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ABSTRACT

The two channel static model has been
found to be exactly and simply soluble for
a range of values of the crossing matrix
parameter. This thesié rederives the known
elastic solutions and obtains formal power
series solutions for the inelastic elements.
An unexpected connection between crossing
and unitarity is discovered, and finally,
equations are derived which indicate that
if the two channel model is extended to a
multichannel model incorporating inelasti- |
city , then there will be an infinity of

channels,




INTRODUCTION.

This thesis deals with the problem of deter-
mining the S matrix which describes meson nucleon
scattering processeso

Chapter one commences with a brief outline
of the problem, followed by a discussion of the
work of previous authors, all of them concerned
wholly with elastic processes. It is shown how
the well known solutions for the diagonal elements
are obtained.

In chapter two, still concerned with elastic
processes, we rederive these solutions, and in the
process indicate that isotopic spin invariance and
unitarity are more closely linked than is usually
appreciated.

Chapter three investigates the more challenging
problem of the extension to inelastic processes. Off
diagonal elements are not obtained in closed form,
but only as formal power serieso.

We work in the multichannel static model, and

it turns out that if we allow inelastic coupling




between different channels involving specific
mesons of given isospin, then automatically such
coupling appears in every channel: we cannot assign
arbitrarily the relative amounts of coupling

between different channels.




CHAPTER I,

It is often found in strong interaction calcu-
lations that in any formulation of a problem in
which it is easy to incorporate unitarity requirements,
it is difficult to incorporate crossing symmetry, and
vice versa. For example, partial wave dispersion
relations incorporate unitarity without difficulty,
but it is very difficult to put in crossing, whereas
in the Mandelstam representation crossing symmetry
is easily satisfied, while unitarity cannot be satis-
" fied without great difficulty. In this thesis, we
shall be making use both of crossing and of unitarity,
in a very simple model, the static model; and indeed
we shall give one example where results obtainable
using crossing can alternatively be found by a calcu-
lation using unitarity. In that case, we shall
rederive the known exact solutions for the elastic
scattering of a meson with isotopic spin J off a
nucleon, without any reference to the crossing matrix
appropriate to two channel unitarity in Su(2). The
work is concerned with the one mesm-approximation of
the Low equations1 t0 9) 7The mathematical formulation
is as follows: we let z be the energy of the meson

and its momentum be q; ’
then q= (1) (1)

R
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In the complex =z plane, the branch cuts of q are
chosen to run from ~ to -1 and from 1 to e , and
q is defined to be real and positive Jjust above the
cut (1, )o From this definition, we see that on
the first Riemann sheet
q*k?_\ = -ql=*) (2)
\m q > O

so that iq is a real analytic function in the
cut 7 planeo Now we define the scattering
ampllitude .\;(1) in the channel 9, where ol refers

to the isotopic spin (or spin) in that channel to be

W)

@) = smdre (3)
where S‘,&L) is the phase shift.
Now we know that the S matrix satisfies certain
dispersion relations, which represent a system of
coupled non linear integral equations for the S matrix
elements of various scattering channels, and that the
particles are represented by poles in the S matrix
elements in the appropriate channels. The scattering
amplitudes must satisfy similar equations, so that
'.Co(\z\ satisfies the following equatim(5:)}, expressing
the requirements of elastic unitarity, crossing

symmetry, and analyticity, the usual basic postulates.
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where C”‘F is a crossing matrix with the general

property ]
%Q*%C\_azs = S,,K ~ and (5)

e@) is the cut oc( function.

We define the S matrix element of the channel o by

S - Vs 2l (6)
and from here on , we work exclusively with S matrix
elements, rather than with mnplitudego All physical
two particle thresholds are taken to occur at z=1,
Then S,ltz) satisfies the following conditions.

' a. Analyticity: S,\2)is real meromorphic in the
cut 2 plane |

b. Elastic unitarity; S(,(Lz) has only one branch
point on the positive real axis, at the threshold

point z=1; the branch point is of the square (7)
root type. The analytic continuation of S,,.\z) onto

the second Riemann sheet is given by

) \
SoL \'Z) = < oe\2)

co Crossing symmetry; Si(=z): écd§§€kz) where
Q,(e is the crossing matrix.
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These conditions define the elements of our
S matrix. Our problem is to find S matrix
elements for meson nucleon scattering processes.
For example, for such reactiohs as

TN —> TN

N — N (8)

AN —s WN et .
noting that these reactions go via definite
isotopic spin states (and via definite spin states).
The first may go via I = ‘L or I =3; ,» the other two
only via I :%’o The first is an elastic process:
there is no change in the identity of the inter-
acting particles. The other two are inelastic
processes, in thét the outgoing meson is not the
same as the original meson.

A realistic model must, clearly, cope both
with elastic and inelastic processes. It may,
though, be valuaeble first to consider the less
realistic case where we ignore all inelastic
processes, and attempt to find the S matrix ele-
ments for the elastic processes under the assump-
tion that all off diagonal elements are identically

zero. This is the case which has already been
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extensively studied, notably by Martin and McGlinn:(u)
we shall find that our results are entirely in

agréement with theirs.

They extend the work of Wanders.(2) The
essential part of the method is the factorisation
of the S matrix elements into symmetric and anti-
symmetric parts, though we note that this is not
always possible.(7)

The fundamental properties of the elastic

crossing matrix are

8o Z C{') = \
| ) (9)
bo Z_:; C{jc)h = S“'h

These properties are proved(u) from the basic
requirement that the matrix C transforms projection
operators for the irreducible representations in
the Kronecker product decomposition in the S channel,
into projection operators in the w channelo
Equation (9a) expresses the completeness of the set
of projection operators, i.e. expresses the property
of conservation of probability. It has the conse-
quence that the same crossing matrix relates S

matrix elements as transition amplitudes (5). The

second property (9b) is a consequence of the fact
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that two successive applications of the crossing
matrix brings us back to the original position.
For :

C 8(z) = 8(-2z)
so C 8(-z) = s(z) since the crossing matrix
has a constant value, and is independent of 2.
(This form of crossing relation is what mainly
typifies static models).

The general form of a 2 x 2 matrix with
these properties is

C = c l-c
( ) (10)

l+c -C

Where the parameter ¢ is arbitrary. The real
analyticity of the S matrix elements constrains

it to be realo ‘

The solution of the crossing relation is
easily found to be

8 (2) s(z) - (1l-c)a(z)

8o(z) = s8(z) + (1l+c)a(z)

(11)

Where s(z) and a(z) are, respectively, symmetric
and antisymmetric functions. '

Martin and McGlinn here digress to discuss
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what they call two "trivial" solutions, trivial
in that they have only 2 Riemann sheets, whereas
the usual solutions have an infinity of Riemann
sheets.

They are, firstly, the solution with
a(z) = oo This solution is independent of ¢ and
is a single channel problem with trivial crossing
symmetry, since the S matrix elements are identi-
cal and symmetric. It has been considered by
Castillejo, Dalitz and Dyson(ll), and by Wanderssz)
This is the crossing matrix of neutral scalar
theory, which describes the scattering of a neutral
scalar meson by a fixed baryon. Huang and Low(lz)
point out that mathematically it can be considered
as a special case of the charged scalar theory.

The second is the solution with s(z) = o. Here
unitarity can only be satisfied if ¢ = o, when the

crossing matrix becomes

o 1 (12)
1 o)
This is the static model problem solved by
Castillejo, Dalitz and Dysono(ll) The general

form for an antisymmetric S matrix is known. This

is the charged scalar theory, where there are two
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scalar mesons of opposite charge, which are
coupled in a charge symmetric manner to a
charged baryon. Clearly the crossing symmetry

of this problem merely gives us

8,(=2) = 8 (z)e
Going back to the general case, Martin and

McGlinn: re-write their factorisation as
A(z) [ B(z) - (1-¢)]
A(z) KB(z) + (1+c)]

81(2z)
® (z)

(13)

where both A(z) and B(z) are antisymmetric
functions, with the properties of being real
analytic and meromorphic in the cut z plane.
Equation (7b) implies that A(z) and B(z)
can have only one branch point on the positive
real axis, at z = 1, of type (z-l)%'o Further,

it gives
B(2)(z) = -B(z) -2¢

A2)z) = (14)

A(z) (B(z)-(1-c) ] (B(z) + (1+c)]

Martin and McGlinn, following Wanders’ work, give

the solution for B(z) as

BL‘L): -C - ?_-%r& LV\ kl*qu\) + Lﬂ[l)%(’l.) (15)
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where %&ﬂ is antisymmetric, real analytic and
meromerphic in the whole 2 plane. We require now
to find solutions for A(z). They attempt to do this
by inspectiono. Having written the general solution
for A(z) as
A(z) = A@(z) D(z) (16)

where Ag(z) is any special solution and D(z) is an
arbitrary symmetric "S matrix element" (i.e. it is
real analytic in the cut z plane and obeys the
continuation equation D(z)(z) = 1/'D(z)), they argue
that it should be possible to express all special
solutions for A(z) as rational functions of B(z).
Here they are again following Wanders: he found that
this was the case for his particular crossing metrix.

Now clearly, since both A(z) and B(z) are to be
antisymmetric, B(z) must appear as a linear factor
in an otherwise symmetric expression. Equation (14)
also indicates that for large B(z), A(z) N.E%;) (17)
and that the product A(2)(z) A(z) must reduce to an

inverse quadratic in B(z). The simplest possibility
1

B(z)

is clearly A(z) = (18)
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Then A(z)(z) = _1 = -1

B(z)(z) B(z) + 2c
\‘.'(B(z) - (l-c)BQB(z) % (1+c)) o B(z) (B(z) + 2¢)
so ¢ = *1, (19)

The next simplest possibility is

Alz) = B(z) (20)
(B(z) + 2¢)( B(z) - 2c)

which by a similar analysis is shown to be a

special solution for ¢ = % s While"

A(z) = (B(z) + 2¢) (B(z) - 2¢) (21)
(B(z) + 4e) B(z) ( B(z2) - he)

is a special solution for ¢ = Ils

This can clearly be continued, for increasingly
complex expressions for A(z). Our conclusion is

that special solutions for A(z) exist for

)
-3 — - 22
C = Vs | ,VLID)\,l - - ( )

No other such simple expressions for A(z) in

terms of B(z) are obtainable. For expressions like

A(z) = B(z)
B(z) + c)(B(z) -c) (23)

lead to inconsistencies when substituted into (1h4):
the resulting equation cannot be satisfied by a

single value of co
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What do these "“special" values of ¢ represent?
Consider the scattering of spinless particles,

isospin n (i.e. mesons) by particles isospin 1 °

For this process, the crossing matrix(s) is

c = 1 L-1 2(n+1)> (21)
2n+l 2n 1

Here we have designaﬁed Sy =8(j=n- %),
So =8(j=n + %)o Alternatively this is the
crossing matrix for the scattering, say, of spin-
less particles with orbital angular momentum n by
particles spin % (with, clearly, infinite mass for
we are working on the static model. This inter-
pretation is clearly meaningful only in this limit
where the partial waves are not coupled together).

In any case, (2L) is clearly the crossing

matrix(10), with e = =1 , just the case for
2n + 1

which we have obtained special solutions. Let us
work out the S matrix elements which we obtain.

We have B = -2¢(s” 1sin~1 2)

1 g (25)
if we write w =7 'Qin 'z
then B = -2cwo.
1
Fores =1, B=2w, A= B = %ﬁ’ and 8 =

!;;.-VJ-’ Sz:lo
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FOI'C="%-,B=_

Wi

W, A= W
2Zw-1§iw+1§
and = w(w-2 SO =W
> (%1T7%EZI7 ’ w1

and clearly we can build up the complete elastic
S matrix, obtaining, in this variable w, for the

successive diagonal elements,

w=1l, 1, w(w=2) -~ , W , Sw+l)(w=1)(w-3) ,
w w+l)(w=-1 w-1 w+2) w (w=2
(w+l)(w-1) and so on.

w (w=2

These are clearly particularly simple forms

(26)

for the S matrix elements, consisting as they do
of ratios of finite polynomials in the variable we
We shall see that we obtain them again, later, by
a different method (95).

Are these, then, the only solutions? Martin
and McGlinn next_attempt to construct further
special solutions, for arbitrary values of co
For if these are the only solutions, we see that
the possible crossing matrixes are considerably
restricted, and therefore certain symmetries
should be evident, coming only from the require-

ments of unitarity and crossing symmetry. They
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find, though, that this is not the case. For they
manage to calculate special solutions for
arbitrary c, as followso

Since the crossing relations have already been
solved, ;t is clearly sensible to use a mathemati-
cal formulation in which it is easy to satisfy the
unitarity conditione Martin and McGlinn work
with phase shift dispersion relations: one employs
the logaritlmof the S matrix element. Then the
unitarity condition on the function

Ay ~ WS - ()

is a linear one. Clearly Aqu is intimately
connected with the usual phase shift, Sutis
for we have

S,,( k‘L\ > E,Z-\ Sodt)

(28)
The disadvantage of the use of Z\A;\ lies in
the introduction of additional branch points at
the zeros and poles of the S matrix elements, but
this is unimportant in the present ¢aseo

We know, from equation (16) that A(z) may be
written in the form

- A(z) = Ao(z) D(z)

where both Ao(z) and D(z) are real analytic, and



meromorphic in the cut z plane, ég(z) being

antisymmetric, D(z) symmetric. Evidently, if
we have any solution ég(z) which is a special
solution of equation (14), there exists a D(z)
for which the productA(z) o QES?) D(z) has no
zeros or poles (away from the two cuts) except
a simple pole at.the origine We therefore

have a simple solution of the form

A(z) = M ' (29)

2
where now C(z) is a symmetric, real analytic,

non vanishing entire function in the cut z plane.
Then, the factorigation of the S matrix elements
equation (13) becomes
81(2) = 1 o(z) (B(z) - (1-0)]
Sp(z) = % c(z) [B(z) + (1+ci}

To obtain the general solution from these

(30)

expressions for the S matrix elements, it is
merely necessafy to put in the common arbitrary
factor D(z)o They must éatisfy the unitarity
condition on the physicalicutso Now, using
equation (30), we may write

A;\'L) = =l o WCR) » \hkgkﬂ = (1-0))

. - (31)
A = tar + W) s W(BR +(ea)
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and these phase shifts must satisfy

@
A.,()(‘LS = ANy | 2 =, (32)

in conséquence of equations (13) and (27).

We note that the branch cuts arising from
zeros or poles of the S matrix elements are to
be drawn away from the physical cut in such a
way that we preserve the reel analyticity of
the phase shifts. (This is always possible
for real analytic S&(Z))o In particular, the
cut arising from the Inz term in equation (31)
is chosen to be (-, 0 )o This then gives

the expression

& '
lw Cl2) + WC \z) =2y — (n (*(8\1)—(\1))(3(2} *(M\\]

Using the function

X2} = W () (34)
| iqtﬂ

which is symmetric and obeys the usual conditions

on the cut z plane, they obtain, finally, the

special solution for A(z) as

Alzy - -4 u\\o{ L,\m r\‘ﬁg\ + Fl(*)] xdx (35)
z BTN T SRS
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where FQ) « 5 llvqu) —qwBW) 5,

~and is real for z 2 1.

The integral in equation (35) can be evaluated

forc = &t and we get results which agree,

2w+t
clearly, with the solutions obtained previously
(26) within a factor of D(z). For other values
of ¢, Martin and McGlinn found no way of carrying
out the integration in an analytic fashion.

This solution (35) for A(z) holds for an
arbitrary value of the crossing matrix parameter

Co This parameter enters only as a linear

factor in F(z). For we note

VT = \BR) » ol = 1B ~0-ab
= -(’_E\z\ -L\~c)1(%(z) + (o) (37)

Where we have taken B*(z) = B(z)(z), given-by
equation (14), and have used equation (15). Thus
A(z) appears to depend only trivially on the
crossing matrix parameter ¢, and Martin and
MeGlinn point out thaf this would make it appear
unlikely that any particular values of the para-
meter ¢ should be singled out as of special

significance. In any case, it is apparent that
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analyticity, unitarity and crossing symmetry are
not of themselves sufficient to restrict solu-
tions to specific values of the parameter ¢ only.
Rather, it appears tﬁat further conditions are
required before any such symmetry prediction can
be made.

One possible further condition is to demand
that the exact solutions should satisfy the
Huang-Low bootstrap criterion of self consistencyslz)
This is to demand that solutions should satisfy

Levinson’s theorem(13), which states

AL ~ L) - S0y = —wh, (38)

where_ﬁk(z) is the phase shift and Eu is the
number of bound states in the channel o/, In
other words, every bound state in the channel o«
is a zero of Qd(z), and vice versa, where D_(z)
ié the denominator in the usual N/D formulation,
and has only the right hand cute.

Cunningham(8)) imposes this criterion. He
finds that solutions are obtainable only for
values of the parameter ¢ corresponding to Su(2)

symmetry. He uses the /TR method, which
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we next discuss: we shall therefore leave over
his work until later (equation (57) on) - Both
R ool bver and Cunningham(7) make a trans-
formation to the variable W, defined by

z2 = cosh W _ (39)
In this variable, the whole z plane is trans-
ferred to the strip 0 ¢ lmwW ¢, (40).
Now it is well known that, employing equation
(7v), we may continue the function 8 (W) into

the strip it <lmv <O by

8y (~W) = (41)
o 5, (W) |
If we now consider equations (7c) and (40), we

see that the crossing relationship becomes

AN = L -
Yl ww) %Cd@ S (u2)

Equation (7) also gives us '8 (-W*) = 8 *(#) (L43)

Roheiher first considers one of Martin
and MeGlinn’s "trivial" cases, the one dimensional
caseo. Here he mentions both the Martin and
McGlinn case with the "crossing matrix" ¢ = 1, and
also the case where ¢ =-l. In the case ¢ = 1,
equation (42) gives

s(w) = S(w + 2%o ), (Lh)

% Mot Sa) © pededic it Wihe fesod AT,
To accomodate the various restrictions which come
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from equation (7), this gives, in terms of the

variable z,

8(z) = K(22) + iq\r) (45)
K(z¢) - iq(z), '

a symmetric function of z, as required by Martin
and McGlinn. Here K(z2) is a somewhat compli-

cated expression, first calculated by Castillejo,
Dalitz and Dysonsll)

In the case of ¢ = ~1, equation (42) yields

B(W + i) = B(w) =1 (46)
where B(W) = 1 (47)

1-S(W)

which has the solution
Bw) = § + W + 14 (w) . (48)
]

where X(z) is an antisymmetric real analytic
meromorphic function of 2z in the whole z plane.
In fact,

8(2) = a2) b (2) (o)
where-€>(z) is given by equation (15).
We'now go on to the case in which we are

particularly interested, with the two dimensional
crossing matrix of equation (24). We have now,

equation (L2),

Ul = 2 1
W+ S}Z,-L Cap 2t
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thbi\wzr solves this equation using the single

valued substitution

B(w) = n8 (w) + (n+1) S2(W) p(W), u(w) =

82(w) - 81(w) (50)
S2 (w) D(w) |
Then _
B(W +W. ) = B(w) =1, U(W~+¥i) ._,[fm
(51)
B(w) + n -1
B(W) - mn -1

As in the one dimensional case of ¢ =_.-.1, we may

write

B(W) --% + %"TV-'- + LW,

Wwhere N(w) is an arbitrary periodic function
in W, with period \TC)
Wwhile

W) = Aum 178W) (53)

o %t\(@ﬁdﬁ~ru)

\lo\®)

where
Lol = ) (;’, k%\xb) 1—\,\4—\\1 P (/%_ \Bla) ,._“)] (54)
L A (T N YR |

and D(w) is an arbitrary periodic function in W,

with period JW(,
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Now if we compare the two ways of writing
the crossing matrix, equations (10) and (24),
we see that Martin and McGlinn’s ¢ = ¥ 1 _
2n+l
which is their condition for the existence of
special solutions, is equivalent to the require-
ment here that n should be integral.lf we
consider equation (54) for integral n, we see

that Uo(W) reduces to a rational function of

B(w), in that

Uo(w) =§g&ggi-“

where m =

'
[}

M [B(w)+n-(2k-1)][B(W)-n+(2k-1)] (55)
= 1 [B(w)+n-2k] [B(wW)-n+2k]

=
]

[}

for n = 2x

BN

m =01 for n = 2x + 1

2

and Uo(W) = 1 when n = 0.

Thus Q;kkh¢¥wu- has found particularly
simple solutions in Jjust those cases where Martin
and McGlinn find them also.

To satisfy the analyticity properties of Su(z),
D(z) must have zeros at the poles of Uo(z)o D(z)
can also have poles at the zeros of W(z) on the

physical sheet, as well as unlimited "extra zeros".




22,

D(z) may then be represented in the form

D) - 1 \—_ifagki) '“' \—V\A_bﬁ('l) \+m:ﬁ&z\

sl \m T, =0 , cZa M, >0
Clearly this is normalised to D —1 as q — 0, SO
as to comply with the threshold condition.

"For all non integral values of n, we see that
we have an infinite product. We must therefore put
in a factor to ensure convergence, thereby allowing
extra arbitraryness to the solutions.

.QLV\MuVMLr' states that the simplest cases
are the cases of n =c0, icec ¢ = 0, Where we have
the crossing matrix of equation (12), which case
is discuésed there, and the cases n = o and n = 1, .
i.eo ¢ = »1 and ¢ ff%.- These have already been
discussed. We shall come to them again later,
when we try to build up the whole S matrix, using
both unitarity and crossinge. (See in particular
| equation (95)); which duplicates equation (26) ).
Rotlewer  does not attempt to discuss the

% or ¢ = -10 This corresponds to the

2
scattering of K mesons by spinless nucleons, and

case of n =
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since n is not integral this is not one of the
simple cases.

He next goes on to three dimensional and four
dimensional cases, which do not concern us. We
turn.our attention rather to Cunningham and his
attempts(B) to impose the Huang Low bookstrap
criterieén. In another paper(7), he comes to the
conclusion that. the degree of arbitrariness
inherent in the model prevents any great restric-
tion on the form of the solgtion by such a
criterion, at any rate in the case where N> 1,
where N is given by

(57)

c = 1=N
N(n+)-1
where ¢ is the crossing matrix parameter. Now
if N = 2 and n is integral, we have again the
crossing matrix of equation (24), corresponding
to Su(2) symmetry. However, if N = 2 the j
arbitrariness is far less. He shows the
restriction to Su(2) symmetry as follows.
For z 7 1, following Hnang.and Low, write
S, L) = Qlagm) (28)
. R
M) = e (58 )

Rl - (wwd 2@
N O (59)
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wiz\ = ehb(ﬂ (60)

where o, (z), E}(z), t#(z) and iﬁ(z) are real.

These equations represent valid expressions.

Then

S = Bk -9 - (61)

5. = $b -V

D@ Ay MW -Mey g
ALy - Dby - D) |

wnere A (z), O (2), ALl/(z) are defined by analogy

to equation (38). He now discusses the various

an

possible values which are obtainable for lng\l\
considering separately the three cases

A({y/o, A&g—,ﬁiz and Ac‘;%ﬁx’,which he first
proves are the only possible valueso His
analysis indicates that only for values of the
parameter ¢ corresponding to an internal Su(z)
symnmetry are soluﬁions possibleo This indicates
that the model is not applicable to, say, KN
scattering; this was implicitly suggested by

Qk&kkuhwui
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CHAPTER :2

In our calculation, we employ the substitution

suggested by Meshcheryakov,(s) which is to write
W= T 8w Z

This has been employéd previously to facilitate
the evaluation of the Martin-McGlinn solutions,
It is similar to the substitution used by
Rothleitner and Cunningham,

We now give the S matrix elements, explicitly,
two labels i, j, to indicate the presence of__gﬂi_
diagonal (inelastic) elements, Then, in the
variable w, equation (7) reduces to the following
restrictions:

 a 813 (w) = sij (1-w)

b. Sij (w) is a meromorphic function in
the complex w plane.

;.Z-_\,» Siets)Sm-w) = SL-) — ottty

de S = Zi. CHMSH@) — crossen
wlee. Cij is the matrix of equation (10}, and Sii(w),

c

Sjj(w) describe reactions involving the same meson.

and e, Sii(w) has a pole at the origin, with

residue —~k;.

(25)

(63)

Clearly, if these conditions allow one solution,

S8ij(w), then there is a whole class of solutions,
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which may be written

(not summing over isj)

where

B = D) D) = Vil
B - Plet), Bl = —BLa),

Our first step is to prove the following

and

uniqueness theorem, which is fundamental to all
succeeding work.
Theorem (65)
It S13(w) (1, = 2,3) satisfy the
unitarity equation, equatioh'(63c), and the single
‘inelastic amplitude 323(w) (single since 832(w) =
823(w)‘due to time reversal invariance) is odd or
even in w. (the reason for this restriction is
given below) then we can determine 323(W) and
833(w) uniquely in terms of Szz(w), except insofar
as we allow possible arbitrariness by the
introduction of (%Lz\ and O(2),

Equation (63c) reduces to the four equations

2, SL'LU'“ Sal-w) + Sz;\“) Sg._\\—u) - |
be SW) SaG-w) + S Suli-u) = © (66)
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cC. SBZ(W) S22(1-W) + SBS(W) 832(1'W) = 0
d.. S32(W) 323(1‘W) + SBB(W) 833(1‘W) F 1

Then equatioﬁs (66a), (66d) yield us

822(w)822(1-w) = SBB(W) 333(1'W), which

means that we may write
SBB(W) . ﬁ{'-lw) 8y (W) (67)

where A(w) is an arbitrary function of w.
If we now substitute this expression for SBS(W)
into equation (66b) we get

8,5(W) 8p5(1mm) + S, (w) Spp(1-w) Al-w) = 0. (68)

Multiply by Sp3 (w) >

8y0(W) 8y5(W) 8Sy3(1-w) + Sp3(w) Spp(1-w) Aﬂlv-vw) =0

and substitute for 323(‘") st(l-w) from (66a),
using
323(‘”) = 332(w)‘, Mann

2
8p0(w) [1‘322(") 322(1-w)] + 8y3(w) 8y5(1-w) AAl;w) = 0
so

2 2 ) ~i -1
‘323(?1) o Szzx(!w) [1-822(w) 322(1-‘”)]ﬁ Y-w) (69)
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Thus we have obtained solutions, equations (67),'
(69) for 833(w) and st(w) in terms of 822(w). We
must now prove their uniqueness, We see that
imposition of the requirement that 323(w) should be
odd or even in w fixes. .

Alw uniquely up to an arbitrary D(z). For
A(l-w)

suppose that Ao(w) 1is one such solution, then
Ao(l-w

the most general solution is

ity Bt B (70)

where B(w) = B(2+w). Now, since B(w) is periodic
in w, it must be possible to write it as a

Fourier series,
B(w) = Z 6. Siunwd (71)
[ 2N

But T = SiwTW (25). So this expression (71)
is merely a power series in z. Thus,‘(7l) just
introduces a multiplicative factor of D(2) type.
We therefore have unique expressions for 823(w) =
832(w),and 833(w), up to the arbitraryness

allowed, as required,
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We note that the theorem holds for any
such 2x2 array of four S matrix elements,

Our-task now is to find the simplest
possible S matrix elements Sij(w); in other
words, to find the solutions with the least
number of poles. To do this, we follow
Meshcheryakov's suggestion and write the S
matrix elements as formal power series in

1l . In other words,
w

(6% _
So(\w\-“— 0(04-\3“*%-_'-.'_*-'—-_- =

sV

[»9
i @2)

where the subscript o labels any S matrix
element. Meshchéryakov's work ignores off
diagonal (inelastic) elements. In other words,
we are considering equation (7), and not equation
(63), and we may revert to labelling our S
matrix elements with a single suffix., Then if
we consider equation (7c), we find that it has

an identical form in terms of the variable w, i.e,
%Co«@ S%K—h\) = DWw) (73 |

where the labels o/ and %»refer to S matrix
elements adjacent on the diagonal, and

describing different isospin channels belonging
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to the same (elastic) process,

Using (72), this becomes

2 Cpf = e, |
(74)

Meshcheryakov's unitarity equation is clearly

Sa) Su=w) = (s)

and involves one S matrix element only.

We see that

R

Sd\k\"‘"\ = Mo +

|

—‘w+¢%§‘—*-‘

—

(074 -
= &, =y %, -, oy — ot 4o,
w W -
wh

so that (75) becomes

o
K/uo-} d ~ g—" + - ‘}&&o _%‘ <+ NL—&\ _ —_S —_ \
wY w-

and on equating coefficients of 1, we obtain

ol =\ So ot = L)




20.

according as we choose o, = * |\

etc,

i.e.

ST ?kdu\-\)()(m_$) SO — ot\)
(76)

Equations (74), (76) are an infinite set of
coupled equations, The system may be solved by
a finite number of steps, since the first N
coefficients of the polynomial are linearly
independent? where N is the number of poles
of Sd(w), 'And when we have done so, we shall
have connectéd any pair of adjacent S matrix
elements which describe different isospip
channels for the same process, At first sight,
this appears not to give us any connection
between the alternate adjacent pairs, those
describing processes going via the same total
isospin state, but involving different mesons,
We note, however, that any element of the diagbna=_._..
lised S matrix can be thought of as a member of
either of such types of pairs: we hope to obtain
a general expression, such as the one sought by

Meshcheryakov, which gives us a recipe for all



the pairs of elements usually regarded as
linked by crossing, and thus for all the
elements of the elastic S matrix, We shall
then have the complete, diagonalised, S
matrix., Clearly this will be of infinite .-
dimension, since the set of equations never
terminates, there being no a Pﬁo& reason why
any S matrix element Sii(w) on the diagonal
_should'be zero,

We must consider which elements of our S
matrix describe which process, Let us start
with the element S, (w), and take it to be the
element which describes elastic scattering of
the W meson, since the () meson has the lowest
isospin, and we would therefore expect to start
with it., But we must assign an isospin value
to S“(w). In general, elastic scattering of a
meson may go via one of two isospin channels,
which are I 1;%, where I is the isospin of the
particular meson. Thus each such elastic
procesé has two S matrix elements associated
with it, one for each isospin value, and, as

mentioned above, they are connected by crossing.

3,
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However, the W meson has isospin b. Thus
the I- 3 channel is not physicallyattainable.
Nevertheless, it is convenient to assign an S
matrix element to this non physical process, to
bring the v meson into line with the other
mesons. Thus we choose 8, (w) to describe
elastic scattering of the wmeson in the
I = -] channel,

Next we choose 822(w) to be the element
-which describes the elastic scattering of the
W meson via the other channel, i.e., the I =';_
channel, Cleariy Sli(w) and 322(W) constitute
one of the aforementioned pairs of elements;
generally regarded as connected by crossing,
which were considered by Méshcheryakov.

The next such pair is 833(w) and Suh(w),
which describe the elastic scattering of the #
meson, via the I = and I = 2 channels
respectively. And so on,

- Now in a paper with Fairlie(g), we showed
that it was possible to connect such pairs of
elements without explicit use of crossing. We

do this by postulating elements at e.g. Slz(w) and
linking such elements with the adjacent pair of
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diagonal elements, using equation (66) and’
expanding all our elements in the form of
equation (72). We then "switch off" the
coupling, i.e, let the off diagonal elements
go to zero, We fihd that this method is a
way of rederiving the Martin-McGlinn solutions
(26).

When we have obtained a form for the
elastic S matrix, we shall turn our atténtionl
to the task of finding inelastic elements also:
their presence will, of course, affect the
values of the elastic elements;hus is dow in Chaptes 3.

Consider any fbur elements of the S matrix,
arranged in a 2 x 2 array on the diagonal.

Label them ﬁith the suffices p, q, where we take
q=p+ 1. We wish to find some connection
between them, using uintarity.

First, consider Spa(w) and qu(w)° They
describe an inelastic process and the reverse
process respectively.

So, clearly, Spa(w) = Sap(w), (77)

by time reversal invariance.
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Take, as an example, p = 2, q = 3, 80 that
the dements in equation (77) describe inelastic
scattering of an W meson and of a W meson
respectively.

Now consider the process _

TN — &N (78)
It is clearly éonnected with

TN —aN (79)
by a "crossing matrix" whose value is + 1., which
implies that st(w) is odd or even in w. We see
that this will hold for any Spa(w) by a similar
argument, and we take it to apply, in particular,
to elements such as Slz(w) and SBM(W)’ which we
-wish to make use of,

Then, if we expand the S matrix elements in
formal power series in 1, as in equation (72),

w
and write

kaﬂ) 'g:(“‘ \'\ -w"

Sy = = Sqpy) = QW = 24

W (80)

»




we see that the evenness or oddness of

Spa(w) requires that
either f&“=4)) w=0,1,2 . - .

o 8., =0, wO,LL - (81)

This is the reason for the restriction on
823(w) in the theorem (65), It is clear that
equation (81) produces a considerable simpliftedtion
in the unitarity equations which we have to solve,
(66). |

Let us consider the case where the off
- diagonal elements are odd in w.

A convenient representation of the three S

matrix elements is then

a, spp(w) = f£(w) glw)

b, Spa(w) == Sqp(w) = co g(w) (82)
w

c, Sqa(w) = h(w) g(w)

where co is a constant, f(w) and h(w) are functions
of w, and g(w) is an even fﬁnction of w, We shall
write £(w), g(w) and h(w) respectively as powere
series in 1. We note that equation (82) constitutes
a differeng substitution to equation (80)., The

equation (66b) becomes
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g(u). T‘:Q_ x ‘q Wi-w) =0 (83)

Tf e by ]

Equating coefficients of like bowers of 1, we
w
find that the terminating solution for f(w)

and h(w) is given by

f(w) = 1_ ltao h(w) = 1+ a0 (8y)
w . w .

Thus equation (82) becomes
a. Spp(w) = (1- l+ao) g(w)
: W

b. spaw) = Sap(m) = %gg(w)' (85)

c, Sqa(w) = (1+%9) g(w)

where we must still evaluate the even function
g(w) by means of the remaining unitarity
equations (66).

Equation (66c) becomes .

(1 + a0) (1+ a0) +co | a(w) g(l-w) =1. (86)
W 1-w w(l-w)

or
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1AL+ g(w) g(1-w) = 1 (87)
w(l-w)
where we have written aj = a3 + ao + cB, (88)

Equation (87) yields

g(w) 21 + %ll + 3a3 —2a, + _ _ _ (89)
W
8w"

when we solve in the usual way by equating
coefficients.

Therefore our expressions for the S matrix
elements are given by equation (85), with g(w)
given by equation (89). Next we must consider
what happens when we switch off the coupling
provided by Spa(w), or in other words, let co
go to zero,

First, however, consider the expressions
we have obtained. Will they yield us, as Spp(w)
and Sqq(w), elements which can be connected,
consistentiy, by the crossing matrix (10) with
an appropriate value for the parameter c?

Let us try to connect thé expressions of equation

(85a), (85¢) using such a crossing matrix.
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Then
o \ - {00
| + do lve - J\ Ve (90)
= _ 5

where we have used the fact that g(w) = g(-w).
The solution of equation (90) is
c = -1 (91)
2a0 +1
Thus Spp(w) and Sqq(w) are linked together by
a crossing matrix identical to that of equation
(24), if we identify n = ao, They represent
therefore a pair of elements such as Sll and
822 or 833 and Shh°

Let us see what the expressions (85a),

(85¢) reduce to when we set c,= 0. In this

case, a, = ao(1+ao), (92)
and (89) becomes
g(Ww) = 1 + ao(l+ao) + 3a02(1+80)° - 2a0 1+a0) +

w

(93)
so that,

Spp(w) = §4(ii§3$}(w) = §}_ 1+ai) X
(1#ac 2329
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x (1 + ao(l+ao) + ;a02§1+a022 - 2ao(l+aso0) . . .
2w2 8v|r’4

(1 + &9

w) X (94)

and Sqq(w) = Sao(w) .

x[1 + ao(itac) + égoz(ljao)z ~ 2ao(1+ao) . _. t)

2w2 sw“

where we have introduced the notation S (w)
=~ ={1+a0)

and Sao(w) in ﬁlace of Spp(w) and Sqq(w) to bring
out the fact ihat the second expression can be
obtained from the first by replacing - (1+ao) by ao.
We note that the crossing relationship pointed
out above holds still, as required, for the two
expressions of equation (94).
It appears, therefore, that the case of
Spa(w) odd in w furnishes us with the desired
pairs of elqmemﬁ» those usuallj regarded as
connecfed by crossing. We jhen obtain the
following résnlt for the S matrix, when we set

ao =0, 1, 2 - _ __ in (9h)§

i \

.gr V\\N -—%QN V\\&‘,:’—'i, &"?’O/
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Oo = 2, gs = @ﬂx\“\")k“'g\

(W2} wlw-2)

Go=2, S = ®w-y
Wlw-a)

and so on: we have obtained identical results

)

to those of Martin and McGlinn(h) (26). As
before, we note the remarkable way in which the
S8 matrix elements reduce to ratios of finite
polynomials in w, Notable, also, is the very
close link which.has been thrown up between

crossing and unitarity. For at no stage in the
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above analysis have we explicity made use of
crossing to obtain a result: we have merely
identified the two S matrix elements obtained
for the case where 812(w) is odd (94) with S
matrix elements linked by the usual two channel
static model crossing matrix (24). And we have
considered, of course, only the limiting case
where all the inelastic channels:; are switched

off, which has been treated before,
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CHAPTER 3

We wish now to consider how we might incorporate
the inelastic channels into our scheme., We shall
clearly use the information which has already been
thrown up, to aid in finding our solution,

The first, and most obvious method, is as indi-
cated by equation. (82), We know from our theorem, (65)
that it is possible to obtain the other three ele-
ments of any 2 x 2 array of the S matrix in terms
of the first., So, if we consider the "unitarity
boxes" along the diagonal of the S matrix to lie

thus:™

(96)

ete, we may obtain st(w) = sz(w)’and SB(W) in
terms of Sz(w). The above, inelastic, analysis
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indicates that the elements such as 823(w) and
Shs(w).will be even in w, 80 we will assume this
is the case, We therefore work out the coefficients
of the varibus_powers of‘% in the power series ex-
pansions of st(w) and SB(W) using equation (66).
We then get Su(w) from Sj(w) by crossing, using
the approbriate value for the parameter of the
erossing matrix, Next we again use equation (66),
to get SHS(W) = SBh(w) and SS(W) in terms of Sh(w),
and hence in terms of Sz(w). This can, in principle,
be continued to give all the coeff;Qients of all the
elements of the S matrix,
.The details of the calculation are as follows,
We use the expressions (82) for the S matrix elements

of the 2 x 2 "unitarity box" array, Then the

equations (66) become

a@*%aﬁfx)(@ &%ﬁ _ ) (47)
_+(3o+%’r;+—}(go NL» ;)_\%i_ J ‘

@ f-5ex *{;;Jf 3
+ (gy ﬁ__\U\ . \«1 by “'B _ 5
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W
The first thing to notice is that equations (97b),
(97¢) are essentially the same equation, This is
due to the symmetric nature of the S matrix which
mekes qu(w) = qu(w). No information, then, is
contained in equation (97¢) that 1s not present in
equation (97b) and we need therefore only consider
one of them, say equation (97b). Following
Meshcheryakov once again, we equate coefficients
of powers of'% . From equation (97b), coefficient
of unity, we:get
fogo + goho = o

so 1f go ¢ o0, fo =-ho,

Coefficient of unity of the other two equations

yields

f02 + 302 =1

h02 + go2 =1

which fits -.;the above result, and also gives a




value for go,

We note that equations (97a), (97d4) yield no

bs,

equation for the coefficlent of-l But (97b) yields

fg - -

=,
i

(97a) coefficient of ;ﬁ.gives a value for gg;

2l - - A4-qp =~

and then (97d) coefficient of iL gives us h,:

'L -
15“& 3L ke —hhe —kr =0

from which h2 = f - f23

which wé could instead have obtained from (97b)

80

coefficient of'l2 o In fact, the three equations

(97a), (97b), (97d) are probably most amensble to
|}

solution by taking in turn coefficients of i~

\
of (97a), then of (97d), then coefficient of e

\
of (97b), then coefficient of " iw of (97a)
then of (974), and s6 on, For we see that the co-
efficients of odd powers of~% of equations (97a),

(974) yield no new information, and neither do the
1

coefficients of even powers of i of equation (97b).

We tabulate the first few terms of h(w) and g(w)

below, in terms of f(w),

They are:
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ho = =fo
b= -, (98)

h, = £5+ ‘Tr (WCIQ +$ ‘1?’—
S SR A I SR G
PR 6 ).

and, Slm\—_,@, nN=0,\,2 - —_
f\’)o _ “f (:LY\\.
B 10 ‘)—i C+ 200

G = m K\ k LLQ( *Qﬁv “?r |
0G0 -200)

BYE (-6 g -
A T R
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For interest, the first few terms of g(w) and h(w)

in terms of f£(w), wheh g(w) = -g(=w), are given in

an appendix,

Next we must consider the connection between successive
"unitarity boxes", Clearly the Sqq(w) element of

one is connected with the Spp(w) element of the next

by crossing., If wemake the identification, say

Spp) = 2\%‘: - f W) (99)

where Spp(w) is the first element of the next
"unitarity box" succeeding the one which we have been

discussing (in other words p = L), then clearly

h(-w) _ .3 c l-c i (;h(w)
fl(-w) i 1l+c -c fl(w). (100)

using the usual crossing matrix, equation (9), so

fl(w) = h(-w) - ch(w)

l-c
and clearly |
o = W
\ \4 ¢ (101)
e e L\D“*‘ 3
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Now identifying

\
Sus W) = Sealw) ‘*&‘\"‘\ = Z,\ ‘%\j-\ (102)
\

e Sy = Wiay = Zk he )

‘We may do exactly the same calculation as that
leading up to equation (98), giving h (w) and gl(w)
in terms of £5(w), Which we have in terms of h(w)
equation (101), which we know, by equation (98) in
terms of f£(w). This gives us, then, values for the
terms of fl(w), hl(w) and gl(w) in terms of f£(w) as
follows:

AT S MU 8]
A N (S R G &
A AP 6 2R

| he = (;) (103)
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“Where we have used the fact that the crossing matrix

between S3(w) and Su(w) has parameter C =?%,

Clearly we can now cross hl(w) = Séz;juinto
Ss(w),,which we may label fll(w), using a crossing
matrix with parameter c = ~% o This process can be
continued, to give us all terms in the power series
expansion of every matrix element,

Sila) amd Sijw) Do =izl (104)
in terms of the(:;s, or coefficients.of the matrix
element 822(w),

We do not continue this process down to Sll(w),
preferring to work only in coefficients of elements

describing physical processes,
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As an alternative, it is possible to obtain the
inelastic elements in a rather neater fashion
than that just indicated, in that we obtain a
single expression which can be used for all the
elements. Clearly, incorporation of off
diagonal elements modifies the diagonal ones,
and this shows up in our treatment: it also
brings out the interesting fact that if we allow
some of the elements Spa(w) (p = q £ 1) to be
non zero, then all such elements will become non
zero; the inelasticities cannot be arbitrarily
assignedo The method we use is a perturbation
treatment; even with our simplifications we have
not been able to obtain a closed solution.

First we make a significant change in our
notation. For elements S.;;,Lw), gcﬂ)w\w) we
write instead

55 (nlned, @) (105)
where the subscripts 3 refer respectively to the
channels with total isospin n ¥ %': the reason
for labeling the element by wn(w+\) rather than

by w will become apparent latere. For the off
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diagonal elements Swjbx) we also adopt a new
notation: we write the element describing the
process

n+N — (r+) +N (106)
as SLV\*—\)QB (107)

this process going, of course, solely via the
n+ 1 channel, The matrix elements still, of
course, satisfy (7).

Following Wanders(z) and Martin and McGlinn(“),

we rewrite the diagonal elements as
S_ &\\“*\)I‘A) - Q Kv\\vH.\)’ QSQH“\V“—\)‘ \h) - —J
Silwlnay i) = A Kvxkv\+\)\»)§('%kv\\v\ w38 4wl

where A and B are antisymmetric functions of wo

(108)

This automatically satisfies the crossing require-
ment with the crossing matrix of (24). Note also
that if we replace n by -(n + 1), we interchange
S- and S+, with Cd% %CFM ¢ thus crossing is
still satisfied. Hence the reason for labelling
with n(n + 1) rather than with n.

The unitarity equations are now

ﬁ KV\\V\\—\) . QB (}@kﬂk\u—\) ) Hrg A\v\\v\ ) \- w)(Bb\\\M.\) K —.,\) + “3
+ S\V\l—\)\A)sk\Ai—\)\—\A) = \ . (109)
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and A(n(n+1), w) (B o(n + 1.), w) + n)
S(n+1, 1-w) + S(n + 1,w) A ((n + 1) (110)
(n + 2), 1-w) @«n + 1)(n + 2), 1-w)-n—2)
=0

and we impose the restriction

s(n +1,w) =25 (-(n+1),w), (111)
which ensures the compatibility of (109) and
(110) when we replace a by — (w+2). The three
equations (109), (110), (111) come directly from
(63c) and are the basic equations of this sechion,
together with the symmetry requirements on A and
Bo We know the exact solution when
S(n + 1,w) = 0 s it is
Bo = W | (112)

where we introduce the subscript to indicate that
this is the value at S(n + 1,w) = 0. We see that
Bo has no explicit dependence on ne. Ap is
obtained from the recurrence relation

Ag(n(n + 1),w) Ao ((n + 1)(n + 2),w) =

-1
w2 - (n + 1)2 (113)

with  Ag(o) = & (11L)

This is merely a repeat of Martin and McGlinn’s
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work in a slightly condensed form. We know
by analogy with equation (93) Ao(n(n + 1),w)

in power series form: it is

Ao Qp(n + 1),w) = (-1) (n + 1) % (.1 +o{n+1), (115)

ow?

+30%(n + 1)2 - 2n(n + 1) + - _]
8w"

where the dependence on n(n + 1) is explicit,

which it is not in the form (113).

We now switch on the coupling of ‘S(n,w). .
Let it be small, and take it proportional to an
inelasticity parameter €. Then to first order
in €, equation (110) gives us

S(n,w) = e _F(n2) (116).
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Now using equation (109), written both as above,

and for n — =(n + 1), and dividing the two

forms, we have

(8 ta(n + 1),w) + n 3 Blaln + 1),1-w) + nl
(8 (a(n + 1),w) -n~1) (B@(n + 1),1-w) -n-1)

1-5(n+1 ,w 8(n+1,1-w)
1 - 8(n, w) S(n, 1-w)

(117)

since S(-n, w) = S(n, w)o Then if we write




B(n(n+1),w)y=w+ €B (a(n+1),w (118)
noting that By (n(n + 1), w) is antisymmetric in
w, (117) yields us

F(n2) = (w-4\" (119)
while By (n(n + 1), w) = w (w2- n(n + 1) - 1
L ’ ( 2 (120)

(w2 - n2)(w2 - (n + 1)2)
Putting this into (109), we get the equation
A1(n(n+1),w) + A1(n(n+1),1-w) =

- B (w) - By(1-w)
w+n Twm o (121)

- (n+1)2 -%._
(we=(n21)2) { (IT-w)%-(n+1)2)

‘where A4 is the correction to Ao to order &
A &n(n+1),w) = Ao kn(n+1),w§ {1 + GLA1(n(n+1),w)J (122)

and clearly is symmetric in we

Now the third term on the right of equation (121)
may be split into 2w+ + 2(1-w) + 14
L(@2-(n+1)2) iy ((1-w)2 - (n+1)2)o

Then the solution may be expressed as
od o0

ﬂ‘(\r\(md,@) = W) 4 Z_L?x S;dp olp) Siu\\)—n)x bl (123)




St

(we derive this solution in an appendix), where
S(w) and a(w) are the parts of

- B
1(w) + 2w + 1 which are even

WD 4 @2 ~(at1)2)

and odd respectively in wo

We now have solutions for § = (n(n+1),w) and
S(n+1,w) up to order ¢€*. In principle, this
perturbative type of solution can be extended to
higher orders of ¢ . One feature of the solution,
however, is already clear; this is that the |
relative_magnitudes of the couplings of the allowed
inelastic processes are not arbitrarily assignable,
but rather are determined by equations (116), (119).
This is a feature which is ignored in the usual
treatment of the coupled channel problem, in which
the potentially infinite set of two body coupled

scattering processes is arbitrarily truncated.



ST

Appendix 1.
The case of g(w) = - g(-w).
ho = fo = 1
hl ::-(1+fl)
h, =1£,
= - - p 21 - -
hy (2f, - £, £,°) (2fu + 385 - £ +3f3 £,
or, £, +£2 - £,£.2 = 28, + £,£.2)
2 53 T 1 ofy 3to * I3y
= (2f, - £, - £.8)7L (25, £, + £, £, = £, £,2 - L, F
by, 2 "5 % yf2 * 00 T O5 3%
3.2 _1 2 -
tefy -~ f) v, 6~ f)

* % 3 - %’*fz)

=0

x
(]
1
®
N
"
&
o
[}
[
'

2\
g = <2f2'f1'f1>

= —p - p 23 iy £, -
1 32
L v i)
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Appendix 2.

Derivation of equation (123), and its solution.
Our problem is to find the solution of the egquation
s(w) + s(1-w) = f(w) + £(1-w) (A1)
where s(w) is an even function of w, and f(w) is
arbitrary. Clearly, it is sufficient to considér
the case where f£(w) is odd, for an arbitrary f(w)
may be spliﬁ into odd and even parts, and the even
part taken over to the left.

If, now, S(k) and F(k) are the Fourier
transforms of s{w) and f(w) respectively, then
(A1) yields

kW ) 2 p(x) (1 - e7HEW), (A2)

s(k) (1 +e
the different signs on left and right being,
clearly, due to the -evenness and oddness of s(w)
and f(w) respectively. The solution of this

equation is then immediately
2% dw-pr

s(w) = i‘—“ga\Pgdk M\Z\M%gp) (A3)

-0 -~
This equation may be rewritten to show more

clearly the evemness of s(w):

a (¥, ¢ |
W) = =l go AP fo\z wsled sinkp '\m\%{? ﬁp). (Ay)
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We must still add the general solution of
the homogeneous equation for s(w): this must be
both symmetric¢: about the origin and antisymmetric

about the point w = %, so that we may write
o0

W) = 2. G o5 ue) T (45)
=0

where the ap are arbitrary, as the solution.

The solution of equation (122) may now be
evaluated explicity. Our solution is to be a
function of n through the combination n(n+l)
only, so we consider the sum of (122) with the
same equation with n replaced by -(n+l). (Clearly
the difference is automatically satisfied by our
solution of (117) ). Then the function f(w) of

equation (Al) is

f(w) 21 _1 S B{ 1
g (w+n)2 w-n) (w—n—l) (w+n+1)

(46)

¥l [_1 _ , _1
u12n+l$ w+n w—n E12n+ ) \ wn+1 w-n-1

If we make use of the identity

jtankp = 1 - 2ekP 4 p221kp

2

?




6o
—_— + (-1)Te Mikp

+ (-1)"e KD 5 tan 1_;3 (A7)

we can peform the integrals in equation (A3) for
the first two brackets of (A6), obtaining the

finite sum

+n

1 1 1

- %K(wm)z * (w-n52> t g ?n (1"
(A8)

1 1
- (rm)z * (ﬁﬁ')z)

n being taken as integral.

A similar trick gives the integral for the
last two brackets as an infinite series of poles,
which may be rearranged as the derivative of the
'logarithm of a product of gamma functions,

. Alternatively, we can use

Ao (n(n+l), w) Ao (n(n+l), 1-W) (w+n) (1-wén) =1

(A9)
‘whose logaritum we may differentiate to give
d log Ao (w) +d_log Ao (1-w) + 1 _+ _1 =0
dn dn win l-win

(A10)




b\

Now 4 log Ao (w) is an even function of w,
dn

so d_ log Ao (w) + n is the solution of (Al)
dn

with f(w) = - w . = =1 1+ _1 | (a11)
wo-n 2 w+n w-n |

Thus the solution for the two terms in (A6) may

instead be written as

(-n_ga , _ntl d_\ log Ao (w)
5 \2n+1 dn 2n+l d(n+l)
+ 1 1 n2 - n+l 2 '
.k I\ 22 - (n41)2 (A12)

If we collect together the various equations, we

get as our solution to equation (123),

nd _ (n+l)

u"-(%n"#"l') dn e )3

log Ao (n(n+l), w)

A;(n(n+1),w)

+ 1 1 -
Z(2n+1) sz-n2 | w2-1n+1)2)
1 1 : I
- F\wm2 * '(3;—_;)2 * (w+n+1)2 * (w-i-l))z

AR
¥ 2 :Z;\Q“x Orm) (A13).
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