of them concerned 
wholly w i t h e l a s t i c processeso I t i s shown how 
the w e l l known solutions f o r the diagonal elements 
are obtainedo 

In chapter two, s t i l l concerned with e l a s t i c 
processes, we rederive these solutions, and i n the 
process indicate that isotopic spin invariance and 
u n i t a r i t y are more closely linked than i s usually 
appreciatedo 

Chapter three investigates the more challenging 
problem of the extension to i n e l a s t i c processeso Off 
diagonal elements are not obtained i n closed form, 
but only as formal power serieso 

We work i n the multichannel s t a t i c model, and 
i t turns out that i f we allow i n e l a s t i c coupling 



between d i f f e r e n t channels involving specific 
mesons of given isospin, then automatically such 
coupling appears i n every channel: we cannot assign 
a r b i t r a r i l y the r e l a t i v e amounts of coupling 
between d i f f e r e n t channelso 



CHAPTER I , 

I t i s often found i n strong interaction calcu­
l a t i o n s that i n any formulation of a problem i n 
which i t i s easy to incorporate u n i t a r i t y requirements, 
i t i s d i f f i c u l t t o incorporate crossing symmetry, and 
vice versao For example, p a r t i a l wave dispersion 
relations incorporate u n i t a r i t y without d i f f i c u l t y , 
but i t i s very d i f f i c u l t to put i n crossing, whereas 
i n the Mandelstam representation crossing symnetry 
i s easily s a t i s f i e d , while u n i t a r i t y cannot be s a t i s ­
f i e d without great d i f f i c u l t y o In th i s thesis, we 
s h a l l be making use both of crossing and of u n i t a r i t y , 
i n a very simple model, the s t a t i c model; and indeed 
wie s h a l l give one example where results obtainable 
using crossing can a l t e r n a t i v e l y be found by a calcu­
l a t i o n using u n i t a r i t y o I n that case, we s h a l l 
rederive the known exact solutions f o r the el a s t i c 
scattering of a meson with isotopic spin d o f f a 
nucleon, without any reference t o the crossing matrix 
appropriate to two channel u n i t a r i t y i n Su(2)o The 
work i s concerned with the one meson-approximation of 
the Low equationi^ *° The mathematical formulation 
i s as follows: we l e t z be the energy of the meson 
and i t s momentum be q : 

then 

H.lLi968 



I n the complex r. plane, the branch cuts of q are 
chosen t o run from t o -1 and from 1 to ^ , and 
q i s defined to be r e a l and positive just above the 
cut )o Prom t h i s d e f i n i t i o n , we see that on 
the f i r s t Riemann sheet 

so that I q i s a r e a l analytic function i n the 
cut z planeo Now we define the scattering 
amplitude f o t U ) i n *he channel ot, where o(. refers 
t o the isotopic spin (or spir\) i n that channel t o be 

\^(X) - 'S>^^KK-Z^ e (3) 

where i s the phase shifto 
Now we know that the S matrix s a t i s f i e s certain 
dispersion r e l a t i o n s , which represent a system of 
coupled non l i n e a r i n t e g r a l equations f o r the S matrix 
elements of various scattering channels, and that the 
p a r t i c l e s are represented by poles i n the S matrix 
elements i n the appropriate channelso The scattering 
amplitudes must s a t i s f y similar equations, so that 

s a t i s f i e s the following equation(5)), expressing 
the requirements of el a s t i c u n i t a r i t y , crossing 
symmetry, and a n a l y t i c i t y , the usual basic postulateso 



f - ^ ̂ ) 
Where C^^ i s a crossing matrix with the general 
property 

(U) 

i s the cut functiono 
and (5) 

We define the S matrix element of the channel oi by 

(6) 

and from here on, we work exclusively with S matrix 
elements, rather than with amplitudeso A l l physical 
two p a r t i c l e thresholds are taken to occur at z «lo 
Then ŜC-z.) s a t i s f i e s the following conditionso 

ao A n a l y t i c i t y : i s r e a l meromorphic i n the 
cut plane 

bo Elastic u n i t a r i t y ; has only one branch 
point on the positive r e a l axis, at the threshold 
point z = - l ; the branch point i s of the square (7) 

root typeo The analytic continuation of Ŝ Û̂  onto 
the second Riemann sheet is given by 

Co Crossing symmetry; Ŝ r̂̂ ^ ̂  ̂Q^S^^z) where 
C^^ i s the crossing matrixo 



These conditions define the elements of our 
S matrixo Our problem i s to f i n d S matrix 
elements f o r meson nucleon scattering processeso 
Por example, f o r such reactions as 

m U N 

uJiN -JTlA e_h_. 

noting that these reactions go v i a d e f i n i t e 
isotopic spin states (and v i a d e f i n i t e spin states)( 
The f i r s t may go v i a I = i or I » ? , the other two 
only v i a I = ̂  «> The f i r s t i s an elastic process: 
there i s no change I n the i d e n t i t y of the i n t e r ­
acting particleso The other two are in e l a s t i c 
processes, i n that the outgoing meson i s not the 
same as the o r i g i n a l mesono 

A r e a l i s t i c model must, c l e a r l y , cope both 
with e l a s t i c and i n e l a s t i c processeso I t may, 
though, be valuable f i r s t to consider the less 
r e a l i s t i c case where we Ignore a l l i n e l a s t i c 
processes, and attempt to f i n d the S matrix ele­
ments f o r the e l a s t i c processes under the assump­
t i o n that a l l o f f diagonal elements are i d e n t i c a l l y 
zeroo This i s the case which has already been 



extensively studied, notably by Martin and McGlinn:^^^ 
we s h a l l f i n d that our results are e n t i r e l y i n 
agreement with theirso 

They extend the work of Wanderso^^) The 
essential part of the method i s the f a c t o r i s a t i o n 
of the S matrix elements i n t o symmetric and a n t i ­
symmetric parts, though we note that t h i s i s not 
always possibleo^^^ 

The fundamental properties of the elastic 
crossing matrix are 

ao ? C- \ 
3 ^ (9) 

These properties are p r o v e d ^ f r o m the basic 
requirement that the matrix C transforms projection 
operators f o r the irreducible representations i n 
the Kronecker product decomposition i n the S channel, 
i n t o projection operators i n the u channelo 
Equation (9a) expresses the completeness of the set 
of projection operators, ioeo expresses the property 
of conservation of probabilityo I t has the conse­
quence that the same crossing matrix relates S 
matrix elements as t r a n s i t i o n amplitudes (3)0 The 
second property (9b) i s a consequence of the f a c t 



that two successive applications of the crossing 
matrix brings us back to the o r i g i n a l positlono 
Por 

C S(z) s s(-z) 
so C S(-z) s s(z) since the crossing matrix 
has a constant value, and i s independent of Zo 
(This form of crossing r e l a t i o n i s what mainly 
t y p i f i e s s t a t i c models)a 

The general form of a 2 x 2 matrix with 
these properties Is 

C s f c l - c \ 
(10) 

1̂+c -c , 
Where the parameter c i s arbitraryo The re a l 
a n a l y t i c i t y of the S matrix elements constrains 
i t t o be realo 

The solution of the crossing r e l a t i o n i s 
easily foimd t o be 

Si(z) = s(z) - ( l - c ) a ( z ) 
(11) 

S2(z) s s(z) + (l+c)a(z) 
Where s(z) and a(z) are, respectively, symmetric 
and antisymmetric functlonso 

Martin and McGllnn here digress to discuss 



what they c a l l two " t r i v i a l " solutions, t r i v i a l 
i n that they have only 2 Riemann sheets, whereas 
the usual solutions have an i n f i n i t y of Riemann 
sheetso 

They are, f i r s t l y , the solution with 
a(z) = Oo This solution i s independent of c and 
i s a single channel problem with t r i v i a l crossing 
symmetry, since the S matrix elements are i d e n t i ­
c a l and symmetrico I t has been considered by 
C a s t i l l e j o , D a l l t z and Dyson̂ -̂ -'-), and by Wandersi^^ 
This i s the crossing matrix of neutral scalar 
theory, which describes the scattering of a neutral 
scalar meson by a fi x e d baryono Huang and Low^^^^ 
point out that mathematically i t can be considered 
as a special case of the charged scalar theoryo 

The second i s the solution with 8 ( z ) = Oo Here 
u n i t a r i t y can only be s a t i s f i e d i f c = o, when the 
crossing matrix becomes 

(12) 

This i s the s t a t i c model problem solved by 
Castilledo, Dalltz and Dysono (11) The general 
form f o r an antisymmetric S matrix i s knowno This 
is the charged scalar theory, where there are two 



8. 

scalar mesons of opposite charge, which are 
coupled i n a charge symmetric manner to a 
charged baryono Clearly the crossing symmetry 
of t h i s problem merely gives us 

S^(-z) = 32 (z)o 
Going back to the general case, Martin and 
McGlihni re-write t h e i r f a c t o r i s a t i o n as 

Si (z) = A(z) [ B ( Z ) - (1-c)] 
(13) 

% ( z ) = A(z) [ B ( Z ) + ( l + c ) ] 

where both A(z) and B(z) are antisymmetric 
functions, with the properties of being r e a l 
analytic and meromorphic in the cut z planeo 

Equation (7b) implies that A(z) and B(z) 
can have only one branch point on the positive 
r e a l axis, at z o 1, of type (z -1) Further, 
i t gives 

B(2)(2!) o - B ( Z ) -2C 
A (2) ( . ) = _ ^ _(^^) 

A(z) [B(z)-(l-c)nB(z) + ( l + c ) ] 

Martin and McGlinn, following Wanders' work, give 
the solution f o r B(z) as 



where ]>[T) i s antisymmetric, r e a l analytic and 
r 

meromorphic i n the whole z planeo We require now 
to f i n d solutions f o r A ( z ) o They attempt to do t h i s 
by inspectiono Having w r i t t e n the general solution 
f o r A ( Z ) as 

A(z) = Aj.(z) D(z) (16) 
where Acf{z) i s any special solution and D(z) i s an 
a r b i t r a r y symmetric "S matrix element" ( i o C o i t i s 
r e a l analytic i n the cut z plane and obeys the 
continuation equation I>^^^{z) = V D ( Z ) ) , they argue 
that i t should be possible to express a l l special 
solutions f o r A(z) as r a t i o n a l functions of B(z)o 
Here they are again following" Wanders: he found that 
t h i s was the case f o r his p a r t i c u l a r crossing metrixo 

Now c l e a r l y , since both A(z) and B(z) are to be 
antisymmetric, B(z) must appear as a linear factor 
i n an otherwise symmetric expressiono Equation (Ik) 

also indicates that f o r large B(z), A(z) 'V —T—» (17) 
B(z) 

and that the product A^^^(z) A(z) must reduce to an 
inverse quadratic i n B(z). The simplest p o s s i b i l i t y 
i s c l e a r l y A(z) = /* (18) 



10. 

Then A^^^(z) - 1 
B (2)(Z) B(Z) + 2c 

:.|B(Z) - ( I - C ) ^ ( B ( Z ) * (1+c)) = B(z) C B ( Z ) + 2c) 

so C = ±lc 

The next simplest p o s s i b i l i t y i s 
A(z) = B(z) 

(^B(z) + 2c) B(z) - 2c) 

(19) 

(20) 

which by a s i m i l a r analysis i s shown to be a 
special solution f o r c = ± ̂  , while 

A(z) » CB(Z) 2c) ( B ( Z ) - 2c) (21) 
(^B(z) + ko) B{z) ( B(z) - Î cJ 

i s a special solution f o r 0 = 1 ^ 
This can cl e a r l y be continued, f o r Increasingly 

complex expressions f o r A(z)o Our conclusion i s 
that special solutions f o r A(z) exist f o r 

<^=-V:, ,.v-^0,^^ (22) 
No other such simple expressions f o r A(z) In 

terms of B(z) are obtainableo Por expressions l i k e 
A(z) = B[zl (23) (B(z) + c)(^B(z) - c) 

lead t o inconsistencies when substituted i n t o ( l U ) : 
the r e s u l t i n g equation cannot be s a t i s f i e d by a 
single value of Co 
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What do these "special" values of c represent? 
Consider the scattering of spinless p a r t i c l e s , 

isospin n (ioeo mesons) by par t i c l e s isospin ^ <> 
2 

For t h i s process, the crossing matrix^^) ig 
c =_L- f 2 ( n + l ) \ (21^) 

2n+l \ 2n 1 y 
Here we have designated Ŝ  = S(3 = n - ^ ) , 

S2 = S(d = n + ̂ )o Al t e r n a t i v e l y t h i s i s the 
crossing matrix f o r the scattering, say, of spin-
less p a r t i c l e s with o r b i t a l angular momentum n by 
par t i c l e s spin 1 ( w i t h , c l e a r l y , i n f i n i t e mass f o r 
we are working on the s t a t i c modelo This i n t e r ­
pretation i s c l e a r l y meaningful only i n this V.̂'v>iV 
where the p a r t i a l waves are not coupled together). 

In any case, (214-) i s clearly the crossing 
matrix(lO), with c = -1 , just the case f o r 

2n + 1 
which we have obtained special solutionso Let us 
work out the S matrix elements which we obtain© 

We have B a -2c(ff"•'s;v^"'' z) 
1 1 (25) i f we write w ='iT"'Si^ ~ z 

then B = -2cwo 

For c a - 1 , B = 2w, A a 1 = 1 , and Si s 
B 2w ^ 

— . , b2 = J.0 
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For c = - i , B = I w, A = 3w 

and Si = w(w-2) , So = w 
( i + l ) ( w - l ) îf=T 

and c l e a r l y we can b u i l d up the complete ela s t i c 
S matrix, obtaining, i n this variable w, f o r the 
successive diagonal elements, 
2=1, 1» •w(y72} -. p w , (w+lUw-l)(w-3) , 
w (w+lKw-i; w-1 (w+2) w (w-2) 

(w+l)(w-l) and so ono ^^^^ 
w Cw-2; 

These are c l e a r l y p a r t i c u l a r l y simple forms 
f o r the S matrix elements, consisting as they do 
of r a t i o s of f i n i t e poljmomials i n the variable Wo 
We s h a l l see that we obtain them again, l a t e r , by 
a d i f f e r e n t method (95)o 

Are these, then, the only solutions? Martin 
and McQlinn next attempt to construct further 
special solutions, f o r a r b i t r a r y values of Co 
For i f these are the only solutions, we see that 
the possible crossing matrixes are considerably 
r e s t r i c t e d , and therefore certain symmetries 
should be evident, coming only from the require­
ments of u n i t a r i t y and crossing symmetryo They 



13. 

f i n d , though, that thi s i s not the casco For they 
manage to calculate special solutions f o r 
a r b i t r a r y c, as followso 

Since the crossing relations have already been 
solved, i t i s c l e a r l y sensible to use a mathemati­
c a l formulation i n which i t i s easy to s a t i s f y the 
u n i t a r i t y condition© Martin and McGlinn work 
w i t h phase s h i f t dispersion r e l a t i o n s : one employs 
the logaritbiMof the S matrix elemento Then the 
u n i t a r i t y condition on the function 

i s a l i n e a r onco Clearly AtW i s intimately 
connected with the usual phase s h i f t , SO,\,T̂  
f o r we have 

e,̂ ^̂ ^̂ ' (28) 
The disadvantage of the use of A/V>̂  l i e s i n 
the introduction of additional branch points at 
the zeros and poles of the S matrix elements, but 
t h i s i s unimportant in the present casco 

We know, from equation (16) that A(z) may be 
w r i t t e n in the form 

A(z) s Ao(z) D(z) 
where both Ao(z) and D(z) are real analytic, and 



lUc 

meromorphic i n the cut z plane, Ao(z) being 
antisymmetric, D(z) symmetriCo Evidently, i f 
we have any solution Ao(z) which i s a special 
solution of equation ( l U ) , there exists a D(z) 
f o r which the productA(z) a Ao(z) D(z) has no 
zeros or poles (away from the two cuts) except 
a simple pole at the origino We theriefore 
have a simple solution of the form 

A(z) = QizJi (29) 
z 

where now C(z) i s a symmetric, re a l analytic, 
non vanishing entire function i n the cut z plane. 
Then, the f a c t o r i s a t i o n of the S matrix elements 
equation (13) becomes 

Si(z) = i c ( z ) fB(z) - ( l - c ) l 
(30) 

S2(z) = i c ( z ) [ B ( Z ) + ( l + c ) ] 
To obtain the general solution from these 

expressions f o r the S matrix elements, i t i s 
merely necessary to put i n the common a r b i t r a r y 
f a c t o r D(z)o They must s a t i s f y the u n i t a r i t y 
condition on the physical cutso Now, using 
equation (30), we may write 

V i ^ - - - l ^ x - ^^^^^^ . Vvv(^^l.-.l-0~O) 



15< 

and these phase s h i f t s must s a t i s f y 

- ^ -2. >.l , (32) 

i n consequence of equations (13) and (27)o 
We note that the branch cuts arising from 

zeros or poles of the S matrix elements are to 
be drawn away from the physical cut i n such a 
way that we preserve the real a n a l y t i c i t y of 
the phase s h i f t s o (This i s always possible 
f o r r e a l analytic S^.:(z))o In p a r t i c u l a r , the 
cut a r i s i n g from the linz term i n equation (31) 
i s chosen to be {-co^ o )» This then gives 
the expression 

Using the function 

Xi^A ^^^^ 

which i s symmetric and obeys the usual conditions 
on the cut z plane, they obtain, f i n a l l y , the 
special solution f o r A(z) as 

A(j^, [ i S l ^ l f u i u F V W 1 (35) 



16. 

where F{,i^ ̂  U I T - ^ ^ ^ -<^1>^^L^Y (3g) 
and i s r e a l f o r z lo 

The i n t e g r a l i n equation (35) can be evaluated 
f o r c = i and we get results which agree, 
c l e a r l y , with the solutions obtained previously 
(26) w i t h i n a factor of D(z)o For other values 
of c, Martin and McGlinn found no way of carrying 
out the integration i n an analytic fashiono 

This solution (35) f o r A ( z ) holds f o r an 
a r b i t r a r y value of the crossing matrix parameter 
Co This parameter enters only as a linear 
factor i n P(z)o For we note 

Where we have taken B*(z) = b(^){Z), given by 
equation (Ik)t and have used equation (15)o Thus 
A ( Z ) appears to depend only t r i v i a l l y on the 
crossing matrix parameter c, and Martin and 
McGlinn point out that thi s would make i t appear 
u n l i k e l y that any par t i c u l a r values of the para­
meter c should be singled out as of special 
significanceo I n any case, i t i s apparent that 



17. 

a n a l y t i c i t y , u n i t a r i t y and crossing symmetry are 
not of themselves s u f f i c i e n t to r e s t r i c t solu­
tions t o specific values of the parameter c onlyo 
Rather, i t appears that further conditions are 
required before any such symmetry prediction can 
be madeo 

One possible further condition i s to demand 
that the exact solutions should s a t i s f y the 
Huang-Low bootstrap c r i t e r i o n of s e l f consistencyl^^^ 
This i s to demand that solutions should s a t i s f y 
Levinson's theorem(13)^ which states 

- ^ ^ ( ^ ) _ SA^^ - -TTb^ (38) 

where ^ ( z ) i s the phase s h i f t and i s the 
number of bound states i n the channel oi. In 
other words, every bound state i n the channel c/ 
i s a zero of D^(z), and vice versa, where D^(z) 
i s the denominator i n the usual N/D formulation, 
and has only the r i g h t hand cuto 

Cunningham(^)^ imposes t h i s criteriono He 
finds that solutions are obtainable only f o r 
values of the parameter c corresponding to Su(2) 
syrametryo He uses the ^VUlaiVvwu method, which 
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we next discuss: we sh a l l therefore leave over 
his work u n t i l l a t e r (^equation (57) on) » Both 
Q.oVVUI.Vvuu- and Cunningham^ make a trans­
formation to the variable W, defined by 

z = cosh W (39) 
I n t h i s variable, the whole z plane i s trans­
ferred to the s t r i p 0 ^ ̂ v̂O s^nl. (1+0) o 
Now I t i s well known that, employing equation 
(7b), we may continue the function S^(w) into 
the s t r i p — t i l <\\i>\\A "̂0 by 

I f we now consider equations (7c) and (UO), we 
see that the crossing relationship becomes 

Equation (7) also gives us S (-W*) = S *(W) (U3) 
RjbVvljuVvâ r- f i r s t considers one of Martin 

and McGlinn's " t r i v i a l " cases, the one dimensional 
case. Here he mentions both the Martin and 
McQlinn case with the "crossing matrix" c s 1, and 
also the case where c s - l o I n the case c = 1, 
equation (i+2) gives 

S(w) = S(w -+ ) , iUk) 

To accomodate the various r e s t r i c t i o n s which come 
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from equation (7), t h i s gives, i n terms of the 
variable z, 

S(z) = K(z2) i<\\^.) (U5) 
K{z-^) - i q ( z ) , 

a symmetric function of z, as required by Martin 
and McGlinno Here K{z^) i s a somewhat compli­
cated expression, f i r s t calculated by C a s t i l l e j o , 
D a l i t z and DysonJH^ 

In the case of c = -1, equation (i+2) yields 

B(W + ni ) = B(W) -1 (U6) 
where B(w) r 1 (U7) 

l-S(W) 

which has the solution 

B(w) = 4 + + i ^ ( w ) (1;8) 

where K(z) i s an antisymmetric real analytic 
meromorphic function of ,z i n the whole z planco 
In f a c t , 

S(z) = q(z) ̂  (z) (h9) 

where (z) i s given by equation (15)o 
We now go on to the case i n which we are 

p a r t i c u l a r l y interested, with the two dimensional 
crossing matrix of equation (2it)o We have now, 
equation (U2), 

^^^""^ - ^^^<u^ ^^^^ 
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(ilfVW;.ULr solves t h i s equation using the single 
valued s u b s t i t u t i o n 

B(W) = nSi (w) + (n+1) g2(w) D(W), U(W) = 
S2(W) - Si(w) (50) 

S2(W) D(w) 

Then 
B(W +1it ) = B(w) - 1 , U(Ŵ 5-C) - ^ j ^ 

(51) 
B(w) + n -1 
B(w) - m -1 

As i n the one dimensional case of c = -^1, we may 
write 

B(w) » | + M ^ c l U ) , 

where ^(w) i s an a r b i t r a r y periodic function 
i n W, w i t h period ffC^ 
while 

l a ^ ^ = - U ^ i T f i U ) (53) 

where 

L u ^ ^ . p [ - U g > u ^ r ^ 4 r [ i v ^ u ^ - v . ) ] {5k) 

and D(w) i s an a r b i t r a r y periodic function in W, 
with period Iw"*.'. 
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Now i f we compare the two ways of w r i t i n g 
the crossing matrix, equations (10) and (2U), 
we see that Martin and McGlinn*s c = ± J 

2n+l 
which i s t h e i r condition f o r the existence of 
special solutions, i s equivalent to the require­
ment here that n should be i n t e g r a l * I f we 
consider equation (5U) f o r i n t e g r a l n, we see 
that Uo(w) reduces t o a r a t i o n a l function of 
B(w), i n that 

.k « m [B(w)+n-(2k-l)][B(W)-n+(2k-l)] (55) k = 1 [B(w)+n-2k] [B(w)-n+2k] 

where m ss S f o r n = 2x 
m s l i z l f o r n = 2x + 1 2 

and Uo(w) = 1 when n = Oo 

Thus (2bt\UJ.Uiu- has found p a r t i c u l a r l y 
simple solutions i n ju s t those cases where Martin 
and McGlinn f i n d them alsoo 

To s a t i s f y the a n a l y t i c i t y properties of Sjiz), 
D(z) must have zeros at the poles of Uo(z)o D(z) 
can also have poles at the zeros of l]t>(z) on the 
physical sheet, as well as unlimited "extra zeros". 
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D(z) may then be represented i n the form 

- b ^56) 

Clearly t h i s i s normalised to D as q —? o, so 
as to comply with the threshold conditlono 

For a l l non integral values of n, we see that 
we have an i n f i n i t e product. We must therefore put 
i n a factor to ensure convergence, thereby allowing 
extra arbitraryness to the solutions. 

QjiVvMs^Wur states that the simplest cases 
are the cases of n =<70, i.eo c = o, where we have 
the crossing matrix of equation (12), which case 
is discussed there, and the cases n s o and n = 1, 
i.eo c e «1 and c a"^. These have already been 
discussed. We s h a l l come to them again l a t e r , 
when we t r y to b u i l d up the whole S matrix, using 
both u n i t a r i t y and crossingo (See i n particular 
equation {'93')), which duplicates equation (26) ). 

i2jD\rvUllrvKfi/ does not attempt to discuss the 
case of n = 1 or c s ~lo This corresponds to the 
scattering of K mesons by spinless nucleons, and 
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since n i s not in t e g r a l t h i s i s not one of the 
simple caseso 

He next goes on to three dimensional and four 
dimensional cases, which do not concern uso We 
turn our attention rather to Cunningham and his 
attempts^®^ to impose the Huang Low bookstrap 
c r i t e r i ^ n o In another paper^^\ he comes to the 
conclusion that., the degree of arbitrariness 
inherent i n the model prevents any great r e s t r i c ­
t i o n on the form of the solution by such a 
c r i t e r i o n , at any rate i n the case where N^^l^, 
where N i s given by 

c = I^N (57) 
N(n+1)-1 

where c i s the crossing matrix parametero Now 
i f N = 2 and n i s i n t e g r a l , we have again the 
crossing matrix of equation (2k)9 corresponding 
to Su(2) symmetry© However, i f N a 2 the 
arbitrariness i s f a r l e s s o He shows the 
r e s t r i c t i o n t o Su(2) symmetry as followso 
For z 1, following Huang and Low, write 

SAA ~- (28) 

^ U ) = e (58 ) 

"^St^Tv^ (59) 



and 

2i+o 

^ e ^ ' (60) 

where S^(z), 0 ( z ) , 'j'(z) and (^(z) are r e a l . 
These equations represent v a l i d expressions. 

Then ^ , ^ 

AS,w -- A^L^^ --̂ 4-1-) (62) 

where M ( z ) , A*6(z), A 
L L ( Z ) are defined by analogy 

t o equation (38)o He now discusses the various 
possible values which are obtainable f o r 
considering separately the three cases 
/ ^ o ^ ^ -hcji-Av[^ and A((> =1^^,which he f i r s t 
proves are the only possible valueso His 
analysis indicates that only f o r values of the 
parameter c corresponding to an i n t e r n a l Su( 2) 
symmetry are solutions possibleo This indicates 
that the model i s not applicable t o , say, KN 
scattering; t h i s was i m p l i c i t l y suggested by 
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CHAPTER 

I n our calculation, we employ the substitution 
suggested by Meshcheryakov,^^^ which i s to write 

vJ T\" SVWT'T . (25) 

This has been employed previously to f a c i l i t a t e 
the evaluation of the Martin-McC^liim solutions. 
I t i s similar to the sub s t i t u t i o n used by 
Rothleltner and Curulngham. 

We now give the S matrix elements, e x p l i c i t l y , 
two labels i , J, to indicate the presence of o j ^ 
diagonal ( i n e l a s t i c ) elements. Then, i n the 
variable w, equation (7) reduces to the following 
r e s t r i c t i o n s : 

a. Si3 (w) ^ Sid (1-w) 
b. S i j (w) i s a meromorphic function i n (63) 

the complex w plane. 

u:iUi3rt_ C i j i s the matrix of equation (10), and S i i ( w ) , 
Sj3(w) describe reactions involving the same meson. 

and e. Sii(w) has a pole at the o r i g i n , with 
residue — \ { . 

Clearly, i f these conditions allow one solution, 
S i j ( w ) , then there i s a whole class of solutions. 
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which may be w r i t t e n 

(not summing over 1,3) 

where ^ x, ^ 

Our f i r s t step i s to prove the following 
iiniqueness theorem, which I s fundamental to a l l 
succeeding work. 
Theorem (65) 

I f Sij(w) ( l , d = 2,3) s a t i s f y the 
u n i t a r i t y equation, equation (63c), and the single 
i n e l a s t i c amplitude S2^^^^ (single since S^^^v) r 
S22(w)^due to time reversal invariance) i s odd or 
even i n w (the reason for t h i s r e s t r i c t i o n i s 
given below) then we can determine S 2 3(w) and 
S^^{-w) uniquely i n terms of S 2 2 ( w ) , except insofar 
as we allow possible arbitrariness by the 
introduction of ^[T.) and ̂ L ^ ) , 
Proof. 

Equation (63c) reduces to the four equations 

a. ^ivMSvAv-u) V Sî \,v-v») ^ \ 
b. St^,Vvi^S^-^(ji'U^ + SLS<o:5.")Sî (̂ \-̂ ^̂  ̂  O (66) 
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c. S^2(w) S 2 2 ( l - w ) + S^3(w) S^gd-w) o 0 

d. S ^ 2 ( ^ ) S23(l-w) + S33(w) S33(l-w) ? 1 

Then equations ( 6 6 a ) , ( 6 6 d ) y i e l d us 

8 2 2 ( ^ ) 8 2 2 ( 1 - ^ ) = S^^iv) S^3(i-w), which 
means that we may write 

8 3 3(w) >F Afwl S 2 2(w) ( 6 7 ) 

where A(w) i s an a r b i t r a r y function of w. 
I f we now substitute t h i s expression f o r 8 3 3(w) 

i n t o equation ( 6 6 b ) we get 

S 2 2(w) S 2 3(l-w) + S 2 3(w) S 2 2 ( l - w ) A(l-w) = 0. ( 6 8 ) 

A w) 
Mult i p l y by S 2 3(w) ^ 

S 2 2(w) S 2 3(w) S 2 3 ( l - w ) + 823(w) S 2 2 ( l - w ) A Q - W ) O 0 
and substitute f o r 8 2 3(w) S 2 3 ( l - w ) from ( 6 6 a ) , 

using 
S 2 3(w) = S32(w)-, Kiu^ 

r 1 2 
S 2 2 ( w ) [ l - S 2 2 ( w ) 822(l-w) + 8 2 3(w) 8 2 2 ( 1 - ^ ) A O - W ) - 0 

so 
2 2 r ,̂ T 

S23(w) o S22<w) 1-S22(w) S22(l-w) AM , (69) 
^ J A(l-w) 
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Thus we have obtained solutions, equations (67), 
(69) f o r S^^Cw) and Sg^Cw) i n terms of SggCw). We 
must now prove t h e i r uniqubness. We see that 
imposition of the requirement that Sg^Cw) should he 
odd or even i n w fixes. 

A(w) uniquely up to an a r b i t r a r y D(T). For 
A ( l ^ ) 
suppose that Ao(w) i s one such solution, then 

Ao(T-w) 
the most general solution i s 

Ao(w) B(w) B(-w) 
XSTT-w) bTT-w) BtTPw) (70) 

where B(w) = B(2+w)o Now, since B(w) i s periodic 
i n w, i t must be possible to write i t as a 
Fourier series, 

B(w) = Z Sluvwir^J (71) 

But "L^suTvO (25). So t h i s expression (71) 
i s merely a power series i n 2. Thus, (71) j u s t 
introduces a m u l t i p l i c a t i v e factor of D(T) type. 
We therefore have unique expressions for S2^(w) = 
S^2^yi), 8in6. S^2(w), up to the arbitraryness 
allowed, as required. 
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We note that the theorem holds f o r any-
such 2x2 array of four S matrix elements. 

Our task now i s to f i n d the simplest 
possible S matrix elements Si3(w); i n other 
words, to f i n d the solutions with the least 
number of poles. To do t h i s , we follow 
Meshcheryakov's suggestion and write the S 
matrix elemients as formal power series i n 
1 , I n other words, 
w 

where the subscript OL labels any S matrix 
element. Meshcheryakov's work ignores o f f 
diagonal ( i n e l a s t i c ) elements. I n other words, 
we are considering equation (7), and not equation 
(63), and we may revert to l a b e l l i n g our S 
matrix elements with a single s u f f i x . Then i f 
we consider equation (7c), we f i n d that i t has 
an i d e n t i c a l form i n terms of the variable w, i.e. 

where the labels 0/ and ^ refer to S matrix 
elements adjacent on the diagonal, and 
describing d i f f e r e n t isospin channels belonging 



to the same ( e l a s t i c ) process. 
Using (72), t h i s becomes 

^ ilk) 

Meshcheryakov's u n i t a r i t y equation i s clearly 

and involves one S matrix element only. 
We see that 

so that (75) becomes 

and on equating coefficients of 1, we obtain 
w 

C^^ - \ S o o?o - - ^ 
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according as we choose t. \ 

etc. 

i . e . 

(76) 

Equations ilk)9 (76) are an i n f i n i t e set of 
coupled equations. The system may be solved by 
a f i n i t e number of steps, since the f i r s t N 
c o e f f i c i e n t s of the polynomial are l i n e a r l y 
independent, where N i s the number of poles 
of S^(w). And when we have done so, we shall 
have connected any pair of adjacent S matrix 
elements which describe d i f f e r e n t isospin 
channels f o r the same process. At f i r s t sight, 
t h i s appears not to give us any connection 
between the alternate adjacent p a i r s , those 
describing processes going via the same t o t a l 
isospin state, but involving d i f f e r e n t mesons. 
We note, however, that any element of the diagOnar: 
l i s e d S matrix can be thought of as a member of 
either of such types of pairs: we hope to obtain 
a general expression, such as the one sought by 
Meshcheryakov, which gives us a recipe f o r a l l 



31 

the pairs of elements usually regarded as 
linked by crossing, and thus f o r a l l the 
elements of the e l a s t i c 8 matrix. We shall 
then have the complete, diagonalised, S 
matrix. Clearly t h i s w i l l be of i n f i n i t e 
dimension, since the set of equations never 
terminates, there being no a pKofv reason why 
any S matrix element Sii(w) on the diagonal 
should be zero. 

We must consider which elements of our S 
matrix describe which process. Let us s t a r t 
w i t h the element S „ (w), and take i t to be the 
element which describes e l a s t i c scattering of 
the meson, since the l d meson has the lowest 
isospin, and we would therefore expect to s t a r t 
w i t h i t . But we must assign an isospin value 
to S„(w). I n general, e l a s t i c scattering of a 
meson may go via one of two isospin channels, 
which are I + where I i s the isospin of the 
pa r t i c u l a r meson. Thus each such el a s t i c 
process has two 8 matrix elements associated 
w i t h i t , one f o r each isospin value, and, as 
mentioned above, they are connected by crossing. 



However, the \^ meson has isospin|). Thus 
the I-^channel i s not physicallvjattainable. 
Nevertheless, i t i s convenient to assign an S 
matrix element to t h i s non physical process, to 
b r i n g the iJ meson i n t o l i n e with the other 
mesons. Thus we choose S ,̂  (w) to describe 
e l a s t i c scattering of the tjs meson i n the 
I a c h a n n e l . 

Next we choose S22(w) to be the element 
which describes the e l a s t i c scattering of the 
meson via the other channel, i.e. the 1 

channel. Clearly S (w) and S22(w) constitute 
one of the aforementioned pairs of elements, 
generally regarded as connected by crossing, 
which were considered by Meshcheryakov. 

The next such pair i s S^^{v) and S^(w), 
which describe the e l a s t i c scattering of the ? 
meson, via the I = t , and I = ^ channels 
respectively. And so on. 

(q) 
Now i n a paper with Fairlie^-^ ', we showed 

that i t was possible to connect such pairs of 
elements without e x p l i c i t use of crossing. We 
do t h i s by postulating elements at e.g. S^2(^) 
l i n k i n g such elements with the adjacent pair of 
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diagonal elements, using equation (66) and 
expanding a l l our elements i n the form of 
equation (72). We then "switch o f f " the 
coupling, i . e . l e t the o f f diagonal elements 
go to zero. We f i n d that t h i s method i s a 
way of rederiving the Martin-McGlinn solutions 
(26). 

When we have obtained a form f o r the 
e l a s t i c S matrix, we shall turn our attention 
to the task of f i n d i n g i n e l a s t i c elements also: 
t h e i r presence w i l l , of course, a f f e c t the 
values of the e l a s t i c elements^Ivs is AOML luv CIVOL^ . 

Consider any four elements of the S matrix, 
arranged i n a 2 x 2 array on the diagonal. 
Label them with the suffices p, q, where we take 
q = p + 1. We wish to f i n d some connection 
between them, using u i n t a r i t y . 

F i r s t , consider Spq(w) and Sqp(w). They 
describe an i n e l a s t i c process and the reverse 
process respectively. 
So, c l e a r l y , 8pq(w) = Sqp(w)^ (77) 
by time reversal invariance. 



Take, as an example, p ° 2, q s 3* so that 
the elements i n equation (77) describe i n e l a s t i c 
scattering of an i> meson and of a '•i^ meson 
respectively. 
Now consider the process 

HN wN (78) 
I t i s cl e a r l y connected with 

»N —*>wN (79) 
by a "crossing matrix" whose value i s + 1 , which 
implies that S2^M i s odd or even i n w. We see 
that t h i s w i l l hold f o r any Spq(w) by a similar 
argument, and we take i t to apply, i n p a r t i c u l a r , 
to elements such as S^2('') ^^i^M t which we 
wish to make use of. 

Then, i f we expand the S matrix elements i n 
formal power series i n 1, as i n equation (72), 

w 
and writ e 

vo 

^ (80) 



we see that the evenness or oddness of 

Spq(w) requires that 
either > wv—o,^,^ 

v.--^^.,^ _ _ . (81) 

This i s the reason f o r the r e s t r i c t i o n on 
S2j(w) i n the theorem (65). I t i s clear that 
equation ( 8 l ) produces a considerable s i m p l i f i c a t i o n 
i n the u n i t a r i t y equations which we have to solve, 
(66). 

Let us consider the case v/here the o f f 
diagonal elements are odd i n w. 

A convenient representation of the three S 
matrix elements i s therv 

a. Spp(w) = f(w) gl(w) 
b. Spq(w) •= Sqp(w) s co g(w) (82) 

w 
c. Sqq(w) = h(w) .g(w) 
where co i s a constant, f(w) and h(w) are functions 
of w, and g(w) i s an even function of w. We s h a l l 
write f ( w ) , g(w) and h(w) respectively as powere 
series i n 1. We note that equation (82) constitutes 

w 
a d i f f e r e n t s u b s t i t u t i o n to equation (80). The 
equation (66b) becomes 



i t . 

(83) 

Equating coe f f i c i e n t s of l i k e powers of 1, we 
w 

f i n d that the terminating solution f o r f(w) 
and h(w) i s given by 
f(w) s 1_ 1+ao 

*" w 
h(w) 1 + ao 

w 
(8i;) 

Thus equation (82) becomes 

a. Spp(w) » ( 1 - 1+ao) g(w) 
w 

13. Spq(w) = Sqp(w) = co g(w) 

c. Sqq(w) = ( l + ao) g(w) 
w 

where we must s t i l l evaluate the even function 
g(w) by means of the remaining u n i t a r i t y 
equations (66). 

Equation (66c) becomes 

(85) 

(1 + ao) (1+ ao) + CO 
w 1-w w(l-w 

g(w) g(l-w) - 1. (86) 

or 
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(87) + 4 l , 1 g(w) g(i-w) s 1 
\ w(l-w) ] 

where we have w r i t t e n â  = ao + ao + c§. (88) 
Equation (87) yields 

g(w) s 1 + £1 + 3aJ- -2a, + (89) 
2ŵ  

8w"-

when we solve i n the usual way by equating 
c o e f f i c i e n t s . 

Therefore our expressions f o r the S matrix 
elements are given by equation (85)» with g(w) 
given by equation (89). Next we must consider 
what happens when we switch o f f the coupling 
provided by Spq(w), or i n other words, l e t co 
go to zero. 

F i r s t , however, consider the expressions 
we have obtained. W i l l they y i e l d us, as Spp(w) 
and Sqq(w), elements vdiich can be connected, 
consistently, by the crossing matrix (lO) with 
an appropriate value f o r the parameter c? 
Let us "try to connect the expressions of equation 
(85a), (85c) using such a crossing matrix. 
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Then 

1 - V4 

V S7 (90) 

where we have used the fac t that g(w) = g(-w). 
The solution of equation (90) i s 

c = - 1 
2ao +1 (91) 

Thus Spp(w) and Sqq(w) are linked together by 
a crossing matrix i d e n t i c a l to that of equation 
(2I4.), i f we i d e n t i f y n = ao. They represent 
therefore a pair of elements such as S^j and 

or Ŝ 3 and S^o 
Let us see what the expressions (83a), 

(85c) reduce to when we set C q = o . I n t h i s 
case, â  = ao(l+ao) ^ (92) 
and (89) becomes 
g(w) s 1 + ao(l+ao) + 3ao'^(l+ao) - 2ao(H-ao) + 

"2w2 8#E 
(93) 

so t h a t , 

Spp( 



2.̂  

X ( 1 + ao(l+ao) + 3ao^(l+ao)^ - 2ao(l+ao) + ^ J 
2-^ 8 ^ 

and Sqq(w) = S^o(w) = ( l + ^ ) x (9U) 

X tl + ao(l+ao) + 3ao^(l+ao)^ - 2ao(l+ao) ^ 
2ŵ  8w«̂  

where we have introduced the notation S (w) 
Ml+ao) 

and S__(w) i n place of Spp(w) and Sqq(w) to bring 
out the f a c t that the second expression can be 
obtained from the f i r s t by replacing - (l+ao) by ao. 

We note that the crossing relationship pointed 
out above holds s t i l l , as required, f o r the two 
expressions of equation (SU). 

I t appears, therefore^ that the case of 
Spq(w) odd i n w furnishes us with the desired 
pairs of elements, those usually regarded as 
connected by crossing. We then obtain the 
following r e s u l t f o r the S matrix, when we set 
ao = o, 1, 2 i n (9U); 

T j r VJN LiNi Vc 

3 



f uiN uiN vcc^ i 

(.s) 

7 - ̂ z-

and so on: we have obtained i d e n t i c a l results 
to those of Martin and McGlinn^^^ (26). As 
before, we note the remarkable way i n which the 
S matrix elements reduce to r a t i o s of f i n i t e 
polynomials i n w. Notable, also, i s the very 
close l i n k which has been thrown up between 
crossing and u n i t a r i t y . For at no stage i n the 
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above analysis liave we e x p l i c i t y made use of 
crossing to obtain a r e s u l t : we laave merely 
i d e n t i f i e d the two S matrix elements obtained 
f o r the case where S^2^yf) i s odd (9U) with S 
matrix elements linked by the usual two channel 
s t a t i c model crossing matrix {2k), And we have 
considered, of course, only the l i m i t i n g case 
where a l l the i n e l a s t i c channels ; are switched 
o f f , which has been treated before. 



CHAPTER 3. 

We wish now to consider how we might incorporate 
the I n e l a s t i c channels i n t o o\ir scheme. We shall 
c l e a r l y use the information which has already been 
thrown up, to aid i n f i n d i n g our solutiono 

The f i r s t , and most obvious method, i s as i n d i ­
cated by equation. (82), We know from our theorem, (65) 
that i t i s possible to obtain the other three ele­
ments of any 2 x 2 array of the 8 matrix i n terms 
of the f i r s t o 80, i f we consider the " u n i t a r i t y 
boxes" along the diagonal of the S matrix to l i e 
thus:" 

^5 

(96) 
S 

etc, we may obtain 823(w) = S^2^v\ 3̂̂ ^̂ ^ 
terms of S2(w). The above, i n e l a s t i c , analysis 



indicates that the elements such as Sg^Cw) and 
S|̂ (̂w) w i l l be even i n w, so we w i l l assume t h i s 
i s the casee We therefore work out the coefficients 

1 
of the various powers of w i n the power series ex­
pansions of Sg^Cw) and S^(w) using equation (66). 

We then get S^(w) from S.̂ (w) hy crossing, using 
the appropriate value f o r the parameter of the 
crossing matrix. Next we again use equation (66), 
to get S^^(w) = S^^(w) and S^(w) i n terms of S^(w), 
and hence i n terms of S2(w). This can, i n principle, 
t e continued to give a l l the coeffiQients of a l l the 
elements of the S matriXo 

The d e t a i l s of the calcxzlation are as follows. 
We use the expressions (82) f o r the S matrix elements 
of the 2 x 2 " u n i t a r i t y "box" array. Then the 
equations (66) become 

(11) 

D 



The f i r s t t h i n g to notice i s that equations (971)) > 

(97c) are essentially the same equation. This i s 
due to the symmetric nature of the S matrix which 
makes S (w) = ̂  (w). No information, then, i s 
contained i n equation (97c) that i s not present i n 
equation (971)) and we need therefore only consider 
one of them, say equation (97h), Following 
Meshcheryakov once again, we equate coefficients 
of powers of ~ „ Prom equation (97"b), co e f f i c i e n t 
of unity, WIS:;.get 

fogo + goho = o 
so i f go ̂  o, f o =-hOo 

Coefficient of unity of the other two equations 
y i e l d s 

2 2 fo"^ + go*̂  = 1 
2 2 

ho*̂  + go*̂  = 1 
which f i t s . the ahove r e s i i l t , and also gives a 



value for go. 

We note that equations (97a), (97d) y i e l d no 

equation for the c o e f f i c i e n t of ^, But (971)) yields 

from which hg = f, - f, 

so f ^ . 

(97a) coefficient of gives a value for gg; 

iflp - - f ̂  ' 
and then (97d) c o e f f i c i e n t of -^^gives us h^: 

which w@ could instead have obtained from (97b) 
c o e f f i c i e n t of ^2 , I n fact, the three equations 
(97a), (97b), (97d) are probably most amenable to 
solution by taking i n turn coefficients of yĵ -̂  
of (97a), then of (97d), then coefficient of ~i;:v» 

of (97b), then coefficient of ~ ^ ^ T - of (97a) 
then of (97d), and so on. For we see that the co­
e f f i c i e n t s of odd powers of ^ of equations (97a), 
(97d) y i e l d no new information, and neither do the 
c o e f f i c i e n t s of even powers of ^ of equation (97b). 
We tabulate the f i r s t few terms of h(w) and g(w) 
below, i n terms of f(w). 

They are: 
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ho = - f o 

(98) 



^ 1 . 

For i n t e r e s t , the f i r s t few terms of g(w) and h(w) 
i n terms of f ( w ) , when g(w) = -g:(rw), are given i n 
an appendixo 
Next we must consider the connection "between successive 
" T i n i t a r i t y "boxes". Clearly the Sqq(w) element of 
one i s connected with the Spp(w) element of the next 
by crossing. I f wemake the i d e n t i f i c a t i o n , say 

TT ^ \ (99) 

where Spp(w) i s the f i r s t element of the next 
" u n i t a r i t y "box" succeeding the one which we have heen 
discussing ( i n other words p = U), then clearly 

h(-w)'\ . ( c 1-c ) r h ( w ) \ 
Vf^(-w)j " ( 1+c -c ) V f ^ ( w ) ) (100) 

using the usual crossing matrix, equation (9)> so 
f^(w) = h(-w) - ch(w) 

1 - c 
and c l e a r l y 

(101) 



4^. 

Now I d e n t i f y i n g 

(102) 

Ss^^\ - ^^^^ - I 
we may do exactly the same calculation as that 

leading up to equation (98), giving h'^(w) and g^(w) 
i n terms of f^(w)o Which we have i n terms of h(w) 
equation (101), which we know, by equation (98) i n 
terms of f(w)o This gives us, then, values for the 
terms of f^(w), h^(w) and g'*"(w) i n terms of f(w) as 
followss 

(103) 
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^ ' L -

^JM , v ^ - 0 , V , L 



So 

inhere we have used the fact that the crossing matrix 
between S^(w) and S^(w) has parameter C = 

Clearly we can now cross h^(w) ~ S^(w) in t o 
Sg(w), which we may la b e l f^^(w), using a crossing 
matrix with parameter c = . This process CGUI be 
continued, to give us a l l terms i n the power series 
expansion of every matrix element^ 

i n terms of t h e ^ ^ s , or coe f f i c i e n t s of the matrix 
element 822(^)0 

We do not continue t h i s process down to S^^(w), 
preferring to work only i n coeff i c i e n t s of elements 
describing physical processes. 



As an a l t e r n a t i v e , i t i s possible to obtain the 
i n e l a s t i c elements i n a rather neater fashion 
than that just indicated, i n that we obtain a 
single expression which can be used f o r a l l the 
elementso Clearly, incorporation of o f f 
diagonal elements modifies the diagonal ones, 
and t h i s shows up i n our treatment; i t also 
brings out the inter e s t i n g fact that i f we allow 
some of the elements Spq(w) (p r q - 1) to be 
non zero, then a l l such elements w i l l become non 
zero; the i n e l a s t i c i t i e s cannot be a r b i t r a r i l y 
assignedo The method we use is a perturbation 
treatment; even with our simp l i f i c a t i o n s we have 
not been able to obtain a closed solutiouo 

F i r s t we make a s i g n i f i c a n t change i n our 
notationo For elements S-^Lui), we 
write instead 

S- L'̂ Lw-*̂ , oa'̂  (105) 
where the subscripts j refer respectively to the 
channels with t o t a l isospin n + 1 : the reason 
f o r labeling the element by r\̂<r̂.'«̂v) rather than 
by v^. w i l l become apparent l a t e r . For the o f f 
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diagonal elements ScjL*̂ ") we also adopt a new 
notation: we wr i t e the element describing the 
process 

v\-*-N —=>. Lw^O +-N (106) 

as S (̂w-wv J vi*^ (107) 

t h i s process going, of course, solely v i a the 
v\+ 1 channel. The matrix elements s t i l l , of 
course, s a t i s f y ( 7 ) . 

Following Wanders^^) and Martin and McGlinn^^), 
we rewrite the diagonal elements as 

« (108) 

where A and B are antisymmetric functions of w. 
This automatically s a t i s f i e s the crossing require­
ment with the crossing matrix of (21+). Note also 
that i f we replace n by -(n + 1), we interchange 
S- and S+, with Co(^ * thvLS crossing i s 
s t i l l s a t i s f i e d . Hence the reason f o r l a b e l l i n g 
with n(n + 1 ) rather than with n. 

The u n i t a r i t y equations are now 

+ SV^'^^^)S^,^+^,^-ui) ^ \ . (109) 



SI 

V / 
and A(n(n+1), w) (B(p(n + 1), w) + n) 
S (n + 1, 1-w) + S(n + 1,w) A ( ( n + 1) (HO) 
(n + 2), 1-w) (B ((n + l ) ( n + 2), 1-w]-n-2) 

r 0 
and we impose the r e s t r i c t i o n 

S(n + 1, w) = i S t ^ ( n + I),w3 , (111) 
which ensures the compatibility of (109) and 
(110) when we replace A by - L*v*^V The three 
equations (109), (HO), (111) come d i r e c t l y from 
(63c) and are the basic equations of this sechion, 
together with the symmetry requirements on A and 
Bo We know the exact solution when 
S(n + 1,w) = 0 : i t i s 

Bo = w (112) 
where we introduce the subscript to indicate that 
t h i s i s the value at s(n + 1,w) = Oo We see that 
Bo has no e x p l i c i t dependence on no A© i s 
obtained from the recurrence r e l a t i o n 
Aej(n(n + l),w) Ao (^(n + l ) ( n + 2),w) r 

^ o (^^3) 
w2 - (n + 1)2 
with A6'(o) = ^ (IIU) 
This is merely a repeat of Martin and McGlinn's 
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work i n a s l i g h t l y condensed form. We know 
by analogy with equation (93) Ao(n(n + l),w) 

i n power series form: i t i s 
Ao ( n ( n + l),w) = ( - 1 ) + 1) 1 f i + + 0 + (115) 

+ 3n2(n + 1)^ - 2n(n + 1) + 
8w'' 

where the dependence on n(n + 1) i s e x p l i c i t , 

which i t i s not i n the form (113)o 
We now switch on the coupling of S(n,w).. . 

Let i t be small, and take i t proportional to an 
i n e l a s t i c i t y parameters. Then to f i r s t order 
i n €,, equation (110) gives us 

S(n,w) = e P(n2) 
w2 - n^ 

(116). 

Now using equation (109), wr i t t e n both as above, 
and f o r n -(n + 1) , and dividing the two 
forms, we have 

[B ( j i ( n + l).w) + nlt^CnCn + l ) . l - w ) + n1 
[B (^n(n + l),w) - n - l ] [ B ( ^ ( n + l ) , l - w ) -n-l) 

1 - S(n + i;,w) S(n + 1,1-w) 
1 - S(n, w) S(n, 1-w) 

since S(-n, w) = S(n, w). Then i f we write 

(117) 



B ( n(n + 1), w) = w + ^B^ (n(n + 1)* w] (118) 
noting that B| {ja{n + 1), ŵ  i s antisymmetric i n 
w, (117) yields us 

F(n2) = ^^-li^' (119) 
while B-i (^n(n + 1), w) = w' (w2- n(n + 1) - 1^ 

(w2 - n2)(w2 - (n + 1)2) 

Putting t h i s i n t o ( 109) , we get the equation 

A-jCn(n+l),w) + Ai (^n(n+l),1-w) = 

(120) 

- BLM - Bi(l-w) 
w + n 1-w+n (121) 

- ( n + l ) 2 - l 
|^wMn*l)i^) (^(l-w-)2.(n+l)2j 

where A-i i s the correction to Ao to order 

A (ji(n+l),w) = AO (^n(n+l),w^[l + Ai(^n(n+1 ),w)] (122) 

and cl e a r l y i s symmetric in Wo 
Now the t h i r d term on the r i g h t of equation (121) 

may be s p l i t i n t o 2w+1 + 2(l-w) + 1 
U(w2-(n+l)2>^ (^(l-w)2 - (n+l ) 2 ) 

Then the solution may be expressed as 



S t 

(we derive t h i s solution i n an appendix), where 
S(w) and a(w) are the parts of 

- B-, (w) ^ 2w + 1 which are even 
w + n (w2 _ ( n + l ) 2 ) 

and odd respectively i n Wo 
We now have solutions f o r S (n(n+l),w) and 

S(n+1,w) up to order C I n p r i n c i p l e , t h i s 
perturbative type of solution can be extended to 
higher orders ot d e One feature of the solution, 
however, i s already clear; t h i s i s that the 
r e l a t i v e magnitudes of the couplings of the allowed 
i n e l a s t i c processes are not a r b i t r a r i l y assignable, 
but rather are determined by equations (116), (119)o 
This i s a feature which i s ignored i n the usual 
treatment of the coupled channel problem, i n which 
the p o t e n t i a l l y i n f i n i t e set of two body coupled 
scattering processes is a r b i t r a r i l y truncated. 
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Appendix 1 . 

The case of g(w) = - g(-w). 

h-L = - ( 1 + f ^ ) 

h2 = f 2 

h3 = ( 2 f 2 - f 1 - f i ^ ) " - " - ( - 2 f ^ + 3 f3 - f2 + 3 f 3 f-^ -

2 f 2 f i + - f g f i ^ - 2 f 3 f 2 + f j f i ^ ) 

h^ = ( 2 f 2 - f ^ - f ^ ? ) - l ( 2 f ^ f 2 + f ^ f i - f ^ f i ^ - U f 3 f 2 

t^f^ - K ^ 1 * ^2^ ^1 - ^ 

-1 f 3 -

•1 ; 
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Appendix 2. 
Derivation of equation (123), and i t s solution. 

Our problem i s to f i n d the solution of the equation 
s(w) + s(l-w) s f(w) + f ( l - w ) (Al) 
where s(w) i s an even function of w, and f(w) i s 
a r b i t r a r y . Clearly, i t i s s u f f i c i e n t to consider 
the case where f(w) i s odd, f o r an a r b i t r a r y f(w) 
may be s p l i t i n t o odd and even parts, and the even 
part taken over to the l e f t . 

I f , now, S(k) and P(k) are the Fourter 

transforms of s(w) and f(w) respectively, then 
(Al) yields 
S(k) (1 + e"^^^ ) = P(k) (1 - e-^^''), (A2) 
the d i f f e r e n t signs on l e f t and r i g h t being, 
c l e a r l y , due to the evenness and oddness of s(w) 
and f(w) respectively. The solution of t h i s 
equation i s then immediately 

s(w) = atL *4^€^d-?it.<^ -[vpi (A3) 
-6X> -00 

This equation may be re w r i t t e n to show more 
c l e a r l y the evenness of s(w): 



We must B t i l l add the general solution of 
the homogeneous equation for s(w): th i s must be 
both symmetric ; about the origin and antisymmetric 
about the point w s ^, so that we may write 

c£> 

^l^W Z Cc!S.Û v̂)Trv4 (A5) 

where the a^ are arbitrary, as the solution. 
The solution of equation (122) may now be 

evaluated e x p l i c i t y . Our solution i s to be a 
function of n through the combination n(n+l) 
only, so we consider the sum of (122) with the 
same equation with n replaced by -(n+l). (Clearly 
the difference i s automatically s a t i s f i e d by our 
solution of (117) ) . Then the function f(w) of 
equation (Al) i s 

f(w) s i / 1 1 ^\, i / 1 : 1 
^y(w+n)2 (w-n)2j ^(w-n-1)^ (w+n+l)""; 

(A6) 
+ 1 f _1_ ^ 1 \ . n+l / 1 . 1 \ 
U(2n+1) Vw+n w-n j U( 2n+l) V^w+n+l w-n-1 j 

I f we make use of the identity 

l t a n ^ = X - 2 V - ' ^ *2|2i'^P. 
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+ ( - D ^ - ' ^ i ^ i tan ̂  (A7) 

we can peform the integrals i n equation (A3) for 

the f i r s t two brackets of (A6), obtaining the 

f i n i t e sum 

\ 
- F (^1^)2 + T i ^ ) * i (-if 

(A8) 

n being taken as integral. 

A similar t r i c k gives the integral for the 
l a s t two brackets as an i n f i n i t e series of poles, 
which may be rearranged as the derivative of the 
logarithm of a product of gamma functions. 
Alternatively, we can use 

AO (n(n+l), w) AO (n(n+l), 1-W) (w+n) (l-w+n) = 1 
(A9) 

whose logaritum we may differentiate to give 

d/ log Ao (w) + d_ log AO (l-w) + _1_ + 1 = o 
dn dn w+n l-w+n 

(AlO) 



41 

Now d_ log Ao (w) i s an even function of w, 
dn 

so d_ log Ao (w) + n i s the solution of (Al) 

with f(w) = - w ;. ° - 1 -1_ + -3 - 1 ( A l l ) 
2 2 2 w+n w-n w -n y. J 

Thus the solution for the two terms i n (A6) may 
instead be written as 

i f Z2L. . _n+l d \ log AO (w) 
«»-\^n+ldn 2n+l d(n+l)) 

+ 1 i f n^ (n+1)^ \ 

I f we c o l l e c t together the various equations, we 
get as our solution to equation (123), 

A.(n(n+l),w) - -1 ^ fnd _ (n+l) d \ 
UC2n+l) V^dn dtn+l)J 

log Ao (n(n+l), w) 

+ 1 f 1 1 \ 
2(2n+l) " wi^-(n+l)2 
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