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SOME TOPICS IN THE THEORY OF ELECTRONS. 

The paper is divided roughly into three sections. 

Section I discusses briefly the considerations which 

necessitated the introduction of the idea of an intrinsic 

spin for _an electron, and derives the Dirac equation of the 

electron in an electromagnetic field to show how a term 

attributable to such a spin appears in this equation. 

The validity of such an hypothesis as that of spin 

depends on the measure of agreement between predicted and 

empirical results. Section II therefore gives an analysis 

of the Zeeman effect, using the Dirac equation, to indicate 

the way in which the new spin term leads to an explanation 

of observed spectral e~fects, which had remained unexplained 

by any previous approach. The analysis is taken to the 

order of accuracy given by first order perturbation cal­

culation only. 

Many difficulties occur, both in the mathematics 

and in the interpretation of the results of these and other 

equations in the quantum electrodynamics. Some of these 

difficulties and inadequacies are discussed in Section III 

and a brief non-mathematical account is given of various 

successive modifications which have been made, leading to 

the present theories of Tomonaga, Schwinger, and Feynman. 
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Section 1. 

The classical electron theory of matter was a 

form of atomic theory in which the ultimate atoms were 

regarded as geometrical configurations of electrical charge 

obeying the classical laws of dynamics. This concept was 

successful in leading to p+ausible explanations of many 

observed phenomena, but was incapable of dealing with many 

others. Contradictions were found to exist in connection 

with the electromagnetic theory of light, the specific 

heats of metals, and the theory of electric conductivity. 

Many other observed features, such as the 11anomalous" 

Zeeman effect, were unexplained as long as they were treated 

in terms of ordinary dynamical laws and Maxwell's electro-

magnetic equations. Other effects were described only 

within certain small limits. In particular, in the theory 

of black body radiation, there was a wide divergence between 

classical theory and observed results for high frequencies. 

The Rayleigh-Jeans formula, based on the classical theory 

of 11Bquipart1 tion of energy", gave the energy b~ in terms 

of the temperature T and the wavelength A by 

£>- ~ '8lfR T f't 
The energy should therefore increase to infinity as A tends 

to zero. Experiment showed, however, that the intensity 

per unit frequency rose from zero at very low frequencies 
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to a maximum, whose position might depend on the temperature, 

and then fell again at very high frequencies. The Rayleigh-

Jeans formula was found to be in accord with experiment 

only at long wavelengths. Another fundamental difficulty 

was found in the existence of the observed sharp lines in 

spectra. The theory was able to desribe the lfnormal" 

Zeeman effect for a single electron, but to cover the 

experimental case the average result over a large number 

of electrons would have to be taken, with, presumably, a 

corresponding blurring of the lines. 

A large accumulation of evidence suggested that a 

new system of dynamics and a new electron theory was needed, 

and it was generally supposed that the special feature of 

this new theory would be that the interaction between 
<!;{fu~,.,t 

electrons and radiation would be of an entirely aaw nature 

from that pictured by the classical laws. With the intro­

duction of Planck's quantum hypothesis and the Bohr model of 

the atom, where the electrons moved round a nucleus with 

certain discrete energy levels only, Planck was able to 

derive a formula for the intensity of radiation in terms of 

temperature and frequency, which fitted experimental data. 

Further, it was now possible to account for the sharpness of 

the spectral lines, and the new calculated result for the 

normal Zeeman effect was found to be the same as the 

classical result which had previously proved to be 
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satisfactory. With the later formulation of the quantum 

mechanics and the establishing of Schr8dinger's wave 

equation, some of the lines in the anomalous Zeeman effect 

were accounted for, using perturbation methods. In the 

presence of a magnetic field, the Schr8dinger non-relativistic 

equation gives degenerate energy levels splitting into an 

odd number of levels. For example, in the p-state the 

z-component of the angular momentum M of en electron has 

the three values M't.-=- i,o, -t ; the d-state has five 

values 2t.,t,o,-t,-1 .. .t and so on, always giving an odd 

number of levels. However, for all atoms with just one 

valency electron, splitting into two states was observed. 

For a full explanation of the anomalous effect, it appeared 

no longer permissable to say that the magnetic moment was 

due to orbital motion and proportional to the mechanical 

moment alone. Another magnetic moment in the atom had to 

be taken. According to the hypothesis of Uhlenbeck and 

Goudsmit this moment resided in the "spin" of the electron. 

It could be described by ~agining the electron to have a 

finite size. It would then have three rotational, as well 

as three translational, degrees of freedom. An angular 

momentum about an arbitrary axis in the electron could then 

be ascribed to the electron. This would necessarily 

introduce also a magnetic moment. These properties -

mechanical and magnetic moment - are called the spin. 

A direct mechanical action of the electron spin 
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can be observed in the magnetisation of ferromagnetic 

substances. Experiment shows that the ratio 

change in the mechanical angular momentum _ _L -:::- 1._ 
change in magnetic moment - ~c.. l\( 

(where tK-::- ~::.c.. ) instead of ~ as required if the magnet­

isation were dependent on the orbital motion of the electron. 

I To explain the anomaly that spin occurs only for ferromagnetic 
rvi 
, substances, the magnetic moment of the spinning electron must 

be taken as being twice as great as the magnetic moment of 

an orbital motion of the same mechanical angular momentum. 

Results of the Stern-Gerlach experiments, where a berun of 

Ag atoms in the ground state are deflected by a magnetic 

field, show that the spin is quantised and strongly suggest 

that the magnetic moment of an electron in any direction 

is ~\A and the spin angular momentum t 'i. t . If the 
c 

hypothesis is made that the spin angular momentum is {t and 

its components in any direction can only be ±{t, also that 

spin 'i,t implies a magnetic moment \,\ , then a satisfactory 

explanation of the multiplet structure of spectral terms can 

be given. Serious difficulties are, however, encountered 

through the introduction of an electron with finite size. 

In particular, if the electrodynamical equations of Maxwell 

are used in the mathematical formulation of a theory 

incorporating spin, contradictions must be expected since 

Maxwell's equations use the concept of a point electron. 

Again, with an electron with "size", i:f the observed :figures 
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for angular and magnetic moment are to agree with those 

calculated by classical theory, a point on the surface of' 

the electron would have to move with a velocity greater than 

that of' light. 

in Section III. 

These and other difficulties are discussed 

The same values for the spin angular momentum 

and magnetic moment were obtained by Dirac (ref.l.) by 

purely theoretical arguments, thus tending to confirm the 

previous hypothesis. His method of' procedure was to put 

the wave equation for the electron in an electromagnetic 

field into a relativistically invariant form: 

Let the four dimensional displacement vect or .i be given by 

so that f or an infinitesimal displacement 
cAS 1. =. (..L ILt:'-- cJ.:.<. L- d:/- c-lt-"1. 

. vts -=- c. J 14 • .. at 1-c;. 
If' the three dimensional momentum vector f- has components 

P 
I .,_ 3 

f.,... , -a, f., :::. r , P , P 

then ' th'- "-"-. e - ct.s- ~ p'll:. f :: MC(t = 
J,_~ .... c.u--= .tAo C. t)..S C{S 

Similarly ... 
MoC~ l l" ::: CL--vl wt c ~ r -= 

• c{s 

If a fourth term r i s given by 
.. f 0 

f = M. e ~ ::: ~« .. c. z. f:!E ;:. ~ :::. 1M c. ::;. £ 
C)s c..lS J '-~ c.. c. .... 

then the momentum 4-vector is obta ined, 

f~ " ( p" r' r1. f) - C ~ r~ I"() r~) 

Further l~~f =- I =- t. ~~y-- ~)~- L~f - ~;f 

s o t hat f ~ - r-'ll ,._ f\l ~- r/; 1-,. UA,/ c· [ ('" (~ t-(~f -~ t- rZd)J =-
c,.,. 
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which is invariant. 

The non-relativistic wave equation is 

(kinetic energy)o/'.., (potential energy)"f = (constant) i' 

This suggests that the relativistic equation will be 

[f .. "~-- f,\-f~~- f)."- IIAo ... c""]r' .::.-o (I) 

In order to replace the Pt with the appropriate quantum 

operators it is necessary to factorise this expression into 

the two linear terms 

t f• +- ..l,p, +- J ... ft.+ .Jl P~ t- J~ ~. C Jlfo -· .J.,r,-..i ... pt.- ,ll P~- ..lo ~AJ.c] ~ = 0 

This is possible provided 

and 

This will be so if 

r I 
.J. 0 =- L :. 

. I 

. I 
_, • I 

. -· J 

~' J :: (,)I I' 't, 3 

[. . -J [- . J ' ] . • ... . -..! :: • • . -1 
' _.. - \ 
( I . . . . _, . . 

These are related to the Pauli ttspin'' matrices 

[ . -i..] CT. :: . 
').. l . 

by the equations 

r , . 1 
L - - 1 J 

I 

and, if c is defined by v- .: [ ~- ;; ] 

r:J,,_o::J_ "}. ~ 
I 

then ::.. u , 
I 

.,)~ o1. I ::. L ().._ 

uL , C>l. ~ ::. tc.Jj 

Consider the equation 

L fo -+...?.f,-+ e.l-..f'- +..l\r~ -+~"''""c.1 y; =-0 

(2) 
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(3) 

To put this into a relativistically correct form, for an 

electron in an electromagnetic field with electrical and 

magnetic field strengths ~ and 1:l , the terms £ and f-. must 

be replaced by the expressions (E-~) and (f-- ~) arising from 

the Lorentz force, (where !3 and o/ are the vector and scalar 

potentials). £ and 1i are assumed to obey the Maxwell-

Lorentz equations for the electromagnetic field. 

Equation (3) then becomes 

L(E-..e.~).,. ~(c.r- -..£.~ ) .j.. ol. . ~Lt . C'L ]'t' :.-0 

This will reduce to the form of equation (1) if it is 

premultip lied by 

l (f'-.. uf>')- ~ (c~ - ~~} ~ ..lo tu, c.~J 
Then since 

- -d_(c-~- .. v1)..Lo l4
0

t.'1.- ol o lt( 0 C.. "l.~ (c.p._ --' 6) ~0 

the equation becomes 

\ (£ -~~)'" - l ~ Ccr- -.J. ~ )Jt.- .2o '-~« • .._C.'!" llf =..-() ( '4- ) 

l ~ (f-..t-tf>)~ (q~ -~19)- ..J. Ccr--~@)CE-_.Q..etfl) 

To simplify this equation the following vector relations 

will be used: 

1) (~ . ~)(~ · ~) ";. (...~xg~ ~ -Lu«tlf.lc-€~)(J ,lC )lf-J'ilc~ t..l.,c~) 

:- g~ c~ r€00 CCl t €~ C-c- +- --'n..ld' ( g,"c'3 - ~'OC)(..) 

J. .J. ,,d~ ( ,.,~c~- g~c"') + ..L/).Jl C €!)c~-t~cv) 

=. § . ~ ~ L cr 
1 

( ff A~ J b ~ -4rC4L:~s ( 1) 

2) (cr. -i~)"Cc.r.-_{e) ~ - C.i c ~,f.+ r-"~) 
The ~ component of (~~e\~ is - ( t.(14~li.-.,q~t'd-)Y" 

-= - ~ 'l ( 14d ~ - l!lr, ~) 



and the t component of (12 1, B) If lb - ~ "l [~(A~ r) -i ~,q" \f'V 
"" - i. t [ ~ ~~ tfl - ~k 't '*' ~t ~ ~"~ - ~0 ~r~ J 

the i:: component of (B~'f· + r-f\ t:D '11 ~-~> - ( t ( ~"i> - e>~ ';) )r 

- c ..f ( d;q? + -e" A') -=- c .t. t c ew-e~ -: ( .. d~. c tt 
Therefore 

Therefore 

3) If the energy E is written t 1 + rUo c."" , then f 
1 

is 

equivalent to the time derivative operator Lt 1t 
Then - -t. ~ \ f t!- fr f J ~ =- - ..€.. ~ ~ t. ~ ft-UPr) - :B \{ J 

:: _ L _g_. t cot a B lV 
- dt T 

4) Similarly, replacing the momentum vector f- by the 

operator f.. ::. - i. t ~ 

- ~.~ .J. L <P P-- ~ ~] 'f : - Ll ~ L 4 ~ ~- ~(cplf)] 
~ "": -~J!.t.c.~ ~~ 

Now considering terms from equation (4) 

a) [ ~ (cr--~~)f ~ [~(c!?--t~)J£ ~ (cf--..e.~\} 

-= ~f--..t.~Y" ~ lO"'(c.r--..e.tll\Ctt·:-~~) 

= (cf.-~t\J~_ ~tccr'Ji 

b) (£ --e<P)..< Ccr- -..t.d)- ~(c.f- -~19)C f'-~~) l'tcW.us to 

-.R_ o1. c f e- Bt:)- C..t_~ c 4 r--f-~) 
"" - ~.A.~ ( ~ ~ ~ - ~ ~ "tt ..t ~ ~ 
:: .. t.j!t.c.dii~+~c.td] 
:. 

since ~~-; -f-i~ by Maxwell's equations. 

Equation (4) therefore becomes 

~'""'"w~ 1) 

~ ,..lu.,~· -z) 

The first three terms of this equation are the same as those . 
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of equation (1). The last ter.m is small compared with the 

other terms and has no classical analogy (ref.2). To the 

degree of accuracy for which the Dirac equation may be 

applied, it may be neglected. 

The physical significance of the fourth term can be seen by 

consideration of the non-relativistic limit of the equation: 
, \. ' J, Writing t::. f-+ a.t.,c.. and assuming that b and ~'f are small compared 

'\. 
with "-'.<.. , then 

(£-~Yz.- w, 1 c.'t ::. . I ""-)'" ~ "" ( r ~0(. "t -~'¥ - lt-to ( 

2(r'-.e:cy )~~~c..,_ 

Substituting this in equation (5) 

l1.(£'-..4!..~)vuoc."\.- c..'l.(f-- .e.(j'\..R..tc<r:,fr t-~.Qtt~.~ ]'f =-o 

• • 2 \M.o c.."£' ~ ::: [ t..t (f-.- ~Y" + '2..kAoC..1...Q. 4 -.Lk C.~~!'"- L ~te-~. t J \.f' 
r-r lf' ::. (" _L ( j-- ~19 ) 2. ~"'- ... d~ o~"H ~ .:.tt ~.[ J \f 
t l 21M. T + 'r ~JA.l,C. - - ~.c 

But £I is equivalent to ct: ft . Equation (6) is therefore the 

with two additional terms non-relativistic Schradinger equation 

involving [ and 1! . The ter.m 

~ cr'."H::. ~ .ba-~ti 
2~C.. - - 'V'-\.C ~ .- -

...(. t I I"-
:_ --- ! .lj (....1~ .? ~ ;.. g- (l",(_ 6._ =-

\M.( 

has the form associated with the energy of a magnetic dipole 
-E:_ t. I of moment ~ "i q- • It is attributed to the effect due to 

the intrinsic spin of the electron and is precisely the same 

as that obtained previously by experiment and that used in 

the hypothesis of Uhlenbeck and Goudsmit. r is taken as 

the spin angular momentum vector. 
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Before proceeding to a detailed example of the 

use of these results, it will be convenient to give here a few 

results that .will be used in the analysis later. 

1) The eigenvalues of the squared angular momenta vectors 

1:::-\~,_ and I,. are taken as .l{1~·1)t.~, ~C~.t-r}-l" and J·(/+-t)t-z.. 

The derivation of these results is as follows: 

Consider an observable quantity represented by a vector 

whose components obey the commutation relationships 
I 

r'l r ~ - 1-e- 1;} -=- ~ t. r x 

ItT,, - r,l h =- ( t: rJ 
T~ l';J - r~ 5" ~ ::-ltrc-

The observables s;. lio-
I J -:-L:_+f 1:: =- '!"",f. and and therefore 

- "t; -

are o:f this form. 

Then s6 (roar~- r}o r~) + c r~ It- rl- r~) r~ ~ ~t. cr~ r~l + 1 J~) 

i.e. Td ... h _ r~ r':l 1. ::. ti:. Cr., Yll ~ r,lr.,) 
But J), Jtc - r~ r,l ::. -l t r-a 

Jl\.'" ~l - h .fx. 'l. :: -l t. \.'h.1d ~ T1 r)t) Therefore 

Also -'" h rc- - r~ h,. ':. 0 

l. 1-e I L ':.. 0 'l rl- -Therefore, adding 

with J~ (and similarly with f" and T~ 
-~ 

Hence J commutes 

and therefore with I ) • 
eigenstates of I~ and T t. 

Thus there will be simultaneous 

Suppose that r~·, Je and a set of observables r make up a 

complete set of independent commuting variables :for the 

system to be considered. 

eigenvalues o:r r, I 1..' rt; 

_,~ r 

If '11', }. I r,.. are simultaneous 

then o/ ( '6' ) ~.' Y' J can be taken as 



an eigenstate of the system. 

Using the above commutation relationships on the components 

of J 

giving 

~ \ t. r~ ± t T,.. -~- r,, r~ ~ l 1!) r~ 

.s~ ( r,..-:.~ r~) ~ ( 5 ... tl r'j )C f.,:. t.; 
Operating with both sides of this equation on ~, ( ~ 2:: f/) 

·ftC r)\ tc r, )Y--(K I''Z)lr' ) : C rx. ti. r'J)Crt±t..)~ Cr r r~·) 

:: Cr:c': ~ )(Jl( tcr,)'fC~r'l.r~) 

Thus, unless ( J" ! i. J~,) 'f ( ~ J'1. J~') =- 0 

(12) 

(7) 

this gives an eigenstate of T~ belonging to the eigenvalue 

J~ t-L in addition to the original eigenvalue r::e' • There 

T~ l-

will also be the simultaneous eigenvalue _ of I . Hence 
• ''l. 

starting with a given pair of allowed eigenvalues I and r; 
a whole series of pairs is obtained, 

.. .. _ --- (1' ... , J-.-1t); (I~,T~-t); C!''",r~)) CI'
1

Jr~'~ ); ... . 

Denote the lowest and highest members of pairs of this series 
,,. '{ _t1. -'~ 

by J 1 ~ and J J t. • Then from equation (7) the 

for otherwise the left hand sides of these equations would be 

eigenstates belonging to J't:.(- t and r: + t contrary to hypothesis. 

Operating on (8) by ( Tx >~-i J:f) 

(J~,. r- r~ 1.~ t. 1~ 1 \f' (3' I''"r~ ~ 7- (I,_- stt ~t rt) r ( ¥ r''r~{ ~ 
;: ( I',.-(J~.t)\t rl~) lf ( ~ rt r:) 

0 



and since 

Similarly operating on (9) by ( r~- '- T,) 
• '1. (ir L) l. 4 r~... -
J- \ c -"~ -0 

whence 

and since 

{ 1.. .()' .( l ) "-J'*' ... J~ _ , rl _ r~ --t ::oo 

J " ~ -r-f 
l /' J~ 

1.. --t 
T~= -J-l 

(13) 

The difference J~. - r~ 
~ ~ must be a positive integer, or zero, 

times t • Writing this integer 2.j • - ,1. 1 where j - o , -a. , I , ~ , . --· 

then J- -- -'~ ~ I 
:r~ -j t and from (lO) or (ll) 

fl. ( • )+ 1.. J ~j j-h~ 
t. 

L 't. S Therefore the eigenvalues of _ 
1 

_ and 
_'2. 

J 

s ( s +-r) t "' and j (S ~) k ,_ • 

2) It has been shown above that if the vector J is 
' 1. 

defined as above, then J and r~ can have simultaneous 

eigenvalues, and that the orbital momentum vector L and the 

spin angular momentum vector s are of this form. Taking 

two such vectors L and I whose components commute, there will 

exist simultaneous eigenvalues of 
"l. L 

L <> L -!- and ~ ~ 
- I - ) • Then 

L 1. s' L S together with a set of observables r 
- )- l t; I ,a 

which 

commute with L and ~ can be taken to make a complete set 

of independent commuting variables for a certain system. Let 

J, j" KA.t. Ms and ¥ be quantum numbers specifying the eigenvalues. 

of L ,_ s 1. L't.. s~ and r - ) - ) ' • The states of the system can then 
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be represented in terms of the scheme ~( ~ J'· j"' '".t. ""s) . 

If now a vector l ~ ~ +!. is introduced, with eigenvalues of 
~ ,_ ~ 

J~ represented by M:. 1\'l.L r~ , the set of vectors r ~ b. I Jl. 

is seen to be another set of independent commuting variables 

which will also be complete. The states of the system can 

therefore be represented alternatively by \f' (¥ ~· · j,_ i 1M) 

where the relation between the two representations takes the 

form 
'f ( 'a'j, j,_j 1M) ~ 2.·4('1( j ,j,. M.t11As)< 'rj·,jl. M_t~«sl~j,jl.) ~) 

It is sometimes necessary to change over from one representation 

to the other. A complete formula for the determination of the 

values of the coefficients <tJ: \1 ~A~-~~ ~ )Yj,,jl J. ""'> has been obtained 

by Wigner {ref.3) but it is rather complex and unwieldy to use. 

It will be sufficient for the purposes of this paper to quote the 

values of the particular terms required, (as given by Condon and 

Short:Jk~!f)(ref .4). --. -1- ~ - -.r:-
_!_ ~ -- --~:_ "_ ~ 

. I . l 

l..l I t-1 - -- -~ - - - - --. j' j., • J,-~ - ~~~~-
l.j,+-1 

. ~ 

J J,+ ~ ~::-
}j' -!-I 

J .~i l_·J J•~'""""L. 

- ------ . - - _ .... - . ---- -·--· ----------4 
'1. ... 

3) If b and S have the eigenvalues 

the matrix component of the product L-. s - -
J. U+-1) ~,_ and ~Ctn)t"'" 

in the 4(r >', j t.M.( 11.1J 

representation is given by Condon and Shortley as 

< '6 S 1 ~s 'W\).. \ '== .!. I 1r '> ,Q., w.; ~-', '/ =- i.. '\. £ ( ¥11.4., 'll_t~·) 

. { S (w, 11.1,' l "'J ~, ' 0 ( "'•' "'• t') J (-t . .... o( ~ f"-+;. ~J Q ,_) 
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4) It will be required to know the values of certain 
. . ~ " . , . . 

components of the matrix (a' Jd t. J"" l .II 3- J , J ~ J "M"> where T 

is a vector obeying the commutation relation with respect to 

any angular momentum J 
[! 1) ::.[! I7 ~ -i:l I 

1 ::. 1:::: +-I itself obeys this relation. The full investiga-

tion of these components is, however, rather long and it will be 

again sufficient here to quote a result, given by Condon and 

Short ley. 

< .,l j. h J. \M 11 I ol j'. j '- j M '/ = j J J., ~ ) __ ~- l '- (j ... t1_) +- j ( j t1) "'t (I Lf-) 
'lj()t,) 

Section II. 

The quantum-mechanical treatment of the Zeeman effect. 

Firstly atoms with a single free electron are 

considered, that is, hydrogen atoms or those with one or 

more closed shells with an additional free electron. These 

latter, of which Li having one closed shell and one free 
. 

electron, and Na with three closed shells and one free 

electron are examples, behave chemically in many ways similar 

to those of hydrogen. 

For simplicity the atom is first treated in a zero 

external electromagnetic field. All the energy of the electron 

will then be due to its Coulomb potential, its orbital and spin 

angular momenta, and the coupling between these momenta. A 
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steady electromagnetic field, with electrical and magnetic 

field strengths ~ and 1! , is then introduced and the effects 

considered or the additional interaction energy terms, the 

calculations being given to the order of accuracy given by 

first order perturbation terms only. 

Secondly, the case is considered briefly in which 

there are two or more free electrons, and it is found that, 

in general, there is a number of states belonging to the 

same coneiguration, which are degenerate in the central 

field approx~ation, differing in the assignment of the 

quantum numbers ~..c. and . 
' 

that is, degenerate if it 

is assumed that each of the atomic electrons moves in a 

spherically symmetric potential energy V(-r ) that is produced 

by the nucleus and all the other electrons. The theory of 

complex spectra consists in determining the linear combination 

or the wave functions of such states that diagonalise the 

perturbations in the presence of an external field, and the 

determination of the corresponding perturbed energy levels. 

A single electron in a central field. 

The case of an atom with a single free electron is 

treated as that of an electron moving a spherically symmetrical 

Coulomb potential 

The Dirac equation of the electron may be written 

t ~ ( f-V) + .J ( p_. -~- ) +- ~., AA.:. c} I > = o ( 1 5 ) 



In the absence of an external field this reduces to 

[ H t-V) ~- ~ • ~ + &.o M" (] I '/ = (.) 

The ket vector f > may be taken in the form 

where 0' can take the values ..J. J 
- 1.. , and ~, and Y-'1. 

together constitute an energy eigenfunction 

Equation (16) now becomes 

giving 

Z (~-V) r. .j. <;Z P- 'f'l. + Y4o t f, : 0 

and t (~ -V) ~"'" -~. q f- ~. - ~., c '\',_ =-o 

• 

(17) 

which, 
t- t I 

using the approximat:\,on t ~'Mol tf , further reduce to 

z Cr'-v) lf', 7 q-. r- 'f~ + 1-.<- \f', :: o J 
~ (G 1_ \1 ) 't' "\. + q- f- ~I =- 0 

In the first of equations (17) the first term is small 

compared with the others. 

Therefore \f~ :: o(t)~, 
that is 1 'f, is small compared with 'fl. . 

From this equation 
- g:- f.. f~ 
-:--~-----

i (£'-\/)-+ 2 ""-C: 
'f, 

l £ '~\/ ]-! lL' 
~ - ..1- I + ~... a-. o ,-· 

2-~C:. ~-' - ,_ ,___ 

- - ..J.. \ 1 - €'-~ ... J u. r- ~ ... ,.... -z.~t. L 2 ..... " -

Therefore from the second equatioruof (17) 

-J:(~'-v J~'I.- q-.f- ~c.LI- f~~] lf"·P- Y"'" ~ o 
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It will be convenient at this point to give a few results 

in vector elgebra which we shall require 

(a) (~.f- )(v.£:) :: - ~ t q- ~ (V F) 

::. - \_ ~ g: L v ~t! ~ + ( ~J v.) F ] 

:. V(<rf-)F- ~ t. Ccr ~v) F 

(b ) (cr. f- X q. f-) 
'\. 

since o-~ =- I and the p' s commute. 

(c) \~r~ \/XQ.f-)'1' ~ (~ v. ~)'{ ~l crC~vf f-)lf 

(d) If V ~ \1 fr) is the Coulomb Potential 

V 1 ~v 
~ =--rr-.,·:r 

• """'""! v CA~.).. d) - ~ Q.j' 
.. <1' v-· ·a·~. I - ~ d 'I 

From equation (17) 

~' 1.\'"L ~ v \.'(" + i~ L ( \- g, ... ) ( s.r. r-X <I. f-) 4'~. +CT.f- ~\~(Q: f-)~~ l 
Using the vector relations above, this reduceA to 

t:'4'... " \) U( '- + ~~ l f\ ~I - ~ .. ) "V~ +- ~~-1. (q.f-)(Q: P-) '{' .. 

- ~ t. ~ g- (~V )( ~-f- )l}l'l. ] 
1""(. 

~ 'J \i' 1; 1" t"" [r'" ( t- E~.~) y;'l. +- f!:c.,. r\l/1'- - ~~~ ... l~ v) ~ 'Pl. 
- ( t:._ l Q:" (~VA f-) \f._ 

2.""-c.. ,_ a.---
-- \J \\''- -1- :h.,.~ y.''"- y-i{~ - \. ~ ~('•_... .. ! V, f-) t-~ ( ~ V,_ (?. )Jlf1.. 

l~c. ~-l r~· ~~t \ 
I ~ 

But t ~ G-MDC... 

where 

and 
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The terms on the right hand side of this equation are as 

follows: 

a) The first and second are the classical non­

relativistic terms. 

b) The third is the classical relativistic correction. 

c) The fourth is a relativistic term, ha.Ying no 

classical analogy, which is peculiar to the Dirac theory. 

It can be shown to be a consequence of the approximations 

adopted above, and to contribute nothing to the Hamiltonian 

except to the lowest energy terms, the S terms (ref.4.) 

d) The last term is the spin orbit term giving the 

extra energy due to the coupling between the orbital and 

spin magnetic momenta. 

Hence in zero magnetic field, the Hamiltonian 

for the electron may be written 
D S §. 

H =- H +-H where H is the spin orbit coupling 

t th t It'> o( ~. ~ -,_ ~f-) ~ . ~ erm, so a n 

If a representation is chosen in which are 

diagonal (as on page 13 ) the wave function can be taken 

depending on the quantum numbers Vl 1 ""~ M).. ~ ~- cp ("' ~t.Li~ ""..t) 

The matrix components of the perturbation l~s will be 

_, () J s \ , n • 1 
1 , n .x ~M, ""..t H V\ .x ""'~ IM..t '> 

-:. < V\ .,t IA.ll UA-t I t(")!:: · ~ J 11') 
1 
..us' a.«; ) 

:::. 
2_ . <nl-~si.U£. I t(.r)l V\-.,('~J"t.«/>(Yl".i''ut;'V(t''l~.~ln'/tl(;Uf_t1 > 



Since t commutes with ~ and $ it can be shown that this 

sum reduces to (~ 4) 

S (..Q.Q' ) <.: l'lJ ~ 111.-t l t6:-) \ V\
1 
lt.usll(.-t. '/ ( i\

1 

R ll-t5 M.'). I~.~ I Y\ 
1 
..t 

1 

""s 
1 

'"'.,t_
1 > 

(20) 

This matrix is strictly diagonal with respect to { • Also 

although it is not diagonal with respect to t1 the 

perturbation theory shows, as follows, that the non-diagonal 

elements in which the 'f\'s differ need not be considered 

since the states with the same -t but different r1 have large 

energy differences. Let the unperturbed Hamiltonian Ho 

operating on the vector In> which represents a state with a 

particular value of ~ have eigenvalue E~ • 

As n takes all possible values the vectors I~> will represent 

a complete set of states. Let the perturbed Hamiltonian 

operate on the perturbed state represented by 

where 4...... is small except when ....- = n • Let the correspond­

ing eigenvalue be (E .. +- t,.) 

The energy equation becomes 
( \-( + H' ) \ 1"1' ") = ( \;'..,. +- t- ... ) I VI''/ 

( Ho+ H' )f G. .. In)> ~ i Cl.,-1-r-'>] ~ Ct,.t-E._ )l (i,Jn> + ~ u.l-r)] 
i.e • L .-.:r... .-4-,. 

Consider 1-1' > ~"' and ~0.-r 1-r> to be of first order 

of smallness. Then since 

-rf<J 

this gives to first order of approximation 



Operating on the lef't with vector Cfl, 1 where rl, -=I n ) 

r-\ ... <~"~.1 H'lr1/ -:::. E .. C( .. G't~~,\n> 

(21) 

:::.._ 0 f'or normalised vectors. 

Thus to f'irst order of' approximation, if' n'~n 

< Y1 1Jl~M~IM..t I 1-1- I' t'\ .R.u.t.s ~ . .( '/ =- (? 

provided l-t' is small compared with H. 

The total Hamiltonian is therefore 

l-J:::.. Ho+-k' 

of' which, to the above order of' approximation, the eigen­

states are not only those of'~~ and ~~with values ~(eh)~~ 

and s (s -h)t ~ but also of' !: _ £ . 

Further, since 2(bs),(~+~f-~ 1- ~.._ because Land .f. connnute, 

the eigenstates of' \-J are also those of' 
(':: +--~) ~.:. J ~ ~tl ~s j ( j+-1)i .._ 

Therefore 1 ( '= s) ~\ u.~~\.U..~ t j (j +t} -11_ -4--t)- t J t "L. 

~ [±(e~!)-i]t ~u.j~~±~ 
LJO If' the eigenvalue of' the unperturbed Hamiltonian n , 

corresponding to the state characterised by the quantum 

numbers ~~ i.. is written as f"-( then, since 
1-\-:. \-lo~Ws 

-:. l-1 0 + ~(v-) !:- ~ 

the eigenvalues of' 1-1 are f'ound to be 
!;' ... -t + -LQ. \ C!") 
E ... .t - ~ (-i-n) 'i 6-"J 

where 1<.:1 :::.. < ~ .{ ~M• ~~~ I ~(!-)I 11l\u~ t«__t / 

Hence, all configurations characterised by the values of' 

r'\ and .t , except s configurations, split into two levels 
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corresponding to j :.. ...f.±;, . The s levels are not split 

since when t ~o 
. . . , 

there is only one value of J , ""3 J :: 1. 

The effect of applying a magnetic field. 

For simplicity in the last section the external 

field j.{ ,. taJ..c-l A was taken to be zero. To consider the - -
additional energy due to the presence of a non-zero magnetic 

field 1i equation (15) must be taken for the electron. 

[ ~ (G-V ) ~ ~ ( f-- ~ fr ) + ~ o ~. L J ~ "' 0 

It has been shown that this reduces to 

f.'* == r .l ( f- - ~ A)'+~~ - :1:. ~:Jt -(, t-~ '* ~ J~ L2""' c.. - "\" l-IM{. - J.t-C. -
(-z..o) 

which is the non-relativistic Schr8dinger equation with two 

additional terms involving j{ and t directly. 

The term involving ~ may be written 

-~ o-'.14 == -:::!:- .u ~s 
~~t - - 'liMl. _Jl_ -

where ~ -: ~ CZ 
I 

This has the form associated with the energy of a magnetic 

dipole of moment and is interpreted as the additional 

energy due to spin. 

The only conditions on the vector potential A 

it must satisfy the relations 

rJ..w B ::. D fJ-..J ~ e. ::- M-

are that 

It will be convenient at this stage to choose for A the 

relation ~ ~ { (t' f r ) 

which certainly satisfies the given relations. 
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The first term on the right hand side of equation (20) is 

.-!..- ( p _ ~ ~ )'1.- ::: ~ - ~- ( 0;.. A-t A~ ) +- ~ A~ .,..... - -c:: 2-tM. ~-' ,. - -1; )....t.'\. -

Also ~ ~ '\' "" - ~ t.. ~(tl ~) 

= _ ( ~ y; dW t! - ~ t £l rr.t lf 

Therefore this term becomes 

.£_ -~lAp_+..(_\ A.,_ 
'2-lM. ~~ - ~- ' -

,_ 
With zero field, this was e.----, 2Wt 

Therefore the perturbation of this term due to the field is 

('-1) 

of which the second term is small compared with the 

first. Indeed, in a field 1i as large as 20,000 gauss this 
., 

term represents an energy of 0•0002cm which is undetectable. 

To the order of the present approximations, therefore, it may 

be neglected. It is worth mentioning, however, that for 

very strong fields and large orbits this term becomes 

interesting in the theory of diamagnetic susceptibility. 

The perturbation term (21) may now be written 

- ::5::- t1 . ~ 
V\A. (. - 1-

-.: - ~­
'l~t 

-t. - --,__t. 
The last term ~ ~ .... : oL.t. 

~\Mol - -

1j_"c.f­

Jf.c~~ 
}t.L --

on the right hand side of equation (20) 

is easily shown to be of the order (¥) 'l.- 1 _ times the e.. c.r term 

and therefore, to the present order of approximations, may 

also be neglected. 



Thus in addition to the spin orbit coupling term 

H s :. ~ (") ~ . ~ 

obtained from the equation for the Hamiltonian with zero 

field, there are now the terms 
,., ...<(_, -lt.. u 

H ;; -~ :H. 11 - ;;;;:z )~.!::: 

:-->- H ( L t-H ) 
11M.(. -. - -

: ~>- -!I (r t s_ ) 
'J,.w.(. !!. - . 

: 0 ( [ i-~ ) 'W~ 

(24) 

due to the presence of a non-zero field ~ 
.JL 

The term - t'"c Ji. ~i may be interpreted as the energy due to 

the interaction between the spin magnetic moment and the 

field. Similarly - '2..~t. ~.1:::. may be interpreted as the energy 

due to the interaction between the orbital magnetic moment 

and the field. In the present case with a single electron 

there is no difficulty about the addition of these two terms. 

When the many-electron case is considered, however, with two 

such terms appearing for each electron, it becomes necessary 

to introduce further approximations in order to sum· these 

terms in a form which can be used simply. 

The Hamiltonian may now be written 

H : W+Hs+f-1,.., 

For a full treatment of the Zeeman splitting due to an 

external field it will be necessary to consider ( H- 5+ H~"'' ) 

together as a perturbation. Firstly, however, the two 

extreme cases are treated: 

1. The weak field case in which the Zeeman splitting 



is small compared with the spin doubling. 

2. The strong field case when the spin orbit 

interaction is so small tha.t the spin splitting is small 

compared with the magnetic splitting. 

The weak field case. 

(25) 

It appears from the above that both terms of the 
,.., 

perturbation I~ due to the external magnetic field are 

directly proportional to the field strength ~ • If this 

is sufficiently small, the Zeeman splitting due to 

will be small compared with the spin splitting due to the 
Ll S energy term n • In dealing with the spin splitting 

those states were examined which were represented by the 

quantum numbers V\ .Q ~~A\ w..t. for different values of 111\J and ~«). 

If H is small the Zeeman splitting is considered as a --
perturbat ion of each of the two levels obtained by the spin 

interaction separately. To do so a state is taken with a 

particular value of J determined after spin splitting and 
I" I 

the further splitting due to H examined. Therefore states 

are taken represented by the quantum numbers Vl ~J·IM for 

different values of' VVI • This is a valid choice since it 

has been shown (page l~) that these will be eigen-states :f'or 
t s 

the '2U.nperturbed Hamiltonian H tl4 

to be evaluated are therefore 

< ~11 ~ t l-It-" I .-1 1 jM.'> 

• The matrix components 

This is most conveniently done with the aid of the results 

on page • 
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If' '{ is written in the form 

't' (Vl 1 i w. ) ~ 2 "' ~ w. _.( ~ J V) .. q i1l\ '> ~ ~ ..e ~ 11.\.s ) 

then with the aid of' the table (12) the results are obtained 

Thus 

L\1(\\J~~t~) ~ J~_l~t~ 

y; ("' J ..t-i ~) : j ~~ L 

I ( - c 'I Vl ..{ ...e U w
1 ~ : < \1\ J. 1 ± { M 0 ) ~ +):t- ) '- ' 

~ { f .. HI'\~L (I ( V11 ~ ~-l \ t J. 'R~~-+T r ( 1-d. .1 ~-~) l o ( r~ +- S-:) 
v H 1-'1 J ~ .... ) 1.. ..£ 'YI ~1 

.,. j 

. J h£~,.~~r A~ c ~ J t ~~-u: j.& + ~.~~~~ 4, ( ~ 1 -t £14~~; ~ 
L~ ~~~ ~ ~~~ ) 

which is diagonal with respect to both ~ and ~~ and therefore 

gives 

{ j {f~~-t q,(" 1 t 11-t-~) z rzr:~t c-~ cP *rn 1 .L L~A+t, 7 o "l 
<.J+-1 11) .l-f-1-1 'I. I ,_ -rJ I 

. t J )fffr: '"' •{ 1 ~0 ~ ~ ... ~.u t J l,+:fJ!;,-e-o t ( -~ ·'- ,..'.!J} 

: t 0 S(V\1 ~M'' r r~t-u-t) 1 i 1M:.~ +-(kA-l) ..e I lM+-t z 
J L \' · ~..tn 1"' u""" J 

; t 0 M 1...-e + ~ sc~\44 1 ) 
1~-¥1 

Thus displacements of' the different Zeeman components of' a 

level specified by a particular set of' values of' n,). and J 
f.. Q._ 2 ___ -f.,.,i, f 

are given by this term ~ o k..~ where 0 U-¥1 is the Lande 

splitting factor for the case of a single electron. This 

shows that since ~ can take (tj~) possible values 

... - i ; _, J. -'l. 
•• , - 1,) I J I I • . ·-- -J 
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each level is split symmetrically into (2j~) equally spaced 

states, the splitting being proportional to the field 1! 
through the symbol o ;:. - ...t ~ and independent of the value 

'2.~ 

of the total quantum number ~ • 

The strong field case. 

It is worth looking back for a moment to the 

procedure that has been followed so far. To examine the 

splitting due to the spin interaction with no external field 

present states were examined differing in the quantum numbers 

MJ. and wt, ; that is, matrix components were examined of the 

form 

Then with a weak field the Zeeman splitting was treated as a 

secondary effect superposed on the spin splitting. Therefore 

a particular value of j determined by the spin splitting was 

chosen and states differing in the quantum number M only 

were examined, that is, matrix components of the form 

< Vl 1 ; M I H"" I "' 1 j. ~· ') 

With a strong external field when the spin orbit interaction 

is small compared with the magnetic splitting it will be 

logical to examine again states differing in both the quantum 

numbers 11\1.1 and Ms , that is to take matrix components 

( ~ -l~s ~«_,_ I H M j r1l IU; ~ '; 

and then to consider the spin splitting as superposed upon this 

effect. This is easily done since H~1 is diagonal in this 

representation; 



< Yl J v.A.il\\)..1 o c r~+ s t:) , v1 __.e \'1.{,' ""-..t, '7 

= ( ""' + wt..l hMi) ot S Gu~ ~\' ) S C \IA...t 1Ml) 

= 0 t. ( 'M h\.\s) 

(28) 

Thus the configuration ~1 is split up symmetrically into 

equally spaced components corresponding to the possible values 

(..tf1)) 1. ) .... -(e+t) Jo (\'~!\+~ ~ ) .,.(v.A;.+2t..t,) 

Of these, if a particular value of M1 +l~~ is considered, 

say (-t --r) , it can be formed in two ways, 

Therefore of the (1 J~ ;) levels all are doubly degenerate except 

the first two and the last two. 

For the non-degenerate terms the effect of superposing a 

small spin orbit interaction is found by making use of 

equation (13), giving the perturbation energy as 

< 1'\ ...( ~l IIA.t l +<i) .!::;. 2 \ Y1 )> V\t\/ 1M__/ > 
"' ( V\lwsi\A_.c. I ~G"-)l n)\v\.sLM.~ ?<l'l...QUA_~lM.;..I1:::--i.l111.tM; u-t...t'/ ~<'~w 
~ 1~1 < v'l...Q_VII\s\IIA.A.l Li I V1). IM.; IMj '> 
: 1(~) -L 'l- ~ lM! 

' since 
r r . 

M...t ... IM.J.. and vu,:. Vl.t\ ~ in the non-degenerate case. 

Thus the non-degenerate levels are displaced by an amount 

~(<-y\:"'"' \0\A).. \'U s. Further for the degenerate levels, because of the 

b(M~~~~) in equation (13), there are no matrix components of 

b .! joining the two degenerate states, so that each state 

is displaced by an amount 

For the two extreme cases, the weak field and the 

strong field cases, there are thus these two effects:-
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a) A primary splitting of all configurations except 

s configurations into two levels corresponding to i:.l.±.{ with 

an evenly spaced Zeeman splitting of each of the two levels 

into l~~ evenly spaced terms as a subsidiary superposition. 

b) A primary splitting of all configurations into 

levels due to an external magnetic field, all of which except 

four are doubly degenerate. All of these terms will be 

displaced by an amount proportional to the product m~ ~s and 

the degenerate terms may be split into two. 

For a full investigation of the Zeeman effect for 

one electron, to obtain a comprehensive result regardless of 

the relative values of Hs and H,.1 it would be necessary to 

evaluate matrix components when ~ ~· H and ij were taken as 

simultaneous perturbations. To examine the transition case 

between the two extreme cases above this is what is done, but 
. !"'! 

and H are taken as being of similar order of magnitude. 

It will clearly be necessary to go back once more to the 

original set of eigenfunctions labelled vt.R 11As ·wt,t. and 

investigate the matrix components f'or a given VI J., 

< "'1~s~-t..l Hs+H"" I t1 l~s 1 1M..c'> 

in which the matrix of 1-t,., :: o (I~ +- ~.c) is diagonal. 

Thus < V\ l\11..\. )W\t I Hr+-H M l>1..Q w- 1' wt..t''> 

< 1'\ 1 ""s t1A.a. I ~ ..... ., _!:.. 1 + oCr~+ Sic) 1 n ... Lt-11' ~l > 
( \" .,hu5 ~.l l rtn k:, . 1! r1JW\s 

1
\l.t_.t I') f 0 t c 1-Wsf- !NJ_t) 

To evaluate the first of these two terms the equation (13) 

is used: < 1'\l~AA-s~; I ~ .1 ~ I v-. l\t.(~' w_/ > 
~(...-) < ~..RIM)~.t It;:. !. I "" 1,11"/ w/ 7 



r3ol 

(where $&') ' < V\ 1 "'J l.t(..t I H•) J "
1 

..Q ~) ~;.. ) ~ 11"- f";V- 2-1 ) 

-=- ~&'>f .. SC ~ ~~) [sc~-/J"A •\ r ~ r(JM>~s:tr) J~t1M:u~~-~5J r-~(13) (z.~ ') 
The highest and lowest values of t\.1-= Ju.t ~~ are (e.t-~:J and-Uo~-.;.) 

which may be formed in one way only, that is ~:: :t-J > Y~As:; ±~ 

Substituting these in (22) the energy given by these states 

is :found to be 

f :: ~.tt:. ~ Jn + c t u +t) 

E:: ;_et;;.~~f.-)- ot(~<t-1) 
~ L" =- ~r{) 
fv.r M:: -{e~) 

All other values of m may be :formed in two ways. For these 

values the equation is obtained 

- ;_t..'" t c M~ :;,.) +to C"--~)~ t: te ~ .J (t -n-+±~0-t.<.+O I 
~t~~j(Jt-+~)U- """'u ;e~c""--t)+to(14.-~-~)-c :;o 

which has the solutions . 

4-E! =-[\-tow. -t."X t Jcq.to~-t.tf) ... -q.[t;,tol.c~AAt..,)-ll-t.~sp!M-t'+(uXi-MJ (23) 

For these solutions to be satisfactory it. will be required 

that, with appropriate approximations, they agree with the 

weak field case and similarly for the strong :field case. 

For a measure o:f the relative values it is · seen that ~~t 

represents the magnitude o:f the spin perturbation and to 
that of the magnetic perturbation. Thus in the weak f:ie'l~d 

0 
case ~ can be taken as small, and squared terms and terms 

of higher order can be neglected. 
0 

Writing ~ -=- I) , equation (23) becomes 
J 

4- E:t::. t.1 ~ t LI-~M-( ±. (! t4-~(~-H)+~1""J''J neglecting 

;::: l'} L 4-1114 ~r t (1~1--1 )( 1 t ;1!f6~)J 
Thus L+ t+ ::. t 7.~ L 4 1tA-t t?-~ +- ~~} 
and ~ f- :: ~ ~ J L ~ 1 ~ - "" -z.J2. - ~~ ~ J 



giving f.._ : Mot. ( ~~: \ +- ~ ~ ,_ ~ ..R. 

t _ ~ ~ o~ (~~ - i, l::,_ ~ (t t r) 

agreeing exactly with the results of the weak field 

calculation. 

Similarly in a strong field squared values of ~S 

and higher orders are neglected. Equation (23) becomes 

4-e;± : t~ l4-l\.\-~ 1 t ( ~~ 1M+4-~i] won,~ H:. ~ 1 
0 

whence 

( U; ~ -v{!: '2 W\ ('l.~M.-1 ] 

t:. 0 [ 1..\-L"-1-l + ~'('2~-l. J 
:: to~4t&-·1.-1'0"""'-~J] 

~\) cYI<\+-t +~t.Ls c)\.\-~~ 

+ 0 ( .1 • t~~ ~ ( l•d- ~ '· t. :: "' ""'- .. y l-. v ;. 

agreeing again with the previous results. 

The many-electron atom. 

(31) 

In extending the above analysis to the case of the 

atom with more than one electron outside its completed shells 

it is necessary to introduce a further approximation. If 

the orbital and spin angular momenta of individual electrons 

in the atom are denoted by L..., t.... .. t.J . . . . ~' ~~ ~~. . . . . there will - - -
appear spin bit interaction terms in the Hamiltonian 

proportional to f:,t ~i , making the diagonalisation of the 

Hamiltonian very complex. However, it is found experimentally 

that in many atoms the spin orbit interaction is small 

compared with the Coulomb interaction. The Hamiltonian 

without the spin orbit interaction terms commutes with all 

components and therefore with the resultants of the orbital 

and spin angular momenta k .,._~, ... 1:- 1, t- .. - and I~ 1'.,.. J'~- + and 
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and hence with all the components of the total angular 

momentum 

This Hamiltonian will therefore have no matrix components 

connecting states labelled by two different precise values 
t. l. \. 

~ s b J s~ L~ ~ ~ - ' , - ' ' 
If the spin orbit energy is inclliJ.ded, L and S no longer - -
commute with the Hamiltonian. However, it is sufficient, 

to the present order of approximation, to assume that the 

states of different hl and sj are sufficiently well separated 
M 

by the electrostatic energy 14 that their mixing due to the 

s.pin orbit energy can be neglected. This is the "L-S 

Couplingtt scheme which gives an approximation allowing the 

individual angular momenta to be summed in the form 

L ::. L, + t..,. r ... · - -

1:: L+-S 

Capital letters S 
1
L ,-r, f)\ .. VIA,JVl are introduced for quantum 

numbers which refer to the resultant momenta of all the 

electrons in the atom. Then ,, 
sCs -n~1..'" s~' W's ~ ~ :::: !. 

'a- I L..(L-+1) t'" Le' I!A .. t. t- :: ~ 

J"' = rCr-n)i~ r~, ::::- wtt. 

of which only f'our are independent. 

For the weak field case of' the one-electron atom f'or the 
,.. 

magnetic perturbation 11 the states investigated were those 

represented by Vl
1 

1., S. Wl f'or dif'f'erent values of l4\. 



In the same way, to find the weak field perturbation of a 

level characterised by S L. J the matrix component of 1-! ,..,, - - -
for this level is calculated where 

~~ M -::. o(L~ + 2.~~) 

< s L JM I I-I~""' I SL..J'M'> 

= ( s L.. J M l 0 ((L; ... 1 ~ .. I .s L.) M I > 
: ( s 1- J M 1 o h 1 ~ L.. r M • '> +- < s 1... J M 1 o s. 1 s L J ""' > 
= o M t +- < s t.. 1 ,...., 1 o s c- 1 s L r M ' > 

(33) 

If J; is identified with s and r\. with L. in equation (14) 

this reduces to 
oM~ ~ "l ;(!~} o [sCS-h)- t.. ( L Y1) -1- "J(J +?')] M t 

~ot.~M w~ &. -= I +J(J+t)-L(L+J).rs(s-h) 
0 0 25()-nl . 

Again, the ~~/gi~o of the perturbed states are 11+-1 in 

number and are distributed symmetrically around that of the 

unperturbed level. For the singlet terms, S = o and L- ~ J 

giving ~ equal to unity. Then, using the selection rule 

M:. t r,o which will be discussed in the section on radiation 

theory, the normal Lorentz triplet appears. In other words, 

the "normal'' Zeeman effect applies to lines which are 

combinations of singlet levels. 

Similarly, following the lines of the argument of 

the calculation for the one-electron system in a strong 

external field, but using the quantum numbers S~ WsM~ 

results for the many-electron problem may be obtained for 

the strong-field case. Since, however, the calculations 

are somewhat cumbersome and the results have little 
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applicability in spectroscopy, the details will be omitted 

here. 

Note on the 11f'ine structure" and ''hyperf'ine structure'' in 

spectra. 

If' the classical relativistic correction is taken 
,, 

into account an additional term H appears in the total 

energy where I~'' c£ (E1- ~) 

and .(. may take any of the values 0 I 2 ... -
I I Yl-' 

The effect of this additional energy will be to split the 

state corresponding to any given n into h components, the 

order of splitting being very small. This result is 

confirmed empirically in the observed fine structure of' 

spectral lines. 

To explain the 11hyperfine" structure exhibited by 

many spectral lines the concept of nuclear spin was introduced. 

Pauli assumed that the nucleus itself' possessed angular 

momentum and therefore also magnetic moment in an external 

field. The nuclear spin magnetic moment takes the form 

PIA ~ (2 ,~-~ t 
where ;0 is an undetermined constant of proportionality, and 

t · and M are the electric charge and mass associated with 

the nucleus. But the orbital magnetic moment is 

AA - &.- L. t. 
/- ·L. - ,,...c. - . 

Thus the ratio nuclear SEin ma~etic moment is of the 
angular spin magnetic moment 

order ~ The effect of nuclear spin will therefore be f'i) • 

very small compared with those of the orbital motion and 



electron spin. 
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Let i be the nuclear spin quantum number. 

Then the resultant vector f +-5 ~ £ represents the total angular 

momentum of the atom. t is the '1hyperfine" quantum number. 

This further assumption leads to frequency differences of the 

proper order of magnitude. 

Radiation theory. 

The discussion so far has been about the possible 

energy levels of the electrons in an atom and their alterations 

due to the application of steady external magnetic fields. The 

Zeeman effect itself is, however, a phenomenon of radiation. 

To complete the picture it will therefore be necessary to give 

a brief discussion on certain aspects of radiation theory. 

The work is divided roughly into two sections. Firstly a 
I 

general perturbation 1-l of an unperturbed Hamiltonian H• is 

considered where H, is not time dependent, while f...! 
1 

may be 

some function of time. With these terms acting upon some 

wave function the probability of a transition from one state 

to another is investigated. Secondly, considering two different 

states the relations are determined which must exist between 

their quantum numbers in order that a transition from one to 

the other may be possible. 

Let the unperturbed Hamiltonian for the electron of an 

hydrogen atom, or the free electron of a hydrogen-like atom be 

~o and let it satisfy the time dependent wave equation 

Ho ~ ~ i'l ~ 
}·t 

with the normalised solutions 
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where ~~ is time dependent in the manner 

r'f... =- .I, -¥ ~t 
'±'..,.. ljl v .Q_ 

Now introduce an unspecified perturbation H' which is small 

compared with ~ 
0 

Then (\-to._ H') '!:: ~ (. i ft 'f:: 
where ~ may be written 

(w) 

i 1
1 1 is t i 1 i d d t f t · r. t b S nee ~ no , n genera , n epen en o ~me, u~ mus e 

written as a function of t • If H 
1 
is small, the CA"'~ will 

be expected to vary slowly with time. 

Then I (A ... Et)l,_ will represent the probability that, at any time, 

the system is in the stat~ ~~ 

It is required to determine in what way a .. cJ:) changes with time, 

that is, in what way the probability of the state ~~ changes. 

' If the ~~s vary little with respect to time there will be no 

major change in the system during any small period of time. 

From equation (24) 

1-1 . ~ ( ~--<l? .. ) :: U:. ~ (u \o}) 
Therefore using equations (25) and (27) 

~"~') 2~\o ~ .. ) = l l ft 2 (u" ~~ ) 
. ·t "(cAO. .. iA, +Q cl~ .. ) 
- L ~ c,.(..t 't"' ,. -z:x:t 

.'. ~'i(~ .. ~ .. ) = \. t. z_ (J.!" ~ .. ) 

Multipl-y on the left by ~="' and integrate. 
-~" 

normalised the equation reduces to 

r ~ }· 14, ~ ~~ == lt ~ 

That is 

1 

Since the p"'s are 
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Since H o has been taken as large compared with H' , lf is 

approximately equal to ~ .. where ¢" is used to denote the initial 

state of the system when the perturbation was first applied. 

Then 

Therefore 

~"- ~ ~~ f ~~A HI~ 0 ~: 
' r ~ ' J. -t( £_-r .. )t 

= t t. J ~-- \1 tp :) .Q J~ 
: ~t < ~~ l ~I I ~0 '> .Q-\ (£,,.-C,)t 

a. ~(t:) ~ i) <~ .. I H'l ¢o) ..e~ (r~- f~)t c}vt 

r 
It is immediately clear that, if ~I is a constant or varies so 

slowly that many oscillations of the expo~ential term take place 

' while ~I remains sensibly constant, the transition probability 

I Cl .. (t)! ~ill be zero or very small. ' Thus it' H is the 

perturbation due only to the presence of a constant magnetic 

field there will be no induced radiation at all. In other 

words, for the Zeeman effect to be observed, the above 

approximation indicates that there must be, in addition to a 

constant magnetic field causing splitting and shifting levels, 

a further perturbation varying with time which will induce the 

radiation necessary for the effect to be observed. Such a 

perturbation will usually be given by an electromagnetic field 

".K defined by a vector potential 'A and a scalar potential ¢. 
, 

Given such a time dependent perturbation H , a " takes the 

form 0. " ~ i. { J < 4 ... 1 H 'I ¢o ~ -t~(f~-f~)t clt 

I ( .t ,{. "IT ~ "'\l... t 
:-; ct.J ..:( 4J .... I }+'I Ljlo 7 ..Q c)k 

where q ,... and ¢o are independent of time • 

The non-relativistic Hamiltonian may be written 
H -:- ~ ( P- ~ t~) 1+-~¢ 



To the present order of approximation the term 

neglected. Writing 14 in the form 

I o pl_..,.. 
~~ 11 o +- H where H = vz....., 

(38) 

-<.:_ ... !4'" is to be 
Z."-\c -

the time dependent perturbation due to the electro-magnetic 

field is \-l' :. -e ~- ~c. ~·f.. 
If in the field defined by ~ and B. the electric charge density 

r is taken equal to zero, then ~ ma.y be set equal to zero 

and the required results derived using ~ alone. This is a 

usual procedure for dealing with electro-magnetic waves at 

points far from their source. 

The wavelength of radiation is great compared with the size of 

an atom, and since the motion being considered is that of an 

electron in an atom, B. may be taken as approximately equal 
_,.'lf<vt 

to ~o ..R.. where l1o is constant in the space of the system 

and in time. For example, suppose the perturbation is due to 

a plane electro-magnetic wave 
1.11" ( ( lu- \It) 

tl == "K.wt r~ ~ ~0 -t 

where -6.. is constant in time and space. 

atomic distance, 

giving 

and therefore 

Therefore 

and 

Therefore 

~ ~ ~ , that is , -r ~ ~ 
k ,-~ I 

Since ..r is just an 



(39) 

The transition probability is therefore proportional to 

( < ~"' l do f- I ~o '7 r~ 

that is, o£ 8u' 1 < ~ .. 1 r.. l ~o )! "'" 

Thus it is necessary to investigate the non-vanishing components 

of the matrix 

< \1\ J ~ ~ I r- I ~ J j· ·~ ·; 

It has already been shown (page l o ) that this is diagonal 

with respect to J and that terms differing in ~ need not 

be considered. To examine those differing in j and ""' 

consider first the commutation bracket [ e , ~ J ~ f!~ -~"11 • With 

this definition of [fl,~] the commutator of a single observable 

with the product of t wo is given the formula 

The cartesian coordinates .,f, )('1. ?(., and the conjugate momenta 

r~ r~ f\ then satisfy the relations 

l ')( . )(• l 
' ) ' 

~· 
')( ~ ')( J. - )( j )( ( '::. 0 

l r~ r;] -:.. fi fj- Y'J' Y''- ':..-·0 

[)({fj J ~- )!."f)- fP<i. =- \ t- Sis 
The orbital angular momentum vector .f::. -=- f J f- has the three 

components L~ ~ ~r"-t:r, 

l~ : ~rH-xr~ 

Lc :. .,trj-~r" 

iT ' If the quantities and IT are given by 

n '::.. (' ,c- ( ~~ 

n' '::. rx-+-tf~ 



Then tL.\,nJ ~ lL~, r,.J-~ [ Ll,,r':l) 

"[;{r,,r)t] - L'dr,.,rx]-(L:xrj,f.,] +i. f'dr,.}P,] 

: l x, "" J,,~,~.[ r~,r~ J - \~, rl( ]p,,- 'd[ f',., p,..J 

.. t b1) ~'l 1 f~-lxl r~ .r:> J '"l l 'd, r., Jf~~+~~ l r~~ .~ p, J 
: [ )(. ,r~ 1 r~ + ~ L ~ ,r:> J rn 
.. L l f ~- t fx. 
'; -t. rr 

Similarly, if ~ is the spin angular momentum vector 

t s~;rr j ~ -t iT 

and therefore, since J: b-r+{:-1.+ - ..• + }, +lt -r · ·-

t 1t Ti ] : -~ lT 

that is (l •. li- n J~) ~ -1:.. 1l 

Taking the nljw, VIJ)'\Ill\ 1 components of both sides, 

1\\ -k < "".1 ~""' ITT I "'1j '""''p.- < \1\;j ~liT l~.Rj l 1 )~t. 

-= -t.. < ~ j"" 1 n 1 Vl..-eJ"IM '> 
that is ~-w '-H ~< \1\ .-f j ""' I rr I V\.) j 1

k-t' ) -:... o 

Therefore 

Similarly 

< v'l. J.} \\.\.I IT I ~Jj '""' '7 -=- C..' unless 

< "'.J ) ~ I n ' I V\J ). ' """'' ) -::. 0 unless 

Henc~ the non-zero components of 

are those for which M '-- w t. I 

Further [L~,r't 1 ... [ :x r,- ~r)\ . e1- J 
~ ( -x r~ , rl J - [j r,. , r"' J 

(40) 

~ (,l.,r.c)r,+:xlr~f~J-[d r~Jrx- ~fr,.r~J =-O 

That is, L~ commutes with re and similarly ~~ commutes 

with r~. Therefore J1- commutes with r~ giving 

""~<"'.Jj\M.'r<ll"..ej'""'''> -<\A1j""'ll'~ '"~il'?~'t =- 0 
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. for which the only non-zero components are those for which 

Thus all the matrix components 

< ~ ..( ) ~ 1 {?- I vt J i ~· 7 

are zero unless 

Thus, in the presence of an electro-magnetic field defined by 

. ~ and 4 the probability of transition between two states 

with quantum numbers W\ and ~' is zero unless ~'!A\~..,. ±. '> o 

Applying these selection rules to the results 

calculated earlier for the perturbed energy levels, it is found 

that the theory is able to account for all the observed spectral 

lines and to predict their energies to the degree of accuracy 

already specified. It therefore represents a big advance 

on previous attempts at description. The theory contains, 

however, some apparent contradictions and other undetsirable 

features and some of the predicted results are not entirely 

satisfactory. These difficulties are discussed in Section III. 
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SECTION III. 

The real criterion for any theory of physics is the 

measure of agreement between the calculated results it gives 

and empirical observations. The general structure of the 

theory of energy levels to first order of approximation as 

outlined above possesses so many points of close contact with 

experimental data that one feels safe in assuming that more 

accurate analysis and further modifications of the quantum 

theory will not affect the main conclusions to any great 

degree. It should likewise be possible to develop the theory 

of radiation along the general lines indicated with considerable 

assurance that future alterations brought by a revision of the 

theory of the electro-magnetic field will not appreciably 

change the calculated results. Indeed, the satisfactory 

results of the theory outlined above suggest that, if improve­

ments are to be attempted, they will probably be made most 

satisfactorily by modifying the existing theory, rather than 

by looking for a fresh approach to the problems. 

The method of procedure above was to set up equations 

for a system described in classical terms in space and time -

the system described above .was one in which particles interacted 

with each other - and then to "quantize" the equations. This 

process of quantisation may be defined as an attempt to set up 

within the framework of quantum mechanics a set of equations 

describing the system which, in the limit of large quantum 

numbers, will go back into the original classical equations~ 

This process is not unique in that there may be several quantum 
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theoretical e~uations corresponding to the classical picture; 

for example, the Dirac equat ion or the Klein-Gordon equation 

of the electron. There may also be more than one classical 

picture of the result, obtained by going to the limit of 

macrosopic dimensions in different ways. The process of 

~uantisation has been applied with success to systems of 

particles and wave fields, but, in the theory as outlined 

above, the success has been limited to applications involving 

lowest order perturbation theory only. So long as it is 

re~uired to deal with the ·normal interactions of matter that 

act instantaneously at long distances, the ~uantised equations 

lead to consistent results and describe experiments with fair 

accuracy, indicating that the theory is satisfactory for non-

relativistic particle energies. Serious difficulties are 

encountered, however, when it becomes necessary to deal with 

particles having relativistic energies, or with phenomena in 

the analysis of which linear dimensions occur which are 

comparable with, or smaller than, the so-called classical 

electron radius 

This is not surprising since the ~uantum equations are derived 

directly from the classical theory which itself contains 

singularities, as mentioned earlier. The most important 

classical difficulty arose from the problem of the initial 

description of the electron. The choice lay between describing 

it as a small charged s'phere, (or some such configuration,) or 

as a point charge. The first of these presents two serious 
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difficulties: 

1). Size and shape are not relativistically invariant. 

2). A finite charge distribution would explode if acted on 

by purely electromagnetic forces. 

It was found more satisfactory, therefore, to adopt the second 

description and to regard the electron as a point charge. 

That is the basis of the Maxwell-Lorenz equations which have 

been used above. A point charge is found, however, to have 

infinite "self-energy''. The classical theory gives the 

total force ~ on a single point charge ..t in an electro-

magnetic field as 

~ ~ .(_ ( E ~ 1(~.~] ) 

The field given by t and j; which must be inserted in this - -
equation is the external field together with the field 

produced by the point charge itself. This self produced 

field will itself react on the motion of the particle and, 

in order to give a correct account of the conservation of 

energy, the reaction of the field produced by the charge 

on its own motion must be considered, i.e. the self-force. 

Considering the electron as a finite spherical distribution 

of radius ~ this self force can be expressed classically in 
,_,s ,.,. ., 

the form " -= ~· +-~~ 

\{ :.-~'!£ .Lrh.~ where _, 3 -z:; · '].. ~ 
I' 

the integration being taken over all charge elements, ~,4L 1 

and (ref .5.) 

The factor is shown to represent the electrostatic 

self energy contained in the static field of the particle. 
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For a point particle ~ tends to zero and the self energy 

becomes infinite. It is worth noting here that for a 

charge with radius ..ro the self energy is of the order of 

magnitude 

This term is not distinguishable from the inertia term, and 

since the nature of the inertial mass is not observable, the 

two terms could just as well be taken together, assuming that 

the self force ~o is contained in the definition of the mass ~ 

Such a step would be very similar to the prQcess of ''mass 

renormalisation" mentioned later in this paper. 

The point charge used in the Maxwell-Lorentz equations 

is described, then, as having infinite self energy. If these 

equations are carried over directly into the quantum mechanics 

corresponding singularities must therefore be expected to 

appear. This is indeed so and, in addition, other 

singularities appear in the quantum equations which are 

essentially a result of the quantum-theoretical formulation. 

Several formal remedies have been invented to remove 

or ci_rcumvent the classical singularities in a relativistically 

invariant way. If, for example, the electron is not regarded 

as the limit of a finite charge but as an "elementary particle" 

then it will not have self energy. The potential energy of 

a system is the result of the displacement of the system from 

some position, and obviously an elementary part.icle in free 

space cannot be regarded as displaced from any position. The 

• 
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infinities arising from the self energy terms should therefore 

not appear. 

One way of removing these class ical singularities, 

which achieved some success, was the ~ -lirni ting process of 

Dirac. In this, a "Hamiltonian" for each set of interacting 

particles is formed which is the same as the classical Hamiltonian 

except that the vector potential A is defined by 

~ ('! ) : ; [ !1J~~ ).) r 1c. C!--~ "'>J 

where ~4 is the classical vector potential and A is a time-

like 4-vector. At the end of the calculations A is allowed 

to tend to zero and the same results are obtained as in the 

classical theory except that the classical singularities no 

longer appear. In the transition to the quantum theory this 

process is still consistent under certain restrictions. Further, 

on applying the perturbation theory to the resulting equations , 

the perturbation integrals are, with certain conventions of 

interpretation, convergent, and transition probabilities for all 

types of process can be calculated. Difficulties arise,however, 

in the physical interpretation: 

1). The particle has negative as well as positive energy 

states, 

2). If the particle has spin, negative states occur with 

negative probabilities, 

3). When applied to photons the corresponding wave 

equations contain divergent integrals ,. 

Another difficulty is that some of the calculated results have 

been proved wrong. The success of this process when dealing 
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with the classical singularities suggests, however, that a 

rurther modirication of some other detail of classical relati-

vistib theory may give further improvements. 

One such modification can be made by the use of the 

"retarded'' amd 11 advancedtt field potentials which occur in the 

classical theory. Electric and magnetic fields are propagated 

with a finite velocity • Consider a charge moving through 

positions fi creating a field at some point Q • The field at 

Q at a time "t. will be that due to the charge at a position P. 
at time t- 'f. where f is the radius-vector between P, and Q • 

If after leaving P, the charge were to change its motion, the 

field at Q at the time t would be unaffected. Thus in the 

case or non-unirorm motion it is better to describe the rield 

at a time t in terms of its motion at a time t-f , called the 

retarded time, where ..(' is the radius vector drawn from the 

retarded position ~ to the point of measurement Q • 

Maxwell's equations then give the retarded scalar potential ¢-..tk 
in terms of f, 

dJ ..u- o q, ("' > '<' t ·) = f ,;:C-._;: :en "" tL.J <~. t 
in which -t ~ t'- f and ~ is the distance between the volume 

element ~~ O.t- and the point '>t 
1 'a' t- 1 

• A similar formula 

gives the retarded vector potential 8..,.tl: in terms of' r . 
Consider now the general equation for the propagation of electro­

magnetic waves in an uncharged medium. It can be reduced to the 



(48) 

which has the solution 

~ ~ ~ r ~(~t-.;-) + ~ (ewr+<)] 

where { and a are arbitrary functions representing two waves, 

k diverging, and ~ converging. Classical theory neglects 

the term ~ representing the convergent waves, as having no 

physical significance, and defines t., = t- f:. as the "retarded 

time", thence obtaining the retarded potentials. If instead 

~· were neglected, t 1 :: -t+~ could be regarded as an "advanced 

time" and corresponding ttadvanced potentials 11 obtained, although 

their physical significance would be somewhat obscure. 

In his earlier work Dirac assumed that the retarded 

field would give the only physical interpretable solution. 

In view \. of some of the defects of the resulting equations it 

seemed worth while, however, trying to use the advanced field 

or perhaps a combination of the retarded and advanced fields. 

A brief comparison is given below between some results obtained 

by using retarded potentials alone and the corresponding results 

found by using a combination for the field of the electron of 

the form 

f .t.t ~ f...u. ~ k l ~,..c..t-- ~w(., ~ ~ lkt-{;., ~~ ( ~~) 
A) Classical theory, using retarded potentials alone: 

1) Dirac obtains the equations of motion of a free electron 

in the form 

· otv . ._ 
CA. vj.<.- --"' -~ ""'" =-·o / ct.s 1 

having the general solution 

vj. ~ ~ h<f ( C.t.~") -t- b'r 9f(-c~w) 
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where AI' gt"" c. are arbitrary except that A-r "'::: g/' ,.::: o , [ ~l] .:.{ 

This solution corresponds to motion in which the velocity of 

the electron tends to the velocity of light and the electron 

loses energy rapidly by radiation. He concludes that the 

solution is non-physical. A particular solution is \Jr ~ C,r 

where c.r cr::A' giving motion in a straight line with uniform 

velocity. This is a possible physical solution, but it requires 

a knowledge of initial position and velocity and the final 

acceleration. · 

2) For an electron disturbed by a pulse of electromagnetic 

radiation passing over it the classical equation of motion 

may be expressed 

~~-
c;(l~ k S(t) Cif'l. :. 

A particular solution is 

\.r 
It c.K t40 j ::: z:_..e 

"b ~ 
'1-t t/ o 
~ 

which corresponds to motion in which the electron is 

gradually building up acceleration before it meets the pulse. 

This contains an apparent contradiction to the ideas of 

casuality in that the electron appears to anticipate the pulse. 

Dirac got round this by supposing that the electron behaved as 

though it had finite size, which implies, unfortunately, that 

it is possible for a signal to be transmitted faster than light 

through the interior of the electron. 

3) In the classical picture of the hydrogen atom one would 

expect that, taking into account radiation damping, the electron 
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would spiral into the proton. The Lorentz-Dirac equations 

applied to this problem show that there may be no solutions 

corresponding to such spiralling motion. Even when an electron 

is moving directly towards the proton it would be brought to 

rest before it reached the proton and would eventu~lly go off 

to infinity. Similarly two particles of unlike charges do not 

come into collision while two particles of like charges could 

possibly spiral inwards towards each other. The equations 

suggest that near a nucleus the Coulomb inverse s~uare law of 

attraction is not true but there exists a repulsive force on 

the electron. This may be interpreted as the effect of 

radiation damping. When the electron is projected towards 

the nucleus it esquires an acceleration away from the nucleus 

due to radiation damping. 

B) Classical theory, using a combination of retarded and 

advanced potentials of the form 

F".t.L =-rw-t +-\ztl=..v:- -~j where ( :tk..-vr ) is negative. 

1) The equations of motion of a free electron have a general 

solution which shows that, whatever the initial conditions of 

projection of the electron, it quickly settles down to a 

uniform velocity, in contrast to Dirac's self acceleration. 

The solution only requires a knowledge of the initial velocity 

and acceleration. 

2) The new equations for an electron disturbed by a pulse 

of electromagnetic radiation allow the velocity to be zero 

until t=O· The velocity then increases to a constant maximum 
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which agrees with that given by the previous result. 

3) The new equations for the hydrogen atom allow the 

electron to fall into the nucleus by spiralling. 

It seems surprising that a theory using advanced potentials, 

where therefore the physical mechanism is by no means clear, 

should lead to equations having physically understandable 

results while a theory using retarded potentials alone should 
~s~s""-"'~ 

give results which appear se+;sfanffc:n"7• However, the use of a 

combination of retarded and advanced potentials does appear to 

give in the cases considered, and in other problems, a 

picture more like the classical picture than the previous 

theory. It is worth proceeding to the quantum formulation, 

therefore, using these modified classical equations in 

Hamiltonian form, the classical infinities having been removed 

by the A- limiting process. This is accomplished in the 

usual way, by replacing momenta by the appropriate Hermitian 

operators satisfying certain commutation relations, and then 

attempting a solution by perturbation methods. Again 

improved results are obtained in that some of the divergences 

of a purely quantum-mechanical nature no longer appear. For 

exrunple the divergent terms in the theory of the interaction 

of hydrogen-like atoms with a radiation field are all eliminated. 

The general solution of the wave equation for an electron in a 

magnetic field still contains some divergent integrals but there 

is a particular solution, corresponding to outgoing wa.ves of 

the~lectron, free from divergence to all orders of approxi­

mation · in the perturbed theory. 



(52) 

However, considerable difficulties in physical interpretation 

appear. If the same method of physical interpretation is 

followed as in non-relativistic ~uantum theory, particles 

are found liaving negative energies. The negative energy 

states cannot be excluded because, even if initially the 

particle is in a state of positive energy, there exists the 

possibility of a Quantum jump into a state of negative energy. 

Negative probabilities also appear. 

An attempt to avoid the difficulty of negative energy 

states was made by Dirac in the formulation of his "Hol~ theory", 

which found substantial agreement with experiment (ref.l). He 

made two fundamental assumptions: 

1) In the absence of an external field all negative 

'" energy states with energies ranging from-""' to - c~:> are filled 

up with electrons. No electron can therefore jump into one 

of these occupied states. 

2) No external field is produced by this sea of electrons 

and they do not contribute to the total energy of the system. 

A hole in the distribution of negative energy electrons 

will then appear to have a positive charge and positive energy. 

It will behave like an ordinary particle with electronic mass 

but with positive charge - a positron. Thus positrons are 

represented as holes in the sea of electrons filling the 

negative energy states. The possibility of a ~uantum jump 

into a state of negative energy can now be interpreted using 

the concept of creation or annihilation of positron - electron 

pairs. Consider a state in which there is initially no 
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An external fi~ld acting on the electrons 

in the negative energy states may cause a transition of one of 

these electrons with negative energy to a state with positive 

energy leaving a hole in the sea of negative energy electrons, 

i.e. leaving a positron-electron pair. Conversely if initially 

there is a positron-electron pair present, the electron can 

jump into the hole representing the positron and the pair is 

annihilated. A quantum jump into a state of negative energy 

is therefore interpreted as the annilihation of such a pair. 

Such electronic particles with positive charge have, 

of course, been found experimentally. They can be created, 

together with a negative electron, by rapidly changing 

electron-magnetic fields, for example, in the collision of 

two fast particles. 

Feymann suggests that this creation of electron­

positron pairs is closely connected with the self energy 

prohlem. The expression for the total energy of a system 

must include terms representing the mutual interaction of a 

pair of charges. Similar terms representing the interaction 

of a charge with itself must also be included. "For under 

some circumstances what appears to be two distinct electrons 

may be viewed also as a single electron, namely, in the case 

when one electron was created in a pair with a positron 

destined to annihilate the other electron. Thus to the 

interaction between such electrons must correspond the 

possibility of the action of an electron on itself ••••••••• 

This interaction is the he~t of the self energy problem." 



(Feymann. Theory of positrons, Phys. Rev.vol. 76 No.6). 

The hole theory found substantial agreement with 

experiment but other difficulties were introduced by it. 

In the theory of particles with integral spin Pauli and 

Weisskopf were able to remove negative energies and negative 

probabilities by their process of "second quantisation". 

Operators of admission into or absorption from states were 

introduced. Then by replacing operators of admission into 

and absorption from negative energy states by operators of 

absorption from and emission into positive energy states 

respectively, the difficulty of negative energy states was 

removed. Again, this was partly successful, but solutions 

of the wave equations in series form still involved divergent 

integrals after the second term. 

It appears therefore that although the above 

alterations of the classical equations have introduced 

considerable improvements, both in the elimination of some 

infinities and in the correlation between calculated and 

empirical results, every Hamiltonian containing interactions 

has so far given some divergent results and contained some 

features difficult to interpret. A possible explanation is 

that for such problems there may be no true Hamiltonian at all, 

or at least that the present methods of expression do not 

permit the correct formulation of such a Hamiltonian. 

Heisenberg (ref.8.) has suggested ~hat this situation has 

arisen from the supposition that the correspondence between 

the classical equations and their quantum-theoretical analogue 
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should be close even at the shortest wavelengths, or, in the 

particle picture, at the shortest distances between the 

particles. This appears not to be so. From considerations 

of dimensions it is not possible to derive the mass of an 

elementary particle from the two universal constants iL and 

c • It is likely therefore that a third universal constant 
.IJ 

of dimensions of a length, (of the order of magnitude 1."""' roc ... ) , 

will be required in any future theory of elementary particles. 

It will then be necessary to assume that the classical wave 

description and quantum theory based on it, as described above, 

will be limited to the description of phenomena in the analysis 

of which no linear dimensions occur less than or comparable with 

this universal length. 

A further source of possible error is indicated by 

the experimental evidence that explosion processes occur, 

notably in cosmic radiation, in which many interpenetrating 

particles have been created in one single act. It seems 

therefore that all particles are related at high energies, and 

any theory not cohtaining all particles, or the.ir corresponding 

wave fields, simultaneously must necessarily fa~l at high 

energies. If, then, a Hamiltonian can be found to represent 

the whole group of elementary particles of a system, it will 

certainly not bear much resemblance to any of the Hamiltonians 

derived from a correspondence to classical pictures. 

A new approach was therefore initiated by Heisenberg, 

(ref.8.) the aim of which was to create a frame sufficiently 
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wide for a consistent theory of atomic phenomena by limiting 

the description more explicitly to direct·ly observable features. 

Such a concept as orbits would be rejected as unobservable and 

hence operationally meaningless. Assuming that the Hamiltonian 

will lose its predominate position, the problem is the specifi­

cation of the new functions which will define atomic systems 

or, more generally, the g_uantities which will be observable 

in the new theory. For this specification Heisenberg defined 

his S-matrix, the elements of which were the amplitudes of the 

wave functions of the scattered or emitted particles (final 

state) for given momenta of the incident particles (initial 

state). The absolute sg_uare of these matrix elements would 

determine directly the observable cross-sections of scattering, 

emission and absorption processes. The S-matrix would 

represent the asymptotic behaviour of the wave function at 

large distances and would be directly connected with observable 

quantities only. Heisenberg did not, however, give any law or 

rule to determine the S-matrix mathematically in the region 

where the usual theory failed. 

A more recent approach, however, while not setting 

out with the specific aim of finding such a matrix, obtains 

a quantity which satisfies the reg_uirements exactly. This 

approach due to Tomonaga, Schwinger and Feynmann has achieved 

spectacular success in eliminating or circumventing the 

previous difficulties and in giving a complete set of rules 

for calculating each term in a series, equivalent to the 
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previous perturbation series, as a divergence-free expression 

(re:r.9.) The question of' calculating results to a higher 

order of approximation has acquired a more immediate importance 

in view of conclusive eyidence that the Dirac wave equation 

does not give completely accurate results even for the simplest 

case - that of the hydrogen atom. Fine structure measurements 

on hydrogen as well as on deuterium and ionized helium have 

shown displacements in energy levels which imply the existence 

of' a weak short range repulsive interaction between electron and 

proton. Further, experiments on the hyperfine structure of' 

hydrogen and deuterium prove that the electron possesses a 

small additional spin moment. A provisional non-relativistic 

calculation lent support to the view that the most probable 

explanation would be :round in higher order electrodynamic 

effects, but a completely relativistic treatment would be 

required to demonstrate that these higher order effects could 

account simultaneously :f'or the two apparently unrelated 

deviations :f'rom the Dirac electron theory. 

The success of the Tomonaga, Schwinger and· Feynmann 

theories has been due mainly to their ability to express the 

wave equations of -their systems in a relativistically invariant 

:f'orm. In the Schradinger representation an essential property 

of the wave function ~ is that, given the q:, of' a system 

at a particular time, the results of all measurements made 

on the system at that time are statistically determined. A 

relativistic system, however, requires a more general kind of 
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measurement than the simultaneous measurement of field 

quantities at different points of space, because it is possible 

to measure independently field quantities at different points 

of space at different times,provided that the points of space 

at which the measurements are made lie outside each others 

light cones. The SchrBdinger representation is not, therefore, 

relativistically invariant. In particular, consider the total 

Hamiltonian Hk) expressed as a .function of the purely spatial 

coordinate oo(" • Write it in the form 

where Ho(!) is the energy density of the free electro-magnetic 

and electron fields, and H/i) is that of their interaction 

with each other and with any external disturbing forces that 

may be present. In Dirac's analysis H,C!.) is expressed in 

terms of emission and absorption operators by the process of 

second quantisation and is put into a relativistically invariant 

form. An expression is obtained for 1-toC-tl from the classical 

energy density f-rr fCs tJ ~')cAl • This appears as one term only 

in the invariant electromagnetic stress energy tensor and is 

therefore not itself invariant. The analysis is therefore 

based on Hamiltonian ~~~) which is not wholly relativistically 

invariant. 

The new theory begins by defining a family of 

3-dimensional surfaces G~ which are space-like. Every pair 

of points on a particular surface Oi. is separated by a space­

like interval and any two surfaces <{ and Oj are separated by 
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a time-like interval. ~~ cover all time from the infinite 

past to the infinite future. The Hamiltonian H for the 

total energy density of a system is now reformulated in terms 

of Xo , a point in space-time, whose coordinates are(!, vtG"')) • 

Again H is divided into the components 

1-1("..) ::. w. {Jto) + ~~(x·' 

A new wave function i@-) is established which depends on (} 

and a ttconstant vector" ll.'~ is defined by saying that "a system 

has a constant state vector" shall mean "a system consists of 

photons, electrons and positrons, travelling freely through 

space without interaction or external disturbance.'' It 

appears at once that H,(l(.,_) and 1-/tQto) operating on ~@:") both give 

relativistically invariant e~uations. 

An operator Lb ~(o-) which is a function of H,(x~) is 

defined by!(:'~)! ll€r) f. where ~. is a constant vector. Then the 

operator l\.(01') , formed by taking C5 in the infinite future 

is found to have matrix components corresponding only to real 

transitions of' the system, that is, transitions which conserve 

energy and momentum. U~) is, in fact, identifiable with the 

Heisenberg S-matrix. Further, when it is expanded as a power 

series in H, the use of a finite number of' terms, neglecting 

higher terms, is the e~uivalent in the new theory to the use 

of perturbation methods in the older electrodynamics. 

To avoid the difficulty of the infinite self energy 

of an electron the theory supposes that previous theories have 

been mistaken in trying to represent the observed electron, 
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together with its electromagnetic self-energy by a wave field 

with the same characteristic rest-mass as that of the 1~are 11 

electron. To allow for a difference between these two masses 

an arbitrary ~uantity s~ is introduced, which, being an 

unobservable ~uantity, must not appear in the final description 

of observable phenomena. By a suitable choice of S~ the self-

energy effects are cancelled out. The mass is said to have 

been re-normalised. Thus again the divergence is eliminated 

by formal mathematical manipulation as in Dirac's ~ -limiting 

process and the other methods of "extraction physics". This 

is unfortunate, since the theory as a whole cannot be put into 

a finally satisfactory form so long as these divergences occur 

in it, however skilfully they may be circumvented. Once more 

the treatment must be regarded as justified by its success 

in application rather than by its theoretical derivation. 

A measure of this success is indicated by calculations of 

Schwinger. Using a series derived from that of lA.~) and taking 

the first three terms he calculated the second order radiative 

corrections to the e~uations of motion of an electron in an 

external field, and obtained satisfactory agreement with 

experimental results. 

The infinite integrals arising in the phenomenon of 

vacuum polarisation are avoided by the process of 11 charge 

renormalisation". The terms denoting the effects of vacuum 

polarisation are found to be multiplied by certain factors 

t~. and Q1 which are divergent. It is believed that all 
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n~ order matrix elements will involve these factors only in 
r ~ 1'\ 

the form of a multiplier (..t e,. r<\) • Now, the only possible 

experimental determination of ~ is by me ans of measurements 

of the effects described by various matrix elements and the 
). 

directly measured quantity will ·not be .Q but .dZ3 • .,_ • There-

fore, in practice the letter Q is used to denote this measured 

quantity and the multipliers ·( no longer appear explicitly 

in the matrix elements. The effect is to replace the divergent 

factors ~ by unity and an unambiguous interpretation can then 

be given to the phenomenon of vacuum polarisation. 

Using the renormalised expressions for mass and charge 

the theory is now able to give a complete set of rules for 

calculating each term in the series for u~) as a divergence 

free expression which is a function of the observed mass M and 

the observed charge .(, of the electron, ~ot~~. and ..{, being taken 

to have their empirical values. The divergent terms appearing 

in the series are irre~ant to the calculation of ~~) being 

absorbed in the unobservable constants ~ M. and ..e. • The rules 

are divergence free and unambiguous. Thus, without using any 

fresh techniques, the theory has successfully arrived at an 

S-matri.x W:,;p ) from which the divergences which have previously 

been so troublesome, have been eliminated. This convergence 

of the integrals appears to be connected essentially with the 

fact that, in obtaining the rules, the electron and positron 

parts of the electron-positron field are never separated. That 

is, what amounts to a new physical hypothesis has been introduced, 
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namely that the electron-posi~ron field always acts as a unit 

and not as a combination of two separate fields. A similar 

hypothesis is made for the electro-magnetic field, namely that 

this field also acts as a unit and not as a sum of one part 

representing photo emission and another part representing photo 

absorption. All the terms of U~) , when it is expanded as a 

power series in 11, , can in theory be calculated to any required 

degree of accuracy, and those results which have been calculated 

have been in agreement with empirical results. 

This method of procedure, and indeed all methods so far 

obtained for dealing with problems of quantum electro-dynamics, 

give results in the form of a power series in~ in which some 

of the coefficients may be zero. When the process of mass and 

charge renormalisation has been carried out, all the individual 

coefficients in the series are finite. If then, the series 

converges, its sum will represent a finite physical quantity. 

However, Dirac has shown quite generally that such a series 

cannot be convergent (ref.lO.). The approach to the problems 

has been first to attempt to set up a definite wave of function 

• To do this a representation must be chosen. This is 

usually done by choosing as commuting variables the coordinates 

of the electrons with suitable spin variables for the electrons, 

and the numbers of the photons with particular momentum values 

and particular states of polarisation. 

then expanded in the form 

'r ~ "-¥o + ..t. 'f, +..Lt. "K ~~ \ ~;_} + · · · · 

The wave function is 



and it is found that f~ and all the later terms in the 

series involve divergent integrals. In tljis procedure two 

arbitrary steps have been taken: 

1) The choosing of the representation, 

(63) 

2) The assumption of the existence of a power series 

in -t • 

By using a representation referring to other field variables, 

all such divergent integrals · can be avoided and all the 

individual terms in the power series in ~ become finite. 

However, the new power series representing the wave function 

is now found to be divergent, and Dirac has shown that this 

divergency is independent of any representation. The 

conclusion must be that, although the wave function may exist, 

it certainly cannot be represented exactly by a power series 

in -t • The difficulties seem to be essentially mathematical 

rather than physical. The series for ~~) appears in the form 
~ 

of a power series in ~ and so will be divergent, even after 

renormalisation. A very rough numerical calculation has 

indicated, indeed, that successive terms in the series will 

decrease to a minimum and then increase again without limit. 

\A @:>') cannot, therefore be a correct operator. That 

does not, however, prevent practical applications being made 

of the series using the first terms only. Such applications 

that have been made have given results in agreement with 

experiment to the limit of the accuracy of the experimental 

measurements. By taking sufficient terms a degree of accuracy 



could be obtained far greater than anything at present 

required or even con~emplated. 

(64) 

The present theory of electrodynamics is thus 

certainly incomplete and will remain so while it is necessary 

to remove the divergent integrals in such an arbitrary way and 

while the wave function is represented by a divergent series. 

This, however, is not so unfortunate as it might at first 

appear. Experimentally it is recognised that two types of 

phenomena occur, one type which is accurately in agreement 

with the present quantum electrodynamics, and another of which 

there is, as yet, no understanding. It is not possible to 

abandon completely the theory which accounts so well for the 

first type, and yet if this theory were complete and closed 

the second type would constitute a serious difficulty. _The 

two possibilities present themselves: 

1) The present theory will remain incomplete and 

sufficiently flexible to allow for the future inclusion of 

the phenomena not at present understood. 

2) The difficulties will be cleared up and the present 

theory become closed. In this case a new theory, independent 

of but compatible with the present theory will have to be 

evolved to contain the remaining phenomenal. 

Of these two, the first is clearly the more desirable 

and the present approach seems to be following along these 

lines. The theory is certainly incomplete but, as shown by 

the agreement between calculation and observation, it is no 
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longer certainly incorrect. 
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