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ABSTRACT 

Reflecting Boundaries and Massless Factorized 

Scattering in Two Dimensions 

Jodo Nuno Garcia Nobre Praia 

This thesis is concerned wi th two-dimensional models that are integrable i n the 
presence of a boundary and whose spectrum in the bulk is constituted of massless 
particles. Although there is already a vast literature on the subject (e.g. Kondo 
and Callan-Rubakov models), the common minimal denominator in all these situa­
tions is the fact that the bulk theory is conformally invariant and i t is the boundary 
that is responsible for the broken scale invariance. Here, our purpose is to consider 
the alternative situation, where the boundary respects the conformal invariance of 
the theory and the renormahzation group trajectory is controlled by a bulk pertur­
bation. The model in question is the principal chiral model at level A; = 1. We 
propose the set of permissible boundary conditions suggested by the symmetries of 
the problem and compute the corresponding minimal reflection matrices. For one 
of the boundary conditions we compute the boundary ground state energy and the 
boundary entropy using the technique of boundary thermodynamic Bethe ansatz. 
In the infrared l im i t our results are shown to be in complete agreement wi th the pre­
dictions of the boundary conformal field theory approach. Finally, we consider the 
classical supersymmetric Liouville theory on the half-line and compute the boundary 
conditions compatible w i t h the superconformal invariance. We construct an infinite 
set of commuting integrals of motion using Lax-pair techniques and discuss some 
aspects of the quantum theory as well as its relation to the super Korteweg-de Vries 
equation. 
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Chapter 1 

Introduction 

Quantum Field Theory (QFT) provides the framework to unify such disparate concepts 

as quantum mechanics and special relativity. The principles of relativity aUow for particle 

production, according to Einstein's celebrated formula, E = mc^, and this prevents the 

description in terms of elastic collisions between isolated particles. Rather, a co-operative 

variable - a field - is introduced, representing all the particles of a given type. The action 

has to be relativistic and respect other known symmetries of the theory. Quantum me­

chanics then provides a set of rules for computing the allowed values of a given physical 

quantity (observable) and the probabihties for measuring them. The object of primary 

importance is the S-matrix. Formally, i t can be seen as a map between the sets of allowed 

initial and final states of the system. The matrix element Sij corresponds to the proba­

bility amphtude for the system to evolve from the initial state i to the final state / after 

the physical process has occurred. 

Since the discovery of relativity and quantum mechanics, the main driving force in the 

quest to understand the laws of nature has been the introduction of more complex and 

richer symmetry structures. Space-time is beheved to be invariant under the Poincare 

group and generally covariant in the presence of gravitational fields. Moreover, we can 

supplement these with other symmetries which may or may not be hnked to the space-time 

medium. I t has proven frui t f id to generahze quantum electrodynamics (QED) by the in­

troduction of the principle of gauge invariance for non-abehan groups (electroweak model, 

quantum chromodynamics). The "discovery" of the quark model permitted physicists to 

classify hadrons (strongly interacting particles) into multiplets of equal mass - a sort of 

periodic table at the subatomic level. More recently, physicists have tried to amalgamate 
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fermions and bosons into a single description by the ingeiuous principle of supersyrametry. 
For each fermion there is a corresponding bosoiuc superpartner with equal mass. Although 
to this date no superpartner of the known particles has been detected experimentally, most 
physicists are reluctant to the prospect of abandoiung the idea of supersymmetry. This 
is because supersymmetric field theories exhibit many desirable features [1]. Besides their 
intrinsic beauty in terms of rich mathematical structures, supersymmetric theories obey 
a number of nonrenormalization theorems that make the analysis of Feynman diagrams 
much more attractive. Equally they seem to solve the hierarchy problem of GUT theories 
[2] and ehminate undesirable particles such as tachyons from the spectra of string theories 
[1], [6]. 

The recent developments in quantum chromodynamics (QCD) and more generally the 

attempts to go beyond the standard model (e.g. string theory) have shown compelling 

arguments for a nonperturbative approach to quantum field theory. Indeed, to study 

quark confinement in the asymptotically free QCD, one has to work in the strong coupUng 

regime where perturbative methods fail. Similarly, i f string theory is to be a theory 

of quantum gravity, i t has to resolve distances of the order of the Planck scale, where 

perturbation theory can hardly make any sense. These considerations have led to the 

search for solutions of the field theories, many of which are topologic in nature - e.g. 

instantons, sohtons, vortices, monopoles. 

Our experience with classical mechanics tells us that whenever we have a conservation 

law (e.g. energy, momentum, angular momentum) we can integrate out a degree of free­

dom, thus effectively reducing their number. K the number of independent symmetries 

equals the number of degrees of freedom then we can in principle completely solve the 

problem. Quantum mechanically, the above picture stUl holds. We can obtain all the 

information about the system by simultaneously diagonahzing all the observable mutually 

commuting integrals of motion. A system with these properties is said to be "integrable". 

In field theory the number of degrees of freedom diverges in view of the fact that every 

field is defined in each space point. An integrable field theory would therefore be one 

with an infinite number of conservation laws or equivalently - by Noether's theorem - with 

some infinite dimensional symmetry. However this contradicts a remarkable theorem by 

Coleman and Mandula [26]. This theorem states that provided the S matrix satisfies a 
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number of technical assumptions (unitarity, analyticity) the symmetries of the theory can 
be shown to be locally isomorphic to the direct product of the Poincare group and a finite 
number of internal symmetries. An integrable quantum field theory would necessarily 
be free (i.e. with a trivial S matrix). Quantum field theories in (l-l-l)-dimensions are 
the exception. Indeed many two-dimensional theories are known where the existence 
of an infinite number of involutive integrals of motion is compatible with a non trivial 
scattering [25]. What is i t that makes two dimensions so special? To start with, in 
one spatial dimension, any two particles with different velocities are bound to meet at 
some point in time. Peculiarities of two-dimensional kinematics then show that there is a 
permissible type of scattering that is elastic and factorizable. The precise meaning of these 
statements wiU be made clear in subsequent chapters. Mathematically, there are known 
cases of symmetry groups that are finite dimensional in a generic dimension but become 
infinite dimensional in two dimensions. One of the main topics of this thesis - conformal 
invariance - provides such an example [12]. Using the striking similarity between the 
generating functional in a QFT and the partition function of a statistical system, one 
can estabhsh a correspondence between (d-|-l)-dimensional euchdean statistical models 
and (d,l)-dimensional quantum field theories [10]. This correspondence only makes sense 
in the neighbourhood of a second order phase transition of the statistical system. Near 
such a phase transition the fluctuations of the fields are correlated over long distances and 
occur equally on all scales [5]. The system loses memory of the details of the underlying 
microscopic structure (e.g. lattice) and may effectively be described by a continuous field 
theory. The system is then said to be scale invariant, i.e. invariant under the global 
rescahngs of the form: 

x^px, (1.1) 

where p is some real constant. I f in addition to being scale invariant the system is also 

homogeneous and isotropic then it becomes conformally invariant, i.e. invariant under 

dilatations of the form (1.1) where now p may depend upon the position. There are good 

arguments to beheve that each universahty class in two dimensional statistical mechanics 

can be described by a conformal field theory. By universahty class one understands the 

identical behaviour (e.g. critical exponents) of a priori distinct models near a second order 

phase transition [18]. 

The prototype for such a theory is the two dimensional Ising model, which has been 
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exactly solved in refs.[ l l] , [9]. The HamUtonian for this system is: 

+ (3tSn,mSn+l,m) , (1-2) 
n=l m=l 

where the n- and m-indices label the rows and columns of a two-dimensional lattice. The 

spin variables Sn,m take the values ± 1 and (3t are couphng constants. We are consider­

ing periodic boundary conditions in the horizontal direction. We notice immediately that 

(1.2) is invariant under the simultaneous reversal of aU spins. We wUl caU this a Z2 sym­

metry. This Hamiltonian models the ferromagnetic transition between a high-temperature 

disordered phase and a low-temperature ordered one. The symmetry breaking occurs at 

the Curie temperature Tc also called the critical point. I f we denote the configuration of 

the spins in the nth row by 5„ = {sn,i,Sn,2, • • •, Sn,ms}, the total energy of the configura­

tion {Si,---,Snt} is given by: 

£ • • •, = f; [eiSn, Sn+i) + eiSn)], (1.3) 
n - l 

where 

e{Sn) = - 53 PsSn,mSn,m+l, (1-4) 
m=l 

represents the energy of the interaction amongst the spins in the nth row and 

^iSn,Sn+l) - - ^ PtSn,mSn+l,m, (1-5) 
m=l 

is the energy between the spins of the nth row and their neighbours on the (n -|- l ) t h row. 

The partition function is thus: 

Z=Y1 e - ^ { ^ i ' - ' ^ " ' ) . (1.6) 
{Sn} 

We also introduce a matrix T called the transfer matrix with the foUowing entries: 

< Sn\T\Sn+i >= exp{-eiSn, Sn+i) - e(5„)} . (1.7) 

This allows us to rewrite the partition function in the form: 

2 = E • • -E < S^\T\S2 >••< 5 n . | T | 5 i > = Tr ( T " ' ) , (1-8) 
Si Sn, 

where we used the periodicity condition, Snt+i = Si. As we approach the phase transition 

where the continuum description becomes adequate, we can start by considering the hmit 

when the lattice spacing at in the 'fime'-direction (vertical) becomes infinitesimal and 
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simultaneously nt —> oo (the ratio of the two remaining constant), [14], [10]. We will 
then be able to interpret the transfer matrix as an evolution operator e~'^^ between two 
consecutive rows, infinitely close to each other ( r 0). H is interpreted as a Harrultonian 
and T — e~'^^* as a time parameter. One can show that: 

rris 

H= E « - ' (1-9) 
m=l 

where cr' are Pauh's spin matrices and o'mj+i = (^i- ^ = (^S/T is a couphng constant. 

This Harmltonian describes a one dimensional Ising model interacting with a transverse 

magnetic field. Let us now consider the new set of operators: 

( ; = l , . - - , m , ) (1.10) 
M| = a f a f • • • a j . 

One can show that these new operators satisfy the same algebra as the Pauh matrices. K 

we rewrite the Hamiltonian (1.9) in terms of these, we get: 

H - E - V )̂ = E Urn - 1 • (1-11) 
m=l m=l 

In particular, we obtain for the energy of a given configuration : 

E%X) = -XEi" . (1.12) 

The transformation (1.10) is called a duality transformation because it relates the high 

temperature (A < < 1) phase with the low temperature (A > > 1) phase of the system. 

The two spectra (1.12) become equal at A = 1, the self-dual point [10 . 

In the continuum hmit, when the lattice spacing in the 'space'-direction (horizontal) 

becomes infinitesimal and Tn^ ^ oo {nis/as — const), the resulting continuum field theory 

describing the system (after a Wick rotation) is: 

H = ^ldx S^Xi^^x) ( -n '^V'(^)) - mi>\x)j''i>{x)'^ , (1.13) 

where 7̂  {p, = 0,1) are the Dirac matrices in the Majorana representation: 

^ ~ \ i or ^ ~ \ i 0 r ^ ^ ^ l o - i 

The operator (1.13) is the Hamiltonian for a free massive Majorana spinor. I t is striking 

that an interacting theory such as the Ising model (1.2) is described by a free theory 

near the phase transition. This is misleading because the theory at the critical point is 
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actually strongly interacting (with diverging correlation length) as can be checked from 
the anomalous (non canonical) dimensions defined by the two-point Green's functions for 
basic operators such as the spin density. The continuum field theory is called a free field 
realization of the conformal symmetry. We shall come back to this later. 

The mass m in (1.13) can be expressed in terms of the couphng constant as: 

m = hm . {1.15) 
as-^O \ as J 

We notice that the theory becomes massless at the self-dual point. Intuitively, this should 

correspond to the critical point, otherwise the scale invariance would be broken by this 

mass scale. The theory (1.13) with m 7̂  0 is therefore interpreted as a thermal (A = T/Tc) 

perturbation of the conformal theory induced by the energy density operator •ip'if). The 

resulting theory being free is obviously integrable. I t is a first example of a wide range 

of massive integrable theories that arise from perturbing conformal field theories with 

appropriate relevant scalar fields in their spectra [38]. From the renormalization group 

(RG) point of view conformal field theories correspond to fixed points of the RG iterations 

[25]. An interesting topic in relativistic field theory (RFT) is the complete classification 

of aU possible trajectories flowing from these critical points [83]. Similar behaviour of 

the RG for two different systems near a fixed point imphes that the two systems belong 

to the same universality class [5]. Each distinct trajectory corresponds to a different 

RFT. In two dimensions there are three typical patterns. The trajectory may stay at 

the fixed point forever, being described by the corresponding conformal field theory at 

aU distances. Alternatively, as we discussed earher, it can be drawn out in some relevant 

direction and described at large distances by some massive RFT [38]. Finally, the third 

situation, consists of the trajectory terminating at another fixed point [83], [57]. Both 

at large and short distances these theories are characterized by conformal field theories. 

From the statistical mechanics point of view they can be regarded as crossovers between 

different universahty classes of critical phenomena. 

A good starting point would be a complete classification of all conformal theories. 

This would be equally interesting in the context of string theory. One of these conformal 

theories is the vacuum of the string theory after compactifying the redundant space-time 

dimensions [7]. A subclass of these theories called rational conformal field theories is 

beheved to have been completely classified using a technique known as coset construction 
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55]. Rational theories have only a finite number of operators with which they can be 
perturbed in the fashion described above, thus renderiag the enumeration of aU trajectories 
flowing from it a more tractable task. 

In real apphcations one usually has to deal with bounded systems having some inter­

face with the external world. Boundary quantum models have a wide range of apphcations. 

Some famous examples are the monopole-catalysed baryon decay [22], the Kondo model 

94], dissipative quantum mechanics [23] and quantum HaU hquids with constriction [24]. 

They are also interesting in the context of open string theories [66], [64]. From a theo­

retical point of view one has to construct boundary interactions that preserve part of the 

integrabUity properties of the bulk theory. Cardy made some important contributions to 

the study of boundary conformal theories [60], [61]. More recently, a work by Ghoshal 

and Zamolodchikov [68] has led to many new developments. 

The main purpose of this thesis is to study massless theories in the presence of reflecting 

boundaries. Massless scattering has a number of conceptual difficulties related to the very 

notion of asymptotic particle moving at the speed of fight [93]. Notwithstanding this, the 

successes of this approach have been outstanding, especially in the study of the Kondo 

effect [96] and of the massless flows between distinct universahty classes [93]. 

The layout of this thesis is as foUows. In the first part (chapters 2-7), I present all 

the necessary background material on integrable and boundary integrable models as well 

as some useful results concerning the Kondo problem and the principal chiral model. I 

have tried whenever possible to illustrate the results with the simplest example available 

- the Ising model. No claim of originahty is made for this part. Also i t should not be 

expected to be a thorough and comprehensive review of each topic. Rather, I have tried 

to put emphasis ordy on those aspects that I find relevant to understand the last part of 

this dissertation. Chapters 8 and 9 encompass the research that I carried out. In chapter 

8 I study the principal chiral model in the presence of a boundary with scale invariant 

boundary conditions. The model itself is massless but not conformaUy invariant. The 

technique of thermodynamic Bethe ansatz for this problem is carried out in great detail. 

In chapter 9, I consider the iV = 1 supersymmetric extension of the Liouville theory on 

the half-hne. This theory is superconformaUy invariant and therefore massless. I will 

determine the boundary conditions compatible with integrabUity at the classical level and 
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discuss some aspects of the quantum theory and its relation to the super Korteweg-de 
Vries equation. Finally, in chapter 10 I present the conclusions. 



Chapter 2 

Conformal Field Theory 

In this chapter I give an overview of some aspects of conformal field theories in two di­

mensions. As we shall see both this and the factorized scattering approach to integrable 

theories in the next chapter do not require a Lagrangian formulation. Rather the data are 

encoded into the particular representation of the conformal algebra. 

2.1 Conformal field theory in d dimensions 

The universahty classes of critical systems near the second order phase transition are 

classified by a set of basic operators { ^ , } [18] having anomalous dimensions { A j } ^ . This 

is the spectrum of the theory. Under scahng transformations of the space (1.1) the basic 

operators transform hke: 

(t>iix)^ p'''<l>i{px). (2.1) 

By anomalous dimension we mean that i t is different from canonical dimensions for free 

noninteracting fields. The general situation for the critical phenomena is that the basic 

fields (operators) wiU be strongly interacting. And this is reflected in the fact that their 

dimensions, defined by two-point functions wiH be anomalous. In practical terms, this 

means that near a second order phase transition no scale is preferred and if we perform a 

transformation (1.1) then the correlation functions wiU remain unchanged. For an isotropic 

and homogeneous model, we would also expect translational and rotational invariances to 

be symmetries of the system. According to Belavin et al.[12], these two assumptions 

together with the global scahng symmetry are sufficient to ensure that the system be 

conformaUy invariant. 

^ which in turn are connected to the set of critical exponents of the theory. 

12 
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Let us now t r y to describe the above concepts in a more systematic way ([13], [14]). 
Under a generalized coordinate transformation, x^^ x'^{x) ( / i = l,---,d) the metric 
transforms according to the tensorial rule: 

/ dx'' dx" 
9nu{x) ^ g^^{x') = ^Q^9PAX)- (2.2) 

A conformal t ransformation corresponds to performing local rescaJings of distances, [13], 

d'^i/i^') — ^i^)9iiiy{x): where Q,{x) is an arbi t rary scalar funct ion. For an infinitesimal 

t ransformat ion , 

(2.3) 

n{x) =l-2a{x), 

we get the set of Ki l l ing-Car t an equations: 

duCf. + d^C. = 2a(a;)77^ ,̂ (2.4) 

where we assume the constant metric (Euclidean or Minkowski space) g^„{x) = 77̂ .̂ I n 

a rb i t ra ry dimension d, we have four types of solutions [14]: 

( i ) Translations: x'^ = a;'' + a'̂ , where a'' are constants. This symmetry is generated 

by the momentum operator, = id^. 

( i i ) Lorentz transformations (Minkowski) or rotations (Euclidean): x''^ = A^^x", where 

Af^ satisfies r/^j^A^A^ = rjap. These are generated by the angular momentum tensor: 

( i i i ) Dilatat ions: x '^ = px>^^ where /) is a constant. Generator : D = ix^d". 

( iv ) Special conformal transformations: x''^ = j ^ " ^ ^ ^ ^ ; where are constants and 

c-x = c^x". Generator: = i{2x'>x^d'' - x^d^). 

I f we compute the commutat ion relations for the generators of these transformations, 

we realize tha t they f o r m an algebra. I n particular, we can show that [14]: 

D,P^]=-2iP\ (2.5) 

The elements M ^ " , P'' constitute a subalgebra which is associated w i t h the group of 

Poincare transformations. 

From eq.(2.5) and the Baker-Hausdorff-Campbell relation we have: 

^ipDp2^-ipD ^p2^ip P2] + ^( ip)2 [£)^ p2]] + . . . = 

• (2.6) 
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where p is an arbi t rary (nonzero) constant. From the above formula we see that e^pDp2^-tpD 
and cannot have identical spectra unless all the eigenvalues of vanish. This im­
plies tha t only massless theories can be invariant under the conformal group. Because of 
(1.15) and of the fact that the system at the crit ical point is conformaUy invariant, we 
conclude tha t the self-dual point A =: 1 of the Ising model corresponds to the crit ical point 
i n agreement w i t h what we said before. 

Conformal invariance imposes orthogonality of the 2-point funct ion for basic operators 

[19], i n the sense that : 

< Ux)m ><x (2.7) 

and i t also fixes the 3-point funct ion: 

COTlSt 

where Xij = Xi - Xj. The higher-point functions in arbi t rary dimensions are not fixed but 

w i l l obey certain constraints. 

Before we proceed, we have to introduce an additional operator, the stress tensor T^i,, 

which generates the conformal transformations. I f the theory is translationaUy invariant, 

then T'^" is conserved. Rotat ional invariance implies that T^^ be symmetric. Finally 

invariance under dilatations requires a traceless stress tensor. These properties can be 

summarized in the fol lowing set of equations: 

d^T^'^O, T^u = T,^, 77'^%. = 0. (2.9) 

As we discussed before, these conditions are necessary and sufficient for conformal invari­

ance. 

2.2 Conformal invariance in two dimensions 

I n a rb i t ra ry dimension the conformal group is finite and the best we can hope for is a finite 

number of constraints to place on the correlation functions. I n two dimensions, however, 

the s i tuat ion changes drastically. This is because the conformal group becomes inf ini te 

dimensional [12], as can be readily verified f r o m the Kil l ing-Cart an equations (2.4): 

(2.10) 
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in terms of z - xi + ix2, z = xi - ix2 and ( = d -|- 1(2, C = Ci - K2- We also get 
an extra bonus: our symmetry seems to decouple into two identical sectors: analytic {z-
dependence) and antianalytic (^-dependence), which can be treated independently. A t the 
end of the day, when we have computed all the physical quantities we are interested i n , 
we can go back to the ' reaf surface: z - z*. 

The infini tesimal conformal transformation is then: 

• z^z + Ciz), 
(2.11) 

z^z + Ciz). 

By performing a succession of infinitesimal transformations we obtain the finite transfor­

mat ion : 

' z f(z), 
(2.12) 

-z f{-z). 
The conformal group in two dimensions is thus the direct product: 

G = T®T, (2.13) 

of analytic transformations F of the variable z and antianalytic transformations f of 

the variable z. I f we go back to the infinitesimal transformations (2.11), because of the 

analyt ic i ty conditions (2.10) we can perform a Laurent expansion: 

-l-co 
C(^)= E Cn^"+\ (2.14) 

n=—00 

and we get immediately a differential representation for the generators of the Lie algebra 

associated w i t h the group F [14]: 

/n = - ^ " + ' ^ , n = 0 , ± l , ± 2 , - - - (2.15) 
oz 

They satisfy the commutat ion relations, 

[ln,lm]^{n-m%+m. (2.16) 

This is called a ^classical or centreless Virasoro algebra\ Because F and F are independent, 

we have [/„, 1^] - 0- Also f r o m (2.9), we conclude that the stress tensor i n two dimensions 

fo r a conformaUy invariant theory has two nonvanishing components: 

r = T „ = i ( T n - i T i 2 ) , 
(2.17) 

f = T j , = i ( T n + i r i 2 ) , 

^At this stage we assume that we are in Euclidean space. 



Chapter 2: Confound Field Theory 16 

tha t satisfy the conservation law: 

d,T = d,f = 0. (2.18) 

Notice tha t the Virasoro algebra (2.16) contains the sl(2,C) subalgebra: 

[ / i , L i ] = 2/o, [/o,/±i] = T / ± i . (2.19) 

The corresponding conformal t ransformation is given by: 

z' = ^ ^ ± ^ w i t h ad-bc= 1. (2.20) 
cz + d 

Of course there is a similar subalgebra in the antianalytic sector. They consist of the 

conformal transformations that exist in arbi t rary dimension. In fact , 

l - i j - i generate translations, 

0̂ + 0̂ generates dilatations, 
(2.21) 

*(̂ o — ^o) generates rotations, 

h j i generate special conformal transformations. 

These are called Mobius or projection transformations'^, 

PSL{2,C)^ SL{2,C)/Z2- (2.22) 

The basic fields of the theory (also called primary operators) are field operators |^/i_/i(2,2)} 

which t ransform under (2.12) as [13]: 

h,h{^, ^ ) - ( / ' ( ^ ) ) ' imf h,h m • (2-23) 

This expression can be seen as a generalization of the defiiution of a tensor w i t h h z-

indices and h f-indices. h, h are called the conformal weights (not necessarily integers) of 

4>hh. A = / i + ^ is the scaling dimension that describes the behaviour under global scale 

transformations. Similarly, the spin s = h-h describes the behaviour under rotations. Any 

operator tha t transforms like (2.23) under the subgroup (2.22) of Mobius transformations 

is called quasi-primary. Clearly every pr imary operator is quasi-primary but the converse 

is not t rue . 

From (2.23), we have for the infinitesimal t ransformation (2.11): 

^crC^hrh = [Ci'Wz + a-^)d-z + hdA^) + hd,a^)] <P,;,{z, -z). (2.24) 

^The quotient group SL{2,C)/Z2 arises because the set of transformations (2.20) remain unchanged 
under a —> —a, b —f —b, c —> —c, d —> —d. 
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T2 > Ti 

Figure 2 .1: Radial Quantization 

Before we proceed, a few considerations are in order. For each conserved quantity like 

the stress tensor there is, f r o m Noether's theorem, an associated conserved charge Q. 

Expl ic i t ly , i f d^j'^ - 0, then Q = Jdxip satisfies dxiQ - 0. From the fact that we 

are working on the complex plane, we can take f i d l advantage of contour integrals and 

Cauchy's theorem i f we can find a quantization scheme such that integrals Uke the previous 

one (Q) can be performed over closed contours. This is called the ^radial quantization', 

13]. We define r and a as the ' t ime ' and 'space' variables according to (see fig. 2.1): 

z = e^+'^ (2.25) 

where r G [0, - f 00] and cj G [0,27r [ . 

I n this picture the remote past corresponds to the origin and the distant fu ture to 

1̂ 1 +00. The fact tha t the space is compactified to the circle removes any infrared 

divergences. The Harmltonian (i.e. the t ime evolution operator) is now the di latat ion 

operator D — IQ + IQ and the operator M — i{lo - lo) responsible for rotations, now 

implements the spatial translations along the circle S^. 

We also define the chronological radial ordering w i t h respect to r for any two operators 

Ai and A2 by: 

A-i{zi,Zi)A2{z2,Z2), i f \zi\ > \Z2\, 
(2.26) 

^2(^2,^2)^(^1,^1), i f | 2 2 | > k l | -

Given tha t the stress tensor generates conformal transformations, we can wri te the foHow-

Tr{A^{zuZ^)A2iz2,Z2)}-^ { 
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c 
CO t r - < r 

Figure 2.2: contours of integration 

ing identity"*: 

[ / dw(:{w)T{w\ X{z, z)] = 6^X{z, z), (2.27) 
2-Kl \_Jc' J 

where X{z,z) is some local operator. The above expression has to be dealt w i t h some 

care. Products of operators A(w)B{z) i n Euclidean space radial quantization are only 

defined for \w\ > \z\. Consequently, (2.27) can be wr i t t en as: 

6cX{z, z ) ^ , ^ ( < f - I \ dwC{w)Tr {T{w)X{z, z)). (2.28) 
2z7r \y|t«|>|z| J\z\>\w\J 

The contours are depicted in fig.2.2. 

(2.29) 

A n d we get: 

6<:X{z, ^) = ^ £ dwaw)Tr iT{w)X{z, z)). 

From (2.24), we get the fol lowing Ward identi ty: 

^^cdwCM < Tiw)nl,<|>,{z„z^) > < Tiw)IllM^i,Zi) > = 

= E l l [C(2i)5., + C(̂ i)5z-. + hid.xizi) + kd,,az,)] < n^i<^,(z„z,) >, 

(2.30) 

where C is now a contour enclosing all the points (zi^zi),- • •,{zi\[, zj\r) and <f)i, • • •, (t>N are 

p r imary operators w i t h conformal weights ( / i i , / i i ) , • • •, (/IAT , / lyv)- We have also dropped 

the no ta t ion for simplicity. From the above equation we see that we can decouple the 

z and z parts . Using Cauchy's theorem, we get say for the analytic sector: 

< T{z)<t>i{z^). ••<j>N{zN) >= Yl 7 ^ 2 + < M^i) • --M^N) > . (2.31) 
\ [ Z — Z f ) Z — Zt J 

The fol lowing short-distance expansion therefore holds for any pr imary operator ^h.: 

T{z)U^) = _ A ^ ^ , ( ^ ) + ^ d ^ h M + ••• (2.32) 
iz W ) z w 

*We redefined the stress tensor T —• ^i^T for later convenience. 
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The dots stand for regular terms. Also i t can be shown that : 

^(^'^(") = + ( T ^ r C " ) + J ^ ^ - n - " ) + • • (2-33) 

where c is a (for now) arbi t rary constant called the ^central charge'. Comparing the two 

previous equations we conclude that the stress tensor T has dimension / i = 2 as we would 

expect fo r a rank 2 tensor. Furthermore, we see that T is not a primary operator because 

of the 4 th order pole. Under an infinitesimal conformal transformation, we get: 

ScUz) = C{z)d.T{z) + 2dAz)T{z) + ^d'^Ciz). (2.34) 

This can be integrated, yielding: 

T { z ) ^ { d j f T { f { z ) ) + ^ S { f , z ) , (2.35) 

under z f { z ) , where the quantity, 

^) J p j y > (2-36) 

is known as the ^^Schwartzian derivative", [12]. For Mobius transformations we have 

S { f , z) = 0. Consequently, T is a quasi-primary operator. I t is also convenient to define 

a Laurent expansion of the energy-momentum tensor, 

T{z)^Y.LnZ—\ (2.37) 

7162 

i n terms of modes Ln, satisfying 

Li = (2.38) 

I t can be shown f r o m (2.33) and the method described above to go f r o m commutators to 

operator product expansions (OPE) that they satisfy the following algebra: 

[Ln, Lm] = (n - m)Ln+m + ^ ( n ' - n)<5„+„,o. (2.39) 

This is called a Virasoro algebra with central charge c. I t can be regarded as a sort of 

quantum correction to the classical algebra (2.16) introduced by the second te rm on the 

r.h.s. The name of the central charge stems f r o m the fact that i t is a central element of 

the algebra, i.e. an element that commutes w i t h all the generators of the algebra. I f we 

construct an irreducible representation of the algebra (2.39) then after Schur's lemma we 

can regard c for all practical purposes as being just a number. The meaning of i t wUl 

become clear i n what follows. 
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Let us now t r y to construct the representations of (2.39). I f we require T{z)\0 > to be 
regular at z = 0, we get: 

i „ | 0 > = 0 , m > - l , 
< O j i ^ = 0, m < 1, 

where |G > is the vacuum state of the theory. We also define the state. 

(2.40) 

| / i > = <^,,(0)|0 > , (2.41) 

where (f)h is a pr imary operator. This state satisfies: 

Lo\h>=h\h>, Ln\h>^0, ( n > 0). (2.42) 

The operators X„ w i t h n > 0 act on this state as annihilation operators. From (2.38) the 

operators i „ w i t h n < 0 can be considered to be creation operators. The representations 

of the Virasoro algebra are constructed by acting w i t h the latter on the highest weight 

states \h>^: 
level dimension state 

0 h \h> 
1 h + 1 i _ i | / i > 
2 h + 2 L_2\h>,Ll^\h> (2.43) 
3 h + 3 i _ 3 | / i > , i : _ i X _ 2 | / i > , i i i | / i > 

I t was shown tha t the above representation w i l l be unitary whenever, [16]: 

( 0 c > l , / i > 0 , 

( n ) c{m)^l-^^^^y m = 3 ,4 , . - - (2.44) 

h = h,,,{m)=^^-\X^f'-\ l < p + q<m. 

I n fact these conditions are both necessary and sufficient. The sequence in ( i i ) is called 

the min ima l series^ and i t corresponds to conformal theories w i t h c < 1. The associated 

set of conformal weights is given by the Kac formula hp^q. 

One can also th ink of the descendant states above as being generated by operators 

appearing i n OPEs w i t h the stress tensor. For instance consider for some pr imary field 

4>h;h-
T{z)<f>f^;h{w,iD) = Zn>o{z - WY-H_n<i>h,h{w,w) = 

(2.45) 

^Although it is called highest weight state it actually has the lowest eigenvalue of Lo-
® These conformal theories have a finite number of primary operators and there is no additional contin­

uous symmetry besides the conformal invariance. Hence the name mmimaJ. 
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The fields L-n<t>h,hi'^i'^) = / ^ '^i^)^h,hi'"^'' denoted as </>[~̂ "̂  are caUed 

the Virasoro descendants. Their conformal weights are {h + n,h). Also f r o m the OPE 

(2.32) we know that : 

Moreover we can define fur ther descendants (or secondary fields): 

C " " " " " " " ' " " ' ^ ^ L_^^...L_n,L.m.---L-m,hrk, (2.47) 

w i t h conformal weights ( / i + Yl^-i ni,h + Yl'j-i nij), for ni,mj > 0. AU the correlation 

functions of the secondary fields are given by differential operators acting on those w i t h 

p r imary operators only. For example: 

< M^l^'^l) • • •M^n,Wn){L-k(l>){z,z) > = £_jt < (l)i{wi,Wi) • • •(f)n{Wn,Wn)(l){z,z) >, 

(2.48) 

where £_ j t is the differential operator {k > 2): 

j t lVK -^) {wj - z)*=-^ dWj J 

Now we can th ink of the states L-n\h > defined previously as being created by the 

operators (j>\^^'^'-

L_n\h>=cf>[-''\0)\0>. (2.50) 

So for a given conformal field theory in two dimensions, its operators are classed into 

conformal blocks each labeled by a pr imary field. They satisfy the following set of fusion 

rules (OPEs) : 

[4>i]^m = EN^,[4>k], (2.51) 
k 

where [(/>,] stands for some operator belonging to the highest weight representation indexed 

by the p r imary field (̂ ,-. This operator algebra is assumed to be closed and associative. 

From (2.48) and (2.49) we see that we can in principle compute all the correlation functions 

f r o m the knowledge of the basic correlators involving ordy primary operators. Similarly 

aU the structure constants iV,̂ - i n (2.51) can be obtained f r o m the structure constants 

describing the fusions of the pr imary fields only, [12 . 

The uni tary representations (2.44) are not necessarily irreducible. In fact there exist 

null vectors \x > satisfying: 

< A |x > = 0, (2.52) 
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for aU |A > i n the representation {c,h). I t can be shown that every nuU vector is also a 
highest weight vector, thus imply ing a reducible representation. Consider, for instance, 
the level 2 vector, 

\x>={L.2 + aLl,)\h> . (2.53) 

H i t is a highest weight vector, then in particular: 

^ i | x > = i 2 | x > = 0 . (2.54) 

These constraints yield: 

a = 

(2.55) 
2(2/1-1-1)' 

/ i - ^ ( 5 - c ± V ( l - c ) ( 2 5 - c ) ) . 

Notice tha t hi^2 and /i2,i i n (2.44) satisfy the second equation in (2.55). 

We obtain irreducible representations by projecting out the null states, i.e. by setting 

X = 0. This is consistent given that |x > is orthogonal to all vectors i n the conformal 

theory (cf .(2.52)) . I n particular, any correlator involving nuU vectors must vanish. For 

Ix > given by (2.53)-(2.55), we have: 

Xiz) = { L . , i z ) - ^ ^ L U z ) ) h { z ) = 

(2.56) 

= - mw)9'Mz). 

Consequently: 

0 =<xiz)M^i)---M^n)>= 

=< {<l>i~'\z)-j^^d^Mz)}M^i)---M^n) >= 

= { £ _ 2 ( ^ , 2 l , - - - , 2 „ ) - 2(2l+lj^z} < Mz)Mzi)---MZn) > • 

Expl ic i t ly , we get the fol lowing par t ia l differential equation: 

I n summary, i f a theory is degenerate (i.e. i f i t has nuU vectors), then we are able to 

wr i t e down par t ia l differential equations for genus zero correlators of pr imary fields. The 

min ima l series (2.44) describes such theories. 
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2.3 Modulsir invciriance and the Casimir effect 

As we mentioned in the int roduct ion i t is by now widely accepted that each uruversality 

class in two dimensional statistical systems is described by a conformal field theory w i t h a 

part icular central charge. The correspondence between certain statistical models and some 

elements in the Friedan, Qiu and Shenker (FQS) classification (2.44) of c < 1 conformal 

field theories has been established by various authors. For example, the Ising model 

and the 3-state Potts model have been identified w i t h the elements m = 3 and m = 5, 

respectively, [18]. However, this correspondence is by no means one-to-one. For instance, 

bo th the universality class of the 3-state Potts model and that of a generic tetracri t ical 

point have been identified w i t h m = 5. Notwithstanding this, not all scaling dimensions 

allowed by the Kac formula appear in the Potts model, and some appear twice. I n the 

te t racr i t ica l model, on the other hand, i t seems as though all values are present. 

We now describe a method to determine the operator content of a given mirumal 

theory, solely on the basis of conformal and modular invariance, [20]. As a by-product 

we inheri t an interpretat ion of the central charge as a measure for the Casimir effect that 

arises i n a finite geometry. 

Conformal invariance allows us to relate a theory formulated on a firute strip of w i d t h 

R w i t h periodic boundary conditions w i t h that on the infini te complex plane, via the 

conformal mapping'' ': 

w = ^Inz. (2.58) 

Since this t ransformat ion is not a Mobius transformation, its Schwartzian derivative (2.36) 

is non-vanishing and there wiU appear an anomaly te rm in the transformed stress tensor: 

Tst„p{w) = (~yT,lane{z) - (2.59) 

We note i n particular tha t : 

< Tstripiw) 0. (2.60) 

This allows us to interpret the anomaly te rm as a Casimir effect, that is, a shift i n the 

free energy of the system due to finite size effects. I n fact i t can be shown that the free 

''On the strip , we interpret the coordinate <T G [0, 27r [ as the space direction and t G [-co, -|-oo] as the 
time, where w = t + itr 
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energy per uni t length w i l l be given by [15], [17]: 

F{R)r^-^ + fR, (2.61) 

where / is a universal t e rm. Notice that the first t e rm vanishes when c —>• 0 or jR — o o . 

Using (2.59) and a similar expression for the antianalytic part , we have the following 

correspondence: 

i„ + X „ ^ ^ ( ^ , , | 5 ) , (2.62) 

where Hp is the Hamil tonian of the system on the strip w i t h periodic boundary conditions. 

So Hp and {LQ + LQ) have the same eigenstates. We also stress the fact that we restrict 

our analysis to the uni tary theories w i t h a finite number of pr imary operators fal l ing into 

the classification of FQS. 

Now we consider a toroidal configuration, so that different values of / are identified 

modulo L. We also define the modular parameter q as: 

q = exp (-2n^\ = exp{-2nT). (2.63) 
V RJ 

The pa r t i t i on funct ion in such a geometry is be given by: 

Zpp(R, L) = Tr (e-^^p) = ^ ^^cr/6^-2^rxr, ^ (2.64) 
71 

where we used (2.62). We are considering the vertical L-axis to be the t ime direction. The 

sum is over aU simultaneous eigenstates { | n > } of Hp and (XQ -|- LQ). Xn is the eigenvalue 

of (LQ + Xo) corresponding to the eigenstate \n >. 

B u t this is not the whole story. Since we are dealing w i t h minimal conformal field 

theories, the above sum splits into sums over conformal blocks. Let us consider the con­

t r i b u t i o n of a conformal block, whose pr imary operator has dimensions (/ip,g,/ip,?) given 

by the Kac formula: 

oo 
e-W6 ^ dp,,{N)dp,qiN)exp[-2nT{hp,q + hf,q- + N + N)], (2.65) 

where dp^g(N) and dp^g{N) are the degeneracies of the levels iV and iV, respectively. The 

above expression can be decoupled, as expected, into analytic and antianalytic parts, 

yielding: 

Zpp{q) = J2 ^p(P<l,PQ)Xpqi<l)xpqiq), (2.66) 
pq,pq 
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Figure 2.3: Torus 

where Afp{pq,pq) denotes the number of times the representation {pq,pq) appears in the 

pa r t i t i on func t ion and 

X M = q-'^^^'Tr^.q^" = 9"^/ '^+ '^- E d p ^ l ^ (2.67) 
N=0 

is called the character of the representation {p, q) of the Virasoro algebra. These objects 

have been thoroughly studied by Rocha-Caridi, [21]. 

We recall that our aim is to compute the objects Mp. We are now in a position to 

invoke the argument of modular invariance. I f the par t i t ion funct ion is defined on a torus, 

then i t had better not break the symmetries of this topology. As we are all aware, we can 

visualize a torus as a parallelogram w i t h opposite ends identified. The modular group is 

just the group of global reparametrisations of the torus. Let us t r y to understand what 

this means at the level of the par t i t ion funct ion. The operator which implements the 

translations in Euclidean t ime is exp(-LHp) whereas the translations in Euclidean space 

are implemented by exp{i6P), where P is the momentum operator. Hence the zero-point 

one-loop amplitude (twisted at an angle 9) is given by (see fig.2.3), [42]: 

Zpp{T,e) = Tr (e'^^e-^^^). (2.68) 

Since the direction of t ime on the torus was chosen by us arbitrari ly, we could have 

instead considered a system of length L propagating for a lapse of t ime R. The answer 

should be unaltered. Namely: 

Zpp{T,o) = Zpp (-i,o' (2.69) 
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Also a twis t at an angle 27r should leave the par t i t ion funct ion unchanged: 

Z p p ( r , 0 ) = Zpp( r ,27r ) . (2.70) 

Cardy proved that the conformal characters (2.67) t ransform linearly under the modular 

t ransformat ion (2.69), [20]: 

Xrq{q) = E K ' / x M q ) , (2.71) 
p'q' 

where q - g ( - l / r ) = ea;p(27r/r) and: 

< ' = f ^ ^ ) ' ' V l ) ' ' ^ ' « ' ' ^ ' ' ' - f ^ ? ^ ) , i „ f ^ ) . (2.72) 
\m{m+l)J \ m J \m+ IJ 

Imposing (2.69) and assuming that aU the characters are distinct, linearly independent 

and finite i n number, we obtain the following set of inversion sum rules: 

[M®M]Mp^Mp. (2.73) 

Now remember that we want Zpp{q) to be invariant under the whole modular group. 

Therefore, only the Afp(pq,pq) such that the spin hp^g - hp^g is an integer (bosons) are 

permi t ted . A fur ther constraint resides in the reality of the par t i t ion funct ion: 

^ > ( M , M ) = A/p(M,P9)- (2.74) 

Final ly we impose that the identi ty operator ( w i t h dimensions (0 ,0) ) should appear exactly 

once i n the theory: 

A 6 ^ ( l l , l l ) = 1. (2.75) 

From these constraints we see that 

^ P { M M ) = Sp,pSq,g (2.76) 

is always a solution of the inversion sum rules (2.73). This is actually the unique solution 

fo r m = 3 which corresponds to the Ising model. The allowed operators are the ident i ty 

(1 ) , the energy density (e) and the spin density (cr) operators w i t h conformal weights (0 ,0 ) , 

and ( ^ , ^ ) , respectively. 

I t is impor tan t to note tha t the existence of a solution to the inversion sum rules by 

itself does not imply the existence of a corresponding model, since the sum rules are only 

a necessary condition for the model to be consistent. 
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Also, eq.(2.71) is more general than claimed. For any rational conformal theory (i.e 
w i t h a finite number of pr imary operators), we have: 

X^{q) = Y.SlxM^ (2.77) 

i 

where Xi{<l) is the character of the representation i. Verlinde conjectured that modular 

invariance is so powerful a constraint as to completely fix the structure constants iV-^ of 

the fusion rules (2.51) according to the Verlinde formula^ [65]: 

c j c i 

EW/ = ir - (2-78) 
From this formula we can derive the following fusion rules for the Ising model: 

ee ~ 1 
aar^l^e (2.79) 
ea a 

Notice tha t this operator algebra closes w i t h the operators 1 and e only. However the sum 

rules teU us tha t the magnetization a must be included to get a consistent theory. 

'The symbol '0' corresponds to the identity representation. 
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Integrable Models 

In this chapter we review some of the main results of two-dimensional integrable quantum 

field theories and the bootstrap approach. 

The study of integrable theories in two dimensions started a long t ime ago w i t h the 

analysis of non-relativistic models w i t h a 6-type interaction, [8], [75]. The existence of an 

inf in i te number of involutive (mutual ly commuting) integrals of motion ( I M ) transforming 

according to representations of increasing "spm" of the group of rotations played a decisive 

role. These models were solved using the technique of algebraic Bethe Ansatz [8] whereby 

one would assume a localized interaction ( w i t h an interaction range of the order Rc) so that 

particles far away f r o m each other (distances a lot greater than Rc) could be described by 

asymptotic free states. These states, also called the Bethe wave functions, are simultaneous 

eigenstates of the I M . The corresponding Schrodinger equation can be regarded as being 

just the first i n an inf ini te series of eigenvalue problems - one for each I M . I n these models, 

particle product ion is excluded by the fact that they are non-relativistic. Solving the 

hierarchy of eigenvalue problems for an arbi trary number iV of particles yields not only 

the iV-particle Bethe wave funct ion but also the exact elastic scattering mat r ix . The S-

m a t r i x on the other hand can be shown to decompose into the product of two-particle 

scattering ampUtudes. This is called factorized scattering and is another consequence of 

the existence of nonlocal I M , [36]. Once the Bethe wave funct ion is determined we can 

place our system in a finite periodic box of length L, thus quantizing the momenta of 

the iV particles according to a set of transcendental equations, also known as the Bethe 

equations. By taking the thermodynamic l imi t N,L ^ oo w i t h D - N/L = constant 

and tak ing into account the previous quantization condition for the momenta, we can 

28 
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subsequently extract a number of thermodynamic properties of the system. 

Integrability is also compatible with Lorentz invariance. Some relativistic models such 

as the sine-Gordon theory, [37] or more generally two-dimensional conformal field theories 

are integrable. The deep connections between integrable models and conformal theories 

have started to be unravelled. I t is by now widely accepted that many integrable models 

are perturbations of conformal field theories, [25]. 

3.1 Integrable perturbed conformal theories and conserva­
tion laws 

Suppose that we have a conformal minimal unitary model (cf(2.44)) denoted by M{'m) 

(where m = 3,4, •••) and perturb i t with a relevant primary scalar field ^pg{z,z) with 

conformal dimensions {hpg,hpq), given by the Kac formula (2.44). The fact that it is 

relevant means that A = h + h = 2hpq < 2. The action is : 

S^So + x j ^p,{z,z)d'z, (3.1) 

where »So is the action of the minimal non-perturbed conformal theory. From the above 

equation we can infer the conformal dimensions of the constant A : (1 - / i p , , l — hpg). 

Alternatively we can say that A has the scaling dimension, A ~ {length)~'^^^~'^'"'\ Because 

the primary field is relevant we conclude that the exponent in the above expression is 

negative. T U S O the fact that A is a dimensional quantity means that the scale invariance 

is broken. 

Suppose that Ts+i is some conserved quantity of dimensions (s -|-1,0) in the conformal 

theory, i.e. 

dzTs+i = 0. (3.2) 

From the closure of the operator algebra (2.51) we have: 
m An) . 

T.^,{z)^p,{w, w) = 5: (-> - ) + 7 r ^ ^ . . ( ^ ' ^ ) + • • • (3-3) 

where $j,,^, Bpg are some local fields in the operator algebra, m is some integer and d!^^ 

are dimensionless constants. The integer m has to be finite. To see this notice that the 

first term on the r.h.s of eq.(3.3) yields the conformal dimensions (/„, /„) for the fields $p"^: 
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(^n, ^n) = {s + hpq + 1 - n, hpg). Since these have to be non-negative for a unitary theory, 
we conclude that: 

m<hpg + s + l. (3.4) 

When we perturb the theory according to (3.1), the conformal symmetry is broken and 

(3.2) no longer holds. We have instead: 

d,Ts+, = \R, + --- + A " 4 " ) + • • • (3.5) 

The local field Rg has dimensions (5 + hpq,hpq). The subscript "5" means that Rg and 

^ i " ^ have spin s. The field AI"^ has dimensions {s + I - n + nh,l - n + nh). Again from 

the unitarity of the theory, we conclude that the sum in (3.5) is finite. Terms for which 

n > should therefore be excluded. In most cases only the first one survives. We wiH 

assume that this is the case. 

Because of (3.5), T j+ i depends on both z and z. The Ward identity is: 

< r ,+ i ( z , z) • • • > = < r ,+ i (^) •••>o+\j dwdw < Ts+i{z)%q{w, w)--->o + 0 ( A 2 ) , 

(3.6) 

where <>o denotes the correlations in the nonperturbed conformal theory and we assumed 

that < ^pq(z,z) >o= 0. From eq.(3.3), Cauchy's theorem and the identity, 

^- = S(z - w)6(z - iv), (3.7) 
z - w + te 

we get to first order in A : 

d,Z+iiz,z) = \ 
Ln=2 

We conclude that we get an off-critical conservation law. 

(3.8) 

a,T,+a = 5 , 0 , _ i , (3.9) 

provided Bpq is a total z-derivative. 

I t is easy to show that the stress tensor always yields a conservation law for a minimal 

theory perturbed by a relevant primary operator (cf.(3.1)). In fact: 

T{z)^pq{w, W) = j-!^^pq{w, H,) + -^d^%q{w, Oj) + • • • (3.10) 
{z-w) z — w 

Comparing (3.3) with (3.10): 

Qo{z,z) = X{l-hpq)%q{z,z). (3.11) 
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This method is sidted to understand which chiral conserved currents in the conformal 
theory are deformed into off-critical laws of the form (3.9). Zamolodchikov suggested a 

counting argument", [29], that allows us in principle to compute the spins of the conserved 
charges in the integrable theory, solely from the knowledge of the critical conformal theory 
and the relevant perturbing primary operator. In practice, the computations are quite 
involved and we are able to compute only the first few spins. 

We start by defining the irreducible Virasoro module A of the identity operator. A 

admits the decomposition, 

A = ©~oA. , (3.12) 

into subspaces A^ of dimensions (s,0). We also introduce the factor space, 

A3+1 = A , + i / I _ i A , . (3.13) 

The elements of (3.13) fall into equivalence classes, so that two elements As+i,Bs+i G A^+i 

are represented by the same class provided there exists some element G A^, such that 

(cf.(2.46)): 

= A,+, + d.Cs. (3.14) 

Similarly, i f denotes the irreducible module of the relevant primary operator $p, and, 

= ®^o^^., (3-15) 

is its decomposition into subspaces of conformal dimensions (Zip, -|- s,hpg), then we can 

also define the factor space: 

n,+i = ns+i/L-iQs- (3.16) 

From eq.(3.5) we see that the symbol dz can be seen as an operator: 

{d,Ui : A ,+ i ^ n , . (3.17) 

We also introduce the operator Zg+i =1150 {dz)s+i : As+i ^s, where E j : 0<, -)• 

Cls is the operator that projects any element in f i ^ onto its equivalence class in Cl. I f 

dim{As+i) > dim{9,s), then this means that the kernel of Z^+i is nontrivial, i.e. there are 

at least two elements As+i, Bs+i G A j + i that are mapped onto the same equivalence class 

in Os- In other words, there exists some ©s-i G Os-i such that (cf.(3.14)): 

d,A,+^ - d,B,+i = d,Qs-i. (3.18) 
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I f we define Ts+i = vls+i - -Bj+i, we recover eq.(3.9). In summary, whenever diTn{As+i) > 

dim{tls), there exist conserved charges Pj of spin s, given by: 

Ps = J [Ts+idz + Gs-idz]. (3.19) 

(3.20) 

Of course by parity, we also have: 

5 , f , + i = 5 ,0 , -1 , 

Ps - J [fs+idz + Qs-idz . 

The dimensions of A^+i and Clg can actually be computed by equating powers of q (hence 

the name ^''counting argument") in the following formulas involving the Virasoro characters 

of the representations corresponding to the identity operator ( x i , i ) and the operator $p, 

E ^ o q'dim{As) = (1 - g)xi,i(9) + q, 
(3.21) 

As an illustration, we consider the critical Ising model perturbed by the magnetization 

operator, [29]. The central charge is 1/2 and the magnetization operator a has dimensions 

le)" "^^^ dimensional perturbation parameter A has conformal dimensions 

The dimensionalities of A^+i and Clg can be found for odd s < 21 in table I . Even spins 5 

are not considered because in that case dim{A.s+i) < dim{Q,s)-

Table I 

5 1 3 5 7 9 11 13 15 17 19 21 
dim{As+i) 1 1 1 2 2 3 4 5 7 9 11 

dim{(ls) 0 1 1 1 2 2 3 5 6 8 12 

These dimensionalities have been computed using eq.(3.21) and: 

x i , i (g) = I [n~=o(i + 9"+'/') + n ~ o(i - 9"+'/')] , 

xi,2(9) = 9^/^ 'n~ , (1 + q-) = g iA«n~ 0(1 - 9'"+')-^-

From table I , we conclude that the spins of the conserved charges are: s=l,7, 11,13,17,19. 

(3.22) 

Zamolodchikov found[30] that by perturbing a minimal model M{m) (m > 5) with the 

relevant primary operators (i) ^(1,3)) (ii) ^(1,2) i^) ^(2,1) would obtain integrable 

theories with one conservation law for every odd value of the spin 5 in the case (i) and 

one for every s — l , 6 n ± 1 (n = 1,2,---) for (ii) and (iii). We have already checked 
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(3.23) 

from the previous analysis that the stress tensor yields the spin s = 1 conserved charge in 

the off-critical theory. Other candidates have been suggested according to the particular 

perturbation. For instance, the spins in (i) coincide with those of the I M of the quantum 

Korteweg-de Vries (qKdV) equation, [120]. This equation is defined in the canonical form, 

[28]: 
t = [T,n], 

where the dot indicates the time derivative. Using the technique to transform commutators 

into OPEs, we get: 

r = ^ (1 - c)dlT - 35,(: T2 :) . (3.24) 
b 

The first few conserved charges are, [28] 

Hi = §dzT, 

H^^§dz:T^ :, 

(3.25) 
H^^§dz r 3 : - i ( c + 2 ) : ( W : 

H, = §dz [: : + i ( c + 8) : (T'd'^T) : +^,{c' + 14c - 21) : (d'^T)' : . 

I t is straightforward to show that the above I M commute mutually. We already know that 

the first I M yields a conservation law in the off-critical theory whatever the particular 

choice of the primary operator. One can then show that the first order pole in the OPE 

rs+i(2)$(i_3)('U),uj) (s = 3,5,7) is also a total derivative, which means that the KdV 

hierarchy (3.25) are deformed into off-critical conservation laws yielding the correct spins 

in ( i ) . 

However, this is no longer true in cases (ii) and (ii i) . la ref.[31], Zamolodchikov an­

alyzed the case (iii) for the 3-state Potts model (corresponding to m = 5). This theory 

possesses in addition to the stress tensor a conserved spin-3 field W, satisfying the following 

OPEs: 

mWiw) = ^ W i w ) + j ^ d ^ W { w ) + ..-, 

W{z)W{w) = ^ + j ^ T { w ) + j ^ d ^ n w ) + 

' '^,il-b')dlT{w) + 2b':T'iw)-] + + 
(3.26) 

j-,(2-9b')dlT{w) + b':{d^Tiw)) 2 . 
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where 6̂  = 16/(22 + 5c). We see that because of nonUnear terms like : T'^{w) : they do 
not form a Lie algebra. Rather, they are known in the literature as a W^a-algebra, [31], 
[39]. Also we notice that the quantities, 

= f d z T , P2^idzW, (3.27) 
J 

commute. They are the first I M of the quantum Boussinesq equation (qB): 

T = -2d,W, 
(3.28) 

W = - ^ ( 2 - 9P)d^T - 9d,{: T2 :). 

The next few I M can be found in ref.[28]: 

Pi ^§dz:TW:, 

Ps =§dz [: W : +lb' : : - ^ ( 2 - 96^) : (d^Tf :] , 

(3.29) 
Pr =§dz [: {d.Wf : +/J : : + ( - ^ + ^h') : {d^Tf : + 

+ i / ? 6 2 : T 4 : - | 6 2 ( / J + 2 ) : T 2 5 2 T :] , 

with /? = -156^/(1-1-86^). There are two consistent reductions of the W-algebra obtained 

by setting either W = Q o\ W — b^^dzT. These two reduced sets were then shown to 

yield the spins of the I M in (ii) and (iii) in ref.[28]. 

3.2 Zamolodchikov's c-theorem 

For a given perturbed conformal field theory, Zamolodchikov showed that there exists some 

function c(A) (usually called the c-function) of the coupUng constant(s) A that decreases 

along the renormalization group (RG) trajectory in such a way that it is stationary at the 

fixed points, where its value coincides with that of the central charge describing the UV 

or IR limiting behaviour of the theory, [32]. The idea behind the proof is actually quite 

simple and amounts to dimensional analysis, [25]. The components of the stress tensor 

( T , T , 0 ) satisfy the following conservation laws: 

d,T = d,Q, dzf = 5,-0. (3.30) 
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They have dimensions (2,0), (0,2) and (1,1), respectively. We are implicitly assuming 
rotational invariance, so that their correlators take the following form: 

< T ( z , z ) T ( 0 , 0 ) > = ^ , 

< T ( 2 , z ) 0 ( O , O ) > = ^ , (3.31) 

< 0 ( z , ^ ) 0 ( O , O ) > = ^ ^ . 

Here, m is a mass scale associated with the coupling constant A. I f we define the logarith­

mic derivatives, e.g. F{x) - d!^F{x), we get from (3.30), (3.31) the following ordinary 

differential equations for F, G and H: 

F - G ' 4 - 3 G = 0, G-G-H^2H^Q. (3.32) 

Defining, 

we have: 

C = 2F + 4G - 6^, (3.33) 

C = -12H. (3.34) 

We now assume that the quantum field theory (QFT) satisfies the condition of reflection 

positivity. This means that ^ is a positive quantity and therefore either C decreases 

along the RG trajectory or takes stationary values. At the critical point, the QFT is scale 

invariant and therefore the stress tensor becomes traceless, i.e. 0 = 0. Consequently 

G = H = 0. Also at this point F = c/2, where c is the central charge of the conformal 

theory. As we claimed before the c-function is stationary at this point (cf.(3.34)) and its 

value (3.33) is equal to the central charge of the corresponding conformal theory. 

3.3 Massless flows 

In most cases the IR fixed point is trivial, in the sense that Zamolodchikov's c-function 

takes the value CIR = 0. However, there known cases where this is not true. The best 

known examples are those of RG flows induced by the $(1^3) perturbations of the unitary 

minimal models with diagonal modular invariant partition functions, [34], [33], [35]. From 

the statistical mechanics viewpoint they can be regarded as crossovers between different 

universality classes of critical phenomena. Both at large and short distances these theories 

are conformaUy invariant and the point where the flow crosses over from the region of one 
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fixed point to the other introduces a mass scale (associated with the coupUng constant 
of the perturbation) that breaks the scale invariance. The corresponding QFT is thus 
massless but not scale invariant. The RG flow is attracted to the non-trivial IR conformal 
field theory along the direction defined by some irrelevant operator $(2,2), i.e. an operator 
with scaling dimension A > 2. At large distances we can describe the theory by the 
following IR-effective action, [91], [92]: 

S = SiR+xJ d'^z^z, z) + h.t, (3.35) 

where SIR denotes the action of the IR conformal field theory and h.t. stands for an 

infinite number of operators of higher dimension. These terms can in principle contribute 

as counterterms each one with its independent coupling constant, which means that this 

effective theory is nonrenormalizable. I t can be best thought of as an asymptotic series. 

3.4 Kinematics in 2D and factorized scattering 

In two dimensions for any scattering process there is only one independent Lorentz scalar, 

36]. This is because the system is parametrised by two components of the total momen­

tum, p° — e,p^ - p, that satisfy the dispersion relation, e'^ -p'^ - vn? (m is the total mass 

of the system). Consequently, only one of these quantities is independent. 

Consider the Mandelstam variable s = (pi + P2Y for the scattering of two particles 

with momenta pi,p2- I f we parametrise the momenta in terms of the rapidities (^1, ^2), 

(PoPi) = mi{cosh9i,sinh9i), {i = 1,2) (3.36) 

we have: 

s(e) = ml + ml + 2mim2Coshe, (3.37) 

where 6 - Oi - 62. As we have discussed before, we can assume in the Lehman, Zim-

mermann, Symanzik approach to QFT that in the remote past and distant future the 

spectrum of the theory consists of free stable states of say N particle types. A type a 

(a = 1, • • •, iV) particle state \Aa{0) > of rapidity 6 is created by acting on the vacuum 

with the creation operator Aa{6): 

\Aa(e) > = Aa(^)|0 > . (3.38) 
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These asymptotic states are chosen to be simultaneous eigenstates of all the I M P^: 

P,\Aa{e)>=u'^MM^)> • (3.39) 

Lorentz invariance requires that, 

ul{e) = x'se'^ (3.40) 

where are some constants. In particular X\ a-re just the masses ma of the particles, 

because s = 1 corresponds to the momentum operator. The multiparticle states are defined 

by multiple action of the creation operators, 

\AaA^l) • • •^aM(^M) > = • • •Aa^(^M)|0 > . (3.41) 

By locality, we have: 

PMaM • • -Aa^iOM) > = [e^'^x:' + ••• + e^^^x?^) lAaM • • • Aa^(^M) > . (3.42) 

Imposing the conservation of all the Pg (for any s), acting on any multiparticle state 

(with any number of particles of arbitrary rapidities) poses stringent constraints on the 

scattering, so that only those processes are allowed for which the mass spectrum of the 

theory (i.e. the number of particles and their masses) is conserved as well as the set of 

two-momenta, [36]. Notice also that the states (3.41) do not form a basis for M particle 

states. This is because they are not all linearly independent. I f we define (3.41) with 

1̂ > 2̂ > • • • > ^M) then these states wiU be linearly independent. They are interpreted 

as a set of incoming particles (in-states). Outgoing particles (out-states) would correspond 

to 1̂ < 2̂ < • • • < ^M. The S-matrix is therefore defined by: 

\At^ieM)---AbM >= 5 ™ ( ^ i , - - - , M l ^ a i ( ^ i ) - - - A a ^ ( M >> (3.43) 

where we have used the fact that the individual momenta are conserved and we assume a 

summation over repeated indices. The above scattering matrix factorizes into the product 

of two-particle processes defined by the following non-commutative algebra, also known 

as the Zamolodchikov-Fateev algebra: 

AaMAaM = Sl\il{eu02)AbMAi,{e,). (3.44) 

However, from (3.37), we see that Lorentz invariance implies, 

S'a\iliO„92)^Si\%i6,- 02). (3.45) 
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Figure 3.1: Yang-Baxter equation 

In all known cases the S-matrix is an analytic function of the centre of mass energy, s, 

and invariant momentum transfer, /, in some neighbourhood of the physical region, except 

at normal thresholds, [26]. Given that in two dimensions s is the only invariant Lorentz 

scalar, we can exploit the crossing invariance of the scattering processes by using relation 

(3.37) and imposing the following analyticity-crossing condition: 

S:t{0) = sfsiiT^ - 9), (3.46) 

in terms of the rapidity 9. We also require the two-particle S-matrix to be unitary: 

:!cd dec (3.47) 

This relation can be seen as the compatibility condition for applying twice the commuta­

tion relations (3.44). The associativity of the algebra implies the following cubic relation, 

Sl\iliO)Slllli9 + 9')Slllli9') = 5^/4(e + e')S^lll{9)Stlll{9'), (3.48) 

also known as the star-triangle or Yang-Baxter equation. Physically, it encodes the equality 

between two alternative factorization schemes of a three-particle process into two-particle 

ones as depicted in the diagram of fig.3.1. 

Let us now consider briefly the analytic structure of the S matrix. The inverse trans­

formation of (3.37), 

9 = In 
s - ml - ml + y/[s - (mi -t- m2y][s - (mi - mg)^] 

2mim2 
(3.49) 
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Re e 

Figure 3.2: analytic structure of the S matrix 

maps the physical sheet on the s plane onto the the strip 0 < Im6 < it. The second sheet 

is mapped onto the strip - T T < ImO < 0 and this structure is repeated with period 2t7r. 

The two square branch cut singularities at (mi - m2)^ and (mi + m2)^ in the complex 

plane of the Mandelstam variable s are mapped onto 6 = and ^ = 0, respectively. 

Simple poles on the imaginary axis of the physical sheet are associated with the bound 

states of the particles (see fig.3.2), [36]. 

In fig.3.2 the shaded area represents the physical sheet and the dots stand for the 

bound states. Suppose that iu^^^^ is the position of the pole of Sl\''^^{9) associated with 

the bound state Ac of the direct channel (see fig.3.3), i.e. 

ifC fbib2 

6 
(3.50) 

11 a? 

The objects /^ja^ represent the three-point couplings for the "fusion" of the particles 

Aa-^,Aa2 and the bound state Ac (fig.3.4). 

The mass of the bound state satisfies the equation (cf.(3.37)): 

= ml, + ml^ + 2ma,ma,cosul^^^. (3.51) 

The bootstrap principle consists of assuming that aU the bound states are stable massive 

states belonging to the spectrum of the theory, [25]. Consequently, the factorized scattering 
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Figure 3.3: bound states 

= f Hi 32 

Figure 3.4: 3-point coupling 
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e+ iu^ l 

^ • — ai 

Figure 3.5: boostrap equations 

applies to these states as well, yielding a set of bootstrap equations, 

where u = in - u. They are depicted in fig.3.5. 

(3.52) 

This set of conditions (eqs.(3.46), (3.47), (3.48), (3.52)) is sufficient to pin down the 

S-matrix up to a so-caUed "CD-D ambiguity'^ [36], 

(3.53) 

where the CDD factor''' ^{9) is an arbitrary function of the rapidity satisfying the equa­

tions: 

$(^) = $(z7r - ^ ) , $ ( ^ ) $ ( - ^ ) = l . (3.54) 

The bootstrap equations may impose further restrictions on this function. Eliminating 

completely the CDD ambiguity involves a lot of guesswork, ia most cases, the minimal 

solution (i.e. with the smallest number of zeroes and singularities) is usually the correct 

one. 
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3.5 Thermodynamic Bethe Ansatz 

The analysis of higher order poles is more subtle and plays an important role in the clas­

sification program of bootstrap systems. This program consists of finding solutions to the 

constraints of unitarity, crossing symmetry, factorizability as well as all the constraints 

associated with the bootstrap principle, without any mention to any ofF-sheU action. Al ­

though this alternative description of the QFT in terms of asymptotic states and S-matrix 

is necessarily on-shell, there are good arguments to believe that it actually contains all 

the information about the QFT. Some thermodynamic properties of the system can be 

extracted by the technique of thermodynamic Bethe Ansatz (TBA) and correlation func­

tions computed using the form factor approach of Smirnov and KiriUov [27] or quantum 

determinants by Korepin et al.[8]. 

The technique of TBA consists of placing our system on the torus of fig.(2.3) with 

^ = 0, [80]. The partition function is given by: 

Z{R,L) = Trexp{-RHL). (3.55) 

Using the argument of modular invariance, we can equally write: 

Z{R,L) = Trexp{-LHR). (3.56) 

HR and Til, are the Hamiltonians for the system quantized along the R- and X-axes, 

respectively. In the limit L ^ oo, the partition function (3.56) is dominated by the 

ground state energy Eo{R) of HR and hence: 

Z{R,L):^exp[-LEo{R)]. (3.57) 

Similarly, (3.55) is controlled by the bulk free energy f{R) of the system at the finite 

temperature 1/i?: 

Z{R, L) ~ exp [-LR/(E)]. (3.58) 

Equating (3.57) and (3.58), we get: 

Eo{R) = RfiR). (3.59) 

The fact that we are placing our system in a finite box with periodic boundary conditions 

will impose certain quantization conditions upon the momenta of the particles. Assuming 
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(for simplicity) that we have a system with N bosons obeying the diagonal algebra^, 

AaMAaM) = Sa,a,{Ol " ^2)Aa,(^2)Aa, (^l), (3.60) 

we obtain the following set of Bethe equations: 

e'P'=^nJ^ ,̂)5,,,,( ,̂ - ^/) = 1, (fc = 1,2, • • •, AT), (3.61) 

where pk = mkCosh9k. Notice that if the scattering is trivial, we get the well known 

formula for a set of N free bosons in a periodic box of length L: 

W = ^ , (3.62) 

where n^ are arbitrary integers. More generally, we have to specify the selection rules 

obeyed by the particle states. For simplicity we assume that there is only one type of 

particle with the scalar S matrix S{9) satisfying the unitarity condition S{B)S{-6) — 1. 

Obviously, 5(0) = ± 1 . Suppose first that 5(0) = -1 . I f the particle is a boson then its 

wave function should be symmetric. We thus conclude that states with particles of the 

same rapidity should be excluded. If, on the other hand, i t is a fermion, then these states 

are allowed. Conversely, i f 5(0) = -|-1, then it is the fermions that obey an exclusion 

principle. 

We now define the dimensionless quantity r — miR. m i is the smallest mass in the 

spectrum of the theory and can be best thought of as the inverse of the correlation length. 

The limits r ^ 0 and r -)• oo determine the UV and IR behaviours of the theory in the 

thermodynamic limit. The UV limit is described by a conformal theory, where conformal 

invariance predicts the following scaling behaviour (cf.(2.62), (2.64)): 

EoiR) = ^ (^h^in + hm.n ' ^ ) , (3.63) 

where {hmin,hmin) are the smallest dimensions in the spectrum of the UV conformal 

theory and c is its central charge. Zamolodchikov's c-function is defined by: 

Consequently: 

c-(r) = -—Eo{R). (3.64) 
TT 

Um C(r) = C - 12{hmin + hm.n)- (3.65) 
r-+0 

In chapter 8 we wiU perform this computation for the principal chiral model explicitly and 

in great detail. This case has some additional complications stemming from the fact that 

i t is not a diagonal theory in the sense of eq.(3.60), [57]. 

^ There is no summation over repeated indices. 
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The principal chiral model 

This chapter is intended as an overview of the principal chiral model. I will focus on the in­

tegrability and background scattering as well as the limiting infrared Wess-Zumino- Witten 

conformal field theory. Some aspects of Kac-Moody algebras and coset constructions are 

explained. Particular emphasis is placed on the group 5/7(2) x SU{2). The bulk spectrum 

coincides with those of the Kondo model and of the Callan-Rubakov effect. 

The principal chiral model PCMk is defined by the action: 

SPCM, [g] = ^ j^^ Tr {{g-'d,g){g-'d>^g)} d \ + ikT{g), (4.1) 

where T[g] is the Wess-Zumino-Witten (WZW) term [40]: 

= ^ jTT[{g-^d,g){g-'d.9){g-'dy.g)]e^''>^d\. (4.2) 

In eq.(4.1) g is a Lie group-valued field defined on a two-dimensional compact spacetime 

surface dB. The region of integration B in eq.(4.2) is a three-dimensional simply connected 

manifold whose boundary is dB. Topological arguments show that the ambiguity in this 

definition amounts to the WZW functional being determined up to a positive integer which 

can be reabsorbed into the constant k in eq.(4.1) [41]. I f the Lie group G is simple^ this 

ensures the positivity of the action [4]. 

For k — the theory corresponds to a nonlinear sigma model. Its behaviour is massive. 

I f A; 7̂  0 the renormalization group (RG) analysis reveals that i t interpolates between two 

fixed points, [57]. The ultraviolet (UV) fixed point is controlled essentially by the first 

term in eq.(4.1). The RG flow of the coupling A ^ terminates at the infrared (IR) fixed 

'If it is semi-simple then it is the direct sum of simple components and the axgument stiU holds. 

44 
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point = 87r/fc, where the theory becomes massless at all distances (conformal). For a 
generic k the RG trajectory arrives at the IR fixed point along the direction defined by 
the irrelevant field Tr(g-^dgg-^dg) of dimension 1 + 2/{k + 2). For fc = 1, this field does 
not exist in the conformal theory and the incoming direction is defined by the operator 
T f composed from the components of the stress tensor of the IR conformal field theory. 
The point where the model crosses over from the region of one fixed point to the other 
introduces a mass scale that breaks the conformal invariance. 

The PCMk was argued to be massless and integrable in refs. [47]-[51] and its thermo­

dynamic Bethe Ansatz (TBA) equations proposed in [85] for G = SU{2). Zamolodchikov's 

c-function was then shown to take the values cuv = 3 and c/̂ ? = Sk/{k + 2) at the fixed 

points. Al.B.Zamolodchikov and A.B.Zamolodchikov subsequently proposed the back­

ground scattering in terms of massless particles that leads to the correct TBA equations 

ioi k = 1 [57]. Following a prescription developed by Smirnov and KirUlov [52] in the 

context of the 5C/(2)-invariant Thirring model, they also showed that the form factors as­

sociated with the chiral currents obey the correct commutation relations. However, there 

is no known method to deal with the central term. Notwithstanding this, it can be shown 

to take the correct value by TBA analysis, [57]. Mejean and Smirnov [46] derived the form 

factors for the trace of the stress tensor. 

4.1 The WZW model and Kac-Moody algebras 

The action (4.1) satisfies the remarkable property [49], 

S[gh-'] = S[g] + S[h-'] - J^Jrl^^g-\d,g)h-\d'^h) - ^e'^-^g-\d,g)h-\d,h)^ , 

(4.3) 

which can be proved using Stokes' theorem. I t is also worth noting that it enjoys invariance 

under the global transformation: 

g{x) ^ ^lg{x)^-\ (4.4) 

where Cl, Cl are arbitrary x-independent elements in the group G. The classical field 

equations arising from minimizing the action (4.1) with respect to the field g are: 

-j-^d,{g-'d'^g) + ^e^''g-\d,g)g-'d.g = 0. (4.5) 
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At the IR stable fixed point, we have, [40], [44]: 

SwzwAa] = kW[gl (4.6) 

where 

W[9] - ^ j^^ Tr {[g-'d,g\g-'d^9)} <Px + iT[g]. (4.7) 

Also formula (4.3) becomes: 

S[gh-'] = S[g] + S[h-'] - A / d'xTr {g-'d,g){h-%h)} , (4.8) 

where z, z have the usual meaning. Using identity (4.8) i t is straightforward to show that 

the invariance (4.4) is elevated to the infirute dimensional symmetry^: 

gix) ^ a{z)g(x)Cl-\z), (4.9) 

at the IR fixed point. And the equations of motion (4.5) yield: 

dz[g-''d,g) = 0. (4.10) 

Clearly from (4.10): 

dzid.gg-') = gd,{g-^d,g)g-^ = 0. (4.11) 

(4.12) 

We therefore define the basic currents: 

• J = rta - -\kd,gg-\ 

J^JHa^-\kg-^d,g, 

where are the antihermitean generators of the Lie algebra G associated with the Lie 

group G: 

[t\t''] = (4.13) 

The currents (4.12) are the generators of the left and right infinite dimensional symmetries 

(4.9). Henceforth we shall ordy consider one of the sectors, say the analytic sector, as aU 

the results that foUow are easUy transcribed into the antianalytic sector. 

For infinitesimal current symmetry transformations, 

n{z) = I + LJaiz)t\ (4.14) 

we have, [44]: 

S^r{z) = r\ukiz)J%z) + ^kd^u^iz). (4.15) 

^Actually it is the direct pioduct of two symmetries: left and right gauge transformations. 
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Since the theory is conformal there is a traceless operator with components T, f , that 

generates the conformal transformations (2.12) and satisfies dzT = d^T = 0. Assuming 

that the fundamental field 5 is a primary operator with respect to the conformal algebra, 

then i t can be shown that J given by eq.(4.12) is also a primary operator with dimension 

1. Under (2.11) we have: 

6,riz)^eiz)d,r{z) + d,eiz)riz). (4.16) 

The previous identities can be cast in the form of operator product expansions (OPE), 

44], [42]: 

f n m ^ ) = + ( i : ^ r ( t . ) + j ^ d ^ T i w ) + . . . 

T{z)J^{w) = ^ j a ( ^ ) + - i - 5 ^ j » + . . . (4.17) 

n z ) j \ w ) = ^ + £ ^ J c ( , ) + . . . 

The analyticity properties of J and T allow for the Laurent expansions: 

(4.18) 

Equations (4.17) entail the following commutation relations for the modes: 

[ [Ln,Lm] = (n - m)LnJrm + X2^n^ ~ '^)^n+mfi, 

[Ln,J?n] =-mJ^+m. (4.19) 

The last set are called a Kac-Moody algebra Q at level k based on the Lie algebra Q of 

the group G. Every Kac-Moody algebra contains a subalgebra of the zero modes, which 

is isomorphic to the algebra Q (cf.(4.13)): 

ja jb fab re ab re (4.20) 

The definition of a primary operator requires some caution in this context. Remember 

that a primary operator in a conformal theory was defined to be an operator that trans­

forms covariantly (i.e. as a tensor) under any conformal transformation. In particular 

its transformation rules are dictated by the subgroup PSL{2,C) of projective transfor­

mations. In the framework of the WZW model we shall have to impose some additional 

requirement for an operator to be primary. This is because the conformal invariance is 

extended by the additional Kac-Moody symmetry (4.19). By analogy we require that a 



Chapter 4: The Principal Chiral Model 48 

primary operator transform under a current symmetry transformation as it does under 
the subgroup of global gauge transformations generated by (4.20). 

Specifically 4>i{z) is a primary operator of dimension hi with respect to (4.17), provided, 

[44]: 
• nz)<f>i{w) = j ^ M ^ ) + jh^d^4>lM + ••• 

(4.21) 

Here tf is the 'left ' representation of the generators (4.13). With this definition neither 

J nor T are primary operators. On the other hand the fundamental field g is a, primary 

operator. 

These equations lead to the set of Ward identities: 

< Tiz)cf>,iz,)..-m^N) > - Ef=i + j h - i ] } < M^i)• --M^N) >, 

< J''iz)M^,). --M^N) > = Ef=i iS- < M^i) • --M^N) > . 

(4.22) 

Hitherto I have not made any reference to the particular form of the stress tensor or how 

it is related to the fundamental field g and the Kac-Moody currents for that matter. Al l 

the results listed above therefore apply to any conformal field theory with current algebra 

symmetry. 

For the WZW model, the energy-momentum tensor is given by the Sugawara form 

[53]: 

nz) = ^ : r{z)riz) :, (4.23) 

where is the second Casimir of the adjoint representation, defined by / " cd/'" '̂̂  = c^S'^^. 

We thus get for the Virasoro generators: 

1 + 0 O 

Ln = — - ^ E (4-24) 

' TO = - 0 0 

where the normal ordering has the usual meaning^. I t is interesting to note that the 

operators play the same role as do the oscillator modes ai^ in the mode expansion of 

the flat space closed bosonic string theory. In fact the Virasoro modes have a form similar 

to (4.24) in terms of the < , [6]: 

. d + 0 O 

fizzl m=—oo 'Modes with n > 0 are placed to the right of the product. 
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When the group G is abeUan (e.g.C/(l)) we actually get the Heisenberg algebras, 

1 
Jn,Jl\-^^kn6'''Sr,+mfi, (4.26) 

obeyed by the oscillator modes a(^. 

Let us now go back to definition (4.24). I t is easy to show that the central charge is 

given by: 
kD 

where D is the dimension of the group G. 

To construct irreducible representations, we proceed as before. We start by looking for 

the nuU vectors of the theory. In this case there are three types of null vectors possible: 

( i ) purely Virasoro algebra, 
(n) combined Virasoro and current algebra, (4.28) 
( i n ) purely current algebra. 

The first case was already discussed in chapter 2 and corresponds to minimal conformal 

theories with c < 1. 

Let us consider the following type (ii) null vector, [44]: 

X = ( a X - i - Jl^W = - r,n<f> = 0, (4.29) 

where (f>is a, primary operator with dimension h. Since x is a null vector then in particular: 

LiX = JiX = 0. 

These constraints fix the anomalous dimension and the value of a: 

(4.30) 
a = -\{cy 4- k), 

where is the second Casimir of the representation R, T i " = -c^I. 

Moreover, given that X is a nuU vector, any correlator where it appears must vanish. 

Using the defiiution of the modes together with the Ward identities, we obtain the following 

set of partial differential equations [Knizhnik-Zamolodchikov equations): 

dz, j^^z,-z, 
<MzMz2)---Mzn)>=o, (4.31) 

following the same procedure as in section 2.2 for degenerate conformal theories. By 

investigating type (iii) nuU vectors a remarkable set of selection rules emerge, [42]. These 
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state that most of the a priori conceivable representations lead to vanishing correlators and 
thus effectively decouple from the theory. In fact we wUl be left with ordy a finite number 
of representations. The oidy allowed ones are the highest weight irreducible integrable 
representations. By integrable we mean that the highest weight representation of the 
pseudospin associated with the highest root is finite. 

To understand this better, consider 6 to be the highest root of Q, associated with the 

element - r ^ of G- We also define the element hg = [ r ^ , r~^ ] of the Cartan subalgebra 

and choose a normalization such that [he,T^] - 2r^. Then we have the following SU{2) 

pseudospin commutation relations: 

( 4 . 3 2 ) 

[p3 , / '± ] = ± 2 P ± , 

where P' = Ji^, P + = J~f, P^ = m - and m = 2kI{0,6) is called the level of the 

representation. Thus any representation of the current algebra decouples into a sum of 

representations of SU{2) pseudospin. The representation of the Kac-Moody algebra is 

integrable if the representation , 

{ < ^ A , P - < ^ A , ( P - ) V A , - - - } , ( 4 . 3 3 ) 

containing the highest weight component 4)\ of the primary field (i> with weight A is finite. 

In particular: 

M = m - 2 ^ ^ > 0, M is integer, ( 4 . 3 4 ) 

for an integrable representation. The fundamentals of these selection rides lie on strictly 

group theoretical arguments. They therefore hold not oidy for WZW type models but for 

any current algebra invariant theory. They place stringent constraints on the correlators 

so that many of them (even some involving integrable fields) vanish. 

Let us consider our main example SU{2). The highest weight root 9 is the simple root 

a, normalized so that (a, a) = 2. For spin / we have X = la and so 2{X,d)/(d,6) — 21. 

From ( 4 . 3 4 ) we conclude that this representation is integrable provided, 

21 < k. ( 4 . 3 5 ) 

The allowed representations are thus: 

/ - 0 , ^ , 1 , - - - , ^ , ( 4 . 3 6 ) 
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and there are (k + 1) of them. From eq.(4.30) we infer the following conformal dimension 
for these representations: 

The central charge (cf.(4.27)). 
3k 

is in agreement with the value CIR of Zamolodchikov's c-function at the infrared stable 

fixed point. 

An interesting question concerns the modular properties of the theory and can be 

stated as follows. Given the representation theory discussed above that holds for the left 

and right sectors, which of the allowed integrable representations do actually appear in 

a given theory, in what (analytic-antianalytic) combinations and how often? Gepner and 

Witten [42] found that i f the coefficient k of the action (4.1) is properly quantized and the 

group is simply connected then the partition function on the torus is modular invariant 

whenever the spectrum consists of all the left-right symmetric integrable representations, 

each appearing exactly once. Actually their result is more general than that as they also 

analyzed non-simply connected groups using orbifold ideas. But that need not concern us 

here. 

A theory that satisfies these properties is called diagonal, because the partition function 

on the torus takes the diagonal form: 

Ztorus{q) = J2Xj{<l)Xj{Ql (4-39) 

where Xj{<l) — Trjq^°~'^l'^'^ is the character of the representation j and q is the modular 

parameter. J is the set of allowed representations. 

Given the fact that SU{2) is simply connected, we conclude that the corresponding 

conformal theory is diagonal. The Kac-Moody characters xP^ for the isospin /, level k 

representation of the affine A^^^ algebra are given by [43]: 

where 0 < I < k/2 and r] is Dedekind's function: 

7?(r) = exp n - 1 (1 - exp{2i7rnT)). (4.41) 
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For a given level k, the {k + 1) characters are all distinct and linearly independent. 
Their behaviour under the modular transformation (2.69), is encoded in the modular 
matrix (2.77), [43]: 

As an illustration, we consider the case A; = 1. The central charge is equal to 1 and 

there are two integrable representations corresponding to isospins / = 0 and / = 1/2. 

Their conformal weights are (cf.(4.37)) ho — ho = 0 and hi/2 = hi/2 = 1/4. They are 

identified with the identity operator and the fundamental operator g of the WZW action 

respectively[45]. The modular matrix 5̂ ^̂  reads: 

5 « = 7 1 ( ; ) • ( " 3 ) 

Using Verlinde's formula, we can also compute the structure constants of the fusion rules. 

They are found to be: 

(4.44) 
Nl_ = l,Nh = 0 . 

1 2̂ 1 1 2 2 

More generally, the structure constants for the SU{2)^ conformal field theory can be 

shown to be of the form, [96]: 

^r; _ / 1, if\j-p\<l<min{j + p , k - j - p } , 
~ \ 0, otherwise. ^^'^^^ 

4.2 GKO coset construction 

The Goddard, Kent and Olive (GKO) coset construction, [53]-[55] is a method for con­

structing representations of the Virasoro algebra out of representations of afliine Kac-

Moody algebras. I t is widely beUeved that all the rational conformal field theories can be 

obtained in this fashion. 

One of the key elements of this construction is the Sugawara form of the stress tensor. 

For a group G with algebra G we have (cf.(4.24)): 

1 -l-oo 

i n = ^ E Jn+n.J-m •• • (4-46) 

The satisfy the Virasoro algebra: 

m=—oo 

L^L^ = (n - m)X^+„ + -{n' - n)5„+^,o, (4.47) 
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with central charge: 

Dg is as before the dimension of the group. I f ̂  is semi-simple there are generators • 

for each simple factor ^ j - (1 < i < iV) of ^ . Then 

4 = J2Li' (4.49) 
»=i 

constitute a Virasoro algebra with central element: 

N N 

C S _ 

! = 1 i-1 + 

We wiU henceforth assume that the representation of the Kac-Moody algebra is such that 

the following hermiticity property holds: 

(J„")t J ^ „ , n e 2. (4.51) 

which implies (2.38) for the Virasoro generators. Friedan, Qiu and Shenker [16] have 

shown that this is a necessary condition for a Virasoro representation to be urutary. 

Now consider a subalgebra H C Q. The basis of Q is chosen in such a way that the 

first divoH generators, (a = 1, • • •^dimH) form a basis of H. By construction, there 

wiU be two Virasoso algebras i ^ , and their difference 

= Ll-L^ (4.52) 

satisfies the Virasoro algebra with central charge, 

c = - c^, (4.53) 

and commutes with H: 

[A'™, J^] = 0, 1 < a < dimH, m, n G 2 . (4.54) 

Now we take Q = su{2) ® su{2) and H to be the diagonal su{2) subalgebra. We wiU 

generate the minimal sequence of FQS [16] by taking a level k representation for the first 

su(2) factor and a level 1 representation for the second one. Thus, the central charge is 

(cf.(4.50)): 
3^ , 1 3 ( f c - f l ) ^ 6 

' = k T - 2 ^ ' - - J T r = ' - ( k + 2)ik + 3y ^'-''^ 
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where we have used the fact that D = 3 for 5^(2) and that the representation for the 
diagonal su{2) has level equal to A; -f 1. In eq.(4.55), we get the minimal series by taking 

= 1,2,--. 

GKO have also shown [55] that the representation obtained by taking the ( A ; , /) repre­

sentation with level k and isospin / of the first su{2) factor and the ( l , e ) , e = 0 or 1/2, 

representation of the second su{2) factor decomposes into the direct sum of representations 

{k',l') X (c,/i) of ?t: X F (where V denotes the Virasoro algebra [Kn]), 

(k, /) X (1 , e) « ®, (A; + 1, ̂ (g - 1)) X (c, /ip,,(c)), (4.56) 

where c is given by eq.(4.55),p = 2/-I-1 and the sum is taken over 1 < 5 < A;-|-2 such that p-

q is even or odd, depending on whether e = 0 or 1/2. In this way we generate all the values 

of hp^q given by the Kac formula (2.44). The representations of the antianalytic Virasoro 

algebra {Kn} wiU obviously be generated in identical fashion out of the representations 

of { J ^ } . As an example consider the universality class of the Ising model which has been 

identified with c — 1/2. In (4.55) this corresponds to A; = 1. Its representations are thus 

generated by the coset group SU{2)i x SU{2)i/SU{2)2. From (4.56) we have: 

f ( 1 , 0 )8 (1 ,0 ) - . ( 2 , 0 ) X ( | , / i i , i ( | ) ) © ( 2 , l ) x ( l , / i 2 , i ( i ) ) 

(1.0) © ( l , i ) - ( 2 , ^ ) x ( i , / i 2 , 2 ( i ) ) 
(4.57) 

(1.1) ® ( l , 0 ) ^{2,l)x{lh2,2{l)) 

[ (1,1)® (1,1) ^ ( 2 , 0 ) x ( i , / . 2 , i ( i ) ) ® ( 2 , l ) x ( i , / . a , i ( i ) ) 

We conclude that all the representations are indeed generated in this fashion. 

Now consider the coset group SU{2)k ® SU{2)2/SU{2)k+2- Its central charge is: 

_ ^k 3 3(fc + 2 ) _ 3 r 8 ) 

' " fc + 2 + 2 ~ T T T " 2 r ~ {kTW+^)) ' ^ ^ 

So, for A: = 1,2, • • • we recover the so called superconformal minimal series, [105]. We also 

have the following decomposition of representations: 

{k,^\p- 1]) X (F, 2) « ® , (^A; + 2, ̂  [g - 1]) x (c, /ip,,(c))F, (4.59) 

where c is given by (4.58), 1 < p < A; -|- 1, and -F denotes the appropriate representation 

of Neveu-Schwarz (NS) or Ramond (R) super Virasoro algebra. The sum on the r.h.s. is 

over aU q such that 1 < g < A; -|- 3 and p - q e Z + 2£, with e = 0 in the NS case and 

e = 1/2 in the R case. Here hp^g are the superconformal dimensions in either sector. 
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4.3 Background factorized scattering for k=l 

Here we assemble a few results about the factorized scattering in the PCM, [57]. As we 

have discussed before the RG flow is massless but the scale invariance is broken at the 

crossover between the two fixed points. The spectrum of the theory therefore consists of 

stable massless particles: left-movers and right-movers. I t is convenient to parametrise the 

on-mass-sheU 2-momenta {e,p) of the particles in terms of the rapidity variables -oo < 

/3,f3'<oo: 
e = p = ^e^, for right-movers, 

(4.60) 

e = -p - , for left-movers. 

Wi th this parametrisation opposite momenta stOl correspond to opposite rapidities, [93 . 

This situation however poses a few conceptual difficulties. For example it is difficult to 

imagine how two right-movers both travelling at the speed of light in the same direction 

are ever going to meet and interact. The very notion of asymptotic massless state is 

not very clear in two dimensions. However, by computing the massless limit of certain 

theories one can obtain perfectly sensible results. By ignoring these difficulties, one is able 

to derive the correct properties of massless flows by TBA, [93]. In any case if one wants to 

construct an inverse scattering program for conformal field theories, [89], [90], in order to 

understand how these theories are perturbed in a integrabUity preserving fashion then this 

approach in terms of massless states diagonalizing an infiiute set of integrals of motion is 

inevitable. 

For left-left and right-right scattering aU Mandelstam variables vanish and since the 

scattering depends only on the dimensionless ratios of the momenta, the mass scale M 

is arbitrary. The right-left scattering on the other hand distinguishes a preferable scale 

normalization M. The Mandelstam variable is now: 

s ^ M^xpiPi -/32), (4.61) 

for the scattering of a right-mover of rapidity /3i and a left-mover of rapidity /?2. The soft 

scattering corresponds not to /3i ~ (32 but rather to Pi - f32 ^ -oo. The mass scale M 

can thus be chosen so that the crossover occurs at (ii ^ (32-

Besides being massless these particles form doublets {u,d) under the global SU{2) 

symmetry (4.4). However there is an additional structure: each particle is also a kink, 

[98]. The SU{2)k WZW model has (A;-|-l) degenerate vacua. The allowed kinks interpolate 
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between adjacent vacua. So, for instance, each left-moving particle doublet can be labeled 

(•"i^±i'4^±i)' where c is an index referring to the vacua (c = 1,2, • • •, A; 4- 1). In the 
simplest case (A; = 1), which is the one we are interested in, the only nontrivial structure 
is that of a {u,d) doublet. We then represent the SU{2)R doublet of right-movers by the 
symbol Ra.{^) (a = ± is the right isotopic index) and the SU{2)L doublet of left-movers 
by La{f3') (a = ± is the left isotopic index) with energy spectra given by (4.60). 

The charge conjugation operator C is defined with respect to the SU{2) symmetry by: 

/ 0 1 \ 
^ = ( - 1 o j - (^-^2) 

We shall denote the antiparticles of RaiP) and La{f3') by RaiP) and La(P'), respectively. 

Let us now consider the general 2 —> 2 scattering of a particle Ra{f3i) with its antiparticle 

RbiPi)- The S-matrix element is given by [56]'*: 

< R,if3[)R,{f3'2)\Rai^r)Rbif32) > ' " = 6 ( K - p^)6ip'2 - P2)F^M 
(4.63) 

where /? = Pi—^2- For the "forward" and "backward" amplitudes we choose the following 

isospin preserving expressions: 

(4.64) 

= S^Jtu2{fi) + 6,b6''^V2i/3). 

However for massless particles backward scattering is unacceptable and we therefore set 

U2{(3) = V2i(3) = 0, [57]. 

The particle-particle S-matrix element is given by: 

< R,{/3{)Rd{f3'2)\Ra{/3i)Rb{l32) >'"= S{p[-p^)S{p'2-p2)Sf,if3) 
(4.65) 

-6ip[-p2)6ip'2-Pi)Sim^ 

with 

SfbiP) = OTim^t + (4-66) 

crx(/3) and aji{l5) are the transition and reflection amplitudes, respectively. I t is also 

convenient to introduce the 2-particle amplitudes in the isovector and isoscalar channels: 

f 5y(/3) = ar(/3) + M i 3 ) , 
(4.67) 

[ 5o(^) = crT(/3)- (7f i ( /?) . 

*The minus sign in this expression arises because the particles are fermions. We shall come to this point 
again later. 
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Using the requirements of factorizabUity, unitarity and crossing symmetry, the following 
minimal solution was suggested in ref.[57]: 

f ui{(5)^-aT{l3)-aR{l5), 

(4.68) 

(4.69) 

MP) = ^ M P ) , 

where 
Sy(i3) - r ( H ^ ) r ( - ^ ) _ 
^^^^^ " r ( | - ^ ) r ( ^ ) " 

^exp[-j^ d k ^ ^ ^ j j ^ ^ — ^ j . 

Of course we get exactly the same expression for the L-L scattering. The non-trivial 

right-left scattering is defined by the commutation relations: 

Ram,i(3') = UtliP - (3')mp')R,{(3). (4.70) 

As we discussed before, this scattering breaks the scale invariance thus spoiling the SU{2)x 

SU{2) current algebra symmetry (4.9). However action (4.1) is invariant under the global 

SU{2)L X SU{2)R isotopic symmetry (4.4) at all distances. The only form of [/*|(/?) 

preserving this symmetry is: 

U f M = URLmlsl (4.71) 

The factorization constraint is trivially met for this choice. For massless particles there is 

a combined unitarity-crossing restriction [83], 

URLiP + iT)URLi/3) = l. (4.72) 

The simplest non-trivial solution proposed in ref.[57] is: 

I t is worth noting that both amplitudes (4.66) and (4.73) have no poles on the physical 

sheet. Also, we see from the soft scattering (/3 -> -oo) in eq.(4.73) that the fields behave 

as fermions. And since S^^{0) = 1, we conclude that we have a selection rule preventing 

any two particles of the same type to be in exactly the same quantum state (cf. section 

3.5). 

In ref.[57] i t was shown that the TBA equations based on this background scattering 

lead to the correct central charge in the IR limit. 
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Boundary Conformal Field Theory 

In this chapter we extend the previous methods to conformal systems with boundaries and 

determine what novel features arise in this new situation. 

In the presence of boundaries i t is natural to address the following issues: 

1) What happens with the correlation functions? Do they stDl satisfy partial differential 

equations as in the bulk? And in particular, is conformal invariance by itself sufiicient to 

pin down the 2- and 3-point functions as before? 

2) Does the theory stiU have the same set of primary operators and i f so do they have 

the same set of scaling dimensions? 

3) Is there some way of classifying the possible boundary conditions that give a con­

sistent conformal theory? 

5.1 Correlation functions 

Our prototype geometry wiU be that of the semi-infinite complex plane. The boundary wiU 

be taken to lie along the real axis. Intuitively, we see that since only the reparametrizations 

that preserve the boundary are allowed, the number of constraints that we are able to 

impose on the Green's functions near the boundary are necessarily less than in the bulk. 

In fact, there wiU be half of the symmetries available as in the bulk case. We also note that 

the decay of correlations of boundary operators along the boundary, wiU be dictated by just 

one number, which is called the surface scaling dimension, [58]. For instance, if |a;i - X2\ 

is the distance between the locations of two operators on the boundary (that correspond 

58 
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to the order parameter), then the correlation wiU behave as |a;i - X2\~^^, where A is the 
surface scaling dimension. This is in contrast with the correlations between surface and 
bulk quantities which are completely determined by conformal invariance. 

Consider the infiiutesimal conformal transformation (2.11). To preserve the geometry. 

only transformations for which ({z) is real analytic (i.e. ((z) = ((z)) are allowed, [58]. 

The Ward identity (2.30) siU remains valid, with the contour C now being restricted to 

the upper half-plane for the analytic part and the contour C to the lower half-plane for 

the antianalytic part. However we can no longer decouple the two sectors. The way 

to proceed is to analytically continue the defiiution of the stress tensor into the lower 

half-plane, according to: 

T{z) = f { z ) , for Imz < 0. (5.1) 

The boundary condition (5.1) at Imz — 0, corresponds to Txy = 0 in Cartesian coordi­

nates. This has a precise physical meaning, namely that there is no flux of energy across 

the surface. 

More generally, i f we have a system enjoying a certain symmetry generated by the 

chiral currents (]¥, T^) such that dzW - dzW = 0, then the boundary condition is, [60]: 

W = W, for Imz = 0. (5.2) 

This generalization plays a role whenever we consider extensions of the Virasoro algebra 

such as the current algebra symmetry and superconformal invariance. 

The conformal Ward identity (2.30) can thus be rewritten in the form, [58]: 

^f^dwCiw) < T(w)Ill,<f>{z,,zl) > -^fJwCiw) < Tiw)ILl,4>(zi,z^) > = 
(5.3) 

where we relabelled Zi — z'- and where C and C are the contours in 5.1 enclosing z,- and 

z[, respectively. 

Because of the boundary condition (5.1) the two straight portions of C and C exactly 

cancel and the two integrals on the l.h.s. of eq.(5.3) coUapse into one single integral around 

a large contour enclosing aU the Zi and z'-. Using Cauchy's theorem, we get: 

< T[z)lll,ct>{z,,z[) >= E f = a + + + jhrA'} X 
(5.4) 

x<Ul,<t>{z„zl)>. 
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Figure 5.1: contours 

This means that the correlation function < ^{zi,Zi) • • •(}){ZN,ZJ^) > in the semi-infinite 

geometry, regarded as a function of (z i , • • •, ZN, ^ i , •' • > % ) satisfies the same differential 

equation as does the bulk correlation function < <p{zi,zi) • • •(f){z2N,Z2N) > regarded as 

a function of (^^i, • • •,Z2N) ordy. In particular the 2-point function satisfies the same dif­

ferential equations as the bulk 4-point function. The only difference lies in the distinct 

boundary conditions that they obey. We conclude that conformal invariance alone is not 

suflRcient to fuUy determine any of the correlators in the surface geometry. We need addi­

tional information (e.g. having a degenerate theory, firute number of primary operators, 

etc.) to obtain sufficient constraints. 

Let us now consider an example of a model with an extended conformal symmetry, 

namely the WZW model. This new situation might appear awkward at the first sight, 

from the very defirution of the WZW action (4.1). This is because analyzing boundaries 

in this context would imply considering the boundary of a boundary, which is evidently an 

empty set. Nevertheless, we can be cavalier about it by ignoring the classical action (4.1) 

altogether and going directly to the quantum theory. We can then define the theory in an 

axiomatic fashion by introducing the generators of the current algebra (J, J) and defining 

the stress tensor via the Sugawara construction (4.23). We assume as our boundary 

condition, [63]: 

J{z) = J{z), for Imz < 0, (5.5) 

in agreement with (5.2). In practical terms this implies not only the conservation of the 

current algebra symmetry, but equally, as we shall see, of conformal invariance. Given the 

variation of a primary field <f) (4.21) under an infinitesimal current algebra transformation 
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(4.14), then (5.5) translates into the following boundary condition: 

u%z)t''(l>{z) = - ( f > { z ) u % z ) i \ Imz < 0, (5.6) 

where we used u>''{z) = w'^(z). Following the same procedure as before, we get the following 

Ward identity: 

^ § c d z u \ z ) < J"(z)nili</>(^.,z0 > = E i l i [ ^ " { z . r < nf=i<^(^i,^;) > 
(5.7) 

-<n,=x<^(z,-,z^)>a; ' ' (zO<"], 

where the contour C encloses all the points z,- and z'-. Using eq.(5.6), we finally get: 

<E^,<t>{z,,z'j)>. (5.8) 

^ r ._ . . . 
riV + Z — Zi z — z'-<r(.)nil,^(z.,z,') 

Again, the conclusion is the same as before. There is a correspondence: 

2-point function on the surface <^ 4-point function in the bulk, (5.9) 

in the same sense as before. Because the choice of boundary conditions (5.2) leads to 

one surviving conformal algebra (or extended conformal algebra) the rest of the analysis 

concerning the representations and existence of null vectors stUl goes through. I t remains 

to find out what operators are allowed for a consistent theory and with what surface scaling 

dimensions. 

5.2 Boundary conformal field theory on a strip. The gen­
uine Casimir effect 

Let us now go back to our approach on the strip, [59]. We consider a strip of width R 

with for instance /ree (the order parameter is unconstrained at the boundary) or fixeA (the 

order parameter takes a fixed value on the surface) boundary conditions at the ends. This 

is called the "i-c/ianner because the time-direction was chosen to be the i-axis, [86]. 

This time, since there is only one set of Virasoro modes, one gets: 

Tstr^vip) = { ^ ) ' T , l a n e { z ) + (5.10) 

under the conformal transformation (2.58). Consequently, i f we call Hp the Hamiltonian 

on the strip with free or fixed boundary conditions, we get: 

LO^^HF + Y^. (5.11) 
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Again there is a one-to-one correspondence between the eigenvalues of Hp and the surface 
scaling dimensions A„ (eigenvalues of LQ). The free energy this time takes the finite size 
scaling form, [15], [17]: 

+ (5.12) 

where is the surface free energy. The anomaly term is called the genuine Casimir 

effect. This is because we have a finite geometry with a real boundary, which is closer to 

the spirit of the Casimir elfect, [3]. 

We are considering a situation where we have the same boundary condition on both 

sides of the strip. However, nothing prevents us from having different boundary conditions, 

say a and /?, on either side of the strip and more general than free or fixed. The existence 

of the surviving Virasoro algebra depends only on having conformaUy invariant boundary 

conditions, T-ra- = 0 at cj = 0, TT, [60]. The corresponding Hamiltoiuan is denoted Hap 

and of course (because conformal invariance is conserved) its eigenvalues wUl fall into 

irreducible representations of the Virasoro algebra. Let us denote by n'^p the number of 

times the representation i appears in its spectrum. I f we go back to the geometry on the 

upper half-plane, we realize that there is a discontinuity in the boundary condition at the 

origin. T{z)\0 > is therefore not regular at the origin and in particular the new vacuum is 

no longer annihilated by Cardy [60] interpreted this discontinuity as a consequence 

of the insertion of a boundary operator 4>ap{0) acting on the true vacuum. By definition 

the new "vacuum" is a state with the lowest eigenvalue of LQ in the theory. We conclude 

that the operator 4>ai3 must be the primary operator corresponding to the representation i 

for which nj^^ is nonvarushing and the eigenvalue of LQ is the lowest. These considerations 

have the important consequence that there wUl be a biunivocal correspondence between 

the set of conformal blocks and the set of conformaUy invariant boundary conditions, [60]. 

To find out what the operator content is, we consider again the geometry of the strip 

with periodic boundary conditions in the 'time' direction. Because the resulting topology 

is that of an annulus, the system is no longer invariant under the fuU modular group. 

However, the direction of time remains arbitrary and therefore eq.(2.69) stiU holds. The 

partition function in the ^^L-channeF is given by: 

Z^piq) = Tre-^"^^ = J ] < ^ x . ( ? ) = E ^ p S j x M , (5.13) 
» hi 

where Xii^) is as before the character of the representation i, n'^p is its degeneracy in the 
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spectrum of Hap and we used eq.(2.77) in the last step. We can equally well define the 
Hamiltonian H^^^ in the "R-channer (E-axis is the time-direction): 

4"'+4"'-^ (5.14) 

We then get: 

^a/3(9)=<a|e-^^' '^^|/?>, (5.15) 

where |a > and |/? > are the boundary states corresponding to the boundary conditions a 

and /3, respectively. On the strip the Fourier components of the generators (V7, l y ) satisfy 

(cf.(5.2)): 

{Wn - i-iyW-r.) \a > = 0, (5.16) 

together with a similar equation for |/3 > . s is the spin of W. We also assume that the 

Fourier modes satisfy the hermiticity condition - W_„. For = T, we have from 

the above equation: 

( i : „ - X _ „ ) | a > = 0 . (5.17) 

Although la > is a boundary state, in this picture i t belongs to the Fock space of the 

periodic system (spanned by both {£„} and {Xm})- The solution of eqs.(5.17) was found 

by Ishibashi, [63]. ja > will be some linear combination of states of the form: 

n 

where j labels the irreducible representations of the Virasoro algebra and { | i ; 7i > } , m > | 

are orthonormal basis for the representations j of the holomorphic and antiholomorphic 

Virasoro algebras. And this yields the following Hnear combination: 

|a > = ^ < ;0|a > l i > , (5.19) 

where J is the set of permissible representations of the Virasoro algebra and: 

| j O > = | ; ; 0 > ® | ; ; 0 > . (5.20) 

From (5.15) and (5.19), we then have: 

Zap^E< X >< jle-^'^^'^j > • (5-21) 
jeJ 

Assuming that our theory is diagonal in the sense of eq.(4.39) then we can show that: 

< >:=< , | ( g - / Y ^ ' ' + ^ ° ' ' - ^ / ^ ^ | j xM- (5-22) 
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Equating (5.13) with (5.21) and assuming that we are dealing with a rational theory with 
a finite number of linearly independent characters, we obtain Cardy's equations, [60]: 

E < ^ 5 / a|;0 X j0\l3 > . (5.23) 
i 

There always exists a boundary state |0 > satisfying = 6Q. Substituting in eq.(5.23), 

we obtain 5o = | < 0|ji'0 > p. It can be shown [60] that SQ is always a positive real 

number. Consequently: 

< 0 | j 0 > = ( 5 ^ ) i (5.24) 

Similarly there is a state \! > such that n^- = 6}. From (5.23), (5.24) and (5.19), we get: 

Let us assume that we know nj^^ for a boundary state |a > , then we can construct more 

general solutions to Cardy's equations by fusing a new conformal tower, say /, with the 

previous one yielding a new boundary state \/3 > , according to, [60]: 

nU = J2NlinL, (5.26) 
k 

< i O | ^ > = < i O | a > S , (5.27) 

where we are implicitly assuming that the fusion rule coefficients iV̂ ,̂ are a solution of 

Verlinde's formula (2.78). To show that eqs.(5.26) and (5.27) constitute a solution to 

Cardy's equations, let us first consider the r.h.s. of eq.(5.23): 

< a\jQ X jO\p > = < a\jQ >< jO\a > - j , (5.28) 

where we used eq.(5.27). From eq.(5.26) and VerUnde's formula, the l.h.s. becomes: 

= E ^ ^ L ^ / = E ^ - ^ - I < " l iO X > ' (5-29) 
i i,k k ^0 ^0 

which is indeed equal to (5.28). Let us consider as an example the Ising model. From the 

modular matrix (2.72) for minimal theories and (5.25), we obtain: 

| 0 > = 7 2 l O > + 7 3 l ^ > + J 7 5 l ^ > ' 

l A > = | 0 > - | e > . 
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Note that |0 > and \l > differ oidy in the sign of the coefficient of the 22-odd state \a >. 
I t is then natural to identify \+ > (all spins up on the boundary) and | - > (all spins down 
on the boundary) with |0 > and | | > , respectively. Under duality, the energy-Hke state 
|e > changes sign and the free boundary state \f > goes into an equal superposition of the 
|-|- > and | - > states. Thus we may identity | / > with | ^ > . With this identification, we 
get from eq. (5.23): = nt_ = = nj^ = 1 and all the other = 0. Substituting 
in (5.26) we obtain the following operator content in the different sectors: 

(++), (—): h = Q 

( / / ) : h = 0,l 
(5.31) 

( + - ) : 

(+/), ( - / ) : h=^, 

in agreement with [59], [62]. We see from this analysis that although we have an explicit 

formula (5.25) for the boundary states it is actually quite difficult to interpret what the 

boundary conditions correspond to at the level of the microscopic degrees of freedom in the 

statistical system. We usually need some additional information about the symmetries of 

the statistical model (e.g. duality, Z2 symmetry, etc). Another important point is that the 

scaling dimensions in (5.31) do not, in general, correspond to the same operators as in the 

bulk. For instance, in the sector ( / / ) the operator corresponding to h = 1/2 was shown 

to be odd under the Z2 symmetry, [59]. It is therefore interpreted as the magnetization 

and not as the energy density. 

Let us now move on to the WZW model. According to (5.16) the boundary condition 

is: 

{Jn + J-n)\<^ >= 0. (5.32) 

Using the analogy with the oscUlator modes {a!^,a!^) (4.25) (or taking the group G to 

be abelian, e.g. G = U{1)), we see that this would correspond to a Neumann boundary 

condition in the flat case, [67]. From the Kac-Moody algebra (4.19) it is straightforward 

to show that (5.32) form first class constraints as do (5.17). I f the stress tensor is related 

to the Kac-Moody generators by the Sugawara form (4.24), then (5.32) actually imply 

(5.17) as we claimed before: 

Ln\a > = E„^ : J:i-mJ^ : I " > - ^ : J'-mJ?n-n = l « > = ^ - n l " > • (5.33) 
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For a A; = 1 Kac-Moody symmetry, we get from (4.43) and (5.25) the following boundary 

states: 
• | 0 > = j ^ ( | 0 > + | i > ) , 

(5.34) 

. I l > = l 7 5 ( l « > - | ^ > ) -

Also from (4.44), (5.23) and (5.26), we have the following operator content: 

(5.35) 

(0,0), ( i , i ) : h = Q 

(0,1) > (M): h = \ 

We are of course using the fact that as we discussed in section (4.1) the SU{2)k WZW 

model is a diagonal theory. 



Chapter 6 

Boundary Integrable Models 

In this chapter we consider two-dimensional systems constrained to the half-line x G 

(—00,0] with a boundary located at the origin. The boundary is therefore the vertical 

axis as opposed to the situation in the previous chapter. Our intention in doing so is to 

have our conventions as close as possible to the literature on the subject, [70], [72], [71]. 

We start by assuming a boundary conformal field theory (CFT) with conformally 

invariant boundary conditions (CBC) and action SCFT+CBC-, [68]. Suppose also that the 

relevant scalar primary field ^{x,y) provides an integrable perturbation in the bulk. We 

can also have a boundary perturbation induced by the relevant boundary operator $ B ( J / ) . 

For this boundary perturbation to be compatible with CBC in the conformal Umit, the 

field $B(2/) has to be one of the degenerate primary fields of the conformal theory such 

that the fusion rule coefficients are non-zero, [60]. Altogether we have: 

y-l-oo rQ rO 
S = ScFT+CBC + >^ dy dx^x,y) + XB dy^siy)- (6.1) 

J—oo J—oo J—CO 

Now suppose that the conservation laws (3.9), (3.19) and (3.20) with the corresponding 

conserved charges hold in the bulk for any spin s £ S, where S is some infinite set of 

positive integers. Ghoshal and Zamolodchikov [68] argued that the boundary theory (6.1) 

is integrable, provided we can find an infinite number of functionals ^^(y) (s G SBY of the 

boundary fields such that: 

[T,+i + e , _ i - f , + i - 0 , _ i ] U=o = ^Os{y). (6.2) 
dy 

Indeed, i t is straightforward to show that with Og satisfying eq.(6.2), the following quantity 

^ 5B is an infinite subset of 5 

67 
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is a nontrivial I M : 

n ' ^ ^ ^ f d x [ T s + i { x , y ) + e s - i i x , y ) + Z + i { x , y ) + Q,_i{x,y)] + e,. (6.3) 
J—oo 

Classically, eq.(6.2) amounts to solving a difi"erential equation for Os(y). We wiU see an 

explicit example of this calculation in chapter 9 for the super-LiouvOle theory, [109]. In 

ref.[70] it was shown that for Toda theories based on the affine algebras al^^ and dl^^ the 

boundary term Cboundary = —^{x)B{(f)) preserving the classical integrabUity is of the form: 

m ' 

^ i=0 

where m is a mass scale, /? a coupling constant and a, ( i = 0, • • •, r ) the set of simple roots 

of the underlying algebra and = - YA-I some set of integers { n , } . The real 

numbers Ai either all vanish (corresponding to Neumann boundary condition) or satisfy: 

= 2 V ^ . (6.5) 

In the quantum theory we have to perform a dimensional analysis similar to the one in 

chapter 3 for each value of s, to see whether the l.h.s. of eq.(6.4) yields a total derivative. 

As an example consider the case s = 1. First suppose that A = 0, [68]. We then have in 

analogy with (3.6): 

< [T{y + ix) - f { y - ix)] M^uVi) • • • > = < [T{y + ix) - f { y - ix)] M^uVi) •'' >o 

- A s dy' < [T{y + ix) - f { y - ix)] $s(2/')<^i(^i, " • • >o +0{X%). 

(6.6) 

In the limit a; ^ 0 the first term on the r.h.s. vanishes and the second term is controlled 

by the OPE: 

'T{y + ix) - f { y - ix)] $B(2/ ' ) = 

= • ~ (y_y'"ix)2 + y-y>+ix^ ~ y-y'-ix ^ ' ^ B^y') + (6.7) 

^{hBS'{y-y') + S{y-y')^}^Biy'), 

where hs is the surface scaling dimension of # 5 . Substituting in (6.6) and integrating 

over y', we get to first order in A^: 
TxyU^o = -i{T - f )U=o = ^0,{y), (6.8) 

with 

9i{y) = -iXB{l-hB)^B{y). (6.9) 
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Dimensional analysis shows that in most cases equations (6.6) and (6.7) remain valid even 
if we turn on the bulk perturbation A 7̂  0. In any case, even if there are any additional 
terms in A^A^ they will be finite in number as before (cf. section 3.1). 

As always we have the freedom to choose the direction of Euclidean time arbitrarily. 

We can quantize our system on the half-Une x G (-00,0] with HamUtonian HB{- Hg^) 

and evolving in Euclidean time y G (-00, +00). Alternatively, we can consider our system 

to lie on the whole line y G (—00, -|-oo) and evolving in Euclidean time between the remote 

past x — —00 and the boundary state \B > at the instant x = 0. In this latter picture, 

we see that |5 > is a state in the Fock space of the bulk theory, satisfying the equations 

(cf.(6.2)), [68]: 

(P, - Ps)\B > = 0, se SB. (6.10) 

On the half-line we can again define the asymptotic incoming states | A a j ( ^ i ) . . . Aa^(^7v) > B 

moving towards the boundary, i.e. ah the rapidities are positive. In the infinite future 

t —>• 00 we have a superposition of outgoing states |Abj(^j) • • -^6^(^71^) >B^' ( ^ 

pidities are negative). Again these states are chosen to be simultaneous eigenstates of 

the I M H^B^ (6.3). The same analysis as before reveals that the conservation of these 

charges implies pure elasticity of the reflections, in the sense that the mass spectrum is 

conserved (iV = M ) and the set of rapidities {0[,6'2, - • • I ^ ' N ) can differ only by a per­

mutation from { -^1, -92, • • •,-ON}- The Fock space is defined by multiple action of the 

creation operators Aa{0) on the ground state |0 >B oiHs'- ^ ^ ( ^ i ) • • • Aa^(^;v)|0 > B with 

1̂ > ••• > ON- The vacuum state is created by an operator B representing an infinitely 

heavy impenetrable particle sitting at x = 0: 

| 0 > B = 5 | 0 > . (6.11) 

The scattering factorizes into products of one-particle reflection amplitudes R^id) defined 

by: 

Aa{0)B = R\{e)A,{-e)B. (6.12) 

I f we apply the above algebra twice, we obtain the boundary unitarity condition: 

K m l i - 0 ) = si (6.13) 

The requirement of factorizabihty is encoded in the following boundary Yang-Baxter rela-
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Figure 6.1: Boundary Yang-Baxter equation 

tion: 
K\{02)s^a\il{o, + e2)Rii{e,)s\fi{e, - e^) = 

= si\l\{o, - e2)Rii[9,)stf,i{e, + e2)RX{92), 

which is depicted in fig.6.1. 

(6.14) 

To obtain the analog of the crossing symmetry condition let us first construct the 

boundary states \B > satisfying (6.8). In this picture \B > belongs to the Fock space of 

the Hamiltonian H{= Hi) defined on the whole line. The eigenvalue of Pj - Ps acting on 

a state with iV particles of rapidities {^,} [i = 1,- • •,N) is: 

N 

2j2xi7^inhise,). (6.15) 
«=i 

Consequently \B > is made up of pairs Aa{d)Ai,{-6) of particles of equal mass and opposite 

rapidities. Ghoshal and Zamolodchikov [68] showed that \B > is of the form: 

r+°o . 1 
(6.16) 

r+oo 
\B>^gexp / deR"'\e)Aa{-e)Ab{e) | 0 > , 

Uo J 

where 5 is a normalization and'^: 

K-\e) = R l { ' l - 6 (6.17) 

is the anti-paxticle of a. 



Chapter 6: Boundary Integrable Models 71 

Figure 6.2: Boundary cross-unitarity 

Notice that we could equally write (6.16) in terms of out-states by continuing the definition 

of K°'^{9) for negative rapidities: 

f-l-oo 
\B >= gexp I ~ deic\-e)Aa{e)A^{-e) 

Jo 
0 > (6.18) 

By equating the two expressions we obtain the boundary cross-unitarity condition: 

K''\9) = S%{29)K'''''\-e) rod (6.19) 

This equation is represented diagrammatically in fig.6.2. 

There are also boundary bootstrap conditions for the reflections of bound-state parti­

cles. Furthermore, we can also consider boundary bound states of the boundary particles, 

69]. For aU the applications in this thesis these situations wiU not occur, and we shall not 

discuss them any further. 

As before the boundary reflection matrix is defined up to CDD factor. 



Chapter 7 

The Kondo Effect 

7.1 The Kondo Model 

In this chapter we give a concise overview of the conformal approach to the Kondo problem. 

AU the results presented are based on refs.[96], [98], [97] and [94]-

We described in the previous chapters the general approach to boundary quantum 

problems. There are many applications in quantum systems with impurities, the most cel­

ebrated one being the Kondo problem. The Kondo effect consists of the resistivity of metals 

p{T) increasing as T 0, contrary to the standard behaviour of p{T) decreasing either 

to zero (phonons or electron-electron interactions), or p{T) constant (non-magnetic 

impurities). This anomalous pattern is caused by the existence of magnetic impurities. 

Kondo [95] proposed the following asymptotically free theory which predicts the correct 

behaviour for the resistivity: 

where tpj^^ is the annihilation operator for a conduction electron with momentum k and 

spin a = ±. S represents the spin of the magnetic impurity, with 

S\S'']=i€''^'S'. (7.2) 

We assume that the representation of the above SU{2) algebra is (2s -|- l)-dimensional, 

i.e. S'^ = s{s + 1). In eq.(7.1), e{k) denotes the kinetic energy for the excitations above 

the Fermi sea (ep). The analysis of this model can be drastically simpUfied if we assume 

a spherically symmetric e(A;), 

€ik) = ^ - 6f « VF{k - kp), (7.3) 
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a ^-function Kondo interaction and look at s-wave scattering oidy. We can thus restrict 
ourselves to the radial coordinate (r > 0) and this becomes a (1 -f- l)-dimensional prob­
lem, with the fermions being constrained to the half-line and the impurity sitting at the 
boundary. The resulting Hamiltonian is: 

(7.4) 

Hint = |V1(0)^V'L(0) • S, 

where we have set vp = I and r = x. Hint is the interaction Hamiltonian and •0L,V'ii are 

left- and right-movers: 

i^L{x,T)^lPL{T + i x ) , i)R{x,T) = i}R{T - i x ) , (7.5) 

where r is the imaginary time. The quantization of (7.4) leads to the following propagator: 

< rMi>l\y) >= (7.6) 

x y 

with a similar expression for the propagator involving right-movers only. Notice from 

Ho in eq.(7.4) that the theory is conformaUy invariant in the bulk with two sectors of 

non-interacting left-movers and right-movers. Since IPL{Q,T) = ±V'fl(0,r) , the two are 

independent and the L-L interaction is identical to the R-R interaction, we may consider 

ipB. to be the continuation of ipi to the negative r-axis: 
V' f l (x , r ) = VL(-a ; , r ) , (7.7) 

thus obtaining a chiral (left-movers only) (1 + l)-dimensional theory with: 

and Hint given by (7.4). This Hamiltonian is manifestly SU{2) invariant. The RG flow 

interpolates between an unstable (high-temperature) UV fixed point where the impurity 

is decoupled (A = 0) and a strongly coupled (low temperature) IR one (A = 2/3) where 

the spin of the impurity is "screenetf'. The precise meaning of the latter statement will 

become apparent when we describe the conformal approach to this problem. As usual the 

crossover between the two fixed points introduces a scale TK called the Kondo temperature. 

7.2 Non-abelian bosonization and conformal field theory 

The conformal field theory approach to the Kondo problem consists of the method of 

non-abeHan bosonization. In two dimensions i t is possible to construct fermionic fields 
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from bosonic ones. Although this yields highly compUcated expressions in terms of com­
posite fields, one is often capable of constructing currents associated with the particular 
symmetries of the system, which have usually simple expressions in terms of the bosonic 
fields. This is of course advantageous, because bosonic fields are easier to deal with than 
fermionic ones. The WZW currents of chapter 4, constitute an example of bosonization 
when the symmetries of the system are non-abelian. 

The idea is to try to write the Hamiltonian density in terms of currents. This, as we 

shall see wLU allow us to decouple the charge and spin degrees of freedom. Let us define 

the charge and spin currents: 

J=:rH.:, f=:r^^^p-- (7.9) 

As an illustration we compute the following OPE using eq.(7.6): 

Jix)j{y) =: rKx)M^)i^'^\y)My) • + < rK^)My) >• M^)VKy) • + 

+ < Mx)i}^Ky) >• rKx)My) • + < rKx)My) >< M^WKy) >= (7.10) 

= -jdw^ '• rHy)My)i'^Ky)My) • +2ir\y)TyMy) + oix - y). 
The normal ordered product is: 

'• {Jiy)y '• = lim-c-^y [J{x)J{y) - singular terms] 

= : rHai>^Hp •• +2i: r^£i^a : • 

Similarly, we can show that: 

(7.11) 

: P := : rHai>^% : + f : r ^ ^ V ' . (7.12) 

where we used the identity: 

. = 2SPsi - S^]. (7.13) 

Consequently, the bulk free Hamiltonian density can be written up to a c-number as: 

« = i . n ^ A (7.14) 

From (7.10), we see that the charge current satisfies the algebra: 

[J{x),J{y)] = AT:i8'{x-y). (7.15) 

Similarly, one can show that the spin currents satisfy a SU{2) Kac-Moody algebra at level 

k = l: 

r{x), J^y)] = 2nie''''^r{x)S{x - y) + iK8''^^S{x - y). (7.16) 
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Also, the two algebras are independent, i.e. J, J = 0 . The charge and spin degrees 

of freedom are therefore completely decoupled. We can consider our system to lie in a 

finite box of length L with periodic (or anti-periodic) boundary conditions at a; = and 

X = ^. We can thus introduce the Fourier modes of the spin currents according to: 

1 fL/^ 
Jn = i - I dxe-''^f-J(x). 

2ir J-L/2 

In terms of these eq.(7.16) reads: 

J^,jt] = ie'^'^r^+^ + ^nS'^'Sn+mfi. 

The spin part of the free Hamiltonian i^o is: 

27r + 00 t t O _ f Y 
3L 

— CTO 

Similarly, we can write the interaction Hamiltonian as: 

27rA +°° 
H,nt = A J(0) • S E Jn-S. 

(7.17) 

(7.18) 

(7.19) 

(7.20) 

Obviously, = 0 . Since the Kondo interaction involves oidy the spin degrees of 

freedom, we can consider the following Hamiltonian: 

0_ +°° / I \ 
HK = H^ + H,nt = -J Y l [-^J-n • Jn + XJn • S^ (7.21) 

The spectrum of this Hamiltonian at the weak coupling fixed point (A = 0) corresponds 

to the Kac-Moody conformal towers at level = 1, as can be seen from: 

HxiX = 0) 
27r 
3 i ^ ] : J —n ' Jn '• 

At the IR fixed point (A = 2/3), we have: 

-l-oo 

(7.22) 

(7.23) 

The remarkable feature of this Hamiltonian is that we can complete the squares, yielding: 

27r +°° 
^^ . (A = 2/3) = ^ [(J_, + S)-iJn + S)-s{s + l ) 

where we used = s(s + 1). Notice also that: 

1 
J: + 5^ + S'\ = ie'^'Vn+m + S ' ) + ^nS'^X+mfi. 

(7.24) 

(7.25) 

This means that HK is quadratic in the new currents, Jn = Jn + S, which obey the same 

Kac-Moody algebra as the old ones, J„ . The explicit dependence of the spin S of the 

impurity has disappeared. This is what is meant by "screening". 
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7.3 Multi-channel Kondo problem and boundary conditions 

Suppose now that we consider different "channels" of electrons-e.g. different d-shell or-

bitals. This would require the introduction of k species of electrons falling into multiplets 

of a SU(k)-"flavour''' symmetry. The Hamiltonian (7.1) would be modified to: 

^ = E E + • E E i^f-'oi^k'0r (7-26) 
ka '=1 fcfc'a/?*=l 

This is known as the multi-channel Kondo problem. Again we follow the same procedure 

of mapping the previous model to a (1 - f 1) QFT and introduce a form of bosonization 

that separates the spin, charge and flavour degrees of freedom. This representation is also 

known as conformal embedding. The SU(k) group has k'^ - 1 generators. They can be 

represented by the traceless hermitean matrices (A - 1, . • •, fc^ - 1) normalized so that 

Tr{T^T^) = ^S^^, (7.27) 

and obeying the completeness relation: 

A ^ 
(7.28) 

The structure constants f^^^ of the sn{k) algebra are defined by the set of commutation 

relations: 

T^,r^J =i/^^cr'^',, (7.29) 

and the quadratic Casimir associated with the adjoint representation is: 

c,{SV{k)) = = ^. (7.30) 

The definition of the charge and spin currents (7.9) has to be slightly altered to incorporate 

the additional fiavour degrees of freedom: 

3 =: r'Hai :, / = : r'^^i^p^ • • (7.31) 

Their commutation relations are not significantly modified, except that now we have k 

copies of fermions. The charge current which corresponded to a level 4 abelian Kac-

Moody algebra now has level 4k. Similarly, the spin currents now satisfy a level k SU{2) 

Kac-Moody algebra. 

Finally we define the flavour current according to: 

=: r'\T^)ii^,, : . (7.32) 

(AB rpC 
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The currents obey the SU{k) current algebra w i t h central charge 2: 

(AB TC AB, 

and the Hamil tonian density can be wr i t t en in terms of these as: 

(7.33) 

n 
1 1 1 A TA (7.34) 

8nk" ' 27r(A; + 2 ) " ' 27r(jfc + 2) 

Since the three types of currents are mutual ly commutative, we conclude that we have 

managed t o decouple again the three types of degrees of freedom: SU{2)k®SU{k)2®U{l). 

vVlternatively, using the Sugawara construction (4.23), we can re-express (7.34) in terms 

of the stress tensors w i t h the different current algebras: 

(7.35) 

w i t h central charges: 

^charge — I j C-sipin — 
3k 

k + 2' 

The t o t a l value of the central charge is thus: 

Cfla 
2(fc^ - 1) 

2 + k ' 
(7.36) 

^tot — ('charge 4" <̂ sp!n "I" (^flavour — 2k. (7.37) 

As before, since the impur i t y couples only to the spin degrees of freedom, we consider the 

reduced Kondo Hamil tonian: 

(7.38) 

I n terms of the modes (7.17) this reads: 

HK 
2-K + CO 

fc + 2 
Jn ' J-n + ^Jn ' S (7.39) 

Aga in , we can complete the squares for the critical value, 

2 

k + 2' 

yielding: 
2ir ' r -

^ K - T n — Y . E [{J-n + S)-iJn + S ) - s { s + l ) 
+ 0O 

L{k + 2)^± 

A n d the Kac-Moody algebra remains unchanged: 

(7.40) 

(7.41) 

+ 5 ^ Jt + S'] = ie'^'Vn+m + S') + \kn6'^%+,n,o. (7.42) 
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The new currents at the infrared fixed point , J , are related to the old ones, / , by: 

Jn = Jn^ S. (7.43) 

I f J and J were just ordinary spin operators, then the new spectrum would be given by 

the ordinary angular momentum addition rules. In particular, i f s is haJf-integer, states of 

integer t o t a l spin are mapped into states of half-integer spin, and vice-versa. Furthermore, 

we recall the fusion rule coefficients for a level k SU{2) W Z W model (cf.(4.45)): 

, _ f 1, -p\<l<min{j ^ - p , k - j - p ] , , . 
\ 0, otherwise, ^ ' 

where of course j,p = 0, ^ , • • •, | . The striking resemblance between these coefficients and 

those for the addit ion of angular momentum, together w i t h the fact that they also encode 

the set of permissible conformaJly invariant boundary conditions at the conformal point 

suggest a way of determining the boundary conditions for an arbi t rary number of channels 

k and i m p u r i t y spin s. I t consists of fusions w i t h the spin-5 representation. However, this 

approach requires some caution, as the spin-s representation is only allowed in the SU{2) 

W Z W model for s < k/2. I n the underscreened case, s > k/2, we assume fusion w i t h 

the max ima l possible spin, namely k/2. The same happens in the exactly screened case 

s = k/2. I n bo th cases, f r o m (7.44), we have the following fusions: 

j®^ = ^ - j - (7.45) 

Each conformal tower j is mapped into a unique conformal tower ^ | - j j . I n this si tuation, 

one electron f r o m each species binds to the impuri ty , effectively reducing its spin to 

q = s - ^ . (7.46) 

I n part icular i n the exactly screened case, we have: 

q = 0. (7.47) 

7.4 Impurity entropy 

As we have seen in chapter 5 the par t i t ion funct ion on the strip for a set of boundary 

conditions (a, /3) is (cf.(5.21), (5.22)): 

Zo0 = Y.<a\j><j\l3>Xj(q). (7-48) 
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I n the l i m i t R o o this is controlled by the ground state, |0 > , i.e. the state w i t h lowest 
eigenvalue of LQ: 

Z^p - e f ^ < a\0 > < 0|^ > . (7.49) 

The free energy is: 

Fo.p = - ^ ^ ^ - Tin < a\Q X 0|/3 > , (7.50) 

where we used L — 1/T. The first term gives the specific heat: 

cTR 

6 ' C = ^ , (7.51) 

and the second gives the impur i ty entropy: 

Simp = Sa + Sp = In < a\0 > +ln < 0|/? > . (7.52) 

Each boundary i = a,/3 therefore contributes w i t h the entropy 5, = Ingi, where gi is 

called the ^''ground state degeneracy^^ associated w i t h the boundary condition i. But we 

know what this is. I t comes f r o m the fusion w i t h the spin-5 (or k/2) operator (cf.(5.27)): 

9 = (7.53) 

Using the expression (4.42) for the modular mat r ix S, we get: 

sin •77(25+1)' sin k+2 

sin TT 
k+2 

I n the exact screened case, we replace s by k/2, yielding: 

g{k/2,k)=l. (7.55) 

I n the underscreened case, we must mul t ip ly the previous result by the number of non-

screened degrees of freedom. Since the impur i ty has effective spin q = s - k/2 it falls in to 

a {2q + l )-dimensional mult iplet of SU{2). Consequently: 

g{q,k) = 2q+l. (7.56) 

For the overscreened case, the ground state degeneracy is noninteger. For instance, for 

k — 2 and s = 1/2, we have: 

g{l/2,2)^V2. (7.57) 
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7.5 Kinks and background scattering 

As we have seen in the previous section, we managed to decouple the charge, spin and 

flavour degrees of freedom using the technique of non-abelian bosonization. Furthermore, 

since the i m p u r i t y couples only to the spin degrees of freedom, we can discard the remaining 

and consider only the SU{2)k spin current algebra. As we discussed in chapter 4 the 

corresponding W Z W model has k + 1 degenerate vacua. Consequently, the spectrum of 

particles consists of the stable massless sectors of right- and left-movers, containing non-

t r i v i a l internal symmetries of SU(2) isotopic spin and a kink structure associated w i t h 

the degeneracy of the colored vacua. l a this description in terms of quasi-particles" 

we are s tudying directly the excitations above the Fermi sea. Also f r o m the conformal 

invariance i n the bulk, we were able to extend our system to the whole line by considering 

only say left-movers w i t h the impur i ty si t t ing at the origin. I f we assume the model to be 

integrable, then the S-matrix SBL for the scattering between the impur i ty and a left-mover 

of rap id i ty f3 wiH be determined by the usual requirements of unitari ty, crossing symmetry 

and factorizabihty. Let us consider first the exactly screened case. The effective spin of 

the boundary impur i ty is 5' = 0. Thus, i t is represented by an SU(2) singlet w i t h no kink 

structure. Under these circumstances, the particle cannot exchange isotopic spin or kink 

degrees of freedom w i t h the impur i ty and SBL satisfies precisely the same equations as 

does C/ft i i n chapter 4: 

SBM = URM = tank - j ) • (7.58) 

Now consider the particular underscreened case when the boundary particle is a SU{2) 

doublet, i.e. A; = 2 5 — 1 or g = 1 / 2 . The particle is now allowed to exchange isotopic 

degrees of freedom w i t h the impur i ty i n a spin preserving fashion. The constraints are 

therefore the same as for the bulk L - L scattering: 

(SBLYM = S f , { P ) = a r i m s t + Ml3)SiS'b, (7.59) 

where <TX(/3) and crfl(/3) are given by (4.68), (4.69). 

I n the over screened case the impuri ty ' s spin is completely screened and therefore i t is 

a SU{2) singlet as i n the exactly screened case. However there are stiU p = k-2s leftover 

electrons. Since the spin degrees of freedom of the impur i ty are saturated, i f i t is to have a 

non- t r iv ia l structure i t has to couple to the fiavour symmetry (i.e. k ink structure) of these 
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leftover electrons. The boundary conditions in this case are obtained by generalizing the 

previous procedure to a sort of kink version of the fusion which preserves the integrabili ty 

of the model, [77], [78]. The boundary "incidence" matrix Ip encodes the kink structure 

of the p kinks. Its rows and columns correspond to the vacua. I f the vacua a and b are 

connected by a k ink, then the entry ( /p ) j is 1, otherwise i t is zero. The incidence mat r ix 

for the bulk kinks is / i and /q is defined to be the k x k identi ty mat r ix . The analog of 

the angular-momentum mult ipl icat ion is [98]: 

hip - Ip-\ + ^p-f-i. (7.60) 

As an i l lus t ra t ion, consider the simplest nontr ivia l overscreened case, = 3 and s = 1/2. 

The bulk W Z W model has A; -|- 1 = 4 degenerate vacua, w i t h the kinks interpolating 

between adjacent vacua. On the other hand p = k-2s = 2. From (7.60): 

h = 

/ 0 1 0 0 \ 
1 0 1 0 
0 1 0 1 

\ 0 0 1 0 / 

l2 = h h - I o 

/ 0 0 1 0 \ 
0 1 0 1 
1 0 1 0 

V 0 1 0 0 y 

(7.61) 

I n this case the boundary spectrum consists of the kink doublets (1,3), (3,1), (2,4), (4,2), 

(2,2) and (3,3). 

We shaU not consider any fur ther the overscreened case. The scattering matrices are 

those for restricted solid on solid (RSOS) models, which can be found in ref.[79]. 



C h a p t e r 8 

The principal chiral model on the 
half-line 

8.1 Boundary conditions and reflection amplitudes 

In this chapter we consider the PCM (at level k = I ) on the half-line. The determination 

of the boundary conditions compatible w i t h integrabili ty and the corresponding reflection 

amplitudes wiU involve some amount of guesswork. We shall use as guideline some knowl­

edge coming f r o m the symmetries of the problem, the l imi t ing IR conformal field theory 

and a related problem (Kondo) . The difference between this and the Kondo problem lies 

i n the fact tha t i n the former the scale invariance is broken in the bulk by the mass scale 

associated w i t h a very unstable 0(4)-isovector resonance^, whereas in the lat ter the scale 

invariance is broken at the boundary. We therefore assume that the boundary conditions 

are conformaUy invariant at the I R fixed point and that the RG flow is controlled by the 

bulk per turbat ion. We would thus have a system of the f o r m ( 6 . 1 ) w i t h A B = 0 . I n chapter 

5 i t was shown that at the I R point there are two boundary conditions compatible w i t h 

conformal invariance, corresponding to the identi ty operator w i t h isospin / = 0 and the 

fundamenta l field g of the W Z W action w i t h isospin / = 1 / 2 . These boundary conditions 

could also be regarded as the I R l im i t of the Kondo model when A; = 1 . The bulk spectrum 

of the two problems is the same w i t h identical L -L and R-R scattering. The difference 

lies i n whether the R-L scattering is t r i v i a l (Kondo) or not ( P C M ) . The overscreened case 

is not allowed as this would require 5 = 0 and the impur i ty would completely decouple 

f r o m the system. I n the underscreened case, we coidd have in principle s > 1 , but we 

shall only consider the case 5 = 1. When we derive the boundary consistency equations 

^ We assume that the boundary introduces no additional mass scale. 

8 2 
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W Z W 

Kondo 

U p i — - 1 

P C M 

Figure 8.1: RG trajectories 
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(e .g .uni tar i ty) , in the l im i t when the bulk theory becomes scale invariant {URL - 1 ) , 

the scattering amplitudes of the Kondo problem should solve these equations. This wi l l 

be an impor tan t consistency check. This program is formally depicted in the diagram of 

fig.8.1. 

I n the exactly screened case (k = l,s = 1/2), the boundary particle is a SU{2) singlet 

and the scattering ma t r i x is given by eq.(7.58). By analogy, we start by assuming that 

the boundary impur i ty has no internal structure. We call this ^^fixed" boundary condition. 

The reflection ma t r ix RI is defined by (cf.(6.12)): 

Ra{/3)B = R\{l3)L-,{-i3)B. (8.1) 

Since the t o t a l isospin has to be conserved and the boundary particle is a SU(2) singlet, 

we conclude that the reflection ma t r ix has to be diagonal: 

(8.2) 

This ampli tude automatically satisfies the boundary Yang-Baxter equation (6.14) irre­

spective of URL- Let us now consider the boundary crossing symmetry condition: 

(8.3) 

(8.4) 

K'^\P) = Ui{2^)K'-\-l3), 

where K''^{I5) = R\{i-K/2 - /?). From eqs.(7.58) and (8.2), we get: 

, RRL{i^ + P) 

^'""^-^^ - - u n , m • 

Notice tha t RI,R would correspond to a left-moving particle being reflected into a right-

moving one. This does not seem to make much sense given that our system is defined on 

the half-line ( - o o , 0]. However, as we shall see, i t w i l l prove f r u i t f u l to ignore this and see 

i t only as a fo rma l too l to derive consistency conditions for the reflection factors. 
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Next consider the boundary uni ta r i ty condition: 

R i m k - f i ) = <5̂  (8.5) 

Using (8.2) , we get: 

RRL{P)RLRi-(i) = 1. (8.6) 

We can thus express Rm in terms of RRL- Eq.(8.4) then reads: 

RRMRRLii^ + 13) = -URL{2/3). (8.7) 

Notice tha t we cannot take RRI = Rm as can readily be verified i f we substitute /? = 

-i'K/2 i n eqs.(8.4) and (8.6). As we discussed before, i f we take URL - 1 , then the 

exactly screened amplitude (7.58) of the Kondo problem is a solution of eq.(8.7). Let us 

now consider (8.7) w i t h non-t r ivia l R-L scattering. This has the minimal solution: 

sinh (f - f ) I 
R R M = exp ' (8.8) 

iJ\s^nh{| + f ) ^ 

This ampli tude has no poles on the physical sheet. The only pole lies on the second sheet 

at /? = -in/A and is, of course, associated w i t h the mass scale of the bulk theory. 

We now move on to the underscreened case, where the boundary has an effective spin 

q = 1/2. This wiU be denoted "/ree" boundary condition. We then have: 

Raim = E Riim-ci-P)B,, (8.9) 
c,<i=± 

where Bb creates a boundary state w i t h isotopic spin 6 = ± : 

\B > d = Bd\0 > . (8.10) 

The boundary Yang-Baxter equation has to be slightly modified to incorporate this addi­

t iona l structure, [68]: 

4c'mu:$"{f3i+^2)Rtimsf,-Ai3i - h ) = 
(8.11) 

Subst i tu t ing (4.71), we get: 

< ' = ' ( / ? 2 ) i 2 : : ^ ( / ? i ) 4 ' - ^2) = 5 , t ' ( / 3 i - l 5 2 ) R ^ ' M 4 i W . (8.12) 
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We see tha t the bulk R-L scattering decouples as before. I t wiU only play a role i n 
the boundary crossing-symmetry condition. This, of course, is a consequence of the R-L 
scattering being diagonal. Substi tuting (4.66), this yields: 

(8.13) 

Rtc\Pi)Racm - RiimRtt'ii32)] mi^I - ^2). 

Since the t o t a l isospin has to be conserved, we assume the following SU{2) symmetric 

combinat ion: 

R^a,m = ^'jtfRLm + « 5 f f e L ( ^ ) . (8.14) 

We then get using (4.68): 

- ( A - P2)gRL{Pl)9RL{l32) = fRL{Pl)9RL{h) ' P f lL (A) / f lL ( / ?2 ) , (8.15) 

which implies: 

fRj^m = ^f3gRLiP). (8.16) 

The boundary u iu tar i ty condition, 

Ri''{mi%'i-I3) = SlSt, (8.17) 

reads: 

(8.18) 
fRLWLRi-P) + 9RL{/3)gLR{-f3) = 1, 

fRimgLRi-fi) + 9RMfLR(-l3) = 0. 

Final ly we consider the boundary crossing-unitarity condition. We assume the following 

generalization: 

R'^ci^) = 4 c - mRL{^1^ - 2/?). (8.19) 

Following Berg et al.[56], we deflne the crossing symmetric mat r ix : 

Gtt((3) ^ R ^ i f i ) = S t s S R m + S , r ' v R M . (8.20) 

As before the ma t r ix n^^{fi) = Rff{(3) vanishes because i t is associated w i t h the exchange 

of momenta, which is not possible since the boundary particle has to stay at rest after the 

interact ion. I n terms of u and v, (8.19) reads: 

flRili) = -URL{2l3)uRL{iiy - /3), giRi^) = -URLm^RLii^ - /?)• (8.21) 

The un i t a r i ty conditions, 
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yield the equations of u,v: 

URLi/3)vLRi-(3) + VRL{fi)uLRi-P) + 2VRL{I3)VLR{-I3) = 0, 

(8.23) 
URLi/3)ULR{-l3) = 1 . 

Notice tha t i f we choose, 

fRL{/3) = -URL{I3) - VRL{/3), gRLiP) = VRL{(5), (8.24) 

then eq.(8.15) is automatically satisfied. The boundary Yang-Baxter equation for antipat-

icles imposes tha t 

U R m = '-^VRL{P), (8.25) 

which is perfectly compatible w i t h (8.16) for the choice (8.24). Solving this whole system 

is tan tamount to finding gRL,9LR such that : 

• gRmgLR{-P) = ^ , 
(8.26) 

. gLRif}) =-URL{2/3)gRLii7r -/3). 

Suppose tha t the R-L scattering becomes t r iv i a l , URL{P) - 1 . In that case i t is perfectly 

consistent to take gRi = giR = 9'-
2 

9i^)si-l3)=^^2^ 9i^^-P) = gm. (8.27) 

This system is solved by g{l3) — <JR{I5) in agreement w i t h Fendley, [98]. The system 

(8.26), w i t h URL{13) given by (4.73), is not consistent for gRi - giR. Again this is checked 

immediately for j3 — —in/2. However, we can take gLR{(3) = igRiiP), where 7 is some 

constant. Consistency of the system (8.26) requires 7 = -llRiiin) = - i . We then have: 

• m ( i 9 ) m ( - i 9 ) = ^ , 
(8.28) 

, igRM = URL{2p)gRLiin - /3). 

This system has the min imal solution: 

gRM = iRRLil3)aRi/3), (8.29) 

where RRLI^) is given by (8.8). 

8.2 Boundary TBA 

I n this section, we compute the boundary ground state energy and the boundary de­

generacy for the system defined on the topology of the annulus w i t h periodic boundary 
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conditions in the X-direction and "/izecf' boundary conditions on both sides of the annulus 
i n the i?-direction. This is accomplished by the technique of boundary T B A , [86]. Because 
the theory in the bulk is nondiagonal the computations involved are quite cumbersome. 
The best we can hope for is the situation we have just described. The "/ree" boundary 
condit ion entails a nondiagonal reflection mat r ix , thus rendering the equations even more 
complicated. 

8.2.1 T B A in the i?-channel 

We start by assuming our system to lie i n a periodic interval of length L, and evolving 

between the two boundary states \B > (associated w i t h (8.1)) during a lapse of t ime R. 

The boundary state is defined by (cf.(6.16)): 

\B gexp {ŷ J rf/3A'^*(/?)4(-^)4(/3)} |0 > . (8.30) 

I n this section we use the symbol | to distinguish between creation and annihilation 

operators. They satisfy the following non-commutative algebra: 

Ra{^l)R\{!i2) = Si'\^, - l32)Rt{maW + ^a6^(A - /?2). (8.31) 

I n eq.(8.30) 5 is a normalization, which we consider equal to 1 unless otherwise stated. 

Notice also that we are performing the integration in the interval - 00 < /3 < +00. This 

is because the particles are massless and therefore e.g. Rl{f3) w i l l always be an incoming 

particle moving towards the right boundary regardless of what the sign of f} is, [86]. 

The pa r t i t i on func t ion in the E-channel is, [86]: 

Z =< B\exp{-RH)\B >= ^ ^ > ^ ^exp{-REc). (8.32) 

The sum is a priori over any state in the Hilbert space. H is the Hamil toiuan for the 

periodic system and Ea the energy of the state |a > . Since the theory is integrable, the 

number of particles and momenta are conserved. Consequently, the only states \a > that 

contr ibute to the sum are of the f o r m : 

|2iV > = Ll-^i-MR^M • • • 4 ( - A ) < ( i 3 i ) | 0 > . (8.33) 

We then claim that : 

< ^ | 2 i V X 2N\B > 2 ^ ^ K(B^K(B\ r8 34^ 
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As an i l lus t ra t ion let us consider the first few terms. For g = 1 and assuming that the 
vacuum state is properly normalized ( < 0|0 > = 1), we have immediately: 

< ^ | Q > < 0 | ^ > 

— 7 W ^ — = (^-^^^ 

The first non t r i v i a l t e rm is: 

< B\2 >= dl5[K^'^'^{P[) < 0 | i i : 5 , ( / 5 i ) i a , ( - / ? ; ) i l , ( - ^ i ) < ( A ) | 0 > . (8.36) 
J-co 

From eq.(8.31) and the fact that i a ( - / 5 ) | 0 > = 0, we get: 

< B\2 X 2 | 5 > = ^ 2 ( o ) 4 4 ^ ( / 3 i ) i r ( A ) . (8.37) 

I n the above expression there is no summation over the indices yet. Similarly: 

< 2|2 > = < Q\RdML,,{-l3r)Ll-^{-l3^)Rl{l3,)\Q > = ^^(o). (8.38) 

Finally, we can sum over the internal isotopic degrees of freedom. This is because for the 

states l a > = |2iV > i n the par t i t ion func t ion (8.32), the exponential t e rm exp{-REa) is 

the same for aU the states |2iV > w i t h the same number iV of pairs of particles, i.e. i t 

depends upon the rapidi ty but not on the isospin. We then get: 

< 5 | 2 > < 2\B> 

< 2 | 2 > 
2K{f3,)K{P,). (8.39) 

Next consider: 

(8.40) 

where 

< B\4 > = i / _ + ~ dft[ /_+~ d/3',K-^^'^il3[)K'^^'^{P',)x 

-/5i,/?2, -02, -/?2,/32, -/?!, A)6iai62a2C2£i2Cidi = 

= < 0 | i l i , ( / 3 ; ) i , , ( - / 3 i ) i ? 6 , ( ^ ^ ) i : , , ( - ^ ^ ) 4 ( - ^ 2 ) < ( / 9 2 ) 4 ( - A ) < ( / 3 i ) | 0 > = 

(8.41) 

I n the last equality the commutation relations (4.70) were used. and I^^^ are the 

amplitudes: 

' / f \ - / 9 i , - ^ ^ ; - / 3 2 , - / 5 i ) . , a 2 , c - 2 c - , 0 | i , , ( - / ? i ) i a 2 ( - / ? ^ ) 4 ( - / ^ 2 ) 4 ( - ^ i ) | 0 > , 

1 /f)(/?;,/3^;/32,^i)i>,62,<i2<i. = < O\RbMRM)Riil32)Rii0i)\O > • 
(8.42) 
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From the commutat ion relations, we get: 

^ = h,djb,dAPi - - f 3 ' 2 ) + m - - ^ [ ) s t i \ \ { h -^2). (8.43) 

Subst i tut ing in eq.(8.41), we obtain^: 

h = ^ ' ( 0 ) [KdA^dM-cA^M - P'i)m -132)+ 

+S{(}^ - I3'MP2 - 0[)SSl{/3, - ^ 2 ) 4 1 ^ ^ 2 - A ) ] + 

Consequently: 

< 5 | 4 > = ^ {^2(0) [^^-i<'i(/jj)^c-2d2(^2) + K~^''''iP2)K'''^'{Pi)x 

(/?i - ^2)Sm(32 - Pi)] + S{Q) [K^^'^{l3,)K-^^'^^{fi2)S{P^ - fi2)Sm^)+ 

+^^-i^K/92)^^"^'KA)«5(/?i - f32)SQl(0)]} . 

(8.44) 

(8.45) 

Now consider the t e rm: 

K'^'^{P2)K'''Kf3i)St:dli(3i-P2)SpMP2-P^ 

This t e r m vanishes because i t involves the backward scattering mat r ix B of eq.(4.64). Next 

consider: 

K'^r^^(P,)K'^2<i2^f3^^S{f}, - I32)S^III{0) = S,,dA-cJ<if3i)K{m/3, - P2), 

where we used S^l^KO) = S^lS^l- Again , this te rm has to vanish. To understand why this 

is so, let us go back to the state |2iV > in eq.(8.33). The delta funct ion 6{j3i - ^2) and 

the Kronecker symbols bd^d^dc-^ci mean that we have a state of the f o r m : 

4 ( - / ? i ) < ( / 3 i ) 4 ( - / ? i ) < ( / ? i ) | o > . 

However this is not allowed by the selection rules (cf. sections 3.5 and 4.3). 

F inal ly consider the te rm: 

K^^'^[l32)K^^'''{lii)m - /?2)5g],H0) = Ki(3r)K{l32)m - h)h.-cMd, 
^dlblfr.X _ 

Note that the contribution of URL in (8.41) exactly cancels due to the 6-functions. 
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Aga in this is not allowed because of the selection rules. Altogether, we have: 

< 5 | 4 X 4\B > = | ^ A ' ( A ) i r ( / ? i ) A ' ( / ? 2 ) i r ( / 3 2 ) 4 ^ 4 M | 5 _ § . (8.46) 

On the other hand: 

< 4|4 > = Ii''\^3^,^32•,P2,|3l)d,d„d2d^ X / f ( - / ? l , - / ? 2 ; - / 3 2 , - / ? l ) c - i c - 2 , C 2 C i . 

Due to the selection rules this is equal to <^^(0). Af t e r summing over the internal degrees 

of freedom, we get: 

^ ^ < 4|4 > ̂  ^ = ^,m)m)m)K{P2). (8.47) 

A n d this is equally i n agreement w i t h eq.(8.34). We assume that formula (8.34) is exact 

for aU N . I t is wor th not ing that although we started out w i t h a nondiagonal theory, we 

ended up w i t h a remarkably simple formula. Drastic simplifications were achieved due to 

the selection rules tha t prevent any two particles of the same type t o be in exactly the 

same quantum state. But also the fact that the theory is massless prevents the backward 

scattering of particles and antiparticles. 

The (5(0) quantities appearing in the computation of the internal products are not weU 

defined. However, they are unavoidable i f one wants to compute the par t i t ion funct ion in 

the R-channel (see e.g.[86]). One must keep i n mind tha t they require some regularization 

tha t wiU of course be controlled by the length L of the interval. Another interesting feature 

about eq.(8.34) is the fact that i t is independent of the R-L scattering URL-

Let us now go back to eq.(8.32). In each state \a > there are exactly the same number 

of left-movers and right-movers. For each Cooper-pair i = 1,2, • • •, A'̂ , we have an energy 

t e rm, {M/2){e^' -t- e'^'^''^) = Mexp{Pi). Substituting in (8.32), we get: 

where the sum in the exponential is over aU pairs i n the state |Q: > = |2iV > . Let us now 

consider eq.(8.34). We shall drop the normalization 2 ^ / ( i V ! ) ^ ( i t can be absorbed into 

the measure of integration in eq.(8.49) below). I n the thermodynamic Umit, when the 

number of particles tends to inf ini ty , we can introduce the density PQ{(3) of pairs of r ight-

and left-movers w i t h opposite rapidities. Eq.(8.48) reads, [86], [87]: 

Z oc y Vpoi/3)exp |x y"̂ °° dfi [log {K{/3)K{l3)) - EMe '^ j po(/?) + LS[po]^ . (8.49) 
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• • • 

Figure 8.2: Transfer mat r ix 

S[po] is the entropy associated w i t h the configuration po. We see that the contr ibution 

f r o m the boundary can be interpreted as a rapidi ty dependent chemical potential , [86]. 

The system is constrained by the quantization condition, that arises f r o m placing our 

system i n a finite periodic box of length L. We get equations of the f o r m , [81]: 

e^r>^LR,MLd-A-Pi)RM)Ld-2i-P2) • --RcMLa-^i-M = 
(8.50) 

= X,-(-/9i)iE,,(/32)L,-(-/32) • ••RcAMLd^i-MRaM, 

where pi = ^e^^ is the momentum of (Pi) and we dropped the symbol f for simpHcity. 

B y commut ing iEai(/3i) on the l.h.s. of eq.(8.50) w i t h aU the other operators, we get: 

, . p ,L WIN^URUPI + A ) ] S^^f^liPr - (32)S^4tm - / ?3) • • •^a^^!rc^(/3i - M = 
(8.51) 

We define the ( 2 ^ x 2 ^ ) "colour transfer matrix" for iV right-moving particles w i t h the 

fo l lowing ma t r i x elements, [57]: 

T:\u\f}^,...,Mli::''4 - ' ? a t ^ ( " - / ? l ) ^ a ^ t ( ^ - ^ 2 ) - - - 5 : ; ^ - e ^ ( ^ ^ - / ? i v ) , (8.52) 

where u is called the spectral parameter. This object [57] is represented in fig.8.2. 

Each node represents an interaction w i t h S-matrix given by eq.(4.66). Mul t i p ly ing 

eq.(8.51) by S^^j^^^{0) = ^t^^^ci and summing over repeated indices, we get: 

e'^i^ [nl,URL{^ + /?,)] • • -./Jiv) = 1. (8.53) 

where T{u) = T^{u) is the trace of the transfer mat r ix . Since we chose the first particle 

randomly and the system is periodic, eq.(8.53) can be generalized to the fol lowing set of 

Yang equations [75], [57]: 

e'>*^ [lLg,URLif5k + Pi)] T{l3k\f3i,---,f3N) = h k = l,2,---,N. (8.54) 
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Figure 8.3: Bare vacuum 

As usual for the higher Bethe Ansatz (i.e. nondiagonal scattering), we t r y to diagonalize 

the transfer ma t r i x using the method of quantum inverse scattering", [57]. The commu­

ta t ion relations for the transfer ma t r ix can be obtained by successive application of the 

Yang-Baxter relation. They read, [57]: 

T:"{u)Tf{v)s::Uu - ^) = 5:;'^"(^ - V)T^:,{V)T:!,{U). (8.55) 

W r i t i n g these out expHcitly, we have: 

[nu),Tiv)] = [ T + ( « ) , T + ( . ) ] = [T:iu),T:iv)] = [ T ; ( ^ ) , T + - ( « ) ] = [T_+(u),T_+(^)] = 0, 

(u - v)T+{u)T+{v) = inT+iu)T+{v) -\-{u-v- i7r)T;iv)T+{u), 

(u - V)TI{V)T:^{U) = i7rr+(tj)Tr(u) + ( « - « - i7r)r+(u)rr(u). 
(8.56) 

F rom these commutat ion relations we see tha t i t makes sense t o find the simultaneous 

eigenstates of T{u) for different values of u. We start by defining the 'bare vacuum' state 

|0 > , which corresponds to a state where all the iV frame particles have spin " d o W , [57 . 

I t is an eigenstate of T{u). For example, r^(u) acting on |0 > would correspond to the 

s i tuat ion i n fig.8.3. 

The first node yields a contr ibution S°^\~{u - /?i) = S^^S'ariu - (ii). Consequently, 

this w i l l vanish unless a\ = -\- and ci — - . Proceeding w i t h this reasoning, we conclude 

tha t al l the a,- are "up" and all the c,- are "down". Notice also that this is compatible w i t h 

having -f- at the end of the frame and that each node i gives a contribution ( 7 T ( U - /?i). 

Therefore: 

T + ( i . ) | 0 > = [^f^^aT{u - A ) ] |0 > . (8.57) 

Similarly, we can show that |0 > is also an eigenstate of TZ{u). Altogether we have: 

r(^^)|o > = \n.ti(JT{u - (5i) + n j l i 5 y ( u - /?,)] |o > . (8.58) 



(8.60) 
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The space of states is constituted by the set of ficti t ious particle states {"magnons") of 
the f o r m , [57]: 

| A I , - - - , A M > = T + ( A I ) - - - T + ( A M ) | 0 > . (8.59) 

From eq.(8.56) we see tha t the order of the rapidities A j , • • •, A M is immaterial . In general 

i t is not an eigenstate of T(u). I n fact i t can be shown that , [57]: 

T{u)\X„ • . •, A M > = l ^ f ^ ^ ^ ^ ^ L i M u - f3k)+ 

+ nf^r^^^^nt^Sviu - / ? , ) ] | A I , • • •, A M > + 

+ E , ^ i [ - n g , . ^ ^ n f = , a T ( A , -

+ n g , ^ ' x ^ n f ^ i 5 y ( A , - Pk)] |Aa, • • • A „ • • •, A M , ^ > , 

where means that this rapidi ty is omit ted. This state w i l l be an eigenstate of the trace 

of the transfer mat r ix , provided the shifted rapidities yj = A j - z7r/2 ( j = 1, • • •, M) satisfy 

the constraints, [57]: 

Vj - 2/i - ITT " ' y j - / 3 k + J7r/2 

in which case: 

r ( n ) | A i , • • •, A M > = { n , ^ i ^ ^ n f ^ , a r ( n - /? , )+ 

(8.62) 

+ n , ^ i ^ ^ ^ n t i M ^ - / ? , ) } | A i , A M > . 

Equations (8.61) can be interpreted as the periodicity conditions for the Bethe wave func­

t ion of M magnons subject to the diagonal factorized scattering w i t h magnon-magnon 

scattering amplitude: 

S u i v ) ^ ^ . (8.63) 
y - fK 

The scattering between the magnons and the frame particles is described by the amplitude: 

The system (8.61) has been analyzed in the context of the Heisenberg spin chain, [74], 

76]. I n the thermodynamic l im i t (TV oo), its solutions are either the isolated real roots 

2/0, corresponding to the magnon M i ( y o ) proper rapidi ty j/o, or the strings of arbi t rary 

number n of roots: 

Vu = yo + -^i', = - n + 1 , -n-l-3,-•- ,71 - 1, 
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which can be interpreted as the n-magnon bound state Mn{yo) (n = 1 ,2 , . . . , oo) of real 
rap id i ty UQ. The amplitudes (Snm) for the M „ - Mm [m > n) bound state scattering and 
for the scattering between the n-magnons Mn and the frame particles (Sn) can be derived 
f r o m the bootstrap fusions (3.52). They are given by, [57]: 

C (,.\ _ V+tV(m+w)/2 rv+t7r(m+7i-2)/2 y+t7r(m-n-2) /2 
^mnyyj - „_,vfm4-nW2 ^ [!/-i7r(m+n-2)/2 ' ' ' y-ii,(m-n-2)/2 

(8.65) 
^ [y+jV(m+n-2)/2 j/+i7r(m-n-2)/2 ] ^ ̂ , y+i7r(m-n)/2 

y—i7r(TO+n)/2 

I n the thermodynamic l i m i t iV, M oo, we introduce the densities Pn{y) and the densities 

of states A „ ( y ) of n-magnon bound states (n = 1,2, • • •, oo). Eq.(8.61) then reads, [57]: 

2TrAn = (pn*PO+J2^^n*Pm, (8.66) 

where the kernels cpmn are defined as: 

• M y ) = -i^ylogSniy), 
(8.67) 

, 4>mniy) = -i-i^logSmniy)-

The rap id i ty convolution is given by: 

/

+ 0 0 

dy'cj>{y-y')p(y'). (8.68) 
-oo 

We can rewri te Eqs.(8.66) i n a more tractable f o r m by noticing that i f we work w i t h 

Fourier transforms, convolutions are replaced by ordinary products. We define the Fourier 

t r ans form of a quanti ty A{y) by: 

Aik)= dyA{y)e''y, (8.69) 
J—oo 

and its inverse by: 

/

+°° rik 
-A{k)e-^'y. (8.70) 

-oo T̂T 

Then we can show tha t the Fourier transforms of the kernels (8.67) satisfy the fol lowing 

identities, [57]: 

^ ^ „ ( f c ) = e x p ( - f |fc|), 

(8-71) 
E ^ l [^m,p - 2^4>mp{k)j X (̂ p,„ - 2cosh(-Kkl2)hn) - ^m,n-

Imn ( m , n = l , 2 , - - - , o o ) is called the incidence mat r ix , [57]. Its elements vanish unless 

the nodes m and n are connected (i.e. adjacent) i n the diagram of fig.8.4. 
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Figure 8.4: Incidence mat r ix 

From eqs.(8.65) and (8.67), we have: 

Consequently the integrand in (8.69) has two poles situated at y = ±imr/2. I f A; > 0, the 

integral diverges unless Imy > 0. We therefore consider the contour C+ i n fig.8.5, which 

encloses only the singularity y = imr/2. Using Cauchy's theorem, we have: 

(pnik) = 2TriRes{y = inT/2) = 27re~''"*/^ (8.73) 

For A; < 0, the integral converges for Imy < 0 and we perform the integral over C_: 

(f>n{k) = -2'KiRes{y = -im 12) = 27re™'=/^ (8 j 4 ) 

The addi t ional minus sign comes f r o m the opposite orientation of the contour C_. A l to ­

gether we recover the first equation in (8.71). The second equation can be obtained in a 

similar fashion. I f we Fourier t ransform eq.(8.66), we get: 

2irAnik) = Uk)poik) + Yl <t>mn{k)pmik). (8.75) 
m=l 

Using this equation, we get for n > 2: 

An+iik) + A„_i(A:) = lcosh{nk/2)Uk)poik) + ^ E™=i E ^ ^ i lpnPm{k)<pmp{k) = 

= ^cosh{irk/2)Mk)po{k) + E ^ . i lmnPm{k) + ^cosh{Trk/2) 4>mn{k)Pm{k) = 

= pn+l(k) + pn-l{k) + lcOsh{nk/2) [Mk)P0{k) + Em=l cf>mnik)pra{k)] = 

= 2cosh{wk/2)An{k) + Pn+i{k) + Pn-i{k). 
(8.76) 

Consequently, i f we define the densities of holes. An - An - Pn ( ^ = 0 , 1 , • • •, oo), we 

get, [57]: 

Equivalently: 

A„ = ^ V ' * ( A n + i + A „ _ i ) , n>2, (8.78) 
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Im y 

J 

Figure 8.5: Contours 

where i^{y) is the unified kernel, [57]: 

¥'(2/) = J_ 
-iky _ 

27r cosh{7rk/2) 

Following the same procedure for n = 1, we get: 

coshy 

1 / - \ 
A i = —f * (A2 + po^ 

(8.79) 

(8.80) 

Let us consider again eq.(8.77). I f we mul t ip ly by 2ire ^̂ "1*̂ 1/2 and sum over n > 2 we get 

f r o m (8.71): 

I;M^)^n(fc) = ^ ' 
n=2 2cosh{nk/2) 

71=3 n=l 
(8.81) 

This yields: 

^'^^^'^'('^^ = 2coshhk/2) ( ^ i ( ^ ) ^ i ( ^ ) + Hk)<l>2ik)) + E Uk)Pn{k). (8.82) 
71=1 

2cosh{'Kk/2) 

Replacing A2 by eq.(8.80), we get: 

H k ) M k ) = 2 £ ^ U k ) U k ) + e - l ^ l / V 2 ( / c ) A i ( ^ ) + 

+ E^=i Uk)Pn{k) - j £ S ^ M k ) p o { k ) . 

Notice tha t e^l'=l/Vi(A:) = 2w and e^l'=l/V2(fc) = M k ) , and so: 

0 0 

E <^n(fc)Pn(A;) = r7-T7T^Ai(A;) + , ; , x ^ " " ' ' ' ^ V o ( f c ) -

^ cosh[irk/2) cosh{-Kk/2) 

A f t e r Fourier t ransforming, we obtain the following useful identity, [57]: 

"Y (t>n * Pn = <f> * PO - V * ^1, 
71=1 

(8.83) 

(8.84) 

(8.85) 
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where 

'^(^) = r ? A r \ / o ^ ^ " ^ ' " ^ ' ^ " ' ' ' - - 4 ^ « 5 5 v ( / ? ) . (8.86) J-oo 2n cosh{nk/2) of} 

I n the last step we used eq.(4.69) to show that ^(/?) is the kernel associated w i t h the 

isovector amplitude 5y( /9) , [57]. 

Let us now go back to the set of Yang equations (8.54). We consider as eigenvector of 

the transfer ma t r i x the M magnon state (8.59) w i t h rapidities yi,- • • ,yM subject t o the 

constraints (8.61). Taking into account the fact that 0-^(0) = 0, we get: 

^ . p . L n M ^ ^ ^ - y ^ + W 2 j ^ | v ^ ^^^^^^ _ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^^^^ ^ ^ 

I n the thermodynamic l im i t iV, M —oo , this yields: 

M 
<Pn* Pn + 

71 = 1 

where 

M 
27rAo = ( ^ 5 * P o - J ] < / ' n * / 9 n + ^ e ^ , (8.88) 

<Ps{/3 - 13') = -i— [logSv{^ - + logURLili + /?')] = 4>{fi - H') + fiP + /?')• (8-89) 

Using the ident i ty (8.85), we get: 

27rAo = ¥ ' s * P o + V * A i + y e ^ , (8.90) 

where ips = (̂ (Z? -|- ^ ' ) . 

To compute the ground state energy, we perform a saddle point evaluation of the 

pa r t i t i on func t ion (8.49), or equivalently, we minimize the free energy, [73], 

= t { \^^^^ ~ log{K{/3)Km] Pom - S [p„, A„ ]} , (8.91) 

w i t h respect to the macroscopic quantities PniP), A„(/3) taking into account the constraints 

(8.78), (8.80) and (8.90). The magnons being fictitious particles do not contribute to the 

energy of the system. However, they account for the isospin degrees of freedom and 

must therefore contribute to the to ta l entropy, [57]. We have mentioned above that al l 

particles i n the system- fictitious or not -obey certain selection rules. The sets of lef t- and 

right-movers are represented by anti-commuting operators. Because, the corresponding S-

m a t r i x element is symmetric for particles w i t h the same rapidi ty and isospin (iS'aa(O) = 1) 

we concluded tha t they obey an exclusion principle preventing any two of them to be 

simultaneously in the exact same quantum state. The magnons, on the other hand, are 
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bosons, but (^^(O) = - 1 ) , ( n = 0 , 1 , • • •). Consequently, they equally obey Fermi statistics, 

[57]. 

Consider a system w i t h N types of fermionic particles. Suppose that there are ivi*"^ 

particles of type a ( = 1, • • •, iV) and Na states available. The entropy for such a system is 

known to be of the f o r m , [80]: 

(8.92) 

I n the thermodynamic l im i t N[''\L oo, ( w i t h iVa/X fixed) we define the density of 

particles of type a as p''J'\f3)LA/3 - i v i ' " ' and the density of states as pa{(3)LAP - Na-

Using Stirling's formula, we get, [73]: 

N 
6S LA/3 J2 Palnpa - (Pa - pV)HPa ' P^I^) ' P^I^lup^I^ (8.93) 

To take in to account the constraints (8.77), (8.80) and (8.90), we introduce an inf ini te 

number of Lagrange's multipliers (one for each constraint), jini^) {n = 0 , 1 , • • •, oo), and 

rewri te (8.91) as: 

^ = 1 / - ^ dl3 {RMef^pom - log [K{I3)K{I3)] poifi) 

- En=o l^iogAn - pjogpn - AnlogAn] + /io(/5) [AO - ^<fs *Po-^'P*Ai- ^e^J + 

+ f l M [ A I - ^ip * (A2 + po)] + En=2 M [An - * (A„+i + A „ _ i ) ] } 

I t is convenient to define the pseudo-energies, [57]: 

Po 
A - 1-l-e-̂ o 

Aa -
An - l-f-e-̂ i 

(8.94) 

(8.95) 

and the functions: 

n = l , 2 , - - - , o o . 

i „ ( / 3 ) = / o f f ( l + e-^"(^)), n = 0 , l , - - - , o o . (8.96) 

Min imiz ing the funct ional (8.94) w i t h respect to /)„, A„ and /i„ leads to the set of equations: 

{ -1^0 + eo + ^<ps * Xo + ^ V ' * i i = 0, 

-J^7» + e„ + ^ V ' * E ™ = o ^ m n i m = 0, n = l , 2 - - - , c » , (8.97) 

/in(/?) = Xn(,9), n = 0 , l , - - - , O O , 
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0 1 2 3 4 
0 0 0 0 ir 

Figure 8.6: incidence ma t r ix 

where Imn is the incidence ma t r ix [57] obtained by adding an extra node to the previous 

one i n eq.(8.71) (fig.8.6). 

The boundary energy terms are given by: 

• MP) = RMef^ - log{K{P)K{/3)), 
(8.98) 

Un{l3) = 0, 71= 1,2, •••,00. 

The m i n i m u m value of the free energy is then: 

]\/f T f + OO 

r\min = - ^ dfie^oiP). (8.99) 

We would like to compute the previous integral i n the I R Hmit R ^ oo. We start by 

rewr i t ing (8.99) i n the f o r m , [81]: 

L ^ /•+°° 

n=0 

where mo = M , m „ = 0 (TI = 1,2,. • •, oo) and ir,{/3) = log{l-\- A„(^ )e -^" (^ ) ) . The 

boundary terms are A„(/3) = 1 - 6n,o ( l - K{l3)K{(i)) and the pseudo-energies satisfy the 

equations: 

-moRe^ + eo + ^ ¥ ' s * Xo + * - ^ i = 0, 
(8.101) 

-rUnRe^ + e„ + ^ / ^ ^ X „ = 0. 

I n the l i m i t R oo, we see f r o m (8.101) that eo(-l-oo) = oo. However the same does not 

hold for the remaining pseudo-energies. Rather they tend to a l imi t ing constant value in 

the region /3 < < RM. These constant values are determined by the set of equations: 

e „ ( + o o ) + — / dl3^{(i) lmnlog{l + e - " - (+°° ) ) = 0, (8.102) 

where we used the fact that for K{j3) given by (8.8), A„(/3) = 1 for a// TI = 0 , 1 , • • •, oo. 

Now: 

/

H-oo /-foo f]Q /•oo 

r °° r+oo 
:F\min = - ^ T . ' ^ n J _ ^ ^^/3e^X„(/J), (8.100) 
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Defining ?/„ = e - ' " ( + ° ° ) , we get the set of equations: 

yl = n ^ ^ i ( l + 2 / „ ) ' - = (1 + 2/„+i)( l + 2/„_i), n = 1,2,- • . ,oc, 

100 

(8.104) 

where is obtained f r o m / ^ n by omi t t ing the zero-th node. To solve this system we 

truncate i t for some positive integer p and eventually take the Umit p oo. The general 

solution is, [85]: 

1 + 
sin? 7r(n-|-a) 

[ P+6 j 

siv? p-ft 
(8.105) 

where a and h are arb i t rary constants. They are fixed by imposing the ^''initial values'^: 

yo = 2/p-t-i = 0. We then get: 

T(n-l-l)' 
[ P+3 ] 

siri^ TT 

[p+3 J 

n = 0 , l , - - - , p . (8.106) 

On the other hand, when /? -> - o o , we get the following set of equations, i n the region 

-RM « /?: 

eo(-oo) + ^log ( l + e-^' '(+°°)) + log ( l + e -^ i ( - ° ° ) ) = 0, (8.107) 

and 
1 oo 

€ni-<x^) + -Y.lmnlog{l + e-'-(-'^^) =0, n = 1,2, • • •, 00. (8.108) 
m=0 

Using eo(-t-oo) = oo, we can rewrite the two previous expressions in the compact f o r m : 

1 oo 

e n ( - C » ) + - 5 ] / m n ^ ^ l + e - ' - ^ - ^ ^ j = 0 , 71 = 0, 1, • • •, « ) . (8.109) 
m=0 

Defining a;„ = e - ' " ( - ° ° ) j we get: 

= n ^ ^ o ( l + a;n)''"", n = 0 , l , - - - , o o . (8.110) 

The solution is of the f o r m (8.105). However, this t ime, the in i t i a l values are x _ i = Xp+i = 

0, and we get: 

1 + Xn = 
siv? •7r(n-f2)' 

P+4 

siv? TT 
.P+4. 

71 = 0, 1, • • •, 00. (8.111) 

Let us now go back to eq.(8.100). We can replace mne^ by the derivatives of (8.101) w i t h 

respect to /3, [73]: 

T\m.n = - s f e d(3L,{^) k ( /3) + ^ {^'s * Xo) (/?) + ^ (<^' * i l ) ( ^ ) ' 

E ~ 1 / - " r d^U^) e'M + ^ (¥>' * E ^ = 0 /mnXm) (P) (8-112) 

_ v-^oo r (") . j-(0) Y^co r(") 
= l^n=0^1 +-'2 +2^71=1-^2 ' 
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where 

I n the last step we performed the substi tution (3 e - 6„(/9). This is allowed, because 

the pseudo-energies are monotonic functions of /3. The next t e rm is: 

°° , , T OO OO . + y. + 0O f ) 

S ^ 2 " ^ = - T ^ E S ' - / dl3'LM^M(3-P')Lrn{n (8.114) 
71=1 '̂̂ '̂  ^ n = l 771=0 

Using jpfpil^ - ;5') = -^ip{l3 - 13') and the symmetry of bo th the kernel ip{f3) and the 

incidence ma t r i x Imn, we obtain after an integration by parts: 

n=l ^""^t^oJ-^ 1 

-^n(/?) 

- I - e-^"(^) 

1 

m=l 
(8.115) 

Similarly, 

^ = s f e [rt5Sŷ .̂(/̂ )̂ (v'5 * i o ) ( / ? ) + 

•l+e-^l('3)"lVM;27r 

Add ing up (8.115) and (8.116), we get: 

^ i ( ^ ) ^ ( < / ' * i i ) ( / 3 ) 

(8.116) 

+ E r = l 4"̂  = 8 ^ E r = l ^/5TgSk4(^) X [(^^ * E ^ = 0 T̂T̂ nX̂ n) (/?) 

+ 8 ^ d ( ^ - 0 ^ ^ m X (¥'5 * Xo) (/?) + ^ (^ * Xi) (^) 

+ 

(8.117) 

Prom (8.101), we see tha t this is equal to: 

87ri2 

Subst i tu t ing (8.113) and (8.118) in (8.112), we get: 

L g /•^n(+0°) 

71=0 ''^"(-°°) 

We now per form the substi tut ion, 

1 

log{l + e-') + 
1 + e-

(8.119) 

yielding: 
X °° 

n=Q 

1 + e^' 

1 + 2/71 

where £{x) is Rodger's dUogarithm funct ion , [73]: 

1 r ,. llogt log(l-t) 

(8.120) 

(8.121) 

(8.122) 
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This func t ion satisfies the property, [82]: 

(8.123) 

and the fol lowing sum rules, [85]: 

N SlW N+3 

n=l Sin'-
7r(n-H) 

2N 

N-\-3 
£ ( 1 ) . (8.124) 

Consider the first t e rm in eq.(8.121): 

£±L1 
• 7 r i r (n -H) ' 

(8.125) 

p-1-3 

where we used the fact that £ ( 1 ) = ^ . Similarly, the second term in eq.(8.121) is: 

(8.126) 

P^-l-3p-|-2 
p-l-4 

A d d i n g up the contributions (8.124) and (8.126) to (8.121), we get: 

24R p^co 

p^ + 7p+ 18 

p^ + 7p+l2 

XTT 

2 4 i l ' 

Consequently: 

x;(j?) = TTC 

(8.127) 

(8.128) 

where c = 1. Comparing w i t h (5.11), we conclude that i ^ * " = 0 in complete agreement 

w i t h (5.35). 

8.2.2 T B A in the L-channel 

Let us now perform the T B A in the L-channel. I n this section we shall assume ^ 7̂  1 i n 

eq.(8.30). We consider a system of N right-movers w i t h rapidities Pi,- - - ,13^ and M left-

movers w i t h rapidities P[, - - •, in an interval of length R w i t h fixed boundary conditions 

on bo th ends. Since the reflection ma t r ix is diagonal on both sides, we can assume that the 

Bethe wave func t ion varushes at the ends of the interval. We can thus impose a standing 
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wave quantization condition, [88]. Mathematically this condition can be expressed in the 
f o r m ^ : 

exp{2iRn)RlMu^^^liURL{Pk + mf=iURL{l3k - f3',)x 
(8.129) 

X Ea,bT'M {Ph...N) X f f { - f 3 , \ m , . . . ^ ) = 1, k = l,...,N. 

I n the above equation i t is understood that a = a and b = b. The reflection amplitude 

RRL is given by eq.(8.8). Following the same procedure as before, we obtain the T B A 

system: 

-1^0 + eo + j^(ps * Xo + * X i = 0, 
(8.130) 

-l^n + en + ^(p* Em=0 ^TTin-^Tn = 0 , n = 1, 2, • • . , OO, 

where this t ime po{/3) is the combined density of right- and left-movers w i t h rapidities i n 

the intervals (j3,/3 A/J) and ( - / ? , - f 3 - A/J) , respectively. The energy terms are: 

Uoi/3) = X M e ^ , 

i^nif3)^0, n = l,2,---,oo. 

The saddle point evaluation of the par t i t ion funct ion yields: 

(8.131) 

where: 

1 /•+°° f 1 
l o g Z ^ — j d^[RMe^ + Q{I3)]LO{I3\ (8.132) 

^ Q 1 £i 
0(/3) = -^—log{RnL{f3)RRLm - -^-^logURLm- (8.133) 

The 0 t e rm in eq.(8.132) is independent of R may be regarded as a boundary free energy, 

[88]. I n the large-i2 l im i t the next to leading order of the par t i t ion funct ion (8.32) is: 

Z « < B\0 >< 0\B > exp{-REoiR)), (8.134) 

where EQ is the ground-state energy of the periodic Hamil tonian. Equating (8.132) and 

(8.134), we get: 

1 /•+°° 
log < B\0 > < 0|J9 > = — / dl3Q(l3)Loi/3) + const. (8.135) 

47r J-oo 

The boundary free energy is thus defined up to an additive constant. This is because 

([88], [86]) we have discarded corrections to the Stirhng formula in computing the entropy 

(eqs.(8.92), (8.93)) and loop corrections in the saddle point computation. Also the corre­

spondence between the entropy of the field theory and the one evaluated using the particle 

description (e.g. kinks) might involve some constant. 

'The term l/URi[2Pk) arises because the paiticle does not interact with itself. 



Chapter 8: The Principal Chiral Model on the Half-Lme 104 

I n the I R l im i t when X ^ oo, we see f r o m (8.130) that eo —*̂  oo and so the first t e rm 
on the r.h.s. of eq.(8.135) vanishes. This is compatible w i t h g = which is the expected 
result for the exactly screened case (cf. eq.(7.55)), provided we take constant= 0. On the 
contrary, when X — 0 , fo becomes constant. 0 can be shown to be equal to: 

2\/2 2 

Consequently: 

We then have: 

r 
J —oo 

dpQ{P) = 27r. (8.137) 

4 

where e~^° is equal to XQ i n eq.(8.111). A n d do 

log {guv) = hogil-^e-'"), (8.138) 

guv = l i m log 

1/4 

\ /2. (8.139) 

We conclude that the internal product g =< 0\B > varies along the RG flow. This is 

par t ly unexpected because the RG flow is controlled by a bulk perturbat ion. However, 

b o t h i n the I R and U V l imi ts the conformal states can be represented as combinations of 

massless particle states. The boundary states corresponding to conformal states in these 

l imi t s have different scalar products w i t h the conformal ground state. This supports the 

conjecture of ref.[97] which states that the boundary entropy is a characteristic (Uke the 

central charge) of universality classes. Models interpolating between distinct universality 

classes are therefore expected to have distinct boundary entropies at the extremes of the 

R G t ra jec tory . 



Chapter 9 

The super-Liouville equation 

In this chapter I will discuss different aspects of the N=l super-Liouville (SL) theory. 

I will derive a recursive formula for an infinite number of conservation laws using Lax-

pair techniques. After some algebraic manipulations these are shown to be the super-

Korteweg-de Vries (sKdV) hierarchy of Hamiltonians, thus establishing a connection with 

other integrable theories. I will investigate the boundary interactions which are classically 

compatible with the superconformal symmetry. The Poisson brackets are then established 

on the light-cone and used to prove the involutive nature of the integrals of motion (IM). 

They are also used to quantize the theory and consequently determine how the classical IM 

are modified into their quantum counterparts. 

9.1 Integrable supersymmetric theories 

I n the past few years, there has been renewed interest i n the problem of incorporating 

fermions in integrable two-dimensional quantum field theory [100], [101], [102], [117]. In­

t roducing fermions seems to be a natural extension to the more standard purely bosonic 

theories. I t is well known, for instance, that there are striking similarities between the 

two-dimensional 0 ( N ) sigma model and four-dimensional pure Yang-MUls theories, no­

tab ly asymptotic freedom. However, i f the purpose is to mimic the fuU Q C D , i t is natural 

t o include fermions. Shankar and W i t t e n [103] have considered a supersymmetric version 

of this model and determined the exact factorizable S-matrix using the usual bootstrap 

program and some knowledge coming f r o m the large N expansion. 

105 
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Supersymmetry is an indispensable ingredient in the context of string theory applica­
tions [6]. Bu t also in statistical mechanics some lattice models (e.g t r icr i t ica l Ising model 
i n two dimensions, [105]) realize superconformal symmetry. 

The bootstrap program for finding exact S-matrices for integrable theories w i t h N = l 

Supersymmetry is thoroughly described in ref.[106] and the thermodynamic Bethe ansatz 

( T B A ) developed in ref.[107]. I t is argued that although the scattering is nondiagonal, the 

S-matrices satisfy a technical condition called the ''•free fermion condition^'' that renders 

the diagonalization of the transfer mat r ix feasible. 

Another type of integrable theories w i t h N = l Supersymmetry, called super-KdV like 

equations, has been studied by Kuperschmidt, [110], [111]. These equations have pro­

found implications in the study of integrable perturbed superconformal theories and their 

conserved charges, [28]. 

There have also been some attempts at supersymmetrizing Toda field theories, [100], 

[119]. I t turns out that w i t h the exceptions of the LiouvUle and sinh-Gordon theories this 

is not a simple matter . I t is rather str iking that Supersymmetry, which improves dra­

mat ical ly the quantum properties of four-dimensional theories, [2] seems to be compatible 

w i t h integrabil i ty i n two dimensions only under very restrictive circumstances. However, 

i f one focuses at tention on the integrability of the models rather than Supersymmetry, i t 

is possible to construct a new class of Toda models w i t h fermions where the underlying 

algebra is a Lie superalgebra, [104], [118]. Some exact S-matrices have been proposed for 

this class of theories, [115], [116]. 

Recently, Inami et al. [114] considered the supersymmetric extension of the sine-

Gordon theory on the half-line and found that the requirements of integrabili ty and Su­

persymmetry fuUy determine the boundary potential up to an overall sign. Moriconi and 

Schoutens [108] subsequently conjectured the exact reflection amplitudes for the breather 

mult iplets of this model. 

Here, I wiU apply similar considerations to the N = l super-Liouvifle theory (SLT) , 

[109]. Besides its applications in statistical mechanics [112], the SLT arises in Polyakov's 

approach to the superstring, [124], [112]. I t is the simplest example of a Toda theory 

based on a contragradient Lie superalgebra. This superalgebra is labeled B(0,1) i n the 

classification of Kac [104] and i t possesses three bosonic generators and two fermionic 
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ones. A realization of B(0,1) is provided by Osp{l\2]C). The theory based on this finite 
superalgebra is conformaUy invariant. Furthermore, the SL equation also happens to be 
supersymmetric and therefore superconformal, [112]. 

9.2 The super-Liouville theory 

Let me first establish my notat ion. Consider two-dimensional superspace, w i t h units such 

tha t h = c - 1, and the superspace coordinate, 

^ = (x^^A) = (a;^xl;^l ,^2) , 

where a;'̂  is the coordinate on 2-dimensional Minkowski space and 6A are Grassmann 

variables, which are the components of a Majorana spinor. We also introduce the scalar 

superfield $ w i t h components, 

^{x,e,e)::^ip{x) + e x { x ) ^ \ 9 9 F { x ) , 

f X i \ 
where X is a Majo rana spinor % = , ( f { x ) , F{x) are scalar fields and where we 

\ X2 J 

used the fact tha t - d x - We also consider the two-dimensional Dirac matrices in 

the M a j o r a n a representation (1.14). The super-Liouvdle theory is then defined by the 

superspace action, 

5' = y " d W ^ | ^ 5 $ X ) $ - ^ e ^ * } , (9.1) 

where /3 is a dimensionless coupHng constant and the superderivatives are: 

I n this f o r m the action (9.1) is manifestly supersymmetric. Integrating the ^-coordinates, 

we get: 

S = \ J d ' x {id<f)' + ixrd,X + 2Fe''^ + fee^'^} . 

As usual, the auxiliary field is nondynamical, and we can use its equation of mot ion , 

F = ê *̂ , to eliminate i t f r o m the action and we get: 

S ^ \ j d \ {{dipf ixi'd.x - e'^'' + Ptxe^""} . (9.2) 

From this action we can derive the classical field equations, 

1 ( i 7 ^ 9 , + /?e/''̂ )x = 0, ^'••'^ 
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and the canonical stress-energy tensor, 

Tf,u = dfj,(fd^(f -I- - [xii^di^x - duXluX] - 9^vC, (9.4) 

associated w i t h the invariance under r igid space-time displacements. The action is also 

invariant under the conformal t ransformation, 

( a;± ^ /± (a ;± ) = a:± + e±(a;±), 

^{x) ^{x) = if{f)-i-^ln{d+f+d-f-), (9.5) 

X{x) x{x) + l€^d^x{x), 

where x^ = x° ± x^ are the light-cone variables. For the stress tensor to be the generator 

of these transformations, i t has to be traceless, and therefore a conformal improvement is 

in order. I t can be shown [112], [124] that 

© M . = - ^(d^d, - g,,d^)>f (9.6) 

satisfies this requirement. The action (9.1) is also invariant under the supersymmetric 

t ransformat ion , 

6,^ = [vQ, $] = TO+0 QT/F - irvd,^) - '^mrd.x, (9.7) 

where Q is the supersymmetry generator, 

QA--^ + ^iro)A^„ 

and T] is some constant infinitesimal fermionic parameter. The associated Noether current 

is: 

J ' ^ ^ ^ V X ^ . V ' - ^ T V ^ . X . (9.8) 

For this current to generate a superconformal symmetry, i t has to satisfy a condition 

analogous to the tracelessness of the stress tensor, namely: 

7, = 0. (9.9) 

As we w i l l see, this condition w i l l render the theory fuUy "c/iira/", w i t h the sectors of 'right-

movers' and Heft-movers^ completely decoupled. The "con/oma/Zy improuecP' supercurrent 

satisfying (9.9) is found to be: 

j M = j'^j^^d,^ - i(29^ - rrd,)x. (9.10) 
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9.3 Lax-pair and conservation laws 

Let us consider the components of the superderivatives, 

They have the properties, 

Dl = 2id-\ Dl = 2id^. 

I n terms of these the SL equation is wr i t t en : 

which yields component wise the following set of equations: 

d+Xi = f e^'^X2, 

d.X2 = -le^^Xu 

- e 

Equat ion (9.11) can be cast i n the following linear system: 

f D iC = Ai (A)C, 
1 D2C = A2(A)C, 

(9.11) 

(9.12) 

(9.13) 

where C is a column vector, whose components are the bosonic superfields V i , V2 and the 

fermionic superfield V3; A is an arbi t rary parameter, and Ai, A2 are the graded matrices: 

A r ( A ) . - y f 
/ O 0 

0 0 ief^^ 
e^* ie/?* 0 

A2{X) = 

( XOi -ipD2^ 0 \ 

0 A ^ i / 
(9.14) 

I wiU now use a method developed in refs. [121], [122] in the context of the super-sine-

Gordon theory to extract the I M . 

We define two new scalar superfields U, Z and a fermionic superfield Y as: 

U = lnV,--x+; 
V3 

Vi' 

We then have: 
£)iC7 = - y f e ^ * y , D2U ^-iPD2^-Z, 

/3^Y = -il3D2^ + D2Z - i/?£»2* -Z-Z, 

f3^Z = -D2Y + i/3£)2$ Z Y. 

(9.15) 
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Using the fact that the square of a ferinionic superfield vanishes, we obtain the fol lowing 

differential equation for Y : 

—d^i.D^Y-Y. 

We now assume an expansion of Y in powers of A~^: 

y (n+l /2 ) 
Y 

1 

(9.16) 

(9.17) 

Subst i tu t ing this expansion in eq.(9.16) and equating powers of A~^, we obtain the follow­

ing recursive formula: 

y (n+ l /2 ) = ^ 5 ^ y ( n - l / 2 ) ^ ^ ^ ^ ^ . J^^yC-^/^) • y ( " - ' - l / 2 ) , (Q.lg) 

n = 1,2,3,---

The integrabUity condition, 

can be interpreted as an inf ini te number of supersymmetric covariant conservation laws: 

n = 1,2,3, 

where 
j{n+l/2) ^ _ y ( n - l / 2 ) 

Notice tha t eq.(9.19) is invariant under the ''gauge transformation': 

j j ( " + l / 2 ) jin+l/2) ^ £ ,^y(n+l/2)^ 

I t is s t ra ightforward to show that up to one of these transformations one has 

(9.19) 

(9.20) 

(9.21) 

J 
(5/2) (3/2) 

(A = 1,2) 

where 

i j f ^) = a + j f / ^ ) , 

= -2i ( l - | , ) - 4 ( l - ^ ) {d+<fy+ 

+ei [a ( i - ^ ) 52(^X2 + 4i5+(/.5+x2^ 

(9.22) 

+ 

+92 [-2il3d+<fe^''x2 - 2 i [ l - ^ ) el'-^d+X2 

(9.23) 

+ 

+^1^2 [4i ( l - ^ ) ^ ^ e ^ ' ^ + 4i(3{d+^fe^'^ - fel''^X2d+X2 
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= ^ { i ( l - ^ ) X2dlx2 + p+X2dlx2 + 2 ( l - | r ) d^^pdl^ + j,(dlcpY 

-2/3' ( l - ^ ) {d+^r - iP' (3 - f ) id+<f)h2d+X2+ 

+^1 [ - 2 i ( l - ^ ) 5 > X 2 - 2ia3<^5+X2+ 

+ 2 i ^ 2 (3 _ i o ^ (d+^fdl^x2 + 2zl3'{d+^fd+X2] + 

+02 [ipd+ipef^'^dlx2 + i ( l - ^ ) e^^dlx2 - 2ip' ( l - ^ ) d+<pdl<peP'^X2 

-zP\d^^fe^^X2 - ( l - f ) {d+^fe^^d^X2] + 

+6^62 [-2i ( l - ^ ) dX^e^^ - 2il3d+^dl<pef^'^ + 2i/3' (s - f ) (d+ipfdl^e^^ 

+2ip\d+^re^'^ - 2/32 (1 - p ) dl^e^^X2d+X2 - 2^^ ( l j , ) {d+<pfe^^X2d+X2+ 

- 1) d+^e^^X2dlx2 - f3e^^d+X2dlx ' P ' f^) e^^X2dlx2]} • 

(9.24) 

This means tha t the charges associated w i t h J^^^^ are t r iv i a l and there wiU thus 

be a gap in the sequence (9.19). This results i n aU even spin charges being omit ted , as 

wOl become apparent i n what follows. 

We wUl henceforth work in EucUdean space. 

unless otherwise stated and redefine the fields, 

-X + iy 
-X - iy 

for f u tu r e conveiuence. The parameter a is such that = i/2. The equations of mot ion 

then become: 

34 = e W 2 ^ , 

F 

(9.25) 

2" 

e W 2 . 
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(9.26) 

The energy-momentum tensor has the two independent components: 

I Qzz = Qzz = 0. 

A n d the components of the supercurrent are: 

As was mentioned earlier, the conformal improvements of the energy-momentum tensor 

and the supercurrent lead to a ' c / i i r a f theory, i.e. a decoupling of two independent sectors 

of r ight- and left-movers. This is displayed manifestly in eqs.(9.26) and (9.27). 

From the conservation law (9.19) a pat tern w i l l emerge for all n. The 02 and B1O2 

components lead to the conservation laws, whereas the remaiiung components are just 

identities. 

(9.27) 

For n = 1 the O2 component of eq.(9.19) is: 

However, the right-hand-side of this equation can be integrated using the equations of 

mot ion (9.25): 

A n d we get the conservation law: 

d-zUzi2 = 0, (9.28) 

where 

Uz/2 ^J = \d,H - ^d,i>. 

The 6\02 component of eq.(9.19) can be wr i t t en as: 

9^Ts+i = 52 0 s _ i , s = l,3,5. (9.29) 
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Here are the first elements of this sequence: 
T2= i(a,<^)2-f i ^ V , 

- ^ 5 . V 5 , V - ^ ( W V ' ^ . V ' , 

04 = -^d,ct>dl<t>eP^ - '^^{dAfdlct>e^^ - \{d.<t>)'eP^ + ^5.^53^6^2^;^'+ 

-F^(5,<A)3e/'^/2V>5.V + (̂5,<̂ )2ê /̂2Vi52V̂  - ga.^e^^V5.V - ^e^Hdln 

These coincide w i t h the results of ref. [123], which were obtained by using Backlund 

transformations. Note also that the system (9.25) is invariant under 2 2 and i) -> tV), 

ip iip, and this yields a corresponding set of conserved quantities: 

= 9 , 0 , _ i , s = 1,3,5,-•• (9.30) 

Given the fact that the theory is conformally invariant, the f o r m of the conservation laws 

(9.29) may appear awkward, as i t seems to prevent the decoupling of the lef t- and right-

moving sectors. The desired f o r m of the chiral conservation laws is: 

d,Us+i = 0, s = l , 3 , 5 , - - -

I wiU now show that all the functions 0 s _ i (s = 1,3,5, • • •) can be integrated using the 

equations of mot ion, yielding: 

Qs-i=dsAs-2, s = l , 3 , 5 , - - -

This wUl act as a conformal improvement for all the higher spin conservation laws. We 

start w i t h ©o which is immediately identified w i t h : 

00 = d,A, = ^d,d,<l>. 
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The first chiral bosonic conserved density is just the conformaUy improved stress tensor 
(cf . (9.26)) , 

U2 = T = T2- d,A, = ^{d,<l>Y + ^ V ^ . V ' - ^d'j- (9.31) 

The next element i n the sequence is: 

A n d the corresponding chiral conservation law reads in terms of T , J and their derivatives: 

U4 = T' + JdJ. (9.32) 

Finally, 

A n d i n terms of T , J and their derivatives UQ-TQ- d^A^ reads: 

Ĉ6 = - f -^^{d.Tf + 2TJdJ - -^JdU- (9-33) 

W i t h hindsight, we saw the supercurrent J emerge in eq.(9.28) f r o m the 62 component of 

the first conservation law. I t is the superpartner of the stress-energy tensor (9.31) which 

corresponds to the 1̂̂ 2 component. Similarly we might expect to see the superpartners 

of the higher spin conserved quantities (9.31), (9.33) arising f r o m the 2̂ component of 

the appropriate superspace conservation law. However I have checked exphcitly that the 

conserved densities Uj/2 ^-^d i7ii/2 are to ta l derivative terms, e.g. 

Ur/2 = d ' j . (9.34) 

This means tha t the corresponding charges are t r iv i a l . Al though there is no proof known 

to me, i t seems plausible to assume that this wiU also be true for the higher (5 > 5) spin 

densities. Note tha t U2, U3/2, U4 and Ue constitute a supersymmetric extension of the 

K d V hierarchy (3.25) to which i t reduces in the zero fermion l i m i t . 
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9.4 The super-Liouville equation on the half-Une 

Let us now assume a boundary located at a; = 0. The action on the haJf-hne x G ( - o o , 0 

is the sum of two contributions, 

5 = 5o + 5 s = dx dy | ^ ( - a ; ) £ o + \K^)B{^, V ' , V ' ) } , 

where CQ is the bulk lagrangian density and the boundary potential B is assumed to be 

independent of the field derivatives. 9 is the Heaviside step funct ion. Our purpose is to 

investigate under what circumstances w i l l the boundary potential B lead to a supersym-

met ry preserving action in the presence of a boundary. 

Min imiz ing the action leads to the SL field equations for a; < 0. Furthermore, we get 

the boundary conditions at a; = 0: 

dCo IdB dCo IdB dCo _ IdB ,^ 

d{d^(f>) Adf d{d^^) A dip' d{d4) 4di> 

I n this section, we set (3 - 2 for simplicity. I n Euclidean space the Lagrangian density £ o 

is w r i t t e n (cf(9.2)) : 

£ o = ^ [dz(l>d^(j) - iPd,i> + ipd-,i) + ê ^ - 2e*Viv] • (9.36) 

Equations (9.35) read: 

^ • * + i = » - * - i = » . i ^ f r " -

Besides being conformaUy invariant, the action (9.36) is also invariant under the super-

symmetry transformations (cf .(9.7)) , 

8s(j> = + ^'05 
6st = -{vdz<P + ve'l>), (9.38) 

where rj and f} are infini tesimal fermionic parameters. I t is straightforward to show that the 

variat ion of the action (9.36) under these transformations amounts to a to ta l derivative: 

(9.39) 

+ d-, [ds(t>dz(i> + i>hi> - 2d,<l>vi^ - 2 e ^ ^ v ] } . 

I n the presence of a boundary, we have ^: 

1 /'"'•°° f 1 - - A i - "1 
SsSo = - dy | - ( 7 ? V + #)</ '^ + (V'?? + V'^)e^ + ^{vi^ - # ) ^ ! / | U - c (9.40) 

^The subscripts x, y stand for d/dx, d/dy, respectively. 
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This expression can be compensated for by adding a boundary term. On dimensional 
grounds, we consider a boundary potential of the fo rm: 

Bs = cse'^ + MsH. 

The boundary equations of mot ion arising f r o m this term are (cf(9.37)): 

<f>^ = -cse^, i> + Msi> = 0, {Ml = I). 

Under a supersymmetry t ransformation, we have: 

\8s / _ + ~ dyBs = \ dy {\Ms{ni^ + vi^)cj>. + e'^{Ms + c s ) ( # + # ) + 

I t is only possible to keep half of the supersymmetries. We therefore choose f] = ±77. The 

sum of the two contributions is thus: 

hS^ + SsSss = \ dy |1(1 ± MsHi^ ± i^)<t>,+ 

+(cs + MsT l ) r ? ( V ' ± VJ)e^ + ^ ( 1 ± MsHi^ T Vi)<^v} U=o. (9.41) 

The integrand in the above expression vanishes, if: 

V ' T V ' = 0, CS = ±2. 

Therefore the boundary potential , 

Bs = ±{2e'^ - i^i>\ (9.42) 

restores supersymmetry. 

Let us now consider addit ional terms in the boundary potential , of the f o r m esi^ + ^si^-

Under a supersymmetry t ransformation such that fj = ±77: 

- 1 i 

This w i l l be a to ta l y-derivative if : 

(1) esTes = 0, 
(2) £5 ± € 5 = 0, <̂ x = T 2 e ^ 

The la t ter implies es = 0. l a the former case, we have the fol lowing boundary potential: 

Bs^±i2e'^ - n + es{i>±i>))- (9.43) 
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This yields the boundary conditions (cf(9.37)): 

4>:, = T2e^, V T V' + e5 = 0. (9.44) 

Alternat ively , we can equally well impose the boundary conditions by hand [114]. We 

require the integrand in eq.(9.40) to be a to ta l y-derivative for f] - ±Tj. I t turns out that 

there is a single boundary condition satisfying this requirement that is left invariant under 

a supersymmetry t ransformation: 

(f>y = 0, V ± = 0. (9.45) 

Let us now discuss the integrabil i ty of the theory. According to Cardy [60], [113], invariance 

of the boundary conditions under a symmetry generated by some set of conserved currents 

(W, W) requires W - W on the boundary. I f we take W to be the stress tensor, we get 

f r o m eq.(9.26): 

-i(t>x<f>y + ''ptpx - ii>i>y + i(i>xy = i(t)x4>y " i'lpx - ilpi^y - i<j>xy 

The bosonic part , -i(f>x<f>y + i4>xy, vanishes for 

<f>x = ce^, (9.46) 

where c is some constant. Using the equations of mot ion (9.25) to eUminate the x-

derivatives, we get, ijjipy = tptpy. There are two solutions to this equation: 

(2) i^y = lPy = 0. ^^-^^^ 

These conditions together w i t h eq.(9.46) preserve the conformal invariance of the theory. 

We can stiU impose similar constraints on the supercurrents (J, J) and this should f i x 

c. The boundary condition is r j j = J f j . Remember that we want to keep half of the 

supersymmetries, by setting f j = ±r}. Accordingly, we impose the boundary condition 

J — and get: 

{(f)^ - i(l>y ± 2e'^)i) + 2ii}y = q:(<^^ + i<f>y ± 2e'^)i) ± 2ii)y. (9.48) 

This equation is solved by (9.44) provided eg = 0. We might expect (9.44) and (9.45) 

t o solve this equation wi thout any additional constraints, since ( J , J) generate supersym­

met ry transformations. However, J — ^ J is more restrictive than simple supersymmetry 

conservation due to the orthogonality condition (9.9). 
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K we want superconformal symmetry to be preserved, we have to use as Ansatz the 
conditions (9.46), (9.47) obtained above for the conservation of the conformal invariance. 
We then get: 

(2) rPy = ^y = 0, <^. = T 2 e ^ = 0. ^ ' ' ^^^ 

B o t h conditions are lef t invariant under supersymmetry transformations. We see that these 

conditions are compatible w i t h supersymmetry conservation (cf (9.44), (9.45)), although 

far more constrained than the latter. I t is wor th remarking that they are unambiguously 

determined, i n the sense that there are no unfixed parameters up to a sign. A similar 

s i tuat ion occurs in the super-sine-Gordon theory [114] and appears to be a consequence 

of supersymmetry. Indeed, as we shall see in the next section, our analysis of the non-

supersymmetric ^ ( ^ ' ( 0 , 1 ) theory reveals that , in contrast to the two models above, the 

boundary potent ia l depends on free parameters [109]. 

I t is also interesting to investigate, whether any of the I M Ug+i, Us+i (s=l ,3 ,5 , . . . ) 

survive on the half-line for the set of boundary conditions (9.49). One could then per­

t u r b the theory on the half-line w i t h some relevant pr imary operator and thus obtain an 

integrable massive theory (e.g. sinh-Gordon) w i t h boundary interactions. The I M for 

this theory could be seen as deformations of the surviving conformal ones. Also i f one 

wants to describe the boundary conformal field theory in terms of massless particles, [89], 

90], [91], then these I M are indispensable ingredients, as the massless particles are their 

simultaneous eigenvectors. 

I t is easy to ver ify tha t the conditions (9.49) preserve the following combinations of 

the I M : 

= r d x ( [ / , + i + C/,+i), (s = 1,3,5,---). (9.50) 
J — CO 

We jus t have to prove that Us+i = Us+i at a; = 0 as a consequence of the stress tensor and 

the supercurrent satisfying T = T and J = ^J. A l l polynomials T " (n > 1) automatically 

satisfy T " = T " . The first non t r iv i a l t e rm is {d^Xy. From the conservation of the stress 

tensor, we have Tx - -iTy and fx = i f y . This implies that at a; = 0, 

( 5 , T ) 2 = - T 2 = - f 2 = ( 5 , f )2 . 

Similarly, f r o m = - i j y , Jx - iJy, v/e have: 

Jd,J = -iJJy = - i { : f j ) { : f j y ) = -iJJy = -JdiJ. 
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Altogether , this means that - 1)4. Next, we consider the term Jd^J. We use the 
fo l lowing identities, 

{ Jxyy = iJxxy = —Jxxx — ~'>'Jyyyi 

Jxyy — ~'i'Jxxy — ~Jxxx — '^Jyyyi 

to show tha t 

J ~ ~Q*^ i^JXXX ^"^Jxxy ^*^xyy "I" ^*^yyy ) Jyyy — '^J '^yyy — <^ J • 
o 

Aga in , we have Ue = UQ. I n summary, we found tha t the conditions preserving the 

super conformal invariance in the surface configuration, also ensure the conservation of half 

of the I M . This is not surprising, since the I M , being composite fields of the stress tensor, 

the supercurrent and their derivatives, are deeply connected w i t h the superconformal 

symmetry of the theory. 

9.5 The 5(i)(0,l) theory 

I n this section, I shall briefly compute the boundary potential for the B^^\Q, 1) theory, 

[109]. This theory is i n fact not a very interesting one. The distortions on its mass 

spectrum arising f r o m quantum corrections render this theory incompatible w i t h an exact, 

factorizable S-matrix [116]. However we shaU ignore this fact , since at the classical level i t 

suits our purposes of checking whether there are any unfixed parameters i n the boundary 

potent ia l . The action in superspace leads to the following equation: 

D i £ ) 2 $ = ie^* - ^^1^26"^* . (9.51) 

I chose a normalizat ion such that the couphng constant is absorbed into the defi iution of 

the fields. 

The second te rm on the right-hand side spoils invariance under supersymmetry trans­

format ions . This is a common feature of Toda theories based on contragradient Lie super-

algebras, [100], [118]. 

Alternat ively, eq.(9.51) can be seen as the compatibil i ty condition for a linear system 

similar t o (9.13), where this t ime the graded matrices take the fo rm: 

Aa(A) = 
/ _ 2 i ? i $ - z A v ^ 0 \ 

0 0 i\^/2 
^ -\Q2 0 2 D i $ y 

/ 0 0 ^ l e - ' ' * \ 
v/2e2* 0 0 

V 0 ^/2e2* 0 ^ 
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(9.52) 

Expressing eq.(9.51) i n components, we get i n Euclidean space: 

F = -ie'^, d,ip = -e'^V', d^ip = -e'^i), 

The bosonic l i m i t of this theory is the â ^̂  bosonic Toda theory. I t was conjectured [118] 

tha t the gaps in the sequence of conservation laws be periodic w i t h period equal to 2. 

Specifically, there wiU be an infini te set of conserved densities, d^T^jfi = dzQs-\i w i t h 

s= l ,3 ,5 , . . . 

Considering the most general Ansatz, I obtained the following elements: 

r T2 = {d,<i>f - d , u , 
T, = (52^)2 -f {d.<i>f + sid,<f>yi,d,i^ + d.i^dii^ + w.<i>dii^i,, 

0 0 = e20_e^6^^ + l/4e-2^^ 

02 = 2(9,<^)2e2^ + 4(a,<^)2e^V^ + l/2(5,<^)2e-2^+ 

+2e^'f'd,iPrP + 3/2e-2*V'5^V' + 2d,(j)e^i^d,^. 

Again , the action on the half-hue is defined according to: 

/

+ 0O /• + O0 

dx dy{9{-x)Co + S{x)Bi<j>,i^,i^)] 
-OO J — CO 

leading to the boundary conditions: 

(9.53) 

dB , dB dB 
(9.54) 

I n addi t ion , we have: 

Consequently: 

d^B d^B d^B 

d(t)di} d(f>d'ip dtpdip 
= 0. 

(9.55) 

Suppose tha t the boundary potential B can be chosen in such a way that at x = 0, there 

is a 03 such that eq.(6.2) holds. 

From the equations of mot ion we have: 

f i,xy = -2eHy-2ct>ye't>i,-ii>yy, 

iPxx = 4e2^V - 2(f)xe^i! + 2i4)e'i'i) - ^jyy, 

iPxy = -2e% - 2<^ye*V + ii>yy, 
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4>xx = 4e2* - (j>yy - 4e'^i>iP -
Using these expressions and eq.(9.55), we get: 

T4 - f '_4 + 0 - 2 - 02 = W6 + W f i , 

where is a purely bosonic contr ibution, 

i d ' B . . i d B . 3 i ( l f d B \ \ d ' B f , ^ 1 dB f 1 . 

^ * = - i 5 ^ ^ - ^ ^ - 8 ^ ^ ' ' + 2 | 4 U j + 5 ^ r - r j - ^ r + r j / ^ -
We look for solutions of the f o r m B{(f)^'ip,i)) - Bh{^) 4- Bj^ij^^). I t is s traightforward 

to show tha t for Bb{(f>) = ae'̂  + be~'^, where a and b are arbi trary constants, W i w i l l 

automatical ly be a t o t a l y-derivative. The remaining contribution WR is given by: 

(ipytjj - i)yi))-\-

+\'-§^Ui^i^y + V'V'y) + i ^ e ^ ( V ' y V ' - ViyV-) + 2</.,e^VvV' + Vi .V')+ 

+^(^y!/V^3/ - M y ) + e ^ # y y - + |^ (V ' 2 /2 /V ' + V ŷyV )̂ + ' M ) -

Because -0, ^.re Grassmann variables, Bj takes the f o r m Bj{'\p,ij)) - M-^i}) -\- e^) -\- C'̂ , 

where M , e, e are constant parameters, M being bosonic and the remaining fermionic. 

From eq.(9.54), we have the following possibilities at a; = 0: 

(1) V' = - f i i l , i^ = m ^ { M ^ ± i \ 

(2) V; = T(V' + f ) , f = Te, ( M = ± l ) . 

I n the former case, W/{ is automatically a to ta l y-derivative irrespective of the values of 

a, 6, e, e and M(7^ ± 1 ) . I n the lat ter case, we get e = e = 0 and a = ^ 2 , corresponding to 

M = ± 1 . I n summary, there wUl be a spin s = 3 conserved charge in the following cases: 

(1) B{4>, -0, V*) = ae^ 4- he''^ -h MV'V' + fV' + 4 , 

<f>x = -ae<^ + be-^, V ' = - f ^ f l , V ; = f ^ f l , 

a, b, €, e and M(7^ ± 1 ) are arbitrary. 

(2) ^((^,-0, V') = T2e^ + 6e-^ ±'i/iV', 

(f)^ = ±2e^ - f fte--^, V ± = 0, 

6 is arbitrary. 

So, as we can see the integrabil i ty is not sufl&cient to fix all the parameters in the boundary 

potent ia l . 
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9.6 Quantization of the super-Liouville theory 

Let us now re turn to the action in Minkowski space: 

(9.56) 

(9.58) 

I redefined xi = i>- and X2 = V*-!-- This theory has been quantized on the l ight cone in 

ref. [112]. The fight cone has two branches C±, corresponding to x^ = 0, respectively. 

The Dirac quantization for constrained systems leads to the following Dirac brackets on 

the branch C_: 

[cl>{x),2d+<l>{y)]D.B.= S{x-y), 
(9.57) 

{ij+{x),tP4y)}jjg = i6(x-y). 

On this branch, ip- is expressed as a funct ion of (f> and '0+ via its equation of mot ion. I n 

Minkowski space the stress-tensor and the supercurrent are given by: 

1 0 + + = i(5+</>)2 - - ^pdl<f>, 

[ J+ = - ^ 5 + V ' + . 

Using this expressions and eq.(9.57), we obtain the following Dirac brackets: 

{ J + ( x ) , J+(2/ )}^ .s . = -^S"{x - y ) + {6{x - j / )0++(2 / ) , 

[ j+ ( a ; ) , Q+M\D.B. = - y)My) - -A^ - y)d+J+{y), 

[ 0 + + ( x ) , e+4y)]D.B. = - y ) + - y) + )] • 

The I M are (cf. (9.31)-(9.33)): 

Hii2 =JdxU3/2{x) =JdxJ+{x), 

Hi =JdxU2{x) =fdxQ++{x), 

Hs = JdxU4{x) =Jdx \QI+{X) - \J+{x)d+J^{x)\ , 

(9.59) 

(9.60) 

H, = fdxUeix) =!dx [Ql^ix) + ^ ( a + 0 + + ( x ) ) 2 

-iQ++ix)J+{x)d+J+{x)+^J+{x)dlJ+{x) 
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I t is also possible to compute the Dirac brackets for the charge densities. For example: 

U3/2{x), My)\j^ g = - 8 ^ « 5 " ' ( x - y)J+{y) - ^6"{x - y)d+J+{y)+, 

+16'{x - y)e++{y)J+{y) - {Six - y)d+ iQ++iy)J+{y)) 

[U2(x), U4{y)h.B. = - 4 ^ < 5 " ' ( x - y)e+M + f ^ " (x - y)J+{x)J+iy)+ 

+6'{x - y) [ 0++(a : )0++( j / ) + Ql^{y) - f J + ( x ) 5 + J + ( y ) 

- |J+(j/)5+J+(y)] -t- \8{x - y)d^ [J+(2/)a+J+(2/)]. 

(9.61) 

We can see tha t because of non-Hnear terms like 8 {x — ? / )0++(j / )J+( j / ) , these quantities 

do not f o r m a Lie algebra. We then get, after a few integrations by parts: 

[11x12, H3]D.B. = -2!dxd+ [0++{x)J+{x)] = 0, 

[^i,^3]i5.s. =Idxd+ [^dle++{x) + ^Ql^ix)-^J+{x)d+J+{x)]=0. 

We see tha t these integrals of mot ion are classically in involut ion. They are known to be 

hierarchy of HamHtonians of the super K d V equation, [110], [111]. 

Let us now proceed to the quantum theory. Following the usual quantization prescrip­

t i o n , 

we get: 

K X 7̂  y, we have: 

where 

[ot,/3]D.B. ^[«,/?]commuiotor, 

[<Pix),2d+cj>{y)] ^ ih6{x-y), 

{V'+(a;),'0+(2/)} = M{x-y). 

< 4>{x+)<P{y+) >= hA{x+-y+), 

< i)+{x+)i)+{y+) >= 2ihA+{x+ - y+), 

1 

(9.62) 

(9.63) 

A + ( x + - y + ) = 5 + A ( x + - J/+) = -
47r(a;+ - y+)' 

The quantum counterparts of the stress tensor and the supercurrent were found to be 

(9.64) 

• 0 + + = - i : 5+<^5+^ : + I f ) - i = ^ 
(9.65) 

i n ref.[112]. Besides being conserved and properly regularized, they also satisfy the require­

ments of tracelessness and orthogonality (cf.(9.9)). I f we choose units such tha t h — 47r, 
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we have the standard operator product expansions (OPE) for a superconformal theory: 

f 0 + + ( x + ) 0 + + ( 2 / + ) = ^ - ^ + ^-^Q^^{y^) + -^d+Q^^iy^) + . . . 

0 + + ( x + ) J + ( j / + ) = ^ - ^ J ^ ( y + ) + -^d+J+iy+) + ••• 

[ J+(x+)J+(2 /+) = + ^ 0 + + ( j / + ) + • • • 

(9.66) 

where c is related to the central charge c according to c = 2c/3. These equations can be 

checked using the propagators 

< (j>{x+)(l>{y+) > = -log{x+ - y+), 

< V+(x+)V+(2/+) > = - r T ^ , 
(9.67) 

which can be obtained f r o m (9.63), (9.64) by setting h = in. As an i l lustrat ion, we 

consider the OPE J+{x+)J+{y+). This OPE can be computed using Wick's theorem and 

Taylor expanding when a;+ t/"*". 

J+{x+)J+{y+) = i : d+ct>ix+)d+<t>{y+) :: M^^)My^) : + 

+\ < d+4>ix+)d+4>iy+) > : V + ( X + ) V - K ( 2 / + ) : +1 < V ' + (x+)^+(2 /+ ) > : 5^(x+)5+<^(j/+) : + 

+1 < d+cl>{x+)d+<l>{y+) X V+(x+)V+(2/+) + ^ ) d+<P{x+) : ^+ (x+)5+V+(2 /+ ) : 

-I {f^ + i ) < M^^)dMy+) > d+4>{x+) - \ { ^ + ^) d+<l>iy+): 5 + V + ( ^ + ) V ' + ( y + ) : 

- \ (/? + i ) d+<i>iy+) < d+M^^)My^) > + i + = d+i;4x+)d+My+) •• + 

+\ {a + < d+M^+)d+My^) >= 

= \xl-yV)^ ' + ^ ^ + + ( y ^ ) - h •• d+Hy^)dl<l>{y+) : +1 : V+(2/+)5^V'+(j /+) : + 

+i{/^ + ^)9l<Piy+) + o(x+-y+). 

From (9.66) we conclude that : 

€=1 + 2(^/3+^^1'. (9.68) 

There are two remarkable features about eq.(9.68). First , we notice that there is a strong-

weak coupling duality, i n the sense that the stress tensor, the supercurrent and the central 

charge are invariant under /3 1//3. Secondly, we conclude that the super-LiouvOle theory 

describes a superconformal theory in the continuum region c > 1. Moreover, i t makes sense 
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[112] to analytically continue (3 (or alternatively set h less than zero). For the choice 
^'^ = (m + 2 ) /m, we recover the central charge of the superconformal unitary series (cf. 
eq.(4.58)): 

We have now assembled all the necessary ingredients to compute the quantum versions of 

the super KdV hierarchy of I M . We assume as Ansatz: 

U3/2 - J+, 

(9.70) 
U4 =: : +a : J+d+J+ :, 

[ Ue =: Ql+ : +7 : (9+0++)' : +A : Q++J+d+J+ : +a : J+dlJ+ : . 

These quantities are obviously conserved. We just have to compute the coefficients a, 

7, A and a which will generically have quantum corrections involving the central charge. 

They are fixed by the constraint that the charges corresponding to (9.70) should be in 

involution. It turns out that supersymmetry is restrictive enough a constraint to pin down 

all these coefficients. 

One strategy consists in imposing that the first order pole in the OPEs of the densities 

(9.70) be a total derivative. To illustrate this consider: 

Using the usual techniques to transform commutators into OPEs (cf. section 2.2), we get: 

[HuH,f2] ^§dx+§dy+Q++{x+)J+{y+) 

a § dx+§dy+ [^-^J+{y+) + ^ d + J + + •••}. 

Using Cauchy's theorem the first term reads: 

^ dx+^d+J+{x+) = 0. 

Poles of order greater than one therefore give zero contribution, since they lead to total 

derivative terms. 

The second term yields: 

^dx+d+J+{x+). 
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This also vanishes because, in this case, the first order pole happened to be a total deriva­
tive. The recipe for computing a, j , X and a consists in coolcing up these coefficients 
in order to produce total derivative terms in the first order poles for the OPEs of the 
densities (9.70). 

Applying this to [Hi/2,Hs] (s = 3,5), we get: 

i 2'i i 
« = 2 ' ^ ^ Y ' ' ^ = - 3 ( 3 +50c). (9.71) 

Although very involved it is straightforward to check that for this choice, aU the I M are 

mutually in involution. 
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Conclusions and outlook 

Let us restate our results. The WZW theory for the SU{2)i Kac-Moody algebra was 

defined in an axiomatic way by introducing the current algebra symmetry and constructing 

the conformal symmetry according to Sugawara's procedure. Cardy's approach shows that 

i f we impose the conservation of these two symmetries in the presence of a boundary there 

wiU be two permissible boundary conditions which we denoted as free and fixed. There 

are two RG trajectories that terminate at this theory in the IR limit. One of them -

the Kondo theory - allows us to interpret the two boundary conditions as the exactly 

screened and underscreened situations. The factorized scattering is well known for this 

theory. The second trajectory represents the principal chiral model with scale invariant 

boundary conditions. The symmetries of the model, the IR Hmiting WZW theory and 

comparison with the Kondo model allowed us to construct the reflection amplitudes for 

the PCM. Subsequently we derived the boundary TBA equations in the R- and i-channels 

for fixed boundary conditions. The former lead to the correct prediction for the boundary 

ground-state energy in the IR limit whereas the latter yield distinct boundary entropies 

in the IR and UV limits in agreement with the conjecture of ref.[97]. 

Of course there is much room for further developments. We have to consider the TBA 

in the i?-channel involving free boundary conditions. In ref.[84] some remarks were made 

regarding the uruversal structure of TBA systems. Similarly, it seems plausible to assume 

that the same might be conjectured for boundary TBA. If the reflection amplitudes are 

scalar functions, K(f3), then the contribution of the boundary to the ground-state energy 

is (in all known cases) of the form ~ log(K(f3)K[^)). How this generalises to nondiagonal 

reflection matrices could be speculated by exploring the conformal approach (in the IR 
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or UV limits) in the lines of ref.[97]. In the X-channel nondiagonal reflection also poses 
many problems. The standing wave condition can no longer be imposed. Some progress 
has been made by LeClair et al.[86] for the sine-Gordon model by generalizing the Bestri­
de Vega theory in the presence of reflecting boundaries. However this approach requires 
a lattice regularization and it is not clear to me that this is possible for the PCM. An 
alternative solution might consist of considering as boundary condition the zero flux of 
energy across the boundary. At the level of the Bethe wave function this should correspond 
to imposing a Neumann condition. I also expect to obtain some results in the near future 
[99] concerning the SU{2) sigma model with 6 term, [57]. In this model the spectrum 
is the same as in the PCM. However the R-R and L-L scattering are trivial and the 
R-L scattering is nondiagonal. This should provide some more insight for the program 
described above. 

Finally, we considered the super-LiouvLUe model. This theory provides another exten­

sion of the Virasoro algebra. We constructed the super KdV hierarchy of Hamiltoruans 

by considering the integrabUity of this theory. We derived the boundary conditions that 

preserve both the integrability and the supersymmetry at the classical level. Usually a 

detailed knowledge of the integrability properties of a theory provide guidelines for ap­

proaching the theory quantum mechanically. After quantizing the theory on the Ught-cone 

[112], we constructed the quantum versions of the integrals of motion. Using the tech­

niques described in chapter 3, we expect [126] to show that these yield the conservation 

laws of the super-sinh-Gordon theory. As a by-product we will be able to infer the spins of 

integrable perturbed super minimal conformal models, [125], by fine-tuning the coupling 

constant. We also hope to construct a supersymmetric version of the quantum Bousinessq 

equation and of the W3 algebra using this super Coulomb gas description. 
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