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ABSTRACT 

The stnictural and magnetic properties of paeudo«*inar3r 

compounds formed between the heavy rare earth metals and the 

transitional metals iron, cobalt or nickel have been investigatedo 

The present work i s a continuation of the investigation 

of the physical properties of the pseudo-binary compounds named 

above. The magnetic measurements were carried out on a vibratiiag 

sample magnetometer i n applied magnetic fields of up to lOKOeo 

The range of temperatures used was from liquid helitmi (4o2%) to 

about 800°Ko 

Further evidence has been found that the room tenperature 

l a t t i c e spacing anomaly observed i n (Gd, Y) Co^t (Gd, Er) CO2 

systems are due to a transition from the ferromagnetic to the 

non-ferromagnetic state, with decreasing Gd concentrationo 

Transition metal moment collapse has been observed i n 

series Ho (Co, Ni)2 and E r (Co, Ni)20 The value of additional 

3d - electrons at wMch the moment collapsed increases going from 

yttrium to gadolinium compoundse 
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V CHAFFEE I 

I f i l Ionic mappetlc moment. 

The magnetic dlpole moment of an orbiting electron i n a 

circular path of radius r and angular frequenpy w i s 

AA s - er^w / 2c (Eqn. 1.1) ' or 
The relationship between w and r for an electron i n motion about 

an atom i s constrained by the quantum limitation that the orbital 

angular momentum must be a multiple of i i . This requires that 

the magnetic moment associated vith orbital motion must be a 

multiple of ela/2sDDo This quantlly i s known as the Bohr magneton 

and has a value of 9.27 x 10"^^ erg/gauss* 

The angular momentum associated vith the spin of an 

electron can be characterized by a spin quantum nunfl̂ er s = - ̂ . 

This spinning motion has an associated magnetic moment, idiich i s 

customarily vrltten 

yusp = gs/<g (Eqn. 1.2) 

^ e r e g i s a quantiiy called the spectroscopic splitting factor. 

Since g = 2.0023 for a free electron, the magnetic moment of a 

spinning electron i s almost exactly one Bohr magneton. I f we 

assvmie that the tptal angvilar momentum i s glvenby Russel -

Saunders coupling of spin and orbital motion and employ the 

terminology of Lajodie then the total magnetic moment of an atom 

or ion i s 



Here gj = 1 + J ( J 1) S (S 1) - L (L •̂  1) (Eqn. 1,4) 
2J ( J + 1) 

i s the Lande'g - factor. 

According to quantxim mechanics, the total ftng^>1f>r 

momentum vector of an atom has a magnitude fi [j (J + 1 )7 ̂ , but 

the component yihlch. can be aligned with the axis of a magnetic 

f i e l d must be one of the set ̂  nij» where the aximuthal quantum 

number I s a member of the set J , (J - 1), ( J - 2), , ( l - J ) , -J« 

For each value of m̂:, the total magnetic moment // of Eqn. 1.3 has a 

component S^f^^ aligned with the field, axis. 

Such a component acquires a potential energy 

I n a magnetic f i e l d of intensl'ty H, and i t i s this set of possible 

energies lAiich must be considered with respect to the Boltzmann 

energy k^T in determining the gross magnetization for a given H 

and given T. Thus the magnetic moment per unit volume i s 

H = njZ ( g ^ ^ ) ( g ^ ^ ^.^T) ^ 

- J 

and after substitution M = Ng/z^ JBj (y) 

whei« y s (g/^B JS/l^T) 
and (y) i s the Brillouin function, ̂ c h after some 
manipulations of the sums i n Equation 1.6 has the form 

Bj (y) = 23 + 1 coth (23 » 1 (v^ - X ^oth x (Eqn. 1.7) 
23 23 23 23' 
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The Brlllouln function varies from zero when the applied f i e l d 
i s zero to unily for infinite f i e l d . Thus the saturation 
magnetization of a paramagnetic solid i s M (O) s Ng /y^ J . Under 
weak f i e l d ccmditions, the Brillouin function i s asyotrptotlc to 
Bj(y)<5^y ( j + 1) 3J, y«1 and for these conditions the 
paramagnetic susceptibility has a Curie law behaviour : 

X = M = Hg^/yA ( J + 1) = C (Eqn. 1.8) 

3k^T 

and each magnetic atom has an effective dlpole moment 

A e f f = 8/"B ^ * ^ (Eqn. 1.9) 

For ferromagnetic ordering Weiss (Ref. 1.1) described the interaction 

of a magnetic atom with the crystal by a molecular fi e l d , whose 

magnitude H^ was proportional to the magnetic moment per vmit 

volume; that i s 

Hj^ =yM . (Eqn. 1,10) 

Trtiere y i s called the molecular fie l d constant. The idea of a 

molecular f i e l d leads directly to the Curie -..Weiss law for 

susceptibility above the Curie point T^ 

T - Tg 
T>T^ = y C (Eqn, l . l l ) 

For a given valtie of J , the plot M (T)/M (O) versus T/T yields a 
c 

universal curve. The best agreement with experimental data i s 

for J = ̂ . 
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For an iBaitiferromagnetlc solid at low ten^)eratures the 

total energy of the crystal i n the absence of an external magnetic 

f i e l d i s lowest lAien dipoles of opposing magnetic moments altexmte. 

This arrangement i s very stable at low temperatures and the 

susceptibility i n an applied fie l d i s small. When the temperature 

ris e s the efficiency of this dipole - dipole interaction decreases 

and the susceptibility increases until at the Neel tenqperatxire T̂ ^ 

the spins become "free" to respond to a f i e l d . For s t i l l higher 

temperatures the behaviour i s paramagnetic, and the susceptibility 

follows a modified Curie law 

X = C (Eqn. 1,12) m — — — 
T + 0 

The low temperatvire ordering i n a ferromagnetic material i s similar 

to that of an antiferromagnetic material, but the two opposing spin 

^stems have magnetic moments of unequal magnitude and a net 

spontaneous magnetization results as the lowest energy state of the 

system. This magnetization decreases to zero.magnitude vdien the 
solid i s wanned to the Curie point T and the behaviour i s once 

c 
again paramagnetic at higher tenperat\jres« 

I f the temperature variation of the magnetization 

and Mg of two sublattices i s different, the resultant 

magnetization U = M̂  Mg i s either a) always of one sign as shown > 

in Fig. lola) or reverses sign at some tenperature T̂ ^ Fig 1.1b) for 

whichjM^I = f^of This ten3>eratiire i s called the compensation 

pointo 
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f 
M 

a) b) 

Pig, 1,1 Perrimagnetic Magnetization/Temperature Curvesc 
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1^2 Itinerant electron model. 

The original jbreatments of ferromagnetlsm assume that 

the magnetic electrons are fixed on a particular ion. This i s 

the localized spin model. The nearest approach to this i n a 

ferromagnetic metal i s i n the rare-earth group elements i n yUaxoh 

the magnetic moment of each ion arises from the partially f i l l e d 

4f shell ithijch i s well Inside the ion and can therefore be 

considered to be localized; but even here, we should s t i l l take 

account of the effect of the non-magnetic outer conduction 

electrons. I n the iron group elements, however, the magnetic 

moment of each ion arises from the electrons in the partially 

f i l l e d 3d shell. Since the 3d shell i s at the outside of the 

ion, the wave functions of the 3d electrons of neighbouring ions 

overlap and a f a i r l y narrow band of states i s formed. This 

means that the "magnetic" electrons can move from one ion to 

another (this i s sometimes called the itinerant model) and so 

the localized spin picture i s no longer applicable. I t i s also 

clear that the localized spin model cannot be st r i c t l y valid 

because, i f i t was, the saturation magnetization of a ferromagnet, 

when a l l elementary moments are aligned, should correspond to an 

integral number of Bohr magnetons, idiereas nonintegral values 

are actually found (Ni = 0,6, Fe = 2.2 and Co = 1.7 Bohr magnetons 

respectively). 

The problem of itinerant versus localized spin models 

has been reviewed by Herring (Ref. 1,2) and from i t we recall that 
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the itinerant model i s tavovred. by the fractional saturation 

moments (Ref. 1,3) i n the ferromagnetic state, by the electronic 

specific heat and by band calculations and Fermi surface 

measurements. The localized model however, appears to be more 

appropriate for the description of neutron scattering form 

factors, the magnetic entropy and the behaviour of dilute alloys. 

(Ref. 1.4)0 

1.3 Localization i n the Band Model. 

Friedel (Ref, 1.5) has shown qualitatively that 

localized magnetic moments are not incompatible with the band 

apprracimationo 

Such moments can originate from a local piling up of 

electronic charge with one spin, compensated electrostatically 

by an equal local repulsion of electrons with the opposite spin. 

The displacements of charge can take place within the band, and 

can result i n fractional numbers of electronic charges. This 

i s so since each electron i n the band contributes ozily an 

Infinitesimal amount of the total polarization. 

The extension of Stoner's band model which-Friedel 

proposed i s quite similar to the extension from the Zener 

(Ref. 1,6) to the Toshida (Ref. 1.7) model for sirperexchange of 

d (or f ) shells via conduction electrons. The difference i s 

that Priedel's model involves a coupling via the same (d) band 

within which the localized moments occur. I n this treatment 

the possible role of the conduction band was neglected. Localized 
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moments should occur only i f the band i s sufficiently narrow and 

weak coupling occ\n:s from one atom to the next only i f the band 

i s neither too empty nor too f u l l . 

This coupling may be ferromagnetic or antiferromagaetic, 

depending on the exact structure and f i l l i n g of the band, and 

shoiild give rise at high temperatures to a Langevln type of 

paramagnetism. On the other hand, for a nearly empty or nearly 

f u l l band, they should be strongly coupled ferromagnetically 

and give r i s e , at high temperatures, to a Pauli -type of 

paramagnetism. 

In the same year a quantitative theory of the one 

spin problem was worked out by Anderson (Ref. 1,8) and the model 

has become known by the author's name. I t was f i r s t presented 

i n connection with the problem of dilute alloys, but has been . 

extended to pure metals. The case for many spins has been 

presented by L i u (Ref, 1.9) treating a ferromagnetic metal as 

a l a t t i c e of overlapping Anderson - type localized moments, 

1.4 Theory of Magnetism i n Rare Earth Metals and Allovs, 

1.4.1 The Heavy Rare Earth Metals. 

In nature the oxides of the rare earth metals occur 

i n mixed ores such as monaslte and lastnaesite. Scandium and 

yttrium resemble the rare earth elements very closely i n 

chemical and physical properties and are present in rare earth-

containing ores. 

Our interest w i l l be directed towards ithat are 
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contnonly called the heavy rare earth metals, i o C , those idth a 
more than half f i l l e d irf - shell« As stated previously, the 
main carriers of the highly localized magnetic moment i n these 
metals are the impaired electrons i n the ii;f shell. The 
paramagnetic moment i s accurately given "by the application of 
Hund's rules, nAiich state that l ) the spin arrangement should 
have the maximum t o t a l spin angular momentum (S), and 2 ) the 
orbit a l arrangement should have the maximum orbital angular 
momentum (L) within the restriction of rule ( l ) and of the Fauli 
exclusion principle. Then the t o t a l angular moment becomes 
J s L -f S for heavy rare earths, as shown i n Table 1 . The 
radius of the kf shell i s small and the shell l i e s inside the 
closed 3s and 3p shells. These outer shells contribute 
significantly to the shielding of the iff electrons and influence 
the electronic and magnetic properties. The valence electrons 
come from the 3d, 6s and 6p shells. 

I n general, most of the rare earth metals are 
trivalent except europium and ytterbium, i n which the stable 
configurations are itf^ and i f f ^ ^ , hence those are divalent. 

The t o t a l magnetic moment of rare earth metals i n the 
ferromagnetic state at absolute zero (Table 1 . 1) i s given Ij 
the sum of the 4 f moment and a moment arising from conduction 
electrons spin polarization. Except for gd, however, the kt 
magnetic moment may be reduced from the value of the free atom 
due to the crystal f i e l d . 
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Neutron diffraction results indicate that the radius 
of the 4 f shell i s about Oo1 of the interatomic distance i n the 
metals and about 0.3 of the atomic radius, and no evidence has 
yet been found for the existence of a bando 

Systematic differences from element to element i n 
the heavy rare earths may be attributed to the so-called 
lanthanide contractiono The origin of this decrease i n lattice 
parameter l i e s i n the fact that with increasing atomic number 
the increase i n the chai^ge of the kf electrons i s insufficient 
to completely screen the extra nuclear chaiTge. Consequently 
the increased electrostatic attraction causes the r a d i i of 
the outer shells to decrease. The crystal structures of the 
heavy rare earth metals, except Tb, are hexagonal close packed 
(hcp)« For the ideal packing of spheres i n an hep structure 
c/a = 1,633, but for the heavy rare earth c/a varies from l o 5 9 

for 6 d and 1,58 for Tb to approximately 1,57 for the remaining 
elements. One possible explanation for the differences i n 
c/a i s found i n the changes of the symmetry of charge 
distributions with increasing occupation of the 4 f shell electrons* 
I n these shells the orbital angular momentum i s zero for Gd 
(Table 1 . 1 ) , indicating a more spherical charge distribution, 
whereas i n Ho and £r the angular momentum reaches a max. value 
of L = 6 and the Af charge density i s highly anisotropic. 
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Ifetal 2S L J T^(«K) Theoret, 
Value 

Exper, 
moment 
(/UB) 

Gd 7 0 3.5 293.2 7.0 7.55 

Tb 6 3 6 229 221 9.0 9o34 

By 5 5 7o5 178,5 85 10,0 10.6 

Ho 4 6 8 132 20 lOoO 10,34 

Er 3 6 7.5 85 19.6 9.0 9.0 

Tm 2 5 6 56 22 7.0 7.14 

1 3 3.5 Does not order 4.0 -

Table 1.1 The magnetically ordered states for heavy 

rare earth metals, 
1,4,2 Magnetic Contributions to the Rare Earths, 

The different types of magnetic structure that occur 
throughout the heavy rare earth metals (Ref, 1.10) can be 
considered as the natural consequence of a single Hamiltonian for 
the 4f localized moment system. 

I n this theory we deal with three types of energy 
for the spin system corresponding to the localized ionso 

^=3«ex*^>^ef *^ms (Eqn. 1.13) 

The f i r s t contribution i s a long range oscillatory exchange 

interaction f i r s t derived by Ruderman and K i t t e l for mar studies, 

extended by Kas\;iya and Yosida for rare earth, ferramagnetics. 
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This has the form 

^ ex = " ̂  ^'^^ 
and i s the dominant coupling term and w i l l be discussed i n detail 
latere 

The second contribution i s the anisotropy energy of 
the unstrained l a t t i c e resulting from interaction of the 
cxystalline electric f i e l d caused by the charged rare earth ions 
i n the hep l a t t i c e . Although the point charge model i s inadequate 
for calculating magnitudes of the crystal f i e l d , the cxystal 
f i e l d does exhibit the symmetzy of the ionic l a t t i c e . The 
crystal f i e l d interaction consists of a large axial and smaller 
planar anisotropy and i t s role i n deteimining the magnetic 
structures has been discussed by E l l i o t t (Ref. 1.11). 

The last contribution to ̂  comes frtm magnetostriction 
effects. These effects arise from the modification of the 
crystal f i e l d splittings by the strain, 

P^nis = ^ e 
Here % i s the elastic energy associated with the homogeneous e 
strain components, and i s the magnetoelastic interaction, 
coupling the spin system to the strains. 

I t can be shown that the Hnmi Itonian of (Eqn. lol3) 

leads to the various l^pes of magnetic structures (Kef. 1.12). 

Bvenson and Liu (Ref. 1.13) have given a general proof of the 
theory that the f i r s t order transition ffom the helical state 

to the ferromagnetic or conical ferromagnetic state i n Tb, I ^ , 
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Ho and Er can be explained by the magneto - elastic effect for 
a general ordered spin state. 

The crystal f i e l d effects are relatively small, due to 
the paired electrons i n 5s and 5p states, and t h ^ are normally 
introdiiced as a pertvirbation on the spin - orbit coxipling between 
L and S, The situation i s different for the transition metals, 
i n which the crystal f i e l d effects are very important, as 
indicated i n Table 1,2 

Ions Coulomb Energy 
Differences 

Crystal Field 
Energies 

Spin-Orbit 
Energies 

Fe groitp 
Rare Earth 

10 - 40 X lÔ cm"'* 
5 - ¥) X lÔ cm"'' 

10 - 20 X lÔ cm"'' 
rj 200cm"^ 

100 - 800cm"'' 

600 -3000cm"'' 

Table 1.2 The contribution of energy for the spin system 
corresponding to the localized ions. 

The f i r s t column represents the ranges covered by the 
difference i n energy between the grxnind term and the f i r s t 
excited term, the absolute magnitudes of the Coulomb binding 
energies for the transition shell electrons are of the order 
lÔ cm"''-

1.4,3 Exchange Interactions i n the Rare Earths, 
Returning to the determination of (Eqn. 1.14), 

the interaction between rare earth atomic moments most be an 
indirect one, since overlap of the wave functions, particularly 
for the heavy elements, i s exceedingly small. The most 
satisfactory theory for this interaction i s the Ruderman-Kittel-
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KasiQra-Tosida (RKKJ) theory (Ref. 1.14, 13, l 6 ) . This assumes 
that an exchange interaction exists between the spin Si of a single 
ion and spin Se of a conduction electron of the typeOt = - r ( S i , Se) 
where P i s the exchange energy and uses a delta function to represent 
the ionic potential. The conduction electrons iiriiich are assmed 
to be free are scattered under the influence of this interaction. 

This scattering leads to a polarisation of the electrons 
i n the v i c i n i t y of the ion ( i ) given i n Ref. 1,17 by 

Pi(r) = SJTZ^n \ P (2kfr) (Eqn, 1,13) 

n^ere P(x) = x cos x - sin x x = 2 k ^ 

7 
Z i s the atomic density of conduction electrons« V the atomic 
volume, Ep the Permi energy, the wave vector of the electrons 
at the Fend, surface and r i s the distance ftom the ion. The 
function F(x), and hence the polarisation, i s long range and 
oscillatory, decaying as cos at large distances. This 
polarisation interacts with a second ion with spin at position ' 
r^ and has the fcann -PS^^ ( r ^ ) and i n the absence of spin-orbit 
interactions i s equivalent to a coupling 

^ i d = - "'"^^ 
where T^ = STTZ^n^ P (2k^^ ) (Eqn. 1.1?) 

4 V \ 
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Thus the exchange interaction yUaicti exists between two spins 
has a similar oscillatory form to the conduction electron 
polarization. I n order to include the effect of the spin-orbit 
coupling on the spins Ŝ ,̂ we have to use the projection of 
S on J i n these interactions. De Gennes has shown that for 
E|̂  ̂  kT ̂ e r e E|̂  i s the spin-orbit coupling energy, this 

• 

projection has the form S s ( g - l ) j , 
Applying the interaction i n a molecular f i e l d 

approximation to determine the paramagnetic Ciirie point leads 
to an expression ( l . l O ) . Neglecting direct coupling between f 
shells i t follows that 

2 2 
ke = ULL^r (g -1)^ J (J + l ) 2: P ( 2 k ^ i j ) (Eqn. 1.18) 

Experimental results are i n good agreement with HKKI theory for 
many of the properties of the rare earth metals, (Ref. 1.17, 18, 19), 

Especially remarkable agreement may be seen from the 
variation of the observed Ciu'ie temperatvure with the de Gennes 
factor;, (g - 1)^ J ( j + 1) (Ref. 1.12). On the other hand, 
however, band structure calctilations and Penni surface 
detezmnations for the rare earth metals (Ref. 1.20) show that 
these are quite different trcm the almost free electron picture. 
A clear indication i s given of the transition - metal l i k e 
behaviour to be expected for the conduction electrons. The 
chartges of the Permi surface w i l l affect the electronic 
behaviour and have been vused to interpret some of the magnetic 
properties of the metals (Ref. 1.13). 
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Further experiments to explore the Fermi surface and 

energy bands are necessary before a f u l l understanding of this 
behaviour i s possible. These w i l l require pxurer materials 
than are presently available, 

l,4t4 Origin of e x c ^ e parameter T , 
Recalling the Equation9^gg = -PSE for the s-f 

interaction, the experimental value and sign of T i s s t i l l 
somewhat indefinite. Theoretical work (Ref. 1.2l) shows that 
i n addition to the obvious constributions to P due to the 
positive exchange integral V between the W shell and the 
conduction electrons, there i s a negative interband mixing between 
the conduction electrons and local moment electron orbitals. 

The implications of interband mixing on electron 
states near the Fermi surface were recognized i n the 1930's, 
but only recently have Anderson and Clogston (Ref, 1,22, 8) 
confirmed the importance of this mechanism. The interband 
mixing contributions to T are very sensitive to the conduction -
electron character; also P varies significantly with the 
conduction electron k direction. This can cause severe 
anisotropics i n the RKKZ conduction - electron spin density 
distribution, 

A simple example of interband mixing i s as follows 

(Fig. 1.2), Consider the mixing of two functions, an 

unoccupied conduction - electron state of spin t iMch l i e s 

just above the Fermi surface and an occupied 4f f level. 
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Figure 1,2 A schematic representation of interband mixing for 

Gd and i t s contribution to a r ( 0 ) defined for the 

Fenni - surface electrons. 
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Then this mixing w i l l raise the energy of the state at the Perm 
surface. This i s termed an "emission" process since an occupied 
4f state has conduction - electron character part of the time. 
There i s also a similar "absorption" process which involves the 
4f i v i r t u a l states (above the Permi stirface) and an occttpied ̂ l' 
conduction - electron o r b i t a l . 

The combined effect of these processes i s to lower the 
minority spin t conduction - electron energies and increase the 
energies of the majority spin f electrons, so resulting i n a 
negative polarisation. 

1.5 Rare - Earth - Transition Metal Compounds. 
The intermetallic compounds of the 3d - transition 

metals with the rare earth metals belong to two groups: 

1. The compounds with a high transition metal content such as 
AgB^^, AB^, AgB^, AB^ and ABg where A i s a rare earth element 

or yttrium and B i s Pe, Co Ni, and * ' or ' 
2. The compounds with high rare earth metal content as A^B, 
A ^ i ^ , Â Cô  and ANi. 

The compounds of the f i r s t group have crystal 
structures derived from the fundamental CaOû  (Ref. 1,23) and 
CaZn^ (Ref. 1,2k.) types l^y ordered substitutions of the atoms. 

As the pseudo-binary compounds in\restigated i n the 
present work were formed from intermetallic compounds of the type 
AB2, we shall now describe some properties of these. 
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Thqr belong to the large class of intennetallics 
crystallizing into the structxures known as Laves phases. A l l 
of them are cubic with a MjgpUg structure (Fig, 1.3) (Strukturbericht 
Type CI5), ^rtiich has 24 atoms/iaiit c e l l . Two other types of 
Laves phases exist, the JS^n^ hexagonal structure (CI4 type) with 
12 atoms/unit c e l l and the MgMig hexagonal structiire (C36 type) 
with 24 atoms/unit c e l l . These have been reported i n some rare 
earth manganese compounds (Ref. 1.25) and GLS im^iurity phases i n 
some pseudo-binary compounds (Ref. 1,26), 

The Laves phases represent a very efficient method of 
f i l l i n g space and, with atomic size ration Ĥ AQ - 1.225, the 
average number of nearest neighbours i n the structures i s 13̂ , 

I t appears that the UgpUg structiu'e cannot develop unless the 
radius r a t i o of conrponents f a l l s within certain l i m i t s , and i t 
was originally thoiight that these structures are size stabilized 
so that a size ratio close to an ideal value of 1.225 i s required 
for the phases to form. However the ideal ratio i s the same for 
a l l three phases and there does not appear to be any discrimination 
between the types on this basis, so that other factors appear to 
be involved. 

Laves and Witte (Ref. 1.27) have stressed the importance 

of an additional requirement, rxamely that the number of electrons 

per atom i n the conduction band should be within a certain range. 

This "valence" electron per atom concentration (VEC) dependence 

has subsequently been confirmed on compotmds with transition metals 

(Ref. 1,28) and has been related to the density of states variation , 
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obtained from l^drogen solubility^ susceptibility and electronic 
specific heat measurements (Ref. 1,29), This dependence i s 
interpreted i n terms of the interaction between the band 
structure and the Fermi surface. I n the solid state, there 
i s a tendency for any material to adopt a strcture i n yUaxch 
the Permi surface i s near a Brillouin zone boundary, ̂ rtiere the 
density of states i s high, since the energy of the Fermi surface 
w i l l then be lower. 

Previous recent studies determined that the ciibic 
CI5 type i s stable for vec 1.33 to 1.72 and the hexagonal CI4 

for vec 1.8 to 2.32, At higher vec the cubic -^e i s again 
stable and the intermediate ranges are usually twophase. 

There must, however, be other, as yet unknown, factors 
governing the s t a b i l i t y of the Laves phases, since many systems 
which satisfy the requirements of size ration and vec do not 
form i n these structtireso Among these are the compounds of 
copper with rare earths and the scandium groi:tp metals, of y^ch 
not one forms i n a Laves phase. 

Stmimary of magnetic properties of ABg 

The magnetic properties of these materials are coniplex 
aid varied, and at present we cannot give a satisfactory unified 
explanation of their behaviovir. I n the following the essential 
features of the published work w i l l be summarized, (Table 1,3), 

Aljnost a l l ABg are magnetically ordered. The magnetic 

moments correspond to ferrimagnetic ordering with the moment of 
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Rare 
Earths 

• Fe Co Wi Rare 
Earths 

Tc Tc - Tc /"B 

T 5 5 0 2 , 9 1 PSiuli ] paramo 
Ce 2 2 1 2 , 4 Paul! paramo 
Pr - mm 5 0 3 o 2 (a) Q,86 

Nd - - . 1 1 6 3 . 8 16 1 , 8 

Sm 700 2 . 5 2 5 9 2 , 0 21 0 . 2 5 

Gd 813 3 . 6 4 0 0 . 4 . 9 8 5 7 . 1 

Tb 6 9 6 3 . 9 2 5 6 6 , 7 4 5 7 o 8 

7 5 0 5 . 4 1 5 9 7 . 6 3 0 9o2 

Ho 6 0 0 5 o 2 9 5 7 . 8 2 2 8 , 4 

Er 4 5 0 4 , 7 3 6 7 . 0 21 6 . 8 

Tm 6 1 0 . 2 , 5 2 18 4 o 7 (a) 3 o 2 

Ln 6 1 0 2 . 9 7 F&uli Far. F&uli Far, 

a) Magnetic state uncertain. 

Table ( 1 . 3 ) Magnetic Moments and CurLe Temperatures 
ofAB„ 



19 

the Fe, Co ions reduced tram the free ion value of 2 . 2 a n d 

1.7/Wg respectively, and zero magnetic moment of Ni. 

Neutron diffraction measurements (Ref. 1.23) on 

TbNig confirmed that Ni has zero moment and this has been 

attributed (Ref, l , 3 0)'to electron transfer from the rare earth 

components to the Ni 3cl shell, putting i t into the 3d^^ state. 

The measured moments of ANig are therefore due to the rare earth 

coiaponents only and i t i s evident that these are lower than the 

free tripositive ion values (Table 1.1). The reduced moments 

have been attributed (Ref. l , 3 l ) to partial quenching of the 

orbit a l moment by the crystalline f i e l d , Bleaney (Ref. 1,31) 

estimated the energy level s p l i t t i n g due to the crystalline 

f i e l d i n this series. 

I n ACOg the magnetic results, as pointed out by Ross 

and Crangle (Ref, 1.32) and by Parrel and Wallace (Ref. 1,33) 

were consistent with the rare earths possessing their free ion 

moment, aligned opposite to a constant cobalt spin moment. 

This pictvire was further improved by Crangle and Ross 

(Ref. 1,34), who suggested that the localized A;:.and Co moments 

were aligned ferromagnetically i n the lighter rare earths and 

antiferromagnetically i n heavy rare earths. Neutron diffraction 

results (Ref. 1.33) indicate a Co moment of 1.0 - 0,2/^^ 

antiparallel to the heavy rare earths moment. 

The measured Curie temperatures are consistent 



20 

(Refo 1,33) v i t h the behaviour expected on the basis of a coi^ling 

mechanism via the conduction electrons i n that they.are 

proportional to the de Gennes function. Since the la t t i c e 

constants for this series are larger than the corresponding 

ones i n the Ni series, i t i s to be expected that quenching of 

the other rare earth moments should be not larger than i n the 

lattero 

The Co moment i n Gd COg i s about 1.1 /^g t u t i s very 

small i n TCOg and i n LuCOg and CeCOg i s zero. These low 

monents are to be ccmipared with the value of 1.7/^^ i n elemental 

Go, and have again been attributed (Ref . I . 3 6 ) to electron 

transfer trcm the rare earth components, Bleaney (Ref, 1,31) 

suggested that the moment carried by Co i n conpaunds with a 

magnetic partner i s induced and should be proportional to 

(g - 1 ) l ^ g , lAiere M i s the moment carried by the magnetic partner 

and g i s i t s Lands'' factor, A measure of agreement was obtained 

with the experimental results, Schweizer (Ref, 1,37) has 

studied PiCOg by neutron diffraction and finds /U^^ = 0.5 - 0,25/<g 

i n this compound. He attributed the variation of cobalt moment 

to polarization of the 3d electrons by the rare earth spin 

through the conduction electrons, the magnitude of the resulting 

moment being thus related to the rare earth spin. This i s the 

same mechanism, presumably, as envisaged by Blean^o 

For the AFe^ series i t i s to be expected that the rare 

earth moments should be less affected by crystal f i e l d quenching 
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than i n either of the two former series, because of the 'lattice 

dilatione As mentioned earlier iron has a mcment of about 

i n the heavy rare earth compouzids,. irtiile i n YFe^ i t i s about 

1,4^go The same explanation has been applied to this moment 

reduction from 2.2//^ for elejnental iron as for Co, ioCo that of 

electron transfer (Refo l e 3 6 ) o The Pe moments were analysed by 

Wallace, and Skrabek i n terms of a permanent moment in a l l the 

compounds of 1o4^/^g with an additional induced component 

proportional to (g - 1) Wgo 

P^eudo-^ipaxy Serieq, 

Two types of pseudo binary rare-earth-transition metal 

compovinds have been investigated i n the pasto (A, A^) and 

A (B, )^ Tihere A (or Â  ) represents a rare-earth element or 

yttrium, and B (or >B^) represents a transition metalo 

For example, series Gd^ COg has been interpreted 

by Taylor eto alo (Ref. l o 3 8 ) i n terms of a triangula:r spin 

configuration and by Lemaire and Schweizer (Eef • l o 3 9 ) i n terms 

of a variable Co moment, though no mechanism for this variation 

was proposed. I t has not been possible i n this compound to 

obtain an equilibrium concentration at ^Hixch both the sxiblattice 

magnetizations are equalo 

In the series Dy^ T^_^ FOg (Ref. lokO) .the equilibrium 

concentration at vhich the iron and dysprosium sublattice moments 

exactly cancel occurs at x = 0,28 - 0,01« I n addition, the 

coez>civity increases rapidly i n this region and has a value i n 
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excess of lOKDe at x = 0 « 3 5 , T = 4»2**:o I n order to account 
for siich results Piercy has sxjggested that the Pe moment in these 
compounds varies nonlinearly with Xe 

Oesterreicher and Wallace (Ref. 1.41) measured the 

cxystallographic and magnetic (susceptibilities and saturation 

moments) characteristics for the systems Gd Alg - Gd PCg, 

Gd Alg - Gd Co^ and Er Al^ - E r Co^o The CII). structure was 

observed i n a l l these series and the stability ranges for this 

and the C15 terminal phase were measuredo 

Mans^ et, alo X^ef. lo42) have presented lattice 

spacings of several A (B, B ^ ) ^ pseudo-binaiy seriese A l l the 

series investigated were single phase (C13) and the lattice 

parameters showed positive deviations from Vegards law (linear 

interpolation) except for the series involving Cce The latter 

exception was explained by the variable valency of Ce© 

Piercy and Taylor (Ref. l o 4 3 ) examined the magnetic 

properties of the series T (Pe, 0 0 ) 2 and explained the variation 

of the observed moment throughout the series on the basis of an 

itinerant moment associated with the transition metal ionso 

The magnitiide of the 3 d - electron moment i s extremely 

dependent on the detailed nature of the compound in iriiich these 

electrons reside. Indeed i n both (Gd, Y) COg and T (Pe, 0 0 ) 2 , 

the moment associated with the transitional metal ions has been 

found to decrease to zero over part of the composition rangSo 

In an investigation of the origin of this moment collapse Taylor 
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(Ref, 1.A4) has examined the magnetic properties of Gd (Co, Ni)2 

compounds and found a similar transition metal moment variation 

as a function of compositiono He described this behaviour i n 

terms of a xlgid band model and has suggested that the nature of 

this collapse w i l l depend c r i t i c a l l y on the density of states 

cvirve i n the v i c i n i t y of the Fermi level. 

Statement of Problemo 

Two basic problems s t i l l exist i n the interpretation 

of the properties of the AB^ compounds* • One needs to know the 

size of the crystal.field effect.iirtiich causes the lowering of the 

moment carried by the A component and whether there are other 

reasons for the rare earth moment reduction below the ft^e 

tripositive ion value* 

The magnitude of the effect i s uncertain because of 

the uncertainty i n evaluating the conponent moments and because 

of the great di f f i c u l t i e s of crystal f i e l d .calculations i n these 

materials, in which the exchange and crystal fields are of 

comparable magnitude* 

Secondly, the transition metal moment i s very variable* 

The explanation i n terms of electron transfer into the 3d shell 

together with induced moments i n some cases seems to Piercy 

(Ref. 1*26) to be untenable as a major cause of the variable 

moments, since the necessary degree of transfer varies so 

greatly for the different materials where elements with very 
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similar electronegativities are involved. He has given the 
example that i n Gd Nig, about 0.6 electronV^i atom are required 
while i n 6d Fcg this i s only about 0,2 electrons/^e atom and, 
again, the value for YCOg and YFeg are about 1,7 and 0.8 per atom 
respectively. His explanation i s based on itinerant electron 
moment associated with transition metal ions and a localized 
moment at the lanthanide ion. 

The present work has been performed in order to obtain 

further experimental results for a better understanding of these 

problems. The appearance of the transition metal moment collapse 

i n some series determined lAiich of the pseudo-binazy compounds 

might be most profitably examined, since Taylor (Ref. 1,44) 

suggested that i n going trm yttrium to gadolinium compounds the 

added electrons per atom value at which the moment f a l l s to 

zero w i l l incriease. 

The series chosen were Dy (Co, Ni)2, Ho (Co, Ni)2, 

Br (Co, Ni)2 and the series Gd (Co, Fe)2 and Ho (Co, Fe)2 and 

gave a coverage of the values of Curie temperatures and 

magnetizations going from ANi2'^ ACo2-*AFe2» 

The series (Gd, E r ) C02 has also been measured to give 

fuirther evidence that the lattic e spacing anomalies observed i n 

system {GSlYio^ (Ref, 1,45) arise from the transition from the 

ferromagnetic to the non-fen^omagnetic state with decreasing 

6dCo2 concentration at room temperatvire. 
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CHAPTER I I 

Description of Experimental Method. 

2,1 Materials and Arc Meltj.nfi of Compounds, 

The majority of the specimens u^ed i n this investigation 

have been made i n our laboratory and the others have been sixpplied 

by the Universily of Birmingham, Department of F l ^ s i c a l Metallurgy 

and Science of Materials, 

The rare earth metals used i n sanrple preparation were 

supplied by Koch-Light Laboratories Ltd., i n the form of ingots 

with stated purities of 3N +, 

The transition metals (Fe, Co, Hi) were supplied tram 

the same firm i n the fozm of rods and their stated purities were 

AN8 -f. The specimens were made i n argon arc fumaceo Each 

conponent was cut, f i l e d and weighed to 0.001 gms in argon 

i n a glove box. The prepared quantities of any given confound 

varied between 2 and 5 gfOSo A rotary and a diffusion pû >̂ 

were used to evacuate the furnace chamber to a pressure' of less 

than 0,5 microns Hg. The arc furnace was then flushed with 

Argon (5N) to atmospheric pressure, punned out a ^ i n and f i l l e d 

to the operating pressure of 200mm Hg, 

Before the actual melting of the conponents the furnace 

was gettered for one minute with molten tantalum. After the 

components were melted together the resulting ingot was remelted 

twice after turning i t over, for homogenisation. Sonetimes 
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during the second melting the ingot shattered, however by slowing 

down the process these diff i c u l t i e s were overcome, and at no 

time was there a loss of weight of the specimen of more than k^, 

and usually i t was very much less than this. After preparation 

of the "button" specimens, there was a thin layer of oxide on 

the svirface which was easily removed by f i l i n g * 

When the specimens were broken with a mortar and 

pestle a l l of them were found to be extremely b r i t t l e . Small 

pieces, about 100 mgoa, were used as specimens for the magnetoneter, 

and fine powders were ground for X*jlay diffraction measiu-ements* 

ia£ Vibrating Sample Magnetometer* 

The magnetic measurements were carried out using a 

vibrating sample magnetometer constructed by H.D. E l l i s . (Ref. 2.1) 

-and improved electronically by A.R.Piercy .(Ref. 1.26) (Pig, 2.1)» 

Further modifications were made during this work to improve 

measurements at liquid helium temperattireo 

The f i r s t description of this type of magnetometer 

was published l^y Poner (Ref. 2.2)* In his design the specimen 

i s vibrated perpendicvilarly to the direction of the applied 

f i e l d at a fixed frequexicy. The oscillating magnetic fiel d 

produced by the specimen indvices a signal i n a multi-tiuni pick-xq> 

c o i l , the magnitude of this signal providing a measure of the 

magnetic muxnent of the specimen. The signal i s conibined with 

a reference signal produced hy a reference specimen ( i . e . small 
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c o i l carrying a DoC ciarrent) oscillating i n a second pick-tp 
coilo The resultant i s amplified and passed to a phase 
sensitive detector (the two signals being 180° out of phase) 
and i n o\ir case i s zeroed by altering the current through the 
DoC* reference c o i l * 

The detection c o i l system einployed i n the apparatus 

used i n this work eliminates the effects due to the instability 

of the power supply driving the magnetic f i e l d . This i s 

achieved "by constructing the pick-iip i n the form of two matched 

c o i l s connected i n series opposition* This has the advantage 

that while "noise" signals are largely balanced out, the signal 

from the pick up coils i s twice that trcm a siizzple single c o i l * 

Brief description of the block diagram of the magnetometer 

shown i n Fifflre 2,2. 

The driving oscillator i s a Pamell Type LP Solid 

State Oscillator feeding a 12 - volts sinusoidal signal into a 

simple 2 - stage power amplifier at 70 c.p.s., which i s inductively 

coupled to the Advance vibrator* 

Details of the tuned amplifier (Gruibb Parsons TA high 

gain) and the phase-sensitive detector, have been described by 

E l l i s (Ref. 2;i)„ 

I t i s worthwhile earphasihg two points, however* F i r s t l y 

the tuned amplifier has band stop f i l t e r s originally tuned to 

10 c.p.So, but subsequently modified to have their stop band at 
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70,c.peSo to avoid interference with the fundamental and harmonics 
frequency of the main supply voltage and secondly the output from 
the phase sensitive detector i s related to the amplitude of the 
svipplied signal i f the phase difference between the signal and 
reference voltages i s kept constant* 

The phase shifter and attenuator (Fig. 2.3) were 

designed by Piercy and are described in his thesis (Ref. 1 . 2 6 ) . 

The D.C* co i l (Ref. 2.1) i s supplied from a 6 volts 80 ainpere-

hour accumulator throvigh a variable resistor* The current 

(O - i^8 m4) i s measured with a Cambridge Unipivot Type L 

milliamperemeter. The potential divider 250k.il i s used to 

redvice the magnitude of the signal for specimens with large 

magnetization values* 

Two sample p i c k - ^ coils have been made, one on a 

former of PTPE rod for low temperature work and the other one 

from pyrophyllite for use at high tentperatures* Two matched 

coi l s were wound on the former, both consisting of 400 turns of 

4 6 SWG enamelled copper wire. The coils are connected i n series 

opposition with a 6 mm gap between them. The coils on the 

PTFB former are potted i n "Durafix" cement, while those on the 

pyrophyllite former are potted i n "Araldite"* This potting 

serves to secure the windings and prevent shorting between the 

turns* 
The vibrating rod i s a long drinking straw 4 nm i n 
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^diameter* At the end of the rod a fused s i l i c a tube i s attached 
with the specimen attached to the bottom. The weight of the 
sample i s ijsually i n the range 20 - 100 mgms and the length kept 
to les s than 4«5 mms as described by E l l i s (Ref. 2.1)« Before 
operation the pick x:cp c o i l i s adjusted so that i t s centre 
coincides with the centre of the sanple i t s e l f * 

The magnetic f i e l d was generated i n a water cooled 

solenoid constructed originally by Hutchinson (Ref. 2.3) but 

rewound during this work. I t consists of nine fla t coils of 

copper strip, i n the shape of "pancakes", mounted on a central 

tiiftiol tube, with insulating spacers between them. The 

calibration with a Hall Probe gave a linear dependence of f i e l d 

with current at the rate of 42 Oe/Ampo The solenoid was raised 

into position on a l i f t i n g platform in^ich has also been 

described previously (Ref. 2«l)* 

The power supply for the solenoid i s a Westinghouse 

0 - 200 Volts B.C., 50kW Rectifier, with a continuously variable 

output control* 

2 J Details of Measurement^* 

2.3.1 Crystal Structtire* 

The powered specimens were exposed to CoKx radiation 
i 

i n a Philips Debye-Seherrer powder camera of diameter 11.483 cm 

and the lattice spacings were derived from the diffraction 

patterns i n the conventional way using the Nelson-Riley 
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extrapolation. The more usual copper Kx line causes 

fluorescence of the rare earth components and i s therefore 

unsuitable, 

2.3.2 Calibration and Accuracy, 

The equation relating the magnetization (<r ) to the 

cxirrent i n the reference c o i l (ig- ) i s 0" = ^--r y (Eqn. 2,1) 

lAiere w i s the mass of the sas^le and ^ i s a constant. To obtain 

this constant the current i ^ was calibrated against the 

magnetization of a pure iron sasiple. The absolute magnetization 

data of Weiss and Forrer (Ref. 2.4) was assumed to hold for this 

specimen. The function i ^ versus fie l d (up to 8.4 kOe) was 

measured at room and liquid nitrogen temperatures, the data 

being extrapolated to the satvu-ation values i n each case. From 

these two sets of measurements an average value of the 

calibration constant was obtained and gavey = 0.0627 e.m.iv/m&« 

The equation for specimen magnetization, given i n atomic units, 

for other materials i s then: 

<r = y /moleculeJ (Eqn. 2.2) 
w . 5586 

vbere w i s measured i n @ns and i ^ i n mko Considering the errors 

i n the separate terms of Eqn. 2.2 an estimate of the total 

accuracy i s made. 

The quantities ig- and w were measured to t iJS and y was 

measured to within 1,5^,consequently the accuracy i s of order 

- 3«55^ For small signals, the error i s larger than this, due 
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to noise which could not, be eliminated vising the present 
detection system. The smallest detectable magnetization was 
5 * lO"'' .e.m.u. corresponding to 0.1 mA* 

2,j,3 The Demaffietisinfi Field* 

The internal f i e l d Hi, i.e. the f i e l d inside the sample 

body, i s different fTom the applied f i e l d H by the demagnetizing 

f i e l d KQ, due to the poles of the sample i t s e l f 

Hi = H - Hp V ^ ^'^^ 

M i s the magnetization and 11̂  the demagnetizing factor* 

Unfortunately can only be derived exactly for an isotropic 

ellipsoid as i t i s only for this shape that the magnetization 

i s uniform* 

In our case i t was impracticable to make samples of a 

definite shape as the compounds sttidied are both extremely 

b r i t t l e and prone to oxidation. In order to keep the 

demagnetizing f i e l d small, samples were made with their length 

approximately twice their widthb The necessary correction 

to the applied f i e l d H for samples of this shape i s then a 

few percent (Ref. 2.3). This correction i s of the same order 

as the error of measurement determined earlier* 

Z'fhk Temperature and Curie Point* 

Tooperattire measurements were carried out over the 

range from liquid helium (4.2*^) up to 800<^» 

A copper-constantan thermocouple was in contact with 
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the specimen to enable precise measurement of the temperature 

of the sanple. The wires used were "high conductivity" siipplied 

by Lewcos, and "thermocouple telcbnstant" supplied by Telcon 

Metals, The junction was melted i n a gas flame. 

The reference junction was held i n liquid nitrogen 

for temperatures \zp to room tentperature and at 0 % for temperature 

i n excess of t h i s . The thermal emfs weire measured with a I^e 

Portable Potentiometer and the corresponding values of temperature 

obtained from Briti s h Standard Tables (Ref. 2.6). Interpolation 

between liquid heliimi and liquid nitrogen temperatures by 

comparison with standard tables was done for temperattires below 

- 190*te, 

Standard techniques for low tenperatures were used. 

The Helium dewar, THOXCYI i s located inside the nitrogen dewar, 

i s evacuated and f i l l e d with helium gas before the liqiiid i s 

transferred. 

The temperature versus magnetization function was 

taken during the warming up period. The rate of temperatvire 

rise was sufficiently low for thermal equilibrium i n the 

specimen to be obtained (Ref. 2./). A heated o i l bath (Lissapol 

NX) was used to raise the specimen temperature to 200%. 

Measurements at higher temperatures are limited by the breakdown 

of the insulation of the copper wire forming; the sample pick tip 

c o i l . This difficulty has now been overcome by Primavesi on a 
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new vibrating type magnetcaneter, ̂ c h was vised to obtain the 

very high temperature measurements* 

The Curie temperatures (T ) were obtained by extrapolation 
c 

2 

of the. linear portion of a graph of (r versus T. This i s 

possible since on expanding the Brillouin function i n Equation 

M = Ng^g J B^ (x) for small x we get <r^ ̂  cC (T^ -T)* 

2.3.5 Atomic moment. 

The relation between the Bohr magneton number p of a 

material and the magnetization i s given by-the equation 
- ^ V ^o,o (Eqn. 2.4) 

The measiirement of the absolute saturation magnetization (T 
0,0 

requires either infinite f i e l d or zero teinperature. Thus we 

have to extrapolate from high fields at liquid helium temperatures 

(the lowest available ten5>erature)o 

For our region of applied fields of to 10^ Oe we can 

use the empirical relationship (Ref. 2.7)9 

iHxich i s applicable at low temperatures* Here a>b^c are 

constants and ̂ 3 j i s termed the satTiration magnetization* 

The difference between Ce m and C- _ i s so small i n our case 

that i t can be ignored and consequently the saturation 

magnetization was obtained at 4*2?K from Equation 2.5, by 

extrapolation of the CT versus ^/R plot to 1/ll = 0 and this value 

was taken to give the atomic moment* 

^H,T ~ ^ S,T 
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CHAHER I I I 

I n this chapter are presented the resiilts obtained by 

using the apparatus and technique described i n the previous 

chapters 

Some of the results of lattice paarameters were 
obtained from the Department of Physical Ifetallurgy and Science 
of Materials at the University of Birmlnghamo 

The results of terminal values of compounds vere 
taken from the latest published worko 

The l a t t i c e parameter values for the series 
Gd (Pe, 0 0 ) 2 , Ho (Pe, 0 0 ) 2 , Ho (Co, Ni ) 2 , Er (Co, Ni ) 2 , 

Dy (Co, Nl ) 2 and (Er, Gd) C02 are given i n Tables 3 » 1 to 3 . 5 

and are plotted i n Figures 3 « 1 to 3 • 3 , excltiding series 
Dy (Co, Nl ) 2 and Including series Gd (Co, Ni ) 2 and Er (Pe, 0 0 ) 2 

to show the overall variationo 
The magnetic properties reported here are the 

saturation moments ( (T ) at 4«2*K, 7 7 ^ and room temperature 
s 

(taken as 290"K), the ferromagnetic Ctirie Temperatures (T^) 
and the magnetization-temperature behaviour. The determinations 
of the saturation moments and the Curie temperatures are 
described i n Section 2.3d,eo 

The (T and T values are given i n Tables 3 . 6 to 
. s c 

3 . 1 0 and are presented i n Figures 3 . 4 to 3 . 1 1 , excluding the 

series Dy (Co, Ni ) 2 . 
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I n Figures 3 ok, ̂ , 8 are also plotted the transition, 
metal moments irtdch are obtained i f we subtract the pseudo-binary 
compound saturation moments from rare-earth momentse 

The magnetization-temperat\n7e behaviour i s presented 

i n Figures 3o l2.to 3 . 3 5 . 



Cpmposition 
X 

Lattice Parameter (A) 
i Oo002A. 

Atomic Volime 
* 0.02A-' 

2 (Gd Feg) 7.376 • 16 .72 

1 .6 7 .383 16 .77 

1 . 2 7 .361 16 .62 

0 , 8 7o327 16 .39 

0 . 4 7o292 16.16 

0 (Gd Cbg) 7 .259 • * 15 .93 

* Ref. 3 . 1 

Ref. 3 . 2 

Table 3 . 1 Lattice Parameters for Gd (Pe, Co), 



Figure 3 « 1 Lattice spacings i n the pse\ido-*inary series 
Gd (Fe, 0 0 ) 2 and Gd (Co, Ni ) 2 „ 
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Composition 
X 

Lattice Parameter (A) 
- 0 .002A 

Atomic Volume 
t 0.02A^ 

2 . 0 (Ho Peg) 7 .299 16 ,20 

1.6 7o301 16,21 

1 .2 7 . 2 7 4 16 ,04 

Oo8 7 .247 15.86 

0 , 4 7o211 15 .62 

0 . 2 7 .186 15.46 

0 (Ho COg) 
2 (Ho COg) 

7ol66 15o33 

1 . 8 7ol695 15 .35 

1 ,6 7o l63 15o31 

1o2 7 .156 15.27 

Oo8 7 .150 15o23 

0 (Ho Nig) 7o1318 • 15.11 

• Ref. 3.1 
Table 3 . 2 Lattice Parameters for Ho (Pe,Co)2; Ho (Co, Ni)2c 



Figure 3.2 Lattice spacings i n the pseudo-binaiy series 

Ho (Pe, 00)2 and Ho (Co, Ni)20 
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Con^osition 
X 

Lattice Parameter (A) 
* 0,002A 

Atomic Volume 
i 0.02A^ 

2 (Er C 0 2 ) 7o1536 15.25 

1 ,667 7 .1516 15 .24 

1o332 7.1489 15.22 

1 ,0 7 .1459 15.20 

0 .668 7 .1429 15.18 

0o334 7.1380 15.15 

0 (Erm^) 7.1319 15.11 

Table 3 . 3 Lattice Parameters for Er (Co, Ni )2 

Composition 
X 

Lattice Parameter (A) 
i 0.002A 

Atomic Volume 
i 0.02A^ 

2 (1)7 COg) 7.175 • 15 .39 

1o5 7 .178 15.41 

1 ,0 7 .169 15o35 

P (DyNi2) 7.149 15.22 

• Ref, 3 . 3 

Ref. 3 . 1 

Table 3 . 4 Lattice Parameters for (Co, Ni ) 2 . 



Figure 3.3 Lattice spacings i n the pseudo^inary series 
Er (Pe, Co)2 and Er (Co, Ni)20 
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Conposition 
X 

Lattice Parameter 
(A) 

Atomic Volume 

1,0 (Br C 0 2 ) 7 .1560 i 0 .0002 15.27 

0 . 8 3 7 .1702 - 0 ,0002 15.36 

0 , 6 7 7 .1863 i 0 .0002 15.46 

:o.50 7 .2024 - 0 ,0005 15.57 

0 . 3 3 7 .2214 - 0,001 15 .69 

0 , 1 7 7 .2422 t 0 ,0005 15.83 

0 (Gd C 0 2 ) 7 .2587 - 0 .0002 15 .94 

* Ref. 3 . 2 

Table 3 . 5 Lattice Parameters for (Er, Gd) Co, 



Conposition 
X 

Saturation moments 
(/Vg/toL) t 1?g 

Cturie Temperature 

4.2'»K 77*1C 290*K 

2,0 (Gd P e 2 ) 3 . 6 * - 813 * -

1 .6 3 . 6 9 3.11 1,46 861 

1,2 4.24 3.82 1.51 815 

0 ,8 4 .39 4,04 1.86 739 

0.4 4.61 3 . 7 5 1.87 619 

0 (Gd COg) 4 ,9 400 •* 

• Ref. 1 , 3 4 

•* Ref. 1 . 3 9 

Table 3 . 6 Magnetic Data for Gd (Pe, 0 0 ) 2 
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Figure 3.5 Curie Temperatures f o r Gd(Fe,Co)p and 
Gd(Co,Ni)2 series 

CM 



ConposltloD 
X 

Saturation Moments Curie Temperature 

4 . 2 * ^ 77*K 290PK 

2 . 0 (Ho P e 2 ) 5 . 4 0 4 5.21 2 .89 600 * 

1.6 5.66 5.398 3 . 0 9 602 

1o2 5 .56 5.3 2 .86 573 

0,8 5.458 5.086 2.42 477 

0,lf 6.61 5o667 1,91 411 

0o2 - - 228 

0 (Ho COg) 7 , 8 95 • * 

2 (Ho COg) 
1o8 8,93 i»4 

1 .6 8 . 7 8 45.3 

1,2 8 .69 45 

0 , 8 8 , 3 8 4 3 . 7 

0 (Ho Nig) 8o4 • * 22 * * 

• Ref. 1 , 3 4 

•* Ref. 1 ,33 

Table 3 , 7 Magnetic Data for Ho (Pe, 0 0 ) 2 , Ho, (Co, Ni)20 
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Composition Saturation Moments Curie Temperature 
X MSL t 3jg 

4,2®K 

2,0 (Er COg) 7,0 • 3 6 

1,666 7.2 29 

1 . 3 3 2 7,08 2 9 

1,00 6 , 9 1 28 

0,668 2 7 . 7 

0 , 3 3 4 7oO 27 

0 (Er Nig) 6,8 • 21 0 

Br Cô  gPeO,4 5 . 3 3 250o5 

* Ref. 1 , 3 3 

Table 3.8 Magnetic Data for Er (Co, Ni)2J Er (Co^ 6 4^ 
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Composition Saturation moments Curie Tenperature 
X 

2 . 0 ( I ^ COg) 7 o 6 0 1 5 9 * 

1 « 5 9 . 7 5 l 4 2 o 5 

l o O 8 „ Q 5 1 3 1 

0 (I>y Nig) 9 o 2 <• 3 0 * 

» Eef. l o 3 3 

Table 3 o 9 Magnetic Data f o r (Co, N i ) p o 



Composition 
Z 

Saturation Moments 
/ /Q /Molecule 

4 « 2 * K 7 7 * ^ 2 9 0 * ^ [ 

Curie Temperature 

l o O (Er COg) 7 . 0 « 3 6 * 

0 . 8 3 60O5 3 . 6 1 O0I3 1 3 8 

0 . 6 7 5 o 2 4 4 . 2 3 0 , 1 3 2 2 6 

0 . 5 0 5 « 0 6 4 o 5 0 o 2 9 2 7 0 

0 . 3 3 5 . 0 3 4 . 4 1 . 6 9 3 3 0 

0 . 1 7 4 . 9 8 4 o 8 4 2 .42 3 7 8 

0 (Gd COg) 4 , 9 « * 4 0 0 « * 

*Ref . 1 . 3 3 

•* Ref. 1 . 3 9 

Table 3 . 1 0 Magnetic Data fo r (Gd, Er) Co,. 
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Figure 3o25 (T/T curve for E r (Co^ g ^^Ook) 
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Figure 3o26 (T/T curve for Er (Co^ ggg Ni^ 

H = h.Z KOe 

10 
J - I 1 I -
Do 30 40 ^'0 60 70 
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Figure 3.28 CT/T curve for Er (Co^ ^ Ni^ Q) 
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CHAPTER 17 

Discussion 

k^l Structures and Lattice Parameters. 

A l l the compounds examined i n this m)rk were found to 

be czystallized i n the C15 phase. No other phase has been 

identified, although the X-fiay pattern contained a few other 

lines fUnxch could not be indexedo This i s i n agreement with 

measurements on other series (Ref« lo45) of this tyipeo The 

X-Ray diffraction pattern of Gd COg by Harris et. a l , (Ref« 3 « 2 ) 

exhibited strong diffraction lines i n addition to these 

characteristic of the C15 structure and metallographic examination 

revealed that Gd Co^ was i n a two phase condition after 

homogenising for one week at 500*^« The extra diffraction 

lines could be indexed to a rhombohedral, R ^ structure, 

indicating that the second phase i s probably Gd Co^ (Ref« A-.l, 

2 , 3)o 

The difficulty i n obtaining a san^le of Gd COg in the 

single phase condition i s consistent with this phase being 

formed by a peritectic type reaction. Buschow and Van der Goot 

(Ref. 4.1) repcwted that long hcsnogenisation treatments (8 weeks 

at 600^) were required to obtain Gd Co^ as a single phase 

compounde 

This gives us evidence that in pseudo-binary 

compounds i n general there may exist small amounts of at least 

one other phase than C15» and since these w i l l have different 
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mgnetic properties from the host lattice some azicnialies nay 
occur i n the observed magnetic behaviouro 

In the series Ho (Co, Ni)2 and Er (Co, Ni)2 the 

la t t i c e spacings plotted against composition (Fig. 3o2, 3 ) shov 

only small positive deviations frcM Vegards Lawo The valency 

states of the rare earth metals, and the interactions between 

them and cobalt and nickel are therefore similaro 

For the Gd (Pe, 00)2, Ho (Fe, 00)2 and Er (Fe, 00)2 

(Ref, l o 4 2 ) systems, however, large positive deviations are 

showne This behaviour suggests a difference between the 

interactions of rare earth metals with cobalt and nickel on 

the one hand and with iron on the othero 

Mansey et, al» (Ref. 1 . 4 2 ) assumed that i f there 

i s a linear variation of the Curie temperature (T ) for 
c 

Er (Fe, 00)2 with concentration then the alloys up to 50 mol% 

Er COg w i l l have Curie temperatures above room teoperatxire, 

and this w i l l contribute to the large positive deviations of 

the l a t t i c e spacings from ideali-iy to an escpansion of the 

lattic e on orderingo 

Our results (Fig. 3 , 9 ) showed that alloys of vcp to 

nearly 80 mol^ Er C b 2 have Curie teii;>erature above room 

temperature and similarly for Ho (Pe, 00)2 (Pig. 3 . 7 ) where 

the Curie point becomes equal to 3 0 0 % at 85 mol^. 

The explanation above does not, however, account 
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f o r the maziimM i n the l a t t i c e spacing - cQmposition cuzve 

observed at about 8 mol^Er Co^t 10 mol^ Ho Co^ and 15 mol^ 

Gd COgo 

However, i t could be related to the v a r i a t i o n of 

T^, since i n the series Gd (Fe, 0 0 ) 2 a inaximum occurs at about 

20 moljS Gd COg. 

The ^stem (Gd, Er) COg has been eocamined i n order t o 

determine ivhether the proposal that the room te0{)eratinre l a t t i c e 

spacings of Gd Co^ and related compounds are affected by t h e i r 

magnetic state a t t h i s teiaperatvire (Ref. 3 o l , 1,26) i s correct 

and whether the deviations from Vegard's Law arise at least 

p a r t l y from a zero f i e l d magnetostriction f o r those specimens 

whose Curie point i s above room temperaturso 

The room temperature ( 2 3 ^ ) l a t t i c e spacings of some 

(Gd^^ COg alleys are p l o t t e d against x i n Pigo 4.1a 

together with the l a t t i c e spacings of some (Gd- T ) Co^ 

alloys obtained by Christopher e t . a l . (Ref. lak5)o 

The v a r i a t i o n of the Curie teinperature across the 

series i s shown i n F i g . 4olb and given i n d e t a i l i n Table 3elO, 

and i t i s apparent that samples f o r vAiich 0 < z < 0o45 are 

magnetically ordered at the temperature of l a t t i c e spacing 

measuremento 

The Curie temperatures of the Gd^^ 1^ COg a l l o y 

series investigated by Taylor e t . a l . (Ref. 1«38) are also 

given on t h i s figure and again the ordering temperatures pass 
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through room temperature at about the middle of the concentration 
range ( y / i / 0 « 4 ) e I t i s evident from Figure 4ela that there i s a 
pronounced change i n slope of the l a t t i c e spacings of both alloy 
systems vdth decreasing Gd COg concentration. This occ\irs at 
about X = 0.45 and y = 0,45> i-eo close t o vAiere the Curie 
temperature becomes equal to the temperature o f the X-fiay 
measurements ( i . e . room temperature). 

Thus at the low Gd Co^ concentration side of these 

c r i t i c a l concentrations the l a t t i c e spacings of both series of 

all o y s correspond t o the non-ferromagnetic state, and 

extrapolation of the li n e a r v a r i a t i o n of the l a t t i c e parameter 

w i t h concentration i n the range t o the pure Gd COg gives a 

valioe of 7o234 - 0 , 0 0 1 Isi i n each case, f o r the l a t t i c e 

spacing o f a hypothetical, non-ferromagnetic form of t h i s 

terminal conpoundo 

The high-temperature l a t t i c e spacings of Gd COg 

have been determined by Mahsey (Ref. 3ol)> and i f the v a r i a t i o n 

of the l a t t i c e spacings with ten5>eratinr« above the Curie point 

i s extrapolated to room temperature then a l a t t i c e spacing of 

7.2333 - O0OOO5 kX i s obtained f o r the non-ferromagnetic fonn 

of Gd Cbg (Pig. 4olc)o Within the experimental accuracy, 

t h i s value i s i d e n t i c a l with that obtained from the l a t t i c e 

spacings of the two a l l o y series discussed above and shown i n 

Fig. 4.1a« This can be taken as further evidence that the 
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l a t t i c e spacing anomalies observed i n these systems are diie t o 
a t r a n s i t i o n fjram the ferromagnetic to the non-ferromagnetic 
state w i t h decreasing Gd Gb^ concentration at room temperature o 

ItsZ Mafrnetic Properties 

4 . 2 . 1 Gd (Fe. Co)^ series. 

The data f o r the intermediate compositions show a 

continuous change i n going from Gd Feg t o Gd COg. The observed 

v a r i a t i o n of Cxorie temperature with composition (Fig, 3 , 5 ) i s 

somev^t surprising* having a maximum value of T at about 
c 

2 0 mol^ Gd COgo This 'effect must arise from the details of 

the coupling mechanism i n these con^otmds and may be related 

t o the changes i n l a t t i c e parameter (Fig. 3 o l ) o 

The peak observed i n the magnetization of Gd (Co^ g Fe^ gO 

at about 1 3 5 * ^ (Fig. 3 . 1 4 ) and at about 1 3 0°K i n Gd (Co^^g PCQ^Q) 

( F i g , 3 . 1 3 ) may be due to a large decrease i n the magneto-

c r y s t a l l i n e anisotropy, , The measurements at higher f i e l d s 

would provide \iseful information about t h i s behaviour. The 

decrease i n magnetization which appeared i n a l l intermediate 

compositions f o r which a magnetization maxima was observed i s 

probably also related t o a v a r i a t i o n of the magneto cr y s t a l l i n e 

anisotropy energy w i t h temperatureo 

I f we compare the v a r i a t i o n of Curie temperature with 

composition i n going from Fe-*Co-»Ni compounds with the cxarve 

showing the magnetization - composition behaviour, there i s no 
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obvious relationship between the composition dependence of 

these two parameters. The Curie temperature drops close t o the 

p\ire Gd Co^ coaiposition, but the change of magnetization i n t h i s 

region i s very smallo 

A t r a n s i t i o n metal moment collapse i n the Gd (Co^_^ ^^x^2 

series has been described by Taylor (Ref. Ie44), as mentioned 

earliero On the basis of an i t i n e r a n t electron model he 

showed that i n terms of a r i g i d band, the moment behaviours 

shown f o r these coaipoiinds appear to imply that the Fermi l e v e l 

intersects both sub-bands i n Gd €0^0 This i s not unreasonable, 

as the exchange i n t e r a c t i o n strength appears to be r e l a t i v e l y 

small, as indicated by the Curie teniperatureso With the 

addition of nic k e l t o the aystism one would expect that the 

moment would i n i t i a l l y increase, due to the addition of 

electrons to the 3d - band, u n t i l the band i s f u l l . The 

Curie temperatures indicate a decrease i n the spin up - spin 

down sub-bai^ separation with increasing nickel content, and 

t h i s w i l l oppose the moment change due to the e a r l i e r process. 

Once the s p i n ^ sub-band i s f u l l , of course, both 

processes w i l l contribute t o a decrease i n the.observed t r a n s i t i o n 

metal moment. The nature of t h i s decrease w i l l then depend 

c r i t i c a l l y on the density of states cxirve i n the v i c i n i t y of the 

Fermi l e v e l . Since t h i s Fermi l e v e l must be close to the top 

of the band f o r these compositions, t h i s can readily r e s u l t i n 



a moment collapse of the type observed* 

Taylor also ccmparedL t h i s behaviour with the T (Fe, Co), 

observations, ^rtxere the collapse was observed at much lower 

additional electron concentration (Fig. 4.2)o 

He suggested that i f we assume that the spin^p -

spin down sub-*and separation arises both from the rare-earth-

t r a n s i t i o n metal i n t e r a c t i o n ('taken t o be the predominant 

mechanism) and from the t r a n s i t i o n metal - t r a n s i t i o n metal 

i n t e r a c t i o n , then f o r a given band shape the magnitude of the 

observed t r a n s i t i o n metal moment i n any system w i l l depend on 

the rare-earth partner. Further, the detailed form of the 

v a r i a t i o n of t h i s moment wit h addition of electrons i n t o the 

3d band w i l l also depend on the rare-earth atom involved. 

Since the lanthanide contribution to the s p l i t t i n g can 

be expected to vary as the sublattice spin one might expect 

that i n going from y t t r i u m t o gadolinium compounds the added 

electrons per atom value at vhLdci the moment f a l l s t o zero 

w i l l increase* 

4,2,2 Ho (Fe. Co)^ and Ho (Co. N i ) ^ series. 

I n previous series the derivation o f the t r a n s i t i o n 

metal moments was not d i f f i c u l t since gadolinium i s essentially 

free from c r y s t a l f i e l d effects and consequently i t s moment 

can be taken as being constant and known, over the nAiole series* 

I n t h i s series the moment of Ho Nig (8,4/<g /molecule) 
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can be taken as due only t o the hoLnium ions, since the nickel 

. ions are known to carry zero moment (Ref. 1 . 2 3 ) . Neutron 

d i f f l r a c t i o n studies of Ho C'Og (Ref. 1 . 3 3 ) , however, suggest a 

value f o r JA^ = ôS/Wg. The results i n the Ho (Co, Ni) 

region of Figure 3 o 6 however suggest that a t r a n s i t i o n metal 

contribution to the t o t a l moment only appears at about 10?S 

n i c k e l , and extrapolation of the results obtained f o r > 1 0 ^ 

n i c k e l , t o pure Ho COg would lead to a holmiimi moment of ^o2jLt^„ 

This i s i n reasonable agreement with the neutron observations 

and w i l l be taken as the holmium moment i n yUaat follows. 

Extrapolation then leads t o /Ug^ = 1 0 . 0/Jg. The holmium 

moment i n Ho FCg, i s assumed to be 10.0/Wg i n agreement with 

the free ion value. 

Subtraction of the observed molecular, moments from 

the /U v a r i a t i o n across the series then leaves the contribution 

from the t r a n s i t i o n metal ions. These are shown i n Fig. 3 . 6 , 

and- as may be seen again show a sudden decrease with an increase 

i n the nuaiber-of added 3 d - electrons. I t i s interesting that 

at the.Ho COg composition the cobalt moment i s appreciably less 

than l / ^ g * The Curie temperatures also decrease rapidly i n the 

v i c i n i t y of the moment collapse. 

These results indicate that the considerations about 

the gadolinium series may also be applied t o t h i s series. 

The spin-up sub-band i s f i l l e d at about 6 0 moljS 
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Ho Cog, and i s followed by a decrease i n the observed transition 
metal moment. As indicated by the variation of the Curie 
temperatures, there i s also a decrease i n the spin \zp - spin down 
sub-band separation with increasing cobalt content* The 
magnetization-temperature (^/T) curves for the whole series 
were well behaved and showed no anomalies of the type observed 
i n gadolinium series* 

The Curie temperature results do not show a maximum 

of the type observed for Gd (Fe, Co)g which could be related 

to the maxlmm of the lattic e parameter curve for Ho (Fe, Co)g* 

Instead, the Curie temperature remains constant up to 20 mol^ 

Ho C&g* 

4,2. 5 Erbium compounds. 

Using the method adopted i n the holmium compounds, 

the Erbium moments in this series appear to be 3/^^p 7O2jla^ 

and 6*8/<Hg respectively for Er FCg, Er COg and Er Nig 

respectively* 

This value i s appreciably lower than that reported 

elsewhere for the cobalt compound (Ref. 1.33) and the implications 

of this are discussed later* 

Siibtraction of the observed moments again leads to the 

transition metal moment values shown i n Figure 3o8, lAiere the 

sudden increase i n moment i s again evident* 

I t appears from this that i n Er COg i s 
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approximately 0.1yi//g, very severely less than that assumed 

previously and observed i n neutron diffraction studies (Ref. 1 . 3 3 ) • 

However, i f the cobalt moment i s to have the reported value of 

1 . 0 ^ g i n Er Oo^, the erbium moment i t s e l f must change rapidly 

between the cobalt and nickel compoxinds and l i t t l e , i f at a l l , 

between cobalt and iron compounds. 

This i s i n marked contrast to the lattice parameter 

variation across the series and i t would be difficult to 

reconcile the moment changes with crystal f i e l d effects* The 

transition metal moments derived assuming a linear erbium moment 

change from 6.8 to 8 . 9 ^ are also shown in Figure 3»8e Under 

these conditions there appear to be two concentration regions 

for iriiich the transition' metal moment shows a rapid decrease. 

The almost constant Curie temperatures in the Er (Co, "Si)2 

region vrauld tend to s\zpport the earlier treatment, with the 

transition ions only developing a moment for x < 0 . 9 i n Er ^^^^^^^^2" 

4 . 2 . 4 T>y (Co, Ni ) 2 series. 

This series has been observed to have time dependent 

magnetizations at 4 . 2 % and the evaluation of saturation 

magnetization values i s d i f f i c u l t . The reasons for this are not 

yet understood but i t i s possible that i t has i t s origin in the 

magnetocrystalline anisotropy. The approximate observed magnetic 

moments (Table 3 « 9 ) seem to have values coinparable to the crystal 

f i e l d reduced Dy Nig moment and consequently i n the compositions 
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studied (Ref. ,1,33) the transition metal i s again carrying a 
very small moment* 

The Curie temperatures (Table 3o9) are slightly above 

the straight line connecting Curie temperatures of Dy COg and 

Nig, Further measurements are necessary before any 

explanation of these measiarements i s possible* 

From these series we can not determine unambiguously 

the magnetic moment of the individml transition metals. 

However, we can investigate transition metal moments as- a whole 

and ccinrpare their variation i n series using various rare earth 

partners* The results of the previous sections show that i f 

we plot the variation of the transition metal ionic moment as a 

function of the number of electrons added to the 3d - band 

(Fig. 4*2, 3 ) , the valxie at which the moment f a l l s to zero i s 

different for different rare earths. 

Actually the value at which the moment collapses, 

increases i n going from yttrium to gadolinium coopounds. 

The collapse may not be complete in the erbi\xm series and a 

residual moment may remain after the i n i t i a l collapse* 
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CHAPTER V 

Summary 

The pseudo-4>inary series of the intermetallic compounds 

ABg presented i n this work almost conplete the investigation of 

some properties of this lype of compound. ('A' represent only 

heavy rare earth metals). The transition metal moment collapse 

has been confirmed, and has an obvious relation to the Cinde 

temperatiire variation aind hence to the exchange interaction, 

although i t seems li k e l y that the latter w i l l depend on the 

moment values themselves. 

As has been stated i n the previous section there i s 

a relation between the val\ie at which the moment collapse occurs 

and rare earth element involved. The exact form of this 

relation has not yet been found, but i t i s evident that the 

valvie of additional 3d - electrons at vMch the moment i s 

almost zero increases going ftx>m yttrium to gadolinium compounds. 

An estimate of the values of the magnetic moments 

of holmium and erbiimi i n Ho COg and Er COg compounds are smaller 

than the previously reported resxxlts which were obtained from 

neutron deffraction measurements. The anomalous temperature -
i 

magnetization behaviour of some compounds was related to a 

variation of the magnetocrystalline anisotropy energy with 

temperature. 
The room temperature lattice spacing anomaly observed 
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i n (Gd, E r ) COg series i s due to a transition from the 

ferromagnetic to the non-ferromagnetic state with decreasing 

Gd concentration* 
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