

Durham E-Theses

An investigation into differential lateral dispersion of fossil forest tree pollen

PARKIN, M. J.

How to cite:

PARKIN, M. J. (1974) An investigation into differential lateral dispersion of fossil forest tree pollen, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/9666/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
Please consult the full Durham E-Theses policy for further details.

ANINVESTIGATIONINTO DITFERENTIAL

LATERALDISPERSIONOFFOSSILFOREST TREE POLLEN

A DISGERTATION BY M. J. PARKIN, BEING A PART REQUIREMENT FOR THE DEGREE OF M.SC IN ECOLOGY AT DURHAM UNVVERSITY 1974.

Poilon rain phenomena with particular reference to forest polion are discussed with evidence from FAEGRI; K and IVERSON.J : TAUBER:H; TURNER:J; and DAVIS.M:B: The existence of fossil tree pollen rain in raised boge is postulated: : The problem of local bog polien in the peat against which to couint a varying forest pollen rain is seen as the major atatistical problem; relating to even distribution both verticaliy and horizontaily in the peat:

Bolton Fell 1 described as an 1deal zone VIb bog to illustrate fossil tree pollen diopersion!." Preliminary inveatigation of peat showed this bog to contain VIIb peat and. the Ns imargin of the bog proved most suitable: A 500m transect was laid out and levelled with depth : measurements every 10m. Thirteen profile samples were taken at inter. vals:

From eight replicatesamples taken over the centre metre of each profile; pollen silides wiere prepared and all graine counted until 150 tree grainis had bean recorded: The varying numbers of bog plant polben were used to compute the actual change in forest pollen frequency. The figures obtained are plotted against distance: A real reduction is forest polien frequency is clearly shom from $0-100 \mathrm{~m}$ with differences between values statistically valid; so cónfirming the work of TAUBER and TURNER on extant forest polien diepersion:

Anomolously higher values for fores pollen further out on transect are discusised; and an explanatory hypothesis outlined of a siowly growing bog with trees possibly growing in it on "islands' of shallow peat.

TABLEOFCONTENTS

1. INIRODUCTION
2. FIELD WORK
a. Choice of bog.
b. Site of transect and bores.
c. Sampling.
3. LABORATORY WORK.
a. Pollen preparation.
b. Pollen counting.
4. RESULTS AND DISCUSSION.
a. Stratigraphy.
b. Pollen preservation.
c. Pollen diagrams.
d. Tree pollen percentages.
e. High tree pollen frequency in the centre of the bog.

APPENDIX.

ACKNOWLEDGMENIS .
BIBLIOGRAPHY.

INTRODUCTION.

It is now a well established fact in the field of Quaternary Ecology, that during the Later stages of the Postaglacial Period, much of Europe including the British Isles was covered with mixed deciduous forest. The evidence for this vegetational history comes from two forms of plant fossil rematns. These are firstly, the macroscopic fragients of leaves, fruits, seeds, wood, and seconㄱN. polien grains which have the highest resiatance of all plant parts to bacterial and fungal decay. These fossil remains ocour in peat deposits and in fresh water and marine sediments. Much of the evidence for forest distribution during the late Post Glacial Period cames from pollen preserved in peat bogs which began their growth during this time.

A great deal has been written on local and regional vegetation deduoed from pollen grains preserved in these peat bogs. One important problem in making these deductions is that pollen falling onto a peat bog may have come from a close 'local' source or from a "regional', 1.e. far distant place of oxigin, depending on whether the parent plants producing the pollen are entomoph1lous or anemophilous, small herbaceous plants near the ground gr large forest trees.

Many native forest trees are anemophilous producing large quantities of pollen freely diapersed into the atmosphere forming a 'pollen rain' which eventually falls to earth up to considerable distances from the point if origin. Much work has been carried out during the past fifty years on the production and dispersal of tree pollen. an cutline of which is illustrated by the following examples.

FAT:GHI and IVERSON ${ }^{1}$ (1964 p33) quote several early workers as
foilows. POHL 1937; estimated average figures for pạllen production from ten year old branch systems of various tree species; beech 28 miliion, larch spruce and oak about 100 militon, and pine up to 350 milition. HESSELMAN 1919. concluded that the sprice forests of S . and Mid Sweden produced annually: about 75,000 tons of pollon: \therefore ANDERSON 19.55;

FCDDORA 1959, and EISENHIT 1961; quoted by FAEGRI and IVERSON concluded that there is a consistent effect in the dispersion of pollen across border IInes between different vegetational types. At the border between forested and nong forested areas the quantity of forest tree pollen in the atmosphere and in surface samples was always found to decline rapidly. , The following are average figures -

Distance from forest edge Om .	\%. Forest tree pollen 100\%
100	. 30
200	10
300	3

From 300 m to about 4 Km the figure remains almost constant. These workers concluded that this value represented poilen rain of a whole region and not solely from the stand being investigated.
H. TAUBER ${ }^{2}$ in 1965 and 1967 pablished results of some. very detailed investigations into the theoretical dynamics. followed by a practical demonstration in the field, of pollen movement through and out of the three dimensional complex of a stand of forest trees. To this he added the fourth dimension of time by measuring pollen dispersion at various times of the year for several successive years. TAURER was able to deionstirate that pollen falling on to land surfaces within a few hundred metres of a forest edge consists of varying propetions of three elements - 'regional' pollen rain made up of all the pollen carried by winds and air currents from a large area of countryside, and "local'
poilen rain variable in density, produced by local stands of vegetation, In thin case forest. These two components had been recognised by earlieri workers: TAUBER however went further and separated 'local' pollen rain Into a canopy! component being blown diagonally upwards and eventually outwaids from the forest edge, plus a "trunk space". component blowing out laterally' at the forest edge below the orow. area of the main canopy forming trees:

He set up long term trapping experiments on a lake in Zeeland which was surrounded by mired deciduous forest. Pollen traps were set up on the forest floor in the trunk space', and also on'rafte floating on the lake at varying distances from the forest edge. The pollen traps were in duplicate sets, one set being roofed and the other open to vertically dropping pollen. . The roofed traps had a lateral gap for pollen to enter. This difference distinguishes between pollen floating in the air and pollen brought atraight downards trapped in rain drops.,

Different species of tree were found to have varying officiencies of pollen dispersal, beech, alder, hazel having grains whioh tend to settle quickly within the oanopy. These are then subsequently removed in conditions of high wind. This TAUBER termed 'refloatation'. He found these grains predominantly in open pollen traps concluding that 'refloatation' grains are brought down in rain. 'Refloatation' effects were hugher in the August-November period of each year due to storm washing of leaves plus the fact that polien release from flowers would end by late Summer.

The twigs and branches of the trees at the edge of the forest form
an effective filtering system. TAUBER found up to 40,000 tree pollen grains on a single twig of hazel at the forest edge. Most forest trees flower before leaf development so that considerable wind speeds measured in the 'trunk space' enable the pollen that gets through the twig and branch filter system to carry for considerable distances from the forest margin. An empirical experiment demonstating this was carried out by lighting fires at the forest edge on the windward side of the forest ringed lake, and noting that the smoke carried horizontally low over the lake for several hundred metres.

TAUBER concluded from this work that the composition of the'looal' pollen rain measured up to several hundred metres from a forest edge does not necessarily refleot the exact composition of the forest itself. Trees at the edge will be over-represented and over one year some species may be inaccurately represented due to refloatation effects.
J.TURNER ${ }^{3} 1964$ carried out a similar investigation on dispersion of forest pollen from an existing forest edge outwards over a non forested raised bog. This study arose from a desire to know whether the depth of a forest stand behind the margin had any influence on the dispersion spectrum across the neighbouring bog. TURNER carried out surface sampling on two raised bogs, one of which was traversed by a narrow, 90 metre wide strip of pine plantation, and the other which lay to the East of a much larger block of pine about 300 metres wide. The graphs of pine pollen/distance from the forestedge from surface samples on the boge to the East of each pine stand were found to be very similar. The conclusion drawn from this is that the area of a stand of forest makes little difference to the pollen rain fall off close to the edge of that forest.

In view of the evidence on polien dispersion from present day forests, it would appear that the site of boring on a bog in relation to distance from the edge becomes very important, if the bog at the time of its development, was likely to have been surrounded by thick undisturbed forest. It might be expected that within about 300 metres from the bog edge 'local' pollen rain effects from the free flowering trees of the forest, particularly those at the open edge would show up on pollen diagrams, the characteriatics of the regional polion rain being demonstated in samples taken further out on the bog.

The follooing study was undertaken in an attempt to verify the supposition outlined above; that indeed by sampling over several hundred metres from the present edge of a suitable bog, the dispersion pattern of forest tree pollen can be demonstated in the pollen diagrams obtained from these samples.

It was decided that a bog containing peat formed in time ehne VIIb would be most suitable, as though the previcus zone VIIa is considered as the time of optimm forest development, peat bogs were only beginning to develop at this time. In the later zone VIII the ideal fully formed raised bog is acoompnied in its development by a deterioration in forest oover due to man's activities.

Determining the relative pollen frequencies of the various species present in peat samples has been a major problem for palynoligists. The most accurate method is to count the absolute mubers in a known volume of peat. This in itself poses a problem as invariably one has to count many samples from one core and to compare their contained pollen frequencies. This is only valid if it can be proved that separate samples of the same volume represent the same interval in time during which the pollen was being dispersed and trapped in the peat being tested. M. DAVIs ${ }^{4}$ (1967) has demonstrated this successfully with fresh water
inorganic sediments whose rate of settlement was accurately calculated. Peatfarmation however is very variable, depending both on the climate and the particular peat forming plants of the bog surface at any one time. Thus for peat analysis one has to fall back on percentage rather than absolute pollen counts.

Traditionally, with percentage counting, the total number of forest tree grains has been taken as the basic unit and all species expressed as a percentage of this total. This is the mathod employed in this study, which was aimed to demonstrate a varying quantity of tree pollen falling into peat which itself willcontain, in theory, a fixed quantity of locadl bog plant pollen derived from species of Ericales, Eriophorum, and spores of Sphagmum: If the tree pollen rain is changing, this will be reflected in percentage tree pollen counts as a variation in the percentage of local bog species pollen. Thus if the tree pollen rain is dense, the locel bog pollen as a percentage will be low and vice versa. So with the knowledge of this varying ratio it should be possible to compute the change in forest pollen frequenoy at different distances from the bog edge.

However the constancy of the local bog pollen rain cannot be relied on due to one important factor. This is the possible none random dispresAon of the local bog pollen. Ericales species are entomophilous liberating their pollen in tetrads, so that there is a possibility that this pollon would be left in high density olumps in the peat. Sphagnum growing very near to the peat aurface is even more likely to give rise to aggregations of spores. This possible error is in fact investigated later on in the discussion sotion. A second factor which might effect the local pollen rain is time. The vertical profile of the peat bog represents a period of time of growth which, due to varying climatio conditions may changes
have experienced in the composition of the local bog flora.

Without an accurate dating method it would be impossible to take syn--chronous samples at different distances from the bog edge. Consequently the local bog pollen rain should be measured by replicate samples taken both at varydang depths and over a horizontal area of the bog at each distance from the edge. In view of the thme factor involved it was impossible to carry out the large amount of pollen analysis required by both horizontal and vertical replicate sampling. It was finally deaided to concentrate on vertical replicates hoping that these would average out any variations in the bog pollen rain.

2. FIELD WORK

2.a. Choice of bog.

In view of the evidence discussed a zoneVIIb bog was thought to be suitable providing that it aatis fled two requirements. Firstiy it should be at least 600 metres wide, and secondly it should have avery olearly defined edge where peat meets mineral soil, so that the extinct forest edge could be clearly established. Bogs of this type and aize are rare in N. England. Varicus sites were identified from O.S. 1" maps and inspected". The only one of the aize desired was Bolton Fell close to the village of Hethersgill, about 12 miles N.E. of Carlisle $=0 . S$. 1^{11} sheet 76, grid ref - 4800-5000 B; 6800-7000 N. Most of the bog is aituated in the area formed by these reference numbers.

This bog is part of a complex of raised bogs extending over several square miles - see map 1. The complex is senarated into two fairly distinct areas; Bolton Fell to the N.W., and Walton Moss, Broomhill Moss, and Breaks Moss to the S.E. These tho areas are connected by a narrow isthmus of bog called the Flush. If the bog complex is looked at in relation to altitude it can be seen that Bolton Fell lies largely within the 350 ft contour, whilst the three other mosses lie on a shallow olope dropping from 324ft at the Flush to 250ft on the S.E. margin of Breaks Moss. The whole complex is eituated on a shellow watershed between the valley of the river Line to the N.W., and the valley of a small stream the Cambeck to the S.E., which in turndrains into the river Irthing. Bolton Fell is drained to the S.W. by a small stream running into the R. Ling, and to the East by a stream running into the Flush, Then along the N. edge of Walton Moss, and further East into the Cambeok.

Bolton Fell was first investigated, permission being readily granted

by' the management of the Boothby Peat Company, which latter concern is currently exploiting the northern half of the bog for horticultural peat. On first examination the bog appeared to be suitable from the points of view of alze and dofinition of edgeo However as will be seen from the discuasion. it became clear by the ond of the project that the apparent uniformity of the present day bog surface may be concealing idiands of shallow peat. The island of woodland in the bog centre at abcout 800 metres from the Hoedge was cosidered far enough away to give an uninterrupted, bog surface of the required distance. Map, 2 shows the present state of the bof surface and surproundings whilst it can be seen from map 3 -0.s 6 n Iat Edn 1850, that much of the N.E. corner of the bog was divided into small areas by narrow strips of mixed forest growing In the peat. On inspection, auch of the West and Northern margins of the bog showed evidence of peat ciutting in past times with the surface now regenerated. . It was discovered that most of the old freehold properties in Hetherggill and Bolton Felli-End villeges possessed cutting rights on' the bog. In addition to this the N. halr of the bog has been for the last twenty yoars and stillis, being cut commercially by the company mentioned earlier. . This gave an added complication to the final inter--pretation of the profile aions the transect, "in that the original domed profile of the intact bog id now missing and it was impossible to make an initial comparicion of the quantities of zones VIIb, and VIII peats. However only the zone VIII peat suitable for buring and for horticuitural purposes had been removed; leaving the earlier peat intact, and from which all the subsequent samples were taken.
2. b. Site of tranaect and bores.

From the 'map, both the S.W. I^{2} and' N. margins of the bog eppeared to be euitable. The former part was investigated initially as this would have

provided a transect parallel to the likely provailing wind diroction during zone VIIb time, and with the open bog surface to leeward of the forest. This, it was thought, would provide good dispersion of tree pollen over the bog. However it proved to be very difficult to establish a clear edge in this area. The N. margin was then investigated and a clear edge with rapid increase in peat depth was discovered for over one quarter of a mile along the edge.

An experimental pilot sample was taken from this aree at the base of the peat about thirty yards from the bog edge. Subsequent examination of a pollen preparation from this sample gave a high percentage of Botula, Quercus and Almus, with Ulmas below four percent. The ratio of tree and shrub pollen to local bog pollen made up of Ericales, Cyperaceae, and Sphagne was high. Gramineas and ruderal species pollen were below ten percent. From these results it was fudged that the peat was zone VIIb and that intact forest was present surrounding the bog during this period. The size of the bog, and the nature of the peat being astisfactory, it was decided to use this area of Bolton Fell as the experimental site.

The transect show on map 2 was therefore set up at right angles to the bog edge. It was ataked out at 10metre intervals and the top surface levelled out to 470 metres from the edge. The depth of peat was measured every 20 metres using a screw auger. Twelve full profiles were oollected at intervals along the transect using a flussian borer. A thirteenth part profile at 750 metres in line with the main transect was collected on a later visit to the site. The details of the transect and profiles are show in Fig 1.
2. c. Sampling.

As discussed in the Introduction it was decided to take replicate
samples from each profile at varying depths only. Eight samples at 10am Intervals were taken from approximately the centre metre of each peat core. The outer exposed face of each hemiepherical core from the Russian borer was carefully removed so that each sample came from the central uncontaminated part of the core. About two cubic centimetres of peat were removed at each sample depth and placed in sealed tubes. From each of these about one half cubic cetimetre was used in each pollen preparation.

3. LABORATORY WORK

3. a. Pollen Preparation.

The method employed is as follows. The peat wes first boiled in 108 NaOH for up to 30 min to break down the larger fragmentes: The now liquid mixture was filtered through fine wire gauze and the retained 'fragments washed in water to femove NaOH . the' remains were kept for examination for maczgopic plant material. The fine material filtered through the gaize was centrifuged and the supernatant oontaining mach. dissolved humic material diccarded.' The gediment was mixed with approx--imately 5cic of glacial acetio acid: centrifuged and the superinatant again discarded. This was done to dehydrate the sediment which was then boiled for one minute with a mixture of 10 cc of acetic anhydride and lac of concentrated H2SO4. This acetolysis process had the offect of dissolv--ing humic material and reduoing the sediment by about 50%; resulting In an increase in the ratio of pollen grains to plant debris. The acid mixture was discarded after again centrifuging, the eediment made alkaline by addition of dilute NaOH , and the pollen mounted on slides in about twice its volume of glyeerine jelly containing safranin to stain the pollen.
3. b. Pollen Counting.

For each sample a total of one hundred and fifty treegrains were counted against a varying background count of local bog pollion consisting of Ericaceae, Cyperaceas, and Sphagna. No attempt was made to identify individual speoies. The pollen grains were counted at 400 X magnification making vertical traverses frompne side of the square coverslip to the other. The author considered that there might be a statistical orror in slides containing very high tree pollen frequencies where only a few local bog pollen grains were counted per 150 tree grains, and these commonly were counted in one traverse or less. To test whether the number counted in
one traverse was in fact near to the mean for the whole sample, local bog pollen counts were taken over several traverses of the slide and a mean value obtained. This was done for several alides showing high ar tree pollen percentages, and in all cases the mumber of local bog pollen grains per traverse was close to the mean value per traverse over the whole slide.

4. RESULTS AND DISCUSSION.

4: a. Stratigraphy.
The whole length of each core was examined and in all cases only the top 50 :- 100 cm was found to consist of gone VIII lightly humified peat. . This is at least partly explained by the fact that up to two metres of peat have been out from the top surface. The lower parts of each core were found to consiat of greasy well humified peat of a red-brown colour which oxidised rapidly to dark brown on exposure to air. As shown in the profile diagram Fig 1. Interspersed at intervals in the peat were coarse fibres of Eriophorum stems and leaves, small pieces of Calluna stem, unidentified well humified fragments of wood, and small twigs with identifiable silver bark of Betula. No clearly identifiable plant remains were found on examination of the peat residues remaining after NaOH treatment and sieving.

4: b: Pollen preservation.
The repilicate sample slides at each site showed some variation in appearance and nature of the background material as follows. Those from areas of peat ointaining wood fragments showed large amounts of fugal hyphee. Both these and the contained pollen grains were stained a reddish brown with the safranin. Preparations frompreas lacking any wood fragments were low in fungal material and were stained roseopink. This would indicate possible variations in the degree of humification of the peat. As they occurred in all the cores it might be taken as indicating varying conditions near the bog surface during its growth. This in turn oould fit in with the possibility. discussed later on, that the bog may have expertinced variations In the , aurface plant cover .
4. c. Pollen Diagrams.

The figures obtained for the pollen percentagee from the thirteen

profilea are presented in tables 1 - 5 of the appendix. Table 1 shows the percentages for all the apecies identified, each expressed as a per--centage of thr total tree pollen.

Pollen diegrams (Figs 2-8) were drawn for the depth replicates from each profile. Shown on the right hand side of each profile is a graph of forest pollen percentage containing the value for each replicate and the mean for the whole profile of 8 replicates. Grass pollen was omitted from the diagrams but is inciuded in Table 1. In most profiles the grass percentage begins to rise in the upper replicates, particularly in those taken near the bog margin where the peat tends to be shallow. This would indicate the zone VIIb - VIII boundary. The topmost replicate at 30 metres contained a very high percentage of grass pollen, and was omitted from the results. The second replicate in the semple atill showed 47% grass pollen, but as the forest pollen percentage was high, within the range of the lower replicates, it was decided to retain this one and to calculate the mean values at 30 metres on 7 replicates instead of 8 .

4. d. Tree Pollen Percentages.

The forest tree pollen percentage was calculated from $\frac{\text { Tree Pollen } X 100}{\text { TreetLocal pollen }}$
This was done for each sample and the means for each profile calculated, (see Tables 2 and 3-appendix). The mean values for the top and bottom four replicates in each profile were also calculated and all three sets of values plotted againgt distance in Fig 9. Taking the curve for all 8 replicates It can be seen that from $0-80$ metres there is a well defined reduction In the foreat pollen frequency. This was extrapolated by eye (thick dotted line in Fig 9) indicating that the initial curve would euggest a value of about 30% at 300 metres. This agrees well with the results

of TAUBER and TURNER.
One possible scurce of error already disoussed is in the degree of randomness in the distribution of local bog pollen in the peat. Sphagnum partioulariy, with its prostrate habit might be liablen to ieave spores in aggregated masses in the peat'. In addition, Corylus pollen was found to form a very high proportion of the forest pollen and this posed an interesting epeculation as to the change in forest poilon per--centage with distance for tree species only. In order to show the effeots of Corylus on the forest pollen rain and Sphagnum on the local bog pollen distribution, each of these in turn was extracted from the data and the resulting forest pollen percentages caloulated using the same formula already explained. The results for the following combin--ations are show in table 2.

$$
\begin{aligned}
& \text { Forest pollen including Corylus / Leval poilen minus Sphagmum }
\end{aligned}
$$

These figuresi were plotted on four separate graphs as forest pollen ,percentage against distance, (Figs 10-13). In all four cases the shape of the graph remains essentially similar with a sharp drop in forest pollen from 950 at 0 m , to 58.6% at 80 m . This is followed by a rise to an average of about 71% from $120 \mathrm{~m}-750 \mathrm{~m}$. These are the figures for plus Corylus and plus Sphagrum. As might be expected the graph for plus . Corylus and mimus Sphagnum gives the highest, and that for mimus Corylus and plus Sphagrim the : iowest overall forest pollen percentege over the whole transect. . Less obvious but possibly more interesting is the fact that in the different plots the values for forest polime in the 'low' parts of the graphs appear to change disproportionatiy to those in the higher value areas. :This is partioulerly otriking in the two graphs mentioned above for the values round 80-120m'and 470 m .

The means of the forest pollen percentages for the first seven stations out to 120 m were examined statistcally for significance of difference. The standard deviation and variance were calculated for each and +/- 1 S.E. is plotted on the graphs (Fige10-13). As some of the standard errors were close or overlapping 't' tests were carried out to calculate the degree of real difference between them. The results of these tests are given in Table 4. In only two cases was ' t ' non significant ${ }^{\text {with }}$ the probability level at 0.05 .

In the light of this firm statistical evidence the conclusion put forward at the beginning of this seation can be taken as quite valid. The drop in forest pollen frequency from $0-80 \mathrm{~m}$ is real thus proving beyond doubt that intact forest did indeed exist up to the edge of the growing bog.
4. e. High Tree Pollen frquency in the centre of the bog.

The problem remains of the higher forest pollen percentages further out in the bog beyond 100metres. The apparent peaks and troughs from 120m-750m cannot be taken as hard evidence of large variations in forest pollen frequency. Many more samples would have to be taken before it could be proved that these were not statiatical variations. However it remains oleaxthat the average forest tree pollen percentage appears to be maintained at around the 71% level in contrast to the extrapolated value of round about thirty percent discussed earlier.

To investigate this situation further the means of replicates at each station for the individual tree and shrub species were plotted againgt distance. These graphs are shown in Figs 14 and 15, and in detail in figa 16 to 19. From these it can be seen that the relative

frequency of the various species alters with distance from the res ind bọg edge. The Betula percentage rapidly drops from 0-80m, then mainotains approximately the same value out to 750 m , whilet the frequencies of Almus, Quercus, and Corylus rise from $0-80 \mathrm{~m}$, and these in turn are maintained at a fairly staady level out to 750 m . .This would seem to suggest that at the original forest edge there was a thick stand of Betula with the other species present further back in the forest stand. The Betula at the edge would give a high representation of its own pollen close to the bog edge whilst aoting as a filter to the pollen of the other tree species blowing through the trunk space. Consequently the pollen of the other tree species, coming out of the top of the canopy only achieves a high relative frequency further out on the bog where the 'Betula frequency is beginning to drop.

There remeins the final problem of explaining the average forest pollen percentage cut on the bog of 71% after dropping to 58% at 80 m . One piece of evidence shown in the stratigraphy was the disoovery of scattered wood fragments in the peat. . Some of this was identified from the bark as Betula. So it seems possible that the bog at various times during its growth, may have experienced conditions dry enough for scattered Betula to have invaded the growing surface. However the Betula component of the forest pollen rain is low away from the bog edge so there must be at least one other fdctor involved in the high percenteges of the other tree species. As explained earlier the forest pollen percentage at most sites on the transect was found to. rise.tom -wards the base of each of the in seotions sampled. If we assume that the total local bog pollen rain remains reasonably constant with time then the explanation mat be that there was a higher total forest pollen rain earlier on in the bog's development. This might conceivably be due to a higher density of forest round the bog margin injtially though there is no other pollen evidence to support this. There is another
possible explanation for which unfortunately the author was unable in the time involved, to obtain sufficient stratigraphical evidence. This is that the bog, during its growth and in the time zone from which the samples taken was in fact not as complete a raised bog as would appear from its present surface topography, and that there may have been isolated 'islands' of woodland growing on very shallow peat, contributing a mosaic of tree pollen dispersion to the pollen rain over the whole bog surfece. Thus, if this were true, the bog is not quite as ideal as first anticipated, for the most clear cut demonstration of the 'Tauber' effect" over long distances. However, for the effect of dispersion from the immediate bog edge, and for the demonstration of individual tree polien effeots up to nearly 100 m out from the original forest edge, the bog proved to be highly satisfactory.

ACKNOWLEDGMENTS.

The author wishes to thank the following people for their help and cooperation in the completion of this project:-
I. Dr J. Turner, of the Botany Dept, Durham University under whose much valued guidance this project was oarried out.
2. Major Bryson, Managing Director of the Boothby Peat Co, Brampton, Cumberland, for permission to work on Bolton Fell.
3.Mr C. Johnson B.Sc, Senior Lecturer, Nevilles Cross College of Edn, Durham City, for invaluable help with the fleld work.
4. My Wife, for expert edvice in setting out the text, and for bearing the brent of family life during the execution and completion of this work.

BIBLIOGRAPHY.

1. FAEGRT.K, AND IVERSON.J, 1964. Textbook of Pollen Anelysis.
2. a. TAUUER. H, 1965. Differential pollem dispersion and the intirpretation of pollen diagrams. Danmarks Geol Undereoglse, II, 89. p 1-69.
b. TAUBER." H; 1967. DIfferential pollen and filtration. Quaternary Pakeoècology. Yale Univ' Press, New Haven, Connecticut.
3. TURNER. J. Surface samples analyses from Ayrshire, Scotland. Pollen and Spores, Vol VI. 1964. p 583-592.
4. DAVIS. M. B, 1967. Pollen accumulation rates at Rogers Lake Connecticut during late and post glacial time. Rev of Paleacbotany and Palynolgy. 2. p 219-230.

TABLE. 1.
POLIEN PERCENTAGES. ($\%$ Total Tree Pollen)

DLEMANC: EROH BCG EDGe METRES.	$\begin{array}{\|c\|} \hline \Gamma \\ \stackrel{m}{m} \\ \stackrel{1}{i} \\ c \\ c m \\ \hline \end{array}$		$\left[\begin{array}{l} \frac{0}{3} \\ \frac{2}{i n} \\ i \end{array}\right.$	$\begin{aligned} & \frac{c}{3} \\ & \stackrel{y}{n} \end{aligned}$	$\begin{aligned} & \text { Q } \\ & \underset{0}{0} \\ & \underset{N}{\grave{N}} \end{aligned}$	$\begin{aligned} & -1 \\ & \overline{=} \end{aligned}$	$$		$$	$\begin{aligned} & \bar{\Omega} \\ & \stackrel{n}{x} \end{aligned}$	$\begin{aligned} & \hline \frac{T}{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$		$\begin{aligned} & \hline \square \\ & \stackrel{1}{0} \\ & \stackrel{0}{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & 0 \\ & 0 \\ & \hline \end{aligned}$		
	95	78	0.0	0.0	2.9	0.0	19.0	0.0	21	6.7	0.0	0.0	4.8	0.0	28.0	0.0
0	105	39	0.0	0.0	11.0	0.0	50.0	0.0	24	1.2	0.0	0.0	9.0	1.1	49.0	0.0
	115	76	0.0	0.0	10.0	0.0	14.0	0.0	25	0.0	0.0	0.0	3.0	0.5	0.0	0.6
	125	59	0.0	0.0	21.5	0.0	20.0	0.0	15	0.0	0.0	0.0	1.9	0.0	11.0	1.9
20	-80	65	0.5	0.5	15.2	0.0	17.8	0.0	19.	4.7	3.7	0.5	3.7	9.4	14.7	5.2
	90	66	0.0	0.6	13.9	0.0	18.1	1.8	27.	22.9	0.6	5.4	5.4	4.2	14.5	1.8
	100	37	0.0	0.6	20.8	0.0	40.5	1.2	57	18.4	2.5	1.6	7.0	3.8	80.0	5.1
	110	32	0.0	0.0	18.0	0.0	47.0	2.6	44	5.8	0.6	0.0	2.6	1.3	9.9	0.0
	120	27	0.0	0.0	15.3	0.0	55.8	1.4	29	1.9	3.7	5.6	3.3	2.3	1.9	3.3
	130	28	0.6	1.7	30.0	0.0	39.8	0.0	43	3.4	3.4	2.3	3.4	10.4	9.2	23.7
	142	49	0.4	0.4	14.0	0.0	35.0	0.3	32	6.0	0.3	2.6	3.5	2.0	9.5	0.0
	154	37	0.9	0.0	28.6	0.0	33.2	0.0	28.	. 4.5	1.8	1.8	0.9	10.5	6.8	1.8
30	85	54	0.0	3.8	14.0	0.0	27.0	1.2	32	0.0	0.0	0.0	13.0	5.0	47.0	2.5
	95	74	0.0	0.0	$10^{6} 0$	0.0	8.5	1.4	23	3.5	0.7	0.0	6.3	1.4	10.0	29.0
	105	64	0.0	0.0	11.0	0.0	24.0	0.0	31	0.8	3.3	0.0	6.5	3.2	17.0	10.6
	115	38	0.0	0.0	29.5	0.0	32.0	1.0	60	1.0	0.0	0.0	18.0	1.0	3.8	17.0
	125	37	0.0	0.0	29.0	0.0	31.0	2.0	74	3.0	0.0	0.0	54.0	8.0	5.0	22.2
	135	25	1.6	0.0	31.0	0.0	41.0	1.6	79	0.0	0.0	0.0	96.0	0.0	3.2	1.1
	145	62	0.0	0.0	11.0	0.0	27.0	10.0	4	1.0	0.0	0.0	4.7	0.0	1.2	3.7
40	120	40	0.0	0.0	26.8	0.0	32.5	0.6	63	1.0	1.3	0.3	48.0	3.0	14.0	30.0
	130	39	2.0	0.6	13.3	0.0	41.3	2.7	85	2.0	1.3	0.0	64.0	1.3	14.7	9.3
	140	24	1.1	0.0	27.0	0.0	47.2	0.0	55	0.0	2.2	0.0	85.0	3.4	8.9	7.0
	150	35	0.0	2.0	31.3	0.0	30.7	0.6	71	1.3	0.5	3.0	25.3	5.3	5.3	15.3
		25	0.0	0.0	32.0	0.0	43.3	0.0	55	3.9	3.4	0.0	22.5	21.3	10.1	64.6
	170	48	0.6	1.9	21.7	0.0	26.8	0.6	49	40.0	0.0	14.0	14.0	0.6	13.4	37.5
	180	40	0.7	2.0	34.6	0.0	21.6	1.3	49	20.3	0.0	10.0	8.5	2.6	5.2	28.8
	190	32	1.8	2.4	31.4	0.0	30.2	2.4	57	3'4.31	0.0	3.0	18.9	0.0	13.0	14.0
61	174	27	0.0	0.0	31.1	0.0	41.6	0.0	24	4.3	0.0	3.0	23.6	13.6	11.2	44.0
	184	12	2.0	0.0	29.8	0.0	55.6	0.7	68	0.0	0.6	5.0	21.9	68.9	21.3	59.0
	194	23	1.1	0.0	29.6	0.5	44.0	0.5	103	0.0	0.0	0.0	23.8	12.7	5.8	38.6
	204	20	1.3	0.0	26.1	0.0	51.6	0.7	85	0.0	0.7	0.7	39.9	6.5	5.9	29.6
	214	16	2.0	0.6	32.6	0.0	47.3	0.6	105	0.6	0.0	0.0	25.3	7.3	9.3	22.7
	1:44	15	0.0	1.8	30.5	0.0	51.0	0.9	93	1.8	0.0	8.0	11.8	6.4	5.4	30.5
	154	20	0.0	0.0	29.0	0.0	50.0	1.2	99	0.0	1.2	9.0	33.0	1.2	7.0	104.0
	164	22	0.01	0.0	28.0	0.0	48.0	1.2	97	0.0	1.2	7.0	32.0	1.2	4.7	100.0
80	145	28	0.0	1.9	39.7	0.0	30.1	0.6	49	0.7	0.0	2.0	14.7	28.2	1.9	161.5
	155	13	0.5	0.0	39.7	0.0	43.1	2.9	45	0.0	0.0	0.0	23.5	14.2	8.8	69.1
	165	19	0.0	0.7	35.1	0.0	40.5	4.6	84	0.0	0.0	0.0	46.4	13.1	8.5	116.3
	175	25	0.7	0.7	33.6	0.0	38.0	2.7	106.	0.0	0.0	4.0	43.0	22.0	11.4	26.8
	185	35	0.0	1.9	32.7	0.0	26.9	5.2	85	2.6	0.0	0.0	70.5	4.5	17.3	30.0
	195	37	0.6	0.6	29.3	0.6	30.5	1.1	99	0.0	0.0	0.0	47.7	19.0	13.8	105.0
	205	23	1.3	1.3	43.4	0.0	30.8	0.6	84	0.0	1.3	0.0	37.7	26.4	13.8	69.8
	215	24	0.0	2.9	30.3	0.0	36.3	0.9	87	1.5	0.0	0.0	5.9	16.2	3.3	13.7
120	147	20	0.0	2.0	36.7	0.0	41.3	0.0	84	0.0	0.0	0.0	56.0	15.3	8.7	80.0
	157	23	0.6	1.3	38.0	0.0	37.0	0.0	-¢3	0.0	0.0	0.6	31.0	21.0	3.0	57.0
	167	19	0.0	0.0	44.0	0.0	37.0	0.0	82	0.0	0.0	0.0	70.0	14.0	3.0	27.0
	177	26	0.6	0.0	33.0	0.0	41.0	0.0	83	1.3	0.0	0.0	57.0	27.0	6.0	49.0
	187	37	0.0	0.0	37.0	0.0	26.0	0.0	106	0.0	1.3	0.0	67.0	3.3	0.6	7.0
	197	54	0.0	2.0	18.2	1.0	42.5	2.0	101	1.0	10.0	0.0	50.0	4.1	5.1	4.7
	207	17	0.0	0.0	39.3	0.0	43.3	0.0	99	0.0	0.0	0.0	59.0	7.0	0.0	33.0
	217	20	0.7	3.3	45.0	0.0	29.0	0.0	100	0.0	0.0	0.0	36.0	8.3	5.0	48.0

TABLE. 1 (cont/d).

DREANCB EROM BOG EDGE
METRES.
180.

240

300

400

470
470

50
0°

	$\left\lvert\, \begin{aligned} & \text { wip } \\ & \stackrel{10}{c} \\ & \stackrel{\rightharpoonup}{c} \end{aligned}\right.$	$\left[\begin{array}{l} 0 \\ \stackrel{0}{w} \\ i n \end{array}\right.$	ε_{n}		$\overline{\bar{\prime}}$	$\stackrel{\rightharpoonup}{n}$		$\frac{0}{c}$	$\frac{n}{x}$		$\stackrel{n}{r}$		另	$\begin{aligned} & \hline 9 \\ & 9 \\ & \stackrel{3}{7} \\ & \stackrel{\rightharpoonup}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & n \\ & \stackrel{n}{3} \\ & \stackrel{0}{3} \\ & \stackrel{3}{3} \end{aligned}$
110	23	0.	0.0	34.0	0.0	.0	0.0	67	2.	0.0	0.0	49.0	0		
120	20	0.	0.	29:0	0.0	48.0	0.0	114	0.9		0.	32.0	14.0	10.0	
130	24	2.	0.	22.0	0.0	51.0	2.0	75	1.		0.	13.0	12.0	9.0	
14	25	0.0	0.0	30.0	0.7	. 0	0	52	0.	0.0	0.0	4.8	3.4	4.0	
15	29	0.0	0.0	38				73.			0.0	3.7	2.8	5.6	4.0
16	19	2.4	1.6	37.	0	40.0	0.0	53	0.	0.0	0.	4.8	6	0.8	
17	34	0.0	1.8	27.	0.0	35	1.8	67	0.0	0.0	5.0	1.0	6.2	1.0	
180	15	1.9	0.0	48.0	0.0	35.0	0.0	57	0.0	0.0	7.0	0.0	0.9	3.	3.3 .0
15	21	0.0	0.9	39.0	0.0	39.9	0.0	96	0.	0.	0.	27.0	5.0	5.0	
16	25	1.4	2.1	26.	0.0	45	1.	64	0.	0.0	0.	24	11.0	4.3	
17	18	0.9	1.8	39.0	0.0	41.0	0.0	82	0.9	0.0	0.0	29.0	2.	0.9	21.0
18	19	0.7	0.0	44.0	0.0	37.0	0.	57	0.0	0.0	0.	2.8	2.	3.5	23.0
190	18	0.0	0.0	41.0	0.0	39.0	1.0	59	0.0	0,	0.	4.2	4.	0.	17.0
20	18	1.7	0.8	40.0	0.0	39.0	0.8	86	0.0	0.0	0.	29.0	5.0	5.0	0.0
21	15	0.7	0.0	28.0	0.0	56.0	0.0	94	0.0	0.7	0.	18.0	0.	4.4	56.0
22	25	0.0	0.0	28.0		46.0	10.0	58		0.9	0.	9.0	0.0	2.7	
16	21	0.0	0.0		0.9	48.0		70	0.0	0.0	0.		16.0	7.0	1.0
170	12	0.	0.0		0.0				0.0	. 0	0.	61	16.0	12	
180	21	2.3	3.3		0.0			72	0.0			16	10.0	5.9	
190	24	0.	2.	48	0.0	24.5		59	0.0	0.0	0.		22.0	2.7	
20	38	i. 0	3.0	23	0.0	32.0	0.0	93	0.0	0.0	0.	11.0	7.0	3.0	20
21	23	0.0	0.	38.0		37.0	0	92		0.0		63.0		0.	
22	29	0.0	1.0		0.	52.0	0.			0.0	0.		0.0	1.0	
23	19	0.9	2.7	34.0	0.9	42.0	0.0	66	. 0	0.0	0.0	35.0	. 0	0.0	43.0
13	17	0.	2.		0.0		0.0		0.		0.		7.	2.2	
14	10	0.8	0.0		0.0	51.0	0.8		0.		0.		3.3	0.8	
15		0.0	2.5	33.0	0.	, 0	0.0	88	0.		0.0	26.	1.6	0.0	00
164	14	0.0	0.0	33.0	0.0	53.0	0.0	102	0.0	0.0	0.0	48.0	0.	2.0	
174	18	0.0	0.9	34.0	0	47.0	0.0	87	0.0		0,		2.9	. 2	
184	15	0.	1.0	31	0.0	O	0	5	0.0		0.	17	1.	,	29.0
19	15	0.	2.0			51.0	0.0	88	0.			21.0	0.0	1.0	
204	20	0.0	3.0					58				9.0	. 0	2.0	33.0
110		0.	2.0		0.0									15.0	
1	21	0.0	. 0			41.5	0.0	80			.	94.0	.		
13	24	1.0	1.0	38	0.0	35.0	1.0	6	1.	0.0	0.0	40	50	4.0	42.0
14	16	0.9	1.8		0.0	38.0	3.6	76	0,0	0,0	0,	26	14.0		
15	17	0.0	0.8	33.0	0.0	49.0	0.0	108	1.0	0.0	0.0	39.0	14	5.6	
160	25	0.0	2.0	34.0	0.	39.0	0.0	81	1.0	0.0	0.	67.0	30.0	10.0	39.0
170	11	0.0	2.1	25.0	0.0	60.0	1.1	71	0.0	0.0	0.0	69.0	4.	2.	15.0
180	31	0.0	4.5	45.0	0.0	41.0	0.0	102	0.0	0.0	. 0	23.0	0.9	0.9	21.0
200	25	0.8	0.8	36.0	0.8		1.5		0.0	0.0	0.0	19.0	0.0	.	22
220	23	0.9	1.8	28.0	0.0		0.0	70	1.0			29.0	.	?. 3	55.0
240	36	0.0	0.0	26.0	0.0	36.5	2.1	88	0.0	. 0	0.0	41.0	0.0	2.1	
260	32	1.0	0.	25.0	0	42.0	0.0	112	0.	0.0	0.0	42.0	9.	3.9	0.0

TABLE. 2.
FOREST POLLEN PERCENTAGES. Derived from F $=$ Forest, $L_{\text {I }}=$ Local grain Nos.

TABLE. $2(\mathrm{sont} / \mathrm{d})$.
FOREST POLLEN PERCENTAGES.Derived from F = Forest, $\mathrm{L}=$ Local grain Nos.

TABLE. 3.
FOREST POLIETY PERCENTAGES, 'Means' of All 8,Top 4, Base' 4 replicates.

DISTANCE FROM BOG EDGE METRES	- Sphagnum				+ Sphagnum	
	+ Corylus			- Corylus	+ Corylus	- Corylus
	$\begin{gathered} \text { All } \\ \hline \end{gathered}$	T	$\begin{gathered} \text { Base } \\ 4 \\ \hline \end{gathered}$	$\begin{array}{ccc} \text { All Top Base } \\ 8 & 4 & 4 \\ \hline \end{array}$	$\begin{gathered} \text { All Top Base } \\ 8 \\ 8 \end{gathered}$	$\underset{8}{\text { All }} \underset{4}{ } \text { Top } \quad \text { Base }$
0	96:3	95.0	97.8	95.493 .397 .5	95.495 .096 .9	94.893 .396 .3
20	93.9	94.1	93.9	92.192 .391 .8	91.092 .589 .6	88.790 .287 .1
30	86.1	91.2	79.3	80.488 .469 .6	80.083 .277 .3	73.278 .666 .0
40	82.2	75.0	89.4	75.245 .585 .6	73.370 .178 .4	64.358 .769 .8
61	82.0	85.0	79.1	69.972 .467 .6	65.662 .369 .0	51.949 .054 .8
80	77.4	78.1	77.6	65.968 .565 .3	58.555 .162 .1	$46.642,450.8$
120	74.5	71.9	77.4	60.658 .362 .9	65.059 .370 .6	49.744 .554 .9
180	89.8	83.3	96.3	84.174 .393 .9	74.268 .2 .80 .3	63.9 55.8 72.0
240	88.1	35.0	91.3	83.179 .986 .4	80.082 .078 .0	70.442 .4 .68 .5
300	81.5	78.8	84.3	72.870 .575 .2	64.662 .9 '66.3	52.051 .652 .4
400	85.3	83.0	87.5	79.474 .581 .7	73.668 .179 .1	63.254 .571 .9
470	70.3	57.0	75.0	58.954 .062 .3	63.256 .370 .1	49.643 .156 .1
750	84.4	87.5	81.3	74.380 .468 .2	77.673 .981 .4	65.462 .668 .2

TABLE. 4.
'亡' TEST ON DIFFERENCE BETWEEN THE MEANS OF FOREST POLLEN PERCENTAGES.

m	- Sphagnum			+ Sphagnum	
	+	Corylus	-Corylus	+ Corylus	- Corylus
0	96.3	p	95.4 t P	95.4 t P	$94.8{ }^{\text {t }} \mathrm{p}$
		$9.30 \quad 0.001$	5.60 .001	7.9 0.001	7.30 .001
20	93.9		92.1	91.0	88.711 .30 .001
30	-86.1	10.50 .001	$80.4^{12.50 .001}$	$80.0{ }^{10.7} 0.001$	$73.2^{11.30 .001}$
30		2.50 .05	2.50 .05	- 3.80 .01	2.90 .02
40	82.2		75.2	$73.3 \quad 500.05$	54.3 5.1 0.001
61		0.20 .1	69.93020 .01	$65.6^{5.60 .05}$	51.95
61	82	$5.20 .001^{\prime}$	2.50 .05	4.30 .002	3.30 .01
80	77.4		65.9	58.6	46.6
120	74.5	$4.3 \quad 0.001$	$60.6{ }^{6.0} 0.001$	$65.0{ }^{3.9} 0.002$	$49.7 \quad 1.90 .1$

TABLE.5:
MEANS OF INDIVIDUAL TREE/SHRUB SPECIES AS \% TOTAL TRIEE POLIEN.

