

Durham E-Theses

Wide angle reflection studies at sea

Walker, Christopher David Terence

How to cite:

Walker, Christopher David Terence (1978) Wide angle reflection studies at sea, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/9366/

Use policy
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details.

Wide Angle Reflection Studies At Sea" by
 Christopher David Terence Welker
 submitted for the degree of
 Doctor of Philosophy
 Oniversity of Durham
 Department of Geological Soiences

Nineteen Hundred and Seventy Seven

The copyright of this thesis rests with the author.
No quotation from it should be published without his prior written consent and information derived
from it should be acknowledged.

CONTMENTS

Page No.

GHAPIER I

Introduction 14
Data Aoquisition System 18
System Requirements 24
Mathematical Analysis 27
Data Processing 28
GHAFIER II
Introduction 29
General Description 33
Digress Flectronios 33
Record 33
Timing Unit 33
Circuit Desoription 39
Hydrophone 39
Stabilised Supplies 39
ADC and Gain Control 44
Crystal Osoillator 44
Clock 44
Matrix Timing Cirouit 52
Sequence Control Unit 55
Delayed Operation 55
Programmed Operation 55
Cyolical Mode 55
No Delay 57
Delay, Programmed Operation and 57
Cyclical Mode
Cyclical Mode 57
Iterative
Write Board 58
Tape Recorder 65
Tape Head Details 65
Transmitter 75
Flashing Light 75
Battery Supplies 75
Operation 78
Replay 81
GHAPTER III
Plene Wave Reflection 85
Spherical Waves 98
Evaluation of the Refleoted 105 Potential
Method of Steepest Descents 109
Critioal Point 118
Total Reflection 124
Layered Media 132
Inhomegeneous Layered Media 133
CHAPTER IV
Processing 134
Analogue Playout 134
Refleotion Processing on 138
the 360
Refraction Analysis 143
Amplitude Analysis 143
Transfor of Data from Modular 155 One to IBM $360 / 67$
Curve Fitting and 157
Synthesis

CHAPTER V

Analysis of Sonobuoy Records 159
Experimental Results 180
Acoustic Basement Investigation 209
Programme Cheok 216
Signal Processing 218
Discussion 222
Conclusion 225
Bibliography 226
Appendix 1
PLAMP 240
ASSRFIN 244
ASSRPRN 249
HDGENI 253
PINAL 256
WAR 261
TWAT 269
STORE 272
Lever 274
replay ($1,2,3$) 275
PRINT 280
CONV 282
RAT 285
GEN 287
Appendix 2
Detailed Explanation of 289 W.A.R. Analysis Programme WAR

Appendix 3

Digitisation Test 293
4.1 Comparison of F.M. \log and computed ship 137 velocity
4.2 S13 Initial Analyais 140
5.1 (a-b) Sonobuoy Locations 161, 162
5.2 (a-r) Sonobuoy Results $163-179$
5.3 Amplitude, Arrival Time, Shot Number (S2) $181-183$
5.4 Fxtended Ansiysis 194
5.5 Gurve Fitting Output for Sonobuoy, S3- 197 All Record
5.6 Gurve Fitting Output - S3 15/87 Shots 199
5.7 Curve Fitting Output - 82 20/109 Shots 206
5.8 Curve Fitting Output - $\$ 2$ Basement 209
A3.1 Accuracy of Digitisation Results 298
A3. 2 Comparison of Disc and Jet Pen Output 301
A3. 3 Disc Pile Output 302
Pig. 1.l Example of Real Amplitude 15 Processing - Normal Seotion
1.2 Real Amplitude Playback of 16 Fig. 1.1
1.3 a, b Single Ship Seismic Systems 19
1.3 c, d Single Ship Seismic Systems 20
1.4 Ambient Acoustic Noise Spectrum 22
Fig. 2.1 Lateral View of Sonobuoy 30,31
2.2 Block Diagram of Digress System 32
2.3 Top View of Internal Housing 34
2.4 Record Electronics 35
2.5 Timing Flectronics 36
2.6 Hydrophone Deployment 37
2.7 Hydrophone Electronics 40
2.8 Hydrophone Frequenoy Response 41
$2.9+15 v$ Regulator 42
$2.10-15 \mathrm{~V}$ Regulator 43
$2.11+5 v$ Regulator 45
2.12 Gain Ranging Board 46
2.13 ADC Board 47
2.14 Schematic Diagram of Crystal 48
2.15 Clook Cirouit 49
2.16 Internal Clock Schematic 51
2.17 Sequence Control Unit Schematic 53
2.18 Matrix Timing Board Sohematio 54
2.19 Sequence Control Operation 56
2.20 Timer Circuit 59
2.21 Matrix Board Operation - Case 1 60
2.22 Matrix Board Operation - Case 2 61
2.23 Tape Format 63, 64
2.24 a-g Write Logic 66-69
2.25 Binary 4 Counter 70
2.26 Head Driver Schematic 71
2.27 Tape Recorder - Top View 72, 73
2.28 Speed Control Board 74
2.29 Sonobuoy Type SB6E4 Block Diagram 76
2. 30 Sonobuoy About to be Launched 77
2.31 Battery Schematic 79
2.32 Sinusoidal Input and Replay 82
2.33 Sample Input and Replay 83
Fig. 3.1 Cartesian Co-ordinate System 87
3.2 Arrangement of Reflected and 89 Refracted P \& S Waves
3.3 Numerical Solution for Plane 9 Wave Reflection, $n_{2}>1$
3.4 Numerical Solution for Plane 92 Wave, $n_{2}<1$
3.5 (a) $A_{1}\left(e_{0}\right)$ against sine of angle 94
of incidence
3.5 (b) $A_{2}\left(e_{0}\right)$ against sine of angle of incidence
3.6 Numerical Solution - Density 97 Dependence
3.7 Cylindrical Comordinate System 99
3.8 Spherical Co-ordinate System 103
3.9 Complex Plane Diagram 106
3.10 Reflected Amplitude Curve 112
Asymptotic Approximation
3.11 Refraoted Amplitude Curve - 113 Asymptotic Approximation
3.12 Frequency Dependence of 114 Oscillations
3.13 Head Wave Amplitude 122
Asymptotic Approximation
3.14 Head Wave Amplitude 123 Asymptotic Approximation
3.15 Theoretical Amplitude Curve 127
3.16 Variation in Amplitude with 128 Refraotive Index, n
3.17 Variation in Amplitude with Density 129 Ratio
3.18 Variation in Amplitude with $k\left(z+z_{0}\right)$ 131
Fig. 4.1 V.A.D. Record 135
4.2 Outline of V.A.D. Arrivals 136
4.3 Refraotion Outline 139
4.4 Level Setting - Flow Diagram 144
4.5 Modular One/Analogue Link Up 145
4.6 Store Flow Diagram 147
4.7 (a, b) More Advanced Store Programme 148, 149 - Plow Diagram
4.8 Time Diagram for STORE Programmes 151
4.9 ($a, b, 0$) Replay Programme 152, 153
4.10 Example of Output from Modular One 156
Fig. 5.1 Sonobuoy Locations 160
5.2 S2 Arrival Time - All Record 184
5.3 S2 Amplitude/Distance 185
5.4 Reflection Arrival Sonobuoy Run 32 186
5.5 SDathat ed Anplysis of Sonobuoy 187
 188
5.7 S2 Arrival Time/Distance 190
5.8 Sl Amplitude/Distance 191
5.9 SIl Amplitude/Distance 192
5.10 Sl Arrival Time/Distance 195
5.11 Sl Amplitude/Distance 196
5.12 S3 Bottom Reflection - No Bad Shots 198 Fit
5.13 S3 Bottom Refleotion Amplitude 200
5.14 S3 Bottom Reflection (Fitted Curve) 201
5.15 Input Test Data For Curve Fitting 202
5.16 Curve Fit to Test Data 203
5.17 S2 Arrival Time 204
5.18 S2 Bottom Reflection 205
5.19 S2 Bottom Refleotion (Fitted 207 Curve)
5.20 Theoretical Amplitude Variation 208 with Density
5.21 S2 Basement Arrival Time 210
5.22 S2 Basement Amplitude 211
5.23 Gurve Pitting $\$ 2$ Basement 212
5.24 Gurve Pitting s2 Basement 214
5.25 Crustal Amplitude Model 217
5.26 Cepstrum Deconvolution of One 220 Shot
5.27 Detailed Deconvolution 221
Fig. A. 21 Schematic Diagram for Velooity 290 Computations
A3.1 Digitisation of a Sinusoid 294
A3. 2 Digitisation Test 500Hz 295
A3. 3 Digitisation Test $250 \mathrm{~Hz} / 500 \mathrm{~Hz}$ 296
A3. 4 Digitisation Test 100Hz/500Hz 297
A3. 5 Peak Accuracy 299
A3. 6 Disc Output 300

The copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged.

Acknowledgment

The author would like to thank the following, without whose help and assistance this work could not have been accomplished: Professor M.H.P. Bott, Professor J. Willis, Mr. D.W. Asberry, Mr. J.H. Peacock, Mr. R. Reeve, Dr. L.A. Arnold and the officers and crew of the R.R.S. 'Shaokleton'.

Thanks also to Mrs. K. Waldron for her diligence in producing the text.

The research studentship for this project was granted by the former Ministry of Education for Northern Ireland.
"all ignorance toboggans into know
and trudges up to ignorance again."

- e.e. cummings.

ABSTRACT

A self contained, free floating, recoverable sonobuoy system is described, for use in marine reflection and refraction surveys, together with a mathematical derivation of the wave amplitudes to be expected in such investigations. A detailed examination of the refleotion and refraction results from several areas in the North Atlantic, obtained in the sumers of 1973 and 1974 during the course of two Durham University Geophysical Surveys, is presented, in conjunction with simple processing procedures designed to extract Information concerning the physical composition of the sea floor sediments, on the basis of the theory developed in the text.

INIRODUCTIOM

The usual procedure undertaken when a marine seismic investigation is made of a partioular region is to examine the range of compressional and transverse wave velocities obtained by the various refleotion and refraction methods, together with their corresponding interface depths (Ref. 1.1).

These kinematic properties can provide an enormous amount of information about each particular reflecting and/or refracting horizon present in the area surveyed, as is well known (Ref. 1.2), but for the most part the dynamic oharaoteristios of the waves - the amplitude, speotra, change of wave shape upon reflection or refraction, are largely ignored.

When one considers the amplitude of a reflected-wave, even a simple analysis can provide information about the reflecting medium for instance, in a normal incidence refleotion survey, the 'Bright' or 'Hot' Spot technique (Ref. 1.3).

In this system a real amplitude, as opposed to a gain controlled, plot of the arrival is made, and can clearly (Fig. 1.1, 1.2), reveal trapped gas deposits, for instance, very readily since the amplitude of the wave reflected from the gas saturated rook is many times that of the non-saturated surrounding rook.

It is hoped that examination of the reflected amplitude from a given interface with increasing angles of incidence may enable some information concerning the acoustic parameters of the interface to be determined. In particular, the behaviour of the amplitude as the angle of incidence approaches the critical angle is of interest, since it is at this angle that head waves are produced along the lower surface of the interface.

Having decided to examine the reflected wave amplitudes at varying angles of incidence, at sea, the problem of the design of a suitable experiment to permit this investigation arises. Dividing

[^0]

Fig. 1.2 Playback of Fig. 1.1 Section Using Real Amplitude Processing

the procedure into three parts, one obtains the following structure:

1) Data Acquisition System.
ii) Development of mathematioal teohniques, if necessary to provide theoretical expectations for the examination.
iii) Data Reduction and Processing to produce experimental results which may be compared to and contrasted with, those results obtained theoretically.

Date Acquisition System

Given the limitation imposed by having access to a single ship for marine geophysical surveying purposes, there are several possible single ship systems (Fig. 1.3 a-d). a) Shooting at sea, Receiving on land (Fig. 1.3a).

This is technically the simplest way of recording marine seismic data, but for an amplitude study, the problem of differing structures beneath ship and station(s), presents a difficulty as regards interpretation. An entire array of stations would be required to calculate individual station delays and the logistics involved in setting up and maintaining such an array are considerable. A slightly different approach would be to use a single station, close to the coast and allow the ship to sail from close to shore seawards.

The problem with this system is that being olose to the sea, such a station would be very prone to tidal and wave noise, and this, combined with the inevitable difficulty of having to use a high energy acoustic source to introduce energy across the sea/land interface, makes such a system unacceptable.
b) Towed Arrays/Single Hydrophone (Fig. 1.3b).

A hydrophone array streamer, towed behind the survey ship gives excellent quality data on near vertical incidence reflections but does not, in deeper water, cover a large enough angle of incidenoe range. Obviously, such a system suffers from towed body noise (Ref. 1.4), due to its relatively rapid motion through the water, and also from transmitted ship noise, both through the towing cable and in direct and multiple refleoted waves emanating from the ship itself.

Similar drawbacks face a towed single hydrophone system, which could be towed at ever inoreasing separations to enable it to encompass the wide angle reflections. Practically, however, this is extremely inconvenient, reducing the manoeuvreability of the

Single Ship Seismic Systems

Pig. 1. 3(a) Ship at Soa, Station on Land

Fig. 1.3(b) Towed Array/Hydrophone

Fig. 1.3(c) Bottom Mounted System

Fig. 1.3(d) Free Floating Sonobuoy System
towing ship and presenting somewhat of a hasard to shipping in the area, a limitation which affeots all marine systems to a greater or lesser extent.
0) Bottom Systems (Fig. 1.30).

The immediate advantage of this type of system is that it is remote from interference by man or surface weather conditions (Ref. 1.5). According to Wenz, (Ref. 1.6), the r.m.s. noise levels obtained in a typical bottom environment are of the order of 6 ab less than shallow water noise levels (Fig. 1.4).

The bottom mounted system is simply lowered over the side of the ship and left weighted, on the bottom until the particular experiment has been completed, whereupon an acoustic release mechanism is activated allowing the instrument to rise to the surface under its own buoyancy, having left the weight on the sea bed behind (Ref. 1.7). This would seem to be the ideal solution to the situation to be investigated, at first sight, but on consideration there are several drawback, primarily the cost of the pressure housing, which is exorbitantly expensive. This, coupled with the fact that the areas to be examined are in fishing grounds, where the loss rate of scientific equipment in general is high, decided against this technique.
d) Moored/Free Ploating Sonobuoys (Fig. 1.3a).

Following the successful use of disposable free floating sonobuoys by various researchers (Ref. 1.8), it was found (Ref. 1.9) that given adequate decoupling of the hydrophone from surface motion and reasonable sea states, the noise levels encountered are not significantly worse than those obtained using bottom systems (Ref. 1.10).

One particular advantage of this system is the relative ease of development and recovery of the buoy, the techniques of Dhan Buoy handling for oceanographic purposes being well established. The free

Fig. 1.4 Ambient Noise Spectrum
floating hydrophone should have a better signal to noise ratio but may present somewhat of a danger to shipping, whilst both options run the risk of being 'acquired' by fishing trawlers, either intentionally or by being accidentally caught in the nets. By attaching the buoy to a moored Dhan buoy, with its standard radar reflector, the problem of relocation would be eased but the flow noise is likely to be higher.

This Pinal system was the one decided upon having taken cost, feasibility and fitting in with other departmental research programmes into consideration.

Syatem Requirements
i) large dynamic range;
ii) large geographical range;
iii) low power consumption;
iv) physical reliability.
i) Dynamic Range.

The dynamic range of the system must be sufficient to cope with the large variation in signal strength encountered by such a system. At olose ranges from the ship, the amount of refleoted and directly received energy is large and both the hydrophone and amplifiers must be able to deal with this, whilst still being sufficiently sensitive to be able to detect the lower energy longer range refracted arrivals.

A wide band hydrophone is also required since at close range, there is a large high frequency content in the received signal, whilst at greater distanoes the dominant frequency shifts to the lower end of the frequency spectrum. Similar considerations apply to the amplifier.

In order to carry out digital processing on the received data, a dynamic range of at least 86 dB is necessary for reflection work, or 6003 for refraction results (Ref. 1.21), which automatically necessitates the use of digital recording, since at the very best an F.M. recording system, incorporating flutter compensation can achieve 55-60dB of dynamic range.
ii) Geographical Range.

At close separations of ship and buoy the combination of large signal amplitude and good radio contact with the buoy is sufficient to allow the use of an F.M. link (Ref. 1.12). The analogue signal is frequency modulated onto a carrier which is telemetered back to the ship for recording on F.M. tape. This improves the range of the
buoy since the internal tape unit envisaged (see Chapter II) need only begin operation once the F.M. signal falls below an acceptable level. The range limitation is then imposed by the length of running time available on the recorder itself and the seismio source utilised. When recording digitally, the maximum paoking density acceptable is of the order of 1000 bits per inch, which for moderate digitisation rates implies that a tape speed of at least 1"/sec, must be used. For a standard 3600' tape, this gives an operating time of 12 hours continuously, representing a ship travel distance of approximately 72 nautical miles, at the standard towing speed of 6 knots.

This may not be sufficient, if large scale refraction work is to be undertaken, and so, to increase the system range, intermittent operation of the tape deok is necessary. For long range work, also, the standard "air-gun" system (Ref. 1.13) does not have sufficient power to provide significant amplitude levels and hence an explosive source is normally used, which can only be detonated at certain definite intervals. By arranging that the tape unit is on for, say 6 minutes, in every half hour, after five hours of continuous operation, the system range is increased to 280 nautical miles.

These figures represent the maximum attainable and are dependent on tape speed. If a speed of $1.5^{\prime \prime}$ /second is used the range falls to $180 \mathrm{n} . \mathrm{m}_{\text {. approximately, which is still sufficient for refraction }}$ studies.
iii) Power Consumption.

In order to allow the system to operate for long periods of time, power consumption must be kept to a minimum. M.O.S. (Metal Oxide Silicon) Logic provides digital circuitry in robust packages with low power consumption and high noise immunity. Hence, it was deoided to use as much MOS logic as possible in the sonobuoy. Rechargeable nickel-cedmium oells provide the greatest power to
weight ratio but are prohibitively expensive, so that the non-spill lead acid batteries commonly used in motorcycles and small boats were chosen.
iv) Physical Considerations.

The physical environment in which the system is to operate decides the design of the sonobuoy to a great extent.

The buoy must be such that it is not easily damaged, either by mishanding during launch or remacquisition, or by heary seas that it might encounter. At the same time, it must be suffioiently light to allow ease of handing, and the compromise solution is to use a glass reinforced plastic (G.R.P.) body which is ribbed vertically, to provide protection during handling and strength to withstand wave bombardment.

By using well tested peripheral equipment, flashing light for recovery, hydrophone, the reliability of the system is increased without excessive cost, so these items were bought in.

Mathomatical Analysis

The problems of reflection and refraction of elastic waves in a layered medium have been extensively studies in the past, notably by Cagniard (Ref. 1.14), Rayleigh (Ref. 1.15), Lamb (Ref. 1.16), Sommerfeld (Ref. 1.17), Smirnov and Sobolev (Ref. 1.18), Spencer (Ref. 1.19), Pekeris (Ref. 1.20), Petrashen (Ref. 1.21) and Sherwood (Ref. 1.22).

Given the two layer situation which is the simplest to consider, and that most extensively studied, in trying to obtain the amplitude of the reflected wave for all angles of inoidence, the first approach is to examine the behaviour of plane waves.

Since the original papers by Zoeppritz (Ref. 1.23) and Knott (Ref. 1.24), numerous authors have developed and published various forms of Zoeppritz' amplitude and Knott's energy equation (Ref. 1.25-1.37), with some confusion as to the computation and physical interpretation of these equations, due to differing notation and nomenolature (Ref. 1.38).

The plane wave is, however, not sufficient to cope with the problems of wide angle reflections (Ref. 1.39) but it is extremely useful in developing some insight into the problem and in providing some concepts which simplify the exposition of the behaviour of the more complicated spherical waveform used subsequently.

The spherical wave has been analysed by several authors, and the work detailed in Chapter III follows on from that undertaken by Brekoskikh (Ref. 1.40), Cerveny (Ref. 1.41) and others based on the theoretical development of spherical wave analysis, to suit the partioular requirements of the marine survey described above, by introduoing a different approximation in the method of steepest descents, leading to a new solution.

Data Processing

Once the data has been obtained using the sonobuoy desoribed and disposable sonobuoys where time considerations do not permit a return to looate and recover the re-useable buoy, the question of data analysis arises and in particular the level of sophistication necessary in the first instance, to obtain experimental results which may be compared with theoretical predictions.

As the behaviour of the waves at wide angles is not well defined, the most obvious method is to approach the data in the simplest way consistent with obtaining valid results to compare theory and experiment.

Once the existence of some agreement between the two has been proven, the next stage is to inorease the complexity of the data processing techniques. Clearly, signel enhancement prooedures, deconvolution, filtering, improve the quality of the results, but it must be borne in mind the considerable amount of time and effort involved in producing suah results on the equipment available. Thus, before this time consuming step is undertaken, an initial amplitude analysis will be performed using simple high out filtering to remove unwanted noise, and linear interpolation for signal recovery.

INTRODUCTION

The DIGitally REoording Sonobuoy System (DIGRESS) oomprises a digital tape recorder and an F.M. transmitter, for close range work, housed in a Glass Reinforced Plastic body, (Fig. 2.1). A block diagram of the complete system is given in Fig. 2.2. The electronios inside the buoy consists of two main parts; the record electronics and a timing unit. The record electronics converts the analogue hydrophone input signal into digital form which is then recorded on $\frac{1}{4}$ " magnetic tape, together with time information. The timing unit provides both a binary ooded deaimal (BCD) time oode for writing onto tape and a facility for remote (programmable) intermittent operation of the tape deck.

Fig. 2.1 Lateral View of Sonobuoy

Key

1	-	Boston Insulated'W'atertite' Connector
2	-	'O'-ring seal
3	-	GRP Outer Case
4	-	Vertically Mounted Tape Transport Unit
5	-	Flectronic Boards
6	-	Battery Housing
7	-	Hydrophone
8	-	Hydrophone Cable
9	-	Ploatation Adjusting Weights
10	-	GRP Strengthening Rib
11	-	Plashing Light
12	-	Trangmitter Aerial

Fig. 2,2 Block Diagram of Digress System

GKNERRAL DESCRIPTIONT

DIGRESS ELIBGTRONICS

The DIGRESS electronics are contained in a oylindrical aluminium container which fits exactiy inside the GRP body. Fig. 2.2 shows the oomplete system.

The uppermost surface of the GRP body is detachable, allowing removal of the internal housing, while 0 ring seals in a recessed groove inside the lid maintain a watertight seal. Electrical connections between the internal eleotronios and the external fittings are made through Boston Insulated connectors.

The hydrophone unit is deployed beneath the buoy, according to the arrangement shown in Fig. 2.6, with the hydrophone suspended neutrally at the end of a system of 'bites' which decouple the hydrophone from the surface motion of the instrument housing.

BLECTRICAL

RECORD

The output from the Wark Products P. 27 Hydrophone (Ref. 2.1) is fed to an analogue to digital converter and gain control unit. The digital information is arranged into the chosen format on the WRITE board and written onto $\frac{1}{4}$ " tape using an 8-track head.

The 5 MHz output from an SEI TYpe 512704 Quartz Crystel Oscillator is counted down by a frêquenoy divider oirouit to produce both control signals to operate the tape recorder cycling, and clock timing signals (Fig. 2.4).

Stabilised supplies for all the electronics are provided by the $+15 \mathrm{~V},+5 \mathrm{~V}$ stabilised power supplies.

TIIING UNIT

As well as providing clock pulses this unit also supplies time signals for remote programmable operation of the tape recorder (Fig. 2.5).

Fige 2.3 Top View of Internal Housing

Fig. 2.4 Record Electronios

Fig. 2.5 Timing Eleotronics

Fig. 2.6 Hydrophone Deployment

The system can function in any of the following modes:
i) transmitter only,
this is for short range work only;
ii) transmitter, then tape,
tape either intermittent (preselected) or continuously;
iii) tape only,
as above;
iv) tape only,
in a repetitive 1 hour oycle.
There is also an option of up to nine hours delay before allowing commencement of any of the above operating modes.

CIRCUIT DESGRIPTION

RECORD ELECTRONICS

HYDROPHONE

The seismic hydrophone is a Mark Products P-27 low frequency deep water hydrophone, consisting of a piezo electric ceramic element, a current amplifier and a rechargeable Nickel-Cadmium cell.

The output impedance of the hydrophone is 50Ω, and the sensitivity a standard temperature and pressure is $30 \mu \mathrm{~V} / \mu \mathrm{bar}$. A schematic diagram is given in Fig. 2.7. The hydrophone was ohosen because it exhibited an extremely flat wide band response (Fig. 2.8) combined with high sensitivity, together with long operating time at low ourrent levels.

STABILISED SUPPLIES

The +15 V stabiliser ($\mathrm{Fig}, 2.9$) is contained on the Matrix timing board and provides a +15 V supply line from an $18.4-24 \mathrm{~V}$ unstabilised battery source. The cirouit incorporates an SGS Ll23 precision voltage regulator with an external BUY24 power transistor to inorease the output ourrent. The L123 comprises a temperature compensated reference amplifier, an error amplifier, a power series pass transistor and current limiting circuitry. The advantages of this partioular device are that it hes:
i) a low standby current;
ii) low temperature drift; typically
$0.003 \% /{ }^{\circ} \mathrm{C} 0^{\circ} \mathrm{C} \leqslant T \leqslant 70^{\circ} \mathrm{C}$;
iii) high ripple rejection,
the output power transistor increases the current output to 1 Amp.

The -15V stabilised supply (Fig. 2.10) is achieved using a second SGS L123 with an external BPX 39 output transistor. The -15 V line is generated from a -18.4 to -24 V unregulated battery supply.

Fig. 2.7 Gydrophone Eleotronios

RESPONSE CHARACTERISTICS

Fig. 2.8 Hydrophone Frequency Response

Fig. 2.9 +15V Regulator

Pig. 2.10 -15V Regulator

The analogue input signal fed through a binary gain switching board (Fig. 2.13) incorporating fast comparator circuits, to a BURR BROWN 12-bit Analogue/Digital Converter.

The gain of the system is set using the L.E.D's mounted on the top panel of the board (Fig. 2.12) as an indication of saturation and the rotary preset gain control potentiometer. The automatic binary gain switohing (3 bits) increases the effective dynamic range of the oonverter to 90 dB .

To ensure that the response of the ADC system was linear considerable care was taken in the initial gain setting of the component amplifiers whose gains were adjusted by means of trimming resistors (see inset Fig. 2.12).

CRYSTAL OSCILLATOR

The fundamental olock frequency of 5 MHE is generated by the SEI orystal oscillator, the output of which is amplified by VTI and fed to the TTL divide by five chain comprosing R1, R2 and ICl to give 1 MHz input to the subsequent MOS logic (Fig. 2.14). The 1 MHz signal is used as an input to a Schmidt trigger (IC2) and pulled up to a $+15 V$ positive logic level using $R 3$.

The orystal frequency is continually counted down to $7 k \mathrm{~Hz}$ at the output of IC5, by IC3 and IC4. IC6 produces a 100 Hz output to IC7, which reduces this via IC8 and IC9 to provide 50 Hz and 1 Hz outputs. IClO provides a 250 Hz signal from the kilohertz input. All the output frequencies are synchronous.

CLOCK

The basis of the olock unit is a National Semiconductor MM5311 D.I.L. clock (Fig. 2.15). The 50 Hz signal from IC7 is fed to an

Fig. 2.11 $\pm 5 \mathrm{v}$ Regulated Supply

Fig. 2.14 Schematio Diagram of Crystal Oscillator Board

Fig. 2.15 Clock Cirouit
internal schmidt trigger shaping circuit which provides approximately 5 volts of hysteresis. The shaper output drives a function chain which performs the time keeping functions.

Both fast and slow setting inputs, as well as a hold input are provided. Internal 20K pull up resistors provide the normal time keeping function. Switohing any of the inputs to VDD (ground) results in the desired time setting funotion.

The three gates in the counter chain (Fig. 2.16) are used for time setting. During normal operation gate A connects the shaper output to a prescale counter (-50); gates B and C cascade the remaining counters. Gate A is used to inhibit the input to the counters for the duration of a slow, fast or hold time setting input activity. Gate B is used to connect the shaper output direotly to a seconds $(\div 60)$ counter - the condition for slow slew. Similarly gate C connects the shaper output to a minutes counter ($1 \div 60$) for fast slew.

Fast slew advances the hours information at one hour/second, slow slew the minute information at one minute/second.

The seconds, minutes and hours counters continuously refleot the time of day. Outputs from esch counter (indicstive of both units and tens of seconds, minutes and hours) are time division multiplexed to provide digit sequential access to the time data. The multiplexer is addressed by a multipiex divider decoder driven by a multiplex oscillator. This multiplex element is itself driven through a variable 1-k preset, and a $1 \mu \mathrm{~F}$ capacitor at 250 Hz , (FIg. 2.15).

The preset is neoessary to prevent the clock from going into oscillation, which occurs when the 250 Hz multiplex frequency is of the same amplitude as the 50 Hz clock driving signal. The preset is adjusted so that oscillation does not occur, and is 8% down on its normal amplitude for stable operation.

51

Fig. 2.16 Internal Clock Schematic

The multiplex addresses also become the display digit enable outputs, which are hence observed at $250 / 6 \mathrm{~Hz}$, i.e. approximately 40 Hz which is just sufficient for fliokerless viewing. The multiplex outputs are applied to a decoder which, in turn, is used to address a PROM. This PROM generates the final output codes - $\overline{\mathrm{BCD}}$ and 7 segment. The sequential output is from unit seconds to tens of hours. The digit enable lines turn on the enabling transistors, (2N3904) and hence the L.E.D. display.

To ensure a good wave shape to the digit enable and inverse BCD outputs, for recording purposes, dropping resistors, R are wired in between output and ground. The positive logical voltage is dropped to 13.7 volts on the digit enable lines but this is still well within the MOS logio acceptance level (45% noise immunity).

The clock output goes to an L.E.D. display which is
disconneoted once the initial time setting operation is accomplished.

MATRIX TIMING CIRCUIT

This provides the pulses for timing the remote programmable operation of the tape transport system. The 1 Hz aignal from IC9 is fed to IC12, a decade divider whose 0.1 output is divided by 36 using ICl3 and 14, (Fig. 2.17), to give a pulse every 6 minutes. IC15 provides a decoded decade output of these 6 minute pulses.

The 6 minute outputs are fed through proteotion diodes to the first ten columns of the matrix board; column 1 corresponds to minutes sero to six, column 2 to \mathbb{M}_{6-12} eto.

The oarry out signal from IC15 (1 pulse/hour) is used to drive two sequential decade counters, HRSTl and HRST2 (IC16 and 17), which provide an hours count (Fig. 2.18). Each hour line output from IC16 and IC17 is connected to one input of an AND gate, the other input coming from a Row of the matrix board, i.e. hour line zero to one (H_{0-1}) is ANDed with matrix Row 1, H_{1-2} is anded with matrix Row 2 and so on down to $\mathrm{H}_{18}-19$ which is ANDed with matrix Row 19, (Fig. 2.18).

1Hz Input

Fig. 2.17 Sequence Control Unit Schematic

Fig. 2.18
Matrix Board Timing Schematio

SEQUENCE CONTROL UNIT

The placing of a pin in oolumn C, rov R, of the matrix board makes an electrical conneotion between the input line connected to column C and the output row R, Fig. 2.19. If the 6 -minute line corresponding to Column C is on, i.e. high, true and the hour line ANDed with row R is also high, then the AND output gate will be high. The outputs from all the AND gates are ORed together so that any 6minute and hour line will provide an output, provided that a pin is placed in the appropriate row of column of the matrix board.

The output from the OR gate drives a feed relay connecting power to the tape deck. There are, however, several sophistications to this basic unit, allowing a certain amount of flexibility of operation.

1. DELAYED OPERATION

Onoe the timing unit has been started one input to the final output NOR gate (IC27) before the relay driving the tape deck, is held at logical zero by the \bar{Q} output of IC33 (FF2). FP2 is a D-type flipmiop driven from the 10 position switoh, SW4, which is in turn connected to the output of IC16, the HRSTI hours counter. If SW4 is set to 8, FF2 will set and hence \bar{Q} go low, if and only if, the H_{8-9} line goes high. Hence the NOR gate is opened. In this manner a delay of up to 9 hours may be achieved before operation of the tape deck commences.

2. PROGRAMMIED OPFRATION

Once PF2 has set, programmed operation may begin provided SW5 is set to logical sero. SW5 controls the NAND gates (IC23) on the H_{0-1} and H_{10-11} lines. If SW5 is set to zero, these NAND gates are opened and operation according to the distribution of pins in the matrix board ensues.

3. CYCLICAL MODE

Once FF2 is set, with SW5 set to logical one, the H_{0-1} and H_{10-11} lines of IC16 and IC17 are disabled, since the NAND gates are closed. The NAND gate on matrix row X, is opened and hence operation according

to the pins in row X begins, and thus instead of moving down the matrix board, row by row, the operation will cycle through according to row X, every hour.
4. NO DELAY

If no delay is required before beginning the cyclic mode of operation then SW5 is set to position '2', in which it is connected to the output of IFF3 (IC33) which is clocked by the H_{0-1} line of HRSTl. In this state, SW5 goes high, and cyclic operation begins when FF3 sets, at the $\mathrm{H}_{\mathrm{O-1}}$ transition.

5. DRLAY. PROGRAMMED OPERATION AND CYCLICAL MODE

Delay is achieved as in 1. ($\leqslant 9$ hours); programed operation as in 2. until $H_{\text {oyo }}$ occurs ($H_{\text {cyc }} \leqslant 19$ hours), where $H_{\text {oyc }}$ is the hour at which the tape goes from programmed to cyclical operation. The $H_{\text {oye }}$ line is wired in as a clock line for FF3 and the sequence is as follows:

The $H_{\text {cyc }}$ line goes high, setting FF3, putting SW5 to 'I'. This resets the HRSIl counter to its zero count and enables cyolical mode operation as in 3.

6. ITTRRATTVE

If no Hoyc line is wired into FF3, the HRSTl and HRST2 counters will count on automatically. The clook input of FFP (IC33) is driven by the carry out signal from HRSTI. When this goes high at the end of 10 hours of counting, it sets the flip-flop whose Q output disables the HRST1 counter in its H_{0-1} count. The Q output of FFI also opens the H_{10-11} AND gate, previously held shut during the oycle of HRSIl by this Q output. The \bar{Q} output of FFI enables the previously disabled HRST2 counter and shuts the H_{0-1} AND gate so that operation according to matrix row M begins. When H_{19-20} goes high on HRST2, FFI is reset disabling HRST2, enabling HRSTI whiah jumps into its H_{1-2} count, having been held at its H_{0-1} count during the HRST2 oycle.

Hence iterative operation begins, $\mathrm{H}_{0-1}, \mathrm{H}_{1-2}, \ldots . ., \mathrm{H}_{9-10}$, $\mathrm{H}_{10-11}, \mathrm{H}_{11-12}, \ldots . ., \mathrm{H}_{18-19}, \mathrm{H}_{1-2}, \ldots .$. etc., until the end of tape marker is detected.

In order to allow the tape speed to settle down to $1.5^{\prime \prime} / \mathrm{sec}^{\text {es }}$ a slight delay occurs between the starting up of the deck and the operation of the WRITF board, described in the next section. This delay is achieved using an RS 555 timer oircuit which holds off the power to the WRITE board for 1.8 seconds (Fig. 2.20).

To ensure correot operation of the tape deok the following must be noted:
i) at least one column of the matrix board must be occupied for every hour. If operation is not required during a particular hour, a pin must be placed in column 20, the dunay column, at that row. This is necessary as otherwise the input to the HOURS AND gate would float high and give a spurious command pulse.
ii) in the case shown in Fig. 2.21 there is electrical continuity between A and C through B if ordinary pins are used. This would lead to operation of the tape deck during H_{24-30} in Hour 1, which is not required. In this instance, a diode pin (type 2) is used, which allows only one way connection (horizontal) to occur.

The situation becomes that shown in Fig. 2.22, so that when column 6 goes high (H_{24-30}) in hour 1 , the diode prevents the input to the H_{0-1} AND gate going high.

WRITR BOARD

This presents the data in a suitable format for writing onto tape. The information to be written onto tape comprises two distinct parts:
a) the data from the ADC and gain ranging boards, which is divided up into 2 segments, the 2 bits of binary gain,

Fig. 2.20 Timer Cirouit

Fig. 2.21 Matrix Board Oparation - Case 1

Fig. 2.22 Matrix Board Operation - Case 2
$g(1), g(2)$ and the 5 most significant date bits (m.s.b.)
and the seven least significant bits (1.s.b.).
b) time, which is obtained from the $\overline{B C D}$ output from the olock. The format is arranged so that the tape may be uniquely decoded, and the following scheme meets this requirement (Fig. 2.23).

The information is written in $4500 \mu s e c$ blooks with a mark/space ratio of $1: 1$, between blocks giving a 4 ms cycle time.

BLOCK 1 is reserved for decoding purposes.
BLOCK 2 is used for time and decoding.
BLOCK 3 is a data blook - $g(1), g(2)$ and m.s.b. -8 th m.s.b. BLOCK 4 is a data block, the seven l.s.b's. This unique coding is accomplished by arranging that all of BLOCK 1 is ' ${ }^{\prime}$ ' followed by all of BLOCK 2 ' 1 ' at the beginning of each second. The centre track (TRACK 4) is used for strobe purposes by writing a continuous 1 kHz signal onto it. There are hence 7 tracks available for information and the second identification code is termed a 0,7 recognition pulse.

In every 4 ms BYIT in between each second, one traok of BLOCK 1 is held high and one track of BLOCK 2 is held low to prevent misrecognition on playback.

If bits l-5 are zero then $g(1), g(2)$ will be high, ensuring that BLOCK 3 is never ' 0 '. If BLOCK 4 is ' 0 ', the coding ensures that BLOCK 1 has at least one ' O ' track.

BLOCK 2 is only '7' or all 'l' at each second pulse, the BCD output from the clock being such that only 4 of the seven available tracks are ever used at once. To provide time identification the S_{1} digit ensble line from the clook is indered into BLOCK 1 , on track 6. This digit enable line goes low only whenever the time digit value at the BCD output is accessed, i.e. BLOCK 1 traok six is to' only when the time data in BLOCK 2 following is $S_{1}, S 2, S 4, S 8$.
irick
' 0 ' and ' 1 ' - refer to logical 0 and logical 1
1 - refers to the most significant bit
11 - refers to the least significant bit
$G_{1}, G_{2} \quad-\quad$ are binary gain values
$\mathrm{H}_{1} \quad-\quad$ HOUR $\times 1$ count
H_{10} - HOUR $\times 10$ count
$\mathrm{S}_{1} \quad-\quad$ SECOND $\times 1$ count
$\mathrm{M}_{10} \quad-\quad$ MINUTES $\times 10$ count
$\mathrm{H}_{\mathrm{I}} \quad$ - Hours identification mark
$S_{I}, M_{I} \quad-\quad$ Second, Minute identification mark

Similarly M_{1} - the single minute digit enable line is indexed into track 3 of BLOCK 1 and H_{1}, the single hour digit enable line to track 5.

The appropriate 250 Hz timing pulses are obtained from the frequency divide network and the combination of logic gates as shown in Fig. $2.24 a \rightarrow g$, are used to arrange the data into the required format for each track.

The information thus arranged is presented to each of the seven multi-channel data selectors ($\mathrm{MCl}^{2} 412$), which are driven at 1 kHz by the A_{1} and B_{1} outputs from a BINARY 4 counter (IC10) Fig. 2.25.

The multiplexed outputs, together with the 1 kHz strobe signal are fed to the tape heads via a simple head driver circuit, which simply provides enough ourrent to drive the heads (Fig. 2.26).

TAPE RECORDER

The tape transport system used is a NAGRA IV L deok, fitted with a Nagra IV-SJ speed and tension stabiliser board (Figs. 2.27 and 2.28). The deck is adjusted to run at $1.51 / \mathrm{sec}$. The power to run the tape is provided by the $-24 V$ battery supply. The tape deck is fitted with two 8-track $\frac{1}{4}$ " Phi Magnetronics digital heade, type DHM/O30. Signal leads to the heads are brought out to a VERO edge connector which is fitted to the head drive board mounted, in turn, on the underside of the chassis of the deck.

TAPE HEAD DETAILS

PHI MAGNETRONICS
DHM/030
Dimensions
$50 " \times 50^{\prime \prime} \times 65^{\prime \prime}$
Track Width .020"
Track Pitch .0318"
Gap Spacer .0001"
Face Form hyperbolic
Inductance a $2 \mathrm{kHz} \quad 30 \mathrm{mH} \pm 20 \%$

Track 1

Fig. 2.24(a) Write Logic

Traok 2

Note $1 H z$ NANDKD with $Q($ FF4 $)$ gives a 4 msec low pulse at each second pulse, with priority over time.

Traok 3

Fig. 2.24(a) Write_Logic

Track 5

Fig. 2.24(d) Write Logic

Track 6

Fige 2.24(e) Frite Logic

Track 7

Pig. 2.24(f) Write Logic

Track 8

Fig. 2.24 (g) Frite Logic

Count		\mathbf{A}_{1}	\mathbf{B}_{1}
0		0	0
1		1	0
2		0	1
3		1	1
0		0	0

Fig. 2.25 Binary 4 Counter

Fig. 2. 26 Head Driver Schematic

see over

Fig. 2.27 Tape Recorder - Top View

Key

1 Tape 8pool
2 Erase, Record Heads
3 Fast Wind/Rewind Switch
4 Tape Speed Sensor
5 Pressure Pad
6 Pinch Roller
7 Function Switch
8 Tape

Playback Level	$85 \mathrm{~V} \pm 1.5 \mathrm{~dB}$
WRITE Current	$10 \mathrm{~mA} \mathrm{p}-\mathrm{p}$.
Output	$2.5 \mathrm{mV} \pm 20 \% \mathrm{p}-\mathrm{p}$.

TRANSMITTERR

This is taken from an UItra Blectronics disposable sonobuoy (Fig. 2.29), and mounted, soreened inside the instrument housing of the buoy, next to the electronics container. The transmitter consists of a modulated orystal controlled R-F oscillator-doubler, two frequency doubler amplifiers and a final RF power amplifier. Modulation is accomplished in the oscillator atage by means of a variable reactance diode in series with the crystal, and thus the oscillator frequency is varied by the audio input.

The transmitter is disconnected onoe the tape deck begins to operate, to prevent any R.F. interference which might oause the A / D converter to malfunction.

The power for the x-mitter is dropped from the unregulated 12v battery supply to 10.1 volts using a Zener diode arrangement. The aerial of the transmitter is mounted on a 19' two section hollow glass fibre pole, to increase the system's range.

FLASHING IIGHT

This is an OAR submersible flasher, type SF-500-1-100 which operates for over 100 hours at 1 flash every 2 seconds. It is mounted externally, clamped to one of the strengthening struts (Fig. 2.1).

BAITIERY SUPPLIES

The +24 V input to the +15 V power regulator is provided by two Ixide type 16612 volt motorcyole batteries, fitted with non-spill caps. One of these batteries also provides the 12V supply to the 5V power regulator.

The -15V stabiliser is driven from two Lucas MCZ7/9A-8 motoreycle batteries again fitted with non-spill caps.

Fig. 2.29 Sonobuoy Type SB6 F_{4} Block Diagram

Fig. 2. 30 Sonobuoy About to be Launched

A Lucas PUZ5A 12 volt battery supplies the UEL transmitter. A schematic diagram of the power supply system is shom in Pig. 2.31.

The electronic boards are housed in an aluminium container which is mounted as shown in Fig. 2.1. The container may be removed for oircuit analysis, while still conneoted.

50-way and 13-way sockats on either side of the container link the intermal eleotronics to the tape deok, control switches matrix board, L.E.D. display and power supply.

The top view of the arrangement inside the buoy is shown in Fig. 2.3. The tape deck is held in position by spring-loaded runners, which fit inside a groove mounted on the inside walls of the container.

The batteries are mounted in the lower half of the instrument housing using formers designed to hold them securely in place.

OPERATION

The setting up procedure for operation of the buoy is described below.

1. The batteries are connected up and a d.v.m. used to check that the correct working voltages are being generated.
2. The 7-segment diaplay for the clock is enabled using SW7, and the clock set up to its zero count using the fast or slow slew controls. The clock is held at this initial count until just prior to buoy drop. The display is then turned off to conserve power. 3. The tape deck is removed from the buoy in order that 3600^{\prime} of Ampex tape may be fitted and the gain of the A / D converter and gain control board is adjusted using the rotary gain control switch so that saturation does not occur. This is indicated by the L.E.D. displays on the panel of the gain control board.

Fig. 2.31 Battery Schematic
4. Once the gain level has been set, this display is disabled in the interests of power conservation.
5. The tape deck is replaced and the timing counter chain including the 6 -minute and hours counter stages are reset using the master reset button. BINARY 4 counter controlling the data selection is also reset by this switoh.
6. The appropriate mode of operation is seleoted (SW5 in position 0, 1 or 2) and matrix pins placed in the required (or default) positions.
7. The hold of the clock is switched off and the lid of the buoy firmly secured.
8. The flashing light is activated and the buoy is ready for launching, onoe power to the hydrophone has been supplied by attaching the hydrophone cable.

The individual component oircuits oomprising the Digress electronics and the system in toto were temperature oycled in so far as was possible without a controlled environment chamber, to ascertain that the cold water conditions in which the buoy was to be used would not cause instability or excessive drift in the timing and olocking functions of the buoy.

In the range $0-15^{\circ} \mathrm{C}$, approximately, no discernible temperature dependent drift could be found after an initial settling period of some three minutes, during which time, presumably, the 1.s.i. circuits were aohieving their operating temperatures.

Replay

Although some time was spent designing TTL circuitry to decode the digital signals recorded onto tape, a PDP8 mini oomputer was purchased by the Department of Geological Sciences before the playback system was built, and it was a straightforward matter to use this computer to replay the digital tapes.

With knowledge of the tape format (Fig. 2.23), the decoding and demultiplexing of the digital data is simple, once the ' 0,7 ' recognition pulse has been detected. The tape from the sonobuoy is replayed on a Ferrograph Series 7 deak only unit, fitted with the same recording heads as the Nagra machine. This Ferrograph deok had been modified to enable it to be remotely operated.

The computer waits for receipt of a $' 0$, 7 ' pulse, whereupon the digital data blocks immediately following are stored in the core memory. Fach bit is assigned to a location corresponding to its binary weighting and the binary gain values, data block 3, tracks 3 and 4 are used to convert the 12 bits into real amplitudes. The signal is output through a digital-to-analogue converter to the Geospace V.A.D. system (Chapter V). The computer decodes the time data presented to it, simultaneously, the second, minute and single hours indicators, S_{I}, M_{I}, H_{I}, being used to identify the appropriate time data, and displays it on a 6 digit L.E.D. display, similar to that used inside the buoy.

The system was carefully checked in the laboratory and found to behave well when using digital test signals. For analogue test, sinusoidel oscillations, between 3 Hz and 80 Hz were input to the digital tape recorder and replayed subsequently to examine distortion and non-linearity (Fig. 2.32).

A sample of the data obtained using the U.F.L. disposable sonobuoys was input similarly and replayed to the jet pen system (Chapter V) for visual comparison (Fig. 2.33).

(a)
(b)

Fig. 2.32 Sinusoidal Input (a) and Replay (b)

Fig. 2.33 Sample Input (a) and Replay (b)

It should be noted at this point that owing to oertain difficulties, both at Durham and whilst at sea in the summer of 1974 the sonobuoy desoribed in this chapter was not used at sea and the amplitude analysis and velocity-depth information presented subsequently, were obtained from the U.F.L. disposable sonobuoys, in conjunction with a a Bolt Airgun system. It hed been hoped to perform some longer range refraotion work in 1973 but the 'Aquaflex' explosive was found to be unusable because of corrosion, and similar investigations in 1974 were ourtailed because of operational constraints.

Note:-
The books and articles listed in the bibliography for this chapter are not numbered specifically as general reference was made to them all in the design, construction and testing of the sonobuoy.

CHAPTERTHREG

Plane Wave Refleation

Since the plane wave concept is used as the basis for wave analysis, the following is given in introduction.

The plane wave is thesimplest form of wave motion and, in general, acoustic scalar and vector potentials, Φ and Ψ, may be assumed, such that (Ref. 3.1)

$$
\begin{equation*}
\underline{\underline{I}}=\operatorname{grad} \phi+\operatorname{curl} \underline{\Psi} \tag{1}
\end{equation*}
$$

where \mathbf{v} is the particle velocity.
If a Cartesian oo-ordinate system is defined only the x and z co-ordinates together with those quantities dependent on x and z, need be considered, because of the nature of the plane wave. Defining;

Displacement in the direction of the x-axis as u, Displacement in the direction of the z-axis as m^{\prime}, Displacement in the direction of the y-axis as v.

If an incident longitudinal wave is assumed then from (1)

$$
\left.\begin{array}{rl}
\mathbf{u} & =\frac{\partial \phi}{\partial \mathbf{x}}-\frac{\partial \psi}{\partial z}: \tag{2}\\
\mathbf{v} & =0 \\
\mathbf{w} & =\frac{\partial \phi}{\partial z}+\frac{\partial \psi}{\partial x}
\end{array}\right\}
$$

As there is no incident transverse wave, the vector potential, $\underline{\Psi}$, is zero (Ref. 3.2) giving

$$
\left.\begin{array}{l}
\underline{u}=\frac{\partial \phi}{\partial x} \tag{3}\\
\underline{v}=\frac{\partial \phi}{\partial z}
\end{array}\right\}
$$

The Cartesian co-ordinate system is deflned such that the refleoting interface between the two media to be examined is placed in the $s=0$ plane, and the x-axis lies along the intersection
of the interface plane with the plane of incidence, as shown in Fig. 3.1.

The physical properties of the two media are given in the table below, and the two media are defined as linear isotropic homogeneous perfectly elastic media.

	MEDIUM 1	MEDIUM 2
longitudinal velooity	a_{1}	a_{2}
transverse velocity	b_{1}	b_{2}
density \quad	ρ_{1}	ρ_{2}

It is assumed that the wave normal of the incident wave makes an angle, i, with the normal to the interface (Fig. 3.1). The potential of the inoident longitudinal wave can thus be written as

$$
\begin{equation*}
\phi_{0}=\exp [j k(x \sin i+z \cos i)-j t t] \tag{4}
\end{equation*}
$$

where w is the angular frequency and k is the wave number (Ref. 3.3). Assuming that there is continuity across the interface and, henoe, requiring equal normal and tangential stresses on both sides of the interface, the potential of the reflected longitudinal wave may be expres sed as

$$
\begin{equation*}
\phi^{0}=A_{0}\left(e_{0}^{e}\right) \exp [j k(x \sin i-z \cos i)-j w t] \tag{5}
\end{equation*}
$$

where $e_{0}=\sin 1$.
$A_{0}\left(\theta_{0}\right)$ is defined as the Reflection Coefficient for plane waves. The value of $A_{0}\left(e_{0}\right)$ may be caloulated from the above mentioned boundary conditions which are listed below;

ContinuityConditions

(i) normal displacement
(ii) tangential displacement
(iii) normal stress
(iv) tangential stress

Fig. 3.1 Cartesian Comordinate System
which may be rewritten as (Ref. 3.4)
(i) $\sum u_{1}=\sum u_{2}$
(ii) $\sum w_{1}=\sum w_{2}$
(iii) $\sum\left(\sigma_{i x x}\right)_{1}=\sum\left(\sigma_{x x}\right)_{2}$
(iv) $\sum\left(\sigma_{\mathrm{zz}}\right)_{1}=\sum\left(\sigma_{\mathrm{zz}}\right)_{2}$
where $\left(\sigma_{x x}\right)=\lambda \Delta+2 \mu \frac{\partial u}{\partial x}$

$$
\begin{align*}
\Delta & =\left(\frac{\partial u}{\partial x}+\frac{\partial w}{\partial z}\right) \tag{7}\\
\left(\sigma_{z z}\right) & =\mu\left(\frac{\partial w}{\partial \underline{x}}+\frac{\partial u}{\partial z}\right)
\end{align*}
$$

λ, μ are the Lame constants of the media (Ref. 3.5), $I, 2$ subscripts denote the corresponding media.

Substituting into equations (6), gives four equations linking the amplitudes of the four waves, refleoted P, reflected S, refracted P, refracted S, generated by the inoidenoe of the longitudinal wave, to the initial amplitude (Fig. 3.2).

Rearrangement of these equations (Ref. 3.6) and substitution for the different angles of refleotion and refraction using Snell's $L_{a w}(R e f .3 .7)$ gives an expression for the plane P wave reflection oooffioient.

$$
\begin{equation*}
A_{0}\left(e_{0}\right)=\frac{K_{2}\left(e_{0}\right)+L_{2}\left(e_{0}\right) \sqrt{n^{2}-e_{0}^{2}}}{K_{1}\left(e_{0}\right)+L_{1}\left(e_{0}\right) \sqrt{n^{2}-e_{0}^{2}}} \tag{8}
\end{equation*}
$$

where
$\mathrm{K}_{1,2}\left(e_{0}\right)= \pm e_{0}^{2}\left[n_{1}^{2}(\rho-1)-2 e_{0}^{2}(\mu-1)\right]^{2}$
$+\sqrt{1-e_{0}^{2}} \sqrt{n_{1}{ }^{2}-\theta_{0}{ }^{2}}\left[\rho_{n_{1}}{ }^{2}-2 e_{0}^{2}(\mu-1)\right]^{2}$
$\sqrt{1-\theta_{0}^{2}}{n_{2}^{2}-\theta_{0}^{2}}^{\rho_{n}}{ }_{1}^{4}$

Fig. 3.2 Arrangement of Reflected and Refracted P and S Waves

$$
\begin{align*}
L_{1,2}\left(e_{0}\right) & =4 \sqrt{1-e_{0}^{2}} \sqrt{n_{1}^{2}-e_{0}^{2}} \sqrt{n_{2}^{2}-e_{0}^{2}} e_{0}^{2}(\mu-1)^{2} \\
& \pm \sqrt{n_{1}^{2}-e_{0}^{2}}{ }_{\rho}^{n_{1}{ }^{4}} \\
& \pm \sqrt{n_{2}^{2}-e_{0}^{2}}\left[n_{1}{ }^{2}+2 e_{0}^{2}(\mu-1)\right]^{2} \tag{10}
\end{align*}
$$

Where $n=a_{1} / a_{2}$, the refractive index (Ref. 3.7)

$$
\begin{align*}
n_{1} & =a_{1} / b_{1} \\
n_{2} & =a_{1} b_{2} \tag{11}\\
\rho & =\rho_{1} / \rho_{2} \\
\mu & =\rho_{2} b_{2}^{2} / \rho_{1} b_{1}^{2}
\end{align*}
$$

$a_{1,2}, b_{1,2}$ being defined earlier as the P and S velooities in their reapective media.

The region to be examined in detail is that near the critical angle, for which $\theta_{0}=n$

Por

$$
\begin{aligned}
& e_{0}<n, A_{0}\left(e_{0}\right) \text { is real } \\
& e_{0}>n, A_{0}\left(e_{0}\right) \text { is complex }
\end{aligned}
$$

Only the modulus $\left|A_{0}\left(e_{0}\right)\right|$, is dealt with here; the phase ohanges that ocour as the oritical angle is passed through are discussed subsequently. The behaviour of $\left|A_{0}\left(e_{0}\right)\right|$ depends on whather $n_{2}>1$ or $n_{2}<1$.
(i) $n_{2} \geqslant 1$

Fora $_{1} / b_{1}=a_{2} b_{2}=\sqrt{ } 3 ; \rho_{2} / \rho_{1}=1$ (ReP. 3.8). The numerical solution for $\left|A_{0}\left(e_{0}\right)\right|$, is shown in Fig. 3.3. This plot was obtained using the PLAMP programme, given in Appendix 1. Clearly, $\left|A_{0}\left(e_{0}\right)\right|$ changes most rapialy in the region of the oritical angle.
(ii) $n_{2}<1$

In this instance, a second oritical point is obtained, whose orftical angle is given by $e_{0}=n_{2}$, and the $\left|A_{0}\left(e_{0}\right)\right|$ ourve displays two peaks. (Fig. 3.4).

Fig. 3.3 Numerical Solution for Plane Wave Reflection

Fig. 3.4 Numerical Solution for Plane Wave.
$n_{2}<1$

The rapid variation in $\left|A_{0}\right|^{93}$ is caused by the changes in
$\sqrt{n^{2}-e_{0}^{2}}$ as $\theta_{0} \rightarrow n_{0}$
Writing

$$
\begin{equation*}
A_{0}\left(\theta_{0}\right)=A_{1}\left(e_{0}\right)-A_{2}\left(e_{0}\right) \sqrt{1-e_{0}^{2}} \sqrt{n^{2}-e_{0}^{2}} \tag{12}
\end{equation*}
$$

then from (8)

$$
\begin{align*}
& A_{1}\left(e_{0}\right)=\frac{K_{1} K_{2}-L_{1} L_{2}\left(n^{2}-e_{0}{ }^{2}\right)}{K_{1}{ }^{2}-I_{1}{ }^{2}\left(n^{2}-e_{0}{ }^{2}\right)} \tag{13}\\
& A_{2}\left(e_{0}\right)=\left\{\frac{K_{2} L_{1}-K_{1} I_{2}}{K_{1}{ }^{2}-L_{1}{ }^{2}\left(n^{2}-e_{0}{ }^{2}\right)}\right\} x \quad \sqrt{1} \sqrt{1-e_{0}^{2}}
\end{align*}
$$

Defining $A_{3}\left(e_{0}\right)$ as
$\left.\begin{array}{l}n<\theta_{0} ; A_{3}\left(\theta_{0}\right)=A_{2}\left(\theta_{0}\right) \sqrt{1-e_{0}^{2}} \sqrt{\theta_{0}^{2}-n^{2}} \\ n>\theta_{0} ; A_{3}\left(\theta_{0}\right)=A_{2}\left(\theta_{0}\right) \sqrt{1-e_{0}^{2}} \sqrt{n^{2}-e_{0}^{2}}\end{array}\right\}$
Clearly $A_{1}\left(e_{0}\right)$ and $A_{2}\left(e_{0}\right)$ ohange continuously in the neighbourhood of the critical point as shown in Fig. 3.5, obtained using HAL,
listed in Appendix 1.
Fxpanding $A_{1}\left(e_{0}\right)$ and $A_{2}\left(e_{0}\right)$ in a power series in ($e_{0}-n$) around the oritical point and considering only the first term in the expansion

$$
\left.\begin{array}{c}
A_{1}(n)=\frac{K_{2}(n)}{K_{1}(n)}=\frac{1-2 n^{2}\left[n_{1}^{2}(\rho-1)-2 n^{2}(\mu-1)\right]}{D} \\
A_{2}(n)=\rho n_{1}^{4}\left[\sqrt{n_{1}^{2}-n^{2}}\left\{\rho n_{1}^{2}-2 n^{2}(\mu-1)\right\}+\right. \\
\left.\sqrt{n_{2}^{2}-n^{2}}\left\{n_{1}^{2}+2 n^{2}(\mu-1)\right\}\right] / D
\end{array}\right\} .
$$

$A_{2}(n)$ is the head wave coefficient.
From (15), for $e_{0}<n_{\text {; }}$

$$
\begin{equation*}
\left|A_{0}\left(\theta_{0}\right)\right|=A_{1}\left(e_{0}\right)-A_{2}\left(\theta_{0}\right) \sqrt{1-e_{0}^{2}} \sqrt{n^{2}-\theta_{0}^{2}} \tag{19}
\end{equation*}
$$

Fig. 3.5(a) $A_{1}\left(e_{0}\right)$ against sine of angle of incidence
${ }_{2}\left(e_{0}\right)$

$$
\rho=0.75, n=0.42
$$

$0_{0}>n ;$

$$
\begin{align*}
& \left|A_{0}\left(e_{0}\right)\right|=\left[A_{1}^{2}\left(e_{0}\right)+A_{2}^{2}\left(e_{0}\right)\left(1-e_{0}^{2}\right)\left(e_{0}^{2}-n^{2}\right)\right]^{\frac{1}{2}} \tag{20}\\
& \left|A_{0}\left(e_{0}\right)\right|=\left[F_{0}(n)+F_{1}(n)\left(e_{0}^{2}-n^{2}\right)+\ldots \ldots\right]^{\frac{1}{2}} \tag{21}
\end{align*}
$$

where the $F_{\mathbf{k}}(n)$ are functions only of the physical properties of the medium and are independent of θ_{0}

For a change in the modulus of the reflection coefficient in the neighbourhood of the oritical point,

$$
e_{0}<n ;
$$

$$
\begin{equation*}
\frac{\partial A_{0}\left(e_{0}\right)}{\partial e_{0}} \rightarrow \frac{n \sqrt{1-n^{2}} A_{2}(n)}{\sqrt{n^{2}-\theta_{0}^{2}}} \tag{22}
\end{equation*}
$$

 $0_{0}>\dot{n}_{j}$

$$
\begin{equation*}
\frac{\partial\left|A_{0}\left(e_{0}\right)\right|}{\partial e_{0}} \rightarrow \frac{n F_{1}(n)}{\sqrt{F_{0}(n)}} \quad \text { in inm as } e_{0} \rightarrow n \tag{23}
\end{equation*}
$$

In the limit as $e_{0} \rightarrow n-\frac{\partial A_{0}\left(e_{0}\right)}{\partial e_{0}} \rightarrow \infty$
while

$$
\lim _{e_{0} \rightarrow n_{+}} \frac{\partial\left|A_{0}\left(e_{0}\right)\right|}{\partial e_{0}} \quad \text { is constant. }
$$

Thus the derivative of the amplitude against angle of incidenoe curve is discontinuous at the critical angle, indicating that the curve itself has a sharp point at this angle as can be seen in Fig. 3.3.

Identification of this cusp by examination of the amplitude curve should, therefore, give information about the refractive index, and hence the velocities of the two media.

It can be seen from Fig. 3.6 that the refleoted amplitude is sensitive to the density ratio between the two media. The plane wave approximation, however, has serious drawbacks. From Fig. 3.3 it is obvious that as $e_{0} \rightarrow 1,\left|A_{0}\left(e_{0}\right)\right| \rightarrow 1$, i.e. as grazing

Fig. 3.6 Numerical Solution - Density Dependence
inoidence is approached the refleoted amplitude inoreases to that of the incident wave. Examination of the phase of the reflected wave (Ref. 3.9), shows that it is π radians out of phase with the inoident wave. Hence at grasing inoidence the reflected wave completely cancels out the incident wave and no onergy is propagated along the boundary, whioh is olearly ineorreot.

Analysis using geometric ray theory (Ref. 3.10) gives zero amplitude for the head wave because the analysis itself necessitates a serv order approximation, while the head wave is a second order effect (Ref. 3.11). To obtain more meaningful rasults a more realistic wave must be chosen.

Although the beheviour of reflected plane waves discussed above beyond the eritical angle is physically unreal the mathematical expressions derived above relating reflection coefficient to angle of inoidence, density ratio, eto., are atill valid in the supermaritical region, in that they now refer complex angles and are themselves complex quantities. As the following analysis employs plane waves to investigate the exact nature of super-critical reflection the validity of these expressions is obviousiy important. Spherioal Taves

The purpose of this analysis is to approach the problem discussed above, beginning in this case with a spherical instead of a piane wave front. Mathematically, hovever, the technique used is to expand the spherical wave into plane waves following Weil (Ref. 3.12) . The difficulty of the refleotion of a spherical wave at a plane interface arises from the difference between the symmetry of the wave and the form of the boundary.

Introducing a cylindrical comordinate system, F, z, ϕ, with an acoustio source placed at $y=0, z=0_{0}$, the interface lies in the $\mathrm{z}=0$ plane (Fig. 3.7).

Fig. 3.7 Cylindrical Co-ordinate System

In this instanoe the solution is independent of ϕ.

Denoting

i) displacement in the r-direction as u
ii) displacement in the z-direction as w
and defining a longitudinal wave potential - Sand tranaverse potential Ψ, so that the vector potential Ψ in (1) takes the form ourl ($0,0, \Psi$), it follows that

$$
\left.\begin{array}{l}
u=\frac{\partial \Phi}{\partial r}+\frac{\partial^{2} \Psi}{\partial r \partial z} \tag{24}\\
\nabla=\frac{\partial \Phi}{\partial z}+\frac{\partial^{2} \Psi}{\partial z^{2}}-\nabla^{2} \Psi
\end{array}\right\}
$$

Assuming the incident longitudinal wave has potential

$$
\begin{equation*}
\phi^{0}=R_{0}^{-1} \exp \left[j k R_{0}-j w t\right] \tag{25}
\end{equation*}
$$

where R_{0} is the distance from the source

$$
R_{0}=\sqrt{x^{2}+\left(z-g_{0}\right)^{2}}
$$

and that there is no incident transverse wave we obtain, omitting the time term and assuming unit initial amplitude, the spherical wave potential, given as exp $(j k R) / R$, which can be expanded in terms of plane waves, by use of a double Fourier integral in terms of x and y, where

$$
\begin{equation*}
r=\sqrt{x^{2}+y^{2}} \tag{Ref.3.13}
\end{equation*}
$$

If, for simplicity, the souroe is placed at the origin, then in the plane $z=0$, the acoustic potential may be written as $\frac{\exp (j \operatorname{lin})}{r}=\iint_{-\infty} A\left(k_{x}, k_{y}\right) \exp \left[j\left(k_{x} x+k_{y} y\right)\right] d k_{x} d k_{y}$
Using the Fourier transform property, (Ref. 3.14), A($\left.k_{x}, k_{y}\right)$ is given by,
$(2 \pi)^{2} A\left(k_{x}, k_{y}\right)=\iint \frac{\exp \left(3 k^{r}\right)}{r} \exp \left[-j\left(k_{x} x+k_{y} y\right)\right] \quad d k_{x} d k_{y}$
Traneforming into polar co-ordinates
$\left.\begin{array}{ll}\mathbf{k}_{x}=q \cos \psi & \mathbf{k}_{\mathbf{y}}=q \sin \psi \\ x=r \cos \phi & y=r \sin \phi \\ \operatorname{ain} y=r \operatorname{dan} \phi & \end{array}\right\}$
then (27) becomes 2π
$(2 \pi)^{2} A\left(k_{\dot{x}} \dot{k}_{y}\right)=\int_{0}^{2 \pi} \mathrm{~d} \phi \int_{0}^{\infty} \exp [j r\{k-q \cos (\psi-\phi)\}] d r$
The integral over r is straightforward and by assuming a slightiy absorbing medium, so that the imaginary part of the wave mumber is positive, (Ref. 3.15), the substitution of the upper limit (${ }^{\infty}$), gields zero, giving

$$
\begin{align*}
(2 \pi)^{2} A\left(k_{x} x_{y}\right) & =j \int_{0}^{2 \pi} \frac{d \phi}{[k-q \cos (\psi-\phi)]} \\
& =j / k \int_{0}^{2 \pi} \frac{d \phi}{[1-q / k \cos (\psi-\phi)]} \tag{30}
\end{align*}
$$

From the Table of Integrals (Ref. 3.16)

$$
\begin{equation*}
A\left(k_{x} \cdot k_{y}\right)=\frac{1}{2 \pi} \quad \frac{1}{\sqrt{k^{2}-q^{2}}} \tag{अ}
\end{equation*}
$$

From (28), $q=\sqrt{k_{x}^{2}+k_{y}^{2}}$
$\Rightarrow A\left(k_{x}, k_{y}\right)=\sqrt[j]{ } 2 \pi \sqrt{k^{2}-k_{x}^{2}-k_{y}^{2}}$
Thus (26) beoomes

$$
\begin{equation*}
\frac{\exp (i k e x)}{r}=\frac{j}{2 \pi} \iint_{-\infty}^{\infty} \frac{\exp \left[j\left(k_{x} x+k_{y} y\right)\right]}{\sqrt{k^{2}-k_{x}^{2}-k_{y}^{2}}} \quad d k_{x} d k_{y} \tag{33a}
\end{equation*}
$$

This equation describes the potential field in the $x-y$ plane $(z=0)$ and can be contimued into space (i.e. for the source not in the plane of the interface) by using Fourier integrals (Ref. 3.17)

Sach Fourier component then corresponds to a plane wave in space. In exaot terms, this oontimuation is achieved by adaing to the exponent in the integround $\pm \mathbf{j k}_{\mathbf{z}} \cdot z$, where

$$
\begin{equation*}
k_{z}=\sqrt{k^{2}-k_{x}^{2}-k_{y}^{2}} \tag{33b}
\end{equation*}
$$

The positive quantity represents continuation in the halfspace, $2>0$.

The negative continuation denotes the halfspace $z<0$.
Thus for $2>0$;
$\frac{\exp (9 k R)}{R}=j / 2 \pi \int^{\infty} \int_{-\infty}^{\infty} \exp \left[j\left(k_{x} x+k_{y} y+k_{z} z\right)\right] \frac{d k_{x} d k_{y}}{k_{z}}$
for $\mathrm{z}<0$;
$\frac{\exp ((j k R)}{R}=j / 2 \pi \iint_{-\infty}^{\infty} \exp \left[j\left(k_{x} x+k_{y} y-k_{z} z\right)\right] \frac{d k_{x} d k_{y}}{k_{z}}$

These equations (34) represent the formulae for expansion of a spherical wave into plane waves each exponent representing a plane wave propagating in a direotion given by the components of the wave number.

The integration over $\mathbf{k}_{\mathbf{x}}$ and $\mathbf{k}_{\mathbf{y}}$ may be replaced by integration over θ and ϕ, where

as illustrated in Fig. 3.8.
The integral with respect to ϕ is between 0 and 2π, whilst that over θ is not limited to only the real values of θ. From (33b) when $\mathbf{k}_{\mathbf{x}}=\mathbf{k}_{\mathbf{y}}=0, \mathbf{k}_{\mathbf{z}}=\mathbf{k}_{\mathbf{z}}$

Fig. 3.8 Spherical Co-ordinate Syatem
and from (35)
$\Rightarrow \theta=0$.
When $k_{x}, k_{y} \rightarrow \pm \infty, k_{z} \rightarrow j \infty$
$\Rightarrow \theta \rightarrow\left(\pi / 2-j^{\infty}\right)$.
Noting that the Jacobian of the coordinate transformation is given by

$$
|J|=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial \mathbf{y}}{\partial v}
\end{array}\right| \quad x=\phi(u, v)
$$

where

$$
\int_{S} f(x, y) d(x, y)=\int_{S^{\dot{*}}} p[\phi(u, v), \psi(u, v)] d(u, v)|v|
$$

From (35) we obtain
$d k_{x} d k_{y}=k^{2} \sin \theta \cos \theta d \theta d \phi$
$\Longrightarrow \frac{d k_{x} d k_{y}}{k_{z}}=k \sin \theta d \theta d \phi$
Equation (33) may thus be rewritten
for $\& \geqslant 0 ;$
$\frac{\exp \left(i k_{R}\right)}{R}=\frac{j k}{2} \int_{0}^{\pi / 2-j \omega^{\prime}} \int_{0}^{2 \pi} \exp \left[j\left(k_{x} x+k_{y} y+k_{z} z\right)\right] \sin \theta d \theta d \phi$
for $z \leqslant 0 ;$
$\frac{\exp (j k R)}{R}=\frac{j k}{2 \pi} \int_{0}^{\pi / 2-j \infty} \int_{0}^{2 \pi} \exp \left[j\left(k_{x} x+k_{y} y-k_{z} z\right)\right] \sin \theta d \theta d \phi$
So, in addition to the waves in all possible directions, limited by $0 \leqslant \vartheta \leqslant 2 \pi$, and $0 \leqslant \phi \leqslant \pi / 2$, there are waves corresponding to complex values of θ, so called inhomogenous waves (Ref. 3.18)

At $\theta=\pi / 2$ - ja., where a is real and positive, oorresponding to the integration path $\Gamma 0$, (Fig. 3.9), these inhomogeneous waves propagate with a shortened wavelength along a direotion in the $x-y$ plane (given by ϕ), and with an exponentially decreasing amplitude in the s-direction. Such waves are necessary since a superposition of plane waves alone would not produce a potential field having the required singularity as $R \rightarrow 0$, and still remain bounded at other points (Ref. 3.19).

Evaluation of the Reflected Potential

The total field is given by

$$
\begin{equation*}
\phi_{T}=\frac{\exp (j k R)}{R}+\phi_{\text {refl }} \tag{38}
\end{equation*}
$$

$\phi_{\text {refl }}$ may be represented as the superposition of plane waves, resulting from the reflection of the plane waves into which the original spherical wave was expanded. Upon reflection each plane wave will have an amplitude equal to the product of its original amplitude and the plane wave refleotion coefficient.
i.e.

$$
\begin{equation*}
A_{0}\left(e_{0}\right) \exp \left[j\left(k_{x} x+k_{y} y+k_{z}\left(z+s_{0}\right)\right]\right. \tag{39}
\end{equation*}
$$

is the amplitude of each refleoted plane wave given unit incident amplitude.
$\phi_{\text {refl }}^{\text {Hence, }}=\frac{j k}{2} \int_{0}^{\pi / 2-j_{00}} \int_{0}^{2 \pi} A_{0}\left(e_{0}\right) \exp [j k(x \sin \theta \cos \phi+y \sin \theta \sin \phi+$
The integration over ϕ reduces to a Bessel function of zero order
(Ref. 3.20), and writing

$$
\begin{aligned}
& x=r \cos \phi_{1}, \\
& y=r \sin \phi_{1},
\end{aligned}
$$

then from (40), we have

Fig. 3.2 Complex Plane Diagram

$$
\int_{0}^{2 \pi} \exp [j k(x \cos \phi+y \sin \phi) \sin \theta] d \phi
$$

$$
\begin{equation*}
=\int_{0}^{2 \pi} \exp \left[j k x \sin \theta \cos \left(\phi-\underline{\phi}_{1}\right) d \phi\right. \tag{41}
\end{equation*}
$$

$=2 \pi J_{0}(u) \quad, \quad u=k r \sin \theta$
$\phi_{\text {refl }}=j k \int_{0}^{\pi / 2-j \infty} J_{0}(u) \exp \left[j k\left(z+z_{0}\right) \operatorname{sos} \theta\right] A_{0}\left(\theta_{0}\right) \sin \theta d \theta$
Rewriting $J_{0}(u)$ in terms of Hanker functions (Ref. 3.20)

$$
\begin{equation*}
J_{0}(u)=\frac{1}{2}\left[H_{0}^{(1)}(u)+H_{0}^{(2)}(u)\right] \tag{43}
\end{equation*}
$$

where $H_{0}^{(1)}(u)$ is a Hansel function of the first kind.
Now $H_{0}^{(2)}\left(e^{-j \pi} u\right)=-H_{0}^{(1)}(u) \quad$ (Ref. 3.20)
and $A_{0}\left(e_{0}\right)=A_{0}\left(-e_{0}\right)$, from (8).
The integral in (42) becomes the sum of two integrals. In that containing $H_{0}^{(2)}(u)$ if θ is replaced by $-\theta$, identical integrands are obtained, the limits of integration being respectively 0 to $\pi / 2-j \infty$ and $-\pi / 2+j \infty$ to 0 .

Combining the two integrals

$$
\phi r e f I=\frac{d k}{2} \int_{-\pi / 2+j \infty}^{\pi / 2-j \infty} H_{0}^{(1)}(u) \exp \left[j k\left(z+z_{0}\right) \cos \theta\right] A_{0}\left(\theta_{0}\right) \sin \theta d \theta
$$

substituting for θ from (35)

$$
\begin{gather*}
\phi_{\text {'refl }}=\frac{j k}{2} \int_{-\operatorname{Bji}_{0}}^{\infty} A_{0}\left(\theta_{0}\right) \exp \left[j k\left(z+z_{0}\right) \sqrt{1-\theta_{0}^{2}}\right] H_{0}^{(1)}\left(k r e_{0}\right) x \tag{46}\\
\frac{1}{\sqrt{1-e_{0}^{2}}} e_{0}^{d \theta_{0}}
\end{gather*}
$$

This expression may be evaluated by using the method of steepest descents, or saddle point integration. The method is described in detail by Morse and Feshbach (Ref. 3.21), but an outline is given below.

Method of Steepest Descents

This teohnique is used to evaluate integrals of the form

$$
\begin{equation*}
I=\int_{S} \exp [a f(n)] F(n) d n \tag{47}
\end{equation*}
$$

where a has a large value.
The functions $f(n), F(n)$ are axbitrary analytic functions of the complex variable, n, and S is the path of integration in the n-plane.

Within certain limits the path of integration in the complex plane may be deformed without changing the value of the integration. Knowing this, a path of integration may be chosen such that almost the entire value of the integral is given by a relatively short seation of the path of integration (Ref. 3.22). Then the integrand oan be replaced by another more simple function which approximates sufficiently olosely to the original integrand over this region of the path.

The Hankel function in equation (46) may be extended asymtotically at the so-called saddle point (Ref. 3.23), but as the integration path cannot be deformed continuously into one passing through the saddle point without encountering pole and branah points, the initial single integral becomes several, the other contributions arising from the integrals around the pole and branoh points. $\underline{\Phi}^{0}$ represents the sadde point path contribution and physically corresponds to the acoustic potential of the truly reflected wave.

军* represents the contributions from the integration paths around the branch points ($e_{0}=n$) and oorresponds to a P_{121} type head wave.
$\bar{\Phi}^{z}$ represents the contribution of all the paths around other branch points and around the poles and corresponds to the remaining surface and other head waves.

Ignoring the last of these potentials,

$$
\begin{equation*}
\Phi=\Phi^{0}+\Phi^{*} \tag{48}
\end{equation*}
$$

is the total reflected potential,
where from saddle point integration

$$
\begin{aligned}
\Phi^{0} & =R^{-1} A_{0}\left(e_{0}\right) \exp (j k R) \\
\Phi^{*} & =\frac{j n A_{2}(n)}{k \sqrt{r} L^{3 / 2}} \quad \exp \left[j k\left(r n+\left(z+z_{0}\right) \sqrt{1-n^{2}}\right)\right]
\end{aligned}
$$

$A_{2}(n)$ is the head wave coefficient.
L is the distance travelled by the head wave in the lower medium.

$$
\begin{equation*}
\text { i.e. L }=r-\frac{\left(z+\varepsilon_{0}\right) n}{\sqrt{1-n^{2}}} \tag{51}
\end{equation*}
$$

The reflected amplitude is thus

$$
R^{-1}\left|A_{0}\left(e_{0}\right)\right| \quad a^{-1}
$$

and the refracted amplitude is

$$
n A_{2}(n) \quad o m^{-1}
$$

$k \sqrt{F} L^{3 / 2}$
Assuming constant $\left(\varepsilon+z_{0}\right)$ and defining $A^{0}, A^{*}, \psi^{0} \psi^{*}$ such that

$$
\begin{align*}
& \Phi^{0}=A^{0} \frac{\exp \left(i \psi^{0}\right)}{\left(z+z_{0}\right)} \tag{52}\\
& \Phi^{*}=A^{*} \frac{\exp \left(i \psi^{*}\right)}{\left(z+z_{0}\right)}
\end{align*}
$$

1.e.

$$
\begin{equation*}
A^{0}=\left|A_{0}\left(\theta_{0}\right)\right| \sqrt{1-\theta_{0}^{2}} \tag{54}
\end{equation*}
$$

since

$$
\begin{equation*}
\frac{r}{\left(z+z_{0}\right)}= \tag{Fig.3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
A^{*}=\frac{n A_{2}(n)\left(1-\theta_{0}^{2}\right)}{k\left(z+\varepsilon_{0}\right) e_{0}^{2}\left[1-\frac{n \sqrt{1-\theta_{0}^{2}}}{e_{0}^{2} \sqrt{1-n^{2}}}\right]^{3 / 2}} \tag{56}
\end{equation*}
$$

The amplitude of the truly reflected wave is given by the reflection coefficient multiplied by $\sqrt{1-e_{0}{ }^{2}}$.

The amplitude of the spherical waves in this solution inoreases very rapidly just prior to the critical point, and aince $A_{0}\left(e_{0}\right)$ has a discontinuous derivative, equation (23), A^{0} similarly has a disoontinuous derivative. The refracted wave amplitude is infinite at the oritical point but deoreases very rapidly as distance increases, tending to fall off as $1 / r^{2}$ for large r.

Pigures 3.10 and 3.11 show the shape of both the reflected and refracted amplitude curves. These plots were produced using programmes ASSRPLN and ASSRFRN Iisted in Appendix 1.

Interference will ocour between the reflected and refracted waves giving a resultant potential which has different oharacteristios to either of its constituent members.

Write

$$
\begin{equation*}
\underline{\Phi}=\frac{A \exp (i \psi)}{\left(z+z_{0}\right)} \tag{57}
\end{equation*}
$$

where $A=\left[\left(A^{0}\right)^{2}+\left(A^{*}\right)^{2}+2 A^{0} A^{*} \cos \left(\psi^{0}-\psi^{*}\right)\right]^{\frac{1}{2}}$
and $\psi^{0}-\psi^{*}=k\left[R-r n-\left(z+z_{0}\right) \sqrt{1-n^{2}}\right]+a m\left\langle A_{0}\left(\Theta_{0}\right)\right\rangle-\pi / 2$
The amplitude ourve for the remittant potential oscillates between an upper bound C_{1} and a lower bound C_{2}, where

$$
\left.\begin{array}{l}
C_{1}=A^{0}+A^{*} \tag{60}\\
C_{2}=A^{0}-A^{*}
\end{array}\right\}
$$

The frequency of oscillation depends on the frequenoy of the incident wave and the refractive index, as seen in Fig. 3.12. The mean curve is given by $\sqrt{\left(A_{0}\right)^{2}+\left(A^{*}\right)^{2}}$ and analysis of the phase

Fig. 3.11 Refracted Amplitude Curve - Asymptotic Approximation

Fig. 3.12 Frequenor Dependence of Oscillations
difference between the two waves shows that the amplitude of the oscillation decreases with increasing distance.

In the area close to the oritioal point equation (46) becomes invalid, since the method of steepest descents itself is invalidated when A is a rapidly varying function, as it is near the oritioal angle. (Ref. 3.24).

Applying a different path of integration and arranging A so that it does not vary so rapidly (equation (12)),

$$
\begin{equation*}
\Phi=R^{-1} \exp (j k R)\left\{A_{0}\left(e_{0}\right)-e_{0}^{3} \frac{A_{2}\left(e_{0}\right)}{k r} P(\alpha, \beta)\right\} \tag{61}
\end{equation*}
$$

where

$$
\begin{gather*}
F(\alpha, \beta)=j-\frac{21}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp \left(-\phi^{2}\right)\left[\phi+\frac{(\alpha-\beta)}{2} \exp (j \pi / 4) \times\right. \\
\sqrt{\phi+\alpha \exp (j \pi / 4)} \times \sqrt{\phi-\beta \exp (j \pi / 4)} d \phi \tag{62}
\end{gather*}
$$

ar a, β) is obtained by emprofitige the substitutaton technique
and

$$
\left.\begin{array}{l}
\alpha=\sqrt{\frac{k r}{2 \theta_{0}^{3}}} \sqrt{1-n^{2}}+\sqrt{1-\theta_{0}^{2}} \tag{1}\\
\beta=\sqrt{\frac{k x}{2 \theta_{0}^{3}}} \sqrt{1-n^{2}}-\sqrt{1-\theta_{0}^{2}}
\end{array}\right\}
$$

where the branoh of the Riemann surface on which the integral lies is given by

$$
\left.\begin{array}{l}
\operatorname{an}\langle\sqrt{\phi+\alpha \exp (j \pi / 4)}\rangle=\pi / 8 \tag{64}\\
\operatorname{am}\langle\sqrt{\phi-\beta \exp (j \pi / 4)}\rangle=\left\{\begin{array}{cc}
\pi / 8 & e_{0}<n \\
5 \pi / 8 & e_{0}>n
\end{array}\right\}
\end{array}\right\}
$$

For $n, 0_{0}$ away from unity $\alpha \gg 1$

$$
\begin{align*}
& \Longrightarrow F(\alpha, \beta)=\frac{\operatorname{kx}_{3}}{R_{0}} \frac{\sqrt{1-\theta_{0}^{2}} \sqrt{n^{2}-e_{0}^{2}}}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp \left(-\phi^{2}\right) x \\
& \frac{\sqrt{\phi-\beta \exp (1 \pi / 4)}}{\sqrt{-\beta \exp (j \pi / 4)}} \mathrm{d} \phi \tag{65}\\
& \Longrightarrow P(\alpha, \beta)={\underset{\theta_{0}}{3}} \sqrt{1-e_{0}^{2}} \sqrt{n^{2}-e_{0}^{2}} \mu_{1}(\beta) \tag{66}
\end{align*}
$$

where

$$
\begin{align*}
& \mu_{1}(\beta)=\frac{1}{\pi} \int_{-\infty}^{\infty} \exp \left(-\phi^{2}\right) \frac{\sqrt{\phi-\beta \exp (j \pi / 4)}}{\sqrt{-\beta \exp (j \pi / 4)}} d \phi \tag{67}\\
& \mu_{1}(\beta)=\mu_{1}^{R}(\beta)+\mu_{1}^{I}(\beta) \\
& \text { as } \beta \rightarrow \infty \quad\left\{\begin{array}{l}
\mu_{1}^{R}(\beta) \rightarrow 1 \\
\mu_{1}^{I}(\beta) \rightarrow 0 \quad \text { (Ref. 3.25) }
\end{array}\right.
\end{align*}
$$

Thus

$$
\begin{align*}
& \begin{array}{l}
\underline{\Phi}^{0}=R^{-1} \exp (j k R)\left\{A_{1}\left(e_{0}\right)-A_{2}\left(e_{0}\right) \sqrt{1-e_{0}^{2}} \sqrt{n^{2}-e_{0}^{2}} \mu_{1}(\beta)\right\}
\end{array} \tag{68}\\
& \text { for } e_{0}<n ;
\end{align*} \begin{array}{r}
\begin{array}{r}
\Phi^{0}=R^{-1} \exp (j k R)\left\{A_{0}\left(e_{0}\right)-A_{3}\left(e_{0}\right)\left[\mu_{1}{ }^{R}(\beta)-1\right]\right. \\
\left.-j A_{3}\left(e_{0}\right) \mu_{1}^{I}(\beta)\right\}
\end{array} \\
e_{0}>n_{j} \\
\underline{\Phi}^{0}=R^{-1} \exp (j k R)\left\{A_{1}\left(e_{0}\right)+A_{3}\left(e_{0}\right) \mu_{1}^{I}(\beta)-j A_{3}\left(e_{0}\right) \mu_{1}{ }^{R}(\beta)\right\} \tag{69}
\end{array}
$$

Hence

$$
\begin{align*}
& 0_{0}<n ; \\
& A^{0}=\sqrt{1-e_{0}^{2}}\left\{\left[A_{0}\left(e_{0}\right)-A_{3}\left(e_{0}^{,}\right)\left(\mu_{1} R_{1}(\beta)-1\right)\right]^{2}+\left[A_{3}\left(e_{0}\right) \mu_{1} I^{(\beta)}\right]^{2}\right\}^{\frac{1}{2}} \tag{71}\\
& \psi^{0}=k R R-\tan ^{-1}\left(\frac{A_{3}\left(e_{0}\right) \mu_{1} I^{\prime}(\beta)}{A_{0}\left(e_{0}\right)-A_{3}\left(e_{0}\right)\left[\mu \cdot{ }_{1}^{R}(\beta)-1\right]}\right\} \tag{72}\\
& \begin{array}{l}
\theta_{0}>n ; \\
A^{0}=\sqrt{1-e_{0}^{2}}\left\{\left[A_{1}\left(e_{0}\right)+A_{3}\left(e_{0}\right) \mu_{1} I^{I}(\beta)\right]^{2}+\left[A_{3}\left(e_{0}\right) \mu_{1}{ }^{R}(\beta)\right]^{2}\right\}^{\frac{1}{2}}
\end{array} \tag{73}\\
& \psi^{0}=k \in R-\tan ^{-1}\left\{\frac{A_{3}\left(e_{0}\right) \mu_{1}{ }^{R}(\beta)}{A_{1}\left(\theta_{0}\right)+A_{3}\left(\theta_{0}\right) \mu_{1}{ }^{I}(\beta)}\right\} \tag{74}
\end{align*}
$$

As $\beta \rightarrow \infty$, equations (71-74) give the asymptotic formulae already obtained (equation 54).

Critical Point

At the critical point itself, an indeterminacy arises in equation (50), and another expression for the totally reflected amplitude must be calculated.

Prom equations (66) and (67) for $\beta=0$ and large $\alpha, F(\alpha, \beta)$ differs depending on whether π is approached from $e_{0}<n$ or $\theta_{0}>n$. ${ }_{0} \rightarrow \mathrm{n}-$
$F(\alpha, \beta) \simeq 0.822 \alpha^{3 / 2} \exp (j \pi / 8)$
$\theta_{0} \longrightarrow n^{+}$
$F(\alpha, \beta) \simeq 0.822 \alpha^{3 / 2} \exp (j 5 \pi / 8) \quad$ (Ref. 3.25) .

So that
$0_{0} \rightarrow n=$
$\vec{\Phi}^{0}=R^{-1} \exp (j k R)\left\{A_{1}(n)-\frac{0.822 A_{2}(n) \sqrt{n}\left(1-n^{2}\right) \exp (j \pi / 8)}{k\left(z+z_{0}\right) \sqrt{1-n^{2}}}\right\}$
${ }_{0} \longrightarrow n_{+}$
$\underline{\Phi}^{0}=R^{-1} \exp (j k R)\left\{A_{1}(n)-\frac{0.822 A_{2}(n) \sqrt{n}\left(1-n^{2}\right) \exp (j 5 \pi / 8)}{k\left(2+z_{0}\right) \sqrt{1-n^{2}}}\right\}$

$$
A^{0}=\sqrt{1-n^{2}}\left\{\left[A_{1}(n)-\frac{0.759 A_{2}(n) \sqrt{n}\left(1-n^{2}\right)}{\left\{k\left(z+z_{0}\right) \sqrt{1-n^{2}}\right\}^{\frac{1}{4}}}\right\}^{2}\right.
$$

$$
\left.+\left[\frac{0.314 A_{2}(n) \sqrt{n}\left(1-n^{2}\right)}{\left\{k\left(z+z_{0}\right) \sqrt{1-n^{2}}\right\}^{\frac{1}{4}}}\right]^{2}\right\}^{\frac{1}{2}}
$$

$\mathrm{e}_{\mathbf{0}} \longrightarrow \mathrm{n}+$

$$
\begin{equation*}
A^{0}=\sqrt{1-n^{2}}\left\{\left[A_{1}(n)+\frac{0.314 A_{2}(n) \sqrt{n}\left(1-n^{2}\right)}{\left\{k\left(z+z_{0}\right) \sqrt{1-n^{2}}\right\}^{\frac{1}{4}}}\right]^{2}\right. \tag{80}
\end{equation*}
$$

$$
\left.+\left[\frac{0.759 A_{2}(n) \sqrt{n}\left(1-n^{2}\right)}{\left\{k\left(z+z_{0}\right) \sqrt{1-n^{2}}\right\}^{\frac{1}{4}}}\right]^{2}\right\}^{\frac{1}{2}}
$$

The amplitude is thus discontinuous at the critical point, but as no head wave has been considered, this is only to be expected.

Head Wave
From (Ref. 3.26), the head wave potential is given by
$\Phi^{*}=\frac{-n^{4} A_{2}(n)}{k^{2}} G(\delta ; \eta) \exp \left[j k\left(m+\left(z+z_{0}\right) \sqrt{\left.1-n^{2}\right)}\right]\right.$
where $G(\delta, \eta)=\frac{-4}{\sqrt{\pi}} \int_{0}^{\infty} \exp \left[-\phi^{2} \sqrt{2(1+j) \eta \phi}\right] x$

$$
\begin{equation*}
\sqrt{\phi} \times \sqrt{\phi+\delta \exp (j \pi / 4)} \times \phi \times \frac{\delta}{2} \exp (j \pi / 4) \text { a } \phi \tag{82}
\end{equation*}
$$

$\delta=\sqrt{\frac{2 k r\left(1-n^{2}\right)}{n^{3}}} \quad \eta=\sqrt{\frac{k\left(1-n^{2}\right) n}{2 r}} \quad I$
For a refractive index not close to unity
$\delta \gg 1$

$$
\begin{align*}
& G(\delta, \eta) \rightarrow \frac{-i r^{3 / 2}}{n^{3} L^{3 / 2}} \frac{[2 \eta \exp (1 \pi / 4)]^{3 / 2}}{\Gamma(3 / 2)} \times \\
& \int_{0}^{\infty} \exp \left[-\phi^{2}-\sqrt{2} \eta(1+j) \phi\right] \sqrt{\phi} d \phi \tag{83}
\end{align*}
$$

Write

$$
\begin{equation*}
\left.\mu_{2}(\eta)=\frac{[2 \eta \exp (j \pi / 4)}{\Gamma(3 / 2)}\right]_{0}^{3 / 2} \int_{0}^{\infty} \exp \left[-\phi^{2}-\sqrt{2}(1+j) \phi\right] \sqrt{\phi} \quad d \phi \tag{84}
\end{equation*}
$$

$G(\delta \eta)=\frac{-x^{3 / 2}}{n^{3} L^{3 / 2}} \mu_{2}(\eta)$.
At the critical point itself $\mu_{2}(\eta)=0$
and for large $r, \mu_{2}(\eta) \rightarrow 1$.
Hence equation (81) may be rewritten

$$
\begin{equation*}
\underline{\Phi}^{*}=\frac{j n A_{2}(n) \mu_{2}\left(r_{i}\right)}{k \sqrt{r} L^{3 / 2}} \exp \left[j k\left(r n+\left(z+z_{0}\right) \sqrt{\left.1-n^{2}\right)}\right]\right. \tag{86}
\end{equation*}
$$

At the critical point equation (86) is indeterminate since both $\mu_{2}(\eta)$ and L are equal to zero but $G(\delta, \eta)$ may be evaluated at $\eta=0$ for large δ.
$G(\delta, 0) \simeq \frac{k x^{2}}{n} \frac{1.162 \sqrt{n}\left(1-n^{2}\right)^{3 / 2} \text { exp }[17 \pi / 8]}{\left\{k\left(z+z_{0}\right) \sqrt{1-n^{2}}\right\}^{\frac{1}{4}}}$
giving, in general

$$
\begin{align*}
& \bar{\Phi}^{*}=\frac{1.162 A_{2}(n) n\left(1-n^{2}\right)}{\left\{k\left(z+z_{0}\right) \sqrt{1-n^{2}}\right\}^{\frac{1}{4}}} \quad \text { and } \quad \text { exp }\left[j k\left(m+\left(z+z_{0}\right) \sqrt{\left.1-n^{2}\right)}+j 7 \pi / 8\right]\right. \tag{88}\\
& A^{*}=\frac{n A_{2}(n) \mu_{2}(\eta)}{k \sqrt{r} L_{1} 3 / 2} \tag{90}
\end{align*}
$$

$\psi^{*}=k\left(m n+\left(z+g_{0}\right) \sqrt{1-n^{2}}\right)+\pi / 2+a m<\mu_{2}(\eta)>$
and at the critical point

$$
\begin{align*}
& A^{*}=\frac{1.162 A_{2}(n) \sqrt{n}\left(1-n^{2}\right)^{3 / 2}}{\left[k\left(z+z_{0}\right) \sqrt{1-n^{2}}\right]^{\frac{1}{4}}} \tag{91}\\
& \psi^{*}=k\left(r n+\left(z+z_{0}\right) \sqrt{\left.1-n^{2}\right)}+7 \pi / 8\right. \tag{92}
\end{align*}
$$

aud at wat orrbical pour

The amplitude of head waves decreases as r^{-p} where $p \geqslant 2$. p is greatest in the oritical region but $\rightarrow 2$ as r increases. Figures 3.13 and 3.14 show the head wave amplitude for various acoustio parameters and were obtained using the HDGENl computer programme given in Appendix 1.

Fig. 3.13 Head Wave Amplitude - Asymptotic Approximation

Fig. 3.14 Head Wave Amplitude - Asymptotic Approximation

Total Reflection
For the totally reflected wave

$$
\begin{align*}
\Phi & =R^{-1} \exp (j k R)\left\{A_{1}\left(\theta_{0}\right)-j A_{3}\left(e_{0}\right) \mu_{1}(\beta)\right\}+ \\
& \frac{j n A_{2}(n) \mu_{2}(\eta)}{k \sqrt{r} L^{3 / 2}} \exp \left[j k\left(r n+\left(z+z_{0}\right) \sqrt{1-n^{2}}\right]\right. \tag{93}\\
\Rightarrow & =\frac{\exp (j k R)}{\left(z+z_{0}\right)}\left\{\sqrt{1-e_{0}^{2}}\left[A_{1}\left(e_{0}\right)-j A_{3}\left(e_{0}\right) \mu_{i I}(\beta)\right]\right. \\
& +\frac{n A_{2}(n)\left(z+z_{0}\right) \mu_{2}(\eta) \exp \left[j k\left(r n+\left(z+z_{0}\right) \sqrt{1-n^{2}}-j k R+j \pi / 2\right]\right\}}{k \sqrt{r} L^{3 / 2}} \tag{94}
\end{align*}
$$

Thus the total amplitude A, is given by

$$
\begin{align*}
& A=\sqrt{1-\theta_{0}^{2}}\left\{\left[A_{1}\left(\theta_{0}\right)+A_{3}\left(\theta_{0}\right) \mu_{1} I^{I}(\beta)+\frac{n A_{2}(n) \sqrt{1-\theta_{0}^{2}}}{k\left(z+\varepsilon_{0}\right) \theta_{0}^{2}\left(1-\frac{n \sqrt{1-e_{0}^{2}}}{\theta_{0} \sqrt{1-n^{2}}}\right)^{3 / 2}} \times\right.\right. \\
& \left.\left(\mu_{2}^{R}(\eta) \cos \nu-\mu_{2}{ }^{\mathrm{I}}(\eta) \sin \nu\right)\right]^{2}+ \\
& {\left[-A_{3}\left(\theta_{0}\right) \mu_{1}{ }^{R}(\beta)+n A_{2}(n) \sqrt{1-\theta_{0}{ }^{2}}\right.} \\
& k\left(\varepsilon+\varepsilon_{0}\right) e_{0}^{2}\left(1-\frac{n \sqrt{1-e_{0}^{2}}}{e_{o} \sqrt{1-n^{2}}}\right)^{3 / 2} \\
& \left.\left.\left(\mu_{2}^{I}(\eta) \operatorname{008} \nu+\mu_{2}{ }^{R}(\eta) \sin \nu\right)\right]^{2}\right\}^{\frac{1}{2}} . \tag{95}
\end{align*}
$$

where

$$
\begin{equation*}
\nu=k\left(x n+\left(z+z_{0}\right) \sqrt{1-n^{2}}\right)-k R+\pi / 2 \tag{96}
\end{equation*}
$$

Define

$$
\begin{align*}
& \underline{\Phi}_{R}=\left[A_{1}\left(e_{0}\right)+A_{3}\left(e_{0}\right) \mu_{1}^{I}(\beta)\right] \sqrt{1-\theta_{0}^{2}} \tag{97}\\
& \Phi_{I}=-A_{3}\left(\theta_{0}\right) \mu_{1}^{R}(\beta) \sqrt{1-\theta_{0}^{2}} \tag{98}
\end{align*}
$$

$$
\frac{\Phi_{R}^{*}}{\Phi_{R}} \frac{n A_{2}(n)\left(1-e_{0}^{2}\right)}{k\left(z+z_{0}\right) \varepsilon_{0}^{2}\left(1-\frac{n \sqrt{1-\theta_{0}^{2}}}{\theta_{0} \sqrt{1-n^{2}}}\right)^{3 / 2}}\left\{\mu_{2}^{R}(\eta) \cos \nu-\mu_{2}^{I}(\eta) \sin \nu\right\}
$$

$$
\begin{equation*}
\frac{\frac{\#}{\Phi} I=\frac{n A_{2}(n)\left(1-e_{0}^{2}\right)}{k\left(z+\varepsilon_{0}\right) e_{0}^{2}\left(1-\frac{n \sqrt{1-\theta_{0}^{2}}}{\theta_{0} \sqrt{1-n^{2}}}\right)^{3 / 2}}\left\{\mu_{2}^{I}(\eta) \sin \nu+\mu_{2}^{R}(\eta) \cos \nu\right\}}{} \tag{100}
\end{equation*}
$$

The amplitude of the reflected wave is
$A^{0}=\left[\left(\Phi_{R}^{0}\right)^{2}+\left(\Phi_{I}^{0}\right)^{2}\right]^{\frac{1}{2}}$
The amplitude of the head wave is
$A^{*}=\left[\left(\bar{\Phi}_{R}\right)^{2}+\left(\bar{\Phi}_{I}\right)^{2}\right]^{\frac{1}{2}}$
while the total amplitude, A, is given by

$$
\begin{equation*}
\left.A=\left\{\left(\bar{\Phi}_{R}^{0}+\underline{\Phi}_{R}^{*}\right)^{2}+{\Phi_{I}^{0}}_{I}+\vec{\Phi}_{I}^{*}\right)^{2}\right\}^{\frac{1}{2}} \tag{103}
\end{equation*}
$$

These expressions are valid for all regions beyond the oritical
point, at which

$$
\begin{aligned}
\Phi & =R^{-1} \exp (j k R) \quad\left\{A_{1}(n)-\frac{0.822 A_{2}(n) \sqrt{n}\left(1-n^{2}\right)}{\left\{k\left(z+s_{0}\right) \sqrt{1-n^{2}}\right\}^{\frac{r}{4}}} \exp (j 5 \pi / 8)\right. \\
& +\frac{1.162 A_{2}(n) \sqrt{n}\left(1-n^{2}\right)^{3 / 2}}{\left[k\left(z+z_{0}\right) \sqrt{1-n^{2}}\right]^{\frac{1}{4}}} \exp \left[j k\left(r n+\left(z+z_{0}\right) \sqrt{1-n^{2}}+j 7 \pi / 8\right]\right.
\end{aligned}
$$

and since

$$
\begin{align*}
& R=x n+\left(z+z_{0}\right) \sqrt{1-n^{2}} \text { at the oritical point } \\
& \underline{\Phi}=R^{-1} \exp (j k R) \left\lvert\, A_{1}(n) \frac{-0.822 A_{2}(n) \sqrt{n\left(1-n^{2}\right)}}{\left\{k\left(z+z_{0}\right) \sqrt{1-n^{2}}\right\}^{\frac{1}{4}}}\right. \tag{105}
\end{align*}
$$

$$
\begin{align*}
& (1-\sqrt{2}(1+j / \sqrt{2}) \exp (j 5 \pi / 8)\} \tag{105}\\
= & R^{-1} \exp (j k R)\left\{A_{1}(n)-\frac{0.822 A_{2}(n) \sqrt{n}\left(1-n^{2}\right)}{\left\{k\left(z+z_{0}\right) \sqrt{1-n^{2}}\right\}^{\frac{1}{4}}} \exp (j \pi / 8)\right. \tag{106}
\end{align*}
$$

which is the same expression as equation (77) and thus the amplitude curve is continuous at the oritioal point.
$A_{\text {orit }}=\sqrt{1-n^{2}}\left\{A_{1}(n)-\frac{0.822 A_{2}(n) \sqrt{n}\left(1-n^{2}\right)}{\left[k\left(z+z_{0}\right) \sqrt{1-n^{2}}\right]^{\frac{T}{4}}} \exp (j \pi / B)\right.$
Figure 3.15 shows the theoretical amplitude curve generated by the computer programme FINAL, listed in Appendix 1.

It can be seen from equations (71-79) and (95) that the amplitude of the reflected waves is dependent on three parameters.
i) the refractive index, $n_{9}=a_{1} / a_{2}$,
ii) the density ratio, $\rho=\rho_{2} / \rho_{1}$,
iii) the quantity, $k\left(z+z_{0}\right)=2 \pi \frac{\left(z+z_{0}\right)}{\lambda}$

Refrrotive Index

A variation in refractive index causes the position of the critioal point to vary as can be seen in Pigure 3.16, as is expeoted from plane wave theory.

Density Ratio

The only terms which involve the density ratio, ρ, are $A_{1}\left(e_{0}\right)$ and $A_{2}\left(e_{0}\right)$. The integral expressions derived for $\mu_{1}(\beta), \mu_{2}(\eta)$ in equations (67) and (84) are density independent. As can be seen from Figure 3.17 a variation in density ratio hardly alters the position of the peak amplitude at all but does influence the shape of the amplitude ourve to a discernible extent - the curve for a smaller density contrast being more sharply peaked than that of a higher density contrast.

Fig. 3.15 Theoretical Amplitude Curve.

Fig. 3.16 Variation in Amplitude with Refractive Index, n.

Fig. 3.17 Variation in Amplitude with Donsity Ratio.

130

$k\left(z+z_{0}\right)$
Neither $A_{1}\left(\Theta_{0}\right)$ nor $A_{2}\left(e_{0}\right)$ depend on this quantity, but the shape of the amplitude curve and especially the position of the maximum amplitude changes considerably with a change in $k\left(z+z_{0}\right)$. In particular, for large k, or high Prequency, the peak is sharpened and is moved nearer to the plane wave oritical point position. (Fig. 3.18).

Fige 3. 18 Varistion in Amplitude with $k\left(z+z_{0}\right)$.

Layered Media

In the case of reflection from an arbitrary number of layers, Brekhovskikh (Ref. 3.27) has shown that

$$
\begin{equation*}
z_{I N}^{(n)}=\frac{z_{I N}^{(n-1)}-j z_{N} \tan \phi_{n}}{z_{N}-j z_{1 N}^{(n-1)} \tan \phi_{n}} \tag{108}
\end{equation*}
$$

where
$Z_{\text {IN }}{ }^{(n)}$ is the input impedance of the $n^{\text {th }}$ layer,
$n^{\text {is }}$ the phase ohange in the $n^{\text {th }}$ layer,
n is the acoustio impedance of the $n^{\text {th }}$ Iayer

$$
=\frac{\rho_{n} C_{n}}{\cos \theta_{n}}
$$

where
ρ_{n} is the density of the $n^{\text {th }}$ layer,
C_{n} is the velocity of the $n^{\text {th }}$ Iayer,
θ_{n} is the angle of incidence at the $n^{\text {th }}$ layer.
$\phi_{n}=\alpha_{n}{ }_{n}$
d_{n} is the thickness of the $n^{\text {th }}$ layer,
$\alpha_{n}=k_{n} \cos \theta_{n}$
k_{n} is the wave number in the $n^{\text {th }}$ layer.
The caloulation of the input impedance is achieved by successive application of equation (108) and it can be shown that the refleotion coefficient for a number of layers may be written as
$R=1-\prod_{i=1}^{i=n}\left\{\frac{z_{i+1}+z_{N}^{(i)}}{z_{i}+Z_{N N}^{(i)}} \quad \exp (-j \phi)\right\}$ (109)

The modified reflection coefficient for an arbitrary number of layers can thus be found by multiplying the expression for $A\left(e_{0}\right)$ in equation (95), by R, above, and dividing by the appropriate single layer plane wave refleotion coefficient.

Inhomogeneous Lavered Medis

For an inhomogeneous layered medium, i.e. one in which the characteristics vary continually along one axis (the z-axis), provided that the variation with z is slow, the problem of wave reflection reduces to the solution of the wave equation

$$
\begin{equation*}
\nabla^{2} \psi+k^{2}(z) \psi=0 \tag{110}
\end{equation*}
$$

$$
\psi=\mathrm{p} / \sqrt{\rho} \quad \text { (Ref. 3.28) }
$$

Particularly this may be expressed in terms of the hypergeometric equation (Ref. 3.29) and may be solved explicitly for a transitional lajer where the refractive index increases amoothly from one value to a larger one.

In this case

$$
\begin{align*}
R= & \Gamma\left(j \delta \cos \theta_{0}\right) \Gamma\left\{-j(\delta / 2)\left[\cos \theta_{0}+\sqrt{\cos ^{2} \theta_{0}-N}\right]\right\} \\
& \frac{\Gamma\left(-j \delta \cos \theta_{0}\right) \Gamma\left\{+j(\delta / 2)\left[\cos \theta_{0}-\sqrt{\cos ^{2} \theta_{0}-N}\right]\right.}{\Gamma\left\{1-j(\delta / 2)\left[\cos \theta_{0}+\sqrt{\cos ^{2} \theta_{0}-N}\right]\right.} \\
& \Gamma 1+j(\delta / 2)\left[\cos \theta_{0}-\sqrt{\cos ^{2} \theta_{0}-N}\right] \tag{111}
\end{align*}
$$

where $N \equiv k\left(z+z_{0}\right)$

$$
\theta_{0} \equiv i
$$

Processing

The data processing of the sonobuoy reoords obtained on Durham University Geological Science Department Geophysical Surveys in 1973 and 1974 may be divided into three parts.
i) Analogue playout of the Frequency Modulated (FM) tapes to a Variable Area Display (VAD) to obtain travel time information for refleotion and refraction analysis programmes.

1i) Digitisation of these anabgue records and subsequent amplitude investigation.
iii) Curve fitting and synthetic curve generating procedures. The above processing was carried out on both the Durham University Departmental CTL Modular One computer and the Newosstle Universities Multiple Access Computer (NUMAC) IBM 360/67 and 370 machines. Analogue Plavout

The FM tapes recorded at sea on an FMIDATA instrumentation tape recorder by means of a V.H.F. link from sonobuoy to ship, were replayed on a "Geospace Instruments" Variable Area Display (VAD) unit. The original V.A.D. record made whilst at sea does not, usually, contain that portion of the signal corresponding to the direct or water wave arrival, if the sonobuoy was used in deep water (Fig. 4.1).

The V.A.D. record comprises only an arrival time range of 4.5 seconds, representing a water depth of 3.4 km , at normal incidence. In order to display arrivals beyond this time, a sweep delay facility is incorporated into the unit which delays the beginning of this 4.5 second sweep for up to 9 seconds in 1 second steps (Ref. 4.1).

Those sonobuoy records which were made in deep water where this facility had been used to permit examination of the bottom reflection were replayed without any sweep delay to obtain the direct arrival (Fig. 4.2). This was necessary to provide the water wave arrival time data needed for the Wide Angle Reflection programme (Appendix 1), (Ref. 4.2).

Increasing source / hydrophone separation

On board ahip, an eleotromagnetic log of both the ship's fore-and-aft and port-and-starboard velocities had been taken continuously and it was hoped that this knowledge of the ship's velocity through the water would be sufficiently aocurate that the direot arrival times of the water wave could be calculated from this data for each sonobuoy run. An initial comparison showed that the ship's velocity relative to the sonobuoy was substantially different from that given by the $\mathrm{E}-\mathrm{M}$ log, and thus all the records lacking the direot arrival were replayed to obtain corrected ship's velocities, using the surface water velocities appropriate to the area, as given in the standard tables (Ref. 4.3).

A comparison of the ship's E-M log velooity and that obtained from the water wave is given in Table 4.1.

Table 4.1

Sonobuoy No.	E-M Log Velocity Knots	Calculated Velocity Knots
1	6.2	7.09
2	5.5	5.88
5	5.0	5.21
6	4.7	4.93
9	5.3	5.78
11	4.1	4.26
17	5.7	6.09

Once the direot wave arrival had been obtained, each V.A.D. record was examined closely to determine the various reflecting horisons apparent on the ultra-violet sensitive paper (Ref. 4.4). A close reference was made to the continuous reflection profile immediately before the start of the sonobuoy run and also after its termination. In those instances where the acoustic basement
appeared particularly rough, the continuous refleotion profile which had been recorded but not displayed whilst the sonobuoy run was being made, was replayed to provide information on the dip of the bottom and sub-bottom reflecting horizons.

Those horizons discernible to the eje were transferred to tracing paper, in an effort to preserve the $u-v$ sensitive records which aged fairly rapidly on exposure to light, and the displacements in terms of distance and time from the origin of the display measurea (Fig. 4.3).

The origin of the display represents the instant of buoy drop and hence zero displacement. Horizontal displacements, proportional to separation of ship and sonobuoy, were measured at 0.05 second intervals, both for the direct and reflected arrivals. An example of the output of one such analysis is given in Table 2, (overleaf). Reflection Processing on the 360

The information thus obtained was fed into the IBM 360/67 at Newcastle using the Durham batoh processing facility. The Wide Angle Reflection programme (WAR - Appendix 1), developed from that written by Ewing, Le Pichon and Houtz (Ref. 4.5), requires the input of both direct and refleoted arrival times, as mentioned above. The programme utilised solves for interval velocities and thicknesses of N homogeneous layers with plans sloping interfaces, given a trial solution for the dip angles, which is obtained from the continuous reflection profiles made during the sonobuoy run.

The direct arrival times were calculated from the ship's velocity, which had itself been determined from the direct wave. The operation of the program may be explained by examining the single layer case. Defining:

```
To - vertical refleotion time
T - reflection time at distance X, from the source
V - interval velocity in the layer
e - slope of the lower interface with respeot to the upper.
```


Table 4.2 S13 Initial Analyais

Arrival Time (second)	Refleotion Layer 1	Arrival Layer 2	$\begin{aligned} & \text { Displacement } \\ & \text { Layer } 3 \text { (inches) } \end{aligned}$
0.05	0.89	1.02	1.18
0.10	0.89	1.03	1.19
0.15	0.90	1.04	1.19
0.20	0.91	1.05	1.20
0.25	0.92	1.06	1.20
0.30	0.93	1.08	1.22
0.35	0.95	1.09	1.23
0.40	0.97	1.10	1.25
0.45	1.00	1.12	1.26
0.50	1.02	1.15	1.27
0.55	1.05	1.18	1.29
0.60	1.08	1.21	1.32
0.65	1.10	1.24	1.33
0.70	1.13	1.26	1.35
0.75	1.16	1.29	1.37
0.80	1.20	1.32	1.40
0.85	1.24	1.35	1.42
0.90	1.27	1.38	1.45
0.95	1.31	1.42	1.48
1.00	1.34	1.45	1.50
1.05	1.38	1.48	1.53

Then

$$
\begin{equation*}
T^{2}=T_{0}^{2}+X^{2} / V^{2}-\frac{2 T_{0} X}{\nabla} \sin e \tag{1}
\end{equation*}
$$

from simple geometric ray theory (Ref. 4.6).
Given a direct wave travel time, D, and a horizontal water velooity, VH,

$$
\begin{equation*}
T^{2}=T_{0}^{2}+\frac{D^{2} x V H^{2}}{V^{2}}-\frac{2 T_{0} \cdot D . V H}{V} \sin e \tag{2}
\end{equation*}
$$

For the water layer, the interval velocity is known to be a slowly varying function (Ref. 4.7), and the solution to the water layer case can give $X(V)$, the separation of ship and sonobuoy by entering the correot water interval velocity found from Matthew's Tables.

Assuming plane layering $(e=0)$ equation (2) becomes
$T^{2}=T_{0}^{2}+D^{2}\left(\frac{V H}{V}\right)^{2}$
which is the equation of a straight line in D^{2} and T^{2}, the velocity being obtained from the square root of the slope of the line. Hence, in its simplest form, the interval velocity for a given reflection may be found by a least squares analysis of the D^{2} against T^{2} plot (Ref. 4.8).

In fact, this method leads to large errors sinoe the least squares fit is that of a tangent to an extremity of a ourve, beyond which there is no data.

A solution is obtained for each layer proceeding downards, and each layer is reduced to a single flat layer case, using the solutions obtained for the upper layers to remove their effects.

For each layer below the water layer the procedure outlined below is applied:

1) The angle of emergence, b, of the sound ray at the sea water interface, is obtained at each data point, by differentiation of a fourth order polynomial fitted to the original T / X date by least squares, acoording to sinb/ $V_{1}=d T / d X$
2) This emergenoe angle is used to find the theoretical time corresponding to the travel in the layers above the one of interest, using as a first approximation the trial velooity and corresponding slope of the previous layer.
3) This computed time is subtracted from the observed time to give a reduced travel time corresponding to the travel in the layer for whioh a solution is required. The equivalent reduced X distance along the upper interface of the layer is found in the same way. 4) The travel time in this layer is finally reduced to the flat layer case using equation (2) and by removing, at each data point, the value,

$$
T_{0}^{2}-\frac{2 T_{0} X \sin \theta}{V}
$$

to obtain the reduoed times

$$
\begin{equation*}
T^{2}=x^{2} / N^{2} \tag{5}
\end{equation*}
$$

5) The velocity is obtained from a least squares fit of this equation.
6) The solution from (5) replaces the original trial solution,
 7) Finally, the reduced times, $\mathrm{T}^{1^{2}}$, in the layer with the corresponding deviations from the least squares fit are calculated, as are the velocity and it standard deviation derived from the standard deviation of the slope of the T^{2} / X^{2} line.

A detailed description of the operation of this programme is given in Appendix 2.

Refraction Analysis

Any refracting horizons prevent on the VAD record were analysed using a refraction analysis programme, TWaT (Fig. 4.3)(Appondix 1). This programme simply performs a linear regression to obtain the velooity statistics - slope, intercept and standard error - for one layer with oorrections for overlying layers. In practice to obtain the best fit more than just the simple regression of time onto distande is used. Regressions of both distance onto time and reciprocal time onto distance are carried out (Appendix 1). A complete list of the output from Twat for all the sonobuoy runs is given, together with the wide angle reflection velocities obtained from WAR is given in the next ohapter.

Amplitude Analysis
For the amplitude analysis it was decided to use the Departmental
Modular One computer normally employed for seismic array processing. The analogue records were digitised onto magnetic tape using a digitisation programme, STORE, listed in Appendix 1. In order to prevent saturation occurring on digitisation the analogue signals were fed through an anti-aliasing and gain control unit, whose gain could be adjusted manually to prevent saturation.

A level detection programme, LEVEL, (Appendix 1), was run on the computer at a saturation voltage level of ${ }^{+} 5 \mathrm{~V}$. This figure represents the maximum signal that can be exactly digitised by the Modular One; any signal greater than this value is stored as ± 5, or in the 60dB dynamic range of the computer input as ± 1024. (Fig. 4.4).

The KMIDATA analogue deck was started up just prior to the instant of buoy drop and the teletype output of the Modular One printed any input ohannel (only ohannels l-5 were used to transfer from analogue to digital tepe), (Fig. 4.5), greater than $\pm 5 \mathrm{~V}$ at any digitisation instant. The gain of the anti-aliasing and gain control filter was adjusted manually to give the maximum signal level at which

Fig. 4.4 Level Setting Programme - Flow Diagram

Fis. 4.5 Modular One/Analogue Link Up
saturation did not ocour.
The analogue tape was then rewound to its initial pre-buoy drop position and the STORI programme loaded into the computer. The digital tape recorder, attached to the Modular One, was loaded with a tape, and a first file number written onto it to enable the STORR sequence operation to proceed.

The programme operates in the following fashion (Fig. 4.6):
On one analogue input channel is the shot instant command, which is recorded on board ship and governs the firing rate of the Bolt airgun system. It consists, essentially, of a 1 second duration 2.2 volt pulse, with a positive excursion from zero volts. On the other analogue input ohannel to the Modular One is the telemetered output from the sonobuoy system. The programme waits for receipt of the shot instant signal, and then transfers information from the input buffer to the digital magnetic tape at a rate governed by the digitisation rate chosen for the reoording. A count is taken of the number of samples stored and this number is continuously compared with the required number of samples, specified at the beginning of each run, for each shot. Once this number has been reached the programe writes an end-of-file (EOF) mark onto the tape and resets the various interval counters to sero, to await the next shot instant signal. The process continues until the requisite number of shots (files) has been reoorded.

Once the tape has been filled, it is ready for analysis, accomplished by using the REPLAY programmes. Several REPLAY programmes were written, each one increasing the flexibility of the original, whose flow diagram is shown in Fig. 4.7 (Appendix 1).

The programme operates in the following fashion;

Programme Line

Fige 4.7(a) More Advanced Store Programme - Flow Diagram

Step 1

'IGNORR N SAMPLES'
A count is taken for the specified number of samples before beginning amplitude comparison. Once this delay has been achieved.

Step 2

The modulus of the signal value present in Channel (1) is taken and compared with the value of $\mathrm{ch}(53)$, which is initially set to zero. If $|\mathrm{oh}(1)|$ is greater than $|\mathrm{ch}(53)|$ the former is stored in $\mathrm{ch}(53)$, the real value of $\mathrm{oh}(1)$ in $\mathrm{oh}(71)$ and the sample number at which this storage ocourred placed in oh(57).

Step 3
A cheok is made to determine whether the number of samples required for analysis has been achieved, and if this is not so the next data sample is taken before returning to Step 2.

Step 4

If the window length oount has been achieved the information contained In $\mathrm{ch}(53)$, $\mathrm{ch}(58$) and $\mathrm{ch}(100)$, being respectively the absolute value of the maximum signal, the sample number at which this maximum occurred, and the shot (tape file) number under examination, is sent to disc for storage.

Step 5
A count is taken to see if the desired number of windows has been examined, if more than one window is to be inspected the programme goes back to Step 2, as often as there are required windows (Pig. 4.8). Step 6

If only one window is needed or the indicated number of windows has been anelysed, the computer ahecks if any more files are to be examined, having already reset the delay counter, ch(50), to zero. If more files are required, the programme goes back to Step l, and works through the entire soheme again.

A sample of the output of the programme, as stored on disc, is

Shot Trigger

Fig. 4.8 Time Diagram For Store Programmes

Fig. 4.9(a) Replay Programme - Flow Diagram
given below, in Fig. 4.10. This was read Prom disc file using the PRINT programme (Appendix 1).

Transfer of Data from Modular One to IBM 360/67

This transfer of data from the Modular One machine to the IBM $360 / 67$ proved necessary because the Modular One did not have sufficient storage oapability to enable it to handle numbers smaller than 0.01 or greater than 30.0. Several attempts were made to write a programme to convert the sample number and shot number for a partioular peak amplitude into separation distance of ship and buoy and normalised amplitude, but this proved fruitless owing to the great dynamic range of the input data.

Hence the output from the RGPLAY programme (Fig. 4.9) was transferred somewhat laboriously using paper tape to the $360 / 67$. The conversion of this data for quantitative analysis is straight forward. Assuming a linear propagation path in the water layer the shot number may be converted to distance knowing the ship's velocity and the rate of discharge of the Bolt airgun system.

The arrival sample number is simply reduced to time by utilising the digitisation rate and this arrival time oonverted to distance as above, the additional distance being added to the shot distance to give the exact distance.

Given ; shot number, s_{n}
ship velocity, k knots

$$
\begin{aligned}
& \equiv \mathrm{k}^{0} \mathrm{~km} \mathrm{hr}^{-1}\left(=\mathrm{k} / 3.6 \times 10^{-3} \mathrm{kms}^{-1}\right) \\
& \text { firing interval }=\mathrm{F} \text { seconds }
\end{aligned}
$$

The distance between successive shots, is given by

$$
\begin{equation*}
d L_{i, j}=F \times(k / 3.6) \times 10^{-3} \mathrm{~km} \tag{6}
\end{equation*}
$$

Thus the separation of ship and buoy at the nth shot is given
by

$$
\begin{equation*}
L_{n}=s_{n} \times F \times(k / 3.6) \times 10^{-3} \mathrm{~km} \tag{7}
\end{equation*}
$$

```
CPN?;FILTEF ?; STATMT ?:
N TIMF CFPIFC CHC? &% 1275
FILF 0 - <
IGNCPF N SAMPLFSC=?:
WLFVGTH= %7.6;
VC.CF WINDCSE= 7.01;
STAETING FILE= %.01;
TFPMIVATING FILF=?7.?:
CDN?:FILTFD ?1:STATMT ?:
N TIMF SFRIES CHC? 导 1275 0
F
CPN?:FILTFR ?1:ST\triangleTMT ?;
V TIMF SEFIFS CHS? %首 1275 0
FTLE 0 - &
00
\begin{tabular}{rrr}
42 & 85 & 1 \\
40 & 244 & \(?\) \\
526 & 290 & 3 \\
693 & 756 & 4 \\
493 & 336 & 5 \\
619 & 379 & 6 \\
411 & 9 & 7 \\
434 & 339 & 9 \\
537 & 329 & 9 \\
539 & 14 & 10 \\
631 & 337 & 11 \\
525 & 27 & 12 \\
630 & 329 & 13 \\
407 & 31 & 14 \\
563 & 24 & 15 \\
601 & 34 & 16 \\
519 & 23 & 17 \\
473 & 491 & 19 \\
685 & 31 & 19 \\
549 & 33 & 20
\end{tabular}
```

For an arifal sample number, N, at a digitisation rate, r samples sec ${ }^{-1}$, the additional separation of ship and buoy is given by

$$
\begin{equation*}
D=(N / r) \times(k * / 3.6) \times 10^{-3} \mathrm{~km} \tag{8}
\end{equation*}
$$

Thus the total separation is

$$
\begin{equation*}
R_{n}=\left(s_{n} T+N / r\right)\left(k^{m} / 3.6 \times 10^{-3}\right) \mathrm{km} \tag{9}
\end{equation*}
$$

The distance the reflected ray traverses is calculated from the mean water depth and the separation distance, calculated above, using Pythagoras' Theorem, and the normalised amplitude found simply by multiplying the Modular One output amplitude value, in approximately 5 mV units, by this distance in kdlometres.

In the case of sub-bottom reflections, the conversion is accomplished by introduaing an 'effective water layer thiokness' at each shot point. This e.w.I. thickness is found from the W.A.R. and refraction analysis data. Then give estimates of the thickness(es) of the sediment(s) above the sub-bottom reflection of interest. By using these estimates, a two-way travel time for the passage of the sound wave through the sediment layers is calculated and converted to an equivalent water depth using the water velocities obtained from Matthew's tables. This equivalent water depth is added to the exact water depth to provide the 'effective water layer thickness', from which the separation of ship and sonobuoy may be found. (Appendix 1).

In an effort to determine the accuracy of the digitisation procedure, a series of digitisation tests were run on the Modular one and the analysis of these is given in Appendix 3.

Curve Fitting and Synthetic Curve Generating Procedures

In an effort to amooth out the expected experimental error effects in the amplitude data thus produced, various ourve fitting routines available in the *NAG (Nottingham Algorithim Group) subroutine package were employed to fit polynomial expressions by means of a least-squares or cubic spline approximation to the amplitude/ angle of inoidence (ship-sonobuoy separation) plot. These ourve
fitting routines are given in Appendix 1, RAT (+ * NAG RO2 ABF).
The output from these routines is then fed to a double precision curve plotting routine, GEN(Appendix 1), which simply produces a smoothed output plot of the input amplitude data.

RHSULTS

Analysis of Sonobuoy Records
The variable area display records obtained using the Ultra Electronics disposable sonobuoys were analysed to provide information on the velocity-depth structure of the sea floor sediments in the aress shown in Fig. 5.1. The reflection parabolae were digitised by hand and the resultant information processed using the Wide Angle Reflection (W.A.R.) analysis programme, as outlined in the preceeding ohapter.

Those portions of the records which contained refracted arrivals were examined using a travel-time reduction programme, TwAT, (Appendix 1), with a view to producing further information concerning the sedimentary velocity structure, for correlation and oross-reference with that derived from the reflection studies.

The results of these analyses and the precise geographical looation of each sonobuoy run are given below.

Fig 5.1. Sonobuoy Locations

TABLE 1

SONOBUOY NUMBER	TIME	JULIIAN DAY/YEAR	LATITUDE	LOONGITUDE	$\begin{aligned} & \text { DEPTH } \\ & \text { (fathoms) } \end{aligned}$
s_{1}	19:01:45	167/73	$58^{\circ} 34.8^{\prime} \mathrm{N}$	$10^{\circ} 46.8^{\prime} \mathrm{W}$	1005
S_{2}	16:29:18	169/73	$61^{\circ} 23.3$ ' N	$17^{\circ} 24.2^{\prime} \mathrm{W}$	1287
s_{3}	17:52:12	171/73	$59^{\circ} 13.0^{\prime} \mathrm{N}$	$10^{\circ} 13.6^{\prime} \mathrm{W}$	293
S_{4}	10:26:20	174/73	$60^{\circ} 28.0^{\prime} \mathrm{N}$	$10^{\circ} 22.51 \mathrm{~W}$	104
S_{5}	01:06:18	190/73	$61^{\circ} 42.8{ }^{\prime} \mathrm{N}$	$5^{\circ} 33.3^{\prime} \mathrm{W}$	94
S_{6}	05:06:47	190/73	$61^{\circ} 56.3^{\prime} \mathrm{N}$	$5^{\circ} 21.8^{\prime} \mathrm{W}$	96
S_{7}	06:03:00	190/73	RE-RU	ST S_{6}	91
S_{8}	22:38:18	192/73	$61^{\circ} 02.5^{\prime} \mathrm{N}$	$7^{\circ} 25.8^{\prime} \mathrm{W}$	292
S_{9}	01:49:16	193/73	$60^{\circ} 58.5^{\prime} \cdot \mathrm{N}$	$7^{\circ} 18.0^{\prime} \mathrm{W}$	396
S_{10}	16:04:23	193/73	$60^{\circ} 18.2^{\prime} \mathrm{N}$	$7^{\circ} 40.7^{\prime} \mathrm{W}$	55
S_{11}	17.06:54	195/73	$62^{\circ} 06.7{ }^{\text {J }}$	$21^{\circ} 18.3^{\prime \prime} \mathrm{W}$	815
S_{12}	23:22:17	199/73	failure	-	-
S_{13}	00:26:42	200/73	$62^{\circ} 08.7^{\text {P }}$	$36^{\circ} 46.7^{\prime} \mathrm{W}$	1413
S_{14}	02:41:46	202/73	$63^{\circ} 14.0^{\prime} \mathrm{N}$	$37^{\circ} 16.3^{\prime} \mathrm{W}$	1028
${ }_{5}{ }_{15}$	04:57:13	202/73	63° 08.1' N	$36^{\circ} 57.4^{\prime} \mathrm{m}$	1292
S_{16}	23:49:28	203/73	AUDIO FAI		-
S_{17}	00:32:27	204/73	$64^{\circ} 01.3^{\prime} \mathrm{N}$	$36^{\circ} 40.9^{\prime} \mathrm{W}$	194
S_{18}	17:29:04	208/73			618
5_{19}	00:28:57	210/73	AQUIFLEX	URE	-
$5_{74 / 1}$	13:04:47	248/74	$58^{\circ} 17.21^{\prime} \mathrm{N}$	$16^{\circ} 37.8^{\prime} \mathrm{W}$	600
$S_{74 / 2}$	04:38:36	257/74	$53^{\circ} 58.4{ }^{\prime} \mathrm{N}$	$17^{\circ} 59.4^{\prime} \mathrm{W}$	800
$S^{74 / 3}$	18:31:50	251/74	$53^{\circ} 47.8^{\prime} \mathrm{N}$	$17^{\circ} 33.6^{\prime} \mathrm{W}$	850

results

$$
s_{1}
$$

Reflection			Refraction	
Layer	$\begin{aligned} & \text { Velocity } \\ & \left(\mathrm{km} \mathrm{~s}^{-1}\right) \end{aligned}$	Reflection Time (sec)	Velocity $\left(\mathrm{km}^{-1}\right)$	Intercept (sec)
1	$1.49 \pm .01$	2.51		
2	$2.17 \pm .1$	2.68	$2.17 \pm .05$	2.11
3			$2.62 \pm .05$	4.35

Layer	Velocity $\left(\mathrm{km} \mathrm{s}^{-1}\right)$	Thickness km	Dip (0)
1	$1.49 \pm .01$	$1.99 \pm .01$	-
2	$2.17 \pm .05$	$3.81 \pm .05$	$0^{0 \pm} 4^{\circ}$
3	$2.62 \pm .05$		$0^{0} \pm 4^{\circ}$

Water depth is 1.84 km from P.E.S. records implying a thin layer of unconsolidated sediments overlying the $2.17 \mathrm{~km} \mathrm{~s}^{-1}$ layer.

Table 5.2(a) S Results
s_{2}

Reflection			Refraction	
Layer	Velocity $\left(\mathrm{km} \mathrm{~s}^{-1}\right)$	Reflection Time (sec)	$\begin{aligned} & \text { Velocity } \\ & \left(\mathrm{kn} \mathrm{~s}^{-1}\right) \end{aligned}$	Intercept (sec)
1	$1.485 \pm .01$	3.29		
2	$1.99 \pm .09$	3.52		
3	$2.31 \pm .1$	3.81		
4			$5.52 \pm .2$	4.40

$\left.\begin{array}{|ccc|}\hline \text { Layer } & \begin{array}{c}\text { velocity } \\ \left(\mathrm{km} \mathrm{s}^{-1}\right)\end{array} & \begin{array}{c}\text { Thickness } \\ \mathrm{km}\end{array}\end{array} \begin{array}{c}\text { Dip } \\ \text { degree }\end{array}\right]$

* On the continuous profile records there is a reflector at 5.3 seconds down. The two way travel time for the fourth layer is thus 1.5 seconds and from the delay time equation

$$
I=\sum_{j=0}^{n} \frac{2 z_{j} \cos i_{j, j+1}}{v_{j}}
$$

with $I=4.40, z_{0}=2.44$ etc, the resulting quartic equation in v_{3} may be solved (ANAL i) to give a velocity of $4.33 \mathrm{~km} \mathrm{~s}^{-1}$, which implies a thickness of 3.25 km .

Table 5.2(c) S_{3} Results

Layer	Velocity $\left(\mathrm{km} \mathrm{s}^{-1}\right)$	Thickness km	Dip $\left({ }^{\circ}\right)$
1	$1.49 \pm .08$	$.19 \pm .01$	-
2	$2.30 \pm .1$	$1.70 \pm .08$	$0^{\circ} \pm 5^{\circ}$
3	$4.97 \pm .15$		$11^{\circ} 42^{\circ} \pm 1^{\circ}$

From the continuous reflection profile this run is up dip. The dip angle is calculated as $11^{\circ} \mathbf{4 2}^{\prime}$.

Table 5.2(d) S Results
S_{5}

Layer	Reflection Velocity $\left(\mathrm{km} \mathrm{s}^{-1}\right)$	Reflection Time (sec)	Refraction Velocity $\left(\mathrm{km} \mathrm{s}^{-1}\right)$	Intercept (sec)
1	$1.495 \pm .01$	0.19		
2	$2.07 \pm .05$	1.11	$2.03 \pm .05$	0.14
3			$5.19 \pm .1$	1.17

Layer	Velocity $\left(\mathrm{km} \mathrm{s}^{-1}\right)$	Thickness km	Dip (0)
1	$1.495 \pm .01$	$0.14 \pm .01$	-
2	2.05 ± 0.5	$0.95 \pm .03$	$0^{0} \pm 2^{\circ}$
3	$5.19 \pm .1$	-	$0^{\circ}(?) \pm 5^{\circ}$

Table 5.2(e) S_{5} Results

	Reflection		Refraction	
Layer	$\begin{aligned} & \text { Velocity } \\ & \left(\mathrm{km} \mathrm{~s}^{-1}\right) \end{aligned}$	Reflection Time (sec)	$\begin{aligned} & \text { Velocity } \\ & \left(\mathrm{km} \mathrm{~s}^{-1}\right) \end{aligned}$	Intercept (sec)
1	$1.46 \pm .01$. 12		
2	$1.73 \pm .05$. 134	$1.68 \pm .1$	0.14
3	$2.25 \pm .05$. 760	$2.39 \pm .1$	0.88
4			$5.81 \pm .1$	1.08

Layer	Velocity $\left(\mathrm{km} \mathrm{s}^{-1}\right)$	Thickness km	Dip (0)
1	$1.46 \pm .01$	$0.18 \pm .01$	-
2	$1.70 \pm .1$	$0.88 \pm .04$	$0^{0} \pm 2^{\circ}$
3	$2.25 \pm .05$	$0.29 \pm .03$	$5^{0} \pm 2^{\circ}$
4	$4.78 \pm .1$		$5^{\circ} 3^{\prime} \pm 20^{\prime}$

From the continuous reflection profile this run is up dip, and the angle of dip is 503'.

Table 5.2(f) $\quad S_{6}$ Results
S_{7}

Layer	Velocity $\left(\mathrm{km} \mathrm{s}^{-1}\right)$	Thickness km	Dip (o)
1	$1.46 \pm .01$	$.18 \pm .01$	-
2	$1.65 \pm .05$	$.80 \pm .05$	$0^{0} \pm 2^{0}$
.3	$1.99 \pm .05$	$.30 \pm .04$	$1^{\circ} 39^{1} \pm 20^{1}$
4	$4.78 \pm .1$		$0^{0} 42^{\prime} \pm 20^{\prime}$

S_{7} is a re-run past S_{6} as the ship moved past the sonobuoy again.

$$
S_{8} \text { and } S_{9} \text { (Reverse of } s_{8} \text {) }
$$

Layer	Reflection		Refraction	
	Velocity $\left(\mathrm{km} \mathrm{~s}^{-1}\right)$	Reflection Time (sec)	$\begin{aligned} & \text { Velocity } \\ & \left(\mathrm{km} \mathrm{~s}^{-1}\right) \end{aligned}$	Intercept (sec)
1	$1.458 \pm .01$	0.49		
2	$1.96 \pm .05$	1.16	$1.95 \pm .05$	0.83
3	$2.40 \pm .1$	1.41	$2.65 \pm .08$	2.00
4			$6.38 \pm .1$	2.68
1	$1.458 \pm .01$	0.49		
2	$1.97 \pm .08$	1.20	$1.93 \pm .05$	0.84
3	2.41 士.1	1.44	$2.32 \pm .1$	-
4			$5.00 \pm .15$	

\(\left.$$
\begin{array}{|ccc|}\hline \text { Layer } & \begin{array}{c}\text { Velocity } \\
\left(\mathrm{km} \mathrm{s}^{-1}\right)\end{array} & \begin{array}{c}\text { Thickness } \\
\mathrm{km}\end{array}\end{array}
$$ \begin{array}{c}Dip

\left.\mathrm{O}^{\circ}\right)\end{array}\right]\)| 1 | $1.458 \pm .01$ | $.74 \pm .03$ | - |
| :--- | :--- | :--- | :--- |
| 2 | $1.95 \pm .05$ | $1.32 \pm .05$ | $4^{\circ} \pm 20^{\prime}$ |
| 3 | $2.45 \pm .09$ | $.59 \pm .03$ | $4^{\circ} 27^{\prime} \pm 20^{\prime}$ |
| 4 | $5.61 \pm .15$ | | $7^{\circ} 49^{\prime} \pm 10^{\prime}$ |

S_{9} is the reversed line of S_{8} and from the up and down dip refraction velocities the time velocities and dips were found.

```
S10
```

	Reflection		Refraction	
Layer	$\begin{aligned} & \text { Velocity } \\ & \left(\mathrm{km} \mathrm{~s}^{-1}\right) \end{aligned}$	Reflection Time (sec)	$\begin{aligned} & \text { Velocity } \\ & \left(k m s^{-1}\right) \end{aligned}$	Intercept (sec)
1	$1.474 \pm .01$	0.14		
2*	$1.65 \pm .20$	0.33		
3			$4.55 \pm .1$	0.22

* shallow depth leading to pronounced reverberation made this apparent reflector very difficult to follow and hence this result is very inaccurate.

	Velocity $\left(\mathrm{km} \mathrm{s}^{-1}\right)$	Thickness km	Dip Layer
1	$1.474 \pm .01$	$.10 \pm .01$	-
2	$1.65 \pm .2$	$.07 \pm .02$	$0^{\circ} \pm 10^{\circ}$
3	$4.55 \pm .1$	-	$0^{\circ} \pm 2^{\circ}$

Table 5.2(i) S Results

$$
s_{11}
$$

	Reflection		Refraction	
Layer	Velocity ($\mathrm{km} \mathrm{s}^{-1}$)	Reflection Time (sec)	Velocity ($\mathrm{km} \mathrm{s}^{-1}$)	Intercept (sec)
1	$1.482 \pm .01$	2.134		
2	$1.685 \pm .09$	2.550		
3	$2.210 \pm .1$	2.920	$2.15 \pm .05$	0.34

Layer	Velocity $(\mathrm{km} \mathrm{s}$ -1	Thickness km	Dip (i)	
1	$1.482 \pm .01$	$1.44 \pm .02$	-	
2	$1.685 \pm .09$	$.025 \pm .04$	$0^{0} \pm 3^{\circ}$	
3	$2.18 \pm .1$	-	$0^{0} \pm 2^{\circ}$	

Undulating Reflectors but no overall dip. Deep water record.

Table 5.2(j) S_{11} Results
S_{13}

Layer	Reflection		Refraction	
	$\begin{aligned} & \text { Velocity } \\ & \left(\mathrm{km} \mathrm{~s}^{-1}\right. \text {) } \end{aligned}$	Reflection Time (sec)	$\begin{aligned} & \text { Velocity } \\ & \left(\mathrm{km} \mathrm{~s}^{-1}\right) \end{aligned}$	Intercept (sec)
1	$1.478 \pm .01$	3.488		
2	$1.54 \pm .06$	3.64		
3	$4.84 \pm .1$	4.687		

Layer	Velocity $\left(\mathrm{km} \mathrm{s}^{-1}\right)$	Thickness km	Dip $\left.\mathbf{o}^{\circ}\right)$
1	$1.478 \pm .01$	$2.578 \pm .03$	-
2	$2.16 \pm .06$	$.165 \pm .02$	$0^{\circ} \pm 3^{\circ}$
3	$4.84 \pm .1$	$1.13 \pm .05$	$0^{\circ} \pm 5^{\circ}$

No refractors noted. Deep water.

Table 5.2(k) S_{13} Résults

Layer	Velocity $\left(k \mathrm{~km} \mathrm{~s}^{-1}\right)$	Thickness km	Dip $\left({ }^{\circ}\right)$
1	$1.476 \pm .01$	$1.84 \pm .01$	-
2	$2.33 \pm .1$	$0.50 \pm .03$	$0^{\circ} \pm 2^{\circ}$
3	$2.52 \pm .05$	$0.42 \pm .03$	$0^{\circ} \pm 2^{\circ}$
4	$2.56 \pm .05$	$0.54 \pm .03$	$0^{\circ} \pm 2^{\circ}$
5	$6.49 \pm .1$		$0^{\circ} \pm 2^{\circ}$

Table 5.2 (1) S_{14} Results

$$
s_{15}
$$

| Layer | Velocity
 $\left(\mathrm{km} \mathrm{s}^{-1}\right)$ | Thickness
 km |
| :---: | :---: | :---: | | Dip |
| :---: |
| $\left.\mathbf{1}^{\circ}\right)$ |

No refractors present.

Table $5.2(\mathrm{~m}) \quad S_{15}$ Results

$$
s_{17}
$$

Layer	Reflection		Refraction	
	$\begin{aligned} & \text { Velocity } \\ & \left(\mathrm{km} \mathrm{~s}^{-1}\right) \end{aligned}$	Reflection Time (sec)	Velocity $\left(\mathrm{km} \mathrm{~s}^{-1}\right)$	Intercept (sec)
1	$1.475 \pm .01$	0.25		
2	$1.616 \pm .07$	0.43		
3	$1.950 \pm .09$	0.85	$1.96 \pm .05$. 46
4			$2.44 \pm .05$. 84

	Velocity $\left(\mathrm{km} \mathrm{s}^{-1}\right)$	Thickness km	Dip Layer
1	$1.475 \pm .01$	$0.187 \pm .01$	-
2	$1.616 \pm .07$	$0.41 \pm .03$	$0^{0 \pm \pm 2^{\circ}}$
3	$1.96 \pm .05$	$0.42 \pm .03$	$0^{0} \pm 3^{0}$
4	$2.44 \pm .05$		$0^{0} \pm 2^{0}$

Table 5.2(n) S 17 Results
s_{18}

	Reflection		Refraction	
Layer	Velocity $\left(\mathrm{km} \mathrm{~s}^{-1}\right)$	Reflection Time (sec)	$\begin{aligned} & \text { Velocity } \\ & \left(\mathrm{km} \mathrm{~s}^{-1}\right) \end{aligned}$	Intercept (sec)
1	$1.482 \pm .01$	0.76		
2	$1.980 \pm .05$	1.06		
3	$2.31 \pm .08$	1.67		

	Velocity $\left(\mathrm{km} \mathrm{s}^{-1}\right)$	Thickness km	Dip (0)
1	$1.482 \pm .01$	$1.13 \pm .01$	-
2	$1.98 \pm .05$	$0.30 \pm .03$	$0^{0} \pm 3^{0}$
3	$2.31 \pm .05$	$0.70 \pm .04$	$0^{0} \pm 4^{0}$

No refractors present.

Table 5.2(p) S ${ }_{18}$ Results

Layer	Velocity $\left(\mathrm{km} \mathrm{s}^{-1}\right)$	Thickness km	Dip (')
1	$1.495 \pm .01$	$1.18 \pm .01$	-
2	$2.22 \pm .07$	$1.60 \pm .05$	$0^{0} \pm 3^{0}$
3	$3.09 \pm .1$		$0^{\circ} \pm 1.5^{\circ}$

Table 5.2(q) S $74 / 1$ Results

	Reflection		Refraction	
Layer	Velocity $\left(\mathrm{km} \mathrm{~s}^{-1}\right)$	Reflection Tine (sec)	Velocity $\left(\mathrm{km} \mathrm{~s}^{-1}\right)$	Intercept (sec)
1	$1.497 \pm .01$	1.672		
2	$2.10 \pm .05$	2.24		
3			$3.31 \pm .05$	2.93

	Velocity $\left(\mathrm{km} \mathrm{s}^{-1}\right)$	Thickness km	Dip (0)
1	$1.497 \pm .01$	$1.25 \pm .01$	-
2	$2.10 \pm .05$	$0.6 \pm .03$	$0^{\circ} \pm 3^{\circ}$
3	$3.31 \pm .05$	-	$0^{\circ} \pm 2^{\circ}$

Deep water.

Table 5.2(r) S $74 / 2$ Results

Experimental Results

The experimental results discussed here, were obtained using the Modular One computer and the amplitude analysis programmes desoribed in the previous ohapter.

Initial trials on several sonobuoy records revealed that the problem of determining the peak amplitude arrival time of a given reflecting horison was not quite as straight forward as might be imagined. It was thought that the primary reflection from the sea bed itself would give the highest reflection amplitude, as this boundary represents the greatest change in acoustic impedance present (Ref. 5.1), and that a detailed investigation into the behaviour of the amplitude of this arrival for inoreasing angles of incidence would indicate whether the theoretical predictions would be borne out by the practical results.

An examination of Table 5.3 and Fig. 5.2 shows that the matter is not quite so simple. The table lists the arrival time (in' milliseconds) and amplitude of the peak signal for the entire detectable range of sonobuoy run, S2. The figure in oolumn three is the shot number and is related to ship-buoy separation as explained previously.

As expeoted, at very close ranges, the direct wave is the largest arrival and for a short interval, subsequently, a bottom reflection predominates. The pioture, however, becomes more random in character beyond this area, which corresponds to an approximate separation of 2 km , and is hence, well within the limit of disoernible arrivals.
 the arrivens (Fig. 5.3). 留昏e-5.4 showithe jet pen redota of a sample of return
 first and :

735	602	1	Diw
456	$\pm \pm 9$	7.	
543	229	2	
$\therefore 44$	337	4	
427	$\because 35$	5	
$44 ?$	4 21	ϵ	
501	$\because 91$	7	
<57	c． 14	？	
㣍	1．12．	ζ	
445	\because 年	10	
460	$2+?$	11	
472	？ 4	17	
401	$3: ?$	$1 ?$	
$\therefore 1$	243	14	
56	$3: 3$	15	
」とが	\％	$1+$	
	$\therefore \vdots$ ，	1.7	
	\because ．	13	
Sp 7		13	
345	． 249	20	
37：	c： 7	61	
j $6<$	$\because こ$	＜	
401	2：3	22	
37\％	－¢	$?$	
4 C6	$\because:$	こ＇，	
34\％	$\therefore \%$	2 c	
2	？－¢	21	
32\％	38	$2 *$	
4 Cl	15	25	
． 1 ：	$1 \quad 1$	－	
$\therefore \because$	$\because \because$	$\because 1$	
\therefore ：	$\therefore:=$	：	
31.4	\therefore	？	
$28:$	$\therefore \therefore$	34	
4.75	$1: 4$	こ「	
$\therefore 1 \div$	－ $2=$	2 r	－
$4{ }^{1}$	C？	27	
$36:$	$\because 7$	T：	
－5．	$\because ; 1$	$3 ;$	
1f7	7：	40	
467	$\therefore 5$	41	
$\therefore 9$	\therefore ：	$4 ?$	
\therefore ；		$\cdots!$	
， $1:$	\therefore ：	14	
		45	
$\therefore 87$	1． 1	4i	
ら边	$\therefore .4$	4.7	
－44	i ！ 3	42.	
		4 C	
¢5c	い？	$\because 6$	
$3 \mathrm{~S}_{4}$	¢，$: 7$	＇1	
$\because r i$	$4 \cdot 9$	－	
＂：	＇\because	r ：	
$\therefore: ~!~, ~$	$\because \cdot \therefore$	！	
$\because 1 \%$	$\cdot 7 \%$	！	
	$\therefore 71$	：	
$\therefore 1$	；；；	：$:$	
$34 t$	i． 7.3	$\because!$	
$\vdots(1)$	67	re；	
S\％	．．4＇1	＋ 6	

Table 5．3 Amplitude，Arrival Time，Shot Number（S2）．

3 cr	4：	e：		407	：$=1$	$1!$
44i	$\therefore ?$	\because		315	－！	1\％
501	$\therefore:$	c：		3 E ！	：$=1$	13
4,47	4 A \％	t． 4		3¢2	－¢！	1.4
9：	$\therefore \because$	\％		434	$\therefore:$	$12=$
¢ 7	$4 \therefore$	fr		4 Cb	：－－	12 ．
5 CS	4： 5	4－7		507	－7	12
427	\therefore	θ		\％Sc	\because	$1 \because$
${ }^{2} \mathrm{c} 7$	＇	\％		4 c	$\because:$	\cdots
46	，i ${ }_{\text {i }}$	7.		43	c．1	13 －
3：9	$\therefore i \%$	71		357	6， 7 ：	131
353	15：	$7:$		4．19	fe！	122
611	$1: .$.	7		357	cas	133
3 c	4．7：	$7{ }^{\circ}$		413	40	136
$\because \geq 1$	：1．	7		34 ？	7，	1．3．
352		7%		322	74	13
523	$6: \%$	77		3 C	7：	137
1.2	$\cdots \cdot{ }^{\text {．}}$	7		300	71.	13
$4 \cdot$	\cdots	．		\therefore ：		\cdots
－1：	r	\because		c＇	\cdots	14
¢¢ ¢ 3	$5 \therefore$	\bigcirc		443	$\because \because$	141
い8．	51：	$F ?$		27.3	$73:$	142
1.67	51%	93		305	724	163
E1\％	≤ 1.	$\because 2$		341	$7 ?$	1\％4
535	61.	85		282	$=7$ ．	14.
457	52 s	4－		252	$7 .$.	146
¢ 33	$5:$	： 7		3 Cl	711	147
1：37	¢ ${ }^{\text {\％}}$	$\therefore:$		245	\％：	14\％
522	ᄃ：	\therefore ：		$\therefore 71$	74	14.5
57	5：	¢c		245	7？	13：
54.1	5：	cI		235	$7 \div$	：31
652	$r:$	3？		¿Cs	7：	15
（\％	c．．．	$¢ ?$		157	7：－	153
537	5%	34		A 2	76	154
$\therefore c^{-}$	¢：	55		26.	7\％	155
ご家	¢ $\overline{\text { ¢ }}$	5		$1: 4$	777	180
550	$\because \because$	$\bigcirc 7$		\therefore ¢	7 ：	： 57
S¢5	5	5		4 C .1	17%	$1: 5$
523	$5 \leq 7$	4%		139	75：－	15c
64	85	i．		$\therefore 13$	$3 \div$	1%
365	ri＇	\therefore ：		נic	$5:$	1 －1
54.	57%	10		164	F1：	1.62
5 C 0	$5: \%$	163		1 C	$5: \%$	163
1， 3	$5:$ ．	： 4		185	$\pm:$	$1 \% 4$
6.3	：$:$	06		120	E；	$1: 5$
ecs	124	16	－	173	F？	！\cdot ¢
$\therefore c_{0}$	5%	； 97		$1+1$	g2	1 \because
－50	5 sc	16		$1<1$	\＆	16
434	AC：	1cs		－ i f 6	F2：	le 6
519	$6:$	i）		$2 \geq 7$	2：？	179
\％．C．6	Cく：	111		248	12：	1.71
483	$41:$	112		251	4%	17%
118	6：7	：13		20．		i\％
6 3	$61:$	11：		$1 \cdot 3$	¢：	174
5.3	1：	：15：		，？\％	「 \quad \％	175
$\bigcirc \mathrm{St} 4$	627	116	－	201	q3：	176
482	t？ 2	117		2 （8）	fil	177
4．4：3	¢． 34	11°		1 C 4	¢17	178
45.7	$6:$	1.10		259	F71	175
446	6.42	120		150	\＆${ }^{\text {d }}$	1 EC

Table 5．3 Amplitude，Arrival Time，Shot Nunber（S2）．

Table 5.3 Amplitude, Arrival Time, Shot Number (S2)

shot 5 Nand

SHOT 32

reflection arrival is being examined for each shot.
Four consecutive shots are given in Fig. 5.5 and even this apparently coherent set of returns, which show good agreement as to arrival time, display a large amount of amplitude variation. The separation between each shot is of the order of 80 m , which should not be surficient to produce this degree of scatter assuming that inhomogeneities of suoh a small nature are not 11 kely to be present in the sea floor surface.

The arrival time/amplitude/distance relationships for all the other sonobuoy runs were examined similarly, and it was found that this problem was not limited to this particular sonobuoy run. Examples are given in Fig. 5.7, 5.8 and 5.9.

Several complete shots were played out to the jet pen system described earlier, a laborious task since the disc file used to capture the amplitude data in the Modular One was only capable of storing 3.5 seconds of record at one time, given the high digitisation rate necessary to give the requisite resolution for this work (Appendix 3).

A close inspection of this jet pen output revealed that the records, in general, are subject to short ($30-80 \mathrm{msec}$) bursts of (Fig. 5.6) noise, which saturate or nearly saturate, the Modular One analogue input are responsible for some of the scatter in the peak amplitude arrival times and levels and it is thought that they may have emanated from the steering gear of the ship used for the survey, the R.R.S. "Shackleton", and be radio frequency (R.F.) interference breaking through on the carrier frequency of the F.M. link from sonobuoy to ship. This phenomenon was apparent on all the records examined.

A more detailed analysis of the signal was undertaken, the window of record examined for each shot being calculated as that section of the record in which the bottom arrival was expected to ocour, from simple geonetric ray theory (Ref. 5.2). By utilising a

Fig. 5.7 Sl Arrival Time vs. Distance

Fig. 5.9 Sll Amplitude vs. Distance
short window length and incorporating several windows per shot, a teletyped output of the relevant section of the arrival was obtained. This proved to be an extremely long and time consuming prooess, the actual computer operation being accomplished fairly rapidly, but the mechanical limitation of the teletype itself, at 10 characters/ second, greatly slowing down the data output, an example of which is given in table 5.4. A further drawback to this process of detailed investigation was the fact that only a limited number of shots could be examined with a given window, the arrival of interest moving beyond the group of windows chosen initially, within the space of five or ten shots. It was not possible to write the window lengths and window positions into an incrementing to-loop' beouuse of a software limitation on the number of data location statements and nesting levels which could oocur in any one programme. This necessitated the repeated termination and re-starting of the replay programmes to enable the entire range of arrival times to be encompassed.

Fig. 5.10 shows the result of one such examination. The arrival time/distance plot is better than the equivalent 'all-record' result, but the amplitude/distance ourve (Fig. 5.11) still shows a distinctly scattered nature. Repeated investigations were made of the areas of the record where there was some doubt as to the validity of the correct identification of the arrival, in an effort to remove the anomalous variations.

In order to obtain these plots, it was necessary to go over and over each particular shot examining each sample almost individually, playing out small seotions of the record(s) to the jet pen system and printing out the numerical amplitudes time and time again, the nature of the arrival being so hard to follow.

This laborious technique provided dividends, and it can be seen from Fig. 5.10 that the same horizon is being investigated throughout the record and as its computed depth tallies with that given by the Precision Depth Recorder (P.D.R.) whilst the run was

14	2056	$6 ?$	14	411
17	P06！	69	17	$\Delta 19$
15	2066	67 －	15	413
34	2075	$6 ?$	39	415
45	5176	$6 ?$	45	415
46	2031	6？－	46	416
37	？0ヶ6．	$6 ?$	37	417
80	2091	$62-$	91	413
29	9090	$6 ?$	27	400
4：4	2105	$6 ?$	4.1	く91
4.5	¢109	$6 ?$	4：5	ぐワ
30	2114	$6 ?$	80	A93
P1	2110	69	91	くッぐ
20	2100	62	$\because 0$	49月
34	P1Pt	＊－	34	455
24	21.38	FP－	20	496
21	91.37	69	21	427
20	2141	6.9	29	424
22	9146	$6{ }^{2}$		a¢0
29	9त05	6 ？	29	$4 \cap 1$
26	9010	$6: 3$	Pe	40%
27	2015	63	27	403
$2 ?$	2016	63	9%	403
90	9093	63	20	405
12	2097	$63-$	19	403
39	2030	63	． 38	40%
73	2038	\＆ 3	54	＜09
96	904．3	$63-$	2e	419
35	9043	¢3－	33	\＆10
47	2053	63	47	411
93	9053	$63-$	9	4．1．
97	2065	63	97	413
$3 ?$	206t	63	39	413
3 x	2071	$\theta 3$	$3 \times$	$\angle 1 \angle$
47	F076	63	4吅	415
？1	909	63	21	416
20	9089	63－	20	419
93	P040	63	94	413
13	8097	63	$1{ }^{\text {a }}$	490
？ 1	2105	63	P 0	$4 y^{4}$
41	9107	6.3	41	$4 ¢ 1$
70	P11？	63	30	4\％？
$4 ?$	2116	63	40	49
$4 ?$	F19\％	6.3	48	492
26	2190	63	Cf	A＇6
35	21.34	63 －	3.3	497
46	$\because 134$	$6: 3$	46	＜69
67	2114	$63-$	6．	49
67	2140	63	47	$4: 0$
$\|A m p\|$	Time	Shot No．	True Amp	Window No．

Table 5．4 Fxtended Analyais

Fig. 5.10 S1 Arrival Time/Distance

Fig. 5.11 Sl Amplitude/Distance
being made, it is certain that it is indeed the bottom reflection that is being considered.

The amplitude/distance plot is also an improvement but still shows considerable variation and in an effort to smooth these out the curve fitting techniques discussed in Chapter IV were applied to the data points.

These routines calculate the best fit of a polynomial of specified maximum degree to the given data points, using either a least squares or cubio spline method. A weighting factor is allocated to each data point and in the first instance all those amplitude values which were olearly incorrect were given a weighting of zero. An example of the output from one such fit, RAT + *NAG (Appendix 1), is given below.

Table 5.5

Curve-Fitting Output for Sonobuoys S3 - All Record

Coefficient ${ }^{\text {a }}$	Error
$0.246813 D 03$	0.223967006
-0.512474D 03	0.216590D 06
$0.134282 D 04$	0.558046D 05
-0.9542510 03	$0.434825 D 05$
0.343339 D 03	0.394150D 05
-0.640666D 02	0.353928 D 05
0.582796 D 01	0.352825005
-0.204074D 00	0.350956 D 05

*The numbers in the first column are the coefficients, a_{i}, in the expression

$$
y=\sum_{i=0}^{n} a_{i} x^{i}
$$

A plot of the output produced from this data by the curve generation routine, GFN (Appendix 1) is given in Fig. 5.12.

Clearly the errors involved in this fit to the amplitude ourve

are unacceptable, and once it had been established that this was not confined to this particular sonobuoy run, it was decided to attempt a re-fit of the data by instruoting the ourve fitting programme to weigh other erroneous amplitude points with a zero value, and also to restrict the range of returns to within 8 km of the ship to improve the aignal to noise ratio.

Fig. 5.13 shows the amplitude/distance curve to be fitted and Fig. 5.14 the output from the generation programme, including 15 'bad' shots, which have been assigned zero weights in the fitting procedure. Table 5.6 gives the errors.

Tab7e 5.6

Gurve-Fitting Output - S3 15/87 Shots

Coefficient	Error
0.146842 D 03	$0.235336 \mathrm{D} \mathrm{O4}$
0.139719 D 03	0.226152 D 04
0.228739 D 03	0.683976 D 03
-0.144930 D 03	0.548240 D 03
0.476507 D 02	0.524916 D 03
-0.739646 D 01	0.491260 D 03
0.404795 D 00	0.489284 D 03

In this instance the generated curve follows the input curve quite well, to the eye, but the error bar shown on Fig. 5.14 indicates the amount of scatter present in the input data. For a peak reading of approximately 1500 amplitude units ($\mathrm{mV}-\mathrm{km}^{2}$), an error of ± 500 is totally unacceptable.

As a cheok to ensure that the curve fitting (RAT + *NAG) and generating programmes (GEN) were funotioning correctly, a test was made using a known polynomial expression and the results displayed graphically in Fig. 5.15 and Fig. 5.16.

Fig. 5.17 and 5.18 show the detailed arrival time/distance

Fig. 5.13 S3 Bottom Reflection Amplitude

Fig. 5.14 S3 Bottom Refleotion..(Fitted Curve)

Fige 5.17 S2.Arrival Time

Fig. 5.18 S2 Bottom Reflection Amplitude
and amplitude/distance curves derived from sonobuoy run S 2 by the methods described above. Fig. 5.19 depiots the output from GEN for 20 'bad' shots, while table 5.7, the errors produced by this fit. Table 5.7

Gurve-Fitting Output - S2 20/109 Shots

Coefficient	Error
0.488454 D 03	0.24225604
0.103438 D 04	0.230565D 04
-0.154229D 04	0.128955 D 04
$0.969357 D$	0.924444 D 03
-0.281216D 03	$0.867053 D 03$
0.410683002	0.855402 D 03
-0.2933410 01	0.794388 D 03
0.813374000	0.685829D 03

Again, it can be seen that the error of fit at ± 680 in 1500 a.u. represents a minimum percentage error of 90% whioh is not very good.

Fig. 5.20 shows the expected amplitude variation with density ratio for a typical water/unconsolidated sediment reflection as calculated according to the theory developed in Chapter III. A change in lower medium density from 1.00 to 3.00 corresponds to a percentage ohange in peak amplitude of 56% which is considerably less than the error in the fitted curve, so that it is unlikely that any meaningful information on density variation could be obtained from this analytic method.

At this point, the sonobuoy runs examined in detail above were re-investigated attention being paid to the second and third positive peaks in the bottom reflection arrival, instead of the first positive peak used above. These secondary peaks are of slightly smaller amplitude than the initial peak and correspond to the airgun
I

Fig. 5.20 Theoretical Amplitude Variation with Density
signature or bubble pulse oscillation of the acoustic souroe. Detailed printouts of the amplitudes of these peaks were laboriously obtained as before but a preliminary analysis indicated that they were no more consistent than the original.

Acoustic Basement Investigation

Although this initial investigation had proved unsuccessful, the entire prooedure was repeated on reflections from the aooustio basement. The techniques employed for this examination are identioal to those used previously, except that an effective water depth is calculated to allow for the passage of the sound wave through the upper sediment layers, as discussed in Chapter IV. Given that the signal level was somewhat lower than in the bottom reflection case, the wide angle refleotions were even harder to disoern.

Fig. 5.21 and 5.22 show the arrival time/ distance and amplitude/ distance ourves obtained for the basement arrival for sonobuoy run, S2. Fig. 5.21 indicates that the same horizon is being exemined throughout the reoord, whilst the amplitude plot displays considerable variation.

Fig. 5.23 shows the genersted plot from the ourve fitting output given in Table 5.8.

Table 5.8
Currépitting Output - S2 Basement

Cooffioient	Error
0.138160 D 04	0.224691006
-0.924186 D 03	0.160043 D 06
0.282325 D 03	0.137366 D 06
-0.167946 D 02	0.953289 D 05

It is clear that this 'fit' is of even worse quality than those obtained for the bottom reflections.

Fig. 5.21 S2 Basement Arrival Time

Fig. 5.24 gives the fitted curve with ten 'bad' shot weighted to zero, but whilst this is an improvement over the previous case, the errors arising from this fit are still of the order of ${ }^{+} 10^{3}$ a.u. which renders the fit meaningless, as far as density identification is concerned.

The theoretical amplitude ourves, shown in Fig. 5.20, were generated using the computer programme, FINAL, (Appendix 1) incorporating the acoustic velocities obtained from the wide angle refraction and reflection programmes discussed previously. The data input for the programme consists of the P and S velocities for the two media (Ref. 5.3) together with the appropriate densities (Ref. 5.4). Assuming an upper water layer of known density, a family of curves is obtained for a given input frequency band, for different density contrasts, and it was hoped that an estimate of the correct density value for the lower medium could be obtained by use of a multidimensional pattern recognition rechnique (Ref. 5.5).

In this process the Cartesian co-ordinates of the entire family of curves are input to the computer and then compared, point by point, with the co-ordinates of the experimental curve, using a least squares fit. That theoretical ourve which matches the experimental at the greatest number of data points, or dimensions, is taken to be the most similar to the latter and hence is the curve with the closest approximation to the correct density.

The spread of a family of curves for the expected range of density ratios (Ref. 5.6), is unfortunately, as mentioned above, less than the error estimates for the fitted curves, and thus these could not be used in this pattern recognition procedure. Attempts to use the raw data itself were similarly unsuccessful.

It was not anticipated that the frequency dependent oscillations in the supercritical region would be observed, as one is examining a window of frequencies ($5-50 \mathrm{~Hz}$), over which one would

expect this feature to be averaged out, but it was hoped that the subcritical curve shape and the position of the amplitude maximum would be seen. As this was not so, it was decided not to undertake the extremely time consuming and laborious process of analyaing further sonobuoy records using these techniques.

Programme Check

As a check to test that the theoretical curves themselves were valid, a model of the continental orust in the Bavarian Molasse basin (Ref. $5.7,5.8$), was used to generate a theoretical amplitude curve. The actual crustal model is simewhat complicated, involving a differentiated gradient zone at the transition between crust and mantle, (Ref. 5.9), and this was simplified to the model shown in Fig. 5.25 to enable FINAL to be used by introducing a space varying velocity function. The results are shown in Fig. 5.25, and it can be seen that whilst the curve is not exactly correct it behaves in a reasonable manner, indicating that the theory does provide a valid result. The curve presented is the mean curve for frequencies between 10 and 15 Hz , following Meissner (Ref. 5.10), in which the arrivals between 9 and 17 Hz are those which are least affeoted by multiple and ghost events.

Amplitude

Fig. 5.25 Crustal Amplitude Model (after Meissner, 1967)

In order to improve the quality of seismic records, by removing unwanted multiple reverberations and bubble pulse osoillations, it is conventional to deconvolve the records with functions representing these unwanted signals (Ref. 5.11).

Due to the nature of the wide angle reflection standard deconvolution operators are not applicable in that the path length of the shot and hence the shape of the inoident waveform vary with increasing separation of ship and sonobuoy, so that a time varying deconvolution method must be sought (Ref. 5.12).

An attempt was made to use a continuously adaptive linear prediotion operator in which the operator coefficients are updated using a simple adaptive algorithm. New values for the coefficients are compared for each sample of data so as to minimise the mean square errors, following Griffith's method (Ref. 5.13). This method differs from the time varying deconvolution techniques used by Wang and others (Ref. 5.14), in which autocorrelation estimates of the data are calculated, in order to solve a set of normal equations to determine the coefficients of the deconvolution operator which is, in turn, applied to the data to obtain the deconvolved output.

Griffiths' extension of Wiener filtering has proved successful in its application to conventional marine refleotion data, where the removal of multiple arrivals is excellent, but when his programme was applied to the data here, it was unsatisfactory, the portion of the programme designed to remove multiples of the refraction arrivals 2]. 80 removing the wide angle events (Ref. 5.15).

If the problem, howerer, is treated using 'Cepstrum' anelysis techniques (Ref. 5.16), this particular limitation does not occur. Consider the oomplex natural logarithm of the amplitude and phase spectra, $\log \left[A(w) e^{i \phi(w)}\right]$ as a complex time series and take the inverse Pourier transform of this series to produce the complex oepstrum (Ref. 5.17, 5.18).

Deconvolution in the time domain becomes subtraction in the complex oepstrum and so time varying deconvolution becomes muoh easier to implement.

Following the work by Stoffa, Buhl et al (Ref. 5.19), a preliminary study was made to see if their homomorphic deconvolution techniques would be applicable to the problem encountered here. Only one shot was analysed and the deconvolved output from Stoffa's programme is shown in Fig. 5.26. The reflecting horizons present in the record can be seen more clearly than in the original.

By varying the period for whioh the complex cepstrum oontributions are set to zero in performing the deconvolution, it is possible to look at the reflection of different frequenoy bands whthin the original waveform, and it can be seen from Fig. 5.27 that there is an apparent shift in the reflection position of the higher frequency portion of the signal. The two traces in Fig. 5.27 correspond to inoident frequency bands of $(5-25) \mathrm{Hz}$ and $(30-50) \mathrm{Hz}$.

Input waveform

Deconvolved waveform
(corresponding to all. cepstrum contributions $-T \leqslant 18 \leqslant T$, being set to zero).

Amplitude

Fig. 5.27 Detailed Deconvolution - Shot 56. S2

Discussion

The major question to be oonsidered is the cause of the failure to obtain correlation between the predicted and practical results. The problem arises in the actual recorded amplitude, the arrival time plots given in the preceeding section indicating that the same reflecting horizon is being examined.

When one considers the physical processes involved in obtaining the record, the following possible sources of error come to mind. i) Hydrophone

A ahange in the ambient noise level due to aperiodio wave motion/current noise might influence the record.

By examining, at some length, the recorded portion of the tape prior to any seismic arrivals for several sonobuoy runs, at varying separations in different depths of water, it was decided that the variation in mean noise level was not sufficient, within one run, to explain the extremes of amplitude variation present in the peak amplitude arrival.
ii) Variations in Airgun Intensity

This was considered as the airgun/compressor system on board the R.R.S. "Shackieton" was subject to periodic venting, but the time interval between successive vents was of the order of $15-20$ minutes which would hardly manifest itself on the records examined. An examination of the direct wave from the airgun at close range for three sonobuoy runs indicated that the signal emanating from the airgun was of extreme regularity both in frequenay content and amplitude.

iii) Prequency Demodulation/Tape

The question of the F.M. demodulator misindexing and giving rise to spurious results was considered but rejeoted as this would result in the loss of the record during the period of misindexing. The tape deck used was also used for recording a contimuous reflection profile simultaneously with the wide angle record and a brief analysis
of the normal incidence reflection amplitude did not reveal variations coincident with the wide angle measurements, thus indicating there were no tape 'drop-outs' or irregularities responsible for a loss of signal strength.

iv) Digitisation

The idea that aliasing of some description was responsible occurred, but the signals having been digitized at 500 Hz , had been passed through an 80 Hz low pass filter which was some 81 dB down to 125 Hz , before being written onto digital tape. The signals were also band pass filtered ($5-50 \mathrm{~Hz}$) before analysis, (Appendix 3).
v) Superposition

Returning to Fig. 5.4 and 5.5, showing the bottom reflection for consecutive shots and referring to Fig. 5.27, it is apparent from these plots that the wave group as a whole is moving along the time axis of the plot, and it can be seen that different peaks within the bottom refleotion wavelet are displaced by varying amounts, so that enhanoement and cancellation between the various peaks is occurring.

Fig. 5.27 demonstrates that the higher frequenoy portion of the waveform is being refleoted at a different time to the lower frequencies i.e. the lower frequency oomponents are being reflected at a slightly lower point in the medium than the higher frequencies, and hence have a alightly different time of travel. The reason for this differential reflection, well known in echo-sounding studies (Ref. 5.20), is that the typioally water saturated unconsolidated sediments that constitute the uppermost layers of the ocean floor are little more than colloidal suspensions, whose suspended particle size increases with depth, thus resulting in the higher frequenoies being reflected 'above' the lower frequencies (Ref. 5.21).

Thus it is conoeivable that this relatively microscopio phenomenon, which is possibly subject to lateral variations, of short wavelengths in comparison to the range covered by successive
wide angle refleotions, due to differing bottom current levels, turbidity, temperature and particle size could cause this superposition. During the course of one sonobuoy run over what is macroscopically homogeneous sediment according to the continuous reflection profile, these variations could effeot the wide angle reflections in the manner observed, Those reflections from the acoustic basement would pass through suoh small scale inhomogeneities and would be similarly subject to these frequency selective phase shifts.
vi) Interference

Another possible cause of this wide variation in amplitude return level may be disoerned by examining Fig. 5.5 and 5.26, from which it seems that interference is occurring between different portions of the return leading to cancellation and enhancement of the signal which is obsouring the true amplitude.

This interference could be between the refleoted and refracted portions of the wave but as this would only be expected at certain water depths/velooity struotures and ship to sonobuoy separations, there must be some interference occurring between different reflections at almost all angles of incidence, oaused by the relatively long pulse length of the air gun in combination with the nature of the refleoting horizons themselves.

Conolusion

From this preliminary analysis of the dynamic properties of wide angle reflections it is obvious that no clear picture oan emerge from the simple amplitude investigation techniques developed here, as to the physical constitution of the reflecting horizons as was anticipated from the theoretioal analysis.

Amplitude information is being lost due to either superposition within the reflected waveform possibly produced by a non-linear effect in the uppermost sediment layers, or interference between different reflection and refraction arrivals in the return signal or perhaps a combination of the two. This is leading to such large variations in the measured amplitudes that no exact determination of the lower medium density was able to be made.

Recent developments in signal processing techniques may give better results by allowing amaller frequency bands to be investigated separately as illustrated briefly above, but it is unlikely that the arrangement used to collect the data in this case would be suitable, a shorter range system of higher resolution being probably required to allow either examination of the fine structure which may have been deteoted in this range of experiments or to enable the different pulses producing the interference effect noted above to be separated for detailed examination.

BIBLIOGRAPHY

1.1 Dobrin, M.B., (1960).
'Introduction to Geophysical Prospecting'.
Chapter II. MeGram Hill.
1.2 Grant, F.S., and West, G.F., (1968).
'Interpretation Theory in Applied Geophysics', 49-63
1.3 Sheriff, R.F., (1974).
'Seismic Detection of Hydrocarbons - The Underlying
Physical Principlea'.
OTC Reprints, 1, 637-660.
1.4 Schoenberger, M., and Mifsud, J.F., (1974).
'Hydrophone Streamer Noise'.
Geophys., 32, 781-794.
1.5 Ewing, J., and Fwing, H., (1961).
'A Telemetering Ocean Bottom Seismograph'.
J. Geoph. Res., 66, 3863-3877.
1.6 Tenz, G.M., (1962).
'Acoustic Ambient Noise in the Ocean : Spectra and Sources'.
J. Ac. Soc. Am., 34, 1936-1956.
1.7 Whitmarsh, R.B., (1967).
'Explosion Seismology on the Sea Bed'.
Unpublished Ph.D. Thesis, University of Cambridge.
1.8 Hamilton, F.L., Moore, D.G., Buffington, E.C., Sherrer, P.L., and Curray, J.R., (1974).
'Sediment Velocities from Sonobuoys - Bay of Bengal, Bering
Sea, Japan Sea and N. Pacific'.
J. Geophys., Res., 79, 2653.
1.9 Dobinson, A., (1971).
'The Development of a Marine Seismic Recording System'.
Pt I, unpubl. Ph.D. Thesis, University of Durham.
1.10 Berman, A., and Saur, A.J., (1960).
'Ambient Noise as a Function of Depth'.
J. Ac. Soc. Am., 32, 19.
1.11

Mayne, W.H., and Quay, R.G., (1970).
'Seismic Signatures of Air Guns'. presented at 2nd Annual Off. Teoh. Conf., Austin, Texas.
Cagniard, L., (1962).
'Reflection and Refraction of Progressive Seismic Waves'.
Trans. from French (Gantlier-Villars, Paris, 1939).
by E.A. Flinn and C.H. Dix.
MoGraw Hill, New York.
1.15 Rayleigh, Lord, (1885).
'On Waves Propagated along the Plane Surface of an Elastic Solid'.

Proc. London Math. Soc., 17, 4-11.
Lamb, M., (1904).
'On the Propagation of Tremors over the Surface of an Elastic Solid'.

Phil. Trans. Roy. Soc. London A, 203, 1-42.
1.17 Sommerfeld, A., (1909).
'Üer die Ausbreitung des Wellen in der Drahtlosen Telegraphie'.
Ann. Physik, 28, 665-736.
Smirnov, V., and Sobolev, S., (1933).
'On the Application of a New Method of Investigation of the
Elastic Vibrations in a Space with Axial Symmetry'.
Trudy Inst., Seism. Akad. Nauk. USSR., 29.
Spencer, T., (1960).
'The Method of Generalized Reflection and Transmission Coefficients'.

Pekeris, C.L., (1955).
'The Seismic Surface Pulse'.
Proc. Natl. Acad. Sci. U.S., 41, 469-80.
Petrashen, G.I., (1957).
'Materials for the Quantitative Investigation of the Dynamics of Seismic Waves'. Vol II.

Leningrad University Press, Leningrad.
Sherwood, J.W.C., (1958).
'Elastic Wave Propagation in a Semi-Infinite Solid Medium'.
Proc. Phys. Soc. (London), 11, 207-219.
Zoeppritis, K. (1919).
'Erabebenwellen VIII B, Uber Reflexion und, Durchgang
Seismischer Wellen durch Unstetigkeitsflachen'.
Gottinger Nachr., 1, 66-84.
Knott, C.G., (1899).
'Reflexion and Refraction of Elastic Waves, with
Seismological Applications'.
Phil. Mag. (London), 48 64-97.
Macclwane, J.B., (1936).
'Introduction to Theoretical Seismology, Part I,
Geodynemics'.
St. Louis University, St. Louis.
Muskat, M., and Meres, M.W., (1940).
'Refleotion and Transmission Coeffioients for Plane Waves
in Elastic Media'.
Geophys., 5, 115-148.
Love, A., (1944).
'A Treatise on the Mathematioal Theory of Elasticity'.
Dover, New York.
Gutenberg, B., (1944).
'Energy Ratio of Reflected and Refracted Seismic Waves'.
Bull. Seism. Soc. Am., 34, 85-102.
1.29 Richter, C.F., (1958).
'Elementary Seismology'. W. H. Preeman, San Francisco.

1. 30 MaGamy, K., Meyer, R.P., and Smith, T.J., (1962).
'Generally Applicable Solutions of Zoepprite Amplitude Equations'.

Bull. Seism. Soc. Am., 52, 923-955.
1.31 Koefoed, 0., (1962).
'Reflection and Transmission Goeffioients for Plane Longitudinal Incident Waves'.

Geoph. Prosp., 10, 304-351.
1.32 Costain, J.K., Cook, K.L., and Algermissen, S.T., (1963). 'Amplitude, Energy and Phase Angles of Plane SV Faves and Their Application to Earth Crustal Studies'. Bull. Seism. Soc. Am., 53,1039-1074.
1.33 Costain, J.K., Cook, K.L., and Algermissen, S.T., (1965). 'Corrigendum : Amplitude, Energy and Phase Angles of Plane SV Waves and Their Application to Earth Crustal Studies'. Bull. Seism. Soc. Am., 55, 567-575.
1.34 Tooley, R.D., Spencer, F.W., and Sagoci, H.F., (1965). 'Reflection and Transmission of Plane Compressional Waves'. Geophys., 30, 552-570.
1.35 Singh, S.J., Ben-Menahem, A., and Shimshoni, M., (1970). 'Comments on Papers by Costain et al. and MoCamy et al. on the Solutions of Zoepprite Amplitude Equations'.

Bull. Seism. Soc. Am., 60, 277-280.
1.36 O'Doherty, R.F., and Anstey, N.A., (1971).
'Reflections on Amplitudes'.
Geophys. Prosp., 12, 43)-458.
1.37 Cerveny, V., and Ravindra, R., (1971).
'Theory of Seismic Head Waves'.
U. of Toronto Press., Toronto.
1.38 Hales, A.I. and Roberts, J.L. (1974).
'The Zoeppritz Amplitude Equations : More Errors'.
Bull. Seism. Soc. Am., 64, 285.
1.39 Berry, M.J., and West, G.F., (1966).
'Reflected and Head Wave Amplitudes in a Medium of Several
Layers'.
The Earth Beneath the Continents, J.S. Steinhart and
T.J. Smith (Eds.), 464-81.

Geophysical Monograph 10, Am. Geophys. Union, Washington.
1.40 Brekhovskikh, L.M., (1949).
'Reflection and Refraction of Spherical Waves'.
Uspekhi Fiz. Nauk., 38, 1-42.
1.41 Cerveny, V., (1959).
'On the Reflection of Spherical Weves at a Plane
Interface with a Refractive Index Near to One'.
Studia Geoph. et Geod., 3, 1959, 116.

References

2.1 'P-27 Hydrophone Operation and Service Manual'. Mark Products, Houston, Texas.
2.2 Peacock, J.H., (1973).
'A Binary Ranging Analogue to Digital Converter'.
Int. Rep., University of Durham.

- Malmstadt, H.V., and Enke, C.G., (1969).
'Digital Electronics for Scientists'
MoGraw Hill, New York.
-- Webar, P.J., (1963).
'The Tape Recorder as an Instrumentation Device'
Ampex Corporation.
- Texas Instruments (1971).

Semiconductor Components, Data Book Two, Digital Integrated Circuits.

- Motorola (1972).

MCMOS Data Handbook.

- RGA (1971).
cos/mos IC's For Low Voltage Applications.
- Millman, J., and Taub, H., (1965).
'Pulse and Digital Cirouits'
McGraw Hill, New York.
-- Whitmarsh, R.B., (1970).
'An Ocean Bottom Pop-Up Seismic Recorder'.
Mar. Geophys. Res., 1, 91-98.
- Donnell, W.F., (1967).
'Bouroes of Error in a Seismic Digital Recording System'.
Geophys. Prosp., 15, 246-261.
-- Nagra IV Instruction Manual (1973).
Nagra Tape Recorders, Kudelski, S.A., Switzerland.

[^1]
References

3.1 Frank, F. and Von Mises, R. (1937).
'The Differential and Integral Equations of Mechanics and Physics', O.N.T.I., Chapter III.
3.2 Brekhovskikh, L.M. (1949).
'Reflection of Plane Waves from Layered Inhomogeneous Media'.
J. Tech. Physics (U.S.S.R.), 12, 1126.
3.3 Knott, C.G. (1899).
'Reflexion and Refraction of Elastic Waves with Seismological Applications'.

Phil. Mag. (5), 48.
3.4 Kolsky, H. (1963).
'Stress Waves in Solids'.
Dover, Chapter II.
3.5 Bullen, K.F. (1965).
'An Introduction to the Theory of Seismology'.
Cambridge University Press, Chapter II.
3.6 Macälwane, J.B. and Somon, F.W. (1936).
'Theoretical Seismology'
Chapter III. New York Wiley.
3.7 Bortfield, R. (1962).
'Refleotion and Refraction of Spherical Compressional Waves at Arbitrary Plane Interfaces'.

Geophys. Prosp. 10 p.517-531.
3.8 Birch, F. (1960).
'Velooities of Compressional Waves in Rooks'.
J. Geoph. Res. 65, 1083-1102.
3.9 Muskat, M. and Meres, M.W., (1940).
'Reflection and Transmission Coefficients for Plane Waves in Blastic Media'.

Geophysics, 5, 115.
3.10 Heelan, P.A., (1953).
'On the Theory of Head Waves'.
Geophysics, 18, 871.
3.11 Helmberger, D.V. (1968).
'Head Waves from the Mohorovicio Discontinuity'.
Bull. Seis. Soc. Am. 58, 179-214.
3.12 Weil, H. (1919).
'Analysis of Electromagnetic Waves Above a Conducting Layer'.
Ann. Physik 60, 481.
3.13 Papoulis, A., (1962).
'The Fourier Integral and its Applications'.
MoGraw Hill, Chapter IV.
3.14 Hsu, H.P. (1970).
'Fourier Analysis'.
Techoutlines, Simon and Schuster.
3.15 Gorshkov, N.F. (1957).
'The Propagation of Pulses in an Elastic Absorptive Medium'.
J. Acoust. Soc. J.S.S.R. 3, j.163-172.
3.16 Abramowitz, M., and Stegun, I.A., (1965).
'Handbook of Mathematical Funotions'.
National Bureau of Standards, Applied Mathematics Series.
3.17 Bland, D.R. (1964).
'Solutions of Laplace's Equation'.
Routledge and Keegan Paul.
3.18 Brekhovskikh, L.M. (1960).
'Waves in Layered Media'.
Academic Press, Chapter I.
3.19 Brekhorskikh, L.M. (1949).
'The Reflection and Refraction of Spherical Waves'.
Uspekhi Fiz. Nank. 38, 1.
3.20 Watson, G.N., (1949).
'Theory of Bessel Funotions'
3.21 Morse, P., and Peshbach, H., (1953).
'Methods of Theoretical Physics'.
MoGraw Hill, Chapter V.
3.22 Courant, R, and Hilbert, D., (1933).
'Methods of Mathematical Physics', Vol. I.
3.23 Kahan, T., and Eckart, G., (1949).
'A General Account of Asymtotic Expansion in Wave Propagation'.
Rev. Sci. Paris 87, 3.
3.24 Matthews, J., and Walker, D., (1970).
'Mathematical Methods of Physics'.
Benjamin Press. Chapter IV.
3.25 Smirnova, N.S., and Frmilova, N.I., (1959).
'On the Construction of Theoretical Seismograms in the
Neighbourhood of the Critical Point'.
Questions on the Dynamic Theory of the Spread of Seismic Waves.
III. Leningrad University.
3.26 Cerveny, V., (1957).
'On the Amplitudes of Refracted Waves'.
Studia Geophys. and Geod. 1, 256.
3.27 Brekhovskikh, L.M. (1960).
'Waves in Layered Media'.
Academio Press, Chapter III.
3.28 Brekhovakikh, L.M. (1960).
'Waves in Layered Media'.
Academic Press, Chapter IV.
3.29 Kreyszig, E. (1967).
'Advanced Engineering Mathematios'.
Wiley.

```
4.1 'Geospace', Variable Area Display Operating Manual.
Texas Instruments.
4.2 Le Piohon, X., Ewing, J., and Houte, R.E. (1968).
    'Deop Sea Sediment Velooity Determination Made While
Refleotion Profiling'.
J. Geoph. Res., 73, 2597-2614.
4.3 Matthews, D.J., (1939).
'Tables of the Velooity of Sound in Pure Water and Sea
Water'.
Hydr. Dept. Ad. London.
4.4 Maynard, G.L., Sutton, G.H., Hussong, D.M., and Kroonke, L.W. (1973).
    'The seismic Wide Angle Reflection Method in the Study
of Ocean Sediment Velocity Structure'.
Symp. on Physics of Sound in Marine Sediments, Austin,
Texas.
4.5 Houts, R.F., Ewing, J., and Le Pichon, X., (1968).
'Velocity of Deep Sea Sediments from Sonobuoy Data'.
J. Geoph. Res., 73, 2615-2641.
4.6 Bullen, K.E. (1965).
    'An Introduction to the Theory of Seismology'
    Chapter 6.
    Cambridge University Press.
4.7 D1x, C.H., (1955).
    'Seismic Velocities from Surface Measurements'.
    Geophys., 20, 68.
4.8 Clay, C.S., and Rona, P.A. (1965).
    'Studies of Seismic Reflections from Thin Layers on
    the Ocean Bottom, in the Western North Atlantio'.
    J. Geophys. Res., 70, 855.
```


References

5.1 Cole, B.F., (1965).
'Marine Sediment Attenuation and Ocean Bottom Reflected
Sound'.
J. Acoust. Soc. Am., 38, 291-297.
5.2 White, J.E., (1965).
'Seismic Waves, Prediction, Transmission and Attemuation'.
MoGraw Hill.
5.3 Birch, F., (1960).
'Velocities of Compressional Waves in Rocks'.
J. Geoph. Res., 65, 1083-1102.
5.4 Nafe, J.T., and Drake, C.L. (1963).
'Physical Properties of Marine Sediments; in"The Sea;
Vol III : M.N. Hill, Ed., New York, I.P., 794-815.
5.5 Corneil, D.G., and Gotlieb, C.C., (1970).
'An Efficient Algorithm for Graph Isomorphism'.
J. Ass. Comp. Maoh., 17, 51-64.
5.6 Hamilton, E.I., (1970).
'Sound Velocity and Related Properties of Marine Sediments, North Paoific : J. Geophys. Res., 75, 4423-4446.
5.7 The German Research Group for Explosion Seismology, (1966).
'Seismic Wide Angle Measurements'.
Geoph. Prosp., 14, 1-6.
5.8 Meissner, R., (1966).
'Interpretation of Wide Angle Measurements'.
Geoph. Prosp., 14, 7-16.
5.9 Meissner, R., (1967).
'Exploring Deep Interfaces by Selsmic Wide Angle
Measurements'.
Geoph. Prosp., 15, 598-617.
5.10. Meissiner, R., (1967).
'Zur Struktur der Erdkrust...'.
5.11 Robinson, E.A., (1967). 238
'Statistical Communication and Deteotion'.
Griffin. Chapter 7.

Griffiths, L.J., Smolka, F.R., and Trembly, L.D., (1977).
${ }^{i}$ Adaptive Deconvolution : A New Technique for Processing Time Varying Soismic Data'.

Geoph., 42, 742-759.
Bogert, B., Healey, M.J., and Tukey, J.W. (1963).
'The Quefrency Analysis of Time Series for Eohoes, Cepstrum, Pseudo Autocovarianoe, Cross-Cepstrum and Saphe Cracking'.

Proc. Symp. on Time Series Analysis, M. Rosenblatt, Ed.,
New York, wiley, 209-243.
Oppenheim, A.V., (1965). 'Superposition in a Class of Non-linear Systems'. Tech. Rep. 432., MIT, Res. Lab. of Eleotr.

Shafer, R.W., (1969).
'Fcho Removal by Discrete Generalised Linear Filtering'.
Teoh. Rep. 466, MIT, Res. Lab. of Electr.
Stoffa, P.L., Buhl, P., and Bryan, G.M., (1974).
'The Application of Homomorphic Deconvolution to Shallow Water
Marine Seismology. Parts I and II. Geoph., 39, 401-427.
5.20 Breaker, L.C., and Winokur, R.S., (1967).
'The Variability of Bottom Reflected Signals Using the Deep Research Vehicle, Alvin'.
U.S.N. Oceanogr. Of. IR, 67-92.
5.21 Breslau, L.R. (1967).
'The Normally Inoident Reflectivity of the Sea Floor at
12kc and its Correlation with Physical and Geological
Properties of Naturally Occurring Sediments.'
Woods Hole Oceanog. Inst. Ref. 67-16.

APPENDIXI

PLAMP

a) This programe calculates the plane wave amplitude as a function of the sine of angle of incidence (e_{0}).
b) This programme computes the value $\mathrm{Al}\left(\mathrm{e}_{0}\right)$ as a function of 0_{0}.
c) This programme computes $\mathrm{A} 2\left(\mathrm{e}_{0}\right)$ as a function of θ_{0}.


```
    1F:1(100),KANG(100), AVG(1,OO),YK2(100),
    2T0(100),T1(100),T2(10)),T3(100),T4(100),T5(10r),T&(12r),
    4xI(1\cap0).
    3T%(100),TS(100)
        RFAD(5,L) A1,A2, E1, 32,D1,D2
    1 FORMAT(1OF7.?)
    n=02/01.
    XH1=:1/131
    XN2=A2/H2
    FI I=A1/A?
    u=(\cap2*F2*is 2)/(ח1:81*31)
    URITE(6,3)
    3 FARMAT(' ','SINE OF ANELE',5X,'NMPLITHINE')
    OC 2 I=1,89
    AN(1)=1
    PA:C(I)=(ANG(I)=2-1416)/1BC.
    EO(1)=SIN(RARG(I)I)SIN(QamF(I))
    TO(I)=SORT(1-FO(I))
    TI(I)=SORT(XN1***1-EO(I!)
    T2(I)=S.2NT(XN.2*xA.2-E0(I))
    T31]}=F0(1)*{1!-1)
```



```
    1) +(T2(I)*(((XN1***'1)+(2.*T3(1)))**2))
        E1(1)=SI:(RANF(I))
```



```
    1))-(T2(I)*(I(X&1*x*il)+(2.*T?(1))|**?)
    RI2=RI*RI
    IF(EOII).GT.OI2) riE TO 4T
    T5(I)=SUPT(EI?-Er(I))
    T6(1)=(Xk2(I)+(x)2(I)*T5(I)|)
    x1(1)=1
    T7(1)=(XK1)1)+(X|1|{)*T5(I)))
    A@(II=Tb(I)/T7(I)
    gח TO 2
47 T5(1)=(EO(I)-F)2)
    TG(1)=S0RT(4ES(X+2(I)**2+(XL2(1)**2)*T5(1)))
    I7(1)=SDRT(AGSS(SK1(I)*** +(XLI(I)**2)*T5(I)))
    AO(I)=T6(1)/T7(I)
    2 continue
    HRITE(G,44) (EI(T),AO(I),I=1,90)
44 FORMNT(2F14.3)
    WRITE(6,45) F1
45 FOROAT(' ','REFRICTIVE IMOFX='F7.3)
```

```
C
```



```
            ANR pIOTS IT .
```



```
    5x(2049),Y(2048).
    3R1(0n),F?100).*?(00),011(90)
    OFAD(5,1) Vl,V2,A1,M2,\1.0?
    1 FORNAT(6Fi..2)
    &I=VI/V?
    XN1=V1/:31
    XN? = V2/4%.
    O= ח2.101
    |=0*((1:2/151)**!)
    n1= %-1.
    |1=U-1.
    חO 2 l=1,89
    ANC(I)=1
    p\DeltaAr:(1)=(\operatorname{cos(1)*?.1+150)/18.%.}
    E1(I)=S!\mp@code{fFarg(!))}
    E(1)=E111)**2
    T1(I)=5ckT(1-E(1))
    T2(J)=Sast((xn1**?)-1(1))
    T3(1)=502T((\lambdaN2**2)-F(I))
    T4(|)=2.*F(|)*11
    T5(])=({ {N|)*:2)*[1-14(1) )**?
    TS(1)=(0%(x,1**2)-T+(1) ) % % ?
    T7(I)=&(I)*T5(!)
    T8(1)=r1(1)*T2(T)*1*(!)
    TO(I)=T1(1)*T2(I)*\Gamma*(x\1*%4)
    xk1(I)=T?(I)+TR(I)+T尹(I)
    xK2(I)=(T&(I)+TM(I))-T7(I)
    S1(I)=F(1)*(1) #*2)
    S2(1)=((XN)*+2)+T4(I) )*:?
    S3(1)=4.*T1(1)*Tジ(1)=T3(1)*51(I)
    S4(1)=T2(1)*0*(XN1**4)
    S5(I)=T3(I)*S2(I)
    XLI(1)=S3(1)+S4(1)+55(i)
    RI2=01**2
    XL2(1)=53(1)-{54(1)+55(1))
    D.1(1)=(x<l(|)*xK\\:))
    D21I)=P12-E(I)
    R3(I)=(xL1(1)*XL2(:)*&2(I))
    R11(I)=(XL1(1):##2):22(1)
```



```
    2 CONTINUF
    WRITF(6,4り) F1, X1.1,X\\2,r
    X(I)=F1(1)
    Y(1)=A1(1)
    HRITF(6,44) (EI(1):AlII),I=1,80)
44 FORNATIIH,'SIHE RF ANGLE',FX,'A1IEOI',ITF14.3)
45 FIRNAT (IH ,'QFFPACTIVF INDFX=1F7.3/'N1I=AI/BII='F7.3
    1/'N2(=A2/EZ)='F7.2/'OENSITY PAT1B=9「7.3)
```


243

```
C PROG CALCIILATES AZIEOI AS A FUNGTION OF FO
AND PLOTS IT.
OIMENSION Al(100), A2(100), XKl(100), XK2(100),XL1(100), XI 2(100)
```



```
2ANG(90),RANG(90),E(90),El(90),S1(00),S2(90),S3(70),S4(00),S5(CO),
5x(2048), Y(2048),
```

 3R1(90),R2(90),R3(90),R11(90)
 READ(5,1) V1, V2, \(51,32, \mathrm{O}, \mathrm{D}\) ?
 1 FORMAT(6F7.2)
RI=V1/V2
$\mathrm{XNI}=\mathrm{V} 1 / 81$
$X N 2=V 2 / R 2$
$\mathrm{D}=\mathrm{O} 2 / \mathrm{D} 1$
$U=D *(\mid B 2 / B 1) * * 2)$
D1=0-1.
U1=1)-1.
กก $2 \mathrm{I}=1,89$
ANG(I) $=1$
RANG(I) $=(\operatorname{ANG}(I) * 3.14159) / 130$.
E1(I)=SIN(RANG(I))
E(I)=E1(I) \#*2
T1(I) $=\operatorname{SORT}(1-F(I))$
T2(I)=SQRT(\times N1**2)-E(I))
T3(I) $=$ SQRT ($\left.\left(X^{2}: 2 * * 2\right)-E(1)\right)$
T4(1)=2.*E(1)*U1

T6(I) $=(0 *($ XN $1 * * 2)-T 4(1) \mid * 2$
T7(I)=E(I)*TS(I)
$T 8(I)=T 1(I) * T 2(I) \neq T 6(I)$
$T 9(1)=T 1(1) * T 3(1) * D *(X N 1 * * 4)$
XK1(I)=T7(I)+T8(I)+T9(I)
XK2(I) $=(T B(I)+$ TG(I) $)-T 7(I)$
SI(I)=E(I)*(UL**?)
S2(I) $=($ (XN) $\% * 2)+$ T4(I) $) * * 2$
S3(I)=4.*T1(I)*T2(I)*T3(I)*S1(1)
S4(I)=T2(I)*D* (XNI \#*
$55(1)=T 3(1) * 52(1)$
XLI(1)=S.3(1)+S4(I)+S5(I)
RI2 $=$ RI $\$$ * 2
XL2(I) $=$ S3(I)-(S4(I) +S5(I))
R1(I)=\{XK2(I)*XL1(I))-(XK1(I)*XL2(I))
R2(I)=R12-E(I)
R3(1) $=(X L 1$ (I) $* * 2) * R 2(1)$
R11(I)=(1XK1(I)*ャ2)-R3(I)) $* T 1(I)$
A2(I)=?1(1)/E11(1)
2 CONTINUE
WRITE (6,45) RI © XN1, XN2,D
WRITE $(6,44)$
44 FRRMATI'SINE DF ANGLE', 5 X, ' AMPLITUDE')
WRITE(6,46) (EEI(I), A2(I),I =1,89)
46 FORMAT(2F14.3)

1/'N2(=A2/B2)='F7.2/DENSITY RATIO=IF7.31

ASSRPLN

This programme oomputes the reflected amplitude of an incident spherical wave according to the asymtotic approximation.

CIMENSICN ANG(SC),RANG(SO), XK1(SC), XK2(90), XLI(SO), XL2(SO), T1(90).
 20). S1 (9C), S2(90), S3(90), S4(S0), S5(90), S6(90), R1(90), R2\{90), R3(90), 3R4(90), 25(90),RG(9C), A(90), A1(9C), A2(90), $13(90), \times(2048), Y(2048), 8 F$

 6S0), 22(90), L3(50), 24(90), Z7(90), Z8(90), 29(90), W3(C0), W4 (90), XX1 (90 71, XX2(90), XX3(90), YY1190), YY2(90), XNU(90), CNU(90), SNU(90), ZZ1190),

 190), CC1(90), CC2(40). TITLE(201, AO(9才), RR1(90), SMU1(33)
[ATA RNU1/ 1.63.1.30.1.17.1.11,1.07,1.05,1.04.1.02.1.02.1.01,

CATA XMU1/ C.51,0.21,0.22,0.16,C.13,0.1C,0.09,0.07,0.06,0.05,
$10.04,0.03,0.03,0.03,0.02,0.02,0.02,0.02,0.01, \mathrm{C} .01 /$
CATA RMU2/ 16.3.8.15,5.26.4.07,3.26.2.72.2.61,2.04,1.81/
CATA XNUZ $5.10 .2 .55,1.70,1.28,1.02,0.85,0.73,0.64,0.57 /$

1C.64,0.79,0.74,0.76,0.81,0.84, C.86,0.58,0.90.0.91,0.92,0.93,

3C.98. $\because .99,7.99,1.99, \therefore .99,1.091$
CATA XSMU1/ 0.05,0.12,0.18.C.24.0.29.0.31,0.33.0.23,
$10.68,0.32,0.32,0.31,0.29,0.28, C .26,0.24,0.23,0.21, C .20$
$2,0.19,0.17,2.16,0.15,01,4,0.13, C .12,0.11,0.10,0.09,0.08$, $30.07,0.05,0.05,0.04,0.03,0.02,0.01, \mathrm{C} .001$
READ $(4,10)$ A
READ(5,1) V1, V2,R1,B2,D1,02
REAC(15,9) NMAX,IND,INK, (TITLE(1), I=1,IAK)
10 FERNAT(I5)
1 FORMAT (GF7.2)
9 FORMAT (317,10A4)
$R I=V 1 / V_{2}$
RI2=RI**2
$\mathrm{XNL}=\mathrm{VI} / \mathrm{El}$
XN2=V1/B2
C=C2/D1
$U=D *(182 / E 1) * * 2)$
$00=D-1$.
Ul=U-1.
FLAG=?:
WRITE(8,21) $N, V 1, V 2, B 1, E 2, D 1, D 2$,
1U,CD:U1,RI,RI2,XA1,XA2
21 FORMATII5,13F5.2)
C
CRITICAL POINT CALCULATIGN
T1C=SORT(1.-RI2)
T2C=SQRT ($(X N 1 * * 2)-R I 2)$
T3C=SORT((XN2**2)-RI2)
T4C=2*R12*し1
T5C $=\left(\left(X_{N} * * 2\right) * D D-T 4 C\right) * * 2$
T6C=10*(XN1**2)-T4C)**2
T7C $=$ R12*T5C
TRC=T1C*T2C*TGC
T9C=T1C*T3C*ก* (XN1**4)
$X K 1 C=T 7 C+T E C+T ร C$
$X K 2 C=(T 8 C+T 9 C)-T 7 C$
SIC=RI2*(Ul**?)
$S 2 C=(R 12+T 4 C) * * 2$
S3C=4.*T1C*T2C*T3C*S.1C
S4C $=$ T2C*D*(XN1**4)
S5C=T3C*S2C

```
            XL.1C=S3C+S4C+S5C
            XL2C=S3C-(S4C+S5C)
            R1C=(XK2C*XLIC)-(XK1C*XL2C)
            R2C=(XK1C**2)*T1C
            A2C=R1C/R2C
            74C= C.822*\Delta2C*SQRT(RI)*(1-RI2)
            25C= SORT(N*T1C)
            Z6C=SORT(25C)
            27C=2.4C/26C
            28C=(COS(3.14159/8.))*27C
            29C=(SIN(3.14159/B.) )*27C
            A1C= XK2C/XK1C
            h3C= (A1C-28C)**2
            K4C= SQRT(w3C+(29C**2))
            \DeltaC=T1C*W4C
            WRITE(6,1151 AC
            115 FORMAT(' ','CRITICAL ANPLITUDE='FIO.4)
            Ul=U-1.
            CO 2 I=1,8%
            ANG(1)=I
            RANG(I)=(ANE(I)*3.1416)/180.
            EI(I)=SIN(FANG(I))
            E(I)=EI(I)**2
            T1(1)=SQRT(1-E(I))
            12(1)=SQRT((XN1*#2)-E(I))
            IF(XN2.LT.EI(I))GO TO 130
            T3(1)=SORT((XN2**2)-E(1))
            T4(I)=2.*E(I)*UI
            T5(I)=((XN1**2)*DD-T41I))**2
            T6(I)=(D*(XN1**2)-T4(I))**2
            T7(I)=E(I)*T5\1)
            TB(I)=TI(I)*T2\I)*TEII)
            T9(I)=T1(I)*T3(I)*D*(XNI**4)
            XK1(I)=T7(I)+T8(I)+T9(I)
            XK2(I)=(T8(I)+T.9(I))-T7(I)
            S1(I)=E(I)*(U1**2)
            S2(I)=((X^1**2)+T4(I))**2
            S3(I)=4.*T1(I)*T2(I)*T3(I)*S1(I)
            S4(I)=T2(I)*0*(XN1**4)
            S5(I)=T3(I)*S2(I)
            XL1(I)=S3(I)+S4(I)+S5(I)
            XL2(I)=S3(I)-(S4(I)+S5(I)
            GO TO 131
                    FCR N2 LESS THAN El(I)
                    I.E. T3(I),TQ(I), XK1(I),XK2(I)
                    S3(I),S5(I),XLI(I),XLZ(I) CCMPLEX
            130 T3(I)=SQRT(E\I)-(XN2**2I)
            IF(FLAG.NE.O1 GO TC }13
            FLAG=ANG(1)
            133 CONTINUE
            T4(I)=2.*E(I)*UI
            T5(I)=((XN1**2)*DO-T4(I))**2
            T6(I)=(D*(XN1**2)-T4(I))**2
            T7(I)=E(I)*T5(I)
            T8(I)=T1(I)*T2(I)*TG(I)
            T9(I)=T1(I)*T3(I)*C*(XNI**4)
            XK1(I)=SQRT((TTII)+T8(I))**2+(T9(I)**2))
            XK2(I)=SQRT((TB&(I)-T.7(I))**2+(TG(I|**2))
            SI(I)=E(I)*(UI**2)
                    .S2(I)=({XN1**2)+T4(I))**2
```


247

```
C RESt df calc. coes not involve complex values.
```

C RESt df calc. coes not involve complex values.
131R1(I)=(xK1(1)*xK2(1))
R1(I)=(xK1(I)*XK2(I))
R2(I)=RI2-E(I)
R3(I)=(XL1(1)*XL2(I)*R2(1))
R4(I)=(XLI(I)**2)*R2(I)
Al(I)=(R1(I)-R3(I)I/I(XK1(I)**2)-R4(I)|
R5(I)=(XK2(I)*xL1(I))-(XK1(I)*xL2(I))
RG(I)=((XK1(I)**2)-(XL1)I)**2)*R2(I))*T1(I)
A2(I)= R5(I)/RG(I)
IF(RI2.IT.E(I)) GC TD 99
AOII)= AI(I)-(A2(I)*TIII)*SGRT(RI2-EIII))
GO TO 100
99 RRI(I)= E(I)-RI2
AO(1)= SQRT(A1(I)**2+(A2(I)**2)*RR1(I))
100 SI2=SQRT(1.-RI2)
W1(I)=SI2-T1(I)
C N IS THE FACTCR K(Z+ZO)
WRITE(8,24) (R1(I),P2(I),R3(I),F4(I),A1(I),R5(I)
1,R6(I),A2(I),AO(I),SI2I
24 FCRMAT(10F8.3)
k2(I)=SQRT(N/(2.*E(I)*TI(I)|)
EETA(I)=W2(I)*WIII)
BETA(I)=AZS(BETA(I))
IF(BETA(I).CE.2.C) GO TC 47
IF(beTA(I).LT.0.1) GO TC 48
IBETA(I)=(BETA(1)*1C.O+C.53)
J=IBETA(I)
RMU(I)=RMUI(J)
xMU(t)= xMUl(J)
CC TO 49
48 1BETA(I)=(BETA(I)*1C0.+0.531
J=IBETA(I)
RMU(I)=R4U2(J)
xMU(I)=XML2(J)
GO TO 49
47 RMU(I)=1.0
xMu(1)=0.c
49 IF(R12-E(I)) 111,2,113
113 A3(I)= A2(I)*TIII)*SGRTIRT2-E(I))
21(I)=(A3(I)*XMU(I))**2
22(I)= A3(I)*(RNUII)-1.1
z3(I)= AO(I)-22(I)
C AlI| CALC. ABOVE IS AMPLITUDE BEFORE C.P.
A(I)=T1(I)*(SQRT((23(I)**2)+21(I)I)
GO To 2
C beygno critical point
111 x \1(I)=E1(I)/TI(I)-RI/SQRT(I.-RI2)
x\times2(I)=(N*(1.-RI2)*RI*T1(I))/(E1|I)*2.)
Xx3(T)=SQRT(Xx2(I))
ETA(I)=x\times3(I)*x\times1(I)
IF(ETA(I).GE.2.60) GO T0 147
IETA(I)=(ETA(I)*10.0+0.53)
J=IETA(I)
SMU(I)=SMUI(J)

```

\section*{ASSRPRN}

This programme computes the head wave amplitude as given by the asymtotic approximation.

\section*{250}

OIMENSICN ANG(90), RANG(90), XK1(5)), XK2(90), XL1(90), XL2(90), T1(9:1,


 4 TA(90), IBETA(90), ETA(90), IFTA(90), RMU(90), XMU(90), SMU(GO), XSMU(: :) 5, RMUl(2)), XNU1 (29), XMU2(9), RM(12(9), XSNUL(38), W1(90), W2(90),?11

 82Z2(90), Z23(90),2Z4(90),725(90),2Z6(90),227(90),228(90),220(90), 130


DATA RMU1/ 1.63.1.30.1.17.1.11,1.07,1.C5,1.04.1.03.1.02.1.01. \(11.01,1.01,1.01 .1 .00,1.00,1.00,1.00,1.00,1.00,1.001\)
DATA XMLI/ i.51,r.31,r.22, \(. .16,9.13,0.10,0.08,0.07,0.06,0.05\), \(10.04,0.03,0.03,0.03,0.02,0.02,0.02,0.02,0.01,0.01 \%\)
CATA RMUZ/.16.3,8.15,5.26,4.07.3.26,2.72,2.61.2.C4,1.R1/
DATA XMU2/ 5.10,2.55,1.70.1.28.1.02,0.35,0.73.0.64,0.57/


20.94,0.55, С.96, C.96,0.96,0.97,0.77,0.57,0.98,0.98,0.98.
30.98,0.99,0.99,0.99,0.99,1.001

CATA XSMUI/ U. U5, ©.12, .. 13,0.24,0.28,0.31,0.33,0.33,
10.6 , 0. 32,0.32, C. 21, C. 25, 0.2A, C. 26, C. \(24,0.23,0.21,0.20\)

\(30.07,0.06,0.05,0.04,0.03,0.02,0.01,0.001\)
FEAC(4,10) N
PEAC(5,1) V1,V2,E1,P2,C1,02
10 FORMAT(I5)
1 FGRMAT(6F7.2)
\(R I=V 1 / V 2\)
R12=RI**2
\(X N 1=V 1 / E L\)
\(X N_{2}=V_{1 / R 2}\)
\(0=02 / 01\)
\(U=D *(1(E 2) B 1) * * 2)\)
D \(1=\mathrm{D}-1\) 。
U1=U-1.
FLAG=?
C
CRITICAL PDINT CALCULATICN
TIC=SQRT(1.-RI2)
T2C=SQRT( \((X N 1 * * 2)-R I 2)\)
T3C=SORT ( XN \(^{2 * * 2)-R 12) ~}\)
T4C \(=2\) *R 12 * 111
\(T 5 \mathrm{C}=(1 \times \mathrm{N} 1 * * 2) * \mathrm{D} 1-\mathrm{T} 4 \mathrm{C}) * * 2\)
\(T \in C=(0 *(X N 1 * * 2)-T 4 C) * * 2\)
T7C \(=\) RI \(2 *\) T5C
T8C=T1C*T2C*T6C
T9C=TIC*T3C*D*(XN1**4)
\(X K 1 C=T 7 C+T P C+T 9 C\)
\(X K 2 C=1 T B C+T S C 1-T 7 C\)
SIC \(=\) RI \(2 * *(U 1 * * 2)\)
\(S 2 C=((X N 1 \neq * 2)+T 4 C) * * 2\)
S3C=4.*T1C*T2C*T3C*S1C.
S4C=T2C*D*(XN1**4)
\(55 C=T 3 C * S 2 C\)
\(X L 1 C=S 3 C+S 4 C+S 5 C\)

57
58 59 60 61 62

\section*{63}

\section*{64} 65

\section*{66}

\section*{67}

\section*{68}

\section*{75}

\section*{76}

\section*{78}
```80
```

81

```82838485
```

86

```888990
```

91

```92
93
94
95
96
97
98
 99
100
1 0 1
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
```

```
 XL 2C= S 3C- (S4C.+S5C.)
```

    XL 2C= S 3C- (S4C.+S5C.)
        P.1C= (XK2C*XL1C)-(XK1C.*XL.2C)
        P.1C= (XK2C*XL1C)-(XK1C.*XL.2C)
        R2C=(XK1C**2)*T1C
        R2C=(XK1C**2)*T1C
        A2C=R1C,1R2C
        A2C=R1C,1R2C
        Z4C= 0.822*A2C*SORT(RI)*(1-RI2)
        Z4C= 0.822*A2C*SORT(RI)*(1-RI2)
        Z5C= SGRT(N*T1C)
        Z5C= SGRT(N*T1C)
        Z6C=SQRT(75C)
        Z6C=SQRT(75C)
        17C=24C/26r
        17C=24C/26r
        28C=(CCS13.14159/8.))*27C
        28C=(CCS13.14159/8.))*27C
        2.9C=(SIN(3.14159/8.1)*27C
        2.9C=(SIN(3.14159/8.1)*27C
        AIC= XK2C/XKIC
        AIC= XK2C/XKIC
        m3C= (A1C-zEC)**2
        m3C= (A1C-zEC)**2
        W4C= SGRT(W3C+(29C**2))
        W4C= SGRT(W3C+(29C**2))
        AC=T1C*h4C
        AC=T1C*h4C
        WRITE(6,115) AC
        WRITE(6,115) AC
    115 FORMAT(' ','CRITICAL AMPLITUDE='F10.4)
    115 FORMAT(' ','CRITICAL AMPLITUDE='F10.4)
        DO 2 I=1,8s
        DO 2 I=1,8s
        ANG(I)=1
        ANG(I)=1
        RANG(I)=(ANG(I)*3.1416)/18%.
        RANG(I)=(ANG(I)*3.1416)/18%.
        El(I)=SIN(PANG(I))
        El(I)=SIN(PANG(I))
        E(I)= El(I)**2
        E(I)= El(I)**2
        T1(I)=SORT(l-E(I))
        T1(I)=SORT(l-E(I))
        T2(I)=SORT({XNl**2)-E(J))
        T2(I)=SORT({XNl**2)-E(J))
        IF(XNIZ.LT.FI(I))GO TN 130.
        IF(XNIZ.LT.FI(I))GO TN 130.
        T31I)=SGRT((XN2**2)-E(I)).
        T31I)=SGRT((XN2**2)-E(I)).
        T4\I)=2.*E(T)*Ul
        T4\I)=2.*E(T)*Ul
        15(1)=((XNL**2)*C1-T4(I) )**2
        15(1)=((XNL**2)*C1-T4(I) )**2
        T6(I)=(D*(XN1**2)-T4(I))**2.
        T6(I)=(D*(XN1**2)-T4(I))**2.
        T7(I)=E(I)*TS(I)
        T7(I)=E(I)*TS(I)
        T8(I)= 11(I)*T2(I)*T*(I)
        T8(I)= 11(I)*T2(I)*T*(I)
        T9(I)=T1(I)*T3(I)*0*(XN1**4)
        T9(I)=T1(I)*T3(I)*0*(XN1**4)
        XK1(I)=T7(1)+T8(1)+T9(I)
        XK1(I)=T7(1)+T8(1)+T9(I)
        xK2(I)=(Tg(I)+TG(I))-T7(I)
        xK2(I)=(Tg(I)+TG(I))-T7(I)
        SI(I)=E(1)*(Ul**2)
        SI(I)=E(1)*(Ul**2)
        S2II)=((XN1)**?)+T4(I))**2
        S2II)=((XN1)**?)+T4(I))**2
        S3(I)=4.*T1(I)*T2(I)*T3(1)*S1(I)
        S3(I)=4.*T1(I)*T2(I)*T3(1)*S1(I)
        S4(I)=T2(I)*D*(XN1**4)
        S4(I)=T2(I)*D*(XN1**4)
        S5(I)=T3(I)*S2(I)
        S5(I)=T3(I)*S2(I)
        XL1(I)=53(1)+S4(1)+55(I)
        XL1(I)=53(1)+S4(1)+55(I)
            XL2(I)=53(1)-(54(I)+55(1))
            XL2(I)=53(1)-(54(I)+55(1))
            GO TO 131
            GO TO 131
    CC FCR N2 LESS THAN FIII)
CC FCR N2 LESS THAN FIII)
C I.E. T3(I),TS(II,XKI(I),XK2(I)
C I.E. T3(I),TS(II,XKI(I),XK2(I)
C S3(I),S5(I),XLI(1),XI2(I) C[MPLFX
C S3(I),S5(I),XLI(1),XI2(I) C[MPLFX
130 T3(I)=SQRT(F(I)-{XN2**2)}
130 T3(I)=SQRT(F(I)-{XN2**2)}
IF(FLAG.NE.CI GC TO 133
IF(FLAG.NE.CI GC TO 133
FLAG=ANG(I)
FLAG=ANG(I)
133 CCNTINUE
133 CCNTINUE
T4(I)=2.*F(I)*UL
T4(I)=2.*F(I)*UL
T5(I)=((XN1**2)*D1-T4(I))**2
T5(I)=((XN1**2)*D1-T4(I))**2
T6(1)=(0*(XN1**2)-T4(1))**2
T6(1)=(0*(XN1**2)-T4(1))**2
T7(I)=E(I)*T5\I)
T7(I)=E(I)*T5\I)
Te(I)=Tl(I)*T2(I)*TG{I)
Te(I)=Tl(I)*T2(I)*TG{I)
T9(I)=T1(I)*T3(I)*R*(XN1**4)
T9(I)=T1(I)*T3(I)*R*(XN1**4)
XK1(I)=SQRT(ITT(I)+TR(I))**2+(TS(I)**2I)
XK1(I)=SQRT(ITT(I)+TR(I))**2+(TS(I)**2I)
XK2II)=SORT(ITG(I)-T7(I|):*2+(T9(I)**2))
XK2II)=SORT(ITG(I)-T7(I|):*2+(T9(I)**2))
S1(I)=E(I)*(U1**2)
S1(I)=E(I)*(U1**2)
S2(I)=((XN1**2) +TG|I) )**2
S2(I)=((XN1**2) +TG|I) )**2
S3(I)=4.*T1(1)*T2(I)*T3(I)*S1(I)
S3(I)=4.*T1(1)*T2(I)*T3(I)*S1(I)
S4(I|=T2(I)*0*(XN1**4)

```
 S4(I|=T2(I)*0*(XN1**4)
```

S5(I)=T3(1)*S2(1)
118
XL1(I) =SOPT((S4(I)**2)+(S3(I)+S5(I))**2)
119
XL2(I) $\left.\left.=\operatorname{SQRT}^{(154}(1) * * 2\right)+(S 3(1)-S 5(I)) * * 2\right)$
120 C REST OF CALC. DIJES ACT INVCLVE COMFIEX VALUES.
121 131 R1(I)=(XK1(1)*XK2(I))

K2 (I) $=$ PI2-F(I)
P3(I) =(XL1(I) $=X L 2(I) * R 2(I))$
R4 (I) $=(X L 1(1) * * 2) \neq P 2(1)$
A1(I) $=(\mathrm{R} 1(\mathrm{I})-\mathrm{R} 3(1) /(1(x \mathrm{~K} 1(1) * * 2)-\mathrm{R} 4(\mathrm{I}))$
R5(I) $=(X K 2(I) * X L 1(I))-(X K)(I) * X L 2(I))$
$R G(I)=((X K 1)(I) * * 2)-(X L I(I) \neq * 2) * R 2(I)) * T I(I)$
A2(I) $=$ R5(I)/RG(I)
IF(RI2.LT.E(I) GO Tin 90

GOTO 100
$99 \operatorname{RR1}(1)=E(I)-R 12$

100 SI2=50RT(1.-R12)
W1 (I)=S12-T1(I)
C $N$ IS THE FACTCR $K(Z+20)$
W2(I) =SQRT(H/(2.*E(I)*T1(I)))
EETA(I)=W2(I)*WI(I)
BETA(I)=ABSIBETA(I))
IFIBETACI).CE.2.01 GO TO 47
IF(BETA(I).LT.5.1) GO TC 43
IBETA(I)=(RETA(I)*10.0+0.53)
J=IBETA(I)
RMURI) = RMUI(J)
XMU(I) $=x$ MUI( J$)$
GO TO 49
48 IBETA(I)=(BETA(I)*100.+0.53)
$\mathrm{J}=\mathrm{IBETA}(\mathrm{I})$
RMU(1) $=$ RMU2 (J)
$\operatorname{xMU(I)}=\mathrm{x}: 4 \cup 2(\mathrm{~J})$
co TO 49
47 RMU(I) $=1.5$
XMU(I) $=0.0$
49 JF(RI2-E(I)) 111,2,113
$111 \Delta 3(I)=A 2(I) * T 1(I) * S G P T(E(I)-R I 2)$
$21(1)=(A 3(I) * X M U(I)) \approx \pm 2$.
YYI(I) $=(A 1(1)+Z 1(I)) * * ?$
$Y Y 2(I)=(A 3(I) \div P N \cup 11)) \div 2$
$\Delta(I)=T 1(I) * S Q P T((Y Y 1(I)+Y Y Z(I)))$
113 CONTINLE
2 CONTINUE
CO $499 \quad \mathrm{I}=1.89$
X(I) $=E 1(1)$
$Y(I)=A(I)$
499 CONT INUE
hRITC(6,50:) (X(I),Y(I),I=1,89)
50 FIRMAT (2F14.3)
STOP
END

## HDGEN 1

## This programme calculates the refracted amplitude of an incident spherical wave.


 201，S1（90），S2（90），S3（90），S4（50），S5（90），S6（90），K1（9C），म2（90），K3（90），


 690），22（90），23（90），24（90），27（90），28（90），29（90），43（90），W4（90），y×1（90 7），XX2（90），XX3（90），YY1（90），YY2（9C），XNU（90），CNU（90），SNU（90），Z21（90），


```
 R1C=(XK2C*xI.1C)-(XK1C*XL2C)
```

        R1C=(XK2C*xI.1C)-(XK1C*XL2C)
        R2C=(xK1C**2)*TLC
        R2C=(xK1C**2)*TLC
        A2C=F1C/R 2C
        A2C=F1C/R 2C
        CO 2 J=1.89
        CO 2 J=1.89
        ANGII)=1
        ANGII)=1
        RANG(I)=(ANG(I)&3.1416)/180.
        RANG(I)=(ANG(I)&3.1416)/180.
        EI(I)=SIN(RANG|I))
        EI(I)=SIN(RANG|I))
        E(I)= El(I)**2
        E(I)= El(I)**2
        T1(I)=SQRT(1-E(I))
        T1(I)=SQRT(1-E(I))
        IF(EI(I).LE.PI) GC YG 2
        IF(EI(I).LE.PI) GC YG 2
        2Z5(1)=RI*A2C*(T1)1)**2)
        2Z5(1)=RI*A2C*(T1)1)**2)
        ZZ6(I)=(RI*T1(I))/{E1|I)*SOPT(1.-R12)|
        ZZ6(I)=(RI*T1(I))/{E1|I)*SOPT(1.-R12)|
        227(1)=1.-226(I)
        227(1)=1.-226(I)
        Z28(1)=S@RT(227(1)**3)
        Z28(1)=S@RT(227(1)**3)
        229(I)=N*E(I)*2Z9(I)
        229(I)=N*E(I)*2Z9(I)
        BB1(1)=2Z5(I)/ZZ9(I)
        BB1(1)=2Z5(I)/ZZ9(I)
        2 CONTINUE
        2 CONTINUE
            CO 4¢9 I= 1,89
            CO 4¢9 I= 1,89
            X(1)=EI(1)
            X(1)=EI(1)
            Y(I)=FE1(I)
            Y(I)=FE1(I)
    499 CONTINUE
499 CONTINUE
WRITE(6.500) (X(I),Y(I),I=1,89)
WRITE(6.500) (X(I),Y(I),I=1,89)
500 FQPMAT(2F14.3)
500 FQPMAT(2F14.3)
STOP
STOP
END -

```
 END -
```


## PINAI

This programme computes the totally reflected amplitude of an incident spherical wave according to the exact derivation.











ПATA RMUI/ 1.f3.j.30,1.17,1.11,1.07,1.0r,1.04,1.02,1.02.1.11.
11.01,1.01.1.01,1.00,1.00.1.00.1.00.1.00.1.00.1.061




ПATA SNUL/ 0.03.0.03,0.15,0.2..n.20,n.38.0.46,7.5?,0.60.



DATA XSMU1/ C.05.D.1?,0.18,C.24, ©. 2e. $., 31, C .33 .0 .33$,


$30.07,0.06,0.05,0.04,0.03,0.02, O, C 1, C . C C /$
REAC(4,10) A
PEAC(5, 1$)$ V1, V2, P1, 32, (1) 1,07.
10 FEFNAT (I5)
1 FORMAT(GF7.2)
P.I $=V_{1 / V 2}$

PI $2=R 1 * * 2$
$\times N 1=V 1 / B 1$
XN2 $=\mathrm{V} 1 / \mathrm{Cl} 2$
$\mathrm{D}=\mathrm{C} 2 / \mathrm{D} 1$
$\mathrm{U}=\mathrm{C} *(\mathrm{I}$ (2/81)**2)
D1 $=\Gamma$ - 1 。
$\mathrm{Ul}=\mathrm{U}-\mathrm{I}$ 。
FLAC=0
C CRITICAL FEIUT CALCHLATICN
T1C=SORT(1.-F1?)

T3C = SQRT ( $($ XNZ $2 \div=2)-P I 2)$
T4C=2*R12*111
$\mathrm{T} 5 \mathrm{C}=\{(\mathrm{XNi} 2 \div 2\}=[1-\mathrm{T} 4 \mathrm{C}) * * 2$
T6C $=(0 *(X A 1 * * 2)-T 4 C):.=2$
TTC=RI2*T5C
$T 8 C=T 1 C=T 2 C * T 6 C$
$T S C=T 1 C * T 3 C=0 *(x N 1 * * 4)$
$X K 1 C=T 7 C+T E C+T O C$
XK2C=(T8C.4T9C)-T7C
S $1 \mathrm{C}=\mathrm{R}[2 *(111 * * 2)$
$S 2 C=((X N 1 * \pm)+T 4 C) *+2$
S3C=4.*T1C*T2C*T3C*S1C
$S 4 \mathrm{C}=\mathrm{T} 2 \mathrm{C} * \mathrm{C} *(\mathrm{XN} \mathrm{N} * \mathrm{~F} 4)$
S5C=T3C*S2C
$\mathrm{XL} 1 \mathrm{C}=\mathrm{S} 3 \mathrm{C}+\mathrm{S} 4 \mathrm{C}+55 \mathrm{C}$
$X L 2 C=S 3 C-(S 4 C+S 5 C)$
$\mathrm{R} 1 \mathrm{C}=(\mathrm{XK} 2 \mathrm{C} * \mathrm{XLIG})-(X K) \mathrm{C}=\mathrm{XL} 2 \mathrm{C})$
P 2 $\mathrm{C}=(\mathrm{XK} 1 \mathrm{C} * \% 2) \div \mathrm{T} 1 \mathrm{C}$
$\mathrm{A} 2 \mathrm{C}=\mathrm{R} 1 \mathrm{C} / \mathrm{R} 2 \mathrm{C}$

```
 74C= 6.g22*M)R*SGRT(41)%(l-R!2)
 75C= SORT(NI*T1C)
 ZGC=SGRTIZ5C.)
 77C=74C/7.C
 78C=(ces(3.14140/8.))*?7%
 Z9C=(SIN(3.14]50/8.)):27C
 A1C= XK2C/XK1C
 3C= (A1C-1ES)#?
 W4C= SORT(n3\hat{C}+(79C=*2))
 AC=T1C*W4C
 HRITE(6,115) AC
 115 FRRMAT(','(PITIGAL ANFL'TUIF='F10.A)
 OT 2 I=1,5O
 \DeltaNG(I)=I
 RANG(I)=(ANO(I)::3.141E)/1BC.
 El(I)=SIN(khNE(I))
 E(I)= E1(1):=2
 T1(I)=SORT(1-F(I))
 T2(I)=S0RT(|x&1:*)
 IF(XN2.LT.FIII|)OUTO 13?
 T3(I)=SQRT(():42:%2)-E(I))
 T4(I)=2.*E(i)*Ul
```



```
 TG(I)=(D*(XN1:**2)-T4(T)
 T7(I)=E(I)%T5(1)
 TB(I)=T1(1)*T?(1)*T&{T)
```



```
 xkl(!)=T7(!)+T!(J)+!=(1)
 XK2(1)=(T8(I)+TO(I))-T7(!)
 Sl(I)=E(I)*(11**=?)
 S?(I)=((XN1**2)+T4(!))**?
 S3(I)=4.*T1(1)=T2(I)*T3(T)*51(T)
 S4(I)=T2(I)*! [*(XM1**4)
 S5(T)=T3(1)*&2(1)
 XL1(I)=S3(I)+54(I)+S5(I)
 XL2(I)=53(I)-(54(1)+55(1))
 GOT0 131
CC FCR A2 LESS THGN EL(I)
C I.E. T3(1),TC(I), रK1(1),XK2(I)
 S3(I),S5(I),NLI(I),XI.2(I) CEMPLEX
 130 T3(I)=SQRT(E(I)-(x^2**2))
 IF(FLAG.NE.C) החT TC 133
 FLAG\doteqANG{1)
 133 CCATIAUE
 T4(I)=2.*E(I)*Ul
 T5(I)=((XN1***2)*01-T4(1))**2
 T6(I)=(0*(x+1**2)-T4(I) ***2
 T7(I)=E\I)*TE(I)
 T&(I)=T1(I)*T?(I)*TG(I)
 TG(I.)=T1(1)*T3(I)*D*(XN1***4)
 XKI(I)=SQRT((TT(I)+T3(I)):**2+(TG(I)**2l)
 XK2(I)=SQRT((T&(I)-T7(I))**2+(TG(I)**2))
 SIII)=E(I)*(Ll**2)
 S2(I)=((XN1**2)+T4(I))**?
 S3(I)=4.*T1(1)*T?(1)*T3(1)*S1(I)
 S4(I)=T2(I)*:[):(XN!1**4)
 S5(1)= T3(I)%S?(1)
 XL1(1)=SQRT((S4(I)**2)+(S3(I)+S5(T))***2)
 XL2(I)=SORT((S4(I)**2)+(S3(I)-S5(!))**?)
\becauseC rest df calc. lines net involve cemflex values.
```

```
 131 R.1(J)=(XKI(I)*xK?(I))
 R2(I)=RI2-E(1)
 R3(1)={XL1(1)*XI2(I)*R2(1))
 R4(I)=(XLI(I)**2}**R2(I)
 Al(I)=(R1(1)-k3(1))/(f又k1(I)**2)-04(!))
```




```
 A2!1)=R5(I)/RA(I)
 IF(RI2.LT.F(1)) rin To na
 AO(I)= Al(1)-IA2(I)*TI(I):SGRT(PI?-r(I))I
 Gn TO 100
 G9 RRI(I)= F(!)-RI?
```



```
 l00 SI2=SGRT(1.-FI?)
 Wl(1)=SI2-T1II)
C N IS THE FACTOR K(Z+Z.'r)
 W2(II=SQKT(N/(2.*E(1)*T1(1)|)
 BETA(I)=h2(I)会1(1)
 BETA(I)=ABS(GFTA(I))
 IF(EETA(I).GL.a.0) ¢0 % < %
 IFIPETA(I).LT.:.ll ror TS 4B
 IBET\triangleII)=(BFTA(I)*10.0.0.53)
 J=IRETA{I\
 RN(j(I)=RNUl(J)
 XMU(T)=XMUS\J)
 GC TE 49
 48 [BETA(I)={RETA(I)*1O'1.+(.53)
 J=IPETA(I)
 RN(II)=PNUR!J)
 XNLIII= XMU2(J)
 GC TC 49
 47 RN(.(I)=1.0
 XMU(I)=0.0
 49 |F(RI2-F(I)I 1111,2,113
111 A 3(I)=\Delta2(1)* 11(1)=S({RT(E(1)-E!2)
 21(1)=(A3(1)**!4(1))
 BB2(I)=(A1(I)+Z1(I)) %=?
 RQ3(1)=(\Delta3|I)+6 N(|(I))**2
 A(I)=T1(J)*SGRT((FP2(I)+H⿱㇒⿴囗⿱一一夊心(I)|)
 C5=PI*A2C
 z2\in(I)=(P)*T1(I))/(E1(I)*SGRT(1.-0I2))
 227(1)=1.-220(1)
 Z2E(1)=50RT(2Z7(I)***3)
 Z29(F)=N*E\I)*7Z8(1)
 B81(1)=C5.2Zc(1)
 XXI(I)=EI(I)/TI(I)-RI/SGPT(1.-PIZ)
 XX2(I)=(N*(1.-RI2)*2I*T1(1)|)/(Fl(I)*2.)
 XX3(1)=SQFT(XX?(1))
 ET&(I)=x\times3(1):*x\1(1)
 IF(ETA(1).GE.3.30) CO TC 147
 IETA!I)=(ETA(I)*1%.?+7.53)
 J=IFTA(I)
 sM({1)=SNUl(J)
 XSNU(1)= XSNU1(.)
 GO TO 148
147 SNLTI)=1.0
 XSNU(I)=0.0
148 YY1(I)={PI*E](I))/T1(I)
 YY2(1)=(SORT(1.-Q12))-(1./T1(1)|
 XNU(II=N*(YY1(I) +YY?(I.))+3.141E/2.
```




Cr2（I）＝ATAN（CC2（I））

RRA（T）＝ATAN（ARG（T））
$F E=(1)=-(x+1)(1)+1+4(1)+C C ?(!))$





C ZZICII IS THF HOPFR BOUNA AMOLITHE－THETAI
271（I）＝A（I）＋P66（I）
 222（1）＝A（I）－トセダ（1）．
co T0 2
$113 \Delta 3(1)=A 2(1) * T 1(T) * 5 R T(R 12-F(1))$

Z21I）$=A 3(I) *(R: S(1)-1$.
Z3（I）＝A0（1）－221I）
C BB7（I）CALC．BEITW IS ANPLITICE EFFPRE r．P．
BR7（I）＝T11）＊（SOPT（172（I）\＃\＃2）＋71（1）
2 continue
D0 4 S9 I $=1.89$
$X(1)=E 1(1)$
$Y(I)=P!P(I)$
Z4（1）＝9R6（1）
$27(1)=\mathrm{PBB}(1)$
ZR（1）＝22111）
7G（1）＝72211）
499 CCATINUE
WRITE（6，500）（X（1），Y（1），I＝1，89）
C OLTPGT ON＇G＇IS THE TrTAL ANFLITURE
WPITE（1，500）（X（I），Z4（I），I＝1，sc）
C DUTPUT GN＇Il IS THE HFS日 hAve AvFI ITUES WRITE（2，E（：0）（X（1），I7（1）， $1=1,95)$
C DUTPUT CN＇2＇IS TRE MEAN SUPEPCEITICAL AMPIITLOE
WRITE（7．50．）（x（！），23（！），I＝1，ge）
CUTPUT［A＇7＇IS THE UPES BCER O THETAI
WRITF（8，500）（X11），ZO（I），I＝1，R9）
C DUTPUT ON＇EI IS THE LCHFR PCIAC－THFTAZ
500 FOPMAT（2F14．E）
STCP
ENC

## WAR

This programme calculates the interval velocities in sediments from wide angle reflection data.

$$
c_{c}
$$

naocs 100 0000seco ©0000300 visutun $\because 000500$ 00000600 30000700 2009080 Gecogogo 60661000 6001100 000:4200 ju0ct30 $00 \mathrm{O}: 1400$ טove150. 00001600 $\therefore j 0 \Omega 1760$ wot.1800 $\because 6 \mathrm{ClO}$ 00002000 00062100 00:2200 - $\because 2304$ juse3400 2006500 $\therefore \because: 2 \pi$ agu2700 0 0c230 $\because 00: 2700$ +006z000 3063142 $000 \cdot 3200$ $\therefore 0:=3300$ 00 O 3490 $\because 0 \mathrm{~B}-2500$ $\because$ - ? ? y Cuゃ? 3003000
 $\because 369400$ -0064200 $\therefore \because \therefore 3$ ! $\because 36460$ 0006500 vovidisoly

```
C**************** UJ:OLABGLCREFLECTIUN PROGRAM
C. - . .-. - - -..*****
C
C- CARD-1-IDEHTIFICATION OF THE-STATION % NO. OF-LAYERS:
C CASE2 - guESS at talc velocity of ench layer
 chen3 --shut=t of E&CH LAYE?
 CAFO4 - VEPTIGAL zे HOPIZONTAL WATER VELOCITIES
```



```
 CfgG % - DIfECT ARRIVAL TISES
 CAES 7 - FEFLECTLOARPIVAL TIMES
C-- --F. LOUP IS SETMPGSUCH THAT THEPFROGRAM GOES BACK TO READ NEW
 DATA FOP &:&, Ti&E LAYEE STARTIUG AT CARD 5.
```






```
C-- tirEF=:H.of layers
 FEAB(5,100) :REF
 100-FOE:AT(15)
G V(I)=LSTIMAIES BF VELICITIES OF EACH LAYER (GUESS O!i SMALL SIDE)
C b
 REES(S,1,i7)(#(I),I=1,HREF)
 a[/:(', 1OT)(:(1), 1=1,HREF)
 1!7 FEE:AT(10FC.E)
 Kvi=2.
 HT=0.0
 DO 500G I=1,APPEF
 600e kT=::T+A05(:(1)j
 If(:-T-1.[-1:) 50%1-6001,6002
 6001 kK:=1
 G002-tiRITE(6, 103):#Rff--...-.-
 10z FGO!:AT(':0. of LAYE?S KEAD IN=',15,/1)
 HFIYE(0,5:%)
```



```
 6O0 FGR:AT(//;'tRIAL VELOCITIES & SLUPES IN vEGREES',//).
 O%7 FOP:AT(F11.3,20.T11.5)
C Cu*.iEfl AHGbeE TG ligGPEES
 00 13:0 1=1,:OREF
 1300 %(1)=6(I)*:1.0174533
 VV=GEFTICAL :ATES VELOCITY: VH=HORIZGNTAL WATER VEIOCITY
 DE&=(c,107):V,V:t
 v(1)=vv
 w!lre(c,oong)v%,vi
```

00004700
30004300 5004000 00005000 00003100 00005200 0000s3cn 40065400 00005500 びロ05600 $\therefore 0.05700$ 00005300 wou5900 jouit600？ 30006100 ¥jojúo 2．2006300 30064400 0606500 －ijo6600 0080070 ：ullobag vobeta90 0007000 E 5ur 7100 667 600 5037300 0007400 300．550 309：000 ： 1007700 $\therefore$ woy 300 $\therefore$ soroco Bucengo ：30s100 －3068200 90003300 $\therefore 1006400$ 90065500 $\because \int 6 \pi 06$ aubajuc 2000300 $\because$ yenoct uswnot 5000．100 $\because$ u：r 20： $\therefore 0.0200$ $\therefore 060^{2} 40$ $\because 0000500$
 （2）0070 －jér？ 800 3）000000 －iv10？00 $: 010100$ g ja10？ 2010300子101．．4：30 doulargo ：uc10n0！

```
 608 FORMAT(//%,VV=';F11.5,2X,'VFE',F11.5;//)
C -- - THE FOLLOMIMG-LOUP 12 Is THE MAIN ONE
C. IRLF=LAYER :OO. IOESTIFICATION : KO=HO. OF POINTS TAKES ON EACH
.--- DO 12-L=1ONBEF
 PE:A(5,734)IPEF,KO
 73i, FOK:PAT(215)
 NFITE(6.735)IPEF, KO
```



```
 U(!!)=DIRFCT AäRIVAL TIFE I:N SECOHDS
C- S(f.)=PCRLECTEO AR&IVAL TIME IN SECONDS
 REAC(5,107)(U(K),r=1,N0)
 REAE(5,1,7)(S(K),K=1;k0)
 #RITE(0.03)
 HRITEE(6,G&)(H(r),S(K)-K=1,k0)
 U3 FCE'AT(//,4X,'U(K)',5x,'s(k)',//)
 64 FC|4AT(2F8.5)
 Ir(L-1)121%,1210,12.11
C IF :OTY T!EE +IRSI LAYER COHVERT U(K)-TO DISTANCE
1211 no %OE KL=1,K0
 704 U(F,L)=!j(KL)*VH
 1210 cohtinue
 HE1T[(6,7491)V年
 7401 FG%`औ\(//, 'VH=:,F11.5.//)
C -. Fit cufve to data fo ohtaIM to And LAtER DIfferentiate for angle e
 HEFGEDCE
C IlO: IS AOD IHDEYUSED IH HOINS
 IF(u(1))023.3.023
 -923 1!:0=-1
 00 O0 r=1. K0
 R(r)=S(r)** 2
 OO D(K)=U(K)**2
 #PITE(a,:30)
```



```
 CALL :=in!0(1,L)
 TO(L)=SuPT(y(1))
 H0:=1
 1F(L-1)2,2,3
```



```
 2 CO:=2.*TO(1)*SI: (%(1))
 !1!:(1)=:(1)+ri(1)/2.
 DO 20n I=1, ro
C BHIGG jACK to flat layef case
 P(!)=S(1)**?+CO:*|(I)
 2j: D(1)=6(1)**2
 hRITE(6.0.0)
 #i FOMaAT(//,'PASSEO 3T.-40. 200'./1)
 1%:=?
 CALL :-il:O(1,1)
 vH=sn0r(x(2))*V(1)
 G0 TO 32
 cG:FUTE COEFFICIEHTS DERIYATIVE FOR EMERGENGE ANGLE
 300 ?2 }\textrm{x}=1,\textrm{KG
 O(k)=5(k)
 92 D(K)=U(K)
 MFITE(0.74.02)
 W!|TE(6,17.35)(1J(k),k=1,k0)
 7402 FOK:.AT(//.'!(K) AVKAY AFTER ST. NO. 92',//)
 #FITE(0,sex)
 &c FORi!AT(//,'PASSFb gT. NO. 22'.//)
 CfLLL}\becauseril!D(i, L
```

00010700 00010800 00010900 0.111000 00011100 00911200 000113 j 30211400 32011500 00011000 6：：11720 0り：1130！ अँ： 11900 0u012000 60612100 $00: 12200$ 0心012300 601012400 0．？ 12500 v：012600 0601270： ن0012800 －$\because 120 \%$ 0ن：13000 $371310:$ $\therefore \because 13200$ 00：13300 0．413409 20：13500 20：1360 © ：0013309 $\therefore \therefore: 13000$ $\because: 140: 0$ 2014140 a！1429a ：－01430） 00114400 2014500 अ－146mi ？S 14750 00014800 $\therefore 0414990$ $\because \because 15!$ $\therefore 215130$ ves 1520 $\because 3: 153: 1$ $\because 15490$ jo 15500 $\because \because 154: 0$ 3415740 60：156．0 015000 UE． 16000 ：－：161\％！
 U：1636n $\because \mathrm{B}$ ！ $04:$ vo： 10.50 ！0！10600
$x(2)=x(2) * v(1)$
$x(3)=x(3) * 2 . * V(1)$
$x(4)=x(4) * 3 * * V(1)$
$x(5)=x(5) * 4 * *(1)$
WRIFE $(6,8456) V(4), x(2), x(3), x(4), x(5)$


1r（0（1））920．921；920
721 TU（L）$=x(1)$
920 1F（L－1）2，2，922
FIHD AHGLE EAERGEICE Z：FOR EACH POIAT EXCEPT I．AST
$922 k 0=k 0-1$
$1: 0=1$

$\left.711\left(r^{\prime}\right)=x(2)+x(3)+4(1)+x(4)+1\right)(1) *+2+x(5)+1(1) * * 3$

$D(1)=-1, E 20$
$\operatorname{Tr}(1)=0$ ，
$311: 0=-1: 10$

I $\mathrm{K}=0$ ．
WRITE $(t ; 198 \theta)$ DR

20－309 $I=2 ; k 0$
（AIL．PA！S（L，z！（I），IK）

1：$=1$
C－－mote that d is－Iti rem－
$0(1)=0(1)-10 R$
$0(1)=5(I)-T R$
TI（I）$=\mathrm{TIT}$
$\ddot{u}(1)=0(1) / \mathrm{c}$
！rITE（6，204？）
2ク47 「OR＇AT（＇C＝＇，F11．5）
C ELI：ISATE PGI：TS ：iITi ：EGATIVE REDUCED D
C PCUYCE TO \＆Lit LAYEP CiSE
$3601 R(1)=P(1) * * 2+C O * * b(1) * T(1)-T 1(1) * * 2$
$0(1)=5(I) * * 2$
300 COTTIELE
GRITE（0́，1934）
WPITE $(6,17 \dot{5} 5)(0(1), 1=1, K 0)$

1755 （GR＇AT（10fil．5）
C solve foe velocity
60 TO $(5,6), \mathrm{KH}$
$5110 \mathrm{D}=$ ？

$V V=V(L)$
C CHECK for inagivary velocity
If（x（2））3100．31r1．3101
3101 WEITE（6．3455）x（2），V（L）
WEITE（6，3455）X（2），V（L）

$V(\mathrm{~L})=\mathrm{SoRf}$（i．／X（2））
C RESET itigll nccbitulhg tu ned velocity
$T V(L)=T V(L) * V(L) / V V$
$:(L)=A T A \cdot(T N(L))$
CALL RfUS（L，RU（？），U）
C If IUN NGGATIVR fifstart process

00016700 0016800 00016900 0.3017000 00317109 00317207 05017300 （j）17400 －00175c0 30：17600 wo 17700 0：017800 00017000 06018000 0.012103 0．013200 02018300 00013400 ：0313500 पै：18n：0 02013769 a0c1330n 0．201：2000 00；10000 5j010109 －3ij1？200 0010300 J）：19400 $0: 10500$ vojctico 3110700 s：u19802 －391020 3． 20000 \＃कc20100 00020200 00020300 2お42440 i）： 920509 60020600 306207：30 201203006004 $-\therefore 200 \mathrm{Cn}$ 6055 $\square 210001000$ 20621100 ：－21？ 0 j－92130 U．421600 お6 29500 いい．？1men 0：921700 J．021800 Q！071900
 stoc 100
 01022．309 $\therefore 2 \mathrm{a} 4 \mathrm{a}$ $00225001021 \quad 1 F(A 1-1 . E-30) 1002,1002.1210$


IF（IAD） $31,31,32$
32．WH＝N（L）／0．0174533 WEITE（6，104）L．V（L），TO（L），SVA，VIN． 11．5．2X．＇sV＝＇，E12．7．2X，＇SLOPE＝＇，F11．5．1／）
12 coiatinue
UFITE（6．111）VII
111 FOP：AT（／／，VH＝＇，F19．5，／／）
3100 WRITE（O． 320 O ）L
STOP
EHO
SUBROUTIHE世ALHO（LL，L）
DIIETSIO！T：（19），1！！（10），V（10），り（10）．
coumuty．T1
HRITE（6．734）
I $\mathrm{I}:=\mathrm{L} \mathrm{L}$
$1: 0=1: 1:+1$
$\mathrm{HO}=1 \mathrm{HO}+1$
$K!=1110-1$
$0010 \geq 0:(=1,1 \mathrm{Ni}$
b0 $10 \cap 1 \quad:=1$ ，$:$
$P(1,1,1)=0$ ．
$001001 \quad 1=4-100$
1F（0（1））1001，90．9．00．21
9001 IF（：i＋：$:-2) 0.900,000 ?, 6001$
6000 TX＝1．
50 ri 6002
$T x=$（I）＊＊（？$!+\cdots-2)$

co：itioue
$P(H, i G)=S_{1}$
DO $1000 \mathrm{I}=1$ ，KO
IF（1）（1））1000．9002．2002
IF $(: 5-1) 6003,5053,0004$
$T X=(1)$
G0 T0 6005
$T x=i(1) * *(1-1) * R(1)$
$p(\therefore, 1 i j)=f(:, i t)+T X$
contil：ue
vo $1019 \quad:=1$ ， 110
［10 $1010: 1=1,1$
$1010 \quad b(!,: a)=p\left(:, 0^{\prime}\right)$

$00-1002 \quad I=1, k$
$1 \mathrm{I}=\mathrm{I}+1$
$k r=k+1$
A1＝ABS（P（I，1））
$A 2=\pi!S(p(k f, 1))$

1020 00 $120011: 1=1,10$
$A A_{0}=P(t, k, 114)$

$P(1,11 i+)=A A$





M，IHD，KO，SVH，VH

736＋GR：AT（／／，＇TME rOLLOWIMG ARE＊FROM SUBROUTINE MAIND＇，／／）

06022700 04022800 00022900 ：0023000 $0: 0231(0)$ 0023200 30023300 6！223400 $\because 923500$ 30j23i00 －1123100 0,923650 －ن～23の00 00024000 $\mathrm{J}: 924100$ $0: 24200$ 59524300 30）24400 $\therefore: 324560$ © 02024700 ，102：300 3.524700 025000 $\because 25109$ 0025 2．10 602530 ： 3025400 2025500 $\because: 1250(0)$勺y25700 $\therefore 25000$ $\therefore \because 25900$ －：？ 2006 12326100 60026200 60026300 5 ec 26.60 $0: 02650$ joj20600 30020700 3026500 $\because \cdot 200 \div 0$ ：－12ajo ：j02：100 ッ以27200 $\because \quad i \quad 7 \%$ ？
 $\because 127500$ $\therefore .12000$
 ～！i27：300 $\because$ ソ220000 ：i23020 $\because 2 \pi 1$ ？ $\because 22000$ $\because 233=0$
 6928500 $\therefore \because 20600$

1201
1002 1022 C $=$

SDLVE－UATRIX－－－－－－
DU $1005 K=1$ ，INO
$1=\pi 0-K$
$I I=1+1$
$x(1)=P(1, H 1)$
1F（1－1：0）1096．1050．1050
og 1060 $\mathrm{kx}=\mathrm{II}, \mathrm{I}+\mathrm{O}$
$x(1)=x(1)-(\Gamma(1, k x) * x(K x))$
$A 1=A B S \quad(p(1,1))$
IF（M1－1．E－30）1500，1500．1005
$1005-x(I)=x(I) / P(I, I)$
$\mathrm{A}=\mathrm{I} \cdot \mathrm{a}+1$
IF（1：1－1）1701；1701．4．
1701 IF（INC）4，4，21
21
DDO＝0．
$\mathrm{OK}=\mathrm{K} . \mathrm{O}$
oc 10e． $1 \mathrm{~K}=1, \mathrm{KO}$
$R R=1$.
1F（ij（K）） $9003,9004,9004$
2003 Or＝0k－1．

 1（10．／i）
$\begin{array}{lll}60 & 10 & 1061\end{array}$
2004 DO $10621=1.100$
If（1－1）600 $6,6096.0007$
$T \mathrm{X}=\mathrm{X}(\mathrm{I})$
GO TO 1062
©007 Tx＝x（1）＊（D（K）＊＊（1－1））
1062 il：$=: P+T x$
DK＝$=?(K)-R!$
DEG＝0rotnk＋＋ 2
WPITE（6，1700）O（K），R（K），RR，DK
17 g 0 FOPUAT（3F10．5．E15．7）
1061 contimue
MEITE（0．89）indo，or，A
 DUO＝S！日T（DOO／（OK－A ））


STITOES
$V A=1.1 \times(2)$

1？00 F（R：AT（：F1L．5）
STO＝STO＊＊2
011 $=0$ ．
$021=0$.
00 is $k=1, k: 1$
$\operatorname{Ir}(0(1)) 6.9010,9010$
1010 $\quad 02=0(15) * * 2$
021＝02＋02i
D11＝0（！）+i 11
Cu：TJ：UE
D211＝0世＊021－011＊＊？
SX＝STV／せ211
SVA $=0 \mathrm{~K} * \mathrm{Sx}$
SV：＝SV：4＊VA＊＊4
$0002: 700$ 00023800 4002：900 0002.2000 00027109 60029200 30021300 － 029400 00027500 tyo2！nco リ022：700 00029000 3020000 00030000 0.030100 00030200 00030300 03030400 2030500 は030690 20030700 50030800 03035000 －10031000 03031100 0.031200 20031300 0.031400 $\because 0.31500$ 00031500 $\because 0331700$ 10031300 $\therefore \% 31902$ 0032000 こ．03：300 60032200 60032300 00032400 30632500 0032600 60332700 90032900 30．03？900 － 0.03 ze 0 5033100 60633？00 $\therefore 033300$ 033400 00033500 $\because 337600$ 2535100 3033300 j0033000 20034：00 ．j034100 －9．3．3220 ：1934300 3013.4000 j0034500 60034000

```
 WRITE(G,OO)SVN,GK,SX,VA,STD,DZ11
```



```
 1.'STD=',FS.5,2x,'n211=1;F8.5,1/)
 SVN=SERT (SVH)
 gO T0 4
1500 WKITE(U,1501)1,1
15O1 FOR:AT(//;!3,',',I3,'=0 PROCLEM UNDETERMINED',//)
 RETURT:
 EHD
 SUGROUTINE* RAUS(L,ZL,IK)
 SUSEO!!T|E TO C&:F!TE PEFLECTIONS FOR TZ/XZ METHOD
 L IS fidHBEP LAYfR,ZZ IS EHERGENCE ANGLE,IK IS INDEX TO INOICATE FI
 RST POFGT LAYEF,FARAGERERS.TRAHSHITTED BY COMMON
 TR,OROAROTI ARE RETURNED --
 VERSIC:S l1AY 1967
 DIHE:GSIOR: ro(10),HH(10),V(10),W(10),x(10),xx(10) - . SW(10).
 1CW(10),TW(1j),D(100),F(100),ZN(100),P(5,6),Y(5)
```



```
 cow'lONY,Tl
 CHEC: IF PIBST PuIHT
 IF(IK)Oつ90.9790.9901
 C FIHD THICH:EESSES , COHPUTE SI: COS TAH
 9000 00 100% I=1.L
 SH(I)=SI! (!(I))
 CH(I)=cos (&(1))
 1009 T:(!)=5::(1)/C:%(T)
 C=1.
 IF(L-1)1003,1003.1002
 1002.L1=L-1
 Wb:=0.
 00 1001 I=1.L1
 1001 4N:=:4+:%(I)
 C=C:S (:a:)
C FiGe figle currcspghoivg vertical reflection
1003 I=L
 i=4, (1)
 IF(L-1)11;11,10
 10 SIX=(V(I-1)/V(I))+SIH (0)
 C0X=S\&T (1.-5IX*S(x)
 ()=ATA: (SIX/COX)+6(1-1)
 I=I-1
 1F(I-1)11,11,10
11 日=c-4(1)
 ZO=j
 U=0.
 TT=0.
 12 If(I-L)13.14,14
 COBFUTE HH(I).
 13 HC=HH(I)-U*SIN (W(I))
 SIX=SI!: (O)
 COX=COS (a)
 U=U*C&(I) +Hi**IX/COX
 TT=TT+HC/(V(I)*(OX)
 SIX:'=V(I+1)*SIX/V(I)
 xW=, raif (SIX!//SigRT (1.-SIX.:*SIXH))
 O=x:- :(1+1)
 i=I+1
 iju in 12
 14 HC=(TO(1)/R.-TT)*V(I)
 III(I)=nC+U*SH(I)
```

$0 \% 031,700$ 00036300 00034900 63035000 00335100 60035200 00035350 00035490 00035500 0035600 0.035700 00035300 00035920 0035000 4．j031，100 0036200 $\because 0.330300$ 00936400 00036500 0も03かん00 20034700 ن：033：300 0ック36の00 －as 7050 （：．）03：100 00037200 9n3：200 9．1037400 $\therefore 5 \mathrm{O} 3 \mathrm{yO}$ 0．0 3 76030 $\because 303: 76$ 0037600 －0037900 201038000 00030100 （303：200 12033300 6j03：460 00038500 $0: 039600$ j03：790 $\because 0354$ $203: 900$ 1403？000 9．3 ？ 1 ？ $\because \because 13^{\prime} \therefore \because 0$ aj030330 20jzn4ก0
 30900 j2039700 3．33＂：．00 $\therefore 13$ ingo $\therefore 040 \operatorname{sig}$ J． 6.100 $\therefore 940200$ ن．29．5320
$c^{\prime}$－compute refiections
C FHH DAHGLES INCIDEAGE FROM EHERGENCE NNGLE $99911=0$
$x: x(1)=27+U(1)$
$924 \mathrm{I}=\mathrm{I}+1$
1F（L－I）0252．7252．0250
7250 S1x＝S1Fisx（1））
If（SIX－V（1）／v（I＋1）） $2253,30,30$
9253 SIx：1＝v（1＋1）＋51x／v（1）

$x \times(I+1)=x w+\therefore(I+1)$
－GU T0． 924
$92521=L+1$
$x(L)=x \times(L)$
$926 \quad 1=1-1$
IF（1n1）21，21；928
928 SI：＝SI：1（x（1）＋V（1））＋V（I－1）／V（I）

GU TO 926
RA1：CO：ApUTATIOH
$21 \quad \mathrm{~T}=$ ？
$U=0=$
$1=0$
24． $1=1+1$
$H C=i H^{\prime}(1)-U * S H(I)$
SIX＝S1：1（X（1））
$\operatorname{coc} x=\cos (x(1))$
$H Y=H C *(S I X / C O X) \cdots$
$\mathrm{u}=\mathrm{G} * \mathrm{C}:(\mathrm{I}) \quad+\mathrm{H} \mathrm{K}$
$\mathrm{T}:=\mathrm{HC} /(\mathrm{Y}(\mathrm{I}) * \mathrm{Cox})$
$T T=T T+T K$
$15(L-1) 252.252 .24$
$2521=L+1$
$H K=1 K / \operatorname{COS}(H(L))$
$T P=T K$
DR＝： P K
$T 1=(H C / v(L)) * 2$ ．
$\mathrm{PF}=\mathrm{i}$
$25 \quad 1=1-1$
$R E=114(1)-f P+T H(I)--$
$\cos x=\cos (x \times(1)-4(1))$

$P R=P P / C \cdot(I)+H K$
$T K=(R F * C \sin (I)) /(C O X * V(I))$
$T T=T T+T r$
IF（I－L）202．？ 201,261
26：UR＝RR＋11K
TP＝T？ T TK
$2621 f(1-1) 27,27.20$
$27 \mathrm{P}=1 \mathrm{I}-1 \mathrm{P}$
$\therefore F=P P=D P * C$
3 RETURN
$3 C O R=+1 . E 20$
「R＝0．
T1＝0．
（1） 103
EHO

This programe computes the refraction velocity for one
layer with corrections for overlying layers.

REFRACTICN VELOCITY STATISTICS FQF GNE LAYEF WITH
ARRIVAL TINES. ND = NC. CF AFRIVAL TIMES. AL = NC. C
F CVEPLYINC LAYERS. WVII) = VELCCITY CF ITH CVERLYING
LAYER. XII) = EISTANCE TC ITH LATA FCIAT. TII =
ARFIVAL TIME AT ITF POINT. h(I,J) $=$ THICKAESS CF JTH
CVERLYING LAYER AT ITH FEINT.
REFRACTICN VËLCCITY STATISTICS FCF CNE LAYEF + CCRFECTICNS

REAC $(5,2)$ AC,NL
2 FCRMATII2,12)
REAC(5,3) (WV(I),I=1,ML)
3 FCRNATIEFT.2)
IAC $=1+N L$.
JIN $=1$
$\leq X=0$ 。
$S T=C$ 。
hRITE(6,12) AC

1 CCRRECTIONS FCR CVEFLYINE LAYERS'/21X,E3(If-1///ING. OF DATA PCIN
2TS =':Iミ/'CIST. TIME. LAYER THICKNESJES'/)
CC $101=1, N[$
FEAC(5,4) X(I),T(I), (W(I, J), J=1,NL)
4 FORMAT(EF7.2)
WFITE(E, G) $\mathrm{X}([), T(I),(W(I, J), J=1, N L)$
G FCFNATIIH, BFB. 21
$S X=S X+X(I)$
$\mathbf{S T}=S T+T(I)$
A(I) $=T(1)$
li ceatilive
STM=ST/ND
SXM=SX/AD
$15 S V=$ O.
$S T G=0$.
$5 \times 0=0$.
CC $20 \mathrm{I}=1$, NC
ET=A(I)-STN
$E X=X(I)-S X N$
SV=SV+ET*EX
STG $=S T S+E T * * 2$
$S \times 6=S \times 6+E X * * 2$
20 CCATINLE
$V T=S V / S \times O$.
VX=SV/STC
$[T=S T H-V T * S X N$
$[X=S X M-V X * S T M$
F.VT=1/VT
FDT = SXM-PVT*STM
$T E=0$.
$X E=0$.
FTE=0.
CC 3i) $I=1$, NC
$t=X(I)$
$V=A(I)$
RES $=(V-C T-V T * U)$
$T E=T E+R E S * * 2$
R(1)=RES
$X E=X E+(L-D X-V X * V) * * 2$
FTE $=R T E+(U-F C T-R V T * V) * * 2$
3C CCNTINUE
STE=SGRT(TE/IN[-2))
SXE = SGRT(XE/(AL-2) )
SRTE=SGRT(RTE/(NE-2))
EV=SXE/SGRT(STG)
$E I=$ SGRTISTE*STE/NC+STE*STE*SXN*SXN/SXCI
GJ TOA3ニ,45,45,321,JIM
32 FRITE(E,3S) VT, DT,STE,VX,CX,SXE,FVT,FCT,SFTE,EV,EI

 2N TC TIME'//VELCCITY = ',F5.2/'IATERCEFT = ', FE.2/'STANCAFC ERRCR =
 4FE.2/IINTERCEPT = ',F6.2/CSTANCAFC ERFCR.= ',FS.E/iS.E. ON VELCCITY $5=1, F \in .3 / 15 . E$. CA INTERCEPT = ', FE. ב///I) hFITE ( 6,37 ) (RII), I = I, NC)
37 FCRNAT(IHU, 'IIRE FESICUALS'/(IJFB.3)

40 IAC=IND-1
JIK=1
$I T=N L+I-I N E$
hFITE(6,421 1T,hVIIT)
42 FOFNAT (IHO, 'VELCCITIES WITH CGRRECTICN FOR LAYER',I2,' hITH VELCCI 1TY',F5.2/1

```
CC 44 I=1,NC
```

$44 \mathrm{E}(1)=A(1)$
45 ANG=ARSIN(nv(IT)/VX)
FAC=1/(COS(ANG)*hV(IT))-TAN(ANG)/VX
$\mathbf{S T}=\mathbf{C}$.
CO $50 \quad I=1$, ND
$A(I)=E(I)-h(I, I T) \neq F A C$
5 C
$\leq T=S T+\Delta(I)$
$S T M=S T / M D$
$J I N=J I N+1$
GC TG 15
90 STCF
ENC

## Store

This programe transfers data from analogue to digital tepe.

```
50;;
SET;60,61,62,63,64;0,.01,-1,0,0;
SPR;
SET THRESHOLD LEVEL;
ASK;
DEL;159;;50;
SPR;
NO.OF SAMPLES;
ASK;
DEL;159;:51;
SPR;
STARTING FILE;
ASK;
INS;B;159;
SPR;
TERMINATING FILE;
ASK;
INS;C;159;
SPR;
NO.OF DO LOOPS;
ASK;
INS;D;159;
DO;A;B;.01;C;
CALL;4O;
IF;C(.01,)<C(.05,);
IGO;18;
ELS;
DO;91;0;.01;D;
CALL;40;
ADD;60,61;60;
DEL;2,60;;63,64;
CALL;42;
IP;C(.60,)<C(.51,);
IGO;23;
ELS;
SET;60,63,64;0,0,0;
CONT;
D0;90;0;.01;.31;
CALL;42;
IGO;32;
CONT;
SPR;
;
CPR;100;
CONT;
EXI;
INP;;;13,14;1,2;
REIURN;
OUT;A;;1,2;63,64;
RETURN;
END;
```

LEVEL SETTING

10; ;
SET; 50,51;0,10.0;
INP; ; ;13,14;1,2;
IP;C(.02,) $>C(.51$,$) ;$
SPR;
CHANNEL 2
ELS;
IGO;2
END

## Replay 1. 2. 3

These programmes examine the digital tape to find the peak amplitudes and sample numbers.

## 276

PEAK DETECTION-------6. $(6 / 2 / 75)$.

60; ;
SET; 50,51,52,53,54,55,56;0, 01,0,0,0,0,-1;
SPR;
IGNORE N SAMPLES;
ASK;
DEL;159; 60;
SPR; WLENGTH;
ASK;
DEL;159; 61;
SPR; SHOTS;
ASK;
DEL;159; $62 ;$
SPR; NO.OF WINDOWS;
ASK;
CALL; 47;
IF;C(.01,)<.50;
IGO;13;
ELS;
ADD;55,51;55;
CALL; 47;
ADD;50,51;50;
IF; $C(.50)<,C(.60$,$) ;$
IGO;18;
ELS;
CALL:47;
IF;C(.02,)<0;
MUL;2;56;2;
ELS;
IF; $C(.02)>,C(.53$,
DEL;2;;53;
ELS;
ADD;51,52;52;
IF; C(.52,)<C(.61,);
IGO;23;
ELS;
ADD; 51,54;54;
CALL; 49;
SET;52,53;0,0;
IF; $\mathrm{C}(.54$, ) $<\mathrm{C}(1.59$ ) ;
IGO;23;
ELS;
SET:54;0;
IF; $C(.55)<,C(.62,0)$;
IGO;13;
ELS;
SET;53,54,55;0,0,0;
CALL; 49;
IGO;45;
INP; ; 13,14;1,2;
REIURN;
OUT;-.06; ;1,2,3;53,54,55;
RETURN;
END;

60; ;
SET; 50, $51,52,53,54,55,56,57,58 ; 0, .01,0,0,0,0,-1,0,0 ;$
SFR;
IGNORE N SAMPLES;
ASK;
DEL;159; ;60;
SPR; WLENGTH;
ASK;
DEL;159; ;61;
SPR; SHOTS;
ASK;
DEL;159; 62;
SPR; NO.OF WINDOWS;
ASK;
CALL; 49;
IT; C(.01, ) <.50;
IGO;13;
ELS;
ADD;55,51;55;
CALL;49;
ADD; 50,51;50;
ADD;57,51;57;
IF; C(.50,)<C(.60, );
IGO;18;
ELS;
CALL; 49;
ADD; 57,51;57;
IP;C(.02,)<0;
MUN;2;56;2;
EIS;
IF; C(.02,) $>C(.53$,$) ;$
DEL; 2,57; 53 ,58;
ELS:
ADD;51,52;52;
IF; C(.52, $)<C(.61$,$) ;$
IGO;23;
ELS;
ADD;51,54;54;
CALL; 51 ;
SET;52,53,57;0,0,0;
IP; C(.54,)<C(1.59,);
IGO;23;
ELS;
SET;54,58;0,0;
IF; $C(.55)<,C(.62,0)$;
IGO;13;
ELS;
SETY;53,54,55;0,0,0;
CALL;51;
IGO;47;
INP; ; ;13,14;1,2;
RETURN;
OUT;-.06; ;1,2,3,4;53,54,55,58;
RETURN;
END;

70; ;
SE1; $50,51,52,53,54,57,58,59,70,71 ; 0, .01,0,0,0,0,0,0,-1,0 ;$
SPR;
IGNORE N SAMPLES ( 3,1;
ASK;
DEL;159; ;60;
SPR;
TIIE PACTOR;
ASK;
INS;65;159;
MUL; 60;65;60;
SPR;
WLBMGTH;
ASK;
DEL; 159; ;61;
SPR;
MF FOR WLENGTH;
ASK;
INS;66;159;
MUL;61;66;61;
SPR;
NO.OF WINDONS(MAX. NO.IS 3,000-TYPED AS 30.);
ASK;
INS;62;159;
SPR;
STARTING FILI:
ASK;
INS;B;159;
SPR;
TERMINATING FILR;
ASK;
INS;C;159;
DO;A;B; 01;C;
CALL;62;
ADD;50,51;58;
ADD;57,51;57;
IF;C(.50,)<C(.60,);
IGO;26;
ELS;
CALL; 62;
ADD;51,57;57;
IF; C(.01,)<0;
MUL;1;70;3;
ELS;
If; C(.01, ) $>0$;
DEL;1; ;3;
ELS;
IF; $C(.03)>,C(.53$,$) ;$
DEL; 3,57,2,1;;53,58,59,71;
ELS;
ADD;51,52;52;
IT; C(.52,)<C(.61,);
IG0;32;
ELS;
ADD;51,54;54;
CALL;64;
SEI'; $52,53,58,59,71 ; 0,0,0,0,0 ;$

```
IF;C(.54,)<C(.62,);
IGO;32;
ELS;
SET;50,54,57;0,0,0;
CONT;
DO;90;0;.01;2.55;
CALL;64;
IGO;55;
CONT;
CALL;62;
IGO;59;
EIII;
INP;A; ;1,2;1,2;
RETURN;
OUT;-0.04;;1,2,3,4;53,58,100,71;
RETURN;
HMD;
```


## PRTNT

This programme $0 / P$ the contents of $A$ (Specified) file to the $T / T$.

1) Give File No.
2) Starting Sample No.
3) No. of Samples.
```
 20;;
SPR;
FILEN;
ASK;
INS;A;159;
SPR;
START SAMPLR;
ASK;
INS;B;159;
SPR;
NO.OF SAMPLES;
ASK;
INP;A;B;1,2;1,2;
SPR;
;
CPR;1,2;
IT;TBP<C(1.59);
IGO;9;
ELS;
EXI;
END;
```

CONV
a) This programme converts the Modular One output into normalised amplitude and distance.
b) This programme converts the Modular One output into arrival time and distance.

```
 INFLICIT REAI*R(^-ト,C-Z)
 DIMENSION A(400), XN(4CO),XSN(4Cり), X((4,C),AC(400),
 IIA(400), IN(400), ISN(400)
C
 MNAX IS THENC.GF SHCTS'I
 REAC(3,77) NMf:X
 77 FCFNAT(15)
 READ(5,1) (IA(I),IN(I),ISN(I),I=1,ANAX)
 1 FORMAT(4X,14,3X,14,4X,13)
CSV IS THE SHIP VElC.CITY IN KNOTS.
C D IS THE WATER LIEDTH IN KN.
C F IS THE SHOT INTEPVAL IN SEC.
 REAC(4,2) SV,D,F
 2 FORMAT(3F7.2)
 ISF IS THE CON.FACTOR TR CCNVERT SA:A NO. INTC DIST.
 REAC(3,13) 1 SF
 13 FORNAT(I5)
 XK=SV*1.8288
 DO 3 l=1,N:AAX
 A(I)= CFLOAT(IAII))
 XA(I)=DFLCAT(IN(I))
 SF=CFLOAT(ISF)
 XN(I)=XN(I)/(SF*1CO.)
 XSN(I)=0FLOAT(ISN(I))
 XL(I)=((XSN(I)*F+XN(I))*XK)/3.\epsilon
 XL(1)=XL(1)/1000.
 AC(I)=A(I)*DSORT(XL(1)**2+D*D)
 3 CCATINUE
 WRITE(6,4) (XL(I), AC(I),I=1,NNAXI
 WRITE(7,4) (XL(I),X!N(I),I=1,NMAX)
 4 FCFNNT(2F14.6)
 STOP
 EN[
```

284


```
CIMEASTCN A(4CC), XN(4GC), XSA(4CO), XL(4CC), AC(4OO), 11A(4f0), If.(400).ISA(400)
RFAD(5,1) (IA(I),IN(I),ISN(I),I=1,307)
1 Flif:MAT(4X,14,3X,14,4x,I2)
FEAC(4,2) SV,C,F
2 -CPMAT13F7. 21
\(X K=5 V=1 . P 2 E E\)
CC \(3 \quad 1=1,3:=\)
A(I)=0FLJAT(IA(I))
```



```
\(\times 5:(1)=\) CFLG:T(ISA!1))
```



```
\(X L \mid T I=x L(I) / I C\) C゙O.
\(A C(1)=A(I) \neq C \operatorname{Son}(x(1) \div \pm 2+C+C)\).
3 CORTINUE
WFITF(E,4) (XI.(I), AC(1), I=1, XCO)
4 FCFNAT(ZU14.F)
STEP
EAC
```


## RAT

This programme fits a polynomial to the given data.

```
1
c. THIS PPRG IS A CURVE FITTING PRCG
C CATA IS FEO IN ON \(44^{\prime}\) FOR ANALYSIS IMPLICIT REAL*8(A-H, O-Z)
 DINENSICN X(300),Y(30%),W(3n0),NN(300),SI(15),P(15)
C. FOLLOUING IS BAD SFDT DATA
FEAD 3,171 NIS
NIS IS THE NO. OF BAD SHOTS
17 FORMAT!(5)
IF(NIS.ES.") GC TO 19
READ (3.19) (NN(J),J=1,NIS)
NN(J) IS THF JTH EAD SHOT
18 FORMAT(415)
C N is the no. nf mata pgints tn be read in
19 READ (5,17) M
READ(4,2) (X(I),Y(1),I \(=1, M)\)
2 FCRNAT (2F14.6)
THIS DO LOOP SETS ALL THE WEIGHTS TC 1.0
CC \(3 \quad I=1, M\)
\(W(I)=1.000\)
3 CONTINUE
IFINYS.EQ.OI GO TO 20
C THIS DO LIOP SETS THE WEIGHTS OF THE BAD SHOT DATA PCINTS TO O.O CO \(77 \mathrm{~J}=1\), NIS W(AN(J)) \(=0.000\)
77 CCNTINIE
\(20 \mathrm{k}=15\)
LOGICAL L
\(L=\). FALSE.
C THF Clirve fitting poutine in that is called
CALL EOZABF(M, X,Y,W,KI,N,SI,P,L)
thF RUTPIIt is the coefficients ef the fittec pciynomial
C THF THE VARIANCE DF THE DATA FIT
C A IS THE DEGPEE DF THE PCLYNOMIAL. WRITFIf,4) (P(I),SI(I),I=1,K1)
4 FORNAT(2514.6) hRITE(6,5) N
5 FIJRMATII5)
STOP
END
```

This programme produces an output from the fitted curve
data from RAT.

```
l
2
3
4
5
6
7
8
9
10
1 1
11.1
11.2
11.3
 11.4
 11.5
 11.t
 1 2
 15
 16
 17
 18
 1 9
OF FILE
IMPLICIT REAL* \(8(\Delta-r, 0-Z)\)
CIMENSICN \(X(350), Y(350), T(10)), A(350)\) WRITE (2,1)
1 FORMAT('NG.CF [ATA PCINTS'I FEAC(4,2) N.P
2 FORMAT(15)
FEAC(5,3) (A(1), I=1,NP)
3 FORNAT(D14.6)
\(\operatorname{CO} 4 I=1,150\)
X(I) F FLCAT(I)
\(x(1)=x(1) / 1 C\).
TOTAL \(=0.0\)
DG \(7 \mathrm{~J}=1\), NF
\(K=J-1\)
\(T(J)=A(J) *(x(I) * \# K)\)
\(T C I A L=T C T A L+T(J)\)
7 CONTINUE
Y(I)=TCTAL
4 CCNTINLE
WRITE(6,5) (X(1),Y(I),I=1,150)
5 FCFNAT(2F14.6)
STOP
Enc
2 OF FILE
```


## Appendix 2

Detailed explanation of the Wide Angle Reflection Analysis
Programme, W.A.R.

## Laver 1

Given $T_{(1)}=f\left(D_{(1)}\right),{ }^{e}(1)$ and $V_{(1)}$, where the quantities have the same meaning as in equation (2), ohapter IV.

## Step 1

Find $T_{o(I)}$, the minimum rerlection time if the $T / X$ curves start as $X=0, T_{o(1)}$ is found by a fourth order least squares fit

If the $T / X$ curves do not start at $X=0 T_{o(1)}$ is found from a linear squares fit

$$
\begin{equation*}
T_{(1)}^{2}=T_{o(1)}{ }^{2}+X_{(1)} \cdot D_{(1)}^{2} \tag{A2.2}
\end{equation*}
$$

From $T_{o(1)},{ }^{H H}(1)$, the perpendicular distance to the first layer is found (Fig. A2.1).

## Step 2

For each $\mathrm{T}_{(1)}$, the following is computed

$$
\begin{equation*}
\operatorname{cost}_{(1)}=T_{0(1)}{ }^{2}-2 T_{0(1)} \sin \theta(1) \cdot D_{(1)} \tag{A2.3}
\end{equation*}
$$

where $\operatorname{CON}_{(1)}$ is a correction term to reduce the observed times, and we obtain the reduced times

$$
\begin{equation*}
T_{(1)}^{2}=T_{1}^{2}-\operatorname{con}(1) \tag{A2.4}
\end{equation*}
$$

Then, VH is found by a least squares fit of

$$
\begin{equation*}
T_{(1)}^{2}=D_{(1)}^{2} \quad \frac{\mathrm{VH}^{2}}{V_{(1)}^{2}} 2 \tag{A2.5}
\end{equation*}
$$

together with its standard deviation.
Laver 2
Given $T_{(2)}=P\left(D_{(2)}\right),{ }^{\theta}(1), V_{(1)}$ and knowing the apparent slope $e_{a(2)}$ as a result of the trial velocity $V_{a(2)}$.

APPENDIX 2


Fig. A2.I Schematic Diagram for Velocity Computations

## Step 1

$T_{0(2)}$ is found as above, where $T_{o(2)}$ is the zero exoursion, $(X=0)$, reflection time to Layer 2.

Stop 2
$H_{(2)}$ is found for the trial velooity $\nabla_{a(2)}$.
Step 3
The fourth order polynomial
$T_{(2)}=f(X(z))$ is differentiated to give

$$
\begin{equation*}
\sin \left(\beta_{1}-\theta(1)\right)=\nabla_{(1)} \frac{d T_{2}}{d X} \tag{A2.6}
\end{equation*}
$$

and $\beta^{\prime}$ is found from $\beta$ for each data point except the first and last. These are omitted beoause the fourth order polynomial is not constrained beyond these points and its slope often becomes erratic.

## Step 4

Knowing the incident and emergent angles, $T_{B B}, T_{A A}, A^{\prime} B^{\prime}$ and $T_{A^{\prime}} H^{\prime}$ (Fig. A2.1) are calculated and hence the travel time in the second layer ob tained

$$
\begin{equation*}
T_{A^{\prime} C^{\prime} B^{\prime}}=T_{A A^{\prime} C^{\prime} B^{\prime}}-T_{A A^{\prime}}-T_{B B^{\prime}} \tag{A2.7}
\end{equation*}
$$

Step 5
The reduced travel times

$$
\begin{equation*}
T_{(2)}{ }^{2}=T_{(2)}{ }^{2}-\operatorname{coN}(2) \tag{A2.8}
\end{equation*}
$$

are calculated, where

$$
\begin{equation*}
\operatorname{coN}(2)=T_{A^{\prime} H^{\prime}}{ }^{2}-2 T_{A^{\prime} H^{\prime}} \sin \theta_{A(2)} T_{A^{\prime} B^{\prime}} \tag{A2.9}
\end{equation*}
$$

Any negative reduced times are eliminated. These occasionally occur at near normal incidence, owing to errors in the upper layers. In such cases the corresponding data points are removed from the solution.

## Step 6

The correoted layer two velocity, with its standard deviation is obtained by a least squares fit of

$$
\begin{equation*}
T_{(2)}^{2}=\frac{A^{\prime} B^{\prime}}{\nabla_{(2)}{ }^{2}} \tag{A2.10}
\end{equation*}
$$

and a cheok made for negative velocities.

Step 7
The dip angle, ${ }^{\theta}(2)$, is corrected, using

$$
\begin{equation*}
\tan \theta_{(2)}=\tan \theta_{a(2)} \cdot \frac{\nabla_{(2)}}{\nabla_{a(2)}} \tag{A2.11}
\end{equation*}
$$

and the programe returns to step 2 for a new iteration, before moving onto a third layer.

$$
\text { APPENDIX } 3
$$

## Appendix 3

## Digitisation Test

Using the STORE programme, desoribed in Chapter IV and Appendix I, several digitisations of the same section of record were made at different sampling rates, $100 \mathrm{~Hz}, 250 \mathrm{~Hz}, 500 \mathrm{~Hz}$ and 1 kHz.

The analogue signal, as mentioned previously is filtered through an anti-aliasing filter (Ref. 2.2) whose out-off is approximately 100 Hz , but a test of the digitisation accuraoy, using linear interpolation for signal reconstitution, was made at different sampling rates.

For a sinusoidal waveform of frequency f , a $95 \%$ acouracy limit on the peak amplitude is given by having at least one digitisation value fall between $71.805^{\circ}$ and $108.195^{\circ}$, an angle window of $36.39^{\circ}$ (Fig. A3.1). This is equivalent to 9.893 windows per wavelength, or roughly 10 samples/wavelength. Thus for $95 \%$ accuracy (minimum), using linear interpolation, the digitisation rate must be ten times the maximum frequency of interest. For a sinusoid frequency of 20 Hz sampled at a rate of 500 Hz , 25 samples are taken per wavelength, giving an error window of $14.4^{\circ}$ about the peak amplitude corresponding to an accuraoy level of $96.86 \%$.

For a frequency of 40 Hz , the error window is $28.8^{\circ}$, giving an acouracy level of $87.63 \%$, whilst for 100 Hz , the error window is $72^{\circ}$, implying at $30.9 \%$ accuracy. These, of course, are the worst aase figures.

The Rgplay programme (Chapter IV, Appendix 1) was run with a window length of one sample, with zero delay and taking varying sample numbers, to give exact coverage of the section of digitised record being examined. The results of this were displayed on a teletype, using the PRINT programme and the results plotted in Figs. A3.2, A3.3, A3.4. There are obvious inaccuracies prevent at the lower digitisation rates, and the results of the comparison of the amplitudes


## Fig. A3.1 Digitisation of A Sinusoid






for 15 different peaks listed in the table below (Table A3.1).
Table A3.1 Accuraoy of Disitisation Results

Peak No.	500 Hz   Sample   Value	250 Hz   Sample   Value		100Hz   Sample error   Value	
1	223	213	4.5	217	2.7
2	122	118	3.3	94	22.9
3	148	140	5.4	114	22.8
4	158	157	0.6	156	1.3
5	279	275	1.4	192	31.2
6	260	260	0.0	172	33.9
7	307	294	4.2	294	4.2
8	329	309	6.1	260	21.0
9	277	277	0.0	243	12.3
10	239	223	7.2	222	7.1
11	223	216	3.2	79	64.6
12	276	270	2.2	269	2.5
13	247	247	0.0	213	13.8
14	167	149	10.8	24	85.3
15	136	132	2.9	88	35.3

Mean Frror at 250 Hz is $3.45 \%$
Mean Error at 100 Hz is $24.09 \%$
These figures are calculated with respect to the 500 Hz figure. The plots corresponding to Table A3.1 are given in Fig. A3.5.

The digitisation at 1 ldf proved unsucoessful; the programme was attempting to foroe the data through the internal storage buffers for the magnetic tape Paster than possible and this lead to corruption of the information written onto tape.

The 100Hz digitisation, as expected, gave a percentage error on the peak amplitude (averaged) of $24.09 \%$, taking the 500 Hz as the

```
J
 \square

``` 1
analogue output to jetpen
```


$\underline{2} \quad 100 \mathrm{~Hz}$ output to jetpen

658212

3. 250 Hz output to jetpen

Fig. A 3.5 Peak Accuracy

true record, whilst the 250 Hz sampling rate gave a predictably lower error figure of 3.45%. The 500 Hz digitisation was checked against an analogue display of the analogue signal prior to digitisation, using 'jet-pen' equipment, normally used to investigate the output from an earthquake monitoring seismic array, whose characteristic frequencies are well below those encountered in this work. The low amplitude range of this display (maximum displacement 7om) together with the impulse response of the galvanometers deflecting the pens, meant that this analogue display was not capable of producing records which could be numerically analysed to any degree of sophistication,

A listing of the relative amplitude ratios obtained, analogue source to 500 Hz digital source, is, however, given in Table A3.2, from which it can be seen that the 500Hz rate seams to give a fairly acourate representation of the analogue signal.

Table A3.2 Comparison of Disc and Jet-Pen Output

Peak No.	Amplitude Ch(2) jet pen (mm)	Amplitude Ch(5) jet pen (mm)	$\frac{\operatorname{Ch}(5)}{\operatorname{Ch}(2)}$	$\frac{\text { Dise Output (Digital) }}{\text { Ch(5) }}$ $5 \mathrm{mV} / \mathrm{mm}$.
1	4.7	7.0	1.760	14.14
2	4.0	6.1	1.525	11.97
3	3.0	4.5	1.500	14.00
4	8.0	11.8	1.475	12.29
5	5.0	7.9	1.580	14.30
6	7.2	11.2	1.555	14.12
7	13.5	20.6	1.526	13.84
8	13.5	22.3	1.652	13.27
9	$4.3(?)$	5.7	$1.325(?)$	13.85
10	12.8	21.0	1.640	13.10
11	18.2	29.8	1.637	12.22
12	5.0	8.4	1.680	12.86
13	9.2	15.0	1.630	13.13
14	21.0	33.0	1.571	12.21
15	9.0	15.0	1.667	13.00
16	4.5	7.2	1.600	13.33
17	4.0	6.7	1.675	13.13

Ch(2) is analogue source/analogue output.
$\operatorname{Ch}(5)$ is digital source (disc file)/analogue output.
The figures in column 4 are obtained by dividing the numerical diso file output (Table A3.3), obtained on the teletype using the PRINT programme, by the corresponding analogue output from disc.

The response of the jet pen system was investigated using a computer generated square wave, and analysis of the results gave an approximate overshoot value of 25.30%.

Table A3. 3 Disc File Output

Peak Number	Amplitude $(1024=5 \mathrm{mV})$
1	99
2	73
3	63
4	145
5	113
6	158
7	285
9	296
10	79
11	275
12	364
13	108
14	197
16	403
17	195
	96

[^0]: Fig. 1.1 Example of Real Amplitude Processing (Bright Spot
 Technique)
 Normal Section

[^1]: - Ferrograph Series Seven Tape Recorder Handbook (1974). Ferrograph (U.K.) Ltd., Slough, England.
 -- 'Small Computer Handbook' (1968).
 Digital Equipment Corporation, Maynard, Mass.
 - 'Seismic Sonobuoy Type SB6E4 Handbook' (1970).

 Ultra Eleotronios Ltd., London.
 -- Walker, W.F., (1968).
 'Digital Instruments'
 Electronic Data Library, Vol 1.
 Product Journals Itd.

