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Chapter 1. Introduction,

Sensitve seiemographs record oscillations of the surface of
the Earth which have an amplitude of a few microns. Many of these
are cleary of local origin and are due to wind gusts sgainst the
observatory butliding, traffic, frozen ground, etc, There are
however continuous osciilations of periods between 3 and 10
seconds and ampiitudes between 0.1 and 20 microns. The word.
microseism is reserved for this latter type of seismic disturbance,

1t has been noticed that the intensity of microseismic
disturbance increases simuitaneously over .arge &reas of Europe
and North America ( GUtenberg 1931,1932; Lee 1934 ). Whipple
and Lee (1936) noted that the greatest disturbance is found in
coastal.regions bordering on a well developed depression, but
that equally developed depressions did not necessarily give rise
to equal amplitudes, Ramirez (1940) has shewn that microseisms
recorded at St. Louis are received from the direction of
depressions off the Atlantic coast. Banerji (1930,1935) gave
evidence that microseisms were recorded in India as soon as a
storm was formed in the mid-Arabian “ea or in the mid&gBay of
Bengal, five or six hundred miles away from the coast, He reports
that tremendous waves wese produced and concludes that these in
some way originate the microseisms, He pcints out that the waves
from the storm would take two or three days to arrive at che
coast, so that the waves over shailow water could not account
for the microseisms which were recorded as soonaas the storm was
established,Lee (19353 tabulated the phases of microseisms
received at Kew on six occasions when depressions were located
over different parts of the Eastern Atlantic and Western Europe,
‘e finds that the phase differences between components confirm
‘the theory that microseisms are Rayleigh waves in the Earth's
. crust and concludes that microseisms are generated in deep water,

lee(1934) investigated the effect of the subsoil and of the
geological formations under observatories on the amplitude of
microseiemic disturbances, Analysis of the motion of a seismograph
pillar, and measurements of the earth resistance-at Durham and
Kew, show that the tilting of the pillars due to microseismic
oscillations is negligible; consequently the accu.acy with which
these oscillations are recorded cannob[on the subsoil, He found JHbﬂ
that variations in microseismic amplitudes are due t.
geographical and geolugical causes, and that the ratio of
-horizontal to vertical components at stations on earlier
geological formations was in agreement with the theoretical value
for Ray.ieigh waves,

The observations of iee (1932), Banerji (1935.) and other
writers indicate that microseisms must be generated in deep water,
The fairly obvious source of energy for microseisms,namely sea
waves, has for a long time been neglected owing to the inability
of the current first order theory of hydrodynamics to account for

A - = n
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a pressure variation at depths greater than half a wave-

-length. Bamgrji carried out experiments with waves in tanks

and found that ''the disturbance starting from a maximum value

at the surface diminished up €o a certain depth and then increased
to another but lower maximum at the bed'', He considered that this
phenomenon was a consejuence of the compressibility of the water,
and in a subsequent analysis he obtained an expression for this
pressure, Banerji's results are difficult to explain and it

seems likely that his experiments were on the wrong scale, His
work has been severely critised by Whipple and ILee (1935) and
mistakes in his mathematics have been indicated by Baxter and
Archer(1935). Scho.te (1943) considered a variable pressure
applied to the surface of the sea and found the displacement of
the sea bed; shewing that such a variable pressure causes the
simultaneous development of gravity and compression waves he uses
a first order theory to shew that whiist the gravity waves are
attenuated exponentially with depth the compression waves are
transmitted unaltered to the sea bed and there produce periodic
displacements of the ground. The weakness of this as a theory

of the origin of microseisms is that sea waves are not generated
by such a pressure variation (Jeffreys 1925),

An earlier theory due originally to Wieghert and until
recently supported by Gutenberg (1931) was that microseiems were
generated by the surf breaking along the coast line and
transferring the energy of the waves to the ground, Undoubtedly
some energy will be imparted to the ground by a ''breaker'’,
but the innumerable breakers along & coast do not break
simultaneous so thar the surf seems likely to produce a very
complex motion, Further most coasts are not of the steep type
required by the surf theory,.

Bernard (1941) obtained evidence which ied him to believe
that microseismic oscillations have periods which are haif those
of the sea waves which give rise to them. He reached this
conclusion by comparing the microseisms .recorded at Averroes,
near Casablanca, with ' _.simuitaneous observations on the sea
waves reaching the coast, The same ratio was noticed by Deacon
(1947) between the frequency of microseiems recorded at Kew and
sea waves recorded at Perranporth on the north east coast of
Cornwall, Deacon's work suggests that the waves entering the
coastal region west of the British Isles wé@seresponsible for the
microseismic activity at Kew, Darbyshire (1950) shows that it is
possible to reconcile the two views that microseisms are
generated in deep water and in coastal water if we consider that
the microseismic activity at any particular observatory is due
to more than one source, He selected three occasions when a
single depression cver the Atiantic was producing large waves
whilst the wave activity in the coastal region was smail, The
records of the Kew Gaiitzin vertica. seismograph were subjected
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to frequency analysis, and in each case it was possible to
identify two bands of frequency. It was possible to 1dgp2;fy
the microseismic waves which had a two to one frequency, with
deep water waves in mid-Atlantic and thcse which had a similar
connection with the coastal waves, ,

_ Thus a satisfactory theory of the origin of microseisms
must be able to expiain how surface waves in both deep and
coastal waters caﬁEnfiuence the sea bed and why the seismic
waves have twice the mean frequencyof the generating sea wave
group. The key to this prob.iem was provided by Miche (1944) ‘who,
.in a thorough second order investigation of wave motion in an
incompressible medium, obtained expressions for the velocity
and pressure under progressive and standing waves., He found that
under a standing wave there existed a second order pressure
variation which was independent of the depth and had a frequency
twice that of the surface wave, A shorter proof of the existence
of this second order pressure variatioen under a standing wave
was derived by Longuet - Higgins and Ursell (1948). It has also
been investigated experimently at Cambridge by Cooper and
Longuet-Higglns (1951). This has been used by Longuet-Higgins
(1950)%to demonstrate that opposite wave groups,that is wave
groups of similar characteristics but travelling in opposite
directions, originating in a depression or near a coast produce
seismic waves of the same order of frequency and ampiitude as
microseisms,

“ S ol Al k. 224
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Chapter 2,
The second order pressure variation on the bed under & train

of standing waves in an incompressible fluid,

In the classical study of Hydrocdynamics it has been
usual to assume that the wave amplitude and derivate#sof it are
so small compared with the depth that seccnd and higher pcwers of
these gquantities may be negiected, In this section the ccordinates
of the position ¢f a particlie and the pressure at a point will
be determined tov the second order in these small quantities,

We shali use the Langrangian form of coordinates and
consider a two dimensional m tl‘_on the wave mution being
supposed to occur betweentwo paIa.L.Le.L planes unit distance apart,

Let (Xolo) be phe initiai coordinates of any particle of
fluid and (%,z) its coordinates at a time t. Then by Lamb§ 13 the
equations of motion are

r 32 L, ‘DP T

ERLE 0L A A

L (2-1)
e X ?! =~ 0

'S-C-".‘S-Z— ( 5)220 Z, | e

where P is the density in the neighbourhood of the particle
and p is the excess pressure over the atmospheric pressure at
time € .
Assuming the .iiquid to be incompressibie, we have as the
equation of continuity ( Lamef 14)
2w (2-2),
20%,%) ’
Bhere the origin is taken in the free urface at rest
2, is measured downwards and Xe is measured horizontally in the
direction of the wave motion and perpendicuiae to the wave crests, .
let A denote the amp¢1tude of the wave motion, then we
can write

x = Xet L+ %,

2= z,+4hy, +47% | (243}
% = 92, +EX, +% K,
where Ch‘,‘}’.‘, n=1,2) are functions of %,,Z, and €,

By substltutlng from equation (2-3) in equations ( 2-1)
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+
and (2.2) and equating to zero the coefficients of and £ we

determine the six functions ¢ lf,‘ and XK, (R = 1,2). Thus from
equations (2.1 )

(%'33_6% r K2 ‘fl-)(l-f—{ 2% . %‘fk)

2 2 32 b} 3 ')x 2 s =
PR DG )24 Y)Y e e,

Mo
and
3Rk <38

+(f.g:_‘/j+ % % g)(/ﬂ( W A 3%) +9+ fDZ‘ +‘€%3§;=o.

From equations (2-2)

(102 £28) (14 24 273K

- pE ) 279 bvf B% = /
(#2428 ) (R W 272K ) = 1,

o ‘bxo '}Xa

From the terms in ‘K we have

’)X bl¢ i = 0

' fm, + ’S_E;/ = ? 2Xo /

~ W _ g ¥ = o, (2-4)
R - Al
‘bb/ ’)% - 0
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From the terms in “ﬂ we have

}lz+BL¢ -gb%_z_w.'éj’-bl.‘.bw 3

—— )

% ‘Wrt g2 e o e+ D

2 1_,_2;%&,33%_._):9 VWO )

Q¥ Y .
3%, ;e 2o Ve ¥, TE'*/"TE:’ } (2-5)
2h L% _ _ b % L dH DY

% T3, T T wm Y oan e | U

For a solution of the first order in -A it is engugh to
evaluate 4’, \h and X, and to substitute in equations §2-3),

f.’:,_L._‘ ;-‘",;»q FAHNEYN

To ellmlnate 'X, between equations (2+4), differentiate the
first equation with reapect to Z, and the second equation with
respect to X, and subtrect them ; thus

b

) N
X v _ 2. 0% 9% =o
2, $—5 IN24 W, PE* J INeIZ, d

N1 b §
. 2 . K 'b ? 1/’
2z, Er ’)’lo et
; W : (2'6)
Lifferentiating the third of equations (2.@®) twice with
respect to & we have

. ,
D D # __- ?__!’l 2

c3p- T W Yer T
From equatlons (2-6) and (2+7) it appears that

(2¢7)

bk oy
9 ¥ and e’are conjugate harmonic functions of X% end Z, .

e It is therefore convenient to introduce a functien
(Xo,z,ljdeflned by N 5 V&
'%__ VI - —-— :a_‘e—” .
Y5 36» 7 Fer T %, (2-8)
Whence, after use of equation (2-7) '

_ (2-93
L )‘L
¥ Y - Vw =
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If we now integrate equation (2-8) twice with respect to (4
and use the third of equations {2¢4) we find

¢ — bé(xm 01__ Bk(xl,z) lf + bk(xo,z‘
1~ T == 3z,

(2-10)
G (%% L') dk [20,2.,). £ 2 k! (%0, 20) . '
U/l = V2, X, %

A ’
where k and k are any two arbitrary functions of X, and Z, .

/ (
If we write Xj = X+ f?;-% ; Za=Z. ‘KM
4 Xo 4
we find that the terms in %' vanish,Thus the functlon R is not
physically significant as its existence depends on the choice
of coordinates, It is thus permissible to neglect the terms ink.
If we denote by u and w the velocity components of the
point (x,z) at time t,we have from equations (2°3)

/

)

= 4 2 L4
U= R +* 32

DE

P
M:‘ﬁ?r;b‘ 5- LJ='&§?’¥/’

Hence using the determined values of ¢, and ¢ (equations 2°10)

LJ’-'{;%F% + R4 J

or to the _first order

= A V& £ Ak (%, Z0)
“ VEDIN, ¥ } szo ?
W= —KI&; %‘Dké‘olza)
2% VX,

Thus it eppears that the terms in ‘k soaseamb represent a current:
independent of time i.e, a motion independent of, and
superposed on the periodic motion, There are an infinity of
such possible motions. but according to Miche, such currents
(courants entra’:fnements ) are known to be very feeble in
comparison with those following & peiiodic disturbance, Hence
to the first crder in A we can neglect R and write

cﬁ = P_(-i' and \l/ = };CI . (2°11)
[ VX, V2o
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On substituting for 4> and \[/ in the third of equatlons (2-43
L

Ve 26
eI TTo Ve =
i.e. Or(%z,)is a harmonic function of o,

Substituting for ¢, and ¥, in the first two of equatlons
(2°4) we have

V0, o 1,07,
ond %’+;-%§~9%}; = O,
i.e %{o X,+%}€-9%é; = Oy
anaL)on[X,+%:g_~3f%g = 0.
Hewce %4+ 3—}: =34 2‘2 = :ﬁ &)
o X, =9Y - 3{;&: « F (8 . (2-12)

where :f",(‘-ﬂ is a function of € , whose value is ddermined by
the boundary conditions.

If the motion is considered to be irrotational, we
have, in Euler's notation,

2 .
w= 53 and W= %}é_ (2-13)

where ¢ is the velocity potential,
But to the first order we have

@L'—"‘ﬂ%ﬁ' end w=‘4%g

Hence using equetion (2-11)
- 2 Wy = b
w= K2 = ﬁ(’aﬁ %
and W= -ﬁ%_.t’ = Tl ) = 5=

Hence, suppressing an addltlve function of t which has no
importance for the periodic motion,

P = -&)é%x/ﬂ,e) (2-14)
= |
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But the current function l[/ satisfies

P.) .
““3-,%' and N';"'BT:E . (2-15)

ie..¥ and ¢ are conjugate functions, hence if K is the
harmonic conjugate function of : '

y- %2K0O30 (2+16)
- e
Determination of ﬂ, Y and Xa ,

¢, and % and hence (X are ‘periodic functions cf
time. Suppose their period is 2T, then

pa e -(’:'E)t‘hr )
Der
Yo -@fw, [ e

and ,be,_‘-'-'- -( ) J

Using equation (2-11),the first of equations (2¢5 ) becomes
VXa Vb L% _ ( } [ w, aw}
= tw o im= P Y
- L(Z). 2 ¢
- .!1'.(7') X, (qS, \ )

S ERCREA]

Similarly the second of equations (2 5) becomes

X di p) }
N LA A CA)

From these we have, after integration,

= g%~ 3% 4 (L) BET[ 0, o
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where ¢1

z (2-19)
2t V).
and l/f; = 'b?;i | | (2¢20)

The earlier determination of ¢ and W, introduced functions
R end & ; but R/=0 by a suitable choice of varisbles and
experlence is that ascending currents are usually either nil
or very feeble, so that }_é_._o to higher than the second order,

Ko
Purther S)ik,,: Y , = function of Z,only, so that Y (Z,)

represents a herizontal current independent of the wave moticn,
variable with depth and c¢f seccnd order in A,

From the third of equations (2:5) we have, on using
equations 2-19, 220, and 2-°11,

Y YF _ VF-- 2% %, e &

‘DXO 'az" b x‘ﬂ 32‘ 3'0229 3z‘? x°
_d& V= ‘3
e V]: ’ax,, ’)z * bx,a

Hen;:e F = L[ (31, ')Z.,,) .-! +

! 2 2
or F:=4-E4>¢ +‘K] +&"
where G‘;. is & harmonic function of X,, Z, and periodic in t.
The precise value of C&r, depends on that of £ (&) which in

turn depends on the boundary conditions,
Hence equation (2-18) becomes

X, = 58‘/-4.&,(45 e 36‘&-«—!-("') (pHy?)«£(6) (222

For a progessive wave the classical value of 4>is Lamb[ 229)

=k g G E(#) (- X

(e-21)

= =Dl Lok a(H-2) sim (bE=ax) (2-23)
A pints aH v '
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where a = % y b = —E A
and 2T is the period and 2L is the wavelenghh of the progessive
wave and H is the depth at of the mass of water end h is the
amplitude of the wave,

Two trains of progressive waves with the same
characteristics but travelling in the opposite directions
interfere to procduce standing waves. Suppose the two trains to

be defined by equation 2+23 and by
$b= - 5K . Cata(H-2). Sin (bE+ar),
A gintia :
then the velocity potential of the standing wave train is

p= bR Ghalhn) [y (be—ax)— S (bE<ar))

a Soth aH
= att Ca»ka(ﬂ'l) Bir arx. CobE (2:24),

Hence, after using equation 2+i4 we have in ILangrangian
notation :

(x = lcmk“(!(’z);waxo,mbé' (2-25)
| A St a

From e'quation 2011

b = 2Coh allH-2) o avx,. pubE
’ SondoaH (2+26)

i, = — 2 ninda(H-2) oinax.. pin bE
]
St aH
On substititing for ¢: and \Iﬁ in eqmation (2-21)

Fe st Moifa(d-z) Ghax, + Sl al H-2,)$id ax| + G,
(AWAPY. | .
Serbe [ Cokra(l-20) +'> (Co2ax.x! )]
 SeodtaH 2 ’

2
p -

_‘;(Cg,k etz 1)1 raxs) G
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.. F= Setbt R x,  (2-27)
: 2Sotiall [C"‘M(H )+ Coraxe] + G,

Hence, after sUbstituting in equations 2-19, 220

4>=_a, st be. Mlawa + 2_&'_2 + 57(%)6'
. . .StA-L’—a” bxn

, ) (2-28)
WL;-_, - ansclbt, sit ra(H-2,) + V&,
S{m.L"ﬁ»H 4 VZp

From eguation 2+12 we have

Xc = ’13M“(y~"z°), Bim R X,. o bt
St 2 H

-+ 14) lok a(H- Zl’) 04M AN, . dn bt -+ ff((—)'
A M eH :
After reflexion at a barrler the horizontal currents will

neutralise each other and for standing waves, near the barrier,
we can write Y(z, )=0. Hence tc¢ the first order in A

r
]

Xo + 2t ana(ﬂﬂ-o)_c)mw,.mbe
SevdaH (2-29)

Z = ‘-— L pink a(H ~Lo) /.uMa.)(, /L(MM
Scde aH

: P - Zo+’_{m,~a10/_\4mbf‘ i.‘, ﬂaH“' 6 &,ka(ﬂ-—z,)]
P5 Sonbia H ]

+%& f (6 (2-30)
_ 9 '
The pressure must be constant et the surface ( Zg= © )
i.e.when Zo=° , P=o0

N
-fl((—)io and  pudeabl= ;% cnle aH
L
i.e. tant al = ‘% : (2.31)
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After substituting for (V) ana 0—{,-9— in equation (2-30)

,.t_:'zo{'z-ﬁmaw.mbe[_ . !a(H—Z-,)-l—h:u—LC«H-G‘L‘a(H-L’j,

= Zo‘{' 24 ﬁ‘*a'xc/“‘”"f_. -Ma(“"zo) Cohat -] :
MMaH&aAaH | _‘.A_‘Maﬂ &,AA(H—ZO)

B o Zo+ 2Raimare pimbt ag az, (2-32)

p3 oirte aH. Cokal

From equations (2-26)

2 be Kaa(H-2,) + &aﬂdxa}
Pleyt= Lo X [Cn 2a(H-Zo
Sitb>all ,

/[ > 2 _ 4.1,7-&,-,;.51' &,k:.a(ﬁ'lo)f&’m"{ﬂ
and B-Z;-(¢l+\hj —————'—. "a.ﬂ [ ,

also Ir_ = b, Hence eyuation (2-22) gives

Ax').- - alﬁ«mﬂ\ QQCH‘—E /O(’M‘Lebf

Acnhra H | |
= Q’M [ka :La(H—Z,,) “+ 6,2_,&)(3 ,
(S AY .| 4 |
+ & [ lonra(dz)+Hraxs ponibe
PYMWAL Y,
6 3G,
g — = (2033)
* £()+%no -

where vz&;:a and ﬁb';o at Ze= 0.
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It is now necess’ar’y to eva.uate Gl‘,_ and -f'z(f:) , after which
equations 2-28 and «<-3>3 give the complete valiues of A &‘XJ_.

et ﬁ’ibe teken as Corta 26(H-Z,). Cnrax,. T(bE)

then ¥6, _ _ a4 sink 24 (H-20). Gorav,. T (bt)
2%, ’
ana Y& - Coh 2a(H-2.)  Cn2ax, . Q_:I_ . 6%
JEr

)

~2,). Gn ‘,,DLT . ag [autafl
Conta2a (U-2,) W.W g

after using equation 2-31,

Substitute these values in X 3 (equation 2-33) and =@ set Z;7O.
Then using the fact that p=o0 (and hence K,= O

when  Z =0 ,we have

—agaab2al L obe — b Cnibe (Muﬂ+&smvo)
T odtal PRWAY Y.

. A
oudraH

-

(&,Azat‘/fﬁn 20%,) acr bt + H(E)

— 243 aind 2all. Cn 2ax,. T(bt')A

- (ot 2aH. (o aax, . XLZ-L. 45[4«4 ald =0
for a.l vaiues of )%anc?(b.d

Then since ‘t= a@ bovd a

—ag. 2 hall pobe — ag Corbt
: alubiall ainldaltl Cohkaltl

(&nA 2zl +Craav,)

+ a
ponbat. lnkaH

(rtratlie Gr2a%) ot bt + £.(6)

— 134 b 2aH. bn 2ar;: T(br) — Crb 22 4. aomn’b?éz-—)': ag
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.M;,*[_ 200k a | 3(lok 2aH+ (5 2a%,)

Serdat ocnd al. Cnk a i
— Coh 2aH + (o 24, + £ (6)
ointa Crhal ag

— L pinde al Cok aH. G 2ax, T (b¢)

= (p2ary, - [Maﬂ Cobatl + ocndlaH | 0O
‘3(5“)" Cool a

2 _ 2 (oheH 3Cok aH 4 32k al
&MM[ NaaH+ St aH Coh o H

- dfn2ax, ] _ GokaH _ Sintoat
SentaH, CohaH Scdiafl Coh a H
- _Gnaax, -q.owLaH,G,LaH.Comuo,T(Lr)
Sewlalt Chatl
IT A0
Sond aH] 1A%, . =7_0
We now set T= A (nabt+ B
&nd :ﬁ= aq (C a:zbh-))

where A, B, C."and D are constants,
Then writing S be = 5 (1- Goabe)

we have
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| --(—G,M[ Cools a + 3ootal 36 2ax, __j
a SindiaH Conh aH AodiaH Cohkal

[Cal\aﬂ + 3S¢..Laf/~+ 3 G 2ax,

Stahat Cok af Sindlial Crhka H
_ CohaH _  podaH _ Cmaaxs
SolaH Conk afl | Sonl_alf (b alf

- A sinbiat Cokaf. ,Co.m, . G2 bE

- 4B Mﬁf/. Cok aH. L 2.3,

+ [ sctaH Colal + pit’alt Craax,. 4 A Gabe
Coh af/

+ C'Ca:abé' + D=

for ail values of E and s.l b

g a’m{ _ ol altl+3pit’a + 2[>

Scnkal aha
+{ %A sk H - 3 ) Gaia,"%J

Coh aH MH&,A&H

+[ ‘. ¥B sintafl. &Aaﬂj Condaad¢,

Stk atf Cuha H 7 o _
+ —Colia H + Senllall —+ 2) 0,
Sindoatl Cakhat
for ali x, and & , Hence
A=_ 3., '===-—‘—-——— 2

. /
| -
afl. Crk*atl - 2 ok 2a H ?

B =

AL,
§ Soi*
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C:‘. Col’a fl+ Sovt’af |
)

2 ocndoatl Ok a il
D = Cok al— Sintlall ‘[
Lpindal Crkal - Scrl aaH
e 8O [ Coitahsensat)Coe 1)
aﬁ .SZ.J.aaH
and 3, Coar bt + { i
Tl = Sct¥all 2 ponslaal

——

. _ _ I 3Ch bt (
. G‘;“[G”I‘J*“(H 2.) Can.ax,] § nind“a * J.M‘MH}

Cok 2 (H-2,). Gn 24X, 2
5— {5 (o.‘bbt-l-ma_ﬂ}. t2.35)

S’M‘Fa#
Hence sfter substituting in (2428) for

¢- - O ptas Ltm«:..a!. - (0. MM(”'zo)mea
Sk aH Y it tfa

X(3 Crsdt 4 GtPatl) ,  (2236)
\}’,_,f— — O pidbt, ool 2a(H-Z,)
' M"a”

— a sink 2a(H-7,) G»Wo.-(z,&,m.,_ llaH) (2-36)
L nondfaH |

.Wiﬁq the values of &,_ and ,ﬁ(") equation (2-33) gives
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Xy = = Qfpide 1a(H-2,) pet pr
skt a H

- b Crabe
£ 028 [tk an (h2,) + Corara]

&i‘ ’ -p 2
M«H[ : MZ)+&1M}M bt

+.ﬁ__ﬂ[(&ak4//+3mlu£aﬂ) G)A,.é(:.g.[]

~ RF pinh 2a(H~2,)(riax, ‘ (33,, e Gt H)
“atf

+ 3Gk 9a(H-2,) Cpirax, . Co she
WA .

But Q‘a aﬁ taujitaﬁl
v Xa L _ podda(H-2)sor bt

-2
it aH
-  Corabt -
W@H&A [&”A“(H z,,)+&=mx]
, _ Lo % 2 Lt
*Mwm HW”““(H ) + otone] o
+ [[&*’af/-l—fwaﬂ)@: 1be + lj}
Maélaala//
-— MM(”%__J- (3&»3&4- (mﬁ"a:f/)
k pirnbta

| + 3 Cad 24 (H-2,). Cr 242, .Cn)vé{—'
2 nindlatl Cak aH

» (2937)
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’Fhe comp.Lett? vaiues of '4\‘,-, 2 and I’ to the second order
in € are given by the foilowing equations (2-38), (a3 9) & (2+40),

X= ¥+ 24 (L a(H-2,) . a;qyo‘m be

ot a bl
2 .
- {a , Bl dAX, . ar Tt
it a |
- Gt e s (1020 s iat)

ke pindkta H

IAT Ny + .z-{g Coha(H-2,) Cn ax, pcn bt

—Lia i 24, [pén”/”’*' (nk 24 (H-2,) (3&,244'4-{3«.!\26(?](2.38).
ok all 4 oinh’a ,

Zz=2,- 2ah odnhal(l-X) Lo ax,. eunbe

ponk altl
~2a Cacnh a(H-2,). st bt
Py | |
F-§
_ LPa sk aalH-2,) Cnrans ,(3&,3&4.5“44[{)'
)78 ok altl '

L z= Zro-— AL ot a{”*zo)oéua)(,o{uét.
st a

- R 4 pirt M(H'zo)[mbb‘__
pindta H

) , 2. '
-+ f’.w’j“t‘:ﬁ_ (3 L'oslbt-‘—WaH)E (v+39)



0.
snd P = Z 24 a y .
- 0+ A AaX, Mazo m“be
f5 pond o ok a H |
+ 2k [_ pond 2a(H-25) ni2be
pimha yord & H
+ 1 Cok 26(H-2,) + G225 [ (306 bt =)
2Coh atl
_ pink 2a(H-2) r3ax, (3 Crabt+ (‘awLQaH)
b ainh . H

+ 3 &)L. da (H- Zo) &”an . Gna bt (2¢40)
Q.M aH &)La H

The mean pressure on the bed over a wavelengkh is denoted by h“,

v 2L _. p 2 |
where E‘_‘ - J_.J {.P. doJ =1 .f. ‘}J—dei} (2¢41)
- 2_[_ j‘ - )—L PS x‘

T A T R ZsH

Putting Z = H  in equation (2+40) we have

{"E'] = H+ 1"/«‘1/&40(,/‘\4”54’ + ﬁ"‘ [(I"' &1&}',}{34@.""{_—-[)
Pj Cotea H pode 2l Y

+(&u‘a-#+3w’4f{)£»m + |
2 otk a H

+ 3 Cn2ax, C»n2bt |
ol al. GokaH
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i.e{_”d] — A-+ .Bmuaxo + CCa;J.aXo

Pq z=H

here

:\,_ H e .at [ Qowrbt—0 +(a,uu+3mw)a.>be+}
} oinhrH] CotaH 2 Cotoa H

= H+ a1+ (2ot 2l —1) Co2bt ]
yreva al‘/ Mﬂ-l‘/

b

B= 2R s bt

/

CorhaH |
C = o4 [ Boatbt—l  3G3be }
SohaH Cord a H 2 pend® 2l Cak aH
= at’ 1-3&1/%-4- 3 st
2 pinde a H Cohatl WL

{H- 3(1- scndlak) (nabe
ovinlaraH sind a H
Putting. zo=H in equatiom 2+38 we cbtain
Xz N 4 LD ax, pombt
Dok atl
- LA 2w 2ax, [ , (3&’3»2,54'4— talla H)
pemdall punl bt Yy ok afl

ﬁb Z7H ovrde aH .

st [t 162000 Bl
MﬂH Q-MLM
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1. E;x} = I+ }Maxo-{- E&nzaxo
Yol 224

D= — 24€a pin bE

Ma,‘/
E = - _‘?;4;51.. [oo.&bk_;. 3Corbt+ balla H] '
MLAH » ”. . :Laﬁ

= (A+Boin ax,+ Clnran,) (IHDoimax, + E trraxs)

= A+(3+M>MAI‘, + (C+ AE) Craax, + BDoinan,
+(ﬁc+85}mém Cn2 o+ CE Cotdax,

= -A-t—(%-(—%)/a—wax;-t- (C+AE) G 224,

+ 8P (1~ Cn2am) + %...tﬁé(a;sma- puis @)

+ &£ (1+ Errany | |

= (A+ BD+ ;C_/__E>4- (3+ AD - M}m ax,

1—(.&‘,4—6_‘5- E;‘_h %t:} Caim‘ + DC"'BEmaax‘,_

("!:1

-

j [p )Z [ }A-‘- BD‘(" CE] 2L since a=
] 7!.

Hence by equation (2¢41)

bu _ 2A+ BD+CE

& P-4
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BD= — 2A Bkt 1R W 4(';,44»‘6&
Coh ol oot aff it « H. Cook

CE =0 to the second order in A

2 P _ H+a'f[l+ (2ointial=)) Conbt _  2o0rbt ]

Ps aink all. Crhatl TrinkalCkatl |
s Ha o[ (epininti=r) Cobe— 4 Corbe]
ot a aH

L b _ H+ al [(aMaH-H—t)&zét’}
& pinte atl EakaH

- H+ :LARLM»&L«H  Chabt
aéwé.aflﬁhlnaf{

. }, pQ[H-Hza-ﬁ tal af. Cﬁ?/‘“’ﬁ (2042)

But f4H is the static pressure at the depth H,

Thus we see that the mean pressure on the bed, under a standing
wave, has a variable part. Since the frequency of the standing
wave is /2-”» we see that the variastion in the mean pressure has

a frequency (T‘b? ), tw1cel(of the standing wave. /<H~‘r"
Since b= ag tanta

‘ 1,2 .

ho= tgl+apR 8GR )

The amplitude of the pressure variation is proportional to
the square of the wave ampiitude, and is indekendent of the
depth, o
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CHAPTER 3,

Bvaluation of the mean pressure beneath a given mass of

R mdvingﬁfluid.

-

Ih chapter 2 we considered & periodic, irraotaticnal
motion in an incompressible fluid, and demonstrated, by actual
evaluation, that there is a variation of the mean pressure
beneath a standing wave,and that this variation in the mean
pressure arises from the secwnd order Yerms and is independent
of the depth,

In the present chapter,we shall not assume that the
motion is either periodic or irrotational. But assuming on.y
that the mass of the fiuid remains constant, we shall derive
an expression for the pressure at any point., Then by making
the motion periodic we shall find the mean pressure over a
wavelength,

Consider a quantity of fluid of mass M; the fluid
being supposed incompressible. Let us use the Langrangian
system of coordinates, x being measured horizontal.y in the
direction of the mction and 2z vertically downwards,

Then the ccordinates of a particular particle of
fiuid at time £ are ( X ), and the coordinates c¢f this
particle at an arbitrary time, & =0, are (%, 2, ). ‘he pressure
at the p01nt P (2% ) is p and ‘the pressure at Q,(x/zf-Jz)
is. b+ 2 Esze ---

THE equalion of metiun of the fiuid in > X
the small vorume PQ is approximately

. pvPp
p—(p+2£5:) « gpSz = pSz.3=
)2z Y- Q P+@PJZ*—‘
2z
,' -‘Bb 52: sl’?z Z
- 50 f =
Hence the equation of motion of the particle at P is
~3P- -(’w | (3+4)
The equatlon of continuity is
P’Cdz = f &xo dz : ' (3'2)

where P is the density at time €=
32 dadz = f ]ﬁz A, "z
o | P e .

f P Z da,dz, since X, 2, are
‘)e‘ indepenfient cf €&
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i,e. by equati'on (3+2)

f P dndr = l’:ffz dndz | ©(3-3)
26,

Integrating equation (3-1) over the whole fluid M,

p - dacclz
Jhﬁadz_fg,od«d;_ = [Pw

||

j’pz Axdz . (3+4)

In evaluating the integrals of equation (3-4) it is convenient
to regard x, z-and t as independent variables, rather than

x and z as functions of t , and the boundaries of M must in
consequence be functions of t,

At the time t=0, let us suppese that the mass M of
incompressible fluid is contalned by the free surface z=J ,
the horizontal plane =z = z’and two vertical planes x =X and
X = Xq. At this instant we denote fhe pressure in the p.ane

z=2/ by p, and the constent pressure at the free surface by Ps .
Then at this instant t =

j‘ 'N’d,xdz: Jx‘ (!,l_h)d;u

()(,_;x,) x ( Mean Votie g f"/’:)
= ("L“"l) (P ”s) ' (35)

where f?’ls the mean value of over the interval X, £ XX)(

To evaluate tlje second integral of equation (3'4)

. . (o] -
[spanaz=9p[ axaz —> %
[ M
(since the fliuid is incompressible)

3ff (=L T)du
{’Zfdo(- 3!af j’otw. - - 53/

= 2’ (M=) - 9 T dre |
af ff,“ T Y e Fa

Ne—
X

1]

Ry
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To evaluate the third integral of equation (3¢4) it is
necessary to find an expression for the integrai at times other
than t=0, and then tc set t=0 im this expression,

Suppose that at time t the fiuid M is bounded by the

surfaces S I(x,t) i.e. A4, .
z=z/ +3(3,t) i.e. ‘a{A‘;.
x= §,(z,t) i.e. AA]

and X = gz(z,t) i.e. AzA;

Initially when t=0,
S(x0) =0, §,(%0)=% , & (z,0)=>% (3=7)

The intersection of Z = :fl x = E, (x,F) is A,O"u l),

The intersection ¢f ¥ - -J'J x = EL(X,(—) is A,_ (x,_,Y,))
the intermection of (s is A f af l”)
_ 2=2'«T (), x=§, [x,¢) 0 (20,8),

/ r !
The intersection of 7 = 2! r’(z,l-), )c:’g'z(x, €£) is A; (“z)Y;_ )

o > Xx

M at time t | ! Al
 Aa (<,8)

N<
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fince the mass does not change,

”dm= A,H.A 8, A,
A ABAD-CAA,,C,_-J— A, Dc, A,

- A< A, A+ B, Al B

ot | r,’ p

f [(z’-f-:r’)- 7] o -Jf ( %,~%)dz
() -/ (% - “) 4z

/%[Y-(Z-fr’)]m

' ‘I‘his' method of evaluatlng ff dx dz over the area A of the
mass M at a time t leads to the following expression. for

sz dx dz over the same area:

r
_M'Zdlxdz = i[{”ﬁﬂ(zf,‘_rl)tj’ﬁw-]; (“’!-‘E,_)z.atz_
A ,I | ,
ei[ S an = [ Bz
A |
+L[ x,’[_Y,: (2/+ TI)J}M
g/

f (2’1-'.\"’) i ~ -f ot +jé Ezdz

u

Jf Ezdz, -.:L (Y )- %z(q,'l-*L}

+3 (%~ ") + E (u,-«,‘)



: v '

/ y;’

'
+ Ezdz — S,z dz

A
Tl e vy o] O
SN 7 AR oA S A
v 3
In order to find - Zdrxdz it is
> Iy

necessary to apply the fo.lowing theorem twice to each term

on the right hand side of equation (3-8) : If dfre)ia a
‘continuous function of both variableés » and € , and 3 varies
between X, and % and & between & and € , and if x4 and %
are functions of €

X¢
1:'(5—)=fJt fin, €) o
. )(l )
dE 3%, _ ¥k Ly ¢).
wa M= [Reo o S0 = T £ let)

( Goursat : Cours d'Analyse section 97 )

Hence if & dot denotes a partiel differentiation with
respect to t 3
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}szd,xdz'
),
! ) B LAY 4 2 -‘, 1
=220 d + 35 K -1 &'y
"i’ . .

3 >3 . 2 . b N
-f %_,L,Ta‘x — 1Y, +iNY
e ‘ .

r’ it ( ./ ’ : since 2z° 1is
-+ 2 g__f‘ ,zdz + V; Y, <, - Y;, Y;. ¥, [indepenﬁent of t]
 § ‘ .
px

r’/'}g N4 a, .
_.f. s_l,zdz-Y,Y;«,"f'Y,!,’a(,
A

N » 2 4 Y 4 '] L
-+ J‘IJ—/Y:.,r;,-. < ¥ - 2x/v -4V,

/ g
-,
|
Y- $
offhre - [lrre
'; A
L[
M
q; 2, o/ ') _Ll" _ ,B s’ 2
zf, ge»'é(z'””)“"* %3¢ (‘r‘) “"D?("Y'
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o
1(z+ff)a¢,¢ /lz.lTLabc
v, 2 ?

l
e.l'
r,—, .- ' /rl e
z Az — S z 42
+f §; . s

.
. o 4 ’ - -

S AR R AR al R A A AR A
« f = ) t o "
+5 NN —avn - & N Ly,

N, L a0} )1

>
- l,_[ ! Iad, _/ 9 L-rr
- ];,r 2 £(ze3) v, e’ * ot

1 5 )

fl-;{&'(_,’ vy -«'%y _.azer-:-""w Tj (3-9)

We need 'now to return {§ the evalustion of the third term of
equation (3<4) i.e., equation (3¢9) to the initial instant,
Initially t=0, a«,= a'= x Ay = .(": ¥, , awd y;':v};_’:z',

Suppose that when 3¢ = 3, ! Cok’
and when s %, T-% 7
Then when =, , equatlon (349) becomes

'_S'_' z dxdx =/’: [‘u—* ,_(zu.r')-— ,_j“]dm
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2 X , >’ .
£ [ren = [ Elurir
A Iy 9

< .. =’ ..
+ f E zdz -f §,zdz
A -~

(4

'k'l[r&; yyfrj_- ‘%/,%/rrh_.ah f;“i'k é;\ﬁ Yi]

r %

But 2’ is independent of t ,hence

T | zonaz |

W z,

_ [ (T T")+z"f’Jdu + g.v_a(z
*w

3% .
! *
- ‘gz,(z+a[.z;t’ XA AAA H:]‘“O’

{

‘
After substituting from equations (3-5), (3°6) and (3-10)

equation (3¢4) becomes




32,

Ps /

Hence P — 3\2

( -

F |
o (B G- 7 )«

]
x,,-x,[f g’zalz_ /;"?lzdzJ

/

A A BN SN A N —

- 2 [‘,(2_ V‘L Yz_, o, r‘ Y" ”“JY;Y.:."‘Q‘.Y,Y,] (3¢11)
g =% i

Equation (311) expresses the mean pressure on the plane z=2z'

at the indtial instant. It is desirable to trensform this into

a form which expresses this mean pressure independent of the

initial instant chosen., -

Let (u! w') denote the velocity components in the plane
zz z! st the initial 1nstant

2 2 ! - >/ 2
then - %,(‘ifl = (,'f‘f) = + ¥ :
2

When t=0 : ”,( )= @ ‘( )

Since z=2/+T' is the equation ¢f a surfacs
moving with the fluid we must have

2— (Z’Z’-:r():'o, (3-13) :

- Dt '

}L (Z-ZJ- :f() =0, : ' (.3,1-4)
Se

where :-D-e = q¢ -+ Ix -+ 3z

%’:_: (%.+“%+h%§(%—r+u%l -(—u%
+luu;:ﬁ_+ g‘:*-u%_‘:.‘,wg: 'gx
+(§?+u%’+ubw§.% |
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- From (3—13) we have ‘E,_q— uz_‘f’. W0
€ 2

From (3¢14) we have

> Hy/ T 2z
é_‘_-f - ut)._{’.f.z_u B_{’ +(

W € e X 2z ) e
}5"4—“%4—@%‘ =0 (3e15)
| ' s8] _
At the initial instent J/= 0 ena 3= -ic-:, o
f
henge Ef - u’ = 0
D€
and o‘o ﬁ: - ‘2_‘:,’ =/°
AN 2
From {(3+15) when E=o0
L r s’ Lﬂg'+u'fbm’+ u'l«:}:o
e+ AInd 2t dx dZ
J f
But by the equatiin of cuntinuity —‘: —“+ L =0
: dn 2z

. L _of { 1 '
M + 2 2w _ l‘:'.(.u’l’—:’_to‘b_‘.")zo

e+ 12 f 1o Dx D
> f
since 228 Hur 2 l‘:} = 2w 2
M W\ DdE dx
Hence VI 2w et
) D 2.8 2
LA el 2 (W)
' et D€ D
' P ‘ v ' { [4 .
or £/ = & — R (u‘,w) (3016)

¥
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Since X = B ( £ = 1,2) is the equation of a surface
moving with the fluid we must have ‘
) 3 - - E M—E; =0
j;'e(" Ei>'°- ) Dt‘( )
Henc'eu 25‘ - b_g.* - 0,
¢ )
a2 o W A L, L DE; VE
an 4 £ A <
'3(7* }X*—u%z) +"bt" + 6 2z 2 2z
0 L W w aw) 28 -
R enfg+0l?) 2 =0
Initiellf, = X; ( <= (2)
. Pﬁ‘] =0
? €=0
Hence W, = ’%;g_‘.‘
Lo o PE
2 2zt

Hence initially, when t = 0, we have

'}u;_ due )u) > dw.
P U _" W; g ¢ . +.2L)‘ — =0
+ Y >x ~ W T +E ¢, 3=

'S-E ) ¢
L) ot . . .
v, E -_— ‘?—‘:-" -+ u,: 1&_‘ [~ 3_’:‘_&
¢ € R >
But by the eyuation of continuity 3“64_ dlo¢ -0
I 3z

". ‘:Li -y ?_‘:.’.‘. - W ?15:-
4 2Z 2Z
ua - ‘)(‘L‘ w;.)

2z

s

[}

=

[¢]

[0]

v
|
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i.e. ‘g - (l- - 3 (u"'ot‘) (i=1,7) (317)

Substituting from equations (3e 1)) (3'16)‘ and (3e17) into
equation (3¢11) we have

E—}f’- - 32’

= If-’q )L (13’)-N Z’ -2 (ua)} 3T]alrx
N=X, [f {u;” (“L“L)}ZJZ _];;7‘1'"%'(“‘“.)}2 dz]

- 2

Nt ol . . .
s [da Y; r"_ NIIK’Y:,— GYY, + % )f; r‘J

= fxl[a:(,{‘fl)—u'z-z'dl—-gfjdm
N |

b P . L
X
+ -1 z’ ]2 (u'u')dn
)

=% ]

2’ | Xy,
{ .
| My =~y f{ : [Zu ‘az{u“) %, :

— 2 (R R+ 4

X, =%
’

But [Jz’z _?2 (hw) olz.j = HZ(uﬁ)}:i Lz'uwdzj ’

x4 T



P
fn[ » (i_r,_ - z’ly—ST] dre

X, B.7%
r b+ ) d’-] + = fz—l,?-(“"‘")d”‘
. ')5’ ’l"-y‘ H, o -

M=% Jy, 1 Xt
-L| [T (2d+u w) aLZ]
My~ >,

'+-—[ 2/ (e~ wl o) 4 w2’ {0 J:)

b/ | /)
- U0z~ (“l“‘l-‘fd)‘f‘ ]

- 2 .y / s\ 7. / S - Lt
Xu-m[’(’ > }; -« Yy - LY.+, Y,]

" . . f 'y 4
But ( o, ¥ ) and ( &¢ . rf) are the velocity components at
( %, ¥ )and ( ,Z’), Hence drcpping the dashes we have

the exact equation for the mean pressure at time t =0,

P“ _5-,_-])‘ (lf'j-a-na ﬁfg doc.

=0,  (3.18)

V (iz+ae) oz — (uwz), r}
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“ince the last two terms become

plt L-,(‘

-2 {uLw,_z- U, 2- n.w, T, + u,b.'{J
N7 : '

\
\
3,

= L [(ugfﬂ * = 4| (uw2) }

X, N, 10y %

Bquation (3¢18) is true for all values of z and t, and gives
the mean pressure om the plane z=constant between vertical
planes X =193 and =3, ,

By allowing Xp,to tend to Xy in this equation we
obtain an expression for the pressure at sny particular point,

Thus k-h 2
B g
= ?i (LT" ——Lo"-— zu=-37

33‘{/ (az-f-u.w) dz --(uwz) 3} (3-19)

z=%
We now suppose that the motion is periodic in % with
wave length W ; to fix the motion let us set X =0 and =\

and suppose that the origin is in the mean surface level,
Then since u and G

have equal velues ° h\—-—’/ﬁ *
when X0 and W= )\ +

2

z ‘ =\
{f (dz+uw)dz -.(awr—)lﬂ] (3-20)

< =0

vanishes identically.

. \ |
Also / jfafg: - 0. (321)
(/]

[Z Uy = Z Wy + U 0,7 + (utw,_ ‘)f -, - (“ ,_,'1’)!}
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Alsc since the net flow of fiuid across the plane z constant
is zero over a wave length we have

o 5 A
wadxz Zﬁ'[ wdx = O - (3e22)
: (] €

Hence using 3.18, 320, 3+21 and 3-22 the mean pressure over
a wavelength is given by

- A A
- P ) { z. _/f" L

= AT 2Er

In water of constant finite depth A , the vertical velocity
ér vanishes when 2= A ; so that equation (3.23)

indicates that variation in the mean pressure on the bed over

one wavelength in water of constant depth depends upon &
second order term in the wave amplitude.
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CHAPTER 4

The sdanding w®ve and the progessive wave,

In this chapter the results of chapter 3 are used to
evaluate the mean pressure on the bed in the cases of a
standlng and a progessive wave,

Suppose that the water is of constant depth“fnand that
the motion is one& which to the first approximation consists
of two progressive waves of equal lengths AN and period T
travelling in opposite dlrectlons. Then the eguation of the
free surface is

S=a, G (kx-ot) +a, Co (kx +ot) + O( a+k) (4-1)

‘ S, § o= 28
where k’ M J . T ‘
4o2
a0tz gk tad kR 4=2).

Lamb 1932, page BGJ

O[a k) is a term of the second and higher crders in &and Q,
the wave amplltudes.
When z=h,_ (y =0 , hence by equation (3+23) the mean
pressure h‘ on the bed ( z=h) is given by

b A 2
M—- gR -_--)%%1 i{%&(kx-ﬁ)mﬁ&(kuﬂ):“‘h

P
+ O (a4’

o 2
a, O (kx-o0¢) +Qs C;, (ﬁx-«—ot—)}

ob G (x-ot) +a} ot (kx +0¢)
+ aa,a, Co (kx—0¢) Co (kx+ot)

- Lﬂ:a' ral+ al Go (2Rx-20t) +0; &»(:Lkm—za":ﬁ
+a,a, (&s}kx+ Co aa &)
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s ' a
. f [a, G,_(('x_-a'b)-f- Qq G (£x+ a-t‘gi dac
o ) .

[(“ €& )x + %M (—‘kazﬁ')+ km(abu.we)

b N
+ A% Liiokx 4+ aaq,x Coaot }
2k '

o

{allf' a:-(- 24, a, C,,ga-—é‘}

1 1> d

Hence ba- l"_ -gh= é".'%;z (a,"+qf_+.2a,440,_wf) -l-O@’r‘é"‘}

P
= -29,8, 0" (raot + 0(a’a~"k1}

Thus to the second order of approximation in a +the
variation in the mean pressure on the bed is given by

h‘{- ‘:5 e b = — ’zé’q‘l'wla)lv’t ' (4+3)
P ,

lt is apparent that the variationin the mean pressure un
~ the bed ( T;h ) is independent of the depth of the water (X
that it is periodic in time with a firequency twice that of the
surface waves and in magnitude is propurtional to the product
of the wave amplitudes, '

We mey derive the mean pressure variation in the two
particular cases of the progressive. wave and the standing
wave from ecuation (43).

Setting Q,=0, and Y =Aa ywe have,progresmve wave of
amplltude a and perlod T =2®%/- ,and equation (4-3) gives

Pu-bs
P

Thus to the secon%ln amplltude the mean pressure on the
bed under a progressive’wave is ccnstant,

o

3{ =0.
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Setting a-, = Q, = £a , we have a standing wave,
and the equation ¢f the free surface is

T= a Cn ks Goor€t + O(a*k)

(4-4)
_ From equation (4¢3) the fluctuation in the mean
pressure at a depth 4 is given by _
.I_’L.__k-.’ - gk = - —;-_a"a'z'&nao-l'
f (4-5)

From this we see that the mean pressure at a depth A
beneath a standing wave has a periodic variation, independent
of the depth, with double the frequency of the standing wave
and with an amplitude prcportional to the square of the wave

amplitude, _ 7

This concliision was arrived at in Chapter 2 after
evaluating the second order approximation in full.

If in equation (2¢43) we wkite

H‘ = K_ ,6‘ - O~ and f: % we have
L _

p.. = PgR + 4 Pa*? Cn as€

A result in €ull sgreement with equation (4«5)
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CHAPTER 5,

The total force over a horizontal plane under a surface wave

motion of general form,

Perfectly periodic trains of progressive or standing
waves are of very rare occurence on the oceans, To examine the
pressure variation on the bed due to the customary surface

wave motion on the seas, we consider that the observable surface
motion arises from.a ccmtlnuous range oOr spectrum of wave
frequencies,

We measure z vertical.y downwards from the free surface
at rest and x and y horizontally in two perpendicular
directions, Let u and v dernote the velocities of the point
(x,y) in the x and y directions. The symbol A(u,v) denotes the
complex wave amplitude and also defines the two dimensional
frequency spectrum of the wave motion,

We let z =7 denote the equation of the free surface,
and we imagine that the fluid is incompressible, After assuming
the general conditions necessary for the validity of this
work, and in particular the possibility of differentiating
under the integral sign, we suppose that the values of T and
‘bf/bb at the initiel instant t = 0 <can be expressed as

-

("f) = ﬁ | Y'Q‘(akx*—‘,k")duabv {5-2)

€E=o
- =00

_by ﬁf{ B .,.,(ukx-rl”z‘:)d‘&pbv (5.2)
¥ e ’

where (R denotes the real part, ande as well as A is
a function of (u,v). We further suppose that B is
defined by _

B=icA (53)

where 217'/0"‘ is.the period of the wave of

. | o
length A= (ux+vt)'/L kR (5°4)
The period equation for waves in water of depth is

therefore (Lamb Chapter 9) '
ot= (uvt) GR s (a&e—-v'—)f-ﬁk (505)
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The surface wave defined by (5-4) and (5¢5) has its crests

pargllel to the line . :
ux+vVvy = (5-6)

We shall now derive a transformation which is to
be applied to equations (5¢1) and (5-2), A continuous and
absoiutely integrable function 4¢x) can be expressed by
the exponential form of Fourie¥s Formuls ( Titchmarsh

Theory of Fourier Integrals, chapter I ) :

'F"") _ i"[”e-.-xudu /”—P_l(')ew‘—pw -
— ,

-0

Writing ku for u, this becomes

' o -<{hxu oo Jhut
Joy = K [T ’azuf Ffro)e " e

Hence

© @ o < Rus
4)(1.':_) = ;’:—7.[ e e d»] flsy)e AS
— o ~e_-b

where y is taken as constant.

' P {kus
, = s, Ads
If q(u, %) _Lo Fes,y)e
_ 00 Y 2 g
e fouy) = 3§L ST g(uny) de,
where y is constant,

Aso Glay) = R [” Fluvye 7Y
. = 27 —od

W

and F (“"V)'

where ® u is constant,

f il g («,¢) otk
-
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Hence

: % Likxau - q'é - lkyy
‘f(,.,t,):)%_rf”e ra&‘ ;”F(u,v).e«,bow

-0

RN [ -i(kxa+byy) |
= ;7:)./;,0~[;9 e FlaV) dedv

since u and v are independent,
| [ kvVE > <kus
ok Fluv) = ff‘ de j fts56)e 4

f‘”fﬂée{ (bus + kvE)

—F(J; F) ALs L€

-

since s and t are independdnt.

=‘[” [”ii(kax-f—kw) Lix) ndy

Interchangimg F and f, (u,v) and (x,y) we have

Fena) = fw]:: e~ “"“"*’é"?) F (4,v) deov

where

e\ [ [ c(kxu é} - |
F ) = ﬂf f e ’V),Lm,g) dx oty

~=d Jo
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Hence we rave the transformation for s continuous and

absolutely integrable function f(x,y)>of two variables :

,F(w,g) _/ / < (klx-fVA?) F—'[a,ﬁ dud,‘/, (5..7)

-ad ~ab

where

FlﬂlV) - (éryf. f Lins) € - (ul:mvlf':)&!#:' (5,5) |

If F(u,v) denote a complex function of (u,v) , then

Fw) + R¥u-v) = R.2R (4V),

*
where E’ is the conjugate complex function of E.

Hence
' o peo, [ : ¥ ;(ukx+vk9) '
fouy) = .L,[ %’{FC“'V)*—F ) W (5. 9)
< k |
—ﬁ[ F(a,l/) (atn—v H)M (5:10)

where F(u,v) is a complex function,

where E-F(“;V)z i[F(u,V).‘, F*("“(°V)j

—({kéﬂ'ka‘j)
{\gf J{Q-)C(x.': dwdy (5-11).

Apply the principle of equations (5.9), (5-10) and (5.11)
to equations (5.1) and (5-2), then |
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L d

[A(u v) +A (-u,~V)} ,é LL 6’ -‘(ux+yyzﬁidg‘.(5.12)

“ob

n {'B(u,\l) + ’B*(‘“,°V)} -'-(5731 K £ ( ib'g) 2 (u“:z/:‘b' 5

but from equaticn \5-3)

3'5 [3 (uv) +B ’“’w“’ﬂ = L{A'(f"tv)-" &= A*(’“FV) x 0.]

Hence

| éza’[l‘\ (uv)— A*(—-u;-v)] YL[ o (u”yﬁt; (5:13)

From (5:12) and (5-13) .
k\* jf / 3T —i(tu-uly)é
uv o
A ( / ) C T“' A.f 6 e dldy 5 14)
-—ad “obd :.o
Now consider the expréssion

X rad <(u | .
n= E.J[ f Aluy) & VS +o.e)c£udlv 22
~b ~o0

V4

where A(u,v) is given by equation (5«i4).

< (Wkx+ ng,-f-a-(")
2= A(“ V) represents a surface

wave of amplitude A(u,v), with velocity components (u,¥),
period 2M/o- in water depth € , of length given by (5¢4)
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and satisfyimg the period equation (5¢5) for waves in water

of constent depth.
© & °p c(ukxeVEiy g0 €) _

Since Aluv) e satisfies the period

equation for waves in wakter of constant depth, " must

also satisfy this equation to the first order of approximation,

But from (515) we see that
-

(w), = :e.f[Azu,V)é‘“"*’-‘”"dkw
t=o : e |

o0

o= (T)t—a (.by.S'l);

~ o0 < (ukn+ vky4ot)
also }:1- = RJ‘ ‘{ A(U,V), (o e oLo‘aW
e _ _ .

—-—ad ~ed

- © [ - ',{ wk Vky)
B F%—ZBL'- = F f .{; Bluv)e (e ‘aa(AabV
>0 -l od

by 5.3

- DT ' ’ _
- b-t Eeo by (5+2).

Since the initiai values of the surface elevation amd its
rate of change with respect to time determine the initial
potential and kinetic energies of an irrotatidnal motion,
then these initial conditions must determine & unigue
irrotational motion. Hence since :

<= and ?‘:g:%% for t = O,
‘they must also be equal for all values of t ;
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that is

i L(ukx+V ot
S R [ A SR s

- 4
<o
for all values of ¢,

Since uk and vk can take all values then equatiom {5.4])
defines all possible wave-lengths and equation (5¢6) defines
ali possible directions, Then the free surface Z=J can,
by equation (5-16), be regarded as created by the sum of a
number of superposed wave motions of all pbssible wavelengths
( equation 5°+4) and travelling in all possible directions
from the origin O, For a given value of k the line OP, where
P is the point (-uk,-vk), is perpendicular to the line

UWx +Vy =~ o ‘ for all pairs of values of (u,v), That is,
every line OP is perpendicular to the crest of a wave, “o that
each vector E" corresponds to a wave component satisfyimg
the period equation (5#5), The direction of the vector 6_1:
gives the eoonsssmmstsmg direction of propagation of the

2 2-
corresponding wave component., Since OP~ = (“t-i- V") k,
a2m

OP = = , by equation (5-4).
So that all wave components of the same length correspond to
points P lying on the circle centre O and radius %:—r .

Diametrically opposite points correspond to wave components of
the same wave-length, with parallel crests but travelling

in opposite directions with the same speed. "uch pairs of
wave components will be calied opposite wave components, and

will interfere with each other tc¢ produce standing waves,
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The total energy of the motioun,

Before determining the kinetic and potential energies c¢f the
free motion of the sea surface we must first extend the

Parseval-Plancherel theorem to functions of twb variables,

>

o BW - —ixw
J,Tl’jr ;Fttf)c A€, then Ol},,)_._ fF(u)e dan
-—ad ~od

If F(«)

~

‘ < tu
g Glw) = 27 f 9 Ak, then 9(E) = f Gy &

(Titchmarsh: Theory of Fourier Integrals).
e

2ﬂf 6’0")6‘0({ ‘f(l') 24’:Lt )

-~

317[ f(l—)dl;j G ™ d»

-ad

| Then f Fo») &(»)dx

:uf Fe) gee) e .

Since ((u) = ;—Tl'f” g(¢) el‘:“k Ak
deno

- -“(-*')

then _211‘{ 9(- At = Z{——(u’))

, I"F(al) 6:(»5 J/)L = a7 f ft6) G (F) e

-

1t 9= F ana G=F  then

s

[ 1Ean o o [ Hol

-al

the Parseva- Plancherel Thetrem,
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By Fourier's Exponential Formula for two variables ( see
equations 57 and 5-8) :

J((sw)= ,/»,I[” gt fer 479 F(uv) dudV,

- “=~cD

where

% a0 f oo -[(k“'-ﬁk"ﬂ)
- F(w,v) = (J”\ '/;d [d e ‘)L{”'b) dn 4y,

Suppose that g and G are similarly relsted functions,

Then [:/: for, 9 90,9 i oAy,

jf 5(7/9)@47ff t(kax+kW)F_Lq’V) A s
® e © o0 - < (Raxs hvy)
=ff F?cu,v)aﬂwnw][f gry e x Ay

- T~ e =2

= (?T[ / Fla,v), G(-4,-v) aﬁww (4).

®pe i(kux
But as g('l‘ﬂ)=f f e ( »kvo) 6’(“1‘/) dudnv

~ =0

N

=0

o o _< (-uk!-kl/y) —
then] j/ &(’“ '-V e« clec v g (:'/ ").
o .
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Hence in (A) replace G(u,v) by.a(-g,—v)

and g(x,y) by g(x,y).  Then

a8 400 " o e _
f / Fons) G (%) docey =(i—-”)/ fF(u,V) G(uV) do v,
- “=oD — ~D
Putting F G and consequently f g

[ ™ | bl ants = () L [ o anss

where f(x,y) and P(u,v) are related by equations (5-7) and (5-8).

Rewrite equation (5,16) as

o e it %,  =ioF
$= [T Tt [ A A s [ sy
-~ Joop

and apply the above theogem :

o

J[om
P o o

~a)” ~ed
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¢ X - a—'('- 2
A(u,v)e‘w-f— A(-u-v)e I

( é £ - Lot
= [Alu,\/)e‘oﬁ_ A*-—a,q/)e_' rj[/‘*(‘f,l/)e O—e_t, A(~,-V) e ]

' ax et

A vy, A*(uy) + Av) Alu-v)e

"

-;,_i ot

+ A Ay T Au) A Cuv)

W\

2 B[ Atus) A¥aw) + Apa) AG-a)

since A (wv) A*(M,Y) = A(-a,~v). A *[" 4 ~v) and |
=24 0t

A(uw) Alu-) € " A v) A -v) e

= ;LE.[A{WV) Al- -v) o™ HJ

Hence equation \5+18) becomes

IV

- = (5-19)

. »
(] [ A )+ M A e [

_ 0 oo )
2
The potential energy ¢f the motion is / / fffr &xdﬁ
-~y o

' 00 00 1i0t
< 215 (ZF] [ [aeonn¥en« A A feae

by equatiun (5¢19),
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- v
/{
. The Kinegic “nergy of the mution is ;/[ [cﬁg.fj dndy (5-:1)

o 2-0

where z is measured upwards from the disturbed suriace

( Milne-Thomson JS 9.11),

With a surface displacement A’(“;V)- G) ‘S R (ux+vy) +a-t-}

the complex potential @W ( = ¢p+/¢ ) is of the form

Pole /o] wxer) 4)} ot|  (s-22)
MLk uev ./(u‘-*u") + g * + j '

But (}i’) =43 (5-23)
of 2=0

( Milne-Thomson: # 14-18 )

Then %"“t

' Un+vy .
= W[kmi‘/%;: + 4 ("-'f"ﬁ)}:ﬁ Co o~ €

+0 {k./ETF { ‘;‘;:7'2’ “ A (‘H&)H P

= gi- k (unevy). Cok (2+R)&Vu™v- Co o~€
+1 Cnk (urevy), ik (z-)—-ﬂ) /v~ Cono €
\ + Co R(un+vy) . Cok {k/u'?—@/‘{ (z"'{)}"?“;‘"t

— i ol k (urey. Al RSEF (24R) ). ol
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P ‘P[/JM. k(uxt vy), Cok {(Z-f") k/m—} O

+ Co k (untly). Gk {(z+£) ém} i a-'("] ’

hence

- - P[ou;m k(nx+vs). ok {C42) /i ] om0t

- o Crk(uney). Gk {Cz-;—-&) k/a.Tv-_V-'—}. Cmr(-:i

,’.[‘b_é] = Pa“' G)k(/lk./u’?—l/"_), Qﬂ{é(&!(—/y) -{—0"("}.
€ ,

Z=0

Hence by equation (5+23)

Po Cok (A& /iZT). o b luxevs) « o€ f
; g Aluy). G {k(ax-«—l/y)-t—a"’f'

9 A(“IV)

P = o Col (hk Jagy=)

Hence picking .ut the real part of g lequation 5.22)

b _IAW)  Cuf (e )4 TR} sfhliners) 40t
o ok (AA/ZT)

. /7"’ 0 9 AUY) Cok { CER)A ST } Jltrityrod)
== o~ Cok (K& /TZ7) Lo

(% ¢ Jla kngVhy 4 0-€
(] ”ejl/ ALZNF e A
o 2= o~
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Vb~ GAUY). kS, sink [k QA VEST ). ol {Rlurevs) vt}

oz . (hA (hk/aTev)
oo 1D (a
o imi g

0 Coh (A&Vier=)

v/

.{_ '—Ef‘g‘ tgéﬁ(hl/) E/F— W{Aé/x')4(hlm+l/k7{-0f]

Z=0 ~—ad 0

. { P KJ{[ A(“ll/) qu/_- W{Aém) ((ahnyVhiy s ot)
Ap e = o

But o= j'k i/‘*‘zf W %’Q—V’)ILLL}' from equatim. (5¢5)

Lok Vg ot)
Mﬁﬁ["’v)‘ T

~ad D>

Hence from (5¢21), the Kinetic FEnergy is
Eny VR 0'(')
Los[ [” M(HV A (qj o Cknr et ?L.d,

fﬁf ff:B(‘nV) e.é(uku—wagfﬂ'ikw 7’]%

'.‘=§°8

-—sd D

~ where B(M,V) = L A(“IV) .
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0 D

E, II B(“,V) e-«: (M/Z)H—l/kgf—o-f‘) edrs

‘J~0

=f[ é[B(u,V)é"’e*- B*("“’,-V)-:‘W] oludnv
g o : _

Hence by the same transformation that derives eqguation (5018)

from equation (517), the kinetic energy of the motion is

35(%) f [ I Jeems "+ B?—«,-v); ‘”}rd«aw

—(’3 (E E/[ [B(u,v)s (o) + Bluv) Buv)e Jp&«aﬁ/

by the same method as equation (5-19) is derived from (5-18).
But B(u,v) = iA(u,v) , hence:the kinetic energy of

the motion is

T\ A"‘ v) = A(a,v) Al=v 'V);irtj]dl‘dv ' J

(’9('&‘) ‘ E [A{“/.V) (wv) - / r | (50247,
N |

Hence after reference to equations (5+30) and (5-24), the

total energy of the motion is

2,03(... f / Al4,v) A*(“ ") itV (5-25)
~o0 -
So that the total energy of the general wave motion depends on
the square of the modulus of the wave amplitude A(u,v) . We
shall return to this result in chapter 9 when we find the
displacement of the sea bed due to a wave motion in a finite

area,
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The force on a given area of the ocean bed,

Consider a region of the water, unit thickness in the
y-direction, depth h in the z-directicun and bounded by the
limits -R &€ x < R,

: i
L :L: I Z:Z’

| : wdre BE>udz
[ , ' Vo

| ' =R

143

P denotes the mean pressuge on the plane .z = z’in this
interval,

F denotes the variable part of the total force acting on
the plane z = z’in this interval.,

f?s is the ‘pressure at the free surface z = 3% .
Then for the eguilibrium of the bounded fluid

F=2k(F-f-3r> (5026)
Then from equation (3+18)

R

F ,[ 3_‘"(&‘3”')-13. zd:-ﬂf]dx B (5027)
[ J Y
(4

p 4
- f(tlz'+uw)dz- (“WZ>Z=_S
o4 R



58,

From the continuity of the flow of the water in the region
between z =% , z=12’ and X = % R,

P _ R
L fudz
- - z | =
R S 3 K
and J (.) dx = f u dz
~R -z -R
K r S R
hence Zf Qdx = z f . AZ} (5-20).
» z e
-
If the mean level of the free surface z = ~§ is zero

at time 1t =0, consideraticn of the depression of the free

surface and the outflow of water gives,

R :
¢ 2 R

Extending equation (5- 28) to the entire depth of the water,
that is puttlng z = , We have A

fzbau [{.f W‘ZJ =0 (530)

Putting z =& and using egiuatlons (5¢29) and {5-30) for the
second term and integrating the third term by parts, eguation
(5¢27) becomes |

B, [, [Blera]en [ofefwe]

A z 1A

‘ ‘( : ) .R
| -'[Zl( dtlZ"-fxizj[Llcll f-jfaﬁJcil.-—‘(lthJZ) . (5031),
_ 7 r 7 =4 ‘ =21
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This gives [3:] 2o bhe varieb.e part of the total force,

per unit distance in the y-direction, acting on the bed {z=h}
in the interval -R < @< R, -
Bquation (5¢31) is completely exact statement, We have already
in this chapter, shown that the motion may be analysed into

a. frequency spectrum comprising all possible wave fe&equencies;
we suppose that the energy of the motion, given by egquation
(5+25) is nearly all ccnfined to a narrow band of freguencies,
then the motion of the surface will be wave-like, We suppose
the mean frequency to be chlTr correspoﬁding to a wave-
length ™\ , which is small compared with R,

We now ccmpare the relstive sizes of the terms in equation (531),
In general the relative phase of the motion at two widely
separated points on the x-axis will be random. We may, houwever,
suppose that the motion is regular and periodic over any
interval of the x-axis less than or equal to 2R, in length,

In addition we suppose that initially the motion was confined
to an interval )-R, < X ?; R, ,( where R, mey be very
great compared with R, ), so that the elevaticn and vertical
velocity of the free surface at points outside this interval
are initially zero. |

We meay distinguidsh three distinct cases .

Case I iWhen R & R;, so that the motion is regular cver

the whole interval =R < X <« R which we are considering.

¢ | |
Then LR[ %':»(ﬁ ) w*] dx

A
2_‘ ' [ (l‘f) -(o] A, since the motion is
P

Ik

periodic vver -R X< R

. 2K “{—ﬂ‘f L3 ]au
S 3er
o

L .
- O (ar*R) , where @ is the maximum wave elevation,

if we assume that (L and & are of ordér Qo ,
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For waves in deep water
| 2T
~*= 9 k Aot kR4 ana A= iy

R 5 ATy fa A kA
SN

LA

that is ﬁ.—. 0(0'1>\) .

Also { udz] O(aU')) for all =z,
- -R

The remaining terms of (5¢31) are of order a® Az or atft)";’

hence if R/A and Rfz are sufficient.y lagge we have

e [[R09-] e o

to the first orddr of small quantities, .
In establishing equation (3+18) and hence equation
(5031) we have assumed a constant mess of fl“lid, hence it
must be verified that these second-o:der pressure variations
which are in phase over the whole interval, do not produce
any sighificant motion scross the planes X =71XR,
| The horizontal and vertical displacements of & particle

when there is a st.anding wave are ( Lambgd 2.8)
X = ..A-g A Ko, o«-(Jo-f‘—f-E)

7 = AKX Cokx . i (et +€)

Consider the effect of a pressure distribution

p 26 0" CGrare  (IxI < R),

——

P 0 C(ix1 >R),

acting on the free surface of deep water,
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Regarding the pressure as due to ahead ot wabver

b=2a 0P Coare = gpAGkx Grace

L P
(2, A= 28
3&&1
The amplitude of the horizontal component of the velocity
. Rz
u is 2¢ Ae e R

since g= 0 (A o-"’)
Hence the total flow [f “0‘7-] O(ﬁ D‘T )?—0(“"0’),

Hence when >> { and (/2 >/
equation (5. 31) will be velid., Since (J diminishes rapidly

depth and is almost negligible when 2z —n- —-X ’

E o P |

when z is of order )\ and R/)\>>‘ ’

Cage II: When R ,KRER, . We suppose that the interval
S RCX TR be divided into smaller intervals of length less
than or equal to 2R, . We assume that the motion in each
of these sub-interva.s is regular and periodic but that there
are random phase differences between successive intervals,
Since, ‘{(G»ﬂ,-l'(aﬂ <. -eé,«p)-(-(. (S‘u.ﬂf.ﬁ‘.ﬂ‘f £ S, O, )‘}1

( whefe the @ 's are random)

“\/-H = 15 1 Gres
.y
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since the products 2 Gn (0,,—05) have zero sum because
of the random values of {(P,—l?.;) , the sum of'n vectors
of comparabie mcdulus in random phase relationship with vne

another increases like Jn times the mean modulus,

4

Hence j/ lL (1T'j?NL]abc.
Ef [ (457 -] e

- o [F R0
= O[ (%\é ato-? K’,]

O[a"o'" CK&){:} | ) ‘

Qfter assuming W and W to be of order ao~ . The remaining

" terms of equation (5.31) are of order a 0 *Azor a €N
hence if RN and Rfz are sufficiently large equation (5+31)
is still valid, ) decreases exponentielly with increase of
z, hence if 2z is of order A and ot ((f,),/"or (ffz)‘/"/A

is very much greater than unity, equatioh (532) remains valid,
Cese IIT : When R > R, .

By allowing R to tend to infinity an exact expressicn for
the total force [.-F']z-‘ over the whole plane z = constant

may be obtained, After reference to Lamb ( 1932, @ 238) we

see that a standing wave with a surface elevatioun

M= Coot Crhkx ‘ on deep water arises from a

velocity potential - b = g' e € e —kz o ki

where o~ = 3 é .
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Generalising this by Fourier's double-integral theorem, an
a0 : L -]
. p A
clevetion 4 _ ;/ Coo € dé/ fe) G & (=) Ao
o . -~ O

arises from a velocity potential

o g . -—RZ -~
¢= #-/ ;,Mré.e . M/ -F(.() Cnté{m-d)a(d'
° -0

where the initial conditiuns are 'Yl: ‘)L(’t) , ?o =0 ,
where the zero suffix indicates the surface- value (z=0).
If the initiai elevatiun be confined tc the immediate .
neighbourhood cf the origin, so thatg(f(d.) vanishes for all

but infinitesimel values of & , we have,

?5’ g w0 € e.k.‘l,- Rx ol k
= = =

after assumi:Jg /x '
4 ‘F(oc) dx = [/ )
' -

This value of ¢p may ve expanded in the form

G€ ‘{l- o"er o¥e* /_Afe'kz&,/zx AR
$=F T
[o]

, 0 | 2
= 9‘"[ {‘-ﬂ-‘-@k’:,_ }e-k,z&,kxd/éj
* E B

- X y
after using = gR.
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o0

. V . n |
- Now ]eyg,éx,éa(//é

s [T i),
/?. | e Y P7

u

N k(ﬁ-&x'x)
_ / (. d(e ) t"ak
- R‘ A 34-2.\; '
b 4N f( +x =
;R-v‘&;{e(‘” _’éh-ﬂfkh._'.& [ i(/é]
Putting ‘J:—I:-!‘&,@ ’ W= resb
| Jgkzc,,kx, KAk =
© - ‘ n —k!’ 619~
e [~ (-). 4z ' {[}» (ﬁr,,.;d-eim'—-ékf-‘?&&)ﬁ
r". e"“a. r‘[‘& o
- t‘ ] Co(net) O,
=
GE( e L GET20 2 (i }
Hence c#- T-l—_—{_r_ E ™ I (m = +
- gl T _ L e (2E) }
N { 2t 3 7 (Z5y
zt g e s smm
- ?T_; ;:,2,— , Twhen (_;;_z_’:),; is small,

o0
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Thus we have that the veloc?,lty potential of the motion due
to an initial elevation of the free surface concentrated in
the line x= 2z = VY is proporticnal to 3&z (> +z."), when
g9 e"("‘kl”rl is small, A similar résult. will hold when the
initial disturbance is distributedicver a finite interval of
the x-axis, Hence for very large R the velocities acriss the
planes z = X R will initially be prcportional to R—’—, end the
total flow [fzu dz}e will be proportional to R—l. .

The terms of the equation (5¢31) to be evaluated at the planes
'z = X R therefore tend to zero, But since the total
potential energy is finite, we may assume that the first
integral of (531) converges. Hence the total force [F]L;k
over the whoie plane is given by

F - ~ /1 vy _ i—}
{F]L—J.'- / TE*(’TJ ol e (5032)

. [V
Since () decreases exponeh{tia.Lly with increase of depth

b
&- F } - % f ';_-S Ane approximatery .(5° 33)
2=4 -~ b .

these results may be extended to motion in three

dimensions. Let S be a s uare given by -R <€ x < R,

-R<< y < R on the z=0 plane, Suppose that the motion in £ is
wave-like with a%nean wave-length A . Then if z is comparable
~with AN , an R/N =ana (Kﬁ,),/"/) are both large
compared with unity, wheré 2R. is the side of the largest
square over which the second-order pressure variations are
effectivelfy in phase, the variable part of the total force

acting on the oed inside the square S is [F] ﬁwhere

R
¢ ]z B05) -ty oo
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Since ( diminishes rapidly with depth,

— R '
F: BL R ya 2

/
it Z>EM
If it supposed that the motion is initiaily confined to a

finite region of the (x,y) plane, then the motion produces

a total force F over the whole bed, given by
) -~ ;oo
F )k (I- vj
= = jf f [ﬂ" ;,‘f") - | da Ay
P 0 -~

L () 2
a %»ff 337 dxety (5-36)
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Pressure variation at the sea-bed in terms of the

frequency spectrum,

By reference to equations (5+19) ang (5-36) we sea that the
variable part of the total force acting on the entire area of

the sea-bed, that is the wholie area of thé Xy-plane is given by

?E - R ( E)lf}; ﬂ ”} .‘,% i) Wm0 A A ) &7 i

= -K. 4('53;{ f Aluv) Al-4-v) U’LCHrZLkM/
_ ~8 a0 (5¢37)

Now A(u,v) and A{-u,-v) are the compliex amplitudes of
opposite wave-components in the fYrequency spectrum. So that
three conclusions may be drawn from ejuation (5#37), viz.:
(I)_The variations in the total force on the sea bed arise
only from opposite pairs of wavescomponents in the frequency
spectrum into which the sea motion mayAbe analysed,

(2) The contribution to f? from any opposite pair of wave
components is of twice their frequehcy and proportional to
the product of their amplitudes,

(3) The total force F 1§ the integrated sum of the
contributions from all opposite pairs of wave components,

A wave group is a complicated wave motion, the component
simple waves all travelling in the same direction} such a '
motion may be defined as one which most of the energy is
confined to a small region of the (u,v) plane, excluding
the origin, A single wave group will not possess opposite
pairs of wave components and so cannot cause variations in
the force on the sea-bed. For appreciable variations in the
total force on the bed the surface motion must possess at

least two wave-groups which are opposite, im the sense that



68,

some wave-components of the first group are opposite to some
wave components of the second, '

We now determine the total force over a finite area of the
sea-bed, We take as the ares a square S, symmetrically
situated with respect to the origin and the axes of x and y
and defined by -R<x<R, -R<y<R .,

Let us now défine a hypothetical motion of the sea surface,
where the equation of the surface at any instant is z = -5/ ,

such that at any time :

S T

/ within the square S, (5¢38)
T %1
and —_— T
D¢t €
_ ' :
and '{’ = %——-:’ = 0, outside the square S , (539)

This motion wi;l not satisfy the equations of inotion, especiall¥

near the boundaries of S, but it enables us to replace

integrals between the limits -R and R by those with limits
+ 20 |, Thus e ustion (5-36) yields

.__ = f[ f‘t"d‘d = [f ‘: d”‘dg (5-40)
P *
~R -R .
We also define A’(u,v;t) by the equations
oo
, = (U kn+VEy 4 OF)
e [ W D
| C Tew '

(5041)

® T L {(ubnsvhyeo€)
/ {(aR N+
ﬂ‘ff"U’A (”I‘,I.e)'e‘ ' aU»\M/-

= ~2d



69.

by analogy with equation (5¢16) and other equations defining
'_f in terms of A(u,v). Hence

{ { [* {0t k 2 d/é.f(k!-l-l’,)ﬁ
;[A (“,Vj(’)-q-‘A (~u,-v;¢) e = s gtxd? ’
| J 4
Tr —i(uxtvy) k.
- 9 . Lo -
é"’[h(u,v,(') A (-u -v, :m)jjr E dxdy
o0 ~e0

hence

’ o D) -(‘(4‘!44/”,&
Aluvide ™ =-(ijr(‘f —;_-7)6 e iy (5+42)

The actual motion of the sea surface is taken to be defined
by equation (5¢16).
~ Because of (5-38) and (5-39)

}ff—s’dudg = ff'“““‘?;

~R -R (5043)

Then equation (5¢42) becomes

( -l(ang)b d
A(MV l.')e =, {f(f*w_")e ‘;&Xd? (5-44)

-R R



70.

But from equation (5¢16), where A(u,v) is & neighbouring

wave ccmponent,

o &
i(ukxev, By 40 ¢)

-/_f= RffA(u,JV,)e 'd“’ Adv,

where O] = ~( V)

a0 = -

- 4"6 -(0’" - Ex+V IE'J)

- f [i[ﬂ(“b"l)e -+ Aé“,, l,)e ] (u’ l ‘t“’lw
-y W

Similarly

LOE t(u kt+Vk‘.1)
Rf f.cr A(ullvl) . ‘ d“( 4y,

e ©0 &F -(6€ “'(u,ﬁxﬂﬁkb)
=j J‘ﬁ[(?, A(u,,\/,)e “"‘A -y~ “)¢ € du, AY,

w—ad “w
Heﬁce {"' L-:?" ‘33_3’

oo %A 40_6‘ x o 40,'"
= [f; A(“uvl)e + A (us V,)e ?',A{“l)‘/:)e

-ad "D

—ioe ) “(mkx+ukY)
- 97 A (-uu",)'e < d"ﬁdjvl
o
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T%lat is f-f- :—;—_ ;—g
° o - (67E] ifmkr+ik:
’” [(w—)A(u.w)e SVZRL ) S PO P
‘Hence equatlon (5¢44) becomes A (‘4, v; €) =
<0k —(cy€
1[I o
-R “R .
A (urkx+v ky) - ((ukng VEy 4o0t)
€ Tatd] e ol oy
R R

i U-u .k)c-f VA + (o=0,
[ ‘: ‘(‘ZL{AU‘I I) (1+ o')e K ) ( )kj‘ ( )‘E‘i

-x ~K P
- c[(u-u,)kx+ IVIV)IL;+(a-+r)
-H\ (~u-u) (1-F) < olm, Av, ‘2
vl al -cf(u-u,)hxi-lv-v)k; + (n—n)bf
But j‘f A¥(-u-w) e e AV,
-od "

(4 (u+u ) Ras (Ve ))131- (ﬁ—a‘:)"}’
f A*( “»"v) e 1 i, AN,
T .

6""'°='=\z

where Ay "’“;_ s Vi=-V,

F P i f ey ke (W) by € (TG )
g fA o) e sy
T 0

ol
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A (v

B P ——

Badiec (5 45)

- uru)bxr(vev) by + (ﬂ”ﬁlam

+A(“|Vl) (1- :i;'-) Ay An,

Since k is as yet unspecified we can write, fog

convenience,

R

R= %T" . (5-46),

e dx 4y

R R
~ilu-m) R _i(v-v)ky
£
_Q -

R

-t(_u—u.)h"‘ —i(v-v) k .
e 7l dy |
-R

£
! [ -i (u—-u.) k

Tl

-c(u—u,)'"' _e(u-«;.)rrJ —i(v-Vi)kY

P, e A

i ()

R
2 s (U= )T f - ((v-V)ky "
((A-u.)k R

2 i (A~a)TT [ -i(v-v) T i(v—v,)ﬂj |
£

- L

(u-u.) k (-1') (V—l/l)

4 son (=) T, B (V-V)TT

(u-w). (v-y) K

[/
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R R

- (laru) k3= iy vy by
Similarly < e . e dly
~R "R '

4 o (U+W)) T, e (V-V,) T
) (U-G—u‘) ( V+Vl) hn— '

Hence equation (5+45) becomes

Alw

an* f] !T{ 4(«,v)(:+ )-'(r._ o)o“‘(“—u.)n' m«w—v,nr} |

U-u)(v-%) k*

* - (o307) E
.,.{ A (u,V,)(.-_) ‘ U’T)M(ufu.nrxw(ww‘ﬁﬂﬂ

(vu) (veny) k>
. That is |
Alluv; €)
20 oo
, . -i(ro;)t
=L A (u; H—-J L pm(u=a) T s (VT o W
}f/ ) ( (u-udm - (V=)™ P
~ad ~ad
oo ¥ , )l—
- ((T40;
! -0 A (utu )r /.:~..(V+V}ﬂ' ‘
+ 3 A (“ Vi (' 3. { 1.
o> ~d

= 1, +I,_ _ - (5T
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In the derivation of eguation (5432) it has already been
stipulatéd that A is very much less than R, so the
frequency spectrum of the motion T consists of waves whose
length, given equation (5-4) is #k small compared with ZR,
The factors in the denominators of L, and L;make the
integrands small except when (u;,v,) == (u,v) in I. and
(uy, ) == fupv) in I’_ . In either case 07 =0~ ,
So that in either case | - g-_-_n_-o and |- %_—:_l-_,g ,
that is

(5+48).

~i(r=c)¢t
pr(u v). /.:M‘(u~u.)'n' W(V’V)T— (0-9 |

Although A(u,v;t) is dependent on t the integrals for

f : ral
”%_AE , ?5_3—,, , etc, :contain factors (C=o7) , (=) ,

etc, which are small over the critical range ¢f integration
: near (u,v), where the two wave componeunts are nearly alike.
These expressions are therefore small, and so A'(u,v;t) is
only a slowly varying quantity, in time, Hence we may use
A'(u,v) for al(u,v;t).

o From equation (5.40) and (5-41)

F = u (-u -V dl"
I Z"' @' ’De’f [[ A [u,v). A (u v)+ A( V). A )2

r 7 J _ / 2<ct w
=fe,(g).§.;”u¢ Alwiy, A (uv). € o

t
~0 T

riirs 240€ |
= -R. 4({;")1”’#(«4\/) Aeu-v).e. duw.
) !

(5049)
-]
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Comparison of equations (5+37) and (5¢49) shows that the
expression for F' the force over a finite area (equation5.49)
is similar to that over the whole plane (equation 5-37) except
that the original spectrum A of the actual motion is
replaced by & new spectrum A' . _ .
BEquation (5+48) shows that A7 is the weighted mean of ..
neighbouring wave components, A(u,v) end Aluy,v, ), of the
original spectrum, That is each wave component in the new
spectrum is 2 blend of neighbouring>wave components in the
original spectrum, and further each wave component in the
original spectrum contributes to neighbouring components in
the new spectrum, /

From equations (5¢4) and (5¢46) -2-;5 = (“L“’V")/’so that
the number of wave lengths of any wave componeat intercepted
on.the X-axXxis inside the square region S is u, and the
corresponding number on the y-axis is v, Neighbouring wave
components of the new spectrum are those such that the number
- of wave-lengths intercepted on any. diameter of S does not
differ by 2 or 3 from the corresponding number for the
original wave component,

Thus in order to calculate the total force on the
see-bed under a limited region of an actual motion, we may
obtain a close approximation to the required result, by
calculating the total force over the entire plane for a
hypothetical motiom, This new motion being such that over the
finite region the elevation of the surface and its rate of
v change in time are the same as in the original motion, but
outside the region they are zero, If the dimensions of the
Tegion are much greater than the mean wave-length of the

original motion, then the new motion will have within the

region a@requency spectrum, which differs only slightly from

- w
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that of theé original motion, Tke contribution of each wave
component of the old spectrum to several neighbouring
components of the new spectrum results in the new spectrum
being a 'blurred' edition of the «ld ;sharp' spectrum, This
blurring may be regarded as being due to an inability to
. define the spectrum exactly from a knowledge of conditions
over only a iimited area., The amount of blurvsing is not enough
to prevent satisfactory resultls Being pbtained by the new
spectrum A,
Since A'(u,v) is the freguency spectrum of the

hypothetical free motion in which at time t=t, , ;f"and

%%E teke their actual values within the square S defined
by -R<€ x< R, -R< y< R but are zero outside the square,
Then when t=t;, all the potential energy and nearly all the
kinetic energy of the motion is contained in the square S,
Hence, after reference to equation (5¢25), the total energy

of hhe square is very nearly

aps ( /[A W), A (W) dedr (ous0).

-,‘)_w
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CHAPLER 6,

Wave moticn in a heavy compressible fluid,

ln the preceding chapters the fluid has been regarded
as incompressib.e, This assumption is culy valid so iLing &s
the time taken for a dGistugoance to be propsgated to the bed
is smali compared with the period of the waves, thal is

ST or RLeT (6-0)

For ocean waves A mey be of the order of several kilometers,
¢ is about 14 km/sec, and T lies between about 5 and 20 secs,
With these values of ¢ and T we see that cT lies in the range

70 km, & cT & 280 km,
That is, condition { 6+Q) is not satisfied.
It follows that & satisfactory theory must therefore take
account of the compressibility of the seabwater.

In this chapter we shall develope,the second oréer the
theory of the wave motion, in a compressible medium, which to
the first order of amplitudes is a standing wave of the gravity
type.

We shall first of all build up the general equations
and then solve them by successive approximations,

General Eguations.

Take rectangular axes 0x,0y and Oz with the origin in
the free surface at rest, the z axis vertically downwards and
the y axis parzalel to the wave crests,

The motion is takeilm to be periodic in the x-direction
with wavelength .

Let z = R be the equation of the sea bed (assumed
rigid) end z = J the equation of the free surface.

Let & be the velocity, P the pressure, P the
density of the fluid, and let /?, and A denote the values of

p end P respecyively at the free surface,

Assuming that the viscosity is negligible and that the

motion is irrotational,

U = - gd ¢ (6°1)
where 45 is the velocity putential, '
Assuming P to be a function Jf P only,

2 P d
%"-{g,-&gz—fg;ﬁzo (6-2)

( Mikne-Thomson: 'Theorekitical Hydrodynamics page 82 )
where ¢ contains an arbitrary function of time t,
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Set szp dp (63)

Tk
Assume that the reiation between " and f is
é_t — c* = constant (6+4)

AP
that is, that the veiocity of scund in the fluid, c, is

constant.
Then from (6+3) and (6e4)

le”&%ﬂ - Clp(l) e

The equation of continuity (Milne-Thomson page 68} is
Dt _ V=0 » (6+6)
De ‘

D . '
where p¢ denotes (as in chapter 3) the differentiation

foilowing the motion,

Hence D FV"}#
Dt

g = L [(OF )P dP ., )P

- Ve P( +u'2u.+v '1+w)z

= L[ P14

JCARES

?

(los) un 2 (los0) ) (logf)« w2 (Gof)

B

Iogf’ ‘/’Tf‘) since f.r _.constant |

)

J

°|“"
\_/

by (6°5)

"

"
¥lv ¥lo Qi #}j Q,
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2 D2 .
Hence V ¢ = ;_-41.' 3¢ (6e7)

Eliminating P vetween equations (6+2), ‘6+3) and (6¢7)

C"V4>= : -) (’34’ io_t‘-{—gz)

o2 (28) v (2] +u 2 (3]

]
2y’
(ﬂ\
9’
W
\._f

-';;t (3 «) '“%c“—- )°V%(£_.‘£L) -“%({;.‘f )
+9 .?£+“3%+V?;+w%)

. 1 _
= %~%.(igz} +g_\7(%f) uV(ie’)- g2 (s o)
since , the motion being irrotational
’B_‘b = - W
Y3
But W = —v¢—‘ hence 1.
- D/ ul=-124
u V(‘%ib) = H'%(V‘ﬁ)’ L 3?( u) 1’3
Hence eyuation (6°8) becomes
Vb _ o ¢ 24 _2 u)_uV(-’“) O (ee9)

W I T2

This is our differential equation for &P  for which
we now find a solution by successive approximation,
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The first thing is to exprees the boundery conditions whieh

a solution must satisfy.

At the bed, Z=4 and =—w= (%)zzf o (6-10)

At the free surface Zz = I and P:ﬁ,

and by (6¢5) 2121 = C‘-,{,J @/P - CL(,JI =0 (6-11)

and .% by (6+2) [?J’- Lu ﬁzjz‘ (6+12)
(6o D2 - 6°1

From (611) (Fe' L.y =0 (6°13)

1 - -2:‘?3
and hence (v d’)z:r Y
Equations 612, 6-13 and 6214 express the conditions to be
satisfied at the free surface Z = ¥ , It is, however, more
convenient to have conditions satisfied at the bed z= 0,
These can be obtained by expand:mg the equations by Taylor s
Theorem:

Fb‘t _ 1L ’-' ] — ['?L_b— L (Li-l-qr] —0 by (6e1l:2)
2 2% +g(z+3") z=0 [ z=-3

_rzo (6-14)"

= %?—iﬁ’*-ﬁ?—)"’f'%z(@%'i‘—‘*f?z)
TR (R e o
- 2 dxk o &
._'gg Lu-(-gz+3'(ua,_-“fr+9>
_;r’- ’)3$ __u'Bzﬁ _(:a_f‘:z +.._--
= et X =
Ui = (R-tades),,
¥ _uDu T Vé _uVe_ _s)‘]
T (30 ‘-‘r”)z-.fT[q—rw T
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- That is

Y 1 1y IR Y
(?75-1’4:‘,"' f( deor ~ 2z +g)

+ 2 Pé _ o Pu
[* e 2z*

By Taylor's ‘heorem

F(x3) = F(2) +‘fF’(z) £ < ‘d"" F"(z.)f__, _

=0

>
®
Nh:

J -t'--—_— = (6-15)

{F(’z.ﬂ’)} = {F(Z)} = | F_[a) +IF (DH- {; F%’q*"

Applying this to equation (6»149

(;V@ {w] ”’P V¢ [ V¢j+~ 6:16)

In order to define the soiution completely it 1is
necessary to add a further condition expressing the
assupption thht the origin is in the undisturbed free surface
Since the mass contained below the free surface is the same
‘as in the undisturbed state we have

]>“;‘j[§dz="/‘>.d)c/2,(z

where the sufflx o denotes the value in the
undisturbed state,
Equation (6#17) can be rewritten

[,\dxx/{()”-ﬁ,) dz -/:\da/:jpdz =0 (6018)

Set jffdz _ F&E) += {F(zi.-;)}i%

={F(7—.)+T-%E(_") 2 3F(2) _,}
* yA

(6-17)

E 2z

-

-0
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2z
hence since [ (2)= f pdz. Fl(o)= o

and 3—5': P - F@)'; [f}L%
w322 (26

etc,

ffdz- ﬂ_fj N _[Dz} +---_,,.

Hence equatlon (6+18) becomes

J' f (P~4)dz -

[ [3 O PO o

From equations (6-2), (6-3) and (6-5)
V4 / (’bcﬁ x
<5 u .
- f: e = gt * +9) \6-20)
S
2 L
so that - £ (6-21)
A
since ‘-L o in the undisturbed state.

From eyuation (6e p
P 2]
%j ] o %C L
}””s = (P-ﬂ)C’;
.o h'i’s= (fa"fs)"l ’ (6ec2)

52, ,
(P e /___. s c‘ by (gep1)
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9%y
[ - B (a )
To find solutions for equastion (6¢9) we write
b B
¢ - é ¢I + € ¢;_ + - —-

Euy + €Y, ---

“

1= €3 + €% +--— (6224)

p-b, = éf’l."' €*p, € - - -

pop, = €p+ €

where €& 1is a small parameter,
We can substitute from eguation (6-24) in equations (649},
(6+10) and (6°16) :

L) (e ¢, + E v~ ) =& Vile 4, +€*¢.)
2 -
B %, (€4 +e* - —) — %% (&s,+e‘gz+~)}

— (e Ui+ €d,«--) g—m{{;(&g‘+ ézgz+~—)L} =0;
2
{,g'z (é ¢+ € _;*"')}zzkzo)' Gnd

{VL(G &, -+ e_’~¢1+ -~ )}Zzo
+ (éi; + E‘T,_+—->=F%V"(é «#‘,-t—é)'ﬁ-«--—)}za

+‘,_-_.,.,____. _—O
— .
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For a first approximation to the values of ¢ , & , etc,
we can neglect powers of &y, and for a second A W{Z:
approximation we neglect powers of €& above the square, Fot

By equating to zere the coefficients of & and E* we may
thus obtain equations by means of which ¢ and ¢z may be
determined,

For the first approximation we have

)
? Vg, -92% -, (6-25)
Y= T3z |

u,} _ o
(;( ¥ Yeg =0, (6-26)

‘(v‘z?é/}z:o: o e

From equations (6¢1), (6+15) and (6°72) for the first
approximation we have

W= —ged Py (6-28)

(%—t>2=0+ §% =0 | | (6-29)
i (b e+ €hyar — )= (e e €l nt)

Equating the coefficieht of €& to zero

h:: C"

After substituting in equatlon (6+20)
2 -4
e T ege e S

(g.
= -eS%.L ﬂl*‘ i's. (é“’lf E,+- J-i (€ 4 t€a - )?—}

+ l( é (écﬁ,f-e" +-- (éu.+é a,_*-——)}’

+ ——— i o —
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Bquating to zero the coefficient of & , we have

2z
i . = 24
fS - AE
Hence ﬁ — @Lf_' = 2__4" eLrL , (6-30)
s s 2E
where 2y = S > ' . (6431)
For the sécond approximation we obtain :.
5 2 3
from (6-9) ‘SL:_:..C,"V;*__? 3‘;:: = -E(“l) (6232)
from(6+10) @_"’1} =0 (6433)
Z/z24

from (6416) (V"qsz\)z::'- -3 (%,_ Vzél.,‘, (6-34)

from (6a41) Lu:l:—-%«md_‘fz (6435)
s (019) - 93,=( B8 - pa1)- T (), 00
=0
from (6#22) Fi = c"f
3

and after substituting in equation (6-20)

3 f ? ZYZ
g2 <po[3- fen GO e

a

On substituting for £ and J in equation (6°19)
we obtain

fkd"‘f{(éﬁ"‘ €% «--)dz
_/>‘d‘x[(é,'f:+6,_f‘+-- Y( A+ €EL+E. --)z%_

2
et (eqeeso VTR (bretw Dposfe-]=o
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29x .
From (6¢21) .é = e © = e,'ﬁ
b

(P)ap= foe” =P .

Equatlng the coefficient of & we have

fdw/ f,dz-/dz :f(g,_d =

which is ]I fdz — /J’alz -0
2 4 ,
/ d'l ﬁdz ——f :f,dz E
o o 4 o .

fubstituting from (6-29) and (6-30)

j f . 'B"‘/ P ,,lz + _./ ('3$: dx~ ¢

g (> f’()# j/' 24
C”f‘hozc—e dz + (aez,o

o
, p ) ‘£..¢a¢( \Z/YZ ‘b¢( d/:._——/o (6"38)
LAY | da — ¢ dz +
5E (3¢ )_,

0 o

2
Equating the coefficients of & we have

L)\d,”[{&dz __jf)d,,,_[:r;ﬂ'fﬂf;_-(-f 3" g}z =0

From equations (6436) and (6-29)

- (D8 g :_ua*‘)@‘
3= if'z-'),_'* € 325 Jyoy

3 _ 9 g8 2¥z
From (6-21) ﬁ. = EL'P"Q = 2‘1— 6-{'
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Substituting these results and from equations {(6-37), (6-30)
and (6-29) we have ‘

A £
AR w*j 2¥z
fohf{ E'E[a?"i‘-“*f&(a—e'> ¢ 4=

| -fx_ﬁ.(ﬁ/&e,"n_/ﬂ.e_z_r_z{mﬁ._

/

A R r Yz
v dhH g 2 ? 2
o ”"‘/[ﬁ— f&'+fet(§-ﬁﬂe ks

E:L YAl z+;~(3¢’._ig}_i s 2%

, Lgct \ ¢ ¢ 9 pzd€ A€
- 4 w,)‘
.276" > 6&1 = 0
-
- 92
But 1Y= 4

r R A
—‘-%j”hf 2 M +/(3_¢ dx
o 0 'DC' . 0 3(’ >0
Y R ’ 1] 2vz
= 2)| dn [i‘-*?-i»(?é—#‘”e Az

A —314,' Y
{ { 4% .
+f [ﬁ.u"_f_’g" a“zﬁ!—' “u»(ac-) }z_d”" (6239)
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Suppose that & and T are periodic functions satisfying
equations 6-9, 610, 615 and 6-16, If B and P are defined
by equation 6-20 then these equations imply 66, 6-11 and 6-13,
Providing that grad P is not identically zero, equations 6-.l
and 6¢13 show that Z=T7 1is a surface moving with the fluid,
But since the eguation of continuity is satisfied (6+6),
follows that the left-hand side of 6.17, 6-18, or 6-19 is at
most a constant. Hence any periodic souution ¢: @H* of
equations 6-25, 626 and 6°27 must make the left hand side of
equation 639 a constant, say C, .

Then a solution of (6¢39) is given by

¢ ¢* & —zyﬁé_ : (6°40)
Since
Jy]’xdmf‘%_‘f’fe dz+f (%),
=2ng:;>‘49x/%';_‘:_’l_*.¢m42+/ (M dn
g

W
o

Hence if 49,* is any periodic solution of (6-25), (6-26) and
(6¢27) ,a solutlon of these equations and (6¢39) is found by
adding to ¢ a constant multiple of t, Similarly if ¢b.

any perlodlc sosution of .{6#32); (6¢33) and (6+34).a solution
of these equationsiand equation . (6'39) is to be.found by.
adding a constant multiple of t to ﬁ* .
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Determination of the first approximastion ¢: R

We assume that ¢’ 75 a simple progressive wave of the
form ’

< kx 3) '
| b= Z(z)e (fx o (6-41)
where k:)ﬂ%\ ) o~ =*T/r and 2, is a function of 2z only.
iti - 6-42
Writing Z:er,zZ(Z) (6-421
4. k
P, = e_YZ;Z- (=). (fxs e )
'ng_.il - - .a~L<#, .
dEr
’32' = - kz¢l.
Dur
'34, 4,(kx+tf")[ -dez' Yf-s ZZ‘]
32. _ .

Wy i(kxred) V2 L2yl
Sy 2 A

_ J:(kx-e-a-")' e-—Yz dZ/ YZ)
_ _24(kx+r€*)£-rz(___ },dZ, Y‘Z)

Hence V‘#{ ‘(éx-"o—é—)-ﬂ' (4 ZI LYdZ’ +YIZ kLZ)

Az
Hence equation (6625) gives

T A 0“’-'-»Y"‘z' Y2 “”Z]

.,q.g'i(-k""r(’). sz. ( ' - YZ,) =

[ 4

’, Lj__‘zz;—l‘_f_(g.‘;c"Y) % _q(}/-(-é'k‘;d'y: U‘L)Z‘: (0 ,A
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But 2Y= 9 (equation 6+31) and we write
1

S

c
L 2
at= k- -g-:_ +Y - (6-43)
So that dzz‘ - a("Z‘ =0 (6°44)
- ——dz” '
Assuming that o =3F 0 , this has a solution _
—Z
z,= A « Be o (6745)

where A eand B are constants, hence from (6-42)

4> _ [46« z+_Be.~.zJ' e—rf- e";' ( R At-0~E)

- o~
4= [A -z _ —(‘vm.zj'e-c(ku— ) (6-46)

< - Ex
M, [A(\r- SN2 Bevia) e ”""ﬂ “(kret)

Hence equation (6¢26) becomes

A=) &R Bl sOR L 5 (6047)

L ~ 2 ol L~ < kx*-r(_)
34’,_‘_3__@ LA(Y_“)e—(Y )z B(V )e(yfdilj-e (

M dTv
e A g (] 09

. {vl&hﬁ {A(Y-d)j:{— B( Y+ct) k( A+ 5ﬁ <(ky+et)

Hence equation (6¢27) becomes

A (0= k"} -+ B-{ (h—eﬁ"—h"% =0  (6-48)
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The eliminant of A and B between equations (6¢47) and (6-48) is

Alr k) =

@’--L)l-—k" ,  (Y+0'—k*

#_gyﬁ{ad‘(( Y'x-Yk ~Y4-—a(+ wk”)
I nat Y-—fo- Yk -Yaidg-‘*’k"}:ﬁ
9 ytva e =)
(s A (B Y }]
- - e’”{ (Yt kb} pint. b+ 2a(Yix ’7—#2}9 &A@(@'W,‘
In order that equations \6-47) and (6-48) ﬁay possess non-zere
soiutions A (oy k) =o0

(Ferrar: Bigher Aigebra I p.173)
i.e, Y( Y-« k}al / ,‘A +a(( Y_o(_{_kl)&yde =0

¥ (V2= k) ¢ (Ve k) Crth <k =0

Xt Gt <k o Y(P==RE)E _

Y <% A"

' 1
but R'= «*+ v Y*

© it Coak + YRR B
AL N
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but | CL: 2:9.;
v oate Coth ah +Y(2¥E 14-1&'7){ = o

=
ok Cthak + 2&-&; (Y’lx’-fgj} =0

S Kb Cotd ok — (aac)‘ YL (1- Y& ) =0
r‘—

o PR ah Cothak — P(=A)*= R =0  (6.50)

wher§ P= -29_;’- 5 Q: YA (l.— Prﬂ) (651)

If the depth and the period of the progressive wave
are known, that is 4 and o~ are given, then equation (67 50)
determines X , and hence since _
ot gt

2 X ' —_ - =
R'z x>+ c_,_ Y= at+ ot °
we have k and hence )c , since’ )\ 2Jt/k Phere € is a
constant, the velocity of sound in the water.
Now’ fg e = / , hence as &« & tends to zero,
1C(,l 4) tends to ( /—® ), which is assumed positive,

et @Q=Y&(l-Pre)=ve& L= 9Y}<‘

When &1 is large and positive, -f(ad\)ls negative,since fel_—q— =a0
' 8.0
since (Gl O0->1 =as B—>

meite ) = x*£> , then
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dF L. Gl §— L Coccl’B « L . Crecl®D. Cred &
> «e® 4@+
4..0" W’
<0
Hence %;lf" is alweys negative,
Thus we have (1) 4 %) >(/ &) >p 8s «af—o0
(2)  L£=<%) <o when Q’-ﬁ‘é + =0
(3) b_‘:(‘ <o i.e. £=0 has only one
29t real zero,

This real zero corresponds to a gravity type wave. There are
an infinity of imaginary zeroes each corresponding to a
compression type wave ( Whipplg & Lee 1935)

We now assume that o« is the positive real root of
equation \6 50).

)

\ (-«)

° (Y‘)L ("'h\\ T
" k) =)L Coed r - ﬁ Y- r{( (- 2 H)
YL b yL- 4

>0 since i M@I >1 .
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Hence O’{)l < (aL‘()L

or (1 < &t : {6.52)
2 L 0"
Hence, by (6¢43) ay = >0
kN .
S RESZT >0, (6.-53)

Thus corresponding to & which satisfies equatien (6¢50)
there is a real value of R , that is to say a real wave
motion, since k= 25, .

From equations (6¢47) and (6¢48)

A ___ B
(‘. ) ‘(h"‘)ﬁ [Y,d’_e-(r—“)&
_A -2
(Y+-9c"* (Y-=J¢

Hence after substituting in equation (6+46) the first
approximetion for ¢b is

. _ e (kreot)
4; [(Yf-d) ' -—(If- ,-(Y ) (hdlz‘e
eth - (Y=t} s~ (Yt Z 4. [kn+rf-)
[( Yea)e — (=)= J,e (6+54)

This value should satisfy equation (6-38),
It will now be shewn that it does in fact do so :-

from (6°5¢4)

- o - < t
7;4,,- i [(fea) 00112 .u,(mhj (kaot)

- (Y-—a()-e
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f) TE) da = 40{(Y+d)4 = (fm)e ]f -‘(kua*)

=i [(,de.)e 4 (y_d)e“’*} [ .4(kx+ov¢)]

-co—f(éck_)h’

= £ (e —(v—«)e]
= [ T (T

=0, (since J:lT-.-_ kA) ,

% —lhtlral - ade( 2] (b
f ?_f/,elrzﬁ(z -7 of 7:(}«*4’ i( o e «( ]44( u—:fi _
0 _

P |

\

e L—c ( kxe0-€) (-e.”/: 2 ,LL)

jo‘%d,,,f 2¢ 2 {e"_‘f -«4)[ 4(@!{—0-4'}

= %‘_’ (‘e'ul .2-‘“' -e{re,(e{}T,

o

= 0.

That is '

oy [ [*20 e o [(M) te =0
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Thus qb, given by (6-54) does satisfy equation (6<38),
Since the equations ‘6+25), (6#26), (627), (628}, (6-29/
and (6+30), which determine thg first epproximation are all
linear; the sum cf any numbeq:solutions is also a solution,
Therefore we may take as the first approximation

#=[ (reg T2 (e

X [L, i (R —0t) + L;A«Jn (éx*’o*)}(&ss)

u—(huzj

representing two waves of the same wavelength travelling
"in opposite directinns, ’

Determination of the secund approximation q#& .

. We now substitute the value of 4% given by equation
(6+55) into equations (6+32), (6-33), (6-34) and (6-39) and
solve the resulting equations for b, .

From equayion (6.28)

-4 = grad P = L’%f’ “’.J_'%%

wherej_and J are unit vectors in the directions Ox, ¥z respectively,
Th 2 _ (i { 6NE_ [ JdPN L [P\
o W= (L3i38)= (F+($)
From (6+55)
~oh~(f-)z xh~( )2
§;§l=iﬁktf¢)e o ({Ld)e_ k

X [b, Cn (& )t-_o-'") ~by G (h+ a‘f’)ﬁ

Db _ L g h=(F=lz |, s~ (Y
TZ‘-{—(V-« e (e _?

‘X [L,,.w'.. (kx-ot) + L,_m(kx+o£-)J) o



97.
2, 2 T | _~dlg--(l’.a.)2 - +
- ul”k g_(halge __(%a‘)ed& (Vfdz]

x@,fmm-@e);gaf (&xeot)+34 b Cnlen-ot) Grllne w—j}

<
+ [ (.25 s (VE z«/»(rmi]

X E[&,f‘m’*[kx- o{')-(—é.::oi«" (én—rf‘)-o-}é',z,_ o {'éll-"f}ﬂd«-('éx”‘f
- -d' - 2 |
= k"[(hot)e”% r ,z.'_(k-d)e“ (VM)Z]

X lpgf{[+&;(éx.-0{’j+,j;4:{l+ G-L(kx+¢;+)}' |
| +b, b, (ngkx-(—ﬁao—f-ﬁ

i (})2 wh=(Feat)z |2
+{(Yﬁd‘7€ | 2yt sz

A e
b b, (-—G,J/kx-e [m).a{')] .

LW =
a-[k" {(y(,d){“'(y"lz( “ Ajea—( Feat) 2 }

B L O (M,L}zj
x[[," o L(Rr-0t) ~ b:'m;. 2 (e o-(-)j

. [k" {( o) LR (o (h-«dz}"

+( Y’;ac")"‘{ & k-‘)z; {.4.4- (sz}l‘] 2, by oim20€,
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The coefficient of cr{b,"pg“ 2(/21(-06 _E:raé‘. 2 (R N)} is

b Br i -2(Fz 2 (fod € lyi-(k-*)‘ 2mch L(h—-&)ﬁ

_ (ytﬁ)’[ e.—m- 2( k--dz_ 2 e—zkz.+ QW— 2( Y+adzj

2-‘.( Vel fF R= (r-a)* o2h= 2 Yed)z
+ (bt ] B peal} 20 2002
w2 (VY (k)T

@
o Oz P Az, < -‘YZ
=

‘?(f\

O - o Jra ] (b 25
| kU (6e56)

TR S

O = —of Y= L o Bt} (V=< ) |

The coefflclent of .2‘ 5 220t is

-G'[k"(y ' -.J.dA -2( - «) kz(Y- —9—Y2-

k( ),_ 2xh=-2(Vex)z
+k(v-

2 waak=2( =)z

+ (Vo) e

2 ar 2ehe 2k
er(rafiam T o (prafrer i |
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The coefficient of
—1hh-2(fnlz

 - r[-(pad‘{k’}( Y-fd‘} e
—o(V-a) ke (Vea
car () ke ()<

— C® .2- ’-( Y‘t’()z " C@e -L( Y{-a.’ Z- 2 @2 ~2Y=z
mere  (B_ _ o () +k}(Y+a()" -24k
C =-—a~{(Y+4)z+k}(Y-¢L)¢ (6+57)
= —of rea £} (Vi)
Hence ' 5 '
g _T Coe-z(rad: &-rlrz O -2 zj
ac L | |
2
X[ b sind(kr-0t) — b oin2 (k:u—o—t—)}

® altealz | B 2¥el sy ) pinaot

+EC@J%ML+ ¢
Thus equation (6#32) becomes
- ]
3h_ Vg-g2d =
o ) e
[ Rl k-adz Al C@ ]
x[“m:(h 0"’) by Ml(k"*”ﬂ

+[ B 2t O vz, -zYzJ 24 b pima et
| (6-58)
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From equations (6'29) and (6 *34)

(V‘qa)z =5 (3. (%V%)

From equation (6 *55)

')‘h [(Y )e A iz(k 4)e“°{r*d,i]q{$,&/kx-o~(—j J
Go[kx-eﬁ

(2;{)2 0{(%‘“)‘ _,(y,,‘)e""] b, C,,{la ot)+ b, G.(kxf—a-é)J

W, [(m)e% (=2 _d)eu-crmz 2

2" D A (kx-»t) +b, ocn (éxpo—l—ﬁ

Vo _ y*.,p-)[ (fui) 4 (P12 (yﬂ).e"d"mmj |
2>

."[/»,M« (k x--vé-) + by m;.(km-er(-)j
R [ [ i Pl
B (e T (g e ]
x[t,,m(ku )+ b p..(/u.w)}
:{éV‘] = [ eaif- (e R (et}

2=0 -k"/{ (Y—d‘f‘e +(Yx L)'ed‘ﬁ ':
x [b s (n-ot) + by oo lex-od)]
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e of bt )]
X [ by sin Lhx-0t) +by piv(krert)]
;Ience .g(v?eﬁi)z_,_ﬂ
= a-(rlu‘)[(h.i)e’“j‘_(y “Je ][{P }L-t)?efﬁ{k (hd)}wj]
Xﬂ;b‘&,(ku-ﬁ) +b, G),.(kwo'l'ﬂ[b,m(kx w(-)-t-lig,,f-vw(/uwﬁ');g.
L (<P (s kE (o'
= Lo (P[] R (r-aPf 55
(e e e} + (] R-Or] &

2ot
"[ b Lk -ot) +ht oin 2 [y ot) —2h b, ain ]

e V1¢}

That is

(V‘{’ jbl‘““l“" o) b, m1{k1+0+>+)% W:M—J

(6-59)

1} A

where D= ~ r”ldb)g:(hdﬁ’ (Voo K
| i o %Mj
(Ve § RS Cred™] -(v—x)%"iz’i(r-af} « (] B e

—- .‘,d, -~ |

' '1 1] otk
-y {(m){ e (2% (i (e
'2_3 - 2_Y(‘30£1+ yl—-kl)J .
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But A (0‘,’ k}?o, hence by equations (6-48) and (6-47/

(-] (- e = (F] (F =077
o (et s (e (e S
» () | (Vb e ( y.a){ (et K] |
Hence D= - ?:E(_QYE:‘.? {.(Y-aﬁ (reet)= kl}-( Yd)flv-«)i ¢f
| + (] (Fra)=2" b+ (1 (v-aﬁl-kﬂ.

- ..a-—(V“‘ﬁi:’-"% {,h—«d k }-u{(\r L ﬁ
25

. - uév-"‘) [ (e ~(yen]

D= - 4?1X. (Yoot . (6-60)

We now substitute for 40 in equation (6-39).
We have already shewn that -

u( =& R:YM) ~xh=(F- ad rn)e lom [h-d)Z]
[ G ’“"’*)?*f Cfir Gon exere)f b (s Gt
b (] ok (107 e (B2 o

x[L 4 Gu(k-oe)%g - Coa (hrrot)]
+ b, bl(-—G, J/ﬁk.-f-avlo"’)]
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£ '
1 Akt 2AZ
‘[: A [(h’d ¢ —1(('14”)-&(1’«}2'@“%““ Az

= kz[ %y—‘ AT )z (Y*‘).J""‘"A“j *
aa °

- :é( [4%“ 4'( rea) & - ( Vfof)ze'u%f-[lf-d J’eu‘ﬁ]

L{ [ A2z .2.abd~zd.z] ‘AZ,_

€ - 2+ e

- IR e_. Q.a(‘& + i’LZ ;%, AXZ
ax — e AZ — &

o

~a2xf
=,3Ld [-4—«1’» +€2pu:£ M]

= D e et st et (et
x[4 B*E)N+ b b (20t A]

FY(E (- 4ot 422k 3=%)

. 2 o ¢
2

S EI Ry DY WA R
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34,, . [ (r+ 4 ke zr-«/_z (F-e) e ,Ue-'m.qz]

x [h Colha-ot) + b Go Cha )]

(M’) - ’152“[( e oy (y..z)ie”“'“i?
AE
x%} b 1+Coz (£ 1—0’{’)}-{- },L:a{ I+ (2 (é#-rof—)}-&, b (Gakx+ é’ucrl—)j

f (gqb,)z 2Yz
- ot M-m Mok = (bt (]
g

[x L 14 G2 (hx-o) LB {1 s (kusoe)} by by (borkastiosot)
X235

L [ S
c;

_;Yo~ {4%‘"{*(\(’“"”)“{ ~(lr)e -2 +(}’-—c)1¢w£j

lcd

x 1 L(LH—L ) - 17,5,) 53204"} (6-62)

Using the value of bbldetermined earlier

1 (8., = fl (V)& -(Y-dﬁ ]
X[Lb"{ H.&,z[kx-o-{’)} +L b { It Coa (haeot)+ L,Al{&bér-féuwl)jﬁ
-+ (Y Ly" [,g-""f_ “4‘}

x|y Lﬁ{ - GabxeotIft A4 {1 Gor (hxvoelfabyh (Goaot- Go2 kx)]i
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'. '[xz’(gﬁzj" = .
18 ) 4 (g AL [ L) A4 4D G o]
TN o Pl (LA 0N b, A Gravt] (6e63)

2 ot )
-;J'- = 0"%."(?’-‘- )e B ’-Z{-( 9’1“”)@"“( (V#)ZJ
z 2t » _

X {-L, C@(kx—o%)+ia,& (éxﬂ-a“')}

(), =
) (54 [ ]
<[y G lhr-ot)=by G lkxs08)
- oyt o (e (e e
'x{g_ b {1+ Gz (kx-o—e)}+§ b {1+ &,J.(/auma)}

_Ll b, (G2 kx+ Cn;a»(—);i .

. fh./_.. 24, '32% ) e
S 2€  d22¢/,_,

' = o) (™2 ) [(Ym)e‘“f (k«)e“-/‘j
g

,"‘["i (heb) A= b b X Cin.za»e—](s-su
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(?-)j-’-')z g'{h.d)e —(r-=)e _Fz
X [1, o k- 6) - b Cothxerd)]

S ,lc"jr (’b‘/’/

2
=z, {cm)e“"" (-)e }
{L(L WA bbha,za—éj ~ (6965)

Adding together equations (6261), (6 62), (6+63), (6-64) and
(6#65) we have from equation: (639)

[ [$28 20+ (3],

- E@( L,‘%Lf) + E@yé,l»l Co 20t

L SEPTNEY

£0= ﬁz@r«- el Pat)ih = (Yed @ o (Ve 2
oL '

+ Y(Y’;'- aﬁ’- (-— 4 <A + -eu‘{- e.zw&> %—
as
- Yoo [4\(*- e (1 F)at —(Frafe™™ .,,(y_dﬁ"’""‘

xc* “
-« & ~al 2 s~4
+:§- [(refe ™= (1a) < Pa+ (I f’\

a-‘(Yid"} (< ‘?ﬁe"‘“}[{hﬂ)e -[y..L)e’q‘})

- <L 2
;o;c* UY*‘% ()2 J 2
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B XY (v ata 4l 1Eak - (Vere ™ E (a)'e R

— 4 a2y) ah + (<2yH) kel (4% Y”)J“{] |

+ 2 ([ { () 4 (en)e P iatp) (e“.fg“‘)’j
02 [ (fra)e g2 (L)

2 —2xth 2 2.aA

. 2E° _ y .
N L[4t -(pde3 (1
Cearpi e
.,g—}(.e,“i _e.-daj[(Y‘f“'L) 2.‘({_ (’(_a‘) e"“&]
= 2y~ (Y-G—Yat)e " (dy’yl—) 4 ;(H—-L)e“-’#d"'\

= (1) + L (-l B £ (amy) R Ly st

~ (22Y ")-.‘2_5:2 + (Y—-ct)r" 24K (Vfd)a' ~ax 4
g

:A-Y(Y- )-(-2{“:.)/2. (Ym) ] —2af
+J_[ L L+2(k-“) ot Jx&‘A

4Y(Y'§L) +2 (e (- Y+ ) 2%
+2(4~Y) (a(f-Y-;':"' 2= h

"

S‘Mw—— °kL"‘+Y Ol lY— L. -U:L: k—c{.‘. }
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C2e®
Nayr) | |
RE a2+ - L o2 pr\ —axk
4X(Y- 2: Y )-u—z(.a—r)(qz‘ Ye kﬂ;+Y>e

+2{4-Y) («rY.A R X2V 22k
| 2y

= af Y’-fx"- k) (V) (BPrra ™ Y’—)e‘l"‘*‘
Y | |
+ (ap)(— KreaaYeatey?)
- Y
2(Vn k) - (e (o) B (Pl (-
Y .

[Sine (L) ket (] Oy e

(e ] (e FE A (V0 Creay= £}
st (7] (b e (R (el kT |

O
4' E V): 2—("L+Y’l-k")-
A (= T | |
- — (v (et RV} + (e V) = K*Creed)
» Y
2(“L+Y"—/k") - ZY(Y’;,("} ~a2YEk*
Y |

4 i
2Y* v a2l -2kt -2 Y 2 X2k

4 &,
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EQ = 2(x=Y)N. (6-67)

E@ does not enter into the subsequent work and so need not
be simplified. We now have four equations (6-58), (633),
(6759) and (6-66/ from which to détermine .

Guided by the form of equation (658) we set

é = { £ -2CY-d)z F@é-z(v+a)z'-2 F@e“’y”]
X [L,)/.zim.z(ku-a-é)-b:,,,.',..p,(kx_q-ﬂ—)]

® - x)Z @-:‘LYz B
+[F@z°’””°")z-\- FO~H"™YZ 1 Fe ]
x 2 b b, oim 2ot gl ismse)

O FG) F® F;@ F@ F@

where F, y s Ty and are

functions of ’Q and 'ﬁ that is, of the
physical properble}s of the motion and the medium, and ¢z'
is & function of the varisbles X, z and t,

We naw substitute for ¢‘ from (6¢68) in (6-58) :

—2(jt)Z

2 [P PO S
- Y FO,—* Y‘} { o2 (- ﬂ—)-/::n&ul(éu-ﬂ"ﬁ

PO E e L ]

X2 hb, sinart + %
dZ
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V¢, 2 ~2(f-~)2 @ _a(Y+a)
5—;-#; = 4{“-4) F : + (Y+at) e 2
-— :LY F@ -LYZ] [L o 2Lk N~ mf') l}_ @m2[£1+a-é)]

+ 4{ (f-a)'F ® 2= + (V)" F e -2 h‘,‘)zl

_ oy FQ YR a kb, pizot « DB

A

X I =0 —2(F-<)2 @ _ | ® Ly,
L L L{m’izFe‘Lrjﬁ‘

X {L,"'@;A.J.( kx-0t) - b, oin 2 (k .l-f-o*l")j _,_;;_4;[

V= o [{0-0 0 0%, flrani o
—2 (Y2 k) F @e-lyzﬁb,’o;..z(/m.a{-)-A,‘m(kuwﬁ

-+ 4{(\(.«)‘1-'@5 U L et F@e‘l(h“’z
-ay* F@[”Y‘ji. 1b, b, ain 20t + Vll’ .
Vo o[ FOn pOS AU, pmar]

% C
X U % pin Lk x—0t) -&"p«kz(éx-,.ﬂ—):ﬂ

_%'-F@e-z(\u)z F.@ LT FO‘LY_?S’“‘ oL a0€

+ V4
2 £2



111,
Equation (6-58) becomes

33-4,2/ _ LV¢/ Bé! @[&LML&;-of')-—Z):MI[k1+E‘{ﬁ
e

+A 2b b, /.»w 20€ .
®
Now select Fo F@ F F@ F@and Fe so that the

-right-hand 51de of thls equatlon venishes identically, Then‘
FO Ao (it =k} + 25()]

+ F@)e-z(h—uz [_ e a.c"{ (Yoa)= Ez} +124( VHJJ
°2,FO —2Yz [~4of"-v-u-c:"(.Y"'-—k") + LYg] .

= 0 e.z(k—-t)z_(_ ® —2(re)z @ -2¥vz

C e 2 C e B

and
F@g-z(k—*’l [_ 4 ~ VL(-—C"CY~ai)1 + 14 CYJ)]
4 F@@-L( )z [_4—0_,__ wer (e )+ 2§ CY*'*)J

__2/‘:-@6~LYZ [‘4_0,2._ L(..CLYL-(—lﬁ YJ .

= (@ (rIT | (O ez o
. ® N
Hence F®= ¢

-4 02 4. ()=} + 29(Y=)

F®='— | C@ }(6o69)

~ —40 (=K +25(0) |
®_ c® |
F= —40= u < (V= RY) +26Y
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c® \

| —t e c* (Y-a ) +1? (Y-«)
®

= C s (6069)

—y (Yf"‘) ""‘Ui(r*'“)

F@_ P
—4ot— wty +25Y J
And >é 'c"Vt}S'-— 28] _ | | .
be’- - 3 j:b—z' = 0. (6-70)
_affdl O _syk
(?’;‘ﬂ "“[F a2 E F g S L Py w]
VL Jz=¢
[L pw:.(k"""") Wg.(kx+a~l-)}
- o)h 2Ry K —yk
-1@__ ((on)é 2(F-h (W)t k& FY Li'f] |
: DE
XJ,L'L”/»“J.U'(' * Tg)‘z:ﬁ

Hence equation ‘6¢33) becomes

) 7 Pt

Dz /52 ..
+G. 2b by @im 2ot "(671)

2 K 2 ()% .zn@
~ where &@-.- ;(r.d)e"( Opa(ym)e  FO-ule

and G@-Q'(Y—")—l(y“ F© Z(h"‘)e' @ Y-}YL@

6272)
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 aiso (V 562‘)
=4[ {(r9- k}- F O {(veatt ¢ F a(piiy FI
x[ b 2gin2 (kr-ot) — b * i 2 (ks ot)]

ﬂ[(Y-d)’F@-f—(YM) F@ oy F @’];,L L,om.w-{—
Hence e uation (6-59 becomes +Hy 46,);;,, o
( V‘cﬁj Lg[l-ﬁ (e R F O af (et kP FO
+ v(Yt k‘”)F@J [L,"m’»-.z(ku-oft) -Lfm;\:z(kum)]

+['1>- 4 (-4 FE w(rett? ,:@+qur@] 2y by o2,

met s () = (Dt K (oimr Lh=ot) = oin2 (bxsot)]

+@+H@) D/Lblm:to-l:' (6-73)

 where H = - 4{‘ ML KFFS af(reatt }’F@#?(wd)’:@} |
674

©®
and H@’_-‘I—(Y“")z F@—l(..(if-f-d)"F@"- ‘s b F

We now substitute in equation (6+66)

(\34,;} - (F%F2 5 FO) 2o (a0 - La,,(b.mj

(17
(F% Fo-aFO) b aet + (3],



G =g (o reerd)
x [ b i (k3 ot) A:D;.;(/umﬂ:
+ (F®4 FO®) 4bhy [ a,we]"a,f(lﬂljx
__J‘ M») dn +(FRFZ2F%) 4, 2T tort
since R = am.
i e 5]
X[-b o (hnot)- b a,;(k..wb)]

2Yz

+[F@ "z F@"""LZF@juH lr2ot +e. Eﬁ .

dm—f e dz

4
0142 > -
':-"’[F uz—lF@z]

D’; pivd (kx-ot)+h 0in2 (k“"")]
Ff:-zxz- J_F@Z] ) [4-‘,1&1" Guo-tl |

4L
+f>‘¢,_f ezrz‘- ML,, dz .
o o r X=
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L[ [0kt
={F&& Fo*s oFCu _F% -@J%!lkéz_'!’ loaot
+f dﬂf er 3¢) L dz

Hence equa;ion { 3\ 6:}),Zbecox,nes ,
:.”;Mfo M e o f M
= EO0 ) + 5@:/4,51 Cn20€
R R R WL LY LA
- (F@-{- F@-JF@) %ﬂ Coa0-€

That is .

1”‘0‘“‘[ zrt-gé’d +f(‘34&

- E@cw:h(ﬂ )24 b Coacb (o)
Where |

[=-arfp ®auk Ok FOU-F +F@j

-— %{F@.& F@~2F ] (6076).
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We now have ¢2_ given by equatioa 1668) involving § /
Whlch}ls determlned by equations -(6670},(6-71), (6-73J and
(675

We now seek to reduce the right hand members of equations (671)
and (673 } to zero by writing

b/ =[ 7O (2 7% ~(red)2]
X EL,"p&.:L[kx —ot)— b"%2[ku+ﬂ—)]
*[J@ef”"‘”z-«— Tee"(h"‘h)z]yb,/um:ofe +" (6-77)

S O ®
where J, . j-®and J— are functions of the

constants of the motiun and the medium, and
2 X 2 2
<!"= 4k — £Z + Y
< (678)

‘I.

CEE——

C>
e ( .
Substitate for é in equation (6471),

»bqﬂ, __g_:r (Y -(r«)z T (\r )-<V+-e'lzj
X {L 2 (b= ot) — é,wz{éuﬂ—)}

2 T et e T 12 ] b i

')¢I/
az

-D (Y-<)
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Hence by equation {6e °71)

2 g_& + 70~ €% 721 )e'”““”q
2z

Z=

x [ browakr-0€) ~ K*ain2 (kxeoe)]

~{Y-t?)R . ~{ <&
6P+ T2 (1) L 7Oy
XlLLm.zo*t'

(3 ) ‘=O | (6-79)A
0Z Jz=¢

ol )&
it 6% T 4 T ) € m«)@ 0
and & +3J _@(Y-d" ~( V)4 3—@“, n) — 0. (6-61)

From equation (6. «77)

g ﬁiz' (ra P % 7Oy (P 2]
D

X [br ana(ka-eE) — b2 aca (b arot)]
~(Y-a")Z @ v (‘Y+d")
-t{jr@“ e e TO (rea J

X ﬂb&,51 ot 2006 ¢ @ﬁﬁi

-

Yzr 7

| 31%’ =~y éi—[’ I@e° (-a)z T@e"( Y4-a! )ZJ

Clhamtmmass geg (S

D> o

'b
Jer %zekxmﬂ] S4
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sl
ﬂ:ﬁ'@(t a' Ve TO vearys & 7O- wk*T9]
x [ b}acn2(tx-o¢) ~ b’ MZ(ﬁx-f—a‘-‘é-)j

e[ T9 (e TO v | 24l im0t

V]

EV ’“@”} = [.D-«— HL 7O (1 w2 w k7] ~ 7o/ h—t’)‘—aé‘ﬁ
2dz=9
X {A,’mkz (kx-ot) < b) i 2 (£t wﬁ
PR L Feat)' | 2h by oim 20t

That is {W"‘ 2’?2”':. Of (6-82)
ir D% T ( Vet B + T (vt Pt b7} e 03)

and D_‘_“@?. :r@ (Y__',(‘el}z -4 ]-@ ( YH".)" (6084)

—0

In order to determine J and 7 we cross multiply
equations [6-80) and (6#83), thus '
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__J_CD

= (res) & W02y wO) (el V-a k)G

Te

(Y--U) e-”."u)_‘ (p-f—H@) +{(Y—?’)L“4ﬁ"}'- G°

-
-

/
(Y"’") e (Y"’){{(Yf-‘ﬂta.éz} - (V-&d’) e {Y"“l)f‘{(y‘_")’- z}

But
e Y-d’)“
¥ 4 () 2 f (o) -k (P e) €

— -rf[(YH‘J (Y 2Ya ledl =i k)e -4 -(y—.zf)(yﬁ—zfa +d’-«—é}c ?

= [ﬂ?f—d N [ Ot S E ) (Vi 'k (e*F % --u\e)]

- ’Y&[Y(Yk Sk )M ! (Ve e k) @%x’&l}

= A (ia’, a,k} | | (6005)

Hence

£Y"""P “’kb%&' + (V+al) & POt (py H@) (6086)
A (a7, 28) -

7%= _ v« @‘-né}&@ S Pttt VT 6re
- A (a0 28) |

éroviding |
AYCLEDERT) Y{‘[Y(Y‘-a."- al)ointe b + (58] o ]

=+ 0.
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In order to determine T ana we cross multiply -
equations (6¢61) and {6-84), thus

U-®
- (f+«") tres”) 4 (D+ H®) —( Y+ar)?
| T®
(-« G2 4 (Y-ar) =<2 (3, HO)
/
(Y. “;ll)(y,',dll)"'e”(r’d,') &-(Y-“”)z (Y+ dlg ¢. (Y+dT)h

a2

L b
( ’
when k =0 &£ = «" , hence

' ’” - Vyd” A
(- ) (a2 (e CF 25 _Alamo)

Hence

(.Y-M")z &@ + ( Y+ ;”) o~k (D4 o, (6+88)

NYELAD) | R
19, _ (V6@ (e T (3 1®)
A (2« 0)

9.

(6-89)

provided that

YR | 1 vt p
A 0)=-2e Y Y(V2<" pink a"R +a"(Y 4" ) Coka "dj#o(seo)

/ ﬁ ® ’
’ - ’

. x [t ea(han-ot)-f G»lék*?”ﬂ

€
. D _(Y=a)2 - (Y+«")z b ot )ﬁq
I I el ERTNCFECR:
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.'.[’\(M,’) I =

0 3 e =0

20~ (TQ& J'@)[ ‘EM:(kx-aei- b:'“;,,,_‘(kx_‘_&)] b
2 o

+M~(J@+T®) [ 2% bb 6’1"""]:‘ +_/>‘(¥:,)mm

= 10-(3'@-«—3'@ aNbb, Coaot -4-["(3_?") A

p A

am——

WY - (ew)y  +® (ranz]®
j. ‘aﬂ,e‘?rYLdz.:-la,[zgi__ _‘_.J-e, }
¢ Y+a! r-«/  J,

X [-b,"&; 2 (fx-o€) —b Gu(éxnfﬂ

1 A
mnZ (Y-Jﬂ)z
+ 10{ j®€(r+d ) + I@_.";___- } 2b b, Crrot

——————
Y/
\ et o

2€
/] o a
[A ]'@@(YH )f" ) + J@(e““)_./}LXLILJ Cor0t
= 10' —-}4—“” Y-‘” ;i
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Thus equation ‘6¢75) becomes

(r4a)& . ~at)
“@‘f i} T@‘{ (¥ 711)56 Corort
kYo~ + T -

+1y] a@x/ >z 24

+)_¢-(J .(..T@) 2)\6 Calﬂ’e +f

28, "}

EC(4*e8}) + (E L )ab b Corct.

" That is
h Y A Jrz ”
lYfp@xf T8 uz +/ (M
e T Je

= EO(h ) +(E@+ T+ l(> g,é,b,;&a.o-t ( &91)
where

s (P79 mxp@ et} J‘C’f"“"‘}ﬁ.

Vea? Y~«”

- It now remains to express equation (6078) in terms of ¢
%e have

| 14, [Te~(rmz I@ ~(he)z] o
26>
X[ 6 ,ow.l(kx-a-—(') -(-A' MJ—(A‘I-«——#&Z}
D~z O (VeI g o hy pimaot

“
2] %
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Vel = —4ek [_-J'@ ~r=<lz_ A -(YH’)?:]
¢a. - e
X [Blona (hx-re) = bracn 2 lexrot)]
-+ [T@( a0 T (n,.;l) "*‘"”zj

X [ b sina(kr-o0t) - b2 i s xro€)]

[ Tty % TO ey Va4 f nirroe
« V7",
and
?‘ﬁl “H: O Pl T Py d’)zj
l .
X (A"Mg,{,kx- ) — bl ein l(&x-«-a-—(—)]

'/} - dn,z ,
[ 100 an s % TCpearye V%24 fainart

- 3 41?
2z ,
Hence , in ‘)% _ Ve ¢,’ N

c——"; the coefficient
ﬁé”' .
of j}-@a-(Y-afﬁl ﬁig,la-%z(éx-o-&)- é}_ P z(éu—«r&-)}) s
- 40t e k= (V=Y & Gl vexl)

= 0 et R PR e Yl T ) + 2t (ew)
=4t 4 et R —

et (Yh 2Yal 4!/ - 2y 2 yal)

T A A G G T S “'N"' Y"ﬁ by {6478)
0. ‘ '

o
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The coefficient of -

T@; (rﬂ”sz,ﬁ'd..z(kx-a*) - b} acn 2 (hx+ oé—)]‘ 1s

- horp gt bt~ (Yru) ¢ g r+ar)

= —4 ottt bt (YRl raltY v2ctl (Yeal)

= = 40 tecnt- Yierya! +-L"'4—2—Yt-"Y""). |

= — urt +¢c«'; bre c(« kP~ £TH) by (678)
= 0.

Hence the coerficient of[bﬂm;lwmgwyc;pf%z(kmwp
%iezzngficien’c ot JO (a2 24 b, sin 10E i
—_ [ Sl ‘c"(Y-d”)jzl- 9( ~a?}

= ~pyopt c* (YL-}V_“”fd"LJ ety (Y-e")
R . by (6.76)

i g

The costriciont of T Pa 42 544, woot
g 0= Y )+ g Ve |

- eote (s « et (res)

= 4ot~ (~1"F 4

9.
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Hence the coefficient of Ja‘, 6_1 Aim A€ is zero, and
so equation (6,70) transforms into

Ve 747 —~ ¢ A 6-
32_‘: - C—L V $1 . gﬁ- =90 ( 92)-

We thus have four equations from which to determine %”
namely

L, 1 ”
%ﬁt - "L_V ¢:.”‘ g -‘%f‘: =0, (6-92)
o .
(ﬁl)' =09, O (6479)
3T ‘z=#£

p I :
(V ¢l >2=0 = 0} (6.82)
] }i\ 14 2 P » b7
27| ot | /@_L
Y_[ [-e .'fg& £LZ = A 3¢

E@(é‘-%”ﬁ + (E@-f- I+ K) 2k b Cpa o€, (691)

It has already been shewn that & solution of the four
equations 6425,6+26 , 627 and 6°39 is to be found by
adding a constant multiple of t to a solution of the
equations 6¢25 , 6426 and B+27, Also equations 6¢92 ;. 679,
682 snd 6 M1 sre derived from equetions 6°25 , 626 , 6-27
and 639 respectively by the same changes of variable., Hence
a solution of equations 6.92 , 679 , 6-82 amd 6291 is to .

be found by adding & constant multiple of t to a solutdon
of 6-92 , 6°79 , and 6°&2,

Now ¢1 =9 satisfies these last three equations,
Hence & solution of ail four equations for é"

is 451”.__ c " (6-93)
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On substituting from (6-92) into (6¢91) we have

X X A |
[ " 4z« c
° o ("]

- oV, c” &%, <+ c‘fx
- »YJ:Y- ( }fA

s AN s EU ) JED T+kf 24 4 oot
Hence c A\ elYﬁ - E@({/L{_é:} ' (6;94)

and E@-(— IT+kK =0.
E@[éllfét} _E

7
Hence éz - %e}r& ,

From equetion { 6+73)

(#;'I :[T@a-(k-d’)i j'@;(y"""hjﬂ[ 12/9‘;2’[‘&&-0%} —‘:ﬂ;i{é»ﬂﬂ—#f’}

[0, SO by by e

1— E@ ('£I1+ 4:«'}’ £ .

2YR
. >\6 Y
Then from equation (6¢68) '

& <[For2 £z 1 A9 Ve[t ) -hima i)
4 [F@ % F 0,2z , pO7" 2 byh, o20¢ |
[T 7O Ve[ hlocer(bx—ot)- 42 iz (breet)]
- [T@o“"z'.;. a,"‘”z] &Y 2bb e ~&

z - <2YA
+ EC’) (,*4114' /-’;,) >\ le ot E (6-95’)

.
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We thus have an expression for gﬁi inveélving a number
of quantities

F@F@FQF@FEF@ J'@JG"@@
@

N ~ P
8, will be finite provided that J , J , and J

remein finite,
For this, it has already been stipulated that neitheb

A(iﬂ' 1‘3) nor A(lf 0) must vanish, Hence before proceeding
with ¢f, we must examine these functions further,
By definition

A(-'M’Mz)..
—ler {r(YL‘" 4 k) aint 'R +¢LICY‘0L+¢‘,£7'J&A,,I£J

fince %o 4k* 4ct .@-Y"
. s’

A(ar-‘-k) - L
I A P T PN~

L
+ (4=t )’ 40 ™ ok (46X +H‘4j.

Hence A (ar (9/2)-—
T (v (Lt o) it (04 T2 )L

e e 2

Putting = 6k~ %—f «Y-

Arotss 2.8 Y B2 (122 it « BEE Gt g4
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A(ﬁ@ 9#)
= —2¢ . QO’M{?@-&{ (‘_ﬂéc ).ng C,@Lﬁ-ﬁ’]} (6096)

From (6¢53) bl o" S ¢ » hence

| L o p
(@1-: @"(k = ?.,) <Y is & positive increasing function
of O*. But B Gt AK is an increasing function of A%

when A*>0 and hence is an increesing function of ©%*
Hence equation (6¢96) shows that A(#r#§jcan only vanish

for one positive valiue of [ .
But A(d‘ R} must vanish in order that b, shell exist,
Hence A@.r‘x_k} cannot vanish,

It is however still possible that A@U"O) should vanish,
This will be considered in the next chapter; for the time

being it is assumed that A(ifﬁ) is not zero.
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CHAPTER 7.
Application of the results of chapter 6 to ocean waves,

For ocean waves we may take

o~= 0.5 sec™t , € = 0498 X10° cm/ sec?
h==10° em , velocity of sound in water (7-1)
- c =14 X 10° cm/ sec
By equation (6e51)

. 2 _
_Pr £ _— ﬁ - _2_ . i" = 7-9 x /a“' :_0,99”0 %
ke 2cr & Ax lxlo’x 0.5

.:!’Yﬁ = [0xc0 (729

Y,ﬁ < 9.?){(4"!:/0‘ = - ==_!_ X ,o-z
2x et x 0«

Sr4 < 2.8 x o2 (7-3)
By equation (6 51}

Q=Y4(1- Pr4) < 2.5 xs0™? C(__/o~¢t—)'

. -~2 ,

S Q< 2-5x /0 : (7-4)
Hence, since 4 Gt x4k >/ / for real “"g,
equation (6450) shews that

4 Coth ab— PlxL) =2=0

i.e. Puax& is of the same order as Cd’do(-&
Then Y:. Pra . ,r“-_ - /oxr0-¥

oo Pat Coth o /

’ ’ -— L .
.- g.ﬁ o (7e5)
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From equation (6+50)

Cotd. ab = P"‘%"‘@‘_

‘ aK
f £+ 2-5x/0"% , .
< X _a’-% by (74)
1-5‘5/0"’
Geat < Pk [1+ ?ZT“J
' 2-5x 02 Y ;ﬁ
< et i+ BTN &

< f’«ﬂ{l-&-—’z“"" ""’.g ]

JS‘x/o‘x/o x/0
| by (7¢2) and (7+3)
-l0
That is W &b =D pa'& EH— (o ]

or Cote ath = fa-& El-k' O(E)] (7-7)

. R Y 2Yx
uNowu P i 9 ZY Lr T —

-
-——

cx_ P2 9 = P Pate

= 1Yx. Lo b oth . El-(' O(Eﬂ

By (6'43) . k"z £ + -'YL

- R [,+ L. 2. MWL{HO(*)F(Y)}

R*= x»{‘+1€£)w%+ O(E)ﬂ'} (7-8) 3

We now determine the functions ¢, and

¢,_ after expanding
the coefficients F F@

tc., , end neglecting powees

of r after making use of equations (77) and (78).
“ .
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From equations \6+56) and (669)

RO —rfrap=k (raem ™

- por— wcr (V=) =kt) 29 (Fa)
; ~
~ol SR - ’YWM-O(IU[I'Z S P

-4-0' u.C"i: > - ..-(-l [~ zYMM 0([)}_‘__2 (r.‘)
ik |

lr o~ ( Gk M-H)
-M"... o 4 w“&@ ﬂ(t)}LY(l+M¢/~)’

= ¢ v J—rx

o,

1Kr(4+MM}e“M |
-W‘@- Cthoch]+ O(V)w‘%w{rﬁ] =
RN BT W S S L

= |
40 Cotd o
- LR
= X_‘f Lo stk , 2€
a7 ~ o4y ot
- 3 ~ b
= Y Lsun. =
20 . Cohoh
&.@&4

. 3 . | |
F@Qm__ Yol | e M"‘“{ (709)
a o~ Caht R
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F@= —rf(ﬁ—d) — &'} (r-«)* 1"&
— o - (V=)= k‘%-z-ﬁ(rm)

o f et Leesak o E)TRE- .

g 5 (4

—art_wet Oy ¥ i~ Gl ok~ o ) +E(E)
‘j- .
. -zo—(f (1- Gt a2)

-y g2 aw “‘D-om}%;‘“ (- 6tk 2 er)

e —m o 2B (= bk k) &

—g o (1+ Crte L ~) + 25

—_— - Yut; C(-'Caudkébkj 431J‘A
2 00 Coth o4

e
C Yad, e dhoh. 2e .ei““’

20 gzokgddk . éta“apgfquE)

. e
Y3 pikak e
o~ Y 2 et

-@® . Yo3e ™ oinlak
F== a0~ Cah ah

(710)
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F.- —o- (Y a i) (V= «*
— o= (YR + 29 Y

“0"(— Y P J."_.Y@«&a—/s)( [t—l) |

= -u-a"- q.c’-(_ -1_}YW¢,{)+"53"
L =ac (¥ r M“J‘)

-‘g; +¥, fo Cortt k[ I~ o(r)j(uwwu) +~23¥
- —(+ k) st s

- 20 — WM-‘- -4—‘3.9;"
_,,—'l—+r4_3 ( “r} o~ ¥

q’&—t&aﬁ
F:‘-_ - ﬂ Ao b st ta (7e11)
? .

F@ _ ~ 0] (Y kEf (Fru)em2h
—u e () + 1 (Y-x)

—O“Y - - = Y i+t J’wu}( LY+1):2"&

==
-%—“ui -2y 5 (1)
o —r(a-H s w) S
T e f»'f;':‘ trednk [ 1= O(Lff (1-21) ¢ 29 (X}

. - a(.aYe,-M%'

Gk sk By "

CE® e Ve fdeh (1a2)
W
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O, _—rfrea<ety () ™%
‘_.Lz,‘..@“—_q_,cﬁ—(y;..aj +§-3(Y.«,) 2
~ _0_%22; +"8’*’*‘+2YMNA§¢( L“-".’_Y yém
..z,.o-"_u-c ¥ 2r )_‘_19 L-0)
4z o

ot"+

e —ao{ L1+ £ Bt k) g5 |

- % €2 MM[I- O(t)](,+xr)+ L.
. ’(3Y£u&

T Ltk ak
: : A '
FOa YT otk (7-13)
o~

F@ _ — (Y= &P k) (Y=Y

~k et agy
(G-t an k)T )

S
—_n o eyt [ ] 25¥
T T 9—"? - O( -
2Y o frk %
S o
-4 o"
u“'
F@$ Y b, (7-14)
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From equation ‘6-60) .bd‘@-’ @"? Y « % (7-15)

From equations (6-72), since F F F /: F and FO
ere all of order . Y‘ , we have
w

@ 2« A F + -zdﬁF@

G == —axe

_Ya¥ cihah | Yab & pinkak

= Lol ak o~ Cob ke
( by equations 7-9 and 7-10 ) ;
_ 0~ Coktwh
‘ 2xh —24Ah ~®
simlanyy (P - 24 e F@. 24 € F

w —2Va* Guh ok + 2 Ghax
o~ o~

( by equations 7-17 and 713 )

r:. 3)
That is = ( s et most (7+17)

From equatlons ‘6 T74)

HO—x = (= k%) F =i (<*—k) FO- ‘“‘zF@

-“ ?h" F@ va o(,cypc”) { by equayion 7.8}

5, - .
s L"‘ r MM ( by equation 7-11 ) 718)
o~ v :

H@—_’L — 1F® LF@

and ¢ L - gy
A ‘ 2ah
;. u.qu__z M«,{\_I(—deww.@
o~

r
(iby equations 7+12 sad 713 )
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that is‘H@f_:. - 211;, Crh 2ok , (Gl othe (7-19)
w

?rom equation (6450)

x £ Cotk ah — G (%K) _o 4
KR o>

o~ o Ao
g9 o~

and so equation (7¢15) may be written

jb . kaaxs-, Gl ek .

or

@—.
Therefore
<
D+ HO == E'Of“ (et e ' (7.20)
and

Deu®x  LVa" oy wh {i-2lokaah}

= uYaf M“-(&KM—&WM.&A.iA)
o= Coah «h . _

- -l&Yd". b h | Cnh3ad  (7021)
o~ CoA cth

From equations 16-78)

q'z.-.. u.at'{l-d- %YMM -(-@(E}L}
— P& w@;k[_l-t (K )}+1*

A (7¢22)

":n..
and « = 0. (7.23)

Also from equatio.. (6+67)

ECn wuH, - (7-24)
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By definition

-yt s L
Aarak)= ~22 [y(y';gl_ Wk il 'L

+ (Y= ' k) Cok ar":l
Hence, by equations (7¢8) and (7-22),

AQorrk)2 - 16.Y‘[°?¥W 2k +lba) (Gdioth &,Aaak]

o by 2 ik wh ok sk + Dbk (Cok 2 )

= ’Slvﬂ"'—e‘rﬂ: M&L-M’M 4 £7¢25)

Also equation 16.90) gives

Alas0)=-2e r£ [Y( V‘:d”") pindeat"h 44 ”(r‘:d”") &-LJ”LJ
<A (o) = 2Ry ) (Yot ] + <4 eoh a"4)

But 0(”’:'“" g"': _ ?r& MW‘\ .{l“" 0(£)j ,

-c‘-

hence |
A (a6;0) = -:Liny,‘ Ldath (Vosh o™k =" Crbad)
- _/(’z"yz j’ad”MM' &)Ad,% (726)
lHehce froﬁ equation (6+86)
TO. LT DO
A (2752 k)

That is

o 32 ya* Pkl (Gl ok . pinbilack
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T@ n. _ 3 .:(_:"’ - (7:27)
— o~ aind il

From equation (6+87) .
7O _ =t s (24O

A (a0 2k)

A e‘“’"""", (2 Ya? Fad ah

o 32y a* &% Gl ah. pindTak
by 7-20 and 725 ' |

O _ 3xr ek
) “T pundlak

(7028)

From e uation (6.88)

70, &R (D eu®)
A (ar, 0)

Y D ndinta A R W P -
o (nhatk . (6 % }(4 & (Go ke b . CrbhaL

by equations 721 and 7.26

- xR |
K 7@2—”‘—‘ 014- 2 @’AM (7'29)

L 4 L

400 Goha"h  Conk ok
From equation £689)
T®. ()% D+ H®)
A (207 0)
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That is

(V= a?)E
T@“—’n'- x"e (¥ ‘). L(—Ya(; Gids ek - Coh 3l

o Cohah . 166 E Yan? ok ak. Gonn"4

T@a  xb e Lhiuk

— L 4

40 Coha’h ] Cok oth

(7430)

By equation (7.8)

k= (14 2L} bk wk + O(L)]

= a&"{l_i— 2y 4. (’/@%—%—%) -+ @(gyj,

but .#‘%; >/ , hence neglecting, not only terms
of order _!. but also of order
s , Ve .
i x* . R .
Hence, from equations (6-78)
o’ 3x ana 5= 2<0,

Hence we may replace oh , /A, a"£ eana € by

-’ﬁ‘{, 2k, 2<60K and 2°=/ , respectively.
c

But 2

9
lb
A=
W F
R
v

- d’q—ix)/fom—éd'/\— ~«*by (7 8)
gt = 2 al\( tau~l~c&l¥

or ot = ZCL)"kM"‘J“
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By equations (7.1) and \7.3)

b N
0 -2
. 2 x 1.4 x10° x2¢5x10
¢ Yﬁ 10@

=980
g

Hence oot == g R Lot k& [7+31)

We now find the values of g, and ¢b, to the order of
greatness used so far in this chapter,
Prom equation (6.55) ,

é - [(rﬂ) —thm Pz ) ke (hal?j

x@,, oan (kr=0-€) 4+ b, v (hf-wlﬁ

..\'Z ~cth t+ X2 A=~ q:z:] o
{”‘"‘)c — (F-=)e oktod BR

xﬂ: blak’pind R J (kx-o€) +5Mw kA .. (é,*@
O

O~
That is
e L LT ]
2B sk A
) [ﬁ.l./w« (ex-c6) - a, o (kx-‘—o'i');ﬁ)
where o, = ok pidh RR 4y
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g = O.f-?fz a}f%ef(z-k)- & x(z-:.)},+d{':(z~:)e.q(z-l~}}]
285 p0A A

X [a,m%(ku-w) —’a,_,aal‘ Ck)l-fd“f')]

Yz '
- € * (i (>~ -

[a,/.w-l (ken-o0¢) ~a, ov. (ku-l—&f')J :

Neglectlng terms of order of Y“L , and set)ting

& = k = [ , we have
- kR G i(z-A)l:a oui (R H- 04') a,_w[iurf)]
= k’ DyTe
fhat - is
4; . & Lok LZ-‘) a, sin (kx-o%)—azw(blfﬁﬂ
Sird kA | (73

Using equations (7.9), (7-10), {7-11), (7.27) and \7.28)

the coefficient of [bl"/.u'a.:L(k’t-o-'(')‘-—b,zﬂ&a-’—(ki-{-r")
. : . b . .

in ¢1 , - glvenh’equatlon {6-95), is

..:LYz Y ) ST hmraz
« (;..,L -+ - J}
{ 2 Lokt 2 Cnh ah
S VLSS It AL et Sl
1 0~ piad ok
on neglecting terms of order Yﬂ this becomes
-~ 3RY { k(z-(-z) _,é(a.sbz)
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Hence the term involving [h oond (Ru-ot)~b, m-..‘l(kx-fr("]
becomes

— 3kY conk(a%-2) ] o~* [a;'M:* z,(/e»ﬂ)-alwlkwﬂﬁ
2 ikt kb ksl

= = 30" Cohk(2£-2) ar Mum-a—e))wwﬂlmﬁj
YL T

Where @, and Q,are defined by equations (7-32).
Using equations ‘7.12), (7-13), (7.14), ‘7.29) and (7-30)

the coefficient of 343,5, Al 206 is

-2—Yz 3 242-284 —r1xzZeant
! € + €& -+

+e-rz ¥ ok 3ak ){g 044.4”; ”"“”Z} .
. 40~ Coina"f. Cohok

On neglecting terms of order Y& and putting « ’k this
becomes

" <20 (2-K)  -i 25 (2-%)
£ kAR Je¥er) ¥ %
W Loh 28K, Gk kh :

_ kq" Conb 3R10 a4 C» 20-(z= %) .
T W 20k cak kR c
c

Hence, after substituting for b, and b, the term invo.ving

Po,b,_p‘;.‘acrb becumes :
b Gk 3k . G» 2ZEETR) 0 40t

-k ) . &lgzm.zrt'
0 e, 2R ok 4K Wk Gpant bA
c
.@a-éz-—k?
= -0, Cok 3 kR - . 24,4, ain 20T,
T F sidihE. ok kh (m 2TR
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The remaining term in equation (6-95) becomes

AN ot (At al)E
W SPPW L 1
A B o &
Sk hR
Thus the value of qg is -

= -3 L kR{z=-A . L - ,
¢4“ ??9 & ‘f;% ) ’ afwz(éx-vf)fa,mzfﬁx+wﬁ

= .
e

o _onskh __ ac(z-Mfe 4144 simact
€ ol hi. brhkh Coarlfc -

+ & A€an o (734)
LV 4l § ¢

We now use equations (7¢33) and (7#34) to investigate the -
changes with depth which occur in the second order pressure
term, p,, given by equation (6-37),

Let Mg and M. be the lengths of a gravity wave and a
compression wave; '

then >§,= ;’;E-—r and A = % (7-35)
2
ANV o L.
e

neglectimg terms of order 5 and YA

(N\‘z L 2ye Lok od

o

L. L o
.".(%@} = a‘i«%: (g)"w’rw/& (7.36)
L Q"‘- /@~a_ M{@b& by equation (705)

' >‘9 > LN Ao (7037)
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Case (1) : When the depth is less than haif the length

of a grav1ty wave,

! i m
z< ;%9 - 1e€, Z < z_'
Also by \7-37) and (7-35)
o X 1 f
e A =
z < (oD /s /00 V2 .0~

(o 20~ (2=K)/c = Cp 202 | 2202, (A 204

Co 200 LJfc < “ <
Co 2Bk 4 pim 214 o (12)
{60 (00
by 71
== /.

Hence from g7’347

e A b gt it

_ o Cok3%R
€ ool hL lok ki

| , s
+ . ai t 4 Lo £ (7038)
4+ A kA

which is independent of c, ’
That is, the motion is unaffected by ¥he compressibility
of the water, since ~d% is also independent of c.
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Case \iilJ, When the depth is of the order of one gravity
: wave length,

Zi’ﬁkc?—-‘/ﬁczr

/0o - (00 c
CAZE e 4T 2 g 202 Lo
_ /00 c /%
Hence, agsain, C" aa—(Z-‘ﬁ)/c = [
Cm-?ﬂ'"/cf
_kz - R —k.27 oy
Also e = e 9 s e R - e < J-002,

~k2 ‘
Hence e"'k'& < e < 000

and ek'& >£kz > &oo0 .

4 — bR~k AR
Homoo Lok £(z-%) _ RE T LT e |
4 kL _ak{_.e-ka
. . LR 400 Xp.002
L4000 — 0-002
L= 0- 004
hence, from equation (7.33)
E-X : 2
%' =0 Vip == o.
36K —3k%
also Corin k% = % é el +<

ik kL G bk T [ RR RETE (RA G

3
A o X &
4oo* X wov

= .
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and

2&2 gy Y-24 -2 lZz
(»2k(z-4) _ (6 e P 2’.&{)3
L¥ kR -
M é (ekﬁ- B éﬁ)‘f-
S (%00 X 6.002Y" x $'xg
400 F
== O
also _'_.___. = b z,ea._LP cn...@,_
YW el 39 (eth_ L) oo> :

Hence ¢ == — %. Y. LA a; om0

2V camga e, CLCn aocE
Se ‘e '

Then equation {6.37) gives

P

T “r — 29,a, 0* Cract.
&

. -2 .
E Scwce CL(Z < ez\'{, < efx/o 0-03

= £ =1

(7§39)

That is at the depth equal to the lehgth of a gravity wave

there is a second order pressure variation with twice the
frequency of the gravity wave.

Cese (iii). When the depth is compar able to the length of

of a compression wave,

Va
2007
: . 1op AT - : _
.e"h"-'—"' TR E - T =—o.
L ¢ =o.
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Sy o Coac (z-4)/e . Gq, Am A0 (1-40)
2 Cor 20-4A/cC

that is, the motion reduces to a compression wave at depth of
the order of the length of a compression wave.

Equation (6-9) is the general differential equation
for a wave motion in a heavy compressible fluid. It is
interesting to see which terms in this equation dominate for
the ocean waves of this section,

If we take the value of q@ , given by equstion (7-33),
 for b we find that _

L I ko ank(z'/\)._ a{w(,&,‘-rt)-nlah[blw""_)] -
2w | Ainte RK - :

kov&,k k(2°“) .[alf’""" (k)u-o—é)_—a,_M(ﬁ)HH)J
oind At |

o/
wle

: 1
thet is V ¢ =0 .
So. that no compression term appears,

Vb - ik k(z-&)_ljalm;,(/u- )-az‘m&{é1+m‘!] |
X ok R4 ‘

-3 0 a Z-=>4.

THese results are in full agreement with the usual first
order theory.

If we now take the value of 4& , given by
equation (738) for ¢ we find that

L WA L ‘

ot  Cok 37K ' i 20-(2-%)/c . 24,a, 0 20€.
e pohrhA. Cokbh  CoaoL/c

<+
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Ve - _36k"  Cok 24(z-4A)

—

vz * pAved 44
x[ﬂ,"»‘l« 2 (kn—-ot)—a;evm 1[ku+ﬂ’)]

w

3
-+ o-»' Colk 344 ) (o> 20-(2-4)/c ..20,4,_4(/»20’4"
2c” oo b kL. Lok kA Coa0L[fc

Vo - Bf”"b’: (.'akﬂL(z‘f).[al’m;z[ﬁx-ﬁj—afai;z{éx-f-rt—-)j
Y e R it Y kL =7

That is

- L4

2> pudlkh. Cnh kb Coaoc<K/c

V’éﬁ o3 Coh BhkA  Coar(z-%)/c . 2,4, 2in 20t

s Z>o c* Vg —=>o

- and ?M remains finite for large h,
9

- Z 2

As >A D_g —> 0

and C*Vh—> 0P Coh 344 . 2ec 20X
B padrRA, CokkK <

X 2a,ay, 2tn 26€,
It thus appears that the ocean may be considered as
comprising’ two layers: a surface layer in which the greavity
term of equation (6°9) dominates the motion and the

‘remainder of the ocean, below a depth equal to the length
of agravity wave, in which tlje compression term of

equation (6+9) determines the motion. {n the surface layer
the motion is similar to that to be expected in a heavy

non-compressible fluid { see chapter 2 ) and produces a
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But E: A7, 2c* = i ¢
c C-ﬁ g
| 5
- UL X055 x /I-% X /0 by equation (7-1)
Ge¥ x r0
o 2.8 x/00 L

Thet is 20K 4 e m
' - - 8

this is the same result as is obtained by putting ﬁwsia'£¢é

equal to zero in equation (7¢40); which is to be expected
since equation (7+40) is derived frum equation (6.95), Lfhis

conditien, when 20X - nIT+ E ,
[~
is one of resonance between the surface snd the sea bed.
From equation (7.40) wevsee that the length of a

compression wave 1is Z[E s, SO that resonance occurs when

K= ( L? (. ) {7-41)

that is when the depth is.abou
times the length of a compression wave,

Summery: In an incompressible fluid, there is a second order
pressure variation under a standing wave, This pressure
variation exists at all depths and has a frequency twice that
of the standing wave and an amplitude proportional to the
square of the mean amplitude of the surface wave ( see

" chapters 2 and 3). '

In & compressible fluld the elasticity of the
liquid has little effect on a surface layer of depth equal to
a wave length of the gravity wave, and the liquid in this
layer has a motion very much as would be expected if the
whole liquid were inelastic, }n the lower layer the motion is
small and is controlled by the elasticity.
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Lhe compression wave in the lower layer has the
same frequency as the presyure variation, and masy be
.regarded as a consequence of the pressure variation at the
" interfaece of the two layers,

The fluid being regarded as incompressible, a pressuré
variation epplied to the free surface, may be used to
estimate the displacement at the " bed, due to a standing
wave which produces a similar pressure variation at a depth

of the length of a gravitational wave,
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CHAPTER 8.
. The displacement ¢f the sea bed due to an oscillatory force
applied at the free surface,

In this chepter we shall meke a first order
investigation similar to that made by Stoneley(1926)} and
by Scholte (1943). ,

' The origin is taken on the surface of the ground,
the z-axis is measured vertically downwards and the x and y
axes are taken in the horizontal plane and are perpendicular,

The superficial water is of depth h, so that in
the undisturbed state the equations of the sea bed and the
surface of the sea are Z =0 and Z= =7 respectively.

We shall neglect the effect of the water's viscosity.

Let ,w/, M', denote the displacement components
oflthe water in the x,y and z directions respectively,

&% and P are the pressure and the density of

the weter in the undisturbed state; Py and ﬂ are the
changes in the pressure and density respectively. Then the

actual pressure b> and the actual density f» are given by

P= Pe+ Py

(801)
P=F +PF
In the EBulerian system the equations of motiom are
2
AR 1]
" e der 2%
p, TV I (8-2)
A VI 29 ’

o
O™
AlE

0

|
QJ'QJ
M
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The continuity eguation for a cumpressible fiuid ( Lamb :

chapter I, section 7 } is

"_‘p( .,.bv

W

2z

=0

’

where 2:—;14—1«2 +Vl+w3 3
?z

.14 o

-4
q

2y

(823)

and W, VY , W are the velocity coinponents in the x, y

and z directions respectively.

Also the changes in the pressure and density are connected

by the relation

D' L -lf )
3? - C Se (8e4)
where Ct = ( #)
b_k - ’ﬂl + D(Z*NI)‘ a# — yl+y;°_ aidl (8'5)
be € 1€ d(z+w!) & DT
Hence by equations (8¢4) and (8-5)
et DO = Ak B D
De el ry T
- ? Pl 2&" since l‘—'- ‘;‘;Z
fn + FD g _bc_ J *0 ‘00 .
Hence by equation (8e3)
) e’ AV '\ (8-6
'-4-{’09 e ﬂ’we x ¥ 3y _)-o' )

¢

'DZ
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From the first of equations ‘8¢2)

40‘03“’-__?.. 1’!.’)

© €% ¢ \ DL

Hence from (&6 2} and (& 6)

Yl D oo 3 Bu’ BV( ‘
s = x o sf"""aie 2% %)

26>

W._ 2 0 ‘a f Dv’ (87)
('Do'w fﬁ,g b3 (5 5 )} |
p,ow _ {f’ 2 2 Jul v 2

e z1lI5E 0 w3y Y/

If the motion is assumed to be irrotational, we can write

3 » 7
V= ¥ = - 24 (o28)
— )
€ Y
w= 2 _ _ )
€ 2z 7

where ¢ is the velocity potential,

Then ’TD 'b“’ -DV’ + M’ >
% T % Rz

23 M “ 32 (3¢)

(3’-‘; - D

Inr 35" 2z

- V¢ .
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] { 2
e 24 = T (W) 2 e

Hence the first of equations (8-7) becomes

‘Dw—

ne* é) -au{"'of"aé' ctf( ‘6 %, ‘D%)} ’

that is

-)11'_m¢ - T 2 |
3o 3 = (¢ Vb +522)

Similarly the second and third of {8.7) become

T WL 2 (g 4 529
W 2y ‘Dy(c V‘f*ﬁa_z

P SRS R AR £ 206
re 2z~ 2 ("’ V‘{""'ﬁﬁ)

Hence ¢ must satisfy

TE L oY 928 (605)
T o

In what follows we shall assume that the depth of the ocean

remains constent and that the density of the subocesnic layer

of the earth is uniform, and equal to ,ﬁ . We shall also

assume the density of the water to be constant and equal tof’
We suppose that ¢b varies according as

49 = e“(rt,zx-”éz) (8-10;
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then substitating for cﬁ in (8°9)

P _aV%_ 606
x Ve 9*4‘7_

=-0'p- (EFf)S +1igp4

=0
C"ﬂ‘-{' .("ﬂ +c* ¥ o*=0 (6-11)
"Bz - ‘9 4+ [TT_ g gt |

>
_ [t 1 1 \
where {-/?*~E -9 | 8¢13).
Hence by §¢10, 8412 and 813,

(F~$2)= 52 <7 <%z
¢.‘ 24( *) %w.[Ae 4 Z+ Be j, (8+14)

where A and B are determined by the boundarycconditions, Also
= - . L (€= En) - Z -3z <3z
W= q—‘-‘-’:«. & ) f‘c»[Ae'{—Bz (8615)
Dn .
and

Ww = -29
22

?

. - V <3 <Jz
- e‘ (”’;N’ gt-[é’!{';i") Agt i (-G.Ilvf‘-") Be ](8‘16)
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By Lamb section 40

[
7

'36 -~ ;‘i’-i' FU')

Where N is the potentia. function of the body forces

Hence I,

- ?“‘4 gz ~Lg* +F(F).
I

At the surface

0:-% - 5’_ ﬁ;"-ﬁ— F("') at the same instant‘.

Hence E = 3— (Z--h:()
P
or !J: P' g—f + gﬁ (Z*'&) (8017)

Por the displacements ih the material of the sea bed
Bullen ( page 21) gives

g Ve ()28 4 bV

after neglecting external forces, where N and (-4. are
Lam! 's elastic coefficients and

1
:
.
;
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Hence ID?.;—:‘;_‘ - (?H-ft) V{dzw' “") + Vl“é

for a displacement vector W®; (¢= 1,2,3).
Let U and Wdenote the components of the displacement of
the sea bed in the x and z directions respectively.

Following Bullen ( page 86 ) we set

Y = W W,

’D! 2z (8+18)
= W
W= 2¢- 2%
A displacement of the sea bed satisfies _
2
L2 - (M) Vdirr + Vi (6+19)

36’

r= LU+kW

i and E being unit vectors in the x and z directions

respectively., Equation (8 19) becomes.

f”l:-: (L-U+£<.W) = (X*E)Vx&r(i U W) ¢V (Lus kW)
-(Xﬂ-,)V(%!-f— = +l-[. #U %;‘f,—i- (%,, =
= (w2 (Y2 Ku w W]
e[y B (B2 )
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Hence w
3
’3("’ (ﬂ(‘) (b(f aW "'{‘(bx‘- “oz.v
d
iw W
f W (i) 2 (W, W) 4 fo(TH e TH).
But '

W odw_ ¢ ¢ WV _ Uy

™% 02 D)l‘ dxdz 2 zl— P Y73

N RN S & TS L Y 7

ﬁb}_"é_/ = (’\ﬁf‘)% Ve + %"%_’VIW/ (8¢20)
. e _

Also
LW Dw _ P R P P
Int 1K e a2 4 In3 323 x ozt
P~ ’B Vll__ a'Vzvl‘
2z ¢ I |
“ence
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Substituting for (J and Wfrom (8:18) into (8-20) end (6-21)

P - Y 2 /
A "i_eé"'bz mc*] ()“"M*) ng.'_{-;.l Vv
3 % _2.2 A Vi’
fy Eu 23% o ar»jﬂ (M%‘) ¢ ’L v .
Hence ' fa:‘.):i’ = ()\f—%) V;¢/,
s (8e22)
and @_ ge: - ﬁ‘ Vzal?’
Take d,’ = £ e:i (@*t— Ex—p2) - (8-23)
(7
and f .B . 2.—(: (G.t—EuQ%Z) | (8‘24).

In order that (8.23) should satisfy the first of (8-22)

ﬁ Lo = — (x‘f’%) (Tg"—#&)

(8+25)

u
1%
\
mn
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where X, = %1"74* | (8e26)
' A

that is «, is the velocity of the compression (dilatational

or irrctational ) wave. ( Bullen section 4.1 ).
In order that (6+24) should satisfy the second of (8-22)

parm == £ (T4

<0

o fo* = f(F4gqv)

»

;N
that is q/"-. £ o™ 3

(8¢27)

n
309, ¥
|
144
P

where ﬂa.: /.P&-_ .‘ : | (8#28)

that is {8, is the velocity of the distortional
( rotational or e'quivoluminal or shake ) wave, \ Bullen 4-1)

The velocity components of a solid particle are

' V) w
U, = 2—,“ -~ and Wy = ?%*{_ ‘ (8-29)

From equations (8-18), (8¢23) and (8-24)

U= - é‘,[c g -a‘/’z+)$e.i9=}3_- e'-cf(o-t‘—?x)

V)

and

W= - g[c Tl F Py ""”ﬁ S

- e
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hence by equatiun (8¢29)
- -( -(:(rt-— ?Jt
L--L(CE ’4—.)6)"2 ) e )
(830)
-l’l

_D?e. ,9'2') «C(U’t-—Ex)

n= =i (Che

The stresses across the XoY plane parallel to OX and 0Z
respectively are sz and ’7,_,_ , Where by Bullen (_‘f 5¢1)

b= f( ¥

bos )\Mr-&-z}c%—g

(8+31).

Hence

F-‘x '.’I,‘.c.%( CPe"'Pi_DEe-WZ)_ ¢-«'(a+-—’§:)
thi (cpEPuDys ) ST

- ki pres )l

Lok gk 2B S (%-£)> -«'7{!:(#—?»)

- €
k>

where k= Z ~*f (8032)



-(pz
wR) Cp Y
t[{cxg-f(x k)

¥z | ¢ (0€-Ex)
b - e
§ S g~ (M3R)Eqfe ]
DAN
+

< (0€t-Ex)
. <Gz

| GRS TR 293 ]6
w(N+2k) T e

°‘£[C{X§+(X

b ' (8025)
equation {8

: y

But

.gn.
p* = poi= (Aeat) “’"] ‘(’,UEN)
N 454 = -( .
l’ tzz.’- ; A |

< (0t-%x)
..tqz
) '-D%faf ’-e
| P OJ' lf~3§ e
-4k[c(1 .

i ge32)
ing equation (
usi
Hence

? i - x)
C ) QEQ» "77' ‘("" E
2 -¢pz |

[' <‘ 2 ) kﬁ'
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Continuity of ve.ocity and stress at the ocean bed,
Equations (8¢15), (8°16) and {8°17) give the components of
velocity and pressure at & point (x,z) in the ocean,
Bquations (830), (6733) and (8¢34) give the components of

velocity and of stress at the point (x,z) of the sea bed,
At the surface of the ocean-bed the normal components of
velocity and stzess must be continuous,

The continuity of ro.rmal stress gives

{ﬁ 5é + 9f (z"'&)] + gf Elemation of lower surface of

Z.ao seg )

)

[h-z] + 9{’1& gﬂ ( Elevatioh of surface of sea-bed)

Zz=o0
IRl [a] = [h] 2o
That is .
< (TA- Ex)

fpice (A +5>-+-

3¢ ez(w- Ex). {A(*’ f+ 1_";.1')-4-5 (-c 4-%;),

’ bt 4'- ot~ $x
:4130-[;(:-1_3)-3%?]6 (o= 5)

< (@-f’-—?’l)

9(:-{(_‘,{5 DE}
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That is >

HLA - )8 - )

220
_._C(’,.;.%z_up) (n ’,"‘j)

The continuity of normal velocity at the sea-bed gives :

[gé(ﬂ-§x- %B{A(-t :f+_9. —AfZ-
{3z
+B(-<%+ %je §]]z=-o

ﬂi Cpe f e jog -@z] .e“@"'—Ef‘)

=0

. A<+ ;?Q +B(.,gf+}&> == <pC+<ED o36)

“ince we assume that the viscosity of the water may be
neglected it follows that the horizontal movements of the

ocean-bed and the ocean are independent and that there is
no stress in the plane 2z =0,

that is [ Ppx] =0

Hence from equation (8¢33)

¥ _ \p=
ﬂ-%@(;+ (k" ._)ﬁ 0,

kﬂv
n T
But ’fg,"z TZ"& - § (equation 8-27)
2

= [@2- E"’ ( equation 8.32)
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aEp e .
Hence . C o+ (-2 E =0 (8-37)
kﬂ- ( k> )

To determine A,B,C and D we need &a foutth equation in
addition to (8+35), (8-36) and (8-37). This extra equation
can be derived from the conditions at the free surface of
the ocean, Let us suppose that the pressure at the free

surface is the real part of T e“ (7‘.- ) + 6%/ >

P
then
elevation of the free surface above
E%k] +9ﬂ[ the plene z= = h ‘}
(CE-5x)€ 54/ >
That is
< (ot- Fu)+ 94 < TR ‘fdj
{"4: e > Ae Be

{T(
+ g—e e:((V"- Eﬂ)‘f'% [(41“" ) A‘e + B(-,(‘r"' ]
0

o af 5%
?94‘0‘£’ ‘;)')'(" =

-
-

‘.o—f.[ A (‘, .iﬁif- g* ‘){-{fﬁ

acrc*

+B(1+1af_ 2) “ﬂ‘]

o* 2cor

= E (8-38)
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We know by chapters 6 and 7 that a periodic disturbance of
the free surface of the sea sets up both gravitational and
compression waves and that the former are attenuated
exponentially with increase of depth, in any case we wish
to investigate the effect of the compression waves at depth
h, so we neglect the gravitational terms in the four

boundary equations,

it is convenient to write °
_ E _ [8,
"l = TR_ = = A (8940)

Bquations (835), (8e36), (8«37) and (8.38) then give :

B (ae8) = CO-277) = DPIL, (o)
f2

(n'ﬁ).’fl'-' —pC +8D y i8e42)

"?P.\ C + (1-29*)D=0 (8743)

*O'fﬂ_ﬁd"ji-e- 8-454}_: E . (8044)

‘From (8141) and (&*42)
- A% . :
2421 B (o e - {22 32D

s otitfen 14 3P



168, A
Substituting for A and B in equation (8+44)

2E= *"*’ﬁﬁ;,’f‘('-zv‘)-}'?}ce“f (6. 2 _E)D *

b f h g

ip"(l 2mY)+ f’}c-d&(*’ﬁ (A ?)Da ]

- (rf' [C_% (',2‘V’l«) (eabfie—cff) ﬁf( TR sz}

[}

—2b 41 e(f& ¢:f’4+ c ks m&ﬁ
7 E( ~ e R

- V(M»}@,m” £ oo 72
iof, b

-)P b, an met- <E mfﬁ}

A8 ¥
£ut by (8-43) . C= (201"_ ()E)
| 2m2 p
S “'L_m_% b (1-am) Co54 - 4 mmg
4,(:"" 2’7l"r f T

- 24 AU erR +:g'_¥ﬁ,;~ﬂj
f k3 \ 1
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_f_ [ :‘1,{(271-:) £ m‘}- Coh < T4

chl /7 27> P T
| 9~"l k2
P (8445)
_4, f 2"!-()? 24+ y R VWL |
1, [ »{(9—%’1’ 2 }&L $l- o5 ]

We let M denote the vertical displacement of the ocean

bed at the point ( x, O, 0) ; then after putting z=0 in
the expression for W ,

by equation (8-43)

= % 2 ’ei(M—EX)

o~ an*
After using equation (8+45)
W ~F(?e < (0t— Ex)

271 ("1-') 3 14«’22} Crh Tt =L . Loothift
THigs o P

L(0 4=~ Ex)

—Pe
-4: 20 2111.‘-1)2- 72" iTL _f. Z. M‘cif‘&]
C’@,H(b +~ YN { OA 75

EJ-



That is wo = —-P e , (8e46)
| o*f G&(%)
where
G(3)= {€T) ‘*"f}”} lohifh =B 1 i TR
p g’ Zr
. But 11 = % = E;-fé’ by equation (8¢40)
(5P () e

9 = (E,-U = -‘-( = O-L) oy (8'27).

and £ = (‘g:'. ;»)4'.,_ i (?1"%,, : by‘(8'13)'
Hence &(E)—
“‘{ °g>,g- I) (-g 4—4—*(; OL) A VRE

rrE>

-g,(gz__)w‘ﬁ

V "){ 5= )(?‘ "‘) [ff-gjéiﬁ tot <3

i (?’; g’-:).’éM <FL
A
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but (k<R = &k[' (?-— ]-.-. Cot ( """)»&
and L hifh = Wi' ('§‘ "‘ ‘A]—-M{'}- )“

Loa®=
Hleegr et g e} et

+f (?1—- %":')..é M(Ez‘ Ly é—ﬁ, (8-47
b

With the aid of equation (8¢46) we may now determine
the vertical displacemeht of a point of the sea bed caused
by a force at the surface which is represented by a more

general function., The new function of force selected is

Aot - r-l-"“_
e < applied to the free surface, where r is

the distance of the point on the sea surface from the point
(0,0,-d4) and @& is the distance at which the force is e times
that at the point where r = 0, The maximum force is at (0,0,-d)
that is vertically abo¥e the origin, and the force decreases
radially symmetrically, With this pressure system we have

only to deal with a limited area within which the waves are

generated, '
U and

Denote the displacements W of the sea

S (ot A/ct
bed, produced by the pressure variation P z“( )+ 9 —/f

by FC-‘.S,L and & reapectively.
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Then the displacements due to a pressure variation

P ;- (0€-%x Gy -Byoinf)+ %{

will be
Y' = Fbéy- ¢.i(¥x Chr.‘";a"‘;r)para.l.lel to Ox,
V= 'Fm‘“r.;"(gxa’h- E“é‘;"rzarallel to Oy,
and w'= &l e-l': (5> Core =9 Wypzrallel to Oz,

By allowing Y all values from 0 to 2 we can find the
average value of these functiins for all Y . ‘the result,
which will be independent of the azimuth Y , wiil be
f ”TE 4'(@"('-?’1&)’3?70*1”

The average force = 517 e p(rl
[

radielly symmetrical.

on writing x=r @’0’ Y= ro— 0’ where  y2 +“/)i‘i-g‘
: ’

: ot Iy« .
this becomes - E‘e—‘ e < ET ln (Y'@)
2T . A(1-8),

That is , the average force

E Lot - rm
= B ]’ [6 (50 o) < Si- (Srmint)]

since & may be anything.

Since Cd:cb:-— n(f~p) end  Cn (2T ~p) = —lr (MT+P),

the imaginary part is zero,
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40'4'

the average force j a’(‘g" G>¢)a(4>

PA7% L (&r) (8+48),

where ‘Io dendtes Bessel's function of the first kind
and zero order. ’

l
The average value of W' is

| ]2—11' -L(,?" G’Y-b Evm Y)

2T - € cdy

o

J;('Er) £8+49),

Kfter reference to equations (8+46) sand (848) we

gsee that the value of ‘Wg causedby the pressure

Pa.‘.rt‘» J; (E’)

"- = - Pe‘re.T r "
is Wo = ""'/g (%) o(g ) {8+50)

We now seek to transform the functicn

,‘Ot <0€t-—a
. (E") into e
Accordlng to Tltchmarsh ( ''Theory of Foupier Integrals"

section cel ) |
Soy= [ kOquyade [Thlny) £Go) Ay

for an arbitrmry function f(x) ]
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With k (3(, ) = ]; ("/ u) we have

&[5 s [ T6E) s s

_According to Watson ( ''Theory of Bessel's Functions''
chapter ZXIII secticn 132 )

ap

j{ S T ) P e = 2a.(28). [(V+3)
o ) _ (a1,+ L‘J—) b-l”/;- ﬁ

- 2a.(28)" 2 ["¢h)
(a"-(—ﬂ,’ Vv+3/2 Q‘LV-H' @ ' r'c a')

ab R 2!
v ( S b’) V+3A i_)_}_

|

Setting )) =0

at a

0

» )
Replacing QA by a , €Evy 5, BbyE andA Sl)byi‘v

we have that

/

Jﬂo f ]—(S‘E) sds = é. {l (8523

3
0 a* +§2 fa
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Hence using equaticns (8¢51) and (8-52)

* - /T(Er)§

gt L AE (853)
a .L" *ELJ)MI

By considering the force on an annulus of radius r and
centre ( o,o,-&) we see that the total force exerted on

the free surface =z ¥h=0 is

N P iot- T
€ . AT dr
0
= wP T /"e_g: r A
o
- nrrfz""e[.ra; g]} a:_ o fe‘ve[:e-gdf
| )
. ama Pet7F -

P 3
We now suppose that - @ tends to zero in such a way that Jnla
keeps throughout the value K . Then the force over the
surface is equivalent to a force concentrated at a point

distance r from (o,c, -h ) of value

LRSE L 1’3“/} (57 “‘_‘ A%

(84 4]
A=> 0 ado

(by 8+53) = L, ?a"g‘%j Fr)) SAF
(+

A=>0 L§3,) 31y

= 5 CM—[ ;‘Z’{gr)g dg, (6-55)
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® a"EAE

. o (+ a5 )i
to the function P e-‘@.e];(Etf‘) has given the
E @4:@7“' - %a

Application of the operatcr

function , S50 that applying the same

operator to equation (8¢50) we see that a pressure variation
( oF — 1 . )
E e" /a applied to the free surface produces a
/
vertical displacement W, of the bed at a point distance

¢ from the origin, where

wioeo 8 2T T(eaE.
0 o(,*_‘pzz)un a,:.{: G(g)

‘o-e' 0

_ _ ke L(Er) EAE
amorf, ) (1+a§)% &(F)

Putting QA =6 , we have that a point force

o0
<0t
Ko T Eas
surface produces a vertical ’deflection
. co
ke’ T (¥r) §AE
ame™f J, & (8)

at a distance r from the origin.

applied to the free

<0 )
Hence & concentrated force Ke applied at a point

( 0,0 =h) produces a vertical deflection of the bed equal to

_ Ke"'w mI(ff)Edf

‘2.".0;73. A &_(E) " &t a distance r from the origin,
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L0€
It is convenient to let W(er,r) e denote the vertical
displacement of the esea bed,at a distance r from the crigin
r
due to force ¢ applied to the sea surface

immediately above the origin, then

(8¢56)

iot T (E)E"
W e = -}ﬂ o () . dE

We notice thet as X tends to zer.
(%) ->(f—’.’) (=57 (3 :"-) -« F(F ,s,,)j
then  (x(E)=0 becomes
(2f-ﬂ-'> (75— 4B (55 ) =,

which is the Rayleigh wave equation; it is in fact Stunelds
equation (24), For th.s to be so it is essentlal that the
square roots (?"— ’/") ( )' 0'/4) be taken L
positive or zero. Since Co/; {2‘ -?_)‘Z and ) M(f ?72 B}
are singled vajlued functions of § , the cho:Lce of sign for
' ( R °"‘_)” is immaterial,
To evaluate the right hand side of equation (8¢56) we take

¥  to be a complex variable, 8o that for &'{T):
when h tkends to zero, to be the Raylelgh wave equation the real

parts of (?“ "‘)” and (?L & 3«)" must be

positive or zero, . Tha$ the field of integration is restricted
to one sheet of the Riemann surface ( see Osgead; Functions of

of a complex variable) bounded by the cuts
J
= 2 o3\t
REEZ) =0, R(EE)=0
. &

| (8-57)
where O~ . is also taken as complex,
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These cuts are rectangular hyperbolas :

E -plane

A

N

Figure 7.
Befo‘re proceeding further it is necessary to consider more
fully the function (CT(‘E)A . Since &'(E§ vanishes at certain
points on the real axis if o is real, we take &~ as
i-nm and allow arg® to tend to zero., W(o=r) e;":a—é.
will then contain converging or diverging waves as arg® tends
to zero through positive or negative values. Sibce we require

diverging waves we allow arg® to tend to zero through

negative values,
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When o~ is reai.

It is assumed throughout the following that we are restrigted
to that part of the & -plane in which

: \ 2 £ o
Team(tn)is T ~Tsag(g) <L (oo,

When (8&‘31\ (?t -;Zf)i'f. #0 . we write
a(¥)= 4 Gk (=2 =Yg &, (?) (8-59)

- s lTegios ses]
+i'(r'>( - °'> W(fﬁ Z) &, o)
:'@'“ (E’) + &u,(E), se

When (C»L(§”“ ) =0 » We have
R r ~H\E 2 prfe
@'(ﬂ' jg'_ ?’?—) . s (¥ ?v) +

= / 2("‘)1‘{ , {8-61)

v T
where n is an integer,
By (8+59) every zero of &.(E» is also a zeru of &(E),
But since (8¢60) never vanishes it foliows thet &'(E> cznnot

vanish unless (Cmﬁ\(g“_"‘) 4 ‘%0

Hence, by {8-59), every zero _of &(§>ls also a zero of &;(?})
and the zeroes of & (‘%’) and &i (ng are identical,

In the foliowing we shall find it mcre convengent to deal with

@—ﬂ @_ﬁy than with &—('EB .
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We shall first suppese .
R

that ¢ 1is real.

Let C,=c+Crcrcrce

be closed contour in the

E -plane,
Where ¢, 1is the imaginary C
axis from iR té O; |
Cg » Cg and c, are the
. . r/
real exis from 0 toc /A&, ,
and from /B, to R 0

respectively; and Ce is

an arc of a large circle of radius{R in the first quadrant.

cz and ¢y are taken along the upper side of the cuts along

the real axis defined by equations (8¢56), and the contour

is indented inwards at %= @T/“g ( where in general 6\‘“
has an infinity ) at & = "'/ﬁ; , and at any zero of (x

on the real or imaginary axis,

By considering the variation of G:.. round this contour we shall

prove that, when
0‘(%%"(% , then “T<‘G""‘Z&‘u<0

&
On c, and ¢, , E is real and non-negative, so that

(?2’-5%) i ((L-) ((ﬂ- YT ) (ﬂ a(xg;)(‘ >
() - - - B ]
= (hE ( g‘i';)' [ﬂ; Z%)i-('— = >é .

>0 , since f-\/’ > ﬁl .
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On c, ‘, EL.—.- TI" ,say, where 7] is positive,

+ z 2
Le¥ '+fr”l- = >§>L .+ '0’ = g , then p<q,
= 4inpa, = ) [

> ) [-I-o- = —/"Y]
82)
= (ﬁ:__’z_") v (9-F)

>0
oot e >0

that is Er., is of the form (-i) (poisitive quatity)

so that argG, = —%’ , say on c' .
~ 2
On c, ; let o~ _; - P* end -,_—— -l = .
i a(,"?" = f ﬂ&
~ Then

¥ e, - (B[R ,-l>-(41)(:a)]

which is positive.
Hence G, 1is of the fo¥m (-i).(positive quanyity)
arg @, = -]}_— , say.on c, .,
So that on ¢, and ¢, (excluding the point 2 )
arg G, = —;':_: , say. * (8-63).

In the neighbourhood of ¢ /=,

2
2.\* E,- .:a.}
- A 248> ' positive quantity

"l R
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arg G lies between O and - u" .

In the special case when .2 [4‘_ the first temrm of G,

becomes negligible compared with the second, Hence we have

. -

in any case i - & § arg G" s € . (8-64)

where &€ 1s arbitrarily small, 2
TL o—t 2 a-" 2 a-’-

On cy , ) (‘f is real and }’

L ~g .

is imaginary and non-vanlshlng, except at I ,” where the

former term is positive, Hence G is non-vanishing and

‘%- argG, < O (8-65)

Onc_ , Gy is real i.e, arg G"is zero, and for large

positive & we have

Gy = ((51)% 3[(‘-25&7)( « Y">~£_ - ;;)i]
{':-:Y?; [( = ﬂ?;) (1+ 2:’1‘?‘) - (- %D}

= &)'¢ L«, - e (000

o~
since —_— < A (8+67)
0 “~ - B

‘ o
Since G, > O when ¥= B, » G, has an odd number of zeroes,

say 2N <41, onc, . At each zero arg Gy is diminished by T
(since we travel round it in a clockwise direction). Thus on

the real axis arg G, takes successively the values

arg 6= 0, -W, <2 , ------ - .. , -(e2n+1)II. (8-68).
On ¢, equation (8¢64) is still valid, so that when R is large
arg G, A ~2N+1)T + a4 E . (2 69)

Hence the final value of arg G, on completing the circuit C

is ~=(2N+1)TT + 1: .



183,
The values of arg G, round the contour C are as shewn :

B —(J.NH) T+a~q§> — (2Ne+2) W«tg

4
2
ko 0
O \
o0 T=’1e® @ve)
2 b

Thus starting at B, with an initial velue arg G, ,= -1

n= -3 ?
completing the circuit C in an anticlockwise direction the -

final value of arg G"~is -(2N—+1)4-%E . Hence the

and

increase in arg G,, in describing the circuit once equals
- =Ty = —_— 2N
ENe)T+ %r. ( 2_) .
Now, since G, 1is regular and has no poles inside C, the
increase in arg G, in describing the circuit once equals
{ by Cauchy's Integral +heorem) 2Wn |, where n is the

number of zerces in the interior of C., Hence we have

~2NTr = o2nil

or -N=n ‘ (8-70).
Since N and n are both essentially non negative we must
have N=n=0 (8e71).

In other words Gy has no zeroes inside C, and has just

one zéro on the positive real axis.

Now if f(z) is any fanction of z (not a constant),

regular and non-vanishing within a simple closed contour C,
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then it is possible to define without ambiguity a function

- ~i losf
f(z) given by ‘F, = e

Since I‘F, ) = e%‘F it follows from the maximum modulus
theorem (Titchmarsh : Theory of Functions, 1932, chap. V;
ff £(z) be an anglytic function,_ regular in a region D and
on its boundary C, then lf(z)l reaches its maximum on the

a
boundary C and nét at an interior point) that e s f

’
and hence arg f, takes its greatest and least vakues only on
C itself,

' Applying this result to G, , we see that from
equations (8-63), (8-64), (8-65), (&8-6c), (8-69) and (8.70)

that, at all interior points of the fiist quadrant,

-Te € earg G, < € (8.72)
where ¢ is as small as we pleese, Hence
-7 < arg G, £ 0 (873),

But any interior point of the quadrant may be surrounded
by a contour consisting entirely of interior points, at each
of which (8.73) holds good, Therefore in (8-73) the
inequality signs may be replaced by strict inequalities; that
is, when 0 < argg << % ,}
then -~Tr< arg Gy < O
Also when 0 < arg z <%T , we can shew that

(8-74).

I<argbbz < 4.
Thus

G,rejl’ﬂ L2 = M }Macaoi.y-l-i&’l.xﬁfm;y
CnA x ﬁwg-{-,{/h’»-‘(l Shy

where bothX and Yy are positive, since 0 <arg z < 17!-,

~

.t Org b2 = arg(obndintoy +i Colex 5 5)
K(C’nl‘z&y- € Sodin J‘y‘-._y)j‘
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.« the imaginary part of arg tanh 2z
2 . .
= Coh x 2in y&ng — Bk ovh g lny

J -
= 3 sz

and the real part of arg tanh z
= G})"?M:‘\—LX Cnh x + /a—-;uzgm:u.l‘x Cnk x
- L e
since X >0 .,
Hence, since the real part of G-y fanl Z. is positive,

tanh(z) lies in the first or fourth quadrant, and so

- T
2 < 4y M z < £y
{8-75)
when 0 < 4472 < JI-
Also when 0 < G452z < 7—; ,
btz } - pirk (¥+ig) / ;
M?{ = - a—ra Cote (N+ry) (1‘*"3)

i boy + i CnhX iy
A+ CYy

a;v'{ Coh x loy 4 i sinhix siy
o9}

(A«lw(.x [o?-& i Gobx p3).
(Cohx 60'1~1‘M5(_5-&5). ("‘*‘B)j

- Mé{(wzx+|'a;~2'g)c>(-i9\} .

Imaginary part of atq { f“;&z}v

= ;‘_(X A¥n Dy o ,M an)
<o,
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since Sk 2% . > n2y
x g
since these are both unity when X=y=-=o0 and thereafter
i 2 increases while | P 1Y <' .
x Y

Hence we have that, when
0 T argz << ;'[.'
then - < arg{z‘l [l 7_} <0

We shall now apply the results {8.74), (8-75) and (8-76)
to the function G, . '

(8-76)

At 2ll points in the interior of the first quadrant we have
2 xy4 N
0< arg (E*-2")* < T,
and thereafter, by (8.76),

~ T < arg Ga< O (8-77)

Also by (8e74) G, 1is non vanishing snd

- <arg G, < O

' G' y = G"-Q- G is non-vanishing in the interior of

1’
the first quadrant and

T erg G, < . O (8-78).
Since, when O~ 1is real,
* x :
¢,(~8) = c¢(E) ; (& )=g¢6(&) (8279)

( gtar denoting a conjugate complex ),

Gy 1is & non-vanishing in all the other three quadrants,

Thus G, has no complex zeroes, But every zero of G(E’) is
a zero pof G‘, (f) . Bence G-('S) has no complex zeroes

when © is real .,

On the imaginery axis, and on the real axis when

“g' < _;: we have seen that G, is non-vanishing and
2

-g'g arg G, &€ 0 .
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On the other hand Gu_ is real on either of the axes and so

Gy has no zeroes on the imeginary axis or on this part of

the real axis,

On the positive real axis, when E >,%: , G'is

real, and therefore, if the axis is approached from the
interior of the first quadrant we have from (8.76)
arg Gy = —TM or 0, (8-78).

But, if we travel along the real axis in the direction of

E increasing, pas.ing above the poles and zeroes of Gy ,
at each pole arg Gy is increased by W and at each zero it
is diminished by T . Therefore, the poles and zeroes of Gy
must occur alterﬁately. Further, for large E y Gp is
ultimately negative and arg Gy = =T .
There is, therefore , at least one zero in the interval §>/%:-
Por, either there is a pole in this interval or not, If there
is a pole, arg Gy must at some BBHEX point be changed back
from © to =JF , If there is no pole, Gy (E) is always

positive and CT, ( %‘) > &" (%_:)> 0 .

Therefore continuity requires that G,should vanish at some
point. In this latter case, however, there is only cne positive
zero, since if there were two zeroes there would be a pole
separating them, But the zerces of G(E) and G(% ) are
identicadl and every zero of G(& ) is also a zero of G(E),
also the function G( & ) has zeroes only when ful.{ :!-».‘_:::)'5.4
is not zerdé, so we conclude that when 0”is real,

the positive zeroes of G( & ) are all >/ o-/ﬂ‘ and are

separated alternately on the real axis by the zeroes of

ok (B2 &),
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We shall now suppose & to be complex .

Suppose arg O~ = =0 , where 0 < 0O < %
wish arg O~ to approach zero through negative values,

Let L, = L+ L,*L;+L, , be a closed contour in the E -plane
L¢ is part of the line

arg & = I-0, o< |E[< B;

L, 1is part of the line

argg‘-:"e, 05"5'\4%' ;
Lz 1is part of the

, sSince we

rectangulaf hyperbola A

(.g-— ,— DJ-.

L”_ is an arc of the

circle IEI = R,

We shall now consider the variation of Gy round I,

AR (e ATE=RAEE A CRON )

pi
On L , since arg(t -3 , we have from (8=603} oo
T
arg G" = 9—3 .
als@, since o< arg (E— = <11— wehave by (8-76)

-~ < arg Gu< 0,

S ~M<arg G, < 0,
When — 0< arg E<":"-e it follows from (8-74) that

0-TM<arg 6, < © .
So that on L, we have, taking the limit as argE>—0 ,
9-T< arg G“ s 9 .
But, on L, , @49 (Y;”; VL) = 7_1‘ , and so using (8-75)

we find, except possibly at §= 0‘/3

o

O-T < arg &G, < 0 .
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At E = < ,Wwe have arg G"':O.
Hence at all points on Ly we have

On L 3 (excluding the point % )

O-TSargG, <@ , and arg G;, =0,
so that 8 -T< arg G,< 6. .
On Ly , if R is sufiiciently large, G
with @ and we have
‘ arg G‘ ~/ arg Gy ,
so that 0-ﬂ'—e—<argGl < O+ €,

where & is arbitrarily. small,

3 1s small compared

| e Ae ko &
.« Gj has no zeroes inside I, ( f"".“ﬁ;"e Loce ‘;'ﬁh' i‘ i L

Thus, when —'_‘}: < @#rge < O, G, has no zeroes
on the positive real axis, and so, as arg®- tends to zero,
the zeroes cannot approach the positive real axis from above,
But the zeroes are continuous funckions of O~ , hence it
foilows thet they must approech the positive real axis from
below,

We now return to the evalue&tion of the right
‘hand side of equation (&56),, The cuts in the & -plane
given by equations (6&57) and shewn in figure 7 appruvach the
positive real axis from below as arg o~ tends to zero, So that
we are restricted to a single sheet of a Riemann's surface
bounded by a cut along the negative imaginary axis from the
origin to 100 and along the real posifive axis from the oirigin
to 0"/841 . Also,as seen above, the zeroes of G(E )
approach the positive real axis from below as arg O~ tends
to zero through negative values, Hence the path of integration
must be taken slong the upper side of the cuts from 0 to /e(,
and from O to o-/ﬂ, and must be indented above the real axis

near the zeroes of G( & ).
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The path of integration is shewn in figure 8; where

g, ’ Ez y m~——_——— . are the real zeroes of G( & ) :
C
° Ly o 5, £
% f
_Fig.8 ¥ -plane,

Now Bessel's function of the first kind and zero order
can be expressed as the sum of two Hankel's functions

(Watson; Theory of Bessel Functions § 7+22)

(= 4[ UG e KEGI] e

-

[ I(e)E 4%
e L) T
[ WPOEVEAE |, [ H(E)5aE
&(¥) L G(E)

Y

= I, +1, (8-80)

For I'the path of integration is transformed into C,+ C, ,
where Cy 1is the positive imaginary axis from O to fo© and
C, is the quadrant of the circle |[&|= R from iR té R and
R is made to tend to infinity, ( see figure ¢ ):
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( R

—7to imfinity

] R
Figure 9,
0 that 6
i ) ,[ HO (- )Es 5 ,/ yoo(zr)gdg
L= e *:] Tem
O @
= I‘ +I‘

(8e81),
The integral I’-is evaluated along a contour specially

selected so that the integral over part of it will cancel out .
This part of the contour is C3 , which is taken along the

left hand side of the imaginary axis cut from O to — (00

A -
Along Cy , §=Re * . , andalongC;, E= Re *

also G’(E)-‘- &(’E)and H? (E e.;!‘r') = - Hoa(t¢;").

Hence f H,,Q(fr)Ea(E -—/ ;L@[Er)gdsg
q  &(E) T %, &(%)

@
or I - - I (8e82)
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@
There I(D-“- 1 AL (Er) EAE
. =2 ¢, G’(E)

To extend the contour to infinity we use Cg which is a
quadrant of the circle r§|= R from -iR to R. |

Now C o starts on the right hand side of the imaginary axis
cut from 0 to —/= , so that a contour Cq 1s necessary to
link up C3 with € . This contour C, surrounds the cuts
in the § -plane, The contour C4 sweeps over the zeroes of
G(E¥ ) (approached from below), so that these must be
compensated for by integration round small circles C" ’ C“' ’
etc, round the zeroes E, Ez_ , etec,

The complete contour for Iz is shewm by figure 10, So that

I,- éJ/” !/..@(sf)§,,(*;+ "f HO(s )£ e
. &) *le, G(E)

ji H2(s0Eax f H2 (554

-7 R e

+

)=

0 ® @ ® '
L+ 1 + Iz + 1, (8'8?)
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to infinity

Figure 10,

According to Watson (Theory of Bessel Functions)
when |z( is large and -0+ € £ argz < 20— ¢

L P _I
@ ~ (&) <)

when [zl is large and -~ AT+ € Sargz < - €

2 )’:. - (z- &)

@ 2
Ho (23 vy (‘n’z ‘ €
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Hence when \E\ is large and

_.'lT-(-é'SargES - &
-t <(3~F)
@ .
L (&) ~ - $.e

(amr) % (8-84)
*g-lz'- Sy (%“'g)
.

The B.A, Mathematical Tesbles VI give the value of J°(25)
as 020962667833,
The asymptotic series for J,(25) is
001133889255in25° -+ 0+11226159C0s25
=0-311338892%inl432- 39448783¢+ 0-.11226159Cos1432- 39448783°
= 0°113388925in(1440-7»60551217)
4+ 0+11226159C0s(1440-760551217)
= 0.113388925ind8 7 - (7% 36-331 )}
o-llzzelsscosgsr 7° 36e 331)% .
= —001133889281n(7 36-331)4- O-llad6159COS(7 364331)
= =~=00015007 4+ 0111274
= 00096267,
So that to six decimap places, the limits of working with
seven figure tables, the asymptofic value of Jo(25) agrees with
the values of J (25). '
Now in chapter 10 it is shewn ( see 10-4) that a likely
value of & is 5-29125 x 10°°, so that when
r=2x10°cm, , %,M=10m6x 10,

Hence it is Justifiable to use the asymptotic values of

®(§f> and M@(gﬂ‘} in the evaluation of I@
I ® I respectively.
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Using the asympto~tic value for H‘,@(Er) the

contribution to 1;_ from the neighbourhcod of the zeroes

of G( ¥ ) is, by Cauchy's Residue Thedrem, |

(=274 ) x residues of the integrand at Em (m=1,r, ~--,N)
Thet is

@ LI N
» * I
= _237-“'-L_ - .
K z A ’

S ElERTeam) |

But é{§~£ e."‘ E,r &'(5)}
-3/ " ¥ : ~§_ A&r :
= -3 /2. eJ, G(E) +ir5 < G (5)

- <Fr Y6
+§.€ Z-%—
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Then ‘;’ is large, as it is aloné C, and C &,

G(E) = é: 453[@“ 3(' r;‘w‘ -(-Z 254 ﬂ

X @31\ gﬁ(“’ ,,§1.>

nE (1 ng,} Pt B2 (1 )

e 4E e =5 .
- o
~ 2'@@*&*«5 Eﬂi zw,]

X Gl B2
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Hence by (8+81) and (8-84)

- rR( (nB- 5.0)- ik(bﬂw.r...a)

L/
. 4‘&4 z'- 0(0

J
ooy R[5 _rRowb- ARGs
"iIl i<_ 2 ‘(:) £

A8

L

- |
et R* f‘i e-—km..‘. [9+¢)

- . » Ab
(27t 4, (f-<) Js

I

(amr) A (A< o
2 “'_R-Z“ —2RP
= O“Ld,,LT'—z = L{;, ﬂe e F 2 ]
2 (awr)s gt (82-«) R



198,

Hence I;@ as E—> 20 , (8-86)
Similerly from (8 -82) and {8-84)

® iz |
I . e “'_ o, f - <Er
2 (27Tr) Y ﬂ - 4,:,) E 3

after putt ing g = R a

/7
27T

% _. oF ot o / [ gt =340 ~Re(Cose i)
L, e . e
(2"")11 8. (B~ “z) 3T

< RA A'S»'-.) <
xeK(Gsﬂ-r ?.{Ke ]dﬂ

@ | = 2 L
i o, v Ko 8- RLCHE

@n&ﬁ:’(ﬁl"*’:) 3P ¢ - 0_[0

. 2m
o X K o (O~F)
= E 2 A 1 % < dg
) 4 (A~ <) Jur

[y
< e )'}T’Zpgwﬁr

= N T L[ CF2er) ¢ "‘m)j :
2(117:‘)’ (8= Ké{ —¢

=0 = R —> <o
Hence I©°$ 0 as R-—%ﬂ’o . (8087)
2
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We may deform the contour C into C s

see figure 11,

- e
- —

Figure 11

The contributicns to ]i;@from the straight portions
of C;'_ cancel each other and we are left with the contributions
from approximately circular paths of small radius about
§= a-/d,_ and E“—D/ﬂ,_

With the values (10-3)

2
.E:f'::: 2 X /0 2 N OCr . 3.5Xr0" .
K, 3
.
Hence it is Jjustifiable to use the asymptotic value of H,

in the evaluaticn of _Z@ .

HE(xr) € AF

@, HO(s)5AE !
Hence L e )_fr @g-éjz’g;“'" P Y, &'(E) J

where Y. and Y,_ are circles of infinitesimal radius

about the branch points o-/q,L and a?’ﬂ,_ respecgively.

That is — i s
. LSy t3r

@ I jﬁ ™ ,{§f € ./r e A% (9:%5)
o G (F)

i
2

- L
GE ()t

z—(;T_'”.)ﬁ,
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' R g | <8
Near the branch point °T&we have E: + @e

ana &G(E) = (%}v (-,i’fi;:f)“i ;:, '(‘— 2;:\31

(2483_ “ﬁ)z .
#(2F(’~ <0)V2.

L LcFr
Hence' ‘j E 3 £ ] ﬂ(¥
y, &%)

2 27w L . <8
. (2 :3:‘ ‘l’,'-—) - ,iﬂ — AP\E ~(r (gf-fe } 70
— 7 e . -_— fe , € ] x'fe dg
b (2P0))? a??

> 0 &s (’-; O :and r is large. (889)

; s 3 o- - E 4- g(
Near the branch point /ﬁ‘_ we have 3. f

. &)= (& Z: b (—-—ﬁ—— w

o~ Lugt o (<2- /;:)* ﬂ“’

= 0B, _ wo- (4= g")* 2_0-%' Z il/;j
lfr(":.’ﬁ:)é {, 8 (ﬁ"> f €

g == A2UE) [ el () )

&(%) X, By
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Hence j §9£ é'“?r AE
Y, &(%) |

27

, , .
“ Lo {‘(J'L- Lg:)‘ I+’uc~(«,"~ ﬁ:)p' J._o'}z {)ic“.p/z
<, B “p '

x ( Zypet }i -""(&%:" f‘w)i

f

®
v fe“ AB

- ( as f% O and r is large, (8¢90)

Hence by equations (8.88), (8-89) and (8,90) we see that
the contribution of I is very small, After reference to
(8-80), (8-81), (8-82), (Be83), (8-85), (B8a86), (8-87),
(888), (8+89) end (€-90) we see that the only eppreciable
part of the integral J comes from the contribution of the
integrand et the poles, that is (8e85). So that.

o ""‘I N £ -4'¥,_r
ﬁ L(5)5A%  amie 5. oo
&%) (2wt dﬁ-) '
Pzt 2? T

Hence e uation (8e56) becomes -

ot .,(g+0"" A[u 1’ .,,{F_‘r
s PR, Z ~
{’@?"[l'ﬂr)‘" d;@"
Mz d}’

!
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'.. W (0"[‘) 2.4‘ et

i N .
i Z (ﬂzy gt <(ot-Fred)
5 F2h
(()2- ﬁgz * (27 ) 7 (g—g
_’Q_ N 4{@'(’ §r+{m+’)ﬂ%
= @:7 ) 2 Ch o @ (8092)
A ELid )
. ’ s-/ iL
2
where Cuu = (’)h- ﬁ"} . zg""‘ (899}3).
g
Eus .

Eech term in equation \8¢9:) represents a diverging weave
of length 21T/§h‘ amd amplitude proportional to

Cn
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CHAPLTER 9,

The displacement of the ground due to Ocean Waves.,

In chapter 5 we have shewn that a general wave motibn,
on thé surface of an inéompressible liquid, in a sguare S
(R < x < B -R << Yy << R)where 2R D Ng ,
produces a totel force with a frequency twice that of the mean
frequency of the surface motion at all depths, This force seta
up seismic waves in the sea-bed,

Inchapter 7 we have shewn that if the compressibility
of the water is taken into account, the pressure variation can
be regarded as due to gravity waves in the surface layer which
is regarded as compressible, We can consider then a variable
force applied to the surface of an incompressible sea instead
of & motion at the surface of a compressibie sea and producing
the same varisble force at the bed,

Then in chapter 8 we have found an expression for the
displacement of the sea bed at distance r due to a varisble
force applied to the surface of an incompressible ses,

Now since the wave lengths of the compression and
seismic weves are comparable and )ﬂl)c“-& /0~ 2 ,
the square £ can have a side very much greater than 7\9 and
yet be only & fraction c¢f the lenghh cf a seismic wave.

We therefore divide & storm area intu squares, such
as S, and by considering the surface mction in each square as
being equivalent to a suitable variablie force at the centre of
that §quare, make an estimate of the vertical dispiacement af
the ground at a distant point due to each square, Summing the
results for the whole storm area, we derive an estimate cf
the vertical displacement of a poipt distant from the storm

area,
If microseisms recorded in Europe are generated by

storms in the Atlantic, the estimate should acccrd with

recorded measurements,
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_ o £
From chapter 8 we have that a variablie force -
applied to the surface of the sea above the origin produces
a vertical dispiacement W(U'j t‘) ed of the sea bed at

a distance_ r frecm the origin. Hence a force ,
0 L0 & od
’ 2 , \/\' % 1‘0.
- £4f(7-é:)‘/ / A (uv), A -u,~v) r*e da Ay (9-1)
' ' v ~e0 “=ob

applied to the surface will produese a verticali dispiacement,

at distance r from the origin, of J 3 where
00 X w acot
/ / 2 ;
hig wv). A (-u -v)oe" WG r)e dudv
5:-16,4/’(“)7 —Lf( ’ 1 92)
-ad .

But (9¢1) is the total force at the bed due tuv the motion in
a square S given by -R <« % < R, -R < Yy < R;
see equation (5-449).

Thus & represents the vertical displacemeht of the ground at
all points at a distance r from the centre ofuthe square S,

The area of the square S is 4.?" = (z_kw_r)z

after using equation (5¢4b). If B is the mean energy per unit
area of the square S, then the total energy of 2 is (?JLE.

Hence after reference to equation (5¢ §0 )

@0 p O _
Ex4ts[[ A 9 A dwov. o
~o0 ~ed A

We define the mean amplitude @ o¢f the motion within © as
half the height, from trough to crest of the simple
progressive wave train having the same mean energy per unit

area,
By Lamb (f 230) the mean energy of a progressive

wave off amplitude a is f_ g Pa*,
hence £ = ‘f_g[[»'a," .

That is, by equation (9.3)

%
s _ f’of” A’(u,v). A (u V) du AN, (9e4)
@ = J  den |



235,

@

We have already postuiated, in chapter 5, that for
the motion to be wave-~like, the energy of the mutiovn must be
confined to a narrow band c¢f frequencies and directions
characteristic of the group of waves, ‘his range will be
very nearly the same for the hypothetical spectrum a4 as for
the original spectrum A, Let Q denote the region and its ares
in which the point (-uk, -vk), defining the length and ,
direction of the wave components of the group (see chapter 5)
must lie., But this area is also (2R) ,-

@ 2 21m\2 . .
hence- = - (J_R) - (—R—) by equation (546 ),

Let A denote the root mean square value of bhe modulus of

the amplitude A’(u,v) , so that

. 4
mo[ L [ [ (K[ st
~ | gR? |
-~ ~0d
00 ,00 | ‘ 2
0 £ [ e aes
Q oot
since -—Slgo , outside S ,
, ([ %
= k A (av) A (uv) duon
Q ) w6 L A
p K
= % a® by equation (9e4)
so that A'= Q . (9-5)
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As we have seen in chapter 5 at least two separate
wave groups are required to provide the opposite.wave ccmponents
needed to give rise to a pressure variation at the sea bed., We
therefore suppose that the motion defingd by ' and /Q'
comprises two distinct wave groups with spectrs A(u v) and_ﬁgu,v)
Then Aﬁu,v) = A{(u,v) -+ A;(u,v) .

Let us suppose that the A{ wave group has its energy
in the region Q ,which has an area Qy » &and that the mean
amplitude of this wave group in Q, is a; .

Let Qa and @, be the corresponding features of the A,’_
wave group, :
By analogy with equatlon (9¢5) the root mean square

velues of the moduli of these two wave groups are 3; ahd 'E;,

A - Ra -= ka
where A, - —Q"F,‘, , H,': E‘;Z (9-7).

Equstion (92) may now be written

=~ 4f—)ff{A (w¥)+ B u}

@+,

{A, (~u,~v)+ A (~u, -v)} o> W (s, r)e“‘m‘]a&w‘ﬁ’

" 8ince neither A:(u,v) nor Al(u,v) exist outs.de the

region Q,.-l- Qy -

Since a wave does nol possess opposite pairs of wave
components, then elther A'(u v) or A{(—u,-v) is zero and
either A/ o(u,v) or A/ 2(-u,-v) is zero,

We suppose the two wave groups to be motion in opposite senses

and set / /
AI(-u,-v)=o and A,(u,v)=0,
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Then S

2 ' 24 0 £
=-KR4p(L A/(u,v)A;(WI'V)G'z Wiz, r)e o AV
g |
X2

where le denotes theregion common to Q‘ and -Q,_ since
this common region is the anly region in which opposite pabrs
of wave components can exist, and so the contributbon to 8
from other parts of ( Q.+ Q:.) must be zero,

If we let o}, denote the mean value of o~ over Qqp» then

since u,v, r and o0~ are independent of t we can write

(9+9)

2 / / , 2“6(”:’73)6-
-R 4’0(77{) f[ﬁ,(«,v} A (-u-~v) o‘-W(zq r)e Y

It may be assumed that there is no correlatioun
between the phases of the wave components of the true spectrum
A{u,v) at different points of the (u,v) plane. Owing to the
fact thet neighbouring wave components of the original spectrum
A{u,v) contribute to wave components of the new spectrum A’(u,v}

there mey be scme correlation for points which are close

together in the (u,v) plane for the phases of the wave components

of A’(u,v) . For points more than unit distance apart, equatién
(5¢48) indicates that the correlation wiil be very slight,
whereas for those closer it wiil be appreciable, So we may
divide the region Quinto Qu_/h" unit squares and carry
out the integration of equation (9#9) uver each square

Separately. The result will be the sum of (\70_/1‘3, vectors
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of random phase and each of order of magnitude of

¢p (L) A (uw) A (wV) o 5as ")

So that the order of megnitude of the right hand member of
equation (9#§) is

("1 ?f( ) , (V) A,,(uv) > Wize, )

since the sum of n vectors in random phase relation increases as

nt*, Hence

L

s ap (2 T () Bulo). QF o W(ar)s
R
if the total storm area is .K, , then this may be divided

2. .
into _}‘, .]\, k squares .ike S,
4R* = &4 w2
Then the total displacements of the ground, A , from the

whole storm area is of the.order

A= (HE)'s

L)

240,€

(9011)

that is
2-‘-”::.“

A-’_'- gf( ) A[(ulv) A (“/V) A‘an W(2 ,,,t‘)e (9012)

" Let w CO'P) denote the sum of the squared moduli of the

t-
terms in the asymptotic expansion of W(@lp) € " Then

4
PR

W i(5f) = ;0.' - Z c- (9413) .
ﬁ. ﬁz/" (JTN')" Pz

2
pi~
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Then to the same order of apppoximation

W(w,;,r) A W (26,,r).

Hence

But from equation (9<7)

K,(“,V). ;q; (“’IV) = M,&' 5 hence

406 (9u14)

£ — 2
Pud 47’? o,a, a,;t %)f W(‘ofal.r)e
) &a

We notice that the displacement Z& is periodic with &
frequency ﬂwice the mean frequency of the generating wave
groups and with an amplitude which depends on the product of
meen amplitudes of the two generating wave groups and the
square of the mean frequency. In this it bears a marked
‘similarity to the mean pressure variation produced by the

interferen-ce of

two wave trains travelling in opposite directions ( see
equation 4+5) as is to be expected, Further ZS. is
independent of the sizes of squares used for subdivision of
the area .K— , but depends only on the area.l‘. of the
generating region. It will be noticed that 1& increases
with Qu. and decreases with Q, @, ; so that the greater
the area of interferqug the greater is the displacement,
but the greater (Y, and (), that is, the more widely
distributed is the energy of each spectrum the smaller is

the resulting didturbance,
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. CHAPTER 10.
Practical Application of the results of chapter 9,

Ghepter 9 indicates that & periodic vertical
displacement of the ground will oc:lr if two groups of waves
of the same wave-lengths but travelling in opposite directions
interfere, o that in order to explain the generation of
microseisms by this theory it is necessary to lock for
co nditions which will give rise to opposing wave grcups of
surface waves,

When Bernard (1941) suggested that microseisms were
the consequence of standing waves he considered that suitable
standing waves would be generated at the centre of a cyclonie
depression or off a steep coast where there was interference
between the incident and reflected weves, |

Microseisms from & circular depression:

3ince the lowest pressure in a cyclone is near the
middle the winds necessarily blow inwards from all sides, but
because they are deflected tc the right (in the northern
hemisphere) they do not blow directly towards the centre (Lake).
At each point of an isobar there is a considerable component
towards the centre of the depression. Observation suggests that
when & wind blows steadily in a particular direction there is
eventually generated a swell travelling more or less in the
direction of the wind., So that the centre 6f a depression
should be receeving swells from several radial directions, Thiis
would be the necessary condition for the generation of large
standing waves, and may be the reason for the large pyramidal

waves reported from centres of low pressure and low wind velocity,
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Suppose then that in the centre of a circular
depression in the Atlantic, wave energy is being received equélly
from all directions. with a range of periods between 10 and

16 seconds,

The speed of propagation of waves in deep water 14
is gifren approximately by Vt= %’?r (Milne-Thomson 14°17)
whilst the period T of the wave of length N is given by

V= NT . . gT*
Hence appréximately for waves in deep water >\ -— -5_—1."':
If >\g and )Lare the lengths of waves of periods ' '

10 seconds and 16 seconds respectively,

3~
N = 97 x .0 = [ 6k Xro¥
i - am

- P& xr6*  _ 4—‘00X/b$c“‘-
M2 = am B

Referring to chapter 5 and taking the centre of the circuiar
- dépression e&s the origin we see that the energy of the frequency
spectrum entering the area of the depression is contained

between the two circlies with centres at the origin and radii
.‘211' 21T
=2 *
In; halm {hls annular region formed by drawing any common

and
dlameter of the two circles, the two wave groups will be moving

in opposite directions, Such a region is the G, the (Na
and the region Qr; of equation (9.14),

denee @2 @= @n = £ (V- (3]

N 2“3 [CI ;'4)’ ) —]

216 x16" " og.. con.
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Taking a storm area of 1000 sq, Km,, & mean period of 15 secs,

and a mean amplitude of 3 metres;

A . .
X = 1000 x10"sq. cm.; O.= .}Tsec'; 4, = 4, =300 cm (10-1)
E ¢ _
Then the coefficient of C”u.; ¢ el—ﬂ',, in equation (9-14)
is : /0 £
164 2-16 x 1677

/
= /’ gal‘ X /0 fdynes.

Hence ‘A|-’\=’ /?xlo X W(-‘l Ora VT (10¢2)
To evaluate N(3 57;,") we assume the values
. 3 N 3
p = 10 gm/cm’, ,09 = 2¢5 gm/cm”,
5 .
c = 104 X10 cm/sec, ﬁ,_ = 2.5 x10 cm/sec

: 5
&y = 5x2¢8x10 cm/sec
(According to Poisson's Hypothesis
-- Bullen ¢ 4412 )

. s
L=3km=3x1d cm, r =2000 Km. = 2X10% cm

With these values &(E)vanishes only once, and

S & (B)=, } )
when B,= 5 29nm5K 06 (10-4)
Equation (9.13) becomes .
%
W(or)= — - G

f A, i (Hme)s . ,
c * (fg;/a’) /J-L E;;
B g (ame)* [dé(E)/dg]

§-3,
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From equation (8 47) :

LD (8 [arg YT ue @ 8]

X (%:- ) YL, in —-Et)"«L
+ (é)?[-(zgag)z( gz 0'7-) 3/;v,,g
+9E (2" ")(E‘ ") LB )il
_pr (e g)] 6 (5 P)4

) (£-8)* 5e (- p)F 028

o o 2\1
+(,«). E(SE) " e (B2
P,

Hence .
(d@’(?)} = = 152719 x 10 ¢ (10+6)

A% E-
Hence using (10 3), (10 4), (10 5) and (10 6) : _
-— z 5 3 i-/'3,
w (205,7) = 2 x (&30

2.5x (2m)% k2% xp¥x () [s27 x 10

-1 -
= [-82 X0 Cm/dynes,
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Substituting in equation £10 2)

ﬁAi N 18X 10% x [-fa x /o—/q

= 3av6xs¥ on (2047)

Hence the emplitude from peak to trough of the vertical

displacement of the ground is

6-5 Xe0™% cm. = 65f
at a distante of 2000 Km., from a wave in water of depth 3Km.,

and the period of the displacement is approximately 6'5 seconds,.

Microseisms from Coastal Reflection.

When a wave group is incident on a steep coast some
measure of reflection occurs and the reflected wave group
will contain the same frequencies as the incident wave group
and the necessary conditions for the generation of microseisms
are realised, It has been deménstfated experimentally by
Cooper and Longuet—Higgins (1950) that there is a sharp decline
in the value of the coefficient of reflexion against a piane
surface, when the plane is inclined at less than 45 degrees to
the horizontal, At 15 degrees the coefficient of reflexion is
less than 1070 and the foremost edge of the incident wave is
becoming turbullént. The coasts of Europe are anything but plane
suffaces and the beaches are frequently shelving, so that a
high degree of reflexion is not to be expected, Exactly how
much energy is reflected is difficult to assess and we shall
assume thatvfhe mean amplitude of the reflegted wave is 59
of that of the incoming wave,

Let us suppose that a swell of mean amplitude

2 méte@s and period 12 to 16 seconds whose direction of
propagation lies within an angle of 30 degrees is apprcaching

a coast, so that the shore-line makes 10 degrees with the mean
direction of the incoming waves, )
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The directicn of the reflegcted wave is also spread over an
angle of 30 ddgrees, so that only one third of the angle of
the reflected waves overlaps that of the incoming waves. We
assume that the effective shore-line is 600 Km. and that the
reflected wave extends outwards a distance of 10 Rm., this
gives us a value 6000 sq. Km, for -/\- . Normally the depth
up to 10 Km, from the shore is negligible compared with that
at the storm centre in the Atlantic, so we may take £ =0 .
For the qﬁantities in equation (9 14) we have the values :

9, = 200 cm., @y = 1l0cm., L= 0, r=1000 Km. (say)).
' (¢O 8)

p= lgm/ cm 0,, = 14 sec-.’, = 6000 sq. Km,
: .+ _ lé"
3 4-7'(
Then Q‘ = % ( );‘ 3

33; (u wf)

'3?‘ X/O-g sqg. cm,

~¥
hence W= Q, = I1396x /0
(10+9)
~Y
et @y = O-ubs X /o
With the values (10+8) and (10- 9) the ceefficient of
)4@P €
\wl (2071.!") 2 in equation (9-14) is |
_q=

6 x 03 x0.47 xr0
/,q, Xl X(o~%

LT X2op X0 X ( J [

= t.qq.s’xm“" dynes. (10+10)



When R= 0
o1 (& o 2T (e 2T 2]
= 0’
when g: 3'75'5‘)(/0'6 (10-11)

elso 4_@-: (é)"ff_ (2§>z_g: (Ez o-’-) <32

ds |
s g2t ere ) e gy

D= e 4;7‘PX/onhen E has the value of.(lO~L])
Hence

| L
Woy,r)= S E'G :
£ (ame)? o .EL’;’
_ 13> x B v55)ixr0™?
2.6x (2m)% x ©0¥x (en)  «57ax(0F
= £- 393 x /o.zo. cm./ dynes (10+12)

From (10e10) and (10e12)

Aiﬂ_— 1945 x % 393)(/0"‘

/(-32 xs6~¢ ..

0- 1632 |

2 21Dl = 033 wmicron | (10+13)
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So that the refiexion of a wave group, of mean smplitude

2 metves, will produce microseisms of amplitude 0¢33 micron.

MMe¢ effect of Resonance,

It has been shewn in chapter 7 that we may expect resonance at

certain depths.
The asymptotic expansion of W(a', ) c.ian('
namely ' | N 'gﬁ. « [0'4: -'E”‘r.‘. (n-r{,)'ﬂ]
@™ > e -
P 0'1(1'" f')!i’ M= (%)f—f
represents a set of waves of length IT/E and amplitude

proportionaft to /( .
: E A5 Jf=%o -

By giving g particular values and solving the equation
(8= o the following table is obtained. There will

be no real values of "ﬂ for 'g < 36452,

It will be noticed that there are several values %X, , 4, ,
X, » €y » etc. at which particular values of t 3

satisfy &(E)=o ; these correspond to the roots of the

T T
P/b.' ( 21 ~lh

The values of (f’ correspond to A= &, ,etc.
/zg "71 p /
It is observed that ('fx—/ ); rises to a maximum at
‘
%‘_ 2e462 Km; ("f d;’ 5, has a maximum at

e—kl; T 281 Km; these and the other maxima must correspond
to resonance. o that we may expect ¥ with a standing wave
group of mean period 7—."'/3 seconds %o find resonance
occu:ring when the depth is 2«462 Km, 7.821 Km,, 1312 Km'.,
etc.
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Examination of the table shows that there is a very steep
"rise to and decline from the maximum values of the amplitude,
That these do not become infinite as chaptef7indicateé must
be due to the fact that energy is being continuously removed
from the region ¢f the disturbance. The graph shews how the
amplitudes of the different wave components of the
displacement W(P, (") .e".‘ & come to & maximam at different
depths, The amplitudes of successive wave components are of
opposite sigm. f“‘nb’ﬂ;’this:g quantity proporticnal to the
displacement may be obtained by adding a.igebraically the
ordinates for any value of h, The effect of resonance is to
increase the amplitude of the displacement at certain depths
by some multiplé of the average value.?his factor may be as

much as five for certain depths,
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CHAPLER 1l1.
CONCLUSION.

" Miche has indicated that a pressure fluctuation
independent of depth is not produced by & swell (houle) but
by e choppy sea (clapotis), This phenomenon is wide-spread and
occurs whenever the motion of the sea comprises a frequency
spectrum'in which there are wave groups of similar
characteriétics moving in opposite directions; these opposite
wave groups produce a generalised choppiness which is shewn
by the tumultuous waves noted near the centre of a depression,
Opposite wave groups produce a fluctuation c¢f pressure with
a mean frequency twice that of the mean frequency of the wave
groups;, this pressure variation is not attenuated with depth
and will produce a periodic displacement of the ground with a
frequency equal to that of the pressure variestion,

The required opposite wave-groups occur in a region
of depression and in coestal waters. The existence of more
opposite wave groups in a circular depression than in coastal
waters will give rise to microseisms of greater ahblitude
from interference in mid-ocean than near'coasts. Owimg to the
damping of the higher frequencies by the viscosity a greater
proportion of the energy will be carried by the lower
frequency components near coasts than near storm centres, so
the coastal microseisms are likely to be of smaller amplitude
and lower mean frequency than the deep water micrcseisms,

In both cases the mean frequency of the microseisms will be
twice that of the mean frequency of the generating waves,
Since resonance between the compression weves and the sea-bed
will occur at certain depths, there will be microseisms of

unusually large amplitudes from certain ocean depths,
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this will aé@unt for the change in amplitudes noticed as
a depression moves and also for the fact that depressiens
of equal intensity but of different location dc¢ not

produce eyual microseismic activity.

I should like to ezpress my thanks to Mr. E. F, Baxter
. for suggesting the subject of this thesié and for his

encouragement and supervision,

Thls thesis is not an account of an original investigation,
but a synthesis of detailed treatments of several original papers,

M, Miche in a paper "Mouvemen¥s Ondulzires de la Mer
en profondeur constante et décroissante™ published in four
pafts in the Annales des Ponts et Chaussé€és (1944) discusses
several problems, Chapter 2 in this thesis is = detailed
presentatidn of the relevant parts of Miche's work on the
existence of a second order pressure variation under a standing
wave, Miche's work is very contracted and parts consist of
statements of results, Miche's notation has been maintained and
the missing steps in his mathematical treatment have;,provided.
Thus the values of the functions Ga_and-f(f)have been determined
- by considering the boundary conditions end the associated
cifferentisl equati®ns, wherees lMiche is content to state a value
for Gz_(hls equation 66), to give no velue for £.{6=n3 to ctete
in his squation (67), our eguations (2-38), (2.39) and (2 40)
@alues of the coordinates and pressure.)

‘Chapters 3-7, 9 and 10 are a detailed treatment of the
paper an the Phil, Trens. Roy,, Vol. 243, No. 857 September 1950
by M.S.Longuet-Higgins, This work is &lso very contracted and
the details have been provided,

Longuet=Higgins in equation 178,( our equation (8-56)3
states a result given by J.G.Scholte in a paper "Over het verband
tussen zeegolven en microseismen" (Nederlandsche Akademie van
Wetenschappen Vol, LII, 1943), Scholte starts his paper by
assuming an equation given by K.Sezawa ( "On the transmission
_of Seismic Waves on the Bottom Surfa®e of an Ocean"-- Bulletin
of the Earthquake Research Institute, Tokio Imperial Unlver51ty,
Vol. 1X,1931)., Chapter 8 gives a full determination of
Longuet-Higgins' equation 178 and the evaluation of the integral
whicqhe has staeted in equations 183 and 184.
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