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X8
Introductions

Newton, in. 1676, solved a differential equatiem by the
use of en infinite series; and in the year 1693 when he fimelly
" published his results, s differentisl equstiom occured fer the
first time fin the werk of Leibnitz.

Tn the years follewing progress was very rapid and
varieus methods of selutiom beceme knownw. Ihé main features of
this a@vaﬂceméni being: ‘ |

(1) 1694«7 Johm Bernoulli imtroduced the methed of "Seperatiem
of Variables" ,and showed how to reduce a homegeneous differential
equatien of the first order.

(if) 1734 Euler and Clairut discovered 1ndependent1y the use
of "Integrating Factors", sné at about the same time'Clafrut first
made & study of "Singular Selutions". The latter theery in its
present form, however, is due mainly to the work of Gayley €1872)
and.M.J.M.Hill (1888).

(111) Differential equatiens of second and higher orders with
c@mstant coefficients were first discussed by Euler, follewed by
Lebatto (1837) .and Boole (1854).

) The f£irst partial &1fferemtial'equati@m.te be neticed
was that giving the form of s vibrating string. It wes initielly
studied by Euler and D'Alembert fn 1747, the work being finally
completed by Lagrange. ' '

From 1800 enwards the study ef differemtial equatiens
was transformed end became closely ellied to the "Theory of
Functioms”. Gauchy (1823) proved that the infinmite gseries obtained

from a differential equation was convergent and thus reslly did



ii.

define a functien setisfying the equatiem. G-auchy';‘i‘.nvestigtatiens
were extended ené new-meth@dis introduced 1ncluﬁng the eperatioenal
methed £irst. exp.e'tméed‘.'bvj- ' Heaﬁisﬁde (1850»1925) «
¢ " Heaviside's method was mainly intuitive end it was
7. '.mueh later before it was firally put en a rigorous mathematfical -
}byasis and beceme knowm as the Laplace Transformetion. Since them
various eperationel metheds have been used io solve many different.
iypes of differential equations. We intend , in the follewing
pages, to outline and cempare the different methods of solvimg
both ordinery end partiel differentiel squations.
| In the first part eof the dissertation we prepese te
study the se\lutilens.e)ﬂ’ ordinary differentiel equatioms. It 1s
cleaf _t'hat we cannot pessibly enumerate all the kneown metheods of
solution, but the few givem will be used ss a comperison with the
more "modern" methods. |
The second pert of the work will be a discussien of
pertisl differentisl equatiens and the operationsl methods used,
nemely; -Leplace, Hankel, Fourier end Legendre transf@»rms. In '
.'c-hi.s section we intend to stypdy the Laplace Trensformetion Iu
| some detail. \ _
- The thﬁe& and final section will ke deveted to a
comperison of the ebove methods and the different types of

equetions for which they are most sultebles



l.

1.60. Ordinary Differential Equatioens.

An ordipary differential equation 1s an equation
imvolving only one-independent varieble. ﬂhe selution of an
equation of this typb containing the full number of arbitrary
constants is-called.the gomplete Primitives Any s@luﬁfém derived
from this with paerticular velues to the arbitrary constamts is
knewn as @ Particular Integral.

eege Yy=x is an obvious Particular'Integnal (PaIs) of
. 2 %%{ + 5 gz' + 2y = 5+ Iy

Suppose we new comsider the general case and let y-w

be a P.I. of
’ d? dn! o .
Ay . ey o ,
q{a d"ﬂ + a/ - GT:Z" + -~ " + a,.-, ;{_;Z + qﬂ L’ = _( (I() U)
hence o . _
98 4w + ) _——d" :‘J + ~-- 4 Gay -3(3 + aaww = £ (0 (2)
ow” du! «

If we put. y= w+ 2 in equation (1) and subtract (2)

from it we obtaeim

d”s A"y . d2
G — -+ a’ e . + - + 4"_’ d’( + Qn 2 = o (J)

. Let the solufion of (3) be z- f((x) containing B
arbitrary constants. Th; general solution of (1) is then
_ y=w+ ﬂx) where 5/’@1’). is knoewn as the
cemplementary Function QG.E;).- .
PThus the general solutionm of a linear differential
equat;on with constent coefficients is the sum of the P.I, and the

c.F.; the latter being the gsolution of the equatiom with the right
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hend side equated to lzer@.

The Operater °D'. .

4
This pperater stemds fior d«, and is a useful symbol

in wr-iting down. differential equations.
2 d* 3 [?
D is used for i+, D for i3, etc.

Thus the equatiom

4%y dy -
2 Z ' + 7 dx + 3‘1 = 0 (4)
may be written 2]9‘:13& "Dy +3y=0
or (2D + B+ 3)y = Q. ()

It can-be quite easily shown that the eperater ébeys
the flundemental laws of algebra except that it is net commutative
. with variebles.

i.e. D(vu)=vw(bu) if ¥v* is a constant but met if a
variable.
| It can also be shown that. if

' .. ~1
F(D) = 4, D”* aan +t - = 4 Qn-tD ¥ @n

then (1) P(D)e""= e “E(a). ‘
(11) F(D) 0™ V= e""F(B+ a)V where V is a function of xX.
(111) F(D*)cos ax= F(~-8*)cos ax, sinﬁlarly for sin ax.
In the follewing work e knowledge of the ususl operater

theory is assumed.
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1.10.First Methoed of Selutionme

éiveh any linear differential equation with constant
coefficients, we can find the general solutiom by obteining a P.I.
and the C.F. . |

We must now consider speciel cases off the general

equation T ot
a, 3‘}(,, ‘*" q, ZI—KZ_’ + o~- =~ + a,, ;i; + oany = {0

lell. £(x) an ~expenentia1. _ _
0. & dE?t - 6 CZIS( + 8y s o > | )
or - (De2) (D=4} y = ot _ @)

Assuming that the R.H.S. of the equatiom is zere, the

C.F. I8 obviously A.e *3+ Be.
Eliminat.ing the R.H.S. we obtaim
(D=2) (D»4) (B-3)y=0

“*y ge** where the first two

1.6, y=he '+ Be
terms are the G.F. If we neglect these end put y-= Ge " in the
original equa@ien, we obtain & value for C.

Thus € =»l.

Hence a P.I. of the equation 1is -.-e“ , and therefore
y;—Ae 7, Be*™ae>* is the general solution.
p.be Ef the R.E.S. 18 8n exponentisl e  We assume that y= Ge
immediately. If m heppened to be a root of F(D) then we assume
that y= cxe “ to find the P.I.
' e.g. 1f (P=3)(D+1)y= e

then ¥ = Ae”"+ Be 4 cze ** where C is found as above.

2



1.12. £(x) a mixture of exponentials emd polynomials.

4,

- B
7Y -8 (b -6D+8)y= (x"+1)e”’

A8 befere, the C.F. is ke -+ Be**; put y=ve ,

[

S (- 60 +8)ve "= (x'+1)e

giving (B+3 —6 D+ +8)v = (x"+1)

3x

Bt

1.6. 52 (D -1yv=0 after eliminating the R.H.S.

' wy=zge"+Be + @ +bx rex’

‘7he first two terms are the G.F. and hence we assume that

v=a +bx+ex”
Substitu'te for v in (4) ebtaining
' 20 a-bx—ex =x'+1 .
Hence ¢z -1, b-@,_ and a= -3

’

;. w=-(x"+3) ané the P.I. is

¥= -e’*(x*+3) giving us the general sclution

y s:Ae‘uc + BB‘”— 33‘(((8_.14' 5.)

1.13. £(z) conteins sine and cosine furnctions.
| eege (D*~ ép+ 8)y = 3s8in 5x
The C.F. ig obviously Ae + Be”

To eliminate the R.H.S. of the equation we differentiate twice

with respect to x, thus
B (D- 4)(D- 2)y= -25.3sin '5x
f.e. (D*+25)(D-2)(D-4)y=0

Hence y =80+ Be **+ Lsin §x +Mcos 5%

where the first

two tePms comprise the G.F, We therefore assume that

' y=Lsin bx +HMcos 5%  and substitute in (6)

3

&)

(5)

)

W)
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‘ .
Omitting the algebra, this gives
l 70 ' © .8l

M = 118 and] L < ”_;_?

- ' 3 )
Hence the P,I. is ,7;7 (17sim 5x + 30cos 5x)
and the general solution

v = Ae**+ Be'"s ~L (30e08 5z +17sim 5%)
) "9

l.14., £(x) a mixture of exponentiels, polyrnomisls, and sine oi-v

cosinme funct:len-.s.

e s €B1—,_6B+25-)y =26 cos 4x + 80> (1 -2x)sim 4x (%7
i.e. (('D-':B?'f- 18)y = 2e “cos 4x + 833"((1 - 2x)sin 4x
The C.F. is . e (A cos 4x+B sin 4x) and if we put
y=ve ", we. cen elimimste ¢ = eand @btein
| . (p"+ 16Jv = 2008 4x +8(1 - 2x) sin 4x : @)
To elimit_kate the R.H.S. we note that the polynomial is of the
first degree, and hence ome applicatiom of the methed of 1.13 will

reduce (8) to a " .
(D" + 16)Vv = 2.4.8.2,c08 4x

" end hence to - (@ +16 v=0

| vs= ((a+a;:+a,x1)co:s 4z +(b+b,x+b,x )ein 4x
where a cos 4x+b sim 4x are the terms .of the C.F.
Substitute the rest of the expression for ¥ in (9) to g_:lve'us the
velues a,=-1, b= 0, b=0, g,z 1«

Thereforse .v=. (a-x+x*)}cos 4x+b sin 4x and the

general solution is . : C
¢ y'z.eh {acos 4x +Bsin 4x+ &~ x)cos 4x]

The few examples given in the above sectiom show ws the



main steps in the method. They are:

(1) Assume that the right~hand-side of the equation Is zere
and t@n-x's write down the Gomplementary Functions

(i1) Reduce the R.H.8. of the equathom to zere by either
differentietion or by substitutiom or by a combimation ef both.

(1if) Write down the solution of the equation so ebtainmed.

(iv) Prom the latter solutiom meglect the terms which correspond
to the ¢.F. and substitute the remainder im the oeriginal equation
' thus obtaininmg values for the constants, that is, a particuler l
integral

(v) Havimg thus obtained the €.F. and a P.I. the general

golutiom 18 written down as e sum of the aboves
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1.20. Second method of" Solutiome ‘
Im this section we agaim use the operater °D' and we
rote that: | - | | '
(1) FDle - o Flals
(11) F(D)e 'V = ¢ F(D +a) ¥
_ (ii.i). E‘(s’,ﬁ) co8 ax = F{~a>)cos ax. (similarly for sin ax)

We now develop the idea of treating the operator ‘D' as
1f §t were en ordinary algebralc quantity, and we make the further
suggestion that if "D' is equivalent to the pr;eeess of
differentiation with respect to a veriable then "1/D' is the
qquivalemt_ef' integration. No attempt is made to justify the above
..assmnptiemtugh the solutions foumd by its use are easily
verified. The follewing, method is covered very adequately by

P’iagg:l.o in his treatise on differential equationsl
| Suppese we consider the general equation
F(D)y = £(x)

and use the motation F(l’) -4y to denote a P.I. of that equations

[ 3,8

1.21. £(x) an exponential i.e. e éay.

There are two casés to considen:
(1) F(a)# 0.
. ax aK_ : T ax
Since ¥ F(B)e = e F(a) 1t suggests thet e - -
ak

mey be a value of’ F@, - R il.60 & P.I.

To verify this, we see that

: X
E"(D){ FU}: o Fa) . o°

F(o)

- Rt g e L e Sraan\



B

{i1) F(a)= 0. i.e. (D-8) is a facter of F(D).
- We assume that

(D) = @D_a)'éb.(a;n). where ¢ (8)#0

then . Y S ) _ an' . | L
' F(D) ()-a)r ¢(D) . . (D'A)r ¢(a)
. ax _
- & 1]
p@ 27
= e ax’ X
b 1L

assuming that ;'f £s equivalent [
integrating r times.

The verification is once again quite straightforward.

Befe —_ — . - . (\Bee P.S-.)
g Ax* b 2x + 3.1 s €
‘or (D=2) (D=4)y = eh
The P.I. i8 ; PR <
(»-)(p-4) - l.-1.

Hence the complete solution j:Ae“-r Be “we”

e. [ ] .
’ (D-2)"y =608 "
: - -1& /
The P.I. I8 __'_- . 50'.‘7"‘ = 50 . A
@-)* ?
= 25 x* e 2=

g&m the general so-iutién y = (A +Bx) 6+ 25x @ "
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1.22. f{(x) = cos axe.

. Since - . F(D) cos ax =E-c-.-a1) cos ax we are led to
. suggest that the P.I. may be obtained by writing -a® for D"
wherever it oceurs. Iff an odd power of 'Df occurs in F(D) we caen

eliminate it quite easily as follows:

! ?3%-3
>+ 3 )  pé-g giving us an even power in e
denominatob. |
. ' 2 '
8efs . (D ~6D+8)y = 3sim 5x ~ (see P.4.)
The PuL. 8 ——— 355k = 3. —— . s 5x
: (»*-tr+8) . . D=1
2 .3 K27 i S
3D -~ 259
- +3. {‘_D_LIZ) sin 0 = =2 30 cos 5x + 17 sm j-lt)
1189 1789
Hence the general solution is e '
: 3
Yy = Aeu + Be bx + 7;;? (30cos 5x+17sin 5x)

1.23., f£(x) & polynomial.

L .
The suggested method is teo expand F?']") as a poewer

series in the eperator tpt.

ouge (p*~3p+2)y = 3~
The P.I. i8 ! LI [ —~ L ] xt
olae —————, < . )= - _ .
(»-2)(»-) 2 1 ).

The verCeo Pan s 1edlor Jonc. — se€ Poac.'n pm 37-3%
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. 2 5.3 2
=(E+D I+ [B 4 ===)x
3

s dx 43z + 7 end the general

selutien is x
y=hAe”+ Be + £x'+ %x + ;7

2

1.24, £(x) = sin ax - where E’(‘.D")= 0 when D = =a

e , (D*+ 9}y = sin 3x
'The methed used in 1.22. is obviously useless here. We
‘ ' 3
note however that sin 3x 1s the complex part ef o s
] 3ix I SR 3n )
Hemce ¢ o Z.‘pnf' .J
. = _’-. ) __I- . e 3k
o 6 -
EYY S
Jix I} - _"_ .
= ‘-—"- - e . -P_ - = & R

: =% 1i(cos 3z +1i.8in 3x)
The P.I. is therefore -.E cos 3x

and the general solutien-
: y= Asin 3x+Boos 3x =7 cos 3x.

1.25. £{x) a mixture of above. _ (see P.5.)

(D*- 6D+25)y=2e  cas 4x+8&(1 - 2x)e  sin 4x

' ' ___._—-——' ' i 3n’ In J
The P.I. is8 {5:31_*,‘3. [23 cos 4x+ 8(1 - 2x)e sin 4x_’

' . j
The first pert immedbately gives us ix sin 4x.e X

] : 3 :
The - Second )Jarl‘ reduces fs e * -—" (I- 2") S 4%
: ' D*s /4

- 13 T bik - 7
- Ji ". - R . (/_‘ZK).
I[<™ Grieeo 29
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3

-1 [e , e.“,". 5"(8;4.})7 (1-1x)]

x

giving us [——(x - x')cas 4x - 7

o - d _d ' 7 I
sin 4x+ ¥ €08 4x 5 sin. 4x.j ]
Hence the complete solutien 1is

¥ = [Acos 4x + Bsim 4x - (X = x Yeos 4x}e-3"

The abéve procedure -can be divided' into two main steps:
(1) Write down the C.F. by equating the R.H.S. ef the equationm
to zeros |
(11) Using the rules suggested 1‘:.6 obtain a P.I. of the equatiom.
The eomplete solution can then be written down
immédi atelye
Note that mo attempt hes been made te justify the rules
suggested in the ebove section. Their justification lles iIm the
" fact that t-ﬁe solutions so obtained. do ;ndeed satisfy the original
equation. In the.examples.ch@sen the ver:lficat.ien of the solutiom

iIs a siniple stepe.
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1.30. The § Methede

This procedure is an extension of the method off
Erebeniusl glthough the exact deta._ils are rather diffarer;t. The
grest adventage of the '{ ' method is that it engbles us te solve
ordimary differential equat_-:len having variable coefficients. In
the f.’ell@w:in-g gection we intemd to give an outline of the methed
é.nd’ 1té applications to varieﬁs ivell-known equationse
1.31, The eper_aﬁqg _5 .

We define the operater d to be ni ; 1t flollows
immedistely that £6-) = * 5. |

k.

kS

J dz il
since J:[: K..jl"(xad'x)S 7(.;7)(4’}?;{‘1 - {+)L’.dx"-

LA

Using the above definitiom of J the ﬁ‘ellewing%e at once
ebviéus: ‘ .

(a) {Tatv)= fat i~

) B Fd =
(¢) & (uv) = viu+ udv’

@ ) S ac I T
(o) £(HNZ" = f«n‘)’x" ‘ |
¢y iz - Sy \ f a polyremiol
(&) 2(§)x"y = 2"£(J+ B)y. g . '

l. ﬂaazw — C.hﬁ)ﬂh./ _ZZ
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Be will also need :
I 1) R 3 M s R A
-wh:l_ch 'ts an extensien of (d). | '
Tt can also be seen that
f(log-x)=1 and therefore  d(log x)= de.1:-0
and hence §(log x)= O if r=2.
_ From (h) we see that
£(f)y.10g x = log x.£(§)y + L&' (N3
Hence £((')x(.log x = log X.£(§)x" + l.i_"(f)xf
= log . £(r)ex" + lf'(Bx” ,
=0 1 £(r) = £'(r)=0
l.e. If r 18 a repeated root of £(f) then #()x v log =0
" We mote also that § (log x)" = n(log x)"”'

r U : . n-v
§"(1eg x} = n(n~1)=e=(n-r+l)(log x)

§™(1eg x)= O

1.32., Solution of Equatiqms.

Consider the equatien E‘(‘( )y=x.8({)y and suppose
that we wish to find the solutionm “ as a geries in ascending
powers of Xe '

" Assume that
r r+! .
y= 8 x t+t@8Xx t === where 270
: tl_'.len . - N+l
f(ﬁy = a, f(r‘)x + 8,f(r+ 1z ‘4 ===+ 8, f(r+n+1)x + =
and x.g8({)y- x[a,g(r-)x+a, g(r+ 1)x"" RSN a,g(r+ n)Ix" 4 ame ]

Thus, equating coefficients we have

r$
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a,f(r) = ' f.e. f(r)= 0 assuming that e +0
-a,f(r +1) =8, g('ﬂ etc.
The first equatien f(r)=0 1is known as the_"indicial equation"
gnd 1t tells us the index at which to start the series.

Thus, supposing that f£(r)=.¢ we can then take 8, =1

and themefore : 501 g(rr)). === g (rs =)

8y = fer1)- €(r2). - -~ {(@4n).

hence giving us s formula for the coefficients of the terms ef the
geries. |
We must also note that :I.f |

(a) one of the numbers g(r), g(r+1) etce vanish, then the
geries terminates and is known as the polynemial solution.

l((bé one of _the‘ numbers £(r+ 1), £(r+2) etc. is zere, them the
formula fails. Hence if f has a@@ef‘ roots differing by an
integer, then, in general, the method only gives e solution led by
x g ’ where 8 is the algebraicallyxgreatest of the group.

(e) the above (a) and (b) occur together.

_ f.6. f(r+n)=glr+n=-1) =0 and thus g, is'

.indeterminates In this case we must consider each example on itd&
meritse.

(d) I £ has a repeated root r, there is rnaturally only one

series led by Xx "

1.33. Convergence ef the Serles.

The series will converge for all values of x, iﬁ' the

degree of ¥ £ »the degree of g.
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" for a limited range if the degree of f =degree of g
for no velue of x(other than :zero) if f.he degree of £
1s less then the degree of g.
Now, we know that e, Tlr: n+k) - e g(r+n)

hence I “'m/ - / Qnst I x| = l 9(rsn) l,}(
Un Qn €(r+nt)
and if £y = of *twmslower powers

g&l§)= do 85 ==mlower powers

then

. uﬂ

Ix) — o if t>s for all x.

| &
Unes| _ /do .er

‘o[‘+ -
if t«s for sll x.

- .0
1, , If t=s end the series
¢ .—5[%’)1)(’
is comvergent if |x) < ) .
Oeele 17' ﬁ £ 2 fj - O
Xt e T 17

L _
: L q =0
X . 4/;4 E-l + 2;¢_:TLZ +X.7

end rewriting in terms of the operater [' we have
, 25'((2{-;'.)}}{: =Xy
Therefore f(r) = 2e(2r » 1l)= O

—

giving ws two solutioms commencing with 1, end x" where both

are convergent for all velues of Xe

. -

Far the f‘irst "gsolution put

V= 148E+8,K + =tu
1

-—

hence 8,¢2¢le= =1 i.e. 8, 7|2

31040307' ""5, l.e00 8y~ _L!;I ete

and the series is y =1 -L‘; X +é x? -L{;’f .
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For the secend solution put
j!

Yy=X'2 thus giving
2[({_2["’ 1)z= X2
hence &, : -5 az--fz—;l;-S etce

end therefore Y- x“(l-l’;x,té‘ X' - wes).

<gualion

e.g+2.The’ above method epplied to the hyper-geometric series
Ay -
x (1-x) ;rf\ + [T-(d+/5+l)1(}%‘?( ~dpy =
If we multiply the equatiom by X snd rewrite im terms of the

@peratw we heve
{({")7—2(5-(6’-')71'7'(‘:1 )c(,(+/4+1)[t7 ~a(/5 7"0
giving §(8+v- I)l-( = x(d+ ")(&/A)V

and thus the indicial equatiem is f( r+ r-,) Jo)

f.6. 2 ascending solutioms led by 1, x ¥ and b@th cemtvergsmt.

i Jx] <17
To find the first solutiom put.

y= a+alx+aix F - o=
8, ((n+l)(n+ V)= Lmd)('naﬁ/).a

henece
nd If = 0 them
o %o ena . d(au)(d-fz)—"(d-m )/gu.)-.ow.,)
! [, Y(¥r) - (Y#n-1)
therefore X )+ __é,, + AG A a2 f.e. Fldprx)
x +°°° : )

2. y/r+)
To fimd the second solutiom put 'y= X"z ané g must satisfy

{(iff )~ T)z - x(f+ex+/— X‘)([+/+1_ f)% '

therefore z = B4+ -1, p+1-v2-Y,x} and the second solution is
. . '
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¥y - x"YE-({_,H I-f'/b.l-f’ Z-Y, I().

1.34. Descending Seriess

In a similar menner te the above we can ﬁm-i series

solutions in descending powers @ﬂ. Ze Ta find these we proceed as

follows.
' | 4 oy . ' '
I x=5 %ZF ‘S'Z’ ) "—J‘ =—x’§.z, y € f.—-f,
Thus our initisl simple equatiem becomes
gl=dNy=x f(«-f Yy and we then apply the

foregeing theory toe o_bta'in. solutions im ascending powers of’ z’e
Therefore each reot of 5(’f ) leads t@ .& descending series unless
(1) g(f) has equal roots; enly one seriese
(i1) g5} has & group of roets differing by en integer; im
which enly the smellest roet will, 'in general, lead to & solutiom
It is worth noting that the descending series will
termirate if. there ex:l.sts e root esf f differing from a roet of g
by en int‘..eger and the reoh- ef £ is the smaller.
The convergence of the series is found in the same
manner, giving
(:l) cenvergent for all x, if the degree of g> degree of £
(11) convergent /x) >R , if the degree of g -degres of f,
ﬁ.iii') convergent néwher'e, if the degree of g< degree of f.

é. ge The hyper~geometric equations .
f{hr-:)‘, = x (S+)(d+py has 2 decending

golutions led by x %, x P if A-p is mot en integer or zero, and



couvergent when /x[) 1.

I /
Put X = ., end §= -4

., . i , r
feee [Py = KTy
Néw, if we put ¥= x’“z- we obtaim
£ 4-pa = K (6 +) (' -7 +)2
or 5’({’,‘. A-p+1 -/)} = x’(ﬂo{)(flqto(-)fﬂ)}
which is the seme form as the origimel equatiom end has & solutiom
z = B4 -Tt), d-pH, x'y

-0
or . Yy X E’(rx, .o(-m,x-/iﬂ, :é )

and obviously the second solution is
y = ;ifﬁzr(-y(,/-r+/.,/-p_(+./,;’ )
There are, in f‘act,l 24 solutions of the hypergeometric-equbtien:

put the abeve give a cleer indicetiom of our method.

1.35. The equatiom i‘((f Yy x rg(if )Y

The difference between this and the former equatiom -«
é@msidered is that we have a power of X greater tham unity en the
right-handecides

- O procedm with this q.quati.um is 't@ let.

2 2 x! the ,dj- e o ’. . /
'x x  then dx'%{’ X av-{tdx-rx %' €. {.—rf

and the equation becomes .
! 7 ' :
f(rd )y= x'g(r )y allowing us to obtain series
solutions as before. '

Note however that the roots of the indicial equation
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are reduced in thfe ratio r:l, and the causes of failure will now
be (1)} whem £ has repeated reots.
(£1) when f has a group of roots differing by a multiple
of r. | "
The polymomiel solution will occur when £ and g have

roots differing by a multiple of r.

€esle E 5.((' ')‘1 = .""‘ (f‘ﬂ)(f* ”*')‘7 f.e. Legendre's
equation with n a positive integer. '
There are 2 solutions led by 1 and x. Follewing the
above method with the exceptlom that we now have |
g, fls+r(n+ 1)] = a”g(s+ r.n)

the_ first solution is

Y= | + -"-f'n’u) x* + -n(ns)( 2-2) (3 +n) XY 4 -
’ 2.1. 4.3
f.e. l/’ = ' "(""") )(l + "("'1).(’”")("1'3),“’ - a-= lc.
. L2 I
The gecond selution is got by putting y=1xz, giving
y - )c[/- (-1)( n+2)_x1. " (n-;)(n-:\)(ﬁz)(n-/f) v - ]
13 5 x -

One of these solutions will obviously terminate since
eitner' norn-1mustbes multiple of 2; therefore ome of them
is a polynomial solution. '

There ere 2 descending solutions led by x" end x_Mone
of which Is the polynomial solution started from the other end.

The polynémial solution is known as Legendre's functiom
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L ” n
of order n I.ee P (X) = 24, 27 -)

€ege2. Bessel s equatioen of order n.
(£ )y+ 5 y:0

The roots of £(§) are . -n and +n; and if n s en
fnteger the roots must differ by a multiple of 2and the lower root
must therefore fall to give a solution. ﬁen@e we have a solutiom
in ascending powers led by x". If, 2n is non-integral then there
are 2 solutions. |

The above method gives us for the first selution

a ! n+? ]

‘1 = - - X + —— e

. '?(z_m)t) 2 (21420 4 (2n+4) ' . - 7

i. 30. - , % v - 7 J
T X Z’ //(Hn) Y g e )(a9) J

We may conclude them that the 5 method is quite
powerful if the original equatien cem be expressed in § forme
wWith practicé, the fiirst solutlom .can be written down almost at.
sight and the qther solutions follow automaticallye.

Its great disadventage s that its use is limited to the

range of equations which cen be expreeséd in 0 form.
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1.40. The Laplace Transformations
Over 50 years age Oliver Heaviside (1850~-1925) devised
his eperatienal calculus for the solutionm of differential
equatiens.'Sinee that time it has held a‘pneminentfplacelin the
treatment. of problems in spplied mathematics. It was not ,however,
mntil Jeffrey's published his werk en "Operetienal Methods in
Mathematicel Physics" that the calculus beceme mere widely knowm
and used. We shall see that although Heaviside's methods gave him
the results he required, his rules of procedure were noet very
rigerous. For all practical purposes this was net essential.

To follow Heaviside's method we must consider the

) ) Jﬂ,( JR-’x Jﬂ-!k
equati@n Go d‘_,\ + G _:l;':" -+ .a‘l dl."'l $ A= Gy X = ) E>o (’)

where a,,8,,a,,~ - - a  are constants and

C L ode_ed'x L . d' 2
K20 T et 2y = © when t = O )

If we replace :%_‘ by °p', :%"L by p-  etce ‘then we obtaim

flplz =1 - (3)
. where £(p) = a,p"+ a;p”"ﬂ+~ = +8,0 '

Heaviside regarded 'p' as an operator end equation &3)

as. his opersational equatien. Thus the operational seluxiem would
ve oz = /fp) | %)
| | This solution he interpreted by various rules, the most
importent Eeing the "Ezpansion Theorem". The fact that he attached
'great importance to this theerem is seen when he stated that "its
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use, even im comparitively elementary problems, leads to a
ce:msié’erab.-le saving of labour, while in ceses involving partial
differemtial equations it is invaluable".

The Expansion Theorem stetes that:

If p,,p,,0,, = = = B,, be the roots of f(p)=0 assuned all

2

different and none zero, then

n
’L.z (o) F Z— Ps 'f,(f’:)

A more precise statement of equation(4) is

X = "7}’) H((‘)

where B{Ut) is Heaviside's unit fumction, defined by
H(t) = 1 for t>0;  H(t) = 0 for t < O
Néw, gince f(p) is a polynomial in EE we cam expamd

44 é) in sscending powers of 1/p.

. A = _L"_ + L"*l — - an-f
& _— 'I' ',- PA ot 4 - - -
‘ "()7) P” Pﬂ#’ P""
< 'k‘

P

thus, if we regard },L,, HH = 7 - (c.f. 1s21.(11)

. . N A1
then: R S ﬁ 4+ buy -fl—;/ b giving us the actual

soluﬁie»n. o
| As we stated before, Heaviside mede no effort to
ﬁreve the above rules; that they gave him the result seerﬁeé to be
gufficient proofi |
When. he turned to partisl d:[fferential equations

Heaviside became even more obscure and it was probably because off
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this inadequate mathematical traatment.that the importance of
his theoretical work was not recegnised in his lifetime. He
golved certain equatiens and cempered his resulté with Bhe known
solutions thus arriving at his rules of procedure.

Bromwich wes the first to attempt to exiplain
Heaviside?s'meth@ds. Hg noteé that the solutiom of the above

problem is .
. | £
A j A 2
X2 2mi AW where the imtegral is takem
' Yo (o0

along the 1ina R(A)=Y in the A ~plane, {'being real and
pesitive and the roots of f£( 1) a11 1ying to the left of A=Y
Bromwich extended Heaviside S theory to intlude the
cases in which the right-hand<side of the imitiel equatien is e
fumcﬁi@n of the independent variable and the initial values of
ds dx etces to have .arbitrary values when t = 0

Xy drs- d{‘- ’
Doetsch later showed that if

oD .
@ =, fe”lj F ) ot . p>0O
. ) : viiw . .
then Fly = 55 [ 40y, IX where Ft) amd f£(p)
Y-im '

fulfilt certaln conditions.
Carsen end Van .der Pol both worked along similer lines

. _ | o
except that they used pe f as the multiplier

N4
.

_/o[" )
i.e. f(p) =’  pe Fet)dto

This latter operaﬂion:tends to preserve the correspolifence



with Heaviside's ideas end hes the adventage that it tremsforms a
constant into itself. In gemersl, however, the extre term p is
just an edded cemplication and has no mathematical significance.
We interd, therefore, to follew the method of Doetsch and keep
the term_ e-Pl" i.e. in modern parlance, apply the Laplace

Transformation.

L]
-

1.41. The Laplace Transferm and Inversion Iategral;

Let us first censider a function f(t) defined for all
l—
values of 1 > 0. If we new multiply this function by the term e Y
and :ln.tegrate the expression thus obtalned frem zere to infinity

we arrive at a new function of the veriable p which we denote by

E( )o -o‘ F -
ple i.e¢ [e)’ f(t).at = £(p).

o

This new functien f(:p:) is known as the Laplace
Transform of f(t) and the whole eoperation &s the Laplace
Trensformetion. We will always denote the Leplace Trensform (L.T.)
of £(t) as ;(p), or of y(t) ags y(B) etc., and for present '
.purposes we shell assume that the variable 2'18 resl and pesitive.
The conditions ﬂor the L.T. of £(t) to exist are that
(1) £(t) is sectionally continu@us in every finite interxal
in the range t> O.
(11) £(t) is of exponemtial order as t->~.

Thus, if

£(t)= 4 then E(.'p')= ‘;s'B'.

£(t) = cos kt then f(p)= ,p >0,

e
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Before we can begin using the Laplace Transformation
we need a certain number of simple but important theorems. These:
follow aut.omat.ically from the definition of the transforme

Theorem 1.

| If f,({t) and f,_(’t.) have transforms f, (p) and E‘z((p), then
the transform of ' i

£(t) £ £,6(8) 18 £, (p) %t T (p).
The proof is obvious from the definition.
Theorem 2. <
If the function £(t) is continuous. and hes a sectionally

continuous derivative f'(t) in ‘every finiitfe intervai 0t &1
end also if f(t) = 0)(e‘”"j) as' 1 w} then, when p » x the transferm
of £'(t) exists and is  pf(p) - £(0).
The proof is again straightforward. By a continuous application of

theorem (2) we obtain the following:

- Theorem 3.

If the function £(t) has continuous derivatives f’(t.),
£%ty, £2(4), = - = £ (1) and a sectionally continuous
derivative £ (t) in every finite interxal O ¢t <T; and if £(t),
f’(t), - - - f""(t) are of order (e’“') as t2#, then, when p>«,
the transferm of £"(t) exists and 1s

© p'E(p) = 0 £(+0) - p £(40) = - = £ " (+0)..
Theorem 4. o

If f(p) is the transform of f£(t) and k is any constant
then f(p+ k) is the t.ransform of e f(-t).

e.g. f(t)= cos at then f(p)-= p@y 37
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-kt - #K
f(t) = e cos at ther £(p) = ()‘_L* ot
Theorem 5 (Translatiom theorem)
If T(p) 1s the transferm of £(t) them for any positive

X ey
.comstant k, e J'15'0'.p) is the transform of £, (t) where

£ (t) = 0 for O<t<k
= £(t = k) for tOke
» -
Since fp) = |e £lt)dte
.. . . ke — _. . .-([-.,K)F
then e  f(p)= |e fi(t)dt where k>0

v

Let T =t + k, therefore

-x

_ P
o f(p) = | & £(t)at  where f, () is defined

v

as above. . = LaT. of £ _(t).
Theorem €.
If E (p} and E‘, (p) ere the transforms of £ ,(t) and

£, ¢ty then - T, (p}of,(p) is the L.T. of - ~ -
v ' ¢

[f,«'l‘).f,_(t. - T)aT = [f., (t = T).£,(T)al.

The proof of this theorem 1s rather difficult, but it holds good
if both £, (%) and f,(t) satisfy the comnditions for the treansforms
to existe This theorem is often referred ie as the CGonvolutiom
Theorem and the combination of the two functlons under the integral
sign as the convolution of those functiomse

With this short list of theorems it is possible feor us

te study the Laplace Transformation in some detail.
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Consider the equation-

J d"-l : . )

— + a o“_ L1 G ;‘_;3'{‘4 + e+ gy T 1&({-) (1)
. 1 A=t .

where u, %{, ‘:ﬂ?‘, ---,‘2.{’.':‘{'_' have the values ¥,,Y, s¥4s = = = ¥, ,»

at t=0; and a,,8,,8;,~ -~ ~ 8,6 are arbitrary constants.
If we now apply the transformetiom and assume that y(t) end its

derivatives satisfy the conditions of Theorem 3., then we see that

—-—ﬁ
‘."_
1
rle
2_
an
"

N, r-1 nl
py(p) =9 ¥y, =P ¥, === T,

N Y T Cpel =, . -1 -2
a, ’ Ay b - e e TR . DT Y, e Py e-=3,)
! ' "

!

Ghnt {f” j %‘{,L’oﬂ' : a,,_,ﬁp%'((p)? - 3,)
[ ) :

pt -
On {*’- y. b = @ y(p)
© . .
: ' - - .
and - l:’ f(t)dt = £(p) assuming that Jilis the tremsform exists.
; :

Thus, collecting all the terms we have,

b(p).3e0) = £(p) + (2% + BT, = = = T )
, A=t a-3 s
+ a8y By - ) @
+ == =+, Sfev,+ ¥,)+ 8,7, j

where 75(@) D+ ap '+ a1pv R Y
The sbove equation (2) is known: as the subsidiery

equation corresponding to the given dififerential equation and
initiel conditions. The problem is thus reduced to f£inding the

expression ﬂp) and hence obt'aining the requiréd solution yit)e
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A few simple examples will help to show the abeve
procedure mere clesrly. & short table of transforms is contained

in Appendix 1le.

3
: 3‘_:' - ff_‘_l Ly = 3 ) -
eegele ot ot 1 - where y =1, ¥, = O

. Assuming that the transform exists etce., we can apply the:
transformation to the equationm, thus

2 - -2 _

(" -p=- O)ylp) = 5 + ey, + 7)) = ¥,

2
= ‘}; +p=~1
P‘L_. P +2
P
i.e. -}'-,"(’.p) = Ei’ E4.2
. ' PCp-3)(p+2)
Expressing this in partiel fractions, we obtainm

A

- . 85, _4
ve) = " 3p T isGey) T 50y

s ¢ 43—.‘?21_' from our table of

wia
Uilen

and hence y(t)

/

transformse The solutiom is easily verified by substituting in

the origingl equatlions

2

9o8202~ ‘ %:‘,1_ +4 n"Y.: a._sim nt 1'1*,'.;0)
where Yy = ¥, and dy/dt = 7, 'when -0,

Applying the trensform, we have
. °
' —_ -pt _
(p* + DT(p) = a |e’ sim mtedt +€py, +7V,)
o

an .
= —P—;:;-‘_ + BY, t7,
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- '_ an + rr Y,
f.ee y(p) ° (P1+n")" G,tmt-) O;M\.)

Hence - y(t) = z%, (5 sim nt « t cos nt)+ y,cos nt + % gin nte
_ . . .on
d’ dl gl-l! _ 2 l‘ >n
e.g--S-. ;_f3+3 2;7"+ 358 4y = .i-t-_e 20
where Y,= O, and Y, = O . 0 ,
: . - . 2 (It
Therefore «p’ + 5@2 + 3p + 1)ylp) = % [ t e dt.
= (}:'7)3 p)l, (’,T‘h.ﬂ.)
)
. . Henece y(p) = () (p- )’
o2 s 3N -2

! —_— -
T S T B Ty

and  y(t) = ﬁ(gt’ ~3t+2)e" -421:-’ e'(‘-;’((cos;'-/st -3 simg/:t)e ‘

Pl‘._

From the examples shown we note that the method of

procedure falls into 4 distimet s;tepsé S .
' (1) Transformatiom of the given differential equatiom assuming
that ﬁhe conditions for existence are setisfied.

(§i) Thsertiom of imitiel conditioms to obtaim the expressiom
for y(p). |

(£if) Expressing this in part:1a1 fractioﬁs.

(iv) Using the table of transforms to obtain the expressiom
~ for yit). '
' The procedure outlined can Qasily be extended pé cover
the case of simultaneous differential equations. The method is so

streightforward that ome example should meke it quite clear.
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A _ d2 ~
a4 . azr _2 = -2t
e.g_.4.- - dF oAb 7 L 22

where y(t) = z(t) = :’,—'—Z = O when t

©
.

Transforming each equation we obtain
| 1 _ 2

(p - 2)y = (p - 2)z = PR
2pz + (p* + 1)7 = O
or yez =1/p? \
. 2pz + (p-+1)y = O h
Eliminating z we have ' |
(p*+ 2p + VT = 2/p

) — . A 2 2
and hence a - - — = =
y y pt! (Fﬂ)"
o . o s -
and ., yit)=2(1~»e =~ ’ti.'.eL) with the expressiom

for. z(t) being obtained in a similar manners

The foregoing theary can be extended slightly to
| include a very uséful theorem which enables us to solve equatiens
with variable coefficients. |
'Itheor:exﬁ Te

If £(t) 1is sectionally continuous and of exponential
order as t>», then .

- - A

5:,1 /ﬁ-krf(“)- 61"_[ = [1"(")- S‘\r (e'}"l)cﬂ‘. the latter integral

o

being uniformly.convergent and. the former convergente
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: o
. d -~ pt
Therefore g;,[f(r)j ® ; f(t). -C.e Far

o

#(p) where ;5(\&) wag -t £©)
If we repeat this n times we obtein

A . _
/e}'..t" £t - 1" 2 L o)

30@05. tc: - (21':4'1)& + (t +1)y (4] where Yoe O
) [

Transforming the equation:

A a_ ‘ L -
(1) 5 (2"F = 3) = (-:anz.fr (07) = (o) + ('\-1).;;; (D r7= 0

reducing to. ? (p = :l,')1 + 3y(p - 1) =
| F
o L
‘ f.00 d}d = (P-I)

Uy = etle ¢

These exsmples are quite simple and are designed solely
teo show the methoﬂ of approache However, without extending owr
very 1imited knewledge it is pessible to selve a number of

problems of verying types in applied mathematics.

1.43. Elementarx Applicationse
| Heeviside originelly devised his operational calculus

for use in problems arising in the theory of electric circuits.
So 1t would seem eppropriete to begin with a problem of that type.

0.g;.1.
An esm.fs E sin(wt+ & ) 1is applied. at. t =0 to an induct

-ive resistence L,R. The imltial current being zero. Find the
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’
subgequent. current af time t., (.'gnterp.resh v, I, L, B, C and Q as
"the esmefs, current, i&@uectmere, resi st.ane-g, cepacitance and '
charée.‘ The same letters with the suffix o, i.e. I,, representing
the values at t=0.)

. The potential drop round the circuit
must be the same as that across AB.

: E”Q'(w
i.e. _ L:-l‘-f + ReT. = E sin(wb+x} () "

ve
B
L+—1‘
I

2 using the initial condition.

where I, = O,

Applying the L.T. we immediately obtain

(Lp + BT = E[V————ﬁ“f * Weud
2

Therefore T - Elpsaswan)
(L}”'rﬂ)(}o"+w") :

This may be expressed in partial fractions, thus

= _ [ rea@-d) 1 _ QA b, Weas(r-d) ]
I s £ LR 1%,' L 13,0 1)-':. 2, 5t 7 1 0" s 0t
| (L'u-rZ) 13 (w2 P (Lt + R}

where tany= LwW/R., and hence
re -y
[s,}‘(r-x) ¢~ 4 s (wl'-}d-Y)]

€
——————
2
t

I= (L +121')7.'
g'iviné: us the valus oﬁ‘ the current im the circuit at time te The
expressiom shows immediately that when t is very small the first
term of the expression is the 1érger and actually represen_ts the
jnitial sirge of currente As 1 increases this becomes neg];ible

and the current alternates with period %r.
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e.g2. A circuit L,R,is coupled by mutual inductance M to a.
secondary circuit consisting ef R,L, and C in series. At t = 0,
when - steady cureent E./R , is flowilng in it, the primary circuit 1s

opened. Find the subsequent secondary current.

Por the potential in the secondary

circult we have

df @ . dL _ 4
Ld‘_+R1’.+C+M.(7F-0. (2)

where I, = 0 fior t>0; and therefore -I:’, = Oe )

and I,=E,/R, , I,=0 when t=0 @)

also d@/dt = I. | &)

Applying the transform to beth (2) and (5) and using (3) end (4).

(Lp + R’.)f+—§ = M.Ee

2,
and pa =T
' Therefore (Lp+R+ 5c )T = MEo/R,
. MEo p
i.e. 1 = ’ [
Lr, P"+P-§ + Ie

2

Hence, if w = R/2L and n” = 1/1¢ - ', them

. e _p e lemer ]
4 = LR, (,,,,,/,)1+ nt LR, (p+/.«__)"+r\1
. e % . jnsir
I=717° {n cos nt - «sin nt)e

giving us the subsequent current in the secondery circult. We can’
gsee at once that as the time increases the current dies away.

The use of the L.T. is not,however, confined to this
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type of problem. Consider the following example.

. GeZede ' ' :
A perticle of mass m end charge ¢ is projected from the'

. origin with veloeity (w,0,0) and is subject to a magnetic field H
along the z-axis; the resistance to motion being km times the
velocity. Find the coordinates at time t.

With the usual notation, the equations of motion are

£_ = ':.Bﬁl_" - EM elx 3
M=, ° T dr dt .(
gy _ oM dx _ g, dy ¢)
m- %Y - T
Art € dr
A,
dr* :
= dx- =a—l§=..' z Qe : 7
where x=y=z-0at t=0 and ,3‘:{_#oatt O )

Ap@lyiné.the trensform to (6) and using the imitiel conditlons

we obtain ) 4 _ ' _ - '
pPX=Apy~-EpxE+u
P’y = = ADpE ~ kp¥ J where A = eH/cme
. p""z' = O )

Obviously 2= 0) and therefore solvimg the equations for i and y

we have =~ _ (p*+ £p) 3 A
x = U,t,,fr)z + /\z},t en v = (’,1_, [),)’_' + A‘}:"

| . u [ﬁ _ R(prR) __.L—J

hence x = (Ats £?) . (prR)+ x* (+£) + At -

' oasat 7 At)
apd X = (s p)(k e ke coslt + Ae 8in .

(7.3
Similarl —_ =\ + e rcos A\t + k siml t
v v 0\, ‘t) C J
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We have made no attempt to justify the solutiens
obteined in the previous examples but they may easily be proved
tgue hy substitution in the original equation.

With the limited theory at our disposal we have
been able to solve a few types of diffcrentiai equations. These
show us that ome of the great advantages oﬂ'ﬁhe-ﬂ»ﬁ; is that it
brings the 1nit1a1 conditions into play almost immediately; and
thus Iin a number ef cases shortens the algebras The methed,,so far,
is almost stereetyped end in the problems considered has reduced
the equatiom to a known: transforme We must now consider the cases
in which the inverse transformation is not so obvious.

This inverse transformation is effected by the use
of the Inversien.Theerem. It is an integral formula from which the
selution may be obtained by insertion of the fiinal trensfeorme The
- use of tﬁa Inversion Theorem 1mmed1ately-en1arges the scope of the
.L.T, and eliminates much of the tedious algebra necessary for

_ resolution into partial fractions.

In using the Inversiom Theorem we must assume a
slight knowledge of the theory @f_the Complex Variable -~ contour

integration etce

" 1.44 The Inversion Theoreme

This theorem states that:
I F(p) is eny enalytic function of the varisble p and of the
order p’i in that part of the plene R(p)> X,, end where x_ and k

sre real cemét.amts, k>1l; then



56,

Y48
| 1im 7; . e‘r §(X ) ar cenverges te a functien
/59&_ r-&/&
Y(\t) ‘thet is independent of Y , where Y’ >
o0
f.e. if —Y-(ﬁp) = Je-r yit) dt ‘ Rép)> O

| . S L P

then y(t) = 1im [ e"f( A) d@x ' /\ ;;("; :
. é;,o .

Y-i '

The value @f the theorem is at once selfwevident. In
selving problems the pro'cedure is as usual until we arrive at the
final form for y(p) o If this satisfies the conditioms of the
above theorem then we can immediately £ind the solutiom by conteur
integratioms | ‘
The line-integral in the Enversiom Theorem is usually
ev:a_luatea by transforming it into a closed conteur end spplying

the calculug of residues. The following lemma is very useful im

meny Cases:s . .
1. .

Lemmoas 2
£ [¥})| < & , whem A= Re'’ ,7¢9¢7, R>R,, and R,,0,k

are constants with k >0, them (axry(z\ Yd\ taken over the ares

BB'C and AA’ ¢ of the eircle I" of radius B tends to,zere as B»<,
!

provided t> 0. 3
Consider the integrals over BE’and. B’ f
seperately snd let cosa= Y/R.
Thenl'-w, : l[az"‘aiy(\Re ).d(Re‘H) ‘ °
&
Py
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-l
= CR e sin (55)90: gs R> »

I, ] < cR / &”"”’ Pt f "Ny o where 0-F =

'[f, ’ glz_ﬂ_‘:’ . H T
< CR Je T dad usimgl>%’l>7—f_ if 0<¥ 43
0
< r'cﬂ'e .
) ';z: > 0 es R>»0 .

The integralé over the arcs CX and A’A follow in the
same manner. Thus, if J(A ) is a functiomof A satisfying the
above lemma and is analytic except et e finite number of poles to
the 1eft of R(NY=Y then we mey replace the lineuintegr"al by the

semi-circle and hence by a circle, centre the ogigin, 1nc1ud1ng all

the poles of Y X).

o.g.1. Suppose we wish te solve

o ‘
"-'!-7-1(1'- 6y = 2 . where Vo=1, ¥, =00 (See P. 28)

Afply:lr_rg the transform, we q'b.-ta:ln a8 before.

- p- p+2.
y(p) = bp-3)(p+2)

r+ce

. At 742
and hence y(t) = ;L;-  (At-ar2) A\
7 . A0-n(M2)
~t

Since J(\) 18 of order (A”') we mey replace the line-integrel.by

a cirele C conteining the poles A=0, 3, -2, and hence
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‘ y(ty = 271 (sum'ef residues at these poles)

Pole A= Se AF
' (R A+2)(N-3) gt
Residue = lin T 5
L e=lm  A(-3(Ary 5
Pole)= =2
Residue = sﬁ e 2"
Pele Az Q.

The expansien of the integrend gives us

R . _

[-2- 4 0x02)0n fFpeee)or a4 0 -e0)]
and hence residue = —'43 =

-4
3
Y -akF E{
< ¢ +—8.¢'
]

and ylt) =- 3 ¢

e.gs2. To find the formula for the deflection in a uniform besm

with a load bx per unit length in the interxal 0<x<c, and
in the interval ¢<x<2c; if the end x=0 1is

/
Zj{a’* T e
A

déy . L
s WZI) (I) /

load b(2¢c -~ x)
built in end the end x=2c¢ is hinged.
We know that

2

where E is Young's.modultis, I the moment of inertia of cross-
gsectien of the beam, w(x) the load per unit length, and y(x) the
def.‘lfect.iqn.

At any point whéré there is no suppdrt_the flunctiom y(x) and its
first 3 derivetives must be continuouse.

/ |
Also  (0) = y¥O) = y(2e)= y'(2e)= O
To £ind the transform of w(x) we integrate from O to ~°

@)
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~ putting w(x)= 0 for all x>2c.
- - - 2c
. = ~ pX -px
fege: W(P) = b)e exdx +b|e (2¢ » x)dx+ O -
. : ° c

o (e 26 s 1)

' Transferming (1)

b -ﬂc/a - - )
. BIpY ¥ = ,}.(9 e 2e¢ +1)+pA + B using the first
two conditions of (2). :
. - b '2‘P . ~< n _z
.00 EI ¥y = F‘(e “ 26 P“‘ 1, + .Fj + Pq.
. Ytem
| S (b s.-%A LA A , 3
end hence EIy(x) = - e’ Z{,\‘(e -2 %)+ +;—}
Y-lw

- -£
Since ¥( }\‘) is obviously of or@er A , where k>0, we can replace

the integral by a circle C etce

Pole A = O :
B Ax* b 5_ b, .. b /-2
Residue = Z_'f + 2-2- 2o X %0 (x-¢)” t 720 (* ‘)
and thns El ('_X) = L ')(-zt‘]’— -é(x-c 54. _b x5+ _4_)‘1 + ..Ij_fj
. JLE /20 o ) o 2 é

where the term’ [x - 2¢] must be interpreted as [x = 2c] = 0 x<2¢
' and = (x~2c) x>2¢
and may be omitted heres

The ecorrect solution is therefore

5 3 x Tx’
EI'y(‘x) - - —6 (x-c) A 27 4 -+ w3
(]
where _y(x)- = y'(x) = 0 when x=2cs
£ 1 5 5_ 5
- Hence E:! 7@) = ‘f:-l C",‘z 'Z’, czk:l_‘_ /_zLox' Z’{z-cz wﬁe
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- Equetien (4) could have been written down immedistely
from (3) using the table of transforms. This problem is often
aelve&'by suecepaive integreations oﬁ'equatien_ﬁl), but the continuity
conditions which must be epplied et x=c¢ meke the method lees

direct than the abovees

1.50¢ Conclusionse
. We heve so far outlimed methods for solving ordinary
differential egquations. Let us now compare the metheds fer
equatioms with constent coefficlentse.

| Methods 1. end 2. are roughly equivalent with the
latter slightly the quickere The first method, however, has the
edvantage that 1t makes none of the assumptioms that are made 1n
"2 and thus 18 easler to follew. They both have the disadvantege
of a number of rules which must be memorised before the methods
can be applieds. In gsolving equations rather thean problems the L.T.
nag very 1ittle advantsge except that the procedure has few
varietions. If, however, we wish to solve a problem in which the
solﬁxﬁon must satisfy certein conditions, then the Laplace .
mransformayién is the quickert and the most direct procedure. This is
because the L.T. brings the initisl condiftions into play
immediately snd in many cases they help to shorten the slgebra.
Since the majority of ordinary differentiel equations met with inm
applied mathematics arise naturally with given initiel conditions

we are led to the conqlusion.that'far these equations the Laplace
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Trensformation is usmelly the quickes! and most direct methode Frem
the few examples given it can be seen that the transformetion may

be applied to a large range of prsblems although our theeretical
knowledge 1s slight.

The 1ast example given shows that we may apply the
transformation to equations with veriables which have a finite
range instead of the more usual infinite ranges Im these cases the
£.T. has not got the obvious advantages over the classical methods,
since a mumber of equations derived from the conditions at one
heundary still remain.te be solved at the end.

When we come to compare the methods of’ solving‘equations
with varieble coefficients we £ind that no one methed khas any
~ great virtue. Alth@dgh,in the.example chosen (le42. @.g.5.) to
shsw the L.T. the selution followed immediately; this is by no
means the general rule. In quite a number of cases,replacing am
equation by the apprepriste transforms leads to an equation which
'is as complex as the orlginal. The J methed has the edventage
that the selution can be written downéf at sight from the
equetion im § form if it reduces to one of the types considered.
We ere led to the conclusion,however, that there fs no hard end
fast method for thése equations end we must resort te trial end

erraer to find the appropriate procedures
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24000 Partiel Differential Equationse _
‘. Eguations of this type f.ew. involving two or more
varisbles, ocour very frequently in applied mathematics and are
-of far greater importance than the ordipary equations already
di scussed. Naturally, the methods of solutiom are correspondingly
_more-importént end are rather more varied thaﬁ the abﬁve.
The equations we shall be concerned with will be of'
'the type invelving two verisbles (usuelly X and t), since these
occur most frequently in. prectice. Almost 1£¥ar1ab1y these equations
| Qrise.naturally with initial and boundery comditions attached to
them which the required solutien must satisfye In fact, finding a
solution which will satisfy the given conditions is one mf‘ﬁhe
- most 1mportaﬁt aspects of the work and it is in this that we see
" the full pﬁwer of the operational methodss
For partiel differential equations we are not
~ confined to the operational method already discussed ie.e. thg
! Eaplace.Transfomhationb but havg a choice of severale In perticular
.we intend to déscribe the Fourier, Henkel and Legendre transformse. '
i Even this list is not exhaustive but it will, at leasb, give &

: general idea of the procedure involveds
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2410 The Laplace Transformetion.

It s possible with the procedure already discussded to
solve a number of partieal differential eqwationsl‘ We propose,
however, t.e1 omit these and proceed immediately to the use of the
Tnversion .]Ir_xt;egral. . |

The Inversion Theorem fs sometimes referreéd to as the
"ywellin Inversion Theorem" but elthough it bears meuﬁn's neme it
was originelly g:lven by Poi sson ip a memoir read before’ ‘the
Academy of Sciences, Paris, m 1815, Mellin gave a rigorous

discussion of It in 1896,

We have already used the Inversloen Theorem, but since
ft is of ﬂ'ar greater importance in this section we append the proofl

'ﬂhe Inversion Theoremg

If y(t) has e continuous derivative, end if |y(t)< Ke'

where K and ¢ &re pos:l-.t:l.va constants,and if

A
- -pl=
yip) = f e}o y(t)dte . Rip) > ¢
o
. e
" S t -
. then _ y(t) '2‘;"- lim |e" F(A)ar Y2
. e LIV
\ CH Cri ~
p — At 3 -
Proofs ame {. e "](A) dN F ax I “-M: JA /L ‘[(M)du
Yo Yoiw >
o YW
- Al-u
- /’1(“)&6'4 } '] 21/\-
. @ Y-(w

(‘,wriere we have inverted the order of integration because of the

uniform convergence)
L See " Moglern 0,4,.1".5‘:{ Mooy 5'17';“"”"5”"' RY. Churchill C/m/,/', 7

. w | . -
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A(r-w) ' ~
Y7] . . @
= :'-{w(em SR TG :’ f«‘( 0w g
n '(’-u n s
° -t

. ~Ys,
where we put u=t+s and £(s)=e y(t+s).

P o

We can bregk up the integral into f and g , 8ay I, and T,
. 4 -t-
. ~ ;' s f 5-
fee. I, = ff(f.s)—; ds - f(\Q‘); 105 fy [ﬂ’——‘i’ sin ws . Ay
° e A 2 ° P »
| ; s
+ 5,{.‘@). “—;—2‘.41 + [40)- s s
For the first integral 4
o ;:.whw.s oLs -=. hir}:z _ T CJ
s dz = 2 + 0 w)
o ) o
For the second integral
(P ' 5 e '
' }_g _’;'_“_"’ shws di | & [ )40y and we cen choose J
S

o

such that ]@;i“”) £ _‘Z{ and hence the integral < £

For the third :I.ntegral

A
(o fita o [~ 22 40]’s 3 [cous 4{ D)t = 06)
e 5 5

: o0 . o
For the fourth integral | [4g. 5% .s] < [159] o

and hence we obtain 6. f#(n Sy s b B0 = ATY(t)

R

Similerly fimn I (@ 2298 4 = ETEL)  end therefore
: S

WD
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v ] At _
Y = 7. | e FEA)aA .
Ve

_ As we stated before, the line integral in the theorem
is usﬁally evaluated by tran.sforming'it to a closed conteur integral
end using the celculus of residwes. To make the solution completely
rigorous :[t 1s necessary to verify the result obtained in the
original equation and eonditions. Thus, we aétually assume that a
solution exists with the .neceasary properties and verify it latery
this :s_eem'-s to be adequate for most purposes im applied mathematics.
We may note here'that -R'.V?ochurchili uses an entirely different.
.methe:d oﬂ‘.approaeh snd proves the Inversion Theorem under
conditions on ¥(p) instead of, as a;bo-ve, conditions on yét)ol'
'Ehe L.gplace Transformation can be applied to a number
“of different types @f.equgtions, and we propose now to discuss a

few aof thejse appiications.

2.11., Heat Conduction.

. . l ' 'a
‘@egele Dorive a formule for the temperature in Ak well with fts

fece x=0 insulated and its face x = € kept at a constant
temperature y(x,t) =1, the Iinitlial temperature being zero.

If y(x,t) is the temperature function

T
/) ‘,=l.
fametion, then the problem is equivalent to ‘él : >
7
solving : ;L
-;:1 = é‘_‘j . (,) 7
. : A A
with the initial condition  ¥(x,0) = O . @)

. R V. Charchill Pi15¢ >.
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end the boundary eonditions  y(¢{t)=1 t>0
. 2y i 6))
w0 x=0, t>0
Assuming that y(x,t) satisfies the necessary conditions for the

transfarm to exist, we follow the ususl procedure obiaining

- 3y (,
py(x,p) © —%;‘E) -using (2) («)
and  y(¢,p) = 1/p ; 5 “;';)f";/”} =0 ()

The solution of (4) is obviously
- ~vp-x ’ +Jp X

'Y= he + Be gnd hence from (5} we
_ ch. \/E~ X
" have Y : poeh dpet - (¢)

and freom the Inversion Theorem

rf;-"
it R A-x

e ) = ot &
V8 2 2 ) aaoae .

2n¢1) 9 ‘
where the integrand has simple poles at A= O, <4Z1’ yn = 0y1,2,3, 0=

We can replace the line integral by a semiaeircle as before if the
2 .
circle has a radius R =i’;% gnd therefore cannct pass through any

one of the poles.
The integrel (7) must therefawna equal 2r<(sum of residues)

Pole A2 O .
: . ch./Ax P it -/
 Residue = lim . n.wvt '

. Ado
Pole ). -&¥* | )7
. Oe-A 75" Resid ' [ d\ A,‘g j _ deos @nu)»l e @:2‘_
esidue = 2¢
{Ackut} st
A= 0" (2a+1). 7T

e
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= P @"_")_i".zh w G@a+)ra
and thus yix,t) = 1 = 42_ G e 4cr . zC
nso (2r+1)T .

'To complete the solution we must prove that when 0<x<1 amd t> O

then [e"* ;‘;“3 JA venishes over the erc BCA, f.e. it satisfies the
/ 4

atat

conditions of the lemms (P.36) on the eircle /" of radius R - L
Si'nee' 2cosh (a-+ ib)cosh(a~1ib) = cosh 2a 4+ cos 2b and A = Re‘v
then 2/cosh €/Aji= cosh(2nTcos 30) + cos(2n7 sinje)
= cosh(2n.reos £6) [1 + sech(2n 7w ecosis)ces(2nr sin{d)]. @:
2;.-1 ' J8aci
Let &in jf- Py o that cosis: T, end when T 2/32/
‘them  -2nT > 2nwsinid 2 2n7 sinis = (2n - )7,
end therefore cos(@nw 8inid) 2 Oe
. Hence when 725 24 _
.2);0;}‘ (A}" > cosh(2nTcosid)e (%)
Also, when/s>a>0, .

,seeh(’2m1rcos;H)cos(zn’Tsin 5’)} < sech(2n7 cos id)

/N

gech(2n ¥ cos ig)
= sechg TrJ«éh » 1)

sech3TV?, when m>1. (»)

IN

Uaing (9) end (10) in (8), we have
2}cesh€A[ > (1 = sech}7/>)cosh(2mm cosid) when 252 Os

Therefore -}eoshl/x} > ¢ cosh*(2n T eos3d), T892 0, where

¢ s e constent independent of n, &ls0

|cosh xAf = jcosh{(mr/g Yx(cosiw + isinid)]| £ cosh §{(nT/e)x co.s;’az

Hence

cosh M\../ . ek {Om/e) v o]
veal ¢ N

o S i 3 /. daN T
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[ﬂ""/e) X s 38
! &

< .c g "7 cos iV

< cle’{&"‘)k}nﬂ'cnéﬂ

' < ¢', when 7 24 2 0.
Stnce this elso holds for 7< 4 <am, the conditions sre satisfled and

the result follows.

e.g.2. An example involving srbitrery end temperatures.

Let the temperature of t.he'end X =T be yao /17707 2 (17 qoab
: !  v(xo)=0 | .
a function of t f.e. Xt. . - 677777 7 /7 7 X
Thus, y{x,t) must satisfy
3y Y
iYa Mt t>0, and OQ<x<«7 o
where y(x,0) =0 and 3(0,t)=0, ylmtl=at t>0 (@ 5D
Applying the trensform and using the initial condition, we obtain
| | ¥ . 4
PY = i+ @
and ?(O.P.') =0, y(7,p) = d/P‘— (5)
The solution of (4) £s obviously ‘
: N ) sy

vy = ae Y4 Be " and incorporating (5) we have

_ & simh Z/E

y F" J‘/r’l( 7/'1/)0

Yried °
hence Y{(x,t) = 2. 1 o sR x/A . dA.
At R 7/A
Y- e

]

R‘epiacing tne 11ne.1ntegra1 by the usual contour we see that the

fntegrand has poles at A= O(second order), A -n* where n=1,2,3,e~=
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Pole \= 0 . N a
Residue = 2 ({x° » 227 + tx)

1%
- Pole Azen . L
24 sm AX -
e * Q@

Resldue = ~ "L . n

and hence the &'1ut.ion| - . .
- ] 24 SiAaAK T N
o « F 409 o) ¥ Ser

/

meb. Im this and succeeding; problems we have taken the limits of x
to be 0,7 to facilitate comimri son with problems involving Fourier
mhamsﬂbvrms; Tt is obvious that the procedure s exactly the seme if'
the limits were 0,{.

To complete the proof we aought to show that it Is permi s_sable
to change the coni.o-ur qf integration and, of course, verify the
solution. ].Tn_ the last example we proved that the former was
permissable; here we intend to show the verification. .

When x:=T, y{x,t)= %‘-((‘n 1) = Ats '
x= 0, Jy(x,t) = Qe
For t=0, y(x,t) = [‘![x‘ —'-] 7; f " .ﬁm nx t-n'(‘
/

and if we expand i((x‘ « x7') in e sine series between O end7, we

-o»btamziw"”";‘ end thus  y(x,t) = O for t=0.
)_l, _ XX " 2:( éo 1" Sm nx e-n"‘l‘
ok T T 9 '
f_"ﬁ A + i = )" Siman e-"z{.
aﬁd é}"l. = ;T- (K) - T Z,- ————,’ .

The golution therefore satisfies the original equation: and conditions
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6s2»3s The flux of heat into an Infinite cylinder through its
: d 4(nt)
‘ surflace r=1 1is a constant f.9e¢( or ;r-,:A. If the initial
temperature is zero, find a formula, for the heat functions

If the heat functiom fis y(x,t) it must satisfy the following.

Sy M : 1 _
_5_‘!1’ - -é_f" 5y -S“r 0sr<l, t20 (")
yir,t}=0 _ t =0, )
\ .
| | e & t>0, r=1l. (3)
Applying the transform
: . - MY 1 \g : .
pFr,p) = 3. * ¥ 3  usimg (2) , &)
- .
and 33,1 = &/p when r=1. | (3)

The solution of (4) must be finite and a soltution of Bessel's equations
The solutiom that is finite at r=0 is -

| ¥(r,p) = OI(r/B) vhere I (r/B) = J,(ir/p)
aud. thus employing (4) we see that
B ATL.G/p)
Y.(rvp') P% I,¢p)

Let. the positive solutions of J,(z) be A /1‘ /s etce, then the
golutions of I,(/P) are p = =5, where n=0, 1, 2, 3, ==
/ A AT (eA)

Therefore ¥r,t) = ,; | ¢
. Y-i

We replace by the usual contour and we have poles at 4=0, = ,,l,n--0>,1,2,-'

g

Pole A= O

Expension of integrand gives )«%‘!A lh -—+ .-- }[ _4_ h - A ,-.-
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' t
and residue = 2A(t = T * %)
Pole M= = 4t _ 1
s 41, (¢h) i E,
Resgidue = T"’(“ﬂ’)‘ . ‘
sl 3dge-pr
o e
AT, (ripa) Spt 24T (rfa)e
= . Q- = - —
3. '/‘ﬂL'I,'(‘./"’ . ' —fa . 3, (pa)

’ | X = T8 -prt o
o s rH_ 2y k= — =7 ¢
Hence yir,t) =2A [ 5~ &’ 20- B3 (fa) 1

where /5'/&/5 w-o gre the positive roots of J,(z)=0.

2,12, Vibrating Stringse

The Laplace Transformation may also be msed to solve
differential equstions arising in the etudy of vibrating stringse(cef.
Fourier Trensforms)

- @egs1ls Vibrations of a string with fixed ends.

UI ‘f(“") =0 T .
Let the string be stretched between the X
origin and the point (7 ,0) end assume it &s
released from rest in the position §=OJ where: yls
y(x,t) is the displacement functione.
. 3 ) 2 _3_"‘4, '
Therefore _ X,.J» = o T T _ O<x< m, t>0. "
2y (xt) :
yix,00.= {21°] = o @)
l':o
and y(o,t) = yET,t) = O é))

Apply the transform to (1) and thus, using (2), we have



5 & g (x)) N

KRR w2 2

&

amd F(0,p) = F(7T,p) = O%

The solution of (4) s
' _ P Y

' y(x,p) = e +Be % +Ce © gnd hence from (5),
- 5 g(i1-e %{) 5(¢-r£ -') B
R R e SO e~
2p? sh 2 2 p2 sh K
. : g g(x-T)
4 iw _( ) - 5_3_ 3.(0; 4 z
reducing x,p 4 . P’ cosh )’f’:
TS
- ! w5 ¢ “(“ +)
hence o w(x,t) 2 2mi e 7«’)- , ]Ak
Y-t |

with poles et A= 0, (2o = 1)ef, ~(2n = 1)ef for n =1,2,3,s « =
Pole X:@.

Resfidue = 3>+ 7.(x* » T2)
Pole ) =(2n = 1)ed. |

ch %("' ‘:’T)

o . <
Restdue = 4 (. ) am3

jl ) (Zn-l Jac -

X H (1n'l)¢"

.2 £m (1A-l) W (2"")04-. l‘
L
T ’(2n~l)3
Pole A= ~{(2n = 1)ale | _
2 o (2a-di @il

Residue = —-——_————-’; B
77'4_1' CZA - ’)
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The change of contour and the solution must be verified as usuals
We have t&uehed wpon: a few of the,K diff'erent problems
whieh cem be solved using the Leplace Transformation though it is
by no m-eafms an exhaustive list. The transformation may also be
appiied to problems in Hydrodynemics, electric tramsmission lines
(Heaviside's original use of the transform) etocs '
From a study of the procedure used in the above
examples we can resolve it fnto three distinct steps:~
(1) application of the transform to reduce the given
equation by one vari.abl‘..e;. ltnf&amples tai:en, to an equation of one
variebles ' | |
‘ (1) Solution of this equation to obtain a formula for
the transform Y(p)a
(iii) Use of the table of transforms or the Imversion
Theorem to give the required ao»lmt.:l.o:'n.
To make the solution rigorous we must verify It and the
change o»f' contour if t.hé Inversion Theorem 1is useds
- There are other tramsforms which are of Importance Im
applied mathematics and mathematical physics, and although their
range o.\f'.msefulness is more limited then the above we must linclude

them for completeness.



' 220, Fourier Transformse
The theory of Fourier Integrals originated in
Fourier's "Analytiecal Theory of Heat". It was pointed out later by
Cauchy that' the formulae used by Fourier lead to reeiproeal
relations bétweeh peirg of funetions.

[
(-PY- 2 if Ec(u).; \/;gr [ﬂ’(t.) eos ut.dt.

/z
then f£(x) = V=n ch_(‘\u‘) 808 XUedUs

o
The relation between f(x) and F.(x) is reeiproeal and they are
usuelly known as Fourier eosine transforms of eaeh other. In a

gimilar menner we have the Fourier sine transforms.

R

if F,(w) = /—f, f £(t) sin ut.dt.

then £x) = /2 f F,(u) sin ux.du
o

The more eommon infinite Fourier trensform is unsymmetrieal: -

e 1f F(%) - @ ‘ £(t) o “Lat
then £(x) = \y’%, 5 Flu). e-w_.du.

i

end we note that if f(x) is even then F(x) = F.(x)

gnd if f£(x) is odd then E(x) - 1Fg(x).

However the eondition that £(t) should be integreble .



over an infinite remge is rather a severe one and this feature
combined with several others rather limits the types of boundary
value problems to whieh these transforms are applieable. A more

useful Fourier trensform is one whieh is -integrable over a finite ?

o ae— o

renge (usually taken to be 0,7 ), an& these we propose to discuss.'

221 Eoﬁr-ier Finite Sine Transforms.

1f f£(x) denotes a funetion that is seectionally -
eontinuous over some finite interval of x, we can, by an eppropriate
ehoige of origin and unit of length, arrange the intervael so that
the end points beeome x=0 end X = 7.

i.e. if x is seetionally eontinuous between 0, £ then by putting

]

X = "‘{ we see that '-_;x_' is sectionally eontinuous in the interval
0,7 «
We define the Fourier Sine Transformation of f£(xz) in

the interval O, 7 to be thq operation

—

n

S’f:‘(x).: sin nx.dx n=1,2,3,mes
o .

and this funetion of n we esll £s(n)

—
]

Thus f£,(n) = gf(x) sin nxedx 0 =1,2,3,ess ()

[
'

osge if £f(x) = x (0< x <)
. t‘hen fj(n‘) = n B f-l-"-' 1,2,3,-‘:&»

. If the first derivetive of f(x) is also seectionally

eontinuous in the interval O, 7 and if £(x) is defined at eash
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point of diseontinuity so that

£(x,)

b[fix,+ 0) + 2Lz, = 0)] Ocx, <7

then the Fourier sine series e¢orresponding to £(x) eonverges to

~ "
£(x) = ‘7‘,— 2 sin nx f(u) sin nu.du 0.<x<T
} '

end henee using (1)

| £(x) * %,—

-Miy

fs(n) sin nx 0<x<T, n=1,2,3,mes (2

giving us the inversion formula for the Fourier transformation.

-IT,('")"’
. Qe e if f£,(n) = —5H O0<x <,
- 0N ' . o9
= mEn o = . 4 sa o<x &7
r i = 3 —_—, 8 4 = 2 é') “n Nn i
then f(x) = 2’, > " n Z’

= 2.1-:_ = 3{_9
Before we ean attempt to apply the Fourier transform-
atiom to partial d:l.ffei'ez}tial equations we need the following

. propertye

Transforms of derivatives of even order

Let ,f’(x) be -eontinuous and f”(x) seetionally eontimuous
inthe interval O, T« Then
' T ' T 7 .
{I‘"(x) gin nx.dx = [f"(x') sin nx] - [ﬂ“ (x) eos nx.dx
o ' e o

- o
= L-.-n £(x) coé nx] - u2 ;{ £(x) sin nx.dx

6 o

= [-2 )] 40 [200) - (1) 2]
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thus giving uws the transform of £"(x)a
By repeatedd application of the above we errive at
the following theorem:-

If £(x) has a sectionally eontinuous derivetive of

order 2m end eontinuous derivative of order 2m - 1, (m =1,2,3,=~)

then
w
[ £y sm ax de = (=nH)™ £.0) - )7 Pl [f@) -G1)" -‘:C’T)J
[~ '

- (_')M-'I ﬂ!nn‘![;”@) -4 "C”.)]__ - -

+n[§2 —eN £ ]

" end we note that the values of even-ordered derivatives appear at

"the end poikts.

' 5.82. Finite Fourier Cosine Transforms.

If £(x) is defined in the ‘intervel 0, 7 im the same

. menner as for the sine transformation then we say that
T

'f.'c(n) = {i‘.(x) €08 nX.dx. B=0,1,2,3,0m=

©

where £_(nl 1is known ss the finite eosine transform of £(x).

>

T ;
3 0=0,

= ,I___é;).l , R=1,2,3,=mn
n

e.g. If f(x)=x then f_.(n)

7
-1)e -

n?sec?

cx

or, 1f  £(x) = ki e® then £ (n) =

In @ similaer way to that of the sine transformation we have the

(2)
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' inversion formula

£f.(n) eos nx O<xX< T (s)

Jin
-V

£(x) = 2 £.(0) +

where f{x) and f'(x) are seetionally eontinuous funetions in the
interval.. _
To find the eosime transform of a derivative of f£(x)

we integrate by parts, thus
‘ A — T
[}

[f'(x) eos nx,dx = [ﬂ'(x) eos nx} +n [f(x‘)- sin nx.dx

T
=B {f(x.) sin nx.dx+ (i-l)n £(r) - £(0) , n=0,1,2,-~

(-4

where f(x) is eontinuous and f’(x) seetionally eontinuwous in O, 7.
continuing the above process we obtain the following:~
If f(x) has & sectionally eontinuous derivetive of
order 2m and eontinumous derivatiwe of order 2m - 1,(m =1,2,3,==),
then ‘ '
£ (x) eos nx ax ’-'_("")vac(") - )™ nzmz[:( ©) -6 f (m]

0

SRR [ - f ) ] T
- [§* @ - ™) ®

end we mote that the values of the odd ordered derivatives appear
gt the end pointse.

Although the Fourler tiran-.sforrh is not applieable to
-suoh ﬁ w:l&e range of problems as the Lepleese transﬂ"om,' there are

. problems to whieh it is more suit'.ed..



2.23. Applieetions of the Fourier transform.

eo‘s.ol. : :
" vibratioms of e borizontel strimg with fixed ends (e.f. P.51)

Assume that the string is releesed from rest et t =0, and that

yix,t) is the displecement funetione

dy 2 3%
Then L 5Lt G<m<T, t>04 (2)
. . .
y(x,0) = <S-'{_)ho= o _ ()
v(0,t) = §{ T 48 =0 £20. (%)

The point to note fs that the vealues of y(x,t) at the endwpoints are
given end we must therefore use the sine trensformation.

ipplying the transform we have,.using the eonditions (9)

T

dz‘[s(":r) - 2 2 0 : J'
Bl -8 n ys(.m,t..),+ g | sin nx.dx
[
: oy, (h,t) o ) -E0)?
: Y -1 —%’;2—- o+ a"n-zys(;m,t:)ﬁ = 5—L;—n—-] | ¢v)
end y,(n,0)=0 : {—— 4 & ")? I | )

Equat:lom:. (10) is an ordinery differential equationt.. and its solution
is obviously | '

v b, t) = ‘Tsn; [i-('-.l)"] + B eos ent +C sin ant
where the eonstents A end B are evaluated from (11).

f.es Y fmyt) = ;1-; Ll “ (- l)} (L = eos ant) - (2)

To £ind the valuwe of y(x,t) we make the inverse transformetiom

f=-E0)"

(1L » eos ant)sin nxe
n'.\"'

. 0
vix,t) = ;TE 2'1.2_
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The sbove solution is purely formel sinese weh have
assumed  throughout that yix,t) and dts derivatives éatisf_y the
econditions im the preceding theoretisal work. The solution, hewever,
.is quite easily verified thus justifyimg our assumptioms. m is
jnteresting to compere this solution with that found for the same

pro.\bleim using the Lepleee _transﬁ@rmation.

The L.T. gives us

(X, t) = 3 (W.x-&") - ﬁé g—_ s (241) K. cos (2ﬁ~/)a[‘
YL X, ) 2673 et - (2".’)3

and we see that the solutions sare identieal if’

s 3x + (IJ)

—';;r(vu-u") = smx + T3

this is so, sinee the expansiom off Tx =» x~ as a Fourier sine
series in the intervel O, T is _ |
= - : 2
c_"_x’x‘).) - 4 2— _;—i—smnu ()
: . ™
whigh is identieal with (13)e
Henee both solutions ere the same though it ean be seem
that for this pertieuler problem the Fourier trensformatiom leeds

ue to the solution in a more simple way.

@.g+2+ The temperature in & solid bar. (e.f. P, 48)

tonsider e ber fmitially at zero 1110 It
. - 120 yino) =0 ]7: « '
temperature. The end X =0 is 01177777717 oK

maintained at zero tempersture and the end x = 77 has a temperature

whieh fraries with t, If y(x, £) is the temperatuse funetiom



oy 0%
dr I
amd ¥(x,0) = 0 NPT
y(o,t) =0, y(m,t) =xt

Once agaih. we are given the velues of y(x,tl

end we need the sine tramsform.

L Y 2 . Ty
B Y - TN Zi' = =& Ys - I Ld_t'(\'-‘].) ]

and ¥ €m,0) = 0

The solution of (18} is straightforwerd and pimee it must satisfy

- {19) we obtain

qséﬁf) = a3
and henee y(g,t) = %i%’l:.s.h_m - gg_ti
Verifieatione |
X - ‘%"'i;—-‘ ‘%',-’"-S""f" * 37
.ana( Sty - 24 § (""SM i+ #
St T i e

sat.isﬂ‘ias the original’ equation.

Also at £=0, -,
_ . 24— (N - _ 2 smmnk =0
ygt) = F 2 et T "
at X =0, y{x,t) = O.
24t T . '
at x=7 yix,t) = o —é = b tt.ms satisfying the

L ()7 e G

f\

(2]
2_ —— S/A nx, ¢
-

= l
Z—— mnll.e
n
}

sinege the seeond terdeisappews. Thus the solutiom

using (17)

-nit

s/4 A -

n?t

S1EY

_a?t

at the end points

o
/

Bl’i\

LI

&)
)
o)

_n2(
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inftial and boundery eonditions. The solution is therefore verified.

L

-To sompere-it with the Laplase trensformetion we note

that its solutiom is
"0
- oL i +_pt Z_ _
wmyy = 2T e b] - > €
] ]
. ﬁns(um

end this is identieal wiith that obtained by the Fourier, sinse it

)" smnx —ntk
- €

can be shown that

Y
-("I"' . I
7x(x =) = 22 S8 ax QLX<
. [4
. ) . ® (-1)
and x = 2°5 — sni nic. ' when expanded a8 &
7

Fourier sine series in the intervel 0,7 .

Bs o Do Horizont,al string with sliding ends.

: The ends of the string are looped _ LN E
- about vertical supports at x=0, x:_rr_ / .

A eo:nstan‘t' upwa;&‘-ﬁsrvc:e acts on the | e = >x
right hand loops Therefore if y(x,t) _

1§ the displacement as the string falls

. from rest , it must satisfy

. _
@ . et 5 O<x<w, t>0 (2¢
Akk dur . . .

y(x,0) 0, (ar A @

I

ifl) o-—-o , (;—3){7’_?— ’A - ' (22

where b is the magnitude of the force divided by the tension. Stiice
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we now have the velues of an odd derivative at the end points we

'must use the cosine transform.

7

. ) . 6‘2 2 2 2 . n
Hence e 4 + eny = -abll) +g ( cos mx dx (23)
where we have used (fzé), Ly
d .
Also YC (n t) d‘,f.c = 0 t=0 . (2(,)
[/
When nm= O, [ cos nx.dx = T

and t.hea golutiom of (23) end ((24) is
¥ (0,t) = irg - 2B (25,

When n=1,2,3,e«s T
[ cos nu.de = Q-

o

and the solution is | |
) ARy .
end thus, using the inversion formulsa
yix,t ) = T'r V. (0,t) + ;:—riyc(n,t.') cO8 EX.
I .

where v, (C,t) end y (m,t) aere given by the equations (25)and (26}

As uswal,the solutiom ﬁxuat be verified before it can be said to be

completes

e.g+4. Transverse Vibrations of e Beam. o

A constant transverse force F(x) acts _ R
0 " s

at each point of @ beam, withéf ends
0, T hinged. The transverse displecement must then satisfy
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Yy 8% " .

<\1-1-_= s St _+ ke ' : (.27)
b = O

y(x,t) = x - ¢] .at-. x=0 and7. , (2%)

¥(x,t) =1 =0 at t=0 | : (29,

1

Applying the sime trensform we obtain:
d*y 2 4 : .
S + 6 N Yy = (s.(") using (28), where

£ (n) is 't.he' gsine transform of P(x).

£s(n)
Hence y, © : . + A sin en’t + B -cos an te
a®n .
dy(a,¢
But:  yln,t) = —'ﬁ‘{-’: 0 at t=0
Therefore V5=~ (_5_('3’- + G () where Gl'(x) =F(x) eand .
. atn? al ” )
G(x) =G (x) at x-0,T
end y(x,t) = fo _ 2 C £ :
’ a’. qt;l— Z -——:—‘T (1] aﬂz(‘. S Nnk

: 'T.h_e_ above' examples are design‘ed to show the procedure
used in applying the Fourier transforms. They by no means constitute
an exhaust.ivé list of the different problems which can be solved by
meens of the F.T-s, but they do give us some idea of 1ts usefulnesss

The essentials of the ebove procedure are .

, la Note the boundary conditions on y(x,t)s
(a) If the velfies aof even derivatives are given at the end
éoints use the sine transforms ‘
(b) If the values of odd derii(atives ere given at the end

points use the cosine transform.
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2. Transformation of the given differential equation to reduce
it ﬁo a simple ordinary equation which is easily solvables.
3. Use of the inverse transformation formulae to obtain the

required solution.

The Fourier Trensform is similar to the Laplace
Trensform in that they both depend on eliminating one verisble, and
in the cases considered this meens reducing the equation to en

equation of only one veriablees
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2.30. Hankel Transforms.

, In the transforms slready discussed, the procedure of
trensformation is to multiply the given equation by a function of
one of the variasbles and then to integrate term by term over a

given range of values of that verieble.
Q

R =K
Laplace Trensform gf'(x) eP dx.
Fourier Transform {f(x) :l " dxe
[

Exactly the same procedure is followed for the Hankel
Tpgnaform but in this caese our multiplying factor is a solutiom of
Bessel;s equation. There are two different types of Hankel transforms.
(1) Finite transforms in which the imtervel fs Finite.
(11) Infinite trensforms inwhich the renge of -Inﬁegratimn is
from zero to infinftye.
Firstly we intend to study the finite transform and its

applicetionses

2.,31. Finite Hankel 'ﬂramsf'orms]."

The finite transform is defined by

Qa

£ (%) - [nd0. 300 g = Tufbw) 2

where T implies'the trensformetion of' and £, is the transform.

The transform holds for ell f(x) integrable in the intervel 0 $xX < a.

t Ohil. Maa: Ser. Y. ot xxxvit. p.17 Fan. 1546
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The peremeter ?z can be chosén in more than one way dependirg wupon
the particplar problem to be solved. Naturally, the form of the:
jnversion theorem used will depend upon-- the paremeter $; »

- If we choose %, (1=1,2,3,~ - = ) to be the positive
roots of the equetion |

J.(a %)~ . _ ' )
- regarded as an equation in §; , then the appropriate inversion theorem
is . N
e = TE] - AS HE) 2R @

the summation extending over all the positive .roots of (2). Assuming

then that 3; is a positive root of the equation (2) the following

properties sre immediately obtained:e

fot)

T,(x") = /,,,,(ai)/g‘ | &)
T, (a" = X )= 48, (ai;)/g;’ | ®)

TS NCT) N a'I,,(af;_) :
'o{ 3o (aX) IJ £ (,._‘g‘:"/dz.) &)
. i - ' &)

L 3] - 4Rl afie)]

T, {k-l }«‘} - @ + 5T ) @
(Spy] (] A (e e TG €

and :[.i'/v~= 0, f(@) = 0 the latter reduces to

"‘ﬁ x 57;} -"? "’“@)} -'s_ C
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The above properties ere cbtained from the definitfem of
the trensform (1) end the welleknown properties of the Bessel fumctim

({ xX). Teke, for exeample (s)»
D2 M-g

=

W

a
3 o0f
,/“ Ty + 3 5. [ isff‘_-f;"--s—" . S/_“(i‘-n)dx

Lag([x%fg.jf(gfu),a,‘
Cx 3 ,()] [«,‘. i_f : I/;(;i ) dn

1]

u

% [x 4, &éc")]“+ 3. ﬁ(«) ['5,1« e 5 3, [ olx

: | .
= ~§ af@ I,«.Gza) + £4(")'I’ [/‘1- f "-‘} I/.(&‘ x)dx from Bessel's equatiom

-1 . e 2 (X -
ok oo Tu(d) + [ d TG ferds - % / x40, T, dx
o
.’ _ }
=~ 2. . T -
Lo Tulia) + 0T [ Hx:] % Te{fe)
There is no necéssity to outline the procedure as it is much the same
as that of the preceding transforms. As an example _@f the above
trensform let us consider the vibrations of & clrculer leming.
e.gels A thin, perfectly flexible, circular lamina of redius g is
stretched by a tension T and has uniform surface density ¢ throughout.

If the coordinates of & point are (x,y,z) then the motion must

satisfy .
M M 2. 2 _
Shte S e 0¢r<s, t70 ()
wheﬁe (x,¥,0) is the equilibrium position esnd where e = E, pt= x4 y."

Let us also suppose that
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= £(r) when t<0, 0<Sr<a (n)

¢3)

and : - z2=0 when r=a, t>0.
If we multiply equatidn “(11) by rI.(§r) aend

fntegrate with respect to r frem O to a we have, using (10)
2

d = T '
LoF 1y -0 ¢o)
‘ - N
and. 23 =0, gﬁ_ = [71‘(7).-30(557).017 t=0 (73)
]

The solution. of (14) is Z;- A sin(c 3t} + B cos(c¥t)

and from (15) T 307 @g' ) J"i 1) 5 7)‘/7

Hence, the inversion formuls (3) -gives us

| . = smCfb)  3,G:7) *
) - 2 Z — :o— f . :‘o ?2 o,
2 (f;l) ta” ST Ei Z_S/ (fia)]l A 7‘((7) ( 7) 7

where the summation extends over all the positive roots of Jo(f;a)=0

The seme transform may be used to solve Bernmoulli's

equation for the motion of e heavy finite chain.al'

eegs2. Comsider the small trensverse oscillations of a heavy chaln

line density /) , hung from one end.
Let the axes be_as shown. If the vibrations

gre free, the displacement y(x,t) must satisfy ‘(
. : N
. y
BN (3,(3-:,( Y o é) —> g

e 2 ra -~ Y 2 BNy Iy Y/ PP PY Y B
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| . , y
end suppose that y=f(x), J = O, when t=0. - >
If' we change the independent variable from x " to z, where

Lz = \/Ig“ _then. (16) reduees to

/™ 1) éi) - . %)
({g—*éb} T3S A A _
2t ' €

where -f‘(ij; ), %{’— 0, t=0 =~ 0< g < /% = /5 say. @),

Applying the transform as in e.g.l. with the range of integrabion
frem O to /5 , we have using (10)

dr. 3 - :
J 73’ fi 75 © _0 where §; s a solution of J, (3 A)<o (22
. 4 i )
- = . 2 : , 33 . =
and. YJ— I\ z.f( 12; )Jo (-ii’)dZo SF = 0 t = 0 @I)
(%4

Hence, frem (20) and (21) we obtain

¥

A 2
; = cos ft f 2205 )3, (% 2)dze

-

Using the inversion formul_a
2 = - S 6 2)
N A T / ‘L< RS

where the sum exfends over all the positive roots of J,(£p) =0,

Therefore, in the original coordinates 0

2
cw{{.ar/—i ' )( /‘)]) [‘f(’)) T b /f)”(7

where the summation is now over the positive roots of J,(#;)=0

1 (x,€) =

So far, we have taken the paraemeter f; to be a root of

the equation .I/‘(a?;) 2 0; we cen, however, teke §; to be a root of
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the equation: % J;,( 3, a) + hed /,,( te) = O. (1)

In tnis case, our inversiom formula would be

N, A4S .66) | S.GW

flg = T (43)° B2 Too 9%
5) g (82-4) (5. G’ €
From the equations (1) and (22) we obtain the following proberty‘
by ] Ry — -
FEIER IR SRR I O£ S G
n=

L Since T;,ii(:‘ +-£ )xg - j‘“%ﬂ(x —i—f) (% W dr

o

a 7
4.5, 6 »«)] [ 53 L6k

=[S
= 3t 5] ‘i‘ HG"’J +§¢/:?"L'1'*"?i--]°'}d‘

- [&?L} + a. 4@‘) 2 3-(5 a) - ;4(() L (; /c") T (; )()(!)l us:na(u

Xaa

. and Bessel s
élf ) T o) X 4

jow B L E] L aLE(E8 0L ]

A typical example of the above transform is given in the theory of

the conduction of heat in a circuler cylinder of solid sectionie

8eg.3« A cylinder of radius a hes en ipitial temperature £(r), end
radiation tekes place at the surface r = 8 into a mediwum
melntained at zero temperaturs. Thus, if y(r,t) fs the temperature

function, 1t must satisfy

> ;) |
3—:’_ = k (é,x - 3) 0<r<a, t>0. (25)
y(r,t) = £lr) 0<r<a, t=0. (2¢)
2 - .y r=a, t>0. (2>)

bYs
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'Appf._l.ying the transform with «= 0 end choosing ¥, to be a

root of equation (22) we have
oy - = N
13. - I . 2—" - -3
<o < K [T Gio)f a,+f7},m i 15 ] using (24).

Hence, from {(27)

Y
_ - g KkE - %
15 = < = 7 f(’)) Io (;t )d7 {’ﬂ‘" (26)
and therefore from the 1n§rersio__m formula,
t - Kiitb ,
il' < L .S, @if)

2’ [ 7 ‘:(7} Jo (i; 7) dy.

2 <
= "2_ 1
A T E D

where the summation extends over all the positive zeros of the

function $; J.( £.8)+ hed,( ;ia)l'

2.32. Infinite Hankel Trensforms.

The method here corresponds more closely to that of the
Leplace transform since the renge of integration 1s from zero to
1nfinitye ° o
je0e y/,\(x} = Sx..y(x)..;“(g x) dxe = '7:«}_11(()] D

and the inversion f‘ermulaz‘ is now

y(x) = fiy(x) (fx) a3 ' | @)

The procedure 18 very similer to that for the finite transform and

thus we can proceed immediately to the applicetions of the transform

1 Carslaw and IGCSCI . 9p- ab /a./ii"'? :
- sy P LU = Y LA S - 3 V7Y



AS an example let us consider the vibrations of a chain (cefe 2310

eeZe2¢) but let the chain be semiainfinite}'

e
 eegel. Suppose that the chain is initiglly drewn aside
to the posltion
: : € :
y(z-:,t) = £(x)= [ = N !
oo

. end released from rest at t =0.

Let y(x,t) bp the displacement at any time %; it must then satisfy

s (sh3) - 3k -0 Az @

If we replace x by 2z by means of the substitution

(& R 5y | s
equation (4) becomes | ., + 3 §i - ;\_t-"]‘f =0 )
where y(x,t) =£(x),” 31 = O st t =0. . 0
Now let Vo = [ 2.Y.3,.6% z)dze

" then T S v e )
" PR R nead - [ReR) e

[2/-%1/5;@}:- iwﬁ)f + :-iw— 52 T.6¥)dz

f q. 3 (- ?_1?1)--%&*)0(?

<o

ind thus, applying the transform to (5) we get

1. Phil M‘fy' ST ol xxxiX. P 319, 548



&0 .

[

and if we take = O this becomes
’ St

iy - at—'—y,« =0

’ feee T, = AlFlcos 3t 4 B(3)sin3 t
 whers = ?k} ) aa X -0 et t=o0.
_ Therefore -i“-. f(i_)cc»s }It. '
end (3 = [-mz.f'(%sz‘%_.ro(; Ndz = e ;3—;'(1‘)"'? where«"
ieee £(3) = e';'é-«i

Inserting in equation (10) and using the inversiom formula we

obtain Ly

. . ﬂd

¥y = é’(-[e fcosit-Jo(i Z)di' = € @[[
) AN

’ ’ ~owi( ~
Using the known result f e J(p x)dx = (/H w‘)i
: . | .

-d

we get =66?[ +(/+"-)]t

& M_icos %55

"

end therefore §

whers 'M1=(,%+I-ﬂt)z+:5£1 and 52‘- tan {<

M

. { + L) . St —
’ Feylm= §2)edul§ 2)dz » st v "

i

>)

®)

()
@)

= 4&/:,"

(22).45 ]



These problems are bﬁt a few of the different types of equations
which can be solved by means of the Hankel transform (see papers by
I.N.Sneddon in the Bibliography)..

The Hankel transformation unfortunately will not solve problems
that cannot be solved by the more usual Laplace transformation. It
does however eliminate the use of contour integration in the
solution and this, in some ceses, 1s a great advantage. Although the
above problems are only a small selection it 1s still fairly obvious
that the range of ‘application of the H.T. is much smaller than that
of the L.T.



2,40, Legendre Transforms.

We have discussed so far integrel transforms with
kernels as exponentiesl, trigonometrical or Begsel functions. The
. Legendre transformation follows the same procedure in .whj.ch the
kernel is a Legendre polynomia.i. As' in the previous cases the
appliéat:l.on of the transform reduces the partidl differential
equation in n independent variables to one iﬁd n - 1 variables. In

we mduee

‘the problems considered, from two variables to ones

We define the Legendre transform to -be

’ .
v, = f_v.r,,(/a)q,a . “)

where V. 18 a function of A and V,, a function of g.
Now, 1f Po{u) 18 the Legendre polynomial of degree n,

- 1.
where n 18 a positive integerA, then

! : )
fPM(/M)oPA(/I\)d/u\ = 0 m -n even
‘ (2
= 1/2n+1 m=n

From (1) we define the odd Legendre transform

fe€0 [V 2“(/,\)9/, {3)
and immediately from (2) we obtain the inversion theorem

= %o (4n+ 3).V, 2e) B ) (4)

That this :l.s the inversion theorem can be easily seen if we expand
the smmnat.:lon, multiply by P,m(/u*) and then integrete from zero

to infinity. Allexcept the (n+ 1) term disappear leaving us wdth

oy o, N A R 1 N a7



the required result.

Similarly we define the even transforms as

)
v, = ofv.P’" ¢ o )d/a )
and the corresponding imversion theorem

ve S (n+1)T, .2, 0) ©

LEY]

_In the following applications we will need the transform

> W '
of 3;“ {(l-/a‘)s/-h] . If we write Legendre's equatiom in the form

;Ja {(’\l -/01 ).P,L (f/a)j = - mlm+1).P,0e) )

we can, integrating by parts, obtain

[ 3 fOp) 5] g o =[O %., = [l 3 o g

: | o b
IR AN (-3t o
duro VPG T P

= -/M@)[%“/ALW' [(/-/\‘).V.P,. /;u)]a'-m[w)él/-&/@@m.
; . $ean ).
n:-t s;—;-'fl"/“t)ilf‘“}"d = _/"‘@)l VL’ o (D}ZV] = ’“("‘*') &)

!
whers P,/ (0) = mB,_ (0), snd ¥, < fV.PMQ/u)d/«.

v

2.41. Applications.
(a) 0dd Legendre Transform.

We consider &he problem of finding a function V
which will satisfy Laplace's equation in the semi-infinite solid



4 >0 such that, on the surface z =0, }{ = f(ln ) inside the
circle /= a, and W'=F(Io) outside the circle. F and f are given
functions of {o and we assme that the various integrals used im
the solution do, in fact, exist.

If we write =z = am} and./= a(l -.-/a" )*'(-\1451'){

then Laplace's equation becomes

3V S PO LAY S
g}*{@'/‘*‘”}»} P35 105U [0 omes, sr0 @
with the boundary conditions
L oY
YRR S P 5o )
V = ’:{QJ_’-‘;_;“'J /“:o (/l)

Applying the trensform to (%), %.e. multiply throughout. by E, (\/0\)

and integrate with respect to u from O to 1, we obtain

[${esB L Cgodu o (3098 ) i = o
Hence, from'(f)

7, W o
AL ER] - AOLYL] o m AV, i e o

fom

. vy A, 74 - I,
e ad? {(HS ) d_;} - M[M+/) VM = ﬂ\@)/‘ %‘i - m, K.{O)_ F{a /-lsnj’(
g ' Gr)

'In the Imitisl conditions we are not given the value of ég/: at u: ¢

and we therefore take m = 2n + 1 to eliminate this term (since

when n. 18 an integer, P (0) = 0Ou)
2441 ‘



JS{(H;L)d } (2n+/)(2n17,) Vo = (,M(S) | (2)

Wh&re %2’”_,(;) - —(Zn*/) (0) FSQJ;T; Z (’J)
"and we note that aft;er the transformation (10) becomes

av, ' . .

s o [h (T G e 5EO @)

Equation (12) is solved by the method of verietion of
parameters and the use of the oblate spheroidal harmonics
introduced by J.W.Nicholson in 19241: These harmonics are denoted

by P,{x), q,(x) and are the solutions of
£ {6m022] - oo -

We require the following properties of these harmonics

/

p,(x) q,(x) - q)(x) D, (x) = a2 (%)
and }o:_w(o) = 2“#(0) = ;@\_ = ()7 (z,,,.,)_ @,,(0) ()

The solution of (12) is now written

VZn-H ) ﬂ*nw(;)-)"zmm * ?’ﬂﬁ(;)'zznﬁ(x) 8
and hence, differentiating
AVopy !
_Jgi Moo= Ay, 3). ,01,,‘_’(5) + 32:»/(;)' g;“_gz) as)
ir Penl3). B, (3 + 4 -(3).3 (3) |
ni 2n 41 Lhsy 2ry =0 (ZO)

We multiply (19) by 143", differentiate with respect to I and
substitute in (12), thus obtaining

C w s . mr s Ay e em V] 1 a VPR Y/ Y N P S 1



go

F),,,H(?) j‘ ('*5 9/’: nmj * '9 B )’ ML 3.8 ;{5 {(’*S 9; (3)5)

+ B,,03). 2,08 - @z (a,,, Voar +5,
Therefore, wusing (15) where (2n+1) is n,

o 52441 ) z,,,,,(;}

)

Loy - sz + anﬂ : 2/24;/ = ,Tz;:: é”}
Solving (21) and (20) |
/ <
A (F’z_ I”Z') 2 IJ—;'—j
Vyooy A
Bly'-vy) = gy
This gives, using (16)
Brre = R385 Bl = ~K P @)

When 3 >» , V must vanish and hence V;” 45) and therefiore A z,{?,-) must
also vanish. From (22) we see that

5
Pef) ~ Apgei@ = | 0., (05l

e = Ay, () = f Rypi®. 74, () d

Porn§) = { Rugif) . 54,00 dx - f Cor®-50e 8 =~ [R5, - & (&
From (19) end (16) we obtain ° 1 '

"
Pran®. oy + B33, = & [ pof {8 It ] Bary 0 4 (29
| . b |
i.e. from (17)

Atan @ 6)" (2079 o) - 6,00 T 00" ), (o) = “f,u( falia] £, f¥a

—"‘Il;ﬁ(o) = ﬂ”*/(a) - () -2 .
- ’ @) £ 2/‘;{ Vs s ()



¥l

and therefore (22) gives

BZM-;Cs ) = B (()) - ( 1y (X), /bhi/(x)' dx . ' (?‘)

—

VZ”H = ”4.411(5) /’t .S) + 3 (3) 2’ (3)

the inversion theorem gives us

and since

”220(4,,43) [ #0.5)-p 05 + 3, 03). gzﬂg)] A, G @)

where A, (5) s given by (23), B, (0) by (25) and (23) with3= O
and Bzm( 5 ) by (26).

(b) Even Legendre Transform.

A 31milar problem to the above where the flunction V
must now satisfy Laplace's equation in z>0 sich that on z=0,
V= F(p) 1inside the circle 0-e end i = £(#) outside.

Transforming the equation as above, we obtain

PR ARN S G Y) SR 2R LG

with V= F 50‘@\3 ;= o (27)
! )
and | a’g LA ‘({a‘)_,:;*n.} /“:0 Qo)

As before, we srrive at the equation

3 Or 03] - 26.(2], w0 i

end since V is not known at//x= O we take m = 2n.



2

fe, G LOWYI) )T, = 6,@ 05 Fp T &)

= £,,(3)

The analysis is similar to the preceding section and we

finelly obtein the result

V= ,‘Z_:D (has1) | Ay, (3). (S + ?14(5)-%4(3)}/’34}“) (@2

. A
where A, 5) = - [ Ry, (X). ?1”(1). cx (SJ)
Baa(3) = Be, @ — [ﬂzn(”) Pan (0. el (9
| | 7 ]
ard 378,005 - Aul) 4 G / falop) g 07

The procedure éiven above_is'strictly-fbrmal and to complete the
solution we should actﬁally verify the final result. To verify the
solution for the genefal case 18 rather a difficult tesk but 1t 1is
possible to show that for certain values of F&ﬂ) and fgﬂ) the
solution does hold:®

The above procedure is on similar lines to that of the
precedingjseqtions and it is fairly clear that no result can be
obtained by the use of Legendre transforms that could not be
obteined by the use of expansions in Legendre polynomials. The
" adventage here, as in the case of the other transforms, is that the
analysis 1s reduced alm&st to a drill. The obvious disadvantage of
the Legendre transform is that there is only a limited number of

problems which can be put in the required form.

Yy A bk T ALHE AL A /A 1 (1D 1 -&



3.00. Conclusioms

We have discussed four different types of tranéform
applicable to the solution of partisl differential equations; with
the Laplace transformetiom studied in some detail. Before proceedling
we must state that:

(1) the fourier transformetion does not solve problems that
cannot be solved by the use of the ordinary theory of Fourier series
(1) the Hankel transformetion cannot solve problems which are

intractable to the uée of Fourier«Bessel expansions.
(1£1) the Legendre transformetion can only obtain results which

could ha%e.been obtained by the direct use of Legendre polynomialse

Although these three points seem to diminish the importance
of the transformations we can say that they do at leabt reduce the
analysis involved elmost to a "drill", and in most cases give a
quicker and neater solution.

"In general, all the methods are of a set pattern i.e. the

use of an integral transform of the type '

(" € [at] de
' to reduce an eduatign of n independent variables to one of n - 1
indgpendent‘variables. The methods differ in that they use different
kernels K{«t| end different renges of integratiom.

Taking a very general view of the transforms it is cleer
that the Laplace transformation hes the greatest range of
application though, of course, the othere may be more important in

Shhere .
their « It will be interesting to compare each of the other



transforms with the Laplace transform admitting at omce the greater
usefulness e#, in:general, of the latter.
l. Fourier.

It can be seen at once iné the problems to_which it can
be applied that the Fourier transformation gives a neater solution.
For example, tﬁe solutton of the vibratimg string problem is much
quicker and easier than that of the corresponding solution using the
Laplace transform. |

The Fourier transformation has the serious disadventage
that 1@ can only be applied to problems which involve even powers of
derivetives. Although this does include a very large number of
boundary value problems it mugt sti1ll be regerded as a serious
disadvantage.

2, Hankel. |

The method of finite Hankel transforms will not solve

~ problems intracteble to the Laplace transform method but it does
reduce the emount of calculation involved and, as in the other cases
eliminetes the use of contour integration. In the problems considered
the Henkel trensform 1s much superior to the L.T. but we must once
again note the limitation of its scope.

3. Legendre.

The above criticisms are true in this case; the Legendre
transform is superior iIf the problem under consideration lies within

its range.

Generally then, we may say that for the boundary value



¥

problems considered,the Laplace transformation is the most widely
epplicable and may be expected to give theereqﬁired result. It has
the disadvantages im some problems of involved cﬁiculation end
rather difficult contour iutegratioh which tend to make the procedure
rather cumbersome. In their own spherges the other trensformations
are of great impdrtance and generally_lead to & neater solution.
Finelly,the Laplace transformation provides a very simple
method for the solution of ordinary differential equations. The
actual procedure used in solving these equations is so strﬁight—
forward that at some future date we may expect to see it used quite

widely in the sixth-forms of our Graemmar schools.
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Appendix 1. Laplace Transforms. )T(,a) = Ic'PI,‘x(k) Ab

(4]

In this table a and b are real positive constants and w 1is

a complex constant.

P _.___'L_:'_" B P
v L
!
P

_ﬂ'l'l ! t.n/lll’ n=0,1,2’---

+ : Y
y,t)ﬂ ! — 5, V>
e I (U+1)
iR ‘ -wt o
pw 8.
L |
préw© cos wt
W
}a"4 wv . sin «wt
[P - ——— —— - — "? —_ —_——
P ;
pr- wt cosh wt
W
pt- w_‘— ] | B si_nh wt o
,_ﬁ,_‘_ o
(P4 w) 70 8inut

z’t(sinwt -~ wt coswt).




Appendix 2.

Fourier Transforms.

f(X) fc(n) f,(n)
= "
1. O whea nsia,3--" . C @)= 7T n.
o I ‘——1._ o — ae/
Ul A c Z TEn
Xe T T ] felr = 2 B n._
% 2m CU” fc = z’ it 2Li-e)
[, 8 n - —
8. c}_ e)n. ‘::'] T_CLL/-(-/)”cC”]
n* + ¢ _ A
I whw n= K
8in kx. A Y _ 1 (k=142 ~-+)
n*-k% l(’) w3 TK _’} K #01 /’2 B { 0 When n # K
O whan nz 1,2, 3 -+~ —l—'l,_[I-("l"fo.l""'—jg'(#’lzl"-
co8 kX. -

’f&("’ = jir

(k=11273-" )

-

7

£¢) cos nu dn

b= [

na2 0, I,?

£s(m = f

o

'

f&) sm nn.dn

n=1, 2/?, T
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OPERATIONAIL, METHODS OF' SOLVING ORDINARY AND PARTIAL
DIFFERENTIAL EQUATIONS.

(Supplementary sheets submitted January 1952)
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Operational Methéds ef Selving Ordimary and Psrtial Differential

Equatiens. (Supplement).
. o
1.0 Use of .é' I 4@)4‘rch- fQﬂ the infirnite Feurier Transferm.
The examples te be considered require the use of the

Inversien Formula and the Gonvelutier Theorem.

l.1. The Inversion Fermula.

If -§¢)" 2 [4@)6 fah then the required Irversien

. formula states that

400

foc g | Fo T ("

1.2. The @onvelution Theerem;

i.e. ‘A "F-('b)i(r)?rx o‘r : ( ﬁ(,‘*)- ‘{(x"“)-d*‘\. (2)

If we suppoese that f(x) and g(x) are functions that satisfy

the requirements for the: changes in the order of integration,

. then +e i fﬂn ”:_ -C ()hu)
{ 5(")'{@"“)'0(“ = 6'?7 S("‘)dM 5‘ {(r).( f d/’
- . =R —n
S L o .
/ - ~thx b
= \Fﬂ-"fl .Q }’d}’ (I(‘A)_t }’C(M
-»

40 .
B { For 5 ‘-L)":(r.
1.3. Example.

Suppese we wish to selve the heat equation
' d0 3ty —DLyL >

—

a’ =K dr® E>o0 é)

where J} = f(x) when t =0, and ¢ > O when x > t o

@)



8.2

If we epply the tramsformation te equatien (3), 1.e. multiply

the equation by e"m and integrate from -« te +~ with respect te x,
we obtain do 2 =
- Kp ¢ ¢)
and for @4) - y 17 ip (
%) )= = I‘ 0. ¢ el F=o0 ¢)
¢ &) |

Hence from (&) and ((6) :
- - Kr" E

) = ‘HX))'Q

Using; the Inversion Formule we have

- -~ (:r/l
D) = f{(y)e e d (7)
&t f}_” r
Now suppese that
L X 1
_L - Kr l- - er
glx) = Gar _L ,
xl.
L G (a well known int 1
TR e wn integral)
We see immediately that
- -Kkpit
glp) = ¢
and therefore N

9@H=-é}‘ﬁiyyfwmf-hc0

L
Tor .‘5@) SQL-U\)JM {Hw\ (’1)
1o ~fw?®
= —/;):;-t- [%(h)'( V7 { AM

Hence if p = 75t

R TR N

then

1 "I(,J“. Ol)uu[—/md f{zlfn)) N I’!)‘/f)ﬂ(ﬂhs I’f_ 2. Cﬁnﬁ}&r Lo
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‘1.4, It is interesting to compare this solution with that obtained

using only the Laplace Transform.

20 _ . 39 s exed (&
Given . - k e k2o
where ¥ = f(x) when t = 0, and 0 > O when x » % & (7)

~pt
Apply the L.T. i.e. multiply by Q}, and integrate as ususl

'

- A
obtaining po < K %+ £(x) using the first part of (4)
Now if we put ) = u we get
v put G uwe got AN Ly s -y ()

- S
We must now apply the L.T. with respect to x, f.e. = (u. e ofx

Hence (K.s"—r)i? - k(sn+3) - - 4—65) G

wher-e.A and B are constants.

The complementary function ef equation (o) is . (m ,f.,,h,li c.o),

.+1J‘£ -xﬂ,’(

W= De +E e : : )

And we obtain a Particular Integral from (4) with A and B zere.

_ 5 . _ iw
Thus . _
(ks*-p) K(s*- £)

b
) 2%‘[5"//< 5*'/[-]

If we use the CGonvolution Theorem this gives us the P.I. to be

il f"{g/&o—ﬂ ’/“”)fﬂ

2{)’_’( 7)dr

W=~
o]

and the complete selution of () is therefore

/4 —x +/Hx-r) /acwn g :
n: Do+ Lo A ilﬁk [.[ Jg(s)d’ (3



~
.
. : 8.4.

Now using the second bart of (7) sy 88 X D+ u->0

» .T
therefore D - ;'3;-,< f S ”/4 §@) a1 = o
a'nd as x>-%, u=>0
. k 1 = l/‘i,t T
. giving =+ ;J;k ( e 3(1)0(1' = 0
ot .. Y
Thus our solution is npow .
- R 4 (4
2 ~VE(xr) L (xr) x
w = 2k l_ (e (N dr "{e 5@ dT -’Q/":(""') _ “,/;(n-'r)
© -. i +["' 5(T)cfr]
0 ’ 0
Lo | L (ke = Jb o)
- X~ —
w= 2‘}}} l_[f 30) dr + fe, * j(T)dT = f (/")
X
The table of transforms gives the transform of
KL
B L2
Fr_r' L " to be \/r Y

and if we apply this to our equation we obtain

* - T -t
0« g [[ % joar + [« 7 500 ]

po3

i.e. ) (“ - ",2.‘
0 °  aimee e .

-

3(1’) A7
which is the required solution.
n.b. this solution is that obteined in the second lest line of 1.3.

1. The author gratefully acknowledges advice from Professor A.E.Green
at this stage, which enabled him to complete the solution.



. _ It is at once obvious which of the above two methods
. gives the neater solution.The adventages of the Fourier Transform
method arek |
(1) The general boundary condition f(x) is not introduced until
the ordinary.differential equation given by the transformetion is
gsolved. Note that the Leplece trensformation brings this in
immediately and thus introduces the awkward equation 1.4.(10).
'_.(-11') As a result of the equation mentioned in (1) we introduece
two constents A and B and use the conditions at infinity to

evaluate them. This process is entirely eliminated in the Fourier

transformation.

: -pt -~ ,
,0. To compare the use of -(Hé‘;")-e roll' and g‘ﬁ(z,r). sm $x cx for
[o]

.Y ST x4 <
sqlving T =k iy F50 (5)
g=0, E=o0, x>0 («)

h
where § =0, E%0, n=o ()

o -yt
2.1. Use of [eéc,l—).f{- r dF

Apply the transform in the usual way to give us

P" : k;“” wsirg O4)
i.6.
d,,l. £ﬂ
and therefore 9_ . ﬂc— /1:': X N J‘M/‘E"

But § is B8finite when x >~

"‘/g" (/g)

Hence - g = P

and when X =0 and . F 20 from (/)?

)
11
vl



. ' ) /5)( s.é.

‘e

b
Therefore g = 'F ¢
_)-E
and thus g -0, vf¢ (zﬁ?t-)

where erfc. x 18 the complementary error function defined by

erfc x = ¥I=8» 1 - erf x
z (T _ut
_ -
-2 (-
» L
2.2. UBe Of Ya(l'(').ﬂ;\ ;X dl‘

0

olu.

Apply the transform and assume that U > O when x -, arriving et

a0 .
T tk3. 4§ = I(fﬁo Lean (1)

Since P =0 when [-=0 then ¢ =0 when [=0

Therefore the solution 1s

_ b -K3F
j - %("“ )

The Inversion theorem giving us

B G,t) 3,;9/

(4]

n
5

m §n - K3k
3 (" ¢ ) ol$. (%)
Making use of the integral

{nt-ri- “.';‘_');l‘?.d}, : ';‘,[Fu{(t,)

y 1
Z -Uu
where _ erf y = = { e .
[~}
X
we have finally 4 . [zm- —ul
T —
ser: 7hE - F bl ¢ A
X
= B, |- of (z.)'?c—)]

"

)

<

-3

=y

(g}
~ .
n
Rl
N




We note here that the Laplace Transform gives us the
neater solution. The fixed boundary coqditions introduced in the
transformation give us 1mmediatel§ a very simple équation. In
each case the solution is quite straightforward and presents no

real diffieulties.

3.0. Mixed Value Boundary Problems.

These problems introduce different boundary
conditions at each side of a contour, e.g. the flow of fluid
through an aperture in a rigid screen giving different conditions
inside.and outside the aperture.

The exemple we shall consider will require the use of

the Hankel Transform
i5= [r40 %WGoa @)

3.1. The Inversion Theorem (see pe T2 of previdus work)

It

TOR fﬂ flo. T3 dr

then the inversion formula is

A [w'i_. fm. 36043

[+

3.2, Dual Tntegral Equatiené

(z1)

For the problem to be considered we need the solution

of the equations
(7«_ £(y- Iv(x,)co? = W OLx <1 3 (u)

x>/

[ fe) Tobp oy = ©

This solution is given asL

1 @ea "Fanrier Transforms? TI.N.Sneddon DD. 65=70



!

2'-!'.4.,‘-“[' ,+{KJ- Cl)f U'H( 1{4 .
- [x . : -4 .
16" i) w400 sy )

U+141

o

which is valid for &>-2,

3.3+ Example.(Flow of liquid through an aperture in a rigid screen)

.To solve the equation

ﬁ + 1 B s OLr<on
T A A NG (=9
subject to
. (}J: 4 r<a, ®=o (25)
-%—g = 0 r>a , 2 =0 ) (2()

Multiply both sides of equation (24) by r](3r) and integrate from

o & » with respect to r, obtaining (see previous pp 73, '74)
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We are only interested in the flow in the half-plane 220 and thus

where

cl;-) o a8 2>~ and the solution of (27) must be
-— - ;*
p = AB) e _ (28)

and therefore "
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If we now apply the Inversion theorem (21) we obtain
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Hence from (25) and (26)
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J’:;_ AG). JG)ds = 30

(75" AG. Gds < °

Write o - 3 Ffw- WA(Z) ; W):a"s(f.;, w=43 erriving at (30)
[ W Fw. 5, (“/’) da = () o4pel. ), )
J

(“F(u), L(u/;)c&« 0 /48

Comparing this with (22) our solution must be
F - T [ I, [ oot S0y [ Lo [ (97 T, gy ]

- { < 2\t |
)'('i)= \/77, 5{(“)’ (1-::14) Cos &, 3-{("‘) o ;u) S .
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and since

this reduces to
) / !
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Flo - 5w L % | } . qu. s oy (37)

If we take the particular case in which §()is e ,constant,\we find

that e
Fw = —= " G3)

From (30) we ses that () 18 a constant Y where C :a'Y
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and thus AG3) = 7 =
giving finelly 1) f sn(af) -5? 76043 @ solution obtained
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otherwise by Lamb.



