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Abstract 

  High-throughput sequencing was used to analyse cDNA generated from 

tissues of the grey field slug, Deroceras reticulatum, a significant invertebrate pest of 

agricultural and horticultural crops. Almost no sequence data is available for this 

organism. In this project, we performed de novo transcriptome sequencing to produce 

sequence dataset for the Deroceras reticulatum. 

  A total of 132,597 and 161,419 sequencing reads between 50-600bp from the 

digestive gland and neural tissue were obtained through Roche 454 pyrosequencing. 

These reads were assembled into contiguous sequences and annotated using 

sequence homology search tools. Multiple sequence assemblies and annotation data 

was amalgamated into a biological database using BioSQL. Analysis of the dataset 

with predictions of probable protein function were made based on annotation data. 

InterPro (IPR) terms generated with InterProScan software were mapped to read 

counts and used to identify more frequently sequenced gene families. 

 Digestive hydrolases were major transcripts in the digestive gland, with 

cysteine proteinases and cellulases being the most abundant functional classes. A 

Cathepsin L homologue is likely to be responsible for the proteinase activity of the 

digestive gland which was previously detected by biochemical analysis. Cathepsin L 

and several other predicted proteins were used to design RNAi experiments to assess 

potential for crop pest defence strategy. Further work on protein expression of a 

native tumour necrosis factor (TNF) ligand homologue was also conducted as an 

exemplar study.  
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Chapter 1 | Introduction 

1.1 Introduction to Mollusca and the Target Species, Deroceras reticulatum, 

the Grey Field Slug 

 The Mollusca phylum is one of the largest and most diverse phyla in size and 

variety, second only to insects. They are the largest marine phylum, but are also 

found in freshwater and terrestrial habitats, and include familiar pests such as slugs 

and snails, as well as marine organisms such as clams and abalone. Mollusc species  

range in size from micromolluscs, including the gastropod family Omalogyridae 

(less than 1mm in length) to the giant and colossal squids (Architeuthis dux and 

Mesonychoteuthis hamiltoni respectively), which can grow up to 14m in length. The 

first mollusc-like creatures are generally thought to have evolved approximately 500 

million years ago during the Cambrian explosion, a rapid increase in animal species 

with the appearance of most of the present day metazoan phyla. The early molluscs 

were protected by a cuticle of aragonitic spicules or scales rather than the shells that 

later evolved in modern molluscs (Scheltema and Schander 2006). Several mollusc 

classes then went through repeated and independent evolutions whereby shells were 

lost through reduction and internalisation (Osterauer et al. 2010). In the Gastropoda 

class this lead to the evolution of snail and slug species such as Deroceras 

reticulatum.  

 The general anatomy of molluscs is that of a body divided into two: a visceral 

mass containing most of the organs and a combined head and foot. A shell, secreted 

by the mantle (a specialised area of the body wall) covers the visceral mass in many 

shellfish and snail species, but is internalised in other molluscs such as slugs, 

octopuses and squid. There is no supporting endo- or exo- skeleton although in many 

cases the shell performs this function. The body is not segmented and the body cavity 

filled with heamocoel. Mucus is secreted from the skin coating the body surface. The 

feeding organ is a hardened spiked tongue, called a radula, which rasps at food 

during feeding. The nervous system is ganglionated, and is a model neurological 
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system with the giant squid axon biology being key to uncovering ionic mechanism 

of action potentials (Hodgkin and Huxley 1952). 

 The repeated evolution of molluscs that conform to the general appearance of 

slugs and snails mean that the terms are only referent to body type, and are not a 

distinct taxonomic group. However the majority of air-breathing terrestrial slugs and 

snails belong to the taxonomic group Stylommataophora, which is considered a clade 

of Gastropoda. Although snails, with an external shell to protect them from moisture 

loss, might appear to be better adapted for terrestrial environments, the 

internalisation of external calcified shells in terrestrial slug species allows them to 

access smaller spaces. The evolution of this trait is thought to provide better 

adaptation to soil as a habitation for slug species (Barker 2001). Additionally the 

lesser need for supplies of calcium to synthesise the calcareous shells allows slugs to 

thrive in a wider range of soil types and qualities than snail counterparts. Of the 95 

Stylommataophora classified by Boycott, only 1 of the 37 snail species was able to 

tolerate low calcium soils, living in acid heath and woodland areas. All 58 slug 

species showed indifference to soil type and as such had a larger range of habitation 

(Boycott 1934). However, due to a reduced capacity to tolerate dry conditions, as a 

result of losing the protection of an outer shell, the distribution of slugs is restricted 

to areas which are generally high in rainfall (Solem 1974). This has not stopped slug 

species becoming a worldwide pest to many agricultural and horticultural crops, one 

of the most notable being D. reticulatum. 

1.1.1 Deroceras reticulatum 

 D. reticulatum was first described as Limax reticulatus by the Danish 

naturalist Otto Friedrich Müller in 1774. Since then its scientific name has changed, 

with genus changing from Limax to Agriolimax to the present day consensus of 

Deroceras, with the additional alteration of reticulatus to reticulatum. Its common 

name also has synonymous variations including the grey field slug, grey garden slug 

and netted slug. This species is one of the most common terrestrial molluscs in 

Northern Europe, with global distribution across most temperate and sub-tropical 

regions including North and South America (Tulli et al. 2009) and Australasia 



Chapter 1 | Introduction 

 

17 

 

(Ferguson, Barratt, and Jones 1988). They are primarily synanthropic, inhabiting 

cultivated areas such as arable land but extending to fields, meadows, gardens and 

parks. They are not commonly found in woodland or forests. Slugs, in particular D. 

reticulatum, are a major pest of many crops in the UK and Northern Europe, with 

winter wheat being one of the most important economically. In severe cases, when 

weather conditions are particularly favourable for slugs, they can cause damage to up 

to a third of seeds and seedlings in autumn. Their significance as a pest species has 

increased over the last 30 years, primarily attributed to changing agricultural 

practices (Brooks et al. 2003). 

 Individual adult D. reticulatum grow to 3.5-5 cm in length when fully 

extended and can range in colour from dark-brown to pale cream. Initial recently 

hatched juveniles have a glassy transparent appearance, with the internal organ 

structure visible. As the slug reaches adulthood a mottled, 'netted' pattern develops 

and becomes more distinct; the body surface darkens, and a particular fingerprint-

like pattern develops on the mantle. As with all terrestrial slugs, mucus is exuded 

from the body surface, the surface being ridged with tubercles giving it a grooved 

appearance. When the slug is agitated the mucus, which is normally clear and 

colourless, becomes milky white and viscous. Additionally, the agitated slug can 

contract its head by drawing it in anteriorly, with mantle forming a flap that covers 

the head and neck. 

 Whilst the growth, metabolism and reproduction cycles of D. reticulatum and 

other terrestrial slug pests of crops are much slower than equivalent insect pests, their 

populations rapidly regenerate despite agricultural counter-measures. D. reticulatum 

is a protandric hermaphrodite, whereby male sexual mature phase is reached early in 

the lifespan followed by female, with substantial overlap between the two phases 

(Runham 1978). Sexual reproduction is relatively complex with courtship and 

copulation including relatively elaborate stages such as trail following, pairing and 

circling (Nicholas 1984). Despite self-fertilisation being common in many slug 

species D. reticulatum rarely produces self-fertilised eggs, relying on them only as 

stop-gap measure when populations are low, with resulting offspring having poorer 

survival and fecundity (Howlett 2005). A single D. reticulatum can lay 500 eggs with 
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batches of eggs being laid throughout the year, although their peaks egg laying 

periods are based on climate and can shift between spring and autumn depending on 

year to year conditions (Runham and Hunter 1970). 

 D. reticulatum live within the soil, primarily within the top 10 cm, and feed 

mainly at night (Glen and Symondson 2002). D. reticulatum are particularly resistant 

to cold conditions compared to other slug species and feed normally at temperatures 

as low as 0°C (Mellanby 1961). During very cold periods D. reticulatum remain 

dormant in the soil and can survive for more than 3 months without any food 

(Middlebrooks, Pierce, and Bell 2011). D. reticulatum as with many terrestrial 

molluscs feeds on and digests a wide range of foodstuffs. 

 D. reticulatum is an omnivorous and a generalist grazer and its specific 

interaction with plant species is less direct than cereal pests such as Sitobion avenae 

and Mayetiola destructor. As yet there are few examples of resistance genes, in 

plants, to molluscs, equivalent to the gene-for-gene interactions described between 

insects and plants. Plant populations have been shown to be affected by molluscan 

herbivory with snail herbivory affecting secondary metabolites concentrations in 

willow plants. However the resulting plants were more susceptible to other 

herbivores and rust fungus, highlighting that molluscs are part of a more complex 

herbivorous population (Orians et al., 2013). The current research suggests plants 

rely on general host-plant resistance (HPR) genes that affect a wider variety of 

herbivores rather than targeted genes for mollusc resistance. Secondary metabolites 

such as glucosinolates have shown to negatively affect multiple generalist species 

including snail species (Newton et al., 2009), with comparison on mollusc grazing of 

seawood showing plant defences preferentially reducing generalist mollusc species 

over specialists (Long et al., 2007). 

1.1.2 Deroceras reticulatum digestive gland 

 The alimentary tract of D. reticulatum can be split into 6 regions; buccal 

mass, oesophagus, crop, stomach, intestine and rectum. Food sources such as plant 

leaves are broken by radula with the rasping action aided by the jaw. When feeding 

the animal conducts multiple rasps whilst moving the head side to side and slowly 
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moving forward. The teeth are significantly worn down by this action, with worn 

teeth at the front of the radula which have become rounded to stumps falling off; the 

cast-off teeth are then eaten by the organism. The rate of replacement of rows of 

teeth on the radula was found to vary among species with mature D. reticulatum 

replacing 5.6 rows of teeth per day (Isarankura and Runham 1968). 

 Food particles are then transferred through the buccal cavity, where they are 

combined with saliva, a combination of mucus and digestion-related enzymes. The 

food is quickly transported to the crop via the oesophagus, which has a ciliated 

epithelium as well as being lubricated by mucus to allow transport of the food 

particles. The crop contains a viscous brown liquid containing a much larger 

complement of enzymes than the saliva. Food remains in the crop whilst extracellular 

digestion proceeds aided by circulation of food particles by peristaltic contractions of 

the crop wall. Remaining food matter continues through into the stomach, and faecal 

matter begins to form as food remains are compacted and moisture is extracted in the 

intestine. Mucus is added along the length of the intestine and faeces are discharged 

from the body as a faecal string. 

 There are two main types of accessory glands which produce digestive 

enzymes, the salivary glands and digestive gland. The left and right salivary glands 

are tear shaped organs near the nerve ring at the border of the oesophagus and crop 

and are connected to the buccal mass via ducts. The digestive gland is a large 

multilobed structure, the lobes of which wrap around the stomach and intestine of the 

alimentary tract, see Figure 1. (Walker 1972). The digestive gland is responsible for 

82% of proteolytic activity in the gut and crop with salivary glands being less 

important, contributing 13% and 5% of activity in the gut and crop respectively. In 

D. reticulatum crop digestive juice was demonstrated to contain activities of 

amylase, cellulase, α-glycosidase (invertase), xylanase, chitinase, gelatinase and 

lipase (Runham and Hunter 1970). A number of different protease activities were 

also described, distinguished from commensal digestion through antibiotic treatment 

assays. The primary protease, identified as a cysteine protease (likely Cathepsin L), 

was responsible for the majority of proteolysis in the digestive gland (Walker et al., 

1998). Carbohydrase, lipase and proteases are expected components of digestive 
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Figure 1 : Alimentary tract and accessory organs of Deroceras reticulatum 

a, Anus; al, anterior lobes of digestive gland; b, bladder; bm, buccal mass; c, 

crop; m, mouth; mi, mid-intestine; o, oesophagus; pi, post-intestine; pl, 

posterior lobes of digestive gland; pri, pro-intestinal loop; r, rectum; rc, rectal 

caecum; rsd, right salivary gland; u, ureter. 
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systems which hydrolise plant matter into monomers. The presence of chitinase 

could be explained due to feeding on insects as well as the recycling of worn teeth 

which contain chitin (Isarankura and Runham 1968; Sollas 1907). 

1.1.3 Deroceras reticulatum nervous system 

 The 'brain' of D. reticulatum is a ring shaped complex association of ganglia 

which encircles the oesophagus and salivary gland ducts. Around the outside of the 

ring of ganglia is a thick sheath containing collagen, muscle fibres and various 

connective tissue cells, some of which appear to be secretory. Although secretion by 

nerve cells is generally short-range, in the form of neurotransmitters which are 

released at the synapse, travelling short distances in order to stimulate nearby cells. 

Neurosecretions can also be released into the blood or connective tissue of a group of 

cells at a distance. Nerves run out from the nerve ring in close association with 

arteries, often bundled together in the same sheath. This includes the optic nerve 

which runs along the optic tentacles and connects to the retina. In all sensory 

tentacles the tip contains a large digitate ganglion with a retractor muscle attached 

around its edges. These ganglia are connected to the nerve cord with an olfactory 

nerve and are responsible for the organism’s sense of smell (Runham and Hunter 

1970). 

 Beyond the basic anatomy, the D. reticulatum nervous system has not been 

studied in any detail. However, the nervous systems of many other molluscs have 

been studied extensively. Aplysia californica, a marine Gastropoda, is a model 

organism for neurobiology and has received considerable attention, including a large 

database of expressed sequence tags (ESTs) and a draft genome is in progress. Many 

genes of significance to the nervous system, including those encoding channels, 

receptors, and hormones, have been sequenced and predicted protein sequences have 

been produced (Sattelle and Buckingham 2006). These in many cases are a starting 

point for work examining the genetic aspects of the D. reticulatum nervous system. 
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1.2 Mollusca as Crop Pests 

 Molluscan crop pests reduce seedling growth, and sever reproductive and 

vegetative tillers affecting cereal crop yields. Slug grazing reduces overall leaf 

biomass, and fouls flowers with mucus, reducing pollination through a decrease in 

attractivity to bees (Apis mellifera) (Gavin et al. 2007); severe slug grazing can also 

affect subsequent crops due to the buildup in population which persists from one 

growing season to another.  Slugs devastate newly planted cereal fields by hollowing 

out seeds and grazing on seedlings, most seriously in wheat (Triticum aestivum). 

Wheat is a key cereal crop for a large proportion of the globe and is the largest single 

agricultural product of Europe, with 225 million metric tons produced in 2011 

(FAOSTAT United Nations 2011). Increasing demand due to population increase, 

has put ever more pressure on reducing crop wastage due to pest damage, possible 

use of crops to generate biofuels and projected effects of climate variability reinforce 

the need to maximise yields of harvested products. 

 Besides causing yield losses, slugs can have major impacts on acceptability 

of crop products to consumers. For example, due to the increasing demand for 

fresher foodstuffs, pea vining is now frequently done at night, when slugs are most 

active and highest up within the crop, resulting in slugs being co-harvested with the 

peas. The harvest is sent to freezing plants, where the separation of frozen slugs and 

pea seeds causes great difficulty (Runham and Hunter 1970). Additionally, other 

crops which are grown in much smaller quantities but have a greater commercial 

value, such as strawberries, asparagus and salad vegetables are particularly 

susceptible to slug damage. In these cases minor grazing and cosmetic damage such 

as slug trails and faeces renders crops unmarketable or of very little value.  

Consumers and supermarkets are increasingly unwilling to tolerate cosmetic damage 

whilst also demanding fresher food, leading to greater demand for crop protection 

mechanisms against molluscs. With new markets such as 'organic' foodstuffs gaining 

market share, producers are also looking for alternatives which may be more 

acceptable to consumers than chemical- based pesticides (Glen 2002). 

 In many cases crop rotations and level of soil disruption through tillage can 

have a pronounced effect on slug populations. However variability in these 
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populations through crop type and weather from year to year mean it is difficult to 

effectively protect crops through soil management alone. Many modern crop 

 

Figure 2 : Change in treatment area of molluscicides and total pesticides 

Graph shows the overall trends of molluscicide usage measured by treatment 

area, based on FERA pesticide survey data*. Total pesticide usage, which 

includes molluscicides, has been included for reference. Both values show on 

overall increasing trend over the 2 decades that data is available.  

 

*Surveys for some pesticide groups are not conducted each year, values 

published by FERA are sometimes interpolated from surrounding years. 
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practices have been shown to promote slug populations. No-till farming is 

increasingly popular method of farming which implements a method of continuously 

growing crops all year round without deep ploughing or major disruption of the soil. 

This style of farming creates long-term habitats for slugs as well as reducing damage 

to slug populations caused by soil tilling (Glen and Symondson 2002). 

 Seed drilling methods, the process of planting seeds into the soil, are another 

area of change in agricultural practice which has given rise to greater potential 

damage by slugs. Traditionally, seed drilling was done with a much larger number of 

seeds than required, and unwanted plants were removed after seeds had sprouted. 

Modern agricultural technology now allows for precision monogerm drilling of 

single seeds, which reduces overall waste. However, no adjacent plants are available 

if the sprouting seed is damaged, increasing the risk of having to replant entire crops 

when slug populations are significant (Runham and Hunter 1970). Currently the 

primary strategy for protecting most crop types is the use of molluscicides, but these 

can show variable results depending on how and when they are used. 

1.2.1 Current Molluscicide Usage 

 The Pesticide Usage Survey conducted on UK arable crops by the 

Department of Food, Environment and Rural Affairs (FERA), showed during the 

first decade of the 21
st
 century, on average 1/4 of UK arable land area was treated 

with molluscicidal agents. 95% of these molluscicides are used on 3 main crops: 

wheat (52%), oilseed rape (33%) and ware potatoes (10%) (Garthwaite et al. 2010). 

Whilst the latest FERA survey reported decreased usage in 2010 and 2011, a broader 

look at the usage data indicates a quite high variability year on year for 

molluscicides, see Figure 2. This may be more likely due to climate variation having 

impact both on mollusc populations and the efficacy of the molluscicides under 

different climatic conditions. In autumn 2012 the Metaldehyde Stewardship Group, a 

consortium of metaldehyde suppliers, reported depleted stocks of slug pellets as well 

as ‘highly concerning’ metaldehyde levels in drinking water. Due to wet weather and 

lack of severe frosts or very cold weather, unprecedented slug pressure forced 

multiple applications of slug pellets to avoid total crop devastation (“Metaldehyde 
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Stewardship Group 22/10/12 - Briefing Notes: Autumn 2012” 2012). The general 

trend for both total pesticides and molluscicides over the last 20 years is an increase 

in total amount used. 

1.2.2 Metaldehyde and Methiocarb 

 Two main agents, metaldehyde and carbamates, primarily methiocarb, 

represent 99% of molluscicides used by the UK agricultural industry. Carbamate 

pesticides are biologically active because they are complementary in structure to the 

active site of acetylcholinesterase. They behave as synthetic neurohormones that 

cause toxic action by interrupting the normal action of acetylcholinesterase so that 

acetylcholine accumulates at synaptic junctions (Metcalf 1971). This leads to 

interference of the metabolism of the gastropod nervous system, resulting in 

mortality (Godan 1999). Metaldehyde is a cyclic tetramer of acetaldehyde, with 

which it shares many chemical properties. Its mode of action is less well 

characterised than carbamates. Initially it was thought that acetaldehyde, created 

through hydrolysis of metaldehydes, was the primary toxic agent in animals. Other 

evidence points to an interaction of metaldehyde and the γ-aminobutyric acid 

(GABA) (Sparks et al. 1996). Whilst the study focuses on vertebrate biochemistry, 

GABA has been shown to play important neurological roles in Mollusca including 

effects on motor, feeding and olfactory activities (Nezlin and Voronezhskaya 1997; 

Narusuye, Kinugawa, and Nagahama 2005; Moccia et al. 2009). The end result of 

metaldehyde interaction with the slug is the alteration of mucocyte cells, resulting in 

an increase in mucous production (Triebskorn 1989). The resulting dehydration 

causes loss of mobility, and eventual mortality after loss of 50% of body mass 

(Godan 1999). 

 Metaldehyde and methiocarbs are primarily formulated as edible baits, 

usually containing 2-8% toxicant; these are the familiar slug pellets used by both 

professional and amateur growers. The active chemicals are combined with wheat 

bran or barley flour to act as an attractant and feeding stimulant. The use of active 

substances at any higher concentration results in a progressive repellent effect, 

decreasing slug feeding. The bait attractant properties may be further enhanced via 
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addition of specific materials such as proteins (typically casein), or dextrose (Barker 

2002). However, bait attractiveness is relative to other materials available for slug 

feeding; crops such as soft fruits are highly attractive to slugs, and are consequently 

more difficult to protect effectively. Additionally, the attractive effect of standard 

baits usually only lasts for around 3 days, depending on conditions, after which 

additional treatments are required. Since many slug species primarily live in the soil, 

and baits are applied on the surface, the effectiveness of slug baits is also 

compromised as protectants for crops which grow underground, such as potatoes and 

flower bulbs. In a given area, susceptibility to bait treatments for gastropod species 

can be less than 10% (Godan 1999). The limited effectiveness of bait treatments 

leads to very high rates of application, which in turn can have undesirable 

environmental consequences (see below; section 1.2.4).  

 Alternatives to bait treatments have been investigated, such as seed 

treatments. Seed treatments have the advantage of protecting plants during sprouting 

when they are most susceptible to damage, whilst using minimal active substance 

due to the small surface area of seeds. With damage to wheat most significant during 

seeding, metaldehyde seed treatments and sprays have been researched for potential 

in crop protection, but have shown poor results (Runham and Hunter 1970). More 

recent research into seed treatments of canola (Brassica napus) show that, in lab 

conditions, metaldehyde seed treatments are much more effective than equivalent 

baits (Simms, Mullins, and Wilson 2002). However, field conditions lead to a 

reduction in overall efficacy of treatments, primarily due to micro-organisms readily 

being able to utilise the metaldehyde as a carbon source. Whilst beneficial for long 

term ecological considerations, use of metaldehyde as a seed treatment requires the 

development of more complex formulations in order for them to be as effective 

(Simms et al. 2006).  

1.2.3 Other molluscicides 

 A variety of chemical, biological and ecological alternatives are currently in 

use to protect crops from Molluscan species. As yet none have been shown to be 

effective enough that they can replace metaldehyde or methiocarb in an agricultural 
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setting. Carbamates chloethocarb and thiodcarb have been investigated for use with 

canola and winter cereals, though their properties are relatively similar to other 

carbamates such as methiocarb (Godan 1999). Iron phosphate-based chemical 

molluscicides can be considered the next best alternative to metaldehydes and 

methiocarbs. A number of metal salts were shown to have molluscicidal properties, 

and the research suggested that their efficacy could be improved by use of a 

chelation agent (Henderson and Martin 1990). Mini-plot trials indicate that for D. 

reticulatum and Arion ater iron phosphate can be as effective as metaldehydes. 

However other studies concluded that iron phosphate shows lower efficacy and 

higher cost than metaldehyde based crop protection methods (Speiser and Kistler 

2002). Iron phosphate is the primary chemical molluscicide for organic farming, with 

many organic farmer associations completely prohibiting metaldehyde usage. The 

commercial molluscicide Sluggo® uses iron phosphate as an active ingredient and is 

marketed as organic and safe for pets and wildlife. Iron phosphate is combined with 

chelating agents such as EDTA to form iron chelates which are toxic to molluscs 

(Young and Armstrong 2001). Whilst less toxic to other organisms than 

metaldehyde, EDTA and iron phosphate baits have been shown to affect earthworm 

viability (Edwards et al. 2009) and cause toxic effects in mammals (Haldane and 

Davis 2009). 

 "Natural" molluscicides have also been described, such as garlic (allicin) 

(Schöder, Port, and Bennison 2004) and copper plate (Schöder, Port, and Bennison 

2004), but their effects are limited to temporary repellent. Caffeine has been shown 

to cause mortality in molluscs, but in addition to being a psychoactive drug in 

humans and toxic to a wide range of non-target organisms, it has been shown to 

cause leaf damage to some crops when applied as a spray (Hollingsworth, 

Armstrong, and Campbell 2002). The nematode species Phasmarhabditis 

hermaphrodita, a known parasite of D. reticulatum was identified as a potential 

biological control. Field trials were conducted on asparagus (Ester, van Rozen, and 

Molendijk 2003) and since then the organism has been developed as a commercial 

product (Nemaslug®). But its application as a practical molluscicide is limited due to 

high price, short shelf life and temperature sensitivity (Speiser and Kistler 2002). 
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When compared with chemical molluscicides for mainstream crop protection the 

method has shown "poor results" (Rae, Robertson, and Wilson 2009).  

1.2.4 Biological impact of molluscicides 

 Both metaldehyde and methiocarb are known to be toxic to all animals at 

high enough concentrations. There is a widespread belief that their use is hazardous 

to non-target organisms, and has a detrimental ecological effect, although evidence to 

support these claims is limited. Many invertebrate species have been shown to be 

unaffected by molluscicide bait poisons, though methiocarb is toxic to some carabids 

(Godan 1999). It is known that chemical baits are eaten by numerous other 

invertebrate species such as earthworms, beetles, centipedes and woodlouse (Gavin 

et al. 2007). Limited research is available on the effect of metaldehyde treatments on 

non-target invertebrates, such as long term effects on viability. The majority of 

metaldehyde poisoning of non-target organisms published comes from cases of 

toxicosis, and sometimes mortality, in various vertebrates species such as hedgehogs 

(Keymer, Gibson, and Reynolds 1991), cows (Valentine et al. 2007), dogs (Campbell 

2008; Mills 2008), birds (Andreasen 1993) and humans (Shih et al. 2004; Bleakley et 

al. 2008). In most of these cases poisoning has occurred through consumption of very 

large amounts of slug pellets containing metaldehyde. 

 In many cases the risk of molluscicides to the environment is dependent on 

environmental factors such as frequency of treatments and weather conditions. 

Despite its break down in the soil by micro-organisms and relatively poor solubility, 

contamination of ground water is another issue. In some parts of the UK, water 

boards report metaldehyde levels at 10 times higher than 0.1 μg/L EU limit for water 

quality (Tao and Fletcher 2013). This level is not considered hazardous but water 

boards are failing to comply with European legislation and can face penalties for not 

maintaining water purity. Removal of metaldehyde from water is very difficult, 

adding further impetus for reducing its use.  
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1.3 Mollusca at the Molecular Level; Current Molluscan Genetic data 

 The reduction in cost and increased efficiency of next-generation sequencing 

has led to an explosion in the amount of genetic data available. This has included 

many mollusc species, though little is known about D. reticulatum save basic details 

such as having 30 chromosomes (haploid) (Fretter and Peake 1978). At the beginning 

of this project in 2009 there were less than 30 gene sequences known for D. 

reticulatum, with similar numbers seen for the majority of mollusc species, with a 

handful of larger EST sequence datasets for molluscs such as A. californica. Since 

then numerous parallel studies have taken advantage of high throughput sequencing 

on Molluscan species. There is now transcriptome data for a wide range of species 

including Lymnaea stagnalis (Feng et al. 2009), Ruditapes philippinarum (Milan et 

al. 2011), as well as large datasets for pearl oyster species (Pinctada sp.) (Huang et 

al. 2012). In addition to many transcriptome datasets, the first Molluscan genome 

was published for Crassostrea gigas (Zhang et al. 2012), with draft genomes for 

Aplysia californica and Pinctada fucata also available. Unfortunately there is no 

equivalent centralised repository such as flybase or wormbase for mollusc species. 

Efforts have been made to produce curated databases of multiple mollusc datasets 

such as MolluscDB (http://www.nematodes.org/NeglectedGenomes/MOLLUSCA/ 

[Accessed 26/02/13]). This dataset is primarily sequences determined by earlier 

technologies and does not include any recent datasets produced with next generation 

sequencing. The alternative is to use central databanks such as NCBI or EBI 

sequence databases. However surprisingly few of the sequence datasets for molluscs 

have available sequence data with annotation. The draft assembly of Pinctada fucata 

provides a genome browser (Takeuchi et al. 2012), but as yet the level of web and 

programmatic access to annotation for molluscs is still poor when compared with 

other invertebrate phyla, such as the flybase and wormbase projects. 

1.3.1 Pyrosequencing 

 Pyrosequencing was developed in the mid-1990s as a sequencing technique 

initially utilised for SNP analysis due to its short read length (Rothberg and Leamon 

2008). However with miniaturisation of components and increasing computer power 
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it is fast becoming the primary sequencing method for larger genetic studies. The 

high rate of improvements driven by competition between alternative technologies 

such as Roche 454, Illumina and Life Technologies’ Ion-Torrent has driven down the 

price of sequencing. With the new wave of bench top machines and some 

technologies producing >600bp reads, this technology has replaced classic Sanger 

sequencing methods for many applications, and is bringing about a new revolution in 

genetic studies. 

 This project concerns the use of Roche 454 pyrosequencing technology. A 

summary of this process is as follows: Deoxyribonucleic Acid (DNA) is broken into 

small fragments and adaptors are ligated to each end. The fragments are ligated to 

small beads in an oil-water emulsion and amplified with polymerase chain reaction 

(PCR). The beads along with polymerases, luciferase and ATP sulfurylase enzymes 

are added to individual picolitre wells on a fibre optic slide (Margulies et al. 2005). 

Successive nucleotide triphosphates are added and washed out, A then C then G and 

T repeatedly; when the next nucleotide in the sequence attached to the bead is 

complementary to the nucleotide being washed, the strand is polymerised. This 

polymerisation releases inorganic phosphates which are converted to ATP by ATP 

sulfurylase, the ATP released is utilised by luciferase to convert luciferin into 

oxyluciferin with the reaction emitting photons. dATPαS rather than dATP is used 

for the polymerisation reaction as it is not a substrate of luciferase and will not 

interfere with the luciferin catalysis. Apyrase is used to degrade unincorporated 

nucleotides and ATP between each nucleotide wash (Ronaghi et al. 1996). Each well 

is monitored for photon emission and emissions are matched with the release of a 

specific nucleotide wash. Nucleotide repeats are detected via larger emissions 

resulting from multiple nucleotide inclusions in one wash (AA, AAA etc.). The 

adaptor ligated to each template sequence being polymerised is of known sequence 

and length and so can be used to normalise results for the rest of the sequence in the 

well. The sequence of flashes corresponding to nucleotide washes can be converted 

to a sequence with quality score, equivalent to a Sanger-style chromatogram 

generated per well. 



Chapter 1 | Introduction 

 

31 

 

 Illumina’s sequencing technology is a distinctly different sequencing process. 

Single stranded DNA fragments are generated from genomic or cDNA samples and 

5’ and 3’ adaptors ligated to each end. The resulting fragments are randomly bound 

to the surface of a flow cell channel. A solid phase bridge amplification binds the 

unbound end of the DNA fragment to the flow channel surface. This creates a double 

stranded, bridged, fragment, which is then denatured into 2 single stranded DNA 

fragments 1 sense and 1 anti-sense, each attached at one end to the flow cell. This 

process can be repeated many times to create dense clusters of DNA all of the same 

sequence. The sequencing then begins by polymerisation, using nucleotides attached 

to coloured dyes, each nucleotide containing a different colour. The dyes block 

further polymerisation so that only a single nucleotide is incorporated. The dyes 

fluoresce with laser excitation and an image is taken of the flow cell. The resulting 

clusters can be identified as a sequence and the fluoresced colour representing the 

subsequent base for the sequence. The dyes are cleaved and the process is repeated to 

a sequence of approximately 75bp in length. The presence of both sense and anti-

sense sequences allows for 5’ and 3’ sequencing to be done, allowing for up to 

2x75bp in length to be sequenced; generating ‘paired-end’ reads. 

 Ion Torrent Semiconductor Sequencing shares a very similar method as 

pyrosequencing such as 454 sequencing. However the nucleotides incorporated 

during polymerisation are standard dNTP and after each successive wash of 

nucleotides, polymerisation is detected through release of hydrogen ions using an 

ion-sensitive field-effect transistor. This sequencing technology was released in 

February 2010 with a claimed read length of 50bp-100bp and was not available 

during our consideration of high throughput sequencing technologies for this project. 

1.3.2 Sequence Data Assembly 

 De novo sequence assembly has been described as an unsolved problem. 

Unlike assemblies to reference data, de novo assembly relies upon overlapping 

regions of sequence within the dataset in order to align sections of nucleic acid 

(singletons) together into a contiguous sequence (contig). This has a number of 

disadvantages, including the reliance on having enough data to resolve overlaps as 
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well sections large enough to span tandem repeats. However high-throughput 

sequencing has enabled large enough quantities of data to allow for the assembly of 

many complete sequences. Additionally, advances in technologies have allowed 

much larger singletons, such as Roche 454 technology which has an upper limit of 

~600bp. Whilst improvements of technology are generating better sequencing data; 

effective assembly software is also needed to assemble the data accurately. 

 There is currently a wide variety of assembly software available, including 

commercial, freeware and open-source programs. Deciding which assembler to use is 

not straightforward and is dependent on many factors such as type of data, size, and 

analysis requirements. A comparison using CAP3, MIRA, Newbler, SeqMan and 

CLC programs with Roche 454 data seemed to indicate Newbler or SeqMan as the 

best assembler (Kumar and Blaxter 2010). This analysis also suggested some benefit 

to merging contigs from multiple assemblies by a further assembly step, though no 

further benefit was seen by adding more assemblies. Alternatively some 

transcriptomes have been assembled via sequential, rather than merged, assemblies. 

This is where contigs and singletons from one assembler are used as the input in 

another assembly software, such as with the olive transcriptome (Muñoz-Mérida et 

al. 2013). This is relatively popular as is guaranteed to increase the overall size 

distribution of contigs compared to a single assembly method. 

 One problem with maximising contig length in assemblies, identified with a 

comparison of CAP3, MIRA, Newbler, and Oases on Roche 454 data, is the increase 

in the number of chimeric contigs (i.e. contigs containing two or more separate 

sequences; Mundry et al. 2012). This identified the problem that larger contigs are 

not necessarily better; an assembler could merely concatenate successive reads 

together and would score very highly for size distribution metrics. This analysis 

indicated that whilst Newbler restored the most full-length transcripts, it also 

produced the most chimeric contigs (artificially merged multiple transcripts 

together). Over-assembly of sequence data is likely to be further amplified by using 

sequential assembly throughput methods. 

 Newbler is in general considered the gold standard for Roche 454 sequence 

assembly (Ren et al. 2012), but flaws in its assembly have been highlighted. The 
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effectiveness of an assembly is relative to the metrics that are prioritised, and may 

differ depending on the desired outcome for the data. Modern assembly software is 

able to assemble sequences within a relatively short time frame on modest computing 

hardware, at least for smaller datasets, such as described here within. In conclusion, 

comparison between multiple software is likely advantageous, in order to choose 

from the selection the transcripts that seem closest to original sequences. For 

transcripts, this can often be determined by examining the predicted protein 

sequences. 

1.3.3 Transcriptomics and Identifying Biochemistry 

 Transcriptome sequencing projects for non-model organisms are popular as 

they are substantially more efficient that genome sequencing projects. Unlike 

genomes, transcriptomes provide smaller datasets which cost less to sequence and 

are more computationally manageable. Additionally, with the sequencing of cDNA, 

the overall probability of sequencing coding regions is much greater. A large amount 

of the genome of an animal, whilst not devoid of information, containing for example 

r/tRNA, introns, promoters, enhancers, transposons, telomeres; has limited 

application when researching a non-model organism as compared to transcripts. 

 Previous studies have shown the benefit of using high-throughput sequencing 

techniques on crop pest digestive/gut tissues (Pauchet et al. 2009; Peng et al. 2011). 

These studies used homology searching to make functional predictions of for 

transcript sequences.  The study sequencing the brown planthopper demonstrated the 

benefit of high-throughput sequencing by ordering contigs using number of reads 

attached to IPR terms (Peng et al. 2011). In this way the study identified 

chymotrypsins and trypsins as some of the most frequently sequenced proteases. The 

study demonstrated how large scale sequencing can be used to identify and focus 

upon candidate digestive enzymes, such as chymotrypsins, and thus predict key 

enzymes for the organism's biochemistry. Proteases can be subdivided into 4 

mechanistic classes: serine, cysteine, aspartic or metallo-proteases, each of which can 

be affected by different types of protease inhibitors. In many cases an organism will 
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rely on one class of these proteases, knowledge of which can be used to as targets for 

crop defence strategies utilising inhibitors. 

 D. reticulatum has less than 30 nucleotide sequences in the NCBI/EBI 

databases, and only 3 independent protein sequences. Whilst some knowledge has 

been gathered to the likely importance of certain genes, no sequence information is 

available. With mechanisms such as RNA interference (RNAi) investigated as a crop 

defence mechanism (Price and Gatehouse 2008), knowledge of essential genes and 

protein sequences is necessary. Sequencing D. reticulatum transcripts to produce 

predicted protein sequences has a two-fold advantage. It allows the fast-tracking of 

experiments, bypassing the need to clone and sequence genes, but also allows the 

sequences obtained to be used to identify and focus in on the organism's 

biochemistry. With this data the predicted proteins from transcripts can be used to 

identify targets for protein inhibition and RNAi studies, or other methods to 

potentially create novel pesticides against the target pest. 

1.3.4 Biological Databases and BioSQL 

 In many cases biological nucleic acid sequence data sets can be dealt with 

purely through the use of software available, which can manipulate data such as 

similarities determined by sequence comparison (BLAST) or gene ontology (GO) 

term files to produce overall statistics. However the limitations of these methods can 

be that the only statistics that can be generated are based on the individual 

functionality of the software in use. In many cases this leads to data being analysed 

based on what analyses can be done by software packages rather than what 

information a researcher wants. However, there is a growing amount of tools for 

scientific data management available to biologists to allow them to build analyses 

more tailored to their specific requirements (Katayama et al. 2013).  

 Outside of science the vast majority of institutes and companies manage large 

amounts of data using relational databases, which more often than not allow 

searching based on Standard Query Language (SQL). A relational database is a 

collection of tables of data types, tables can be considered similar to sheets in a 

spreadsheet. However unlike spreadsheets each table can be linked to other tables 



Chapter 1 | Introduction 

 

35 

  

 

Figure 3 : Simple example of a relational database model 

The 3 tables here represent a simplified model of a relational database. In this 

example the top and bottom tables contain sequence and BLAST annotation 

data. The sequences are linked to the BLAST annotation via a third table which 

holds both the key for the sequence and the BLAST annotation in a row. In this 

case a sequence can be linked to multiple BLAST annotations and equally a 

single BLAST annotation can be linked to multiple sequences. In this case we 

can select all sequences that are linked to BLAST accession AD027770 by 

retrieving the key for the accession and selecting all rows in the middle table 

with the key 2 in the BLAST table column and the returned rows will then 

contain all the keys for all sequences attached to this BLAST annotation. Many 

more tables and columns can be added and the data retrieved based on a 

specific column of data such as BLAST annotation score. 
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using a key, almost always numerical, see Figure 3. By linking rows from different 

tables together via keys a database can represent a multi-dimensional set of data in a 

way a flat spreadsheet cannot. This can be particularly useful for biological data, 

with many biological data such as proteomes and reactomes also having this type of 

data structure. Other data structures such as taxonomies which represent hierarchical 

data structures can still be represented in relational databases using models such as 

Nested Set, Adjacency List or Path Enumeration (Celko 2004). Additionally the 

inclusion of SQL in most relational database management software (RDMS) allows a 

powerful means of querying linked tables and filtering rows and columns for specific 

data. 

There are a number of biological database schema (blueprints for database 

structures) now available for managing biological data such as the Chado (Mungall, 

Emmert, and The FlyBase Consortium 2007) or BioSQL (Katayama et al. 2010) 

schema. Flybase is an example of a well-known biological database which is built on 

top of a relational database using SQL and provides both web and programmatic 

access to a wide range of different sequence information and annotation. Whilst these 

schema are not necessarily optimal for managing all types of biological data, as 

bioinformatics blogger Brad Chapman has identified, these databases can always be 

modified to better suit biologists' needs (Chapman 2013).  

 An example of the basic SQL syntax for selecting a column in a table would 

be “SELECT column FROM table” where table and column were replaced with 

specific identifying names. This quickly becomes very useful with a query such as 

“SELECT sequences FROM table WHERE length > 100” which filters out short 

sequences. Producing a list of all sequences >100bp in a dataset of many thousands 

of sequences becomes trivial, once the database is set up. In general SQL queries 

used in this project are less human readable but can still be understood, one of the 

most complex used in the project is the following: 

SET @runtot:=0; SELECT q1.EVALUE, (@runtot := @runtot + COUNT) AS 

CUMULATIVE FROM (SELECT bioentry_dbxref.evalue AS EVALUE, 

COUNT(bioentry_dbxref.evalue) AS COUNT FROM bioentry_dbxref WHERE  

bioentry_dbxref.run_id=x AND hit_no=1 AND bioentry_dbxref.rank=1 
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GROUP BY bioentry_dbxref.evalue ORDER BY bioentry_dbxref.evalue 

ASC;) AS q1 

This query can be written in English as: Create a running total, get the expect 

value and count that expect value, and increment the running total with that count. 

Only get records which are part of the relevant BLAST run and are the top BLAST 

hit and top hit region, order the data so that the expect value is ascending in order. 

 The output of this data is a two column table which contains in the first 

column, the expect values and the second, the running count of BLAST annotations, 

as shown in Table 1. This data can then be used in a basic x/y graph and represents 

the distribution of BLAST data below a given expect value. (100% of hits are below 

an expect value of 10, representing random similarity, and 0% hits are below the 

expect value representing complete sequence identity where expect ≈ 0). Using these 

types of queries statistics about the entire dataset can be generated nearly instantly, 

with queries taking only a few seconds to run across millions of rows of data.  

 RDMS is not a replacement for software such as BLAST sequence search 

utilities, which uses Berkeley DB database and is not a relational database. The 

implementation of this database model in this project is for the same application as 

its use in flybase, which is to pull together many different forms of data generated by 

programs like BLAST. The data is uploaded by first parsing files such as XML 

 

 

Expect value Cumulative Count 

1e-99 1 

1e-89 3 

1e-60 4 

... ... 

10 1121 

Table 1 : Example of output from an SQL query on the BioSQL database 
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output files produced by BLAST and INTERPRO done by programmatically reading 

the file line by line and pulling out relevant information. This is then uploaded by 

using SQL INSERT statements which push data from the file parser into the 

databases. The implementation of this can be variable and there are numerous 

templates in biological software packages such as bioJava and bioPerl which can be 

modified to suite the specific requirements of the data input script. Whilst the upload 

of data can be time consuming and a variety of checks need to be done in order to 

verify the data has been uploaded correctly. Once the database is established it 

provides a mechanism for extracting any annotation data generated using a keyword 

or specific data filter. In addition cross-references with other databases are much 

easier to perform and results produced rapidly. 

1.4 RNA Interference and Crop Protection against Molluscs 

 RNA interference (RNAi), the gene silencing mechanism was first discovered  

in petunia plants in 1990. The effect was more fully understood later in the nematode 

Caenorhabditis elegans in the late 1990s where dsRNA rather than ssRNA was 

identified as being responsible for gene silencing (Sen and Blau 2006). The method 

has since become a powerful tool for down-regulating target genes. The effect was 

shown when double stranded RNA (dsRNA) containing a strand complimentary to a 

mRNA was injected or fed to C. elegans leading to down regulation of the 

corresponding gene (Fire et al. 1998). The effect can also be produced by “anti-

sense” RNA, a single strand RNA complementary to mRNA, which results in 

dsRNA being formed. RNAi has been shown as an endogenous pathway ubiquitous 

across most eukaryotic organisms; a general overview is shown in Figure 4. 

 The essential active component of the RNA interference pathway is the 

double stranded small (23bp) siRNA fragments without which no down-regulation 

can occur. siRNA provides the guiding strand of nucleic acid which is used to target 

specific gene products, stage (C) in Figure 4. siRNA can be introduced into cells to 

stimulate interference, but for invertebrate studies longer dsRNA, which is more 

stable and easier to work with, can be used. For some nematodes (including C. 

elegans) dsRNA can be transferred to the organism simply via introduction to the 
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surrounding media. Alternatively various methods such as injection, transfection or 

electroporation can be used for initial uptake into the cellular space of the organism 

(May and Plasterk 2005). Both C. elegans and insects such as the fruit fly 

Drosophila melanogaster have been shown to uptake dsRNA into cells after its 

introduction to the extracellular space (stage (A) in Figure 4). This is then cut into 

siRNA duplexes of around 21-27 bp by the Dicer RNaseIII-type enzyme in 

combination with a RNA binding proteins, such as Loquacious in D. melanogaster, 

stage (B) in Figure 4.  

 Whilst higher organisms also contain Dicer functionality immunological 

responses to longer dsRNA fragments can interfere with results. In mammals large 

dsRNA fragments (>30bp) cannot be used as they evoke an interferon response or a 

non-specific inhibition of protein synthesis through dsRNA-dependent protein 

kinases in mammals (Buckingham et al. 2004). Studies also demonstrate interferon 

like responses in some other non-mammal vertebrates, leading most studies to use 

siRNA (Sifuentes-Romero, Milton, and García-Gasca 2011). Use of dsRNA has been 

more successful in nematodes and insects, where no equivalent immunological 

response to large dsRNA fragments is seen. 

 After either introduction of siRNA or long dsRNA and processing to siRNA, 

siRNA is incorporated into the RNA-inducing silencing complex (RISC). The 

antisense strand of the siRNA is used as a guide strand to bind to complimentary 

mRNA. An argonaute protein forms the primary catalytic protein in the RISC and 

endonucleolytically cleaves the target RNA between the 10th and 11th base relative 

to the guiding strand (Martinez et al. 2002).  Systemic effects, where the RNAi effect 

is transmitted to other cells, have also been shown in C. elegans and some plants. 

However, in D. melanogaster no systemic effect has been shown likely due to the 

lack of a RNA-directed RNA Polymerase (RdRP) homologue, which is necessary for  

persistence in C. elegans (Sijen et al. 2001), through amplification of the siRNAs. 

RdRP homologues have not been found in any insect genomes sequenced, but 

evidence for systematic effects in other insects has been presented (Tomoyasu et al. 

2008). Discussion in the area continues with recent studies identifying the difficulty 
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 Figure 4 : General stages of RNA interference 

(A) dsRNA is initially introduced into the extracellular space. It is then 

transported into the cell via endocytosis and/or cell membrane channel 

mediated transport such as in C. elegans, via the SID-1 protein. (B) dsRNA is 

cut into small dsRNA duplexes (siRNA), the size of which depends on the 

distance between the nuclease catalytic site and PAZ domain in the dicer 

protein. siRNA can also be directly introduced to the cell, as is done for 

organisms with immunological reactions to large dsRNA fragments, such as 

Humans. (C) RNA-induced silencing complex forms with the siRNA, the none-

guide strand is discarded and the complex then goes on to stimulate 

degradation of transcripts complimentary to the guide siRNAs. (D) In 

organisms such as C. elegans, the dsRNA is also amplified and exported out of 

the cell, through channels proteins like SID-1 and elicits a systemic effect. 
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in distinguishing systemic effects from a very efficient system of cellular uptake and 

storage of dsRNA (Miller et al. 2012). 

 Even without systemic effects, RNAi effects have the potential to be a useful 

method for causing changes in physiology specific to target organisms. Gene knock-

down, the reduction in levels of mRNA for specific genes and consequently the 

protein products, can lead to a variety of physiological effects, such as 

developmental arrest, failures of gut physiology, detoxification biochemistry, or 

direct mortality. In the field of crop protection, pests can be targeted by through 

expression of dsRNAs in transgenic plants, which is emerging as a crop protection 

technology of wide applicability. There are a variety of obstacles to consider with the 

use of dsRNA, the primary one being introduction into the organism. Host Delivered 

RNAi (HD-RNAi) has been suggested as a solution, and shown some success 

(Fairbairn et al. 2007). It also bypasses the problem, which many de novo crop 

protection methods have, of degradation over time, as dsRNA can be continually 

produced. The first stage in distinguishing RNAi against Mollusca would be to 

design and prove dsRNA targets against the organism. The first stage is injection, in 

order to actually ascertain if a knock-down effect can be elicited, followed by 

feeding assays. The long-term goal of these experiments would be to generate 

working targets which could be used in a system such as HD-RNAi.  

1.4.1 RNAi against Mollusca 

 Genetic data for a number of molluscs indicates the presence of RNA 

interference machinery. However C. elegans-like dsRNA based silencing, is less 

clear, as much of the Molluscan genetic data is fragmented with limited annotation. 

Dicer is one of the most well conserved proteins with its mode of action necessitating 

a number of different domains. This provides a relatively unique signature to look for 

with PAZ, dsRNA binding and dsRNA-specific endonuclease domains required and 

conserved between C. elegans, D. melanogaster and H. sapiens (Lau et al. 2012). 

Transcript fragments from L. stagnalis, A. californica contain Paz domains, which 

are found in argonaute (AGO) and dicer protein families (Cerutti, Mian, and 
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Bateman 2000). One complete dicer protein comes from C. gigas and includes all the 

expected protein domains (Genbank: EKC26346). 

 The recent sequencing and annotation of the C. gigas genome has provided a 

complete set of genes to search through. Homologues for RNA-dependent RNA 

polymerase (Genbank: JH817893) and SID-1 transmembrane dsRNA transport 

protein (Genbank: EKC42950) are available in the C. gigas genome. However, 

despite the presence of at least some of the machinery homologous to that which 

powers the systemic RNAi effect seen in C. elegans, there are very few examples of 

the RNAi effect in molluscs, reflecting the fact that evidential RNAi studies in any 

non-nematode/insect invertebrate are relatively scarce. In most cases there are only a 

handful of studies in for each phyla, primarily demonstrating the presence of an 

RNAi effect. Evidence from the variability of insect RNAi results, where RNAi 

effects differ from order to order, or even from species to species, means using RNAi 

data from one mollusc species as evidence for its effect in another is problematic. 

 The small number of papers that are available for the Molluscan phylum does 

provide evidence for RNAi effects in these organisms. The earliest publication 

appears in from 2001 and initially proves RNAi effect by co-micro-injection of a 

DNA expression vector containing the Luciferase gene and a dsRNA fragment 

complimentary to the gene into Aplysia californica giant neurons (Lee et al. 2001). 

Transient expression of luciferase, visualised by light emission, which was observed 

when vector alone was injected, was down-regulated by the dsRNA. This provides 

evidence that once dsRNA is within the cell, a gene knock down effect can be 

elicited, although micro-injection bypasses the need for uptake of the dsRNA from 

the intra-cellular space into the cell.  

 Experiments which didn't involve micro-injection of dsRNA into cells also  

indicate that RNA interference occurs; most workers have attempted to inject dsRNA 

into the body cavity of molluscs, but a variety of conditions have been used, which 

means that the results are not fully comparable from experiment to experiment. Even 

though direct comparisons are not possible for all these experiments using injected 

dsRNA, it is apparent that the observed RNAi effect is very variable between 

mollusc species, and between genes targeted. There is also disagreement between 
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different experimenters over the timescale of RNAi effects. One study shows a 

phenotypic effect within 3 hours post injection (Korneev et al. 2002), but most of the 

quantitative PCR based methods shows a measurable effect on transcript levels only 

after 24 h. RNAi experiments in Chlamys farreri and Biomphalaria glabrata show 

an effect beginning at 24h post-injection, with the maximum knock down in gene 

expression before 96 h (Wang et al., 2011; Jiang et al., 2006). The study on B. 

glabrata continued to monitor gene expression levels for FREP2 and myoglobin 

genes until complete cessation of any RNAi effect by 10 days post injection. This 

contrasts with a study on C. gigas, where the first time point was at 9 days, with their 

data suggesting an RNAi effect was still maintained up to a month post-injection 

(Fabioux et al. 2009). This result showing long-tern RNAi effects suggests a 

potential systemic effect for C. gigas, and would agree with the genomic data 

previously discussed. The combination of lack of data, and differing results from 

data available, means effectiveness of RNAi against D. reticulatum is not easily 

predictable.  

1.5 Aims and Objectives of the Project 

Investigation 

1. Identification of the best methods for isolation of good quality RNA for 

the production of cDNA from D. reticulatum tissues. 

2. Production of cDNA from digestive gland and random sequencing of 

cDNA in order to verify it as digestive gland transcripts. 

3. Use of RACE as a proof of principle procedure to demonstrate 

amplification of full genes from PCR product fragments produced from 

redundant primer PCR. 

4. Use of redundant primer PCR to isolate ion channel gene sequences. 

5. Conduct high throughput sequencing of digestive tissues and neural tissue 

and assemble into a workable database in order to extract sequence 

information and relevant annotation. 
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Analysis 

1. Process high throughput sequence data through previously described 

annotation pipelines 

2. Assess the digestive gland for presence of digestion related proteins 

through functional prediction based on homology. 

3. Assess the neural tissue dataset for neural related proteins as done with 

digestive dataset. 

4. Assess the functionally predicted proteins for potential further research 

and development. 

Application 

1. Utilise previous analysis of sequence to identify potential targets for 

RNAi 

2. Clone vector-insert RNAi expression constructs for dsRNA production. 

3. Synthesise dsRNA and assay it against D. reticulatum. 

4. Investigate other methods for producing a molluscicidal effect such as 

production of a protein substrate to assay against the target organism 
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Chapter 2 | Materials & Methods 

2.1 General molecular biology methods 

 All chemicals and reagents supplied by Sigma (St. Louis, USA) or VWR 

(BDH) (Poole, Dorset UK). Unless otherwise stated solvent was autoclaved/filter 

sterilised deionised water or distilled water. Where protocols are not elaborated they 

can be consider standard across most biology laboratories. 

2.1.1 Recipes 

Bacterial culture media LSLB broth: 0.5% (w/v) NaCl, 1% (w/v) tryptone, 

0.5% (w/v) yeast extract, prepared in distilled water. 

LSLB agar: 1.5% Bacto agar (Difco) added to LSLB 

broth 

Agarose gel 

electrophoresis: 

TAE (50X): 2 M Tris/Acetic acid pH 7.7, 50 mM 

EDTA 

DNA loading buffer: 10 mM Tris/HCl pH 8.0, 10 mM EDTA, 30% (w/v) 

glycerol, 0.1% (v/v) Fast Orange G, prepared in 

distilled water 

Protein gel 

electrophoresis (SDS-

PAGE) 

5X SDS sample buffer:  0.5 M Tris/HCl (pH 6.8), 50% 

(v/v) glycerol, 5% (w/v) SDS, 0.005% (w/v) 

bromophenol blue 

Acrylamide 30% (w/v) acrylamide: 0.8% (w/v) bis-acrylamide 

stock solution (37.5:1) (Protogel, National diagnostics) 

Resolving buffer 3.0 M Tris/HCl pH 8.8 

Stacking buffer 0.5 M Tris/HCl pH 6.8 

Reservoir buffer (10x) 0.25 M Tris/HCl pH 8.3, 1.92 M Glycine, 1% (w/v) 

SDS 

(CBB) Stain 40% (v/v) Methanol, 7% (v/v) glacial acetic acid, 
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0.05% (w/v) Coomassie Brilliant Blue (CBB) 

Destain 40% (v/v) Methanol, 7% (v/v) glacial acetic acid 

Stacking gel mixture 2.5% Protogel (37.5 : 1 acrylamide : bisacrylamide; 

National Diagnostics), 125 mM Tris-HCl (pH 6.8), 

0.1% (w/v) SDS, 0.1% (w/v) ammonium persulphate, 

0.0075% (v/v) N, N, N’, N’-

tetramethylethylenediamine (TEMED) 

Resolving gel mixture (12.5% or 15% or 17.5 % (w/v) Protogel, 375 mM 

Tris-HCl (pH 8.8), 0.1% (w/v) SDS, 0.075% (w/v) 

ammonium persulphate, 0.05% (v/v) N, N, N’, N’-

teretramethylethylenediamine (TEMED) 

Protein molecular weight 

marker – KiloDalton 

(kDa) 

SDS7[A] (Sigma): 66 kDa Bovine albumin, 45 kDa 

Egg albumin, 36 kDa Glyceraldehyde- 3-phosphate, 29 

kDa Carbonic anhydrase bovine erythrocytes, 24 kDa 

PMSF-treated trypsinogen,  20 kDa Soybean trypsin 

inhibitor, 14 kDa α-lactalbumin 

SDS7 [B] Pierce Unstained Protein Molecular Weight 

Marker. 

Western blotting 

Bjerrum & Schafer-

Neilson buffer 

48 mM Tris-HCl, 39 mM Glycine, 20% (v/v)  

methanol, 0.0375% SDS, pH 9.2 

Ponceau stain 0.1% Ponceau S, 5% acetic acid in distilled water 

Phosphate Buffered 

Solution (PBS) 10x 

0.015 M KH2PO4, 0.08 M Na2HPO4, 1.37 M NaCl in 

distilled water 

Blocking solution 5% Non-fat milk powder, 1X PBS, 0.1% Tween-20 

Anti-Sera solution 5% Non-fat milk powder, 1X PBS, 0.1% Tween-20 

PBST 1X PBS, 0.1% Tween-20 

Chemiluminescent Solution A: 100 mM Tris/HCl pH 8.0, 0.2 mM 



Chapter 2 | Materials & Methods 

 

47 

 

detection reagents 

(Solution-A) 

coumaric acid, 1.25 mM luminol in 50 ml distilled 

water 

Chemiluminescent 

detection reagents 

(Solution-B) 

10% H2O2 (30% solution) in distilled water 

DNA molecular weight 

marker 

Lambda DNA digested with Eco471 (AvaIII) or 

HyperLadder I (Bioline) 

10x PCR buffer 400mM Tricine-KOH (pH 8.7), 150mM KOAc, 35mM 

Mg(OAc)2, 37.5μg/ml BSA, 0.05% Tween 20, 0.05% 

Nonident-P40  

DEPC Water Diethylpyrocarbonate (DEPC) was added to water from 

Milli-Q (Merk) water purification system to a final 

concentration of 0.1% (v/v) and left at 37°C for 2 

hours. Water was then autoclaved for 20 minutes. 

 

2.1.2 Phenol-chloroform ethanol precipitation 

 Where phenol-chloroform ethanol precipitated is stated, steps 1-3 are done, 

where chloroform extracted is stated only step 2 and where ethanol precipitated is 

stated, only step 3 is done. 

1) Nucleic acid solution was first vortexed with Phenol:Choroform:Isoamyl Alcohol 

(25:24:1) and centrifuged for 15 minutes at 14,000 rpm. Aqueous layer was 

transferred to a new tube, hydrocarbon layer was discarded. 

2) Solution was treated as in step 1 but with 100% chloroform. 

3) 10% v/v of 3M Sodium acetate pH 5.2 and 250% v/v absolute ethanol were added 

to the nucleic acid solution for precipitation and incubated overnight at -20°C. 

Solution was centrifuged at 12,000 g for 15 minutes at 4°C. The pellet was washed 

with at least 5 times original volume of 70% ethanol twice. The nucleic acid pellet 

was air dried and re-suspended in appropriate amount of nuclease free water, 
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sometimes dissolution was done by incubating nucleic acids at 37°C for 15-30 

minutes.  

2.1.3 Oligonucleotides 

 Oligonucleotides were synthesised by Sigma Genosys Service and used as 

PCR Primers. Primers were resuspended in sterile distilled water to a concentration 

of 100 pmol/μl and stored at -20°C. In standard PCR reactions the primers were used 

at final concentration of 0.2 to 1.0 μM depending on primer types. 

  Melting temperature for the primers was calculated by the following formula 

Tm was calculated using the OligoCalc online tool (Kibbe 2007). Primers were used 

at 3°C below the calculated Tm for Taq and Taq based polymerase and 4°C above for 

Phusion HF polymerase [Fermentas]. 

2.1.3 Degenerate Primer Design 

 Degenerate primers refer to primer mixes containing multiple possible similar 

sequences with minor variations at certain base positions. Degeneracy represents the 

number of possible combinations of base pairs and can be calculated as the product 

of each individual base's degeneracy where A,T,C,G represent the minimum 

degeneracy of 1 and N (any nucleotide) a maximum of 4. Primers were designed to 

have a minimal amount of degeneracy in order to increase the specificity of the PCR 

amplification. Whenever possible, to allow efficient primer extension, oligo dC or 

dG residues were preferentially incorporated at the 3’ end of the primer. Due to the 

degenerate nature of the primers it was necessary to increase primer concentration in 

PCR reactions, so primers matching the target sequence were present at a sufficient 

concentration to allow amplification. Degenerate primers were added to PCR 

reactions at a concentration of 1.0 µM, instead of the standard 0.2 µM. 

2.1.2 DNA amplification with Polymerase Chain Reaction (PCR) 

 Standard PCR reactions were conducting using 0.2 ml & 0.5 ml tubes 

performed on a Perkin Elmer 2400 thermal cycler. Taq PCR reactions were 

conducted in 25 μl or 50 μl reactions with 10x PCR buffer (see recipe), 0.2 mM 

dNTPs, nucleic acid template (~0.1-2 ng/μl), 0.2 µM DNA nucleotides, and 1.25 U 



Chapter 2 | Materials & Methods 

 

49 

 

Taq polymerase. For Taq PCR, the standard PCR program was Step1: 94ºC at 1min; 

Step2: 25 cycles { 94ºC at 30sec, Tm-3ºC at 30sec, 72ºC at 30sec/kb+30sec }; Step3:  

final 72ºC at 7mins; were used unless otherwise stated. For amplification of 

sequences for fragments for RNAi constructs Phusion Polymerase was utilised, for 

all other PCR amplification Taq polymerase was used. 

2.1.3 High Fidelity PCR 

 Where ‘high-fidelity’ PCR is referred to, these PCR reactions utilised proof 

reading enzymes, the reactions used High-Fidelity Phusion Polymerase [Fermentas] 

with PCR reactions setup following manufacturer's instructions. 

2.1.4 Touch Down PCR Protocol for degenerate primers 

 Touch-Down PCR follows the same protocol as standard PCR except the 

cycling steps are altered so that the annealing temperature decreases each cycle. 

Touch-Down priming has the advantage of reducing spurious priming (Don et al. 

1991) which is a particular problem for degenerate primers. For the successful 

degenerate primers used for amplifying the D. reticulatum, the successful cycling 

protocol was as follows. Step1 94ºC at 3min; Step2: 20 cycles { 94ºC at 30sec, 50ºC-

0.5.cycle
-1

 at 30sec, 72ºC at 2min }; Step3: 13 cycles { 94ºC at 30sec, 40ºC at 30sec, 

72ºC at 2min }; Step4: final 72ºC at 7mins. 

2.1.5 Colony PCR  

 Colony PCR reactions were conducted to screen colonies transformed with 

plasmid DNA constructs for the presence of a PCR insert within the plasmid cloning 

site. The volumes were reduced to 25 µl with components scaled accordingly, 

usually made as a master mix. A PCR product of the insert, previously validated, was 

used as a positive control and empty plasmid DNA vector as a negative control. 

Colonies were picked from an agar plate containing a relevant antibiotic with plastic 

pipette tips and left in aliquots of PCR mix for 1-2 minutes. A ‘master plate’ was 

used to keep track of colonies, with the tips being smeared first on the ‘master plate’ 

before being put into the PCR mixture aliquots. The pipette tips were then removed 

from tubes and the PCR then conducted with the same cycling as the original PCR. 
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This allowed for transfer of cells from the pipette into the PCR mixture. These cells 

would lyse in the first cycling step and release plasmid DNA which can then be 

primed and polymerized if the priming sites exist within the plasmid sequence. In 

this way clones can be assayed for the presence of an insert directly without 

necessity for a plasmid extraction step which would require a further overnight 

incubation period. The resulting products of the PCR are then assessed by gel, with 

positives indicating a probable successful transformation, which can be further 

confirmed by sequencing the clone. 

2.1.6 Nucleic Acid Quantification 

 Nucleic acids were purified with phenol-chloroform extraction and ethanol 

precipitation and resuspended in nuclease free water or relevant buffer. The nucleic 

acids were then quantified using a Thermo-Scientific NanoDrop
TM

 1000 

Spectrophotometer under highly accurate UV/Vis analyses of 1 μl samples with 

nucleic acid free equivalent media which was used as a blank measurement. 

Wherever possible, nucleic acids were also quantified by comparison with nucleic 

acid of known sample concentration on gel electrophoresis with quantitation done 

using the ImageJ software package available at http://rsb.info.nih.gov/ij/ [Last 

Accessed 06/05/13]. 

2.1.6 DNA ligations 

 DNA ligation of vector and insert with compatible ends was done using T4 

DNA Ligase and Ligase Buffer [Promega] following manufacturer’s guidelines. 

Quantities of vector and insert DNA were calculated based on a 1:1 molar ratio 

which was estimated by relative size in base pairs multiplied by mass of DNA. 

Ligation mixtures were incubated at 4ºC overnight or room temperature for 1-2 hours 

unless otherwise stated. 

2.1.7 Isolation of plasmid DNA 

 Bacterial cell colonies containing plasmids were picked from agar plates or 

glycerol stocks and used to inoculate 10ml LSLB with appropriate antibiotics in 

100ml McCartney bottles. Cultures were incubated on shaker at 150rpm overnight at 
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37°C and then centrifuged at 4000 g for 15 minutes. The supernatant was discarded 

and plasmids were then extracted from cell pellets using the Wizard® Plus SV 

Minipreps DNA Purification Systems [Promega] following the manufacturer’s 

guidelines. The resulting plasmids were resuspended in nuclease free water and 

stored at -20°C for further use. 

2.1.8 Restriction endonuclease digestion of DNA 

 Restriction enzyme (RE) digestions were carried out using commercially 

available RE enzymes [Fermentas, Promega, NEB or Roche] and were carried out 

using buffers and temperatures recommended by the manufacturers. Typically 

digests were carried out at 37
o
C on 1 µg of DNA using 2-10 units of RE (under 

optimal conditions 1 U of RE will completely digest 1 µg of DNA in a 50 µl reaction 

volume in 1 hour). Where double digestions were conducted optimal buffers were 

selected via manufacturer’s guidelines. Wherever possible single digestions of each 

enzyme in buffer were conducted to provide diagnosis for failed double digestions. 

Restriction products were separated by Agarose gel electrophoresis and visualised by 

ethidium bromide staining. 

2.1.9 Agarose Gel electrophoresis 

 Samples were loaded with DNA loading buffer (see recipe) in a 0.8% TAE 

Agarose gel, suspended in an electrophoresis tank filled with TAE buffer, with 

0.05% ethidium bromide added to both gel and buffer. The samples are 

electrophoresed at 100V until the banding pattern has separated sufficiently, usually 

around 30-40 minutes. The protocol follows common laboratory practice (Sambrook 

and Russel 2001). 

2.1.10 Gel Extraction of DNA 

 DNA Agarose gels were visualised on a trans-illuminator (UVB, λ 302 nm) 

and appropriate bands were excised from the gel by using a single edged razor. DNA 

was purified from the Agarose by using QIAquick gel extraction kit [Qiagen], 

according to manufacturer’s instructions. Eluted DNAs were stored at –20ºC. 
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2.1.11 Agarose Gel electrophoresis for size separation of cDNA 

 cDNA samples, and marker, were loaded as with standard Agarose gel 

electrophoresis and gel electrophoresis conducted until cDNA is well distributed 

across the gel. The gel is taken out of the tank and dissected into two pieces based on 

predetermined marker size (2Kb). The low molecular weight half of the gel is 

discarded and the high molecular weight half is returned to gel tank and run with 

reversed polarity to return cDNA to a more compact form. Before the majority of the 

cDNA reaches the well the section of gel, the band is excised and gel extracted as 

described in a previous section.  

2.1.12 SDS-PAGE electrophoresis 

 Protein samples along with molecular weight marker (SDS7) were denatured 

and reduced before loading by diluting in 1x sample loading buffer and boiling for 

10 minutes. Denatured proteins were separated according to their size by sodium 

dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) according to 

(Laemmli 1970). Mini-gels (9x10 cm) were run in 1x reservoir buffer at constant 

voltage (100-150 V) in ATTO-AE450 apparatus. Following electrophoresis, gels 

were either stained of transferred to nitrocellulose membrane for western blots.  

2.1.13 Staining with Coomassie Brilliant Blue 

 After SDS-PAGE, proteins in the gel were visualized by staining with CBB 

stain for minimum 3 hours, followed by destaining with destain until the background 

is clear. Both staining and destaining were carried out at room temperature with 

gentle agitation. 

2.1.14 Western Blotting 

 Proteins were transferred to nitrocellulose (Hybond ECL, Amersham) 

membranes followed by electrophoresis by electro-blotting, using a standard semi-

dry transfer method. Gels to be blotted were equilibrated in Bjerrum and Schafer-

Neilson buffer (see recipe) by soaking for 30 minutes at room temperature. 

Nitrocellulose membrane and 3MM blotting papers (Whattman) were cut to the same 
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dimension as gels and pre-wet in same buffer. The blot was set up on ATTO AE-

6675 blotting apparatus. Electroblotting was conducted at constant current set to 125-

150 mA (2.0 mA/cm
2
) for 60 minutes. Efficiency of transfer was checked by staining 

membrane with Ponceau S stain, molecular weight marker bands were marked with 

pencil and the membrane was destained with distilled water. 

2.1.15 Chemiluminescent detection of membranes 

 Non-specific protein binding sites on the membrane were blocked by 

incubating in 50 ml blocking solution for 1 hour at room temperature with 3 changes 

and gentle agitation. After blocking membranes were reacted with appropriate 

dilution (generally 1:3000 unless otherwise specified) of primary antibodies (Anti 

His) in antisera for 2 hours at room temperature or overnight at 4°C with gentle 

agitation. Unbound primary antibody was removed by washing with antisera for 30 

minutes with three changes at room temperature. The membrane was transferred to 

antisera containing secondary antibody (Goat Anti Mouse IgG (H+L)-HRP 

conjugate) in appropriate dilution (generally 1:3000 unless otherwise specified) and 

incubated for 1-2 hours at room temperature with gentle agitation. Membrane was 

washed with 1x PBST for 30 minutes with three changes to remove unbound 

secondary antibody. Excess Tween 20 was removed by washing membrane briefly 

with distilled water. Enhanced Chemiluminescence (ECL) reagents [Amersham] 

were used to detect specifically bound secondary antibodies. Solution A (5 ml) was 

mixed with solution B (15 μl) shortly before exposure of membranes. Specific 

antibody binding was visualised by exposing membranes to photosensitive film 

(Fuji-RX). Exposed films were washed and developed with an automatic developer 

(X-ograph Imaging Systems Compact X4). 

2.1.16 Glycerol stocks of E. coli strains 

 Single colonies of recombinant E. coli containing DNA plasmids were used 

to inoculate 10 ml LSLB cultures which were grown overnight at 37°C. The culture 

was centrifuged at 4000 g for 10 minutes at room temperature. Supernatant was 

removed, and cells resuspended in 800 μl solution LSLB 70% (v/v), Glycerol 20% 
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(v/v), Distilled Water 10% (v/v), vortexed briefly, transferred to 1ml screw-cap tubes 

and frozen at -80°C. 

2.1.17 E. coli transformation 

 All E. coli strains, TOP10 [Invitrogen], Origami B(DE3) [Novagen] and 

HT115 (rnc14::ΔTn10), were prepared as electrocompetent cells as per standard 

laboratory protocol (Sambrook and Russel 2001). Unless otherwise stated all 

plasmids were transformed using 1 μl of either a ligation mixture or sufficiently 

diluted purified plasmid. All transformations of ligated plasmids in the ligation 

reagents were first chloroform-extracted, by vortexing with equal volume of 

chloroform and centrifuging at maximum speed on a bench centrifuge for 5 minutes. 

Aqueous layer was transferred and mixed with 50 μl competent cell aliquot and 

transformed at following conditions: electrical pulse set to 25 μF, capacitance set to 

1.8 kV and 200 Ω resistance. Cells were transferred to 1 ml of LB broth and then 

incubated at 37°C for 1 hour, with shaking (220 rpm).  Transformants were selected 

by plating cells (5-10% of volume) on LB-agar containing an appropriate antibiotic. 

2.2 RNA and cDNA 

 All RNA and cDNA experiments were performed with either nuclease free 

water or DEPC treated water. Where possible equipment used in RNA extractions 

was washed with DEPC treated water and oven baked at 200°C. 

2.2.1 Preparation of digestive gland total RNA for SMART cDNA 

 Total RNA used for SMART cDNA synthesis kit [Clontech Laboratories, 

Inc.] was produced using RNeasy Mini Kit [Qiagen]. Tissue was extracted from a 

single adult slug by dissection of the digestive gland which coils around the D. 

reticulatum intestinal tract; care was taken to remove any non-digestive tissue 

associated with the gland. Tissue took approximately 5 minutes to dissect from 

organism and transfer to next stage. Approximately 60 mg of tissue was transferred 

to the first stage solution of the RNeasy kit [Qiagen] and homogenised using a pestle 

drill piece and variable speed laboratory motor [TRI-R Instruments, Inc.]. The RNA 

extraction continued following the manufacturer's guidelines. The resulting RNA 
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was quantified with a NanoDrop
TM

 1000 Spectrophotometer [Thermo-Scientific] and 

transferred immediately to the first strand synthesis step of SMART cDNA synthesis 

kit. It was found that the time between the dissection and first strand synthesis was 

paramount to good quality cDNA, as such all efforts were taken to conduct 

experiments as quickly as possible. 

2.2.2 Preparation of neuronal tissue for SMART cDNA 

 Total RNA used for SMART cDNA synthesis kit [Clontech Laboratories, 

Inc.] was produced using RNeasy Mini Kit [Qiagen]. The tissue dissected was 

primarily the nerve ring, situated around the crop of the organism and any attached 

nerves that could be dissected along with the ring. Due to the size of nerve ring, to 

increase the total weight, optic sensory tentacles, which attach directly to the nerve 

ring ganglion bundle were also dissected and included, as they contained large nerve 

strands. A total of 8 organisms were dissected in order to obtain enough tissue for the 

lower limit of the RNeasy kit tissue mass specifications. Each dissected tissue was 

transferred to a microcentrifuge tube, chilled on ice, containing the first buffer of the 

RNeasy kit, which contains RNase inhibiting guanidine salts. Total dissection time 

for 8 organisms was around 45 minutes. Tissue was homogenised using a pestle drill 

piece and variable speed laboratory motor (TRI-R Instruments, Inc.) and total RNA 

extracted as per manufacturer’s guidelines. Total RNA extracted was rapidly utilised 

for the next steps, to minimise degradation time. 

2.2.3 mRNA enrichment of total RNA 

 mRNA was enriched using the Poly(A)Purist™ Kit [Life Technologies] as 

per manufacturer’s guidelines. 1 mg Total RNA isolated with RNeasy Mini Kit 

[Qiagen] was used for purification and 0.2 μg of the resulting enriched RNA used in 

first strand cDNA synthesis. 

2.2.4 SMART cDNA synthesis for high throughput pyrosequencing 

 cDNA synthesis was conducted using the SMART cDNA Synthesis Kit 

[Clontech Laboratories, Inc.]. For first strand synthesis 1 μg of total RNA or 0.2 μg 

of mRNA enriched RNA was added to 1 μl 5' SMART II A primer [AAG CAG TGG 
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TAT CAA CGC AGA GTA CGC GGG], 1 μl 3' RACE CDS [AAG CAG TGG TAT 

CAA CGC AGA GTA C(T)30V N] and water to 5 μl total volume and heated to 70°C 

for 2 minutes. 2 μl 5x First Strand Buffer, 1 μl dNTPs, 1 μl dTT (20mM) and 1μl of 

PrimeScript Reverse Transcriptase [Takara] was added and incubated at 42°C for 90 

minutes. Second strand synthesis utilised the Advantage 2 PCR kit [Clontech 

Laboratories, Inc.], as recommended in the manufacturer’s manual, with the SMART 

Nested Universal Primer (NUP) [AAG CAG TGG TAT CAA CGC AGA GT]. The 

resulting cDNA was sequenced at Food and Environment Agency (FERA) using a 

Roche 454 GS FLX Pyrosequencer.  

2.2.5 Rapid Amplification of cDNA Ends (RACE) 

 RACE experiments were performed on 1 µg of total RNA using SMART 

RACE cDNA amplification kit [Clontech], according to the manufacturer’s protocol. 

RACE experiments were used to retrieve the complete 5’ and 3’ end of partial 

cDNAs, including any untranslated regions (UTR). Gene specific primers (GSP) 

from partial cDNA sequences were designed, a sense primer was used in 3’ RACE 

experiments and an antisense primer in 5’ RACE experiments.  

2.2.6 cDNA synthesis with random hexamers 

 cDNA for degenerate PCR primed with ion channel primers was produced 

using the Transcriptor High Fidelity cDNA Synthesis Kit [Roche] following 

manufacturer’s protocol, following the protocol steps for using random hexamers. 1 

µg of total RNA extracted from neuronal tissue using the RNeasy kit method 

described previously (2.2.2) was used as the RNA input for the cDNA synthesis. 

2.3 Molecular cloning 

 The general cloning protocol was as follows, deviations to this method are 

identified in specific cloning methods. PCR products were purified from either from 

Agarose gels using QIAquick Gel Extraction Kit [Qiagen] or Phenol-chloroform 

ethanol precipitation. Both PCR products and target plasmid vector were restriction 

digested with relevant restriction enzymes and the best suitable buffer for double 

digestion. The PCR insert was restricted such that 5’ and 3’ overhangs 
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complemented equivalent overhangs of the linearized plasmid vector. Restriction 

digestions of plasmid vector and PCR insert were checked on 0.8% Agarose gel for 

correct size and linearization. Where restrictions were done for the first time or with 

new enzymes, single digestions were done as a control to diagnose any inefficiency 

in digestion. The digested products were separately purified with phenol-chloroform 

ethanol purification, the precipitant re-suspended in a small volume of water (10-20 

μl depending in the observed quantity in the previous Agarose gel assay) and 

assessed by gel electrophoresis and quantified with NanoDropTM 

Spectrophotometry.  

 The digested products were diluted to concentrations of a 1:1 molar ratio 

(calculated by equal mass relative to size ratio) and were combined with T4 DNA 

ligase and buffer [Promega] as following manufacturer’s guidelines. Ligation 

mixture was chloroform extracted and then 1 μl added to 60 μl electrocompetent E. 

coli TOP10 from glycerol stock and transformed as per previously described method. 

The cell ligation mixture was added to a 500 μl microcentrifuge tube of LSLB and 

incubated at 37°C for 10 minutes or 1 hour depending on antibiotic, inhibitory or 

bactericidal respectively. 1-10% of the incubated medium was then plated out per 25 

ml Agarose gel petri dishes with a relevant antibiotic to select for the transformed 

colonies. For plasmid DNAs allowing blue/white screening LB-agar was 

supplemented with 40 µg/ml 5-bromo-4-chloro-3-indoyl-β-D-galatoside (X-Gal) and 

0.1 mM isopropyl-β-D-thiogalatoside (IPTG).  

 Transformations were conducted at the end of the day and the resulting plates 

incubated at 37°C overnight and taken out in the morning. A selection of colonies 

were picked, preferentially larger ones, and were screened by colony PCR using PCR 

conditions used for the original PCR, alongside the PCR product as a positive control 

and empty vector as a negative. Several of the resulting positive clones were cultured 

overnight by adding cells from the transformation plate to 10 ml McCartney bottles 

of LSLB and incubating 37°C. Plasmids were then extracted as previously described 

and plasmid DNA was then sequenced by an Applied Biosystems 3730 capillary 

sequencer in the 5' and 3' direction using relevant primers gene specific primers. The 

resulting sequences were aligned to the expected sequence used to design the primers 
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and checked for errors using the Sequencher
TM

 Version 4.5 (Gene Codes 

Corporation) application.  

 

2.3.1 Cloning cathepsin L dsRNA construct 

 First strand cDNA was generated from 1μg total RNA extracted from 

digestive gland of D. reticulatum as previously described and 0.1 μl used as a 

template for 2 high-fidelity PCR reactions with primers designed with EcoRI and 

XbaI restrictions in, see Table 2. The resulting products were 415 bp & 419 bp for 

the 5' and 3' fragments respectively. These were then purified by QIAquick Gel 

Extraction Kit [Qiagen] and restriction digested with EcoRI and XbaI, an equivalent 

digestion with the same enzymes was setup for the pLitmus28i vector. The resulting 

digested products were checked by gel electrophoresis for complete digestion then 

purified as before. Screening and selection of colonies was done as described 

previously. This resulted in 2 pLitmus28i-cathepsin L fragment constructs, which 

were then linearised twice in both directions via restriction digestion. This resulted in 

 

 

Cathepsin 5' Fragment  

Cath_L_5_For_EcoRI GCAGAATTCTTCTAGAAGACACCGTCTGGTTATC 

Cath_L_5_Rev_XbaI TGCTCTAGAGCCTTGAAATGTTGGCCTTCC 

Cathepsin 3' Fragment  

Cath_L_3_For_EcoRI GCAGAATTCACTGAGGTCAGCTACCCCTAC 

Cath_L_3_Rev_XbaI TGCTCTAGACGCACGATGGGGTAGCTTGCTTGTG 

Cathepsin qPCR Primers  

qPCR_5'_CATH_FOR TTCAAGGCCACTGGAAAACTG 

qPCR_3'_CATH_REV CCGAACTTCTGTGAGCAATCG 

Table 2: Cathepsin L RNAi construct primers 

Region in primer sequence highlighted refers to restriction enzyme recognition 

site. All primers are in 5' → 3' direction.  
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4 in vitro transcriptions, a 5' fragment: forward and reverse strands and a 3' fragment: 

forward and reverse strands. Primers used for qPCR of the gene are included in Table 

2.  

2.3.2 Cloning apoptosis dsRNA construct  

 First strand cDNA was generated from 1 μg total RNA extracted from whole 

tissue of D. reticulatum as previously described and 2 μl used as a template for high-

fidelity PCR reaction to amplify a region similar to an apoptosis inhibitor from 

contig C4281;N-;pS1972d. Primers used are shown in Table 3 and the resulting PCR 

product was of length 342 bp. Only small amounts of PCR product was produced, so 

the product was cloned into pJet2.1 vector using the CloneJET
TM

 PCR Cloning Kit 

[Fermentas], rather than restriction digested and cloning into pLitmus28i. pJet2.1 

includes a T7 promoter so can be used as the source plasmid for dsRNA, 2 of the 

clones screened were in reverse orientation, so this construct was used for in vitro 

transcription. This resulted in no necessity to create further primers with restriction 

sites. Product was cloned into pJet2.1 in both directions and then linearised with 

XbaI and XhoI which are closest sites to the insertion point. These were then used 

for dsRNA production in the same manner as the linearised Cathepsin L-pLitmus28i 

constructs. Construct and qPCR primers are shown in Table 3.  

 

 

 

dAPIN RNAi Primers  

5' Apoptosis AGTCGAACACCGGAACCACTACCC 

3' Apoptosis TGGCGTGCTCCGTCCAAGG 

dAPIN qPCR Primers  

5' Apoptosis qPCR TGGGAGGCTAGCGACTCTGT 

3' Apoptosis qPCR TCGCACTTTCCGTTGATGAG 

Table 3: Apoptosis Inhibitor RNAi Construct and qPCR primers 
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2.3.3 Cloning GAPDH dsRNA constructs 

 First strand cDNA was generated from 1 μg total RNA isolated from 

digestive tissue of D. reticulatum as previously described and 0.1 μl used as a 

template for high-fidelity PCR reaction to amplify a region of GAPDH. Primers used 

are shown in Table 4, and produced a PCR product of 407 bp. The cloning protocol 

was as described in cloning of cathepsin L, except restriction enzymes used were 

XbaI & PstI. For the production of the in-vivo dsRNA a second construct was cloned 

using the same method as pLitmus28i but using the L4440 vector, for the experiment 

described in publication (Solis et al. 2009). Both GAPDH in pLitmus28i and L4440 

were cloned into TOP10 cell cultures as previously described. GAPDH-L4440 

construct plasmids were then extracted from TOP10 cells using Wizard® Plus SV 

Minipreps DNA Purification Systems [Promega] and plasmid DNA used to 

transform E. coli HT115 (rnc14::ΔTn10) cells. This transformation followed the 

same protocol as described for transformation of E. coli TOP10 with the additional 

use of Tetracycline in addition to carbenicillin antibiotic, in the culture media, as 

described in publication cited (Solis et al. 2009). 

2.3.4 Cloning dTNF protein expression construct 

 The D. reticulatum TNF-L (dTNF) sequence without the transmembrane 

domain was amplified with high-fidelity PCR from 2 μl of second strand cDNA 

generated with SMART cDNA synthesis kit [Clontech] from 1μg total RNA isolated 

 

 

GAPDH RNAi Primers  

5' GADPH_4RNAi_XbaI GACTGCAGATATGGATACAGCAACCGGG  

3' GADPH_4RNAi_PstI TGTCTAGAACCTTTCTTAGATGGGTGCC  

Table 4: GAPDH RNAi construct primers 

Region in primer sequence highlighted refers to restriction enzyme recognition 

site. All primers are in 5' → 3' direction.  
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from digestive tissue of D. reticulatum extracted as previously described. PCR 

products could only successfully be amplified from second strand cDNA, possibly 

due to low levels of transcript available, which lead to a higher PCR error rate. PCR 

products were then purified by QIAquick Gel Extraction Kit [Qiagen] and, alongside 

PET32a plasmid vector [Novagen] were restriction digested with NcoI and XhoI 

restriction enzyme sites, which were included in PCR primers, see Table 5. The 

resulting digested products were checked by gel electrophoresis for complete 

digestion then extracted with QIAquick Gel Extraction Kit [Qiagen]. E. coli TOP10 

cells were transformed with the construct and screened via PCR as described 

previously. The sequence was compared with C974d contig for errors. The final 

clone included one incorrect base which was mutagenised via a Site-Directed 

Mutagenesis protocol using primers, see Table 5. PET32a-dTNF plasmid with 

corrected base was then extracted as previously described and plasmid DNA used to 

transform electrocompetent E. coli Origami B(DE3) expression strain, transforming 

with electrocompetent protocol as described previously. 

 

2.3.5 Site directed mutagenesis of dTNF 

 Site directed mutagenesis was performed by designing two primers which 

covered the region which included the incorrect base. Primers were flush with each 

other but did not overlap, with the forward primer being 3' of the reverse primer, 

 

 

dTNF Cloning Primers  

5' TNF Ligand GACCATGGAAAACAATGAGTCACAGG 

3' TNF Ligand TTCTCGAGCACAAGGGACTCTGCTAC 

dTNF Mutagenesis Primers  

5' TNF_MUTA  AAGCTATTTTGGATTAGTGATCC 

3' TNF_MUTA GACTCTCTTTCCAAGTTGACC 

Table 5: dTNF cloning and mutagenesis primers 

Region in primer sequence highlighted refers to restriction enzyme recognition 

site. All primers are in 5' → 3' direction. 
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allowing the whole plasmid to be amplified. The forward primer contained the 

correct base which would mismatch with the incorrect base in plasmid. The PCR was 

conducted with standard Phusion HF polymerase [Fermentas] and reagents and 20ng 

of plasmid purified using Wizard® Plus SV Mini-preps [Promega]. The reaction 

conditions were identified, after optimisation, as Step1: 98ºC at 1min; 35 cycles{ 

98ºC at 20sec, 59ºC at 30sec, 72ºC at 7min}; Step3: 72ºC at 10mins. A total of 200μl 

of PCR product was pooled and purified by Phenol-Chloroform extraction and 

Ethanol Precipitation. The purified DNA was re-suspended in 40 μl of water and 

treated with T4 Polynucleotide Kinase (NEB) (20U) in Ligase Buffer (5 μl) to a final 

volume of 50 μl and incubated at 37ºC for 30 minutes. 3μl of reaction mixture was 

taken out before adding 30U of T4 DNA Ligase and incubated overnight at 4ºC. The 

ligation mixture and the 3μl saved were then chloroform extracted and transformed 

into TOP10 cells. The mixture saved before addition of Ligase was used as a control 

to show whether cells were transformed only with Ligase present. 

2.4 dsRNA Production 

2.4.1 in-vitro dsRNA Production 

 in-vitro dsRNA was produced with either the Megascript® T7 kit (Life 

Technologies) or T7 Ribomax® Express RNAi system (Promega). Inserts were 

cloned into Litmus28i vector and linearised 5' and 3' of the insert for single stranded 

RNA production. After single stranded (ssRNA) was produced using manufacturer's 

protocol and purified using phenol-chloroform and ethanol precipitation, sense and 

antisense strands were annealed by heating to 80°C in a water bath and then allowing 

to cool to room temperature over 3-4 hours. dsRNA was confirmed via Agarose gel 

electrophoresis. 

2.4.2 in-vivo dsRNA production 

 in-vivo dsRNA was produced using a protocol based on (Solis et al. 2009) 

using L4440 vector with RNase III deficient E. coli HT115 (rnc14::ΔTn10) to 

express dsRNA in vivo. D. reticulatum GAPDH gene fragment and Kanamycin 

control gene were inserted into the L4440 vector using XbaI & PstI. Vectors were 
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transformed first into TOP10 electrocompetent cells. Colonies were screened and 

checked by sequencing before being grown and plasmid purified, as previously 

described, and transformed into HT115 (rnc14::ΔTn10) electrocompetent cells. Cells 

were grown, with 10 μg/μl Tetracycline (HT115) and 50 μg/μl Carbenicillin (L4440), 

overnight at 37°C in 10ml LSLB cultures. 1ml was transferred to 100 ml LSLB with 

described selection and grown at 37°C until 600 nm OD of ~0.5A (3-5hrs). For IPTG 

induced cells, IPTG was added to a final concentration of 2 mM and grown at 37°C 

for 4 hours. Cells were centrifuged at 4000 g for 30 minutes at room temperature and 

supernatant discarded. Cell pellet was resuspended in 1 M ammonium acetate, 10 

mM EDTA at 2% of the original culture volume and phenol-chloroform extracted 

and Ethanol precipitated as described previously. Nucleic acid pellet was 

resuspended with 8U Turbo DNase (Ambion) and 40 μg of RNase A to a total 

volume of 400 μl with nuclease free water. GAPDH dsRNA required further 

optimisation, with 25% of RNase treatment needed for Kanamycin showing best 

results, this was equal to 10 μg of RNase A to a total volume of 400 μl. 1 μl of 

nucleic acid was saved before adding nucleases for comparison. Nuclease treatment 

was incubated at 37°C for 30 minutes and then phenol-chloroform extracted and 

precipitated as in previous steps. Nucleic acid was resuspended in relevant buffer for 

the application. 

2.5 Quantitative PCR methods 

 All quantitation values regard the Ct (Cycle threshold) as defined by the 

StepOne
Tm

 RT-PCR System (Applied Biosystems) software. Additionally the 

quantitative real-time PCR referred to throughout will simply be abbreviated to 

qPCR rather than RT-PCR or RT-qPCR. 

2.5.1 Total RNA extraction for qPCR 

 Individual organisms or pooled groups were flash frozen in liquid nitrogen 

and ground to powder with a mortar and pestle pre-chilled in liquid nitrogen. Where 

digestive gland tissue was used, digestive glands were dissected from organisms and 

ground as with whole tissue. As with RNA extraction for cDNA, digestive gland 



Chapter 2 | Materials & Methods 

 

64 

 

dissection took approximately 5 minutes. 50-100 mg powder was transferred to Tri-

Reagent (Sigma) and RNA was extracted according to manufacturer’s protocol. RNA 

was resuspended in nuclease free water, and incubated with 1U Turbo DNase at 

37°C for 30 minutes. RNA was purified using Phenol-chloroform and Ethanol 

precipitated and quantified with Nanodrop1000 Spectrophotometer.  

2.5.2 Quantitative PCR (qPCR) 

 1 μg RNA was used in a first strand cDNA synthesis using Nanoscript RT kit 

[PrimerDesign Ltd.] following manufacturers protocol. The resulting cDNA was 

quantified as before and unless otherwise stated 40 ng of cDNA was prepared with 

Precision One-Step qPCR 2x Master Mix with ROX (PrimerDesign Ltd.) and qPCR 

primers at 0.5 μM final concentration. qPCR primers were designed using Primer 

Express [Applied Biosystems] and ordered as custom oligonucleotides from Sigma-

Aldrich. The qPCR mixture was performed and analysed with a StepOne
Tm

 RT-PCR 

System [Applied Biosystems]. 

2.5.3 qPCR Analysis 

 All qPCR data shown uses comparative CT with relative quantitation values 

representing 2
-ΔΔCt

, the difference of HKG gene to target gene relative to an arbitrary 

reference value usually the sham control. Error bars all represent 1 standard deviation 

of ΔCt as +/- addition to the ΔΔCt exponent. 

2.5.4 HKG analysis  

 Housekeeping gene (HKG) analysis was conducted similarly to previously 

described study in Mollusca (Sirakov et al. 2009). Primers were designed for contigs 

which showed strong homology to known HKG and were double checked by hand, 

see Table 6. In addition to using geNorm (Vandesompele et al. 2002), Bestkeeper 

(Pfaffl et al. 2004) and Normfinder (Andersen, Jensen, and Ørntoft 2004) the 

comparative delta-Ct method was also used (Silver et al. 2006). Merged data was 

produced using the online Reffinder tool (Xie et al. 2012). All qPCR runs including 3 

technical replicates for each sample primer combination.  
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2.6 Protein Expression Methods 

2.6.1 Calculating Protein Molecular Mass 

 Protein mass was calculating using the online Compute pI/Mw tool on the 

Swiss Institute of Bioinformatics Expasy Server (Gasteiger et al. 2005). 

2.6.2 Protein Extraction Method 

 Protein was extracted from expressing cultures by sonication in 50ml Falcon 

tubes kept on ice, using a Soni-Prep 150 [MSE] at 26 microns. Optimal sonication 

Actin (C2471;N689;S1995d)  

5' Actin_qPCR  GGAAGGATGGCTGGAACAAAG 

3' Actin_qPCR  CGGACAGGTCATCACCATTG 

EF1-A (C1490;N398;S553d)  

5' EF1-A_qPCR  TGTGCGTGGAGTCCTTCCA 

3' EF1-A_qPCR CAGTCTGCCTCATGTCACGAA 

GAPDH (C2454;N37;S199d)  

5' GAPDH_deroc_For GGCATCGTTGAGGGTTTGAT 

3' GAPDH_deroc_Rev TGCTGGGTCCATCTACAGTCTTC 

Tubulin (C2968d)  

5' Beta-Tubulin GGAACCTTTTAAGCGAGTTGGA 

3' Beta-Tubulin CAGTGTACCAATGCAAGAATGCA 

Ubiquitin (C408d)  

5' Ubiquitin_qPCR CGGCATTAAGAGAGAACTCAAAGTG 

3' Ubiquitin_qPCR GGCAACACCTCCTTAAGCTCAT 

Table 6: Primers for housekeeping gene qPCR primers 

Table contains a list of housekeeping genes and primers designed for them. The 

largest tubulin and ubiquitin contigs were only found in CLCBio but have 

strong BLAST and INTERPRO homology indicating they are correct predicted 

proteins. 
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time was calculated by sonication assay comparing time points with protein 

concentration. Protein concentration was calculated both by CBB gel with ImageJ 

calculation and bovine serum albumin (BSA) assay. Optimal regime chosen was 16x 

30 second sonications interspaced with 2 minute periods to allow cooling. The time 

is relatively long most likely due to the age of the sonication machine and volumes 

sonicated; temperature in the cell suspension was measured and never exceeded 

15°C. 

2.6.3 Protein Purification with HisTrap column 

 A 5 ml HisTrap HP column [GE Healthcare] was used for purification of Trx-

dTNF. Uninduced soluble fractions were equilibrated in binding buffer to a final 

concentration of 20 mM Na2HPO4, 400 mM NaCl (pH 7.4 with HCl) and loaded 

onto His-Trap column, which was pre-equilibrated with binding buffer (BB), at 

5ml/min at room temperature. Later loading, which was used for injection assays and 

gels, was done with BB containing 10mM Imidazole. Column was run for 2x protein 

fraction final volume and then washed with BB until OD came to a baseline on a 

FPLC chart recorder. This was repeated with BB containing 25 mM initially and 50 

mM in later purifications of Imidazole, the elutions of which were saved for 

comparison. The protein was eluted with BB containing 200 mM Imidazole until OD 

had peeked and had almost returned to baseline level on the FPLC chart recorder. 

2.6.4 Dialysis & lypholization 

 Fractions eluted from HisTrap columns were pooled and after confirmation 

on CBB gels and initially western blot, fractions were dialysed against 20 L distilled 

water with ~2 g of 50 mM ammonium hydrogen bicarbonate as an anti-microbial 

agent. 12-14 KDa dialysis tubing was prepared by boiling in a solution of 2% (w/v) 

sodium bicarbonate and 1 mM EDTA (pH 8.0) for about 20 minutes. Dialysis was 

carried out at 4°C with constant stirring and 6 changes of water every 1 hour except 1 

change which was left overnight. Dialysed protein samples were frozen on the walls 

of freeze-drying flasks by shelling in liquid nitrogen and lyophilized on a vacuum 

freeze-dryer overnight. 
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2.6.5 Buffer Exchange Column Purification 

 Vivaspin 20 [Sartorius] columns were used to purify protein from HisTrap 

column eluent. Fractions from HisTrap column were treated according to 

manufacturer's guidelines. 10 ml of HisTrap elution was buffer exchanged with TAE 

buffer (pH 7.4) and centrifuged at 4000 g over the course of 2 days, with column 

kept overnight at 4°C. Buffer was refreshed 8 times in total, each refresh after the 

total volume of sample had reach 200 μl. Centrifugation step was done over a long 

period of time due to formation of precipitate which impeded the flow through of 

buffer. The last 3 buffer flow-through pH matched the buffer pH of 7.4, indicating 

the buffer had been fully exchange. The resulting 200 μl of sample in TAE was 

transferred to a new tube, avoiding transfer of precipitate, and protein confirmed with 

CBB and western protein gels. 

2.6.6 BCA Assay 

  Total protein was quantified using BCA protein quantification kit (Pierce) 

and BSA (Bovine serum albumin; 0.1-4 μg/ml) as a standard. Concentrations of 

unknown protein were predicted using the standard curve. BCA reagent was 

prepared by mixing Solution B with A (1:50) freshly before use. In microtitre plates 

10 μl of each standard or unknown sample was added to separate wells (in triplicate) 

and then mixed with 200 μl of BCA Reagent. The plate was incubated for 30 minutes 

at 37°C. Absorbance was then read measured at 562 nm using VERA max 

microplate reader [Molecular Devices]. 

2.7 Deroceras reticulatum Methods 

2.7.1 Deroceras reticulatum sourcing 

 D. reticulatum were collected from the wild, on and around the grounds of 

the Department of Food, Environment and Rural Affairs (FERA), Sandhutton, York, 

YO41 1LZ. These were either kept in culture conditions described in the following 
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sections at FERA or transferred and kept in similar conditions at the University of 

Durham.  

 

 

2.7.2 Maintaining cultures 

 Cultures were maintained until organisms were utilised in various 

experiments described. D. reticulatum individuals were kept in plastic containers 

containing moistened paper toweling on the base and a selection of lettuces as well 

as wheat germ as a food source. Organic lettuce was either grown by FERA or 

sourced from local suppliers, organic wheat germ was sourced from local suppliers. 

Cultures were moved to new containers weekly and given fresh food. Cultures were 

incubated at 10°C, high humidity, with a 16 hour day/night cycle. 

 D. reticulatum cultures were prone to disease and were observed to form 

'lesions' which would quickly spread to other organisms within a container, (See 

 

 

Figure 5 : Deroceras reticulatum 

Deroceras reticulatum individuals feeding on gem lettuce. Area ringed in red is 

a 'lesion' on the surface of an individual, the cause of which is not clear. Would 

have a wound-like appearance with a light discoloured area on the surfaced 

with darker ridge ringing the area. This would indicate the organism would 

likely perish within the following weeks, as would all others within the culture 

container. 



Chapter 2 | Materials & Methods 

 

69 

 

Table 5). In these cases organisms were removed from the containers and not utilised 

further for any experiments. Despite this several cultures were maintained through 

multiple generations with eggs collected, washed in a very mild bleach solution and 

incubated in petri-dishes containing moistened paper toweling and incubated in the 

same conditions as adults until hatching when they were moved to plastic containers. 

Eggs took approximately 1 month to hatch, but varied largely with some eggs taking 

up to 3 months to hatch. In some cases eggs would turn red over time for an 

unknown reason and would fail to hatch. 

2.7.3 Injection Assays 

 Injection assays were conducted by first anaesthetising D. reticulatum on ice 

and then injecting through a central point of the foot with the needle pointing toward 

the posterior. Injections were done with a 5μl, 10μl or 20μl Hamilton syringe which 

were washed well with both ethanol and relevant buffer between injections of 

individual organisms. Dye injections were done with 14μl of PBS and 1μl Dr. Oetker 

SuperCook Blue Food Colouring Dye containing Brilliant Blue FCF. 

2.8 Bioinformatic Methods  

2.8.1 Sequencing 

 Classic Sanger sequencing was carried out using BigDye Terminator with 

AmpliTaq DNA polymerase (ABI Biosciences). Reaction products were analysed on 

automated sequencer, ABI Prism 377 XL, DBS Genomics, Dept. at Durham 

University, School of Biological and Biomedical Sciences. Plasmids inserts were 

completely sequenced on both strands of the DNA by using primers directed against 

determined sequence to complete overlaps. 

 454 Sequencing of cDNA was conducted using the automated throughput of a 

454 GS FLX platform, by The Food & Environment Agency (FERA) (Sand Hutton, 

York, YO41 1LZ). 
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2.8.2 Univec Cleanup 

 Sequences were input into BLASTn using settings as used by VecScreen 

online tool, to guarantee the same output a BLAST strategy file was generated from 

VecScreen and used with BLASTn. Matches were assessed using VecScreen criteria 

with terminal matches define as with 25bp of the beginning or end of the sequence. 

Any match type (weak, moderate, strong, suspect) was removed using custom Java 

classes.  

2.8.3 Sequence Data Assembly 

 After Univec cleaning any reads <50bp after trimming were removed. The 

reads were then assembled with the following assemblers: Newbler v2.6, SeqMan 

NG v4.1.2 and CLCbio 4.7.2.  

 Newbler v2.6 was run using the GS De Novo Assembler graphical interface 

with the following parameters: seed step = 5; seed length = 16; seed count = 1; 

minimum overlap length = 40; minimum overlap identity = 90; Alignment identity 

score = 2; Alignment Difference Score = -3; rip = 1.  

 CLCbio 4.7.2 used standard parameters: -conflict vote; -non_specific 

random; -paras Default. SeqMan NG used the following parameters: Match Size = 

21; Match Spacing =75; Minimum Match Percentage = 85; Match Score = 10; 

Mismatch Penalty = 20; Gap Penalty = 30; Max Gap = 15; Genome Length = 

1674712; Expected Coverage =21.  

 Reads and contigs were then uploaded to a BioSQL based MySQL database 

to allow easy comparison. Statistics for assemblies were generated using the 

respective ACE files. The terms n50 and n90 may have differing definitions, the 

algorithm used was based on the source code of the Mauve multiple genome 

alignment software. 

2.8.4 Dataset Upload 

 14118 CLCbio contigs and unassembled reads were uploaded to Genbank 

Transcriptome Shotgun Assembly (TSA) database, TSA accession numbers 

JW036070 – JW050187. 5332 sequences (563 of which were contigs) were not 
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uploaded due to size being below the 200bp threshold for TSA submissions. 6 further 

unassembled reads were removed due to having >10% Ns. 

2.8.5 BLAST Homology 

 Contigs and unassembled reads were analysed by comparison with the NCBI 

non-redundant protein database. No minimum e-value cutoff was used as cutoffs 

were applied post-run through database filtering. As majority of the processing time 

is during sequence comparison, there's no significant improvement in performance 

from using higher cutoffs. Hit quantities were limited to 50 hits, to reduce the 

overhead of manipulating larger datasets. The homology searching was conducted 

using BLASTx from the NCBI BLAST 2.2.25+ standalone package. BLAST jobs 

were run against the none-redundant (nr) protein database across a number of 

standard personal computers and servers. BLAST XML data was uploaded to the 

BioSQL database using a combination of BioJava and woodstox class library 

(http://woodstox.codehaus.org/) for XML for parsing BLAST data. 

2.8.6 Peptide Prediction & InterProScan 

  Predicted polypeptides for assembled sequences were produced using 

ESTScan2.1 (Iseli et al. 1999). The resulting amino acid sequences were then 

analysed by InterProScan (Zdobnov & Apweiler 2001) which uses 14 separate 

software packages to analyse the peptide sequence for peptide motifs and 

homologous domains. 

2.8.7 Phylogenetic Analysis 

 NCBI hits were mapped to phylum by retrieving taxonomy data for Gene 

Identities (GI) numbers using the NCBI Entrez query service. Phylogenetic trees for 

individual genes were generated using Clustalw2 with neighbour-Joining method and 

a bootstrap value of 1000; and visualised using the Forester Java class libraries 

(PhyloXML (Han and Zmasek 2009)). Where genomes were available using NCBI 

Map Viewer (http://www.ncbi.nlm.nih.gov/projects/mapview/) with BLASTx against 

each species geneset or refseq databases with D. reticulatum predicted peptides. 

Where Mollusca and other species without Genomes were included, these sequences 
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were either retrieved from NCBI nr via BLASTx, or derived from EST data using 

tBLASTx against EST_OTHERS NCBI database.  

2.9 Biology Database 

 For many of the bioinformatic methods, processes were automated and many 

of the statistical analyses were conducted by uploading data into a database and 

filtering or mapping data. Tools used to manage the scripting and database uploading 

are included in a biology toolkit, written in Java programming language and 

available at https://github.com/EnderDom/Eddie. Database schema used was 

BioSQL and can be found at http://www.biosql.org. Data was input through either 

the custom scripts including in the biology toolkit or with scripts from the bioPerl 

library. BioSQL supports a number of different database types, MySQL database was 

used for this project with a number of scripts being specific to that database type. 

Tables were added on top of the base schema to accommodate information about 

multiple assemblies as well as inclusion of additional 'run' information which kept 

track of the software versions, parameters and dates of the various data generated. 

However the base schema was not altered in anyway such that it should be in theory 

compatible with any other software the implements a BioSQL interface. Majority of 

the statistics generated from the dataset were done without any 

scripting/programming required, purely with SQL database queries. 

2.9.1 Data upload 

 Read sequences were uploaded to BioSQL from assembly files of the ACE 

format produced by the assembly software. The ACE files were parsed with a custom 

ACE file parser written in Java, a custom name identifier in the format 

Assembler_Tissue_Number was used along with ids given by the assemblers in the 

database bioentry ID. The database bioentry ID is default indexed and used to link to 

other tables, including the biosequence table which holds sequence information. The 

contig data was uploaded in the same way, and reads mapped to contigs by adding 

contig and read ids as rows to an assembly table. The assembly table was not part of 

the base BioSQL schema, which was not originally designed to hold assembly data.  
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 An additional table name run was also added, this was another custom table 

which holds information about the software used to produce the assemblies (and 

other data uploaded such as BLAST and INTERPRO) as well as dates run, version 

and parameters used. BLAST data was uploaded via parsing BLAST XML files 

produced as output of the BLAST homology searches, using the Woodstox Xml 

parser. Key data such as accessions, start/end, score and evalue was then transferred 

to the dbxref database tables. All data was added as columns to the dbxref_bioentry 

linker table rather than attempting to alter the seqfeature/location tables. INTERPRO 

data was uploaded in a similar manner to BLAST data but used the term tables to 

store IPR terms with specific software matches such as pfam and panther accessions 

being added to the dbxref tables and linked through the term_dbxref table to linked 

IPR terms. IPR terms were linked to global IPR terms such as binding site, active 

site, domain etc. through the term_relationship table which enabled selection of 

subsets such as all active site IPR terms. 

2.9.2 Taxonomy Mapping 

 Accessions were mapped to NCBI taxonomy IDs using the e-utilities HTTP 

API (Federhen 2011) which enables programmatic access to the NCBI database 

through URL base queries. NCBI accessions were retrieved from dbxref table in the 

BioSQL database and used to retrieve the taxonomy ID for each accession from the 

NCBI database. Where the taxonomy has not already been retrieved, it was 

downloaded using e-fetch and uploaded into the taxon and taxon_name tables of the 

BioSQL database. Once all taxon data was downloaded left and right values were 

calculated for the nested-set representation of the taxonomy data. This allows for 

selection of entire child groups from the parent node taxon ID using very simple 

SQL queries (Mackey 2002). 

2.9.3 Assembly & Homology Metrics 

 The majority of data statistics demonstrated were calculated using SQL 

queries against the modified BioSQL database. These were executed either with a 

standard MySQL command line client or using the phpMyAdmin software package 
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hosted on an apache2 server. BLAST evalue graph data was produced using SQL 

query: 

 SET @runtot:=0; SELECT q1.EVALUE, (@runtot := @runtot + 

COUNT) AS CUMULATIVE FROM (SELECT bioentry_dbxref.evalue AS 

EVALUE, COUNT(bioentry_dbxref.evalue) AS COUNT FROM 

bioentry_dbxref WHERE  bioentry_dbxref.run_id=x AND hit_no=1 

AND bioentry_dbxref.rank=1 GROUP BY bioentry_dbxref.evalue 

ORDER BY bioentry_dbxref.evalue;) AS q1 

 bioentry_dbxref.run_id is set to the relevant BLAST run. This outputs a 

cumulative count for each BLAST hit with its evalue, which can be used as x, y 

coordinates. Species data was produced using SQL query: 

 SELECT dbxref.ncbi_taxon_id AS taxid, taxon_name.name AS 

taxname, COUNT(dbxref.ncbi_taxon_id) AS count FROM dbxref 

INNER JOIN taxon USING (ncbi_taxon_id) INNER JOIN taxon_name 

USING (taxon_id) INNER JOIN bioentry_dbxref USING (dbxref_id) 

INNER JOIN bioentry_run USING (bioentry_id) WHERE 

bioentry_dbxref.hit_no=1 AND bioentry_run.run_id=x AND 

bioentry_dbxref.evalue<1e-3 AND 

taxon_name.name_class='ScientificName' GROUP BY taxid ORDER BY 

count 

 Phylum data required an additional programmatic step, all phyla IDs were 

selected by using SQL query: 

 SELECT ncbi_taxon_id, taxon_name.name FROM taxon INNER 

JOIN taxon_name USING (taxon_id) WHERE taxon.node_rank LIKE 

'phylum' 

 These were added to a list and iterated over. For each phylum all species were 

selected using the nested set representation and the number of top BLAST hits with 

this species was counted and the data appended to the phyla, using the following 

query: 

 SELECT COUNT(bioentry_id) AS COUNT FROM bioentry_dbxref 

INNER JOIN dbxref USING (dbxref_id) WHERE dbxref.ncbi_taxon_id 

IN (SELECT taxon.ncbi_taxon_id FROM taxon INNER JOIN taxon AS 

include ON (taxon.left_value BETWEEN include.left_value AND 
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include.right_value) WHERE include.ncbi_taxon_id=?) AND 

bioentry_dbxref.run_id=x AND bioentry_dbxref.evalue<1e-3 AND 

bioentry_dbxref.hit_no<=1 

 Kernel density plots were produced by simple selection of length values of 

biosequences using run ID to differentiate reads from contigs and different tissue 

types, such that the query was:  

 SELECT biosequence.length FROM biosequence INNER JOIN 

bioentry_run USING (bioentry_id) WHERE run_id=x 

 This query output a basic list of each sequence length from the run identified 

with x. The kernel density was then calculated and graphed using the inbuilt kernel 

density function in the R programming language. 

 The Venn diagram data showing overlap of reads between different 

assemblies was calculated using the MySQL IN query function. This allows for 

subsets of data to be selected from a previous query, without the need from any 

programmatic assistance. For each assembler a query selecting all the read IDs in the 

assembly, using the assembly table, is constructed. 

 SELECT read_bioentry_id FROM assembly WHERE run_id=1; 

 In this case run_id 1 is the CLCbio assembly for the digestive gland dataset; 

this selects all the reads from that assembly. To identify how many of those also exist 

in run_id 2, the Newbler digestive gland assembly, we perform both queries then 

select all read_bioentry_ids that exists. 

 SELECT COUNT(DISTINCT(read_bioentry_id)) FROM assembly 

WHERE read_bioentry_id IN (SELECT read_bioentry_id FROM 

assembly WHERE run_id=1) AND read_bioentry_id IN (SELECT 

read_bioentry_id FROM assembly WHERE run_id=2) 

 The use of DISTINCT counts only unique reads as the same read is present in 

both selection statements, as the selection of IDs is not exclusive. It should be noted 

that this could also be done with a self-join of the table, which may be a slightly 

better optimised method, though functionally less explicit, i.e.: 

 SELECT COUNT(assembly.read_bioentry_id) FROM assembly 

INNER JOIN assembly AS self ON 



Chapter 2 | Materials & Methods 

 

76 

 

(assembly.read_bioentry_id=self.read_bioentry_id) WHERE 

assembly.run_id=1 AND self.run_id=2 

 However in both cases the resulting value is the same, the difference in time 

is less than a second for the current datasets. Each value for each pair and then all 3 

assemblers were calculated and Venn diagram drawn with the 'venneuler' CRAN 

library (Wilkinson 2012). 
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Chapter 3 | Initial Investigation of Transcripts from D. reticulatum 

 The very first step in the investigation of D. reticulatum transcripts is the 

production of RNA of sufficient quality that complementary DNA (cDNA) products 

of reverse-transcribed RNA can be produced of sufficient length to be identified as 

partial or whole transcripts. Optimizing the RNA extraction and cDNA synthesis was 

the initial stage of this project focusing on producing degradation-free RNA and then 

good quality cDNA. Figure 7 demonstrates target appearance of both RNA and 

cDNA with gel electrophoresis. 

 After RNA and cDNA quality met acceptable standards, random cloning of 

cDNA was conducted. This was done as a proof-of-principle, that the cDNA seen on 

gel represented mRNA transcripts found in D. reticulatum. Whilst no sequence data 

was available to compare this data to, homology analysis to transcripts expected to 

be found in D. reticulatum based on previous biochemical work was considered 

acceptable evidence that the cDNA could produce transcript sequence data. This 

body of work would serve as evidence that the cDNA and homology analysis of it 

would produce relevant and useful data were it to be sequenced using high-

throughput sequencing technology. 

 When cDNA has been proven to produce transcript sequences that can be 

identified through homology analysis, the cDNA can be used to investigate 

individual gene transcripts. Both considering sequences found through random 

cloning and targeted approaches using degenerate PCR based on homologous 

sequences already known. In both cases partial sequences can be extended through 

rapid amplification of cDNA ends (RACE). RACE produces complete sequences 

from partial ones by using one gene specific primer (GSP) and one cDNA adaptor 

primer to polymerise unknown regions of the sequence 5’ and 3’ of the known 

region. In combination with degenerate PCR this allows complete transcript 

sequences to be generated from cDNA when a homologous sequence is sufficiently 

similar for degenerate primers to work. 
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 A high priority target for degenerate PCR and RACE was Molluscan ion 

channels. Many insecticidal compounds, both synthetic and naturally-occurring,  

target ion channels associated with neuronal tissue, causing paralysis. Neurotoxic 

peptides which block ion channel proteins, isolated from the arthropod venoms, have 

been suggested for use as biopesticides, and recombinant proteins based on spider 

venom proteins are being developed for their insecticidal activity (King 2007; 

 

Figure 6 : Example Total RNA and cDNA 

Image A is an RNA analysis with agarose gel electrophoresis shown in 

methods of RNA quality assessment [Promega] 

(http://www.promega.co.uk/resources/pubhub/methods-of-rna-quality-

assessment) [Accessed 04/12/13]. Lanes 1 & 3 show intact RNA with no 

degradation. Lane 3 shows smearing due to degradation with greater 

degradation leading to loss of 28S rRNA band in lane 4. Lane 5 includes 

significant gDNA contamination. Image B represents cDNA shown in the 

SMART PCR cDNA synthesis kit User Manual [Clontech]. The cDNA here 

is second strand cDNA after 15 thermal cycles using human placental total 

RNA as the source RNA. These gel electrophoresis images of RNA and 

cDNA were used as a comparison to assess visually the quality of cDNA 

and RNA by Agarose gel electrophoresis. 
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Windley et al. 2012). A similar strategy could be applied to D. reticulatum ion 

channels making them an obvious target for the development of new molluscicides.  

 Conotoxins are neuropeptides extracted from the venom of Conus genus of 

snail, where the primary prey of many species is other Mollusca. Some venom 

peptides extracted from Conus spp., which have structures related to those found in 

spider venom peptides, have been shown to have molluscicidal effects when injected 

(Fainzilber et al. 1991). ω-conotoxins and κ-conotoxins block calcium and potassium 

channels respectively, whilst the δ- and μO-conotoxins groups affect sodium voltage-

gated channels (Heinemann and Leipold 2007). The TxVIA conotoxin from Conus 

textile was shown to also have insecticidal activity increasing the appeal of conotoxin 

biopesticides (Bruce et al. 2011). 

 Whilst a reasonable amount of sequence information is available for the 

model mollusc A. californica, very little is known with regard to characterisation of 

genes in crop pest molluscs. Based on the limited sequencing done, the difference 

between sequences of homologous genes in D. reticulatum and A. californica 

appears quite large. Characterisation of ion channels through sequencing of encoding 

transcripts in a wider range of mollusc species would be of benefit for future work to 

evaluate mollusc-specific neurotoxins. The long term benefits of isolated Molluscan 

ion channel sequences from target organisms is the potential to carry out in vitro 

assays, based on expression of recombinant proteins, to test effects of potential 

channel agonists or antagonists. With maintaining organisms being labour-intensive 

and difficult in some cases, the availability of an assay to assess feasibility of a 

protein before large scale work begins is obviously advantageous. In seeking to 

develop molluscicides targeting ion channels which are effective against D. 

reticulatum, the first stage is sequencing the ion channel genes in this target 

organism. 

3.1 Extraction of RNA and cDNA synthesis 

3.1.1 Extraction of RNA from D. reticulatum  

 Different methods for RNA extraction were tried with tissues from D. 

reticulatum, in order to identify a method that would give RNA of good quality for 
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cDNA synthesis. The large amounts of carbohydrate-rich mucus produced by this 

organism proved a major problem in producing RNA for subsequent use. Extracted 

RNA was analysed by Agarose gel electrophoresis, followed by staining for total 

nucleic acid (see Figure 8). RNA quality was initially assessed based on the presence 

of both ribosomal bands visible, with no visible smearing which would indicate 

degradation. The different methods of RNA extraction were then compared by 

synthesising second-strand cDNA with the SMART cDNA synthesis kit and 

comparing and assessing cDNA qualities by gel electrophoresis, see Figure 8. The 

best quality cDNA was that with a clear banding pattern rather than smearing, where 

the distribution of bands was more evenly weighted across all molecular weights. 

 

 

 

Figure 7 : Gel Electrophoresis of Total RNA with the two main rRNA 

subunits 

Gel electrophoresis of total RNA extracted with Tri-Reagent from whole 

organism tissue of D. reticulatum. The two main bands visible are the 28S and 

18S rRNA subunits of the eukaryotic ribosome. Non-rRNAs are not visible due 

to relative quantity being significantly lower and size distribution across the gel 

greater. The expected signs of RNA degradation having occurred is the loss of 

the larger 28s band and a low molecular weight smear forming below the 18s 

band. 
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Smeared, low molecular weight cDNA was considered inferior and RNA extraction 

methods producing this cDNA were discounted. Banding pattern of cDNA is 

expected due to the relative differences in transcription of mRNA. Large bands 

represent cDNA sizes and likely specific transcripts which are more frequent than 

others. Fresh tissue homogenisation with electric pestle produced better cDNA than 

grinding frozen tissue in liquid nitrogen; likely due the improved speed, with hand 

 

Figure 8 : Gel electrophoresis of D. reticulatum cDNA samples 

A,B,C represents 3 separate gels each containing 2 lanes, the first a DNA 

marker, the second, second-strand cDNA. They have been aligned, based on the 

molecular weight marker, as a single image for equivalent size comparison of 

cDNA. A) Whole tissue cDNA extracted with Tri-Reagent, B) Neural tissue 

cDNA extracted with RNeasy Mini-Kit, C) Digestive gland tissue extracted with 

RNeasy Mini-kit. A) was an earlier attempt to synthesis cDNA with tri-reagent, 

and in general can be considered to poorest quality based on size distribution 

and smearing of the lane. Neural tissue is improved with slightly less smearing 

and bands at a higher position. Digestive gland is considered the best quality 

with large bands at around 2.6Kbp. The cDNA here was over-cycled and lanes 

were overloaded to exaggerate the banding pattern for the cDNAs to better 

compare them. 
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grinding being time-intensive due to the size and liquid content of the organism. 

Overall, selection of specific tissues and the time taken to process the RNA into first 

strand cDNA appeared to be the major factors in final cDNA quality based on gel 

electrophoresis assessment. The RNA method with best resulting cDNA was found 

to be fresh tissue homogenisation with RNA isolation done with RNeasy Mini Kit 

[Qiagen], but this method was only viable for dissected organs. For RNA extraction 

from whole organisms, or tissues containing large amounts of mucus, the use of Tri-

Reagent [Sigma] was the only viable method; the viscous nature of extracts from 

whole organisms prepared in the absence of strong denaturants like the Tri-Reagent 

resulted in the mixture clogging up the RNeasy column based extraction. On the 

basis of the relatively poor quality of RNA prepared using the Tri-Reagent method, 

the use of dissected organs as a source of RNA for cDNA synthesis was preferred. 

3.1.2 Random cloning into pJET2.1 vector 

 The digestive gland was considered one of the most informative tissues for 

investigation, with any potential molluscicides having to pass through the gut. In 

addition, it can be regarded as a target for molluscicides in its own right, similar to 

the antimetabolic effects resulting from inhibition of protein digestion by protease 

inhibitors in insects (Schlüter et al. 2010; P. Pyati et al. 2011). Total RNA extracted 

with RNeasy Mini Kit from dissected digestive glands of D. reticulatum was used as 

a template for cDNA synthesis, with a SMART cDNA synthesis kit. The resulting 

cDNA was size fractionated for sequences >1kb and cloned into the plasmid vector 

pJET 1.2 using a CloneJET PCR cloning kit [Thermo Scientific]. Smaller sequences 

were removed to try and increase the provision of real transcript sequences as well as 

to try and counterbalance the blunt-ended ligation cloning bias as smaller sequences 

are more likely to be cloned into vectors than larger ones. Cloning without size 

fractionation produced a majority of clones with <100bp insert, which can be too 

small for effective homology analysis, particularly if fragment represents a less 

conserved region.  

 Recombinant vectors were transformed into TOP10 cells and plated on LB 

agar with carbenicillin (50µg/ml). Plasmids from these clones isolated with Wizard® 
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Plus SV Minipreps DNA Purification System and assessed for the presence of an 

insert by colony PCR using pJET 1.2 forward and reverse primers, using the vector 

alone as a control.  

 

 

 

Clone Size Summarised most similar Proteins based on 

BLASTx search 

Expect 

N17-M7 3kb - - 

N17-M8 1.7kb carboxypeptidase, zinc carboxypeptidase A 4e-10 

N17-M9 1.8kb c-type Lectin 4e-10 

N17-M15 1.5kb 3-hydroxy-3-methylglutaryl-CoA reductase 1e-10 

N17-M18 1.9kb Snail soma ferritin 4e-34 

N17-M26 1.7kb Snail soma ferritin 1e-33 

N17-M28 1.7kb splicing factor, putative 0.048 

N17-M31 1.3kb -  

N17-M37 1.2kb -  

N17-M38 2.3kb tubulin subunit beta 8e-99 

N17-M42 2.4kb cellulase 5e-84 

N17-M43 1.6kb - - 

Table 7: pJET digestive gland sequenced clones and BLAST database 

matches 

Clones were sequenced and vector sequences were removed and insert 

compared to the BLAST NCBI nr database using BLASTx. The resulting 

matches were summarised here, matches left blank represent no significant 

match to a protein from the NCBI nr database. As cloning increases bias for 

smaller pieces of cDNA, clones were chosen based on their size on gel. This 

means that they may not be indicative of the prevalent sequences in the 

transcriptome, but should better represent what genes are present. 
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 A selection of clones were screened for inserts using colony PCR. 50 clones 

were screened of which 12 plasmids were then selected randomly from those which 

had observable size difference to empty vectors (>300bp insert) and sequenced in 

both directions (forward and reverse) by using appropriate primers with an Applied 

Biosystems 3730 capillary sequencer. The forward and reverse insert sequences were 

aligned and the complete insert was compared to the global sequence databases using 

BLASTn and BLASTx homology search software programs. Of 12 clones sequenced 

and compared, 7 showed sequence similarity to previously characterised sequences 

in the database, allowing the function of their encoded proteins to be identified, see 

Table 7. 

 Sequence similarity to genes whose products were expected to be found in a 

mollusc digestive gland transcriptome, with the inclusion of several enzymes 

including a cellulase homologue, showed strong support for the quality of the cDNA  

and its potential to produce significant gene sequences. The sequences described 

were subsequently found in the digestive gland pyrosequencing and are discussed 

further in the next chapter. The data here was used to check the presence of digestive 

gland sequences and validate the cDNA as source of informative gene sequences.  

3.2 Characterisation  of full-length transcripts; 5' & 3' RACE with Ferritin 

Homologue 

 RACE is technique which uses the same mechanism as cDNA synthesis. 2 

sets of first strand cDNAs are produced amplifying 5' and 3' ends of transcripts 

respectively. One set uses a 5' primer from the known region of the gene ("gene-

specific primer") and the common 3' cDNA primer used to prime the reverse-

transcription to amplify the 3' end of the gene. The second cDNA uses a 3' primer 

from the known gene region in conjunction with a common terminal primer 

complementary to the 5' primer used for cDNA synthesis via template-switching. 

With this method the full gene sequence can be amplified in two overlapping 

fragments, allowing a full sequence of the entire transcript to be assembled. 

 For the RACE reaction ferritin was chosen, due to previous examples of 

ferritin in Mollusca and the potential link with iron phosphate, a molluscicide 
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discussed in chapter 1. Ferritin appeared to be the most interesting gene available to 

further develop as a potential target for future research. Clones containing a partial 

ferritin sequence were used as a template for a RACE experiment to attempt to fully 

sequence a D. reticulatum gene RACE cDNA was prepared as with SMART cDNA 

and 5' and 3' regions were amplified using PCR. 5' and 3' fragments were checked 

via gel electrophoresis and were of expected length based on homologous sequences, 

see Figure 10. Amplified fragments were isolated through gel extraction, cloned (into 

 

 

 

Figure 9 : Gel electrophoresis of RACE PCR products for Ferritin Gene 

Gel electrophoresis of PCR and RACE PCR products. Lanes 1 and 2 are PCR 

products from control PCR between 5' and 3' Ferritin gene specific primers 

(GSP) in the 5' RACE cDNA and 3' RACE cDNA respectively. Lane 3 shows 

PCR product from PCR between 5' Ferritin GSP and 3' RACE primer with the 

3' RACE cDNA as template. Lane 4 shows PCR product between 5' RACE 

primer and 3' Ferritin GSP with 5' RACE cDNA as template. Lane 3 has 2 PCR 

products, with the smaller product being of lower molecular weight than 

control product this was assumed to be the result of non-specific binding and 

amplification. The larger product from lane 3 was isolated via gel extraction 

and after sequencing deduced to be the correct RACE product. 
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pJET 1.2 vector) and sequenced as previously described. Forward and reverse 

sequences were aligned and compared with known ferritin genes. The resulting 

892bp transcript is shown in Figure 11. It contains an open reading frame predicting 

a peptide of 172 amino acid (aa) residues in length, with a predicted mol. wt. of 

 

Figure 10 : D. reticulatum sequence homologous to Ferritin identified 

through 5' & 3' RACE 

cDNA sequence for gene homologous to Ferritin. The incomplete sequence was 

identified via random cloning and sequencing of D. reticulatum cDNA. Primers 

were designed based on the incomplete cloned sequence, highlighted in the 

figure 5' (red) and 3' (green) primer sequences. It is likely based on UTR 

regions of other species that there is still a region of 5' UTR to identify, but the 

sequence here includes the full coding domain sequence based upon 

comparison with homologues. This was confirmed later in the project through 

analysis of ferritin gene in high-throughput sequencing datasets. 
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20kDa. This transcript was also identified in the high-throughput sequencing, and is 

discussed in more depth in chapter 4.  

 

3.3 Ion Channels as a Target for Molluscicides; Degenerate Primer PCR  

3.3.1 Overview of Channel homology and PCR design 

 Figure 12 shows an overview of the domain structure of the sodium voltage-

gated ion channel A. californica. At the time of this work A. californica was the 

closest species to D. reticulatum for which a complete sodium channel gene 

sequence was available. Highlighted are domains specified by NCBI CDD data for 

GI: 1842249 which correspond to areas with known function for the sodium channel. 

Sodium voltage-gated channels ion transport domains correspond to the 

transmembrane areas which loop through the cell membrane. A multiple sequence 

alignment of the A. californica sodium channel with homologues from other 

 

 

 

Figure 11 : Structure of A. californica Ion channel with primer locations 

flagged. 

Regions demarcated based on BLAST conserved domains identified in sodium 

channel alpha-subunit SCAP1 of A. californica (GI: 1842249). Peptide length 

given in residues, primers marked with flags and numbers corresponding to 

numbers in Table 8, green flags are 5', red 3'. 

 

DUF: Domain of unknown function (DUF3451); pfam11933, Ion: Ion 

transport protein; pfam00520, Na Trans: Sodium ion transport-associated; 

pfam06512 
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invertebrate species was made, and used to predict regions of sequence showing the 

least variability. The alignment is not shown here due to size, but areas of high 

conservation between species were selected and primers were designed based on all 

possible permutations of nucleotide sequence based on amino acid sequence. The 

degenerate primers for PCR are shown in Table 8.  

3.3.1 Partial sodium channel sequence 

 Primers 1-6 were initially assessed with varying source tissue, PCR protocols 

and cDNA methods. The combination of low annealing temperatures and degenerate 

primers led to a large amount of non-specific binding. Predicted sizes based on 

homologous genes were used to screen PCR band products. The only amplification 

reaction which produced a region of the sodium channel, used neuronal cDNA 

produced with random hexamers as a template, in combination with a touch down 

PCR protocol, with primers 1 and 2. Figure 13 shows a gel electrophoresis of touch  

 

 

No. Name Sequence Redund

ancy 

Position 

(bp) 

1 5' Na PWN CMTGGAAYTGGCTNGAYTT 32 909 

2 3' Na QDF TCCCARWARTCYTGNGTCAT 64 1462 

3 5' Na DAWC TTYACNRAYGCNTGGTGYTGG 256 4034 

4 3' Na YIAVI ATRACNGCRATRTACATRTT 64 5509 

5 5' Na WIES GARTGGATHGANTCNATGTGG 96 3146 

6 3' Na VII TTNTCRATRATNACDCCRATRAA 768 4645 

7 3' Na GAIA ACCATNACRTCNYTCATNTC 256 2424 

8 3' Na KLAKS GGCCAIGAYTTBGCIARYTTRAA 768 2913 

9 3' Na AAV GGNGTNACNGCCCGTGARTCRTC 256 2023 

Table 8: Redundant Primers designed based on A. Californica Na voltage 

gated channel 
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down PCR products with combinations of degenerate primers. PCR products were 

cloned and sequenced as previously described.  

 Figure 14 and Figure 15 show the cDNA and protein sequences of two 

fragments encoding part of putative A. californica sodium channel genes. Two 5' 

gene specific primers (GSPs), Table 9, were designed for each of the sequences 

produced and degenerate primers 7-9 designed. These 5' GSP and 3' degenerate 

primers were assessed for products in order to try and amplify larger fragments 

which included unknown 3' regions. Despite effort to retrieve more of the 3' region 

 

 

 

Figure 13 : Gel electrophoresis of redundant sodium channel PCR products 

Lane 1 contains the positive control, ferritin like gene, which has a size of 

509bp. Lane 2 includes a PCR Band from PCR with Primers 1 & 2 which has 

been boxed and appears to be the correct size based on predictions using 

homologous genes. This was gel extracted, cloned and sequenced and returned 

a partial sodium fragment which aligned with the ~550bp region in 

homologues genes. Lanes 3 and 4 are PCR products from PCR with Primers 3 

&4 and Primer 5 & 6 with predicted protein sizes of 1.4Kb and 1.5kb 

respectively. These amplification reactions were unsuccessful in producing 

products of large enough size. 
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Figure 14 : Alignment of D. reticulatum cDNA sequence with A. californica 

SCAP1 gene 

2 cDNA sequences synthesised from Deroceras reticulatum show strong 

homology to the 910bp -1463bp region with the 6396bp A. californica SCAP1 

gene (GI: 325296794). This region represents the region between primers 1 

and 2 indicated in previous figures. 
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of the gene, the length of sequence caused technical difficulties. Random hexamers 

which were used to produce the cDNA, improves the chances of 5' regions of RNA 

being reverse transcribed, but often decreases average cDNA length. 

 

 

 

 

 

Figure 15 : Alignment of D. reticulatum protein sequence with A. californica 

SCAP1 gene 

Alignment of translated D. reticulatum sodium channel fragments and 

translated A. californica SCAP1 gene. Both D. reticulatum and A. californica 

sequences contain ambiguous bases, most likely due to the low level of 

transcription leading to the high level of polymerase amplification required. 

Several amino acid additions are seen in the D. reticulatum gene, including 3 

residues at around 140aa and 1 at 147aa which is only seen in 1 of the 

fragments. 

Name Sequence Position 

(bp) 

Fragment 

5' Na_1 VNN AGTTCGTGAATAACTCAGACAACTGG 1241 Frag 1 

3' Na_1 MALL AAATGCACACAATAGAGCCATGCC 1453 Frag 1 

5' Na_2 SEEN GTTCCGCTTGAGTGAAGAAAACTGG 1239 Frag 2 

3' Na_2 CAF ATGAGACGAAAGGCACACAAGAGC 1461 Frag 2 

Table 9: Table of Gene specific primers for D. reticulatum Sodium Channel 

Fragments 
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Figure 16 : Kernel Density plot of 454 reads for Neural and Digestive tissue 

sources 

Similar to a histogram, a kernel density plot represents distribution, in this case 

of read length, within a dataset. The digestive gland presents an expected 

distribution peaking at around 300bp. The neural tissues main distribution has 

slightly lower density, though is shifted toward larger reads. It includes an 

additional peak, not seen with the digestive gland at around 75bp. 
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3.4 High Throughput Sequencing  

3.4.1 454 Sequencing 

 Having evaluated the cDNAs prepared from D. reticulatum tissues, high-

throughput sequencing was undertaken.  Non-normalised cDNA from D. reticulatum  

was synthesised from RNA extracted from the digestive gland and checked on gel, 

see Figure 16, and with the aforementioned random sequencing. cDNA was 

sequenced using a 454 GS FLX platform by The Food & Environment Agency 

(FERA) (Sand Hutton, York, YO41 1LZ) in July 2010. This resulted in the 

production of 132,597 reads with an average read length of 265bp; a kernel density 

plot of read length is shown in Figure 16. Non-normalised cDNA from D. 

reticulatum was synthesised from neuronal tissue total RNA with an additional 

mRNA purification step using the Poly(A)Purist™ Kit [Life Technologies]. The 

resulting cDNA was sequenced at FERA in January 2012. This produced 161,419 

reads with an average read length of 285bp, the distribution of which is also shown 

in Figure 16. 

3.4.2 Sequence Cleaning with Univec 

 Digestive gland tissue SMART primer sequences were removed by FERA as 

part of their workflow, for neuronal tissue SMART primers were not removed. 

Adaptors and primers were removed from both 454 datasets by screening against the 

Univec NCBI database (which contains common sequencing adaptors). Vector 

screening was conducting locally using BLASTn, as the online tool did not permit 

such large datasets, with parameter specification matching VecScreen. The resulting 

BLAST output was assessed using the criteria specified by NCBI with strong, 

moderate & weak matches depending on BLAST score and terminal proximity. All 

sequences with a weak match or higher were trimmed removing the matching region. 

In the case of internal areas the sequence was split into two sections. Any sequences 

that were subsequently shorter than 50bp were removed completely. Figure 16 shows 

a summary of the trimmed sequences for both sequencing runs. For digestive gland 

tissue >95% of matches were GS FLX Titanium adaptors (Univec accessions: 929 & 

933). Neuronal tissue matched various cDNA related adaptors primarily from the 
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SMART kit, additionally general purpose adaptors were found, which were possibly 

carry-over of oligo-dT from the mRNA purification step. Although there is  

noticeable difference in number of removed read sequences, this is likely due to the 

larger number of small <100bp in the neuronal tissue dataset as seen in Figure 16. 

The difference in number of sequences trimmed between the two datasets is 

primarily due to SMART primers being removed from the digestive gland before the 

Univec screen by FERA, the results of which are unavailable. 

3.4.3 Assembling Digestive Gland Data 

 454 sequencing data of digestive gland was assembled with 3 assemblers; see 

statistics in Table 11. Contigs smaller than 200bp were removed, either through 

defining the option in the assembly software, or filtered out after assembly. This was 

done to make assemblies equivalent, with assemblers having differing minimum 

contig length, 200bp was selected due it being the minimum contig length accepted 

by the NCBI TSA database. The statistics present quite differing results, with over 3 

times as many contigs in CLCbio assembly as Newbler. The n50 statistic is largest 

for Newbler; this statistic represents the fewest number of contigs which can 

represent 50% of the assembly. Despite this the Newbler assembly contains far fewer 

contigs larger than 1kb in comparison to CLCbio. This may suggest some of the very 

 Digestive Tissue Neuronal Tissue 

Starting Read 132,597 161,419 

Univec matches 13,368 85,411 

Right Terminal Trim 12,339 7,616 

Left Terminal Trim 31 71,578 

Internal Trim 79 501 

Total Sequences Removed 843 5,329 

Total Bps Removed 303,103 940,923 

Final Read Count 131,754 156,090 

Dataset Contraction 0.86% 2.03% 

Table 10: Table showing statistics for Univec screen 
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large contigs have fragmented into mid-sized contigs in CLCbio, or vice-versa  

Newbler has over-assembled mid-sized contigs into chimeric contigs. Notably, the 

assembler which overall incorporated the most reads is CLCbio with Newbler being 

poorest. Whilst SeqMan NG appears to sit in between Newbler and CLCbio, when 

we look at the distribution of contig size, SeqMan NG has greatest skew to shorter 

contigs, see Figure 16. Overall both CLCbio and Newbler have advantages based on 

different metrics, whilst there seems no reason to prefer the SeqMan NG assembly.  

3.4.4 Assembling Neuronal Tissue Data 

 454 neuronal tissue data was assembled with 3 assemblers as was done for 

the digestive gland data, statistics are shown in Table 12. Overall assembly statistics 

appear relatively varied although Newbler has the best metrics for a number of 

statistics such as n50, contigs larger than 1kb as well as incorporating the most base 

Statistic Newbler SeqMan NG CLCbio 

No. of Contigs 1302 2570  4614 

Assembly Size 1,054,550bp 1,402,125bp 2,606,554bp 

n50 950 621  613 

n90 431 284  325 

Contigs >500bp 861 766  1958 

Contigs >1Kbp 298 272  413  

No of Reads (%) 90973 (69%) 98849 (75%) 110830 (84.1%) 

No of bps  

(%) 

24,323,911 

(69.7%) 

24,968,338 

(71.5%) 

28,0157,27 

(80.2%) 

Max Contig (bp) 4437 4527 3768 

Table 11: Statistics of 3 Assemblies of Digestive Gland 454 Read Sequences 

Reads were assembled with Newbler v2.6, SeqMan NG v4.1.2 and CLCbio 

4.7.2. Emboldened statistics are where metrics can be considered superior with 

CLCbio having more contigs larger than 0.5 & 1Kb and incorporating more 

reads/bps. Newbler has better n50 & n90 statistics. 
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Figure 17 : Kernel density plot of digestive gland contig lengths 

The graph shows the density of contigs length relative to the overall assembly 

size. Overall Seaman NG is skewed further toward small contigs with a much 

higher peak. The Newbler assembly presents a much lower kurtosis 

distribution, with the CLCbio in an intermediate position. It would appear 

Newbler would be the closest assembly to more optimal standard distribution, 

though may not represent the true distribution any more than the other 

assemblies. 
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pairs. The maximum contig size is much lower than that of the digestive gland. The 

neuronal tissue cDNA was prepared with the additional mRNA enrichment step, this 

difference may account for the difference in contig size. Alternatively, as shown in 

the cDNA gel analysis, see Figure 9, the additional time taken may have led to 

poorer RNA resulting in a smaller size distribution of cDNA sequences. However 

comparison of contig size using a kernel density plot shows only a very minor 

difference between the two datasets size distribution, Figure 17. The overall density 

is shifted slightly further toward smaller contigs in the neuronal dataset, suggesting 

overall at slightly poorer quality dataset which is mirrored in the overall statistics 

seen in Table 12. The table shows more contigs, but overall shorter in length. Despite 

this we see very similar levels of incorporation of reads into assemblies.  

 

 

Statistic CLCbio Newbler SeqMan NG 

No. of Contigs 8018 2614 6509 

Assembly Size (bp) 3,959,511 1,736,684 3,158,950 

n50 527 745 502 

n90 312 397 306 

Contigs >500bp 3040 1627 2097 

Contigs >1Kbp 302 393 304 

No of Reads (%) 118021 (75.6%) 98556 (63.1%) 92976 (59.6%) 

No of bps (%) 32254579 (71.4%) 3,2337,120 (71.5%) 25774512 (57%) 

Max Contig (bp) 2130 2476 2490 

Table 12: Statistics of 3 Assemblies of Neuronal Tissue 454 Read Sequences 

Reads were assembled with Newbler v2.6, SeqMan NG v4.1.2 and CLCbio 

4.7.2. Emboldened statistics are where metrics can be considered superior. 

Overall the size distribution related statistics such as n90 and contigs >1Kbp 

are very similar for all assemblers. Overall SeqMan appears to be poorest, 

including least number of base pairs and poorest size statistics. 
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3.4.5 Comparison of Assemblers 

 The ratio of results did not match previous data comparison conducted which 

included these assemblers (Kumar and Blaxter 2010), but assemblers used here are 

 

Figure 18 : Kernel density plot of neural tissue contig lengths 

The graph shows the density of contigs length relative to the overall assembly 

size.  In comparison to the digestive gland contigs, the peak in density of 

distribution is slightly closer between assemblies though the peak density at 

slightly shorter contigs and the overall extend of the density toward large 

contigs is contracted as compared with the digestive gland assemblies. 
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later versions, and the datasets used were roughly 1/5th the size. Notably the ratio of 

number of contigs 1:2.5:3 in the neuronal tissue assembly follow the same rank as 

with the digestive gland with a ratio of 1:2:3.5, all ratios being ranked Newbler, 

SeqMan, and CLCbio in number of contigs. There are a number of discrepancies in 

the actual size distribution and inclusion rates of the assemblies. The CLCbio 

digestive gland assembly appears to use the largest amount of reads to assemble the 

most contigs, with the largest number of contigs greater than 500bp and 1Kbp. 

Although Newbler does produce the best n50 of the assemblies this equally could be 

due to fewer smaller contigs or CLCbio under-assembly of larger contigs. Overall 

comparison through basic assembly methods is relatively uninformative; utilization 

of homology data whilst having its caveats, should be more informative. 

3.4.6 Contig Naming 

 In order to represent contigs which exist in multiple assemblies, custom 

naming convention has been used for the contigs. This nomenclature is best attempt 

to explain the relationship of a sequence with respect to multiple source assemblies. 

CLCbio contigs have prefix C then number referring the position in the output 

assembly; Newbler has prefix N and SeqMan prefix S. Where contigs are equivalent 

or within a 90% threshold of similarity defined by BLAST search, and their 

equivalence checked by hand, against the assembly there are concatenated together 

for example C1212;N3233;S2332n, with a terminating suffix referring to either the 

digestive or neuronal assemblies (d or n). In the case of contigs matching but being 

incomplete prefix p is used and - is for the contig missing from the assembly entirely. 

For example C1212;N-;pS2332n would refer to CLCbio contig 1212 which does not 

exist in the Newbler assembly and is only partially assembled in the SeqMan 

assembly. On one occasion a second contig from digestive gland is added in 

parenthesis to a neural contig for example C-;pN48;S-n(C2550;S1758;N554d) which 

is used to identify a partial contig in the neural tissue dataset which exists in a 

complete form in the digestive gland dataset. 
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 Chapter 4 | Analysis: Transcript Sequences 

4.1 BLASTx homology analysis of Digestive Gland transcriptome data 

 The predicted transcripts from cDNA sequencing (both contigs and 

singletons) were analysed using BLASTx, which compares the protein sequences 

predicted by transcript sequences with protein sequences in the NCBI non-redundant 

(nr) protein database [last conducted March 2013]. Searches against protein 

sequences rather than nucleotide searches are preferred as this both reduces the 

search time and the resulting data is more informative. Transcript to DNA homology 

being less informative than transcript to protein homology, and allows for more 

accurate functional predictions. The significance of any sequence similarity detected 

is measured by the e-value parameter attached to each comparison, which estimates 

the probability of the similarity being due to random chance. Data was uploaded to a 

modified BioSQL database which allowed for a wide range of statistical analyses. 

Altering the BLAST e-value “cut-off” had a significant effect on the number of 

sequences detected as significantly similar to the predicted D. reticulatum protein 

sequences, and using too low a "cut-off" value removed similarities which 

 appeared significant on manual inspection. This is likely to be due to the smaller 

number of closely related species to D. reticulatum with sequences in the nr 

database, which meant that the effective database size was smaller than the actual 

database size. Figure 19 shows how changing e-value affects the number of contigs 

which match homologues for each of the assemblies with Table 13 showing a 

summary at 1e-3; this value is higher than that normally used as a "cut-off" for 

sequence similarity comparisons, but was used as an empirical compromise between 

detection of too many "background" similarities, and omission of too many relevant 

similarities. 

 The analysis of sequence similarities was used to generate the parameter 

"number of reads with hits". This value is a summation of the total reads that make 

up each of the contigs which have a BLAST hit. Table 13 shows that despite the 

disparity in BLAST matches for contigs produced by each of the assembler softwares 
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Figure 19 : Number of top BLAST hits below BLAST evalue for 3 assemblies 

The graph represents the change in number of contig matches for digestive 

gland BLAST results which would be filtered out of the results depending on the 

e-value cut-off. Expect values of 1e-10, 1e-3 and 10 are shown as vertical lines 

with the former 2 representing common cut-offs and the later representing the 

limit of expect value for a BLAST search. 
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used for raw data analysis, the overall number of reads which have BLAST matches 

is very similar between the assemblies. However, this is a raw count and does not 

indicate whether the ~30,000 reads which have BLAST hits in one assembly are the 

same 30,000 in another. However, using BioSQL it is relatively simple to count how 

many reads overlap between assemblies; Figure 20 represents this data. Roughly 

80% of reads from each assembly which contribute to contigs with sequence 

similarity to the global database ("BLAST hits") correspond to reads from at least 1 

other assembly which satisfy the same criterion. This leaves 20% of reads from each 

assembly constituting "BLAST hits" unique to that assembly. For this reason, it was 

beneficial to continue to use data from all assemblies, rather than choosing one 

assembly and not considering data from the others.  

4.1.1 Species and Phyla of homology matches 

 At the time of analysis, the NCBI databases included only 125,529 proteins 

for Mollusca, compared with 3,582,193 and 1,788,814 for Chordata and Arthropoda 

respectively. These 2 phyla contain a greater variety of potential homologues to D. 

 

 

Summary (All expect < 1e-3) CLCbio Newbler SeqMan NG 

Contigs with BLAST matches 1626 583 921 

Total NCBI protein 

homologues 

55634 29796 44483 

Number of reads with hits 31922 30129 29215 

Table 13: Summary of BLAST homology matches for digestive gland 

assemblies 

The contigs with BLAST matches describes the number of contigs which have at 

least 1 match to a protein sequence in the NCBI database which has an evalue 

lower than 1e-3 and matches the 1e-3 line of Figure 19. The total NCBI protein 

homologues is the number of unique proteins that match a contig, these are 

only proteins which match at expect value below 1e-3 and are included in the 

top 50 hits of a BLAST result. 
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reticulatum predicted proteins than the poorer characterised Mollusca phylum, to 

which D. reticulatum belongs, Figure 21. Despite the relative lack of Molluscan data 

in the NCBI non-redundant protein sequence database, approximately a third of the 

most similar proteins were Molluscan homologues, compared to Chordata and 

Arthropoda which were respectively the next largest phyla. These data suggest that 

 

Figure 20 : Venn diagram of reads with BLAST matches below 1e-3 

The Venn diagram shows how reads which are part of contigs, which have 

BLAST matches, are shared between assemblies. In this case 19189 reads 

match homologues and are in all 3 assemblies. Roughly 20% of reads per 

assembly uniquely match homologues and are either not included in other 

assemblies, or are included but have not been found to match a homologous 

protein. 
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where Molluscan homologues of the predicted D. reticulatum proteins are present in 

the database, the similarity comparison selects them.  

 

Figure 21 : Top BLAST matches per phyla as a percentage for the digestive 

gland 

The chart shows the breakdown for the top BLAST hit per contig which had a 

BLAST hit with an expect value below 1e-3. The inner, middle and outer rings 

represent the SeqMan NG, Newbler and CLCbio assemblies. The top hits are 

against Molluscan homologues as one would hope for a Molluscan 

transcriptome. Chordata and Arthropoda we would also expect based on the 

distribution of the NCBI database, with these phyla having the widest range 

and variety of homologues. 
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 The top species returned from similarity comparison, with approximately a 

quarter of most similar proteins, was Crassostrea gigas, Figure 22. This is as we 

would expect, with C. gigas being the only mollusc to have a complete genome 

 

Figure 22 : Breakdown of top hits by species for the digestive gland 

assemblies 

The chart represents the species of the protein which was the number hit for 

each contig in an assembly. The hits were limited to having e value of below 

1e-3. The three rings of this pie chart represent the three assemblies with the 

outer, middle, and centre rings representing CLCbio, Newbler and SeqMan 

assemblies respectively. We see in general that the species with biggest match 

is the only Molluscan species which has a genome in the NCBI database, as 

would be expected. Other species mostly represent the next most characterised 

organism in each respective phylum.  
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sequence with all predicted proteins added to the NCBI nr protein database. The fast-

developing nature of the global sequence database was dramatically illustrated by the 

change in sequence comparison statistics which took place during the duration of this 

project.  

 Notably, when the digestive gland sequences were first analysed for sequence 

similarity to database entries in 2010 the top species detected was Branchiostoma 

floridae, a Lancelet of the Chordata, which gave 20% of most similar "BLAST hits" 

in 2010; reanalysis of the data in 2013 showed this species having <7% of the most 

similar "BLAST hits". There were also are several other Chordata species, Xenopus 

tropicalis and Danio rerio, both with ~4% of top hits in 2010, which are now both 

<1%. The decrease in Chordata species and increase in Molluscan and other 

invertebrate matches indicates an increasing number of less characterised phyla are 

now being better represented in the NCBI database. This is shown in BLAST 

analysis on a Lymnaea stagnalis transcriptome from 2012, using refseq and swissprot 

NCBI databases from between November 2011 and February 2012 which showed 

Molluscan homologues representing only 1.6% of the top hits (Sadamoto et al. 

2012).  

4.2 ESTScan peptide prediction and InterProScan 

 Predicted polypeptides for assembled sequences were produced using 

ESTScan2.1 (Iseli et al., 1999) to identify likely ORFs. The resulting predicted 

polypeptides were then analysed with InterProScan, following a bioinformatic 

workflow previously described (Cantacessi et al. 2010). Whilst this method increases 

the chances of sequences being missed and not analysed, it substantially decreases 

computation time if nucleotide sequences are first translated, leading to 5x more 

sequence comparisons to the proteins. InterProScan is a collection which uses 14 

separate software packages to analyse the peptide sequence for peptide motifs and 

homologous domains (Zdobnov and Apweiler 2001). This package includes software 

which compares to known protein databases such as PANTHER, and protein families 

and motifs as well as amino acid signatures such as in the PROSITE database. 

Additionally software such as SEG, COILS and SignalP detect specific amino acid 
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Main 

Term 

IPR Group  Average CLCbio Newbler SeqMan 

IPR013128 Peptidase C1A, papain 1871 1972 1864 1776 

IPR001701 Glycoside hydrolase, 

family 9 

1374 1852 1984 287 

IPR009078 Ferritin 1139 1085 1161 1170 

IPR020568 Ribosomal protein S5 750 714 813 723 

IPR000217 Tubulin 663 680 638 670 

IPR005225 Small GTP-binding 

protein domain 

499 334 589 573 

IPR001404 Heat shock protein 

Hsp90 

444 447 448 438 

IPR014001 Helicase 424 433 436 404 

IPR001299 Ependymin 398 401 405 388 

IPR012336 Thioredoxin-like fold 396 424 409 356 

IPR003594 Histidine kinase-like 

ATPase 

392 395 395 387 

IPR003726 Homocysteine S-

methyltransferase 

378 346 394 394 

IPR015566 Endoplasmin 377 377 383 372 

IPR016186 C-type lectin-like 343 360 342 326 

IPR001753 Crotonase superfamily 342 155 447 425 

IPR000640 Translation elongation 

factor EFG 

334 261 377 365 

Table 14: Summary of top IPR terms 

The table shows a list of the top IPR terms ranked by the number of reads 

linked to the IPR terms through a contig match using the IPRscan software. 

IPR terms have been condensed into groups and the IPR term with the highest 

number of read matches used. IPR terms linked to generic domains such as EF 

Hand domain, NAD(P)-binding domain, Leucine-rich repeat et cetera have 

been removed as they do not indicate any likely function and as such are not 

relevant. Additionally major IPR terms which are only significant in one of the 

assemblies have not been included, but are shown in a separate table. 
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configurations linked to protein structures such as coiled-coils and signal peptides 

rather than homology. Specific matches made by these softwares are then linked to 

IPR terms, which in turn can be linked to protein families as well as gene ontologies. 

 

4.2.1 Analysis of IPR terms for Digestive Gland tissue 

 Table 14 lists the Top 20 IPR terms based on number of reads linked to the 

IPR term. Using the IPR terms we can predict potential functions for the sequences 

and using read counts over simply number of contigs both allows for ranking to 

better represent the availability of transcripts in the sequencing results as well 

minimising the effect of assembly quality. As Table 14 demonstrates, whilst there are 

differences, in general the same main proteins are represented by the data. Where the 

assemblies uniquely match IPR terms these have not been included, but are shown in 

Table 15. The top proteins represent a mix of structural, storage and enzymatic 

enzymes. Notably, peptidase C1A, papain-like cysteine protease, is the top IPR 

group, which is not unexpected for digestive gland tissue and matches previous  

IPR Term IPR Name CLCbio Newbler SeqMan 

IPR011687 P60-like 1334 10 5 

IPR005485 
Ribosomal protein L5 

eukaryotic/L18 archaeal 
1016 12 6 

IPR008983 Tumour necrosis factor 12 8 518 

IPR001073 Complement C1q protein 4 0 514 

IPR000163 Prohibitin 33 328 24 

Table 15: Summary of IPR terms only significant in a single assembly 

The table shows IPR terms which were not included in the top IPR term 

summary table as they were not represented highly in all the sequence 

assemblies. With the sequences having both been detected as a protein with 

ESTScan and matched to known motifs with IPRscan, it is likely these are real 

proteins. However there significance with high read count may be an artefact 

of assembly, possible caused by over assembly of multiple contigs. 
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IPR Term Active Site Name Average CLCbio Newbler SeqMan  

IPR025660 
Cysteine peptidase, 

histidine  
1791 1800 1816 1757 

IPR000169 
Cysteine peptidase, 

cysteine 
1756 1788 1802 1677 

IPR025661 
Cysteine peptidase, 

asparagine 
1685 1859 1857 1338 

IPR018221 
Glycoside hydrolase, 

family 9 
1314 1707 1958 277 

IPR020830 

Glyceraldehyde 3-

phosphate 

dehydrogenase 

335 293 394 319 

IPR018114 
Peptidase S1, trypsin 

family 
268 274 266 265 

IPR020003 

ATPase, alpha/beta 

subunit, nucleotide-

binding 

154 196 145 122 

IPR011767 Glutaredoxin 154 151 157 154 

IPR022415 
ATP:guanido 

phosphotransferase 
113 101 129 108 

IPR020610 Thiolase 109 85 126 117 

IPR020615 
Thiolase, acyl-

enzyme intermediate 
103 85 116 109 

IPR008271 
Serine/threonine-

protein kinase 
100 69 119 111 

IPR019826 
Carboxylesterase 

type B 
77 155 47 28 

IPR024708 Catalase 57 9 154 8 

IPR018220 
Adenylosuccinate 

synthase 
57 59 54 57 

IPR001252 Malate 25 62 13 0 
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Table 16: Top active sites based on IPR terms 

Top active sites based on IPR terms labelled as active site type. This should 

indicate the best represented enzymes in the dataset. The top active sites 

represent digestive enzymes sites we would expect to see in digestive gland 

tissue. SeqMan's result for GHF 9 site seems anomalous and may suggest 

GHF9 is more significant than would appear, having most reads of any site in 

the Newbler assembly. 

experimental evidence (Walker et al., 1998). In addition other key digestive enzymes 

are found in the top group, these can be further clarified by filtering only active sites,  

shown in Table 16. The top 3 main digestive enzymes are cysteine peptidase, 

chymotrypsin-like serine protease and GHF9 (cellulase) all of which match what one 

would predict for digestive gland source tissue. Below we consider some of the 

notable proteins in more detail. 

4.3 Largest protein groups based on IPR terms 

4.3.1 Cysteine Peptidase 

 A number of different sequences encoding cysteine proteinases are linked to 

the Peptidase C1A IPR terms. For D. reticulatum, all 3 assemblies produce at least 7 

dehydrogenase 

IPR001969 Peptidase aspartic 8 12 11 0 

IPR001579 
Glycoside hydrolase 

chitinase 
5 16 0 0 

IPR016130 
Protein-tyrosine 

phosphatase 
4 7 6 0 

IPR002168 Lipase, GDXG 3 9 0 0 

IPR012999 

Pyridine nucleotide-

disulphide 

oxidoreductase, class 

I 

2 6 0 0 
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contigs which match at least 1 active site (PS00139, PS00639 and PS00640). These 

Prosite motifs centre around 3 key amino acid residues, a cysteine, asparagine and 

histidine which form the catalytic triad required protease activity. Additionally all 

assemblies contain around 20-30 sequences with BLAST homology to cathepsins B, 

C, F, L, K and Z. 5 contigs in particular appear to be complete or near-complete 

cathepsin like proteins, see Table 17. All but 1 of these proteins contain 3/3 active 

site residues and show homology to various different cathepsin like peptides. The top 

predicted protein shows close homology to cathepsin L and is a full coding sequence  

which has one of the highest read counts for any contig with homology matches. The 

top 3 active sites in Table 16 and the top IPR term (IPR000668) in Table 14 are 

primarily due to this cathepsin L-like contig which represents ~1.5% of the 

assembled digestive gland dataset in reads. 

 Cathepsin L has been shown in a number of different roles in invertebrates 

(Pyati et al. 2009); although without characterisation of this protein we cannot be 

completely sure of its function in D. reticulatum. Comparison with other Molluscan 

cysteine proteases indicates the primary conserved sites are all maintained. Figure 23 

 

 

Contig Active Sites 

Residues 

Blast 

Homology 

CLCbio 

Reads 

Newbler 

Reads 

SeqMan 

Reads 

C2952;N232;S21d 3/3 Cathepsin L 1578 1567 1169 

C2566;N257;S315d 3/3 Cathepsin B 79 77 75 

C4050;N10;S-d 3/3 Cathepsin C 65 84 - 

C4049;N279;S529d 2/3 Cathepsin F 41 41 44 

C602;N73;S-d 3/3 Cathepsin L 19 26 - 

Table 17: Contigs with homology to cysteine peptidase like genes 

Table includes peptides with the cysteine peptidase active site IPR terms with 

all but 1 peptide having all 3 sites. The peptide with closest homology to 

Cathepsin C includes the Cathepsin C Exclusion Domain (IPR014882) and 

both Cathepsin L like and Cathepsin B like peptides include a propeptide. 
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Figure 23 : Cathepsin L homologue of D. reticulatum alignment 

An alignment D. reticulatum predicted Cathepsin L with Mollusca matches 

from the Blastx search against the nr database. Cathepsin L from Mus 

musculus (GI: 4887002) is also included to show that the sequence is highly 

conserved, even across phyla. The propeptide inhibitory domain includes an 

ERFNIN-like conserved region, highlighted blue, with the initial Glu and Arg 

and final Asn described as the most highly conserved residues across cysteine 

proteinases. Boxed cysteine residues in the enzymatic domain are key 

conserved residues which form 3 disulphide bridges as described in MEROPS 

database record for cathepsin L. The light green residues are the Cys-His-Asn 

catalytic triad essential for activity. Also highlighted in dark green is a 

conserved glutamine residue, at 164aa, which is essential for catalytic activity 

and a glutamine residue at 358aa which is indicated to be key to substrate 

specificity (Barrett, Rawlings, and Woessner (Eds) 1998). 
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Figure 24 : Phylogenetic tree of the cathepsin L from Deroceras reticulatum 

Shows a phylogenetic tree produced by aligning closest homologues identified 

using BLASTp from all sequences with genomes and their predicted proteins  
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shows how sequences from Mollusca align with D. reticulatum. We extended this 

alignment with sequences from species with full genomes, as well as some 

Molluscan sequences from the NCBI EST_OTHERS database to produce a 

phylogenetic tree, Figure 24. The Mollusca group together separate from the main 

Chordata and Arthropoda groups, with Arthropoda being slightly closer, though with 

a low bootstrap value (0.34), to Mollusca, than Chordata. A relatively high bootstrap 

value further separates the 2 Bivalve species from the Gastropoda. 

 All sequences used in the phylogenetic tree contain the key conserved sites 

(except A. californica which lacked Asn300 equivalent residue) within the peptide 

region as well the ERFNIN motif in the inhibitory pro-peptide. 

The inhibitory domain is needed to keep the peptide in an inactive state whilst being 

transported to the extracellular space, where it is cleaved to become active (K. Tao et 

al. 1994). The IPRscan identifies a signal peptide region at the 5' end of the protein 

which is necessary for secretion of the enzyme for extracellular digestion. After its 

export to the extracellular space, cathepsin L is activated by cleavage of the pro- 

peptide region. Autolysis of cathepsin L at pH 6 and below has been described 

(Jerala et al. 1998) as well as activation by trypsin/chymotrypsin digestion 

(Nishimura, Furuno, and Kato 1988; Wiederanders and Kirschke 1989). A search of 

cDNA for trypsin shows a D. reticulatum contig (C4138;N153:S219d), homologous 

available via NCBI Map Viewer. The tree was generated with clustalw2 using 

bootstrap value of 1000 (fraction shown), from 15 amino acids before the 

ERFNIN motif and 8 amino acids after the Asn300 conserved residue. 5' and 3' 

regions were left out due to missing data; many Molluscan ESTs were only 

partial. L. stagnalis sequence was a combined sequence of a 5' partial 

(148311442) and 3' partial (148311064) sequence. The contig from our data 

grouped with other gastropods, as part of a larger Molluscan group, with the 2 

Bivalves P. fucata and C. farreri separate from the gastropods. We see that 

most species group into their phyla as we'd expect. A few artefacts exist 

primarily where only a single species is available from a phyla. These are 

likely due to the limitations of using a single gene and a small number of 

species. 
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to serine proteases. As is seen in the top active sites IPR018114 Peptidase S1, trypsin 

family is the next most highly represented proteinase. The InterProScan also shows a 

SignalP cleavage site for the serine protease suggesting it is a secretory protein, 

similar to insect digestive cathepsin L-like enzymes, see Figure 25. 

 As well as homology, biochemical characterisation of cysteine proteinases 

with cathepsin-L like activity was shown to be responsible for the majority of the 

digestive gland's proteolytic activity in D. reticulatum against a protein substrate 

(plant Rubisco; (A. J. Walker, Glen, and Shewry 1998)). These data also highlighted 

a lack of aspartic peptidase activity in D. reticulatum digestive gland due to pepstatin 

not reducing proteolysis of azocasein. A search through the data for aspartic 

peptidases showed several contigs linked to relevant IPR terms IPR001461 and 

BLAST hits against invertebrate aspartic peptidase / cathepsin D. The average 

number of reads linked to aspartic peptidase (IPR001461) is 8 (see Table 16) 

suggesting a limited number of transcripts in the RNA, correlating with the lack of 

activity found in the digestive gland assays. The transcriptomic and biochemical data 

are consistent in suggesting that the cathepsin L-like cysteine proteinase encoded by 

C2952;N232;S21d is the primary proteolytic enzyme in the digestive processes of D. 

reticulatum. A previous EST study in Diabrotica virgifera virgifera showed high 

frequency of cysteine proteases in the gut tissue cDNA (Siegfried, Waterfield, and  

Ffrench-Constant 2005). These proteases have been implicated as key enzymes in 

plant-herbivore relationships, with cysteine proteases being a target for plant 

cystatins (Shindo and Van der Hoorn 2008). The presence of a second similar but 

distinct cathepsin L in Table 17, as well as several more partial homologues based on 

BLAST data may suggest a similar function to insects in D. reticulatum. Despite 

potentially a reliance on one key protease, a pool of alternative similarly functioning 

enzymes which could be utilised if the primary enzyme in use is inhibited. 

4.2.2 Ferritin 

 An average of 1139 reads linked to the ferritin IPR terms in the digestive 

gland transcriptome analysis, in addition to a ferritin sequence being found in the 

random sequencing of cDNA clones conducted earlier (Ch. 3). Transcripts encoding 
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Figure 25 : Alignment of contig with serine protease homologues 

Shows alignment of C4138;N153;S219d to 2 Molluscan and 1 chordate serine 

protease homologues from the NCBI nr database. Residues highlighted in black 

at His133 and Ser275 are conserved residues part of the PS00134 & PS00135 

(highlighted dark grey), with PDOC00124 indicating a 100% likelihood that a 

protein containing these to patterns is a Serine Protease. Also highlighted 

black is a conserved Asp (~182aa) highlighted by the MEROPS database 

record for Chymotrypsin. Interpro returned the N-terminal SignalP prediction 

for the D. reticulatum contig as well as some homologues (highlighted light 

grey at the N-terminus) the bar and arrow represent the expected cleavage 

point of the propeptide region. 
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several different ferritin-like proteins are present in the transcriptome. The most 

significant contig in terms of reads encodes a protein most similar to Molluscan 

ferritins, having greatest similarity to Lymnaea stagnalis soma ferritin. In Mollusca 2 

main types of ferritin have been identified; soma ferritin expressed constitutively in 

most tissues and yolk ferritin expressed primarily in the platelets of the growing 

oocytes (Darl et al., 1994). The D. reticulatum contig matching soma ferritin has 

~1000 reads (C-;N293;S94d), compared with the most abundant sequence similar to 

yolk ferritin (C2570;N476;S435d), at 33 reads. Expression of soma and yolk ferritin 

has been shown to differ between tissue types, including the Molluscan midgut, 

 

Figure 26 : D. reticulatum contig homologous to L. stagnalis snail soma 

ferritin 

Alignment of C-;N293;S274d against L. stagnalis (CLCbio assembly does 

contain this high read count ferritin but is fragmented into 2 contigs). 

Highlighted amino acids A-C show 3 nucleotides of the iron nucleation site. 

Residues 1-6 are conserved residues of the H-specific ferroxidase centre. 

Additional highlighted in grey are 2 Prosite ferritin iron-binding region 

signatures attach to the ferritin conserved site IPR term (IPR014034). 

PS00540, E-x-[KR]-E-x(2)-E- [KR]-[LF]-[LIVMA]-x(2)-Q-N-x-R-x-G-R which 

includes the nucleation site, starting at residue A (Glu61(59)). PS00204 D-

x(2)-[LIVMF]-[STACQV]-[DH]-[FYMI]-[LIV]-[EN]- x(2)-[FYC]-L-x(6)-

[LIVMQ]- [KNER] includes Gln141(139) of the ferroxidase core and starts at 

Asp124 
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possibly due to differing regulation mechanisms (Darl et al., 1994; Bottke et al., 

1988). The soma ferritin in D. reticulatum digestive gland is a highly abundant 

transcript, indicating a need for high levels of expression of the ferritin gene. 

 The ferritin complex, normally linked with iron storage and homeostasis 

(Crichton and Charloteaux-Wauters 1987), is typically assembled from 24 peptide 

subunits each containing an iron-binding domain. Conserved amino acids in ferritin 

include Asp131 and Glu134 within the supposed iron access channel formed by 3 

neighbouring subunits, Glu61, 64, 67 forming the iron nucleation site and Glu27, 

Tyr34, Glu61, Glu62, His65, Glu107 and Gln141, conserved as part of the H-specific 

ferroxidase centre. These are all present in the D. reticulatum's soma ferritin 

sequence, see Figure 26. Like the 5' UTR of L. stagnalis mRNA encoding soma 

 

 

 

Figure 27 : SIREs RNA fold prediction for D. reticulatum Ferritin sequence 

The green circle shows a potential C8 bulge usually found in IREs. The C here 

is neither at position 8 nor a bulge, but there is a G8 bulge present. The red 

circles show the predicted apical loop. [Image generated by SIREs webserver:  

http://ccbg.imppc.org/sires/index.html] 
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ferritin, and the 5' UTRs of mRNAs encoding H-chain ferritin subunits generally, an 

Iron response element (IRE) is predicted to be present in the 5' UTR of D. 

reticulatum soma ferritin mRNA (C-;N293;S94d) based on SIREs analysis, an online 

tool for predicting the signature RNA folding of IREs (Campillos et al. 2010), see 

Figure 27. 

 Ferritin has been one of the most frequently sequenced transcripts in D. 

reticulatum, both with Sanger and 454 technologies. Despite this, the reason why it 

should be so common is not entirely clear as Molluscan ferritin has been linked with 

a number of functions. In the pearl oyster Pinctada fucata ferritin has been 

postulated to be important in shell formation. Expression data available shows 

similar levels of ferritin mRNA in the mantle and digestive gland of the organism, 

perhaps suggesting a translocation of iron, from the gut to the mantle via ferritin 

(Zhang et al. 2003). 

 However, the need for high levels of large iron translocation to the relatively 

small internal shell of D. reticulatum seems less likely. In the limpet Cellana 

toreuma ferric oxide has been shown to make up 54% of the radula, a series of rows 

of teeth used to graze on rock encrusted algae (Lu, Huang, and Li 1995). New rows 

of radula teeth are formed through biomineralisation with ferritin present in the tooth 

surrounding cells and the teeth themselves. Subcellular investigation demonstrated 

ferritin was transported and disassembled as the tooth matured with final iron 

deposition on the tooth cusp (Clark et al. 1995). The radula in D. reticulatum may 

show similar mineralisation, and will suffer high rates of wear from abrading plant 

tissue; a high turnover of teeth could explain the high levels of ferritin mRNA in the 

digestive gland transcriptome, with ferritin used for scavenging and storing iron from 

the diet.  

4.3.3 Glycosidase Hydrolase Family 9  

 Glycosidase Hydrolase Family 9 (GHF9) is a family of enzymes which 

includes most cellulases, and has previously been known as cellulase family E. 

GHF9 cellulases have been identified previously in Mollusca, and can be loosely 

grouped into the cellulases (EC 3.2.1.4) or cellulose 1,4-β-cellobiosidase (EC 
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Figure 28 : Alignment of D. reticulatum contig with Molluscan homologues 

Figure shows the GHF9 alignment generated by comparing D. reticulatum with 

other Molluscan sequences. The two areas with black triangles highlight the 

most conserved regions linked to cellulases by IPR terms. The first pattern 

(PS00592) covering the consensus region 374-390 contains the active site 

histidine. The second highlighted pattern (PS00698) covers the consensus  
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3.2.1.91) classification. In both cases these enzymes hydrolyse (1→4)-β-D-

glucosidic linkages in cellulose and cellulose-like polysaccharides such as cereal β-

D-glucans; however, specificities differ in that cellulose 1,4-β-cellobiosidase 

hydrolyses the non-reducing end of the polysaccharide releasing cellubiose, whilst 

cellulase is an endohydrolase, cleaving glycosidic bonds within the polysaccharide 

chain. D. reticulatum has been shown to have cellulase activity by biochemical assay 

(Stone and Morton 1958), and therefore IPR terms IPR001701 and IPR018221 

would be expected to be present in this family of glycosidases found within the 

digestive gland transcriptome.  

 An average of 1314 reads are linked to the GHF9 active site. This IPR term 

group has high prevalence within the assembly, being the second highest ranked IPR 

term, below cysteine proteases. C685;N159;S274d is the largest sequence linked to 

this IPR term, appearing to be a full length EST containing an ORF corresponding to 

a 462 residue peptide. This peptide shows similarity to a number of Molluscan 

cellulases including Abalone (Haliotis discus), Scallop (Mizuhopecten yessoensis), 

Clam (Corbicula Japonica) and Snail (Ampullaria crossean). 2 Prosite patterns are 

linked to this IPR term, PS00592 [STV]-x-[LIVMFY]-[STV]-x(2)-G-x-[NKR]-x(4)-

[PLIVM]-H-x-R with H being an active site residue and PS00698 [FYW]-x-D-x(4)-

[FYW]-x(3)-E-x-[STA]-x(3)-N-[STA] with D & E as active site residues. Both 

patterns are observable in the D. reticulatum sequence, but with 2 substitutions near 

the beginning of PS00592, see Figure 28. Substitutions at these points are conserved 

within but not outside of the Molluscan phylum, including H. discus, though it has a 

Gln in place of Glu. 

region 430-448 and contains two important catalytic residues: an aspartate 

and glutamate. The 5' region of M. yessoensis has been truncated for brevity 

with the sequence beginning at residue 138 which is shown here as residue 1. 

Several other Molluscan sequences not shown here have extended 5' regions as 

with M. yessoensis, although comparison show the region to be variable with 

poor homology between the Molluscan species. 
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 Figure 29 shows the relationship between the sequence encoded by 

C685;N159;S274d, a full length GHF9 enzyme, and most similar sequences from 

other phyla, including Mollusca. The Molluscan sequences group together with high 

 

Figure 29 : Phylogenetic tree of D. reticulatum GHF9 with homologues 

The tree showing the closest GHF9 homologues from various species (labelled 

as Phylum GI No [Species]), with additional brackets to highlight branches. 

The species groups have been highlighted and are positioned as would be 

expected. 
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bootstrap confidence, with L. stagnalis being closest homologue to D. reticulatum. 

This phylogenetic tree has a strict grouping of sequences with phyla, with no species 

breaking the pattern. The current opinion is that all cellulases were lost from many 

metazoan species, rather than known metazoan cellulases being the product of 

horizontal gene flow (Davison and Blaxter 2005). In highlighting the position of D.  

reticulatum cellulase on the phylogenetic tree by sequence comparison, these results 

suggest the same conclusion.  

4.4 Other notable groups 

4.4.1 C-Type Lectins 

 C-Type lectins are a diverse group of proteins with varying functions which 

share a conserved domain; this normally has carbohydrate binding affinity, but can 

have other functional roles. Sequence motifs are associated with carbohydrate 

binding activity. The C-Type lectin (CTL) IPR term (IPR001304) is linked to 14 

contigs, 7 of which appear to be full coding sequences for single CTL domain 

containing proteins. All but 1 of the predicted sequences are linked to the PROSITE 

pattern PS00615 which describes the carbohydrate binding domain site; the unlinked 

peptide still contains the canonical cysteine positions of the C-Type Lectin domain, 

and a WND-like motif associated with carbohydrate binding (see Figure 30). The 

predicted sequences can be divided into 2 types; those containing a motif of 3 

conserved residues, and those without. This motif, which is also referred to as the 

QPD/EPN motif, is a major determinant of sugar binding specificity, since 

conversion of the EPN sequence to QPD increases affinity for galactose binding 

(Drickamer 1992).  

 C-type Lectins are classified into 15 families or groups based on domain 

structure. Only 6 groups are proteins containing a single CTL domain and no other 

functional domains (Zelensky and Gready 2005); of the 6 single domain CTL groups, 

4 contain transmembrane regions. Despite several D. reticulatum contigs linking to 

PANTHER terms (via INTERPRO) (PTHR22801:SF15) for groups containing 

transmembrane regions (primarily Group II, Asialoglycoprotein and DC receptors) 

none of the D. reticulatum C-type lectin contigs are predicted to contain these 
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Figure 30 : Sequence alignment of C-Type lectins 

A) The alignment of 5 QPD motif containing contigs which match the C-Type 

lectin IPR001304 term, and are shown alongside several Molluscan C-Type 

lectins for comparison. Cysteine residues form disulphide bridges at alignment 

positions 56-170 and 134-150, usually termed the long and short bridges. Also 

shown is the N-terminal 27-39 disulphide bridge, which is notably missing from 

C5444;N-;S-d. The WND motif is highly conserved between C-Type lectins and, 

the QPD motif suggests a higher affinity for galactose.  2 of the D. reticulatum 

sequences have no SignalP signalling peptide predictions. 

B) 2 further contigs which do not contain the QPD motif, but have conserved 

cysteines and WND-like domains and SignalP prediction. Contig3176 contains 

no observable acidic residue in the region of the QPD/EPN motif usually seen, 

an indicator in mammalian C-Type lectins of loss of Carbohydrate binding. 
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features, although it is possible that some of the predicted D. reticulatum CTLs could 

be partial sequences of larger proteins. The 2 CTL groups with a single domain and 

no transmembrane regions are REG and eosinophil major basic proteins; neither have 

significant homology to D. reticulatum contigs, nor do their functions seem likely to 

be similar in Mollusca. The classification systems for CTLs have mainly been 

defined through mammalian genomes, and may not be appropriate for Molluscan 

sequences. The single domain CTLs identified in D. reticulatum are most similar to 

other Molluscan predicted proteins. 

  In Pacific Oyster (C. gigas), 2 CTLs were isolated, 1 almost solely expressed 

in the digestive gland. The function suggested was a role in the immune defence of 

the organism, with the secreted CTL in digestive gland potentially used for pathogen 

recognition, though no up-regulation was seen during biological challenge (Yamaura, 

Takahashi, and Suzuki 2008). In Blue Mussel (Mytilus edulis), a CTL was isolated 

whose expression was tied to the starvation/feeding of the organism, leading to a 

suggested function of food particle recognition, important for a filter feeding animal 

(Pales Espinosa, Perrigault, and Allam 2010). CTLs have been isolated from mucous 

of a number of animals, with Molluscan mucus also containing single domain CTLs, 

which were shown to have agglutination ability as well as showing similarity to 

antifreeze protein (Yuasa et al. 1998). 

 There are significant similarities between many of these proteins and the D. 

reticulatum CTLs, and 4 of the D. reticulatum CTLs containing QPD motifs show 

significant similarity, using the InterProScan tool, to anti-freeze proteins 

(IPR002353). However, in a phylogenetic tree of Molluscan CTLs (Figure 31) it is 

immediately obvious that despite sharing a common CTL domain, evidence that any 

of these proteins are functional homologues is limited, due to early branching with 

low bootstrap values. The functional roles assigned to many of these protein 

sequences have been derived from sequence homology, without any clear linkage to 

a protein whose function has been determined. Attempting to describe a function for 

Molluscan CTLs based on sequence similarity is unlike similar analyses for other 

proteins described in this paper, where a clear indication of the likely functional role 

could be derived from sequence similarity to an enzyme or protein whose function 
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Figure 31: Phylogenetic tree of Deroceras reticulatum and C-Type Lectin 

homologues 

A phylogenetic tree produced from the alignment of 7 contigs linked to the 

Interpro term for C-Type lectin (CTL) (IPR001304) as compared with a 

number of Molluscan CTLs, labelled as GI no. and species. Sequences which 

have similar functions group together. However sequences from D. reticulatum 

do not group particularly well with many contigs having low bootstrap and 

early branching. In general we see these groups of CTLs as relatively divergent 

and as such do not suggest any function for D. reticulatum sequences. 
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was well characterised, and in addition biochemical evidence was available to 

support the presence of the function. Suggestion of functional roles for the D. 

reticulatum CTLs will require independent evidence, such as biochemical analysis or 

functional characterisation, to validate the predictions. 

4.4.2 P60-like 

 Whilst limited information can be discerned about this gene it is present in all 

assemblies, though highly significant in CLCbio and shows strong enough homology 

to other sequences from other species to indicate it’s an actual gene. P60-like 

(IPR011687) is the linked to a single contig which is a partial sequence, similar to 

Glioma Tumour Suppressor Candidate Region Gene 2 (GLTRSCR2). Despite this 

gene being described as a tumour suppressor gene, the annotation is based on the 

gene locus being within a candidate region for a tumour suppression gene on human 

chromosome 19q (Smith et al. 2000) rather than functional characterisation, although 

evidence for its involvement in regulating apoptotic processes in human cells has 

been presented (Yim et al. 2007). The IPR term is linked with 2 database records, 

P60-Like from the Panther database and Nop53 from the PFAM database. 

 Nop53 is a protein found in most Eukarya from yeast to humans and is 

involved in late stage rRNA processing as well as having a role in ribosome 

biogenesis (Granato et al. 2005). Deletion of the gene in yeast to produce null 

mutants severely impairs their growth rate, limiting cell viability (Sydorskyy et al. 

2005). The level of similarity between the D. reticulatum sequence and Nop53 

proteins from other organisms is limited compared to some well conserved proteins, 

but several regions show higher conservation. Considering regions of similarity to 

Nop53, the most likely function of the coding sequence is related to rRNA 

processing and biogenesis, although the reason for the abundance of this transcript in 

one assembly is unclear. 

4.4.3 Other Glycoside Hydrolases 

 There is a wide range of glycoside hydrolase families (GHF). These enzymes 

can be defined as catalysing reactions hydrolysing O- and S-glycosidic bonds in a 
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IPR Term GF Enzymes in Family Average 

Reads 

IPR001701 9 endoglucanase (EC 3.2.1.4); cellobiohydrolase 

(EC 3.2.1.91); β-glucosidase (EC 3.2.1.21); exo-β-

glucosaminidase (EC 3.2.1.165) 

1374 

IPR026892 3 β-glucosidase (EC 3.2.1.21); xylan 1,4-β-

xylosidase (EC 3.2.1.37); β-N-

acetylhexosaminidase (EC 3.2.1.52); glucan 1,3-β-

glucosidase (EC 3.2.1.58); glucan 1,4-β-

glucosidase (EC 3.2.1.74); exo-1,3-1,4-glucanase 

(EC 3.2.1.-); α-L-arabinofuranosidase (EC 

3.2.1.55) 

86 

IPR000322 31 α-glucosidase (EC 3.2.1.20); α-1,3-glucosidase 

(EC 3.2.1.84); sucrase-isomaltase (EC 3.2.1.48) 

(EC 3.2.1.10); α-xylosidase (EC 3.2.1.177); 

trehalose-6-phosphate hydrolase (EC 3.2.1.93); 

oligo-a-glucosidase (EC 3.2.1.10) ... 

63 

IPR015902 13 α-amylase (EC 3.2.1.1); pullulanase (EC 

3.2.1.41); cyclomaltodextrin glucanotransferase 

(EC 2.4.1.19); cyclomaltodextrinase (EC 3.2.1.54) 

... 

60 

IPR000933 29 α-L-fucosidase (EC 3.2.1.51); α-1,3/1,4-L-

fucosidase (EC 3.2.1.111) 

35 

IPR001223 18 chitinase (EC 3.2.1.14); endo-β-N-

acetylglucosaminidase (EC 3.2.1.96); xylanase 

inhibitor; concanavalin B; narbonin 

32 

IPR000757 16 xyloglucan:xyloglucosyltransferase (EC 

2.4.1.207); keratan-sulfate endo-1,4-β-

galactosidase (EC 3.2.1.103); endo-1,3-β-

glucanase (EC 3.2.1.39)... 

18 
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range of compounds, and have the EC number 3.2.1.*. So far 85 different families 

have been defined based on the sequence similarity, though these families can 

themselves contain broad subgroups; an extensive online database describes these 

families and their known members (http://www.cazy.org/Glycoside-

Hydrolases.html). A number of useful predictions can be made as catalytic 

machinery and molecular mechanism is conserved for the majority of the GHFs 

(Gebler et al. 1992). 9 IPR terms linked to the GHFs can be found in the D. 

reticulatum digestive gland transcriptome, as shown in Table 18. Many of the 

corresponding enzyme activities were previously shown to be present in the D. 

reticulatum digestive crop juice (Runham and Hunter 1970). Homologues to GHF9, 

cellulase, have been sequenced in over 10-fold in abundance relative to other GHF 

enzymes. This may indicate this cellulase enzyme as having a more significant role, 

with other hydrolases being less important or alternatively are many times more 

efficient than the cellulase homologue.  

  In D. reticulatum a single incomplete contig is homologous to GHF3, the top 

homology match to 'Putative β-D-xylosidase 2' in C. gigas. The GHF3 family 

IPR015883 20 β-hexosaminidase (EC 3.2.1.52); lacto-N-

biosidase (EC 3.2.1.140); β-1,6-N-

acetylglucosaminidase (EC 3.2.1.-); β-6-SO3-N-

acetylglucosaminidase (EC 3.2.1.-) 

3 

IPR001944 35 β-galactosidase (EC 3.2.1.23); exo-β-

glucosaminidase (EC 3.2.1.165) 

1 

Table 18: Table of all glycosidase family IPR terms represented in the 

digestive tissue data 

Table includes the IPR terms and their related Glycosidase Family number, all 

of which fit into the CAZy annotation of EC 3.2.1.*. Enzyme names and CAZy 

annotation, appended in parenthesis, demonstrate enzymes found in each 

group. Families 31, 13 and 16 have been abridged for brevity but all enzymes 

can be found at the CAZy website. 
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currently groups together as exo-acting β-D-glucosidases, α-L-arabinofuranosidases, 

β-D-xylopyranosidases and N-acetyl-β-D-glucosaminidases (Harvey et al. 2000) 

many of which are referred to as hemicellulases. These enzymes are widely 

distributed in bacteria, fungi and plants with enzymatic functions involved in 

cellulosic biomass degradation, plant and bacterial cell wall remodeling, energy 

metabolism and pathogen defense. The enzymes in this family are of particular 

interest in biotechnology as tools for the production of bioethanol. Enzymes 

including β-glucosidases and xylosidase enzymes are involved in the degradation of 

xylans by wood-degrading organisms (Fujii et al. 2009). Many of these GH3 

enzymes act as accessory enzymes in xylan degradation, specifically digesting 

particular residues, such as such as arabinofuranosidases which hydrolyse L-

arabinose linkages found in many polysaccharides (Numan and Bhosle 2006). 

 However in metazoa, GHF3 enzymes are poorly characterised, though 

predicted homologues from this group can be found in many animal phyla. Previous 

studies in D. reticulatum and other Molluscan species showed xylanase activity 

(Nielsen 1962; Stone and Morton 1958). But in many other invertebrates studied, 

such as termites and grasshoppers, xylanase activity is performed by gut microbiota 

(Shi et al. 2013; Bastien et al. 2013). It seems highly probable that D. reticulatum 

would have endogenous enzymes to hydrolyse β-glucans. But as far as our research 

indicates no studies have yet to resolve functionality of invertebrate homologues, 

beyond the homology to the GHF3 group as a whole. As such predictions are limited 

to enzyme functionality that acts on β-glucans, and without the N-terminal region of 

the contig this could be either a digestive enzyme or alternatively a cytosolic enzyme 

as found in humans (Dekker et al. 2011).  

 GHF31, like GHF3, also includes glucosidase enzymes, but this group 

hydrolyses O-glycosidic bonds in α-glucan, which include dextran, glycogen, 

pullulan, and starch. Due to a greater level of characterisation of metazoan enzymes 

of this group a greater detail of prediction can be made. Additionally the contig, 

although missing the C-terminus has a predicted signal peptide which would 

indicates it as having a potential extracellular enzymatic function. The most likely 

function is that of α-glucosidase (EC 3.2.1.20) due to strongest homology to other α-
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glucosidase 2 proteins based on BLAST nr and panther database sequence 

comparisons. A lack of a transmembrane region indicates the sequence is less likely 

to be related to sucrase-isomaltase (EC 3.2.1.48) (EC 3.2.1.10).  

 GHF13 is a wide ranging of enzymes acting on polysaccharide substrates 

containing α-glucoside linkages. Whilst α-amylases are the best described in the 

group, it is one of the most diverse groups containing 22 EC categories, with studies 

subdividing it further to 35 subfamilies (Stam et al. 2006). The main contig, 

C2633;N151;S537d, in this group appears to be a complete coding region with a 

predicted signal peptide for which the top BLAST nr match is Maltase A6 in D. 

melanogaster (GI:221330053), see Figure 32. Maltase A6 flybase record 

(FBgn0050360) shows very high expression in the adult fly midgut and only low 

level expression in none digestive-related tissues. Both the contig and the D. 

melanogaster gene are annotated by BLAST CDD as a α-phosphotrehalase 

(trehalose-6-phosphate hydrolase, EC 3.2.1.93). However key conserved amino acids 

from previous enzymes that act on trehalose-6-phosphate are not present in D. 

reticulatum. Amino acids 207-210, relative to Taka Amylase A (GI: 23586) included 

for positional reference (Matsuura et al. 1984), in the D. reticulatum are Ala-Ile-Gln-

Gln. These residues are not seen in enzymes with trehalose substrate, but are the 

equivalent to residues in α-amylases which act only on α-1,4-bonds (MacGregor, 

Janeček, and Svensson 2001). 

 Both GHF 29 and 35 contain a much smaller range of enzymatic functions. 

GHF 29 contains exo-acting α-fucosidase with no other activities described. Notably 

this gene has been functionally characterised in a mollusc Pecten maximus, where 

hydrolysis of fucosyl units of fucoidan was demonstrated (Berteau et al. 2002). The 

same group had previously shown numerous other glycosidase functions in this 

species (Daniel et al. 1999), but to date none of these functions have been linked to 

transcript or peptide sequence data. The majority of GHF 35 enzymes are β-

galactosidases which act on β-1,3-, β-1,6- or β-1,4-galactosidic linkages, with the 

remaining enzymes exo-β-glucosaminidases only been found in archaea (Liu et al. 

2006), though  exo-β-glucosaminidases from other GHFs have been found in bacteria 

(Nanjo, Katsumi, and Sakai 1990) and fungi (Ike et al. 2006). 
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Figure 32 : Alignment of D. reticulatum contig with GHF13 homologues 

Alignment of C2633;N151;S537d with top matching homologue from NCBI nr 

database Maltase A6 from D. melanogaster. Also included is Taka Amylase A 

from Aspergillus oryzae as a reference for key residue positions. Boxed areas 

represent 4 conserved regions which should maintain similar degrees of 

hydrophobicity with homologues. 4 residues (white letters on black) represent 

key positions which correlate to substrate binding specificities in GHF13 

enzymes. In this the D. reticulatum, Ala-Ile-Gln-Gln residues appear more 

similar to α-amylases. D. melanogaster’s Ala-Val-Pro-Trp is most similar to 

Ala-Val-Pro-Tyr associated with trehalose synthase. 
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  GHF18 enzymes include chitinases (EC 3.2.1.14) and endo-β-N-

acetylglucosaminidases (EC 3.2.1.96) as well as proteins with no hydrolysis function 

such as lectins and xylanase inhibitors. Chitinase has previously been shown to be 

present in the crop juice of D. reticulatum; as such it seems probable that some of the 

GHF18 sequences maybe digestive chitinase. Interestingly unlike other GHFs, there 

is a similar number of reads attached to the GHF18 in the neural dataset, average of 

21 for IPR001223, suggesting that some enzymes may not be specific to digestion. 

Several contigs match IPR001223 and IPR001579, Chitinase II and Glycoside 

hydrolase chitinase active site, and have strongest BLAST homology to other 

chitinase genes. One of the 2 chitinase contigs in the digestive gland is also present 

in the neural tissue dataset. 

 Chitinase has previously been shown to be present in the crop juice of D. 

reticulatum; as such it seems probable that some of the GHF18 sequences maybe 

digestive chitinase. However in the neural tissue whilst matches to GHF9 active site 

are absent, glycoside hydrolase chitinase active site links in the neural dataset are 

few but notably not absent. With chitinase being identified in the saliva of octopus 

Eledone cirrhosa (Grisley and Boyle 1990); this could potentially be contamination 

from the salivary gland, which is spatially close to the nervous system. Alternatively 

previous studies in molluscs have shown the both a ubiquitous low expression 

pattern of chitinase in C. gigas, and chitinase and chitinase-like enzymes posited to 

be related to early development and immune processes (Badariotti, Thuau, et al. 

2007; Badariotti, Lelong, et al. 2007). These studies indicate molluscs have 

additional roles for chitinases outside of the digestive gland. However this protein 

contained a chitin binding domain and predicted trans-membrane region. With none 

of the D. reticulatum GHF18 contigs being complete, comparison with the C. gigas 

enzyme cannot reliably be made. Despite this, there is a great deal of interest in 

chitinase and its potential use in biotechnology. Chitin is the second most abundant 

carbohydrate after cellulose and there is increasing number of applications for 

enzymes which degrade these polysaccharides into simpler sugars (Yuting Zhang et 

al. 2013); as such these enzymes may be of interest for future research.  
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4.5 BLAST homology analysis of Neural tissue data 

 Sequences from the transcriptomic analysis of neuronal tissue from D. 

reticulatum were assembled and analysed as described for sequences from digestive 

gland. Contigs from each assembly were compared with the NCBI nr database as 

was done for the digestive gland, Table 19 summarises the results and Figure 33 

shows how the number of hits to the NCBI database changes depending on e-value 

cut-off. SeqMan and CLCbio have a very similar number of BLAST matches against 

contigs as well as reads, but give vastly different results in number of homologues 

identified. This may suggest the similarity is coincidental, with SeqMan being more 

fragmented whilst CLCbio giving better representation of different transcripts, 

possibly related to the difference in read inclusion seen in the assembly statistics, 

Table 12. Top phyla matches rank in the same order as digestive gland, with 

 

Mollusca representing between 27-38% of the top BLAST hits, followed by 

Chordata and Arthopoda, see Figure 34. The only difference in ranking between the 

two tissue types appears to be Echinodermata, but this is of limited significance as in 

both tissue types representation is around 2%, the value used as a cut-off for 

inclusion in the others category. Species are more variable between assemblers than 

seen in digestive gland tissues, with SeqMan NG having a notable increase in 

matches to other species, Figure 35. The types of species and their number are 

generally the same, although A. californica has a higher significance in neural tissue 

when 

 

 

Summary (All expect < 1e-3) CLCbio Newbler SeqMan 

Contigs with BLAST matches 1463 744 1586 

Total NCBI protein homologues 44483 21678 30350 

Number of reads with hits 29010 37249 28356 

Table 19: Summary of BLAST homology matches for neural tissue 

assemblies 
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considered relative to other species, such as N. vectensis and B. floridae. This may 

reflect the use of A. californica as a model neurological system to a certain degree. 

 

Figure 33 : Number of top BLAST hits below BLAST evalue for 3 assemblies 

The graph represents the change in number of contig matches for neural tissue 

BLAST results which would be filtered out of the results depending on the e-

value cut-off. Expect values of 1e-10, 1e-3 and 10 are shown as vertical lines 

with the former 2 representing common cut-offs and the later representing the 

limit of expect value for a BLAST search. 
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4.5.1 INTERPRO Analysis of Neuronal Tissue 

 Table 20: Summary of top IPR terms for neural tissue assemblies summarises 

some of the IPR terms attached to greatest number of reads. Results from the 

different assemblies do not show as much similarity as was seen with digestive gland 

tissue, although all agree on the myosin signature as the top IPR term in for all 

assemblies. However, as described in the introduction, most of the neural tissue is 

associated with connective tissues. As described in the methods section, for neural 

 

Figure 34 : Top BLAST matches per phyla as a percentage for the neural 

tissue 

The overall pattern of phyla distribution is very similar to the digestive gland. 

With Mollusca with the most top hits as expected, followed by Chordata and 

Arthropoda. 
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tissue, to maximise tissue weight, sensory tentacles were also  included within the 

RNA extraction due to the digitate ganglion and the optic and olfactory nerves 

connected from the sensory tentacles to the nerve ring. Thick retractor muscles are a 

requirement for variable orientation and fast retraction of sensory tentacles to avoid 

damage. As such the presence of myosin as well as connective tissue related proteins 

such as actin would be expected to be highly expressed transcripts. 

 

Figure 35 : Breakdown of top hits by species for the neural tissue assemblies 

Other species take a greater proportion than with digestive gland species, 

though in general the same species are top. A. californica is a model organism 

for neurological research and here represents a slightly large portion than with 

digestive gland. Additionally B. mori represents quite a large share, 

particularly for the Newbler assembly, the reason for which is unclear. 
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CLCBIO 

Main Term Interpro Group Read Count 

IPR002928 Myosin tail 2562 

IPR016021 MIF4G-like (Nuclear Cap Binding Protein) 2435 

IPR004000 Actin 795 

IPR020568 Ribosomal protein S5 domain 737 

IPR013320 Concanavalin A-like lectin/glucanase 722 

IPR001580 Calreticulin/calnexin 687 

IPR001404 Heat shock protein Hsp90 626 

IPR002130 Cyclophilin-like peptidyl-prolyl cis-trans 

isomerase domain 

625 

NEWBLER 

Main Term Interpro Group Read Count 

IPR002928 Myosin tail 2562 

IPR016021 MIF4G-like (Nuclear Cap Binding Protein) 2435 

IPR004000 Actin 795 

IPR020568 Ribosomal protein S5 domain 737 

IPR013320 Concanavalin A-like lectin/glucanase 722 

IPR001580 Calreticulin/calnexin 687 

IPR001404 Heat shock protein Hsp90 626 

IPR002130 Cyclophilin-like peptidyl-prolyl cis-trans 

isomerase domain 

625 

SEQMAN 

Main Term Interpro Group Read Count 

IPR002928 Myosin tail 1799 

IPR005819 Histone H5 1221 

IPR020568 Ribosomal protein S5 domain 630 

IPR001404 Heat shock protein Hsp90 587 

IPR014764 Defective-in-cullin neddylation protein 556 

IPR004000 Actin 485 

IPR002048 Calcium-binding EF-hand 455 

IPR002557 Chitin binding domain 382 
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 The remaining IPR terms in addition to not being including in all assemblies, 

are primarily protein functions that are not specific to tissue types. Unlike with the 

digestive gland, which requires the constant production of digestive enzymes to 

process food, the turnover of functional enzymes would be expected to be much 

lower for neural tissue. Comparison with other transcriptome analyses of Molluscan 

neural tissue would be the best scenario to deduce the expectations for neural tissue 

transcripts. However most analyses consider specific novel proteins and do not make 

any global assessment for the types of proteins found, making comparison difficult 

(Feng et al. 2009; Sadamoto et al. 2012). 

4.6 Notable Transcripts in Neuronal Tissue 

 The presence of ribosomal proteins, actin, and cytochrome c oxidase appears 

more significant than in digestive gland; proteins such as these are also described in 

other mollusc neural EST libraries (Moroz et al. 2006). Whilst neural related proteins 

on the whole do not comprise a large section of the transcriptome, there are examples 

of proteins which can be related to neurological functions and do not exist in the 

digestive gland transcriptome such as G-Coupled Protein Receptors (IPR017452), 

FMRFamide peptides (IPR002544). In addition there are a number of proteins which 

contain notable properties that may make them of interest for further research, and 

are discussed further. 

Table 20: Summary of top IPR terms for neural tissue assemblies 

In all cases myosin tail is the top IPR term for neural tissue. Hsp90 is also 

significant with similar read counts for all assemblies as is Ribosomal protein 

S5. However there are a number of IPR terms which only exist with high read 

counts in 1 or 2 assemblies. Where IPR terms are in all assemblies they may 

have significantly different read counts. Most of these IPR terms and the 

related contigs exist in the other assemblies, but either due to incomplete 

assembly or simply fewer reads assembles they are not ranked with 

significance. 
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4.6.1 Tumour Necrosis Factor Like Proteins 

 8 predicted peptides contain a TNF-like domain (IPR006052). This domain is 

present in a range of proteins, which includes both Tumour necrosis factors and 

complement C1q. The TNF-like domain is present in both soluble proteins and 

proteins containing transmembrane domains. Polypeptides containing the TNF-like 

domain bind extracellularly to cysteine-rich receptors, and usually cause induction of 

intra-cellular apoptotic cascades. 5 of the D. reticulatum contigs, all of which are 

only available in the neural dataset, are incomplete sequences homologous to 

Complement C1q protein (IPR001073), see Figure 36. The IPR term describes C1q 

peptides as structurally similar to collagen VIII and X (Sellar, Blake, and Reid 1991; 

Muragaki et al. 1991) which assemble to form the C1q complex which activates the 

serum complement system. However C1q domain containing proteins (C1qDC) can 

be split into multiple subgroups not represented in the IPR term summary. C1q and 

 

Figure 36 : Alignment of smaller TNF domain containing peptides 

Alignment of 5 peptides from the D. reticulatum neural dataset, 

C5483;N1205;S6289n is only a partial peptide sequence with no stop codon 

prediction. Highlighted in light grey are the SignalP predictions for signal 

peptide regions. The boxed regions represent the 4 main motifs which 

characterise the Cq1 domain based on sprint accession PR00007 which was 

detected as part of the InterProScan homology analysis.  
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C1q-like proteins are usually large (>2kb in length) and contain a partial or full 

collagen domain and a globular C1q domain. In contrast, globular head C1q proteins 

(ghC1q) contain a C1q domain with a short N-terminus region containing no motifs; 

they can either be secreted (sghC1q) or cellular (cghC1q) (Carland and Gerwick 

2010). The predicted D. reticulatum peptides are short, with signal peptides, and as 

such all appear to be sghC1q proteins. In addition to the 5 smaller peptides a 6th one, 

shown in Figure 37, is present in the data, but has a significantly elongated N-

terminal region. The top homologue from the NCBI dataset is of similar length and 

has a large number of conserved residues at the C-terminal C1q domain. However 

the presence of another TPR/MLP1/MLP2 domain detected through NCBI conserved 

domain (CDD) (Marchler-Bauer et al. 2011) in the homologue is not present in the 

D. reticulatum peptide. 

 Recently C1qDC proteins have begun to be characterised in invertebrate 

species, including c1q domain containing proteins in Mollusca. In Mediterranean 

 

Figure 37 : Alignment of C1qDC peptide with homologue from C. gigas 

Comparison of a top NCBI nr BLAST hit with D. reticulatum contig. Region 

highlighted in grey are predicted signal peptides, region in grey stripe for 

homologue is predicted TPR/MLP1/MLP2 conserved domain. The boxed 

regions represent the 4 main motifs which characterise the Cq1 domain based 

on sprint accession PR00007 which was detected as part of the InterProScan 

homology analysis.  
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mussel Mytilus galloprovincialis 168 C1qDC transcripts were found, the vast 

majority of which contained signal peptide regions. A study of 8 transcripts indicated 

highly tissue specific expression levels, with 5 of 8 having low level constitutive 

expression in all but haemocytes, where expression was at a higher level (Gerdol et 

al. 2011). C1qDC peptides in Chlamys farreri were also assessed for immunological 

function, and were shown to interact with immunological related molecules as well 

as causing an increase in phagocytosis (Wang et al. 2012). The conclusion that they 

fulfill a pattern recognition role agrees with other studies of sghC1q proteins which 

can function as lectin-like molecules. With the C1q system being well characterised 

in mammals, most studies appear to be focused on C1qDCs correlating to 

immunological changes. However cerebellin proteins share very similar homology to 

other sghC1q proteins as well as with C1q complement peptides (Urade et al. 1991; 

Carland and Gerwick 2010).  These proteins are around 190 residues long with a 

globular C1q domain at the C-terminus and a signal peptide, with significant 

expression levels in the Purkinje cells. These peptides form homohexamers and are 

secreted to the synaptic cleft were they function as adaptors to mediate interaction of 

variable pre- and post-synaptic cell-contacts (Eiberger and Schilling 2012). These 

proteins represent another potential function some of these D. reticulatum predicted 

peptides may have, particularly with their presence in the neural dataset. With 

increasing amounts of data about C1qDC peptides in multiple functions similar 

problems in predicting probable function occurs as with the C-type lectins discussed 

previously. These domains function as generic binding facilitators which 

evolutionarily have been adapted for a wide range of binding partners. 

 1 protein contains a TNF-domain but is linked specifically to the TNF ligand 

(IPR006052) rather than C1q. C-;pN48;S-n(C2550;S1758;N554d) exists only as a 

partial contig in the neural dataset, but the complete contig is available in the 

digestive gland, suggesting it may be ubiquitously expressed. Whilst relatively well 

studied in mammals, invertebrate homologues are less well characterised. Homology 

is primarily through position specific residue properties rather than specific 

conservation of amino acids, making orthologues appear less conserved. The 

Drosophila melanogaster homologue named Eiger has been shown to activate 
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Drosophila JNK pathway eliciting cell death (Igaki et al. 2002).  The TNF proteins 

usually form trimeric complexes which bind TNF receptors (TNFR) on the cell 

surface. The factor can either be freely soluble or embedded in the cell membrane, 

The D. reticulatum contig appears to be the later, having a predicted trans-membrane 

region at the C-terminus, see Figure 38. In most examples of TNF ligands, the 

binding of the ligand to a cell surface TNFR elicits an apoptotic effect.  

 

4.6.2 Vasopressin Like Peptide 

 IPR terms IPR000981 and IPR022423 represent the neurohypophysial 

hormone superfamily which contains vasopressin and oxytocin related hormone 

precursors. A predicted peptide of 164 residues shows strong homology to this group 

 

 

 

Figure 38 : Alignment of D. reticulatum TNF ligand like peptide with 

homologue 

Highlighted regions: light grey, signal peptide, boxed, trans-membrane region, 

dark grey TNF ligand domain (IPR008983) 
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of proteins, in particular previously described Molluscan conopressin related 

precursor proteins. Unlike with previous protein groups described conservation 

amongst the vasopressin/oxytocin precursor superfamily is high and all peptides have 

well defined functionality. The hormone is translated as a precursor protein 

containing a signal region followed by the neurohypophysial peptide and then 

neurophysin. The peptide hormone itself contains 9 amino acid residues, with a 

disulphide bond between Cys1 and Cys6, and an amidated C-terminus. In vertebrates 

vasopressin hormones have both an antidiuretic and vasoconstrictive function to 

regulate water retention and blood pressure. Oxytocin mediates smooth muscle 

contraction, but due to similarity cross talk between functions of the two main types 

of neuropophysial hormone exist (Li et al. 2008).  

 Conservation between the D. reticulatum contig and the top 2 NCBI nr 

homologues is high with identical predicted neurohypophysial peptide hormone, and 

all 14 cysteine residues in the precursor, see Figure 39. The neurohypophysial site is 

the region which interacts with the neurophysin carrier region, allowing transport and 

aiding cleavage of the mature hormone (Kazmierkiewicz, Czaplewski, and 

 

Figure 39 : Comparison of D. reticulatum conopressin like contig with 

homologues 

The neurohypophysial peptide region is the best conserved between species and 

between the mollusc species shown we see they have identical sequence. All 

contigs also have a signal peptide and maintain cysteine positions, with the 

only variation in sequence length 5' or 3' of the first and last cysteine residues.  
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Ciarkowski 1997). Whilst the functional interaction of the neurohypophysial site is 

less well described in molluscs, conopressin G peptides contain the aromatic side 

chain amino acid residue at position 2 which, in vertebrates, is needed for interaction 

with neurophysin (Breslow 1979). The residue at position 8 divides the superfamily 

with conservation of basic lysine or arginine residues indicating a vasopressin related 

function rather than oxytocin (R. E. van Kesteren et al. 1992). However the unique 

feature commonly seen in the majority of mollusc vasopressin related sequences is 

the presence of a basic residue at position 4 giving a net charge of +3 compared to 

vasopressins (+2) and oxcytocins (+1) (Cruz et al. 1987). 

 The vasopressin like peptide present in L. stagnalis, which is the closest 

available homologue in the NCBI nr has an identical conserved neurohypophysial 

region and cysteine residues as the predicted D. reticulatum sequence. This peptide 

was shown to have functionality more similar to oxytocin despite having greater 

primary structure similarity to vasopressin related genes, with a synthetic version of 

Ile at residue 8 having functional equivalence to the native protein. This protein was 

localised to the CNS, the penis nerve, and the vas deferens and elicited muscle 

contraction when applied to vas deferens, indicating its role in reproductive 

behaviour (R. Van Kesteren et al. 1995). Whilst L. stagnalis is one of the few 

molluscs to have had the oxytocin/vasopressin superfamily characterised, in 

Cephalopoda the family has a functional role in long-term memory (Bardou et al. 

2010). However the similarity between the Cephalopoda genes and D. reticulatum is 

not as great as L. stagnalis.  

4.6.3 Spider Toxin-Like Protein 

 C1081;N102;S3902n and C-;N270;S3377n are contigs present only in the 

neuronal tissue and based on ESTScan predicted peptides match the term 

IPR004169, Spider toxin. BLAST results for these contigs give the highest similarity 

scores with insect homologues of around 86-125 amino acids in length. However 

none of these proteins have been characterised, but are described as 'Predicted spider 

toxins'. Both the unknown insect, D. reticulatum and spider toxins share a knottin-

like structural motif, primarily conserved through the positions of disulphide-bond 
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forming cysteine residues. In many knottin domains the cysteine residues, labeled I 

to VI, and form 3 disulphide bridges between I–IV, II–V, III–VI, see Figure 40. In 

invertebrate knottin domains such as spider venoms and the chordate agouti-related 

domain, a fourth cysteine bridge is formed between cysteines near the V and VI 

 

Figure 40 : Alignment of two D. reticulatum peptides with spider toxins and 

knottin containing insect peptides 

Peptides included were those identified by BLAST searches against the NCBI 

nr, Arachnoserver or knottin databases. Cysteines in white on black labelled I-

VI and predicted to form disulphide bridges between I–IV, II–V and III–VI to 

create the knottin structure. Cysteines highlighted in grey, may actually 

represent positions V and VI in some peptides, but without 3d protein structural 

analysis this is unclear. In some knottin domains V, VI and the greyed cysteine 

residues produce 2 disulphide bridges, totalling 4 in the knottin domain, giving 

extra stabilisation to the structure. C. quinquefasciatu and D. willistoni do not 

contain a 5' signal region; all other peptides have a 5' signal region, based on 

SignalP analysis. 
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conserved cysteine residues (Gracy et al. 2008); these are present in the predicted D. 

reticulatum sequences. 

 Despite the homology to several classes of spider venom toxins the conserved 

cysteine residues have been identified in a number of other roles, with the proteins 

referred to as knottin mini-proteins. Knottins can describe any protein which contains 

the knotted cysteine-rich topology sharing the conserved disulphide bridge 

formations, most commonly playing inhibitory roles which in the case of spider and 

cone shell toxins block ion channel proteins (Gracy et al. 2008). The most similar 

homologous toxins to the D. reticulatum sequences can be found in the 

Arachnoserver database of spider venom toxins (Wood et al. 2009). Although many 

have had no biological activity characterised, those most similar to either D. 

reticulatum peptide are Cav channel blocking peptides. Excluding venom proteins, 

the online knottin database contains 2 groups of insect knottin protein families which 

are either mostly uncharacterised or are inhibitory proteins which have anti-microbial 

(Barbault et al. 2003) and anti-fungal functions. However using the built in BLAST 

search of the knottin database only presents either unknown insect peptides as with 

the nr database or spider-venom toxins as high quality homologues. 

 Another insect knottin-like domain has been shown to have similar homology 

to spider toxins, in Musca domestica. A novel phenol oxidase inhibitor (POI) 

includes a conserved cysteine-knot structure which homologous to a knottin domain 

(Daquinag et al. 1999). A phylogenetic tree of a variety of knottin-like domains is 

shown, Figure 41. The tree is limited to the cysteine knot region, from CysI-CysVI 

and suggests phenol oxidase is most similar to assassin bug venoms. With very 

different functions but similar homology this indicates the flexibility of the structural 

domain in a variety of functional roles. It is unlikely that the predicted D. reticulatum 

peptides have a similar function to the POI, which is only a 38 residue peptide with 

no additional cysteine residues to indicate a 4th disulphide bridge, present in the 

invertebrate ion-channel toxins and the D. reticulatum peptides. 

 Most spider venom toxins cause paralysis in a target prey organism with the 

venom peptides binding to ion channels. This binding is usually specific for a 

particular class of ion channels, with additional specificity discriminating between 
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Figure 41 : Phylogenetic Tree based on the alignment of cysteine knot 

domains 

Proteins of similar function appear to form clades together, with the primary 

exceptions being Phenol-Oxidase Inhibitor which groups with assassin bug 

proteins and U1-plectoxin-pt1a which sits within the D. reticulatum/insect 

clade. Agouti-related peptides, spiders toxins and unknown proteins group 

together and all share 2 cysteine residues at locations which in spider toxins 

have shown to form a 4th cysteine peptide bridge. Agouti-related peptides are 

hormones which bind to melanocortin receptors, which are a subgroup of G-

coupled protein receptors. 
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sub-classes of channels, and channels from different organisms. The strong 

homology of both D. reticulatum and insect peptides to spider-venom toxins may 

indicate a shared function in binding to ion channels, with the venom a structural 

mimic of native ion channel binding proteins. Alternatively the knottin domain may 

simply be an evolutionary building block, with only slight changes needed to allow 

for alternative functions. With the increasing number of examples of knottins in non-

toxic roles, this peptide may represent an unknown family of knottins, which have 

utilised the knottin domain for a function which has no relation to ion channel 

binding. However the D. reticulatum peptides are present in neural tissue, with none 

found in digestive tissue, and interaction with endogenous ion channels must be 

considered as a possible function. Without experimental evidence no conclusion can 

be drawn, but the link between spider toxins and these peptides of unknown function 

found in both insects and D. reticulatum is intriguing. As such it may be of interest in 

further research as spider toxins are already being investigated as potential 

biopesticides (Windley et al. 2012). (Zhang et al. 2013). These D. reticulatum 

enzymes may be of interest for future research.  

Alignment was based on cysteine knot region from residues considered to be 

CysI to CysVI, bootstrap values are out of 1000. Sequences were taken either 

from BLAST hits results against NCBI nr database, Arachnoserver or the 

knottin database. Accessions are Uniprot, Arachnoserver IDs or NCBI 

accessions. 
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Chapter 5 | Application: Targeting D. reticulatum 

 With a wealth of data available from high throughput sequencing of D. 

reticulatum tissues, the next goal was to identify potential targets which could be 

used to develop molluscicidal agents. There are currently several main methods of 

transferring the molluscicidal agent to crop pest in common use. The first method of 

uptake is by combining the agent with a food bait such as the wheat pellets baits used 

for metaldehyde molluscicides. A second method is to apply the agent onto the target 

plant or plant seeds in a way which leads to consumption of both the plant and agent 

by the pest, as is done with spray application of most commercial insecticides. A 

third alternative is to incorporate the agent into the plant, primarily done with genetic 

modification and has shown to be very effective such as in Bacillus thuringiensis 

insecticidal toxin in cotton (Shelton et al. 2002).  

 The end goal for this study would be identifying targets which would cause 

mortality if their function were disrupted, either by down-regulation of the encoding 

gene with RNAi, or by direct effects on the protein product by a suitable protein or 

chemical inhibitor. The targets could be verified by injection or feeding assays with 

nucleic acids, proteins or small molecules produced in vitro. These assays would lead 

to new molluscicidal agents, which could be then be applied in crop defense in one 

of the previously described manners. Whilst oral toxicity would be the "end point" 

for potential molluscicides, the first step to identify any activity is best done with 

injection bioassay. 

5.1 RNAi against Cathepsin L 

 Proteases in crop pests are a frequent target for endogenous defence 

mechanisms in plants, through the production of protein protease inhibitors and 

secondary metabolites such as tannins to inhibit insect proteases, thereby blocking 

protein digestion and the supply of nitrogen for nutrition. Production of protease 

inhibitor molecules is found as part of plant active defence (Ryan 1978; Van Dam et 

al. 2001) as well as part of constitutive, accumulated defence. The protein protease 

inhibitors produced by plants show some specificity towards different herbivorous  
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pests, showing activity towards specific protease mechanistic classes; different 

orders of insect pests show differing digestive biochemistry as an adaptation to this 

defence. Down regulation of proteases in insects should enable endogenous plant 

defence based on protease inhibitors to work more effectively. RNA interference 

studies which utilised dsRNA with sequence specific to Cathepsin L in the pea aphid, 

Acyrthosiphon pisum, showed promising results, with gene expression knock down 

within 1 day post-injection (Jaubert-Possamai et al. 2007) after injection into the 

body cavity, and a maximal decrease in gene expression of 40%. This RNAi study 

had multiple benefits, both identifying if an RNAi effect could be elicited, as well as 

indicating whether this Cathepsin L was necessary for the organism's survival. The 

transcriptomic analysis showed that a cDNA encoding Cathepsin L corresponded to a 

major transcript in digestive gland, indicating its importance to D. reticulatum as a 

major digestive protease, and therefore it presented a promising target for a gene 

knock-down study. A phenotype in the organism resulting from successful down-

regulation would also suggest the likelihood that cysteine protease inhibitors could 

be used as a pesticide against the organism. 

5.1.1 dsRNA Production and Injection Assay for RNAi Effects 

 The transcriptomic data available for D. reticulatum avoids the need to isolate 

cysteine protease genes via production of degenerate primers, followed by cloning, 

sequencing and potential 5' and 3' RACE, as was initially done with the ferritin gene 

in this study. Instead, a transcript encoding the major cysteine protease in digestive 

gland was identified by database search. Constructs were designed for production of 

two dsRNA fragments, corresponding to 5' and 3' regions of the Cathepsin L 

transcript of D. reticulatum (5'Cath & 3'Cath), of size 415bp & 419bp respectively. 

The fragments were amplified with PCR from digestive gland tissue first strand 

cDNA, and their size was confirmed by visualisation with 0.8% Agarose gel, see 

Figure 42. PCR fragments were isolated and purified via QIAquick Gel Extraction 

Kit [Qiagen] then cloned into an equivalently digested pLitmus28i vector. RNAi 

Cathepsin L constructs were transformed into E. coli TOP10 strain and sequence 

checked through DNA sequencing.  
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 A control dsRNA was used for the RNAi experiment; in this case a sequence 

encoding bacterial neomycin phosphotransferase II which gives resistance to the 

antibiotic kanamycin was used. Kanamycin is a commonly used antibiotic; the 795bp 

resistance gene is used as a control due the very low probability of it being present in 

the D. reticulatum genome. As such it can provide a positive control to demonstrate 

that it is the specificity of the dsRNA sequence that causes any gene regulatory effect 

observed rather than the presence of any dsRNA. The gene sequence is inserted into 

pLitmus28i vector which can be transcribed in parallel with the target gene 

constructs. To demonstrate that injected media effectively infiltrates the Molluscan 

haemolymph, test injections were conducted with PBS buffer dyed with food 

colouring. The dye progresses throughout the organism within a minute of injection 

 

Figure 42 : PCR products Cathepsin 5' and 3' Fragments for RNAi 

Constructs 

Lane 1 includes PCR product using the 5' Cath L RNAi construct and lane 2 

includes the 3' Cath L RNAi primers. Fragments of around 410-420bp seen on 

this gel image were isolated by gel extraction and utilised for molecular 

cloning of the full RNAi construct.  Lane 1 appears to have a small amount of 

secondary product, but this was excluded via gel extraction and the sequence of 

both fragments confirmed with sequencing of final clones. 
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Figure 43 : Dye injection assay 

Frames 1-6 represent stills from a video recording of a dye injection assay. 

T= represents time and begins at 0 seconds in frame 1 at the point of 

injection. Frame 2 and 3 shows the infiltration of 10μl dyed PBS as it is 

injected into the organism. After 4 seconds the injection needle is removed 

and the resulting spread of dye monitored. Frames 4 & 5 show the 

progression and indicate dye in the trail of the slug. At around Frame 6 1 

minute after injection, the maximum amount of infiltration is seen with dye 

observable at the head.  
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Figure 44 : Cathepsin L RNAi fragments 

The figure shows the cDNA sequence and predicted translated region for a 

cathepsin L homologue previously identified. 5’ and 3’ Cathepsin fragments 

for insertion into RNAi vector are highlighted in blue and orange 

respectively. Regions primed by 5’ and 3’ primers for each fragment’s 

initial amplification from cDNA are highlighted in green and red 

respectively. 
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and appeared to cause no harmful effects. Notably dyed mucus was exuded by the 

organism suggesting an increasing amount of injection material may be lost over 

time, see Figure 43. 

 

 Primers were designed to PCR fragments from 5’ and 3’ regions of the 

predicted Cathepsin L transcript for insertion into RNAi transcription vectors. The 

regions used for 5’ and 3’ Cath RNAi constructs are shown in Figure 42. 5' Cath, 

3'Cath and Kanamycin constructs were used to produce ssRNA though in vitro 

transcription, see Figure 43 which was then quantified using NanoDrop
TM

 1000  

 

Figure 45 : ssRNA for Kanamycin, 5’ & 3’ Cath and Apin RNAi 

experiments 

Lanes 1 & 2 represent Kanamycin 5’ and 3’ ssRNA. Lanes 3, 4, 5, 6 

represent 5’ and 3’ ssRNA for 5’Cath and 3’ Cath RNAi construct. Lanes 4 

& 5 appear to contain higher molecular weight ssRNA, possibly due to 

incomplete linearization with 3’ restriction enzyme. Lanes 7 & 8 contain 

ssRNA produced from APIN RNAi construct. ssRNA often appears smeared 

on non-denaturing Agarose gel electrophoresis. Sizes appear correct, but 

were confirmed by annealing and assessing dsRNA sizes. High molecular 

weight ssRNA was no longer observable in dsRNA gels after annealing. 
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spectrophotometer (Thermo-Fisher) and image estimates from 0.8% Agarose gel 

electrophoresis and annealed together to generate dsRNA. dsRNA products were 

visualised on 0.8% Agarose gel to confirm size, see Figure 46, then quantified using 

a NanoDrop
TM

 1000 spectrophotometer (Thermo-Fisher). 5' Cath, 3'Cath, 

Kanamycin dsRNA were diluted in PBS to a concentration 2μg/μl and 5μl was 

injected into 5 organisms for each respective dsRNA (15 organisms total). Alongside 

this, 5 organisms were 'sham' injected with PBS only. Each group of 5 were kept 

separate on diet and monitored periodically. After 48 hours no phenotype was 

observed, digestive glands were dissected from individuals and flash frozen and 

prepared for qPCR analysis.  

 

5.1.2 Quantitative qPCR on Cathepsin L RNAi injections 

 Dissected frozen digestive glands were ground in liquid nitrogen and total 

RNA was extracted. Purified total RNA was used as a template to synthesise first 

strand cDNA. The resulting cDNA was used in a comparative Ct qPCR study of the 

cathepsin L gene expression under different treatments; the results were normalised 

to GAPDH levels as shown in Figure 47. The data did not indicate a consistent RNAi 

 

Figure 46 : in-vitro transcribed dsRNA of Kanamycin and Cathepsin L 

fragments 

Lane 1 contains Kanamycin dsRNA, Lane 2 and 3 contain the 5' and 3' 

Cathepsin gene fragment dsRNA. There is a small amount of smearing, but the 

clear bands at expected positions indicate dsRNA is not degraded. 



Chapter 5 | Application: Targeting D. reticulatum 

 

157 

 

 effect produced by injecting cathepsin dsRNA; whilst the overall average for the 3' 

RNAi fragment of cathepsin L represents a 38% drop in expression, similar to 

described in (Jaubert-Possamai et al. 2007), no drop in expression was produced by 

the 5' RNAi fragment (see Figure 48). The internal deviation of the samples such as 

the 40% increase seen in the 5' Fragment results indicate the levels could equally be 

explained by normal variation within the sample groups. 

 The observed variance could likely be due to the nature of the organism, 

having more atypical feeding habits, as compared to insects. Whilst a strong positive 

result would have been effective proof of a gene knock down effect, a negative result 

and such large variance, calls into question a number of things. The choice of a gene 

which has a high variance normally may have been a mistake in an organism where 

no previous RNA interference had been proven. The use of GAPDH as a standard for 

normalising gene expression, whilst commonplace in insect species, may not be as 

valid in molluscs. The choice of GAPDH is based on the role of as an enzyme in the 

central metabolism, where it is designated a "housekeeping gene" (HKG) and is  

  assumed not to vary in expression between different tissue types and external 

conditions. Other genes have been suggested as HKG for normalisation in qPCR 

 

Compare Sample Groups p-Value (Independent T-Test) 

Control vs. Kanamycin 0.74 

Control vs. 5’ Cath L 0.25 

Control vs. 3’ Cath L 0.16 

Kanamycin vs. 5’ Cath L 0.45 

Kanamycin vs. 3' Cath L 0.12 

Table 21 : T-test values of Cathepsin L RNAi experiment 

Table includes p-value results calculated by comparing 5 RQ values of each 

group against each other using an independent T-Test function. In all cases 

no group can be considered to have a statistical significant difference with 

no p values below 0.05. 
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experiments. Previous Molluscan RNAi studies seem erratic in HKG choice, but they 

often backed data up with phenotypes or protein assays.  

 

Figure 47 : Cathepsin Levels for individual organisms in RNAi Study 

 Figure shows the relative quantitation of Cathepsin L gene, against GAPDH. 

Sham Injected and Kanamycin represent controls, each include variance of 0.5-

2.5. 5'Cath and 3'Cath samples names represent individuals injected with 

either of the 5' or 3' dsRNA fragments. Overall no significant gene knock down 

effect can be seen with groups not being significantly different, see Table 21. 

Error bars shown represent 1 standard deviation based on 3 technical 

replicates for each sample. 
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5.2 Assay of Normalisation Standards for qPCR (HKGs) for D. reticulatum 

 The failure to show a clear RNAi effect in the cathepsin L down-regulation 

experiment called into question the validity of GAPDH as a house keeping gene; 

variability in expression of this gene was one potential explanation for the high level 

 

Figure 48 : Average RQ values for RNAi against Cathepsin L 

Figure shows the averaged values of individuals injected with dsRNA for 

Kanamycin, 5' Cathepsin L Fragment, 3' Cathepsin L fragment or sham 

injections. The resulting data indicated relatively poor consistency of 

expression in individuals. Whilst 3'Cathepsin L fragment shows a decrease it is 

equal to the increases seen in other data and no group is statistically 

significant, see Table 21. Error bars shown represent 1 standard deviation 

based on the 5 biological replicates used to generate each average value. 
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of variability in gene expression observed in the qPCR assays. Research on another 

mollusc, Octopus vulgaris, demonstrated the use of comparing multiple HKGs to 

select the one with lowest overall variance (Sirakov et al. 2009) via either pairwise 

comparison (Vandesompele et al. 2002; Andersen, Jensen, and Ørntoft 2004) or 

comparison to artificial values generated from the total data (Pfaffl et al. 2004). 

Using the transcriptomic data set, primers for quantitative PCR were designed based 

on sequences which were identified as EF1-A (C1490;N398;S553d), Actin 

 

 

HKG Delta CT Best-

keeper 

Norm-

finder 

GeNorm Overall 

Rank 

Actin  0.74 0.35 0.3 0.38 1.19 

EFI-A  0.76 0.3 0.33 0.38 1.41 

GAPDH  0.88 0.62 0.55 0.55 3.46 

Tubulin  0.99 0.39 0.86 0.75 3.46 

Ubiquitin  1.13 0.97 1.03 0.9 5 

Table 22: Table of 5 HKG analysed for stability using qPCR Ct value data 

The table shows the stability scores produced by the relevant HKG stability 

tools, lower values represent greater stability. The final overall value 

represents an aggregate rank; with 5 represent lowest stability score in all 

analyses and 1 highest. In this case we see Actin and EF1-A as the best pair 

produced by GeNorm which returns a top pair with a joint score. Overall the 

stability difference between EF1-A and Actin is very similar within 0.1 in all 

analyses. GAPDH has the next highest stability although Bestkeeper indicates 

poorer stability than tubulin. Overall both tubulin and ubiquitin are considered 

the poorest, and may relate to the high Ct values seen suggesting poorer qPCR 

efficiency. 
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(C2471;N689;S1995d), GAPDH (C2454;N37;S199d), Beta-Tubulin (C2968d), and 

Ubiquitin (C408d). RNA was extracted from digestive glands of 5 organisms and 

cDNA synthesised. qPCR Analysis was conducted as described (Sirakov et al. 2009) 

using the comparative ΔCt method for data analysis. The resulting analysis suggested 

Actin, followed closely by EF1-A were had the highest stability, see Table 22. 

However the Ct values for Tubulin and Ubiquitin were particularly high, and may 

represent poor qPCR efficiency rather than low stability. 

 The top 3 qPCR HKG were further investigated. Six additional digestive 

gland tissue and 4 whole tissue samples were used for qPCR analysis, and their Ct 

values were used for further comparison. Interestingly, comparison of the 3 best 

ranked genes remains the same even when the additional 6 digestive gland samples 

are included (see Table 23). However inclusion of 4 whole tissue samples, with 

digestive gland data, alters the ranking with Actin as the best HKG. When whole 

tissue sample Ct values are used on their own though GAPDH is the best HKG, see 

Table 24. When considering the raw Ct values we see that GAPDH is notably higher 

than the 2 other genes but very similar, despite the square increase that Ct represents, 

see Table 25. In addition all 4 analyses indicate Actin as the worst HKG in whole 

Digest & 

Whole 

Delta CT Best-

keeper 

Norm-

finder 

GeNorm Overall 

Rank 

Actin  1.39 1.27 0.65 1.3 1.19 

EF1-A  1.67 1.15 1.36 1.3 1.41 

GAPDH  1.76 2.03 1.52 1.61 3 

Table 23: HKG analysis of 3 HKG with digestive gland and whole tissue 

qPCR data 

Table shows 4 analyses of Ct values produced from 3 HKG using 11 digestive 

gland tissues and 4 whole tissue samples. Actin and EF1-A are considered the 

most stable pair by GeNorm and EF1-A with considered more stable by 

Bestkeeper but less stable than Actin by Normfinder and Delta CT. The 

combination of whole and digestive gland leads to lowest stability when using 

GAPDH. 
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tissue. As such depending on the tissue source and data input anyone of these genes 

could be considered most 'stable'. 

 Overall, variability in gene expression between individuals in D. reticulatum 

populations appears to be greater than insect equivalents. Unlike insects, which go 

through very pronounced developmental stages, D. reticulatum live longer, with 

variable growth and less regular feeding and activity. Previous work shows slugs 

hatched together have asymmetrical growth leading to slugs of equivalent age 

varying up to 100-fold in mass, and through inference slugs of equivalent mass can 

be of dramatically different age.  These factors combined with a much smaller body 

of works with previous Molluscan qPCR make designing qPCR experiments more 

difficult. This analysis identifies weaknesses with the use of qPCR with this 

organism. Future quantitation may need to pool multiple organisms, and use multiple 

reference genes in order to better validate results. Despite this both analysis using 

methods previously described by Sirakov et al and basic observation of Ct values 

suggests EF1-A to be the best all round HKG, consistently having high stability of 

gene expression regardless of tissue used. After this finding, further qPCR 

experiments used EF1-A as the HKG of choice.  

Whole 

Tissue 

Delta CT Best-

keeper 

Norm-

finder 

GeNorm Overall 

Rank 

GAPDH  1.17 0.29 0.46 0.92 1 

EF1-A  1.47 0.52 1.21 0.92 1.68 

Actin  1.73 1 1.63 1.46 3 

Table 24: HKG analysis of 3 HKG with whole tissue qPCR data 

Table shows the same 4 whole tissue samples from whole the previous 

comparison but analysed separately. We see a shift between GAPDH and Actin 

switching places in rank. Overall EF1-A has similar stability values for each 

individual analysis as previous and does not appear to be notably different for 

whole tissue. 
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5.3 Down Regulation of Expression of Apoptosis Inhibitor by RNAi 

 Apoptosis Inhibitor (APIN) proteins are a group of proteins characterised by 

the presence of a baculovirus inhibitor of apoptosis protein repeat (BIR) domain. 

They suppress apoptosis via interacting with and inhibiting the caspases which cause 

the proteolytic cascade in the apoptotic process. Down-regulation of APINs in 

insects using RNA interference has been shown to induce apoptosis in cells (Liang et 

Tissue Actin SD EF1-A SD GAPDH SD 

Digestive Gland (1) 18.72 0.21 19.02 0.04 21.21 0.06 

Digestive Gland (1) 19.48 0.21 19.41 0.15 22.03 0.10 

Digestive Gland (1) 19.12 0.10 19.94 0.01 22.77 0.11 

Digestive Gland (1) 18.89 0.05 19.13 0.18 23.39 0.05 

Digestive Gland (1) 19.67 0.12 19.67 0.03 22.57 0.12 

Digestive Gland (2) 20.46 0.14 21.00 0.03 23.78 0.08 

Digestive Gland (2) 22.39 0.34 23.03 0.02 25.55 0.08 

Digestive Gland (2) 21.56 0.06 22.49 0.13 24.35 0.19 

Digestive Gland (2) 21.09 0.07 22.54 0.34 25.92 0.06 

Digestive Gland (2) 21.85 0.07 22.82 0.06 26.2 0.07 

Digestive Gland (2) 20.63 0.20 21.52 0.26 24.78 0.06 

Whole 20.24 1.46 22.11 0.11 28.2 0.02 

Whole 22.54 0.03 20.39 0.31 28.1 0.07 

Whole 23.13 0.33 20.72 0.14 28.73 0.06 

Whole 23.03 0.01 21.07 0.47 27.65 0.11 

Table 25: Table showing Ct values of 3 HKG in digestive gland and whole 

tissue 

Digestive gland (1) and (2) represent two 'batches' of samples prepared and 

quantitated with qPCR. Whilst whole tissue Ct values are on the whole higher, 

relative to one another GAPDH appears significantly higher. The same starting 

RNA and cDNA was used for all qPCR results. The SD value represents 1 

standard deviation of the Ct of the 3 technical replicates used for each sample. 
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al. 2012; He et al. 2012). The potential to stimulate large scale apoptosis in an 

organism maybe one of the best ways of eliciting a phenotype. As such D. 

reticulatum contigs containing BIR domains were identified, C4281d;N-;pS1972n 

was selected as it had a homologous region large enough to design a RNA construct, 

see Figure 50. Although the main aim of the study was to cause a phenotype in the 

organism, using a dsRNA fragment derived from this contig, quantitative analysis of 

gene down-regulation was also required. Primers for qPCR which would amplify a 

region outside the dsRNA fragment were designed but produced poor results when 

used in trial experiments. This was either due to lower levels of transcript or the 

 

 

 

Figure 49 : Comparison of D. reticulatum contig with A. californica 

apoptosis inhibitor 

A. californica apoptosis inhibitor was the top match for this contig from the 

NCBI nr database, with matching residues highlighted. Both sequences contain 

2 BIR domains shown by boxed regions, giving strong evidence for the D. 

reticulatum contig having a similar function. The D. reticulatum contig appears 

to not be a complete CDS, but target RNAi insert size is 300-400bp so a 

complete sequence is not necessary for this experiment. 
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 regions outside the RNAi fragment, from where primers were designed, being a 

poorer quality sequence with more errors. Despite this the dsRNA fragment was still 

made and injected to ascertain potential for phenotypic effect.  

5.3.1 RNAi Construct & Assay 

 Primers were designed used to amplify a region of 342bp using whole tissue 

first strand cDNA as template, see Figure 51. The 342bp fragment was amplified via 

PCR, size assessed via Agarose gel electrophoresis, Figure 51 (A). The PCR 

fragment was then cloned into the pJet 1.2 which was used as a transcription vector 

 

Figure 50 : Apoptosis Inhibitor RNAi fragment 

The figure shows the cDNA sequence and predicted translated region for a 

apoptosis inhibitor homologue. The fragment for insertion into RNAi vector 

is highlighted in blue and regions primed by 5’ and 3’ primers for initial 

amplification from cDNA are highlighted in green and red respectively. 
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and checked by sequencing 5' and 3' of the inserted region. ssRNA was synthesised, 

see Figure 43, via in vitro transcription as described before, alongside kanamycin 

control and annealed to produced dsRNA. dsRNA was assessed by gel 

electrophoresis, see Figure 51 (B). 20μg APIN dsRNA was injected per organism, in 

a total of 10 organisms, which was mirrored with Kanamycin dsRNA and buffer only 

sham injections, so that 30 organisms in total were used in the experiment. 

Individuals were fed on lettuce and wheatgerm diet at 10°C and monitored for 2 

weeks for phenotype changes. After 2 weeks no phenotype change was observed. 2 

individuals in the group had died (1 sham, 1 APIN), but this not unusual for 

individuals kept in the Lab, and was not considered a phenotype change. Whilst more 

assays at differing concentrations could be done, due to the lack of results and 

availability of organisms alternative studies were considered. It should be noted that 

studies cited for insects were primarily in cells and embryos rather than whole 

organisms. Work currently being done indicates apoptosis can be induced in adult 

insects, but effects on phenotype can be most detrimental during developmental 

changes such as pupation (Pyati, 2012, Unpublished). Injecting adult molluscs may 

 

Figure 51 : D. reticulatum Apoptosis Inhibitor PCR and dsRNA 

electrophoresis gels 

A) 0.8% Agarose gel electrophoresis of Apoptosis inhibitor PCR product which 

has clear band that matches the predicted size of 342bp. This was gel extracted 

and cloned into a transcription vector. 

B) 0.8% Agarose gel electrophoresis checking the quality of the Transcribed 

apoptosis fragment dsRNA. There is limited low molecular weight smearing 

suggesting the dsRNA is of relatively good quality. 
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not have worked simply because of the lack of apoptosis machinery available in an 

adult D. reticulatum, due to the organism needing no further developmental changes. 

A potential future study could be the use of APIN RNAi against D. reticulatum eggs, 

but serves less application for molluscicidal agents, with eggs being a more difficult 

target to administer in the field. 

5.4 RNAi against GAPDH 

 Having failed to show a phenotypic effect with RNAi of apoptosis inhibitor, 

after failing to demonstrate consistent down-regulation with RNAi directed against 

Cathepsin L, experiments to show that an RNAi effect could be elicited in D. 

Figure 52 : GAPDH RNAi fragments 

The figure shows the cDNA sequence and predicted translated region for a 

cathepsin L homologue previously identified. 5’ and 3’ Cathepsin fragments 

for insertion into RNAi vector are highlighted in blue and orange 

respectively. Regions primed by 5’ and 3’ primers for each fragment’s initial 

amplification from cDNA are highlighted in green and red respectively. 

 

 

 

 

Figure 53 : GAPDH PCR product for insertion into RNAi transcription 

vector 

GAPDH PCR product was amplified from first strand digestive gland cDNA 

and is predicted to be 373bp in length. The resulting fragment of amplification 

is shown here run on 0.8% Agarose gel 



Chapter 5 | Application: Targeting D. reticulatum 

 

169 

 

reticulatum were undertaken. Using a HKG as a target had the benefit of reducing 

the variability in gene expression from organism to organism seen with Cathepsin L. 

HKG are often used in RNAi studies as a positive controls with commercial 

technologies such as Life Technologies Silencer® RNAi positive control kits using 

GAPDH and 18S rRNA genes for human cell lines. EF1-A was used as the HKG, as 

it showed to be the least variable for whole tissue; additionally geNorm which used a 

 

 

Figure 54 : ssRNA and dsRNA synthesised through in-vitro transcription of 

GAPDH RNAi Construct 

A) Lane 1 and 2 contain 5’ and 3’ GAPDH construct ssRNA, the banding 

appears between around 200-400bp as expected. ssRNA often appears smeared 

on non-denaturing gel. Size was confirmed by assessment of dsRNA produced 

by annealing the two ssRNA samples together, gel B. Kanamycin ssRNA can be 

seen in Figure 45 

B) Lane 1 contains the Kanamycin dsRNA synthesised alongside Lane 2 which 

contains the GAPDH fragment dsRNA. Both bands appear clearly at expected 

relative positions with limited low molecular weight degradation. The bands 

run to slightly different positions than the PCR equivalents due to dsRNA 

having a different charge to the DNA molecular weight ladder used here. 
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pairwise comparison method showed GAPDH vs. EF1-A to be the best combination 

for demonstrating changes in expression.  

 A fragment of GAPDH gene was amplified with PCR from first strand 

digestive gland cDNA previously synthesised, section shown in see Figure 52. The 

predicted PCR product of 373bp was size confirmed with gel electrophoresis, see 

Figure 53. The product was gel extracted and restriction digested and ligated into the 

pLitmus28i vector. This was then used in for in-vitro transcription reaction with the 

resulting ssRNA and then dsRNA purified and confirmed with gel electrophoresis, 

see Figure 54, then used for RNAi assays with D. reticulatum.  

5.4.1 GAPDH dsRNA Injections at 20μg 

 Injections of 20μg of GAPDH dsRNA and Kana dsRNA (at 4μg/μl), along 

with Sham (Buffer Only) injections were conducted on 15 slugs. They were observed 

for phenotype change for 6 hours, then after 24 hours flash frozen in liquid nitrogen. 

Total RNA was extracted from whole organisms. First strand cDNA was produced 

and subsequently used for qPCR analysis to assess for gene knock down. The 

resulting data shown below indicated no change in GAPDH gene expression as a 

result of dsRNA injection (Figure 55). Since no indication of an RNAi effect was 

observed, further time points were not taken, but instead altering of the experimental 

conditions was considered. 

5.4.2 GAPDH dsRNA Injections at 50μg with in-vivo produced dsRNA 

 In order to test whether larger quantities of dsRNA would produce a gene 

knock-down effect dsRNA was produced in vivo via a method described in the 

literature (Solis et al. 2009). The use of in vivo methods allowed much larger 

amounts of dsRNA to be produced. The GAPDH fragment and Kanamycin gene 

previously in Litmus28i were cloned into the L4440 vector and transformed into a 

RNaseIII deficient E. coli strain HT115 (rnc14::ΔTn10) which expresses T7 RNA 

polymerase under IPTG induction. dsRNA was purified from bacterial cultures after 

induction, with some optimisation for GAPDH (see Methods section, Ch. 2), see 

Figure 56. The resulting dsRNA was checked via gel electrophoresis to confirm size 
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Figure 55 : Relative quantitation for GAPDH RNAi study at 20μg 

Figure shows 3 averaged samples, measuring GAPDH levels vs. EF1-A control 

gene. Control: average of 4 sham injected individuals. Kana: average of 5 

individuals injected with Kanamycin gene dsRNA. GAPDH: average of 5 

individuals injected with GAPDH fragment dsRNA. No noticeable effect was 

seen across any of the samples although internal variation was relatively high 

as shown by the error bars which represent 1 standard deviation of the 

biological replicates used to generate average values. Independent T-Test 

indicated no significant difference, with p -values for Control vs GAPDH and 

Kanamycin vs GAPDH at 0.82 and 0.78, and Control vs Kanamycin at 0.62. 



Chapter 5 | Application: Targeting D. reticulatum 

 

172 

 

 

Figure 56 : GAPDH in vivo dsRNA production 

A) Lanes show nucleic acids extracted from the in vivo expression system 

transformed with RNAi constructs before and after nuclease treatment and 

purification. Lane 1 shows APIN before nuclease treatment and lane 2 after 

treatment*. Lanes 3 & 4 and lanes show GAPDH and 5 & 6 Kanamycin 

before and after nuclease treatment. Notably lane 4, GAPDH after nuclease 

treatment has no observable band at the expected region. Nuclease 

treatment was further optimised for the GAPDH construct.  

B) Lane 1 shows GAPDH nucleic acids before nuclease treatment and lane 

2 contains control, nuclease treatment with no nuclease. DNase was 

previously tested and concentrations did not affect visibility of expected 

dsRNA band. Lanes 3, 4 and 5 represent 10%, 25% and 50% of the original 

RNase A treatment. Lane 4, 25% RNase was considered the most optimal 

treatment and GAPDH dsRNA was purified using this RNase A 

concentration. 

 

*in vivo synthesised APIN dsRNA was not used, only in vitro dsRNA was 

used for APIN experiments. 
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Figure 57 : Relative quantitation of GAPDH vs. Actin and EF1-A 

Each sample represents a pool of 4 slugs injected with either buffer (C1, C2) 

50ug kanamycin dsRNA for each individual in the pool (K1, K2) or 50ug 

GAPDH dsRNA for each individual in the pool (G1, G2). The two colours 

represent the different quantitative PCR studies for each sample, GAPDH with 

Actin HKG primers (dark grey) or EF1-A HKG primers (light grey). In general 

comparison with Actin show favourable results, with decreases in GAPDH to 

<20%. However comparison with EF1-A, whilst correlates to some degree, 

shows much greater uncertainty. Error bars represent 1 standard deviation of 

the 3 technical replicates for each sample. 
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and appeared equivalent to in vitro transcribed dsRNA shown in Figure 54. The 

resulting GAPDH and Kanamycin dsRNA was injected at 50μg doses (5μg/μl) into 8 

individuals each, along with 8 individuals sham injected as a control. The individuals 

were monitored for 7 days for any observable phenotype occurring. At the end of 7 

days 8 slugs from each injection group were split into 2 pools and RNA extraction of 

total of 6 samples was conducted, each sample representing 4 individuals. The 

resulting RNA samples were used for quantitative PCR. Figure 57 shows the 

resulting data normalised both with EF1-A and Actin based on Ct values shown in 

Table 26. 

 When the GAPDH expression data are normalised to Actin HKG there is 

convincing evidence of gene knockdown of GAPDH, with both RNA samples  

showing <20% of the lowest control expression. However when expression data are 

normalised against EF1-A much greater uncertainty with regard to any gene knock-

down effect is apparent. Whilst the results of both genes show correlation, see Figure 

58, the correlation is not strong and suggests one or both HKG's have variable 

expression. T-tests of replicates indicate no significant differences (p-value < 0.05), 

whilst t-tests of RNAi variables indicate significant differences between both control 

and kanamycin control when compared to GAPDH, but only with Actin as a HKG.  

When using EF1-A as HKG, the difference between GAPDH and kanamycin control 

is no longer significant, see Table 27-Table 29.  

 These results appear promising, with a consistent trend to down regulation in 

GAPDH expression after injection of GAPDH dsRNA. However, in view of 

remaining variability in the data, the conclusion that should be drawn is that, until 

better validation of a reliable HKG for each tissue in use can be demonstrated, qPCR 

will not be a reliable method for proving an RNA interference effect is occurring in 

D. reticulatum. RNAi components such as Dicer RNase III and Argonaute are not 

present in the available D. reticulatum datasets. However homologues of both these 

genes in the C. gigas and A. californica sequence data (GIs: 524901378, 405970135, 

405960420, 524899606) are present and indicate the Molluscan phylum should be 

susceptible to RNAi. RdRP can be found for in C. gigas (GI: 405952885), which 

indicates there may be a systemic RNAi effect as Mollusca.  
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Figure 58: Linear Regression of GAPDH VS HKG 

R
2
 valued indicates while the normalisation of GAPDH with each housekeeping 

gene does positively correlate to a lesser degree. The relationship is poorer 

than expected and indicates one or both HKG may not be reliable enough to 

draw conclusion from. 
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Sample GAPDH  EF1-A 

Control 1 22.1 19.7 

Control 2 21.9 19.1 

Kanamycin1 22.4 19.7 

Kanamycin2 22.8 19.5 

GAPDH1 23.0 19.5 

GAPDH2 23.8 19.9 

   
Sample GAPDH  Actin 

Control 1 28.5 20.7 

Control 2 27.4 19.2 

Kanamycin1 27.1 19.9 

Kanamycin2 27.7 19.6 

GAPDH1 30.1 19.6 

GAPDH2 28.6 20.4 

Table 26: Ct values for two qPCR studies on RNAi data 

Ct value for qPCR data showing comparative Ct between GAPDH and EF1-A 

and GAPDH and Actin. Initial qPCR runs were used to identify optimal 

starting cDNA quantities for reactions so that Ct values, wherever possible, fit 

into the 20 < Ct <30 range, which is considered most accurate. In the case of 

Actin starting cDNA was 5ng per well (compared with EF1-A at 40ng). 
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Compare Biological Replicates  Independent T-Test 

Actin   

C1 vs. C2  1.39 1 

G1 vs. G2 0.21 0.03 

K1 vs. K2 1.43 1.09 

 Result (p): 0.60 

EFI-A   

C1 vs. C2  1.25 1 

G1 vs. G2 0.61 0.46 

K1 vs. K2 1.06 0.67 

 Result (p): 0.35 

Table 27: Comparison of Biological Replicates for GAPDH RNAi 

Independent T-Test was conducted to assess whether there was a significant 

difference between the biological replicates where significant is considered to 

be p < 0.05. In this case biological replicates for both HKG are not a 

significantly different between biological replicates p-values 0.6 and 0.35. 

Compare HKG Replicates  Paired T-Test 

 Actin EFI-A 

C1 1.39 1.25 

C2 1 1 

K1 1.43 1.06 

K2 1.09 0.67 

G1 0.21 0.61 

G2 0.03 0.46 

 Results (p) 0.92 

Table 28: Comparison of HKG Replicates for GAPDH RNAi 

Paired T-Test was used to assess whether there was a significant difference 

between the 2 housekeeping genes where significant is considered to p < 0.05. 

In this case there is no significant difference between housekeeping genes used, 

p-value 0.92. 
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Comparison of 

Variables 

   Independent 

T-Test 

 Control GAPDH   

Actin 1.39 0.21   

 1 0.03 C v G (actin) 0.04 

EFI-A 1.25 0.61   

 1 0.46 C v G (EFI-a) 0.06 

   CvG Overall 0.002 

     

 Control Kana   

Actin 1.39 1.43   

 1 1.09 C v K (actin) 0.83 

EFI-A 1.25 1.06   

 1 0.67 C v K (EFI-a) 0.38 

   CvK Overall 0.6 

     

 Kana GAPDH   

Actin 1.43 0.21   

 1.09 0.03 K v G (actin) 0.03 

EFI-A 1.06 0.61   

 0.67 0.46 K v G (EF1-a) 0.25* 

   KvG Overall 0.01 

Table 29 : Independent T-Test of Variables for GAPDH RNAi 

The table shows an independent T-Test to ascertain whether the groups 

Control, Kanamycin and GAPDH are significantly different. With each 

comparison CvG, CvK & KvG a T-Test for each HKG is conducted, then an 

overall including data from both HKG. For overall T-Tests the data suggests a 

significant difference between the GAPDH RNAi injected group and the 

Control group and the GAPDH group and the Kanamycin control group p-

values 0002 & 0.01 respectively. And there is no significant difference between 

the Kanamycin and the Control, p-value 0.6. *However when we look at 

individual primers we see that K v G using EFI-A does not follow this trend, 

and the test indicates the difference between Kanamycin and GAPDH is not 

significant when using EFI-A as the HKG p-value 0.25. 
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5.5 TNF Ligand-like gene as a molluscicidal agent 

 In light of a lack of sufficiently promising results with RNA interference, 

alternative mechanisms for causing lethality, the end goal of developing novel 

molluscicides, were considered. The D. reticulatum contig C2550;S1758;N554d 

showed similarity to a number of Tumor Necrosis Factor ligands (TNF-L). Unlike 

the C1q proteins which can also bind to cell receptors to elicit apoptosis, TNF 

ligands are usually homotrimeric requiring only a single peptide to form the 

complete complex. As cytokines, they have a range of potential functions, but can 

cause cytolysis or cell death. A previous study with the disk abalone Haliotis discus 

discus showed expression of a Fas-like ligand, isolated from cDNA, in an E. coli 

expression system. The study went on the show phenotypic effects in the target 

mollusc (De Zoysa et al. 2009). Whilst not proving the ligand is specific to mollusc it 

does present a potential opportunity. TNF-like ligands in D. reticulatum could be 

expressed and assayed against the organism for toxicity. If the protein can be shown 

to be target specific it provides a potential avenue for a molluscicidal product. Using  

the organism's own protein may also have the added benefit of decreased resistance 

with resistance leading to the resistance to its own cell signaling molecules. As both 

an exemplar of how sequence data could identify targets and as a potential 

opportunity to produce a molluscicidal agent, the TNF like sequence was expressed 

as a recombinant protein.  

5.5.1 Recombinant Protein Expression 

 The TNF-like ligand from D. reticulatum (dTNF) was expressed as a 

Thioredoxin (TRX) fusion protein using the PET32a expression vector in E. coli 

Origami B(DE3) cells. Thioredoxin are ubiquitous proteins, 11.9kD in size, 

containing catalytically active disulphide group and function in several biochemical 

pathways by thiol/disulphide exchange reactions (Lemaire et al. 2000). Thioredoxins 

are structurally stable, and remain stable in E. coli even under extreme conditions 

(Holmgren 1985) as well as promoting protein folding of fused proteins during 

expression. The full coding sequence of dTNF minus the transmembrane region was 

inserted in-frame after the TRX site (see Figure 59). The transmembrane region was 
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removed to avoid interaction of the protein with the host expression system’s own 

membrane and improve protein solubility. The PET32a vector contains 2 potential 

6xHis tags, the first 3' of the TRX site, 5' of the MCS, the second is 3' of the MCS 

this was not included in the final protein via introduction of a stop codon, in order to 

avoid blocking dTNF's potential receptor binding function which is at the C-terminal 

 

Figure 59 : Protein sequence of Trx-dTNF with highlighted regions 

Trx-dTNF protein sequence, the complete protein is predicted to be 43.9Kda. 

Site markers A and B are positions where cleavage at those points would 

produce a ~31Kda peptide. The sizes of highlighted regions are: Thioredoxin 

11.9Kda, His Region 5.3Kda, and TNF 26.7 KDa.  
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A) 

 

B) 

 

 

Figure 60 : CBB and Western blots showing purification steps for TRX-

dTNF 

Figures A and B show the two gels loading with equal amounts of protein and 

run in parallel, A was stained and B was blotted with Anti-His antibodies. The 

Western blot indicates an immuno-reactive protein at around ~45Kda in all 

lanes apart from 7 and 9, which are the column wash elutions. A large amount 

of 45Kda protein is seen in the uninduced insoluble fraction, lane 2. A smaller 

amount is seen in the uninduced (lane 1) and induced soluble lane (3, and 5) 

and the induced insoluble fractions (4 and 6). Lanes 8 and 10 are the column 

elution fractions and lane 11 shows elution after dialysis and freeze drying 
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end of the peptide. The aim of this construct was to minimise the potential side-

effects of fusing dTNF, by replacing the transmembrane with a region of similar size 

(TRX) and avoiding interfering with the receptor binding end. The calculated 

molecular weight of the Thioredoxin dTNF fusion protein (Trx-dTNF) was 43.9 

KDa.  

After transformation of E. coli origami B(DE3) cells [Novagen] with the expression 

construct, transformed clones were selected. Cell lysates were analysed for the 

presence of TNF, using immuno-reactivity to Anti-(His) antibodies as a marker for 

the expressed protein, Figure 60. Expression of recombinant TNF was found to be 

higher in cultures grown without induction with IPTG (see Figure 60, compare lanes 

1 & 2 uninduced soluble and insoluble versus lanes 3 & 4 soluble and insoluble); in 

the insoluble fraction from uninduced cells, TNF was present as a major band of 

approximately 44kDa. The reason for this expression in the absence of induction is 

not clear, though there is a cessation in culture growth after the introduction of IPTG 

not seen in uninduced cultures. No overall change in OD after IPTG induction, 

compared with increase in OD seen in uninduced cultures, suggest that the induction 

process may have had a toxic effect on the bacterial culture. Alternatively in some 

cases uninduced cultures can auto-induce after the supply of none-lactose sugars runs 

out, expressing proteins several times higher than induced equivalents (Studier 

2005). Several expression cycles were conducted with similar results. The (His)6-

tagged protein was purified by metal affinity chromatography using HisTrap HP 

column. As seen in lanes 8, 10 and 11 this resulted in some degradation of the 

recombinant protein; bands are seen around 30 KDa, which are immuno-reactive 

with the anti-(His) antibodies, and can only be either Trx-His-Partial dTNF or His-

dTNF, see Figure 59 points A and B. Elution salts including imidazole were removed 

from the protein purified by affinity chromatography by either dialysis or buffer 

exchange columns; in both cases precipitate formed during the purification step, with 

resulting soluble and insoluble fractions both containing Trx-dTNF. The final protein 

used in assays was u used the buffer exchange method as this gave better yields, and 

the buffer could be used as a control in subsequent experiments. Additionally, the 

buffer exchanged purified protein appeared to be far less degraded, with almost all 
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immuno-reactive protein being around ~45Kda and only a small band at around 

30Kda. However there was still a significant amount of background none immuno-

reactive protein in the purified sample, Figure 61. The final purified protein was 

resuspended to 5μg/μl which was quantified based on the CBB gel, with the actual 

total protein concentration being 33μg/μl.  

 

5.5.2 Injection Assay 

 10 slugs were each injected with 50μg (330μg of Total Protein) of Trx-dTNF 

in 10μl of TAE buffer, buffered to 7.4. As a control injection, 5 slugs were injected 

with imidazole elution buffer, purified in the same manner as Trx-dTNF was 

A)      B) 

 

Figure 61 : Coomassie brilliant blue and Western blots of buffer exchange 

purified dTNF 

Blots A and B represent the CBB and Western blots respectively. Lanes 1 and 2 

compare induced and uninduced fractions, we see no evidence of any protein in 

the induced fraction, even more so than previous induced. Lane 3 is the His-

Trap column wash and 4 and 5 2 elutions from separate loadings of the soluble 

fraction of the uninduced culture sonication. Lane 6 shows the final protein 

product after purification with almost no immuno-reactive protein outside of 

the ~45Kda band, suggesting limited degradation of dTNF. Small amounts of 

immuno-reactive protein is seen around the 30Kda mark, mainly in lanes 4-5, 

as seen in previous blots but to a lesser extent. 
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conducted in parallel. Previous injections (data not shown) of 500μg of Ovalbumin 

indicated that individuals should be tolerant to injections of high levels of protein. 

Individuals were monitored for 2 weeks after injections and no phenotype was 

observed. The lack of results and availability of time left in my project, lead me to 

stop investigation at this point. There are a number of further pieces of work that 

could be done with regard to Trx-dTNF; the possible reasons for lack of activity are 

numerous. However one of the main reasons for producing the protein was as a 

prototype to show the potential of expressing native D. reticulatum proteins which 

could be tested for toxicity. 
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Chapter 6 | Discussion 

6.1 Assembly Comparisons 

 The number of contigs with significant similarity to database sequences by 

comparisons such as BLAST is commonly used as a metric summarising 

transcriptome data and indicating how much of the dataset is likely to represent 

actual transcripts. The number of contigs and number of unique protein matches 

shown in tables 13 and 19 are highly varied from assembly to assembly. Using this 

metric as the primary arbitrating factor over the homology summary would change 

the results by 2 to 3 times depending on which assembler you were to use. However 

the overall number of reads with BLAST matches is much less varied and top IPR 

terms seem also to be very similar for most sequences of the digestive gland tissue. 

When we consider the overlap of reads between assemblies which have BLAST 

matches (Figure 20) we see that majority ~80% are the same. This seems to indicate 

the majority of the dataset represents the same group of sequences indicated by the 

IPR terms, regardless of how the data is assembled. The minority of the dataset is 

split over a disproportionately large number of contigs which varies greatly between 

the assemblies and skews any statistics tied to contig numbers rather than read 

numbers. However for neural tissue contigs the parity between assembly homology 

data is poorer reflecting the likely decreased quality of the source data, and in turn 

the cDNA used for sequencing. In conclusion the assemblies, whilst important for 

ascertaining complete sequences of genes, can significantly affect the outcome of 

analysis when considered on their own. Considering multiple assemblies in parallel 

with using read numbers rather than contig numbers arguably biases the analysis. 

 In addition to overall analysis, utilisation of multiple assemblies produces 

overall the largest number of genes available to researchers. We find in some cases 1 

or more assemblies do not contain a gene which, when examined manually by simply 

looking at the sequence and the homology matches is obviously a real gene. 

Examples of this failure of assembly software include several C-type lectins, which 

on investigation by hand are evidently unique genes, despite not being present in 

some of the assemblies. In other cases such as ferritin gene, one assembler may have 
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incompletely assembled the gene, but by comparing the internal homologues 

between assemblies we can get the most complete gene, which can be confirmed by 

comparison with external homologues and if necessary by hand. In previous studies 

assemblies have been further assembled with a second pass, merging multiple 

assemblies into one. This has the disadvantage of often further over-assembling 

contigs which may already be over-assembled. For the purposes of our analysis there 

was no necessity to merge assemblies as they could be interacted with as a 'meta-

assembly' in a BioSQL database. However most external databases would only 

accept a single assembly file for publication. In this case the temptation would be to 

'cherry-pick' contigs from our current dataset. However such a workflow, despite 

being relatively easy to setup, would require its own assessment and evidence of 

improvement over a single assembly. This is beyond the scope of the current project. 

As such contigs from the CLCbio assembly were uploaded to the NCBI database. 

6.2 Use of contigs, reads and coverage 

 A major advantage of analysing high-throughput sequence data is the ability 

to predict things like gene function. Here we attempt to make further predictions 

using read numbers to weight the significance of predicted genes when considering 

an overview of the transcriptome. Correlating sequencing frequency with expression 

levels has been described in a number of papers, increasingly replacing 

qPCR/microarray methods (Sultan et al. 2008; Schmidt, Schmid, and Grossniklaus 

2012). However read numbers or reads per kilobase of exon model (rpkm) values 

usually rely on a genome to map transcripts to genes to bypass the problems of 

incorrect assemblies. 

 We recognise that frequency of a transcript being sequenced does not 

necessarily indicate that the transcript exists in larger quantities than others, but 

argue that it is a good indication. Also, as previously described, examples such as 

digestive enzymes homologues cathepsin L and cellulase may have more transcripts 

but could conceivably have less biochemical significance due to poorer enzymatic 

efficiency or greater post-transcriptional regulation, rather than having a more 

significant role in the digestive action of the organism. However as not all sequences 
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can be considered within this body of work, when overviewing sequences 

prioritisation is necessary. Linking reads to IPR terms has been done in previous 

studies (Peng et al. 2011) and both avoids prescribing expression to genes whilst still 

providing some sort of weighting to indicate prevalence. Previous methods of 

ranking top IPR terms based on the number of contigs linked to IPR terms such as 

described in Pauchet et al. (2009) seem likely to bias towards larger gene families 

and sequences which are fragmented into multiple contigs. 

6.3 Homology Analysis Caveats 

 The use of homology allows for prediction of protein function on a scale 

much larger than can be achieved using an experimental characterisation. However 

inevitably the function is only a prediction and relies upon probabilities, with the 

guarantee that certain percentage of predicted protein functions are incorrect. A 

problem with BLAST-based homology is the inclusion of predicted proteins within 

the NCBI databases. This causes an observable cascade of predictions strengthening 

further predictions. This is particularly problematic for phyla such as Mollusca where 

the majority of close homologues are from equivalent mass sequencing efforts. In 

this case, examples where a D. reticulatum protein had homology to a series of 

different accessions, all of which were predicted proteins based either on each other 

or eventually an experimental derived protein often from distantly related model 

organisms, were numerous. The actual homology of the D. reticulatum protein to any 

protein which was not a predicted protein, but had an experimentally derived 

function was often much lower than to the most similar protein with no 

experimentally derived function.  

 In an attempt to reduce this effect, our discussion of predicted protein 

functions was primarily based on INTERPRO data. Whilst this also has caveats, the 

homology is based on group patterns from a large pool of sequences rather than a 

single source-based prediction. The data is better curated, and a much higher 

percentage of the proteins have been experimentally derived. Despite this there is 

obviously still bias within the data, an example of which is the spider toxin function. 

Without human intervention an automatic assignment of function would label the D. 
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reticulatum peptide a spider toxin. It is much more likely that spider toxins are the 

only proteins which use the cysteine knot domain to have been well described and 

included in INTERPRO. Despite this it still gives clues as to what potential role the 

protein has, as discussed in chapter 4, which is the primary goal of the homology 

analysis. 

6.4 Programming Tools 

 Whilst the linked toolkit represents quite a large amount of programming 

code, it is not the focus of this thesis. The toolkit is primarily a collection of scripts 

for dealing with biological data and interacting with the BioSQL database. A large 

amount of the tools are simply automations of tasks that can be done by hand. In 

some cases they duplicate suitable functions which exist in main biology libraries 

such as bioJava and bioPerl, but were simply quicker to write than find, while in 

other cases, an alternative implementation was necessary. For example the bioJava 

BLAST parser is a 'push-parser' (whole file is 'pushed' into memory) rather than a 

'pull-parser' (Pieces of file a pulled into memory); this method can be problematic for 

large XML files, and has been addressed for some specialist datatypes such as mass 

spectrometry (Griss et al. 2012).  For large BLAST XML data files, the default 

parsing would fail to load due to bug 6536111 in the Java virtual machine 

[http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6536111]. In this case I used 

a 'push-parser' implementation were the file is loaded piece-meal into memory, using 

the Woodstox XML parser (‘Woodstox’ 2013). This had the added benefit of 

supporting BLAST XML files with multiple BLAST records, although there are 

several tools to split the file into individual records. 

 Other sections include bulk download scripts for all the sequences linked to a 

Panther, IPR, PFAM, NCBI, UNIPRO term, which were written to avoid additional 

steps. For instance a contig name could be used directly to download all relevant 

sequences from the matching IPR terms and automatically align them with clustalw 

with a single command. In many cases these tools represent workflows, for example 

taking a sequence, BLASTing it, retrieving related terms. The graphs showing 

BLAST cut-offs were done by counting the number of BLAST records then 
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decrementing that value for each e-value in order of e-value. In these examples it is 

difficult to decide to what extent to explain the automated functions as in many cases 

they would not need to be detailed were it done by hand. In my thesis I have 

neglected the explicitly explain what all the tools/scripts/functions/classes do and 

how they work. I have instead opted to make the source code available for all the 

tools used in my PhD as an open-source project at 

https://github.com/EnderDom/Eddie. This is a publicly accessible project, hosted by 

a popular source control website and allows for any part of the source code to be 

inspected and downloaded. 

6.5 General Conclusion 

 The objectives of this work were to extract sequence information from a crop 

pest which previously had limited genomic data and explore the implications of that 

information. Deroceras reticulatum was studied to better understand the underlying 

molecular mechanisms with the long term goal of identification of effective 

strategies to combat the organism in its role as a crop pest. 

 In the initial stages of the project the aims were the production of RNA and 

then cDNA of sufficient quality to acquire genetic data from the species. The 

extraction of RNA differed significantly from previous work done with insects and 

techniques had to be adapted to better suit the Molluscan physiology. In general 

dissected tissues using fresh tissue homogenisation techniques produced overall 

better quality RNA than other methods. For experiments where RNA quality was 

paramount such as cDNA synthesis, dissected tissue was much preferred due to 

improved quality over whole tissue. This added further weight to initially focusing 

on digestive gland, alongside previous research on crop pests where digestive gland 

sequencing produced useful genetic information. Both RNA and cDNA protocols 

were repeated until the appearance on gel electrophoresis matched the expected 

appearance based on previous research and relevant manufacturers. 

 With the cost and general trepidation that comes with the use of new 

technology such as pyrosequencing, evidence that the cDNA contained D. 

reticulatum sequences was required. With almost no sequence information available, 
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using PCR to amplify known genes was not a feasible method. The production of 

cDNA libraries, the cloning of second strand cDNA into vectors and transforming 

into E. coli, was standard laboratory practice, in order to preserve any cDNA 

produced. Previous to high-throughput sequencing methods, cDNA libraries could be 

sequenced with Sanger techniques to provide transcript data. Sequencing a sample of 

clones containing cDNA was a clear method to check the presence of D. reticulatum 

sequences. After 12 clones were sequenced it was clear that the sequences belonged 

to D. reticulatum. BLAST homology of the clones showed sequences matching 

invertebrate and in many cases Molluscan homologues despite a general lack of 

Molluscan homologues in the NCBI database. 

 With the cDNA synthesis protocol optimised for D. reticulatum, investigation 

into ion channel proteins was carried out. Ion channel proteins were of interest in 

many crop species and isolating the sequence would have been of great benefit. The 

long term goal of the research group was to isolate ion channels from target crop 

pests which potentially bound to invertebrate specific spider toxins and conotoxins. 

These could then potentially be expressed in Xenopus oocytes, commonly done for 

ion transport studies (Wallingford et al., 2010), and used as an assay for the blocking 

of the ion channels by toxins. The result of degenerate PCR to amplify an ion 

channel transcript sequence was a partial fragment homologous to the sodium 

voltage gated ion channel protein of A. californica. RACE PCR was then used to try 

and recover the remaining sequence, but was unsuccessful.  

 It may be beneficial for future work to recover the remaining sequence 

information for the ion channel homologue fragment sequenced in this project. 

Degenerate primers could be designed to make use of the increased availability of 

Molluscan sequence data published since this initial experiment. The ion channel 

was not found in our neural dataset, possibly due low transcription levels which 

would be expected for ion channel proteins. cDNA normalisation might improve the 

overall likelihood of retrieving the sequence through high-throughput sequencing. 

Other alternatives include looking instead at genomic DNA and using a primer 

walking strategy for sequencing the rest of the gene (Leoni et al., 2008). Despite 

failing to generate the full transcript here, future work should be able to procure its 
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full length given enough time. The fragment generated by this project is a useful 

starting point and also gives an indication of the conservation of the gene in D. 

reticulatum. 

 With the cDNA validated, digestive gland high-throughput sequencing and 

analysis was conducted and confirmed much of the previous research of the 

organism's digestive biochemistry. We highlighted significant genes, where data was 

available, and gave weighted functional predictions of sequences found. The 

provision of major digestive enzymes in crop pests has been a first stage goal in 

previous invertebrate pests, particularly insects. For D. reticulatum this provision 

was done relatively swiftly in comparison to classical cDNA library cloning and 

Sanger sequencing, utilising modern high-throughput sequencing methods. With this 

major objective completed we considered further tissue types, which lead to 

sequencing neural tissue cDNA. With decreasing costs and improved sequencing 

technologies, other tissue types could be considered in the future. Identifying 

expression levels with sequencing data has already been described and could be used 

as replacement of micro-array analysis. Future research may be able to link 

sequencing data together to build an expression profile for D. reticulatum tissues, as 

has been done in model organisms. 

 RNAi against the Cathepsin L homologue was the first implementation of the 

sequence data analysis within this project. Previous studies had been done on insects 

using RNAi against cysteine proteases, such as in pea aphid (Jaubert-Possamai et al. 

2007), and the general interest in inhibiting proteases of crop pests lent credence to 

the potential of the experiment. However a number of differences lead to RNAi in 

molluscs being less convenient than insects. The lack of previous work and the lack 

of a general standard housekeeping gene have been identified within this work. As 

well as population sizes available for research use, being significantly lower. This 

lead to the studies being scaled down with less confidence in the qPCR results than 

with an equivalent qPCR in insect populations. Cathepsin L variability appeared too 

high to produce accurate qPCR results, without a phenotype the gene was not 

investigated further. Some improvements could be made such as having larger 

samples sizes for qPCR studies. Investigating alternative culturing protocols may 



Chapter 6 | Discussion 

 

192 

 

allow for a larger population of slugs, providing an equivalent samples size as insect 

qPCR studies. 

 The second RNAi construct, apoptosis inhibitor, also provided poor results, 

failing to work effectively based on lack of phenotype change. A dilemma with 

RNAi after no phenotype is seen is the choice between continuing an experiment by 

qPCR analysis or a functional assay, or trying another gene target. The apoptosis 

inhibitor gene was selected due to its success seen in insects within the research 

group, which included a clear phenotype. The lack of phenotype and unsuccessful 

qPCR experiments as well as the likelihood that apoptosis inhibitor would not be a 

legitimate target, due to conservation of the gene, resulted in the decision to not 

consider the use of the target further, but focus instead on another gene. 

 GAPDH was the final RNAi experiment discussed here. The lack of results in 

previous experiments focused the project on providing evidence that RNAi was 

working rather than considering long term potential of RNAi constructs. A HKG was 

chosen, with the express purpose of showing a gene knock-down effect with qPCR. 

HKG was specifically chosen due to reduce variability and highlight any knock 

down effect. This experiment also included considering longer time points, larger 

dsRNA quantities and pooling individuals to reduce variability. The inclusion of a 

second HKG was used in order to verify the first. It demonstrated that use of EFI-A 

showed a significant difference with GAPDH. As such the use of a secondary HKG 

for validation of the results was successful, but it furthered reduced confidence in the 

overall qPCR experimental results. The assumption that the work done with RNAi in 

insects would be transferable to molluscs was incorrect. An approach which 

prioritised identifying knock-down through a protein assay would have better 

validated RNAi.  

 Solid evidence of RNA interference working within D. reticulatum 

represented an important milestone, which was not met by this project. Future efforts 

may need to concentrate on initially proving the robustness of RNAi experiments in 

molluscs. Showing dsRNA traversal through the organism, uptake into the cell and 

presence over time are all experiments still to be done in D. reticulatum and would 

lend weight to future gene knock down experiments. Another area to expand is the 
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delivery method of RNAi, in this project experiments focused on injection assays, as 

a starting point to maximise the probability of dsRNA uptake. Feeding through 

incorporation of RNAi in feed or expression in plant species is a delivery method of 

interest and a more practical delivery method for downstream application. 

 Sequencing of the neural tissue generated a large selection of sequences not 

found in the digestive gland. However the lack of ion channels was potentially 

foreseeable with the same level of transcription not to be expected from ion channels 

as seen from the digestive enzymes. Despite this several sequences were of notable 

interest and their presence or absence in different tissues increased their notability. 

With RNAi having limited success, a protein based experiment was conducted. 

dTNF appeared to be present in both digestive gland and neural tissue and showed 

specific homology to ligands known to bind to TNF receptors, many of which initiate 

apoptosis. The results presented show only a limited assay to assess phenotype, 

which was unsuccessful. However the represents potential method for 

implementation of data produced in this work. It demonstrates that native proteins 

can be successfully identified, expressed, purified and assayed against the target 

organism. Future work could involve assessing yeast expression systems which are 

better able to express eukaryotic proteins which may require additional folding 

enzymes. However the potential that the protein caused a toxic effect when 

expressed, suggested by the lack of OD change in IPTG induced cultures should be 

taken into account. Whilst the focus of this project was to concentrate on generating 

an effect, producing toxins which are ubiquitously toxic to any organism will inhibit 

the viability of the protein as a downstream application. 

 A better target for protein expression may well be one of the most interesting 

sequences found in the dataset, the knottin-domain containing protein with close 

homology to spider venom toxins. This protein was found by chance when a list of 

all IPR terms was assessed by hand, toward the end of the project. The potential for 

this protein to be an ion channel blocker which spider toxins are imitating highlights 

it for further research. Presence of homologous proteins of unknown function in the 

insects suggests the results may also benefit research in other crop pests. Expression 

of this gene and its characterisation would be a recommended next step from this 
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project’s work. Expression could follow the same protocol as that used for TNF. 

However spider toxins have been successfully expressed in yeast, if the protein is a 

toxin homologue then yeast may be a better expression system for assessing its 

potential. 

 Many of the aims of this project were successfully achieved. A mixture of 

molecular biology, bioinformatics, data analysis, RNAi and protein expression 

created a diverse set of work. However the overall target of taking the project from 

an organism with very little data available to a working vector causing lethality was 

overly-ambitious. Many experiments were left open-ended, with more data being 

required before useful conclusions could really be drawn. But the project contains a 

wealth of data available for this organism and identifies many starting points for 

future work. Initial experiments have been done which identify where many of the 

limitations of working with this organism lie and will hopefully better inform future 

research with Deroceras reticulatum. 
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