W Durham
University

AR

Durham E-Theses

The crystal structures of some coordination
compounds of beryllium and indium

Twiss, J.

How to cite:

Twiss, J. (1969) The crystal structures of some coordination compounds of beryllium and indium,
Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk,/9685/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses
e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk


http://www.dur.ac.uk
http://etheses.dur.ac.uk/9685/
 http://etheses.dur.ac.uk/9685/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

THE CRYSTAL STRUCTURES OF SOME

COORDINATION COMPOUNDS OF BERYLLIUM AND INDIUM

by

J. TWISS, B.Sc.

Graduate Society, Durham

A Thesis Submitted for the Degree of

Doctor of Philosophy

September, 1969




-ii-

PREFACE

This thesis describes research in chemical crystallography
carried out in the Chemistry Department of the University

of Durham between October 1966 and September 1969.

I extend my sincere thanks to Dr. H.M.M, Shearer, under
whose direction the research was undertaken, for his example
and invaluable guidance. I would also like to thank
Mr. T, Caygill, Dr. P.T. Moseley and Dr. B.K, Wyatt for the

provision of crystals.

In conclusion I gratefully acknowledge the award of a

Science Research Council Studentship.

'This work has not been submitted for any other degree
and is the original work of the author except where

aéknowledged by reference.



PREFACE

SUMMARY

-iji-

CONTENTS

Chapter One

Crystallographic Introduction

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

The Crystal Lattice

The Reciprocal Lattice and the Diffraction of X-rays
The Structure Factor

The Temperature Factor

Fourier Series.

The Patterson Function

The Heavy Atom Method

The Theory of Least Squares and Structure Refinement

Accuracy of Parameters derived from Least-squares
Refinement

1.10 Intensity Data Corrections

a) Absorption Correction
b) Polarisation Correction
c) Lorentz Correction

Chagter Two

The Coordination Chemistry of Beryllium

2.1
2.2
2.3
2.4

General Survey
Two-fold Coordination
Three-fold Coordination

Four-fold Coordination

Page

ii

ix

O 0 W N =

12
13
15

19

20
21
22

23
24

25
29



-iy—

Chapter Three

The Crystal Structure of the Diethyl Ether Complex of

Tertiarybutoxy Beryllium Bromide

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

Introduction

Crystal Data

Data Collection and Correction

The Patterson Function

Light Atom Positions

Refinement

Description and Discussion of the Structure

Comparison of the Magnesium and Beryllium Structures

Chapter Four

The Crystal Structure of C12]_5_e3(OBut)4

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Introduction

Crystal Data

Data Collection and Correction

The Patterson Function

Refinement of the Structure

Hydrogen Atom Positions

Description and Discussion of the Structure

st-Bonding in Three-Coordinate Beryllium Compounds

Chapter Five

The Crystal Structure of Dimeric Dimethylindium Pyridine-2-

carbaldehyde Oximate

5.1
5.2

Introduction

Crystal Data

Page

33
33
34
35
36
37
44

58
58
59
61
67
68
77
89

92
95



Page

5.3 Data Collection ' 96

5.4 The Patterson Function 96

5.5 Light Atom Positions 98

5.6 Refinement 99

5.7 Description and Discussion of the Structure 110

5.8 Five-Coordinate Indium 128
Appendix I

The A and B parts of the structure factor for space group

P21/n 132
Appendix IT

Diffractometer Geometry 133
Appendix ITI

Computer Programmes 136

Bibliography and References 137




-Vi-

List of Tables

Page
(Bu'0BeBr.OEt, ), TABLES

3a Final values of atomic coordinates and their

standard deviations 39
3b Final values of isotropic and anisotropic temperature

parameters 40
3¢ Least squares totals and weighting analysis 4]
3d The observed and calculated structure factors 42
3e Mean planes 45
3f Bond lengths and their standard deviations 48
3g Bond angles and their standard deviations ) 49
3h Intramolecular non-bonding contacts less than 42 53

C1,Be, (0Bu"), TABLES |

bLa Vector table 65
4b Final values of atomic coordinates and their

standard deviations 71
4e Equivalent positions of Cmem 72
4d Final values of anisotropic temperature parameters

and their standard deviations 73
be Least squares totals 74
4f The observed and calculated structure factors 75
beg Bond lengths and their standard deviations 78
4h Bond angies and their standard deviations 79



=vii-

Q

4i Non-bonding intramolecular distances less than 42
4j Test for 42m symmetry
(CSH4NCH:NOInMe2)2 TABLES

5a Final values of the atomic coordinates and their
standard deviations

5b Final values of anisotropic temperature parameters
and their standard deviations

5¢ Benzene of crystallisation: Final values of
positional and thermal parameters

5d -Least squares totals and weighting analysis

5e The observed and calculated structure factors

5f Some mean planes

5g Bond lengths and their standard deviations

5h Bond angles and their standard deviations

5i Benzene of crystallisation: Bond lengths and angles

5] Selected intramolecular non-bonding distances less
than 48

5k Selected intermolecular non-bonding distances less

than 48

Page
84
87

103

104

105
106
107
111
116
118

122

123

127




-viii-

List of Figures

Page
2.1 The Crystal structure of [Be(NMeZ)Z]3 28
(Bu'0BeBr.OEt, ), FIGURES
3.1 Perspective drawing of (ButOBeBr.OEtz)2 43
3.2 Some Lengths and Angles 47
3.3 Projection on the (010) plane 52

t

c123e3(03u ), FIGURES
4,1 Patterson Function - Section at u =0 64
4.2 Perspective drawing looking down the y axis 76
4.3 Some Lengths and Angles 81
4.4 Projection on the (100) plane 85
(MeZInON:CH'py)z FIGURES
5.1 Perspective drawing of (MeZInON:CH'py)2 109
5.2 Some Bond Lengths 115
5.3 Projection on the (001) plane 126
A.2 Diffractometer geometry 135




_ix-

SUMMARY

X-ray diffraction techniques have been employed in the solution of the
crystal structures of two alkoxides of beryllium and of an oxime complex
of indium. The structures were determined by the heavy atom method, and
refined by the method of least squares using three dimensional data.

The dimeric diethyl ether complex of t-butoxy beryllium bromide crystallises

from ether in a monoclinic cell, with dimensions a = 9¢035, b = 1318,
c= 9-8053, B = 96° 22', and space group P21/n.

There are four units of (ButOBeBr.OEtz) in the unit cell,and the
molecule is a dimer composed of two such units linked via a four membered
Be202 ring. The beryllium-oxygen bond lengths in the ring are the same
as that between the beryllium and the ether oxygen, and their méan of 1°632
is in good agreement with quoted values.

The t-butoxy oxygen atoms and the ether oxygen atoms both have
trigonal configurations and the structure is very similar to that of the
magnesium analogue,
212§93(9§EE)4 is orthorhombic with a = 13+91, b = 12¢19, ¢ = 13°712, space
group Cmcm. The unit cell contains four units of ClzBe3(OBut)4, arranged
with two chlorine and three beryllium atoms on each of the intersections

of the mirror planes at x = 0 and %, and z = % and %. The bridging

t-butoxy groups lie on the mirror planes.




-

The molecule has mm symmetry as dictated by the space group
requirements, and the point group symmetry %42m holds for the chlorine,
oxygen and beryllium atoms but not for the carbon atoms.

A shortening is observed in the lengths of the bonds involving the
two terminal beryllium atoms, which seems to be indicative of dative -
bonding involving these atoms.

Dimethylindium pyridine-2-carbaldehyde oximate is recrystallised from

benzene in the orthorhombic space group Pben, with cell dimensions a =
33¢15, b = 954, ¢ = 14°308. The unit cell contains eight dimeric units
of [CSH4NCH:NOIﬁMe2]2 together with four molecules of solvent C6H6.

The molecule is composed of five heterocyclic rings, the central one
being InONInON. The indium atoms are five-coordinate and adopted a
distorted trigonal bipyramidal arrangement. Corresponding bond lengths
in the two halves of the dimer are in good agreement. The mean In-N

o
distance in the central ring of 2°28A contrasts with the mean In-N

o
distance involving the pyridine nitrogens of 2°5lA.



Chapter One

Crystallographic Introduction
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1.1. The Crystal Lattice

When ions or molecules crystallise to form a solid they arrange
themselves regularly in three-dimensions, because a regular array has a
lower potential energy than a randomone. If an arbitrary point is
chosen as origin then it is possible to find many further points in space
with an identical environment. These points define a lattice which can
be described in terms of three non-coplanar vectors a, b and c. The
parallelepiped defined by a, b and ¢ is termed the 'unit cell' and the
extended space lattice is constructed by translational operations on the
unit cell. The contents of the unit cell are related by an array of
symmetry elements called a 'space group', and there are in all 230 three-
dimensional space groups. The unit cell is said to be primitive if it
contains no interior lattice points.

A series of parallel planes passing through the lattice points and
dividing a into h parts, b into k parts and ¢ into 1 parts, is referred to
as the (hkl) family of planes. These indices (hkl) are known as the Miller
indices and are the reciprocals of the axial intercepts. For a plane to
have a high density of lattice points, the Miller indices must be small.
It is such planes which tend to form the faces of crystals and this is
expressed in the Law of Rational Indices, which.states that the ratio of

the indices of a crystal face are rational and in general, small whole

numbers.




1.2. The Reciprocal Lattice and the Diffraction of X-rays

The wave-like property of X-rays and their diffraction by a crystal
lattice was first demonstrated by Friedrich and Knipping on a suggestion
by von Laue. However it was W.L. Bragg who recognised and expressed the
fact that the radiation diffracted by the crystal lattice, could be thought
of as being reflected by the lattice planes. Bragg's Law, n)\ = 2dsiné,
states that 'reflections' occur only at specific angles of incidence of
the X-ray beam, which are functions of the interplanar spacings of the
crystal.

As has been indicated, the orientation of a plane is specified by
the Miller indices. It can also be specified by a vector perpendicular to
the plane, where the orientation of the vector is described by the same
three numbers as that of the plame. This concept is the basis for the
reeiprocal lattice.

The reciprocal lattice is constructed from the lattice in real space
by drawing vectors from the origin perpendicular to the lattice planes
and marking off along these lines, points at distances from the origin
inversely proportional to the spacings of the lattice planes. The
reciprocal lattice so formed consists of an array of points, each
representing a plane in the crystal lattice. The unit cell of this lattice
is defined by the vectors a*, b® and c*. The construction is such that a*®

is normal to the b c plane and is inversely proportional to the spacing of




the (100) planes. Mathematically

2.8 =b.b’ =c.c’ =1
a8.b=g.c=b.a=p.c=c.a=c.b=0

Each point in the lattice.corresponds to a 'reflection' from the plane with

. . e . . 1 .
Miller indices (hkl) and is at a distance (RKL along a vector R in the
direction normal to the planes (hkl) where

R=ha +kb +1¢

1.3. The Structure Factor

In the simplest case the atoms of a crystal are all located with their
mean positions at lattice points. However most crystals are more
complicated than this and can only be represented by placing within each
unit cell of the lattice a certain arrangement of atoms. Any one set of
corresponding atoms in the different unit cells may still be regarded as
lying - upon a lattice, and a crystal with N atoms per unit cell can be
regarded as based upon N identical interpenetrating lattices. X-rays
scattered by the different lattices will differ in phase according to their
separations. If there is a large number of atoms in the unit cell
complicated relationships may be expected between the intensities of the

various orders of diffraction.

Suppose the unit cell of the crystal contains N atoms situated at




e

points x_ y_ 2z, where X Y, and z are expressed as fractions of the unit
cell edges. The position of the nth atom, P, in the unit cell may be

represented by the vector r,, where

r =xa+yb+zc
-n {1 an g oo

The path difference between the waves scattered by the atom at P and
those that would be scattered by an atom at the origin is proportional to
r . The atom at P can be assumed to lie on a plane parallel to (hkl) and
its perpeﬁdicular distance from the origin will be given by the projection
of r on the vector R describing the normal to the plane (hkl).

Hence if ¢n is the phase of the wave scattered by the element of

volume round P then

$n
7m | 24
L & L.
= (h.i +k_13f12 ).(xn_a_+yrr13+zng)
= hx + ky_+ 1z
n n n
and ¢n = 2x(hx + ky + lz )

The expression for the complete wave scattered by the nth lattice is

.fnexp21ti(hxn +ky + lzn)

where £ , the scattering factor for the nth atom represents the

Its value may be found from a

characteristic scattering power of that atom.
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knowledge of the distribution of the electrons about the atom. Since in
atoms electrons occupy a finite volume, phase differences occur between
waves scattered by different parts of the atom, hence the scattering
factor decreases with increasing values of 8. The expression for the

complete wave scattered by the crystal is given by

F(hkl) = j;é fn.exp21t1(hxn +ky + lzn)
n=l

the summation being over all atoms in the unit cell.

The quantity F is a function of h, k and 1 and is called the structure
factor. Its modulus is called the structure amplitude and is defined as
the ratio of the amplitude of the radiation scattered in the order h,k,1
by the contents of one unit cell to that scattered by a single electron
under the same conditions (Lonsdale, 1936).

The complex form of F indicates that the pﬁase of the scattered
wave is not simply related to that of the incident wave. The phase 1is
however not an experimentally observed quantity only.the intensity,
proportional to lFIZ, can be observed. Since F is complex it can be

expressed in terms of its real and imaginary components
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F(hkl) = A'(hkl) + iB'(hkl)
N
where A'(hkl) = Z f cos2n(hx_ + ky_+ 1z_)
n n n n
n=l
N
and B'(hkl) = Z £ sin2x(hx_ + ky_ + 1z )
n n n n
n=l
F
Bl
a

AI

The structure amplitude is given by |F|2 = (A'2 + B'Z) and the phase
constant a(hkl) = tan-l(B'/A').

When the space group has a higher symmetry than P1 the summation over
all n atoms is usually split into a summation over symmetry related atoms

followed by a summation over the members of the asymmetric unit NA.

YN8
t =
A Z ancosh‘(hxr + ky_+ 1zr)
n=1 r=1
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NA S
1 = f ai
B z z ns1n21r(hxr + ky + 1zr)

n=l r=1

where S represents the number of equivalent positions. For computational

purposes the following definitions are made
S

ZE: cos2:r(hxr + kyr + lzr)
r=1

>
]

S
B = ZE: sin2x(hx_ + ky. + lzr)

r=1

and simplified forms of A and B are obtained by 'summing' over all the
equivalent positions in a particular space group (see Appendix I). For
a space group with a centre of symmetry, the origin for coordinates is
taken at the centre of symmetry and B, and therefore B' is zero, since
for every set of coordinates x,y,z there is a set X,y,z and
sin(f(x,y,z)) = —sin(f(x,¥,2)).

The reduction of a structure to a set of point atoms is essentially
artificial and a more fundamental interpretation of the structure factor
is possible by considering each volume element of the unit cell
separately. If p(x,y,z) is the electron density at the point (x,y,z)
the amount of scattering matter in the volume element Vdxdydz is

pvdxdydz and the structure factor equation may be written
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21 o1
F(hkl) = /ﬁ /n /: Vp(x,y,2z)exp2ni(hx + ky + 1z)dxdydz
X=0 y=0 2=0

1.4. The Temperature Factor

At all temperatures, atoms have a finite amplitude of oscillation.
The frequency of this oscillation G~1013 per sec) is so much smaller than
that of X-rays 6»1018 per sec) that to a train of X-rays the atoms would
appear stationary but displaced from their true mean positions in the
lattice. 1In producing a given X-ray reflection atoms in neighbouring
cells inste;d of scattering in phase will scatter slightly out of phase.
The net effect will be an apparent reduction of the scattering of the
atom by an amount which increases with angle. The thermal motions of
the atoms must be taken into account and the scattering factor fT for
an atom undergoing thermal vibration is equated to f0 for the atom at

rest multiplied by the transform q of the 'smearing' function t.

£, (hkl) = £_(hk1).q(hk1)

For the simple case in which the vibration is the same in all

directions, isotropic vibration, the expression reduces to
si 20
fT = foexp[-B( n 4.2)]

. . 2.2
where 0 is the Bragg angle, and B, the Debye factor is given by B = 80,




IIZ being the mean square displacement of the atoms.

In general the thermal motions wiil be anisotropic and may be
described in terms of an ellipsoidal distribution. In order to define an
ellipsoid six quantities are required, and the quantities employed for
this purpose are designated Uij, i = 1,3, j = 1,3. The transform of the

smearing function for this case becomes

exp[-an(Ullhza"2 + Uzzkzb"2 + U33120"2 +

q(hkl)

2U..klb*c* + 2U.,lhc*a* + 2U, ,hka*b=)]

23 31 12

and fT(hkl) fo(hkl).q(hkl)

1.5. Fourier Series

Since a crystal is periodic in three dimensions it can be represented

by a three-dimensional Fourier series:
0
p(x,y,z) = z Z E(h'k'l')epo:ti(h'x + k'y + 1'z)
h' k'l'z.e

the Fourier coefficient C being allotted the three integral indices h'k'l'.

Inserting this expression for the electron density into the structure

factor equation gives
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F(hkl) [f] Z ZC(h'k'l')epom(h'x + k'y + 1'z)exp2ni(hx+ ky +1z).

00O
Vdxdydz

The exponential functions are both periodic and the integral of their

product over a single complete period is in general zero. However if

h=-h', k=-k', 1 =-1" this periodicity disappears and the expression

takes a non zero value, then

111

F(hkl) = f/fc(h'k'l')dedydz

000

and therefore F(hkl) = C(hkI)V i.e. the Fourier coefficients are directly
related to the corresponding structure factors.

The three-dimensional Fourier series can now be written

p(x,¥7,2,) = Z Z Z(hkl)exp[ -2xi(hx + ky + 1z)]

k 1=

This expression is not suitable for quantitative evaluation since it
contains complex quantities, but remembering that F = A' + iB' and putting

6 = 2x(hx + ky + 1z) the expression can be reduced to

p(x,y,2) = % Z z E'(hkl)cose + B'(hkl)sing

h Lk 1=
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In view of the fact that A'(hkl) = A'(hk 1), B'(hkl) = -B'(hk I) and
taking into account that the term F(000) is its own conjugate further

simplification, involving summing in h from only O to w, is possible

%(F(OOO) + 2 Z Z ZA'(hkl)cosQ+ B'(hkl)sing >

p(x,y,z) =
h=0 k l=
or
p(x,y,2) = %(F(OOO) + 2 Z Z EF(hklM cos(@-a(hkl)) >

where a(hkl) is the phase angle for the reflection hkl.

This is a general expression describing the electron density in all
crystals. Further simplifications are possible by making use of space
group symmetry in combining symmetry related reflections. The expression
for electron density in terms of the independent structure factors only
is given fareach space group in International Tables Volume I.

It can be seen from the expression that in order to evaluate p(x,y,2)
both the structure amplitudes and the phase angles must be known. While
the former can be obtained from experimentally observed quantities the
latter, as was noted previously cannot. It is the recovery of the relative
phases of the diffracted beams which constitutes the major problem in any

X-ray structural analysis. Of the several methods currently available
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the one to be discussed now was used in the work described in this

thesis.

1.6. The Patterson Function

In an attempt to overcome the difficulty outlined in the previous
section Patterson used the squares of the structure amplitudes as Fourier
coefficients. These quantities can be directly obtained from the

observed intensities. Patterson defines the function P(u,v,w) such that

P(u,v,w) = /{[ j&(x,y,z) p(x + u, y+ v, z + w)dxdydz

00 O

The integral involves the product of the electron densities at the points
(x,y,z) and (x +u, y+ v, z + w). The physical significance of this is
that if the electron densities at the two points are high, i.e. there

are atoms at both sites, the Patterson function will contain a peak at
P(u,v,w), if the electron density is low at one or both places the
product of the electron densities will be small. The magnitude of a peak
will depend upon the electron densities of the atoms which produce it, and
its position will be related to a vector drawn between the atoms involved.
An atom of large atomic number in a structure will give rise to relatively
high Patterson peaks which will tend to stand out from the body of the

function. A large peak occurs at the origin of the function due to the

vectors between all atoms and themselves.
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To obtain the form of the Patterson function commonly used the

expression for the electron density are substituted leading to

P(u,v,w) = % Z Z Zl/F(hkl)l2 exp2ri(hu + kv + 1lw)
h

k 1=

and since IF(ET(T)I = IF(hkl)I this expression can be further reduced to

P(u,v,w) = %ZZZIF(hkl)IZ cos2x(hu + kv + 1w)

1.7. The Heavy Atom Method

If the molecular structure under investigation contains one or more
heavy atoms their positions can be obtained by careful examination of the
Patterson function, since vectors involving these atoms will stand out
from vectors involving the lighter atoms. Structure factors may then be
calculated based on the heavy atom positions and used to evaluate an Fo
synthesis or FO-Fc synthesis which should reveal at least some of the
lighter atom positions. This process can in theory be repeabed incorporating
increasing numbers of located atoms until all are found. In practice
however it may not be possible to detect hydrogen atoms.

In a crystal with one heavy atom per unit cell, the structure factor

involves a summation over all the atoms in the unit cell which may be
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subdivided into the contribution from the heavy atom (H) and those from

the remaining atoms (N) thus:

N
F(h,k,1) = fHexp.Zﬂi(th + ky, + le) + EE: fnexp21ti(hxn + ky + lzn)
n=1
1f f_, the scattering factor of the heavy atom, is much greater than fn’
then the first term will tend to outweigh the second, since the summation
being due to several atoms will usually. be relatively small. It is
unnecessary that fH should be greater than fn. If it is very much
greater there is a danger that the Fo synthesis will only show the heavy
atom and fail to reveal the lighter ones. Sim (1961) gives a graph
showing the proportion of correct signs to be expected in terms of a

function r, where

2
L

fH and fL are the scattering factors for the heavy and light atoms, which
for his purpose Sim takes proportional to the atomic numbers.

As a rough guide for the successful application of the method the
sum of the squares of the atomic numbers of the heavy and light atoms

should be equal, since on average the contribution of any atom to the
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diffracted intensity depends on the square of its scattering factor.

A major difficulty can arise if the space group is non-centrosymmetric
or if the heavy atom is located on or near a symmetry element, the symmetry
of a higher space group may then be simulated. Phases deduced from the
heavy atom position alone give false information about the structure in

such cases.

1.8. The Theory of Least Squares, and Structure Refinement

The common application of least squares theory is in finding the values

for a set of unknown parameters (x,y, -----t) such that a set of given
equations

alx + bly + e + flt = n1

ax+by+ ----- + ft=n

the equations of condition, may be satisfied as nearly as possible, when
the number of equations (s) is greater than the number of unknowns and the
equations are not strictly compatible.

The equations are rearranged to be of the form:

Legendre's theory of least squares then states that of all possible sets

(x,y, --——- t) the  most satisfadory is that which renders the sum of the
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. s . 2 .
squares of the errors a minimum i.e. Ei a minimum.

After an initial structure has bé:n obtained it is desirable to adjust
the atomic parameters to give the best agreement between the observed
structure amplitudes and the calculated structure factors. To do this the
method of least squares is employed by minimising the squares of the

differences between the observed and calculated quantities. The function

R = ZW(IFOI— ¥ _

hkl

most commonly used is

where the sum is over the crystallographically independent planes and

w(hkl) is a weight for each term, reflecting the accuracy of the observation.

For R to be a minimum

where pj is the jth parameter, Or

3|F |
WA = 0, where A= |F | - |F |
aPJ o c

The parameters have to be varied until these n conditions are satisfied.
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and for the observed quantity

where the shiftse€.,, €, -~c-- € are required to give the true structural

1’ "2

parameters. It is these shifts which are evaluated in the least
treatment.

Taylors theorem gives

(b-a)?
f(b) = £(a) + (b-a)f'(a) + T f"(a) +

setting b = Py + €1, ----- 3@ =Py, ----- ;

and taking the series to the first derivative gives

n

a|F|
IFOI = f(Pls"",Pn) + Z api_ €i
o i=]l

Now

becomes

squares
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these are the so called normal equations of which there aren, j =1, ----, n

to determine the n unknowns. They may written out

— achl 2 achl aIFcl . .
+ _____ =
Z/w< apl') 1 Zw< avl'x aPz) 2t LWA 9Py
alr |\ ,olF | o|F | |2 . .
w( e, + w €, + ----- = wA
V() L) e ),

etc. to j =n

Alternatively they may be expressed in matrix form as

| a,..c, = b,
2 iji*ti j
i

z olF | alF|
where a,. = w
1] api apj-
hkl
C . a|F |
1 Zw op,
hkl

It is the normal equations which must be set up and solved in order to

refine a structure.
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In a structure with a large number of atomic parameters it is
frequently impracticable to calculate all the terms of the normal equation
matrix a,,. fhe simplest approximation is to neglect all off-diagonal
elements, i # j, but although workeable this requires many cycles of
refinement for convergence. More useful is the "block diagonal"
approximation which uses a chain of 9 x 9 matrices for the coordinates and
anisotropic parameters of each atom with 2 x 2 matrix for the scale and
overall isotropic vibration. If the vibrations are isotropic the coordinate

matrices will be 4 x 4.

The block diagonal approximation was used for all structure refinement

’

described in this thesis.

1.9. Accuracy of Parameters derived from Least-squares Refinement

The best choice of weights yielding parameters of the lowest variance
is w = 1/02(Fo). In general with the full aij matrix for the normal

equations, the variance of parameter i is

1

oP(p) = (a7

-1 . . s
where (a )ii is an element of the matrix inverse to aij'

2
If the relative weights only are known, so that w = k/o (Fo), the

az(Pi) = (a-l)]._i <Z WA2>/ (m-n)

above formula becomes
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where m is the number of observations and n is the parameters i.e. (m-n)
is the number of degrees of freedom.

In the block diagonal approximation variances may be estimated using
the inverses of the block matrices. Such estimates tend to underestimate
the true variances, because of the neglect of the inter-atomic interactions

in the block diagonal approximation. (Hodgson and Rollett, 1963).

1.10. Intensity Data Corrections

(a) Absorption Correction

X-radiation is absorbed by all matter to a certain extent. For a
crystal sample, ‘the amount of this absorption occurring during the
production of a particular reflection, is a function of the crystal shape
and the relation of the incident and diffracted beams to this shape.

Busing and Levy (1957) suggest a method of calculating the correction

ideally suited for automatic computation. The function to be evaluated is

A =/ %exp[-u(rp + rd)]dv

where V is the crystal volume, p the linear absorption coefficient and
r_and Ty the path lengths within the crystal along the primary and
diffracted beams for reflection by the volume element dv.

In order to fix the boundaries of the crystal the n plane faces are
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defined by n inequalities

asx + bsy + csz - ds 20, s=1, 2, «—=--, n

To satisfy these conditions the crystal must have no re-entrant angles.

Expressions for the evaluation of rp and r, are given by Wells (1960).

The integral is evaluated by Gauss's method, the triple integral being

reduced to a summation

b 4 f
j dx/ dy/ g(x,y,z).dze
a c e

vhere the Ri's are the relative weights of the terms in the sum and are

n 1
Z (b-a)(e-a)(£-e )RR R 8Cx;7,2,)
1

m

1 1

tabulated for all values of m < 16.

(b) Polarisation Correction

Tn the usual experimental arrangements the primary X-ray beam is
unpolarised, that is to say the azimuth of the electric vector assumes all
directions with time. The effective amplitude of the radiation after it
is reflected by the crystal at an angle 20 consists only of the components
of these azimuths after reflection. This feature has the effect of
reducing the intensity of the X-ray beam by a factor p, the polarisation

factor. The correction to be applied to the observed intensity is

p-l = 2/(1 + coszze)
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(c) Lorentz Correction

In a perfect crystal neighbouring volume elements will be absolutely
parallel, however real crystals may not have all adjacent volume elements
perfectly parallel. The result is that in production of a Bragg 'reflection’
the crystal will 'reflected' over a finite, albeit small, range of angle
about the true angle as given by Braggs equation. The problem may also be
considered as the time taken by a specific reciprocal lattice point to
pass through the sphere of reflection. When the planes are not
absolutely parallel the reciprocal lattice 'point' will have a fiﬁite size
whereas if the planes were perfectly parallel the point would be infinitely
small.

The form of correction to be used can be developed from the concept
of the time taken by a reciprocal lattice point to pass through the sphere
of reflection. The form of the Lorentz factor to be applied depends upon

the mode of data collection.




Chapter Two

The Coordination Chemistry of Beryllium
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2.1. General Survey

Beryllium lies at the head of group II in the periodic table with the
electronic configuration 1s2232. The increased nuclear charge over that
of lithium makes the ionization potentials of beryllium at 9°32 and 18°21
eV much larger than that of lithium at 5°39 eV. The value of 0°31% has been
estimated for the ionic radius of BeZ'+ leading to a charge/radius ratio of
6°5, greater than for any other cation excepting H+. The result is that
bonds formed by beryllium (even those to the most electropositive
elements) have appreciable covalent character, hence the reason for the
poorly conducting nature of fused Ber. The increase in size for the
other elements of the group Mg, Ca, Sr, Ba reduces the effect of nuclear
charge on the valence electrons with a corresponding increase in the ionic
nature of their compounds.

The unpairing of the 232 electrons permits beryllium to form two
covalent bonds. Where free Bex2 molecules occur the valence electrons of
the beryllium atom occupy two equivalent sp hybrid orbitals and the system
X-Be-X is linear. In this situation the beryllium is only two-coordinate
and there is a strong tendency for the atom to increase its coordination
number up to a maximum of four.

A brief outline of each of the three coordination states possible for
beryllium is now given, with reference to the factors influencing the

particular coordination number adopted.
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Some of the principle considerations are

(a) valence Angle Deformation

Being of low atomic number, beryllium is less tolerant of deformation
of valence angles away from the values expected for the particular
hybridisation state adopted, than atoms of higher atomic number. Valence
angle deformation is gradually relieved with the formation of larger
cyclic oligomers and polymers.

(b) Steric Influence of Bulky Substituents on the Donor Atom

Steric interference between bulky substituents would be expected to
increase as the degree of association increases. This factor will be
emphasised by the small size of the beryllium atom, bringing the
substituents into closer proximity than occurs for the heavier metals.

(c) Entropy

The effect of entropy will always be to favour the less associated
species since this affords the greatest number of independent molecules

per unit mass.

2.2. Two-fold coordination

The small size of the beryllium atom makes for shorter bond lengths and
means that attached atoms find themselves in closer proximity than when
bonded to larger metal atoms. When large and bulky substituents are
attached to beryllium problems of steric interference may become so acute

as to prevent the beryllium increasing its coordination beyond two. Such
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ig the case with di-tertiarybutyl beryllium which is unique among the

dialkyl beryllium compounds in being monomeric even in the liquid state.
Compounds containing two coordinate beryllium are rare and most usually

occur in gaseous form. 1In these cases entropy factors seem important. The

vapour of BeCl2 is known to be monomeric at 745°C, however as the temperature

falls some association occurs, experiments indicating that at 564°C there

is already about 207% of the dimer. The scarcity of two-coordinate

beryllium compounds, indicates the readiness of that metal to increase

its coordination number beyond two.

2.3. Three-fold coordination

Three-coordinate beryllium atoms are found in compounds which under
more extreme physical conditions are monomeric, and are associating into
dimers, trimers and higher oligomers as the first steps towards achieving
m aximum four-fold coordination. Beryllium chloride vapour has already
been mentioned and the vapour of dimethyl beryllium is reported to consist
of dimers and trimers. The structures proposed for the oligomers of

dimethyl beryllium are:

dimer
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CH |
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the trimer containing four- as well as three-coordinate beryllium.

Aside from these transient species this coordination number is also
found in more stable compounds, including a number of amide complexes of
beryllium and alkyl beryllium (Wakefield, 1968). The éompounds exhibit
various degrees of association but the majority are dimeric or trimeric
in solution in benzene. Two monomeric species are ;eported, MezBe.NMe3

and a chelate complex which is believed to have the structure

The amide complexes are prepared by the following series of reactions
R'NH2 -RH R'NHZ
R,Be ——> [R,Be ¢— NH,R '] ———> RBeNHR' —_RH—>Be(NH:R' )y
In general, it appears that trimers are formed when the substituents on
beryllium and especially nitrogen are small, and that dimers are formed
when the substituents are large. Both types of structure involve three-

coordinate beryllium, except where chelation makes four-coordination

possible.
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Bis(dimethylamino)beryllium when first prepared (Coates and Glockling,
1954) was shown to be trimeric by molecular weight studies in benzene and
was thought to have a cyclic structure similar to that shown above. More
recent n.m.r. work (Fetter and Peters, 1965) has indicated that in benzene
the complex is trimeric but not cyclic. An X-ray analysis of the complex
(Atwood and Stucky, 1967) has shown the following structure presented in
Figure 2.1, containing both three- and four-coordinate beryllium atoms,
cf. proposed structure for the trimer of dimethyl beryllium.

The non-formation of an infinite polymer with all beryllium atoms
four-coordinate is thought to suggest that the differences between entropy
and enthalpy factors for the three- and four-fold environments must be
quite small.

The atomic arrangement in ClzBe3(0But)4 is very similar to that shown

for [Be(NMe2)2]3. The results obtained from the X-ray analyses of these
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N Be 'C

Figure 2.1.

two compounds can be used to provide evidence for dative w-bonding involving
the terminal beryllium atoms, see section 4.8. It may be that such -
bonding if it does occur is influential in dictating the conformations
adopted and in reducing the tendency of the three-coordinate beryllium

atoms to achieve maximum four-fold coordination, via polymerisation.
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2.4, Four-fold coordination

Beryllium achieves four-fold coordination in forming a large number of
compounds, ranging from species containing a single beryllium atom to
polymers, the latter including electron deficient compounds amply
demonstrating the strong tendency towards attaimment of maximum coordination.

The vapour of beryllium chloride has already been mentioned under both
two- and three- coordinate compounds. In the solid the structure is that of
a halogen bridged polymer (Lewis and Rundle, 1952) with the beryllium
four-coordinate and the chlorine two-coordinate. The angle at chlorine,

818°, is less than that at beryllium 98°2°, in keeping with the

s
considerations mentioned earlier.

Solid dimethyl beryllium adopts a similar polymeric structure (Rundle
and Snow, 1951) the bonding being 'electron deficient'. Both beryllium
and carbon make use of four tetrahedral (sp3) atomic orbitals and it seems
probable that three-centre molecular orbitals, Be(sp3) + C(Sp3) + Be(sp3),
are formed from these. Each of these molecular orbitals would hold two
electrons giving a 'bent' bond, and in keeping with this proposed scheme
the valence angle at the carbon atom is only 66°. Since it contains
electron deficient bonds the polymer would be expected to react with donor
molecules, which will serve to break down the polymer and relieve the

deficiency. A measure of the stability of the polymer may be gleaned from

the fact that while it reacts with oxygen and nitrogen compounds to form
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complexes such as (CHS)ZBe(py)Z, weaker donors e.g. trimethyl arsine and
dimethyl sulphide, are unable to overcome the heat of polymerisation and
do not react.

In general oxygen is the strongest donor to beryllium and figures
prominently in a number of different four-coordinate beryllium compounds.
Ethers react with polymeric species to form complexes of the type
ClzBe(ORz)z. Lone pairs of electrons are available on the donor oxygen
atoms and this can lead to various degrees of association for differing
compounds. When reactions are carried out in solvents which are themselves
strong donors the association may be restricted to dimers, thus t-butoxy
beryllium bromide formed in ether crystallises as a dimer with two
molecules of ether.

Loss of ether from these types of compounds would formally result in
a species having three-coordinate beryllium atoms and oxygen atoms with
available lone pair of electrons. There will obviously be a strong
tendency for further association to take place giving beryllium its
preferred four-coordination. Removal of the solvent molecules from
(ClBeOButOEtZ)2 results in the trimeric C12Be3(OBut)4 having three- and
four-coordinate beryllium, and the tetrameric (ClBeOBut)4 which presumably
has a cubane-type structure similar to that found for methyl zinc methoxide
(Shearer and Spencer, 1966), with all beryllium atoms four-coordinate.

The alkyl beryllium alkoxides are reported to be tetrameric in benzene, e.g.



-31-

(MeBeOMe)4, and are also thought to have a cubane type structure.
Beryllium also forms several chelate complexes involving both oxygen
and nitrogen chelating groups. It was previously mentioned in section 2.3
that the dimeric amide complexes could achieve four-fold coordination of
the beryllium atoms, via chelation. The following compound is an example

of such a situation,

CH §e2 Me
\
2 \B e/
,/// ﬁ\\\Me
CHi————-N N CH
MA. / 2
Be‘\\ |
Me’// ﬂe CH2

If the ethylenediamine has two or more reactive hydrogens, methane would
be eliminated and polymeric products obtained.

The chelate complexes involving oxygen include beryllium acetyl
acetonate (Amirthalingham et al., 1960), in which one beryllium atom is

surrounded by four oxygen atoms in the following manner,

CH
CH
c—— o\ 3
/ PN
HAC Be CH
2 A ~ 2
— o/ 0—c_
c
c Hy



=32-

and beryllium oxyacetate (Tulinsky and Worthingtom, 1959), in which an
oxygen atom sits at the centre of a tetrahedron of beryllium atoms, which

are linked by acetate groups.

@ Central oxygen atom
O Be
® Carboxylate oxygen

The structure of the carboxylate complexes BeO(OOCR)s. Only two RCOO
groups are shown.




Chapter Three

The Crystal Structure of the Diethyl Ether Complex of

t-Butoxyberyllium Bromide
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3.1. Introduction

The solution of the crystal structure of the t-butoxy-magnesium bromide
dietherate compleé?showed that the ether and t-butoxy oxygens both had
trigonal geometries. It was also established that the Mg-O distances in
the ring were significantly shorter than the Mg-0O distances involving the
ether molecules. The latter distances were in agreement with expected Mg-0
bond lengths. Some form of ds-psx interaction between empty magnesium 3d
orbitals and doubly occupied oxygen 2p orbitals, seemed to be indicated.

Replacement of magnesium by beryllium precludes the possibility of
dw-pn interactions of the type mentioned above.

The compound was prepared by adding an ethereal solution of beryllium
chloride with stirring to a similar solution of lithium t-butoxide.

Lithium chloride was precipitated and to the solution beryllium bromide was
added. The resulting solution was filtered and the ether removed until
colourless needle-shaped crystals of the compound appeared. (Bell, 1968).
The crystal used in the structural analysis was sealed in a pyrex tube in a

dry atmosphere of nitrogen.

3.2. Crystal Data

Zero-level precession photographs taken with Mo-Ka radiation showed the
compound to have a monoclinic cell with the following dimensions,

(o]
9+035, b = 13°18, c = 9805 A

a

8 = 96° 22°

x (Moseley and Shearer, 1968)
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3

0
U = 1160°5 A", Z = 2 units of (Bu OBeBrOEt,),
= ° -3 u = °
D e = 1°351 gm.em.”™™, M.W. of (c4H903eBroc4H10)2 = 47206
Absorption coefficient for Mo-Ka radiation, H = 37°1 p—

The space group was unambiguously determined by the conditions limiting

the observed reflections

hOo1; h+1=2n

0k O; k 2n

2 L
as P 1/n
The statistical standard deviations in unit cell lengths are of the
)
order 0*005A for a, b and ¢, but systematic errors, about 0°2%, increase
0
this to the more realistic overall uncertainty of about 0°02A. The

uncertainty in B is of the order of 7'.

3.3. Data Collection and Correction

The crystal used for data collection was an elongated needle of square
cross section of side 0°2 mm. The a axis of the crystal lay along the
direction of the needle axis. Three dimensional intensity data were
recorded photographically using the precession technique for the nets hkn,
n=0to4 and hnl, n = 0 to 5. It was noted that the intensities of the
reflections fell off markedly with increasing values of 8. Using the
precession method reduces absorptions effects and collection of data up two
axes allows good net to net correlation.

The intensities were estimated visually using a calibrated scale
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prepared on the Weissenberg camera and were corrected for Lorentz and
polarisation factors. No attempt was made to correct for absorption but
the effects of this were thought to be small.

Correlation of the structure amplituds from the various nets was
performed using a least-squares method (Monahan, Schiffer and Schiffer,
1966) and where two values of the structure factor for a reflection had
been obtained the mean value.was adopted. A total of 526 independent

reflections was obtained.

3.4. The Patterson Function

. The corrected value of the intensities were multiplied by a weighting
function w, which took the form of the Lorentz and polarisation factor used
for the zero-level nets. The use of this weighting function makes some
allowance for the fall off of intensities at higher sinf/A values due to
the thermalimotions of the atoms and decrease in the atomic scattering
factors. The Patterson function was then calculated using these weighted
intensities as Fourier coefficients.’

For the monoclinic space group the general expression for the Patterson

function reduces to

: h k 1 _
4 \ 2
P(u,v,w) = 7 Z Zb(hkl) | F(hk1)| “(cos2nhu cos2nlw - sin2xhu sin2xlw)
| =h o o cos2rkv

The symmetry for this vector set being P2/m.

The function was then calculated over one quarter of the unit cell:



-36-

'u' at intervals of 0’3012 from O to a/?2
)
v! " 0°220A " 0 to b/2

o
'w' " 0°245A " O toc

The principle features of the Patterson function are a Harker section
at (u,%;w) containing vectors between atoms related by the twofold screw
axis, and a Harker line at (%,v,2%) containing vectors between atoms
related by the glide plane. On both the line P(%,v,%Z) and the section
P(u,%,w) one peak of a height corresponding to a double weight Br-Br
vector was found. From the positions of these two peaks the values of x,
y and z for the bromine atom were obtained and confirmed by the location
of a single weight peak at(2x,2y,2z) corresponding to the vector between
bromine atoms related by the centre of symmetry. . The coordinates of the

bromine atom were:

x/a y/b z/c

Br 0°2333 0°1275 0°0438

No other large peaks were found in the Patterson function.

3.5. Light Atom Positions

Structure factors were calculated based on the position of the
/e |7 D)

reflecting an appreciable error in the scaling. The structure factors were

bromine atom, the high R value (R = 0°52 where R = I IIFol - IFCI

used to calculate an F, synthesis which revealed the positions of the eleven
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light atoms. The synthesis was evaluated over one quarter of the unit cell:’

o

'x' at intervals of 0°301A from O to a/2
o

y! " 0°220A " O to b/2

Tz! " 0'2452 " Otoc

3.6. Refinement

The atomic parameters were refined by the method of least squares using
the block diagonal approximation. For two cycles of refinement isotropic
temperature factors were assigned to all the atoms and R was reduced to
0°173. With anisotropic temperature factors for the bromine atom, a
further two cycles saw R improve to 0°123. Finally the beryllium and the
two oxygen atoms were refined anisotropically and the R value converged to
0°0946. 1In view of the limited amount of data obtained experimentally, it
was decided to restrict the number of atoms being refined anisotropically.

In the final cycle the parameter shifts were all less than one third
of the corresponding estimated standard deviation (e.s.d.). Final values
for the positional and thermal parameters together with their e.s.d.'s
are given in Tables 3a and 3b.

In order to confirm the positioning of the methyl carbons of the t-
butyl group a set of structure factors was calculated omitting the
contribution of these three atoms. A partial difference map based on

these structure factors, revealed the three atoms in the same positions as
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obtained from the least-squares computations. However the peak heights

for the three atoms were very low namely C(2) 1-1; C(3) 1°2; c(4) 1°8 e.873.
Furthermore on plotting an estimate of the electron density in the plane

of ¢(2), C(3) and C(4) it was found that the three sites were linked by a
ring of electron density never falling below 0°5 e.X_3. The atoms of

the t-butyl group are thus seen to be undergoing a form of rigid body
vibration about the direction of the C(1)-0(1l) bond.

The structure factors calculated in the final cycle of refinement were
used to compute an FO-Fc syntheses. The main features of this difference
map were the ripples of electron density in the vicinity of several of
the carbon atoms reaching a maximum of 0°6 e.x_3 around C(2) of the t-
butyl group. In only a few other regions did the background on the final
differenc; map reach a height of 0°5 e.x_3, but no other systematic
structural feature was observed. The inferences to be drawn from the two
difference maps are that completely free rotation of the t-butyl group about
the direction of the C(1)-0(1) bond, and disordering of the methyl carbon
atoms of the group, are precluded by the existence of preferred sites for
these atoms.

During the final cycles of refinement the structure factors were

weighted using the funetion w, where
V= 1/(p, + [F.| + |72+ 0, lF [ 2
Py o 2o 30

with values of the parameters of
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(ButOBeBr.OEtz)z TABLE 3a

Final values of atomic coordinates and their standard deviations

Atom x/a y/b z/c o(x/a) o(y/b) o(z/c)

Br 0°26647 0°12794 -0°04317 0°00027 0°00023 0°00034
Be 0°11333 -0°00099 -0°04275 0°00267 0°00247 0°00369

o(1l) 0°05836 -0°02358 0:10367 0°00127 0°00110 0°00140

0(2) 0°18520 -0°10081 -0°11308 0°00138 0°00107 0°00160

c(l) 0°13241 -0°05510 0°22830 0°00254 0°00203 0°00268
c(2) 0°28203 -0°07011  0°23524 0°00476 0°00403  0°00499
c(3) 0°16236 0°03095 0°31112 0°00526 0°00394  0°00545
c(4) 0°04842 -0°12831  0°29573 0°00453 0°00397  0°00459
c(5) 0°33075 -0:08792 -0°30557 0°00329 0°00249 0°00341
c(6) 0°33771 -0°11221 -0°15515 0°00302 0°00256  0°00306
c(7) 009113 -0-19137 -0°15167 0°+00279 0°00213  0°00282

c(8) 0°13562 -0°28005 -0°07264  0°00444 0°00354 0°00427
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(ButOBeBr.OEtZ)z TABLE 3c

Least squares totals

Number of observed planes 526

z|F | 1660986 |7 | 16327-04 zla | 1572-00 R 0°095

Weighting analysis

IFOI ranges N EWA?/N R
0-15 35 0°17 0-13
15-17 35 0°23 0°13
17-19 45 0°26 0°13
19-21 67 0°17 010
21-23 47 0°24 0°11
23-25 30 023 0:10
25-30 59 0°35 0-11
30-35 64 0-°21 0+08
35-40 26 0-°31 0°09
40-50 55 0°27 0°09
50-60 26 0-29 0°09

60-150 37 0°24 0°-08




(ButOBeBr.OEtZ)Z TABLE 3d

The Observed and Calculated Structure Factors







(ButOBeBrOEts),

Figure 31
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121 10°0 P, 0°013 Py 7x10

The value of P, was included to allow for the systematic overestimation
of the intensities of the stronger reflections. The parameters Pys Py
and P, were chosen to bring the values of Wﬂ? as nearly as possible

's.

uniform when the data was analysed in terms of the magnitudes of the Fo
The final values of the least squares totals together with the analysis
of the weighting scheme are presented in Table 3c. The observed and

calculated structure factors are given in Table 3d.

3.7. Description and Discussion of the Structure

The molecule is a dimer by virtue of a four-membered square beryllium-
oxygen ring as shown in Figure 3.1. The consequences of this are that
beryllium is four coordinate and adopts a distorted tetrahedral arrangement,
and the t-butyl oxygens O(1l) and 0(1'), (where O(1') is related to 0(1)
via the centre of symmetry) are three coordinate and adopt a trigomal
planar arrangement. The ether oxygen 0(2), attached to the beryllium is
also three coordinate and the trigonal geometry is again in evidence.

From Table 3e giving details of the mean planes it can be seen that the
deviations of the atoms from their respective mean planes are all less than
one standard deviation. The coplanarity of both sets of atoms is further
indicated by the small values of‘)(?.

The three Be-0 distances which are the same within experimental error

[o]
are Be-0(1) 160 + 0-048, Be-0(1') 1°63 + 0034 and Be-0(2) 1+65 + 0°03A,
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(ButOBeBr.OEtz)z TABLE 3e

Mean planes

h s s \
Atoms Orthogonalised Coordinates (K) D1sti2;: :rom e.s.d.(P)
in plane X Y Z P
Be 1-0702 -0°0130 -0°4166 -0°0007 0°0328
o(1) 04152 -0°3108 10103 -0°009%4 0°0144
c(1) 09495 -07263 202248 0°0154 0°0266
Y2 = 0759

Equation of the plane (passing through these three atoms and the centre

of symmetry )is

-0°1128X - 0°9595Y - 02582Z = O

Be 1°0702 -0°0130 -0°4166 0°0225 0°0351
0(2) 107955 -1-3287 -1°1020 -0°0136 0°0153
- 6(6) 32189 -1-4789 -1°5120 0°0218 0°0304
c(7) 09873 -25223 -1°4781 0°0157 0°0275

)L} = 24043

Equation of the plane is

= 0

96° 52°

-0°1932X + 0°3900Y - 0°9003Z - 0°1406

The dihedral angle between the planes
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in contrast with the magnesium analogue where the metal-ether oxygen length
is longer than the metal-ring oxygen lengths. Final values for all bond
lengths and angles together with their e.s.d.'s are given in Tables 3f and
3g, and some lengths and angles are shown on Figure 3.2. The mean Be-0
bond length of 1°63X is in good agreement with values of 1°655 and 16478
found in beryllium oxide (Jeffrey et al., 1956) and of 1:666 and 16248 in
beryllium oxyacetate (Tulinsky and Worthington, 1959). The bromine atom
completes the four coordination of the beryllium. The Be-Br length of
2'19X agrees well with the sum (2°17X) of the tetrahedral covalent radii
(Pauling, 1948).

The ring angles at beryllium and oxygen are 89+4° and 90°6°
respectively so that within experimental error the ring is square. For the
metal this means a distortion in the other bond angles at beryllium making
them all greater than the tetrahedral value of 109°47°. These distortions
are however not very large, a maximum angle of 114+9° being reached for
Br-Be-0(1').

The distance C(1)-0(1) of 1°39 + 0°034 in the t-butoxide group is not
significantly shorter than the carbon oxygen distances in the ether
molecule which are C(6)-0(2) 1°49 + 0°03& and C(7)-0(2) 149 + 0°034. This
can be demonstrated in the following manner by using the Student

distribution function 't'. This is defined as
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Some Lengths and Angles

Figure 3.2
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(ButOBeBr.OEtZ)Z TABLE 3f

Bond lengths and their standard deviations

Distance e.s.d.

[e] . [o]

Be-Br 219 A 0°03 A
Be-0(1) 1°60 004
Be-0(1"') 1°63 0°03
Be-0(2) 165 0°+03
0o(1)-c(1) 1°39 0°03
0(2)-c(6) 149 0°03
0(2)-c(7) 149 0°03
c(1)-c(2) 1°36 0°05
c(1)-c(3) 1°40 0°06
c(1)-c(4) 1943 0°05
c(5)-c(6) 150 0°04

c(7)-c(8) 144 0°05
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(ButOBeBr.OEtz)z TABLE 3g

Bond angles with their standard deviations

Angle e.s.d.

Br-Be-0(1) 113°9° 1+7°

Br-Be-0(2) 109°9 16
Br-Be-0(1')  114°9 17
0(1)-Be-0(2) 113¢7 20
0(1)-Be-0(1") 89 4 17
0(1')-Be-0(2) 1140 20
Be(1)-0(1)-Be(1') 90°6 1°7
Be(1)-0(1)-c(1)  132-7 1-8
Be(1)-0(1)-C(1) 136°6 18
Be(1)-0(2)-c(6) 127°9 19
Be(1)-0(2)-c(7) 120°3 18
c(6)-0(2)-c(7) 111°6 18
o(1)-c(1)-c(2) 117°8 28
o(1)-c(1)-c(3) 1o8-l 27
0(1)-c(1)-c(4) 1123 2°6
c(2)-c(1)-c(3) 878 3°3
c(2)-c(1)-c(4) 116°9 3.3
c(3)-c(1)-c(4) 110°8 3°3
0(2)-c(6)-c(5) 108-1 2°3

0(2)-c(7)-c(8) 113°4 2°5
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A

t =
2 2.1
(01 + gy )z

where A is the difference between two measurements, and oy and o, are
their e.s.d.'s. Comparing C(1)-0(1l) and C(6)-0(2) lengths, A = 0°10,

o) = 0°03, o, = 0-038 giving the value t = 2°38. Reference to tables
shows that t = 258 at the 1% probability level and accordingly the
difference between the two lengths is not significicant at the 1%
probability level. None of the C-O distances differs significantly from
the value of 1°+43 + 0°032 obtained for dimethyl ether (Kimura and Kubo,
1959).

The C-C distances in the t-butyl group do not differ significantly

0
from one another and their mean is 1+40A. The angles subtended at c(l)

show very marked departures from the expected tetrahedral values. The
greatest discrepancies occur in the angles involving C(2), namely
0(1)-c(1)-c(2) 117'80, and €(2)-c(1)-c(3) 87+8°. The values of B for the
qetbyl carbons of the t-butyl groups are very large and the difference
maps calculated at the completion of refinement showed that these atoms
appear to be involved in large atomic librations. The values of bond

lengths and angles obtained are a consequence of these effects.

The C-C bond lengths in the ether molecule do not differ significantly

)
from each other nor from the value 1°54A found in diamond, their mean

being 1'472. The angles in the ether molecule are not significantly
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different from each other nor from the tetrahedral value. The value of
the angle 0(2)-C(6)-C(5) is 108°1 + 2+3° and that of 0(2)-C(7)-C(8) is
1134 + 2°5°.

The mean value of B for the methyl carbons of the t-butyl group is
1282, indicating the large vibrations these atoms undergo. For the
ether carbons the mean value of B is 732, the atomic vibrations are
smaller and the angles and lengths found are much closer to the expected
values. In general the values of B show a marked gradation from the more
tightly bonded ring atoms to the peripheral atoms, the values are Br SXZ,
0 mean 322, Be 422 and C mean 922.

Table 3h lists the principle non-bonding intramolecular contacts
less than 42, (aside from those between atoms of the same ethyl and t-butyl
groups). Inspection of the table prompts the thought that the molecular
arrangement is such as to equalise non-bonding distances of the same type,

for example the three bromine-oxygen distances are all approximately

equal. 1In this connection it should also be mentioned that the huckled
arrangement of the ether molecule around the 21 screw axis means that

0
the majority of ether C-Br contacts are all much the same about 4°5A.

Figure 3.3, showing the molecular packing in projection on the (o10)

plane, illustrates this point.

)
The only intermolecular non-bonding distances less than 4A are those

between C(3) of the t-butyl group and C(8) of the ether at (L-x,%ty,3-2),
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(ButOBeBr.OEtz)Z TABLE 3h

0
Intramolecular non-bonding contacts less than 4A

Equivalent positions 1 = (x,y,z), 2 = (x,y,2z)

Atoms Equivalent o
A B Position of B A-B (4)
Br 0(2) 1 3°16
Br o(1) 1 319
Br o(1) 2 324
Br c(6) 1 343
Br c(4) 2 356
Br c(2) 1 377
Br c(1) 1 388
Br c(6) 2 3+88
Br c(3) 1 3-91
Br c(5) 1 392
Br c(1) 2 397
o(1) 0o(1) 2 2027
o(1) 0(2) 1 272
o(1) o(2) 2 275
o(1) c(7) 2 3°19
0o(1) c(7) 1 338
o(l) - c(8) 1 3+90
o(1) c(6) 1 395
0(2) c(2) 1 346
0(2) c(1) 1. 3+49
0(2) Be 2 3+51
0(2) c(l) 2 3461
0(2) c(3) 2 362
0(2) c(4) 2 399
Be Be 2 2+30
c(1) c(7) 2 386
c(2) c(6) 1 3495
c(3) c(7) 2 337
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the distance between the two being 3°¢97A. Both distances are indicated
on the Figure.

The Be-Be distance across the ring of 2°30 is to be compared with
the distance found in the metal of 2°226 (Pearson! 1957). Both this and
the possible influence of packing forces on the adopted molecular

arrangement are discussed in the following section.

3.8. Comparison of the Magnesium and Beryllium Structures

An important feature emerging from the structural studies is that
both molecules adopt the same basic conformation with trigonal geometries
for all the oxygens. A pyramidal enviromment for these atoms wouid have
provided one direction in space free to accommodate a lone pair of electrons.

The crystal structures pf Grignard reagents provide examples of both
trigonally (EtMgBr(OEtz)z; Guggenberger and Rundle, 1964) and tetra-
hedrally coordinated (PhMgBr(OEtz)z; Rundle and Stucky, 1964) ether oxygen
atoms. In the latter case it was pointed out that the trigonal
configuration is more characteristic of expectations for ionic than for

covalent bonding.

If the bonding in the beryllium compound were purely covalent, then
beryllium with a half share in four bonding pairs of electrons would be
designated Bez-, while the oxygens with half shares in three bond pairs
and a full share of two non-bonding electrons would be written 0+. The

electronegatives of the two elements are Be 1°5, 0 3°5 and obviously a
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bonding system leaving oxygen positive while beryllium had excess negative
charge would not be tolerated. Unequal sharing of the electrons and a
consequent degree of ionic character in the Be-O bonds is therefore to be
expected, and must be taken into account in a description of the molecular
structure.

The existence in the-magnesium compound of the shorter Mg-O distances
in the ring as compared to the Mg-O ether length, prompted the thought
that a bonding system involving empty magnesium 3d orbitals and the doubly
occupied 2p-orbitals of the ring oxygen atoms would also require trigonal
oxygens. Two factors mitigate against this as the chief cause of the
trigonal geomtery for the oxygens, first, a very approximate molecular
orbital calculation performed on the four ring atoms alone indicated a
very small 3d-2p interaction, and more significantly the oxygen atoms of
the beryllium compound adopt the same configuration and here dn-px
interactions are ruled out; in fact all the Be-O distances are equivalent.
Any extra bonding im the magnesium compound is envisaged as a secondary
consequence of the relevant atoms finding themselves with suitable
geometries.

In both the structures, especially in the beryllium one, the
molecular arrangement is extremely compact. Hence it seems likely that
considerations of steric interference play a significant part in

determining the actual conformations adopted. Further support for this
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theory is the lack of disordering of the coordinately bound ether
molecules cf.(Mg4Br6O(OEt2)4; Rundle and Stucky, 1964a) and (NaZBezEt4H2(0Et2)2;
Adamson and Shearer, 1965).

The other main differences between the compounds are those arising
from the replacement of magnesium by the smaller beryllium. The ring angle -
at beryllium 89°4°, is much greater than that at magnesium 83:3°. 1In
consequence the distortions in the other bond angles away from the tetra-
hedral value are much less pronounced for beryllium. However the t-butoxy
oxygens for this compound are placed in a more strained environment, the
angle at the oxygens being 90°6°, than their counterparts in the
magnesium compound where the angle at the ring oxygen is 96°7°. The
smaller ring in the beryllium compound also means that intra-molecular
non-bonding contacts are shorter. This is probably the reason for the
more compact arrangement of the beryllium compound.

Finally it may be pertinent to mention the metal-metal distances
across the ring. For the beryllium compound this is 2°3OX, the Be-Be
distance in the metal being 2°2262. The Mg-Mg distance of Z'SSX is only
slightly greater than the sum of the tetrahedral covalent radii, 2808
the Mg-Mg distance in the metal being 3¢197A (Pearson , 1957). The
approximate molecular orbital calculation mentioned previously, suggested
that there may be an interaction across the ring involving magnesium 3d

orbitals, which is energetically more important than any involving the
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oxygen 2p orbitals. The physical significance of this is not easily
envisaged, however it seems most probable that any metal-metal interactions
would be less important in determining the conformations adopted than the

other factors discussed.



Chapter Four

The Crystal Structure of clzl_a_eB(OBut)4
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4.1. Introduction

When beryllium chloride is reacted with lithium t-butoxide in ether a
precipitate of lithium chloride is formed. If this is filtered off and the
excess ether removed, colourless crystals of the dimeric diethyl ether
complex of chloro-beryllium t-butoxide are formed. On gently warming this
compound ether is lost to give a colourless solid with the empirical
formula (ClBeOBut). Molecular weight measurements in benzene showed the
compound to be tetrameric.

To obtain crystals for an X-ray examination the above procedure was
repeated, but yielded a white powder which did not redissolve in benzene.
The intermediate etherate was then refluxed in benzene with pumping to
preferentially remove the ether. Small colourless cube-shaped crystals
were obtained. The subsequent crystal structure analysis showed that this
substance was not the tetrameric species (ClBeOBut)4, but was in fact
ClzBeS(OBut)4. This compound can be thought of as being composed of two

ClBeOBut fragments both joined to one Be(OBut)z. It differs from the

tetramer by the entity BeClz.

4.2, Crystal Data

Photographs taken on the precession camera with Mo Ka radiation showed
the compound to crystallise in an orthorhombic space group. Reflections
o
later obtained on the four circle diffractometer at @ values around 20,

gave the following unit cell dimensions which are in good agreement with
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those obtained from the zero level precession photographs

a = 1391 b = 1219 c=13°71 A

Estimated error in all unit cell lengths = 0°OZX

U= 2325'823; Z = 4 units of ClzBe3(OBut)4

D = 1114 g.cm_3; M.V, ClzBe3(OBut)4 = 390°+48

calc

Measurements made later with various solvents, employing the flotation

principle, showed the density to lie between 1°¢1 and 1°2 g.cm—3

Absorption coefficient for Mo Ka radiation, u = 3°04 cm—1
The conditions limiting the observed reflections are

hkl: h+ k = 2n

okl: (k = 2n); hol: 1 = 2n(h = 2n); hkO: (h + k = 2n)

2n); OkO: (k = 2n) 001: (1 = 2n)

hoo: (h

The space group is hence either Cmecm No.63 in International Tables or

the non centrosymmetric alternative Cmc21 No.36.

4.3. Data Collection and Correction

The crystals used for data collection were small cubes with well
formed faces. The crystallographic axes appeared to pass roughly through
opposite corners of the cube. Two sets of three dimensional intensity data
were obtained, both with Mo Ka radiation. The first set was recorded
photographipally on the precession camera in the same manner as previously

described for the bromide compound. The second set was collected later on
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a Hilger and Watts four-circle automatic diffractometer. For the purpose
of data collection the instrument employed bisecting geometry, and this
is illustrated and discussed briefly in Appendix II. An octant of the
sphere of reflection was recorded up to 6 = 30°,
Both sets of data were corrected for Lorentz and polarisation effects
but not absorption since the value of the correction for Mo Ka is so small.
The photographic data was scaled in the same manner as previously described
for intersecting nets. For the diffractometer data, the intensities of
three stand;rd reflections were measured after every fifty normal reflections,
and scale factors evaluated from these standard reflections, were used to
bring the various batches onto a common scale.
A total of 428 independent observed reflections was obtained photo-
graphically compared to a total of 1841 obtained from the diffractometer,
of which 720 were classed as observed reflections. This classification was

effected by comparing the net count of a reflection with the e.s.d. of

that net count. This e.s.d. is defined as

\
total count + t x total background )’2’
g2

o(net)=<

the ratio of the time spent measuring the total count to that

where t
spent measuring the background count.

the number of independent measurements made of the reflection.

and n
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All reflections with a net count less than three e.s.d.'s of that net

count were classed as unobserved reflections.

4.4, The Patterson Function

The corrected value of the intensity data obtained photographically,
were multiplied by the weighting factor w, which again took the form of
the Lorentz and polarisation factor used for the zero-level nets. The
Patterson function was then evaluated using these weighted intensities as
Fourier coefficients.

For both space groups the expression for the Patterson function

reduces to:

1

h k
P(u,v,w) ='% j{: ZE: W(hkl)IF(hkl)lZCOSZﬂhUCOSZﬂkVCOSZﬂlw
| o o o

the symmetry of this vector set being Cmmm. The function was evaluated

over one eighth of the unit cell:
o
u at intervals of 0°232A from O to a/2
o
v " 0°244A " O to b/2 .

0
W " 0°229A " O to c¢/2

The initial work on the Patterson synthesis was done in the belief
t
that the compound under investigation was the tetramer (C1BeOBu )4.
The hOl net showed an approximate four-fold symmetry, and sections

(uv0) and (Ovw) of the Patterson function had many features in common.
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These factors seemed strongly to indicate the space group Cmcm which with
two intersecting mirror planes can possess a type of four-fold symmetry.
A Wilson plot and the distribution and statistics of the normalised
structure factors also indicated the centrosymmetric space group. A
cubane type structure can be postulated having mm symmetry, one 'end' of

which is shown in the following diagram:

Cl

e

/O

tBu—O m

/

Cl
m

the other 'end' would appear the same except rotated through 90°.

It was not found possible to reconcile a tetrameric cubane-type
structure with the Patterson function. A tetrameric chain-like structure
was also incompatible with the function, and similar attempts with the
alternative space group Cmc21 failed to give any significant improvement.

The Patterson function contains three very large peaks all about one

third of the size of the origin peak at 0,4,%; 0,4, O; and 0, 0,5 .
It was found that these peaks could be satisfied by placing two chlorine atoms

on the intersection of the mirror planes in Cmcm. These two:-atoms lie on

the line O, y,i, with values of y = 0 and% and they give rise to two
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symmetry related atoms at 0,0;%; and O,-g,%. The large peaks thus arise

from vectors between these four atoms.,

Three beryllium atoms were then placed initially at approximately
equal intervals, between the two chlorine atoms on the line (O,y,%), an
arrangement consistent with the peaks on the Patterson function. The
beryllium atoms were bridged by means of four t-butoxy groups, two on each

mirror plane.

OBut But
BUN
e N
P \\
cl Be(1) Be(2) _*Be(3) cl
-~ o/
But But

There are two possible ways in which such an arrangement may occur, the
t-butoxy groups bridging Be(l) and Be(2) may lie on the mirror plane at

x = 0 with the groups bridging Be(2) and Be(3) on the mirror plane at z = %,
or vice versa. The Harker section (Q,v,w) illustrated in Figure 4.1 did
not distinguish between these two possibilities. However by considering
both alternatives and looking in the Patterson function for the positions

of the Cl-0, Cl-C vectors, it was possible to distinguish the correct

arrangement, this also showed the correct positions of themethyl carbon

atoms with respect to the mirror planes.
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(Cl,Bes(OBuUt))  Patterson Function

2 7 A

/ x‘\\
S @<

N

b
2

mh

Section at u=0
Contours are at equal arbitrary intervals except for the origin peak

Figure 41
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t
c123e3(onu )4 TABLE 4a

Vector Table

The table gives the positions and peak heights, where applicable, of
all vectors between the four chlorine atoms and the beryllium, oxygen
and carbon atoms. The height of the origin peak was 900.

u/60 v/50 w/60

The Chlorine Atom Positions

Atom  Position g 45 0,33,15  0,17,15 0,0,15
1 0,8%,0 0,24%,0 0,8%,30 0,8%,30
Be(1)  0,8%,15 (7) (111) (123) (123)
0,17,0 0,16,0 0:0,30 0,17,30
Be(2)  0,17,15 (290) (290) (367) (391)
0,25,0 0,8,0 0,8,30 0,25,30
Be(3)  0,25,15 (111) (74) (116) (159)
0,21,5 0,12,5 0,4,25 0,21,25
0,21,10 (105) (98) (104) (21)
0(1) or
0.123 10 0,12%,5 0,21,5 0,4%,25 0,12%,25
12z, (98) (105) (104) (112)
4 5,122,0 5,21,0 5,4%,30 5,12%,30
2,122,135 “(97) ¢102) ¢97} (-)
0(2) or
e 5,21,0 5,12,0 5,4,30 5,21,30
5,21,15 ¢102) (92) (97 (125)
1 0,12%,11 0,21,11 0,4%,19 0,124,19
c(l) 0,124 (s3) (60 (63) (52)
11,21,0 11.12,0  11,4,30 11,21,30
c(4) 11,21,15 30y’ (30)" (52) (49)
0,8,14 0,25,14  0,9,16 0,8,16
0,8,1 3 () (-) (-)
c(2) or 0.17.1 0,17,14 0,16,14  0,0,16 0,17,16
2175 (89) (89) (115) (89)

contd./
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ClzBe3(OBut)4 TABLE 4a (contd.)

The Chlorine Atom Positions

Atom Position  0,0,15 0,33,15 0,17,15 0,0,15
5,8,14 5,25,14  5,9,16 5,8,16
c3) 5,8,1 (63) (78) (95) (95)
14,17,0 14,16,0  14,0,30 14,17,30
14,17,15 ¢70) ¢70) ¢79) 83
¢(5) or
14,25,0 14,8,0 14,8,30 14,25,30
14,25,15 (o) (30) ) ¢79)
14,25,5 14,8,5 14,8,25 14,25,25
€6y 123,10 e (43) (i) (913
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The Harker section (0,v,w) does contain the basic structure and may be
compared with the projection of the structure onto the (100) plane in
Figure 4.4,

The vector table, Table 4a, shows the vectors from the two chlorine
atoms and their two symmetry related atoms, to the other possible sites
for the beryllium, oxygen and carbon atoms, indicating how the correct
positional assignments were made.

The solution of the Patterson function reveals a molecule with mm
symmetry and explains the apparent four-fold symmetry of the hOl net and
the similarities between the two sections (u,v,0) and (0,v,w).

The Patterson function calculated using the diffractometer data was
identical, apart from minor differences in the values of the peak heights,

with that obtained using the photographic data.

4.5, Refinement of the Structure

The structure was refined using both sets of data, but since both the
quantity and quality of the data collected on the diffractometer were
superior to that recorded photographically the information to be presented
ﬁill be largely centred on the diffractometer data.

The refinement was carried out by the method of least squares using
the block diagonal approximation. Isotropic temperature factors were
assigned to all atoms and the first set of structure factors calculated,

based on the positions obtained from the Patterson function, yielded the
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value 0°303 for R. Two cycles of refinement reduced this to 0°206, then
with anisotropic temperature parameters for the chlorine atoms three
more cycles of refinement improved R to 0°118. For the next three
cycles all the atoms were refined anisotropically and R became 0°085.
Further refinement with adjustments to the parameters of the weighting
scheme, reduced R to 0°074.

The corresponding R value at the end of a similar refinement of the
photographic data was R = 0°080. The lower R value for the
diffractometer data with the increased number of planes, indicated the

better quality of the diffractometer data.

4.6, Hydrogen Atom Positions

At this stage a difference map was computed from the diffractometer
data. The main features of this map were a series of peaks of sizes
0°4 to 0°5 e.X_3. On close inspection it was found possible to assign
these peaks to probable positions occupied by hydrogen atoms attached to
the methyl carbons of the t-butyl groups. No peaks were found other
than those assigned as hydrogen atoms, and it was possible to assign
positions to all the hydrogen atoms. For both ¢c(2) and C(5) one of the
attached hydrogens was located on a mirror plane.

With isotropic temperature parameters chosen at 1022; roughly one

and half times those for the methyl carbon atoms, the hydrogen atom

positions were included in the structure factor calculations but were
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not refined. This inclusion reduced the WA? values for the low order planes
and resulted in an R value of 0°056.

Since the number of degrees of freedom had been reduced, the R value
obtained was tested to determine whether the improvement in R was significant
This was done in the manner outlined by Hamilton (Hamilton, 1965), the
hypothesis was advanced that the inclusion of the hydrogen atoms did not
improve the R value significantly. The ratio of the R values before and
after inclusion of these atoms, gave R as 1°32. At the 0°0l% probability
level the value given for R = 1°260 and at the 0¢005% probability level,
the smallest tabulated, R = 1°274. Hence the hypothesis can be rejected
at the most stringent probability level and the inclusion of the hydrogen
atoms can be said to improve the R value significantly.

Refinement of the parameters was continued for a further two cycles by
which time all shifts were less than one third of the corresponding e.s.d.
and the refinement was deemed. complete. . . The final value of the R factor
was 0°054. The final values for the positional and thermal parameters
together with their e.s.d.'s are given in Tables 4b and 4d. The symbol
beside each atom represents a set of equivalent positions of the space
group Cmcm, and the four sets relevant to the structure are presented in
Table 4c. The values of the positional parameters obtained using the
photographic data did not differ significantly from the values in the

tables, which were obtained from the diffractometer data, but their e.s.d.'s
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were increased by a factor of about two.
During the final cycles of refinement the structure factors were
weighted using the same function as employed in the first compound with

values for the parameters of

p, = 20, p, = 0°005, Py = 1078

The final values of the least équares totals together with the analysis

of the weighting séheme, the data being analysed in terms of the

magnitudes of the Fo's, are presented in Table 4e. The observed and

calculated structure factors are given in Table 4f.
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t
C123e3(0Bu )4 TABLE 4e

Least Squares Totals

Number of observed planes 720

2
z|F | lecl z|al PR R

18987.96 18815.45 1031°62 62°69 0°054

Weighting Analysis
|Fo|ranges N va?/N R
0-10 74 0°10 0°144
10-14 192 0°14 0°125 |
14-20 165 0°04 0°058
20-30 112
30-50 88

50 upwards 89




t
ClzBe3(OBu )4 TABLE 4f

The Observed and Calculated Structure Factors
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Figure 4.2
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4,7. Description and Discussion of the Structure

The molecule lies at the intersection of two mutually perpendicular
mirror planes with the two chlorine and three beryllium atoms situated on
the line of intersection. The two beryllium atoms attached to the terminal
chlorine atoms are three-coordinate and each is linked to the third
beryllium at the centre of the molecule, by two bridging t-butoxy groups
lying on the two mirror planes. The view looking down the chlorine-
beryllium direction, which is the direction of the 'y' axis, is shown
in Figure 4.2.

The difference in coordination states between the two types of beryllium
atom manifests itself in the geometries of the beryllium-oxygen rings.

The molecular geometry very closely resembles that recently found for
[Be(NMe2)2]3 (Atwood and Stucky, 1967), see Figure 2.1.

It was previously noted that the values of the positional parameters
obtained from the two sets of data, were not significantly different. The
bond lengths and angles obtained from the data sets do not differ
significantly either. However the values obtained using diffractometer
data have the lower e.s.d.'s and show the greater consistency, i.e. similar
bond lengths are in much better agreement, in fact none of them differ from
each other by more than twice the individual e.s.d.’'s. These are the

values quoted in this section and presented in Tables 4g and 4h as bond

lengths and angles respectively.
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t
0123e3(03u )4 TABLE 4g

Bond Lengths and their Standard Deviations

Distance e.s.d.

c1(1)-Be(1) 18674 0-0124
c1l(2)-Be(2) 1886 0°+012
0(1)-Be(1) 1541 0°009
0(2)-Be(3) 1536 0°009
0(1)-Be(2) 1635 0°009
0(2)-Be(2) 1639 0°009
o(1)-c(1) 1°467 0°007
0(2)-c(4) 1460 0°008
c(1)-c(2) 1°516 0011
c(1)-c(3) 19520 0°008
c(4)-c(5) 1507 0°011

c(4)-c(6) 1519 0°008




Cl2
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t
Be3(OBu )4 TABLE 4h |

Bond Angles and their Standard Deviations

c1(1)-Be(1)-0(1)
Cc1(2)-Be(3)-0(2)

0(1)-Be(2)-0(2)

Be(1)-0(1)-Be(2)
Be(1)-0(1)-c(1)
Be(2)-0(1)-c(1)

Be(2)-0(2)-Be(3)
Be(2)-0(2)-c(4)
Be(3)-0(2)-c(4)

0(1)-c(1)-c(2)
0(1)-c(1)-c(3)
c(2)-c(1)-c(3)
c(3)-c(1)-c(3")

0(2)-c(4)-c(5)
0(2)-c(4)-c(6)
c(5)-c(4)-c(6)
c(6)-c(4)-c(6')

c(3') refers to the atom at (%,y,z)

Angle

132-9°
13245

121-6

893
1349
135°9

88
138-
133-

8
3
0
107°4
108-2
110°8
111-2
108+3
1080
110°9
1107

e.s.d.

[eNoNe [oNeNe
o o o e o o
o L o~

(olleNoNe)
o e o
vt

(oo NeNo)
e e o o
(G, N, B

C(6') refers to the atom at (x,y,}-z)
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The Be(1)-C1l(1) and Be(3)-C1(2) distances are 1°867 and 1-8664
respectively and their mean of 1:867A contrasts with the distance 2054
found in solid beryllium chloride (Rundle and Lewis, 1952), which is the
same as the sum of the tetrahedral covalent radii. The chlorine and
beryllium atoms in solid beryllium chloride are two and four coordinate
respectively, but the angle at chlorine is 81-8°, 1In C123e3(03ut)4,

Be(l) and Be(3) are three coordinate and will try to reduce their coordinate
unsaturation by using empty 2p orbitals to form dative n-bonds if possible,
resulting in a shortening of the bonds. The evidence for this type of
bonding is discussed in the next section.

In the t-butoxy-beryllium bromide complex, the beryllium atoms have
the same environment and the central beryllium-oxygen ring is approximately
square. The two such rings of the trimer are not square owing to the
differences in coordination and bonding of the constituent beryllium atoms.

The three-coordinate beryllium atoms form the significantly shorter

bonds to the oxygen atoms, these distances being Be(1)-0(1), 1-5418 and

Be(3)-0(2), 1'5363, as compared to those involving Be(2) of 1°635 and 1:6398.
Consequently the angles at Be(2) are smaller than those at Be(l) and Be(3),
while those at O0(l) and 0(2) are the same within experimental error and
intermediate between the angles.at beryllium. The dimensions of the rings
are given along with other values of the lengths and angles on Figure 4.3,

which shows a view of the molecule perpendicular to the direction of the

y axis.
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Cl,Be;(OBut),
~ Some Lengths and Angles

Figure 4.3
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The greatest distortions in the values of the ring angles are found
at the atoms Be(l), Be(3), 0(1) and 0(2). These atoms could be formally
regarded as sp2 hybriﬁised, the undistorted angle between the three
valence lobes being 120°. The angles at Be(2) do not represent distortions
quite as large, since being four-coordinate this atom would be expected to
have a tetrahedral environment with valence angles for the undistorted
geometry of 109°47°, _

The C(1)-0(1) and C(4)-0(2) bond lengths of 1+467 and 1°460A
respectively, may be compared with the values quoted in section 3.7 and also
with the C-0 distance in the t-butoxy group of the t-butoxy maénesium
complex, equal to 1449 + 0'0252. The Be-0-C angles are of course much
greater than 1200, but whereas those at O(l) are approximately the same,
at 0(2) the angles Be(2)-0(2)-c(4), 138°3° and Be(3)-0(2)-C(4), 133“00,
differ significantly from one another. These values imply a movement of
the carbon atoms of the t-butoxy groups bridging Be(2) and Be(3), away from
the centre of the molecule.

The carbon-carbon distances do not differ significantly from each other,

0
nor from the mean C-C distance of 1°53A found in the t-butoxy group of

o)
the magnesium complex, their mean is 1°516A. The angles between similar
atoms in the two groups are in good agreement, but the 0-C-C angles are
slightly less than the tetrahedral value and the C-C-C angles are slightly

greater.
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<

0
The non-bonding distances less than 4A are given in Table 4i, apart

from those between atoms of the same t-butoxy group. Once again

corresponding distances between different parts of the molecule are in

close agreement., The slight movement of the t-butoxy group mentioned

previously has two results; a lengthening in non-bonding C-Be(2) distances

as compared to similar distances involving the other t-butoxy group, e:%.

o o
Be(2)-C(5) 3°18A and Be(2)-C(2) 3°11A, and a shortening in C1l-C non-bonding

distances in a similar comparison, e.g. C1(2)-C(6) 3843 and c1(1)-c(3)

3.928,

0
There are only four intermolecular distances shorter than 4A, they are

cl(1)-c1(2) at (0, l+y, z)
c1(2)-c(2) at (0, 1l-y, 2)
c(2)-c(2) at (0, 1-y, z)
c(3)-c(6) at &-x, ++y, z)

The first three are shown in Figure 4.4 which shows the molecular packing
in projection on the (100) plane, the (001) projection would be very similar
to this. The fourth distance occurs between a molecule on the mirror plane
at x = 0 and one on the mirror plane at x ='% and does not appear on the
figure. A movement of the t-butoxy group to which c(2) belongs,

(similar to that shown by the other t-butoxy group), would increase the
c(2)-c(2) intermolecular distance, however this would be offset by

reductions in the distances between both the chlorine atoms and the atoms

c(1), ¢(2) and c(3).

30998
376
3469
384
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t .
0123e3(03u )4 ITABLE 4i

)
Non-Bonding Intra-Molecular Distances less than 4A

A B A-B
c1(1) 0(1) 3°13
c1(l1) c(1) 386
cl(1) c(3) 392
c1(2) 0(2) 3°13
c1(2) c(4) 382
c1(2) c(6) 384
Be(l) _ 0(2) 360
Be(1) c(1) 2:78
Be(l) c(2) 393
Be(l) c(3) 3°30
Be(1) c(5) 383
Be(l) Be(2) 2°23
Be(2) Be(3) 2022
Be(2) c(1) 2-88
Be(2) c(2) 3-11
Be(2) c(3) 384
Be(2) c(4) 290
Be(2) c(5) 318
Be(2) c(6) 385
Be(3) o(1) 359
Be(3) c(2) 3°71
Be(3) c(4) 275
Be(3) c(5) 392
Be(3) ‘ c(6) 3225

o(1) 0(2) 2+86
o(1) c(4) 3276
o(1) c(5) ] 354
o(1) o(1) (0,y,z-z) 2926
0(2) 0(2) (x,y,31) 2027
0(2) c(1) 373
0(2) c(2) 3445

399

c(2) ' c(6)

>0




4
o e
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From the foregoing discussion and the tables and diagrams it will be

appreciated that the molecule is composed of two very geometrically
similar halves joined perpendicularly at Be(2). The space gtoup requires
the molecule to have the symmetry mm but the possibility existed that the
molecule might possess the higher point group symmetry 42m. In order to
test this hypothesis, the position of the centre of the molecule on the
line (0,y,%) was calculated using the y-coordinates of the atoms weighted
by a factor inversely proportional to the square of their e.s.d.'s. The
coordinates of the atoms were then evaluated taking this 'molecular
centre' as origin. Statistical tests showed that while the chlorine,
beryllium and oxygen atoms are related by 42m symmetry, the carbon atoms
are not. In view of the distortions involving these latter atoms this is
hardly surprising. The coordinates of the atoms referred to the
molecular centre, based only on the positions of the chlorine, beryllium
and oxygen atoms, are given in Table 4j. It can be seen that the positions
of these atoms are related by the requirements of symmetry 42m, but that
for the carbon atoms, differences up to 0-092 are observed between relative

coordinates.

This symmetry, or in the case of carbon atoms near symmetry is closely

paralleled in the values of the isotropic and anisotropic temperature factors,

corresponding atoms having roughly equal values of B, (and also

approximately equal values of corresponding Uij's, see Table 4d.). The
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t .
9123e3(03u )4 TABLE 4j

Test for 42m symmetry

. , 0
The coordinates in Angstroms of the atoms referred to the weighted centre
based on the positions of the chlorine, beryllium and oxygen atoms.

Atom X o(X/a) Y o(Y/b) Z o(Z/e)

cl(1) 0°0 -4°102 0°002 00

Be(1l) 0°0 -2°235 0°011 0°0
o(1) 0°0 -1-187 0°004 -1°129 0°004
c(l) 0°0 : -1+244 0°+007 -2°594 0°006
c(2) 0°0 0°183 0°009 -3°105 0°007
c(3) 1255 0°007 -1977 0°008 -3°041 0°006
Be(2) 0°0 -0°003 0°011 0°0

c1(2) 0°0 4°105 0°002 .

0°0

Be(3) 0°0 22219 0°+012 0°0

0(2) 1133 0°004 1182 " 0+004 0°+0

c(4) 2+588 0°007 1°298 0°007 0°0

c(5) 3174 0°008 -0°090 0008 0°0
1

c(6) 2997 0°006 2058 0°007 -1-250 0°007

The matrix relating the atomic coordinates of the first set to those of
the second set is

r=|
o
o
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mean values of B show a steady gradation from the ring atoms to the
peripheral atoms, the mean values being Cl 3°9, Be 3°6, 0 2°9, t-butyl C
40, methyl C 6°5 XZ.

Although the hydrogen atom positions were not refined the values of
the C-H bond lengths were in good agreement, their mean being 1°IOK. of
the bond angles involving these atoms only two were in poor agreement with
the tetrahedral value. The sum of the Van der Waal's radii of a chlorine
atom and a methyl group is 3°8OX, and since the shortest non-bonding
distance between a chlorine and a methyl carbon atom is 3°76X, the

possibility of any strong interaction between the chlorine and the hydrogen

atoms would seemed to be ruled out.
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4.8. n-Bonding in Three-Coordinate Beryllium Compounds

The evidence in favour of dative beryllium-nitrogen w-bonding has been
the subject of two recent papers, and the results obtained in this present
structure analysis seem to substantiate that evidence. In this context the
important facts are the geometries at the beryllium atoms and the Be-Cl
and Be-0 bond distances.

In assessing the importance of any bond shortening it is important to
remember that the change from sp3 to sp2 hybridisation will lead to a
feduction in bond length. For carbon, values of bond distances quoted
indicate bond shortenings of the order of 0°04X for a change from C(sp3)-
C(spz) to C(spz)-c(spz).

The mean Be-Cl distance of 1°SSX has been compared to the sum of the
tetrahedral covalent radii, 2°052; a similar comparison for the Be-Br
distance in the previous compound gave good agreement. Two types of Be-0
distances exist involving the three- and four-coordinate beryllium atoms,
their mean values are Be(spz)-o, 1:544 and Be(sp3)—0, 1“642, this latter
value being in good agreement with the Be-O distances found in the bromide
complex. The bond shortenings then appear to be in the sequence Cl-Be(spz) >
0-Be( sp2) > 0-Be( sp3 ).

This same sequence is found, although involving different atoms, in

o
(Be(NMez) The Be (terminal)-N (terminal) distance of 1°56A may be

2)3'
0
compared with distances of 1614 for Be (terminal)-N(bridging) and 1°76A

for Be(central)-N(bridging) this last distance being equal to the sum of the
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tetrahedral covalent radii. The trends are in the expected direction if x-
bonding effécts are considered.

In both compounds the terminal berylliums and their three attached
atoms are coplanar. This geométry permits filled p orbitals on the
terminal nitrogen and chlorine atoms and on the bridging oxygen atoms to
form dative n-bonds with the empty p-orbitals of the three-coordinate
beryllium atoms.

Further support for this thoery comes from the n.m.r. studies oﬁ

[Be(NMez) (Fetter and Peters, 1965). Extension of the work to

2]3
measurements of the 13C—H spin~spin coupling constants yielded a value
indicative of a degree of w-bonding between the terminal nitrogen and
beryllium atoms. (Niedzieski et al., 1964).

Additional evidence is provided by studies of the infrared ‘'spectra of

a series of bis(ketimino)-derivatives of beryllium. (Summerford, Wade

and Wyatt, 1969).

ch TRIR2
| |
N N.
Cl——-Be//, \\\Be——-Cl R1R2C=N—Be/// \\\Be-N=CR1R2
ﬁ [
CR2 CRlR2

(1) (11)
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Compounds of type (I) have v(C=N) at ca. 1610 cm-l, whereas the

coloured derivatives of type (II) absorb in the region of 1630 cm-1 and

also in the region of 1735 cm_l. This last band was taken as evidence of

a linear C=N=Be skeleton for the terminal ketimino groups.
Structural investigations of derivatives of type (II) could prove

most useful in providing further evidence for dative w-bonding in three

coordinate beryllium compounds.




Chapter Five

The Crystal Structure of Dimeric Dimethylindium

Pyridine-2-carbaldehyde Oximate
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5.1. Introduction

Following upon the well known fact that oximes, RR'C:NOH, cleave
alkyl groups from reactive organometallic compounds, the acetoxime
derivatives (MeZC:NOMMeZ)n of boron, aluminium, gallium and thallium have
recently been prepared, by the cleavage of methane from the methyl
derivative of the appropriate element using acetoxime (Jennings and Wade,

1967). These compounds have structures based on a six membered ring as

shown in (I):

N

0——M
R J/ R R
>C=N N=C< (1)
R R
N 0
R/ R

The products of the reaction between pyridine-2-aldoxime and the
group III metal alkyls were investigated to determine the possibility of

obtaining monomeric derivatives of type (II) rather than derivatives of

type (I)

N N (11)
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Of the derivatives prepared only that of boron was found to exist in
solution, and probably in the solid, as a monomer. The aluminium, indium
and thallium derivatives were found to be dimers in solution and in the
solid. Certain aspects of the n.m.r. and i.r. data, namely the downfield
movement of the MI—CH3 attached protons and the weakness of M—CH3

symmetric stretching vibrations, were taken as indicative of an increase

in coordination number of the metal atom to five, and structure (III) was

proposed for these derivatives

C=N N=C (111)

This structure incorporates two types of heterocyclic ring as well
as pyridine rings. One is the MONMON ring which is thought to exist in
all associated metal derivatives of oximes, and the other is a five
membered ring which is thought to be very common among transition metal

derivatives of pyridine-2-aldoxime, for example in the following cobalt

complex. (Blackmore and Magee, 1967)
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H

[;;:L\c"/
Ny

HO—N—3 Co ¢«—N——0H

cl:l L'\oﬂz
5 U

The dimer (III) can be regarded as being formed either by,
(a) elimination of alkane, formation of the (MDN)2 ring and finally

coordination of the pyridine nitrogen or by,

(b) formation of the monomer H
o
Me\\\le’,,.ﬂ\\
/,% OH
Me” Me
elimination of methene, and finally coupling of two monomers to give the
_ (M.ON)2 ring.
| The indium derivative of type (III) was the most suitable for an X-
ray analysis and crystals for that purpose were prepared in the following
manner. Trimethyl indium was condensed into a cold trap at -196%
containing pyridine-2-aldoxime in solution in toluene, and the trap was
allowed to warm up. Methane was evolved and the solution was slightly

yellow in colour. Toluene was removed until the solid was deposited, this

was then filtered off and recrystallised from benzene as very thin,
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transparent plate-like crystals with a faint yellow colouration, m.p.
164°¢. Though hydrolysed by water the crystals did not decompose in
relatively dry air and it was not found necessary to work with them

sealed in glass tubes (Pattison and Wade, 1967).

5.2. Crystal Data

Preliminary photographs taken on the Weissenberg and precession
cameras showed the compound to crystallise in the orthorhombic system.
The conditions limiting the observed reflections are,

hkO: h+ k = 2n; hOl: 1 = 2n; Okl: k = 2n;

h00: (h = 2n); 0k0: (k = 2n); 001: (1 = 2n);
from which the space group was unambiguously assigned as Pben, No.60 in
International Tables for X-ray Crystallography.'

The unit cell dimensions and their standard deviations were obtained
from a_least squares treatment of the 6 values of several high order

reflections, measured on the four-circle diffractometer

Length (X) e.s.d.
a 33°15 0°01
b 9541 0°004
c 14°30 0°01

o3 .
U = 4523A"; Z = 8 units of [(CSH4NCH:NOInMe2)2°%C6H6]

-3 - L] -3 .
Dcalc = 1618 g.cm " ; Dobs = 161 g.cm " ;
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I 01 = °
MW [ (C5H4NCH.NOInMe2)2 ‘2"C6H6] 57102

Absorption coefficient for Mo Ka radiation = 20°5 cnl,

5.3. Data Collection

The crystal used for data collection was a very thin plate with well
developed §100} faces, of dimension 0°35 by 0°22 by 0°0l mm. The data was
collected on the Hilger and Watts four circle instrument in the manner
previously outlined in section 4.3, using Mo Ka radiation. The length of
the a axis necessitated a small scanning range for each reflection. An
octant of the sphere of reflection up to @ = 20° was collected for both
the set of reflections (hkl) and the equivalent set (hkl).

The data was corrected for Lorentz and polarisation factors but not
for absorption. It was then scaled as described previously and equivalent

reflections averaged.
A total of 2120 independent planes was obtained, of which 1377, having

a net count greater than two e.s.d.'s of that net count, were classed as

observed reflections.

5.4. The Patterson Function

The corrected values of the intensity data, weighted by the factor w
which took the same form as mentioned earlier, were employed in
evaluating the Patterson function.

The expression for the function reduces to
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P(u,v,w) =

<i| o

h k 1
zt;zz:zg: w(hkl)lF(hk1)|2cos2ﬁhu cos2stkv cos2xtlw
o o o

the symmetry of this vector set being Pmmm. The function was calculated

over one eighth of the unit cell:

u at intervals of 0°276K from O to a/2
: v " O°239K " 0 to b/2
w " 0°BSSX " 0 toc/2
The principle vectors in the function arise from the two independent
indium atoms in the dimer and their symmetry related atoms. The expected
size of an In-In singk-weight peak was 300 and that of a double-weight

peak 600.

The basic solution of the Harker sections and lines was straight

forward and is summarised below.

Harker Section/Line Peak Size x/120 y/40 z/40

u, v, & 710 24 7

‘ 572 11 5

3 v, W 609 7 8%
611 5 3

u, 0, w 671 11 3
647 24 8%

u, %, 0 1370 = 24
1229 11

0, v, = 1408 6% _

5L w 1453 8%
1294 3

x The Harker lines are common to four asymmetric units and hence the
peaks have quadruple weight.
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The (x,y,z) coordinates obtained for the two independent indium atoms

are(szg, 4—(7), ;—‘%) and (1—;&, 1—(53’ 4—3 > These positions were confirmed by
thé location of two peaks at (2x,2y,2z) with heights of 284 and 261
respectively, corresponding to vectors between the above two atoms and an
atom related to each of them by a centre of symmetry.

It 'was then necessary to fix the positions of the indium atoms with
reference to each other. The above coordinates were initially assigned as
In(1) and In(2) respectively, and the vectors between In(l) and In(2),
in all the latter's equivalent positions, were evaluated and found to be
present in the function. The magnitudes of the peaks were all in the
range 600 to 680, and a total of eight In(1)-In(2) vectors were found.

No other large peaks were present in the function and the coordinates of

the atoms obtained were

x/a y/b z/c
In(l) 0°200 0°175 0°2125
In(2) 0°0917 0°125 0°075

5.5. Light Atom Positions

The coordinates of the indium atoms were improved through two cycles
of least squares refinement, after which the value for R was 0°26. The
structure factors based on the positions of the two heavy atoms were then

used to compute a Fourier map. From this it was possible to assign
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positions to all the remaining atoms except the hydrogens. The position
of the pyridine nitrogen atoms were chosen on the basis of peak heights,
the sites chosen having values of 6°1 and 5°1 e.K-3, while the electron
density at the other ring siteswas on average 4 e.X-3. The initial
arrangement gave the indium atoms a coordination number of five. There
were also four peaks of height 2 e.Xf3 arranged about the two-fold axis

of which no account was taken at this stage.

5.6. Refinement

The first set of structure factors based on the atomic positions
obtained from the Fourier synthesis, yielded a value of 0°17 for R. Two
cycles of refinement, all atoms being refined isotropically, reduced R
to 0°13. The atoms were then refined with anisotropic temperature
parameters and account was taken of the anomalous scattering of the indium
atoms, although the maximum value for the imaginary dispersion correction
A", was only 1°7 electrons. After several cycles of refinement R reduced
to 0°094.

A difference map calculated at this point revealed the four peaks
mentioned previously, again of approximate size 2 e.x_3. These peaks
formed part of a benzene ring situated on the two-fold rotation axis
parallel to the b axis, with two atoms lying on the rotation axis. These

additional four carbon atoms were then assigned isotropic temperature
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parameters and were included in the overall refinement, R improving to
0°060.

At this stage an attempt was made to test the validity of the initial
assignments of the atoms in the pyridine rings, by refining the atoms at
the sites occupied by N(3) and N(4) as carbons and those at C(5) and C(13)
as nitrogens. A rerun of the previous few cycles saw R increase to the
slightly higher value of 0°061. An inspection of the temperature parameters
revealed that while the 'new' carbon atoms had values appreciably lower
than the other carbon atoms of the rings the "new' nitrogen atoms had values
appreciably higher than the atoms N(1) and N(2), in contrast to the values
obtained with the initial assignment where no appreciable differences were
noted. These facts appear to support the initial assignment.

After adjustments to the parameters of the weighting scheme the final
cycle of refinement with all shifts less than one third of the corresponding
e.s.d.'s, yielded the value 0°059 for R. A difference map calculated after
this cycle showed no peaks larger than 0°8 e.st. The principle features
were several peaks of size 0°5 e.X_S in positions which could possibly be
attributable to the hydrogen atoms of the benzene and pyridine rings,
though not all possible hydrogen atoms were found. Positions for the
hydrogeﬁ atoms of these rings were then calculated and included in the

structure factor calculations. They failed to produce any marked effect

and R remained at 0°059.
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No peaks were located on the map which could have been due to hydrogen
atoms to the sites N(3) and N(4), providing further confirmation of the
assignment of nitrogen atoms to these sites.

The final values of the atomic coordinates and anisotropic temperature
parameters Both with their standard deviations are given in Tables 5a and
5b respectively. The details of the four carbon atoms of the benzene of
crystallisation are given in Table 5c.

During the final cycle of refinement the weighting scheme employed for
both the previous refinements was used, with the following values for the

parameters,

-3 5

p; = 350, py =107, Py =3 % 10~

A large value for P, Was necessary in order to down weight the planes
with small values of IFol‘ The averaged wﬂ? for the planes in the lower
ranges of IFOI are still greater than for the other ranges. The least
squares totals aﬁd the weighting analysis, in terms of the magnitudes of
the IFOI, are given in Table 5d. An almost identical pattern was observed
in the weighting analysis of an iridium complex, the data for which had been
collected in a similar manner and for which the reflections were classed
as observed at the two e.s.d. level (Schneider, 1969). That the same
situation did not occur for ClzBe3(OBut)4, for which the observed

reflections were accepted only at the three e.s.d. level, suggests that
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with a higher acceptance level the discrepancies in the weighting analysis

could have been alleviated for the present compound.

QO\EHOE U7y

™ 3 nov 1989
N
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), TABLE 5a

(CSH4NCH:NOInMe2 5

Final Values of the Atomic Coordinates and their Standard Deviations

Atom x/a y/b z/c o(x/a) o(y/b) o(z/c)

In(1) 0°19925 0°17446 0°21639 0°00005 0°00017 0°00011
In(2) 0+09112 0°12740 0°07348 0°00005 0°00017 0°00013
o(1) 0°12657 0°32148 0°10143 0°00041 0°00150 0°00096
0(2) 018606 0°07565 0°07754 0°00044 0°00173  0°00109
N(1) 0°15107 0°33536 0°17627 0°00047 0°00156 0°00106
N(2) 0°15032 0°00852 0°06376 0°00047 0°00178 - 0°00106
N(3) 0°19896 0°37567 0°32850 0°00050 0°00166 0°00121
N(4) 007859 -0°12107 0°02279 0°00054 0°00193 0°00141
c(1) 025774 0°23771 0°16633 0°00081 0°00297 0°00171
c(2) 0°17063 0°02221 0°30697 0°00084 0°00259 0°00156
c(3) 0°14808 0°45670 0°22195 0°00064 0°00209 0°00159
c(4) 0°17321 0°47565 0°30351 0°00067 0°00198 0°00150
c(5) 0°16844 0°59977 0°353% 0°00061 0°00188 0°00152
c(6) 0°19402 0°62222 0°43068 0°00067 0°00248 0°00151
c(7) 0°22231 0°51540 0°45684 0°00083 0°00251 0°00153
c(8) 0°22447 0°39561  0°40217 0°00072 0°00254 0°00142
c(9) 0°07018 0°19761 -0°05927 0°00074 0°00253 0°00163
c(10) 0°06291 0°09038 0°20972 0°00084 0°00344 0°00195
c(11) 015180 -0°12604 0°04388 0°00067 0°00228 0°00135
c(12) 011332 -0°19474 0°02102 0°00065 0°00224 0°00138
c(13) 0°11450 -0°33972 0°00016 0°00085 0°00234 0°00180
c(14) 0°07826 -0°39999 -0°02745 000088 0°00292 0°00208
c(15) 0°04242 -0°32011 -0°02783 0°00088 0°00294 0°00189

c(16) 0°04332 -0°18031 -0°00452 0°00081 0°00258 0°00206
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(CSH4NCH:NOInMe2)2 TABLE 5d

Least Squares Totals

Number of observed planes 1377

2
2|F | 3[R | z|A | HAA R

120490°0 11947948 71513 145°1 0°059

Weighting Analysis

|Fo| ranges N wa?/N R

‘ 0;40 232 0°19 0-19
40-50 192 0°16 0°12
50-60 157 0°+09 009
60-70 133 0°07 0°07
70-80 97 0°08 0:06
80-100 176 0°05 0°+05
100-120 125 007 0°05
120-160 119 006 0°03

160 upwards 146 009 0°03




(Cc_H, NCH:NOInMe TABLE 5e

5 222

The Observed and Calculated Structure Factors
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5.7. Description and Discussion of the Structure

The molecule is composed of five heterocyclic rings és illustrated
in Figure 5.1, the indium atoms being five-coordinate. The five rings are
the two pyridine and two C°*N°In°N°C rings and the central InONInON ring.
Tf the molecule is divided into two equal halves by means of a line drawn
through 0(1) and 0(2), the two halves are to a crude approximation planar
and inclined to one another at an angle of approximately 55°,

The planarities of the various parts of the molecule are examined
by means of Table 5f which lists the equations of the planes, the atoms
and their out-of-plane-deviations and e.s.d.'s, and thé)(? values. These
may be compared with the 1isted'yL§ values in order to ascgrtain the
coplanarity of the groups of atoms. With the aid of this table the
following facts may be deduced, the two pyridine rings with n = 3, are
planar within experimental error; the atoms In(2), 0(1), 0(2) and N(2)
are coplanar but the corresponding set In(1), 0(1), 0(2) and N(1) are not;
vhile the ring In(1), N(1), N(3), C(3), C(4) is non-planar the planarity
of the ring In(2), N(2), N(4), ¢(11), €(12) can be accepted at the 1%
probability level; the atoms In(1l), N(1), ¢(1), c(2) are non-planar as
are In(2), N(2), €(9), ¢(10). If the indium atoms adopted undistorted

trigonal bipyramidal geometries these last two groups would each be

coplanar.
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(c 5H4NCH: NOInMe TABLE 5f£

2)2

Some Mean Planes

0°683X + 0°425Y ~ 0°594Z - 3°249 =0

Atom N(3) c(4) c(5) c(6) c(7) c(8)
p _0°014  0°021 -0°0ll 0°006  -0009  0-018 &
o(P) 0°+017 0°021 0°020 0°+022 0°025 0°023

YA = 2-88

0°169X + 0°247Y - 0°954Z + 0°136 = 0

Atom N(4) c(12) c(13) c(14) c(15) c(16)
P -0°019 0°026 -0°024 0°+007 -0°001 0°016
o(P) 0°020 0°020 0°026 0°030 0°027 0°029

')LZ = 390

0°672X + 0°591Y - 0°447Z + 4°041 = 0

Atom In(l) o(l) 0(2) N(1)
P -0°001 -0°057 0°036 0°089
o(P) 0°002 0°014 0°015 0°015

’)Qz = 56°5

0°044X + 0°186Y - 0°982Z + 0671 = O

Atom In(2) o(1) 0(2) N(2)
P 0°000 0°004 -0°009 0°013
o(P) 0°002 0°014 0°016 0°+015

’)(,2 = 1-11

contd./
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TABLE 5f contd.

0°676X + 0°463Y - 0°573Z - 3°462 =0
Atom In(1) N(1) N(3) c(@3) c(4)
P 0°000 -0°040 -0°037 0°054 0°033
o(P) 0°002 0°015 0°017 0022 0°021
11,2 = 20°50
0°099X + 0°264Y - 0°959Z + 0°388 = 0
Atom In(2) N(2) N(4) c(11) c(12)
P 0°000 0°028 0°028 -0°033 -0°019
o(P) 0°002 0°015 0°020 0°020 0°020
Y = 91
=0°200X - 0°532Y - 0°823Z + 4°754 = 0
Atom In(1) N(1) c(l) c(2)
P 0°001 -0°024 -0°119 -0°102
o(P) 0°002 0°015 0°026 0°023
Y = 43453
-0°475X - 0°849Y - 0°232Z + 2°708 = O
Atom In(2) N(2) c(9) c¢(10)
P -0°003 0°060 0°199 0°+290
o(P) 0°002 0°017 0°024 0°+032

YE = 16749

P represents the out-of-plane deviation for the atoms.

o
X, Y, Z refer to the coordinates in A units

contd./



-113-

TABLE 5f contd.

2
P
Degrees of Freedom(n) P=5% P=1% P = 0°1%
1 384 6°64 10-83
2 5°99 9-21 13-82

3 7°82 11-34 16°27




-114-

The indium atoms owe their five-coordination to the fact that the ion

N CH=N OGJ
[:V:T__ acts as a tridentate ligand. Five-coordination is

further discussed in section 5.8, suffice it to say here that the
arrangement adopted at the metal is that of a distorted trigonal bipyramid,
as noted from Table 5f.

The distances from the indium atoms to their five attached atoms are
given iq Table 5g along with other bond lengths, and some distances are
indicated in Figure 5.2. The In-C distances are all in agreement, the
greatest discrepancy being between In(2)-C(9) 21298 and In(2)-C(10) 2:1908
and for these ty, = 1¢7. The mean In-C distance of 2168 may be compared
with the mean value found in (CH3)3In, see section 5.8, of 2:158 and with
the value obtained from electron diffraction work on (CH3)3In
(Laubengayer and Pauling, 1941) of 2°16 + 0°04X.

The two In-O distances are in good agreement, In(1)-0(2), 2~241X, and

In(2)-0(1) 2'2292. Their mean . of 2323SK is similar to the longer distance
found in'InP04.2H20 (Monney-Slater, 1961) of 2°252, and the value quoted
for an In-O distance of 2233 by Sutton (1958). The distance is longer
than the sum of tetrahedral covalent radii 2°1OX, which is to be expected
the indium atoms being penta-coordinate. The indium atoms form two kinds

of bond to the nitrogen atoms. The shorter bonds, involving the oximate

: o o
nitrogen atoms, are In(1)-N(1) 2°288A and In(2)-N(2) 2°271A, which are in
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), TABLE 5g

(05H4NCH:NOInMe2 5

Bond Lengths and their Standard Deviations (X)

Distance e.s.d.

In(1)-0(2) 2241 0°016
In(1)-N(1) 20288 0°015
In(1)-N(3) 2501 _ 0°017
In(1)-c(1) 2¢153 0°027
In(1)-¢c(2) 2°165 0025
In(2)-0(1) 20229 0°014
In(2)-N(2) 24271 0°016
In(2)-N(4) 2514 0019
In(2)-c(9) 2°129 0°024
In(2)-c(10) 2°190 0°028
0(1)-N(1) 1350 0°021

0(2)-N(2) 1361 0°022

N(1)-c(3) . 1333 0°026

N(2)-c(11) 1°316 0°028

c(3)-c(4) 1°445 0°031

c(11)-c(12) 1471 0°031
N(3)-c(4) 1329 0026

c(4)-c(5) 1396 0°027

c(5)-c(6) 1+403 0°030

c(6)-c(7) 1435 0°034

c(7)-c(8) 1387 0°033

c(8)-N(3) 1°364 0°028

N(4)-c(12) 1349 0°028

c(12)-¢(13) 1416 0°031
c(13)-c(14) 1389 0°+040
c(14)-c(15) 1412 0°041
c(15)-c(16) 1375 0°038

c(16)-N(4) 1°356 0°032
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o
good agreement, their mean being 2°28A. A value of 2°27X can be estimated
for the In-N distance based on the In-0 distance, and a value of 2°3IX may

be estimated from the In-P distance recently found in bistriphenylphosphine-
trichloroindium(III) (Palenik and Veidis, 1969). The above In-N distance

is in good agreement with these two estimates, but is significantly shorter
than the distances found involving the pyridine nitrogen atoms of In(l)-
N(3) 25014 and In(2)-N(4) 2+514A. These two distances are themselves in
good agreement and the bond lengthening is most probably the result of
geometric and steric factors operating on the pyridine rings.

The bond lengths found in the oximate linkages are in good agreement
with each other, O(1)-N(1) 1+354, 0(2)-N(2) 1364, and N(1)-C(3) 1°331,
N(2)-c(11) 1'322, and can be compared with the values obtained for syn-
and anti-p-chlorobenzene (Jerslev, 1957), C-N 1°29 and 1°27X, N-O 1°36 and
1-364 respectively in the two compounds. The bond lengths C(3)-C(4) 1458
and C(I)-C(12) 1478 are in good agreement with one another and with the
value of 1'452 in the above compounds.

The bond lengths found in thé two pyridine rings are in agreement and
may be compared with the values quoted for the free molecule, (and shown
below) (Interatomic Distances, 1958). The mean C-N and C-C distances

obtained are compatible with the assignments made for the nitrogen atoms.
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(CSH4NCH:NOInMe2)2 TABLE 5h

Bond Angles and their Standard Deviations

Angle e.s.d
0(2)-In(1)-N(1) 8546° 0+6°
0(2)-In(1)-N(3) 1529 0°6
0(2)-In(1)-c(1) 899 0°8
0(2)-1n(1)-c(2) _ 993 0°8
N(1)-In(1)-N(3) 69°1 0°5
N(1)-In(1)-c(1) 110°+9 0°8
N(1)-In(1)-c(2) 107-1 0+8
N(3)-In(1)-c(1) 90°1 0°8
N(3)-In(1)-c(2) 97°5 0°8
Cc(1)-In(1)-c(2) 141 °4 1°0
0(1)-In(2)-N(2) 883 0°5
0(1)-In(2)-N(4) 1573 0°6
0(1)-In(2)-c(9) 940 0°7
0(1)-1In(2)-c(10) 101°5 0°9
N(2)-In(2)-N(4) 69°8 0°6
N(2)-In(2)-c(9) 112+6 0°8
N(2)-In(2)-c(10) 110°1 0°9
N(4)-In(2)-c(9) 89-2 0°8
N(4)-In(2)-c(10) 919 0°9
€(9)-1n(2)-c(10) 1348 10
In(2)-0(1)-N(1) 1227 1°1
In(1)-0(2)-N(2) 119+7 1-1
In(1)-N(1)-0(1) 12346 1-1
In(1)-N(1)-c(3) 120°8 13

0(1)-N(1)-c(3) 1154 15
In(2)-N(2)-0(2) 120+6 11
1n(2)-N(2)-c(11) 122+2 13

0(2)-N(2)-c(11) 117°2 16
.In(1)-N(3)-c(4) 1124 13
In(1)-N(3)-C(8) 1268 14
In(2)-N(4)-c(12) 1108 14
In(2)-N(4)-c(16) 128+2 1°6

contd./
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TABLE 5h contd.

N(1)-c(3)-c(4)

N(3)-c(4)-c(3)

c(3)-c(4)-c(5)
N(2)-c(11)-c(12)
N(4)-c(12)-c(11)
c(11)-c(12)-c(13)

Pyridine ring. angles:

c(4)-N(3)-c(8)
N(3)-c(4)-c(5)
c(4)-c(5)-c(6)
c(5)-c(6)-c(7)
c(6)-c(7)-c(8)
c(7)-c(8)-N(3)

c(12)-N(4) -c(16)
N(4) -¢c(12)-c(13)
c(12)-c(13)-c(14)
c(13)-c(14)-c(15)
c(14)-c(15)-c(16)
c(15)-c(16)-N(4)

117-
119-
117-
116°
120-
117-
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b
a//F C\\c ¢ 1°340 X
c N b 1390
\\ // a 1400
a C C ¢ o
b cc 116°7
be 1240
ab 118°6
~aa 1181

The bond angles and their e.s.d.'s are given in Table 5h and
illustrate the distortions in the geometries at the two metal atoms.
Those angles showing the greatest distortions from the trigonal bipyramidal
arrangement are O-In-N(pyridine) of 152¢9 and 157'30, N-In-N (pyridine) of
69°1 and 69+8° and C-In-C of 141°4 and 134°8°, The angles for the
undistorted geometry would be 1800, 90° and 120° respectively. The
distortions in the angles involving N(3) and N(4) can be attributed to
the fact that these atoms belong to the pyridine groups. That these
groups are endeavouring to achieve the best possible compromise between
the In-N bonding, steric effects and geometric considerations is evidenced
by the angles at C(3) and C(11), which for undistorted sp2 hybridised bonds
would be 120° but which are found to be 117°5 and 116+8° respectively.
The angular distortions involving the methyl carbon atoms are due
principally to steric factors. These four atoms project above and below
the planes of the molecule and feature in several short non-bonding

contacts (see Table 5j), the increase in the angles is seen as an attempt
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to reduce the strains imposed by the crowded arrangement around the
metal atoms.

The angles at 0(1) and 0(2) are 122°7 and 119-7° respectively in
contrast to the tetrahedral value of 109'470, and the increases are most
probably due to a relieving of non-bonding contacts across the central
ring. In general the angles presented in Table 5h indicate that the
geometries of the two halves of the molecule closely resemble each other.
However whereas similar bond lengths in the halves are in good agreement,
significant differences are observed.between several corresponding angles,
so that the halves are not related by an element of symmetry.

The geometry of the benzene of crystallisation is summarised in
Table 5i. Only the length C(19)-C(20) 1'342, is appreciably shorter than
the expected value of 1°39SX. For this distance tg = 1°5; hence the
difference is not significant. All the angles are in agreement with the
expected value of 120°.

The principle ‘non-bonding intramolecular distances across the central
InONInON ring are In(1)-In(2) 4°158, 0(1)-0(2) 3+08& and N(1)-N(2) 3°51&
all of which conform to expectations based on the Van der Waal's radii.
Table 5j lists the intramolecular non-bonding distances apart from those
involving atoms of the same group or bonded to the same atom. The
existence of several contacts involving the methyl carbons was noted

earlier. The distances are such as to suggest that the methyl carbon atoms
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(CSH4NCH:NOInMe2)2 TABLE 5i

Benzene of Crystallisation: Bond Lengths (8) and Angles ®)

Distance e.s.d.
¢(17)-c(18) 1443 0°04
c(18)-c(19) 139 0°04
c(19)-c(20) 1°34 0°04

Angle e.s.d.
c(18')-c(17)-c(18) 1216 202

c(17)-¢c(18)-c(19) 119-2 2°5
c(18)-c(19)-c(20) 1223 - 246
c(19)-c(20)-c(19') 115°6 2+2

c(18') and C(19') are related to C(18) and C(19)

respectively by the 2-fold rotation axis.
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(CSH NCH: NOInMe TABLE 5j

4 2)2

0
Selected Intramolecular Non-Bonding Distances less than 4A

Distance e.s.d.
In(1)-c(8) 349 0:02 A
In(2)-c(16) 3-52 0403
0(1)-0(2) 3-08 0°02
N(1)-N(2) 3-51 0°02
c(1)-c(8) 3:86 0°03
c(2)-N(2) 354 0°02
c(2)-c(10) 3-89 0°04
c(9)-c(16) 3:80 0°03

c(10)-N(1) 377 0°03
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arrange themselves so as to equalise their non-bonding contacts.

The majority of the intermolecular non-bonding distances less than
42, Table 5k,are those involving the 'exposed'atoms, i.e. the two oxygen
and two methyl carbon atoms C(9) and C(10), and the atoms of the benzene
of crystallisation. Of the 0-C (benzene) distances the shortest is
0(1)-c(18) 3°852 which is considerably longer than the distance obtained
from the Van der Waal radii, 3°4X, effectively precluding the possibility
of any weak hydrogen bonding.

The packing arrangement is such that two molecules of benzene lie in
a sandwich arrangement with a separation of just over 72, the two
molecules being related by a centre of symmetry. The pyridine ring
comprising of N(4), C(12)-C(l6) projects towards the middle of this
'sandwich' and is approximately equidistant between the two benzene
molecules, thus accounting for the number of contacts between these atoms.
The (00l) projection, Figure 5.3, illustrates this arrangement showing
the pairs of benzene molecules lying on the two-fold rotation axis at
z =+ % c. The length of the dimer is approximately the same as the b
axis, while the width permits four molecules to lie along the a axis.
The inclination of the two halves of the molecule mentioned at the
beginning of the section allows the pyridine rings of neighbouring

molecules to fit into each other. The numbering of the benzene molecule

is indicated on Figure 5.3.
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‘For purposes of clarity not all eight asymmetric units are shown on the

The relationships between the molecule which are shown are

2 is related to 1 by a unit cell translation along b

3

4

1 by the 2. screw axis

1
| 3 by a centre of symmetry
4 by the b glide plane (dotted line)

5 by a unit cell translation along b
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(CSH4NCH:NOInMe TABLE 5k

2)2

)
Selected Intermolecular Non-Bonding Distances less than 4A

position 1 = x,y,z
position 2 = x,l+y,z
position 3 = X,y,3-z
position &4 = x,y,>+z
A B p°:§t;°“ (A-B)R  e.s.d.
c(17) c(10) 3 3°76 0°04
c(17) c(15) 4 3°59 0°03
c(18) 0o(1) 1 385 0°03
c(18) c(14) 2 3°96 0°04
c(18) c(14) 4 399 0°04
c(18) c(15) 3 3-98 0°04
c(18) c(15) 4 3°97 0°04
c(19) N(4) 2 3°94 0°03
c(19) c(9) 4 3°75 0°04
c(19) c(14) 2 3°86 0°04
c(19) c(15) 2 3°58 0°+04
c(19) c(16) 2 3°66 0°04
c(20) c(9) 4 370 0°03
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5.8, Five-Coordinate Indium

Penta-coordination has been the subject of a recent review (Muetterties
and Schunn, 1966). There are two possible geometrical arrangements, the
trigonal bipyramid and the tetragonal pyramid.and both have been found in
indium compounds. . The several approaches to the problem of deciding
between these two arrangements, such as the Gillespie-Nyholm non-bonding
repulsion considerations, lead to the conclusion that the trigonal
bypyramid is more favourable. However the difference in energy between the
two states should be small so that symmetry or steric effects could
determine the arrangement obtained.

The crystal structure of trimethylindium (Amma and Rundle, 1958)
revealed a metal atom surrounded by five methyl groups. The arrangement is
shown in the following figure.

Although two of the In-C distances are rather long they are still
sufficiently shorter than the sum of the Van der Waal's radii of indium
and methyl (4°ZX), to be indicative of an interaction over and above Van
der Waal's type forces. The geometrical arrangement adopted is the one
which would be expected, that of the trigonal bipyramid albeit somewhat
distorted, with the three methyl carbons peculiar to the céntral indium in
equatorial bositions and the two methyl carbons of neighbouring trimethyl
indium groups in apical positions.

A somewhat similar arrangement has recently been found for triphenyl
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Trimethylindium. The arrangement of carbon atoms about indium

indium (Malone and McDonald, 1969). The geometrical arrangement is again
that of a distorted trigonal bipyramid, with the three phenyl groups of
each indium atom in the equatorial positions and the apical positions
occupied by the ortho-carbon atoms of phenyl groups lying above and below

any particular unit.
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The penta-coordination of the indium atoms in these two structures
is achieved by means of certain packing arrangements.

The stereo-chemistry of indium(III) has generally been discussed in
terms of either four- or six-coordinate species. Recently there has been
considerable evidence that some at least of the addition compounds
InX. L, (X = Cl, Br, I; L = monodentate donor) involve five-coordination

372
around the metal (Adams et al., 1968). The structural determination of

tetraethylammonium pentachlorgjﬁzgii) (Brown, Einstein and Tuck, 1969)
produced the first example of a main group element with an undistorted
tetragonal pyramidal arrangement, in the species Inc152‘. That the ion
prefers the above geometry is believed to rest on two facts, the energy
difference between the two possible arrangements is small, and the
symmetrical four-fold inversion symmetry found for the cation[(CZH5)4N1+,
may well provide sufficient interionic energy to cause the anion to
prefer the tetragonal pyramidal arrangement, and so utilise a symmetry
element of the space group in which the molecule crystallises, namely P4/n.
In bistriphenylphssphinetrichloroindium(III) on the other hand, the
molecule adopts the trigonal bipyramidal arrangement (Palenik and Veidis,
1969). The three chlorine atoms lie in the equatorial positions leaving
the bulky triphenylphosphines to occupy the apices. This arrangement is
most probably pfeferred since steric repulsion effects will be smaller

than for a tetragonal pyramid. Steric considerations are probably also
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the rational for the distorted trigonal bipyramidal arrangements adopted
in the dimeric oximate, coupled with the fact that the pyridine-2-
carbaldehyde oxime ion acts as a tridentate ligand thus imposing

geometric constraints.
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APPENDIX ONE

The A and B parts of the structure factor for space group P21/n

A and B are defined as follows
bwan ]
A = LcosZn(hx + ky + 1z); B = ZsinZﬁ(hx + ky + 1z)

where the summation is made over all the equivalent positions in the space
group. The equivalent positions for P2,/n are (x,y,z; X,Y,2; 5-X,51y,5-2;
%-I-'x;;--y;%+z) when the origin of coordinates is taken at the centre of
symetry. Therefore B becomes zero, since sinf(xyz) will cancel with

sinf(X,y,z). The expression for A becomes

A = cos2u(hx + ky + 1z) + cos2n(-hx-ky-1z)

+ cos2a(-htky-lz + L) + cos2a(hx-ky+lzt bk

and since cos (angle) = cos (-angle) this reduces to

A = z{ cos2n(hxtkytlz) + cos2n(hx-kytlz+ h""z‘ﬂ)}

Adding the two .terms together gives

A = 4 cos 21:{hx+1z+ h+z+1} cosZn{ky- h+ll:+1}

For computibnal purpose this was divided into two groups

4cos2i(hxtlz )cos2rky

(1) htk+l even, A

-4sin2xn(hx+lz)sin2nky

(2) hik+l odd, A
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APPENDIX TWO

Diffractometer Geometry

The basic geometry for the reflection of an X-ray beam from a set of

crystallographic planes is summarised in the following diagram

len

h'd

The conditions for 'reflection' are

(i) the incident (§°) and reflected beams (S) and the normal to the
planes (d*) must be coplanar. (d" will bisect the angle between S and S)

(ii)_S_o must make an angle @ with the planes to satisfy the Bragg
equation.

The arrangement of the four-circle diffractometer is shown in the
figure. For the purposes of data collection the instrument normally uses
bisecting geometry which places the verticaleL-circle so as to bisect the
angle between the incident and reflected X-ray beams. From the foregoing

discussions this means that the-)L-circle must contain the normal to the
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reflecting planes d*, and the condition necessitates that w = 8. With
g_‘ constrained to lie in two mutually perpendicular planes there will
be specific values of the angles )(, and ¢, if the reflection (hkl) is to
be observed.

At high 6 angles when the ')(,-circle would tend to obstruct the
passage of the reflected beam to the detector, the instrument switches to
perpendicular geometry. In this position the vector d is perpendicular

to the 7(,-circ1e, and the condition w = 90° - §.holds.
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APPENDIX THREE

Computer Programmes

The extensive calculations necessary were carried out on the
N.U.M.A.C. I.B.M.360 and on the I.,B.M.1130 here in Durham, and I would
like to thank the staff of the Computer Unit for their help and advice.

The major programmes were written by F.R. Ahmed and I am
grateful for permission to use these programmes for my structural
solutions.

I have personally written several smaller programmes some in
collaboration with Mr. M.L. Schneider. These include a programme to
correct precession data for Lorentz and polarisation effects, one to
scale intersecting nets together average and 'sharpen' the intensities
for Patterson functions, and a programme to print structure factor

tables on the 1130 computer.
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