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Experimental and theoretical models of cultural evolution 

 

Marius Kempe 

 

Abstract: 

 This thesis contributes to the field of cultural evolution by presenting two 

experimental and two theoretical models of cultural evolution. Prior to presenting 

these I survey existing experimental and theoretical models of cultural evolution. In 

the first experiment, I test the hypothesis that increasing group size speeds up cultural 

accumulation, using a novel puzzle-solving task and within a transmission chain 

design. I find support for this hypothesis, in contrast with previous experiments. In the 

second experiment, also using a transmission chain design, I examine perceptual 

errors in recreating Acheulean handaxes and ask whether such errors can account for 

the variability of Acheulean technology over time. Using the accumulated copying 

error model to compare the experimental data to archaeological records, I conclude 

that perceptual errors alone were likely not the driving force behind Acheulean 

evolution. In the first theoretical chapter, I present models of cultural differences 

between populations and of cumulative culture, which build on existing models and 

accord with empirical data. I then show that the models, when combined, have two 

qualitative regimes which may correspond to human and nonhuman culture. In the 

second theoretical chapter, I present a ‘fundamental theorem of cultural selection’, an 

equivalent of Fisher’s Fundamental Theorem of Natural Selection for cultural 

evolution. I discuss how this theorem formalizes and sheds light on cultural 

evolutionary theory. Finally I conclude and discuss future research directions. 
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Introduction 
 
The topic of this thesis is experimental and theoretical models of cultural evolution. 

Cultural evolution here refers to the theory that culture – which, in this field, is 

defined as information transmitted via social learning, although very different 

definitions are and have been used in other parts of anthropology – evolves in a 

broadly Darwinian way: that is, by a process of variation, inheritance, and 

competition, which leads to selection on cultural traits (Mesoudi et al., 2004). This 

process leads to the phenomenon of cumulative culture, in which the utility of 

complexity of individual cultural traits increases over time, such as in human science 

and technology and such that no one individual could invent them in their lifetime 

(Boyd  & Richerson, 1996; Tomasello, 1993). It is this capacity for cumulative 

cultural evolution that, arguably, has allowed our species to successfully colonize and 

inhabit virtually every terrestrial environment on the planet in a relatively short period 

of time (Richerson & Boyd, 2004; Hill et al., 2009). 

 

The study of cultural evolution is now over three decades old. A good number of both 

experimental and theoretical models have been constructed and analysed, to which 

this thesis contributes four novel models. The aim of the thesis is to contribute to our 

understanding of cultural evolution, both empirical and theoretical, by using some of 

the specific techniques of the field, including ‘transmission chain’ experiments, 

mathematical models, and computer simulations. The previous results of studies using 

these methodologies will be surveyed in the first chapter. 
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The first chapter comprises a selective literature review of previous models of cultural 

evolution. It is divided into two parts, which survey previous work relating to two 

questions: 

1. How are cultural traits changed during their transmission? 

2. What social learning strategies do individuals use and what are the population-level 

consequences of those strategies? 

These two questions provide a framework and launching pad to discuss developments 

both old and recent in the field. 

 

Thereafter follow two experimental and two theoretical chapters. In Chapter 2, I 

describe an experiment seeking to understand the link between demography and 

cumulative culture, which has been the subject of both previous models and 

experiments. I present a novel experimental task in which participants solve jigsaw-

puzzles, which I argue has several advantages over previous tasks. Using this task, I 

show that the hypothesized positive effect of the size of a cultural group on the rate of 

cultural accumulation can occur in an experimental situation, as predicted by previous 

models but contrary to previous experiments. 

 

In Chapter 3, I describe an experiment which tests a particular mathematical model of 

cultural evolution in Acheulean handaxes. This technology was prevalent for over a 

million years in hominin evolution and had extraordinary stability in form over this 

time. Using a novel iPad-based experiment in which participants manipulated a virtual 

handaxe image with their hands, I tested the Accumulated Copying Error model, in 

which cultural evolution takes place solely through cultural mutation due to 

perceptual errors. After analyzing the model, fitting our experimental data to it, and 
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comparing the result with archaeological records, I conclude that cultural mutation 

cannot have been the only process at work in Acheulean evolution. 

 

In Chapter 4, I construct and analyse two theoretical models: one of cultural 

differences and one of cumulative culture. Here ‘cultural differences’ refers to the 

phenomenon that multiple populations of one species show distinct ‘profiles’ of 

cultural traits, which, while a hallmark of human culture, has also been observed in 

non-human species such as chimpanzees and orangutans. I show that such distinct 

profiles can be maintained even in the case of repeated innovation and frequent 

migration. In the model of cumulative culture I show that that both the number of 

cultural models and the accuracy of social learning affect the degree to which trait 

complexity increases. I note that both models fit available empirical data (on the 

differences in great ape populations and the degree of complexity of human Oceanic 

fishing technology). I then combine the models, showing that the combined model, 

which incorporates both cultural differences and cumulative culture, has two 

qualitative regimes which seem to correspond with human and nonhuman culture. 

 

Finally, in Chapter 5 I take inspiration from R. A. Fisher’s ‘Fundamental Theorem of 

Natural Selection’ to construct a similar ‘fundamental theorem of cultural selection’. 

This theorem provides a precise mathematical expression of the process of cultural 

selection in a general way. I derive and explain the theorem and argue that it allows a 

unifying perspective on a number of cultural evolutionary forces that have been 

hitherto considered separately, including content, model, and frequency-dependent 

biases, natural selection, and cultural group selection.  
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Chapter 1. 

Experimental and theoretical models of cultural evolution: a review 
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Abstract: 

The field of cultural evolution is now over thirty years old, and a good deal of 

work has been done. This paper reviews models of cultural evolution, both 

experimental and theoretical, and surveys what they can tell us about cultural 

evolutionary processes. The models are grouped into two categories, according to 

which of two broad questions they address: (i) How are cultural traits changed during 

transmission?, and (ii) What social learning strategies do organisms use and what are 

their population-level consequences? The review is selective, not exhaustive, and 

attempts to survey both the most important works and recent developments. 
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1.1. Overview 

Cultural evolution is now a field with over thirty years of history. The main principle 

of this field is that culture evolves in a Darwinian manner – that is, through a process 

of natural selection on cultural traits. Culture, in this usage, is taken to be mean any 

information that is transmitted from individual to individual via social learning 

(Mesoudi et al., 2004). To be clear, the kind of natural selection that is posited to act 

on culture does not necessarily rely on biological fitness, but rather constitutes a 

separate cultural evolutionary process which may be called 'cultural selection'. 

 

The argument for this idea is relatively straight-forward. Cultural traits, such as 

technological inventions, languages and linguistic features, religious and social 

customs, and so on, clearly vary (amongst each other), reproduce (from individual to 

individual), and compete (for memory or adoption). For example, there are around 

6800 languages in the world, and approximately 5 million distinct patents have been 

issued in the US since its founding (Mesoudi et al., 2004). Languages are clearly 

learnt socially, while patents build on and cite earlier patents. Finally, competition 

takes place between cultural traits within these system, such as the replacement of 

many irregular verbs with regular verbs in English since medieval times (Lieberman 

et al., 2007) and the replacement of certain stone tools with other types in the 

archaeological record (O’Brien & Lyman, 2000). Thus, there is every reason to think 

that a process of natural selection will take place amongst them, which to distinguish 

it from the process of natural selection on biological organisms (i.e. through genetic 

reproduction) is often called cultural selection. A detailed appraisal of the evidence 

for this argument can be found in Mesoudi et al. (2004). 
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The idea that natural selection acts on culture is in fact rather old; for example, 

Darwin mentions it in The Descent of Man (1871). Since then a large number of other 

scholars in many fields have discussed this idea: famous examples include James 

(1880), Campbell (1965), Dawkins (1976), Popper (1979), Skinner (1981), Cavalli-

Sforza & Feldman (1981), Boyd & Richerson (1985), Hull (1988), and Dennett 

(1995). The true beginning of the field, however, may be taken to be the books by 

Cavalli-Sforza & Feldman (1981) and Boyd & Richerson (1985), which were the first 

to develop this idea in a thorough, quantitative way. Since then a good deal of detailed 

work has been done, which has recently been surveyed accessibly by Mesoudi 

(2011a). 

 

The aim of this chapter is to review the more specialised literature of models, both 

experimental and theoretical, which has accumulated since the founding books of 

Cavalli-Sforza & Feldman and Boyd & Richerson. The advantage of modelling is that 

it can shed light on complex phenomena and produce insights by simplifying 

inessential features. Experiments can model situations observed in real life, while 

allowing controlled designs and detailed data recording. Mathematical models provide 

a way of running formal ‘thought-experiments’, by analyzing the consequences of a 

certain set of assumptions that are thought to hold in the real world, and provide a 

level of precision that is unattainable through purely verbal models. Thus modelling, 

which has greater internal validity (that is, internal consistency and logical 

coherence), is an important complement to observational research such as 

ethnographic field studies, historical and archaeological research, and statistical data 

mining, which have greater external validity (that is, direct relation to the phenomena 

being studied) .  
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The review will be selective, rather than exhaustive, as the literature after thirty years 

is extensive. The review will also focus exclusively on cultural evolution, rather than 

the interaction of cultural and biological evolution – itself an important and large 

topic with a varied literature known more specifically as gene-culture coevolution 

(see Durham 1991; Laland 2008). The review will also be exclusively focused on 

humans, excluding the large and diverse literature on social learning in non-human 

animals. 

 

The review is structured around two important questions in cultural evolution: 

1. How are cultural traits changed during their transmission? 

2. What social learning strategies do individuals use and what are the population-level 

consequences of those strategies? 

 

1.2. How are cultural traits changed during transmission? 

This question encompasses two sub-questions which I will separate for the purposes 

of discussion. First I will discuss how cultural traits change during transmission 

generally, for example through the actions of remembering and perceiving. Second, I 

will discuss how cultural traits increase or decrease in utility during transmission, 

leading to the phenomenon of cumulative culture. 

 

It is well known that traits change simply through the process of learning, or copying, 

on the part of a naive individual. This process was first studied experimentally by 

Bartlett (1932), who pioneered the 'transmission chain' method. In this method, one 

individual is seeded with a cultural trait of some kind – for instance, a story or a 
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picture – and then this individual transmits the trait in some way to a second 

individual, who in turn transmits the trait to a third, and so on. The method can also be 

varied to have more than one individual in each link of the 'chain', so that a group of 

individuals in some way transmit a trait to another group of individuals. Finally, in 

this group setting, the 'turnover' of the chain can be altered so that instead of the entire 

group changing at every step, only one individual is replaced in the group by a new 

individual; this is known as the 'replacement' method and was first proposed by 

Gerard et al. (1956). The bulk of experiments pertaining to cultural evolution have 

been conducted with the transmission chain method and its variants (Mesoudi & 

Whiten, 2008). 

 

A large number of specific traits have been investigated with these methods, and 

different questions have been asked. The studies of Bartlett and his school (e.g. 

Maxwell, 1936; Northway, 1936; Ward, 1949; Hall, 1950) tended to use stories and 

drawings, and to frame open-ended research questions: what patterns could be found 

in the changes to the traits as they were passed along the chain? Secondarily, they 

asked how characteristics of the subject – for example, their cultural background or 

social status – may have affected the changes seen in the traits. Specific hypotheses 

did not tend to be tested, and the general conclusion was that traits tended to lose 

detail and resemble preconceived notions of the individuals as they were transmitted. 

For example, in one of Bartlett’s (1932) experiments, an American Indian story called 

the ‘War of the Ghosts’ was passed through a transmission chain made up of British 

participants, with the result that details such as the names of the warriors were lost, 

and unfamiliar elements such as the American Indian notion that something black 
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came out of a dying warrior’s mouth were transformed into the more familiar Judao-

Christian idea that his soul was leaving his body.  

 

However, the focus of these studies was on human psychology – memory – and not 

on cultural traits and their evolution. More recent studies have reapproached this 

method with a view to understanding the details of cultural evolution. Thus, for 

example, Mesoudi et al. (2006) found that social information in stories was 

transmitted more accurately and lost less frequently than non-social information, in 

line with ‘social brain’ theories that posit that human cognition evolved primarily to 

deal with social information. Bangerter (2000) found that gender stereotypes were 

superimposed on descriptions of scientific phenomena, with initially neutral 

descriptions of conception gradually transformed such that sperm cells were 

increasingly attributed active agency and ova increasingly attributed passive non-

agency. Many similar experiments now give us a reasonable, detailed understanding 

of the variation in traits caused by the process of transmission, comprehensively 

reviewed in Mesoudi & Whiten (2008). These variations constitute examples of what 

is called ‘cultural mutation’ by some (e.g. Cavalli-Sforza & Feldman, 1981) in the 

literature.  

 

Researchers have also attempted to model these processes of change through 

transmission mathematically. The leading methodology here is the 'Bayesian' 

approach exemplified by Kalish et al. (2007), Smith (2011), and Xu et al. (2013). In 

this approach individuals are thought of as possessing 'prior', innate or learned, biases 

for certain characteristics of cultural traits (e.g. simplicity or learnability). They then 

observe 'data' from another individual composed of samples from a distribution of 
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traits with varying characteristics. The models suppose that individuals combine these 

two sources of information using Bayes' theorem and create a 'posterior' distribution 

of trait characteristics which they present in turn to the next individual. This approach 

has had remarkable success in producing predictions qualitatively in accord with 

experimental results, even in experiments not originally designed to test the models 

(e.g. Beppu & Griffiths, 2009, who created a Bayesian model which recreated the 

experimental results found by Jacobs & Campbell, 1961; their results are discussed 

below). Because of its focus on the details of cognition and its predictive success, it 

represents one of the most promising approaches for future research devoted to 

elucidating the details of cultural transmission. 

 

While all of the afore-mentioned studies were carried out in a laboratory situation 

with a carefully controlled experimental design, an important recent development has 

been the use of an 'open diffusion' method by Whiten & Flynn (2010) and McGuigan 

& Cubillo (2013), in which the individuals with whom the new trait or information is 

seeded are allowed to freely interact with a social group and the transmission of the 

trait is observed. This technique allows researchers to document previously 

unobservable features of cultural transmission, such as who chooses to observe what 

and whom; for example, McGuigan & Cubillo (2013) found that male children were 

more likely to transmit gossip than female children, and that both sexes were more 

likely to transmit gossip than surprising factual information. The downside of this 

method is of course that experimental control and some precision is lost. Despite this, 

it represents another promising avenue of research for the future. 
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The second sub-question, namely how cultural traits accumulate over time, has a 

shorter history. Cumulative culture, as discussed above, refers to traits such as the 

startling technological, scientific, artistic, and social achievements of humanity, which 

are distinguished from the cultural traits of other animals by their reliance on earlier, 

less developed traits (Mesoudi et al., 2004). Experimental work on cumulative culture 

using the transmission chain method was initiated by Caldwell & Millen (2008). In 

their experiments, individuals perform a technological task with a clear goal and 

measure of success, such as constructing a paper airplane to fly as far as possible or 

building a tower using spaghetti and clay as high as possible. Each participant 

completes this task as best they can, after which successive individuals in the chain 

are faced with the same task but are able to observe the previous individual's solution. 

The focus in these experiments is generally less on the nature of the cognitive 

processes involved in the task, and more on the degree to which successive 

individuals are able to improve on their predecessor's solution, and the conditions 

which exacerbate or attenuate this improvement. 

 

Caldwell & Millen (2008) found that the quality of solutions did improve as the 

designs were transmitted through a chain, indicative of cumulative cultural change. In 

further studies Caldwell & Millen (2009) addressed whether particular mechanisms of 

social learning - imitation, emulation, or teaching - are necessary for cumulative 

cultural change. Imitation involves copying behaviours (here, the motor actions 

required to make the paper airplane), emulation involves copying end-products (here, 

the finished airplane design), while teaching involves the transmission of explicit 

advice (here, advice about how to make the paper airplane). They found that, for this 

task, each of these three mechanisms were sufficient alone, in contrast to previous 
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claims that only imitation and teaching (and not emulation) are necessary for 

cumulative culture (Heyes 1994). Caldwell & Millen (2010), meanwhile, found that 

allowing individuals to observe more than one model simultaneously does not 

increase the rate or degree of accumulation. 

 

This last result is intriguing because several mathematical models of cultural 

accumulation have focused on the relationship between population size and the rate 

and degree of cultural accumulation. That population size is an important factor in 

technological evolution in particular is suggested by both apparent links between 

increases in population sizes in the Upper Paleolithic and the concurrent appearance 

of so-called 'modern human behaviour' (including complex stone tools, decorations, 

cave art, and musical instruments) (Shennan 2001; Powell et al. 2009), and by the 

drastic loss of technologies in Tasmania after the area became an island circa 10,000 

years ago and therefore was cut off from neighbouring Australia (Henrich 2004). 

These observations led Shennan (2001), Henrich (2004), and Powell et al. (2009) to 

construct models in which increases or decreases in population size led to increases or 

decreases in the rate and/or degree of cultural accumulation in the population. This 

effect occurs because in larger populations complex skills are less likely to be lost due 

to random transmission error, and rare beneficial modifications are more likely to be 

made, as there are more people to make them. More recent models have added several 

realistic features: Mesoudi (2011b) showed that an increasing cost of learning more, 

and more complicated, traits would produce realistic S-shaped curves in the degree of 

complexity of over time, which had not previously been found. Finally, Pradhan et al. 

(2012) considered the effect of varying levels of interaction between members of the 

population, aiming specifically to explain the greater quantity of technologies found 
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in chimpanzee populations compared to orangutan populations, and showed that this 

could be caused by the greater sociability of chimpanzees. 

 

While chimpanzee populations may have more cultural traits than orangutans, neither 

species, nor any other nonhuman primate species, appears to exhibit cumulative 

culture. The social and cognitive factors that may be responsible for this difference 

have also been explored experimentally. Dean et al. (2012) had groups of capuchins, 

chimpanzees and children solve a three-stage puzzle box to obtain rewards, with each 

solution predicated on the previous one(s). The children significantly outperformed 

the monkeys and chimpanzees on this minimally cumulative task, with verbal 

communication, imitation, and prosociality predicting the greater success in children. 

It is likely, therefore, that both socio-cognitive (e.g. imitation fidelity) and social 

demographic (e.g. population size/density) underlie the species differences in 

cumulative culture, an issue that is addressed in Chapters 2 and 4 below. 

 

More recently two experimental studies have revisited the hypothesis that cultural 

accumulation is facilitated by larger population sizes. Derex et al. (2013) found that 

simple (arrowheads) and complex (fishing nets) computer-designed traits were 

maintained only in larger groups of 8 or 16 participants, and not in smaller groups of 

2 or 4 participants. Muthukrishna et al. (2014) found that complex symbol designs 

and difficult-to-tie knots were only maintained in transmission chains comprising five 

participants per generation, and not chains composed of a single participant in each 

chain. The negative finding of Caldwell & Millen (2010), therefore, may have been 

due to the particular task that they used, which may not benefit from social learning as 

much as the tasks employed in these subsequent studies. 
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1.3. What social learning strategies do individuals use and what are their population-

level consequences? 

Like the previous question, this question naturally divides into two subquestions: the 

first concerns what social learning strategies we empirically observe organisms using, 

and the second the theoretical population-level consequences of these strategies. 

'Social learning strategies' here refers to the innate or learned rules which people use 

in social learning (Laland 2004): rules specifying, for instance, what or from whom to 

learn; an equivalent term is ‘transmission biases’. The use of the term ‘bias’ here is 

intended in a statistical sense, as indicating a deviation from ‘unbiased’, or 

undirected/random social transmission (rather than the normative sense of, say, ‘racial 

bias’). While there has been a good deal of theoretical work investigating what social 

learning strategies natural selection may favour (e.g. Boyd & Richerson, 1985; 

Kendal et al., 2009a), in the end there is clearly only one way to definitively establish 

what social learning strategies people use: empirical observation and experiment. 

Accordingly the first part of this section will focus on experimental work while the 

second section, dealing with the population-level consequences of given social 

learning strategies, will focus on mathematical models, which allow such questions to 

be answered with suitable generality. 

 

Here I will focus more on strategies that concern from whom and what to copy, and 

less on strategies concerning when to copy (e.g. depending on life-history variables: 

for a review, see Kendal et al., 2009b). This focus is appropriate because 'who' and 

'what' questions are more directly relevant to understanding the population-level 

consequences of social learning strategies, which is one of the primary aims of 

cultural evolutionary theory. For the same reason, cultural evolutionary research is 
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generally less concerned with the specific mechanism by which social learning takes 

place, such as imitation, emulation, teaching, social enhancement, and so on - as long 

as there is some mechanism to provide relatively faithful transmission, who and what 

is copied is more important at the population level than how it is copied - and for this 

reason the majority of research in social psychology (e.g. Bandura, 1977) and 

comparative psychology (Whiten et al. 2004) is only tangentially relevant to the intent 

of this review. 

 

Social learning strategies relevant to cultural evolution can be divided into three 

categories using a convenient classification system due to Richerson & Boyd (2005): 

namely, as falling into one of three kinds of biases, either 'content', 'model', or 

'frequency-dependent'. Content biases refer to strategies in which individuals choose a 

particular trait over others because of innate or learned preferences for the actual 

content of that trait, be it meaning, usefulness, or aesthetics. Model biases refer to 

strategies in which individuals adopt traits because of a characteristic of the person 

from whom they learn the trait: for example, adopting a trait from prestigious or 

generally successful individuals. Finally, frequency-dependent biases refer to 

strategies in which individuals take up a trait because of the trait’s relative popularity, 

or unpopularity, compared to other traits in their population; examples of this include 

conformity, which (in cultural evolution, but not in the broader field of psychology) is 

defined as adopting the most popular trait in a population with a probability greater 

than its proportion of occurrence in the population, and anti-conformity, where the 

least popular trait is adopted with a probability greater than its proportion of 

occurrence. 
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While some authors have described the transmission chain studies discussed in the 

previous section as furnishing examples of content biases (e.g. Mesoudi, 2009), in my 

view content bias differs from cultural 'mutation', or from the memorability of a 

cultural trait by the fact that individuals choose the relevant trait in some fashion. 

Using this definition, there has been unfortunately little work on content biases, as in 

transmission chain studies participants generally do not have a choice between 

different cultural traits. One of the few studies is that of Wisdom et al. (2013), in 

which participants had to find the highest-scoring combination of ‘items’ in a virtual 

environment in which they could view other participants’ items and scores. They 

found that content bias was an important element in participants’ social learning 

strategies, with participants copying the highest-scoring items in addition to deploying 

model- and frequency-dependent biases. Further studies explicitly examining content 

biases in an experimental setting are clearly needed. 

 

There have been more studies examining model biases. A number of early studies 

found strong effects of perceived expertise or status on people's judgements in 

domains such as aesthetic judgements (Mausner, 1953), visual perceptions (Mausner, 

1954), gambling (Rosenbaum & Tucher, 1962), and attitudes (Ryckman et al., 1972). 

There has also been work specifically focused on children's learning, since a great 

deal of what we know is learned as children, with a number of studies finding that 

children preferentially copy from older rather than younger models (Brody & 

Stoneman, 1981; Abramovich & Grusec, 1978; Jaswal & Neely, 2006). In an 

innovative experiment Wood et al. (2012) recently found that children were biased 

more towards older models than self-professedly knowledgeable ones where these 

characteristics conflicted. Using adult participants, Mesoudi (2011c) conducted a 



 26 

study in which participants constructed virtual (computer-based) projectile points to 

conduct virtual hunts (with variable rewards) and were able, during multiple rounds, 

to view and possibly copy other individuals' points. This experiment found evidence 

for the presence of success bias but noted that the presence of the bias was 

heterogenous: rather than all individuals using it, some individuals used it very often 

and others barely at all (note that this was success rather than content bias, as the 

participants were not aware of the utility of specific virtual projectile points). Using a 

similar paradigm, Atkisson et al. (2012) found that individuals were more biased 

towards model characteristics, specifically the prestige of a model as indexed by the 

amount of time that other participants were said to have looked at the model’s 

arrowhead designs, than trait characteristics, i.e. the effectiveness of the arrowhead. 

 

Finally, a number of studies have examined frequency-dependent biases, primarily 

conformism. The famous early studies of Sherif (1936) and Asch (1952), which 

convincingly demonstrated that people may sometimes adopt the opinions of the 

majority, do not qualify as conformity under the cultural-evolutionary definition 

because it is not possible to tell whether people adopt the majority view with greater 

than proportionate probability. Jacobs & Campbell (1961) used Sherif's auto-kinetic 

task with the replacement method, described above, starting with confederates and 

ending with naive participants; they found that the conformity to exaggerated majority 

judgements was rapidly overwhelmed by people's trust in their individual perceptions. 

Thus, theirs was the first study to examine conformity from the cultural-evolutionary 

point of view and using the cultural-evolutionary definition. More recently, a series of 

experiments by McElreath et al. (2005; 2008) and Efferson et al. (2008) utilised a 

virtual 'farming' task in which participants choose to 'harvest' one of two crops. Each 
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crop had a stochastic payoff, and the optimal crop changed from time to time. Using 

variations on this design and model-fitting techniques, McElreath et al. (2005; 2008) 

concluded that individuals use a complex mix of payoff-biased and conformist 

learning, while Efferson et al. found individual differences, with some individuals 

using the conformity strategy and others ignoring frequency information. Finally, an 

experiment by Efferson et al. (2007) using a variation on this design with Bolivian 

pastoralists found little evidence for either conformism or payoff-bias; this experiment 

is remarkable for its unusual (compared to other studies) participant group, an 

important step towards drawing conclusions valid for the entire human species (see 

also the general survey by Henrich et al. (2010)). 

 

What, then, are the population-level consequences of given social learning strategies? 

This question has been addressed through mathematical modelling since the books of 

Cavalli-Sforza & Feldman (1981) and Boyd & Richerson (1985) and thus represents 

probably the most studied aspect of cultural evolution. The mathematical tools used to 

address this question are those relating to dynamical systems, both deterministic and 

stochastic, with the majority of models falling into the class of Markov chains (i.e. 

processes that evolve probabilistically in a way that depends only on their current 

state), usually analysed in discrete time-steps for ease of analysis. 

 

Like in evolutionary biology (e.g. Kimura, 1984), cultural evolutionary researchers 

have realised the usefulness of constructing explicit neutral models in which 

individuals learn traits entirely 'at random', without the use of any particular social 

learning strategies or biases. Also like in evolutionary biology, there are a number of 

ways of conceptualising 'at random'. A series of 'random copying' models developed 
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by Bentley et al. (2004; 2007) assumes that individuals copy the trait of a random 

member of their population, finding that the resulting distribution of trait frequencies 

will follow a power law (that is, a distribution in which the most popular traits 

account for the majority of all traits, with successively less popular traits accounting 

for smaller and smaller proportions of all traits), and noting similar distributions in 

traits such as the frequencies of baby names and dog breeds. However, the statistical 

methods used in these papers to assess the fit of empirical evidence to the predictions 

of the models are unreliable (for a survey of this issue, see Clauset et al. (2009)). 

Later, Eriksson et al. (2010) proved 'Bentley's conjecture' that the rate of turnover in 

this model is almost independent of the size of the population. Strimling et al. (2009b) 

also have developed a variant of the model in which individuals may fail to learn a 

trait with some probability. Alternatively, Cavalli-Sforza & Feldman (1981) modelled 

the 'random drift' of continuous, rather than discrete, traits, characterising the rate at 

which populations would vary if each individual made a slight (additive) error during 

the learning process. 

 

The effects of specific biases can be seen against the background of the expectations 

generated by neutral models. Initial models of content, model, and frequency-

dependent biases were analysed by Boyd & Richerson (1985), partly with a view 

toward understanding their biological consequences. In particular, they found that 

conformist frequency-dependent bias leads to within-group homogeneity but between-

group heterogeneity, a common phenomenon in humans (Boyd & Richerson, 1985). 

They also identified the possibility of ‘runaway’ co-evolution between model 

preferences and trait values, which may explain exaggerated phenomena such as 

whole-body tattoos in certain societies. More recently, Strimling et al. (2009a) 



 29 

investigated the dynamics of content bias when the 'fitness' of a trait is partitioned into 

two components, 'diffusion' and 'retention', finding that the number of opportunities 

for learning was crucial in determining the evolutionary outcome, with traits with 

high ‘retention’ dominating only when individuals had a large number of 

opportunities for learning. Baldini (2013) investigated model biases, such as success- 

or prestige-bias, comparing the dynamics of strategies in which individuals averaged 

the success of all individuals with a certain trait with strategies in which individuals 

imitated the single most successful individual. He found that although there were 

many situations in which each strategy performed better than random copying, there 

were some situations in which each was worse than random copying: for the 

averaging strategy, this occurred when the optimal trait had high frequency in the 

population, and for the most-successful strategy when an on average suboptimal trait 

had a high variance in its outcomes. Mesoudi & Lycett (2009) investigated the effect 

of conformist and anti-conformist frequency-dependent biases on the distribution of 

trait frequencies, showing that conformity leads to distributions in which a small 

number of traits dominate others in frequency, and anti-conformity to distributions in 

which traits of intermediate frequency are favoured, both of which noticeably deviate 

from the power-law distribution noted above to result from random (unbiased) 

copying. Such models are very useful for understanding the detailed dynamics of 

cultural evolution. 

 

These models lead to quantitative predictions and, conversely, allow inference from 

statistical data regarding a variety of traits. Researchers have also constructed and 

analysed models specific to certain classes of traits. Starting from Boyd & Richerson 

(1982; 1985), there has been a vibrant literature showing how human cooperative 
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tendencies may have arisen through a process of 'cultural group selection', i.e. group 

selection on groups differentiated by cultural traits (such as would be created by 

conformist bias, as noted above), and more recently researchers have applied the tools 

of evolutionary game theory to modelling cultural traits in situations where the utility 

of a certain trait depends on the traits adopted by other individuals, of which 

cooperation is a primary example (Boyd & Richerson, 2002; Peyton Young, 2011). 

Another set of processes of biological importance that have inspired cultural 

evolutionary models are the Neolithic and Industrial demographic transitions, where 

researchers have modelled the effects of technological and social change (e.g. the 

spread of contraception) on population sizes and compositions, both as individual 

traits (Fogarty et al., 2013) and in combination with other mediating traits (Ihara & 

Feldman, 2004; Borenstein et al., 2006). Thus cultural evolutionary models provide 

both general explanatory schemes for cultural change and specific explanations for 

important biological and social phenomena. 

 

1.4. Discussion 

Cultural evolution is now a burgeoning field, and much has been achieved. Much also 

remains to be done, and the preceding review suggests several obvious directions for 

future research. In general, there can never be too much replication, integration 

between theoretical and experimental studies, ecological validity in experiments, and 

realism in theories. The creation of detailed models of cognition, such as the Bayesian 

models noted above, which can be validated experimentally represents a fruitful line 

of research which currently has only been applied to relatively low-level cognitive 

processes. With respect to cumulative culture, it is still unclear exactly what cognitive 

and social factors allow humans but not other species to accumulate beneficial 
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cultural traits over time. The investigation of human social learning strategies and 

biases has shown that individuals show a good deal of heterogeneity in the biases they 

deploy, and that real life social learning strategies tend to be complicated and 

composed of mixtures of simple strategies; future experiments may investigate these 

complexities. Theoretical models have led to a detailed understanding of cultural 

evolutionary dynamics, and future research should attempt to base modelling 

assumptions on empirically validated observations and describe the interplay between 

multiple, interlocking biases and processes. 

 

This thesis contributes to these aims in the following ways. In the second chapter, I 

describe an experiment investigating the effect of population size on cultural 

accumulation using a novel puzzle-making task. The third chapter constructs an 

explicit model for trait changes during transmission due to perceptual errors based on 

psychophysical principles, and tests this model experimentally with respect to 

Acheulean handaxe technology. The fourth chapter presents two models which extend 

previous theoretical investigations by incorporating multiple populations and linearly 

dependent cumulative traits, relating these models to empirical data on great apes and 

humans, and investigates how the models may shed light on the unique features of 

human culture. Finally, the fifth chapter investigates the possibility of giving a precise 

mathematical formulation to the concept of 'cultural selection', which thus far has 

been used in divergent ways in the literature, in a way analogous to R.A. Fisher's 

'Fundamental Theorem of Natural Selection' in evolutionary biology, and therefore 

imposing some conceptual order on the various theoretical processes of cultural 

evolution. 
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Chapter 2. 

An experimental demonstration of the effect of group size on cultural accumulation 

 

 

 

 

 

 

This chapter was submitted to Evolution and Human Behaviour, where it received a 

‘revise-and-resubmit’. 

 

 

 

This chapter was co-authored with Alex Mesoudi.
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Abstract: 

 Cumulative culture is thought to have played a major role in hominin 

evolution, and so an understanding of the factors that affect cultural accumulation is 

important for understanding human evolution. One such factor that has been proposed 

is population size, with larger population sizes thought to be able to support more 

complex cultural traits. This hypothesis is supported by mathematical modelling and 

empirical studies of small-scale societies. However, to date there have been few 

experimental demonstration of this effect. Here we provide such a demonstration 

using a novel task, solving jigsaw puzzles. 80 participants divided into ten 

transmission chains solved puzzles in one of two conditions: individuals or groups of 

three. The mean number of pieces solved increased over time in the group condition, 

but not in the individual condition. Thus, our experiment provides support for the 

population size hypothesis and gives a demonstration of a factor underpinning 

complex cumulative culture. 
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2.1. Introduction 

 Cultural evolution is likely to have played a crucial role in hominin evolution. 

Examples of this include the spread of cooking and tool-use in earlier hominin species 

(Carmody & Wrangham, 2009; Foley & Lahr, 2003), and agriculture and writing in 

our own (Goody & Watt, 1963; O'Brien & Laland, 2012). Moreover, while social 

learning and cultural differences between populations are common in several non-

human species (Galef & Laland, 2005), cumulative culture, defined as cultural traits 

that are dependent on other cultural traits (Boyd & Richerson, 1996; Enquist et al., 

2011), may be unique to hominins (e.g. Dean et al., 2012). Cumulative culture is often 

characterised by the presence of traits that are too complex to have been invented by a 

single individual, instead having accumulated over multiple generations (Boyd & 

Richerson, 1996; Tomasello et al., 1993). Such traits are ubiquitous in human 

domains such as technology, science, and mathematics (Basalla, 1988; Hodgkin, 

2005; Longair, 2003), and clearly played a crucial role in our current ecological 

success. Thus, an understanding of the factors that help or hinder the emergence of 

cumulative culture is important for understanding hominin evolution. 

 

 One factor that has been proposed to be related to the emergence and 

maintenance of cumulative culture is population size. In an influential paper, Henrich 

(2004) constructed a mathematical model providing a potential mechanism by which 

population size partly determines the cultural complexity attainable by that 

population. In Henrich’s model, a population of a given size reproduces in discrete 

generations, and in each generation every adult member of the population acquires a 

cultural trait which can be more or less functional, the functionality being measured 

quantitatively. For example, the trait could be a bow-and-arrow, and its functional 
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measurement how far it shoots, or the trait could be a stone handaxe and its functional 

measurement how sharp it is. Each individual acquires the trait by copying the single 

individual in the previous generation with the most functional (i.e. 'best') version of 

the trait. However, they copy this individual imperfectly, so that most individuals 

make copying errors and acquire a version of the trait that is worse than that of their 

model, and a few individuals innovate successfully and acquire a version of the trait 

that is better than that of their model. This imperfect copying process is assumed to be 

random, so that each individual acquires a trait of different quality compared to other 

individuals.  

 

Henrich (2004) showed that, given these assumptions, a population of a given 

size can maintain the transmission of a trait only up to a given functional level, or 

'complexity'. Versions of the trait with greater complexity than the stable level will 

tend through transmission to get worse, and versions with lesser complexity than the 

stable level to improve, until the stable level is reached. This stable level increases 

with the size of the population, because the more individuals there are, the greater is 

the chance that large gains in functionality will occur through innovation and be 

copied by the next generation. In essence, more innovation takes place in larger 

populations. The stable level is of course determined by other factors in addition to 

the size of the population, most importantly its inherent complexity and difficulty to 

learn. Henrich’s model has been extended by Powell et al. (2009; see also Shennan 

2001) to look at population density and migration between sub-populations; by 

Mesoudi (2011a) to include the cost of acquiring more complex knowledge; and by 

Kobayashi & Aoki (2012) to the case of overlapping rather than discrete generations. 
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Empirical support for the link between population size and cultural 

accumulation is mixed. Henrich (2004) himself used his model to explain the loss of 

various technologies (e.g. complex bone tools, spears, boomerangs, fire-making) in 

Tasmania after rising seas cut it off from Australia approximately 11,000 years ago, 

thereby creating a smaller sub-population. Powell et al. (2009) used their extended 

model to explain the emergence of 'modern human behavior' (e.g. symbolic artefacts, 

complex tools, musical instruments) during the Pleistocene, noting that human 

population density in Africa, Europe and the Middle East was, according to estimates 

made using population genetic data and theory, similar at the times when these 

behaviours emerged. Four studies have investigated the relationship between 

population sizes of hunter-gathering and food-producing societies on the size and 

complexity of their toolkits. Collard et al. (2005) did not find a relationship in a 

sample of 20 hunter-gatherer populations mainly from North America; Kline & Boyd 

(2010) did find a relationship with both toolkit size and complexity among 10 

Oceanic island populations; Collard et al. (2011) also did find a relationship with both 

toolkit size and complexity among 45 food-producing societies from around the 

world, but not among a similar sample of 34 hunter-gathering societies; and finally, 

Collard et al. (2013) similarly found a relationship with both toolkit size and 

complexity among 40 food-producing societies from around the world. At greater 

time depths, Lycett & von Cramon-Taubadel (2008) showed that Acheulean handaxe 

diversity fitted the predictions of a serial founder effect model, i.e. diversity decreased 

with predicted decreasing population size as early hominins migrated from an African 

origin (see also Lycett & Norton 2010). Thus, there is clearly some empirical support 

for a link between population size and cultural accumulation. 
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 However, Henrich’s (2004) model provides not only a population-level 

prediction – that cultural complexity should be dependent on population size – but 

also an individual-level mechanism underpinning that prediction. Regarding the latter, 

a crucial aspect of Henrich’s model is that new, unknowledgeable individuals acquire 

their cultural knowledge from a single individual of the previous generation, and that 

this individual has the highest cultural complexity of their generation (i.e. individuals 

employ success-biased oblique cultural transmission). Under this mechanism, the 

population-size effect therefore works because larger populations are more likely, by 

chance, to contain highly successful individuals who are copied by the subsequent 

generation. While the assumption of success-biased cultural transmission is a 

reasonable one (see, for example, McElreath et al. 2008; Mesoudi, 2008, 2011c), 

learning from just a single individual may be less plausible. Indeed, Enquist et al. 

(2010) found analytically that cultural transmission from multiple individuals is more 

likely to maintain knowledge in a population than learning from a single individual, 

albeit in a non-cumulative cultural system. One might expect that learning from 

multiple skilled individuals, and combining their knowledge in each generation, 

would be at least as effective a mechanism for maintaining and accumulating complex 

cultural knowledge than relying on just the most-skilled individual, particularly when 

such knowledge can be easily combined. Under this alternative mechanism, then, the 

population-size effect outlined by Henrich (2004) would still occur, but would occur 

instead because in larger populations, there are more models available from whom 

knowledge can be additively combined. 

 

 While archaeological and paleoanthropological studies of the kind described 

above can address the general prediction of cultural-demographic models (a positive 
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relationship between population size and cultural complexity), they cannot test the 

validity of the underlying mechanism responsible for this effect, given that we cannot 

directly observe cultural transmission dynamics in long-dead populations (e.g. 

whether people typically copied one or more individuals, or whether they copied 

successful individuals). As such, even though there is general support for the link 

between population size and cultural complexity, this may not necessarily be through 

the mechanism assumed in existing models. To probe such mechanisms, laboratory 

experiments are needed, in which cultural transmission dynamics can be directly 

observed and factors can be isolated and their effects precisely measured (Mesoudi & 

Whiten, 2008).  

 

 To date, three studies have experimentally tested the link between population 

size and cultural accumulation. Caldwell & Millen (2010) asked participants to build 

paper airplanes that would fly as far as possible, with participants observing either 

one, two, or three previous participants building their paper airplanes as well as those 

participants’ completed airplanes. They did not find that the distance the airplanes 

flew increased more rapidly or to a higher level as the number of models increased. 

Derex et al. (2013) had groups of 2, 4, 8 or 16 participants design computer-generated 

arrowheads (a simple trait) and fishing nets (a complex trait), allowing participants to 

copy the design of one other participant given information about other participants’ 

success. Derex et al. found that only in the two larger groups (8 and 16) were the 

simple designs improved, and the complex designs maintained, over successive 

generations. Finally, Muthukrishna et al. (2014) had chains of participants - either one 

per generation or five per generation - draw a symbol using a complex graphics 

software package, or tie a complicated knot. Written instructions, final products 
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and/or videotaped behaviour were transmitted between generations. As predicted, the 

symbols drawn by chains of five participants increased in complexity due to 

increasingly effective instructions compared to the chains of single participants, and 

the knots tied by chains of five participants were more likely to be maintained than 

the knots tied by the chains of single participants. 

 

 Derex et al. (2013) and Muthukrishna et al. (2014) therefore provide support 

for the overall prediction that cultural complexity is more likely to be maintained and 

accumulated in larger groups, although Caldwell & Millen (2010) found no effect. 

Regarding the mechanism, both Derex et al. (2013) and Muthukrishna et al. (2014) 

found that Henrich’s (2004) assumption of success-biased transmission from a single 

model is a plausible means by which the population-size effect works. However, none 

of these studies provided a proper test of the alternative mechanism outlined above, 

where information is integrated from multiple sources. Derex et al. (2013) only 

allowed participants to learn from a single person at a time, given information about 

other participants’ relative success. Muthukrishna et al. (2014) allowed the five-per-

generation participants to view the solutions of all five previous participants 

simultaneously, potentially allowing the integration of multiple participants’ 

knowledge, but in practice participants predominantly copied the single most 

successful participant of those five. Caldwell & Millen’s (2010) participants could 

also view two or three models simultaneously, but the task used, building paper 

airplanes, was not conducive to integrating information across models because 

different airplane designs may be incompatible. That is, combining elements of two 

different designs may sometimes lead to a better design, but often to an even worse 

design. The tasks used by Derex et al. and Muthukrishna et al. - making fishing nets 
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and tying knots - similarly have solutions that are difficult to combine. Interestingly, a 

recent study by Eriksson & Coultas (2012), looking at the cultural transmission of 

written texts, found that more information was preserved during transmission when 

each generation had access to two previous participants’ recall, compared to one 

previous participant’s recall. While not designed as a test of cultural accumulation or 

the cultural-demographic models reviewed above, Eriksson & Coultas’ study provides 

some support for the notion that having access to multiple cultural models can at least 

maintain information in a population better than having access to just a single model. 

 

 Our aim in this study is to explicitly test the population size hypothesis for 

cultural accumulation along the lines of previous experimental studies, but with a task 

– completing jigsaw puzzles – in which observations from multiple models can be 

easily combined into one solution. We compare transmission chains composed of a 

single individual per generation with chains composed of three individuals per 

generation, with the latter able to see the partially-completed puzzles of all three 

members of the previous generation simultaneously. If our prediction is upheld – that 

the three-participants-per-generation chains are more likely to accumulate knowledge 

(in the form of proportion of the puzzle completed) than the one-participant-per-

generation chains – then this would suggest an additional mechanism by which 

population size influences cultural complexity to the one-parent success-biased 

cultural transmission currently assumed by population-demographic models and 

tested in previous experiments. 
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2.2. Methods 

2.2.1 Participants 

80 unpaid participants, undergraduate students at the Universities of Durham 

and Exeter, took part as part of their undergraduate courses. Ethical permission for the 

experiment was given by the Research Ethics and Data Protection Committee, 

Department of Anthropology, Durham University, and all participants read and signed 

informed consent forms. 

  

2.2.2 Task and design 

The experimental task was to complete a jigsaw puzzle. The puzzle had 100 

pieces and measured 33.5cm by 45cm; the puzzle picture can be seen in Fig. 2.1. 

Participants were divided into 10 transmission chains, 5 in each of two conditions: 

individuals and groups of three (Figure 2.2). Each transmission chain had four non-

overlapping generations. Each participant was asked to complete as much of the 

puzzle as possible in 12 minutes, starting from scratch. (The written instructions were: 

‘You have 12 minutes to complete a jigsaw puzzle. Complete as much as you can.’). 

Participants were not given a photo of the completed puzzle to help them; however, in 

generations after the first, participants were able to see the partially-completed 

puzzles created by the participants in the generation before them. In the group 

condition, each of the three participants in one generation sat next to each other, but 

were divided by screens that obscured each others’ puzzles, and they did not interact 

in any way. Before being presented to successive generations, all loose single pieces 

were removed from partially-completed puzzles, but the physical layout of completed 

pieces was not altered or standardised. 
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Figure 2.1. The painting on the jigsaw puzzle. Image by John Francis; used with the kind 

permission of the copyright holder, Gibsons Games. 
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Figure 2.2. An illustration of the experimental design. There were 5 replicate chains in each 

condition, giving 10 chains in all. 

 

 The outcome measure for each participant was the number of puzzle pieces 

that they correctly connected to at least one other puzzle piece. Sets of completed 

puzzle pieces did not need to form one large set to be counted; multiple small sets of 

completed pieces contributed in the same way to the outcome measure. In the group 

condition, we also measured the number of distinct puzzle pieces correctly connected 

to at least one other puzzle piece across all three puzzles completed by the participants 

in each generation. This gives a measure of the amount of information about the 

puzzle that the succeeding generation was able to observe, accounting for the 

duplication of completed pieces across different observed puzzles. 
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2.3. Results 

 The results of the experiment can be seen in Fig. 2.3. It is visually evident that 

the mean number of pieces completed trends upward in the group condition but not in 

the individual condition. To test this hypothesis statistically, we used Page's (1963) 

trend test, which tests for a hypothesised ordered monotonic trend (in this case, an 

increasing trend) in the means of a number of different treatments (which are 

generations in this case). The test was non-significant (L5,4 = 123, p > 0.05, n = 20) for 

the individual condition, and significant (L5,4 = 141, p = 0.01, n = 20) for the group 

condition. We also compared the means of the first and last generations in each 

condition using Welch’s two-sample t-test: for the individual condition there was no 

significant change in the number of puzzle pieces connected (t6.1 = 0.2422, p = 

0.5917, one-sided, n = 10), while for the group condition there was (t23.2 = -2.2882, p 

= 0.0158, one-sided, n = 30), with more pieces connected by the final than first 

generation. 

 

As can be seen on Fig 2.3a, the last generation contained outliers in both one group 

condition chain and one individual condition chain, and to ensure the robustness of 

the trend we also applied Page’s trend test to the data with these outliers replaced by 

the mean value of the other chains in the respective conditions in the last generation. 

The test was again non-significant (L5,4 = 128.5, p > 0.05, n = 20) for the individual 

condition, and significant (L5,4 = 137, p < 0.05, n = 20) for the group condition. 
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Figure 2.3. The results of the experiment. (A) The number of pieces completed in each 

individual chain in both conditions. Each datapoint for the group condition shows the mean 

number of completed pieces across the three participants in that group. The full dataset is 

available in Appendix A. (B) Mean number of pieces completed in each condition. The error 

bars show standard errors. 

 

 The number of distinct pieces completed in the three puzzles of each group is 

shown in Fig. 2.4. As with the mean number of pieces completed, this appears to 

trend upwards, and indeed Page's trend test showed a significant increasing trend (L5,4 

= 139, p < 0.05, n = 20). 
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Figure 2.4. The number of distinct pieces completed in the group condition. (A) Number of 

distinct pieces completed in each chain. The full dataset is available in Appendix B. (B) Mean 

number of pieces completed. Error bars show standard errors. 

 

2.4. Discussion 

Our experiment showed no increasing trend in the mean number of jigsaw pieces 

completed in the individual condition, when each generation of the transmission 

chains was a single individual, but a significant increasing trend in the group 

condition, when each generation consisted of three individuals. The larger number of 

individuals is clearly able to maintain the transmission of a greater amount of 

information about the puzzle. Thus, the results of the experiment support the proposed 

link between population size and cultural accumulation put forward by Shennan 

(2001), Henrich (2004), Powell et al. (2009) and others. 

  

 The upward trend in the number of distinct pieces completed across a group 

shown in Fig. 2.4 suggests that participants were integrating information from 
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multiple models, as predicted. This therefore provides an alternative mechanism by 

which the population-size effect operates, in addition to the success-biased cultural 

transmission from a single demonstrator assumed in previous models (e.g. Henrich 

2004) and tested in previous experiments (e.g. Derex et al., 2013). Our finding 

supports recent modelling (Enquist et al., 2010) and experimental (Eriksson & 

Coultas, 2012) work showing the benefits of multiple cultural parents on cultural 

transmission, although extended here to a cumulative cultural context. 

 

 It is instructive to compare our results with those of Caldwell & Millen (2010), 

who found no effect of group size despite similar group sizes and generations. As 

discussed in the Introduction, different tasks will be more or less conducive to cultural 

accumulation. In our jigsaw puzzle task it is easy to combine information from 

multiple different puzzles completed by members of a previous generation into one’s 

own puzzle. By contrast, information about multiple different paper airplane designs 

may conflict, and combining multiple designs may lead to a worse design than any of 

the models. While copying the single airplane design of the most successful 

individual may be effective in larger groups or over more generations than were 

employed by Caldwell & Millen, the fact that we observed accumulation with similar 

group sizes and generations suggests that combining knowledge from multiple 

cultural sources can be an equally potent mechanism for cultural accumulation 

compared to copying a single successful individual, given the appropriate task. 

   

 Our experiment shows that the characteristics of the task are important in 

determining the extent to which population size will affect its cultural accumulation, 

and future modelling work on the relationship between population size and 
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cumulative culture should take into account not only factors extrinsic to the task but 

also factors intrinsic to it. One way of conceptualizing task differences is by 

considering uni-modal vs. multi-modal utility, or ‘fitness’, landscapes (see Mesoudi 

2008; Mesoudi & O’Brien 2008a,b). The task of finishing a jigsaw puzzle constitutes 

a unimodal, single-peaked utility landscape, because the more pieces a participant has 

completed, the closer to completion they are; in our experiment, it did not matter 

which particular combination of, say, 40 pieces was completed, so long as the number 

was 40. However, the task of building paper airplanes may create a multimodal, 

multi-peaked utility landscape, in which there are multiple locally optimal designs 

that can solve the task relatively well (though there may be a single globally optimal 

design). These multiple designs may be rather distinct from each other, and designs 

which mix features of two or more ‘good’ designs may fall into a utility valley and be 

relatively inefficient at solving the task. 

 

It may be that there is a continuum along which real-world technologies can 

be placed, from simple utility landscapes with one peak to complex utility landscapes 

with very many distinct peaks of quite unequal height. An engineering correlate of 

this continuum may be the extent to which the technology consists of independent vs. 

interdependent parts. Moreover, these differences may occur at different levels of 

granularity. For example, complex post-Industrial Revolution technologies such as 

cars and computers incorporate large numbers of different parts, which must work 

together in order for the technology to function. However, if a certain part is required 

for a specific task, it may not matter exactly how it achieves that task, and so the 

overall functioning of the technology (e.g. car) may be relatively independent of the 

exact mechanism in which the constituent part fulfills its function (see Arthur, 2009). 
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Another example of such hierarchical structure is found in modern computer software, 

which is often written using ‘object-oriented’ and ‘functional’ techniques in which the 

external behavior of various system sub-parts is highly constrained but the internal 

implementation of these sub-parts is relatively unconstrained (Mitchell, 2002). 

 

Future experiments and empirical work may provide more evidence on what 

tasks are particularly conducive to the build-up of cumulative culture, the way in 

which independence and interdependence of technological sub-components affects 

technological accumulation, and allow us to ‘measure’ the fitness landscape of a 

given task. A promising path may be to use experimental tasks with direct ecological 

validity to a specific domain, such as mathematics, tool-use, or construction, unlike 

the tasks used here and in other recent experiments, which require little specialist 

knowledge. Such experiments may help to show whether certain domains are more 

amenable to cultural accumulation than others. Another path may be to examine the 

contribution of collaboration, which was not possible in our experiment, to 

cumulative culture. More refined experimental designs would allow this factor to be 

isolated, comparing in effect the ‘between-generation’ and ‘within-generation’ 

components of cultural accumulation. Experimental work such as this can then be 

used to inform historical, anthropological and archaeological data, to make specific 

predictions regarding which kinds of cultural traits are most likely to have been 

impacted by demography, and thus provide substantial insight into human biological 

and cultural evolution. 
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Chapter 3. 

An experimental test of the accumulated copying error model of cultural mutation for 

Acheulean handaxe size 

 

 

 

 

 

 

This chapter was co-authored with Stephen J. Lycett and Alex Mesoudi. 

 

 

 

 

Published in slightly revised form in PLoS One (2012), 7 (11), e48333. 
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Abstract: 

Archaeologists interested in explaining changes in artifact morphology over 

long time periods have found it useful to create models in which the only source of 

change is random and unintentional copying error, or ‘cultural mutation’. These 

models can be used as null hypotheses against which to detect non-random processes 

such as cultural selection or biased transmission. One proposed cultural mutation 

model is the accumulated copying error model, where individuals attempt to copy the 

size of another individual’s artifact exactly but make small random errors due to 

physiological limits on the accuracy of their perception. Here, we first derive the 

model within an explicit mathematical framework, generating the predictions that 

multiple independently-evolving artifact chains should diverge over time such that 

their between-chain variance increases while the mean artifact size remains constant. 

We then present the first experimental test of this model in which 200 participants, 

split into 20 transmission chains, were asked to faithfully copy the size of the previous 

participant’s handaxe image on an iPad. The experimental findings supported the 

model’s prediction that between-chain variance should increase over time and did so 

in a manner quantitatively in line with the model. However, when the initial size of 

the image that the participants resized was larger than the size of the image they were 

copying, subjects tended to increase the size of the image, resulting in the mean size 

increasing rather than staying constant. This suggests that items of material culture 

formed by reductive versus additive processes may mutate differently when 

individuals attempt to replicate faithfully the size of previously-produced artifacts. 

Finally, we show that a dataset of 2601 Acheulean handaxes shows less variation than 

predicted given our empirically measured copying error variance, suggesting that 
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other processes counteracted the variation in handaxe size generated by perceptual 

cultural mutation. 
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3.1. Introduction 

The idea that human culture – defined here as socially transmitted information such as 

beliefs, knowledge, skills, artifact designs, and customs – constitutes an evolutionary 

process was hinted at by Darwin himself in The Descent of Man, where he suggested 

that languages evolve over time in a manner analogous to the diversification and 

extinction of biological species (Darwin, 1871). This notion of cultural evolution was 

explored further throughout the twentieth century by archaeologists (Binford, 1963; 

Clarke, 1968), anthropologists (Sahlins & Service, 1960; Schwartz & Mead, 1961) 

and psychologists (Gerard et al., 1956; Campbell, 1975), but it was not until the work 

of Cavalli-Sforza & Feldman (1981) and Boyd & Richerson (1985) in the 1980s that 

the implications of the parallels between biological and cultural change were more 

rigorously explored using the same quantitative mathematical modelling techniques 

that population geneticists use to successfully model and understand biological 

evolution (see Mesoudi, 2011a esp. chap. 3). Our focus here is on the application of 

these cultural evolutionary methods and concepts to archaeology (O’Brien & Lyman, 

2002; Shennan, 2011), which can be seen as the ‘cultural equivalent’ of paleobiology 

in its aims to document and explain past evolutionary change (Mesoudi et al., 2006). 

This has included the use of phylogenetic methods to reconstruct historical 

relationships between artifacts (O’Brien et al., 2001), the use of models originally 

developed in population genetics, such as serial founder effect and neutral drift 

models, to explore the effects of demography on artifact variation (Lycett, 2008; 

Lycett & von Cramon-Taubadel, 2008; Neiman, 1995; Shennan & Wilkinson, 2001; 

Bentley & Shennan, 2003; Bentley et al., 2004; Kohler et al., 2004; Schauer, 2009; 

Steele et al., 2010; Brantingham & Perreault, 2010), and the explanation of artifact 
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variation in terms of cultural transmission biases such as prestige bias or conformity 

(Kohler et al., 2004; Bettinger & Eerkens, 1999). 

 

Another important process of cultural evolution that may have fruitful application in 

archaeology is cultural mutation. By analogy to genetic mutation, this describes the 

process in which ideas are involuntarily changed when they are transmitted from one 

person to another. In this study we present the first explicit experimental simulation of 

a model of cultural mutation in archaeology. Specifically, we are interested in testing 

the accumulated copying error (ACE) model proposed by Eerkens & Lipo (2005), in 

which random error in a quantitative artifact dimension (e.g. size or thickness) is 

generated by the physiological limitations of the hominin perceptual system. Eerkens 

& Lipo drew on experimental findings from psychophysics which showed that the 

accuracy of human perception has physiological limits, especially our ability to 

perceive differences between objects (Coren et al., 1994). If the difference in size 

between two objects is below some threshold, then this size difference will tend to be 

imperceptible to the naked human eye, and this will become more and more likely as 

the size difference between the objects grows smaller. Such error thresholds are 

always relative to the size of the object, rather than absolute. For example, two lines 

that are less than 3% different in length are typically perceived as identical, with this 

3% value known as the Weber fraction for this particular dimension (line length). 

Eerkens & Lipo applied this basic principle of psychophysics to the repeated cultural 

transmission of artifacts. They assumed that when attempting to copy the morphology 

of an artifact as faithfully as possible, and in the absence of formal measurement aids 

(e.g. rulers), the manufacturer is likely to make small copying errors that are 

imperceptible to them due to the aforementioned perception thresholds. If that 
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person’s copied artifact is in turn copied by another person, and so on along a 

transmission chain, then copying errors will compound over time, possibly creating 

significant morphological change compared to the original artifact. Moreover, if 

multiple such transmission chains evolve independently, then the variation between 

these diverging chains is likely to become substantial and to increase over time. Note 

that this process will take place regardless of whether any other cultural evolutionary 

forces are at work, and thus, it may be useful to incorporate this model of mutation in 

other, more complicated models. 

 

Eerkens & Lipo presented a simple simulation model of this process in which a 

continuous trait value is transmitted over successive generations of individuals with a 

3% random normal error rate, and with 10 independently evolving chains. Their 

simulation showed that, as expected, the independent chains diverged over time as 

some became larger and others became smaller. Due to the randomness of the error, 

the overall mean value did not change over time, while the between-chain variation 

did increase over time. They then applied these expectations to two case studies, 

showing that the thickness of Owens Valley projectile points increases in variation in 

a way consistent with the random accumulated copying error model, while the basal 

width of those points, and the vessel diameter and thickness of Late Woodland pots, 

show less variation than expected, suggesting that some non-mutation process (e.g. 

conformist transmission) may have been at work in these latter cases. 

 

Our aim here is to provide an explicit experimental test of Eerkens & Lipo’s ACE 

model of artifact transmission. Although the assumptions of their model are based on 

previous experimental findings from psychophysics (Gilinsky, 1951), from where 
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their 3% copying error assumption is derived, it is unclear (i) whether this 3% error 

threshold is uniform across a large population of individuals, or whether there is inter-

individual variation in this threshold value (especially given previous findings of 

substantial individual variability in some perceptual psychometric functions: Coello & 

Garriga, 1991; Engeland & Dawson, 1974), and thus how any inter-individual 

variation affects the robustness of the model; (ii) whether this 3% threshold, originally 

obtained for simple lines or abstract geometric shapes, also applies to more realistic 

artifact shapes; and (iii) whether it is valid to simply extrapolate a single individual’s 

perceptual error along successive transmission episodes, or whether there are 

unexpected dynamics introduced by the compounding of individual errors (Hamilton 

& Buchanan, 2009, for example, argued that the compounding of errors causes the 

size of artifacts in chains to decrease, on average).  

 

To address these issues, we asked multiple chains of participants to copy an artifact 

image as faithfully as they could, in a direct replication of Eerkens & Lipo’s model. In 

addition, in order to provide an explicit model within which to insert our 

experimentally-derived copying-error parameter, we also derive two formal 

mathematical predictions of the model which allow us to test the assumptions of the 

model with our data. Although this is the first experimental test of a cultural mutation 

model of artifactual evolution, it adds to a handful of other studies that have 

experimentally simulated cultural transmission dynamics in the archaeological record 

(e.g. Mesoudi & O’Brien, 2008).  

 

Although the findings of our experimental simulation, like Eerkens & Lipo’s original 

model, are in principle applicable to any culturally transmitted artifact, we take a 
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particular interest here in the question of size variation in Acheulean handaxes. 

Acheulean handaxes were used by various hominin species from at least 1.76 million 

years ago (Lepre et al., 2011) to at most 0.14-0.12 million years ago (Haslam et al., 

2011), and were thus used longer than all other known hominin tools apart from 

Oldowan artifacts (Gowlett, 2011). They were used in Africa, Europe, and Asia, and 

their temporal span witnessed the evolution of several new hominin species (Clark, 

1994; Klein, 2009). Given this extended temporal and geographic spread, it is perhaps 

unsurprising that patterned variation within this technocomplex has been detected in 

statistical analyses of handaxe shape (e.g. Lycett & Gowlett, 2008). However, it has 

also been argued that certain patterns of stability in handaxe form and size (at least 

within certain bounds) over this temporo-geographic spread might reflect culturally 

selective constraints for functional or social reasons (Kohn & Mithen, 1999; Vaughan, 

2001; Gowlett, 2006; Gowlett, 2009). Applying and testing explicit models of 

evolution by cultural mutation will allow us to investigate the question of handaxe 

size in a rigorous way, and provide a base for future explicit models of their cultural 

selection (e.g. for functional or social purposes). As chimpanzee visual acuity is 

similar to modern human visual acuity (Matsuzawa, 1990), it is likely that hominin 

species would have had similar visual acuity to our modern human participants, and 

thus that our measured parameters will be similar to those of fossil hominins. Thus, 

knowledge of the parameters can be used to derive predictions about the amount of 

variation generated during the temporal span of Acheulean handaxes that we should 

expect to find in the archaeological record under the ACE model, and thereby connect 

our microevolutionary experiment to documented macroevolutionary patterns. We 

therefore use a handaxe image as our ‘experimental artifact’ in the present study, and 
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in the Discussion we ask whether the experimentally-informed ACE model can 

account for observed patterns of Acheulean evolution. 

 

3.2. Methods 

3.2.1. Model 

The ACE model postulates that each chain consists of a number of generations, each 

of which has one member. In each generation, the sole member copies some 

continuously-valued attribute of the artifact of the sole member of the previous 

generation, introducing a randomly determined quantity of copying error. As we 

expect each member to have a similarly-shaped distribution of copying errors, the 

Central Limit Theorem justifies modelling the random determination of copying error 

as drawing a random deviate from some normal distribution. The famous 

psychophysical finding of Weber's Law, namely, that perceptual errors scale 

proportionally to the magnitude of the attribute of the object being perceived, rather 

than being fixed, absolute quantities, justifies multiplying the previous generation's 

value by the randomly sampled copying error, rather than adding the copying error to 

the previous generation's value. 

Thus, we write: 

, 

where  is the value at generation ,  is the starting value of the process, and 

 are i.i.d. random variables equal to . We are interested in the 

moments of , so that we can compare empirical measurements of summary statistics 

with the model’s predictions. Since  is simply , and the error variables are 

both independent and identically distributed, we can see that: 
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, 

so the expectation of  is always equal to its starting value. As for the variance: 

 

 

. 

We can find  by noting that: 

 

, 

and thus , allowing us to find the variance: 

. 

Both of these moments are the moments of a random variable that represents an 

individual chain, and are therefore unobservable; however, we can estimate them by 

measuring the mean and sample variance of multiple independently evolving chains, 

expecting that the mean will stay constant over time and the sample variance will 

increase without bound. 10 such chains, evolving for 400 generations, are shown in 

Figure 3.1A, along with their predicted mean and variance. This partially recreates the 

results of Eerkens & Lipo (2005). While our analysis confirms that the mean should 

not change over time, our results suggest that the variance should increase 

exponentially, rather than plateau. However, when  is small (e.g., within the typical 

range for human copying error distributions) then both our and their equations give 

very similar predictions for the variance. 
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Figure 3.1. Simulations of the ACE model. (A) 10 chains evolving over 400 generations 

(black lines) and theoretically predicted mean (thick black line) and variance (thick dashed 

line). (B) 200 chains evolving over 1000 generations, with individual chains represented by 

semi-transparent grey lines so that multiple overlapping lines produce darker colors. The thick 

black line shows the mean of all chains. In both panels,  and . 

 

We also note that our model and results deviate slightly from a more recent ACE 

model presented by Hamilton & Buchanan (2009). They found that, in contrast to 

both Eerkens & Lipo and ourselves, accumulated copying error causes the mean to 

become smaller. They argued that this is because, given that copying error is relative 

to the size of the object being transmitted, chains with artifacts that happen to get 

smaller will also have smaller copying error, making them less likely to deviate 

further and more likely to remain small. In contrast, chains with artifacts that happen 

to get larger will have larger copying error, increasing the probability that they will 

eventually produce smaller objects over time. Our results, however, suggests that this 

is not the case: while it is true that most chains of artifacts get smaller because small 
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chains of artifacts stay small, pushing the mean down, this is counterbalanced by a 

minority of chains of artifacts that get much larger. Because copying error is relative, 

those large chains get exponentially large. In other words, small chains of artifacts 

stay small, and most chains of artifacts become small, but large chains of artifacts get 

much, much larger, with the overall mean not changing. This can be seen in Figure 

3.1B, which shows the value of most chains of artifacts drifting smaller than the 

starting value, a few chains of artifacts drifting to extremely high values, but the mean 

of all chains of artifacts staying basically constant through time. The difference 

between these results may be due to Hamilton & Buchanan’s use of log values, which 

will reduce the effect of these very large values. 

 

Note that one obvious objection to the above analysis is that normal distributions can 

take on any value, including negative values, and thus that the resulting values of  

can be negative, which is nonsensical in many interpretations, e.g. if  represents size 

or weight. This is a valid objection in general, but as human perceptual error 

distributions tend to have very low variance - for example, as we show later, in our 

data  - it makes negligible difference for cultural drift models. For instance, 

substituting a truncated normal distribution bounded below at 0 with  into 

the equations above gives , an astronomically small difference that 

would not affect predicted means and variances even after millions of generations. 

 

3.2.2. Experiment 

In our experiment, we wish to (1) estimate , the variance of the distribution of 

copying errors, and (2) test whether the mean and sample variance of multiple 

independently evolving chains in an experimental setting match their expected values. 
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Ideally, we would do this by running multiple transmission chains in which 

participants would be asked to create a new Acheulean handaxe by faithfully copying 

the previous participant's handaxe. However, Acheulean stone knapping is both 

dangerous and difficult (Whittaker, 1994; Edwards, 2001), and finding enough 

participants who would be both willing and able to knap handaxes would be a 

challenge. Thus, we settled on a compromise that allowed us to simulate the essential 

features of the model: an electronic, touch-screen-based resizing task. Using an iPad, 

each participant in each transmission chain was shown the previous participant's 

handaxe and asked to resize a second handaxe to match the size of the previous 

participant's as closely as possible (Figure 3.2). This resizing was done using a 

pinching gesture with two fingers on the iPad screen, and as much time was given as 

needed; thus, we feel justified in assuming that manufacturing error, as opposed to 

perceptual error, was not a significant factor in the results of the experiment. It should 

be emphasized that our transmission-chain experiment thus focuses solely on the 

ability of participants to replicate the attribute of artifact size, to the exclusion of 

shape attributes. 
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Figure 3.2. The main screen of the iPad-based experiment. The handaxe image on the left was 

created by the previous participant, and the current participant is asked to resize the handaxe 

image on the right so as to match the size of the previous participant's as closely as possible. 

Participants pressed the tick mark to complete the experiment. 

 

In our experiment, then, the continuous value modelled as  in our model is the size 

of the handaxe, with height and width scaled isometrically. As the right-hand handaxe 

image (the one that is to be resized by the participant) must begin at some arbitrary 

size, we ran two conditions of the experiment: one in which the right-hand image 

began at the maximum possible size (i.e. with the same height as the screen, 14.4 cm), 

and one in which it began at 1/3 the size of the screen (4.8 cm height). The zeroth-

generation left-hand side handaxe image in each transmission chain was set at 10 cm 

height (i.e., ), and the width of all images was always 7/15 of their height. 
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We ran 10 transmission chains with 10 participants each in both conditions. All 

participants were distinct, i.e., no participant took part in more than one chain or more 

than once within a chain. Participants were recruited primarily by soliciting in the 

library of Queen Mary, University of London. 59.5% were female and 75.5% were 

within 18 and 25 years of age. Those participants who wore corrective eyeglasses or 

contact lenses were allowed to keep them on for the experiment. 

 

3.2.3. Ethics statement 

The study was approved by the Queen Mary Research Ethics Committee. All 

participants viewed an informed consent screen and agreed to it by tapping an 

electronic button; this procedure was approved by the Research Ethics Committee. All 

data was analyzed anonymously, and sex and age information was deleted after 

calculating summary statistics across the whole sample. 

 

3.3. Results 

Our full results dataset is available in Appendix C. Our first aim was to estimate . 

Figure 3.3 shows normal probability plots (in which a straight diagonal line at y = x 

indicates perfect fit to a normal distribution) for the distribution of empirically 

measured copying errors in each condition. For each transmission event, copying 

error is measured by the final size of the right hand image divided by the size of the 

left hand image. As can be seen, they appear normal; in order to formally test this 

hypothesis, we used the Anderson-Darling normality test, which did not reject 

normality for either distribution (larger-axe condition: A = 0.53; p = 0.17; smaller-axe 

condition: A = 0.44; p = 0.29). Having established the condition’s normality, we can 

estimate  by measuring the sample standard deviation (we report the sample 
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standard deviation here rather than the sample variance to avoid reporting very small 

numbers, and also because standard deviations are easier to interpret, being measured 

in physical units rather than units squared), which was 0.0269 for the larger-axe 

condition and 0.0399 for the smaller-axe condition, with an overall mean of 0.0343. 

 

 

Figure 3.3. Normal probability plots of empirically measured copying errors. Data from the 

condition with the larger initial size of handaxe image is red and from condition with the 

smaller initial size of handaxe image. 

 

Our second aim was to test the two predictions of the model. Figure 3.4 shows the 

empirically measured sizes, means, and variances of the chains over time, and their fit 

to the predicted values calculated according to the equations derived above. As 

 depends on , the empirically measured values of  for each condition 

were substituted into the expression in order to calculate the predicted variances 

plotted in Figure 3.4B. As can be seen, the measured means do not seem to fit the 

predicted mean well, but the measured variances do seem to fit the predicted 
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variances. In order to formally test these hypotheses, we simulated the process 

described by the theoretical model, substituting in the empirically measured variances 

for each condition's distribution of copying errors, and matching the conditions of our 

experiment (i.e. 10 chains of 10 generations each in each condition). This was done 

with R (R Core Development Team, 2012) using code given in Appendix D. We 

derived empirical p-values by measuring the proportion of times that a value equal to 

or more extreme, in the appropriate direction, than the measured final mean and 

variance in each condition occurred over 10,000 simulations. For the larger-axe 

condition, the proportion of simulations where the final mean was equal to or more 

extreme than the empirically measured final mean was 0.01, and the proportion where 

the final variance was equal to or more extreme than the measured final variance was 

0.44; for the smaller-axe condition, these values were 0.22 and 0.42 repectively. Thus, 

our visual intuitions are partly vindicated: the final mean in the larger-axe condition 

does deviate from the predicted mean more than expected by chance at the 5% 

significance level, but the final mean in the smaller-axe condition does not, while the 

final variances in both conditions do indeed not deviate from the predicted variances 

more than expected by chance at this significance level. 
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Figure 3.4. Results of the experiment compared to theoretical predictions. (A) Empirically 

measured sizes in each chain (thin dotted lines) and means across all chains in each condition 

(heavy solid lines) in both conditions. Data from the larger-axe condition is plotted in red and 

data from the smaller-axe condition in blue. The dashed black line shows the theoretically 

predicted mean. (B) Empirically measured variances across all chains in each condition (solid 

lines) and theoretically predicted variances (dashed lines) derived by using the empirically 

measured variance of the copying error distribution in each condition. Data and predictions 

from the larger-axe condition are plotted in red and from the smaller-axe condition in blue. 

 

3.4. Discussion 

The aim of this study was to provide the first explicit experimental test of the 

accumulated copying error model of cultural transmission, in which artifact variation 

increases due to imperceptible differences between a copy of an artifact and the 

original copied artifact. Acheulean handaxe images were transmitted along 20 

independent chains each containing 10 participants, allowing us to measure inter-

individual variation in copying error ( ) which has previously only been assumed 

from the psychophysics literature, in which transmission error and artifact evolution 
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are not the focus of study. We find that the ACE model gives good predictions of 

between-chain variance over time (see Figure 3.4B): in both the model and the 

experiment, between-chain variation increases exponentially over time as copying 

error causes different chains to diverge. Moreover, the empirically determined 

estimate of  of 0.0343 resembles quite closely the copying error assumed in 

previous models of 3% (Eerkens & Lipo, 2005) which was derived from the 

psychophysics literature. This supports the use of this assumption in a cultural 

transmission context. 

 

However, the empirical between-chain mean did not follow the predicted mean in the 

‘larger’ condition, in which the initial size of the participants’ handaxe was larger than 

the target handaxe. It is also suggestive that in the ‘smaller’ condition, in which the 

participants’ handaxe started smaller, the measured between-chain means trended 

below the predicted mean, although the difference between the measured final mean 

and simulated final means was not significant at the 5% level. It will require more 

experimental testing to establish whether these biasing effects of the initial size of the 

object to be resized on its final size are not an artifact of using an iPad. If they are 

valid effects, they will have interesting implications for predicting ACE in 

archaeological data, as we would be led to expect that the size of artifacts created by 

‘additive’ production methods (e.g. the weaving of baskets) as opposed to ‘reductive’ 

production processes (e.g. the manufacture of flaked stone tools) would evolve 

differently, with the size of additively-produced artifacts decreasing slowly through 

time and the size of the reductively-produced artifacts increasing, at least in instances 

where there is an effort to replicate faithfully the size of previously produced objects.  
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As the experiment shows that the model gives good predictions of between-chain 

variance, and we have estimated the shape parameter of the distribution of copying 

errors, we are now able to examine whether the model explains known data about the 

evolution of Acheulean handaxes. Happily, there exists a large database of 

morphological measurements on Acheulean handaxes, the Acheulean Biface Database 

(Marshall et al., 2002), against which we can test the model. The database includes 

length and breadth measurements for 2601 complete handaxes from 21 different sites 

in 5 countries (Morocco, South Africa, Tanzania, Israel, United Kingdom), with an 

age range of 1.5-0.3 million years ago. The coefficients of variation for length and 

breadth in this sample are 0.30 and 0.23, respectively. As deriving an expression for 

the coefficient of variation of all the artifacts created by a large number of 

independent chains over time is analytically difficult, we used simulations to estimate 

this quantity. The simulations were programmed in R using the general form cv (c 

(replicate (100, cumprod (rnorm ( , 1, ))))). Setting  to our measured value of 

0.0343, we find that the ACE model will generate  values greater than 0.30 in less 

than 200 generations, implying an obviously unrealistic lifespan of 4000 years for 

Acheulean handaxes (assuming a generation time of 20 years). Alternatively, we can 

set  to 60,000, corresponding to 1.2 million years of evolution, the age range of the 

dataset, if each generation lasts 20 years, which shows that  must be approximately 

0.0017, or 20 times smaller than our measured value, in order to generate the 

measured  values. Since some of our participants wore eyeglasses, our measured 

value of  probably errs towards being smaller than a typical ancient hominin value, 

which emphasizes the mismatch between our model and the data even further. Thus, 

as a general phenomenon, it is extremely unlikely that Acheulean handaxe size drifted 

as described by the ACE model.  



 70 

 

Before fully accepting this conclusion, however, we should note some limitations of 

our analysis. First, the ACE model is potentially simplistic in its assumption that all of 

Acheulean evolution took place in independent lineages; incorporating empirical data 

on the amount of branching that occurred into the model may allow it to make more 

realistic predictions. Second, although large, the comparative handaxe dataset used 

here is not exhaustive in terms of regional or temporal coverage and provides only a 

broad guide to how Acheulean handaxe size variation compares to the ACE model. 

While our data suggest that at its broadest scale Acheulean handaxe size variation 

does not conform to the ACE model, this does not rule out more localized instances of 

such drift. Indeed, regionally-specific trends of temporal change in handaxe size have 

been suggested previously (e.g. Gilead, 1970; Baskaran, 1986; Rajaguru, 1985), 

including geographically-localised instances of cultural drift that represent deviations 

from wider patterns due to situationally-specific circumstances (e.g. in India: Lycett 

& Bae, 2010). Recent analyses have emphasized how spatial and temporal factors 

might affect cultural patterning under neutral conditions (e.g. Lycett & von Cramon-

Taubadel, 2008; Hamilton & Buchanan, 2009; Premo, 2012; Pérez-Losada & Fort, 

2011). Given these factors, an important future extension of this study may therefore 

be to incorporate more explicit geographical parameters into the copying error model 

(e.g. spatial factors) and compare these revised models against artefactual data with 

high temporal and spatial resolution. 

 

Assuming that Acheulean handaxe size does broadly deviate from the ACE model, we 

see three possible explanations for this deviation. Firstly, concepts of appropriate 

limits for handaxe size may have been stabilised by functionally-related cultural 
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selection: for example, by the need to fit into tool users’ hands, a highly plausible 

selective pressure (Crompton & Gowlett, 1993; Gowlett, 2006). Secondly, handaxe 

size may have drifted in a way that stabilized variation: some models of this for 

quantitative traits were given by Cavalli-Sforza and Feldman (1981). A third 

explanation for the suggested deviation from the ACE model might be due to the 

possibility that firm concepts of handaxe size (opposed to handaxe production 

methods leading to their essential and distinctive shape properties) may not strictly 

have been socially transmitted at all. An alternative possibility here is that as 

functional handheld tools, individuals gained an intuitive sense of what a ‘good sized’ 

handaxe was via their own empirical engagement with material properties and their 

various outcomes during usage. This idea resembles a hypothesis proposed by Tennie 

& Hedwig (2009), who noted that some traits in great ape cultural traditions might 

have been fostered by stimulus enhancement of the trait’s raw materials. This may 

also mean that (somewhat like shoes or other items of clothing) what is an ‘optimally-

sized’ handaxe may vary somewhat from individual to individual depending on their 

own physical size, strength, etc., in turn leading to patterns of variation in handaxe 

size that deviate from the ACE model. We note, however, that within any socially-

mediated context of observation and learning about handaxe production and usage, 

some notion of suitable size parameters is also likely to have been inducted in novice 

handaxe producers. Of course, some combination of these causes is also possible. 

Each of these explanations suggests a number of promising directions for further 

research. 

 

In conclusion, we have provided a theoretical reformulation and novel experimental 

test of the ACE model of cultural mutation, in which artifacts change purely due to 
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imperceptible differences between a copied artifact and the original, and which has 

been proposed as a null model for the cultural evolution of artifacts in the material 

record. Our experimental test supports the prediction that ACE causes artifact size 

variation to increase exponentially. However, it did not fully support the prediction 

that mean artifact size should remain unchanged, instead finding that the initial size of 

the to-be-copied artifact may bias the eventual copied artifact size. This suggests that 

the ACE model needs to be revised to incorporate this priming or biasing effect, and 

that future empirical work might seek to test this effect by comparing reductive and 

additive technologies. Finally, having established experimentally the validity of the 

ACE prediction concerning artifact size variation, we apply this prediction to an 

actual empirical dataset, showing that Acheulean handaxes do not fit the expectation 

of the ACE model, and we suggest potential alternative explanations for this 

deviation. 
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Chapter 4. 

Cultural differences and cumulative culture: parameterizing the differences between 

human and nonhuman culture 

 

 

 

 

 

 

 

This chapter was co-authored with Stephen J. Lycett and Alex Mesoudi. It is currently 

being prepared for submission to Journal of Theoretical Biology.  
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Abstract: 

Diverse species exhibit population-specific profiles of socially learned traits, 

from songbird dialects to primate tool-use behaviours. However, only humans appear 

to possess cumulative culture, in which cultural traits increase in complexity over 

successive generations. Theoretically, it is currently unclear how cognitive and 

demographic factors give rise to these phenomena, and how to explain the difference 

between cumulative and non-cumulative cultural regimes. Here, we address this by 

constructing and analysing cultural evolutionary models of both phenomena that 

replicate empirically attestable levels of cultural variation and complexity in 

chimpanzees and humans. In our model of cultural differences, we find that realistic 

cultural variation between populations can be maintained even when individuals in 

different populations invent the same traits and migration between populations is 

frequent. Our model of cumulative culture indicates that both the accuracy of social 

learning and the number of cultural models interact to determine the complexity of a 

trait that can be maintained in a population. Combining these models creates two 

qualitatively distinct regimes, determined by the interaction of cognitive and 

demographic factors, in which there are either a few, simple traits, or many, complex 

traits, and suggest that these regimes correspond to the type of phenomena 

represented by nonhuman and human cultures, respectively.  
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4.1. Introduction 

Many animal species can learn socially (Galef and Laland 2005); examples include 

the transmission of food preferences in rats, shoaling routes and nest site locations in 

fish, and foraging locations in bees and ants (Helfman and Schultz 1984; Laland and 

Plotkin 1990; Leadbeater and Chittka 2007). Some of these species show cultural 

differences in the ‘trait-profiles’ of different populations, such as differences in the 

song dialects of different bird populations and in the presence or absence of various 

behaviours in different populations of chimpanzees and orangutans (Catchpole and 

Slater 2003; van Schaik et al. 2003; Whiten et al. 1999). Only humans unambiguously 

appear to also have cumulative culture (though there are possible reports in 

chimpanzees: Boesch et al. 2009), meaning cultural traits that depend on other traits 

(Boyd and Richerson 1996; Enquist et al. 2011; Tomasello et al. 1993); examples 

abound in technology, science, and mathematics (Basalla 1989; Hodgkin 2005; 

Longair 2003). One typical feature of cumulative culture is that traits become more 

complex than an individual could invent within their lifetime, because the trait has 

accumulated over successive generations (Boyd and Richerson 1996). 

 

Here we analyse models of both cultural differences and cumulative culture, and ask 

what causes the difference between human and nonhuman culture. There has been 

much work modelling the biological evolution of the capacity for social learning and 

culture, including various cultural transmission biases (Boyd and Richerson 1985; 

Kendal et al. 2009a; Rogers 1988; Wakano et al. 2004). We are interested in a 

different, related question: how do the dynamics of cultural (micro)evolution, caused 

by biologically-evolved cognitive capacities and social structures, lead to the 

phenomena of cultural differences and cumulative culture? While some models have 
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addressed this question, none suitably answer it in its broadest sense. Previous models 

of cultural differences have posited that different cultural traits are optimal in different 

ecologies and asked how cultural evolution can create and maintain cultural 

differences (Boyd and Richerson 1985; Henrich and Boyd 1998). However, previous 

demonstrations of cultural differences in non-human species explicitly attempted to 

exclude behavioural variation attributable to ecological differences (van Schaik et al. 

2003; Whiten et al. 1999), raising the question of how cultural differences may arise 

purely due to the dynamics of cultural evolution. Previous models of cumulative 

culture have either not posited a strict dependence of more complex traits on simpler 

traits (Henrich 2004; Kobayashi and Aoki 2012; Mesoudi 2011b; Powell et al. 2009), 

have been specific to one or two species (Mesoudi 2011b; Pradhan et al. 2012), or 

have modeled culture at the population rather than the individual level (Enquist et al. 

2011). We are interested in understanding the question of how cumulative culture 

arises at the level of the individual, and in a species-general manner. 

 

In order to answer these questions, we build on previous models by Strimling et al 

(2009b) and Enquist et al (2010), which are elegant, simple, and tractable. Using these 

previous models as a basis for our own provides direct continuity with past work on 

this topic and ensures that we begin from a rigorous starting point; yet we also go 

beyond these existing models to address novel questions concerning cultural 

differences and cumulative culture.  In Strimling et al’s model, individuals are born, 

learn some of the cultural traits known by another individual, possibly invent new 

cultural traits, and eventually die. Traits are independent of each other, have identical 

cultural fitness, and have no effect on biological fitness. These are simplifying 

assumptions, probably unrealistic for some traits (e.g. foraging behaviours), but 
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possibly good approximations for many others (e.g. social customs or self-medication 

behaviours). Strimling et al showed how the number of different traits found in the 

population and the number of traits known by each individual increased as a function 

of population size, individuals' social learning accuracy, and individuals' 

innovativeness. 

 

Enquist et al (2010) showed that stable cultural traditions could never emerge if a trait 

is learnt from a single cultural model (e.g. one biological parent), assuming that the 

accuracy of social learning is not perfect. They further showed that neither 

independent invention, multiple learning trials, nor biological fitness benefits change 

this result significantly. They then showed that learning from multiple cultural models 

allows stable traditions to emerge, and derived the stable population frequency of a 

trait as a function of the accuracy of social learning and the number of cultural 

models. 

 

We extend these models to analyse cultural differences and cumulative culture. To 

Strimling et al’s model we add multiple populations that interact through migration, 

allowing a comparison of different populations’ trait profiles. To Enquist et al’s we 

add a linear succession of complexity levels to the trait, simulating the accumulation 

of cultural knowledge over successive generations. Finally, we combine these models 

and ask what features cause the appearance of these two different phenomena. 

 

4.2. Cultural differences 

Strimling et al's (2009b) model contains three stages. First, one of the N individuals in 

the population is picked at random, dies, and is replaced by a naïve individual. 
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Second, the naive individual picks one other individual at random and independently 

learns every trait that individual knows with probability a per trait (0 < 𝑎 < 1). 

Third, the individual invents a random number of new traits with expectation μ. To 

this we add a fourth stage, in which the individual migrates to another population with 

probability 𝑚
2

 (0 ≤ 𝑚 ≤ 2). There are p such populations in the metapopulation, and 

the individual is equally likely to migrate to any of them. When the individual 

migrates, it swaps population memberships with a randomly chosen member of its 

target population, so that the size of each population remains constant. Because each 

migration event involves two individuals and the target population is picked at 

random, the expected number of individuals who migrate away from any given 

population in one timestep is 𝑚
2

+
𝑚
2 (𝑝−1)
𝑝−1

= 𝑚; this is why m is halved above. Since 

individuals can only migrate if they were ‘born’ in the current generation, this 

corresponds to ‘young’ individuals migrating. 

 

In order to model multiple populations of such learners, we must also decide which 

traits individuals invent. Strimling et al do not specify this, assuming only that 

individuals always invent traits that are currently unknown in the population. 

Lehmann et al (2011), using a similar model, assume that there are a very large 

number of traits, tending towards infinity, and individuals invent a random trait 

chosen from this set. However, clearly, a number of different populations in which 

individuals know only a small number of traits which were invented by picking at 

random from a very large set will tend to be completely dissimilar in the composition 

of their trait-profiles, and strikes us as unrealistic. Thus, we assume instead that there 

are infinitely many traits which are invented in a fixed sequence that is the same in all 

populations. We use the simplest possible sequence, in which traits are labeled by the 
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natural numbers and invented in the order 1, 2, 3, etc. Individuals always invent the 

first trait in the sequence that is not currently known by any individual in their 

population. This represents an idealized situation in which individuals' physical and 

cognitive predispositions and the nature of their physical and social environments 

create a clear ranking in the 'obviousness' of traits; for example, technologies for 

foraging easily-visible food resources may be invented before technologies for 

foraging hard-to-find foods, and foraging technologies in general may be invented 

before social or symbolic behaviours that are less important for survival. While this 

situation is clearly idealized, it is more realistic than assuming random draws from a 

large set of traits, and it is simple enough to analyse. Note that these traits are not 

cumulative; later traits do not build on earlier traits, and an individual can socially 

learn any set of traits irrespective of the traits’ position in the sequence. A trait may 

also be lost from the population and later re-invented without affecting any other 

traits. 

 

Fig. 4.1 shows the time course and end result of one simulation of the model. (A 

graphic illustrating an end result of the model is available in Appendix E, Figure E1.) 

Fig. 4.1a shows that the number of different traits known in each population, called S 

by Strimling et al, hovers around the expected value they derived. Fig. 4.1b shows the 

trait-profiles present in each population at the end of the simulation. Intuitively, one 

expects that if all populations invent the same traits in the same order, different 

populations will have identical trait profiles. However, the trait-profiles in Fig. 4.1b 

clearly show variation between populations. To quantify this variation we define s, the 

cultural similarity between two populations, in the same way as Enquist et al (2011): 

𝑠 = |𝑋⋂𝑌|
|𝑋⋃𝑌|, where X is the set of traits known in the first population and Y is the set 
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known in the second. Thus, s is the proportion of all traits known in either population 

that are known in both populations. To compare more than two populations we define 

𝑠̅ to be the mean similarity between every possible combination of populations in a 

metapopulation. 

 

 

 

Figure 4.1. One simulation of the cultural differences model. (a) Time series of the number of 

traits S known in each population. The initial part of the simulation is not shown. The dashed 

line shows the exact expected value derived by Strimling et al (2009b). (b) Trait-profiles of 

each population at the end of the simulation, with grey cells marking the presence of a given 

trait in a given population and white cells marking its absence. The average similarity 𝑠̅ 

between the populations is 0.71. Parameter values: N = 100, a = 0.9, μ = 0.1, m = 0, p = 5. 
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Fig. 4.2 shows how the mean similarity between populations 𝑠̅ increases with 

population size N (in a decelerating way) and accuracy of social learning a (in an 

accelerating way). Fig. 4.2c shows how 𝑠̅ varies across the parameter space created by 

N and a, demonstrating that no realistic parameter values generate complete inter-

population homogeneity. The reason that the assumption of a fixed sequence of traits 

does not lead to complete population homogeneity is trait loss. Since Enquist et al’s 

model (2010), in which individuals learn from one cultural model, is in effect 

contained within Strimling et al's model, it is clear that traits must eventually be lost 

because of imperfect social learning. We show in Appendix F that in the absence of 

migration, the probability that a trait will spread beyond its inventor is 

𝑎
1 + 𝑎

. 

Since a must be less than 1, this probability is always less than 1 2� . In other words, 

most newly invented traits die out with their inventor, even with high fidelity cultural 

transmission. This feature of the model accords reasonably with evidence on 

chimpanzee (P. t. schweinfurhii) inventions documented at Mahale, Tanzania, where 

approximately 43% of innovations documented over a 30-year period did not spread 

socially (Nishida et al. 2009). In the model, this frequent loss of traits is balanced by 

the re-invention of traits that have been lost, and this dynamic creates the moderate 

dissimilarity between population trait-profiles. 
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Figure 4.2. The effect of (a) the population size N, (b) the accuracy of social learning a, and 

(c) both, on the mean similarity between populations 𝑠̅. Panel (c) shows the value of 𝑠̅ on a 

contour plot in an analogous way to a geographical map showing the height of a mountain at 

various points in space. All panels show the value found after 2000 timesteps, averaged over 

1500 simulations with parameter values μ = 0.1, p = 5, and m = 0; in (a) a = 0.9 and in (b) N = 

50. 
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We now analyse the effects of migration. Fig. 4.3 shows how the mean number of 

different traits known in a population 𝑆̅ and the mean similarity between populations 𝑠̅ 

increase with m. We show values from simulations with m ranging from 0 (no 

migration) to 0.5 (half of all individuals migrate); the latter may be realistic in both 

human bands (Hill et al. 2011), and in chimpanzees, where one sex disperses. As 

expected, migration makes populations more similar in their trait-profiles, but even 

frequent migration does not completely homogenize them. Migration also increases 

the total number of traits known, because migrants can bring traits that have not been 

invented in the target population; this resembles the effect found by (Powell et al. 

2009), but not as pronounced. A possible empirical example of this is the introduction 

of ant-fishing into the Kasekela chimpanzee (P. t. schweinfurthii) community by a 

female immigrant from the Mitumba community (Gombe NP, Tanzania: O’Malley et 

al 2012). However, this is likely only to occur in specific circumstances, such as when 

the migrants are relatively older individuals and are thus preferred over younger 

individuals as cultural models (Biro et al., 2003). 
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Figure 4.3. The effect of the migration rate m on (a) the mean number of different traits across 

all populations 𝑆̅ and (b) the mean similarity between populations 𝑠̅. Both panels show the 

value found after 2000 timesteps, averaged over 2000 simulations with parameter values N = 

50, a = 0.9, μ = 0.1, and p = 5. 

 

To compare the results shown in Fig. 4.3b with empirical data, we calculated the 

values of 𝑠̅ from data reported on chimpanzees (Pan troglodytes) (Whiten et al. 1999) 

and orangutans (Pongo pygmaeus) (van Schaik et al. 2003), ignoring all comparisons 

involving traits thought to be absent for ecological reasons or insufficient observation. 

The values of 𝑠̅ were approximately 0.46 and 0.32, respectively. Note that these 



 85 

values probably underestimate the true values, because these studies only included 

traits that the investigators suspected a priori might vary between populations. With 

this in mind, Figs. 4.2c and 4.3 show that the model produces realistic between-

population variability. 

 

4.3. Cumulative culture 

Enquist et al's (2010) model tracked the dynamics of a single cultural trait in a 

population. The model has two parameters, which we rename for consistency with 

Strimling et al's model: a, the accuracy of social learning, and n, the number of 

cultural models. As above, both parameters are assumed to be constant across all 

individuals. We extend their model in the following way. The population consists of 

N individuals, and as above, in each time step a randomly chosen individual dies and 

is replaced by a naive individual. The individual then randomly picks n other 

individuals from the population to be its cultural models. The individual attempts to 

learn the trait from each of the n models in turn. Whether this learning is successful 

depends on whether or not the models carry the trait and on a. Finally, the individual 

innovates with probability μ. 

 

The trait has an infinite number of complexity levels. Learning any given level is 

dependent on having learnt all previous levels. The levels represent cumulative 

improvements that can be made to the basic, level 1 trait. Thus, they may roughly 

correspond to Oswalt's (1976) 'techno-units', or to successive modifications to a 

technology or social practice; plausible definitions and examples of different levels 

are given by Pradhan et al (2012). In our model, individuals learn these levels as 

follows: for each cultural model, the individual learns the first level of the trait that it 
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does not already know with probability a, and moves on to the next level if 

successful, which it again learns with probability a, and so on. Thus the probability of 

a naive individual learning a given level l from a model who knows at least l levels of 

the trait is 𝑎𝑙. After social learning, each individual has a probability μ of improving 

its knowledge of the trait by one level through innovation. 

 

Thus, in our model ‘cumulative culture’ is implemented as a strictly ‘ladder-like’, 

hierarchical process, as opposed to the more ‘fluid’ implementation in previous 

models such as that of Henrich (2004), in which individuals can jump from any level 

of a trait to any other. To our knowledge our model is the first general model of 

cumulative culture using ‘ladder-like’ traits. Additionally, innovation in our model 

takes place at the individual level, rather than the population level, allowing us to 

observe the growth of cumulative culture at the population level as a 

macroevolutionary process created by microevolutionary individual innovation 

events. 

 

We are interested in understanding how 𝑙,̅ the mean level that a population maintains, 

depends on the accuracy of social learning a, the number of cultural models n, and the 

innovativeness μ. In each simulation of the model the population begins completely 

unknowledgeable. Fig. 4.4 shows the time course and end result of one simulation of 

the model. (A graphic illustrating a time course of the model is available in Appendix 

E, Figure E2.) In Fig. 4.4a we see that the mean level of the trait in the population 

initially rises and then stabilizes; Fig. 4.4b shows the resulting distribution of levels 

amongst the individuals of the population. 
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Figure 4.4. One simulation of the cumulative culture model. (a) Time series of the mean level 

𝑙 ̅known in the population. (b) The distribution of levels in the population at the end of the 

simulation. Parameter values: N = 100, a = 0.7, n = 3, μ = 0.1. 

 

Fig. 4.5 shows the effects of a and n on the mean level 𝑙 ̅of the trait that is maintained 

in the population. The mean level 𝑙 ̅increases linearly with n (Fig. 4.5a), and non-

linearly with a (Fig. 4.5b). When varying the innovativeness μ in simulations, we 

found that increasing μ from 0.1 to 1 increases 𝑙 ̅by ≈ 3 regardless of the values of the 

other parameters; thus, the effects of a and n are much stronger than the effect of μ. 

Fig. 4.5c shows how 𝑙 ̅varies across the parameter space created by a and n. Enquist et 

al showed that only if 𝑎𝑛 > 1 could the trait be stably maintained in the population 

through social learning in their model. Since the trait in their model corresponds to the 

basic level 1 trait of ours, this result clearly applies here too. Much of the parameter 

space features realistic levels of accumulation; compare the values of 𝑙 ̅shown in Fig. 

4.5c to the mean techno-unit values of 3-7 found by an empirical analysis of the 

complexity of marine foraging technology in a number of Oceanic human populations 

(Kline and Boyd 2010). However, there are clearly many different combinations of a 

and n that will maintain a given mean level 𝑙 ̅in the population; thus, observing a 
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given level of accumulation in a population does not allow us to completely identify 

the values of a and n for that population. Note that in the simulations shown in Figs. 

4.4 and 4.5 the population size N = 100, as opposed to N = 50 in the simulations 

shown in Figs. 4.2 and 4.3, corresponding to the increase in the effective population 

size among later hominin species and Homo sapiens compared to non-human great 

apes. 
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Figure 4.5. The effect of (a) the number of cultural models n, (b) the accuracy of social 

learning a, and (c) both, on the mean trait level 𝑙 ̅maintained in the population. All panels 

show the value found after 10000 timesteps, averaged over 20 simulations, with N = 100 and 

μ = 0.1; in (a) a = 0.9 and in (b) n = 3. 

 

4.4 Combined model 

we note that our two models can be combined. Imagine that each trait in the first 

model comes in the infinite number of levels described in the second model, and that 

instead of choosing only one cultural model, naive individuals choose n cultural 

models, learn from them, and then both invent new traits and improve existing ones. 

The structure of the traits and trait levels in this model is shown in Fig. 4.6. As shown 

in the figure, the difference between traits and trait levels corresponds to the 

distinction drawn by Dean et al. (2013) between cultural ‘accumulation’ and 

‘cumulative culture’: in the first, it is the number of cultural traits that increases, and 

in the second their quality. The combined model then simulates the dynamics of 

independent cumulative traits within and between populations that interact by 

migration. To fully analyse the model, a choice must be made as to how individuals 

innovate cumulative traits; whether, for example, there is a fixed expected number of 

improvements per individual, or whether more knowledgeable individuals make on 

average more improvements. Unfortunately there is little empirical evidence on this 

question. 
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Figure 4.6. A schematic illustration of the structure of the traits and trait levels for one 

hypothetical individual in the combined model. In this example, the individual knows trait 

number 1 to level 5, trait number 2 to level 4, trait number 3 only at the first level, does not 

know trait number 4, and knows trait number 5 to level 2. 

 

Without deciding this one way or another, we can still make useful statements about 

the combined model. Consider the expected number of different traits S in a 

population. If 𝑛 = 1, Strimling et al (2009b) derived an analytical approximation for 

S, which shows that, for realistic but high values of these parameters, say N = 100, a = 

0.9, and μ = 0.5, 𝑆 ≈ 133 traits. On the other hand, if 𝑛 > 1, no analytical 

approximation for S is known, but we can approximate S by following Strimling et al 

and noting that 𝑆 = 𝜇𝑁𝑇, where T is the expected lifetime, in generations, of a newly 

invented trait. We conducted simulations that showed that even for very small values 

of the parameters which satisfy the criterion 𝑎𝑛 > 1, say N = 30, a = 0.65, and n = 2, 

𝑇 ≈ 100, and that T increases very rapidly with increases in the parameters. 
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Assuming additionally a low value for innovativeness, e.g. μ = 0.1, 𝑆 ≈ 300 traits (a 

simulation showing this is given in Appendix E, Figure E3) and rises very quickly 

into the thousands and tens of thousands of traits with increases in the parameters. 

Moreover, the condition 𝑎𝑛 > 1 is also the condition for cumulative culture to arise, 

as noted above. 

 

4.5. Discussion 

Our models give results that mimic the phenomena of between-population cultural 

differences and cumulative culture in reasonably realistic ways. In our model of 

cultural differences we find that realistic differences between populations are 

maintained despite assuming that all individuals invent the same traits in the same 

order, and despite frequent migration between populations. This occurs because traits 

die out with non-negligible frequency, and most traits do not spread beyond their 

inventor. In our model of cumulative culture, we find that the accuracy of social 

learning, a cognitive factor, and the number of cultural models, a demographic factor, 

interact to determine the cumulative level of a trait that a population can stably 

maintain, and that large portions of the parameter space feature realistic levels of 

accumulation. 

 

Our first result implies that cultural differences between animal populations do not 

necessarily reflect ecological or genetic differences, which has been a matter of some 

debate (Laland and Galef 2009). Moreover, it is clear from our results that cultural 

differences between animal populations also need not be caused by model biases or 

conformity within differing populations. Furthermore, the time series in Fig. 4.1a 

imply that phenomena such as chimpanzee cultures have inherent historical 
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dimensions (Lycett 2010), which have indeed begun to be investigated using 

archaeological (Haslam et al. 2009) and phylogenetic (Lycett et al. 2007) methods. 

Our second result implies that neither cognitive nor demographic factors are the sole 

explanation for the evolution of cumulative culture, which again has been the topic of 

some discussion (Powell et al. 2009). The dependence of cumulative culture on two 

different factors may help to explain its rarity in nature. Moreover, the strong 

influence of these two factors and the weak influence of innovativeness per se on 

cumulative culture may cast doubt on the ‘cognitive niche’ explanation of hominin 

success put forward by Pinker (2010), in which rapid innovation is key. The model 

instead lends support to the ‘cultural niche’ interpretation of Boyd et al. (2011), in 

which cumulative culture is the main driving force behind successful hominin 

adaptation to changing and varied environmental conditions.  

 

Finally, we note that our analysis of the combined model shows that the model has 

two qualitative regimes, with the threshold created by the interaction of both cognitive 

and demographic factors. When 𝑎𝑛 < 1, the number of traits known in the population 

is relatively low and there is no cumulative culture. When 𝑎𝑛 > 1, many traits are 

known in the population and there can be cumulative culture. We suggest that these 

regimes correspond qualitatively to nonhuman and human cultures, respectively. 
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Chapter 5. 

The 'fundamental theorem of cultural selection' 

 

 

 

 

 

 

 

Under review at Biology and Philosophy.  
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Abstract: 

R. A. Fisher's 'Fundamental Theorem of Natural Selection' gave a 

mathematical basis to the theory of biological evolution by natural selection. In this 

chapter, I give a new interpretation to an existing mathematical theorem called the 

growth-rate theorem, allowing it to be understood as the 'fundamental theorem of 

cultural selection’. I explain the meaning of this theorem and argue that it fulfills a 

similar function to Fisher's Theorem, providing a mathematical basis for the theory of 

cultural evolution by cultural selection. I also argue that it can give conceptual clarity 

to, and shed light on, the concept of cultural selection and the processes of cultural 

evolution.   



 95 

5.1. Introduction 

In 1930, R. A. Fisher gave what he called 'The Fundamental Theorem of Natural 

Selection' (Fisher, 1930). His purpose in doing so was, in his words, to "state the 

principle of Natural Selection in the form of a rigorous mathematical theorem, by 

which the rate of improvement of any species of organisms in relation to its 

environment is determined by its present condition" (ibid, p.22). The aim of this 

chapter is to give a similar theorem for the theory of cultural evolution. Specifically, I 

propose that a similar 'fundamental theorem of cultural selection' can be found by 

giving a new, cultural interpretation of an existing mathematical theorem called the 

growth-rate theorem. 

 

The structure of the chapter is as follows. In section 2, I summarise the meaning, 

history, and usefulness of Fisher's Fundamental Theorem. In section 3, I summarise 

the theory of cultural evolution, present the 'fundamental theorem of cultural 

selection', and explain its interpretation and usefulness. Finally, in section 4, I 

conclude and discuss the connection between the theorem and Price's equation. 

 

5.2. Fisher's Fundamental Theorem 

Fisher's Fundamental Theorem of Natural Selection was given in Chapter II of his 

1930 book The Genetical Theory of Natural Selection (Fisher, 1930). Fisher stated the 

Theorem as follows: "The rate of fitness of any organism at any time is equal to its 

genetic variance in fitness at that time." (ibid, p.35; italics his). His verbal statement 

is somewhat cryptic and the Theorem is easier to understand in the paraphrased words 

of Edwards (1994, p.450): "The rate of increase in the mean fitness of any organism at 

any time ascribable to natural selection acting through changes in gene frequencies is 
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exactly equal to its genic variance in fitness at that time". A mathematical statement 

may also be given using the notation of Edwards  (1994): �𝑤 = 𝑣, where w is the 

normalized mean fitness and v is the variance in that fitness. 

 

Before describing the Theorem in more detail, it is worth saying a little about the 

history of the reception of the Theorem. From its publication in 1930 until 1972, it 

was either ignored or misunderstood by geneticists, who (partly because of Fisher's 

unclear wording) thought that the Theorem referred to the total change in mean fitness 

rather than the partial change in mean fitness due to natural selection. In 1972 G. R. 

Price wrote a paper arguing that the true meaning of the Theorem had been 

misunderstood (Price, 1972), and since then it has been discussed by Edwards (1994; 

2002), Ewens (1989; 1992; 2011), Frank & Slatkin (1992), Lessard (1997), and 

Okasha (2008), among others. My description of it that follows is heavily indebted to 

these authors. 

 

The essence of the Theorem is to identify the equality between the rate of change of 

the mean fitness of a population and the 'genic', or additive genetic, variance in fitness 

amongst individuals in that population. The Theorem rapidly became famous because 

it implied that mean fitness always increases (because a variance is never negative). 

However, the Theorem is only concerned with that part of the total change in mean 

fitness that is "ascribable to natural selection acting through changes in gene 

frequencies" (from the above quote from Edwards, 1994). In addition to natural 

selection, a number of other factors will interact to determine the mean fitness of a 

population at a given time: mutation, migration, drift, and environmental change (both 

of the natural and social environments), as well as the effects of genetic combinations 
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through epistasis and dominance. The Theorem is not concerned with any of these 

factors and instead only quantifies the increase in mean fitness due to natural selection 

that would take place if every gene in the population were to retain the same fitness 

after selection as it had before selection. 

 

While mutation, migration, drift, and environmental change are commonly thought to 

be separate evolutionary factors from natural selection, the fact that the Theorem does 

not take account of genetic effects like dominance and epistasis may seem strange, as 

these are commonly thought to be integral parts of the action of selection. However, 

in Fisher's derivation the Theorem is based on the average effect of each gene, and it 

must be understood from the gene's ‘point of view', which was later to be influentially 

propounded by Dawkins (1976). From the metaphorical point of view of a particular 

gene (strictly speaking, allele), the other genes (alleles) present in 'its' genome are part 

of the environment it finds itself in. Thus the effects of dominance and epistasis 

constitute part of what can be called the 'genetic environment', and can be partitioned 

from the effect of natural selection on the frequencies of genes (alleles). 

 

It is important to understand that, since it does not incorporate the effects of mutation, 

migration, drift, or changes in the natural, social, or genetic environment, the 

Theorem is not useful for predicting evolution; in almost all circumstances, these 

factors will have important effects on mean fitness. Rather, it quantifies the extent to 

which the population, viewed as a population of genes, becomes adapted by natural 

selection to the environment it was previously in. Moreover, organisms tend to be 

highly adapted to their environments and have relatively stable population sizes, and 

Fisher expressed the view that "for the majority of organisms, therefore, the physical 
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environment may be regarded as constantly deteriorating" (Fisher, 1930, p.41). This 

deterioration of the environment, along with the effects of the other factors not 

included, generally counterbalances the adaptive, fitness-increasing effect of natural 

selection. 

 

What, then, is the value of Fisher's Theorem? It is a clear mathematical statement of 

how evolution by natural selection brings about adaptedness. Though of little practical 

value, it has great conceptual value, because it formalises the workings of natural 

selection. 

 

An example of its conceptual value is given by Frank & Slatkin (1992). In birds, 

higher clutch sizes frequently increase fitness, and birds have intraspecies variation 

for clutch size, yet often clutch sizes remain stable over time (Cooke et al., 1990). 

They suggest that the partition of total fitness change into fitness change caused by 

natural selection and fitness change caused by the change of the environment, which 

arises naturally from Fisher’s Theorem, can explain the stability of total fitness, 

because selection for increased clutch size is exactly counterbalanced by increased 

competition from other birds in the population. They also argue that Fisher’s Theorem 

may explain many other similar ‘Red Queen’-like situations in evolution. 

 

5.3. The 'fundamental theorem of cultural selection' 

5.3.1 Background 

Before describing the 'fundamental theorem of cultural selection', I will give some 

background on the theory of cultural evolution. The basic principle of this theory is 

that the 'Darwinian algorithm' (Dennett, 1995) of natural selection is an important 



 99 

process not only in biological change but also in cultural change. 'Culture', in this 

usage, means any information that is transferred via social learning from one 

organism to another. The idea that natural selection acts on cultural traits goes back to 

Darwin himself (Darwin, 1871), and has been expounded by many scholars since then 

(James, 1880; Campbell, 1965; Dawkins, 1976; Popper, 1979; Skinner, 1981; Cavalli-

Sforza & Feldman, 1981; Boyd & Richerson, 1985; Hull, 1988; Dennett, 1995). A 

comprehensive survey of evidence for the existence of natural selection on cultural 

traits, or 'cultural selection', is given by Mesoudi et al. (2004), and recent work in the 

field is summarised in Richerson & Christiansen (2013). 

 

In order to derive the Fundamental Theorem of Natural Selection, Fisher had to adapt 

his Theorem to the complexities of genetic inheritance. However, cultural traits do not 

reproduce by copying a set of particles in a way analogous to organisms reproducing 

by copying a set of genes. Therefore, the mathematics of cultural selection can be 

described by a simple theorem, in which genes do not figure, known as the 'growth-

rate theorem', given by Li (1955) and Edwards (1994). The theorem I present here as 

the 'fundamental theorem of cultural selection' is mathematically almost identical to 

the growth-rate theorem; what is new is the interpretation of the mathematics to 

represent cultural selection – the differential reproduction and survival of cultural 

traits caused by their own characteristics. 

 

Before presenting the theorem I will briefly discuss three previous authors who have 

combined Fisher's Theorem with cultural evolution in some way. Firstly, Bonner 

(1980), in the course of a monograph on the evolution of social learning in animals, 

briefly refers to an equivalent of Fisher's Theorem for cultural evolution created by 
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his colleague Henry Horn (ibid, p.17). However, this was never independently 

published or described by Horn. Secondly, Findlay (1990) derived a 'Fundamental 

Theorem of Natural Selection in Biocultural Populations'; however, Findlay 

interpreted Fisher's Theorem in the incorrect way that Price (1972) had shown was not 

Fisher's intention, and thus his theorem has a different meaning to the theorem I 

present below (though I should make clear that Findlay’s Theorem is, to my 

knowledge, entirely mathematically valid). Finally, Okasha (2007) has investigated a 

modification of Fisher’s Theorem created by considering cultural inheritance in 

addition to genetic inheritance. Okasha's result is thus concerned with the effect of 

cultural inheritance on biological evolution, rather than cultural evolution per se (and 

again I emphasise that Okasha’s result is, to my knowledge, entirely mathematically 

valid). 

 

5.3.2 The theorem 

I will now present the theorem. Imagine a human population. Each individual in the 

population knows a number of cultural traits, which all together make up a 

‘population of traits’. Each trait falls into one of a set number of trait-types. There are 

k trait-types, each of which have absolute fitness 𝑓𝑖 (with 1 ≤ 𝑖 ≤ 𝑘). Absolute 

fitnesses have the following meaning: if there are 𝑛𝑖 traits of a trait-type i present in 

the population before selection, there will be 𝑛𝑖 × 𝑓𝑖 traits of that type present in the 

population after selection. From these absolute fitnesses, a relative fitness 𝑤𝑖 = 𝑓𝑖 𝑓̅⁄  

can be calculated for each trait type. Finally, let w denote the list (i.e. the vector) of all 

these relative fitnesses, 𝑤�  denote the mean fitness of the population of traits, ∆ denote 

the change during one time interval (which may be taken to represent any arbitrary 

length of time), and Var() denote the variance of a vector. Then the theorem is 
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∆𝑤� = Var(𝒘); 

or in words, ‘the change in the mean relative fitness of the population of traits due to 

cultural selection is equal to the variance in relative fitness in that population before 

selection’. An extended proof is given in Appendix G. 

 

 

Figure 5.1. An example of cultural selection illustrating the theorem. Circles represent human 

individuals. Blue and red circles represent people who know one of two different traits, while 

empty circles represent people who do not know either of these traits. 

 

Figure 5.1 illustrates the meaning of the theorem. The panels depict a human 

population where each individual (a circle) knows either a trait of the 'blue' trait-type, 

the 'red' trait-type, or no trait. The absolute fitness of blue traits is 2, and that of the 

red is 1. The fitness of a trait includes the property of being remembered or retained 

by an individual through the given time interval, and so the blue traits spread to an 

additional individual in the time interval while the red traits are simply remembered 

by their current individuals. In the left panel we see the population before selection, 

and in the right panel after selection. Before selection, the mean absolute fitness, 𝑓,̅ 

was 3×2 + 2×1
5

= 8
5
, and thus the relative fitness of the blue traits, 𝑤blue, was 2

8 5⁄
= 10

8
 

and the relative fitness of red traits, 𝑤red, was 1
8 5⁄

= 5
8
, while the mean relative fitness, 
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𝑤� , was by definition 1 (this can be checked arithmetically: 
3×10

8  + 2×5
8

5
= 1). After 

selection, we calculate the mean fitness of the population using the same fitnesses as 

before selection. Thus, the mean relative fitness after selection, 𝑤� ′ becomes 

6×10
8  + 2×5

8
8

= 1 3
32

. The theorem claims that the increase in relative fitness, ∆𝑤� = 𝑤� ′ −

𝑤� = 1 3
32
− 1 = 3

32
, is equal to the variance in relative fitnesses before selection, and 

indeed, Var(𝒘) =
3×�108  − 1�

2
 + 2×�58 − 1�

2

5
= 3

32
. 

 

The intuition behind the theorem can be understood from thinking about Figure 5.1. If 

there had been more blue traits to start with, then the initial variance in fitness would 

have been greater, and there also would have been more blue traits after selection, 

increasing the mean fitness of the population of traits after selection. In general, the 

more variation is present in the fitnesses of the traits in the population, the more scope 

there is for the traits with higher fitness to outcompete those with lower fitness, 

thereby increasing the mean fitness of the population after selection. 

 

Though the above example is simplified, for expository purposes, the theorem also 

applies in more complicated cases in which people know more than one cultural trait, 

and/or cultural traits have multiple other cultural traits as ‘parents’ i.e. ‘blending 

transmission’. In order to incorporate such multi-‘parental’ transmission, fitness must 

be calculated as follows: if there are x traits of one trait-type, all of which contribute 

to the reproduction of n traits of their type in other individuals, then their absolute 

fitness is 𝑛𝑥. 
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5.3.3 Interpretation 

In order to interpret the theorem as describing cultural selection, two important 

definitions must be made. Firstly, fitness must be understood to measure the number 

of copies of a trait present after reproduction whose reproduction was causally 

influenced by some characteristic of that trait. This causal link is what distinguishes 

cultural selection from cultural drift. Secondly, cultural traits must be understood to 

be ideational; that is, residing in the mind of an individual, and expressed and 

transmitted through physical means such as movement, speech, writing, and artifacts. 

This follows the consensus in the field of cultural evolution (Mesoudi et al., 2004) in 

viewing the information stored within the individual as the true locus of a cultural trait 

and the influence of that trait on the individual’s behavior and environment as the 

expression of the trait. 

 

Because of these definitions, the theorem encompasses a number of different cultural 

evolutionary processes which are not always considered together, and shows that 

these processes all fall under the umbrella of ‘cultural selection’. These processes 

include: 

• the retentiveness of cultural traits, meaning their propensity to be remembered 

or retained by the individuals who have them; 

• content bias (Richerson & Boyd, 2005), where a learner’s psychological 

preferences for and judgements of the distinctive characteristics of a particular 

trait cause that learner to adopt that trait; 

• frequency-dependent bias (Richerson & Boyd, 2005), where a learner uses 

information about the frequency of different traits within a human population 

to decide which trait to adopt; 
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• some forms of model bias (Richerson & Boyd, 2005), where a learner decides 

to adopt a trait because of a preference for learning from people who have 

some specified characteristic (e.g. prestige or success in a given domain): 

namely, only those forms in which the trait that is learnt from the model was 

causally influential on the model’s relevant characteristic (e.g. if having the 

trait contributed to their success in the relevant domain); 

• the natural selection of cultural traits through the differential survival or 

fertility of the individuals that carry them due to them carrying them (e.g. the 

growth of pro-natalist religious movements like the Old Order Amish); and, 

• cultural group selection, in which the differential survival of human groups 

with different cultural traits causes the spread of that trait (possible examples 

include the spread of monogamous marriage, co-operative practices, and 

military innovations: see Boyd & Richerson, 2010 and Henrich et al., 2012). 

Each of these processes are a kind of cultural selection because they are processes in 

which the characteristics of the cultural traits involved, which may include their 

memorability, appeal or 'catchiness', popularity, and usefulness – whether through 

achieving a particular goal in life, increasing survival or fertility, or leading to an 

increased probability of survival for the cultural group – causally influence their own 

reproduction and/or survival. This can be reflected formally in recursive models of 

cultural evolution by the effect of the selective process multiplying the variance 

amongst the cultural traits. 

 

Classing frequency-dependent bias as cultural selection deserves additional comment. 

Intuitively speaking, frequency-dependent bias appears not to be like the other 

processes, since in this process the ‘content’ of the cultural trait is by definition 
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irrelevant to that trait’s fitness, and its fitness is entirely determined by the frequencies 

of the various trait-types in the human population. However, from an individual trait’s 

‘point of view’, being an instance of, say, the most frequent trait-type in a population 

of conformers is a characteristic that causes it to reproduce in that population. Since 

this reproduction is causally influenced by a characteristic of the trait – its being an 

instance of a particular trait-type, the most frequent one – this is an example of 

cultural selection. 

 

The theorem, analogously to Fisher's Theorem, quantifies the extent to which these 

processes of cultural selection adapt the population of cultural traits to the social and 

cultural environment that they were in prior to selection. The above discussion should 

make clear that while the theorem shows that the action of cultural selection is always 

to increase the fitness of a population of cultural traits, it is neutral with regard to the 

effect of the traits on the biological fitness of the human population. Whether traits 

tend to work to the benefit or detriment of their carriers’ biological fitness is a 

separate question not addressed by the theorem. 

 

In addition, also like Fisher's Theorem, the theorem is not concerned with a large 

number of other factors that interact to determine the mean fitness of the population of 

traits. In the cultural case, these factors include innovation (which includes guided 

variation [Boyd & Richerson, 1985] and mutation [Cavalli-Sforza & Feldman, 1981]), 

‘diffusion’ (as used by Cavalli-Sforza & Feldman (1981), the cultural equivalent of 

migration, in which a trait is transmitted into the population from an individual 

outside the population), change in the social or cultural environments, drift (Neiman, 

1995), and the transmission of traits from non-ideational sources (see below). 
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These factors must be understood with some care. The category of innovation 

includes processes of blending or continuous inheritance, in which multiple traits 

from multiple-trait types interact to produce a new trait of a new trait-type. From the 

point of view of the parent traits, this new trait is a mutation, or innovation, and thus 

does not count towards their fitness. The trait's ‘point of view' also illuminates the 

meaning of the environment in cultural selection: the ‘social environment’ of a trait 

consists of the (mind of the) individual that has the trait and the set of other 

individuals in the population with which that individual is in contact, while the 

‘cultural environment’ consists of the other cultural traits that the individual and its 

contacts have. Since the reproduction of a trait must by definition be causally 

influenced by its own characteristics in order to count as cultural selection, the 

category of cultural drift includes some forms of model bias (e.g. some forms of 

prestige or success bias) in which a trait is copied because of some characteristic of a 

model individual that was not causally influenced by that trait. Lastly, because of the 

definition of traits as being ideational, the transmission of traits from non-ideational 

sources – i.e. not from individuals, whether directly or indirectly – is not encompassed 

by the theorem. For example, a letter from one individual to another in the population 

may allow a trait from the writer to be transmitted to the reader, and this reproduction 

may therefore count towards that trait’s fitness value. However, if an individual reads 

a book by a long-dead author and thereby learns a novel trait, this cannot count as an 

example of the reproduction of a trait, since there was no trait in the population to 

which this reproduction could rightly be ascribed. However, this latter event is an 

example of cultural niche construction, an important separate process in its own right 

(Kendal, 2011), and indeed, the modelling framework of cultural niche construction is 
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better suited to modelling the transmission of traits from ideational sources such as 

books, as in this framework there is a clear distinction between the living population 

of individuals who carry cultural traits and the non-living, niche constructed 

ecological environment which can separately influence cultural evolution and allow 

traits to be ‘reborn’ after the death of all their living carriers. 

 

What, then, is the use of the theorem? I suggest that, like Fisher's Theorem, it has 

conceptual rather than practical value. It mathematicizes the notion of cultural 

selection, or the differential reproduction and survival of cultural traits, upon which 

the theory of cultural evolution rests. This rigorous statement brings, in my view, 

conceptual clarity to the topic, and as outlined above, illuminates the relationships and 

distinctions between a number of different processes in cultural evolutionary theory. 

 

The literature on cultural evolution is currently divided on the use of the term ‘cultural 

selection’. Some scholars, such as Cavalli-Sforza & Feldman (1981) use the term 

habitually, but distinguish it from the differential survival or reproduction of cultural 

traits through their effects on the biological fitness of their carriers. Other scholars, 

such as Boyd & Richerson (1985), acknowledge the fact that a Darwinian selective 

process operates on culture but prefer to discuss more specific processes such as 

content, frequency-dependent, and model biases. Yet other scholars, such as Sperber 

& Claidière (2008), have questioned the relative importance of cultural selection in 

cultural evolution. Therefore I propose that the theorem given above may be used as 

an objective criterion for the community of researchers in cultural evolution to build a 

taxonomy or classification of processes in cultural evolution, of which my discussion 

above provides a ‘first draft’. 
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5.4. Discussion  

In this chapter I have described a new interpretation of the growth-rate theorem 

(Edwards, 1994) which may bear the title of the 'fundamental theorem of cultural 

selection'. I have suggested that this theorem can play a similar role in the theory of 

cultural evolution that Fisher's Fundamental Theorem of Natural Selection plays in 

the theory of biological evolution. Moreover, I have discussed some ways in which 

the theorem gives precision to discussions on the processes that make up the theory of 

cultural evolution. 

 

Lastly, I will deal with the connection between Fisher's Theorem, the 'fundamental 

theorem of cultural selection', and the Price equation. The Price equation (Price, 1970) 

is a well-known mathematical equation which can famously be applied to any sort of 

selection, whether evolutionary or not (Price, 1995). Previous authors (e.g. Rice, 

2004; Frank, 2012) have noted that Fisher's Fundamental Theorem can be derived 

from Price's equation in a very simple way (essentially, by letting the abstract 'trait' in 

the Price equation be fitness itself, and ignoring the term representing changes in the 

trait due to transmission). However, this derivation does not make the specific causal 

links between genes and their average effect that Fisher's (1930) derivation does, and 

thus also does not invite the idea of viewing natural selection from the 'gene's point of 

view'. Similarly, while it is possible to derive the 'fundamental theorem of cultural 

selection' using the Price equation and produce a mathematically identical result, I 

feel that the concrete interpretation I have given in this chapter is more illuminating 

with regard to cultural selection. 
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General conclusions and future directions 
 
This thesis has presented four novel experimental and theoretical models of cultural 

evolution, divided equally between experimental and theoretical work. In my first 

experimental chapter, I showed with a novel task that group size can increase the rate 

of cultural accumulation. This lends support to the models of cumulative culture 

surveyed in Chapter 1, which have attempted to explain puzzling phenomena such as 

the loss of technology in Tasmania and the rise of technology in the Paleolithic. In my 

second experimental chapter, I showed that Acheulean handaxe evolution cannot be 

fully explained by cultural mutation due to perceptual error. This provides a first 

example of a transmission chain experiment examining the effects of perception, 

rather than memory or other cognitive processes, on cultural transmission. 

 

In my first theoretical chapter, I constructed two realistic models of cultural evolution 

and combined them to produce a model which qualitatively represented the difference 

between human and nonhuman culture. This extends previously analysed models to 

encompass the interesting phenomenon of cultural differences, as well as providing a 

detailed model for the cumulative gap between human and non-human cultures. 

Finally in the second theoretical chapter, I offered a mathematical formalisation of the 

process of cultural selection and argued that this representation can bring theoretical 

unity to the field of cultural evolution. I believe this theorem will prove useful to 

discussions amongst both theoreticians and philosophers interested in cultural 

evolution. 

 

There are many future directions in cultural evolution highlighted by the findings 

reported here. The experimental examination of cumulative culture in Chapter 2 can 
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be conducted with tasks in different domains, and greater effort devoted to linking 

experimental (‘toy’) tasks to real-life examples of cumulative technological trait-

complexes. For example, is cultural accumulation more likely to occur, or faster, with 

real-life technologies that can be combined easily and additively, as can jigsaw puzzle 

solutions, compared to real-life technologies that cannot, as represented by paper 

aeroplane designs? Such work will require detailed historical and/or ethnographic 

study of the process of invention and innovation. One specific potential type of 

cumulative culture which may be fruitfully investigated is academic research itself; 

references to earlier works in papers and books, for example, could allow a clear 

picture of the ‘tree’ of cultural traits which make up academic thought, including 

novel concepts, definitions and terminology, empirical observations, etc.  

 

Experimental tasks of cumulative cultural evolution should also be conducted with 

different groups of participants, with different designs, and with different incentive 

structures. One important question to understand is, to what extent does collaboration, 

or ‘skill-pooling’, aid the development of cumulative culture? It may prove interesting 

to link this literature with the literature on cooperation: cumulative cultural evolution 

can only proceed if traits can be freely copied from previous individuals and built 

upon, yet in an individually-competitive situation those individuals would have no 

incentive to share their knowledge. Cultural group selection (see Chapter 1) may 

provide a solution to this dilemma. Indeed, this might have contemporary implications 

for the patent system and recent phenomena such as patent trolling, in which 

companies buy patent rights solely in order to sue inventors who reinvent a 

technology independently. In addition, the hypothesis that population size affects 

cultural accumulation suggests looking for phenomena such as technological loss in 
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the historical record during times of population decrease e.g. due to famine or plague, 

and technological gain during times of population increase e.g. due to medicinal 

advances and political changes. 

 

The perceptual experiments of Chapter 3 can easily be applied to other technologies, 

such as hunting spears, as well as artistic, non-functional objects such as beads (for 

example, red ochre beads), and the model analyzed therein provides quantitative 

predictions of the divergence caused by perceptual errors. This model provides a 

simple baseline against which to detect the signatures of non-random cultural 

evolutionary processes operating on past material culture, which can be tested in the 

empirical record. Since there are significant numbers of such artifacts, data on their 

metric measurements will provide valuable testing grounds for general cultural 

evolutionary theories of technological change such as this model. The additional 

advantage of such models is that they are based on well-established psychophysical 

principles, and these principles could be used to construct other models e.g. models 

dealing with other sensory domains. 

 

The models of Chapter 4 represent a first step towards combining individual-level 

models of cultural differences and cumulative culture with quantitative empirical data, 

which offers much promise for the future. An obvious extension is consider more 

complicated but realistic models, including models which explicitly track individuals’ 

ages, environmental variables, and spatial location. Additionally, in future models the 

functional value of traits may be directly modelled, individual heterogeneity may be 

taken into account, and the multi-level social structure of human communities (i.e. 

family groups within bands within tribes). Such more complicated models will present 
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analytical challenges which will have to be faced by more sophisticated 

computational and/or mathematical techniques. As noted in Chapter 1, one cultural 

evolutionary model, Bentley’s model of random copying, has been rephrased in pure 

mathematics by Eriksson et al. (2010) as a random walk on the integer partitions of a 

given number (the population size). Investigating mathematical models of cultural 

evolution in such ways may unearth deeper insights into cultural evolutionary 

processes. 

 

Finally, the model of Chapter 5 offers a unifying conception of cultural selection that 

may focus the debate between researchers in support of, and researchers opposed to 

the theory of cultural evolution as a whole, as well as clear up conceptual 

disagreemen t within the field of cultural evolution over the use of terms such as 

‘content bias’ or ‘cultural mutation’. In particular, the term ‘cultural selection’ has not 

yet come to be used in a consistent way by different researchers in the field; Cavalli-

Sforza & Feldman (1981), for example, use it regularly, while Boyd & Richerson 

(1985) often use terms referring to more specific processes, such as content, model, 

and frequency-dependent biases. Since the field of cultural evolution is founded on 

the borrowing of Darwin’s concept of ‘natural selection’ from evolutionary biology, a 

coherent, precise, and widely-accepted definition of the term ‘cultural selection’ will 

be essential to the growth and wider acceptance of the field.  

 

As noted in the Introduction, cumulative cultural evolution has played a major role in 

allowing our species to more rapidly adapt to diverse environments and spread across 

the planet in an evolutionarily short time period. While the biological sciences have 

been successful in explaining the diversity and complexity of life on the planet, the 
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social sciences have been less successful in explaining the similar diversity and 

complexity of human culture. The field of cultural evolution offers a theoretically 

grounded path to understanding these complex phenomena (Mesoudi, 2011a). As in 

any science, a combination of empirical and theoretical work is essential, and more 

specifically, modelling is an essential tool to understand the complicated real world: 

for especially in social science, we will never be able to isolate every possible 

contributing factor in the ‘natural laboratory’ of the real world. In this thesis I have 

presented three modelling studies in which empirical and theoretical considerations 

are intertwined: in Chapter 2, by testing the empirical predictions of a theoretical 

model; in Chapter 3, by analysing a previously described theoretical model, deriving 

testable predictions, and then testing them empirically; and in Chapter 4, by 

introducing two new models, analysing them, and comparing their predictions with 

empirical evidence. The thesis is bookended by Chapter 1, which provides a review of 

the modelling literature that has accumulated so far in the years since the first books 

of Cavalli-Sforza & Feldman (1981) and Boyd & Richerson (1985), and by Chapter 5, 

which provides a mathematical and thus precise description of cultural selection 

which may be used as the foundation of an ‘ontology’ or classification of cultural 

evolutionary processes. I hope that these theoretical and experimental models will 

contribute to a more rigorous and productive science of cultural evolution. 
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Appendix A. 
Full data of the experiment presented in Chapter 2. 

Condition Replicate Place Value 
Individual 1 1 34 
Individual 1 2 27 
Individual 1 3 33 
Individual 1 4 55 
Individual 2 1 57 
Individual 2 2 18 
Individual 2 3 26 
Individual 2 4 44 
Individual 3 1 32 
Individual 3 2 54 
Individual 3 3 58 
Individual 3 4 7 
Individual 4 1 42 
Individual 4 2 60 
Individual 4 3 36 
Individual 4 4 42 
Individual 5 1 49 
Individual 5 2 25 
Individual 5 3 37 
Individual 5 4 54 
Group 1 1 41 
Group 1 1 37 
Group 1 1 47 
Group 1 2 70 
Group 1 2 38 
Group 1 2 48 
Group 1 3 33 
Group 1 3 47 
Group 1 3 79 
Group 1 4 36 
Group 1 4 61 
Group 1 4 55 
Group 2 1 69 
Group 2 1 57 
Group 2 1 55 
Group 2 2 66 
Group 2 2 57 
Group 2 2 88 
Group 2 3 82 
Group 2 3 67 
Group 2 3 27 
Group 2 4 80 
Group 2 4 98 
Group 2 4 95 
Group 3 1 50 
Group 3 1 23 
Group 3 1 32 
Group 3 2 56 
Group 3 2 28 
Group 3 2 29 
Group 3 3 50 
Group 3 3 48 
Group 3 3 57 
Group 3 4 100 
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Group 3 4 43 
Group 3 4 52 
Group 4 1 52 
Group 4 1 38 
Group 4 1 38 
Group 4 2 31 
Group 4 2 56 
Group 4 2 59 
Group 4 3 52 
Group 4 3 62 
Group 4 3 36 
Group 4 4 41 
Group 4 4 62 
Group 4 4 44 
Group 5 1 44 
Group 5 1 23 
Group 5 1 10 
Group 5 2 2 
Group 5 2 48 
Group 5 2 26 
Group 5 3 40 
Group 5 3 36 
Group 5 3 51 
Group 5 4 57 
Group 5 4 25 
Group 5 4 25 
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Appendix B. 

Data on the number of distinct pieces completed in the experiment of Chapter 2. 

1 2 3 4 5 
70 85 65 75 58 
73 90 73 82 56 
83 83 84 83 72 
71 100 100 81 67 
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Appendix C. 

Full data from the experiment presented in Chapter 3. 

Chain Place Scale Condition 
1 1 1.02038709420869 Larger 
1 2 1.0326150299997 Larger 
1 3 1.04772486646248 Larger 
1 4 1.10165309929125 Larger 
1 5 1.13836955677379 Larger 
1 6 1.16557555412524 Larger 
1 7 1.1734441130667 Larger 
1 8 1.16424782215465 Larger 
1 9 1.1175095427542 Larger 
1 10 1.14666033565637 Larger 
2 1 0.972554037845496 Larger 
2 2 1.0210288215406 Larger 
2 3 1.0523103277033 Larger 
2 4 1.03128671079693 Larger 
2 5 1.02769543364554 Larger 
2 6 1.03333861749822 Larger 
2 7 1.08660210349343 Larger 
2 8 1.12853423979788 Larger 
2 9 1.16029492742365 Larger 
2 10 1.15654415801077 Larger 
3 1 1.01128640469638 Larger 
3 2 1.02038216145833 Larger 
3 3 1.005907475327 Larger 
3 4 1.02419012728604 Larger 
3 5 1.03035489076557 Larger 
3 6 1.06349181574041 Larger 
3 7 1.03353416581587 Larger 
3 8 1.03351419992158 Larger 
3 9 1.11402349761038 Larger 
3 10 1.13261926177054 Larger 
4 1 0.999413274591619 Larger 
4 2 1.02908705647786 Larger 
4 3 1.04626782596473 Larger 
4 4 1.08015112304687 Larger 
4 5 1.0968727944114 Larger 
4 6 1.12883067460494 Larger 
4 7 1.14300645955404 Larger 
4 8 1.10868508726178 Larger 
4 9 1.12277854225852 Larger 
4 10 1.12090985199899 Larger 
5 1 1.04846994665897 Larger 
5 2 1.04755480402166 Larger 
5 3 1.06182642526338 Larger 
5 4 1.07441997181286 Larger 
5 5 1.04841063620827 Larger 
5 6 1.0768203420928 Larger 
5 7 1.05295275971384 Larger 
5 8 1.06249434315075 Larger 
5 9 1.06790791921905 Larger 
5 10 1.05270107199929 Larger 
6 1 1.00206486280037 Larger 
6 2 1.01800234430487 Larger 
6 3 0.98306032631614 Larger 
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6 4 1.0275256060976 Larger 
6 5 1.02031298550692 Larger 
6 6 1.03769494074041 Larger 
6 7 1.03478567504883 Larger 
6 8 1.03109292417584 Larger 
6 9 0.971202053185665 Larger 
6 10 0.957236967144591 Larger 
7 1 0.990721181233724 Larger 
7 2 1.00602680090702 Larger 
7 3 0.982293107466264 Larger 
7 4 0.99028251879143 Larger 
7 5 0.9766861558394 Larger 
7 6 0.975408925836737 Larger 
7 7 1.01513453720555 Larger 
7 8 1.00634555053711 Larger 
7 9 1.01141442131274 Larger 
7 10 0.981850451845111 Larger 
8 1 1.06026333063299 Larger 
8 2 1.02405071836529 Larger 
8 3 0.975863854610559 Larger 
8 4 0.977514623006185 Larger 
8 5 0.996105278246331 Larger 
8 6 1.00616738429214 Larger 
8 7 1.00957333096591 Larger 
8 8 1.02966395337654 Larger 
8 9 1.01141759236654 Larger 
8 10 1.00191629305753 Larger 
9 1 1.06414740175189 Larger 
9 2 1.07585387536251 Larger 
9 3 1.01507757568359 Larger 
9 4 0.97480366562352 Larger 
9 5 0.970190134684245 Larger 
9 6 1.00631971232096 Larger 
9 7 0.96892993441495 Larger 
9 8 0.970977143258759 Larger 
9 9 0.98800981278853 Larger 
9 10 0.979791498357599 Larger 

10 1 1.00103380052971 Larger 
10 2 0.955388242779356 Larger 
10 3 0.95582807968602 Larger 
10 4 0.973411103219697 Larger 
10 5 0.989152801513672 Larger 
10 6 1.00120304084547 Larger 
10 7 1.00986964832653 Larger 
10 8 1.02838155573065 Larger 
10 9 1.04031599287553 Larger 
10 10 1.11623513146603 Larger 
1 1 0.97385258437648 Smaller 
1 2 0.997147732821378 Smaller 
1 3 0.964152213356712 Smaller 
1 4 0.875708351828835 Smaller 
1 5 0.875285896994851 Smaller 
1 6 0.862015095566258 Smaller 
1 7 0.877776055075906 Smaller 
1 8 0.936521236072887 Smaller 
1 9 0.943303356748639 Smaller 
1 10 0.972686693596117 Smaller 
2 1 1.03762623457475 Smaller 
2 2 1.03166665002072 Smaller 
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2 3 1.0191037569913 Smaller 
2 4 1.00111894919656 Smaller 
2 5 1.0255529757413 Smaller 
2 6 0.958790372443922 Smaller 
2 7 0.967180217396129 Smaller 
2 8 0.890521988377427 Smaller 
2 9 0.847049248435281 Smaller 
2 10 0.850743995897698 Smaller 
3 1 0.964989958792022 Smaller 
3 2 0.996467952843868 Smaller 
3 3 1.06643361409505 Smaller 
3 4 0.998179382324219 Smaller 
3 5 1.05207120675752 Smaller 
3 6 1.06384803078391 Smaller 
3 7 1.05651397057736 Smaller 
3 8 1.03382966105143 Smaller 
3 9 0.994979789040305 Smaller 
3 10 0.95821494362571 Smaller 
4 1 1.03432129183683 Smaller 
4 2 1.03308939615885 Smaller 
4 3 1.03048842736446 Smaller 
4 4 1.07907695793383 Smaller 
4 5 1.04069898570668 Smaller 
4 6 1.03484040508848 Smaller 
4 7 1.03225141583067 Smaller 
4 8 1.01949097789418 Smaller 
4 9 0.99645644309304 Smaller 
4 10 0.995590862852154 Smaller 
5 1 1.00389597020005 Smaller 
5 2 1.03363329060872 Smaller 
5 3 0.932629707105232 Smaller 
5 4 0.887737568248402 Smaller 
5 5 0.915218977494673 Smaller 
5 6 0.883711915449663 Smaller 
5 7 0.902923979788116 Smaller 
5 8 0.919528674501361 Smaller 
5 9 0.884367853800456 Smaller 
5 10 0.824908128680605 Smaller 
6 1 0.991549883293383 Smaller 
6 2 1.00257998287317 Smaller 
6 3 0.963844738584576 Smaller 
6 4 0.954531882083777 Smaller 
6 5 0.884840516986269 Smaller 
6 6 0.868377697568951 Smaller 
6 7 0.8593986825654 Smaller 
6 8 0.845253903475675 Smaller 
6 9 0.799507870298444 Smaller 
6 10 0.862050388220585 Smaller 
7 1 1.03932709387577 Smaller 
7 2 0.988408308549361 Smaller 
7 3 1.00367963386304 Smaller 
7 4 0.884898359356505 Smaller 
7 5 0.928645747791637 Smaller 
7 6 0.928948935768821 Smaller 
7 7 0.928821682554303 Smaller 
7 8 0.898043316927823 Smaller 
7 9 0.91960971254291 Smaller 
7 10 0.920930162834399 Smaller 
8 1 0.988010400020715 Smaller 



 120 

8 2 0.996553806189335 Smaller 
8 3 1.03400101540305 Smaller 
8 4 1.07371928636955 Smaller 
8 5 1.06886921830611 Smaller 
8 6 1.09395847852302 Smaller 
8 7 1.11203606900302 Smaller 
8 8 1.10370019068862 Smaller 
8 9 1.15381023984967 Smaller 
8 10 1.18244004035719 Smaller 
9 1 0.959803465409712 Smaller 
9 2 0.994103990959399 Smaller 
9 3 1.0129216114391 Smaller 
9 4 0.985320994059245 Smaller 
9 5 0.958314714373964 Smaller 
9 6 0.961129788023053 Smaller 
9 7 1.01340243715228 Smaller 
9 8 1.03424448186701 Smaller 
9 9 1.07442032415217 Smaller 
9 10 1.12353842070608 Smaller 

10 1 1.0063673955744 Smaller 
10 2 0.903933725530451 Smaller 
10 3 0.89808254403779 Smaller 
10 4 0.893241754242868 Smaller 
10 5 0.888963239265211 Smaller 
10 6 0.977966498172644 Smaller 
10 7 0.963611724853516 Smaller 
10 8 1.00986025261156 Smaller 
10 9 1.03085955810547 Smaller 
10 10 1.00977909712358 Smaller 
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Appendix D. 

R source code for the simulation presented in Chapter 3. 

conditions <- list ( 

 "larger"  = list ("sd" = 0.0269, "final.mean" = 10.64647, "comparison" = `>=`, 

"final.variance" = 0.6143204), 

 "smaller" = list ("sd" = 0.0399, "final.mean" = 9.700883, "comparison" = `<=`, 

"final.variance" = 1.33803)) 

simulation <- function (condition) { 

 values <- replicate (10000, replicate (10, prod (rnorm (10, 1, condition$sd)) * 

10)) 

 mean.p.value <- length (which (condition$comparison (colMeans (values), 

condition$final.mean))) / 10000 

 variance.p.value <- length (which (apply (values, 2, var) <= 

condition$final.variance)) / 10000 

 return (c ("mean p-value" = mean.p.value, "variance p-value" = 

variance.p.value))} 

print (sapply (conditions, simulation)) 
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Appendix E. 

Supplementary figures for Chapter 4. 

 

 

Figure E1. The end result of one simulation of the cultural differences model. Each rectangle 

represents one population, with numbered cells representing traits present in that population 

and coloured cells representing traits absent from that population. Parameter values: N = 100, 

a = 0.9, μ = 0.1, m = 0, p = 6. 
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Figure E2. The time course of one simulation of the cumulative culture model. The trait level 

corresponds to the number of dashed lines making up the star. The mean trait level at any 

timestep is equal to the trait level depicted by the closest star to the left of that timestep. 

Parameter values: N = 100, n = 3, a = 0.85, μ = 0.1. 

 

 

Figure E3. The number of traits known in the population in one simulation of the combined 

model. Parameter values: N = 30, n = 2, a = 0.7, μ = 0.1, m = 0, p = 1. 
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Appendix F. 

Proof of result in Chapter 4. 

 

Imagine, in Strimling et al’s model (i.e. with m = 0), that a focal individual has just 

invented a new trait. In the next timestep, one of three things can happen: the trait can 

be lost because the individual dies, the trait can continue to be known only by the 

inventor, or another individual can learn the trait. Let us denote the probabilities of 

these three events by 𝑝lost, 𝑝kept, and 𝑝copied. The trait will be lost if the inventor is 

randomly picked to die; thus, 

𝑝lost = 1
𝑁

. 

The trait will be learnt by another individual if the inventor does not die, and the 

individual randomly picks the inventor to learn from, and is successful at learning; 

thus, 

𝑝copied = �1 − 1
𝑁
� � 1

𝑁−1
� 𝑎 = 𝑎

𝑁
. 

Finally, 

𝑝kept = 1 − 𝑝lost − 𝑝copied = 1 − 1
𝑁
− 𝑎

𝑁
= 𝑁−𝑎−1

𝑁
. 

 

What is the probability P(t) that the trait is learnt by another individual for the first 

time exactly t timesteps after it was invented? For this to happen, the trait must 

continue to be known only by the inventor for 𝑡 − 1 timesteps, and must then be 

learnt by another individual on the tth. Thus, 

𝑃(𝑡) = 𝑝kept𝑡−1 𝑝copied = �
𝑁 − 𝑎 − 1

𝑁
�
𝑡−1 𝑎

𝑁
. 

Finally, what is the probability that the trait will ever spread beyond its inventor? This 

happens if P(t) ever happens, i.e. with probability 
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�𝑃(𝑡)
∞

𝑡=1

= ��
𝑁 − 𝑎 − 1

𝑁
�
𝑡−1 𝑎

𝑁

∞

𝑡=1

. 

Using the standard identity for infinite geometric series, this can be shown to be equal 

to 

𝑎
𝑎 + 1

. 
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Appendix G. 

Proof of the theorem. 

 

Edwards (1994) gives a concise proof of the general growth-rate theorem. Here I give 

a more extended proof specific to cultural selection. 

 

Imagine a population of N traits, where each trait falls into one of k trait-types. There 

are 𝑛𝑖 traits of each trait-type, with 1 ≤ 𝑖 ≤ 𝑘, and each trait-type makes up a 

proportion 𝑝𝑖 = 𝑛𝑖 𝑁⁄  of the population. Each trait of trait-type i has absolute fitness 

𝑓𝑖 and relative fitness 𝑤𝑖 = 𝑓𝑖 𝑓̅⁄ , where 𝑓 ̅is the mean absolute fitness of the 

population. The mean relative fitness 𝑤�  is thus 1
𝑁
∑𝑛𝑖𝑤𝑖 = 1

𝑁
∑𝑛𝑖𝑓𝑖 𝑓̅⁄ =

1
𝑁
∑𝑛𝑖𝑓𝑖

∑𝑛𝑖𝑓𝑖
𝑁

� = 1 (where the summations, like all others here, are from 1 to k). 

Finally, let w represent the vector of the relative fitnesses of each trait. 

 

The theorem to be proved is that Δ𝑤� = Var(𝒘). Let a variable with an apostrophe 

denote the value of that variable after reproduction; then ∆𝑤� = 𝑤� ′ − 𝑤� = ∑𝑤𝑖
′𝑝𝑖′ − 1. 

The point of the theorem, as discussed in the text, is that the mean fitness of the 

population after reproduction is calculated using the fitnesses of the traits before 

reproduction, thereby ignoring possible changes in fitness due to environmental 

change; thus, 𝑤𝑖
′ = 𝑤𝑖. Also, note that 𝑝𝑖′  is equal to 𝑝𝑖𝑤𝑖 (to wit, 𝑝𝑖𝑤𝑖 = 𝑛𝑖

𝑁
𝑓𝑖
𝑓̅

=

𝑛𝑖
𝑁

𝑓𝑖
∑𝑛𝑖𝑓𝑖/𝑁

= 𝑛𝑖𝑓𝑖
∑𝑛𝑖𝑓𝑖

= 𝑛𝑖
′

∑𝑛𝑖
′ = 𝑛𝑖

′

𝑁′ = 𝑝𝑖′ ). Thus, ∆𝑤� = ∑𝑤𝑖
2𝑝𝑖 − 1. But this is exactly 

equal to Var(𝒘), because by definition Var(𝒘) = 𝔼(𝒘2) − 𝔼(𝒘)2 = ∑𝑤𝑖
2𝑝𝑖 − 1. 

Therefore, the theorem is proved. 
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Fisher (1930) defined fitness in a different way, using organismal life and birth tables 

to define a ‘malthusian parameter’ m. The theorem could also be derived this way; 

however, as it is probably impossible to construct accurate survival and reproduction 

tables for cultural traits, I doubt this would be illuminating. 
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