

http://www.dur.ac.uk
http://etheses.dur.ac.uk/9673/
 http://etheses.dur.ac.uk/9673/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

DISPLAY CONTROLLER ARCHITECTURES
'FOR COMPUTER GRAPHICS

by
D.J.. Dwyer, B.Sc.

A thesis submitted for the degree of Doctor of Philosophy
in the University of Durham, 1984

The copyright of this thesis rests with the author.
No quotation from it should be published without
his prior written consent and information derived

from it should be acknowledged.

1. FE3.9900

A8y [Py

To Jéne

Acknowledgement

I should like to thank Professor Roberta for the pleasursa and
privilege of working I’n the Department of Applied Physics during the
period in which the work to be described was carried out. I am
grateful to Dr. C. T. Spracklen for his help, supervision and
encouragement, and for his ability ‘f.o always adopt a positive attitude
to the often frustrating events of a research programme. I should also
like to thank my friends and colleagues who made my stay at Durham so
pleasant and for their advice on various technical aspects which arose

during the course of my work.
Finally, but by no means least of all, I should like to thank .my
wife for her unflagging support and tolerance during the compilation

of this thesis.

D. J. Dwyer (1984)

Display Controller Architectures for Computer Graphics
D.J. Dwyer

Abstract

The currently prevalent forms of display controller hardware are
discussed in terms of their architecture, and their relationship to
- the software which forms the graphics packages with which they are to
‘be used. New architectures are proposed utilising both conventional,
- commercially available components and special purpose Large Scale
Integrated circuits. The concept of a "hardware graphics package" is
developed and implementation details presented. The conclusions drawn
from this work are that in order to provide an appropriate environment
for the type of .interactive graphics capabilities which will form the
hub of muech future software, more emphasis must be placed on
intelligent display systems. This distributed approach requires that a
host computer provides a display controller with a high-level scene
description which is subsequently rendered to constituent polygonal
facets by the controller. Substantial benefits accrue from this

reduced dependance upon a single Central Processing element.

Contents

Chapter 1
Introduction

1.1 Introduction
1.2 The Transfer of Digital Pictures Over a Communications
Link '
1.3 The Information Content of Pictures
1.4 Coherence in Images
1.4.1 The Level of a Picture
1.4.2 Pixel Coherence
1.4.3 Scan Line Coherence
1.4.4 Frame Coherence
1.4.5 Scene Coherence

1.5 The “Svopa of the Work Described
1.6 Photographs

Chapter II
A Simple Object Description Language

2.1 Introduction

2.2 The Matrix Representation of Pictures
2.2.1 Translation

2.2,2 Change of Scale
2.2.3 Rotation

2.2.4 Projection

2.2.5 Planes and Lines

2.3 ODL Variables

2.4 The Use of ODL

2.5 Definition of a Leaf Node
2.6 A

2.7

2.8

. ddition of a Transformation Specification
The Main ODL Statements

The ODL/EDITor

2.8.1 Draw Mode

2.8.2 Transformation Mode

‘ 2.9 Implementations

\ 2.10 Diagnostics
2
2

11 Bymetary <)
.12 Photographs -
! Chapter- HI

The Sixth Programming System

1 Introduction

2 The Dictionary

3 The Compiler

.4 Stacks

5 The Sixth Programming Philosophy
6 The Kernel

.7 The Dictionary

.8 The *Sixth* Implementation Model
.9 *Sixth* Application Programming
10 SUmAERY < |

Chapter IV
General Purpose Microprocessors For Display Systems

1 Introduction

2 An Overview
3 Multi-Microprocessor Display Systems
4.3.1 Bus Structured Communications
4.3.2 Pipelining
4.3.2 Systolic Arrays

4.4 The Stare Data Analysis System

4.4.1 The Colour Stareplot
4.3 Suwmdey:

4.
4.
4

Chapter V
Bit-Slice Microprogrammed Display Processors

1 Introduction

2 Microprogramming

.3 The Durham University 2901 System

4 The Microcode Cross-Assembler ‘
5.4.1 General Cross-Assembler Principles
5.4.2 The *Sixth* Cross-Assembler
5.4.3 The Priciples of Operation of the *Sixth* Cross-

assembler

5.4.4 The Microcode Simulator

5.5 Suitable Algorithms for Microcode

5.6 SpmmaLy..

5.
5.
5
5

Chapter VI
Single Chip Display Controllers

6.1 Introduction

6.2 The Texas Instruments 9918 Video Display Processor (VDP)
6.3 The Single VDP Controller System

6.4 The Multiple VDP Controller System

6.5 Summary

6.6 The Thomson EFCIS 9365 Graphics Display Processor (GDP)
6.7 The Durham University GDP System

6.8 Programming The Graphics Display Processor

6.9 Summary

6.10 The NEC pPD7220 Graphics Display Processor (GDP)

6.11 The Durham University GDC System

6.12 Bummary - '

Chapter VI
A Special Purpose Display Controller

Introduction

The Durham University Display Processor

Use of the Self-Filling Memory

Design of a Special Purpose Display Controller
Logic Simulation (Functional)

Logic Simulation (Circuit)

Circuit Deflnltlon

Summery -

-
m\lmmbum*—‘

SN SN N SN NI N
-

Chapter VIII

Conclusions
Appendix A

A2 Object Description Language Syntax - Formal Definition
A3 *SIXTH* Syntax - Formal Definition
A5 Microcode Cross Assembler Input Syntax - Formal Definition

Appendix B
B2 Object Description Language Source Code -

1) Examples
2) Pascal
3) Fortran (prototype)

B3 The Source Code for the *Sixth* Programming System

1) Data General Nova III

2) Digital Equipment PDP11 Series
3) IBM 370

4) Motorola MC68000

B4 The Stare System Source Code
1) Stareplot Routines - Fortran
2) Stareplot Routines - Three Dimensional Plotting

B5 The Source code for the 2901 Cross-Assembler
1) Fortran (prototype)
2) *SIXTH*
3) Examples

B6 The Source code for Display Controller Systems
1) Assembler
2) *SIXTH*

B7 The Source code for the VLSI Design - GAELIC

Chapter 1

Introduction

Introduction ~ Chapter 1

Chapter |

An Introduction to Computer Graphics
1.1 Introduction

Many of the areas in computing systems, which were traditionally
handled by software, are being dominated to much greater extents by
special purpose hardware. The key to this shift in emphasis is the
isolation of those operations which are fundamental, or primitive, and
the modification of the appropriate algorithms to a form suitable for
implementation as either microcode, or as integrated components.
Examples of this process are legion in the fields of communications
and operating system design. An example of the latter is the hardware
stack employed on many computers to deal with the primitive operations
involved in subroutine linkage. This has been carried a stage further
by the Iincorporation of microcode into the GEC 4000 series
minicomputers to deal with rescheduling of processes[l]; All multi-
task operating systems contain some code which determines the order in
which individual modulés are made ‘available to the central processor.
This task is normally performed by an operating system process and is
fundamental to the operation of multi-access machines. By tailoring
the hardware in such a way that the NUCLEUS firmware is able to
control processor access, dramatic savings can be made in rescheduiing
intervals, often by one or two orders of magnitude{2]. Applications in
communications range from the simple asynchronous line controllers
which are able to compute and check parity for characters in a serial
data stream to the more recent High Level Data Link Control (HDLC)
circuits which implement the link access portion of an X.25 packet

1.1

Introduction ‘Chapter 1

switched service by providing flags, transparency, cyclic redundancy

code generation and protection etc.[3].

This work attempts to isolate similar examples of primitive
operation in the increasingly important area of computer graphics. At
a fundamental level it may be claimed that this affects all
interaction over current man-machine interfaces, be they via the
simple transactional Video Display Unit(VDU) which provides a screen
editor, or the more complicated interfaces to a Computer Aided Design
(CAD) and manufacturing (CAM) facility. It is reasonably uncontentious
to state that the major complaint of users of existing CAD/CAM
packages is the lack of speed. Clearly, if it is possible to isolate
primitive operations and modify the current algorithms to provide
hardware replacements for some sections of such packages, the
resultant increase in data throughput would benefit a large portion of

the computer using community.

Modern ideas in computer graphics have evolved over the fifteen
years which followed the initial research in the field, stimulated to
a great extent by Sutherland's work on Sketchpad in 1963[4]. Once the
basics had been mastered, the emphasis switched from graphics, as an
end in itself, towards its use as a form of communication. Any spare
computational capability available to a system could then be applied
to application related tasks such as finite element analysis, circuit

design simulation and so forth.

The need for a self consistent modelling system attached to an
interactive graphics facility evolved in the latter part of the 1960's
in the field of cartography[5]. The data bases were large and it was

1.2

Introduction Chapter 1

soon apparent that formalised techniques for manipulation of what were

essentially graphical entities were required. This work was discussed -

by Cooke[6] in 1967 and gave rise to several mapping systems such as
DIME[7] and GIMMS[8] which could be described as the earliest systems
to represent topological structures and maintain a consistent

representation of geometric networks.

At approximately the same time, proposals for work on machine
vision had been made by Roberts[9] at MIT: these resulted in the
publication, in 1964, of the first hidden line removal algerithm. At
Stanford Research Institute Baumgart[10] attempted to model the real
world in great detail as part of a robot system which tried to match
its physical position, determined by analysis of a television ca_m'era
image, to its internal "memory" of how things should be. This work has
been continued into the 1980s by Moravec[11] and resulted in attempts
to quantify the importance of parté of aﬁ image in terms of what he

called the Interest Operator.

Towards the end of the 1960s[12] and well into the present day,
the necessity for high speed rendering of images generated from a
somewhat stylised description of the three-dimensional world has come
from simulator construction programmes:- the first of which were
funded by NASA and supported by the General Electric company. The
earliest systems moved a television camera, under computer control,
over a scale model of some terrain, but this was felt to be inadequate
and more general solutions to the problem were sought. The special
markets for military and other simulators promoted the work in
expensive "real-time" display systems which can provide spectacular
effects at equally spectacular prices. The classic work of

1.3

Introduction Chapter I

Sutherland's group at the University of Utah into hidden surface
removal, shading and high speed transformations was continued
throughout the 1970s by students such as Blinn, Evans, Gouraud,
Warnock and Watkins. This school gave rise directly to the Evans and
Sutherland Computer Corporation and provided many of the personnel for

Lucas Film and other such purveyors of computer graphics expertise.

Even today, the raster graphics methods used in all but the most
expensive systems rely on the modification of a bit map or- frame
buffer, and for this reason, they usually perform better when used in
a memory mapped environment. This is because specification of all the
pixel intensities is a considerably larger task than defining the
start and end points of vectors as required for caligraphic displays.
Whilst mainframes and minicomputers were the order of the day, the
computational overheads were too large to employ such close coupled
networks. Furthermore, the high cost of memory tended to make the
construction of frame buffers and shared memory systems prohibitively

expensive.

This situation has, however, been alleviated by the emergence of
lLarge Scale Integrated(LSI) circuit technology. The cost and density
of memory have both improved: 64K dynamic Random Access Memories(RAM)
ensure that the chip counts for relatively large frame buffers are
small and the RAM cost is no longer an appreciable part of the overall
system investment. This trend is continuing and the capabilities of a
system within a particular range of expenditure are continually beirg

enhanced.

1.4

Introduction . _ Chapter 1

Although there had been some graphics workstations which
contained local intelligence in the form of a dedicated minicomputer,
the tendency towards the provision of processing power within display
and other peripherals has escalated in recent years. Again the trend
towards increased ability in microprocessing elements is also
continuing and devices such as Intel's iAPX 432[13], which are capable
of working with reasonably complicated data structures at the machine

instruction level, show much promise for the future.

Indeed there is some justification for the comment that progress
in computer graphics has marched hand-in-hand with improvements in
semiconductor technology. The requirements of the Very Large Scale
Integrated (VLSI) circuit designer[14] for techniques which can handle
seemingly unmanagable data sets and display layouts, albeit in a
stylised form, in a very short period of time to allow maximal
feedback for interaction, have undoubtably spurred research- in
graphics. Furthermore the rewards of this research have often been
improvements in the circuit design techniques which in turn gave rise
to both the technology and the requirements for further work in

graphics[15].

It would be wrong, however, to describe computer graphics
research only in these functional terms and it is impossible to
discount the effect of the aesthetic requirements of computer users as
motivation towards better and faster displays. It is fair to say that,
discounting speech synthesis/recognition systems which are, by any
definition, still in their infancy, all communications along the
man/machine interface are influenced by the work of research in
computer graphics. The increase in quality of visual display units

1.5

Introduction ' Cﬁapter I

(VDUs) and line printers (particularly the dot-matrix variety) is a
direct result of this work and the increased "intelligence" of
computer peripheral units owes much to the experience of those who

wish to communicate via pictures.

Computer graphics, then, represents synthesis; it is the
production of an Image, "real" or stylised, from a data set. In many
ways it represents the fundamental research into computers and images
as many of the techniques developed from synthesis can be used in
fields where analysis (image processing) or analysis/synthesis

(computer vision) are appropriate[16].

Finally it should be mentioned that many workers in this field
have been attracted by the aesthetic value of "digital images" per se
and the state-of-the-art owes much to the influence of artists. Many
of the algorithms used today - the "Painter's algorithm" is an
excellent example - simulate with frame buffer memory the work of an
artist on canvas. Across the Atlantic, a new breed of computer artist
is emerging using computer drawing systems for their own sake: the
brushless and canvasless studio is as much a reality as the paperless

office, perhaps more so[17].

The chief concern of the work presented here is applications of
medium resolution (of the order of 512 x 512 pixel display area)
colour raster graphics systems to pseudo-real-time computing
environments. A key consideration of any proposal made herein is cost:
the flights of fancy indulged in by certain transatlantic researchers
with requirements for multi-processor CRAY implementations will be
ignored and the descriptions will be aimed at users who have a need

1.6

Figure 1.1 A General Graphics Display Configuration

Applications Software

Host Processor |[—— Display Processor

. 1e . Display Device
.I.NIltmooBBc:_oo»_o:w Link

HOST Work Station

Introduction _ Chapter 1

fop reasonably fanl cologr graphice workstations which are not an end
in themselves, but are used to interface to some other applications
package or programme suite, for example finite elements calculation or
generation of control data for Numerical Control(NC) machines as part
of a CAD/CAM system. In this way we address what might be described as

the Presentation Level Protocol for data communications.

1.2 The Transfer of Digital Pictures Over a Communications Link

All computer graphics systems can be brokén down into several
interdependant components. A main processor, often called the "ﬁost",
is required to deal with the applications software and to provide an.
interface with the user. Figure 1.1 illustrates the generalised

configuration for digital picture generation machines.

Applications software which is being executed on the host
computer passes display instructions along a communications link to
the graphics work station. Here a display processor converts the
communicated form of the image into drawing instructions for the
display hardware. Clearly the forms these stages take are varied. At
one extreme the host and display processor are the same unit and the
communications channel is simply some form of parameter passing
through software. At the other end of the spectrum, the host computer
may be in a different country or on a different continent from the
graphics controller. In this case the communications link might be the
public switched telephone network or the International Packet
Switching Service. The display processor may be a super-minicomputer
or a sixteen bit microprocessor, or it may simply be the dumb address
logic that surrounds a particular frame buffer.

1.7

Introduction Chapter 1

A computer graphics workstation, then, comprises an applications
processor, a communications channel, a display processor and a
display. Workstations fall into two groups, those which might be
described as "loosely coupled" and those which are "closely coupled".
These somewhat qualitative terms are usually used to imply some
measuré of the bandwidth of the channel which connects the
applications intelligence with the display subsystem. A workstation
operating at a remote site over a communications link such as PSS will
have different bandwidth requirements from one which is closely
coupled to its applications software by means of a Direct Memory
Access (DMA) link to the applications processor. Clearly the
conversational protocols required of the two systems are different.
The local parallel link may feed directly into a frame buffer, the
display intelligence on such a system being merely an address counter,
The workstation connected to PSS would respond very slowly indeed if
every pixel intensity had to be transmitted serially from its host. In
such a case it is unwise not to encode the picture in some form prior
to communication. Consequently the local display processor
intelligence must be greater than was the case for the closely coupled
network. A further consideration must be the picture source. The
statistical component mixes for a Generated (artificially produced by
a computer) image and a Found (naturslly occurring as might be sampled
by a camera and digitiser) image are clearly different and the
encoding techniques which are applicable to the one form may not fit

at all well when used with the other(see Appatidix &1},

The most usual systems which this work will deal with comprise a

separate host computer, usually but not always a laboratory

1.8

| Introduction ' ‘ _ Chapter I

minicomputer co-located with and coupled to an intelligent display

processor by means of either a serial or parallel data highway.

The basic hardware restriction which the constraints described
earlier pléce upon this work is in terms of the video monitor which is
to be used.. As stated previously, cost was a significant guideline to
the course of the work undertaken, and for that reason, the normal
output peripheral assumed was the 625 line Television Standard
monitor. The horizontal and vertical synchronisation of the monitor
was adjusted to map an appropriate pixel matrix to within this frame
space. The other fundamental conétant which this choice imposes, apart
from resolution, is speed. Since standard television monitors without
a long persistance phosphor will be used, the video information must
be transferred to the monitor in approximately a 1/25th of a second.
This time is also convenient as, in any attempt to produce moving
pictures, such an interval is a suitable approximation to the

persistance of vision in the human.

If we consider a very simple monochrome display system where
each picture element (pixel) is represented by a single bit of
Black/White information - that is to say there is no Grey. Scale - then
the data which must be delivered to the monitor is:

512 x 512 = 262144 bits = 32768 bytes
The data throughput per second is then:

32768 x 25 = 819200 = 0.8 Mbytes/sec

1.9

Introduction Chapter 1

If a coiour picture consists of mixing data channels representing the
red, green and blue components of the image, and these are arranged
simply as a single bit each providing a total of only eight colburs,
the data throughput becomes 2.46 Mbytes/sec and for a more realistic
scene description of, say, eight bits per colour channel, a data
processing machine would have to maintain a 19.7 Mbyte/sec data
transfer rate. If these figures are contrasted with the Direct Memory
Access (DMA) times for a few computers of the type typically found in
small business or laboratery environments (Table 1.1)[18,19,20,21] it
will be seen that although the requirement for moving colour pictures

may exist, the technolagy to produce them may not.

1.10

Introduction Chapter 1

Table 1.1 Direct Memory Access Times for a few

typical computer‘ systems

Data General Nova III 2.5 Mbyte/sec (High Speed)

1.0 Mbyte/sec {Low Speed)
Data General Micronova 0.344 Mbyte/sec
Digital Equipment PDP11/23+ 0.08 Mbyte/sec (DRV11)

0.50 Mbyte/sec (DRV11B Single Cycle)

1.00 Mbyte/sec (DRV11B Burst Mode)

Motorola MC68000 DMA 4.00 Mbyte/sec (Using DMA chip with 10MHz

Processor)

1.11

Introduction . Chapter I

The timir;gs for the data transfers which appear in Table 1.1
indicate that without recourse to much faster computers, the data
rates alone preclude. the production of simple colour pictures
comprising only eight intensity levels with no shading information.
The Micronova and PDP 11/23 are incapable of supporting such high
information throughputs and, indeed, the Micronova is incapable of
keeping up the data traffic required to produce a simple monochrome
picture. The NOVA and the MC68000 are both capable of maintaining the
throughput but this is done by freeing the bus to the peripheral and
suspension of any processing. Thus a moving sequence would have to be
generated on mass storage, read into memory and then output. Moreover,
the whole sequence would have to exist as a single block in memory, as
the data rate for DMA transfers from the type of moving head hard
disks typically found in the environments under consideration, is
substantially lower than that which can be achieved from Random Access
Memory(RAM), 512 kbytes/sec being typical (assuming no time is taken
by the mechanical components in seeking to a particular address). This
technique places limits on the sequence length as the address counters
on many DMA controllers will only allow a certain size of data segment
to be involved in a single transfer (The word count registers on both
the Data General NOVA and the PDP 11 are sixteen bits long, and it is
required that the twos-complement of the size of the data block be
represented within these sixteen bits). A further.complication which
arises is in terms of the capacity of disk memory systems, 5.24 Mbyte
for DEC RLO1 and DGC 6045 type drives and 10.48Mbyte for DEC RLO2s.
This means that our simple monochrome moving picture could last for
only 6.39 seconds on the RLOl type drives and 12,78 seconds on the
RLO2s. The single bit per channel colour sequence could not be
produced in real time by any of the currently available laboratory

1.12

Introduction Chapter 1|

computers and, furthermore, a single disk pack could contain only 4.26
seconds of '"real-time" action. It is for this reason that the data
sets for pictures are usually stored on magnetic tape. A typical phase
encoded tape will contain 1600 bits per inch(bpi) of information and
will be approximately 2400 feet long providing about 46 Mbytes of data
or 18.69 seconds of '"real-time" motion for our simple colour picture.
The disadvantage is, however, that the data access rate is only
72kbyte/sec, the result being that each second of the recorded picture

would require a transfer time from the media of 34.1 real seconds.

If some ponsideration is given to work with the more realistic
eight bit per channel colour picture system, then it will be apparent
that a typical magnetic tape would contain only 2.34 seconds worth of
information and that each second of playback would require 237.6
seconds tape access time. The RLO2 disk would contain only 0.53
seconds of ‘'action', and it would take some 20 seconds to retrieve

this from storage.

It is clear, then, that the requirements for the production of
moving images by a simple straightforward calculation of intensities
at all addressable points in the picture are well beyond the
capabilities of modern computers of a type to which most industrial,
or educational, users might have access, and it is this which accounts
for the mania for increased processor speed and word lengths which is

predominant in certain schools of computer graphics research.

1.13

Introduction Chapter |

1.3 The Information Content of Pictures

In looking for a solution to some of the problems so far
described, it is necessary to consider carefully the fundamental
constraints upon a system. In 1948 C.E. Shannon [22] proposed a
general theory of information which provides an absolute standard of
performance for an interface and its associated communications
channel, which may be approached assymptotically but never exceeded.
He defined the capacity of the channel in terms of the bandwidth

requirement and obtained the result that:
C = W log, (1 + S/N)
Where:

C

Channel Capacity

w

Bandwidth

S/N = Signal to Noise Ratio

The Bandwidth W is a function of a parameter H (referred to as
the negentropy) and the number of messages per second. H is a
probability factor which represents the average information content

per message, and

H=- P;log,P;

where P. is the probability of the receipt of a message i. This
assumes, however, that all the probabilities are independant, which in
practice they are not. Thus the negentropy relationship must be

1.14

Introduction Chapter 1

extended to account for dependant probabilities of the form:
P(ailaj)

which represents the conditional probability of a message a, given
that the previous message was aj. The modified expression for the
information content then becomes:

H= - P(aj),P(ai|aj)logzp(ai,aj)_

This value for H may be substantially smaller than that
previously obtained, as all probabilities must be less than or equal
to 1, and to some degree it represents a measure of the redundancy of
a message source. It is this redundancy which provides the key to the

transmission of video-type signhals between data communication nodes.
1.4 Cgherence in Images

There are several identifiable methods to utilise the redundancy
inherent in pictures to reduce the effective bandwith requirements for
a computer graphics workstation, and these will be discussed in some
detail in terms of their requirements both of information transfer and
processing overheads for the local (Special Purpose) and host
computers. It is apparent that removal of redundant information can
only be achieved by the introduction of intelligence at eithér end of
a communications channel if the image is to be reconstructed correctly
from a minimal data set. It is as these encoding techniques are
refined and made more sophisticated, to remove more and more redundant
data, in an attempt to provide extra effective bandwidth, that néw

1.15

Introduction | Chapter 1

speed constraints are imposed on the system in the form of the

processing obverheads to decode this minimised data set,

It is at this point that some of the terms, defined as a result
of this work, and dsed throughout it, must be introduced. In order to
maintain some degree of compatibility with accepted terminology , the
term Model will be used to refer to some accurate, but minimised,
description of a picture. It is often useful if such a ?)odel
represénts not simply a single image, but all possible views Ef an
object which might be required by a work station. Such a mode!l is
usually known as Geometric since it must, to some extent, repfesent
the basic geometry of the relationships between objects. Typical
examples are the Constructive Solid Geometry or CSG tree[23] which
represents objects as summations of simple primitive shapes (See Fig
1.2), and the Boundary Representation or B-rep[24] technique which
considers an object as being defined in terms of a two-dimer{siohal
manifold (a plane which divides space into two parts) describiné the
'inside' and the ‘outside' of an object. Much work[25,26] is being
done on the techniques required to build scene descriptions from
existing data representations[27] and, whilst at present th’ijs is
achieved through the implementation of large software packages such as
BUILD(28] and PADL[29], some effort is involved in an attempt to adapt
some of these algorithms to hardware implementations. If this is
achieved, then geometric modellers might well be used to encode scene
descriptions for transmission to a work station and subsequent real
time display of alternative viewing angles determined by some

trajectory within the model space, and as such would fall under the

scope of the current work[30].

1.16

Introduction Cﬁapter 1

It is perhaps important to distinquish between the needs of the
user and those of the display system in relationship to an internal
model. The model should bel sufficiently flexible to allow a user full
access to all its features but should still be simple enough to allow
efficient display generation. A model which allows excellent
interaction with its data structure but requires half an hour's
processing time to display the results of such interaction is of

dubious merit. The converse argument also applies.
1.4.1 The Level of a Picture

Some quantitative measure of how well a model performs: is
something which seems to be lacking from the largely descriptive
literature which surrounds this emerging field and, therefore, the

term level has been defined to refer to a picture as:

level = Number of data points in the original picture

Number of data points after application 6f the model

It is possible, now, to talk of high-level scene descriptions in
terms of a quantifiable ratio, and it is in these terms that

subsequent descriptions will be couched.

Although this definition provides some measure of the
effectiveness of a modelling or encoding technique, the measure is
sometimes confused by "pathological” cases in a model. This is, of
course, largely the fault of a model which cannot represent all input
data. An example may be taken for the very simplest coding system
which we shall discuss, "run length encoding". For a very simple

1.17

Introduction Chapter 1

picture, say a screen of a single colour, or for the image in figure
1.3 the level of the description is high (of the order of several
1000s) but for the pathological case of a "salt and pepper" picture
(one in which the intensity changes at each pixel position) the level

will be less than 1.0 and may be as low as 0.5.

1.4.2 Pixel Coherence

The first and simplest form of reducing the data set from a
picture generating system, is analogous to differential pulse code
modulation (DPCM) in a communications environment and results in a
technique refered to as run length encoding. Essentially, the image is
differentiated upon a pixel by pixel basis and information is only
passed from the host if a change in intensity occurs in the image. In
a standard configuration, then, a host will transmit a pixel count
followed by an intensity. The system degenerates faor images which
contain a large number of edges and widely differing pixel
intensities, where the requirement that a pixel count be transmitted
would, in f.act, expand the data set which the system is attempting to
minimise. Reliance on pixel coherence, then, is only suitable in
situations where the transmitted image consists of a series of simple

shapes.

It should be noted, however, that the intelligence which is
required for this system is limited and the display controller is made
very simple: it need only be a counter which decrements the current
run length count whilst a latched intensity value is written to the
display screen. At the host node, the implementation is also simple,
although in some cases a holding (or frame) buffer might be required

1.18

Introduction o Chapter 1

to evaluate a particular pixel count value.

This simple technique has been used with some success to encode
Found images and compress them into a form suitable for storage on
disk. The compression factors are clearly data related, as indeed
must be the case with any scheme that utilises coherence in the data

to achieve its compression.
1.4.3 Scan Line Coherence

If the assumptions made above are carried further and it is
assumed that an image will not change greatly from one line to the
next then the image may be differentiated on a line by line basis -
only the changes in the pixel run length changes being transmitted as
they vary from line to line. For generated images which afe
eésentially flat and featureless this technique can represent a
considerable saving in communications bandwidth. An example of an
image to which this technique is appl'icable appeafs as figure 1l.4.
Clearly more complicated structures could be built up which comprise a
series of textured strips, and whilst the encoding for the first line
might be time consuming subsequent lines could be represented with

little or no data.

This technique of capitalising on line coherence is similar to
that used by Watkins[31]. The initial pixel line must be transmitted
in run length encoded form utilising pixel coherence within the line.
Subsequent lines which may have widely differing pixel intensities
along the line need only be encoded as the change points from line to
line.

1.19

S
=

Introduction Chapter 1

Clearly a simple implementation of a display generation processor
for such an encoding scheme is a line buffer which is filled with the

run length encoding hardware and updated on a line by line basis.
1.4.4 Frame Coherence

Once the possibility of drawing moving pictures has to be
considered, use may be made of the fact that images vary little from
frame to frame. Thus a moving sequence could be generated by
maintaining a frame buffer and updating only the parts of the images
which change on a frame by frame basis. A key point which is emerging
from this discussion is that as more sophisticated data encoding
schemes are utilised, there is a/ requirement for an increase in the
amount of memory available to the local processing unit as well as an

increase in the complexity and capability of that processor.
1.4.5 Scene Coherence

Scene coherence or, as it is sometimes known, time coherence,
applies only to descriptions of moving pictures.. If the diagram of
figure 1.5 is considered, it will be seen to represent several
snapshots from a sequence of images of a rotating cube (see also the
photographs at the end of this chapter). There is clearly no
information being passed from the host computer unless the cube
changes speed or direction. To work with a model such as this requires
a display processor which can manipulate geometric entities at speed.
Currently there are no systems which can do this with general data
constructs and very few which perform the task for specific instances.
Those which do exist tend to be confined to the simulator markets and

1.20

" Introduction | . Chapter r

are expensive. The matrix transform processors used in certain flight
simulators are capable of working with certain specific models, for
example, a type of aircraft, and must be reprogrammed to work with

other geometric entities.

B T

The scope of this work has been identified as a study of the
architectures which are availableﬂ for a computer graphics workstation
and their application to real systems. Chapter II describes a
suggested ir;terface with the user which allows the specification of
drawings for -subsequent communication with the display processors
described later. The ODL graphics compiler has been implemented on
several machines and has been used to generate all the images in this
thesis. Chapter III describes the ¥*SIXTH* programming system which. was
developed at Durham for work with small machines: it has been used to
provide both applications and display software on the Data General
NOVA, the PDP 11 and the MC68000. Chapter IV describes the use of
simple microprocessors for display applications and includes a . case
study of the SABRE data analysis facility, a loosely coupléd multi-

microprocessor graphics system. The use of microprogrammable elements

for display systems is described in Chapter V todether with- a .

description of a system built at Durham from AMD 2900 series:
components. The micro-code crosa-assémbler and simulafdr--which are
necessary for its use were written specifically for this‘.b_it-.slice_
system and they, too, are discussed in this section. Display sysfems
were built using three different special purpose LSI graphics
controllers and the configurations used are discussed in Chapter VI as
are thev techniques used to increase the local intelligence provided by

1.21

B Py

cax

Introduction _ Chapter I

the controller. This has been done by building multi-chip systems or
adding a dedicated microprocessor as appropriate. Chapter VII
discusses the possibilities of distributed processing as applied to
computer graphics and includes a design for an NMOS intelligent memory
component for use with raster graphics terminals. The results of
simulations at both the logical and electrical level are included
along with a proposed circuit layout. Chapter VIII comprises the_
conclusions of the work and offers suggestions for futher research and

investigation,

1.22

Introduction : Chépter I

Photographs

Views of a Cube built from the ODL model used to generate figure 1.5.

1.23

Chapter I

A Simple Object Description |_anguage

A Simple Object Description L_anguage l Chapter 1l

Chapter I
A Simple Object Description Language
2.1 Introduction

One of the first requirements for any system of picture
generation and subsequent transmission is the ability.for an operator
to describe exactly, and as slr\;\ply as ‘possible, the charactéristics of
the image in such a way that the description will be recognisable to
both machine and human. programmer. For this reason a new programming
language has been developed. Known as Object Description Language(ODL)
it allows a user to specify in high level terms a single picture or,
by parameterisation of variables, a set of independant but related
pictures. Each is built from primitive picture components or from pre-
existing images designed by prior ODL compilations. The language does
constitute a complete definition and is very much oriented towards the
user. It contains a high degree of redundancy in its input syntax in
order to make the necessary three-dimensional geometry som‘ewhat more
palatable, and experience of its use is that reasonably complicated
structures can be built without recourse to digitisation of an input
image. This is because a great deal of flexibility in terms of co-
ordinates and geometric components is maintained. It .is possible to
work in different co-ordinate systems for different parts of an image
and combine the constituent geo‘metric objects at the end of the
compilation. This means that it is unnecessary for the designer to
work with the whole pictorial datastructure and that components may be

designed, modified and deleted independantly of the entire picture.

2.1

A Simple Object Description Languagé Chapter 11

all points in Euclidean three-dimensional (E-3) space to their own

positions.
r \
1000
I= 0100
0010
0001
and
I'x} rx‘
Y| =tY
z z
O O

It is possible to modify the I matrix by the insertion of appropriate

values to form a transformation matrix T.
2.2.1 Translation

The whole co-ordinate system for an object can be moved through a
distance t such that the origin (0,0,0) becomes the point (Tx,Ty,Tz).
That is to say that the base vector t is "added" to éll the points
which define an object. This can be achieved by 'pre-multipl"ying the

simple column vector by the T matrix:

2.3

A Simple Object Description Lanquéqe ' Chapter 11

Assuming w = 1 then we have
1 0 0 o 1 0 0 Tx
0 1 o0 o 0 1 0 Ty
0O 0 1 o 0 0 1 T=z
Tx Ty Tz 1 0 0 0 1
Postmultiplication Premultiplication

2.2.2 Change of Scale

A set of scale factors Sx,Sy,S5z, may be applied to the
generalised point (x,y,z) to move it to the point (Sx.x,Sy.y,5z.z) by

premultiplication of the column vector by the T matrix

. 3
Sx 0 0 O
0 Sy 0 ©O
0 0 S5z O
0 0 0o 1

e

2.2.3 Rotation

A point becomes transformed by the appropriate direction cosine
vectors so that to rotate a point about theZ axis by an angle r the

T matrix wil be

[Cos(r) Sin(r) © 0
Sin{r) Cos(r) O 0

0 0 1 0

0 0 0 IJ

2.4

A Simple Object Description Language Chapter I

about the Y axis:

i \
Cos{r) 0 -Si(r) O

0 1 0 0

Sin(r) 0 Cos(r) 0

1] 0 0 1

and about the)! “axis

1 o 0 0
0 Cos(r) Sin{fr) 0

-Sin{r) Cos{r) O

=]

0 0 1

Transformations of the above type are "added" by matrix multiplication
but it is important that the order of this "addition" is considered as
such cumulative transformations are constructed in a non-commutative

way.
2.2.4 Projection

Translations such as those described above are used first of all
to move the points from the actual co-ordinate space to that of the
observer; a scaling is then applied to the picture components as a
function of their Z co-ordinates. In this way parts of an object

furthest away from the abserver will seem smaller.

2.5

A Simple Object Description Language Chépter i

2.2.5 Planes and Lines
The above discussion is quite general and there is no need for
the objects to be transformed to be broken down into a series of

points. The coefficients used in the definition of a three-dimensional

plane may also be transformed in a similar way.

A plane is defined by the relationship

aX +bY+cZ+d =0

X
~

(a,b,c,d)

The plane may be transformed by the sequence

(;’B’E’a) ra b [o4 d ':8',')',0',("
efgh

ijkl

\ mnopJ

2.6

A Simple Object Description Language Chaptei' nn

many algorithmic lanquages and takes the faorm:

count := 1;

i:= count * 2 ;

scalefactor := 2.0;

charsize := charsize * scalefactor;
origin := 0.0,0.0,0.0;

basevector := 0.5,0.5,0.5;

start := basevector + origin;

topline := origin start;

Type checking is reasonably loose and ODL will attempt to coerce
variables as requested by the user. In this way, a point may consist
of three reals, a vector of two points or one point and three reals
etc. The operators currently supported are +,%-,/,. and x. These have
the normal arithmetic effects on integer and real data types but not.
on point and vectors where + implies vector addition and -
subtraction. * and / are used to modifyva vector by a scalar and . and

X provide some type of vector manipulation. Hence:
scalar := pvecl . pvec2;

provides the dot product and
vector := pvecl x pvec2?;

the cross product.

Internally, variables are maintained as a series of linked list

2.8

R e et T TP S N e .

A

\ Header — four characters

. Link Address of Parent

" oo D

Link Address of Chidren

E i -hidren |
(f ti Matri

|

grqngu?ttgu% l%rhee Oncgci(e 'f’

| w |
List of sub—pictures ‘

S - -

f
‘;

L.lst of pr|m|t|ves 4

L 3ha K Tk i K K 2, T Y B 3 G e ezl

Figure 2.1 ODL/Fdit data format

A Simple Object Description Language Chapter II

record types which grow into a dynamic storage area which is quite

distinct from that used by ODL to maintain its graphics Information.
2.4 The Use of ODL

The following paragraphs provide some indications as to the use
of the object description language to generate pictorial database
relationships. It should be emphasised that this does not constitute
an ODL reference manual (for which see [31]). The internal
datastructure is very simple, being a two way linked list, each node
comprising a four character header for identification, .a pointer to -a
transformation matrix which will be applied to the elements which make
up an entry, and a pointer to a parent node. The base, or root, node
is the main definition and may not be associated with a
transformation. Leaf nodes (those at the highest{_@é@}level) must
consist of a series of primitive subpictures, described later. If a
comparison between this data structure (see Figure 2.1) and that used
in the SIXTH programming system (see Chapter III) is made, it will be
found that there is a great deal of similarity and, indeed, a SIXTH

implementation has been constructed which capitalises on this fact.

The purpose of ODL is to build the linked list from a series of
reasonably user-friendly instruction codes in exactly the same way
that the SIXTH dictionary is constructed from the input words. The
programme then enables some degree of manipulation of the list in
order to produce the desired object description in two- or three-
dimensional space. The whole gamut of ODL/EDIT facilities available to
a user cannot be described here; consequently only those considered

the most important will be discussed.

2.9

A Simple Object Description Language : Chapter I

2.5 Definition of a lLeaf Nodo

All pictures are constructed from simple primitives, in two or
three dimensions, by means of a begin . . . end directive. In order to
be used, a node must be named with a header of between one and four
ASCII characters. This places a limit on the maximum picture
complexity but has proven to be quite adequate so far. The syntax for

node initialisation is:
begin CUBE;
or
begin Fred;
The node is terminated by an end directive of the form:
end CUBE;
or
end;
It should be noted that the first form of this construct will
force the closure of a specific node whilst the second will simply
close an open node at the current lexical level. It is to be

considered bad practice to use the second form but it does exist

within the syntax as a shorthand.

2.10

A Simple Object Description Language | Chapter Il

Within this definition may exist the objects which are to be
considered primitive to the current ODL compilation. These elements
may consist of wvery basic\\builbin”definitions such as lines,
rectangles, circles, most simple circuit diagram elements etc. or may
be the output from previous ODL compila‘tions which may be restored to
the data structure by means of the load instruction. The corollary of

this is that a root node may be saved for later inclusion as a

primitive by means of the save command.
2.6 Addition of a Transformation Specification

A named picture node may be associated with a transformation
matrix by one of several transformation statements. Simple translation
is implicit, in so far as all instancing of a predefined node includes
a location in two- or three-space to which the new instance will be
moved. Other transformations are added by means of special statements

such as:

scale
rotate

project

The ieffect of these is simply to replace the values in the T
matrix such that a new transformation is added to that maintained for
a given node. In this way, a series of '‘named subblocks or subpictures
can be constructed and used to form a single main definition, one
which exists at lexical level zero and has no prescribed name; The

whole picture is named by means of the picture statement which takes

2.11

A Simple Object Description Language Chapter 0

the form:
picture Fig 1.3;
or
picture test;
a_nd is completed with a finishy command.
2.7 The Main ODL Statements

begin

The begin statement opens a new node in the data structure and
assigns a name to it by placing up to four characters into its header,
Subsequent statements are added to this node until a specific end
statement closes all opened child nodes or until an unlabelled end

occurs at the correct lexical level to close the subpicture block.

end
The statement exists in two forms end NAME; which closes all
subblocks up to and including NAME or the simple form end; which

closes the current subpicture.

3dmove
Positions the drawing cursor in three-dimensional space, it takes

the form:

3dmove x,y,z; 3dmove point;

2.12

Figure 2.2 ODL/EDIT Output

e N
e
m
3
]
|
|
|

m

A Simple Object Description Lanquage Chaptor 1l

and is useful for manipulation of objects defined on a two-dimensiohal
net in three-dimensional space. Hence a flat group BOX might be used

to form the front and rear faces of a cube by means of the statements:

3dmove origin;

comment Place ‘the current point at the origin;
draw BOX origin;

comment Add the flat BOX group to the picture ;
3dmove 0.0,0.0,1.0;
draw BOX 0.0,0.0;

comment Add the rear face at a geater Z distance;

an example is shown in fitjure 2.2,
line
The line primitive simply adds a single line to the current two-

dimensional subpicture, its syntax is:
line xl,yl,xz,yz;

and draws a line from the co-ordinates (xl,yl) to (xz,yz). A similar

facility exists in three-dimensions:
3dline X19Y19Z19%1Y 9%} 3dline vector;

rectangle

Two co-ordinates are provided and a rectangle is drawn with its
bottom left corner at the first co-ordinate and its tohﬁright at the
gecond. For example:

2.13

A Simple Object Description Language Chapter II

rectangle X11Y19%90Y 93 rectangle point dx,dy;

grid
In order that the user may specify device and system independant
co-ordinates to describe an object, the grid statement is provided to

specify screen partitions. It takes the form:
grid x,y;
or
grid x,y,z;

The effect of this is to divide the total available plotting area into
x units in the 'x' direction, y units in the 'y' direction and, for a

three dimensional scene, z units in the 'z' direction.

colour
The colour statement specifies the pen number in which subsequent

additions to a picture will be made. It has the syntax:

colour RED;
colour BLUE;

etc.

Currently only red, green, blue and black are supported as named
colours: to specify an alternative, an integer number is provided
which is used in a device dependant way to specify subsequent colours.

2.14

A Simple Object Description Language Chapter 11

text
Characters may be added to the diagram by the input statements:
text 0.0,0.0 %A text statement%;
text x,y %Hello%;
text point %A Picture Label%;
This places the characters enclosed in the string specification
onto the diagram at the location given by x,y. The current character

set is used.

font
The font directive is used either to alter the currently selected

or default character set. It is a construct of the form:

font salj

font cset;

where cset is a code used to select a new typeface from amongst those

listed in appendix A2,

csize

The statement
csize factor;

is used to alter the default character height and width. The factor

refers to a scaling value relative to the default size. If the factor

is greater than 1.0 then the characters are increased in size if less

2.15

13

A Simple Object Description Languége Chapter I

they are reduced. The size is reset to the default by the call
csize 1.0;

The aspect ratio (height to width) is fixed by the selection of the

font and will be varied in accordance with the scale factor.
draw
draw x,y subpicture; draw point pict;

causes the specified subpicture to be drawn (instanced) at an x,y
positiqn. Like many of the transformation class, this implicit.
transiation is applied at the current z co-ordinate. To ,instanée a
subpicture at a specified position in three-space there is a

requirement for a 3dmove to precede the draw.

scale
A previously defined block or data structure node can be
instanced with a scaling factor being placed in the appropriate-

locations of its transformation matrix by the statement:
scale subpicture point,factor;

For example, to double the size of a simple nand gate and locate it at

the origin, the ODL system must be commanded:

scale 7400 0.0,0.0,2.0;
or

2.16

A Simple Object Description Language Chapter I

point origin;

real scalefactor;

origin = 0.0 0.0 0.0;
scalefactor := 2.0;

scale 7400 origin scalefactor;

rotate

A group may be rotated about any of the three axes by some

ammount specified in degrees.

<{axis>rotate subpicture point,factor;

Again, an implicit two-dimensional translation is applied. The order

in which rotations are "added" to the transformation matrix is that

in

which the input statements are parsed (it will be recalled that

"addition" of rotations is not commutative) hence:

Xrotate CUBE 0.0,0.0,45.0;

Yrotate CUBE 0.0,0.0,45.0;

will produce different results from

Yrotate CUBE 0.0,0.0,45.0;

Xrotate CUBE 0.0,0.0,45.0;

repeat
Multiple instances of objects may be created without

requirement that they be named by means of the statement:

repeat subgroup Xx,y,z,count,interval;

2.17

the

A Simple Object Description Language

Chapter II

which will repeat the specified subgroup count times starting at the

position x,y and at a separation of interval units. Repetition occurs

in the x direction only but this is not a

limitation as the rotate

specifiers may be applied to produce repetition along any axis. For

example:

point origin;
integer count;
real interval rightangle;
origin :é 0.0 0.0 0.0;
_rigﬁtangle = 90.0;
count := 5;
interval := 0.2;
begin XAXI;
repeat DISC origin,count,interval;
~end XA‘XI;
begin YAXI;

begin Int0;

Zrotate XAXI origin rightangle;

end. IntD;

repeat Int0 origin,count,interval;
end YAXI;
begin ZAXI;

begin Intl;

Yrotate YAXI origin rightangle;

end Intl;
repeat Intl origin count interval;
end ZAXI;
draw ZAXI origin;

2.18

Figure 2.

Il
00
00
I

3 ODL/EDIT Output

0L 00000000
0(00000000

OM 00000000
(

A Simple Object Description Language Chapter I

will produce a three-dimensional volume array of dises. The internal
definitions Int0 and Intl never really appear and illustrates the
technique of nesting subpictures. The subsequent ODL/Edit output from
the above program forms figure 2.3. The final subpicture has been
modified by means of the project statement to make the diagram easier

to follow.
delete

The delete operator simply removes a node from the data structure
by writing 0Os into the pointers in its entry in the linked list. Its
syntax is:

delete subpicture;

and it is most useful in conjunction with the load statement which

adds other primitives to the system.

save/load

The instruction

save subpicture filename;

writes the data structure from the specified node downwards into the

file pointed to by filename. It can be restored by the statement

load filename;

Subsequently nodes can be removed with delete or altered with the

2.19

A Simple Object Description Language : Chapter II

modify statement which acts exactly like begin but does not create a

new node, it simply adds to an existing one, hence

modify 7400;
line 0.0,0.0,0.2,0.2;

end 7400;

depth

The lexical level of the input language is reflected in the data
structure which is passed to the ODL/EDIT phase. When a search is made
of the structure, to find an element, it normally occurs at lexical
level 0 - the main definition. This default can be altered by

specifying a particular lexical depth by means of the input syntax
depth factor;
The depth statement has the same effect as the ODL/EDIT phase 'W' key.

plotter

The normal outcome of a successful ODL compilation is the
entrance of the ODL/EDIT mode. The plotter directive is used for a
device which has no interactive cursor addressing capability, it

causes the picture to be drawn, but the EDIT is never commenced.

project
The default for the three-dimensional representations is to draw
an orthographic projection; perspective can be added by means of the

syntax:

2.20

A Simple Object Description Language . Chapter I

project subgroup point,zmax,viewpoint;

where zmax is the maximum visible 'z' co-ordinate and viewpoint
represents the distance from the screen to the viewer typically these

values will be

viewpoint := 2.0;
zmax = INFINITY;

The pespective projection must be applied after all other
transformations, and will, therefore, appear, in the normal course of

events, as the only statement in a main definition.

picture/finish

All ODL compilations must begin with the statement
picture name;

which sets up the data structure and names the root node. This is done
for consistency as the name of the root is never directly referred to
in any ODL programme. The finish; statement closes the data structure
and outputs the resultant picture to the currently selected graphics
device, and, if the compilation was successful, no errors having been

logged, the ODL/EDIT suite is started.

221

A Simple Object Description Language Chapter I

2.8 The ODL/EDITor

The interactive cursor-addressed editor is entered either as the
result of a successful language compilation or as the default mode for
the ODL programme; in which case, the user is prompted for a filename
which points to a previously saved datastructure to be edited. The
names of all objects loaded during this phase are printed on the
display and echoed to the current listing file. The editor works in

two distinct segments, a transformation mode and a draw mode.
2.8.1 Draw Mode

The default mode is draw. In this configuration the user is
required to place the cursor at some point on a diagram and enter a

single key stroke command. The effects of which are listed here.

A - Again

Instances a currently defined subpicture at another part of the
data structure. The user applies an implicit translation by pointing
first to the object to be copied and then to the location where the

copy will be made.

B - Box
Effectively is a rectangle statement; two points, the lower left
and upper right corners, are indicated and the appropriate rectangle

is added to the picture.

2,22

A Simple Object Description Language ' | Chapter 11

C - Colour
An existing object may have its colour altered by indicating the
particular subpicture instance to be coloured and then indicating a

colour from the menu provided in the left hand margin of the screen.

D - Dotted
A line is drawn from the previous cursor position to that
indicated at the time the 'D' command was issued. The line type is

dotted.

E - Erase Rules

In order to provide for construction lines and to enable a wuser
to define parts of a picture with reasonable accuracy without recourse
to the ODL compiler, lines may be added to the picture as part of a

special subblock 'RULE' which may be later removed with the E command.

F - Font
The user is prompted for a character string which corresponds to
a character set code as defined for an argument to the ODL font

statement.

G - Greek Text

This command is now redundant but is maintained for compatibility
with versions 1 and 2 of ODL/EDIT. It adds a character string to the
drawing using the Greek character set. Its function has been subsumed

by the font directive.

H. - Character Size

The user is prompted for a real number which is passed to the ODL

2.23

A Simple Object Description Language Chapter 1

csize statement, modifying the scale at which subsequent characters

will be drawn.

L - Add a Line
A single solid line is added to the picture starting at the
previous cursor position and ending at that indicated when the line

command was used.

M - Mopve Current Cursor Paosition
The x,y co-ordinates for subsequent additions to the main picture
are set equal to those generated by the digitised input from the

display device.

P - Place a Named Object

The indicated cursor position becomes the origin of a new
instance for a named object. In this way a subpicture which does not
yet exist in the main definition can be added to the display by
reference to its name entry within the header of the appropriate node

in the data structure.

Q - Change Pen Colour

A colour is selected from the menu provided at the left hand side
of the display screen, all lines and objects which are added to the
main definition from this point onwards will be in the colour
specified. The user is reminded of the currently selected colour by

means of a small arrow within the menu space.

2.24

A Simple Object Description Language Chapter II

R - Refresh the Screen

During the course of an ODL/EDIT the display screen of certain
terminals may become cluttered by the prompts for the edit commands.
The screen is redrawn with only the segments appropriate to the

current structure of the main definition being made visible.

S - Set Screen Square/Unsquare ’

Normally the display is set to a 1l:1 x:y aspect ratio, this may

be altered by means of the 'S' directive.

T - Add Text
A text string supplied by the user is placed at the x,y position
indicated in the current typeface with characters of the currently

selected size.

W - Set Search Depth -
Analogous to the ODL depth statement, this command prompts for an
integer which is used to select the initial lexical level from which

the datastructure will be searched by a transformation mode command.

X - Add Construction Lines
S-ubsequent lines are added to the RWLE subblock which is later to

be removed from the main definition by the 'E' command.

Y - Link to Language Compiler

Some editing requirements may not be satisfied by ODL/EDIT cursor
addressing mode or may require several key strokes and menu
selections. For these it was found that a link back to the ODL
lanquage compiler proved most efficient. The 'Y' command supports this

2.25

A Simple Object Description Language Chapter 11

feature by prompting the user for characters which are passed to the

compiler on receipt of an End-of-File character.

Z - End the Draw Mode
The ODL/EDITor is placed into its second configuration -

transformation mode.

2.8.2 Transformation Mode

In this configuration the editor becomes menu driven, options
being selected by a cursor hit on one of the transformation menus. The
initial options are : SAVE, TRANSFORM, DELETE, PLOT, STOP or DRAW;

their effects are described in the following paragraphs.

SAVE

The user will be prompted for a filename into which the current
state of the graphics data structures will be saved. These may be
subsequently loaded via an ODL load directive. The data structures
corresponding to the internal representations of variables and
pointers are not retained. This means that parameterized models must
he arranged and then saved but it does free the ODL programmer from
the tedious task of trying to remember if a variable has been used in

a previously saved picture or not.

DELETE

Starting at the current lexical level the editor attempts to
match a geometric component to the x,y co-ordinate indicated by the
user. If it is unable to do so the operator is prompted for another

lexical level to try, typically the next lowest.

2.26

A Simple Object Description Lanquage Chapter 11

STOP
The ODL/Edit run is terminated but, just in case, the current

state of the graphics tree is written to a temporary file PICTUREp.

DRAW
The program returns to DRAW mode which has: been described in

section 2.8.1

TRANSFORM

A single item will have its associated transformation matrix
‘rewritten\by modifications in an interactive way, different changes
being added to the T matrix in the order in which they are specified.
Once an element has been picked for transformation the menu is
rewritten to enable selection of either MOVE,SCALE,ROTATE or DONE. 'i'he

effects of each are as follows:

MOVE

The user is asked to point to the current position of the element
to translate and then to the new position. The resultant relative
translation vector is added to the transformation matrix for the
specified picture element. An instance of the object with this new
transformation matrix is drawn on the currently selected output

device.

SCALE

The wuser is prompted for a real number which represents a scale
factor by which all the dimensions of a subpicture will be
transformed. Scaling is applied in all three dimensions equally, it is

not at present possible to "stretch" objects interactively.

2.27

A Simple Object Description Language Chapter I

are to be discussed later, are incapable of providing the compléte--
range of ODL functions for such reasons as lack of memory, éhbrtage of
mass- storage etc. For these smaller machines a version of the compiler
but with no interactive edit facility has been written in SIXTH (See
Chapter III): it operates by interpreting SIXTH definitions which are
the names of ODL commands. Thus the begin operative is used to
generate a new SIXTH definition which is tagged with the name of the
subpicture. The draw command simply executes these dictionary
definitions to produce the resultant picture as output. The words MbVE |
and DRAW must be repatched for each output device such that they
remove an x and y value from the stack and place a drawing beam or pen
in the appropriate place. Listings of the source code for some of
these implementations appear, along with a complete definition of the
command syntax, in the appendix which is associated with this chapter.
The general form of dialogue for the operation of an ODL

implementation is as follows:

2.29

A Siriple Cljject Description Language : ‘ Chapter 11

RUN ODL

Executioﬁ Begins
Compile or Edit? <Edit>: ¢
User p APM4 has access to ODL3, Usaée Logged!
I am about to load the standard gate definitions

If you wish to use your own they should be in a file called DEVS

Object Data Base Built

Graphic Compiler Durham University Compilation Begins

Source File Name: odleg
Language File => odl.eg

Listing File : -odLlist
*x%% Compiling Picture: Figure 1.4 *%*%
¥% Compilation Terminated *%

*** No Errors Detected ***

Terminate or Draw? <Draw>:

2.10 Diagnostics

In order to aid an operator define the correct data structure,
ODL provides several helpful diagnostic features. Firstly the text
output from each compilation is written to a listing file complete
with any error messages which may have been generated by the compiler.

2.30

A Simple Object Description Language Chapter 11

An example of such a listing file is shown in listing 1. This is the
text output from ODL which was used to generate the diagram for figure
1.5. This provides a complete record of the successful compilation and
any subsequent edit. The system attempts to write to the listing file
suitable command statements which produce the effect of a particular
edit directive. For example if the B or draw box command is used to
add a rectangle to the datastructure, ODL will write a suitable set of
begin, end, rectangle and draw statements to the listing file. The
special statement debug may also be used to determine what the
current state of the entire ODL datastructure is. It causes all the
linked lists to be dumped, along with their associated data to a file

or device.

In common with conventional compilers a set of error messages
exists which are coded numerically. These may be written to the
listing device along with the error code immediately after an

offending input line. Their meanings are as follows:

001 REAL and INTEGER Collision
002 POINT and INTEGER Collision
003 VECTOR and INTEGER Collision
004 REAL and POINT Collision

005 REAL and VECTOR Collision

006 POINT and VECTOR Collision

The above messaqes refer to the attempt to define a variable using the

name of an already existing data type.

007 INTEGER Declared Twice

2.31

A Simple Object Description Language Chapter I1 '

008 REAL Declared Twice
009 POINT Declared Twice

010 VECTOR Declared Twice

The above messages refer to an attempt to define two variables of the

same type with the same name.

011 REAL Number or Variable Expected

012 INTEGER Number or Variable Expected

The parser is expecting a particular type of token in accordance with

the syntax and this is not present.

013 Unknown REAL Operator Type
014 Unknown INTEGER Operator Type
015 Invalid POINT Operator

016 Invalid VECTOR Operator

017 Illegal REAL Assignment

018 Illegal INTEGER Assignment

019 Illegal POINT Assignment

020 Illegal VECTOR Assignment

An error has occured in an assignment statement either as the result
of an attempt to assign incompatible types or to use an invalid or
undefined operator, for example cross product of a scalar.

021 Undefined Symbol in Input Stream

The parser is unable to recognise the right-hand side of an assignment

2.32

A Simple Object Description Language Chapter I

022 Wndefined Group

An attempt has been made to reference a subpicture which does not

exist.

023 No Text! Can't Compile Nothing!

A text statement has been found with no associated text string

024 What Colour is That?

A named colour has been referenced but is unknown.

101 File Does Not Exist
102 File is not permitted READ
103 File is not permitted WRITE

104 Segmentation Error!!!!!

The above are messages which occur as the result of invalid or illegal

file assignments.

201 Invalid Transformation Matrix
202 Invalid Subpicture Format

203 Attempt to delete inbuilt subpicture or symbol

The above errors are the result of attempts to corrupt the data base,

for example attempting to delete 'root' or 'MENU'

999 No Picture Statement

2,33

A Simple Object Description Language Chapter II -

2.11

The experience of the use of ODL has been that it provides a
largely machine independant definition for. a series of simple objects
in a form which is easy to deal with. The problems of much of the co-
ordinate geometry have been removed from the user's shoulders and
placed where they belong, in the depths of the diéplay system. The
input syntax contains a high degree of redundancy to enable human
interaction with the model whilst the compiled data structure
represents a compact tree-like machine readable definition of a real
object. This tree structure is co-incidentally of great use when it
comes to our initial aim of transferring the image from one part of a
system to dnother. Since its redundancy is low the tree is useful as
it stands but by means of testing the visibility of various branches,
the communication overhead can be reduced further for closely coupled
systems where only a single image from an object is transferred to the
display device at one time, or even for remote workstations where a

single image is to be transmitted.

As stated previously, there is a requirement for some form of
intelligence to translate from the model of an image to the actual
pixel values which make it up and it is to this, now, that-the
attention of this work will turn. The ultimate aim is to show that, by
careful consideration of architectures for what will be called display
processors, a high-level structure like ODL can be used to generate
data sets which may be subsequently rendered to a set of coherent
images without the need for a programmer to define the pixel intensity
values or the real set of vectors which make up a required picture. It
is sufficient to work with ODL transformations of a simpler model, the

2.34

A Simple Object Description Language Chapter 11

resultant tree structure being interpreted by some set of hardware or

firmware at the display.

2.35

MTS/LINE

Compiled At NUMAC
Filestatus

Mode=Compile,Text,Abort

Statement
Fiqure 1.4

Version 3.00
->o0dl.2g

picture Figure 1.4

S
3

Rk Compiling Picture

Graphic Compiler Ourham University Cept of Applied Physics
Line

Ltisting of Source File

Page=
Mode

1 Listing 1!

.
v
.
»
.
*

3838 3t 3¢ o

eI I S 3 3t 3¢ 36 3% 3% 3¢

¥ L 3F & L3 % C I 3t 16 3¢ 3%

3 3 3¢ 3¢ t o3t 3¢t 3¢ g ¢ 3¢ 3¢
3¢ o 3¢ 3% td 3 ¢ 3t O 3¢ v 3¢ ¢

¢ A S S 12 3¢ 3 O .3 ¢ It 3¢ 3 o
3¢ Ko K F 3% e L3t 3O 3¢ 3 3 0

CL 4 Ste 3F et v O 3¢ 3t 3¢ 32
#foZa 3¢ = m 3¢ - L sy % O ¢ ¢ ki3 %0
O 3 L 3F 34 03¢ dFoc - 3% 3% 3¢
FLOL 3 A 3t 3w 3 L el] 3 3¢ 3 30
OW AMIE SF [3+t CcOst Jt+ 3 v 3 ¢ e
¥ acd 3w 3¢ 3¢ O 3% 3¢ @O F 3¢ 03 ewn

¢ WO Jroe 3¢ 3 EHIE 3% OA ¢ 3¢ O3 3¢
#MWO A3 et 3 i @ o3 #FeC> I J¢ a3t w0
3¢ LAy 3t 3% 23 QA 3¢ ¢ 3 X3t "
WL O0L IO rm 3% 3 03% -0 3F i 3¢ 3
3 ¢ IV EI et 3 3¢ 0 03¢ oL 3% -0 - 3
et (S I XL S e+ o+ 3% 3¢ D O3 33

¢ QCOoOd tm 3¢ % nk 3% It J¢ D+ 3 3% 1o

QL O3t > 3¢ 3¢ 0 © 3 « T 3t - O 03¢ et
L 03 3 3¢ o 3 ¢ C & ¢ O3t o

ki B = B R SEO 3% Ol 3 to 3 b
QoL rO ¢ tn Cie 0 3 et 3 o

T @D LdE RO e it 3 0 Ui 3+ + 4 3t a4 ' 3¢+
#U_ 0O+ 3% (o0 13 L Je X ¢ 3¢ ER3 3%
W It 3 o OR L WG R 1 oo 3 O3t ke
WL OOWw 3 L3t 3 ot LR A 4 & 3 na 3 .- * o
WO VO e E>C3 L) 3 3¢ 3 e % cC
O ¥ 3 0 3% 3= [UR 2 $mo3 st 3 B3t N P |
¥ CH O3 ot Semt B9 3L d w ON ot 3
oACHIE 3 C-H3E 36 C3 iU RS ¢ 03¢ 0 o
L+ O 3t Q3¢ 30 M Lo 3 30 3t 3o
o/l L 3 e ESS ¢ L3t 0 3¢ & w3t S 3
OO 30 O3 I 03 3¢ 0 3t LT Mo R Eal ¥ 0
VO3 VLUK 30 Wt R A o ¥ [Ev R o
e L=+ 3 3% 3% R gl B v £ 3¢ 00 (] 3 C
0 A 3 S gt ¥ 3% LIGE o =G e N3G - Q@ 3o
3¢ AT O 3 -3¢ 3 A3 3% 0 3 4+ T 3fee | & * 0
o 3 SFCLd ¥ oQst - 3T L1 SR it Q
3FO-C IO A3t 3¢ O % 0L 3¢ 3 O NiFr 0 —~ 3%
¥ COALE 35t 36 LI I ¥ 3 % HF>oNe fal 3o
o +3: 3% Pt em et WIE 3t 3¢ 1 v | 9 emrea 3 L
LT L 32 0N3: Jee Lot Ly 3 @30 0] [JR] LR o4
FONMOC 30 FOL eI O 3k L el P @ NN 3%
WL OO 3 CDHAHO e S el 3¢ [P | . -
HOOQEY Lo >DC e OOy 3% et U3 eeea n
woLaed vl L N ot et COQ O OUEAMOO = >
3 VAUV 3t D00 A I N30 ¢ ee 0t CHIIIDL e cON

ol I+ K S “ ¥ = V) - (U3 O e OONAHLIN 00O o0 3
HCOOI I Xaoito WO NI nat o M-ty QO sardt o}
WOOOFYE StoodCH T Jen POV ONFOONCEHYE LI Q c
FOCax I HC WO 3¢ o i — 3t v OVEO ¢ ¢eOm ¢0O

W NN 3 AN A BON NI ODE O e M LOO 0O >
0% @i doedHc SfoLtoDitoccit O3 I L3 o 0]
L@ VO LA O FZPNOCHEVNI O O 0 O E
IFLE-CI3 ¢33+ O H 3t 3% e WNSEZ QS o o F oL L

3rh O %3¢ 35 L en it 33 3 0OoO} OO s QO™ Y%~ Q
3% 3 LI <% e C 3 :- o o ol o =
3t 3 9F e AE e mie It NDOIE nn Yo n o

3 W de £ MMES: W O3 3¢ 3¢ : soce] £, @0 e

638 e SE 36 3F 35 3F 3 4 O D38 48 98 3 L 4% 36 3 3¢ i(- 0wonw o33 o DO <

'~ LT (o] (TRY XY et Q@ s

+ + 00 <+ C L od aLLn an +
c [L LcC Mee C +YCyC 000 +00~HLC
[J] 1} Yoo ~ 0 Lo +HEHY w00
E E ~NC+E L£L3E o e cCCcottLtLE
£ E [ORL NS N = oO0E el £ O0O0OHANMTMIBMNE
o (o] »OoOw®O - O [o] LLLOHOOQOOO
(8] (8] La>o0 L>0 L0000V it teiou

sfunmmmmm\o\o ~o~o~or~oomooooawmmmmm¢m~ot~r~v~~mc~o-—awm¢m~or~co
.—cr-c-h—u-h—cv-d-—c—-‘-—n—u—c-—u—h—c—n—a—-‘-—n—tNNNNNNNNN

(=} o [=]=Y=T) ooo OO0 [=I=]oleletelooleYte)

WU AT AL YA YU ALY T I IR W W I N uﬁ-nm.&w_v&u'wuuuu

Compiled At NUMAC

Graphic Compiler Ourham University Oept of Appliad Physics

=MTS/LINE

Filestatus

CompileyTexty,Abort

Mode

Version 3,00

Page=
Mode

Statament

Line #

.-
463
%
Lo
(] id
o3
v o
oo
T
m
£c
(SR]
o
@
£
+

EADE D LD AP RS PP LS EP I E S 2t L Rt e Pt ey

ize and define the current point as the or
2's Wa W ale e wie wle v'e wle v wle e wis Wle wls e Vo Ve als s Wl A Ve Ve Ve ais Ve wle dle ate 4's Ve wie wls Wle ol e Wi Ws 20 als als e s s Ve e Ve e ale wle ol wle

PEPAPLPEPAP LS LS LD L PP LA PP EPEDOPLP A SEP LS5t P PPt 1324

Now we set up the default caharcter set,

3

A
‘e
~o
“~

so fars:

“FACES”

wio ale wls als ola
SRR

s o s nin s wio Wl e abs sl we vs sl o vs Vo Wo wle o

ol
P a os o S e SR ARSI RIS SRASISI SIS SR

v

o]
3
+
Q
=
T4 30
|8
(4}
£
+
[J]
o

wo
b
-

it

cube
o Wls ol W ols

3 O+
3¢ F 0V
3 E
[l I N
o3~ 0
L3 Qv
u 3 e
.a ,f;.').):. Eo
C" .;:_ .d.’.l.“.
HPPes 30 §E
OhCw+ 3 3fF
HOD O3 003
emllH N BCH
- OO ¢
g £ %35 3
No wLOoi3:rowit
>0 205
Y ONO+ 3¢
C Ervdet X 3% 38 3638
covno e
MO U
(=
Q
E
E
[o]
(§]

.
36 35 3¢ 3¢

0w 3

(Ul < BENE 4

0 Ccniz

I GAY

O X3t

o M3t

o 3f

C B> 3¢

AL 3%

+ w3t

T £33t

+ O+

t O 3%

L+t

1= 13

0 0%

o .03

D 3

e L 4

3¢ O+ 0

R I

L EGIH

e QO3

b= IO R T/ I S W

0 4 w03

O’ 3t

3 VL4

@ % O

L $¥O0E 3¢

[+ C ol

£ 3t+ 0 ®3F

BT L S

i N e T

¢ 3F0noost

s« L FCOUTI

» 6 3o I

X ¥ VOO

ooQn (8] n 3N O
o+~ 00 T @ J3eetd 3¢
P CHY et C WS LCI
COLCL M3 = 3t o304
ot mm . — 330N
L0010 ouw ¥ o3
A | S n 3% oML
|8 oN @ Ly LCI
n O L sedea X 3 3 N 4L
ZHAPOnNn O 20 ¥ 3¢
UIMC L Les Own I VLOS
weHO MmO u AV O3
XLl OOW e @ QTS
VO L LxOOWUML 3¢ O @3¢
¢ ¥ 30 a0
LtoooowLoot 3t L 008
JCcCccCcCcI> I b LSE
OF'r-ri-A4 QO+ Ot 3¢ 3¢
et E Xt <t oo 3t 37 35 44 3%

OCUVDUTVUVOVOO 11U

VMM M+« U+ o+
cOC
(LS)]

comm

end
comm

3638 38 3638 35 3

dnown 3

tocCcn 3¢

oo av -

%2 LI 3

oL oo -

¥ Voo 3

Xomom 3t

tco 3

e i 3

¢ OG0 re

0> o 3

St HP L 3t

MO 3¢

WwE Ow® 3t

% 00T #

to3nm - 3¢

st AN

E) I S Sy 13

¢ MNAL "

EH 0 I R S <1

I Yo ¢

¥C o

00Oy 3%

DAl 2s S GRS

e ¥4+ 1.0 3

@ 3 MOy 3

~ LS 3¢

(o] * @ [I X

[o itQa o 3¢

(1] ‘- e 0 L£LC 3%

+ o [T +3 e+ 3%

K = . v F@® e 3 I

[a)] o © L 0O

- o N~ Jed o3 3

(8 - N —0r 3%

- O 3

donm 3¢

c c c 3t L

o - - ox+yA %

(] h o Foon i

o el - GO 3t

| & | L e+ 33t

Q [o] O 1 + -l

* o > 3¢

w us W 3ot

¢ 5] m m 3x ~A0)3

pus J o D oL ac>3t

[(& L FZvEY I

3 et 3%

(] L] Q0 HOVVUT O

+ + ¥ Lo Cce

ceff vefl eaff IF— QMO IE

~+ N Ny 3 Eid

0 Ovncd O=ne) O ot 35 3¢ 3 35 3¢ 3¢
DLADLNDLM™M
Od> UM UOd o+
s 2 o X o
C U LOCc Lo
el -t e E
0 U v TE
Q Cceo CcO CO
£ 0o 00 oL

333

s

o <o o wio

—J-J-J-J-*eroﬂ-da*

SREPLP P ARAPLPLDLP I P2

ouble rotation is to create

o4 o'
Ol

o,
b

e for this d _
ate non-existant definition called Int

AP APAPEPLP TIPS 2P LD AP RSP PPt DI Ds e PP

e wie ale wle fe e wle Wi sl as Vo als Al 3ie Ao wle Vo Vs v ots e o o Jo

P-4

3-A
oo
LRy
cE
fog &
oo
[V og
+C
o~
[J]
Lo
on | i L]
-
<L 3% 3¢ 3¢
w
o4
c
cae
o E
OE
® 0
nu

-l:-l-b.kv'-'-s‘v

oo
SRR ISR SRR N NI R ARSI RN SS SRR AR ISR

3

LS AP AP P AY

ogtput willse
ww v wis oo wie Vs als wle Ve vle Wls e W ofs Vs vhe wte e i ole wis e ol Vo Ve

SRIIIRSRIATINR IR

en the nesting level becomes

e o v uls e wle ale 4’0 e ol oo ale we

RAS LR AP P LD XD LPAPEH 2

sted into the data structure

1ls ne

only ocurr uwh

o ats als sle is whs o st oL,
PR AR R AR CRRS

which

e
-~
s
p23

OO0 O ANM N OO0 NO ANM N O M 00000 ONOANMINO~D0000MD0ONOOOOO
NG I TG G PTG G DTN NN N NN DN N NN O 0 0 0 D0 OO0 O OB D WD OO MM~

ot

Hrrdrtrtietrtrd el 1 ¥ O

Ol O™ O™ O

LR A R R R R R R R R R E T TR R RS R R TR Y R R T A SN TIE PR, AT S e S

fmaIA utETtuo T3 U 230 JY

I pus

utbeq

f1y3E utbegq
$lv3y pud

e3Bl0JUYX

oy

I pue®
smaTAn UTETJO 3gN) ©1BIO0JAL
S 03Ul utbeq

>

c+

3
L]
gl

I
&
A uiltuo IgNnH ©3ELAC
s

fmaTA uUTbTJu0 (QFUl
1]

O M F N O~ O
I N Y N Sy

O 4 O N

R X R R

Compiled At NUMAC

of Applied Physics

Mode

Compiler Ourham University Dept

Graphic

=MTS/LINE

Filestatus

Version 3.00

Page

Compile,Text,Abprt

Line #

Mode

Statement

Hnuwun o
n n e
. nz [
. 5 - 1l TR T AP LS
e n°s ﬁ o K
33 3333383t T 0~ TR R Ry
3{-& 35: i 'g 'E:' -.!' [o] :f H 4+ n [S 3
< < k1 his 3 3¢ >3] 3¢ o 3%
$0 ¥ ¥ LA B %o+ "noa n e 3
ﬁ: 3 %232 3 ¥co N+ I oL 4t
tJ I v R 13 n J n LU -
#m % foca i L ovey 3% HnZ0o U dten &
'(- LYl 4 - m L] }'_. :_ LYl . .
P L B G N N
e of foce ¥ foa i Woou N g 3%
* b 14 3 4] 3 H 3% [L7 S | n K (I} "
o ¥ #oc tow 3 WO oOn %D g
#Cc % o> # ‘e % nwo n oo
e % HeAm 3 tro 3 TR S TR Hip 3*
¥_o% X cE % #0033 noa N o0
o . ’ 3 3L 4 o " M 3% .
%o : Homn rwo B HZ> 0 Hoe o
-:f | & 2:— L | =4 ')3' 3¢ (1] r 1 - " +¢ 3¢
e 3¢ 3¢t O0O0 % -5(5:'00 3¢ Neie=t N Lo %
1) Y . .] 4 'Y .
% i -: e -Ei- it v 3¢ 1] mo i 3t 3 " 3
VMV 3 HFOVCH ¢ N2 3¢ N3 Nt 00 3
¥ CI ot St TR O3 N oL 3 e~ 3
3+ O 03¢ 3t 4+ & <% 3F U e 3¢ 22U i 3t EQV 3¢
$LA% FOLL *0 it o OUHN 3O s
)R g L1 S | 3¢ Lo R od o R e A G 1 3 N
%lﬂf #oaw gt nnSn Eea ¥
#Facy e v St 3¢ BLH Hned@ll 3% e~ 3
racdy ¥ .& ¢ ¢ ‘ : 4
Poor el r pRRLE MTSE baed g
S sy Ly 2y ke M v w
Yoo % L 4 % oait HV 3O - 4 0d &
» - ¥ OE H03e 4 St nw= " N ofEow 4%
3¢ 3 0o P P I S P L 1] Xond N 3 2
o o ok Hece i 7 ook nEoen EV. ok
- - tOoetr M @ 3 H o= NoOGOH 3% ow &
> > % ME AL $F g 3 " con 4mo 3
FOCHE Fed xoawm NH>NZH 3 Caes
.- e QA oA 3 Pecoci TR R R i
c 3 C 3 H#CnFE H$e-3004 P PR N en 3¢ x 3t
" o " @ O % St e Gee QM 32 W ol v C o
o O A DM e D3 w1 3% N N0 et tak e Rl B
- > W > R T 3 HEOCHeewmn FCcCol I oMl 3. o
C L FOOH FVoOoOMFUWIn Htwno I nz N fooci
o o F O 3 A0 W0 3t HD¥ e N oON HOLMY
c c % COFOHANC o H-NOH +eud NHLOUN €5
~N A Mm oA : ocoHQ{ + ¢ 1O HOCEHR © N 4l Ho&EHN
@ 0 O e 3 €C Hoo | % oCH# o NWw o Ho0mi
e R D A 3% 3¢ [Re o NUR D WHOEON e I 0 3T L3
O % 0§ Fon :OUUE~ol Hafk TS nwosh Feabd
PN« X2 DL 3 e 3 - 3 P
o o tE I CATEHRO O ¢ HOIUE O HAOHI 3 oA
LB WEoo *8 ¥ %3 ma*;ono fgga* o2 n ;mn # 0L
Sem - 3 b T 1 3 Se 122 MG) eadl C4 3
NH £ M £ 0N O0DLDRIHNMaNOLOE O noaahcie o
+ Oompy + Oeepdq - MO V) I CECTILOUINLC.O L) Nt NIl o~
ctaod cLm 3+ 3¢ + O WwuIwncCst + e o 1t NeAll M 3 Q4+ 3%
MO >4+ 3 VN U PO @ N W N <AT A GO 3
cy c+ 3t oMt £ 03t VNELCCBIE OV I € 0 L3 LA e
el MM aC MM XZUNaFOQATH I3 3T A Eoad NGl O 03w
NHd ¥ med FOH e E o R $#=Z083 n ERE o
s gg;:g 23;****S******L;;;g*****HEEE"""""Z*****J"
© <o — oy,
:’lx.ﬂ mx;nc.n O g+ [V X o4 + MUV g <
wc c c <C ol o w)
rC > c o0 co o c =To o 5
- o E AE € o & 3E o+
v oo T E (0,13 1] o VE mnE - C
co co co 0o o @ co Lo oo
[] [Ua] (VRV} no L8] 0 o0 ©TO U

OrANMNINON-ONOHNMY $ 3+ TNV VOO0 OVODVAOANNNANINMFNOI0ONN0 0O
WO ODVOVODONTTNOOC NN TOOOROOOOODOOOOO0OO0O00OOOOO0O O
L Rl L L e R e e L D L L e L R e e R R I]

O AN A O NN et et O O A O Omird O co oo

WA T T A U W M TN I W N A R I P N IR PR W TN W B LN TR T8 W R0 TR NS PN TR BN I P 08 I

http://1kHi-n-.3ftt.-4t.lt

.
’

%Fig 1.5 Scene CoherenceY

finish;
ion Terminated

AR AP HxY

Vo o wto ols

T ale oo e
Py -+

o oo v
ps-A -4

rrors Detected

-
[t

No

A Simple (l)ject Description Language Chabtgr Inm

Photographs

Output from The ODL/EDIT suite

2.36

List of Photographs for this Chapter

Photographs

(a) ODL/EDIT in DRAW Mode

(b) Ditto

(c) ODL/EDIT in Transformation Mode following Rotation by 90 degrees

(d) ODL/EDIT in Transformation Mode following Delete operation

Chapter 1T

The *SDXTH* Programming System

'l'he*SD(ﬂ-FngrummgSystem Chapter Il

Chapter III
The *SIXTH* Programming System

3.1 Introduction

The application of FORTH[33], a threaded interpretive language,
to a wide variety of process control and instrumentation systems has
-promoted a great deal of interest amongst prospective users. FORTH was

developed in the late 1960's by C.H. Moaoare énd was initially qged tjo

| control radio teleséopes_used- for the measurement of spectral line
densifies at the NARO 6bServatory ét Kitt Peak. ‘-Its advantages as a
vsmall machine-independent language have been discussed by’rﬁ'an'y authors
[34,35,36,371.

A FORTH implementation comprises a high level interpreter, a call
processor, a dictionary and two stacks. The interpreter provides the
man-machine interface which essentially "looks-up™ words, typed at the
keyboard, in the dictionary. The call processor then executes code
which is pointed to by the dictionary entries. The claims meade for

FORTH are:
(1) It provides easy access to the machine hardware.

(2) The code produced is highly compact, and complex functions
such as editors and assemblers are easily implemented on‘

machines with little memory.

(3) The speed of execution is fast and, indeed, approaches that
of assembler; the only overhead belng that introduced by the

call processor,

3.1

TEST CRLF TITLE CRLE

Length/Precedence

#First Characters
of Defn Name

Link Address

Parity Check Word|

JSR @ Here+n

RTS

Address of call

4 0
] E
S T

Link Address

Parity Check Word|

JSR @ Here+4

JSR @ Here+4

JSR @ Heret2

RTS

Address CRLF

Address TITLE

Figure 3.1 The #SIXTH# Dictionary

The *SIXTH* Programming System Chapter HI

(4) Machine transportability is practical as CODE statementd are

grouped together.

SIXTH is a second iteration and a considerable improvement upon
FORTH based on the precepts that the cost of memory is appreciably
lower than it was in the 1960'5 and that speed and flexibility are
always welcome. The newer lanquage was written specifically with the
curreAnt work in mind. It performs in all ways, with the exception of
memory conservation, more efficiently than FORTH. This latest version
allows full access to the machine at two levels. An in-line assembler
is provided which enables direct control, by the programmer, of the
signals which are propagated along the system mother board and access
to the Real Time Disk Operating System (RDOS) utility routine vector
tables via .SYSTEM calls. At a high level, FORTH and #*SIXTH* look very
similar, but several major changes have been made at machine level

which allow faster and more flexible use of the available resources.
3.2 The Dictionary

The biggest change, undoubtably, is to the dictionary structure
as the #*SIXTH®* system. provides a directly executable dictionary. That
is to say that the entries consist of machine instructions. A typical
entry is shown in Figure 3.1 and comprises a header, a series of code
statements and a series of addresses.

The header is composed of a length/precedence word (See
Compiler), a four byte name for the definition, a link to the address
of the previous entry.and a one word parity check across the
definition. The sequence of events which occurs when the Kernel Iis

3.2

¢103

A |

1

oul] © 369

1944ng woua4

31N03X3

y3i4dng

*

A8|q woud
Ja4ng poay

4

Aydw3
dojing sig

poojoy

doo 1IYJNIINI OY} JO UOOY oyl E'E 9.nbiy

ONId

aNOM

1403S

The *SIXTH* Programming System Chapter Il

first loaded from disk is shown in the flow-chart of Figure 3.2.
During execution the interpreter will start at the end of the
dictionary and compare an input keyword, from a terminal or mass
storage device, with this final entry. Words are deemed to be the
same if both the length and the first four letters are the same. If no
match is found with the entry pointed to by DL, the interpreter
transfers its attention to the next entry by following the link in the
header. Should the start of the dictionary be reached and no match
found then an error message is printed and the next word examined.

Once the dictionary entry has been isolated, control is passed to
the code which is at an offset of link address + 4 and execution
continues. This implies generality as all entries are treated in the
same manner. The effects of this change in structure are far reaching,
it is now possible to include in-line assembler in definitions, as the
mnemonics are simply executed at compile time to insert appropriate
code at the current dictionary position. Since the mnemonics are
executed they may call WORD to retrieve tokens from the input stream
and need not have their operands preceding the name.

This new dictionary structure accounts for much of the
improvement gained by this total rewrite of the FORTH-like programming
system. Although the structure of the source code can be said to be
similar to FORTH's the object modules produced are unique and are as
described above. The call processor which interpreted FORTH's address
lists has been rendered irrelevant by the executable code format: when
a definition is referenced, the address of the first executable
instruction of a definition is simply placed in the programme counter.
The effect of this is a considerable increase in speed and the ability
to include assembler statements in a colon definition. The fundamental
difference then is that in execution, FORTH was a simple interpreter,

3.3

99U3pe93id

»Sixtha Finite Staote Machine Table

Machine State

0 1 2
Execute | Compile| Compile
Execute | Execute| Compile
Execute | Execute| Execute

Figure 3.3

The *SIXTH* Programming System Chapter IlI

SIXTH ig a true compiler.
3.3 The Compiler

When in compile mode the interpreter, having located the word via
a dictionary search, passes control to the section of code responsible
for extending the dictionary. Therefore the information that is
available about a definition is the start address of the code that it
represents. A relative indirect jump to subroutine instruction (JSR@)
is stored in the next free dictionary location and the address just
found is placed in a compile table. When a compilation sequence is
terminated by execution of the ';' compiler directive, this table is
searched for unique entries which are copied into dictionary space.
The duplicated entries are only copied to the dictionary once, and all
the appropriate jump to subroutine instructions are modified to point
to this single location. With reference to Figqure 3.3, consider the

compilation of:
: TEST DUP DUP MOV 1 0 DUP ;
The sequence of events which occurs is:

(1) = is executed. It inecrements the machine state and removes the
word TEST from the buffer, inserting an appropriate header into

the dictionary.

(2) DUP is found, its precedence is less then the machine state so a
JSR@ instruction is added to the dictionary and its address is
stored in a compile table.

3.a

dd

" 3111l sseippy

4780 sseppy

Sl

¢+edeH @ Asr

¥+00H @ uSP

Kiouonoiq »HLXIS* oyl 7' eunbig

isvia

—0

y+0JoH © NSP .

lpiom Mooy9 A3jiog

889.pPY MU|]

I L

S
e T
e

AN

‘4740 31LIL 4780 1S3l

The *SIXTH* Programming System Chapter I

(3) DUP is found again so operation (2) is repeated.

(4) MOV is found, its precedence is one so it is executed. It removes
the tokens 1 and 0 from the input buffer and assembles a MOV 1,0
instruction (which copies the contents of accumulator one to

accumulator zero) into the next available dictionary location.

(5) DUP is found and operation (2) is repeated.

(6) ; is found. Its precedence is one so it is executed. It decrements
the machine state and relocates the addresses stored in the
compile table. The relative branch between a particular JSR@ and
its address is computed and the JSR@ instruction patched

appropriately.

This introduces a level of optimisation into the system since, if a
definition occurs more than once, the address is added to the
dictionary once only and the relevant JSR@s modified to point to the
same location as per Figure 3.4.

This second pass of the compiler does increase the compilation
time over the FORTH single pass address list generating system:
however, this is usually unimportant and the process is still fast,
typically thirty seconds to compile 10k of dictionary space. The
compiler also computes parity across the definition and this is
installed into the header. The keyword PARITY may then be included in
a definition to cause a parity check across each word called. This
provides a high degree of security from the single bit errors typical
of memory faults. Since there is no need for the dictionary to be

3.5

The *SDXTH* Programming System Chapter HI

contiguous the compiler can be instructed to ignore bad locations.
This PARITY option decreases speed but is useful in some control
applications.

Once again a key improvement is provided by the new language. The
nature of much of the work performed in an environment which deals
with computer graphics is that high-level data structures must be
utilised to produce machine level primitives. In the past there has
been no way that a single language could provide this facility and
graphics packages written in FORTRAN have invariably had low-level
sections coded in assembler. The only break made with the traditional
approach to interactive graphics was the coding of a system in
APL[40,41] which, whilst of technical interest, proved in many ways,
to have more problems at the device level than the more conventional
systems, and, indeed, performance considerations in respect of the
data base management facilities required of an interactive system,
forced Jimenez and Navalen to recode in PL/1. *SIXTH* was written with
these requirements in mind and provides the perfect blend of high-
level control and data structures with the flexibility and inherent

efficiency associated with machine level instructions.

3.4 Stacks

Like FORTH, #*SIXTH* is an entirely stack oriented language in
that all parameters are passed to the operational stack before
procedures are called. It is the responsibility of the programmer to
achieve correct ordering and manipulation of items on this stack.

. In addition the system maintains two other stacks: the DO...LOOP
stack and the machine stack. The DO..LOOP stack is used to hold loop
variables and aids access to the correct counter values in nested

3.6

The *SDXTH* Programming System Chapter I

LOOPs. Typical FORTH implementations place these counters ‘on the
machine stack interspersed with the definition return addi‘esses, and
this imposes a considerable overhead vis-a-vis retrieval of the
correct loop .paramreters during execution of a definition. The
inclusion of the extra stack ensures that *SIXTH* systems are somewhat
more robust than FORTH ones as it is harder to corrupt both return
addresses and loop counters since these are maintained in separate
areas of memory. A further consequence of this additional stack is
that a *SIXTH*® }loop executes considerably faster than the equivalent
FORTH one. This is not only because the call processor has been
abandoned, but is also due to the much neater handling of LOOP

variables and parameters.

3.5 The *SIXTH* Programming Philosophy

As mentioned above, #®*SIXTH* is primarily a stack based language,
a natural result of which is the adoption of the Reverse Polish
notation for operators. Thus a typical *SIXTH#* sequence, at a low-

level of machine control, takes the form:
<{data> <address> <operator>

As the level of the lanquage increases and the dictionary is extended,
new words being defined in terms of old, this notation becomes more
noticeable in constructs such as ...IF...ELSE...THEN. Another problem
is introduced by the fact that comments (....) are not defined until
half way down the dictionary. Later implementations include a
modification to the BUFFER routine to eradicate this but the major

3.7

The *SIXTH* Programming System Chapter III

failing of both FORTH and #*SIXTH#* is still the unreadability of the
code. The system provides a very fast efficient utility for debugging
and programming interface hardware, and whilst *SIXTH* programmes are
very simple to write, they can be difficult to maintain. The only
solution to this remains the ability of the programmer to code as
intelligibly as possible and to bprovide as many helpful comments as
possible. The experience of its use has been that the rewards to be
gleaned from the high degree of machine control and speed of
programming do outweigh the difficulties of programme maintenance, and
once the basic dictionary has been defined, the control structures for
applications programmes are flexible enough not to force users to
adopt the programming tricks often associated with other, more

conventional languages.

As described previously the *SIXTH* system, whilst originally
implemented on the Data General Nova III minicomputer, has been
transported quite successfully to a number of other machines,
including the Digital Equipment PDP 11-34, the Motorola MC6809 and
MCé68000 microprocessars and an IBM 370! Each of these implementations
contains a machine-dependent Kernel written in the appropriate
assembler code which is used to provide the very basic dictionary
manipulation functions. A file of #*SIXTH®* source code is then written
in terms of these basic functions. The first part of the Dictionary
which this source represents, is again machine-dependant and is used
to produce the structured control flow statements (*SIXTH* COULD NOT
use a GOTO) which form the basis of the #*SIXTH®* programmer's armoury.
Thereafter the dictionaries for all the machines are identical and
application programmes written for one may be transferred to the
others. When in use the system "boot-straps" itself from some mass

3.8

The *SIXTH* Programming System ' Chapter I

storage device, the kernel being loaded into memory (or maintained in

PROM) and the dictionary source file interpreted to build the machine

executable form of itself in RAM,

3.6 The Kernel

listing of the assembler code used to produce the Data General

Nova IIl and PDP-11 series versions of the programming utility appear

in appendix B-3: a brief description of the most important routines

written is included here.

BITE

BYTE

DIv

The location ST is used as a byte pointer and the contents of
the least significant byte of accumulator zero, if it is not
a backspace, is moved to the appropriate RAM byte. The next
memory byte is set to zero and the pointer ST is incremented.
The main use of this routine is in the BUFFER procedure which

handles the terminal/file input.

The location GT is used as a byte pointer and the contents of
the indicated memory location are moved to accumulator zero.

GT is then auto-incremented.

Is used to simulate the Data General Hardware divide. The
thirty-two bit number in ACO and ACl is divided by the
gsixteen bit unsigned number in AC2, Bit 0 of ACD is the high-
order bit of the dividend and bit 15 of ACl is the low-order

bit. The quotient and remainder are sixteen-bit unsigned

3.9

The *SIXTH* Programming System Chapter I

MUL

NUMBER

PUSH

POP

numbers and are placed in ACl1l and ACO, respectively. The

carry bit is reset and AC2 is unchanged.

The MUL routine simulates the hardware multiply. The sixteen
bit unsigned number in ACl is multiplied by the sixteen bit
unsigned number in AC2 to yield a thirty-two bit intermediate
result. The sixteen bit number in ACOD is added to this to
produce the final thirty-two bit result. The carry bit is
unchanged. Because the result is thirty-two bits wide,

overflow cannot occur.

A series of characters pointed to by the word beginning
pointer WB and the word end pointer WE is considered as a
number in the current base. If it can be converted into a
valid number its value is moved to the operational stack,

otherwise an error is flagged.

et

The value of the zero accumulator is placed on the

operational stack.

The value on the top of the operational stack is copied into

the zero accumulator.

3.10

The *SIXTH* Programming System Chapter Il

STK
The contents of the zero accumulator are placed upon the
DO...LOOP stack.

UNST
The top of the DO...LOOP stack is copied into the zero
accumulator.

LENGTH

| The length of the current word (WB - WE) is computed and the

result returned in accumulator one.

FIND
The word which has been isolated from the input stream by the
WORD routine is "looked-up" in the dictionary. If it is found
its entry start address is left on the stack, otherwise a
zero is returned. |

TYPE
An address and a number are removed from the operational
stack. The contents of memory, starting at the address, are
then echoed, as characters, to the terminal until the
appropriate number have been transmitted.

QUESTION

The current word is copied to the terminal as a string

suffixed by a question mark.

The *SIXTH* Programming System ' Chapter III

BUFFER
A series of characters is taken from the current I/O channel
and loaded into an area of memory. Backspaces are used to
decrement the memory pointer and the sequence ends with a

carriage return.

WORD
Scans the input buffer from the current position of WE until
a space is found. WB is set to this address and the scan
continues. When the next space is found_WE is set, in this

way an input word is isolated in the buffer.

CRLF
Carriage return and line-feed are communicated to the

terminal.

EXECUTE
The precedence of the currently isolated dictionary word is
éompared ag_ai'nst{ the machine STATE. If the state Is less than
or equal to this precedence value, the definition is executed
by placing its link address + &4 into the programme counter.
If the state is greater than the precedence the address of
the definition is added to the compile table. In this way,

compilation becomes merely a special case of execute.

UFLOW
The stack pointers are checked for underflow or overflow. If

a pointer is incorrectly loaded, an error is indicated and

3.12

The *SIXTH* Programming System ‘Chapter Il

RESTART

HEAD

recovery attempted.

The RELOAD flag is reset and the stack pointers set to their
initial values. The system STATE is set to zero, and the

title prompt is issued to the terminal.

Reads the first four characters from the currently active
word and, padding with spaces, writes them into the
dictionary along with the length/precedence entry. The link

address to the last definition is added after this header.

Starts the compile mode of operation. The STATE is
incremented and a call made to HEAD. An op-code is stored
after the link address: when the definition is executed, this
will cause the current return address to be placed onto the

machine stack.

Returns from compile mode by decrementing the state, checking
for UFLOW and adding a sequence of code to the end of the
e.xecutable part of the definition. These statements cause the
retrieval of the return address from the stack and subsequent
loading of its value into the programme counter. The compile
table is then searched and the addresses added to the
dictionary. The relative .indirect jump to subroutine calls

3.13

The *SIXTH* Programming System Chapter M

are patched appropriately for each new address.

CONSTANT

INTEGER

A number is removed from the stack, a header placed into the
dictionary and a call put in to code which will move the
value back onto the stack when the definition is subsequently

executed.

Is used to put in a call to code which will move the value of
the next memory word found in the dictionary onto the stack

and skip around that word during execution.

VARIABLE

court

Is just like INTEGER but moves the address of the location

skipped to the operational stack.

Writes the character contained in the least significant byte
of accumulator zero to the console via a .SYSTEM call..
These calls are made by saving the current value of the
programme counter as a return address in zero page, and
executing a vectored jump through the system dispat.ch table.
The appropriate operating system code is executed at the top

of memory and return made to *SIXTH#® through zero page.

3.14

The *SDXTH* Programming System Chapter [II

DOS
Resets the file system and attemps to execute a return to the
operating system.

CIN
Reads a character via the operating system.

OPEN
Opens the dictionary file on channel 0.

XAPPEND
Calls the RDOS append command. It is used later in the
dictionary to provide append access to files.

XCLOSE
provides access to the system close file routine.

SPQOS
Sets the file pointers for the file which is opened on the
CHANNEL channel.

READ

Reads a line from the currently selected channel and places

it in BUFFER space.

3.15

The *SIXTH* Programming System Chapter HI

WRITE
Places characters from the buffer into the file opened on the
currently selected channel number.

RELOAD
Reads lines from the file on the current input stream and
passes them to the interpret loop until the RELOAD flag is
reset by a RESTART or an %ENDFILE.

FRESET
Closes all the currently opened files.

XDELETE
Allows a file to be deleted from an RDQOS directory.

XCREATE
Creates a random access file in the current RDOS directory.

XSWAP
Allows another RDOS save-file to be loaded on top of #*SIXTH#®
and the programming system to be swapped to disk. In this way
RDOS utilities may be utilised from *SIXTHH*,

IMMEDIATE

Increments the value of the precedence byte for the current

dictionary entry.

3.16

The *SIXTH* Programming System Chapter Il

aw
An address is removed from the operational stack and. is
replaced by the contents of the memory location to which it
points.

!
An address is removed from the operational stack, and a data
value also. The data value is then stored at the address.

+
Two numbers are removed from the stack and replaced by their
sum.

TOKEN

A word is removed from the input stream and it is searched
for in the dictionary. If it is found it is executed as a
constant, otherwise it is passed to NUMBER and an attempt

made to convert it to a valid number in the current base.

3.7 The Dictionary

A listing of the *SIXTH* source code required to recompile the
dictionary is also included as part of appendix B3. The first section
is used to associate dictionary names with the internal variables used
by the assembler part of the system. A store byte (!B) routine is
included with the base conversion routines, which simply change the
value of the radix (RDX) used by the NUMBER procedure. The in-line
assembler follows these and is arranged as a series of IMVMEDIATE

3.17

The *SIXTH* Programming System Chapter III

definitions which are executed at compile time and cause a series of
octal constants, equivalent to the machine instructions they
represent, to be written into the dictionary at the current pointer
(DP) position. Since the exact make-up of these sixteen bit words
cannot be determined from a single definition word, a set of maodifiers
are used to provide skip functions etc.: these update a previously
written instruction word.

Following the assembler, which provides the complete range of

Data General Nova-line instructions, are the stack manipulation words:

DROP
The top element on the stack is simply removed.

SWAP
The positions of the top two items on the operational stack
are interchanged.

OVER
The second item on the stack is duplicated on the top of the
op-stack.

ROT

The first three items on the operational stack are rotated,
the third item taking up the first position, and the other

two being pushed down one position.

Following the stack manipulation routines are the procedure call
modifiers which allow calls to be made to IMMEDIATE routines for
inclusion in other compiler directive definitions. The flow control

3.18

The *SIXTH* Programming System Chapter Il

words appear next: each of these is IMMEDIATE and places code in the
dictionary to produce the desired results. This means that such
definitions must be used within a colon compilation sequence. Their

use is as follows:

{condition> IF < words executed if condition is TRUE >

ELSE < words executed if condition is FALSE> THEN ...

<high parameter> <low parameter> DO < words used by the loop >
LOQOP

BEGIN < words used in infinite loop > END

The flow of control in any of these statements may be modified by the

words :

STOP
Halt the current DO..LOOP, clean up the stack for the loop-
counters and continue with the definition.

NEXT
Start the next iteration of a DO..LOQOP.

ABORT

Clean up the stacks and abort execution to the end of the

current definition.

As the dictionary continues, ARRAYs and STRINGs are defined and

3.19

The *SIXTH* Programming System Chapter I

the dictionary maintenance routines added. These are not described in
detail here as their actual mode of operation is somewhat convoluted:
a portion of memory is reserved, values copied to it and the
dictionary definition then built around the data. Code is inserted
into the definition which will cause the address of the data space and
the number of data elements available to be moved to the stack. The
data is built into dictionary space after the end of the definiton so
there is no need to patch a jump around it. Furthermore STRINGs may be
included not only as single defintions, but as part of larger ones,

for example:

: TEST DIA 0 60 7 > IF STRING % Out of Range!!% SAY BEEP
ELSE STRING % Data OK ->% SAY THEN ;

This is a result of the fact that the string data is placed after the
executable portion of the dictionary. The code for STRING is further
complicated by the fact that when it is executed the length of the
compile table, and hence the address list is unknown. FORGET is used
to free memory space by moving both the current dictionary pointer
(DP) and the end of dictionary pointer (DL) back to a previous link
address. WHAT lists the names, precedences and addresses of all
entries that have not been protected by the KEEP command. It simply
compares the address of a definition with the value of .K (a variable
set by KEEP) and scans the dictionary headers of all those definitions
which occur after the "keep point". LIST displays the memory map for a
particular definition and FREE calculates the remaining available
space.

The routine PANIC is used to patch the RDOS system keyboard
interrupt vectors, The addresses of ®SIXTH* routines are stored in the

3.20

The *SIXTH?* Programming System Chapter 1II

vector locations and subsequent keyiboard interrupts are used to
provide a RESTART.

The final part of the dictionary is concerned with RDOS file
management. This is something entirely new to *SIXTH®* The more
antiquated FORTH systems could not support a proper file system and
dealt with data on mass storage in simple fixed size blocks knowln as
"screens". *SIXTH* maintains Data General RDOS compatible random block
files, the screen editor SC maps these onto a memory segment and
rewrites the edited files into an RDOS type form. In this way all the
system utilities, such as the SPEED editor may be used with #*SIXTH#*
files. COMPILE starts the INTERPRET loop reading input from a file
until an %ENDFILE is found; a second file may be opened on another
channel read, interpreted and executed, closed and control returned to
the original file by way of the INCLUDE command. The keyword CLI is
used to read a sequence of RDOS command line interpreter instructions
into the BUFFER, these are subsequently written to the file CLLCM and
a SWAP performed. The command line interpreter now reads this file and
executes the instructions it contains before finally returning control
to *SIXTH#%*, The system is, therefore, not as isolated as Moore's
~slower stand-alone system. It has, in fact, become part of an overall
system, and is not a replacement for or a simple addition to any
operating system. In this way, it has become correct to refer to the
SIXTH# gystem as an application programming system. It was designed
with interactive graphics for small machines in mind, but has been
used with tremendous success for a wide variety of systems and control
work. The original version which ran intimately linked with RDOS, has
given birth to a whole series of implementations on other machines.
The structure was found to be such that very few changes have been
made for it to run with other operating systems such as UNIX and MTS.

3.21

The *SIXTH* Programming System Chapter III

Indeed if some of the system vector table addresses are replaced with
internal ®*SIXTH®* routines, then the lanquage may be used as its own

operating system, as is the case in the Motorola MC68000 version.
3.8 The *Sixth* Implementation model

In order to facilitate the rapid development of #*SIXTH*#*
implementations a defined procedure has been established to which all
instances of the programming lanquage must conform. The model proposes
the existence of a virtual machine comprising three stacks, a series
of fullword (sixteen bit) registers and some form of mass storage

subsystem. The implementation process is tackled in three stages:
1) The Machine Dependant Kernel is written.

2) The Machine Dependant portion of the Dictionary is written.

3) The remainder of the dictionary is copied from the model.

Within these broad classifications the implementation model does
allow some degree of flexibility in order to accommodate the physical
and logical constraints imposed by the architecture of the target
machine. There is not space or.sufficient relevance to discuss the
implementation quide fully in this document but some discussion of the
choices available to a designer might be appropriate.

The first and most fundamentally important decision concerns the
format of the executable code. This is often largerly dictated by the
available machine instructions but the #*SIXTH®* model essentially
allows three different techniques to be wused. The first and most

3.22

The *SIXTH* Programming System Chapter Il

favoured is that discussed earlier in this chapter; it produces
somewhat smaller code segments than the other formats which may be
important on small machines. It is appreciated, however, that the
relative indirect jump to subroutine is a somewhat esoteric
instruction and consequently two other techniques are suggested. The
next most popular format is that used on the PDP 11 series of machines
and involves a programme counter relative jump to subroutine which
generates larger code but is still relocatable. The final system has
been used successfully on small eight bit microprocessors and involves
subroutine linkage or indirect jumps through absolute addresses.

Once this key design compromise has been made it is a relatively
simple matter to write the routines which form the kernel. This is
done in the machine assembler and occupies approximatly 2K words of
main memory. The majority of operations are sixteen bit integer
calculations and these are fully defined. Clearly the sixteen bit
Virtual Register sets have to be simulated on a simple eight bit
processor with a subsequent overhead in execution speed.

The second stage of implementation involves the production of the
machine dependant section of the dictionary che. Here a series of
immediate definitions must be written which on execution will assemble
some form of test and branch into the code section of a definition.
Armed with the ability to test a register for a value and skip the
next location the remainder of the #*SIXTH®* code can simply be copied
from the model. In this way the portability of high-level definitions
is assured. Applications programmes such as the microcode assembler
described in chapter V can then be run on any of the machines for

which the programming system has been written.

3.23

The *SIXTH* Programming System Chapter I

3.9 *Sixth* Application Programming

The prime example of a ¥*SIXTH* application programme, which will
be considered here, is the implementation of the Object Description
Language mentioned in Chapter II. The technique used is also
applicable to many other environments and has been used with some
success in the projects which will be mentioned later in this work, in
particular the microcode cross-assembler described in Chapter V. The
most common system for the implementation of a symbolic language based
input system is to extend the dictionary structure to the point at
which the required syntactical symbols correspond to ¥*SIXTH* words.

The key to thisl implementation technique is the unique manner in
which a programmer can control both the compiler and interpreter modes
of the operating system. The definition $ is defined within the

initially boot-strapped dictionary code as:
: $ IMMEDIATE WORD FIND S + DP! ;

and its effect is to place a call to a definition into the dictionary.
The word DP! is responsible for the generation of the calling code and
the addition of the executable address to the compile table. The
result of the input combination $ FRED is to place a call to FRED into
the current definition, whatever the precedence of FRED may be. In
this way it is possible to define the ODL keyword begin by the
sequencé:

: begin $: ;

The effect of the words begin FRED are now the same as : FRED and

3.24

The *SIXTH* Programming System Chapter I

cause a new dictionary entry to be created. Similarly the compilation

of the ODL keyword end may be governed by the *SIXTH¥* code:
t:end $;3

subsequent occurences of end will cause an open definition to be
terminated. The keywords line and text are used to enter vector
information into the definition in the same way as text is placed into
a STRING in #*SIXTH#*, Thus the draw, scale and rotate type ODL
directives simply have to use WORD and FIND to isolate a subpicture
within the dictionary, apply the translation they represent to the
vectors and either display the result or enter the new vectors into
another dictionary definition.

Since the ODL statements form real *SIXTH#* definitions the source
code can simply be interpreted by RELOAD . to ge'nerate the picture data
structure, and a call made to the special interpret loop which is used
to display the vectors made on encountering the word finish. Indeed,
in the actual implementation of ODL the keyword finish is a bona-fide
#SIXTH®* definition which scans the dictionary structure to draw the
main picture definition, it is simply executed by the RELOAD loop to

produce picture output.
3.10 (Sumiiary,

The development of the #*SIXTH* programming system has added
flexibility to the armoury of tools available to the programmer. It is
not claimed that it replaces the conventional programming languages
available, but rather that it complements them. The ability to include

low-level definitions in the control structures normally associated

3,25

The *SIXTH* Programming System Chapter [l

with high-level lanquages results in a very powerful system hardware
debugqing facility. Since all the definitions are simply compound
statements in terms of previously defined routines, it is unnecessary
to salvage, or rewrite, subroutines from earlier work, as is often the
case with assembler or other pragramming languages, as these
subroutines are, in the nature of things, present from load time. The
feedback to a programmer is fast, there is no lengthy compilation
phase and no need to use a relocatable linker/loader in order to call
system routines. In this way modifications to hardware can be tested
in a fraction of the time required for a conventional programming
system. In implementations where the kernel and large quantities of
dictionary space have been ROMed, such as the Motorola MC68000
version, the testability of a system is even further increased.

There is no need for an interactive debug system in a %*SIXTH#®
implementation since, by its very nature, the programming system
provides the facilities of most debuggers. Memory locations can be
accessed and changed individually by means of @W and !, or in blocks
via LIST and LOAD. The contents of the stacks and accumulators may be
examined and breakpoints set by simply inserting a call to INTERPRET
at an appropriate point.

What #SIXTH* does not provide is an operating system environment,
where several users may access a single machine and use a series of
utility programmes written in different lanquages. The #*SIXTH*
environment has been used to provide multi-user access to a Data
General Nova Il equipped with only 32K of RAM, but the speed of the
XSWAP routines was such that it was only possible to allow users to
write their programmes in *SIXTHH*,

It is doubtful whether the programming system should be used to
provide multi-user access to mach‘ines anyway, as in such a mode the

3.26

The *SIXTH* Programming System ' Chapter I

reliability of the system can become degraded. This is because as each’
user is allowed full access, at the machine level, to such things as
accumulators, stack-pointers etc., it is very easy for a mistake made
in a single task to cause the maéhine to crash. The solution to this
is to restrict the availability of certain facilities to users. This,
however, is against the general philosophy which was assumed when
#GIXTH* was written and tends to turn a powerful programming tool into
yet another restrictive supervisory programme which, like the
operating system, is often more of a hindrance than a help to the

machine user.

3.27

Table 3.1 The ®SIXTH* system Varlables

1) The Kernel Variables

DP

DL

GT

RDX

STORE

STATE

TAPLE
PREFIX
LAST
REFLAG
NFLAG

ERROR

The Dictionary Pointer contains the address of the next
available location in memory.

Points to the header of the last definition compiled into
the dictionary.

Points to an address in the BUFFER which contains the first
character of the string under consideration by WORD.

Is the address of the last character in the current word,

Is the auto-incrementing byte address which is used by the
get a byte routine BITE.

Is the halfword address used by the BYTE, or store a byte
routine.

Is the value of the current radilx.

Is the address of the area of memory which 1s used as the
BUFFER.

Contains the value of the current machine state (q.v.).

Is the address of the complle table, and an index location
TPOINT 1s used to indicate the next free loecation in it,

Is a varlable which holds the octal value of the prompt
character,

Is a boolean varlable which is used to indicate whether or
not the last word on an input line has been processed.

The reload flag determines the device code from which input
lines are read.

Is true if the current word is a string which represents a
valid number in the current base,

Contains the error flagged by the operating system.
-1 =

The ®SIXTH® System Varlables Chapter III

MCSTK
Is the address of the machine stack.
OPSTK _
Contains the address of the operational or user stack.
STK2
Points to the DO...LOOP stack.
LOSTK

Is the address of the top of memory which is used to
prevent colllsions of the system stacks with the dictionary.

2) Used in the Dictionary

WIDTH
The variable contains the length of the character sequence
which will be compiled into a definition by STRING.
K
The keep point 1s used by the dictionary listing routine
WHAT. Only those definitions whose headers start at
addresses after that contained in .K will be listed.
CHANNEL

The I/0 channel number which is to be used next by the
system 1s malntained in this variable.

-2 -

Chapter IV

General Purpose Microprocessors For Display Systems

General Purpose Microprocessors ’ Chapter IV

Chapter IV

General Purpose Microprocessors For Display Systems

4.1 Introduction

The use of the Fixed Instruction Set (FIS) MOS based
microprocessor to replace more specialised digital hardware, in a
variety of fields, is increasingly prevalent[45]. In many applications
where small to medium scale transistor-transistor logic (TTL) circuits
might normally have been used, it is now not uncommon to find a single
microprocessor and a programme contained in read only memory (ROM).
Indeed, latterly, there has been a tendency amongst manufacturers to
provide microprocessing units (MPUs) specifically for such tasks. Such
chips are usually equipped with a scratch pad RAM, a segment of ROM
for programme storage and some form of I/O control in order that
communication with the outside world might be performed. This 1/O
control often takes the form of a serial interface, for communications
with a terminal or printer, and a parallel Peripheral Interface

Adapter (PIA) for a more general control environment.

These "single chip micros" are rapidly replacing the internal
electronics for a wide range of consumer goods, such as washing
machines, sewing machines and even televisions, tape recorders and
motor cars. This trend towards the use of low cost "multi-application"
large scale integrated (LSI) components is one which is affecting the
whole of the electronics, communications and computing industries.
Many of the latest generation of test instruments are of the so called
"intelligent" variety. ‘

4.1

General Purpose Microprocessors Chapter IV

As might be expected, this trend in electronic goods
manufacturing has not been slow to enter the lucrative markets
generated by the popularity of systems based around interactive
computer graphics[46]. The cost of colour raster graphics terminals
has always been low, in comparison with, say, penitron type vector
tubes, because of the ability of manufacturers to capitalise upon the
reéearch and development which surrounded the domestic television
industry. Indeed such displays are often referred .to as "digital
television". There have always been two basic problems with practical
raster scan display systems: the need to maintain a large block of
memory for the z-intensity-modulation data (the frame buffer) and the
computationally intensive calculations which have to be done by the
host computer to produce diagrams on the display screen. The overheads
have been such that, in order to ensure sufficient bandwidth Iis
available for data transmission between the frame buffer and CPU
memory, a '"close-coupled" direct memory access (DMA) link has usually

been maintained between the two.

One way in which this communication overhead can be reduced is to
transmit a high-level scene description to the display device, which
is interpreted by a graphics processor. By providing the display unit
with intelligence, it is possible to save on both memory and
transmission time. The frame buffer model for a display is often
wasteful, as it usually has to maintain a full memory word of
intensity information for each pixel on the display. The use of a
Video Look-up Table (VLT) which takes the frame buffer contents as an
address into a wider RAM segment, whilst not increasing the number of
different colours which may be displayed at any one time, does
increase the total number of possible colours. Edge models for filled

4,2

General Purpose Microprocessors Chapter IV

polygons may be used to save memory space in the terminal: there is no
need for all the points in a single polygon to be maintained, as all
that is required is that the positions of the edges are known and a

pointer to an entry in the colour table maintained [47].

The simplest method of providing display intelligence is the
addition, to a graphics workstation, of a general purpose
microprocessor and s;ame software. Many commercially available terminal
systems adopt this approach and as a consequence it will be considered

in some detail.
4.2 An Overview

The cost and sophistication of microprocessor controlled graphics
displays has, by and large, remained commensurate with the technology
upon which they are based. The earliest sytems provided little
intelligence and were based around simple processors, for example the
ubiquitous 6502. As the semiconductor manufacturing processes matured
“and more sophisticated circuits became available, the display markets
followed; the Chromatics 7900 is based on the new Motorola MC68000 and
the Gresham Lion Supervisor 214 on the LSI 11. Table 4.1 shows a brief
comparison of cost vs. capabilities for a series of FIS processor
based graphics systems. By and large these commercial systems contain
a single processor and deal! with a single frame store. The
instructions which are interpreted are invariably of the line, simple
polygon, point type. There have been, however, many proposals made for
multi-microprocessor display controllers and these will be discussed

later.

4.3

Durham University Department of Applied Physics

Table 4.1
Microprocessor Based Display Systems

Function Tektronix Gresham AED Ramtek VIP Tektronix Cromatices

4027 Lion 512 6000 system 1110 7900
Series Supervi- Series Series Serles
sor 214
Processor: 8080 LSI-11 6502 Z80 6809 68000

Resolution: 640x480 102Ux525 512x512 512x256 512x512 U80x360
480x640

Display RAM: 192kb 512kb 256kb 180kb 256kb §2Mb

Interface: RS232 RS232 RS232 RS232 RS232 RS232
GPIB DMA DMA
PDP MIOP
Sof tware: PLOT10 MACRO11 MEZZO 280 PICASSO PLOT10
Routines AEGRAF Routines GKS
HLL Control: Yes Yes No No No No
Colours: 8 16000 256 8 15 8
of 64 of 2824 of 64 of U096 of 64
Vectors: Sof't Hard Sof't Sof't Sof't Sof't
ware ware ware ware ware ware
User Symbols: Yes Yes Yes Yes No Yes
User Macros: Yes No No Subroutines No Yes
Run User Code: No Yes Yes Yes No No

Zoom: No Yes Yes Yes Yes Yes

Durham University ' Departﬁent of Applied Physics

Pan: No Yes Yes Yes Yes Yes

Two-Dim, sNo No No No No Yes

Transformation

Grahlics Input: Cursor Joystick Joystick Joystick Nil Keys
keys Trackball Pot

Imaging: No Yes Yes No Yes No

Scanning: 30Hz S50Hz 60Hz 60Hz 50Hz 60Hz

interlace interlace
Overlays: No Yes Yes No No No

Cost: $5K $30K+ $20K+ $5K+ $7K+ $5K

General Purpose Microprocessors Chaplfer v 4

It s apparent that two basic modes of operation are envisaged by
the manufacturers, the first consists of the utilisation of low speed
serial communications links and reasonably high-level instruction
sequences to generate stylised pictures for data presentation the
second involves the specification of all pixels by the user and a high
speed parallel communications channel. Several display systems allow
the user to bypass the local intelligence and transmit pixel
intensities directly into the frame buffer memory over some form of
direct memory access link. This then gives the user the option of
working in either a closely coupled DMA type environment or in a
loosely coupled remote workstation mode. As has been mentioned
earlier, the advantages of intelligence in such a system are immense.
The higher the level at which a presentation layer protocol is
defined, the lower the number of information bytes which must be
transmitted over the serial network in question to define a particular
picture or picture sequence. Clearly the savings may not only be in
time but also, particularly if the network is that provided by the

Common Carrier, in money.

Currently the tendency has been for manufacturers- to adapt
reasonably similar forms of picture definition languages, the most
common types being those used by Tektronix and Gresham Lion. Here the
command sequence comprises an introducer (a character to differentiate
command sequences from text) and a command string. The actual commands
consist of three ASCII characters which uniquely define the subsequent
mode of operation and the context for the parameters which follow. The

parameters are then transmitted, also in ASCII and the command is

4.4

General Purpose Microprocessors Chapter IV

terminated by a carriage return. In this way a sequence of control

commands might take the form:

IVEC 100,100 200,200
1POL 100,100 300,300 400,400 500,500 100,100

ITXT 300,300 %A Text String%
as for the Tektronix 4027.

It should be noticed that such a command-sequence is, in many
ways, similar to the input syntax for the Object Description Language
and, indeed, for devices like the Tektronix 4027 which supports macro
definitions and expansions as well as relative co-ordinate command
sequences, it is simple to conceive of an ODL compiler which converts

the sequence:

begin BOX;
rectangle bot.left bot.right xlength ylength;
end BOX;

draw BOX origing
to

IMAC ML

IRPOL 100,100 200,100 200,200 100,200 100,100
IEND M1

IVEC 100,100

IEXP M1

4.5

General Purpose Microprocessors ~ Chapter IV

The 4027 supports sixteen such named macros so the usefulness of
such a simple compiler would be limited. Furthermore there is no
parameterisation of expanded macros so families of subpictu.res could
not be produced from a single expansion. The possibility of applying
transformations to already defined macros to generate new ones is also
unavailable. Similarly for the direct implementation of the ODL/EDIT
suite it would be necessary for the terminal to return some value
corresponding to the name of a macro indicated during a graphics input

sequence as well as the simple x,y co-ordinate provided at present.

The second form of control sequence is that provided by the AED
512 and by the 7200 series of Hewlett Packard plotters. Here a single
character forms the operation code for the device and the parameters
are encoded as binary number representations which are transmitted as
a seemingly meaningless jumble of ASCII characters. The result of this
is that more calculation has to be performed by both host and
workstation to decode the parameters but less information is
transferred across the communications link. »The HP722]1, for example,
uses the character "p" to cause an absolute move. Command sequences
comprise an operation code, a variable length sequence of binary
parameters and a command terminator, usually the character "*". In

this way a picture compiler would have to convert the sequence:

picture test;

2D;

grid 750, 1000;

text 100.0, 100.0 %A text String%;

finish;

4.6

General Purpose Microprocessors Chapter IV

to

<tilda> <underline> (Initialise the Plotter)

<tilda>W (Set the Grid size)
prS} (Move to 100,100)
<tilda>' (Set Label Mode)
A text string (The Text Characters)
ETX } (Text Terminator)

Some facility is available for macro definition, but a limit is placed
upon the number and size of such collections of display commands as
the macros must occupy space in the machines input buffer. To some
extent it is possible to implement the block transformations which
form the real flexibility of ODL in terms of the basic device
instructions as translation of origin and rotation of subsequent
vectors are provided as part of the firmware. The drivers for such an
ODL implementation are, of course, harder to write and debugging the
system is substantially more complicated as the programmer is less
aware of what character combinations are being used to generate the

display vectors.

As display systems have become more sophisticated the degree to
which the hardware/firmware combination within the display device has
taken over some of the role of the host computer has become more
marked. Modern display systems are definitely orientated towards
loosely coupled environments and high-level presentation layer
protocols. The latest generation of Tektronix 4115 display terminals
incorporate several features which are important in the evolution of
dumb frame buffers into intelligent qgraphics machines. This new range
of terminals, which utilise a combination of bipolar bit-slice

4.7

General Purpose Microprocessors Chapter IV

technology in tandem with the new Intel 8200 series CPU, aims at
compatibility with the GKS and GSPC CORE graphics standards and are
capable of handling concepts suéh as named display segments, two-
dimensional translation and parameterisation of internal display
sectors. With such tedious computations carried out in the firmware of
a peripheral device, the size of picture compilers like ODL will
become substantially reduced. The effect of this must be an increase
in data throughput and the release of machine time for applications
work. With moves of this sort, graphics becomes a tool rather than an
end in itself. In current installations where graphics software like
GINO, PLOT10 and IG[48,49] forms a major part of the load modules for
applications software, the removal of the graphics translations to
display firmware will entail a subsequent increase in the ability of
data analysis programmes such as those developed for the Stare/Sabre
system and described later, to perform their primary function - the

analysis of data,

A glance through the columns of table 4.1 will reveal the wide
variety of capabilities which exist amongst commercially available
display systems. The most obvious variable is, of cour.se, the measure
of the capacity of the local intelligence. The processors vary from
the 6502, the workhorse of most early microprocessor systems, through
the MC68000, a modern sixteen bit single chip MPU, to the LSI 11, a
large scale integrated implementation of the popular Digital PDP
range. The resolutions of the displays are, to some extent, a function
of the size of the frame buffer and this, in turn, is dependant upon
the physical address space of the local processor. This varies from
about 180kbytes to somthing greater than 2 beytes. The number of
independantly displayed colours is a function of the width of the

a.e

General Purpose Microprocessors ' Chapter IV

frame buffer whilst the total pallette is determined by the width of
any available video look-up table. For example, the AED 512 passesses
a 512 x 512 x 8 bit frame buffer which would, on its own, allow only
256 pixel intensities. The eight bit frame buffer contents are,
however, used as an address into a 24 bit wide ram segment which
contains the red, green and blue intensity values (eight bits for each
channel). Consequently, whilst only 256 individual colours may appear
on the screen at any one time, these may be chosen from a considerably

larger set.

All the devices listed in the table are capable of operating in
an "offline" mode over a remote serial interface (normally RS5232C
compatible). They perform to varying degrees of efficiency in terms of
data compression and display command intelligibility as discussed
earlier. Two of the systems may also be accessed by the host computer
over a DMA link. In many ways, perhaps, the PPL Supervisor 214 is a
classic example of this mode of communication. The host and slave
processors communicate via a simple packet protocol which operates as
follows. A command packet is constructed in the memory of the
transmitter; this comprises a control word and a series of parameters.
Once constructed the packet is shipped over the two-way DMA link to
the receivers packet processing buffer. The transmitter then
interrupts the receiver with one of a series of interrupt codes which
are used to determine what use the receiver will make of the data
packet. A special case of this is that images may be transferred to
and from disk as a large data packet, or more slowly on a line by line
basis. The upper limit on the size of each packet is set by the
communications hardware which contains the two's-complement of the
word count for a packet in a sixteen bit register.

4.9

General Purpose Microprocessors Chapter IV

An interesting possibility which is opened up by this mode of
communications is that instruction codes can be transmitted into the
slave processor's memory which can then be executed. Three of the
graphics controllers mentioned in Table 4.1 are capable of this. When,
as often happens in the case of Supervisor systems, the host and the
slave execute the same instruction set, dynamic reallocations of

function may be performed by the parts of the overall system.
4.3 Multi-Microprocessor Display Systems

As has been mentioned earlier, the processes essential to three
dimensional graphics, such as the transformations of the co-ordinate
systems, depth comparisons and intensity calculations are
computationally intensive.[50] The most sophisticated display systems
available are used in the "simulator" class of systems and are largely
intended for military or civil airline use. These systems, which
produce real-time images of surprising realism on colour TVs, are
prohibitively expensive for use in a laboratory environment - costing
upwards of $500,000. As stated in Chapter I the reasons for such
complexity become apparent when some calculation of the computational
expense of the problem is 'made. The object of work with multiple
microprocessor systems is to organise this overwhelming load into a
series of relatively independant tasks which might be performed in

parallel.

There are many ways in which microprocessors might be connected
together to form such a parallel system and each has its advantages.
Although such systems are rare in the commercially available products

4.10

4 BUS
‘
Processor Processor Processor: Processor
Figure 4.1 Bus Structured Interconnect
Processor Processor Processor -

- J ,,_u...ooom,wo_‘.

| e

Figure 4.2 Pipelined Processor noaac:monm,o:w

General Purpose Microprocessors ' Chapter IV

which form the low-cost end of the display market, they are becoming
of increasing interest to workers in the research community. Three-
major forms of interprocessor communication are utilised in real
systems; single and multiple bussing; pipelining and systolic array
connection. The merits and demerits of each techniqué have been
discussed[51,52] - often with vehemence. Some discussion of these
techniques and indicators as to where the author sees the possibility

of "real" applications will follow.

As will be made clear, there is currently no "best way" of
interconnecting processors to form a display system but there are
advantages in using certain intercommunication strategies under

certain conditions.
4.3.1 Bus Structured Communications

Figure 4.1 illustrates the mode of interconnection for several
processing elements on a single bus. Communication along such a
highway must usually be synchronised to avoid the possibility of all
elements "talking at once". To this end it is normal to designate a
single processor as the bus master during a given communication, and
for it to govern the access to the information highway. The advantages
of such a bussed architecture are cost and simplicity. Since :the
processing units are synchronised by the bus master, the timing
problems associated with some of the other interconnect possibilities
are eradicated. Processors may share common memdry very simply as the
addresses may be provided by any node on the bus. This means that data
does not necessarily have to be transferred over the bus, simply
messages to say where the data is. Bank selected multiple port memory

4.11°

General Purpose Microprocessors Chapter IV

can also be used to advantage; different portions of the display-
system working in different banks of the same portion of memory. The
results are transferred between processors simply by switching the
bank addresses of the RAM segments in which the data resides. These
possibilities exist because all nodes on the data link are capable of
talking to all other nodes, the only thing which prevents this from

happening haphazardly is the bus protocol.

The major disadvantage of the structure described above is that
‘the data throughp.ut is limited by the bandwidth of the bus. In order
that data are meaningful, only one processing element may use the bus
at a single time, and the overhead in signalling bus availability
serves to further reduce this bandwidth. Furthermore, unless the
display algorithms are considered carefully, there is a distinct
possibility that time will be wasted whilst a single processor waits
for the bus to be made available by another element which is working
more slowly. The technique has, however, been used to some effect in
the GDB80[52] system and, in many ways, remains the best system for the
interconnection of general purpose board-level components to make a

display system.
4.3.2 Pipelining

Pipelining for display systems draws upon the realisation that
many of the stages in the production of an image are independant of
each other. As a result, it is possible to consider performing these
independant calculations on data which are passed from one element on
the pipe to the next. In this way, for example, a single processor
might read the list of the original polygons in object co-ordinate

4.12

General Purpose Microprocessors Chapter IV

space and transform them into the shapes required of the simulated
viewing position. The transformed shapes could then be passed to the
next processor which clips those parts of the polygons which do not
appear in the field of view. The clipped picture segments are then
passed to an element which applies a perspective transformation to
foreshorten the appropriate parts of the image as a function of
distance. Finally the data might be passed to a fourth display
controller which sorts the polygons in order of depth to produce a

hidden surface picture.

Given that the imaging process falls into that class of
computational problems identified by Flynn[54] as SIMD (Single
Instruction Stream Multiple Data Stream), that is to say that the
computations can be performed on the individual polygons which make up
a scene without affecting the others, it is possible to pass the data
which represents a picture down the pipe a single polygon at a time.
An example of a pipelined interconnection topology appears in figure
4.2, The bandwith problems described above are less important in this
architecture as communication occurs independantly between associated
pipeline processors. There is, however, no posibility of using shared
memory and each element must maintain its own local workspace. This
means, in effect, that pipeline systems usually have to be designed at
the board-level, special printed circuits being produced for a
particular application. One key problem which occurs with any
pipelined design ié that of synchronisation. To work efficiently the
delay introduced by each processing stage must be similar or bottle
necks will occur along the pipe, a processor having to wait to pass on

its data segment to a busy neighbour.

4.13

uo1308uUU0DIYU| ADJ4JY 01[038AS £

o.nbi 4

JOS888904d

J088990.

408860044 |

10889904d

106699044

408602044 - |

J088990.d

40888001d

40580904g |

r

e

e

General Purpose Micropracessors - Chapter IV

4.3.2 Systolic Arrays

Figure 4.3 illustrates the interconnection pattern utilised by‘ an
array processor such as the CLIP series of image processors developed
at University College London[55]. A particular element is connected to
each of its neighbours in a hardwired array. Such a technique forms
the basis of the display system described in Chapter VIIL At this
level the complication of the interprocessor communication network is
such that it is difficult to use in any form other than intra-chip
connection in a lLarge Scale Integrated (LSI) circuit. Although the
early CLIP systems were hardwired, there was a definite limit to the
level of complexity of the system as a trade off between processing

power and amount of hardware is inevitable.

The classic form of the systolic array comprises a series "of one-
bit computational units which work as multi-way pipelines. Many of the
algorithms used in computer graphics can be broken down to this form
and Chapter VII describes an implementation of such an array to
provide a smart memory system capable of displaying solid shapes on a

raster terminal.

4.4 The Sabre Data Analysis System

An example of what is effecively a loosely coupled multi-
microprocessor graphics and data analysis system is the Swedish.and
British Radar Experiment (SABRE) a joint venture in ionospheric
research performed by the Universities of Leicester (Department of
Physies) and Durham and by the Max Planck Institut fur Aeronomie (MPI)
at Lindau in West Germany. The work grew out of MPI's experience with

4.14

~
-

LﬂTl!yDE (66)
o

[1]
T

~ N ~
»N

LATITUDE (66>

!
[V .

IRREGULARITY DRIFT VELOCITY
1000 M/SEC = o—

1977
33

TIME: 22:13:20
INT.TINE: 20 SEC

\\v—-—-

v
A

— . .- — — A

16 18 20 w@a 24 . |
LONGITUDE ¢66) | |

4 20 36 - :
BACKSCATTER sna <DB) - 1R |

NORMAY | FINLAND

T,

S -

16 18 20 22 24 16 18 20 22 24
‘ LONGITUDE ¢66) -

4. b

General Purpose Microprocessors ‘ * Chapter IV

the earlier Scandanavian Twin Auroral Radar Experiment (STARE) [56]
installed at locations in Norway and Finland by Greenwald et al t57].
The irregqularity drift velocity of ionised particles was measured by
means of a doppler radar technique. The returns from a single pulse
double pulse radar were integrated over a twenty second period to
distinguish the signal from the noise, and the complex auto-
correlation function calculated by the site computer, a Data General
Nova II minicomputer. A magnetic tape was produced by this machine
onto which were recorded the radar parameters, the power density
spectra and the doppler products. Once the tape was full, it was sent
back to MPI's headquaters at Lindau for analysis. In order to build up
an image of the movement of particles in space, it was necessary to
cross-reference the data from the Norwegian site with that obtained
from Finland. This was done by merging the data tapes on a 32 bit
Interdata machine. An output tape was produced which contained the

interleaved records from the raw data sets.

The analysis of this merged information was continued on another
Nova II. A digital to analogue converter was used to drive a Textronix
600 series storage tube., This was used to generate plots of the
doppler velocity against position in a forﬁ\ which became known as the

Stareplot[58] (Figure 4.4).

It was clear from the STARE study[59] that a number of faults
were inherent in the design of both the radar controller and the
analysis facility. SABRE is an attempt to apply the techniques and
architectures described in this work to a real data presentation
problem. In order that the final system could be used with a
reasonable degree of reliability a distributed microprocessing network

4.15

General Purpose Micraprocessors ' Chapter IV

was built and used to serve as an illustration to this chapter. SABRE
maintains two radar controllers, one at Wick, in Scotland and the
other in Sweden. Of these the Scottish site, built at Durham, shows
the greatest divergence from the STARE model. Data General computers
were used to maintain some degree of compatibility with the STARE
system, and the Wick site can operate very effectively as an old style
controller. An EMI B000 series tapedeck is available to write raw data
tapes which can, albeit not very easily, be retrieved, merged and
analysed in the old way. The first major advantage that SABRE has is
in terms of its distributed radar controller. A Micronova (the LSI
single chip version of the Nova) is in close coupled DMA contacf with
the main site machine. This microprocessor is capable of performing
more complex calculations than those usually done (albeit over a
longer time period) without disturbing the operation of the radar. The
requisite data is made available by taking "snap-shots" of Nova main
memory, via asynchronous control of the DMA link, at suitable
intervals. The Micronova also provides some degree of diagnostic
capability, as it controls a modem which links the entire system to
the analysis computer, now installed at Leicester. Data and status
infarmation m'ay, thus, be passed over the Public Switched Telephone
network, which circumvents the need for visits to Scotland to recover

magnetic tapes.

Clearly, for a remote statlpn of this nature to be worthwhile, it
must function reliably. With this in mind the number of mechanical
devices which have to work in order to keep the controller running has
been kept to a minimum. Program storage is provided by a 1 Megabit
Intel Bubble Memory system (although a floppy disk system is available
for program development at the site). After a power failure, or some

4.16

General Purpose Microprocessors Chapter IV

other catastrophe, the Micronova executes a hardwired jump to an
initial bootstrap program in Programmable Read Only Memory (PROM),
This bootstrap reads the first page of the Bubble Memory and starts to
execute the code it finds there. This, in turn, causes the #*SIXTH*#*
programming utility (see Chapter III) to be transferred from the
remainder of the Bubble Memory and the normal INTERPRET loop is
started. Part of the special code for the Micronova interpreter is to
check to see if the main computer is running. This is tested by
analysis of the system variables over the DMA link. If the
microprocessor determines that the minicomputer has halted it attempts
to restart it by means of the following sequence.

The Micronova uses the DMA link to store zeros in locations 0 and
1 of Nova main memory. It then proceeds to monitor the contents of
location 0 and interrupts the Nova. The effect of this is to cause the
minicomputer to store its current program counter contents in location
0 and to use location 1 as an address for the interrupt service
routine. If the new contents of location 0 are non-zero Lhe Micronova
will cause them to be overwritten by clearing the address. In this
way, the Nova is forced to use location 0 as the address of its
interrupt service routine and to execute the code whose value is zero
as the first instruction of this routine. The value 0 is decoded as
JMP to location zero in zero-page. Consequently the Nova is left in an
infinite loop at location nought. The Micronova is then able to
transmit the #*SIXTH®* gystem into Nova memory from location 1 upwards.
Finally the second #*SIXTH#* gystem is started when the Micronova places
the code for JMP @ location 23 into the bottom address in Nova memory.
The start address of the interpret loop is held in location 23 so the
Nova begins to execute *SIXTH*. The first task of the interpret loop

4.17

General Purpose Microprocessors Chapter IV

which was specially modified for this application, is to determine
which processor it is executing on. This is done by attempting to
programme the tape deck. Since there is none present on the Micronova,
a succesful return causes the interpreter to set those flags
appropriate to the Nova and transfer control to that part of the
dictionary concerned with control of the radar. The decision to
utilise the #*SIXTH#* facility was taken on the grounds of flexibility,
ease of interaction and speed. It might, at first, be thought that
interactive software was of little use in a dedicated remote
application but experience has justified the decision. As has already
been mentioned, the site computer is linked back to the analysis
facility by means of an auto-answer modem. When the Micronova receives
an interrupt from the modem interface as the result of a call to it,
the interpret loop is executed and the BUFFER filled with characters
from the modem. In this way, it is possible to change the operating
parameters or to define and debug new data capture and processing
routines by remote access. As the radar is of scientific interest
only,' no real security or protection is avail'able, but it would be
possible, for example, to demand a password from users who attempted

to execute words with a precedence of one or more.

At the other end of this remote link is the analysis facility,
also built at Durham, which comprises a Nova III, two EMI 8080 tape
decks, ab Tektronix 4027 display system and its associated thermal
copier and a Hewlett Packard HP7221S multipen plotter. These form a
co-located multimicroprocessor network which performs the data
analysis and gqraphics display functions. The 4027 was upgraded by the
simple expedient of adding 4116 type memory circuits, to the point
where more memory was available to this display device than was used

4.18

General Purpose Microprocessors Chaptér v

in the analysis computer. In retrospect it might be claimed that the
4027, which forms the waorkhorse from the point of view of display
capability, was not the best possible choice, but from the point of
view of cost, capability and, perhaps most important, availability,
the device was the most suitable at the time SABRE was implemented.
The decision to adopt a colour graphics system had been prompted by
the experience of the STARE group with analysis of real data from an
ionospheric radar. The data are essentially "three dimensional" in
nature, as they represent magnitudes and directions of irregularity
drift velocities of ionised particles within the ionosphere, at
particular locations. Furthermore, some measure of the reliability of
a particular datum is provided by knowledge of a function of thé
backscatter intensity at the point it represents. The STARE group had
produced colour plots by multiple exposure of film, to different
elements of the bicture, through coloured filters. The resultant

photograph was the first and slowest colour Stareplvot.
4.4.1 The Colour Stareplot

The format of the original Stareplot programme was changed
dramatically. The programme was written in FORTRAN to maintain some
degree of portability with the STARE system (although there is, now, a
SIXTH which runs with the hardware memory map and I/O protection
facilities switched off, on the Nova IV at MPI), but was heavily
overlayed. This was because the RDOS sytem used on fhe Nova IlIs
imposes a considerably greater overhead, in terms of memory, thah the
Mass Storage Operating System (MSOS) previously used at MPI, and the
FORTRAN linkage to the operating system ro.utines is less ef‘ficient
than the equivalent #*SIXTH® calls.

4.19

General Purpose Microprocessors Chapter IV

The code is divided into five méin overlays. The root segment,
which is always core resident, loads and executes them serially to
produce the final image. The first overlay deals with operator
interaction and evaluates the necessary parameters for a run. Once all
the input values have been checked, the instructions which do this are
replaced by a segment which acts as a magnetic tape controller. It is,
in fact, capable of retrieving data either from disk or tape in
accordance with the input control instructions picked up by the first
overlay. Once the data> set has been located, the third section of the
program draws the basic scales and outlines for the subsequent
plotting stages. The fourth overlay (LINDRW) calculates the doppler
velocities and plots them with respect to the latitude and longitude
at which they were measured. Finally SPLTDRW is loaded and the signal
to noise ratios for the backscatter intensities are plotted for each
site. This last data forms some level of confidence testing for the

measured drift velocities at a point.

During input of the parameters, the "form-fill" mode of operation
on the 4027 was used to provide a menu-driven option selection. known
as a Stareform. This form is edited locally to the graphics unit; data
is only transmitted to the Nova once it is complete and has been
checked. A protective mode is used to allow only numeric input in
certain fields, which serves to reduce the likelihood of errors. At
the same time, a series of internal macros are pre-loaded into the
display system. This is done to cut down the bandwidth of
communications with the host: only an "expand-macro®™ command need then
be transmitted to cause a reasonably complicated graphics primitive to
be performed. The use of such macros can be seen as a method of
increasing the level at which communication of the pictorial

4.20

General Purpose Microprocessors Chapter IV

information takes place. .

The magnetic tape unit specified in the menu is selected, and the
data it contains searched for the start time given in the form. A
colour Stareplot is then drawn. Hardcopy of this is available
immediately via the black and white thermal copier or may be produced

later on a Hewlett Packard 7221S multi-pen plotter.

The major advantage, and in many ways, the major disadvantage, of
the 4027 is its instruction set. This takes the form of a high level

ASCIl character string of the form:

<{command identifier> <command string> <{parameters> <terminator>

for example:

IVEC 100,100 100,100;

Whilst this makes debuggqing of software realtively easy, it also
increases the amount of information which has to travel from the host
to the graphics terminal. Furthermore, since there is only a serial
RS232 link to it, the communications overheads increase dramatically.
Although DMA circuitry is provided, it is not supported by current

releases of Tektronix firmware. It would seem, then, that the most

4.21

General Purpose Microprocessors Chapter IV

serious design decision made here was the use of a ser.ial
communications link but, since only an B080 type microprocessor is
used to convert the high level description into machine instructions,
this does not turn out to be the case. It is quite possible to run the
serial line at such a rate that the device's input buffer is being
filled faster than it is being interpreted. Over a full RS$232C
communications link wﬁere both tr'ansmitter and receiver can manipulate
the Data Terminal Ready and Request to Send lines this is not a
problem. With the stripped down serial interfaces used on Novas and
PDPs, however, a combination of the protocols required by V24 and 20
milliamp current loop is supported. The EIA data lines are supported
by DJ11 type interfaces, but control of communications follows the
XON/XOFF protocol normally associated with the older data link
standard. The receiver is able to hold up data transfer by sending
CNTL-S5 to the transmitter over a full duplex link. Data transmission
is reactivated by sending CNTL-Q. The problem which this causes is
that many peripherals manufacturers build equipment which performs to
the CCITT V24 standard. Tektronix is one such. For this reason the
Stareplot programme must continually monitor the status of the command
input buffer by means of the report (IREP) sequences. On receipt of
the 'REP command, the display device returns the ASCIl decimal
equivalent of the available buffer space followed by a carriage return

line feed pair in the form:
IANS value <CR><LF>

Latterly, devices have become available which perform the protocol
conversion which is actually required. One such, is the Real Time
Systems Clearway network which, although normally part of a large

4.22

General Purpose Microprocessors Chapter IV .

communications ring, is able to work in such a mode that it can

monitor DTR or XON/XOFF as appropriate.

The problem with the 4027 design, then, is the choice of the
level at which a pictorial component is designed. In an attempt to
make the device "user-friendly" the high-level command lanquage
requires many more I/O transfers than is absolutely necessary to draw
a single line. Some commands, for example the polygon draw and fill
series, do save considerably on the communications overheads by being
transmitted at a high-level, but in general the scene description
which must be specified for the terminal is such that the high-level

protocol is more of a hindrance than a help.

In order to try to compensate for this lack of speed (the several
minutes required to produce a plot are psychologically unacceptable),
the new Stareplot programme ensures that subsequent plots are drawn
off screen whilst the first one is being displayed. As it was found to
be impossible to interrogate the 4027 regarding the state of its
graphics memory, the programme makes an intelligent "guess" at what is
left, based on the amount of data transferred for previous plots. This
is a highly unsatisfactory situation as, due to a bug in the 4027
firmware, an overestimation will cause the display system to crash,
and an underestimation is clearly wasteful of resources. A later
solution to the problem was to draw the "basic" plot with very little
detail and for subsequent overlays to refine the picture over a period
of time, thus as the user "looked-harder" the display became more
detailed. The problem which this gave rise to was the determination of
a mechanism by which a "rough" plot could be aborted without halting
the programme. The final recourse was, unfortunately, to add in-line

4.23

General Purpose Microprocessors . Chapter IV

assembler instructions to the main FORTRAN programmme. These
instructions, after preserving the current values of all registers,
(Data General FORTRAN dynamically reallocates memory so it is unsafe
to make assumptions concerning its contents) place the address of a
FORTRAN routine into location 411 in Nova RAM. This location normally
contains the RDOS keyboard interrupt vector; subsequent Ctl-A type
interrupts will transfer control to the Stareform update routines.
Since the functions of the keys of the 4027 may be reprogrammed by the
host software, the setup overlay ensures that a large ABORT key is
programmed to send the Ctl-A sequence when used during a plot: in this
way the speed of data throughput to the user can be substantially
improved. This is because a user can determine reasonably quickly if a
particular data segment is of interest or not, and can continue or

abort the drwaing process as appropriate.

A requirement of any useful computing system is hardcopy, and
generally this should be at least to the same resolution as the
displays in a network. The system of producing hardcopy from Sabre
tapes is to provide output via a Hewlett Packard 72215 multi-pen
plotter with auto page advance and cutting. The X-Y resolution is
clearly better than most raster displays but the number of different
colours available is restricted to four. The problem was solved by
using the "dot" technique familiar from newspaper pictures. This
resulted in diagrams which were optically pleasing but were slow to
produce. The plots were produced in batch overnight. The user provides
a start and stop time for the plots and, optionally, an increment in
seconds which is added to the current plot time In oredr to determine
which frame is drawn next. The computer then simply sends plot data to
the 7221 and finishes with a "page advance" command. In the morning a

4,24

0% 0T o WIS - fomdon

107d 384405 Y10 Fuyis

T et e S N T s

i f(Pn.rer/r{.h/{xiLSlf)}l(ft(»sl

General Purpose Microprocessors Chapter IV

neat pile of completed plots is available! (See Figure 4.5) A black
and white thermal Tektronix copier was also provided so that

instantaneous low resolution (X-Y and colour) hardcopy was available.

The new software is also capable of performing the type of
surfafg .and contouring plots shown in figure 4.6. Here the
irreqularity drift velocities are represented as points on a square
geographical grid. The slope of the surface indicates whether the
component is East/West. Linear interpolation is performed between
adjacent points to build up the smooth surface description which
appears in the diagrams. A simple z-buffer algorithm is used to do the
requisite hidden line removal. The data are assembled in a "three-
dimensional" array and visibility is determined, as the lines are
drawn, from the back forwards. The plot can be drawn in many
orientations so that the user can essentially "see all round" the
segment of space covered by the radar. These plots, more than anythiﬁg
else, indicate how much of an approximation is made when the
ionosphere is considered to be a flat reflecting plane. Clearly the
properties of this reflection vary as disturbances are propagated
through the layer. This is equivalent to distorting the shape of a
flat mirror. In part the requirement of the Stare and Sabre teams was
some quantitative feel for the way in which these disturbances affect
propagation of radio signals through the ionosphere. The Stare results
shown earlier gqive little feel for the "shape" of the area under
consideration although they do allow reasonably accurate measurements
to be taken from the processed data. The surface plots produced by the
Durham Sabre programs go some way to providing a "via-media" between
the requirements for accuracy and ease of visualisation. The surface
plots make the data appear "solid" and enable a user to imagine the

4.25

General Purpose Microprocessors Chapter IV

surface of the ionospheric layer under consideration. In order to
provide some level of quantitative analysis as well, the data may be -
plotted as a series of contour maps from which real measurements may

be made.
4.5 SRUTEORGE,

Having discussed the use of Fixed Instruction Set microprocessors
to provide distributed systems for colour graphics and the indications
are that whilst the ready availability of processors and support chips
makes irr:plementation easy, the technique fails in terms of bandwidth
of the data highways. The tendancy towards multiplexing data and
address lines and the predominance of serial communication networks
means that the improvements in speed and performance which might have
been expected cannot be realised. It is, therefore, necessary to look
for new interconnection strategies which will be discussed in

subsequent chapters.

4.26

Chapter V

Bit-Slice Microprogrammed Display Processors

108880044 [pJjus) pewwoiboidosoiy v 1°G e4nbiy

A sna o/l lo2u0y 0/ sna-w Kiowsy D
A 3INM3dId
yun oibon Jaouanbeg Kiowapy
S1}OWIY Y ewwoiboidoolp 9pO20IOIN

SNOdd Buiddop

Bit-Slice Microprogrammed Display Processors Chapter V

Chapter V

Bit-Slice Microprogrammed Display Processors

5.1 Introduction

The process of generating a "three-dimensional image" of a model
(which is part of some data base) involves the transformation of the
polygons used to model the scene to place them, in object space, as is
appropriate to the simulated viewing position. The scene is clipped to
remove those portions which will not appear in image space and a
perspective transformation is then normally applied to foreshorten the
image as a function of imagined distance. These calculations can be
performed in real-time by current vector systems. To provide the same
function for visible surfaces as represented by a raster-scan image is
substantially more difficult. Most real-time vector systems [60,61]
use a pipeline architecture,»such as that discussed in Chapter IV, to
achieve the necessary data rates. Bit-slice microprocessors,
manufactured using bipolar Schottky technology provide a convenient
route towards a pipelined architecture and have the added advantages
of speed and flexibility over fixed instruction MOS type
microprocessors. This freedom of CPU architecture has tended to make
them natural choices for raster graphics environments[62,63]. The
general architecture of a microprogrammable computer is shown in
Figure 5.1. Data and instructions are transmitted along the
bidirectional data bus while addresses are sent along a separate
highway. I/O processing is a function of the address and data paths in
so far as it is memory mapped. The interrupt control logic is used to

5.1

Bit-Slice Microprogrammed Display Processors Chapter V

signal peripheral interactioné during such 1/0O sequences.

A very common mode in which such a structure is used is as
follows: the instruction code present in the instruction register(IR)
is used to index an address in read only memory (ROM) known as the
instruction map. The contents of the address which the instruction
forms in the map is used to index into the control store or
microprogram memory. Execution of the microcode which makes up the
machine instruction begins at the address pointed to by these mapping
PROMS. This avoids the requirement for an instruction decoding
microsubroutine and an associated subroutine dispatch table which not
only speeds up execution but also simplifies the coding of the control

store.

After the desired microroutine has been executed a call is made
to the code which fetches the next instruction from memory and places

it into the instruction register. The process is then repeated.

The overlapping of the fetch of the next microinstruction of a
microprogrammed CPU with the execution of the currently selected one
by the use of a pipeline register at the output of the microprogramme
memory is well known[64]. The register is used to hold the currently
executing microinstruction, the next microcode word being made
available at the input to the register by virtue of the presence of
its address at the microprogramme counter. In this case the length of
the pipe is small and its use specialised. More recent systems have
tended to extend this idea to macroinstructions and to data
operations. Indeed, the latest fixed instruction set MOS type MPUs,
such as the newer parts of the 68000 series, will provide access to

5.2

Bit-Slice Microprogrammed Display Processors Chapter V

the internal pipeline for use by peripheral- and co-processors. This
ability to isolate data operations according to the position of the
operand along a data path results in improved efficiency by allowing

some degree of parallelism to be adopted in the flow of control.

The pipeline architecture is, therefore, suitable for any
application where the parts of an integrated system operate.
essentially independently and sequentially. It is unfortunate that in
real systems the rates of processing of the various data operations
are nonuniform, consequently some of the efficiency of an ideal pipe
is lost and there is an increase in complexity due to the need for

synchronisation between consecutive parts.

The general effect of microprogramming is to add to the
flexibility of any system, and, in providing a processor for an
interactive graphics application, this is a greai advantage. It is
still difficult, despite the standardisation attempts of GKS and
CORE[65,66] to define precisely what is required of a drawing system.
As mentioned previously, the distinction between a graphics package
and its display processor, whilst physically obvious, is becoming
increasingly hard to describe logically. The introduction of a
microprogrammable display processor serves only to blur the
distinction further, as it is not inconceivable that a host computer
might reload the microprogramme memory of a display processor equipped
with a writeable control store. Thgs a graphics package would be able
to determine which transformations were required to be performed in
hardware and could load the DPU appropriately. It is not impossible to
imagine a programme suite capable of generating the microcode for its
own graphics processor to enable optimal use of the hardware for a

5.3

Bit-Slice Microprogrammmed Display Processors Chapter V

particular application.
5.2 Microprogramming

The basic caoncepts of microprogramming were discussed by
Professor Maurice V. Wilkes of the University of Cambridge in 1951 in
an attempt "to provide a systematic alternative to the usual somewhat
ad hoc procedure used for designing the control system of a digital
computer”[67]. Despite the early use of the technique by Ferranti Ltd.
it was generally neglected until the mid 1960's when IBM
microprogrammed most implementations of the System/360. This appears
largely to have been due to the performance, in terms of cost and
speed, associated with early memory. Since then there has been an
increasing tendency to replace the sequential "random" logic used to
provide CPU control signals with "firmware", which is either blown
into ROM by the manufacturer or is held in a random access writeable
control store as in the Perq[68)]. With this second arrangement the
machine becomes user microprogrammable, an end user being able to
change the CPU instruction set of his machine with the aid of a

microassembler.

Microprogramming was proposed, and continues to be used, mainly
as an alternative method for implementing machine language
instructions. However, with continued developments in hardware
technology the concept has evolved to connote a mare general notion
and many LSI circuits now contain some form of microcode in the form
of a PLA or ROM, and it seems certain that the trend will continue
with all VLSI and ULSI circuits being designed this way. Indeed, as
the complexity of circuits increases, it becomes more important that

5.4

Bit-Slice Microprogrammed Display Processors Chapter V

much of the design be done by machine. The need for High Level
Language type microcode compilers is a direct consequence of this
complexity problem and, ultimately, any Silicon Compiler[69] must
produce some kind of microcoded hardware since the complexity of an

alternative system is difficult to imagine.

What microprogramming does, then, is to reduce the design
complexity of a system. The consequence of this may be an increase in
cost - microprogramming a simple system is not economically viable,
For more complicated systems, however, the microcoded approach is
often cheaper than the equivalent sequential random logic as the costs
of design are pushed far above the savings made from avoiding the

redundancy inherent in a microprogrammed solution.

There are, essentially, twa distinct formats a designer may use:
either Vertical or Horizontal microcode. A horizontal design results
in a high degree of pafallelism, as the microcode words are made wide
and only a few are executed to generate a macroinstruction sequence. A
vertical format executes more and narrower microinstructions, making
the design simpler but, necessarily, slower. This trade-off between
speed and complexity is a recurring theme throughout any discussion of
modern digital design. In the case of a microprogrammed design,
however, the types of inter-relation between microcode and hardware
introduce many possible compromises to the designer, and the cost of a
poorly thought out microcode might be a total redesign of the hardware

at a later date.

5.5

8}ig UOJ}puoO—e

143

8}q + Z

jp493]7]
819 - rAN

308[8S |8p0)-
:o_# uoy

pleld L

026 X +
- euledld

 SpoN

30808

|

4

9lLe

9lLe

g1L2

9lLe

=
y$2SIWLT

¥

|

sna
vivdad

dviN

N30

- 0l6C
-Jeouenbes

UOIION.NSUICJIDIN

010],

0c6c
yo3p1 uoljonuysu|

3

Z 40 | ebog

weyshs LOBZ Oyl 'S e4nbig

183

Zi-ol

L

Plpeline

eSTHL -

» /ey, =538 UORIpUOD
R 3
~sng 4
xaav
i i1
0262 poeyp 00| 0262
- 2062 |
— — —
e
P b v f ,
3 30]
0z62 1062 1062 1062 | 108z |
r S s —
esThL _ ,
~ 80 ozez I+
sng
viva | ;)
-- J

a

—! .&.mo_

oc__&E

s

8

' fl—g

ougedid: wouj

3o8|8S Lﬂ&m

Z 30 z obp4d welsfs

- 1062 94yl Z°g eoinbj4

! _
. RAM Mm:ﬂ T h.ll
A (Read) Addx ! Array | Q-Shifter
of _ i||~w Hof
B (R/W) Addx 16 A
registers Logic ‘0! Q register
Direct | ‘
Data 1 B Q
a in wp | b
ALU Data Source _ Clock
Selector
8 function ALU
1. 1
Output Dota Select g | EBL

ryg. ouT

Figure 5.3 The. Internal Organisation of the 2901

Bit-Slice Microprogrammed Display Processors Chapter V

5.3 The Durham University 2901 System

The design of the bit-slice microprocessor system for raster
graphics applications is essentially that of a sixteen bit ALU with
look-ahead carry. Cost and size constraints suggested the use of a
half word data space architecture, the full word processor width being
sixteen bits. Figure 5.2 is the circuit diagram for the AMD 2900
series based CPU. The 2901 ALU/reqister slice, in its various quises,
is the slice most widely used today. The family includes two bit-slice
processors, several microprogramme sequencers and support chips, a
memory interface slice, a status and shift control device, bus
transceivers, a priority-interrupt unit, RAMs, ROMs, registers and
multiplexers. The organisation of the four bit ALU/register slice is
represented by figure 5.3[70): it contains a sixteen word dual port
RAM bank which can be used to form a series of register/accumulators,
two of which may be selected simultaneously. A pair of four bit
latched signals, the A and B busses, are used to select which of the
RAM words will be available to the ALU, The ALU can perform three
arithmetic (base-two) and five logical operations on data available at
its R and S ports, which are fed by multiplexers, allowing operations
to be performed between the A register, the D bus, zeros, the B
register or the output from the Q register. The functions are selected
by means of the available I3, 18 and I5 microinstruction inputs. The
resultant eight possible functions are performed upon the R and S
input ports to the ALU in accordance with the following selection

scheme:

5.6

Bit-Slice Microprogranmed Display Processors Chapter V

0 Rplus S
1 S minus R
2 R minus S
3 R or S
4 R and S

5 not(R) and S
6 R ex-or S

7 R ex-norS

The operands available at the R,S ports are governed by the IO,

I1 and I2 inputs and provide the following possibilities:

o

2 3 A 3 A A A A
i

O O 0O © © © >» >»
n »
T

e p >» » W 0 o o

wn wn (2]
n

Since the A and B addresses can be equal there are only seven
non-redundant operand pairs from the total number possible and the
2901 implements eight(three bits), 0B and OA. are functionally

equivalent if the word addresses A0-A3 and B0-B3 are identical.

The results of a calculation can be gated along the F bus to the
Q register, via the shifter to the RAM bank or to the tri-state output
Y bus.
5.7

Bit-Slice Microprogrammed Display Processors Chapter V

Reference to figure 5.2(page 2) reveals that the 2901 system
designed for this work is based upon a sixteen bit architecture. It
comprises four ALU slices coupled to a high speed look-ahead carry
generator. This device accepts the four pairs of Carry Generate/Carry
Propagate signals provided by the ALUs and establishes three output
signals equivalent to the carry-in lines for the high order slices.
Multiple levels of carry look ahead may be performed to accommodate
processors with word lengths greater than sixteen bits but this is
unnecessary for the system under discussion. The four bits of status
information which appear at the top slice, carry, zero, overflow and
negative, are latched by a 74374 and fed back to the conditional

control circuit for use by the test and branch class of instructions.

An eight bit data bus is utilised to maintain compatability with
peripheral and memory units which were readily available. For this
reason the sixteen bit results of an ALU mode operation must be
multiplexed out onto the data bus via the two 2920 latches by the
74253s. This is done under the control of the BYTE bit in the

microcode control word.

The basic macroinstruction word is, then, only eight bits long
and may, therefore, be latched into a single 2920. Extra bytes in main
memory may, of course, be used to provide parameters to the
instruction so this limitation simply requires that there be only 256
classes of macro operation. In the prototype system two 2716 type
EPROMs are used to map the eight bit instruction word to appropriate
code in the control store. This is done under .the control of a 2910
microprogramme counter/instruction sequencer. The 2910 is a twelve bit
wide microprogramme controller which comprises a programme counter, a

>.8

Bit-Slice Microprogrammed Display Processors . Chapter V

stack and a hardwired control PLA which provides sixteen special'
microinstructions selected by the I0 - I3 bits in the 2910 fisld of
the control word. In normal mode, sequential access of microprogramme
memory occurs as follows: the microprogramme counter is used to place
an address on the YO - Y1l outputs of the 2910, the corresponding data
word is than made available to the pipeline register (a series of four
2920s). The contents of the microprogramme counter are then

incremented and the cycle continues.

In order to provide more functions than might otherwise bé
possible in 4K of microcode, the 2910 is capable of conditional
execution and micro subroutine linkage. Such branches may be to
addresses specified in the microcode word in test and branch mode, or

may be performed relative to the contents of the pipeline register.

The 2910 provides an input NOT(CCEN) which if held low indicates
that the conditional test is passed. This signal has been mtljltiplexed
through to the condition code latch, the individual bits of the
condition code word being selected by three bits in the test and

branch microcode word. These bits provide the four assembler mnemonics

for conditionality: ONO, ONZ, ONC and ONN,

A thirty-two bit microcode word length was chosen to keep the
design relatively simple but is insufficient in itself to provide all
the functions required. Consequently several bits of the
microinstruction are fed to more than one part of the system and are
gated in accordance with the value of the top two MODE bits. In this
way, an effective microcode length of 50 bits is provided in three
modes. In ALU% mode the full range of arithmetic and logical functions

5.9

MODE

ALU CONTROL 00
LITERAL 10 0 =1 =12 =1
TEST & BRANCH Of
1(215 14 |5 |6 |7 |8 |9 |10[nn |12 13 14 1516 |17 |18o No_B mmummﬁmnmﬁmm%—uo& 32
MQDE(S m ~REGT-~1e—2910 =S [SHIF T AL| CONTRQL: BADDN—ste—~ L>axam
oommﬁagaﬁ=EMan:aazas=aE%E?EEZSO
MQDE[2 m REG 1—>1e— 2910 «NOPi— COND [=—-BRANCH ADD 5
0 [1[2|B R2|R1[RO[I3 ji2 |11 [io |x [x |x | 0f0]1|x]et oo>>>m_>m§>m_>m>+>u>~2>on
Mqpe(S m ~REG boto—+{= EHIFT lalu [colTkoL ;il.f BADDY—=r=—{ DATA
1 |0 [|B R2f1|Roji3 12 |1 0[S s1/solis |17 |16 |15 |14 13 [7]p|ps|as(s2| miBopa/p|pa pijpo
11 UNUSED

Figure 5.4 The Microcode Format for the 2901 System

Bit-Slice Microprogranmed Display Processors _ Chapter '

may be performed between two internal registe.rS, but no microcode
branch address or literal data is available. LIT% allows work with a
single register and a literal data field provided by the microcode. In
these two modes any branch address must be obtained from the pipeline
register if a 2910 statement other than CONT or JZ is to be used. The
only way an external condition code may be gated to the microprogramme
sequencer, and a branch or jump executed by way of a constant address
contained within the microcode, is by selecting the TST% or "test and
branch mode". The result of this is to increase the number of
microinstructions required to implement an algorithm with respect to
the equivalent fifty bit microwords but the saving in cost and

resultant ease of coding were felt to justify this compromise.

The test system was operated with a clock frequency of 3MHz, the
microcode being contained in EPROMS. In this way microcode could be
developed for a faster target machine using bipolar PROMS and

operating closer to 10MHz,

The format of the microcode is shown in figure 5.4, four bits of
every word are used to determine the direction and destination of data
transfer with the pipeline(the REG bits), and one to specify which
halfword is to be addressed. A further bit is used to signal the
presence of a valid memory address to the rest of the system. As
shown, the remaining parts of the word are functions of the mode in
which the processor is operating and are used either to control the
ALU/registers or to provide constants from memory. The last bit in
ALU% or TST% modes is used to initialise the state of the carry and,
as such, can be used to force an ONC condition to simulate an
unconditional branch. The timing for the 2901s is arranged to occur

5.10

Bit-Slice Microprogrammed Display Processors Chapter V

on the trailing edge of the clock. This ensures that the contents of N
the pipline, which is clocked on the leading edge, are constant during
an ALU operation. For simplicity, and to 'cut costs, no programme
counter is provided (e.g. 2930). Instead a single register inside the
ALU is used: this can mean that the microcode has to cycle whilst the
output control is low in order to cope with slow memory such as ACIAs

and PIAs,

5.4 The Micracode Cross-Assembler

The initial version of the microcode crossassembler was written
in FORTRAN IV on a Data General Nova III minicomputer. It was RDOS
'save file' compatible and uses the CLI and COM.CM conventions
normally associated with this operating system. This allows it to pick
up parameters from the command line and to perform preliminary checks,
such as the existence of source files, prior to the loading of the
major code segments. It generates filenames with specific extensions

in accordance with their use. They are as follows:

fname.SC A temporary file used by the cross assembler
fname.RB The microcode output file

frame.LS The listing file

fname.MP The MAP file

fname.ST. The Symbol Table for the cross assembly.

The Symbol Table file is normally deleted along with the
temporary file but may be retained by specifying the KEEP switch on
the assembly command line. The CLI command line used to generate a

2901 output file set from a source deck is either:

5.11

Bit-Slice Microprogranmed Display Processors Chapter V

Interactively:

AS2901(switches) fname

or in Batch:
1308 XASM
IEXEC AS2901(switches) fname SYSOUT/L
EOF

where the possible switches are:

/L Produce a Listing file.
/K Keep the Symbol Table after assembly.
™M Produce the Map file.

If the /M switch is not specified any subsequent .MAP pseudo ops will

cause a non fatal error.
5.4.1 General Cross-Assembler Principles

The memory overheads in the use of the Data General FORTRAN IV
co;npiler are high: approximately 2037B words for the simplest "Do-
Nothing" programme. With this in mind, it was clear that a programme
the size of the described cross-assembler was too iarge to be memory
resident on as small a machine as the Unmapped NOVA III. Unlike many
of the larger operating systems, RDOS allows the user a great deal of
control over the detailed run-time dynamics of aﬁ overlayed programme.
Because of this, the resource utilisation is best if a given programme

5.12

Bit-Slice Microprogrammed Display Processors Chapter V

is broken down into large sequential blocks which the overlay loader
is commanded to fetch in a simple predefined order. The heavily used
routines are best left core resident and, although it is against the
spirit of High Level Language programming, are often best coded in
assembler. It is fortunate that the FORTRAN/assembler interface is
well defined and easy to use in such a small processor as the NOVA
because it often proves helpful to be able to code the memory resident
sections with machine instructions. The overlay usage and operating
system calls, combined with the need to use assembler routines, means
thét the portability of‘this crossassembler is low and, indeed, the

major considerations in choosing to code in FORTRAN were:-

1) Subsequent readability, by both the author and others.

2) Speed of Implementation

In all, the NOVA assembler was resorted to for only four
subroutines, each for a specific and, hopefully, justifiable reason.
The routine GETARG makes several RDOS .SYSTEM calls that are
impossible from FORTRAN! Its sole task is to decode the COM.CM file
that the Command Line Interpreter (CLI) builds whenever a ‘'save file'
is to be executed. To do this with the I/O calls available from
FORTRAN would be a long winded affair and would form yet another
OVERLAY segment. The two routines BITE and GETC are also written in
assembler. In order to save space Data General FORTRAN packs two
characters per sixteen bit word and since the built-in routines which
handle single bit Boolean operations would have to be called many
times to manipulate esach byte, these routines were written to
circumvent the problem. As the very basic purpose of the cross-

5.13

Bit-Slice Microprogramnmed Display Processors Chapter V

i
}
assembler is character manipulation, it is a clear advanéage to have-
the get character (GTEC) and put character (BITE - ithe name is
historical) routines small, fast and memory resident. |
|

The final machine instruction subroutine is BASE which converts
an . internal representation of an integer into an equivalt'ant character
string in any base. The routine has to perform a t:iw'irty-two-bit
unsigned divide which is unavailable from FORTRAN. Oéua interesting
feature of this subroutine is the use of the hardware st;ck. None of
Data General's RDOS software utilises the stack regi:sters. This is
because the programmes originally ran on NOVA IIs vahich did not
possess a stack, and as a result, the user programmes are ;i’ree to make
what use they can of it. Since the FORTRAN compiler also executes on a
NOVA 1II it cannot allow access to such a useful CPU feati'l.Jre, however,
the BASE routine moves the address of a FORTRAN array;vto the stack
pointer and subsequently uses NOVA I stack manipulatic;n instructions
to provide ordered temporary storage for itself. Furtéjermore, the
stack may now be accessed either as an array from .FOR'I;»"RAN or as a
stack via the assembler routines written at Durham an&' contained in

7

the STACK.LB library.

The remainder of the programme modules (nineteen .subroutines in
five overlay segments) are written in High Level Language. A block of
unlabelled COMMON is used to contain switches indicating whether a
listing is to be produced, whether the MAP file is openeq, whether the
symbol table is to be kept, and whether the assembly is .over or is on
pass one; the file name of the soufce code; the cu1§_rent base and
location counter; the mode of the éssembly and a buffer which contains
the contents of the current source code line. Unlabelled 'COMMON was

5.14

Bit-Slice Microprogrammed Display Processors Chapter Vv

used as this is dynamically allocated on the run-time stack during
execution which keeps the memory requirements low (labelled COMMON

requires linkage space in each module).

Cross-assembly occurs by means of the following serial train of
events. The SETUP overlay is loaded and the input filename checked for
existence, the cross-assembler defaults are set and the five RDOS
files required by the programme are created; finally, the file
2901INST which contains the instruction definitions is opened. Any
failure which occurs during the attempts to initialise the file system
results in a fatal error, the programme aborts and returns an

appropriate system error code.

Pass one of the cross-assembly now begins with the construction
of the symbol table in the .ST filee GETLIN is called to read a line
from the sourcefile and to check for premature end-of-file. ITYPE is
now used to determine the instruction type. If it is a pseudo-op,
designated by a prefixed period, it is evaluated by the PSEUD
overlay.The arquments for the pseudo-ops may be absolute or relative.
If preceded by a '+' or a '-' the parameter is incremented (or
decremented) by the argument value: if not, it is set equal to the
argument. The .RADIX and .LOC pseudo commands change the values of
IRAD and LOC respectively, the .MAP instruction writes the current
location counter value (LOC) to the .MP file along with a map code
which represents the equivalent macro instruction and the .END
directive sets PASSl to .FALSE. The .DUSER command causes a 2901
instruction record of the type held in the instruction definition file

to be written into the .SC file.

5.15

Bit-Slice Microprogrammed Display Processors Chapter V

Every time a real processor instruction type is detected the
location counter is incremented and, provided no label is declared,
the next input line read. The LABELS overlay writes up to six
characters of the name of the label together with the current contents
of the location counter as a record in the .ST file. Once PASS1 is
false, the assembler work files are rewound and a second pass over the

source begins.

The action of the pseudo-ops on pass two is somewhat different
from that _ already mentioned. .LOC and .RADIX behave as previously but
.DUSER and .MAP are ignored. The .END construct causes the FINISH flag
to be set and the .TITLE instruction to identify the module as

undergoing pass two processing.

Machine instructions are built on this pass only. The instruction
definition file is searched for each sub-instruction type and the
contents of its record placed in the internal representation of the
microcode output words. If a subcommand is not found, the .SC file is
searched to see if it was defined by a .DUSER on pass one: any
outstanding subcodes are then flagged as errors. References to labels
are resolved in a similar way by means of the .ST file built during
the first pass. The GETVAL subroutine is also called during resolution
of addresses to allow references of the form "NEXT -1". As each line
is assembled the resultant microcode words are written into the output
or .RB file. Finally, once FINISH is set, the CLEANUP section is
called to delete the intermediate files and, if SYMB is .FALSE., the
ST file. A warning is printed on the console if this file is not

deleted,

5.16

Bit-Slice Microprogrammed Display Processors Chapter V-

5.4.2 The *SIXTH* Cross-Assembler

Since the processor was equipped with only 32K of memory, the
FORTRAN programme described above and presented in appendix B-5 was
heavily overlayed and all the major tables were built onto disk. The
result of this was that, as significant quantities of microcode were
written, the time taken for an assembly became unacceptable. For ‘this
reason the programme was rewritten in *SIXTH¥®, a FORTH-like reverse
Polish language developed at Durham (See Chapter III). Unlike FORTH,
SIXTH is a true compiler generating semi-optimised machine-
executable code. With this rewrite came a change in the programme
philosophy, which resulted in a less conventional, but more efficient,
utilisation of resources. The format remains that of a two-pass cross
assembler, but the system op-codes and mnemonics are defined as
SIXTH executable statements. Thus, on pass one, the source file is
scanned for labels which are compiled into the dictionary as CONSTANTS
of value equal to the current location counter contents. At the same
time pseudo-ops are evaluated and user symbols created by forming
normal #*SIXTH#* definitions in the same way tﬁat the *SIXTH* ODL
implementation defines blocks with the begin directive. A restriction
which occurs here is that the names of labels or user symbols are
required to be unique in terms of their length and the first four

characters. This has not, so far, proved to be a problem.

In order to avoid having to respecify more of the microcode than
is necessary, commonly used op-code combinations may be given a user
symbol name as described above. On the second pass the op-codés and

5.17

Bit-Slice Miéroprogra:m’ned Display Processors Chapter V

user symbols are interpreted by ¥®*SIXTH#¥, their effect being to write
the parts of the 32 bit microcode word they represent to the output
file. The mapping prom file is written at the same time by virtue of
the .MAP pseudo-op which outputs the value of the location counter and
a sixteen bit number which will form the macroinstruction code for the
CPU. Table 5.1 gives a list of the available microcode instructions
and their meaning. The cross assembler is called XS and is run from

SIXTH= by the following sequence.

ESIXTH*
>COMPILE XS

2901 System Cross-Assembler Rev 1.02
Restored from RDOS disk file XS

ok

Free Space = 007410 bytes

ASSE

>ASSEMBLE
Input file name ? GRAPHS
QOutput file name? PROMS

Map file name ? MAPS

Programme IS Relocatable

.TITLE GRAPHS

5.18

Bit-Slice Microprogrammed Display Processors Chapter V

assembly complete

SIXTH®
>

>

The formal syntax of the assembler input is included as an
appendix(A-5) but it follows the general rule that labels appear in
column one of the input field as do comments which are preceded by a
semicolon. The assembly mode is selected by adding a percent sign to a
directive and assembler pseudo-ops are prefixed by a dot. The *SIXTH#*
programme is entirely core-resident and occupies 7752B words as
opposed to the 24115B words used by the overlayed FORTRAN programme.
The #*SIXTH* system suffers in one main consideration, load time. The
assembler is compiled from source each time it is required and this is
longer than the equivalent load time'for an RDOS save file. However,
it must be appreciated that subsequent assemblies involve no load time
as once compiled the assembler is core-resident until FORGET is used
to chain another programme or the ¥*SIXTH®* system is closed down. In
execution this version is significantly faster since its disk accesses
and general I/O requirements are substantially less intensive than

those of the FORTRAN programme.

5.19

Bit-Slice Microprogrammed Display Processors Chapter V

5.4.3 The Principles of Operation of the #*SIXTH¥* Cross-assembler

An input and output buffer is maintalned in BUFFER space, whére
characters entered from the keyboard are normally stored. Two pointers
*] and *O are used to indicate the addresses of these areas of memory,
which are offset by 2008 words. This allows a maximum: input line
length of 25610 characters which is quite sufficient for the 13310
maximum length RDOS compatible text line. A variable PASS is used to
maintain the state of the assembly: it is set to one on the first pass
while the symb'_ol table is constructed, to two on the second op-code
interpretation péss, and to three when the assembly is complete. The
variable MAP is used as a Boolean flag to indicate whether or not the
1/0 channel used' to maintain the mapping prom file is open. HIWORD and
LOWORD contain, respectively, the most significant and least
significant sixteen bits of the thirty two bit output microcode word.
LOC is the value of the current location counter and CURRENT contains
the number of characters in the input line under consideration by the
cross-assembler. The #*SIXTH* word, load and store pointers(WE, WB, ST
and GT) for both input and input/output operations are reset by the
definitions IALIGN and ALLALIGN. After these have beeﬁ executed,
subsequent calls to word will extract a series of symbols, bounded by
spaces, from the input buffer, which can be passed thereafter to FIND

and EXECUTE.

The pseudo-op definitions are executed to produce the required
effects. The .TITLE instruction writes the string % TITLE % and scans
the input buffer for the next word. Its length and starting address
are determined and passed to SAY so that the segment name for the
current microcode section is written to the operators conhsole. END

5.20

Bit-Slice Microprogrammed Display Processors Chapter V

simply increments the value of PASS to indicate that the input source
file has been parsed comp'letely. Both the .l__OC and .RAD pseudo-
commands attempt to convert the next WORD f:o a NUMBER which is stored
in LOC (location counter) or RDX(Radix) as-appropriate. The .DUSER
instruction only executes on pass one: it puts in a call to : and then
scans the input line calling FIND and EXECUTE with the machine STATE
set to one, until a carriage return is encountered. A call is then

made to ; so that a new dictionary definition is formed. For example:
DUSER EXAMP RE LPC JZ ADD 11
is the same as:

TEXAMPRELPCXZ ADD 11 ;

and, indeed, once the cross-assembler has been compiled may be used
instead of the more normal ¥*SIXTH®* definition sequence at the

keyborad.

The first pass then continues with the following sequence of
events. A line is read from the input source file and the load/store
pointers reset, a check is made to see if end-of-file has been found,
and if so an ABORT is performed. The input buffer is then prepassed to
convert any tab characters to spaces. The first character on each line
is tested: if it is a semicolon the line is simply igndred as this
indicates the presence of a comment. If the first character is a
space, WORD is called to extract the next series of non-blank
characters from the buffer, the first-character, pointed to by WB, is
then tested for a dot. If a dot is found the line is passed to the

5.21

Bit-Slice Microprogrammed Display Processors Chapter V

interpret loop for execution as a pseudo-op, otherwise the location
counter s incremented to indicate the detection of a statement and
the line ignored. Should the first character on the line have been
anything other than a semicolon or a space the assembler woauld ha\}e
assumed the existence of a label and made a scan of the input buffer
for the colon Which delineates the end of the label name. This colon
would have been converted to a space in .order that a call to CONSTANT
would be able to retrieve the label name and add it to the dictionary.
In the mean time the value of the location counter would have been
placed upon the operational stack so that when the constant was formed
the label's address would be entered in the dictionary. The label may
now be executed as a definition to return the location counter value
it- represents. A restriction of this technique is that, in order to
conform with the #*SIXTH* conventions, the label must be unique in

terms of its first four characters and its length.

The first pass ends with the execution of the .END pseudo-op ond

the incrementing of the PASS value.

On pass two, the .MAP instructions are executed to cause the
location counter and the map value to be written into the output
buffer and written to the map file; the definition OPUT removes a
number from the stack and enters it into the output buffer as an ASCII
string with a number of leading zeros appropriate to the base set by

RAD.

Pass two is commenced by a call to RESET-PARAMETERS and REWIND
the source file. Each time a line is read from the input it is copied
to the output buffer at a character offset, appropriate to the base,

5.22

Bit-Slice Microprogrammed Display Processors Chapter V

in order to allow the location counter and microcode words I:o‘be
subsequently written in front of the line. Assuming a line does hot
begin with a semicolon the op-codes are executed in sequence by the
interpret loop and set appropriate bits in the two word output
variables. On this pass labels are ignored unless they follow the JUMP
directive when they are interpreted to determine the address to insert

into the microcode word for a test and branch type instruction.

5.4.4 The Microcade Simulator

The route from source microcode via the cross-assembler to 2901
system PROM or RAM is somewhat tortuous and the feedback to the
microprogrammer is slow. For this reason it is desirable to have a
simulator for the hardware which allows a sequence of
microinstructions to be interpreted, printing the contents of
registers and status words at the end of each simulated machine cycle.
Normally this requires the writing of a large software package in an
appropriate high-level language which will accept the output from the
cross-assembler and perform the simulation. The advantage of the
®#SIXTH* philosophy outlined here is that the simulator and the cross-
assembler are essentially the same programme. The only difference is
that the actual op-code definitions are changed so that their effect
is to update some VARIABLE locations used to simulate the registers in
the ALU RAM bank. The routine PUT which previously wrote the output to
the PROM file is modified to write a banner and the contents of these
variable locations to the system console. This is a result of the fact
that a valid micro-code source file is also a valid ®*SIXTH®
interpretable dictionary. The programmer simply COMPILEs the file SIM

5.23

Bit-Slice Micraprogrammed Display Processors Chapter V

which redefines the actions of the op-codes and the function of the

output definitions and continues exactly as per the cross-assembly.

5.5 Suitable Algorithms For Microcode

Microcode programmes have been used in the past to provide the
arithmetic and logical primitives for computer programming in the form
of machine instructions. It is with this in mind that the algorithms
for computer graphics are considered in terms of drawing and graphical
primitives. Basic drawing capabilities such as MOVE, DRAW and ERASE;
text scaling and positioning; nesting of graphics procedures and JUMPs
or CALLs in the display file; arithmetic/logical assignments,
comparisons and tests; viewing and_ viewporting; output control; solid
area scan conversion and polygon shading in accordance with some point
spread function; figure drawing by virtue of firmware DDAs; memory
transformation for scaling, rotating and translating pictures or their
constituent parts; graphical input; clipping, windowing, zoom and pan
provision and image editing are all basic machine level primitives
which can be performed on DPU memory using it essentially as

controller command stack and frame buffer.

If the division of labour is moved from the host processor's
graphics package towards the display system, then more sophisticated
data structures may be used and the microcode would perform the hidden
line or hidden surface removal on a higher level description of the
picture than the intensity bit map usually used in graphics hardware.
The scene may be represented by naming and describing the edges of its

5.24

Bit-Slice Microprogrammed Display Processors Chapter V

constituent polygonal facets or by the less usual Boolean surface
model. The advantage of the edge naming convention is that the
algorithms for most pictorial manipulations have been worked out
whilst use of the Boolean expression model is still in its infancy.
Consequently the algorithms which do exist are far from definitive and
for many of even the most common graphics transformations simply do
not exist (The use of a Divide and Conquer technique to simpify depth
calculations is a prime example). This lack of available algorithms
means that hardware which works with this model can easily become an
expensive mistake, as a result the use of a microcoded machine with

which methods and techniques can be more easily tested, is suggested.

The - ability of the microcoded machine to perform a series of
operations on data from a single instruction code also opens up the
possibilities of using it to great effect as a data structures
manipulator. The basic operations for maintenance of a data tree, say,
could be microcoded. A single macro instruction might then be used to
perform the addition of a node as occurs in the begin statement of the
ODL gsystem. It is to th';s end that any continued work with the 2901
system will be performed at Durham. The ultimate aim of which is to
produce an ODL "engine", that is a machine which executes ODL

statements as part of its basic instruction set.

5.6 Bumnhry,

The flexibility which is available to a user of Bit-Slice
microprocessor techniques solves many of the problems which wére
described in the previous chapter. The 2900 series, and slices from
other manufacturers, provides an integrated set of support chips which

5.25

Bit-Slice Microprogrammed Display Processors Chapter V

enable a designer to have a great deal of control over the way data
and address paths are used. The rates of information transfer between
blocks of memory are therefore greater than those prevalent in the
Fixed Instruction Set microprocessor applications so far discussed.
This is not simply because the bipolar technology employed in most
slice manufacture is inherentely faster than currently available MOS
processes but also because the hardware may be more easily tailored to

a particular application.

5.26

Bit-Slice Microprogrammed Display Processors Chapter V

Table 5.1

Assesbler Mode Control

ALU% Subsequently assembled instructions will be assumed to
be ALU format,

LIT% Subsequently assembled instructions will be assumed to
contain LITERAL strings.

TST% Subsequently assembled instructions will be Test and
Branch type.

Pseudo-0Op Codes

JTITLE Assoclates a name with a segment of microcode.

.END Indicates the end of a processable code segment.

.RAD Changes the radix in which LITERAL ﬁumbers will be
represented throughout the cross assembly.

.LOC Sets the locatlion counter to the value which follows.

MAP Writes the next value and the contents of the location

counter to the MAP file,
.DUSER Defines a new mnemonic in terms of old ones.

Reéglster-Bus Transfers

LPC Load from the address bus.
OPC Output to address bus:
LDAT Load from the data bus.
ODAT Qutput from data bus.

Address Control Codes

AEBL Valld Memory address.

ADIS Complement of AEBL.

HI Access the high byte of the address.
LO Access the low byte of the address.

2910 Control Codes

JZ Jump Zero or RESET the microprogramme counter,

CJS Conditional Jump to Subroutine via the pipeline
reglister,

JMAP Jump to address suppllied by the mapping PROMs.

5.27

Bit-Slice Microprogrammed Display Processors Chapter V

CJp . Conditional Jump to a Pipeline supplled address.

#pUSH Push the value of the microprogramme counter onto the
stack.

JSRP Conditional Jump to Subroutine via eilther the Reglster
Counter or the Plpeline reglster,

CcJv Conditional Jump via a Vector supplied from a PROM or
a LITERAL fileld for interupt servieing.

JRP Conditional Jump via either the Register/Counter or
the Pipeline register,

RFCT Repeat microinstructions For a Count which is preset,

RPCT Repeat microinstructions whose address is determined
by the Pipeline Register for a Count preset in the
reglster/counter,

CRTN Conditional Return from Subroutine,

CJppP Conditional Jump via the Pipeline register and Pop the
return stack.

LDCT Load the register Counter and continue.

#1,00P Test the end of LOOP.

CONT Continue with the next microprogramme instruction.

TWB Three Way Branch conditional.

RE Read from memory or I/0.
WT Write to memory or I/O.

ALU Shift Control Codes

Sz Shift and pad the word with Zeros.

SO Shift and pad the word with Ones.

SR Shift and Rotate the end bits of the word.
SA Perform an Arithmetic Shift.

Reglster/Register Transfer Codes

NOP No transfer Occurs.

RAMA The output word from the ALU is loaded into the 2901 B
reglster and the A register 1s written to the bus.

RAMF The result of the calculation is loaded into the B
5.28

Bit-Slice Microprogrammed Display Processors

RAMQD

RAMD

RAMQU

RAMU

register and 1s also output to the bus.

The ALU result is shifted DOWN and loaded into the B
reglster, The Q register is shifted down and the ALU
output written to the bus,

The output from the ALU 1s shifted DOWN and loaded
Into the B register, it is_also output to the bus.

The ALU result is shifted UP in accordance with the
shift specifiers and loaded into the B register as

well as written to the bus, the Q reglster is also

shifted UP.

The ALU output is written to the bus, as well as
being shifted UP and loaded into the B reglster.

AQ

AB

ZQ

ZB

ZA

DA

DQ

Dz

Source Register 1s specified by the A register and
the Desination by the Q reglster,

Source Aj; Destination B
Source Lit[0] Destination Q
Source Lit[0] Destination B

Source L1t{0] Destination A

Source Data Destination A
Source Data Destination Q
Source Data Destination Lit[0]

Aritbimetic Functions

ADD

SUBR

SUBS

OR

AND

NOTRS

EXOR

EXNOR

Add R to S

Subtract R from S
Subtract S from R
Loglcal OR R with S
Logical AND R with S
NOT R AND S

Exclusive OR R with S

Exclusive NOR R with S

Condition Code Control

ONC

On Carry

5.29

Chapter V

Bit-Slice Microprogrammed Display Processors Chapter V

ONN On Negative
ONO On Overflow
ONZ On Zero

ZC Set the Carry Flag to Zero,

0C Set the Carry Flag to One,

Special Purpose Dummy Operands

JUMP The ®#SIXTH® dictionary is searched for a CONSTART
definition which, if found, is executed to generate
the value for the location of a previously defined
label,

Bit-Slice Microprogrammed Display Processors

Table 5.2

There is no current map file

Undefined MACRO element!

End-of -File No END->

Unknown Assembly MODE

Shif'ts Unallowed in TEST mode

Unavailable ALU mode

WHAT?

Reglster out of RANGE

Only allowed in ALU mode

Unallowed Conditions only in TST

Undef'ined LABEL error

A .MAP pseudo-op has been
used and a Map file not
opened.

.DUSER could not find an op-
code or a previous .DUSER
which fits this mnemonic.

There 1s no .END pseudo-op.
Fault in ALU%, LIT% or TST%.

Attempt to specify an ALU
shift whilst TST% is selected.

The specified subinstruection
cannot be executed after ALU%.

Internal mode error. The
current assembly mode has
been lost!

A non-existant 2901 reglster
was specified.

A reglister trensfer has been
specified in TST® or LITY
mode.

An ON condition has been
included in an ALU% or TST$%
instruction.

On pass two a JUMP has
specified a label that was not
compiled into the dictionary '
by pass 1.

5.31

Chapter V

List of Photographs for this Chapter

Photographs
(a) 2901 System Prototype Wire Wrap Board
(b) Ditto

(c) onwards ... Demonstration Pictures

Chapter VI

Single Chip Display Controllers

Single Chip Display Controllers ‘ . Chapter VI

Chapter VI
Single Chip Display Controllers

6.1 Introduction

The terminology of the computer press describes current technical
solutions as "Fourth Generation". This phrase is used to imply that
the structuring of hardware architectures, which is directly related
to the fundamental components utilised in a design, leans towards
implementations which comprise Large Scale Integrated (LSI) circuits
as the basic building blocks. The motivations towards LSI are lower
costs, higher speeds, higher reliability and shorter design times than
are prevalent in multi-chip systems[71]). The new problems which face a
designer are the pinout and part proliferation problems. This is to
say that intra-chip communication between cells is inexpensive in
terms of design costs and processing, whilst inter-chip communication
is not[72]; furthermore, the requirement th_at a completely new
specification be written for each application, rather than use
standard parts, results in inefficiency. The initial design costs for
an LSI device are high but the production cost per unit is extremely
low} it follows that production costs for a multi-application chip are
considerably more favourable than those for a single purpose
specialised one. With the advent of VLSI technology, the lessons of
avoiding memory/processor dichotomys and of maximizing homogeneity of
function and hardware throughout the system, which became apparent
during the design of many of the currently available LSI circuits,
will become increasingly relevant. The philosophy that LSI leads to
Large Scale Distribution(LSD) is fundamental to the discussion of the
use of that technology for display applications[73). By Large Scale

6.1

Single Chip Display Controllers Chapter VI

Distribution I wish to infer that the ability to produce complex
circuit element blocks cheaply results in the mass application of such

blocks.

The modern use of raster scan graphics capitalises on the
technology which was required for mass produced television receivers,
on the falling cost of memory for frame buffers and, increasingly, on
the more common application of LSI design to the somewhat specialised
processing requirements of a graphics display. If we include mass
produced Random Access Memory of the modern genre (64Kbits and above)
in this definition of large scale integrated components, then it is
clear that such devices exhibit all the properties so far mentioned.
Their use is, obviously, not restricted to the expansion of frame
buffer memory and the resultant contraction of the overall system chip
count reduces the total cost of an application. In this way, memory
forms, perhaps, the prime example of a multi-application low cost
circuit. The construction of what are essentially graphics co-
processors, designed to relieve the CPU of much of the more mundane
calculation associated with bit mapped displays, is increasingly
common. As indicated above, however, it is important, from cost
considerations, .that these be general purpose "graphics engines" for
use in multiple applications, rather than be tied to a single
environment. There are cases where special purpose LSI design is the
only answer to a particular problem and these are discussed elsewhere,
but, by and large, there must be a reasonable market for the
integrated product in order to justify the investment in time and
effort required to produce a reliably debugged design. The simplest

way to ensure this is by the production of multi-purpose components.

6.2

Figure 6.1 The Texas 9918 VDP Display Processor

—1 CPU Interface Command and
$ & Interrupt Base Address
> Control Logic Registers
MUX | RAM ADDX
INT 1
R/
CSR Compare
csW PLA
MODE Contro] i
EXTN
m>m COMP
XTAL Clock Logic Video Colour Bus
CAS '
T
RESFT - — mn.u. mW.. m
=)
2.5 5
S 1 Sprite Down Sprite Shift | S %
> Counters Registers Colour Registers |+ 8 .%.
> a3
g a<
[a

Single Chip Display Controllers Chapter VI

The effects of provision of a graphics co-processor can be far-
reaching, but the most advantageous is the possibility of réising the
level at which communication between the host computer and the display
system occurs. The scene description which has normally been used has,
at the display level, been that of a series of points or lines, or at
moét a polygon list. By increasing the processing power in the
graphics controller other higher-level scene descriptions, which are
subsequently rendered by the controller, may be sent from the host.
The result is to reduce the bandwith between the central processor and

the display memory, and, almost inevitably, speed the display process.

6.2 The Texas Instruments 9918 Video Display Processor (VDP)

The TMS 9918 provides maost of the functions required for a table-
driven graphics display controller, and handles the refresh timing and
address multiplexing for up to 16K of 4027 or 4116 type dynamic RAM,
It provides an NTSC standard video output signal which can be used to
drive a video monitor or to modulate a carrier for:- use with a
domestic television. The VDP is a dedicated processor which
essentially simplifies the pixel addressing in the video RAM (or
VRAM). It is directly wired to the RAMs to avoid the need for a
dynamic memory controller. The advantages of this are that system cost
and complexity are kept low and no time is lost in refresh access
contentions. The VDP performs a memory access every 372 nanoseconds:
interposing a memory controller would slow down VRAM access

considerably.[74]

Figure 6.1 shows the internal organisation of the 9918. It

6.3

Single Chip Display Controllers Chapter VI

comprises three parts: the CPU interface, the display logic and what
is known as the sprite processor. The interfaces to the VRAM, CPU and
display are scheduled by the VDP in an essentially asynchronous -
manner. The CPU communicates via an eight-bit bidirectional data bus
and three control signals; CSR (Chip Select Read), CSW (Chib Select
Write) and MODE. The interleaving of CPU and refresh VRAM access is

controlled by the VDP.

The sixteen bit VRAM address is loaded by two eight bit data
transfers from the CPU to an internal VDP address register. If the
most significant bit of the address is zero then the fourteen least
significant bits are used to address up to 16K of display memory
directly. If the most significant bit is a one, then three of the top
eight bits are used to select the command, base address and backdrop
colour registers internal to the display processor - the contents of
the least significant eight bits of the address being copied to the

selected register.[75]

As soon as the address is loaded, the VDP schedules a CPU read
cycle and puts the data into the CPU data reqgister - this may be read
after eight microseconds. The address register is auto-incremented and
the next location read automatically, allowing successive displ.ay
memory locations to be accessed without continually writing the
updated address to the VDP. A write cycle follows a similar sequence -
the data being passed to the 9918, written to VRAM and the address

incremented.

From a pregramming point of view the TMS 9918 divides the screen

into 767,, areas, each containing 8 x 8 pixels. There is a single

6.4

Single Chip Display Controllers Chapter VI

entry for each in the Pattern Name Table which is effectively a
pointer to another entry in the Pattern Generator Table. Each element
of this list is eight bytes long and defines which of two colours CO

-or C1 is used to display a given pixel.
As an example, the pattern:

ciciclicicicicic
cococoCo G @ coC1
Co Co Co Co Co Co Co C1
cocicicicicicicaa
Co Co Co Co Co Co Co C1
Co Co Co Co Co Co Co C1

cicicicicicicica

represents the character '3'. The component required for the Pattern
Generator Table is arrived at by writing a logical 0 for colour CO and
a value 1 for colour C1l. Collating the resultant bit pattern into a

series of eight two digit hexadecimal numbers the entry becomes:
FF,01,01,7F,01,01,01,FF

A name is assigned to this list such that it points to the start

address of the pattern when calculated by the expression:
name * 8 + offset = start address of pattern
where offset is a value contained in one of the VDP base address

registers,

6.5

Single Chip Display Controllers

Hex Code

00
01
02
03

o4
05
06
07

08
09
0A
0B

oc
oD
OE
oF

Colour

Transparent
Black
Medium Green
Light Green

Dark Blue
Light Blue
Dark Red
Cyan

Medium Red
Light Red
Dark Yellow
Light Yellow

Dark Green
Magenta
Grey
White

Black Level
Colour Burst
Sync Level

Table 6.1

1.00

0.00
0.00
"0.""0

Table 6.1 VDP Colour Assignments

Chapter VI

Single Chip Display Controllers Chapter VI

The final stage in describing an area of the screen is to define
the two colours CO and Cl. This is done by making an entry in the
Pattern Colour Table. The first two locations of the Pattern Colour
Table defines the colours for patterns 0 - 7, the second for 8 - 15
and so on, giving a total table length of thirty two colour sets. Each
set is eight bits long and defines two colours providing a four bit
colour resolution defined in Table 6.1. It is in the allocation of
table space that the major flexibility of the VDP is realised, as it
is possible to have two Pattern Generator Tables in memory and switch
between them by rewriting the base address register. In this way a
display character set may be changed dynamically by the transfer of a
single byte from the CPU. Figure 6.2 represents the required linkages
between the various data tables which are used, by the code described

later, to generate an image.

The 9918 has clearly been designed with an eye to the lucrative
"computer games" market. Its ability to provide a reasonable degree of
low-cost, low-resolution animated graphics should make it an admirable
contender for much of this trade. Its use, however, as a tool for
"serious" graphics is perhaps somewhat more limited, as it is
nececessary, as will be shown later, for the user to provide a
relatively large quantity of "clever" software in order te perform

some essentially simple tasks.

The VDP is an object oriented processor: to display a particular
shape it is necessary to divide it into 8 x 8 cells and create a
pattern definition for each. The problem of drawing a series of,
possibly random, lines across the display is somewhat more

6.6

Single Chip Display Controllers Chapter VI

complicated. The simplest solution is to define a line graphics area
on the backdrop plane and to fill this with ascending pattern names.
To draw a line, the patterns it will pass through are calculated and
the appropriate pixels updated. The major draw-back to this approach
is apparent when coloured lines are considered. As mentioned
previously, a single entry in the colour table maps to eight pattern
definitions and thus it becomes difficult to ensure that lines do not
suddenly change colour as they cross from one area of the screen to

another.

To avoid this the available colours must be restricted and colour
maps maintained within the host's memory. By assigning the patterns as
required and not linearly, a greater deqree of flexibility is
introduced, but the load on the host and the programmer is increased
which is, unfortunately, contrary to the philosophy of a Display

Processor Unit (DPU) system.

For still more complicated displays it is possible to run into
problems o-ver the number of available patterné. The VDP chip can only
maintain 25610 different patterns simultaneously. If more are
required, either two VDPs must be cascaded together, with the external
video input of one being provided by the NTSC output of another, or
patterns must be "saved" by using t-he intelligence of the host
processor to prevent reallocation of effectively similar patterns.
Both of these methods suffer from drawbacks: cascading increases the
cost and complexity of the system; while pattern saving increases
processing time and interdependance of the host and display
processors. From some of the examples shown in Appendix B-6 it will be
apparent that such pattern saving routines are non-trivial.

6.7

88jqDL [0J}U0D dQA oyl Z°g 9.nbi4

AV1dSid AVdSid
- o}oQ
83}14dS ™ Kau3
uJie}}dd
Ai3u3
o3uds o |
dnojony H 3NVN
9[qo | 8]q0 | e[qo L 8[|qo L
Jojbieuss) o3nqi4lyY o|qo 1 Jo}oioues) SWDN
8}l4ds 8}j4ds anojo) i UJ9}3}0d uJe}}od

Single Chip Display Controllers : Chapter VI

Sprites are the VDP's thirty two prioritorised and movable
character planes. Each plane is transparent with the exception of a
single pattern which is defined by the SpriterGenerator Table. The
position, colour and size of an individual sprite are held in the
Sprite Attribute Table - this means that the .position of such a
picture element may be updated by a two byte host-VDP transfer as
opposed to the time consuming display rewrites necessary with a bit

mapped picture system. See Figure 6.2.

The VDP has four sets of sprite display hardware so that up to
four sprites may appear on a given line. If a violation of this
condition occurs, the lowest priority sprite is blanked, an interrupt
flagged and the number of the offending sprite is loaded into the VDP
status register in order that it be made available to the Host. Sprite
processing occurs in three stages. Because there are a limited number
of memory accesses during horizontal retrace, the sprites are pre-
processed, in terms of their vertical position, to determine which
characters will be shown on the next line. The auto-incrementing
Sprite Number counter is used along with knowledge of the Sprite
Attribute Table base address offset to determine the vertical position
of a sprite, the vertical screen position count is subtracted from the
position attribute just fetched and the result compared with the size
and magnification parameters to determine if a pixel must be set on
the next line. If the sprite is to appear, its identification number
and a tag bit to indicate that it is a valid location are pushed onto
a first-in first-out buffer (FIFO): this pre-processing sequence

continues with the next sprite number until the stack is full.

6.8

Single Chip Display Controllers Chapter VI

Once horizontal retrace has started the information in the FIFO
is used to fetch the display ‘data for the sprites which are to appear,
the two bit Attribute Counter is set to zero, the output from the
stack checked for the tag bit aqd its value added to the base address
register. In this way, the vertical position attribute is retrieved
from memory and placed into the subtracter, the attribute counter is
incremented to point to the horizontal position which is then copied
to the First Sprite Downcounter in the display hardware. After another
increment to the Attribute Counter, the name is moved into the Name
latch which is empty during retrace. In a similar way, the colour is
latched. If the magnification bit is set the vertical attribute is
right shifted and then the vertical counter contents subtracted from
it -~ no shift is performed if the magnification is zero. The result of
this calculation, along with the name and sprite descriptor table base
address, allows the VDP to access the eight bits of the current line.
If the size option is set, a second byte of shape information is
passed to the display hardware by virtue of a parallel-in, serial-out

shift register.

A "leftmost one" priority selector logic is used to determine
which of the many possible colour registers is to be gated onto the
colour bus on a dot by dot basis. If a colour register contains the
code which represents the special "transparent" colour, then the
corresponding shift register is simply ignored by the prioritiser so
that lower priority planes will show through. The shift registers dump
data to the display at a rate of one shift per dot for single
magnification or one shift every other dot for magnification x2. If no
sprites are active the current pattern is shifted through the Pattern
Shift register to provide the backdrop.

6.9

Single Chip Display Controllers Chapter VI

The horizontal and vertical counters are used to drive the
horizontal and vertical Programmable Logic Arrays(PLAs) which generate
the VDPs major control signals. It is important that the external
synchronisation input controls the reset and clock rates of both of
these counters so that VDP generated images will be stable when mixed
with a video signal. This is provided for via the SYNC input, for a TV
type signal, or by running in open loop sync from a single clock in
the case of multiple VDPs. The colour bus decoder generates the
sixteen control signals for colour and converts the horizontal and
vertical contro! information into blanking, burst and sync for the

composite video-out line[76].

6.3 The Single VDP Controller System

The initial system implementation comprised a single Video
Display Processor which operated under programmed I/O on a Data
General Nova III minicomputer under the control of the #*SIXTH#®
programming system. The Data General programmed I/O system is actually
very simple. A sixteen bit open collector data bus is used to transmit
the inverted data signals to all the interface cards in the CPU rack.
This bus is also used to gate data back to the CPU. A further six bit
device select bus is used to address the particular interface. Three
input and three output strobe lines are available and these correspond
to the data out (DOA, DOB, DOC) and data in (DIA, DIB, DIC)
instructions available on the Nova. An output cycle proceeds as
follows: The data and device select code are placed on to their
respective busses, the data appearing shortly after device select.
Once both these highways have settled, a strobe signal (DOA, DOB or
DOC) is applied to the interface. During this pulse, usually on the

6.10

(]
=]
M
2
®]
vod VLSV L YiEVL
| LLS 3—t3
ydniieju] oAoN o) . “ﬂ —en o -1 S8R] oA 3 -
1 J
sv5H) Svd >
“via
d0d
LT _I.“uLl IC
A4
g g g

J0ss020.d Ap|dsiq JOA oyl Z°9 e.nbig

Single Chip Display Controllers Chapter VI

trailing edge, the interface must latch the data to an on-board
register. Input to the processor is essentially similar, the device is
identified, and an input strobe (DIA, DIB or DIC) applied to .the
interface. The I/O controller must gate data from an on-board register
through a series of open collector bus drivers, onto the data highway
during this strobe. The CPU reads the data sometime after initiating

the strobe in order to ensure that it is valid.

Synchronisation of interface states is maintained by means of a
start and clear strobe from the CPU and an associated BUSY/DONE line
from the 1/O card which is set whenever the device is referenced. No
I/O instructions (NIO) are available to control these signals without
performing data transfer. In this way, a device can be cleared or
initialised by a NIOC with no need for activity at the interface
latches. It should, perhaps, be mentioned that the start and clear
lines are asserted towards the end of a device select period, after
any input/output operations would occur. In this way it is possible to
combine two functions with instructions like DOAC which performs 1/0O

and then clears the interface.

Figure 6.3 is the circuit diagram for the hardware of the
interface. It shows that two of the NOVA's, 'data out' instructions
are used: on Data Out A (DOA) data are latched to the interface and on
DOB a VDP instruction is executed. Only eight bits of the data bus are
used as the printed circuit board (see photographs at the end of this
chapter), which was designed for this system, was also used with other
smaller microprocessor systems. The DOB line is used to pulse the VDPs
CSR,CSW and MODE lines in accordance with the templates of Table 6.2.
Two *SIXTH* definitions A and B are used to perform output to the

6.11

Single Chip Display Controllers Chapter VI

interface and to define ®CSR and *CSW, which are used to pulse the

VDP's read and write lines respectively.

Although programmed 1/O is used, the *SIXTH®* programs enable the
video RAM to be considered as an extension to NOVA memory, the words
VDP! and VDP@ being used in the same way as ! and @W. The *SIXTH* word
@W is logically equivalent to FORTH's @ but the symbol @ is reserved
for indirect references when used with the in-line assembler
statements, in order to be consistent with the Data General RDOS
assemblers. As a result of thié it is possible to use VRAM as a

programme and data store as well as display memory.

A complete listing of the #*SIXTH* words used to control the
9918/NOVA interface is given in Appendix B-6 and a brief description
of the action of some of the more important definitions is presented

here.

VW takes an argument from the operational stack and writes it to
the next available location in VRAM. This location is pointed to by
the VDP's auto-incrementing register. This is achieved by setting up
the data and strobing the control lines with machine level

instructions contained within this high-level colon definition.

VR accesses the currently addressed VRAM location and places its
contents on the top of the operational stack as is consistent with

SIXTH memory access words.

WADDX and RADDX are used to set up the read and write formats,

removing a sixteen bit number from the operational-stack and placing

6.12

Single Chip Display Controllers

Operation

Table 6.2

Data Assignments

2 3 4 5

6 7

Cs

Chapter VI

Write Reglster
Data
Register

Write VRAM
Address
Address
Data

Read Reglister
Data

Read VRAM
Address
Address
Data

A6

DO

DO

A6
0
DO

AT

D1

D1

AT
0
D1

A8 A9
A0 M
D2 D3

A10
A2
DY

A1
A3
D5

D2 D3 D4 D5

AN
A3
D5

A8 A9
A0 A1
D2 D3

A10
A2
Dy

A12 A13
AL A5
D6 D7

D6 D7

A12
AY
D6

A3
A5
D7

0

1

Table 6.2 The VDP Register Assignments

Control Lines

W CSR MODE
1 1
1 1
1 1
1 1
1 0
0 1
1 1
1 1
0 0

Single Chip Display Controllers Chapter VI

it, in the appropriate form (Table 6.2) in the auto-increment
register. Thereafter a single byte transfer is all that is required to

read or write succesive locations, thus:-

0 RADDX VR VR VR VR

will read the first four VRAM locations.

RW is used to write to a VDP register, writing the data with one

data out operation and setting up the register address with another:-

50 RW

will write five into the base or zero register.

The VRAM store and access words are defined by :-

: VDP@ RADDX VR ; (Read) : VDP! WADDX VW ; (Write)

which maintains the data, address and operation format normally

associated with the reverse polish language. Hence:-

4 3F VDP!

will write four into location 3F in VRAM and 3F VDP@ will return four

to the operational stack.

Pointers to the display generation tables discussed previously
are maintained in the variables SGEN-TABLE, PGEN-TABLE, SPRITE-TABLE,

6.13

Single Chip Display Controllers Chapter VI

PAT-TABLE and COL-TABLE (which points to the colour table map in
pattern and multicolour graphics modes). These variables are only used
to load data from the host CPU to the VDP co-processors VRAM and
consequently, once a diéplay has been set up, their contents can be
varied and a second picture 'drawn' off-screen. The PATTERN and PAT
routines are used to write data from a mass-storage device (or the
console) to VRAM and to copy a segment of CPU memory to VRAM

respectively. The syntax for their use is:-
(i) PATTERN (mapl) (map2) (map3). ..

e.g.
SF PATTERN 00 FF FF 00 AA AA 00 FF

th

which writes the pattern defined by the (map)s into the i = position

in the pattern table and:-
: (name) PAT (mapl) (map2) (map3) c e e 3}

e.g.

: TREE PAT 51 FF 52 FF AA 01 20 AO ;

which creates a dictionary entry name which comprises an array in CPU
memory which contains the (map) values.

The PATTERN command is designed to be interpreted, and not
compiled. It removeé the (map) values from the input stream by

6.14

Single Chip Display Controllers Chapter VI

performing a series of WORD NUMBER operations. Since these values are
only available during the INTERPRET phase of the *SIXTH* loop, (WORD
and NUMBER operate on the current buffer only) the word PATTERN, which
is IMMEDIATE, must be used with care in higher-'level definitions. If
too few parameters are provided a stack underflow will occur. This
definition could have been altered to take its DO loop limits to be
the number of items on the operational stack by using NON to push SP -
base address of the stack. This was not done, however, as it was
considered desirable that an error condition should occur if a

particular pattern element was undefined.

The word VRAM is used to fill display memory interactively by
means of input from the keyboard. An "=" prompt is printed and numbers
are read from the standard input stream and written into successive
VRAM locations. Similarly VRAM-LIST writes the contents of a specified

section of display memory to the standard output path.

Pre-defined patterns may be transfered from CPU memory to the
video display tables by use of the words PAT-LOAD, SPRITE-LOAD,
ATTRIBUTES and BACKDROP, and (assuming the ASCII character set
contained in file CHARS has been INCLUDEd) then VDP-SAY will display a
text string on the monitor and VDP. or VDPO. may be used to display
numerical values. Movement of characters defined in the sprite value
is performed by the definitions INCX,DECX,INCY and DECY in conjunction

with the variable INCREMENT.

The listing of file DEMO included in the appendix shows how the

driver routines may be used to produce a moving picture of some

6.15

Single Chip Display Controllers Chapter VI

complexity. (See also the photoqgraphs which appear at the end of this

chapter).
6.4 The Multiple VDP Controller System

As has been mentioned, the restriction on the number of available
pattern definitions and the number of sprite characters which may
appear on a single line was considered a major obstacle to the use of
the VDP as a tool for serious graphics work. One way to overcome this
problem is to cascade multiple display controllers, the video
compatible output of one being fed to the external video input of the
next stage. Whilst not improving the overall 256 x 192 resolution, the
number of available patterns and sprite planes is doubled. The
interrelationship of the timing elements for each of the VDPs is

plainly critical.

The composite video is generated from a 'resistor' tap selected
by the decoded four bit colour bus to form a simple digital to
analogue converter. The synchronisation, blanking, colour burst timing
and the six 3.58MHz colour clocks which form the chrominance levels of
yellow, red, magenta, blue, cyan and green are used to switch the
colour bus at a rate of 5.3MHz in order to establish the pixel clock
which produces the 256 dots per scan line. In the case where a VDP is
locked onto a television broadcast signal, the colour sub-carrier is
maintained in phase with the chip's interfal clocks by use of a phase
locked loop running at three times the colour sub-carrier frequency
(10.7MHz) which is subsequently divided down internally. The loop is
locked with the red phase 3.58MHz VDP output clock. By adding a delay
to the 10.7MHz input, a tint control can be realised.

6.16

Bit O ._._l MODE Video Out
CSR
CSW | |
Bit 1 r_._w | |
R 2
vl
._.._.. S Video In
DOA — - HWHSo
2l a
> Wﬁ.llllh)
’ ||
[=MODE — |
CSR Video 'Out |
] CSW %
T < 1]
S ve)
%)
N
DOB o
o —

FIG 6.4 DUAL VDP'S

Single Chip Display Controllers Chapter VI

Horizontal and vertical sync are maintained by supplying a
composite synchronisation signal to the tri-level SYNC/RESET pin on
the VDP. This signal must be level shifted to provide a positive going
synchronisation signal which varies between twelve and five volts in
order to avoid accidental VDP RESET commands. The positive going edge
of a signal whose amplitude is greater than five volts is used to
reset the horizontal counter and opens the external video gate in
order to set the currént line scan. Vertical sync is considered to

have occured when a pulse longer than 7.2 psec is detected.

It is simpler to interface two VDP's together than the more
general case described above. No sync stripper is necessary, nor are
phase locked loops. The system configuration used is shown in figure
6.4: the VDPs run from the same crystal frequency source and are reset
together by a NIOC to the interface. This CL signal synchronises the
internal states of each VDP and allows them to run, subsequently, in
open loop sync. In order to enable the video mixing circuitry, it is
necessary for the device initialisation software to place the second
display processor into external video mode by setting the appropriate
bit in its control register. The external video bias resistor is used
to change the luminance relationships and to produce a possible thirty
different colours. By slightly shifting the clock inputs the
chrominance relationships may also be altered to vary the exact makeup

of the available colours.

Reference to the circuit diagrams of figures 6.3 and 6.4 will
also reveal several changes to the interface circuits. The timing for
the CSR,CSW and MODE lines is now performed by a series of monostable

6.17

file:///isec

Single Chip Display Controllers Chapter VI

multivibrators, enabling a data transfer to be completed on a single
I/O instruction. The bottom eight bits are written to the VDP and the
most significant output bit is used to control the'timlng of the MODE
control signal. If this top bit (Bit 0) is set then MODE will be
pulsed low prior to a CSW or CSR control sequence: if it is not set
the MODE line will go low after the select and be forced high before
the end of it. The second (Bit 1) binary digit is used to control
which of the two possible selects is used. A logical one causes the

CSR strobe to be applied and a logical zerb the CSW pulse.
The individual VDP's are selected by different output control

lines: one is written to on DOA and read from on DIA, whilst the other

responds to DOB and DIB. In this way the base level definitions for

each VDP must be redefined thus:~

: WADDX POP DOA 0 60 100 POP DOA 0 60 ;

: RADDX POP DOA 0 6D 0 POP DOA 0 60 ;

: VW 100000 LOR POP DOA 0 60

: VR 140000 LOR POP DOA O 60

These new definitions may be replaced in the software previously
described and the multiple system used in much the same way as the
single VDP interface. In the test system a variable CURRENT-VDP was
used to determine whether the hardware should be addressed by DOA or

DOB instruction types.

6.18

Single -Chip Display Controllers Chapter VI

¢ VDP1? CURRENT-VDP @QW 1 = ;

(If we are addressing VOP No. 1 this is true)

¢ VW 100000 LOR POP VDP1? IF DOA 0 60 ELSE DOB 0 60 THEN ;

(If not VDP 1 then attack VDP 2)
6.5 Summary

The increase in flexibility which accrues as the result of
multiplication of 9918s is quite marked and serves to illustrate the
potential of an expandable system design. The low-cost nature of the
display system so formed and the relative absence of external
circuitry make a graphics terminal based on the Texas chips an
attractive proposition for object-oriented low resolution work. Its
ability to interact with external broadcast signals and to mix video
information from different sources is an additional incentive to its
use. Titling of pictures from a camera, VTR, or video disc is made
elementry by use of predefined patterns written onto the backdrop, and
the thirty-two sprite planes may be utilised to move cursors or
similar objects over a television picture or a synthesised display
produced by another video processor. Its major drawback is in the
nature of the objects it can handle and the limited resolution it has
to offer. An interesting use for it, however, may be as a digital
video post-processor to one of the more sophisticated display systems
to be discussed later. In this way a graphics system with the
qualities normally associated with a 'line-drawing' low cost raster
display could be combined with the object manipulation capabilities of
the VDP, the video signals for the one being simply superimposed upon
those of the other.

6.19

Single Chip Display Controllers Chapter VI

6.6 The Thomson EFCIS 9365 Graphics Display Processor (GDP)

The Graphics Display Processor (GDP) is the result of work
carried out jointly by the French semiconductor company Thomson EFCIS
and the Ecole Normale Superieur in Paris. The principles of its
operation were first laid out in a paper to the 1979 Siggraph
Conference [77] by M. P. Matherat. It was seen as an enhancement to
the, then prevalent, MATROX[78] and Motorola[79] display units which
allowed only point-by-point modification of the frame buffer. Some
four years after the announcement of the design, (an N-channel MOS
integrated circuit of approximately 2,000 gates equivalent
complexity[80]) the component is readily available commercially. When
the initial design work was done 64k dynamic RAM parts were
unavailable so the structure had very much the 4116 types in mind,
although, as shown later, not many changes are required to use 64K
RAMs, The Processor is capable of providing 512 x 512 resolution
(approximately 70ns pixel clock rate) on a standard television
monitor. The frame buffer is read in parallel into high-speed Schottky
shift registers in order that slower memory (down to 350ns cycle time)
can be used. This technique is quite common in raster graphics systems
as it is often the only way a stable image can be generated. The
overhead on its use, however, is that writing a particular screen
location becomes significantly more complicated than is the case where

a more simple memory map is used.

Refresh of the screen image takes only 57% of the GDPs available
RAM access time, the remaining time is free for picture update
accesses. It is this time consideration which determines the maximum

6.20

THTALEE B 2

f || P

| AN
i_: thi |
Smw T
g! . .
V]

Bl I <

-ty

o

3

©
It-ou l

Single Chip Display Controllers Chapter VI

drawing speed (approximately 1l.3psec per point) of the GDP. Two
fwelve-bit registers are used to point to the location iﬁ memory which
is currently of interest. This gives an effective addressing range of
4096 x 4096 internally, but inter-chip connection considerations
reduce substantially the actual memory addressing capability

available.

The GDP, effectively, does a vector to raster conversion, "..it
'draws' in frame buffer memory, like a plotter draws on paper.."[81].
Vectors are specified in what Pavlidis[82] calls the differential
chain code system. The starting co-ordinates of the line are specified
by two registers and the changes in X and Y by two DELTAX DELTAY
registers. The sign of this 'slope' information is a function of the
plot command, Plot-Positive or Plot-Negative. If the direction
required is parallel to an axis or along a diagonal, one of the DELTA
registers may be ignored - this increases the plot throughput rate and
results in the longest diagonal being plotted in only 700psecs. The
alogorithm used is a modification of that established by J.F.
Bresenham (See Listing 6.1)[83], the difference being that the
internal representation of values is as their ones-complement. As a
result, the roles of the two DELTA registers become similar and there
is no need to swap values between them as in other

implementations[84].

The internal organisation of the GDP is shown in Figure 6.5, The
vector generator consists of two adders, a. multiplexer and a feedback
register. A modulo-DELTAX counter is incremented by DELTAY at each
clock cycle to form a DELTAY-tuple count, it overflows at a frequency

fout Which is defined by the relationship:-
6.21

Single Chip Display Controllers Chapter VI

for ~ BTAY o
where fin is the clock frequency. This "carry-out" signal is used as
the' comparison signal which changes the mode of operation, that is the
increment of X or Y registers. Since the DELTAX, DELTAY registers are
eight bits long, the maximum line increment is 25510. It is,
therefore, necessary to use several "plot-line" instructions to make

up the longer lines which might be required.

The GDP also provides internal character generator circuitry
which allows the ninety-six printable ASCII characters ta be drawn as
5 x 7 dot matrices. These dot sets may be scaled by placing
appropriate X,Y scale factors in the CSIZE registers (these registers
are an addition to the commercial chip - Matherat used the X/Y
registers in his original implementation) up to a maximum scale factor
of sixteen. Character generation occurs by means of an up-and-down
raster scan of the points required to generate the character: in this
way, after output of one symbol, the addresses for the next character
position will be available. The maximum screen capacity, for a 512 x
512 resolution display is sixty four lines of print, with eighty five

characters per line.

This same generator hardware can also be used to draw and fill
rectangular screen segments - a useful facility for "three-
dimensional" or moving displays. A more general palygon fill must,
however, be provided by the programmer, either by sub-division into
rectangles or at a lower level by using lines and pixel writing
information. | |

There is provision, within the DPU hardware, for the attachment
6.22

Single Chip Display Controllers Chapter VI

of a light-pen. The output from a phototransistor is used to generate
a clock pulse to the LPCLK input. When a '"read pen" instruction is
encountered in the display file, the following TV frame is forced to
white, a count is started in the two light-pen position registers, and
B; rocedure Bresenham(var x,y,deltax,deltay:real);
(* The procedure draws a line from pixel position

X,y to a point defined by x+deltax,y+deltay *)

registerzinteger; (* Some Temporary Storage ¥)
beqin
register:=-deltax div 2;
while (x > deltax) do
begin

plot(x,y); (* Set Point at current Raster Position *¥)
X:=x+1;
register:=register+deltay;

if (a >= 0) then

begin
y:=y+l;
as=a-deltax
end
end

end;
Listing 6.1 A Modified Bresenham Algorithm

this is latched on the rising edge of the LPCLK signal. The host

processor may then read the position of the "pick" from these

Single Chip Display Controllers Chapter VI

registers.
6.7 The Durham University GDP System

The Durham University system makes use of a Thomson EF9365C
Graphics Display Processor to provide a 512 x 512 interlaced scan
display system. As shown in the circuit diagram of figure 6.5
Mitsubishi 64K dynamic RAM chips are used to provide the 512 x 512 x 3
bit frame buffer. Eight bit words are written by the display processor
to a single plane of frame buffer RAM and colour is produced by ANDing
this write signal with the output from a COLOUR register which is
under the control of the host, a Data General Nova III minicomputer.
The bésic clock cycle of 14MHz is divided down to generate output RAM
accesses every 0.56pus. Eight consecutive bits of information are read
from each colour plane into highspeed Schottky shift registers, and
then shifted out serially at the basic pixel clock rate. These three
serial data streams are summed together in appropriate proportions and
shifted up onto a video "pedestal". The frame and line sync
information generated from vertical and horizontal blanking control

signals is superposed upon this to provide a composite video signal.

The use of only twenty four 64K DRAMs would, in fact, cover the
addressing range of the GDP (for three colour planes) twice over. This
could have been used to extend the available depth of the frame buffer
to six bits and generate a more subtle colouring scheme, but for the
applicétions considered - notably a replacement for the Tektronix 4027
- (See Chapter IV) it was felt to be more important to be able to
provide the "offscreen" drawing facility. A single bit bistable is
used, therefore, to switch the addressing range of the RAM up to its

6.24

Listing 6.1
Finite State Machine Timing Control

Address Data
0000 0100
0001 0001
0002 0001
0003 0001
0004 1001
0005 1011
0006 1011
0007 0l01

Data Format is:

(CK><{E>(STR> (| LOAD®

0

Single Chip Display Controllers Chapter VI

upper segment. In this way the host system can produce a plot in one
segment, display this as normal, and then switch to the other segment

of RAM whilst still maintaining the previous image.

The timing for the entire system comes from a single 14MHz
crystal controlled oscillator. The timing diagrams of Figure 6.6 are
generated by a finite state machine which consists of a counter and a
high speed bipolar PROM. The contents of the PROM appear in Listing

6.2.

The display system centres around a Data General 4010 General
Purpose Interface board. The sixteen bit Nova instruction word is used
to provide both the eight bit instruction code and four bit register
address for the GDP. The remaining four bits are used to define three
bits of colour information in the COLOUR register and the top bit
determines which frame buffer memory segment is currently in use.
Initially the interface is under programmed control, the GDP registers
are set up and a display sequence readied. A GDP display file is then
constructed in Nova memory: this consists of a sequence of commands
which can be interpreted by the 9365. The GDP is thén started. Part of
the set up procedure is to enable interrupts on the 9365. Each time
the command buffer is ready to accept a new command sequence an
interrupt is flagged by lowering the IRQ line. This line has been
connected to the Nova's Data Channel Request (DCHR) signal and is used
to start a single word DMA transfer. When the interface is first
programmed, itvis provided with an address which is stored in an auto-
incrementing address register. A word count is also loaded into a
similar auto-decrementing register. Each time the GDP is "ready", a
DCHR is communicated to the Nova. The Nova replies with a Data Channel

6.25

Single Chip Display Controllers Chapter VI

Acknowledge (DCHA) and waits for the address of the word required from
memory to appear on the bus. This value is provided by the address
register on the interface. The Nova then signals Data Channel Out
(DCHO) and places the data contained in that address onto fhe bus.
This is copied to the GDP by the interface logic and the address
incremented and word count decremented. This process -will continue
until the GDP receives a command to switch its interrupts off, or the

wordcount register reaches zero.
6.8 Programming The Graphics Display Processor

The software used to control the GDP is somewhat more
sophisticated than that so far described for display processors, and
is a ¥*SIXTH* implementation of the drawing package presented as part
of Chapter II. The syntax for the language compiler is identical to
that of the larger Pascal programme, but the data structures anﬁ
implementation dependent routines are considerably simpler. This is
facilitated by the use of the #*SIXTH* programming system and is
inherent in its use (See Chapter III). The structure of the language
compiler is, as might be expected, altered considerably by its
implementation in the less conventional language although the user

interface remains the same.

On a pass through the source code, INTERPRET is called to execute
all the source statements as #*SIXTH®* colon definitions. A new
subpicture, specified by the begin statement, is merely compiled as a
dictionary entry; the words ":" and ";" being simply redefined as
begin and end. Subpictures are now built up as simple dictionary
entries rather than as the more elaborate tree sfructures used in the

6.26

Single Chip Display Controllers

Table 6.3

00 01 02 03
00 Pen Select Vector 0
01 Eraser Select Drawing ! 1
02 Pen/Eraser on Control " 2
03 Pen/Eraser off Codes u 3
04 Clear Screen $ y
05 Clear X,Y Bit3 = ; 3 5
06 Clear Screen X,Y Bit0 = 1 c 6
07 Initialise Bit1 = DX ' 7
08 Lt Pen White sign (8
09 Lt Pen Cycle Bit2 = DY 9
OA 5x8 Csize Blk sign » s
0B Ux4 Csize Blk + ;
0C Backgnd White , 3
OD Clear X - =
OE Clear Y . 3
oF ?

MODE Bit 0 - Pen or Eraser Actilive

Bit 1 - Eraser

Selected

Bit 2 - Fast Write Mode

Bit 3 - Window
Bit 4 - Enable
Bit 5 -~ Enable
Bit 6 - Enable
Bit 7 - Unused

Mode

(=)

OZE2rRGHIDQNIEHODOO > &

(=}

MoMmuuNKMENdIccH N OOWN

OB B HNXGH IR ™O QAOTP

Interrupts on Light Pen Signal
Interrupts on Vertical Blanking
Interrupts on Ready for Command

Type Control

THEIO QWP OO~TAVTLEWN = O

Characters
Horizontal
Horizontal
Horizontal
Horizontal
Horizontal Tilt
Horizontal Tilt
Horizontal Tilt
Horizontal Tilt
Vertical
Vertical
Vertical
Vertical
Vertical Tilt
Vertical Tilt
Vertical Tilt
Vertical Tilt

Vectors
Continuous
Dotted
Dashed
Dot-Dashed
Continuous
Dotted
Dashed
Dot-Dashed
Continuous
Dotted
Dashed
Dot-Dashed
Continuous
Dotted
Dashed
Dot-Dashed

Table 6.3 GDP Control Codes

Q
-2

E@nh-uwxz<:¢mﬁnv

Chapter VI -

2y 4 hoydsig

Q3 UNLIONULS

/'9 aurbiy KU

< S BuUlT]
uibag N

34N DIdgns uilbag

Single Chip Display Controllers ' Chapter VI

Pascal implementation. When a draw command is encountered, the current
point is simply updated by calling WORD and NUMBER twice to retrieve
the co-ordinates from the input line, and the dictionary definition
given as the draw parameter is executed. The effect of execution of
either a subpicture definition or a primitive line, rectangle, text
etc.. command as part of the main picture is to place a series of
sixteen bit words corresponding to GDP commands, or interface
commands, into NOVA memory, at an offset well above the dictionary. In
this way a simple linear display file is generated, the finish command
calculates the length of the display file and transmits its start
address and length to the sixteen bit interface counters. The GDP
setup procedure is called and the GO signal asserted. From this point
the host processor may return to the normal INTERPRET loop whilst the

display process is controlled by the GDP.

It is clearly wasteful of host address space for the display file
to be generated linearly as described. A more efficient system is to
allow jumps through the GDP control instructions and the setting up of
subroutines. In this case the interpretation of group descriptions is
such that the subpictures are expanded immediately into the display
file and the only dictionary entry made is the value of the address of
such a subpicture. The GDP instructions of Table 6.3 do not cover the
full range of sixteen-bit combinations and one of these is now
reserved to reload the interface address counter. In this way a

structured display file is built up as shown in Figure 6.7.

This is about the limit of what is available with the current GDP
system but a design has been produced for a more sophisticated display
processor which involves the addition of some intelligence to i:.he

6.27

