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SYNOPSIS 

The Permian of Northern England consists of over 1800 feet of 
dolomites, limestones, marls and evaporites, with arenaceous deposits 
at the base. Although of limited areal extent, a wide variety of lithologies 
are represented, largely interpretable in terms of the depositional 
environment at the western margin of the Zechstein Sea. The structure 
consists of a low east to south-easterly dip, together with faults, the 
largest of which trend east-west and attain maximum development in the 
south of Co. Durham. 

The geohydrology is controlled by the lithology and the structure. 

To the north of the Hartlepool Fault System the aquifer is unconfined, and 

represented chiefly by the Lower Magnesian Limestone and Basal Permian 

Sands. It has been indiscriminately developed in the past, and at present 

24 m. g. d. are licensed for abstraction. In the south and around Hartlepool, 

the Middle Magnesian Limestone forms the main aquifer, being confined for most 

of its extent by drift or marls of the Lower Evaporite Group. A groundwater 

investigation of this area by the Northumbrian River Authority showed that 

analysis and extrapolation was made difficult by the presence of hydrological 

barriers due to faulting and basement 'highs'. Digital and analogue 

simulation techniques have been used, and results from the latter indicate a 

net 12 m. g. d. to be available without depleting resources. 

The strength and rheological parameters of the Magnesian Limestone 

are controlled principally by the rock lithology. However, since the 

strata is usually highly fractured, the effect of discontinuities on the 

Theology, and on the failure characteristics in both biaxial and triaxial 

stress fields has been examined. LaboratOry tests have been undertaken to 

establish typical parameters for various lithologies, and most correlate 

o 
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wlth the unconfined compressive strength, even though the latter may be 
erroneous on an absolute stress basis due to sample-platen interaction. 
Results from the various lithologies may be utilised in the quarrying 
industry where a knowledge of the probable rock types at a locality is 
invaluable. Although slope stability is not a large scale problem, slope 
degradation maybe arrested by designing on a 'semi-discontinuum' basis. 
Foundation properties of the Magnesian Limestone are generally good, 
although remedial measures may be necessary where there is a 
significant thickness of leached material. 



SECTION 1 

GEOLOGY 



CHAPTER 1 

INTRODUCTION AND REGIONAL SETTING 

1.1. Introduction 

The Magnesian Limestone of northern England, although outcropping 

over what amounts to a very small fraction of the total area of the British 

Isles (Fig 1.1), nevertheless affords an interesting study on account of the 

many variations in occurrence, lithology and properties which are exhibited 

within a relatively small area. 

The Magnesian Limestone underlies Co. Durham east of a sinuous 

line from South Shields in the north, through Ferryhill to west of Darlington 

and. then south towards Scotch Comer, where it becomes discontinuous. 

Further south in Yorkshire, glacial drift blankets much of the solid geology, 

although from both borehole evidence and the limited exposures, it appears 

that the outcrop narrows to some 5 miles due to the overstep of the Trias. 
I 

In the Midlands, the Magnesian Limestone becomes attenuated until, in the 

NottiK^ham area, it is represented, by only a thin bed of arenaceous dolomite. 

The precise stratigraphic correlations between areas are difficult to determine 

due to the absence of palaeontological evidence and. the replacement of the 

marine limestones by the diachronous Bunter Sandstones (Sherlock, 1926, 

1928). To the west of the Pennines, a thin equivalent of the Magnesian 

Limestone occurs in a few restricted localities, notably near Appleby in 

Westmorland and around Manchester (Wells et al, 1966). 

In the north of Co. Durham, the eastward dipping strata produces a well 

defined westward facing escarpment, but in the south of the county and in 

Yorkshire glacial drift masks the effects of the structure upon the topography. 
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The Permian hills are small in comparison with their Pennine neighbours, 

attaining 600 feet or over in only a few isolated places. 

Over most of the area, the drainage is post-Pleistocene, drift 

controlled, although some of the deeply incised coastal denes are 

re-excavating pre-glacial valleys and locally flow in the Magnesian Limestone. 

Becent boreholes in the south of the county have located the positions of 

tributaries of the proto-Tees, but it is not yet possible to produce a complete 

picture of the pre-glacial terrain. 

1.2. Previous woik 

Much of the first geological mapping and stratigraphic correlation of 

the Permian was carried out early this century by Trechmann (1914, 1925), 

with further contributions by Woolacott (1919), and Hodge (1932). A 

resurvey of the Durham and West Hartlepool sheet by the Institute of 

Geological Sciences in the 1950's, coupled with evidence from N. C.B. land 

and offshore boreholes (Magraw et al, 1963) resulted in a reappraisal of the 

difficult stratigraphy in terms of the palaeogeography (Smith and Francis, 

1968). The succession as outlined in the above memoir, together with 

personal communications from D.B. Smith concerning the as yet unpublished 

Sunderland sheet, has been used as reference throughout this thesis. 

The hydrology of the area has received only sparse attention, although 

the implementation of the Water Resources Act (1963), and the work of the 

River Authorities should eventually lead to a more complete understanding. 

A wartime pamphlet, (Anderson, 1941), lists the localities of wells together 

with rudimentary information on the geological succession, rest water levels, 

pumped water levels and yields. More recent information on abstraction is 

given in the Wear and Tees Hydrological Survey (Ministry of Housing, 1961), 
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and although it contains no quantitative data on the aquifer parameters, it 
seeks to indicate the over-developed areas, and. those areas where future 
development should be concentrated. 

A report by the Water Resources Board (1967) on the resources of 

northern England indicates a possible deficiency in the Northumbrian River 

Authority area, based on existing supplies, of 30 million gallons per day 

(m. g. d.) by 1971, and 205 m. g. d. by the year 2001. The investigation and 

simulation of an area around Darlington (Northumbrian River Authority, 1969; 

Burgess and Caimey, in press) to offset this deficit is considered at lei^h 

elsewhere in this thesis. 

The influence of the geohydrology of the Permian on the working of the 

underlying coal was the subject of two papers resulting from work carried 

out by the National Coal Board (Armstrong et al. 1959; Clarke, 1962). It 

was concluded that resources in the Chilton-Rushyford area could be extracted 

providing there was dewatering of the overlying Permian. Clarke showed that 

there was a correlation between the pumping required in the mines, and the degree 

of fracturii^ and faulting and hydraulic head. The actual instigation of these 

schemes, however, was dependent upon the economics of the situation. 

As far as the engineering geology of the Magnesian Limestone is concerned, 

there have been no published reports in the literature. 

1.3. Objects 

The aims of the present research have been threefold:-

(i) To assess techniques for investigating and evaluating a highly variable 

material, often very fractured and jointed. 

(ii) To apply these methods to the Magnesian Limestone in particular, and 

to arrive at representative values for the engineering and hydrological 

parameters. 



(iii) On the basis of these results to consider the area as a geological, 

engineering and hydrological entity, and to be able to predict at any 

locality the possible nature of the geology and geological material, 

engineering and hydrological problems likely to be encountered, 

groundwater potential, suitability of the rock for a^regates, and 

other relevant particulars. 

The first of these objectives is considered the most important, since 

applications are by no means limited to the succession studied. Where required, 

contemporary methods of analysis and data processing have been employed, 

particularly the I . B. M. System 360/67 NUMAC computing facilities. 



CHAPTER 2 

GEOLOGY OF NORTH EASTERN ENGLAND 

2.1. Regional Geology 

In the north east of Finland, the broad geological succession is:-

Recent & Pleistocene 

Trias ) 
) Permo-Trias 

Permian ) 

Coal Measures ) 
) 

Millstone Grit Series ) Carboniferous 
) 

Carboniferous Limestone Series ) 

Lower Palaeozoic 

2.1.1. Lower Palaeozoic 

The basement series of slates, grits and volcanics occur as faulted 

inliers in a few Pennine localities at Horton-in-Ribblesdale, Langdon Beck 

and Cross Fell (Eastwood, 1963), and have been proved in a borehole at 

Crook (Woolacott, 1923). fii some areas, Devonian granites appear to have 

intruded the basement, and borehole evidence at Rookhope substantiated 

geophysical evidence of a granite at depth (Bott, 1967). 

2.1.2. Carboniferous 

The Carboniferous strata is deposited unconformably upon the Lower 

Palaeozoics in all areas. At the base, cyclothemic sedimentation was 

developed on the block areas of Alston and Askrigg, and these thicken greatly 

across hinge-lines into arenaceous and argillaceous successions in the trough 



areas of Northumberland, south Durham and north Lancashire. The 

Millstone Grit deltaic facies is less developed in the northern Pennines 

than in the Lancashire-Yorkshire area, attaining a thickness of only 400 feet. 

The succeeding Coal Measures, however, are represented by Lower and 

Middle Coal Measures up to the upper A. similis - A pulchra zone. The 

initial extraction of coal was located on the exposed coalfield of west Durham, 

with e3q)ansion into the concealed coalfield taking place in the mid 19th century. 

The difficulty of shaft sinking through the Permian was highlighted by the 

abandoning of the first Haswell sinking with a loss of £60,000 (Galloway, 1898). 

It was not until techniques for freezing difficult ground conditions were 

adopted in the early years of this century that full exploitation was realised, 

especially in the coastal areas where most of todays 'long life' pits are 

situated, working undersea reserves. 

2.1.3. Permian 

At the end of the Coal Measures, considerable denudation under very 

arid conditions reduced the area to a peneplain. The slight unconformity at 

the base of the Permian is marked by breccias and dune sandstones. Locally, 

to the north-east of Darlington and around Billingham, Carboniferous 'highs' 

result in attenuation or complete absence of Permian sediments (Wood, 1950). 

The Permo-Triassic succession in Co. Durham (Fig 2.1) consists 

fundamentally of a marine transgression over a desert peneplain, followed by 

cycles of evaporite formation. Since Co. Durham represented the western 

marginal area of the Zechstein Sea, the full development of the more soluble 

evaporites occurs only in the south-east of the county on Tees-side. In the 

Whitby area of the North Yorkshire Moors potash salts have been proved an 

economic proposition, and work is currently in progress on the shaft sinking 

and drilling connected with their abstraction. The oil and gas exploration 
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programme at present being undertaken in the North Sea has led to a more 

complete understanding of the stratigraphic relationships between the 

Permian of northern England and the rest of Europe, even though details 

of many of the wells and boreholes have been withheld for obvious industrial 

security reasons. 

2.1.4. Pleistocene and recent 

The interpretation of the Pleistocene of Co. Durham is complicated by 

its position, being influenced by Pennine, Cheviot and Scandinavian ice sheets. 

Pre-Pleistocene, the drainage was radial from the Pennine uplands, with the 

headwaters of the River Wear flowing via Shildon-Newton Aycliffe into the 

River Tees, and the River Browney flowing directly into the sea via Shadforth 

Beck (Smith and Francis, op. cit.) However, a tributary of the River Tyne, 

cutting south, intersected first the River Browney and then the River Wear, 

to produce the pre-glacial River Team, this being the drainage pattern 

immediately prior to glaciation. 

Over the central Durham area there is evidence of only one period of 

glaciation, although in the coastal area it seems probable that there were 

three, the oldest of which, the Scandinavian Drift, occurs at the base of 

clefts in the Magnesian Limestone. The Lower Boulder Clay, however, 

represents the ice sheet which covered the whole of the region, moving from 

north to south, and is up to 120 ft thick. This is succeeded by the Middle Sands, 

Gravels and Clays, indicative of a period of sub-aerial erosion of the pre­

existing deposits. The Upper Boulder Clay extended westwards only as far 

as an approximate north-south line through Shotton and Wingate, and during 

this period, sub-aerial erosion continued with deposition of sands, gravels 

and laminated clays in ice and boulder clay dammed lakes, such as Lakes 

Edderacres and Wear (Smith and Francis, op. cit). Many of the lakes 

overflowed creating distinct channels, the most striking of which is the 
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Ferryhill Gap, produced when Lake Wear spilled southwards. In central 

Durham, the succeeding deposit, the Upper Stony Clays, is probably 

indicative of a solifluxion phenomena, rather than of further ice sheets, 

since the underlying laminated clays are not usually contorted. The 

laminated clays of the Tees-side area are probably produced by ice damming 

from the receding Upper Boulder Clay sheet, and may thus be contemporaneous 

with the Morainic Drift and Upper Gravels. 

In post-glacial times, many of the rivers have adopted different courses, 

the River Wear, for example, cutting gorges in solid, rock, notably at Durham, 

Chester-le-Street and Sunderland, and thus leaving their old channels infilled 

with drift deposits. In the coastal area, there is evidence of the pre-glacial 

denes having a much lower base level, with slopes in the Magnesian limestone 

generally at 10° to 20° (Smith and Francis, op. cit), which is considerably less 

than the present day streams that now occupy many of the former courses. 

2.2. Permian stratigraphy 
and lithologies 

The stratigraphy of the Permian is considered below in a palaeogeographical 

context and the various lithologies outlined. A generalized map of the Permian 

outcrop is given in Fig 2.2., and Fig 2. 3 shows the southern area in detail. 

2.2.1. Basal Sands and Breccias 

The Permian Basal Sands and Breccias represent reworked arid 

terrestrial deposits, and are thus highly variable in thickness and occurrence. 

South of a sinuous line from Blackball Rocks to Rushyford the often incoherent, 

running Yellow Sands are replaced by breccias. 

2.2.1.1. Palaeogeography - The suge of the basal deposits is difficult to 

determine due to the obvious lack of palaeontological evidence. Smith et al (op. cit.) 

suggests that by analogy with the Russian type area as described by Nalivkin (1937) 
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the basal beds should be ascribed to the Kungurian Stage of the Lower 

Permian. 

The thickness and distribution of the Yellow Sands are very variable 

reaching a possible 196 feet near Easington, but being completely absent 

elsewhere. 

From borehole data and cross bedding preserved within the Yellow 

Sands it is possible to reconstruct the desert landscape, and it appears that 

]Rrge dunes similar to present day sief dunes were reworked durii^ the 

Zechstein Transgression. From the orientation of the axis of a dune 

mapped in the Chilton-Raisby Hill area and using Bagnold's hypothesis 

for the generation of barchan dunes (Bagnold, 1941), palaeo-winds with a 

prevailing direction of E 10° N, with a subordinate direction of E 40° N 

have been postulated by Smith et al (op. cit.) . These directions agree 

closely with the present day equatorial regimes, and thus yield independent 

evidence in support of polar wandering and/or continental drift derived from 

palaeomagnetic evidence. 

Information on the breccias which occur in the south of Co. Durham 

is at present too limited to enable a detailed distribution to be determined, 

although the variable thickness may indicate deposition as debris fans and 

wadi infillings. 

2.2.1. 2. Lithology - Sizingt: analysis of the Yellow Sands shows a bimodal 

distribution indicative of aeolian transport (Hodge, 1932). The heavy 

mineral assemblage shows the material to be derived partly from the 

immediate vicinity, and partly from an area to the north containing granites 

and metamorphic rocks. Usually the Yellow Sands are virtually cohesionless, 

although the silt-clay loessic fraction does impart some cohesive strength. 

At outcrop the material is bright brownish-yellow, but fresh samples from 
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depth are greenish in colour, the change being attributed to oxidation of the 
pyrite to limonite near the surface. Towards the base and top of the sands, 
secondary cementation by calcite leached from the overlying limestone 
produces a more competent material. Near Easington Colliery, the complete 
90 feet thickness of Basal Sands penetrated in a National Coal Board boring 
has been cemented into a low porosity, grey sandstone. 

The Basal Breccias consist of angular fragments embedded in a sandy 

matrix. The provenance is fairly local, being derived from the Carboniferous 

'highs' of North Cleveland and the Tees Valley. 

2.2.2. Marl Slate 

The Marl Slate, a silty dolomitic shale was first considered by Sedgewick 

(1829) to be the English equivalent of the German Kupferschifer. 

In north eastern England it reaches a maximum thickness of 18 feet near 

Rushyford, but attenuates rapidly in all directions, 2 feet to 5 feet being general 

over the majority of the Permian outcrop, but decreasing to zero in the area 

around Hartlepool and. offshore. It outcrops near the base of the Permian 

escarpment, but because of its nature and thickness is rarely well exposed, 

except in quarry sections. At depth it is massive but on weathering becomes 

brown-grey and develops typical shale laminations. 

2.2.2.1. Palaeogeography - The Zechstein Transgression was followed by a 

period of quiescent, stagnant marine conditions. High base metal concentrations 

have been shown to be present (Hirst and Dunham, 1963), and are believed to 

have been responsible for the extermination of the marine fauna. The origin 

of the mineralizing fluids is not known, although the widespread spatial 

occurrence would seem to suggest submarine exhalations possibly similar to 

those recently noted in the Salton Sea (Skinner et al. 1967). 
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2.2.2.2. Lithology - The Marl Slate consists of a silt grade dolomite in a 

clay matrix. X-ray texture analysis (Attewell et al, 1968) shows that the 

fissility is due to the orientation of illite and kaolinite with the basal (001) 

planes sub-parallel to the bedding. The dolomite rhombs are largely 

aligned with their c-axes perpendicular to the bedding, and there is no 

evidence of non-hydrostatic stresses in a horizontal plane. 

2.2. 3. Lower Magnesian Limestone 

The resistant Lower Magnesian Limestone produces the westward 

facing escarpment, and is well ejqjosed in the numerous quarries along this 

line. Further east, however, it is located in depth only from boreholes. 

Its maximum thickness of 225 feet is reached at Mill Hill near Easington, 

but at outcrop in the Houghton-le-Spring to Shildon area it is usually 150 feet 

thick, fii the area around Sunderland, and to the north of the River Wear, 

the Lower Magnesian Limestone thins drastically, being at maximum 20 feet 

thick and in places completely absent. 

2.2.3.1. Palaeogeography - The Lower Magnesian Limestone represents 

the carbonate-dolomite phase of the first evaporite cycle. The increasingly 

saline nature is evidenced by the fauna becoming stunted and impoverished. 

Over much of the county there is a gradual transition into the overlyii^ 

Middle Magnesian Limestone, but in Yorkshire a thin sequence of intratidal 

clays and dolomites, the Hampole Beds, have been recognized (Smith, 1968). 

The basal beds at outcrop from South Shields to the Tees often show signs of 

•slumpii^ producing disturbed beds and turbidites (Smith, in preparation). The 

much reduced thickness in the Sunderland area and to the north, reflecting a 

removal of up to 75 feet of strata, is interpreted as a submarine slide 

(Smith, op. cit.), occurring towards the end of Lower M^nesian Limestone 

deposition. By comparison with documented contemporary submarine slides it 
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appears to be due to a rapid increase in pore pressure, probably from 

an earthquake, producing an unstable condition (Morgenstem, 1967). 

2.2. 3.2. Lithology - At the western escarpment outcrop three distinct 

units may be recognized, but these are not easily identifiable in boreholes 

to the east (Smith and Francis, op. cit.). 

The lowest unit, 4-12 feet thick and massively bedded, ranges from 

a calcitic dolomite to a pure calcite limestone, and having a granular to 

finely crystalline texture. 

The middle unit consists of dolomites with the beddii^ varying from 

3 ins. to 2 ft. In many places, for example at Thrislii^on, it has a 

mottled appearance (F^ 2.4), representing a partial segregation of calcitic 

and/or organic material. Locally, this horizon is completely undolomitized, 

notably at Raisby Hill Quarry, near Coxhoe, and at East Thickley, near 

Shildon. In the Houghton-le-Spring area, it is extremely cavernous and 

autobrecciated (Fig 2. 5) with very distinct bedding about 2 ins. thick. 

The upper unit consists of silt grade granular dolomite, often very 

pure and homogeneous (Fig 2. 6). The bedding is very distinct, about 2 ins. 

thick, and there is a considerable reduction in the amount of autobrecciation 

and vughs. 

This sequence of lithologies in the Lower Magnesian Limestone is 

interpreted, as indicating pre-diagenetic dolomitisation of the upper unit, 

with post-diagenetic dolomitisation of the lower units becoming incomplete 

near the base. This hypothesis is compatible with an increasingly saline 

environment and downward percolation of hyper-saline solutions producing 

dolomitisation downwards. The competent nature of the lower micritic 

strata would prevent easy passage, except along lines of weakness such as 

bedding planes, thus giving rise to the characteristic mottled appearance of 

the partially dolomitised limestones. 
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2 . 2 . 4 . Middle Magtiesian Limestone 

On an area! basis , the Middle Magnesian Limestone occupies most of 

the P e r m i a n outcrop. However, the poor ly resistant nature resul ts i n few 

exposures. Because of the d i f fe ren t depositional environments, the Middle 

Magnesian Limestone exhibits a great var ie ty of l i thology, w i th thicknesses ^ 

ranging f r o m 30 feet offshore to over 250 feet near E a s i i ^ o n Col l i e ry . 1 

2 . 2 . 4 . 1 . Palaeogeography - The influence of the palaeogeography on the 

nature of the sediment i s more marked i n the Middle Magnesian Limestone 

than elsewhere i n the Pe rmian succession. 

There a re essential ly three facies divisions: i n the west,, l ^ o o n a l , 

passing eastwards into reef , and th is into basinal sediments. The dominant 

fea ture i s thus the f r i n g i n g reef , which fo l lowed a generally north-south l ine , 

f r o m Downhi l l through Humbledon, Rj i iope and Peterlee to Blackhal l Rocks, 

and south to Har t lepool , v^^ere i t became much subdued. Embayments occur 

i n some areas, notably around. Hesleden Dene and Horden. 

I n i t i a l l y the reef was composed of a low shel l bank, f o r m i n g f i r s t of 

a l l i n the nor th where there i s some evidence that i t may have existed i n 

Lower Magnesian t imes . A s the sa l in i ty increased, the brachiopod fauna was 

replaced by bryozoa and algae, as only these la t te r could withstand the hyper-

saline environment. South of Sunderland, the reef as now exposed, consists 

l a rge ly of a lgal s t romatol i tes . I t i s probable that the reef existed longest i n 

the cen t ra l area where i t i s developed to i t s maximum thickness of 250 feet. 

To the west of the reef , lagoonal conditions wi th quiet waters produced oolites 

and p isol i tes to a max imum thickness of 200 feet. Overlying these i n the south, 

m a r l s and evaporites of the Lower Evaporite Group occur. They are unknown 

no r th of the Har t lepool Faul t system, but th i s i s probably an erosional feature 

resul t ing f r o m the southern downthrow, since nowhere to the nor th has the 
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actual top of the ool i t ic dolomites been ident i f ied (Jones, i n preparation). 

To the east of the reef, basinal dolomites and evaporites were deposited. 

I n many areas subsequent solution has l e f t only a th in residue bed, especially 

i n the Sunderland area. In the N . C. B . Offshore Borehole No. 2, however, 

over 500 feet of anhydrite was logged (Magraw et a l , 1963), g iv ing an 

indicat ion of the thickness dissolved. 

2 . 2 . 4 . 2 . Li thology - (a) Lagoon. The lagoonal facies consists almost 

en t i r e ly of dolomites , of ten ool i t ic o r p i so l i t i c and weakly cemented (Fig 2. 7), 

together w i t h granular s i l t -grade dolomites s i m i l a r to the upper unit of the 

Lower Magnesian Limestone. Where ool i t ic horizons occur beneath a th ick 

impermeable cover of m a r l s i n the southern area, the pores are invar iably 

i n f i l l e d w i t h evaporites. I t f l ius appears l i k e l y that the open textured, oolites 

represent strata f r o m which the i n t e r s t i t i a l evaporite cement has been leached 

by groundwater movement. V e r y loca l ly , dedolomitisation has occurred, 

producing c rys ta l l ine l imestones, but the zones affected are l i m i t e d and 

unpredictable although i n many cases they appear to be related to faul ts . 

(b) Reef . The nature of the reef bui lding ma te r i a l i s the main fac tor 

de termining the resultant l i thology. Di the Sunderland area, and especially 

at F o r d Quar ry , shells constitute the main ma te r i a l , producing a highly 

porous, dolomit ized rock (Fig 2. 8). A s the sal ini ty increases, bryozoa 

and algae become the dominant bui lders , and the resultant rock i s more 

massive, often w i t h dis t inct a lgal domes and s t romatol i t ic crenulations 

(F ig 2. 9). 

(c) Basin. The Lower Evaporite Group i s included i n this divis ion 

since the beds are l i tho log ica l ly more akin to the t rue basinal sediments 

than to the lagoonal ooli tes. Close to the reef, buf f , b ioclast ic , dolomit ic 

calcarenites are found. Fur the r of fshore , to the south around Tees-side 

and i n Y o r k s h i r e , evaporites up to the sylvine stage are found. The Lower 
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Evapori te Group of the south of the county i s general ly m a r l y , but the 
evaporites increase eastward to t)roduce the Hart lepool Anhydri te . 
Immedia te ly beneath the d r i f t , and to a lesser extent beneath the Upper 
Magnesian Limestone, leaching of the evaporites occurs. 
2 . 2 . 5 . Upper Magnesian Limestone 

The outcrop area of the Upper Magnesian Limestone i s l i m i t e d i n 

extent due to the easter ly dip and the p r o x i m i t y of the reef to the coast. 

I t s m a x i m u m thickness i s known f r o m Offshore Borehole No. 2 to be 

412 feet , but on land i t i s a max imum of 200 feet and generally less than 

150 feet th ick (Smith and Franc i s , op. c i t . ) . 

2 . 2 . 5 . 1 . Palaeogeography - The base of the Upper Magnesian Limestone 

represents the s tar t of an evaporite cycle. As wi th the f i r s t , the conditions 

are i n i t i a l l y stagnant mar ine , but the presence of clay minerals and 

organic m a t e r i a l i s secondary to the dolomite. L i m i t e d f o s s i l evidence 

indicates that f i s h did exist i n th is environment, and the basal Flexible 

Limestone has occasionally yielded identif iable remains. The m a j o r i t y of 

the succession consists of buf f , granular dolomites, wi th some ooli t ic and 

cross-bed"dB(] s trata. 

2. 2. 5. 2. L i tho logy . - The divis ion of the Upper Magnesian Limestone into 

F lex ib le Limestone and Concretionary Limestone at the base, and Roker and 

Har t lepool Dolomite above, i s based almost ent i re ly on li thologic 

charac ter i s t ics . The Flexible Limestone exhibits shale-like laminations 

(F ig 2.10) and was o r i g i n a l l y thought to be a chronostratigraphic unit , but 

i t now appears to be a l i thostra t igraphic unit , since beds wi th s i m i l a r 

features occur above the base of the sequence. 
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The succeeding strata are noted f o r the diverse sper ical and 
pseudo-coral l ine concretions (Fig 2.11) , best known and f i r s t described 
f r o m F u l w e l l Quar ry , near Sunderland. The concretions are wholly calci te , 
and appear to be the resul t of dedolomitization by suitable c i rcu la t ing waters. 
T h e i r occurrence throughout the lower par t of the Upper Magnesian 
Limestone i s widespread, although they are most typ ica l ly developed i n 
the Sunderland area, and the d is t r ibut ion appears to be related to areas of 
large scale collapse breccia t ion (Smith, i n press). The solution of underlying 
Middle Magnesian Limestone evaporites by groundwater may have taken 
place as late as T e r t i a r y t imes . The resul t was analogous to coal mining 
subsidence, although on a cataclysmic scale due to the great thickness 
dissolved, the incompetent nature of the strata, and the probably th in cover. 
S i m i l a r effects may be seen today i n par ts of Cheshire where solution of the 
Upper Keuper Saliferous Beds at outcrop has produced l inear and cra ter 
subsidence features (Evans et a l , 1968). In the Whi tbum-Marsden area the 
effect of collapse becomes more intense northwards, beginning as an increase 
i n j o in t frequency, leading to gash breccia t ion, and f i n a l l y to widespread 
collapse breceiat ion. The high poros i ty and permeabi l i ty of these beds 
( F ^ 2.12) would read i ly al low c i rcu la t ion of sulphate r i c h solutions der ived 
f r o m the evaporites, leading to dedolomitisation of the breccias and surrounding 
strata . 

The Hart lepool and Roker Dolomites consist generally of soft , 

g ranular dolomites, w i t h some oolites showi i^ s l ight ly more cementation than 

i n the Middle M ^ n e s i a n Limestone. 
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2.2.6. Upper Pe rmian M a r l s 

These represent the f i n a l s i l t ing up of the B r i t i s h Zechstein Sea. 

Nowhere are the m a r l s exposed, on the surface although underground evidence 

suggests that they represent port ions of two evaporite cycles producing the 

Upper Anhydr i te and the B i l l i ngham Main Anhydr i te , both of which are 

extensively mined b y I m p e r i a l Chemical Industries L i m i t e d at B i l l ingham. 

The m a x i m u m thickness of the Upper Permian M a r l s i s 370 feet, and upwards 

they become increasingly arenaceous and grade into the succeeding Bunter 

Sandstone. 

2 .3 . Structure 

The s t ruc tu ra l h i s to ry of the area i s divided by Smith and Franc is 

(op. c i t . ) into three phases. Evidence f o r the f i r s t , pre-Upper 

Carboniferous, i s pu re ly geophysical, and i s based on the interpretat ion 

of g r a v i t y anomalies as thickening of sediments southwards across and east-

nor th-eas te r ly hinge l ine f r o m Horden to F e r r y h i l l (Bott and Masson-Smith, 

1957). The second phase i s Carboniferous-Permian, and produced the 

But terknowle Faul t approximately along the l ine of the previous h i i ^ e belt . 

The pe r iod of erosion fo l lowing these movements resul ted i n the angular 

d i s con fo rmi ty between the Carboniferous and Permian , and isolated 

Carboniferous ' h ^ h s ' over which l i t t l e o r no Permian sediments were 

deposited. Pos t -Permian movements gave the s trata i t s easterly dip o f 

about 125 feet per m i l e , and rejuvenated many of the faul ts , extiending them 

upwards w i t h much decreased throws, as w e l l as producing f u r t h e r f l exu r ing 

along the Butterknowle l ine . The most important features of this episode, 

however, occur i n the south of the county, where the West Hart lepool , Seaton 

Carew and But te rwick faul ts produce en-echelon downthrow to the south of 

over 1,000 feet . 



18. 

2 . 3 . 1 . Faul t ing 

In the Chilton-Wingate area of Co. Durham, analysis of faul t frequency 

and orientat ion by Clarke (1962) has shown s t r ike maxima i n directions E-W 

and NNW-SSE. Most of the large throw faul ts (greater than 100 feet) are 

al igned east-west, f o r example the Easington Faul t , Blackbal l Fault and 

Seaham Harbour Faul t . Many show monoclinic f l e x u r i i ^ on the downthrow 

side so reducing the ove ra l l throw. Trough fau l t s , generally trending n o r t h -

nor th-west are notable i n the Castle Eden and Wingate areas. The faul t ing 

i n the south of the county i s l a rge ly d r i f t obscured and is in terpreted f r o m 

borehole evidence and b a r r i e r effects delineated dur ing w e l l testing (see la te r ) . 

The most important feature i s the east-west t rough faul t i n the A y c l i f f e area, 

but f u r t h e r nor th the direct ions become more nor th-wester ly . Due to th ick 

d r i f t cover the exact l ines of the West Hart lepool Faul t and the Seaton Carew ( 
I 

Faul t are l a i ^ e l y unknown, t he i r positions b e i i ^ located by the associated 

g rav i t y anomalies. 

2 . 3 . 2 . Folding 

Besides the fo ld ing associated wi th many of the larger east-west faul t s , 

high dips are r e s t r i c t ed to the reef f r o n t area, where there i s evidence of 

penecontemporaneous movement to produce a talus slope at the foot . Over 

most of the area there i s gentle f l exu r ing of the Magnesian Limestone, and 

i n the south of the county a b road anticl ine has been located i n boreholes, 

running north-west south-east through Preston-le-Skeme. 

2. 3. 3. Jointing 

In general the jo in t direct ions agree closely wi th the fau l t direct ions. 

Moseley and Ahmed (1967) show that post-Carboniferous joints exhibit the 

same d i rec t iona l frequency as those of the underlying strata. Joint 

f requency i s v e r y var iab le , but the spacing i s general ly s i m i l a r to the bed 

thickness (P r i ce , 1966). 
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CHAPTER I 

INTRODUCTION AND THEORY OF AQUIFERS 

1 .1 . Introduction 

A n investigation of the groundwater regime such as that undertaken 

i n th i s study has a twofo ld object. F i r s t , the nature and disposition of the 

aquifers must be determined using the available surface and subsurface 

i n fo rma t ion , the resul ts of p u m p i i ^ tests and routine abstraction, and 

detai ls of the recharge areas. Second, a synthesis of this in format ion 

must be made i n o rder to a r r i v e at as complete an understanding as 

possible of the a rea l behaviour of the aquifers , and on this basis, 

conservation and management schemes may be constructed so as to obtain 

the op t imum re tu rn f r o m the available resources. 

U n t i l the mid-1950's the study of groundwater and w e l l hydraulics 

was apparently divided between engineers, mathematicians, and geologists, 

w i t h the resul t that the la t te r approached the problem on a qualitative basis, 

whereas the others endeavoured to construct complex mathematical models, 

of ten w i t h scant r ega rd f o r ei ther the geology o r the workab i l i ty of the 

solution. However, the pioneer work of Southwell (1946) on the application 

of numer i ca l re laxat ion techniques created poss ibi l i t ies of reconci l ia t ion 

between the two sides. Karplus (1958) recognized, the potential of e lec t r ica l 

analogue methods f o r the solution of f i e l d problems, and Stallman (1963) 

applied the techniques to groundwater. W i t h the advent of t h i r d generation 

computers , d i rec t methods of solution are being investigated. 

In many ways the present study has been a prec is of this evolution. 

I n i t i a l l y the investigation employed analyt ical techniques developed i n the 

late 19th century, fo l lowed by the non-steady state concept of Theis (1935). 
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Latterly analogue and digital methods of simulation have been used., resulting, 
i t i s hoped, in a contemporary evaluation of the aquifers. 

1.2. Theoretical Basis and Definitions 

1.2.1. Darcy's Law and the Laplace Equation 

The flow of water through a porous medium was investigated by Darcy 

in 1856 when he showed that fo r low rates of flow, the discharge velocity 

varied directly with the loss of head per unit length of sand column through 

which the flow occurred. He thus established the empirical law, e}q)ressed as 

V = K ^ ^ h / l (1.1) 

where V = discharge velocity 

Ah. = head difference 

1 = length of column 

K = constant, dependent upon the material. 

For the general case of any liquid, this becomes 

V = i k y / r , (1.2) 

where i = hydraulic gradient 

k = intrinsic permeability 

^ = density 

= kinematic viscosity 

The constant K in Darcy's original equation is thus a function of both the 

material and the f lu id . However, i f the fluid is water, the changes in its 

physical parameters are negligible over the range of conditions encountered 

in groundwater, and thus variations in K, the hydraulic conductivity or 

permeability, may be reasonably referred directly to the material. 

By a consideration of the laminar-to-turbulent transition in pipeflow 

and the inertial forces, Lindquist (1933) has defined values N* at which 

digression f r o m Darcy's Law starts, given by 
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N * = VD / r j (1. 3) 

where D = average grain diameter 

He showed that fo r a material with grain diameters between 1mm > and 5mm 

and a porosity of 38%, N* was about 4. For most groundwater conditions 

laminar flow conditions w i l l obtain; however, around a well , high discharge 

velocities may result in localised turbulent flow leading to 'well losses'. The 

discharge velocity around a well is determined by 

V = Q / 2 ' n r ^ w (1.4) 

where Q = rate of flow 

r ^ = well radius 

h ^ = depth of water in well 

An assessment of the flow conditions may therefore be made, assuming a 

knowledge of the relevant parameters of the surrounding material. 

The similari ty between the laws governing the flow of water, electricity 

and. heat was recognized in the mid-19th century. It is here that two basic 

concepts in groundwater hydraulics, namely, steady state and non-steady state, 

cause a slight divergence of solution. 

Part ial differential equations of the general two-dimensional fo rm 

\ 2 v2 v2 
a d u + b o u + c o u = f (1.5) 

where a, b , c, are functions of x and y, and f is a function of x, y, u , 

bu/^x, ^ u / ^ y , occur widely in engineerii^ (; , James et a l , 1967). There 

are three basic forms, elliptic, parabolic and hyperbolic, but only the f i r s t 

two have relevance in groundwater hydraulics, 

(a) Elliptic partial differential equations. This type is defined by 

b^ - 4ac < 0 (1.6) 

and thus the Laplace Equation 

^ \ + ^ \ =0 (1.7) 

^ X ^ y 
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is of this form. The solution is represented by two sets of orthogonal lines, 

one set being the equipotential lines, the other being the flow lines. The 

solution domain is closed, with the implication that steady state conditions 

exist, and in this way Laplace's equation is basically different f rom the 

open-ended domain solution of the parabolic equation, 

(b) Parabolic partial differential equation, l i i this case, the solution must 

satisfy the partial differential equation throughout the domain determined by 

t ime, as well as the ini t ia l and boundary conditions. Such an equation 

represents the non-steady flow of water through an aquifer, subject to 

recharge at a steady rate of accretion, W, 

= S ^ h - W (1.8) 
dx^ V T a t̂ T 

where S = storage coefficient 

T = transmissibility 

W = rate of accretion 

Equations 1. 7 and 1. 8 fo rm the theoretical basis for the study of 

groundwater hydraulics; the resulting differences are thus a reflection 

on the solution adopted and the f ie ld of application. 

1.2.2. Definition of aquifer parameters 

The usage of the various terms adopted in this thesis are outlined 

below. 

1.2. 2 . 1 . Hydraulic conductivity or permeability, K - It is implicit in 

the application of Darcy's Law that the value of the constant K takes account 

of the properties of the f lu id as well as the porous material. The units are 

generally expressed as L T ^. However, alternative units which take 

account of the true dimensional nature of K are sometimes used, especially 

in the U. S. A . , where their application is usually limited to the hydraulics of 
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o i l reservoirs in which the different properties of the fluids involved are as 

important as the characteristics of the reservoir rocks. In general, 
2 

values obtained f r o m tests w i l l be expressed in gallons per day per (foot) , 

2 -5 

or in centimetres per second (1 g. p. d. / f t = 5.65 x 10 cm/sec). 

1.2.2. 2. Coefficient of storage. S. - This is defined as the volume of 

water released or taken into storage per unit surface area of the aquifer. 

(a) Confined case. The release of water f rom a confined aquifer due to 

a change in head is entirely a function of the compressibility of the aquifer 

skeleton and the water. Assuming no leakage into conti^ous beds, 

Jacob (1950) deduced the relationship: 
S = Y ^ r i T ) { p + jo^) (1.9) 

n 

where = density of water 

n = porosity 

D = aquifer thickness 

yS = compressibility of water 

(X = compressibility of aquifer skeleton 

From a knowledge of the elastic parameters, porosity and thickness of 

the aquifer, i t is thus possible to compute the storage coefficient. Where 

recordable, the barometric efficiency, BE, and tidal efficiency, TE, may 

also be used to derive the storage coefficient. 

(b) Unconfined case. In the unconfined aquifer, actual dewatering takes 

place, the elastic effects due to chaises in ambient pressures being 

negligible in comparison. Thus the storage coefficient is often equated 

with the porosity, but this appears to be somewhat optimistic except in 

coarse sands and gravels. 

Capillary effects due to pore geometry can greatly reduce the 

quantity of water able to drain freely, and thus a saturated clay in 
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equilibrium with the saturated moisture which exists above i t would lose 
very l i t t le of its held moisture. 

1.2.2.3. Transmissibility, T. - This is simply defined as hydraulic 

conductivity X saturated thickness of aquifer, and for a confined, 

homogeneous aquifer i t is , of course, constant. However, in the water 

table aquifer near wells i t w i l l be a function of the position of the free 

surface induced by pumping, and w i l l therefore be variable. Ja general, 

i t is the transmissibility which is determined f rom aquifer tests, and the 

conversion to the equivalent permeability merely represents the overall 

average permeability of an ideal homogeneous aquifer which behaves 

s imilar ly to the one tested. The value of permeability obtained by 

analysis of pumping test data is , by assumption, fo r the horizontal direction. 

This average value obtained is a composite of the individual bed thicknesses 

and hydraulic conductivities. In some cases the average may be reduced 

to i ts constituents by the relationship 

where K = average hydraulic conductivity 

= hydraulic conductivity of individual beds 

H = total thickness 

H H = thickness of individual beds 

1 n 

1. 2. 2.4. Specific capacity, SC - This is defined as the yield in gallons per 

day, per foot of drawdown under steady state conditions. For a confined 

aquifer, the specific capacity is constant for drawdowns less than the 

artesian head. For an unconfined aquifer, the specific capacity is a function 

of the percentage drawdown of maximum, or percentage dewatered. Because 

of this, specific capacity values have been normalized to the value represented 
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by 50% dewatered, using a relationship derived f rom the graph of Johnson 
(1966) 

SC50 = SC( 0.75 ) (1.11) 
1 - %dw/200 

where SC^^ = specific capacity at 50% dewatered 

SC = calculated specific capacity 

%dw = percentage of aquifer dewatered 

1. 3. Aquifer tests 

The theory of aquifer tests is based on either a steady or non-steady 

state condition of flow within the aquifer. 

1. 3 .1 . Steady state 

The steady state concept provided the framework for analysis of well 

hydraulics started at the end of the nineteenth century. 

1. 3 .1 .1 . Confined flow - (Fig 11). The Thiem formula linking discharge 

with the potential around the well is given by 

K = _ Q _ . log ("^a/r^) (1.12) 

^ 2 - ^ 1 

where D = aquifer thickness 

r , r = radial distances f rom well 1 ^ 

h^, hg = heads at distances r^, 

The derivation of the formula fo r steady state is based on the following 

assumptions: 

a) the aquifer is homogeneous, isotropic and of infinite areal extent, 

b) the discharging well penetrates and receives water f rom the entire 

thickness of aquifer, 

c) the transmissibility is constant at a l l times and at a l l places, 

d) pumpii^ has continued fo r a sufficient time to allow the system to have 

reached steady state conditions, i . e. no change in drawdown as a 

function of t ime. 
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e) the flow is laminar. 

Despite these limitations, the formula has quite widespread 

applications. 

1. 3.1.2. Unconfined flow - (Fig 1.2). The corresponding equation for 

unconfined flow is generally attributed to Dupuit-Forchheimer, and is 

l imited by similar assumptions to the Thiem equation above:-

K = S _ - l o g e (1.13) 

h2 -h^ 

Whilst this equation may be used to predict the discharge to within an 

error of 5%, Boulton (1951) has shown that i t cannot be employed to 

determine the position of the free airface at a distance f rom the well of 

r < 1.5 he (1.14) 

where r = radial distance f rom the well 

hg = undisturbed saturated aquifer thickness 

Hantush (1964) has advanced a method for more accurately determining 

the free surface position using h, the hydraulic head, defined as the he^^ht 

of water in a screened well completely penetrating the aquifer, 

2hh - h^ = h^^ - ^ . log^ (Tg) (1.15) 

As the distance f r o m the well , r , increases, h approaches h and 

the equation becomes the same as the Dupuit-Forchhetmer. 

The main factor producing divei^ence of the free surface f rom that 

predicted by the Dupuit-Forchheimer is the existence of a seepage face in 

the well above the pumped water level. Boulton (1951) has shown by 

relaxation methods that the height of the seepage face may be determined 

f r o m the well radius, amount pumped and hydraulic conductivity. Zee (1957) 

introduced dimensionless constants to ejcpress the combination of 
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parameters, and his work was further developed by Herbert (1965) who 

studied the disposition of the free surface around a steady state well 

using an electrical resistance analogue. From practically derived 

dimensionless number relationships he produced a graph of the correlation 

2 

between Q / K r ^ and (hj^^g - h.^ / r ^ , where ĥ ^̂ ĝ is the height of the 

water table at a distance of 115 x r ^ f rom the wel l , and hg is the height 

of the seepage face. This, when used in conjunction with theoretically 

derived number relationships between Q / K r ^ and h ^ / r ^ , enables the 

water table profile to be predicted f r o m Zee's curves. Since i t takes 

account of the seepage face i t has been used as a method of analysis for 

cases where only the pumped water level is known. The process is 

iterative but converges very rapidly, and with practice takes l i t t le longer 

than the Dupuit-Forchheimer. Results obtained by the latter are generally 

higher than f rom the Herbert method due to the neglect of the seepage face 

by the former. 

The application of steady state conditions has obvious attractions in 

its simplicity (Logan, 1964), but some of the limiting assumptions are too 

rigorous to allow more than an approximate solution for the parameters. 

By definition, the source of water under steady state conditions comes f rom 

lateral flow within the aquifer, rather than dewaterii^, and hence an estimate 

of the storage coefficient cannot be obtained. Boulton (1954) has shown that 

horizontal flow predominates for 

T > 5 (1.16) 

where T =Kt/Shg (1.17) 



28. 

1. 3.2. Non-steady state 

The concept of time in groundwater hydraulics was f i r s t introduced 

by Theis in 1935, although the analogy with the conduction of heat had been 

recognized since the work of Slichter in 1899. In 1940, Jacob verified 

the non-equilibrium formula directly f rom hydraulic concepts. Stated in 

non-dimensional terms i t is 

(1.18) 

4tT 

where u = r^S/4tT (1.19) 

The non-equilibrium formula is based on the fo l lowi i^ assumptions:-

a) the aquifer is homogeneous and isotropic, 

b) the aquifer has infinite areal extent, 

c) the discharge or recharge well penetrates or receives water f rom the 

entire thickness of aquifer, 

d) the transmissibility is constant at a l l times and at a l l places, 

e) the wel l has an infinitesimally small radius, 

f) water removed f r o m storage is discharged simultaneously with decline 

in head. 

Since the expression cannot be directly integrated, solution is by 

matchir^ a data curve of log (time) v log (drawdown) with the type curve 

of wel l function log (w(u)) v log(l /u) . The match points are then 

substituted into the equations 

s = Q_ . w(u) (1. 20) 
T 

u =_S_ . _ £ i (1.21) 
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a l lowi i^ the storage coefficient and transmissibility to be calculated 

(Dewiest , 1965). 

The value fo r the integral expression has been expanded (Jacob, 1950) 

into a series given by:-

e . du 
u = W(u) = -0. 577216 - log^u - u" 

r S 2.2.' 

> 0 O 

-U 
. flu 

2 

4tT 

3 4 
+ u - u + (1.22) 

3. 31 4.4: 

Now fo r u 0.01 the terms beyond log u may be ignored, and the expression ^ 

is thus reduced to 
s =_Q_ (logg 4Tt - 0. 5772) 

4fTT ^2g 

s =ja__ log 2. 25Tt (1. 23) 
4 f r T % 2 s 

This is known as the Jacob approximation, and the usual method of 

solution is to plot drawdown (s) v log (t) to produce a linear graph. Taking 

times t^ and t2 the respective drawdowns are s i and Sg and thus 

T = ^ . log^ (t^/tj) (1.24) 
4Tr S2 - Sĵ  

I f , fo r convenience, the time interval between t^ and is taken as 

one log cycle, then 

T = Q/A s (1.25) 

where A s = change in drawdown, Sg-Si 

The storage coefficient may be determined f rom the same plot, since 

when s = 0 
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s = ^ . logg 2. 25Tt 

thus 

411 T t 

S = 2. 25 Tto 

r^S 

(1.26) 

where tQ = intercept on time axis, 

A development of the Jacob approximation allows the transmissibility 

to be calculated f r o m the recovery of a pumped well . The cessation of 

pumpi i^ is considered analogous to the commencement of rechai^e at the 

same location and rate. Thus 

s - = ^ 
4f7T 

-oo 

e . du 
2 u r S 

_e 
u 

-u du (1.27) 

r^S 

4Tt 4 T ? 

where s i = residual drawdown 

t"*" = time f rom end of pumping 

Proceedit^ as before by ejqpanding the integrals as series and 

neglecting a l l but the f i r s t two terms, then 

ŝ  = 2. 30 Q . logg (Vt l ) 
4TTT 

(1.28) 

The most convenient method of solution is to plot the residual drawdown 

s^ V log ( t / t l ) 

Taking A (log(t/t''")) over one cycle, then 

T = q/h (1.29) 

I t is not possible to determine with any accuracy the coefficient of storage 

f r o m the recovery method. ' 

Theoretically, the substitution of the well radius in the ejcpression should 

produce a result, but the error i n the determination of the effective well radius 

results in a large range of possible storage coefficient values. This is hardly 
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surprising since one of the assumptions for the Theis solution is a well of 
infinitesimally small radius. 

The results of analyses based on recovery are usually reliable since 

errors due to variation in pumping rates which may be inherent in drawdown 

tests are not present. I f howe ver the cone of depression intersects a barrier 

or recharge zone, then the results should be treated with caution, although 

they may be considered as giving the 'effective' transmissibility for the area 

around the well . 

The Theis non-equilibrium equation was originally formulated fo r the 

confined aquifer case. It has, however, been employed ubiquitously and the 

results accepted with no more than the usual reservations. Iheson (1953) 

working on chalk aquifers which are sometimes unconfined, considers its 

application justifiable in such instances. 

The f i r s t attempt to apply non-equilibrium conditions specifically 

to a water-table aquifer was made by Boulton (1954), who devised a solution 

based on two dimensionless parameters, defined by 

T = ^ K t (1.17) 
She 

e=_r_ (1.30) 
he 

The boundary conditions for which the solution was determined l imits 

the drawdown to s 0.5 hg , and was not therefore directly applicable to any 

of the cases studied. 

Jacob (1963) produced a development of the Theis non-equilibrium 

formula fo r the recovery of pumped water-table wells, enabling the 

transmissibility to be determined with greater accuracy. The method of 
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solution is graphical and similar to the confined Jacob approximation, 

except that the residual drawdown, s"*", is replaced by s"*- - (s'^)^/2hg. 

Proceeding as before therefore, and taking the time interval. A t , between 

t^ and tg as one log cycle 

T = • , (1.31) 
A ( s i _ (sl)^/2hg) 

1.4. Summary and conclusions 

The methods of analysis that may be employed are largely dictated by 

the type of data available, and thus in the Sunderland and Hartlepool areas, 

unconfined, steady state models have been used. Of the non-equilibrium 

methods applicable, the recovery analysis has proved the most useful. In 

a more recent, controlled invest^ation of the south-east Durham area 

(see later) confined, non-steady methods have been used. However, since 

the values obtained by a similar method, may be relative, rather than absolute, 

comparisons must be restricted to areas using similar models. 
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CHAPTER 2 

PERMIAN GEOHYDROLOGY: FIELD AND LABORATORY TESTS 

The dominant factor affecting a l l aspects of the geohydrology has proved to 

be the variation and distribution of the Permian lithologies, thus requiring a 

thorough assessment of the geology. Inevitably, extrapolation f rom borehole 

and exposure evidence has been required and grossly over-simplified models 

have been used to enable data to be analysed, with the result that the values 

obtained f o r the aquifer parameters are, on an absolute basis, suspect. In 

a subsequent chapter, alternative methods of analysis by simulation techniques 

w i l l be discussed, and the results presented and compared with those obtained 

below f r o m a theoretical treatment of an ideal aquifer. 

In groundwater investigations, laboratory methods have largely been 

neglected compared with the sophisticated techniques employed by petroleum 

reservoir engineers, possibly due to the larger number of variables the latter 

is required to take into account. Nevertheless, determination of aquifer 

parameters by laboratory methods can afford an insight into the in-situ aquifer 

by comparing these values with those obtained by f ie ld tests. 

The Permian of Co. Durham is divided hydrogeologically by an east-west 

line formed by the Hartlepool Fault and its westward extrapolation f rom Sedgefield ) 

to Chilton. North of this line, unconfined Lower Magnesian Limestone constitutes 

the major aquifer. The area has been overdeveloped, 24 m. g. d. being at present 

licensed fo r abstraction, and thus there appears to be li t t le potential. South of 

the line, however, the aquifer i s the f a r more permeable Middle Magnesian 

Limestone, and following a recent investigation under the auspices of the 

Northumbrian River Authority, is to be developed as a further source of water 

fo r the expanding industry of Tees-side. 
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The study of the geohydrology may be conveniently divided into: 

(a) the determination of the areal and vertical distribution of 

groundwater, 

(b) the analysis of data from pumping tests and routine abstraction, 

coupled with laboratory results, to ascertain the aquifer parameters, 

(c) the overall assessment of the groundwater regime, especially with 

respect to water balance, to enable future development to be planned, 

2.1. Groundwater distribution 

The groundwater flow pattern is determined by the positions and 

potentials of the natural source and sink. Where the surface deposits are thin 

(less than 25 feet say) then accretion to the water table may take place by 

downward percolation of surface water. As outlined in the description of the 

Pleistocene deposits (Section I , 2.1.4), over much of the area the drift cover 

is so thick that it must be considered an impermeable blanket. 

2.1.1. Recharge and discharge 

The location of rechai^e is difficult to locate from limited detail. However, 

the distribution of groundwater level contours (Fig. 2.1) suggests that areas 

close to the escarpment constitute the major source, since usually they have 

only a thin veneer of drift. In addition to this, there are numerous quarries and 

diggings on or near to the scarp slope, and the bare rock e3q)osed must greatly 

facilitate percolation. If the total rainfall per annum, over the area is taken as 

27 ins (Ministry of Housing and Local Government, 1961), of which 14 ins p. a. 

is lost in evapotranspiration (Institution of Water Engineers, 1961), a maximum 

of 13 ins p. a. is thus available for percolation, which represents 0.62 m. g. d. / 

mile^. An estimate of the areas where percolation of this magnitude may be 

expected is both difficult and doubtful. Nevertheless, using Trechmann's map 

of the Permian (1925) a value of 51. 5 mile^ of thinly covered or eicposed strata 
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was calculated, using a simple gridding method. This constitutes a recharge 
of 32.08 m. g. d. Since this map was published more data from the south of 
the county has shown that areas such as Bradbury Carrs are locally thinly 
drift covered. At the present time, the Northumbrian River Authority is 
gauging the River Skeme, Billingham Beck, Rushyford Beck and Woodham 
Bum in an attempt to gain a more detailed and quantitiative knowledge of 
recharge in the area. Observations to date of the latter indicate that at least 
1 m. g. d. is dischai^ing into the aquifer during low flow conditions just north 
of Newton Aycliffe. An estimate of some 45 m. g. d. may thus be made for the 
total recharge over the whole of the Permian, although this may be in error 
either way by some 10 m. g. d. 

Licensed abstraction from the Permian north of the Hartlepool Fault is 

at present 24 m. g. d., although this does not include losses from the Permian 

due to pumping from the underlying Coal Measures. In the southern area, a 

peak abstraction of 13 m. g. d. is at present under consideration, but since this 

would be only for part of the year, the average annual abstraction would be 

much lower. 

The water balance for the whole area is thus extremely difficult to 

establish, but by breakup it down into small catchment basins it is hoped that 

a more detailed picture will emerge. 

2.1.2. Groundwater level map 

Since the recharge areas appear to be located towards the western edge 

of the Permian outcrop, and the strata dips gently eastwards or south-eastwards, 

the flow pattern is largely predictable, and does, in fact, behave as ejqpected 

(Fig 2.1). Assuming the base of the outcrop, therefore, as the maximum 

elevation, north of Sunderland this would be at about 120 feet A. O. D. near 

Downhill. South of the River Wear, it lies at about 250 feet A. O. D. near 
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Houghton-le-Spring, rising southwards to over 500 feet A. O. D. near Coxhoe. 

From Ferryhill to Shildon it is at about 400 feet A. O. D. and reaches a maximum 

of 450 feet A O. D. neigh Heighington before decreasing to 250 feet A O. D. 

at the River Tees. Under balanced steady state conditions the groundwater 

level at the coast should be approximately Ordnance Datum. However, pit 

dewaterii^ and overpumping have resulted in sub-0. D. groundwater levels , 

around Whitburn, Sunderland, Ryhope, Horden and Hartlepool. ' 

If the aquifer were isotropic and of uniform transmissibility with 

recharge along the western margin and dischaige into the sea in the east, 

the equipotentials would be regularly spaced. Divergence from this is 

therefore attributable to a variation in transmissibility and/or recharge 

effects. Considering the piezometric map of the southern area (Fig 2.2) and 

comparii^ it with the geological map (Section I , Fig. 2.3) it can readily be 

seen that the wider spacing of contours occurs where the Middle Magnesian 

Limestone is present beneath the drift. Superimposed on this, in the Rushyford-

Aycliffe area, is recharge, resulting in a very low potential gradient. The 

groundwater level contour map is thus a valuable indicator of the relative 

transmissibility and recharge conditions, and as such is used initially in 

simulation studies as a guide to the aquifer properties (see later). 

The pre-war groundwater level map (Fig. 2. 3), based on the rest 

water levels given in the Wartime Pamphlet No. 19 (Anderson, 1941), shows 

some significant variations from the present day. A decrease in the number 

of private abstractors, coupled with an increasing use of surface water 

supplies by the Sunderland and South Shields Water Company, has resulted 

in a rise in the groundwater level in the Sund erland area. However, in the 

Hartlepools area, increased abstraction has produced a fall in the groundwater 

level of over 20 feet, and the associated sea water intrusion, although not yet 
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apparent, must be considered a possibility in the near future. The areas 
affected by mine dewatering have also changed, the most dramatic effect 
being in the Sedgefield area where pumping from workings at the nearby 
Fishbum Colliery has lowered the groundwater level an estimated 150 feet 
since 1935. Wood (1923) noted an 80 feet fall in the groundwater level 
between 1870 and 1915, and believed that some of the subsidence attributed 
to mining was in fact due to water abstraction. As yet, the long term 
groundwater disposition for the area south of Sedgefield is unavailable, 
and to help predict it model simulation has been employed (see later). 

2.2. Analysis of pumping data 

The data from the Sunderland and South Shields Water Company, 

and the Hartlepools Water Company was originally collected and processed 

in 1967. Many of the wells had been in constant use since the turn of the 

century, although the commissioning of the Derwent Reservoir in 1967 enabled 

some of the former's to be shut-down until increased demand requires 

additional supplies. Since there were no records of pumping tests with 

time-drawdown results and observation wells analysis was largely based on 

steady state assumptions. Where possible, recovery curves have been used 

as an independent method of assessing the transmissibility, but the lack of 

observation wells meant that storage coefficients could not be computed. 

The details of each well and the derivation of the associated parameters 

where possible is contained in Appendix A, and a comparative selection is 

presented in Table 2.1. 

Id. the northern area, the evidence for unconfined conditions comes 

from the geology and is confirmed by the yield-drawdown curves (Fig 2.4), 
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The particular well, Peterlee, from which this example was taken, 
penetrates Lower Magnesian Limestone, Marl Slate and Basal Permian 
Sands beneath the groundwater level. The influence of the impermeable 
Marl Slate as a confining bed appears to be minimal, probably due to the 
abundance of faults which, for throws greater than the Marl Slate thickness 
of about 2 feet, would allow passage of water between the Lower Magnesian 
Limestone and the Basal Sands. The yield-drawdown curve does, however, 
show a slight divergence from the theoretical (Johnson, 1966) at large 
drawdowns. This could be due to either a decrease in the hydraulic 
conductivity towards the base, or anisotropy resulting in a lower horizontal 
than vertical permeability, the effect of which would become increasingly 
apparent with large drawdowns as the flow lines diverge from the horizontal. 
In practice the cause may be a combination of these two mechanisms. A 
water-table model has been used for all wells north of the Hartlepool-Chilton 
line. 

South of the Hartlepool-Chilton line the main aquifer, the Middle 

Magnesian Limestone, is invariably confined by drift deposits or marls of the 

Lower Evaporite Group. The underlying Lower Magnesian Limestone has a 

sufficiently low hydraulic conductivity in comparison that it may be considered 

the basal aquiclude. Since investigation of this area could be carried out on a 

more ordered basis, the results obtained have been more comprehensive and 

reliable, and the aquifer parameters determined, by Dr. T. Caimey of the 

Northumbrian River Authority, from pumping tests in this area are contained 

in Appendix A. 

In examining hydraulic conductivities for different localities and 

horizons it should be noted that only values based on similar models can be 

usefully compared. Since the most ubiquitous solution available is based on 
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steady state conditions, with an assumed radius of influence of 1000 feet, 
this will be used for interpretation of the northern area. Similar conclusions, 
differing in magnitude rather than meanii^ would be drawn by using a radius of 
influence of 5000 feet, or by comparing values obtained from analyses by the 
Herbert method. In the southern area, a more rigorous approach could be 
used, and the aquifer parameters cited are based on a non-steady Theis-type 
model. Direct comparison between the areas across the Hartlepool-Chilton 
line is thus difficult, although judging by results from the northern area the 
relationship 

K (non steady) = 0. 763 . K (steady) - 20.4 (2.1) 

(Fig 2. 5) allows an approximate comparison to be made. 

2. 3. Interpretations 

The hydraulic conductivities given in Appendix A and in Table 2.1 

represent the hydraulic conductivity of an ideal isotropic aquifer which would, 

under the restrictions imposed by the assumed model, behave similarly to 

the aquifer tested. The subsequent interpretation of these values is the result 

of an effort to break them down into their constituent parts. 

2. 3.1. Northern area 

The hydraulic conductivities calculated by the Dupuit-Forchheimer 

method with an assumed radius of influence of 1000 feet, together with a 

diagrammatic representation of the well and strata penetrated beneath the 

water table, is given in Fig. 2. 6, and from this the relationships between the 

aquifers and hydraulic conductivities may be deduced. 

Where the Middle Ma^esian Limestone or the brecciated Upper 

Magnesian Limestone represents over half the saturated thickness, the 
2 

hydraulic conductivity is greater than 250 g. p. d. / f t . However, where the 

Lower Magnesian Limestone is the only aquifer, the hydraulic conductivity is 
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2 

less than 110 g. p. d. / f t . The more competent lithology of the Lower 
Magnesian Limestone results in a much lower hydraulic conductivity than 
the more open textured Middle or brecciated Upper Magnesian Limestones. 
The very high value for Ryhope is believed to be due to recharge from the 
sea which limits the growth of the cone of depression in that direction: 
further evidence is the very high chloride content recorded in this well. 

The Lower Magnesian Limestone itself appears to show a variation 

in hydraulic conductivity with depth, becomii^ less permeable near the 

base, (compare Stonygate and Dalton with Butterwick and Seaton). This 

could be a reflection of the more massive and often calcitic beds which 

occur towards the base of the succession, as noted in Section I . 

The Basal Permian Sands appear, in general, to have a hydraulic 

conductivity similar to the bulk of the Lower Magnesian Limestone. 

However, the very low value at Peterlee can only be interpreted as indicating 

low hydraulic conductivity of the Basal Permian Sands as well as the Lower 

Magnesian Limestone, (c.f. section H, 2. 2. for evidence of low hydraulic 

conductivity towards the base from yield-drawdown curve). 

Values for the hydraulic conductivities of the various formations may 

thus be deduced from the evidence outlined above, and these are:-
2 

Upper Magnesian Limestone, brecciated, 300 g. p. d. / f t 
2 

Middle Magnesian Limestone, 300 g. p. d. / f t 
2 

Lower Magnesian Limestone, except basal unit, 110 g. p. d. / f t 
2 

Lower Magnesian Limestone, basal unit 40 g. p. d. / f t 
2 

Basal Permian Sands 40-120 g. p. d. / f t 

On this basis, the 'theoretical' hydraulic conductivity for each well may 

be calculated from Equation 1.10. and the result compared with the observed value. 
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However, before this can be done, the extent of the basal low permeability 

unit of the Lower M^nesian Limestone must be fixed. Since Stonygate 

and Dalton both penetrate to within about 30 feet of the Marl Slate, figures 

of 20 feet, 30 feet and 40 feet have been taken, and the results are given in 

full in Appendix A. Some of the'best fit ' combinations are given in Fig. 2.6 

but these merely represent one of an infinite number of possible solutions, 

and must therefore be viewed accordingly. Nevertheless, the pattern does 

suggest that the hypothesis of variable hydraulic conductivities, certainly 

between different units, and possibly within the same unit, is viable. However, 

the large variation in lithologies and hence properties within, say, the Lower 

Magnesian Limestone over the area studied means that the values can be 

applied, areally only on a semi-quantitative basis. 

The specific capacity value for each well has been calculated for the 

relevant drawdown, and the value normalized to 50% maximum drawdown 

( S C Q Q ) . The correlation with hydraulic conductivity is good (Fig. 2. 7) and 

may be approximated by the linear equation:-

SC5Q = 84.4.K^ (2.2) 

Since, when K̂^ = 0, SĈ ^ = 0, the line was constrained to pass through the 

origin by using dummy reflection co-ordinates about the origin, for each point. 

The transmissibility values are in themselves rather meaningless since 

many of the wells do not achieve maximum penetration of the saturated aquifers. 

Since maximum yield is basically a function of transmissibility, increased 

abstraction could be obtained at some wells by deepening. However, the increased 

cost of pumpii^ due to the higher lift required may not be offset by the yield 

if the strata has a low hydraulic conductivity. 
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2. 3.2. Southern area 

The results of the investigation undertaken in this area are fu l ly 

documented in an internal report of the Northumbrian River Authority (1969). 

However, since this area represents the subject of the simulations, a brief 

summary of the results w i l l be given here. 

The suitability of the area (Fig. 2.8) for groundwater supply was 

investigated by dri l l ing 42 primary and 15 large diameter holes, as well as 

utilising and testing existing boreholes. The details of the individual lai^e 

diameter holes are given in Appendix A. 

The transmissibilities calculated by non-equilibrium methods of 

analysis showed that there were large variations, even around a single hole, 

and that impermeable and semi-impermeable barriers due to faulting and 

basement 'highs' had a profound, effect upon the development of the cone of 

depression (Fig. 2.9). The pumped hole recovery transmissibilities varied 

f r o m 4000 g. p. d. / f t (K) to 36,000 g. p. d. / f t (D), but averaged 13410 g. p. d. / f t . 

Analysis in the planes f r o m the pumped well to observation wells showed a 

much wider range, f r o m 2000 g. p. d. / f t (L-K) to 48000 g. p. d. / f t (9-18). 

Using the Jacob recovery value at the pumped well , the average permeability 

was 215. 7 g. p d. / f t ^ fo r the Middle Magnesian Limestone. 

Where there is a thick cover of impermeable marls above the Middle 

Magnesian Limestone and the intersti t ial cement has not been leached, the 

porosity and hence permeability, is reduced. 

In order to l imi t dewatering of the aquifer, the pumping rates are 

b e i i ^ l imited so that drawdown does not exceed the artesian head. This is 

highest in the trough fault area and around Broken Scar, where i t is over 

100 feet. It reduces to about 30 feet at D and the aquifer is water table at 

b. h. 2. The maximum safe yield available fo r a well is thus given by 
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Qmax = ^a- (2. 3) 

where = artesian head. 

Where there are a number of wells pumping and the cones of depression 

interfering, h^ is effectively reduced. 

For the southern area, the relationship between hydraulic 

conductivity, K, and specific capacity, SC, (Fig. 2.10) shows a similar 

trend to the northern area, and is given by 

SC = 65. 5 K (2.4) 

2.4. Field results: summary and conclusions 

1) The Permian may be divided by an east-west line along the 

Hartlepool Fault and its western extrapolation, into two areas, northern and 

southern. These are hydrologically dUEferent; the former fu l ly exploited and 

abstracting largely f r o m the unconfined Lower Magnesian Limestone and Basal 

Permian Sands; the latter underdeveloped, with the usually confined Middle 

M £ ^ e s i a n Limestone constituting the aquifer. 

2) Recharge originates near the scarp, and is estimated at some 
0 

45 + 10 m. g, d. fo r the whole of the Permian, based on theoretical percolation 

figures. 

3) For the northern area, steady state analysis enables values fo r 

the saturated horizons to be calculated. 

4) For the southern area, non-steady state methods have been 

s imilar ly employed. 

5) The aquifer in the south is complicated by hydrologic barriers and 

recharge zones, making analysis diff icul t , and extrapolation and prediction 

of multiple pumping schemes dubious. 
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2. 5 Laboratory tests 

The benefit of laboratory tests is limited by the errors involved in 

extrapolation f rom a small sample to in-situ conditions. Nevertheless, 

the difference between the field and laboratory values for hydraulic 

conductivity is partially an indication of the proportion of flow which is 

not through the intact material, but rather through fissures and joints. 

2. 5 .1 . Techniques 

The determination of porosity and permeability is based on well 

t r ied methods used in soil-mechanics (Akroyd, 1964). 

2. 5 .1 .1 . - Porosity - The porosity, n, may be calculated f rom combination 

of the dry density, y d, saturated moisture content, Wg, specific gravity, 

G, saturated density, y s» using the following relationships: 

n = l-qd/G^w) (2.5) 

n = (G]fw- s ) / yw ( G - l ) (2.6) 

n = WsG/(l - WgG) (2. 7) 

n = (^s - Ifd)/yw (2.8) 

n = Wslfd/ Ifw (2. 9) 

^ = W s j ^ s / ( l - W s ) yw (2.10) 

(a) Dry density. Since dry density is defined by oven dry weight/total volume, 

i t is resolved into a determination of volume. This may be done directly by 

measuring a regularly shaped sample such as a cylinder, or indirectly by 

Archimedes' principal. For the latter, an irregularly shaped sample is 

coated with 'Lowerite' to prevent water entering the pores when weighed 

submerged. 
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(b) Saturated density This is determined by either of the above methods, 

with the weii^ht of the sample taken after at least 24 hours vacuum 

saturation. 

(c) Saturated moisture content. This is calculated f rom the loss in weight 

f r o m vacuum saturation after oven drying for at least 24 hours at 110°C. 

(d) Specific gravity. S. G. bottle methods are generally preferred to the 

pycnometer since they allow fo r a more precise determination providing 

precautions are taken, especially i f water is used, to see that the sample 

and liquid have been thoroughly de-aired. 

2.5.1.2. 24 hour absorption - This test merely consisted of leaving the 

cold, oven dried sample immersed in water fo r 24 hours and then 

determining the moisture content. 

2. 5 .1 . 3. Hydraulic conductivity - The permeability determinations used 

methods based on the famil iar direct techniques of constant head or falling 

head, or by indirect methods. 

(a) Constant head - In general, the head available with normal laboratory 

apparatus is about 6 feet and is insufficient fo r low permeability samples. 

Mercury compensated constant head apparatus designed for soil t r iaxial 

testing (Bishop and Henkel, 1957) was therefore used, but since a maximum 

of 300 cc of water was available, conditions had to be carefully controlled. 

Two types of sample holder were employed. The f i r s t is a commercially 

available high pressure permeameter manufactured by Clockhouse 

Engineering Ltd. The sample in the f o r m of a cylinder is encased in 

Beeswax to fo rm an impermeable sheath and the rate of flow of water f rom 

the constant head apparatus measured. The equipment suffers f r o m a 

number of drawbacks. Wax may enter and block some of the peripheral 

pores i f they are large and especially i f the sample is hot, thus decreasing 

the effective cross sectional area. I f the sample is saturated prior to the 
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test, the molten wax causes steam and 'blow holes' develop which allow 

water to pass through the wax. However, i f the sample is not saturated, 

bubbles of air in the pores reduce the cross sectional area available for flow. 

Problems also occurred with the wax blocking up the interstices of the 

porous disc, although carbon tetrachloride proved to be an effective solvent 

cleanser. In conclusion, i t was fel t that the requirements for a precise 

determination of permeability were incompatible with the design and 

recommended use of the equipment. 

Apparatus described by Chakrabarti & Taylor (1968), however, gave 

better results. In this a sample disc, about 1 cm thick, is securely held by 

'P' rings, and the rate of flow of water f rom the constant head apparatus 

measured after passing through the sample. By judicious arrangement of 

the pressure, the flow can be adjusted so that its velocity potential is 

negligible. The advantage of this method is that the sample may be thoroughly 

-4 

saturated before testing, and hydraulic conductivities between 10 cm/sec 

—8 

and 10 cm/sec may be measured. A f u l l description of the apparatus and 

suggested e3q)erimental technique is given by Jackson (1968). 

(b) Falling head - In soil mechanics, the f a l l i i ^ head method is used for 
-3 

samples with hydraulic conductivities less than 10 cm/sec, and may be 

simply adapted fo r rock samples. Beeswax was tried for sheathing the sample 

but was rejected for the reasons outlined above in favour of rubber sheaths as 

used in standard soil t r iaxia l tests. The very low values obtained in some 

tests are attributed to carborundum powder f rom lapping blocking the end pores; 

subsequently samples were sawn. By plotting log h) v time, the hydraulic 

conductivity may be calculated f r o m the straight line position of the graph. 
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(c) In direct methods - The grading of a sample may be used as a guide to the 

permeability, Hazen's empirical law being the simplest (Terzaghi & Peck, 

1967) 

K = C^D^Q^ (2.11) 

where K = hydraulic conductivity, cm/sec 

= constant varying f rom 100-150 

= effective size in cm 

Application i s , however, limited to sands, and obviously cannot be applied to 

coherent material. 

2 .5.1.5. Storage release - An attempt was.made to estimate the release of 

water under free draining conditions by allowing a saturated sample to 

equilibriate with its own saturated vapour at atmospheric pressure. This is 

thus equivalent to the moisture content at atmospheric pressure on the drying-

out portion of the pF curve, the 24 hr. absorption being the corresponding 

position on the wetting-up curve. The saturated samples were placed on a 

No. 7 sieve, covered, and placed in a tray with the water surface just below 

the mesh. For most of the samples, the reduction in moisture content was 

less than the experimental errors inherent in trying to weigh a surface dry, 

moist sample. 

2. 5. 2. Results 

A summary of results obtained by the present author and others using 

Magnesian Limestone samples is given in Table 2,2. I t w i l l immediately be 

obvious that values are at least an order of magnitude less than the field 

values, although the highly friable and poorly cemented horizons of the Middle 

Magnesian Limestone could not be tested due to i ts cohesionless nature. As 

expected the premeability of the Lower Magnesian Limestone is considerably 

less than that of the Middle Magnesian Limestone, although isolated samples 
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Sample 
No. 

TH4(H) 

HAl(V) 

HA2(V) 

FOl(V) 

CHl(V) 

CH2(V) 

BLl (V) 

MHl(V) 

MH4(H) 

MH8(V) 

MH8(H) 

MH8(H) 

MH9(V) 

UP 44 H 

UP 160 H 

UP 182 H 

UP 155 H 

UP 162 H 

UP 30 H 

K 84 H 

UP 157 H 

No. Hydraulic 
Horizon tested conductivity 

cm/sec 

HOl(V) L . M . L . 

H01(H) L . M . L . 

L . M . L . 

M . M. L . 

M . M. L . 

M. M. L . 

M . M. L . 

M . M. L . 

U . M . L . 

L . M . L . 

L . M . L . 

M . M . L . 

M . M. L . 

M . M. L . 

M . M . L . 

Porosity 
Method 

18 

1 

1 

18 

5 

1 

7 

1 

1 

4 

3 

2 

1 

3 

7. 36 X 10 -5 

6. 57 X 10 -5 

2. 76 X 10 -6 

2 .23x10 
-4 

5. 22 X 10 
-5 

4. 29 X 10 -5 

6 .07x10 -6 

3. 70 X 10 -6 

1.44x10 
-6 

1.01 x 10 
-3 

2. 71 X 10 -3 

3.40 X 10 -4 

1. 89 X 10 -5 

6.49 X 10 -4 

2. 88 X 10 
-3 

1.11 X 10 
-6 

4. 62 X 10 -8 

1. 50 X 10 -5 

3. 73 X 10 
-7 

1.88x10 
-7 

4. 98 X 10 -6 

1.00 X 10 -9 

1. 51 X 10 
-7 

F . H . 

F . H . 

F . H . 

F . H . 

F . H . 

F . H . 

F . H . 

F . H . 

F . H . 

15.2 

22. 6. 

10.6 

20.9 

23.4 

22.6 

6.4 

10.3 

7.3 

H.P.P. 11.1 

H. P. P. 32.4 

H.P.P. 

F . H . 

H. P. P. 

H. P. P. 

38.6 

38.6 

38.6. 

14.4 

H.P .C.H. 19.95 

H.P .C .H. 15.84 

H.P .C .H. 30.07 

H.P .C .H. 17.20 

H.P .C .H. 17.28 

H.P .C .H. 24.54 

H.P .C .H. 5.00 

H.P .C.H. 16.90 

Worker 

R.S. J. 

A.S .B. 

K. J. 

/Continued 
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TABLE 2. 2. (Continued) 

Abbreviations 

U. M . L . Upper Magnesian Limestone 

M . M . L . Middle Magnesian Limestone 

L . M . L . Lower Magnesian Limestone 

F . H . Falling Head 

H. P. C. H. High Pressure Constant Head 
(Chakrabarti & Taylor, 1968) 

H. P. P. Hi^h Pressure Permeameter (Clockhouse) 

R.S.J. (Jackson, 1968) 

K. J. (Jones, in preparation) 
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occasionally show high hydraulic conductivities, doubtless due to the 
presence of lai^e cavities. 

Jackson (1968) attempted to deduce relationships between porosity 

and permeability fo r the Magnesian Limestone. However, the samples taken 

were not representative enough of a l l horizons to allow any statistically 

viable conclusions to be reached. Nevertheless, some trends were established: 

the pre-diagenetic dolomites showed a different porosity-permeability relation­

ship to post-diagenetic ('mineralized' of Jackson) dolomites. 

2. 6 Laboratory tests: summary and conclusions 

1) Porosity can be measured by standard soil testing techniques. 

2) Permeability may be measured by specially constructed constant head 

apparatus, or by a modification of the normal f a l l i t ^ head method. 

3) The parameters obtained are not independent of the method used. 

4) Porosity-permeability relationships are a function of the diagenetic history 

of the sample. 

5) Since cohesionless samples are difficult to obtain, the values obtained are 

biased towards low porosity-permeability examples. 
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CHAPTER 3 
SIMULATION 

3.1. Introduction & theoretical basis 

The application of simulation techniques to groundwater studies has 

developed largely over the last decade. Its great advantage lies in its 

fundamental analytical fidelity, although the ultimate accuracy is a function 

of user-determined parameters and the inherent approximations of the 

numerical methods upon which it is based. 

3.1.1. Previous work 

The use of numerical techniques in the study of field problems has 

largely stemmed from the pioneering work of Southwell (1946) and his relaxation 

techniques, although electrical analogue methods had been used in the study of 

groundwater over ten years previously (Wyckoff & Read, 1935). Up to the 

present time, most of the development has been of electrical resistance-

capacitance models, especially in the USA by Skibitzke (1963), Stallman (1963), 

Walton & Prickett (1963) and Zee (1957), and by Herbert (1968) and Hunter-Blair 

(in press) in this country. However, with the advent of large storage, high 

speed, digital computers, the way is open for direct solution methods 

(Pinder and Bredehoeft, 1968). Even so, it is doubtful if the many advantages 

of the electrical analogue will be surpassed by the increased accuracy of digital 

solutions, for the former method is simple, cheap, versatile, and may be 

operated by inexperienced personnel. Digital computers on the other hand are 

expensive to run, and require skilled operators and programmers, although 

one well designedpiece of software may ultimately be versatile enough to 

analyse many different problems with various boundary conditions. 
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3.1.2. Theoretical basis 

The two-dimensional steady state flow of a fluid through a confined, 

homogeneous, isotropic, porous medium in which the algebraic sum of the 

boundary flows is zero is represented by the Laplace equation, a partial 

differential equation of the form 

(3.1) 
51?~ ^ 

Adopting the nomenclature of Fig. 3.1 then the finite difference form of 

Equation 3.1 maybe written as: 

+ Hg - 2Ho + Hg + - 2Ho =0 (3.2) 

^ b2 

In the normal case of a square mesh, this therefore reduces to: 

+ + Hg + - 4Ho = 0 (3. 3) 

This is the basic equation for the five point solution of potential 

utilised in many field problems governed by the Laplace equation, such as 

heat flow, electric potential and water. In the latter, however, complete 

isotropy is the exception rather than the rule, and this requires a modification 

of Equation 3.2. If the respective transmissibilities are constant over the 

distances 2a and 2b, then: 

Tx c>\ + T y ^ h = 0 (3. 4) 

which becomes, in finite difference form: 

Tx b_ (E^ + - 2Ho) + Ty a_ (Hg + " 2Ho) = 0 (3. 5) 
a b 

In representing actual aquifers, the effects of pumping and recharge 

2 

must be simulated. Leakage into the aquifer at W g. p. d. /ft is represented 

by a nodal flow, QQ ^ given by: 

QO =W.a.b. (3.6) 
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Abstraction from a well is measured directly as a quantity, - Q Q g.p. d. 
but by the corollary of the above, correction must be made so that the true 
well cross sectional area is simulated (see later). 

The general finite difference equation, allowing for nodal recharge and 

dischai^e, is thus: 

Tx._b_ (H^ + Hg - 2Ho) + Ty_a_ (H^ + - 2Ho) = (3. 7) 
a b 

3.1.2.1. Boundaries - Boundary conditions are of two typesi (a) the potential, 

H, is known at nodal positions on the boundary (Fig. 3.2a). The cross sectional 

area in the x-direction is therefore half the cross sectional area in the equivalent 

five point arrai^ement, and the finite difference equation thus becomes: 

TX.JL b__(H^ + Hg - 2Ho)i + Ty. (H^ - Ho) = Q^^ (3. 8) 
2 a b 

(b) Impermeable boundary; defined by ^h =0 ^ g . 3.2b) 
"5y 

The potentials are unknown, and proceeding as before, except that QQ = 0. 

Tx._l_ _b__ (H, + H„ - 2Ho) + Ty._a_ (H. - Ho) = 0 (3. 9) 
2 a b 

Equations 3.8 and 3 9 and their variants for different boundary dispositions and 

combinations form the basis for solution of the potential distribution. 

3.1. 2.2. Truncation errors (Noble, 1964) - Since the finite difference 

method is, by its nature, an approximation, an evaluation of the errors is 

necessary. This is best studied by expandii^ the heads as T ayloi*s series, 

thus: 



a" 

a. Permeable 

b. I m p e r m e a b l e 

F i C | - 3 . 2 . B o u n c i a r i g s 
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H = H o + a ( ^ ) + Z l A l ) + ^ ( i ! H ) ) + (3.10) 
{dx)o 2! W^)o 31 { ^ ^ ) 4: ( ^ x ^ ) ^ ' 

Hg = H o - a ( ^ H J +_af(_2?H) - a^ (^^H) * ^ ( 3 ^ H J - (3.11) 
(2>x)o 21 ( T ? ) o 31 • ( ¥ ? ) 4! ( 8)x*) 

H^ = Ho + b(^H ) + b^ (ĉ ^H) + _ b ^ ( A i + _ b l ( ^ ) + . . . (3.12) 
(i>y )o 2! (^y2)o 3! ( T y ^ 41 (Ty^)o 

H^ = Ho-b(^H ) + b .̂ (^^H) - bl(c)^H ) + _ b i ( ^ H j - (3.13) 
(^y)o 21 (Ty2)o 3! ( T p ) 4! ( 2) y4) 

Adding, and if a = b 

H, + H- + H + H. - 4Ho = a^ (^Yi + dî H ) + a^ ( c ) V + ^ H ) + . . . . (3.14) 

The second and subsequent terms thus represent the major error in the finite 

difference equation. Considering terms beyond the second negligible, typical 

error values may be determined from a study of the finite difference forms of 

some simple potential - spatial functions, Table 3.1. 

The potential distribution around a well is of the form H = x^, and thus the 

finite difference approach leads to large errors around a well or similar 

singularity. In some instances benefit is gained by reducing a. Thus for 

3/2 

x = 1000 and a = 500, the correspondii^ truncation error for H = x is reduced 

to 1. 6%, and that for H = x^ reduced to 12. 5%. 

3.1.2.3 Singularities - Where the change in potential is so rapid that it cannot 

be represented by the Laplace equation, a singularity exists. Examples are 

given by Herbert et al (1966) as the toe of a pile and a pumping well. To model 

the latter on a finite difference mesh, for r ^ < a, the transmissibility elements 

should be replaced by 'effective' well elements calculated from 
T ^ = T / ( _ 2 _ . loge(Vr^)) (3.15) 

IT 
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Function 
X = 1000, a = 1000 

2 2 
a d H 

! ? • 
4 4 

a d H 
dx4 

4 4 . 2 2 
a d H: a d H 

dx* dx2 
Truncation 
error % 

H = x 0 0 0 0 

2 
H =x 0 0 0 

3 
H =x 

„ 2 
6xa 0 0 0 

2 2 12x a 2a^ 1 /fi 2 . 2 /6 .a /x 16.7 
1 

H =x^ 
, -3/2 2 

- 5 X . a _ 5 / 6 4 - X - 7 V 3/8.a^/x2 37.5 

H=x^/^ fx-2 a'̂  V - V l 6 - ' / x ' 6.3 

H = x ^ 2 
15.. h 2 /4x a 

-5 v"^/2 4 
764-^ a -V48-^^/x2 2.1 
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3.1.2.4. Non-steady state - So far, only steady state conditions have been 
considered. Non-equilibrium conditions are described by the partial 
differential equation 

<)̂ H + ^ H = ^H _S + W _ (3.16) 
3 x 2 ^y2 • T T 

From this, it can be seen that as t «» , the equation becomes 

equivalent to the Laplace equation. The finite difference approximation and 

solution by an alternating direction implicit procedure has been fully described 

by Pinder et al (op. cit.) . It was not, however, employed in the present study. 

3.2. Digital solution 

A distal solution was attempted as an independent check on the 

electrical analogue. The complete program listii^ and description is given in 

Appendix B. 

3. 2.1. The problem 

The object of the program was ultimately twofold: 

(a) solution of the linear equations formed by the finite difference approximation, 

and hence determination of the potentials within the system, 

(b) by utilising all the available data including piezometric contours, pumping 

test drawdowns and recharge values to investigate the possibility of ass^ ing 

unique values to the transmissibility elements. 

3. 2. 2. Formulation of matrices 

Considering the arrangement in Fig. 3. 3, the nodal flow is given by: 

_b_Tk(Hi , j+ l - Hi,j) + _a_ Tl (Hi- l , j - Hi,j) + 
a b 

b_Tm(ffi , j- l - Hi,j) + a^Tn(Hi+l,j - H i , j ) = Qi,j (3.17) 
a b 



Hi,j- i 

Hi 

Hi.j 

H i + i , j 

Hi.j+1 

F/'g 3 Di'^iTal Soluction nomgnclgfurg 
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By numbering nodes and transmissibility elements consecutively from the 

top left to bottom right (Fig 3.4), Equation 3.17 may be rewritten as: 

_b.TkHe + a_.TlHf + b_. TmHg + a^TnHh + (-b_^Tk -_a.Tl -_b^Tm -_aTn)Hd = Qd 
a b a b ( a b a b ) 

(3.18) 

or in general matrix form 

[ T A J . H = [ Q (3.19) 

It will be immediately obvious that [ T A ] is symmetric with most off-

diagonal elements zero, and a bandwidth determined by the difference between 

adjacent nodes. 

3.2.2.1. Impermeable boundary - For this situation only one orientation wiU 

be considered, the others and combinations being similar. The equation thus 

becomes: 

_b^TkHe + b TmHg + a TnHh + {-^^Tk. -_bTm - a_Tn)Hd = 0 (3.20) 
2a 2a b (2a 2a b ) 

3.2.2.2. Fixed potential boundary - This is most easily treated by making all 

off-di^onal elements of the row zero in the coefficient matrix T A ] , and replacing 

the diagonal element by an arbitrary number of the same magnitude of others in 

T A ] . Qd is then put equal to TAd, d x Hd. 

3.2.2.3. Fixed flow boundary - This is treated similarly to the impermeable 

boundary except that the zero flow is replaced by Qd. In many cases this is a more 

realistic way of determining the potential distribution within the model for 

different pumping conditions, since the amount of recharge available is not 

directly controlled by the amount abstracted. However, its use requires a 

knowledge of Qd which is rarely available, and the only alternative is to initially 

use a fixed boundary so positioned to be outside the area of influence of 

abstraction wells. 
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3.2.3. Solution of matrices 

In a rectai^ular model of 1 columns and m rows, the potential distribution 

may be determined by the solution of (hn) nodal equations in (hn) unknowns. 

The techniques adopted are dictated by the computing facilities available, 

including library software. A number of different methods were tried in the 

present study, and even now, a significant improvement in the program could 

be effected by a more efficient method of solution of the linear equations. 

3. 2. 3.1. Gauss-Jordan - This is the normally used method for systems of 

linear equations, solving by successive pivotal condensations. Its advantages 

lie in the ease of programming, and if the largest pivot element is used, it is 

accurate for a limited number of equations. However, where there may be up 

to 1000 unknowns, truncation errors become a serious drawback, even using 

double precision (16 digits). To some extent this maybe reduced by using 

error equations (James et al, 1967), although this greatly increases computer 

time. Another disadvantage is that the complete J T A ] matrix must be . 

formulated and stored before solution can begin, Methods may be devised for 

more economical storage, such as only half the matrix, or just the non-zero 

elements, but these complicate the programming. A user-written Gauss-Jordan 

subroutine includii^ error equations was tried, but rejected for the reasons 

outlined above. 

3 2. 3.2. Gauss-Siedel - This is an iterative method (McCracken, 1967) and has 

been widely applied to the solution of field problems, the Southwell relaxation 

method being basically a variant. It entails an initial estimate of the potential 

at each node, which is then progressively adjusted to the final solution. Thus, 

for the simple case of all transmissibilities and mesh lengths equal, the non-

trivial solution is obtained when 

H^ + Hg + Hg + H4 - 4Ho = 0 (3. 2.1) 
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Before solution 

Ĥ "̂  + YL^ + Hg""" + Ĥ "*" - 4Ho"̂  = HRo (3.22) 

where HRo is termed the residual. The value of Ho''' is adjusted, on the 

assumption that the surrounding values are correct, by a factor AH given 

by 

A H = -HBo/4 (3.23) 

Thus Ĥ "̂  + H^^ + Hg^ + H^^ - 4(Ho^ + H) = 0 (3. 24) 

In general, since the early convergence is rapid, the choice of initial 

values for the potentials does not affect the solution, providing H = 0 is not 

used. Even more rapid convergence may be obtained by judicious choice of an 

over-relaxation factor, and a value of 1,7 has been employed. If too large a 

factor is used, the potentials oscillate about the true solution. 

One great advantage of the Gauss-Siedel method is that it may be 

formulated a row at a time. Thus a model with n nodal points requires an 

n x n array for (TA) for the Gauss-Jordan method, but only an n x 1 array 

for the Gauss-Siedel. 

3. 2. 3. 3. Other methods - Since the solution of equations represents the largest 

operation in the program, more efficient methods would lead to a more 

economical performance. 'One shot' rather than iterative methods would 

reduce c. p .u. time, and of these, the Choleski method seems to offer the most 

potential. 

3. 2. 3.4. Summary and conclusions - The development and choice of solution 

method ultimately requires a software expert. In many cases, library 

programs are sufficient and these will undoubtedly be extended within the future. 

For this particular study a small storage, long time method was chosen since, 

with the adoption of multi-tasking, low storage c. p. u. -bound jobs form a 

useful counterpart to the computing centre's principally i/o-bound batch jobs. 
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3. 2.4. Solution for transmissibility 

So far, only the determination of nodal potentials has been discussed, 

it being assumed that the values of the transmissibility elements were known. 

However, in many cases, it is the latter which is the most important since it 

enables predictions to be made to other areas and pumping regimes. In a 

rectangular model of 1 x m nodes, there are a total of (Im) nodes, but 

(21m - 1 - m) transmissibility elements, and thus the system is under-

determined with respect to the latter. The infinite number of solutions may be 

reduced by utilising all the information available from pumping tests at various 

locations, or by fixing a sufficient number of transmissibilities as to make 

the system determinate. This latter method was tried but was found to be 

unsuitable because (a) it involved making estimates, and (b) the coefficient 

array was (21m - 1 - m) x (Im), and whilst being sparse, it was neither 

symmetric nor regular. Only a Gauss-Jordan method could be used for 

solution, and hence the errors were very large. 

The shortage of time has precluded a completely satisfactory program 

being developed. The ultimate solution will be outlined, followed by details 

of progress to date. 

3.2.4.1. Logic - Since, for the transmissibility determination, as much 

data as possible must be considered, it is essential that all processing from 

the raw data is done by computer. The piezometric contour map (Fig. 2. 2) 

was drawn by linear interpolation between known points, and the nodal 

reference potentials interpolated from the contours. This method is both 

time-consuming and, to a certain extent, subjective. Since the sample 

locations are random, a program is required to interpolate between them. 

Probably the most suitable technique is to fit a least squares polynomial trend 

surface to the required accuracy, and use the equation to determine the 
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potential at given cartesian co-ordinates (Krumbein & Graybill, 1965). 

This would have other advantages in that, by fitting a similar surface to the 

topography, the siting of wells could be optimised. 

With the data in a useable form, the values of the transmissibility 

elements must be adjusted until a unique arrangement is obtained which fits 

the various boundary and pumping conditions satisfactorily. For each set 

of conditions, starting with the piezometric potentials, this may be carried 

out as follows: 

(a) Initially all the transmissibility elements are set to a value 

somewhere within the expected range, which was 10,000 g. p. d. /ft for the 

area studied. 

(b) From the known boundary and flow conditions, the potentials 

are determined at every node within the model by the methods outlined 

above (3.2. 3). 

(c) The calculated and reference potentials are compared. IE the 

residual is unacceptable the transmissibility elements around the node are 

adjusted. This is done by assuming that the current flowing through each 

element is a constant. Thus, if the calculated and reference potential 

drops across an element are A He and ^ H j ^ respectively, then the 

new value is calculated from 

Tnew = T„ia . A H c _ (3.25) 

(d) The new values of transmissibility are used and the process 

repeated until a satisfactory result is obtained. 

(e) The transmissibility adjustment and determination is carried 

out on all the data sets and the resulting values from each compared and 

averaged. The whole process is then repeated imtil the necessary change in 
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the transmissibilities at the end of the total iteration is considered 

acceptable. 

3 .2.4.2. Developed program - This unfortunately falls short of the 

ultimate goal outlined above. Nevertheless, i t is fe l t that some of the basic 

problems have been overcome. 

The input data is prepared manually f rom well records and 

maps, and hence the reference potentials contain an error of + 5ft, although 

the wells themselves can be gauged to + 0.1ft . Only the piezometric data was 

prepared fo r input since the linear interpolation method used would have 

lead to grossly inaccurate results around a pumped well , where the 

piezometric surface would be second order. 

Some improvements were made to the basic method of 

adjusting the transmissibility elements outlined above. I t was noticed that 

the output often contained very high or very low transmissibilities which 

could not be interpreted in terms of potential gradient at those points. I t 

was found that these arose where there was only a small potential drop across 

the element (Table 3.2). The residual between the reference and calculated 

potentials in A is probably acceptable, yet i f adjustment is made by the 

method suggested above i t requires the transmissibility to be doubled. 

On the other hand, the residuals in B are definitely unacceptable. Thus, A 

is very insensitive to changes in T ^ whereas B is the opposite. A method 

or restricting the amount by which the element is altered is required being 

controlled by the potential drop across the element. This is most easily 

achieved by introducing a factor, the exact fimction of which must be 

decided by t r i a l and error , but fo r example, may be unity when the potential 

drop is 50ft and 0.1 when the drop is 5ft. 
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Example A Example B 

Reference T a 

100.5 100 

^B 

150 100 

Calculated T = 10,000 
» » 

101 100 

T = 10,000 

160 100 

Tratis-
missibmiy 

Therefore Therefore 

adjustment T a = qoi-^lOO) ,10,000 
(100.5-100) 

T = qeo-ioo) . 10,000 
(150-100) 

T . =20,000 A ' T „ = 12,000 
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The obvious disadvantage is that convergence is delayed, or, 
-with a poor choice, the solution may diverge. More research and e^erience 
i s required to enable the optimum function for the transmissibility adjustment 
factor to be determined. 
3.2.5. Results 

The program was tested on a number of problems fo r which an 

analytical solution was availablco An example is given in Fig . 3.5 which 

shows the cone of depression deduced by the Thiem equation, compared with 

the potentials determined by the finite difference solution. Two different mesh 

lengths of 1,000 f t and 500 f t were taken, and al l results showed a good 

correlation with the theoretical solution. 

A hypothetical model was constructed with variable transmissibilify 

and realistic boundary potentials and the program used to deduce the 

piezometric nodal potentials. These values were then fed back into the 

program and the resulting transmissibility variations compared with the 

originalo Although unable to assign exact values, the general trends were 

recognized. 

The nodal potentials determined f rom the piezometric contour 

map was used to predict transmissibilily variations over the modelled area 

(Fig 3.6) and-these were used as a basis fo r recalibration of the electrical 

analogue model when required. Pumping tests using these values indicated 

that they veiE too low by a factor 2-5, and thus they could only be used on a 

relative basis. I f this method had been available at the begimiing of 

construction of the electrical analogue, many hours of resistor adjustment 

could have been eliminated. 
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3.2.6. Summary and conclusions 

The digital method of analysis has inherent advantages where a 

large nimiber of programmable iterations need to be executed. I t may be best 

employed hybridised with an electrical analogue model to carry out the time 

consuming and tedious^ tasks associated with the calibration stage. 

3.3. Electrical analogue 

This represents the most popular method of examining f ield 

problems associated with heat, electricity, electrostatics, stress analysis, 

as well as f lu id f low. 

3 . 3 . 1 . Theory 

The electrical analogue may be considered either as a computer 

f o r the solution of linear equations, or as a true analogy between water flow 

and electricity (Fig. 3.7), Since the former has already been detailed, tiie 

latter approach w i l l be adopted. The basic theory of electrical resistance -

capacitance analogues has been described in numerous published works 

(see, f o r instance Skibitzke, 1963; Walton & Prickett, 1963; Herbert & 

Rushton, 1966; Herbert 1968; Hunter Blair , in press). Fundamental to 

the method are the four 'scaling factors' , defined as: 

q = K j . C h . (3.26) 

H = K 2 . V (3 .27) 

Q = K _ . I (3.28) 
o 

td = K^. ts (3.29) 

Thus = gallons per coulomb 

K = feet per volt 
K = gallons per day per amp 

= time in days per model time in seconds^ 
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From these, the following identities hold (Walton & Prickett. op.cit .) 
K K 

3 4 = 1 (3.30) 

R = K _ . 1^ (3.31) 
T 

C = 7o4t8a^SoK^ (3.32) 

where C= capacitance i n farads 

a = mesh length in feet 

S = storage coefficient 

Of the sealing factors, only K can be fixed absolutely. However, 

knowing the range of transmissibilities e3q)ected, and the likely recharge and 

abstraction rates, a working value fo r K can be chosen to allow convenient 

currents and resistors to be used. 

3.3.2. Excitation-'response apparatus 

Since the model was constructed to simulate f i r s t l y s tea^ state 

conditions, with provision fo r the addition of a time variant i f and when 

necessary, the excitation-response apparatus necessary for each stage w i l l 

be considered separatelyo 

3 . 3 . 2 . 1 . Steady state (Fig. 3o 8). - The advantage of this type of model 

is that i t is relatively easy to construct, requiring only resistors. The 

boundary conditions are simply applied and the necessary measuring equipment 

is readily available, 

(a) Excitation - The boundary potentials are determined by extrapolation 

f r o m the piezometric contour map. They are set f rom a bank of potential 

dividers with an input voltage large enough to enable the f u l l range to be 

covered. A disadvantage of this simple arrangement is that both the potential 
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and current are dependent upon the load, which may vary during simulation 

studies. 

An alternative method is to estimate the recharge inflow and 

discharge over the area studied, and apply these as constant currents using 

factor Kg . Unfortunately, this pre-supposes a knowledge of the most 

elusive parameters, namely, recharge and discharge flows and locations. 

Positive and negative constant current generators (Fig. 3.9a) were 

constructed based on a simple bias emitter resistor circuit (from Water 

Research Association Internal Report). Alternatively, a simple voltage 

dropper circui t may be used (Fig. 3.9b) which w i l l maintain a constant 

current within a determinable range. On the model constructed, V-j^ could 
2 

range between 0 and 3V, (K^ = 10 f t / vo l t ) . The current would thus vary 

f r o m Vt /R to (Vt-3)/R. Providing Vt i s high enough, say 50V, then the 

variation i s acceptable, amounting to only 6% f o r extreme conditions. 

Discharge areas on the model, such as s p r i i ^ lines, are 

simulated by means of a diode lead to a potential divider reference, 

equivalent to the topographic height at the location. When the nodal 

potential i s greater than the rrference, current drains f rom the model; 

but when the nodal potential drops below the reference under pumping 

conditions, the diode i s negatively biased and no current is allowed to 

f low. 

The final choice of excitation was a combination rf the techniques 

outlined above. Ini t ial ly, boundary conditions were fixed using the 

potential dividers, since they allowed fo r more versatility and rapid 

adjustment. When the model had been satisfactorily calibrated, these 

were replaced by constant current conditions; recharge fed f r o m a high 

voltage line and discharge taken via a resistor to the common earth l ine. 
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This allowed large pumping schemes to be simulated and varied without 

the need fo r constant adjustment to the boundary conditions, 

(b) Response. - The principal instrument required is a d.c, voltmeter 

with high input impedence. Modem solldr-state digital voltmeters are 

the most suitable since the input impedence is commonly of the order of 

megohms. They are rapidly and objectively readable, and i f necessary 

may be adapted for recording purposes. An arometer capable of measuring 

currents over the anticipated range is required, and fo r this purpose an Avometer 

Was found to be satisfactory. 

3.3.2.2, Non-steady state - Since this contains a time variant, pulses 

and transients are input and measured. The time required fo r the input 

signal to decay determines whether the model is 'fast t ime' or 'slow time'. 

In the former the decay time may be up to a second and. is thus monitored using 

a cathode-ray oscilloscope . However, when the decay period is measured i n 

seconds and maybe minutes, a U . V. recorder is most suitable. Each type 

of model has i ts adherents, and each has advantages and disadvantages which 

must be considered before the model is constructed, A 'slow time' model 

can easily simulate complex pumping schemes using electro-mechanical 

switching arrangements: but the chief disadvantage lies in the large and 

expensive capacitors they require. On the other hand, 'fast time' models 

require purely electronic excitation apparatus, and complex abstraction and 

rechai^e needs involved and expensive eqtupment. However, cheap and 

readily available standard miniature capacitors may be used, and hence 

this type was favoured fo r the constructed model, 

(a) Excitation. - The ideal arrangement of a battery of pulse generators 

able to simulate abstraction and recharge at different rates and times was 

beyond the budget and labour available fo r a small pilot investigation. 
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Time variant effects were therefore l imited to abstraction, A constant 
current pulse to simulate pumping is obtained by applying a high voltage 
pulse (-50V) across a calculated fixed resistor on the same principle as 
that outiined above f o r d.c. constant current sources, 
(b) Response. - A double beam cathode-ray oscilloscope is used, with 
a switched time-base variable f r o m 0,5sec to 0.2yu sec. Since many 
commercially available pulse generators have a pre-pulse output, this 
may be used to trigger the 'scope. An apparently continuous trace is 
obtained and different parts may be more closely examined by reducing 
the sweep time and altering the pre-pulse delay. Measurements may be 
made direct f r o m the screen and recordings taken by tracing oriphotographs. 

The complete excitation-response arrangement fo r non-equilibrium 
conditions is shown diagrammatically in Fig. 3,10, 
3.3,3, Design and construction 

The methods adopted i n any investigation are dictated by the 

problem and resources. The former includes the amount and nature of the 

raw data. The resouces available are i n terms of capital and equipment, 

and most importantiy, man-hours, 

3 . 3 , 3 , 1 . Design - Since there was no-one directiy connected with the 

project with experience i n analogue simulation, i t was decided to develop 

the model in stages, starting with steady state and subsequently adding the 

time variant, i f required. 

The area to be modelled lay i n south Durham and the geological 

nature and hydrological parameters have already been discussed. Where 

possible, model boundaries were chosen to coincide with hydrological 

boundaries, and an area measuring 15 miles by 8 miles was covered (Fig. 3.11). 
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The terminal pin spacing was fixed at 1^ ins to enable easy 

interchange of resistors and later addition of capacitors. Since 1:25,000 

maps were readily available, and were used by the Northumbrian River 

Authority fo r much of their data plotting, they were adopted for the model, 

giving a mesh length, a, of 3,124 f t . Whilst a smaller mesh length would 

result i n greater accuracy, the work entailed in iteratively adjusting the 

resistors to produce a good f i t i s greatly increased, and a compromise 

solution must be reached. I t was fe l t that 600 resistors would be optimum, 

and i f any area required a more detailed analysis, i t could be 'blown-up' 

on a separate panel. 

The scaling factors were tentatively fixed on the basis of a low 

voltage directly and easily convertible to feet, low currents, and a 

resistance of 10 KSi being equivalent to a transmissibility of 10,000 

g ,p ,d . / f t . Upon calibration i t was found that some of the values required 

slight adjustment, the f inal scaling factors being: 

14 

= 10 gals/coulomb 

K - = 10^ f t / vo l t 

K - = 5,58 X lO"*"̂  g,p,d/amp 
3 

4 

= 10 days/sec 

a = 3,124 f t . 

The steady state excitation apparatus consisted of 2 banks, each 

of 15 lOKJl wire-wound potentiometers, together with a bank of 15 positive 

constant current generators. For abstraction schemes, a further bank of 

15 potentiometers was available. 
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3.3.3.2. Construction - A 5ft x 4ft x j i n s sheet of 'Perspex' was dril led 

6BA clearance to take the node and capacitor terminals. I t was held 

vertically be a 'Dexion' frame, and the terminal pins inserted. These 

were specially designed fo r electrical analogue models by the Civi l 

Engineering Dspartment, University of B i r m i n ^ a m and permit the easy 

interchange of components without the need for soldering. The steady 

state excitation apparatus was mounted at the bottom of the board, and 

the pre-set outputs connected to the back of the boundary terminal pins 

via leads. Af te r calibration these were replaced by fixed resistors f r o m the 

boundary nodes to 

(i) a common high voltage line fo r recharge, or ^ 

(ii) an earth line f o r discharge. 

A l l connections which were not permanent were by flying leads fit ted with 

crocodile clips to the front of the board. The model is shown in Fig. 3.12 

set f o r a non-steady pumping test simulation. 

3.3.2. Resvdts 

The results f r o m the model may be conveniently considered in 

two parts. The calibration of the model yields information on the 

quantities and locations of recharge and discharge. This is followed by 

simulation of pumping regimes to investigate the overall yields and the 

effects upon other abstractors. 

3.3.2. lo Calibration - An ini t ia l estimate of the relative transmissibilites 

was made f r o m the piezometrlc contour map and lihe corresponding resistors 

inserted using a working value fo r of lO'''^ g.p.d/amp. The boundary 
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potentials were applied with potentiometers and the resistors iteratively 
adjusted to obtain a reasonable agreement with the reference nodal potentials. 
Pumping tests were simulated by imposing the known drawdown at the pumped 
wel l , and altering the surroimding resistors imt i l the drawdowns in the 
observation wells were reproduced. Where possible high resistors 
(Low transmissibility) were only inserted i f there was existing geological 
or hydrological evidence of boundaries. Following the f i r s t abortive attempt 
at calibration, low resistors (high transmissibility) were not used. For the 
second calibration, the digital solution was used as an ini t ial guide in order 
to reduce the amount of adjustment required. 

In some areas i t proved very diff icult to satisfy both the 

piezometric and the pumping conditions. This was especially noted in the 

Carr Lands and around Rushyford, where a solution using low resistors 

was inadequate. I t was therefore concluded that the wide contour spacing 

i n that area (see F ig . 2.2) should be interpreted as a function of recharge, 

and inputs were applied at selected nodes. Stream gauging has since 

substantiated the validity of this solution. 

Surface discharge was apparent in only one area, in the vaUey 

of the River Skeme between Aycliffe and Coatham Mudeville. Seepages had 

been noted and a value of 0.3 m . g. d. was recorded f rom the model. 

Following the f inal calibration, the nodal potentials were 

measured and plotted fo r comparison with the observed contours (Fig 3.13). 

The individual well tests are detailed in Table 3.3 and the resultant f l o w / 

current calibration shown in F ig . 3.14, 

The boundary potentiometers were changed fo r fixed resistor 

devices as outlined above (3.3.3.2). The current flowing into and out of 
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TABLE 3.3, 

75. 

Pumped Drawdown Rate Current Obs, Measured Model 
hole Ft m . g . d . u A hole d.d. d, ds 

/ f t . f t . 

C 59 1.5 28 17 30.7 29 

G 25.6 19 

R 12.3 17 

24 3.0 4 

10 4.0 5 

15 3.0 3 

15A 5.2 3 

16 6.2 3 

18 24,7 19 

19 13.75 8 

Gt. Stnt. 42.7 40 

J 9.0 8 

D 27.4 0.6907 12.5 5 3.3 1,5 

6 1.4 1 

7 6.6 6 

8 1.1 1 

9 n.a. n , a. 

J n . a. n.ao 

G 50.7 1.1755 20 17 19.7 16 

19 13.4 10 

26 5.9 4 

J 3,3 5 

R 8.8 8 

10 3.5 3 

C 18.3 15 

T V l 8.2 10 

Wml, Hse. n . a. n , a. 

Gt. Stnt. 18,7 15 



TABLE 3.3. (Cont'd) 
76. 

Pumped Drawdown Bate Current Obs Measured Model 
hole F t : m . g . d . hole do d. d,d. 

ft. fto 

J 68.3 0.8921 16 10 12,9 11 

17 1.0 3 

16 n . a. n . a. 

28 2.5 3 

G n . a. n.a. 

26 n . a. n . a. 

D 0.35 1 

Wnl.Hse. 0.95 1.5 

18 n . a. n.a. 

19 n . a. 1.5 

7 n . a. 1.2 

R n. a. n , a. 

K 47.4 0.2493 5 0 0,79 1 

L 1.64 1.5 

12 1,41 1.5 

14 2.89 2.5 

15A n.a. n . a. 

20 1.38 1.5 

22 1.44 1.5 

25 1.58 lo5 

N 2.80 3 

13 0,75 1 

L estimated variable 10 20 12.3n. s. 8 

24 av.0.5064 25 10.6n, s. 8 

11 6.6n. So 6 

K 5 . 4 a o S . 6 

12 5.6n. So 5 

N 2.2n.s 2 

21 1.8 1.5 

0 0,7 n . a. 
/Cont'd. 



T A B L E 3.3 (Cont'd) 
77. 

Pumped Drawdown 
r. 1 Ft 
hole 

Rate 
m . g. d. 

Current Obs. 
A hole 

Measured 
d.d. 
f t . 

Model 
d,d. 
f t . 

L 22 1,1 n. a. 
(cont'd) 23 n. a. n . a. 

13 0.95 1 

9 0.4 n.a. 

14 lo 35 n. a. 

E 2.0 2.5 

N 54.71 0.6324 11.5 11 9.2 8 

13 8.2 8,5 

0 8.0 6 

23 3.0 3.5 

14 2.0 3 

22 13.7 12 

12 2.3 2 

15A 2.5 2 

16 2.3 2 

20 5.4 4 

R 54.6 0.8640 14,6 Gt. Stnt. 4.9 5 

15 n. a. n . a. 

15A n, a. n . a. 

23 n.a. n . a. 

24 7.1 7 

8 n. a. n . a. 

C no data 7 

17 10.1-4.5 7 

G 3.3 5 

19 3.3 2 

T V l 3 2 

/Cont'd. 



TABLE 3.3. (Cont'd) 

78. 

; Obs. Measured Model 
hole d.d. d.d. 

f t . f t . 

T V l obs 33 too close 

G 10 7 

17 l o l 5 

26 2o85 5 

Clds 2.9 5 

Gt. Stnt, 3.8 5 

10 n. a. 1 

B,Xa L . n . a. 0,5 

J 2,5 4 

Pumped Drawdown Rate 
hole Ft m . g . d . 

T V l 166.2 1.2720 23 

Abbreviations: 

d.d.. 
n . a. 
n . s. 

drawdown 
not affected 
not stable 
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the model at each of the nodes can then be measured (Fig, 3,15) and converted 

into the corresponding water flow using factor K , determined as 
3 

5.58 X 10•'•̂  g.p.d/amp. This shows that some 16 m.g .d , represents the 

total daily flow through the area modelled. 

The recharge areas are seen to be located along the western 

boundary, and in the Rushyford-Carr Lands area. High boundary inflows 

occur i n the Rushyford, Newton Aycliffe and Walworth areas. One third 

of the recharge, however, occurs within the model area. 

The discharge zone is located along the eastern margin, with 

minor amoimts i n tiie south and west. In the north-east a nett 4 m . g. d, 

flows eastwards, to be abstracted f r o m the wells around Hartlepool, 

Since this flow must be maintained as high as possible so as not to deplete 

the Hartiepool area, pumping schemes must be designed to reduce the flow 

over the rest of the boundary rather than affect the north eastern comer. 

3 .3.2.2. Pumping scheme simulations - So fa r , four possible schemes 

have been simulated: 

(a) Scheme No. 1. (Fig. 3,16) 

Well 
Current 

(mgd) Proposed Current available 
pumping rate ^ H- ^ ( A) 

Suggested 
rate 

Broken Scar 4.0 73.0 50.0 2.7 

TV 0.7 12.7 5.0 0.4 

Archdeacon 
Newton 0.7 12.7 12.7 0.7 

T V l 1.0 18,0 18.0 1.0 

G 4.0 73.0 50.0 2.7 

C 1.0 18.0 18.0 1.0 

R 1,0 18.0 16.0 0.8 
/Cont'd. 



(a) Scheme No. 1 (Fig. 3.16) Cont'd. 80. 

Well Proposed Current Suggested 
pumping rate Current available rate 
(m .god.) (yuA) ( yUL A) (m.g.d) 

O 0.7 12,7 12.7 0.7 

N 1.4 25.5 25.5 1.4 

Total proposed yield 14,5 m . g. d. 

Model yield 11.4 m . g. d. 

The 3 m . g . d , deficiency is principally due to Broken Scar and 

G being unable to meet the 4 m . g. d. targets. The artesian head has been 

completely removed at most of the wells, and thus aquifer dewatering w i l l 

be taking place. The 5 m . g. do being abstracted f rom trough fault zone by 

T V l , G, C, R probably represents the maximum available fo r that area. 

In the southern area the yield is l imited since the cones of depression of a l l 

the wells tend to develop northward and eastwards, towards Darlington Golf 

(DG), Thus l i t t le over 4 m .g .d , appears to be available f rom this part of 

the aquifer. In the north, the individual effects of O and N upon the 

Hartlepool flow are known to be small . However, with the high rate of 

abstraction i n the central area, the piezometric level i n the Carr Lands 

i s decreased by 20-30ft and the nett outflow to Hartlepool reduced by just 

over 1 m . g . d . 
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(b) Scheme No. 2. (Fig, 3.17) 

WeU Proposed 
pumping rate 
(m.g.d). 

Current 
( / u A ) 

Current 
available 
( JxA) 

Suggested 
rate 
(m.g.d.) 

Broken 
Scar 4,0 73.0 36 2,0 

TV6 0.7 12.7 9.0 0.5 

Arch­
deacon 
Newton 

0.7 12.7 12.7 0.7 

T V l 1,0 18.0 18.0 1,0 

G 2,0 36.0 20.0 1.1 

C 2.5 45.5 30.0 1.6 

R 1.0 18.0 8.0 0.4 

0 
i 

0.7 12.7 12o7 0.7 

N 1,4 25.5 25.5 1.4 

Preston-
le-Skeme 1.2 
{ = J) 

21.8 15.0 0.8 

obs 8 2.0 36.0 36,0 2.0 

Total proposed yield 17.2 m . g. d. 

Model yield 12.2 m . g. d. 

This pumping scheme shows deficiencies at many wells, and for the 

yields obtainable i t may not be economical to pump wells such as TV6 and R. 

However, the main point of interest lies in the effect of abstraction f rom the 

Carr Lands area (obs. 8). The cone of depression appears to be very large 

and coupled with the intense pumping in the central area, the piezometric 

head in the Carr Lands is reduced by some 60ft and the flow to Hartlepool is 
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decreased to just over 2 m , g, d. Thus thfe total abstraction in the noirthem 
part (obs 8, 0, N) of 4 ,1 m , g, d. would reqiiire a derating at Hartiepool of 
2 m . g. d. Whether i t would be an economic proposition to obtain this 
extra 2 .1 m . g . d . depends largely upon the capital cost of pipelaying, and 
the e3q)ense of pumping. As with Scheme No. 1 i t is apparent that the 
artesian head w i l l be removed at most pumped wells. 
(c) Scheme No. 3 (Fig. 3,18) 

Well Proposed pvunplng 
rate (m.g.d) 

Current 
( / X A) 

Current 
available 
( / L A ) 

Suggested 
rate 
(m.g.d) 

Broken 
Scar 4.0 73.0 40.0 2.2 

TV6 0,7 12.7 12,7 0.7 

Arch­
deacon 
Newton 

0.7 12.7 12,7 0.7 

T V l 1,0 18.0 18,0 1.0 

G 4,0 73.0 50.0 2.7 

Preston-
le-Sceme 1.2 
( = J) 

21.6 21,6 1.2 

obs. 8 1,5 27.0 27,0 1.5 

Total proposed yield 13.1 m . g. d . 

Model yield 10,0 m , g, d. 

Increased pumping at obs, 8 could alleviate the deficiency, but this 

would result i n a further decrease in the flow to Hartiepool. This appears to be 

the most rational of the mediimi yield schemes. I t is interesting to note that 

under Scheme No, 2 the total yield f rom the central area ( T V l , G, C, R, J) 

i s 4,9 m . g . d . , which is also the yield f r o m the same area in Scheme No. 3, 
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( T V l , G, J), and must therefore represent the maximmn possible fo r that 

area. 

3» 3.2.3. Pumping scheme conclusions - The total potential of the area 

modelled (some 16 mog.do) cannot be fu l ly utilized since compensation flow 

to Hartlepool must be maintained. The nett maximum yield f r o m the area is 

therefore 12 m . g. d. Of this, about 4 m , g. d. may be drawn f rom the southern 

area of Broken Scar, TV6 and Archdeacon Newton, 5 m .g .d . f rom the 

central area ( T V l , C, G, R, J) and the remainder f r o m the north. , Since 

1±ie model can only simulate confined conditions, the yield-drawdown ratio 

w i l l increase rapidly as the aquifer is drawn into water-table conditions; 

however, this w i l l result in dewatering which may be detrimental to the 

long-tei*m performance of the aquifer. I f pumping is only going to take place 

f o r l imited periods, such as during summer low-flow conditions, then some 

dewatering could be tolerated, especially i f provision were made fo r 

a r t i f i c ia l recharge when available. In order to simulate these time dependent 

coiri itions, a model capable of simulating both confined and unconfined 

conditions would be required (Hunter Blair , in press). 

3.4. Simulation: summary, conclusions & proposals 

Both digital and electrical methods have been used in the study 

of an area i n south Durham, Simulation methods are particularly useful 

where complex variations i n the aquifer parameters render normal idealized 

analytical techniques imtenable. For one given set of boundary conditions, 

there is no unique solution fo r the transmissibility. By satisfying different 

boundary conditions, however, a particular solution may/- be obtained. This 

can only be done by iterative procedures which are time consuming using an 

electrical analogue, and costiy by digital methods. Nevertheless, i t is fel t 

that the logical constraints imposed on a digital solution result in more 
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uniform solutions. Once the transmissibility elements have been determined, 
the electrical analogue offers much wider versatiliiy, as well as rapid results 
and enabling the operator to 'get the fee l ' of the area. The ideal method would 
therefore be a hybrid of digital and analogue techniques, the former being 
employed fo r the transmissibility element iterations, and the electrical 
analogue bviilt and scaled to these results, and used fo r the simulation of 
abstraction regimes. 

For the area investigated in south-east Durham, the bull^ of the 

results were obtained fo r steady state conditions, since the aquifer had a 

low storage coefficient. Calibration of the model indicated a flow through 

the area of some 16 m . g . d . Of this, 4 m.g .d , discharged in the north-east 

of the area, and therefore constituted a source of supply fo r wells in the 

Hartlepool area. Thus over the area modelled, a nett 12 m ,g ,d . may be 

abstracted. From the schemes investigated i t may be seen that there is a 

maximum yield i n an area, which is irrespective of the number of wells 

pumped. Thus i n the central area, opttmum yield is ottained f rom T V l , G, 

J , In the south, the high abstraction at Broken Scar affects the production of TV6, and 

thus improved, yields may be gained by replacing TV6 by a well at Darlington-^ 

Golf, A possible scheme, deduced f r o m the model, producing almost 

11 m , g . d . but decreasing the Hartlepool flow by less than 2 m.g .d . is 

given below: 
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Proposed scheme No. 4 (Fig. 3.19) 

WeU Current Suggested 
available pumping 
( A) rate 

(m.g.d.) 

Broken Scar 24.0 1.30 

Archdeacon Newton 15,0 0.85 

Darlington Golf 20,0 1.14 

T V l 21.0 1.16 

G 18,0 1.0 

C 26,0 1.42 

R 18.0 1.0 

J 18.0 1.0 

0 38.0 2.1 

The electrical analogue therefore enables the effects of complex 

abstraction regimes to be rapidly simulated, and possible schemes to be 

optimised. As more data f r o m the aquifer becomes available, especially 

with regard to quantity and location of recharge, and the production 

characteristics, the model may be updated, thereby reflecting the 

contemporary state of knowle(fee. 
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CHAPTER I 

INTRODUCTION AND THEORETICAL CONSTDERATTONS 

1.1. Introduction 

Since the object of the study of the Magnesian Limestone was to 

investigate the effects and problems of a variable and often highly fractured 

material , an evaluation of the engineering geology is complementary to the 

hydrological aspects already discussed. As with the geohydrology, the 

underlying control has proved to be the geology, with the palaeogeography 

controlling the lithology, which, in turn, affects the mechanical parameters 

of the rock. However, the fractured nature of the strata is likely to have 

a deleterious effect upon the desirable properties in an engineering sense, 

rather than the reverse as was the case with groimdwater flow, and thus 

requires a more precise analysis and evaluation. The role of discontinuities 

in the en-masse failure of rock has therefore received an init ial theoretical 

investigation as part of this work. 

Laboratory tests have been carried out on a number of typical 

samples to determine the characteristic parameters relating to strength 

and deformational behaviour. In general, test conditions have been limited 

to values likely to occur i n normal c iv i l engineering practice, and the 

Magnesian Limestone may thus be considered as an essentially brit t le 

material . 

Since quarrying fo r industrial and constructional requirements 

represents the second largest extractive industry in eastern Co. Durham, 

some of the associated problems were investigated. These included an 
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assessment of the vibration levels induced during normal production and 
blasting, and a comparison of the aggregate properties f rom various 
quarries. 

1.2. Theoretical considerations 

Basic stress analysis and elasticity theory as applied to rock 

mechanics are adequately covered by the several text books on the subject 

(see Price, 1966; Obert & Duvall, 1967; Coates, 1967; Farmer, 1968; 

Jaeger & Cook, 1969; also see Timoshenko and Goodier (1951), as an 

entirely satisfactory text f o r projection into problems of rock elasticity). 

Standard theory is therefore taken as read and an acquaintance with i t 

assumed. 

1 .2 ,1 , Rheological properties 

The actual behaviour of any material may be simulated by 

combinations of Hookean, Newtonian and St. Venant substances, 

representing respectively the properties of elasticity, viscosity and 

plasticity. 

In many instances, i t i s necessary only to consider the elastic 

effects. The value of Young's modulus defined by: 

da-/dE = E (1.1) 

i s a complex fimction of temperature, pressure, and rate of strain. 

However, in the routine 'static' tests under normal conditions, variations 

may generally be attributed to a change in the material constitution. 

Time-dependent creep effects are proportional to the principal 

stress difference, for a given material. Under most surface civU 

engineering works, their effects are small, although for semi-elastic 
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rocks the strain induced by creep over a period of, say, 10 years, is 
approximately the same as the immediate elastic strain. Where small 
displacements are cr i t ica l , viscous effects must therefore be considered. 
Assuming a similar behaviour between concrete and rock, Zienkiewicz, 
(1968) notes that the Alfrey-McHenry theorem holds, which states that 
in a homogeneous situation, no stress redistribution occurs due to sustained 
loading. The implication of this is that elastic analysis may be used to 
determine the stress distribution, which w i l l remain unchanged with time, 
even though creep displacements are continuing. However, in non-
homogeneous states, fo r example a tunnel lining, creep in the rock w i l l 
tend to transfer stresses to the lining. 

True plastic deformation by intracrystalline dislocations have 

not been investigated, but are unlikely to occur in the low stress regimes 

used. However, cyclic stress-strain curves do exhibit some permanent 

set which is usually attributed to non-recoverable fr ict ional effects as 

grains over-ride each other during compression. The brittle shear 

failure of rock generally results in a loss of strength, producing large 

strains across the failure plane. 

1. 2. 2. Strength & failure cri ter ia 

The ideal failure cri terion, not yet realized, must be able to 

reconcile theoretical considerations with the observed behaviour of a wide 

variety of rocks and their relative strengths in compression, tension and 

shear, under different stress and temperature conditions. 
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1 . 2 . 2 . 1 . Coulomb-Navier failure criterion - This is widely used in 
soil mechanics and rock mechanics analyses and may be e3q)ressed as: 

T = C + crtanjjf ( 1 .2 ) 

where T = shear stress 

C = cohesion 

cr = normal stress 

^ = f r ic t ion angle, 

hi terms of effective stress parameters (defined by primes), 

T = C tan (1. 3) 

In rock mechanics, the main criticisms of the Coulomb-Navier 

criterion are that i t fai ls to predict the experimental high compressive/tensile 

strength ratio, and also i t does not directly accommodate a non-linear 

failure envelope. Nevertheless, i t does have widespread application over 

a limited normal stress range, and especially in fractured material. 

1 . 2 . 2 . 2 . Gr i f f i th failure criterion - This was originally expounded in a 

theoretical manner to explain the observed failure of glass at stress levels 

well below theoretical failure strengths. The existence of minute flaws, 

(Griff i th cracks) was shown to be responsible for this strength reduction, 

since as a result of their geometry, high tensile stresses were induced at 

their tips. Under the influence of stress fields, compressive or tensile, 

of increasing magnitude, the cracks tend to propagate leading to total 

material failure. The relationship between the normal and shear stresses 

at Gr i f f i th failure results in a parabolic Mohr envelope (Murrel l , 1958) and 

is given by: 

T ^ - 4 S ^ < r - 4 S ^ 2 = 0 (1 .4) 

where S ^ is the tensile strength. 

Thus when a" = 0 , T = C (by definition) 

and therefore C = 2 S t ( 1 .5 ) 
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From the above, the compressive - to- tensile strength ratio is 

eight, which is in good agreement with the behaviour of many rock types. 

1.2. 2. 3. Development f r o m the basis of the Gri f f i th criterion - McLintock & 

Walsh (1962) improved the Gr i f f i th criterion to take account of the fr ict ional 

stresses which occur when a crack is closed under compression, and 

Brace (1960) showed that, in compression, the relationship between 

stresses at failure would thus be: 

T = 2 C + / i c r (1.6) 

where ^ = coefficient of f r ic t ion 

For tensile stresses. Equation 1,4 s t i l l holds. 

In the failure cri ter ia so fa r considered, the intermediate principal 

stress has no effect upon the stresses at failure. Murre l l (1963) showed 

f r o m theoretical considerations that the intermediate principal stress has 

a small but measurable effect upon the failure envelope, and confirmed i t 

by tests conducted with c = o" and c -cr. More recent research 
Z 3 2 1 

(Wiebols & Coo^, 1968) proposes a criterion based on the storage of energy 

around Gr i f f i th cracks, due to the sliding of crack surfaces over one another. 

In this, as the intermediate principal stress increases f rom = ^ to 

O" =0", the strength increases to a maximum before decreasing to a value 

somewhat higher than at the beginning of the stress history. Laboratory tests 

show a good correlation with the theory. 

1.2.2.4. Mohr circles and failure envelopes - Mohr circle construction has 

been widely used for plotting stresses at failure, and the failure envelope 

constructed tangentially to the principal stress circles. In many cases, 

especially at low confining pressures and with high fr ic t ion angles, i t is 

almost impossible to f i t visually the best line to the group of circles. An 

alternative method, more amenable to statistical treatment is to plot q 
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against p defined by: 

P = i{^^+C5^) (1.7) 

q = i ( < ^ - < ^ (1.8) 

Each combination of failure stresses is thus represented by a pair of 

(P£» co-ordinates, and the resulting curve is termed the line (Lambe & 

Whitman, 1969). In many cases the points may be described by a linear 

relationship of the form: 

q^ = a + p^ . tan « (1. 9) 

The corresponding fr ic t ion angle and cohesion may be obtained from: 

= sin"""" (tano( ) (1.10) 

C = a/cos gf) (1.11) 

Where the Mohr failure envelope is non-linear, a logarithmic plot 

must be employed. Hoek (1968), in his investigation of a semi-empirical 

fai lure criterion based on Gr i f f i th , proposed plotting logarithmically 

dimensionless ratios normalised by the unconfined compressive strength 

(S ) thus 
^ c 

x = log.(^f/S J (1.12) 
c 

y = log .lVaJ (1.13) 
S 

The relationship between stresses at failure is thus of the form: 

log.(qj - a ) = log.d + b log.(Pj) (1.14) 
^ S~ c c 

The constants b and d therefore define the material. Where a is 

not known a value of 0.1 for a/S^ is suggested to give a reasonable estimate. 

By normalising with the unconfined compressive strength, Hoek shows that 

many different sandstones plot on the same line, and this therefore represents 
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a method of assigning typical and realistic values to different rock types. 

1. 2. 3. Discontinuities 

The effects of discontinuities are important in a material like the 

Magnesian Limestone, which is typically highly jointed and well bedded. 

A discontinuity may be represented by a joint, bedding plane, fault, or, 

on a smaller scale, a flaw in a sample chosen fo r testing. 

1. 2. 3 .1 . Effects on the rheological properties - This is very difficult to 

assess on a str ict ly quantitative basis. Walsh & Brace (1966) in a review 

of contemporary theoretical studies, show that the effect of planar cracks 

is more pronounced than that of the equivalent volume of spherical pores. 

For s imilar concentrations of cracks and pores, the difference between 

the effective and intrinsic bulk moduli is approximately the same. 

However, in contrast, pores have but a slight effect upon Young's modulus 

and Poisson's ratio. Neglecting pores, the ratio between the elastic moduli 

f o r various parts of the stress-strain curve may be theoretically predicted 

f rom: 

^ - 1 T . - 1 

E - 1 - E 

2 -H 3 / + 2 / _ 

(1 - / ) « / 2 ' 
(1.15) 

where Ê ^ = ini t ial slope of curve 

E = ascending slope at maximum stress 

E = descending slope at maximum stress. 
O 

On a small laboratory sample, the intrinsic elastic properties (Eg) 

are those of the mineral constituents, and the effective elastic parameters 

(E- , cracks open; E , cracks closed) those measured for the sample. 

However, the scale may be e3q)anded so that the former becomes the 
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properties of the intact material, and the latter the properties for the 
en-masse discontinuous material. For this to hold, the crack concentration 
must be the same fo r a l l sample sizes, in which case the relationship between 
in i t ia l and f inal moduli fo r small samples and fo r large masses w i l l be 
similar . I f the subscript s denotes sample, and m rock mass then: 

^ ~ h ~^3 (1-16) 

Now i f 

and (^r^2=^3>s = <^r^2=^3>m 

then these relationships allow an estimate to be made of the en-masse 

reduction of Young's modulus. Inherent in the assumptions are many 

possible errors, fo r example the relationship: 

However, i t may provide an easily applied guide to possible behaviour. 

As might be expected, the increase in overburden stress with depth 

produces a closure of horizontally aligned cracks and bedding planes, and i t 

follows f r o m the above that this must increase the stiffness. Gibson (1967) 

has computed the settlement of a loaded pad and the surrounding area on 

the basis of an increase in stiffness with depth, and compared the resulting 

deflections with Boussinesq predictions. In the former, most of the deflection 

occurs under and very close to the loaded area. Large scale loading tests 

carried out on chalk in Norfolk (Ward, Burland and Gallois, 1969) show a 

remarkably close coincidence with Gibson's model. Geological evidence 

f r o m boreholes associated with the project shows that the rock becomes 

tighter and less jointed with depth. 
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The effect of discontinuities on the other rheological properties 
is less documented. Recent work (Scholz, 1968) has shown that at low 
stress levels, creep may be a function of bri t t le failure and intergranular 
movements. Discontinuities w i l l also tend to promote the free passage of 
circulating fluids which can lead to an increase in the viscous nature of the 
rock. Irrecoverable deformation following failure often takes place along 
a wel l defined plane which may be determined by discontinuities prior 
to rupture (see below). Movement along these planes is often of a stick-
slip nature (Byerlee & Brace, 1967), and may, on a global scale, be 
responsible for earthquakes. 

1.2. 3.2. Effects upon failure characteristics - The effects of discontinuities 

has been examined theoretically by Jaeger (Jaeger & Cook, 1969) and 

experimentally by Donath (1964). In considering low stress conditions, 

the Coulomb-Navier criterion w i l l be assumed to hold along the discontinuity, 

(a) Biaxial system - Jaeger (op. cit . ) has shown that failure w i l l take 

place preferentially along a discontinuity fo r ^,<&<j3i. (Fig. 1.1). 

The principal stresses and C - jJf parameters may be reduced to 

dimensionless factors based on the ratios of their magnitudes as illustrated 

by the geometry of the Mohr diagram, by a transfer of origin to the point 

of intersection of the extrapolated discontinuity envelope and the normal 

stress ( c r ) axis. Defining new symbols: 

cr^* = + C cot (1.20) 

O" * = O- + C cot (jl (1. 21) 
2 2 

c r * = c r + Ccotj3f (1.22) 

and F* =cr^*-C§* (1-23) 

It follows that: 

sin (2y5 + 0) = sin (3^^^ (1. 24) 
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The solution of this equation for enables the locus of failure pre­

ferentially along a discontinuity to be located with respect to (3̂ , F* and the 

angle the planar discontinuity makes with the direction, 0, (Fig. 1.2). 

When 9 = 0 the above Equation 1.24 is no longer applicable since 

C cot jJf = oo . For this case, failure along the distontinuity will take place 

for 

• ' • - • - " \ (1.25) i sin'V 2C \ < 0 < 90 - i sin'V 2C 

(b) Triaxial system - The above approach may readily be extended to the 

general triaxial case of ^ cr > CT The stresses on any plane where 

direction cosines 1, m, n, describe the angles 0, y , y>, may be represented 

on the Mohr diagram (Fig 1. 3). 

Now F* = {(r* - cr*)/(cr* + cr *) 
1 O 1 t) 

thus Cr^* = O-g* (1 + F*)/(l - F*) 

Let c3* vary between cr * and cr* such that 
o X 

cr* = or* + N (a- * - cr% for 0<N<1 
3 1 3-

1 + N/2F* ' 

(1. 26) 

1-F*, 

(1.27) 

In a similar manner, O" * may vary between <T * and cr *, and thus 
2 o X 

for 0<P<1 

cr„* = <r * 
2 3 

+ p/ 2F*^ 
U-F*; 

(1.28) 

The direction cosines on any plane in a triaxial system be 
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determined from the magnitude of the normal and shear stress on the plane. 
Thus 

1̂  = (c^* - cs*)(cr^* - or*) + (1.29) 

and 

= (cr^* - o-*) (cr * - a*) + 

For limiting equilibrium on the planar discontinuity 

T =o* tan flf 

Substituting for a;*, or*, CT* and T 

(1. 30) 

(1. 31) 

1 = (Kg - K) (Kg - K) + K^ tan̂ gf ^ 

n = (K^ - K) (Kg - K) + K^ tan̂ jjf ^ 

(1.32) 

(1. 33) 
(K1-K3) (K2-K3) 

For the (/I = 0 case a similar procedure is followed except that a new 

dimensionless parameter is developed: 

G = 2C/(cr - o-g) (1. 34) 

from which 

= - 2C/G 

0-2 = 0^+ 2C(P-1)/G 

= + 2C(N-1)/G 

The direction cosines at limiting equilibrium are then given by: 

N(N-P) .* G /4 

1 - P 

n = (1 - N) (P - N) - G /4 

(1. 35) 

(1. 36) 

(1. 37) 

(1. 38) 

(1. 39) 
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Stereographic methods represent the most convenient method of 
plotting fail and no-fail regimes, since joint orientation and frequency 
diagrams usually employ lower hemisphere equal-area Schmidt projection. 
For plotting, the direction cosine angles 0 and must be converted to 0 
and oc (Fig 1.4) using the relationship: 

(x = cos ( COS. 0/sin ^) (1.40) 

For the present study, a PL/1 program was written to compute the 

stereographic co-ordinates of the limiting conditions for various 

combinations of F * and (3f, and a description of the method and results are 

given in Appendix C. 

In the general case, the global axes to which the discontinuities are 

referred are non-coincident with the principal stress directions, (y , o-, c-. 
X ^ o 

A modified version of the previous program was therefore written which 

will rotate the failure diagram and the associated principal stress axes so 

that the directions are referrable to global axes (Appendix C). The advantage 

of this is that a joint survey may be carried out over the area of interest so 

that a statistically viable distribution may be built up. The principal stress 

m£^itudes and directions at points of interest are determined either 

theoretically using, for example, finite element or photoelastic techniques, 

or directly by borehole stress plugs or strain gauge rosettes. The failure 

regimes for these stress combinations and C - (3̂  characteristics of the 

discontinuities are then plotted and rotated into global co-ordinate directions. 

The concentration of the discontinuity directions which may give rise to 

instability at each location may then be assessed. The ultimate development 

of this method would be to determine the most susceptible failure surface 

from a summation of the safety factors along probable paths. Such an 

approach based on the development of the necessary finite element technique 
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is recommended as appropriate for further work. 

1.3. Summary and conclusions 

Even though much research in rock mechanics has been directed 

towards an understanding of rheological and failure characteristics, there is 

not, as yet, a completely satisfactory.; overall theorem. Nevertheless, 

some failure criteria, such as the Griffith and its derivatives, based 

essentially upon theoretical considerations, do show reasonable agreement 

with the observed behaviour of rocks. For low compressive stress regimes 

and fractured material, the semi-empirical Coulomb-Navier criterion may 

be employed, and this results in simplified conclusions. 

Since the Magnesian Limestone is essentially highly jointed and 

discontinuous, the associated theoretical aspects have been examined in some 

detail. The effect of discontinuities is to reduce the elastic and strength 

parameters, the degree of reduction being a function of size, concentration 

and directions of the discontinuities. 

Digital computer methods have been used to facilitate the plotting 

and rotation of stability regime stereograms determined for typical 

dimensionless strength parameters in a triaxial stress field. 
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CHAPTER 2 

LABORATORY TESTS 

2.1. Objects 

Since the engineering behaviour of a material is governed by its 

rheological nature and failure characteristics, laboratory tests are 

directed towards determining these parameters so that structures on 

or within the rock may be economically and safely designed. The rock 

may then be classified on the basis of these parameters (Deere, 1968) 

enabling comparisons to be made with other areas and utilising previous 

experience. 

Various samples of Magnesian Limestone have been tested in an 

attempt to cover as many different lithologies as possible. Probably 75% 

of the exposure is represented by abuff, granular, silt-grade dolomite 

which occurs at all horizons. In the selection of samples there is doubtless 

a bias towards the more competent material since these are less of a problem 

to core and test. Nevertheless a representative range of lithologies and 

mechanical properties has been covered. 

Laboratory methods have been used throughout, coupled with a 

visual inspection and classification of the strata at many localities. Ideally, 

full scale field tests should be carried out, but the high cost obviates their 

use in all but the lai^est and most critical schemes. 
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2.2. Tests 

It is proposed to deal with each type of test individually, with the 

emphasis on the suitability and problems posed in each case. 

2.2.1. Compression tests on intact samples 

This form of test is usually employed for the investigation of both the 

elastic and strength characteristics of the sample. It is generally inherent 

in the test that the sample tested is macroscopically intact, although even 

small flaws may lead to a wide range of results for similar test conditions. 

2.2.1.1 Sample preparation - Samples are cored using diamond tipped core 

barrels of either 1 inch or 1. 5 inches nominal internal diameter. Water-flush 

was generally used, although some samples which tended to break down in 

water were air-flush cored. The ends were lapped parallel using push-fit 

holders to ensure axial perpendicularity, finishing with grade 800 carborundum 

powder. The cylinders had a nominal 2:1 length to diameter ratio, although 

shorter samples were tested and normalised using the e3q)ression, (Obert 

et al. 1946) : 

S =S (0.8 +0.2 ) (2.1) 

where S = compressive strength for L/D = 1 
CO 

S = observed compressive strength, 
c 

The cylinders were oven dried at 110°C for 24 hours and tested dry. 

Rubber sheaths were used during triaxial test to prevent ingress of the 

pressurizing medium. 
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2.2.1.2. Measurement of stress - Most tests were carried out on a 
Clockhouse 10 ton machine (Fig. 2.1) on which the bottom platen is 

raised at a constant speed by a synchro-motor, infinitely variable 

—6 —3 between 7.4 x 10 ins/min and 2. 5 x 10 ins/min, a speed of 
_g 

5 X 10 ins/min being employed. The end load was calculated from the 

deflection of a calibrated provii^ ring. Initially, a dial gauge was used, 

but this was later replaced by a d. c. linear variable differential 

transformer (L. V. D. T.) having a one inch travel. The makers' 

calibration was accepted after checking with a micrometer and digital 

voltmeter. From the respective calibrations of the proving ring and 

L. V. D. T. (Appendix D) the load could be computed from changes in 

the output voltage, since the input voltage was maintained at the 

specified 24V d. c. by a Famell stabilised power source. 

For the 1.5 ins diameter samples it was sometimes necessary to 

use a Denison 300 ton hydraulic test rig, in which case the end load was 

read directly from the control panel dial. 

2.2.1.3. Measurement of strain - Two methods were used: 

(a) Strain gauges - T. M. L . foil type resistance strain gauges, 120jl 

resistance, were bonded to the sample with epoxy resin, and held until 

set by a standard rubber sheath over the sample to ensure contact over 

all the substrate. Two axial gauges were placed diametrically opposite 

one another and connected in series so as to average strains across the 

diameter. Readout was via a Croyden Instruments Cropico Bridge, which 

was manually adjusted to maintain null deflection on the galvanometer. 

Where lateral strain gauges were used for the determination of Poisson's 

ratio, a two-pole two-way switch was tried so that alternate axial and 
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lateral readings could be taken. However, the change in resistance of 
the strain gauge was masked by different contact resistances as the switch 
was thrown, resulting in very erratic readings. An alternative method was 
to monitor each gauge using a half bridge circuit, operational amplifier 
and attenuator, the out-of-balance current being measured using an 
ultra-violet galvanometric recorder, calibrated directly in terms of 
strain. 

(b) Direct current L . V. D. T. - This was arranged to measure the displacement 

between the base of the proving ring and the machine bottom platen. As with 

the stress L. V. D. T. it may be calibrated to read directly in % strain 

(Appendix D). The main advantage of this method of strain measurement 

is that it does not require lengthy preparation and may be readily used 

for confined or unconfined tests. By taking the output from both the 

strain and stress L . V. D. T. s to the X and Y axes respectively of a 

potentiometric plotter, the stress-strain curve is directly and permanently 

displayed. However, possible errors may arise due to strain within the 

machine platens and loading piston. To reduce these effects as far as 

possible, all experiments, both confined and unconfined, were carried out 

using the same platens inside a triaxial cell, thus making the results 

comparable one with another. In most instances, since the material 

tested has a low Young's modulus in comparison with steel, the effect 

was neglected. 

For cr= 10^ Ib/in^ Bock E„ = 5 x 10̂  Ib/in^ 

Steel E = 30 X 10̂  Ib/in^ 
s 
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Taking a sample length, h = 2 ins, and for the steel, h = 3ins, then: 

6 Ah =3x10^/30x10 s 
_3 

= 1 X 10 ins 

Ah =2x10^5x10^ r 

= 4 x lO"^ ins 

thus Ah=Ah +Ah =4. Ix io '^ ins 
s r 

The error in calculating the rock in Young's modulus if the strain 

in the steel is neglected is thus only 2.5%, which was acceptable, for the 

studies undertaken. 

Fairhurst (1961) has shown that due to the stress distribution induced 

in the sample, the strain measured by strain gauges may be up to 10% h^her 

than the strain calculated from the sample shortening. Numerous methods 

have been attempted which combine the benefit of the LV.D. T. gauge with 

measuring the strain over the more uniformly stressed central third of the 

sample (Fairhurst. op. cit., Hobbs, 1967a) but most suffer from the 

disadvantages implicit in the techniques when used under confined conditions, 

as well as a likelihood of damage when the sample fails. 

2.2.1.4. 'End effects' - The sample-platen interface and its effect on the 

measured properties has been the subject of a great deal of research and 

hypotheses, but, as yet, a complete appraisal has not been published. The 

fundamental dissension arises over whether the sample should be free to 

expand laterally or should be constrained at the platens. Mogi (1966) has 

shown that with 2:1 samples end effects were considerable, and suggested 

the use of an epoxy resin fillet into which the lai^e stress concentrations 

could be diverted. 

Under normal testing conditions, the sample faces are ground 

parallel and flat, and are in contact with steel whose lateral expansion 
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is, say, Vsoth of that of the sample. The result is a complex stress 
distribution which may lead to indefinable failure stresses. On some 
stress-strain curves (Fig. 2.2) a 'knee' is apparent, interpreted as 
sample-platen slip under the generated shear stresses. 

Brown & TroUope (1967) have demonstrated both theoretically and 

experimentally that when there are no constraints upon the strains, then 

for a triaxial stress system 

^x^ = o-^-M(o-y + <:̂ 2.) (2.2) 

'^y'='^y-^{cy^+<yi) (2.3) 

cr^^=o; -^(cr +c^) (2.4) 

where = Poisson's ratio and the primes indicate 'effective' stresses 

defined as above by considering the elastic effects of the orthogonal stresses. For 

an unconfined condition with perfect movement along the platen-sample 

interface: 

<3- =<r = 0 
X y 

thus cr = c7- •'• = - \ i ff; (2.5) 
X y " ^ ^ ' 

The negative sign indicates that a tensile intei^ranular stress has 

been generated. If the sample is not free to expand at the interfaces, then a 

stress of -^ai must be generated by friction to prohibit movement. For 

limiting equilibrium: 

^x^/^l = ^ (2,6, 

For many rocks, is not a constant but increases from zero to 

about 0. 2 as the cracks close (Walsh & Brace, 1966). The true interface stress 

should thus be: 

f{))).c^cr (2.7) 
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Movement at the interfe.ce will be initiated when: 

^^/crl ^/ (2.8) 

and for a polished rock-steel junction a value of yUL = 0.2 is probably 

acceptable. The 'knee' in the stress-strain curve is thus attributed to 

this slippage which shows as an increased shortening for a slight change 

in stress as some of the strain energy is transferred from axial to lateral 

storage. 

When the platen-sample surface is perfectly lubricated, the 

unconfined crushing strength is recorded on and 'effective' stress basis. 

However, long before the total stress crushing strength is reached, the 

sample would have failed in 'effective' tension, i. e. when yO^ ̂  S,p. 

When there is a frictional restraint between the sample and platens, the 

'effective' stresses are indeterminable although the vertical mode of 

failure is indicative of a dominant tensile component (Fig. 2. 3). As the 

confining pressure is increased the effective lateral stresses change from 

tensile to compressive. Mohr failure envelopes plotted on a total stress 

basis, show that at low confining stresses, the friction angle is very high. 

However, on an effective stress basis, these high-j3f angles would occur for 

'effective' normal stresses in the tensile region, as would be expected. 

2. 2.1. 5. Summary and conclusions - The compression test as carried 

out in the present work is unsatisfactory on a number of theoretical points: 

(a) The conditions along the platen-sample interface have a great 

effect upon rheological and failure parameters, especially the latter. 

(b) The elastic moduli determined from the test are dependent 

upon the method of measurement. This is mainly due to (a) above, but 

also the strains within the loading system should be allowed for in a 

rigorous analysis. 
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(c) Discontinuities and flaws within the sample, i f critically disposed 
(see 1.2. 3. 2) may result in premature failure ut i l iz i i^ the plane of weakness. 

(d) The stiffness of the testing machine can affect the failure, since, 

when low, enei^y is fed back into the sample as failure is approached, 

accelerating the propagation of rupture. 

Besides the above, there are more mundane, although very real, 

experimental difficulties, for example, voltage stabilization, of measuring 

equipment, mechanical backlash in L. V. D. T. 's, bubbles beneath strain 

gauges, punctured sheaths, and sample face parallelism. 

In conclusion, the compression test requires very diligent 

preparation of the sample and rigorously controlled testing conditions. Whilst 

such requirements may be acceptable in the academic study of rock mechanics, 

it is doubtful i f the care and expense are justifiable in many civil engineering 

circumstances, where an indication of probable en-masse behaviour is wanted. 

2.2.2. Tensile tests on intact samples 

The tensile parameters of a brittle material may be measured by 

either direct or indirect methods. 

2.2.2.1. Direct methods - In these, a tensile stress is applied to the sample, 

and the deflections and failure stress recorded by methods similar to those 

outlined above. Sample preparation and the arrangement for transferring the 

stress are even more important than in the compression test. The simple 

direct pull experiment which has been employed consists of cementing a ^ ins 

diameter, 3 ins long cylindrical sample into push-fit steel sleeve holders. 
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A Hounsfield Tensometer was used, and if the retaining pins are set at 

90° to each other, a small amount of out-of-line can be tolerated (Fig. 2.4). 

Even so, failure is often concentrated near the ends, indicating stress 

concentrations. Dumb-bell shaped samples have been used (Brace, 1964), 

designed to limit stress concentrations to the shoulders and larger diameter 

zones near the platens, and providing uniform stress conditions over the 

central, waisted area. However, sample preparation becomes more 

difficult and the method is limited to relatively intact, homogeneous materisl. 

2.2.2.2. Indirect methods - The most common indirect method is the 

Brazilian test, where a sample disc is compressed diametrically inducing 

tensile stresses perpendicular to the direction of compression (Fig. 2. 5). 

The stress distribution within the disc was computed by Hondros (1959) 

and Fairhurst (1964) showed that loading should be over a strip angle, 

a = tan ^8, to ensure a tensile value representative of the whole sample. 

The tensile stress is calculated from: 

S = 2P (2.9) 
TTDL 

where P = applied load 

D = diameter 

L = length or thickness 

TroUope (1968) shows that i f 'effective' tensile stresses due to Poisson's ratio 

effects are also considered, then the tensile stress generated perpendicular 

to the loading axis may be twice as large as predicted by Hondros (op. cit.) 

The relationship between the tensile strength and other alternative 

measures of rock strength has been investigated by Hobbs (1967b) and he 

demonstrated correlations with compressive strength, irregular lump strength 

and impact strength index. 
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2. 2. 2. 3. Summary and conclusions - The tensile strength of rock is 

inherently difficult to measure. In many instances this uncertainty is 

overcome by a conservative design which treats the rock as a no-tension 

material. However, for a truly economic design, the benefits afforded 

by the tensile strength must be included. Either direct or indirect methods 

may be used, providing adequate care is taken with sample preparation, and 

all the experimental factors are taken into consideration. 

2. 2. 3. Shear strength tests 

The shear s t rei^h of a rock or soil may be obtained from the triaxial 

test. However, i t is sometimes more convenient to carry out tests which 

measure the shear strength and frictional parameters more directly. If the 

Coulomb-Navier failure criterion is assumed operative at low confining 

stresses, then by measuring the shear stress necessary for failure at 

various normal stresses, the C and parameters may be established. The 

soil shear box represented one of the earliest techniques used for soil 

mechanics. After going through a period of disenchantment, it has recently 

returned to favour, especially for the study of long term, ultimate parameters. 

For most tests on intact rock, however, the normal soil shear box is 

insufficient. Specially designed machines are required, but they are costly 

and cumbersome, (Krsmanovic, 1967). A straightforward alternative is the 

double shear test (see for example, Lundborg, 1966), where an axially 

clamped cylindrical specimen is sheared in a special jig (Figs. 2. 6, 2. 7). 

The chief criticism of the test is that the stresses on the failure planes are 

unlikely to be as simple as that assumed in the analysis. Nevertheless, the 

method offers many advantages over the standard triaxial test. It is 

especially useful for separating the frictional and cohesive components, and 
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for studying the change in the former with increasing strain. Sample 

. preparation need not be precise, and in many cases samples with unfinished 

ends have been used, with dolomite powder between the ram and sample. 

The normal pressure was applied by hydraulic jack, and unfortunately 
2 

stresses below 1000 lb/in could not be accurately applied and maintained. 

An alternative method would be to use a j ^ and sample with larger cross-

sectional area, or to construct a jack to work of a standard mercury constant 

pressure unit. 

2. 2. 4. Aggregate tests 

These have been carried out for two reasons: 

(a) the Magnesian Limestone represents an important source of 

roadmaking and concrete aggregates, and 

(b) intact samples are notoriously unrepresentative of the site 

from which they are taken; aggregates however should include rock of various 

grades. By definition, aggregates are formed by mechanical breakdown of 

larger particles, and their strength is ultimately dependent upon a similar 

mechanism. 

2.2.4.1. Comminution theory - Rock fragmentation theory is important in 

the study of drilling, crushing and blasting, but is, as yet, incompletely 

understood. The energy required in comminution is dependent upon the 

resulting increase in surface area. This represents only a small fraction of 

the total energy input, the bulk being dissipated as heat (Cheatham, 1968; Harris 

1966). A number of empirical laws relating to the size distribution of 

particles subject to impact have been devised, the best known being the Rosin-

Rammler: 
n 

R = lOOek (2.10) 
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where R = % particles in a sample larger than size x 

b = an inverse parameter of size 

n = sorting coefficient equal to the slope on Rosin Law 

probability paper 

e = base of natural logs 

This means that the size distribution is heavily skewed towards the 

larger particles. By constructing Rosin Law graph paper (Kittleman, 1964) 

the goodness-of-fit of an aggregate sizing to the Rosin distribution may be 

estimated, since the points wi l l then plot on a straight line. 

2. 2.4.2. Irregular lump crushing strength - This has been employed by a 

number of workers as an alternative method of assessing the strength of rock 

(see, for example, Hobbs 1967b). Unfortunately, the method suffers from 

many drawbacks. The sample size appears to have an effect upon the 

measured strei^th (Attewell, personal communication). Whilst the crushing 

load may be used as a measure of the strength, a more precise figure is 

obtained i f the contact stress is employed. This is most easily calculated by 

interposing carbon paper and graph paper between the sample and platens, 

the contact stress being the load divided by the average contact area. 

Experimentally, difficulties arise in determining exactly the stress at which 

failure occurs, since progressive crushing and consequent increase in contact 

area can result in an increase in load but a drop in contact stress. A minimum 

of twenty lumps should be crushed, and in many cases even this is insufficient to give 

a statistically meaningful result. The tedious counting of contact squares 

coupled with the factors noted above make this test of doubtful value. 
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2.2.4. 3. Aggregate impact test - The equipment and procedure for 
carrying out this test are described in the relevant British Standard dealing 
with mineral aggregates, sands and fillers (British Standards Institution, 1967). 
It was found that the results were very susceptible to non-standard conditions, 
especially with regard to the nature of the base the impacter rests upon. 
Nevertheless, with careful control, close agreement with two other 
laboratories (Durham County Council and Tarmac Roadstone, Stockton) for 
tests using the same aggregate were obtained. The test is only really suitable 
for material with an aggregate impact value (A. I . V.) of less than 40, since 
for various soft materials there is but slight change in the A. I . V. An 
alternative method (Shergold & Hosking, 1963) of using less than 15 blows 
and normalising the result to 15 blows is erroneous, since it is dependent 
upon the number of blows delivered. From a graph of the percentage of fines 
v number of blows (Fig. 2. 8) for a typical aggregate it can be seen that the 
linear portions have relationships of the form: 

F = mNg + Cj, (2.11) 

where F = % fines 

m = gradient (constant) 

N_ = number of blows 

Cjt = intersection on the F axis 

For the relationship proposed by Shergold et. al. to hold, C„ must be 
~ ~ ~ ~ ~ E 

zero, whereas C„ appears to increase as F increases, i . e. as the material F 

becomes softer. 

The aggregate impact test thus offers a rapid method of assessing the 

average strength of the rock from a limited locality. A more detailed knowledge 

of fragmentation mechanics may result in aggregate tests being used for the 

assessment of the failure characteristics of the intact material. 
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2. 2. 5 Other tests 

Standard tests for porosity, specific gravity and permeability were 

carried out on various samples, and the methods employed have already been 

outlined (Section H, 2.4.1.), and are detailed in Ackroyd (1964), and in the 

British Standard on soil testing (British Standards Institution, 1968). 

Various hardness indicators have been used in rock mechanics, for 

example the Shore scleroscope (Obert et. al. 1946), but with a coarse 

grained and often soft material like the Magnesian Limestone, they have 

little useful application. However, when the contact area is increased, a more 

accurate guide may be obtained. This constitutes the basis of the Schmidt rebound 

hammer (Hucka, 1965; Kolek, 1958). It has the advantage of field portability, 

and a large number of readings may be accumulated fairly rapidly. Care must 

be exercised in selecting test reports and it was especially noticeable that 

quarry faces gave significantly lower readings than large blocks on the quarry 

floor, attributed to the tendency for the rock to spall parallel to the face and 

open up fissures, which are accentuated by blasting. With experience, however, 
2 

an estimate accurate to within + 2000 lb/in may be made using only a 

geological hammer and visual examination, and in many cases this would be 

within the 95%confidence limits of the Schmidt hammer. 

2. 3. Results and interpretations 

These wil l be considered in a similar sequence to the above, namely, 

rheological nature, strength parameters of intact material in compression, 

tension and shear, and the behaviour of aggregates. Since the lithology is the 

controlling factor, the relationship with the diagenetic history and the inter­

dependence of parameters wil l be considered. A summary of the main results 

is given in Table 2.1. 
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2. 3.1. Rheological properties 

Measurement of time dependent effects were not carried, and thus 

elastic parameters form the bulk Gf the results. 

The tangent Young's modulus was measured at three points on the 

stress-strain curve (Fig. 2. 9), using purely visual estimates of tangency, 

the values for the initial loading (E ) , highest loading (E ) and highest 
J- iL 

unloading (Eg) being recorded. Adopting the interpretation of Walsh and 

Brace (1966), E^ should represent the intrinsic elastic parameter of the 

minerals. E^ and E^, however, are much more a function of the crack 

concentration. 

As expected, the limestones show a much higher Young's modulus 

6 2 
than the dolomites, with E up to 4.5 x 10 lb/in for a micrite limestone 

6 2 

from Raisby (RAl) and 8 x 10 lb/in for the partially dolomitised limestone 

from Thrislington (TH2). 

The dolomites show a laige variation in E due to crack and voids 

formed either as primary depositional features, for example oolites, or by 

dolomitisation. The pre-diagenetic granular dolomites thus show the highest 
6 2 

Young's modulus, E being generally greater than 1 x 10 lb/in and even up 

6 2 

to 3.2 X 10 lb/in (TRl) under confined conditions. This is attributed to the 

high degree of interlocking between individual dolomite rhombohedra. Where 

dolomitised allochems produce a generally open texture, for example, shell 

debris (FOl) or oolites (HAl, CH2), the E^ values are much reduced to about 

5 2 

5 X 10 lb/in . Post-diagenetic dolomitisation reduces the Young's modulus 

providing it is far enough advanced to produce vughs and cracks, due to the 

volume decrease. These may be subsequently partially or wholly infilled by 
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secondary calcite. fo r this type of rock varies greatly, f rom 2.1 x 10^ 

2 6 2 
lb / in (TH4) to 1. 35 x 10 lb / in (MH5), and is a function of the degree of 

cracking and amount of inf i l l ing. 

For most samples, the inherent variability masks any increase in the 

Young's modulus with confining pressure. 

Poisson's ratio was determined for only two samples ( B L l and HOI), 

and showed an average value of 0.2. In the latter there was evidence of an 

increase f r o m zero to 0. 2, which was sustained until the onset of cracking, 

when the lateral strain rose rapidly, presumably due to the gauge being 

cemented across an incipient fracture. 

The pseudo-plastic component in the rheological nature was estimated 
2 

f r o m the permanent set (% strain) per lb / in (£ ) produced during cyclic loading 
s 

to approximately half the failure stress. From the plot of log 6 v log E_ 
S £i 

(Fig. 2.10) there is a poorly defined negative trend. This is as ejqjected, 

since the amount of peirmanent set induced in a sample is a function of the 

crack concentration, which also largely controls the recorded Young's modulus. 

The elastic and pseudo-plastic parameters thus appear to be controlled 

principally by the crack and/or pore concentration of the rock, which is , in 

turn determined by the depositional environment and subsequent pre-diagenetic 

and post-diagenetic changes. 

2. 3 2 Compressive strength parameters 

The unconfined compressive strengths (S ) show a wide variation f rom 
c 

2 2 580 lb / i n (HAl) to 16,750 lb / in (RAl). It is quite likely that there is a 

sampling bias towards the more intact and therefore stronger material, and 

thus the distribution of values depicted is doubtless optimistic. 
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As with the rheological parameters, the dominant factor is the 

lithology. Where there is l i t t le or no dolomitisation the strengths are 

highest (RAl , TH2). Post-diagenetic dolomitisation (TH4, HOI), however 
2 

greatly reduces the strength to about 5000 lb / in , principally because of the 

formation of vughs and cracks. The strength of pre-di^enetically dolomitised 

material is mainly a function of the absence or presence and nature of the 

allochems. The oolitic material is often so weakly cemented that there is 

no core recovery at a l l during dr i l l ing. Outcrops of this material are rare, 

being limited to quarries and c l i f f sections. Nevertheless, samples of the 

more resistant material have been obtained and tested, and show a variation 
2 2 

of unconfined compressive strength f rom 580 lb / in to 7250 Ib/ in , the latter 
being exceptional. Shelly allochems (FOl) have a similar effect, and for this 

2 
type of lithology an unconfined compressive strength of 1850 lb / in has been 

recorded. Where pre-diagenetically dolomitised material does not contain 

2 
allochems, strengths up to 13980 lb / in (TRl) may be obtained, but i t is 

probable that f o r the majori ty of samples ( T H l , MH9) the crushing strength 

2 
is approximately 5000 lb / in . 

2 
Tr iaxia l tests up to 10,000 lb / in have only been carried out on one 

2 

sample, T H l (Welham, 1969). Confining pressures up to 1400 lb / in 

however, have been employed for a number of samples, but in general, the 

results are unsatisfactory due to large sample variability and end effects. 

The Mohr envelope cannot be constructed f rom the principal stress circles since 

i t is impossible to gauge visually the best f i t tangent. However, i f (3̂  is 

assumed constant over the range of confining pressures used, then a p̂ ^ -

plot and linear regression line may be employed. The cohesion and fr ic t ion 

angle are simply obtained f r o m a and by: 

j3f = sin"-^tan(X (2.12) 

c = a/cos j3f (2.13) 
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Another advantage of this method of assessing results is that an 
improved estimate of the unconfined crushing strength can be made, utilising 
a l l the test points. Thus for ^ constant: 

and substituting f rom above: 

S = 2 a / ( l - t a n « ) (2.15) 
c 

This value may then be used to normalize the data (see later). 

The c-(/( parameters obtained f rom the test appear unreliable because 

the cohesion intercept is so susceptible to small changes in (3f when the latter 

is greater than 50°. Nevertheless, the indications are that the silt grade 

dolomite T H l is much lower in strength than the post-diagenetic calcite-dolomite 

TH2. The post-diagenetic dolomite HOI, however, shows a relatively high 

f r ic t ion angle, but very low cohesion. In fact the latter is less than the 

Brazilian tensile strength, indicating that the cohesion has probably been 

underestiinatedfor the reasons outlined above. 

Despite these difficulties and errors in assessing the compressive 

strength parameters, the underlying influence of lithology and the effects of 

dolomitisation upon the strength may be recognized. 

2. 3. 3. Tensile s t r e r^h parameters 

These generally employed the Brazilian test on solid discs, and unless 

otherwise stated, represent rupture planes perpendicular to the bedding. 

Straight pull tests produce much lower values, and the results of the two 

methods are not comparable. 
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The tensile strengths show a similar variation to the crushing strengths, 
2 

ranging f r o m 361 lb / in for shelly, dolomitised reef limestone (FOl) to 

2 

843 Ib / in for undolomitised limestone (RAl). The relatively smaller range 

is probably due to the existence of micro-flaws in even the most compact 

rock, the effect of which is to drastically reduce the tensile strength. 

2. 3.4. Shear strength parameters 

These may be determined f r o m the tr iaxial test (q. v), or more 

directly f r o m the double shear test. Investigations by Welham (op. c i t . ) 

using sample T H l show a reasonable match between the failure envelopes at 
2 

normal stresses up to 10,000 lb / in , above that, the decrease in exhibited 

in the t r iaxia l test was not apparent in the double shear test, which continued 

to show brittle-type failure. The results of t r iaxial and double shear tests 

on T R l , (Fig. 2.11) show a lower c - 3̂̂  envelope for the latter fo r which 

c = 3096 Ib / in^ , j3f = 38° compared with c = 1559 Ib/ in^ , ^ = 57° for the 

t r iax ia l test. Tests on samples too soft to allow adequate preparation for 

t r iaxia l tests may be undertaken (viz. W I l , OBI). ^ values for these 
2 

materials are very greatly reduced at normal pressures above 2000 lb / in 

to about 25° (Fig. 2.12) which compares closely with the polished value for 

T H l (Welham, op. c i t . ) 

The double shear test and the t r iaxial test do not give closely comparable 

results; the former emphasising cohesion, the latter high fr ic t ion angles as 

being pr imar i ly responsible for strength. Shear box tests on Magnesian 

Limestone aggregate (> 200 and < 7 mesh) show a peak l/p of 45° degrees, and 

an ultimate (̂ ^ of 38° (Turner, 1967), and shear box tests on Carboniferous 

Limestone reveal similar parameters (Edwards, 1969). Drained tr iaxial and 

shear box tests on a Magnesian Limestone waste slurry show fr ict ion angles 
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(3fp of 45° and 0^ of 38° (Wild, 1969). A value of 38° fo r the ultimate fr ict ion 

angle would thus appear to be realistic on the basis of a number of independent 

assessments. The variations in strength between various samples are thus 

due principally to a change in the cohesion, although the fr ict ion angle does 

decrease with increasing normal pressure and decreasing grain size, to about 

25°. Since asperity influence is reduced for very fine grained material or 

polished samples (Byerlee, 1967; Patton, 1966), the ^ value so obtained may 

be close to the intrinsic f r ic t ion angle of the dolomite grains. 

2. 3. 5. Aggregate tests 

Irregular sample crushing tests were carried out on some samples, 

the results being expressed in arbitrary stress units. The test appears to be 

very insensitive to variations in the compressive strength. 

Sample Compressive strength 
(lb/in ) 

Irregular sample 
crushing strength 
(arbitrary units) 

T H l 4123 5. 99 

TH2 8000 7.39 

TH4 2950 5.73 

R A l 12538 6.09 

2. 3. 5 .1 . Aggregate impact test - This was carried out in accordance with 

Br i t i sh Standard Specification BS 812 (op. cit) . For hard material, the 

A. I . V. is expressed as the percentage fines produced by 15 blows, but for 

softer materials this is unsatisfactory. The blow-by-blow breakdown of 

various aggregates was therefore investigated. A comparison between the 

breakdown for hard (RAl) and softer ( T H l , HA2) aggregates (Fig. 2. 8), shows 
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that f o r the former, the breakdown is f a i r l y linear, even up to 15 blows. 
However, the relationship becomes increasingly curved with softer materials. 
The suggested method of Shergold and Hosking (op. cit) for recalculating a 
modified aggregate impact value is therefore unsatisfactory. 

A study of the grading and its change for different numbers of blows 

showed that after an ini t ia l accentuated skewness due to starting with single 

size particles, the subsequent grading closely approximated the Rosin 

distribution (Figs. 2.13, 2.14). The effect of increasing the number of blows 

was to produce more fines, but a similar distribution relationship was maintained. 

Different materials naturally yielded different graphical relationships, but 

they a l l appeared to belong to the same family of curves. Thus a particular 

g rad i i^ attained f r o m 15 blows on M A I , only requires 8 blows on FOl. 

Assuming that there is a constant partition of energy used for 

breaking down the sample, to enei^y ejqpended within the system, the number 

of blows required to produce a particular grading should be proportional to 

certain physical parameters of the material, such as the surface energy, and 

hence the crushing strength. 

Since a l l materials pass through similar gradings for various 

numbers of blows, a particular grading may be defined by only one point. The 

'10% fines' has been chosen since this is already employed in the aggregate 

crushing test, and the 10% fines value is therefore given by the interpolating 

of the number of blows required. 

The standaird aggregate impact values were determined for various 

samples, and showed a marked increase upon dolomitisation. Thus for the 

sequence undolomitised, partially dolomitised and completely dolomitised 

afforded by R A l , TH2, TH4, corresponding A. L V. ' s were 25, 26, 32. As 

the grain size of granular dolomite increases to silt grade, there is a further 
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drop to 35 (THl) . Where allochems are held by a weak dolomitic cement 

(FOl, HAl) the A. I . V: is commonly greater than 40. 

2.4. Inter-relationships 

As has been hinted in the above consideration of results, there are 

often distinct relationships between different measurable parameters. Since 

the most fundamental is the unconfined compressive strength, i t is not 

surprising that many parameters exhibit a linear plot with S as abscissa, 
c 

employing either linear-linear or log-log scales. Where possible, the 

parameters obtained f r o m the same sample are compared. 

2.4.1. Correlations with the unconfined compressive strength - These include 

intrinsic, rheological, strength and aggregate parameters. 

2 .4 .1 .1 . Porosity vSc - This linear-linear plot (Fig. 2.15) exhibits the 

expected decrease in strength with increase in porosity. The linear regression 

line, however, shows a low correlation coefficient and the relationship can 

hardly be described as more than a trend, hi many cases, average points 

were plotted: by dividing the samples into their petrographic units and 

considering each sample tested separately, a closer correlation may be obtainable. 

2 .4.1.2. Young's modulus v Sj. - The value was taken as being most 

characteristic of the material. For a particular sample (e. g. HAl) the 

increase in Young's modulus shows very good linearity with S (Fig. 2.16). 
c 

However, when a l l rock types are plotted, there is a fa r greater scatter 
(Fig. 2.17). In particular, the linear trend exhibited for low compressive 

2 

strengths is not continued for Ŝ  > 10000 lb / in . This is possibly a 

reflection upon the errors inherent in the method of measurement (cf Section 

2. 2 . 1 . 3) which would attain greater proportions as the sample Young's 

modulus increases, tt is interesting to note that the value deduced f rom 
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strain gauge methods for B L l is more in line with the ejcpected trend than 

the corresponding point from L. V. D. T. measurements. The relationship 

for all measurements is given by: 

Eg =264.7 - 1.95 X 10^ (2.16) 

2.4.1. 3. Compressive to tensile strength ratio v S„ - For this particular 
^ c 
graph (Fig. 2.18) only tensile strengths determined by the Brazilian method 

2 
were included. The more competent materials with S > 8000 lb/in show 

c 

a Sg/Srp ratio of approximately 10. The weaker rocks have a considerably 

reduced S^/S-j. ratio, generally 6 or below. 

2.4.1.4. Aggregate strength parameters v Sq - The aggregates used in this 

limited study were often bulk samples taken from quarry stockpiles. For a 

rigorous investigation of this interrelationship the compressive strei^h samples 

should be cored from a block which is then crushed to produce the aggregate for 

comparison. The '10% fines' v Sq relationship appears to be linear (Fig. 2.19), 

compared with the A. I . V. v Sq which is probably exponential or second order 

(F^ . 2 20). Thus as noted before on deductions from comminution theory, the 

'10% fines' value is a better indicator or the relative strengths of rocks than is 

the aggregate impact value. 

2. 5. Normalised parameters 

The linear relationship of most parameters with the unconfined 

compressive strength, enable this value to be used to normalize other measured 

parameters. The ultimate objective of this is that for a given rock type, a range 

of likely values for particular parameters may be considered in a preliminary 

design, without the need for expensive testing. 

Using Hoek's (1968) conclusion (considered in Section 1.2. 2.4) that the 

empirical failure envelope for sandstones may be determined from a plot of 
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log (Pf/Sp) V log((q£ - a)/S(;), the corresponding graph for Permian 

dolomites and limestones is given in Fig. 2 . 2 1 and follows the relationship: 

qf/Sc = 0. 07933 + 0. 7839 (Pf/Sc)^' ^^'^^ (2.17) 

Since an exponent greater than unity is invalid (it would imply 

that the Mohr envelope was convex to the a"̂ ^ axis), a linear relationship must 

be assumed. This enables qf/Sg v pf/S^ to be plotted (Fig. 2 .22) , for which 

the equation is: 

qj/Sg = 0. 8510 Pf/Sg + 0. 0218 (2.18) 

From this, ^ = 58. 5 ° and c/SQ = 0.0416. The average envelope 

for low normal stresses is thus given by: 

T = tan 58. 5 ° + 0. 0416 (2.19) 

The normalised principal stress circles and envelope are shown 

in Fig. 2. 23. 

2 . 6 . Summary and conclusions 

A variety of laboratory tests was carried out on the Magnesian 

Limestone, and the results provide information about the tests themselves, as 

well as furnishing rheological and strei^h parameters for the different 

lithological types. The uniaxial and triaxial compression tests require extremely 

careful sample preparation for the results to be completely meaningful. Since 

economic considerations generally preclude such an approach, the results obtained 

from a greater number of more loosely conducted tests must be correspondingly 

treated on a statistical basis to obtain meaningful parameters. Amongst the 

other methods used for assessing rock strength, the double shear and aggregate 

tests appear to offer the greater potential. 

By treating all the triaxial test results statistically and normalizing 

the parameters with the unconfined compressive strength, a 'grand averse' 
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failure envelope for the Magnesian Limestone may be obtained. The friction 
angle, ^ so deduced, is 58,5°, which is far higher than the friction angles 
recorded during the double shear test, of 38°. This is interpreted as a 
reflection upon the triaxial test itself and the possible 'effective' tensile-type 
failure as postulated by TroUope (op. cit.) 
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CHAPTER 3 
APPLICATIONS 

3.1. Quarrying 

Since quarrying of the Magnesian Limestone represents the second 

largest extractive industry in the east of Co. Durham, various pertinent aspects 

have been investigated. The sites and applications of present-day working 

quarries are given in Fig. 3.1. The majority of quarries work the Lower 

Magnesian Limestone for the construction and/or chemical industries. 

3.1.1. Siting 

The siting of quarries from a technical standpoint is governed 

by the mechanical properties and chemical composition which, combined with 

economic, .and plannir^ considerations, dictate possible localities. 

3.1.1.1. Chemical and strength considerations - These effects are so 

interrelated that they are most conveniently dealt with together. The Magnesian 

Limestone may be considered to consist of combinations of its two end members, 

calcite and dolomite, although most compositions tend to approach either of the 

extremes. Intermediate compositions exist where either of the processes of 

dolomitisation or dedolomitisation are incomplete, and as such represent only 

a small proportion of the total strata. Besides carbonates of calcium and 

m^nesium, calcium sulphate and its relict textures may be identified (Jones, 

1969) and in areas east of the reef and around Teesside the evaporites attain 

economic dimensions. 

The chemical composition is obviously of principal importance to the 

extractors for the chemical industry. However, it does have applications in the 
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construction industry, especially with regard to strength, bitumen adhesion and 
frost susceptibility. Areas of primary limestone are extremely local and 
unpredictable, occurring only in the Lower Magnesian Limestone. They have 
been recorded from Raisby Hi l l , near Coxhoe, and East Thickley, near Shildon, 
although chemical analyses of borehole material often show a high calcite 
content near the base of the Lower Magnesian Limestone from other localities in 
the south of Co. Durham. (Smith & Francis, 1968). Dedolomitised limestones 
occur widely in the Upper Magnesian Limestone, where solution of the underlying 
evaporites has produced sulphate-rich brines which invaded the often collapse 
brecciated dolomites to produce calc-rudites and concretionary limestones. 
Limited dedolomitisation occurs in the Middle Magnesian Limestone, but it 
appears to be lai^ely structurally controlled along fault and fracture lines, for 
instance at Tuthill Quarry near Haswell. At Hawthorn Quarry, calcite-dolomites 
of the reef-top beds are quarried for the steel industry of Teesside. The 
crushing of the rock improves the composition, since the dolomite fraction is 
concentrated in the 'scalpings'. 

Apart from the above, dolomite is ubiquitous, its principal varieties 

being dictated by the nature of any allochems and the time of dolomitisation. 

Some of the country's purest dolomites are quarried at Thrislington Quarry by 

the Steetly Company Limited for refractory purposes. The principal requirements 

here are low iron and silica, and the best horizon is the upper division of the 

Lower Magnesian Limestone, since the detrital material available during the 

initial transgression would have been depleted. At Aycliffe Quarry, Lower 

Magnesian Limestone dolomite is worked for Darlington Chemicals, and at 

Ford Quarry, Sunderland, reef dolomite is quarried for use at Turner and 

Newalls insulation works at Washington. Dolomite is also used in the steel 

industry, and a powder produced at Middridge Quarry is transported to Skinningrove 
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steel works. Some dolomite finds an application in agriculture, although 
increased production of synthetic fertilisers with the additional beneficial 
components has resulted in a reduced demand. 

The strength and suitability of aggregates employed in the construction 

industry are governed by the chemical composition and petrography of the rock. 

Aggregate tests indicate that the calcite rich horizons are superior to the 

dolomites in all respects. Primary limestones of the Permian are dense 

micrites with a low porosity (about 1%), and dedolomitization produces 

recrystallized calc-rudites and concretionary limestones of similar properties. 

On the other hand, dolomites are generally weaker and more porous, due to the 

strong tendency to produce enhedral crystals which lack the high interlocking 

character of calc-sparites and micrites. Nevertheless, some dolomites of 

the Lower Magnesian Limestone have an A. I . V. as low as 30 and may well find 

applications in road construction and as concrete aggregates. 

From a consideration of the above factors and a knowledge of 

the geology, the potential of various areas may be assessed, 

(a) Limestones and hi^h calcite - Primary limestones are limited, as far as is 

known, to the Raisby and East Thickley localities mentioned above. However, 

at other localities in south Durham there may be up to 50ft of calcite rich 

strata near the base. Unfortunately, thick drift , especially east of the A l , 

severely restricts the economic viability of possible sites. In the northern part 

of the county there is no indication of a similar calcite enrichment near the base. 

The lai^est development of limestones formed by dedolomitisation occurs in the 

Upper Magnesian Limestone. The Concretionary Limestone shows varying 

degrees of dedolomitisation, and to the north of the River Wear, large areas 

of calc-rudites occur. South of this, collapse brecciation and subsequent 

dedolomitisation occurs on a more limited scale, with collapse sequences of 

up to 100 yds. occurring intermittently with well bedded dolomites. The reef-top 
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beds are often calcite rich, but their disposition is notoriously difficult to 

predict. Within the Middle Magnesian Limestone lagoonal facies, recrystallized 

limestone occur locally, but their distribution is limited and unpredictable. 

(b) 'Hard' dolomites - These are post-diagenetic dolomites and in some cases 

the dolomitisation is incomplete. They are limited to the basal Lower Magnesian 

Limestone in the south of the county. Whilst having a much higher porosity than 

limestone (about 9%), they nevertheless have strength parameters quite acceptable 

for many purposes (A.L V. » 30, S„ > 8000 Ib/in^), 
c 

(c) Average dolomites - These represent the lai^est proportion of dolomites, 

containing both pre-diagenetic and post-diagenetic types. They have a crushing 

strength of less than 5000 Vo/ix?, porosity of 12-18%, and A. L V. > 34. Whilst 

attaining their largest development in the Lower Magnesian Limestone, they also 

occur widely in the Middle and Upper divisions. At some horizons they are 

remarkably free from impurities, but elsewhere sulphates, calcite, quartz, 

iron and manganese have been noted. 

(d) 'Soft' dolomites - These are restricted, to the Middle Magnesian Limestone, 

although east of the reef, beds of ? Upper Magnesian Limestone exhibit similar 

properties. They are weakly cemented and crumble easily. They often contain 

a high proportion of allochems such as shell debris or oolites, but the algal 

stromatolite horizons are stronger, with properties akin to the average dolomite. 

Boreholes sunk through the Middle Magnesian Limestone frequently show no 

recovery from these 'soft' dolomites, since they are slurried and return with 

the water. 



129. 

3.1.1.2. Blast damage considerations - Recordings of ground vibrations 

from a number of routine blasts in the Magnesian Limestone were made and 

analysed by the author and Wijesinghe, and reported by Wijesinghe (1968). Only 

vertical vibrations were measured, using Dawe and Hall Sears seismometers 

with performances of 120 mV/in/sec and 500 mV/in/sec (r. m. s ) reppectively. 

The signals were fed via calibrated leads to attenuator/matching units, and the 

traces recorded on a Southern Instruments 10 channel U. V. recorder. An 

external trigger allowed remote starting of the chart from a position within 

visual range of the shotfirer. 

From the record (Fi^. 3.2) a travel-time graph can be constructed 

using first arrivals, and hence the surface layer velocity calculated from the 

gradient (Fig. 3. 3). A value of 7850 ft/sec was found for the Magnesian Limestone 

at Thrislington. Amplitude velocity rather than displacement is now taken as 

being the most reliable damage criterion (Langefors and Kihlstrom 1963; 

Attewell and Farmer 1964; Ambraseys and Hendron, 1968) and this can be 

determined directly from the trace amplitude. The empirical propagation 

equation may be ejqpressed as: 

A^ = k ( V D Y (3.1) 
2 

A graph of log A^ v log (w/D ) enables the factors k and n to be 

determined (Fig. 3.4). The attenuation factor has an average value of 

-4 

2 X 10 dB/son at 10 c/s for the Magnesian Limestone, based on blasts monitored 

and this is typical for a sedimentary rock (Attewell and Ramana, 1966). 

The limiting safe working distance of a face from liable property 

may be computed from the attenuation factor, for various charge weights. In 

practice, i t is quite likely that subjective considerations would limit the working 

distance before the safe vibration level was exceeded. 
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3.1 2. Waste disposal 

As with most basically extractive industries, waste disposal 

within the stipulated planning l imits may present difficulties. In many 

quarries, scalpings f r o m the crushers and washers represent an ever 

present problem, and research has recently been directed towards anc-

understanding of the physical nature and properties of the material (Wild, 1969), 

together with a search fo r possible applications. Whilst there is the obvious 

use as a f i l l , frost susceptibility and high air voids when compacted 

prevent its general use as a roadmaking material. A degree of stabilisation 

may be achieved with cement and, less successfully, with sodium silicate, 

but bitumen is ineffective. Ultimately, quarry spoil may be used in the f inal 

backfilling and landscaping of the disused parts of the quarries, but unless 

this can be designed into the quarry operation, the heaps w i l l remain a 

feature for many years. 

3 .1 . 3. Economic considerations 

The high capital investment required in an aggregate quarry can 

generally only be considered i f the reserves of high grade stone are greater 

than 1 mil l ion tons. However, i f the quarry is sited exceptionally close to the 

market, lower tonnages maybe feasible. At present, the main markets are 

Tyneside, Wearside and Teesside, together with the development areas of 

Washington, Peterlee and Newton Aycliffe. With transport costs of 2/6 + 4d. 

per ton mile , the Permian has distinct advantages over the limestones of 

Weardale and Teesdale. However, apart f rom a few exceptions, Magnesian \ 

Limestone aggregates lack the high strength properties of the Carboniferous ! 

Limestones, and require more binder when used in asphalt. It may be that 

improved mix designs could reduce some of the disadvantages, or that 
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Magnesian Limestone could be used where the specifications are not too 
rigorous. 

3.1.4. Quarryir^: summary and conclusions 

The Magnesian Limestone quarries for both chemical and 

constructional purposes appear to have a guaranteed future. With further 

research and experience i t may be possible to utilise lower grade aggregates at 

a reduced cost where some slight decrease in strength is acceptable. I f this is 

the case, there are numerous sites in the Magnesian Limestone which offer 

possibilities. However, the s i t i r^ of new quarries must take due consideration 

beforehand of the problems of possible variations in rock quality, overburden 

thickness, vibration damage, waste disposal and loss of amenity value fo r the 

district . 

3. 2. Slope stability 

The varied nature of the Magnesian Limestone makes analysis 

diff icul t and generalisations necessary. The rock may be treated as being 

basically either a continuum, or else a discontinuum. 

3 .2 .1 . Continuum approach 

In this the inherent property is taken to be the continuous nature 

of the strata, upon which the effects of discontinuities such as bedding and joints 

maybe determined. Pr ior to the advent of large, high speed digital computers, 

continuum mechanics was chiefly studied f rom analogue models employing either 

mechanical; electrical or photoelastic techniques. Contemporary studies are 

chiefly directed towards the finite element method (Zienkiewicz and Cheung, 1967), 

which has the advantage of being able to simulate differing properties within the 

model. Unfortunately, the shortage of time did not permit the development of a 

program for the present study. 
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The effect of discontinuities under biaxial and tr iaxial stress 

conditions has already been covered (1. 2. 3. 2) and the use of the prepared 

stereograms requires only a knowledge of the pertinent stresses. 

A graphical method of stability analysis based on the stereographic 

projection of joint orientation has also been described by John (1968). 

3.2.2. Discontinuum approach 

This considers the discontinuities to be the controlling influence 

on the mechanical behaviour. However, difficulties arise in assigning 

distributions and patterns varying between ordered and random to f i t the 

observed features. Bray (1966) by utilising polar co-ordinates has shown that 

the f r ic t ion angle is controlled by the ordering of the discontinuities. Other 

workers (TroUope, 1968; Hayashi, 1966; Goodman et a l . 1968) have tended to 

concentrate on the square or rectangular 'bu i ld i i^ block', studying the self-weight 

interlocking characteristics. None of these methods have, however, been 

directly applicable to the ME^esian Limestone. 

3.2. 3. Semi-discontinuum approach 

Whilst the methods outlined above treat the rock as either of the 

extremes, this analysis uses features of both techniques. 

Most of the slope stability problems in the Magnesian Limestone 

are concerned with rock falls and long term degradation, rather than large scale, 

catastrophic slides. Since many rock excavations are required to be stable over 

a long period of time, i t w i l l be assumed that drained conditions hold, and the 

cohesion is negligible along failure surfaces. The idealised arrangement (Fig. 3.5) 

therefore consists of a block, size H x t , with one free vertical face, and the 

active earth pressure f r o m the cohesionless material acting on the other face. 

The stable slope angle is thus obtained by analysing limiting equilibrium conditions 

and is given by: 

p> = t a n - l H / t (3.2) 
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From a consideration of the forces parallel to the block base, 
assuming simple Rankine theory and therefore Pa horizontal: 

Pa = F (3. 3.) 

For the active earth pressure, a depth of overburden of 2H 

must be taken, therefore: 

2Ka--H^ = Ht tan gf 

For a cohesionless material: 

Ka = (1-sin (3')/(l+sin (3.4) 

Thus H / t = tan qf (1+sin ^ (3.5) 
2. (1-sin 

By: a s imilar analysis fo r a sloping lower face (Fig 3.6) 

H/t = (tan - t an^) (H sin ^f) (3. 6) 
2 (1 - sin g() 

Failure may also be by overturning, therefore t ak i i ^ moments 

about the lower left hand comer for l imiting condition (horizontal base): 

Pa. 2H/3 = Wt/2 (3. 7) 

Therefore H/ t = 
T 8 ka 

H/ t = 0.6124 / 1 + sin gf (3.8) 
V 1 - sin j3f 

For an inclined lower face, the solution is rather more involved. Defining 

a new symbol: 

M i = 1 + t . 3taniA (3. 9) 
H 2 

then proceeding as above 

H/ t = 0. 6124 / M i . 1 + s i n T (3-10) 
V 1 - sin (3f 

As H and t occur on both sides, a t r i a l and error method of solution is required. 
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Since the Magnesian Limestone is almost universally flat lying, 

only this case wUl be considered numerically. Fig. 3. 7 indicates the stability 

r ^ i m e s against sliding and overturning, and i t w i l l be immediately obvious that 

whilst the former dictates the slope angle for low - ^ conditions, overturning is 

the dominant factor for ^ > 34°. For very long term stability ( i . e. geologically 

significant) the ultimate f r ic t ion angle of 26° would be used, and slopes as low 

as 30° could be expected. For the c iv i l engineering long term requirements, a 

f r ic t ion ai^le of 38° would be applicable, indicating slopes controlled by 

overturning, with a slope angle of 51°. 

3.2.4. Slope stability problems 

There are no records of slope stability problems in the Magnesian 

Limestone, due largely to the low dips throughout the outcrop area. Turner 

(1967) examined an escarpment slope near Houghton-le-Spring, but concluded 

that there were unlikely to be any large scale stability problems within the 

Magnesian Limestone. Indeed the lowest factor of safety occurred fo r circular 

arc type failure through the underlying Basal Permian Sands. 

Since glacial d r i f t masks much of the solid geological features, 

i t is diff icul t to estimate the natural slope angle. However, near Coxhoe an 

escarpment slope which shows signs of landslipping, probably immediately 
j 

post-Pleistocene, has an angle of 25°. Measurements of old quarry face angles 

are variable, being a function of the elapsed time since working, and also the 

rock nature. In the medium soft, granular dolomites, degraded slopes rarely 
exceed 60° , although in some of the more resistant Lower Magnesian Limestone 

o 
horizons, slopes of 70 are common. 
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The angle of repose of quarry waste heaps may be used as an indication 
of the long t e rm stability. Measurements of dry waste in the field and on small 
samples in the laboratory give a value of 50°. 

The coastal c l i f fs represent the largest stability problem in the 

area. The horizons exposed range right through the Permian succession. In many 

places the more durable strata remains as headlands with the adjoining areas 

eroded into bays. In the majori ty of localities, the c l i f f line is currently 

receding and thus the slopes are over steepened. The overlying boulder clay 

becomes washed down into joints and fissures, thus reducing the fr ict ional 

resistance and leading to greater stability problems (Fig. 3. 8) 

In cuttings through the Permian for the A l (M) motorway near 

West Comforth, slopes of 70° were originally constructed in the Lower Magnesian 

Limestone, but this was reduced to 50° in the less competent Middle Magnesian 

Limestone (Figs. 3.9, 3.10). Following the winter, degradation of the 70° 

slopes was apparent, accelerated by frost action along fractures opened by 

blasting during excavation, and these slopes have recently been regraded. 

3.2. 5.Summary and conclusions 

There is no evidence of large scale stability problems in the 

Magnesian Limestone, rock falls constituting the main type of failure. Two 

possibilities therefore exist: 

t., (a) The slope may be angled such that the naturally formed 

blocks bounded by discontinuities are stable. A slope angle of 50° would 

appear to be suitable fo r most horizons. 

(b) The slope may be underdesigned, and any associated 

structures positioned so that the anticipated fal ls do not cause damage. 

The problem of c l i f f stability would generally employ the 

latter method, coupled with action to prevent undercutting. This could be 
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achieved using 'tefrapods' or positioning large resistant rock blocks at,the 

base of the c l i f f , to dissipate the wave enei^y. 

In limited cases, surface treatment with . Guaite or cement 

may help to stabilize a face (for example, Ferryhi l l Cut) but large scale 

grouting would probably be expensive, due to the high grout 'take'. 

3. 3. Foundations 

In general, the Magnesian Limestone does not present any 

foundation problems. The brecciated Upper and the Lower Magnesian Limestones 

2 

are able to support bored piles to the f u l l allowable working stress of 750 lb / in . 

However, diff icul ty has been noted in obtaining a set with H-piles driven into 

the Magnesian Limestone (Taylor, personal communication). In this case the 

strata was oolitic Upper Magnesian Limestone and i t was finally deemed better 

to found in the overlying boulder clay. 

Where settlement is cr i t ica l to the design of a structure, plate 

loading tests would be necessary. Experience f rom Chalk (Ward et a l , 1968), 

shows that the settlements are more limited than predicted by Boussinesq. In 

weak horizons, the long te rm creep effects may be more important than the 

immediate elastic settlements. • 

As with many other characteristics, the type of foundation 

material l ikely to be encountered may be estimated f rom the stratigraphy. Thus 

the Lower Magnesian Limestone having a minimum crushing strength of about 
2 

3000 lb / in • is unlikely to present any problems. The Middle Magnesian 

Limestone, however, with its oolitic lagoonal facies, may be a difficult material, 

and where possible, foundations should be restricted to the boulder clay. In 

behaviour, i t maybe considered a loose, cohesionless sand, ^ = 38°, and 

since leaching has often removed the evaporite cement a considerable strain 
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inay be required to mobilise the f u l l f r ict ional bearing capacity. Sj)read 
foundations thus represent the best solution, and settlements may be limited 
by ground improvement u s i i ^ consolidation grouting or vibroflotation. The 
variable reef facies can give rise to a wide range of foundation characteristics, 
each requiring separate investigation. The Upper Magnesian Limestone is 
generally competent, although some oolitic dolomites near the top of the 
succession show similar properties and hence problems to the Middle Magnesian 
Limestone. 

An added problem in some areas near evaporite sequences is the 

high concentration of dissolved salts i n the groundwater. Where these include 

sulphates, high-alumina cement may be required to offset sulphate attack. 

Properly conducted site investigations by diamond dri l l ing should 

locate any possible problems due to soft cohesionless materials, particularly 

i f the rock quality designation (R.Q.D.) is noted. (Deere, 1968), Estimates 

of settlement can only be made f r o m plate bearing tests i n this type of rock. 

3.4. Summary and conclusions 

Whilst the Magnesian Limestone exhibits a rai^e of properties, 

the type of material liable to be encoimtered at a locality can be estimated 

f r o m the local stratigraphy. This is of particular importance in the quarrying 

industry, but is also helpful in delimiting areas of possibly poor foxmdation 

characteristics. Where the rock is highly fractured and c l o s e d to the 

atmosphere over long periods, i t may be necessary to treat i t as a soil, but 

elsewhere i t ejchibits the beneficial properties of a rock. 
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SECTION IV 
SUMMARY AND CONCLUSIONS 

1.1 . Geology 

(i) The subject of this study, the Magnesian Limestone, shows a 

great variety of lithologfes and engineering properties, even though i t is of 

only l imited areal extent. 

(ii) The succession can best be interpreted with reference to the 

palaeogeography and depositional environment, together with any chemical 

modifications which may have occurred either pre- or post-diagenesis, 

(iii) Structurally the area is relatively simple, consisting essentially 

of a low angle dip toward the east or south-east upon which low amplitude folds 

are superimposedo The largest faults occur in the south of Co. Durham and 

result i n an en-echelon total downthrow of strata to the south of over 2000 f t 

in places. 

1.2. Geohydrology 

(i) The dominant factor, the geology of the area, influences the 

overall groundwater regime in two ways. Firs t ly , variations in lithology 

result i n changes in hydraulic conductivity and hence transmissibility and 

yield; secondly, faults and basement Tiighs' affect the development of the cones of 

depression, and hence the yields. 

(ii) The analytical methods which may be applied are determined 

by the aquifer type and the data available. Results obtained by different 

techniques are not directty comparable on an absolute basis, but may be 

viewed relatively. 
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(iii) In the northern part of the area, the average well permeability 
may be broken down into its constituent parts on the basis of the geological 
information. This enables the following parameters to be determined: 

Horizon Hydraulic conductivity 
(Dupuit-Forchheimer) 
- g.p.d./ft2 

Upper Magnesian Limestone, brecciated 300 

Middle Magnesian Limestone 300 

Lower Magnesian Limestone, except basal unit 110 

Lower Magnesian Limestone, basal unit 40 

Basal Permian Sands 40-120 

(iv) In the south, the dominant aquifer is the oolitic Middle 

Magnesian Limestone, and is generally confined by either drift or marls of the 

Lower Evaporite Group. Some supplies may be obtained from the Upper 

Magnesian Limestone, but yields are xmpredictable, being a function of the 

degree of coUapse brecciation. Because of the complexiiy of barrier effects 

due to faults and basement "highs', direct analysis and extrapolation becomes 

both difficult and dubious. 

(v) Simulation techniques were adopted, since they are theoretically 

valid yet practically applicable to varying parameters. Both digital and analogue 

methods have been employed, the former producing a direct solution, but the 

expense incurred is only justifiable for large schemes where they may be used 

to reduce the tedious calibration necessary for electrical models. Resistance-

capacitance analogues are both simple and cheap, but do require some expertise 

and a considerable amotmt of time. For the horizons studied, the time variant 

was imimportant for the confined conditions since the low storage coefficient 

resiilted in fairly rapid stabilization. 



140. 

(vl) Results from the electrical analogue Indicate that over the 

area modelled, 16m,g.d, are available without depleting resources. However, 

a discharge of 4 m, g. d. in the north-east of the area must be maintained for 

abstraction in the Hartlepool area, leaving a nett 12 m, g. d. If the abstraction 

is only for limited periods, then a certain amount of aquifer dewatering may be 

permissible, resulting in much increased yields. 

1.3. Engineering geology 

(i) The engineering geology, like the geohydrology, is principally 

controlled by the rock lithology, especially the extent and nature of any 

dolomitisation. 

(ii) The probable behaviour of a rock may be readily deduced from 

a knowledge of its rheological and strength parameters. The former may be 

partially described by Young's modulus, determined from either laboratory 

tests on small samples, or large scale field loading tests. The results of 

strength tests may be interpreted by various failure criteria, although Ihere 

is no unique criterion which completely describes all the observed characteristics 

of rocks. For the present study, under brittle low stress conditions, the 

Coulomb-Navier criterion has been used. 

(iii) The Magnesian Limestone is typically highly fractured, the 

influence of discontinuities upon the rheological and strength parameters was 

investigated. In both cases the effect was to reduce the parameters to varying 

degrees, depending upon the size, concentration and disposition of the 

discontinuities. The theoretical aspects of planar discontinuity orientation and 

its role in inducing premature failure was investigated for both biaxial and 

triaxial stress systems, computer programs being written for the latter to 

facilitate plotting and geometrical processes such as rotation of axes. 
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(iv) Laboratory measurements carried out on a representative 

selection of lithologies from various horizons included uniaxial and triaxial 

compression, tensile, double shear and ^gregate tests. The nett result 

was that most parameters showed a correlation with the unconfined compressive 

strength, even though the latter should be treated cautiously on absolute 

stress grounds due to complex stress distributions resulting from sample-

platen interaction. 

(v) By normalizing triaxial test data with the unconfined compressive 

strength a grand average failure envelope could be constructed for the Magnesian 

Limestone, defined by c = 0.0416 Sc , (3̂  = 58.5°. By comparison, the ^ 

values determined from the double shear test were much lower, about 35°, 

but with an increased cohesion. This is interpreted as being due to the 'effective' 

tensile triaxial failure umder low confining pressures. 

(vi) The results of the study of the engineering geology have various 

appUcationSo In the quarrying industry, a knowlec^e of the type of rock likely 

at any locality is Invaluable for estimating reserves and fixing new sites. A 

study of the effects of blast-induced vibrations indicate that damage to property 

is imlikely with the present location of faces and charges used at the quarries 

investigated. 

(vii) Slope stability is not a major problem, most failures being of 

a relatively minor nature and consisting essentially of rockfalls. From 

theoretical considerations, i t can be shown that for a friction angle Hi > 34°, 

degradation is predominantiy by an overturning mechanism, resulting in a slope 

angle of 50° for the Magnesian Limestone. 

(viii) Foundation difficulties are not usually experienced in the 

Magnesian Limestone, except where the evaporite cement has been leached. In 

these cases some form of ground improvement may be necessary by vibroflotation 
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or consolidation grouting, to reduce settlements to within tolerable limits. 
In all site investigations, tests for active sulphate content in the groundwater 
should be carried out. 
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A l . 

A P P E N D I X A 

Data and Analyses of Wells 

Contained in this appendix are the details of the geological 

succession, the rest and pumped water levels, and results of analyses 

by the pertinent methods. 

Since much of the information dates to the time of sinking it may 

be in error today, due to the effects of mining subsidence on ground 

elevations, and -the ground water depletion that has taken place. 

Abbreviations 

B . E . H. F . Below engine-house floor 

B . L . M. L . B a s a l Lower Magnesian Limestone 

B . P . S. Basa l Permian Sands 

C M . Coal Measures 

E . H. F . Engine-house floor 

I . G. S. Institute of Geological Sciences 

H Thickness 

K Hydraulic conductivity 

, K Hydraulic conductivities derived from assuming 
radius of influence (r ) 1,000 ft and 5,000 ft 
respectively. 

L , M. L . Lower Magnesian Limestone 

M. M, L . Middle Magnesian Limestone 

N. R. A. R. Northumbrian River Authorffey,' Report 



A2. 

O. D. Ordnance datum 

R. W. L . Rest water level 

SC Specific capacity 

SCgQ Specific capacity recalculated for 50% 

maximum drawdown 

Tj^, Tg Transmissibi l i t ies for K^ & K^ respectively 

U. M L . Upper Magnesian Limestone 

W. T . P . Wartime Pamphlet No. 19, Anderson, 1941. 



A3. 

Sunderland and South Shields Water Company 

Humbledon Pumping Station 

Grid reference NZ 382552 

Geological succession (from W. T . P . ) 

Thickness (ft) Depth (ft) 

Surface deposits 33 33 

Magnesian Limestone 269 302 

Marl Slate ? 302 

B a s a l Permian Sands 20 322 

Coal Measures 3 325 

E . H . F . 212. 93 ft OD 

Wel l top 199.43 ft OD 

Wel l bottom -20. 07 ft OD 

Wel l 10ft diameter to 233ft B . E . H. F . , then 2, 3 ins diameter boreholes 

42.5ft down from well bottom. 

R. W. L . c i rca 1941 32.5 ft OD 

1966 39. 9 ft OD. 

Analysis of data 

It is unlikely that the boreholes are now effective, due to collapse. 

The Lower Magnesian Limestone is probably about 20ft thick in this area, and 

the well bottom wil l thus be in Middle Magnesian Limestone lagoon-reef facies. 

Steady state Q = 0. 245 m.g .d . hg = 40 ft 

r ^ = 5 ft h ^ = 13. 5ft. 



A4. 

Dupuit-Forcheimer K^̂  = 291. 5 g. p. d. /ft^ 

^1 
= 11659 g. p .d . / f t 

= 380 g.p.d./ft^ 

= 15200 g .p .d . / f t 

Herbert = 205 g. p. d . / f ? 

^1 
= 8200 g .p .d . / f t 

^5 
= 218 g.p.d. /ft^ 

^5 
= 8938 g. p. d. /ft 

Non-steady state 

Specific capacity 

Recovery with water table adjustment. 

K = 244.4 g. p. d /ft^ 

T = 1026 g. p. d. /ft 

In 1966 SC = 9245 g. p. d. /ft at 66. 3% dewatered. 

giving SCgQ = 10371 g. p. d. /ft. 

Hydraulic conductivity models 

Horizon H . K 

M . M . L . 

(ft) (gpd/ft ) 

40 300 

HorizontaLK 
(g. p. d. /ft ) 

300 



A5. 

Fulwel l Pumping Station 

Grid Reference NZ 389606 

Geological succession (from W. T . P . ) 

Thickness (fQ. Depth (ft) 

Surface deposits 73 73 

Magnesian Limestone 52 125 

M a r l Slate 4 129 

B a s a l Permian Sands 163 292 

Coal Measures :;3 295 

E . H . F . 71. 8 ft CD 

Wel l top 55. 29 ft OD 

Wel l bottom -74. 79 ft OD 

Wel l 10ft diameter to 146.6ft B . E . H. F . , then borehole of unknown 

diameter 155 ft down from well bottom. 

Headings 120ft x 6ft x 4ft at 119ft B . E . H. F . 

70ft X 5ft X 4ft at 119ft B . E . H. F . 

235ft X 6ft X 5ft at 141ft B . E . H. F . 

R . W . L . c i rca 1941 -27ft OD 

1967 10ft OD 

Analysis of data 

It i s unlikely that the borehole i s now effective, due to collapse. 

The results obtained by neglecting the headings are of doubtful value. 

Steady state Q = l m . g . d . h =84.8ft. 

r ^ = 5ft h^ = 30. 3 ft 



A6. 

Herbert 

= 268.9 g.p.d. /ft^ 

^1 
= 22802 g .p .d . / f t 

= 350.6 g. p. d. /ft^ 

= 29728g.p.d /ft 

= 275 g. p. d. /ft^ 

= 23320 g. p. d. /ft 

= 290 g.p.d./ft^ 

^5 
= 24621 g .p .d . / f t 

Recovery Non-steady state 

2 

Jacob approximation K = 98.2 g. p. d./ft 

T = 8347 g .p .d . / f t 

Water table adjustment K = 118.8 g. p. d. /ft^ 

T = 10110 g .p .d. / f t 

Specific capacity In 1941, SC = 25500 g. p. d. /ft for 63. 3% dewatered, 

and in 1967, SC = 18348 g. p. d. /ft for 64. 3% dewatered. 

F o r the latter, SC^^ = 20280 g. p. d. /ft. 

Hydraulic conductivity models 

Horizon 
H K H K H K 

(ft) (gpd/ft ) (ft) (gpd/ft ) (ft) (gpd/ft ) 

U . M. L . 

L . M . L . 

64.8 

20 

300 

0 

Horizontal K 229.2 
(g.p.d/ft2) 

64.8 300 

20 40 

238.7 

64.8 300 

20 110 

255.2 



A7. 

Cleadon Pumping Station 

Grid reference NZ 387636 

Geological succession (from W. T . P . ) 

Thickness (ft) 

Surface deposits 

Magnesian Limestone 

B a s a l Permian Sands 

Coal Measures 

14 

314 

49 

2 

Depth (ft) 

14 

328 

377 

379 

E . H . F . 218. 37 ft OD 

Well top 206. 37 ft OD 

Well bottom -49. 83 ft OD 

R . W . L . c i rca 1941 

1966 

7ft OD 

8.4ft OD 

Well 12ft diameter to 268 ft B . E . H. F . , then borehole 36" - 14" diameter 

109ft down from well bottom. 

Analysis of data 

Due to the very high chloride content the well is used only 

intermittently. 

Specific capacity In 1965, SC = 42857 g. p. d. /ft for 24.1% dewatered, 

giving S C _ - = 36544 g. p. d. /ft. 
50 

Hydraulic conductivity model 

Horizon H ^ 9 
(ft) (gpd/ft ) 

U. M. L . 58 300 

Horizontal K 300 
(g.p.d./ft2) 



Ryhope Pumping Station 

Grid reference NZ 404524 

Geological succession (from W. T . P . ) 

A8. 

Thickness (ft) Depth (ft) 

Surface deposits 20 20 

Magnesian Limestone 338 358 

B a s a l Permian Sands 30 388 

Coal Measures 9 397 

E . H . F . 228, 64 ft OD 

Well top 219. 27 ft OD 

Well bottom -22. 94 ft OD 

Well 14ft diameter to 251.6 ft B . E . H. F . , then borehole of unknown 

diameter 136ft down from well bottom. 

R. W. L . c i rca 1940 -5 ft OD 

1966 8. 64 ft OD. 

Analysis of data 

It i s unlikely that the borehole is now effective, due to collapse. 

The high value of permeability obtained in the analysis i s probably due to 

the nearby sea acting as a rechaz^e source, and this i s borne out by the 

high chloride contamination of the pumped water. 

Steady state Q = 0.63 m.g.d. he = 31.64ft 

rw = 7ft 

Dupuft-Forcheimer K^ = 2679 g. p. d. /ft 

h ^ = 25.09ft 

2 

T ^ = 84737 g. p. d. /ft. 



A9. 

Herbert 

Specific capacity 

=430 g.p.d. /ft^ 

T ^ = 13605 g .p .d . / f t 

= 460 g. p. d. /ft^ 
5 

T , = 14559 g .p .d . / f t 
5 

In 1965 SC = 96183 g.p. d. /ft for 20. 7% dewatered. 

giving SCgQ = 80457 g. p. d. /ft. 

Hydraulic conductivity models 

Horizon H K 
(ft) (gpd/ft ) 

? U . M . L . 31.64 300 

HorizontaLK 
(g .p .d . / f t ) 

300 



AlO. 

Dalton Pumping Station 

Grid reference NZ 411469 

Geological succession (from I . G . S. records) 

Main shaft (north plant) 

Thickness (ft) Depth (ft) 

Surface deposits 26.8 26.8 

Magnesian Limestone 442. 3 469.1 

M a r l Slate 2 471.1 

Pilot shaft (south plant) 

Thickness (ft) Depth (ft) 

Surf ace deposits ? ? 

Magnesian Limestone ? 465.9 

M a r l Slate 0.8 466.7 

B a s a l Permian Sands 83.1 549. 8 

Main shaft 

E . H . F . 340. 31ft OD 

Wel l top 325. 56 ft OD 

Wel l bottom -105. 89 ft OD 

Wel l 20ft X 12. 5ft ellipse to 446.2 ft B . E . H. F . then 1 ft diameter borehole 

25ft down from well bottom. 

Pilot shaft 

E . H . F . 348. 3 f t OD 

Well top 338.41 ft OD 

Wel l bottom -98. 7ft OD 

Well 10ft diameter to 447ft B . E . H. F . then 2 boreholes, 12ins and 3ins diameter, 

21ft down from well bottom. 



A l l . 

R. W. L . in main shaft c irca 1940 36ft OD 

1966 48. 3ft OD 

Analysis of data 

Neglecting any effects from the borehole, the main shaft 

penetrates to within 24ft of the base of the Lower Magnesian Limestone. 

Steady state Q = = 1.53 m. g. d. K = 
r = 7.5ft h = 
w w 

Dupuit-
^1 

= 103.7 g. p .d. / f t^ 
Forcheimer 

^1 
= 15977 g .p .d . / f t 

= 137. 9 g. p. d. /ft^ 

= 21232 g .p .d . / f t 

Herbert = 105 g. p. d. /ft^ 

= 16170 g. p. d. /ft 

= 116 g.p.d. / ft^ 

= 17980 g. p. d/ft 

Q = •• 1.75 m. g.d. h =: Q = •• 1.75 m. g.d. 
e 

r = 7. 5 ft h = 
w w 

Dupuit- = 115.7 g.p.d. /ft^ 
Forcheimer 

^1 = 17812 g.p.d. /ft 

= 153. 7 g. p.d. / f t^ 

= 23671 g. p .d . / f t 

Herbert ^1 = 116 g.p.d. /ft^ 

•'l = 18096 g.p.d. /ft 

h' = 129 g. p .d. / f t^ 

^ 5 ' 
= 20253 g.p.d. /ft 

12. 2ft 



A12. 

Specific capacity In 1966: 

f o r Q = 1. 53 m. g. d. SC = 12056 g. p. d. /ft for 82. 3% 
dewatered 

for Q = 1. 75 m. g. d. SC = 12323 g. p. d. /ft for . 92% dewaterec 

Average S C _ - = 16239 g. p. d. /ft 
50 

Hydraulic conductivity models 

Horizon H K H K H K 

(ft) (gpd/ft ) (ft) (gpd/ft ) (ft) (gpd/ft ) 

L . M . L . 154 110 149 110 149 110 

B . L . M . L . 0 - 5 40 5 0 

Horizontal K 110 107.7 106.4 
(g.p.d./ft2) 



A13. 

Seaton Pumping Station 

Grid reference NZ 393489 

Geological succession (from W. T . P . ) 

Thickness (ft) Depth (ft) 

Surface deposits 13 13 

Magnesian Limestone 434 447 

Coal Measures at base 

E . H . F . 427. 66 ft OD 

WeU top 415.15 ft OD 

Wel l bottom -24.09 ft OD 

Wel l 13 ft diameter to 452 ft B . E . H. F . 

R . W . L . 1894 9 7 f t O D 

1934 58 ft OD 

1966 58 ft OD 

Analysis of data 

Since there are no effects from boreholes "or from the Basal 

Permian Sands, the permeability value should be a good representation for the 

Lower Magnesian Limestone. 

Steady state Q = 0.205 m. g. d. h = 82 ft 

r = 6. 5 ft h = 34.1 ft 
w w 

Dupuit- = 59.1 g. p. d. /V? 
Forcheimer 

T^ = 4846 g. p. d. /ft 

K = 78.0 g.p.d. / ft^ 

T^ =6394 g .p .d . / f t 5 



A14. 

Herbert = 66 g. p. d./ft2 

= 3076 g. p. d. /ft 

K_ =70 g.p.d. / ft^ 
5 

T^ = 3690 g .p .d . / f t 
0 

Non-steady state Recovery: 

2 
Jacob approximation K = 29. 7 g. p. d. /ft 

T =1430 g .p .d . / f t 

2 

Water table adjustment K = 40. 9 g. p. d. /ft 

T = 2008 g. p. d. /ft 

Specific capacity In 1966 SC = 4279 g. p. d. /ft for 58.4% dewatered, 

giving SCgQ = 4533 g.p.d. / f t . 

Hydraulic conductivity models 

Horizon H K H K H K 
(ft) (gpd/ft ) (ft) (gpd/ft ) (ft) (gpd/ft ) 

L . M . L . 69 110 59 110 49 110 

B . L . M . L . 13 40 23 40 33 40 

HorizontaLK 
(g.p.d. /ft ) 98.9 90.4 8i :8 

Horizon H K H K H K 

(ft) (gpd/ft ) (ft) (gpd/ft ) (ft) (gpd/ft ) 

L . M . L . 69 110 59 110 49 110 

B. L . M . L . 13 0 23 0 33 0 

HorizontaLK 92.6 79.1 65 7 
( g . p . d . / f t ) 



Stonygate Pumping Station 

A15. 

NZ 354417 

(from W. T. P.) 

Thickness (ft) 

12 

344 

32 

Depth (ft) 

12 

356 

388 

Grid reference 

Geological succession 

Surface deposits 

Magnesian Limestone 

Basal Permian Sands 

E . H . F 365. 72 ft O.D. 

Well top 347.05 ft O. D. 

Well bottom 28. 72 ft OD 

Well 15 ft X 10. 7 ft ellipse to 337 ft B. E . H. F . , then 2, Sins diameter 

boreholes 59ft down from well bottom. 

R.W.L. 1905 129 ftOD 

1931 117 ft OD 

1966 134 ft OD 

Analysis of data 

It is unlikely that the borehole is now effective, due to collapse. 

A value of r^ = 6ft has been used to approximate the elliptical shape. 

Steady state Q =0. 63 m.g.d. 

r =6ft w 

h =105. 3 ft e 

h = 41. 5 ft. 
w 

Dupuit-Forchelmer K̂ ^ = 109. 6 g. p. d. /ft^ 

= 11536 g. p. d. /ft. 

Kg = 144.0 g.p.d./ft^ 

T_ =15165g.p.d/ft 5 



A16. 

Herbert =95 g.p.d./ft 

= 10003 g. p. d./ft 

K = 110 g. p. d. / f ? 

T_ = 11583 g. p. d. /ft 
0 

Specific capacity In 1966 SC = 9874 g. p. d. /ft for 60. 6 dewatered, 

giving SCgQ = 10624 g.p,d/ft. 

Hydraulic conductivity models 

Horizon H 
(ft) 

L . M . L . 105 

B. L . M . L . 0 

Horizontal K 110 
(g.p.d./ft2) 

K K H . 
(g.p.d./ft) (ft) (gpd/ft̂ ) 

H K 

110 103 110 

2 40 

108.7 

(ft) (gpd/ft ) 

103 110 

2 0 

107.9 



A17. 

Thorpe Pumping Station 

Grid reference NZ 427438 

Geological succession (from W. T. P.) 

Thickness (ft). 

Surface deposits 12 

Magnesian Limestone 

Basal Permian Sands 

E . H . F . 

Well top 

Well bottom 

411 

161 

370. 04 ft OD 

359. 75 ft OD 

-103. 96 ft OD 

Depth (ft) 

12 

423 

584 

Well 21 ft X 15 ft ellipse to 306 ft B . E . H. F . then 15ft diameter to 

474 ft B. E . H. F . , with borehole of unknown diameter 38 ft down from 

well bottom. 

R.W. L . 1901 -44 ft OD 

1966 -2 ft OD 

Analysis of data 

It is unlikely that the borehole is now effective, due to collapse. 

Since the saturated zone is penetrated only by the circular cross-section, 

the well radius is 7. 5 ft. 

Steady state Q =0.7 m.g.d. 

r =7. 5 ft w 

=107.1 g.p.d./ft' 

T^ =10926 g.p.d./ft 

= 142. 4 g. p. d. /ft^ 
5 

T_ =14519 g.p.d./ft o 

h =102 ft e 

h =15 ft w 



A18. 

Herbert = 124 g. p. d. /ft^ 

=12648 g.p.d./ft 

=140 g.p.d./ft^ 
0 

T_ = 14420 g. p. d. /ft 
5 

Non-steady state 

Jacob approximation 

Recovery: 

K = 45. 3 g. p. d. /ft^ 

T =4711 g.p.d./ft 
2 

Water table adjustment K = 56.4 g. p. d. /ft 

K = 5922 g.p.d./ft ^ 

Specific capacity In 1966, SC = 8046 g. p. d. /ft for 89.2% dewatered, 

V giving SC^„ = 10891 g. p. d. /ft. 
50 

Hydraulic conductivity models 
Horizon H 

(ft) 
^ 2 (gpd/ft ) 

H 
(ft) 

^ 2 (gpd/ft ) 
H 
(ft) 

^ 2 (gpd/ft ) 

L.M. L . 402 110 32 110 22 110 

B . L . M . L . 20 40 30 40 40 40 

B.P.S. 40 120 40 120 40 120 

Horizontal K 
(g.p.d./ft2) 

100.2 93.3 86.5 

Horizon H 
(ft) ^ 2 (gpd/ft ) 

H 
(ft) ^ 2 (gpd/ft ) 

H 
(ft) ^ 2 (gpd/ft ) 

L .M. L . 42 110 32 110 22 110 

B . L . M . L . 20 0 30 0 40 0 

B.P.S. 40 120 40 120 40 120 

Horizontal K 92.4 81.6 70.8 
(gpd/ft2) 



A19. 

Burden Pumping Station 

Grid reference NZ 372513 

Geological succession (from W. T. P.) 

Thickness (ft) 

Surface deposits 57 

M^nesian Limestone 

Basal Permian Sands 

Coal Measures 

E . H . F . 

Well top 

Well bottom 

366 

34 

10 

462. 9 ft OD 

444. 9 ft OD 

50.4 ft OD 

Depth (ft) 

57 

423 

457 

467 

Well 20ft X 14 ft eUipse to 293 ft B. E . H. F . , then 14ft diameter to 472.07 ft 

B. E H. F . , with a 12ins diameter borehole 27. 33 ft down from the well bottom. 

R.W.L. 1900 115ftOD 

1934 

1966 

72ftOD 

39 ft OD 

Analysis of data 

The lai^e variations in rest water levels render analysis 

doubtful. After the bottom was drawn out, the well was little used between 

1920 and 1957. It was deepened by 40ft and a submersible pump installed in 

1966. 

Specific capacity In 1934 SC = 27450 g. p. d. /ft. 



A20. 

North Dalton Pumpii^ Station 

Grid reference NZ 408478 

Geological succession (from I. G. S. records) 

2 shafts and one borehole, for which the drillers records are identical. 

Thickness (ft) Depth (ft) 

Surface deposits 60 60 

Magnesian Limestone 341 401 

Basal Permian Sands 66 467 

Coal Measures 1.5 468.5 

Well tops 270.44 ft OD 

East borehole top 275. 3 ft OD 

Twin shafts 14 ft diameter, 238 ft deep, with twin boreholes 31 ins - 24 ins 

diameter 221 ft down from each shaft bottom. 

East borehole, 77ft from shafts, 24ins diameter, 468 ft deep. 

A drift joins shafts and borehole at shaft bottom. 

R.W.L. Shafts 1909 33 ft OD 

1940 39 ft OD 

1966 26.ft OD 

Borehole 1906 33. 5 ft OD 

Analysis of data 

The main shafts are 27 ft apart and the east borbhole lies in 

line with them, 50. 5 ft from the nearest. 

Steady stat e Using multiple well methods 

Qi = Q„ = 1.1 m. g. d. h^ = 215 ft 

r̂ j = 64 ft hj, = 114 ft 

r i =13. 5 ft rp =-13. 5 ft 

r^ = 1000 ft 
6 



A21. 

Dupuit-Forcheimer 

Specific capacity 

=99.4 g.p.d./ft" 

=21371 g.p.d./ft 

This is difficult to determine since both shafts are 

pumped simultaneously. 

Hydraulic conducitivity models 

Horizon H 
(ft) 

K 2 
(gpd/ft ) 

H 
(ft) 

K 2 
(gpd/ft ) 

H 
(ft) 

K 2 
(gpd/ft ) 

L . M . L . 132 110 122 110 112 110 

B . L . M.L. 20 40 30 40 40 40 

B.P. S. 63 120 63 120 63 120 

HorizontaLK 
(g.p.d./ft ) 

106.4 103.2 99.9 

Horizon H 
(ft) ^ 2 (gpd/ft ) 

H 
(ft) ^ 2 (gpd/ft ) 

H 
(ft) ^ 2 (gpd/ft ) 

L . M L . 132 110 122 110 112 110 

B . L . M . L . 20 0 30 0 40 0 

B.P. S. 63 120 63 120 63 120 

Horizontal K 102.7 97.6 92.5 
(g.p.d./ft2) 



A22. 

New Winning Pumping Station 

Grid reference NZ 407385 

Geological succession (from W. T. P.) only one section given 

Thickness (ft) Depth (ft) 

Surface deposits 179 179 

Magnesian Limestone 

Basal Permian Sands 

316 

37 

495 

532 entered 

E . H . F . 395.07 ft OD 

No. 1 well 10 ft diameter to 477 ft B. E . H. F . 

No. 2 well 14 ft diameter for 330 ft then remainder 9ft diameter to 503ft B. E . H. F. 

R.W.L. No. 1 well 1924 185 ft OD 

1949 70 ft OD 

Analysis of data 

Each well is generally pumped separately, allowii^ the standing 

well to be used as an observation well at 73 ft distance. 

Steady state 

Dupuit-Forcheimer 

Herbert 

No.l Q = 1.2 m.g.d. h = 151 ft 
6 

r =5ft w 

= 90. 7 g. p. d. /a? 

T^ = 13696 g. p. d. /ft 

=75 g.p.d./ft^ 

Tĵ  = 11325 g. p. d. /ft 

Kg = 87 g.p.d./ft^ 

T_ = 13137 g. p. d. /ft o 

h =22 ft w 



A23. 

Hydraulic conductivity models 

No. 1. 

Horizon H K H K H K 

(ft) (gpd/ft ) (ft) (gpd/ft ) (ft) (gpd/ft̂ ) 

L . M . L . 151 110 141 110 131 110 

B. L . M . L . 0 10 40 20 40 
Horizontal K 110 105.4 100.7 
(g.p.d./ft2) 

Horizon H K H K H K 

(ft) (gpd/ft ) (ft) (SPmi (ft) (gpd/ft̂ )̂ 

L . M . L . 151 110 141 110 

B. L . M . L . 10 0 20 0 
Horizontal K 102.7 94.4 
(g.p.d./ft2) 



A24. 

Herrii^on Pumping Station 

Grid reference NZ 363528 

Geological succession (from W. T. P.) 

Thickness (ft) 

Surface deposits ? 

Magnesian Limestone ? 

Marl Slate 

Basal Permian Sands 

Coal Measures 

8 

7 

19 

E . H . F . 275.17 ft OD 

Depth (ft) 

? 

300 

308 

315 

334 

Well 9 ft diameter to 162 ft B. E . H. F . then 2, 24ins diameter boreholes 

167 ft and 272 ft down from well bottom. 

R.W.L. circa 1940 115 ft OD 

Analysis of data 

Arrangement of well and boreholes makes analysis of doubtful 

value. 



A25. 

Peterlee Pumping Station 

Grid reference NZ 425409 

Geological succession 

Thickness (ft) Depth (ft) 

Surface deposits 164 164 

Magnesian Limestone 338 502 

Marl Slate 1.5 503.5 

Basal Permian Sands 52.5 556 

Coal Measures 4 560 

Borehole top 330 ft OD 

Borehole 33 ins - 24 ins diameter down 560 ft 

R.W.L. 1966 20ftOD 

Analysis of data 

The borehole diameter below the rest water level is 24 ins. 

Steady state Q = 0.49 m.g.d. h^ = 250 ft 

r =lft h =182 ft w w 
2 

Dupuit-Forcheimer K^ = 36. 7 g. p. d. /ft 

T^ = 9170 g. p. d. /ft 

K_ =45.2g.p.d./ft^ 5 

T^ =11307g.p.d./ft o 

Herbert K̂ ^ = 25 g. p. d. / f ? 

T^ =6250 g.p.d./ft 

Kg =26 g.p.d./ft^ 

T_ = 6500 g.p.d./ft 

For Q = 0.7 m.g.d. h^=141ft 



A26. 

Dupuit-Forcheimer = 36.1 g. p. d. /ft'' 

Herbert 

Dupuit Forcheimer 

h = 122 ft w 

Herbert, 

Specific capacity 

For Q = 0.49 m. g. d. 

For Q = 0. 7 m.g.d. 

For Q = 0. 8 m.g.d. 

T^ = 9030 g.p.d./ft 

= 44. 5 g. p. d. /ft^ 

T^ = 11133 g.p.d./ft 

Outside range of graphs 

For Q =0.8 m.g.d. 

= 37. 0 g. p. d. / f ? 

T^ = 9237 g.p.d./ft 

Kg =45. 6 g.p.d./ft^ 

T^ =11388 g.p.d./ft 
0 

Outside range of graphs. 

The yield-drawdown curve is shown in fig 2 •4-. 

SC = 7205 g. p. d. /ft for 27. 2% dewatered. 

SC = 6422 g. p. d /ft for 43. 6% dewatered. 

SC = 6250 g. p. d. /ft for 51.2% dewatered. 

Average SC_- = 6238 g. p. d. /ft. 

Hydraulic conductivity models 

Horizon H ^ 2 H K 2 H K 
(ft) (gpd/ft ) (ft) (gpd/ft ) (ft) (gpd/ft ) 

L .M. L . 153 110 153 110 153 110 

B . L . M. L . 40 0 40 0 40 0 

B.P. S. 53 120 53 40 53 0 

C M . 4 0 4 0 4 0 

HorizontaLK 
(g.p.d./ft ) 

92.8 75.8 67.3 



A27. 

Horizon H 
(ft) ^ 2 

(gpd/ft ) 
H 
(ft) ^ 2 (gpd/ft ) 

H 
(ft) 

K 2 
(gpd/ft ) 

L .M. L . 113 110 63 110 0 

B . L . M. L . 80 40 130 40 193 40 

B.P. S. 53 40 53 40 53 40 

C M . 4 0 4.- 0 4 0 

Horizontal K 
(g.p.d./ft2) 

71 57 39.4 



A28. 

Mill Hill Borehole 

Grid reference NZ 412425 

Geological succession (a comprehensive section is given in Smith & Francis, 
op. cit.) 

Surface deposits 

Magnesian Limestone 

Marl Slate 

Basal Permian Sands 

Coal Measures 

Borehole top 

Thickness (ft) 

34 

481 

2 

120 

Depth (ft) 

34 

515 

517 

637 

640 

510 ft OD 

Borehole 30 ins - 15 ins diameter, 640 ft deep. 

R.W.L. 1962 on drilling 64 ft OD 

1966 recovered to 33. 5 ft OD 

Analysis of data 

Average radius below rest water level is 12 ins. 

Steady state 

Dupuit-Forcheimer 

Q =0.61 m.g.d. h =166.5 ft e 

h^ = 115. 5 ft 

Herbert 

Specific capacity 

r =1 ft w 

K^ = 93. 3 g. p. d. /ft^ 

T^ = 15530 g. p. d. /ft 

K^ =115.0 g.p.d./ft^ 

Tg = 19148 g.p.d./ft 

K^ = 120 g. p. d. /ft^ 

T^ = 19980 g.p.d./ft 

K_ = 123 g. p. d. /ft^ o 

T^ =20479 g.p.d./ft 
0 

SC = 11960 for 30,6% dewatered, giving SC = 10589 
g.p.d./ft. 



A29. 

Hydraulic conductivity models 

Horizon H K H K H K 
(ft) -(gpd/ft ) (ft) (gpd/ft ) (ft) (gpd/ft ) 

L . M. L . 22 110 12 110 2 110 

B . L . M. L . 20 40 30 40 40 40 

B.P.S . 120 120 120 120 120 120 

C M . 5 0 5 0 5 0 

Horizontal K 
(g.p.d./ft2) 

105.5 101.3 97.1 

Horizon H 
(ft) 

K 2 
(gpd/ft̂ ) 

H 
(ft) ^ 2 

(gpd/ft ) 
H 
(ft) (gpd/ft' 

L .M. L . 22 110 12 110 2 110 

B . L . M . L . 20 0 30 0 40 0 

B. P. S. 120 120 120 120 120 120 

C M . 5 0 5 0 5 0 

Horizontal K 100.7 94.1 87.5 
(g.p.d./ft2) 



A30. 

Hartlepools Water Company 

Lancaster Road 

Grid reference NZ 508334 

Geological succession Disused Upper Magnesian Limestone quarry. 

14 boreholes of varying lengths and diameters discharging into central adit. 

Ground level 30 ft OD 

R. W. L . up to 1949 2 ft OD artesian 

1966 -11 ft OD 

Analysis of data 

Complexity of boreholes and pumping makes analysis impossible. 

Specific capacity In 1966 drawdown 20 ft - 30 ft at Q = 1.08 m. g. d. 

giving an approximate value SC = 45000 g. p. d. /ft. 

A 



A31. 

Howbeck Pumping Station 

Grid reference NZ 500343 

Geological succession No. 1 b. h. 

Thickness (ft) Depth (ft) 

Surface deposits 37 37 

Magnesian Limestone 297 334 

Ground level 37 ft OD 

2, 21 ins diameter boreholes at 20 ft centres, pumped one at a time. 

R.W.L. 1941 6 f tOD 

1965 -1 ft OD 

Analysis of data 

The aquifer may be marginally confined by drift at this locality, 

the thickness of which varies from 37 ft to 57 f t for the various boreholes at the 

site. 



A32. 

Dalton Piercy Pumping Station 

Grid reference 

Geological succession, 7 boreholes 

Thickness (ft) Depth (ft) 

No. 1 Surface deposits 215 215 

Magnesian Lime- 85 300 
stone 

No. 2 Surface deposits 126 126 

Magnesian Lime- 174 300 
stone 

No. 3 Surface deposits 124.5 124.5 

Magnesian Lime- 195.5 320 
stone 

No. 4 Surface deposits 124 124 

Magnesian Lime- 197 321 
stone 

No. 5 Surface deposits 124.5 124.5 

Magnesian Lime- 226 350.5 
stone 

No. 6 Surface deposits 132 132 

Magnesian Lime- 296 428 
stone 

No. 7 Surface deposits 170 170 

Magnesian Lime- 280 450 
stone 

Ground level 216 f t OD 

R.W.L. average -21 f t OD 



A33. 

Analysis of results 

At present, 4 boreholes are extracting up to 5.5 m. g. d. at rates 

depending upon demand. The interaction between holes and the varyii^ pumping 

rates makes detailed analysis impossible. The aquifer is unconfined over the 

site area. 

Specific capacity At a total pumping rate of 5.5 m. g. d. the average 

drawdown is 30 ft giving an approximate value of 

SO = 1830000 g. p. d. / f t . 



A34. 

Coal Lane 

Grid reference NZ 431328 

Geological succession (from L G. S. records) 

Thickness (ft) 

No. 1 Surface deposits 125 

Middle Magnesian 298.5 
Limestone 

Lower Magnesian 76.5 
Limestone 

No. 2 Surface deposits 103 

Middle Magnesian 302 
Limestone 

Lower Magnesian 45 
Limestone 

Ground level No. 1 340 ft OD No. 2 340 ft OD. 

Boreholes 18 ins diameter at 20 ft centres 

R.W. L. 35 ft OD 

Analysis of data 

Both wells are generally pumped simultaneously. 

Steady state No. 2. Q = l . l . m . g . d . 

r =0.75 ft w 

Dupuit-Forcheimer = 297.1 g. p. d. /f t ' ' 

Depth (ft) 

125 

423.5 

500 

103 

405 

450 

h =145 ft e 

h = 112 ft w 

Specific capacity 

= 43080 g. p. d. / f t 

K = 363 g. p. d. / f t ^ 
0 

T_ = 52716 g. p. d. / f t 5 

SC = 33333 g. p. d. / f t for 22.8% dewatered. 

SC,^ = 29205 g. p. d. / f t . oO 
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Hydraulic conductivity models 
Horizon H K 

M . M . L . 100 300 

L. M. L. 45 110 

Horizontal K 241.0 
(g.p.d/ft^) 



A36. 

Naisberry Pumping Station 

Grid reference NZ 467337 

Geological succession (from I . G. S. records) 

Thickness (ft) Depth (ft) 

No. 1 Surface deposits 30 30 

? Upper Magnesian ^ 0 ?60 
Limestone 

Middle Magnesian 387 447 
Limestone 

Lower Magnesian 53 500 
Limestone 

No. 2 Bore, 40 yd NW of No. 1 was sunk to 550 f t without penetrating 
Marl Slate. 

E.H.F. 385.1 f t OD 

Borehole top 381. 72 f t OD 

R.W.L. 5 .7f tOD 

8.0 f t OD when drilled (1953). 

Analysis of data 

Both boreholes are generally pumped simultaneously 

Steady state Data for when only No. 1 abstracting. 

Q=0.44m.g.d. h = 125 f t 
6 

r = 0. 75 f t h = 115 f t w w 
2 

Dupuit-Forcheimer K̂ ^ = 420. 0 g. p. d. / f t 

T^ = 52494 g. p. d. / f t 

K =513.9g.p.d./ft^ o 

T, = 64236 g. p. d. / f t 5 



For Q = 0. 538 m.g.d. h = 111 ft w 

Dupuit-F orcheimer = 373. 0 

T^ = 46624 

=456.4 
5 

T, = 57053 5 

For Q =0.605 m.g.d. h =109 ft w 

Dupuit-Forcheimer = 527.1 

T^ = 65893 

= 645.1 
5 

T_ = 80631 5 

For Q = 0.48 m.g.d. h = 114 ft w 

Dupuit-Forcheimer = 418.2 

T^ = 52279 

= 511. 8 
5 

T , = 63972 5 

For Q =0.72 m.g.d. h =95 ft w 

Dupuit-F orcheimer = 249.9 

T^ = 31237 

K = 305.8 5 

T, = 38223 5 

For Q = 0.868 m.g.d. h =85 ft w 

Dupuit-Forcheimer = 236. 7 

T^ = 29588 

Kg = 289. 6 

T_ = 36206 5 

Average K̂ ^ = 370. 8 g. p. d. / f t 

A37. 



A38. 

Specific capacity The specific capacities for the various pumping rates are: 

Q = 0.44 m. g. d. SO = 44000 g. p. d. / f t for 8. 7% dewatered SC^̂  = 34500 gpd/f 

Q = 0. 538 m. g. d. SC = 38429 g. p. d/ft for 12.1% dewatered SC^̂  = 30674 gpd/f 

Q = 0. 605 m. g. d. SC = 37813 g. p. d. / f t for 13. 8% dewatered SC^̂  = 30461 gpd/ 

Q = 0.48 m. g. d. SC = 43636 g. p. d/ft for 9. 5% dewatered SC^̂  = 34359 gpd/i 

Q = 0. 72 m. g. d. SC = 34286 g. p. d/ft for 18.1% dewatered SC^̂  = 28273 gpd/f 

Q = 0. 868 m. g. d. SC = 2800 g. p. d/ft for 26. 7% dewatered SCĝ  = 24234 gpd/ft 

Average SC^„ = 30417 g. p. d. / f t 

Hydraulic conductivity models 

Horizon H K 

M. M. L . 72 300 

L . M . L . 53 110 

Horizontal K 219.4 
(g.p.d./ft2) 



A39. 

Amerston Hall 

Grid reference NZ 426304 

Geological succession 

Surface deposits 

Red Marl 

Magnesian Limestone 

Ground Level 246 f t OD 

Thickness (ft) 

227 

60 

213 

R.W. L. 1965̂  50 ft OD 

Depth (ft) 

227 

287 

500 

Analysis of data 

The Magnesian Limestone aquifer is confined by the Upper 

Permian Marls, and has an artesian head of 91 ft. 



A40. 

Butterwick 

Grid reference 

Geological succession 

NZ 378298 

Thickness (ft) 

Surface deposits 89 

Magnesian Limestone 261 

Marl Slate 

Ground level 310 ft OD 

Borehole 15 ins - 12 ins diameter to 350 ft 

Depth (ft) 

89 

350 

350+ 

R.W.L. 1966 82ft OD 

Analysis of data 

The groundwater level in this area has been lowered by about 

150 ft since the mid 1930's, due to pumping at the nearby Fishbum Colliery. 

Steady state 

Dupuit-Forcheimer 

Herbert 

Non-steady state 

Jacob approximation 

Q = 0. 341 m, g. d. 

r =0.5 ft w 

=61.1 g.p.d./ft^ 

T^ =7334 g.p.d./f t 

K =74.1g.p.d./ft^ 
5 

T , = 8888 g. p. d. / f t 

=46 g.p.d./ft^ 

T^ = 5520 g.p.d./f t 

Recovery 

K = 20.4 g. p. d. / f t ^ 

T = 2448 g. p. d. / f t 

h =120 ft e 

h = 30 ft w 



A41. 

Specific capacity SC = 3786 g. p. d. / f t for 75% dewatered, giving 

SC^̂  =4543 g.p.d./ft . 50 

Hydraulic conductivity models 

Horizon H K H K H K 

.(ft) (gpd/ft'^) (ft) (gpd/ft^) (ft) (gpd/ft ) 

L . M . L . 100 110 90 110 80 110 

B. L . M . L . 20 40 30 40 40 40 
Horizontal K 98.3 92.5 86.7 

(g.p.d./ft2) 

Horizon H K ' H K H K 

(ft) (gpd/ft ) (ft) (gpd/ft ) (ft) (gpd/ft^) 

L . M . L . 100 110 90 110 80 110 

B. L . M . L . 20 0 30 0 40 0 
Horizontal K 91.7 92.5 73.3 
(g.p.-d/ft2) 



A42. 

Northumbrian River Authority; south-east Durham groundwater investigation 

In this scheme, boreholes and observation wells were drilled by 

Tees Valley and Cleveland Water Board, Imperial Chemical Industries, and 

the Northumbrian River Authority, the latter processing most of the data 

(Northumbrian River Authority Report, 1969). The following results have 

been abstracted from this. 



Borehole C 

A43. 

Grid reference 

Geological succession 

Surface deposits 

NZ 337216 

Thickness (ft) 

179 

Middle Magnesian Limestone 74 

itower Magnesian Limestone 9 

Borehole 13 ins diameter reducing to 10 ins diameter 

R.W.L. 180. 46 ft OD 

Non-steady state analysis From N. R. A. R., table 7 

Plane Method T K 

Depth (ft) 

179 

253 

262 

C-Gt. Stainton 

C-17 

C-G 

C-19 

C-R 

Jacob 

Jacob 

Theis 

Jacob 

Theis 

Jacob 

Theis 

Theis 

Theis 

(gpd/ft) 

26000 

28427 

21774 

15194 

24193 

20352 

25480 

1263 

44637 

(gpd/ft^) (xlO ̂ ) 

351.4 

379.0 

286.5 

197.3 

310.2 

257.6 

318.5 

15.6 

544.4 

0.98 

2. 3 

1.7 

1.6 

0.2 

5.5 

0.15 

3.4 

SC 
(gpd/ft) 

25200 



A44. 

Borehole D 

Grid reference 

Geological succession 

NZ 294263 

Surface deposits 

Middle Magnesian Limestone 

Lower Magnesian Limestone 

Thickness (ft) 

110 

52 

23 

Borehole diameter 13 ins reducing to 10 ins. 

R.W.L. 229. 91 f t OD 

Non-steady state analysis 

Plane Method 

From N.R.A.R., table 7. 

D 

D-7 

Jacob 

Theis 

T 

(gpd/ft) 

35800 

31908 

K S 
(gpd/ft^) (xio"*) 

688.5 

602.0 

Depth (ft) 

110 

162 

185 

SC 

(gpd/ft) 

26880 
0.3 



A45. 

Borehole E 

Grid reference 

Geological succession 

NZ 323275 

Surface deposits 

Middle Magnesian Limestone 

Lower Magnesian Limestone 

Thickness (ft) 

124 

105.5 

5.5 

Depth (ft) 

124 

229.5 

234 

Borehole diameter 13 ins reducing to 10 ins. 

R.W.L. 202. 21 f t OD 

Non-steady state analysis 

Plane Method 

From N.R.A.R., table 7. 

Pre-acidisation 

E 

E-13 

Post-acidisation 

E 

E-13 

E-9 

Jacob 

Jacob 

Theis 

Jacob 

Theis 

Theis 

T 
(gpd/ft) 

4550 

(gpd/ft ) (xlO ̂ ) 

43.1 

22494 213.0 

13771 

7350 

7841 

130.3 

69.5 

74.0 

1.7 

1.7 

47768? 450.6 

1.1 

13? 

SC 
(gpd/ft) 

5856 

7632 
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Borehole G 

Grid reference NZ 313207 

Geological succession 

Surface deposits 

Upper Magnesian Limestone 

Lower Evaporite Group 

Thickness (ft) 

162 

65 

21 

Middle Magnesian Limestone 69 

Lower Magnesian Limestone 1 

Borehole diameter 13 ins reducing to 10 ins reducing to 8 ins. 

R W.L. 191. 34 ft OD 

Depth (ft) 

162 

227 

248 

317 

Non-steady state analysis 

Plane Method 

G 

G-19 

G-Gt. Stainton 

G-17 

G-18 

Jacob 

Jacob 

Theis 

Theis 

Theis 

Theis 

From N. R. A. R., table 7. 

T K S 
(gpd/ft) (gpd/ft ) (xlO ) 

18458 267.5 

33807 483.0 12 

40081 564.5 13 

28193 391.6 0.34 

9517 130.4 0.74 

48098 650.0 0.86 

SC 

(gpd/ft) 

31920 



A47. 

Borehole J 

Grid reference 

Geological succession 

NZ 315227 

Surface deposits 

Middle Magnesian Limestone 

Lower Magnesian Limestone 

Borehole 13 ins reducing to 10 ins. 

R . W . L . 213. 96 f t OD 

Non-steady state analysis 

Plane Method 

Thickness (ft) 

187 

59 

11 

Depth (ft) 

187 

246 

255 

From N . R . A . R . , table 7. 

J 

J-10 

J-18 

Jacob 

Theis 

Theis 

T 

(gpd/ft) 

12600 

5386 

13465 

^ 2 S -4 (gpd/ft ) (xlO ) 

213.6 

89.8 

220.7 

0.5 

36 

SC 
(gpd/ft) 

10560 



Borehole K 

Grid reference NZ 338265 

Geological succession 

A48. 

Surface deposits 

Thickness (ft) 

219 

Depth (ft) 

219 

Middle Magnesian Limestone 92 311 

Transitional Beds 6 317 

Lower Magnesian Limestone 56 373 

Borehole diameter 13 ins reducing to 10 ins. 

R.W. L . 135. 38 f t OD 

Non-steady state a nalysis From N E . A . R . , table 7. 

Plane Method T 
(gpd/ft) ^ 2 

(gpd/ft ) S-4 (xlO ) 
SC 

(gpd/ft) 

K Jacob 3986 43.3 6384 

K-11 Jacob 6165 66. 3 1.9 

Theis 5213 55.5 2.5 

K - L Jacob 17109 180.1 3.5 

Theis 17711 184.5 5.4 

K-O Theis 8158 84.1 2.2 



A49. 

Borehole L 

Grid reference 

Geological succession 

NZ 359277 

Surface deposits 

Upper Magnesian Limestone 

Lower Evaporite Group 

Middle Magnesian Limestone 

Lower Magnesian Limestone 

Borehole 10 ins reducing to 8 ins 

E . W . L . 91. 80 f t OD 

Non-steady state analysis 

Plane 

L 

L-20 

L-25 

L-21 

L - K 

L-12 

L-11 

L - M 

Method 

Jacob 

Jacob 

Jacob 

Jacob 

Jacob 

Jacob 

Jacob 

Jacob 

Thickness (ft) 

259.5 

69 

61.5 

124 

14 

Depth (ft) 

259.5 

328.5 

390 

514 

528 

From N. R. A. R. , table 7. 

T 

(gpd/ft) 

12800 

20492 

11557 

15234 

2268 

11550 

1892 

3164 

^ 2 S -4 
(gpd/ft ) (xlO ) 

103.2 

163.9 0.8 

91.7 0.7 

120.0 0.8 

17.7 0.4 

89. 5 2.1 

14.6 0.4 

24.2 0.7 

SC 
(gpd/ft) 

11880 



A50. 

Borehole N 

Grid reference NZ 344267 

Geological succession 

Thickness (ft) Dejrth (ft) 

Surface deposits 243 243 

Middle Magnesian Limestone 101 344 

Lower Magnesian Limestone 6 350 

Borehole diameter 10 ins reducing to 9 ins, reducing to 8 ins. 

R.W. L . 179. 06 f t OD 

Non- steady state analysis From N.R .A.R . , table 7. 

Plane Method T 
(gpd/ft) 

^ 2 
(gpd/ft ) 

S 
(xio" 

N Jacob 9409 93.2 

N-11 Theis 7648 75.0 4.2 

Jacob 13856 134.5 2.6 

N-13 Theis 12992 124.9 2.7 

Jacob 19689 187.5 1.5 

N=0 Theis 11770 111.0 0.9 

Jacob 19085 178.4 0.6 

N-22 Theis 10543 97.6 2.0 

Jacob 15867 145.6 0.6 

SC 

(gpd/ft) 

15768 



A51. 

Borehole 0 

Grid reference 

Geological succession 

NZ 340254 

Surface deposits 

Middle Magnesian Limestone 

Lower Magnesian Limestone 

M a r l Slate 

Carboniferous 

Thickness (ft) 

223 

42.5 

62 

17.4 

4 

Depth (ft) 

223 

265.5 

327.5 

344.9 

348.9 

Borehole diameter 10 ins reducing to 8 ins. 

R . W . L . 192.0 f t OD 

Non-steady state analysis 

Plane Method 

From N.R. A.R, table 7. 

O 

0-13 

0-23 

0-22 

Jacob 

Theis 

Jacob 

Theis 

Jacob 

Theis 

Jacob 

T 

(gpd/ft) 

7707 

7601 

14300 

2143 

12819 

6286 

5850 

^ 2 S -4 (gpd/ft ) (XlO ) 

181.3 

178 

334.9 

50.1 

298.8 

146.2 

135.7 

6.6 

0.8 

0.6 

0.8 

1.3 

0.5 

SC 
(gpd/ft) 

6912 



A52. 

Borehole R 

Grid reference NZ 329206 

Geological succession 

Surface deposits 

Upper M^nesian Limestone 

Lower Evaporite Group 

Middle Magnesian Limestone 

Lower Magnesian Limestone 

Borehole diameter 10 ins reducing to 8 ins 

R W. L . 170. 00 ft OD 

Thickness (ft) 

201 

35 

108 

61 

34.4 

Depth (ft) 

201 

236 

344 

405 

349.4 

Non-steady state analysis 

Plane Method 

From N . R . A . R . , table 7. 

^ ^ ' 2 ^ - 4 (gpd/ft) (gpd/ft ) (XlO ) 

R Jacob 8850 145.1 

SC 

(gpd/ft) 

19560 



B l . 

APPENDIX B 

AQUIFER SIMULATION: DIGITAL SOLUTION 

B l . Logic 

This has already been outlined in Section n 3 .2 .4 .1 . 

B2. Deck setup 

A l l input data is free format, using columns 1-80. There are 

basically two options, namely, potential determination and transmissibility 

determination. 

B 2 . 1 . Potential determination - In this, the boundary conditions and a l l 

the transmissibility values are known (see Fig. 3.4 for numbering sequence). 

Input order 

(B) 

(A) 

NCOD O 

COL No. of columns of nodes 

ROW No. of rows of nodes 

A Mesh length in feet 

NB No. of boundary nodes at which the potential is 

known, otherwise assumed impermeable. 

NTFX 0 (Dummy) 

TOL Solution tolerance, say 0. 5 f t . 

F 2 (Dummy) 

NIT Maximum no. of iterations in Gauss-Siedel 

solution, say 50. 

NNO(I) Boundary potential pairs, of node number 

HBOUND(I) and potential: NB pairs 

T{J) Transmissibility values, total number given by 

(2 X COL X ROW) - COL - ROW. 

NQR No. of nodes at which flow is known. I f NQR = 0 then 



B2. 

omit following input in square brackets. 

NNQ Node number and rate of flow pairs, 

QVAL (+ recharge, - abstraction). 

RW Well radius, ft. Only one value can be accommodated 

after a l l flow pairs input. Dummy required i f recharge 

flow only. 

NUM 0 No transmissibility listings, or 

1 Fu l l array, averaged array, 

1 and element listing. 

NDIR 0 Terminate, or 

1 Go to new pumping conditions (A), or 

3 Go to start and accept new input data, (B, C). 

B. 2.2. Transmissibility determination - In this, the boundary conditions 

and the potential distribution is known. However, the solution for transmissibility 

is not unique (cf 3.2.4). 

Input order. 

(C) NCOD 

COL 

ROW 

A 

NB 

NTFX 

TOL 

F 

NTT 

No. of columns of nodes 

No. of rows of nodes. 

Mesh length, feet. 

No. of boundary nodes at which the potential is known, 

otherwise assumed impermeable. 

No. of transmissibility elements of known value. 

Solution tolerance, say 0.5 ft. 

Adjustment factor, 2. 

Maximum no. of iterations in Gauss-Siedel solution, 

say 50. The maximum no. of transmissibility iterations 

is then set at NIT/10. 



B3. 

C NNO(I) Boundary potential pairs of node 

HBOUN(I) numbers and potential: NB pairs. 

HR ( I , J) Reference potentials: COL x ROW total. 

{ NETF(I) Known transmissibilities, element number 

TP(I) and value pairs. Omit i f NTFX = 0. 

NQR No. of nodes at which flow is known. 

If NQR = 0 then omit following input in square brackets. 

NNQ Node number and rate of flow pairs, 

QVAL (+ recharge, - abstraction). 

RW Well radius, f t . Only one value can be accommodated 

after a l l flow pairs input. Dummy required i f recharge 

flow only, 

NUM 1 Transmissibility element array, and average 

transmissibility around each node, printed. 

0 No listing of elements, or 

1 Complete element l i s t i t ^ . 

NDIR 0 Terminate, or 

1 Go to new pumping conditions, i . e. potential 

determination using calculated transmissibility values, (A), 

3 Go to start and accept new input data, (B, C). 
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o c 1 = 2 r e K'^A fiY 2 ; 
Ulj J = 2 TU ,\:C2 BY 2 ; 
, \ ; E L l K a ) = ^ L T ( 
i V . ' ' - L ( K , 2 ) = . \ . : T { I - 1 , . J ) 
. ^ !EL ( :< ,3 )=- \ ' cT( I , J - 1 ) 
N E L { K , 4 ) = „ E T ( I + l , j ) 
K = K + l ; 
:-N'D; 

F l \ C | 
F^EE ^ 6 T ; 

LJC 1 = 1 T L M'.; 
GL-T L I S T ( I ) ,HdLIL.\ '( I ) ) ; 
l - ( i \ r sC( I ) )=hL'UU.v.;( I ) ; 
E M J ? 

- z 0 ! ? U r C E T A I L S P R I \ T E D 

PUT HAG^Z; 
PUT c L ' l T ( • r , l P L T C P T A R S ' ) ( A ( 4 C ) , « ) ; 
PUT S K I ? ( 4 ) L-CIT ( V'^UKfiEi^ CF CCLUi'N!S= » , CCL , ' 
,<CVy ) ( / ^ , r { 2 ) , A , F ( 2 ) ) I 
PUT S K I P ( Z ) L L ^ I T I • M j . - . 3 t ' ^ CF .sQuAL PC I \ T S = • A ' T C F , « 

PUT l i K l P ( 2 ) h r i T C V E S H LE.NGTF = 
( A ) , A , F { 4 ) ) ; 
' 9A, ' F - f E T ) ( A , F ( 7 . 1 ) » ' -

PUT S K i y ( 2 ) c i J i T i t T C L F . ^ A N C . : lis S C L U T I L A C F t C U A T I C ^ S 
i A X i y U M NU UVER U P I r j ^ < A T I C > j S = ' , \ I T , • T R A i N o W l S S I B I L I TY 

^ : T I J ^ = « , F ) ( . ^ , r ( b , 2 ) , , A , F ( 2 ) ) ; 

TF y-C^ 

); 
= ' , T L L 

H.J.-I'^D 

PUr S K I P ( 2 ) h C I T ( ' B C U I N C A . - J Y NCiJt .\ U H E F 1 . : T i^'df.'-'l 11 
( a ) ; 

pj: 1=1 TU ^o; 
PUT S : U P l 5 r j I T { i \ » \ C ( I ) , H P . C L t \ ( I ) ) ( X ( f c ) , F ( < ; ) , X ( 2 3 ) , F t 7 , 2 ) ) ; 
E . \ C ; 

PUT PAGL"; 
I F iVCCD=l TH-: , \ n C ; 

I F \ r j i ; ^ = 0 THEN D C ; 
c n 1 = 1 T U ^ c . v ; 

o<Jo • ) 



C(3 J = i TC C C L ; 
G E T L I S T ( F ( ( I , J ) ) ; 
EiNC; 

E'NL; ; 
I F M T F x = 0 T H i N GU TC C P C T ; 

C O 1 = 1 ru ^ J T F X ; 
Ci iT L I S T ( .NETFt I ) 9 T F ( i ) ) ; 

U P C T : PUT PAGE t C I T ( ' P U T E i \ T I - i L A : ! f < A Y , F e E T AFiiJVL U . n . M C U ; 
PUT s i ; i P ( - 3 ) ; 

u C 1 = 1 TC .iC.r, 
PUT S K I P ( 2 ) ; 

L C J = l TO C C L ; 
P U T E U I T ( H < ( I , J ) ) ( F ( f t , i ) ) ; 
VAC, 

E ; \ n ; 
E M : ; 

I f N C I . O O T H E N C L ; 
GET L I S T ( \ ' H ) ; 
A L L P C A T L . \ h ) \ C » F V A L ; 

J C 1 = 1 TC : \ F ; 
G ' :T L I S T ( N H \ C ( I ) , r ' V A L ( I ) ) ; 
S ^ C ; 

L N U ; 
F \ L ; 

E L S E I F NCCn = 0 TH'-K O C ; 
i:C I = i Tu T L L £ . v ; 
O E T L I S T ( T ( I ) ) ; 

E i \ C ; 
< : ' ' i t - U : ; : 3 E f L I S T { N U : 0 I 

I F ,\GR = fJ T I - i E , \ GC TC S C L \ ; 
F K E E N i \ ! U , f c : V A L ; 
A L L C C A T F N . \ i u : , t : V A L ; 

uL 1=1 TC M <; 
GFT L I S T , : C ( i ) , W x / / V L ( I ) ) ; 
E . \ C ; 

oET L I S T ( . ^ ! - ) ; 
, ' n ( P T : DL 1 = 1 T L 

0 ( i \ ' N ' i ( I ) ) = - < i V A L { I ) ; 
r ) \ C ; 

•f 
S n S S l H l L I T Y E L G ' | - . J T S . A I C L X ' C A P L V P f H u^ILL d ^ t A L T f . U l C 

*/ 
K = l ; 

i:C 1 = 1 T U {C!;. ; 
CC J = i T n C O L ; 
I F O t K ) > i ) Jt,-.\ c c ; 

: \ ' O f C = i \ L ! : ( I , J ) I 
TC = 3 o l ^ l 2 / ( 2 * L C G ( , V i ^ v , ) ) ; 

OL |Vi = l TU 4 ; 
r i i \ : r L ( . v C i . c , . ^ ) ) = T ( ^ E L ( ^ c c c , ^ ' ) ) * T C ; 

E M ' ; 
^ : M C : 



i < = K + l ; 
E ) \ C ; 

E - \ U ; 
SbLiN : . \ C T X = l ; 

T : \ , ~ A . n : . < T R = l ; 

HE r.'i A'ATiUX I s F C ? « | V L L A T E L ; L I M E PY L I . s E 
V 

A ( j A I . l : U I G = C ; 
CC 1 = 1 T C ? r i , ; 

U C J = l T C o C L ; 
T A = 0 ; 
:\:cuo=i\cjC( I , J ) i 

o r K = i T O K e ; 
I F N W C { K ) = . \ C U C THEN G C T C ScLF;^iL; 

h l = N c L { ; V C r J , l ) ; 
E ? = .NFL ( i \ 'C i :0 ,2 ) I 
• ':3=ViEL(\' iJL0,-j) ; 
E4 = .MEH. \ 'L i : o , 4 ) ; 
: < 1 » ; < 2 , ^ 3 , V i = i ; 

TJO K = I TC N T F ; < ; 
I r h I = S : T F ( K ) l h t \ T ( E I ) = T F ( K ) ; 
I f E2 = i\."TFIl<) 1 F E \ T ( E 2 ) = T F ( K ) ; 
I F E 3 = v F T F | K ) FHifN f ( E : J ) = T F ( K ) ; 
I F E4=-J=TF{K) iht^; T ( E 4 ) = T } (K) ; 
EiVC; 

I F E 1 = G T H E N : : C ; 

E N L ? 

I F F 2 = 'J TH-N C L ; 
:-i2=o; 
I F r:3=(; rHJ>j c u ; 

:^2 ,^A=()o3; 

H- E4 = 0 THE^ c u ; 
R4 = C ; 
R l , K 3 = 0o J ; 
£ M U ; 

I F t l = 0 THEiM P1 = C ; 
E L S E u n ; 
iU=,\[jiJ( i , J + i ) ; 
P i = « i * r ( E i ) 1 
T A ( M )=P1 ; 

I F ^2=0 THEN P 2 = C ; 
E L S E C l J l 
^ 2 = ^ c c l i - i , J ) ; 
P 2 = n 2 * T { E 2 ) ; 
T A ( . \ 2 ) = P 2 ; 



E w C ; 
I F L 3 = U l F E i \ F 3 = C ; 

ELSE U L ; 
.\3 = \ i i C ( I , J - 1 ) ; 
P 3 = K 3 * T ( E 3 ) ; 
T A ( K 3 ) = P 5 ; 
t M D ; 

I F E 4 = 0 T F E r ; P4 = C ; 
ELSE C C ; 
K 4 = I \ C L ; ( l + i , J ) ; 
P 4 = R 4 * T ( £ 4 ) ; 
T A ( K A ) = H 4 ; 
E N C ; 

T A ( M G D 0 ) = - P l - P 2 - ? 3 - P 4 ; 

Fh S C L U T I C N FCR THE H E A C A T THE h C L Z I S C£ TEi<^* I:>.EC 9 A i \ c T K v ' /^LU^ 
- J J U ' . T u J T C l E u U C E 1\M u r S I C U ^ i L A T HCO£ TC ZE ' ^ .C ( G A L S S - S I T C i L 
T ^ i ; , \ T i C . \ ' ) 

*/ 
T T L j . i E S s A <L-S = C ; 

CfJ K = l T O N T f J T ; 
T T L = T T L + T A { K ) * H { ; a ; 
Efv'C; 

< E S = T T L - i . ( i \ O U C ) ; 
C E L H = - , < t o / T A ( ^ C C C ) ; 
^;ELH = C E L ! - : • ^ I . 7 ; 
K N O C C ) = F . ( : v C b C ) + C t L h ; 

i A . U i - ' U F A S s f ^ L u T E s F S I C U A L i S T E S T F C . I F riH;>rCL AMCTl-iF^ l T t < . i I i r A 
F P 1 . 1 F n K . v £ C o I F P I G < T C L THEi\ THE S C L L T l C N I S A C o - P T A H L f . t^,^.: TF£ 

V A I L S / ^ l E P . ' U ' - i T L D 
•::/ 

I F A r ? S ( n ^ - L M ) > P I G THC - s H I G = A ^ S ( C t L F ) ; 
S L ! L _ ' J L : E N C ; 

ENC; 
i r R I G < T C L U GC TL hPLC f ; 
I F K T K > N I T THEN GC T c H P L C T ; 
K T « = K T R + l ; 
G C T C A G A I i v ; 

M P L C I : P U T P A C E ; 
PUT E C I T ( ' \ L . •^E'? CH I T E - 5 A T 1 C \ S l u G A U S S - S l E C E L SCLLT I T J= « , U , , • 
VfAXIiVUi-i A H S U L U T L R i S I C U A L = ' , h I G » ' F E ' f T ' ) ( ^ , F ( 3 ) 9 A , F ( 6 , ^ ) , ^ J ; 
PLT S K I P ( 4 ) ; 
K = l ; 

C C 1 = 1 T O v:),-i 
LC J = l TL: C U L ; 
h A ( I , J ) = H ( K ) ; 
K = K + l ; 

F . \C ; 

:iCCC = C ( P C T E . V T I A L LETC ^ . f - ' I \ A T I CN ) THE l U T E C F !^LC';. A ^ W A Y a v j r 
; T - : ' ' T I A L / ^ U R A Y A K E P ^ U i ' . T i C A \ 'C TF2: CL'<P,LMT CCHPUTAT I O i \ 1 E . ^ ; ' I ^ i T - iC 

5 / 



I F \ C C C = C TF .E!\ L C ; 
HLT S K I P { 4 ) | 
PLT E j I T C l A f t CF FLCh /ii^^AY I^ THCCSA 'JCS OF G ^ L L C v S ^̂ r:"! .;.'.Y« 

) ( A ) ; 
PUT S K I H ( 3 ) ; 
K = l ; 

DC 1 = 1 TO XOb; 
PUT S K I p ( 2 ) ; 

(,n J = I TC C C L ; 
( . n p T = - ^ , ( K ) / i c c c ; 
PUT t n i T ( g u P T ) ( F ( 6 ) ) ; 
K = K + i ; 
E - v u ; 

ENU; 
PUT P A G E : ^ C l T ( ' P C T E f ' - i T I A L A'i«AY ,HEflD A 3 C V i C o U o ' ) | a ) ; 
PLT S K l H i 3 ) ; 

L C 1 = 1 TlJ XU*;,', 
PUT S K I P ( 2 ) ; 

n c J = i TC C C L ; 

P U T E U I T ( h A ( I , J ) ) ( r ( 6 , I ) ) ; 

P U T S K I P ( 6 ) ; 

PLT P A C E Et .IT(«i: .^Al-.CCw.\ I\' F E r T « ) { A ) ; 
PUT S K I H { A ) ; 

CC l = i TC Mbil 
PLT S K I P ( J ) ; 

DO J = i TC C C L ; 
CCi\ = F - U I , J ) - F A { I , J ) ; 
PUT E C I T ( l : C ^ ) { F ( 7 , 3 ) ) ; 
BHD; 

EK'U; 
GC TU T f i A K ; 
E i \ L ; 

• i;Cl.U=l ( T i ^ A W s i - ' I S S m L I T Y CETJAiV l ^ A T I c i V ) THE M t S i C L A L S J L T I - . F L A TFT 
= AL I A L L E S Ai\C T F L CALCULATFT V U U r S A/^t CCi^'PUTcCo I F F:IG<T,-L? 11 

J ;U.';i)L-^ C F T:<t \KS ."nSSlF: iLITY I ^ E ' ^ A T I L ^ S (NCr r ; ) > \ T \ I T , r r E I V . . ^ L - S 
t C C d P T E L . I F B I O T . 1 L 2 TF 'FIK THE T V A L U E S ARtr A C J u S T L C 

irLSE I F NCCiJ=l THE; \ C C ; 
b IG = C ; 
T C L 2 = T 0 L * 2 ; 
PUT E f ) I T ( • T i - ' A N S F I S S i a i L I T Y IT;-.-?AT I C ^ ' f\Ui'̂ '<iE-5= S ivCT.i) ( A , f i ^ ) ) ; 
P L T S K I P ( 4 ) ; 
PUT E D l T ( ' R E S I C L A L -iRRAV F E c T M { / i ) ; 
PUT S K I P ( 3 ) ; 

I F • \ 'CIK = 2 THHN t C ; 
F P = H A ; 

K = l ; 
DC 1 = 1 TC KCV. ; 
I :G J = I T C C C L ; 

L O L = I r t j i \ ' F ; 
I F .sHWn ( L ) = K THE.V FP ( I , J ) = HV AL { L ) ; 



E.\'C; 
K = K + 11 
c i \ L ; 

t ' \ tc; 
DU 1 = 1 TO AC\r, 
PUT s f - ' I f ' t ? ) ; 

DC J = I TC C C L l 
^siiS = H P ( ] , J ) - H A ( I , J ) ; 

PUT F L I T ( . ^ E S ) ( F ( 7 , 2 ) ) ; 
I F A r , S ( « E £ ) > H I G TFEN h iG = ABS (.<ES ) ; 
FvJO; 

ELSE uC; 
CC 1 = 1 TO s U u ; 
PUT s K i J M ? ) ; 

f;o j = i TC C C L ; 
K E S = H r ^ ( l 9 J ) - F A ( I , J ) ; 
PUT L l 5 l T ( r ! E S ) ( F ( 7 , 2 ) ) ; 
I F A B S ( - ^ E S ) > E ; I G THEN P I G= ABS ( ^bS ) ; 
Ei \ ' i . i ; 

ENIRI 
F ) \ i : ; 

I F B I G < T C L 2 T H E ^ C C ; 
I F NO 1-^=4 T H : N C C ; 

I F NivlK> = 2 TH:£!\ GO TC T L L T ; 
ELS"^ D C ; 

.Ni": iR=2; 
i \ C O D = l ; 
GC TLi ,\Oi;PT ; 
E N H ; 

ELSc GO TP T O L F ; 

E i \ C ; 

< A , - : . / I S S T U L I T Y n L r i i ^MT AOJUST.VFNT: 3^F:fRENCi_ A.\D Cr tLCLL^ 'Vc : P u T f v l T i A L 
{ ' j p n.ETc:'>>?n\EU ( . ^ C I F ^ A D I F ) A.\C USEC TO F I X Th.= A C J l S T ^ E N T F i f T O . . , 

^/ 
K = l ; 

DC 1 = 1 TC RU,rii 
00 J = l . TC C O L ; 
\ c r c = K ; 
F I = N E L ( ! N C L J O , i ) I 
* _ 2 = r N j r L ( \ ' u n o , 2 ) ; 
E3 = i \ £ L ( i V C C C , 3 ) ; 
iE4 = N ^ t L { \ C U G , 4 ) ; 
HRC=Hr<l I , J ) ; 
HAC = F A ( I , J ) ; 
I F E 1 > 0 THEN C C ; 

< D I F ( i ) = h ^ ( I , J + 1 ) - F : - ! C ; 
A C I F d ) = h A ( I , J + I ) - H A O ; 
t N ' U ; 

I F E 2 > i ; THEN L C ; 
' . crH (2 )= i - M i - i , J ) - H ' ? c ; 



. i )J IF i i? )= l - -M I - l , J ) - f - A i j ; 
E N D ; 

I F fE3>o 7He^ L C ; 
.<DIFI i )= i - . 'M I , J - i ) - t - ^ o ; 
A t H F ( ^)=HA( I , J - l ) - h . A O ; 

I F f^4>n THE^ C L ; 
:^UIF(^)=|-?.( I + l , J ) - H { C ; 
A C I F { ^ ) = H ^ ( I + 1 , J ) - H 4 C ; 

L,c L = i T C A ; 
Nli(L)=.>]L"L(iMGDC,L) 5 
I F . \ i b ( L ) = C THFi\ GC T L L j C P l ; 
I F A H S ( . ; D I F ( L ) X C C o TF:--I\ GC TC L C O P l ; 
I F At jS(MOIh(L) X C C b THF^ <JG TG L C G P I ; 
AHAfi=APS(->niF ( L ) - M f : i F ( L ) >; 
TB = A R S ( A n i F ( L ) / : ^ C I F ( L ) ) I 
T ^ = T { ^ F ( L ) ) = * r n ; 
CfcLT = T ' : - r | : v l r ( L ) ) ; 

T ( M h ( L ) ) = T ( L ) ) + (!2 =L T*ArfAK/40 ) ; 

K = K + l ; 

F>.D; 
I F Nni-< = 4 A i V C T O M M T TFEi\ CG; 

IF )\!\K>=^ r i i i ' \ GU TC T L L T ; 
HLSr ijLJ; 
M C L U = 1 ; 
•JO TO ;«IC.^PT; 

I F NDIR = 2 d .\CTR>=1 THEN b C ; 
K = l ; 

GC 1 = 1 TC \<CKl 
JJC J = l TC c C L ; 
I F w(K)>0 TH^N 1}C; 

.\.Qr:n=:\ior( I , J ) ; 
TC=(2!=L^ti(/ i/.^u) ) / 3 o l H l ? ; 

iJC 1̂  = 1 Tf A ; 
T (.>l L L t .'.j 0 U C , i') ) = T (A E L I îJ G n C , .V;) ) * T C ; 

C( iN )=c ; 

K = K + i ; 
iZiMJ; 

? X ' L ; 
NC(JD=1 ; 

GG TC srAKi 

I F l\CT"f>f>,TAlT TFiEN GG TC T L L T ; 
KCT:^ = '^CTi.+ l ; 



GC TC TaEAHTl 

{-'J r r iMWS'VISSlRlLlTY ::Ltr ' ;r.STS Ar^t L U T P L T E I T h t < -iLE.--'F!\'T ^JV PLFr-^.vT, 
•V,-<^»G.'t' A -̂>CONn E A C H ^ C D ; , C,^ L I S T E L 

V/ 
T o U r : P U T P.-Vr= E l J l T ( " ' ? A r L CF F L C ^ AR«AY IN L I C U S ^ ^ C S CP cfLlL:\S Hj< 

I W ) (A) ; 
PUT s i ^ l f ' C i ) ; 
: ( = i ; 

f:c 1 = 1 TG ^ C / : ; 
PUT SI<IP(3) ; 

r:i) j = i f n CCL; 
t . i n p T = - , « ( K ) / i c c i : ; 
PUT EDIT(Q()PT) ( F ( 6 ) ) ; 
K=K+11 

r K = l ; 
LfJ 1 = 1 1(] .<C-%; 

i:o J = i TC CCL; 
I F Q(I<)>C THEN C C ; 

iNini>c=i\LC( I , J ) ; 
T C = ( ? « ' L Q G ( M / : " I A ) ) / 3 . 1 ^ 1 2 ; 

C C f ' = l TL. 4 ; 
T ( . \ E L ( A C ' - C ) ) = T (.stL {NCuc r c ; 
L \ : ) ; 

E A T . ; 
l< = K + i | 

E ^ j C ; 
G F T L I S T ! JUf- ) ; 
I F ivuf'=c .Tii;ii\ GC TC n i i ^ E c r ; 
EL52 GC T.: T P R I M ; 

rp.^sfjT: PUT PAGi i'li I T { • T .^AA 'S I - I S S 1 1 ' I L I TY A.<:<AY I \ ' ThOUSA.US CF b^LL - j 'JS 
i DAY P E ? F C C T ' ) (A) ; 

Pur S K I P O ) ; 

N.'(JLiS!E: .< = \ + l ; 
L = !< + C C L - 2 ; 
PUT E.DIT( • • ) (A) ; 

cn I=K TU L ; 
fVAL=( r ( l U 5 C 3 ) / i C C C ; 
PUT E D I T ( f V A L ) ( F ( 7 ) ) 1 
ZKC, 

PUT S K I P ( 2 ) ; 
I F L> = TEL^^• THE.N GC 1C C E L I S T ; 

K=r' + C r L - l ; 
LC I = F TC iK; 
r V A L = ( T ( n + 5 c C ) / i C C C ; 
P L T : n i T ( T 7 A L ) ( F l 7 ) ) ; 
E i \ r ; 

PLT SV1P[2); 



I F ^>=riL^=^• TH;:I\ C C TC C : L I S T ; 
E L S F Gi. T!) \ 'X1LMr ; 

u t L I S T : P U T S K Z P ( 6 ) ; 
I:C 1 = 1 TC .;r=v; 

uG J = l Tl] C G L ; 
AL[)0=Nui:( i , J ) ; 
T r(lT = C ; 

nf) K= l TU ^ ; 
I F i \ t L { . \ n U C , K ) = C THEi\ .•sG=NG-l; 
C L S E rTGr=T(iALL(i \C ' :c»;<) ) + T T C T ; 
EM(;; 

r w u D d j j ) = T T U T / ^ n ; 
EisG; 

E ^ ^ ; 
P L T PAGL; 

L C 1 = 1 TG iOl. ; 
PLT S K I P C ) ; 

un J = i TC C C L ; 
T V A L = T , ] L U ( i , J ) / l C C C ; 
PUT f.Vl iil\l-yi) ( F { 7 ) ) ; 

t K G ; 
GET LrSTIi^:U'') ; 
I F ^U^' = C THC\ GC TC Clr^ECT; 
ELsH GC TG L I S T ; 

L l b T : PUT PAGE LH IT ( » T,;;.?;Sta S S I B i L J TY VALUES IN GALLClvS "̂̂  ' i AY .•>'i 
F C C f « ) ( A ) ; 

PLT S K I P ( 4 ) ; 
PLT E D I T ( » E L . f ' . t N T XlrZin T.^ANSF'I 3 S I b I L I I Y • ) I ) ; 
PUT S K I P { ^ ) ; 

nC 1 = 1 TC T tLE;^ ; 
PLT S K l P t ; ^ ) i iC IT( I ,T ( I ) ) ( r ( S) >A( ! :> ) 9̂  ( 1 2 , ? ) ) ; 

cc rc c i i ^ E C T ; 

f 'i'XJ OPii''<ATTON " iELUHEl ) I S D5TE'^>I i \5U FI^Ci-' VALUL CF \ i : i ^ 
^/ 

I '.cir.TSr^Ur S K I P ; 
GET L I S T ( N G I K ) ; 
I F ^ c I • ^ = c lyt^' Gtj iO J i i \ ; 
I F ^ . C I R = i THL! * LUI 

PLT P A C t ; 
^CGC=^•; 

ct; 1 = 1 TO \ ' T G T ; 
I T Cl( I )>0 TFFf. Q( I ) = C ; 
Ei \D; 

CC TG C R L A u ; 
F K C ; 

I F M i r<=2 THtfv GC; 
F K E t N H N L V H V A L ; 
KN'K = l ; 
N C C O l ; 

PLT PACE; 



NUKBli^ bp ITLi^ATlONS IN GAUSS-SI EUEL SOLUTION^ 12 

RATE GF 

G 

0 

0 

0 

0 

0 

0 

0 

0 

0 

u 

0 

0 

Q 

0 

0 

c 

f'.AXiMUN AikScLUTE R E S I l jU A L =0 . J9 76F E E T 

FLCvi A H R A Y I N T H U U S A N D S O E GALLONS P E R D A Y 

0 

0 

0 

C 

0 

0 

G 

G 

0 

0 

0 

0 

c 

0 

0 

0 

0 

0 

c 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

G 

0 

u 

G 

0 

0 

u 

G 

0 

0 

0. 

0 

0 

\J 

Ij 

0 

0 

0 

0 

0 

G 

0 

0 

G 

0 

0 

0 

0 

0 

G 

G 

0 

G 

0 

0 

0 

0 

C 

0 

0 

G 

0 

0 

0 

0 

0 

G 

0 

0 

0 

PUTENTiAL A R R A Y , H E A D A E O V E G . D 

2 0 0 . G 

2 0 0 . 0 

2 c o ; o 

2 G 0 . 0 

2 0 0 . 0 

2 0 0 . 0 

2 0 0 . 0 

2 0 0 . (j 

2 0 0 . 0 
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19 8 . 0 
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20 0 . 0 

1 9 8 . 7 

197 . 5 

1 9 6 . 0 

1 9 4 . 7 

1 9 3 . 1 

1 9 1 . 8 

19 0 . 8 

190 .4 

1 9 0 . 7 

1 9 1 . 7 

19 3 . 0 

1 9 4 . 5 

1 9 5 . 9 

1 9 7 , 3 

198 . 7 

2G0. 0 

200 .C 

19 8 . 4 

1 9 6 . 8 

19 5 . 1 

1 9 3 . 1 

1 9 1 . 2 

18 9 . 1 

1 8 7 , 4 

1 8 6 . 6 
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1 9 4 . 9 

1 9 6 . 7 
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0 
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0 
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2CG . 0 

19 8 . 2 

1 9 6 . 3 

194 . 2 

1 9 1 . 8 

1 8 9 . 1 

1 8 6 . 1 

1 8 3 . 0 

181 . 1 

18 3 . 0 

1 8 6 . 0 

1 8 9 . 0 

l ^ M . 7 

1 9 4 . 0 

1 9 6 . 2 

1 9 8 . 1 

2G0.0 

2 0 0 . 0 

19 S . 1 

19 5 . 9 

19 3 . 6 

1 9 0 . 6 

1 8 7 . 4 

1 8 3 , 0 

17 7 . 6 

1 7 2 . 0 

111.0 

18 2 . 9 

1 8 7 . 2 

19 0 . 6 

1 9 3 . 4 

1 9 5 . 8 

1 9 7 . 9 

2 0 0 .0 

2CG.G 

19 8 . C 

1 9 5 . 8 

1 9 3 . 3 

19G. 4 

1 8 6 . 6 

1 0 1 . 1 

1 7 2 . 0 

8 4 . 1 

1 7 2 . 0 

1 8 1 . 1 

1 8 6 . 4 

19G.2 

1 9 3 . 2 

19 5 . 6 

1 9 7 . 9 

2 C 0 . 0 

2 0 0 . 0 

19 8 . 0 

19 5 . 9 

19 3 .5 

19C.7 

18 / . 3 

1 8 3 . 0 

1 7 7 - 5 

17 2 . 0 

1 7 7 . 5 

1 8 2 . 9 

1 8 7 . 2 

1 9 0 . 6 

193 .4 

19 5 , 8 

1 9 7 , 9 

2G0.0 

2 0 0 . 0 

1 9 8 . 1 

19b .2 

1 9 4 . 1 

1 9 1 . 7 

18 9 . 0 . 

13 6 . 0 

1 8 Z . 9 

1 8 1 . 1 

132 .9 

18 5 . 9 

18 8 . 9 

1 9 1 . 6 

1 9 ^ . 0 

1 9 6 . 1 

1 9 8 . 1 

2 0 0 . 0 

ZOG.O 

1 9 8 . 4 

19 6 . 7 

194 .9 

1 9 3 . 0 

1 9 1 . 0 

1 8 9 . 0 

18 / , 2 

18 6 . 4 

1 8 7 . 2 

1 8 8 . 9 

1 9 1 . 0 

1 9 3 . 0 

1 9 4 . 9 

1 9 6 . 7 

198 .4 

20G.0 
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1 9 8 . 7 

1 9 7 . 4 

1 9 5 . 9 

1 9 4 . 5 

1 9 3 . 0 

1 9 1 . 7 

1 9 0 . 6 

1 9 0 . 2 

1 9 0 . 6 

1 9 1 . 6 

1 9 3 , 0 

1 9 4 . 4 

1 9 5 . 9 

1 9 7 . 3 

1 9 8 . 7 

200 »0 

2 0 0 . 0 

1 9 9 . 0 

1 9 8 . 0 

19(3.9 

1 9 5 . 9 

1 9 4 . 9 

194 . 0 

19 3 . 4 

19 3 . 2 

19 3 . 4 

19 4 . 0 
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1 9 5 . 9 

1 9 6 . 9 
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1 9 8 . 4 

1 9 8 . 7 

1 9 9 . 0 

199 .3 

1 9 9 . 7 
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2 C 0 . 0 
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2 C 0 . 0 
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2 0 0 . 0 

2C0.O 

2 C 0 . 0 
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2 C 0 . 0 

2 C 0 . 0 

2 G 0 . (3 

2C0 .0 
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P O T E N T I A L A R R A Y , H E / ^ G A B O V E Q . G . 

2 0 G . 0 

2 G 0 . 0 

2 G G . G 

2GC.0 

2QG.0 

2 C 0 . 0 

2GG.0 

2 0 0 . 0 

2 C 0 . 0 

2 C G . G 

2 0 0 . 0 

200 .0 

2GG.0 

2CG .C 

2 0 G . 0 

2 0 0 . G 

2GG.G 

2CG.G 

1S9 .7 

1 9 9 . 3 

19 9 . 0 

1 9 8 . ^ 

198 . G 

1 9 7 , 8 

1 9 7 . 6 

1 9 7 . 4 

1 9 7 . 5 

1 9 7 . 7 

1 9 8 . 0 

19 8 . 4 

1 9 8 . 7 

1 9 9 . 2 

19 9 . 6 

2 C C . G 

2 0 G . 0 

19 9 . 3 

1 9 8 . 6 

1 9 7 . 6 

1 9 6 . 8 

19 6 . 0 

1 9 5 . 3 

1 9 4 . 9 

1 9 4 . 7 

1 9 4 . 8 

1 9 5 . 2 

1 9 . 5 . 9 

1 9 6 . 7 

19 7 . 13 

1 9 8 . 3 

1 9 9 . 2 

2 C 0 . 0 

2 C 0 . 0 

1 9 9 . 0 

19 / . 6 

1 9 6 . 4 

19 t . . 0 

1 9 3 . 8 

1 9 2 , 7 

19 1.9 

1 9 1 . 6 

19 1.9 

1 9 2 . 6 

19 3 . 7 

1 9 4 . 9 

19 6 . 2 

1 9 7 . 5 

1 9 3 . 7 

2CC . 0 

2 0 0 . 0 

198 . 4 

1 9 6 . 8 

i 9 '3 . 0 

19 3 . 3 

1 9 1 . 4 

1 8 9 . 7 

188 . 5 

18 7 . 9 

,13 8 . 4 

1S 9 . 6 

19 1.3 

19 3 . 1 

1 9 4 . 9 

1 9 6 - 6 

1 9 8 , 3 

2 0 0 . 0 

2 C G . 0 

19 8 . 0 

19 6 . 0 

1 9 3 . 8 

1 9 1 . 4 

18 8 . 9 

1 8 6 . 3 

1 8 4 . 2 

1 8 3 . 2 

184 . 1 

18 6 . 2 

188 . 7 

1 9 1 . 3 

19 3 . 6 

L 9 5 . 9 

19 8 . 0 

2 C C . G 

AG CO 

197 .8 

1 9 5 . 3 

1 9 2 . 7 

18 9 . 7 

1 8 6 . 3 

1 8 2 . 6 

17 8 . 8 

1 7 6 . 4 

1 7 8 . 7 

18 2 . 5 

1 8 6 . 2 

1 8 9 . 6 

1 9 2 . 5 

1 9 5 . 2 

1 9 7 . 0 

2 C 0 . 0 

2 0 0 . 0 

19 7 .6 

194 . 9 

1 9 1 . 9 

18 8 . 5 

184 .2 

17 8 . 8 

1 7 1 . 9 

1 6 5 . 0 

1 7 1 . 8 

17 8 . 7 

18 4 . 1 

18 8 . 3 

19 1.8 

1 9 4 . 7 

1 9 / . 4 

200 .G 

2 C 0 . G 

1 9 7 . 4 

1 9 4 . 7 

19 1.6 

1 8 7 . 9 

1 8 3 . 2 

1 7 6 . 4 

165 . G 

5 5 . 1 

1 6 5 . 0 

176 . 3 

1 8 3 . 1 

1 8 7 . 8 

1 9 1 . 5 

1 9 4 . 6 

1 9 7 . 4 

2 G 0 . G 

2C0.0 

1^57. 5 

1 9 4 . 8 

19 1.9 

18 8 . 4 

1 8 4 . 1 

17 8 . 7 

17 1 . 8 

1 ( 5 . 0 

17 1 . 

17 8 . 7 

18 4 . G 

18 8 . 3 

19 1.7 

1 9 4 . 7 

197 .4 

2 C 0 .0 

2 0 0 . 0 

1 9 7 . 7 

19 5 . 2 

19 2 . 6 

18 9 . 6 

18 6 . 2 

1 8 2 . 5 

17 8 . 7 

1 7 6 . 3 

1 7 8 . 7 

182 . 4 

1 8 6 . 2 

18 9 . 5 

1 9 2 . 5 

19 5 . 2 

19 7 . 6 

200 . G 

2 0 0 . 0 

19 8 .0 

19 5 .9 

1 9 3 . 7 

1 9 1 . 3 

18 8 . / 

186 .2 

1 8 4 . 1 

183 . 1 

18 4 . G 

1 3 6 . 2 

1 8 8 . 7 

191 .2 

193 .6 

195 . 8 

1 9 7 . 9 

2 0 0 . 0 

2 0 0 . 0 

1 9 8 . 4 

1 9 6 . 7 

194 . 9 

1 9 3 . 1 

1 9 1 . 3 

1 8 9 . 6 

18 8 . 3 

18 7 . 8 

1 8 8 . 3 

1 8 9 . 5 

1 9 1 . 2 

1 9 3 . 0 

1 9 4 , 9 

1 9 6 . 6 

1 9 6 . 3 

200 . 0 

2 0 0 . 0 

1 9 8 . 7 

19 / . 5 

1 9 6 . 2 

194 . 9 

19 3 , 6 

1 9 2 . 5 

19 1.8 

1 9 1 . 5 

1 9 1 . 7 

19 2 . 5 

19 3 . 6 

1 9 4 . 9 

1 9 6 . 2 

1 9 / . 5 

1 9 8 . 7 

2 0 0 . 0 

2G0 .0 

1 9 9 . 2 

19 8 . 3 

1 9 7 . 5 

1 9 6 . 6 

19 5 . 9 

1 9 5 . 2 

1 9 4 . 7 

194 .D 

1 9 4 . 7 

1 9 5 . 2 

19 5 .8 

19 6 . 6 

1 9 7 . 5 

1 9 8 . 3 

1 9 9 . 2 

2C0 .0 

2 0 0 . 0 

1 9 9 . 6 

1 9 9 . 2 

1 9 8 , 7 

1 9 8 . 3 

1 9 8 . 0 

1 9 7 . 6 

1 9 7 , 4 

19 7.4 

1 9 7 . 4 

1 9 7 . 6 

19 7 .9 

1 9 3 . 3 

1 9 8 , 7 

199 .2 

19 9 . 6 

2 0 0 . 0 

2 C 0 . 0 

2C0 .0 

2 C 0 . 0 

2CG.0 

2CG.0 

2 C 0 . 0 

2 C G . 0 

2C0 .0 

2 C 0 . 0 

2GG,G 

2CG,0 

2 0 0 . 0 

2 C 0 . 0 

2C0.O 

2 0 0 . G 

2CG.0 

2CG.G 



IMPljT CETAILS 

NUKliER CF CaLUMNS=l7 NUKIiER GF RCWS = i 7 

NUf BEPx OF iVGOAL PQIMTS= 239 NUHBER GF TR AN SN I S S I fi I L IT Y ELEMENTS^ 544 

FhSl-i LENGTE= SCO.OFEET 

TOLbRANCE IN SOLUnOiV OF t g U A r i D N S = 0 . 5 0 F T 

BGUNCARY NCuE NUMBER FEET AHCVF 0 . 0 
I 20 0 . C 0 
2 2 0 0 . CO 

2 0 0 . C 0 
4 20 0 . CO 

2 0 0 . 0 0 
6 2 G 0 . C 0 
7 2 C 0 . C 0 
8 2 0 0 . 0 0 
9 2 0 0 . 0 0 

10 200.CO 
11 2 0 0 . C 0 
12 2C0.CG 
13 200 . 00 
14 200.CO 
15 2 0 0 . 0 0 
16 200 .CO 
17 2 0 0 . 0 0 
18 2 0 0 , C 0 
34 2 G 0 . G 0 
35 200.CO 
51 200 .CO 
52 2C0 .CO 
6 0 200.CO 
o9 200 . CO 
85 200 .CO 
86 2C0.C0 

102 2C0 . CO 
103 2 0 0 . C (1 
119 2 0 0 . 0 0 
120 200 ,CO 
136 200.CO 
137 200 .CO 
153 2 0 0 . C 0 
154 2 0 0 . 0 0 
170 2 G 0 . G 0 
171 200.CO 
187 20 0 . CO 
188 2 0 0 . C 0 
2G4 2 C 0 . C 0 
205 200 .CO 
22 1 2 0 0 . 0 0 
222 2 0 0 . 0 0 
238 2 0 0 , C 0 
239 2 0 0 . C 0 
255 2 0 0 . 0 0 
256 2 0 0 . 0 0 
272 2 C 0 . C 0 

27 3 2 G 0 . C 0 
274 2 0 0 . G 0 
2 75 200 .CO 
276 2C0.C0 
277 2C0.C0 
278 200,CO 
279 2 0 0 . 0 0 
280 2 0 G . C 0 
2 8 1 2 0 0 . C 0 
282 2 0 0 . 0 0 
28 3 2 0 0 . CO 
284 2 C C . C 0 
2 85 200 .CO 
286 2G0 . 0 0 
287 2 0 0 . 0 0 
288 2 C 0 . C 0 
289 200.CO 

KAXIMUF MUi^EER CF I lERATIONS^ 100 Ti^A.NSMISSIDILITY AD JUS TMENTFAC TGR= 2 



^ ^ U ^ B E ' ^ C F I T E R A T I O N S IN G A U S S - S I E G E L ' S Q L O T I O N = 28 KAXlHUM ABSOLUTE RESIDUAL = 0 .496bPCET 

^ATE CF FLOW ARRAY IN THOUSANCS OF GALLONS PER DAY 
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P O T E N T I A L A R R A Y , H E A D A 8 0 V E O . D . 

2 0 0 . G 

200 .0 

2 0 0 . G 

2 0 0 . 0 

2 0 0 . 0 

20 0 . 0 

200 .0 

2 C 0 . 0 

2 G 0 . 0 

2C0 . 0 

20 0 . 0 

2 0 0 . 0 

2 0 G . 0 

20 0 . 0 

20 0 , 0 

20 0 . 0 

2GC ,0 

CC,0 

2 0 0 , 0 

2 C 0 , 1 

19 9 . 6 

1 9 9 , 7 

1 9 9 , 6 

19 9 . 5 

19 9 . 5 

1 9 9 . 5 

1 9 9 . 5 

1 9 9 . 5 

1 9 9 . 6 

1 9 9 . 7 

19 9 . 8 

1 9 9 . 8 

19 9 , 9 

2 G 0 ,0 

2 C 0 . f] 

20 0 , 1 

19 9 . 6 

19 9 . 3 

19 9 . 3 

19 9 . 2 

19 9 . 0 

1 9 9 . 0 

1 9 8 . 9 

1 9 9 . 0 

19 9 . 1 

199 . 2 

19 9 . 3 

1 9 9 . 5 

1 9 9 . 7 

19 9 . 8 

20 0 . 0 

2CG.0 

1 9 9 . 6 

1 9 9 . 3 

1 9 9 . 0 

1 9 8 . 9 

19 8 . 7 

1 9 8 . 5 

19 8 . 3 

1 9 8 . 3 

1 9 8 . 4 

1 9 8 . 5 

1 9 8 . 7 

1 9 9 . 0 

1 9 9 , 2 

1 9 9 . 5 

19 ''J, / 

2GC . 0 

2 0 0 . 0 

1 9 9 . 7 

1 9 9 . 3 

1 9 8 . 9 

198 . 6 

196 .2 

1 9 7 . 9 

197 . 7 

1 9 7 . 6 

197 . 7 

1 9 7 , 9 

19 3 , 3 

19 8 , 6 

19 9 . 0 

1 9 9 . 3 

1 9 9 . 7 

2GG. C 

2 C G . 0 

19 9 . 6 

19 9 . 2 

1 9 8 , 7 

198 , 2 

1 9 7 , 8 

19 7 , 3 

196 .8 

1 9 6 . 6 

1 9 6 . 8 

19 7 . 3 

19 7 . 8 

1 9 8 . 3 

1 9 8 , 7 

19 9 , 2 

19 9 . 6 

2CC.0 

2 C G . 0 

1 9 9 . 5 

19 9 . 0 

19 8 . 5 

1 9 7 . 9 

197 . 3 

1 9 6 . 5 

1 9 5 . 8 

1 9 5 . 3 

1 9 5 . 8 

1 9 6 . 5 

197 . 3 

1 9 7 . 9 

1 9 8 . 5 

199 .C 

1 9 9 . 5 

2CG.0 

2GG.G 

1 9 9 . 5 

1 9 9 . 0 

19 8 .3 

197 . 7 

1 9 6 . 8 

1 9 5 . 8 

19 4 . ^ 

I'g 3 . G 

194 .4 

1 9 5 . 8 

19 6 .8 

1 9 7 . 7 

1 9 8 . 3 

1 9 8 . 9 

19 9 . 5 

200 .0 

2 G 0 . 0 

1 9 9 . 5 

19 8 , 9 

1 9 8 . 3 

1 9 7 . 6 

196 . 6 

195 . 3 

19 3 . C 

1 7 1 . 0 

1 9 3 . 0 

195 . 3 

1 9 6 . 6 

1 9 7 . 6 

1 9 8 . 3 

19 8 . 9 

1 9 9 . 5 

2C0.G 

2CG .0 

1 9 9 , 5 

19 9 . 0 

198 ,4 

19 7 , 7 

1 9 6 , 8 

195 ,8 

19 4 . 4 

1 9 3 . 0 

1 9 4 . 4 

1 9 5 . 7 

19 6 . 8 

1 9 7 . 7 

1 9 8 . 3 

1 9 8 . 9 

1 9 9 . 5 

2 G 0 . 0 

2 0 0 . 0 

19 9 . 5 

1 9 9 . 1 

19 8 . 5 

1 9 7 . 9 

1 9 7 . 3 

1 9 6 . 5 

1 9 5 . 8 

1 9 5 , 3 

1 9 5 . 7 

1 9 6 . 5 

1 9 7 . 2 

1 9 7 . 9 

1 9 8 . 5 

19 9 . G 

1 9 9 . 5 

20 0 . 0 

2 0 0 . 0 

1 9 9 . 6 

1 9 9 . 2 

1 9 8 . 7 

1 9 8 . 3 

19 7 .8 

1 9 7 . 3 

1 9 6 . 8 

19 6 . 6 

1 9 6 . 3 

19 7.2 

19 7.7 

1 9 8 . 2 

1 9 8 . 7 

199 . 2 

199 . 6 

2 G 0 . 0 

2GG . 0 

1 9 9 . 7 

1 9 9 . 3 

199 .0 

19 8 . 6 

1 9 8 , 3 

1 9 7 , 9 

1 9 7 , 7 

1 9 7 . 6 

1 9 7 , 7 

197 ,9 

1 9 8 , 2 

1 9 8 , 6 

1 9 9 , 0 

1 9 9 . 3 

19 9 . 7 

20G . 0 

2 0 C . 0 

1 9 9 . 8 

1 9 9 , 5 

19 9 . 2 

19 9 . 0 

1 9 8 , 7 

198 ,5 

1 9 0 , 3 

1 9 8 . 3 

1 9 8 , 3 

1 9 8 . 5 

1 9 8 , 7 

19 9 , 0 

1 9 9 , 2 

1 9 9 , 5 

1 9 9 , 7 

2CG.0 

200 .0 

1 9 9 . 3 

19 9 , 7 

19 9 . 5 

1 9 9 . 3 

19 9 . 2 

19 9 . 0 

i 9 8 . 9 

19 8 , 9 

1 9 8 , 9 

19 9 .0 

1 9 9 , 2 

19 9 . 3 

19 9 . 5 

19 9 . 7 

1 9 9 . 8 

200 . 0 

2 00 .G 

199 .9 

1 9 9 . 3 

1 9 9 . 7 

19 9 . 7 

1 9 9 . 6 

1 9 9 . 5 

1 9 9 . 5 

1 9 9 . 5 

199 .5 

1 9 9 . 5 

1 9 9 . 6 

1 9 9 , 7 

1 9 9 . 7 

199 ,8 

1 9 9 , 9 

200 .G 

2 C 0 , 0 

2 0 0 . 0 

2G0 .0 

2CC.0 

2CG . 0 

2C0.G 

2C0. 0 

2C0.O 

2 0 0 . 0 

2CG. 0 

2CG.G 

2 0 0 . 0 

2 C 0 . 0 

2 C 0 . 0 

2 0 0 . 0 

2 C 0 . 0 

2C0.G 



CF IT ERAT IE) '̂ S I N GAUS S-S I ED EL SOLUT irj:-^i= 12 iMAXI HUM AUSOLUTt RESIDUAL = 0 . 3980FEET 

GF F L C W ARRAY [N THOUSA •JDS OF G ALEONS PER DAY 

0 0 0 0 G 0 0 0 G 0 0 0 0 0 0 G 0 
0 0 0 0 0 0 n 0 C 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 C 0 0 0 G 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 - 4C0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 G 0 0 0 0 0 0 0 0 
0 0 0 0 G C 0 0 G 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 C 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 n. 0 C 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
G 0 0 0 G 0 0 0 G 0 0 0 0 0 0 0 0 

POTENTIAL ARRAY,HEAD AEQVE O . C . 

200 . 0 200 . 0 2 CO. 0 200 . 0 20 0 . 0 2CC . G 2 C 0 . 0 2 C 0 . 0 2CG. 0 2 00 .0 2 0 0 . 0 200 . (J 200 .0 2G0. i.) 2C0 . 0 20 0 . 0 2 CO . 0 
20 0 .0 199 9 i 9 9 . o 199 . 7 199 . 4 19 9 . 2 199 . 2 19 9 . 1 19 9 . 199 .0 199 . 1 199 . 2 199 . 4 1 9 9 . 5 199 . 7 199 . 8 2 CO . 0 
200 . 0 1 9 9 . 3 199 . 7 199 . 1 198 . 8 19 8 . 5 198 . '> C. 19 8 . 0 198 . C 19 8 . 0 198 . 1 1 9 « . 4 198 . 7 199- 0 19 9 , 4 199 . 7 2C0 . 0 
2C0 . 0 1 9 9 . 7 19 9 . 1 19S .7 198 . 1 1 9 7 . 6 1 9 7 . 2 1 9 6 . 9 1 9 6 . 7 1 9 6 .8 197 . 1 197 . 5 198 . 0 193 . 5 199 . 0 199 .5 2C0 . 0 
200 .0 199 . 4 19 8 . 8 190 . 1 19 7 . ^ 1 9 6 . 7 1 9 6 . n 19 5 . 5 1 9 5 . 3 19 5 .4 19 i ) . 9 1 9 6 . 6 197 .3 19 8 . 0 19 8 . 7 199 .3 2C0 . 0 
20 0 .0 19 9 . 2 19 8 . 5 19 7 . 6 19 6 . 1 19 5 . 7 194 . 6 1 9 3 . 8 193 . 3 193 . 7 1 9 4 . 5 19::.. 5 196 . 5 19 5 19 8 , 5 199 .2 200 . 0 
200 , 0 1 9 9 . 2 19 8 . 2 197 '> 

* iL 1 9 6 . 0 194 . 6 1 9 3 . 1 1 9 1 . 6 1 9 0 . 6 191 . 5 193 . 0 194 . s 195 O 1 9 7 . 0 19 3 . 1 199 . 1 200 . 0 
200 .0 1 9 9 . I 1 9 8 . 0 19o . 9 19 5 . 5 193 , 8 19 1 . 6 1 8 0 . 8 186 . C 188 . S "1.9 1 . 5 19 3 . 6 195 .3 1 9 6 . 7 19 7 . 9 199 .0 200 . 0 
200 . 0 199 . 0 i 9 8 . 0 19 o . / 195 . 3 193 , 3 190 . 6 18 6 . 0 1 4 2 . 1 186 . 0 19 0 . 5 1 9 3 . 2 195 . 1 1 9 6 . 6 19 / , 8 198 , 9 200 . 0 
20 0 -0 1 9 9 . 0 19 8 . •0 196 O 1 9 5 . 4 1 9 3 , 7 1 9 1 . 5 18 8 , 8 186 . 0 13 8 . 8 191 . 5 193 . 6 195 . 3 196 . 7 197 . 9 19 9 . 0 200 . 0 
200 . 0 1 9 9 . 1 19 8 . 1 197 . 1 1 9 5 . 9 194 . 5 1 9 3 . 0 1 9 1 . 5 190 . 5 191 . 5 19 3 . 0 194 . 5 195 .3 1 9 7 , 0 198 . 1 199 , 1 200 . 0 
200 .0 1 9 9 . 2 19 8 . 4 19 7 . 5 19 6 . 6 195 . 5 1 9 4 . 5 I 9 3 .6 193 . 2 193 . 6 1 9 4 . 5 1 9 5 . 5 196 . 5 1 9 / . 4 198 .3 199 . 2 200 . 0 
20 0 .0 199 . 4 19 8 . 7 198 . 0 1 9 7 . 3 196 . 5 19 5 . 8 19 5 . 3 1 9 5 . 1 19 5 .3 195 . 8 1 9 6 . 5 197 .2 1 9 7 . 9 198 . b 199 .3 2 CO . 0 
200 . 0 1 9 9 . 5 19 9 . 0 198 . 3 19 8 . 0 1 9 7 . 5 197 . 0 19 6 . 7 196 . 6 196 .7 197 . 0 197 , 4 19 7 . 9 193 . 5 19 9 . 0 199 .5 200 .0 
200 .0 199 . 7 199 . 4 19 9 . 0 198 . 7 198 . 3 198 . 1 19 7 . 9 1 9 7 . 8 19 7 . 9 1 9 3 . 1 198 . 3 198 . 6 1 9 9 . 0 19 9 . 3 199 . 1 200 .0 
200 .0 1 9 9 . 8 1 9 9 . 7 199 . 5 199 . 3 199 . 2 1 9 9 . 1 1 9 9 . 0 198 . 9 19 9 .0 19 9 . 1 1 9 9 . 2 199 . 3 1 9 9 . 5 199 .7 199 . 8 2 CO . 0 
200 . c 2CC . 0 2 0 0 . 0 200 . 0 20 0 . 0 2CC. C 2 CO. 0 ^ G 0 . 0 200 . 0 2C0 .0 2 0 0 . G 200 . 0 200 .0 2 0 0 . 0 2G0 .0 200 .0 2C0 . 0 



NUMBER OF IFERATIONS IN GAUSS-SIECEL S0LUTI0N= 12 F A X I K U M ABSnLGTE RES I U U A L = 0 . 3 9 7 6 F E E T 

RATE CF FLOW ARRAY IN THCjUSANCS OF GALLONS PER DAY 
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POThivTlAL ARRAY,MEAD A80VE O . D . 

200 . 0 

20 0 . 0 

2C0.G 

2 0 0 . 0 

2 0 0 . 0 

2CG . 0 

200 .0 

2 C 0 . 0 

2CG.0 

2CG .0 

200 .0 

2C0 .0 

2CG.0 

2 0 0 . 0 

2 0 0 . 0 

2G0.G 

2 0 0 . G 

2CG.0 

1 9 9 . 8 

19 9 . / 

1 9 9 . 5 

1 9 9 . 0 

1 9 8 , 3 

1 9 8 , 7 

1 9 8 . 6 

198 .5 

1 9 8 . 5 

19 8 . 6 

1 9 8 . 8 

1 9 9 , 0 

1 9 9 , 3 

199 .5 

1 9 9 . 7 

2 C G . G 

2GG.0 

1 9 9 . 7 

1 9 9 . 3 

19 8 . 6 

198 . 1 

1 9 7 . 7 

1 9 7 . 2 

19 7 . 0 

19 6 . 9 

1 9 6 . 9 

1 9 7 . 2 

19 7 . 5 

1 9 8 . 0 

198 . 5 

1 9 9 . 0 

1 9 9 , 5 

2CG.G 

2 C 0 . 0 

199 . 5 

1 9 8 . 6 

19 8> , 0 

1 9 7 . 1 

1 9 6 . 3 

1 9 5 . 7 

19 5 . 2 

19 5 . 0 

19 i , 2 

19 5 . 6 

1 9 6 . 2 

1 9 7 . 0 

1 9 7 . 7 

19 8 . 5 

19 9 . 2 

2 0 0 . 0 

2 0 0 . 0 

1 9 9 . 0 

190 . 1 

19 7 . 1 

19 6 . 1 

1 9 4 . 9 

19 3 . 9 

1 9 3 . 2 

192 .8 

193 . 1 

1 9 3 . c 

1 9 4 . 8 

19 5 . 9 

19 6 . 9 

L98 . 0 

1 9 9 . 0 

20 0 . 0 

2 C U . 0 

19ii .8 

197 .7 

1 9 6 . 3 

1 9 ^1. 9 

19 ':S. 4 

1 9 1 . 9 

19 C .6 

19(; . 0 

190 .5 

19 L.8 

1 9 3 . 3 

1 9 ' t . 8 

196 .2 

19 7.5 

19!J ,8 

2CC.G 

2GG .0 

1 9 8 . 7 

1 9 7 . 2 

1 9 5 . 7 

1 9 3 . 9 

1 9 1 . 9 

1 8 9 , 6 

18 7 . 3 

18 5 . 9 

1 8 7 . 3 

18 9 . 5 

1 9 1 . 7 

1 9 3 . 7 

1 9 5 . 5 

197 . 1 

1 9 8 , 6 

2 C G . 0 

2 0 0 . 0 

1 9 8 . 6 

19 7 . 0 

19 5 .2 

1 9 3 . 2 

19 0 . 6 

18 7 . 3 

1 8 3 . 2 

1 7 9 . 0 

1 8 3 . 1 

1 8 7 . 2 

1 9 0 . 4 

19 3 . 0 

1 9 5 . 1 

1 9 6 . c 

19 8 .5 

2GG.G 

2CC,0 

1 9 8 . 5 

196 , 9 

1 9 5 , 0 

19 2 . 8 

19C.0 

1 8 5 . 9 

179.G 

1 1 3 . 1 

1 7 9 . 0 

1 3 5 . 3 

18 9 . 8 

1 9 2 . 7 

194 . 9 

1 9 6 . 7 

1 9 8 . 4 

2 0 0 . G 

2G0 .0 

198 . 5 

1 9 6 . 9 

195 . 2 

1 9 3 . 1 

1 9 0 . 5 

1 8 7 . 3 

1 8 3 . 1 

1 7 9 . 0 

18 3 . 1 

187 . 2 

1 9 0 . 4 

19 3 . U 

19 5 .0 

19 6 . 8 

1 9 8 , 5 

2C0.G 

200 . 0 

19 8 .6 

19 7 . 2 

1 9 5 . 6 

1 9 3 . 8 

1 9 1 . 8 

18 9 . 5 

18 7 . 2 

18 5 . 8 

1 8 7 . 2 

1 8 9 . 5 

1 9 1 . 7 

1 9 3 . 7 

19 5 . 5 

1 9 7 . 1 

1 9 8 . 6 

200 .0 

2 00 . 0 

198 .8 

19 r. 5 

196 ,2 

1 9 4 , 8 

1 9 3 . 3 

1 9 1 . 7 

190 . 4 

1 8 9 , a 

190 ,4 

1 9 1 . 7 

1 9 3 , 2 

1 9 4 , 7 

196 , 2 

1 9 7 , 5 

1 9 8 . 8 

200 . 0 

2C0 .0 

1 9 9 . 0 

198.G 

1 9 7 . 0 

1 9 5 . 9 

1 9 4 . 8 

1 9 3 . 7 

1 9 3 . 0 

1 9 2 . 7 

1 9 3 . 0 

1 9 3 . 7 

1 9 4 . 7 

1 9 5 , 8 

19 6 , 9 

1 9 8 . 0 

1 9 9 . 0 

2 0 0 . 0 

2 C 0 , 0 

1 9 9 , 3 

1 9 8 . 5 

1 9 7 , 7 

1 9 6 , 9 

1 9 6 , 2 

19 5 , 5 

1 9 5 , 1 

1 9 4 , 9 

19 5 . 0 

19 5 . 5 

196 . 2 

1 9 6 . 9 

1 9 7 . 7 

1 9 8 . 5 

1 9 9 . 2 

2 G 0 . 0 

2G0 .0 

19 9 . 5 

1 9 9 . 0 

1 9 8 . 5 

198 .0 

1 9 7 . D 

19 7 . 1 

1 9 6 . 0 

1 9 6 . 7 

1 9 6 . 8 

1 9 7 . 1 

19 7 .5 

19 8 . 0 

193 . 5 

19 9 . 0 

1 9 9 , 5 

2C0 .0 

2 0 0 . 0 

19 9 . 7 

1 9 9 . 5 

1 9 9 . 2 

1 9 9 . 0 

1 9 8 , 3 

1 9 8 . 6 

1 9 8 . 5 

1 9 3 , 4 

198 .5 

1 9 8 . 6 

198 .6 

199 .G 

199 .2 

1 9 9 . 3 

1 9 9 . 7 

2 0 0 . 0 

2 C 0 . 0 I 1 

2CG.0 

2CG.0 

2CG. 0 

2CG.0 

2 C 0 . 0 

2C0 .0 

2C0 .0 

2 0 0 . 0 

2 C 0 , 0 

2 0 0 , 0 

2 0 0 , 0 

2 C G , 0 

2 C 0 . 0 

2 0 0 , 0 

2 G 0 . 0 

2 C 0 . 0 



GC T C > f < F A C ; 
E ^ L ; 

IF KCIf<=3 TT'CK L L ; 
F S £ F r jCD, \! - L , ^ ^ ; f . , T , T A , H ,<N^ A , H R , n e o u i v , ^ i ^ ^ . L , H V A i ; 

P U T P A G E ; 
G C TO S T A , < r ; 
FNC; 

IF i\C 1:^=4 T H ' . ^ <:u; 
L C 1 = 1 T C I \ T C T ; 
I f r i ( I )> t j TH EN C( n = C; 
t K D ; 

^ :CIP=U; 
K C C t : = i ; 
P L T P A L I ; 
GC T O S L L : " J ; 
F f 'C ; 

{ l i \ : 2 i \ L A G U G C T ; 



CI. 

APPENDIX C 

COMPUTER PLOTTED STEREOGRAPHIC STABILITY 

REGIMES FOR A PLANE DISCONTINUITY 

CI . Introduction 

Two programs have been written using the principles described 

in Section HI, 1.2. 3.2. Program STAB computes and plots the stability 

regimes for particular F* and combinations. Program JTSTAB employs 

a similar method to determine the stability regime for a particular C-(3f, 

^ » <51, CT, set of conditions, and has the facility for rotating this plot, 
1 Z o 

using the known principal stress directions, into global axes. 

C2. Program STAB 

Using the notation of Fig. 1. 3, an orientation maybe considered 

in limiting equilibrium when it satisfies all the following conditions: 

0^1^<1 

0<n^< 1 

l^+n^<l 

For the present study, P values of 0, 0. 33, 0. 67, lhave been used: N is 

incremented in 999 steps between er and cr . If the P-N combination satisfies 

the limiting conditions, 1 and n are converted into the corresponding angles 

& e (see Fig. 1.4). 

All plotting is done using the standard characters & line printer. 

Because there are 10 characters/inch horizontally, but only 6 characters/inch 

vertically, locations in the output character array B must be scaled accordingly. 

The cartesian coordinates, before scaling, are calculated for an equal area 

Schmidt net by. 



C2. 

X = y2. r. sin (^/2). sin oc 

y = f2. r. sin ( /2). cosot 

These coordinates are entered into B as '+', together with the circle and 

axes as '*', ' I • respectively. Successive quadrants are used for each 

P value, and when complete, array B is printed. 

Input details are simple, consisting of only a F*-(3f pair for each 

stability regime stereogram required. The source listing and a representative 

selection of stability diagrams are given. 



O P T l O M S ( h A I N ) ; 

S T A B : P ^ 0 C OPTiOSISIMAI.M); 

[S P ÎOGRAMME PLOTS THE F A I L AMD ,MO-FAIL . R E G I M E S F3R A PLAVJA? 
iCDVJTlNUITY I\j A T R I A K I A L STRESS F I E L O . ( ^ E F : J AEGER, J c G , , E L AST I G I T Y , 
\ : T U R E A N U F L O W , ^ E T H U E N , 1 9 6 2 ) THE RESULTAMT PLOT I S BASED ON! A 
^ M I D T EQUAL AREA PROJECTION. 
! ! * ; J : * * * * * * * * * * * * 

I.MPUT DETAILS 
A DII4ENST0NLESS PARAMETE;^ DESCRIBING T H E S T R E S S - F A I L U R E RLLATIUMSHIP 

; ( S I G M A l - S I G ^ A 3 ) / 2 ) / | ( ( S I GMA1 + SIGMA3 ) / 2 )+C «=C3T { PHI ) ) 
FR ICT ION A>JGLE 

DCL( ( F j P H I ,K l ,K2 ,K ,P9Ml»LL»L , :^ iM,N»^A,THETA,ALPHA, ,%l , . , - 2 ,F i , 
B E T A 1 , B E T A ? . ) F L 3 A T , ( ( P H I 1 , P S U , A , T ) (88) )FLGAT, { : D L , < 0 . - J , P P , ' - M , 
X C ( - 2 4 - : 2 4 ) , X , Y , MM) F I X E D B I N » B ( - 2 4 : 2^^-'^0: ^0 ) CHAR {1 ) ) ; 
OCL STEPOL ENTKY( ( * ) F L O A T , ( * ) F L O A T , {<')FLOAT, ( * ) F L O A T , F I X t J 
B I N ) ; 

• E P 0 L : P R 0 C F D J R E ( R 1 , R 2 , R 3 , R 4 , M ) ; 

)CEDURE STEPOL CONVERTS A PAIR O F EQUATO;^IAL P R O J E G T I O M A M G L E S I \ I T 3 
; G3RRESP0NDIMG pAiR O F P O L A R P R O J E C T I O ^ V I ANGLES 

*/ 
D C L ( { R 1 , R 2 , R 3 , R 4 ) ( M ) F L O A T , ( I , M ) F I X E D B I M ) ; 
DO 1 = 1 T O v|; 
I F R l ( I ) = 7 7 7 7 THEN D O ; 

R 3 I I ) = 7 7 7 7 ; R 4 ( I ) = 7 7 7 7 ; GOTO S T l ; EMU; 
I F A B S ( R l ( . I ) )>90 T H E N D O ; 

^ 2 ( I ) = - R 2 ( I ) ; 
I F R l ( I ) > 0 THEN R l ( I ) = R 1 ( I ) - 1 8 0 ; 
E L S E R K I ) = 180+R1( I ) ; 
END;. 

Al THE ARGUMENT O F THE GENERIC FUNCTION TANU APPROACHES 90 CEGLFS 
VALUE O F THE FUMGTIDN BECOMES TOD LARGE AND THE OvERFLOiJ CONUITIJM 

R A I S E D . THIS MAY B E AVOIDED B Y THE USE O F C O N D I T I D N J A L S T A T ^ M B N I T S 
*/ 

I F ( A B S ( R 2 { I ) ) > 8 g , 9 9 9 & A B S ( R 2 ( i ) ) < 9 0 . 0 0 1 ) THEN D O ; 
I F ( A B S ( R 1 ( I ) ) > 8 9 . 9 9 9 & A B S ( R l ( I ) ) C 9 0 . 0 0 I ) THEN D U ; 

R 4 ( I ) = 9 0 ; GOTO STO; ENU; 
E L S E R ' h ( I ) = A T A N D ( T A N D ( R l ( I ) ) ) ; 

Rie( I ) = ABS( A T A N D ( T A N D ( R l ( I ) ) ) ) ; 
STO: I F S I N D ( R 1 { I ) ) > 0 T H E N R 3 { I ) = 9 0 ; 

E L S E R 3 ( I ) = 2 7 0 ; GOTO S T i ; LNJU; 
F1 = S I N D ( R 1 ( I ) ) ; 
F 2 = T A N D ( R 2 ( I ) ) ; 
R 3 ( I ) = A T A N D ( F 1 * F 2 ) ; 
I F F 2 0 THEN! D O ; R 3 ( I ) = I80+R3( I ) ; E N D ; 
ON ZERODIVIDh BEGIM; 

^ ^ i l ) = 9 0 ; GOTO S T i ; E N D ; 
F3 = ( C 0 S D ( R 1 ( I ) ) ) * { T A N D ( R 2 ( I ) ) ) * G 3 S D ( R 3 ( I ) ) ; 
R ^ ( I ) = A T A \ I D ( 1 / F 3 ) ; 

S T i : END; 
E N D S T E P O L ; 

T A R T : T H E T A , A L P H A = 0 ; 
GET L I S T ( F , P H I ) ; I F F= 9 9 9 9 , 0 T H E N GOTO F I M I S H ; E L S E 
B= ' • ; 





O P T I O N S ( M A I V J ) 

R 0 W = 2 4 ; C O L = ^ 0 ; 

: C D D R O n A T E s O F T H E : i R C L E A R E C A L C U L A T E D , A . M D T D G E T H E ^ «^ITH T H E X 
3 Y A X E S A R E E M T E R E D I N T O T H E C H A R A C T E R AR^lAY A S * - I ^ E S P E C T W E L Y 

*/ 
DO 1=0 TO ROW; 
X C ( I ) = ( ( S Q R T ( { RDW *ROk ' ) - ( 1*1 ) ) ) * C O L / R O n ) + 0 . 5 ; 
X C ( - I ) = X C ( I ) ; E N D ; 
DO 1=0 TO Row; B { I , X C ( I ) ) = « * « ; B ( I , - X C ( I ) ) = • * ' ; E N D ; 
DO 1=0 TO - R O W BY - I ; B ( I , X C ( 1 ) ) = • * • ; 3 ( I » - X C ( I ) ) = « * • ; EMO; 
DO i=-ROw TO ROW; B ( I , O ) = M ' ; E N D ; 
DO J = - C O L T O C O L ; B ( 0 , J ) = ' - « ; E N D ; 

T H E R E I S NO I N T E R S E C T I O N O F T H E P R I N C I P A L S T E S S C I R C L E B Y T H E 
L U R E E N V E L O P E F Q R T H E D I S C U N T I N U I T Y , T H E R J N I S TE- iMINATED 

*/ 
I F F < = S 1 N D ( P H I ) T H E N G O T O F I N ; 

; A N J 3 L E S BETAl A\JD B E T A ? . B E T W E E N T H E 0 I S C O M T I N J I T Y F A I L U R E AMD TrtE 
;MA1 D I R E C T I O M A R E C O M R U T E D 

*/ 
F 1 = ( S I N D ( P H I ) ) / F ; 
Wl = A T A M D ( F I / ( S g R T ( l - F l * F l ) ) ) ; 
ft'2 = 1 8 0 - W l ; 
B E T A 1 = { W l - P H I ) / 2 ; 
B E T A 2 = ( W 2 - P H I ) / 2 ; 

y / A L U E O F T H E I N T E R M E D J A T E P R I N C I P A L S T R E S S WILL B E BETwEErJ SIGMAl 
' S l s M A 2 . F O U R VALUES A R E U S E D , I N C L U D I N G T H E E N D VALyES O F S I G X A 2 = 
.V1A3 AMD S I G M A 2 = S I G M A 1 , W I T H TWO EQuALLY S P A C E D I M T E R M E D I A T E V A L U E S 

<=/ 
OOPl iDO P P = 0 T O 3 ; M = 4 4 ; P = P P / 3 ; 

E S T A B I L I T Y RE3IME F O R S IGMA2=SIGMA3 IS CDMPJTED 

I F pp=0 T H E N D O ; 
DO 1=1 TO M; 
A L P H A = I * 2 ; THETA=BETAl ; 
R A = 1 . 4 1 4 2 * R 0 W * S l N D ( T H E T A / 2 ) ; 
X = { ( R A * S I N D ( A L P H A ) ) * C U L / K O W ) + 3 » 5 ; 
Y = ( R A * C O S D ( A L P H A ) ) + 0 . 5 ; 
B { Y , X ) = « + « ; 
A L P H A = ( I * 2 ) - i ; THETA=BETA2; 
R A = 1 , 4 1 ^ 2 * = R 0 W * S 1 N D ( T H E T A / 2 ) ; 
X = ( { R A * S I N D ( A L P H A ) ) * C u L / R O h ) + 0 . 5 ; 
Y = ( R A * C O S D ( A L P H A ) ) + o . i > ; 
B ( Y , X ) = « + ' ; 
E N D ; 

E N D ; 

S T A B I L I T Y REGIME F O R SIGMA2=SIGMA1 IS COMPJTED 

E L S E I F P P = 3 THEN D O ; 
DO 1=1 TO M; 





D P T I O M S ( M A I \ ! ) ; 

P H I l ( 2 * n = 2 * I ; PSI1(2*I)=BETA1; 
PHIK { 2 * I ) - l ) = ( 2 * I ) - l ; PSI1((2*I)-1)=BETA2; END; 
N«=2*M; 
CALL STEPOL(PHI 1,PSI1» A , T , i ^ ) ; 
D3 1=1 T3 M; 
^A = lo4142*RDW*Sl'MD( (T{ I ) )/2) ; 
X=( { R A * S I M [ ) ( A { I ) ) )*CoL/ROW)+0.5; 
Y = ( R A * C O S D ( A ( I ) ) ) + 0 . b ; 
3(-Y,X)=«+«; 
END; 

END; 

-• STABILITY ^EGI^ES F O R SI GMA2 = SI GKA3+( S IGMA1-S 13WA3 )/3 AND F3R 
;MA2 = S.IGM.A3 + ( S I G M A 1 - S I G M A 3 ) * 2 / 3 A R E COMPUTED 

*/ 
ELSE DO; 
DO KM=1 T O 999; Mi=MM/1000; 

K = l + M l * ( 2 * F / ( 1 - F ) ) ; 
K l = ( 1 + F ) / ( 1 - F ) ; 
< 2 = l + P * ( 2 * F / ( l - F ) ) ; 
L L = l ( K 2 - K ) * ( i - < ) + (K*TA.\JDlPHI ) ) ) /( ( K2-K1 ) «{l-< 1) ) ; 

I C E L L AND NM ARE THE SQUARES OF DIRECTION COSINES,THEY DO MOT EXIST 
;AT E R T H A N 1 OR L E S S T H A N 0 

*/ 
IF L L < = 0 | L L > 1 T H E N GOTO L2; 
L = S Q * T ( L L ) ; 
N N = ( ( K 1 - K ) * ( K 2 - K ) + ( K * T A N 0 ( P H I ) ) * * 2 ) / ( ( K l - 1 ) * ( K2-1) ) ; 
IF N\|< = 0|NN>1 T H E N G O T O L 2 ; 
M = S Q R T ( N M ) ; 

i SUM OF THE SQUARES OF THE THREE DIRECTION COSIMES DESCRIBING A 
ME iS UNITY. IF THE SUM OF TWO ( L L AND N N ) I s GREATER THAvl 1 THjfM 
; OTHER DOES MOT EXIST AND THuS THE VALUES L AND M ARE ALSO 
ENABLE 

<=/ 
IF l l - L L - N N ) < = 0 THEN GO TO L2; 
TH E T A = A T A M D ( ( S Q R T { 1 - L * L ) ) / L ) ; 
L = N / s I i M D ( THETA) ; 
ALPHA = ATA,>jD( ( S Q R T { I - L * L ) ) / L ) ; 
^A=l.^l^2*R0W*SIND(THETA/2); 
X=( (RA*SIND(ALPHA) ) *C0L/-i3W )+0 . 5; 
Y=(RA*COSD{ALPHA))+0.5; 
IF PP=I THEN B(Y,-X)='+'; 
ELSE B(-Y,-X)=«+«; 

L2: E N D ; 
END; 

END LDDPl; 
PUT PAGE EDIT('TRIAXIAL STABILITY ANALYSlS:STEREOG^APHIC LGJAL 

A PROJECTION')(X(^0),A); 
PUT SKIp(2) EDIT{•F='vF»'PHI='»PHI,'P=3» 0,33, 0.67, 1') 
( X ( 5 0 ) , A , F ( 5 , 3 ) , X ( 5 ) , A , F ( 4 , 1 ) , X ( 5 ) , A ) ; 
PUT S K I P ( 6 ) ; 
DO I=ROW TO -ROW BY - 1 ; PUT SKIP EDITC 





OPTIOMS(MAIN); 

* ) ( A) ; 
DO J = - : Q L T O C D L BY i ; 

PUT E D I T ( B ( I , J ) ) ( A ( 1 ) ) ; END; END; 
FINScGOTO START; 

I^JlSH-.EiMD STAB; 





T R I A X I A L S T A B I L I T Y A N A L Y S I S: S T E ^ E O G R A P H I 3 F Q U A L A ^ E A . ^ ^ O J E C T I D M 

F = 0 . 3 0 0 PHI=lDoO P = 0 , 0 « 3 3 , 0 . 6 7 , I 

* + +++++++4-
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* ++++ 
* ++++ 

++ + 
+ + 

+++ 
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+ + + + 
+ + + + 

* ++ + 
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ft 
+ + + + * 

+ + + + + 
* + + + + + + + + 

+ + * 





TRIAXIAL STABILITY ANALYsI S: STEREJGRAPHIC EQUAL A^EA J'^OJECTIDM 

F=0.600 PHI=10oO P=0, 0o33, 0,67, I 

++++++ 

* 

+++ + + 
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+ + 
++ 

+++++ + 
++ + + f 

+ + + 
+++ 
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+ 

+ * 
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++++ 
+++ + 
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T R I A X I A L S T A B I L I T Y A N A L Y S I S : S T E R E G G ^ A P H I C E Q U A L A ^ E A P ^ O J E C T I J M 

F=0o600 PHI=20oO P=0, 0.33, 0.67, 1 

* + + + + + + + + + + +4-
* + + + + + + 

+ + + + + 
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TRIAXIAL STABILITY ANAL Ys I S: STERE JGR AP HI C F&UttL A-lEA P-lUJECTID»j 

F=0.600 PHI=J0.0 P=0, 0.33, 0,67, I 

* 
-f + + 4-4-4-4-

+ + + + + 
+-*• + 

+ + + 
+ + 4-
-I-

4-4-
+ + 
-^4-4-
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-I-4-4-

+ + + 
ft 
ft 

+ + 
-̂ 4-

-+4-
4-

•I--+4-
+ + + 

4-4-
4-
+ + . 
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+ 
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+ + + * 

+ + + + + + 
+ + + + 

+ + ft 





T R I A X I A L S T A B I L I T Y A N A L Y S I S: S T E R E J G R A P H I C F 9 U A L A ^ E A PIJJECTn^J 

F = 0 . 8 0 0 P H I = 1 0 . 3 P = 0 , 0 . 3 3 , 0 . 6 7 , 1 

+ + + 
+++ 
+ 

-++-++-

+ * 
+ + + + + + + 4- * 

+ + + + i 

+ + 
+ + + 

+ + -

+ + * 
+ * 

+ 4- * 
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+ C: 
+ «= 

+ * 

+ + 
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+ + + 
+ + + + 

+ + + 

+++ +++++ 
+++++++ 

+++++++++++ 

+ + 





TRIAXIAL STABILITY AMALYSIS:STEREJGRAPrilC EQUAL A<EA PRDJECTIDN 

F=0.800 PHI=20.0 P=0, 0,33, 0.67, 1 

+ + 
+ + 

* + + 
* + 

+ 
+ 
+ 
+ 
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+ 
+ 
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+ 
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ft 
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+ + + + « 
ft 
ft 

ft 
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I + + 





TRIAXIAL STABILITY AMAL YSI S: STEREOGRAPHIC EQUAL A^EA PRUJECTIU^J 

F=0.800 PHI=30.0 P=0, 0.33, 0.67, 1 

*++++++++ + 

+ 
« + +++ + + + 

+ 
+ 
+ 
+ 
+ 
+ + 
++ + 

++++++++ 
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++++++ 

++++ + 
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+++ 
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+ + + 
* 

+ + + + + 4- 0: 
+ + + * 

* 

+ + + + + + + 
+ 1 + 





TRIAXIAL STABILITY AMALYSI S; STE^EDGRAPHIC FgUAL A-iEA Pi^OJECTUV! 

F = 0 . 8 0 6 P : H I = 4 0 . 0 P = 0, 0 , 3 3 , 0 . 6 7 , I 

+ + + 
++ + 

+ + 
+ 

f + + 

+ + 
+ 

•I-

J* 

+ + + •!• + + + 

+ + + + + 
+ + +• 

« +++ 
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+ + ++ * 
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+ + + + + + + + 
1 + + 





TRIAXIAL STABILITY AMALySlS: SfEt^EOGRAPrllC FQUAL A'<tA p^^^JECTIDM 

F=0.800 PHI=bO.D P=0, 0,33, 0.67, 1 

++++++++ 
+++ 

++ 
++++ + 

+++ + + 

+++++++ 
+++ 

+ +++ + 
+ + 
+ + 

+ -

+ + + 
+ •1-

*• 

+ + 

V 





T^IAXIAL STABILITY AMAL Ys I S: SFE^EDGRAPHIC EQUAL A^EA Pi^OJECTIDM 

F=0.900 PHI=10.0 P=0, 0.33, 0.67, 1 

+++ + 
++ + 

++ 
-++• 

++++ 
++++ ++ 

+ + + * 
+ ++ * 

+ + <̂  
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+ 4- * 
4- e: 
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+ «t 
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+ 
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+ + + 

+ + + 

+ + + 
+++++++ 

* 





T R I A X I A L S T A B I L I T Y A M A L Y S I S : S T E R E D G R A P H I C FQUAL A^EA ^ ^ U J E C T I D M 

F = 0 . 9 0 0 P H I = 2 3 . D P = 0 , 0 . 3 3 , 0 , 6 7 , 1 

* 

++ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+++++++ 
+++ + 

+++ 
++ 

++ 
+ 

++++++++ 
++++ 

+ + + 
++ + 
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++ 
+ 

+ 

+ 

+ 
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+ + + + + + + t= 

+ + 





TRIAXIAL STABILITY A'MLYSI S: STEHEDGRAPHIC EQUAL A:̂ EA t ^ R O J E c T I D ^ J 

F=0.900 PHI=30oO P=0, 0.33, 0,67, 1 

+ + 

* 
* 

+ 
+ 
+ 
+ 
+ + 
+ 
+ 
++ 
+ + 
+++++++ 

++++ + 
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+++++++++ 
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+ 
+ 
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+ 

* 
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* 

+ + + + -»- + f i 
+ + + + * 

ft 

+ + 





TKTAXIAL STABILITY A.MALYSIS: STE^EOG^APrilC EQUAL A^EA JRDJECTIDN! 

F=0.900 PHI=40oO P=0, 0,33, 0.67, 1 

+ + + + 4-

+ 
* + 

+ 
+ + 
+ + 
+ 
+ + 

+ + + 

+ + + 
+ + f 

+ + 
+ + 

+ + 
+ + 
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+ + 
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+ 
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* 

+ I + + 





T K I A X I A L S T A B I L I T Y A N A L Y S I S : S T E R E 0 3 R A P H I C EQUAL A:IEM P ^ U J E C T I J V ) 

F = 0 . 9 0 0 P H I = 5 0 . 0 P = 0 , 0 . 3 3 , 0 . 6 7 , 1 

++++++++++ 
*+++++ 

* +++ 
* +++ 

+ + 
+ 
+ 
+++ + 

+ + + 
-- + 
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++++++++++++ 
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+ + + 
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* 





TAIAX lAL S T A B I L I T Y AVJ AL Y S I S : STE^EOGR APHI C FQJAL A^EA P ^ L J E C m v j 

F=0o900 PHI=60 .0 P=0, 0 . 3 3 , 0 . 6 7 , 1 

+++++++ 
+++ 
+ 
+ + + + + + + + • » • + 

+++ + 
++++ 

+++ 
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C3. 

C3. Program JTSTAB 

This employs similar methods to the above, and is extensively 

detailed by the comment cards contained in the source listing. To simplify 

to logic, three interrelated procedures (subroutines) are used. The 

orientation of a plane in space may be described by combinations of the 

angles oc , 9, (3̂ , i|( (Fig. 1.4). Thus ( « , 9 ) are the polar coordinates, 

( 1 ^ , >̂) equatorial coordinates and. (9, ^ ) direction cosine coordinates. 

For plotting purposes, polar coordinates are used, but equatorial coordinates 

are required for some rotations. Procedure POLSTE therefore converts 

from polar to equatorial coordinates, procedure STEPOL performing the 

reverse function. 

Rotation is executed by procedure ROTATE, and may be about 

the vertical axis (azimuth rotation) or the N-S axis (elevation rotation). By 

a combination of elevation rotation, azimuth rotation and elevation rotation, 

any completely new orientation may be achieved. For elevation rotation, the 

coordinates are required in equatorial form, polar coordinates being used for 

azimuth rotation. At the end of each step, coordinates are converted into 

polar form. 

C3.1. Logic - The planar discontinuity envelope is first tested for 

intersection of the principal stress circle, and the stress coordinates 

calculated. If there is no intersection, or the envelope is tangential to 

the circle, a termination message is printed and the run stopped. 

The stability regime is calculated similarly to the above, and 

the limiting orientations stored in paired locations as (ot, 9). The ROTATE 

procedure is then used to bring the o ,̂ (r^, <s^, directions into coincidence 

with the vertical, E - W , and N-S axes respectively, and the required angular 

rotations stored, (BETAR 1, BETAR 2, BETAR 3). The ( « , 9) pairs are 

then back-rotated in reverse sequence using the above rotation parameters. 



C4. 

Finally, the polar coordinates are translated into cartesian locations in the 

output character array using the definitions given in STAB above, and the 

final rotated stability regime is printed. 

Details of input are contained in the program listing. The 

example given depicts to stability regimes at each stage of back rotation. 





IC^'ui^-l CPTICNSCWAIV) ; 

JTS1 -nrv^.-^CCLCU^.c CFTICiXS l.v/>I\') 

A.ViALYShS THc S T A U I L I T Y L T A PLAviA< 01 SCGi\ F I iM. i TY , 
RY I T S FAILUXc STKt.NiGTh Pl^\!\i''lj?:<S Cr 
I T S D IP AiV: C I P C I ? E C T I C \ , IN JUh'S Qf 

ACTING LPGi\ I T AT A P c I \ T , U C S C : 1 I B E J tlY Tj-J' 
ft-: ' .E£ PRINCIPAL S T - J E S S C S . 

SYf-'f3rL 1. EFIivITICtNS 
bU|V|VY VA.MABLE LSr .J IN THF CCf'OU T U I L N 
i : i S T . 4 \ C ? ^RG.i Ti^c CciMTHE CF T K E P U N C I P A L 
P^CJcCTHJN O.nO ri-? I ^ C ^ F A L S T S U S S AXIS CF 
P C I M S 

» ci!',ECTif::v! or r^AJiLS 
.1 GLG.UL n5i?;.:CTlGi\, CF 

GLCfJU t IRECTIUiV CF 

.'1 ;^ i, 1 
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.v'Cii.VAL S Y S F S S 
I'MSCcNT I N L I T Y 
N'0><^ML SYfU.SS 
CISCCN'l r ' U I T Y 
L-CUIVAL:-nT Tu 
c\-L'IV4'LENT TC 
i j t t l V A L L - M TC 
tiJL'IVALL-^ T TL' 

\/«LUt 
vNvP.LCl'E 
V P L L E c r 
EN-vFLUPZ 
PHI 
PS I 
ALPHA 
TH'.TA 

PLCT 
PLCT 
uF THE HIGHEST I.MT-RSECTiDN 

Ai\C 
FHE 
AhC 

T I E 
LL'A 
TFE 

P.IIWCIPAL 
:SF INTC.^S. 
P.̂  I NCI PAL 

s r ^ . E s s 
CF ILN H-JT..-'--^ 
STRcSS Cl . iC:> 

TH-

THE 
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SHt/i"l S T : ; E S S 
\-i.Ti hmiE ALCWG >.i^OiLS VfCTCR IN PCLA^ PLCT 

•? - T A l t i p C F S I G ^ M 
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S L 
F I 

r.C L ( ( ( ALPHA L , THET a i , PH11, '->S 11 , UPHAZ , T H E F A2, P H 1 2 , .^S12 , •-\^-'\' * - j , 
r H t T A 3 » P H l 3 , ' ^ S r 3 ) (f'') )FLCAT C C N f ^ C L L E . : , C'i 11 ,d r.J n ,i> '-f . 
F L C A T , ( n , 1 ) F I X = D HIM) ; 
OC L ( ( SlGi' A i , S IJ,JiA2 , S IGi-n3 , S C , F I , A , B , C , h ) FLUA f ) ; 
CO L { THE TA , ' \LPhA , PHI , PS I ) ( 3b9 ) FLLAT , ( C C L , ^CVJ , X , Y ) F I X J . ') I,., 
XC( -^C. j : . "s t3f t )C0\ r , {0LLcL) F IXED 
t ; ( - t^CW: ^ L I - J , - C G L : C C L ) C C I M T . < C L L E C ChAK( L ) » ( L L , L ».\ ) F L L / ' T ; 

.1. 

U j C ' J U ^ n P C L S T c CfJWVF'^rS T\->1 PCli^-i ^.\GLr:S P I ANu P2 I M C 
^,;•^^JSP^.\•r:I.\lG ^ ' V - U A T Q , - I A L A-^JGL^S P3 A p^ 

U C L P C L S I E 1 : :T '<Y( (* ) FLCAT , ( * ) FLLAT , ( * ) F L ' J n . (* ) FLC^iT , M A 
bIN ) ; 

.^•JLST'£:p<CCECUvlc(Pl»P2,P'3,P4,i ' ' ) ; 
UCL( ( P i , P 2 , P J , P ^ ) ( .v)FLC'iT , ( I . l O F I X t C I 

, !G! - S UPCi\ I«FICF IT IS .NCT iLCUIisEO T L CPc.XAT'i M.<E &IVri\ A • . /LU. - 7 ' r 7 

I JC 1=1 TC 
I F Pi< I ) = i i n THci\ n c ; 

P 3 ( I ) = 7 7 7 7 ; p / i ( l ! = 7 7 7 7 ; jCTO ? C ! 1 ; E M . ; 

i- tv Jhri Ar^GUf'-Î '-'T HF THE r,t.>':",IC FLhCTIO?, TA.\'n I S C L C S i TL l.L-->^i':j 
L.; ^ / -O DEG:r :CS) TH..; VALL'F CF THE FUNCTION I S VE.^Y L A K G F A M f AY LtAi; 
[. THf: fWE?FLCv.i CCiV-J I T I C N . I.\ C?;CE;^ I C EYPASS TFliS A C c ^ C I T I L ^ A L 





.r'\f;f-^.:\iT i s c s u r 
• ^ / 

I F ( P 2 1 I ) > F S , ? 9 /i P 2 ( I ) < S 0 . 0 1 ) T H L \ DC; 
I F S i r X I P K I ) )>C T F E J P 3 ( I ) = 9 C ; 
c L S E P 3 ( I ) = - 9 C ; 
I F ( {AP.S(P1( I ) )>5S;.99 ci A e S ( P l ( I ) x q c . C l ) I 
(-^^'SCPK I ) )>269 .99 i A->S(P1( I ) ) < ? 7 0 . C 1 ) ) T»-r'v 

P^ 11 )=9C; GC TC P O l ; c K J ; 
E L S i P ^ ( I ) = A T A N C ( T A i \ D ( P i ( I ) ) ) ; GCIC P L l ; 

P3( I ) = A7A,v!n( ( S I \ C ( P 1 ( I ) ) ) * T A , M C { p 2 ( I ) ) ) ; 
C.\' Z E R U C I V l C c bEGIiS'; 
P / M n = s c ; GCTC F C l ; E \ i . ; 
P6( I ) = A T A M ( J ( l / { ( C C S C ( P 3 ( I ) ) ) * (CC5LMP1 ( I ) ) )*T A \ J ( P2 ( I ) ) ) ) ; 

P L l : F . \ C ; 
F •̂D P C L S T E ; 

U J C • CUPsb STtPOL CU'vlVEnS THE E'JUATCiUAL AfvlGLcS <1 A,.D *<2 IMC T.iL 

f:v,<:spni\oii\ i- pcLAi< A \ G L E S :<3 AMD 

UCL STSPOL L a i Y ( { * ) F L C A T , ( « ) F L Q A T , ( * ) F L C A T » l * ) F L L A T , " T X ^ ' : 

ST£i-LL:P.^CCECUxt(«l , ;^2, i<3» ^A,^') ; 
UCL( ( « l , . ^ 2 , K 3 , f ^ 4 ) { V ) F L C A T , { I , , v ) F I X £ [ : clK)] 
CC 1 = 1 T i : i^; 
IF ^ 1 ( I ) = 7 7 7 7 TF:;^\ c C ; 

1( I ) =7777; i<4 ( I )=7777; GCTC S T l ; E i \ \ . ; 
H.'.̂ ! ?. f !S( 'U)>90 C E G ^ t E S IT I.vlCICATES THAT D U K I W G f^aTATICi"^ TH.- :'IJL F 
•JCSSEC THE P = ^ 1 M T I V L C I J ^ C L E THUS <iEAPPEA<^S Ii\ THE DIAf-ET"; IC »L-Y 
P P C S I T E QLAijt^A-\r 

I F A B S { K l ( I ) ) > 9 0 THtA C C ; 
K2( I ) = - ^ 2 ( i ) ; . u ( i ) = - m ( i ) ; E N C ; 

I F ( A r 3 ( <2( I ) )>e'3.99 8. 'A!jS ( H2 ( I ) X 9 C . C 1 ) TH; \ ' CC ; 
IF I AeS( U ( I ) )>b9 .S9 1. A t i S ( . U ( i ) X 9 C . C 1 ) THE.M DU-. 

t^4(n = 90; GC rC S T C ; E I N C ; 
E L S E K4( I ) = Vi^S{ ' U A . \ D ( T A i \ C ( K l ( I ) ) ) ) ; 

S T a : I F Slfvini 1̂ ( I ) )>C THtK' .-^3(1) = 9C; 
L L S E R 3 ( l ) = 2 70; GC TC S T i ; UW; 

I F { U 2 ( I ) > 3 9 . 9 9 I ,<2( I X 9 C . C C 1 ) I 
(«2 I I ) > 2 c 4 . 9 9 ^ .;2( I )<27CoCCl ) T,-i£i\ OC; 1 2 ( I ) = 9 C ; I i \ i J ; 
F 1 = S I . \ D ( : U ( I ) ) ; 
F2=r ' \M:( .?2( I ) ) ; 
.<3{ I ) = A T ^ ^ \ U { r l * F ? ) ; 
I F F2<o THE'V n u ; ' 0 { I ) = iaG+:-{3{ I ) ;i;ijo; 
i j \ Z E ^ C C I V I D F nirGIA; 

K 4 ( I ) = J C ; GCTC S T l ; L ' \ J ; 
F 3 = { c r j 3 D i : u ( I ) ) ) * ( T A . \ n ( : ^ 2 ( i ) ) ) * C C S L ( R 3 ( I ) ) ; 
K 4 n ) = A T A ; M C ( l / F 3 ) ; 
I F - ^ 4 ( 1 X 0 THEiv n=-i^<'( I ) ; 

S T i : tM^; 
E'\'c S T F P L L ; 

-'IJC.irajiXE '^CTATi-; i:Ci"-':'tT;5S THt iXfc'A V A L U E S ALPfi>4l ANt; T H F T A L CF TFu 



•V 



:CL"i:i A: (JPTlCMSCf-AIiNj) ; 

'-LI A". .-u>JGLtS ALPHA A^U FHi.TA FCLLCi.-1'VG K C T A T I C ' J . T H E A X I S AN'- J L c < . - - v.f 
M"i/u ir,\! A!-<t ( : E T - R ! ; I ; : E I . 11 Tti?. pAr^«>cF:Rs H E T M J G A ; ' • • A . C L L T ^ . 

>/ 
i ; C L I C T A I c £ : \T ' ,Y (FLCAf , F L C ; - F . F L C A F , l * ) F L G ' n , ( * ) F L L ; . F , ) . - L - T , 
( * ) F L C A T , F I X " u t - I N ) ; 

^uTAT : : P ' ^ G C £ C U P " ( S E T A , C A K | - . A , G L L T A , A L P r . A , ^HETA,AL?^ A L , T H E 7 A 1 , ' ) ; 
C C L I I ( A L P H A , T H t r A , A L H H ' \ l , F H F T A 1 , PH I , PSi ) ( i-) j F L C A F , 
(B E T A , G A:' M A , ; : £ L T A ) F L C A T , (f -', I ) F I X E 0 B I N ) ; 

! ,: i-'CLES A K L t<liFAF.i{. ABOUT THE P L L E CF P H O J E C T K . \ TU LINE Tr.^ i,. I i oF 
CF.oi i rX • N G i U H - S C U T H ' 

DU i = l T O f'i; T h L T A K I )=ThETAl I ) ; A L PHA1 ( I ) =ALPH A ( I ) - L ^ L T . ; _-\;. ; 
* 
He .'QL\.{ A N G L E S '^LPHAl .-^NL IHETAl A?E C L . W E R F E C T G T H E CC:.< ^ - 5 P ^ \ u I ; 
ra-AimiAL A N G L E S P H I A N C P S I 

C 4 L L P C L S T E ( , - . L P H A 1 , T H E T A I , P H I , P S I , . V ) ; 

Ft L U U M T C R I A L AN'GLEb P h i A \ L P S I A:'." I Q T A T E C TH-iCUGH A-. A.xGL^^ J A ^ . - ^ 

1 = 1 Tc PHI ( I ) =PhI ( I ) + GA)>'f'a; ENu; 

f / PCLAi< A ^ ' C L E S ALPr;Al A-vlC THFTAl AKE CU'>IPUTE0 F^CiV Pi-1 A '.'O r^bl 
-:-/ 

CALL S T e P C L ( P F I t f S I , A L P H A l , ! F r T ' U , ? ' ) ; 
.*. 
f 
Hr PCLES AKF. 3 A C K A G T A T E L At^CUT T H E P L L E CF P R C J E C T 1 0 \ , A M ' Y 
CTAFIC'V ABCLF THIS /-sXIS CCf'PLTEC 

en 1 = 1 T C ' ' ^LPHAKI ) = A L P H A i ( I ) + 0 £ L T A + B f : T A ; ENC; 
ENL i^CTATE; 
^ = l ; 
Ci]L=AB; :->,ai. = 7 9 ; 
A L L C C U E A L P H A i , T H t T n , A L P H ' i 2 , F H L T A 2 , - : ^ L r ' H A j , F H E F V i , P h ! I , ^ ^ S I l , 
? H I 2 , P S l ? - , P H I 3 , P S I 3 ; 
A L L C C * i T £ X C , < : ; 
CC 1 = 1 T G 

Ht r^'<IMCIPAL S T - ^ t S S C I P ANC CIP L I < T 1 C vIS A-?E .<EAD I N 
• • / 

C E f L I S T ( ALPHAl ( I ) , TH £ F A i ( 1 ) , ALPHA2< I ) ,T.iETA<:( I ) , • . L P . V U * I ) » 
T H E T A 3 ( I ) ) ; E N D ; 
Cn 1 = 1 TO i i ; 
P U F S K I P f ! D I T ( A L P H A l { I I , T H E T A U I ) ,ALPHA-?( 1 ) , FHEF-4 . i ( I ) , 
A L P H A 3 ( I ) ,THtTAii ( I ) ) 
( F ( 3 , ? ) , C C L U . " . \ ( 1 i ) , F (.» , 3 ) ,C'--LLiV'M { 2 1 ) , h I rt, 3 ) , C C L L : - \ ( J i ) , , i ) , 
C 0 L U | V N { 4 1 ) , F { d , 3 ) ,CGLLi-i-^{ 5 1 ) , F (»3, 3 ) ) I 

V.y J J L A l A N ' C L E S A R E C C M ' / E < T E C TC THE CC-̂ *̂  E S OL.ML I Nvi EeLATC". I A L A . , G L io 
••/ 

CALL P C L S T F C ALPHAl jTJ K FA 1 , PH I I , P S 1 1 , f-i) ; 
C A L L P C L S T E { ALPH I H 1 J T A 2 , P H I 2 , P S I 2 , I » ' ) ; 
C A L L PCLST.:< A L P t - A 3 , T F E T A 3 , P H I 3 , P S I 3 , i i ) ; 





CiPlJ^'E U P T I L A S ( . ^ A r J ) 

pur S K I P i u i f ( ' h i i i D v ^ s i U D , p H ^ 2 ( I ) , P S I 2 ( I ) , p ^ I 3 ( : ) , P S : J { n ) 
I r ( 3 , 3 ) V CCLUi ( i I ) , r ( , 3 ) , C( LL[> -4 ( 21.) , F { , 3 ) , COLUt^;. ( 31 S r ( H , j ) , 
CCLUi^fV(41) , F ( f 3 , 3 ) , C C L U . ' i K l 3 l ) , F ( f i 9 3 ) ) ; 

r-J .^OLKS A.^E KUTAT,iL AdHLT A .vICPx TH-SCLTll AXIb SC THAT SlUi'A5 L I ^ s 
^r- ^ . < I . n T I V E CI , iCL"- , ' - iV 'C THE AvIGLh f.T .^oTATIu:\ I s f-ETAi^l 

I F P H I - J d X O fHE,\ b E T A ^ I = - 9 C - ? F I 3 I I ) ; 
ELS'-: EETA",1= J C - P H I 3 ( I ) J 

. PHI I ( I ) = P H I i ( I )43«:T/i.) ^; 
PHI2( I ) = PHI2( I ) + ;iFTA \ l ; 
>HI J { I ) = PHI3( I ) + l E T A . n ; 

•r.L i^iJUArn.UAL A^GL^ î> '\<f C C M V E : U E C re T H E C C < I E S P G M > . I \ ' C P L L ^ ' ^ , : L E i 

C A L L S T F P O L ( P H 1 1 , P S n , A L P H A 1 , TH;.:TA 1 V I - I ) ; 
C A L L S T E ? C L ( PHI2 , ? S I 2 : , A L P H A ^ , T H E T A 2 , . \ ) ; 
C U L . S T F P C L ( P H I 3 , P S I : > , A L P H ' \ 3 , T h r r ^ 3 , f ' ) ; 
PUT S;<19 EOI r ( i*LPHAi( I ) ,THt f A l ( I } ,ALPHA2I I ) »TH2T<U( I ) , 
^ L P H A 3 ( I ) , T H E T A 3 { I ) ) 
( F I 3 , 3 ) , C [ i L U i s \ ( i i ) , F ( P r J ) , C C L L . v M 2 1 ) » F ( e , 3 ) » C 0 L L f f . { 3 1 ) , F C ; , ^ 
C i :LLtV \ (41 ) ,f , C L L L f N ( 5 I ) , r ( 8 , 3 ) ) ; 

H E .'^CLFS A;<£ '^CJ^{ZC ABOUT THE P C L E C F P . ^ C J E C T I C A S L C H T F A T 510=,;.. 
l E S L'i TH.: .xfiUH c:^ SOLTH PCS I T I C i \ , AM! THE A \GLL C F :?CTA1 iC \ l i . - -Ji^.^ 

••/ 

I F P S 1 3 ( 1 X 0 THr-:\' hFTA,-52=li3'--ALPH'A3( I ) ; 
•ELSE I F ALPHA3( I X'-^O T H E ; \ S F T A ^ 2 = - A L P H A ' i { I ) ; 

ELSi i HLT!\«2 = 3fcC-ALPFA3 ( I ) ; 
A L P F A K I )=ALPHAl ( I ) + E L T A K 2 ; 
ALPH.U2 ( I )=ALPH'A2 ( I ) + n£TA<;2; 
ALPHA3( I )=AL ^HAj{ I ) + E^ETA'^2; 

.9, 

Hv P L L A ) ^ A^CLl ;s A H C C O S J V E K T E C TC THE Cc;<i,-^tSPCiSDlNG E C U A T C . N I ' . L A . J L E S 
•V 

CALL P C L S T E {.'ALPH A 1, T h E r A 1 , P H 11 , PS I 1, > ) ; 
C/ 'LL POLSTEC U P H A 2 , T H E T A 2 , P H I 2 9PSl2 9 i ' ) ; 
C ^ L L P C L S T L ( . 4 L P H A j , , T H E f A 3 , F F I : 2 , ? S l 3 , w ) ; 
PUT SKIP ElJl K P h I K I ) , P S I 1( n , P F I 2 ( I ) , P S I 2 { I ) , p H j ; ( I ) , P S i 3 ( I ) ) 
( F ( { J , 3 ) , C 0 L U . . M ( i l ) , F l C , 3 ) , C r L L ^ ^ J ( 2 1 ) , M L , 3 ) ,C0LUt^ \ ( 3 i ) , F ( c , 3 ) , 
CrJLUi^N ( 4 i ) , F ( P , 3 ) .CLLUiXN (51 ) , F ( 8 , 3 ) ) ; 

H. PiJLFS AML ^.CfATEL AbHtT i^C^TH-SCLTH AXIS SUCH THAT S iG ^ l L l i . S 
T Tv-J POLE C F Pi<CJrCTIL ' . \ ,AM' i THE A^LLi : U F KOTAFICr. I S t 'ETA^J 

fiET>V'.3=-PHIi( 1 ) ; 
P H I K 1 ) = PH1H n + 6 E T A ' ^ 3 ; 
P\ I 2 ( I ) = P h I 2 ( n4i i :TA:<3; 
PHI3 I I ) = PHI'it( I ) + ».= r A ^ 3 ; 
CALL S T F P O L ( P H I i , P S I i , A L P H A 1 , T H E T A 1 , y ) ; 
C/^LL SI E - C L { P H I 2 , P S I ? , A L P H A 2 , T H ! E T A 2 . t - . ) ; 
C n L STEPCL( P H I ^ ^ P S I J , A L P H A S , T F E T A 3 , F ) ; 
PUT SKIP GLI I { ALPHAK n ,THFTA1 ( I ) , ALfHA2( I ) ,THETA2( I ) , 
A L P H A 3 ( I ) , T H ^ T A 3 { I ) ) 





•CE.M.^F C^'TiCNSUAIN!) ; 

{ r ( . J , 3 ) , CCLU i\ { 1 1 ) , F ( 8 , 3 ) , CPLC t̂iM ( 21 ) , F {<l, 3 ) , LOLL,'N ( 31) , F i - J , 3 ) , 
CiJLl>f-N (41 ) , F ( ) ,CCLU^'N (51) , F ( 8 , 3 ) ) ; 
E s C ; 
PUT SKIP D A F A ( u L T A R l , t . L T i i R 2 , 6 £ T A U ) ; 

FHilrE P ^ I ^ C I F A L S F ^ L S S E S A.\'C T H E C C H E S I C N ' ANC F R I C T I C N A \ T , L E C F 
I L ^ I S C G N T I N L I T Y A ^ i : U E A C I N 

S T A . s T : b £ T L I S T ( S I C H A I , S IC.^ A ^ , S IG^ A 3 , SO , F I ) ; 

LU;^"'^Y V A - M A - ^ L E S A , t 3 , A M J C A ^ E C C V P L T E C FUR T H E S C L L T I C N CJ- T . - f . 
\ T . : ^ScCTICM PCIiv-TS U S I . . ' G THE F G ^ i ^ L L A FG.< T H E RO.JTS UF A t,LA!:^'A.T^ : 

A = I + ( T A N L ; ( F I ) ) * F A \ L ( F I ) ; 
B = ( 2 * S C * T A ' N ! D ( F I ) ) - S I G ^ A 1 - S I G^'A 3 ; 
C = { S C * S G ) + ( S I G K A 1 * S I G I ' ' - M 3 ) ; 
h = { R * P ) - 4 * A * C ; 
PUT t ; A T A ( A , 6 , C , H ) ; 

r H-^^'? > 4 * A * C THEW FFEHE A-?E \ G R C r T S , I . E . iMO IMT tR SECT I G N 

I F H<C THcN DC; 
PUT PA J . - - E D I T ( ' N'O 1NT^^ v. SECT ION" ) ( A ) ; 
G C T C F I ^ ' ; E N J ? 

J . 

F .Jv ;-2 = 4 * A * C THh.\ TH -.-lE A ^ E Tl.C tsU 4L 'vl^'JIS , I <, £ , T H E UI S L L N f 1 . C i Fy 
A I L U - i E E \ ' V E L C P G I S T A - ^ G E N T M L FC F H E P . W I M C I P A L Sr.-5Ei,S C IuCL . ; 

E L S E I F H = C Tr£K' GU; 
PUT P A C E E ! : iT I « T A N G E . a A F S lGr''A= « ) ( A , F ( B , 3 ) ) ; 
GCFC F i ^ ; c^ul 

* 
T r - ' . l j I S t THE.J^: A.^c T ^U ?^CGTS,Io£. ir.TE.-lSECT lU.J 'CIi>ITS P T l ^ \T 9\< 

E L S E P T l = ( - B + ( S C j P , T { H ) ) ) / ( 2 * A ) ; 
P T 2 = ( - d - ( S w . - x T ( H ) ) ) / { 2 * A ) ; 

P U T PA.;? E C I T ( ' I \ I T £ » < S 6 C T ! C J AT S I G.'iA= • , pT 1, « AA-" S I f : , -M= ' , 
P F 2 ) ( A , F ( 3 , 3 ) , ' \ , F ( 3 , ^ ) ) ; 

* 
LPi-M A N C T H E T A A^«!.'AYS A ^ F I A; I T I AL I/. EG TU 1111 SC Th AT VALUES U^^J \ 

H I : H I T I S N C T ?v£GunE' . . TC C P E R A T E VAY ,j£ I C E A ' T I F I E L 

A L P H A , T H E T A = 7 7 ? 7 ; 

HF: TV,G «lA.XiAL CASES A,^E T ^ E A T E L F I , < S T 

I F ( (SIG^^A2=SIJ.-iAl) I (SIGr-'A2 = Sr^;>IA3) ) T^IEN DG; 

HE T.̂ G A.MGLES SUSTEiXCEiJ P Y THE INTF.^SECT ICN P L I ; ' ; T S ARE CLi-^Uf' iC FRU.: 
H £ Sf^.:A,< STRESS AivC p ^OJ' -CFlLA CNTC THE MGRf'AL ST'-J^SS A;^IS Cr Tj £ 
A C I l TO TFh PGINTS P T l A:\L PT2 

T=SC + ;U?*FANC ( E l ) ; 
AlJJ=( ( 3 I G , l « : + S I < ; / A 2 ) / 2 ) - P T Z ; 





A ' ' o . i 2 = { ; \ T A . j i : i T / A r j ) ) / ? . ; 
T^SC + P T l J ' T A M j C r i ) ; 
A n j = H T i - ( ( S I G t V U + S I G i > ' ' . » 2 ) / 2 ) ; 
A ^ J G l = ' ^ 5 + ( ATAWDl T / A H J ) ) / ? ; 

C A S E rtHZf^ s iuVA2=siCf - ' ' '>3 I S c ^ ^ S I i : ^ . i L ^ 

I F SIGi : / ^2=SI*J i - "«3 THEN C U ; 
DO 1 = *; TC PS ?.Y 2 ; 
T i - ; ! : r A { T ) = /^ . \G2; 
A L P f ^ A ( I ) = I ; 

r r i = i fc fi9 f̂ Y 2 ; 
T I - r _ T A ( I ) = A ; \ G l ; 

H - i:.AS>7 l , h K , \ s IGiVM2 = S I G V a i I S CCiS S I C f .-{"^U 

r L S r I F S I G y A 2 = S l G y / i l T ^ ^ i \ C O ; 
o i : 1=2 T C ^a J Y ? ; 
H S I ( I ) = A , \ i o l ; 
: ' H i ( i ) = i j 
C: 
L ' J 1=1 T C :I9 oY 2 ; 
PS 111 )=A i G ? ; 
P M I I ) = I ; 

C ' A L L S T C P C ] L ( ( J H I , H S I , A L P H A , T H H T A , 9 0 ) ; 

ENr;; 

G - ! ' i : i ? A L l i ' . I A / U A L OAS'": I S C C ) \ S I U I ' T I L L J 

: / 
hi.SE r;n; 

^ £ CHA.MG'i I i \ i \ O . ^ F ' / \ L S T K t S S F . - lOy P T 2 TU P T l I S I >:C;^Si 'F^.T". L I , S l . ^ ' S 
Thl^ C C ^ ' { R S H O ' \ ' : i \ ' - i S H E ^ S ^ S L ^ E S S .^T fcHH S T E P C C ^ i P o T E T 

V 
D = ( P T l - P T i i ) / S C ; 
cn 1=1 TO d9 ; 

Sicr ' ' /^=PT2 + i ^ C ; 
r = S I G M < ^ * T - i i \ U ( F I ) + S C ; 

}-Z S i - 'UA.<E CF T H i c M t C r i C ' X CCSTJE CL^; -?Ei?^CK [> I iJG TO THET-a I S ' ' C - V ^ L r i : 

L L = { ( o l • 3 ^ ^ A ^ - S I G ^ . ' • \ ) ' M S I . i ^ ; A 3 - S I ^f' 'A) + { T « T ) ) / 
{ ( S I G n A 2 - S I G l V A l ) * ( S I G ! - i A i - S I G I > ' A l ) ) ; 

r c : < L L < i rt- : i \ c c s { T M ' ^ r A ) = s C ; ; T ( L ) . c T h E « i f , i S c F F E ^ E I S N C S L L L T I C \ , A \ ' ' J 
C T F T : FA '^KC A L P H A A Vl" l . u T t i ^ S S i G i X ' L D A V A L U F 7 7 7 / 
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APPENDIX D 

L . V. D. T. CALIBRATIONS FOB X-Y PLOTTER 

STRESS-STRAIN CURVES 

D l . latroduction 

The L , V. D. T's used are Electromechanisms type UOSS, 

serial numbers , o5D, and have a total travel of 1 inch. The 

makers calibration was checked and accepted. I f the input voltage is 

maintained constant at 24V then the output voltage change may be monitored 

directly in terms of displacement, being 15.6 x 10 mV/ins. A l l the 

following stress calibrations refer only to Clockhouse proving-ring 

no.A.ZS^S (0-10000 kg). 

D2. Stress 

This is conventionally taken up the y-axis. 

D2 .1 . Nominal 1.5 ins diameter sample - Deviator stress: 

100 Ib/ in^/cm = 15.15 mV/cm 

200 Ib/ in^/cm = 30. 3 mV/cm 

500 Ib / in^ /cm = 75. 75 mV/cm 
2 

Maximum permissible stress is 9000 lb / in , i . e. 18 cm on the latter setting. 

D2.2. Nominal 1 ins diameter sample - Deviator stress: 

100 Ib/ in^/cm = 6. 73 mV/cm 

200 Ib/ in^/cm = 13.47 mV/cm 

500 Ib/ in^/cm = 33. 67 mV/cm 

1000 Ib/ in^/cm = 67. 32 mV/cm 
2 

Maximum permissible stress is 25000 lb / in , which is 25 cm on the latter setting. 



D2. 

D2. 3. Double shear, nominal 1 ins diameter sample - Shear stress T: 
2 

50 lb / in / cm = 6. 73 mV/cm 

100 Va/m/cra. = 13,47 mV/cm 

200 Ib/ in^/cm = 33.67 mV/cm 

500 Ib/ in^/cm = 67. 32 mV/cm 
2 

Maximum permissible stress is 12500 lb / in , which is 25 cm on the latter settit^. 

D3. Strain 

L = sample length, inches. 

0. 05%/cm!. = L X 7. 8 mV/cm 

0.1 %/cm = L X 15. 6 mV/cm 

0. 2 %/cm = L X 31. 2 mV/cm 

0. 5 %/cm = L X 78 mV/cm 

D4. Displacement 

15. 6 X 10^ mV/ins 
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APPENDIX E 

SAMPLE LOCATIONS AND DETAILS 

No. Horizon Grid Reference Location Details 

B L l U . M . L . NZ 473 387 Blackhall Rocks Impure dolomite 

CHI M . M . L . NZ 443 466 Chourdon Point Reef front breccia, 
partly dedolomitised. 

CH2 M . M . L . NZ 438 573 Between Chourdon Post-reef dolomite 
Point & Dawdon oolite 

FOl M . M. L , NZ 364 573 Ford Quarry, Shelly reef 
Sunderland dolomite 

H A l M . M. L . NZ 438 465 Hawthorn Quarry, Oolitic reef 
Seaham dolomite 

HA2 M . M . L . NZ 436 464 Hawthorn Quarry, Reef dolomite 
Seaham 

HA3 M . M. L . NZ 436 466 Hawthorn Quarry, Post-reef calcitic 
Seaham dolomite 

HA4 M. M. L . NZ 436 466 Hawthorn Quarry, 100% cubic aggregate 
Seaham f rom calcitic dolomite 

HA5 M. M. L . NZ 436 464 Hawthorn Quarry, Aggregate f rom 
Seaham reef dolomites 

1^1 L . M. L . NZ 345 505 Houghton Cut Cavernous granular 
dolomite 

M A I U. M. L . NZ 405 642 Marsden Quarry Concretionary 
limestone 

MA2 U. M. L . NZ 399 650 Cliffs N. of 'Flexible' Limestone 
Marsden Grotto 

R A l L . M. L . NZ 347 354 Raisby Hi l l Quarry Micri t ic Limestone 

T H l L . M. L . NZ 310 330 Thrislington Buff granular dolomite 
Quarry 

TH2 L . M . L , NZ 310 330 Thrislington Dolomitised limestone 
Quarry 

TH? L . M. L . NZ 310 330 Thrislington Dolomitised limestone 
Quarry 
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No. Horizon Grid Reference Location Details 

T R l L . M . L . NZ 384 666 Trow Rocks, 
South Shields 

Buff granular 
dolomite 

TR2 U. M. L . NZ 384 666 Trow Rocks, 
South Shields 

Cellular breccia, 
limestone 

W I l M . M. L . NZ 372 378 Old Wingate 
Quarry 

Oolitic lagoonal 
dolomite 

. '2 2SEPW7© 


