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Abstract

We study holography in the sense of the anti-de Sitter/conformal field theory (AdS/CFT)

correspondence, where the field theory lives in a compact space. We first review some

aspects of the AdS/CFT duality. We then discuss our work on finite-size corrections

to the drag force exerted on a quark in the quark-gluon plasma. Interestingly, the

finite-size effects yield a drag force with decreased magnitude, which is opposite to

what is seen in many situations with Newtonian fluids. We then turn to meson exci-

tations in a holographic description of N = 2 supersymmetric Yang-Mills theory at

finite size. In contrast to other related systems reported in the literature, the first

meson excitation is an SO(4) charged scalar meson instead of a vector. Intriguingly,

there is also a cross-over between the vector and scalar meson spectra as a function

of the system size. Finally, we discuss the extension of this system with a magnetic

Kalb-Ramond field. We find intriguing new structure in the phase diagram of the

system, and investigate possible causes for an apparent mass gap in the spectrum.
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Chapter 1

Introduction

In its everyday meaning, holography is a technique used to encode a three-dimensional

object in a two-dimensional surface called a hologram. This hologram contains the

information of the light rays coming from the object. In the absence of the object,

one can reconstruct its three-dimensional image by viewing the hologram in a cer-

tain way. Similarly, holography in the original sense of gravitational physics is the

way to map the degrees of freedom of a black hole to its horizon via the Bekenstein-

Hawking entropy formula. Furthermore, in the anti-de-Sitter/conformal field theory

(AdS/CFT) correspondence, which we explain in a later chapter, the term holog-

raphy means that physics (a gravity theory) in a (d + 1)-dimensional spacetime

(the bulk) is mapped to the dual physics (a field theory) in the dual d-dimensional

spacetime (the boundary). This final meaning is the focus of this thesis.

The concept of the AdS/CFT correspondence was introduced by Maldacena in

1997 [7]. It allows us to compute field theory quantities at strong coupling using the

weakly-coupled gravity description. As we have briefly stated, AdS/CFT provides a

duality between the gravity and the field theories. The most well-studied example is

the duality between type IIB superstring theory in AdS5×S5 spacetime and N = 4

supersymmetric Yang-Mills (SYM) theory on the boundary of AdS5. Although

the AdS/CFT correspondence is still a conjecture, the qualitative results from its

application are usually sensible when compared to those from experiments.

String theory was first developed in the late 1960s to understand hadrons. A

hadron is a group of quarks glued together by gluons. Both the quarks and the

1
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gluons interact with each other by the strong interaction. However, the attempt to

understand hadrons using string theory directly has not yet been successful. The

theory of quantum chromodynamics (QCD) is used instead to explain the hadron. In

string theory, a one-dimensional object called a string replaces the point-like particle.

Different oscillation modes of the string represent different types of particles. The

graviton is automatically included in the set of string oscillation modes. This makes

the string theory a theory of gravity.

Without incorporating the theory of supersymmetry, a string theory can only

describe bosonic particles. As a result, the theory has a tachyon that leads to an

instability. A theory with supersymmetry possesses a symmetry between the number

of bosons and fermions. The new particles required to allow this symmetry are called

superpartners. Including supersymmetry in string theory, one is also able to describe

fermions. Such a theory has no tachyon and is renamed a superstring theory. There

are five different types of superstring theory depending on the boundary conditions

and the GSO projection [8]. These are: type I, type IIA, type IIB, SO(32) heterotic

and E8×E8 heterotic string theories. Let us focus on the type IIB superstring theory

as this will always be the theory on the gravity side in this thesis. In the Neveu-

Schwarz-Neveu-Schwarz (NS-NS) sector, this theory has the field content: gµν (rank

two symmetric traceless tensor, the graviton), Bµν (rank two antisymmetric tensor)

and φ (scalar, the dilaton). In the Ramond-Ramond (R-R) sector the field content

is: C(0) (pseudo-scalar, the axion), B′µν (rank two antisymmetric tensor) and C(4)

(R-R four form). In the low energy limit, type IIB superstring theory becomes type

IIB supergravity.

N = 4 SYM theory is a non-Abelian gauge theory with N = 4 supersymmetry,

where N is the number of left-handed Weyl spinor supercharges. A Weyl spinor

has two components which are complex numbers, so the total number of real super-

charges is 4N . The supercharges are anti-commuting generators used to transform

bosons/fermions into fermions/bosons. In 3 + 1-dimensional Minkowski spacetime,

N = 4 supersymmetry is the maximally extended supersymmetry with the spin of

the particle being no more than one. Therefore, this theory does not contain gravity.

N = 4 SYM has fields Aµ (gauge bosons), φI (real scalar fields), ψaα (chiral fermions)
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and ψ̄α̇a (anti-chiral fermions), where I = 1 . . . 6, a = 1 . . . 4 and α, α̇ = 1, 2. The

supersymmetry restricts the particles to transform in the same representation of the

gauge group (the adjoint) and to have the same mass. By gauge invariance, the

gauge fields have to be massless, therefore all particles in the theory are massless.

The theory has a further global symmetry group SO(6)R ∼ SU(4)R (also dubbed

‘R-symmetry’) where the irreducible representations of dimension four and six are

associated with the fermions and the scalars, respectively. The theory also has

conformal symmetry under the group SO(2, 4) composed of

• Translation (xµ → xµ + aµ, aµ = constant)

• Lorentz Transformation (xµ → Λµ
νx

ν , Λµ
ν = constant and ηµνΛ

µ
αΛν

β = ηαβ)

• Dilation (xµ → kxµ, k = constant)

• Special Conformal Transformation (xµ → xµ−xνxνbµ
1−2bσxσ+bρbρxαxα

, bµ = constant)1.

Due to the conformal symmetry, N = 4 SYM theory in flat spacetime does not

have any scales left to set a phase transition despite a change from zero/finite to

finite/zero temperature. However, by the symmetries this theory would be enough to

understand “simple” particle physics. This thesis will consider N = 4 SYM theory

by the holographic method with additional scales. Specifically, we will consider

N = 4 SYM theory on S3 with a quark mass, and the radius of the S3 and the

quark mass provide scales. Some phase transitions are then expected to appear.

The goal of many high energy physicists in this area is to explain all the properties

of the QCD. However, we are still far from achieving that at present. QCD is still

hard to analyse theoretically. QCD is a theory explaining the strong nuclear force.

It has an SU(3) gauge symmetry. The gauge invariant Lagrangian of QCD is

LQCD = ψ̄
(
i /D −m

)
ψ − 1

2
tr (GµνG

µν) , (1.0.1)

1The special conformal transformation can also be viewed as the composition of an inversion

xµ → xµ

xνxν and a translation, so it is simpler to replace the inversion with the special conformal

transformation in the bullet.
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where /D ≡ γµDµ = γµ (∂µ − igAµ), Gµν ≡ G
(a)
µν ta =

(
∂µA

(a)
ν − ∂νA(a)

µ + gfabcA
(b)
µ A

(c)
ν

)
ta,

Aµ = A
(a)
µ ta, ta = λa/2, λa are Gell-Mann matrices and γµ are the gamma matrices.

QCD particles consist of quarks ψ and gluons Aµ associated by the SU(3) colour

symmetry. The quarks transform in the fundamental representation while the gluons

transform in the adjoint representation of the SU(3) as shown in the following

ψ(x)→ U(x)ψ(x),

Aµ(x)→ U(x)

(
Aµ(x)− i

g
U †(x)∂µU(x)

)
U †(x),

(1.0.2)

where U(x) = exp (−iθa(x)ta) and θa(x) are real functions. This yields transforma-

tions of the other elements in the Lagrangian as

Dµψ(x)→ U(x)Dµψ(x),

Gµν(x)→ U(x)Gµν(x)U †(x).
(1.0.3)

This shows that the QCD Lagrangian is invariant under the gauge transformation.

As well as the quark mass m, QCD has an energy scale called ΛQCD. In QCD, ΛQCD

is the renormalisation scale at which the coupling becomes order one. This scale is

used to characterise the low and high energy regimes. For example, the high energy

regime has the energy E � ΛQCD. This arises from the dependence of the coupling

parameter on the energy scale, called the running of the coupling parameter. The

energy scale dependence is obtained from renormalisation of loop diagrams and is

encoded in a form of a beta function

β(g) ≡ µ
∂g

∂µ
, (1.0.4)

where g and µ are the coupling parameter and the energy scale, respectively. If the

beta function vanishes, it means the theory is scale-invariant. Of course, in 3+1-

dimensional spacetime N = 4 SYM has the vanishing beta function. For quantum

electrodynamics (QED), at one-loop the beta function is positive, so the coupling

parameter changes in the same direction as the energy scale. For QCD on the other

hand, the one-loop beta function is negative when the number of flavours Nf ≤ 16,

so for example at high energy the coupling parameter is small. This leads to a

QCD strange property called aymptotic freedom. Actually, QCD has two strange

behaviours:
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• Confinement: The force between two quarks is stronger when the distance

between the two increases. This means we have to use an infinite amount

of energy to completely separate the quarks. By experiments, people believe

this is true since free quarks have not yet been found in the universe. In

general, both quarks and gluons exhibit confinement. They satisfy a rule

that can be understood by introducing the colour charges. The statement of

confinement is then that the quarks and gluons are always bounded together

to form colourless particles.

• Asymptotic Freedom: In the high energy regime, the interaction between

quarks and gluons is very weak.

The colour charge is a quantity analogous to the electric charge in electromagnetism.

The difference is that colour charge has three different types, i.e. red, green and blue,

while there is only one type for the electric charge. The positive/negative electric

charges are analogous to, for example, red/anti-red colour charges. The result of

combining red, green and blue colour charges together is white or colourless colour

charge. Obviously, if we combine for example blue and anti-blue colour charges, we

will also have a colourless colour charge. Exploiting asymptotic freedom, one can

analyse QCD in the high energy regime using perturbation methods. However, at

the low energy regime, the interaction is strongly coupled, so non-perturbative tools

are needed. One of the best tools is lattice QCD. Lattice QCD is a non-perturbative

approach to compute observables in QCD. It represents spacetime as a lattice of

finite points. On the analytical side, this makes the computation of the partition

function from the path integral very simple. By contrast, a very large number of

configurations and very small lattice spacing are required to obtain the accurate

results on the numerical side. As a result, a very large amount of resources and

time are required to perform the computation. As the partition function from the

path integral is always computable in lattice QCD, in principle one can compute

any observable quantities in QCD. However, due to the sign problem2 in which the

2In more detail, the sign problem in QCD arises from the factor exp(−S) in the path integral,

where S is the action in the Euclidean signature. Introducing a chemical potential adds an imag-
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path integral is over a highly oscillatory function, it is very difficult for lattice QCD

to accurately compute observables at low temperature and high density.

Let us consider an alternative approach to the lattice QCD. Since QCD is difficult

to examine analytically, it is better to play with a toy model that is quite similar

to but is simpler than QCD. Then we will continue to find a way to modify the toy

model so that it becomes more and more similar to QCD. The toy model we are

considering is N = 4 SYM theory. This theory is similar to QCD; for example both

QCD andN = 4 SYM posses non-Abelian gauge symmetries. Furthermore, theN =

4 SYM theory is simpler than the QCD since all particles are massless and in the

adjoint representation, whereas in QCD a quark is massive and in the fundamental

representation. Also, in N = 4 SYM the particle content is so finely tuned that the

beta function vanishes both perturbatively [9,10] and non-perturbatively [11] while

the one in QCD is not. This is the main difference between QCD and N = 4 SYM.

Nonetheless, the toy model N = 4 SYM theory is yet not easy to analyse at strong

coupling because it is non-perturbative. The AdS/CFT correspondence helps us in

this step. From the duality, the N = 4 SYM theory is said to correspond to the

type IIB superstring theory in the dual spacetime. As a result of the duality, the

coupling constants of the two theories are related by inverse proportion: one theory

at strong coupling is dual to the other one at weak coupling and vice versa. One

takes this advantage to study the type IIB superstring theory at weak coupling (i.e.

at perturbative regimes) and calculate physical quantities and then map them to

the dual non-perturbative N = 4 SYM theory.

The first application of the AdS/CFT correspondence we will consider is the drag

force in the quark-gluon plasma (QGP). The drag force is the key to explain why

the quark-antiquark pair production near the boundary of the QGP does not lead to

two antiparallel jets in the collider. Rather, it leads to only one jet in observation.

The QGP is a matter state. It has been experimentally produced in the Relativistic

inary part to the action causing the factor exp(−S) to oscillate. Since the Euclidean action is

inversely proportional to the temperature, the factor exp(−S) will oscillate most highly when the

temperature is low and/or the chemical potential or the density is high. This leads to the sign

problem.
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Heavy Ion Collider (RHIC) and in the Large Hadron Collider (LHC) [12]. It consists

of quarks and gluons for which the strong interaction is very weak due to the very

high energy densities and temperature. The quarks in QGP are deconfined. This

means they are not allowed to exist in bound states. The colour charge of the

particle in QGP is screened. This is why it is called a plasma. To understand the

QGP, one could think about applying the lattice QCD [13–15]. However, the drag

force or the energy loss rate are examples of equilibrium rate quantities, so directly

extracting those quantities from the partition function obtained in the lattice QCD

is impossible [16]. We have already discussed how the N = 4 SYM theory and

QCD are quite similar. Using N = 4 SYM theory to study the drag force will give

us some qualitative and some quantitative results. Since this process is strongly

coupled, directly calculating the quantities in field theory side is very hard to do.

By using AdS/CFT duality, one finds it easier to do the calculation.

To make the toy model N = 4 SYM theory more similar to QCD, one can

consider adding particles in the fundamental representation to the theory (‘quarks’).

On the gravity theory side, this is achieved by adding coincident D7-branes to the

bulk. By doing this, at least half of the supersymmetry is broken. This results in

supersymmetry breaking in the field theory side as well, so the field theory is N = 2

SYM theory. A quark is modelled by a string with one end ending on a D7-brane

and the other end ending on a D3-brane. The quark mass is then the shortest length

of the string or the shortest distance between the D7-brane and the D3-brane. As

long as the quark is massless the field theory is still conformal, and we can use the

AdS/CFT correspondence. However, when the quark is massive, it seems that we

cannot use the AdS/CFT duality but one claims the correspondence is still true by

gauge/gravity duality, a generalisation of AdS/CFT [17].

Gauge/gravity duality is right now the strongest conjecture in the AdS/CFT

family. It states that given a quantum theory of gravity in a d + 1-dimensional

spacetime of which the asymptopia is an AdS spacetime, there is always a gauge

theory, which is equivalent to the gravity theory, located in the boundary of the

d+ 1-dimensional spacetime. We know that QCD is a gauge theory. One combines

these aspects with an important fact that, even before people invented holography,
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’t Hooft found a relation between the large Nc expansion of double line Feynman

diagrams and the genus expansion in perturbative string theory suggesting that QCD

has a string description. Combined with the fact that QCD is well-defined at large

Nc, many people have started to believe QCD has a dual holographic description.

Introducing a scale to a theory may result in a phase transition or in some

interesting phenomena. In fact, phase transitions do need scales to set the transition

points. For example, let us consider water. Without any scale quantities, water

molecules are like massless point particles. The interaction between the molecules

cannot be determined. Adding scale quantities such as the shape, the atomic and

bonding information, we can determine the interaction by, for example, the mass

and the charge distribution of the molecule. The bound states between molecules

are likely to form solid and liquid states, and there is eventually at least one point

beyond which the bonding between the water molecules completely breaks down

resulting in a gaseous phase. Let us go back to QCD. Examples of the QCD phase

diagram are shown in figure 1.1. In that figure we see there are at least three
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Figure 1.1: Left: [4] A sketch of the phase diagram of QCD, where the vertical and

horizonal axes represent temperature and baryon chemical potential, respectively.

Right: [5] A QCD phase diagram from extended mean-field approximation, where

T , µ and µI represent temperature, baryon chemical potential and isospin chemical

potential, respectively.

scales: temperature and baryon and isospin chemical potentials. In our work, we

will consider adding a finite size to the QCD-like model N = 4 and N = 2 SYM,
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and some interesting behaviours are expected to appear. Including a finite size to

the system will yield a more realistic result. For example, the quark-gluon plasma

in a collider always has a size, which is not infinite. Furthermore, much research

on holographic N = 2 SYM theory have been done by, for example, adding finite

isospin chemical potential, temperature, magnetic field to the theory. Fewer of them

have been done by including a finite size (see [6, 18]), which is our main topic.

In this thesis, we will study various aspects of the holographic N = 4 and N = 2

SYM theories on the compact space S3. For N = 4 SYM, we study the drag force

in QGP with a finite-size correction at finite temperature. For N = 2 SYM, we

consider the influence of the isospin chemical potential and the magnetic NS-NS

two-form (magnetic Kalb-Ramond) field on the scalar, vector and SO(4) charged

scalar meson spectra and new ground states. We find the finite-size correction to

the theory in the non-compact case by considering the theory in the planar limit

of S3, yielding the space R3. Incorporating the effects of finite size leads to many

interesting results.

This thesis is organised as follows.

In chapter 2, we review some aspects of basic string theory. We begin this review

with a study of the fundamental string action. We then review D-branes and how

to get the Dirac-Born-Infeld (DBI) action. We also mention the Wess-Zumino part

of the D-brane action. Then we exhibit the duality between open and closed strings

which plays an important role in anti-de Sitter/conformal field theory (AdS/CFT)

correspondence. We then review the AdS/CFT correspondence in more detail in

both non-compact and compact worldvolumes.

In chapter 3, we review the AdS/CFT correspondence with flavour. Following

[19, 20], we review how the addition of D7-branes in the gravity theory (type IIB

supergravity) is dual to adding quarks to the dual field theory (N = 4 SYM). As we

have mentioned, adding the D7-branes breaks at least half of the supersymmetry,

and the dual field theory is N = 2 SYM. We review the probe limit of the embedded

D7-branes in which the backreaction is safely neglected. We finally review the D7-

brane renormalisation which is important in determining the on-shell action and

various holographic quantities.
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In chapter 4, we present our work [1] in which the holographic drag force was

computed in five-dimensional global AdS spacetime. The underlying theory isN = 4

SYM. The drag force is exerted on a holographic quark, which is modelled by a

string hanging from the boundary of the AdS spacetime [21–25]. The drag force is

computed in a static condition, i.e. the string moving at a constant velocity. We

compare the result with the infinite-size limit.

In chapter 5, we present the work in our paper [2]. We consider the influence of

the isospin chemical potential in N = 2 SYM theory in the finite size model. We

study N = 2 SYM on the compact space S3 from the dual gravitational perspective,

i.e. the type IIB superstring theory on AdS5 × S5 with D7-branes embedded in its

topological AdS5 × S3. The isospin chemical potential is included by turning on

a gauge field on the D7-branes. We consider the effect of this chemical potential

on the vector, scalar and charged scalar meson spectra and new ground states in

N = 2 SYM theory in the compact size case. We compare the result with that of

non-compact size.

In chapter 6, we discuss our work in progress [3]. We find the effect of an external

magnetic field on N = 2 SYM theory in the compact size model. As in chapter 5, we

study theN = 2 SYM via its dual type IIB superstring theory on AdS5×S5 in which

the D7-branes are embedded. We add the external magnetic field by turning on a

Kalb-Ramond field (or B-field) with a specified ansatz that satisfies the equations

of motion from first principles. We analyse the influence of the external magnetic

field on the charged scalar, vector and scalar meson spectra and new ground states.

In chapter 7, we summarise what we have done and conclude with the results

from chapters 4, 5 and 6 based on the knowledge of chapters 2 and 3. We also

propose future plans and some open questions.



Chapter 2

AdS/CFT Correspondence

In this chapter a short introduction of string theory are made followed by some

aspects of D-branes. The duality of open and closed strings are mentioned leading

to a main idea of AdS/CFT correspondence. It then discusses some materials of

AdS/CFT correspondence.

2.1 A Short Introduction to Basic String Theory

String theory was formulated in 1960s with the purpose to explain the strong nuclear

force. However, as a candidate of the theory of the strong interaction it was abandon

due to the existence of the graviton, and then it turns out to be a theory of gravity.

The string theory models the particle by a string with a finite length. The string is

described by the action

S = −T
∫
dτdσ

√
− det

(
Gµν

∂Xµ

∂σa
∂Xν

∂σb

)
, (2.1.1)

where T = 1/(2πα′) is the string tension, Xµ is the spacetime coordinates, σa =

(τ, σ) is the world-sheet coordinates, and Gµν is the spacetime metric. This action

is called Nambu-Goto action. This action has a good interpretation because it

indicates the extremal area of the string world-sheet. However, the square root in

the action serves the difficulty in its quantisation. This problem is eliminated by

using an equivalent action. This action is Polyakov action giving the same equations

11
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of motion as Nambu-Goto one’s. The Polyakov action is [26]

SPolyakov = −T
2

∫
d2σGµν

√
−hhab∂aXµ∂bX

ν , (2.1.2)

where hab is a world-sheet metric, hab = (h−1)ab and h = det(hab). To convince

that this action is equivalent to Nambu-Goto action, one shows this by using the

equation of motion for hab

Tab = − 2

T
√
−h

δSPolyakov

δhab

= Gµν∂aX
µ∂bX

ν − 1

2
Gµνhabh

cd∂cX
µ∂dX

ν = 0

(2.1.3)

or

Gµν∂aX
µ∂bX

ν =
1

2
Gµνhabh

cd∂cX
µ∂dX

ν . (2.1.4)

Taking the square root of minus determinant of both two sides of (2.1.4), one proves

the Nambu-Goto and Polyakov actions are equivalent by√
− det (Gµν∂aXµ∂bXν) =

1

2
Gµν

√
−hhab∂aXµ∂bX

ν . (2.1.5)

The Polyakov action has conformal invariance in hab → eφhab as the energy-momentum

tensor in (2.1.3) vanishes implying it is traceless. Then we are free to choose the

world-sheet metric to be flat hab = ηab, so the Polyakov action is simplified

SPolyakov = −T
2

∫
d2σGµν∂aX

µ∂aXν . (2.1.6)

At quantum level, the theory posses tachyons which shows instability of the the-

ory. To remove tachyons, one imposes supersymmetry. This results the fermion is

therefore included into the action

S = −T
2

∫
d2σGµν

(
∂aX

µ∂aXν + ψ̄µρa∂aψ
ν
)
. (2.1.7)

This action is in Ramond-Neveu-Schwarz (RNS) formalism. ρa in the action is the

two-dimensional Dirac matrices, satisfying the algebra

{ρa, ρb} = 2ηab. (2.1.8)

The spinor ψµ in the action represents the fermionic field, satisfying the anti-

commutation relation

{ψµ, ψν} = 0. (2.1.9)
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The conformal transformation hab → eφhab in general provides anomaly in quantum

theory. One treats this by fixing the spacetime dimension D to be ten. The action

(2.1.7) yields the equations of motion

∂a∂
aXµ = 0, (2.1.10)

ρa∂aψ
µ = 0, (2.1.11)

where the first one is for the bosonic part and the second one is for the fermionic

part. One views the equation for the bosonic part as a wave equation(
∂2

∂σ2
− ∂2

∂τ 2

)
Xµ = 0. (2.1.12)

In general, the string has finite length. One has to deal with the boundary conditions

to complete the variational problem. When we vary the action in (2.1.7) with

Xµ → Xµ + δXµ, it results the change in the action by

δS = T

∫
dτdσ∂a

(
Gµνη

ab∂bX
ν
)
δXµ − T

∫
dτ

[
Gµν

∂Xµ

∂σ
δXν

]σ=σ2

σ=σ1

. (2.1.13)

To satisfy the variational principle, each term on the right hand side has to vanish

independently. The first term yields the equations of motion of the string. The

second term is the boundary term. For simplicity let us choose the boundary points

of the string as σ1 = 0 and σ2 = π. For the second term to be zero, there are a few

cases yielding that. Those cases are

• Imposing the periodic boundary conditions Xµ(τ, σ) = Xµ(τ, σ + π),

• Applying the the Neumann boundary conditions ∂Xµ

∂σ

∣∣
σ=0

= ∂Xµ

∂σ

∣∣
σ=π

= 0 for

all µ’s,

• Using the Dirichlet boundary conditions δXµ = 0, and Xµ(τ, 0) = Xµ
σ0

=

constant and Xµ(τ, π) = Xµ
σπ = constant for µ = 1, . . . , D−p−1, and applying

the Neumann boundary conditions for the remaining p+ 1 coordinates.

The first case is the case for the closed string. The second and the third cases are

the cases for the open strings. For the third case, Xµ
σ0

and Xµ
σπ also indicate the

position of Dp-branes or D-branes with p spatial dimensions.
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2.2 D-branes

D-branes are not only hyperplanes in which the open strings must end but also

physical objects having their own properties. In superstring theory, D-branes are

electric and magnetic sources of Ramond-Ramond (R-R) differential forms. More

specifically, the Dp-brane carries an R-R charge by acting as a source of a (p+1)-form

gauge field. The D-branes are stable in superstring theory because they carry R-R

charges that are conserved. However, not all D-branes are stable in a particular one

of the type II superstring theory. For type IIA superstring theory, the D-branes with

even spatial dimensions are stable i.e. D0-, D2-, D4-, D6- and D8-branes. For type

IIB superstring theory the D-branes with odd spatial dimensions are stable i.e. D(-

1)-, D1-, D3-, D5- and D7-branes. D(-1)-branes are localised in both space and time;

they are also called D-instantons. For D9-branes, they must fill all ten dimensional

spacetime; with this fact, they cannot carry conserved charges, so D9-branes are

unstable in both type IIA and IIB superstring theory. In general, Dp-branes or

particularly their world volumes can be electrically coupled to (p + 1)-form gauge

fields. One shows this by the integral of the (p+ 1)-form gauge field over the world

volume of the Dp-brane

S = Qp

∫
Ap+1 =

Qp

[(p+ 1)!]2

∫
dp+1σ

√
−gAµ1...µp+1

∂xµ1

∂σa0
. . .

∂xµp+1

∂σap
εa1...ap , (2.2.14)

where g is the determinant of the pull-back metric on the Dp-brane and Qp is the

Dp-brane charge. From the geometry point of view, in D-dimensional spacetime we

know that a Dp-brane can be surrounded by an SD−p−2. The charge of the Dp-brane

is then described by the Gauss’ law integrating over a hypersurface surrounding the

Dp-brane

Qp =

∫
SD−p−2

F, (2.2.15)

where F is the (D − p − 2)-form field determined by both F = ∗dAp+1 and F =

dAD−p−3. For the first one or F = ∗dAp+1, it means the Dp-brane carry the electric

charge under the (p+1)-form gauge field. For the second, it says the Dp-brane carry

the magnetic charge under the (D− p− 3)-form gauge field. The Dp-brane and the

Dq-brane are said to be magnetic dual if one carries the electric/magnetic charge

under the a form gauge field and the other one carry magnetic/electric charge under
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the same form gauge field. Mathematically, it is p+ 1 = D− q− 3 or p+ q = D− 4.

In ten dimensional spacetime, Dp-branes are magnetic dual to D(6−p)-branes. Now

we will consider only the case of ten dimensions. Given a Ramond-Ramond (R-R)

p-form gauge field, the Dp brane is electrically coupled to this gauge field and has

an electric charge Qp while the D(6 − p) brane is magnetically coupled and has a

magnetic charge Q6−p. Their charges satisfy the Dirac quantisation condition in a

generalised version

QpQ6−p = 2πn, n ∈ Z. (2.2.16)

In type II superstring theories, it turns out that there are only R-R p-form gauge

fields in which p = 0, 1, 2, 3, 4. For this reason, the Dp-branes with p ≤ 3 have

electric charges under the R-R gauge fields, and the Dp-branes with p ≥ 4 have

magnetic charges. D-branes also have tension. The tension of a D-brane is roughly

its energy per unit volume. One determines the tension TDp of a Dp-brane as a

recurrence relation [27,28]

TDp =
TD(p−1)

2π
√
α′
, (2.2.17)

given that the tension of D-string or D1-brane is related to the fundamental string

tension by

TD1 =
T

gs
=

1

2πgsα′
. (2.2.18)

By analogy with the action of the string, the Dp-brane action would be simply

guessed as the minimisation of its world-volume

SDp = −TDp
∫
dp+1ξ

√
− det(gab), (2.2.19)

where gab = Gµν
∂Xµ

∂σa
∂Xν

∂σb
is the induced metric on the Dp-brane. Unlike the string,

this is not complete yet; the D-brane possesses more degrees of freedom. For exam-

ple, the D-brane can have open strings ended on it, so it has open string degrees of

freedom. The D-brane action that includes the open string degrees of freedom in

arbitrary energy levels is still unknown. However, at low enough energy E � 1/α′2

or in other words, at the string length near zero, one found the open string degrees of

freedom on the D-brane is described by the U(1) gauge field living on the D-brane.

Including this into the action, one has a more generalised version of the D-brane
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action

SDp = −TDp
∫
dp+1ξ e−Φ

√
− det(P [G]ab + kFab), (2.2.20)

where k is a constant to correct the dimension and Fab = ∂aAb − ∂bAa is the field

strength of the U(1) gauge field. Note that there is the dependence of e−Φ since it

is the open string tree level action. This determines the string coupling constant,

gs = e<Φ>. Next, let us consider the combination of Neveu-Schwarz-Neveu-Schwarz

(NS-NS) 2-form field or the closed string field Bµν and the U(1) gauge field or the

open string field Aµ in the string action [27]

Q =
i

2πα′

∫
M
B + i

∫
∂M

A. (2.2.21)

This quantity is invariant under the gauge transformation

Aµ → Aµ + ∂µλ, (2.2.22)

and also the tensor gauge transformation

Bµν → Bµν + ∂µζν − ∂νζµ,

Aµ → Aµ −
ζµ

2πα′
.

(2.2.23)

Note that the two transformations in (2.2.23) have to be done together; otherwise

(2.2.21) will not be invariant. Obviously, the action (2.2.20) is invariant under the

gauge transformation (2.2.22). However, if we apply the tensor gauge transformation

to the action, the term Fab will change to Fab− (∂aζb− ∂bζa)/(2πα′) that leaves the

action not invariant. There is a situation that we cannot neglect the background

NS-NS 2-form B field, which is transformed under the tensor gauge transformation

(2.2.23). As a result, the D-brane action should include the dependence of the B-field

and should be invariant under the tensor gauge transformation. Since the B-field

has the same length dimension as the metric tensor, it is natural to change G to

G + B in the D-brane action in (2.2.20). Considering both the transformations in

(2.2.22) and (2.2.23), we then find that the combination

Bµν + 2πα′Fµν (2.2.24)

is invariant under the both transformations. This determines the constant k in

(2.2.20). Therefore, the D-brane action is changed to

SDp = −TDp
∫
dp+1ξ e−Φ

√
− det(P [G+B]ab + 2πα′Fab). (2.2.25)



2.2. D-branes 17

This action is call Dirac-Born-Infeld (DBI) action. We have mentioned that the D-

brane can be coupled to R-R gauge fields; the dependence of those fields also needs

to be included in the action. One finds that it is contributed to the D-brane action

in the form of the Chern-Simons term

SCS = Qp

∫ [(⊕
q

Cq

)
∧ eB+2πα′F

]
choose only (p+1)-form

, (2.2.26)

where Cq is the R-R q-form. The D-brane action then has two parts which are the

Dirac-Born-Infeld part and the Chern-Simons (or Wess-Zumino) part. The action

is written as

SDp = SDBI + SWZ , (2.2.27)

where

SDBI = −TDp
∫
dp+1ξ e−φ

√
− det (P [G+B]ab + 2πα′Fab), (2.2.28)

SWZ = Qp

∫ [(⊕
q

Cq

)
∧ eB+2πα′F

]
choose only (p+1)-form

, (2.2.29)

with Qp = TDp [28]. For multiple D-branes, the generalisation is quite straightfor-

ward. The open strings have more degrees of freedom i.e. it can also end on two

different D-branes. The gauge fields associated to the open string degrees of freedom

in the low energy limit are then turned to non-Abelian gauge fields. The generalised

version of the action for multiple D-branes is

SDBI = −TDp
∫
dp+1ξ e−φStr

√
− det (P [G+B]ab + 2πα′Fab), (2.2.30)

SWZ = TDp

∫ [(⊕
q

Cq

)
∧ tr

(
eB+2πα′F

)]
choose only (p+1)-form

, (2.2.31)

where Str is a symmetrised trace having a property

Str(A1A2 . . . AN) =
1

N !
tr

(
N∑

i1,i2,...,iN=1

|εi1i2...iN |Ai1Ai2 . . . AiN

)
. (2.2.32)

The DBI action with the symmetrised trace prescription was introduced in [29].

This action looks intuitively right, however, it is correct up to the fourth order of F

as the action starts to deviate from open string computations at the order F 6 [30].
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2.3 Duality between Open and Closed Strings

The fact that the open strings must end on D-branes makes us always consider open

strings and D-branes at the same time. To see the open and closed string duality,

let us consider an open string ended on two different D-branes as illustrated in

figure 2.1. When the open string swifts and makes a span of a cylindrical-like shape

  

Figure 2.1: A diagram shows an example of the open and closed string duality,

where the two cyan parallelograms depict the D-branes and the red and the blue

curves are an open string and a closed string respectively. When the open string,

connected between the two D-branes, sweeps around to form the cylindrical(-like)

world sheet, this world sheet can also be seen as the closed string moving from one

D-brane to the other. The converse is also true if we start from the closed string.

as in the right figure, one can think of an equivalent situation that the D-branes

are exchanging a closed string. Both situations yield the same picture. This is an

example of the duality between open and closed strings. This leads to the AdS/CFT

correspondence.

2.4 AdS/CFT Correspondence

In 1997, Maldacena proposed a conjecture that relates the string theory on an Anti-

de-Sitter (AdS) spacetime with the conformal field theory on the corresponding

spacetime [7]. For example, the type IIB superstring theory on AdS5 × S5 was
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shown to correspond to N = 4 supersymmetric Yang-Mills theory on the corre-

sponding four dimensional spacetime. Later in 1998, the more concrete version of

the correspondence was published [17]. These state the dictionary of the correspon-

dence

Zstring theory = ZCFT , (2.4.33)

where Z is the partition function. Based on D3-branes, the open and closed string

duality (see figure 2.1 for an illustration) is able to explain the Maldacena conjecture

[31]. At low energy, the open string sector of a stack of Nc D3-branes has the

symmetry U(Nc) = SU(Nc) × U(1). One can factor out the U(1) as it associates

to the centre of mass motion of the D3-branes. The background theory is the

superstring theory in type IIB; it has 32 supercharges. The supersymmetry on

the D3-branes is only half of the one on the background theory, so the number of

supercharges on the D3-branes is 16. The number of supercharges and the number

of degrees of freedom of the transverse fluctuation of the D3-branes match with ones

of the N = 4 super-Yang-Mills (SYM) theory. Therefore the open string sector at

low energy of the Nc D3-branes is the N = 4 SYM theory. For the closed string

sector, let us consider the D3-brane metric in ten dimensional spacetime [32]

ds2 = H3(r)−
1
2

(
−dt2 + d~x2

)
+H3(r)

1
2

(
dr2 + r2dΩ2

5

)
, (2.4.34)

where H3(r) = 1 + R4

r4
, R4 = 4πgsNcα

′2 and ~x represents (x1, x2, x3) of R3. The low

energy limit of the theory can be achieved by taking the zero string length limit

α′ → 0 while keeping r/α′ fixed [7]. As a result, the geometry is effectively viewed

as a near horizon limit r � R so that the factor ‘1’ in H3(r) can be neglected and

the metric is

ds2 =
r2

R2

(
−dt2 + d~x2

)
+
R2

r2

(
dr2 + r2dΩ2

5

)
. (2.4.35)

This metric describes the geometry of AdS5 × S5 in Poincaré coordinates with the

radii of AdS5 and S5 being equal. The AdS5 and S5 geometries have the isometry

groups SO(2, 4) and SO(6) respectively, and so do their metrics. Furthermore, we

know that the D3-brane world volume is electrically and magnetically coupled to

the R-R 4-form gauge field. The 5-form field strength has to be self-dual with the
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form of

F5 = f5(r)(1 + ∗)dr ∧ dt ∧ dx1 ∧ dx2 ∧ dx3, (2.4.36)

where ∗ is the Hodge dual operator in (9+1)-dimensional spacetime and f5(r) =

∂
∂r
H3(r)−1. This five-form satisfies ∫

S5

F5 = Nc. (2.4.37)

Now that we are considering the D3-branes, so the theory associated with them is

type IIB superstring theory. At the near-horizon limit of the D3-branes, the string

theory approaches the low-energy limit that is the type IIB supergravity (SUGRA).

The open string description of the stack of Nc D3-branes at low energy is then the

type IIB SUGRA.

The strongest form of AdS/CFT conjecture is that string theories compactified

on the AdS spacetime always have their dual field theories. It is very hard to test

the statement in general as we still do not know how to quantise the string theory

in a curved spacetime with R-R fields [33]. As we have mentioned, an example of

the correspondence is the duality between the type IIB superstring theory in the

Poincaré patch of AdS5 × S5 spacetime and the N = 4 SU(Nc) SYM theory on

Rt×R3. To make it more simple to test, the weaker form states the correspondence

with the restriction, the ’t Hooft limit. This takes the value Nc →∞ while keeping

the ’t Hooft constant λ = g2
YMNc fixed. In this case, the gravity side is the string

theory in semiclassical limit where the coupling gs → 0. gs is the string coupling

constant related to the Yang-Mills coupling constant by g2
YM = 2πgs. In the field

theory side, the large Nc limit restricts all the non-planar diagram contributions. In

even more weaker form, the correspondence is considered in the limit that λ→∞.

In this limit, the gravity side is reduced from the type IIB superstring theory to the

type IIB SUGRA where the inverse string tension α′ → 0 , and the field theory side

is strongly coupled N = 4 SU(Nc) SYM theory. In our work, only this form of the

correspondence will be considered.



2.4. AdS/CFT Correspondence 21

2.4.1 The Dictionary of the AdS/CFT Correspondence

It is obvious that the theory in the gravity side lives in the spacetime with the

dimensions higher than the spacetime in which the theory in the field theory side

lives by one. The additional dimension in the gravity side will play an important

role for the mapping between the two theory. Indeed the additional dimension is

the radial direction which makes the correspondence holographic [34]. In order to

see how the radial direction is related to the field theory side, let us consider the

action of a free massless scalar in 3 + 1-dimensions

S =

∫
d4x(∂φ)2. (2.4.38)

This action is invariant under the transformations

x→ eαx,

φ→ e−αφ,
(2.4.39)

where α is a real number. We know that the coordinate x has the dimension of

length and φ has the dimension of energy. This transformation is the dilatation

and, therefore, the energy scaling. Applying the transformation to the AdS5 part,

which is also the coordinates of the field theory side, of (2.4.35), we have

ds2 =
r2e2α

R2

(
−dt2 + d~x2

)
+
R2

r2

(
dr2 + r2dΩ2

5

)
. (2.4.40)

As we have mentioned, the metric (2.4.35) has the isometry SO(2, 4) which is the

conformal group in 3 + 1-dimension where the dilatation is one of its elements.

Therefore, we expect (2.4.35) to be invariant under the dilatation transformation.

This automatically requires the radial coordinate to be transformed as

r → e−αr (2.4.41)

to preserve the invariance. Thus, it is sensible to think that the additional dimension

in the gravity side corresponds to the energy scale in the field theory side.

One has further developed the AdS/CFT correspondence to establish a map

between the fields of SUGRA in the isomorphic representation of the SO(6) global

symmetry and the N = 4 SYM gauge invariant operators in a particular irreducible
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representation of the SU(4) R-symmetry [17, 35]. The five-dimensional SUGRA

fields are results of the Kaluza-Klein reduction on the internal five-sphere S5. To

simply visualise the field-operator map, let us consider the action of a massive scalar

field in the AdSd+1 spacetime [33,36]

S =

∫
ddx dr

√
−G

(
Gµν∂µφ ∂νφ−m2φ2

)
, (2.4.42)

where m is the mass of the scalar field and r is the radial coordinate of the AdSd+1

spacetime. The corresponding equation of motion has the solution in the asymptotic

(large-r) form as

φ(r, x) = r∆−dφ0(x) + r−∆〈O(x)〉 (2.4.43)

with

∆ =
d

2
+

√
d2

4
+m2R2, (2.4.44)

where R is the AdS radius. Under the dilatation transformation, the supergravity

field φ(u, x) is invariant, so the fields φ0(x) and 〈O(x)〉 need to have the length

dimensions 4−∆ and ∆ respectively. According to [35], the fields φ0(x) and 〈O(x)〉

may be recognised as respectively the source and the vacuum expectation value (vev)

of the gauge theory operator O in the dual field theory. Note that∫
ddxφ0(x)〈O(x)〉 (2.4.45)

is invariant under the global symmetry of the group SO(2, 4) [36]. The exact form

of the AdS/CFT correspondence may be proposed as [17,35]

〈e
∫
ddxφ0(x)〈O(x)〉〉CFT = ZSUGRA [φ0(x)] , (2.4.46)

in which

ZSUGRA [φ0(x)] = lim
ε→0
ZSUGRA

[
φ0(1/ε, x) = εd−∆φ0(x)

]
. (2.4.47)

This means the generating functional of the gauge invariant operators in the con-

formal field theory coincides with the tree level diagrams’ generating functional in

supergravity.

The correspondence equation (2.4.46) has been checked by comparing correlation

functions of N = 4 quantum field theory with classical correlation functions on
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the AdSd spacetime. In gravity side, this can be done only at the large ’t Hooft

coupling λ → ∞ due to the validity of the tree level approximation. Therefore,

using the formula from the gravity side will always yield the correspondence where

the field theory is strongly coupled. Also, the direct comparison is not possible if

the correlation functions neither satisfy non-renormalisation theorem nor depend on

the coupling [33]. This applies to the two- and three-point functions of 1/2 BPS

operators in particular [37,38].

For finite temperature, the geometry of the gravity theory dual to the N = 4

SYM at finite temperature is AdS5-Schwarzschild×S5 [39], where the metric is

ds2 = −
(
r2

R2
− 8GM

3πr2

)
dt2 +

dr2

r2

R2 − 8GM
3πr2

+
r2

R2
d~x2 +R2dΩ2

5. (2.4.48)

Here M is the mass of the black hole and G is the Newton constant. The black hole

has the Hawking temperature

T = R1/2

(
8GM

3π

)1/4

, (2.4.49)

which can be obtained by Wick rotation to Euclidean time and then compactifying

the time direction of which the period is recognised as 1/T . The Hawking temper-

ature and the entropy of the black hole are identified with the temperature and the

entropy of the dual field theory respectively [39,40].

For compact spacetime, we simply generalise the AdS5×S5 in (2.4.35), which is

in Poincaré coordinates, to the global AdS5 × S5 where the metric is

ds2 = −
(

1 +
r2

R2

)
dt2 +

dr2

1 + r2

R2

+ r2dΩ2
3 +R2dΩ2

5. (2.4.50)

For the finite temperature version, applying Wick rotation to (2.4.50) can be done,

but it is not thermodynamically preferred when the temperature increases beyond

a certain value called Hawking-Page temperature [41]. The phase transition is oc-

curred and the preferred geometry is AdS5-Schwarzschild×S5 [39], where the metric

is

ds2 = −
(

1 +
r2

R2
− 8GM

3πr2

)
dt2 +

dr2

1 + r2

R2 − 8GM
3πr2

+ r2dΩ2
3 +R2dΩ2

5. (2.4.51)

Note that the geometry of the AdS5 at the asymptotic region (r →∞) is Rt × S3.

Although the global AdS5×S5 does not arise from any near-horizon configurations of
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any D-branes, it is believed that the gravity theory living in this geometry will have

its dual field theory living in the boundary. We also presume that the dictionary

(2.4.46) is still valid in the compact spacetime.



Chapter 3

AdS/CFT with Flavour

Originally, the AdS/CFT correspondence does not have the fields that transforms

in the fundamental representation. All the fields are transformed in the adjoint one.

This should not be a problem when we consider a system that has only, for example,

gluons. However, the QCD system actually has both gluons and quarks. The

quark transforms in the fundamental representation. Therefore, using the original

AdS/CFT correspondence to explain a QCD-like system, having quarks, is obviously

unsuccessful. Fortunately, one has been modified the AdS/CFT correspondence so

that the fields in the fundamental representation involves [19]. This is very useful

when describing the system in strongly coupled regimes, in which the perturbative

approach does not work.

3.1 Adding the Flavour

In the gauge/gravity duality, the most simple way to have fields transformed in the

fundamental representation is to include the D7-branes in the gravity side [19,42,43].

We will denote Nf as the number of the D7-branes embedded in the spacetime. For

the stacks of Nf D7-branes and Nc D3-branes, a stable choice is that they are

embedded in the directions as shown in the table 3.1. This brane embedding has

SO(4) × SO(2) symmetry in the directions normal to the D3-branes. The SO(4)

and SO(2) are isometries of the rotations in {x4, x5, x6, x7} and {x8, x9} respectively.

For the supersymmetry, at least one-half of the supersymmetry will be broken by

25
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x0 or t x1 x2 x3 x4 x5 x6 x7 x8 x9

D3 × × × ×

D7 × × × × × × × ×

Table 3.1: The embedding directions of the D3- and D7-branes in (9+1)-dimensional

Minkowski spacetime, where x0 and the other xi’s denote the temporal and spatial

directions respectively.

adding D-branes [20]. In general, adding D-branes will exactly preserve half of the

supersymmetry if one D-brane fills in four or eight directions in which the other

does not extend [27, 44, 45]. Therefore, the embedding in the table 3.1 preserves

one-fourth, where the first one-half is from adding the D3-branes and the second

one-half is the result of adding the D7-branes, of the total supersymmetry of the

type IIB superstring theory, so the total number of real supercharges is 4N = 8.

Adding the D7-branes allows two more types of open strings i.e. the open strings

ending on only D7-branes (7-7 strings) and the open strings ending on both D3-

and D7-branes (3-7 strings). The 3-7 strings generate the N = 2 hypermultiplets

in addition to the multiplet of the N = 4 SYM from the 3-3 strings. The dual field

theory is then expected to be N = 2 SYM. For the 7-7 strings, we can neglect their

effects in our works since, in the large Nc and short string length α′ → 0 limits with

fixed ’t Hooft coupling λ = g2
YMNc and Nf , the 7-7 strings decouple from the system

and do not have any interactions with the 3-3 and 3-7 strings [33]. The separation

between the D3- and D7-branes determines the minimum length or the energy of

the 3-7 strings. Let’s say the separation is L; one finds that the mass of the N = 2

hypermultiplet is related to the distance by mq = L/(2πα′) [44].

3.2 The D7-brane Probe Limit

We will look at the low-energy closed string description of the AdS/CFT correspon-

dence with the additional D7-branes. In the original AdS/CFT correspondence, the

gravity side of the low-energy closed string description, which is supergravity, has

the D3-branes as sources for the metric and the self-dual five-form, F5. Now with
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the D7-branes added in, the metric will have these branes as additional sources. The

D7-branes also source the axion-dilaton or a (pseudo-)scalar field. Unfortunately,

the supergravity solution for the D3/D7 brane intersection for general values of Nc

and Nf is still unknown. However, Considering the case Nf � Nc, one can neglect

the effect of the D7-branes to the supergravity solution [19,44]. For example, for the

case Nc →∞ and just a few Nf , the D3-branes will dominantly source the metric,

and the effect of the D7-branes to the metric is then like a drop in the ocean. Let us

consider this more precisely. The D3-branes source the five-form and the metric with

a strength gsNc. The axion-dilaton and also the metric are sourced by the D7-branes

with a strength gsNf . For the ’t Hooft limit, i.e. gs → 0 and Nc → ∞ with fixed

λ = 2πgsNc, the strength from the D3-branes becomes finite while the one from the

D7-branes will vanish and then can be safely ignored. Therefore, we can consider

the D7-branes as spacetime filling branes. The spacetime filling brane is a brane of

which the world-volume dimension is the same as the one of the background space-

time [46]. The spacetime filling brane cannot have a net charge in order to avoid

tadpoles, and one drains the D7-brane charge by wrapping the D7-branes around a

trivial cycle with no flux [19]. In our case, the background spacetime is AdS5 × S5

with the S5 thought to be an internal sphere. The D7-brane is considered spacetime

filling only in the AdS5 part. The remaining three directions of the D7-brane are

embedded in the internal topological S3 ⊂ S5, where the net charge is drained. Let

us consider the field theory side. We know that using the Nf � Nc and ’t Hooft

limits are equivalent to working in the quenched approximation, where the fermion

loops in Feynman diagrams are neglected [36]. We will consider the D7-branes only

in the probe limit from now on. Therefore, in gravity side for the non-compact case

the D3-branes source the metric so that it become the Poincaré AdS5×S5 on which

the gravity theory is the type IIB supergravity. For the compact case, like what we

state in the chapter 2, we simply change the Poincaré AdS5 × S5 to the global one,

which is its covering, and assume the correspondence is still hold.
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3.3 The Dictionary of the Flavour Brane

Let us review how the dictionary of the probe brane is constructed. The original

AdS/CFT correspondence arises from the duality between open and closed strings.

In contrast, the work [19] conjectures that with the probe brane added in the corre-

spondence will also have the new duality which is between the open and the other

open strings. This means fluctuations of the probe D7-brane in the gravity theory

are mapped to gauge invariant operators in the dual field theory.

Let us look at the dynamics of the coincident Nf D7-brane. In low energy

dynamics, the action of the D7-brane is composed of DBI and Chern-Simons actions

as

SD7 = −TD7Nf

∫
d8ξ
√
− det (P [G]ab + 2πα′Fab) +

(2πα′)2

2
TD7Nf

∫
P [C4]∧ F ∧ F,

(3.3.1)

where the D7-brane tension is TD7 = 1/((2π)7gsα
′4). We consider the global AdS5×

S5 with the metric

ds2 = −
(

1 +
r2

R2

)
dt2 +

dr2

1 + r2

R2

+ r2dΩ̄2
3 +R2dΩ2

5, (3.3.2)

where

dΩ2
5 = dθ2

1 + sin2 θ1dφ
2
1 + cos2 θ1dΩ2

3, (3.3.3)

dΩ2
3 = dθ2 + sin2 θdφ2 + cos2 θdψ2. (3.3.4)

For convenience, we will use χ = sin θ1. We consider the D7-brane embedding ansatz

χ = χ(r),

φ1 = const.
(3.3.5)

With this ansatz the on-shell action of the D7-brane is

SD7 = −TD7T Nf
R3

8
(2π)4

∫
dr r3(1− χ(r)2)

×
√

4(1− χ(r)2) +
(
R2 + 2r

(
r +
√
r2 +R2

))
χ′(r)2, (3.3.6)

where T ≡
∫
dt. After we obtain the equation of motion, we consider the expansion

of the field χ(r) near boundary r →∞ which is

χ(r) =
C1

r
+
C2

r3
+
C1R

2

2r3
log

(
R

r

)
+O(r−4). (3.3.7)
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This expansion is similar to (2.4.43) with the additional logarithmic term. As we

have mentioned, the separation between the D3- and D7-branes determines the mass

of the hypermultiplet or the quark. From the geometry, the distance between the

D3- and D7-branes is given by

L = lim
r→∞

1

2

(
r +
√
r2 +R2

)
χ(r) = C1. (3.3.8)

Thus C1 in the expansion (3.3.7) is identified with the quark mass in the dual gauge

theory. The explicit formula is mq = C1/(2πα
′), where mq is the bare quark mass.

In the same way as in (2.4.43), we would expect C2 in (3.3.7) to be directly related to

the vev of the quark mass; however, due to the presence of the logarithmic term one

needs to renormalise C2. We will consider the renormalisation in the next section.

3.4 Flavour Brane Renormalisation

Let us consider the on-shell D7-brane action in (3.3.6). The equation from this

action indeed has χ(r) = 0 as the trivial solution, which is actually mapped to the

hypermultiplet with zero mass. For the case of the trivial solution; the on-shell

action is then

SD7 = −TD7T Nf
R3

4
(2π)4

∫ ∞
0

dr r3. (3.4.9)

We see this action diverges due to the upper limit of the integration. In other words,

the action is divergent in the IR1, so we need to regularise it to cancel the divergence.

There are many regularisation schemes we can choose. We will use the cut-off

regularisation scheme. In general, this scheme does not preserve the covariance, but

if we use the appropriate counterterms, the covariance and the other symmetries will

still be preserved [47,48]. Before we apply the cut-off regularisation, it is convenient

to use Fefferman-Graham coordinates [49], of which the radial coordinate z is related

to r by

z =
R

r +
√
r2 +R2

. (3.4.10)

1We will use the convention that the UV and the IR are regions at small (around AdS centre)

and large (around AdS boundary) r respectively.
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Here the AdS centre and boundary are located at z = 1 and z = 0 respectively. In

this coordinate, applied the cut-off regularisation, the action (3.4.9) is then

SD7, reg = TD7T Nf
R7

64
(2π)4

∫ 1

ε

dz
(1− z2)3(1 + z2)

z5
. (3.4.11)

Whether this is integrable or not, we only consider the expansion of it around the

AdS boundary in which we will trace the divergence, so we have

SD7, reg = TD7T Nf
R7

64
(2π)4

(
1

4ε4
− 1

ε2
+O(ε0)

)
, (3.4.12)

where ε is treated as a very small positive number. (3.4.12) leaves divergence terms,

and one might think of using the additive inverse as the counterterm would solve

the problem, but this does not preserve the covariance. The counterterms to cancel

the divergence that leave the covariance preserved are [47,48,50]

L1 = −1

4

√
−γ,

L2 =
R2

48

√
−γRγ,

L3 = −R
4

32
log ε
√
−γ
(
RijR

ij − 1

3
R2
γ

)
,

(3.4.13)

where Rij and Rγ is the Ricci tensor and the Ricci scalar respectively, computed

from the metric γij. The counterterms are obtain from the geometry at the slice

z = ε ; this is indeed to preserve the covariance [47]. Let γij be the metric at the

slice z = ε of the D7-brane embedding metric in the AdS5 part2. For the trivial

embedding χ(z) = 0, the D7-brane embedding metric is

ds2 = −(1 + z2)
2

4z2
dt2 +R2dz

2

z2
+
R2

4z2
(1− z2)2dΩ̄2

3 +R2dΩ2
3. (3.4.14)

At the slice z = ε, we have (with the S3 ⊂ S5 dropped)

ds2 = γijdx
idxj = −(1 + ε2)

2

4ε2
dt2 +

R2

4ε2
(1− ε2)2dΩ̄2

3, (3.4.15)

2For the S5 part, all the directions are compact, so integrating over those directions will always

yield a finite number. Since the directions in AdS5 and S5 have separated covariance groups,

we can drop the S5 part when we do the renormalisation without any influences to the whole

covariance.
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so the substituted counterterms are

L1 = −R3 (1− ε2)3(1 + ε2)

128ε4
sin
(
2θ̄
)
,

L2 = R3 1− ε4

64ε2
sin
(
2θ̄
)
,

L3 = 0.

(3.4.16)

We bring these counterterms to be subtracted from the action in (3.4.12) yielding

SD7, sub = SD7, reg + 2π2TD7T NfR
4

∫
dθ̄dφ̄dψ̄

∑
i

Li

= −π
4

4
TD7T NfR

7ε2 +O(ε4),

(3.4.17)

where (θ̄, φ̄, ψ̄) are the coordinates of the S̄3 ⊂ AdS5. We see all the divergent terms

are gone. Finally, we limit the cut-off parameter to the value representing the AdS

boundary giving the renormalised action

SD7, ren = lim
ε→0

SD7, sub. (3.4.18)

For the non-trivial solution χ(z) 6= 0, we do the same thing, but it will give additional

divergent terms. More counterterms are then needed. The additional counterterms

are [48,50]

L4 =
1

2

√
−γ χ(ε)2,

L5 = − 5

12

√
−γ χ(ε)4,

L6 =
R2

12

√
−γRγ χ(ε)2 logχ(ε).

(3.4.19)

The expansion of χ in z-coordinate near the AdS boundary is

χ(z) =
2C1

R
z +

(
2C1

R
+

8C2

R3

)
z3 +

4C1

R
z3 log(2z) +O(z4), (3.4.20)

where C1 and C2 are the same as ones in (3.3.7). Using this expansion along with

the on-shell action in (3.3.6) and then applying the cut-off regularisation, we have

the regulated action as

SD7, reg = −TD7T Nf
R3

8
(2π)4

(
R4

32

1

ε4
− R4 + 2C2

1R
2

8

1

ε2
− 2C2

1R
2 log(ε) + 2C2

1R
2

+
12C2

2

R2
− 8C3

1C2

R2
+ 3C2

1R
2 log2(2) + C2

1R
2 log(64)− 2C4

1

+12C1C2 − 2C4
1 log(4) + 12C1C2 log(2) +

7R4

32
+O(ε0)

)
. (3.4.21)
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The renormalised action is then

SD7, ren = −TD7T Nf
R3

8
(2π)4

[
2C2

1R
2 +

12C2
2

R2
− 8C3

1C2

R2
+ 3C2

1R
2 log2(2)

+ C2
1R

2 log

(
256C1

R

)
− 17C4

1

6
+ 14C1C2 − 4C4

1 log(2)

+ 2C1C2 log(64) + (terms not depending on C1 and/or C2)

]
. (3.4.22)

The vev of the operator O dual to a field χ is computed from [47,48,50]

〈O〉 = lim
ε→0

(
ε−∆

√
−γ

δSD7, sub

δχ(ε)

)
=

1√
−g̃(0)

δSD7, ren

δχ(0)

, (3.4.23)

where χ(0) = C1 which is the coefficient corresponding to φ0(x) in (2.4.43), and g̃(0)

is the determinant of the metric g̃(0), ij obtained from the metric (3.4.14) with the

part S3 ⊂ S5 dropped by

ds2 = −(1 + z2)
2

4z2
dt2 +R2dz

2

z2
+
R2

4z2
(1− z2)2dΩ̄2

3

= R2dz
2

z2
+

1

z2
g̃ijdx

idxj
(3.4.24)

and the expansion near AdS boundary

g̃ij = g̃(0), ij + g̃(2), ijz
2 + · · · . (3.4.25)

Finally, we obtain the vev from the field χ as

〈O〉 = −TD7T Nf
R3

8
(2π)4

[
C2 +

C1R
2

4
− 1

2
C1R

2 log

(
C1

R

)]
= −TD7T Nf

R3

8
(2π)4C̃2,

(3.4.26)

where C1 and C2 are the coefficients in the expansion (3.3.7), and C̃2 are a renor-

malised value of C2. This formula will be used to find the quark condensate in

chapter 6. Unlike the original AdS/CFT correspondence, the vev does not only

depends on C2 but also depends on C1.



Chapter 4

Jet Quenching

In this chapter we study the finite-size correction to the drag force applied to a quark

moving in the QGP. We will follow through our work in [1]. We finally compare the

result with the infinite size case.

4.1 Introduction

Many researches on holography have contributed to study the process in QGP,

successfully created in RHIC [51–54] and LHC [55], in the strongly coupled regime.

The fact that the quark-antiquark pair created near the boundary of QGP does not

yield two back-to-back jets but leads to only one observed jet in the collider draws

much attention. To give a qualitative explanation, one explains that the quark

moving through QGP has its energy loss because of its interaction with the medium.

This explanation is intuitively correct and easy to understand. However, as we have

mentioned before, the drag force or the energy loss rate is a thermodynamically

inequilibrium quantity, so directly calculating the quantitative drag force from lattice

QCD is difficult. Having done it in the holographic way, in the work of [16,56], they

modelled the quark in the strongly coupled QGP by an open string of which one

end is on the boundary of the AdS spacetime and the other end is inside the AdS

black hole horizon. This is illustrated in figure 4.1.

The string acts as a meson of which the quark and the anti-quark are located at

the end points. The vertical lengths of the string measured from each end point to

33
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Boundary of AdS5

Horizon

Figure 4.1: A holographic stringy model for the infinitely massive quark moving in

strongly coupled QGP in infinite size where the underlying field theory is N = 4

SYM in Rt × R3

the bottom represent each quark mass [57]. In this case the vertical length of the

string is infinite, and so is the quark mass on the boundary. As the quark mass is

infinite, it makes sense that they set the quark to have a constant velocity. While

the quark is moving, the string attached to the quark is simply dragged and also

exerts the reaction to the quark at the end point. They then calculated the drag

force from there. This work studied the system in infinite size.

In reality, the QGP in the collider cannot have infinite size. The quark-antiquark

pair propagating in the QGP should feel the effect of the QGP size. To study this

we use the same holographic model of the quark and calculate drag force as in the

work of [56], but rather than study it in the Poincaré AdS spacetime as done in

the work, we will consider it in the global AdS spacetime. The holographic model

picture is roughly illustrated in figure 4.2

The physical scales we have in the theory are the AdS radius R and the temper-

ature T , so the only one possible dimensionless scale is TR. There is a limit that the

global AdS spacetime will become the Poincaré one. That limit is the large black

hole limit where the black hole horizon is taken to be very larger than the AdS ra-

dius or the sphere radius. The limit of large black hole translates to the limit of the

dimensionless quantity as TR →∞. In fact the limit TR →∞ can be interpreted
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Boundary of AdS5

Horizon

Figure 4.2: A holographic model for the infinitely massive quark moving in strongly

coupled QGP with finite volume. The underlying theory is N = 4 SYM on Rt×S3.

as fixed volume and infinite temperature, or fixed temperature and infinite volume.

We will interpret the limit as the latter one. We will find the finite-size effects of

any observables by the expansion of them with respect to the quantity TR.

4.2 Dragged String in a Global AdS Black Hole1

Working in the gravity side, we will consider the system in the globalAdS5-Schwarzschild

spacetime which has the metric:

ds2 = −h(r)dt2 +
1

h(r)
dr2 + r2

(
dθ2 + cos2 θ

(
dφ2 + cos2 φdχ2

))
,

r2
0 =

8GM

3π
, h(r) = 1 +

r2

R2
− r2

0

r2
,

(4.2.1)

where G is the gravitational constant, M is the mass of the black hole, R is the

radius of the AdS spacetime and r is the radial coordinate. This AdS spacetime has

the boundary at r → ∞. The geometry at the boundary is Rt × S3, in which the

1During the completion of this project, we became aware of the work [58] which has some

overlap with the results in this section.
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dual field theory lives. The black hole horizon at r = rH where

rH = R

√√√√√1 + 4
r20
R2 − 1

2
, r0 = rH

√
1 +

r2
H

R2
. (4.2.2)

The black hole temperature is [59]

T =
rH
πR2

(
1 +

R2

2r2
H

)
. (4.2.3)

When the temperature goes down below THP = 3/(2πR), the system undergoes a

first-order phase transition where the system prefers the pure AdS5 spacetime [39,41]

with the metric

ds2 = −
(

1 +
r2

R2

)
dt2 +

1

1 + r2

R2

dr2 + r2
(
dθ2 + cos2 θ

(
dφ2 + cos2 φdχ2

))
. (4.2.4)

The temperature can still be identified from the radius of the periodic time circle.

With this phase transition in the bulk spacetime, the corresponding field theory en-

counters a deconfinement-to-confinement phase transition. This is in the sense that

at T > THP the free energy of the system is of order N2
c and at T < THP it is of order

one. We have two scale quantities in the boundary field theory i.e. the temperature

T and the AdS radius R. Therefore, the dimensionless physical parameter is only

TR. Investigating the finite-volume effect, we will fix the temperature and use the

limit of the quantity TR→∞ as the large volume limit.

In comparison with the infinite-size case, we compare the globalAdS5-Schwarzschild

spacetime with the Poincaré AdS5-Schwarzschild spacetime with the metric

ds2 =
r2

R2

(
−
(

1− r4
H

r4

)
dt2 + d~x2

)
+
R2

r2

dr2

1− r4H
r4

. (4.2.5)

Instead of having Rt × S3 as the boundary, the Poincaré AdS-Schwarzschild space-

time has the boundary geometry as Rt × R3. In the large black hole limit rH � R,

(4.2.1) will reduce to (4.2.5).

We model the dragged string in the global AdS spacetime by the embedding

θ = ωτ + f(ρ), (4.2.6)

where τ and ρ are the string world-sheet coordinates, we choose τ = t and ρ = r

and f(ρ) is a non-trivial embedding profile function. Substituting this into the
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Nambu-Goto action, we have the string action

S =

∫
dτdρ

√
1 + ρ2f ′2(ρ)h(ρ)− ρ2ω2

h(ρ)
. (4.2.7)

Our dynamical variables are f(ρ) and f ′(ρ). We see that the action does not depends

on f(ρ), so the canonical momentum πf = ∂S
∂f ′

is conserved. With the help of this

conserved quantity, we can identify f ′ that is

f ′(ρ) =
πf

ρh(ρ)

√
ρ2ω2 − h(ρ)

π2
f − ρ2h(ρ)

, (4.2.8)

and the string action turns a lot more simple

S =

∫
dτdρ ρ

√
ρ2ω2 − h(ρ)

π2
f − ρ2h(ρ)

. (4.2.9)

We require the action to be real, so if there happens to be a sign change in the

numerator/denominator inside the square root, there has to be the sign change in

the denominator/numerator as well at the same time. We suppose the sign change

occurs at ρ = ρ∗, so we have

ρ2
∗ω

2 − h(ρ∗) = 0 and π2
f − ρ2h(ρ) = 0. (4.2.10)

Solving these, we get

πf = ωR2
−1±

√
1 + 4

r20
R2 (1− ω2R2)

2(1− ω2R2)
, (4.2.11)

of which the plus sign has to be chosen, for in the case of pure AdS spacetime

(r0 = 0) no dissipation occurs and the drag force should vanish.

We compute the drag force exerted on the string by the momentum flow along

the string down to the horizon. The flow of the momentum is [56]

dpθ
dt

=
√
−gP ρ

θ, P a
µ ≡ −

1

2πα′
Gµνg

ab∂bX
ν , (4.2.12)

where P a
µ is the spacetime energy momentum world-sheet current, Gµν is the space-

time metric and gab is the world-sheet metric. Using (4.2.11), (4.2.12) and the

metrics, we eventually have the drag force in the global case

dpθ
dt

= − 1

2πα′
πf . (4.2.13)
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4.3 Comparison with the Infinite-size Case

The drag force in the infinite-size case done in [56] using the Poincare AdS spacetime.

The string embedding is given by

x = vt+ ξ(r), (4.3.14)

and the canonical momentum

πξ =
r2
H

R2

v√
1− v2

. (4.3.15)

The drag force in this case is

dpx
dt

= − 1

2πα′
πξ = − r2

H

2πα′R2

v√
1− v2

= −πT̃ 2

√
λ

2

v√
1− v2

, (4.3.16)

where R4 = 2λα′2, T̃ = rH
πR2 and λ is the ’t Hooft coupling.

To compare this drag force to the one in finite-size case, we use the large black

hole limit

ρH � R. (4.3.17)

This limit makes the boundary S3 become a flat R3. For some dimensional analysis,

the phase space coordinates (θ, πf ) in the global case are to compare with (x/R, πξR)

in the Poincaré case, and the angular velocity ω is to compare with the linear one

v = ωR. We can expand the drag force in (4.2.13) in the order of dimensionless

volume scale TR as

dpθ
dt

= −πT 2

√
λ

2

ωR2

√
1− ω2R2

[
1− 1 +

√
1 + ω2R2

2π2
√

1− ω2R2

(
1

TR

)2

+
1

8π2

3ω2R2 − 2

1− ω2R2

(
1

TR

)4

+ · · ·

]
.

(4.3.18)

This can be viewed as

1

R

dpθ
dt

=
dpx
dt

[
1− 1 +

√
1 + v2

2π2
√

1− v2

(
1

TR

)2

+
1

8π2

3v2 − 2

1− v2

(
1

TR

)4

+ · · ·

]
, (4.3.19)

where the RHS is the translational drag force in the finite-size case and the LHS

is the expansion in the large volume limit with the leading order agreeing with the

result in the infinite-size case.

To see whether the finite-size effect in this model is significant for the experiment

at RHIC or not, let us first use the International System of Units (SI) for the
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temperature T and the size R by changing

TR→
(
kB
~c

)
TrealRreal, (4.3.20)

where the Boltzmann constant kB = 1.381×10−23 J/K, the reduced Planck constant

~ = 1.055 × 10−34 J-s and the speed of light in vacuum c = 2.998 × 108 m/s.

Unless stated otherwise, Treal and Rreal will have units of Kelvin (K) and metre

(m), respectively. We compute the difference of the drag force in infinite and finite

size cases in a percentage by

%Difference =
Drag force in infinite size−Drag force in finite size

Drag force in infinite size
× 100%

=
dpx
dt
− 1

R
dpθ
dt

dpx
dt

× 100%.

(4.3.21)

We will focus on an ultra-relativistic quark having v = 0.999(c). The plot of Treal vs

Rreal of the QGP is shown in figure 4.3 of which the curve gives %Difference = 5%

that is quite significant for the data observed in the experiment. The QGP at RHIC

%Difference < 5%

%Difference > 5%
200 400 600 800 1000

Treal HMeVL

2

4

6

8

Rreal HfmL

Figure 4.3: A plot of Treal vs Rreal of the QGP where the curve gives %Difference =

5%. The regions above and below the curve give %Difference < 5% and

%Difference > 5%, respectively.

has temperature around 4× 1012 K or 345 MeV. At this value, we read off the QGP

size from figure 4.3 as 2.75 fm. This means if the size of the QGP produced in RHIC

is less than about 2− 3 fm, one should really consider the finite-size effect.
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4.4 Discussion

We finally have the finite-size correction to the quark energy loss. From (4.3.19),

the leading correction term is negative. It means the drag force in QGP is lower in

magnitude when the QGP has finite size. This contradicts many of the Newtonian

fluids [60, 61].

When we work in the experimental units for the temperature and the length, the

size of the QGP that the finite-size effect becomes significant is in the same order

of magnitude as ones discussed in some related literature [62–64]. This means that

finite-size effects predicted by the AdS/CFT correspondence could be relevant to

obtain agreement with experimental data.

It is possible to believe that the decrease of the drag force arises because the

system is in a non-boundary space. In this case it is S3. This somehow quantises

the energy, and some of the hydrodynamical modes are suppressed. This possibly

makes the magnitude of the drag force in the finite-size QGP smaller than the one in

the infinite size. It is interesting to investigate the finite-size effects in other strongly

coupled holographic systems to see if the related features arise.



Chapter 5

Meson Spectra and New Ground

States with an Isospin Chemical

Potential

As done in our paper [2], we analyse the meson fluctuations and new ground states of

theN = 2 SYM theory at strong coupling in compact space, S3, with the influence of

an isospin chemical potential by using AdS/CFT correspondence. For large enough

values of the chemical potential the system shows an instability. Unlike other related

models, the first unstable mode is from a global SO(4) charged scalar rather than

from a vector. One then construct the new ground state to cure the instability. In

addition, the fluctuation spectrum yields a cross-over behaviour as a function of the

temperature.

5.1 Introduction

Many models of QCD suggest that with a sufficiently high isospin chemical potential

the meson condensation will occur. When the value of the chemical potential reaches

the order of the lightest meson mass in the model, the condensation is expected to

happen. If the chemical potential increases further to the order of mass of the next

heavier particle, the condensation will take place again and so on. While it is easy

to understand intuitively, direct computation from the first principle is difficult.

41
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Adding scales to the theory, we expect some interesting or unusual effects to

happen as well as we have mentioned in the previous chapters. We are interested

to add the volume scale to the model. The model we are considering is the D3/D7

system. First without the D7 part, in the non-compact case, its ambient spacetime

is the Poincaré patch of AdS5×S5. The Poincaré patch arises from the near horizon

limit of the supergravity solution of the Nc coincident D3-brane, where Nc →∞. To

add the finite volume scale, this can be done by replacing the Poincaré patch with

the global AdS5×S5. The finite size scale we obtain is the radius of the AdS space-

time and the five-sphere which are constrained to be equal by the supersymmetric

reason. In contrast to the Poincaré patch, the global AdS5×S5 is not obtained from

the near horizon limit of any D-brane configurations, but it is believed that the cor-

respondence is still valid. For the finite temperature case beyond the Hawking-Page

temperature, the bulk spacetime changes a little bit by having a Schwarzschild black

hole at the centre. The temperature of the dual field theory side is thus the Hawking

temperature of the black hole.

We want to study the mesonic excitations in the model. To do that, it is needed

to add the matter to the field theory side. This is holographically equivalent to

adding the D7-brane to the gravity side. As we have seen in the previous chapters,

adding the D7-brane breaks the supersymmetry from N = 4 to N = 2. It includes

the matter in fundamental representation, called the quark. The internal symmetries

of the field theory side are interpreted from the isometry of the internal three-sphere.

They are a global SO(4) R-symmetry and an SU(Nf ) flavour symmetry, where Nf

is the number of the D7-brane. The chemical potential associated to each of the

symmetries can be introduced. In our work we will choose the chemical potential

associated to the flavour symmetry.
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5.2 Holography with a Dual S3

5.2.1 Brane Embeddings in Global AdS5 × S5 and AdS5-

Schwarzschild

As mentioned in the previous chapters, an example of the AdS/CFT correspondence

is the duality between the string theory of type IIB in the Poincaré patch of AdS5×S5

spacetime and the N = 4 SYM theory at zero temperature on Rt × R3. This is for

the infinite-size case. However, for the compact case it is strongly believed that the

type IIB string theory on the global AdS5 × S5 is dual to the N = 4 SYM theory

on Rt × S3.

The metric of the global AdS5 × S5 spacetime is

ds2 = −
(

1 +
r2

R2

)
dt2 +

dr2

1 + r2

R2

+ r2dΩ2
3 +R2dΩ2

5. (5.2.1)

This is called the thermal AdS spacetime. It is only valid at the temperature from

zero to Hawking-Page temperature as we have mentioned in chapter 2. For the

higher temperature, the system prefers the spacetime to be AdS5-Schwarzschild×S5

of which the metric is

ds2 = −
(

1 +
r2

R2
− r2

0

r2

)
dt2 +

dr2

1 + r2

R2 − r20
r2

+ r2dΩ2
3 +R2dΩ2

5, (5.2.2)

where r2
0 = 8GM/(3π), G is the Newton constant and M is the mass of the black

hole. The temperature of the black hole is

T =
rH
πR2

(
1 +

R2

2r2
H

)
, (5.2.3)

where

rH = R

√√√√√1 + 4
r20
R2 − 1

2
. (5.2.4)

This temperature will play a role as the temperature in the gauge theory. The

dimensionless quantity is TR, and we will later on expand our results for large

values of this parameter, interpreting this limit as one at finite temperature and

large volume [48, 50], so that a comparison with results in the Poincaré patch can

be made.
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Introducing D7-probe branes in this geometry corresponds, in the holographic

language, to adding flavour hypermultiplets to N = 4 SYM on the sphere S3. A

study of various D-brane probes, in particular D7-probe branes, in these geometries

was performed in [48, 50]. It was found that at zero (and low) temperature, there

are two possible D7-brane embeddings in this dual geometry. The first type of

embeddings are those in which the D7-brane completely fills the AdS5 space and

wraps the S3 ⊂ S5 which is equatorial (i.e it is a D-brane with vanishing extrinsic

curvature). The second type of embeddings are those in which the D7-brane wraps a

non-maximal S3 ⊂ S5 which shrinks along the radial direction of AdS5 and becomes

zero before the brane reaches the origin of AdS5. The first series is dual to the

N = 2 SYM theory with massless hypermultiplets, while for the second class the

hypermultiplet is massive, and its mass is related to the distance at which the D7-

brane “stops” before the origin of the AdS5. Interestingly, as the “quark” mass is

varied a topology changing phase transition occurs [48]. It was further analysed in

detail in [50] that this phase transition is actually third order, unlike most of the

phase transition associated to probe branes in holographic duals, which are usually

first order.

In the high temperature phase, the situation is similar to that in infinite volume.

One finds that Lorentzian and black hole embeddings exhaust all possibilities. As

for infinite volume, these correspond to D7-branes that stay outside the horizon or

reach the black hole horizon respectively.

In this research we will be studying various D-brane embeddings in the presence

of an “isospin” chemical potential. For that purpose, instead of using the coordinates

(5.2.1), it will be useful to use another set of coordinates given by

ds2 = − u
2

R2

(
1 +

R2

4u2

)2

dt2 + u2

(
1− R2

4u2

)2

dΩ̄2
3 +

R2

u2
(du2 + u2dΩ2

5) , (5.2.5)

which is related to (5.2.1) via the coordinate change

u =
1

2
(r +

√
r2 +R2) . (5.2.6)

In these coordinates the origin of the AdS space is at u = R/2, while the boundary

is an S3 at u→∞. We will also use

ds2 = − 1

4z2

(
1 + z2

)2
dt2 +

R2

4z2

(
1− z2

)2
dΩ̄2

3 +R2 dz2

z2
+R2dΩ2

5 , (5.2.7)
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which is related to the previous coordinates by z = R/(2u). Let us also note that in

the z coordinate the origin of AdS space is at z = 1, while the boundary is at z = 0.

Similarly for the system at finite temperature in addition to metric (5.2.2) we

will also use (u, t) coordinates,

ds2 = −2ρ2
H

uR2

F (u)

W (u)
dt2 + 2

ρ2
H

u
W (u)dΩ̄2

3 +
R2

4u2F (u)
du2 +R2dΩ2

5 , (5.2.8)

where

F (u) = 1− u2,
ρ4
H

R4
=

1

16
+

r2
0

4R2
, W (u) = 1− uR2

4ρ2
H

. (5.2.9)

Note here that the variable u is dimensionless and ranges from u ∈ [0, 1], where the

horizon is at u = 1, and the boundary is at u = 0. The Hawking temperature of

this black hole is

T =

√
2ρH

πR2
√

1− R2

4ρ2H

. (5.2.10)

For numerical investigation it turns out that another form of the metric at finite

T will also be useful.1 If we change coordinates as

v =
1− u

1− uR2

4ρ2H

Λ =
8ρ2

H

4ρ2
H +R2

, (5.2.11)

then the metric becomes

ds2 = − v(Λ− v)

(1− v)(2− Λ)
dt2+

Λ− 1

(2− Λ)(1− v)
R2dΩ̄2

3+
Λ− 1

4(1− v)2v(Λ− v)
R2dv2+R2dΩ2

5 ,

(5.2.12)

where

dΩ2
3 =

1

4
(dα2 + dβ2 + dγ2 + 2 cos βdαdγ). (5.2.13)

In these coordinates v = 0 is the horizon while v = 1 is the boundary, and Λ is

function of the temperature given by

Λ =
4(πTR)2

3(πTR)2 −
√

(πTR)2 (−2 + (πTR)2)
. (5.2.14)

1This is related to the fact that the solutions at vanishing bare quark mass can be related to

Heun functions in these coordinates.
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5.2.2 Chemical Potentials and Homogeneous Solutions

In this section we will construct solutions which correspond to adding a chemical po-

tential associated to the global SU(2) flavour symmetry. This symmetry originates

from the fact that we are considering two coinciding D7-probe branes. In addition

to the SU(2) symmetry, our systems also exhibits another global SO(4) symmetry

associated to the residual global isometry of the system of probes. In principle one

could also consider switching on a chemical potential which is associated to this

symmetry group, as it was done in e.g. [65]. However, our prime interest will be the

physically more relevant SU(2) group, which has direct analogue with the SU(2)

flavour symmetry group in the Sakai-Sugimoto model [66].

In order to turn on a chemical potential corresponding to this global SU(2)

“isospin” symmetry, let us consider two coincident D7-branes, which for simplicity

have equatorial embedding θ = 0, so that the induced metric on the D7-branes is

ds2 = − u
2

R2

(
1 +

R2

4u2

)2

dt2 +
R2

u2
du2 + u2

(
1− R2

4u2

)2

dΩ̄2
3 +R2dΩ2

3 . (5.2.15)

In other words, the D7-probes fill out the full AdS5 space, as well as a maximal

S3 ⊂ S5. We should note that there are two S3 factors present on the world-volume

of the brane, one Ω̄3 which is dual to the boundary S3 and another one S3 in S5,

which is part of the global symmetry group.

As explained in [67,68], in order to turn on a chemical potential we need to turn

on the A0 component of the gauge field, such that it satisfies the boundary condition

A0(x, z → 0)→ µIτ
3 , (5.2.16)

where τa = σa/2 and σa are Pauli matrices. As a first guess for finding the ground

state of the system in the presence of this chemical potential, we consider the ho-

mogeneous ansatz

A = A
(3)
0 (u)τ 3 dt , (5.2.17)

so that the DBI action becomes

S = −TD78π4R3

∫
dz
√
−g(z)

[
1 +

π2R4

2λ

(
∂zA

(3)
0 (z)

)2

gtt(z)gzz(z)

]1/2

. (5.2.18)
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The equation of motion for the field A0(z) can be integrated once, yielding

∂z(A
(3)
0 (z)R) =

4cz(1 + z2)√
(1− z2)6 + 32 c

2π2

λ
z6

, (5.2.19)

where c is an integration constant. We are looking for a physical configuration which

is smooth and differentiable everywhere. Specifically, we require that the field A0

and its derivatives are smooth at the origin of AdS space. However, by expanding

the right hand side of the above equation near the origin of AdS space one sees that

the radial derivative of the A0 field is non-vanishing. In other words, it is not possible

to obtain any nontrivial (different from a constant solution) homogeneous solution

which is smooth at the origin. This observation persists also for the Yang-Mills

truncation of the DBI action, and it also holds in the Poincaré limit (see [67]). Hence

as the starting configuration for our fluctuation analysis we will use a homogeneous

solution with non-zero isospin potential, given by

A0 = a0τ
3 , a0 = const. . (5.2.20)

This solution implies that at zero temperature, the homogeneous background does

not lead to generation of an isospin density.

Above the Hawking-Page transition, the situation is similar. The homogeneous

ansatz yields a first order differential equation,

∂uA
(3)
0 (u)

(
1− uR2

4ρ2
H

)2

= a0 , (5.2.21)

where a0 is an integration constant. This is solved by

A
(3)
0 (u) =

µI(1− u)

1− uR2

4ρ2H

, (5.2.22)

where we have imposed the boundary condition that A0(u→ 0) = µI at the bound-

ary, and also required vanishing of A0 at the horizon of the black hole in AdS space.

In contrast to the low temperature situation, we see that there is now a non-vanishing

isospin density present, even for this homogeneous system.
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5.3 Perturbative Analysis of the Homogeneous Vac-

uum at T = 0

While the homogeneous and isotropic solution which was discussed in the previous

section is a legitimate solution to the equations of motion, we expect that for large

enough values of the chemical potential this configuration will become unstable and

“decay” into another, presumably non-homogeneous or non-isotropic ground state.

Our expectations are based on a similar analysis which was previously performed for

the Sakai-Sugimoto model in [66]. A major difference, however, with respect to the

analysis of that paper is that we are now dealing with a field theory on a compact

space. In the present section we will discuss the perturbative stability analysis

at T = 0, which from a technical perspective largely follows the meson spectrum

analysis of [18]; we recall some elements of that construction for completeness and in

order to be able to compare with the finite temperature analysis which is to follow

in section 5.4.

5.3.1 Scalar Fluctuations at Zero Temperature

We will start the perturbative analysis of the homogeneous solution (5.2.20) by

considering scalar perturbations. By scalars we here mean scalars in the dual theory

that are also scalars from the point of view of the D7-probe, i.e. gauge theory scalar

fields which are uncharged under the SO(4). Some of the scalars in the dual gauge

theory originate from the components of the gauge field on the D7-probe and will be

analysed in the next section. Our starting point is the flat (i.e. maximal) D7-probe

embedding with the world-volume field (5.2.20) turned on. The induced metric on

the world-volume was written in (5.2.15). Since the D7-probe brane is filling out

the full AdS5 space and wrapping a maximal S3 in S5, there are only two transverse

scalars to the brane world-volume, and they are within the S5. To see which scalars

these are, let us write the metric on S5 as

ds2
5 = R2(dθ2 + sin2 θ dφ2 + cos2 θ dΩ2

3) . (5.3.23)
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Instead of using the (θ, φ) coordinates it will be more convenient to introduce coor-

dinates

w1 = R sin θ cosφ w2 = R sin θ sinφ, (5.3.24)

so that the metric on S5 becomes

ds2
5 =

(
1− w2

1 + w2
2

R2

)
dΩ2

3 + dW 2(w1, w2) . (5.3.25)

Here dW 2 is a complicated expression in terms of w1, w2, which however significantly

simplifies for w1 = 0, w2 = w, as it then becomes

dW 2(w1, w2)→ dw2

1− w2

R2

. (5.3.26)

It can easily be checked from the equations of motion that it is indeed consistent to

set one of the w1, w2 to zero.2 We expect that the first instability will appear already

for the lowest lying (S-wave) mode on the dual gauge theory sphere S̄3, which is also

a singlet on S3 ⊂ S5. Therefore, when looking for the instabilities in the system, we

will look at the fluctuation which is a function of only the time and u-coordinates.

Let us define the fluctuation variable as

Ψ(t, u) = δw2(t, u) . (5.3.27)

The induced metric on the D7-brane becomes

ds2 = − u
2

R2

(
1 +

R2

4u2

)2

dt2 + u2

(
1− R2

4u2

)2

dΩ̄2
3

+
R2

u2
du2 +R2

(
1− Ψ(t, u)2

R2

)
dΩ2

3 +

(
∂Ψ(t, u)

∂t
dt+

∂Ψ(t, u)

∂u
du

)2

. (5.3.28)

We next need to write down the action for the scalar fluctuation to leading order

in α′. A subtle point here is that all scalars are in the adjoint representation of the

SU(2) group on the world-volume of two D7-branes. The approach we adopt here

to write the action, is to first treat all scalars as Abelian and derive the action for

the fluctuation by linearising the DBI action. In the last step we then promote all

2The fluctuation in the other direction leads to the same spectrum, so we will not comment on

it any further (though we should emphasise that this is a property of the equatorial embedding

not shared by non-zero bare quark mass embeddings).
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fields to be in the adjoint representation by introducing an overall trace in front of

the action (for more on this and other approaches, see e.g. [69,70]).

Following these steps we end up with the action governing the scalar fluctuations,

S = −TD7
4π6R4

λ

∫
dudt u3

(
1 +

R2

4u2

)(
1− R2

4u2

)3

×

[
−R

2

2

(
4u

4u2 +R2

)2

DtΨ
(a)DtΨ

(a) +
u2

2R2
∂uΨ

(a)∂uΨ
(a) − 3

2

Ψ(a)Ψ(a)

R2

]
. (5.3.29)

Since we expect that an instability will appear in the gauge direction orthogonal to

the background field A0, we make the ansatz for the fluctuation field to be

Ψ(t, u) = e−iωt
(
Ψ(1)
ω (u)τ 1 + Ψ(2)

ω (u)τ 2
)
, (5.3.30)

where we have focused on one Fourier mode.

The equations of motion for the components Ψ
(1)
ω and Ψ

(2)
ω are coupled, but can

be decoupled by changing variables as

Ψ(±)
ω (u) = Ψ(1)

ω (u)± iΨ(2)
ω (u) . (5.3.31)

The equations of motion for the components Ψ(±) are

∂u(
√
−gguu∂uΨ(±)

ω )√
−gguu

− gtt

guu

(
ω ± A(3)

0

)2

Ψ(±)
ω +

3

R2guu
Ψ(±)
ω = 0 , (5.3.32)

which for the specific metric on the D7-brane world-volume become

∂2
uΨ

(±)
ω +

∂u

(
u5
(

1 + R2

4u2

)(
1− R2

4u2

)3
)

u5
(
1 + R2

4u2

) (
1− R2

4u2

)3 ∂uΨ
(±)
ω

+

[
R4

u4
(
1 + R2

4u2

)2 (ω ± µ)2 +
3

u2

]
Ψ(±)
ω = 0 . (5.3.33)

These equations can be solved by reducing them to Schrödinger form. A very similar

equation has been analysed in [18] for the determination of the mesonic spectrum

on the world-volume of a probe D7 brane at T = 0, in global AdS space. Following

steps similar to those in [18], and focusing on modes which are constant both on the

S3 ⊂ S5 and on the gauge theory S̄3, we obtain for the spectrum of fluctuations

(µ+ ω)R = ±(3 + 2n) n = 0, 1, 2, . . . . (5.3.34)
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Here n is the main quantum number. We see that the key effect of the non-vanishing

chemical potential is to shift the frequency ω → ω+µ. Because of this we see that for

large enough chemical potential µ > µcrit = 3/R, the frequency of the lowest lying

mode becomes zero, signalling that the homogeneous solution potentially becomes

unstable at this value of the chemical potential, and a condensate of the scalar might

form.

5.3.2 Vector Fluctuations at Zero Temperature

Following the perturbative analysis in the scalar sector, we now turn our attention

to vectors. We again expect unstable modes, but would like to know whether or not

they occur before the instability of the scalar sector. An analysis of the vector mode

spectrum was performed in infinite volume limit (on the Poincaré patch) in [71] and

then later extended to non-zero chemical potential in [68, 70, 72]. At finite volume

and vanishing temperature and chemical potential the spectrum can be found in [18].

The upshot of the analysis of [71] is that the lowest lying supermultiplet consists of

two transverse scalars describing the transverse fluctuations of the D7-brane in the

S5, one scalar which originates from the vector component in the internal S3 ⊂ S5

wrapped by the D7-brane, and gauge components in the non-compact directions of

AdS5. As one moves to the compact case, i.e. global AdS space [18], the states from

this supermultiplet get reorganised (split) so that the lightest state in the compact

space is the scalar which originates from the component of the gauge field in the

direction of the internal S3 ⊂ S5. The vector components in the direction of the

dual sphere as well as the transverse scalars both have larger masses. We now want

to see how the fluctuations from the vector sector are shifted upon introducing a

chemical potential.

The Gauge Theory Vector Fluctuations

Let us start with the vector components in the direction of the sphere S̄3 of the dual

gauge theory. These fluctuations are dual to the vector excitations in the gauge
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theory. Similarly to what we did for scalars, we start by writing the fluctuations as

A = A
(3)
0 (u)τ 3dt+Ra

(1)
i (t, u, Ω̄3)τ 1dθ̄i +Ra

(2)
i (t, u, Ω̄3)τ 2dθ̄i , (5.3.35)

where i = (1, 2, 3) are indices on the dual S̄3, and as for scalars we fluctuate in the

gauge directions orthogonal to A
(3)
0 . Since we know that the lowest lying vector is a

singlet on S3 we do not have to consider excitations which depend on the coordinates

of the internal sphere.3

Next, we linearise the Yang-Mills action on the world-volume of the D7-probe,

S = −TD7π
2R

4

2λ

∫
d8ξ
√
−g
[
(∂uA

(3)
0 )2gttguu

+R2
(

((Dtai)
(a))2gttgii + (∂ua

(a)
i )2guugii

)
+R2(faij)

2giigjj
]
, (5.3.36)

where

(Dtai)
(a) = ∂ta

(a)
i − εabcA

(b)
0 a

(c)
i , faij = (∂ia

(a)
j − ∂ja

(a)
i ) . (5.3.37)

Here, gij is the metric on S̄3. The equations of motion for the fluctuations a
(a)
i are

given by

√
−gεabcA(c)

0 Dta
(b)
i g

ttgii +
√
−g∂t

(
Dta

(a)
i

)
gttgii + ∂u

(√
−g∂ua(a)

i guugii
)

+
∑
j

(√
−g
(
∂ja

(a)
i − ∂ia

(a)
j

)
gjjgii

)
= 0, (5.3.38)

In order to solve this equation let us Fourier transform in the time direction. In

order to decouple the equations for the fluctuations a
(1)
i and a

(2)
i we introduce a new

pair of variables

X̄
(±)
i (u, ω, Ω̄3) = e−iωt

(
a

(1)
i (u, ω, Ω̄3)± ia(2)

i (u, ω, Ω̄3)
)
. (5.3.39)

This finally yields the fluctuation equations

∂u

(√
−gguugii∂uX̄(±)

i

)
+
∑
j

∂j

(√
−ggjjgii

(
∂jX̄

(±)
i − ∂iX̄(±)

j

))
−
√
−ggttgii

(
ω ± A(3)

0

)2

X̄
(±)
i = 0 , (5.3.40)

3In the language of [18] we consider type II fluctuations, with type I fluctuations to be considered

in the next subsection. Looking ahead, it turns out that type III fluctuations condense after type I

fluctuations and we will not consider them in detail here.
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which are equivalent to

Du
(
∂uX̄

(±)
i

)
+∇j

(
∂jX̄

(±)
i − ∂iX̄(±)

j

)
− gtt

(
ω ± A(3)

0

)2

X̄
(±)
i = 0. (5.3.41)

In order to solve these equations, we make a factorised ansatz for X̄i, as a product of

radial and angular functions, and expand the angular part X̄ Ω̄3
i (Ω̄3) on S̄3 in terms

of vector spherical harmonics, Πi. In general, the fluctuations could also depend on

a direction on internal sphere S3. However, as mentioned before, we will focus only

on singlets under the global SO(4) symmetry group. Also, while there exists three

type of vector spherical harmonics on S̄3, it has been argued in [18, 71], that for

fluctuations of the vector field which are taking place in S̄3 ⊂ AdS5, only Πl,±
i which

transform in
((

l∓1
2
, l±1

2

))
, l ≥ 1) irreducible representations of SO(4) are relevant.

Hence we expand the fluctuations as

X̄
(±)
i (u, ω, Ω̄3) =

∑
l̄,s=±

Φ̄
(±)

ω,l̄,s
(u)Πl̄,s

i , (5.3.42)

where the index (±) refers to the two linear combinations of modes as defined in

(5.3.39), and the ± index refers to the value of the index s labelling the vector

spherical harmonics.

The spherical harmonics satisfy the identities

∇i∇iΠl,±
j −Rk

jΠ
l,±
k = −(l + 1)2Πl,±

j ,

εijk∇jΠ
l,±
k = ±(l + 1)Πi

l,± ,

∇iΠl,±
i = 0 ,

(5.3.43)

Using these identities the equation for the vector fluctuations can be rewritten as

Φ̄
(±)′′

ω,l̄,s
(u) +

∂u

(√
−g(u)guu(u)P (u)

)
(√
−g(u)guu(u)P (u)

) Φ̄
(±)′

ω,l̄,s
(u)

− 1

guu(u)

[
gtt(u)

(
ω ± A(3)

0 (u)
)2

+ (l̄ + 1)2P (u)

]
Φ̄

(±)

ω,l̄,s
(u) = 0 , (5.3.44)

where the ± sign in front of A0 in the equation is correlated with the (±) sign on the

Φ̄(±) and P (u) is the inverse of the u-dependent part of the the metric factor in front

of dΩ̄2
3. We should note that this equation is independent of the quantum number
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s = ±1, which will be different when we start looking at the vector fluctuations in

the direction of the internal sphere. In the case of zero temperature the fluctuation

equation becomes (see also [18])

Φ̄
(±)′′

ω,l̄
(u) +

∂u

(
u3
(

1 + R2

4u2

)(
1− R2

4u2

))
u3
(
1 + R2

4u2

) (
1− R2

4u2

) Φ̄
(±)′

ω,l̄
(u)

+

[
R4

u4
(
1 + R2

4u2

)2 (ω ± µ)2 − R2

u4
(
1− R2

4u2

)2 (l̄ + 1)2

]
Φ̄

(±)

ω,l̄
(u) = 0 . (5.3.45)

This equation is very similar to (5.3.33), and can again be cast in Schrödinger form.

We then find that the spectrum of vector fluctuations for the l̄-th spherical harmonics

is given by

(ω ± µ)R = (3 + l̄ + 2n) n = 0, 1, 2, 3.... l̄ = 1, 2, 3.... , (5.3.46)

Here n is again the main quantum number, and l̄ is an SO(4) quantum number

corresponding to the sphere S̄3 ⊂ AdS5. We see that the result is again the same as

the one in [18] if we consider SO(4) singlets (i.e. set l = 0), except that the chemical

potential shifts the frequency ω → ω ± µ.

From equation (5.3.46) we see that for a critical value of the chemical potential

given by µcrit = 4/R, the lowest lying mode l̄ = 1 will become massless. Therefore,

we expect that when the chemical potential is larger than this value, the system

potentially becomes unstable.

The Charged Scalar Fluctuations

Let us now consider fluctuations of the vector field in the direction of the internal

S3 ⊂ S5, which are dual to an SO(4) charged scalar field in the gauge theory. Since

the WZ term in the action is now non-zero, when considering fluctuations, we have

to modify the action from (5.3.36) by adding the term

SWZ =
TD7π

2R4

λ

∫
tr(C ∧ F ∧ F ) , dC =

4

R
Vol(AdS5). (5.3.47)

Similarly as before, we make an ansatz as in (5.3.35) except that the index i is now

taking values in the internal S3. In addition, we will also allow the fluctuations to
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depend on both S3 and S̄3 variables. In order to decouple the equations of motion

we redefine variables as in (5.3.39) and make a factorised ansatz

X
(±)
i (u, ω,Ω3, Ω̄3) = e−iωtΦ(±)(u)Ȳ l̄(Ω̄3)Πl,s

i (Ω3) , (5.3.48)

where the index (±) refers to the sign in the linear combination (5.3.39), Ȳ l̄(Ω̄3) is

the scalar spherical harmonic of mode l̄ on S̄3, i denotes the index in the direction

of the internal S3, and the index s = ±1. Also to shorten the notation we have

suppressed indices on the functions Φ(±), which should really also carry indices

(ω, s, l̄, l).

Following the same procedure as for scalars and the other gauge components we

arrive at the equation for the fluctuations (see also [18])

∂2
uΦ

(±) +
∂u(u

5
(

1 + R2

4u2

)(
1− R2

4u2

)3

)

u5
(
1 + R2

4u2

) (
1− R2

4u2

)3 ∂uΦ
(±) +

R2

u4
(
1 + R2

4u2

)2 (ω ± µ)2Φ(±)

−

[
(l + 1)2 + l̄(l̄ + 2)

R2

u2
(
1− R2

4u2

)2 + 4s(l + 1)

]
1

u2
Φ(±) = 0 , (5.3.49)

where the sign in the (ω ± µ) is the same as for Φ(±). We should note that this

equation explicitly depends on the quantum number s, which is labelling the vector

harmonics on S3. This is in contrast to the previous case for the equation for vector

fluctuations on S̄3.

Putting equation (5.3.49) in Schrödinger form, like we did for the other fluctua-

tions, we obtain for the spectrum

(ω ± µ)R = 3 + 2s+ l + 2n+ l̄ where

l̄ = 0, 1, 2, . . . l = 1, 2, 3, . . . n = 0, 1, 2, . . . s = ±1 . (5.3.50)

This is the same as (4.31) of [18] except for the shift ω → ω+µ. Let us also note that

the lowest lying excitation carries quantum numbers (l̄ = 0, l = 1, s = −1, n = 0),

and this mode will reach zero frequency when µ > µcrit = 2/R.4

4The fact that this excitation has the lowest mass at µ = 0 was also observed in [18], but no

attempt was made to study its condensation under the influence of a chemical potential.
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5.4 Perturbative Analysis of the Homogeneous Vac-

uum at T 6= 0

In the previous section we have observed that the homogeneous isotropic ground

state at non-zero chemical potential and zero temperature was unstable under both

scalar and vector fluctuations. We would now like to see how is this modified once

the temperature is turned on, paying particular attention to the order in which the

instabilities set in as a function of temperature.

We should emphasise that in contrast to the zero temperature case, where all

fluctuations have real frequency ω (corresponding to stable mesonic scalar and vec-

tor particles), at finite temperature (above the Hawking-Page transition), even in

the absence of chemical potential all fluctuation frequencies have a non-vanishing

imaginary part. When the chemical potential is zero the imaginary part of these

frequencies are negative, corresponding to the fact that these excitations are decay-

ing in time, i.e. that they describe quasi-stable particles. However, as the chemical

potential is turned on, if there is indeed an instability present, we expect that the

negative imaginary part of the frequencies will become positive, i.e. that a decaying

excitation would become an exponentially growing mode, which signals an instabil-

ity. In what follows, we will therefore focus on studying the imaginary part of the

quasi-normal modes of the system.

We start our analysis by looking at the scalar fluctuations, and repeat the pro-

cedure similar to that at zero temperature. Again, we use the metric on the S5 as in

(5.3.25), keeping only the transverse scalar Ψ(t, u) nonzero (see equation (5.3.27))

and making it depend only on time and the radial direction u. As argued before,

such excitation is consistent with the full equations of motion, and should corre-

spond to the lowest energy mode, an S-wave on S̄3. The induced metric on the

D7-brane world-volume is then

ds2 = − 2ρ2
HF (u)

uR2W (u)
dt2 + 2

ρ2
H

u
W (u)dΩ̄2

3 +
R2

4u2F (u)
du2

+R2

(
1− Ψ(t, u)2

R2

)
dΩ2

3 +

(
∂Ψ(t, u)

∂t
dt+

∂Ψ(t, u)

∂u
du

)2

, (5.4.51)
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where

F (u) = 1− u2 , W (u) = 1− uR2

4ρ2
H

. (5.4.52)

As before, we Fourier transform the scalar Ψ(t, u) and make the ansatz that it is

pointing in the direction orthogonal to the A
(3)
0 τ 3 in colour space,

Ψ(t, u) =

∫
dω

2π
e−iωt(Ψ(1)

ω (u)τ 1 + Ψ(2)
ω (u)τ 2) . (5.4.53)

We then again change variables as

Ψ(±)
ω (u) = Ψ(1)

ω (u)± iΨ(2)
ω (u) , (5.4.54)

so that the equations for the Ψ(±) fluctuations decouple and are given by5

∂u

(
W (u)F (u)

u
∂uΨ

(±)
ω (u)

)
W (u)F (u)

u

+
R4W (u)

8uρ2
HF (u)2

(
ω ± A(3)

0 (u)
)2

Ψ(±)
ω (u)

+
3

4u2F (u)
Ψ(±)
ω (u) = 0 . (5.4.55)

We solve the fluctuation equation by imposing that the modes satisfy an incoming

boundary condition at horizon,

Ψ(±)
ω (u)

∣∣∣
u≈1

= (1− u)−iω/(4πT )(1 +O(1− u)) . (5.4.56)

The equations for the vector fluctuations are derived in a similar way. Let us

first consider the vector fluctuations which are dual to vectors. We take them to

be singlets under the global SO(4) (l = 0), and orthogonal to the isospin chemical

potential in the gauge group as we did at zero temperature, see (5.3.35). Following

steps similar to those at zero temperature, instead of a
(1)
i , a

(2)
i , we introduce a new

pair of variables X
(±)
i , as in (5.3.39) and Fourier expand it in spherical harmonics

as in (5.3.42). Hence, we arrive at the equations of motion for these fluctuations

∂2
uΦ̄

(±)s,l̄
ω +

∂uF (u)∂uΦ̄
(±)s,l̄
ω

F (u)
− (l̄ + 1)2 R2

8ρ2
HW (u)F (u)u

Φ̄(±)s,l̄
ω

+
R4W (u)

8uρ2
HF (u)2

(ω ± A(3)
0 )2Φ̄(±)s,l̄

ω = 0 . (5.4.57)

5Note that at T = 0, the equations only depend on ω − µ, and hence the critical chemical

potential coincides with the frequency of the lightest mode. At T > 0 the A
(3)
0 component is

no longer a constant, and obtaining the critical chemical potential is more complicated (physical

states are no longer straight lines in the ω, µ plane).
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As for scalars, we impose incoming boundary conditions at the black hole horizon

Φ̄(±)s,l̄
ω

∣∣∣
u≈1

= (1− u)−iω/(4πT )(1 +O(1− u)) . (5.4.58)

Finally, we turn to the vector fluctuations dual to the charged scalars. Following

similar steps as we did at zero temperature we arrive at the equations governing

these fluctuations (see equation (5.3.49))

∂u

(
W (u)F (u)

u
∂uΦ

(±)

)
W (u)F (u)

u

− (l + 1)2 1

4u2F (u)
Φ(±) − l̄(l̄ + 2)

R2

8ρ2
HW (u)F (u)u

Φ(±)

− s(l + 1)

u2F (u)
Φ(±) +

R4W (u)

8uρ2
HF (u)2

(ω ± A(3)
0 )2Φ(±) = 0 . (5.4.59)

where we have again suppressed the indices (ω, l̄, l, s) on the functions Φ and we

impose incoming boundary conditions at the horizon of the black hole

Φ(±)
∣∣∣
u≈1

= (1− u)−iω/(4πT )(1 +O(1− u)) . (5.4.60)

In order to solve the fluctuation equations (5.4.55), (5.4.57) and (5.4.59), we use a

shooting technique (see appendix A.1 and A.2 for more detail), in which we start

from the horizon and look for modes that decay at infinity i.e. we look for the

modes that describe normalisable excitations. These boundary conditions will be

satisfied only for a discrete set of frequencies. We plot the imaginary parts of those

frequencies for the scalar and two vectors, for fixed temperature and various values

of the chemical potential µ, in figure 5.1.

We see that as the value of the chemical potential is increased, the imaginary

parts of the frequencies, which were initially all negative, become less and less neg-

ative and approach zero. When the chemical potential exceeds a critical value, the

imaginary parts become positive one by one, signalling the presence of unstable

modes in the system. Similarly, the real parts of the frequencies are decreasing to

zero as the chemical potential grows, signalling again the onset of an instability. For

a particular value of the temperature presented on the left plot in the figure 5.1, we

see that the vector dual to the gauge theory charged scalar remains the lightest in

the spectrum and condenses first, followed by the transverse scalar and finally the

vector.
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Figure 5.1: Plots of the imaginary (left) and real (right) parts of the frequencies for

the lowest lying uncharged scalar fluctuation (red), the vector fluctuation (blue) and

the charged scalar fluctuation (green), at fixed temperature πTR = 2, as a function

of the chemical potential.

In general, one would expect that particles condense roughly when the chemical

potential become of the order of their mass. It is thus of interest to look at the

behaviour of the masses6 as a function of temperature. Figure 5.2 shows the result

of this analysis. We here observe another interesting phenomenon, namely that

there is a crossover point at some critical value of the temperature, above which the

lightest vector becomes lighter than the transverse scalar. This suggests that above

the crossover temperature, the lightest vector would condense before the lightest

transverse scalar, if it had not been for the SO(4) charged scalar that condenses

even earlier. One can indeed see that the corresponding imaginary parts cross as

well, approximately at this point, see figure 5.3.

For large TR, the results read

charged scalar : µcritR ≈ 2.00πTR− 2.00× 0.05

4πTR
+ · · · ,

vector : µcritR ≈ 4.00πTR− 4.00× 0.05

4πTR
+ · · · ,

uncharged scalar : µcritR ≈ 4.16πTR− 4.16× 1.00

4πTR
+ · · · .

(5.4.61)

The leading order terms should agree with those obtained in the Poincaré patch,

6We use pole masses here for convenience as they are easy to obtain from the quasi-normal

mode analysis, and the intuition we want to verify is anyhow qualitative.
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Figure 5.2: Left is a plot of the real parts of the frequencies for the various modes

(colours as in figure 5.1) as functions of the temperature at fixed value µR = 5 of

the chemical potential. The plot on the right shows the real parts of the frequencies

as functions of both temperature and chemical potential.

though to our knowledge only the one for the vector has been computed in the

literature [68, 70,73]. The result for the critical chemical potential of [68, 70] (when

extrapolated to zero bare quark mass) seems to be somewhat larger than ours, which

may be due to the fact that we have used a Yang-Mills truncation rather than the

full DBI action.

5.5 The New Ground States at Zero and Finite

Temperature

In the previous two sections we have seen that for large enough chemical potential

the homogeneous ground state on S̄3 ⊂ AdS5 becomes unstable under both scalar

and various components of vector fluctuations. This is happening both at zero and

non-zero temperature. In particular we observe that, at zero temperature, vector

fluctuations in the direction of the internal S3 ⊂ S5 are the first to became unstable.

As the temperature is increased, these vector components remain the first to become

unstable. On the other hand, the ordering in which the other components of the

vector fluctuations and the scalar fluctuations become unstable is dependent on the

temperature, as there is a ‘crossover’ temperature above which all vector components

first become unstable.
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Figure 5.3: Critical chemical potential as function of temperature, in two different

dimensionless combinations. The figure on the right shows more clearly what hap-

pens in the TR → ∞ limit, which can be interpreted as the large radius limit at

fixed temperature.

Our previous analysis was done in perturbation theory, i.e. at the linearised level.

So we would now like to see if the instabilities which we have found are present in

the full non-linear theory, and to explore the new ground state in which the system

settles for large enough values of the chemical potential.

5.5.1 The New Ground State at Zero Temperature

In section 5.3.2 we have observed that as the chemical potential is turned on, when

its value reaches µ ≥ 2/R, the lowest lying mode of the vector component in the

internal S3, becomes massless, signalling the onset of possible instability in the

system. We have also seen that for even larger values of the chemical potential, the

scalar becomes massless at µ ≥ 3/R and the other components of the vector develop

an instability for µ ≥ 4/R.

To see whether the appearance of these massless modes indeed signals a real

instability, we will now turn to the full non-linear theory and try to explicitly con-

struct the new ground state to which the system would evolve as a consequence

of the instability. As the perturbative analysis suggests that vector components in

the internal S3 direction are first to condense, we will start the analysis of the new

ground state by turning on only those components. We will later, for comparison,

also analyse possible ground states due to condensation of the other fluctuations,
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and verify that those always have higher energy than the scalar condensate.

When writing down an ansatz for the scalar condensate ground state, we will use

the fact that in perturbation theory, the first unstable mode is an l̄ = 0, l = 1, n =

0, s = −1 wave (where l̄ labels modes in the S̄3 and l labels modes in the S3 ⊂ S5).

As far as the A0 component is concerned, at linearised level one cannot see the

back-reaction of the scalar on the background value of this field, so in principle one

cannot say if in the new ground state the A0 component will start to depend on the

angular coordinates or not.

As a simplest attempt we take A0 to remain homogeneous, i.e. independent of

the S̄3 angular coordinates. With this ansatz, potential problems in the equations

of motion could originate from expression of the form “AαAβg
αβ
S3 ”, which are now

turned on due to the non-vanishing vector field in the direction of the internal

sphere S3. Since these terms will typically produce spherical harmonics of higher

l-number we would need to balance them in the equations of motion. However, we

expect that the ground state would originate from condensation of only the lowest

harmonic, so that higher l-harmonics are not needed. It is possible to reconcile

these two observations if the “AαAβg
αβ
S3 ” expression is independent of the angular

coordinates. This can indeed be achieved for a particular linear combination of

spherical harmonics given by

Πα =
ik0

K
Π1,0,0,−1
α +

(k1 + ik2)

K
Π1,0,−1,−1
α +

(k1 − ik2)

K
Π1,0,1,−1
α

where K ≡
√
k2

0 + 2(k2
1 + k2

2) , (5.5.62)

and k0, k1, k2 are three arbitrary real numbers which are not simultaneously van-

ishing, and (l,m1,m2, s) are the quantum numbers of the spherical harmonics. We

should note here that value of these quantum numbers will be taken to be the same

as those of the lowest lying excitation we have previously found in the perturbative
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analysis. Explicitly, the spherical harmonics are given by

Π1,0,0,−1 =
i

2
dα +

i

2
cos βdγ

Π1,0,1,−1 = − 1

2
√

2
e−iαdβ − i

2
√

2
sin βe−iαdγ

Π1,0,−1,−1 = − 1

2
√

2
eiαdβ +

i

2
√

2
sin βeiαdγ ,

(5.5.63)

where α, β, γ are Euler coordinates on S3 ⊂ S5,

ds2
S3 =

1

4
(dα2 + dβ2 + dγ2 + 2 cos βdαdγ) . (5.5.64)

It is also useful to keep in mind that

(Πl,m1,m2,s
i )∗ = −(−1)m1−m2Πl,−m1,−m2,s

i . (5.5.65)

Our ansatz for the new ground state is

A0 = A
(3)
0 (u)τ 3 , Aα = Rη(u)Πα(Ω3)τ 1 (5.5.66)

Plugging this into equations of motion, and using identities (5.3.43) we get an equa-

tion for A0(u)

∂u

(
(∂uA

(3)
0 )u3

(
1− R2

4u2

)3

/
(

1 + R2

4u2

))
u3
(
1− R2

4u2

)3
/
(
1 + R2

4u2

) − R2

u2
(η(u))2A

(3)
0 (u) = 0 , (5.5.67)

and an equation for the function η(u)

∂u

(
∂uη(u)u5

(
1 + R2

4u2

)(
1− R2

4u2

)3
)

u5
(
1 + R2

4u2

) (
1− R2

4u2

)3 +
R4

u4
(
1 + R2

4u2

)2 (A
(3)
0 (u))2η(u) +

4

u2
η(u) = 0 .

(5.5.68)

Note that these are independent of the parameter K, which only appears in the

angular part of the equations of motion, which is automatically satisfied for our

ansatz.

Equations (5.5.67), and (5.5.68) are written in the non-compact coordinate u for

which the AdS centre is at u = R/2 and the boundary is at u = ∞. However, for

numerical considerations it is more convenient to perform a coordinate change to
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Figure 5.4: Profile of the fields A0 (left) and η (right) of the charged scalar conden-

sate, evaluated at µR = 2.5. The boundary is at z = 0 and the AdS centre is at

z = 1.

compact coordinates z = R/2u, so that the AdS origin is at z = 1, and the boundary

at z = 0. The equations of motion then are given by

∂2
zA

(3)
0 (z) +

1 + 8z2 + 3z4

z5 − z
∂zA

(3)
0 (z)− R2

z2
η(z)2A

(3)
0 (z) = 0 ,

∂2
zη(z) +

3 + 4z2 + 5z4

z5 − z
∂zη(z) +

(
4

z2
+

4R2

(1 + z2)2
A

(3)
0 (z)2

)
η(z) = 0 .

(5.5.69)

We are interested in the solutions of these equations that are regular everywhere,

and in particular at the origin of AdS space. This removes half of the solutions, as

can be seen by looking at the z → 1 limit of the above equations. Namely, assuming

that A0 and η are regular at the AdS origin, it is easy to see that the above equations

reduce to the conditions that the first derivatives of A0 and η are vanishing at the

origin. Hence, the general regular solution will be parametrised by two parameters

a, b. We then solve the equations of motion by shooting from the AdS origin, and

look for the solutions at the boundary such that η is normalisable, while A0 is not.

This normalisability condition further reduces the number of parameters by one.

Hence in the expansion near infinity

A
(3)
0 = µ− ρz2 + · · · , A(1)

α = RρηΠαz
2 + · · · . (5.5.70)

both the densities ρ and ρη are functions of the chemical potential µ.

We plot the radial profile of the functions A0(z) and η(z) for one particular

solution in figure 5.4. As required, we see that the solution is regular everywhere, and
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Figure 5.5: The plot on the left shows the isospin density ρR (blue) and scalar density

ρηR (red) of the charged scalar condensate as functions of the isospin chemical

potential. The plot on the right shows the scaled free energy as function of chemical

potential.

approaches the origin of AdS with vanishing derivative, so that no cusp is present.

We also study various solutions for different values of chemical potential, see figure

5.5. The shooting procedure shows that there is a critical value of the chemical

potential µcrit ∼ 2/R below which there is no nontrivial solution present. Above

µ = µcrit a nontrivial condensate of scalar particles forms, and in the neighbourhood

of µcrit, this condensate is to a good approximation given by

ρη =

0 for µ < µcrit

√
µ− µcrit for µ > µcrit .

(5.5.71)

We have also evaluated the free energy for various values of the chemical potential

(see figure 5.5), and observed that it is less than the (vanishing) free energy of the

trivial configuration, which is in agreement with the statement that this is the ground

state.

In summary, our analysis shows that for large enough value of the chemical

potential, this system undergoes a second order phase transition in which the homo-

geneous isotropic solution is replaced with a non-isotropic one. The order parameter

in this transition is the density ρη, and the critical exponent is the same as in the

Landau-Ginsburg theory with positive quartic potential.

In order to complete the picture, and to show that (as expected from the per-

turbative analysis) the charged scalar condensate is always the one with the lowest
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Figure 5.6: Left: a plot of the functions A0(z) (solid curve) and ψ(z) (dashed curve)

for the vector solution. Right: plots of the functions A0(z) (solid) and Φ (dashed)

for the scalar configuration, both evaluated at a fixed value of chemical potential

µR = 4.5.

energy, we will now construct condensates of the transverse scalar and the vector,

and show that their energies are always higher than the one of the charged scalar.

When constructing the transverse scalar ground state we recall that perturbative

analysis suggested that the s-wave is the first excitation of the scalar which becomes

massless. Hence we make a homogeneous (i.e. only u-dependent) ansatz as follows

A = A
(3)
0 (u)τ 3 dt , Φ = Φ(1)(u)τ 1 , (5.5.72)

where the vector A0 is present to account for the non-vanishing chemical potential,

while all other vector components are zero. The equations of motion for the fields

(A0,Φ) are given by

∂2
zA

(3)
0 (z) +

1 + 8z2 + 3z4

z5 − z
∂zA

(3)
0 (z)− R2

z2
Φ(z)2A

(3)
0 (z) = 0 ,

∂2
zΦ(z) +

3 + 4z2 + 5z4

z5 − z
∂zΦ(z) +

(
3

z2
+

4R2

(1 + z2)2
A

(3)
0 (z)2

)
Φ(z) = 0 .

(5.5.73)

Similarly, when constructing the ground state originating from vector condensa-

tion, we start with an ansatz which is similar to that of the vector component dual

to a charged scalar, i.e. we write

A0 = A
(3)
0 (u)τ 3 , Aᾱ = ψ(u)Πᾱ(Ω̄3)τ 1 , (5.5.74)
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Figure 5.7: Plots of the densities ρ (blue) and ρη (red), as a function of the chem-

ical potential µ, at zero temperature, for the vector condensate (left) and scalar

condensate (right).

where Πᾱ is as in (5.5.66), except that the index ᾱ = 1, 2, 3 now refers to the

S̄3 ⊂ AdS5. The equations of motion then become

∂2
zA

(3)
0 (z) +

1 + 8z2 + 3z4

z5 − z
∂zA

(3)
0 (z)− 4

(1− z2)2
ψ(z)2A

(3)
0 (z) = 0 ,

∂2
zψ(z) +

1 + 3z4

z5 − z
∂zψ(z) +

(
4R2

(1 + z2)2
A

(3)
0 (z)2 − 16

(1− z2)2

)
ψ(z) = 0 .

(5.5.75)

We should emphasise here that this equation is derived from an ansatz which uses

spherical harmonics with l̄ = 1, s = −1, similar to the ansatz we used when we

constructed the state for the vector dual to a charged scalar. However, we have

also seen in the perturbative analysis that vector fluctuations in the direction of

S̄3 ⊂ AdS5 are insensitive to the quantum number s, unlike the fluctuation in

direction of S3 ⊂ S5. Therefore, it should also be possible to construct an alternative

state with spherical harmonics with l̄ = 1, s = 1. This is indeed this the case, and

the free energy of this state is the same as for the state with l̄ = 1, s = −1.

Equations (5.5.73) and (5.5.75) are solved in the same fashion as equation (5.5.69),

that is by the shooting method as described in appendix A and imposing that the

solution is regular everywhere and in particular at the origin of AdS5. The solutions

for the radial functions (A0,Φ) for the scalar configuration and (A0, ψ) for the vector

are plotted in figure 5.6. We also plot the densities for both configurations (defined

analogous to (5.5.70)) as functions of the chemical potential, see figure 5.7.

In order to compare various configurations we plot the free energies for all three
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Figure 5.8: Scaled free energy of the zero-temperature (left) and the finite-

temperature (right) condensates as a function of the dimensionless chemical po-

tential. The vector is plotted in blue, the scalar in red, the charged scalar green.

The black curves denote the old ground state.

states, see figure 5.8. As expected from the perturbative analysis, we see that the

state which originates from a condensation of the vector components which are

dual to a charged scalar has the lowest free energy. We also see that as the chemical

potential is increased, the difference between the free energies of the other two states

and the true ground state becomes larger. It is, however, likely that new instabilities

will kick in at some point. Investigating that in detail would require at the least a

perturbative analysis around this new ground state, which we will not attempt here.

5.5.2 The New Ground State at Finite Temperature

So far we have seen that at zero temperature, the ground state originates from the

condensation of vector components which are dual to a charged scalar, exactly as

perturbation theory suggested. We now want to see what is happening with this new

ground state as the temperature is turned on. We start by making the same ansatz

as at zero temperature, see (5.5.66). The equations of motion in the coordinates

(5.2.12) are given by

∂2
vA

(3)
0 (v)− Λ− 1

4(Λ− v)(1− v)2v
R2η(v)2A

(3)
0 (v) = 0 , (5.5.76)
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together with

∂2
vη(v) +

(
1

1− v
+

1

v
− 1

Λ− v

)
∂vη(v)

+
Λ− 1

(Λ− v)(1− v)2v

(
1 +

(2− Λ)(1− v)R2

4(Λ− v)v
A

(3)
0 (v)2

)
η(v) = 0 . (5.5.77)

We are interested in finding regular solutions to these equations. It is easy to see

that the solutions which are regular are parametrised by two free parameters. A

general, perturbative expansion of the solution near the black hole horizon which is

regular is given by

A
(3)
0 (v) = av +

ab2(Λ− 1)

8ΛR2
v2 +O(v3) ,

η(v) = b− (Λ− 1)b

Λ
v − 12b(Λ− 1) + (2− Λ)(Λ− 1)a2R

16Λ2
v2 +O(v3) ,

(5.5.78)

i.e. a regular solution is parametrised by two real numbers a, b. We also see that

the general regular solution for A0 vanishes at the horizon, as required by global

regularity. We solve this system of equations again using a shooting method with

two free parameters. As at zero temperature, we require in addition that the solution

for η is normalisable at infinity, or explicitly

A
(3)
0 (v) = µ− ρ(1− v) +O((1− v)2) , η(v) = ρη(1− v) +O((1− v)2) . (5.5.79)

This is possible only for a particular pair of parameters a, b, or in other words both

densities ρ, ρη are functions of the chemical potential. An example of the radial

profiles for a regular solution is plotted in figure 5.9. We also plot both densities as

a function of chemical potential (see right plot on figure 5.9). We observe that, just

as at zero temperature, the densities increase as the chemical potential is increased.

As for zero temperature, we should make sure that possible alternative states

which appear due to condensation of other unstable particles have a larger free

energy (as suggested by perturbation theory). We start with the scalar ground state.

We make the same ansatz for the ground state, as we did at the zero temperature,
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Figure 5.9: Left are plots of profile of the fields A0 (solid) and η (dashed) for the

charged scalar, evaluated at πTR = 2.5 and µR = 10.1. The boundary is at v = 1

and horizon at v = 0. Right plot is for densities ρ (blue) and ρη (red), as function

of chemical potential µ, at fixed temperature πTR = 2.5.

see (5.5.72). The equations of motion in the coordinates (5.2.12) are given by

∂2
vA

(3)
0 (v)− Λ− 1

4(Λ− v)(1− v)2v
Φ(v)2R2A

(3)
0 (v) = 0 ,

∂2
vΦ(v) +

(
1

1− v
+

1

v
− 1

Λ− v

)
∂vΦ(v)

+
Λ− 1

(Λ− v)(1− v)2v

(
1 +

(2− Λ)(1− v)R2

4(Λ− v)v
A

(3)
0 (v)2

)
Φ(v) = 0 .

(5.5.80)

Similarly, the ground state originating from the vectors is derived starting with the

ansatz (5.5.74). The equations of motion are given by

∂2
vA

(3)
0 (v)− 2− Λ

4(Λ− v)(1− v)v
ψ(v)2A

(3)
0 (v) = 0 ,

∂2
vψ(v) +

(
1

v
− 1

Λ− v

)
∂vψ(v)

− 2− Λ

(Λ− v)(1− v)v

(
1− (Λ− 1)R2

4(Λ− v)v
A

(3)
0 (v)2

)
ψ(v) = 0 .

(5.5.81)

As before we consider only regular solutions to the equations (5.5.80) and (5.5.81)

and require that the solutions are normalisable. Sample solutions for rather arbitrary

values of the temperature and chemical potential are plotted in figure 5.10. We

have also evaluated the densities for these solutions, and find a qualitatively similar

dependence on the chemical potential as before. We have also verified that indeed
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Figure 5.10: Plots of solutions (A0(z),Φ(z)), and (A0(z), ψ(z)) for the scalar and

vector condensates respectively, at fixed temperature πTR = 2.5 and chemical po-

tential µR = 4.5 (the curve for A0 is rather straight only because the plot is made

for a chemical potential only slightly above the critical value).

the charge scalar always has a lower free energy than the condensate of the other

particles, as predicted by perturbation theory.

Finally, we present in figure 5.11 the dependence of the charged scalar condensate

densities on the temperature, for fixed chemical potential. This shows how increasing

the temperature ‘melts’ the condensate.

5.6 Conclusion and Discussion

We have investigated some of the instabilities of the N = 2 SYM theory on a three-

sphere with the massless quark and the isospin chemical potential. At sufficiently

high values of the chemical potential, in the gauge theory we found the instabilities

of the vector, uncharged scalar and SO(4) charged scalar. The mode that is unstable

with the least value of the chemical potential is the SO(4) charged scalar. This mode

is thus the first mode to condense. By constructing the new ground state that uses

the SO(4) charged scalar as the additional basis, we found the free energy of the

system with this new ground state is lower than the one with the old or the other

ground states. This confirms the charged scalar new ground state is the true new

ground state for this range of the chemical potential.

As the bases of the new ground state has the component of the SO(4) charge
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Figure 5.11: Dependence of the charged scalar ground state densities on TR at fixed

chemical potential µR = 4.005.

scalar which is anisotropic in the three-sphere, the system with the new ground state

has the global SO(4) R-symmetry broken. As this story happens in the internal

sphere, it still survives in the infinite volume limit where the Poincaré patch of

AdS5 × S5 spacetime is used in the gravity side.

The system also exhibits the cross-over behaviour in the fluctuation spectra of

the scalar and the vector mesons as a function of the dimensionless temperature.

It does not have any effects on the charged scalar condensation. However, it would

yield an important influence when we consider the system with the higher chemical

potential.



Chapter 6

Effects of a Magnetic

Kalb-Ramond Field to the Meson

Spectra and the New Ground

States

In this chapter we will follow our work in progress [3]. We investigate the meson

spectra and new ground states inN = 2 SYM at zero temperature at strong coupling

in compact space S3 with a magnetic Kalb-Ramond field (magnetic B-field). For

particular values of an external magnetic field, there is a range of quark masses called

mass gap in which we still cannot find an appropriate solution. The analysis also

shows the instability of the ground states when the external magnetic field increases

to certain values.

6.1 Motivation

The magnetic effect to the strongly coupled system has been studied in many works

such as [74–79]. One of the interesting influences is the catalysis of the chiral sym-

metry breaking that gives the fermion condensate [80–85]. This effect has been

shown to be universal and should be accessed by every proper model [6]. Another

interesting effect from the external magnetic field is the diminishing of the meson

73
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new ground state in [86]. In our work, we will study the magnetic effect by using

the holographic model. The setup is exactly the same as in the last chapter, except

there is the B-field added in and we are also considering the massive quark. We

will work in the gravity side and then map the quantity to the gauge theory by the

boundary expansion to see if the diminishing of the new ground states and/or any

other interesting effects arise.

6.2 Magnetic B-field and Holographic Quarks

6.2.1 DBI Action and Its EOMs with B-field Turned on

Here, the DBI action with non-zero B-field will be considered. We will show the

equations of motion from the DBI action. The gauge symmetry at equations of

motion level will be demonstrated. We find that the gauge field equations of motion

are non-trivial even if gauge field is zero. Due to this constraint, we have to consider

B-field depending on the radial coordinate1 of the D7-brane.

Let us recall the DBI action

S = −TD7

∫
d8σ
√
− det(eab + 2πα′Fab), (6.2.1)

where eab = Eµν∂ax
µ∂bx

ν with Eµν = Gµν +Bµν . We obtain the equations of motion

for the embedding function and for gauge field:

∂b

(√
−EEbaEνλ

∂xν

∂σa

)
+ ∂a

(√
−EEbaEλν

∂xν

∂σb

)
−
√
−EEba∂λEµν

∂xµ

∂σa
∂xν

∂σb
= 0,

(6.2.2)

∂a(
√
−E(Eab − Eba)) = 0, (6.2.3)

where Eab and E are inverse and determinant of Eab = eab + 2πα′Fab, respectively.

Note that even though the gauge field vanishes, the equation (6.2.3) is still non-

trivial2. In fact, the equations (6.2.2) and (6.2.3) are invariant under the gauge and

1This contrasts to [6], where the B-field ansatz is built from S3 tetrads and does not depend

on the radial coordinate.
2It seems that [6] missed the equation (6.2.3) which their B-field ansatz B = (const) sin θ̄dθ̄dφ̄

contradicts.
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tensor gauge transformations in (2.2.22) and (2.2.23). We consider the background

metric in general form

ds2 =Gtt(r)dt
2 +G33(r)(dθ̄2 + sin2 θ̄dφ̄2 + cos2 θ̄dψ̄2) +Grr(r)dr

2

+R2 dχ2

1− χ2
+R2χ2dκ2 +R2(1− χ2)(dθ2 + sin2 θdφ2 + cos2 θdψ2),

(6.2.4)

and use the embedding

{t, r, θ̄, φ̄, ψ̄, θ, φ, ψ, χ, κ} → {t, r, θ̄, φ̄, ψ̄, θ, φ, ψ} (6.2.5)

with the embedding functions

{t, r, θ̄, φ̄, ψ̄, θ, φ, ψ} = {t, r, θ̄, φ̄, ψ̄, θ, φ, ψ}, χ = χ(r), κ = 0. (6.2.6)

Now we turn on a pure gauge B-field, B = dΛ, with

Λ = H(r)Πı̄(θ̄, φ̄, ψ̄)dxı̄,

=
1

2
H(r)R2

(
sin2 θ̄dφ̄+ cos2 θ̄dψ̄

)
,

(6.2.7)

where Πı̄(θ̄, φ̄, ψ̄) is the S̄3 vector spherical harmonic (VSH) of the mode {l̄, m̄1, m̄2, s̄} =

{1, 0, 0,−1}3. It can be shown that

B =
1

2
H ′(r)R2(sin2 θ̄drdφ̄+ cos2 θ̄drdψ̄) +H(r)R2 sin θ̄ cos θ̄(dθ̄dφ̄−dθ̄dψ̄). (6.2.8)

We can see that this B-field at the boundary r → ∞ is actually a field strength

tensor that describes a constant magnetic field on S̄3 by

∗B(r →∞) = H(r →∞)R2 sin θ̄ cos θ̄(∗dθ̄dφ̄− ∗dθ̄dψ̄)

= H(r →∞)R2
(
sin2 θ̄dφ̄+ cos2 θ̄dψ̄

)
≡ Hı̄dx

ı̄
(6.2.9)

with the magnitude of the magnetic field

‖ ∗B(r →∞)‖ =
√
Hı̄H ı̄ = H(r →∞)R2 = const. (6.2.10)

Note that for H(r) to be asymtotically finite at r →∞, H ′(r →∞) has to vanish.

We will later use Hext ≡ H(r → ∞). With the embedding and B-field ansatz, two

3A more general ansatz with Λ = H(r)Π(θ̄, φ̄, ψ̄), where Π(θ̄, φ̄, ψ̄) is a linear combination of

either VSH mode l̄ = 1, s̄ = 1 or mode l̄ = 1, s̄ = −1, also works.
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non-trivial equations of motion can be obtained from (6.2.2) and (6.2.3). Equiv-

alently, these two equations can also be obtained by first putting the ansatz into

the action, and then vary the action with respect to H(r), χ(r). For reference, the

substituted action is

S = −TD7
R3

2

∫
d8σ sin(θ) cos(θ) sin(θ̄) cos(θ̄)

√
−Gtt(r) (G33(r)2 +H(r)2R4)

×
√

((1− χ(r)2) (4G33(r)Grr(r) +H ′(r)2R4) + 4G33(r)R2χ′(r)2)
(
1− χ(r)2

)
.

(6.2.11)

Here are some remarks to consider:

• The embedding ansatz (6.2.5) and (6.2.6) do not work successfully when we

treat H(r) = const.

• The B-field (6.2.8) is inspired by vector spherical harmonics. Had we used the

B-field ansatz from local tetrads (e.g. B ∝ e(1) ∧ e(2), where e(1) and e(1) are

two different one-form local tetrads), the equation (6.2.3) would not have been

satisfied.

6.2.2 B-Field in Global Coordinates at Zero Temperature

For convenient, we will work in Fefferman-Graham coordinates [49] i.e. we will

represent the radial coordinate r in (3.3.2) with z = R/(r +
√
r2 +R2). At zero

temperature, the AdS5 × S5 metric is

ds2 = −(1 + z2)2

4z2
dt2 +

R2

4z2

(
1− z2

)2
(dθ̄2 + sin2 θ̄dφ̄2 + cos2 θ̄dψ̄2)

+
R2

z2
dz2 +R2 dχ2

1− χ2
+R2χ2dκ2 +R2(1− χ2)(dθ2 + sin2 θdφ2 + cos2 θdψ2),

(6.2.12)

where the AdS centre and boundary are at z = 1 and z = 0, respectively. The

substituted action is then

S = −TD7
R7

2

∫
d8σ sin(θ) cos(θ) sin(θ̄) cos(θ̄)

(
1− χ(z)2

)

×

√√√√(z2 + 1)2
(
H(z)2 + (1−z2)4

16z4

)(
(1− χ(z)2)

(
H ′(z)2 + (1−z2)2

z4

)
+ (1−z2)2χ′(z)2

z2

)
4z2

.

(6.2.13)
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To solve the equations of motion, we use shooting method (see appendix A for

more detail) by shooting from IR to boundary. Different types of embeddings are

distinguished by different initial conditions. There are two types of the D7-brane em-

bedding called ball and Minkowski embeddings [18,48,50]. The ball and Minkowski

embeddings correspond to the brane completely wrapping shrinking S̄3 ⊂ AdS5 and

S3 ⊂ S5, respectively [18,48,50]. For ball embeddings, we have the initial condition

χ(z) = χball −
3

8
χball

(
H2
c2 + 1

)
(1− z)2 +O

(
(1− z)3

)
, (6.2.14)

H(z) = Hc2(1− z)2 +Hc2(1− z)3 +O
(
(1− z)4

)
, (6.2.15)

where at the AdS centre (z = 1) the brane can start at any angle from 0 to π/2

to cover all possible solutions (see figure 6.1 for an illustration). For Minkowski

embeddings, the initial condition is

χ(z) = 1 + χM1(zMink − z) + χM2(zMink − z)2 +O
(
(zMink − z)3

)
, (6.2.16)

H(u) = HM +HM1(zMink − z) +HM2(zMink − z)2 +O
(
(zMink − z)3

)
, (6.2.17)

where χM1, χM2, HM1, HM2 are long expressions consisting of zMink and HM , and at

z = zMink the brane has to start at the vertical axis χ(zMink) = 1 (see figure 6.1) to

ensure that it totally wraps the shrinking S3 ⊂ S5. By counting parameters, we find

each case has two free parameters remaining due to regularity requirement. Note

in particular that H(z) → 0 as z → 1 to avoid B-field singularity at the centre.

This regularity requirement will have an important impact on the phase transitions

between confined and deconfined phases. The expansion of the fields χ and H near

boundary is

χ(z) =
2m

R
z +

8c1

R3
z3 +

4m

R
z3 log(2z) +O(z4), (6.2.18)

H(z) = Hext +
4Mtz

R2
z2 + 8Hextz

2 log(2z) +O(z3). (6.2.19)

Due to the presence of the log terms, we need to renormalise c1 and Mtz. In the

renormalisation process, having the B-field turned on causes an additional divergence

term in the on-shell action. Using only the counterterms in (3.4.13) and (3.4.19) is

no longer enough to cancel the divergence. Similar to [6], to completely cancel the

divergence we have an additional counterterm

LH =
R3

2π
log(ε)H(ε)2. (6.2.20)



6.2. Magnetic B-field and Holographic Quarks 78

To find the renormalised values, we do the same thing as in section 3.4. The renor-

malised values of c1 and Mtz are given by

c = c1 −
mR2

2
log

m

R
, M = Mtz +HextR

2, (6.2.21)

respectively. Here m, c, Hext and M will be identified with the quark mass, quark

condensate, external magnetic field and magnetisation respectively.

We show some solutions by plotting the brane shapes in the figure 6.1. We show

the plots at various fixed Hext. We see as Hext increases, more and more branes

of ball embeddings vanishes. The disappearance is due to the fact that for a given

initial condition of ball embeddings, there is a maximum value of Hext.
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Figure 6.1: Plot of brane shapes for D7 embedding. From Left to Right and Top to

Bottom shows the plot at fixed external magnetic field Hext = 0, 2, 4, 5, respectively.

Red is for ball embeddings where D7 reaches AdS centre. Blue is for Minkowski

embeddings where D7 does not reach AdS centre. The horizontal and vertical axes

are R
√

1− χ2/(2z), Rχ/(2z). There is the development of mass gap as external

magnetic field is increased roughly to Hext = 4. The gap closes again around Hext =

5 where the lowest Minkowski embedding has zero quark mass.

In figure 6.2, We plot all possible values of m and Hext in ball embeddings and

some for Minkowski. We see that there is a quark mass gap developed in our case

while in [6], there is no mass gap. Therefore, the two cases are qualitatively different.

The mass gap is plotted in figure 6.3.
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Figure 6.2: Plot of possible values of Hext and m. Different lines represent different

initial condition of χ(z), while different points along each line represent different

initial condition ofH(z). Light Red represents ball embeddings while Grey represents

Minkowski embeddings. Left is for the system discussed here. We draw critical curve

for ball (Thick Red) and for Minkowski (Thick Blue). We define the white region

between Thick Red and Thick Blue for m/R > 0 as the mass gap. Right is for

the system discussed in [6], where they determine the exact boundary between the

two configurations by the thick purple curve obtained from the comparison of free

energy.

6.2.3 The Mass Gap

The presence of mass gap at finite external magnetic field is an interesting result.

We would like to study this effect carefully.

B-field Perturbation

To see the development of the mass gap, it would be interesting to see the behaviour

of the equations in the linear order of the B-field first. If there is no mass gap at

the linear order, we will conclude mathematically that the mass gap comes from

the nonlinearity of the B-field in the equation. In this case, we will continue adding

higher order terms to the equations to see the mass gap development. For example,



6.2. Magnetic B-field and Holographic Quarks 80

1 2 3 4 5
Hext

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Dm R

0.2 0.4 0.6 0.8 1.0
Hext

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006
Dm R

Figure 6.3: Mass gap between confined and deconfined phase for various Hext. Red

indicates the region that ball embeddings are possible. Blue indicates the region

that all but equatorial embedding (χ(z) = 0) vanishes. Left shows all the relevant

plot range while Right shows the zoomed in region near plot origin. To get even

closer result near plot origin, we need to collect more associated data.

the equations of motion in the first order are

((
z2 − z6

)
χ(z)2 +

(
z4 − 1

)
z2
)
χ′′(z) +

(
3− 3z4

)
χ(z)3 + 3

(
z4 − 1

)
χ(z)

+ 4z2
(
z4 − 1

)
χ(z)χ′(z)2 +

(
z
(
5z4 + 4z2 + 3

)
− z

(
5z4 + 4z2 + 3

)
χ(z)2

)
χ′(z)

+ 4
(
z7 + z5 + z3

)
χ′(z)3 = 0, (6.2.22)

H ′′(z) +

(
3z4 − 4(z6+z4+z2)χ′(z)2

χ(z)2−1
+ 1

)
z (z4 − 1)

H ′(z) +
16 (z2χ′(z)2 − χ(z)2 + 1)

(z2 − 1)2 (χ(z)2 − 1)
H(z) = 0.

(6.2.23)

Then we solve the equations by shooting method. We illustrate the solutions in the

figure 6.4. From the plot of first order, there is no mass gap found. This is obvious

since in the first order, the equations of motion of brane shape does not contain the

field H(z), so for any values of mass we can set Hext to an arbitrary value yielding

no mass gap. However, for the higher orders, there appears to have the mass gap.

The result for the third, the fifth and the seventh orders are also shown in figure

6.4.

We emphasise that the first order does not contain the mass gap feature of the

full equation. We show this by considering the equatorial embedding where at the
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Figure 6.4: Plots of possible values of Hext and m/R. Different lines represent dif-

ferent initial conditions of χ(u), whereas different points along each line represent

different H(u) initial conditions. Red lines represent ball embeddings and grey lines

represent Minkowski embeddings. The blue lines represent envelopes of Minkowski

embeddings beyond which there is a numerical issue preventing us to find the solu-

tion. Top Left, Top Right, Bottom Left and Bottom Right are the results from the

first, third, fifth and seventh order perturbation, respectively. We should not trust

the result from at and beyond the fifth order since the plot has a weird behaviour

that is not a sign to converge to the solution of the full equation (i.e. the left plot

in figure 6.2).
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first order the EOM for H(z) now reads

H ′′(z) +
(3z4 + 1)H ′(z)

z (z4 − 1)
− 16H(z)

(z2 − 1)2 = 0, (6.2.24)

which has the analytic solution that is

H(z) =
c1z

2

(z2 − 1)2 +
c2 (−z4 − 8z2 log(z) + 8z2 log (z2 + 1)− 1)

2 (z2 − 1)2 . (6.2.25)

Requiring that the solution vanishes at AdS centre gives

c1 = −c2(log(16)− 1). (6.2.26)

Requiring that the solution tends to Hext at the boundary gives

c2 = −2Hext. (6.2.27)

Finally, we have

H(z) =
Hext

(
z4 + 8z2 log

(
z

z2+1

)
+ z2(log(256)− 2) + 1

)
(z2 − 1)2 . (6.2.28)

The function H(z) of this form is well-behaved everywhere from the centre to the

boundary. Furthermore, since Hext is an overall factor, the solution valid for all

Hext.

We see that at the linear level, the solution is valid for every value of Hext.

Therefore, the linear level does not capture the mass gap feature of the full equation.

Let us now consider equatorial embedding with H(z) up to third order. The

EOM is given by

H ′′(z)− 16z4H(z)H ′(z)2

(z2 − 1)4 +
(3z4 + 2z2 + 3) z3H ′(z)3

(z2 − 1)3 (z2 + 1)

+

(
−32 (z5 + z3)H(z)2

(z2 − 1)5 − 3z4 + 1

z − z5

)
H ′(z)− 16H(z)

(z2 − 1)2 +
256z4H(z)3

(z2 − 1)6 = 0.

(6.2.29)

We cannot obtain an analytic solution. Let us try to argue the limitations of Hext

as follows. We start from adding a function to the analytic result of the previous

order:

H(z) =H0

(
1 + 8

z2

(z2 − 1)2 log

(
2z

z2 + 1

))
+

1

4
c(z − 1)2 − 1

4
c(z − 1)3

+
1

384
(z − 1)4

(
−c3 − 6c2H0 − 12cH2

0 + 56c− 8H3
0

)
+O((z − 1)5).

(6.2.30)
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We obtain c = Hc2 − 2H0. We take

H(0) =
1

384

(
−H3

c2 + 248Hc2 − 112H0

)
+O((0− 1)5) = Hext, (6.2.31)

H ′(0) =
1

96

(
H3

c2 − 176Hc2 + 352H0

)
+O((0− 1)4) = 0, (6.2.32)

where in the last equalities of the two above equations, we used the expansion at

boundary

H(z) = Hext + z2
(
4MtzR

2 + 8Hext log(2z)
)

+O(z3). (6.2.33)

Let us formally ignore O((0− 1)4),O((0− 1)5) (abbreviated O4,O5 respectively) by

assuming they do not depend on Hext, Hc2, H0. We then eliminate H0 and obtain

Hext =
−5H3

c2 + 1408Hc2 + 224O4 + 2816O5

2816
. (6.2.34)

Using the fact that Hext = 0 when Hc2 = 0, we finally obtain

Hext =
Hc2

2
− 5

2816
H3
c2. (6.2.35)

The result is plotted in blue in figure 6.5. We see that there is a maximal value of

Hext. We believe that our discussion is valid up to Hc2 ∼ 10 as the comparison with

numeric suggests (red plot in figure 6.5).

We see that there is indeed the maximal value of Hext for which the equatorial

embedding is allowed. However, we are still unable to capture the mass gap feature

of the full equation where the maximal value of Hext is approximately 5.58. This

value is approached for asymptotically largeHc2, the value that is beyond the domain

of validity of the third order perturbation.

Our semi-analytical treatment here is not fully justified. There is no reason

to take O4,O5 to be independent of Hext, Hc2, H0. Therefore, the matching with

numerical result up to Hc2 ≈ 10 can as well be from pure coincidence. Nevertheless,

the form of the RHS of the equation (6.2.35) is as expected. Since we expand the

equation up to third order in H(z), we should obtain Hext as a third order polynomial

of Hc2. To obtain the more precise relationship between Hext and Hc2, we will have

to study higher order perturbations. For general embedding, the mass gaps of the

third and the seventh orders may be arisen from a numerical issue. We cannot have

solutions for Hc2 and HM higher than some values. We first assume this is the true
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Figure 6.5: The plot of Hext versus Hc2 for equatorial embedding with perturbative

order 3 in B-field. Red is the result from purely numerical, Blue is the result from

semi-analytical. We also compare with the Black plot obtained from the full equation

in Hext.

feature. The nature of the mass gap here is then different from the one in non-

perturbative case which has solutions for all values of Hc2 and HM . We cannot yet

proved the assumption. So far, even though we have adjusted the WorkingPrecision

and have increased the number of terms in the series expansions of initial condition,

we still cannot go beyond such Hc2 and HM values.

One thing we have from the perturbative analysis is that no matter how high the

order of the expansion of H(u) and its derivatives is, we always have the constraint

H(u) = 0 at the centre. This naturally comes from the EOMs without imposing it

by hand.

Metric Perturbation

Another way to see the development of the mass gap is to do the metric expansion

around the flat geometry. We first expand the metric near AdS centre. We then

pretend that this expansion works throughout the spacetime. This prescription is

coordinate dependent, so we will work in both u- and z-coordinates. However, we

expect the qualitative result to be the same.

For u-coordinates, we start by obtaining the u-coordinates from (6.2.4). Focusing
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on the AdS part, the full metric is

ds2 = − u
2

R2

(
1 +

R2

4u2

)2

dt2 + u2

(
1− R2

4u2

)2

(dθ̄2 + sin2 θ̄dφ̄2 + cos2 θ̄dψ̄2) +
R2

u2
du2.

(6.2.36)

Near AdS centre, we make an expansion

δu = u− R

2
. (6.2.37)

We now expand the metric to nth order in u and use the metric as if this approxi-

mation extends to the boundary. As a reference, the zeroth order is given by

ds2 = −dt2 + 4

(
u− R

2

)2

(dθ̄2 + sin2 θ̄dφ̄2 + cos2 θ̄dψ̄2) + 4du2. (6.2.38)

Let us concentrate on the zeroth order for a moment. The EOM is given by

H ′′(u) +R
(2u/R− 1)H ′(u)3

4 (H(u)2 + (1− 2u/R)4)
− H(u)H ′(u)2

H(u)2 + (1− 2u/R)4

+
(2(1− 2u/R)4 − 2H(u)2)H ′(u)

(2u−R)H(u)2 +R(2u/R− 1)5
− 16(1− 2u/R)2H(u)

R2(H(u)2 + (1− 2u/R)4)
= 0.

(6.2.39)

An analytic result can be obtained from Mathematica

H∓(c1, c2)(u) =

−4i
√
c1 − 1( u

R
− 1) u

R
∓

(1−i)
√
−i(c1+1)

(√
c21−1−c1

)
(c1(c2−1)+c2+16( u

R
−1) u

R
(2( u

R
−1)u+1)+1)

−c1+
√
c21−1−1√

c1 + 1

− i
√
c1 − 1√
c1 + 1

.

(6.2.40)

Requiring H∓(c1, c2)(R/2) = 0 gives c2 = 1 and hence

H∓(c1, 1)(u) =

−
i
√
c1 + 1

(
c1 −

√
c2

1 − 1 + 1
)

(1− 2 u
R

)2

−
√
c1 + 1 (c1 − 1) + c1

√
c1 − 1 +

√
c1 − 1∓ 2

√
(c1 + 1)

(
−c1 +

√
c2

1 − 1
) .

(6.2.41)

Choosing appropriate c1, we have the solution

H(u) =
Hc2

R2

(
u− R

2

)2

. (6.2.42)
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The limit u → ∞ then implies Hext → ∞. Note that we do not need to see what

the domain of validity (based on its dependence on c1) of Hc2 is. This is because

whatever the valid value of Hc2 is, we always have Hext →∞.

Thus, we conclude that the limit u → ∞ for non-trivial solution of H(u) is

infinity. This is not a feature we encountered in the full case.

We then plot, for massless embedding, the solution H(u) of perturbed EOM

subject to regularity requirement. For some reason, the odd order perturbations fail

to give the result. So we only report even order results.

The result H(u → ∞), diverges. For higher order, the divergence behaviour

keeps getting better as order increases. However, up to 300th order, the result still

does not converge to the result for full metric. Therefore, the perturbation in u-

coordinates is not useful. Figure 6.6 compare the results between full metric and

perturbation at 300th order.

The failure of u-coordinates is understandable because radius of convergence of

the series expansions is ∼ R but we extend our calculation up to boundary which

has large value of u. Let us use another coordinates which the distance between

centre and boundary does not exceed the radius of convergence.
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Figure 6.6: The plot of H(u) for various values of Hc2. Black, Blue, Green, Red

stand for Hc2 = 0, 10, 50, 100, respectively. Left is the result from the full metric.

Right is the result from the perturbed metric at the 300th order.

For z-coordinates we use the metric (in AdS5 part)

ds2 = −(1 + z2)
2

4z2
dt2+

R2 (1− z2)
2

4z2

(
dθ̄2 + sin2 θ̄dφ̄2 + cos2 θ̄dψ̄2

)
+
R2

z2
dz2. (6.2.43)
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As in u-coordinates, we expand near the AdS centre in

δz = 1− z. (6.2.44)

As a reference, the zeroth order expansion of the metric is given by

ds2 = −dt2 +R2(1− z)2
(
dθ̄2 + sin2 θ̄dφ̄2 + cos2 θ̄dψ̄2

)
+R2dz2. (6.2.45)

Let us concentrate on the zeroth order for a moment. The EOM is given by

H ′′(z) +
(z − 1)H ′(z)3

2 (H(z)2 + (z − 1)4)
− H(z)H ′(z)2

H(z)2 + (z − 1)4
− (H(z)2 − (z − 1)4)H ′(z)

(z − 1) (H(z)2 + (z − 1)4)

− 4(z − 1)2H(z)

H(z)2 + (z − 1)4
= 0. (6.2.46)

An analytic result can be obtained from Mathematica

H±(c1, c2)(z) = −

(√
1− c2

1 ±
√

1− c1c2

)
(z − 1)2

c1

. (6.2.47)

Recall that the centre is at z = 1 while the boundary is at z = 0. Requiring

H±(c1, c2)(0) = Hext gives

H(z) = Hext(z − 1)2. (6.2.48)

Let us consider the domain of validity for Hext from

Hext = −

(√
1− c2

1 ±
√

1− c1c2

)
c1

. (6.2.49)

We consider a special case on positive solution with c2 = c1. Then

Hext = −2

√
1− c2

1

c1

. (6.2.50)

Redefine c1 = cos y, then

Hext = −2 tan y. (6.2.51)

Since tan y can take any real values, we conclude that Hext can take any real values.

Therefore, the solution is valid for all Hext. As in u-coordinate, this feature is

not realised in the full case.

At each order, we solve for H(z). Unfortunately, the analytic result can only be

obtained at the zeroth level. The function H(z) at second order differed a lot from
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its first order counterpart. See bottom plots of figure 6.7. So unfortunately, we

cannot get analytically perturbative result (i.e. it is not possible to write H2nd(z) =

H1st(z) + H. (z) as H. (z) is this case is very large).

We show the results in figure 6.7, 6.8. From figure 6.7 the curves for Hc2 = 50, 100

are close together despite their value being very differed. This indicates that the

result is reaching the fixed point. There is a maximal value of Hext that we can

get even at the second order perturbation. This is indeed the case as the figure 6.8

shows the saturation of Hext even at the second order.
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Figure 6.7: The plot of H(z) for various values of Hc2. Black, Blue, Green, Red stand

for Hc2 = 0, 10, 50, 100, respectively. Top Left is the result from the full metric. Top

Right is the result from the perturbed metric at the 200th order. Bottom Left is for

1st order. Bottom Right is for 2nd order.

6.2.4 Saturation of External B-field

The saturation of the B-field is the crucial part for the existence of the mass gap.

In this subsection, we present the plot Hc2 versus Hext to show that no matter how
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Figure 6.8: The plot of Hext versus Hc2. Top Left is the result from the full metric.

Top Right is the result from the perturbed metric at the 200th order. Bottom is for

2nd order.

high Hc2 is, the value of Hext cannot exceed a certain value4.

We first present the results obtained from setting uball/R = 5001/10000, uinf/R =

10000, where uball and uinf are numerical values for AdS centre and AdS boundary,

respectively. With this setting, the left of the figure 6.9 suggests that if we make

Hc2 high enough, then we can have high enough Hext.

It turns out that the above feature is due to the numerical not being precise

enough. In order to make it more precise, we set uball/R = 500001/1000000. The

result is shown in the right of the figure 6.9. Numerically, we see that Hext asymp-

4For ball embeddings except equatorial one, we call this value the critical magnetic fieldHext,crit,

and of course this value depends on m/R (see the left plot of figure 6.2 for an illustration). If we

say Hext,crit without any information of m/R, we mean Hext,crit when m/R → 0 i.e. the value

3.98. For the equatorial embedding, however, the embedding can survive for Hext > Hext,crit until

Hext reaches 5.58. To avoid confusion, we will refer to this value as the saturated magnetic field

Hext,sat.
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totically reaching Hext,sat while Mtz/R
2 asymptotically reaching 0.38.
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Figure 6.9: The plot of Hext versus Hc2. Left uses the setting uball/R = 5001/10000.

Right uses the setting uball/R = 500001/1000000.

6.2.5 Full B-field EOM Analysis

We want to see if there is some analytic aspect to show the gap feature. We now

analyse the full EOM of H(z) with the equatorial embedding χ(z) = 0. Using the

full EOM to determine the coefficients, we expand the field H(z) near centre (z = 1)

and boundary (z = 0) as

H(z)
∣∣∣
z→1

=H0

(
1 +

8z2 log
(

2z
z2+1

)
(1− z2)2

)
+
c

4
(1− z)2 +

c

4
(1− z)3

+
−c3 − 6c2H0 + c (56− 12H2

0 )− 8H3
0

384
(1− z)4 + · · ·+ (· · · )(1− z)8,

(6.2.52)

H(z)
∣∣∣
z→0

= H0

(
1 +

8z2 log
(

2z
z2+1

)
(1− z2)2

)
+a+bz2+8az2 log(z)−2(4a−b)z4+· · ·+(· · · )z6 log(z),

(6.2.53)

whereH0, c, a and b are related toHc2, Hext andMtz. The first term of the expansions

is the analytic solution of the linear perturbation. The orders of the two expansions

can be arbitrary and are not directly related to each other, but the higher the orders

the more accurate the result. Previously, we know that these expansions have radius

of convergence not less than 1. So, using z = 1/2 as the meeting point, the two

expansions of H(z) are approximately equated. The first and second derivatives of
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them are approximately equated at that point as well. After substituting and elim-

inating the unwanted parameters, we then have a polynomial equation containing

only Hext and Hc2 as

25H7
c2

(
1311465− 49672H2

ext

)
+ 28H5

c2

(
19611320H2

ext − 504255471
)

+96H3
c2

(
11139559023− 475946168H2

ext

)
+ 37748736Hc2

(
237464H2

ext − 4951755
)

−75497472Hext

(
3520H4

ext + 277624H2
ext − 4951755

)
= 0,

(6.2.54)

of which the degrees in Hc2 and Hext depend on the orders of the expansions of H(z)

near centre and boundary respectively. The contour plot of this equation is shown

in figure 6.10.

-400 -200 0 200 400

-10

-5

0

5

10

Hc2

Hext

0 100 200 300 400
Hc2

1

2

3

4

5

6
Hext

Figure 6.10: Left is the contour plot of the solution to (6.2.54). Right is a plot from

the left with the result from the full numerical solution plotted in red.

From the plot, there are more than one solutions disconnected. We expect they

are independent. For some physical reasons, the point (Hc2, Hext) = (0, 0) has to

be included in the solution. We then choose the middle one in the plot as the

physical solution. Despite the weird behaviour near (0, 0), the solution shows the

gap feature that there is a limit value for Hext when Hc2 goes to high values. This

also qualitatively agrees with the result from numeric shown in the right side of

figure 6.10. So, this is a non-numerical aspect that shows the gap feature.
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Although our analysis is done perturbatively, this does not necessarily mean that

only small value of Hc2 can be trusted. In fact our analysis includes the following

non-linear considerations

• We do not expand the part

H0

(
1 +

8z2 log
(

2z
z2+1

)
(1− z2)2

)
(6.2.55)

as we expect non-linear behaviour is already present in the linear EOM (6.2.24).

Had we expand such term, the asymptotic value of Hext would not have been

close to the actual numeric value.

• We make boundary expansion up to the term that gives non-linear relation-

ship between Hext and Hc2. Expanding fewer term does not capture the non-

linearity and hence the result would only be valid for small value of Hc2. On the

other hand, we expect that expanding more terms would lead to complications

and that no further insights can be gained.

It turns out that our analysis capture the behaviour at small Hc2 as well as at

large Hc2. For the mid-values of Hc2, more analysis would be required. However,

we expect that the graph of Hext versus Hc2 would be monotonically increasing.

Therefore, there is a maximal value of Hext. Indeed, we can extract the maximal

value by considering the limit Hc2 → ∞ of equation (6.2.54) where the equation

reduces to

25H7
c2

(
1311465− 49672H2

ext

)
= 0 (6.2.56)

and hence Hext,max = 5.14 (NB the numerical result gives Hext,max ≡ Hext,sat =

5.58.). The equatorial embedding cannot exists for Hext > Hext,sat and hence the

disappearance.

6.2.6 Compare Free Energy of B-field Embedding

We compare free energy between our B-field ansatz and [6]’s. The free energy is

computed by using the renormalisation as we have mentioned in chapter 3. Addi-

tionally, we have to include cut-off from B-field as well. As a check, the scaled free
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energy of massless, zero B-field configuration is F = 3/32 in agreement with [48].

We proceed to compute the free energy between our and [6]’s configurations. The

plots of free energy are shown in figure 6.11.
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Figure 6.11: Comparison of free energy between Filev’s and our system versus dif-

ferent quark mass. From Left to Right and Top to Bottom shows the free energy

at fixed external magnetic field Hext = 0, 1, 2, 3, respectively. Red is for ball embed-

dings, while Blue is for Minkowski embeddings. Thick curves are for Filev’s while

Thin curves are for our results. The free energy of Filev’s is indeed higher. The

discontinuity in our curve is due to mass gap from requiring regularity of B-field at

AdS centre (discussed in previous file).

6.3 Magnetic B-field and Meson Spectra

We will analyse the effects of the magnetic B-field to the meson spectra. We make

fluctuations around the background fields of section 6.2.2. For this, in addition to
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DBI action, we need WZ action:

SWZ =
1

2
TD7(2πα′)2

∫
P [C4] ∧ F ∧ F +

1

2
TD7

∫
P [C4] ∧ P [B] ∧ P [B]

+ 2πα′TD7

∫
P [C4] ∧ P [B] ∧ F, (6.3.57)

where C4 is a 4-form gauge field with self-dual field strength F5 given by

F5 =
4

R

(
Vol(AdS5) + Vol(S5)

)
. (6.3.58)

The equations of motion from DBI+WZ action are given by

∂a(
√
−E(Eab − Eba)) = − 1

5!
Fa1a2a3a4a5Fa6a7 ε̃a1···a7b (6.3.59)

− 1

4 · 4!
ε̃a1···a8Fρa1a2a3a4Fa5a6Fa7a8 = ∂b

(√
−E(Eba + Eab)

)
Gνρ∂ax

ν

+ 2
√
−EEba

(
Gνρ∂b∂ax

ν +
1

2
(∂µGρν − ∂ρGµν + ∂νGµλ) ∂ax

µ∂bx
ν

)
,

(6.3.60)

where F = P [B]+2πα′F . The Greek indices are spacetime indices while Roman in-

dices are worldvolume indices. For the spacetime fields having worldvolume indices,

it is understood that the fields are pulled back to the worldvolume.

6.3.1 Charged Scalar Fluctuation

Around the background fields, we make SO(4) charged scalar fluctuation. We con-

sider an ansatz with embedding as before:

χ = χ(u), κ = 0. (6.3.61)

Remember that our spacetime background also includes

B =
1

2
H ′(u)R2(sin2 θ̄dudφ̄+cos2 θ̄dudψ̄)+H(u)R2 sin θ̄ cos θ̄(dθ̄dφ̄−dθ̄dψ̄). (6.3.62)

Additionally, we turn on charged scalar fluctuation:

A = A(t, u)(sin2 θdφ+ cos2 θdψ). (6.3.63)

We substitute the ansatz into the EOM (6.3.59)-(6.3.60) and expand in order of

α′/R2. The zeroth order is the background EOM while the first order consistently
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gives EOM of charged scalar fluctuation. We can impose further ansatz on the

charged scalar fluctuation: A(t, u) = exp(−iωt)Ac(u).

The next step is to find the spectrum ω. We solve the EOM of fluctuation fields

with conditions from the background EOM. The shooting method is used in order

to obtain the values of ω that match with the boundary expansion. The results are

shown in figure 6.12 and 6.13. From our results, there are no modes that become

unstable. We would like to see now if other fluctuation modes give any instability.
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Figure 6.12: The first three normal modes of charged scalar fluctuation for fixed

mR = 0 but vary external magnetic field. Red shows the plot for ball embedding

while Blue shows the plot for Minkowski embedding.

6.3.2 Vector Fluctuation

For vector fluctuation, it is expected to couple to scalar fluctuation. So we also

restrict ourselves to equatorial embedding where there is no couple with scalar fluc-

tuation.

Recall that the embedding is given by

χ = 0, κ = 0. (6.3.64)

Our spacetime background also includes the B-field in (6.3.62). The vector fluctua-

tion ansatz is

A = A(t, u)(sin2 θ̄dφ̄+ cos2 θ̄dψ̄). (6.3.65)

Like what we did in the last subsection, we substitute the ansatz into the EOM

(6.3.59)-(6.3.60) and expand in order of α′/R2. The first order is the EOM of vector
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Figure 6.13: The first two normal modes of charged scalar fluctuation for fixed

external magnetic field but vary quark mass. From left to right and top to bottom:

Hext = 0, 1, 3, 6, respectively. Red shows the plot for ball embedding while Blue

shows the plot for Minkowski embedding.

fluctuation. We present the result of the normal modes of vector fluctuation in figure

6.14. In the same figure, we also present the result for charged scalar fluctuation. For

Hext = 0, there are some degeneracies of normal modes between modes of charged

scalar and vector fluctuations. But for Hext > 0, these degeneracies are destroyed.

6.3.3 Scalar Fluctuation

We now consider scalar fluctuation. It is expected that scalar fluctuation couples to

vector fluctuation, so the computation is more involved.

However, it is much more simplified if we restrict ourselves to equatorial embed-

ding. In this case, the scalar fluctuation does not couple to vector.
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Figure 6.14: Left shows the first three normal modes of vector fluctuation for equa-

torial embedding mR = 0 but vary external magnetic field. Right shows the left

figure and figure 6.12 (only data from the ball embedding) plotted together. It is

interesting to see that external magnetic field destroys degeneracy of normal modes.

We use the configuration

χ = 0, κ = 0,

B =
1

2
H ′(u)R2(sin2 θ̄dudφ̄+ cos2 θ̄dudψ̄) +H(u)R2 sin θ̄ cos θ̄(dθ̄dφ̄− dθ̄dψ̄),

A = 0,

(6.3.66)

and for the fluctuation

xµ → xµ + (2πα′)Ψµ, (6.3.67)

where xµ are the spacetime coordinates normal to the D7-brane and Ψµ are the

fluctuation fields. For the D7-brane in ten-dimensional spacetime, there are two

directions perpendicular to it; let’s say x8 and x9. Fortunately, for the equatorial

embedding it turns out that the EOMs for the fluctuation fields Ψ8 and Ψ9 are

symmetric, and we believe that setting one of the fluctuation fields to zero will give

the lowest energy configuration. Therefore, we choose

Ψ8 = Ψ, Ψ9 = 0. (6.3.68)

The EOM of the fluctuation field is

∂2
uΨ(u)+

∂u
(√
−e (e−1)

uu)
√
−e (e−1)uu

∂uΨ(u)+
1

(e−1)uu

(
3

R2
−
(
e−1
)tt
ω2

)
Ψ(u) = 0. (6.3.69)



6.3. Magnetic B-field and Meson Spectra 98

We then solve this EOM along with the EOM of H(u) at equatorial embedding.

The result of fluctuation analysis is shown in figure 6.15. From the plot, we see the
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Figure 6.15: Left shows the first two normal modes of scalar fluctuation for equatorial

embedding mR = 0 but vary external magnetic field. Right shows the left figure

and figure 6.14 (right) plotted together. The data is obtained by a pole tracking

method described in appendix A.3. It is interesting to see that the magnetic field

makes the scalar fluctuation unstable.

scalar fluctuation becomes unstable when increasing the magnetic field to the value,

Hext = 3.98. This value exactly matches with the value Hext,crit, where nearly all

ball embeddings (except the equatorial one) disappear. Based on the informations

so far we can conclude that if the model has the following features, then mass gap

appears:

1. Scalar fluctuation at equatorial embedding is unstable for high enough mag-

netic field Hext,crit. Although we still do not understand why scalar fluctuation

is unstable for high enough magnetic field, studying fluctuation is easier and

more intuitive than finding out why brane embeddings disappear.

2. The value of Hext,m where the lowest Minkowski embedding starts to be mass-

less is greater than Hext,crit. Unfortunately, since the start of this project we

still have no way to understand this feature better.

It might give some insights to investigate if feature 1 also appears in other model

especially in D3/D7 at finite temperature.
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6.3.4 Fluctuation at Finite Temperature

As stated above, we would like to see if one of the features for mass gap also appears

in other models. The closest model to investigate is D3/D7 at finite temperature.

We find that the scalar fluctuation at finite temperature is also unstable when Hext

increased to a value. This value depends on temperature. The plots of poles of

the scalar fluctuation at the temperature πTR = 1.5 are shown in figure 6.16. The

relation between the critical Hext where the scalar fluctuation is unstable and the

temperature is plotted in figure 6.17. At πTR = 1.5, we find that the critical Hext

for the scalar fluctuation also corresponded to the value of Hext that the black hole

embeddings are completely disappeared. This confirms our discussion at the end of

the above subsection. Generally, we expect that this feature remains true for any

temperatures.

Just for completeness, we have analysed the vector and charged scalar fluctua-

tions at finite temperature as well. As far as we can reach, when increasing Hext

from zero to some very high values, they do not show any instabilities. This re-

sult seemingly disagrees with D3/D7 Poincare analysis for vector fluctuation of [87].

However, we are not interested in investigating this further as it is beyond the scope

of the project.

6.4 New Ground States at λ→∞

We will find the effects of the magnetic B-field to the meson new ground states. We

start from the D7-brane action

S =− TD7

∫
d8σStr

√
− det(eab + 2πα′Fab)

+
1

2
TD7

∫
tr(P [C4] ∧ (B + 2πα′F ) ∧ (B + 2πα′F )),

(6.4.70)

where the background fields are kept Abelian, but we promote gauge fields to non-

Abelian. We then consider the action in λ→∞ limit:

S ≈− TD7

∫
d8σ
√
−eStr

(
1 +

1

2
trK +

1

4
((TrK)2 − Tr(K2))− 1

8
(TrK)2

)
+

1

2
TD7

∫
tr(P [C4] ∧ (B + 2πα′F ) ∧ (B + 2πα′F )),

(6.4.71)
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where Kµ
ν = 2πα′(e−1)µαFαν , and Tr and tr are the traces over worldvolume and

colour indices respectively. Note that

tr(TrK) = tr(τa)Kσ(a)
σ = 0, (6.4.72)

and

Str(TrK)2 = Str(τaτ b)Kσ1(a)
σ1

Kσ2(b)
σ2

=
1

2
Kσ1(a)
σ1

Kσ2(a)
σ2

. (6.4.73)

The EOM of this term will contain K
σ1(a)
σ1 which is zero for our ansatz. However,

for generality we will keep the term Str(TrK)2 at the action level. We are finally

left with the action of the form

S = Sbackground + S1, (6.4.74)

where

S1

TD7

=
(2πα′)2

4

∫
d8σ
√
−e tr

(
(e−1)σ1σ2Fσ2σ3(e

−1)σ3σ4Fσ4σ1 −
1

2
(e−1)σ1σ2Fσ1σ2(e

−1)σ3σ4Fσ3σ4

)
− (2πα′)2

2

∫
d8σ
√
−e tr

(
(e−1)ttDtΨDtΨ + (e−1)uu∂uΨ∂uΨ + 2(e−1)(ut)DtΨ∂uΨ−

3Ψ2

R2

)
+

(2πα′)2

2

∫
tr (P [C4] ∧ F ∧ F ) ,

(6.4.75)

where the second term is present for the uncharged scalar only. The EOM (not

including the uncharged scalar) is given by

Dσ4

(√
−e
(

(e−1)[σ1|σ2Fσ2σ3(e
−1)σ3|σ4] +

1

2
(e−1)σ2σ3Fσ2σ3(e

−1)[σ1σ4]

))
− 2

R

√
−Gtt(u)Guu(u)G3

33(u)G(Ω̄3)ε̃ijkFijδ
σ1
k = 0,

(6.4.76)

where i, j, k are indices on S3 ⊂ S5. Note that the sign on the second term should

actually be positive. However, the sign change is because we are going to write

charged scalar ansatz in polar spherical coordinates which has opposite orientation

to Euler coordinates.

6.4.1 Charged Scalar Ground State

For numerical computation, it is more convenient to use z-coordinates. The ansatz

for the charged scalar is

A = A
(3)
0 (z)τ 3dt+ η(z)(sin2 θdφ+ cos2 θdψ)τ 1. (6.4.77)
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We first consider the equatorial embedding χ(z) = 0. For a given solution H(z) of

background EOM, we solve gauge field EOM. The boundary expansions are given

by

A
(3)
0 (z) = µ− ρz2 + · · · , (6.4.78)

η(z) = Rρηz
2 + · · · . (6.4.79)

The numerical results are shown in figure 6.18 and 6.19.

The magnetic field (let us call it F̄ ) of [86] and our B-field B are related by

1

λ
F̄ ∼ B. (6.4.80)

The λ→∞ limit makes the action of F̄ reduced to YM but retains DBI action for B.

Also, this limit means that in order to obtain a finite B, we need large F̄ . Our figure

6.18 and the left plot of figure 11 of [86] are describing qualitatively equivalent things.

The behaviour of µcrit for small Hext qualitatively matches with the monotonically

increasing behaviour for any F̄ . However, the behaviour for sufficiently large Hext

(≈ 4) cannot be compared with [86] as this is a large F̄ limit that the analysis of [86]

cannot cover.

Figure 6.19 tells us that at fixed chemical potential, the densities generally de-

crease as external magnetic field is increased suggesting the magnetic effect to dimin-

ish the new ground state as found in e.g. [86]. For small enough chemical potential,

there is a critical value of Hext beyond which the densities vanish completely or

nearly completely. For sufficiently high chemical potential, however, there are no

such critical external magnetic field.

Having understood the role of external magnetic field on the new ground state,

it is useful to go back to discuss figure 6.18. For a given chemical potential in

the range 2 < µR . 2.31, there exists a critical value of external magnetic field

beyond which the new ground state is completely destroyed. For a given µ in the

range 2.31 < µR . 2.50, there is a critical value Hcrit,1 that destroys the new

ground state. However, there is a value Hcrit,2 > Hcrit,1 beyond which the new

ground state is restored. For example, when µR = 2.4, the critical values are

Hcrit,1 = 2.97, Hcrit,2 = 5.13. Finally, when µR & 2.50, the ground states are not

destroyed by external magnetic field.
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6.4.2 Vector Ground State

Starting with the same procedure with charged scalar new ground state, we have

the vector ground state ansatz

A = A
(3)
0 (z)τ 3dt+ ψ(z)(sin2 θ̄dφ̄+ cos2 θ̄dψ̄)τ 1. (6.4.81)

Again, we consider the equatorial embedding χ(z) = 0. For a given solution H(z) of

background EOM, we solve gauge field EOM. The boundary expansions are given

by

A
(3)
0 (z) = µ− ρz2 + · · · , (6.4.82)

ψ(z) = Rρψz
2 + · · · . (6.4.83)

The numerical results are shown in figure 6.20 and 6.21.

Figure 6.21 tells us that at fixed chemical potential, the densities increase as

external magnetic field is increased. For small enough chemical potential, there is a

critical value of Hext beyond which new ground state is created. The feature where

magnetic field enhances the new ground state is not expected from e.g. [86].

6.4.3 Scalar Ground State

Starting with the similar procedure with charged scalar and vector new ground state,

we make an ansatz for equatorial embedding χ(z) = 0 :

A = A
(3)
0 (z)τ 3dt, (6.4.84)

χ = (2πα′)2Φ(z)τ 1. (6.4.85)

We do the same as the previous subsections. The boundary expansions are given by

A
(3)
0 (z) = µ− ρz2 + · · · , (6.4.86)

Φ(z) = ρΦz
3 + · · · . (6.4.87)

It takes too long to extract the numerical result for new ground state. It is

approximately at least 10 times longer than vector case. So we might extract only

some sample points. This remains a work in progress.
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Nevertheless, based on the fact that at zero temperature the fluctuation fre-

quency and the new ground state’s chemical potential appear at the same place in

EOM, we can, as always, predict the phase diagram based on fluctuation analysis.

There is an issue that we cannot understand what happens at the region correspond-

ing to mass gap. This diagram is in figure 6.22. For Hext > 3.98 the region marked

??? for small chemical potential is the most problematic. We have no idea what

the ground state look like. In fact, had we known this, we would have been able to

‘cover’ the mass gap. To elaborate on this point, let us consider chemical potential

around µR = 2. Increasing external magnetic field will make new ground state

appears and it should be enhancing as we further increase external magnetic field.

But then suddenly, when Hext = 3.98, there is no solution corresponding to new

ground state: it does not simply disappear thermodynamically. Let us now consider

high enough chemical potential, e.g. µR = 4. Formally, there would always be new

ground state. However at Hext = 3.98, we expect the discontinuity in densities since

the new ground state for Hext < 3.98 is based on the ‘first branch’ while the one for

Hext > 3.98 is based on the ‘second branch’.

6.5 Discussion

We find that the magnetic Kalb-Ramond field affects the D3/D7 system in compact

size in many interesting ways. One of them is the mass gap feature that does not

exist in the non-compact case5. This arises because of the regularity requirement

of the field at the AdS centre. In the non-compact case boundary conditions are

not imposed at the AdS centre but rather at the Poincaré horizon, and hence there

is no need for the field to be regular there. The mass gap feature emphasises the

difference between the ball and Minkowski embeddings in the gravity side, and there

is no smooth transition between them. We expect a phase transition to exists also

in the field theory. Work is in progress to analyse the brane embeddings by shooting

from infinity rather than from the origin, which may shed light on the reason for

5The results for the non-compact case can be found in [78, 79], in which there is no mass gap

found.
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the existence of the mass gap.

Another interesting effect is the instability of the scalar meson. We expect that

this is related to the mass gap feature because of the fact that the critical magnetic

field coincides for both phenomena. The instability will lead to a new ground state.

We expect that this new ground state will be such that it covers the mass gap, but

a construction of it will be left for future work.
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Figure 6.16: The plots of poles of the scalar fluctuation at πTR = 1.5: from left to

right and top to bottom, Hext = 0, 6.33, 7.29, 18.17. The blue/red curves indicate

the real/imaginary parts of the fluctuation field at the boundary vanish.
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Figure 6.17: The left plot is the relation between the critical magnetic field Hext,crit

and the temperature πTR from the scalar fluctuation. The right plot has the same

data as the left one with some additional points, and the vertical axis is scaled

by (πTR)2. The right plot shows the asymptotic value at high πTR which is the

Poincaré limit (Hext,crit/(πTR)2 = 9.24).
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Figure 6.18: The numerical results for charged scalar new ground state in λ → ∞

limit and equatorial embedding. Critical chemical potential for each applied external

magnetic field is shown.
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Figure 6.19: The numerical results for charged scalar new ground state in λ → ∞

limit and equatorial embedding. The densities at a given value of isospin chem-

ical potential are shown. From Left to Right and Top to Bottom: µR =

2.2, 2.4, 2.507, 2.7.
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Figure 6.20: The numerical results for vector new ground state in λ → ∞ limit

and equatorial embedding. Critical chemical potential for each applied external

magnetic field is shown.
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Figure 6.21: The numerical results for vector new ground state in λ→∞ limit and

equatorial embedding. The densities at a given value of isospin chemical potential

are shown. From Left to Right and Top to Bottom: µR = 2, 3, 4, 5.
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Figure 6.22: The expected phase diagram for scalar new ground state in λ → ∞

limit and equatorial embedding. Due to the mass gap behaviour, it is not certain

about the new ground state for Hext > 3.98.



Chapter 7

Conclusions

We have studied the holography in the context of the AdS/CFT correspondence.

We have chosen to study the duality between the type IIB supergravity in AdS

spacetime and N = 4 and N = 2 SYM, and we investigate the system in compact

size. We have seen finite-size effects from the results in chapter 4, 5 and 6. Let us

summarise what we have done in and the results from those chapters, which contain

our own works.

In chapter 4, we study the drag force exerted on a quark moving through the

QGP. The gauge theory is N = 4 SYM, and we study it from its dual gravity theory.

In compact size, the finite-size effect we found is the reduction of the magnitude of

the drag force. This is quite unusual when compared to the Newtonian fluid, where

the compact-size effect increases the magnitude of the drag force.

In chapter 5, we investigate the meson spectra and new ground states of the

N = 2 SYM theory from the gravity side with the isospin chemical potential. One of

the results we found is that when the chemical potential increases the first excitation

is an SO(4) charged scalar meson. This is not a finite-size effect as it survives in

the non-compact case. The fact that the first excitation is the charged scalar meson

contrasts other related models such as [66,73] where the first excitation is the vector.

Moreover, the interesting finite-size effect we found is that the meson spectra of the

vector and scalar mesons cross over each other as functions of temperature and

system size. This suggests some complexity in the model. For example, at high

enough chemical potential, there would be a transition between vector and scalar
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meson ground states by just adjusting the temperature and/or the system size.

In chapter 6, we study the influence of a magnetic Kalb-Ramond field to the

N = 2 SYM theory holographically. We found a region, which we called ‘mass gap’,

at which there are still no appropriate configurations that give the values of external

magnetic field and quark mass. This is not the feature in the non-compact case.

Another interesting result is the instability of the scalar meson due to the external

magnetic field. Sharing the same critical magnetic field, the mass gap and the scalar

instability are somehow related. If we had known how to build the new ground state

for the scalar meson, we would be able to fill in the mass gap, so what does the new

ground state look like? We leave this as an open question and our future plan.

Some of those compact-size effects should be realised in the more real world model

if we have one. In reality, we cannot have the system with infinite size. There must

be a size associated with it. For the model this means we have an additional scale.

More phase transitions are then expected to occur. It is interesting to investigate

the finite-size effect in other models where the system has been treated as infinite

size.



Appendix A

Computational Techniques

A.1 The Shooting Method

In our works, we encounter many ordinary differential equations (ODE) that cannot

be solved analytically. We need to solve them by using numerical methods. There

are various types of the numerical methods suitable for particular problems. The

differential equations we worked with have the solution known at the initial point,

and we want to find the solution at the boundary. Therefore, the most well-fit

numerical method we need to use is the shooting method.

Let us quickly illustrate how the shooting method is used to solve the second

order ODE. The shooting method indeed changes the boundary value problem to

the initial value one. In our problem, the second order ODE is in the form

y′′(x) = f(y′(x), y(x);x). (A.1.1)

Let the starting point be at x0, so the initial values are y(x0) = y0 and y′(x0) = y′0.

To find the solution at the boundary xb, we suppose the solution has the boundary

values y(x0) = y0 and y(xb) = yb. We can define the function [88]

F (y′0) = y(xb; y
′
0)− yb, (A.1.2)

where y(xb; y
′
0) is the solution at xb obtained from the initial values. If the boundary

value problem has a solution, the function F has a root [88]. There are many

methods to find the root. In our case, we will find the root by using the function
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NDSolve in Mathematica, which will automatically select the most suitable method

for us.

A.2 Using NDSolve to Solve ODEs around Reg-

ular Singular Points

In this section, we will demonstrate how to numerically solve a second-order ODE

where the initial condition is at the regular singular point. We are not able to directly

use NDSolve to solve the ODE from the regular singular point as Mathematica will

fail to compute the infinite expression 1/0. We have to find the expansion of the

solution near the singular point first, and then we can use NDSolve. Let us show

the steps by considering the second-order ODE in the form of

y′′(x) + p(x)y′(x) + q(x)y(x) = 0, (A.2.3)

where the initial condition at the singular point x = 0 is {y(0) = a, y′(0) = b}. The

functions p(x) and q(x) are singular at x = 0, and the quantities

lim
x→0

x p(x) and lim
x→0

x2q(x) (A.2.4)

are finite to ensure x = 0 is a regular singular point. The expansion of y(x) can be

found by using the Frobenius power series

y(x) = xr
n∑
k=0

ckx
k, (A.2.5)

where ck’s are the coefficients. Since Mathematica cannot handle this with infinite

number of coefficients as in the ‘proper’ Frobenius method, n cannot be infinite and

is the number of coefficients we want to find1. Then we substitute the expansion

to the ODE and make the series expansion of the ODE. Next, we use Mathematica

1It would be better to consider the form of the expansion as y(x) = xr
∑n
k=0 ckx

k + err(x),

where err(x) is an error term. In this case, we can specify an error from the numerical computation.

However, as far as we are concerned, Mathematica has large enough digit precision; we can go very

near the singular point as long as the rounding effect does not become dominant, and the error

estimate would be as small as 10−6, for example, which somehow can be neglected.
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to identify the coefficients ck’s and then find the expansion of the solution near the

singular point. An example of the Mathematica code to do this job is written in the

figure A.1.

Now we are able to use NDSolve; the code is in the figure A.2. Note from the

figure that the initial condition changes from the functions at the singular point

{y(0) = a, y′(0) = b} to their expansions near the singularity {y(x0), y′(x0)}, where

limx0→0 y(x0) = a, limx0→0 y
′(x0) = b and x0 is a little different from 0.

A.3 Pole Tracking

In the fluctuation analysis, we need to locate the first pole as it represents the

physical mode. Basically, the pole will move if we change a related parameter. The

pole is located at the point where the Green’s function diverges. Since the numerical

computing for each value of the parameters may take a long time, tracking the pole

by directly applying ContourPlot to the Green’s function would be a tedious job.

We make it a lot better by, for the parameter k,

1. Replacing the Green’s function by a corresponding function that is quicker to

compute and gives the zero value at the pole; in our case the function is just

the solution from the ODE evaluated at the boundary.

2. Estimating the position of the pole at the starting value of k by ContourPlot

3. Using FindRoot to precisely obtain the pole position

4. Slightly changing the value k

5. Using the previous result as a guess of the new position of the pole for the new

k

6. Repeating the step 3 through 5 until having all the needed data

An example of the code to work from the step 3 to 5 is written in the figure A.3.
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A.4 Curve Selecting Algorithm

For the work in chapter 5 and 6, while we were trying to find the new ground state

we encountered a ridiculous routine that we had to choose the physical curve from

the plot such as the one in figure A.4. In that plot, we have to pick the most left

curve that gives the physical and stable solution. Unfortunately, when extracting

the curves from the plot, Mathematica does not number them naturally in ascending

or descending order from left to right, for example2. To choose the most left curve,

we then have to guess the number of that curve. The worst case is that the number

of times we guess is the number of the curves in the plot. Doing this for all values

of the associated parameters such as temperature may unreasonably waste a large

amount of time. However, there are still ways to have the computer doing this for

us. It is obvious that the curves on the left are going to touch the horizontal axis at

the less horizontal values than the curves on the right. For the data of each curve,

Mathematica represents it as a set of order points i.e. {{x1, y1}, {x2, y2}, . . .}. Our

algorithm to pick the most left curve are:

1. Searching for the order points that have the minimum values of the vertical

axis for each curve

2. Comparing those order points between the curves and choosing one with the

lowest horizontal value

3. At this horizontal value, estimating the vertical value for every curve and just

ignoring the curves that do not cross this horizontal value

4. Obtaining the curve we want by the fact that the curve will have the lowest

estimated vertical value from the last step3

2A slightly change in the plot may yield the labels of the curves completely shuffled. Also, for

the same plots but with slightly different ranges Mathematica may give totally different sets of the

labels.
3The curves are indeed arranged from left to right by the estimated vertical values from the

step 3. This is valid for only the curves that pass through or touch the horizontal value in this

step. For the others, we can reapply the steps 2 and 3 to them if we want to arrange all of them.
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An example of the Mathematica code doing this algorithm is shown in the figure

A.5.

A.5 S3 Spherical Harmonic Expansions

Our works focus on what happen in the holographic field theory in compact space.

The compact space is S3. The field on S3 naturally has the mode expansion in the

S3 spherical harmonics. For example, a scalar field on S3 has the mode expansion

as

Φ(Ω3) =
∑

l,m1,m2

Cl,m1,m2Yl,m1,m2(Ω3), (A.5.6)

where Yl,m1,m2 is the S3 scalar spherical harmonic, Cl,m1,m2 is the coefficient and

{l,m1,m2} are quantum numbers of the spherical harmonic. For the vector field,

the mode expansion is

Φi(Ω3) =
∑

l,m1,m2,s

Cl,m1,m2,sΠ
i
l,m1,m2,s

(Ω3), (A.5.7)

where Πi
l,m1,m2,s

is the S3 vector spherical harmonic in the direction xi and {l,m1,m2, s}

are its quantum numbers. This can also be done for general rank tensor fields; see [89]

for more detail. In our works, we encounter the expression such as Yl,m1,m2Yl′,m′1,m′2

which is a result of two fields coupled to each other. This expression needs to be

expand in a sum of single spherical harmonics in order to factor out the angular

dependence. The formulae can be found in [89]. To save time, we wrote Mathemat-

ica codes to do the expansions. Starting with the SU(2) and S3 Clebsch-Gordan

coefficients, which play a role in the expansion, we write the code in the figure A.6

and A.7. The codes to generate the spherical harmonic expansions of the multipli-

cation between the scalar spherical harmonics and the vector ones are in the figures

A.8, A.9 and A.10. Additionally, after running the codes in the figures A.8, A.9 and

A.10, it would be safe to restore the attributes to the operators.
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p@x_D := 1 � x;

q@x_D := 3 x;

n = 30;
m = 7;
H*Thing above is an example of input*L
H*The code actually begins here*L
Module@8r<, eqny@x_D := y''@xD + p@xD y'@xD + q@xD y@xD;

indicialr = Solve@r Hr - 1L + Limit@x p@xD, x ® 0D r + Limit@x^2 q@xD, x ® 0D � 0, rD;
H*If r1-r2 is integer, deltar1r2int will be True; otherwise False*L
deltar1r2int = IntegerQ@Hr �. indicialr@@1DDL - Hr �. indicialr@@2DDLD;
H*y1 is the series of 1st soln with undetermined coefficients*L
y1@x_D := x^If@deltar1r2int, Max@r �. indicialrD, r �. indicialr@@1DDD

Sum@c@iD x^i, 8i, 0, n<D;
H*Find coefficients of y1*L
coeffy1 = Solve@! Eliminate@

! HSeries@x^H-If@deltar1r2int, Max@r �. indicialrD, r �. indicialr@@1DDDL
eqny@xD �. y ® y1, 8x, 0, m<D � 0L, xD, Table@c@iD, 8i, 0, n<DD;

H*1st series soln with coefficients determined*L
y1expn@x_D = If@Length@coeffy1@@1DDD > 0,

x^If@deltar1r2int, Max@r �. indicialrD, r �. indicialr@@1DDD
Sum@c@iD x^i, 8i, 0, Length@coeffy1@@1DDD<D �. coeffy1@@1DD, 0D;

H*y2 is the series of 2nd soln with undetermined coefficients*L
y2@x_D := If@deltar1r2int, If@Length@Union@indicialrDD � 1,

y1expn@xD Log@xD + x^r Sum@d@iD x^i, 8i, 0, n<D �. indicialr@@1DD,
d@0D y1expn@xD Log@xD + x^Min@r �. indicialrD H1 + Sum@d@iD x^i, 8i, 1, n<DLD,

x^r Sum@d@iD x^i, 8i, 0, n<D �. indicialr@@2DDD;
H*Find coefficients of y2*L
coeffy2 = Solve@! Eliminate@

! HSeries@x^H-If@deltar1r2int, Min@r �. indicialrD, r �. indicialr@@2DDDL
eqny@xD �. y ® y2, 8x, 0, m<D � 0L, xD, Table@d@iD, 8i, 0, n<DD;

H*2nd series soln with coefficients determined*L
y2expn@x_D = If@deltar1r2int, If@Length@Union@indicialrDD � 1,

y1expn@xD Log@xD + x^r Sum@d@iD x^i, 8i, 0, Length@coeffy2@@1DDD<D �.
indicialr@@1DD, d@0D y1expn@xD Log@xD + x^Min@r �. indicialrD

H1 + Sum@d@iD x^i, 8i, 1, Length@coeffy2@@1DDD<DLD, If@
Length@coeffy2@@1DDD > 0, x^r Sum@d@iD x^i, 8i, 0, Length@coeffy2@@1DDD<D �.

indicialr@@2DD, 0DD �. coeffy2@@1DD;D;
H*Linear combination of 1st and 2nd series solns*L
yexpn@C1_, C2_D@x_D =

C1 Hy1expn@xD �. 8c@_D ® 1H*or any other convinient number*L<L +

C2 Hy2expn@xD �. 8c@_D ® 1, d@_D ® 1H*or any other convinient numbers*L<L

Figure A.1: Mathematica 8 code used to generate the expansions near x = 0 of

the solution to the second-order linear ODE. Note that the inputs p[x] and q[x]

are the functions in (A.2.3) and should be able to be expanded in the forms of

x−1(a power series) and x−2(a power series) respectively. n is the same as one in

(A.2.5). m is the number of terms in the expansion of the ODE, in which the

function Series will generate, and has to correspond to n i.e. every term in the

expansion of the ODE must not have any ck’s (c[i], d[i]) lost due to the fact that

the expansion of y(x) does not have enough terms. (This figure is associated with

appendix A.2.)
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x0 = 1 � 1000H*or any other value near zero*L;
xfinal = 10H*specifying the final position*L;

diffsoln@C1_, C2_D := NDSolve@8eqny@xD � 0, y@x0D � yexpn@C1, C2D@x0D,

y'@x0D � yexpn@C1, C2D'@x0D<, y, 8x, x0, xfinal<D;
H*An example of the solution can be seen by*L
Plot@Evaluate@y@tD �. diffsoln@1, 2DD, 8t, x0, xfinal<D

Figure A.2: Mathematica 8 code showing the use of NDSolve to numerically solve

the second-order linear ODE near a regular singular point (x = 0) where the initial

conditions are derived from the expansion of the solution obtained from the code in

the figure A.1. (This figure is connected with appendix A.2.)

kstart = 0; kstop = 10; dk = 1 � 10; H*Example of starting,
stopping and increment values*L
ktable = Table@i, 8i, kstart, kstop, dk<DH*Contains all k's*L;
Ωinitestmtd = 4 - 3 I H*for example*L;
k = ktable@@1DDH*Begin from starting value*L;
H*Find the exact pole position at starting value of k*L
polepositions = 88k, Ω �. Quiet@FindRoot@

Xvec@vfinalD �. ndsolveXvecH*function to find the pole;
the pole locates at the zero of this function evaluated at vfinal*L,
8Ω, Ωinitestmtd<D, 8NDSolve::ndinnt, ReplaceAll::reps<D<<;

H*Then move to the next k and find the pole, and repeat until done*L
Do@

k = ktable@@nthDD;
polepositions =

polepositions~Join~88k, Ω �. Quiet@FindRoot@Xvec@vfinalD �. ndsolveXvec, 8Ω,
polepositions@@nth - 1, 2DD<D, 8NDSolve::ndinnt, ReplaceAll::reps<D<<,

8nth, 2, Length@ktableD<D

Figure A.3: Mathematica 8 code used to track a zero-value point of a numeric

function, Xvec, evaluated at vfinal. In this case, k is the parameter with the starting

value kstart, the stopping value kstop and the increment step dk. The zero-value

point is on the complex plane ω. ωinitestmtd is the estimated zero-value point

from ContourPlot, for example. The output variable is polepositions and will be in

the form of {{kstart, ωkstart}, {kstart+dk, ωkstart+dk}, {kstart+2dk, ωkstart+2dk}, . . .},

where ωt is the pole position when k = t. (This figure is linked to appendix A.3.)
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Figure A.4: The plot of the initial condition that yields the physical solution for the

scalar new ground state at the temperature πTR = 1.5. (This figure is connected

with appendix A.4.)
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Needs@"Combinatorica`"D;H*to perform BinarySearch*L
H*Sort the data points of each curve by vertical axis values and then sort

the curves by the horizontal values of their lowestHminyL points*L
minypointswithlabelssortedbyx = Sort@Join@Table@8i<, 8i, Length@ðD<D, ð, 2D &@

Flatten@Map@Sort@ð, ð1@@2DD < ð2@@2DD &D &, datapointsD, 882<, 81<, 83<<D@@
1DDD, ð1@@2DD < ð2@@2DD &D;

H*For each curve, this contains the data points sorted
by the horizonal values*L

sorteddatapoints = Map@Sort@ð, ð1@@1DD < ð2@@1DD &D &, datapointsD;
H*For each curve, search for the position of the data points that the

selected horizontal value Hlook at step 3 in the algorithmL would be
in. If there exists the datapoint with the selected horizonal value,

the "return number" will be integer Hthe position of that data pointL;
otherwise, it will be half integer indicating the

position between ones with the higher and lower values*L
pointpositionsofthex =

Map@BinarySearch@ð, minypointswithlabelssortedbyx@@1, 2DD, ð@@1DD &D &,
sorteddatapointsD;

estimatedy = 8< H*This will be 88curve1,estimatedy1<,
8curve2,estimatedy2<,...<*L;

H*Begin to estimate the vertical values for each curve*L
Do@If@1 £ pointpositionsofthex@@nthcurveDD £

Length@sorteddatapoints@@nthcurveDDD, estimatedy = estimatedy~

Join~88nthcurve, If@IntegerQ@pointpositionsofthex@@nthcurveDDD,
H*If the "return number" is integer,
we just return the vertical position of that data point*L
sorteddatapoints@@nthcurve, pointpositionsofthex@@nthcurveDD, 2DD,
H*If the "return number" is not integer,
we have to interpolate the vertical value associate to the

selected horizon value*LInterpolation@sorteddatapoints@@
nthcurve, Max@Floor@pointpositionsofthex@@nthcurveDDD, 1D

;; Min@Ceiling@pointpositionsofthex@@nthcurveDDD,
Length@sorteddatapoints@@nthcurveDDDDDD, InterpolationOrder ® 1D@

minypointswithlabelssortedbyx@@1, 2DDDD<<D,
8nthcurve, Length@sorteddatapointsD<D;

H*Please refer to step 4 in the algorithm;
the numbers in the output indicate the list positions

in which the data of the particular curves contains*L
lefttorightorder = Transpose@Sort@estimatedy, ð1@@2DD < ð2@@2DD &DD@@1DD

Figure A.5: Mathematica 8 code used to select the most left curve

in, for example, the plot of the figure A.4. The variable named

datapoints contains the order points of the plots in the form of

{{{xi1,j1 , yi1,j1}, {xi1,j2 , yi1,j2}, . . .}, {{xi2,j1 , yi2,j1}, {xi2,j2 , yi2,j2}, . . .}, . . .} where

i’s label the curves and j’s label the order points for each curve. The output is

a set in which the label of the most left curve is the first element, and the next

element is the label of the nearby right curve and so on. Since the code is not

written to arrange all the curves, the labels of some far right curves may disappear

from the output. For more details, see the footnote 3 in the page 114. (This figure

is associated with appendix A.4.)
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CSU2@j_, j1_, m1_, j2_, m2_D :=

If@Abs@j1 - j2D £ j £ j1 + j2 && -j1 £ m1 £ j1 && -j2 £ m2 £ j2 && Abs@m1 + m2D £ j &&
Mod@j1 + m1, 1D � 0 && Mod@j2 + m2, 1D � 0,

Module@8k = 0, sum = 0<,
While@Hj - j2 + m1 + kL < 0 ÈÈ Hj - j1 - m2 + kL < 0, k++D;
While@Hj1 + j2 - j - kL ³ 0 && Hj1 - m1 - kL ³ 0 && Hj2 + m2 - kL ³ 0,

sum += H-1L^k � Hk! * Hj1 + j2 - j - kL! * Hj1 - m1 - kL! *

Hj2 + m2 - kL! * Hj - j2 + m1 + kL! * Hj - j1 - m2 + kL!L; k++D;
Sqrt@H2 j + 1L Hj + j1 - j2L! Hj - j1 + j2L! Hj1 + j2 - jL! � HHj1 + j2 + j + 1L!LD * Sqrt@

Hj + m1 + m2L! Hj - m1 - m2L! Hj1 - m1L! Hj1 + m1L! Hj2 - m2L! Hj2 + m2L!D * sumD, 0D

Figure A.6: Mathematica 8 code used to compute the SU(2) Clebsch-Gordan coef-

ficients represented by CSU2. (This figure is connected with appendix A.5.)

CS3@j_, l_, m1_, m2_, lp_, m1p_, m2p_D :=

If@Abs@l - lpD £ j £ l + lp && -l £ 2 m1 £ l && -l £ 2 m2 £ l && -lp £ 2 m1p £ lp &&
-lp £ 2 m2p £ lp && 2 Abs@m1 + m1pD £ j && 2 Abs@m2 + m2pD £ j &&
Mod@l � 2 + m1, 1D � 0 && Mod@l � 2 + m2, 1D � 0 && Mod@lp � 2 + m1p, 1D � 0 &&
Mod@lp � 2 + m2p, 1D � 0 && Mod@j � 2 + m1 + m1p, 1D � 0 && Mod@j � 2 + m2 + m2p, 1D � 0,

Sqrt@Hl + 1L Hlp + 1L � Hj + 1LD CSU2@j � 2, l � 2, m1, lp � 2, m1pD
CSU2@j � 2, l � 2, m2, lp � 2, m2pD, 0D

DS3@j_, l_, m1_, m2_, s_, lp_, m1p_, m2p_, sp_D :=

If@Abs@l - lpD + Abs@s - spD £ j £ l + lp - Abs@s + spD &&
-l - s £ 2 m1 £ l + s && -l + s £ 2 m2 £ l - s && -lp - sp £ 2 m1p £ lp + sp &&
-lp + sp £ 2 m2p £ lp - sp && 2 Abs@m1 + m1pD £ j && 2 Abs@m2 + m2pD £ j &&
Mod@Hl + sL � 2 + m1, 1D � 0 && Mod@Hl - sL � 2 + m2, 1D � 0 &&
Mod@Hlp + spL � 2 + m1p, 1D � 0 && Mod@Hlp - spL � 2 + m2p, 1D � 0 &&
Mod@j � 2 + m1 + m1p, 1D � 0 && Mod@j � 2 + m2 + m2p, 1D � 0 && Abs@sD � Abs@spD � 1,

-Sqrt@l Hl + 1L Hl + 2L lp Hlp + 1L Hlp + 2L � Hj + 1LD *

SixJSymbol@8j � 2, l � 2, lp � 2<, 81 � 2, Hlp + spL � 2, Hl + sL � 2<D *

SixJSymbol@8j � 2, l � 2, lp � 2<, 81 � 2, Hlp - spL � 2, Hl - sL � 2<D *

CSU2@j � 2, Hl + sL � 2, m1, Hlp + spL � 2, m1pD
CSU2@j � 2, Hl - sL � 2, m2, Hlp - spL � 2, m2pD, 0D

GS3@j_, l_, m1_, m2_, s_, lp_, m1p_, m2p_D :=

If@Abs@l - lpD + 1 £ j £ l + lp - 1 && -l - s £ 2 m1 £ l + s && -l + s £ 2 m2 £ l - s &&
-lp £ 2 m1p £ lp && -lp £ 2 m2p £ lp && 2 Abs@m1 + m1pD £ j && 2 Abs@m2 + m2pD £ j &&
Mod@Hl + sL � 2 + m1, 1D � 0 && Mod@Hl - sL � 2 + m2, 1D � 0 && Mod@lp � 2 + m1p, 1D � 0 &&
Mod@lp � 2 + m2p, 1D � 0 && Mod@j � 2 + m1 + m1p, 1D � 0 && Mod@j � 2 + m2 + m2p, 1D � 0 &&
Abs@sD � 1, -Sqrt@l Hl + 1L Hl + 2L Hlp + 1L � H8 Hj + 1LLD *

Sum@k Hk + 1L Hk + 2L SixJSymbol@8j � 2, l � 2, k � 2<, 81 � 2, lp � 2, Hl + 1L � 2<D *

SixJSymbol@8j � 2, l � 2, k � 2<, 81 � 2, lp � 2, Hl - 1L � 2<D, 8k, 8lp - 1, lp + 1<<D *

CSU2@j � 2, Hl + sL � 2, m1, lp � 2, m1pD CSU2@j � 2, Hl - sL � 2, m2, lp � 2, m2pD, 0D

Figure A.7: Mathematica 8 code used to compute the S3 Clebsch-Gordan coefficients

represented by CS3, DS3 and GS3. (This figure is associated with appendix A.5.)
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ClearAttributes@Times, ProtectedD;

Y@l_, m1_, m2_D * Y@lp_, m1p_, m2p_D :=

Sum@CS3@j, l, m1, m2, lp, m1p, m2pD Y@j, m1 + m1p, m2 + m2pD, 8j, Abs@l - lpD, l + lp<D

ClearAttributes@Power, ProtectedD;

Y@l_, m1_, m2_D^n_ �; Hn ³ 2 ÈÈ n £ -2L :=

Module@8sum = 1<, For@i = 0, i < Floor@Abs@nDD, i++, sum *= Y@l, m1, m2DD; If@n > 0,
sum * Y@l, m1, m2D^Hn - Floor@nDL, Hsum^-1L * Y@l, m1, m2D^Hn - Ceiling@nDLDD

Figure A.8: Mathematica 8 code used to compute the spherical harmonic expansions

of Yl,m1,m2Yl′,m′1,m′2 and (Yl,m1,m2)
n, n ∈ Z. (This figure is connected with appendix

A.5.)

ClearAttributes@Times, ProtectedD;

Pibar@l_, m1_, m2_, s_D * Pibar@lp_, m1p_, m2p_, sp_D :=

Sum@DS3@j, l, m1, m2, s, lp, m1p, m2p, spD * Y@j, m1 + m1p, m2 + m2pD,
8j, Abs@l - lpD + Abs@s - spD, l + lp - Abs@s + spD<D

ClearAttributes@Power, ProtectedD;

Pibar@l_, m1_, m2_, s_D^n_ �; Hn � 2 ÈÈ n � -2L :=

Module@8sum = 1<, For@i = 0, i < Floor@Abs@nDD, i++, sum *= Pibar@l, m1, m2, sDD;
If@n > 0, sum * Pibar@l, m1, m2, sD^Hn - Floor@nDL,

Hsum^-1L * Pibar@l, m1, m2D^Hn - Ceiling@nDLDD

Figure A.9: Mathematica 8 code used to compute the spherical harmonic expansions

of Πı̄
l,m1,m2,s

Π̄
l′,m′1,m

′
2,s
′ and (Πı̄

l,m1,m2,s
)n, n ∈ Z, where Πı̄

l,m1,m2,s
is the S3 vector

spherical harmonic function in the direction xı̄. (This figure is linked to appendix

A.5.)

ClearAttributes@Times, ProtectedD;

Y@l_, m1_, m2_D * Pibar@lp_, m1p_, m2p_, sp_D :=

-Sum@Sum@H-1L^Hm1p - m2p + 2 m1 - 2 m2L * DS3@l, lp, m1p, m2p, sp, j, -m1 - m1p, -m2 -

m2p, sD * Pibar@j, m1p + m1, m2p + m2, sD, 8s, 8-1, 1<<D, 8j, 1, l + lp + 2<D +

Sum@H-1L^Hm1p - m2p + 2 m1 - 2 m2L * GS3@l, lp, m1p, m2p, sp, j, -m1 - m1p, -m2 - m2pD
DelibarY@j, m1p + m1, m2p + m2D � Hj Hj + 2LL, 8j, 1, l + lp + 1<D

Figure A.10: Mathematica 8 code used to compute the spherical harmonic expansion

of Yl,m1,m2Π
ı̄
l′,m′1,m

′
2,s
′ . (This figure is associated with appendix A.5.)
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