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Abstract

This thesis is concerned with the theoretical development and numerical implementation of
efficient constitutive models for the analysis of particulate media (specifically clays) in struc-
tures undergoing geometrically non-linear behaviour. The Mohr-Coulomb and modified Cam-
clay constitutive models have both been examined and extended to provide greater realism.
Findings from this thesis will interest engineers working in numerical methods in solid me-
chanics, along with those investigating continuum mechanics, inelastic constitutive modelling
and large strain plasticity. Although focused on soil plasticity, this research has relevance to
other areas, such as metal forming and bio-engineering.

Initially the concepts of material and geometric non-linearity are reviewed. A general im-
plicit backward Euler stress integration algorithm is detailed, including the derivation of the
algorithmic consistent tangent. A framework for the analysis of anisotropic finite deforma-
tion elasto-plasticity is presented and a full incremental finite-element formulation provided.
The first constitutive model developed in this thesis is a non-associated frictional perfect
plasticity model based on a modified Reuleaux triangle. It is shown, through comparison
with experimental data, that this model has advantages over the classical Mohr-Coulomb
and Drucker-Prager models whilst still allowing for analytical implicit stress integration. An
isotropic hyperplastic family of models which embraces the concept of a Critical State is then
developed. This family is extended to include inelastic behaviour within the conventional yield
surface and a Lode angle dependency on the anisotropic yield function which maintains con-
vexity of both the surface and uniqueness of the Critical State cone. A calibration procedure
is described and the integration and linearisation of the constitutive relations are detailed. All
of the developed models are compared with established experimental data. Finally the mod-
els are verified for use within finite deformation finite-element analyses. The importance of
deriving the algorithmic consistent tangent is demonstrated and the influence of varying levels
of model sophistication assessed in terms of both global behaviour and simulation run-time.
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Nomenclature &
abbreviations

For convenience the nomenclature, in addition to
a list of abbreviations, has been split into six sec-
tions. The identifiers and operators can be com-
bined with or operate on any of the scalars (mate-
rial constants or others), tensors, vectors or ma-
trices, respectively.

Abbreviations
AC anisotropic consolidation [hollow

cylinder test series]
ALE arbitrary Lagrangian-Eulerian
B-L Bhowmik-Long
bE backward Euler
CAS critical anisotropic state
CPP closest point projection
CPPM closest point projection method
CS Critical State
CSL Critical State line
CSS Critical State surface
CSSM Critical State soil mechanics
D-P Drucker-Prager
DTC drained triaxial compression
DTE drained triaxial extension
EMSS energy mapped stress space
FE finite-element
FEM finite-element method
GNL geometric non-linearity
GPM governing parameter method
Gud Gudehus
HCA hollow cylinder apparatus
HCL hydrostatic consolidation line
IC isotropic consolidation [hollow cylin-

der test series]
K Kaolin
KTK Kuhn-Tucker-Karush
LAD Lode angle dependency
LC London clay
LCT Lower Cromer till
M-C Mohr-Coulomb
M-N Matsuoka-Nakai

MCC modified Cam-clay
mR modified Reuleaux
MS Monterey Sand
N-R Newton-Raphson
NAF Non-associated [plastic] flow
NCL normal consolidation line
OCR overconsolidation ratio
P-R Prandtl-Reuss
SFBM San Francisco Bay mud
SMBS Santa Monica Beach sand
UTC undrained triaxial compression
UTE undrained triaxial extension
vM von Mises
W-W Willam-Warnke
αγ isotropic single-surface two-

parameter model
βαγ anisotropic single-surface two-

parameter model
2sαγ isotropic two-surface two-parameter

model
2sβαγ anisotropic two-surface two-

parameter model

Identifiers
0(·) initial condition of (·) for the

Newton-Rahpson procedure
ς(·) energy-mapped version of (·)
(·)ep elasto-plastic quantity of (·)
(·)e elastic component of (·)
(·)p plastic component of (·)
(·)ϕ dissipative stress quantity
(·)γ deviatoric invariant of (·)
(·)cp quantities associated with the closest

point stress return
(·)cs value of (·) at the Critical State
(·)K0 measure of (·) under K0 loading
(·)mp material point quantity of (·)
(·)n+1 value of (·) in the current configura-

tion
(·)n value of (·) in the previous configura-

tion
(·)r backward Euler return value of (·)
(·)sym symmetric component of (·)
(·)t trial value of (·)
(·)v volumetric component of (·)
(·)fd finite deformation version of (·)
(̂·) principal components of (·)

Scalars (material constants)
α, γ material constants controlling the

shape and direction of plastic flow of
the two-parameter yield surfaces

αf , αg opening angles of the modified
Reuleaux yield surface and plastic
potential cones

εe
v0 reference elastic volumetric strain
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κ, λ bi-logarithmic elastic and plastic
compressibility indicae

φ friction angle
φg dilation angle
ρ̄e relative size of the deviatoric radius

under triaxial extension with respect
to that under triaxial compression

σc Mohr-Coulomb yield stress (Pa)
σy yield stress (Pa)
υ Poisson’s ratio
ξc hydrostatic yield stress (Pa)
ā, r̄ constants for the modified Reuleaux

deviatoric function
aβ , bβ , xβ constants controlling the volumetric

target, deviatoric target and rela-
tive contributions for the evolution of
anisotropy

c apparent cohesion (Pa)
Cβ constant controlling the rate of evo-

lution of anisotropy
Cχ constant controlling the rate of trans-

lation of the inner yield surface
E Young’s modulus (Pa)
k constant of passive earth pressure
M classical gradient of the Critical State

line in the p versus q plane
N Critical State line gradient in the p

versus qtxl plane
pr reference pressure (Pa)
R constant ratio of the size of the in-

ner yield surface to that of the outer
yield surface

a1, a2 constants for the Willam-Warnke de-
viatoric function

G shear modulus (Pa)

Scalars (other)
αdσ incremental stress path direction
β measure of the inclination of the yield

surface off the hydrostatic axis in tri-
axial stress space

η stress ratio
ε scalar strain measure
εθz shear strain the in axial-

circumferential plane
εz, εr, εθ axial, radial and circumferential

strain
γ̇, ∆γ rate and increment of the plastic con-

sistency parameter
Φ̇ dissipation rate function
Φ̇1, Φ̇2 rate of dissipation on the outer and

inner yield surfaces (W/m3)
Ψ free-energy function (J/m3)

Ψ1, Ψ2 elastic and plastic components of the
free-energy function (J/m3)

ϕ arc angle for the modified Reuleaux
deviatoric function

ψ effective friction angle
ρ̄ normalised deviatoric radius
ρ deviatoric stress invariant (Pa)
ρg density (N/m3)
σz, σr, σθ axial, radial and circumferential

stress (Pa)
σzθ shear stress in the axial-

circumferential plane (Pa)
θ Lode angle
θc angular circumferential displacement
θhp, φhp angular measures for the unit direc-

tion vector
ξ hydrostatic stress invariant (Pa)
ξg intersection of the plastic potential

with the hydrostatic axis (Pa)
A, B parameters controlling the two-

parameter yield surface shape (Pa)
Af , Bf parameters controlling the inner

yield surface shape (Pa)
b intermediate principal stress ratio
bm parameter controlling the Lode angle

dependent two-parameter yield sur-
face shape (Pa)

dβ parameter controlling the evolution
of anisotropy

e, v void ratio and specific volume
eA to eD instability indicators
f , F yield functions
H scalar measure of the plastic tangent

stiffness
I1, J2, J3 first, second and third invariants of

stress (Pa)
J volume ratio (determinant of the de-

formation gradient)
Jβ

2 , Jβ
3 second and third local deviatoric

stress invariants (Pa)
K bulk modulus (Pa)
(l/l0) contraction/dilation ratio
l length or height (m)
MT torque (Nm)
n1, n2, n3 directional components of a unit vec-

tor
np number of particles
nu number of unknowns in the backward

Euler stress integration algorithm
ngp number of element Gauss points
nmc number of material constants
npgp number of elasto-plastic Gauss points
p hydrostatic pressure (Pa)
pa ratio of the size of the Critical State

yield surface, pc, to the current hy-
drostatic pressure
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pc hydrostatic size of the yield surface
for the Critical State models (Pa)

po, pi external and internal pressures (Pa)
pt total pressure (Pa)
p0 projection centre hydrostatic pres-

sure (Pa)
pβ local hydrostatic pressure measure

from the inner surface apex (Pa)
pA apex hydrostatic pressure (Pa)
q deviatoric stress invariant (Pa)
qtxl stress deviator, the difference be-
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Chapter 1

Introduction

“Geomaterials are very complex... in order to analyse it is always necessary to idealise.”

JB Burland, foreword to Plasticity and Geotechnics, H-S Yu (2006).

In-situ geotechnical materials often exhibit significant anisotropy in their stiffness due to the deposition
process and the particulate nature of their fabric. Even at very low strains (<0.01%), geomaterials
display non-linear, energy-dissipating behaviour, with slip (inelasticity) developing early in the deforma-
tion response. Under loading the interaction and movement of soil particles results in rearrangement of
the contact networks between the constituent fabric, potentially leading to significant volume changes,
force-transfer instabilities and localisation.

Designing efficient foundations for large terrestrial structures on (towers, dams, offshore platforms)
or within (tunnels, caverns) soft sediments can pose significant challenges for geotechnical engineers.
Careful site investigations can enable the stratification of the subsoil to be detected. Knowledge of
the heterogeneity and characterisation of the soil through field or laboratory testing can then allow
finite-element analyses to make valuable predictions of the foundation behaviour. The quality of such
simulations depends largely on the level of geometric detail captured, the appropriateness of the assumed
boundary conditions, the physics embraced and the degree of realism provided by the chosen, properly
calibrated, constitutive models. Theoretical issues surrounding the behaviour when large deformations
and strains (10% or more) occur can further complicate the analysis.

Requirement from industry

The largest element of technical and financial risk in any civil engineering project normally lies in the
ground [15]. Most geotechnical construction activities are on, or close to, a project’s critical path, therefore
any delays in the ground can cause a project overrun, in both schedule and budget [11]. 37% of projects
surveyed by the Institution of Civil Engineers overran due to geotechnical problems [15]. Despite this,
on average, only 0.2–2% of a project’s total budget will be spent on site investigation [29]; providing a
challenging task for geotechnical engineers as they try to assess correctly the appropriate ground solution.

With the increasing need to develop construction projects in highly congested urban land, such as
city centres, the proximity of existing buildings and infrastructure poses further challenges. The incorrect
assessment of ground conditions, or not appropriately accounting for material behaviour, can have serious
consequences. The collapse of a tunnel during the construction of Heathrow airport terminal 4 in October
1994 was partially due to “the lack of appreciation of the differences between hard rock [for which the
tunnelling method was originally designed] and soft clay behaviour” [13]. Several factors contributed to
the collapse but the “design was not considered sufficiently robust” [13]. No one was injured, however, a

– 1 –



2 Chapter 1. Introduction

Health and Safety Executive prosecution followed involving costs of $250 million [13].
Previous examples have shown that significant savings can be made by accounting for a material’s

anisotropy and small strain non-linearity (rather than just the post-yielding response), leading to a
dramatic change in the appropriate foundation or construction solution. One such example was the
King’s Place project in central London, where it was possible to move from a piled to a shallow foundation
solution; giving rise to a considerable cost saving [31].

New projects, such as London’s £15.9 billion Crossrail link, will involve intricate tunnelling paths
which must avoid underground train stations, sewers, power lines and other obstacles, whilst causing
the minimum disruption to existing services [35]. In order to (i) assess accurately the impact of such
construction on existing buildings and services and (ii) arrive at the most appropriate design solution,
fast and accurate three-dimensional engineering analyses are essential.

Evidence from academia

Stallebrass and Taylor [30] demonstrated that “conventional [isotropic] constitutive models of soil be-
haviour show very poor predictions” when used to model a circular footing loaded in a centrifuge test.
The analysis was improved by the inclusion of a model that (i) accounted for the recent stress history on
the material response and (ii) introduced small strain dissipative (inelastic) material behaviour.

Whittle and Hashash [32] commented that the inaccuracies in numerical predictions of ground defor-
mations arise from two sources (i) “inadequate laboratory and field characterisation of relevant engineer-
ing properties” and (ii) “approximate representations of constitutive behaviour used in the finite element
model”. Their study used both classical isotropic and advanced anisotropic constitutive models to predict
the deformation of a braced excavation in a deep layer of normally consolidated clay. They showed that in
order to predict a realistic failure mechanism, the soil’s small strain stiffness and anisotropic stress-strain
behaviour must be accounted for. In 2009, Kung et al. [19] presented the back-analysis of a braced
excavation in Taipei clay. The paper concluded that simple isotropic models are unable to capture satis-
factorily the observed surface settlement response, due to an inability to account for the overconsolidated
soil’s small strain non-linearity.

Through comparisons with in-situ measurements, Zdravković et al. [37] showed that failing to account
for the strength anisotropy inherent in soft clays resulted in the incorrect prediction of an embankment’s
failure height. More recently, in 2008 Möller and Vermeer [21] compared numerical predictions of surface
settlements during tunnel installation with in-situ measurements. They concluded that in order to capture
the observed surface settlement the analysis required “an advanced constitutive soil model” that could
account for the the small strain stiffness of soils, “otherwise computed settlement troughs will be flat and
shallow rather than steep and deep” [21].

1.1 Behaviour of particulate media

One of the major differences between particulate media and other engineering materials, such as metals,
is that a large proportion of their volume is composed of voids (typically around 40–60% by volume).
Therefore, the deformation of soils typically involves permanent changes in volume as the relative positions
of the material particles change. Soil particle sizes and shapes can range from less than 2µm for plate-like
clays up to 60mm for rotund coarse gravels [34], often with significant size variation within a given soil
sample. A soil’s mechanical properties and permeability will depend on the proportion, interconnectivity,
shape and orientation of its constituent fabric and voids, as a result of its previous geological and stress
history.

This thesis is restricted to the behaviour of saturated1 soils. The majority of complex geotechnical
1That is the voids are fully filled with either water or air.
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analysis undertaken in the UK, such as tunnelling, deep excavations and foundations of offshore structures,
are dominated by the saturated behaviour of soils. Concepts such as partially saturated soil mechanics2

or coupled fluid flow analysis fall outside the scope of this thesis.

Clay fabric

Clay minerals comprise hydrous aluminium phyllosilicates (weathered feldspars) lying within one of four
major groups: kaolin, smectite, illite or chlorite. The particles are fine-grained (typically less than 2µm
in diameter), with a sheet-like morphology. As a consequence of the tetrahedral or octahedral atomic
lattice, the platelets generally carry a negative electric charge on their faces (attracting cations present
in the pore fluid to form a double-layer cloud around the silicate layers) and a positive charge on their
edges. The surfaces provides an active site for chemical interaction. Multiple platelets form domains;
attached in edge-to-edge, edge-to-face or stacked face-to-face configurations. For mineral sheets ranging
from 0.05 to 1µm in size, the ionic strength of the fluid medium is seen as the controlling factor for
the domain size. For larger platelet sizes (but less than 20µm) face-to-face interactions dominate the
local forces between the structural units. Domains may group together to form flocculated clusters as a
consequence of van der Waals attraction and edge-to-face double-layer repulsion. Clusters will continue
to grow until their weight, due to gravitational forces, becomes significantly larger than the inter-particle
surface forces. On a larger scale, clusters can group together to form peds. On the granular scale of
clusters and peds, frictional forces control the mechanics rather than electrostatic or van der Waals
forces. Therefore, these clusters can behave in similar way to sands. Similarly to the crushing of granular
materials, at some level of stress these clusters break-down. When this occurs the subsequent behaviour
of the material will be influenced by the rearrangement and alignment of the individual clay particles.
Large scale shearing in clays can eventually cause the particles to become highly oriented, producing
polished surfaces (slickensides) within the rupture zone. This residual state is not generally considered to
be the same as Casagrande’s [5] Critical State. The distinction between the residual state and the Critical
State is not entirely clear. Furthermore, exactly when the mechanical behaviour of clay is controlled by
clusters or platelets remains uncertain. Finally, there is no conclusive evidence as to whether the packing
of clay platelets is anisotropic or effectively isotropic at the Critical State.

Discrete element modelling

Since the pioneering work of Cundall and Strack [7], discrete element modelling has provided valuable
insights into the mechanical behaviour of granular media. This method was developed as a research
tool for informing the development of physically sound continuum models by investigating the micro-
mechanics of granular materials [36]. Within each time step, two calculations are undertaken. Firstly
the computationally expensive task of contact detection and calculation of the associated frictional and
acceleration forces is performed. Secondly, momentum balance is applied to each particle to determine
the new location at the end of the time step [7].

Modelling soils as vast assemblies of individual particles (rather than an averaged macroscopic contin-
uum) suggests that the physics could be addressed more faithfully; providing more fundamental origins
for the material constants of continuum models. Yet the computational burden of handling the three-
dimensional contact between irregularly shaped grains is by no means small for large numbers of particles.
Determining realistic local traction-slip relationships for clays is even more troublesome. To give some
idea of the scale of the problem, a 38mm diameter cylindrical triaxial sample could contain 1015 platelets.
The region beneath a large engineering structure might comprise 1026 such particles. Discrete element
method simulations running on multi-core computers currently allow at most 107 particles [24]. Even

2See Lu and Liko [20], amongst others, for more information on unsaturated soil mechanics.
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assuming dramatic improvements in processing power, it is most unlikely that we will be able to routinely
handle tera-scale (1012) simulations within the next decade.

The majority of discrete element studies have focused on granular materials. Anandarajah [1] reported
on the first use of a discrete element model for clays, using line elements where the chemo-electrical
interactions between clay platelets were used to form the contact laws between particles. In that work,
just 250 elements were used; each particle measuring 0.1µm in length. Reasonable qualitative agreement
was reached between the simulations and observations of real clay behaviour under uniaxial compressive
straining. That work was later extended to allow the clay platelets to flex [2]. The two-dimensional
simulations were still restricted to a small (18µm square) region using 431 particles. The key finding was
that anisotropic behaviour was governed by the orientation of the force chains running through clusters
of clay particles. This argument was used to explain the anisotropic mechanical behaviour of some clays
with no obvious directional preference in their platelet orientation.

Recent two-dimensional discrete element analyses of elongated particles by Fu and Dafalias [9, 10]
reveal that internal force chains are progressively organised to approach co-alignment under continuous
shearing. These observations have suggested that, irrespective of prior anisotropy, the same mean ori-
entation of non-spherical grains is attained within localised shear bands when approaching the Critical
State.

Despite scale limitations, the information obtained from discrete element studies should be used,
where appropriate, to guide the development of continuum models and potentially challenge some of the
ideas embedded in classical continuum mechanics. Such a multi-scale strategy, where in discrete element
simulations inform the construction of macroscopic continuum models, is very attractive.

Observed soil behaviour

The majority of experimental soil testing is conducted using a triaxial cell. The axi-symmetric apparatus
allows independent control over two principal stresses: through the axial load and the cell pressure. In
undrained soil testing, fluid is not allowed to leave (or enter) the soil sample; resulting in an isochoric
response. During triaxial compression, the axial load is increased whilst maintaining a constant cell
pressure.

Other common experimental rigs developed for the study of soil include the oedometer, used to
evaluate the one-dimensional straining of soil and the direct shear box (for granular material). More
sophisticated experimental equipment, such as the true triaxial rig and the hollow cylinder apparatus3,
allows greater control so that a larger proportion of stress space can be explored.

The stress deviator versus strain deviator4 response of Spestone Kaoline under undrained triaxial
loading (compression), unloading and re-loading is reproduced (after Roscoe and Burland [26]) in Fig-
ure 1.1. The unloading and re-loading behaviour of the clay showed little hysteresis in the initial part
of the test. The stiffness of the material reduced when approaching the previous unloading stress level.
This reduction in stiffness was a consequence of material yielding, where the unloading point served as
the current yield point of the soil. This non-linearity is a result of the sliding, rotation, re-alignment and
general re-arrangement of clay particles, clusters or peds. As the magnitude of the unload-reload cycles
increase, significant hysteresis is observed in re-loading response of the clay following unloading. This
hysteresis is a consequence of the dissipative re-arrangement of the soil fabric on unloading. The single
experimental test (Figure 1.1) serves to demonstrate many of the key features of clay behaviour, namely:

3The true triaxial rig allows control over the three principal stresses applied on the surface of a cube. The hollow cylinder
apparatus allows control over the three normal stresses in addition to one shear stress via the independent control over the
internal and external pressure, axial load and torque. See Wood [33], amongst others, for more details on these experimental
apparatus.

4Here, the stress deviator is the difference between the axial and radial stresses, similarly the strain deviator is the
different between the axial and radial strains.
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Figure 1.1: Experimental response of cycles of undrained triaxial compression and unloading on Spestone
Kaolin (after Roscoe and Burland [26]).

(i) non-linearity : throughout the stress-strain response;

(ii) stiffness reduction: gradual yielding of the soil fabric on loading and unloading when experiencing
large stress cycles;

(iii) memory : recent unloading points serve as current yield points for the soil; and

(iv) hysteresis: increasing in magnitude with increasing stress cycles (although the response under many
repeated stress cycles is not shown in Figure 1.1).

Particulate material, by definition, is comprised of many separate grains, platelets or clusters of particles
which can give rise to a complex fabric. As mentioned, even if a complete classification of the particles,
in terms of their shape, size, packing and arrangement within a soil body was attempted, predicting the
mechanical response of such an assembly would be at very least cumbersome. Here, the idealisation of
a continua is adopted where the behaviour of this discrete system of particles is represented using the
methods of continuum mechanics.

1.2 Constitutive modelling

Analysis of engineering structures requires the specification of a relationship between stress and strain
for the materials under consideration. These constitutive models play a central role in any boundary
value simulation and are required for almost every method in soil mechanics, from analytical predictions
of foundation settlements to planning field investigations and laboratory testing. In 1990, Wood [34]
opened the introduction of his Soil Behaviour and Critical State Soil Mechanics text with a quote from
Baran and Sweezy [3]. Here, one sentence has been extracted about the use of models in engineering:

“The purpose of these models is not to give a mirror image of reality, not to include all its
elements in their exact sizes and proportions, but rather to single out and make available for
intensive investigation those elements which are decisive.”
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In other words, models are required to bring out the important features of a problem and disregard those
that are irrelevant.

Early constitutive relations were based on a linear elastic relationship between stress and strain. Such
relations were subsequently extended to include non-linear elastic behaviour and perfect plasticity. Simple
frictional perfect plasticity models, such as Mohr-Coulomb and, later, Drucker-Prager [8] constitutive
formulations, are the most widely used material models able to capture the idealised basic behaviour
of soils. Despite their popularity, these simple plasticity models fail to capture two fundamental yield
dependencies: (i) on the Lode angle, in the case of the Drucker-Prager model and (ii) on the intermediate
principal stress, in the case of the Mohr-Coulomb model. These omissions in the shear strength are
overcome, whilst maintaining the basic features of these two classical models, by the frictional model
presented in Chapter 4. However, it is not possible to reproduce the volumetric response of clays under
hydrostatic (or one-dimensional) consolidation with many of the cone-type models.

It was not until the 1960s, motivated by the desire to reproduce experimental behaviour with greater
realism and aided by the increase in computational power, that more sophisticated constitutive models
first appeared. Critical State soil mechanics (CSSM), developed in the 1950s and 60s at Cambridge
University by Roscoe and co-workers [25–27], is arguably the most successful framework for modelling
the behaviour of soils. The foundations of CSSM were laid far earlier by the work of Casagrande [5], in
1936, on dense and loose sand samples. It was Casagrande who proposed the powerful idea that:

“Every cohesionless soil has a certain critical density, in which state it can undergo any
amount of deformation or actual flow without volume change.”

This critical void ratio is the key assumption behind CSSM. Many of the most successful constitutive
models for particulate media can trace their roots to the work of Roscoe and co-workers [25–27] on Critical
State theory. The modified Cam-clay model (following on from the original Cam-clay model [27]) was
the first hardening plasticity model to become generally accepted for the analysis of clays [33].

Figure 1.2: Concepts of Critical State soil mechanics: (i) drained and (ii) undrained triaxial compression
tests on normally consolidated and heavily overconsolidated samples.
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Figure 1.2 presents the key concepts of CSSM using drained and undrained triaxial compression tests
on normally consolidated and heavily overconsolidated samples5. The drained response is shown in Fig-
ure 1.2 (i) in terms of: hydrostatic pressure versus stress deviator, axial strain versus stress deviator,
hydrostatic pressure versus void ratio6 and axial strain versus volumetric strain. The normally consol-
idated sample starts at A (on the hydrostatic consolidation line, HCL) and under drained compression
moves to B. During this load path the soil undergoes volumetric compaction, reducing the void ratio, until
reaching the unique Critical State line (CSL) where the soil displays isochoric behaviour with unbounded
distortion but no change in state. The heavily overconsolidated sample starts at C, following swelling
from a normally consolidated state at A. Under drained compression, the material initially compacts
until reaching D, where the sample begins to dilate. The soil continues to dilate, with increasing void
ratio, until reaching the Critical State at E. The undrained (isochoric) response under the same loading
is shown in Figure 1.2 (ii). There is zero volume change for both of the tests as fluid is not allowed to
enter or leave the samples, resulting in a constant void ratio. The normally consolidated sample starts at
A and attains the Critical State at F, whereas the overconsolidated sample begins at C and finishes at G.
The axial strain-stress deviator response is quite different for the two samples, with the overconsolidated
sample reaching a peak load prior to arrival at the Critical State. The CSSM framework is able to account
qualitatively for all of these experimentally observed aspects of soil behaviour.

Although many soil models have treated the medium as isotropic, sheet-like platelets within soft
sediments inevitably give rise to a preferred orientation of the fabric, which can have a pronounced
influence on physical properties. Thus a number of extensions to the widely-used (isotropic) modified
Cam-clay plasticity model have been proposed to capture this directional bias, along with small strain
inelastic behaviour. Often these additions are nothing more than elaborate curve-fitting exercises designed
to reproduce a material’s experimental behaviour, without properly accounting for thermodynamics [38]
or the implications on the original CSSM framework. Unlike models developed for other engineering
materials, a direct link has yet to be made between (i) the degree of anisotropy in these models and (ii)
the evolving material fabric, for example, the orientational distribution of contacts.

In 1985, motivated by what he saw as the shortcomings of then current constitutive models, Gudehus
[12] established the following requirements of a model. He claimed that such a model should: (G.i) cover
frequently occurring processes, (G.ii) reflect repeatedly observed properties and (G.iii) be manageable.
These three requirements are equally applicable today as they were over 30 years ago. However, the first
requirement should perhaps be extended to require that the model is able to cover all processes rather
than those that frequently occur in geotechnical analyses. The second requirement is that the material
model should, qualitatively if not quantitatively, reproduce the general trends observed in experimental
behaviour. The final request relates to the complexity and clarity of the model (and its supporting doc-
umentation) together with the ease and feasibility (both technically and economically) of determination
of the material constants. Gudehus’ manageable requirement deserves to be further split into:

(a) tractability : clear derivation and presentation of the constitutive algorithm;

(b) material constants: a complete determination procedure should be given, including the specification
and evaluation of experimental tests. Typical ranges and default values should be specified; and

(c) well-posed, both numerically and analytically: the model should be able to produce physically real-
istic solutions, demonstrate solution uniqueness and be stable, when appropriate, to small changes

5A soil is said to be normally consolidated if it is at the highest stress in its history; having an overconsolidation ratio
(OCR) of one. An overconsolidated soil has been unloaded from some previous maximum stress level; with an OCR greater
than one (where the OCR is the ratio of the current to previous maximum stress level).

6The void ratio is the volume of voids normalised with respect to the volume of solids in a soil sample.
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in material constants.

If these three conditions are achieved, the model should be user invariant, that is, different users will ob-
tain the same, or very similar, results from the same calibration data [12]. The manageability requirement
echoes Chen’s [6] warning about the academic development of models for particulate media:

“This advanced development may produce the danger of a possible separation between the
practical soil engineer and the theoretical academic engineer”.

Indeed some believe that this has already happened. Bolton has declared that “a gulf has arisen between
research and practice in geotechnical engineering” [4].

Since the 1960s there has been a dramatic growth in the number of constitutive models available in
academic literature. In 1985, in order to aid evaluation of the vast array of available models, Chen [6]
proposed the following three basic criteria for model evaluation:

(C.i) theoretical evaluation with respect to continuum mechanics: continuity, stability and uniqueness;

(C.ii) experimental evaluation: ability to reproduce experimental results and ease of calibration with
standard laboratory tests; and

(C.iii) numerical and computational evaluation: ease of implementation with non-linear boundary value
codes.

These criteria should be balanced to achieve rigour in terms of respecting fundamental continuum me-
chanics principles, realistic material behaviour and relative simplicity in terms of implementation [6].

In 1987 Prévost and Wolf [23] placed further restrictions on several of the above conditions, with the
following three constitutive algorithm requirements:

(P.i) “complete... able to make statements about the material behaviour for all stress and strain paths”;

(P.ii) “identify the model parameters by means of a small number of standard, or simple material tests”;
and

(P.iii) “founded on some physical interpretation of the ways in which the material is responding to changes
in applied stress or strain”.

The first point goes further than Gudehus’ [12] point (G.i), requiring “all stress and strain paths” rather
than just those that frequently occur. The second point, similar to Gudehus [12] and Chen [6], places
importance on the ease of calibration. In light of points (P.i) and (P.ii), throughout this thesis, particular
attention was paid to the robustness and calibration procedure of the developed constitutive models. The
third point places a requirement on understanding the physical processes behind a material’s response,
rather than treating constitutive modelling as an elaborate curve-fitting exercise [23].

In the context of geomechanics, the term “constitutive model” is something of a misnomer. Models
typically demand little or no information on mineralogy, grain geometry or packing. Instead they request
parameters obtained largely from axi-symmetric tests, which make no direct investigation of the fabric.
Despite this, if constructed in a thermodynamically consistent manner, spatially averaged representa-
tions can satisfactorily simulate the distortion, dilation and compaction of aggregated clusters of mineral
platelets; which individually slip and flex to alter the void space morphology, reorganising the network
of force-transfer pathways under macroscopic deformation.

The intention of this thesis was not to develop a new constitutive model from scratch, but rather
to identify weaknesses in existing models and remove these limitations using a consistent framework,
drawing on ideas founded in thermodynamic principles [38] and introducing representations of plastic
anisotropy.
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1.3 Numerical analysis

Early geotechnical modelling was based on empirical or semi-empirical methods and dependent on the
experience of the geotechnical engineer [33]. However, these preliminary theoretical methods were limited
to simple engineering problems, such as the long-term settlement or ultimate failure strength prediction
of a strip footing. Numerical analysis (or modelling) is an essential tool for cases where these simple
methods are no longer applicable. This inapplicability often results from the problem’s geometry or the
departure of material behaviour from the idealisations necessary in theoretical methods. Potts’ 2003
Rankine Lecture [22] posed the following question:

“Is numerical analysis just an advanced toy for academics and the privileged few, or is it in
a position to provide a genuine tool for routine geotechnical analysis?”

Potts used examples, from the simple analysis of a rigid strip footing to the complex multi-stage analysis
of the Pisa Tower and the Jubilee line extension in central London, to demonstrate the potential (and
pitfalls) of numerical analysis over conventional methods. The key benefits of numerical analysis were
summarised as:

(i) “Numerical analyses can do everything conventional analysis can do, plus much more.”;

(ii) “Their ability to predict mechanisms of behaviour is a major advantage.”; and

(iii) “Numerical analysis can deal with both simple and complex problems.”

However Potts [22] also warned that: there “are uncertainties in the numerical algorithms”, there “are lim-
itations with current constitutive models” and the “results from numerical analysis are user dependent.”
His paper demonstrated that with the correct information (on ground conditions, material properties
and geometry) and tools (constitutive models and the displacement-based finite-element method), that
numerical modelling [22]

“... is by far the best analysis tool that geotechnical engineers have at their disposal.”

Finite-element method

The finite-element method has been widely and successfully used in the analysis of engineering problems
over the last 50 years. This method allows many aspects of soil behaviour to be taken into account, such as
time dependent deformations, non-linear elasto-plasticity and soil-structure interaction. However, the use
of advanced constitutive models within the finite-element method is still largely restricted to academia.
Displacement-based non-linear finite-element analyses solve problems by applying the imposed loads (or
displacements) in increments. Within each increment, equilibrium is sought between applied external
forces and internal resisting forces within the material body. This represents a minimisation process
which requires an iterative solution strategy that continues until the out-of-balance (residual) force falls
below a specified tolerance. The solution scheme adopted throughout this thesis is the Newton-Raphson
method (see Kreyszig [18] p. 841 for more details). The Newton-Raphson approach requires the stiffness
matrix (relating force and displacement) to be updated at each iteration along with a re-calculation of
the material stresses associated with the current strains using the constitutive relations.

Stress integration

The use of constitutive models within the finite-element method (or similar displacement-based analysis
code) requires an incremental relationship between stress and strain. However, inelastic constitutive
relations are typically developed in rate form which must be integrated for use in practical boundary
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value simulations. Stress integration methods can be broadly split into: exact, implicit and explicit
methods. Exact stress integration is currently only possible for a small number of simple constitutive
models, therefore an approximate method must be used for more complicated material models. Here a
general fully implicit backward Euler stress integration method is adopted, as described in Chapter 2.
The backward Euler method has advantages over explicit methods, in terms of (i) enforcement of the yield
(and consistency) condition, (ii) smaller errors, particularly when experiencing large strain increments
and (iii) derivation of an algorithmic consistent tangent. The drawback of implicit methods is that they
are more complicated than explicit routines.

The rate of convergence of the global equilibrium Newton-Raphson iterative solution algorithm is
highly sensitive to the form of the stiffness matrix relating forces to displacements. Implicit methods
allow the derivation of a tangent consistent with the stress integration routine. Simo and Taylor [28]
showed that this algorithmic consistent tangent leads to optimum asymptotic quadratic convergence of
the global equilibrium equations. The consistent tangent stiffness matrices have been provided for all of
the models developed in this thesis.

Geometric non-linearity

The majority of geotechnical boundary value simulations are analysed using the the assumption of in-
finitesimal strains, based on a linear relationship between strains and displacements. However, as com-
mented by Hinton [14]:

“..linear analysis is wrong, the world essentially exhibits nonlinear behaviour and it is entirely
fortuitous that the assumption of linear behaviour enables accurate response to be predicted.”

It is important to detect during an analysis, when the changing structural geometry will play a significant
role on its subsequent displacement response. Geometrically non-linear (or finite deformation) formu-
lations account for this effect during the loading process, making the linear relationship between strain
and displacement redundant. Unlike infinitesimal small strain analysis, the field of finite deformation
analysis has yet to be fully unified. Several approaches to geometric non-linear analysis have been pro-
posed. These use different measures of stress and strain, together with different methods that account
for changing geometry.

Certain choices for stress and strain measures can be advantageous, particularly when recalling Gude-
hus’ [12] manageability requirement and Chen’s [6] ease of implementation criterion. This thesis uses an
updated Lagrangian logarithmic strain-Kirchhoff stress formulation (as described in Chapter 3). The use
of a logarithmic strain-Kirchhoff stress relationship, in conjunction with an implicit exponential map for
the plastic flow equation, allows for the implementation of standard small strain constitutive algorithms
within the finite deformation framework without modification. These stress and strain measures provide
the basis of the most successful, straightforward ways of implementing large strain elasto-plasticity [17].

1.4 Scope and outline

This thesis is concerned with the theoretical and numerical development and subsequent implementa-
tion of efficient, accurate constitutive models for the analysis of particulate media (specifically clays)
undergoing geometrically non-linear behaviour. In particular, the Mohr-Coulomb and modified Cam-clay
constitutive models, as the most widely used models in practical numerical analysis, have been critically
examined and extended to provide greater richness and realism. The work is cast within the framework
of conventional continuum mechanics, without the use of enriched (or non-local) continua (see Jirásek
[16], amongst others). Findings from this thesis will interest engineers working in numerical methods in
solid mechanics, along with those working in continuum mechanics, inelastic constitutive modelling and
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large strain plasticity. Although focused on soil plasticity, this research has relevance to other areas such
as metal forming and bio-engineering.

Research in this thesis can be split into three distinct sections:

I. This introduction provides the background for the research.

II. The second and third chapters distill the essential tools which are used throughout the later chapters.
These reviews cover the effects of material and geometric non-linearity.

• Chapter 2 on material non-linearity, introduces the basic principles of constitutive modelling.
Starting with three main approaches to elasticity, this chapter presents the three classes of
inelasticity. Stress integration approaches are then reviewed, including explicit, implicit and
exact integration methods in addition to some recent alternative techniques. A general implicit
backward Euler stress integration algorithm is described in detail. The chapter closes with the
derivation of a tangent which is consistent with the implicit stress integration method.

• Chapter 3 is concerned with the numerical modelling of structures exhibiting geometric non-
linearity. Initially the basic kinematics of finite deformation are given, leading to an investi-
gation into some common simple deformation fields. A framework for the analysis of isotropic
finite deformation elasto-plasticity is presented and extended for the case of plastic anisotropy.
The full incremental finite-element formulation is provided and the framework is verified using
six numerical examples.

III. The main part of this thesis is concerned with the development and implementation of several classes
of constitutive model for geotechnical analysis. Theoretical derivation, integration, linearisation,
numerical implementation and calibration are fully described for each of the developed models.

• Chapter 4 develops a novel non-associated simple frictional plasticity model based on a modified
Reuleaux triangle. It is shown through comparison with experimental data that the model has
significant advantages over the classical Mohr-Coulomb and Drucker-Prager models, whilst still
allowing for analytical implicit stress integration. The errors associated with the three models
are quantified and the run-time advantage of analytical backward Euler stress integration, over
an iterative method, is demonstrated.

• Chapter 5 presents the theoretical development and numerical implementation of a family
of isotropic α-γ hyperplasticity models that embrace the concept of a Critical State. It is
shown that non-associated flow is a natural development of hyperplasticity and that a Lode
angle dependency can be incorporated in a straightforward manner. The model is integrated
using an iterative implicit backward Euler scheme and the influence of the form of the yield
function is demonstrated. Errors are quantified for the backward Euler scheme. Particular
attention is paid to the robustness of the algorithm and its linearisation when deriving the
algorithmic consistent tangent. The model is fully calibrated and its performance compared
with established experimental data.

• Chapter 6 develops a family of two-surface anisotropic β-α-γ hyperplasticity models that over-
come many of the inadequacies of the isotropic model presented in Chapter 5. This new model
combines a Lode angle dependency with an anisotropic yield function, yet maintains both
surface convexity and uniqueness of the Critical State cone within a hyperplastic framework.
Inelastic behaviour is introduced within the conventional yield surface through the specification
of an additional term in the dissipation function. A complete calibration procedure is described
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and the integration and linearisation of the constitutive relations are discussed. Similarly to
the previous section, the importance of selecting an appropriate yield function is stressed,
the errors associated with the integration scheme quantified and the robustness of the stress
return verified. Finally the chapter compares the two-surface anisotropic model predictions
with experimental data designed to reveal the anisotropic behaviour of geomaterials.

• Chapter 7 presents numerical analyses using the constitutive models developed in the pre-
ceding three chapters, cast within the finite deformation framework developed in Chapter 3.
The influence of varying levels of sophistication of the different models is assessed in terms of
(i) their influence on the global behaviour and (ii) in terms of the run-times associated with
the simulations. A sensitivity analysis is conducted with the two-surface anisotropic model
developed in Chapter 6 and the importance of deriving the algorithmic consistent tangent
demonstrated. The final section in this chapter presents a detailed analysis of recent exper-
imental data from a hollow cylinder apparatus including (i) material point simulations, (ii)
finite-element discretisation of the hollow cylinder and (iii) an instability investigation designed
to detect loss of a continuum response during loading.

Conclusions and recommendations for future work are given in Chapter 8.

1.4.1 Notation

For compactness and clarity, this thesis uses both index and matrix/vector notation where appropriate.
Stress and strain are nine-component quantities, however due to symmetry in the shear quantities, six-
component vector notation is used in this thesis. Chapters 2, 3 and 4 use a tension positive notation,
whereas Chapters 5 and 6 use a compression positive notation. The reason for this is two-fold. The
general convention within solid mechanics is to treat tension positive, therefore the general theoretical
development of the numerical framework is presented using that convention. However, the majority of
the geotechnical community work with a compression positive notation as, in general, the constitutive
behaviour for geotechnical particulate media falls within the compressive region of stress space.

The numerical algorithms used in this thesis were developed using MATLAB m-script and later
implemented in Fortran90. Unless stated otherwise the numerical simulations were run in MATLAB.
Those which have been written in Fortran90 are identified within the text.
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573.

[23] JH Prévost & JP Wolf, Nonlinear soil mechanics and dynamic soil-structure interaction, Lausanne,
Switzerland, 1987.

[24] CA Radeke, BJ Glasser & JG Kinast, Large-scale powder mixer simulations using massively parallel
GPU architectures, Chem. Eng. Sci. 65 (2010), 6435–6442.

[25] KH Roscoe, AN Schofield & CP Wroth, On the yielding of soils, Géotechnique 8 (1958), 22–53.
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Chapter 2

Material non-linearity

All materials exhibit some material non-linearity (that is, a non-linear relation between stress and strain)
under certain multiaxial stress paths. While a linear response may be seen under uniaxial tension for some
materials, the behaviour under hydrostatic compression is typically non-linear. Soils can exhibit highly
inelastic material behaviour, with different stress-strain paths under loading and unloading. Inelastic
constitutive formulations using plasticity theory first appeared following the study of metals in the 1950s
(see Hill [16] for more information on the early history of plasticity theory). However, the use of such
methods for particulate media was not immediate. Indeed, Wroth and Palmer [53] commented that:

“Plasticity theory was developed by people who thought in terms of metals, and for about
twenty years workers in soil mechanics have been looking at the theory, rather as outsiders,
and asking whether it had anything to offer them.”

The application of these theories to geomaterials was initiated by the work of Drucker and Prager [14]
who included a pressure dependence into the constitutive equations. Since that time much work has been
done to develop sophisticated (some might say, over-complicated) plasticity models for soil and rock.

This chapter begins by briefly reviewing the concepts of elasticity in Section 2.1. Material inelasticity
is considered in Section 2.2, presenting the classical rate formulation of plasticity and outlining the the-
ories of hyperplasticity and incrementally non-linear hypoplasticity. Section 2.3 is concerned with stress
integration. It discusses the three main methods of explicit, implicit and exact integration in addition
to some recently proposed alternative methods. A general algorithm for the adopted implicit backward
Euler (bE) stress integration method is then presented. Section 2.4 provides a general description of the
linearisation of the constitutive relations in order to derive an algorithmic tangent consistent with the bE
stress integration procedure. Finally, observations are drawn in Section 2.5.

2.1 Elasticity

Elasticity can be defined as the ability of a material to return to its original state once an applied load,
causing deformation, is removed. There are three classes of elasticity theory: elasticity, hyperelasticity
and hypoelasticity. Elastic formulations (also known as Cauchy elastic models [6]), according to the
description as used by Fung [15], allow the Cauchy stress to be expressed as a single-valued function
of the elastic strain

{
σ(εe)

}
, where {εe} is the elastic strain vector. For linear elasticity the following

relation holds
{σ} = [De]{εe}. (2.1)

– 15 –



16 Chapter 2. Material non-linearity

In the case of isotropic linear elasticity, the stiffness matrix1 [De] is given by

[De] =
E

(1 + υ)(1 − 2υ)

[
(1 − 2v)[I] + υ{1}{1}T

]
, where {1} = {1 1 1 0 0 0}T (2.2)

E is Young’s modulus, υ is Poisson’s ratio and [I] is the six by six identity matrix. Elasticity laws
are path-independent and reversible. That is, for a given strain level, the stress is uniquely defined.
Despite its limitations in simulating the behaviour of real materials, an isotropic linear elasticity provides
the description for the elastic response many widely-used constitutive models for soils in engineering
practice, such as the frictional Mohr-Coulomb (M-C) and Drucker-Prager (D-P) models.

Hyperelasticity formulations (also known as secant formulations or Green elastic models [6]) derive
the stress-elastic strain relationship from a scalar free-energy function, Ψ, by taking the derivative of this
function with respect to elastic strain

{σ} = {Ψ,εe }. (2.3)

The elastic stiffness matrix is obtained from the second derivative of Ψ

[De] = [Ψ,εeεe ]. (2.4)

If Ψ is a quadratic function of elastic strain, then it is possible to recover a linear elastic material obey-
ing (2.1). Hyperelastic laws are path independent, reversible, easy to implement numerically2 and are
able to reproduce several characteristics associated with the behaviour of soils, such as: non-linearity,
dilation, stress-induced anisotropy and strain-softening [6]. However, higher-order hyperelastic laws re-
quire the specification of a considerable number of material constants3 (which can be hard to determine
experimentally).

Hypoelastic formulations are based on a non-unique rate relationship between stress and elastic strain,
of the form

{σ̇} = [De]{ε̇e}, (2.5)

where an over-dot denotes a rate quantity. If [De] is constant, then the hypoelastic relationship obeys
(2.1), making it equivalent to specifying linear-elastic relationship. However, [De] is generally not con-
stant; typically being dependent on the current level of stress. These models are able to provide material
behaviour that is dependent on the past stress history, being both path-dependent and irreversible.
However, hypoplastic models can introduce unwanted stress-induced anisotropy and under general stress
states the distinction between unloading and loading is not clear (requiring additional assumptions) [6].

It is important to note that some hypoelastic material formulations are non-conservative, effectively
creating energy and thereby violating the first law of thermodynamics [6]. Also hypoelastic models can
produce non-closed cycles of strain for closed cycles of stress, in direct contradiction of the notion of
elasticity [19]. In contrast to hypoelasticity, hyperelasticity formulations restrict the elastic material
behaviour to thermodynamically reasonable results. Such hyperelastic forms will be used throughout the
remainder of this thesis.

1Note, (2.2) relates engineering (rather than tensorial) strains to Cauchy stress. There is a factor of two on the shear
strains when moving between engineering and tensorial descriptions of strain. Engineering strains are used throughout this
thesis unless stated otherwise.

2The elastic law is formed through Ψ as a path independent relation between stress and strain, for a given value of strain
the stress can be trivially calculated as can the appropriate elastic stiffness tangent.

3For example, an isotropic third-order relation between stress and strain requires nine constants, whereas a fifth-order
requires 14 [6].
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2.1.1 Principal stress space

Stress and strain are nine-dimensional quantities, with six independent values. In all that follows, the
following vector ordering of stress (and strain) is used

{
σ
}

=
{
σxx σyy σzz σxy σyz σzx

}T
, (2.6)

alternatively, in matrix notation

[
σ
]

=

 σxx σxy σzx

σxy σyy σyz

σzx σyz σzz

 =
3∑

i=1

σi

{
vi

}{
vi

}T

.
(2.7)

The eigenvalues of (2.7)1 are the principal stresses σi with eigenvectors
{
vi

}
. Isotropic constitutive

relations can be formulated in principal stress space, as the principal directions of stress and strain are
coincident. Also, using principal components allows any stress state to be visualised in three-dimensional
space.

2.1.2 Stress and strain invariants

Stress and strain invariants are often used as an alternative representation of a material’s state. They are
invariant to Euclidian transformations (rotations and translations). The most commonly used invariants
of stress are

I1 = tr
(
[σ]

)
, J2 =

1
2
tr

(
[s][s]

)
and J3 =

1
3
tr

(
[s][s][s]

)
. (2.8)

where the deviatoric (traceless) stress is [s] = [σ] − I1[1]/3 and [1] is the three by three identity matrix.
These invariants are related to the useful Haigh-Westergaard cylindrical stress measures

ξ =
I1√
3 ,

ρ =
√

2J2, and θ =
1
3

arcsin

(
−3

√
3

2
J3

J
3/2
2

)
∈

[
−π/6, π/6

]
, (2.9)

where ξ is the hydrostatic stress, ρ is a measure of the deviatoric stress and θ is the Lode angle. The
principal stresses can be obtained from

{σ̂} =
ξ√
3
{1} +

√
2
3
ρ
{

sin(θ − 2π/3) sin(θ) sin(θ + 2π/3)
}T

,
(2.10)

where (̂·) denotes a principal quantity in vector/matrix format. The volumetric, εv, and deviatoric, εγ ,
strain invariants can be defined as

εv = tr
(
[ε]

)
, εγ =

√
tr

(
[γ][γ]

)
, where [γ] = [ε] − εv[1]/3. (2.11)

2.2 Inelasticity

The term inelasticity broadly covers: plasticity, time dependent viscosity and material damage. However,
only the former is considered here.

The theory of plasticity is concerned with solid materials that undergo permanent plastic deformations
when stressed. In this work we restrict our attention to inviscid materials (that is, those materials where
the material response is independent of the rate of load application). For a review of the early history
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and development of plasticity the reader is referred to the classical text by Hill [16]. As with elasticity,
there are several approaches to inelastic material behaviour, the main three are: classical plasticity,
hyperplasticity and hypoplasticity. These three classes are now briefly examined.

2.2.1 Classical plasticity

Conventional classical plasticity theories are based on the specification of scalar yield (f) and plastic
potential (g) functions that, combined with an elasticity relationship and laws governing the evolution of
an internal material parameters, allow formulation of the constitutive equations.

The yield function

The yield function (or yield criterion), f , is a central idea in classical plasticity theory. It was first used
for soils in 1773 by Coloumb and later for metals in 1864 by Tresca [16]. In stress space the yield function
defines the boundary (f = 0) between an admissible elastic region inside the yield surface (f < 0) and
an inadmissible region outside the yield surface (f > 0). Any stress state must lie either inside (elastic)
or on (elasto-plastic) the yield surface, that is f ≤ 0.

Classical rate formulation

The four key components of elasto-plasticity are now listed.

(i) The additive decomposition of the strain into elastic and plastic components is expressed as

{ε} = {εe} + {εp}, (2.12)

where {εp} is the plastic strain.

(ii) A rate relationship is assumed to exist between the elastic strains and the Cauchy stresses

{σ̇} =
[
De

]
{ε̇e}. (2.13)

(iii) A plastic flow rule is prescribed
{ε̇p} = γ̇{g,σ }, (2.14)

where {g,σ } is the direction of plastic flow (the derivative of the plastic potential with respect to
stress) and γ̇ the plastic consistency parameter that controls the magnitude of the plastic strains.

(iv) The Kuhn-Tucker-Karush (KTK) consistency conditions are enforced

γ̇ ≥ 0, f
(
{σ}, {β}

)
≤ 0 and γ̇f

(
{σ}, {β}

)
= 0, (2.15)

where f is a function of stress {σ} and the internal material parameters {β} specify the size,
location, orientation and shape of the surface.

Rearranging and substituting the rate form of (2.12) into (2.13), we obtain the stress rate as

{σ̇} =
[
De

]{
{ε̇} − {ε̇p}

}
. (2.16)

Replacing the plastic strain in (2.16) with (2.14), gives

{σ̇} =
[
De

]{
{ε̇} − γ̇{g,σ }

}
. (2.17)
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Introducing the consistency condition for hardening elasto-plasticity

ḟ = {f,σ }T {σ̇} + {f,β }T {β̇} = 0 (2.18)

and substituting (2.17) for the stress rate, we obtain

ḟ = {f,σ }T
[
De

]{
{ε̇} − γ̇{g,σ }

}
+ {f,β }T {β̇} = 0. (2.19)

Assuming that, similarly to the evolution of plastic strains, the internal variable rate is given by

{β̇} = −γ̇{Hβ}, (2.20)

where {Hβ} defines the instantaneous evolution of the internal variables. Substituting (2.20) into (2.19)
and rearranging, the consistency parameter follows as

γ̇ =
{f,σ }T

[
De

]
{ε̇}

{f,σ }T
[
De

]
{g,σ } + H

.

(2.21)

where H = {f,β }T {Hβ} is a scalar measure of the plastic tangent stiffness. Substituting (2.21) into
(2.17)

{σ̇} =
[
De

]{
{ε̇} −

(
{f,σ }T

[
De

]
{ε̇}

{f,σ }T
[
De

]
{g,σ } + H

)
{g,σ }

}
(2.22)

and rearranging to obtain the infinitesimal elasto-plastic tangent, [Dep], as

{σ̇} =
[
De

]
rank-one update of [De]︷ ︸︸ ︷[

[I] −

[
{g,σ }{f,σ }T

[
De

]
{f,σ }T

[
De

]
{g,σ } + H

]]
︸ ︷︷ ︸

[Dep]

{ε̇}. (2.23)

The infinitesimal elasto-plastic tangent provides a relationship between the instantaneous rate of the
change of stress in terms of strain. For the case of associated plastic flow (that is, when the yield and
plastic potential functions are equal), [Dep] will be symmetric4. However, in the case of non-associated
plastic flow, where g 6= f , the major symmetry of [Dep] is lost.

2.2.2 Hyperplasticity

Hyperplastic formulations, arising from the pioneering works of Ziegler [55] and Houlsby [18], allow the
constitutive equations to be derived from a free-energy function and a dissipation rate function [19].
Once these functions have been specified, the stress-elastic strain law, yield function and flow rule can
all be obtained without the requirement for any additional assumptions. Textbook accounts of the
thermomechanics of materials can be found in volumes by Ziegler [55] and Maugin [32], amongst others.
The following equations use tensorial notation to avoid any possible confusion arising from the shear
components of stress and strain when using vector notation. The rate of work done by a hyperplastic
material is given by

σij ε̇ij = Ψ̇ + Φ̇, where Φ̇ ≥ 0. (2.24)

Ψ denotes the free-energy function and Φ̇ identifies the dissipation rate, both defined per unit volume. The
later must be strictly positive when plastic deformation occurs. σij represents the stress tensor and ε̇ij

4Provided the elastic stiffness matrix [De] is also symmetric.
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the total strain rate tensor. The inequality (Φ̇ ≥ 0) is the statement of the second law of thermodynamics
for isothermal deformations.

The free energy function is typically defined in terms of the total, εij , and plastic, εp
ij , strains [7].

However, here we limit ourselves to the case of de-coupled materials where Ψ (and its associated rate)
can be split into two components: one in terms of the elastic strains and the other in terms of the plastic
strains

Ψ = Ψ1(εe
ij) + Ψ2(ε

p
ij) and Ψ̇ =

(
∂Ψ1

∂εe
ij

)
ε̇e

ij +

(
∂Ψ2

∂εp
ij

)
ε̇p
ij . (2.25)

The first term gives the stress-elastic strain relation

σij =
∂Ψ1

∂εe
ij

, (2.26)

and the second term in (2.25)2 provides the shift stress

χij =
∂Ψ2

∂εp
ij

, (2.27)

which identifies the centre of the yield surface in true stress space. Through these shift stresses, the
second part of the free-energy function defines the kinematic hardening of the yield surface, whereas any
isotropic hardening is controlled by the dissipation rate, Φ̇.

The dissipation rate itself depends on the plastic strain rate in addition to the total strains, Φ̇(εij , ε
p
ij , ε̇

p
ij),

however it cannot depend on the total strain rate otherwise purely elastic deformation could result in
dissipation. For inviscid elasto-plasticity models, the dissipation rate is homogeneous of degree one in
the plastic strain rates [8], giving

Φ̇ =
∂(Φ̇)
∂(ε̇p

ij)
ε̇p

ij . (2.28)

Using the dissipation rate we can define a dissipative stress

ϕij =
∂(Φ̇)
∂(ε̇p

ij)
, (2.29)

thus (2.28) becomes
Φ̇ = ϕij ε̇

p
ij . (2.30)

The dissipative stress is linked to true stress space through the shift stress, χij . Substituting (2.25) and
(2.30) into (2.24), we obtain

σij ε̇ij =

(
∂Ψ1

∂εe
ij

ε̇e
ij +

∂Ψ2

∂εp
ij

ε̇p
ij

)
+ ϕij ε̇

p
ij . (2.31)

Using (2.26) and (2.27), (2.31) becomes

σij ε̇ij = σij ε̇
e
ij+

(
χij + ϕij

)
ε̇p
ij , (2.32)

providing the following relationship between total, shift and dissipative stresses

σij = χij + ϕij . (2.33)

The dissipation rate is not equal to the plastic work rate. The later is given by the product of the true
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stress with plastic strain rate
Ẇ p = σij ε̇

p
ij = Φ̇ + χij ε̇

p
ij . (2.34)

Due to the constraints imposed by the second law of thermodynamics, Φ̇ must always be greater or equal
to zero but there is no restriction on the sign of Ẇ p. The last term in (2.34) indicates the plastic work
associated with the recoverable elastic deformations arising from plastic strains when soil grains are locked
in the soil fabric [9]. The concepts of dissipated and stored plastic work can be demonstrated using the
one-dimensional kinematic hardening rheological model in Figure 2.1 (i), comprising of a spring (a) which
is in parallel with a second spring and slider (b). The system is subjected to an increasing total stress, σ,
followed by unloading until σb = 0, as shown in Figure 2.1 (ii). The components of stored and dissipated
plastic work can be seen in Figure 2.1 (iii). Plastic dissipation occurs in the slider. Stored plastic work
is a consequence of the frozen elastic energy in spring a which is restrained by the plastic slider.

Figure 2.1: (i) Rheological model of a one-dimensional kinematic hardening elasto-plastic system (ii)
stress-total strain response (iii) stress-plastic strain response.

It can be shown that the plastic strain increment is given by a normal flow rule in dissipative stress
space [7]. This only implies an associated model in true stress space under the condition that the
dissipation rate is independent of the true stress, σij . For the case when the free-energy function only
depends on the elastic strains, the shift stresses are zero and the true and dissipative stress space are
identical.

2.2.3 Incrementally non-linear hypoplasticity

Hypoplastic formulations describe the mathematical equations of plasticity using an incrementally non-
linear5 approach [24], understood as a “generalization of hypoelasticity” [25]. It was motivated by the
inability of classical plasticity theories to describe experimentally observed incremental non-linearity [24].
In line with hypoelasticity, the constitutive equations are formulated through the specification of the
stress rates in terms of the strain rates, typically of the form [25]

{σ̇} =
{
h({σ}, {ε̇})

}︸ ︷︷ ︸
rate-independent

+
{
g({σ}, {ε̇}, {ε̈})

}︸ ︷︷ ︸
rate-dependent

. (2.35)

The first term is used to describe the rate independent response, with the requirement that {h} is (i)
isotropic, positive homogeneous of degree one in {ε̇} and (ii) non-linear in the strain rate to exhibit
dissipative behaviour [25]. For the case where {h} is linear in the strain rate we recover a hypoelastic

5Incremental linearity was defined by Kolymbas as “the ostensibly self-evident assumption that the application of two
small stress- (or strain-) increments has the same effect as the application of their vector sum, when these increments tend
to zero” [24].
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response. The second term in (2.35) describes the rate dependence (including viscosity) of the hypoplastic
material, such that under a constant strain rate ({ε̈} = {0}) the contribution of this term vanishes [24].

The concept of yielding in hypoplastic formulations is different to that under classical plasticity.
Hypoplastic yielding was described by Kolymbas [25] as “the condition of vanishing stiffness”, that is
when

{σ̇} =
{
h({σ}, {ε̇})

}
= {0}, (2.36)

at particular values of {σ} and {ε̇}. This condition can be used to describe a hypoplastic yield surface in
both stress space, through f({σ}) = 0, and strain-rate space6, through h({ε̇}) = 0. The shape of these
surfaces will depend on the form of the hypoplastic constitutive relations. However, f({σ}) = 0 does
not define a bound between the admissible and inadmissible stress states, as with classical plasticity, but
rather the point of vanishing stiffness. An additional surface, known as the bound surface, envelopes all
feasible stress paths.

The constitutive model described by (2.35) is amorphous (that is, without memory of internal struc-
ture) such that under a cyclic straining, the response of the nth cycle is the same as the first [25]. To
include the effect the material’s past history on the incremental stress response, the first term in (2.35)
must be modified to

{σ̇} =
{
h({σ}, {ε̇}, {β})

}
, (2.37)

where {β} is a set of internal material parameters known as the structure tensor which contains informa-
tion about the material history. The initial condition (and subsequent evolution) of this structure tensor
is difficult to specify as it cannot be determined directly through experiments.

The main shortcoming of hypoplastic formulations is that, unlike hyperplasticity models, they do not
explicitly satisfy the laws of thermodynamics, being able to generate or consume energy [19]. In addition,
they can be unnecessarily complex, the models are difficult to validate and the formulations can contain
internal contradictions [5].

2.2.4 Inelastic constitutive relations

The field of constitutive modelling is continually expanding and the library of available models is over-
whelming. It is not feasible (or appropriate) here to review the full suite of material models published
in the academic literature. A useful review of constitutive models was provided by Yu [54] in 2002. This
covered materials from rocks, soils and concrete to metals, polymers and ceramics. For details on classi-
cal metal plasticity models (such as those using the von Mises and Tresca yield functions) see Hill [16],
amongst many others, and for their numerical implementation see Simo and Hughes [43]. The recent book
by de Souza Neto et al. [46] provides information (including numerical implementation) on the classical
Mohr-Coulomb and Drucker-Prager [14] models. Wood [52] gives information on constitutive models for
geotechnical modelling including the widely used modified Cam-clay model [40, 42] and discusses some of
its many extensions. Throughout the following chapters reference is made, when appropriate, to existing
constitutive models (including their advantages, disadvantages and implementation) when introducing
the proposed related methods and models.

2.3 Stress integration

Constitutive models are invariably developed in rate form. However, for a model to be used, in practical
boundary value simulations or even at a material point level, it is necessary to integrate the constitutive
equations (2.13), (2.14) and (2.20) subjected to the KTK constraints (2.15). For a displacement based

6Note, that de to the rate independence of h on {ε̇}, h({ε̇}) = 0 is a cone in strain-rate space.
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finite-element (FE) program (or other boundary value simulation method), we are faced with the question:

Starting from a initial state with a known elastic strain {εe
n} and internal variables {βn},

when subjected to a strain increment {∆ε}, what is the updated elastic strain {εe
n+1} (or the

equivalently the stress, {σn+1}) and internal variables {βn+1}?

For the case where the trial stress, {σt}, corresponding to the trial elastic strain state, {εe
t} = {εe

n}+{∆ε},
lies within the yield surface, their is no need to integrate the rate equations (provided a linear or secant
elasticity law is adopted). However, if the trial stress state lies outside the yield surface (f > 0), an
integration procedure is required to update the elastic strain and internal variables. This integration is
the central problem in computational plasticity and has received significant research interest since the
1960s.

The paper by Kojić [22] provides a review of the integration procedures for use in the finite-element
method (FEM). The paper identified four essential properties for any practical stress integration algo-
rithm:

(i) robustness; applicable to all physical conditions and the ability to handle large strain increments;

(ii) accuracy ; accurate stress integration for a range of strain increments (both small and large);

(iii) efficiency ; computational efficiency is essential as the stress integration algorithm lies at the heart
of any numerical stress analysis code; and

(iv) stability ; numerically stable, both to changes in the strain increment and material constants.

Stress integration procedures can be broadly split into three categories:

(i) explicit methods, where the stress integration is formulated based on the conditions at the start of
the strain increment;

(ii) implicit methods, formulated based on the conditions at the end of the strain increment; and

(iii) closed-form exact stress integration.

These three integration methods are now briefly reviewed, in addition to some recent alternative ap-
proaches.

Explicit methods

Explicit methods have their routes in the pioneering work of Ilyushin in 1943 [20]. This paper (published
in Russian) proposed an iterative elastic method, for the elasto-plastic analysis of a thin shell, where the
solution is obtained by a sequence of elastic steps with each successive step taking the previous step as the
starting state [31]. Ilyushin’s method of successive elastic solutions7 was subsequently used by Mendelson
[33] to integrate a Prandtl-Reuss (P-R)8 constitutive model. Nayak and Zienkiewicz [35] were the first
to propose a general explicit stress integration procedure for use within the FEM. The paper presented
a series of FE simulations using the perfect plasticity Tresca and P-R constitutive models in addition
to strain hardening and softening plasticity models. Subsequently several models have been integrated
using the technique established by Nayak and Zienkiewicz [35]. This explicit forward Euler method can
be summarised by the following steps:

7See Chapter 9 of Mendelson [33] pp. 164-212 for details on the method of successive elastic solutions.
8The Prandtl-Reuss constitutive model combines linear isotropic elasticity with a non-hardening von Mises yield criterion

with associated isochoric radial plastic flow (as explained by Simo and Hughes [43], p. 89).
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(i) subjected to a strain increment, {∆ε}, calculate the trial stress state, {σt} outside the yield surface
(f > 0);

(ii) the contact stress is obtained through finding the intersection of the ray between the initial stress
state, {σn}, and the trial stress state with the yield surface. This intersection point is

{σi} = a × [De]{∆ε}, (2.38)

where a is the proportion of the strain increment responsible for purely elastic behaviour and (·)i

denotes a quantity associated with the intersection state;

(iii) the intersection stress is then modified to account for the remainder of the strain path

{σn+1} = {σi} + (1 − a)[Dep
i ]{∆ε}, (2.39)

where [Dep
i ] is calculated at the intersection stress from (2.23). However, generally this updated

stress state will be at an inadmissible stress location (f > 0);

(iv) finally a corrector can then be used to return the stress state back onto the yield surface. Multiple
corrections maybe required to converge to within a specified tolerance.

Several methods have been proposed for this final correction step (see [35]). Sub-incrementation can
be used to reduce the errors associated with the procedure. However, the greatest disadvantage of this
explicit method is that it does not enforce the consistency condition (2.15) at the end of the applied
strain increment [49].

In addition to not satisfying the consistency condition, explicit methods suffer from two other short-
comings [22], namely:

(i) relatively low accuracy (for example see Krieg and Krieg [29]); and

(ii) the use of [Dep] to construct the global stiffness matrix does not result in asymptotic quadratic
convergence of the global equilibrium equations.

Recently Rezaiee-Pajand et al. [39] have proposed new explicit integration methods based on exponential
maps for a mixed linear-hardening associated flow D-P model. Integrating plasticity relations using
exponential maps was initiated by the work of Hong and Liu [17] based on the internal symmetries
inherent in bi-linear plasticity models9. Although Rezaiee-Pajand et al. [39] showed that the run-time
(for a given error) for their proposed method was advantageous over that of other traditional implicit
and explicit methods, and that the errors were comparable to that of the bE method, their method
is restricted to models that contain particular internal symmetries. The generalisation of this method,
if indeed possible, to incorporate any arbitrary constitutive model has yet to be presented. Also, the
derivation (or in fact the existence) of an algorithmic tangent consistent with the stress integration
procedure is not currently available.

Implicit methods

In implicit methods the stresses are integrated at the updated (or returned, final) stress state, at the end
of the strain increment. The use of implicit integration for inelasticity was initiated in 1964 by Wilkins
[51] for a P-R model. That paper used the radial return algorithm which was later extended by Krieg
and Key [28] for the case of von Mises plasticity with mixed hardening.

9That is, models that combine linear elasticity with linear kinematic hardening.
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Central to many implicit methods is the idea of splitting10 the stress integration problem into:

(i) an elastic predictor, given (for linear-elastic materials) by

{σt} = [De]
{
{εe

n} + {∆εn+1}
}︸ ︷︷ ︸

{εe
t}

; and (2.40)

(ii) a plastic corrector
{σn+1} = [De]

{
{εe

t} − {∆εp}
}
, (2.41)

where {∆εp} are the incremental plastic strains over the return path and {εe
n+1} =

{
{εe

t}−{∆εp}
}

are the updated elastic strains.

The texts by Crisfield [13] and Simo and Hughes [43] provide a detailed review of these implicit return
algorithms and the latter gives a general return mapping procedure for rate-independent plasticity. The
plastic corrector stage is typically performed iteratively until the residuals associated with the unknowns
fall within a specified tolerance.

The main advantage of implicit (over explicit) methods is the fact that the consistency conditions are
enforced at the end of the strain increment. One drawback of the iterative bE closest point projection
method (CPPM) is the requirement to calculate the derivatives of the flow rule and hardening laws with
respect to the unknowns at each iteration. These derivatives can become quite involved for complicated
constitutive models. Also, unless the appropriate form of the yield function and plastic flow direction are
specified, the method can suffer from convergence difficulties11. Other problems can arise if discontinues,
such as corners of apexes, are not correctly dealt with (see Chapter 4).

Several other implicit methods have been proposed such as the generalised trapezoidal rule [37], gener-
alised midpoint rule [37], cutting plane algorithm [44] and governing parameter method12 [21–23]. Details
of these algorithms are not included here. For more information on these approaches see Kojić [22] or
Simo and Hughes [43], amongst others.

Some simple plasticity models allow for analytical integration13 based on the implicit bE method.
Currently, models that can be integrated analytically include the classical P-R, Tresca, M-C and D-P
models, in addition to a hyperbolic, circular deviatoric section, cone model [12] and the modified Reuleaux
[10, 11] model (as detailed in Chapter 4 of this thesis). The integration algorithm for the latter two models
were formulated using energy-mapped stress space (EMSS) (initially proposed by Crouch et al. [12] for
associated flow perfect plasticity models and later extended to the more general case of non-associated
plastic flow by Coombs and Crouch [11]). This space allows the stress integration to be reduced down to
the problem of finding the geometric closest point on the yield surface to the trial stress state in EMSS (as
discussed in Section 4.3.1). However, the analytical integration based on geometric considerations is only
available for polynomials of fourth order or less (unless higher order equations may be easily factorised).
The full family of models that allow analytical bE integration has yet to be determined [12]. In addition
to these perfect plasticity models, Simo and Hughes [43] provided a number of closed-form solutions for
J2 plasticity models which include isotropic and kinematic hardening. The main advantages of analytical
integration, over that of iterative methods, is its robustness and speed. Analytical bE stress integration
is discussed in more detail in Chapter 4.

10Known as the operator splitting method [38].
11The issue of selecting an appropriate yield function is discussed in more detail in Chapter 5.
12Initially named the effective-stress-function algorithm [23].
13Note, it is important to distinguish between analytical integration based on implicit methods and exact integration.

Analytical integration will not (except in some special cases, such as when the direction of plastic flow is constant throughout
the return path) be error free.
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Implicit methods have significant advantages in accuracy over the earlier, simpler, explicit methods
[29] and allow for the determination of a tangent stiffness matrix consistent with the stress integration
procedure which can significantly enhance the convergence rate of the global equilibrium equations.
Indeed, recently Anandarajah [1] suggested that

“It appears that the optimal method available at present for implementing elasto-plastic con-
stitutive models is to use CPPM to integrate the rate equations at the Gauss points in finding
the stress increment for a given strain increment, and to use consistent tangent operator in
the global Newton’s iterations.”

He further remarked that

“The main advantage is that the method for the most part is stable and provides optimal
accuracy.”

Anandarajah’s claims are perhaps over-stated. However, the general implicit bE stress integration method
(as presented in Section 2.3.1) can be applied to many constitutive algorithms and it is now used as the
benchmark with which to assess other integration methods [2, 49].

Exact stress integration

Currently, exact stress integration is only available for a few select simple plasticity models, such as
the widely used P-R and D-P [14] formulations. The P-R updating procedure for perfect plasticity was
initially proposed by Krieg and Krieg [29] and later, also including the algorithmic consistent tangent,
by Wei et al. [50]14. This was subsequently extended to the case linear isotropic hardening by Szabó
[47] and mixed linear hardening by Kossa and Szabó [26]. Loret and Prévost [30] provided the exact
stress integration procedure for the pressure sensitive D-P constitutive model with linear hardening and
non-associated plastic flow. Although these semi-analytical methods provide a robust error-free stress
return, their computational overheads exceed that of other stress integration procedures for these simple
plasticity models [27]. Indeed, Loret and Prévost commented that their method was “computationally
too slow to be used routinely in actual calculations” [30]. However, their solution provided a means of
comparison for other approximate methods, from which they concluded that the implicit bE method is
indeed attractive.

Alternative methods

Recently several alternative methods have been proposed for the integration of the constitutive relations.
Brannon and Leelavanichkul [3] proposed a nested multi-stage return algorithm for a single-surface three-
invariant dependent rock constitutive model. Initially the trial state outside the yield surface is returned
analytically onto a D-P cone (that encloses the true yield surface). An implicit iterative steepest-descent
algorithm is then used to return this intermediate point onto the correct yield surface. The approach
was proposed to eliminate the potential problems of converging to an inappropriate state outside the
true yield surface. However, this initial step is superfluous if the appropriate form of yield function is
adopted15.

Becker [2] proposed an alternative method where the direction of plastic flow is recast as a function
of both the current stress state and the strain increment (that is, {g,σ (σ, ∆ε)}). This numerically “very
robust” [2] method was motivated by the potential instability of implicit methods when large strain

14Note that no reference to this exact integration procedure was made in the recent book on “computational methods for
plasticity” by de Souza Neto, Perić and Owen [46]. This omission was scrutinised by a recent final year research project at
Durham University by Turnbull [48] that verified the stress return and consistent tangent of Wei et al. [50].

15This point is discussed in more detail in Section 5.3.2.
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increments are applied. The authors found that the method was less accurate than the more traditional
methods for small strain increments but more accurate when large strain increments were applied.

Vrh et al. [49] proposed the next increment corrects error explicit integration scheme that claims to
combine the simplicity of the forward Euler scheme with the accuracy of bE integration. The method is
based on the idea that the error from one strain increment should be considered in the next integration
step, “thus enabling the error from the previous increment to be adequately reduced in the very next
increment” [49]. For the examples presented, the errors were shown to be comparable to (although, not
an improvement on) those of the bE method, but with considerable run-time advantages over the latter
method. However, both Becker [2] and Vh et al. [49] used an explicit FE code where the advantage
(in terms of convergence to the global equilibrium) of implicit methods, in allowing derivation of an
algorithmic consistent tangent, could not be realised.

2.3.1 Implicit backward Euler stress integration

Throughout this thesis a fully implicit bE stress integration scheme is used. As discussed in the previous
sections, the popularity of such a procedure over explicit schemes is due to its relatively high accuracy
for a given numerical effort, particularly when large strain increments are applied [4]. Simo and Hughes
[43] showed that the bE integration corresponds to the minimisation of

{
{σr} − {σt}

}T [
Ce

]{
{σr} − {σt}

}
, (2.42)

with respect to the return stress {σr} (where
[
Ce

]
=

[
De

]−1 is the elastic compliance matrix). This min-
imisation is subject to the KTK consistency conditions (2.15). (·)t and (·)r denote quantities associated
with the trial state and the return state respectively. Starting with the following unknowns

{x} =
{
{εe} {β} ∆γ

}T
, (2.43)

where ∆γ is the increment in the consistency parameter consistent with the direction of plastic flow at
the final (converged) stress state for the integrated plastic strain path. Combined with the residuals

{b} =


{εe} − {εe

t} + ∆γ{g,σ }
{β} − {βt} − {∆β̃}

f

 =


{b1}
{b2}
b3

 , (2.44)

where {∆β̃} and {βt} are the incremental hardening law for and trial values of the internal variables. We
define the Hessian matrix from the derivatives of the residuals with respect to the unknowns

[A] =

 [b1,εe ] [b1,β ] {b1,∆γ }
[b2,εe ] [b2,β ] {b2,∆γ }

{b3,εe }T {b3,β }T b3,∆γ

 . (2.45)

Forming this matrix, from (2.44) and (2.43), we obtain

[A] =

 [I] + ∆γ[g,σσ ][De] ∆γ[g,σβ ] {g,σ }
−[∆β̃,σ ][De] [I] − [∆β̃,β ] −{∆β̃,∆γ }
{f,σ }T [De] {f,β }T 0


.

(2.46)
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The iterative increment16 in the unknowns is given by

{δx} = −[A]−1{b}, (2.47)

with the starting conditions

{0εe} = {εe
t}, 0∆γ = 0 and {0β} = {βt}, ∴ {0b} =

{
{0} {0} 0f

}T

, (2.48)

where the pre-superscript denotes the iteration number. Figure 2.2 illustrates the numerical sequence
for the bE stress return. The Newton-Raphson iterative process continues until the residuals converge
to within a specified tolerance. Throughout the stress return, all of the derivatives are evaluated at the
current state. This requires the repeated evaluation of the derivatives at each iteration in addition to the
inversion of the Hessian matrix (2.46).

Figure 2.2: Backward Euler stress return sequence.

16The iterative increment of (·) is denoted by δ(·) using a lower-case delta to denote that this increment is the contribution
to the unknowns for a given iteration. The total increment in the unknowns, {∆x}, is given by the summation of the iterative
increments (from (2.47)) over the number of iterations required to converge within a specified tolerance.
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2.4 Consistent linearisation

Stress integration methods, such as the bE procedure described in the previous section, provide an algo-
rithmic incremental constitutive law for stress calculation given a level of strain. For inelastic materials
the algorithmic consistent tangent [45] is the tangent that is consistent with the stress updating procedure.
This tangent describes how the return stress changes as a function of the trial elastic strain. Nagtegaal
[34] was the first to propose a consistent tangent for the implicit radial return algorithm. It was later
shown, for a general implicit bE stress integration algorithm, that the use of the consistent tangent within
the global equilibrium iterations (for example, within the FEM) allows for asymptotic quadratic conver-
gence of the residual out-of-balance force, leading to optimum efficiency of the Newton-Raphson solver
[45]. The consistent tangent can be defined as

[
Dalg

]
=

[
σ,εe

t

]
(2.49)

and obtained through linearising the residuals (2.44) with respect to the trial elastic strain, {εe
t}. The

first row of (2.44) becomes

[Ce]{dσ} + ∆γ
(
[g,σσ]{dσ} + [g,σβ ]{dβ}

)
+ d∆γ{g,σ} = {dεe

t}, (2.50)

where d(·) denotes the differential17 of (·). Considering the second row, we obtain

{dβ} − [∆β̃,β ]{dβ} − [∆β̃,σ ]{dσ} − {∆β̃,∆γ }d∆γ = 0. (2.51)

Finally the third row, from the consistent condition, gives

{f,σ}T {dσ} + {f,β }T {dβ} = 0. (2.52)

Combining (2.50)-(2.52), we obtain [Ce] + ∆γ[g,σσ ] ∆γ[g,σβ ] {g,σ }
−[∆β̃,σ ] [I] − [∆β̃,β ] −{∆β̃,∆γ }
{f,σ }T {f,β }T 0


︸ ︷︷ ︸

[Aalg ]−1


{dσ}
{dβ}
d∆γ

 =


{dεe

t}
{0}
0


.

(2.53)

Multiplying both sides of (2.53) by [Aalg], gives rise to the consistent tangent
{dσ}
{dβ}
d∆γ

 =

 [Dalg] [Aalg
12 ] {Aalg

13 }
[Aalg

21 ] [Aalg
22 ] {Aalg

23 }
{Aalg

31 }T Aalg
32 Aalg

33




{dεe
t}

{0}
0


.

(2.54)

Calculation of the consistent tangent requires the derivatives of the unknowns with respect to the residuals
at the final return state. Unlike the infinitesimal elasto-plastic tangent, [Dep], the algorithmic tangent is
dependent on the return path rather than just the final stress state. In the limit where {εe

t} → {εe
n} the

infinitesimal and consistent tangents become coincident.

For general plasticity, where the yield function and plastic potential are not equal, both [Dep] and
[Dalg] will be non-symmetric. Ortiz and Martin [36] provide an interesting discussion on the form of the

17A differential is defined as the product between the derivative of a function, with respect to its argument, multiplied
by the infinitesimal increment in the same argument [41].
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fully implicit stress integration algorithms that preserve symmetry of the consistent tangent.

2.5 Observations

The following observations can be drawn from this chapter:

(i) hyperplastic constitutive models can be derived from two scalar functions, namely the free-energy
function (providing the elasticity law) and the dissipation function (providing the yield function
and direction of plastic flow);

(ii) implicit integration, unlike explicit methods, enforces the consistency condition precisely and sets
the current standard in terms of accuracy, when integrating constitutive relations; and

(iii) the implicit bE integration scheme facilitates the derivation of the algorithmic consistent tangent
which allows for optimum asymptotic quadratic convergence when solving the global equilibrium
equations.
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55 (2005), 373–382.

[10] WM Coombs & RS Crouch, Non-associated Reuleaux plasticity: Analytical stress integration and
consistent tangent for finite deformation mechanics, Comput. Meth. Appl. Mech. Engrg. 200 (2011),
1021–1037.

[11] WM Coombs, RS Crouch & CE Augarde, Reuleaux plasticity: Analytical backward Euler stress
integration and consistent tangent, Comput. Meth. Appl. Mech. Engrg. 199 (2010), 1733–1743.

[12] RS Crouch, H Askes & T Li, Analytical CPP in energy-mapped stress space: application to a modified
Drucker-Prager yield surface, Comput. Meth. Appl. Mech. Engrg. 198 (2009), 853–859.

[13] MA Crisfield, Non-linear Finite Element Analysis of Solids and Structures. Volume 1: Essentials,
John Wiley & Sons Ltd, 1991.

[14] DC Drucker & W Prager, Soil mechanics and plastic analysis or limit design, Quart. Appl. Math.
10 (1952), 157–164.

[15] YC Fung, Foundations of solid mechanics, Prentice-Hall Inc., 1965.

[16] R Hill, The mathematical theory of plasticity, Oxford University Press, London, 1950.

[17] H-K Hong & C-S Liu, Internal symmetry in bilinear elastoplasticity Int. J. Nonlin. Mech. 34 (1999),
279–288.

[18] GT Houlsby, A Study of Plasticity Theories and Their Applicability to Soils, PhD. Thesis, University
of Cambridge, 1981.

[19] GT Houlsby & AM Puzrin, Principles of hyperplasticity, Springer-Verlag London Limited, 2006.

– 31 –



32 Chapter 2 references

[20] AA Ilyushin, Some problems in the theory of plastic deformation, Prikl. Mat. Mekh. 7 (1943), 245–
272.
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[23] M Kojić & KJ Bathe, Inelastic analysis of solids and structures, Springer, 2005.

[24] D Kolymbas, A rate-dependent constitutive equation for soils Mech. Res. Comm. 4 (1977), 367–372.

[25] D Kolymbas, An outline of hypoplasticity, Arch. Appl. Mech. 61 (1991), 143–151.
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Chapter 3

Geometric non-linearity

The majority of engineering stress analyses are performed using the assumption of infinitesimal strains
and small displacements where a linear relationship links strains to displacements. However, such an
assumption might lead to a poor estimate of the true structural response. Finite deformation (or geo-
metrically non-linear, GNL) analysis takes account of the structure’s evolving geometry, giving rise to
a non-linear relationship between strains and displacements. GNL analysis provides a more physically
realistic result. It is important to note that GNL analysis does not necessarily predict larger displace-
ments than infinitesimal analysis. One simple example is a linear elastic cylindrical triaxial specimen
under undrained triaxial compression or extension1. Infinitesimal analysis will predict the same linear
response under compression and extension. GNL analysis will predict progressive stiffening of the sample
under compressive loading but softening under tensile loads. GNL deformation analyses can be split into
four categories; combinations of infinitesimal or finite strains and small or large rotations, all with large
displacements. This chapter deals with the most general of the four divisions; that of large displacements
and rotations with finite strains.

There are three main approaches to GNL analysis:

(i) Lagrangian formulations follow the motion of all particles in a body from the original to the final
configuration [13].

(ii) Eulerian formulations track the motion of a material through a stationary control volume [13].

(iii) Co-rotational formulations adopt a set of coordinate axes that rotate with the body [5, 6].

The mechanical analysis of solids tends to be based on a Lagrangian description of motion, as it provides
a more natural and effective approach compared to Eulerian techniques; which are largely used for the
study of fluid motion. Using an Eulerian approach for stuctural problems would require control volumes
to be continually re-calculated due to changes in the geometry. This requirement stems from the need
(in Eulerian formulations) to keep track of the matter moving in-to and out-of a control volume.

Lagrangian formulations are further split into total and updated approaches where the static and kine-
matic variables are referred to either the initial or the previously calculated configurations respectively.
The two methods should give identical results, although there can be considerable differences in numerical
efficiency [1].

Co-rotational formulations were originally developed for the analysis of trusses, beams and shells
(rather than continuum elements) motivated by the desire to make use of existing small strain linear

1Undrained triaxial compression and extension tests maintain a constant volume. The displacement in the vertical
direction indicates the test type (compressive or tensile) and the perpendicular displacements are such that a constant
volume is maintained.
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36 Chapter 3. Geometric non-linearity

finite-elements. Such formulations have subsequently been extended to three-dimensional continuum
elements [6]. The approach splits the deformation field into local element straining and global element
transformation/rotation. The majority of the formulations are limited to small strains, although they do
allow for finite deformations/rotations.

Arbitrary Lagrangian-Eulerian (ALE) methods attempt to combine the advantages of the Lagrangian
and Eulerian formulations whilst removing a number of their limitations [8]. The ALE approach allows
nodes within an analysis to move with the continuum (as with Lagrangian analyses), remain stationary (as
with the Eulerian formulation) or move arbitrarily (through some specified way to give a continuous re-
zoning capability) within the domain. ALE can handle greater mesh distortions than a purely Lagrangian
method, with more resolution than a purely Eulerian approach, but it requires an additional mapping
space to be defined. ALE also requires an appropriate time step to be chosen for the particular analysis
under consideration [8]. Thus far, it has seen little attention in the analysis of geomechanical problems,
mainly due to its complexity [24].

This chapter describes an updated Lagrangian2 logarithmic strain-Kirchhoff stress formulation which
can be used for anisotropic inelastic constitutive models. The use of a logarithmic strain-Kirchhoff stress
relationship, in conjunction with an implicit exponential map for the plastic flow equation, allows for
the implementation of standard small strain constitutive algorithms within the finite deformation frame-
work without modification. These stress and strain measures provide the basis of the most successful,
straightforward ways of implementing large strain elasto-plasticity [16].

Section 3.1 reviews the basic kinematics of finite deformations. The concept of isotropic finite de-
formation elasto-plasticity, using a logarithmic strain-Kirchhoff stress approach, is introduced and the
incremental formulation provided in Section 3.2. Section 3.3 extends the work of the preceding sections to
cover the case of anisotropic elasto-plasticity. The finite-element implementation and numerical validation
are provided in Sections 3.4 and 3.5 respectively. Observations are drawn in Section 3.6.

This chapter uses both indicae and matrix/vector notation in order to provide a compact description
of the governing equations. Section 3.1 and the first half of Section 3.2 use indicae notation to introduce
the basic components of finite deformation inelasticity. Section 3.2.1 onwards mainly uses matrix/vector
notation to facilitate the numerical implementation of the finite deformation framework. Unfortunately,
those working in finite deformation mechanics have yet to agree on a common nomenclature. Here, as
far as possible, symbols have been used that have been adopted within the majority of the publications
in the field.

3.1 Kinematics of deformation

Consider a material body in space defined using a stationary Cartesian co-ordinate system. At time t = 0
the position of a material point is denoted by Xi, where i denotes one of the three possible indices 1, 2
or 3 (that is, x, y and z if the local coordinates coincide with the cartesian references system, as shown
in Figure 3.1). This is the reference (or material) configuration of the body. The current position of the
body at time t is given by

xi = ϕi(Xi, t), (3.1)

2There is possible confusion with the term updated Lagrangian. A number of the earlier updated formulations were
approximate in that they are restricted to small (or even constant) elastic strains [2]. This restriction does not hold here. In
this work, the term updated Lagrangian refers to the strategy used by Holzapfel [13] and Bathe [1], where the linearisation
of the internal virtual work is performed in the current configuration using the spatial derivatives. For more details see
[1, 35], amongst others. As noted (and demonstrated through numerical examples) by Bathe et al. [2] “provided that the
appropriate constitutive relations are used, the [total and updated Lagrangian] equations yield identical solutions”. Another
possible confusion is through the use of the term “total formulations” by some authors (such as Gabriel and Bathe [10])
to indicate those constitutive relations where the total stresses are obtained from the total strains using a hyperelastic
relationship.
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where ϕi(Xi, t) defines the motion of the body over time, referenced to its initial state. This motion is
known as the Lagrangian description of motion. The displacement of a material point within this body
is

ui(Xi, t) = xi(Xi, t) − Xi or alternatively as ui(xi, t) = xi − Xi(xi, t), (3.2)

in terms of the material (or reference) and spatial (or current) configurations. It is important to distinguish
between the descriptions of motion:

(i) a material description of motion is based on where the material was at t = 0; whereas

(ii) a spatial description is formulated in terms of where the material is.

If the same material body is loaded from its reference configuration Xi, to a current deformed configura-
tion xi, it may undergo some stretching and rigid body translation and/or rotation. By considering the
infinitesimal vectors dXi and dxi embedded in the reference and current configurations (see Figure 3.1),
we introduce the deformation gradient , Fij , as

dxi = FijdXj . (3.3)

This deformation gradient provides the fundamental link between current and reference configurations

Fij =
∂xi

∂Xj
= δij +

∂ui

∂Xj ,

(3.4)

where δij is the Kronecker delta tensor (δii = 1 and δij = 0 when i 6= j). Fij provides a description of rigid
body rotation and stretch, but contains incomplete information on the translation of a material point.
For a purely rigid body translation Fij = δij , that is, the deformation gradient contains no indication of
the magnitude of the translation. Through polar decomposition3 of the deformation gradient

Fij = RikUkj = vikRkj , (3.5)

we obtain the rotational tensor Rij and the right (material), Uij , and left (spatial), vij , symmetric stretch
tensors respectively (as shown in Figure 3.1). These stretch tensors can be obtained directly from the
deformation gradient via

Uij =
√

Cij =
√

FkiFkj , and vij =
√

bij =
√

FikFjk, (3.6)

where Cij and bij are known as the right and left Cauchy-Green strain tensors4 (note the position of
the non-transposed deformation gradient in (3.6)). The rotation tensors can subsequently be obtained
via the inversion of their compatible stretch tensor (Rij = FikU−1

kj or Rij = v−1
ik Fkj). However, Cij ,

bij , Uij and vij , are not suitable measures of strain for a stress-strain relationship because they contain
non-zero components during rigid body motion. The polar decomposition of the deformation gradient
(3.5) allows the deformation to be split into a sequence of two deformations; from the initial state to a
fictitious configuration via a stretch Uij (or a rotation Rij), followed by a rotation Rij (or a stretch vij)

3The polar decomposition theorem states that any non-singular second order tensor can be decomposed uniquely into the
product of an otherogonal tensor (associated with the rotation of the material point) and a symmetric tensor (associated
with the material stretch) [36]. Cauchy noted that “any motion of a body in the vicinity of a material particle can be
written as a pure rotation of three orthogonal directions followed by a pure stretch along those directions”.

4The fractional power of a second order tensor is calculated by first finding the principal values of the tensor, applying
the fractional power to the principal values and then reforming the nine-component second order tensor through spectral
decomposition using the directions associated with the original tensor.
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to arrive at the current configuration. The left and right Cauchy-Green strain tensors are linked through
the rotational tensor via

Uij = RkivklRkj . (3.7)

The deformation gradient allows us to define the volume ratio, J , derived through consideration of the
change of an infinitesimal volume between the reference and current configurations [35], as

J =
dV

dV0
= det(Fij) > 0. (3.8)

det(·) is the determinant of (·). dV and dV0 are the infinitesimal volumes in the current (deformed) and
reference (initial) configurations respectively (see Figure 3.1). For isochoric deformations, J is equal to
unity. Whereas for volumetric deformations, consisting of pure contraction or dilation, the deformation
is uniform in all directions and the deformation gradient is Fij = (l/l0)δij , where (l/l0) is the contraction
(or dilation) ratio.

Figure 3.1: Kinematic link between the initial (Xi), current (xi) and stress free (xp
i ) configurations for

a schematic stress-displacement path. The deformation gradient ([F ]) links the initial (or reference) and
current configurations using a rotation ([R]) and a stretch ([v] or [U ]). Similarly, the plastic ([F p]) and
elastic ([F e]) deformation gradients link the initial to stress-free and stress-free to current configurations
respectively.

Finite deformation analysis allows multiple measures of strain to be defined. With small displacements
these reduce to the standard infinitesimal strain quantity [9]. One such measure is the Green-Lagrangian
strain, defined as

Eij =
1
2

(
∂ui

∂Xj
+

∂uj

∂Xi
+

∂uk

∂Xi

∂uk

∂Xj

)
= Cij − δij . (3.9)

This strain tensor is invariant to rigid body motion. It should be noted that the higher-order third term
in (3.9)1 is missing in infinitesimal strain theories. When ui is sufficiently small, the contribution of this
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high-order term is negligible. Henceforth we make use of the spatial logarithmic strain measure

εij = ln(vij), (3.10)

where the natural logarithm of a tensor is calculated in a way that is analogous to a fractional power4.
The advantages of using this measure of strain are listed in Section 3.2.

Similarly to measures of strain, there are a number of alternative measures of stress used in finite
deformation analysis (refer to Holzapfel’s text [13], amongst others, for a description of candidate stress
measures). Here we make use of the symmetric Kirchhoff stress, defined as

τij = Jσij , (3.11)

where σij is the Cauchy, or true stress, tensor. We see that the Kirchhoff and Cauchy stress tensors are
related by the change in volume between the current (deformed) and original configurations.

3.1.1 Simple deformation field investigations

Before continuing with the development of the finite deformation framework, it is useful to investigate
some simple material point deformation fields. Here the material responses, subjected to the displacement
fields shown in Figure 3.2 of (i) one-dimensional compression, (ii) hydrostatic compression, (iii) isochoric
axial extension and (iv) simple shear, are examined. We restrict the investigation to the case of linear
isotropic elasticity, with the material elastic stiffness matrix given by (2.2). Using small strain theory the
four displacement fields shown in Figure 3.2 would have a linear deformation-strain-stress response.

Figure 3.2: Conceptual material point investigations for simple deformation fields (i) uniaxial straining,
(ii) hydrostatic compression, (iii) isochoric axial extension, (iv) simple shear and (v) stress response for
simple shear.

One-dimensional compression

The deformation gradient, left Cauchy-Green strain and logarithmic strain for uniaxial straining, as
shown in Figure 3.2 (i), are

[F ] =

 1 0 0
0 1 0
0 0 h/h0


,

[b] =

 1 0 0
0 1 0
0 0 (h/h0)2

 and [ε] =

 0 0 0
0 0 0
0 0 ln(h/h0)


,
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where h0 and h are the original and current cube heights. The volume ratio is J = h/h0, which combined
with (2.2) yields the Cauchy stress as

{σ} =
h0

(
ln(h) − ln(h0)

)
h

(
E

(1 + υ)(1 − 2υ)

){
υ υ (1 − υ) 0 0 0

}T

.

Assuming that h0 = 1, the Cauchy stress is linearly dependent on ln(h)/h. For h < 1 and h > 1 the
stress in the z direction will be negative and positive respectively. As h reduces, a physically reasonable
stiffening response is observed in the Cauchy stress. That is, displacement increments, ∆h, yield a
progressively increasing stress increment {∆σ}.

Hydrostatic compression

As shown in Figure 3.2 (ii), the deformation gradient, left Cauchy-Green strain and logarithmic strain
for hydrostatic compression are

[
F

]
= l/l0

[
1
]
,

[
b
]

= (l/l0)2
[
1
]

and
[
ε
]

= ln(l/l0)
[
1
]
,

where l0 and l are the original and current lengths of the cube. The volume ratio and Cauchy stress are
J = (l/l0)3 and

{σ} =
l30

(
ln(l) − ln(l0)

)
l3

(
E

(1 − 2υ)

){
1 1 1 0 0 0

}T

,

respectively. Once again assuming that l0 = 1, the Cauchy stress is linearly dependent on ln(l)/l3, and
a stiffening response is observed in the resultant stress as l reduces under hydrostatic compression.

Undrained extension or compression

Isochoric extension (and compression) is an important material point state for soils as the majority of
available experimental data on particulate materials are gathered from triaxial cells. If no fluid is allowed
to leave or enter the cell (i.e. an undrained test), then the volume change is zero; J = 1. The deformation
gradient and logarithmic strain for isochoric compression, as shown in Figure 3.2 (iii), are

[F ] =


√

l0/l 0 0

0
√

l0/l 0

0 0 l/l0

 and [ε] =

 ln(l0/l)/2 0 0

0 ln(l0/l)/2 0

0 0 ln(l/l0)


.

If l0 = 1, the normal components of the Cauchy stress are

{σ̂} =

(
E

(1 + υ)(1 − 2υ)

) {
ln(1/l)/2 + υ ln(l) ln(1/l)/2 + υ ln(l) υ ln(1/l) + (1 − v) ln(l)

}T

.

The axial and lateral stresses will be opposite in sign. Under triaxial extension, where l > l0 and ∆l > 0,
the stress response will display softening with increasing axial deformation. The converse is true for
triaxial compression, where l < l0 and ∆l < 0, where both stress responses will hardening as the axial
length reduces.
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Simple shear

The isochoric deformation gradient (J = 1) and the left Cauchy-Green strain for simple shear, as shown
in Figure 3.2 (iv), are

[F ] =

 1 0 ∆l

0 1 0

0 0 1

 and [b] =

 1 + (∆l)2 0 ∆l

0 1 0

∆l 0 1


,

where ∆l is the top face sheared distance. The principal logarithmic strains are

{ε̂} =
1
2

{
ln

(
1 + ∆l2/2 + ∆l

√
∆l2/4 + 1

)
0 ln

(
1 + ∆l2/2 − ∆l

√
∆l2/4 + 1

)}T

.

As the top face sheared distance ∆l increases, initially the shear stress increases before reaching maximum
and then softening (as shown in Figure 3.2 (v)). The normal stresses σx and σz are equal in magnitude
and opposite in sign with the stress response shown in Figure 3.2 (v). Throughout the deformation
process σy = 0.

3.2 Finite elasto-plasticity

Unlike infinitesimal strain analysis, the decomposition of deformation into elastic and plastic components
is not so straightforward and remains an area of ongoing research. The pioneering work of Green and
Naghdi [11] made use of an additive formulation employing generalised strain measures, thereby retaining
the structure of the classical infinitesimal theory of plasticity. However, it was shown by Itskov [15] that
this formulation exhibits a spurious non-constant shear stress response for the case of simple shear using
a Prandtl-Reuss perfect plasticity model, thereby restricting the model to situations where only moderate
plastic strains occur.

In all that follows use is made of the more successful approach (supported by micromechanical ob-
servations [16, 22]) of multiplicative decomposition of the deformation gradient into elastic and plastic
components. Simo and Ortiz [30] were the first to propose the use of a computational framework for the
implementation of finite deformation analysis based entirely on the multiplicative decomposition of the
deformation gradient. This Lee decomposition [17, 18] of (3.4) is given as follows

Fij = F e
ikF p

kj (3.12)

where F e
ij and F p

ij are the elastic and plastic components of the deformation gradient respectively. Lee
[17, 18] introduced the concept of a theoretical fictitious stress-free state, xp

i , where a material body is
unloaded and dissected into infinitesimally small elements to eliminate any internal residual stress (see
Figure 3.1). The elastic and plastic components of the deformation gradient are given by

F e
ij =

∂xi

∂xp
j

= ve
ikRe

kj and F p
ij =

∂xp
i

∂Xj
= vp

ikRp
kj . (3.13)

(3.12) is recovered through (3.4) using the chain rule. Here the elastic and plastic deformation gradients
have been split using the polar decomposition into the (elastic or plastic) left stretch tensor, ve

ik and vp
ik,

and a rotation tensor, Re
kj and Rp

kj . Figure 3.1 shows how the elastic and plastic deformation gradients
contribute to the current configuration. vp

ik describes a plastic stretching between the reference and stress-
free configurations, whereas ve

ik is the elastic stretch between the stress-free and current configurations.
Re

kj and Rp
kj provide the rotations between the stress-free to current configurations and reference to
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stress-free configurations respectively. The elastic logarithmic strain tensor follows as

εe
ij = ln(ve

ij) =
1
2

ln(be
ij), where ve

ij =
√

be
ij =

√
F e

ikF e
jk (3.14)

and be
ij is the elastic left Cauchy-Green strain tensor.

The majority of the early finite deformation elasto-plasticity formulations developed in the 1970s and
80s were based on hypoelastic constitutive models. These models relied on the derivation of objective5

stress rates. It is possible to specify any number of stress rates that satisfy objectivity. Yet many of these
formulations exhibit oscillatory stress responses under constant load paths. They may also fail to satisfy
the laws of thermodynamics; erroneously dissipating or creating energy within an elastic response.

Instead of adopting hypoelasticity, we define a hyperelastic relation between the elastic logarithmic
strain and Kirchhoff stress as

τij =
∂Ψ
∂εe

ij ,

(3.15)

where Ψ is the free energy function defined per unit volume (see Chapter 2). Through the use of a
hyperelastic constitutive relationship, Simo and Ortiz [30] demonstrated that incremental objectivity6 is
trivially satisfied.

3.2.1 Incremental formulation

The deformation gradient acts as the driving variable for finite deformation analysis. Given a displacement
increment, the associated increment in the deformation gradient is obtained as

[
∆Fn+1

]
=

[[
1
]
−

[
∂(∆u)n+1

∂xn+1

]]−1

=
[
1
]
+

[
∂(∆u)n+1

∂xn

]
(3.16)

where ∆u is the incremental displacement and the subscripts n+1 and n denote the current and previously
converged configurations. The increment in the deformation gradient

[
∆Fn+1

]
is calculated using the non-

linear strain-displacement matrix, as detailed in Appendix B.1.1, (B.2)-(B.5). The updated deformation
gradient is obtained, using a spatial description, as

[
Fn+1

]
=

[
∆Fn+1

][
Fn

]
. (3.17)

Alternatively the current deformation gradient can be calculated, using a material formulation (that is
using displacements referenced from, and nodal positions in, the original configuration) as follows

[
Fn+1

]
=

[
1
]
+

[
∂un+1

∂X

]
.

(3.18)

The increment in the deformation gradient may be subsequently calculated from

[
∆Fn+1

]
=

[
Fn+1

][
Fn

]−1

.
(3.19)

5Truesdell and Noll stated the principle of material frame-indifference (or objectivity) as that “constitutive equations
must be invariant under changes of frame of reference” [39]. Holzapfel added that “constitutive equations must be frame
indifferent with respect to Euclidean transformations” (translations and rotations) and that if this condition is violate then
‘the results are meaningless’ [13]. The origins of the principle of material frame-indifference, lie within the works of Hooke,
Poisson and Cauchy, between 1675 and 1829, generalised by the work of Zaremba in 1903. For a more detailed discussion
on objectivity and objective rates see [13, 36, 39], amongst others.

6Incremental objectivity was concisely defined by Pinsky et al.[25] as “a physical requirement expressing the fact that
the algorithm has to be invariant with respect to superimposed rigid body motions occurring over the time step”. The
hyperelasticity law used here does not contain any stress rates thus the need to integrate elastic rate equations in a way
that ensures incremental objectivity is removed.
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The trial left elastic Cauchy-Green strain matrix follows as

[
be
t

]
=

[
∆Fn+1

][
be
n

][
∆Fn+1

]T

,
(3.20)

where
[
be
n

]
from the previously converged solution is obtained from

[
be
n

]
= exp

(
2
[
εe
n

])
(3.21)

and [εe
n] is the elastic logarithmic strain from the previously converged configuration. The trial elastic

logarithmic strain is then given by [
εe
t

]
=

1
2

ln
([

be
t

])
. (3.22)

This is used as the input for the constitutive model7.

Plastic flow update

An important consideration when implementing a finite deformation elasto-plastic constitutive model
is the numerical approximation to the plastic flow equations and the associated update of the plastic
deformation gradient. This is achieved through the following procedure.

(i) First we transform the plastic velocity gradient8, given by the standard definition in the stress-free
configuration [13] as [

Lp
]

=
[
Ḟ p

][
F p

]−1
, (3.23)

into the current configuration, where
[
F p

]
and

[
Ḟ p

]
are the current value and instantaneous rate

of the plastic deformation gradient respectively. This is achieved using the rotational component
of the elastic deformation gradient [Re]

[
L̃p

]
=

[
Re

][[
Ḟ p

][
F p

]−1
][

Re
]T

, (3.24)

where
[
L̃p

]
is the rate of plastic deformation (or stretching) in the current configuration.

(ii) With the assumption of zero plastic spin9, the symmetric component of the spatial plastic velocity
gradient (the rate of plastic stretching in the current configuration) is given by

[
L̃p

]
= γ̇

[
g,τ

]
. (3.25)

(iii) Combining equations (3.24) and (3.25), the plastic velocity gradient (in the intermediate configu-
ration) becomes [

Lp
]

= γ̇
[
Re

]T
[

∂g

∂τ

] [
Re

]
. (3.26)

7Note that the exponential and logarithm of the matrices in (3.21) and (3.22), respectively, are obtained by finding the
eigenvalues associated with the matrix, taking the exponential or logarithm of the principal values and then reforming the
general nine-component matrix using the eigenvectors associated with the original matrix.

8The plastic velocity gradient defines the instantaneous rate of plastic deformation in the fictitious stress-free configura-
tion.

9That is, the plastic velocity gradient is symmetric. This plastic spin represents an instantaneous rate of rigid spinning
of the intermediate configuration. The assumption of zero plastic spin is appropriate for the case of plastic isotropy and
can be applied without limitations. The case of zero plastic spin with kinematically hardening plastic anisotropy results
in an error of second order in the elastic strains [35] (discussed in more detail in Section 3.3). See Dafalias for a detailed
discussion on plastic spin [7].
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Webber and Anand [40] and Eterovic and Bathe [9] showed that, through the use of an implicit exponential
integration map, the updated plastic deformation gradient can be given by10

[
F p

n+1

]
=

[
Re

n+1

]T exp

[
∆γ

∂g

∂[τ ]

∣∣∣∣
n+1

] [
Re

n+1

][
F p

n

]
. (3.27)

The updated elastic deformation gradient is given by

[
F e

n+1

]
=

[
Fn+1

][
F p

n+1

]−1 =
[
∆F

][
Fn

][
F p

n+1

]−1 =
[
∆F

][
F e

n

][
F p

n

][
F p

n+1

]−1
, (3.28)

where [∆F ] is the increment in the deformation gradient. Substituting (3.27) into (3.28), we obtain

[
F e

n+1

]
=

[
∆F

][
F e

n

][
Re

n+1

]T exp
[
−∆γ

∂g

∂[τ ]

] [
Re

n+1

]
. (3.29)

Post multiplying both sides of (3.29) by [Re
n+1]

T

[
ve

n+1

]
=

[
F e

t

][
Re

n+1

]T exp

[
−∆γ

∂g

∂[τ ]

∣∣∣∣
n+1

]
. (3.30)

Rearranging (3.30) and multiplying by the transpose of each side, we obtain

[
ve

n+1

]
exp

[
2∆γ

∂g

∂[τ ]

∣∣∣∣
n+1

] [
ve

n+1

]
=

([
ve trial

n+1

])2

. (3.31)

Further rearrangement and square rooting of both sides, gives

[
ve

n+1

]
=

[
ve

t

]
exp

[
−∆γ

∂g

∂[τ ]

∣∣∣∣
n+1

]
. (3.32)

Taking the logarithm of both sides (and presenting the strains in the conventional vector notation), we
recover the infinitesimal format of the elastic strain update formula with Hencky logarithmic strains and
Kirchhoff stresses {

εe
n+1

}
=

{
εe
t

}
− ∆γ

{
∂g

∂τ

∣∣∣∣
n+1

}
. (3.33)

Subjected to a trial logarithmic elastic strain, an isotropic small strain constitutive model will return the
updated elastic logarithmic strain {εe

n+1}, Kirchhoff stress {τn+1}, algorithmic consistent tangent [Dalg]
and any required internal variables. The updated Cauchy stress is subsequently obtained by rearranging
(3.11) as [

σn+1

]
=

1
Jn+1

[
τn+1

]
, (3.34)

where Jn+1 is the volume ratio obtained from the current deformation gradient (3.8).

Force integration

When implementing this finite deformation framework within a discretised numerical scheme, such as the
finite-element method (FEM), we employ an equilibrium equation to balance the material stresses with
the externally applied loads. The spatial principle of virtual work for the equilibrium of a body [1] can

10Note that (3.27) uses the isotropy of the tensor exponential function exp([Q][·][Q]T ) = [Q] exp[·][Q]T , for any orthogonal
tensor [Q] [35].
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be written as ∫ (
{σ}[η,x ] −

{
{f b} − ρg{u,tt }

}T {η}
)
dV −

∫ (
{t}T {η}

)
dA = 0, (3.35)

where {η} is the imposed displacement field, {f b} and {t} are the body forces per unit deformed volume
and surface traction per unit deformed area respectively. [η,x ] is the spatial gradient of the displacement
field and ρg and {u,tt } are the density and acceleration of the deformed unit volume. It is assumed that
(3.35) is satisfied for any arbitrary displacement field within the material body. Discretisation of (3.35)
results in the following expression that must be satisfied for the imposed nodal displacements {u}

{f int({u})} − {f ext} = {0}, (3.36)

where the internal {f int} and external forces {f ext} are obtained from

{f int} =
∫ (

[B]T {σ}
)
dV, {f ext} =

∫ (
[N ]T {f b}

)
dV +

∫ (
[N ]T {t}

)
dA. (3.37)

[B] is the six-component non-linear strain-displacement matrix containing the derivatives of the nodal
shape functions [N ] with respect to the updated (current) nodal coordinates.

Newton-Raphson algorithm

The solution of (3.36) (that is, find {u} for a given {f ext}) requires a robust, efficient numerical algorithm.
Here, the Newton-Raphson (N-R) scheme is used as it is able to achieve asymptotic quadratic rates of
convergence, provided that the appropriate tangent is used and the initial solution lies within the bowl
of convergence. The problem reduces to finding the solution to a linear system of equations

[K]{δum+1} = {foobf
m }, (3.38)

where m+1 is the current iteration within the N-R procedure and {foobf} = {f ext}−{f int} is the residual
out-of-balance-force for the unknown increment in the displacements {δum+1}. The total increment in
the displacements within a loadstep is given by the summation of the incremental displacements from all
of the N-R iterations within that loadstep, that is

{un+1} = {un} +
nNRit∑
m=1

{δum+1}, (3.39)

where nNRit is the total number of N-R iterations to find convergence in the n+1th loadstep. The global
stiffness matrix [K] is given by

[K] =
[
∂{foobf}
∂{un+1}

]
=

∫ (
[G]T [Dcst

σ

]
[G]

)
dV, (3.40)

where [G] is the nine-component spatial strain-displacement matrix and [Dcst
σ

]
is the isotropic spatial

consistent tangent stiffness matrix. For infinitesimal theory, this tangent is the small strain algorithmic
consistent stiffness matrix, [Dalg], introduced previously in Chapter 2. For finite deformation analysis,
[Dcst

σ

]
is given by (

Dcst
σ

)
ijkl

=
1
J

∂τ

∂F

∣∣∣∣
ijkm

Flm − σilδjk. (3.41)
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The derivation of this tangent is given in Appendix A. The N-R procedure continues until the convergence
criteria is satisfied, such that

|{foobf}|
|{f ext}|

≤ tol, (3.42)

where tol is the specified tolerance. The initial starting conditions for the solution scheme are taken as
the previously converged (or initial for the first loadstep) displacements and associated internal forces.

Numerical implementation

The integrals for the element force and stiffness matrix are approximated through Gaussian quadrature.
Using this approach, the element internal force vector is given by

{fe} =
ngp∑
i=1

[
Bn+1

]
i
{σn+1}i det

([
J
]
i

)
wi, (3.43)

where ngp is the number of Gauss points11 associated with the element and w is the weight function (see
Bathe p. 462 [1], amongst others, for the weights and sampling points of standard Gaussian quadrature).
The Jacobian matrix, [J ], contains the derivatives of the updated global coordinates with respect to
the element local coordinate system12. It provides the link between the local element and the global
structural coordinate systems. The element stiffness matrix is determined using

[
ke

]
=

ngp∑
i=1

[
Gn+1

]
i

[
Dcst

σ

]
i

[
Gn+1

]T

i
det

([
J
]
i

)
wi. (3.44)

The consistent isotropic spatial tangent stiffness matrix, [Dcst
σ ]i, is given by

[
Dcst

σ

]
=

1
2Jn+1

[
Dalg

][
L

][
BD

]
−

[
SD

]
. (3.45)

[Dalg] is the small strain algorithmic tangent stiffness matrix (which is consistent with the stress inte-
gration scheme used at the material point) obtained from the constitutive model. The other matrices in
(3.45) are given by

Lijkl =
∂ ln(be

t)ij

∂(be
t)kl

, BD
ijkl = δik(be

t)jl + δjk(be
t)il and SD

ijkl = σilδjk. (3.46)

[L] is determined as a particular case of the derivative of a general symmetric second order tensor function
with respect to its argument13. This framework was first described by de Souza Neto and Perić [33],
who demonstrated the importance of using the exact derivatives of the tensor quantities by making
comparisons with the approximate derivatives through convergence analysis. [SD] is the non-symmetric
stress corrector term. The presence of [SD] in the isotropic spatial consistent tangent (3.45) means that
it is not possible to write

[
Dcst

σ

]
in six by six matrix notation; the element stiffness matrix

[
ke

]
must be

calculated using the nine-component quantities.

11Gaussian integration uses grids of material points to sample the stress (and strain) field through an element to provide
the internal forces at the nodes. Typically a standard three-dimensional eight-noded hexahedral element uses 8 Gauss points
whereas a 20-noded element would use 27 points (for full integration).

12[J ] is obtained from the product of the derivatives of the nodal shapefunctions (with respect to the element local
coordinates) with the global element nodal coordinates (see Appendix B.1.2).

13Traditionally the derivative of a tensor function with respect to its argument has been solved by considering the
spectral decomposition of the tensor function and using the product rule to obtain the derivative. However, calculation of
the derivative in the case of repeated eigenvalues requires the use of eigen–projections to overcome the non-uniqueness of
the eigenvalues, a result originally obtained by Carlson and Hoger [3]. Miehe [19] subsequently presented two methods for
the calculation of the derivative of a symmetric second order tensor with respect to is argument.
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3.3 Finite plastic anisotropy

In this section, anisotropy is introduced through the plasticity relationships whilst maintaining the as-
sumption of isotropic hyperelasticity. If an anisotropic elasticity relation is used, then in general the
stresses and elastic strains do not commute. This introduces additional complications into the plastic
return mapping equations and the ability to reduce the effects of finite deformations into simple pre and
post processing operations on the conventional small strain constitutive model is lost [16]. The use of
anisotropic elasticity (in addition to anisotorpic plasticity) remains an area of ongoing research. Some
researches have returned to the use of additive relationships [20]. Alternative formulations have been
proposed that maintain the multiplicative Lee decomposition of the deformation gradient, logarithmic
strains and exponential map of stress return equation, but include the plastic spin [7] as an internal vari-
able [16, 22]. In finite deformation analysis where strains are large, a material’s response is dominated
by its inelastic behaviour [16]. For this reason, all that follows is restricted to the case of elastic isotropy.

When introducing anisotropic plasticity, the equations from the preceding sections need to be modified
to account for an evolving backstress tensor, which represents the anisotropy inherent (or induced) in
the material. This backstress provides a measure of the centre, or orientation, of the yield surface.
The evolution of this backstress is controlled by the particular form of the constitutive model. The
implementation follows the pioneering work of Eterovic and Bathe [9] who provided the first hyperelastic,
kinematically hardening multiplicative plastic, finite deformation formulation, which was later adopted
by de Souza Neto and co-workers [32, 33, 35]. One of the major advantages of this framework is that
the constitutive model’s stress integration procedure maintains the same small strain format. However,
there is an error associated with this update. This error stems from the fact that the recovery of the
small strain integration format (3.33) assumes that the direction of plastic flow {g,τ } and the elastic
measures of deformation commute. Obviously, the introduction of plastic anisotropy can invalidate this
assumption. However, de Souza Neto et al. [35] showed that the error is second order in the elastic strains.
This limits the algorithm to the case of small elastic strains (but arbitrarily large plastic deformation)14.

The evolution of the backstress tensor must be frame-invariant. The Green-McInnis-Naghdi rate (as
a special case of the Oldroyd rate [13]) is obtained by rotating

[
β
]

to the reference configuration, taking
the material derivative and subsequently rotating back to the deformed configuration. The rate of this
backstress matrix with respect to the elastic rotation is given by

[
β̊
]

=
[
Re

t

] [
d

dt

([
Re

t

]T [
β
][

Re
t

])] [
Re

t

]T =
[
β̇
]
−

[
Λe

][
β
]
+

[
β
][

Λe
]
, (3.47)

where
[
Λe

]
=

[
Ṙe

][
Re

]T is the elastic spin and
[
Re

t

]
is the trial elastic rotation. The deformation gradient

transforms15 under an arbitrary rotation [Q] according to

[F ] −→ [Q][F ]. (3.48)

Using the multiplicative decomposition of the deformation gradient (3.12), we obtain

[F e][F p] −→ [Q][F e][F p]. (3.49)

14This limitation is reasonable for the analysis of soils where the behaviour is dominated by the plastic sliding, crushing
and rearrangement between grains. Note, that for the case of isotropic elasto-plasticity there is no limit on the magnitude
of the elastic strains.

15The deformation gradient is a two-point tensor as only one of its two indices is in the spatial frame, this means that
the deformation gradient transforms as a vector rather than a matrix.
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From (3.49), the elastic and plastic components of the deformation gradient transform as

[F e] −→ [Q][F e] and [F p] −→ [F p]. (3.50)

Using the polar decomposition [F e] = [Re][U e], we obtain the transformation of [Re] as

[Re][U e] −→ [Q][Re][U e] ∴ [Re] −→ [Q][Re]. (3.51)

From (3.51)2, and noting that the backstress matrix (and rate thereof) transform according to

[β] −→ [Q][β][Q]T and [β̇] −→ [Q][β̇][Q]T + [Q̇][β][Q]T + [Q][β][Q̇]T , (3.52)

we find that (3.47) transforms according to

[
β̊
]

−→ [Q][β̇][Q]T + [Q̇][β][Q]T + [Q][β][Q̇]T − [Q][Ṙe][Re]T [β][Q]T − [Q̇][β][Q]T

+ [Q][β][Ṙe][Re]T [Q]T + [Q][β][Q]T [Q̇][Q]T . (3.53)

Using the fact that skew tensor [Q̇][Q]T obeys the following [13]

[Q̇][Q]T = −
[
[Q̇][Q]T

]T

= −[Q][Q̇]T , (3.54)

(3.53) reduces to [
β̊
]
−→ [Q][β̇][Q]T − [Q]

[
Λe

]
[β][Q]T + [Q][β]

[
Λe

]
[Q]T . (3.55)

(3.55) demonstrates that (3.47) is objective with respect to rotation as it transforms according to

[
β̊
]
−→ [Q]

[
β̊
]
[Q]T . (3.56)

The objective finite-strain extension of the evolution of the backstress tensor is obtained from

[
β̊
]

= γ̇
[
β̃
]
, (3.57)

where
[
β̃
]

is the evolution equation for the backstress matrix with the same format as that of the
equivalent small strain plasticity model, except that it is formulated in terms of Kirchhoff (rather than
Cauchy) stresses.

3.3.1 Incremental formulation

We require an incrementally objective algorithm (a term introduced by Hughes and Winget [14]) for
the updating of (3.57). Or rather, we require an integration algorithm in the local configuration that
remains unaltered by imposed rigid body motions. Using an implicit integration scheme and following
the approach outlined by Simo and Hughes [26] for the Green-McInnis-Naghdi rate (see boxes 8.1 and
8.2 on pp. 293–4 of Simo and Hughes for more information), we obtain

[
βn+1

]
=

[
∆Λe

][
βn

][
∆Λe

]T + ∆γ
[
β̃
]
, (3.58)

where the orthogonal incremental elastic spin is given by

[
∆Λe

]
=

[
Re

t

][
Re

n

]T
. (3.59)
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Here
[
Re

t

]
and

[
Re

n

]
are the elastic rotation matrices associated with the trial and previously converged

state respectively. The trial elastic rotation
[
Re

t

]
is obtained from the polar decomposition of the trial

elastic deformation gradient [
F e

t

]
=

[
∆Fn+1

][
F e

n

]
, (3.60)

through [
Re

t

]
=

[
ve

t

]−1[
F e

t

]
, where

[
ve

t

]
=

√[
F e

t

][
F e

t

]T =
√[

be
t

]
= exp

([
εe

t

])
. (3.61)

Equivalently, the trial elastic deformation gradient can be calculated using

[
F e

t

]
=

[
Fn+1

][
F p

n

]−1
, (3.62)

where [F p
n ] is the plastic deformation gradient from the previously converged state. The deformation

gradient and the elastic strain tensor no longer provide sufficient information to track the kinematics of
finite deformation anisotropy; we must also track the evolution of the elastic deformation gradient. [F e]
is updated according to

[
F e

n+1

]
=

[
ve

n+1

][
Re

n+1

]
, where

[
Re

n+1

]
=

[
Re

t

]
(3.63)

and
[
ve

n+1

]
is calculated from [

ve
n+1

]
=

√[
be
n+1

]
= exp

([
εe
n+1

])
. (3.64)

Therefore elastic deformation gradient replaces the elastic logarithmic strain as the stored elastic kine-
matic variable. From [F e], the elastic stretch, rotational and strain matrices can all be calculated. Using
the following trial backstress matrix as an input to the small strain constitutive algorithm

[
βt

]
=

[
∆Λe

][
βn

][
∆Λe

]T
, (3.65)

the constitutive model will return the updated backstress tensor
[
βn+1

]
through (3.58). The incremental

evolution equation ∆γ
[
β̃
]

provides this update, maintaining the format of the conventional small strain
algorithm.

The introduction of anisotropy, in the form of a backstress tensor, modifies the spatial consistent
tangent as the trial backstress is not fixed; it is dependent on the deformation gradient. {βt} is now
obtained by rotating {βn} into the current configuration through (3.65). The elastic rotation increment
is a function of the trial elastic deformation gradient [F e

t ], see (3.59), which in turn is a function of the
previous plastic deformation gradient [F p

n ] and the current deformation gradient [Fn+1]. The derivative
of the updated Kirchhoff stress with respect to the deformation gradient becomes

[
τ,F

]
=

[
τ,εe

t

][
εe

t ,bet
][

be
t ,Fn+1

]
+

[
τ,βt

][
βt,Re

t

][
Re

t ,Fn+1

]
, (3.66)

where
[
τ,εe

t

]
is the small strain algorithmic tangent

[
Dalg

]
.

[
τ,βt

]
=

[
Dβ

]
, called here the small strain

consistent backstress tangent, describes how the updated Kirchhoff stress changes as a function of the
trial backstress with frozen internal variables and {εe

t}. This matrix is obtained in a manner analogous
to the formulation of the small strain consistent tangent. (3.66) can be written as

[
Dcst

]
=

[
Dcst

σ

]
+

[
Dcst

β

]
, (3.67)
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where
[
Dcst

σ

]
is given by (3.45) and

[
Dcst

β

]
by

[
Dcst

β

]
=

2
Jn+1

( nβ∑
i=1

[
U i

β

]) [
Vβ

]
. (3.68)

The lengthy derivation of
[
Dcst

β

]
is not included in this chapter for sake of brevity (see Appendix A.2 for

the full derivation). The summation term in (3.68) is included to account for the possibility of constitutive
models with more than one representation of backstress, such as multiple surface kinematically hardening
plasticity models, where nβ is the number of backstress quantities.

[
U i

β

]
contains the quantities associated

with the backstress that contribute to the spatial stiffness

(
U i

β

)
ijkl

= Dβi

ijkn(βi
t)ln. (3.69)

[
Vβ

]
contains purely geometric effects

(
Vβ

)
ijkl

= 2(Lβ)inkm(be
t)lm(ve

tr)nj + (ve
tr)

−1
ik (ve

tr)lj , with
(
Lβ

)
inkm

=
∂(be

t)
−1/2

∂be
t

∣∣∣∣
inkm

. (3.70)

[
Lβ

]
is calculated in an analogous way to

[
L

]
, introduced in (3.46)1. The element stiffness matrix is

calculated using (3.44), but with (3.67) replacing
[
Dcst

σ

]
. Calculation of the element force vector using

(3.43) remains unchanged. The algorithmic material point calculation sequence for the anisotropic finite
deformation formulation is given in Figure 3.3, where i denotes the material point. Note, that this
material point sequence sits within the inner most loop of a numerical analysis code (Figure 3.4) and will
be followed for every material point within every element for each iteration within all of the analysis’
loadsteps.

3.4 Finite-element implementation

The anisotropic finite deformation framework described in this chapter was initially implemented in
MATLAB m-script and later in Fortran90 for finite-element (FE) analyses. This chapter has focused
on the derivation of a concise, consistent framework for finite deformations. Appendix B describes the
implemented FE code in more detail, giving the matrix algebra required for the three-dimensional and
two-dimensional plane strain and axi-symmetric implementations.

The following points summarise the modifications required for an infinitesimal linear elastic finite-
element code in order to implement the updated Lagrangian large strain formulation.

(i) The primary internal variable is the deformation gradient, [F ].

(ii) The elastic deformation gradient, [F e], replaces the elastic strain as the stored kinematic variable
tracking the state of the material points.

(iii) The trial backstress {βt} is modified to account for the elastic rotations.

(iv) The derivatives of the shape functions are calculated with respect to the updated nodal coordinates.

(v) The non–symmetric material spatial (nine by nine, 81 component) tangent modulus, [Dcst], and
the full strain-displacement matrix, [G], are used to form the element stiffness matrix.

(vi) The global equilibrium equation is solved using the N-R scheme.
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Figure 3.3: Anisotropic finite deformation material point algorithm sequence where i denotes the material
point number and ngp is the total number of Gauss points.

Figure 3.4 illustrates the non-linear FE algorithm sequence and locates the GNL material point se-
quence, as given in Figure 3.3, within the global FE code. Prior to beginning this sequence, the FE code
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must set up the initial global stiffness matrix ([0K]) based on the nodal coordinates, element topology and
elastic stiffness of the Gauss points. This [0K] provides the initial estimate for the nodal displacements at
the start of each loadstep through solving (3.38) for {δu}. For subsequence iterations within a loadstep,
the global stiffness matrix is obtained using the spatial consistent tangent [Dcst] at each material point.
The N-R algorithm will iterate until (3.42) is satisfied. Once this tolerance has been achieved, the analysis
proceeds with the next loadstep.

Figure 3.4: Finite-element algorithm sequence.

3.4.1 Algorithmic considerations

The FEM has transformed geomechanical analysis. A number of open source codes now encourage
researchers to extend or modify the basic algorithms, yet most three-dimensional codes are expressed in
tens of thousands of lines of C, C++ or Fortran, requiring significant time investment from researchers
who wish to develop the codes further. Few freeware FE programs offer the capability to include three-
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dimensional inelastic finite deformation analysis. Researchers are faced with having to write their own
algorithms from scratch or mastering very lengthy codes, which are largely understandable only by those
close to the original development. However, high level computational environments, such as MATLAB,
allow engineers, scientists and mathematicians to produce powerful numerical analysis scripts rapidly.
By using lean, efficient algorithms and subfunctions, it is possible to write the main routine of the elasto-
plastic finite deformation FE program within a single page [4]. Once a program spills onto multiple
pages the ability to easily visualise its structure is lost and the opportunity for error detection is reduced.
Transparent programs facilitate re-analysis, adjustment, improvement and experimentation, resulting in
polished, robust algorithms. These programming ‘gems’ should be clear, easy to read, check, edit and
modify. The motivation for compact algorithms is inspired by Trefethen’s cry for cleaner, shorter code,
within the philosophy of “one page, ten digit, five second” algorithms [38]. This philosophy has been
adopted in all of the research undertaken by the author.

3.4.2 Element incompressibility

It is widely appreciated that near-incompressible constitutive models combined with low order elements
when used in FE analysis, can lead to over-stiff, unrealistic predictions which exhibit volumetric locking.
Material models with isochoric plastic flow, such as the widely used Prandtl-Reuss and Tresca constitutive
models, or isotropic elastic models with a high Poisson’s ratio, are particularly susceptible. Low order
elements, such as four-noded quadrilaterals (4-NQ) or eight-noded hexahedrons, are unable to represent
general volume-preserving displacements due to their low polynomial basis [35]. One solution is to
adopt higher order elements with reduced integration, such as eight-noded quadrilaterals (8-NQ) or
twenty-noded hexahedrons with four and eight-point Gaussian quadrature respectively. However, for
large simulations the use of lower order elements is computationally advantageous. For a typical two
dimension analysis using one millon elements (arranged in a 1, 000 by 1, 000 grid) using 4-NQs, the total
number of degrees of freedom is 2, 004, 002. This increases two-fold to 6, 008, 002 for 8-NQs. It is worth
noting that although the use of lower order elements reduces the overall size of an analysis, higher order
elements may be preferred, especially if high strain gradients are expected [42]. In a finite-element code,
the solution of the global system of equations (3.38) consumes a considerable computational overhead.

Several formulations have been proposed to facilitate the use of low order elements for near isochoric
problems [23, 28, 31, 34, 35]. One such formulation, presented by de Souza Neto and co-authors [34, 35],
is the F-bar method. Here the equations for the three-dimensional implementation are briefly presented.
For a more detailed discussion see de Souza Neto et al. [35]. It is assumed that the deformation gradient
can be split into volumetric, [Fv], and isochoric, [Fiso], components

[
F

]
=

[
Fiso

][
Fv

]
, where

[
Fiso

]
= J−1/3

[
F

]
and

[
Fv

]
= J1/3

[
1
]
. (3.71)

The F-bar method calculates the volumetric component of the deformation gradient at the centre of the
element, denoted

[
Fv0

]
. The modified F-bar deformation gradient is given by

[
F̄

]
=

[
Fiso

][
Fv0

]
=

(
Jv

J

)1/3 [
F

]
, (3.72)

where Jv is the determinant of the volumetric component of the deformation gradient evaluated at the
element centroid. The F-bar element is obtained by replacing [F ] with [F̄ ] when calculating the stresses
and element stiffness. The internal force calculation (3.43) remains unchanged apart from the use of
{σ} based on [F̄ ]. However, the element tangent stiffness is modified to include an additional term, as
described by de Souza Neto et al. [35] (see p. 652 for details).
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3.5 Numerical verification

Verification: Is the program doing what it claims to be doing? Wood, D.M. (2004).

This section presents six finite deformation boundary value problems ranging from plane-strain elastic
beams to three-dimensional anisotropic inelastic unit cube simulations. These analyses provide verifica-
tion that the finite deformation finite-element framework described in this chapter accurately captures
the kinematics of large deformations.

3.5.1 Elastic beams

The first problem considered involves the analysis of a simply-supported slender small beam of length
254mm and depth 5.08mm subjected to a uniform transverse pressure of 276kPa applied in 20 equal
loadsteps. The beam had a Young’s modulus16 of 68.95GPa and Poisson’s ratio of 0.25. Due to symmetry,
only half of the beam was discretised using 80 two-dimensional plane strain eight-noded fully integrated
(nine-point Gaussian quadrature) quadrilateral elements, as shown in Figure 3.5 (i). The analytical
solution for this problem was provided by Timoshenko and Woinowsky-Krieger [37]. The numerical
simulation and the analytical solution (shown by discrete points) pressure versus displacement responses
are compared in Figure 3.5 (i). The finite-element result shows good agreement with the analytical
solution.

Figure 3.5: Finite deformation analysis of (i) a simply supported beam subjected to a uniform pressure
and (ii) a cantilever subjected to a vertical mid-side load.

The second analysis is of an elastic cantilever beam subjected to a vertical mid-height point load
on its free end. The large, moderately soft, deep beam (of length 10m and depth 1m) was discretised
using 40 full integrated eight-noded plane strain elements, as shown in Figure 3.5 (ii). The cantilever
material had a Young’s modulus of 12MPa and Poisson’s ratio of 0.2. The vertical load of 100kN was
applied in 50 loadsteps. The load-displacement response for the loaded node is given in Figure 3.5 (ii) for
both horizontal and vertical displacements. The final (unexaggerated) deformed configuration is shown
in Figure 3.5 (ii), demonstrating the analysis’ large displacements. Close agreement is seen between the
numerical simulation and the analytical solution provided by Molstad [21] for both horizontal and vertical
displacements.

16Note that the pressure and Young’s modulus have been selected to agree with the original imperial values, the same is
true for the pressure axis in Figure 3.5 (i).
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3.5.2 Rigid plasticity

Thick walled cylinder expansion

The expansion of a thick walled cylinder was analysed with both the three-dimensional (with inclined
boundary conditions) and two-dimensional axi-symmetric FE codes. A cylinder with internal and external
radii a0 = 10 and b0 = 20mm respectively was expanded to an internal radius of 85mm in 75 equal
displacement-controlled loadsteps. The cylinder had a Young’s modulus of 11.05GPa and a Poisson’s
ratio of 0.454 (corresponding to a bulk and shear moduli of K = 40GPa and G = 3.8GPa, as used by
Simo and Hughes [26]). A perfect plasticity Prandtl-Reuss constitutive model with a low yield stress of
just σy = 0.5MPa modeled the material behaviour17. These particular material constants (and structural
dimensions) were chosen by Simo and co-workers [26, 29, 30] to devise a problem dominated by the plastic
response. The plane strain axi-symmetric analysis was discretised into 20 equally spaced eight-noded
quadrilateral elements with reduced four-point Gaussian quadrature. The three-dimensional analysis
modelled a three degree (π/60 radians) slice of the cylinder with inclined boundary conditions using 20
equally space eight-noded hexahedral F-bar elements.

Figure 3.6: Rigid plastic expansion of a thick walled cylinder: (i) pressure-displacement response (ii)
radial stress distribution.

Figure 3.6 (i) presents the pressure versus internal radius response and shows a comparison with the
analytical isochoric rigid plastic solution18 [12], given by

p =
2σy√

3
ln

(√
b2
0 − a2

0 + a2

a

)
, (3.73)

where σy is the yield stress, a is the current internal radius and p is the internal pressure. The axi-
symmetric analysis using only 15 equal displacement-controlled increments is also shown. As the internal
radius increases, the internal pressure drops due to a reduction in the cylinder’s wall thickness. A load-
controlled analysis would not be able to follow the load-deformation response of the cylinder unless an
arc-length method was employed.

17The exactly integrated Prandtl-Reuss constitutive model, originally presented with the associated consistent tangent
by Wei, Peric and Owen [41], was used to eliminate any possible errors associated with the material model.

18The rigid plastic solution is obtained by assuming that the elastic strains are negligible and that there is no change in
volume due to an isochoric plastic flow rule. This allows the external radius to be calculated for a given internal radius, the
ratio of these radii along with the yield stress, provides the analytical solution.
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The radial stress distribution through the wall of the cylinder is given in Figure 3.6 (ii). The results
from the axi-symmetric and three-dimensional analyses overlay and provide excellent agreement with the
analytical solution. An analysis of the same problem, but discretised using 20 four-noded fully integrated
axi-symmetric elements, is shown in Figure 3.6 (i). It significantly over-estimates the peak pressure by
around 300% due to volumetric locking. Increasing the number of four-noded elements to 200 improves
the simulation, although it is still inferior to that of the other elements, and at a greatly increased
computational cost.

Thick walled sphere expansion

Here we analyse the expansion of a thick-walled sphere using the three-dimensional FE code. The large
sphere had inner and outer radii of a0 = 12.5 and b0 = 20 metres respectively. The material was modelled
with a Young’s modulus of 1GPa and a Poisson’s ratio of v = 0.45. Again, a three-degree slice of the
problem was discretised using 20 equally spaced eight-noded isoparametric hexahedral F-bar elements
and also with 20, twenty-noded hexahedral elements with reduced eight-point Gaussian quadrature. The
inner radius was expanded by 15 metres in 30 loadsteps. Figure 3.7 (i) compares the pressure-displacement
response with the analytical rigid plastic solution [12], given by

p = 2σy ln

(
3
√

b3
0 − a3

0 + a3

a

)
. (3.74)

The results from the two numerical simulations agree such that they are indistinguishable in Figure 3.7.
The numerical simulation has excellent agreement with the analytical solution for both the pressure-
displacement response and the radial stress distribution through the wall of the sphere.

Figure 3.7: Rigid plastic expansion of a thick walled sphere: (i) pressure-displacement response (ii) radial
stress distribution.

3.5.3 Double-notched plate

Here we present the analysis of the plane strain stretching of a double-notched plate. The problem was
initially presented by Nagtegaal et al. [23] for small strain plasticity to demonstrate the spurious response
of standard finite-elements and was subsequently re-analysed in a number of papers [27, 28, 34]. The plate
had a Young’s modulus of 206.9GPa, Poisson’s ratio of 0.29 and was modelled using an elastic-perfectly
plastic Prandtl-Reuss constitutive model with yield stress of σy = 0.45GPa. Nagtegaal et al. [23] provided
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the small strain analytical limit load, controlled by the stress at the notch σlim ≈ 2.97σy. The specimen
had a total height and width of 30mm and 10mm respectively, with a 2mm unit linking ligament at mid
height. For this geometry the small strain limit load is Flim ≈ 2.673kN. Due to symmetry, only one
quarter of the specimen was discretised using 75 elements, as shown in Figure 3.8. A displacement of
0.3mm was applied in 100 equal displacement-controlled increments.

Figure 3.8: Finite deformation analysis of a double notched plate.

The external load (total edge reaction) versus displacement response is shown in Figure 3.8 using
standard four and eight-noded quadrilateral elements in addition to a four-noded F-bar element. The
F-bar simulation shows excellent agreement with the solution provided by de Souza Neto et al. [34]. The
standard four-noded element produces an over-stiff response and fails to capture the presence of a limit
load. The eight-noded element is able to capture this limit load better, but at an increased computational
cost. The limit load predicted by both the four-noded F-bar and the eight-noded reduced integration
elements are lower than that of the analytical small strain solution. This is due to the thickness of the
ligament reducing as the deformation proceeds. This reduction in width concentrates the stress in the
ligament, resulting in a lower peak force and a post-peak softening response not predicted by the small
strain analysis.

3.5.4 Three-dimensional unit cube

Corner load

The final analysis is of a 1m unit cube constrained on three faces subjected to a vertical compressive load
at its unrestrained corner. The model was discretised (equally in each direction) using 125 twenty-noded
hexahedral elements with reduced eight-point Gaussian quadrature. The material behaviour was provided
by a linear kinematically-hardening von Mises plasticity model (as described by Simo and Hughes [26])
with a yield stress of σy = 100Pa and a hardening modulus of H = 10kPa. A Young’s modulus of 100kPa
and a Poisson’s ratio of 0.2 were used for the material’s elastic properties. A compressive vertical load
of 15N was applied in 10 equal loadsteps. The force versus normalised displacement (as a percentage of
the size of the unit cube) response is shown in Figure 3.9 (i) together with the final loadstep convergence
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result in Figure 3.9 (ii). A tolerance of 1×10−9 was used in (3.42) on the global normalised out-of-balance
force. The vertical displacement of the corner node at the end of the analysis was −0.145.

Figure 3.9: Three-dimensional unit cube investigations with a kinematically hardening von Mises plas-
ticity model: corner load (i) force versus displacement response and (ii) final loadstep bi-logarithmic
convergence rate.

Figure 3.9 (ii) plots the nomalised residual out-of-balance force for the current iteration against that
of the previous iteration. The gradient of this line plotted on a bi-logarithmic scale indicates the rate of
convergence between iterations, given by the following expression

lim
n→∞

|{foobf
n+1 }|

|{foobf
n }|

= lim
n→∞

krn+1, (3.75)

where k is the order of convergence. Figure 3.9 (ii) shows that the analysis approaches a quadratic rate
of convergence. The final loadstep shows a reduction in the convergence rate due to the finite precision
available in MATLAB.

3.6 Observations

This chapter has presented a framework for the analysis of problems involving anisotropic finite de-
formations. The framework has been verified using six numerical examples, making comparisons with
established analytical and numerical solutions. The key conclusions drawn from this chapter are listed
below.

(i) Isotropic elasto-plasticity constitutive algorithms can be implemented within a finite deformation
framework without modification.

(ii) Anisotropic inelastic constitutive relations can be implemented (to within a second order error in
the elastic strains) without modification to their stress integration algorithm, provided that an
additional stiffness tangent describing the rate of change of the backstress with the trial elastic
strains [Dβ ], is made available.
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(iii) The effects of finite deformation within a FE code may be seen as pre- and post-processors on the
constitutive algorithm.

(iv) Three-dimensional FE codes need not be lengthy; it is possible to express the overall program within
one page of m-script [4].

(v) The use of the appropriate spatial consistent tangent allows the FE code to achieve asymptotic
quadratic rates of convergence.

The following three chapters:

4. derive a new, simple, non-associated flow frictional plasticity model based on a modified Reuleaux
triangle;

5. provide the full algorithmic treatment of a family of isotropic hyperplastic two-parameter Critical
State models; and

6. introduce a new two-surface anisotropic hyperplastic Critical State plasticity model.

Chapter 7 presents several boundary value simulations using the constitutive models developed in Chap-
ters 4 through 6, implemented within the finite deformation framework presented in this chapter.
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[8] J Donea, A Huerta, J-Ph Ponthot & A Rodŕıguez-Ferran, Arbitrary Lagrangian-Eulerian Methods.
In: Encyclopedia of Computational Mechanics 14 (2004), 413–437.

[9] AL Eterovic & KJ Bathe, A hyperplastic-based large strain elasto-plastic constitutive formulation
with combined isotropic-kinematic hardening using the logarithmic stress and strain measures, Int.
J. Numer. Meth. Engng. 30 (1990), 1099–1114.

[10] G Garbiel & KJ Bathe, Some computational issues in large strain elasto-plastic analysis, Comput.
Struct. 56 (1995), 249–267.

[11] AE Green & PM Naghdi, A general theory of of an elastic-plastic continuum, Arch. Ration. Mech.
An. 18 (1965), 251–281.

[12] R Hill, The mathematical theory of plasticity, Oxford University Press, London, 1950.

[13] GA Holzapfel, Nonlinear solid mechanics, John Wiley & Sons Ltd. 2000.

[14] TJR Hughes & J Winget, Finite rotation effects in numerical integration of rate constitutive equations
arising in large-deformation analysis, Int. J. Numer. Meth. Eng. 15 (1980), 1862–1867.

[15] M Itskov, On the application of the additive decomposition of generalised strain measures in large
strain plasticity, Mech. Res. Commun. 31 (2004), 507–517.
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Chapter 4

Simple frictional plasticity

The compressive strength and inelastic deformation of particulate materials, such as soils, fractured rocks,
grains and powders, are dependent on the effective hydrostatic pressure. This behaviour is characteristic
of media where the mechanics is dominated by frictional forces. Mohr-Coulomb (M-C) and Drucker-
Prager (D-P) [14] are two of the most widely used pressure-sensitive constitutive models in the literature
which can capture this behaviour in an idealised way. Indeed, it was commented by Wood [35] that:

“Any program that is seriously intended for geotechnical application should certainly permit
the use of the elastic-perfect plastic Mohr-Coulomb model. Whether such a model will permit
the rather necessary luxury of nonassociated flow is less certain though rather crucial...”

The M-C1 criterion assumes that plastic frictional sliding will occur once the minor principal stress
falls below some proportion of the major principal stress. The D-P [14] criterion provides a smooth
approximation to the six-faceted M-C yield function (as shown in Figure 4.1). However, these two simple
frictional perfect plasticity models have inherent inadequacies, namely:

(i) the D-P yield surface exhibits no Lode angle dependency (LAD); and

(ii) the M-C surface has no sensitivity to the intermediate principal stress, σ2.

Multiaxial experiments show that both factors influence yielding and peak stresses. Inclusion of these
dependencies in constitutive models is necessary in order to capture properly the deformation of geotech-
nical structures [4]. The modified Reuleaux (mR) [9–12] deviatoric section presented in this chapter was
investigated as it arguably gives the greatest realism to the constitutive modelling of soil (has a sensitivity
to both θ and σ2) whilst still allowing for an analytical backward Euler (bE) stress integration procedure2.

Numerous other deviatoric yielding criteria have been proposed in literature for particulate media, for
example [3, 5, 20, 23, 34], that include both a dependency on the intermediate principal stress and the
Lode angle. However, currently none of these deviatoric functions, when applied to fricitional plasticity3,
allow analytical bE stress integration.

This chapter draws on the published papers of Coombs and co-workers [9–12] on Reuleaux plasticity.
Section 4.1 introduces the mR deviatoric yielding criterion. The criterion is compared with experimental
data in Section 4.2, showing its advantages over M-C and D-P. The single-step analytical bE stress return

1Shield [30] was the first to formalise the M-C failure criterion in three-dimensions, although it was separately established
by Prager and Bishop in unpublished work.

2The mR model was originally presented at the Association for Computational Mechanics in Engineering UK conference
in 2010 [12] (achieving the best PhD presentation award) and in 2011 named one of the three finalists of the prestigious
Cooling Prize [10].

3Note, it would be possible to construct an analytical stress integration procedure for a rigid plasticity model (a model
with isochoric plastic flow and without a dependence on the hydrostatic stress) for some of these deviatoric yielding criteria.
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Figure 4.1: Mohr-Coulomb (M-C) and Drucker-Prager (D-P) constitutive models: (i) deviatoric sections
and (ii) in principal stress space.

for non-associated plastic flow (NAF) is described in Section 4.3. The robustness, associated errors and
run time of the stress integration procedure is analysed in Section 4.4. Section 5.5 gives the consistent
linearisation of the integration scheme and observations are draw in Section 4.6. In all that follows, [̂·] and
[̄·] identify terms associated with principal and shear components of generalised stiffness matrices. We
adopt a tension positive convention and order the principal stresses such that σ1 is the most compressive,
while σ3 is the most tensile (that is σ1 ≤ σ2 ≤ σ3). The constitutive models examined in this chapter
are defined using Haigh-Westergaard cylindrical coordinates, see (2.10) in Section 2.1.1.

4.1 Reuleaux plasticity

The Reuleaux triangle can trace its origins back to the 1830s where the shape was used in cam-actuated
steam engine regulators. It was not until 1876 that the first written discussion of the geometry appears
to have been provided by Franz Reuleaux [24, 28]. The shape was originally described by Reuleaux [28]
as:

“...from the corners of an equilateral triangle, arcs be drawn with radii equal to the length of
one of the sides, we obtain figure which we may call an equilateral curve-triangle.”

This Reuleaux curve-triangle belongs to a family of curved shapes of constant breadth (that is, rolling
polygons which maintain a constant height)4. The shape with six-fold symmetry is formed through three
equal circular arcs projected from the triangle’s corners, as shown in Figure 4.2 (i).

Coombs et al. [11] extended the Reuleaux triangle such that the arc centres are allowed to translate
along the extension meridians, creating the modified Reuleaux triangle as shown in Figure 4.2 (ii). This
shape was investigated as, due to its geometric form, it offered the potential for analytical bE stress

4Other examples of these polygons that roll with a constant height are the sterling twenty and fifty pence coins.
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Figure 4.2: (i) Reuleaux triangle (ρ̄e = 0.732). (ii) modified Reuleaux triangle (ρ̄e = 0.8).

integration whilst providing advantages (in terms of experimental data reproduction) over the classical
M-C and D-P plasticity models. From Figure 4.2 (ii), we find that the mR LAD is

ρ̄(θ) =
√

ā2 + r̄2 − 2ā r̄ cos(ϕ), where r̄ =
ρ̄2

e − ρ̄e + 1
2ρ̄e − 1

and ā = r̄ − ρ̄e. (4.1)

ρ̄ is the deviatoric yield stress (for a given θ) normalised with respect to the deviatoric yield stress on the
compression meridian (σ1 < σ2 = σ3). The arc angle, ϕ, is defined as

ϕ =
π

6
+ θ − arcsin

(
ā sin(5π/6 − θ)

r̄

)
.

(4.2)

ρ̄e ∈ [0.5, 1] is the normalised size of the radius under triaxial extension (σ1 = σ2 < σ3). Note, that
ā and r̄ are constant for a given ρ̄e. As ρ̄e → 0.5 both r̄ and ā tend to ∞ and the deviatoric section
becomes an equilateral triangle. If ρ̄e = 1 then ρ̄ = 1 and we recover a circular deviatoric section centred
on the hydrostatic axis (as found in the D-P model). If the arc centres are located on the yield surface
compression meridians (that is, if r̄ = 1 + ρ̄e so that ā = 1 and ρ̄e = 0.732) then the shape reduces to
that of the original Reuleaux triangle. In the absence of multiaxial data, ρ̄e can be defined such that the
mR triangle coincides with M-C at the extension meridians

ρ̄e =
2 + k

2k + 1 ,
where k =

1 + sin(φ)
1 − sin(φ)

(4.3)

and φ is the friction angle of the material under triaxial compression. This means that the mR deviatoric
function can be used instead of the M-C function with no additional material parameters.

The mR cone can be defined as

f = ρ − αf ρ̄
(
ξ − ξc

)
= 0, (4.4)

where ξc = c
√

3 cot(φ) is the hydrostatic tensile yield strength (the intersection of the yield surface with
the hydrostatic axis), c is the apparent cohesion5 and αf is the opening angle of the cone, αf = − tan(φ).

5We use the term “apparent cohesion” as c is a manifestation of the interlocking material fabric rather than a tensile
strength from a cohesive bond.
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Figure 4.3: Modified Reuleaux cone in principal stress space: (i) A apex, B edge and C surface return
regions. (ii) Yield surface-plastic potential interaction.

Thus (4.4) defines a cone with a mR deviatoric section and linear meridians, pinned on the hydrostatic
axis at ξc, see Figure 4.3.

It is widely accepted that frictional plasticity models employing a volumetric associated flow rule
overestimate the dilation seen in particulate media. To overcome this shortfall, Coombs and Crouch [9]
proposed the following plastic potential

g = ρ − αgρ̄
(
ξ − ξg

)
= 0, (4.5)

where ξg is the intersection of the plastic potential with the hydrostatic axis and αg = − tan(φg) is the
opening angle of the plastic potential surface. φg gives the dilation angle under triaxial compression,
φg ∈ [0, φ]. Combining (4.4) and (4.5) with a linear hyperelastic relationship (as given by (2.2)), leads to
a perfect plasticity model with non-associated volumetric plastic flow but associated deviatoric plasticity.
The plastic potential is defined such that it passes through the stress state under consideration, as shown
in Figure 4.3 (ii). To achieve this

ξg = ξ − αf

αg
(ξ − ξc), (4.6)

where ξ is the hydrostatic stress of the point on the yield surface.

4.2 Comparisons with established pressure-sensitive criteria

M-C and D-P [14] are two of the most widely used pressure-sensitive constitutive models in the literature.
Their descriptions are now given. The M-C criterion can be defined using the following yield function

f = kσ3 − σ1 − σc = 0, where σc = 2c
√

k. (4.7)

The M-C normalised deviatoric radius (or LAD), as shown in Figure 4.1 (i), can be expressed as

ρ̄(θ) =
√

3ρ̄e

2a1 sin(5π/6 − a2 − θ)
where a2 = arcsin

(√
3ρ̄e

2a1

)
and a1 =

√
1 + (ρ̄e)2 − ρ̄e.

(4.8)
Combining (4.8) with (4.4) provides an alternative description of the M-C yield function (4.7).

The D-P [14] criterion provides a smooth approximation to the six-faceted M-C yield function. It is de-
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fined such that plastic yielding will occur once ρ reaches some ratio of the hydrostatic stress (independent
of θ)

f = ρ − αf ρ̄(ξ − ξc) = 0. (4.9)

Here ρ̄ is a constant, as shown in Figure 4.1, defining a circular cone with its axis centered on the
hydrostatic axis. Setting ρ̄ = 1 or ρ̄ = ρ̄e allows (4.9) to coincide with the M-C criterion at the extension
or compression meridians. When intersecting at the extension meridians, ρ̄e is obtained from (4.3).

It can be seen from (4.7) and (4.9) that the M-C and D-P models have no dependency on the inter-
mediate principal stress, σ2, and the Lode angle, θ, respectively. Real materials exhibit dependencies on
both [6, 29]. In rocks, the influence of θ is most clearly seen in the biaxial plane where yield surfaces which
neglect this measure provide poor fits to experimental data. Intermediate principal stress values close to
the most compressive principal stress confine microfractures to develop mainly in the plane formed by
the direction of those two stresses [15]. The formulation of compaction bands [19] and fault slip patterns
in complex fracture fields [25] have also recently been shown to be controlled by σ2. Thus its inclusion
in a geomechanics model is now considered essential.

The M-C, D-P and mR deviatoric functions are compared with experimental data from (i) Monterey
sand [20], (ii) Kaolin [2], (iii) San Francisco Bay mud [21] and (iv) Santa Monica Beach sand [22] in
Figure 4.4. The left of Figure 4.4 compares experimental data in terms of θ-ρ̄(θ). D-P has no dependence
on θ, (that is, constant ρ̄ for all θ) and therefore provides a poor fit to the experimental data.

Table 4.1 provides a quantitative measure of the error between ρ̄ and the experimental data for the
four models. The error was calculated as

error =
1
n

n∑
i=1

|ρ̄i − ρ̄(θi)|, (4.10)

where i denotes the experimental data point (out of a total of n) with ρ̄i and θi being the experimental
normalised deviatoric radius and Lode angle, respectively. mR provides an improved fit over M-C and
D-P for all of the materials. Note that, in Figures 4.4 (ii) and (iii) ρ̄e for the mR was not set equal to ρ̄e

for M-C.

Table 4.1: ρ̄ errors between M-C, D-P and mR and experimental data from Monterey sand (MS), Kaolin
(K), San Francisco Bay mud (SFBM), Santa Monica Beach sand (SMBS).

The right of Figure 4.4 compares experimental data in terms of the ratio of the intermediate principal
stress b = (σ2 −σ3)/(σ1 −σ3) versus the effective friction angle ψ, where the latter is calculated from the
expression given by Griffiths [17]

ψ = arcsin

( √
3η cos(θ)√

2 + η sin(θ)

)
,

with η =
ρ

ξ .

(4.11)

The experimental data show a dependence on the intermediate principal stress σ2. The D-P model can
be fixed such that it coincides with M-C at a specified b. If this occurs at b = 0, then the deviatoric
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Figure 4.4: Comparison of Mohr-Coulomb (M-C), Drucker-Prager (D-P) and modified Reuleaux (mR)
with experimental data: (i) Monterey sand [20], (ii) Kaolin [2], (iii) San Francisco Bay mud [21] and (iv)
Santa Monica Beach sand [22].
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radius significantly over-estimates the effective friction angle, whereas if this occurs at b = 1, then it
under estimates ψ. Of the three formulations considered here, only the mR model, having a dependency
on both θ and σ2, is able to qualitatively reproduce the experimentally observed material behaviour. mR
provides significantly reduced quantitative errors compared to the D-P and M-C deviatoric functions (see
Table 4.1). For example the mR LAD reduces the M-C deviatoric error by 44.9%, 26.9%, 32.9%, and
65.8% for Monterey sand, Kaolin, San Francisco Bay mud and Santa Monica Beach sand respectively.

4.3 Analytical stress integration

The advantages of the mR LAD over the D-P and M-C models have be demonstrated. In order to
progress further, the algorithmic aspects of the mR model are now detailed. A model defined by an
isotropic linear hyperelastic law (stiffness matrix given by (2.2)) together with a mR cone yield surface
described by (4.4) and direction of plastic flow defined by (4.5) is now examined. Consider the trial elastic
stress {σt} (given by a trial elastic strain {εe

t}) lying outside the yield surface (f > 0). For this state,
there are three distinct stress return regions associated with the mR cone, as shown in Figure 4.3 (i),
namely:

A. return to the stress origin (point): Apex return;

B. return to the compression meridian (line): Edge return; and

C. return to the surface: Non-planar surface return.

The closest point projection (CPP) solution is examined for each of the above regions in Sections 4.3.2-
4.3.4. The pseudo-code for the mR constitutive model is given in Figure 4.5, detailing the algorithmic
steps for each of the three stress return regions. However, first the concept of energy-mapped stress space
(EMSS) is introduced.

4.3.1 Energy-mapped stress space

Simo and Hughes [32] noted that the bE integration method corresponds to the “closest projection of the
[trial elastic stress] onto the yield surface in the energy norm” obtained from the minimisation of (2.42)
with respect to the return stress {σr} [31]. In the more recent paper by Crouch et al. [13] the concept of
working in an EMSS was clarified. The technique was later extended to the case of non-associated plastic
flow by Coombs and Crouch [9]. This space facilitates visualisation of any CPP stress return and permits
an analytical bE stress return for certain yield surfaces based on purely geometric methods. The return
stress is not generally the closest point geometrically in standard stress space, but rather the stress that
minimises the energy square norm (2.42), as shown in Figure 4.6. Energy-mapped {ς} space [13] is linked
to true stress space through

1
E
{ς}T {ς} = {σ}T

[
Ce

]
{σ}, (4.12)

where E is the Young’s modulus of the material. This allows us to find the geometric closest point (in
{ς} space) through use of the following transformation

{ς} =
[
T

]
{σ}. (4.13)

For isotropic linear elasticity, [T ] is solely a function of Poisson’s ratio υ. Given the elastic compliance
matrix [

Ce
]

=
[
De

]−1 =
1
E

[
[1] − υ

[
{1̂}{1̂}T − [1]

]
[0]

[0] 2(1 + υ)[1]

]
, (4.14)
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Figure 4.5: Pseudo-code for the NAF modified Reuleaux constitutive model.
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where {1̂} = {1 1 1}T , [T ] becomes

[
T

]
=

[
t1[1] + t2

[
{1̂}{1̂}T − [1]

]
[0]

[0] t3[1]

]
, (4.15)

where

t1 =
√

1 − 2υ + 2
√

1 + υ

3
, t2 =

√
1 − 2υ −

√
1 + υ

3
and t3 =

√
2(1 + υ). (4.16)

This mapping leads to a squashing and a stretching of the yield surface in the hydrostatic and deviatoric
directions respectively

ςξ = ξ
√

1 − 2υ, ςρ = ρ
√

1 + υ and ςθ = θ, (4.17)

where ς(·) denotes a quantity associated with energy-mapped space . Once the closest point solution in
energy-mapped stress space has been found, the solution can be transformed back to conventional stress
space. For non-associated flow plasticity, the return stress is the stress state on the yield surface where
the normal to the plastic potential passes through the trial stress state, as shown in Figure 4.6 (ii).

Figure 4.6: CPP stress return in (i) conventional stress space and (ii) in EMSS.

In the case of non-linear elasticity, the energy-mapped surface takes on additional curvature. For
example, if a linear variation in bulk modulus with pressure and a constant shear modulus were adopted,
then a D-P [14] cone would transform into a convex quadratic cone for which an analytical bE solution
would be possible. For more complex forms (that is, non-linear meridians and non-circular deviatoric
cross-section) the solution would require a polynomial of 5th order (or higher) to be solved numerically6.

The EMSS also provides a valuable framework with which to view hardening/softening plasticity since
the return point will remain closest to the trial point (for the case of associated flow) with respect to the
evolving yield surface. The full range of plasticity models which retain analytic bE solutions has not yet
been identified.

The energy-mapped opening angles of the yield surface and plastic potential, ςαf and ςαg , are given
by

ςαf =
αf

√
1 + υ√

1 − 2υ
and ςαg =

αg

√
1 + υ√

1 − 2υ .

(4.18)

Increasing υ widens the opening angle of the mR yield and plastic potential surfaces. Throughout the
following, and without loss of generality, the yield surface is assumed to be pinned at the stress origin,
ξc = 0. For cases where ξc 6= 0, the trial stress state can be hydrostatically translated by ξc in order to
accommodate a tensile apex.

6It is widely known that, in general, it is only possible to find the analytical solution to a polynomial of fourth order or
less.
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4.3.2 Apex return

If ςfa ≤ 0, then the trial stress point {ςt} will be returned onto the apex of the mR cone, with

{σcp} = (ξc/
√

3){1}, (4.19)

where (·)cp denotes quantities associated with the closest point (the analytical stress return point) and
{1} = {1 1 1}T . The mR EMSS apex boundary function is given by

ςfa = ςρ +
1

ςαgρ̄

(
ςξ − ςξc

)
= 0. (4.20)

This boundary function defines an inverted mR cone pinned at the apex of the yield surface, as shown
in Figure 4.3 (i). Points lying on or inside this surface ( ςfa ≤ 0) must return to the apex of the yield
surface.

4.3.3 Edge return

For trial stresses outside the yield surface returning onto the compression meridian

θcp = π/6 and ςρcp = ςαf
ςξcp. (4.21)

One obtains the solution for ςρcp in this case by recognising that the return vector from the trial point
will be orthogonal to the direction of the plastic potential compression meridian line in EMSS. Therefore
we may write

{ ςng}T
{
{ςcp} − {ςt}

}
= 0, (4.22)

where { ςng} is the direction of the plastic potential compression merdian, given by

{ ςng} =
{

1 −
√

2 ςαg 1 + ςαg/
√

2 1 + ςαg/
√

2
}T

.
(4.23)

A point on the compression meridian of the energy-mapped yield surface is given by

{ς} =
ςξ√
3

{
1 −

√
2 ςαf 1 + ςαf/

√
2 1 + ςαf/

√
2
}T

.
(4.24)

Substituting (4.23) and (4.24), for { ςn} and {ςcp}, into (4.22), we obtain an equation which can be solved
for ςξcp

ςξcp =
(ςt2 + ςt3)

(
1 + ςαg/

√
2
)

+ ςt1
(
1 −

√
2 ςαg

)
√

3(1 + ςαf
ςαg) .

(4.25)

Subsequently ςξcp and ςρcp can be transformed back into conventional principal stress space (recall that
θ remains unchange moving between conventional and EMSS) to calculate the final return stress {σcp}
using the Haigh-Westergaard expression (2.10). These stresses are then transformed back to generalised
stress space through use of the eigenvectors associated with the generalised trial stress state (C.17).

4.3.4 Non-planar surface return

Assuming that a trial elastic stress {ςt} outside the yield will return onto the non-singular portion of the
yield surface, we can define the square of the distance between that trial point and a point on the surface
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at the same ϕt in any deviatoric plane7 at a given ςξt (see Figure 4.7) as

l2 = (rt − r)2 + ( ςξ − ςξt)2. (4.26)

Substituting r = r̄ ςαg( ςξ − ςξg) and

r2
t = a2 + ςρ2

t − 2a ςρtC
(
where C = cos(5π/6 − θt) and a = ā ςαg( ςξ − ςξg)

)
(4.27)

into (4.26), taking the partial derivative of l2 with respect to ςξ and setting that derivative equal to zero,
we obtain

∂l2

∂ ςξ
= ā2 ςαg

2 ςξrt − ā2 ςαg
2 ςξgrt − ā ςαg

ςρtCrt − r2
t r̄ ςαg − . . . (4.28)

−r̄ ςαg( ςξ − ςξg)(ā2 ςαg
2 ςξ − ā2 ςαg

2 ςξg − ā ςαg
ςρtC) + ( ςξr̄2 ςαg

2 − ςξg r̄
2 ςαg

2 + ςξ − ςξt)rt = 0.

Note that throughout the partial differentiation we ignore the dependance of ςξg on ςξ. Through ma-
nipulation and substituting ςξg from (4.6) (with ξc = 0) into (4.28), we obtain the following quartic in
ςξcp (

ςξcp

)4
A1 +

(
ςξcp

)3
A2 +

(
ςξcp

)2
A3 + ςξcpA4 + A5 = 0, (4.29)

where

A1 = ā2 ςαf
2B2

1 − 4ā4r̄2 ςαf
4 ςαg

2,

A2 = 12ā3r̄2 ςαf
3 ςαg

2ρtC − 2ā2 ςαf
2B1B2 − 2ā ςαf

ςρtCB2
1 ,

A3 = ā2 ςαf
2B2

2 + ςρ2
t B

2
1 + 4ā ςαf

ςρtCB1B2 − 9ā2r̄2 ςαf
2 ςαg

2 ςρ2
t C

2 − 4ā2r̄2 ςαf
2 ςαg

2 ςρ2
t ,

A4 = 6ār̄2 ςαf
ςαg

2 ςρ3
t C − 2 ςρ2

t B1B2 − 2ā ςαf
ςρtCB2

2 ,

A5 = ςρ2
t B

2
2 − ςρ4

t r̄
2 ςαg

2,

B1 = ā2 ςαf
ςαg + r̄2 ςαf

ςαg + 1 and B2 = ā ςαg
ςρtC + ξt.

This quartic can be solved for ςξcp (see Simo and Hughes [31] p. 138, amongst others, for the solution of
a quartic). Once ςξcp is known, then the other quantities identifying the position of the closest point on
the mR surface can be calculated. ϕcp is given by the sine rule

ϕcp = arcsin
(

ςρt sin(5π/6 − θt)
rt

)
,

(4.30)

where rt is calculated at the solution ςξcp using (4.27). ςρcp = ςαf ρ̄(θ) ςξcp with ρ̄(θ) given by (4.1) and
θcp determined from the cosine rule

θcp =
5π

6
− arccos

(
a2

cp + ςρ2
cp − r2

cp

2acp
ςρcp

)
,

(4.31)

rcp and acp are values associated with ςξcp. The stress return for the non-associated mR cone is equivalent
to the closest point to the plastic potential in energy-mapped space. The yield and plastic potential

7Note that the trial point will return along a constant ϕt towards the arc centre of the plastic potential. This allows a
ray of potential return points on the yield surface to be identified.
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Figure 4.7: Geometric illustration of the mR non-planar surface return solution in EMSS.
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surfaces coincide at the return stress state. For the special case of isochoric plastic flow (ψg = 0), trial
points outside the yield surface return in their deviatoric ξ plane, ξcp = ξt, removing the need to find the
solution to the quartic (4.29).

4.3.5 Tension cut-off

Coombs and Crouch [9] extended the realism of the mR constitutive model by including an additional
NAF mR cone, with a high friction angle, to provide a tension cut-off. The addition of this cut-off
increased the number of return regions to seven. All of these regions allowed for an analytical stress
return based on an EMSS approach. The non-planner surface, edge and apex return for the additional
surface were handled in the same way as presented in Sections 4.3.1 to 4.3.3. However, returning to
the intersection between the two surfaces required special attention. The full algorithmic and numerical
procedure was provided in [9]. It has been omitted here for the sake of brevity.

4.4 Numerical investigations

The analytical bE stress integration procedure (as described in the preceding section) is now examined.
The robustness of the algorithm is first verified, errors are then quantified and the algorithm run-times
compared with a conventional iterative integration procedure. All of the analyses in this section used a
Young’s modulus of 100MPa and a Poisson’s ratio of 0.2.

4.4.1 Robustness

The robustness of the analytical stress integration procedure described in the preceding section (with
the pseudo-code given in Figure 4.5) was tested using three-dimensional Gudehus [18] stress plots. The
friction and dilation angles were set to π/9 and π/18, respectively, with an apparent cohesion of 100kPa
and a normalised deviatoric radius under triaxial extension of ρ̄e = 0.8.

Figure 4.8: Gudehus stress surface plots in (i) σx versus σz plane and (ii) deviatoric section (looking in
a negative hydrostatic direction).

Starting from an initial principal stress state of {σ} = {−1 − 1 − 1}T MPa, the mR constituitve
model was subjected to 64 strain probes of length 10, 000µ (that is, 1 × 10−2). At the updated stress
state (from those initial strain probes), the constitutive model was subjected to 832 strain probes for the
64 starting stress states. Each sphere had a strain radius of 2, 000µ (that is, 2 × 10−3). The directions
of the individual strain probes (for both the starting state and the subsequent strain probe sphere) were
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obtained using the HEALPix software [16], dividing the surface of the sphere into equal area patches. The
stress surfaces corresponding to these strain spheres are shown in Figure 4.8. The surfaces are shaded
according to the distance from the starting stress state, with the black and white regions corresponding
to the largest and smallest radii respectively.

If the 832 strain probes cause a purely elastic response, then the corresponding stress surfaces will be
ellipsoids with their major axis aligned with the space diagonal (hydrostatic axis) and circular deviatoric
sections. In the special case of a zero Poisson’s ratio (or when visualising the surfaces in EMSS), the
Gudehus stress surface will be spherical. For the case of perfect plasticity, when the strain probes
experience an inelastic stress response, the stress surfaces are bounded by the yield surface. This effect
can be seen in Figure 4.8 when the influence of the mR yield surface is clearly visible. The smoothness
of the stress surfaces demonstrates the robustness of the stress integration algorithm. Points which fail
to converge, or converge to an inappropriate stress state, would appear as spikes or discontinuities in the
stress surfaces. One of the major advantages of the analytical bE stress integration procedure is that will
provide an appropriate solution for any trial strain state, thereby eliminating the potential convergence
problems associated with iterative schemes.

4.4.2 Error analysis

The errors associated with the implicit stress return procedure for the M-C, D-P and mR cone models
are now analysed. The accuracy of the return algorithms were assessed for normalised trial deviatoric
radii of ρt/(αf ρ̄(θt)ξt) ∈ [1, 6] and trial Lode angles θt ∈ [−π/6, π/6], in three sextants of stress space.
The friction and dilation angles were set to π/6 and π/12, respectively, with the normalised deviatoric
radius under triaxial extension for mR coinciding with that of M-C (ρ̄e = 0.714). The apparent cohesion
was set to zero. A hydrostatic pressure of ξ = −1MPa was used for all of the initial and elastic trial
stress states. In this material point analysis, the starting stress state was located on the yield surface
at the shear meridian (θ = 0) in the sextant where σx ≤ σy ≤ σz. The models were then subjected to
a strain increment corresponding to the trial stress state under consideration, see Figure 4.9 (i). The
return stress from this single strain increment was compared (using a Fortran90 script) with the exact
solution deemed to be obtained by splitting the strain increment into 1,000 sub-increments.

The following error measure was used to assess the accuracy of the return algorithms

error =

√{
{σcp} − {σe}

}T {
{σcp} − {σe}

}
√
{σe}T {σe} ,

(4.32)

where {σe} is the exact solution and {σcp} is the analytical single increment closest point return. Stress
iso-error maps are shown in Figure 4.9. The maximum errors in each of the three sextants are given in
Table 4.2. Due to symmetry, Figure 4.9 (ii) displays only half of the iso-error map for D-P. The maximum
errors for the three models are 11.81%, 8.09% and 8.86% for M-C, D-P and mR, all located in the trial
stress sextant σx ≤ σz ≤ σy. In regions σy ≤ σx ≤ σz and σx ≤ σy ≤ σz, the mR model has the lowest
maximum error.

Large regions of stress space lead to mR model errors of less than 1%. In the sextant where σx ≤ σy ≤
σz, zero error appears along the locus θt = 0, ρt/(αf ρ̄ξt) = 1 to θt → −0.3128, ρt/(αf ρ̄ξt) → ∞. Here
the trial stress returns back to the original stress state on the shear meridian in a radial direction towards
the arc centre. Larger errors are associated with trial stresses near the extension meridian and in the
vicinity of the compression meridian return region. These are due to the increased tangential component
of the trial stress increment (that is, moving further over the curved surface). The errors follow the same
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general pattern as reported for the associated Reuleaux plasticity model by Coombs et al. [11]. The
maximum error is higher under NAF, compared with associated plasticity. This is due to the NAF rule
increasing the length of the integrated stress return [9]. However, the previously published error analysis
on mR plasticity concentrated on stress returns starting and returning in the same sextant [9, 11].

Table 4.2: Maximum errors for M-C, D-P and mR constitutive models for trial stresses in three sextants
of stress space.

For a large portion of the region where σx ≤ σy ≤ σz, the M-C model has zero error. However,
when crossing corner regions there is an error which can introduce significant inaccuracy when using a
single step return. It appears that some authors [7, 8] are unaware of this feature, as they suggest that
the bE integration for M-C is exact. Implicit stress return algorithms only require information about
the trial stress (or elastic strain) state. For isotropic formulations, on receiving a trial stress state, the
constitutive model calculates the principal stresses and orders them such that σ1 ≤ σ2 ≤ σ3 (or using
some other preferential ordering). The return principal stresses are subsequently calculated and then
converted back into six-component generalised stresses. When an applied strain increment changes the
ordering of the principal stresses and the stress path moves through a corner return region, there will be
an error associated with the stress return. This type of error is present for any yield surface with corners.

Figure 4.10 demonstrates the stress return algorithm (for the mR model) when the applied strain
increment changes the ordering of the principal stress between the original (or previously converged)
and trial stress states, crossing a corner region. This analysis was conducted with the same material
parameters as above except that φ = π/9, φg = 0, ρ̄e = 0.8 and the cohesion c = 100kPa, allow-
ing the stress return to be visualised in the π-plane. The initial stress state {σn} was located at the
intersection of the shear meridian with the yield surface. An unordered principal strain increment of
{∆ε} = {−1.6131 1.8065 − 0.1934}T × 10−3 was applied in a single step and also in two carefully
selected steps, where the strain increment was split such that (i) the first increment locates the trial
stress {σt1} on the boundary of the region that will result in a corner return and (ii) the second in-
crement supplies the remainder of the total strain increment. Figure 4.10 (i) demonstrates the stress
return in principal stress space where the components (σx, σy, σz) are not associated with any particular
ordering. That is, σx (and σy or σz) may be the major, intermediate or minor principal stress. In this
way, stress points can exist in all six sextants of the π-plane. Hereafter we refer to this as true stress
space. Figure 4.10 (ii) illustrates the processes in principal stress space where the ordering σ1 ≤ σ2 ≤ σ2

holds. In true stress space, applying the strain increment in a single step results in a trial stress state
{σt} in the sextant where σx ≤ σz ≤ σy. This trial state will return onto the yield surface at {σcp}. In
the ordered principal stress space, the trial point is again located at {σt}. This principal trial stress will
return to {σcp} which (for this case) coincides with the same return stress in true stress space. When
the strain increment is split into two components, the first trial {σt1} returns one of the yield surface’s
compression meridians at {σcp}. The remainder of the increment results in the trial {σt2} which returns
to {σcp2}. Viewing this two-step process in principal stress space, the initial increment is identical to
that in true stress space. The second increment is mirrored about the σz = σy axis so that it remains
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in the σ1 ≤ σ2 ≤ σ2 sextant. Once the return is formed in principal stress space, it is then transformed
back into true stress space. For the case demonstrated, the relative error (using (4.32) with {σe} taken
as {σcp2}) between the single step and the two step return was 10.27%. An absolute error of 12.5% was
recorded against the result when splitting the strain increment into 10,000 subincrements.

Figure 4.10: mR stress return crossing a corner. The figures illustrate a comparison between a single step
and two specifically selected increments in (i) true stress space (ii) ordered principal stress space.

The mR plasticity model contains an edge (at the compression meridians) and an apex which, by
using the approach of Clausen et al. [7, 8], are dealt with exactly8. Surprisingly, the unnecessary process
of rounding corners is still used by some researchers, for example for the M-C constitutive model [1].
This rounding introduces an additional numerical approximation, increasing the error associated with
the stress integration procedure.

4.4.3 Material run-time analysis

Here the run time for the mR model using the single-step analytical bE return is compared with a
conventional iterative bE stress return. The analysis considered trial stresses ρt/(αf ρ̄ξt) ∈ [1, 6] and
θt ∈ [−π/6, π/6]. φ = π/9, φg = π/18 and ρ̄e = 0.8 define the mR cone and a hydrostatic pressure of
ξt = −1MPa was used for all of the elastic trial stresses. The constitutive model was subjected to a strain
increment corresponding to the elastic trial stress state under consideration, see the right of Figure 4.11.
When returning to the corner (or the tensile apex), both the approaches (analytical and numerical bE)
use the same single-step return discussed in the preceding sections. However, when returning onto the
non-planar surface, the conventional (numerical) bE method requires multiple local iterations to obtain
convergence. The number of iterations and the ratio of the numerical to analytical bE run times are
presented in Figure 4.11. The analytical return demonstrates a 2-4 times speed-up over the iterative
numerical method (for the considered trial stress states). The increase in time required for the iterative
approach is due, in part, to repeatedly calculating the first and second derivatives of the yield function
with respect to stress. The non-smooth (stepped) region close to θt = π/12 is a consequence of the finite
grid size either side of the return region B-C boundary (that is the boundary between edge and surface
returns, as shown in Figure 4.3).

Note that although the same general trends are observed as for the associated case reported by Coombs
et al. [11], a different form of the yield function, f , was used in this chapter (in agreement with that used
in later work by Coombs and Crouch [9]). Both yield functions describe the same yield surface, but they

8That is, without some numerically approximation or local rounding. Note that de Souza Neto et al. [33] also provide
a method for dealing with the corner regions without local rounding.
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Figure 4.11: Run time comparisons between conventional iterative backward Euler and the single-step
analytical backward Euler stress returns.

have different f fields outside the yield surface, which can significantly affect the rate of converegence
of an iterative backward Euler stress return9. As a result, the maximum number of iterations for the
iterative NAF model to converge (to the same tolerance) was reduced from 7 (for the case of associated
flow in [11]) to 5.

4.5 Consistent linearisation

Section 2.4 highlighted the importance of forming the algorithmic tangent through consistent linearisation
of the bE stress return procedure. Here, that tangent is given for each of the three return regions.

4.5.1 Apex consistent tangent

As Clausen et al. have shown [7], the elasto-plastic consistent tangent for a hydrostatic apex return is
simply [

Dalg
]

= [0]. (4.33)

Due to this null stiffness matrix, the use of a non-zero apparent cohesion is imperative. If all of the
material points in a boundary value analysis started at the yield surface apex, then the global stiffness
matrix would also null (that is, it would give a system with zero stiffness).

4.5.2 Edge consistent tangent

The consistent tangent for an edge return is obtained following the NAF approach given by Clausen et
al. [8]. By considering the vector orientation of the yield surface compressive meridian (edge)

{nf} =
{

1 −
√

2αf 1 + αf/
√

2 1 + αf/
√

2
}T

,
(4.34)

and that of the plastic potential

{ng} =
{

1 −
√

2αg 1 + αg/
√

2 1 + αg/
√

2
}T

,
(4.35)

9The influence of f on an iterative bE stress integration routine is discussed in more detail in Chapter 5.
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we obtain the 3×3 (that is, in principal form) infinitesimal elasto-plastic tangent matrix as

[
D̂ep

]
=

{nf}{ng}T

{nf}T
[
Ĉe

]
{ng} ,

(4.36)

where
[
Ĉe

]
is the 3×3 (principal) elastic compliance matrix. The 6×6 elasto-plastic tangent matrix is

then given by [
Dep

]
=

[ [
D̂ep

]
[0]

[0] (E/2(1 + v)) [1]

]
.

(4.37)

The consistent tangent follows as

[
Dalg

]
=

[
Q

][
Dep

]
, where [Q] =

[
[1] [0]
[0] [Q̄]

]
.

(4.38)

Using the fact that σ2 = σ3 for a return onto the edge, [Q̄] was shown in [11] to be equal to

[Q̄] =


σ1−σ2

σt1−σt2
0 0

0 0 0
0 0 σ1−σ3

σt1−σt3


,

(4.39)

where σti are the principal trial stresses and σi are the principal return stresses. From (4.38) and (4.39)
the consistent tangent, for the edge return, can be written as

[
Dalg

]
=

[ [
D̂ep

]
[0]

[0] (E/2(1 + v)) [Q̄]

]
.

(4.40)

Once the consistent tangent has been formed in principal stress space (4.40) it must be transformed back
to generalised stress space, see Appendix C.3 for details on this transformation.

4.5.3 Non-planar consistent tangent

The consistent tangent for the non-associated non-planar surface return is calculated following the pro-
cedure given in Section 2.4, thereby obtaining[ [

Ĉe
]
+ ∆γ[g,σ̂σ̂ ] {g,σ̂ }
{f,σ̂ }T 0

]
︸ ︷︷ ︸

[Aalg ]−1

{
{dσ̂}
d∆γ

}
=

{
{dε̂e

t}
0

}
.

(4.41)

The principal consistent tangent [D̂alg] is obtained by pre-multiplying both side by [Aalg], as shown by
(2.54) in Section 2.4 of Chapter 2. We assume that (and without loss of generality) the yield surface apex
lies at the stress origin (ξc = 0) when taking derivatives with respect to {σ̂}. The derivatives required
for (4.41) are given by

{g,σ̂ } = {ρ,σ̂ } − αfξ{ρ̄,σ̂ } − αgρ̄{ξ,σ̂ },

[g,σ̂σ̂ ] = [ρ,σ̂σ̂ ] − (αf + αg){ξ,σ̂ }{ρ̄,σ̂ }T − αfξ[ρ̄,σ̂σ̂ ] and

{f,σ̂ } = {ρ,σ̂ } − αfξ{ρ̄,σ̂ } − αf ρ̄{ξ,σ̂ }. (4.42)
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The derivatives of the stress invariants and the mR LAD are provided in Appendix C.1 and Appendix C.2
respectively. The full 6 × 6 consistent tangent is given by

[
Dalg

]
=

[ [
D̂alg

]
[0]

[0]
(
E/2(1 + v)

)
[Q̄]

]
,

(4.43)

where
[
D̂alg

]
is the consistent tangent in principal form, from (4.41), and [Q̄] given by [7], was shown in

[11] to be

[Q̄] =


σ1−σ2

σt1−σt2
0 0

0 σ2−σ3
σt2−σt3

0

0 0 σ1−σ3
σt1−σt3


.

(4.44)

4.6 Observations

A NAF mR cone perfect plasticity model has been investigated in some detail. Although simple, it
provides a valuable extension to the existing family of pressure-dependent soil models whilst still allowing
for an analytical bE stress integration procedure. The following conclusions summarise the key findings
from this chapter:

(i) the analytical bE stress integration procedure guaranties material point convergence for any trial
elastic strain and requires no local iterations;

(ii) this single step stress return provides a 2-4 times speed gain over the conventional iterative bE
approach;

(iii) corners can be simply dealt with using analytical procedures for perfect plasticity models;

(iv) when moving between stress sextants across a corner there can be an additional error associated with
the implicit stress return procedure. This error can be removed by using a two-part sub-stepping
algorithm (as shown in Figure 4.10);

(v) the mR deviatoric yield criterion provides a significantly improved fit to the deviatoric yielding
behaviour of particulate materials over M-C and D-P (see Figure 4.4) by containing a dependency
on both the Lode angle and the intermediate principal stress; and

(vi) the mR cone model overcomes the inadequacies inherent in, and provides a suitable replacement
for, both the M-C and D-P models, and yet requires no additional material constants (ρ̄e can be
obtained from the friction angle, φ).

This chapter has been limited to the case of perfect-plasticity constitutive models. It would be possible
to extend the mR constitutive model to include hardening effects, such as isotropic hardening/softening
and/or rotation. However, the forms of hardening that would allow for an analytical stress integration are
yet to be determined. Also, purely frictional (cone-type) models fail to capture the volumetric response of
clays under hydrostatic (or one-dimensional) consolidation. For example, isotropic compaction of the mR
constitutive model produces a fully recoverable (linear) elastic response, failing to reproduce the inelastic
behaviour of clays under this loading. To include this feature, a yield surface with compressive closure
on the hydrostatic axis is required. The following chapter develops such a model within the framework
of hyperplasticity and embracing the concepts of Critical State soil mechanics.
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[16] KM Górski, E Hivon, AJ Banday, BD Wandelt, FK Hansen, M Reinecke & M Bartelmann, HEALPix:
a framework for high-resolution discretization and fast analysis of data distributed on the sphere,
Astrophys. J. 622 (2005), 759–771.

[17] DV Griffiths, Failure criteria interpretation based on Mohr-Coulomb friction, ASCE J. Geotech. Eng.
116 (1990), 986–999.

[18] G Gudehus, Comparison of some constitutive laws for soils under radially symmetric loading and
unloading. In: Proceedings of the 3rd International Conference on Numerical Methods in Geome-
chanics, Aachen, 1979, 1309–1323.

– 83 –



84 Chapter 4 references

[19] K Issen & V Challa, Influence of the Intermediate Principal Stress on Compaction Localization
Conditions, The 41st U.S. Symposium on Rock Mechanics (USRMS), June 17–21, 2006.

[20] PV Lade & JM Duncan, Cubical triaxial tests on conhesionless soil, J. Soil Mech. Found. Div. ASCE
99 (1973), 793–812.

[21] PV Lade & MM Kirkgard, Effects of stress rotation and changes of b-values on cross-anisotropic
behavior of natural K0-consolidated soft clay, Soils Found. 40 (2000), 93–105.

[22] PV Lade, Instability, shear banding and failure in granular materials, Int. J. Solids Struct. 39 (2002),
3337–3357.

[23] H Matsuoka & T Nakai, Stress-deformation and strength characteristics of soil under three different
principal stresses, Proc. JSCE 232 (1974), 59–70.

[24] FC Moon, Franz Reuleaux: Contributions to 19th C. kinematics and theory of machines, Tech.
report, Cornell Library Technical Reports and Papers, 2002.

[25] AP Morris & DA Ferrill, The importance of the effective intermediate principal stress (σ′
2) to fault

slip patterns, J. Struct. Geol. 31 (2009), 950–959.
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Chapter 5

Isotropic hyperplasticity

Frictional perfect-plasticity models provide a valuable but oversimplified idealisation of the inelastic
behaviour of geomaterials. Drucker et al. [21] commented on the limitations of these elementary plasticity
models:

“Soils having cohesion and internal friction are often considered to be perfectly plastic solids...
However, such idealized treatment will often result in a marked difference between prediction
and experimental fact. In particular, the strong dependence of the volume change under shear-
ing action on the prior history of the soil cannot be properly taken into account.”

Purely frictional, perfect plasticity models, such as those presented in the preceding chapter, fail to
capture the compactive volumetric response of clays under hydrostatic (or one-dimensional) drained
loading. For example, simulating hydrostatic compression using a modified Reuleaux (mR) constitutive
model produces a purely linear elastic response, which fails to reproduce the permanent compaction of
clays under this loading. Such models are also unable to reproduce the differing volumetric responses
of dense and loose soils when sheared, where dense samples dilate but loose samples compact. Through
undertaking shear box tests on dense and loose sands, Casagrande [7] proposed the concept of a Critical
State (CS), concluding that:

“Every cohesionless soil has a certain critical density, in which state it can undergo any
amount of deformation or actual flow without volume change.”

Casagrande coined the term critical void ratio and found that it was influenced by the effective pressure,
with higher pressures resulting in lower critical void ratios. This relationship between pressure and void
ratio is known as the Critical State Line (CSL). The CS was succinctly defined by Roscoe et al. [42] as the
ultimate state at which soil “continues to deform at constant stress and void ratio”. The key concepts of
CS soil mechanics were explained using the drained and undrained response of a normally and a heavily
overconsolidaed soil in Figure 1.2 of Section 1.2.

Many of the most successful constitutive models for particulate media can trace their roots to the
works of Roscoe and co-researchers [42, 43] and, independently, Parry [37] on CS theory. Within this
theory, the modified Cam-clay (MCC) constitutive model (following on from the original Cam-clay model
[44]) was the first hardening plasticity model to become generally accepted for the analysis of soils [47].
Indeed, it was commented by Potts [38] in 2003 that every geotechnical analysis package should include
“a simple critical-state model such as modified Cam clay”. This formulation, with associated plastic flow
and ellipsoidal yield surface is able to conceptually capture several aspects of real soil behaviour [24].
These features include a volumetric response dependent on the stress history of the material, a unique
state boundary surface, for which soils states outside are inadmissible, and a unique void ratio versus

– 85 –
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CS stress line [24]. Despite these attractions, Yu [49] (amongst many others) commented that the MCC
constitutive formulations significantly overestimate the peak stress on the dry side of the CSL (the heavily
overconsolidated region) and, due to their associated flow rule, are unable to capture post-peak softening
towards the CS in normally consolidated clays.

Building on the pioneering work from Ziegler [50], Houlsby [28] and Collins and Houlsby [8], several
hyperplastic (see Section 2.2.2) models have been constructed for geomaterials [9–16, 30, 31, 40, 41].
These offer improvements over the conventional plasticity formulations which, in a number of cases, fail to
satisfy fundamental thermodynamic principles. The hyperplastic formulations of Collins and co-workers
embrace the CS as an asymptotic state, with the concept of non-associated flow arising naturally.

This chapter draws heavily on the paper by Coombs and Crouch [18]. Section 5.1 is concerned with
the formulation of a two-parameter family of CS models using the principles of hyperplasticity introduced
in Chapter 2. This family of models is extended to include a dependency on the third invariant of stress
(via the Lode angle) in Section 5.2. Section 5.3 presents the backward Euler (bE) stress integration for
the two-parameter family of models. The influence of the form of the yield function on the integration
procedure is revealed, the errors associated with this implicit return are quantified and the robustness of
the algorithm is investigated through Gudehus plots [26]. The section closes by presenting the consistent
linearisation of the family of models. Section 5.4 describes the calibration procedure for the two-parameter
model. This includes the four classical MCC constants and the additional α and γ material constants.
The simulation capability of the two-parameter model is then compared with drained and undrained
triaxial experimental data on Lower Cromer till (LCT) from Gens [23] in Section 5.5. Observations on
the two-parameter model are made in Section 5.6.

The majority of the relations given in this chapter are expressed using principal stresses (again denoted
by (̂·)). In line with geotechnical convention, compressive stresses are positively valued. Here the principal
stresses are ordered so that σ1 is the most tensile, while σ3 is the most compressive (that is σ1 ≤ σ2 ≤ σ3).
All stresses are treated as effective stresses, although the prime notation is omitted.

5.1 Formulation

5.1.1 Hyperelastic relationship

Particulate media typically demonstrate a dependence of the elastic bulk modulus on the effective pres-
sure, or equivalently on the elastic volumetric strain. One common approach when defining the shear
modulus is to calculate it directly from the bulk modulus, assuming a constant Poisson’s ratio [24]. How-
ever, this leads to a non-linear elasticity model in which energy can be generated from certain loading
cycles [4, 29, 51]. Here we use a variable bulk modulus with a constant shear modulus [29]. This can be
achieved by adopting an elastic free-energy function of the form

Ψ1 = κpr exp
(

εe
v − εe

v0

κ

)
+ G

(
{γe}T {γe}

) (
with εe

v = tr[εe] and {γe} = {εe} − εe
v

3
{1}

)
,

(5.1)
where κ is the bi-logarithmic elastic compressibility index1, G is the shear modulus, pr is the reference
pressure and εe

v0 is the elastic volumetric strain at that reference pressure2. The true stress is given by

1That is, the gradient of the swelling (drained unloading) line in the bi-logarithmic void ratio (or equivalently specific
volume) versus hydrostatic pressure plane.

2The reference pressure can be considered as the starting pressure for a particular test (with εe
v0 = 0). In order to fix

the swelling, normal consolidation and CS lines in the void ratio (or specific volume) versus hydrostatic pressure plane it
is necessary to specify an initial void ratio. However, this void ratio is not required for displacement-based finite-element
simulations.
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the first derivative of (5.1) with respect to elastic strain

{σ} = {Ψ1,εe } = pr exp
(

εe
v − εe

v0

κ

)
{1} + 2G{γe}. (5.2)

The non-linear elastic stiffness matrix is obtained from the second derivative of (5.1) with respect to
elastic strain

[D̂e] = [Ψ1,εeεe ] =
(

K − 2G

3

)
{1̂}{1̂}T + 2G[1] where K =

pr

κ
exp

(
εe
v − εe

v0

κ

)
, (5.3)

where {1̂} = {1 1 1}T . The six-component stiffness and compliance matrices follow as

[De] =

[
[D̂e] [0]
[0] G[1]

]
and

[
Ce

]
=

[
De

]−1 =

[ [
Ĉe

] [
0
][

0
]

G−1
[
1
] ]

(5.4)

where the principal compliance matrix is

[
Ĉe

]
=

1
9

(
1
K

− 3G

2

)
{1̂}{1̂}T +

1
2G

[1] (5.5)

and [0] is the 3 by 3 null matrix.

5.1.2 Plasticity relations

As proposed by Collins and Hilder [9], a two-parameter family of CS models can be defined using the
following dissipation function

Φ̇ =
√

(ε̇p
vA)2 + (ε̇p

γB)2, where A = (1 − γ)p +
γ

2
pc and B = M

(
(1 − α)p +

αγ

2
pc

)
. (5.6)

The parameters α, γ ∈ [0, 1] influence the shape of the yield surface (as shown in Figure 5.1) and the
degree of non-association of the plastic flow direction. p = tr([σ])/3 is the mean pressure and pc defines
the size of the yield surface. M is the stress ratio at which constant volume plastic shearing occurs
(geometrically, this is the gradient of the CSL in p − q space, see Figure 5.2 (i)). The plastic strain
invariants, similarly to (2.11), are defined as follows

εp
v = tr[εp] and εp

γ =
√

{γp}T {γp}, with {γp} = {εp} − εp
v

3
{1}. (5.7)

The deviatoric stress invariant, q, is given by

q =
√
{s}T {s}, with {s} = {σ} − p{1}. (5.8)

Note that this q (5.8)1 differs from that often used when describing the triaxial tests of soils (there
qtxl = (σ3 − σ1)). Assuming a free-energy function of the form [8]

Ψ = Ψ1

(
{εe}

)
+ Ψ2

(
{εp}

)
, Ψ2

(
{εp}

)
=

γ(λ − κ)
2

pr exp
(

εp
v

λ − κ

)
, (5.9)

where λ is the bi-logarithmic plastic compressibility index defining the gradient of the virgin consolidation
line in bi-logarithmic void ratio (or specific volume) versus hydrostatic pressure space. With Ψ1 given by
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Figure 5.1: Family of yield surfaces in ξ, ρ stress space for the two-parameter CS hyperplastic model
with α and γ varying over the range 0.2 to 1.0.

(5.1), the shift stress is defined as

{χ} =
γpc

2
{1}, with pc = pr exp

(
εp

v

λ − κ

)
.

(5.10)

Moving between dissipative and true stress space corresponds to a (pressure dependent) hydrostatic
shifting of the yield surface. The form of hardening implied by (5.9) and (5.10) gives rise to an isotropic
expansion/contraction of the surface coupled with a (kinematic) translation along the hydrostatic axis,
as shown in Figure 5.2 (i). We can now define the dissipative stress invariants as

pϕ =
∂Φ̇
∂ε̇p

v
=

A2ε̇p
v

Φ̇
and qϕ =

∂Φ̇
∂ε̇p

γ
=

B2ε̇p
γ

Φ̇ .
(5.11)

Rearranging, we obtain the plastic strain rates as

ε̇p
v =

pϕΦ̇
A2

and ε̇p
γ =

qϕΦ̇
B2 .

(5.12)

Substituting (5.12) into (5.6) and eliminating Φ̇, we obtain the dissipative yield condition3

fϕ = (pϕ)2B2 + (qϕ)2A2 − A2B2 = 0. (5.13)

This defines an ellipse in dissipative (pϕ, qϕ) stress space. The dissipative stress invariants pϕ and qϕ are

3Note that the dissipative yield surface fϕ should be considered as an instantaneous surface for the stress state under
consideration (with A and B treated as constants) and not a bound on the admissible stress states, as with the conventional
yield surface f . As the stress state evolves, the major to minor axis ratio of the dissipative yield surface will change through
being dependent on the hydrostatic pressure and pc.
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given by

pϕ =
1
3
tr[ϕ] and qϕ =

√
{sϕ}T {sϕ}, where {sϕ} = {ϕ} − pϕ{1}. (5.14)

By substituting (p − pχ) for pϕ and q for qϕ, we arrive at the following expression for the yield function
in true stress space

f = (p − γpc/2)2B2 + q2A2 − A2B2 = 0. (5.15)

For this f , the Critical State Surface (CSS) takes the form of a Drucker-Prager circular cone. If α = γ = 1,
then A = B = pc/2 and the conventional MCC yield function with associated plastic flow [43] is recovered.
In this case, moving between dissipative and true stress space involves a constant hydrostatic translation
of the yield surface, as A and B are given by

A = pc/2 and B = Mpc/2,

independent of the hydrostatic pressure p. For values of γ ∈ [0, 1], the intersection of the CSS and the
yield surface occurs at p = pcγ/2. The value of α has no influence on the location of that intersection. As
γ reduces, so the yield surface becomes narrower deviatorically (see Figure 5.1). When γ = 0 the yield
surface radius disappears. As α reduces, so the yield surface becomes more tear-drop shaped (with the
tail at the stress origin, as seen in Figure 5.1). For α < 0.172 the yield surface becomes concave near the
stress origin [11]. When α = 0, the yield surface lies entirely within the CSS.

Figure 5.2: Yield surfaces for α = 0.6 and γ = 0.9 with no Lode angle dependency (i) p − q stress space
showing isotropic hardening (ii) view of the surface in principal stress space.

By manipulating (5.15), the yield function can be written as

f =
(
(p − γpc/2)2 − A2

)
B2 + A2q2,

=
(
p2 − γpcp + γ2(pc)2/4 − (1 − γ)2p2 − γ(1 − γ)pcp − γ2(pc)2/4

)
B2 + A2q2,

=
(
γp(2 − γ)(p − pc)

)
B2 + A2q2 = 0. (5.16)

For this family of hyperplastic models, the direction of plastic flow is normal to the yield surface in
dissipative stress space. Thus, the dissipative plastic flow direction is formed by taking the derivative of
(5.13) with respect to the dissipative stress

{fϕ,ϕ } =
(
fϕ,pϕ

)
{pϕ,ϕ } +

(
fϕ,qϕ

)
{qϕ,ϕ }. (5.17)
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Using (5.14), (5.17) becomes

{fϕ,ϕ } =
2
3
B2pϕ{1} + 2A2{sϕ}. (5.18)

Transforming into true stress space we obtain the direction of plastic flow as

{g,σ } =
2
3
B2(p − γpc/2){1} + 2A2{s}, (5.19)

where the notation {g,σ } is used to suggest an equivalence with the derivative of the plastic potential
used in conventional non-associated plasticity theory.

Using (5.6) and (5.9)2 we have obtained the yield surface, direction of plastic flow and the isotropic
hardening equations, as well as the hyperelastic relationship from (5.1), to fully define the constitutive
relationship.

5.2 Lode angle dependency

It has been shown that ignoring the dependence of constitutive relations on the third invariant of stress
can lead to significant overestimation of the stiffness in geotechnical analyses [17, 39]. A number of
Lode angle dependencies (LAD) have been proposed in the literature, for example [2, 3, 33, 36, 45, 46].
Collins [11] combined the Matsuoka-Nakai (M-N) yield condition with the CS cone by re-defining q in the
Spatially Mobilised Plane [36]. However, implementing the M-N deviatoric yield criteria in this manner
constrains the admissible principal stress states to be compressive [9]. This can result in implausible or
erroneous return stresses when using an implicit stress integration algorithm where the trial points lie in
the tensile region.

Here we follow an alternative approach by introducing the LAD into the constitutive equations be
redefining B as follows

B = ρ̄(θ) M
(
(1 − α)p +

αγ

2
pc

)
︸ ︷︷ ︸

bM

. (5.20)

ρ̄(θ) = ρ(θ)/ρc is the normalised deviatoric radius and ρc is the deviatoric radius required to reach yield
under a triaxial compression stress path where σ3/2 = −σ2 = −σ1. Figure 5.3 compares Lode angle
functions from Mohr-Coulomb (M-C) [45], mR [17, 19], M-N [36], Gudehus (Gud) [2], Willam-Warnke
(W-W) [46] and Bhowmik-Long (B-L) [3] with four experimental data sets [1, 33–35]. It was shown in the
preceding chapter (Figure 4.4) that particulate materials have a dependence on both the Lode angle and
the intermediate principal stress. The effective friction angle in Figure 5.3 is again calculated from (4.11).
In Figure 5.3, the M-C envelope (unlike the other deviatoric functions) exhibits no sensitivity to σ2. When
compared with experimental data, it is revealed that the Gudehus LAD significantly overestimates both
the normalised deviatoric radius and the effective friction angle. Table 5.1 gives the error, calculated from
(4.10), between the experimental data and the six LADs. The normalised deviatoric radius under triaxial
extension for the M-C, M-N and Gudehus LADs was fixed, given by (4.3); whereas ρ̄e for the mR, W-W
and B-L models was allowed to vary. The values of ρ̄e for these models are given in Figure 5.3, together
with the additional material constant (the normalised shear radius, ρ̄s) required by the B-L model.

Although the Bhowmik-Long LAD arguably provides the most satisfactory fit to the experimental
data with the lowest errors in Table 5.1, it requires the additional parameter, ρ̄s, which can only be
determined using a rather sophisticated multiaxial test apparatus, of which there are few. The W-W
LAD provides a balance between offering good agreement with the experimental data yet, requires only
one parameter, ρ̄e.
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Figure 5.3: Comparison of Lode angle deviatoric functions with experimental data from (i) Monterey sand
[33], (ii) Kaolin [1], (iii) San Francisco Bay mud [34] and (iv) Santa Monica Beach sand [35]: deviatoric
Lode angle dependency and variation of the effective friction angle with the ratio of the intermediate
principal stress.
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Table 5.1: LAD errors between Mohr-Coulomb (M-C), modified Reuleaux [17, 19] (mR), Matsuoka-Makai
[36] (M-N), Gudehus [2] (Gud) Willam-Warnke [46] (W-W) and Bhowmik-Long [3] (B-L) and experimental
data from Monterey sand (MS) [33], Kaolin (K) [1], San Francisco Bay mud (SFBM) [34], Santa Monica
Beach sand (SMBS) [35].

Figure 5.4: (i) Willam-Warnke deviatoric section illustrating the direction of the (non-associated) radial
deviatoric plastic flow and (ii) two-parameter (α = 0.5, γ = 1) CS model with a W-W deviatoric section.

The W-W LAD (as seen in Figure 5.4 (i)) can be expressed as

ρ̄(θ) =
a1C +

√
2a1C2 + a2

2a1C2 + 1
∈ [ρ̄e, 1] where a1 =

2(1 − ρ̄2
e)

(2ρ̄e − 1)2 ,

a2 =
5ρ̄2

e − 4ρ̄e

(2ρ̄e − 1)2
(5.21)

and C = cos(π/6− θ). The Lode angle θ is defined by (2.9)3. (5.21)1 describes a deviatoric section (with
six-fold symmetry) formed by a portion of an ellipse. In the absence of triaxial extension data, ρ̄e can
be estimated based on the friction angle (φ) through (4.3), so that ρ̄e coincides with that of M-C. The
gradient M , when θ = π/6, is obtained (again from the friction angle) through the rearrangement of
(4.11) to obtain

M =
2
√

6 sin(φ)
3 − sin(φ) .

(5.22)

For other Lode angles, the gradient is given by ρ̄(θ)M . Note the non-standard definition of M based on
the friction angle due to the definition of q from (5.8)1, resulting in a difference of

√
2/3 between (5.22)

and the definition used by Schofield and Wroth [44]. The yield equation and the direction of plastic flow
are still expressed by (5.16) and (5.19) but with B defined from (5.20). The effect of introducing a W-W
LAD on the two-parameter yield surface can be seen in Figure 5.4 (ii). The yield surface has a friction
angle of φ = π/9 radians and a ρ̄e value of 0.8.
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5.3 Numerical implementation

5.3.1 Backward Euler stress integration

In order to integrate the stress rates over a finite strain increment, once again the bE scheme (as described
in Section 2.3) is used. Working with elastic strains as the primary unknown, the return mapping can be
expressed as

{ε̂e} = {ε̂e
t} − ∆γ{g,σ̂ }, (5.23)

where {ε̂e
t} are the principal elastic trial strains. ∆γ is the incremental plastic multiplier for the entire

return path and the plastic flow direction {g,σ̂ } is determined at the final return state. The rate of
evolution of the size of the yield surface follows from (5.9)2 as

ṗc =
(

∂pc

∂εp
v

)
ε̇p
v =

(
pc

λ − κ

)
ε̇p

v . (5.24)

This hardening law is equivalent to specifying a bi-logarithmic linear relationship between the specific
volume, v, and the pre-consolidation pressure, pc [4]. The limitations of the conventional linear relation-
ship between specific volume (or void ratio) and the logarithm of the pre-consolidation pressure were
identified by Butterfield [6]. More recently, the appropriateness of the bi-logarithmic law for finite defor-
mation analysis was verified by Hashiguchi [27] and used by Yamakawa et al. [48]. Implicit integration
of (5.24) yields the following hardening law

p̃c =
pcn

(1 − ∆εp
v/(λ − κ))

, (5.25)

where pcn is the size of the yield surface from the previously converged solution associated with the last
step (or the initial state at the start of the analysis). We denote the evolution of pc with (̃·) to distinguish
it from the incremental updating of pc from the bE method through (2.47). Using (5.23) and (5.25),
together with the consistency condition, f = 0, we can define the following residuals and unknowns

{b} =


{ε̂e} − {ε̂e

t} + ∆γ{g,σ̂ }
pc − p̃c

f

 =


{0}
0
0

 and {x} =


{ε̂e}
pc

∆γ


.

(5.26)

We obtain the (5×5) Hessian matrix (see (2.45) for details on the format of the matrix) from the partial
derivatives of the residuals with respect to the unknowns as

[A] =

 [1] + ∆γ[g,σ̂σ̂ ][D̂e] ∆γ{g,σ̂pc } {g,σ̂ }
−{p̃c,σ̂ }T [D̂e] 1 − (p̃c,pc ) −(p̃c,∆γ )

{f,σ̂ }T [D̂e] f,pc 0


,

(5.27)

where [D̂e] is the 3 × 3 elastic stiffness matrix (5.3). The derivatives of p̃c are given by

{p̃c,σ̂ }T = ∆γpn{1̂}T [g,σ̂σ̂ ], (p̃c,pc ) = ∆γpn{g,σ̂pc }T {1̂}, (p̃c,∆γ ) = pn{g,σ̂ }T {1̂}, (5.28)

with
pn =

∂p̃c

∂(∆εp
v)

=
pcn

(λ − κ)(1 − ∆εp
v/(λ − κ))2 .

(5.29)
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The derivative of the yield function (5.16) with respect to the principal stresses is given by

{f,σ̂ } =
f,p
3

{1̂} + 2A2{ŝ} + 2γρ̄(θ)b2
Mp(2 − γ)(p − pc){ρ̄,σ̂ }, (5.30)

where bM is given in (5.20) and

f,p = (2 − γ)γ
(
2ρ̄(θ)M(1 − α)(p − pc)p + B(2p − pc)

)
B + 2A(1 − γ)q2. (5.31)

The derivative of ρ(θ) with respect to {σ̂} is obtained through the chain rule as

{ρ̄,σ̂ } = ρ̄,θ {θ,σ̂ }, (5.32)

where the derivative of the Lode angle with respect to stress is given in Appendix C.1. ρ̄,θ will depend on
the particular LAD. The derivative of the W-W LAD (5.21) with respect to stress is given in Appendix C.2.

Figure 5.5: Dilation angle for the plastic flow direction and the normal to the yield surface for α = γ = 1,
α = 0.5, γ = 1 (B1-2) and α = 1, γ = 0.5 (A1-2). The width of the shaded region indicates the degree of
non-associatedness of the flow.

Comparing (5.30) with (5.19), it is apparent that incorporating a LAD within the constitutive model
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results in deviatorically non-associated plastic flow (Figure 5.4 (i)). The model is also volumetrically
non-associated, except for the case α = γ = 1, where the formulation reduces to the classical MCC
(albeit with a W-W LAD). Figure 5.5 illustrates the variation of the dilation angle (− arctan(ε̇p

v/ε̇p
γ))

with the mobilised friction angle (arctan(q/p)). That figure also shows the direction of the normal to the
yield surface for the case where M = 1. When α = 1, the normals to the yield surface and the direction
of plastic flow coincide at q/p = M (arctan(q/p) = π/4), whereas for α 6= 1 this is no longer the case.
For α 6= 1 and γ 6= 1, {f,σ } and {g,σ } only coincide at the stress origin and the compressive closure
point on the hydrostatic axis (specifically at p = 0 and p = pc). When α 6= 1 or γ 6= 1, the normal to the
plastic potential is oriented at a lower dilation angle4 than that given by the normal to the yield surface,
for a given stress ratio q/p.

The derivative of (5.16) with respect to pc is given by

f,pc = γ
(
p(2 − γ)

(
γαρ̄(θ)M(p − pc) − B

)
B + Aq2

)
. (5.33)

From the direction of plastic flow (5.19), the second derivative of the plastic potential with respect to
{σ̂} follows as

[g,σ̂σ̂ ] =
1
3
{g,σ̂p }{1̂}T + 2A2[δ] +

4
3
ρ̄(θ)b2

M (p − γpc/2){1̂}{ρ̄,σ̂ }T , (5.34)

where
[
δ
]

= [1] − {1̂}{1̂}T /3 and

{g,σ̂p } =
2
3

(
B2 + 2ρ̄(θ)MB(1 − α)(p − γpc/2)

)
{1̂} + 4A(1 − γ){ŝ}. (5.35)

Finally, the derivative of (5.19) with respect to pc is obtained as

{g,σ̂pc } =
γB

3

(
2αρ̄(θ)M(p − γpc/2) − B

)
{1̂} + 2γA{ŝ}. (5.36)

This provides the derivatives necessary to form (5.27).

Note that as a consequence of the magnitude of f (with units of stress raised to the power four) it is
necessary to divide f , {g,σ̂ } and their derivatives by a large constant value when implementing the bE
return to avoid the Hessian matrix becoming ill-conditioned. Dividing by the yield function value at the
trial stress state offers a simple, effective remedy.

The iterative increment in the unknowns, {x}, is given by (2.47), with the starting conditions given
by (2.48). The Newton-Raphson process continues until the residuals converge to within a prescribed
tolerance. Throughout the stress return, all of the derivatives are evaluated at the current state. This
requires the repeated evaluation of the derivatives at each iteration. The sequence for a general bE stress
return was given in Figure 2.2 where i indicates the current iteration number. The pseudo-code for this
algorithm is supplied in Figure 5.6.

5.3.2 Influence of the form of f

The form of the yield function, f , significantly affects the robustness and efficiency of the bE stress
integration method. The function given by (5.16), with ρ̄e = 1, is quite different to that used by Collins
and co-workers [9–11, 13] who adopted the form

f =
(p − γpc/2)2

A2
+

q2

B2
− 1 = 0. (5.37)

4That is, the dashed lines (plastic flow direction) in Figure 5.5 always lie to the right of the continuous lines (normal to
the yield surface).
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Figure 5.6: Pseudo-code for the two-parameter family of CS models. The tolerance (tol) was typically
set to 1 × 10−12, with a maximum of 25 iterations (maxIt) to find converegence.

Manipulating (5.13) we can obtain any number of different forms of the yield function in dissipative stress
space. Through one such manipulation, we can obtain the following

fϕ =

(
pϕ)4

A4
−

(
1 −

(
qϕ

)2

B2

)2

= 0 (5.38)

which transforms to become

f =

(
p − γpc/2)4

A4
−

(
1 − q2

B2

)2

= 0 (5.39)

in true stress space. (5.16), (5.37) and (5.39) describe the same yield surface. However, the nature of the
yield function outside the yield surface (f > 0) is very different for the three cases (that is, equations
(5.16), (5.37) and (5.39)). Figure 5.7 shows contours of f outside the yield surface for (i) (5.37), (iii)

(5.16) and (iv) (5.39) when α = γ = 0.5 and ρ̄e = 1. Note that these plots have been produced for the
case where no LAD is present. Thus the deviatoric stress return is radial in this illustrative example.
Where 10 < f , the contours have been plotted in intervals of 10 up to a maximum of 200. For (5.37) we
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see in Figure 5.7 (i) a local minimum around (p/pc) = −3 and very high local curvature plus a maximum
around (p/pc) = −0.5 (see detail in Figure 5.7 (ii)). The presence of these minima and maxima could
cause significant problems for a bE stress return algorithm. However, they are completely removed by
using (5.16); see Figure 5.7 (iii). (5.39) contains negative regions outside the yield surface, as shown in
Figure 5.7 (iv). If a trial stress state is located within one of these regions then the constitutive model
falsely predicts a purely elastic response despite the stress being outside the yield surface.

Figure 5.7: Contours of the yield function outside of the yield surface for a two-parameter CS model
where α = γ = 0.5 (i) f given by (5.37) from [9–11, 13], (ii) local detail of f given by (5.37), (iii) f given
by (5.16) and (iv) f from (5.39) with negative regions appearing outside the yield surface.

Figure 5.8 shows stress return paths for the three forms of f : (5.16), (5.37) and (5.39). A reference
pressure of 100kPa, compressibility index of κ = 0.01, initial elastic volumetric strain εe

v0 = 0 and a shear
modulus of G = 2MPa were used for the material’s elastic properties. pc = 200kPa, M = 0.6, λ = 0.1,
α = 0.5, γ = 0.5 and ρ̄e = 1 define the yield surface. The models were subjected to a trial elastic strain
state, as given in Table 5.2, and their return paths observed. The size of the yield surface displayed in
Figure 5.8 corresponds to the final pcn+1 value from the stress return associated with (5.16).

In Figure 5.8 (i) the different returns associated with the three forms of yield function are compared.
The trial state is given a hydrostatic stress of zero (that is, the trial point lies in the π-plane). This
provides a particularly challenging state from which to start a bE stress integration. The values of the
trial yield function (ft), trial stress state ({σt}), final stress state ({σn+1}), final size of the yield surface
(pcn+1) and the number of iterations to find convergence (itmax) are given in Table 5.2. The value of the
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Figure 5.8: Stress returns associated with yield functions (5.16), (5.37) and (5.39) for three different trial
states.

yield function (5.39) at the trial state is negative, thus the constitutive model predicts an elastic response,
which is not what is intended. (5.37) fails to converge after 24 iterations and the size of the yield surface
takes a meaningless negative value. The stress state after the 24th iteration is denoted by {24σerr}. The
return path oscillates either side of the stress origin, unable to converge back onto the yield surface. Only
the model with the yield function described by (5.16) arrives at the appropriate stress state, although
19 iterations are required to converge within the specified tolerance. In this case the yield surface has
contracted (softened) to 27% of its original size due to the significant plastic dilation associated with the
stress return.

Figures 5.8 (ii) and (iii) demonstrate the false stress returns produced by (5.39). In addition, this
yield function gave rise to incorrect pcn+1 values and wrong algorithmic tangent matrices, whereas (5.16)
correctly converges back onto the yield surface for both trial stress states in eight and six iterations
respectively.

The stress returns shown in Figure 5.8 emphasis the importance of using an appropriate form for f in
the bE integration scheme and confirm that (5.16) provides a far more useful expression than (5.37) or
(5.39). The stability issues of implicit stress integration algorithms were recently investigated by Brannon
and Leelavanichkul [5] who proposed a two stage algorithm to improve the efficiency of such schemes.
The first step involved returning to a rigid Drucker-Prager cone, the second stage took this return state
as an initial estimate for a steepest-descent return algorithm. Their paper highlighted the importance of
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Table 5.2: Stress return values for different yield functions (see Figure 5.8).

the form of the yield function, f , identifying the same potential pitfalls of non-uniqueness, inappropriate
descent directions and erroneous elastic regions, as addressed in this section.

5.3.3 Error analysis

The accuracy of the stress return algorithm was assessed over the range 1 ≤ qt/qy ≤ 10 and −π/6 ≤ θ ≤
π/6 for pt/pcn = 0.1, 0.3, 0.5, 0.7 and 0.9 for three of the two-parameter models: α = γ = 1 (MCC),
α = γ = 0.5 and α = 0.6, γ = 0.9. qy is the deviatoric yield stress under triaxial compression at a
particular pressure, p. A reference pressure of 100kPa, compressibility index of κ = 0.01, initial elastic
volumetric strain εe

v0 = 0 and shear modulus of G = 2MPa were used for the material’s elastic properties.
pcn = 200kPa, M = 0.6, ρ̄e = 0.8 and λ = 0.1 define the yield surface. The starting point for the error
analysis was a hydrostatic stress state equal to the pressure under consideration. The constitutive model
was then subjected to a deviatoric elastic strain increment corresponding to the trial stress state. The
return stress from this single strain increment was compared with the solution obtained by splitting the
same strain increment into 1,000 sub-increments and the errors calculated using (4.10).

Table 5.3: Error and return quantities associated with the iterative bE stress return for the five pressure
ratios in Figure 5.9 for α = γ = 1, α = γ = 0.5 and α = 0.6, γ = 0.9.

Stress iso-error maps, using the error measure between the single increment and the sub-incremented
stress returns defined in the previous chapter by (4.32), are given in Figure 5.9 for (i) α = γ = 1 (MCC),
(ii) α = γ = 0.5 and (iii) α = 0.6, γ = 0.9. Errors up to 28.0% appear for the α = γ = 0.5 model at
pt/pcn = 0.9, when qt/qy is close to 10; this is not unexpected for such a large strain increment. For
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Figure 5.9: Errors associated with the iterative bE stress return for five pressure ratios (A) p/pc = 0.1,
(B) p/pc = 0.3, (C) p/pc = 0.5, (D) p/pc = 0.7 and (E) p/pc = 0.9 for (i) α = γ = 1, (ii) α = γ = 0.5 and
(iii) α = 0.6, γ = 0.9.

the same model at pt/pcn = 0.3, the maximum error is less than 3.3%. All of the models have stress
errors of less than 5% for qt/qy < 2. For the majority of the pressure ratios (the exception being MCC
for pt/pcn = 0.1), higher errors (within a particular sextant) are seen near the compression meridians
due to the higher curvature in the yield surface. The region of the lowest error for all models is near
the hydrostatic centre of the yield surface (p/pc ' γ/2), where there is lower meridional curvature in the
surface and the direction of plastic flow is near isochoric. For pt/pcn = γ/2 there is no error associated
with the bE return, as shown by Figure 5.9 (i) sextant (C). In this case the trial stress will return radially
onto the original yield surface at the intersection with the CS cone following constant isochoric plastic flow
over its integrated return path. The highest errors are in regions of high curvature and high volumetric
plastic flow. The maximum error (emax), maximum number of iterations required to find convergence
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(itmax) and the largest change in the size of the yield surface (∆pcmax) are given in Table 5.3 for all three
models under consideration. For the MCC model, the maximum error of 24.1% occurs at pt/pcn = 0.1.
In the lower pressure ratios, the yield surface of the MCC model softens more than the other models. The
opposite is seen for high pressure ratios, with greatest errors and the largest hardening of the yield surface
associated with the α = γ = 0.5 model. Figure 5.9 and Table 5.3 confirm the reasonable behaviour of
the integration scheme for the two-parameter family of CS models.

The magnitude of the stress return errors is predominately influenced by the hydrostatic location of
the trial stress state in relation to the size of the yield surface (shown in Table 5.3 and Figure 5.9). In
regions of greater hydrostatic curvature the error significantly increases. In order to reduce this error a
sub-stepping procedure could be used. The rate of change of the derivative of the yield function with
respect to hydrostatic pressure coupled with an estimate of the plastic strain path length would provide
a suitable measure for assessing the need for splitting the strain increment. However, any sub-stepping
procedure would increase the computational cost of the constitutive model. All that follows uses a single
increment stress integration procedure.

5.3.4 Integration robustness and energy dissipation

The concepts of stored plastic work and dissipation are illustrated in Figure 5.10, which presents Gudehus
plots [26] for α = 0.6 and γ = 0.9. A reference pressure of 100kPa, compressibility index of κ = 0.0073,
initial elastic volumetric strain εe

v0 = 0 and shear modulus of G = 4MPa were used for the material’s
elastic properties. pc = 233.3kPa, M = 0.964, λ = 0.0447 and ρ̄e = 0.729 define the yield surface.

The model was examined by considering 64 different strain spheres, each with 832 strain probes of
radius 1000µ (that is 1 × 10−3) starting at the centre of each sphere. The directions of the individual
strain probes were obtained using the HEALPix algorithm [25], which divides the surface of the sphere
into equal area patches. Figures 5.10 (i) and (ii) show the stress response (known as Gudehus plots [26])
to these strain increments. The Gudehus surfaces are shaded according to the degree of (i) dissipated
and (ii) stored plastic work. The maximum and minimum work for each stress surface are scaled to 1
and 0. These correspond to 164.6 J and −68.8 J, per unit volume respectively.

Figure 5.10: Gudehus stress plots with shading according to (i) dissipated plastic energy and (ii) stored
plastic energy. The maximum and minimum work for each stress surface is identified by 1 and 0 corre-
sponding to 164.6 J and −68.8 J, per unit volume, respectively.
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Figure 5.11 presents a sequence of Gudehus plots for the model with the same material parameters
as above but with pc = 300kPa. Figure 5.11 (i) shows results in the σx − σy plane. Figure 5.11 (ii)

gives the same plots viewed in the deviatoric plane. The model starts at a randomly selected point on
the yield surface and is subjected to 1,280 strain probes in directions determined by HEALPix. Once
again, the probes are each of length

√
{∆ε}T {∆ε} = 1×10−3. The stress responses and internal material

parameters are stored before advancing to the next Gudehus plot. One of the probe responses is randomly
chosen as the starting point for the next strain sphere. Five of the 200 stress responses are plotted for
strain spheres 1, 50, 100, 150 and 200, where the surfaces are shaded according to the distance between
the starting stress and the return stress. The stress path between the strain spheres is also plotted. As
the pressure increases, so does the elongation of the stress response. This is due to the pressure-sensitive
non-linear elasticity providing an increase in stiffness with pressure. The stress responses, when inside the
yield surface, have a circular deviatoric section due to elastic isotropy. The Gudehus plots are flattened
in the direction of the yield surface as most of the strain increment is taken up by the plastic response,
leaving little for the elastic (and hence stress) response. By means of the stress return surface smoothness,
Figure 5.11 serves to demonstrate the well behaved nature and robustness of the implemented constitutive
model.

Figure 5.11: Sequence of Gudehus stress plots demonstrating the robustness of the bE stress return
algorithm for (i) σx-σy plane and (ii) deviatoric view. The surfaces are shaded according to the length of
the stress path with the maximum and minimum length identified by 1 and 0, respectively. Five of the
200 Gudehus plots are presented for steps 1 (A), 50 (B), 100 (C), 150 (D) and 200 (E).

5.3.5 Linearisation

The consistent tangent (2.49), as introduced in Section 2.4, is obtained through minimising the residuals
(5.26) with respect to the trial elastic strain, {εe

t}. The first row of (5.26) becomes

[Ce]{dσ} + ∆γ
(
[g,σσ]{dσ} + {g,σpc}dpc

)
+ d∆γ{g,σ} = {dεe

t}, (5.40)

where here six component vectors and matrices are used. Considering the second row, we obtain

dpc − (p̃c,pc )dpc − {p̃c,σ}T {dσ} − (p̃c,∆γ )d∆γ = 0. (5.41)
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Finally the third row, from the consistency condition, yields

{f,σ}T {dσ} + f,pc dpc = 0. (5.42)

Combining (5.40)-(5.42), we have [Ce] + ∆γ[g,σσ] ∆γ{g,σpc} {ĝ,σ}
−{p̃c,σ}T 1 − (p̃c,pc ) −(p̃c,∆γ )
{f,σ}T f,pc 0


︸ ︷︷ ︸

[Aalg ]−1


{dσ}
dpc

d∆γ

 =


{dεe

t}
0
0


.

(5.43)

Multiplying both sides of (5.43) by [Aalg], we obtain
{dσ}
dpc

d∆γ

 =

 [Dalg] {Aalg
12 } Aalg

13

{Aalg
21 }T Aalg

22 Aalg
23

{Aalg
31 }T Aalg

32 Aalg
33




{dεe
t}

0
0


,

(5.44)

where [Dalg] is the six-component algorithmic consistent tangent. The six-component vectors and matri-
ces required in (5.43) are given by

{·} =

{
{̂·}
{0}

}
and [g,σσ] =

[
[g,σ̂σ̂ ] [0]

[0] 2A2[1]

]
.

(5.45)

The consistent tangent from (5.44) must be transformed (through (C.17)) using the eigenvectors associ-
ated with the trial elastic strain to obtain a stiffness matrix consistent with the six component stresses
and strains.

5.4 Calibration

This section presents a calibration procedure for the isotropic family of CS models. The process is
demonstrated for LCT using data obtained by Gens [23]. LCT is a low plasticity glacial till with high
natural variability, classified as a low-plasticity sandy silty-clay. All of the experimental tests presented by
Gens [23] were from reconstituted samples with a specific weight of 2.65. The mineralogy of these samples
was comprised of principally quartz with minor proportions of calcite, feldspar and clay minerals. The
clay fraction was mainly composed of calcite and illite with smaller components of smectite, kaolinite and
chlorite. The material had a liquid limit, plastic limit and plasticity index of 25, 13 and 12 respectively5.
Approximately 17% of the material was clay (giving an activity of 0.716), the remainder was mainly
composed of sand, with very little silt.

5.4.1 Classical constants: κ, λ, M

The classical compressibility constants, κ and λ, can be calibrated from hydrostatic drained loading
(consolidation) and unloading (swelling) data. The elastic compressibility index, κ, is obtained as a linear
approximation to the swelling line in bi-logarithmic hydrostatic pressure-void ratio (or specific volume)
space, as shown in Figure 5.12 (i) for experimental data from Gens [23]. The plastic compressibility

5Note, that the plasticity index (the difference between the limit and plastic limits) is a measure of the amount of water
that must be added to the soil to reduce its strength by a hundredfold. The plastic limit is defined as the moisture content
at which the soil can be rolled out to a rod with diameter of 3mm without crumbling. The liquid limit is the moisture
content at which a standard V-groove cut into the soil just closes when shaken using standard equipment.

6The activity of a sample is defined as the plasticity index divided by the percentage of clay particles ≤ 2µm present.
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index, λ, is calibrated equivalently from virgin compaction data. For LCT [23] the unitless bi-logarithmic
compressibility indices are κ = 0.0073 and λ = 0.0447. The data is also shown in (ii) semi-logarithmic
and (iii) normal space.

Figure 5.12: Hydrostatic drained loading and unloading experimental data (shown by discrete points) for
LCT from Gens [23]: (i) bi-logarithm of pressure-specific volume, (ii) semi-logarithm of pressure-specific
volume and (iii) pressure-specific volume.

The gradient of the CSL, M , can be obtained from drained or undrained triaxial compression tests.
It is defined as the stress ratio where the material experiences unbounded distortions with no change in
volume and no change in stress state. ρ̄e is obtained as the ratio of this stress gradient under triaxial
extension to the equivalent ratio under triaxial compression. For LCT the gradient of the CSL and the
normalised deviatoric radius under triaxial extension are M = 0.964 and ρ̄e = 0.729.

5.4.2 α and γ specification

The two-parameter family of models presented here extends the classical MCC model by means of the
additional dissipation parameters γ and α. These material constants may be determined from undrained
triaxial and one-dimensional consolidation test data. In this calibration procedure we assume that under
sufficiently large straining during one-dimensional consolidation the elastic strains are negligible. In this
case the ratio of the deviatoric to volumetric plastic strains is

ε̇p
γ

ε̇p
v

=
A2(ηK0)

B2
(
1 − γ(pc/p)/2

) =

√
2
3
, (5.46)

where ηK0 = q/p is the stress ratio under one-dimensional (K0) consolidation. Substituting (5.16) for B2

and rearranging, we obtain the ratio of the size of the yield surface to the pressure as(
pc

p

)
=

γ(2 − γ) + (ηK0)
√

2/3
γ(2 − γ) + γ(ηK0)

√
1/6

.

(5.47)
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From (5.16), α can then be obtained as

α =
(ηK0)

(
1 + γ

(
(pc/p)/2 − 1

))(
γ(2 − γ)

(
(pc/p) − 1

))−1/2

− M

M
(
γ(pc/p)/2 − 1

)
.

(5.48)

However, (5.48) requires the specification of γ, which can be determined from undrained triaxial com-
pression (UTC) or extension (UTE) data at an overconsolidation ratio (OCR) of two. Figure 5.13 (ii)

shows UTC test data from Gens [23]. For OCR = 2, the change of normalised pressure between the
starting and final stress states can be used to approximate γ as

γ ≈ pf

pi
=

2pf

pc ,

(5.49)

where pi = pc/2 and pf are the initial and final stress states from the UTC experiment (Figure 5.13 (ii)).
The change in the size of the yield surface will be small due to the near isochoric plastic flow (being in
close proximity with the CS) so that 2pf/pc offers a reasonable approximation for γ.

Figure 5.13: Test simulations using the MCC model (α = γ = 1) and the two-parameter model (α = 0.3,
γ = 0.9) compared against experimental data on LCT (shown by discrete points) from Gens [23]: (i)
one-dimensional consolidation (ii) UTC with OCR = 2.

Viewed in a different (but equivalent) light, γ controls the distance between the CSL and the hydro-
static consolidation line (HCL). As γ reduces, the position of the CSL moves away from the HCL in the
direction of reducing hydrostatic pressure. Figure 5.14 shows experimental data on LCT [23] for hydro-
static consolidation and swelling followed by UTC for OCRs of 1, 1.5, 2, 4 and 10 in (i) specific volume
versus hydrostatic pressure and (ii) ln(p) versus ln(v) space. The distance between the consolidation and
CS lines provides the ratio of the size of the yield surface to the pressure at the CS. From Figure 5.14 (ii)

the logarithmic ratio is ln(pc/p)cs = 0.786 resulting in a ratio of (p/pc)cs = 0.45 between the size of the
yield surface and the hydrostatic pressure at the CS. γ is obtained as 0.9, using

γ = 2
(

p

pc

)
cs

, (5.50)
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which confirms the value obtained by considering the pressure change under UTC at an OCR of 2.

Figure 5.14: Hydrostatic consolidation and swelling following by UTC for OCRs of 1, 1.5, 2, 4 and 10
experimental data on LCT [23]: (i) hydrostatic pressure-specific volume and (ii) ln(p)-ln(v).

In the absence of one-dimensional consolidation data, Jaky’s [32] formula may be used to approximate
the stress ratio under K0 loading

ηK0 =
√

6 sin(φ)
3 − 2 sin(φ) ,

(5.51)

where φ is the effective friction angle. Figure 5.15 (i) compares the experimental data collated by Federico
et al. [22] with (5.51). Jaky’s formula provides an adequate approximation to the experimental data,
capturing the general trend. The values of α to achieve the K0 consolidation stress ratio ηK0 for γ = 0.8,
0.9 and 1.0 are given in Figure 5.15 (ii) for both experimental data [22] and Jaky’s formula. For example,
with a friction angle of 25◦, Jaky’s formula predicts a stress ratio of ηK0 = 0.480, which is achievable
with α = 0.336, 0.246, 0.175 for γ = 1.0, 0.9 and 0.8 respectively.

Figure 5.13 (i) compares K0 consolidation data on LCT [23] with predictions from the MCC and
two-parameter models. The experimental data suggests a stress ratio of ηK0 = 0.6. From Figure 5.13 (ii)

γ ≈ 0.9 and M = 0.964 (φ = 29.5◦). Using (5.47) and (5.48), we obtain α = 0.3. The two-parameter
model with α = 0.3 and γ = 0.9 provides an excellent fit to the K0 experimental data. For MCC, once
the gradient of the CSL has been specified, the stress path predicted for one-dimensional consolidation is
fixed (that is, K0 is directly dependent upon M). In Figure 5.13 (i) we see that the MCC model is unable
to provide a good simulation of the K0 consolidation stress path. Figure 5.13 (ii) compares the UTC
experimental data from Gens [23] with the response from the MCC and two-parameter models (α = 0.3,
γ = 0.9) for OCR = 2.
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Figure 5.15: Calibration of material constant α: (i) one-dimensional consolidation stress ratio against
friction angle, comparing experimental data (discrete points) [22] against Jaky’s equation [32] and (ii) α
ranges for γ = 0.8, 0.9 and 1.0, corresponding to the data obtained from [22]. Graph (ii) also shows the
α versus friciton angle relationships for γ = 0.8, 0.9 and 1.0 using Jaky’s [32] relationship.

5.4.3 Shear modulus: G

The two-parameter model developed here makes use of a hyperelastic relationship with a variable bulk
but constant shear modulus, G. The value of the shear modulus can be obtained through examination
of the swelling response of a K0 consolidated material. Figure 5.16 shows the one-dimensional loading
(consolidation) and unloading to an OCR of 10 of the two-parameter model (with α = 0.3 and γ = 0.9),
along with swelling data from Gens [23] (shown by discrete points) on LCT . The size of the yield surface
at the end of one-dimensional swelling is also shown.

The model starts at A, with a reference pressure of 80kPa. Subjected to one-dimensional compressive
straining, the stress response initially moves around the hardening yield surface to B. From B the stress
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path moves along a near-constant ηK0 line to C, at which point the strain path is then reversed. The
initial swelling stress direction response is governed by the ratio of the shear modulus, to that of the
bulk modulus (K = p/κ). Here, a value of G = 18MPa provides good agreement with the initial
swelling behaviour of LCT. Increasing or decreasing G causes a stiffening or softening of this return path,
respectively. As the hydrostatic pressure reduces (and the OCR increases), the ratio of the shear to bulk
modulus increases, causing a stiffening of the stress response (larger change in deviatoric stress for a
given hydrostatic increment). In order to attain the required OCR, the constitutive model intersects the
yield surface (at D) and moves along the softening yield surface until the required OCR is realised at E,
as seen in Figure 5.16.

Figure 5.16: One-dimensional K0 consolidation followed by swelling comparison with swelling experimen-
tal data on LCT (shown by discrete points) from Gens [23].

Dafalias et al. [20] showed that it is possible to obtain an equivalent stress response to that shown in
Figure 5.16 with a constant Poisson’s ratio. This results in a variable bulk and shear modulus; however
as mentioned in Section 5.1.1, such an elasticity law can result in non-conservative material behaviour
[4, 29, 51]. An alternative would be to use a hyperelastic material law, such as that introduced by Houlsby
[29], with a variable shear modulus of the form

G = G0 + αep, (5.52)

where G0 is the constant component of the shear modulus and the constant, αe, controls the variability of
the shear modulus with pressure. However, this coupling between the shear modulus and pressure intro-
duces anisotropy (in the form of transverse-isotropy) into the elastic constitutive equations. As discussed
in Chapter 3, this significantly complicates matters when undertaking finite deformation analyses.

5.5 Experimental comparisons

In this section comparisons are made with 31 experimental tests on LCT [23] using variants of from the
two-parameter family of CS hyperplastic models. A reference pressure of 80kPa, compressibility index of
κ = 0.0073, initial elastic volumetric strain εe

v0 = 0 and a shear modulus of G = 18MPa were used for the
material’s elastic properties. pc = 80kPa, M = 0.964, λ = 0.0447 and ρ̄e = 0.729 define the yield surface.
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5.5.1 Isotropic simulations

Figure 5.17 illustrates the material responses given α = γ = 1 (MCC, dashed line) and α = 0.3, γ = 0.9
(continuous line) under drained triaxial compression (DTC) for the following six OCRs: 1, 1.25, 1.5,
2, 4 and 10. The results are compared against experimental data from Gens [23]. In these tests, the
material was initially under a hydrostatic stress state with p = 233.3, 186.7, 155.6, 166.7, 58.3 or 23.3kPa,
corresponding to the six OCRs. The material was subsequently compressed axially whilst maintaining
constant lateral pressure.

Figure 5.17: DTC test simulations compared with experimental data (shown by discrete points) [23].
Above: axial strain (εa) against deviatoric stress ((σ3−σ1)/2). Below: axial strain (εa) versus volumetric
strain (εv).

Figure 5.18 compares the stress paths for (i) α = γ = 1 and (ii) α = 0.3, γ = 0.9 under UTC and
UTE for five overconsolidation ratios. Similarly to the drained tests, the material was initially under
hydrostatic stress states of p = 233.3, 155.6, 116.7, 58.3 or 23.3kPa, corresponding to the five OCRs of
1, 1.5 2, 4 and 10. An isochoric strain path of {∆ε} = ±{∆ε1 −∆ε1/2 −∆ε1/2}T , corresponding to
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UTC and UTE, was then applied until the CS was reached.

Figure 5.18: UTC and UTE following isotropic compression and swelling, comparisons with experimental
data (shown by discrete points) from Gens [23]: (i) stress space response (ii) axial strain-deviatoric stress
response.

Figure 5.19: UTC stored/dissipated energy and plastic work for the MCC model with OCRs of (i) 1, (ii)
2 and (iii) 10 and for the two-parameter model with α = 0.3, γ = 0.9 for OCRs of (iv) 1, (v) 2 and (vi)
10.

The material point stress paths for the MCC (α = γ = 1) simulations significantly overestimate the
stress ratio η = q/p prior to arrival at the CS under high OCRs. The results for the two-parameter family
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of models with α = 0.3 and γ = 0.9 impressively improve the quality of the prediction in the high OCR
range. However, the initial response for normally consolidated soil (OCR= 1) is worse than that given
by the MCC model. This observation is important. It indicates that Collins and Hilder’s dissipation
function [9] is not entirely satisfactory for both normally consolidated and heavily over-consolidated soils
without using different material parameters. Figure 5.19 shows the cumulative dissipated/stored energy
and total plastic work under triaxial compression (for axial strains up to 2%) for (i-iii) MCC (α = γ = 1)
and (iv-vi) a two-parameter model with α = 0.3 and γ = 0.9. For OCRs less than 2/γ, the plastic work is
greater than the dissipated energy (energy is stored), whereas for OCRs greater than 2/γ, the opposite is
true (previously locked-in energy is released). The rate of plastic work and plastic dissipation are given
by (2.34) and (2.30) respectively, where χij = (γpc/2)δij and ϕij = σij − χij . When the hydrostatic
pressure, p, drops below γpc/2, the product of the shift stress with the plastic strain rate becomes negative
due to the dilative plastic strains resulting in total plastic work less than dissipation. This is seen in
Figures 5.19 (iii) and (vi) for the heavily over-consolidated simulations. For the MCC model at an OCR
of 2, the dissipative energy and the plastic work are equal (as shown in Figure 5.19), with zero stored
energy.

5.5.2 Anisotropic simulations

The response of the two-parameter model with α = 0.3 and γ = 0.9 was further investigated for drained
and undrained triaxial tests following K0 consolidation (and swelling to various OCRs). The simulations
were again compared with experimental data on LCT [23]. Figures 5.13 (i) and 5.16 show the K0

consolidation and swelling response of the two-parameter model. Although the initial swelling behaviour
provides a good fit to the experimental data, at higher OCRs the constitutive model’s response is a poor
representation of the material behaviour. Nevertheless, this response, once swelled to the appropriate
OCR, is taken as the initial starting conditions for the anisotropic material point simulations (points C

to H for the two-parameter model and points C’ and G’ for the MCC in Figure 5.21 (i) for the undrained
tests).

Figure 5.20 presents the DTC simulations for the K0 consolidated material at OCRs of 1, 1.5, 2,
4 and 7. They are compared against LCT data from Gens [23], shown by discrete points. The two-
parameter CS model provides a good fit to the experimental data for low OCRs (OCR< 2); offering a
significant improvement over the MCC model, as shown by the dashed line in Figure 5.20. However, for
high OCRs the two-parameter model significantly overestimates both the peak deviatoric stress and the
dilative volumetric strain (although there is still an improvement over the MCC model).

The UTC and UTE simulations are shown in Figure 5.21 and compared with experimental data
from Gens [23] (as shown by discrete points) for six OCRs. Figures 5.21 (i) and (ii) give the hydrostatic-
deviatoric stress and the axial strain-deviatoric stress responses respectively. Remarkably, for an isotropic
model, the two-parameter CS model provides a reasonable fit to the experimentally observed response
for all OCRs under triaxial compression. The response under triaxial extension is, however, far from
satisfactory, with the peak deviatoric stress significantly overestimated for all OCRs. This is due to
purely elastic behaviour until the yield surface is reached, as shown by the constant pressure response in
Figure 5.21 (i) for UTE with OCR = 1 until a deviatoric stress of ≈ −105kPa is obtained. The stress
path then moves round the hardening yield surface until it reaches the CS. The experimental stress-
strain response (Figure 5.21 (ii)) shows significantly more non-linearity over this deviatoric stress range,
gradually moving towards a CS.

The axial strain versus stress ratio, η = q/p, response of the MCC and two-parameter models under
UTC and UTE following one-dimensional loading and unloading is shown in Figures 5.22 (i) and (ii)

respectively. Although both models converge to the same CS stress ratios, the MCC model significantly
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Figure 5.20: DTC following K0 consolidation and swelling comparisons with experimental data (shown
by discrete points) from Gens [23]. Above: axial strain (εa) against deviatoric stress ((σ3−σ1)/2). Below:
axial strain (εa) against volumetric strain (εv).

overestimates the peak stress ratio for the over-consolidated tests. This inadequacy is partially addressed
by the two-parameter model, although their is still considerable room for improvement.

Figure 5.23 shows the UTC and UTE stress paths following one-dimensional loading and unloading for
the two-parameter model in dissipative stress space. Due to the zero deviatoric shift stress component,
the dissipative and true deviatoric stresses are equal, the dissipative pressure is given by (5.11) where
the shift stress is given by (5.10). The dissipative yield surfaces are shown at key points along the stress
paths. The one-dimensional loading behaviour is shown in Figure 5.23 (i) along with the dissipative
yield surfaces at the initial state, A, and at the end of the K0 consolidation stage, C. Note that both the
ellipsoidal yield surfaces are centred on the dissipative stress origin, with their axis ratios controlled by
A and B in (5.13). Upon unloading at C, as shown in Figure 5.23 (ii), the stress path returns inside the
dissipative yield surface. In dissipative stress space, the unloading stress path lies above the loading path,
whereas in true stress space (as shown in Figure 5.21) the converse is true. It is also important to note
that the model yields prior to re-intersecting with fϕ

C as A and B are continuously changing along the
unloading stress path, even when the model is behaving elastically7. It is re-emphasised that dissipative
stress space is an instantaneous space and fϕ an instantaneous yield surface applicable at the particular
stress state under consideration. The undrained triaxial stress paths are shown in Figure 5.23 (iii) and
the dissipative yield surface shown at the CS for the UTC path at an OCR of one (point I). As expected,
all of the stress paths arrive at the CS with zero dissipative pressure.

7Note, for the special case of the MCC model (α = γ = 1) A and B are independent of the hydrostatic pressure and the
dissipative yield surface remains fixed during elastic behaviour.
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Figure 5.21: UTC and UTE following K0 consolidation and swelling comparisons with experimental data
(shown by discrete points) from Gens [23]: (i) stress space response (ii) axial strain versus deviatoric
stress response.

5.6 Observations

The final section in this chapter has compared the two-parameter CS hyperplastic model response with
experimental data on LCT from Gens [23]. This model provides a useful improvement over the classi-
cal MCC model, especially in the heavily over-consolidated region (a condition at which most natural
geotechnical materials exist). The MCC model is unable to reproduce one of the most fundamental
particulate material stress paths; that of K0 consolidation. Once the gradient of the CSL, M , has been
specified, the asymptotic stress ratio under K0 consolidation is fixed. The two-parameter hyperplastic
model allows the new parameters to be directly selected, so that the correct asymptotic state is achieved.
However, a good fit to the swelling response following one-dimensional consolidation requires a relatively
high shear modulus. This high shear modulus causes the constitutive model’s response under DTC to
be over-stiff (see Figures 5.17, 5.18 and 5.20). The two-parameter model was originally compared with
experimental data on LCT by Coombs and Crouch [18]. There a shear modulus of 4MPa led to an
improved fit to the DTC data. However, if this shear modulus was used under K0 swelling, then the
stress response would be over-soft. The use of a high shear modulus also causes a progressive stiffening
of the K0 swelling response, as seen in Figure 5.16, which is at odds with observed experimental results.

An alternative to using a lower shear modulus would be to allow plastic behaviour within the con-
ventional yield surface. This would allow for a high elastic shear modulus (governing the initial load-
ing/unloading behaviour) and a progressive softening of the stress response with increasing inelasticity.
The presence of this inelastic material behaviour is supported by the stress response under UTE follow-
ing both hydrostatic and K0 consolidation, as shown in Figures 5.21 (i) and 5.18 (i), where significant
non-linearity is seen in the experimental data. The non-symmetry (about the hydrostatic axis) in Fig-
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Figure 5.22: UTC and UTE following K0 consolidation and swelling comparisons with experimental data
(shown by discrete points) from Gens [23]: axial strain versus stress ratio response for (i) MCC and (ii)
the two-parameter model with α = 0.3 and γ = 0.9.

Figure 5.23: Stress paths in dissipative stress space: (i) one-dimensional loading, (ii) one-dimensional
unloading and (iii) UTC and UTE.
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ure 5.21 (i), would also suggest that the yield surface has some directional dependance.
The following conclusions can be drawn from this chapter:

(i) non-associated flow is a natural consequence of the particular form of the dissipation function in
the family of hyperplasticity models examined;

(ii) a Lode angle dependency can be incorporated within hyperplasticity models using (5.20), which
avoids the difficulties caused by redefining q [11];

(iii) the particular form of yield function, f , can significantly influence the efficiency of the iterative bE
stress integration procedure;

(iv) α and γ can be determined from one-dimensional consolidation and UTC with an OCR equal to 2,
respectively;

(v) the two-parameter model provides the following advantages over the classical MCC model:

(a) control over the shape of the yield surface independent of the gradient of the CSL;

(b) ability to reproduce the one-dimensional consolidation stress path; and

(c) significantly improved agreement with experimental data for high OCRs.

(vi) on the other hand, the isotropic two-parameter CS model is unable to:

(a) give improved fits (to undrained triaxial tests) over the MCC model for normally consolidated
soils;

(b) reproduce the one-dimensional swelling response to high OCRs;

(c) provide an adequate fit to UTE following K0 consolidation at low OCRs; and

(d) provide a measure of the anisotropy inherent in the soil fabric.



Chapter 5 references

[1] P Anantanasakul, Three-dimensional experiments and modelling of anisotropic clay, PhD. Thesis,
Oregon State University (2010).

[2] JP Bardet, Lode dependences for isotropic pressure-sensitive elastoplastic materials, J. Appl. Mech.-
T. ASME 57 (1990), 498–506.

[3] SK Bhowmik & JH Long, A general formulation for the cross sections of yield surfaces in octahedral
planes. In: GN Pande and J Middleton (eds.) NUMENTA 90 (1990), 795–803.

[4] RI Borja & C Tamagnini, Cam-Clay plasticity Part III: Extension of the infinitesimal model to
include finite strains, Comput. Meth. Appl. Mech. Engrg 155 (1998), 73–95.

[5] RM Brannon & S Leelavanichkul, A multi-stage return algorithm for solving the classical damage
component of constitutive models for rocks, ceramics, and other rock-like media, Int. J. Fract. 163
(2010), 133–149.

[6] R Butterfield, A natural compression law for soils (an advance on e-log p′), Géotechnique 29 (1979),
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Chapter 6

Anisotropic hyperplasticity

Several limitations were identified with the two-parameter family of Critical State (CS) hyperplasticity
models developed in the preceding chapter. They are unable to:

(a) give improved fits (to undrained triaxial tests) over the Modified Cam-clay (MCC) model for nor-
mally consolidated soils;

(b) reproduce the one-dimensional drained unloading (K0 swelling) response to high over-consolidation
ratios (OCRs);

(c) provide an adequate fit to undrained triaxial extension (UTE) following one-dimensional drained
loading (K0 consolidation) at low OCRs; and

(d) capture the anisotropy of the soil fabric.

Over the last 30 years there have been several extensions in the classical MCC constitutive model in
order to overcome these (and other) limitations. The catalogue of constitutive models is continuously
increasing in such a way that it is not possible to provide a comprehensive review of each modification.
The majority of the extensions can be classified into those that rotate the yield surface off the hydrostatic
axis and those that include plasticity within the conventional yield surface. A brief overview of these
modifications is now provided.

Rotational extensions to the MCC model introduce anisotropy by allowing the yield surface’s major
axis to rotate away from the hydrostatic axis [11–13, 33–35, 46, 58, 60] (while pinned at the stress origin).
One of the earliest of these is the model proposed by Dafalias in 1986 [13]. In triaxial stress space, this
rotated and distorted elliptic yield function1 (as shown in Figure 6.1 (i)) can be written as

f = (N2 − β2)p(p − pc) + (qtxl − pβ)2 = 0, (6.1)

where qtxl is the difference between the major and minor principal stresses, qtxl = σ3 − σ1, and N is the
Critical State line (CSL) gradient consistent with this deviatoric stress measure (that is, N = (qtxl/p)cs).
β provides a measures of the rotation of the yield surface off the hydrostatic axis in triaxial stress space.
This particular form of f , when combined with an associated flow rule, maintains a unique Critical State
surface (CSS) for any degree of anisotropy. That is, the isochoric normal to the yield surface remains on
the locus qtxl = pN . However, when β = N the yield function collapses to a line coincident with the CSL

f(β=N) = (qtxl − pN)2 = 0.

1Note, that this yield function is not merely a sheared/rotated isotropic MCC yield function. Although the original
(isotropic) elliptic yield function may be thought of as heaving undergone shearing and rotation, it remains an ellipse
(albeit with a new aspect ratio and size).
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Therefore in Dafalias’ model, the level of anisotropy must be β ≤ N [11]. The form of the yield function
(6.1) also causes significant problems when trying to implement a Lode angle dependency (LAD), as a
consequence of incurring deviatoric concavity as β increases [8–10]. Recognising this limitation, Dafalias-
type anisotropic models have been proposed that include a LAD on the plastic potential surface whilst
maintaining a circular deviatoric yield surface [11]. Despite this advancement, these single surface models
are unable to capture the behaviour of heavily over-consolidated clays. Thus their use is best limited to
normally or lightly over-consolidated soils [11, 34]. A further shortcoming of these models is that they
abruptly change from elastic to inelastic material behaviour, whereas real geomaterials show a progressive
growth in plasticity.

Figure 6.1: Extensions to the classical MCC constitutive model, where the elastic regions are shaded grey:
(i) Dafalias’ [13] elliptic yield function, (ii) anisotropic bounding surface plasticity, (iii) isotropic bounding
surface plasticity, (iv) single inner surface (bubble) plasticity and (v) structural surface plasticity.

Non-elliptical plasticity models [46] have been developed, motivated by the recognition that elliptic
yield surfaces provide a poor approximation to the response of moderately to heavily overconsolidated
clays (on the dry side of the CSL), where they significantly over-predict the peak deviatoric stress.
Pestana and Whittle’s MIT-S1 model [46] used a single distorted lemniscate-shaped yield surface (with
non-associated plastic flow) which was allowed to rotate away from the hydrostatic axis. Those authors
also included the void ratio as a state variable in the constitutive formulation, as proposed by Been and
Jefferies [2], in order to provide a model able to predict the behaviour of both clays and sands. However,
unlike the family of constitutive models (that become non-elliptical through specifying α and γ not equal
to unity) presented in the previous chapter, the MIT models have not been constructed from a strong
thermodynamic basis, but rather from an empirical approach.

Bounding surface plasticity (also known as subloading surface plasticity [25]) was initially proposed by
Dafalias in his PhD thesis of 1975 [16]. Such models [3, 14–16, 31, 61, 63, 64] can introduce anisotropy2

into the constitutive equations and plasticity within the conventional yield surface through the use of
a projection (or similarity) centre and an image point on the outer bounding surface (as shown in Fig-

2Not that some bounding surface plasticity models maintain isotropy, such as the recent subloading surface model
proposed by Yamakawa et al. [61], by fixing the projection centre at the stress origin such that the inner yield surface
remains aligned with (and pinned on) the hydrostatic axis (as shown in Figure 6.1 (iii)).
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ure 6.1 (ii)). These models allow a smooth transition from elastic to inelastic material behaviour as the
inner yield surface (which grows from the similarity centre) increases in size under continued loading.
Upon unloading3 the inner surface can collapse to a point and the projection centre may shift to the
unloading stress state, erasing any past material history4. This jump anisotropy destroys the uniqueness
of the CSS, as the CS becomes path dependent for any stress path that involves unloading [9]. Bounding
surface models also exhibit spurious ratcheting for small cycles of unloading and reloading. Furthermore,
they do not satisfy the consistency condition explicitly on the inner loading surface. Consistency is en-
forced on the bounding surface and the size of the plastic strain increment is determined through a simple
proximity rule [61].

Inner surface (bubble) plasticity models [41, 47–49, 51–53] offer plasticity within the conventional yield
surface by including an inner, additional, yield surface (the bubble). In these models the elastic region
is now confined to the interior of this bubble which can translate within the outer surface (as shown
in Figure 6.1 (iv)). The translation is controlled by the particular form of the hardening law. These
models have their roots in the multi-surface plasticity models initially proposed by Mroz [42] and Iwan
[32]. The two surface approach was motivated by trying to capture hysteretic cyclic behaviour. Unlike
bounding surface models, these formulations can maintain a unique asymptotic CSS for stress paths that
involve unloading, provided that an appropriate translational hardening law is used [9]. Structural surface
plasticity models [1, 53] contain three (or more) surfaces; the conventional yield surface, a bubble surface
and a structural (or history) surface lying within the conventional yield surface an enclosing the bubble
(as shown in Figure 6.1 (v)). This additional surface serves to provide information about the previous
stress history of the material (that is, the relative directions of the current and previous loading paths
[53]). However, these models still give rise to an abrupt change from elastic to elasto-plastic behaviour,
albeit with a smaller purely elastic region than that of a single surface plasticity model.

Infinite surface (or continuous) hyperplasticity models [30, 50] use internal functionals to describe
the progressive inelastic behaviour under loading. The free energy and dissipation functions become
functionals generating an infinite number of yield surfaces providing smooth stress-strain curves. The
past history of the material is maintained within an internal variable function [30]. However the practical
implementation of these models is not straightforward. Indeed Puzrin and Burland [50] mentioned the
following:

“A well-known disadvantage of the infinite number of surfaces hardening rule is that for cyclic
loading with decreasing amplitude, it may require virtually infinite computer memory.”

The mathematical formulation based on functionals results in constitutive model “calculations [that] are
less straightforward than in conventional models” [50], requiring a large number of material parameters.

Recently there has been interest in introducing a measure of the material fabric into the MCC model,
with so-called structured Cam-clay models [29, 39, 54, 55]. These models try to account for the phe-
nomenon of in-situ soils behaving stiffer than laboratory experiments on reconstituted soil samples sug-
gest. They have also be used to predict the behaviour of cemented clays. These models include a
destructuring index which describes the changes in the internal fabric under deformation (similar to the
approach used in damage plasticity). The formulations introduce additional complications in the form of
trying to calibrate and link, though empirical equations, this destructuring index to the soil’s material
properties [29]. However, there is no clear link between re-arrangement of the material fabric and these

3The term unloading is used here to denote strain increments that cause the following {f,σ }T {∆σt} < 0. That is, the
direction of the stress increment {∆σt} is on the opposite side of the yield surface tangent plane to that of the normal to
the yield surface {f,σ }; it is inwardly directed.

4For isotropic bounding surface models with the projection centre fixed at the stress origin, this jumping does not occur.
In these models the unloading response is purely elastic.
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empirical destructuring equations.

There have been models proposed that combine rotation of the yield surface off the hydrostatic axis
with one or more more inner yield surfaces within the conventional yield surface [23, 24, 52, 59, 60].
The MIT-E3 is one such model, developed by Whittle and co-workers [59, 60] to simulate the behaviour
of normally to moderately over-consolidated clays (OCR significantly less than 8). However, as their
yield surfaces are based on a rotated (and distorted) ellipsoid, they can dramatically overestimate the
peak deviatoric stress of heavily over-consolidated soils. As a number of soils of significant engineering
importance (such as London Clay) are heavily over-consolidated (OCRs greater than 10), this inability
to simulate their response is a real limitation.

The majority of the models described above have their roots in classical plasticity theory. Incre-
mentally non-linear constitutive equations [4, 17] (or hypoplastic models [36–38, 40, 56], as discussed
in Section 2.2) offer an alternative approach championed (mainly) by the French schools of constitutive
modelling. It appears that some of these models are able to provide convincing reproductions of the
experimental behaviour of soil. However, the constitutive equations are arguably unnecessarily complex,
the models are difficult to validate and the formulations can contain internal contradictions [4]. Recently
Nader [44] showed that traditional hypoplastic models are unable to convincingly reproduce the reload-
ing behaviour of soils. Nader proposed an extension to the classical theory to overcome this omission.
However, the model presented appeared to be unable to reproduce experimentally observed hysteretic
behaviour (following the same curve on under unloading an reloading).

This chapter extends the isotropic α-γ family of models presented in the previous chapter by (i)
allowing the yield surface to shear off the hydrostatic axis and (ii) by including plasticity within the
conventional yield surface. The model was motivated by the need to overcome the limitations discussed
in Section 5.6, with the knowledge that the α-γ yield surface offers promise in predicting of both normally
and heavily over-consolidated soils within a single, consistent framework. The model described here was
first presented by Coombs (with the associated paper by Coombs et al. [6]) at the UK Association for
Computational Mechanics in Engineering conference in 2011.

Section 6.1 formulates the two-surface anisotropic hyperplasticity model, by describing the elasticity
relationship, yield function and direction of plastic flow. The hardening/softening relationships controlling
the yield surface growth, anisotropic shearing and translation of the inner yield surface are all described
in Section 6.2. The calibration procedure for the new constitutive model is presented in Section 6.3.
Section 6.4 describes the algorithmic implementation of the model, including (i) stress integration, (ii)
influence of the yield function, (iii) stress return paths, (iv) errors associated with the stress integration
procedure, (v) robustness and (vi) linearisation of the constitutive equations for finite deformation anal-
ysis. The model is compared with experimental data on Lower Cromer till (LCT) in Section 6.5. Finally,
observations on these findings are made in Section 6.6.

In line with geotechnical convention, as with the previous chapter, compressive stresses are positively
valued (σ1 is the least compressive, minor, principal stress and σ3 the most compressive, major, principal
stress). All stresses are treated as being effective stresses (that is, total stress minus the pore pressure)
although the prime notation is omitted. The anisotropic constitutive model developed in this chapter
must be described using the full nine-dimensional stress space. Due to symmetry, the nine components
can be reduced to six. However, care must be taken to ensure that the shear components are correctly
accounted for when, for example, calculating the L2 norm of a vector.
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6.1 Constitutive formulation

The family of constitutive models developed in this chapter adopt the same isotropic non-linear hypere-
lastic relationship as described in Section 5.1.1.

6.1.1 Shear anisotropy

The procedure for developing plasticity relations from the principles of hyperplasticity was presented in
Section 2.2.2. Examination of the behaviour of the isotropic two-parameter family of models suggested
that there was merit in investigating the consequences of using a dissipation rate function similar to that
presented in Chapter 5, but with the addition of a term linking the volumetric and deviatoric dissipation
components

Φ̇ =
√

(ε̇p
v + βij γ̇

p
ij)2A2 + (ε̇p

γB)2, (6.2)

where βij accounts for this coupling and A and B are the same stress-like quantities used in the preceding
chapter, given by (5.6)2 and (5.20). It seems physically plausible that there should be some coupling
between the dissipation arising from volumetric and deviatoric straining. The shearing of particulate
media results in volumetric change in the material as a result of clusters (or grains) sliding over one
another causing dilation or compaction. (6.2) was first introduced (in triaxial stress space) by Collins
and Hilder [5] as an extension to the isotropic family of CS models. However, the model was only
presented conceptually, and limited to the axi-symmetric triaxial case (that is, it was not formulated in
six-dimensional stress state or integrated for use in boundary value simulations). (6.2) is similar to that
proposed by Muhunthan et al. [43] who introduced a cross-coupling in the dissipation equation for the
MCC model5. Following the standard procedure (as given in Section 2.2.2), we obtain the dissipative
stresses as

pϕ =
∂Φ̇
∂ε̇p

v
=

A2(ε̇p
v + βij γ̇

p
ij)

Φ̇
and sϕ

ij =
∂Φ̇
∂γ̇p

ij

=
B2γ̇p

ij + A2(ε̇p
v + βklγ̇

p
kl)βij

Φ̇ .
(6.3)

Rearranging (6.3), the plastic strain rates are

ε̇p
v =

pϕΦ̇
A2

− βij γ̇p
ij and γ̇p

ij =
Φ̇
B2

(
sϕ

ij − pϕβij

)
. (6.4)

Substituting (6.4) into (6.2), to eliminate the plastic strain rates, and rearranging, we obtain the instan-
taneous anisotropic dissipative yield function as

Fϕ = (pϕ)2B2 +
{
{sϕ} − pϕ{β}

}T {
{sϕ} − pϕ{β}

}
A2 − A2B2 = 0. (6.5)

From (6.5) it is apparent that introducing a cross-coupling in the rate of dissipation function results in the
dissipative yield surface being sheared off the hydrostatic axis, where {β} is a six-component, traceless
(deviatoric), measure of this inclination. If {β} = {0} we recover the isotropic dissipative yield surface
presented in the previous chapter, with the ellipsoid’s major axis coincident with the hydrostatic axis.

When {sϕ} = pϕ{β}, the dissipative pressure is equal to pϕ = ±A. Here the stress state is located at
the compressive and tensile limits of the yield surface in dissipative stress space. From (6.4)2, at these
limits, the plastic shear strain rate is zero, defining the normal consolidation line (NCL) in dissipative
stress space. For the tensile apex of the anisotropic yield surface to be at the origin in true stress space,

5If α = γ = 1 then (6.2) and the rate of dissipation function used by Muhunthan et al. [43] are equivalent.
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the shift stress components must be linked through

{sχ} = pχ{β}. (6.6)

Assuming that the hydrostatic component of the shift stress {χ} is given by the same hydrostatic measure
used in the preceding chapter (5.10), then the shift stress components become

pχ = γpc/2 and {sχ} = γpc/2{β}, that is {σχ} =
γpc

2
{
{1} + {β}

}
. (6.7)

The deviatoric component of the shift stress moves the centre of the yield surface off the hydrostatic axis.
Substituting (6.7) into (6.5), the anisotropic yield surface in true stress space follows as

F = (p − γpc/2)2B2 +
{
{s} − p{β}

}T {
{s} − p{β}

}
A2 − A2B2 = 0. (6.8)

The true stress space yield surface with a Willam-Warnke (W-W) [57] LAD is shown in Figure 6.2.
Papadimitriou et al. [45] recently compared Collins and Hilder’s [5] anisotropic yield surface (6.8) with
that of Dafalias and co-workers’ SANICLAY model [11] using experimental data from LCT [20]. They
concluded that (6.8) offered improved realism over that of SANICLAY’s yield function but at the cost of
an additional parameter. However, Papadimitriou et al. [45] (i) used an arbitrarily chosen plastic flow
rule (eliminating one of the main benefits of the hyperplastic formulation) defined by the same plastic
potential surface used in [11] and (ii) placed a LAD only on this plastic potential, not on the yield surface.

Figure 6.2: Anisotropic yield surface with α = 0.3, γ = 0.9 and M = 1 with a W-W LAD (ρ̄e = 0.73):
(i) p-q stress space and (ii) a deviatoric section through the yield and CS surfaces.

Figure 6.2 (ii) shows a deviatoric section through the anisotropic yield surface (6.8). The W-W LAD
[57], as used in the preceding chapter for the isotropic family of CS models, is now based on a local
measure of the Lode angle, θ, from the {β} axis. The second and third deviatoric stress invariants
(denoted J2 and J3 in (2.9)3) are measured using the deviatoric distance from the axis of anisotropy,
{s} − p{β}, rather than the standard deviatoric measure {s}. Note that {β} corresponds to a shearing
of the yield surface in the deviatoric direction, rather than a rotation away from the hydrostatic axis.
This distinction is important, as an initially convex yield surface will remain convex for any degree of
shearing, demonstrated by the following.
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From (6.8), the deviatoric stress invariant (in the p versus q plane), q, on the yield surface is

q = pβ ± B

A

√
γp(2 − γ)(p − pc)︸ ︷︷ ︸

isotropic component

. (6.9)

The first term in (6.9) represents an anisotropic deviatoric shearing of the isotropic yield surface. The
second term describes the isotropic surface presented from the preceding chapter in (5.16). The ratio of
the distance between the axis of anisotropy and the yield surface above and below this axis is constant
for any deviatoric plane, that is

|qmin − pβ|
|qmax − pβ|

= ρ̄e. (6.10)

This constant ratio allows the introduction of a local LAD where the deviatoric shape is maintained for
any degree of anisotropy. Thereby avoiding the difficulties seen in rotational formulations where the yield
surface deviatoric section distorts and can lose convexity as anisotropy increases [8–10].

6.1.2 Inner surface inelasticity

Single surface plasticity models fail to capture the progressive irrecoverable deformations of particulate
media which occur within the conventional yield surface. Prompted by this limitation, the following
modification is made to the anisotropic rate of dissipation (6.2) to

Φ̇ = Φ̇1 + Φ̇2 =
√

(ε̇p
v1 + βij γ̇

p
ij1

)2A2 + (ε̇p
γ1B)2︸ ︷︷ ︸

Φ̇1

+
√

(ε̇p
v2 + βij γ̇

p
ij2

)2A2
f + (ε̇p

γ2Bf )2︸ ︷︷ ︸
Φ̇2

, (6.11)

where Φ̇1 is as given in (6.2) and Φ̇2 is the new additive rate associated with the inelastic material
behaviour within the outer surface F (which maybe thought of as similar to, but clearly not the same
as the conventional yield surface). The dissipation attributed to Φ̇1 can be considered as a measure
of the material’s long-term past history, marking the threshold for new dissipation, new distortion and
re-arrangement of the material fabric, whereas Φ̇2 provides the small strain dissipative behaviour and
recent stress history of the material.

Taking the plastic strain rate derivatives of Φ̇2 (where the subscripted 2 has been omitted from the
stress and strain quantities for compactness), we obtain the inner-surface dissipative stresses as

pϕ =
∂Φ̇2

∂ε̇p
v

=
A2

f (ε̇p
v + βij γ̇

p
ij)

Φ̇2 ,

sϕ
ij =

∂Φ̇2

∂γ̇p
ij

=
B2

f γ̇p
ij + A2

f (ε̇p
v + βklγ̇

p
kl)βij

Φ̇2 .

(6.12)

Rearranging, we obtain

ε̇p
v =

pϕΦ̇2

A2
f

− βij γ̇p
ij and γ̇p

ij =
Φ̇2

B2
f

(
sϕ

ij − pϕβij

)
. (6.13)

Substituting these into Φ̇2 (to eliminate the plastic strain rates) and rearranging, we obtain the instan-
taneous dissipative inner-surface yield function as

fϕ = (pϕ)2B2
f +

{
{sϕ

} − pϕ{β}
}T {

{sϕ} − pϕ{β}
}

A2
f − A2

fB2
f = 0. (6.14)

As before, the dissipative stress is defined as the true stress, {σ} less the shift stress, {χ}. Here we allow
the inner surface (in true stress space) to translate away from the stress origin and off the hydrostatic
axis through a shift stress with both volumetric, pχ, and deviatoric, {sχ} components. The yield function
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in true stress space becomes

f = (p − pχ)2B2
f + {sβ}T {sβ}A2

f − A2
fB2

f = 0, (6.15)

where the local deviatoric stress {sβ} is defined as

{sβ} = {s} − {sχ} − (p − pχ){β}. (6.16)

This deviatoric stress is a measure of the distance between the current stress state and the inclined inner
yield surface’s major axis. This axis, as with {β} for (6.8), passes through the points of purely compactive
and purely dilative plastic flow on the inner yield surface (points (i) and (ii) in Figure 6.3).

Figure 6.3: Inner surface identifying quantities which control Af and Bf .

The stress-like parameters Af and Bf , that define the size and the axis ratio of the surface in dissi-
pative stress space, are determined by assuming that the inner yield (6.15) and outer (6.5) surfaces are
geometrically similar6. Figure 6.3 shows the inner yield surface, as defined by (6.15), for the case of zero
anisotropy. In the special case of triaxial conditions and with β = tr

(
[β][β]

)
= 0, (6.15) becomes

f =
(
p − pχ

)2
B2

f +
(
q − qχ

)2
A2

f − A2
fB2

f = 0. (6.17)

Considering points (i) and (ii) in Figure 6.3

p = pχ ± Af and q = qχ : (i) p = pA,

(ii) p = pA + Rpc, (6.18)

where R ∈ [0, 1] is the constant ratio of the size of the inner surface to that of the outer surface and
pA = pχ −Rpcγ/2 is the least compressive extremity (or apex) of this bubble. Assuming that Af has the
form

Af = Af1(p − pA) + Af2Rpc, (6.19)

where Af1 and Af2 are determined by considering stress states (i) and (ii), we arrive at

Af = (1 − γ)(p − pA) +
γRpc

2 .
(6.20)

6That is, congruent, by a unform scaling from a similarity centre.
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For points (iii) and (iv) in Figure 6.3

p = pχ and q = qχ ± Bf : (iii) q = qχ + MRpcγ/2,

(iv) q = qχ − ρ̄eMRpcγ/2. (6.21)

Assuming that Bf has an equivalent form to Af , we obtain

Bf = ρ̄(θ)M
(
(1 − α)(p − pA) + αγRpc/2

)
. (6.22)

Substituting pA = pχ − Rpcγ/2 into (6.20) and (6.22), allows Af and Bf to be written as

Af = (1 − γ)(p − pχ) + (2 − γ)γRpc/2 and Bf = ρ̄(θ)M
(
(1 − α)(p − pχ) + γRpc/2

)
. (6.23)

Shearing the inner yield surface (that is, when {β} is non-zero) has no consequence on Af and Bf as
these parameters depend only on the size of the yield surface (Rpc) and the distance between the current
hydrostatic pressure and the centre of the inner surface (p − pχ).

Figure 6.4 shows the two-surface anisotropic hyperplasticity model in (i) p-q stress space and (ii) at a
deviatoric section through the centre of the inner yield surface (that is where p = pχ)7. The projection
(or similarity) centre {σ0} is the point about which the inner and outer surfaces are geometrically similar,
such that a ray extending from the projection centre passes through points on the inner yield and outer
surfaces with common normals (and plastic flow directions). The distance between these intersections
are controlled by R, such that we have the following expression linking a stress state on the inner yield
surface, {σ}, and its image point, {σ̆}, on the outer surface

{σ̆} = {σ} +
(
(1 − R)/R

){
{σ} − {σ0}

}
.

(6.24)

The projection centre can then be defined by considering the intersection of two lines: (i) passing through
the stress origin and the apex of the inner yield surface and (ii) passing through the centres of the inner
yield and outer surfaces

{σ0} =
1

(1 − R)

{
{σχ} − Rpcγ

{
{1} + {β}

}
/2

}
.

(6.25)

Vanishing bubble

In the limiting case where R → 0, Af and Bf become

Af = (1 − γ)(p − pχ) and Bf = ρ̄(θ)M(1 − α)(p − pχ). (6.26)

Substituting (6.26) into (6.15), the inner surface yield function becomes

f =
(
ρ̄(θ)M(1 − α)

)2

(p − pχ)2
(
1 − (1 − γ)2

)
+ {sβ}T {sβ}(1 − γ)2 = 0, (6.27)

which is satisfied when p = pχ and {s} = {sχ}, that is when the stress state and the centre of the
(zero-sized) inner surface coincide8. This allows the inner surface yield function to be written as

f =
(
p − pχ

)2 +
{
{s} − {sχ}

}T {
{s} − {sχ}

}
= 0. (6.28)

7In this figure, the centre of the inner surface happens to lie in the plane of the compression meridian. In general this
need not be the case.

8In addition to the trivial case of α = γ = 1.
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However, the case where R = 0 causes a difficulty in that the image point is undefined as (6.24) becomes
singular (in addition to other problems with the plastic flow direction). Application of the two-surface
model in this thesis is restricted to a finite positive R.

6.1.3 Plastic flow

The direction of plastic flow in dissipative stress space for the inner-surface is obtained from the derivative
of (6.14) with respect to the dissipative stresses as

{fϕ,ϕ } =
2
3
B2

f

(
pϕ + A2

f

{
pϕ{β} − {sϕ}

}T {β}
)
{1} + 2A2

f

{
{sϕ} − pϕ{β}

}
. (6.29)

Substituting for the dissipative stresses, {σϕ} = {σ} − {σχ}, we obtain the direction of plastic flow in
true stress space as

{g,σ } =
2
3

(
B2

f (p − pχ) − A2
f{sβ}T {β}

)
{1} + 2A2

f{sβ}. (6.30)

The direction of this plastic flow and the normal to the yield surface above the axis of anisotropy (that is,
when η ≥ β), in terms of the dilation angle, are shown in Figure 6.5 (i) for β = 0, M/2 and M when the
inner and outer surfaces coincide (R = 1, Af = A and Bf = B). As with the isotropic models discussed
in the preceding chapter, when α and γ are not equal to 1, the direction of plastic flow and the normal
to the yield surface do not coincide. The departure between the direction of plastic flow and the normal
to the yield surface, when R = 1, above the axis of anisotropy, is

{f,σ } − {g,σ } =
2
3

(
A(1 − γ)

(
B2 + (q − pβ)2

)
+ MB(1 − α)

(
γp(2 − γ)(p − pc)

))
{1}. (6.31)

The normal to the yield surface is given in Appendix E. The disparity between these directions arises
from the volumetric components. Perhaps surprisingly, the difference in the directions is also independent
of the level of anisotropy. On the yield surface, with R = 1, q is given by (6.9). Substituting for q in (6.31)
eliminates β from the equation. If we were to measure the friction angle from the axis of anisotropy, rather
than the hydrostatic axis, we would recover the isotropic plastic flow properties (as shown in Figure 5.5).

When {β} = {0}, the positions of purely deviatoric plastic flow are located at a friction angle of
arctan(M), on the CSS. As the surface anisotropy increases, the stress ratios corresponding to these
isochoric plastic flow states change. Setting {g,σ }T {1} = 0 (the isochoric plastic flow condition) and
enforcing F = 0, we obtain the following quartic in p/pc for the position of zero volumetric plastic strains
(for a given M , α and γ) on the outer surface as

(p/pc)
4
(
M2(1 − α)2 + β2γ(2 − γ)(1 − γ)2

)
+ . . .

(p/pc)
3γ

(
M2(α(1 − α) − (1 − α)2

)
+ β2(2 − γ)

(
γ(1 − γ) − (1 − γ)2

))
+ . . .

(p/pc)
2γ2

(
M2((1 − α)2/4 + α2/4 − α(1 − α)

)
+ β2(2 − γ)

(
γ/4 − (1 − γ)

))
+ . . .

(p/pc)γ
3
(
M2(α(1 − α)/4 − α2/4

)
− β2(2 − γ)/4

)
+ . . .

M2α2γ4/16 = 0. (6.32)

The normalised stress ratio of the point on the yield surface with isochoric plastic flow (ηε̇p
v=0) for β

between 0 and M is shown in Figure 6.6 (ii). Figure 6.6 (i) shows the location of these points in normalised
p-q stress space. As β increases, so ηε̇p

v=0 under triaxial compression increases. However, ηε̇p
v=0 under

triaxial extension initially reduces but then increases to a stress ratio above that of the original CS.
Introducing {β} into the constitutive equations results in the loss of uniqueness of the isochoric cone as
that flow state is clearly dependent on the degree of anisotropy. However, as will be shown in Section 6.2.2,
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Figure 6.5: Anisotropic yield surface with α = 0.6, γ = 0.9, R = 1, M = 1 and ρ̄e = 0.8: (i) direction
of plastic flow and the normal to the yield surface for β = 0, M/2 and M and (ii) yield surfaces in
normalised triaxial p-q stress space.

the model proposed in this thesis still offers a unique (final) CSS which is independent of the degree of
anisotropy.

The position of purely hydrostatic compressive plastic flow remains at the nose (the most compressive
extremity) of the yield surface on the NCL, coinciding with the axis of anisotropy {β}, as shown in
Figure 6.5 (ii). This can also be seen by the grey shaded diamond symbol in Figure 6.5 (i) where the
position of plastic flow with pure compaction (that is, with a dilation angle of −π/2) lies at a friction
angle of arctan(β).

6.1.4 Lode angle dependency

As shown in Figure 6.4, the anisotropic two-surface model includes a dependence on the Lode angle, θ,
through B (5.20) and Bf (6.23) in a manner analogous to that used in the isotropic model of Chapter 5.
To ensure convexity, the Lode angle is a local measure based on the local deviatoric stress measured from
the anisotropic axes of the outer and inner yield surfaces respectively. The Lode angle, for the inner
surface, is calculated from (2.11)3 with J2 and J3 replaced by

Jβ
2 =

1
2
tr

(
[sβ ][sβ ]

)
and Jβ

3 =
1
3
tr

(
[sβ ][sβ ][sβ ]

)
, (6.33)

respectively, where [sβ ] is the three by three matrix equivalent of {sβ}, given by (6.16).
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Figure 6.6: Development of the position of isochoric plastic flow for the anisotropic model with α = 0.6,
γ = 0.9, M = 1, R = 1 and ρ̄e = 0.8: (i) p-q stress space and (ii) stress ratio versus anisotropy.

6.1.5 β-α-γ family of models

Figure 6.7 shows the potential family of models which the two-surface, two-parameter anisotropic hy-
perplasticity model offers. The left of the figure presents models with no LAD, whereas the models on
the right have a W-W LAD with ρ̄e = 0.7. The first row, Figure 6.7 (i), contains the classical MCC
constitutive model (α = γ = 1, ρ̄e = 1, R = 1 and {β} = {0}), which provides the basis for all of the
models in the figure. Figure 6.7 (ii) extends the MCC model by shearing the ellipsoid’s major axis off the
hydrostatic axis. This shearing was proposed by Collins et al. [5] through introducing a coupling term
in the dissipation equation (6.2). That formulation [5] did not include a LAD or an inner surface. The
centre of the third row of Figure 6.7 (iii) shows one member of the two-parameter single surface isotropic
family of CS models (with α = 0.4 and γ = 0.9) proposed by Collins and Hilder [5] (with no LAD, left)
and Coombs and Crouch [7] (with a W-W LAD, right, as described in Chapter 5). Figure 6.7 (iv) shows
the β, α, γ model (for α = 0.4, γ = 0.9 and β = 0.4), with and without a LAD together with an inner
surface, as described in this chapter.

The two-surface LAD anisotropic two-parameter CS model (lower right, Figure 6.7) is the most so-
phisticated member of this family of hyperplastic constitutive models. The model reduces back to the
classical MCC constitutive model by allowing inner yield and outer surfaces to coincide, fixing the yield
surface’s major axis on the space diagonal ({β} = {0}) and setting α = γ = 1. The complexity of adding
an inner surface, shear anisotropy and changing the shape (thereby non-associated plastic flow) can be
introduced or removed as analyses dictate (the computational cost of the extra features are discussed in
Section 7.2.2).
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6.2 Hardening/softening relationships

6.2.1 Isotropic expansion/contraction

The hardening relationship for pc, controlling both the size of the outer (and, through R) the inner yield
surfaces, is assumed to be the same as that used in Chapter 5 for the isotropic family of plasticity models
(5.25).

6.2.2 Anisotropic Critical State

The anisotropic two-surface model allows the axes of both the inner yield and outer surfaces to shear
away from the hydrostatic axis via a shared but non-zero {β}. With the yield surface and direction of
plastic flow suggested above, unless the level of anisotropy reduces to zero ({β} → {0}) when approaching
the CS, the original isotropic CSS will be lost and the stress ratio at that final CS dependent on the
stress path taken to reach that state. To overcome this loss of uniqueness, we make use of the following
anisotropic hardening relationship, initially proposed by Wheeler et al. [58]9

{β̇} = Cβ

({
aβ{r} − {β}

}
〈ε̇p

v〉 + xβ

{
bβ{r} − {β}

}
ε̇p
γ

)
, (6.34)

where 〈(·)〉 is the ramp function of (·)

〈ε̇p
v〉 = ε̇p

v if ε̇p
v > 0 and 〈ε̇p

v〉 = 0 if ε̇p
v ≤ 0. (6.35)

The use of a ramp function results in the evolution of anisotropy being invariant to dilative (negative)
plastic strains10. Compressive plastic volumetric strains in (6.34) drag the current level of anisotropy
towards the target value of aβ{r}, where {r} is given below and aβ is a material constant. The motivation
for this change in {β} follows the same argument as that given by Wheeler et al. [58]:

“...plastic volumetric strains, involving slippage at inter-particle or inter-ped contacts, result
in a gradual rearrangement of the soil fabric towards a configuration that has a degree of
anisotropy that is controlled by the anisotropy of the stress state under which this plastic
straining is occurring.”

Deviatoric plastic strains11, ε̇p
γ , drag the current level of anisotropy towards a different target value of

anisotropy given by bβ{r}. The local stress ratio, {r}, provides the direction of evolution of anisotropy
(see Figure 6.4 (i)). It is defined as the deviatoric to volumetric stress ratio measured from the apex of
the inner yield surface, given by

{r} =
{sr}
pβ

=
{s} − {sχ} + Rpcγ{β}/2

p − pχ + Rpcγ/2 .

(6.36)

When examining (6.34) we see that the material constant xβ controls the relative contribution from the
volumetric and deviatoric plastic strains and Cβ scales the absolute rate of evolution. If xβ = 0 then
the anisotropic hardening is only dependent on the compressive plastic volumetric strains and under a
constant load path the level of anisotropy will asymptotically approach aβ{r}. However, setting xβ = 0

9Note, that this form of hardening law has been used in several models since being proposed by Wheeler et al. [58],
namely the S-CLAY1 and S-CLAY1S [34, 35], BSCLAY [52], amongst others.

10Note, that Pestana and Whittle [46] also made use of a ramp function on the plastic volumetric strain increment in
their proposed rotational hardening law.

11Note, that unlike Wheeler et al.’s [58] hardening law, constructed in triaxial p-q stress space, the modulus sign is not
required on the deviatoric plastic strain rate as ε̇p

γ is the L2 norm of the deviatoric plastic strain rate {γ̇p}.
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would result in a non-unique level of anisotropy at the CS, with {β} being dependent on the accumulated
compressive volumetric plastic strains along the stress path to the CSS. As xβ → ∞ then the hardening
law will be dominated by the deviatoric plastic strains. Unlike some anisotropic hardening laws, which
depend purely on plastic volumetric strains [13, 60], the expression adopted here, (6.34), gives rise to
a unique level of anisotropy at the CS12. This degree of anisotropy is referred to here as the Critical
Anisotropy State (CAS). When approaching the CS the plastic volumetric strain disappears while the
level of anisotropy tends towards the deviatoric target value bβ{r}. The anisotropy of the yield surface
at the CS is independent of both (i) the initial anisotropy and (ii) the stress path taken to the reach
this state. It is only dependent on the final CS stress state. This unique level of fabric anisotropy also
results in a unique CSL in the bi-logarithmic void ratio versus hydrostatic pressure plane. The majority
of previous formulations that include anisotropic shearing of the yield surface do not predict a unique
CAS. One exception is Wheeler et al.’s S-CLAY1 model [58] (and subsequent extensions).

The ramp function on the plastic volumetric strains ensures that the level of anisotropy does not
diverge from the target value when experiencing plastic dilation. This function means that under dila-
tive plastic straining, it is only the isochoric component of the rate that influences {β}. Unlike other
anisotropic CS formulations [11–13, 33, 34, 46, 58, 60], hyperplastic anisotropy is introduced by shearing
the inner and outer yield surfaces without any additional geometric constraints on the surfaces. This
allows the degree of anisotropy to equal, or even exceed, M without the deviatoric radii of the surfaces
disappearing (as shown in Figure 6.6 (i)). The yield surface used by Wheeler et al. [58] (as originally
introduced by Dafalias in 1986 [13], given by (6.1)) collapses to a line when the level of anisotropy equals
the gradient of the CSL.

Substituting (6.36) into (6.34) and re-arranging, we obtain

{β̇} = Cβ

(
dβ

{s} − {sχ}
pβ

+ {β}
(

dβRpcγ

2pβ
−

(
〈ε̇p

v〉 + xβ ε̇p
γ

)))
,

(6.37)

where
dβ =

(
aβ〈ε̇p

v〉 + xβbβ ε̇p
γ

)
and pβ = p − pχ + Rpcγ/2. (6.38)

pβ (as shown in Figure 6.4 (i)) is a hydrostatic measure of the position of the current stress state from
that of the apex of the inner yield surface. When R = 1 the inner yield and outer surfaces coincide and
pβ = p, as pχ = pcγ/2.

When approaching the CS, the volumetric component of plastic flow reduces and the evolution of {β}
is controlled by the deviatoric plastic strains. In the limiting case, where ε̇p

v = 0, {β̇} becomes

{β̇}ε̇p
v=0 = Cβxβ

{
bβ{r} − {β}

}
ε̇p

γ . (6.39)

Under continued plastic shearing with no change in state, {β̇} → {0} and

{β}cs = bβ{r}cs, (6.40)

where (·)cs denotes a quantity at the CS. If bβ = 0, anisotropy disappears when approaching the CS and
(p/pc) = γ/2 at a stress ratio η = q/p = M . When bβ 6= 0, the value of M to maintain the original
required p-q stress ratio at the CS is obtained from ηcs, γ, α and bβ . At the CS the inner yield and outer
surfaces coincide at a stress state on the CS cone where {σ} = {σ̆} = {σ0}, i.e. the stress, image and

12That is, if xβ 6= 0.
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similarity centre states are coincident13. The value of M required to maintain the unique ηcs, can be
obtained by the procedure given below.

(i) First, by recognising that {g,σ }T {1} = 0 at ηcs, from (6.30) we have

B2 =
A2(ηcs)2bβ(1 − bβ)

1 − γ(pa)cs/2
, where (pa)cs =

(
pc

p

)
cs

. (6.41)

(ii) From the outer surface yield function (6.8), B2 may be expressed as

B2 =
A2(ηcs)2(1 − bβ)2

γ(2 − γ)((pa)cs − 1) .

(6.42)

(iii) Eliminating B2 between (6.41) and (6.42) provides (pa)cs as

(pa)cs =
1 − bβ + bβγ(2 − γ)

bβγ(2 − γ) + γ(1 − bβ)/2 .

(6.43)

Therefore the relative position of the CS on the outer surface is solely a function of bβ and γ.

(iv) Rearranging (6.42) and substituting for A and B, we obtain M as

M = ηcs


(
1 − γ + γ(pa)cs/2

)
(1 − bβ)(

1 − α + αγ(pa)cs/2
)√

γ(2 − γ)
(
(pa)cs − 1

)


,

(6.44)

where ηcs is the experimentally determined stress ratio at the CS.

By obtaining the stress ratio, ηcs, and defining the level of anisotropy, bβ , at the CS, through (6.44) it
is possible to obtain the appropriate M to maintain the unique asymptotic ηcs (for a given α and γ).
Figure 6.8 (i) gives the relative position of the CS on the outer surface14 normalised by the isotropic
position (γ/2) for bβ ∈ [0, 0.9] with γ = 0.7 to 1 in 0.1 increments (identified by the grey shaded region).
The value of M required to maintain a specific unique ηcs is shown for α = 0.6 in Figure 6.8 (i) and for
α = 1 and 0.3 in Figure 6.8 (ii). As α decreases, so does the range of M values required to maintain
a given ηcs. The value of M/ηcs and the relative position of the intersection of the CSL with the outer
surface 2p/γpc have been identified for bβ = 0.6 and γ = 0.9 in Figure 6.8. Classical normalised CS
gradients of M/ηcs = 0.685, 0.885 and 0.585 maintain the original gradient of the CSS, ηcs, for α = 0.6,
0.3 and 1 respectively (as shown in Figures 6.8).

In 1965 Horne [27, 28] investigated the behaviour of rotund, rigid, cohesionless particles15. The work
offered the following conclusion regarding the response of granular material within a triaxial test cell [28]

“... the complete behaviour in the triaxial test may be explained in terms of an induced
degree of anisotropy which increases to a maximum close to the peak stress ratio, subsequently
decreasing until the condition of no further volume change causes the degree of anisotropy to
become stabilized.”

13Therefore, the procedure for determining M can be conducted by only considering the outer yield surface.
14Note, that as in the isotropic case, α has no influence on the relative position of the intersection between f and the

CSS.
15Horne’s [27, 28] work ignored the effect of elastic/plastic deformation, crushing and cracking, assuming that the defor-

mation occurs as a result of the relative motion between groups of particles.
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Figure 6.8: Influence of anisotropy on the CS: (i) normalised position of the CS on the outer surface
(2p/γpc) and normalised classical isotropic gradient of the CSL M/ηcs for α = 0.6 with γ = 0.7 to 1 in
0.1 increments (ii) normalised classical isotropic gradient of the CSL M/ηcs for α = 1 and α = 0.3.

That is, particulate material may exhibit anisotropy which reaches a stabilised asymptotic value, just
as the stress state approaches the CS. However, Horne’s work was based on spherical particles and the
extension to elongated clay platelets has not been made.

The argument for a unique CS for initially anisotropic materials, regardless of their stress history, has
been strengthened by recent two-dimensional discrete element analysis on elongated particles by Fu and
Dafalias [18, 19]. In [18], the authors concluded that:

“...a common ultimate state in terms of fabric characteristics is reached at large strains regard-
less of the initial fabrics prior to shear deformation. ...A direct implication of this conclusion
is the uniqueness of the critical state line in the e-p [void ratio versus pressure] space...”

They also found that the anisotropy orientation at the CS did not coincide with the shear band direction,
but instead it was at some inclination “...between the shear band direction and the minor principal stress
direction” [18]. That work used a measure of fabric anisotropy intensity (with 0 being isotropic and
1 perfect alignment in one preferential direction) together with a direction measure to quantify the
orientations of the elongated particles. This fabric anisotropy intensity was defined as the difference
between the principal components of the particle orientation-based fabric tensor, defined as

[Fp] =
1

2np

2np∑
k=1

{nk}{nk}T ,

where {nk} is a unit vector representing the kth particle’s major axis orientation and np is the total
number of particles. The overall fabric intensity (approximately 0.6 in their analysis) was found to be
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independent of the initial fabric for direct shear and bi-axial compression investigations [18].

Volumetric target: aβ

aβ controls the instantaneous target level of anisotropy under compressive volumetric plastic straining.
Although rather difficult to measure, bβ has a clear interpretation as the relative level of anisotropy at the
CS. However, the interpretation of aβ is less straightforward. To assist in this understanding we consider
the stress path in Figure 6.9.

(i) Starting at the nose of the yield surface ({γ̇p} = {0}) on the anisotropic axis (η = β);

(ii) move along a path such that the stress point remains on the nose of the yield surface while the
level of anisotropy increases (by virtue of (6.37)); in order to

(iii) reach a steady state of anisotropy for the expanding (hardening) yield surface.

The irrecoverable volumetric compaction leads to a re-arrangement of the soil particles, causing an in-
crease in the anisotropy until (iii) is reached. At this steady state {β} → aβ{r} (or in triaxial conditions
β → aβη) and the deviatoric plastic flow16 becomes

{γ̇p} = γ̇ × 2A2
(
1 − aβ

)
{s}, (6.45)

where γ̇ is the plastic multiplier. A steady state, with the first condition17 of the above stress path
{γ̇p} = {0}, can only be obtained if aβ = 1. If aβ 6= 1 then we have a discrepancy between the condition
of pure plastic volumetric compaction, on the axis of anisotropy (NCL, η = β), and attaining a steady
state. The conclusion is that, to provide consistency within the model, aβ should be fixed at a value of
unity. It should not be considered as a material constant.

Figure 6.9: Stress path showing continuous elasto-plastic compaction with increasing anisotropy leading
to a steady state at (iii).

6.2.3 Inner surface translation

The concept of a projection (or similarity) centre, {σ0}, was formalised by Hashiguchi [25] for the subload-
ing surface plasticity model to ensure that the inner surface remains geometrically similar to its outer
surface. This projection centre is defined as the intersection point between rays linking common normals
on the inner and outer surfaces. This construction maintains a constant ratio between the distances from
the similarity centre to the inner yield surface and the inner to the outer surface along any ray emanating
from the projection centre [25] (see Figure 6.4).

16Under the condition of coincident inner and outer surfaces: R = 1, Af = A and Bf = B.
17Excluding the trivial case of non-dissipative stress paths where the plastic multiplier γ̇ = 0.
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Using geometric considerations (that is, by considering the intersection of two rays; one through the
apices18 of the surface and one through the centres of the surfaces), the centre of the inner yield surface
is related to the projection centre through

{σχ} =
pcγ

2
{1} + (1 − R)

{
{σ0} − pcγ

{
{1} + {β}

}
/2

}
, (6.46)

which simplifies to

{σχ} = (1 − R){σ0} +
Rpcγ

2
{
{1} + {β}

}
, (6.47)

where pcγ{1}/2 is the centre of the outer surface. Taking the rate of (6.47), we obtain

{σ̇χ} = (1 − R){σ̇0} +
Rṗcγ

2
{
{1} + {β}

}
+

Rpcγ

2
{β̇}, (6.48)

where the rate of evolution of pc and {β} are given by (5.24) and (6.37), respectively. The evolution of
{σ0} is obtained by considering the cases shown in Figure 6.10. Starting from the state in Figure 6.10 (i),
with the current stress state, image point and projection centre all located at pcn{1}, the model is
then subjected to a compressive volumetric strain increment, resulting in the state in Figure 6.10 (ii).
Throughout this loading the stress state, image point and projection centre remain coincident. By
considering the hydrostatic growth of the yield surfaces, from (5.24), the projection centre must translate
as

{σ̇0} =
ε̇p

v

(λ − κ)
{σ0}. (6.49)

If the model is then subjected to a purely isochoric strain increment, again with the stress state, image
point and projection centre coincident, as shown in Figure 6.10 (iii) with p = pcn+1 = p0 (where p0 is the
projection centre hydrostatic pressure) throughout the load path, the projection centre will evolve as

{σ̇0} = ṗ0{β}. (6.50)

Finally, if the inner yield surface is located within the outer surface, under plastic straining it will translate
towards the image point on the outer surface through

{σ̇0} = Cχ||{ε̇p}||
{
{σ} − {σ0}

}
. (6.51)

Combining (6.49)-(6.51), the evolution of the projection centre is obtained as

{σ̇0} = Cχ||{ε̇p}||
{
{σ} − {σ0}

}
+

ε̇p
v

(λ − κ)
{σ0} + ṗ0{β}. (6.52)

The first term translates the inner surface towards the image point, {σ̆}, on the outer surface at a rate
controlled by Cχ. This translation rule means that the inner surface can touch the outer surface but
never overlap with it19. The second and third terms in (6.52) ensure that the projection centre remains
consistent with the hydrostatic growth and anisotropic shearing of the outer surface. The first two terms
in (6.52) are equivalent to those used by Mróz et al. [41], although here we assume a constant ratio
between the sizes of the inner and outer surfaces.

18Strictly, there are no apices for these surfaces; the meridians are C1 continuous at the points where they meet. Here,
the least compressive hydrostatic limits of the surfaces are referred to as apices.

19That is, as {σ} → {σ̆},
{
{σ} − {σ0}

}
→ {0} and the rate of translation diminishes.
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Figure 6.10: Translational hardening law for the inner yield surface: (i) initial condition, (ii) hydrostatic
compaction and (iii) isochoric shearing.

Substituting (6.52) into (6.48) we obtain the evolution of the inner surface centre as

{σ̇χ} = (1 − R)
{

Cχ||{ε̇p}||
{
{σ} − {σ0}

}
+

ṗc

pc
{σ0} + p0{β̇}

}
+

Rṗcγ

2

{
{1} + {β}

}
+

Rpcγ

2
{β̇}, (6.53)

where ṗc is given by (5.24), {β̇} by (6.34) and the projection centre is given by (6.25) with a hydrostatic
component of

p0 =
pχ − Rpcγ/2

(1 − R)
. (6.54)

Substituting (5.24), (6.25) and (6.54) into (6.53), re-arranging and simplifying, we obtain the evolution
of the centre of the inner surface as

{σ̇χ} = Cχ||{ε̇p}||
{

(1 − R){σ} + Rpcγ
{
{1} + {β}

}
/2

}
+

(
ε̇p
v/(λ − κ) − Cχ||{ε̇p}||

)
{σχ} + pχ{β̇}. (6.55)

Combining the elasticity law (from the free energy function (5.1)), yield function and direction of plastic
flow (from the dissipation function (6.11)) and the hardening laws for (i) the surface growth (5.24), (ii)
the shear anisotropy (6.34) and (iii) the translation of the inner surface (6.55), we obtain the full set of
constitutive relations for the two-surface anisotropic hyperplasticity model. These are summarised below.

6.2.4 Complete model formulation

In this subsection, to provide clarity, the essential constitutive equations are drawn together out of the
preceding subsections and Chapter 5. The below equations summarise the elasticity, inelasticity and
hardening relationships for the two-surface anisotropic hyperplasticity model (a total of six equations)
along with the required 12 material constants. Four of these constants (κ, G, M and λ) are inherited from
the classical MCC constitutive model. The Lode angle dependent single-surface isotropic model presented
in Chapter 5 added α, γ and ρ̄e. The remaining five (R, bβ , xβ , Cβ and Cχ) are additional material
constants required for the two-surface anisotropic model. The two-surface anisotropic constitutive model
can be summarised to the below six equations.

(i) The elastic stress relationship (5.2)

{σ} = pr exp
(

εe
v − εe

v0

κ

)
{1} + 2G{γe};
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(ii) yield function (6.15), direction of plastic flow (6.30)

f = (p − pχ)2B2
f + {sβ}T {sβ}A2

f − A2
fB2

f = 0,

{g,σ } =
2
3

(
B2

f (p − pχ) − A2
f{sβ}T {β}

)
{1} + 2A2

f{sβ}; and

(iii) the hardening rules from (5.24), (6.34) and (6.55) are given by

ṗc =

(
pc

λ − κ

)
ε̇p

v , {β̇} = Cβ

({
{r} − {β}

}
〈ε̇p

v〉 + xβ

{
bβ{r} − {β}

}
ε̇p

γ

)
and

{σ̇χ} = Cχ||{ε̇p}||
{

(1 − R){σ} + Rpcγ
{
{1} + {β}

}
/2

}
+ {σχ}

(
ε̇p

v/(λ − κ) − Cχ||{ε̇p}||
)

+ pχ{β̇}.

Infinitesimal elasto-plastic tangent

The infinitesimal elasto-plastic tangent [Dep] can be determined from (2.23) where the direction of plas-
tic flow and the derivative of the yield function with respect to stress are given by (6.30) and (E.1),
respectively. The scalar measure of the plastic tangent stiffness is given by

H = −{f,β }T {Hβ} − {f,σχ }T {Hσχ} − f,pc Hpc , (6.56)

where the yield function derivatives are given in Appendix E. The instantaneous directions of plastic
hardening, H(·), are obtained from the hardening laws of pc (5.24), {β} (6.34) and {σχ} (6.55) divided
by the plastic multiplier rate, γ̇

Hpc =
(

pc

λ − κ

)
{g,σ }T {1},

{Hβ} = Cβ

{(
{r} − {β}

)
〈{g,σ }T {1}〉 + xβ

(
bβ{r} − {β}

) ε̇p
γ

γ̇

}
and

{Hσχ} = Cχ||{g,σ }||
{

(1 − R){σ} + Rpcγ
{
{1} + {β}

}}
+

{σχ}
(
{g,σ }T {1}

λ − κ
− Cχ||{g,σ }||

)
+ pχ{Hβ}. (6.57)

Combining these directions of instantaneous hardening with the direction of plastic flow (6.30), the
derivative of the yield function with respect to stress (E.1) and the elastic tangent stiffness matrix (5.4)1,
we obtain the equations necessary to form the infinitesimal elasto-plastic tangent for the two-surface
anisotropic model.

6.3 Calibration

In this section the calibration procedure for the two-surface anisotropic model is presented. The model
is calibrated using data from LCT [20], which was examined in the preceding chapter for the simpler
two-parameter single-surface isotropic CS model.

6.3.1 Hydrostatic loading/swelling: λ, κ, Cχ and R

Compressibility indices: λ and κ

The elastic and plastic compressibility indices are obtained from one-dimensional (or preferably hydro-
static) consolidation (drain compression) tests with unloading/loading cycles. κ and λ are determined
by plotting the void ratio (or specific volume v = (1 + e)) against pressure on a bi-logarithmic scale.
The gradient of a linear fit to the virgin loading behaviour provides the plastic compressibility index, λ,
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whereas the unloading (swelling) behaviour provides κ, as shown for LCT data [20] in Figure 5.12. It
should be noted that, κ now gives the initial elastic unloading/loading stiffness, that is, the gradient of
the initial part of the unloading and elastic reloading curves (as identified in Figure 6.11).

Inner surface size and rate of translation: R and Cχ

Cχ controls the rate at which inelasticity develops inside the outer surface (or rather the rate of translation
of the inner surface). It can be determined through examination of the hydrostatic consolidation unloading
and re-loading response. For large Cχ the material response (when F < 0) is dominated by the elasticity
law. As Cχ reduces, the degree of plasticity inside the outer surface increases as the inner surface is
dragged through stress space. Hydrostatic consolidation starting from an initial hydrostatic stress (and
isotropic material) state allows the influence of Cχ to be decoupled from the other material constants
(once λ, κ and R have been independently determined). Examining the hydrostatic response for an
initially isotropic material, allows the effects of shearing to be excluded such that the influence of Cχ

may be isolated from the material constants controlling the evolution of anisotropy.

Figure 6.11: Hydrostatic consolidation ln(p) versus ln(v) response from an hydrostatic stress state and
isotropic material state for (i) single surface model (R = 1) and the two-surface model with R = 0.2
and (ii) Cχ = 2, 000, (iii) Cχ = 100, (iv) Cχ = 10, 000 and (v) multiple load-unload-reload cycles for
Cχ = 2, 000.

Figure 6.11 ((i) to (iv)) shows the hydrostatic consolidation ln(p) versus ln(v) response for compres-
sion to a pressure of 250kPa (starting from a reference pressure of 80kPa), swelling to 80kPa and then
compression to 400kPa. The response under these conditions is independent of the values of α and γ

as the stress state (when undergoing elasto-plastic behaviour) is located at the nose (or apex ) of the
yield surface20. The single surface response (R = 1) is shown in Figure 6.11 (i), where the gradients
of the virgin consolidation and elastic unlaoding/re-loading paths are given by λ and κ respectively21.
Figures 6.11 (ii)-(iv) show the response for different values of Cχ with R = 0.2. The following points
describe the path (where the points are labeled in Figures 6.11 (ii) and (iii)):

20The behaviour is also independent of M , ρ̄e, G and the anisotropic shear hardening parameters bβ , xβ and Cβ .
21This is the classical MCC response when using a bi-logarithmic hardening relationship.
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A : hydrostatic pressure of 80kPa at an initial specific volume of 1.5 with an isotropic material
state and a stress state located at the nose both the inner yield and outer surfaces;

A to B : drained hydrostatic loading (consolidation) to a pressure of 250kPa;

B to C : elastic hydrostatic unloading with ∆ ln(v) = κ(∆ ln(p)) within the inner yield surface
until f = 0;

C to D : elasto-plastic hydrostatic unloading to a pressure of 80kPa with the ln(p) versus ln(v)
response predominately controlled by Cχ;

D to E : elastic hydrostatic re-loading with ∆ ln(v) = κ(∆ ln(p)) within the inner yield surface
until f = 0 at E; and

E to F : elasto-plastic hydrostatic loading to a pressure of 400kPa with the material response
asymptotically approaching the virgin consolidation response of ∆ ln(v) = λ(∆ ln(p)).

Including an inner surface within the conventional outer surface introduces a hysteric response. As Cχ

increases, so the area of this hysteric loop reduces, as shown by Figures 6.11 (ii) to (iv). For low values of
Cχ the hydrostatic unloading and re-loading response is dominated by Cχ, clearly seen in Figure 6.11 (iii)

where the gradient of the elasto-plastic unloading-reloading response is closer to the virgin consolidation
line than the purely elastic response. For large values of Cχ, the response under swelling is largely
governed by the elastic compressibility index κ, as shown in Figure 6.11 (iv) for Cχ = 10, 000. The
response under multiple load-unload cycles is shown in Figure 6.11 (v) for Cχ = 2, 000. As expected,
increasing the pressure change after further consolidation increases the magnitude of the hysteresis.

Cχ should preferably be calibrated from hydrostatic consolidation load-unload-reload experimental
data. However, if such cyclic data is not available, then the model could be calibrated from a single
unloading response following hydrostatic consolidation. The initial response provides κ and the deviation
from this linear relationship in ln(p)-ln(v) space provides Cχ. The size of the inner surface can also be
estimated from this hydrostatic data as the point where the experimental response deviates from the κ

line.

Lower Cromer till

Figure 6.12 compares predictions using the two-surface anisotropic hyperplastic model with hydrostatic
consolidation and swelling LCT experimental data [20]. The initial virgin consolidation behaviour is
described by λ, set here to the same value as used in the preceding chapter, 0.0447. κ is now the initial
slope of the swelling response. The first three data points provide a value of κ = 0.005. The isotropic
family of CS models analysed in the previous chapter used a softer value of 0.0073 to provide a best-fit
to the full unloading response. The remainder of the unloading response suggests use of a Cχ value of
3, 700, with the inner surface size ratio set to 0.2. With these material constants, the model is able to
provide good agreement with the laboratory findings.

6.3.2 Anisotropic Critical State position: bβ and γ

As described in Section 6.2.2, the location of the CSL is influence by both γ and bβ . Rearranging, (6.43)
we obtain (

p

pc

)
cs

=
γ
(
1 + bβ

(
3 − 2γ

))
2
(
1 − bβ

(
γ2 − 2γ + 1

))
,

(6.58)

that is, the relative position of the CSL (at p) in terms of the size of the yield surface pc. If bβ = 0 then
the model looses plastic anisotropy at the CS and γ alone determines the position of the intersection of
the CSL with the outer surface (at p = γpc/2). Decreasing γ causes the CSL to move towards the stress
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Figure 6.12: Hydrostatic consolidation and swelling behaviour of LCT [20] (shown by discrete points) and
the two-surface anisotropic model in terms of (i) hydrostatic pressure versus specific volume, (ii) ln(p)
versus specific volume and (iii) ln(p) versus ln(v).

origin, at a lower pressure for a given specific volume. If γ = 1 then the intersection of the CSL with the
outer surface is given by (

p

pc

)
cs

=
1 + bβ

2 .
(6.59)

Increasing bβ moves the CSL away from the stress origin (closer to the hydrostatic consolidation line,
HCL)

Figure 6.13: Influence of γ and bβ on the position of the intersection of the yield surface with the CSL: (i)
contours of (p/pc)cs with γ ∈ [0.7, 1] and bβ ∈ [0, 0.3] and (ii) ln(p) versus ln(v) schematic of the position
of the CSL relative to the HCL.
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Figure 6.13 demonstrates the influence of changing the values of γ and bβ on the position of the
intersection of the CSL with the yield surface. The values of (p/pc)cs from (6.58) are contoured in
Figure 6.13 (i) and the effect of γ and bβ shown schematically in Figure 6.13 (ii) (for the case where
R = 1). For a given bβ and a required (p/pc)cs, γ can be determined by solving the quadratic

γ2
(
2bβ

(
1 − (p/pc)cs

))
+ γ

(
4bβ(p/pc)cs − 3bβ − 1

)
+ 2(p/pc)cs

(
1 − bβ

)
= 0. (6.60)

The values of γ to achieve (p/pc)cs equal to 0.45 and 0.50 with bβ = 0.1 are 0.784 and 0.890 respectively,
as shown in Figure 6.13 (i). Figure 6.14 shows the yield surfaces at the CS for the combinations of
γ = 0.9, 0.8 and 0.7 with bβ = 0, 0.1, 0.2 and 0.3. The gradient of the classical CSL, M , was calculated
from (6.44) with ηcs = 1, α = 0.4 and ρ̄e = 0.8. The positions of isochoric plastic flow, at ηcs on the
compression meridian, are identified by the white diamonds. The relative position of the intersection of
the CSL with the outer surface is given above each of the sub-plots.

Figure 6.14: Yield surfaces at the CS for α = 0.4 and ρ̄e = 0.8 with γ = 0.9, 0.8 and 0.7 and bβ = 0,
0.1, 0.2 and 0.3. The positions of isochoric plastic flow at ηcs on the compression meridian (and on the
extension meridian for bβ = 0) are identified by the white diamonds, where M is obtained from (6.44).

Although bβ controls the intensity of the anisotropy at the CS, it also influences the model stress strain
response in a rather complex way, particularly as the CSL is approached. Figure 6.15 (i) demonstrates
the effect of bβ varying between 0 and 0.5 in 0.1 intervals for undrained triaxial compression (UTC)
and extension following K0 consolidation from a normally consolidated state (OCR = 1)22. Increasing
bβ causes a change in the UTC response of the model from a softer response (low values of bβ) to a
hooking stiffening stress response. This hooking can only occur when the anisotropy developed under
one-dimensional consolidation, βK0 given by (6.62), is less than bβ .

Except for large values of Cβ , where the yield surface will rotate swiftly to the CAS, the model’s
22Note that, the simulations do not start from a common state following K0 consolidation as varying bβ (without re-

calculating xβ) changes the one-dimensional loading response of the model. Only the K0 response when bβ = 0 is shown in
Figure 6.15 (i).
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response under UTE (as shown in Figure 6.15 (i)) demonstrates hardening near the CSL. As bβ increases,
the length of this hooking stress path under UTE also increases. This is a consequence of the yield surface
being required to shear to a larger extent in order to arrive at the specified CAS.

Figure 6.15: UTC and UTE following normal K0 consolidation (OCR= 1): (i) influence of bβ on the
stress path with γ = 0.9 and (ii) experimental data on LCT from Gens [20].

The following steps can be used to obtain bβ and γ:

(i) obtain (p/pc)cs from experimental data (as shown in Section 5.4.2, Figure 5.14);

(ii) set γ = 2(p/pc)cs and vary bβ while comparing the simulated output against experimental data on
UTC and UTE at an OCR of 1 following K0 consolidation;

(iii) fix bβ based on the best fit to the experimental data and then re-calculate γ using (6.60).

Lower Cromer till

Figure 6.15 (ii) reproduces the experimental data on LCT [20] under UTC and UTE following K0 consoli-
dation at an OCR of one. Comparing the model’s response with the LCT experimental data, it is apparent
that values of bβ > 0.2 are not appropriate. A value of bβ = 0.1 provides a reasonable approximation to
the experimental data behaviour near the CSL.23

In the previous chapter it was suggested that γ be specified on the basis of determining the ratio of
the pressures at the initial to that at the final state (at the CS) from UTC data at an OCR of two. Once
bβ is specified, the position of the CSL can be fixed by the appropriate selection of γ. In Chapter 5,
Figure 5.14 showed experimental data on LCT [20] for hydrostatic consolidation and swelling following by
UTC for OCRs of 1, 1.5, 2, 4 and 10 in (i) specific volume versus hydrostatic pressure and (ii) ln(p)-ln(v)
space. The distance between the HCL and CSL provides the ratio of the size of the yield surface to the
pressure at the CS. From Figure 5.14 (ii), (p/pc)cs = 0.45, therefore if bβ = 0.1 we obtain γ ' 0.78 from
(6.60) (see Figure 6.13).

23Note that, the anisotropy under one-dimensional consolidation for bβ = 0.1, aβ = 1, γ = 0.8 and α = 0.5 is βK0 = 0.21
for ηK0 = 0.6.
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6.3.3 Triaxial response of highly over-consolidated soils: α

As shown in the preceding chapter, α makes the yield surface more tear drop shaped (with the taper
nearest the stress origin), thereby reducing the significant over-estimation seen in the MCC model of the
deviatoric stresses, under UTC (or UTE) at high OCRs. Setting α < 1 allows the two-surface model to
be used for both normally and highly over-consolidated geomaterials by making the yield surface more
cone-like on the dry side of the CSL. With sufficient stress path data being available, it would be possible
to determine α from the experimentally observed yield points. However, the point at which yielding first
occurs is not so easily detected and full stress path data are often not available.

The previous chapter calibrated α for the isotropic two-parameter family of CS models using one-
dimensional consolidation (K0 loading) experimental data. Once γ had been specified (in addition to the
gradient of the CSL, ηcs which was equal to M for the family of isotropic single-surface models), α was
determined analytically such that under K0 loading the constitutive model reproduced the experimentally
recorded asymptotic stress ratio ηK0 = q/p. However, using the same value of α as determined for the
isotropic model would lead to the non-physical result of no anisotropy being developed under K0 loading.
Thus α should be determined in a different manner.

The response of the single surface isotropic CS model for α = 0.3 was compared in Chapter 5 with
experimental data on LCT. The material’s response under drained triaxial compression (DTC) from a
hydrostatic stress state at an OCR of 10 (Figure 5.17) significantly overestimated the dilative behaviour.
This is due to α’s influence on the direction of plastic flow. As shown in Figure 6.5, when α decreases
the dilative component of the plastic flow increases, resulting in good agreement in terms of the stress
deviator for heavily OCR soils but not in terms of the volumetric strain response.

Anisotropic shearing of the yield surface partially decouples α from the K0 consolidation response,
allowing for greater flexibility when specifying α. Furthermore, the presence of an inner surface allows
the value of α to be increased, potentially improving the volumetric response under drained triaxial tests
at high OCRs whilst maintaining good agreement with the deviatoric stress.

Figure 6.16: Influence of α on the (i) UTC, (ii) DTC deviatoric stress and (iii) DTC volumetric strain
response. The model predictions are compared with data from LCT (shown by discrete points, [20]) at
an OCR of 10.
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Lower Cromer till

Figure 6.16 compares the model’s triaxial compression response under both drained and undrained con-
ditions with experimental data on LCT at an OCR of 10. The volumetric response under DTC (Fig-
ure 6.16 (iii)) is an improvement on that seen in Figure 5.17 for the isotropic model. However, the
influence of α on the volumetric behaviour is rather minor24. Improving the model’s volumetric strain
response further would require reducing γ. Yet, as discussed in the preceding section, γ also controls the
position of the CSL. It is not possible to obtain a perfect fit to all of the experimental data for all OCRs.
Studies conducted by the author have shown that a value of α = 0.4 generally provides good agreement
with the material response for both UTC and DTC, in terms of the deviatoric stress.

6.3.4 Isotropic Critical State cone: M and ρ̄e

UTC test data allows the stress ratio at the CS, ηcs, to be determined. M can then be calculated using
the equations presented in Section 6.2.2 once α, γ and bβ have been specified.

The stress ratio at the CS under extension, when compared to that under compression, provides the
normalised extension deviatoric radius ρ̄e. This necessitates capture of triaxial compression and extension
test data (from either an isotropic or anisotropic initial state) to a sufficiently large axial strain such that
the CS is attained. Data from a single OCR is sufficient to determine ρ̄e, however results at more than
one OCR are preferential. In the absence of information from triaxial extension experiments, ρ̄e could
be estimated from the triaxial compression friction angle (φ) through (4.3), such that ρ̄e coincides with
that predicted by the Mohr-Coulomb criterion.

Lower Cromer till

The stress ratio at the CS for LCT and the normalised deviatoric radius under triaxial extension were
found (in the preceding chapter) to be equal to ηcs = 0.964 and ρ̄e = 0.729 respectively. Using the
constants given in Table 6.1 and (6.44), M is 0.921.

6.3.5 Development of plastic anisotropy: Cβ and xβ

Relative influence of volumetric/deviatoric plastic strains: xβ

Once α, γ, aβ and bβ have been determined, xβ , controlling the relative contribution from volumetric and
deviatoric plastic straining on the evolution of {β}, can be obtained from one-dimensional consolidation
data. For this calibration procedure we assume that the elastic strains are negligible under sufficiently
large straining during K0 consolidation. In this case the ratio of the deviatoric to volumetric plastic
strains (on the outer surface under triaxial conditions) is

ε̇p
γ

ε̇p
v

=
A2(ηK0 − β)

B2(1 − γpa/2) − A2(ηK0 − β)β
= np, (6.61)

where ηK0 is the experimentally determined stress ratio (q/p) under one-dimensional K0 loading, pa =
pc/p, β is the L2 norm of {β} and np =

√
2/3 (as given in Section 5.4.2). From (6.9), assuming triaxial

stress conditions, β can be obtained as

β = η − B

A

√
γ(2 − γ)

(
pa − 1

)
. (6.62)

24Note, that the DTC results for α = 0.4 and 0.5 are not shown in Figure 6.16 (ii) and (iii) due to congestion, the results
span between those of α = 0.3 and 0.6.
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Rearranging (6.61) and substituting for β from (6.62), we obtain a quartic in (pa)K0

(pa)4K0

(
−n2

pM
2α2γ2a1/4

)
+ . . .

(pa)3K0

(
bγ2/4 − n2

pM
2
[
α2γ2a2/4 + αγ(1 − α)a1

])
+ . . .

(pa)2K0

(
b
[
γ(1 − γ) − γ2/4

]
− n2

pM
2
[
a1(1 − α)2 + α2γ2a3 + αγ(1 − α)a2

])
+ . . .

(pa)K0

(
b
[
(1 − γ)2 − γ(1 − γ)

]
− n2

pM
2
[
a2(1 − α)2 + αγ(1 − α)a3

])
+ . . .(

−b(1 − γ)2 − n2
pM

2a3(1 − α)2
)

= 0, (6.63)

where

b = γ(2 − γ)
(
1 + np(ηK0)

)2

, a1 = γ2
(
1/4 − 2 + γ + (2 − γ)2

)
,

a2 = γ
(
−1 + 2(2 − γ) + γ(2 − γ) − 2γ(2 − γ)2

)
, a3 = 1 − 2γ(2 − γ) + γ2(2 − γ)2

and (pa)K0 = pc/p is the position on the yield surface where, under constant K0 loading, (6.61) is satisfied.
Once solved for (pa)K0 , the asymptotic level of anisotropy under constant K0 loading can be obtained
from (6.62). At this state, β̇ → 0, which allows us to obtain xβ by setting (6.34) equal to zero, as

xβ =
aβ(ηK0) − βK0

np

(
βK0 − bβ(ηK0)

)
.

(6.64)

Here βK0 is the asymptotic anisotropy under constant K0 consolidation, determined from (6.62) with
η = ηK0 and (pa)K0 from (6.63).

Rate of development of anisotropy: Cβ

The value of Cβ , typically between 10 and 30, controls the anisotropic shearing rate. Once bβ has been
specified, Cβ controls the model’s behaviour when approaching the CSL. For low values of Cβ (where
the level of anisotropy is less than that at the CS state) the model will predict a hooking stress path
response; the stress path moves up the CSL until the level anisotropy reaches the CAS. When the level of
anisotropy is greater than the CS value (again for low values of Cβ) a softening response will be observed
in the vicinity of the CSL, as the degree of anisotropic shearing of the yield surface reduces to the CAS.
For sufficiently large values of Cβ the paths to the CS do not exhibit this hooking or softening response.

The K0 normally consolidated undrained triaxial behaviour can provide the information required to
determine Cβ . The experimental responses under compression (where the initial anisotropy is typically
greater than the CAS) and extension (where the initial anisotropy is typically less than the CAS) allows
a range for Cβ to be identified. The one-dimensional consolidation, by the virtue of the rate at which
ηK0 is approached, and the unloading path at high OCRs can also suggest a suitable value for Cβ .

Lower Cromer till

The asymptotic stress ratio of LCT under one-dimensional consolidation is equal to ηK0 = 0.6, as shown
in Figure 6.17. To attain this stress ratio under K0 consolidation, xβ was determined analytically (using
(6.64)) as xβ = 4.8. The rate of development of anisotropy, Cβ , was then set to 14.

Figure 6.17 shows the K0 consolidation and swelling experimental data from LCT (discrete points)
and the response of the two-surface anisotropic hyperplasticity model (A→D). The response during con-
solidation is shown in Figure 6.17 (i). The material point starts at A, with the inner and outer surfaces
shown by the dashed lines. After one-dimensional straining to a pressure of 233kPa the material point
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Figure 6.17: K0 consolidation and swelling comparison with experimental data (shown by discrete points)
on LCT from Gens [20].

is located at B. The inner yield and outer surfaces are shown (together with the axis of anisotropy,
β = 0.160) at B. Excellent agreement is seen between the model and the experimental data on LCT.

6.3.6 Shear stiffness: G

The final material parameter to be calibrated is the shear stiffness, G. As in the previous chapter, use
is made of the initial unloading response under K0 consolidation to predict G. Typically, G for the
two-surface anisotropic model will be significantly larger than that used in the single-surface isotropic
model presented in the previous chapter due to κ now representing the initial loading/unloading elastic
compressibility index. It is the ratio of the bulk modulus to shear modulus that governs the initial K0

consolidation unloading behaviour. The presence of the inner yield surface allows a higher small strain
shear modulus to be used.

Lower Cromer till

The K0 swelling behaviour of LCT is shown in Figure 6.17 (ii), together with the model response. The
following phases of unloading are noted:

B to C : elastic swelling inside the yield surface with the stress response controlled solely by the
elastic material constants;

C : onset of elasto-plastic behaviour; and

C to D : elasto-plastic swelling response controlled chiefly by the translation and shear hardening
laws (in addition to the elastic material constants).

To obtain good agreement with the data on LCT between B and C, the value of the shear modulus was
set at G = 28MPa. During unloading softening of the two surfaces occurs between C and D. In addition,
there is a reduction in the degree of anisotropy during this path (from β = 0.160 at B to β = 0.108 at
D). Again good agreement is observed between the experimental data and the response predicted by the
constitutive model, overcoming one of the main inadequacies seen in the single-surface isotropic family
of models presented in the preceding chapter.
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6.3.7 Complete set of material constants

The full set of two-surface anisotropic model constants for LCT and London Clay are given in Table 6.1.
The calibration procedure suggested in this section offers the preferred approach for determining the
material constants for the model as test paths which isolated the effects of some of the constants have
been identified. The follow sub-section describes the minimum set of just six material constants that can
be determined from only three experimental tests.

Table 6.1: Material constants for the two-surface anisotropic model with values for (i) Lower Cromer till
(LCT) according to the data from Gens [20] and (ii) London Clay (LC) according to the data from Hight
et al. [26], in addition to suggested default values.
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Minimum set of material constants

The complete set of material constants for the two-surface anisotropic model numbers 12. However, it
is possible to reduce this to a minimum set of six core constants, the others assume default values (as
given in Table 6.1). The classical MCC model requires four constants (namely, κ, G, λ and M), only
two additional constants controlling the rate of translation of the inner yield surface, Cχ, and the rate of
development of anisotropy, Cβ , are required to utilise the two-surface model. Two of the default constants
require calculation by the user, these are:

ρ̄e : the normalised deviatoric radius under triaxial extension obtained from ηcs (via the equivalent
friction angle, φ) using (4.3); and

xβ : the relative contributions of volumetric and deviatoric plastic straining on the development of
anisotropy, {β}, obtained from ηK0 using (6.64).

The other four default constants are fixed at:

α : equal to 0.6; to reduce the over-prediction of the peak deviatoric stress at high OCRs of the MCC
model;

bβ : equal to 0.1;

γ : equal to 0.89; so that position of the CSL relative to the size of the yield surface is the same as for
the MCC model (that is, (p/pc)cs = 0.5); and

R : equal to 0.2.

The values of bβ and R have been set at 0.1 and 0.2 respectively as they appear reasonable for both
the experimental data on LCT and that of London clay (presented in Chapter 7). Fixing six of the
two-surface anisotropic model’s constants leaves six non-default constants which are specified through:

κ : initial hydrostatic drained unloading or re-loading;

G : initial K0 unloading stiffness;

λ : virgin drained hydrostatic loading;

M : UTC to obtain ηcs which is then used to calculate M through (6.44);

Cχ : drained hydrostatic unloading or re-loading (deviation from κ line); and

Cβ : elasto-plastic K0 unloading behaviour.

Therefore, data from the following three experimental tests is required to calibrate the reduced material
constant two-surface anisotropic model:

(i) drained hydrostatic loading, to provide λ, and unloading to provide κ and Cχ;

(ii) a single UTC test to provide the stress ratio at the CS ηcs (for M); and

(iii) drained one-dimensional loading, to provide ηK0 (for xβ), and unloading to provide G and Cβ .

These three tests can be easily conducted using standard geotechnical laboratory (triaxial) apparatus.
Attempts have been made to link the classical material constants κ, λ and M to soil classification

indices, such as the liquid and plastic limits (see Yan et al. [62] and the references contained within).
Such studies provide useful connections between simple test methods used by geotechnical engineers and
the stiffness and strength parameters which define the CS family of constitutive models.
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6.4 Algorithmic treatment

This section describes the algorithmic aspects associated with incorporating the two-surface anisotropic
constitutive model into a finite-element (FE) code. The backward Euler (bE) stress integration procedure
operates with the residuals and unknowns used in the previous chapter with a further two terms added.
One of these new terms describes the orientation of the yield surfaces, while the other identifies the
centre of the inner yield surface. A pseudo-code for the constitutive algorithm is given in Figure 6.25.
The influence of the form of the yield function is investigated and the paths corresponding to compressive,
deviatoric and dilative stress returns are illustrated in principal stress space. Errors associated with the bE
integration procedure are then quantified and the robustness of the stress integration algorithm examined.
Finally, the constitutive equations are linearisied for small strain and finite deformation analysis, thereby
providing the algorithmic consistent tangent.

6.4.1 Integration

As in the previous two chapters, an implicit bE stress integration algorithm (first introduced in Sec-
tion 2.3), is used again to arrive at an incremental form for the constitutive equations. Using the
following twenty residuals

{b} =



{εe} − {εe
t} + ∆γ{g,σ }

pc − p̃c

{σχ} − {σ̃χ}
{β} − {β̃}

f


,

(6.65)

where p̃c, {σ̃χ} and {β̃} are obtained from implicit integration of the instantaneous hardening laws.
Taking the derivative of the residuals (6.65) respect to the following set of unknowns

{x} =
{
{εe} pc {σχ} {β} ∆γ

}T

,
(6.66)

the (20×20) Hessian matrix is obtained as

[A] =


[I] + ∆γ[g,σσ ][De] ∆γ{g,σpc } ∆γ[g,σσχ ] ∆γ[g,σβ ] {g,σ }

−{p̃c,σ }T [De] 1 − (p̃c,pc ) −{p̃c,σχ }T −{p̃c,β }T −(p̃c,∆γ )

−[σ̃χ,σ ][De] −{σ̃χ,pc } [I] − [σ̃χ,σχ ] −[σ̃χ,β ] −{σ̃χ,∆γ }
−[β̃,σ ][De] −{β̃,pc } −[β̃,σχ ] [I] − [β̃,β ] −{β̃,∆γ }
{f,σ }T [De] f,pc {f,σχ }T {f,β }T 0


.

(6.67)

The implicit hardening law for the evolution of the size of the outer surface was given by (5.25). Through
implicit integration of (6.55), we obtain the incremental evolution law for the centre of the inner surface
as

{σ̃χ
n+1} =

[
σ̃χ

denom

]−1
{
{σχ

n} + Cχ||{∆εp}||
{

(1 − R){σ} +
Rpcγ

2
{
{1} + {β}

}}}
︸ ︷︷ ︸

{σ̃χ
num}

, (6.68)

where [
σ̃χ

denom

]
=

[(
1 − ∆εp

v

(λ − κ)
+ Cχ||{∆εp}||

)
[I] − {∆β}{1}T

3

]
,

(6.69)

and {∆β} = {βn+1} − {βn}. {βn} and {σχ
n} respectively identify the orientation and the centre of the

inner surface at the previous state. Implicit integration of (6.34), provides the evolution law for the
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shearing of the yield surfaces as

{β̃n+1} =
{β̃num}
(β̃denom)

=
pβ{βn} + Cβ

(
dβ

{
{s} − {sχ}

})
pβ + Cβ

(
pβ

(
〈∆εp

v〉 + xβ∆εp
γ

)
− Rpcγdβ/2

)
.

(6.70)

dβ and pβ are given in (6.38) and (6.36) respectively. The derivatives required for the Hessian matrix
(6.67) are listed in Appendix E (except the direction of plastic flow, which is given in (6.30)).

6.4.2 Yield function

Chapter 5 revealed that the form of the yield function, f , can have a significant influence on the stability
and efficiency of the stress integration procedure using the bE method. Figure 6.18 shows contours of
the inner surface yield function (6.15) for the two-surface anisotropic model (i) in p-q stress space and
(ii) in the deviatoric plane for five hydrostatic stress states (where the deviatoric sections are identified
in Figure 6.18 (i)). The yield surface examined has the following properties: α = 0.6, γ = 0.9, R = 0.2,
M = 0.9, β = 0.5 and ρ̄e = 0.8. A discontinuity is seen in Figure 6.18 (i), and Figure 6.18 (ii) p/pc = 0.90,
along the axis of anisotropy passing through the inner yield surface when viewed in p-q stress space. This
discontinuity is a consequence of f having a LAD. When {β} = {0} or ρ̄e = 1 this discontinuity disappears.

Figure 6.18: Inner yield surface contours of the yield function f in (i) normalised p-q stress space and (ii)
five deviatoric planes centred on the inner surface axis of anisotropy with six-fold symmetry.

Figure 6.19 shows contours of the following yield function

f =
(p − pχ)2

A2
f

+
{sβ}T {sβ}

B2
f

− 1 = 0, (6.71)

which is the natural extension of the isotropic yield function introduced by Collins and Hilder [5]. Using
(6.71), a discontinuity appears near the apex of the inner surface where a high gradient in the contours
of the yield function is evident. The presence of this region (with an example point highlighted in
Figure 6.19 (i)) presents serious problems for a stress return algorithm based on the bE method. The
descent direction associated with these contours is inappropriate. The consequence of this is that a stress
state could potentially be trapped outside of the yield surface, unable to converge.
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Figure 6.19: Inner yield surface contours of the yield function (6.71) using the natural extension of the
isotropic single surface yield function proposed by Collins et al. [5].

6.4.3 Stress return

The stress return paths are demonstrated in Figure 6.20 for (i) general compressive, (ii) purely deviatoric
and (iii) general tensile trial stresses. The two-surface anisotropic model (with the material constants for
LCT, as given in Table 6.1) was used with a reference pressure of 100kPa and an initial outer surface
of size pc = 200kPa. Starting from a hydrostatic stress state of {σn} = 100 {1}kPa and an isotropic
material state (with {β} = {0} and {σχ} = {σn}) the model was subjected to the different trial strain
states given in Table 6.2. Each of the trial strain states have a length of 2, 000µ (that is, 2× 10−3). The
resulting stress return path is shown in Figure 6.20 in both three-dimensional principal stress space and
a deviatoric stress space view. The final inner yield and outer surfaces are also shown. The principal
stress state and material parameters at the final converged state are given in Table 6.2.

Table 6.2: Stress return principal values (with zero shear components) corresponding to the stress return
paths in Figure 6.20 (i) compressive, (ii) isochoric and (iii) tensile trial strain states.

Figure 6.20 demonstrates that the direction of the stress return path is radial to the inner yield surface.
Note that the stress returns all occur in different sextants of stress space. Despite the discontinuity in
the yield function contours (Figure 6.18) the stress return algorithm satisfactorily and rapidly returns
onto the correct yield surface.
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Even for these the relatively large strain increments, the constitutive model converges in 8 or 9
iterations. The hardening response of the model is dominated by the translation of the inner yield
surface, with very minor changes in the size of the outer surface, pc, and the degree of anisotropy, {β}.
This is particularly evident in the deviatoric strain increment return path (seen in Figure 6.20 (ii)), where
the inner surface translates deviatorically 24.6kPa away from the hydrostatic axis.

6.4.4 Error analysis

The errors resulting from the approximate stress integration procedure are now quantified using the same
error measure as used in the preceding chapters. The constitutive model used the material constants for
LCT, as given in Table 6.1, with the size of the outer surface set at 200kPa and a reference pressure
of 100kPa. From an initial hydrostatic stress state {σn} = 100 × {1}kPa, an anisotropic material state
{βn} = {−0.1 − 0.1 0.2 0 0 0}T and {σχ

n} = {σn}, the model was subjected to an elastic strain
increment of ∆εγ ∈ [0, 4] × 10−3 and θ ∈ [−π/6, π/6] within three of the sextants of stress space. The
volumetric strain increment was set to (i) 0, (ii) 1 × 10−3 or (iii) ∆εv = −0.5 × 10−3. These gave rise to
a trial hydrostatic pressure of pt = 100, 122.1 or 90.5kPa respectively.

The single increment return was compared with the solution obtained by splitting the strain increment
into 1,000 sub-increments25 and the error maps (using the error measure given in Chapter 4, (4.32))
plotted in Figure 6.21. The error analysis procedure is illustrated graphically on the right of Figure 6.21 (i)

at a deviatoric section through p = pc/2 (that is, at 100kPa). The inner yield and outer surfaces are
drawn to scale, showing the (relatively large) magnitude of the trial deviatoric stress increment at over
20 times the size of the inner yield surface (at a hydrostatic pressure of 100kPa). Due to the symmetry,
only three of the six stress sextants are investigated (sextants (A), (B) and (C)). The maximum errors
within each of the sextants are given in Table 6.3.

Table 6.3: Maximum stress return errors for the two-surface anisotropic model in each stress sextant for
(i) deviatoric trial strains, (ii) compressive trial strains and (iii) tensile trial strains.

The larger errors were found in the regions which return near the compression meridians as a conse-
quence of the high deviatoric curvature near the yield surface. Conversely, the lowest errors were located
in the regions returning near the extension meridians. The maximum errors remain fairly constant when
moving from a deviatoric (Figure 6.21 (i)) to a dilative Figure 6.21 (iii) strain increment, partly due to
the anisotropic hardening law (6.37) being invariant to dilative volumetric plastic strains. Doubling the
size of the dilative volumetric strain increment (with a trial pressure of 81.9kPa) only increases the error
by 0.1%. The influence of the rate of hardening of the inner yield surface is explored via sextant (E) in
Figure 6.21 (iii) where Cχ has been halved to a value of 1, 850. Halving Cχ decreases the maximum error
in the sextant by 2.4%. The effect of reducing Cβ to 7, with a compressive volumetric strain increment,
is shown in sextant (D) of Figure 6.21 (ii) where the error reduced by only 0.1%. Doubling the volumetric

25Note, that the error analysis was conducted using the Fortran90 implementation of the two-surface anisotropic model.
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compressive strain increment (to ∆εv = 2 × 10−3 with a trial pressure of 149.2kPa) increases the maxi-
mum error within sextant (E) of Figure 6.21 (ii), from that of sextant (A), by 3.2%. These errors are not
unexpected for an advanced constitutive model with relatively large strain increments. By comparison,
recall from the preceding chapter that the errors for the MCC model peaked at 24.1% (see Table 5.3,
Chapter 5).

Figure 6.21: Errors in the return stress associated with the iterative bE integration scheme for ∆εγ ∈
[0, 4] × 10−3 and θt ∈ [−π/6, π/6] within three quadrants of stress space: (i) deviatoric trial strains, (ii)
compressive trial strains and (iii) tensile trial strains.
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6.4.5 Robustness

Algorithmic issues: p = pχ

At a stress state where the hydrostatic stress is equal to the inner surface apex pressure pA, it is evident
that pβ = 0 and the stress ratio {r} is undefined (see Figure 6.4 (i)). Using Hopital’s rule, as pβ → 0 the
stress ratio {r} → {0}. When returning onto the apex of the inner yield surface, the direction of plastic
flow is purely dilative. Therefore, dβ is equal to zero as 〈∆εp

v〉 = 0 and the linearised evolution law for
{β}, from (6.70), is undefined, with both the numerator and denominator equal to zero. In this case, the
incremental evolution law for the inclination of the yield surface becomes {β̃} = {βn}.

Gudehus plots

Similar to the examples presented in Chapters 4 and 5, Gudehus [22] plots for the two-surface anisotropic
model provide a useful indication of the stability and robustness of the stress integration algorithm.
Figures 6.22 and 6.23 show Gudehus stress surfaces for initially isotropic ({β} = {0}) and anisotropic
({β} = {−0.1 − 0.1 0.2 0 0 0}T ) states. The material constants for LCT (Table 6.1) were used
in this analysis, with a reference pressure of 100kPa and an initial outer surface size of pc = 300kPa. The
centre of the inner yield surface was initially located on the hydrostatic axis at pχ = 100kPa.

The model was then subjected to 832 strain probes in 64 spheres starting at different locations on the
inner yield surface. Each sphere has a strain radius of 150µε (that is, 1.5 × 10−4)26. The directions of
both the individual strain probes and the initial positions on the yield surface were obtained using the
HEALPix software [21]. A stress surface was then plotted using the return stress states, shaded according
to the distance between the starting and final stress state (black and white being the longest and shortest
stress paths respectively).

Figure 6.22: Gudehus stress plots for an initially isotropic state of the two-surface anisotropic model
(using material constants for LCT).

26Note, that this level of strain was selected as it allows the individual surfaces to be visulised. If the strain radius is set
too large then it is difficult to identify the boundaries between the Gudehus stress surfaces.
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Figure 6.23: Gudehus stress plots for an initially anisotropic state of the two-surface anisotropic model
with {β} = {0.2 − 0.1 − 0.1 0 0 0}T (using material constants for LCT).

Random strain path

Within a complex three-dimensional boundary value simulation, the strain paths that a constitutive model
could be subjected to may be far removed from simple axi-symmetric triaxial compression or extensions
paths used for the calibration procedure. The following investigation serves as a challenging test for any
constitutive model and integration scheme. It is suggested that this type of exercise should always be
undertaken if the model is to be used in FE analyses in order to check the robustness of the complete
algorithm. Figure 6.24 shows a sequence of Gudehus plots for the two-surface anisotropic model with the
same material parameters as used previously, starting from an hydrostatic stress state ({β} = {0}) with
pχ = 100kPa. The analysis had the following sequence:

(i) hydrostatic straining to 200kPa;

(ii) the model was then subjected to 832 strain probes of magnitude 500µε, with their directions de-
termined from the HEALpix software [21];

(iii) one of the 832 return states was randomly selected to be the starting state for the next strain
sphere; then

(iv) repeat steps (ii) and (iii) for 200 strain spheres.

Five of the 200 stress responses are plotted for probes 1, 50, 100, 150 and 200, where the surfaces are
shaded according to the distance from the starting stress state to the return stress state. The starting
state is identified by a black square. The stress path between the starting points for the strain spheres is
also plotted on the projections in (i) a deviatoric plane and (ii) the σx-σz plane.

The stress responses, when inside the yield surface, have a circular deviatoric section due to the
elastic isotropy. The Gudehus plots are flattened in the direction of the yield surface as a portion of
the strain increment is taken up by the plastic response, leaving a reduced elastic strain (and hence
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Figure 6.24: Sequence of Gudehus stress plots for the two-surface anisotropic model with LCT material
constants. Five of the 200 Gudehus plots are presented for steps 1 (A), 50 (B), 100 (C), 150 (D) and 200
(E) in (i) deviatoric view and (ii) σy–σz plane.

stress) response. This effects can be seen in Figure 6.24 where the flattening reveals the shape of the
yield surface. The smoothness of the surfaces in Figures 6.22-6.24 demonstrates the robustness of the
implemented constitutive model and algorithm.

6.4.6 Linearisation

Small strain

As presented in Section 2.4, the tangent consistent with the implicit backward Euler stress integration
scheme is obtained from inverting [Aalg]−1

{
{dσ} dpc {dσχ} {dβ} d∆γ

}T

=
[
Aalg

]{
{dεe

t} 0 {0} {0} 0
}T

(6.72)

where [Aalg]−1 is obtained by minimising the residuals with respect to {εe
t} (with the other internal

variable frozen) as

[
Aalg

]−1

=


[Ce] + ∆γ[g,σσ ] ∆γ{g,σpc } ∆γ[g,σσχ ] ∆γ[g,σβ ] {g,σ }

−{p̃c,σ }T 1 − (p̃c,pc ) −{p̃c,σχ }T −{p̃c,β }T −(p̃c,∆γ )

−[σ̃χ,σ ] −{σ̃χ,pc } [I] − [σ̃χ,σχ ] −[σ̃χ,β ] −{σ̃χ,∆γ }
−[β̃,σ ] −{β̃,pc } −[β̃,σχ ] [I] − [β̃,β ] −{β̃,∆γ }
{f,σ }T f,pc {f,σχ }T {f,β }T 0


.

(6.73)

[Dalg] is obtained from the first six rows and columns of [Aalg], requiring the inversion of the 20 by 20
matrix containing the derivatives calculated at the return state.

Finite deformation

For infinitesimal analysis, [Dalg] derived in the preceding section provides the appropriate material tan-
gent for the Newton-Raphson solver within a FE code. For the finite deformation framework described in
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Figure 6.25: Pseudo-code for the anisotropic two-surface two-parameter family of CS models. The toler-
ance (tol) was typically set to 1× 10−12, with a maximum of 25 iterations (maxIt) to find convergence.

Chapter 3, the required tangent is given by (3.67). Within this, the derivative of the updated Kirchhoff
stress with respect to the deformation gradient is given by

[
τ,F

]
=

[
τ,εe

t

][
εe

t ,bet
][

be
t ,Fn+1

]︸ ︷︷ ︸
isotropic

+
[
τ,βt

][
βt,F e

t

][
F e

t ,Fn+1

]︸ ︷︷ ︸
shear anisotropy

+
[
τ,σχ

t

][
σχ

t ,F e
t

][
F e

t ,Fn+1

]︸ ︷︷ ︸
inner surface anisotropy

, (6.74)

where the first component of the right,
[
τ,εe

t

]
, is the small strain algorithmic tangent

[
Dalg

]
. The first

product term in (6.74) is the isotropic contribution to the spatial tangent whereas the second the third
terms are associated with the plastic anisotropic response of the model.

[
τ,βt

]
=

[
Dβ

]
and

[
τ,σχ

t

]
=[

Dχ
]

(referred to here as the small strain consistent backstress tangents) describe how the updated
Kirchhoff stress changes as a function of the trial anisotropic shearing and centre of the yield surface
respectively, assuming fixed internal variables and {εe

t}. During elastic behaviour these tangents are null
as an infinitesimal change in the trial backstress measures have no influence on the return stress. If the
model is undergoing elasto-plastic behaviour then these matrices are obtained in a manner analogous to
the formulation of the small strain consistent tangent.

The consistent linearisation of the residuals with respect to the trial anisotropic shearing of the yield
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surface {βt} provides the following

{dσ}
dpc

{dσχ}
{dβ}
d∆γ
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] {
Aalg

12

} [
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13
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}{
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}
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}
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} {
Aalg

54

}
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{0}
0

[σ̃χ,βt ]{dβt}
[β̃,βt

]{dβt}
0


.

(6.75)

From (6.75), we obtain the following relationship between an increment in the updated stress and the
trial anisotropic shearing of the yield surface

{dσ} =
[[

Aalg
13

]
[σ̃χ,βt ] +

[
Aalg

14

]
[β̃,βt ]

]
︸ ︷︷ ︸

[Dβ ]

{dβt}, (6.76)

where [Dβ ] = [σn+1,βt ] describes how the return stress evolves with respect to changes in the trial
anisotropic shearing of the yield surface when the other input variables (and the trial elastic strain) are
frozen.

The evolution of the return stress with respect to changes to the trial centre of the inner surface {σχ
t }

is obtained in a manor analogous to that preformed for {βt}

{dσ}
dpc

{dσχ}
{dβ}
d∆γ


=

[
Aalg

]


{0}
0

[σ̃χ,σχ
t

]{dσχ
t }

{0}
0


.

(6.77)

The relationship between an increment in the updated stress and the trial centre of the inner yield surface
is then given by

{dσ} =
[[

Aalg
13

]
[σ̃χ,σχ

t
]
]

︸ ︷︷ ︸
[Dχ]

{dσχ
t }. (6.78)

Similar to [Dβ ], [Dχ] = [σn+1,σχ
t

] describes how the return stress changes with changes with respect to
the trial centre of the inner yield surface. Note that the procedure for obtaining the backstress tangents
requires the inversion of the same 20 by 20 matrix [Aalg]−1 as that used for the small strain algorithmic
tangent, at little extra computational effort compared with the small strain constitutive model.

6.5 Experimental comparisons

In this section experimental data from LCT [20] are re-examined and simulations using the two-surface
anisotropic hyperplasticity model are compared with the laboratory results. Chapter 7 goes on to com-
pare the two-surface anisotropic model with experimental data on London clay from a hollow cylinder
apparatus. Those comparisons appear in the following chapter as the majority of the simulations require
analysis using a three-dimensional FE program.

6.5.1 Lower Cromer till

Experimental tests on LCT [20] (first presented in Section 5.5) are now simulated using the two-surface
anisotropic model, using the material constants given in Table 6.1. All of the simulations started from a
reference pressure of 80kPa on the hydrostatic axis and assumed a zero initial volumetric elastic reference
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strain.

Isotropic investigations

Figure 6.26: UTC and UTE tests following hydrostatic compression and swelling comparison with ex-
perimental data (shown by discrete points) on LCT from Gens [20]: (i) stress path in p-q space (dashed
lines show the MCC model predictions) and (ii) axial strain versus deviatoric stress response.

Figure 6.26 shows the two-surface anisotropic model’s response and experimental data under UTC
and UTE for five OCRs. The simulations started with drained hydrostatic compression to 233.3kPa
followed by drained hydrostatic unloading to a given OCR (of 1, 1.5, 2, 4 or 10). The model was then
subjected to UTC or UTE to an axial strain of εa = 0.14 (the extension tests were simulated to the
end of the experimental data, at axial strains of between εa = 0.08 and 0.11). The undrained stress
paths for the MCC model are also shown (dashed line) for OCRs 1 and 10 in Figure 6.26 (i). The
two-surface anisotropic model shows good agreement with the experimental data and is able to capture
satisfactorily the non-linear material behaviour within the outer surface. This model shows a significant
improvement over the single-surface two-parameter model response (shown in Figure 5.18) for the lightly
over-consolidated specimens.

The model responses under DTC from a hydrostatic stress state (and isotropic initial state) at six
OCRs, are shown in Figure 6.27. The simulations were undertaken using a single displacement-controlled,
small strain, eight-noded hexahedral FE with a uniform stress (and strain) field through the element. The
simulations started with drained hydrostatic compression to 233.3kPa, followed by drained hydrostatic
unloading to a given OCR (of 1, 1.25, 1.5, 2, 4 or 10) and DTC to an axial strain of εa = 0.14. The
principal stress deviation (σ3 − σ1)/2 (where the major principal stress is in the axial direction) and
volumetric strain response versus axial strain are shown for the DTC stage, in Figure 6.27. In this
figure the experimental data are shown by discrete points; each symbol representing a different OCR.
The constitutive model gives a reasonable agreement with the experimental data, particularly in the case
of the high OCRs (OCR≥ 2). For the lower OCRs, an over-stiff principal stress deviation is observed,
although the stress deviation at higher axial strains is in good agreement with the experimental data.
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Figure 6.27: DTC tests following hydrostatic compression and swelling, comparison with experimental
data (shown by discrete points) on LCT from Gens [20].

Anisotropic investigations

The anisotropic simulations started with drained one-dimensional (K0) compression to a pressure of
233.3kPa, followed by drained K0 unloading (swelling) to a given OCR. The one-dimensional consolidation
and swelling response of the two-surface anisotropic model was shown in Figure 6.17.

Figure 6.28 shows the experimental results from LCT [20] under UTC and UTE following one-
dimensional loading and unloading to different OCRs. The stress path response for the MCC and the
two-surface anisotropic models are shown in Figures 6.28 (i) and (iii), respectively, for all OCRs. The
axial strain versus deviatoric stress responses are shown in Figures 6.28 (ii) and (iv). For all of the tests,
the full stress path is simulated using a single set of material constants. That is, the same constants
are used for the complete response, including one-dimensional consolidation, swelling and UTC or UTE
(A-G). The two-surface model shows a reasonable agreement with the experimental data for all OCRs.
The only significant deviation is under UTE at an OCR of 1, where an over-stiff response is observed.
The new model provides a significant improvement over the MCC formulation, particularly for the high
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Figure 6.28: UTC and UTE tests following K0 consolidation and swelling comparison with experimental
data (shown by discrete points) on LCT from Gens [20]: (i), (iii) stress path in p-q space and (ii), (iv)
axial strain-deviatoric stress response for (i), (ii) the MCC model and (iii), (iv) the two-surface anisotropic
model.

OCRs (> 2) where MCC produces an unrealistically high deviatoric stress response prior to yielding.
Also the MCC model is unable to convincingly reproduce the full stress stress path of one-dimensional



166 Chapter 6. Anisotropic hyperplasticity

consolidation, swelling (AB’G’) and UTC or UTE.

The model responses under DTC following K0 loading and unloading to five OCRs are shown in
Figure 6.29. The simulations were undertaken using a single displacement-controlled (small strain) eight-
noded hexahedral FE with a uniform stress (and strain) state through the element. The two-surface
model shows a good agreement with the experimental data for all OCRs, in terms of both the principal
stress deviation and the volumetric strain response. The model provides a significant improvement over
the two-parameter family of models, and the simpler classical MCC model (see Figure 5.20 in the previous
chapter).

Figure 6.29: DTC following K0 consolidation and swelling, comparison with experimental data (shown
by discrete points) on LCT from Gens [20].

6.6 Observations

This chapter has presented a two-surface anisotropic extension to the single surface isotropic α-γ CS
model [7]. The following conclusions can be drawn.

(i) The newly developed two-surface anisotropic model has the following key properties:

(a) the non-linear elasticity law, yield function and direction of plastic flow are all obtained from
just two scalar functions;

(b) a unique CSS exists, regardless of the stress path followed;

(c) a measure of the inherent anisotropy is provided by the second-order tensor βij which can be
interpreted as the degree of shearing of the yield surface (expressed in terms of the dissipation
rate);
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(d) a unique asymptotic level of anisotropy is reached at the CS (as suggested by recent DEM
findings [18, 19]);

(e) convexity of the LAD yield and CSSs hold for any degree of anisotropy (see Section 6.1.1); and

(f) the model is part of a family of constitutive models (see Figure 6.7) which reduce down to the
classical MCC constitutive model.

(ii) The stress integration procedure for the two-surface anisotropic model:

(a) is robust, as shown by the Gudehus and random strain path experiments;

(b) is well behaved, as shown by the error analysis in sub-section 6.4.4; and

(c) linearisable in order to form the algorithmic consistent tangent for both small strain and finite
deformation numerical analysis.

(iii) The model is able to qualitatively and quantitatively capture the observed experimental behaviour
of LCT. The following points are worth highlighting:

(a) the full stress path is able to be followed for all of the material point simulations using a single
set of material parameters;

(b) good agreement is seen with experimental data for the K0 loading and unloading behaviour
(overcoming one of the limitations of the isotropic family of models presented in Chapter 5);

(c) the new model significantly improves the predictive capabilities of the MCC model, for both
normally consolidated and heavily overconsolidated soils, as shown in Figure 6.26 (overcoming
another limitation of the isotropic family of models);

(d) good agreement is seen under UTE following K0 loading and unloading for OCRs> 1. The
simulation of normally consolidated states qualitatively captures the experimental response
although it overestimates the deviatoric stresses;

(e) a good agreement is seen with experimental DTC and UTC following K0 loading and unloading
for all OCRs.

Chapter 7 offers results from several numerical boundary value simulations using the new two-surface
anisotropic model (and the simpler formulations presented in the two preceding chapters). The model
performance is also compared with recent experimental data from London clay using a hollow cylinder
apparatus.
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Chapter 7

Numerical analyses

Chapters 4, 5 and 6 have developed three constitutive models: (Chapter 4) a simple modified Reuleaux
(mR) frictional plasticity model, (Chapter 5) a family of isotropic hyperplastic Critical State (CS) models
and (Chapter 6) a family of anisotropic two-surface hyperplastic CS models. In each case the models were
compared with experimental data after the model definitions and algorithmic aspects had been described.
This chapter presents 58 finite-element (FE) simulations to verify the models’ stability and performance
in a general purpose finite deformation FE code developed by the author.

Section 7.1 describes the key findings of previous FE analyses using the simple non-associated frictional
perfect plasticity mR model. Simulations using several versions from the two-surface anisotropic CS family
appear in Section 7.2. The frictional cone models are compared with the CS models using a plane strain
rigid footing analysis in Section 7.3. Experimental data from Nishimura [28] on London Clay (LC) using
a hollow cylinder apparatus (HCA) are simulated in Section 7.4. The analyses are undertaken using the
modified Cam-clay (MCC) model and the two-surface anisotropic CS model at (i) a material point level
and (ii) using a FE discretisation of the HCA. This section also considers the stability of the two-surface
constitutive model in order to identify the threshold when discontinuities are predicted to first appear in
the material. Closing observations are drawn in Section 7.5.

7.1 Frictional inelasticity

Chapter 4 compared the mR deviatoric function with that of Mohr-Coulomb (M-C) and Drucker-Prager
(D-P) [15]. It was shown that the mR Lode angle dependency (LAD) overcame the inadequacies in both
the M-C (being invariant to the intermediate principal stress) and D-P (being independent of the Lode
angle, θ).

Verification of the mR constitutive model algorithm has been given in the papers by Coombs and
co-workers [9, 11–13] for two-dimensional (plane strain) and three-dimensional small strain and finite
deformation FE simulations. For all of these analyses, the mR model showed asymptotic quadratic con-
vergence of the global Newton-Raphson (N-R) procedure, confirming the correctness of the algorithmic
consistent tangent (Section 4.5). In particular it was noted that although the mR model provides sig-
nificantly increased realism over the M-C and D-P models (Figure 4.4, Chapter 4), the analysis time
for a finite deformation cavity expansion simulation only increased by 5.3% [9]. The Willam-Warnke
(W-W) [38] model provides a similar level of realism to that of mR, but the analysis time increases by
41.9% due to the multiple iterations required for each integration point stress return. The use of the
mR model in the small strain rigid footing analysis presented by Coombs et al. [12] only required a 2.2%
run-time increase compared to the M-C model, whereas the W-W model increased the run-time by over
30%. Coombs and Crouch [11] demonstrated the use of the mR model for finite deformation cylindrical
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expansion, cavity expansion and rigid footing analyses, including the use of the mR model with a tension
cut-off (as discussed in Section 4.3.5, Chapter 4). The simulations are not reproduced here for the sake
of brevity.

7.2 Critical State hyperplasticity

The CS models introduced in Chapters 5 and 6 are now analysed using 26 small strain and 19 finite
deformation FE simulations (in addition to seven material point simulations). A sensitivity analysis of
the two-surface anisotropic CS model is presented using 25 small strain undrained triaxial compression
(UTC) simulations. Section 7.2.2 compares five members of the full family of two-parameter anisotropic
hyperplasticity models using (i) a single three-dimensional finite-element, finite deformation, unit cube
and (ii) one and two-dimensional finite deformation cavity expansion simulations.

Coombs and Crouch [10] compared the classical MCC constitutive model (as presented in Chapter 5)
against a published small strain and finite-deformation undrained plane strain flexible footing solution
[7]. Their analysis verified both the constitutive model (when reduced down to MCC) and the finite
deformation framework (as presented in Chapter 3).

7.2.1 Undrained triaxial compression sensitivity analysis

This sub-section presents a sensitivity analysis for the two-surface anisotropic model using 25 small strain
axi-symmetric UTC simulations conducted using the Fortran90 implementation of the FE program1. Each
of the Lower Cromer till (LCT) material constants given in Table 6.1 was subjected to perturbation of
±10%, apart from xβ and M , which instead received a ±10% perturbation on ηK0 and ηcs. In the cases
where α, γ, bβ , ηcs or ηK0 were changed, both M and xβ were re-calculated using (6.44) and (6.64)
respectively.

The material had a reference pressure of 80kPa and started from an isotropic state and hydrostatic
stress condition, as follows

{σ} = 80{1} kPa with {σχ} = pc

(
1 − R(1 − γ/2)

)
{1}, {β} = {0} and pc = 80 kPa.

With these initial conditions, the stress state lies on the compressive nose of both the inner and outer
surfaces. The analysis comprised two steps:

(i) drained hydrostatic compression to 233.3kPa; and

(ii) UTC2 using 100 displacement-controlled loadsteps to an axial strain of εa = −0.14 (that is, the top
surface of the FE discretisation was displaced by 5.32mm corresponding to a 14% reduction in its
original height).

The first stage was conducted at a material point level. This stress and material state was then applied
to the integration points in a FE discretisation of a cylindrical triaxial specimen using 200 eight-noded
axi-symmetric quadrilateral elements with reduced four point Gaussian quadrature (as shown in Fig-
ure 7.1 (i)). Due to symmetry (both axial and vertical), only one quarter of the specimen was modelled.
The cylinder had a radius and height of r = 19mm and H = 76mm respectively. The 25 simulations each
consumed a total of between 224 and 232 N-R iterations, with a maximum within any one loadstep of

1In the literature, undrained analyses (particularly in the case of rigid footing simulations) have been conducted with
constitutive models that are insensitive to the first invariant of stress (such as the Prandtl-Reuss and Tresca models). These
models exhibit isochoric plastic flow and (if the appropriate elastic parameters are utilised) can been used to represent
the zero volume change condition of weightless undrained analysis without introducing a fluid bulk modulus (as described
in Appendix B.1.4). However, if the self weight of a soil is to be considered then the size of the yield surface should be
dependent on the depth (or rather the overburden at that particular material point).

2In all of the UTC simulations the fluid bulk modulus was set to 10GPa.
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4 or 5 iterations. Therefore, all 25 simulations had a similar run-time, controlled primarily by the total
number of N-R iterations3.

The solution based on the LCT calibrated material constants (Table 6.1) was taken as the reference
solution for comparison with the perturbed material constant results. The deviatoric stress at an axial
strain of εa = −0.14 for the reference solution was q = 110.145kPa, having an error of only 0.24%
compared to the solution obtained from the material point simulation in Chapter 6 (Section 6.5). The
maximum deviatoric stress, deviatoric and hydrostatic stresses at an axial strain of εa = −0.14 and radial
strain, εr, are given in Table 7.1 for each of the 25 simulations (in addition to the material point result
from Chapter 6). The radial strain was calculated using

εr =
∆r

r0 ,

(7.1)

where ∆r was the radial displacement of the outer, mid-height node and r0 was the original cylinder
radius (19mm). For the material point simulation, the constitutive model was subjected to an isochoric
strain increment, thereby enforcing the undrained condition. Therefore, for a given axial strain, the radial
strain in the material point simulation was

(εr)mp =
(
1 + (εa)mp

)−1/2 − 1, (7.2)

where (·)mp denotes a material point quantity. For an axial strain of (εa)mp = −0.14, the radial strain
is (εr)mp = 0.0783 (for a displaced radius of 20.49mm). This radial strain is significantly smaller than
that seen in the FE simulations due to the non-uniform strain field in the FE analysis as a consequence
of an assumed platen constraint at the ends of the cylindrical specimen which leads to barrelling at the
mid-height.

The axial strain versus deviatoric stress is shown in Figure 7.1 (ii) for all 25 simulations. The reference
(calibrated) solution is identified by the thick black line. Figure 7.1 (iii) gives the initial (εa ∈ [0, 0.02])
axial strain versus deviatoric stress response. The majority of the 25 simulations are clustered around the
reference solution; only the perturbed solutions for γ and ηcs show significant deviation. This can also
be seen in terms of the peak, final deviatoric stress and hydrostatic pressure at εa = −0.14 in Table 7.1.
The insensitivity of the model’s response to small perturbations in the material constants relates back
to Gudehus’ [19] requirement of well-posed constitutive algorithms (discussed in Section 1.2), in that a
model should be stable, when appropriate, to small changes in its constants.

Figure 7.2 shows the response at all of the Gauss points in the calibrated simulation for (i) axial strain
versus deviatoric stress and (ii) hydrostatic pressure versus deviatoric stress. The global FE solution
is identified by the thick black line and the experimental data (from Gens [17]) are shown by discrete
points. The original and deformed FE meshes are shown in Figure 7.2 (iii). Although the majority of the
integration point responses almost match the global FE response, there is still a significant variation in
both axial strain and deviatoric stress at the end of the analysis. It is important to note, that most of
the Gauss point stress states are not located on the compression meridian (θ = π/6). This can be seen
in Figure 7.2 (ii) where although the Gauss points arrive at the CS, the stress ratio, η = q/p, is not equal
to ηcs.

In Figure 7.3 (ii) the hydrostatic pressure versus deviatoric stress response is shown, whereas in
Figure 7.3 (iii), the axial strain versus stress ratio responses are compared for the central Gauss point of

3In general the material parameters also influence the run-time by changing the number of local iterations required
to obtain convergence with the bE stress integration algorithm. Due to the relatively small perturbation on the material
constants in the sensitivity analysis, this effect was negligible here.
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Table 7.1: Undrained triaxial compression sensitivity analysis: comparison of results from the 25 simula-
tions in addition to the material point simulation in Section 6.5.

the 25 analyses (shown by the thin grey lines) with the material point simulation from Chapter 6. The
central element is identified in Figure 7.3 (i) and the central Gauss point is the integration point closest
to the centre of the triaxial cell. This point was selected as the stress (and strain) state most closely
resembles that of the material point simulation presented in Section 6.5. Apart from the two analyses
using the perturbed stress ratio at the CS (ηcs), all of the simulations tend to the same unique CSL.

The effect of each of the material constants can be summarised as follows:

κ, G : changing ±10% had little influence on the model’s response for UTC at an OCR of one, as the
elastic deformation was masked by the plastic deformation.
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Figure 7.1: Undrained triaxial compression sensitivity analysis: (i) axi-symmetric triaxial cell discretisa-
tion and geometry, (ii) and (iii) axial strain versus deviatoric stress response for the 25 simulations.

Figure 7.2: Undrained triaxial compression Gauss point (for the calibrated solution), material point
and experimental data [17] comparison: (i) axial strain versus deviatoric stress response, (ii) hydrostatic
pressure versus deviatoric stress response and (iii) axi-symmetric triaxial cell; original and deformed
meshes.

λ : changing ±10% had little influence on the model’s response for UTC at an OCR of one.

ηcs : changes the stress ratio at the CS and significantly influences the model’s response. As expected the
hydrostatic pressure at the CS remains unchanged (being controlled by only γ and bβ). However,
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Figure 7.3: Undrained triaxial compression Gauss point and material point comparison: (i) axi-symmetric
triaxial cell discretisation and geometry, (ii) hydrostatic pressure versus deviatoric stress response and
(iii) axial strain versus stress ratio response.

the deviatoric stress at the CS is proportional to ηcs. Thus, increasing ηcs causes an increase in
qmax relative to q at the CS due to ηcs having a strong influence on xβ (discussed further below).

ρ̄e : if this sensitivity analysis were conducted at a material point level, changing ρ̄e would have no
influence on the simulation behaviour. However, due to the non-uniform stress distribution through
the triaxial specimen in the FE analysis, few Gauss points were located on the compression meridian
(as shown in Figure 7.2). Therefore, changing ρ̄e does influence the simulation’s response. Most
notably, changing ρ̄e influences the outer radial displacement at the mid-height of the cylinder.
Increasing and decreasing ρ̄e increases and decreases εr respectively.

α : changing α influences the peak deviatoric stress; increasing α increases qmax. This was due to α

changing the shape of the yield surface (as shown in Figure 5.1). As α increases, the deviatoric
radius near the compressive nose of the yield surface also increases.

γ : changes the position of the intersection between the Critical State line (CSL) and the outer sur-
face. Increasing γ moves the final stress state towards the compressive nose of the outer surface
(decreasing γ had the opposite effect).

R, Cχ : changing ±10% had little influence on the model’s response for UTC, at an OCR of one.

bβ : changes the position of the intersection between the CSL and the outer surface. Increasing bβ

moves the final stress state towards the compressive nose of the outer surface (decreasing bβ had
the opposite effect).

ηK0 : changing the stress ratio under K0 consolidation changes xβ . Decreasing ηK0 increases xβ which
causes the anisotropic surfaces to shear by a greater amount for a given deviatoric plastic strain
increment. This increase in xβ results in a higher peak deviatoric stress, qmax, as {β} exceeds {βcs}
prior to arrival at the CS. The hooking behaviour (as discussed in Chapter 6, Section 6.3.5) was
suppressed when approaching the CSL with xβ = 12.7. This was again due to {β} exceeding {βcs}
prior to arrival at the CS.
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Cβ : changing Cβ alters the rate of shearing of the surfaces. Increasing Cβ increases qmax whereas
decreasing Cβ had the opposite effect. The value of Cβ also influences the model’s behaviour when
approaching the CSL; with higher values reducing the hooking behaviour.

Figure 7.4: Finite deformation undrained triaxial compression FE simulation: (i) axial strain versus
deviatoric stress and (ii) hydrostatic stress versus deviatoric stress for all of the Gauss points, the global
FE response and the small strain material point simulation from Chapter 6.

With a global axial strain of −0.14 and integration point strains εa > 0.2 (as seen in Figure 7.2),
the small strain assumption is no longer appropriate. The triaxial compression test (using the calibrated
constants4) was therefore analysed using the finite deformation framework presented in Chapter 3.

Borja and Tamagnini [7] derived the following relationship between the small strain (Cauchy) and
finite deformation (Kirchhoff) compressibility indices

κfd =
κ

1 − κ
and λfd =

λ

1 − λ ,
(7.3)

where (·)fd identify the finite deformation parameters. These relationships should be used to obtain the
compressibility indices appropriate for finite deformation analysis based on a logarithmic strain-Kirchhoff
stress formulation, as used in the recent paper by Yamakawa et al. [41].

The results are shown in Figure 7.4 for (i) axial strain versus deviatoric stress and (ii) hydrostatic
stress versus deviatoric stress for all of the Gauss points, the global FE response and the small strain
material point simulation (first seen in Chapter 6). The peak equivalent deviatoric stress was 127kPa (at
an axial strain of −0.14), 15.2% higher than that seen in the material point simulation. The radial strain
at the mid-height, calculated from (7.1), was 0.0977. The finite deformation analysis took the greatest

4The finite deformation elastic and plastic compressibility indices were calculated from (7.3) using κ and λ given in
Table 6.1.
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number of global N-R iterations (313), with a maximum number of iterations within any one loadstep of
4.

The response from the materials point in the finite deformation analysis (see Figure 7.4) were similar to
those from the small strain analyses (see Figure 7.2), albeit with larger axial strains. However, the global
FE response, shown by the thick solid line in Figure 7.4 (i), shows a progressive stiffening following a local
minimum at an axial strain of approximately εa = −0.013. This stiffening behaviour is a consequence of
the finite deformation analysis accounting for the simulation’s evolving geometry. Therefore, the stress
paths of the material points do not demonstrate any stiffening behaviour (in terms of their deviatoric
stress) once they have arrived at the CS. The stiffening behaviour of the global finite deformation FE
response perhaps explains why the material point simulation (first presented in Figure 6.26 from Chap-
ter 6) is unable to capture the experimentally observed behaviour in the 90 to 110 kPa deviatoric stress
range. If the stress ratio at the CS, ηcs, was reduced then it would be possible to obtain an improved
fit to the experimental data from the finite deformation simulation. However, it is not clear from the
experimental data what this finite deformation CS stress ratio should be or if a peak deviatoric stress
was reached (without taking the experimental test to a higher axial strain).

7.2.2 Critical State model comparisons

This sub-section compares five members from the family of two-parameter anisotropic hyperplasticity
models, as introduced in Section 6.1.5 and shown in Figure 6.7. Table 7.2 lists the LCT material constants
for the following five models: (i) the MCC model, (ii) the two-parameter CS model (αγ), (iii) the two-
surface two-parameter model (2sαγ), (iv) the anisotropic single surface two-parameter model (βαγ) and
(v) the two-surface anisotropic two-parameter model (2sβαγ). The number of constants for each model
(nmc) is given, together with the number of constants (in parenthesis) comprising the reduced set5. The
number of unknowns and residuals in the backward Euler (bE) stress integration procedure (nu) is also
given. Note that the isotropic MCC and isotropic single-surface two-parameter models were formulated
in principal stress space, reducing the number of elastic strain unknowns from six (general stress space) to
three (principal stress space). The remaining models must be formulated in generalised six-dimensional
stress (strain) space6.

Three types of analyses were undertaken. First a single element unit cube was investigated to verify the
derived spatial consistent tangents and to compare the models’ responses for a simple three-dimensional
analysis. This was followed by a finite deformation cavity expansion simulation in (i) one-dimension and
(ii) two-dimensions, where only part of the cavity was pressurised.

Unit cube, single element investigations

Here the finite deformation analysis of a unit cube is described. A single eight-noded hexahedral element
with eight-point Gaussian quadrature was used. The cube was restrained against normal displacement on
its lower horizontal face and two of its adjacent vertical faces (see the right of Figure 7.5). The free corner
was subjected to a compressive vertical load of 45kN applied in 20 loadsteps. The free vertical faces of the
cube were subjected to a constant normal pressure of 100kPa throughout the analysis. Five instances of
the two-parameter two-surface anisotropic CS model were used to model the material behaviour. All of
the models started from an isotropic state under a hydrostatic stress. A reference pressure, pr, of 100kPa

5The reduced set of six core material constants for the two-surface anisotropic model was discussed in Section 6.3.7.
6Note that anisotropic models (that is, the 2sαγ, βαγ and 2sβαγ models) must be formulated in generalised six com-

ponent stress space because, in general, the principal directions of stress (and strain) of the trial and the updated state do
not coincide.
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Table 7.2: LCT material constants for the family of hyperplastic CS models: modified Cam-Clay (MCC),
two-parameter single-surface model (αγ), two-parameter two-surface model (2sαγ), anisotropic two-
parameter single-surface model (βαγ) and anisotropic two-parameter two-surface model (2sβαγ).

was adopted. Other state parameters were as follows:

pc = 200kPa, {β} = {0} and {σχ} = pr{1}.

The external load versus vertical compressive displacement response of the five models is given in
Figure 7.5. A similar response was observed for all models. The MCC model gives the softest response and
the two-surface anisotropic model has the least vertical corner displacement for the applied external load.
The two-surface models (2sαγ and 2sβαγ) have a smoother response due to the progressive development
of plasticity within the conventional yield surface. At the end of the analysis all of the Gauss points for
the two-surface models experienced some inelastic behaviour whereas, for the single surface models, the
Gauss point near the fully restrained corner remained elastic.

Table 7.3: Unit cube single element finite deformation results.
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Figure 7.5: Unit cube single element finite deformation CS model comparison: vertical corner displace-
ment versus external force.

The total and maximum number of N-R iterations needed to obtain convergence (to within a tolerance
of 1 × 10−9) for any loadstep are given in Table 7.3. The number of plastic Gauss points at the end of
the analysis, the time taken for each of the analysis normalised with respect to the time taken for the
MCC model (t/tMCC) and the vertical corner displacement (w) are also listed. The two-surface models
increase the total number of N-R iterations as elasto-plastic behaviour occurs earlier than for the single-
surface models. Interestingly, the single-surface isotropic two-parameter model (αγ) requires one less
N-R iteration compared to that of the MCC model, resulting in a marginally lower run-time. Including
anisotropy (βαγ), or an additional surface (2sαγ), increases the run-time by 69% and 191% respectively.
The run-time increase is significantly higher when including an additional surface because of the earlier
onset of elasto-plastic behaviour within an analysis. Including both an additional surface and anisotropy
increases the run-time by 218%. The percentage run-time increase is considerable because the single-
element analysis is dominated by the time spent in the constitutive algorithm. For larger analyses, the
proportion of the time spent in the constitutive algorithm diminishes as the main computational overhead
is associated with the solution of the global linear system (3.38).

The convergence results (normalised out-of-balance force versus N-R iteration) for the two-surface
anisotropic two-parameter constitutive model are given in Figure 7.6 (i) for all 20 loadsteps. The rate of
convergence for the final loadstep is plotted on a bi-logarithmic scale in Figure 7.6 (ii), where the slope of
the line gives the rate of convergence between N-R iterations. From this figure it is seen that the 2sβαγ

asymptotically achieves the desired quadratic rate of convergence. This convergence rate can also be seen
for loadsteps 16 to 20 in Table 7.4, where the exponent of the residual out-of-balance force norm reduced
by two between each iteration. This confirms the derivation of the spatial algorithmic consistent tangent
(Section 6.4.6) for the two-surface anisotropic model.

Throughout this thesis emphasis has been placed on the importance of the derivation of the tangent
which is consistent with both the constitutive model’s stress integration procedure and the finite deforma-
tion procedure. Table 7.5 compares the total and maximum number of N-R iterations within any loadstep
and the number of constitutive model calls (ncmc) using different tangents for the single-element analysis
using the two-surface anisotropic model. The run-time for the analysis, normalised with respect to the
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Figure 7.6: Unit cube single element finite deformation convergence results for the two-surface anisotropic
hyperplasticity model: (i) N-R iteration versus normalised out-of-balance force and (ii) bi-logarithmic
normalised out-of-balance force plot for the final loadstep.

Table 7.4: Unit cube single element finite deformation convergence results for the two-surface anisotropic
hyperplasticity model for the final five loadsteps.

time taken with the anisotropic spatial consistent tangent (t/t[Dcst]), is also given. Each of the tangents
lead to the same solution, as given in Figure 7.5, but the speed at which they do so varies considerably.
Table 7.5 is split into two parts: those that take into account to finite deformation contributions to the
material tangent and those that do not (small strain)7. The table also compares the results when using
the isotropic (3.45) and anisotropic8 (3.67) spatial tangents with the three different material tangents
([De], [Dep] and [Dalg]).

When using the anisotropic spatial algorithmic consistent tangent, the analysis consumed a total of
93 N-R iterations, with a maximum of 5 iterations required within any loadstep. When the isotropic

7Note that all of the simulations are finite deformation analyses. Here the term finite deformation and small strain are
used to distinguish between those analyses that calculate the element stiffness matrix, [ke], (3.44) based on [Dcst] from
(3.67) or [D(·)] from the constitutive model respectively.

8Recall that the anisotropic tangent accounts for the influence of the deformation gradient on the deviatoric component
of the centre of the inner yield surface, {sχ}, and the inclination of the surfaces, {β}.



182 Chapter 7. Numerical analyses

consistent spatial tangent was used (that is, the tangent did not account for the dependency of {β} and
{σχ} on the deformation gradient), the total number of iterations increased to 105, with a 16% increase
in the run-time. However, if the small strain consistent tangent was used to form the element stiffness
matrices, then the run-time increased by 38%, requiring 122 iterations for the entire analysis. Using the
elasto-plastic infinitesimal tangent ([Dep]) or the elastic tangent ([De]) in the calculation of the spatial
tangent increased the analysis run-time by 683% and 7, 129% respectively. This increased the number
of calls to the constitutive model by 6.5 and 56.3 times, compared to using the true consistent tangent.
Using the isotropic spatial tangent9 with [Dep] and [De] had little effect compared to the results with
the anisotropic spatial tangent using [Dep] and [De]. This is because the material tangent dominates the
spatial tangent, with the contributions from [Dβ ] and [Dχ] being relatively minor.

If the initial stiffness tangent (that is, the tangent calculated prior to any deformation) is used through-
out the analysis, then the simulation takes 5,024 N-R iterations with a run-time increase of 6, 821% and
a maximum of 600 iterations to find convergence within any loadstep. As the deformation increases, the
difference in the spatial and material consistent tangents also increases. Even for the relatively minor
deformation of the single-element in this analysis, the difference in run-time and number of iterations is
significant.

Table 7.5: Unit cube single-element finite deformation tangent comparison.

Axial symmetric cavity expansion

This sub-section reports on the expansion of a drained cylindrical cavity using the five constitutive models
(in addition to the MCC model with no Lode angle dependency (LAD)) identified in Table 7.2. The initial
state for the cavity expansion simulations was obtained through material point analysis (with a reference
pressure of 80kPa) of:

(i) one-dimensional drained loading (consolidation) to a pressure of 233.3kPa; then

(ii) one-dimensional unloading (swelling) to an OCR of two, corresponding to a pressure of 136kPa.

The material point triaxial p-q stress space response for the βαγ and 2sαγ models are shown in Figure 7.7.
The response of the MCC and αγ models were given in Figures 5.13 (i) and 5.16 of Chapter 5 and the two-
surface anisotropic model response was given in Figure 6.17 of Chapter 6. The material point simulations
are compared with experimental data (shown by discrete points) from a test on LCT by Gens [17]. Apart

9That is setting [Dcst
β ] = [0] in (3.67).
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from the MCC model, all of the models are able to match the full loading and initial unloading behaviour
of LCT, although at the start of loading the models predict a reduction in hydrostatic stress not seen in
the experiments. However, only the two-surface models are able to provide a good agreement with the
unloading behaviour to an OCR of 2. The material parameters and stress state after the one-dimensional
procedure are given in Table 7.6. Note that the LAD has no influence on the behaviour of the single
surface models for this material point simulation. Therefore the stress state and material parameters
for the MCC model with and without a LAD will be identical at the start of the FE cavity expansion
simulation.

Figure 7.7: One-dimensional compression and unloading to an OCR of 2 comparison with experimental
data (shown by discrete points) on LCT from Gens [17] with (i) the single-surface anisotropic two-
parameter model and (ii) the two-surface two-parameter model. The final yield surfaces are shown for
both models.

Table 7.6: Finite deformation cavity expansion analysis: constitutive model initial material parameters
after one-dimensional loading and unloading to an OCR of two.

A uniform infinite cavity expansion was first analysed. This required a one-dimensional axi-symmetric
analysis. However, the two-dimensional axi-symmetric finite deformation FE code was used here to model
the problem. The cavity was discredited using 50 axi-symmetric eight-noded quadrilateral elements with
reduced four-point quadrature (as shown towards the bottom of Figure 7.8). The size of the elements
was progressively increased by a factor of 1.1 from the internal cavity face to the fixed outer boundary at
84m. In the analysis, the internal radius was expanded from an initial size of a0 = 0.042m to a = 0.21m
(that is, five × its original size) using 200 equal displacement-controlled loadsteps.

The normalised displaced internal radius (a/a0) versus internal pressure response for the six models
is given in Figure 7.8 and the results summarised in Table 7.7. Throughout all of the analyses, the
load required to expand the cavity increased, tending towards a limit pressure in each case. With one
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Table 7.7: One-dimensional finite deformation cavity expansion analysis.

Figure 7.8: One-dimensional finite deformation cavity expansion analysis ratio of the current to original
internal radius versus internal pressure response.

exception; the six models gave rise to different limit pressures. The MCC model with no LAD gave the
highest internal pressure, whereas the two-surface anisotropic model (2sβαγ) provided the lowest, with
a difference of 169kPa (24%) between the results. Surprisingly, the sophisticated two-surface anisotropic
model and the simple MCC model (with a LAD) exhibited very similar limit pressures. Although the two
models started from quite different deviatoric stress levels, they arrived at a similar pressure limit. Not
including a LAD on the MCC model increases the maximum pressure by a considerable amount (23%),
demonstrating the consequence of ignoring a model’s dependency on the Lode angle.

The total number of N-R iterations, the maximum number of iterations within any one loadstep, the
run-times proportional to that of the MCC model and the number of elasto-plastic Gauss points at the
end of the analysis for the six models are given in Table 7.7. As commented previously, in larger analyses
(simulations with a greater number of finite-elements) the run-time is generally less dominated by the
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constitutive model. This can be seen in the differences in the normalised run-times for the two-surface
anisotropic model between Table 7.3 and Table 7.7. For the one-dimensional cavity expansion analysis,
the two-surface anisotropic model took 112% longer than the MCC model, compared to 218% for the
single-element unit cube analysis. This additional run-time was partially due to the fact that by the end
of the analysis 144, of the 200 Gauss points were undergoing elasto-plastic behaviour in the 2sβαγ model,
compared to only 50 in the MCC model10. This explains why the 2sαγ model, although less sophisticated
than the 2sβαγ model, had a longer run-time, as more integration points were experiencing elasto-plastic
behaviour. The run-time for the αγ model was marginally longer than that of the MCC model (with
LAD) mainly due to the increased total number of N-R iterations, up by 27 on MCC and again also due
to the increased number of elasto-plastic Gauss points (up 6 on MCC at the end of the analysis).

To explore the differences in the models in more depth, the analysis of a partially pressurised cavity is
now presented. A five metre square domain was discretised using 135 eight-noded axi-symmetric finite-
elements with reduced four point Gaussian quadrature (as shown in Figure 7.9). One metre of the internal
cylindrical cavity was pressurised and only half of the domain was modelled due to the assumed symmetry.
Again the cavity had an internal initial radius (a0) of 0.042m and the constitutive models started from
the same initial conditions as for the infinite cavity expansions analysis (as given in Table 7.6). The
following cyclic loading procedure was applied over 400 loadsteps:

1. internal load uniformly distributed over the pressurised section of 5kN in 80
loadsteps (loadsteps 1 to 80);

A to B

2. unload to 2.5kN in 40 loadsteps (loadsteps 81 to 120); B to C

3. re-load to 7.5kN in 80 loadsteps (loadsteps 121 to 200); C to D

4. unload to 3.5kN in 40 loadsteps (loadsteps 201 to 240); D to E

5. re-load to 12kN in 80 loadsteps (loadsteps 241 to 320); E to F

6. unload to 10kN in 40 loadsteps (loadsteps 321 to 360); and F to G

7. finally reload to 20kN in 40 loadsteps (loadsteps 361 to 400); G to H

These seven loading stages are identified in Figure 7.10 for the two-surface anisotropic model using the
letters given above. This figure shows the internal pressure versus cavity expansion response of the five
models (the MCC model (without a LAD) was not included due to congestion and to aid clarity of the
other simulations). Results given in Table 7.8 summarise the following key features from the analysis:
total number of N-R iterations, maximum number of iterations within any one loadstep, number of
elasto-plastic Gauss points at the end of the analysis, run-times proportional to that of the MCC model,
maximum relative expansion of the cavity (a/a0) and the pressure at the end of the analysis (pmax).

The run-time for the 2sβαγ model is now only 49.6% longer than that of the MCC model, again due
to the larger analysis altering the relative time spent in the constitutive model sub-routines. Although
the total number of N-R iterations between the two models is similar, the number of elasto-plastic Gauss
points for the 2sβαγ model is over double that of the MCC model at the end of the analysis. Also,
throughout all of the unloading stages, the MCC model predicted purely elastic behaviour whereas some
of the Gauss points, when using 2sβαγ model, experienced an elasto-plastic response. These facts (in
addition to the added sophistication of the constitutive formulation) contribute to explaining the increase

10It should be noted that when undergoing elastic behaviour the material point run-time for the anisotropic models (the
βαγ, 2sαγ and 2sβαγ models) is less than that of the isotropic models (the MCC and single surface αγ models). This
is due to the computational overhead associated with finding the eigenvalues and vectors of the trial elastic strain in the
isotropic models that is not required in the anisotropic models working in six-dimensional stress space.
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Figure 7.9: Two-dimensional axi-symmetric finite deformation cavity expansion analysis discretisation:
(i) entire 5m by 5m domain and (ii) detail around the pressurised section.

in run-time for the two-surface models.
As shown in Figure 7.10 (ii), the two-surface models demonstrate a hysteretic response during unload-

ing and re-loading whereas the single surface models, for this analysis, follow the same purely elastic path
during unloading and re-loading11. Due to the high value of the constant controlling the rate of transla-
tion of the inner yield surface, Cχ, the degree of hysteresis seen in these loops is rather small. Lowering
the value of Cχ will increase the area enclosed by the unloading and re-loading paths, as demonstrated
for hydrostatic loading and unloading in Figure 6.11 of Chapter 6.

Table 7.8: Two-dimensional finite deformation cavity expansion analysis.

The pressure versus expansion response of the models in Figure 7.10 is dominated by the shape of the
yield surfaces. This is evident by examining results from the single and two-surface models which share
the same value of α and γ; the analyses lead to very similar responses. Increasing α results in a softer
response, with the MCC model (α = 1) appearing softer than the βαγ and 2sβαγ models (α = 0.4),
which are softer than the αγ and 2sαγ models (α = 0.3). This finding is a consequence of the high value
of Cχ, which gives rise to the model responses being controlled mainly by the geometry of the outer
surface.

11Note, that this is not the case in general for single-surface plasticity models. Such models can (and do) exhibit elasto-
plasticity upon unloading due to stress transfer within the analysis.
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7.3 Two-dimensional plane strain rigid footing

Models of varying complexity have been presented in this thesis, from the simple non-associated frictional
mR cone (first seen in Chapter 4) to the two-parameter single surface CS model (Chapter 5) and finally
the two-surface anisotropic family of CS models (Chapter 6). This section poses the question

“How do the sophisticated hyperplastic Critical State constitutive models compare with the
simple frictional cone models in a standard footing analysis? Is the extra complexity justified?”

To answer this question, the analysis of a plane strain rigid footing bearing onto a weightless half-space is
now presented. Here the M-C, D-P and mR models are compared with the MCC and the 2sβαγ models,
with their respective material constants listed in Table 7.2. The one metre wide smooth rigid strip
footing was subjected to a vertical downwards displacement of 0.5m in 500 equal displacement-controlled
loadsteps. Due to symmetry, only half of the 40m by 20m domain was discretised using 171 eight-noded
plane strain quadrilateral elements, integrated using reduce four point Gaussian quadrature (as shown in
Figure 7.11)12.

Figure 7.11: Model comparison plane strain rigid footing analysis discretisation: (i) entire 20m by 20m
domain and (ii) detail around the rigid footing.

The initial state of the CS constitutive models was obtained through:

(i) one-dimensional drained loading (consolidation) to a pressure of 233.3kPa; then

(ii) one-dimensional unloading (swelling) to an OCR of four, corresponding to a pressure of 87.5kPa.

The material parameters and stress state following these two steps for the MCC and the 2sβαγ models
are given in Table 7.9.

The M-C, D-P and mR constitutive models require specification of the effective friction angle, apparent
cohesion and dilation angle. The effective friction angle, φ, of the soil can be obtained from the gradient

12Note, that the upper left hand side 5m square block of this discretisation is the same mesh as initially presented by
de Souza Neto et al. [36] and later used by Coombs et al. [12] for the small strain analysis of frictional cone models. The
mesh is highly refined near the corner of the rigid footing and was shown to give excellent agreement with the analytical
Prandtl solution for the M-C constitutive model [12, 36].
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Table 7.9: Small strain footing analysis: constitutive model initial material parameters after one-
dimensional loading and unloading to an OCR of four.

of the CSL, by rearranging (5.22) from Chapter 5, as

φ = arcsin
(

3M

2
√

6 + M

)
.

(7.4)

For LCT, the gradient of the CSL was determined from experimental data (see Figure 5.18 from Chap-
ter 5), given by M = 0.964, resulting in an effective friction angle of φ = 29.6◦. For this friction angle,
the normalised deviatoric radius under triaxial extension for the M-C model (from (4.3) in Chapter 4)
is ρ̄e = 0.718. However, as the mR model allows flexibility in specifying ρ̄e independent of the friction
angle, the normalised radius was set equal to that of the CS models at ρ̄e = 0.729. Therefore, the mR
model’s yield surface lies outside that of the M-C and D-P (ρ̄ = ρ̄e = 0.729) models, but is enclosed by
the D-P (ρ̄ = 1) yield surface, as shown to the left of Figure 7.12. The apparent cohesion was set to
0, so that the compression meridian of the frictional cone models coincided with the CSS compression
meridian and the dilation angle set at φ.

The elastic properties for the frictional cone models were set so that they agreed with the average
bulk modulus and constant shear modulus of the single surface CS models during the K0 loading and
unloading material history. That is, the bulk modulus was determined at a pressure of p = 160.4kPa.
This resulted in an initial bulk modulus of 22.0MPa (κ = 0.0073 using (5.3) from Chapter 5 with εe

v0 = 0),
giving a Young’s modulus of 42.4MPa and a Poisson’s ratio of 0.18. The frictional cone models started
from a hydrostatic stress state with a mean pressure of p = 87.5kPa13.

The theoretical limit pressure for the M-C model, as given by the Prandtl (and Reissner) solution (see
Yu [42] p. 316, amongst others), is

limit pressure =
(
cot(φ) tan2

(
π/4 + φ/2

)
expπ tan(φ) − cot(φ)

)
× c. (7.5)

This equation gives the limit pressure for a rigid footing bearing onto a weightless soil for the case of zero
surface surcharge. (7.5) was obtained by combining a slip failure mechanism beneath an infinite rigid
footing (under plastic equilibrium with the imposed footing pressure) with classical plasticity theory (see
Craig [14] pp. 281–283 for more information). Using an equivalent apparent cohesion, c, consistent with
the initial state of 49.6kPa and a friction angle of 29.56◦ (0.5159 radians), the Prandtl limit pressure is
1.44MPa (with (limit pressure)/c = 29.11). The normalised limit pressue obtained from the FE analysis
with the M-C model was 29.48, having an error of only 1.3% when compared with the analytical solution.

The pressure versus displacement response for the five models (two CS and three frictional cone
models) is shown in Figure 7.12 and the results summarised in Table 7.10. The D-P model (with ρ̄ = 1)
is significantly stiffer than the M-C and mR constitutive models. Despite the not insignificant 0.5m
displacement, the D-P (ρ̄ = 1) model did not reach a limit load14. However, after this displacement, the

13Note, that this is equivalent to setting an apparent cohesion of 49.6kPa. Both result in a hydrostatic pressure difference
of 87.5kPa between the yield surface apex and the initial starting stress state.

14Even when the displacement is increased to 1m the D-P model still does not attain a limit load. This is due to setting
the D-P yield surface such that it intersects with the M-C criterion at the compression meridians; resulting in a peak



190 Chapter 7. Numerical analyses

Table 7.10: Small strain footing analysis results.

D-P (ρ̄ = 1) footing pressure was over 4.4 times that of the M-C model. As expected, the pressure versus
displacement response of the mR model lies between that of the M-C and D-P (ρ̄ = 1) models, with a limit
load 57% higher than that of the M-C model. The D-P (ρ̄ = ρ̄e) model attains a limit pressure of 1.96MPa,
lying between the M-C model mR models. The variation in the pressure-displacement response of the two
D-P simulations (as shown in Figure 7.12) highlights the importance of the appropriate ρ̄ specification.
The initial elastic responses of the three models (D-P, M-C and mR) are identical up to a displacement
of 4mm. Following this, their behaviours remain similar until a displacement of approximately 30mm is
attained, whereafter the solutions begin to diverge.

Figure 7.12: Small strain footing analysis: pressure versus displacement response for two of the five CS
models (MCC and 2sβαγ) and the three frictional cone models (M-C, D-P and mR).

effective friction angle of 47.7◦ at a Lode angle of 23.1◦.
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The run-time of the two surface anisotropic model is only 87% longer than that of the MCC model.
The frictional cone models have run-times 24%, 26% and 17% lower than that of MCC for the M-C,
D-P (ρ̄ = 1) and mR models respectively. The reason for this reduction in the run-times for the simple
frictional cone models is that they all allow closed-form analytical stress integration based on the bE
method. Also, the three cone models exhibit no hardening or softening. The CS models require multiple
iterations when undergoing elasto-plastic material behaviour to reach convergence at each Gauss point
in the FE analysis. The run-time for the mR model is only marginally longer than that of the M-C and
D-P (ρ̄ = 1) models, despite its considerable advantages over these classical material models in terms of
reproducing experimentally observed multi-axial deviatoric yielding (Figure 4.4, Chapter 4).

The CS models give rise to significantly softer results than the frictional cone models. This is due
to the Gauss points experiencing elasto-plastic behaviour from the initial loadstep. The approximate
displacement for a pressure of 1MPa is given in Table 7.10. The two-surface anisotropic model gives
a displacement of 287mm, whereas the MCC model gives a 22% softer displacement of 350mm. The
frictional cone models have displacements of 56, 69 and 79mm for the D-P (ρ̄ = 1), mR and M-C models
respectively. That is, 5.9, 5.0 and 4.4 times less displacement than the more sophisticated 2sβαγ model.
Without field data to compare these results to, it is not possible to establish which model gives the
most realistic solution. However, it seems likely that the simple frictional cone models produce over-stiff
solutions prior to arrival at their limit loads.

Figure 7.13 shows the nodal displacement vectors, {∆u}, for the final loadstep for the M-C and 2sβαγ

models where there lengths have been increased one-hundred fold. The M-C model (which has reached
its limit load) displays the characteristic wedge rigid body motion with significant heave in the vicinity of
the footing. The two-surface anisotropic model has a more uniform, lower magnitude displacement field
with quite different directions compared to the M-C model. Note that all of the displacement vectors
for the 2sβαγ move vertically downwards (in addition to some horizontal displacement) and the nodal
displacements on the centreline displace by a greater amount compared to the M-C model.

Figure 7.13: Nodal displacement vectors for the final loadstep (with a scaling factor of 100) of the small
strain rigid footing analysis for (i) the M-C model and (ii) the 2sβαγ model.

The displaced surface profiles for the M-C, mR and 2sβαγ models are shown in Figure 7.14, together
with the deformed mesh from the M-C simulation. The associated flow frictional cone models demon-
strate significant local heave around the footing which is not seen in the two-surface anisotropic model.
There is also considerable horizontal displacement of the nodes beneath the footing. This leads to mesh
entanglement in the region of peak heave near the corner of the rigid footing (as shown by the inset
distorted mesh in Figure 7.14). This entanglement does not influence the small strain simulation as
the analysis is based on the original nodal coordinates. The two-surface anisotropic surface profile is
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smoother than the frictional cone models and does not demonstrate any heave, with the adjacent surface
lower than the original ground level.

Figure 7.14: Displaced surface profile of the M-C, mR and 2sβαγ models in the small strain rigid footing
analysis.

The frictional cone models investigated in Chapter 4 offer valuable, simple idealisations, capturing
the basic behaviour of soil and are computationally fast. However, this analysis has shown that they can
lead to over-stiff responses which can significantly overestimate the heave. These elementary models are
very sensitive to the choice of the normalised deviatoric radius under triaxial extension, ρ̄e, far more so
than the CS models.

7.4 Hollow cylinder apparatus

The penultimate section in this chapter presents the analysis of a series of hollow cylinder experimental
investigations by Nishimura [28] on LC. The two-surface anisotropic model is first calibrated using triaxial
experimental data. The hollow cylinder apparatus (HCA) tests are then simulated using (i) a single three-
dimensional FE and (ii) a full three-dimensional discretisation of the HCA.

7.4.1 London Clay

LC is categorised as a stiff, fissured, heavily overconsolidated clay of high plasticity15. This material
has undergone significant experimental investigation and computational analysis since the 1950s [27, 28]
(see Nishimura [28] p. 12 for details) as a consequence of its engineering importance with regard to
deep foundation design and underground excavations in the UK’s capital city. LC was deposited within
a marine environment during the Eocene epoch (56–34 million years ago) [20]. It is mainly composed
of Illite and Montmorillonite minerals, with smaller fractions of Kaolinite. The clay fraction of LC is
typically between 40% and 60% with a plasticity index of between 40 and 70 (depending on location)
[28]. Due to its brittle nature, LC poses a challenge for models based on the concept of the CS. Indeed,
it was commented by Nishimura [28] that:

“It has been well recognised, however, that the behaviour of the natural London Clay observed
in laboratory is one of the exceptions that do not conform, under most conditions, [to] the

15That is, the combination of a high plasticity index (> 30%) with a high liquid limit (> 50%).
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[Critical State] framework. The natural London Clay generally exhibits brittle behaviour and
shearing involves bifurcation at an early stage.”

That is, the clay tends to rupture, due to pre-existing fissures prior to arrival at the CS. Following rupture,
the material can no longer be modelled using standard continuum methods as the behaviour is governed
by the sliding/friction between discontinuity planes. This behaviour results in the loss of one of the key
concepts in Critical State soil mechanics; a unique void ratio - ultimate shear strength relationship, as
observed by Bishop et al. [5].

In this section a series of anisotropic undrained triaxial tests is presented which provides a means
to calibrate the two-surface anisotropic model. These simulations are followed by model comparison
against recent stress path tests performed in a HCA by Nishimura [28]. Thereby testing an important
requirement of constitutive models, as suggested by Prévost and Wolf [31], that:

“a material model may only be deemed to be satisfactory when with its aid, it is possible first
to determine the stress-strain-strength behaviour of the material at hand in one piece of tests
equipment... , and then to predict the observed behaviour of the same material in some other
type of testing equipment...”

The 2sβαγ model’s material constants (Table 6.1) were obtained by following the calibration pro-
cedure outlined in Section 6.3. λ, κ, R and Cχ where obtained from hydrostatic consolidation data
(starting from a specific volume of 2.35) on reconstituted samples tested by Gasparre [16]. The hydro-
static consolidation experimental data is shown (using discrete points) in Figure 7.15 (i) together with
the two-surface anisotropic model’s specific volume versus hydrostatic pressure response. The simulation
started from an isotropic material at a hydrostatic stress state (on the compressive nose of the inner yield
and outer bounding surfaces) with a reference pressure of 30kPa. The model was subjected to a hydro-
static strain path to a pressure of 640kPa, followed by unloading back to the original reference pressure.
Good agreement is observed between the experimental data for both hydrostatic virgin consolidation (A
to B) and swelling (B to C). The model’s reloading response is also shown (by the finer line from C to D)
to a specific volume of 1.8.

Anisotropic calibration investigations

The remaining LC material parameters in Table 6.1 were calibrated from UTC and undrained triaxial
extension (UTE) test results following one-dimensional loading and unloading, as presented by Hight et al.
[20] (original data from Jardine [25]). The stress ratio at the CS for LC was determined to be ηcs = 0.688
and the stress ratio under one-dimensional consolidation is ηK0 = 0.443 (as seen in Figure 7.15 (ii)).
The material test data for OCRs of 1, 1.5, 4 and 7 (discrete points), and the two-surface anisotropic
constitutive model simulation, are shown in Figure 7.15 (ii) in hydrostatic versus deviatoric (p-q) stress
space. In Figure 7.15 (iii) the axial strain versus deviatoric stress response is given.

The two-surface anisotropic model is able to capture the observed material response in a convincing
way. Not all of the experimental tests attained the CS (in particular, triaxial extension at an OCR of
4). Also, the number of data points for all of the tests is quite limited. However, these triaxial results
are useful for calibrating the two-surface anisotropic model prior to simulating the, more interesting,
multi-axial HCA experiments.

7.4.2 Material point HCA investigations

The torsional HCA allows for independent control of four stress components through the application of
axial load (W ), torque (MT ) and internal (pi) and external (po) pressures (as seen in Figure 7.16 (i)).
However, interpretation of the results from the HCA is not so simple; indeed Wood [39] commented that:
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Figure 7.15: London Clay calibration experimental data: (i) isotropic consolidation and swelling compar-
ison with data (shown by discrete points) from Gasparre [16]. UTC and UTE following K0 consolidation
and swelling comparison with experimental data from Hight et al. [20] (original data from Jardine [25]):
(ii) stress path in p-q space and (iii) axial strain-deviatoric stress response.

“Interpretation of the results of hollow cylinder tests is something of an exercise in deconvo-
lution... Four degrees of freedom seem to be the maximum that we can achieve in laboratory
element testing and we are always going to have to extrapolate using our constitutive model
in order to describe the final two degrees of freedom...”

The additional flexibility of the apparatus (in terms of controlling different stress components) is at the
expense of stress variations through the wall of the cylinder. These variations are caused by (i) different
internal and external pressures and (ii) application of an axial torque. The average normal stresses (see
Hight et al. [21], amongst others), as shown in Figure 7.16 (ii), can be assumed to be

σz =
W

π(r2
o − r2

i )
+

por
2
o − pir

2
i

r2
o − r2

i ,

σr =
poro + piri

ro + ri
and σθ =

poro − piri

ro − ri ,

(7.6)

while the average shear stress is given by

σzθ =
3MT

2π(r3
o − r3

i ) .

(7.7)

σz and σθ are obtained by considering equilibrium whereas σr and σzθ assume a linear elastic stress
distribution through the specimen [21]. The non-uniformity of the stresses through the cylinder can be
reduced by decreasing the wall thickness to inner radius ratio, with large thin-walled cylinders being
preferred [39].

Nishimura and co-workers [27, 28] presented a series of undrained HCA tests on LC from undisturbed
block samples. The tests were conducted with an aim to achieve the following conditions:

(i) constant total pressure, pt (that is, the sum of the effective pressure, p, and the pore water pressure,
u);
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Figure 7.16: Hollow cylinder apparatus (i) applied loads and pressures, (ii) average internal stresses, (i)
principal stresses and (iv) single eight-noded hexahedral finite-element: loading and boundary conditions.

(ii) constant ratio of the intermediate principal stress

b =
σ2 − σ3

σ1 − σ3
; (7.8)

(iii) constant stress path with
σz − σθ

2
=

σzθ

tan(2αdσ) ,

(7.9)

where αdσ is the incremental stress path direction.

These three conditions (together with the starting stress condition) allow determination of the idealised,
uniform, stress state for the undrained HCA experiments. Assuming that the radial stress is the inter-
mediate principal stress (as shown in Figure 7.16 (iii)), we obtain the major and minor principal stresses
as

σ1,3 =
σz + σθ

2
±

√(
σz − σθ

2

)2

+ (σzθ)2. (7.10)

Substituting (7.10) for the major and minor principal stresses in (7.8), and using the condition of constant
pressure, with σz + σθ = 3pt − σr, we obtain

b =
1
2

+
3(σr − pt)

4

√(
(σz − σθ)/2

)2

+ (σzθ)2
.

(7.11)

Finally substituting for (σz − σθ)/2 from (7.9), gives the radial stress as

σr = pt +
4(b − 1/2)σzθ

√
tan

(
2αdσ

)−2 + 1

3 .
(7.12)

From the total mean stress, pt, and (7.9), the axial and circumferential stresses follow as

σθ =
3pt − σr

2
− σzθ

tan(2αdσ)
and σz = 3pt − σr − σθ. (7.13)
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These constant stress path tests can be driven by the applied shear stress, σzθ, with the other normal
stresses subsequently calculated from (7.12) and (7.13), once the total mean stress (pt), intermediate
principal stress ratio (b) and stress path direction (αdσ) have be specified.

Analysis of the HCA tests, as performed experimentally by Nishimura [28], can be split into four
stages, as given below.

(i) In-situ stress path (assuming an initial depth burial depth of 16.3m16) following three geological
events [28]:

(a) deposition of 175m of LC with a bulk unit weight of 19.8kN/m3 simulated by the drained
one-dimensional loading to a vertical stress of 3.673MPa;

(b) erosion of the 175m over-burden simulated by the drained one-dimensional unloading to a
vertical stress of 208kPa; and

(c) deposition of terrace gravel of bulk unit weight 19.1kN/m3 to a depth of 5.8m simulated by
the drained one-dimensional re-loading to a vertical stress of 319kPa.

(ii) Shift the current stress state to the assumed in-situ stress conditions of an effective pressure p =
323kPa and

(a) isotropic tests series (IC) starting from a hydrostatic stress state with σz = σθ = σr;

(b) anisotropic test series (AC) starting from a stress state off the hydrostatic axis with (σz−σθ) =
−165kPa and σθ = σr.

Note, that although the test series were identified by Nishimura [28] as isotropic and anisotropic,
both test series were performed on anisotropic samples of LC. A more appropriate description would
be hydrostatic and in-situ as these terms describe the initial stress conditions of the samples, rather
than implying some difference in the state of the material.

(iii) For the AC tests, follow an undrained change in the intermediate principal stress ratio, from an
initial value of 1, to the required b value along the stress path

{∆σr ∆σθ ∆σz} = ∆σ
{
−2 1 1

}
,

following a Tresca meridian in principal stress space, such that total pressure (set at 573kPa with
a pore pressure of 250kPa) and (σz − σθ) remain constant. Changing b from 1 to 0.5 requires
∆σ = 27.5kPa.

(iv) Undrained shear with a constant total pressure and constant b along a fixed αdσ stress path, with
the normal stress components (driven by the shear stress σzθ) obtained from (7.12) and (7.13).

Stages (i) and (ii) were conducted at a material point whereas the subsequent undrained stress paths
were conducted using a single small strain eight-noded hexahedral element with the boundary conditions
and loading as shown in Figure 7.16 (iv). These boundary conditions result in a uniform stress (and
strain) distribution through the element. The average stresses (σz, σr and σθ), total mean stress (pt),
pore-water pressure (u), internal (pi) and external (pe) pressures and axial load (W ) for stages one to
three for the anisotropic (AC) test series (with b = 0.5) are given in Table 7.1117.

16The experimental tests were conducted on samples taken from a current in-situ depth of 16.3m.
17Note, that the shear stress σzθ is zero for the first three stages of the HCA investigations.
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Table 7.11: Average stresses and external loads for the HCA AC test series (b = 0.5) pre-shear stages.

The LC material constants (as given in Table 6.1) were used throughout the anaylsis with a reference
pressure of 80kPa. The constitutive model’s normal components of stress, the centre of the inner surface
and the anisotropy inherent in the surfaces at the end of stage (i) were

{σ̂} =


389.8
389.8
318.8

 kPa, {σ̂χ} =


529.0
529.0
450.7

 kPa and {β̂n} =


−0.0435
−0.0435

0.0870


,

(7.14)

with the size of the outer surface pc = 2.50MPa. The material point experienced a hydrostatic pressure
of 378kPa and stress deviator (σz −σθ) = −86kPa. In stage (ii), both the stress state and the position of
the inner yield surface were translated (with all of the other parameters, such as pc and {β}, frozen) so
that the starting stress state for stage (iii) was in agreement with that experienced in the experimental
test. The initial state for the AC test series was

{σ̂n} =


σr

σθ

σz

 =


378
378
213

 kPa, {ε̂e
n} =


0.01037
0.01037
0.00578

 , and {σ̂χ
n} =


517.2
517.2
344.8

 kPa.

The IC test series started on the hydrostatic axis with an initial state given by

{σ̂n} =


σr

σθ

σz

 =


323
323
323

 kPa, {ε̂e
n} =


0.00884
0.00884
0.00884

 , and {σ̂χ
n} =


462.2
462.2
454.8

 kPa.

In both test series the initial inclination of the yield surfaces was set to that given in (7.14)3 and the initial
outer surface size set to pc = 2.50MPa. Throughout the undrained analysis the fluid bulk modulus was
fixed at 10GPa. Stage (iv) followed a constant αdσ stress path, with the directions given in Table 7.12. The
relative increments in the stresses for the two isotropic and five anisotropic paths are given, normalised
with respect to the magnitude of the driving stress increment (∆σz for the zero-torsion tests and ∆σzθ

for the non-zero torsion tests). The load-controlled test path was followed, using both the two-surface
anisotropic model and the MCC model, until the experimentally identified rupture point was attained
(that is, to the same difference between the major and minor principal strains at which rupture was first
recorded).

The uniform material point simulation results from the isotropic test series are shown and compared
with the experimental data in Figure 7.17. The (σ1 − σ3) versus ∆(ε1 − ε3) response and effective stress
ratio versus ∆(ε1 − ε3) response are given in Figure 7.17 (i) and (ii) respectively. The initial MCC
model18 response (shown by the dashed line) is identical (and elastic) for both of the test simulations.

18The MCC model constants were set as follows: κ = 0.023, λ = 0.073, G = 18MPa, M = 0.688 and ρ̄e = 0.903



198 Chapter 7. Numerical analyses

Table 7.12: HCA test series stress path directions (-ve indicates compression and +ve tension).

Figure 7.17: Hollow cylinder isotropic test simulations for the two-surface anisotropic model (2sβαγ) and
the MCC model with b = 0.5: (i) (σ1 − σ3) versus ∆(ε1 − ε3) response, (ii) effective stress ratio versus
∆(ε1 − ε3) response and (ii) effective stress ratio versus ∆(ε1 − ε3) displacement-controlled response for
IC9005. Experimental data by Nishimura [28] shown as discrete points.

The two-surface model produces a different response depending on the stress path direction19 and is able
to qualitatively capture the non-linearity seen in the experimentally recorded behaviour.

In order to extend the single-element FE simulations by shearing to a CS, the isotropic tests were
further examined by undertaking a (single-element) displacement-controlled simulation. The following
procedure was used within each loadstep to ensure that the appropriate stress path was captured:

(i) displace the top face by a given displacement increment;

(ii) use the standard FE procedure to arrive at nodal forces and displacements;

(iii) calculate the axial stress σz based on the nodal reactions on the top face;

(iv) calculate the appropriate circumferential stress and modify the external force vector {f ext}; and

19Note, that the IC0005 test corresponds to axial compression whereas the IC9005 test corresponds to axial extension,
with the circumferential stress maintaining a constant mean stress.
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(v) repeat steps (ii)-(iv) until the normalised residual out-of-balance force, given by (3.42), converges
to within the specified tolerance (in this case 1 × 10−9).

The top face was displaced by 20% of the height of the element, in 500 equal loadsteps. Due to the
external force vector continuously changing, the number of iterations required to reach convergence
typically exceeded 50.

The effective stress ratio versus ∆(ε1 − ε3) IC9005 simulation response for the anisotropic two-surface
model and the MCC model are given in Figure 7.17 (iii). As seen in the over-consolidated triaxial test
simulations (for example Figure 6.28, Chapter 6), the MCC model predicts a significantly higher peak
effective stress ratio than the two-surface anisotropic model. This is due to the stress paths being initially
heavily over-consolidated on the dry-side of the CSL20. Both the MCC and the 2sβαγ model converge
to the same effective stress ratio on the CSL but their paths to arrive at this state are quite different.

Experimental data on LC from Nishimura [28] for the anisotropic (AC) test series are shown in
Figure 7.18. The responses of the MCC model and the two-surface anisotropic model are shown by the
dashed and solid thick lines respectively. The MCC model significantly overestimates both the stress
deviator (σ1 − σ3) and the effective stress ratio ((σ1 − σ3)/p) for all of the simulations. Again, the
two-surface anisotropic model qualitatively captures the main features of the non-linear experimental
behaviour and provides a significant improvement over the MCC model.

Figure 7.19 shows the response of the two-surface anisotropic model in terms of the difference between
the principal stresses and the axial and circumferential stresses (where compressive stresses are positively
valued) versus the effective hydrostatic pressure for the undrained shear stage of the five AC tests.
Although the total pressure remains constant, the effective pressure increases as the stress moves towards
the CS. Those tests undergoing compressive (αdσ = 0◦, 15◦ and 30◦) and tensile (αdσ = 55◦ and 90◦)
shear can now be clearly identified21.

It should be emphasised that the same material constants have been used to simulate the entire stress
history of the material, from deposition and consolidation through to erosion and re-loading with over-
burden, followed by the undrained HCA simulations. A constitutive model’s ability to reproduce a soil’s
complete load history is an essential requirement of a material model (Gudehus [19]). The two-surface
anisotropic model was calibrated using the triaxial test data and then the other tests simulated without
adjusting the material constants (or initial parameters). However, the stress (and strain) distribution
through the wall of the hollow cylinder is not uniform. When initially performing these analyses, it
was not immediately clear whether this might explain some of the differences between the single-element
simulations and the experimental data. This is further explored in the next sub-section.

7.4.3 Structural HCA simulations

Here, the AC0005 and AC9005 tests are analysed using a multi-element model of the HCA specimen,
rather than a single element model (which assumes uniform stress and strain fields within the hollow
cylinder). The stresses are applied by controlling the internal (pi) and external (po) pressures, axial load
(W ) and applied torque (MT ). Rearranging the average stress equations provided by Hight et al. [21],
we obtain the external forces as

MT =
2π(r3

o − r3
i )σzθ

3
and W = π(r2

o − r2
i )

(
σz − σr/2 − σθ/2

)
, (7.15)

where ri and ro are the internal and external cylinder radii.
20Similar behaviour was observed in Chapter 5, Section 5.5, where the MCC model overestimated the peak deviatoric

stress compared with experimental data on LCT from Gens [17].
21Here, the terms compressive and tensile shear are associated with those tests that cause an increase and decrease in

the axial stress, σz .
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Figure 7.19: Hollow cylinder anisotropic test simulations for the two-surface anisotropic model (2sβαγ)
with b = 0.5: (i) (σ1 − σ3) versus effective pressure response and (ii) (σz − σθ) versus effective pressure
response.

The pressures are

pi =
σr(ro + ri) − σθ(ro − ri)

2ri
and po =

σr(ro + ri) + σθ(ro − ri)
2ro .

(7.16)

The average normal strain measures, also provided by Hight et al. [21], are given by

εz =
w

l ,
εr =

uo − ui

ro − ri
and εθ =

uo + ui

ro + ri ,

(7.17)

where ui and uo are the internal and external radial displacements at the centre of the hollow cylinder
respectively and w is the vertical displacement of the top of the HCA. The average shear strain is

εθz =
2θc(r3

o − r3
i )

3l(r2
o − r2

i ) ,

(7.18)

where θc identifies the the angular circumferential displacement.

The model state, following stages (i) and (ii) of the full material history path (as given in Section 7.4.2),
was still determined by means of a single material point analysis. The material condition following these
stages became the starting condition for all of the Guass points in the multi-element FE discretisation.
The subsequent undrained stages were conducted using an axial symmetric FE discretisation of the
HCA implemented in Fortran90. The HCA had an internal radius of ri = 19mm, external radius of
ro = 35.5mm and a height of l = 190mm (see Nishimura [28], p. 61). The axial load acted as the driving
variable for these FE simulations.

The hollow cylinder was discretised using 250 eight-noded quadrilateral elements with reduced four-
point Gaussian quadrature, as shown in Figure 7.20 (ii). Due to symmetry (both cylindrical and vertical)
only one quarter of a vertical cut through the hollow cylinder was modelled. The end ring of the HCA was
modelled using ten isotropic elastic eight-noded quadrilateral elements (again using reduced four-point



202 Chapter 7. Numerical analyses

Figure 7.20: Hollow cylinder anisotropic test simulations: (i) (σ1 − σ3) versus ∆(ε1 − ε3) response, (ii)
FE analysis geometry and discretisation, (iii) AC90005 deformed mesh and (iv) AC0005 deformed mesh
(both using a ×10 scaling on the nodal displacements).

Gaussian quadrature) with a Young’s modulus of 100GPa and Poisson’s ratio of 0.2. This stiff end ring
was constrained in the radial direction and had full displacement compatibility at the interface with the
clay22. An axial load was applied to the top surface of the stiff ring which ensured a uniform displacement
at the top of the LC hollow cylinder.

Figure 7.20 (i) shows the (σ1 − σ3) versus ∆(ε1 − ε3) response for the multi-element simulation, the
material point analysis reported in the preceding section and the experimental data (shown by discrete
points) from Nishimura [28]. The multi-element FE results appear very similar to those of the material
point analyses. However, the initial response of the multi-element response is marginally stiffer and softer
(than the single-element response) for tests AC0005 and AC9005 respectively due to the stress state of
the Gauss points following the change in the intermediate principal stress ratio, b (stage (iii) of the tests).
The stress response for all 1,000 Gauss points, as b changed from 1 to 0.5, is shown in Figure 7.21 (i) by
the grey lines. The global multi-element response, from A to B, is shown by the thick black line. The
distribution of the stress deviator, (σ1 − σ3), through the hollow cylinder wall at the end of stage (iii)
is shown in Figure 7.21 (ii). There is a variation of more than 35kPa for (σ1 − σ3) from the average
value of 165kPa. These differences in the state at the start of the undrained shearing cause the stiffer
(under compression) and softer (under extension) responses when compared against the uniform stress
state material point simulations (Figure 7.20 (i)).

22That is, no relative movement was allowed on the interface between the end ring and the clay cylinder.
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The original and deformed meshes are shown in Figures 7.20 (iii) and (iv) for the AC9005 and AC0005
simulations respectively. The nodal displacements were exaggerated by a factor of 10 to help visualise
the deformed shape. Under extension (AC9005), the centre of the cylinder moves inwards, whereas under
compression (AC0005) the mid-height of the hollow cylinder expands outwards.

Figures 7.21 (iii) and (iv) show the (σ1 −σ3) versus ∆(ε1 − ε3) response for all of the FE Gauss points
(thin grey lines) in the axial extension (AC9005) and compression (AC0005) simulations respectively.
The global multi-element responses, from B to C and B to D, are shown by the thick black lines. The
experimental data from Nishimura [28] are also given. There is a noticeable variation in the stress path
through the HCA specimen. However, the majority of the Gauss point responses match the global
response well.

Figure 7.22: Hollow cylinder anisotropic test simulations stress distribution through the hollow cylinder
wall for simulation AC0005: (i) radial stress error, (ii) axial stress error, (iii) circumferential stress error
and (iv) in-plane shear stress (kPa).

One of the motivations for simulating the HCA tests using the FEM was the non-uniform stress (and
strain) distribution acting through the wall of the hollow cylinder. Figure 7.22 shows the (i) radial stress
error, (ii) axial stress error, (iii) circumferential stress error and (iv) in-plane shear stress. The errors were
calculated from

errorσ(·) =
σ(·)F E

− σ(·)mp

σ(·)mp ,

(7.19)

where σ(·)F E
is the finite-element Gauss point stress and σ(·)mp

is the assumed average material point
stress given by equations (7.6) and (7.7).

The term error is not quite appropriate. These measures are indicators of the difference between
the Gauss point stresses and the idealised mid-wall, mid height stress state. The multi-element solution
offers a more realistic prediction of the true stress state, thus the error lies with the simplified material
point stresses. Stress deviation might be a better expression but that could lead to confusion with the
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deviatoric stress, {s}, or the stress deviator (σ1 −σ3). The maximum errors are located in the vicinity of
the end ring. The lowest errors (that is, the closest agreement with the average material point stresses)
are near the middle of the wall at the mid-height of the hollow cylinder. The single-element material
point simulation assumes zero shear stress in the radial-axial plane (σrz). However, the two-dimensional
axi-symmetric analysis has non-zero σrz, with the maximum shear stresses near the top (and bottom) of
the hollow cylinder.

The region of lowest error is now examined in more detail. The Gauss point response for the two
elements near the mid-height wall centre (Figure 7.23 (ii)) are shown in Figures 7.23 (i) and (iii). The
eight Gauss points show good agreement with the initial experimental data behaviour (shown by discrete
points) for both the AC0005 and AC9005 tests (similar to that of the global multi-element FE response
and the average single-element material point simulation). Figure 7.23 (iii) shows the Gauss points’
(σ1−σ3)/p versus ∆(ε1−ε3) response. Again, similar behaviour to that of the global FE and the average
material point simulations was seen.

Figure 7.23: Hollow cylinder anisotropic test simulations response for the mid-wall, mid-height element
Gauss points: (i) (σ1−σ3) versus ∆(ε1−ε3) response, (ii) FE analysis investigated elements, (iii) (σ1−σ3)/p
versus ∆(ε1 − ε3) response.

7.4.4 Rupture: identifying the continuum to discontinuum transition

In the HCA analysis, the experiments were only simulated up to the point of experimental rupture.
This rupture point was determined visually during the LC experiments by Nishimura [28]. However, the
emergence of discontinuities could only be detected on the surface of the specimens. It is probable that not
all ruptures, even if on the surface, were identified immediately due to the presence of a latex membrane
surrounding the hollow cylinder specimen. This change from continuum to discontinuum behaviour
(where the strains localise into a narrow band) could explain the degradation of the constitutive model’s
predictive capability at higher strains in the HCA.

Since the 1958 and 1962 papers by Hill [22, 23], there has been a strong interest in the mathematical
identification of instabilities which can be predicted purely from the characteristics of the constitutive
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equations [1–4, 6, 24, 26, 29, 32–34, 38, 40]. Failure23 indicators in materials can be grouped into
two categories: continuous (or loss of stability) and discontinuous (or localisation) [32]. In continuous
failure, the homogeneity of strains (and stresses) is preserved, whereas for discontinuous failure a spatial
discontinuity is observed in the strain rate field. Continuous failure can be detected through investigating
the infinitesimal elasto-plastic tangent, [Dep]. The first indicator occurs when the determinant of the
symmetric component of [Dep] falls to zero

det
(

1
2

[
[Dep] + [Dep]T

])
= 0. (7.20)

We refer to this as a strong indicator of the loss of stability. The second indicator occurs when the
determinant of [Dep] falls to zero we refer to this as a weak indicator of the loss of stability. These two
continuous failure indicators can be expressed as

eA = min
(

det[Dep
sym]

det[De]

)
︸ ︷︷ ︸

strong instability

and eD = min
(

det[Dep]
det[De]

)
︸ ︷︷ ︸

weak instability

, (7.21)

where (·)sym denotes the symmetric component of (·). The first of these, eA, is the stricter of the
conditions (that is, a material will fail eA before failing eD). This is due to the fact that the eigenvalues of
the symmetric component of a positive definite tensor bound those of the full matrix. If [Dep] is positive
definite (that is, det

(
[Dep

sym]
)

> 0) then the material response is unique under any loading [24].

In a load (or equivalently stress) controlled test, we have the following relation between the rate of
change of strain with stress

{ε̇} = [Dep]−1{σ̇}. (7.22)

When the determinant of the infinitesimal elasto-plastic tangent falls to zero, {ε̇} is undefined and a loss
of uniqueness of the strain solution occurs [24], as shown in Figure 7.24. Under strain (or displacement)
controlled simulations, we have an equivalent relation to that of the stress controlled test, however now

{σ̇} = [Cep]−1{ε̇}. (7.23)

Here [Cep] = [Dep]−1 is the infinitesimal elasto-plastic compliance matrix. A loss of uniqueness occurs
when the determinant of [Cep] falls to zero [24], that is when

{f,σ }T
[
De

]
{g,σ } + H = 0. (7.24)

in a non-associated, hardening elasto-plastic material (see (2.23), Chapter 2 for the format of the in-
finitesimal elasto-plastic tangent stiffness matrix). This condition corresponds to a snap-back in the
stress versus strain response of the material, as shown by point E in Figure 7.24.

Discontinuous failure indicators grew out of the work by Hill [23] on acceleration waves. Hill considered
planes (with unit normal denoted by ni or {n}) across which the acceleration was discontinuous. This
jump in acceleration is equivalent to a jump in the strain rate (and consequently the stress rate) in a
material’s constitutive relations [23]. Using Hill’s procedure, a localisation (or acoustic) tensor can be
defined as

(Q(·)
at )jk = niD

(·)
ijklnl, (7.25)

23Here, the term failure is used to describe when the material no longer behaves as a continuum, that is, some loss of
stability or bifurcation of the material has taken place.
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where D
(·)
ijkl is the fourth-order tangent stiffness tensor under consideration. Alternatively (7.25) can be

expressed in matrix form using the following expression

[
Q

(·)
at

]
=

[
T

]T [
D(·)][T ]

, where
[
T

]T =

 n1 0 0 0 n3 n2

0 n2 0 n3 0 n1

0 0 n3 n2 n1 0


,

(7.26)

and ni are the components of the normal to the potential discontinuity plane. The acoustic tensor allows
us to specify two indicators of localisation

eB = min

(
det[Qep

atsym
]

det[Qe
at]

)
︸ ︷︷ ︸

strong localisation

and eC = min
(

det[Qep
at ]

det[Qe
at]

)
︸ ︷︷ ︸

weak localisation

. (7.27)

[Qep
at ] and [Qe

at] denote the acoustic tensors associated with [Dep] and [De] using the same search direction
ni. For the case of associated plasticity, [Dep] is symmetric and the localisation indicators eB and eC are
identical, as are eA and eD.

Figure 7.24: Hierarchy of failure indicators.

The Bromwich bounds [8] allows the sequence of failure indicators to be established. eA is the strictest
condition, followed by eB, then eC and finally eD [37]; shown schematically in Figure 7.24. The determinant
of [Cep] drops to zero at point E in Figure 7.24 after passing through the non-unique stress point, D.

London Clay one-dimensional stability

The stability indicators were used when examining LC under drained uniaxial straining (K0 loading)
to a pressure of 290kPa, followed by unloading to a pressure of 20kPa in axial strain increments of size
1 × 10−4. The constitutive model’s hydrostatic pressure versus deviatoric stress response (with material
constants given in Table 6.1, a reference pressure of 30kPa and an initially isotropic material and normally
consolidated hydrostatic stress state) is given in Figure 7.25 (ii). The minimum value of the normalised
determinant of the acoustic tensor (as given by eC in (7.27)2) versus axial strain is given in Figure 7.25 (i).
The values of the stability indicators at points A to G are given in Table 7.13. The HEALPix software
[18], which divides the surface of a sphere into equal area patches, was used to generate the 11,040 search
directions for the acoustic tensor analysis. Figure 7.25 (iii) shows the axial strain versus deviatoric stress
and hydrostatic pressure paths for the loading (from A to B) and unloading (B to G).
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The surface plots on Figures 7.25 (i) and (ii) illustrate two ways of visualising the determinant of
the acoustic tensor. For each of the 11,040 search directions, the determinant of the acoustic tensor is
calculated and a point generated from:

(i) {x} =
(
1 − eC

)
{n} for Figure 7.25 (i); and

(ii) {x} = eC{n} for Figure 7.25 (ii).

A surface is then plotted through these points. If the determinate of the acoustic tensor drops to zero
then the {x} = eC{n} surface will pass through the origin whereas the {x} =

(
1 − eC

)
{n} surface will

intersect a unit sphere surrounding the surface. The former surface is a more direct indicator of the
reduction in eC but the latter surface allows for an easier assessment of the direction of the normal to the
plane across which the discontinuity occurs. These surfaces are plotted for points A, B, C and G. For all
eight of these surfaces there is an obvious symmetry in about the vertical z axis. Clearly, if the global
cartesian co-ordinate axes were orientated such that one of the axes did not coincide with the axis of the
cylinder, then the primary symmetry would not be with respect to the z axis.

Table 7.13: Instability analysis for the one-dimensional loading and unloading.

For the applied strain increments and selected search directions, the determinant of the symmetric
and full acoustic tensor matrix never fell to (or below) zero. However, the determinant of the symmetric
component of [Dep] falls below zero at point E and eD < 0 at point F. One possible reason for the
determinant of the acoustic tensor remaining greater than zero could be an insufficient number of search
directions, thereby missing the minimum det

(
[Qep

at ]
)
. Alternatively, the fact that the material point

simulation was followed using finite increments of strain could have meant that the points where eB = 0
and eC = 0 were missed. However, these possibilities seem unlikely due to the large number of search
directions, small increments in the axial strain and the fact that all of the failure indicators continue to
reduced along the unloading path.

London Clay undrained triaxial stability

An acoustic tensor analysis for UTE and UTC following one-dimensional loading and unloading is pre-
sented in Figure 7.26. The material point stress paths and axial strain versus deviatoric stress for these
simulations was shown in Figure 7.15. The normalised determinant of the acoustic tensor (that is, sta-
bility measure eC) versus axial strain for the UTE tests is shown in Figure 7.26 (i) and the UTC tests
in Figure 7.26 (ii) and (iii). Note that the tests with OCRs of one and seven start from points B and D

from Figure 7.25. Again, the determinant of the acoustic tensor never falls below zero for the UTE or
the UTC tests. The two

(
1 − eC

)
acoustic tensor plots in Figure 7.26 (i) and (ii) correspond to an axial

strain of 0.1 for UTE and UTC, respectively, both at an OCR of 1.5. The minimum values of the four
stability indicators, for the four OCRs and two loading directions, are given in Table 7.14. The points
where the determinant of the symmetric and full infinitesimal elasto-plastic stiffness matrices fall below
zero are identified. For all of the simulations, eD falls below zero prior to arrival at the CS. This can
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be seen in Figure 7.26 (iv) where the axial strain versus deviatoric stress paths are reproduced with the
instability points identified.

For the UTE simulations, as the axial strain increases, so the value of eC decreases and tends towards
a stationary value of ≈ 0.11. For the heavily overconsolidated test (OCR= 7) eC reaches a minimum value
of 0.0781, at an axial strain of 0.0178, before increasing as the deformation increases. The behaviour of
the normally consolidated UTC simulation was quite different from the other UTC tests, as the eC value
started at the minimum value along its compression path before increasing towards a stationary value at
higher axial strains.

Table 7.14: UTC and UTE instability analysis: minimum stability indicator values.

While these findings are interesting, there is little interpretation which can be given to det
(
[Qep

at ]
)

> 0
(however close it might be to zero). The instability analysis only allows a binary interpretation (con-
tinuum to discontinuum). However, as complex hardening/softening plasticity models generally are not
constructed with specific discontinuity predictions built into the formulation, there is merit in mapping
the field of det

(
[Qep

at ]
)

with respect to the stress state and degree of anisotropy such that a greater un-
derstanding can be gained on the relationship between the form of the model and its stability. There is
no unique stress-space map of det

(
[Qep

at ]
)

for the two-surface plasticity model as [Dep] depends on both
{β} and {σχ}.

Throughout all of this subsection’s analyses the infinitesimal elasto-plastic tangent matrix had the
following form

[Dep] =

[
[D̂ep] [0]
[0] G[1]

]
,

where [D̂ep] =

 a c e

c a e

d d b

 (7.28)

and G is the shear modulus. The symmetry of the top two by two block of [D̂ep] is due to the radial
and circumferential components of {σ} and {β} being equal (that is, σ2 = σ3 and β2 = β3, with an axial
major component). This also explains why we see the equal terms d and e in the third row and column
respectively. The axial symmetry of the acoustic tensor plots (see in Figures 7.25 and 7.26) are a direct
consequence of the symmetry in the infinitesimal elasto-plastic stiffness matrix.

London Clay HCA stability

The final analysis in this chapter explorers the stability of the anisotropic HCA simulations. In particular,
the AC9005 and AC0005 material point tests were assessed.

The ∆(ε1 − ε3) versus eC responses for the material point simulations are shown in Figure 7.27. The
points at which the four stability indicators fall below zero are identified for the two tests. The strain
difference ∆(ε1 − ε3) at these points is listed in Table 7.15. For AC0005 (dashed line in Figure 7.27)
the failure indicators drop below zero in pairs. In AC9005 the four failure indicators appear in the same
order as given in Figure 7.24, that is eA ≤ 0 first, then eB ≤ 0 followed by eC ≤ 0 and finally eD ≤ 0. For
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Figure 7.26: Acoustic tensor analysis of the material point behaviour of the two-surface anisotropic model
under (i) UTE, (ii) and (iii) UTC. (iv) gives the axial strain versus deviatoric stress response for all of the
simulations.

both of the simulations the instabilities develop at a higher strain than the rupture surfaces were first
detected experimentally (∆(ε1 − ε3) = 0.0289 for AC0005 and ∆(ε1 − ε3) = 0.0120 for AC9005) [28].

Table 7.15: HCA undrained shear single finite-element instability analysis.

The det
(
[Qep

at ]
)

acoustic tensor surfaces are shown in Figure 7.27 at the point where eC falls below
zero. It can be seen in both of the surface plots that in at least direction the determinant falls below
zero. However, it is not easy to identify all of the directions where eC ≤ 0 on these three-dimensional
plots. To clarify this it is helpful to plot the normalised determinant of the acoustic tensor in a different
way. Figure 7.28 contours the acoustic tensor surfaces in terms of their latitude and longitude. Using
this projection, the search direction is given by

{n} =
{

cos(φhp) sin(θhp) sin(φhp) sin(θhp) cos(θhp)
}T

, (7.29)

where θhp ∈ [0, 2π] and φhp ∈ [0, 2π] uniquely define the search direction. Plotting the stability measure,
eC, in terms of φhp and z = cos(θhp) allows the instability points to be easily identified. From Figure 7.28
we see that the AC0005 and AC9005 material point simulations develop four and eight instability locations
(as identified using the crossed-through symbols) where eC ≤ 0 respectively.

The search directions where the minimum value of eC was found for the two simulations are given in
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Figure 7.27: Acoustic tensor analysis for the HCA undrained shear single finite-element simulation.

Table 7.15. These directions are normal to the plane of instability (as shown for one of the instability
planes on the right hand side of Figure 7.27). Due to symmetry, these four/eight normals correspond
to two/four instability planes. The discontinuity planes are shown in Figure 7.29. For the AC0005
simulations the radial coordinate axis lies in the bifurcation plane (that is, {n}T {1 0 0} = 0), whereas
the AC9005 normals have a small radial coordinate component. Unexpectedly, the z and θ components
in the AC0005 and AC9005 test normals, respectively, have almost equal components, where the slight
variation is possibly due to the initial starting conditions.

Following the procedure of Borja and Aydin [6], comparing the search direction, {n}, with the eigen-
vector associated with the minimum eigenvalue of [Qep

at ] (denoted here by {vmin}), we can determine the
mode of the discontinuity,as follows

mode = {n}T {vmin} :

= −1 pure compaction band
< 0 compactive shear band
= 0 simple shear band (≡ fracture mode II or III)
> 0 dilative shear band
= 1 pure dilation band (≡ fracture mode I: opening)

(7.30)

The direction of the eigenvector associated with the minimum eigenvalue, {vmin}, can be positive or
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Figure 7.28: Unfolded acoustic tensor surfaces for the HCA simulations (i) AC0005 and (ii) AC9005.

Figure 7.29: Discontinuity planes for the undrained shear HCA simulations (i) AC0005 and (ii) AC9005.

negative. Following the procedure of Borja and Aydin, the direction of {vmin} can be determined from
the requirement that

{f,σ }T [De]{ξ} > 0, where [ξ] = {vmin}{n}T . (7.31)

{ξ} is the instability characteristic vector, whose trace is equivalent to the mode defined in (7.30) (that
is, tr[ξ] = {vmin}T {n}), where {ξ} is formed from [ξ] in the same manner as [σ] is expressed as {σ}. The
inequality in (7.31) stems from the assumption that the material is exhibiting some inelastic behaviour
on both sides of the instability plane. Using (7.31)1 the mode of the discontinuities were determined for
tests AC0005 and AC9005 as −0.225 and −0.167 respectively. Both simulations exhibit dilative shear
bands, with the dilative plastic strains at the point on the yield surface24, although the bands occur at
different orientations through the samples. The stress state and yield surfaces at the computationally

24That is, the image point on the outer surface is located on the dry side of the Critical State line.
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Figure 7.30: Stress state and yield surfaces for the two-surface anisotropic model at point of instability
development for the (i) AC0005 (∆(ε1 − ε3) = 0.0522) and (ii) AC9005 (∆(ε1 − ε3) = 0.0689) HCA
analyses.

determined point of rupture (eC ≤ 0) are shown in Figure 7.30 for (i) AC0005 (∆(ε1 − ε3) = 0.0522 with
η = 0.823) and (ii) AC9005 (∆(ε1 − ε3) = 0.0689 with η = 0.824).

Figure 7.31: Discontinuity planes for the anisotropic undrained shear HCA AC0005 test in the z-θ plane:
comparison of experimentally observed bifurcation planes on LC at (i) ∆(ε1 − ε3) = 0.058 and (ii)
∆(ε1 − ε3) = 0.11 from Nishimura [28] (reproduced from p. 263). Dashed lines indicate computationally
predicted planes at ∆(ε1 − ε3) = 0.0522 (where eC first drops below zero).

The orientation of the discontinuities for AC0005 are compared with the experimentally observed
rupture planes observed on LC by Nishimura [28] at strains of ∆(ε1 − ε3) = 0.058 and ∆(ε1 − ε3) = 0.11
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in Figures 7.31 (i) and (ii)25. The computationally predicted discontinuity orientations, also shown on
Figure 7.31 (ii), show good agreement with the experimentally observed rupture surfaces. The deviation
of the experimentally recorded slip bands, near the top and bottom of the plots, is a consequence of the
end constraints acting on the specimen.

It is important to note that the hyperplastic two-surface anisotropic model was not constructed from
an a-priori assumption about the material instabilities. While these HCA instability results are far from
comprehensive or conclusive, they do serve as an encouraging indicator of model performance. Further
work is required to understand more completely the role of the inner surface and the form of anisotropic
hardening/softening on the stability of the model. Additionally, more work is required on the use of
advanced experimental imaging techniques to monitor the emergence of rupture surfaces during testing.

7.5 Observations

This chapter has presented a series of numerical simulations using the constitutive models developed in
Chapters 4, 5 and 6. The model results have been compared against one another as well as against the
classical M-C, D-P and MCC constitutive models. The observations drawn from this chapter are listed
below.

(i) In Chapter 4 it was shown that the mR deviatoric section improves on the realism offered by the
classical M-C and D-P models. The following additional observations should be made:

(a) the improved realism of the mR model is achieved at a cost of only 2.2% (small strain rigid
footing [12]) to 5.3% (finite deformation cavity expansion [9]) increase in the run-time compared
to that of the M-C model;

(b) similar realism is achieved using a frictional cone based on a W-W [38] deviatoric section,
however this comes at the cost of a 31% (small strain rigid footing [12]) and 42% (finite
deformation cavity expansion [9]) increase in run-time compared to the M-C model as, unlike
the mR model, no closed form backward Euler stress integration solution is currently available
for the frictional W-W surface;

(c) the mR model demonstrated global asymptotic quadratic convergence in all of the small strain
and finite deformation FE simulations presented by Coombs and co-workers [9, 11–13], con-
firming the correct derivation of the algorithmic consistent tangent; and

(d) it appears that the use of an associated flow rule, with both the mR and M-C models, causes
an over-estimation of the local heave in a rigid footing analysis (in-situ measurements are
required to confirm this hypothesis).

(ii) Chapters 5 and 6 developed isotropic single-surface and anisotropic two-surface families of CS
hyperplastic constitutive models respectively. This chapter has demonstrated the use different
members of those families of models in FE analyses. The following points are worth highlighting:

(a) the UTC FE sensitivity analysis revealed the effect of varying the material constants for the
two-surface anisotropic model, showing that a ±10% change has only a marginal influence on
the simulation. Other test paths could be explored in the future;

(b) the single element test demonstrated the importance of deriving the algorithmic consistent
tangent when implementing the constitutive models within an FE analysis code. In the exam-
ples given, relying on the elastic or infinitesimal elasto-plastic stiffness tangents increased the
run-time by 72 or 8 times;

25Note, that the left and right edges of Figures 7.31 (i) and (ii) are connected, as the figures show the unwrapped outer
surface of the cylinder.
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(c) the single-surface models were unable to capture the one-dimensional unloading behaviour of
LCT (Figure 7.7);

(d) the shape of the yield surface (controlled by both α and γ) has the greatest influence on the
cavity expansion response, due to the high Cχ value for LCT;

(e) the two-surface models demonstrated hysteretic behaviour during unloading and re-loading in
the cavity expansion simulation, whereas the single-surface models followed the same unload-
reload path;

(f) the M-C, D-P and mR models are likely to significantly over-predict the stiffness and limit
loads for a drained plane strain footing analysis26;

(g) the displacement for a footing pressure of 1MPa was 22% higher with the MCC model compared
with the two-surface anisotropic model;

(h) as the number of unknowns (nodal degrees of freedom) in a FE analysis increases, it ap-
pears that the relative computational cost associated with using the sophisticated two-surface
anisotropic model diminishes; and

(i) throughout all of the simulations the two-surface anisotropic model (when using the algorith-
mic consistent tangent) demonstrated asymptotic quadratic convergence of the global N-R
procedure, verifying the both the small strain algorithmic tangent derived in Section 6.4.6 and
the anisotropic spatial tangent given in Chapter 3.

(iii) In Section 7.4, the two-surface anisotropic model was calibrated using hydrostatic consolidation and
unloading data together with anisotropic UTC and UTE experimental data on LC. The full stress
history followed by experimental tests on LC in a HCA were then simulated without altering the
calibrated material constants. The following observations can be drawn from those simulations:

(a) the two-surface anisotropic model is able to qualitatively capture the experimentally seen
material behaviour, whereas the MCC model gives an over-stiff response;

(b) the MCC model significantly over-estimates the peak stress ratio;

(c) there is considerable variation in the stress components through the wall of the hollow cylinder
specimen, however the influence of these non-uniformities is rather small; and

(d) the mid-height (and centre) Gauss points in the anisotropic multi-element FE simulations
showed good qualitative agreement with the experimentally observed behaviour.

(iv) The final analysis in this chapter was focused on the instabilities that develop within constitutive
models. The following key points should be noted:

(a) in the one-dimensional loading and unloading and the subsequent undrained triaxial simu-
lations, instability of the acoustic tensor was not observed, however the determinant of the
infinitesimal elasto-plastic tangent fell to zero; and

(b) in the simulation of the hollow cylinder tests, the development of instabilities were predicted
to occur at a higher strain than observed experimentally. However, the direction of these
instabilities showed a good agreement with the experimentally observed discontinuity planes.

26The two-surface anisotropic model was calibrated from experimental data on LCT. The opening angles of the frictional
cone models were set such that their yield surface compression meridians coincided with the CS compression meridians and
their elastic properties chosen to roughly agree with those from the CS models. The sophisticated two-surface model (which
is able to better capture the experimental response than the frictional cone models) predicted a significantly softer response
than the simple single-surface models suggest. This suggests that the frictional cone models over-estimate the stiffness of
the footing analysis.
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Chapter 8

Conclusions

“The soil seems to defeat its investigators again
and again.”

G Gudehus (1985) [6]

“...no one mathematical model can completely de-
scribe the complex behaviour of real soils under all
conditions.”

WF Chen (1985) [3]

Chapters 1, 2 and 3 provided an introduction to this thesis, established some of the basic principles of
inelastic continuum analysis and presented a framework for the numerical implementation of constitutive
models with anisotropic inelasticity within a finite deformation displacement-based finite-element code.
In Section 1.2 of Chapter 1, Chen’s basic criteria for model evaluation [3] were listed. The first two,
those of theoretical and experimental evaluation, are covered in the following discussion. The third
criterion of numerical and computational evaluation, that is, the ease of implementation within non-linear
multi-element analysis codes, was addressed by explaining the finite deformation framework presented
in Chapter 3. With the adopted approach, any existing small strain constitutive algorithm1 can be
incorporated within the finite-element code without modification.

The novel research undertaken in this study is described in Chapters 4 to 7. The original features
and key conclusions from those chapters are now summarised. The constitutive models developed and
implemented during this research are listed in Table 8.1.

Simple frictional plasticity

Chapter 4 presented a pressure-sensitive (cone-type) frictional plasticity model using a deviatoric section
defined by a modified Reuleaux triangle. The modified Reuleaux yield criterion provides a significantly
improved fit to the deviatoric yielding of particulate materials over that of the classical Mohr-Coulomb
and the widely used Drucker-Prager criteria (Figure 4.4) by containing a dependency on both the Lode
angle and the intermediate principal stress. However, unlike other existing deviatoric yield criteria which
embrace these two influences, the modified Reuleaux formulation allows for analytical backward Euler
stress integration, even for the case of non-associated volumetric plastic flow. This single-step analytical
procedure is entirely robust and provides a 2–4 times speed gain over the conventional iterative approach
(Figure 4.11).

Requirements of a constitutive model were set out in Section 1.2 of Chapter 1. Reviewing these, it is
clear that the modified Reuleaux frictional cone model is complete (can be used for all stress and strain
paths), manageable (requires only four material parameters that can be easily determined), founded on
physical interpretation (motivated by the desire to include the influence of both the Lode angle and the
intermediate principal stress) and can be easily incorporated within non-linear boundary value codes.

1exhibiting isotropic elasticity and either isotropic or anisotropic plasticity.
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The numerical analysis reviewed in Chapter 7 showed that the modified Reuleaux constitutive model
requires a modest increase in computational effort (only 5.8% in the run-time for the finite-deformation
cavity expansion and 2.2% for the small strain rigid footing analyses) over that of the Mohr-Coulomb
model.

In summary, the modified Reuleaux cone model overcomes the inadequacies inherent in, and provides a
suitable replacement for, both the Mohr-Coulomb and Drucker-Prager models, yet requires no additional
material constants or significant increase in computation time.

Isotropic hyperplasticity

Chapter 5 developed a single-surface isotropic family of two-parameter Critical State models (based
on the original model by Collins and Hilder [4]) using the principles of hyperplasticity. This chapter
(i) extended the model to include a Lode angle dependency, (ii) described a robust stress integration
procedure and (iii) linearised the model for use within displacement-based boundary value simulations.
Volumetric non-associated plastic flow is a natural consequence of the particular form of the dissipation
function. A Lode angle dependency can be incorporated in a straightforward manner into this dissipation
function, resulting in deviatoric non-associated plastic flow and a Lode angle dependent yield function.
This was achieved without the difficulties caused by previous approaches of redefining the deviatoric
stress invariant. It was shown that the particular form of the yield function significantly influences the
efficiency of the iterative backward Euler stress integration algorithm. An appropriate form of the yield
function was proposed that (i) removes any elastic regions outside the yield surface and (ii) leads to
monotonic convergence of the iterative stress return. Particular attention was paid to the robustness of
the integration algorithm so that the model is, as required by Prévost and Wolf (Section 1.2), “able to
make statements about the material behaviour for all stress and strain paths” [11].

The two-parameter model, as its name suggests, includes two additional material constants compared
to the classical modified Cam-clay constitutive model. Recalling the manageability requirement of Sec-
tion 1.2, in addition to providing the pseudo-code for the constitutive algorithm, a detailed calibration
procedure was provided that gave a physical insight to the role of the two constants which can be ob-
tained from standard laboratory tests. This calibration procedure allows potential users to determine
analytically the additional material constants based on one-dimensional consolidation (drained loading)
and undrained triaxial compression experimental data. Comparisons with experimental data showed
that the two-parameter model has advantages over the modified Cam-clay model in terms of its ability to
reproduce one-dimensional loading and offer an improved fit to heavily overconsolidated soil behaviour.

Numerical analysis in Chapter 7 confirmed the viability of the two-parameter model for use within
a general purpose displacement-based finite-element code. All model simulations showed asymptotic
quadratic convergence of the global equilibrium equations, confirming the derivation of the algorithmic
consistent tangent. The run-times for the two-parameter model were, in general, very close to (and
sometimes shorter than) those of the modified Cam-clay constitutive model.

In summary, the two-parameter model provides a valuable (but rather simple) extension to the classical
modified Cam-clay model, significantly improving the fit to heavily overconsolidated soils and providing
extra richness in terms of a Lode angle dependency with no noticeable computational cost.

Anisotropic hyperplasticity

Chapter 6 extended the single-surface Critical State model by introducing anisotropy, allowing the yield
surface to shear away from the hydrostatic axis and including dissipative behaviour at low strains within
the conventional yield surface. Using the principles of hyperplasticity, the two-surface anisotropic model’s
non-linear elasticity law, yield function and direction of plastic flow were all obtained from just two scalar
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functions. The resulting model (which collapses down to the classical modified Cam-clay model) has the
following key features:

(i) a unique convex isotropic Critical State surface, which is independent of any previous material
history or stress path followed;

(ii) a measure of the inherent anisotropy interpreted as the degree of shearing of the yield surface
(expressed in terms of the dissipation rate as a cross-coupling between the strain rates);

(iii) a unique level of anisotropy reached at the Critical State (as suggested by recent discrete element
findings); and

(iv) convexity of the Lode angle dependent surface which holds for any degree of anisotropy.

To the author’s knowledge, this is the first time that all of these features have been combined in a
two-surface Critical State plasticity model cast within a hyperplastic framework. The requirements of a
constitutive model [6, 11] (as set out in Section 1.2) have been fulfilled as follows:

(i) physical interpretation: modification of the rate of dissipation to include cross-coupling between
the volumetric and deviatoric components, along with dissipative behaviour at lower strains was
motivated by inability of the single-surface model’s dissipation function to reproduce the experi-
mentally observed material behaviour. The coupling accounts for the plastic dilation or compaction
resulting from deviatoric loading and plastic shearing under hydrostatic loading.

(ii) tractability : full derivation and numerical implementation of the constitutive algorithm has been
presented. This allows the model to be followed and implemented.

(iii) material constants: physical interpretation was provided and a calibration procedure outlined to
encourage suitably experienced practising geotechnical engineers to use this relatively sophisticated
model. Default values were provided for six of the twelve material constants, resulting in a model
that provides enhanced simulation capabilities over the classical modified Cam-clay model, whilst
only requiring two additional material constants. The reduced set of material constants could be
calibrated using just three standard laboratory tests.

(iv) well-posed and complete: the full algorithmic and numerical treatment of the model has been pro-
vided. The stability and uniqueness of the material model was demonstrated through the smooth-
ness of the Gudehus [7] stress surface plots and random strain test paths, confirming the robustness
of the stress integration algorithm. Finally, the sensitivity analysis presented in Chapter 7 showed
that the model is stable following small changes to its material constants.

The model is able to capture qualitatively and quantitatively the observed experimental behaviour of
Lower Cromer till and London clay. In particular it is able to reproduce a rather complex stress path for
all of the material point simulations using a single set of material constants. The new model significantly
improves the predictive capabilities of the modified Cam-clay model, for both normally and heavily
overconsolidated clays. It also overcomes the limitations of the isotropic family of models presented in
Chapter 5. As stated at the beginning of this thesis:

“The intention of this thesis was not to develop a new constitutive model from scratch, but
rather to identify weaknesses in existing models and then remove those limitations using a
consistent framework...”

This goal has been achieved in the anisotropic two-surface two-parameter hyperplastic Critical State
model.
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Table 8.1: Developed and implemented constitutive models.

Numerical analyses

The numerical analyses in Chapter 7 confirmed the viability of the anisotropic two-surface model for use
within a general purpose displacement-based finite-element code. All of the model simulations showed
asymptotic quadratic convergence of the global equilibrium equations, thereby confirming the derivation
of the models’ algorithmic consistent tangents and the anisotropic finite deformation framework. A single-
element simulation demonstrated the importance of deriving the algorithmic consistent tangent. Using
the elastic or infinitesimal elasto-plastic stiffness tangents (instead of the algorithmic tangent) increased
the run-time by 72 and 8 times respectively. Increasing the size of the simulations (in terms of the number
of elements) reduced the relative run-time penalty arising from using the more sophisticated constitutive
models. This was due to a greater proportion of the run-time being spent in the solution of the global
equilibrium equation in the larger analyses. It was also observed that in certain situations, the simpler
single-surface models arrived at very similar solutions to that of the sophisticated two-surface model.

The final section of Chapter 7 presented for the first time (as far as the author is aware) detailed single
and multi-element analyses of a series of undrained hollow cylinder experiments using the anisotropic two-
surface model. The model was calibrated using anisotropic undrained triaxial compression and extension
experimental data prior to simulating the hollow cylinder tests. The same material constants were used
to predict the entire stress history of the London clay specimen. This gave confidence that the model
was able to satisfy an important requirement for constitutive models [11], namely:

“a material model may only be deemed to be satisfactory when with its aid, it is possible first
to determine the stress-strain-strength behaviour of the material at hand in one piece of tests
equipment... and then to predict the observed behaviour of the same material in some other
type of testing equipment...”

The two-surface anisotropic model was able to capture qualitatively the experimentally observed material
behaviour, whereas the modified Cam-clay model gave an over-stiff response, significantly over-estimating
the peak stress ratio. The bifurcation instabilities predicted by the constitutive model using an acoustic
tensor analysis showed good agreement (in terms of the instability direction) compared to those observed
in the experimental tests.
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8.1 Recommendations and future work

Considerable effort has been made throughout this thesis to provide constitutive algorithms that are
clear, easy to implement and use. When developing material models it is imperative that the resulting
algorithms are accessible to academics, potential developers and practising engineers. Neglecting this
clarity and manageability requirement will only serve to widen the “gulf [that] has arisen between research
and practice in geotechnical engineering” [1].

An obvious limitation of the Critical State hyperplasticity models (presented in Chapters 5 and 6) is
the use of an elasticity law with a fixed shear modulus. Real soils appear to exhibit a pressure-dependent
shear modulus. This effect can easily be incorporated into the existing constitutive models using a dif-
ferent free-energy function, such as that proposed by Houlsby [9]. The use of such a hyperelasticity
relationship would allow the single-surface plasticity models to give a reasonable fit to the experimentally
observed one-dimensional unloading behaviour of soils. However, the cross-coupling between the volu-
metric and deviatoric strains required in the free-energy function to give such a relationship results in an
anisotropic relation between stress and elastic strain. Such a model cannot be incorporated within the
finite-deformation framework presented in Chapter 3. However, the recent 2011 paper by Caminero et al.
[2] detailed a finite deformation formulation that allows the implementation of models containing both
anisotropic elasticity and plasticity, whilst maintaining the infinitesimal format of the stress integration
scheme. As with the framework presented in Chapter 3, the proposed formulation treats the effects of
geometric non-linearity in the form of pre- and post-processors operating on the conventional constitutive
algorithm. Modifying the existing finite deformation framework, based on the paper by Caminero et al.
[2], to allow for anisotropic elasticity, would be a valuable extension to this work.

The anisotropic two-surface two-parameter model used recent findings from discrete element modelling
to guide the choice of hardening laws, especially in relation to the character of particulate media at the
Critical State. This idea is not new; Cundall and Strack developed the discrete element method as a tool
for “fundamental research into the behaviour of granular assemblies” [5]. In the author’s view, there is
real potential for the use of discrete element studies to guide the development of conventional continuum
constitutive models.

As identified in the introduction; “unlike models developed for other engineering materials, a direct
link has yet to be made between (i) the degree of anisotropy in these models and (ii) the evolving material
fabric”. Perhaps in future it will be possible to use imaging techniques to identify and track constituent
platelets and grains throughout a loading process. This information could help guide the development of
continuum constitutive models based, not on an abstract representation of the material behaviour, but
on micro-mechanical fabric interaction. Thereby providing stronger links between soil classification tools
(such as plastic and liquid limits) and numerical models of macroscopic soil behaviour.

Throughout this thesis it has been shown that the efficiency of the implicit backward Euler stress
integration method is dependent on the adopted form for the yield function. Although the stress integra-
tion routines of the isotropic single-surface and anisotropic two-surface models were shown to be robust,
it is highly likely that the efficiency of these algorithms could be improved by finding a more appropriate
form of the yield function. In the author’s opinion, concepts from convex analysis2, such as identifying
the canonical form3 of the yield function function, could prove to be highly fruitful. Similarly, there is
considerable promise in investigating the potential use of instantaneous dissipative stress space to recast
the backward Euler stress integration algorithm.

2Convex analysis has seen little use in plasticity theory. Han and Reddy [8] (and Houlsby and Puzrin [10] for the
particular case of hyperplasticity) provide some information on re-casting plasticity theory in convex analysis terms.

3A canonical function is defined as a positively homogeneous function of degree one (a gauge or Minkowski function, see
Tiel [12], amongst others), minus unity.
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Appendix A

Spatial consistent tangent

In this appendix the derivation of the consistent spatial tangent stiffness matrices are presented for the
case of isotropic and anisotropic plasticity. δij denotes the Kronecker delta tensor with the following
properties

δij = 1 if i = j, δij = 0 if i 6= j, δij(·)i = (·)j and δijδjk = δik.

A.1 Isotropic elasto-plasticity

The spatial tangent stiffness matrix for finite deformation isotropic elasto–plasticity is given by

(
Dcst

σ

)
ijkl

=
1
J

∂τij

∂Fkq
Flq − δikσjl. (A.1)

Turning our focus to the formulation of the derivative of the Kirchhoff stress with respect to the defor-
mation gradient, using the chain rule, we obtain

∂τij

∂Fkl
=

∂τij

∂(εe
t)mq

∂(εe
t)mq

∂(be
t)rs

∂(be
t)rs

∂Fkl .

(A.2)

Using the elastic logarithmic strain definition from (3.14)1, we obtain

∂τij

∂Fkl
=

1
2

∂τij

∂(εe
t)mq

∂ ln
(
be
t

)
mq

∂(be
t)rs

∂(be
t)rs

∂Fkl ,

(A.3)

where ∂τij/∂(εe
t)mq is the small strain algorithmic tangent, (Dalg)ijmq. The derivative ∂ ln

(
be
t

)
mq

/∂(be
t)rs

can be calculated as a particular case of the derivative of an isotropic tensor function with respect to its
argument. Post multiplying the final product term on the right of (A.3) by Flq and substituting for the
trial elastic left Cauchy-Green strain tensor, (be

t)ij , we obtain

∂(be
t)rs

∂Fkl
Flq =

∂
(
∆Frw(be

n)wv∆Fsv

)
∂Fkl

Flq. (A.4)

Substituting for the increment in the deformation gradient ∆F

∂(be
t)rs

∂Fkl
Flq =

∂
(
Frx(Fn)−1

xw(be
n)wvFsy(Fn)−1

yv

)
∂Fkl

Flq. (A.5)
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Using the product rule

∂(be
t)rs

∂Fkl
Flq =

∂Frx

∂Fkl

(
(Fn)−1

xw(be
n)wvFsy(Fn)−1

yv

)
Flq +

∂Fsy

∂Fkl

(
Frx(Fn)−1

xw(be
n)wv(Fn)−1

yv

)
Flq,

= δrkδxl

(
(Fn)−1

xw(be
n)wvFsy(Fn)−1

yv

)
Flq + δskδyl

(
Frx(Fn)−1

xw(be
n)wv(Fn)−1

yv

)
Flq,

= δrk

(
(Fn)−1

lw (be
n)wvFsy(Fn)−1

yv

)
Flq + δsk

(
Frx(Fn)−1

xw(be
n)wv(Fn)−1

lv

)
Flq. (A.6)

Through rearrangement, we obtain

∂(be
t)rs

∂Fkl
Flq = δrk∆Fqw(be

n)wv∆Fsv + δsk∆Frw(be
n)wv∆Fqv,

= δrk(be
t)qs + δsk(be

t)rq. (A.7)

Combining (A.1), (A.3) and (A.7), we obtain the follow equation for the elasto-plastic spatial tangent
operator (

Dcst
σ

)
ijkl

=
1
J

Dalg
ijmq

∂ ln
(
be
t

)
mq

∂(be
t)rs

(
δrk(be

t)qs + δsk(be
t)rq

)
−δikσjl. (A.8)

A.2 Anisotropic elasto-plasticity

For anisotropic elasto-plasticity the spatial tangent operator is defined by (3.67), where
[
Dcst

β

]
ijkl

is given
by (

Dcst
β

)
ijkl

=
1
J

∂τij

∂(βt)ab

∂(βt)ab

∂Fkq
Flq. (A.9)

∂τij/∂(βt)ab = Dβ
ijab is the measure of the change in the return stress with respect to a change in the

trial backstress whilst freezing the other input variables1. Using the chain rule we obtain

(
Dcst

β

)
ijkl

=
1
J

Dβ
ijab

∂(βt)ab

∂(Re
t)cd

∂(Re
t)cd

∂Fkq
Flq, (A.10)

where
(βt)ab = (∆Λe)ac(βn)cd(∆Λe)ad, (∆Λe)ac = (Re

t)ae(Re
n)ce. (A.11)

Taking the derivative of the trial backstress with respect to the trial elastic spatial rotation, we obtain

∂(βt)ij

∂(Re
t)kl

=
∂(Re

t)ia

∂(Re
t)kl

Re
ba(βn)bc(Re

n)cd(Re
t)jd + (Re

t)iaRe
ba(βn)bc(Re

n)cd
∂(Re

t)jd

∂(Re
t)kl ,

= δikδalR
e
ba(βn)bc(Re

n)cd(Re
t)jd + (Re

t)iaRe
ba(βn)bc(Re

n)cdδjkδdl,

= δikRe
bl(βn)bc(Re

n)cd(Re
t)jd + (Re

t)iaRe
ba(βn)bc(Re

n)clδjk. (A.12)

Substituting (A.11)2 into (A.12)

∂(βt)ij

∂(Re
t)kl

= δikRe
bl(βn)bc(∆Λe)jc + δjk(∆Λe)ib(βn)bc(Re

n)cl. (A.13)

Using the following definition of the trial elastic rotation tensor

(Re
t)ij = (ve

t )
−1
ia (F e

t )aj = (ve
t )

−1
ia Fab(F p

n )−1
bj , (A.14)

1Note, that Dβ
ijab is the only term in (A.10) that depends on the particular constitutive model used.
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the derivative of (Re
t)cd with respect to Fkq in (A.10) becomes

∂(Re
t)ij

∂Fkl
=

∂(ve
t )

−1
ia

∂Fkl
Fab(F p

n )−1
bj + (ve

t )
−1
ia

∂Fab

∂Fkl
(F p

n )−1
bj ,

=
∂(ve

t )
−1
ia

∂(be
t)cd

∂(be
t)cd

∂Fkl
Fab(F p

n )−1
bj + (ve

t )
−1
ia δakδbl(F p

n )−1
bj ,

= (Lβ)iacd
∂(be

t)cd

∂Fkl
(F e

t )aj + (ve
t )

−1
ik (F p

n )−1
lj , (A.15)

where (Lβ)ijkl is the partial derivative of the inverse square root of the symmetric be
ij tensor with respect

to its argument

(Lβ)ijkl =
∂(be

t)
−1/2

∂(be
t)

∣∣∣∣
ijkl.

(A.16)

(Lβ)ijkl is calculated as a particular case of the derivative of a symmetric tensor function with respect
to its argument, analogous to the calculation of Lijkl required for the calculation of the isotropic spatial
tangent modulus. The trial left Cauchy-Green elastic strain tensor (be

t)ij is defined as

(be
t)ij = (F e

t )ia(F e
t )ja = Fib(F p

n )−1
ba (F p

n )−1
ca Fjc, (A.17)

taking the derivative of (be
t)ij with respect to the deformation gradient Fkl

∂(be
t)ij

∂Fkl
=

∂Fib

∂Fkl
(F p

n )−1
ba (F p

n )−1
ca Fjc + Fib(F p

n )−1
ba (F p

n )−1
ca

∂Fjc

∂Fkl
,

= δikδbl(F p
n )−1

ba (F p
n )−1

ca Fjc + Fib(F p
n )−1

ba (F p
n )−1

ca δjkδcl,

= δik(F p
n )−1

la (F p
n )−1

ca Fjc + Fib(F p
n )−1

ba (F p
n )−1

la δjk,

= δik(F p
n )−1

la (F e
t )ja + (F e

t )ia(F p
n )−1

la δjk. (A.18)

Multiplying (A.15) by the updated deformation gradient Flq we obtain

∂(Re
t)ij

∂Fkq
Flq = (Lβ)iacd

∂(be
t)cd

∂Fkq
Flq(F e

t )aj + (ve
t )

−1
ik (F e

t )lj , (A.19)

where the derivative of the trial left Cauchy-Green elastic strain tensor with respect to the deformation
gradient is given by

∂(be
t)cd

∂Fkq
Flq = δck(F p

n )−1
qa Flq(F e

t )da + δdk(F e
t )ca(F p

n )−1
qa Flq,

= δck(F e
t )la(F e

t )da + δdk(F e
t )ca(F e

t )la,

= δck(be
t)ld + δdk(be

t)cl. (A.20)

Substituting (A.20) into (A.19), we obtain

∂(Re
t)ij

∂Fkq
Flq = (Lβ)iacd [δck(be

t)ld + δdk(be
t)cl] (F e

t )aj + (ve
t )

−1
ik (F e

t )lj ,

= (Lβ)iakd(be
t)ld(F e

t )aj + (Lβ)iack(be
t)cl(F e

t )aj + (ve
t )

−1
ik (F e

t )lj . (A.21)

Using the definition of the trial elastic deformation gradient, (F e
t )ij = (ve

t )ie(Re
t)ej , (A.21) becomes

∂(Re
t)ij

∂Fkq
Flq =

(
(Lβ)iakd(be

t)ld(ve
t )ae + (Lβ)iack(be

t)cl(ve
t )ae + (ve

t )
−1
ik (ve

t )le

)
(Re

t)ej , (A.22)
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Combining (A.22) and (A.13)

∂(βt)ij

∂(Re
t)mn

∂(Re
t)mn

∂Fkq
Flq =

(
δiaRe

cb(βn)cd(∆Λe)jd + δja(∆Λe)ic(βn)cd(Re
n)db

)(
(Lβ)afkd(be

t)ld(ve
t )fe + . . .

(Lβ)afck(be
t)cl(v

e
t )fe + (ve

t )
−1
ak (ve

t )le

)
(Re

t)eb,

=
(
δia(∆Λe)ec(βn)cd(∆Λe)jd + δja(∆Λe)ic(βn)cd(∆Λe)ed

)
. . .(

(Lβ)afkd(be
t)ld(ve

t )fe + (Lβ)afck(be
t)cl(v

e
t )fe + (ve

t )
−1
ak (ve

t )le

)
,

=
(
δia(βt)ej + δja(βt)ie

)(
(Lβ)afkd(be

t)ld(ve
t )fe + (Lβ)afck(be

t)cl(v
e
t )fe + (ve

t )
−1
ak (ve

t )le

)
.

(A.23)

Substituting (A.23) into (A.10), we obtain the anisotropic component of the spatial stiffness tangent as

(
Dcst

β

)
ijkl

=
1
J

Dβ
ijmn

(
δma(βt)en + δna(βt)me

)
Vaekl,

=
1
J

(
Dβ

ijan(βt)en + Dβ
ijma(βt)me

)
Vaekl, (A.24)

where Vaekl is given by

Vaekl = (Lβ)afkd(be
t)ld(ve

t )fe + (Lβ)afck(be
t)cl(ve

t )fe + (ve
t )

−1
ak (ve

t )le. (A.25)

Using the symmetries Dβ
ijan = Dβ

ijna and (βt)en = (βt)ne, (A.24) becomes

(
Dcst

β

)
ijkl

=
2
J

Dβ
ijan(βt)enVaekl. (A.26)

Using the symmetries of (Lβ)afck and (be
t)ld, Vaekl reduces to

Vaekl = 2(Lβ)afkd(be
t)ld(ve

t )fe + (ve
t )

−1
ak (ve

t )le. (A.27)

Finally we can write
(
Dcst

β

)
ijkl

as

(
Dcst

β

)
ijkl

=
2
J

Dβ
ijan(βt)en

(
2(Lβ)afkd(be

t)ld(ve
t )fe + (ve

t )
−1
ak (ve

t )le

)
. (A.28)



Appendix B

Finite-element implementation

This appendix presents the matrix equations for the finite-element implementation of the finite-deformation
elasto-plastic framework described in Chapter 3. The general three-dimensional case is presented first
followed by the special cases of two-dimensional plane-strain and axi-symmetric analysis.

B.1 Three-dimensional implementation

The six-component stress and strain vectors were ordered according to (2.6). The nine-component mea-
sures used the following ordering

{σ} = {σxx σyy σzz σxy σyx σyz σzy σzx σxz}T . (B.1)

B.1.1 Deformation gradient

The increment in the deformation gradient is calculated through

[
∆F

]
=

[
[1] − [δF ]

]−1

, (B.2)

where the nine-component vector form of [δF ] is obtained through

{δF} = [G]{∆u}, and
[
δF

]
=

 {δF1} {δF4} {δF9}
{δF5} {δF2} {δF6}
{δF8} {δF7} {δF3}

 , (B.3)

where {δF1} refers to the first entry of the nine component vector obtained from (B.3)1. The incremental
nodal displacements {∆u} have the following format

{u} = {∆ux1 ∆uy1 ∆uz1 . . . ∆uxn ∆uyn ∆uzn}T , (B.4)
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and n is the number of nodes per element. The spatial non-linear nine-component strain displacement
matrix, [G], for three-dimensional analysis is given by

[
G

]
=



N1,x 0 0 . . . Nn,x 0 0
0 N1,y 0 . . . 0 Nn,y 0
0 0 N1,l z . . . 0 0 Nn,z

N1,y 0 0 . . . Nn,y 0 0
0 N1,x 0 . . . 0 Nn,x 0
0 N1,z 0 . . . 0 Nn,z 0
0 0 N1,y . . . 0 0 Nn,y

0 0 N1,x . . . 0 0 Nn,x

N1,z 0 0 . . . Nn,z 0 0


.

(B.5)

B.1.2 Jacobian matrix

The Jacobian matrix provides the link between the local element and the global finite-element co-ordinate
systems. The three by three matrix can be calculated through

[J ] =

 x,ξ y,ξ z,ξ

x,η y,η z,η

x,ζ y,ζ z,ζ

 =

 N1,ξ N2,ξ . . . Nn,ξ

N1,η N2,η . . . Nn,η

N1,ζ N2,ζ . . . Nn,ζ




x1 y1 z1

x2 y2 z2

...
...

...
xn yn zn

 (B.6)

where xi, yi and zi are the current global nodal co-ordinates, n is the number of nodes associated with
an element and Ni,(·) are the derivatives of the element shape functions with respect to the element local
co-ordinates ξ, η and ζ.

B.1.3 Inclined boundary conditions

Inclined boundary conditions were implemented using the transformation approach which applies the
inclined conditions exactly through rotation of components of the stiffness matrix and force vectors. The
global stiffness equation becomes

[T ][K1,1][T ]T [T ][K1,2] . . . [T ][K1,n]
[K2,1][T ]T [K2,2] . . . [K2,n]

...
...

. . .
...

[Kn,1][T ]T [Kn,2] . . . [Kn,n]




{δ̄u1}
{δu2}

...
{δun}

 =


{f̄oobf

1 }
{foobf

2 }
...

{foobf
n }


,

(B.7)

where (̄·) denote quantities associated with the rotated configuration and [T ] = [Tx][Ty][Tz] is the trans-
formation matrix, obtained from

[Tx] =

 1 0 0
0 cos(θx) cos(π/2 − θx)
0 cos(π/2 + θx) cos(θx)


,

[Ty] =

 cos(θy) 0 cos(π/2 − θy)
0 1 0

cos(π/2 + θy) 0 cos(θy)


,

[Tz] =

 cos(θz) cos(π/2 − θz) 0
cos(π/2 + θz) cos(θz) 0

0 0 1


.

(B.8)
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The solution procedure is given by:

(i) transform the stiffness matrix and the out-of-balance force vector for the nodes with inclined bound-
ary conditions though

[K̄(i, :)] = [T ][K(i, :)], [K̄(:, i)] = [K̄(:, i)][T ]T and {f̄(i)} = [T ]{f(i)},

where i denotes the nodal degrees of freedom;

(ii) solve the reduced transformed stiffness equation for the unknown displacements {δ̄u(j)} and reaction
forces {f̄r(k)}

{δū(j)}[K̄(j, j)] =
{
{f̄oobf(j)} − [K̄(j, k)]{δu(k)}

}
and {f̄r} = [K̄]{δū} − {f̄oobf},

where j and k denote the free (unknown) and fixed (known) degrees of freedom respectively; and

(iii) transform the displacements and reaction forces back into the original configuration

{fr(i)} = [T ]T {f̄r(i)} and {δu(i)} = [T ]T {δ̄u(i)}.

B.1.4 Undrained analysis

Undrained incompressible finite-element analysis can be implemented via the addition of the pore-water
pressure to the Gauss point stresses

{σ} = {σ′} + {σu}, (B.9)

where {σ′} are the effective stresses (the stress in a conventional drained analysis) and {σu} is the
pore-water pressure, given by

{σu} = Kf (εv){1}. (B.10)

Kf is the fluid bulk modulus, εv = (εxx+εyy+εzz) is the volumetric strain and {1} = {1 1 1 0 0 0}T .
The material point stiffness matrix becomes

[Dcst] = [Dcst′] + [Df ], where [Df ] = Kf

[
{1}{1}T

]
. (B.11)

Smith and Griffiths [1] recommended that the fluid bulk modulus be Kf ≥ 60K, where K = E/
(
3(1−2v)

)
is the bulk modulus of the material.

B.2 Two-dimensional implementation

B.2.1 Stress format

The implemented finite-element program used the following ordering of four-component stress and strain
vectors

{σ} = {σxx σyy σzz σxy}T and {ε} = {εxx εyy εzz εxy}T . (B.12)

B.2.2 Plane-strain

For plane-strain analysis the out-of-plane strain, εzz, is zero. However, for inelastic analysis the elastic and
plastic strains, in general are non-zero satisfying the condition that εe

zz = −εp
zz. The spatial non-linear
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four-component strain displacement matrix, [G], for two-dimensional plane-strain analysis is

[
G

]
=


N1,x 0 . . . Nn,x 0

0 N1,y . . . 0 Nn,y

N1,y 0 . . . Nn,y 0
0 N1,x . . . 0 Nn,x


.

(B.13)

The increment in the deformation gradient can be calculated through (B.3) with [G] given by (B.13).

B.2.3 Axi-symmetry

Axi-symmetric analysis is conveniently formulated in polar co-ordinates and accounts for the out-of-
plane circumferential strain, obtained through the ratio of the current to the original radial co-ordinate.
The spatial non-linear five-component strain displacement matrix, [G], for two-dimensional plane-strain
analysis is given by

[
G

]
=


N1,x 0 . . . Nn,x 0

0 N1,y . . . 0 Nn,y

N1/r 0 . . . Nn/r 0
N1,y 0 . . . Nn,y 0

0 N1,x . . . 0 Nn,x


,

(B.14)

where r is the updated radial co-ordinate of the Gauss point. Again, the increment in the deformation
gradient can be calculated through (B.3) with [G] given by (B.14). The element internal force vector is
obtained as [1]

{fe} =
ngp∑
i=1

[
Bn+1

]
i
{σn+1}i det

([
J
]
i

)
wiri, (B.15)

where ngp is the number of Gauss point associated with the element, [J ] is the Jacobian matrix and w is
the weight function. The element stiffness matrix is calculated from

[
ke

]
=

ngp∑
i=1

[
Gn+1

]
i

[
Dcst

σ

]
i

[
Gn+1

]T

i
det

([
J
]
i

)
wiri, (B.16)

where [Dcst
σ

]
is the spatial consistent tangent stiffness matrix. Note the addition of the current radial

co-ordinate, r, in the calculation of both the element stiffness matrix and force vector.
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Appendix C

Principal constitutive equations

C.1 Stress derivatives

The isotropic models in Chapters 4 and 5 were developed using principal stresses and strains. Their
implementation requires the following derivatives that were not included in the main body of the thesis
for the sake of brevity. The first derivative of ξ = tr[σ]/

√
3 with respect to stress is given by

{ξ,σ̂ } =
1√
3

{
1̂
}
, where {1̂} = {1 1 1}T . (C.1)

The derivative of ρ =
√

2J2, where J2 =
(
{ŝ}T {ŝ}

)
/2, {ŝ} = {σ̂} − ξ{1̂}/

√
3, with respect to {σ̂} is

{ρ,σ̂ } = {ρ,ŝ }{ŝ,σ̂ } = {ŝ}/ρ (C.2)

and the second derivative is obtained as

[
ρ,σ̂σ̂

]
=

ρ
[
J2,σ̂σ̂

]
− {ρ,σ̂ }{ŝ}T

ρ2
.

(C.3)

The derivatives of J2 and J3 = (s3
1 + s3

2 + s3
3)/3 are given by

{J2,σ̂ } = {ŝ}/ρ and {J3,σ̂ } = {s2s3 s1s3 s1s2}T + J2{1̂}/3. (C.4)

The second derivatives are

[
J3,σ̂σ̂

]
=

2
3

 s1 s3 s2

s3 s2 s1

s2 s1 s3

 and
[
J2,σ̂σ̂

]
=

1
3

(
3[I] − {1̂}{1̂}T

)
.

(C.5)

Taking the partial derivative of the Lode angle (2.9)3, we obtain

{θ,σ̂ } =
−
√

3
2 cos 3θ

(
J
−3/2
2 {J3,σ̂ } − 3

2
J3J

−5/2
2 {ŝ}

)
︸ ︷︷ ︸

{ϑ}

. (C.6)
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When on the extension meridian (θ = −π/6) and when on the compression meridian (θ = π/6), (C.6) is
indeterminate. Here l’Hôpital’s rule is used to construct the derivatives

{θ,σ̂ }θ=−π/6 =
ρ

2
√

6

[
ϑ,σ̂

]
{−1 1 0}T and {θ,σ̂ }θ=π/6 =

ρ

2
√

6

[
ϑ,σ̂

]
{0 1 − 1}T

, (C.7)

where the derivative of {ϑ}, see (C.6), with respect to {σ} is given by

[
ϑ,σ̂

]
= −3

2
J
−5/2
2

(
{ŝ}{J3,σ̂ }T + {J3,σ̂ }{ŝ}T + J3

[
J2,σ̂σ̂

])
+ J

−3/2
2

[
J3,σ̂σ̂

]
+

15
4

J3J
−7/2
2 {ŝ}{ŝ}T

. (C.8)

The second derivative of Lode angle with respect to {σ̂} is obtained as

[θ,σ̂σ̂ ] = 3 tan(3θ){θ,σ̂ }{θ,σ̂ }T −
√

3
2 cos(3θ)

[ϑ,σ̂ ]. (C.9)

C.2 Lode angle dependency ρ̄(θ)

This section provides the derivatives of the modified Reuleaux (mR) [1] and Willam-Warnke (W-W) [2]
deviatoric functions with respect to the principal stresses. When using anisotropic constitutive models
the stress return and consistent tangent must be formed in true, six-component, stress space. However,
due to the θ singularities at ±π/6, it is advantageous when working in six-component space to convert
to principal stress space find the derivatives of the Lode angle dependency (LAD) and convert back to
true stress space using the procedure given in Section C.3.

C.2.1 Modified Reuleaux

The derivative of the mR LAD (4.1) with respect to {σ} is given by

{ρ̄,σ̂ } = ρ̄,ρ̄ρ̄ ρ̄2,ϕ ϕ,θ {θ,σ̂ }, where (C.10)

ρ̄,ρ̄ρ̄ =
1
2ρ̄ ,

ρ̄2,ϕ = 2ā r̄ sin ϕ and ϕ,θ = 1 +
ā cos(5π/6 − θ)

r̄
√

1 − (ā sin(5π/6 − θ)/r̄)2
.

(C.11)

Second derivatives of ρ̄ and ϕ follow as

[
ρ̄,σσ

]
= {ρ̄,σρ̄ }{ρ̄,σ }T + {ρ̄,σϕ }{ϕ,σ }T + ρ̄,σϕ,σ

[
ϕ,σσ

]
, (C.12)

{ρ̄,σρ̄ } = − ār̄ sin ϕ

ρ̄2
{ϕ,σ }, {ρ̄,σϕ } =

ār̄ cos ϕ

ρ̄
{ϕ,σ }, ρ̄,σϕ,σ =

ār̄ sin ϕ

ρ̄
and (C.13)

[
ϕ,σ̂σ̂

]
= {ϕ,σ̂θ }{θ,σ̂ }T + ϕ,θ

[
θ,σ̂σ̂

]
, (C.14)

where

{ϕ,σ̂θ } =
ā

r̄

(
Sr̄2

(
1 − (Sā/r̄)2

)2 − ā2SC2

r̄2(1 − (Sā/r̄)2)
√

1 − (Sā/r̄)2

)
{θ,σ̂ }. (C.15)

Here C = cos(5π/6 − θ) and S = sin(5π/6 − θ).

C.2.2 Willam-Warnke

The W-W [2] LAD was used in Chapters 5 and 6 as the deviatoric yield criterion for the isotropic and
anisotropic Critical State constitutive models. The derivative of that LAD, as given by (5.21), with
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respect to θ is

ρ̄,θ =
a1S

(
b1(1 + 2C/b2) − 4C(a1C + b2)

)
b2
1 ,

where b1 = 2a1C
2+1 and b2 =

(
2a1C

2+a2

)1/2

.

(C.16)
Here C = cos(π/6 − θ) and S = sin(π/6 − θ).

C.3 Stress transformation

The following relations can be used to transform between six-component and principal stress and strain
space

{σ} = [Q]T
{

{σ̂}
{0}

}
, {ε} = [Q]−1

{
{ε̂}
{0}

}
and [D] = [Q]T [D̂][Q], (C.17)

where (̂·) denotes the principal stress and strain quantities. The transformation matrix is given by

[Q] =



(t1)2 (t2)2 (t3)2 t1t2 t2t3 t3t1

(t4)2 (t5)2 (t6)2 t4t5 t5t6 t6t4

(t7)2 (t8)2 (t9)2 t7t8 t8t9 t9t7

2t1t4 2t2t5 2t3t6 t1t5 + t4t2 t2t6 + t5t3 t3t4 + t6t1

2t4t7 2t5t8 2t6t9 t4t8 + t7t5 t5t9 + t8t6 t6t7 + t9t4

2t7t1 2t8t2 2t9t3 t7t2 + t1t8 t8t3 + t2t9 t9t1 + t3t7


,

(C.18)

where the components ti are associated with the trial elastic strain eigenvectors

[t] =

 t1 t4 t7

t2 t5 t8

t3 t6 t9


.

(C.19)
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Appendix D

General constitutive equations

D.1 Stress derivatives

The first derivative of ξ = tr[σ]/
√

3 with respect to stress is given by

{ξ,σ } =
1√
3

{
1
}
, where {1} = {1 1 1 0 0 0}T . (D.1)

The derivative of ρ =
√

2J2, where J2 = tr
(
[s]2

)
/2, [s] = [σ] − ξ[1]/

√
3 and [1] is the third order identity

matrix, with respect to {σ} is

{ρ,σ } = {ρ,s }{s,σ } =
{s}
ρ

[
δ
]

(D.2)

where [δ] = [I] − {1}{1}T /3. The derivatives of J2 and J3 = tr
(
[s]3

)
/3 with respect to {σ} are given by

{J2,σ } =
1

3



2σxx − σyy − σzz

2σyy − σxx − σzz

2σzz − σxx − σyy

6σxy

6σyz

6σzx


,

{J3,σ } =
1

9



(2σyy − σxx − σzz)(2σzz − σxx − σyy) − 9σ2
yz + 3J2

(2σxx − σyy − σzz)(2σzz − σxx − σyy) − 9σ2
xz + 3J2

(2σxx − σyy − σzz)(2σyy − σxx − σzz) − 9σ2
xy + 3J2

18σyzσxz − 6(2σzz − σxx − σyy)σxy

18σxzσxy − 6(2σxx − σyy − σzz)σyz

18σxyσyz − 6(2σyy − σxx − σzz)σxz


.

(D.3)

The second derivative of ρ with respect to stress is given by (C.3) but with the stress invariant derivatives
as follows. The symmetric second derivatives of J2 and J3 with respect to {σ} are

[J2,σσ ] =
1

3



2

−1 2

−1 −1 2

0 0 0 6

0 0 0 0 6

0 0 0 0 0 6


,

[J3,σσ ] =
2

3



sxx

szz syy

syy sxx szz

σxy σxy −2σxy −3szz

−2σyz σyz σyz 3σxz −3sxx

σxz 2σxz σxz 3σyz 3σxy −2syy


.

(D.4)
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Appendix E

Anisotropic model derivatives

This appendix provides the derivatives necessary for the backward Euler stress integration and consistent
linearisation of the anisotropic two-surface two-parameter Critical State hyperplasticity model presented
in Chapter 6. The derivatives are formed in true stress space with a compression positive convention.
The derivatives of the Lode angle with respect to stress will depend on the implemented Lode angle
dependency, the derivatives for the Willam-Warnke and modified Reuleaux deviatoric functions are given
in Appendix C.2.

Yield function

The derivative of the yield function (6.15) with respect to stress is given by

{f,σ } =
f,p
3

{1} + 2A2
f [δ]{sβ} + f,ρ̄ {ρ̄,σ }, where (E.1)

f,p = 2
(
B2

f

(
p − pχ − Af (1 − γ)

)
+ Bf ρ̄M(1 − α)

(
(p − pχ)2 − A2

f

)
. . .

+Af

{
(1 − γ){sβ} − Af{β}

}T

{sβ}
)

,

f,ρ̄ = 2Bf bM

(
(p − pχ)2 − A2

f

)
and bM = M

(
(1 − α)(p − pχ) + Rpcγ/2

)
.

The derivatives of the yield function with respect to pc, {σχ} and {β} are given by

f,pc = Rγ
[
Bf ρ̄M

(
[p − pχ]2 − A2

f

)
+ Af (2 − γ)

(
{sβ}T {sβ} − B2

f

)]
,

{f,σχ } = −{f,σ } and {f,β } = −2A2
f (p − pχ){sβ} − f,ρ̄ (p − pχ){ρ̄,sβ }. (E.2)

Plastic flow

The derivative of the direction of plastic flow (6.30) with respect to stress is obtained as

[g,σσ ] =
{g,σp }{1}T

3
+ 2A2

f

[
[δ] − {β}{1}/3

]
[δ] + {g,σρ̄ }{ρ̄,σ }T , where (E.3)

{g,σp } =
2
3

[
B2

f + 2Mρ̄Bf (1 − α)(p − pχ) + Af

{
Af{β} − 2(1 − γ){sβ}

}T

{β}
]
{1} . . .

+2Af [δ]
{

2(1 − γ){sβ} − Af{β}
}

,

{g,σρ̄ } =
4
3

(
BfdM (p − pχ)

)
{1} and [δ] = [I] − {1}{1}T /3.
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The derivatives of the plastic flow direction with respect to pc, {σχ} and {β} are given by

{g,σpc } = 2Rγ
{(

Bf ρ̄M(p − pχ) − Af (2 − γ){sβ}T {β}
)
{1}/3 + Af (2 − γ)[δ]{sβ}

}
,

[g,σσχ ] = −[g,σσ ] and

[g,σβ ] = 2A2
f

[{
(p − pχ){β} − {sβ}

}
{1}T /3 − (p − pχ)[δ]

]
− (p − pχ){g,σρ̄ }{ρ̄,sβ }T . (E.4)

Hardening law: p̃c

The derivatives of p̃c (5.25) are given by

{p̃c,σ }T = ∆γpn{1}T [g,σσ ], (p̃c,pc ) = ∆γpn{g,σpc }T {1}, (p̃c,∆γ ) = pn{g,σ }T {1},

{p̃c,σχ } = −{p̃c,σ } and {p̃c,β }T = ∆γpn{1}T [g,σβ ], where

pn =
∂p̃c

∂(∆εp
v)

=
pcn

(λ − κ)(1 − ∆εp
v/(λ − κ))2 .

(E.5)

The derivative of (6.68) with respect to the plastic strain increment is given by

[
σ̃χ,∆εp

]
=

{σ̃χ,||∆εp|| }{g,σ }T

||{g,σ }||
+ {σ̃χ,∆εp

v
}{1}T

, where

{σ̃χ,||∆εp|| } = Cχ[σ̃χ
denom]−2

{{
(1 − R){σ} + Rpcγ{1 + β}/2

}
(σ̃χ

denom) − {σ̃χ
num}

}
and

{σ̃χ,∆εp
v
} =

[σ̃χ
denom]−2{σ̃χ

num}
(λ − κ) .

(E.6)

Hardening law: {σ̃χ}

The derivative of {σ̃χ} (6.68) with respect to stress is given by

[σ̃χ,σ ] = ∆γ[σ̃χ,∆εp ][g,σσ ] + Cχ||{∆εp}||(1 − R)
[
σ̃χ

denom

]−1

, (E.7)

and with respect to the size of the outer surface

{σ̃χ,pc } = ∆γ[σ̃χ,∆εp ]{g,σpc } +
Cχ||{∆εp}||Rγ

2

[
σ̃χ

denom

]−1{
{1} + {β}

}
. (E.8)

The derivative of the evolution of the centre of the subloading surface with respect to the inclination of
the yield surfaces is

[σ̃χ,β ] = ∆γ[σ̃χ,∆εp ][g,σβ ] +
[
σ̃χ

denom

]−2
[
Cχ||{∆εp}||Rpcγ

2

[
σ̃χ

denom

]
+

(
{1}T {σ̃χ

num}
3

) [
I
]]

,

and with respect to the centre of the subloading surface and the plastic multiplier

[σ̃χ,σχ ] = ∆γ[σ̃χ,∆εp ][g,σσχ ], and {σ̃χ,∆γ } = [σ̃χ,∆εp ]{g,σ }. (E.9)

Hardening law: {β̃}

The derivative of {β̃} (6.70) with respect to the incremental plastic strain is given by

[β̃,∆εp ] = {β̃,〈∆εp
v〉 }(〈∆εp

v〉,∆εp
v
){1}T +

[
{β̃,∆εp

γ
} {g,σdev

}T

||{g,σdev
}||

]
[δ], (E.10)
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where {g,σdev
} = {g,σ }− ({g,σ }T {1}/3){1} is the deviatoric direction of plastic strains. The derivatives

of the ramp function are

(〈∆εp
v〉,∆εp

v
) = 1 for ∆εp

v > 0 and (〈∆εp
v〉,∆εp

v
) = 0 for ∆εp

v ≤ 0. (E.11)

The derivative of (6.70) with respect to 〈∆εp
v〉 is given by

{β̃,〈∆εp
v〉 } =

Cβ

(β̃denom)2

{
aβ(β̃denom){s − sχ} − (pβ − Rpcaβ/2){β̃num}

}
(E.12)

and with respect to ∆εp
γ

{β̃,∆εp
γ
} =

Cβxβ

(β̃denom)2

{
bβ(β̃denom){s − sχ} − (pβ − Rpcbβ/2){β̃num}

}
. (E.13)

The derivative of {β̃} with respect to stress is given by

[β̃,σ ] = ∆γ[β̃,∆εp ][g,σσ ] +
1
3
{β̃,p }{1}T + [β̃,s ][δ], where (E.14)

{β̃,p } =
{βn}(β̃denom) −

(
1 + Cβ(〈∆εp

v〉 + xβ∆εp
γ)

)
{β̃num}

(β̃denom)2
and

[
β̃,s

]
=

Cβdβ

[
I
]

(β̃denom)
. (E.15)

The derivatives of {β̃} with respect to {β} and {σχ} are simply given by

[β̃,β ] = ∆γ[β̃,∆εp ][g,σβ ] and [β̃,σχ ] = −[β̃,σ ]. (E.16)

The derivative of {β̃} with respect to the size of the outer surface is given by

{β̃,pc } = ∆γ[β̃,∆εp ]{g,σpc } +
Rγ

2(β̃denom)2

{
(β̃denom){βn} . . . (E.17)

−
(
1 + Cβ(〈∆εp

v〉 + xβ∆εp
γ − dβ)

)
{β̃num}

}
and finally with respect to the plastic multiplier

{β̃,∆γ } = [β̃,∆εp ]{g,σ }. (E.18)
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Geomaterials, 47–63, John Wiley & Sons Ltd., 1985.

W Han & BD Reddy, Plasticity: mathematical theory and numerical analysis, Springer, 1999.

K Hashiguchi, Mathematically consistent formulation of elastoplastic constitutive equations, in
Numerical Methods in Geomechanics, Innsbruck, Swoboda (ed.), 1988, 467–472.

K Hashiguchi, Verification of compatibility of isotropic consolidation characteristics of soils to
multiplicative decomposition of deformation gradient, Soils Found. 48 (2008), 597–602.

K Hashiguchi & Z-P Chen, Elastoplastic constitutive equation of soils with the subloading surface
and the rotational hardening, Int. J. Numer. Anal. Meth. Geomech. 22 (1998), 197–227.

K Hashiguchi & T Mase, Extended yield condition of soils with tensile yield strength and rotational
hardening Int. J. Plasticity 23 (2007), 1939–1956.

JE Hellings, Geotechnical failure: the cause is not always obvious and may be complex,
http://reliability.geoengineer.org/TC40/13ARC−Hellings.pdf, 2007, accessed 6th June 2009.

DW Hight, A Gens & MJ Symes, The development of a new hollow cylinder appparatus for
investigating the effects of principal stress rotation in soils, Géotechnique 33 (1983), 355–383.
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535–573.



Bibliography 247
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