

Durham E-Theses

Bootstrap mechanisms and unitary symmetries

Miah, Mohammad Abdul Wazed

How to cite:

Miah, Mohammad Abdul Wazed (1967) Bootstrap mechanisms and unitary symmetries, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/9343/

Use policy
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
Please consult the full Durham E-Theses policy for further details.

AND

UNITARY SYMMIFIRIES

by

Mohammad Abdul Wazed Miah

A thesis presented for the Degree of Doctor of Philosophy of the University of Durhain

$$
\text { July, } 1967
$$

0

Department of Mathematics, University of Durham, Durham.

Page No.
PREFACE 1
ABSIRACT 2
INIPRODUCTION 3
CHAPIER I : Unitary Symmetries

1. The Group $\operatorname{sU}(3)$ and its Applications to the particle physics:
a. The Spinor Representations and the Generators of SU(3) 11
b. The Irreducible Representations for the Mesons and Baryons 19
c. The Baryon-Meson Tukawa Type Strong Interaction
Lagrangians and F/D Ratic 25
d. The Symmetry Breaking Interactions and the Mass-
Formalae 31
2. The SU(6) Symmetry for the Hadrons:
a. The SU(6) Supermultiplets and the Baryon-Meson Yukawa
Couplings 38
b. The Symmetry Breaking Interactions in SU(6) 46
3. The $U(6,6)$ Symmetry for Hadrons:
a. The Supermultiplets of Baryons and Mesons and their Yukawa Couplings 53
b. Bargman-Wigner equations and the Final Form of the
Baryon-Meson Interaction Lagrangian 62
CHAPTER II : The Methods for Dymamical Calculations
4. The Partial Wave Bispersion Relations and N / D Methods 72
5. The Approximate N/D Methods:
a. The Determinantal Method 81
b. The Pole Approximation 86
c. Pagels Method 88
d. The Static Model and Bootstraps in SU(2) 95
CHAPIER III : A Reciprocal Bootstrap Mechanism for Quarks
6. Quarks-Meson Scattering and General Kinematics 102
7. The Crossing Matrices 108
8. The N/D Method and the Self-Consistent Solution for Quarks 117
CHAPTHR IV : An V / D Calculation for the Mass-Splitting of Baryons in Broken U(6,6)
9. Baryon-Meson Scattering and Related Processes 126
10. Helicity Formalisms and Partial Wave Amplitudes 139
11. Calculations of the Born Terms:
a. The Birect Pole Terms 155
b. The Baryon Octet Brchange Born Terms 164
c. The Baryon Decouplet Exchange Born Terms 190
12. The N/D Methods and the Results 197

APPERDIX A : Phase Conventions and SU(3) Vertices
APFEMDIX B : Calculations of SU(3) Coupling-Coefficients
APPENDIX C : Helicity Formalism and Rotation Matrices

APPEITDIX D : Some Useful Relations for the Calculations
of Exchange Born Terms

LIV

REHFERENCISS

PREAPACE

The work presented in this thesis was carried out in the Department of Mathematics, University of Durham, during the period October 1964 to December 1966, under the supervision of Professor E.J.Squires. The author expresses his thanks to Professor Squires for the continued help, guidance and the keen interest he showed in his work. The author is also grateful to him for his kindly reading through the manuscript. He also wishes to express his thanks to Dr. D.B. Fairlie for many useful discussions.

Except where mentioned in the text, the work described in this thesis is original and has not been submitted in this or any other university for any other degree. The thesis is mainly based on a paper by the author and two other works carried out in collaboration with Dr. M. Huq. The author is grateful to him for his permission to include the joint works in this thesis. Finally, the author wishes to express his acknowledgement to the Pakistan Atomic Rnergy Commission and the British Ministry for Overseas Development for a financial grant under the Colombo Plan.

ABSMRACH

We stuay the consequences of the applications of the 'Bootstrap' hypothesis to the Unitary Symmetries. The groups $8 \cup(3)$, gu(6), $\boldsymbol{U}(6,6)$ and their applications to the strong Interactions of the Madrons are discussed in the firat Chapter. In the second Chapter, we discuss some of the mathods that have been used in the past in dypamicell (bootstrap) calculations.

In the 'third Chapter, we consider the P-wave quark-pseudoscalar meson Octet saattering and investigate whether the existeane of the three quarks, Q, which belong to the apinor representation of BU(3) and are supposed to have fractional charges, can be explained in a self-consistent scheme. The calculation shows that theme existis a reciprocal bootstrap relationship between quarks, Q and acme other particles, Q which have the baryon number $1 / 3$, apin $3 / 2$ and belong to the 15-dimenaional representation of sw(3), Using the daterminantal method the self-conaistent values we have obtained are: in 2429 Mev.,
 respectively the masses and couplings of Q and Q^{*}.

In the fourth Chapter, we consider the meson-baryon soattering in the comtext of $U(6,6)$, symmetry and study the mass-splittinge of the bayyon Octet and Decouplet by K / D method. It is asaumed that the $\mathrm{gu}(3)$ aymmetry is approximately exsct so that the masses of the baryon Octet and Decouplet obtained by using the $v(6,6)$ vertices in the calculation ahould correspond roughly to their respective gU(3) degenerate masses. Although the resuits are very much cut off-dependent, the oaleulation show that by varying the cut off, s_{0} and $v(6,6)$ ooupling, g^{f} parameters it is possible to obtiain the masosplittings in the right airection. Considering the very much involved nature of the aldulations; one may conclude that the results agree reasomably well with the known experimental Pacte.

IFHRODGGYTEN

Abstract

The s-matrix theory first proposed by Heisenberg ${ }^{\text {1) }}$ has played a very inportant role in explaining the dymamics of the strong interaction of hadrons. A considerable number of strongly interacting particles is now known. In the early attempts to deal with these particles theoretically, one usually followed the line of attack that proved so successful in quantum electrodynamics. In such a treatment, one usually chooses a simple Lagrangian with renormalised couplings and given masses and other physical observables are calcalated by a pertarbation expansion. This powar series method has been successful in electrodysamics where the coupling is small but with the stronger interaction the theory runs into difficulties which arise due to the divergence of the power series expansion. In fact, when some of the particles are resonances or bound states by analogy with the maclear physics, the pertarbation expansion does not converge at all. In view of these difficulties that one encounters while dealing with strong interaction, the need for modifled apprach was strongly felt. Such an approach which works even where the perturbation expansions fail, was provided by the s-matrix theory. The main reason for the success of the 8-matrix approach lies in the fact that it provides a meethg ground between theory and experiment. As a matter of fact, all the experimental information is related to the scattering matrix, $\$$.

Ignoring some possible parsmeters which one can introduce into s-matrix but waich cannot be determined by S-matrix theory, all strongly interacting particies are assumed to be dynamical composites of each other in s-matrix theory. One may, then, try to determine the properties of these particles by studying directly the properties of the s-matrix. It is assumed that the acattering amplitudes are analytic functions of the energy and the monentum transfers except for the singularities that are associated with the unitarity conditions in the three chamels. (The other approach of considering the scattering matrix as analytic functions of the angular momentum his led to the proposition of the theory of Regge poles and from the view-point of this theory all strongly interacting particles are assumed to lie on Regge trajectories ${ }^{2)}$.) The singularities in the physical region of any of the three channels are connected with the unitarity of the \mathbf{s}-matrix in the physical region of the channel concerned. The forces which are supposed to be responsible for causing the scattering arise due to the exchanges of particles in the two other crossed channels and consequently the singalarities in the unphysical regions of a scattering channel are connected with the unitarity conditions in the physical regions of the relevant crossed channels. The "nearby' singularities arise from the lighter systems that can be exchanged in the related crossed channels and the "faraway" singularities correspend to the exchanges of the heavier or the multiparticle
configurations. The range of the forces is roughly inversely proportional to the masses of the systems that are exchanged and the strength of the forces corresponds to the discontinuities of the amplitude across these branch euts or to the residues of the amplitude evaluated at the positions of the poles if the singularities arise due to the occurrence of the poles. Thus, by studying the analytical properties of the scattering amplitude, one can determine, at least in principle, all the properties of the strong interaction and indeed of the strongly interacting particles.

Following the above procedure, one may try to determine the couplings and the masses of all the particles that may exist in nature but as the above programme is very complicated, one has to make some approximation in the calculations. These approximations usually consist in the considerations of the two-particle states in the unitarity relation and of the exchanges of single particle or the lightest possible systems in the crossed channels. Bootstrap mechanism is one of such approximate methods in which one imposes the self consistency zequirement in order to evaluate the couplings and the masses of the particles. In other words, one assumes in such calculations that all the strongly interacting particles are dynamical composites of each other with the binding forces coming from the exchange in the relevant crossed channels of the particle
themselves and in consequence one deals with a self-supporting mechanism which makes the calculation mach simpler. This idea of bootstrap mechanism arose in the early work of Chew and Mandelstam 3) on $\pi \pi$-scattering. The most striking feature of the $\pi \pi$-scattering is the p-meson, the $I m 1, J=1^{-}$resonance at about 760 Mev with a width of about 110 Mev. If we consider $\pi \pi$-scattering, the lightest system that can be exchanged in tae crossed channel is that of two pions. As the low energy $\pi \pi$-scattering is dominated by $I=1 \%, J=I^{-}$resonance, one may assume that the two-pion system in the crossed channel also prefers to be in the above resonant state. Forgetting that p-meson is unstable, one may consider the contribution of the ρ-meson exchange and thereby use the mass and coupling of this particle as the respective impat values in the calculation. Assuming that there is no other particle in the state $I=1, J=1^{-}$, one further imposes the condition that the values of the input mass and coupling of the particle under consideration be equal to those of the output mass and the coupling. This is what is demanded by the self consistency requirement. Following the above procedure, the self-consistent values obtained by Zachariasen ${ }^{4}$) for the mass and width of p-meson were roughly 350 Mev and 110 Mev respectivaly. The above calculation was carried cut a bit further by Zachariasen and Zemach ${ }^{5}$) who also considered the effects of the nomehannel and the results they obtained for the mass
and the couplings of the ρ－meson were in reasonably good agreement with the experimental ones．

The bootstrap hypothesis was further extended to reciprocal bootstrap by chew ${ }^{6)}$ in comnection with the INW＊problem．In this $^{\text {（ }}$ hypothesis，the maleon II is assumed to be a pionwucleon composite with the dominant force coming from the F^{*} exchange and vice versa． This problem has been inveatigated，in some detail，by Abers and Zemach ${ }^{7}$ ）who have calculated the mass and coupling of N ss resonance． In spite of the limitation of the calculational method used，the results they have obctained are in reasomably good agreement with the experimental ones．

The reciprocal bootstrap hypothesis of Chew has also been applied to $\mathbb{S U}(3)$ symmetry ${ }^{8)}$ ．In the $s u(3)$ symuetry scheme，the eight spin $\frac{1}{2}$ baryons and the ten apin $3 / 2$ baryon resonances belong respectively to the eight and ten dimensional irreducible representations of si（3）．In the psendoscalax octet and baryon octet scattering both the initial and the final states of both the direct（s）channel and the crossed（u）chamel consist of the irreducible representations which are obtained from the reduction of the direct product of two octets and these are as follows： $8 \mathbb{8}=1+8 \leq+8 A+10+10 *+27$ ． It is；therefore，evident⿱⿱⿻丷木女⿱⿰㇒一乂凵，from the above reduction that／ireciprocal bootstrap relationship between the baryon octet and the decouplet may exist．This aspect of sw（3）symmetry has been investigated by
a number of authors ${ }^{9 \text {) }}$. who have shown that such a reciprocal bootstrap relationship between the baryon octet and the decouplet does indeed exist.

Being encouraged by the success of the above and other ${ }^{10}$) sis (3) bootstrap calculations, we have carried oat an investigation in order to examine whether the existence of the quarks ${ }^{11)}$, which in the simplest scheme belong to the three dimensional representation of $\$ U(3)$ and have fractional charges, can be explained in a self-consistent scheme. This problem has been discussed in chapter III. We consider the quark and the pseudoscalar meson oetet scattering and adopt the 'bootatrap' hypothesis in which all the atrongly interacting particles are supposed to be composites of each other. Ir particular, we have used the analogy.with the $\mathrm{FH}-\mathrm{IT}$ \% bootstrap of Chew and its $\mathbb{S E}(3)$ extension discussed above.

In chapter IV we consider the mesom-baryon scattering in the context of $\mathbf{U}(6,6)$ symmetry ${ }^{12)}$ and investigate the mass-splitting between the baryon octet and the decouplet by using the well_known I/D method of Chew and Mandelatam 15). It _is assumed that the su(3) symmetry is exact so that the mass of the baryon octet corresponds to the average mass of the eight spin $\frac{1^{+}}{}{ }^{+}$baryons and that of the baryon decouplet to the average mass of the ten spin
$3 / 2^{+}$baryon resomances. As these $\mathbb{E v}(3)$ maltiplets beleng to the same 364-dimensional irreducible representation of $\boldsymbol{y}(6,6)$ symmetry, they are supposed to have the same mass from the view-point of $U(6,6)$ theory. Now, if the $\mathbb{E}(6,6)$ vertices are used in the calculations, then it is expected that by using the $2 \pi / D$ method, as has been used by a number of authors ${ }^{10,14}$) in order to obtain the masis-splittings of sU(3) multiplets, we shall, to a reasonable extent, get the $50(3)$ degenerate masses of the baryon octet and decouplet. In our calculations, we have followed the hypothesis of $\mathrm{N}-\mathrm{NH}^{*}$ bootstrap of Chew and consequently considered that the forces responsible for the binding of the baryon octet and decouplet come predominantly from the exchanges in the crossed (u) chammels of these $84(3)$ maltiplets themselves. This problem, is in fact; a multi-channel one. The method of constructing the exchange Born terms and other complicated aspects of the problem have been discussed in the above mentioned chapter.

In Chapter I, we have discussed the $80(3)$, $8 \mathbb{E}(6)$ and $\mathbb{E}(6,6)$ symmetry theories. Special emphasis has been given on the discussion of how the baryons and mesons are assigned to the irreducible representations of these groups. In particular, we have-discussed in detail how the $\mathrm{U}(6,6)$ baryon-meson vatices, which we use in our calculation, are constructed. Chapter II has been devoted to the discussion of same of the methods that have been used
in dymamical and, in particular, in the bootstrap calculations. We have discussed the advantages and disadvantages of the different methods and apecially-mentioned the details of the method we have used in our calculations.

In amy calculation involving higher symetry, particularly, the $\oiint \mathbb{m}(3)$ symmetry, one needs to fix the phases of the eigenstates of the maltiplets of the symmatry concerned. This is required for writing down the SU(3) vertices which can be used in calculating the $S U(3)$ coupling coefficients. The Appendices A and B have been devoted to that end. In the Appendices C and D we have mentioned the details of the heliaity formalisms and given some useful relations which facilitate the calculations of the exchange Born terms which have been used in the investigation of baxyon oetet and decouplet mass-splitting.

Unitayy Symmetries

1. The Group SU(3) and its Applications to the Particle Physics.

a. The Apinor Representations and the Generators of SU(3):

The basic representation of the group si(3) is formed by three quarks ${ }^{11)}, q_{1}, q_{e}, q_{3}$ whose wave function we denote by \dagger_{α}, $\alpha=1,2,3$. In analogy vith Selkata Model ${ }^{15}$), we take q_{1} and q_{2} as isospinor with zero strangeness and q_{s} isosinglet with minus one strangeness. The assigment of minus one strangeness quantum number to the isosinglet necessanlly follows from the fact that we are to construct the states of the strange particles from the fields of the basic ones. We then assume the invariance of the strong interaction under a transformation

$$
\begin{equation*}
\downarrow \rightarrow u \downarrow \tag{1.1}
\end{equation*}
$$

where the transformation matrices u are taken to be unitary as well as unimodular. The set of such matrices u form a unitary unimodular group, denoted by BE(3) and, in particular, these matrices form the 3-dimensional representation of st(3). The unitary and the unimodularity properties of these transfornation matrices are respectively given by,

$$
\begin{gather*}
u^{+} u=u u^{+}=1 \tag{1.2a}\\
\operatorname{det} u=1 \tag{1.2b}
\end{gather*}
$$

In sW(3) there is an inequivalent three dimentional representation, called the contragradient representation and is denoted by $\overline{3}$. The three antiquarks, $\bar{q}_{1},{\overline{q_{2}}}_{2},{\overline{q_{3}}}_{3}$, are taken to form the basis of this contragradient representation. Denoting the waverfanction of the antiquarks by $\boldsymbol{F}^{\alpha}(a=1,2,3)$, the transformation properties of the antiquarks are,

$$
\begin{equation*}
\bar{申} \rightarrow \overline{\psi u}{ }^{-2} \tag{1.3}
\end{equation*}
$$

where u^{-1} is the inverse of the transformation matrix u. The relation (1.3) follows from the transformation properties of the contragradient vectors which we, here, associate with the antiparticles.
 (1.2a) and (1.2b), involve 8 real parameters which vary in a continuous fashion thus giving rise to the elements of the group which lie infinitesimally close to any given one. Moreover, the group sf(3) is also compact Lie Group. From the last property of su(3) it followns that any finite dimensional representation of gef(3) is, by Weyl's $\mathrm{s}^{16)}$ famous theorem, equivalent to a unitary representation. Therefore, the transformation matrix u can be expressed in the form,

$$
\begin{equation*}
u=\exp \left(i e^{H} F_{\mu}\right) \tag{1.4}
\end{equation*}
$$

where the summation over the repeated index is implied. The e^{4} are real and the F_{μ} are the generators of gv(3). In sU(3) there are 8 such hermitian and traceless operators, and in this particular representation these are, 3×3 hermitian traceless matrices, the traceless property being followed from the unimodularity condition of the transformation matrices u. Gell-Mana ${ }^{8)}$ has given such a set of 8 hermitian traceless matrices which are the following;

$$
\begin{align*}
& F_{1}=\frac{1}{2}\left|\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right| F_{2}=\frac{1}{2}\left|\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right| F_{3}=\frac{1}{2}\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right| \\
& F_{4}=\frac{1}{2}\left|\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right| F_{5}=\frac{1}{2}\left|\begin{array}{ccc}
0 & 0 & -1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right| F_{6}=\frac{1}{2}\left|\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right| \\
& F_{7}=\frac{1}{2}\left|\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right| \quad F_{8}=\frac{1}{2 \sqrt{3}}\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right| \tag{1.5}
\end{align*}
$$

where we have chosen the normalisation such that $\mathrm{Tr}_{\mathrm{i}}^{\mathrm{T}} \mathrm{m}_{\mathrm{I}}=1 / 2$. The set of above matrices satisfy the commutation relation,

$$
\begin{equation*}
\left[F_{i}, F_{j}\right]=i f_{i j k} F_{k} \tag{1.6}
\end{equation*}
$$

where $f_{i j k}$ is completely antisymmetric in its indices and vanishes
whenever two indices are equal. The values of the $f_{i f i k}$ have been given by Gell-Mam ${ }^{8)}$. Correspending to an arbitrary N-dimensional rapresentation of $\mathrm{gH}(3)$, the above generators $F_{1},(i=1, \ldots, 8)$ are $N \times N$ matrices and also satisfy the same commatation relation (1.6) with the same structure constants $f_{i j k}$. Sometimes it is convenient to work with a set of nine real hermitian and traceless operators which in SJ(3) space has the following representations,

$$
\begin{equation*}
\left(A_{0}^{\mu}\right)_{i j}=8_{\mu i} \delta_{0 j}-\frac{1}{3} \delta_{\mu v} \delta_{1 j} \tag{1.7}
\end{equation*}
$$

where $\left(A^{1} k\right)^{+}=A_{i}^{k}$ and $A_{1}^{1}+A_{2}^{2}+A_{3}^{3}=0$ so that only 8 of them are independent. The commatation relations which the above operators (1.7) satisfy are very simple and given by,

$$
\begin{equation*}
\left[A_{0}^{\mu}, A_{p}^{\lambda}\right]=\delta_{0}^{\lambda} A_{p}^{\mu}-8_{p}^{\mu} A_{0}^{\lambda} \tag{1.8}
\end{equation*}
$$

where, $\mu, 0, \lambda, p=1,2,3$.

We now use the familiar technique of considering the infinitesimal generators of $\min (3)$ to be operators which have physical significance. Firstly, we note that the group 8σ (3) is of rank 2. Thus, we can construct only two independent and matually oommating operators from the infinitesimal generators of diagonalised in any representation. Again, we know two operators, namely the hypercharge and a component of the isotopie sp-in
operator which commate with each other. Thus, we can choose two of the diagonal elements to be the hypercharge Y and the third. component of the isotopic spin I_{s}. The choice of I_{s} is purely conventional and just fixes the direction of quantisation of the isotopic spin. The other components of the isotopic apin do, in fact, commute with Y but not with I_{3}. Thus, they cannot _ be simultaneously diagonalised with I_{3}.

Let us now consider the eigenvalues of I_{s} and I in the triplet representation. We have already seen (1.5) that there are two operators $\mathbf{F}_{\mathbf{s}}$ and \mathbf{F}_{8} which are diagonal and commute with each other. F_{s} is already in the firn which account for the isotopic spin content of the triplet. For the hypercharge \mathbf{Y} we redefine \dot{F}_{8} in analogy with the octet model ${ }^{8)}$ as $Y=\frac{2}{\sqrt{3}} F_{8}$. Following these prescriptions we write down the eigenvalues of the basis vectors of the triplet representation in table 1.1 in which we also mention the baryon mumber and charges which we calculate by using the Gell-Mann Mishijima formala ${ }^{17 \text {). Eigenvalues of these }}$ operators corresponding to the contragradient representation are also mentioned in the same Table 1.1.

Table 1.1

From the six non-diagonal operators in (1.5) we can obtain a set of six isotopic spin and hypercharge changing operators. As a result, we can establish the relations between the operators in (1.7) with those in (1.5) as follows:

$$
\begin{align*}
& I_{+}=A_{2}^{1}=F_{1}+i F_{2} ; I_{-}=A_{1}^{2}=F_{1}-i F_{2} ; \\
& I_{3}=\frac{1}{2}\left(A_{1}^{1}-A_{2}^{2}\right) ; U_{+}=A_{3}^{2}=F_{6}+i F_{7} ; U_{-}=F_{6}-1 F_{7} ; \\
& U_{3}=\frac{1}{2}\left(-I_{3}+\frac{3}{2} Y\right) ; V_{+}=A_{3}^{1}=F_{4}+i F_{5} ; V_{-}=F_{4}-i F_{5} ; \\
& V_{3}=\frac{1}{2}\left(I_{3}+\frac{3}{2} Y\right) ; Y=-A_{3}^{s} \tag{1.9}
\end{align*}
$$

From (1.8) and (1.9) we obtain the following commatation relations:

$$
\begin{aligned}
& {\left[I_{s}, I_{+}\right]= \pm I_{ \pm} ;\left[I_{3}, U_{+}\right]=\mp \frac{1}{2} \mathbb{U}_{ \pm} ;\left[I_{3}, V_{+}\right]= \pm \frac{1}{2} V_{ \pm}} \\
& {\left[Y I_{+}\right]=0 ;\left[Y U_{+}\right]= \pm U_{ \pm} ;\left[Y, V_{ \pm}\right]= \pm V_{ \pm}}
\end{aligned}
$$

(1.1.0a)

$$
\begin{aligned}
& {\left[I_{+} I_{-}\right]=2 I_{s} ;\left[U_{+} U_{-}\right]=-I_{s}+\frac{3}{2} Y_{;}\left[V_{+}, V_{-}\right]=I_{3}+\frac{3}{2} Y} \\
& {\left[I_{-}, V_{+}\right]=U_{+} ;\left[V_{-} I_{+}\right]=U_{-} ;\left[U_{-} I_{-}\right]=V_{-} ;} \\
& {\left[I_{+}, U_{+}\right]=V_{+} ;\left[V_{+}, U_{-}\right]=I_{+} ;\left[U_{+}, V_{-}\right]=I_{-} \quad(1.100)}
\end{aligned}
$$

The relations (1.9) and (1.0) are extremely useful in deternining the relative phases (which we discuss in the Appendix A) among the eigenstates as well as in calculating the eigenvalues for the Casimir operators of $\operatorname{sU}(3)$ correaponding to an irreducible representation of $\mathrm{SU}(3)$.

We also note that there is a difficulty in the classification of the eigenstates in a representation with only Y and I_{s} as diagonal, the reason being that in scme representations more than one state may have the same Y and I_{3}. This incomplete classification is the result of the fact that the group su(3) is of wank 2 and has 8 generators. Therefore, we need $\frac{1}{2}(8-3 \times 2)$
i.e. one more operator which commutes with Y and I_{s} and does not commate with all other generators of the group; lut as the group su(3) is of rank 2 we cannot have any other linear operator commating with Y and I_{s}. Therefore, we have to consider the nonLinear operator $|I|^{2}$ which conmates with Y and I_{s} and not with the other generators of su(3). Thus, a complete identification of the eigenvectors in an irreducible representation of su(3) can be obtained by specifying for each eigenvector the corresponding I, I_{3}, I eigenvalues.

b. The Irreducible Representations for Mesons and Baryons:

In the last section we have discussed the two inequivalent spinor represcatations of $8(3)$. The bases of those two representations are respectively the three quarks and their antiparticles. The philosophy now is to construct all the states from the fields of the three quarks and their antiparticles. The states so constructed from the triplets, in general, form the bases of some irreducible representations of sis (3). The job is then to identify the states of a particular irreducible representation with a set of physical states, i.e. particles, resonances, etc. For that matter, we have to look for the subquantum numbers that a particular representation contains and find a set of known particles which possess those quantum numbers. As the transformations of $B(3)$ commate with the apace-time transformation, the particles which we assign to a particular representation mast have the same spatial properties, i.e. spin, parity, baryon number etc. In particular, the partiales belonging
 the particles forming a supermaltiplet are indistingaishable from the point of view of exact symmetry. However, the group has a set of operators which allow us to allocate different symmetry quantum numbers to the various members of a supermultiplet. As we have discussed before, these quantwn mumers are $I_{,} I_{\boldsymbol{s}}, X$ which are
sufficient for the complete identification of the various states in an irreducible representation of $B 6$ (3).

Let us now go back to the quark-medel and construct the various states which we shaill identify with the set of known particles. First, we construct the states for the pseudoscalar and vector mesons. As these particles have zero baryon number thet corresponding states can be constructed from the quarks and antiquarks combination. Thus, we expect a representation for either of the mesons in the direct product $\overline{3} \times 3$ representation. The technique of reducing this direct product representation is well known ${ }^{18 \text {) so that we have, }}$

$$
\begin{equation*}
\overline{3} \otimes 3=1 \oplus \underset{\sim}{8} \tag{1.11a}
\end{equation*}
$$

In terms of the wave functions of the quarks and antiquarks we have,

$$
\begin{align*}
\dot{\phi}^{\alpha} \phi_{\beta} & =\frac{1}{3} \delta_{\beta}^{\alpha} \dot{\phi}_{\lambda}^{\lambda} \phi_{\lambda}+\left\{\bar{\phi}^{\alpha} \phi_{\beta}-\frac{1}{3} \delta_{\beta}^{\alpha} \boldsymbol{\phi}^{\lambda} \phi_{\lambda}\right\} \\
& =\frac{1}{3} \delta_{\beta}^{\alpha}-\dot{\phi}_{\lambda}^{\lambda} \dot{\phi}_{\lambda}+\phi_{\beta}^{\alpha} \tag{1.11b}
\end{align*}
$$

In (1.1.1b) the first term is the trace of the mixed tensor of rank 2 and has only one component which transforms like a scalar wader SU(3). The second term is a traceless mixed tensor and has onily eight independent components. The additive euantum mambers I_{3} and. Y of the tensor $\phi_{\vec{B}}^{\alpha}$ can be calcalated from the corresponding quantum numbers of the components of the constituent quarks. We then find thet the eight dimensional irreducible representation
formed by the traceless mixed tensor ϕ_{β}^{α} consists of two isotopic doublets $(Y=1,-1)$, one isotopic triplet $(X=0)$ and one isotopic singlet $(\bar{Y}=0)$ and all these states have zero baryon number. We can, therefore, associate them with the pseudoscalar as well as the vector mesons. For the pseudoscalar mesons we make the following identifications:

$$
\begin{aligned}
& \mathbb{P}_{2}^{2}=\Phi_{2}^{2}: \pi^{+} \\
& P_{2}^{2}=\phi_{2}^{1}: \pi^{-} \\
& P_{1}^{3}=\phi_{1}^{3}: \bar{K}^{+} \\
& P_{8}^{1}-\phi_{s}^{1}: K^{0} \\
& \mathrm{P}_{8}^{2} \cdot \boldsymbol{\phi}_{3}^{2}: \overline{\mathrm{K}}^{0} \\
& P_{2}^{3}-\phi_{2}^{3}: K^{-} \\
& \frac{1}{\sqrt{2}}\left(P_{2}^{1}-F_{2}^{2}\right)-\frac{1}{\sqrt{2}}\left(\phi_{1}^{1}-\phi_{2}^{2}\right)=\pi^{0} \\
& \frac{\sqrt{6}}{2} P_{s}^{s}=\frac{\sqrt{6}}{2} \phi_{3}^{3}-\eta
\end{aligned}
$$

Where the identifications of the last two in (1.12) can be obtained by using the traceless property of the mixed tensor and orthogonality
condition of the states π^{0} and η. The pseudoscalar meson octet can then be written in the following form:

Similar associations can be made with the eight vector mesons and written in the same form as (1.12'). Thus, writing the mixed tensor for the eight vector mesons as $\mathrm{V}_{\boldsymbol{\alpha}}^{\boldsymbol{\beta}}$, we have

$$
V_{a}^{\beta}=\left|\begin{array}{ccc}
\frac{\rho^{0}}{\sqrt{2}}+\frac{\rho_{0}^{0}}{\sqrt{6}} & \rho^{*} & K^{*^{*}} \tag{1.13}\\
\rho^{-} & -\frac{1}{\sqrt{2}} \rho_{0} \pm \frac{1}{\sqrt{6}} \omega_{0} & K^{* 0} \\
K^{*-} & \bar{K}^{* 0} & \\
& & -\frac{2}{\sqrt{6}} \omega_{0}
\end{array}\right|
$$

where ω_{0} is a mixed state of the two Physical isosinglets and ω_{0}

This admixture of the two states appears when the pure SU(3) symmetry is broken ${ }^{8)}$. We might as well speculate that the isosinglet member of the pseudoscalar octet could be an admixture of the isosinglet $\eta(550)$ and the recently discovered isosinglet $x^{0}(960)$. However, from the large difference in X^{0}, η masses, the amount of the mixing is assumed to be negligible.

We now construct the states for the baryon and baryon resonances. As the quarks have the baryon number $1 / 3$, we need three or the multiple of _three quarks to form the baryon states. Considering the product of three quarks' wave functions we have,

$$
\Psi_{\alpha} \varphi_{\beta} X_{\lambda}=\nabla_{[\alpha \beta \lambda]}+\Psi_{[\alpha \beta] \lambda}+\Psi_{[\beta \lambda] \alpha}+D
$$

where $V_{[\mu \beta \lambda]}$ is completely antisymmetric in its indices, [ap] $^{[\mu \beta}$ are antisymmetric between the interchange of the indices $\alpha \beta$ and ${ }^{\text {D }}\{\mu \beta \lambda\}$ is completely symmetric. The tensor $\Psi_{[\mu \beta] \lambda}$ has eight independent components, and ${ }_{\{\mu \beta \lambda\}}$ has 10 independent components. Now, using the Levi-Civita tensor $\epsilon^{a \beta 8}$ we can write,

$$
B_{\lambda}^{8}=\epsilon^{\mu \& 8} \Psi_{[\omega \beta] \lambda}
$$

where it can be shown that B_{λ}^{8} is traceless. We can associate the 8 baryons namely, N, A, Σ, E with the various components of the traceless tensor B_{α}^{β}. Consequently, the baryon octet can also be
written in the matrix form,

$$
\underset{\mu}{B^{0}}=\left|\begin{array}{ccc}
\frac{\Sigma^{0}}{\sqrt{2}}+\frac{\Lambda}{\sqrt{6}} & \Sigma^{+} & p \\
\Sigma^{-} & -\frac{1}{\sqrt{2}} \Sigma^{0}+\frac{1}{\sqrt{6}} \Lambda & n \\
\bar{H}^{-} & \equiv^{0} & -\frac{2}{\sqrt{6}} \Lambda^{0}
\end{array}\right|
$$

The completely symetric ten sor $D_{\text {afy }}$ can be expressed in terms of the wave-functions of the constituent quarks as follows:

$$
\begin{align*}
D_{\alpha \beta \lambda}= & \frac{1}{\sqrt{6}}
\end{align*} \underbrace{}_{\alpha} \phi_{\beta} x_{\lambda}+\phi_{\beta} \phi_{\lambda} x_{\alpha}+\phi_{\lambda} \Phi_{\alpha} x_{\beta}+\phi_{\lambda} \phi_{\beta} x_{\alpha} .
$$

From (1.15) the normalisation constants for each of the ten independent states can be calculated. Thus, we obtain the following identifications:

$$
\begin{aligned}
& \mathrm{H}^{++}=\mathrm{D}_{111} ; \mathbb{N}^{*^{+}}=\sqrt{3} \mathrm{D}_{112} ; \mathrm{N}^{*^{0}}=\sqrt{3} \mathrm{D}_{221} ; \\
& \mathrm{H}^{*-}=\mathrm{B}_{222} ; \mathrm{Y}^{*^{+}}=\sqrt{3} \mathrm{D}_{113} ; \mathrm{Y}^{*}=\sqrt{6} \mathrm{D}_{123} ;
\end{aligned}
$$

$$
\mathrm{Y}^{*-}=\sqrt{3} \mathrm{D}_{223} ; 巨^{*^{0}}=\sqrt{3} \mathrm{~B}_{331} ; E^{*}=\sqrt{3} \mathrm{D}_{332} \text {; }
$$

$$
\begin{equation*}
\Omega^{-}=D_{\mathrm{sss}} . \tag{1.16}
\end{equation*}
$$

c. The Baryon-meson Yukawa type strong Interaction Lagrangians and F / D Ratio :

One of the consequences of the assignments of various particles to different $s \cup(3)$ maltiplets is that we can couple them together and thereby establish same relationshipa between their coupling constants. In order to see how these relationships are obtained we consider the strong interaction between the baryon octet B_{μ}^{0} and the pseudosceilar octet P_{μ}^{0} and write down the av(3) invariant Iukawa type strong interaction Lagrangian between them. The vertex we are going to consider is of the form $\bar{B} B P$, where \bar{B} is to be obtained from (1.14) by taking transpose of the matrix $B_{\mu} 0$ with bar; this is necessafy for the conservation of the electric change. Further, the interaction Lagrangian we construct has to be invariant under Lorentz transformation as weli. However, we assume that these factors are always taken care of and confine our attention to only symmetry dependent part of the interaction.

Before we proceed to write down the baryon-meson vertex let us consider the general Yukawa type coupling of the form $\mathrm{M}_{2} \mathrm{M}_{2} \mathrm{M}_{3}$ where these three Mis belong possibly to different representations of si(3). The method of constructing such an invariant Lagrangian is well_known in relation to the isotopic spin symmetry where we consider the Tukawa type coupling of the form Fint, where N is the mucleon doublet and π the meson triplet. As the pion is an isovector in the isotopic spin spece, we mast construct a vector from $\overline{\mathbb{N}}$ and N. Such a vector is of the form $\overline{\mathrm{N}} \mathrm{I}_{\mathrm{N}}$ where \boldsymbol{T} is the familiar Pauli matrices in the isotopic spin space. Then the $\operatorname{siJ}(2)$ invariant interaction will be of the form,

$$
\begin{equation*}
1 \overline{\mathrm{~N}} \mathrm{BH} \cdot \pi \tag{1.17}
\end{equation*}
$$

where 1 has been added to make the interaction hermitian. Here, we note that there is only one method of constracting a scalar in the same way. as there is only one way of constructing a vector from two spinors. The same prodcedure can be applied to the case of $\operatorname{su}(3)$. For the interaction of the form $M_{1} M_{2} M_{3}$ we have to construct the representation contragradient to M_{S} from the direct product of M_{1} and M_{2}. This_is obvicus from the fact that only the contragradient representations have a scalar representation in the decomposition of their direct product. As in (1.17), there must exist an operator (called iscmetry) which will allew us to construct,
out of the product of M_{2} and M_{2}, a representation that transforms contragradiently to M_{3} under giv(3). In fact, there exist as many such operators as the representation contragradient to M_{3} occurs in the reduction of thefirect product representation of M_{1} and M_{2} 。 This is exactly how cell-Mann ${ }^{8)}$ obtained, in connection with Baryon-meson iateraction, two types of vertices namely, the \mathbf{B} and Prespectively. The D and P types are respeetively symmetric and anti-symmetric under the interchange of the two baryons. As the $\operatorname{GU}(3)$ symmetry cannot distinguish between D and P type one has to take an arbitrary linear combination of the two: We shall, however, write our interaction Lagrangian between the Baxyon and the pseadoscalar mesons in a slightly different way which is convenient if bases of the representations care known in terms of the irreducible tensors.

In our edse, both the baryons and the pseudoscalar mesons are given in terms of the mixed tensors (1.14) and (1.12'). As the trace of a tensor is invariant under $\operatorname{sU}(3)$ we construct traces of the product BBP. But there are two ways in which we can obtain this trace as a consequence of which we obtain the following invariants:

$$
\begin{aligned}
& L_{1}=\bar{B}_{\mu}^{0} B_{v}^{\lambda} P_{\lambda}^{\mu} \\
& I_{z}=\vec{B}_{\mu}^{0} P_{v}^{\lambda} B_{\lambda}^{\mu}
\end{aligned}
$$

Instead of (1.18) it is customary to consider the following combinations:

$$
\begin{equation*}
L_{\text {int }}^{(+)}=L_{1} \pm L_{2} \tag{1.19}
\end{equation*}
$$

which are symmetric and antisymmetric respectively under the interchange, $\overline{\mathbf{B}} \leftrightarrow$ B. The general interaction Lagrangian is, therefore, an arbitrary linear combination of $\mathrm{L}_{\text {int }}^{(\underset{\sim}{+})}$ which we write as:

$$
\begin{equation*}
L_{\text {int }}=(4 \pi)^{\frac{1}{2}} \sqrt{2} g\left\{D_{. I^{(+)}}^{(P L}{ }^{(-)}\right\} \tag{1.20}
\end{equation*}
$$

where we have multiplied with a factor $\sqrt{2}(4 \pi)^{\frac{1}{2}}$ in order that we obtain $(D+F) g=g_{\operatorname{MNF} \pi}$, where experimentally $\mathbb{E}_{\mathrm{HNT} \pi}^{2} \simeq 15$ is known. Without the loss of generality, we may choose $g=(15)^{\frac{1}{2}}$ in which case the experiment restricts the coefficient $D+F=1$. Thus, (1.20) can be rewritten in the form,

$$
\begin{gather*}
\mathrm{L}_{\text {int }}=(4 \pi)^{\frac{1}{2}} \sqrt{2} \cdot \mathrm{~g}\{(1-P) \operatorname{tr}(\bar{B} B P+\bar{B} P B) \\
+P \operatorname{tr}(\bar{B} B P-\bar{B} P B)\}
\end{gather*}
$$

We can calculate the traces in (1.20°) and express them in terms of the fields operators (1.12') and (1.14) with appropriate phases (Appendix A). We, then, arrange the different parts in such a way
that on comparison with the most general baryon-meson interaction Lagrangian ${ }^{19 \text {) }}$ we obtain the following relations between 12 baryonmeson coupling constants,

$$
\begin{align*}
& \mathrm{g}_{\mathrm{NN} \pi}=-\mathrm{g}_{\mathrm{\Sigma}} \mathrm{~K}=\mathrm{g} \\
& 8_{E L \pi}=2 F g \\
& g_{\text {NIcK }}=-g \quad \pi=\left(l^{*}-2 F\right) g \\
& g_{\Sigma \Lambda \pi}=g_{\Sigma \Sigma \eta}=-g_{M A \eta}=\frac{2}{\sqrt{3}}(1-F) g \tag{1.21}\\
& E_{N N Y}=g A K=-\frac{1}{\sqrt{3}}(1-4 P)_{g} \\
& g_{\text {ITAl }}=g \quad=-\frac{1}{\sqrt{3}}(1+2 F) g
\end{align*}
$$

Unfortunately, of all these coupling constants, only one, namely, $\mathbf{E}_{\text {III } \pi}^{2} \approx 15$ is accurately known. However, it _is possible to make an indirect estimate of F. Such an investigation has been carried out by Martin and Wall ${ }^{19 \text {) }}$ who considered the process $B+P \rightarrow B+P$ taking into account only one baryon exchange. They varied the value of P to get the \mathbb{F}^{*} resonance at the appropriate energies. The values of \mathbf{F} which gave the best fit was $\approx \frac{1}{4}$, the corresponding F / B ratio, being $1 / 3$.

We can similarly couple the vector mesons to the baryons and obtain relations between the various coupling constants in the same manner as above, involving again the F / D ratio which has to be determined by an indirect method. Therefore, the question arises whether we can write these couplings in terms of just one. Theoretically we would_just like to eliminate one on the basis of some other consideration or another postulated invariance. Neemian thus obtained the F-type interaction only for the vector mesons _by imposing the gauge invęriance principle. Gell-Mann, on the other hand, tried to introduce R-invariance. As D and F couplings are respectively symmetric and antisynmetric under \mathbf{R} operator this invariance would demand the existence of D alone. However, in the case of 3 boson corplings, one of the two types is automatically excluded on account of charge conjugation invariance and the fact that the particles and the antiparticles appear simultaneously in the boson octets. Thus, the three vector mesoas or one vector and 2 pseudoscalar mesons vertices mast be P type while 3 pseudoscalar mesons or one pseadoscalar meson and two vector mesons vertices must necessarily be D type ${ }^{20}$)

d. The Symmetry Breaking Interactions and Mass-Formoue:

Eract SU(3) symmetry demands that the particles said to form a supermaltiplet must have the same degenerate mass. But this does not happen to be the case in nature and, therefore, one has to consider the breaking of the symmetry. The breaking of the symmetry then allows the mass degeneracy to be removed and we are expected to obtain the correct mass-spectrum from the symmetry breaking. In order to find what is the source which causes this symmetry-breaking, let us go back to the history of the charge independence theory. In the charge-independence theory it was supposed that the particles with very nearly the same mass form the isotopic maltiplet and that the correct mass spectrum would be obtained if we did include the effects of the electromagnetic interactions which do not observe charge-independence. In sit (3) symmetry, we likewise assume that so far as the strong interactions are concerned the particles having very nearly the same mass may be grouped into $\mathbb{B U}(3)$ supermultiplets and that when we consider the symmetry breaking we shall again be able to remove the massdegeneracy. - In this case, however, the situation is slightly. different. Here, neglecting the weak interactions altogether, our hierachy of interactions consist of the very strong, the medium strong and the electromagetic interactions. The very strong
interactions, as we have already assumed, are invariant under the transformations of the full group sis(3). On the other hand, the medium strong interactions are assumed to be iarariant under
 subgroup is then assumed to comtain a further subgroup which leaves the electromagnetic interaction invariant. Thus, the complete removal of the mass degeneracy can be supposed to take effect in two stages. In the first stage, the mediwn strong interactions are turned on. As the medium strong interactions do not have the symmetry of the very strong ones, the supermultiplets will decompose into various isotopic multiplets. The mass-splitting in this stage is such that although sU(3) is broken, the isotopic spin I and_hypercharge I are still conserved. In the second stage then we switch on the electromagnetic interaction which canpletely removes the mass-degeneraey resulting in mass-aplitting between all the members of the $\mathbb{S v}(3)$ supermultiplets. However, the third component of the isotopic spin I_{s}, and the hypercharge are still conserved in this interaction. The most troublesome interactions are the weak interactions which destroy the strangeness a conservation as well. Finally, only charge and baryon numbers are conserved. Thus, the total interaction Lagramgian of the fiadrons can be written in the form,

$$
\begin{equation*}
L_{i n t}=I_{v s}+I_{m s}+I_{e m}+I_{w} \tag{1.22}
\end{equation*}
$$

where $I_{v s}, I_{m g}, I_{e m}, I_{w}$ are respectively the very strong, the medium strong, the electromagnetic and the weak interactions. We shall, however, disculs the effects only of the medium and electromagnetic interactions.

Let us consider the medium strong interactions which are responsible for the breaking of the su(3) supermaltiplets into the isotopic miltiplets. As is well known, this interaction is considered as an operator, T_{M}, that must commate with the isotopic spin, strangeness and the nucleon mumber operators I, s, H . This restriction is highly reasonable as we are still in the realm of strong interactions where the strangeness and the baryon number are conserved and any non-ccomatation with I will result In the mass-splitting between different members of the same isotopic multiplets. Now, the mass splitting due to this interaction can be written in the form,

$$
\begin{equation*}
\Delta M=\langle D, \phi| T_{M}|D, \phi\rangle \tag{1.23}
\end{equation*}
$$

Where D is an arbitrary irreducible representation and ϕ any vector in its basis. Let us now discuss what more restrictions we can impose on the operator $\mathbf{T}_{\mathbf{M}^{*}}$ The conservation of the isotopic spin I requires the operator T_{M} to be an isospin scalar such that under $\operatorname{so}(2)_{I}$ it transforms as an isospin singlet. Further, the conservation of hypercharge Y and the condition that
it is an additive quantw mumber demands that the hypercharge carried by the operator mast be zero. Thus, summing up we find that the operator T_{M} mast transform as an isosinglet with Y = O. There are quite a few, namely, the irreducible representations $\underline{1}, \underline{8}, \underline{27}, \underline{64} \ldots$ etc. which contain a state having the above quantum mumbers. To the first order approximation, only the $\underset{\sim}{I}$ and $\underset{\sim}{8}$ contribute. Therefore, we can express T_{M} as a linear combination of the operators corresponding to the 1 and 8 dimensional representations;

$$
\begin{equation*}
T_{M}=T^{(1)}(I=Y=0)+T^{(8)}(I=Y=0) \tag{1.24}
\end{equation*}
$$

(1) just gives a constant term in (1.23) and the traceless octet operator is given by,

$$
\begin{equation*}
q_{v}^{\mu}=a A_{v}^{\mu}+b\left[A_{-\alpha}^{\mu} A_{v}^{\lambda}-\frac{1}{3} b_{0}^{\mu} A_{\lambda}^{\alpha} A_{\alpha}^{\lambda}\right] \tag{1.25}
\end{equation*}
$$

where A_{0}^{μ} are generators of $\$ U(3)$. From (1.24) it is obvious that we need only the $\mathrm{T}_{\mathrm{g}}^{\mathrm{s}}$ component of the tensor $\mathrm{T}_{0}^{\mathrm{j}}$. Considering oniy $T_{s, ~ w e ~ c a n ~ e x p r e s s ~ t h e ~ q u a n t i t i e s ~ i n ~ t h e ~ r i g h t ~ h a n d ~ s i d e ~ o f ~}^{3}$ (1.25) in terms of I, Y etc. We then obtain fyom (1.23) using (1.24) and (1.25) the well known Okubu mass formala ${ }^{8)}$,

$$
\begin{equation*}
M-m_{0}+m_{2} Y+m_{2}\left[I(I+1)-\frac{1}{4} Y^{2}\right] \tag{1.26}
\end{equation*}
$$

where m_{0}, m_{2}, m_{2} are arbitrary constants. Let us now consider the application of the formula to the various sets of particles. We first consider the baryon octet $H, \Lambda, \Sigma, \bar{H}$ for which we obtain the well known Gell-Manm-0kubu ${ }^{8)}$ relation,

$$
\begin{equation*}
\frac{1}{2}\left(m_{N}+m_{\text {II }}\right)=\frac{1}{4}\left(3_{m_{A}}+m_{K}\right) \tag{1.27}
\end{equation*}
$$

Taking $m_{N} \approx 938.9, m_{\Sigma} \approx 1192.9, m_{A} \approx 1115.4, m_{H_{H}} \approx 1317.6$ and the average octet mass $\overline{\text { m }} \boldsymbol{\sim} 1152$ we find,

$$
\frac{1}{\bar{m}}\left[\frac{1}{2}\left(m_{M}+m_{m}\right)-\frac{1}{4}\left(3_{m}+m_{L}\right)\right] \leqslant 1 \phi
$$

The Ciell-Mann-Okubu mass formula is, therefore well satisfied for the baryons. For the Decouplet, however, we have $I=1+\frac{Y}{2}$ and the formula (1.26) reduces to,

$$
\begin{equation*}
M=m_{3}+m_{4} Y \tag{1.28}
\end{equation*}
$$

where $m_{3}=\left(m_{0}+2 m_{2}\right) ; m_{4}=\left(m_{1}+\frac{3}{2} m_{2}\right)$. The formula (1.28) then predicts equal spacing between the isomultiplets of the Decouplet. From experiments we have $m_{N^{*}}=$ 1238; $m_{Y^{*}} \approx 1385$; $m_{\text {血* }}=1530 ; m_{\Omega^{-}}=1675$ and the spacing from (1.28) are the following,

$$
\begin{gathered}
m_{X^{*}}-m_{X^{*}}=-147 ; \quad m_{Y *}-m_{Y}=-145, \\
m_{I_{H *}^{*}}-m_{\Omega^{-}}=-145
\end{gathered}
$$

At the time when $S U(3)$ was hypothised, the Ω^{-}particle had not been observed. The above formula predicts its mass to be $m_{\Omega} \approx m_{\text {H }}+146 \approx 1676$ which is in remaricable agreement with the value eventually determined. We now consider the applications of the mass-formala to the pseudoscalar and vector mesons. As the mass of the boson occurs in the Lagrangian in the form μ^{2}, μ being the mass of the boson, the mass M in (1.26) should be replaced by M^{2}. Also in order that $m_{K}^{2}-\frac{m^{2}}{K}$ we require the coefficient m_{1} of Y in the mass formula to be zero. For the pseudoscalar meson we then obtain,

$$
\begin{equation*}
m_{K}^{2}=\frac{1}{4}\left(3 m_{\eta}^{2}+m_{\pi}^{2}\right) \tag{1.29}
\end{equation*}
$$

which is reasonably satisfied. We now consider the nine vector mesons $\rho, K^{*}, \bar{K}^{*}, \infty, \infty_{0}$ The masses of these particles are respectively: $m_{\rho} \approx 763 ; m_{K^{*}} \approx 891 ; m_{\phi} \approx 1020$; and $m_{\omega} \approx$ 783. The corresponding mass formula is,

$$
\begin{equation*}
m_{K}^{2}=\frac{1}{4}\left(3 m_{m_{0}}^{2}+m_{\rho}^{2}\right) \tag{1.30}
\end{equation*}
$$

where $m_{\alpha_{0}}$ is taken as the mass of the isosinglet member of the
vector octet. From the above we have $m_{\infty_{0}} \approx 930 \mathrm{Mev}$. This value corresponds to neither the ϕ nor the ω_{0} Now considering ϕ_{0} as the pure $I=Y=0 \operatorname{sU}(3)$ singlet we can write the physical ϕ and ω as mixtures of the ω_{0} and $\phi_{0}{ }^{8)}$ states:

$$
\begin{align*}
& \phi=\phi_{0} \sin \theta-\infty_{0} \cos \theta \tag{1.31}\\
& \omega=中_{0} \cos \theta+\infty_{0} \sin \theta
\end{align*}
$$

The mixing angle θ in (1.31) can be estimated from the ϕ, ∞ decay width or else by diagonalising the mass matrix. An approximate value of the mixing angle is $\theta \approx \pm 40^{\circ}$).

Mass formalae corresponding to the second order $T_{3}^{3} T_{3}^{3}$ (in fact $n^{\text {th }}$. order ${ }^{21)}$, have also been worked out. However, we then obtain too many coefficients and we cannot, in fact, derive any relationship between the masses in a representation. We shall, rather; not go into that matter any further.

The mass-splitting among the members of the same isotopic multiplets of the $\mathrm{SU}(3)$ multiplets have been discussed in the past by a number of authors 8,22). We just quote the famous clashowColeman relation,

$$
\begin{equation*}
M\left(\bar{H}^{-}\right)-m\left(\bar{H}^{0}\right) \Rightarrow m\left(\Sigma^{-}\right)-m\left(\Sigma^{+}\right)+m(p)-m(n) \tag{1.32}
\end{equation*}
$$

Inperimental results give $m(p)-m(n) \approx 1.29$ Mev. $m\left(\Sigma^{-}\right)-m\left(\Sigma^{+}\right) \approx 8.25 \pm .5 \mathrm{Mev}$. These yield the mass difference for $m\left(\Xi^{-}\right)-m\left(\Xi^{0}\right) \approx 6.96 \pm .5 \mathrm{Mev}$ which seems to agree rather well with the experimental values obtained so far.

2. The Sv(6) Symmetry for the Hadrons

a. The su(6) Supermultiplets and the Baryon-meson Yukawa Couplings

The group so(6) as the symnetry group for the hadrons was first proposed by Girsey and Radicatti and sakita ${ }^{23)}$ independentily. This is a group of all the unitary unimodular transformations in some six dimensional complex space and has a subgroup $\operatorname{sv}(3) \otimes \operatorname{si}(2)$ which can be identified with the direct product of the su(3) symmetry group and the ordinary spin group. From this point of view, this theory can be regarded as an extension of the supermultiplet theory of the macleus of Wigner ${ }^{24)}$ who classified the Fuclear levels according to the irreducible representations of the group su(4) which has a subgroup $\operatorname{sev}(2)_{I} \otimes \operatorname{si}(2)_{J}$ which is the direct product of the isospin and ordinary spin groups respectively. Neglecting the Coloumb and the Non-central forces, Wigner first of all assumed that the forces batween two nucleons were invariant under the transformations of the product
group $\operatorname{su}(2)_{I} \otimes \mathrm{su}(2)_{\mathrm{J}}$. He then made the further assumption that the forces responsible for the binding of the llucleus were apin isospin independent so that it will be invariant under the full group SU(4) whieh contains the product group $\left.\operatorname{su}(2)_{I} \otimes\right) \mathrm{su}(2)_{J}$ and transforms the four objects; $p \uparrow, n f, p \downarrow$ and $n \downarrow$ among themselves. How, with the help of the quark medel of the hadrons, the extension of $\mathbf{s u}(4)$ to $\mathrm{SU}(6)$ is obvious. Here, we consider the transformations on the following six-component objects,

$$
\forall=\left|\begin{array}{l}
q_{2} \uparrow \tag{1.33}\\
q_{2} \uparrow \\
q_{3} \uparrow \\
q_{2} \downarrow \\
q_{2} \downarrow \\
q_{3} \downarrow
\end{array}\right|
$$

where the arrows indicate the ordinary spin states of the quarks. We then assume that the strong interactions (usually called the forces binding the quarks to form an elementary particle) are SU_{3}-spin-spin independent so that they are invariant under the group su(6) which transforms the components of the fundamental sextet among themselves. The particle states are then classified according to the irreducible representations of su(6). The irredueible representations of SU(6) are, in general, reducible
under the subgroup $\operatorname{sv}(3) \times s v(2)$ and consequently the $s v(3)$ and spin contents of an irreducible representation of the full group are obtained by reducing it with respect to the product group. For that parpose we specify the irreducible representations of $\operatorname{sU}(3) \otimes \operatorname{sU}(2)$ by a set of two mumbers (α a), denoting the dimension of $\mathrm{Sv}(3)$ and- $\mathbb{S U}(2)$ respectively. Now any irreducible representation \mathbf{A} of su(6) can be written as,

$$
\begin{equation*}
A=(\alpha a)+(\beta b)+\ldots \tag{1.34}
\end{equation*}
$$

where A is the dimension of any irreducible representation of su(6). Thus, (1.34) provides the su(3) and su(2) maltiplet content of the supermultiplet A. Obviously, the arithmetic equality $A=\alpha a+\beta b+\ldots$ mast be satisfied.

As is well known, the sextet (1.33) forms the basis _of the fundemental representation of su(6). The generators of $\mathrm{SU}(6)$ for this representation can be taken to consist of the following:

$$
\begin{equation*}
\left|A_{v}^{\mu}\right|_{i j}=\delta_{\mu i} \delta_{v j}-\frac{1}{6} \delta_{v}^{\mu} \delta_{i j} \tag{2}
\end{equation*}
$$

where $\mu, 0, i, j=1 \ldots 6$. The eigenvalues of the sextet corresponding to the operators I_{s}, \mathbf{Y} and J_{s} (third component of the ordinary spin) can be expressed in terms of the generators A_{0}^{μ} as follows:

$$
\begin{align*}
& I_{3}=\frac{1}{2}\left(A_{1}^{1}-A_{2}^{2}+A_{4}^{4}-A_{5}^{5}\right) \\
& Y=-\left(A_{3}^{3}+A_{6}^{6}\right) \tag{1.35}\\
& J_{3}=\frac{1}{2}\left(A_{1}^{1}+A_{2}^{2}+A_{3}^{3}-A_{4}^{4}-A_{5}^{5}-A_{6}^{6}\right)
\end{align*}
$$

The basis of the six-dimensional contragradient representation is formed by the following six objects:

$$
\left|\begin{array}{c}
\bar{q}_{1} \downarrow \tag{1.36}\\
\bar{q}_{2} \downarrow \\
\bar{q}_{3} \downarrow \\
\bar{q}_{2} \uparrow \\
\bar{q}_{2} \uparrow \\
\bar{q}_{3} \uparrow
\end{array}\right|
$$

We now construct the states of the mesons from the basic fields of the fundamental sextets. The mesons which are regarded as bound states of quarks and antiquarks in the s-state are assigned to the 35 -dimensional representation of sG(6) in the decomposition,

$$
\begin{equation*}
\underset{\sim}{6} \otimes \underset{\sim}{6}=\underset{\sim}{1}+35 \tag{1.36}
\end{equation*}
$$

The 35-dimensional representation can be further reduced with
respect to $\mathrm{Su}(3) \otimes \mathrm{Su}(2)$ to obtain the St_{3} and Bv_{2} content of the 35-plet. The general method for the reduction of an irreducible representation of the group $\operatorname{sU}_{\min }$ with respect to the subgroup $\mathrm{SU}_{\mathrm{m}} \otimes \mathrm{SU}_{\mathrm{n}}$ has been discussed by a number of authors ${ }^{25) \text {. The }}$ above case is very simple and the result_is,

$$
\begin{equation*}
35=(1,3)+(8,3)+(8,1) \tag{1.37}
\end{equation*}
$$

From (1.37) it is clear that the $35-\mathrm{plet}$ of $\mathrm{su}(6)$ contains an octet of pseudoscalar mesons (0^{-}), and a nonet (singlet + Octet) of vector meson (1^{-}). We now construct the basil s tensor of the 35-plet in terms of the corresponding ones of SU(2) and SU(3). As we know already, the basis of the 35 -piet is a traceless tensor $A_{B}^{A}(A, B=1,6)$ which in terms of the corresponding ones of $\mathrm{su}(2)$ and $\mathrm{su}(3)$ can be expressed as follows:

$$
\phi_{B}^{A}=\phi_{j \beta}^{i \alpha}=\frac{1}{2} 8_{j}^{i} \phi_{k \beta}^{k \alpha}+\frac{1}{3} 8_{\beta}^{\alpha} \phi_{j \gamma}^{i \gamma}+\left\{\phi_{j \beta}^{i \alpha}-\frac{1}{2} 8_{j}^{i} \phi_{k \beta}^{2 \alpha}-\frac{1}{3} 8_{\beta}^{\alpha} \phi_{j \gamma}^{i \gamma}\right\}
$$

where i, $j=1,2 ; \alpha, \beta=1,2,3$; and (1.38) represents the decomposition (1.37). Let us use $P_{\beta}^{\alpha}, \vec{V}$. (1) and $\vec{V}_{\beta}^{\alpha}(8)$ for the octet O^{-}, singlet I^{-}and octet I^{-}meson wave function respectively. Then (1.38) can be rewritten as,

$$
\begin{align*}
& \Phi_{B}^{A}-\Phi_{j \beta}^{i \alpha}-\frac{1}{\sqrt{2}}\left\{\delta_{j}^{1} p_{\beta}^{\alpha}+\vec{\sigma}_{j}^{i} \vec{v}_{\beta}^{\alpha}(\theta)\right\} \tag{1.39a}\\
& \vec{\nabla}_{\beta}^{\alpha}(\Omega)=\frac{1}{\sqrt{3}} \delta_{\beta}^{\alpha} \overrightarrow{V^{\prime}(1)}+{\overrightarrow{V_{\beta}^{\alpha}}}_{\alpha}^{\alpha} \tag{8}
\end{align*}
$$

where the wave-function hais been so normalised that

$$
\begin{equation*}
\langle\phi\rangle>=\Phi_{B}^{A} \phi_{A}^{B}=\langle p p\rangle+\vec{V}(1) \cdot \vec{\nabla}(1)+\langle\vec{v}(B) \vec{v}(8)\rangle \tag{1.40}
\end{equation*}
$$

Let us now construct the states of the baryons which are to be obtained from the corresponding states of the three quarks as follows:

$$
\begin{equation*}
\underline{6} \otimes 6 \otimes \underline{6} \otimes 20+56+70+70 \tag{1.41}
\end{equation*}
$$

where 20 and 56 are reapectively completely antisymmetric and symmetric in the interchange of any two quarks atates. The 70-plet has the symmetry of the type [2,1]. Again the SU(3) and BU('2) contents of the above irreducible representations are:

$$
\begin{align*}
& \underline{20}=(1,4)+(8,2) \\
& 56=(8,2)+(1,4) \tag{1.42}\\
& 70=(1,2)+(8,2)+(8,4)+(10,2)
\end{align*}
$$

It is clear from (1.42) that 56-plet contains an octet of $\operatorname{spin} 1 / 2$ and a decouplet of $\operatorname{spin} 3 / 2$. Therefore we can assign the 8 baryons and 10 baryon resonances to the 56-plet of su(6). But this assigment goes against the requirement of the Pauli principle if we assume the baryons as bound states of three quaris in the S-state and if the quarks obey Fermi-statistics. However, the ratio of the magnatic moments of the proton and neutron and the mass-aplitting obtained from the 56-plet are in much better agreement with the experimental result than those obtained from the 20-plet' which would have been in consistence with the Pauli requirement. It is because of these reasons that the baryons are assigned to the 56 -plet. How the wave-function of the 56 -dimensional representation can be constructed from the $S U(2)$ and $\operatorname{SU}(3)$ wave functions as follows:

$$
\begin{gather*}
\phi_{A B C} \equiv \phi_{i \alpha, j \beta, k y}=D_{\alpha \beta \gamma, i j k}+\frac{1}{3 \sqrt{2}}\left\{\epsilon_{\alpha \beta \delta} \epsilon_{i j}{ }_{N_{\gamma, k}^{8}}^{\delta}\right. \\
\left.\quad+\epsilon_{\beta \gamma \delta} \epsilon_{j k} H_{\alpha, i}^{\delta}+\epsilon_{\gamma \alpha \delta} \epsilon_{k i} M_{\beta, j}^{\delta}\right\} \tag{1.43}
\end{gather*}
$$

where $D_{\text {cepl }, i j k}$ is completely symmetric with respect to Latin and Greek indices separately so that it represents a decouplet of spin 3/2 wave-function.

Let us now calculate the effective current which transforms like 35 -dimensional representation of $\operatorname{sU}(6)$. This current $J_{A}^{A^{\prime}}$ can
be obtained from '56' baryons and antibaryons as follows:

Substituting the expression of $\bar{\nabla}^{\mathrm{ABC}}$ and $\boldsymbol{\Phi}_{\mathrm{ABC}}$ into (1.44), the effective current is given by,

$$
\begin{align*}
& J_{A}^{A^{i}} \equiv J_{i \alpha}^{i^{\prime} \alpha^{\prime}}=\bar{D}^{\alpha} \beta y, i^{9} j k D_{\alpha \beta \gamma, i j k}-\frac{1}{6} \delta_{\alpha}^{\alpha^{\prime}} \delta_{i}^{i^{\prime}}<\bar{D} D> \\
& +\frac{\sqrt{2}}{3}\left\{\epsilon_{\text {cpu }} \epsilon_{i j} \bar{D}^{-\alpha^{2}} \beta \gamma, i^{8} j k \gamma_{\gamma, k}^{8}+\epsilon^{\alpha^{4} \beta 8} \epsilon^{i^{8} j} \bar{W}_{8}^{\prime, k}\right. \\
& \left.\times B_{\omega \in y, i j k}\right\}+\frac{1}{6}\left\{\delta_{i}^{i^{\prime \prime}}\left(\text { INIt }_{F}\right)_{\alpha}^{\alpha^{\prime}}+\frac{2}{3}(\vec{\sigma})_{i}^{i^{\prime}}\right. \\
& \left.\left.\times\left[3\left(\overrightarrow{\mathrm{~N}} \vec{\sigma} \mathrm{~N}_{\mathrm{B}}\right)_{\alpha}^{\alpha^{\prime}}+2\left(\overline{\mathrm{~N}} \vec{\sigma} \mathbb{N}_{F}\right)_{\alpha}^{\alpha^{\prime}}-8_{\alpha}^{\alpha^{\prime}}<\overline{\mathrm{N}} \mathbb{I I}\right\rangle\right]\right\} \tag{1.45}
\end{align*}
$$

where

$$
\begin{aligned}
& \left\langle\overline{\mathrm{B}} \mathrm{D}_{\mathrm{D}}\right\rangle=\overline{\mathrm{D}}^{\text {apy,ijk}} \mathrm{D}_{\text {api, ilk }}
\end{aligned}
$$

$$
\begin{align*}
& \left(\overline{\mathrm{N}} \mathrm{~N}_{\beta}\right)_{\alpha}^{\alpha^{\prime}}-\overline{\mathrm{N}}_{\beta}^{\mu^{\prime}} N_{\alpha}^{\beta}+\overline{\mathrm{N}}_{\alpha}^{\beta} \bar{N}_{\beta}^{\alpha^{\prime}} \tag{1.46}\\
& \langle N \mathbb{N}\rangle=\overline{\mathrm{H}}_{\alpha}^{\beta} \mathrm{N}_{\beta}^{\alpha}
\end{align*}
$$

Now the interaction Lagrangian (Yukawa type) between all the baryons and mesons is,

$$
\begin{equation*}
I_{\text {int }}=J_{A}^{A^{\prime}} \cdot \Phi_{A^{\prime}}^{A} \tag{1.47}
\end{equation*}
$$

It is well_known from the field theory that thepseudoscalar meson-baryon coupling is of the form $\bar{\phi} \gamma_{5} \phi$. which in the static (as in the case with $\operatorname{sU}(6)$) limit reduces to ($\bar{\Psi} \vec{\sigma} \downarrow$) $\vec{\nabla} \oplus$; while the vector mesonsbaryon coupling is of the form $\boldsymbol{\phi}_{\mu} \boldsymbol{q}_{\mu} \phi_{\mu}$ which reduces to $\bar{\phi} \psi^{\circ} 0_{0}$. Hence from (1.45) we find that in SU(6) the vector mesons couple to the baryon in an P type coupling; whereas the pseudoscalar mesons have both \mathbf{D} and \mathbf{F} types occurring in the ratio $F / D=2 / 3$.
b. The Symmetry Breaking Interactions in SU(6)

The mass-splitting in su(6) can be considered in the same way as it was done in $\operatorname{SU}(3)$. Meglecting the weak interactions altogether as before, we can consider, therefore, the effects of the medium strong and the electromagnetic interactions in the removal of the mass-degeneracy of the gu(6) supermultiplets. We first discuss the effects of the medium strong interactions and shall consider the electromagnetic interactions later in this section.

As we have discussed in relation to $\pi \mathbb{(3)}$, the medium strong interaction said to be respensible for the dymmetry breaking can be considered as an operator T_{M}. We can now assume, as scme authors ${ }^{26)}$ have done, that this mass operator T_{M} transforms under su(6) as an $I=I m J=0$ eigenstate. Then the above operator can be expressed as a sum of the operators corresponding to various irreducible representations which contain the eigenstate $I=Y=\boldsymbol{J}=0$. A few low-dimensional representations which contain the above eigenstate are $1,35,189,405$ etc. Therefore, we can write m_{1} in the form,

$$
\begin{align*}
T_{M}= & T^{2}(I=Y=J=0)+T^{35}(I=Y=J=0) \\
& +T^{i n e \theta}(I=Y=J=0)+T^{403}(I=Y=J=0) \\
& +\quad+ \tag{1.48}
\end{align*}
$$

Then the mass-splittings are given by the matrix elements of the operator T_{M} in (1.48) between the same state of any irreducible representation of $s \uplus(6)$. Kuo and $Y a o^{2 \cdot 6)}$, however, assumed that to the first order, the mass-cperator T_{M} transforms as the $I=Y=J=0$ state of the regalar representation of su(6). The tensor operator they have used, is the $80(6)$ version of Okubu's operator and is given by,

$$
\begin{align*}
T_{0}^{\mu}= & a_{0} \cdot \delta_{v}^{\mu}+a_{1} A_{0}^{\mu}+a_{2}(A \cdot A)_{v}^{\mu}+a_{3}(A \cdot A \cdot A)_{v}^{\mu}+a_{4}(A \cdot A \cdot A \cdot A)_{v}^{\mu} \\
& +a_{5}(A \cdot A \cdot A \cdot A \cdot A)_{0}^{\mu} \tag{1.49}
\end{align*}
$$

where the A_{v}^{μ} are the generators of su(6) and the ai's depend only on the Casimir operators of the group. The components of the above operator contributing to the mass-splitting is according to the above assumption $T_{s}^{s}+T_{6}^{6}$.

Let us now discuss the mass-splitting in 35-plet by using the above operator (1.49). Since 35 occurs twice in the decomposition,

$$
\begin{equation*}
35 \times 35=1+35+35+189+\underline{280}+\underline{280} *+\underline{405} \tag{1.50}
\end{equation*}
$$

only the first three terms in (1.49) contribute to the mass-splitting. Thus,

$$
\begin{equation*}
\Delta M=\langle 35| T_{0}^{\mu}|35\rangle=a_{0}+a_{1}\langle 35| A_{0}^{\beta}|35\rangle+a_{2}\langle 35|(A, A)_{0}^{\mu}|35\rangle \tag{1.51}
\end{equation*}
$$

From (1.51) we can calculate the contribution of $T_{3}^{s}+T_{6}^{6}$ to the mass-splitting. The mass-formula obtained by Kuo et al is,

$$
\begin{equation*}
\mathbf{M}^{2}=m_{0}+m_{1} Y+m_{2}\left[2 J^{(\lambda)}\left(J J^{(\lambda)}+1\right)+\frac{1}{4} Y^{2}-C_{2}^{(4)}\right] \tag{1.52}
\end{equation*}
$$

where $C_{2}{ }^{(4)}$ is the quadratic Casimir operator of the $s u(4)$ subgroup of su(6). $J^{(\lambda)}$ is the spin of the strangeness bearing quark. The other components of this vector are,

$$
\begin{gather*}
J_{+}^{(\lambda)}=A_{6}^{3} \\
J_{-}^{(\lambda)}=A_{3}^{6} \tag{1.53}\\
J_{3}^{(\lambda)}=1 / 2\left(A_{s}^{3}-A_{6}^{6}\right)
\end{gather*}
$$

Using (1.53) we can calculate the eigenvalues of the operator $\vec{J}(\lambda)$ for the various members of the 35-plet. Using those values we can get the mass-relations which was obtained by Kuo et al. The meson-mass relations are:

$$
\begin{gather*}
m_{\infty}^{2}=m_{\rho}^{2} \tag{1.54a}\\
m_{\phi}^{2}+m_{\rho}^{2}=\frac{2 m_{K^{*}}^{2}}{m_{K}^{2}=\frac{1}{4}\left(m_{\eta}^{2}+m_{\pi}^{2}\right)} \tag{1.54b}\\
m_{K^{*}}^{2}-m_{\rho}^{2}=m_{K}^{2}-\dot{m}_{\pi}^{2} \tag{1.54c}
\end{gather*}
$$

The relation (1.54c) is the well known Gell-Mann -Okubu formula we obtained in relation to $\mathrm{SU}(3)$. However, the appearance of the
relation (1.54a) shows that the mass formula (1.52) requires improvement. For this reason Beg and singh ${ }^{27}$) considered the contributions from the operators corresponding to the representations 189 and 405 as well. The final formala they obtained is,

$$
\begin{align*}
M= & a+b Y+c\left[2 J^{(\lambda)}\left(J^{(\lambda)}+1\right)+\frac{1}{4} Y^{2}-c_{2}^{(4)}\right]+a c_{2}^{(3)} \\
& +e J(J+1)+1\left[J^{(N)}\left(J^{(N)}+1\right)-J^{(\lambda)}\left(J^{(\lambda)}+1\right)\right] \\
& +g\left[I(I+1)-\frac{1}{4} Y^{2}\right] \tag{1.55}
\end{align*}
$$

where $\mathrm{C}_{2}{ }^{(3)}$ is the quadratic Casimir operator of the subgroup su(3). $\vec{J}($ (I) is the spin of the non-strange quarks. The other components of $\vec{J}(I N)$ are,

$$
\begin{align*}
& J_{+}(N)=A_{4}^{1}+A_{5}^{2} \\
& J_{\infty}(N)=A_{1}^{4}+A_{2}^{5} \tag{1.56}
\end{align*}
$$

$$
J_{3}^{(N)}=\frac{1}{2}\left(A_{1}^{1}-A_{4}^{4}+A_{2}^{2}-A_{5}^{5}\right)
$$

Again the operator \vec{J} in (1.55) is defined by

$$
\vec{J}=\vec{J}(N)_{+J}(\lambda)
$$

such that $J_{s}=J_{3}{ }^{(\lambda)}+J_{s}{ }^{(N)}$.
The consequence of the mass formula (1.55) is that the relation $m_{\infty}^{2}-m_{p}^{2}$ disappears and at the same time the other relations in (1.54) which compare well with experimental results are retained. Moreover, for the $56-\mathrm{plet}$, the mass formula (1.55) reduces to the very simple form given by,

$$
\begin{equation*}
\dot{M}=m_{0}+m_{1} J(J+1)+m_{2} Y+m_{3}\left[I(I+1)-\frac{1}{4} Y^{2}\right] \tag{1.57}
\end{equation*}
$$

This is Just the Okubu formula with a spin J part. Elaing the above formula we can obtain the relation,

$$
\begin{equation*}
M_{\Xi}-M_{N}-\frac{3}{2}\left(m_{2}-M_{\Lambda}\right)=M_{\equiv n}-M_{N *} \tag{1.58}
\end{equation*}
$$

The experimental values of the left and right hand sides of (1.58) are 270 Mev and 293 Mev respectively.

Let us now discuss some su(6) results obtained in the fields of electromagnetic interactions. Chan and Sarkere ${ }^{28)}$ have considered the electro-magaetic mass-corrections of the various iscomultiplets within the 56 -plet. They assumed that the electromagnetic mass operator transforms like a spin singlet in the spin space and like the charge operator Q in the su(3) space. The relations they obtained for the Baryon octet are:

$$
\begin{gather*}
M_{\Sigma}-M_{\Sigma^{+}}=\left(M_{n}-M_{p}\right)-\left(\Xi^{0}-E^{-}\right) \tag{1.59i}\\
M_{\Sigma^{-}}-M_{\Sigma^{0}}=\Xi^{-}-\Phi^{0} \tag{1.59b}
\end{gather*}
$$

The mass relation (1.59a) is the same as in su(3). This is the famous Coleman-Glashow relation which is in very good agreement with the experimental results. The relation (1.59b) is a new prediation of $\mathrm{sU}(6)$. The values of the left and right hand sides of (1.59b) are 4.75 Mev and 6.5 Mev respectively. Thus, the new mass relation is also in good agreement with the experimental results.

Hlectromagnetic vertex of the baryons have also been discussed in the past. As shown by Sakita ${ }^{29)}$ the effective electromagnatic interaction of the baryon (in the static limit) is of the form,

$$
\begin{equation*}
H_{e f f}=3 e j_{1}^{2} \phi-3 \mu \vec{j}_{1}^{1} \vec{H} \tag{1.60}
\end{equation*}
$$

where ϕ and \vec{H} are respectively the external electrostatic potential and the magnetic field, and j_{α}^{β} and \vec{J}_{α}^{β} are respectively defined by,

$$
\begin{equation*}
J_{\alpha}^{\beta}=J_{i \alpha}^{i \beta} ; \vec{j}_{\alpha}^{\beta}=\vec{\sigma}_{i}^{\gamma}\left(J_{j \alpha}^{i \beta}-\frac{1}{3} \delta_{\alpha}^{\beta} J_{j \gamma}^{i \gamma}\right) \tag{1.61a}
\end{equation*}
$$

Again $J_{A}^{B}=J_{i \alpha}^{i \beta}$ is given by (1.45). In (1.60) e is the charge and μ is the magnetic moment of the proton. Substituting (1.45)
into (1.60) we can obtain the relationships among the total magnetic moments of the baryons. In particular, we can obtain the ratio of the magnetic moment of proton and neutron. The value of this ratio obtained by Sakita is,

$$
\begin{equation*}
\mu \mathrm{p} / \mu \mathrm{n}=-3 / 2 \tag{1.61b}
\end{equation*}
$$

The above result is one of the important achievements of the su(6) symmetry.

3. The $U(6,6)$ Symmetry for Hadrons

a. The Supeumultiplets of Beryons and Mesons and their Yukawa Coupling.

As we have discussed in the last section, the ordinary spin' in the $\operatorname{sU}(6)$ theory is considered on the same footing as the isotopic spin and hypercharge. This is possible only in the nonrelativistic theory as in the case of Wigner's supermultiplet theory. Then the question arose as to whether the $S U(6)$ theory which has had so much succesgin relating the internal and spin properties of the observed particlemultiplets, could be extended to the relativistic domain. As a result, many attempts were made in the past to find a larger invariance group which would incorporate the $\mathrm{su}(6)$ in a relativistically covariant manner.

Hotwithstanding many difficulties_in the relativistic generalisation of $\operatorname{SU}(6)$, however, the groups $\mathrm{SL}(6 \mathrm{C})^{30)}$ and $\mathbb{U}(6,6)^{12,31)}$ were proposed in early 1965 as two possible approximate dynamical symmetries for a phenomenological description of the hadrons and their interactions. Both $\mathrm{SL}(6 \mathrm{C})$ and $\mathbf{U}(6,6)$ are non-compact groups and, therefore, one has to face the same difficulty in obtaining the finite dimensional unitary representations of either group. The group $\mathbf{8 L}(6 \mathrm{C})$ is a group of 6×6 complex matrices of determinant unity and contains su(6) as one of its subgroups. Consequently, the little groups of SL (6C), as shown by filkl are $\mathrm{su}(6)_{\mathrm{p}}$ which determine the multiplet- structure of $\mathrm{SL}(6 \mathrm{c})$. The iphomogeneous ISL(6 C) group is a semi-direct product of the homogeneous sL(6C) and an invariant Abelian subgroup of translations Tss in 36-dimensional (generalised) space. On the other hand, the group $U(6,6)$ is the group of 12×12 complex matrices and as shown by many authors ${ }^{32}$) the maximal compact subgroup it contains is of the type $v(6) \otimes \mho(6)$ (Nonchirial ${ }^{33)}$). Therefore, it is the group $U(6) \otimes U(6)$ which determines the multiplet-structure of $\boldsymbol{U}(6,6)$. The inhomogeneous $\boldsymbol{I U}(6,6)$ group can, as shown by Charap et al. ${ }^{34 \text {), be obtained by taking a semi-direct product of the }}$ homogeneous $U(6,6)$ and the translation group \boldsymbol{T}_{144} in 144 -dimensional space. It can be shown ${ }^{32 \text {) }}$ that $s L(60)$ is a subgroup of $\mathrm{U}(6,6)$. Further, as the subgroup of translation T_{144} contains $\mathrm{T}_{\mathbf{3 6}}$ ass a
subgroup, the inhomogeneous ISIL (6c) is also a subgroup of the inhomogeneous IU(6,6). From these points of view, we can conclude as claimed by R(thin ${ }^{32 \text {) }}$ that every prediction of sL (6C) model will also be implied by $0(6,6)$ model. We shall, however, consider only ($(6,6)$ and discuss same of its consequences.

The group $U(6,6)$ appeared in many different nomes proposed by various authors ${ }^{12,31) \text {. We shall, however, confine ourselves }}$ in our discussion to the theory formulated by Delbourgo, Salam and Strathdee ${ }^{12 \text {). We start with the basic representation which }}$ corresponds to three quarks each having four components as Dirac particles. Let $\boldsymbol{\psi}_{A}$ be the 12 -component wave-function denoting the fields of the three quarks. Then under a transformation of $\mathbf{U}(6,6)$ we have,

$$
\begin{equation*}
\phi_{A} \rightarrow \phi_{A}^{\prime}=s_{A}^{B} \phi_{B} \tag{1.62}
\end{equation*}
$$

where, $A=1,2 \ldots$ 12. S is a 12×12 matrix and, as is well know, forms the spinor representation of $\forall(6,6)$. Expressing in terms of the 144 generators of $\mathbf{U}(6,6)$ we have,

$$
\begin{equation*}
\mathbb{g}_{A}^{B}=\exp i\left[\epsilon^{K} F_{K}\right]_{A}^{B} \tag{1.63}
\end{equation*}
$$

where $K=1, \ldots$ 144. The $\epsilon^{K_{1}} s$ are real and F_{K}^{\prime} a are the generators and in this spinor representation these are 12×12
matrices. Since $\mathbb{U}(6,6)$ contains the direct product of $\mathbf{U}(22)$ $\boldsymbol{U}(3)$ as the subgroup, the generators P_{K} can be expressed as the direct product of the generators of these subgroups. Thus, we can write,

$$
\begin{equation*}
\mathbf{F}_{\mathrm{K}}=\mathrm{r}_{\mathbf{R}} \otimes \mathrm{T}_{i} \tag{1.64}
\end{equation*}
$$

where $R=1 \ldots 16, i=0 \ldots 8$. The r_{R} are the generators of $\mathrm{J}(22)$ and can be taken to consist of the following 16 Dirac matrices,

$$
\begin{equation*}
r_{R}=1, \gamma_{\mu}, \sigma_{\mu v}=\frac{1}{2}\left[\gamma_{\mu} \gamma_{v}\right], \quad \text { i } \gamma_{\mu} \gamma_{g} \quad \gamma_{g} \tag{1.65a}
\end{equation*}
$$

where, χ are antihernitian in our representation and γ_{0} hermitian with the representation $\gamma_{0}=(1,1,-1,-1)$ diag. The metric tensor in the Lorentz space is $\mathrm{g}_{\mu \nu}=(1,-1,-1,-1)$ diag. The above 4×4 Dirac matrices satisfy the relation,

$$
\begin{equation*}
y_{0} r_{R}^{+} y_{0}=r_{R} \tag{1.65b}
\end{equation*}
$$

From (1.65a) we find that of the sixteen matrices $8: 1, \underset{\sim}{\boldsymbol{\sigma}}, \gamma_{0}$, ${ }^{i} \chi \gamma_{s}$ are hermitian and the other $8: \gamma_{5},-i{ }_{\alpha}, i \gamma_{0} \gamma_{s}, \chi$ are antihermitian, where $\underset{\sim}{\sigma}=\left(\sigma_{2_{3}}, \alpha_{31}, \sigma_{12}\right),{\underset{\sim}{0}}^{\sigma_{0}}=\left(\sigma_{01}, \sigma_{\sigma_{2}}, \sigma_{03}\right)$. Hence the group $\mathbf{U}(22)$ generated by the 16 Dirac matrices is noncompact, the defining property being given by (1.65 b).
8) The normalisation here is so chosen that the relation between T_{i} and Gell-Mann's λ_{i} is,
$T_{0}=1 / \sqrt{6}, \quad \operatorname{Tr}_{i} T_{i} T_{j}=1 / 28_{i j}, \quad T_{i}=\lambda_{i} / 2, \quad i=1, \ldots 8$

We now consider the transformation property of the field of the antiquarks. As before, we denote the field of the antiquarks by the wave-function $\boldsymbol{\psi}^{\mathrm{A}}$ which transforms as,

$$
\begin{equation*}
\bar{\phi}^{\mathrm{A}} \rightarrow \bar{\phi}^{\mathrm{A}}=\bar{\phi}^{\mathrm{B}}(\mathrm{~s}-1)_{\mathrm{B}}^{\mathrm{A}} \tag{1.66}
\end{equation*}
$$

where $\bar{\phi}^{\mathrm{A}}$ is defined by,

$$
\begin{equation*}
\bar{\psi}^{\mathrm{A}}=\psi_{\mathrm{B}}^{+}\left(\gamma_{0}\right)_{B}^{A} \tag{1.67a}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(\gamma_{0}\right)_{B}^{A}=\left(\gamma_{0}\right)_{B}^{\alpha} \delta_{j}^{i} \tag{1.67b}
\end{equation*}
$$

where $\alpha, \beta=1, \ldots 4$ are the Dirac indices and $1, j=1,2,3$ are the $U(3)$ indices. From (1.62) and (1.66) it is_obvious that the quantity $\boldsymbol{\phi}^{-A} \|_{A}$ (sometime referred to as the mass term) is invariant under $\boldsymbol{v}(6,6)$ and' (1.67) shows that the above quantity has six positive and six negative terms. This is one of the ways to define the non-compact group $\boldsymbol{\theta}(6,6)$. In terms of the matrices s, the other defining property of $u(6,6)$ is,

$$
\begin{equation*}
s^{+}\left(\gamma_{0} \otimes 1\right) s=\gamma_{0} \otimes 1 \tag{1.68}
\end{equation*}
$$

where 1 is a 3×3 unit matrix of $\theta(3)$ so that $\left[\gamma_{0} \otimes 1\right]$ is a 12×12 matrix. s^{+}is the hermitian conjugate of s. Now, as before, we construct the states of mesons and baryons from the basic fields of the quarks and the antiquarks. The meson states are constructed from quark - antiquark states and those of baryons from three quarks. These states decompose under $\boldsymbol{U}(6,6)$ in the following way,

$$
\begin{align*}
& \underline{12} \otimes 12 *=\underline{1}+\underline{143} \\
& \underline{12} \otimes 12 \otimes 12=220+364+572+572 \tag{1.69}
\end{align*}
$$

where 220 and 364 correspond respectively to the completely antisymmetric and symmetric tensor of rank 3 and 572 to the mixed symmetry of the type [21]. Finally, 143 corresponds to the Young tableau $\left[2,1^{10}\right]$. Under the subgroup $\operatorname{su}(22) \times s u(3)$ these ixreducible representations are further reduced and their $\operatorname{su}(2,2)$ and $g v(3)$ contents are given by,

$$
\begin{align*}
& \underline{143}=(15,8)+(15,1)+(1,8) \\
& \underline{220}=\left(20^{1}, 8\right)+(20,1)+\left(4^{*}, 10\right) \tag{1.70}\\
& \underline{364}=(20,10)+\left(20^{1}, 8\right)+\left(4^{*}, 1\right) \\
& 572=\left(20^{1}, 10\right)+\left(20^{2}, 8\right)+(20,8)+\left(20^{2}, 1\right) \\
& +\left(4^{*}, 8\right)
\end{align*}
$$

where 15 and 4* * of $\mathrm{SU}(2,2)$ correspond respectively to the Yong tableaux $\left[21^{2}\right]$ and $\left[1^{3}\right]$ and $\underline{20}$ and 20^{\prime} of $s \in(2,2)$ to the tableaux [3] and [2 1] respectively.

Mow the meson fields can be denoted by the mixed tensor $\oplus_{B^{\circ}}^{A}$ For each $\operatorname{su}(3)$ index the meson field 1 is a 4×4 matrix in the Dirac space. Consequently, it can be expanded in terms of the sixteen independent Dirac matrices. Thus, 144-dduponent mesonfield ϕ can be expressed as,

$$
\begin{equation*}
\phi_{B}^{A}=\left[\phi^{i}+\gamma_{5} \phi_{5}^{1}+i \gamma_{\mu} \gamma_{5} \phi_{\mu 5}^{i}+\gamma_{\mu} \phi_{\mu}^{i}+\frac{1}{2} \sigma_{\mu \nu} \phi_{\mu \nu}^{i}\right]_{\beta}^{\alpha}\left(T^{i}\right)_{q}^{p} \tag{1.71}
\end{equation*}
$$

where $\alpha, \beta=1, \ldots 4, p, q=1,2,3$.

The baryons, as it is in SU(6), are assigned to 364 which is completely symmetric with respect to its $\cup(6,6)$ tensor indices. Let ${ }_{\text {ABC }}$ be such a tensor field which is completely symmetric with respect to the interchange of any of the two indices. The. tensor of such a symmetry type can be constrructed from the corresponding $\mathrm{SU}(2,2)$ and $\mathrm{SU}(3)$ tensors in three different ways as is obvious from (1.70). Thus, we can express ${ }_{\text {ABC }}$ in the form,
60.

$$
\begin{align*}
& \left.\psi_{A B C}=\phi_{\alpha p, \beta q, \gamma r}=\frac{\sqrt{3}}{2 \sqrt{2}}{ }_{\alpha \beta \gamma, p q r}+\epsilon_{p q r} \nabla_{[\alpha \beta \gamma}\right] \\
& +\frac{1}{2 \sqrt{6}}\left[\epsilon_{p q s}{ }^{M}[\alpha \beta], r^{s}+\epsilon_{q r s}{ }^{W}[\beta \gamma] \alpha, p{ }^{s}+\right. \\
& \left.+\epsilon_{\mathrm{rps}}{ }^{\mathrm{N}}[\gamma \alpha] \beta, \mathrm{q} .\right] \tag{1.72}
\end{align*}
$$

where ϵ_{pqr} is SU(3) invariant Levi-Civita tensor. $D_{\text {aby, par }}{ }^{\text {is }}$ completely symmetric with respect to Dirac and SU(3) indices separately. $\nabla_{[\alpha \beta y]}$ is completely antisymmetric with respect to the Dirac indices. ${ }^{1 /}$ [$\left.\alpha \beta\right]$ has the mixed symmetry and satisfy the following relations:

$$
\begin{gather*}
\mathbb{N}_{[\alpha \beta] \gamma}=-\mathbb{N}_{[\beta \alpha] \gamma} \tag{1.73}\\
{ }^{W_{[\alpha \beta] \gamma}}+{ }^{\left.\mathbb{N}_{[\beta \gamma \gamma}\right] \alpha} \text { }+\mathbb{N}_{[\gamma \alpha] \beta}=0
\end{gather*}
$$

The normalisation factors in (1.72) have been chosen in the same way as it was done in connection with $\operatorname{SU}(6)$ except the coefficient of $D_{\alpha \beta y, p q r}$ which, here is so chosen that it represents the spin $3 / 2$ particle with the correct charge for $\mathbb{N H}^{++}$.

We now construct the meson-baryon Yukawa type strong interaction Lagrangian. The number of ways this Lagrangian can be constructed depend on how many times the representation 143 occurs in the reduction of the product representation $364 \otimes 364 \%$. Using the well known method we have,

$$
\begin{equation*}
364 \otimes 364 *=1+143+5940+126412 \tag{1.74}
\end{equation*}
$$

From (1.74) it is obvious that the meson-baryon vertex is unique as it was in SU(6). Thus the meson-baryon interaction Lagrangian can be written as,

$$
\begin{equation*}
L_{\text {int }}=-\phi^{A B C} \phi_{A}^{A^{3}} \phi_{A^{2} B C} \tag{1.75}
\end{equation*}
$$

Now substituting the expressions for $\boldsymbol{F}^{A B C},{ }_{A^{2} B C}$ from (1.72) and that for Φ_{A}^{A} from (1.71) into (1.75) and then using (1.73) we have on simplification,

$$
\begin{aligned}
& L_{\text {int }}=\frac{3}{8} \bar{D}^{\alpha \beta \gamma, p q r}\left(\phi_{R}^{i} \gamma_{R}\right)_{\alpha}^{\alpha^{2}}\left(T^{i}\right)_{p}^{p^{2}} D_{\alpha^{y} \beta \gamma, p^{2} q r} \\
& +\frac{1}{4}\left[\bar{D}^{\alpha \beta \gamma}, \mathrm{pqr}\left(\phi^{i} \gamma_{R}\right)_{\alpha}^{\alpha^{\prime}}\left(T^{i}\right)_{p .}^{p^{\prime}} \epsilon_{p^{\prime} q t}{ }^{H 1}\left[\alpha^{\prime} \beta\right] \gamma, r\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.-\frac{1}{2^{4}}\left[\bar{M}^{[\beta \alpha] \gamma}\left(\dot{\varphi}_{R}^{1} \gamma_{R}\right)_{\alpha}^{\alpha^{2}}{ }^{\mathrm{N}}\left[\alpha^{y} \beta\right] \gamma\right]\right]^{1} 30+5 F+12 \beta \\
& +\frac{1}{12}\left[\overline{\mathrm{M}}^{[\beta \alpha] \gamma}\left(\phi^{i} \gamma_{R}\right)_{\alpha}^{\alpha^{2}}{ }^{\mathrm{N}}\left[\alpha^{2} \gamma\right] \beta\right]^{i} 3 D+2 F+3 S \tag{1.76}
\end{align*}
$$

where,

$$
\begin{aligned}
& (\overline{\mathrm{NIN}})_{B}=\overline{\mathrm{H}}_{\mathrm{B}}^{\mathrm{P}}\left(\mathrm{~T}^{0}\right)_{\mathrm{P}}^{\mathrm{P}} \mathrm{~N}_{\mathrm{p}}^{\mathrm{s}}
\end{aligned}
$$

In the above expression (1.76) for the meson-baryon interaction we have neglected the terms involving ${ }_{[}{ }_{[\alpha \beta]}$ which, as we shall discuss in the following section, is identically zero. The above interaction Lagrangian is invariant under $\mathbb{U}(6,6)$. We shall simplify it further in the next section to make it much simpler for the application in the S-matrix calculation.
b. Bargnann-Wigner equations and the Final form of the BaryonMeson Interaction Lagrangian.

We have discussed in the last section the maltispinors corresponding to the finite dimensional irreducible representations
of $\mathbf{U}(6,6)$. But as the group $\mathbb{U}(6,6)$ is non-compact, these representations are not unitary and, therefore cannot be associated with physical particles, the reason being that the spaces of the representations have indefinite metric. We can, however, obtain unitary representations by decomposing, as Delbourgo et al. have shown ${ }^{32 \text {), the indefinite spaces of the original representations }}$ into a collection of subspaces which are invariant under the subgroup $U(6) \otimes \mathbb{U}(6)$ each of the subspaces being definite. How, if we asaume that particles at-rest correspond to the representations of $U(6) \otimes \mathbb{U}(6)$, the Bargmann-Wigner equations when applied to the multispimors corresponding to the $\mathbb{U}(6,6)$ representations generate the relativistic structure of such $\boldsymbol{U}(6) \otimes \mathbb{U}(6)$ multiplets. Thus, the Bargmann-Wigner equations can be looked upon as the relativisibite boosts which generate for a single particle state what we may call the little group structure ($\left.U_{6} \otimes U_{6}\right)_{p}$. Let $\Phi_{A_{1}} A_{2} \ldots$ be a multispinor corresponding to an irreducible representation of $U(6,6)$. Then the Bargmann-Wigner equations corresponding to the lower and upper indices are respectively given by,

$$
\begin{align*}
& (\gamma p)_{A_{i}^{\prime}}^{A_{1}^{!}}{ }_{\boldsymbol{B}_{1} A_{1}^{\prime} A_{2}}^{B_{2}}(p)=m \phi_{A_{1} A_{2}}^{B_{1} B_{2} \cdots} \quad(p) \tag{1.78a}\\
& (\gamma p)_{B_{1}^{\prime}}^{B_{1}^{\prime}} \Phi_{A_{1} A_{2}}^{B_{1}^{\prime} B_{2}} \quad(p)=\rightarrow{ }_{A_{1}}^{B_{1} B_{2}} \quad \text { (p) } \tag{1.78b}
\end{align*}
$$

where p, m are respectively the momentum and the rest-mass of the particle such that $p^{2}=m^{2}$. Corresponding to each of the indices of the irreducible tensor-field there is a Bargmann-Wigner equation of either of the types given above. For identifications With the physical states we are to keep: only those vectors whose components vanish outside the space specified by the BargmannWigner equations.

We now consider the reduction of the multispinors of $\mathrm{U}(2,2)$ with respect to one of its subgroups. For this prapose, we choose the vell known subgroup L_{4}, the homogeneous Lorentz group, the generators of which in the spinor representation are the six Dirac matrices $\sigma_{\mu \nu}$ - How, as is well known, for this case we can define an antisymmetric matrix $\left(\alpha^{-1}\right)^{\alpha \beta}$ within the Birac algebra such that $C^{-1} \psi^{T}\left(\Psi^{T}\right.$ being the transpose of the basic spinor Ψ_{α}) transforms as $\boldsymbol{\Psi}$. In particular, the quantity $C^{-1} \psi^{\text {P }}$ will be invariant just as $\overline{\text { F }} \boldsymbol{\phi}$ under an infinitesimal transformation. Thus, the antisymnetric matrix C will play the role for I_{4} of the metric tensor such that we may regard $\left(C^{-1}\right)^{\mu \beta}$ as the contravariant quantity and its inverse $C_{\alpha \beta}$ the covariant. It can be shown ${ }^{35)}$ that the matrix C can be realised if the following relation is satisfied,

$$
\begin{equation*}
\left(c^{-1}\right)^{\alpha \xi}\left(\gamma_{\mu}\right)_{\beta}^{0} c_{8 \beta}=-\left(\gamma_{\mu}\right)_{\beta}^{\alpha} \tag{1.79a}
\end{equation*}
$$

The other properties of the matrix C are,

$$
\begin{align*}
& \left(c^{-1}\right)^{\alpha \beta}=-\left(c^{-1}\right)^{\beta \alpha} \tag{1.79b}\\
& c_{\alpha \beta}\left(c^{-1}\right)^{\beta \gamma}=8_{\alpha}^{\gamma} \tag{1.79c}
\end{align*}
$$

From these relations we can show that the quantities $\left(\gamma_{\mu} \dot{c}\right)_{\alpha \beta}$, and $\left(\sigma_{\mu \nu} C\right)^{\alpha \beta}$ are symmetric. on the other hand, the quantities $\left(\gamma_{5} C\right)_{\alpha \beta}$ and $\left(i \gamma_{\mu} \gamma_{s} C\right)_{\alpha \beta}$ are antisymmetric. It is these quantities which can be used in constructing a maltispinor in I_{4} having a certain symmetry with respect to the interchange of the Dirac indices. Thus, a completely symmetric tensor of rank 3 can be expressed as,

$$
\begin{equation*}
D_{\alpha \beta \gamma}=\left(\gamma^{\mu} c\right)_{\alpha \beta} D_{\gamma \mu}+\frac{1}{2}\left(\sigma_{\mu \nu} c\right)_{\alpha \beta} D_{\gamma \mu \nu} \tag{1.80}
\end{equation*}
$$

Considering the symmetry property of $D_{\alpha \beta y}$, we obtain the following

$$
\begin{gather*}
\gamma^{\mu}{\underset{\mu}{\mu}}=0 \\
\gamma^{\mu} D_{\mu v}+i D_{v}=0 \tag{1.81}
\end{gather*}
$$

The equations (1.81) show that $\mathrm{B}_{\text {upy }}$ has only 20 independent components. How the Bargmann-Wigner equations corresponding to
each of the three indices of Dapy give,

$$
\begin{align*}
& P_{\mu} D_{\mu \nu}=-i m D_{v} \tag{1.82a}\\
& (p-m) D_{\mu}=0 \tag{1.82b}\\
& p_{\mu} D_{0}-p_{v} D_{\mu}=i m B_{\mu \nu} \tag{1.82c}
\end{align*}
$$

where p and m are respectively the momentum and the rest-mass of the particle. From ($1.82 \mathrm{~b}, \mathrm{c}$) we can derive the following equation,

$$
\begin{equation*}
\mathrm{p}^{\mu} D_{\mu}=0 \tag{1.82d}
\end{equation*}
$$

The equations (182b,c,d) are the well known Rarita-Schwinger equations of motion for a spin $3 / 2$ particle. Now using (1.82) the expression (1.80) can be rewritten in the following simple form,

$$
D_{\alpha f \gamma}=\frac{1}{m}\left[(\underline{m}+m) \gamma^{\mu} C\right]_{\alpha \beta} D_{\gamma \mu}
$$

Stmilarly, the third-rank tensor ${ }^{\mathrm{N}}[\alpha \beta] y$ of the mixed symmetry can be expressed as,

$$
\begin{equation*}
{ }_{[\alpha \beta] \gamma}=C_{\alpha \beta} K_{\gamma}+\left(\gamma_{5} C_{\alpha \beta} H_{\gamma}+i\left(\gamma_{\mu} x_{j=} C\right)_{\alpha \beta} H_{\gamma \mu}\right. \tag{1.83}
\end{equation*}
$$

where the use of the equation (1.73) gives,

$$
\begin{equation*}
\gamma_{5} N+i \gamma^{\mu} \gamma_{5} N_{\mu}-K=0 \tag{1.84a}
\end{equation*}
$$

For this tensor-field ${ }^{\mathrm{N}}$ [β_{β}] we can also obtain three BergmanWigner equations corresponding to the three spinor indices. From these, the equations we obtain are as follows:

$$
(x-m) N_{p}=(x-m) N=(p-m) \mathbb{N}=0
$$

$$
\begin{equation*}
K=0 ; p_{\mu} N_{\mu}-p_{0} H_{\mu}=0 ; p_{\mu} N_{\mu}=-i m \mathbb{M} \tag{1.84b}
\end{equation*}
$$

$$
p_{\mu} H=i m N_{\mu}
$$

The above equations taken together describe a spin $1 / 2$ particle Using the above relations the expression (1.83) can be rewritten in the form:

$$
\dot{W}_{[\alpha \beta] \gamma}=\frac{1}{m}\left[(x+m) \gamma_{5} c\right]_{\alpha \beta} N_{\gamma}
$$

Corresponding to the upper and lower indices of the meson-fields (1.71) we shall obtain two Bargman-Wigaer equations. For any arbitrary $\operatorname{sU}(3)$ index we get the following equations,

$$
\begin{equation*}
\phi^{j}=0 \tag{1.85a}
\end{equation*}
$$

$$
\begin{align*}
& q_{\mu} \phi_{5}^{j}=i \mu \phi_{\mu 5}^{j} ; q^{\mu} \phi_{\mu 5}^{j}=-i \mu \phi_{5}^{j} \tag{1.85b}\\
& q_{\mu} \phi_{\mu \nu}^{j}=-i \mu \phi_{v}^{j} ; q_{\mu} \phi_{v}^{j}-q_{v} \phi_{v}^{j}=i \mu \phi_{\mu \nu}^{j} \tag{1.85c}
\end{align*}
$$

where q and μ are respectively momentum and the rest-mass of mesons. From (1.85c) we can obtain,

$$
\begin{equation*}
q^{\mu} \varphi_{\mu}=0 \tag{1.85d}
\end{equation*}
$$

which shows that the field described by ϕ_{μ} corresponds to a spin one particle. It is also evident that the equations (1.85b) describe a spin 0^{-}particle and the equations (1.85 c) describe a spin 1^{-}particle. Thus, the pseudoscalar mesons (nonet) are described by five-component entities and the vector (nonet) mesons by ten-component objects. Now, using the equations (1.85), the mixed tensor ${ }_{A}^{A^{\prime}}$. for the meson-fields can be expressed as,

$$
\begin{equation*}
\phi_{A}^{A^{\prime}}=\frac{1}{\mu}\left[(\alpha+\mu)\left(\gamma_{5} \phi^{i}+\gamma^{\mu} \phi_{\mu}^{i}\right]_{\alpha}^{\alpha^{1}}\left(T^{i}\right)_{p}^{p^{\prime}}\right. \tag{1.86}
\end{equation*}
$$

We now simplify the expression (1.76) for the Baryon-meson interaction Lagrangian by using the free-field equations we have discussed above. The relevant tensor fields in the expression (1.76) we obtain from (1.80) (1.83') and (1.86). Using the
free-fiejd equations of motion (1.82) and (1.84b) for the spin $3 / 2$ and $1 / 2$ particles respectively we simplify the expression and write the interaction Lagrangian in the following form:

$$
\begin{align*}
& L\left(\overline{\mathrm{~N}} \oplus_{5} \mathrm{~N}\right)=\frac{\mathrm{p}^{2}}{4 \mu^{2}}\left(1+\frac{2 m}{\mu}\right)\left(\overline{\mathrm{IN}} \gamma_{5} \phi_{5} \mathrm{~N}\right)_{\mathrm{S}}+\mathrm{D}+\frac{2}{3} \mathrm{~F} \tag{1.87}\\
& L\left(\bar{N} \phi_{\mu} N\right)=\frac{p^{\mu}}{2 m}\left(1+\frac{q^{2}}{2 n_{\mu}}\right)\left(N \phi_{\mu} N\right)_{3 \delta+F}+\frac{1}{4 m^{2}}\left(1+\frac{2 m}{\mu}\right) \\
& \left({ }^{(1)} r_{H}{ }_{\mu} N\right)_{S+D}+\frac{2}{3} F \\
& L\left(\overline{\mathbb{M}} \dot{\phi}_{s} D\right)^{-}=\frac{1}{m}\left(1+\frac{2 m}{\mu}\right)\left[\overline{\mathbb{M}} D_{\lambda} q_{\lambda}+q_{\lambda} \bar{D}_{\lambda} \cdot N\right] \cdot \phi_{s} \tag{1.89}\\
& L\left(\overline{\mathrm{~N}} \phi_{\mu} D\right)=\frac{1}{2 m^{2}}\left(1+\frac{2 m}{\mu}\right) \epsilon^{\mu v K \lambda} P_{v} q_{K}\left[\overline{\mathrm{~N}} \bar{B}_{\lambda}+\bar{D}_{\lambda} \cdot \bar{H}\right] \cdot \phi_{\mu}(1.90) \\
& L\left(\bar{D} \phi_{5} D\right)=\left(1+\frac{2 m}{\mu}\right)\left[\frac{3 P^{2}}{4 m^{2}} \bar{D}^{D} \gamma_{5} D_{0}+\frac{3}{2 m^{2}} ; q_{\lambda}^{\lambda}, D_{\lambda} \gamma_{5} D_{0} q_{0}\right] \cdot \phi_{5} \tag{1.91}
\end{align*}
$$

$$
\begin{align*}
L\left(\bar{D} \phi_{\mu} D\right)= & \frac{3 P^{2}}{4 m^{2}} \bar{D}^{0}\left[\left(1+\frac{2 m}{\mu}\right) r^{\mu}-\frac{F^{\mu}}{\mu}\right] D_{0} \phi_{\mu}+\frac{3}{2 m^{2}} q_{\lambda} \bar{D}_{\lambda} \\
& {\left[\left(1+\frac{2 m}{\mu}\right) r^{\mu}-\frac{P^{\mu}}{\mu}\right] D_{v} q_{0} \phi_{\mu} } \tag{1.92}
\end{align*}
$$

In the above expressions we have $P=p+p^{\prime} ; q \mathbf{p - p}$, where p and p^{\prime} are respectively the momenta of the ingoing and the outgoing baryons $r_{\mu}=e^{\mu v K} P_{0} q_{K} \gamma_{\lambda} \gamma_{5}$, where $e^{\mu 0 K \lambda}$ is the fourth-rank Levi-Civita tensor with $\epsilon^{0123}-1 . N, D, \Phi_{3}$ and φ_{μ} denote baryon, baryon-resonance, pseudoscalar meson and the vector meson respectively. The expressions (NIN) ${ }_{F},(\mathbb{N} N)_{D}$ and $(\mathbb{N} N)_{S}$ have the usual meaning defined by (1.77).

One of the interesting features of the $u(6,6)$ theory is that the pseudoscalar su(3) singlet $\left(x^{0}\right)$ coupling is no longer independent of the pseudoscalar octet coupling. These are related through $\mathbb{U}(6,6)$ coupling as it is evident from (1.89). Further, the F / D ratio of the meson-baryon coupling is uniquely defined in $\boldsymbol{U}(6,6)$ as it is in $\mathbb{M g}(6)$. Salam, Delbourgo and Strathdee have obtained for the proton-neutron magnetic moment ratio, the value which is the same as su(6) result. The $u(6,6)$ theory not only gives the value of this ratio, but also an expression in terms of Baryon and meson masses for calculating the value of the proton magnetic moment.

Despite many other predictions (discussed by Salam et al ${ }^{32 \text {)) }}$ the $\mathbf{U}(6,6)$ theory, however, have some shortcomings. As discussed by several authors ${ }^{36)}$ the requirement of the unitarity of the s-matrix (scattering matrix) is not compatible with the $U(6,6)$ theory. We shall, however, like to elaborate this point when We consider the Baryon-meson scattering in the context of $\mathbf{U}(6,6)$ in the later chapter. The incompatibiltiy of the causality relation for baryons with the index invariance theory (as $\boldsymbol{\sigma}(6,6)$ and $8 L(6 \mathrm{c})$) have been discussed by Peldman and Matthews 37). We shall, rather, not discuss this aspect of the relativistic (higher) symmetry theories any further.

The Methods for the Drmamical Calculations

1. The Partial Wave Dispersion Relations and \mathbb{W} / D Method

Mandelstam ${ }^{38)}$ has given a representation for the invariant amplitude $A(s t u)$ in the form of a double dispersion relation. Here the variables are respectively the c.m. energy squared in each of the three channels that are associated with any twoparticle scattering diagram. Mandelstam's representation expresses the scattering amplitude $A(s t u)$ as a function of these variables thus implying that the function $A(s t u)$ is analytically contimuable in the different regions of the above variables. Since no convenient mathod for using the double spectral functions in the Mandelstam's representation is yet available, this representation is used in the form of either the fixed energy dispersion relations in which one of the three variables is kept fixed or the partial wave dispersion relations. It is the latter that we shall be concerned with in this chapter. We shall assume in this chapter that the partial wave amplitudes and the structures of the related singalarities corresponding to an arbitrary scattering process are known and then discuss how the dispersion relation techniques are used to solve such a problem. In particular, we shall discuss
how the partial wave dispersion relations are used in the selfconsistent caleulations.

Let $a_{\ell}(s)$ be a partial wave amplitude corresponding to the orbital angular momentum $\&$ with the following properties:
(a) $a_{\ell}(s)$ is analytically contimable into the entire complex s-plane, where s is the c.m. energy squared.
(b) $a_{\ell}(s)$ is regular (analytic and single valued) everywhere in the entire complex s-plane except for the two branch cuts, namely, the right-hand cut (physical cut) starting from the physical threshold and the left-hand cut that arises due to the singularities in the crosised processes.
(c) $a_{l}(s)$ vanishes at infinity everywhere in the complex s-plane. In otherwords, the partial wave amplitude $a_{\ell}(s)$ behaves as s^{-n} where $\boldsymbol{n} \geqslant 1$.
(d) the function $a_{2}(s)$ is a real analytic function of the variable under consideration. Mathematically, the reality property of the analytic function is given by,

$$
\begin{equation*}
a_{\ell}^{*}(s)=a\left(s^{*}\right) \tag{2.1}
\end{equation*}
$$

We can, then, use the Cauchy theorem in order to obtain the dispersion relation for the partial wave amplitude $a_{\ell}(s)$. We choose
the contour as shown below (Fig. 2.1) in the complex s-plane.

s-plane

Figure 2.1

Now in view of the property (c) of $a_{\ell}(s)$ we can neglect the contributions from the infinite circle and further, we assume that $a_{l}(s)$ is free from all the kinematic: singularities. Then, using (2.1) we obtain the following dispersion relation,

$$
\begin{equation*}
a_{l}(s)=\frac{1}{\pi} \int_{L} d s^{2} \frac{\operatorname{Im} a_{l}\left(s^{\prime}\right)}{s^{2}-s}+\frac{1}{H i} \int_{R} d s^{1} \frac{\operatorname{Im} a_{\ell}\left(s^{8}\right)}{s^{2}-s} \tag{2.2}
\end{equation*}
$$

where L, R denote the integrals on the left and right cuts respectively. The above dispersion relation is valid provided the condition (c) is satisfied. If $a_{l}(s)$ does not vanish as $|s| \rightarrow \infty$ we have to introduce subtractions. Suppose $\left|a_{\ell}(s)\right| \nmid 0$ as $|s| \rightarrow \infty$ but $\left|a_{\ell}(s)\right| /|s|^{n} \rightarrow 0$ as $|s| \rightarrow \infty$ where $n \geqslant 1$. Then we apply the Cauchy theorem to the function $a_{l}(s) / s^{n}$ to obtain the dispersion relation. This new function, however, has poles due to the factor s^{n} in the denominator. The
contributions of these poles are always taken into account while deriving the dispersion relation.

Having known the form (2.2) of the dispersion relation for the partial wave amplitude $a_{l}(s)$, the job then is to solve it in order to obtain the information about a specific scattering process. In order to obtain a solution for the scattering amplitude $a_{l}(s)$ we need to know the imaginary parts In $a_{l}(s)$ of $a_{l}(s)$ over both the right and left cats. The imaginary part Tm a ${ }_{\ell}(s)$ over the right-hand cut is known from the unitarity relation above the physical threshold. Then, using the unitarity relation, we can obtain for $\operatorname{Im} a_{2}(\dot{s})$ over the right-hand cut,

$$
\begin{equation*}
\operatorname{Im} a_{l}(s)=\rho(s)\left|a_{l}(s)\right|^{2} R_{l}(s) \tag{2.3}
\end{equation*}
$$

where $\rho(s)$ is the kinematic factor which is usually of the form, $\rho_{\ell}(\mathrm{s})=\frac{\mathrm{x}^{2 \ell+1}}{\sqrt{1}}$, where k is the absolute value of the momentum. The quantity $R_{l}(s)$ in (2.3) is the ratio of the total cross section of all the processes (elastic as well as inelastic, corresponding to the $\ell^{\text {th }}$ wave) to that of the elastic processes. The factor $\rho(s)$ is related with the partial wave amplitude through the relation,

$$
\begin{equation*}
a_{\ell}(s)=\frac{e^{18_{\ell}} \sin \delta_{\ell}}{\rho(s)} \tag{2.4}
\end{equation*}
$$

where δ_{ℓ} is the phase-shift corresponding to the $\ell^{\text {th }}$ partial wave of the scattering process. In the above we have considered only the elastic scattering for which 8_{2} is real and we can put $R_{\ell}(s)=1$. This approximation is exact only up to the inelastic threshold. For the scattering above the inelastic threshold, the relation (2.4) will have to be modified by introducing the factor $\mathbf{R}_{\mathbf{\ell}}(\mathrm{s})$ in order to take into account the inelastic effects. Many calculations have, in fact, been made with the elastic approximation. This approximation, however, would not be bad if the second integral in (2.2) is rapidly convergent enough.

As we have discussed above, the unitarity relation (2.3) gives us some information about the right-hand cut but a difficulty arises as to calculating $\operatorname{Im} a_{f}(s)$ over the left-hand cut because the unitarity condition of $a_{l}(s)$ cannot be applied over the left out which lies in the unphysical region of s-channel. This difficulty is, however, overcome by using the crossing symmetry property of $a_{\ell}(s)$. It is well known that the left-hand cut is associated with the forces that are responsible for the scattering and these forces arise due to the exchanges of the particles in the crossed channels. The nearby part of the left-hand cut arises from the lightest particles that can be exchanged and so corresponds to the lomg range forces of the problem. The far-off part of the left-mand cut is associated with the exchange of more
massive systems, i.e. maltiparticle states and thus correspoads to the short-range forces. If we know the particle that can be exchanged in the crossed channel of the scattering under consideration we can use the crossing symmetry which relates the $\operatorname{Im} \mathrm{a}_{\boldsymbol{l}}(\mathrm{s})$ on the left-cut with absorptive parts of the crossed processes. These absorptive parts are known from the relevant cressed diagrams and consequently $\operatorname{Im} a_{f}(s)$ on the left-cut can be calculated.

Having known the values of $\operatorname{Im} a_{2}(s)$ over both the left and the right cuts we may try to solve (2.2) but in that case we have to deal with a non-linear equation which will arise due to the nonIinear condition (2.3). Grew and Mandelstam ${ }^{13 \text {), however, have }}$ given a method known as N / D method by which we can convert this mon-linear equation into a pair of coupled linear integral equations. Thus, we can write,

$$
\begin{equation*}
a_{l}(s)=\frac{\mathrm{N}_{\ell}(s)}{B_{\ell}(s)} \tag{2.5}
\end{equation*}
$$

where $N_{\ell}(s)$ contains all the discontinuities on the left-hand cut and is real on the right-hand cut. Thus, it corresponds to the forces.

The function $B_{2}(s)$ on the other hand, is assumed to contain all the discontimuities on the right-hand cut and be real on the Left-hand cut. That $a_{i}(s)$ can be expressed in the form (2.5) is
essentially due to the fact that the left-hand and right-hand cuts are separated by a gap, ie. $a_{\ell}(s)$ is real analytic.

We are now in a position to write dispersion relations for both $H_{\ell}(s)$ and $B_{\ell}(s)$. We can again assume that both $N_{\ell}(s)$ and $D_{\ell}(s)$ are real analytic functions such that they will satisfy the following relations,

$$
\begin{align*}
& \mathbb{N}_{\ell}^{*}(s)=\mathbb{N}_{\ell}\left(s^{*}\right) \tag{2.6a}\\
& D_{\ell}^{*}(s)=D_{\ell}\left(s^{*}\right) \tag{2.6b}
\end{align*}
$$

Now the imaginary or the absorptive parts of $\mathbb{N}_{\ell}(s)$ and $D_{2}(s)$ are respectively given by,

$$
\begin{align*}
& \operatorname{Im} H_{\ell}(s)=D_{\ell}(s) \operatorname{Im} a_{\ell}(s) \quad \text { for } s<s_{L} \\
& =0^{\circ} \quad \text { for } s>s_{L} \tag{2.7a}\\
& \operatorname{Im} D_{\ell}(s)=N_{\ell} \operatorname{Im}\left(1 / a_{\ell}\right) \\
& -\mathrm{N}_{\ell}(\mathrm{s}) \rho(\mathrm{s}) \mathrm{R}_{\ell}\left(\mathrm{s}^{\prime}\right) \text { for sid } \mathrm{s}_{R} \tag{2.7~b}\\
& -0 \\
& \text { for }:<\mathbf{s}_{\mathbf{R}}
\end{align*}
$$

where $s_{L_{M}}$ is the beginning of the left-cut and s_{R} is that of the right-cut. In deriving the relation (2.7b) we have used (2.4) and
also taken into account the effect of the inelastic scattering. Assuming further that $W_{\ell}(s) \rightarrow 0$ as $|s| \rightarrow \infty$ the dispersion relation for $\mathbb{N}_{\ell}(\mathrm{s})$ is given by,

$$
\begin{equation*}
H_{l}(s)=\frac{1}{\pi} \int_{s_{L}}^{\infty} \frac{D_{l}\left(s^{2}\right) \operatorname{Im} a_{l}\left(s^{2}\right)}{\left(s^{1}-s\right)} d s^{s} \tag{2.8}
\end{equation*}
$$

In order to obtain the dispersion relation for $\mathrm{D}_{2}(\mathrm{~s})$ we make further assumption that the partial wave amplitude $a_{\ell}(s)$ has no CBD ${ }^{39)}$ poles. Moreover, since both $\mathbb{N}_{\ell}(s)$ and $D_{l}(s)$ can be multiplied by a constant (matrix in the case of maltichamel problem) number without affecting the solution of $a_{\ell}(s)$ we have the freedom to normalise $D_{\ell}(s)$ to 1 at a suitable point near the physical region. Thus, normalising $D_{f}(s)$ at a point $s=s_{0}$, and using (2.7b) we obtain the following dispersion relation,

$$
\begin{equation*}
D_{\ell}(s)=1-\frac{\left(s-s_{0}\right)}{\pi} \int_{s_{R}}^{\infty} d s^{\prime} \rho\left(s^{y}\right) R_{\ell}\left(s^{p}\right) \frac{H_{l}\left(s^{v}\right)}{\left(s^{v}-s\right)\left(s^{v}-s_{0}\right)} \tag{2.9}
\end{equation*}
$$

Equation (2.8) for $N_{2}(s)$ involves an integral over the left-hamd cut. It is often convenient if the integral (2.8) is converted into one over the right-hand cut. In order to achieve that we assume that we know a function $B_{l}(s)$ which has the same left-
hand cut as a_{ℓ} (s) but no right-hand so that we can write,

$$
\begin{equation*}
B_{\ell}(s)=\frac{1}{\pi} \int d s^{2} \frac{\operatorname{Im} a_{l}\left(s^{0}\right)}{s^{v}-s} \tag{2.10}
\end{equation*}
$$

Now considering the above assumption about the property of $\mathbf{B}_{\boldsymbol{l}}$, we have over the left-hand cut, $\operatorname{Im}\left[\mathrm{H}_{\ell}-B_{l} D_{l}\right]=D_{l} \operatorname{Im} a_{l}-D_{l} \operatorname{Im} B_{l}=0$, where we have used (2.7). Thus, the function $\mathbb{N}_{\ell}-B_{\ell} D_{\ell}$ has only a right-hand cut. Then, writing dispersion relation for $\mathrm{N}_{\ell}-\mathrm{B}_{\boldsymbol{l}} \mathrm{B}_{\mathrm{l}}$ we have,

$$
\begin{gather*}
N_{\ell}(s)=B_{\ell}(s)+\frac{1}{\pi} \int_{S_{R}} d s^{t}\left[B_{\ell}\left(s^{2}\right)-\frac{s-s_{0}}{s^{t}-s_{0}} B_{\ell}(s)\right] \\
 \tag{2.11}\\
\times \frac{p\left(s^{2}\right) H_{\ell}\left(s^{0}\right)}{\left(s^{2}-s\right)}
\end{gather*}
$$

where so is the same point as it is in (2.9). The equation (2.11) can be used together with (2.9). The advantage of the above method is that the calculation involves integrals only over the physical region so that if we know $B_{l}(s)$ (which we can calculate from the processes in the crossed channels) without having first to evaluate the left-hand cat discontinuity or if we wish to use an approximation for $B_{f}(s)$ which is reasonably good in the physical region, then it is convenient to use (2.11) and (2.9) instead of (2.8) and (2.9) for the silution of the scattering problem. Further
the wse of (2.11) together with (2.9) gives for the scattering amplitude $a_{l}(s)$ a solution which is independent of the subtraction point s_{0}; and in the case of the multi-channel problem, this solution retains the time reversal property. The above method (2.11) was in fact first used by Uretsky ${ }^{40)}$ and in the past has been used in many calculations ${ }^{7,41 \text {). The above method can alse }}$ be used in the multi-channel problem in which both $H_{i j}(s)$ and $D_{i j}(s)$ become $n \times n$ matrices depending on the number of channels. The integrals of these functions will contain a function $\theta\left(s^{*}-s_{j}\right)$ showing that the integrals start at the appropriate threshold of the channel concerned (see next section for details).

2. The Approximate N / D Methods

a. The Determinanteil Method:

In order to solve the integral equations for the partial wave amplitudes $a_{l}(s)$, we have, as mentioned in the last section, to have some information about $\operatorname{Im} a_{l}(s)$ on the left-mand cut or about $B_{l}(s)$ on the right-band cut. As we also mentioned earlier, the values of these functions can be calculated from a set of exchange diagrams in the crossed channels. A difficulty that usually arises in such a procedure is that when we consider exchanges of particles of spin greater than or equal to one, the integrals (2.8) or (2.11)
and (2.9) become divergent. These divergences arise from the fact that the contributions from such exchange diagrams involving particles with spin greater than or equal to one, contain terms proportional to $P_{\ell}\left(\cos _{t}\right)$ or $P_{\ell}\left(\cos _{u}\right)$ with $\ell \geqslant 1$ and then since $\cos \theta_{t}$ and $\cos \theta_{u}$ are proportional to s, these are proportional to $s^{\boldsymbol{\ell}}$. If this gives rise to, as it usually does, the divergent integrals we are forced to introduce a cut-off. There have been some calculations ${ }^{7,41 \text {) where these integral equations have been }}$ solved numerically, but the calculations become rather complicated, and since the results even then involve the cut-off as an arbitrary parameter it has been natural to look for some simplifying approximations.

An approximate $1 / / D$ method which has been widely used in the past because of its simplicity is the so-called determinantal method ${ }^{42 \text {). The usual procedure to solve the coupled integral }}$ equations (which is the case in M / D method) is to use the iterative method. In the first approximation, we put $D_{\ell}(s)=1$ on the lefthand cut to evaluate $N_{l}(s)$ from (2.8) then we use this $\mathbb{H}_{l}(s)$ to evaluate $D_{f}(s)$ from (2.9) and-so on. In the determinantal method, we go only up to the flrst approximation then obtain, using. (2.7a) $\operatorname{Im} \mathrm{I}_{\ell}(\mathrm{s})=\operatorname{Im} \alpha_{\ell}(\mathrm{s})=\operatorname{Im} \mathrm{B}_{\ell}(\mathrm{s})$. Consequently, we can put $H_{l}(s)=B_{\ell}(s)$. The function $B_{\ell}(s)$ is usually calculated firm a set of single-particle exchange diagrams in the crossed channels and
that is why this method is, sometimes, referred to as the uniterised Born approximation or the B/D method. In this approximate method, the solution of the partial wave amplitude becomes very simple and it is given by,
$a_{l}(s)=B_{l}(s) \times\left[1-\frac{\left(s-s_{0}\right)}{\pi} \int_{S_{R}} d s^{\ell} p\left(s^{1}\right) \frac{R_{l}\left(s^{2}\right) B_{l}\left(s^{2}\right)}{\left(s^{2}-s\right)\left(s^{1}-s_{0}\right)}\right]^{-1}$

The self-consistent calculations become very straight-forward if we use the determinantal approximation. Suppose a bound state occurs at $s=s_{3}$ and as this corresponds to the zero of the dencminator function $D_{l}(s)$, we have $D_{\ell}\left(s_{B}\right)=0$. Then the output coupling constant corresponding to this bound state is given by,

$$
\begin{equation*}
g^{\prime 2}=-\frac{\dot{B}_{R}\left(s_{B}\right)}{B^{\prime}\left(s_{B}\right)} \tag{2.13}
\end{equation*}
$$

where $B_{l}\left(s_{B}\right)$ is the value of the Born terms at the pole-position and $D^{\prime}\left(s_{B}\right)$ is the first-derivative of $D_{2}(s)(2.9)$ with respect to s evaluated at $s=s_{B}$ -

When we are dealing with a _multichannel problem, the use of this approxdmate method makes the calculations very straightforward and much simpler. Suppose we are considering a m-channel scattering then the unitarity relation of the problem can be
written in the form,

$$
\begin{equation*}
\left[a_{i j}(s)-a_{i j}^{*}(s)\right] / 2 i=\sum_{K} a_{i k}^{*} \theta\left(s-s_{K}\right) a_{k \gamma} a_{\gamma j}(s) \tag{2.14}
\end{equation*}
$$

where s_{K} is the threshold-energy for the state k and $\theta\left(s-s_{K}\right)$ is the step-function which is one or zero, according to whether s is larger or smaller than s_{K}. The kinematic factor $\rho_{\mathrm{ky}}(\mathrm{s})$ is now a diagonal matrix and is usually of the form,

$$
\begin{equation*}
\rho_{i j}=\delta_{i j} \frac{k_{i}^{2 \ell_{i}+1}}{\sqrt{g}} \tag{2.15}
\end{equation*}
$$

From the unitarity relation (2.14) we can obtain,

$$
\begin{equation*}
\operatorname{Im}\left[a^{-1}(s)\right]_{i j}=-\theta\left(s-s_{j}\right) \rho_{i j}(s) \tag{2.16}
\end{equation*}
$$

Mow, the scattering amplitude $a_{i j}(s)$ can be written in the form,

$$
\begin{equation*}
a_{i j}(s)=N_{i k}^{\prime}(s) n_{k j}^{-i}(s) \tag{2.17}
\end{equation*}
$$

Then, using (2.16) and (2.17) and the determinantal approximation we have for the denominator function

$$
\begin{equation*}
D_{k j}(s)=8_{k j}-\frac{s-s_{0}}{\pi} \int_{s_{K}} d s^{2} \theta\left(s^{2}-s_{K}\right) \rho_{k K}\left(s^{2}\right) \frac{B_{k j j}\left(s^{i}\right)}{\left(s^{i}-s\right)\left(s^{i}-s_{0}\right)} \tag{2.18}
\end{equation*}
$$

The advantage of the deterninantal method lies in the fact that the integral (2.18) does not require any iteration and further the scattering amplitude can be given in a very simple form,

$$
\begin{equation*}
a_{i j}(s)=\frac{B_{i k}(s) \bar{D}_{k j j}(s)}{\operatorname{det} D} \tag{2.19}
\end{equation*}
$$

where $\operatorname{det} \mathcal{B}$ is the determinant of the denominator function. If we are looking for the position of the bound state, then it can be obtained from the condition,

$$
\begin{equation*}
\operatorname{det} D=0 \tag{2.20}
\end{equation*}
$$

If, on the other hand, we are looking for the location of a resonance we have to equate the real part of det D to zero.

The determinantal method discribed above, however, has same shortcomings. Although this method ensures unitarity, it does not give the correct left-hand cut corresponding to the set of diagrams chosen, except at the immediate neighbộurhood of the point $s=s_{0}$ at which the denominator function D is normalised. For this reason, it is expected that the results will, to some extent, be dependent on the choice of the subtraction point. We therefore have to choose the subtraction point somewhere in the nearby part of the left-hand cut from where the maximum contribution to the force is expected. Further, if we use this method in s. 2
multi-channel problem described above, it does not give a symmetric scattering matrix as required by the time reversal invariance. Despite these shortcomings, however, this method has been very popular because of its simplicity. Moreover, the problem of divergences mentioned earlier in this section, can be avoided by using this method.
b. The Pole Approximation:

In order to avoid the mumerical integrations involved in the N/D method, the pole approximation method has been used in the past in many calculations. In this method, it is assumed that the effects of the left-hand in the physical region can be approximated by means of a set of poles located on the left-hand cut. Then, we can write,

$$
\begin{equation*}
B_{\ell}(s)=\sum_{i=1}^{n} \frac{R_{i}}{s_{i}-s} \tag{2.21}
\end{equation*}
$$

where $s_{i}<s_{L}$, and $s>s_{R^{\prime}}, s_{\mathbf{L}}$ being the beginning of the lefthand cut and s_{R} that of the right-hand cut. Now, from the principal value theorem in complex variables we have,

$$
\begin{equation*}
\frac{n_{i}}{\epsilon \rightarrow 0, s_{i}-s_{\mp} i \varepsilon}=\frac{p}{s_{i}-s} \pm 1 \pi \delta\left(s_{i}-s\right) \tag{2.22}
\end{equation*}
$$

Using (2.21) and (2.22), we have from (2.8),

$$
\begin{equation*}
N_{i}(s)-\sum_{i=1}^{n} \frac{R_{i}}{s_{i}-s} D_{l}\left(s_{i}\right) \tag{2.23}
\end{equation*}
$$

If we now substitute (2.23) into (2.9) the integral of the -denominator function can be easily evaluated. Then, the denominator function $D_{l}(s)$ can be expressed in the following simple form:

$$
\begin{equation*}
D_{l}(s)=1+\sum_{i=1}^{n} F_{i}\left(s, s_{0} s_{i}\right) R_{i} \underline{D}_{\ell}\left(s_{i}\right) \tag{2.24}
\end{equation*}
$$

where $F_{i}{ }^{\boldsymbol{p}}$ s are some functions of the variables appearing in the argument. We can now evaluate $D_{l}(s)$ at; say n points from (2.24) and solve n algebraic equations so obtained for $D_{l}(8)$. The equations (2.23) and (2.24) then give the amplitude in the physical region. This method can also be used in the self-consistent calculations where we can adjust the parameters R_{i} (residue of the $i^{\text {th }}$ pole) and s_{i} (position of the $i^{\text {th }}$ pole on the left-cut) in order to obtain the self-consistent solution. These input parameters can also be determined in different ways. Following the method used by Frautschi and Walecka we can approximate the lefthand cut discontinuities corresponding to/certain set of diagrams by
poles in such a way that the Cauchy integral around the poles approximates the Cauchy integral around those discontinuities, when it is evaluated in the physical region. In using this method, however, a difficulty arises when exchanges in the crossed channels of particles with spin greater than or equal to one are considered. In that case the left-hand cut integrals became divergent and consequently we are forced to neglect the far-off part of the cut or introduce a cut-off in the integrals concernẹd.
c. Pagels Method.

Pagels ${ }^{44}$) has given an approximation scheme for solving the N/D equations and this method has, undoubtedly, much advantage compared to the other approximate methods we have discussed so far. In this scheme the spectral integral over the kinematic factor $\rho_{l}(s)$ on the left is approximated by a set of poles on the right without making any change in the force term $\mathrm{B}_{\ell}(\mathrm{s})$. Following this procedure, we can, getting rid of the integrals, obtain an algebraic expression for $a_{\ell}(s)$ in terms of $B_{\ell}(s)$ in such a way that the solution gives the correct discontinuities across both the rightand left-hand cuts. Further, the solution is independent of the subtraction point and has a aymmetric $a_{\ell}(s)$ for a symmetric input $B_{l}(s)$. We shall discuss this method in some detail and show how it can be used in bootstrap calculations. We shall consider only
the aingle-channel problem with only one-pole approximation. Generalisation to the many-chamel problems with more than onepole approximation is, as it will be clear, very straight-forward.

Pagels assumes that the force term $B_{f}(z)$ admits of the Hilbert representation of the form,

$$
\begin{equation*}
B_{\ell}(z)=\frac{1}{\pi} \int_{L} d z^{2} \frac{\operatorname{Im}_{m^{\prime}} B_{\ell}\left(z^{z}\right)}{z^{1}-z} \tag{2.25}
\end{equation*}
$$

where the integral extends over the left-hand cut and z is the C.m. energy squared. All through this section we shall take x, y, z as the energy variables for the sake of convenience. Dropping the index ℓ we write the partial wave amplitude in the form (2.5)

$$
\begin{equation*}
a(z)=N(z) D^{-1}(z) \tag{2.26}
\end{equation*}
$$

Mow making the same assumptions as before aboat the analytic properties of $N(z)$ and $B(z)$ and using the unitarity relations (2.7) and normalising the denaminator function at $z=z_{0}$, we have,

$$
\begin{gather*}
B\left(z, z_{0}\right)=1-\frac{z-z_{0}}{\pi} \int_{R} d x \frac{\left.\rho(x) \frac{N(x}{} z_{0}\right)}{\left(x-z_{0}\right)(x-z)} \tag{2.27}\\
W\left(z, z_{0}\right)=\frac{I}{\pi} \int_{L} d x \frac{\operatorname{Im} N\left(x, z_{0}\right)}{x-z} \tag{2.28}
\end{gather*}
$$

where,

$$
\begin{equation*}
\operatorname{Im} \mathbb{H}\left(x z_{0}\right)=\operatorname{Im} B(x) D\left(x z_{0}\right) \tag{2.29}
\end{equation*}
$$

How substituting (2.28) into (2.27) and interchanging the orders of integration we can easily obtain,

$$
\begin{equation*}
D\left(z z_{0}\right)=1+\frac{z-z_{0}}{\pi} \int_{L} d y K\left(z y z_{0}\right) \operatorname{Im} \forall\left(y z_{0}\right) \tag{2.30}
\end{equation*}
$$

where, the kernel $K\binom{\mathrm{y}}{z_{0}}$ depends only on the kinematic factor $\rho(z)$ and is given by,

$$
K\left(\begin{array}{ll}
z & y \tag{2.31}\\
z_{0}
\end{array}\right)=\frac{1}{\pi} \int_{R} \frac{d x \rho(x)}{\left(x-z_{0}\right)(x-z)(x-y)}
$$

Now using the identity,

$$
\frac{1}{(x-z)\left(x-z_{0}\right)}=\frac{1}{z-z_{0}}\left\{\frac{z}{x(x-z)}-\frac{z_{0}}{x\left(x-z_{0}\right)}\right\}
$$

we can express the-kernel $K\left(\begin{array}{ll}x & z_{0}\end{array}\right)$ in the following form,

$$
\begin{equation*}
K\left(z y z_{0}\right)=\frac{z F(z)}{\left(z-y d z-z_{0}\right)}+\frac{y P(y)}{(y-z)\left(y-z_{0}\right)}+\frac{z_{0} F\left(z_{0}\right)}{\left(z_{0}-z\right)\left(z_{0}-y\right)} \tag{2.32}
\end{equation*}
$$

where the function $F(z)$ (which is a diagonal matrix in a multichannel problem) is,

$$
\begin{equation*}
F(z)=\frac{z}{\pi} \int_{R} \frac{d x p(x)}{x^{2}(x-z)} \tag{2.33}
\end{equation*}
$$

We now-substitate (2.32) into (2.30) and on simplification get,

$$
\begin{align*}
D\left(z z_{0}\right)= & 1-z P(z) N\left(z z_{0}\right)+z_{0} P\left(z_{0}\right) N\left(z_{0} z_{0}\right) \\
& +\frac{1}{\pi} \int_{L} d y P(y) \operatorname{Im} \mathbb{N}\left(y z_{0}\right)\left\{\frac{z}{y-z}-\frac{z_{0}}{y-z_{0}}\right\} \tag{2.34}
\end{align*}
$$

Now, the function $H_{l}(z)=F_{l}(z) / z$ is a spectral integral over the positive definite kinematical factor $\rho_{l}(z)>0$ and hence on the left will have all its derivatives positive. Therefore, this function can, quite accurately, be approximated on the left by a pole on the right. Thus, for the l-th partial wave we can write,

$$
\begin{equation*}
F_{\ell}(z) / z=H_{\ell}(z) \simeq C_{\ell} /\left(z-a_{\ell}\right) \tag{2.35}
\end{equation*}
$$

where, C_{l} and q_{2} are constants which are chosen to reproduce $H_{l}(z)$, which is known exactly once $\oplus_{\ell}(z)$ is given. The constants C_{ℓ} and a_{ℓ} are completely determined once the partial wave is specified. Here, in (2.35) we aze making only one-pole approximation. If greater accuracy is desired we can add more pole terms in (2.35), thus more closely approximating the exact. $H_{\ell}(z)$.

How, with one-pole approximation, we obtain from (2.34), using (2.25), (2.28) and (2.29) the following expression for the denominator function,

$$
\begin{align*}
& D\left(z z_{0}\right)=g\left(z_{0}\right)-z F(z) N\left(z z_{0}\right)+\frac{C z}{(z-a)} \\
& \times\left[z N\left(z z_{0}\right)-a N\left(a z_{0}\right)\right] \tag{2.36}
\end{align*}
$$

where,

$$
\begin{align*}
& g\left(z_{0}\right)=1+z_{0} F\left(z_{0}\right) N\left(z_{0} z_{0}\right)-\frac{C z_{0}}{\left(z_{0}-a\right)} \\
& \times\left[z_{0} N\left(z_{0} z_{0}\right)-a N\left(a z_{0}\right)\right] \tag{2.37a}
\end{align*}
$$

It is evident from (2.37a) that,

$$
\begin{equation*}
g(0)=1 \tag{2.37b}
\end{equation*}
$$

Using, now, (2.35) we obtain from (2.36) an accurate expression (within the limit of the approximation) for $D(z)$ along the lefthand cut,

$$
\begin{equation*}
D\left(z z_{0}\right)=g\left(z_{0}\right)-\frac{C a z}{z-a} N\left(a z_{0}\right) \tag{2.38}
\end{equation*}
$$

How substituting (2.29) and using (2.38), we obtain from (2.28),

$$
\begin{equation*}
N\left(z z_{0}\right)=B(z) g\left(z_{0}\right)-[z B(z)-a B(a)] \cdot \frac{C a \cdot N\left(a z_{0}\right)}{(z-a)} \tag{2.39}
\end{equation*}
$$

where we have used (2.25) and the following identity

$$
\frac{x}{(x-a)(x-z)}=\frac{z}{(z-a)(x-z)}-\frac{a}{(z-a)(x-a)}
$$

As we mentioned earlier in this section, the solution of the problem is independent of the subtraction point. Therefore, without the loss of any accuracy we can set $z_{0}=0$. From (2.39) we can further obtain,

$$
\begin{equation*}
N(a)=\left\{1+G a\left[B(a)+a B^{z}(a)\right]\right\}^{-1} B(a) \cdot g\left(z_{0}\right) \tag{2.40}
\end{equation*}
$$

where $B^{B}(a) \quad a B(a) / d a$.
We now see that the equations (2.36), (2.38), (2.39) and (2.40) together give the complete solution of the problem. The expressions for the denominator function $B(z)$ on the right and left cut are given by the equations (2.36) and (2.38) respectively.

Let _us now discuss how this method is applied in a bootstrap calculation. Setting $z_{0}=0$, we have from (2.38) using (2.40),

$$
\begin{equation*}
D(z)=1-\frac{C z a \cdot B(a)}{(z-a)}\left\{1+C . a\left[B(a)+a B^{\prime}(a)\right]\right\}^{-1} \tag{2.41}
\end{equation*}
$$

If there is a pole at $z=s_{0}$, we have $D\left(s_{0}\right)=0$. How taking out the coupling constant from the Born term $B(z) \rightarrow g^{2} B(z)$ we
obtain for the zero of the denominator function $B\left(s_{0}\right)=0$,

$$
\begin{equation*}
1 / B^{2}=\frac{C a^{2}}{s_{0}-a}\left[B(a)-\left(s_{0}-a\right) B^{\prime}(a)\right] \tag{2.42}
\end{equation*}
$$

How the expression for the output coupling constant is given by,

$$
\begin{equation*}
1 / g^{22}=-\frac{D^{2}\left(s_{0}\right)}{N\left(s_{0}\right)} \tag{2.43}
\end{equation*}
$$

Esing (2.39) and (2.41) we get from (2.43) the expression for the output coupling constant which is given by,

$$
1 / g^{i 2}=-\frac{1}{B(a)\left(s_{0}-a\right)}-\frac{1}{g^{2} B(a)\left(s_{0}-a\right)}
$$

where in (2.43') we take out the input coupling constant from the Born term $B(a)$. For the self-consistency requirement we have $g^{2}=g^{12}$. Therefore, the condition for the self-consistent result is given by,

$$
\begin{equation*}
B(a)\left(s_{0}-a\right)=-1 \tag{2.44}
\end{equation*}
$$

From (2.42) and (2.44) the expression for the self-consistent coupling constant is,

$$
\begin{equation*}
1 / g^{22}=1 / g^{2}=-\operatorname{Ca}^{2}\left[B^{2}(a)+B^{2}(a)\right] \tag{2.45}
\end{equation*}
$$

The values of the parameters C and a^{*} can be determined by fitting the pole $c /(z-a)$ with the function $H_{l}(z)(2.35)$ on the left hand cut. The Born term $B(a)$ can be obtained from the exchange, in the crossed chamnel, of the particle for which the self-consistent solution is sought. Thus, using (2.45) we can calculate the self-consistent value of the coupling constant. The divergency problem, unfortunately, also arises in this method. When the Born terms are divergent, the dispersion relation (2.25) is not valid. This difficulty, however, can be overcome by introducing subtraction in (2.25). But this introduces some additional parameters which have to be determined in order to obtain the solution of the problem under consideration.
d. The static Model and Bootstraps in su(2)

In this section we shall consider the pion-nucleon scattering in the context of the static model in which it is assumed that the nucleon being mach heavier than the pion is at rest both during and after the collision. In particular, we shall discuss how the reciprocal bootstrap relationship between nucleon $1 \mathbb{1}$ and nucleon resonance $\mathbb{W}^{*}(3 / 2,3 / 2)$ can be explained by static model approach. The idea of such a reciprocal bootstrap was first suggested by Chew ${ }^{6)}$ who showed that the static model could, to a reasonable. extent, explain the existence of such a relationship. We shall,
however, discuss only that aspect of the theory which is relevant to the Quark-bootstrap calculation which will be considered in the next chapter.

A meson-baryon state can be specified by its spin J, isospin I, orbital angular momentam l and the total energy W. For a given orbital angular _momentum the scattering amplitude $\mathrm{g}_{\mathrm{IJ}}(\mathrm{w})$ is related with the phase-shift through the relation given by,

$$
\begin{equation*}
g_{I J}(w)=\frac{i^{18_{I J}} \sin \delta_{I J}}{q^{2 \&+1}} \tag{2.46}
\end{equation*}
$$

where $8_{I J}$ is the phase-shift corresponding to the amplitude specified by the angular momentum J and isospin I. Here, $q^{2}=\mathbb{F}^{\mathbf{2}}-1$ and $w=W$ - M, where w denotes the energy of pion, m the mass of the nucleon and pion-mass is taken as unity for the sake of convenience.

The contribution of the crossmchannel can be obtained from the crossing relation

$$
\begin{equation*}
g_{I J}(w)=\sum_{I^{\prime} J^{*}} \alpha_{I I^{*}} \beta_{J J^{*}} g_{I^{*} J^{*}}(-w) \tag{2.47}
\end{equation*}
$$

where α and β are the crossing matrices for the isospin and total angular momentum respectively. In the static limit, the $g^{\prime} s$ on the right-hand side of the equation (2.47) have the same 2 as the
$\mathrm{g}^{2} \mathrm{~s}$ on the left; so that the angular momentum crossing matrix is just like the isospin crossing matrix.

If there occurs a bound state or a resonance in the (I J) state, the corresponding amplitude will have a pole $\gamma_{I J} /\left(w_{I J}-w\right)$, $\gamma_{\text {IJ }}$ being the residue of the pole. Then the force or the Born term in the l-th partial wave can be obtained from (2.47) and given in the form,

$$
\begin{equation*}
B_{I J}(w)=\sum_{I^{i} J^{\prime}} \alpha_{I I^{\prime}} \beta_{J J^{*}} \frac{\gamma_{I^{*} J^{*}}}{\left(w_{I^{*} J^{\prime}}+w\right)} \tag{2.48}
\end{equation*}
$$

where J, $J^{*}=2 \pm 1 / 2$. Usually, the summation in (2.48) is taken
 there is no particle in any particular state. We can now use $B_{I J}(w)$ as the input in an H / D calculation.

Let us write, as before,

$$
\begin{equation*}
g_{I J}(w)=N_{I J}(w) / D_{I J}(w) \tag{2.49}
\end{equation*}
$$

Then, using (2.23), (2.46) and (2.48) the numerator and the denominator functions in (2.49) can be written, as is well known, in the following form,

$$
\mathbb{N}_{I J}(w)=\sum_{I^{\geq} J^{2}} \alpha_{I I^{n}} \beta_{J J^{2}} \frac{\gamma_{I^{2} J^{\prime}} D_{I J}\left(-w_{I^{2} J^{\prime}}\right)}{\left(w_{I^{\prime} J^{\prime}}+w\right)^{\prime}}
$$

$$
\begin{equation*}
B_{I J}(w)=1-\frac{w-w_{0}}{\pi} \int_{1}^{w_{c}} d w^{\prime} \frac{\left(w^{\prime 2}-1\right)^{\ell+\frac{1}{2}} I_{I J}\left(w^{\prime}\right)}{\left(w^{\prime}-w_{0}\right)\left(w^{4}-w\right)} \tag{2.51}
\end{equation*}
$$

where w_{0} is the point at which D is normalised to unity and w_{c} is the cut-off parameter which parametrises our ignorance of the short range and the high energy effects.

We now suppose that there occurs a bound state or a resonance In the amplitude specified by the quantum mumbers I and J. It is well known that the denominator function $D(w)$ behaves, more or less linearly near the position of the pole or the resonance. Therefore, the denominator function, near the pole, can be approximately expressed in the form,

$$
\begin{equation*}
\operatorname{Re}_{\mathrm{E}} \mathbb{D}_{I J}(w)=\frac{w_{I J}-w}{w_{I J}-w_{0}} \tag{2.52}
\end{equation*}
$$

Now, the coupling constant corresponding to a pole occurring in the state (I J) is given by

$$
\begin{equation*}
\gamma_{I J}=-\frac{\mathbb{N}_{I J}\left(w_{I J}\right)}{D_{I J}^{s}\left(w_{I J}\right)} \tag{2.53}
\end{equation*}
$$

Then, using (2.50) and (2.52) we obtain from (2.53),

$$
\gamma_{I J}=\sum_{I \mathrm{I}_{\mathrm{I}^{\prime}}} \alpha_{I I^{*}} \beta_{\mathrm{JJ}} \gamma_{I^{\prime} J^{\prime}}
$$

where the γ^{\prime} s on the left-hand side of (2.54) are the ${ }^{2}$ output ${ }^{2}$ and those on the right-hand side, the 'input' coupling constants respectively. - The self-consistency condition requires the input and the output values of the relevant couplings to be equal. How, (2.54) can be written in the matrix form,

$$
\begin{equation*}
\Gamma=\mathbf{C r} \tag{8}
\end{equation*}
$$

where Γ is a column matrix and C is the crossing matrix which is the direct product of the isospin and angular momentum crossing matrices respectively. We now introduce the following quantity,

$$
\begin{equation*}
\mathbf{F}_{I J}(w)=\sum_{I^{*} J^{\prime}} \alpha_{I I^{\prime}} \beta_{J J^{\prime}} \underline{\underline{r}}_{I^{\prime} J^{*}} \tag{2.55}
\end{equation*}
$$

The above quantity ${ }^{\text {IJ }}$ may be regarded as a reasonable measure of force contributed to the state (I) by the states occuring in the crossed channel. If ${ }^{\prime}{ }_{I J}$ is negative for any state then the corresponding output $\gamma_{I J}$ will be negative too as a consequence of which such a state cannot exist. On the other hand, if $\boldsymbol{F}_{I J}$ is positive and large we can expect that a state (I J) may exist. The above conditions we have put forward follows from the very nature of the-denominator function (2.51) which requires positive couplings (or forces) for the occurrence of a pole in the amplitude.

Let us now apply the above formalisms to the pion-mucleon problem. As it is known from experiment that the macleon resonance occurs in p-state, it is natural to consider the p-wave scattering. Corresponding to the p-wave there are two total angular momentam states, namely, the states with $J=\ell \pm \frac{1}{2}$. Again from the isotopic spin analysis we get the channel isotopic spin $I=3 / 2,1 / 2$. When the isospin and the ordinary spin states are combined we get, in all, four states. Por the p-wave scattering the isospin and spin crossing matrices are the same, i.e. $\alpha=\beta$, where any of the two crossing matrices is given by,

$$
\begin{array}{|c|cc|}
\hline I & 3 / 2 & I / 2 \tag{2.56}\\
\hline 3 / 2 & -1 / 3 & 4 / 3 \\
e_{I I} \cdot & \\
1 / 2 & 2 / 3 & 1 / 3 \\
\hline
\end{array}
$$

Assuming further that only the states $(1 / 2,1 / 2)$ and $(3 / 2,3 / 2)$, i.e. IN and IN* exist, we get from (2.54²)

$$
\left.\left|\begin{array}{l}
\gamma_{1 / 2} 1 / 2 \tag{2.57}\\
\gamma_{3 / 2} 3 / 2
\end{array}\right| \begin{array}{ll}
1 / 9 & 16 / 9 \\
4 / 9 & 1 / 9
\end{array}|\quad| \begin{aligned}
& \gamma_{1 / 2} 1 / 2 \\
& \\
& y_{3 / 2} 3 / 2
\end{aligned} \right\rvert\,
$$

The above relation (2.57) gives two equations from which we obtain $\gamma_{1 / 2} 1 / 2=2 \gamma_{3 / 2} 3 / 2$. This result is in good agreement with the experimental one, thus showing that a reciprocal bootstrap relationship may exist between \mathbb{N} and $\mathbb{N H}^{*}$. This is, however, just a preliminary test for the existence of a bootstrap relationship between two particles. In order to see whether such a relationship really exists we have to evaluate the denominator function of the partial wave amplitude.

CHAPHER III

A Reciprocal Bootstrap Mechani.sm for Quarks

1. Quark-Meson Scattering and the General Kinematics.

It is well know, as we have also discussed in Chapter I (section 1) that the spinor (3-dimensional) representation of SU(3) does not correspond to any known particles. Speculations about the possible existence of these three particles, called 'Quarks' were first made by Gell-Mann and independently by Ziweing ${ }^{11)}$. According to the scheme of SH_{3} (or its relativistic generalisation) symmetry these particles have the baryon number 1/3 and non-integral charges (Other models which give integral charges for the particles belonging to the basic representations of groups concerned, have been considered by a number of authors ${ }^{45 \text {). }}$ Unlike Gell-Mann and Zweing model, these models, however, require the existence of some more quantum numbers, called the supercharge quantum numbers for which there has not yat been found any experimental evidence. We shall, therefore, consider the $\mathrm{SU}(3)$ scheme which is the simplest and consistent with the known physical quantum numbers). A considerable search has been made in the past in order to detect the possible existence of the quarks but the experimental results have, so far, been negative ${ }^{46 \text {). We, }}$
therefore, infer that these particles must be very massive and consider a model which is expected to give, at least, a rough estimate about the masses and the coupling constants of these particles.

We consider quark-pseudoscalar meson scattering and adopt the "bootstrap" hypothesis in which all the strongly interacting particles are supposed to be composites of each other, and we ask whether quarks can exist in a self-consistent scheme. In particular, we use the analogy with the well known $\mathbb{N}-\mathbb{N}^{*}$ bootstrap of Chew ${ }^{6}$) and its analogous $\mathrm{SU}(3)$ extension considered by a number of authors ${ }^{9}$). In our calculations, we use the determinantal method (discussed in the previous chapter) and assume that the forces that arise due to the fermion exchanges in the crossed channel play a dominant role in this mechanism. Quantitatively, these are uglikely to be good approximations but they appear _ to be reasonable qualitatively and we, therefore, adopt them for our calculation also. Before, we get deeper into the problem, let us discuss some of the kinematics that we will have to deal with later on.

Figure 3.1

The above two-particle scattering diagram (fig. 3.1)
represents the quark-meson scattering and all the crossed processes. We follow the conventional rotation of taking the ingoing momenta as positive and define the scalar product of two four-vector a:s follows: A.B $=A_{0} B_{0}-\underset{\sim}{A} \cdot \underset{\sim}{B}$ - In other words, we have chosen the metric such that $g_{\mu \nu}=(1,-1,-1,-1)$ diagonal. Out of the four-momenta $p_{1}, p_{2}, p_{3}, p_{4}$, we can construct the following scalar invariants:

$$
\begin{align*}
& s=\left(p_{1}+p_{2}\right)^{2}=\left(p_{3}+p_{4}\right)^{2} \tag{3.1a}\\
& u=\left(p_{1}+p_{4}\right)^{2}=\left(p_{3}+p_{2}\right)^{2} \tag{3.1b}\\
& t=\left(p_{1}+p_{3}\right)^{2}=\left(p_{4}+p_{2}\right)^{2} \tag{3.1c}
\end{align*}
$$

If we consider p_{1}, p_{2} ingoing and p_{3}, p_{4} outgoing then we have quark-meson scattering. The interchange of p_{2} and p_{4} will mean the interchange of the two pions, so the process described by p_{1}, p_{4} ingoing and p_{3}, p_{2} outgoing will again be quark-meson scattering. If, on the otherhand, we consider p_{1}, p_{3} ingoing and P_{2}, P_{4} outgoing, we obtain the annihilation process $\pi \pi \rightarrow Q \bar{Q}$. Referring to the above processes as channels I, II and III respectively we have,

$$
\begin{align*}
& Q\left(p_{1}\right)+\pi\left(p_{2}\right) \rightarrow Q\left(-p_{3}\right)+\pi\left(-p_{4}\right) \tag{I}\\
& Q\left(p_{1}\right)+\pi\left(+p_{4}\right) \rightarrow Q\left(-p_{3}\right)+\pi\left(-p_{8}\right) \tag{II}\\
& Q\left(p_{1}\right)+\bar{Q}\left(p_{3}\right) \rightarrow \pi\left(-p_{2}\right)+\pi\left(-p_{4}\right) \tag{III}
\end{align*}
$$

Figure 3.1 will also describe three anti-particle reactions corresponding to the above three channels. s, u and t will be positive time-like for I, II and III respectively and they are c.m. energies squared in the channel concerned. The other two variables in each channel, are the negative squares of the momentum transfer in that channel. How, using the four-momenta conservation law $p_{1}+p_{2}+p_{3}+p_{4}=0$ and the mass-energy relations, $p_{1}^{2}=p_{3}^{2}=m^{2} ; p_{2}^{2}=p_{4}^{2}=\mu^{2}$ we have,

$$
\begin{equation*}
s+t+u=2 \pi u^{2}+2 u^{2} \tag{3.2}
\end{equation*}
$$

Thus, out of the three variables s, t, u only two are independent. In each channel, we can, therefore, consider the c.m. energy squared and the cosine of the angle of scattering as the two independent variables. We treat each channel separately and obtain the various kinematic variables in terms of s, t and u.

Channel I:

Pigure 3.2

Figure 3.2 shows the process described by channel I in the cm. system. We have,
$p_{1}=-p_{2} ; p_{3}=-p_{4} ; p_{1}^{2}=p_{2}^{2}=p_{3}^{2}=p_{4}^{2}=k^{2}$

Then we have,

$$
\begin{equation*}
s=\left(p_{10}+p_{20}\right)^{2} \tag{3.3a}
\end{equation*}
$$

where,

$$
\begin{equation*}
p_{10}^{2}=m^{2}+k^{2} ; p_{20}^{2}=k^{2}+\mu^{2} \tag{3.3b}
\end{equation*}
$$

and $|k|$ is the absolute value of the 3 -component momentum given by,

$$
\begin{equation*}
|k|^{2}=\left\{s-(m+\mu)^{2}\right\}\left\{s-(m-\mu)^{2}\right\} / 4 s \tag{3.3e}
\end{equation*}
$$

Now the negative momentum transfer squared between the two mesons or the two quarks is,

$$
\begin{equation*}
t=-2 k^{2}(1-\cos \theta) \tag{3.3d}
\end{equation*}
$$

where $\cos \theta=p_{2} \cdot g_{4} /\left|p_{2} \cdot p_{4}\right|^{2}, \theta$ being the scattering angle in channel I. The momentum transfer between a pion and a quark can be obtained from (3.2) by using (3.3a) and (3.3d). The physical region in this channel is defined by, $(m+\mu)^{2} \leqslant s \leqslant \infty$ and $-4 k^{2} \leqslant t \leqslant 0$.

u-channel c.m. system

Pigure 3.3
Channel II:

In this channel everything is similar to the channel I and is obtained from them by interchanging and u. Then we have,

$$
\underline{N}_{1}=-\mathfrak{R}_{4} ; \mathfrak{p}_{3}=-p_{2} ; p_{1}^{2}=p_{2}^{2}=p_{3}^{2}=p_{4}^{2}=\bar{k}^{2} \text { (say) }
$$

The c.m. energy squared is then

$$
\begin{equation*}
u=\left(p_{10}+p_{40}\right)^{2} \tag{3.4a}
\end{equation*}
$$

where,

$$
p_{10}^{2}=p_{30}^{2}=\vec{k}^{2}+\mu^{2} ; p_{20}^{2}=p_{40}^{2}=\vec{k}^{2}+\mu^{2}
$$

and

$$
\bar{k}^{2}=\left\{u-(m+\mu)^{2}\right\}\left\{u-(m-\mu)^{2}\right\} / 4 u
$$

Again the negative momentum transfer squared is

$$
t=-2 \bar{x}^{2}(1-\cos \bar{\theta})
$$

where $\cos \bar{\theta}={ }_{f} P_{2} \cdot D_{4} /\left|p_{2} \cdot p_{4}\right|^{2}, \theta$ being the scattering angle in channel II. The physical region in this channel is defined by
$(m+\mu)^{2} \leqslant u \leqslant \infty,-4 \overline{k^{2}} \leqslant t \leqslant 0$. The kinematic variables in channel III can be similarly obtained. We shail not, however, need them in our calculation.

2. The Crossing Matrices

In order to solve a scattering problem, we require, as we have discussed in the previous chapter, the information about the imaginary part of the partial wave amplitude a $\mathbf{l}_{\text {(}}(\mathrm{s})$ over the lefthand cut which is associated with the forces that arise due to the exchanges of the various particles in the crossed channels II and III. This information is conveniently obtained by using the crossing relations which are provided by the crossing matrices. Since we shall mostly be dealing with SU(3) crossing matrices, in this and the next chapter, it will be convenient if we derive the general expressions for the crossing matrices. With that end in view, we consider a general two-particle scattering process with the following channels:

$$
\begin{array}{ll}
a_{1}+a_{2} \rightarrow a_{3}+a_{4} \\
a_{1}+\bar{a}_{4} \rightarrow a_{3}+\bar{a}_{2} & \text { I } \\
a_{1}+\bar{a}_{3} \rightarrow \bar{a}_{2}+a_{4} & \text { II } \\
& \text { III }
\end{array}
$$

The su(3)-invariant scattering amplitude in channel I can be given by ${ }^{47 \text {), }}$

$$
\begin{align*}
\left\langle N_{8}^{N_{8} N_{4}}\right| P\left|\begin{array}{ll}
N_{2} & N_{2} \\
n_{2} n_{2}
\end{array}\right\rangle= & \sum_{N, n \beta \gamma}\binom{N_{3} N_{4} N}{n_{3} n_{4} n}<N n \beta\left|F^{I}\right| N n \gamma> \\
& \binom{N_{1} N_{2} N}{n_{2} n_{2} n^{\gamma}} \tag{3.5}
\end{align*}
$$

where N_{i}, $i=1,2,3,4$ denote the dimensions of the irreducible representations to which the above four particles belong. $n=\left(I, I_{3}, Y\right)$, the quantum numbers assigned to the particles- that form the basis of the representation concerned. In (3.5) N denotes the dimension of the irreducible representation that is obtained from the direct product of two representations and γ, β denote how many times a particular representation occurs in the initial and final states of the scattering process. The quantities $\left(\begin{array}{ll}\mathrm{N}_{1} \mathrm{~N}_{2} N \\ n_{1} n_{2} & \gamma\end{array}\right)$ are the $\mathrm{SU}(3)$ Clebsch-Gordon coefficients.

The expressions for the $\$(3)$-invariant scattering amplitudes in channels II and II can be similarly obtained and these are as follows:

$$
\begin{equation*}
\binom{\mathbb{N}_{2} N_{4}^{*} N}{n_{2}-n_{4} n^{\gamma}} \tag{3.6}
\end{equation*}
$$

$$
\begin{align*}
& \binom{\mathbb{N}_{2} n_{3}^{*} N}{n_{1}-n_{3}} \tag{3.7}
\end{align*}
$$

Now, the relation between a particle-state and the corresponding antiparticle state is,

$$
\begin{equation*}
\left|\mathbb{N}^{*} ; I, I_{3} Y\right\rangle=(-1)^{\Pi}\left\{\left|N ; I,-I_{3},-Y\right\rangle\right\}^{*} \tag{3.8}
\end{equation*}
$$

where \mathbb{N}^{*} denotes the contragradient representation and $\bar{n}=I_{s}+\frac{Y}{2}$. Using (3.8) we can derive the following relations.

$$
\begin{align*}
& \left\langle\begin{array}{llll}
N_{3} N_{4} & |F| & N_{1} & N_{2} \\
n_{3} & n_{4} & n_{1} & n_{2}
\end{array}\right\rangle=(-1)^{N_{4}-\bar{n}_{2}}\left\langle\begin{array}{lll}
N_{3} & N_{2}^{*} & |F| \\
n_{3} & -n_{2} & N_{1} \\
n_{1} & -n_{4}^{*}
\end{array}\right\rangle \tag{3.9a}\\
& \left\langle\begin{array}{ll}
N_{3} N_{4} & \left.|F| \begin{array}{ll}
N_{2} & N_{2} \\
n_{3} n_{4} & n_{1} \\
n_{2}
\end{array}\right\rangle=(-1)^{\bar{n}_{8}-\bar{n}_{2}}\left\langle\begin{array}{lll}
N_{2}^{*} N_{4} & N_{2} & N_{3}^{*} \\
-n_{2} & N_{4} & n_{2}
\end{array}\right\rangle=n_{9}
\end{array}\right\rangle \tag{3.9b}
\end{align*}
$$

Now, the orthogonality relations the Clebsch-Gordon coefficients satisfy are as follows:

$$
\begin{align*}
& \sum_{n_{1} n_{2}}\binom{N_{1} N_{2} N}{n_{1} n_{2} n}\left(\begin{array}{ll}
N_{1} & N_{2} \\
N_{2}^{*} \\
n_{2} & n_{2} \\
n^{*} & \gamma^{*}
\end{array}\right)-\delta_{2 N N^{*}} \delta_{n n^{\prime}} \delta_{\gamma \gamma}{ }^{2} \tag{3.10a}\\
& \sum_{N n_{\gamma}}\binom{H_{1} N_{2} N}{n_{1} n_{2} n}\binom{N_{1} N_{2} N}{n_{1}^{\prime} n_{2}^{\prime} n} \quad=8_{n_{1} n_{1}^{\prime}} \delta_{n_{2} n_{2}^{\prime}} \tag{3.10b}
\end{align*}
$$

Using (3.9a) and (3.10a) we can obtain from (3.5) and (3.6) the relation between the amplitudes in the channel I with those in II and this is as follows:
where the elements of the crossing matrix $\langle\mathbb{N} \beta \gamma| A_{I}\left|N^{2} \beta^{3} \gamma^{2}\right\rangle$ are given by,

$$
\begin{align*}
& \left.<N \beta \gamma\left|A_{I I}\right| N^{2} \beta^{2} \gamma^{2}\right\rangle=\sum_{n_{1} n_{2} n_{3} n_{4}}(-1)^{\bar{n}_{4}-\bar{n}_{2}}\binom{\bar{H}_{2} N_{2} N}{n_{2} n_{2} n^{\gamma}}\binom{N_{3} N_{4} N}{n_{3} n_{4} n} \\
& n^{\prime} \\
& \times\left(\begin{array}{lll}
N_{2} N_{4}^{*} & N^{2} \\
n_{2}-n_{4} & n^{\prime} & \gamma^{2}
\end{array}\right)\left(\begin{array}{lll}
N_{3} & N_{2}^{*} & N^{\prime} \\
n_{3} & -n_{2} & n^{\prime}
\end{array}\right) \tag{3.12}
\end{align*}
$$

The relation between the amplitudes in chanel I and those in III, can similarly be obtained. We obtain the following:

$$
\begin{aligned}
& N^{7} \operatorname{m}^{8} 7^{8}
\end{aligned}
$$

 given by,

We now calculate the relevant crossing matrices for the quarkmeson scattering. First, we consider the channels I and II. In both the initial and the final states of these channels, we have a quark-pion system which, being a product of an octet and a triplet, representations of $s \in(3)$, can be resolved into the following irreducible representations:

$$
\begin{equation*}
3 \otimes \underset{\sim}{8}=3 \oplus \underline{6} * \oplus 15 \tag{3.15}
\end{equation*}
$$

If space spin is neglected, there are in each of the above channels three $\operatorname{sU}(3)$ invariant amplitudes corresponding respectively to the transitions $\underset{\sim}{~} \underset{\sim}{*} \underset{\sim}{3}, \underset{\sim}{6 *} \underset{\sim}{*} \underset{\sim}{6 *}$ and $\underset{\sim}{15} \underset{\sim}{\sim}$ 15. The amplitudes in the channels I and II are related to each other through (3.11). Using the Clebsch-Cordon coefficients obtained from the isoscalar factors calculated by Edmonds ${ }^{48)}$ we have obtained the following crossing matrix:

Let us now find the scattering amplitudes in the channel III. The initial state consists of a quark and an antiquark system which on decomposition gives the following

$$
\begin{equation*}
3 \otimes 3=\underset{\sim}{1} \oplus \underset{\sim}{8} \tag{3.17}
\end{equation*}
$$

In the final state we have a two-meson system which being the direct product of two octets decomposes into the following:

$$
\begin{equation*}
\underset{\sim}{8} \otimes \underset{\sim}{8}=1 \underset{\sim}{1} \oplus 8_{1} \oplus 8_{2} \oplus 10 \oplus \underset{\sim}{10 *} \oplus \underset{\sim}{27} \tag{3.18}
\end{equation*}
$$

As there cannot be any transition between two different representations, there are altogether three so(3) invariant amplitudes in the chanel III, corresponding respectively to the transitions, $\underset{\sim}{1} \rightleftharpoons 1 ; 8 \rightleftharpoons 8_{1}$ and $8 \rightleftharpoons 8_{2}$. These amplitudes are related with those in channel I, thbough the following crossing matrix ${ }^{49 \text {): }}$

Let us now assume that the forces that arise due to fermion exchanges in the crossed channel II play a very important role in quark-meson scattering and consider only the contribution from p-wave in analogy with rall-soattering. Then, each of the amplitudes in the chamels I and II will have two components corresponding
respectively to the transitions, ($\mathrm{N}, \mathrm{J}=1 / 2$) $\rightleftharpoons(\mathrm{N}, \mathrm{J}=1 / 2)$ and $(N, J=3 / 2) \neq(N, J=3 / 2)$. The spin crossing matrix B can be easily calculated and is,

	$J=1 / 2$	$J=3 / 2$
$J=1 / 2$	$-\frac{1}{3}$	$\frac{4}{3}$
$J=3 / 2$	$\frac{2}{3}$	$\frac{1}{3}$

How, the total crossing matrix relating the chanel II amplitudes with those of the channel I is the direct product of $A_{I I}$ (3.16) and B (3.19). Calling this total crossing matrix C we have from (3.16) and (3.19)

It is evident from (3.20) that the exchange of 15 with $\mathrm{J}=3 / 2$ gives rise to the most dominant force for 3 with $J=1 / 2$; it also gives attractive force for itself in the direct channel. Likewise the exchange of 3 with $J=1 / 2$ gives an attractive force for both 15 with $J=3 / 2$ and 3 with $J=1 / 2$. This/ignalogous to the relation between N and N^{*} in the SU_{2} bootstrap of Chem. Let us also calculate the ratio of the couplings of these two states by using static model. Benoting the 3 with $J=1 / 2$ and 15 with $J=3 / 2$ couplings by $r_{3,1 / 2}$ and $r_{15,3 / 2}$ respectively we find using (2.54) that from $(2,1 / 2)$ strap $r_{3,1 / 2} / \Gamma_{15,3 / 2} \approx 2.6$ and that from (15, 3/2) strap $r_{3,1 / 2} / \Gamma_{15,3 / 2} \approx 3.5$. Thus, it seems, within the static approximations, that there may be a self-consistent reciprocal bootstrep relationship between quarks, Q and some other particle Q* having baryonic number $B=1 / 3$, apin $3 / 2$ and belonging to 15 dimensional representation of $\mathrm{SU}(3)$.

3. The $\mathbb{N} / \boldsymbol{B}$ Method and the Self-Consistent Solution for Quarks

We have shown in the last section that there exists a reciprocal bootstrap relationship between quarks Q and some other particles Q* having baryonic mamber $B=1 / 3$, spin $3 / 2$-and belonging to the 15 dimensional representation of $\mathrm{SU}(3)$ symmetry. We now use the well known F / D method ${ }^{13)}$ to calculate the consistent masses and the coupling constants of these particles. In particular, we use the so called determinantal method ${ }^{42 \text {) }}$ which is expected to provide us at least with a rough estimate about the masses and couplings of these particles.

We denote, as usual, by s, u the $c . m$ e energies squared in the channels I and II respectively, and assume that the Q and Q^{*} poles in s-variable occur only in the amplitudes $\mathbf{F}_{1 / 2}^{3}$ and $\mathbf{F}_{3 / 2}^{15}$ respectively with the residues given by,

$$
\begin{gather*}
f_{1 / 2}=\frac{4 \pi g_{1}^{2}}{m^{2}-s} \tag{3.21}\\
f_{3 / 2}=\frac{\varepsilon_{2}^{2}}{m^{2}-s-\frac{3}{2} r} \tag{3.22}
\end{gather*}
$$

where we define $g_{r}^{2}=4 \mathrm{mg}_{1}^{2}$ as the QQ π coupling, m, the average mass of the quark-triplet and M, that of Q^{*}. The residue g_{p}^{2} is related to the width by unitarity at $s=M^{2}$ as $\Gamma=2 q^{*} \mathrm{E}_{2}^{2}$. The
poles (3.21) and (3.22) however are to be multiplied by the respective factors given in the appendix B (B.4) in order to take into account the effects of the sv(3) couplings.

The above pole terms in the various amplitudes in the u-variable can be calculated by using the crossing matrix C (3.20) so that we have,

$$
\begin{equation*}
F^{C}(u s)=C P(s u) \tag{3.23}
\end{equation*}
$$

where $P(s u)$ is a column matrix with the elements $F_{1 / 2}^{3}, \quad F_{3 / 2}^{s}$ $\begin{array}{llll}F_{1 / 2}^{6 *}, & F_{3 / 2}^{6 *} & F_{1 / 2}^{15}, & F_{3 / 2}^{15}\end{array}$. Then, the desired partial wave amplitudes are obtained from the following relations:

$$
f_{\ell+}(s)=\frac{1}{2} \int_{-1}^{+1} d z\left[f_{1}(u, s) P_{\ell}(z)+f_{2}(u, s) P_{\ell \pm 1}(z)\right]
$$

(3.24)
where

$$
\begin{gather*}
f_{2}(u, s)=\sum_{\ell=0}^{\infty} f_{\ell+}(u) P_{\ell+1}^{\ell}(x)-\sum_{\ell=1}^{\infty} f_{\ell-} P_{\ell-1}^{\ell}(x) \tag{3.25a}\\
f_{2}(u, s)=\sum_{\ell=1}^{\infty} f_{\ell-}(u) P_{\ell}^{2}(x)-\sum_{\ell=1}^{\infty} f_{\ell+}(u) P_{\ell}^{\prime}(x) \tag{3.25b}\\
x=\cos \theta \tag{3.25c}
\end{gather*}
$$

$$
\begin{gather*}
P_{\ell}^{2}(x)=\frac{d}{d x} P_{\ell}(x) \tag{3.25d}\\
f_{\ell \pm}=\exp \left[i 8_{\ell \pm}\right] \sin 8_{\ell \pm} / q \tag{3.25e}
\end{gather*}
$$

Here $f_{\ell \pm}$ has orbital angular momentum $\&$ and the total angular momentum $J=\ell \pm 1 / 2 . \delta_{\ell \pm}$ is the phase-shift corresponding to the l-th partial wave and is the angle of scattering in the com. system of the crossed channel (section 1).

In order to obtain the force term for the $J=1 / 2$ state we consider the contribution from only the Q^{*} exchange (since Q exchange gives a very mall effect) in the crossed channel. Using (3.22) and (3.23) we obtain from (3.24) and (3.25) the following for the p-wave with $J=1 / 2$ state,

$$
\begin{equation*}
f_{1-}(s)=\frac{5 \varepsilon_{z}^{2}}{8 q^{2}}\left[3 x\left(2-a \log \frac{a+1}{a-1}\right)-\log \frac{a+1}{a-1}\right] \tag{3.26a}
\end{equation*}
$$

For the $J=3 / 2$ state we consider the contribution from both Q and Q* exchanges (since both have almost equally significant crossing matrix elements) in the crossed channel. Using (3.21), (3.22) and (3.23) we obtain from (3.24) and (3.25) for the p-wave with $J=3 / 2$ state the following,

$$
\begin{aligned}
f_{1+}(s)= & \frac{g_{2}^{2}}{32 q^{2}}\left[3 x\left(2-a \log \frac{a+1}{a-1}\right)+3 a-\frac{3 a^{2}-1}{2}\right. \\
& \left.\log \frac{a+1}{a-1}\right]+\frac{2 \pi g_{1}^{2}}{3}\left[-3 b+\frac{3 b^{2}-1}{2} \log \frac{b+1}{b-1}\right]
\end{aligned}
$$

(3.26b)
where in both (3.26a) and (3.26b) we have,

$$
\begin{gather*}
a=\frac{s+2 s \mu^{2}-2\left(m^{2}+\mu^{2}\right)}{2 q^{2}}-1 \tag{3.27a}\\
b=\frac{s m^{2}-2 \mu^{2}}{2 q^{2}}-1 \\
x=1+\frac{2 M^{2}\left[2\left(\mu^{2}+\mu^{2}\right)-\mu^{2}-s\right]}{\left[\mu^{4}-2 M^{2}\left(m^{2}+\mu^{2}\right)+\left(m^{2}-\mu^{2}\right)^{2}\right]} \tag{3.27c}\\
q^{2}=\left\{s-(m+\mu)^{2}\right\}\left\{s-(m-\mu)^{2}\right\} / 4 s
\end{gather*}
$$

where μ is taken as the average mass of the meson octet.
The Born terms (3.26a) and (3.26b) behave as qiat the threshold and so we can divide them by the factor q^{2} without introducing any additional singularities. Further, we heve to maltiply these Born terms by s in order to remove the kinematic singularities associated with them. Thus, we define the following kinematic singularity free Born terms:

$$
\begin{equation*}
\mathrm{B}_{1 \mp}(\mathrm{~s})-\frac{\mathrm{s}}{\mathrm{q}^{2}} \cdot \mathrm{f}_{1 \mp}(\mathrm{~s}) \tag{3.28}
\end{equation*}
$$

For the same reason described above we work with the following kinematic singularity free partial wave amplitudes:

$$
\begin{equation*}
h_{1_{+}}(s)=\frac{s}{q^{2}} f_{1} \mp(s) \tag{3.29}
\end{equation*}
$$

Here the multiplication of the partial wave amplitudes $f_{1 f}(s)$ by the factor $\mathrm{s} / \mathrm{q}^{2}$ ensures that $\mathrm{h}_{1_{\boldsymbol{+}}}(\mathrm{s})$ is free from all the kinematic singularities and further that the final results will maintain the correct threshold behaviour as $q^{2} \rightarrow 0$. We now write,

$$
\begin{equation*}
h_{1_{+}^{-}}(s)=\frac{\mathbb{N}_{1_{+}^{-}}(s)}{\mathrm{B}_{1_{+}^{-}}(\mathrm{s})} \tag{3.30}
\end{equation*}
$$

where, as is well known, $\mathrm{N}_{1-}(\mathrm{s})$ are analytic on the force cut (left cut) and real on the physical cut and $D_{1_{7}}$ (s) are analytic on the physical cut and real on the force cut. Now, the onesubtraction dispersion relations of $D_{1_{7}}(s)$ can be written in the form,

$$
\begin{align*}
& B_{1-}(s)=1+\frac{\left(s-s_{2}\right)}{\pi} \int_{(m+1)^{2}}^{\infty} \frac{\operatorname{Im} D_{1_{-}}\left(s^{0}\right)}{\left(s^{i}-s\right)\left(s^{i}-s_{1}\right)} d s^{1} \tag{3.31a}\\
& B_{1^{\prime}+}(s)=1+\frac{\left(s-s_{2}\right)}{\pi} \int_{(m+1)^{2}}^{\infty} \frac{\operatorname{Im} D_{1+}\left(s^{2}\right)}{\left(s^{\prime}-s\right)\left(s^{i}-s_{2}\right)} d s^{1} \tag{3.31b}
\end{align*}
$$

where we have normalised $D_{1-}(s)$ at $s=s_{1}$ and $D_{1+}(s)$ at $s=s_{2}$ and set the meson mass $\mu=1$. Now, over the left-hand cut we get from (3.30) the following:

$$
\begin{array}{rlrl}
\operatorname{Im} \mathrm{N}_{1_{+}^{-}}(s) & =D_{1^{-}}(s) \operatorname{Im~} h_{1 耳}(s) & s<s_{L} \tag{3.32}\\
& =0 \quad \text { for } \quad s>s_{L_{L}}
\end{array}
$$

where s is the beginning of the left-hand cut. Now, the determinantal approximation allows us to write,

$$
\begin{equation*}
N_{1 \mp}(s)=B_{1 \mp}(s) \tag{3.33}
\end{equation*}
$$

Again, the unitarity relations over the physical cut give us the following information:

$$
\begin{align*}
\operatorname{Im} D_{1_{+}}(s) & =N_{1_{\mp}}(s) \operatorname{Im}\left(1 / h_{1_{+}}(s)\right) \tag{3.34}\\
& =-B_{1_{\mp}}(s) \rho(s)
\end{align*}
$$

where $\rho(s)$ is the kinematic factor given by,

$$
\begin{equation*}
\rho(s)=\frac{q^{3}}{s} \tag{3.35}
\end{equation*}
$$

where q is given by (3.27d).
Using the equations (3.32) - (3.35), we obtain from (3.31a) and (3.31b) the following dispersion relations for $D_{1_{\mp}}(s):$

$$
\begin{equation*}
D_{1-}(s)-1-\frac{\left(s-s_{1}\right)}{\pi} \int_{(m+1)^{2}}^{\infty} \rho\left(s^{2}\right) \frac{B_{1-}\left(s^{2}\right)}{\left(s^{2}-s\right)\left(s^{2}-s_{1}\right)} d s^{2} \tag{3.36}
\end{equation*}
$$

$$
\begin{equation*}
D_{1+}(s)=1-\frac{\left(s-s_{2}\right)}{\pi} \int_{\left(n_{1}+1\right)^{2}}^{\infty} \rho\left(s^{2}\right) \frac{B_{1+}\left(s^{i}\right)}{\left(s^{2}-s\right)\left(s^{i}-s_{2}\right)} d s^{\prime} \tag{3.37}
\end{equation*}
$$

If $D_{1-}\left(m^{2}\right)=0$ with m^{2} below the physical threshold there is a $P_{1 / 2}$ bound state near which we can write $h_{1-}(s)$ in the form:

$$
\begin{equation*}
h_{1_{-}}(s)=\frac{\mathrm{N}_{1_{-}}\left(\mathrm{m}^{2}\right) / D_{1_{-}}^{\mathrm{g}}\left(\mathrm{~m}^{2}\right)}{\left(\mathrm{s}-\mathrm{m}^{2}\right)} \tag{3.38}
\end{equation*}
$$

Comparing (3.38) with (3.21) the output coupling constant for the quarks is given by,

$$
\begin{equation*}
g_{1}^{\prime} 2=-\frac{N_{1-}\left(\mathrm{m}^{2}\right)}{\mathrm{B}_{1-}^{\prime}\left(\mathrm{m}^{2}\right)} \tag{3.39}
\end{equation*}
$$

Similarly if there is a resonance at $s=M^{2}$ we have $\operatorname{Re} D_{1+}\left(M^{2}\right)=0$ and near the resonance position we have

$$
\begin{equation*}
h_{1+}(s)=\frac{N_{1+}\left(M^{2}\right) / \operatorname{Re} D^{2}\left(M^{2}\right)}{\left(s-M^{2}\right)-i \rho\left(M^{2}\right) N_{1+}\left(M^{2}\right) / \operatorname{Re} D^{e}\left(M^{2}\right)} \tag{3.40}
\end{equation*}
$$

Comparing (3.40) with (3.22) we have,

$$
\begin{equation*}
\Gamma^{\prime}=-2_{\rho}\left(M^{2}\right) \frac{H_{1+}\left(M^{2}\right)}{\operatorname{Re} D^{i}\left(M^{2}\right)} \tag{3.41}
\end{equation*}
$$

We can define a coupling constant for Q^{*} as proportional to the width r . Thus, we can have,

$$
\begin{equation*}
g_{2}^{\prime 2}=-\frac{r^{\prime}}{\rho\left(M^{2}\right)}=-\frac{M_{1+}\left(M^{2}\right)}{\operatorname{Re} D^{\prime}\left(M^{2}\right)} \tag{3.42}
\end{equation*}
$$

where $\rho\left(N^{2}\right)$ is given by (3.35).
For a given input value of m and M the values of $g_{1}^{2}, g_{1}^{\prime 2}$ and g_{2}^{2}, g_{2}^{12} can be calculated from the equations (3.36), (3.37), (3.39) and (3.42). Taking $s_{1}=(m-1)^{2}$ and $s_{2}=m^{2}$, the relevant integrations have been solved numerically, the investigation being carried out for the quark-mass upto 20μ, where μ is the average mass of the meson octet. If there exists a complete reeiprocal bootstrap relationship between Q and Q^{*}, then g_{1}^{2}, g_{2}^{22} and g_{2}^{2}, g_{2}^{12} have to be consistent simultaneously. For the computations, we have used the "Optimisation Mathod" which minimises the sums of the squares of the differences of the above two sets of the coupling constants for the two given ranges of the masses m and M. The self-consistent solutions we have obtained correspond to $m \simeq 2429 \mathrm{Mev}, \mathrm{M} \simeq 5251$ Mev, with the corresponding
values of the couplings 22 and 32 respectively. In the above calculation we have taken 360 Mev as the average mass of the psendoscalar meson octet. The above value of the QQ** coupling corresponds to the full-width $r \simeq 360 \mathrm{Mev}$, where Γ is the average fullwidth of Q*.

An investigation very similar to ours has been carried out by Nieto ${ }^{51}$) who have considered the contributions of the vector meson exchange as well. The reason for their obtaining the negative result may be attributed to the fact that the vector meson exchange forces, as is evident from the crossing matrix (3.18), are repulsive, being strongly repulsive in the Q^{*} chamel. It is, therefore, very likely that the vector meson exchange has a very insignificant or rather opposite effect in the quark-bootstraps. The method we have used in our calculations, however, suffers from some shortcomings. The determinantal method employed in the calculations is valid very approximately. In addition, the inelastic effects which we have neglected in the calculations may have some significant influence on the quark-meson scattering if the quarks are supposed to be very massive. Considering the above limitations of the calculational method employed, our results are, therefore, to be taken with that spirit.

CHAPTER IV

An N/D Caleulation for the Massminititting of
 Baryons in Broken U. $(6,6)$ Symmetry

1. Baryon-Meson Scattering and Related Processes:

Scatterings between two $\boldsymbol{U}(6,6)$ supermultiplets have been considered by a number of authors ${ }^{52}$) who, by studying only the elastic collinear processes, have tried to obtain results which, within the limitations of the approximations _used, would be comparable to the experimental ones. Consideration only of the elastic forward scatterings, no doubt, allows one to use the optical theorem for the comparison of the total crossmsections, but a question naturaliy arises as to the validity of these results because of the approximations that have been used in these calculations. In these investigations, only the homogeneous $\mathrm{U}(6 ; 6)$ invariant part of the amplitudes has been considered. This, however, is not sufficient for the scattering amplitudes to be compatible with the unitarity ${ }^{36)}$ conditions in the physical regions. In order to be consistent with the unitarity, the scattering amplitudes, in addition to the homogeneous $\mathbb{U}(6,6)$ invariant terms, must have two more terms corresponding respectively to the
irregular (involving the derivative couplings) and the higher order spurion ${ }^{53 \text {) terms. It is these spurion terms that are }}$ supposed to cause the mass-splittings within a $\quad(6,6)$ supermultiplet.

Some calculations using the irregular coupling terms have been carried out by a number of authors ${ }^{54)}$ who also introduce ad hoc mass-splittings between the $\mathrm{SU}(3)$ maltiplets within the $\boldsymbol{U}(6,6)$ supermultiplets of the external particles involved in a scattering process; .Besides these mass-splittings Rivers ${ }^{55 \text {), on }}$ the other hand, also introduces the similar mass-splittings within the $\mathrm{v}(6,6)$ supermoltiplet occuring in the intermediate state of a second order Feyman diagram corresponding to a two-partiele scattering process. This is done by expressing the propagator of the $U(6,6)$ multiplet with $\cup(6,6)$ degenerate mass as a sum of the propagators of the constituent ss(3) multiplets with su(3) degenerate masses. It has been shown by Rivers that such a procedure introduces in the scattering amplitudes the same higher order spurion terms as we have discussed above. Since this procedure has no group-theoretical basis, one may look at the problem from the opposite point of view. Instead of introducing the massmplittings right at the vary outset of the calculation, one may start the calculation with the_ $\boldsymbol{\Psi}(6,6)$ degenerate masses and expect the mass-splittings result from the spurion terms.
associated with the scattering amplitudes. As it is extremely difficult to deal with the irregalar couplings and the higher order spurion terms in the scattering amplitudes, one would naturally look for a simpler method. A convenient method is the so-called N / D method by which one can get. round the difficulties that usually arise when one is dealing with the full $\mathrm{U}(6,6)$ invariant amplitudes. Such a method has been used by Gatto and Venziano ${ }^{56)}$ in connection with the calculation of the mass of M_{3}; resonance by using the $\mathrm{SU}(6)^{5}{ }^{57}$) invariant vertices in the calculations. They consider the pion-mucleon scattering and the exchanges of a nucleon, a mucleon resonance and a rho-megson in the respective crossed channels. The result they have obtained for the mass of $\mathbb{N}_{8 s}$ resonance is so encouraging that one would feel very much tempted to_use the above proceduere in order to calculate the mass of the nucleon as well. That is what, in short, we propose to do, our purpose and the problem we shaill be dealing with, however, being different from theirs.

We consider the meson-baryon scattering from the point of view of $u(6,6)$ theory and investigate the mass-splitting between the baryon octet and decouplet by using the N / D method. We assume that the sV(3) symmetry is exact so that the masses of the octet and decouplet will correspond respectively to the average mass of the eight baryons and that of the ten baryon resonances. As these
su(3) multiplets belong to the same irreducible 364-dimensional representation of $\mathbf{u}(6,6)$ symmetry, they are supposed to have the same mass from the view-point of $\mathcal{U}(6,6)$ theory. Now, if we use the $\mathbf{U}(6,6)$ vertices in our caleulations, then it is expected that by using the N / D method we shall, to a reasonable extent, get the SU(3) degenerate masses of these sU(3) multiplets. In our calculations we shall, however, follow the hypothesis of $\mathbb{N - N *}$ bootstrap of chew and consequently consider that the forces responsible for the binding of the baryon octet and decouplet come predominantly from the exchanges of these SE(3) multiplets themselves in the crossed channels. The problem we are going to solve is, in fact, a multi-chamnel problem and therefore the matter will be clear if we discuss how these processes arise. It is well known that all the mesons belong to the 143dimensional irreducible representation of $\mathbf{v}(6,6)$. But not all of the states of 143 correspond to the physical particles. The states which correspond to the physical particles are, as we have discussed in Chapter I (section 3), obtained by applying on the irreducible tensor corresponding to 143 representation, the Bergmann-Wigner equations under which the trivial components vanish identically. We have shown (1.70) the $v(22) \mathbb{S N}(3)$ contents of 143 representation. The physical states which are obtained by applying the Bergmann-Wigner equations correspond to
the contents of the subgroup $\mathrm{II}_{4} \otimes 8 \mathrm{se}(3)$, where $I \mathrm{I}_{4}$ is the inhomogeneous Lorentz group. - Thus, the physical states of 143 representation can be expressed as follows:

$$
\begin{equation*}
\underline{143} \equiv \underline{P} \oplus \underline{V} \oplus P_{0} \oplus V_{0} \tag{4.1}
\end{equation*}
$$

where P, V, P_{0}, ∇_{0} denote respectively the pseudoscalar meson, octet, the vector meson octet, the pseudoscalar meson singlet and the vector meson singlet.

Following a similar analysis discussed above, the 364
dimensional irreducible representation of $u(6,6)$ can be expressed in terms of the physical baryons as follows,

$$
\begin{equation*}
364 E B+D \tag{4.2}
\end{equation*}
$$

where, B, D are the baryon octet and decouplet respectively.
If we now consider the meson (143) and baryon (364) scattering, all the su(3) multiplets in (4.1) and (4.2) will take part independently of each other in the scattering phenomena and thereby give rise to the multichannel processes. From the point of view of SU(3) symmetry alona, this is, in fact, an eight-chansel problem; each of the processes, however, being elastic in view of the $\mathbb{U}(6,6)$ symmetry. Let us denote an arbitrary $\operatorname{su}(3)$ multiplet in (4.1) by M_{∞}, and that in (4.2) by \mathbb{N}_{1}. Then the above eightchannel scattering phenomena can be expressed as,

$$
\begin{equation*}
M_{\alpha}+N_{i} \leftrightarrow M_{\beta}+N_{k} \tag{4.3}
\end{equation*}
$$

where $\alpha, \beta=1,2,3,4,1, k=1,2$.
If we are interested in the baryon octet poles in the direct channels, two pairs of the above $\operatorname{su}(3)$ maltiplets will not contribute to such poles. These two pairs correspond respectively to the occurrence of a pseudoscalar (vector) singlet and a decouplet at either the initial or the final states of the scattering phenomena. Thus, for the baryon octet pole calculation, the problem reduces to a six-chanel one. It can, aimilarly, be shown that the two pairs consisting of a pseudoscalar (vector) singlet and a baryon octet occurring at either the initial or the final states will not contribute to the decouplet poles. Thus, in both the octet and decouplet pole calculations, the problem reduces to two six-channel ones. These have been explained in detail by the second order Feymman diagrams, Fig. B. 4 - Fig. B. 15 in the appendix B.

We assume, as we have mentioned earlier in this section, that the forces responsible for the binding of the baryon octet with $J=$ $1 / 2^{+}$and baryon decouplet with $\mathrm{J}=3 / 2^{+}$arise predominantly from the exchanges of these particles in the respective crossed channels. The left-hand cuts (sometimes referred to as force-cuts) are associated with these forces. As it is well known that the long-
range part of the forces play a very dominant role in any scattering phenomena, we shall confine ourselves to the consideration of single-particle exchanges only. For each of the processes discussed above, there will occur two crossed diagrams corresponding respectively to the exchanges of the baryon octet with $J=1 / 2$ and baryon decouplet with $J=3 / 2$: The space-time parts of these processes are associated with the somealled exchange Born terms which discuss in section 3 of this chapter and the $\operatorname{sU}(3)$ symmetry coefficients connected with these exchange Born terms are to be obtained by using the direct pole-coefficients given in tables B. 1 and B. 2 (appendix B) and the related sU(3) crossing matrices which we discuss below.

For all the processes we shall be dealing with, there are only three independent $s v(3)$ crossing matrices. We shall discuss these crossing matrices one by one. Pirst, we consider the process of a baryon octet and meson (pseudoscalar vector) octet going to a baryon and a meson octet. The two related channels (chapter III) we are interasted in are as follows:

$$
\begin{align*}
& a_{1}(8)+a_{2}(8) \rightarrow a_{8}(8)+a_{4}(8) \\
& a_{1}(8)+\bar{a}_{4}(8) \rightarrow a_{3}(8)+\bar{a}_{2}(8) \tag{4.4}
\end{align*}
$$

where the number 8 denotes the dimension of the $S G(3)$ irreducible
representation to which the respective particle belongs. The system at either the initial or final state of the above processes being a direct product of two octets can be decomposed_ into the following irreducible representations:

$$
\begin{equation*}
\underline{8} \otimes \underline{8}=\underline{1}+\underline{8}_{1}+\underline{8}_{2}+10+10 *+27 \tag{4.5}
\end{equation*}
$$

where 8_{1} and 8_{2} are respectively the well known symmetric and antisymmetric combinations.

In each channel (4.4) there are seven SO(3) invariant amplitudes (we are not considering spins of the particles in this section) corresponding respectively to the transitions, $1 \rightarrow 1$, $8_{1} \rightarrow 8_{1}, 8_{2} \rightarrow 8_{2}, 8_{1} \leftrightarrow 8_{2}, 10 \rightarrow 10,10 * \rightarrow 10 *$ and $27 \rightarrow 27$. The amplitudes in the channel II are related with those in channel I through the equation (3.11), the expression for the elements of the corresponding crossing-matrix being given by (3.12). The related crossing matrix is the following:
$C_{1}=$

N, β, γ								
$N^{\gamma}, \beta^{\prime}, \gamma^{\prime}$	1	27	$10 *$	10	8_{11}	8_{12}	8_{21}	8_{22}
1	$\frac{1}{8}$	$\frac{27}{8}$	$-\frac{5}{4}$	$-\frac{5}{4}$	1	0	0	-1
27	$\frac{1}{8}$	$\frac{7}{40}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{5}$	0	0	$\frac{1}{3}$
$10 *$	$-\frac{1}{8}$	$\frac{9}{40}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{2}{5}$	$-\frac{1}{\sqrt{5}}$	$-\frac{1}{\sqrt{5}}$	0

$N, \beta, \gamma, \beta^{*}, \gamma^{*}$	1	27	10*	10	$8_{\text {EI }}$	812	821	82
10	$-\frac{1}{8}$	$\frac{9}{40}$	$\frac{1}{4}$	$\ldots \frac{1}{4}$	$\frac{2}{5}$	$\frac{1}{\sqrt{5}}$	$\frac{1}{\sqrt{5}}$	0
811	$\frac{1}{8}$	$\frac{27}{40}$	$\frac{1}{2}-$	$\frac{1}{2}$	$=\frac{3}{10}$	0	0	$-\frac{1}{2}$
812	0	0	$-\frac{\sqrt{5}}{4}$	$\frac{\sqrt{5}}{4}$	0	$-\frac{1}{2}$	$\frac{1}{2}$	0
821	0	0	$-\frac{\sqrt{5}}{4}$	$\frac{\sqrt{5}}{4}$	0	$\frac{1}{2}$	$-\frac{1}{2}$	0
8	$=\frac{1}{8}$	8	0	0	$-\frac{1}{2}$	0	0	$\frac{1}{2}$

Let us now consider the process of a _ baryon decouplet and a meson (pseudoscalar or vector) octet going to a baryon octet and a meson octet. The related two channels, as before, are given by,

$$
\begin{align*}
& a_{1}(10)+a_{2}(8) \rightarrow a_{3}(8)+a_{4}(8) I \tag{4.7}\\
& a_{1}(10)+\bar{a}_{4}(8) \rightarrow a_{5}(8)+\bar{a}_{2}(8) \quad I I
\end{align*}
$$

The initial system being a direct product of a decouplet and an octet can be decomposed as follows:

$$
\begin{equation*}
\underline{10} \otimes \underline{8}=\underline{8} \oplus \underline{10} \oplus \oplus \underline{27} \oplus 35 \tag{4.8}
\end{equation*}
$$

In each of the above channels (4.7) there are four st(3) invariant amplitudes corresponding respectively to the transitions $8 \rightarrow 8_{1}$, $8 \rightarrow 8_{2}, 10 \rightarrow 10$, and $27 \rightarrow 27$. The related crossing matrix can be calculated as before and is given by,

$\mathbf{C}_{2}=$| $N^{2} \beta^{3}$ | 27 | 10 | 8_{1} | 8_{2} |
| :---: | :---: | :---: | :---: | :---: |
| 27 | $\frac{1}{10}$ | $\frac{1}{3 \sqrt{2}}$ | $\frac{2}{5}$ | $\frac{2}{3 \sqrt{5}}$ |
| 10 | $\frac{9}{10 \sqrt{2}}$ | $-\frac{1}{2}$ | $-\frac{2}{5 \sqrt{2}}$ | $\frac{2}{\sqrt{10}}$ |
| 8_{1} | $\frac{27}{20}$ | $-\frac{1}{2 \sqrt{2}}$ | $\frac{2}{5}$ | $-\frac{1}{\sqrt{5}}$ |
| 8_{2} | $\frac{9}{4 \sqrt{5}}$ | $\frac{5}{2 \sqrt{10}}$ | $-\frac{1}{\sqrt{5}}$ | 0 |

We now consider the process in which a bayron decouplet and a meson - (vector or pseudoscalar)octet occur at both the initial and final states and in both the channels discussed in this connection above. The irreducible SU(3) representations at both the initial and final states in either channels are those given by (4.8). There are in either channels four SU(3) invariant amplitudes corresponding respectively to the transitions, $8 \rightarrow 8,10 \rightarrow 10,27 \rightarrow 27$ and and $35 \rightarrow 35$. The following is the related su(3) crosining matrix:
$C_{3}=\left[\begin{array}{ccccc}\hline 35 & 27 & 10 & 8 \\ 27 & \frac{1}{8}-\frac{9}{40} & \frac{1}{4} & \frac{2}{5} \\ 10 & \frac{7}{24} & \frac{37}{40} & -\frac{1}{12} & -\frac{2}{15} \\ 8 & \frac{7}{8} & -\frac{9}{40} & \frac{2}{4} & -\frac{2}{5} \\ \frac{7}{4} & -\frac{9}{20} & -\frac{1}{2} & \frac{1}{5} \\ \hline\end{array}\right.$

As mentioned before, these crossing matrices are to be used in conjunction with the octet and decouplet pole _coefficients given in tables B. 1 and B. 2 (appendix B) in order to obtain the related BU(3) coefficients connected with the exchange Born terms.

Let us now consider the processes involving the pseudoscalar (vector) singlets. There are in these channels six SU(3) crossing matrices which are required in order to calculate the SU(3) exchange coefficients. We consider them one by one.
I. Process $P_{0}\left(V_{0}\right) B \longleftrightarrow P(V) B$

In the above process there are in s-channel two sU(3)invariant amplitudes corresponding to the transitions $\underset{\sim}{8} \rightarrow{\underset{m}{2}}_{8}$ and $\underset{\sim}{8} \rightarrow 8_{2}$ respectively. In the crossed (u) channel, there are also
two amplitudes corresponding to the transitions ${\underset{\sim 1}{1}}_{8} \rightarrow \underset{\sim}{8}$ and ${\underset{2}{2}}_{8}^{8} \underset{\sim}{8}$ respectively. Consequently, the $s \theta$ (3) crossing matrix; is as follows:

$$
C_{4}=\begin{array}{c|cc|}
\hline N^{7} \gamma^{8} & 8-8_{1} & 8-8_{2} \tag{4.10a}\\
\hline 8_{1}-8 & 1 & 0 \\
8_{2}-8 & 0 & 1 \\
\hline
\end{array}
$$

II. Process $P_{o}\left(V_{0}\right) B \leftrightarrow P(V) D$

In this process there is one $S U(3)$ invariant ampltiturde in the direct (smehannel) corresponding to the transition $\underset{\sim}{8} \rightarrow \underset{\sim}{8} \cdot$ In the crossed _(u) channel there also occurs one amplitude corresponding to the transition $10 \longleftrightarrow$ 20. Hence the onedimensional crossing matrix is,

III. Process $\quad P_{0}\left(V_{O}\right) D \leftrightarrow P(V) B$

In the above process, there is one amplitude in the s-channel
corresponding to the transition $10 \leftrightarrow$ 20. There also occurs one amplitude in the u-channel corresponding to the transition $\underset{\sim}{8} \leftrightarrows \underset{\sim}{8} \cdot$ Hence the one-dimensional crossing matrix is given by,

IV. Process $P_{0}\left(V_{0}\right) D \leftrightarrow P(V) D$

There is in the above process one amplitude corresponding to the transition $10 \leftrightarrow 10$ in both s- and u-channel. Consequently the crossing matrix which is one-dimensional is as follows:

V. Process $\quad P_{0}\left(V_{0}\right) \leftrightarrow P_{0}\left(V_{0}\right) B$

There occurs in the above process one amplitude corresponding to the transitions $8 \leftrightarrow 8$ in both the s- and u-channel and the relevant crossing matrix is,

VI. Process $P_{0}\left(V_{0}\right) \longleftrightarrow P_{0}\left(V_{0}\right) D$

In the above process there is in both the s- and u-channel one $\operatorname{sU}(3)$ invariant amplitude corresponding to the transition 10-10 and the crossing matrix is given by,

As mentioned before, these $\operatorname{su}(3)$ crossing matrices corresponding to the processes involving the pseudoscalar (vector) singlets are to be used in conjunction with the relevant octet and decouplet SU(3)-pole coefficients given in the table B.I and table B. 2 (appendix B) in order to obtain the related su(3) coefficients associated with the relevant exchange Born terms.
2. Helicity formalisms and partial wave amplitudes:

In the previous section, we have discussed how, when the $U(6,6)$ symmetry is broken by Bergmann-Wigner equations, the meson-
baryon scattering decomposes into a namber of independent processes involving two $\mathbb{X}(3)$ multiplets at both the initial and the final states. If we now take into account the spins of the scattering particles, then the scattering amplitude corresponding to each of the above processes will be a $n \times n$ matrix, the dimension of the matrix, of course, being dependent on the spins of the particles involved in the processes concerned. We shall discuss, in this section, this particular aspect of the scattering amplitudes from the view-point of the helicity formalism discussed by Jacob and Wiek ${ }^{58)}$. As we shall be solving the N / D equations only for the -octet and decouplet poles, we need to construct the parity amplitudes which contribute to $J=1 / 2$ and $J=3 / 2$. atates. Finally, we shall discuss how these parity amplitudes are expressed in terms of the partial wave amplitudes. In fact, one deals with the partial wave amplitudes when one is using the \mathbb{N} / D method in order to solve a scattering preblem. It is these partial wave amplitudes or the parity amplitudes discussed above that give rise to a number of independent channels in any of the reactions we have discussed in the previous section. Since the space-time properties of the pseudoscalar (the vector) singlet are the same as those of the pseudoscalar (the vector) octet, it will be sufficient if we consider the processes involving only the pseudoscalar (the vector) meson oetets:

Let us consider a general scattering process (Fig. 4.1) involving a baryon (octet or decouplet) and a meson (pseudoscalar or vector) at both the initial and final states.

Figure 4.la
Figure 4.1b
s-channel C.M. sys.tem
The s-matrix corresponding to the above process (Fig. 3.1) of the beryon-meson scattering can be written in the form:

$$
\begin{equation*}
\langle f| s|i\rangle=\delta_{f i}-i(2 \pi)^{4} \delta_{i}\left(P_{f}-P_{i}\right)\langle f| R|i\rangle \tag{4.11}
\end{equation*}
$$

where

$$
\begin{equation*}
\langle f| R|i\rangle=\frac{1}{(2 \pi)^{6}} \cdot \sqrt{\frac{m^{2}}{4 E_{2} E_{2} E_{3} B_{4}^{-}}}\langle f| F|i\rangle \tag{4.12}
\end{equation*}
$$

where, F is the well known Feynman amplitudes. In (4.12), m is the mass of the baryon and, as we have already mentioned in the previous section, is to be taken as the $U(6,6)$ degenerate mass. E_{1}, F_{2} are the energies of the baryon and meson respectively in the initial state and $\mathbf{F}_{\mathbf{3}}, \mathbf{F}_{\mathbf{4}}$ the corresponding energies in the final states. The three invariant quantities that can be formed
out of the four momenta, $p_{1} p_{2} p_{3} p_{4}$ are as follows:

$$
\begin{align*}
& s=\left(p_{1}+p_{2}\right)^{2}=\left(p_{3}+p_{4}\right)^{2}=\mathbb{W}^{2} \\
& t=\left(p_{1}-p_{3}\right)^{2}-2 k^{2}(1-\cos \theta) \tag{4.13}\\
& u=\left(p_{1}-p_{4}\right)^{2}=2 m^{2}+2 \mu^{2}-s+2 k^{2}(1-\cos \theta) \\
& \text { where, }{\underset{L}{2}}_{2}^{L_{1}}={\underset{R}{2}}_{2}^{2}=D_{S}^{2}=\mathcal{R}_{4}^{2}=k^{2} \\
& x^{2}=\left\{s-(m+\mu)^{2}\right\}\left\{s-(m-\mu)^{2}\right\} / 4 a \\
& \mathbf{E}_{2}=\mathbf{E}_{3}=\sqrt{\mathbb{K}^{2}+n^{2}} ; \quad \mathbf{F}_{2}=\mathbf{E}_{4}=\sqrt{\mathrm{K}^{2}+\mu^{2}} \tag{4.14b}
\end{align*}
$$

(4.14a)
where μ is the $\boldsymbol{U}(6,6)$ degenerate mass of the mesons and θ is the angle of scattering in the com. system and is given by,

$$
\begin{equation*}
\cos \theta=\mathfrak{p}_{2} \cdot \mathrm{D}_{4} /\left|p_{2} \cdot p_{4}\right|^{2} \tag{4.14c}
\end{equation*}
$$

How, using equation (C.23) we have,

$$
\begin{align*}
<p_{3} p_{4} \lambda_{3} \lambda_{4}|R| p_{2} p_{2} \lambda_{1} \lambda_{2}> & =\frac{W}{\sqrt{p_{1} p_{3}}} \frac{1}{\sqrt{R_{1} E_{2} E_{3} \mathbb{E}_{4}}} \\
& <\theta_{e_{1}} \cdot \Phi_{f} \lambda_{3} \lambda_{4}|R| \theta_{i} \Phi_{i}, \lambda_{1} \lambda_{2}> \tag{4.15}
\end{align*}
$$

The, using (4.15) the felicity representation of the Feynman amplitude, F, obtained from (4.11) and (4.12) is as follows:

$$
\begin{align*}
& \left\langle p_{3} p_{4} \lambda_{3} \lambda_{4}\right| F \left\lvert\, p_{1} p_{2} \lambda_{1} \lambda_{2}>=-\frac{(4 \pi)^{2}}{\sqrt{m_{1} m_{3}}} \sum_{J J^{2}, M_{M^{2}}}\right. \\
& <\theta_{f} \Phi_{f} \lambda_{3} \lambda_{4}\left|J^{4} M^{1} \lambda_{3} \lambda_{4}><J^{2} M^{8} \lambda_{3} \lambda_{4}\right| s-1\left|J M \lambda_{1} \lambda_{2}\right\rangle \\
& <J M \lambda_{1} \lambda_{2} \left\lvert\, \theta_{i} \Phi_{i} \lambda_{1} \lambda_{2}>\frac{W}{21 \sqrt{p_{1} P_{3}}}\right. \tag{4.16}
\end{align*}
$$

Now the helicity amplitude between the same total angular momentum states is defined as,

$$
\begin{align*}
\stackrel{h}{ }_{\lambda_{3} \lambda_{4} ; \lambda_{1} \lambda_{2}} & \left.=<J M \lambda_{3} \lambda_{4}|s-1| J M \lambda_{1} \lambda_{2}\right\rangle \cdot \frac{1}{2 i \sqrt{p_{1} p_{3}}} \\
\therefore & =\frac{W}{k} \cdot \frac{s^{J}-1}{2 i}=\frac{W}{k} \cdot \frac{e^{2 i \delta_{J}}-1}{2 i} \tag{4.17}
\end{align*}
$$

where δ_{J} is the phase-shift corresponding to the J-th partial wave.

Then substituting (4.17) into (4.16) we have,

$$
\left\langle p_{3} p_{4} \lambda_{3} \lambda_{4}\right| T\left|p_{1} p_{2} \lambda_{1} \lambda_{2}\right\rangle=-\frac{(4 \pi)^{2}}{\sqrt{m_{1} m_{3}}} \sum_{J M}
$$

$$
\left\langle\theta_{f} \phi_{f} \lambda_{3} \lambda_{4}\right| J M \lambda_{3} \lambda_{4}><J M \lambda_{2} \lambda_{2} \mid \theta_{i} \phi_{1} \lambda_{1} \lambda_{2}>\underset{\lambda_{8} \lambda_{4} ; \lambda_{1} \lambda_{2}}{n^{J}}
$$

Let $\lambda=\lambda_{3}-\lambda_{4} ; \mu=\lambda_{2}-\lambda_{2}$. Now taking the three-component momenta of the initial particles along the z-axis and in the $x z-p l a n e$ such that $\theta_{i}=\phi_{i}=0$, we have from (c.29)

$$
\left\langle\mathbb{M} \lambda_{1} \lambda_{2} \mid \theta_{i} \phi_{i} \lambda_{1} \lambda_{2}\right\rangle-\mathbb{N}_{J} \theta_{M \mu} \quad \text { (4.19) }
$$

Now substituting (4.19) and (c.29) into (4.18) we have,

$$
\begin{aligned}
& \left\langle p_{3} p_{4} \lambda_{3} \lambda_{4}\right| P\left|p_{2} p_{2} \lambda_{1} \lambda_{2}\right\rangle=-\frac{(4 \pi)^{2}}{\sqrt{m_{2} m_{2}}} \sum_{J M} \lambda_{\lambda_{3} \lambda_{4} ; \lambda_{1} \lambda_{2}}^{\mathbf{h}^{J}} \\
& e^{i M \phi_{f}}{ }_{M \lambda}{ }^{J}(\theta) e^{-i \lambda \phi_{f}} M_{J}^{2} \delta_{M \mu}
\end{aligned}
$$

We also take the two momenta of the final-state particles in the $x z-p l a n e$. Then multiplying the above equation by ${\underset{\mu \lambda}{J}(\theta) \sin \theta}_{d^{J}}$ and integrating over θ and using (C.26) we get,

$$
\left\langle\lambda_{3} \lambda_{1}\right| h^{J}\left|\lambda_{1} \lambda_{2}\right\rangle=-\frac{m}{8 \pi} \int_{-1}^{+1}\left\langle\lambda_{3} \lambda_{4}\right| F\left|\lambda_{1} \lambda_{2}\right\rangle{\underset{\mu \lambda}{J}(\theta) d(\cos \theta)}_{\mu \lambda}
$$

For each total angular momentum J there are $\left(2 s_{1}+1\right)\left(2 s_{2}+1\right)$ $\left(2 s_{s}+1\right)\left(2 s_{4}+1\right)$ helicity amplitudes, where $s_{i}{ }^{\prime} s$ are the spins of the scattering particles. In fact, one has to evaluate the independent helicity amplitudes by invoking the law of invariance of the scattering matrix s under parity and time reversal. To see how it is done let us define the helicity of a free particle as follows:

$$
\begin{equation*}
\lambda=\mathrm{J} \cdot \mathrm{P} /|\mathrm{P}| \tag{4.21}
\end{equation*}
$$

where J is the total angular momentum, P is the three-component momentum:
a) Invariance under parity:

Under space-inversion J does not change sign but P does change sign. Consequently, a state with helicity λ is transformed into a state with helicity - λ under parity operation. It can be shown ${ }^{7}$,

$$
\left.-P\left|J M \lambda_{1} \lambda_{2}>=\eta_{1} \eta_{2}(-1)^{J-s_{1}-S_{2}}\right| J M ;-\lambda_{1}-\lambda_{2}\right\rangle \quad \text { (4.22) }
$$

where η_{1} and η_{2} are the intrinsic parities of the two particles of spin s_{1} and s_{2} and P stands_for the parity operator. Now, the invariance of the s-matrix under parity implies,

$$
\begin{equation*}
\mathbf{P} \text { S } \mathrm{P}^{-1}=\mathbf{S} \tag{4.23}
\end{equation*}
$$

Using (4.22) and (4.23) we obtain from (4.17) the following
relation between matrix elements with states of opposite parities:

$$
\begin{equation*}
\left\langle-\lambda_{3},-\lambda_{1}\right| h^{J}\left|-\lambda_{1},-\lambda_{2}\right\rangle-\frac{\eta_{3} \eta_{4}}{\eta_{1} \eta_{2}}(-1)^{B_{3}+s_{4}-s_{1}-\beta_{2}}\left\langle\lambda_{3}, \lambda_{4}\right| h^{J}\left|\lambda_{1}, \lambda_{2}\right\rangle \tag{4.24}
\end{equation*}
$$

b) Time reversal invariance:

Under time reversal both J and P change sign, so the helicity λ (4.21) does not change. By applying time reversal, T, to a state we obtain a new state with the same angular momentum and helicities but with an opposite eigenvalue for $\boldsymbol{J}_{\mathbf{z}}$ • Thus, we obtain

$$
\begin{equation*}
T\left|J M ; \lambda_{1} \lambda_{2}\right\rangle=(-1)^{J-M}\left|J,-M ; \lambda_{1} \lambda_{2}\right\rangle \tag{4.25}
\end{equation*}
$$

How, the invariance of the s-matrix under time reversal implies,

$$
\begin{equation*}
T S T^{-1}=S^{+} \tag{4.26}
\end{equation*}
$$

Use of (4.25) and (4.26) in (4.17) then gives the following relation of the helicity amplitudes:

$$
\begin{equation*}
\left\langle\lambda_{3} \lambda_{4}\right| h^{\mathrm{J}}\left|\lambda_{1} \lambda_{2}\right\rangle=\left\langle\lambda_{1} \lambda_{2}\right| h^{\mathrm{J}}\left|\lambda_{3} \lambda_{4}\right\rangle \tag{4.27}
\end{equation*}
$$

In this connection, we mention that when we consider a process like $B+P \longleftrightarrow B+V$, with a pseudoscalar meson at one state and a vector meson at the other, the helicity amplitudes corresponding to the time reversed process, are to be multiplied by (-1). This
factor arises due to the spin of the vector meson ${ }^{59}$.

Let us now construct the parity states which contribute to $J=1 / 2$ and $J=3 / 2$ states. These are obtained by taking a linear combination of the helicity states. The parity of such a combination can be given by,

$$
\begin{align*}
P\left\{\mid J M ; \lambda_{1} \lambda_{2}>\right. & \left. \pm\left|J, M ;-\lambda_{1},-\lambda_{2}\right\rangle\right\}=\eta_{1} \eta_{2}(-1)^{J-S_{2}-\mathbb{S}_{2}}(\pm) \\
& \left\{\left|J M ; \lambda_{1} \lambda_{2}\right\rangle \pm\left|J, M ;-\lambda_{1},-\lambda_{2}\right\rangle\right\} \tag{4.28}
\end{align*}
$$

Considering the spins of the scattering particles concerned, it can be shown ${ }^{7}$) that the above combination with one sign contributes to $\mathcal{J}^{P}=1 / 2^{+}$and the other to the state $\mathcal{J}^{P}=3 / 2^{+}$. We shall, however, express these parity states in terms of the states having a definite orbital angular momentum and total channel spins. For that purpose we make use of the =following relation ${ }^{7}$,

$$
\begin{equation*}
\left\langle J \mathbb{M S} \mid J M ; \lambda_{1} \lambda_{2}\right\rangle=\left(\frac{2 L+1}{2 J+1}\right)^{\frac{1}{2}} C(L S J ; 0 \lambda) C\left(s_{1} s_{2} s ; \lambda_{1},-\lambda_{2}\right) \tag{4.29}
\end{equation*}
$$

where $\lambda=\lambda_{1}-\lambda_{2}$ and C's are the related Clebsch-Gordon coefficients. From (4.29) we can obtain,

$$
\left.\left|J M ; \lambda_{1} \lambda_{2}>-\sum_{L, s}\left(\frac{2 \Omega+1}{2 J+1}\right)^{\frac{1}{2}} C_{0 \lambda \lambda}^{\text {LBJ }} \cdot C_{\lambda_{1}, \lambda_{2}}^{s_{1} s_{2} s} \lambda\right| J M ; L S\right\rangle
$$

In (4.30) we can drop the symbol M because the conservation of M is automatically taken care of. In what follows we express the above mentioned parity states in terms of the states with a definite orbital angular momentum and channel spins for the relevant vertices from which all the processes we consider can be obtained. The related orbital angular momenta are obtained by considering the $\mathcal{J}^{P}=1 / 2^{+}$or $\mathcal{J}^{P}=3 / 2^{+}$states in the intermediate states in the direct channels (Fig. B. 4 - B.15). We shall write $J^{P}=1 / 2^{+}$state as B^{\prime} s and $J^{P}=3 / 2^{+}$as $D^{\text {is. }} \quad$ Using (4.28) and (4.30) we obtain the following ${ }^{60}$):
I. For the external particles PB the states are:

$$
\begin{align*}
& B_{1}=\frac{1}{\sqrt{2}}[|1 / 2 ; 1 / 2\rangle-|1 / 2 ;-1 / 2\rangle]=-\left|1 / 2 ; P_{1 / 2}\right\rangle \\
& D_{1}=\frac{1}{\sqrt{2}}[|3 / 2 ; 1 / 2\rangle+|3 / 2 ;-1 / 2\rangle]=\left|3 / 2 ; P_{1 / 2}\right\rangle \tag{4.31}
\end{align*}
$$

II. For the external particles PD the states are:

$$
\begin{aligned}
B_{1}= & \frac{1}{\sqrt{2}}[|1 / 2 ; 1 / 2\rangle+|1 / 2 ;-1 / 2\rangle]=-\left|1 / 2 ; P_{3 / 2}\right\rangle \\
D_{1}= & \frac{1}{\sqrt{2}}[|3 / 2 ; 1 / 2\rangle-|3 / 2 ;-1 / 2\rangle]=-\frac{1}{\sqrt{10}}\left|3 / 2 ; P_{3 / 2}\right\rangle \\
& +\frac{3}{\sqrt{10}}\left|3 / 2 ; r_{3 / 2}\right\rangle
\end{aligned}
$$

$$
\begin{align*}
D_{2}=\frac{1}{\sqrt{2}} & { \left.[|3 / 2 ; 3 / 2>-| 3 / 2 ;-3 / 2>]=-\frac{3}{\sqrt{10}} \right\rvert\, 3 / 2 ; P_{3 / 2}>} \\
& -\frac{1}{\sqrt{10}}\left|3 / 2 ; F_{3 / 2}\right\rangle \tag{4.32}
\end{align*}
$$

III. For the external particles VB the states are:

$$
\begin{aligned}
& B_{1}=\frac{1}{\sqrt{2}}[|1 / 2 ; 1 / 2,1\rangle+|1 / 2 ;-1 / 2,-1\rangle]=\frac{\sqrt{2}}{\sqrt{3}}\left|1 / 2 ; P_{1 / 2}\right\rangle \\
& \left.-\frac{1}{\sqrt{3}} \right\rvert\, 1 / 2 ; P_{3 / 2}> \\
& \left.B_{2}=\frac{1}{\sqrt{2}}[|1 / 2 ; 1 / 2,0\rangle+|1 / 2 ;-1 / 2,0\rangle]=-\frac{1}{\sqrt{3}} \right\rvert\, 1 / 2 ; P_{1 / 2}> \\
& \left.-\frac{\sqrt{2}}{\sqrt{3}} \right\rvert\, 1 / 2 ; P_{3 / 2}> \\
& \left.B_{1}=\frac{1}{\sqrt{2}}[|3 / 2 ; 1 / 2,1>-| 3 / 2 ;-1 / 2,-1\rangle\right] \left.=\frac{\sqrt{2}}{\sqrt{3}} \right\rvert\, 3 / 2 ; P_{1 / 2}> \\
& +\frac{1}{\sqrt{30}}\left|3 / 2 ; P_{3 / 2}>-\frac{3}{\sqrt{30}}\right| 3 / 2 ; F_{3 / 2}> \\
& \left.D_{2}=\frac{1}{\sqrt{2}}[|3 / 2 ; 1 / 2,0>-| 3 / 2 ;-1 / 2,0>]=\frac{1}{\sqrt{3}} \right\rvert\, 3 / 2 ; P_{1 / 2}> \\
& -\frac{2}{\sqrt{60}}\left|3 / 2 ; P_{3 / 2}>+\frac{6}{\sqrt{60}}\right| 3 / 2 ; F_{3 / 2}>
\end{aligned}
$$

$$
\begin{align*}
&\left.D_{3}=\frac{1}{\sqrt{2}}[|3 / 2 ; 1 / 2,-1>-| 3 / 2 ;-1 / 2,1\rangle\right]=-\frac{3}{\sqrt{10}}\left|3 / 2 ; P_{3 / 2}\right\rangle \\
&-\frac{1}{\sqrt{10}}\left|3 / 2 ; F_{3 / 2}\right\rangle \tag{4.33}
\end{align*}
$$

IV. For the external particles VD the states are:

$$
\begin{aligned}
& \left.B_{1}=\frac{1}{\sqrt{2}}[|1 / 2 ; 1 / 2,1>-| 1 / 2 ;-1 / 2,-1\rangle\right]=\frac{1}{\sqrt{6}}\left|1 / 2 ; P_{1 / 2}\right\rangle \\
& -\frac{4}{\sqrt{30}}\left|1 / 2 ; P_{3 / 2}>+\frac{3}{\sqrt{30}}\right| 1 / 2 ; F_{5 / 2}> \\
& \left.B_{2}=\frac{1}{\sqrt{2}}[|1 / 2 ; 1 / 2,0>-| 1 / 2 ;-1 / 2 ; 0\rangle\right]=\frac{1}{\sqrt{3}}\left|1 / 2 ; P_{1 / 2}\right\rangle . \\
& -\frac{2}{\sqrt{60}}\left|1 / 2 ; P_{3 / 2}>-\frac{6}{\sqrt{60}}\right| 1 / 2 ; F_{5 / 2}> \\
& B_{4}-\frac{1}{\sqrt{2}}[|1 / 2 ; 3 / 2,1\rangle-|1 / 2 ;-3 / 2,-1\rangle]=\frac{1}{\sqrt{2}}\left|1 / 2 ; P_{1 / 2}\right\rangle \\
& -\frac{2}{\sqrt{10}}\left|1 / 2 ; P_{3 / 2}>-\frac{1}{\sqrt{10}}\right| 1 / 2 ; F_{5 / 2}> \\
& D_{1}=\frac{1}{\sqrt{2}}[|3 / 2 ; 1 / 2,1\rangle+|3 / 2 ;-1 / 2,-1\rangle]=\frac{1}{\sqrt{6}}\left|3 / 2 ; P_{1 / 2}\right\rangle \\
& +\frac{2}{5 \sqrt{3}}\left|3 / 2 ; P_{3 / 2}>-\frac{3}{5 \sqrt{2}}\right| 3 / 2 ; P_{5 / 2}>
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2 \sqrt{3}}{5}\left|3 / 2 ; F_{3 / 2}>+\frac{\sqrt{3}}{5}\right| 3 / 2 ; F_{5 / 2}> \\
& \left.D_{2}-\frac{1}{\sqrt{2}}[|3 / 2 ; 1 / 2,0>+| 3 / 2 ;-1 / 2,0>]=-\frac{1}{\sqrt{3}} \right\rvert\, 3 / 2 ; P_{1 / 2}> \\
& -\frac{1}{5 \sqrt{6}}\left|3 / 2 ; P_{3 / 2}>-\frac{3}{5}\right| 3 / 2 ; \left.P_{5 / 2}>+\frac{3}{5 \sqrt{6}} \right\rvert\, 3 / 2 ; F_{3 / 2}> \\
& \left.+\frac{6}{5 \sqrt{6}} \right\rvert\, 3 / 2 ; P_{5 / 2}> \\
& \left.B_{3}=\frac{1}{\sqrt{2}}[|3 / 2 ; 1 / 2,-1>+| 3 / 2 ;-1 / 2,1\rangle\right]=\frac{3}{5}\left|3 / 2 ; P_{3 / 2}\right\rangle \\
& -\frac{6}{5 \sqrt{6}}\left|3 / 2 ; P_{5 / 2}>+\frac{1}{5}\right| 3 / 2 ; \left.P_{3 / 2}>-\frac{3}{5} \right\rvert\, 3 / 2 ; P_{5 / 2}> \\
& \left.D_{4}=\frac{1}{\sqrt{2}}[|3 / 2 ; 3 / 2,1>+| 3 / 2 ;-3 / 2,-1\rangle\right]=\frac{1}{\sqrt{2}}\left|3 / 2 ; P_{1 / 2}\right\rangle \\
& -\frac{1}{5}\left|3 / 2 ; P_{3 / 2}>-\frac{3}{5 \sqrt{6}}\right| 3 / 2 ; \left.P_{5 / 2}>+\frac{3}{5} \right\rvert\, 3 / 2 ; P_{3 / 2}> \\
& \left.+\frac{1}{5} \right\rvert\, 3 / 2 ; F_{5 / 2}> \\
& \left.D_{5}=\frac{1}{\sqrt{2}}[|3 / 2 ; 3 / 2,0>+| 3 / 2 ;-3 / 2,0>]-\frac{9}{5 \sqrt{6}} \right\rvert\, 3 / 2 ; p_{3 / 2}>
\end{aligned}
$$

$$
\begin{align*}
& -\frac{2}{5}\left|3 / 2 ; P_{5 / 2}>-\frac{3}{5 \sqrt{6}}\right| 3 / 2 ; F_{3 / 2}> \\
& \left.-\frac{6}{5 \sqrt{6}} \right\rvert\, 3 / 2 ; F_{5 / 2}> \tag{4.34}
\end{align*}
$$

In the above, $\mathbf{P}_{\mathbf{s}}, \mathbf{F}_{\mathrm{s}}$ denote the orbital angular momentum in accordance with the convention of the atomic theory and the associated suffices denote the corresponding channel spins. Inverting the above relations we obtain the following:
i. For the external particles $P B$ we have,

$$
\begin{align*}
& \left|1 / 2 ; P_{1 / 2}\right\rangle=-B_{1} \tag{4.31'}\\
& \left|3 / 2 ; P_{1 / 2}\right\rangle=D_{1}
\end{align*}
$$

ii. For the external particles PD we have,

$$
\begin{align*}
& \mid 1 / 2 ; P_{3 / 2}>=-B_{1} \\
& \left|3 / 2 ; P_{3 / 2}\right\rangle=-\frac{1}{\sqrt{10}}\left(D_{1}+3 D_{2}\right) \\
& \left|3 / 2 ; F_{3 / 2}\right\rangle=\frac{1}{\sqrt{10}}\left(3 D_{1}-D_{2}\right)
\end{align*}
$$

iii. For the external particles. VB we here,

$$
\begin{aligned}
& \mid 1 / 2 ; P_{1 / 2}>=\frac{1}{\sqrt{3}}\left(\sqrt{2} B_{1}-B_{2}\right) \\
& \mid 1 / 2 ; P_{3 / 2}>=-\frac{1}{\sqrt{3}}\left(B_{1}+\sqrt{2} B_{2}\right) \\
& \mid 3 / 2 ; P_{1 / 2}>=\frac{1}{\sqrt{3}}\left(\sqrt{2} D_{1}+D_{2}\right) \\
& \mid 3 / 2 ; P_{3 / 2}>=\frac{1}{\sqrt{30}}\left(D_{1}-\sqrt{2} D_{2}-3 \sqrt{3} D_{3}\right) \\
& \mid 3 / 2 ; F_{3 / 2}>=-\frac{1}{\sqrt{10}}\left(\sqrt{3} D_{2}-\sqrt{6} D_{2}+D_{3}\right)
\end{aligned}
$$

$$
\left(4.33^{2}\right)
$$

iv. For the external particles VD we have,

$$
\begin{aligned}
& \mid 1 / 2 ; P_{1 / 2}>=\frac{1}{\sqrt{6}}\left(B_{1}+\sqrt{2} B_{2}-\sqrt{3} B_{4}\right) \\
& \left|1 / 2 ; P_{3 / 2}\right\rangle=-\frac{1}{\sqrt{15}}\left(2 \sqrt{2} B_{1}+B_{2}+\sqrt{6} B_{4}\right) \\
& \left|1 / 2 ; F_{5 / 2}\right\rangle=\frac{1}{\sqrt{10}}\left(\sqrt{3} B_{1}-\sqrt{6} B_{2}-B_{4}\right) \\
& \left|3 / 2 ; P_{1 / 2}\right\rangle=\frac{1}{\sqrt{6}}\left(D_{1}+\sqrt{2} D_{2}+\sqrt{3} D_{4}\right)
\end{aligned}
$$

$$
\begin{align*}
& \mid 3 / 2 ; P_{3 / 2}>=\frac{1}{10 \sqrt{3}}\left(4 D_{1}-\sqrt{2} D_{2}+6 \sqrt{3} D_{3}-2 \sqrt{3} D_{4}\right. \\
&\left.-9 \sqrt{2} D_{5}\right) \\
& \mid 3 / 2 ; P_{5 / 2}>=-\frac{1}{5 \sqrt{2}}\left(3 D_{1}+3 \sqrt{2} D_{2}+2 \sqrt{3} D_{3}+\sqrt{3} D_{4}\right. \\
&\left.+2 \sqrt{2} D_{5}\right) \\
& \mid 3 / 2 ; F_{3 / 2}>=-\frac{1}{10}\left(4 \sqrt{3} D_{1}-\sqrt{6} D_{2}-2 D_{3}-6 D_{4}+\sqrt{6} D_{5}\right) \\
& \mid 3 / 2 ; F_{5 / 2}>= \frac{1}{5}\left(\sqrt{33} D_{2}+\sqrt{6} D_{2}-3 D_{3}+D_{4}-\sqrt{6} D_{5}\right) \tag{4.341}
\end{align*}
$$

From these relations one can express the partial wave amplitudes in terms of the desired parity amplitudes. From the four-types of vertices considered above, we can obtain all the partial wave amplitudes corresponding to sixteen processes by taking appropriate combinations of these vertices. There are, however, only_ten independent processes; others being related through time reversal invariance property of the scattering matrix s.

3. Galoulations of the Born Terms

a. The Direct Pole Terms:

We have show in the last section that both \mathbf{P} and \mathbf{F} waves occur in some of the scattering processes we consider. It is clear from the relations (4.31°) - (4.34°) that F-waves occur in those processes which involve the baryon decouplets and vector mesons as the scattering particles. But it is known from the experiments that $\mathbb{I}_{s 3}^{*}$ resonance occurs as wivesonance in P-wave. Therefore, we make an investigation to see how much contributiom these P-waves have to the $J^{P}=1 / 2^{+}$and $\tilde{J}^{P}=3 / 2^{+}$poles with which we are concerned. With this end in view, we calculate the direct $J=1 / 2$ and $J=3 / 2$ Born terms using the $\cup(6,6)$ vertices (1.87) (1.92). We evaluate the Feymman amplitudes $<\lambda_{3} \lambda_{4}|F| \lambda_{1} \lambda_{2}>$ which we use in order to obtain the helicity amplitudes from the equation (4.20). The processes which we have to consider have been shown (appendix B) by the Fig. B. 4 - Fig. B.15. We shall, however, ignore the ss(3) symmetry properties of the multiplets and consequently the processes we consider are shown in Fig. 4.2

䛚1gure $4.2 a$

Figure 4.2 b

Figure 4.2c

In order to obtain the pole contributions we evaluate the related vertex functions by putting all the particles on the respective mass shells. As the three-component momentum of the intermediate particle is zero in the c.m. system, the helicity states of the intermediate particles can be taken as being normalised in the positive z-direction. Further, we take the momenta of all the particles associated with the diagrams fig. 4.aband Fig. 4.2c in the xz -plane. In particular, we take the momente of the particles in the initial state along the z-axis and those of the particles in the final state along a direction making an angle θ with the z-axis, θ being the angle of scattering. Now, since the propagator of the intermediate particles (spin $1 / 2$ or spin $3 / 2$ particles in this case) can be expressed as a sum over the helicity states of the particles concerned, the Feymman amplitude corresponding to any of the processes shown in the above can be expressed in the form ${ }^{61 \text {) }}$
where $F_{\lambda 0}^{2}(\theta), F_{v i}^{1}(0)$ are the vertex functions obtained by putting the particles at the vertices 2 and 1 respectively on the respective mass shells. These can be expressed in the following forms:

$$
\begin{equation*}
\left.F_{\lambda \theta}^{2}(\theta)=\sqrt{2 m}<-P_{3} p_{4} \lambda_{3} \lambda_{4}\left|J_{l}\right| k \theta\right\rangle \tag{4.36a}
\end{equation*}
$$

$$
\begin{equation*}
\left.\mathrm{P}_{\mathrm{p}}^{1}(0)=\sqrt{2 m}<\mathrm{kD}\left|\mathrm{~J}_{\eta}\right| \mathrm{p}_{2} \mathrm{p}_{2} \lambda_{1} \lambda_{2}\right\rangle \tag{4.36b}
\end{equation*}
$$

where $\lambda=\lambda_{3}-\lambda_{4} ; \mu=\lambda_{1}-\lambda$ and v is the helicity of the intermediate particle with $U(6,6)$ degenerate mass m. Thus, the fourcomponent momentum k of the intermediate particles can be given in the c.m. system by,

$$
\begin{equation*}
k=(m, 0) \tag{4.36c}
\end{equation*}
$$

In $(4.36) J_{\ell}$ is the $\sigma(6,6)$ form factors. Taking various terms from (1.87) - (1.92) we. can obtain all the pole terms corresponding to the sixteen processes discussed in the last section. We shall, however, discuss two examples and write down the results for the rest. For that we need the helicity states of the external particles as well as those of the intermediate $J=1 / 2$ or $J=3 / 2$ particles. The helicity states of the external particles have been given in appendix C so we have to obtain the helicity states of the intermediate $J=1 / 2$ and $J=3 / 2$ particles.

Corresponding to the spin $1 / 2$ particle in the intermediate state the helicity states, using (4.36c), are as follows:

$$
u(k)=\frac{1}{\sqrt{2 m(E+m)}}\left|\begin{array}{l}
E+m \tag{4.37}\\
0 \cdot p
\end{array}\right| x_{0}=\binom{1}{0} x_{0}
$$

For the spin $3 / 2$ particle in the intermediate, the helicity states are taken (given by C.15) as the vector sums of (4.37) and

$$
\begin{equation*}
\epsilon^{(\stackrel{ \pm}{4}}=\left\{0, \xi^{(\pm)}\right\} ; \quad \epsilon^{(0)}=\left\{0, s^{(0)}\right\} \tag{4.38}
\end{equation*}
$$

where, ${\underset{心}{(+)}}_{(+)}^{\sqrt{2}}\left|\begin{array}{c}1 \\ -i \\ 0\end{array}\right|{\underset{⿷}{s}}^{(0)}=\left|\begin{array}{l}0 \\ 0 \\ 1\end{array}\right| \quad \xi^{(-)}=\frac{1}{\sqrt{2}}\left|\begin{array}{c}1 \\ -1 \\ 0\end{array}\right|$

In order to show how these pole terms are obtained we consider the process $P+B \rightarrow P+B$ with $J=1 / 2$ and $J=3 / 2$ in the intermediate state.
I. For the $J=1 / 2$ particle particle in the intermediate state:

In this case we consider the $\mathbf{(}(6,6)$ vertices given by equation (1.87). The two vertex functions corresponding to all the particles on the respective mass-shells are obtained as follows:

$$
\begin{align*}
F_{\lambda 0}^{2}(\theta) & =\frac{p^{2}}{4 m^{2}}\left(1+\frac{2 m}{\mu}\right) \sqrt{2 m} \bar{u}_{\lambda}\left(p_{\Omega}\right) r_{5} u_{0}(k) \tag{4.39}\\
F_{v i p}^{2}(0) & =\frac{p^{2}}{4 m^{2}}\left(1+\frac{2 m}{\mu}\right) \sqrt{2 m} \bar{u}_{v \mu}(k) r_{5} u\left(p_{1}\right)
\end{align*}
$$

Using (4.37), (C.2) and (C.5) we evaluate (4.39) by putting all the particles on the mass-shells then substitute them into (4.35) which gives the following pole terms:

$\langle\lambda| F|\mu\rangle=C \times$| λ | $1 / 2$ | $-1 / 2$ |
| :--- | :--- | :--- |
| $\frac{1}{2}$ | $\cos \theta / 2$ | $-\sin \theta / 2$ |
| $-\frac{1}{2}$ | $\sin \theta / 2$ | $\cos \theta / 2$ |

(4.4.0)
where, $c=-\left(1+\frac{2 m}{\mu}\right)^{2} \frac{\left(4 m^{2}-\mu^{2}\right)^{2}}{32 m^{5}} \frac{1}{\left(s-m^{2}\right)}$.

II The J $=3 / 2$ particle in the intermediate state:

In this case, the $\mathbf{v}(6,6)$ vertices we have to consider are given by equation (1.89). Then the two related vertex functions are as follows:

$$
\begin{aligned}
& F_{\lambda v}^{2}(\theta)=\frac{1}{m}\left(1+\frac{2 m}{\mu}\right) \sqrt{2 m} \bar{u}_{\lambda}\left(p_{s}\right) u(k) \otimes \epsilon_{k} \cdot q^{k} \\
& F_{v \mu}^{1}(0)=\frac{1}{m}\left(1+\frac{2 m}{\mu}\right) \sqrt{2 m} q^{k} \epsilon_{k}^{+} \otimes \bar{u}^{k}(k) \cdot u\left(p_{1}\right)
\end{aligned}
$$

The above functions are evaluated by using (c.1), (c.5) and (c.15) together with (4.37) and (4.38). After having evaluated these functions by putting all the particles on the appropriate mass shells
we substitute them into (4.35) which gives the following pole terms for $J=3 / 2$ in the intermediate state:

$$
\langle\lambda| F|\mu\rangle=
$$

$C \times$| λ | $1 / 2$ | $-1 / 2$ |
| :---: | :---: | :---: |
| $\frac{1}{2}$ | $\frac{4}{3}(1-3 \cos \theta) \cos \theta / 2 ;$ | $-\frac{4}{3}(1+3 \cos \theta) \sin \theta / 2$ |
| $-\frac{1}{2}$ | $\frac{4}{3}(1+3 \cos \theta) \sin \theta / 2 ;$ | $\frac{4}{3}(1-3 \cos \theta) \cos \theta / 2$ |

$$
(4.42)
$$

Foilowing the above procedures and using the various $\mathbf{U}(6,6)$ vertices given by equations (1.87) - (1.92) we can evaluate all the pole terms corresponding to $J=1 / 2$ and $J=3 / 2$ states for the sixteen processes discussed earlier in this section. Apart from some kinematic factors; it should be noted, these pole terms contain functions of $\cos \theta$ or $\sin \theta$ in such a manner that these functions are the same as the appropriate elements of $\mathrm{d}^{\mathrm{J}}(\theta)$ matrices given by equations (c.4) and (c.16). We can then obtain the related helicity amplitudes after performing the integral on the right hand side of (4.20) by using the orthogonality relation (c.26) of the reduced matrices $\alpha^{J}(\theta)$. Having obtained the helicity amplitudes for the total angular momentum $J=1 / 2$ and $J=3 / 2$ we
obtain the parity amplitudes discussed in the last section, by evaluating the appropriate combinations, given by the equations (4.31) - (4.34). We present these values of the parity amplitudes in tables separately for $J=1 / 2$ and $J=3 / 2$ poles. We mention only those processes which involve pseudoscalar (vector) octets at either the initial or final states. As the space-time properties of the piseudoscalar (vector) singlet are the same ais those of the corresponding octet, we need not have to consider them separately.

Table 4.1 : Direct pole-terms for $J=3 / 2$ states,

162.

Table 4.1 (contd.)

The elements in both table 4.1 and table 4.2 are to be multiplied by the factor,

$$
A=\frac{1}{32 m^{4}}\left(4 m^{2}-\mu^{2}\right)^{2}\left(1+\frac{2 m}{\mu}\right)^{2} \frac{4 \pi \varepsilon^{2}}{s-m^{2}}
$$

Table 4.2: Direct pole terms for $J=1 / 2$ states,

Taking the elements from either the table 4.1 or the table 4.2, the contributions of the F-waves corresponding to any of the related processes discussed earlier in this section, to either $\boldsymbol{J}^{P}=3 / 2^{+}$or $J^{P}=1 / 2^{+}$state can be evaluated by using the equations (4.31') - $\left(4.34^{\circ}\right)$. It has been found that the F-wave contributions corresponding to the above pole terms vanish. It is; therefore, very likely that the effects of the P-waves in the mass-splittings between baryon octet and decouplet may be negligible. If the approximations that have been used are justified, we may neglect the P -waves in the N / D calculations.

b. The Baryon Octet Exchange Born Terms:

We have already mentioned in the first section of this chapter that we shall assume that the forces responsible for the binding of either octet with $J^{P}=1 / 2^{+}$or decouplet with $J^{P}=3 / 2^{+}$arise predominantly from the exchanges of both baryon octet and decouplet in the relevant crossed channels. The relevant $\$(3)$ coefficients of these exchange poles are to be obtained from the corresponding EU(3) direct-channel-pole-coefficients given in tables B. 1 and B. 2 (appendix B) using the related $80(3)$ crossing matrices given by equations (4.6), (4.9) and (4.10). In this and the next section, the methods for the evaluations of the space-time parts of these exchange Born terms will be discussed. In this connection, it is
assumed further that only the long range forces are important in the mass-splittiags between baryon octet and decouplet. In other words, we assume that only that part of the left-band cut which is very near to the physical cut is important and consequently confine oupselves to the evaluations only of the single-particle exchange diagrams. The exchange Born terms required to be evaluated correspond to the exchange diagrams given by Fig. 4.3-Fig. 4.9.

Fig. 4.3

Fig. 4.7

Fig. 4.8

Fig. 4.9.

It is well known that the exchange Born terms can be expressed in terms of the direct Born terms in the crossed channel (u-channel) using the crossing relations. In the 'pole approximation' the
direct Born terms in the u-channel are calculated with all the energy-dependence (u-dependence) at the pole position $u=m^{2}$, where m is the mass of the exchanged baryon and in our particular case is taken to be the $U(6,6)$ degenerate mass. It turns out that the threshold conditions for the contributions of the exchange diagrams calculated at the "pole approximation" to the partial wave amplitudes are not satisfied, so one must, in fact, keep some explicit dependence on the energy of the crossed channel. In order to do this in a unique way it is necessary to make some distinction between "kinematic factors' - in which the energy dependence should be maintained - and 'dynamic factors' in which the energy dependence should be put on the mase-shell.

In order to make clear the above prescription for how the energy dependence factors should be put on the mass-shell let us consider a general scattering process for which the invariant scattering empiludes can be written in the form,

$$
\begin{equation*}
T=\sum_{i=1}^{n} Y_{i} A_{i} \tag{4.43}
\end{equation*}
$$

where A_{i} are the scalar invariants and X_{i} are the factors that arise due to the spins of the external particles and we shall call them the spin kinematic factors. It is these kinematic factors whose energy-dependence should be maintained according to our
prescription ${ }^{62)}$. On the other hand, the functions associated with the invariant amplitudes A_{i} can be put on the mass-shell when one is interested in the pole approximation. If the above procedure is followed, then it has been found that the partial wave amplitudes obtained from these Born terms will have correct threshold behaviours. To follow the above technique of calculating the exchange Born terms, one first has to find out the decomposition of the scattering amplitude into the scalar invariant amplitudes. Then the direct pole term obtained by applying Feyman rules has to be analysed in order to find out its contribution to each of the scalar invariant amplitudes $A_{i}(s t u)$. Purther, one has to sort out all the crossing relations for the scalar invariants $A_{i}(s t u)$ and the 'spin _kinematics' I_{i}. This method, however, becomes very complicated when one has to consider a process like $V D \rightarrow V$, where both the scattering particles have spin greater than $1 / 2$. In this particular case, there are 30 scalar invariant amplitudes $A_{i}(s t u)$ and consequently the decomposition (4.43) is itself a major problem.

The problem of decompesition into scalar amplitudes may be avoided by calculating the Born terms between states of definite helicities. A typical Feyman amplitude calculated between states of total final helicity μ and total initial helicity λ would look like $g^{2 P}(s, u) d_{\lambda \mu}^{B} /\left(u-m^{2}\right)$, where $d_{\lambda \mu}^{8}$ is the relevant rotation matrix with spin, $s=\max (|\lambda|,|\mu|)$. The function $F(s u)$ is the sum of the terms, each of which has a part from spin kinematics'
and a part from the dynamic factors. If we are able to separate out the spin and the dynamic parts, our mass-shell prescription can be applied. Assuming that this separation is possible one may proceed in two different ways. Firstly, the helicity amplitudes may be taken as direct pole terms in the u-channel. Then, making use of the helicity crossing matrices ${ }^{63 \text {) one can obtain the }}$ exchange Born terms in the s-channel. This, however, involves some tedious manipulations with the elements of the helicity crossing matrices. Secondly, one can follow the more direct procedure. That is, we calculate the exchange Born terms in the s-channel directly with our mass-shell prescription. That is what, in short, we propose to do. In this section, we discuss how we obtain the Born terms for the exchange of octet with $J^{P}=1 / 2^{+}$ in the u-channel and the next section will be devoted to the evaluations of the Born terms corresponding to the exchange of decouplet_with $\mathcal{J}^{P}=3 / 2^{+}$. Since nothing has to be put on the mass-shell for the baryon octet exchange, the method of vertex functions which we have used in evaluating the direct-channel poles in the last section can also be used in this case. The evaluations of the Born terms corresponding to the exchange decouplet with $\boldsymbol{J}^{\boldsymbol{P}}=3 / 2^{+}$, on the other hand, require many energy dependence factors to be put on the mass-shell and consequently we have to tackle the problem in a slightly different manner.

The processes for which we require the baryon octet, B, exchange Born terms are shown in Fig. 4.3, where the incoming baryon and meson four-momenta are p_{1} and p_{2} respectively and the outgoing baryon and meson momenta are p_{3} and p_{4} respectively. The related three Lorentz invariant quantities s, t and u have been given by equation (4.13) in the c.m. system. Let p denote the four-component momentum of the internal baryon. We assume that the three-component momenta of all the external as well as the internal particles are in the xz -plane so that the azimuthal angle ϕ is zero. Now, we take three-component momentum of the incoming baryon in the positive z-direction and that of the incoming meson along the negative z-direction. Considering θ as the scattering angle (shown by Fig. 4.Ib) we take the three-component momentum of the outgoing baryon in a direction making an angle θ with theapositive z-direction and that of the outgoing meson in a direction making an angle $\pi+\theta$ with the positive z-direction. As a consequence of the above convention, the helicity states of the incoming and outgoing baryon octet are respectively given by equations (c.2) and (c.5) and those of the incoming and outgoing vector mesons are given by equations (c.13) and (c.14). For the incoming $J=3 / 2$ particle, the corresponding helicity states are obtained from the equation (c.15) by using (c.2) and (c.10) a.long with (C.9) and for J = $3 / 2$ outgoing baryon we use (c.5) and (c.12) to obtain the corresponding helicity states.

From Fig. 4.1b we then obtain the following:

$$
\begin{gather*}
p_{2}=(k, 0,0, k) ; p_{2}=(w, 0,0,-k) \\
p_{3}=(k, k \sin \theta, 0, k \cos \theta) ; p_{4}=(w,-k \sin \theta, 0,-k \cos \theta) \\
E=\sqrt{k^{2}+m^{2}} ; \quad W=\sqrt{k^{2}+\mu^{2}} \tag{4.45}
\end{gather*}
$$

Prom (4.45) we readily obtain,

$$
\begin{equation*}
p=\left(\mathbb{B}^{*}, k^{*} \sin \alpha, 0, k^{2} \cos \alpha\right) \tag{4.46a}
\end{equation*}
$$

$E^{\ddagger}=E-W ; k^{2}=2 k \cos \propto$, with $\alpha=\theta / 2$

We also have, $u=p^{2}=F^{p^{2}}-k^{q^{2}}$ so that when we put the exchanged baryon on the mass-shell we have,

$$
\begin{equation*}
k^{22}=E^{2}-n^{2} \tag{4.46b}
\end{equation*}
$$

Now, as in the calculations of the direct poles, the Feynman amplitude in the helicity representation with the baryon octet as the internal particle can be expressed in the form:

$$
\begin{equation*}
\left\langle\lambda_{9} \lambda_{4} ; p_{\Delta S} p_{4}\right| F\left|p_{1} p_{2} ; \lambda_{1} \lambda_{2}\right\rangle \quad F_{\mu v}^{b}(\theta) \frac{1}{u-m_{2}^{2}} F_{0 \lambda}^{a}(\theta) \tag{4.47}
\end{equation*}
$$

where the vertex functions $F_{\mu 0}^{b}(\theta)$ and $F_{v \lambda}^{a}(\theta)$ are calculated at the vertices " b " and ' a " respectively (Fig. 4.3) and they are given by,

$$
\begin{align*}
& \langle\mu, k| F^{b}\left|k^{\ell}\right\rangle=\sqrt{2 m}\left\langle\lambda_{3} \lambda_{2} ; p_{B} p_{e}\right| J_{l}\left|k^{2} v\right\rangle \\
& \left\langle 0 ; k^{\imath}\right| F^{2}|k ; \lambda\rangle=\sqrt{2 m}\left\langle 0 ; k^{2}\right| J_{\eta}\left|g_{1} p_{4} ; \lambda_{1} \lambda_{4}\right\rangle \tag{4.48}
\end{align*}
$$

where, $\mu=\lambda_{3}-\lambda_{2} ; \lambda=\lambda_{1}-\lambda_{4}$ and 0 is the helicity of the internal baryon octet with the $U(6,6)$ degenerate baryon mass m. The_helicity states of the internal baryon octet can be written in the form :

$$
u_{v}\left(k^{2}\right)=\frac{1}{\sqrt{2 m\left(E^{2}+m\right)}}\left|\begin{array}{c}
E^{2}+m \tag{4.49a}\\
2 k^{2} \cdot v
\end{array}\right| \begin{aligned}
& x_{0}
\end{aligned}
$$

where we have using (4.46a),

$$
x_{1 / 2}=\left|\begin{array}{l}
\cos \alpha / 2 \tag{4.49b}\\
\sin \alpha / 2
\end{array}\right| \quad x_{-1 / 2}=\left|\begin{array}{r}
-\sin \alpha / 2 \\
\cos \alpha / 2
\end{array}\right|
$$

In equation (4.48) \% J_{c} are the related $U(6,6)$ form factors which have been given by equations (1.87) - (1.92). It is evident from these equations that we need to evaluate only five different vertex functions of the types given by equation (4.48) in order to calculate the exchange Born terms corresponding to sixteen processes shown by Fig. 4.3 with only baryon octet exchange. Using the various terms given in the equations (1.87) - (1.92) we evaluate the relevant vertex functions and write them down one by one. Throughout these calculations we shall omit the factor
$4 \pi g^{2} /\left(u-m^{2}\right)$ which will be taken into account when the total angular momentum J projections of the Feymman amplitudes are obtained by using the equation (4.20). The representation of the Dirac matrices that will come up in the calculations is given by,

$$
\begin{align*}
& \gamma_{0}=\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right) ; z_{k}=\left(\begin{array}{cc}
0 & g_{k} \\
-\sigma_{k} & 0
\end{array}\right) \\
& \gamma_{5}=\gamma_{0} \gamma_{2} \gamma_{2} \gamma_{3}=-i\left(\begin{array}{cc}
0 & I \\
I & 0
\end{array}\right) \tag{4.5a}
\end{align*}
$$

where, $\gamma_{0}^{+}-\gamma_{0} ; \gamma_{k}^{+}-\gamma_{k} ; \gamma_{5}^{+}=-\gamma_{5}$.

Having defined above all the relevant quantities we write down the different vertex functions as follows:
I. This type of vertex functions correspond to a pseudoscalar meson and baryon octet at either the vertex b or the vertex a. Taking the relevant factors from the equation (1.87) the two vertex functions are given, by using equation (4.48), in the form:

$$
\begin{aligned}
& \text { (4.50b) } \\
& \left.\left\langle 0 k^{y}\right| F_{i}^{a}\right|_{p_{1} p_{4}} \lambda_{1}>=\frac{p^{2}}{4 m^{2}}\left(1+\frac{2 m}{\mu}\right) \bar{u}_{v}\left(k^{v}\right) \gamma_{5} u_{\lambda_{1}}\left(p_{1}\right) \sqrt{2 m} .
\end{aligned}
$$

Considering the representations of the helicity states of all the particles involved and, in particular, using the relations (4.45), (4.46) and (4.50) these vertex functions are evaluated. The factors which will be conmon to all the elements of the vertex functions are the following :

$$
\begin{gather*}
c_{1}=\frac{F^{2}}{4 m^{2}}\left(1+\frac{2 m}{\mu}\right) \frac{1}{\sqrt{2 m(E+m)\left(E^{2}+m\right)}} \tag{4.51}\\
a_{2}=\left(E^{2}+m\right) k-(E+m) k^{2} ; a_{2}=\left(E^{2}+m\right) k+(E+m) k^{2}
\end{gather*}
$$

Then the two relevant vertex functions are as follows :

$$
\begin{align*}
& \left\langle\lambda_{3} ;\right| F_{1}^{b}|0\rangle=c_{1}\left|\begin{array}{cc}
a_{1} \cos \alpha / 2 ; & a_{2} \sin \alpha / 2 \\
a_{2} \sin \alpha / 2 ; & -a_{1} \cos \alpha / 2
\end{array}\right| \tag{4.52a}\\
& \langle v| F_{1}^{\alpha}\left|\lambda_{1}\right\rangle=c_{1}\left|\begin{array}{cc}
-a_{1} \cos \alpha / 2 ; & a_{2} \sin \alpha / 2 \\
a_{2} \sin \alpha / 2 & a_{1} \cos \alpha / 2
\end{array}\right| \tag{4.52b}
\end{align*}
$$

II. This type of vertex functions correspond to a pseudoscalar meson and a baryon decouplet, D, at either the vertex ' b ' or the vertex ' a ' and are obtained by using the $U(6,6)$ vertices given by equation (1.89). We write down the two vertex functions one by one.

$$
\begin{equation*}
\left\langle\lambda_{s} ; p_{A}\right| F_{s}^{b}\left|k^{\prime} v\right\rangle=\frac{1}{m}\left(1+\frac{2 m}{\mu}\right) q^{\lambda}\left[u_{\lambda_{3}}\left(p_{s}\right) \otimes \epsilon_{\lambda}^{+}\right] u_{v}\left(k^{d}\right) \sqrt{2 m} \tag{4.53a}
\end{equation*}
$$

Here, the overall common factors are as follows:

$$
\begin{align*}
& c_{2}=\frac{1}{m}\left(1+\frac{2 m}{\mu}\right) \frac{|k|}{\sqrt{2 m(E+m)\left(E^{2}+m\right)}} \\
& a_{3}=(E+m)\left(E^{2}+m\right)-k k^{2} \tag{4.53b}\\
& a_{4}=(E+m)\left(E^{2}+m\right)+k k^{y}
\end{align*}
$$

Then, the elements of the above vertex function are as follows:

$$
\begin{aligned}
& \langle 3 / 2 \mid 1 / 2\rangle=-\frac{a_{a}}{\sqrt{2}} \sin \theta \cos \alpha / 2 \\
& \langle 3 / 2 \mid-1 / 2\rangle=-\frac{a_{4}}{\sqrt{2}} \sin \theta \sin \alpha / 2 \\
& \langle 1 / 2 \mid 1 / 2\rangle=-\frac{1}{m \sqrt{6}}\left[2 a_{3}(w+E \cos \theta) \cos \alpha / 2-a_{4} m \sin \theta \sin \alpha / 2\right] \\
& \langle 1 / 2 \mid-1 / 2\rangle=-\frac{1}{m \sqrt{6}}\left[2 a_{4}(w+E \cos \theta) \sin \alpha / 2+a_{3} m \sin \theta \cos \alpha / 2\right] \\
& \langle-1 / 21 / 2\rangle=\frac{1}{m \sqrt{6}}\left[2 a_{4}(w+E \cos \theta) \sin \alpha / 2+a_{3} m \sin \theta \cos \alpha / 2\right]
\end{aligned}
$$

$$
\begin{align*}
& \langle-1 / 2 \mid-1 / 2\rangle=-\frac{1}{m \sqrt{6}}\left[2 a_{3}(w+E \cos \theta) \cos \alpha / 2-a_{4} m \sin \theta \sin \alpha / 2\right] \\
& \langle-3 / 2 \mid 1 / 2\rangle=-\frac{a_{4}}{\sqrt{2}} \sin \theta \sin \alpha / 2 \\
& \langle-3 / 2 \mid-1 / 2\rangle=\frac{a_{3}}{\sqrt{2}} \sin \theta \cos \alpha / 2 \tag{4.53c}
\end{align*}
$$

The vertex function at the vertex ' a ' is given by,

$$
\begin{equation*}
\left\langle 0 ; k^{\nu}\right| F_{2}^{\beta}\left|p_{1} \lambda_{1}\right\rangle=\frac{1}{m}\left(1+\frac{2 m}{\mu}\right) \bar{u}_{0}\left(k^{\alpha}\right)\left[u_{\lambda_{1}}\left(p_{2}\right) \otimes \epsilon_{\lambda}\right] \cdot q^{\lambda} \sqrt{2 m} \tag{4.53a}
\end{equation*}
$$

Here, the overall _ common factors are the same as given by (4.53 b). Now, the elements of this vertex function are as follows:

$$
\begin{aligned}
& \langle 1 / 2 \mid 3 / 2\rangle=-\frac{a_{a}}{\sqrt{2}} \sin \theta \cos \alpha / 2 \\
& \langle-1 / 2 \mid 3 / 2\rangle=\frac{a_{4}}{\sqrt{2}} \sin \theta \sin \alpha / 2 \\
& \langle 1 / 2 \mid 1 / 2\rangle=\frac{1}{m \sqrt{6}}\left[2 a_{3}(w+E \cos \theta) \cos \alpha / 2-a_{4} m \sin \theta \sin \alpha / 2\right] \\
& \langle-1 / 2 \mid 1 / 2\rangle=-\frac{1}{m \sqrt{6}}\left[2 a_{4}(w+E \cos \theta) \sin \alpha / 2+a_{s} m \sin \theta \cos \alpha / 2\right]
\end{aligned}
$$

$$
\begin{align*}
& \langle 1 / 2 \mid-1 / 2\rangle=\frac{1}{m \sqrt{6}}\left[2 a_{4}(w+E \cos \theta) \sin \alpha / 2+a_{3} m \sin \theta \cos \alpha / 2\right] \\
& \langle-1 / 2 \mid-1 / 2\rangle=\frac{1}{m \sqrt{6}}\left[2 a_{3}(w+E \cos \theta) \cos \alpha / 2-a_{4} m \sin \theta \sin \alpha / 2\right] \\
& \langle 1 / 2|-3 / 2=\frac{a_{4}}{\sqrt{2}} \sin \theta \sin \alpha / 2 \\
& \langle-1 / 2 \mid-3 / 2\rangle-\frac{a_{3}}{\sqrt{2}} \sin \theta \cos \alpha / 2 \tag{4.53e}
\end{align*}
$$

III. This type of vertex functions correspond to the occurrence of a vector meson and a baryon octet at either the vertex ${ }^{\prime} b{ }^{\prime}$ " or the vertex ' a '. On account of the two types of couplings corresponding respectively to the charge and magnetic couplings of the vector meson, we shall split them into two parts for the sake of convenience. First, we evaluate the two vertex functions which correspond to the charge couplings of the vector meson. Taking the first term from the equation (1.88) we have for the vertex function at the vertex ${ }^{\text {a }} \mathrm{b}$ ',

$$
\begin{equation*}
\left\langle\lambda_{3} \lambda_{2} ; q_{s} P_{2}\right| P_{s}^{b}\left|k^{\prime} v\right\rangle=\frac{\mu}{4 m^{2}}\left(1+\frac{2 m}{\mu}\right) P_{\mu} \epsilon_{\mu}^{\left(\lambda_{2}\right)} \bar{u}_{\lambda_{3}}\left(p_{s}\right) u_{v}\left(k^{i}\right) \sqrt{2 m} \tag{4.54a}
\end{equation*}
$$

Here, the overall common factor is,

$$
\begin{equation*}
c_{3}=\frac{\mu}{4 m^{2}}\left(1+\frac{2 m}{\mu}\right) \frac{|k|}{\sqrt{2 m(E+m)\left(E^{2}+m\right)}} \tag{4.54b}
\end{equation*}
$$

For the sake of convenience, we write down the vertex functions separately for each of the vector meson helicity states. Then there results three different vertex functions of the above type. Considering the factors a_{3}, a_{4} ass given by the equation (4.53b) these vertex functions are as follows:

$$
\begin{align*}
& \left\langle\lambda_{3}+1 ;{\underset{\alpha}{3}}^{p_{2}}\right| F_{s}^{b}\left|k^{2} v\right\rangle=-\sqrt{2} \sin \theta\left|\begin{array}{cc}
a_{3} \cos \alpha / 2, & a_{4} \sin \alpha / 2 \\
-a_{4} \sin \alpha / 2, & a_{3} \cos \alpha / 2
\end{array}\right| \\
& \text { (3.54.c) } \\
& \left.<\lambda_{\alpha}, 0 ; p_{d} Z_{2}\left|F_{3}^{b}\right| k^{\prime} v\right\rangle=-\frac{2}{\mu}(E+w \cos \theta)\left|\begin{array}{cc}
a_{3} \cos \alpha / 2, & a_{4} \sin \alpha / 2 \\
-a_{4} \sin \alpha / 2, & a_{3} \cos \alpha / 2
\end{array}\right| \\
& \text { (3.54a) } \\
& \left\langle\lambda_{3},-1 ; p_{s} p_{2}\right| F_{s}^{b}\left|k^{2} v\right\rangle=\sqrt{2} \sin \theta\left|\begin{array}{cc}
a_{3} \cos \alpha / 2, & a_{4} \sin \alpha / 2 \\
-a_{4} \sin \alpha / 2, & a_{3} \cos \alpha / 2
\end{array}\right| \tag{3.54e}
\end{align*}
$$

Now, the vertex function of the above type at the vertex ' a ' is given by,

$$
<\left.0 k^{2}| |_{s}^{a}\right|_{\mathcal{P}_{2}}{\underset{D}{4}} ; \lambda_{2} \lambda_{4}>=\frac{\mu}{4 m^{2}}\left(1+\frac{2 m}{\mu}\right) \bar{u}_{0}\left(k^{2}\right) u_{\lambda_{2}}\left(p_{2}\right){\underset{\mu}{\mu}\left(\lambda_{4}\right)}_{P_{\mu}} \sqrt{2 m}
$$

Here, the overall common factors are the same as in the above case. Then, the three different vertex functions are given, as before,

$$
\begin{aligned}
& \left\langle\bullet k^{v}\right| F_{s}^{f}\left|p_{2} p_{4} ; \lambda_{1},-1\right\rangle=-\left\langle\lambda_{3},-1 ; p_{3} p_{2}\right| P_{3}^{b}\left|k^{f} v\right\rangle
\end{aligned}
$$

We now evaluate the vertex functions that arise due to the magnetic couplings of the vector meson. Taking the second term from (1.88) this type of vertex function at the vertex ${ }^{\circ} b$ ' is,

$$
<\lambda_{B} \lambda_{2} ; p_{S} Z_{2}\left|F_{4}^{b}\right| k^{?} v>=\frac{1}{4 m^{2}}\left(1+\frac{2 m}{\mu}\right) \epsilon_{\mu}^{\left(\lambda_{2}\right)} \bar{u}_{\lambda_{3}}\left(p_{3}\right) r_{\mu} u_{v}\left(R^{?}\right) \sqrt{2 m}
$$

where, $r_{\mu}=\epsilon_{\mu v k \lambda} P_{0} q_{k}{ }^{\gamma_{\lambda}} \gamma_{5}$
Taking out the overall common factor,

$$
\begin{equation*}
c_{4}=\frac{|k|}{2 m^{2}}\left(1+\frac{2 m}{\mu}\right) \frac{1}{\sqrt{2 m(E+m)\left(E^{2}+m\right)}} \tag{4.55b}
\end{equation*}
$$

the elements of the above function are as follows:

$$
\begin{aligned}
& \langle 1 / 2,1 \mid 1 / 2\rangle-\frac{1}{\sqrt{2}}\left[\left(a_{2} k-a_{4} m\right) \sin \theta \cos \alpha / 2-a_{4}(z-w)(1-\cos \theta)\right. \\
& \sin \alpha / 2 \\
& \langle 1 / 2,1 \mid-1 / 2\rangle=\frac{1}{\sqrt{2}}\left[\left(a_{1} k-a_{3} B\right) \sin \theta \sin \alpha / 2+a_{3}(B-w)\right. \\
& (1-\cos \theta) \cos \alpha / 2] \\
& \langle-1 / 2,1 \mid 1 / 2\rangle=\frac{1}{\sqrt{2}}\left[\left(a_{1} k-a_{3} E\right) \sin \theta \sin a / 2-a_{s}(E+w)\right. \\
& (1+\cos \theta) \cos \alpha / 2] \\
& \langle-1 / 2,1 \mid-1 / 2\rangle=-\frac{1}{\sqrt{2}}\left[\left(a_{2} k-a_{4} k\right) \sin \theta \cos \alpha / 2+a_{4}(k+w)\right. \\
& (1+\cos \theta) \sin \alpha / 2] \\
& \langle 1 / 2,0 \mid 1 / 2\rangle-a_{4} \mu \sin \theta \sin \mu / 2 ;\langle 1 / 2,0 \mid-1 / 2\rangle-a_{s} \mu \\
& \sin \theta \cos \alpha / 2 \\
& \langle-1 / 2,0 \mid 1 / 2\rangle-a_{s} \mu \sin \theta \cos a / 2 ;\langle-1 / 2,0 \mid-1 / 2\rangle=a_{4} \mu \\
& \sin \theta \sin \alpha / 2 \\
& \langle 1 / 2,-1 \mid 1 / 2\rangle=\frac{1}{\sqrt{2}}\left[a_{2} k-a_{4} k\right) \sin \theta \cos \alpha / 2+a_{4}(x+w) \\
& (1+\cos \theta) \sin \alpha / 2]
\end{aligned}
$$

$$
\begin{array}{r}
\langle 1 / 2,-1 \mid-1 / 2\rangle=\frac{i}{\sqrt{2}}\left[\left(a_{1} k-a_{3} E\right) \sin \theta \sin \alpha / 2-a_{3}(k+w)\right. \\
(1+\cos \theta) \cos \alpha / 2] \\
\langle-1 / 2,-1 \mid 1 / 2\rangle=\frac{1}{\sqrt{2}\left[\left(a_{1} k-a_{3} E\right) \sin \theta \sin \alpha / 2+a_{s}(E-w)\right.} \\
(1-\cos \theta) \cos \alpha / 2]
\end{array}
$$

Using (1.88) again, the vertex function of the above type at the vertex ' a ' is given by,

$$
\left\langle v k^{2}\right| F_{4}^{\mu}\left|p_{1} p_{4} \lambda_{1}, \lambda_{4}\right\rangle=\frac{1}{4 m^{2}}\left(1+\frac{2 m}{\mu}\right) \bar{u}_{v}\left(k^{2}\right) r_{\mu} u_{\lambda_{1}}\left(p_{1}\right) \stackrel{+}{\mu}_{\mu}^{\left(\lambda_{4}\right)} \sqrt{2 m}
$$

Here, the overall common factor is the same as given by (4.55 b). Then the elements of the above vertex function are as follows:

$$
\begin{aligned}
& \langle 1 / 2 \mid 1 / 2,1\rangle-\frac{1}{\sqrt{2}}\left[\left(a_{2} k-a_{4} \pi\right) \sin \theta \cos \alpha / 2-a_{4}(k-w)\right. \\
& (1-\cos \theta) \sin \alpha / 2] \\
& \langle-1 / 2 \mid 1 / 2,1\rangle=\frac{1}{\sqrt{2}}\left[a_{2} k-a_{3} E\right) \sin \theta \sin a / 2+a_{3}(E-w) \\
& (1-\cos \theta) \cos \alpha / 2]
\end{aligned}
$$

$\langle 1 / 2 \mid-1 / 2,1\rangle=\frac{1}{\sqrt{2}}\left[a_{2} k-a_{8} E\right) \sin \theta \sin \alpha / 2-a_{s}(E+w)$

$$
(1+\cos \theta) \cos \alpha / 2]
$$

$\langle-1 / 2 \mid-1 / 2,1\rangle=\frac{1}{\sqrt{2}}\left[\left(a_{2} k-a_{4} x\right) \sin \theta \cos \alpha / 2+a_{4}(E+w)\right.$

$$
(1+\cos \theta) \sin \alpha / 2]
$$

$\langle 1 / 2 \mid 1 / 2,0\rangle=a_{4} \mu \sin \theta \sin \alpha / 2 ;\langle-1 / 2 \mid 1 / 2,0\rangle=a_{3} \mu$ $\sin \theta \cos \alpha / 2$
$\langle 1 / 2 \mid-1 / 2,0\rangle=-a_{3} \mu \sin \theta \cos \alpha / 2 ;\langle-1 / 2 \mid-1 / 2,0\rangle=a_{4} \mu$ $\sin \theta \sin \alpha / 2$
$\langle 1 / 2 \mid 1 / 2,-1\rangle=-\frac{1}{\sqrt{2}}\left[\left(a_{2} k-a_{4} E\right) \sin \theta \cos \alpha / 2+a_{4}(E+w)\right.$

$$
(1+\cos \theta) \sin \alpha / 2]
$$

$$
\langle-1 / 2 \mid 1 / 2,-1\rangle=\frac{1}{\sqrt{2}}\left[\left(a_{1} k-a_{3} k\right)_{\sin } \theta \sin \alpha / 2-a_{s}(k+w)\right.
$$

$$
(1+\cos \theta) \cos \alpha / 2
$$

$\langle 1 / 2 \mid-1 / 2,-1\rangle=\frac{1}{\sqrt{2}}\left[\left(a_{2} k-a_{3} B\right) \sin \theta \sin \alpha / 2+a_{3}(E-w)\right.$

$$
(1-\cos \theta) \cos \alpha / 2]
$$

$$
\begin{array}{r}
\langle-1 / 2 \mid-1 / 2,-1\rangle=\frac{1}{\sqrt{2}}\left[\left(a_{2} k-a_{4} E\right) \sin \theta \cos \alpha / 2-a_{4}(E-w)\right. \\
(1-\cos \theta) \sin \alpha / 2] \tag{4.56b}
\end{array}
$$

IV. This type of vertex functions correspond to the occurrence of a vector meson and a spin $3 / 2$ paniticle at either the vertex ' b ' or the vertex ' a '. Using the $U(6,6)$ vertex given by (1.90), the vertex function at the vertex 'b" is given by,

$$
\begin{align*}
\left\langle\lambda_{3} \lambda_{2} ; \mathrm{qas}_{\mathrm{A}}\right| F_{5}^{b}\left|k^{\prime} v\right\rangle= & \frac{1}{2 m^{2}}\left(1+\frac{2 m}{\mu}\right) \epsilon_{\mu v k \lambda} P_{v} q_{k}\left[\bar{u}_{\lambda_{3}}\left(p_{3}\right) \otimes \epsilon_{\lambda}^{+}\right] \cdot \epsilon_{\mu} \\
& \times u_{v}\left(k^{d}\right) \sqrt{2 m} \tag{4.57a}
\end{align*}
$$

The overall common factor is,

$$
\begin{equation*}
c_{5}=\frac{i|k|}{m^{2}}\left(1+\frac{2 m}{\mu}\right) \frac{1}{\sqrt{2 m(E+m)\left(B^{\prime}+m\right)}} \tag{4.57~b}
\end{equation*}
$$

Then the elements of the above vertex function are as follows:

$$
\begin{aligned}
\langle 3 / 2,1 \mid 1 / 2\rangle=-\frac{1}{2} a_{3}(E-w)(1-\cos \theta) \cos \alpha / 2 \\
\langle 3 / 2,1 \mid-1 / 2\rangle=-\frac{1}{2} a_{4}(E-w)(1-\cos \theta) \sin \alpha / 2 \\
\langle 1 / 2,1 \mid 1 / 2\rangle=-\frac{1}{2 \sqrt{3}}\left[2 a_{s} m \sin \theta \cos \alpha / 2-a_{4}(E-w)\right. \\
(1-\cos \theta) \sin \alpha / 2]
\end{aligned}
$$

$$
\begin{aligned}
& \langle 1 / 2,1 \mid-1 / 2\rangle=-\frac{1}{2 \sqrt{3}}\left[2 a_{4} m \sin \theta \sin \alpha / 2+a_{3}(E-w)\right. \\
& (1-\cos \theta) \cos \alpha / 2] \\
& \langle-1 / 2,1 \mid 1 / 2\rangle=\frac{1}{2 \sqrt{3}}\left[2 a_{4} m \sin \theta \sin \alpha / 2-a_{3}(E+w)\right. \\
& (1+\cos \theta) \cos \alpha / 2] \\
& <-1 / 2,1 \left\lvert\,-1 / 2=-\frac{1}{2 \sqrt{3}}\left[2 a_{3} m \sin \theta \cos \alpha / 2+a_{4}(E+w)\right.\right. \\
& (1+\cos \theta) \sin \alpha / 2] \\
& \langle-3 / 2,1 \mid 1 / 2\rangle=\frac{1}{2} a_{4}(E+w)(1+\cos \theta) \sin a / 2 \\
& <-3 / 2,1 \left\lvert\,-1 / 2=-\frac{1}{2} a_{\theta}(E+w)(1+\cos \theta) \cos \alpha / 2\right. \\
& \langle 3 / 2,0 \mid 1 / 2\rangle=\frac{1}{\sqrt{2}^{2}} \alpha^{\mu} \sin \theta \cos \alpha / 2 ;\langle 3 / 2,04-1 / 2\rangle \\
& =\frac{1}{\sqrt{2}} a_{4} \mu \sin \theta \sin \alpha / 2 \\
& \langle 1 / 2,0 \mid 1 / 2\rangle=-\frac{1}{\sqrt{6}} a_{4} \mu \sin \theta \sin \alpha / 2 ;\langle 1 / 2,0 \mid-1 / 2\rangle \\
& -\frac{1}{\sqrt{6}} a_{s} \mu \sin \theta \cos \alpha / 2 \\
& \langle-1 / 2,0 \mid 1 / 2\rangle=\frac{1}{\sqrt{6}} a_{s} \mu \sin \theta \cos \alpha / 2 ;\langle-1 / 2,0 \mid-1 / 2\rangle \\
& =\frac{1}{\sqrt{6}} a_{4} \mu \sin \theta \sin \alpha / 2
\end{aligned}
$$

$$
\begin{align*}
& \langle-3 / 2,0 \mid 1 / 2\rangle-\frac{1}{\sqrt{2}} a_{4} \mu \sin \theta \sin \omega / 2 ;\langle-3 / 2,0 \mid-1 / 2\rangle \\
& -\frac{1}{\sqrt{2}} a_{3} \mu \sin \theta \cos \alpha / 2 \\
& \langle 3 / 2,-1 \mid 1 / 2\rangle=\frac{1}{2} a_{s}(E+w)(1+\cos \theta) \cos \alpha / 2 \\
& \langle 3 / 2,-1 \mid-1 / 2\rangle=\frac{1}{2} a_{4}(1+w)(1+\cos \theta) \sin \alpha / 2 \\
& \langle 1 / 2,-1 \mid 1 / 2\rangle^{-}-\frac{1}{2 \sqrt{3}}\left[2 a_{3} m \sin \theta \cos a / 2+a_{4}(E+w)\right. \\
& (1+\cos \theta) \sin \alpha / 2] \\
& \langle 1 / 2,-1 \mid-1 / 2\rangle=-\frac{1}{2 \sqrt{3}}\left[2 a_{4} m \sin \theta \sin \alpha / 2-a_{3}(E+w)\right. \\
& (1+\cos \theta) \cos \alpha / 2] \\
& \langle-1 / 2,-1 \mid 1 / 2\rangle=\frac{1}{2 \sqrt{3}}\left[2 a_{4} m \sin \theta \sin \alpha / 2+a_{s}(B-w)\right. \\
& (1-\cos \theta) \cos \alpha / 2] \\
& \langle-1 / 2,-1 \mid-1 / 2\rangle=-\frac{1}{2 \sqrt{3}}\left[2 a_{3} m \sin \theta \cos \alpha / 2-a_{4}(E-w)\right. \\
& (1-\cos \theta) \sin \alpha / 2] \\
& \langle-3 / 2,-1 \mid 1 / 2\rangle=-\frac{1}{2} a_{4}(E-w)(1-\cos \theta) \sin \alpha / 2 \\
& \langle-3 / 2,-1 \mid-1 / 2\rangle=\frac{1}{2} a_{3}(\pi-w)(1-\cos \theta) \cos \alpha / 2 \tag{4.57c}
\end{align*}
$$

The other vertex function of the above type is,

$$
\begin{align*}
& <v k^{2}\left|F_{5}^{a}\right|_{R_{2}} p_{4} ; \lambda_{1} \lambda_{4}>=\frac{1}{2 m^{2}}\left(1+\frac{2 m}{\mu}\right) \bar{u}_{0}\left(k^{i}\right)\left[u_{\lambda_{1}}\left(p_{2}\right) \times \epsilon_{\lambda}\right] \epsilon_{\mu v k \lambda} \\
& \times P_{v} q_{k} \stackrel{+}{\mu}_{\left(\lambda_{4}\right)}^{\sqrt{2 m}} \tag{4.59a}
\end{align*}
$$

Here, the overall common factor is the same as in (4.57b). Now, the elements of the above vertex function are as follows:

$$
\begin{aligned}
& \langle 1 / 2 \mid 3 / 2,1\rangle=-\frac{1}{2} a_{3}(E-w)(1-\cos \theta) \cos a / 2 \\
& \langle-1 / 2 \mid 3 / 2,1\rangle=\frac{1}{2} a_{4}(B-w)(1-\cos \theta) \sin a / 2 \\
& \langle 1 / 2 \mid 1 / 2,1\rangle=\frac{1}{2 \sqrt{3}}\left[2 a_{3} m \sin \theta \cos \alpha / 2-a_{4}(\pi-w)(1-\cos \theta)\right. \\
& \sin \alpha / 2 \\
& \langle-1 / 2 \mid 1 / 2,1\rangle-\frac{1}{2 \sqrt{3}}\left[2 a_{4} m \sin \theta \sin \alpha / 2+a_{3}(R-w)\right. \\
& (1-\cos \theta) \cos \alpha / 2] \\
& \langle 1 / 2 \mid-1 / 2,1\rangle=\frac{1}{2 \sqrt{3}}\left[2 a_{4} m \sin \theta \sin \alpha / 2-a_{3}(E+w)\right. \\
& (1+\cos \theta) \cos \alpha / 2] \\
& \langle-1 / 2 \mid-1 / 2,1\rangle=\frac{1}{2 \sqrt{3}}\left[2 a_{s} m \sin \theta \cos a / 2+a_{4}(1+w)\right. \\
& (1+\cos \theta) \sin \alpha / 2]
\end{aligned}
$$

$$
\begin{aligned}
& \langle 1 / 2 \mid-3 / 2,1\rangle=-\frac{1}{2} a_{4}(E+w)(1+\cos \theta) \sin \alpha / 2 \\
& \langle-1 / 2 \mid-3 / 2,1\rangle=-\frac{1}{2} a_{3}(B+w)(1+\cos \theta) \cos \alpha / 2 \\
& \langle 1 / 2 \mid 3 / 2,0\rangle=-\frac{1}{\sqrt{2}} a_{3} \mu \sin \theta \cos \alpha / 2 ;\langle-1 / 2 \mid 3 / 2,0\rangle \\
& -\frac{1}{\sqrt{2}} a_{4} \mu \sin \theta \sin \alpha / 2 \\
& \langle 1 / 2 \mid 1 / 2,0\rangle=-\frac{1}{\sqrt{6}} a_{4} \mu \sin \theta \sin \alpha / 2 ;\langle-1 / 2 \mid 1 / 2,0\rangle \\
& =-\frac{1}{\sqrt{6}} a_{s} \mu \sin \theta \cos \alpha / 2 \\
& \langle 1 / 2 \mid-1 / 2,0\rangle=-\frac{1}{\sqrt{6}} a_{3} \mu \sin \theta \cos \alpha / 2 ;\langle-1 / 2 \mid-1 / 2,0\rangle \\
& =\frac{1}{\sqrt{6}} a_{4} \mu \sin \theta \sin \alpha / 2 \\
& \langle 1 / 2 \mid-3 / 2,0\rangle=-\frac{1}{\sqrt{2}} a, \mu \sin \theta \sin \alpha / 2 ;\langle-1 / 2 \mid-3 / 2,0\rangle \\
& -\frac{1}{\sqrt{2}} a_{s} \mu \sin \theta \cos \alpha / 2 \\
& \langle 1 / 2 \mid 3 / 2,-1\rangle=\frac{1}{2} a_{3}(E+w)(1+\cos \theta) \cos \alpha / 2 \\
& \langle-1 / 2 \mid 3 / 2,-1\rangle=-\frac{1}{2} a_{4}(E+w)(1+\cos \theta) \sin \alpha / 2 \\
& \langle 1 / 2 \mid I / 2,-1\rangle=\frac{1}{2 \sqrt{3}}\left[2 a_{3} m \sin \theta \cos \alpha / 2+a_{4}(E+w)\right. \\
& (1+\cos \theta) \sin \alpha / 2]
\end{aligned}
$$

$$
\begin{array}{r}
\langle-1 / 2 \mid 1 / 2,-1\rangle=-\frac{1}{2 \sqrt{3}}\left[2 a_{4} m \sin \theta \sin \alpha / 2-a_{3}(E+w)\right. \\
(1+\cos \theta) \cos \alpha / 2] \\
\langle 1 / 2 \mid-1 / 2,-1\rangle=\frac{1}{2 \sqrt{3}}\left[2 a_{4} m \sin \theta \sin \alpha / 2+a_{3}(E-w)\right. \\
(1-\cos \theta) \cos \alpha / 2]
\end{array} \quad \begin{array}{r}
(1-\cos \theta) \sin \alpha / 2] \\
\langle-1 / 2 \mid-1 / 2,-1\rangle=\frac{1}{2 \sqrt{3}}\left[2 a_{3} m \sin \theta \cos \alpha / 2-a_{4}(E-w)\right. \\
\langle 1 / 2 \mid-3 / 2,-1\rangle=\frac{1}{2} a_{4}(E-w(1-\cos \theta) \sin \alpha / 2
\end{array}
$$

In the above, we have given all the relevant vertex functions which are sufficient for calculating all the required baryon octet exchange Born terms corresponding to the sixteen processes described by Fig. 4.3. In the appendix D, we have given some useful relations, the use of which makes the calculations much easier. Knowing these Feynman amplitudes, the $J=1 / 2$ and $J=3 / 2$ projections of the helicity amplitudes are obtained from the equation (4.20), where the matrices $d_{\mu \lambda}^{J}(\theta)$ expressed in terms of Legendre polynomials are given by the equation (C.3l) (appendix C).

In this connection, it should be_noted that when \mathbf{F} is calculated in definite helicity states it takes the form of a function of $\cos \theta$ multiplied by factors which exactly cancel the denominator of $d^{J}(\theta)$ in the integral of the equation (4.20). The projection then involves simple integrals over the products of $P_{l}{ }^{\mathbf{i}} \mathrm{s}$. These products arise due to the factor $4 \pi \varepsilon^{2} /\left(u-m^{2}\right)$ which we have omitted so far. The factor 4π cancels with the corresponding factor in equation (4.20) and the denominator of the above factor can be expressed, by using equation (4.13), in the form:

$$
\begin{equation*}
\frac{1}{u-m u^{2}}=\frac{1}{2 x^{2}} \frac{1}{a-\cos \theta}=\sum \frac{2 \ell+1}{2 x^{2}} Q_{\ell}(a) P_{\ell}(\cos \theta) \tag{4.60a}
\end{equation*}
$$

where,

$$
\begin{equation*}
a=1-\frac{s-m^{2}-2 u^{2}}{2 x^{2}} \tag{4.60b}
\end{equation*}
$$

In equation (4.60a) $Q_{l}(a)$ is the well known Legendre polynomial of the second kind. The right hand side of the equation (4.20) then involves integrals over some polynomials in $\cos \theta$ and the products of $P_{l}{ }^{\prime} \mathrm{s}$. The relevant integrations are then easily performed by using the following properties of the Legendre polynomials:
$(\ell+1) P_{\ell+1}(\cos \theta)+\ell P_{\ell-1}(\cos \theta)=(2 \ell+1) \cos \theta P_{\ell}(\cos \theta)$

$$
\begin{equation*}
\frac{1}{2} \int_{-1}^{+1} P_{2}(\cos \theta) P_{m}(\cos \theta) d(\cos \theta)=\frac{\delta_{\ell m}}{2+1} \tag{4.6lb}
\end{equation*}
$$

Following the procedures discussed above, the contributions of octet exchanges, corresponding to all the processes we are concerned with, to the helicity amplitudes with $J=1 / 2$ and $J=3 / 2$ are obtained. Knowing these helicity amplitudes of the exchange Born terms, the corresponding contributions to the relevant partial wave amplitudes are obtained by following the method discussed in section 2 of this chapter. The partial wave amplitudes so obtained for $J=1 / 2$ and $J=3 / 2$ then constitute the octet exchange Born terms contributing to the states with $\mathcal{J}^{P}=1 / 2^{+}$and $\mathcal{J}^{P}=3 / 2^{+}$ respectively. These are what we shall use as the respective force terms in the N / D calculations.

c. The Baryon Decouplet Exchange Born Terms

In the subsection ${ }^{\circ} \mathrm{b}$ " of this section we have discussed how the Born terms corresponding to the exchange of baryon octet with $J^{P}=1 / 2^{+}$in the crossed (u) channel are evaluated by using the vertex function method discussed in the above mentioned subsection. Following the same procedure as before, we shall discuss here in this subsection how the Born terms corresponding to the exchange of the decouplet with $J^{P}=3 / 2^{+}$are calculated. For all the relevant processes (as shown by Fig. 4.3) we are required to calculate only four vertex functions corresponding to each of the two vertices of the second order Feynman diagrams. We discuss them one by one for both the final and initial vertices.

How, as in the case of the baryon octet exchange Born terms, the Feynman amplitude in the helicity representation with the baryon decouplet as the internal particle can be expressed in the form:

$$
\left\langle\lambda_{3} \lambda_{4} ; p_{3} p_{4}\right| F\left|\lambda_{2} \lambda_{2} ; p_{2} p_{2}\right\rangle=F_{\mu v}^{b}(\theta) \frac{1}{u-m^{2}}{\underset{v \lambda}{a}(\theta) \quad(4.62), ~}_{1}^{(0)}
$$

where the vertex functions $P^{b}(\theta)$ and $F^{a}(\theta)$ are evaluated at the vertices ' b ' and 'a' respectively (Fig. 4.3) and are given by,

$$
\begin{equation*}
\left.\left.\langle\mu, \underset{\sim}{k}| P^{b}\right|_{\sim} ^{8} v\right\rangle=\sqrt{2 m}\left\langle\lambda_{3} \lambda_{2} ;{\underset{k}{3}}^{d_{2}}\right| J_{2}\left|k_{\sim}^{8} v\right\rangle \tag{4.63}
\end{equation*}
$$

where $\mu=\lambda_{3}-\lambda_{2} ; \lambda=\lambda_{2}-\lambda_{4}$ and $v=3 / 2,1 / 2,-1 / 2,-3 / 2$, is the helicity of the internal baryon decouplet. The helicity states of the spin $3 / 2$ particle expressed as a vector sum of the helicity states of the spin $1 / 2$ and spin 1 particles have been given in the appendix C by equation (c.15). The spinor part of the spin $3 / 2$ internal particle helicity states has been given by equation (4.49) and the vector part of corresponding states is given by,

$$
\begin{equation*}
\zeta^{(\pm)}=\left(0, \dot{\xi}^{(\pm)}\right) \quad \zeta^{(0)}=\frac{1}{m}\left(\left|k^{2}\right|, E^{y} \xi^{(0)}\right) \tag{4.64a}
\end{equation*}
$$

where

$$
\mathcal{L}^{(+)}=\frac{1}{\sqrt{2}}\left|\begin{array}{c}
\mp \cos \alpha \tag{4.64b}\\
-i \\
\pm \sin \alpha
\end{array}\right| \quad \zeta^{(0)}-\left|\begin{array}{c}
\sin \alpha \\
0 \\
\cos \alpha
\end{array}\right|
$$

In the equation (4.64a) E' and $\underline{k}^{\prime \prime}$ are respectively the energy and three-component momentum of the internal baryon and have been given by equation (4.46). Let $\boldsymbol{\epsilon}$ and $\boldsymbol{\epsilon}^{\boldsymbol{\dagger}}$ be the polarization vectors associated with the incoming and the outgoing decouplet respectively and ξ and ξ^{\dagger} the polarization vectors of the incoming and outgoing vector mesons respectively. The representations of the helicity states _ of the incoming and outgoing vector mesons have been given. by equations (c.13) and (c.14) respectively. For the incoming spin 3/2 particle the corresponding helicity states are obtained fram the equation (c.15) by using (c.2) and (c.10) along with (c.9) and for the spin $3 / 2$ outgoing baryon we use (c.5) and (c.12) in order to
obtain the corresponding helicity states. We now write down the required vertex functions one by one.
I. This type of vertex functions correspond to the occurrence of a pseudoscalar meson and a baryon octet at either the vertex b or the vertex a. Taking the relevant factors from the equation (1.89) the two vertex functions are given, by using the equation (4.63), in the form:

$$
\begin{equation*}
\left\langle\lambda_{3} ; p_{3} p_{2}\right| F_{1}^{b}\left|k^{9} v\right\rangle=\frac{1}{m}\left(1+\frac{2 m}{\mu}\right) \bar{u}_{\lambda_{3}}\left(p_{s}\right) u_{v}\left(k^{d}\right) \otimes \zeta_{\mu} q^{\mu} \tag{4.65}
\end{equation*}
$$

$$
\left\langle v ; k^{2}\right| F_{1}^{\mathrm{a}}\left|p_{1} p_{4} ; \lambda_{1}\right\rangle \cdots \frac{1}{m}\left(1+\frac{2 m}{\mu}\right) q^{\mu} \zeta_{\mu}^{\dagger} \otimes u_{v}\left(k^{\rho}\right) u_{\lambda_{1}}\left(p_{2}\right)
$$

II. This type of vertex functions result from the occurrence of a pseudoscalar megs on and baryon decouplet at either the -vertex b or the vertex a as external particles. Taking the relevant factors from the equation (1.91) these are given as follows:

$$
\begin{align*}
& \left\langle\lambda_{3} ; p_{s} p_{2}\right| F_{2}^{b}\left|k^{3} v\right\rangle=\left(1+\frac{2 m}{\mu}\right)\left\{\frac{3 p^{2}}{4 m^{2}} \epsilon^{4} \cdot \zeta+\frac{3}{2 m^{2}} \epsilon^{\dagger} \cdot q \zeta^{\mu} q_{\mu}\right\} \\
& \times \bar{u}_{\lambda_{3}}\left(p_{3}\right) \gamma_{5} u_{v}\left(k^{\prime}\right) \tag{4.66}\\
& \left\langle 0 ; k+F_{2}^{R} \mid p_{1} p_{4} ; \lambda_{1}\right\rangle=\left(1+\frac{2 m}{\mu}\right)\left\{\frac{3 \mathrm{~F}^{2}}{4 \mu^{2}} \zeta^{\dagger} \cdot \epsilon+\frac{3}{2 m^{2}} q^{\mu} \zeta_{\mu}^{+} \epsilon \cdot q\right\} \\
& \times \bar{u}_{0}\left(k^{*}\right) \gamma_{5} u_{\lambda_{2}}\left(p_{2}\right)
\end{align*}
$$

III. This type of the vertex functions arise from the presence of a vector meson and a baryon octet at either the vertex b or the vertex a as external particles. Taking the relevant factors from the equation (1.90) these are given by,

$$
\begin{align*}
& \left\langle\lambda_{s} \lambda_{2} ; p_{s} p_{2}\right| F_{3}^{b}\left|k^{q} ; 0\right\rangle=\frac{1}{2 n^{2}}\left(1+\frac{2 m}{\mu}\right) e^{\mu \lambda \sigma_{k}} \xi_{\mu} P_{\lambda} q_{\alpha} \zeta_{k} \\
& \times \quad \bar{u}_{\lambda_{3}}\left(p_{3}\right) u_{v}\left(k^{\prime}\right) \tag{4.67}\\
& \left\langle 0 ; k^{0}\right| F_{3}^{2}\left|p_{1} p_{4} \lambda_{1} \lambda_{4}\right\rangle=\frac{1}{2 m^{2}}\left(1+\frac{2 m}{\mu}\right) e^{\mu \lambda \alpha k} \xi_{\mu}^{\dagger} P_{\lambda} q_{\alpha} \xi_{k}^{\dagger} \\
& x \otimes \bar{u}_{v}\left(k^{d}\right) u_{\lambda_{1}}\left(p_{1}\right)
\end{align*}
$$

IV. This type of vertex functions arise from the occurrence of a vector meson and a baryon decouplet at either the vertex b or the vertex a as external particles. Taking the relevant factors from the equation (1.92) these are given by,

$$
\begin{aligned}
&\left\langle\lambda_{s} \lambda_{2} ; p_{3} p_{2}\right| \mathbf{r}_{4}^{b}\left|k^{2} ; v\right\rangle=\left\{\frac{3 P^{2}}{4 I^{2}} \epsilon^{\dagger} \cdot \xi+\frac{3}{2 m^{2}} \epsilon^{\dagger} \cdot q \xi^{\mu} \cdot q_{\mu}\right\} \bar{u}_{\lambda_{3}}\left(p_{s}\right) \\
& \times\left\{\left(1+\frac{2 m}{\mu}\right) \gamma \cdot \xi-\frac{P \cdot \xi}{\mu}\right\} u_{v}\left(k^{2}\right)
\end{aligned}
$$

$$
\begin{align*}
\left\langle v ; k^{2}\right| \bar{F}_{4}^{a} \mid p_{1} p_{4} ; \lambda_{1} \lambda_{4}> & =\left\{\frac{3 P^{2}}{4 \mathbb{m}^{2}} \zeta^{t} \cdot \epsilon+\frac{3}{2 m^{2}} \zeta_{\mu}^{\dagger} q^{\mu} \epsilon \cdot q\right\} \bar{u}_{v}\left(k^{1}\right) \\
\times & \left\{\left(1+\frac{2 m}{\mu}\right) \gamma_{\cdot} \xi^{t}-\frac{P_{0} \xi^{t}}{\mu}\right\} u_{\lambda_{1}}\left(p_{1}\right) \tag{4.68}
\end{align*}
$$

Let us now write,

$$
\begin{aligned}
& a_{1}=\left(E^{\prime}+m\right) k-(E+m) k^{\prime} ; a_{2}=\left(E^{\prime}+m\right) k+(E+m) k^{\prime} \\
& a_{s}=\left(E^{\prime}+m\right)(x+m)-k k^{2} ;\left(E^{2}+m\right)(E+m)+k k^{\prime}=a_{4} \\
& x_{1}=\sqrt{2}\left\{\left(1+\frac{2 m}{\mu}\right) a_{2}-\frac{2 k}{\mu} \cos \alpha \cdot a_{s}\right\} \sin \alpha \cos \alpha / 2 \\
& x_{2}=\sqrt{2}\left\{-\left(1+\frac{2 m}{\mu}\right) a_{2}+\frac{2 k}{\mu}-(1+\cos \alpha) a_{3}\right\} \cos \alpha \sin \alpha / 2 \\
& x_{3}=\sqrt{2}\left\{\left(1+\frac{2 m}{\mu}\right) a_{2}+\frac{2 k}{\mu}(1-\cos \alpha) a_{4}\right\} \cos \alpha \cos \alpha / 2 \\
& x_{4}=\sqrt{2}\left\{\left(1+\frac{2 m}{\mu}\right) a_{1}+\frac{2 k \cos \alpha}{\mu} a_{4}\right\} \sin \alpha \sin \alpha / 2 \\
& x_{5}=\frac{1}{\mu}\left\{-\left(1+\frac{2 m}{\mu}\right)\left[k a_{4}-w(1-2 \cos \alpha) a_{2}\right]+\frac{2 k}{\mu}(E+w \cos \theta) a_{3}\right\} \\
& x
\end{aligned}
$$

$$
\begin{gather*}
x_{B}=\frac{1}{\mu}\left\{-\left(1+\frac{2 m}{\mu}\right)\left[k a_{s}-w(1+2 \cos \alpha) a_{1}\right]+\frac{2 k}{\mu}\right. \\
\left.\times(E+w \cos \theta) a_{4}\right\} \sin \alpha / 2 \tag{4.70}
\end{gather*}
$$

$$
c=\frac{1}{\sqrt{2 m(E+m)\left(B^{\top}+m\right)}}
$$

Then for the calculation of the vertex functions discussed above we require to evaluate them at the vertex b the following results:

$$
\begin{align*}
& s_{1}^{b}=\bar{u} u=c \times\left|\begin{array}{cc}
a_{3} \cos \alpha / 2 & a_{4} \sin \alpha / 2 \\
-a_{4} & \sin \alpha / 2 \\
a_{3} \cos \alpha / 2
\end{array}\right| \tag{4.71a}\\
& s_{2}^{b}=\bar{u} \gamma_{g} u=c . i \times\left|\begin{array}{cc}
a_{1} \cos \alpha / 2 & a_{2} \sin \alpha / 2 \\
a_{2} \sin \alpha / 2 & -a_{1} \cos \alpha / 2
\end{array}\right| \\
& s_{s}^{b}=\bar{u}\left\{\left(1+\frac{2 m}{\mu}\right) \gamma \cdot \xi-\frac{1}{\mu} P \cdot \xi\right\} u
\end{align*}
$$

where,

$$
\begin{align*}
& s_{s}^{(+) b}=c \times\left|\begin{array}{cc}
-x_{1} & x_{4} \\
x_{3} & x_{2}
\end{array}\right| ; s_{s}^{(-) b}=c \times\left|\begin{array}{cc}
-x_{2} & x_{3} \\
x_{4} & x_{1}
\end{array}\right| \\
& \tag{4.71c}\\
& s_{3}^{(0) b}=c \times\left|\begin{array}{ll}
x_{5} & x_{6} \\
-x_{6} & x_{5}
\end{array}\right|
\end{align*}
$$

Similarly, in order to evaluate the vertex functions at the vertex a. we require the following results:

$$
\begin{align*}
& s_{1}^{a}=\bar{u}=c \times\left|\begin{array}{cc}
a_{3} \cos \alpha / 2 & a_{4} \sin \alpha / 2 \\
-a_{4} \sin \alpha / 2 & a_{3} \cos \alpha / 2
\end{array}\right| \\
& S_{2}^{a}=\bar{u} \gamma_{5} u=c . i x\left|\begin{array}{lll}
-a_{1} \cos \alpha / 2 & a_{2} & \sin \alpha / 2 \\
a_{i} \sin \alpha / 2 & a_{1} \cos \alpha / 2
\end{array}\right| \tag{4.72b}\\
& s_{s}^{a}=\bar{u}\left\{\left(1+\frac{2 m}{\mu}\right) \gamma \cdot \xi^{t}-\frac{1}{\mu} P_{0} \xi^{t}\right\} u \\
& s_{3}^{(+) a}=c \times\left|\begin{array}{cc}
x_{1} & x_{3} \\
x_{4} & -x_{2}
\end{array}\right| ; g_{3}^{(-) a}=c \times\left|\begin{array}{ll}
x_{2} & x_{4} \\
x_{3} & -x_{1}
\end{array}\right| ; \\
& s_{3}^{(0) a}=e \times\left|\begin{array}{cc}
x_{5} & x_{6} \\
-x_{6} & x_{5}
\end{array}\right| \tag{4.72c}
\end{align*}
$$

Having known the vertex functions given by the equations (4.65) (4.68) the Feynman amplitudes corresponding to the sixteen processes shown by Fig. 4.3 with the spin $3 / 2$ particle in the crossed channel can be evaluated by taking the appropriate combinations of the above mentioned vertex functions. The contributions of these spin $3 / 2$ exchange Born terms to the helicity amplitudes with $J m 1 / 2$ and
$J=3 / 2$ are then obtained by using the equations (4.20), (4.60) and (4.61). The contributions of these helicity states to the partial wave amplitudes are obtained by taking the appropriate combinations of these helicity amplitudes which have definite total angular momentum. The total Born terms for the states with $\mathcal{J}^{P}=1 / 2^{+}$and $J^{P}=3 / 2$ are then the sum of the contributions of the spin $1 / 2$ exchange Born terms discussed in the last subsection and the spin 3/2 exchange Born terms discussed above. These Born terms corresponding to the relevant processes we are concerned with have been used as input forces in the calculations which we discuss in the following section.

4. The N / D Methods and the Results

As has been mentioned in the section 1 of this chapter, our objective is to investigate the mass splitting between the baryon Octet and Decouplet by using the N / D method. In $U(6,6)$, theory the baryon Octet and Decouplet being the member of the same irreducible representation of $U(6,6)$ symmetry are supposed to have the same degenerate mass. If we use the same degenerate mass by using the $0(6,6)$ vertices in the calculations, then it is expected that the N/D method will give masses for the baryon Octet and Decouplet which will be different from the input degenerate mass and thereby will provide us with an idea as to the mass-splitting of these two SU(3) multiplets. In the calculation, it is assumed that the sU(方)

symmetry is approximately exact so that the masses which we will obtain by \mathbb{I} / D method for the baryon Octet and Decouplet should, to a reasonable extent, correspond to the $\operatorname{su}(3)$ degenerate masses of these multiplets. In the calculation we have invoked the bootstrap hypothesis that the forces responsible for the binding of the baryon octet and decouplet come predominantly from the exchanges of the multiplets themselves in the crossed (u) channel for each of the processes that arise from the consideration of meson-baryon scattering in the context of $U(6,6)$ symmetry.

The states which contribute to the state $\mathcal{J}^{P}=1 / 2^{+}$are as follows:

PB : $\underline{8}_{B}\left(P_{1 / 2}\right), \underline{8}_{A}\left(P_{1 / 2}\right) ; P_{0} B: \underline{8}\left(P_{1 / 2}\right) ; P D: \underline{8}\left(P_{3 / 2}\right)$
$V B: \underline{8}_{s}\left(P_{1 / 2}, P_{3 / 2}\right), \underline{8}_{A}\left(P_{1 / 2}, P_{3 / 2}\right) ; V_{0} B: \underline{8}\left(P_{1 / 2}, P_{3 / 2}\right)$
VB : $\left.\underline{8}^{(} P_{1 / 2}, P_{3 / 2}, F_{5 / 2}\right)$
where $P_{1 / 2}, P_{3 / 2}$ and $F_{5 / 2}$ denote respectively the P and F partial wave amplitudes with the channel spin as mentioned by the respective subscript. It is thus evident from (4.73) that the calculation for the $\mathcal{J}^{P}=1 / 2^{+}$state involves a thirteen-channel problem. Since the contribution of the P-wave, as discussed in the subsection 'a' of the previous section, is negligible, the F-wave is discarded in the calculation so that the number of channels reduces to twelve.

Let us consider the states which contribute to $\boldsymbol{J}^{\boldsymbol{P}}=3 / 2^{+}$state. These are as follows:

(1)

PB : $\underline{10}\left(P_{1 / 2}\right) ; P_{0} D: \underline{10}\left(P_{3 / 2}, F_{3 / 2}\right) ;$ PD : $\underline{10}\left(P_{3 / 2}, F_{3 / 2}\right) ;$
VB : $10\left(P_{1 / 2}, P_{3 / 2}, F_{3 / 2}\right) ; V_{0} D: 10\left(P_{1 / 2}, P_{3 / 2}, P_{5 / 2}, F_{3 / 2}, F_{5 / 2}\right) ;$
VD : $10\left(P_{1 / 2}, P_{3 / 2}, P_{5 / 2}, F_{3 / 2}, F_{5 / 2}\right)$

It is thus evident from (4.74) that the number of channels involved in this calculation is eighteen. The neglect of the F-waves reduces the number of channels to eleven.

Now, using the determinantal approximation discussed in Chapter II, the dispersion relation for the denominator function of both $J^{P}=1 / 2^{+}$and $J^{P}=3 / 2^{+}$states is given, by using the equation (2.18), in the form:

$$
\begin{equation*}
\bar{j}_{k j}^{J}(s)=\delta_{k j}-\frac{1}{\pi} \int_{(m+\mu)^{2}}^{\infty} d s^{2} \rho_{k k}\left(s^{2}\right) \frac{B_{k j}\left(s^{2}\right)}{\left(s^{2}-s\right)} \tag{4.75}
\end{equation*}
$$

where,

$$
\begin{equation*}
\rho_{i j}(s)=\delta_{i j} \frac{k^{2 \ell+1}}{\sqrt{s}} \tag{4.76}
\end{equation*}
$$

In deriving (4.75) we have normalised the function $D^{J}(8)$ at $s=-\infty$ and $B_{k j}(s)$ in the same equation denote the Born terms that are obtained, as has been discussed in detail in the previous section, from the exchanges of the baryon Octet with $J=1 / 2$ and baryon decouple with $\mathrm{J}=3 / 2$ in the crossed (u) channel of the

(
relevant processes concerned. Using, now, the determinantal approximation the partial wave amplitude corresponding to the ij th channel is given by,

$$
\begin{equation*}
a_{i j}^{J}(s)-\frac{B_{i k}^{J}(s) \bar{D}_{k, j}^{J}(s)}{\operatorname{det} D^{J}(s)} \tag{4.77}
\end{equation*}
$$

where $\bar{D}(s)$ is the cofactor of the determinant of the denominator function $D(s)$. If there occurs a bound state at $s=s_{B}$ we have

$$
\begin{equation*}
\operatorname{det} D^{J}\left(s_{B}\right)=0 \tag{4.78a}
\end{equation*}
$$

On the other hand, if there occurs a resonance at $s=s_{k}$ we have,

$$
\begin{equation*}
\operatorname{Re} \operatorname{det} D^{J}\left(s_{k}\right)=0 \tag{4.78b}
\end{equation*}
$$

Using the equation (4.75) together with the equations (4.78a) and (4.78b) we evaluate the masses of the $J^{P}=1 / 2^{+}$and $J^{P}=3 / 2^{+}$states. since the Born terms in the integral (4.75) are very divergent we had to use cut-off in performing the integrations which have been carried out by numerical computation. The relevant determinants have also been evaluated by numerical computation, the zeros of the determinant having been obtained by graphical method. In what follows we discuss the results in detail.

The experimental values of the masses of the baryon Octet and Decouplet are as follows:

$$
\begin{equation*}
M_{B}=1146.3 \mathrm{Mev} . \quad M_{D}=1384.6 \text { Mev. } \tag{4.79}
\end{equation*}
$$

The theoretical results for the masses of the baryon Octet and Decouplet are presented in the following table:

Table 4.1

Channels Considered	$\mathbf{s}_{\mathbf{c}}$ Cut off in Eev	$\begin{gathered} u(6,6) \\ \text { Coupling } \\ g^{2} \end{gathered}$	M_{B} Mass of the Baryon Octet in Mev.		$\begin{gathered} \Delta M=M_{D}-M_{B} \\ \text { in Mev } \end{gathered}$
PB	3	15 20 30	$\begin{aligned} & 3091.2 \\ & 2183.2 \\ & 2118.8 \end{aligned}$	$\begin{aligned} & 1932.0 \\ & 1725.9 \\ & 1217.2 \end{aligned}$	$\begin{array}{r} -1159.2 \\ -\quad 457.3 \\ -\quad 901.6 \end{array}$
	4	2 3 5 7.5 10	$\begin{array}{r} 3174.9 \\ 2769.2 \\ 2196.1 \\ 817.9 \\ -1468.3 \end{array}$	3149.2 2640.4 1835.4 1410.4	$\begin{array}{r} 380.0 \\ 444.3 \\ 1017.5 \end{array}$
	5	$\begin{array}{r} 1.5 \\ 2 \end{array}$	1114.1	$\begin{aligned} & 3187.8 \\ & 2691.9 \end{aligned}$	2073.7
PB,PD	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{array}{r} 30 \\ 7.5 \end{array}$	1011.0	$\begin{aligned} & 3604.6 \\ & 2614.6 \end{aligned}$	1603.6
PB,VB	3	$\begin{array}{r} 5 \\ 7.5 \\ 10 \end{array}$	$\begin{aligned} & 2035.0 \\ & 1822.5 \\ & 1500.5 \end{aligned}$	$\begin{aligned} & 2627.5 \\ & 2260.4 \\ & 2099.4 \end{aligned}$	592.5 437.9 598.9

Table 4.1

Channels Considered	S_{c} Cut off in Bev	$\begin{aligned} & \mathrm{U}(6,6) \\ & \text { Coupling } \\ & \mathbf{g}^{2} \end{aligned}$	M_{B} Mass of the Baryon Octet in Mev	M_{D} Mass of the Baryon Decouplet in Mev	$\begin{gathered} \Delta M=M_{D}-M_{B} \\ \text { in } \mathrm{Mev} \end{gathered}$
PB,VB	4	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2015.7 \\ & 1352.4 \\ & 1912.7 \end{aligned}$	$\begin{array}{r} 2923.8 \\ 2408.6 \\ 1912.7 \end{array}$	$\begin{gathered} 908.1 \\ 1056.2 \\ 0 \end{gathered}$
	5	$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$	1288.0	3091.2 2324.8	1803.2
$\begin{aligned} & P_{0} B, P B, P_{0} D_{1}, \\ & P D, V_{0} B, V B \end{aligned}$	3	$\begin{array}{r} 7.5 \\ 10 \end{array}$	$\begin{aligned} & 1822.5 \\ & 1526.3 \end{aligned}$		
	4 5	$\begin{aligned} & 7.5 \\ & 3.0 \end{aligned}$	1114.1	$\begin{aligned} & 1320.2 \\ & 1764.6 \end{aligned}$	650.5
All Channels	3	$\begin{aligned} & 2 \\ & 3 \\ & 5 \end{aligned}$		$\begin{aligned} & 1932.0 \\ & 1796.8 \\ & 1442.6 \end{aligned}$	

The _masses of the baryon Octet and Decouplet obtained from the N / D method by using the determinantal approximation have been presented in the table 4.1. As the Born terms, in particular, the ba_ryon Decouplet exchange Born terms are very oivergent, we had to introduce cut off in performing the integrations associated with the denominator

function $D(s)$ (4.75) and consequently the results presented in the above mentioned table are extremely dependent on the cut off. In order to obtain an idea as to the trend of the mass-splitting of the baryons we have carried out investigations taking into account the various channels, the results having been obtained by the graphical methods. For each of the calcalations involving the various channels considered we have varied the cut off parameter S_{c} as well as the $U(6,6)$ coupling g^{2}. Corresponding to each of the combinations of the parameters S_{c} and g^{2} the values of the determinant of the denominator function $D^{J^{5}(8)}$) have been plotted against the c.m. energy squared. The results for all combinations of the channels that have been considered, have been depicted by the graphs I-V. The positions of the zeros of the determinant of the denofinator functions $D^{J}(s)$ then give the values of the masses squared of the corresponding states and in our case the states concerned are respectively the baryon Octet with $\mathcal{J}^{P}=1 / 2^{+}$and baryon Decouplet with $J^{P}=3 / 2^{+}$.

It is fairly evident from the table 4.1 that when only the PB channel is considered the mass-splittings for the smaller values of the cut off s_{c} and higher values of the parameters g^{2} occur in the wrong direction. Higher values of the cut off and smaller values of g^{2}, on the other hand, however cause mass-splittings in the right direction but the values of the masses of the baryon Octet and Decouplet are much_higher than the corresponding experimental results.

Inclusion of the $V B$ channel with 4 bev as the value of the cut off parameter and the smaller values of the coupling parameter g^{2} does indeed give reasonably good value for the mass of the baryon Octet but the value of that of the Decouplet is much higher than the corresponding experimental results.

It is also evident from the table 4.1 that reasonably good results can be obtained _if one considers the channels $P_{0} B, P B, P_{0} D$, $\mathrm{PD}, \mathrm{V}_{0} \mathrm{~B}$ and VB with cut off around 5 bev and the value of coupling g^{2} around 3. This combination of the cut off parameter and the coupling g^{2} gives reasonably good value for the mass of the baryon Octet although the value of that of the Decouplet is little _higher than the experimental value. The most striking feature of this result is that the corresponding value of the $U(6,6)$ coupling g^{2} gives for the pion-nucleon coupling $g_{\pi d N N}^{2}$ the value $g_{\pi N N I}^{2} \approx 20$. Considering the approximation we have used and the very much involved nature of the calculation we may conclude that the above result is fairly good.

We have also carried out the calculation taking into account all the channels that arise from the consideration of the mesonbaryon scattering in the context of $U(6,6)$ symmetry. The results have been presented at the bottom of the table 4.1. It is clear from the above results that the forces resulting from the inclusion of the VD channel may be so repulsive for the $J=1 / 2$ state that the determinant of the denominator function corresponding to the $J=1 / 2$
state does not give any zero at all. As the inclusion of the VD channel gives only one F-wave channel to the $J_{-}=1 / 2$ state, one cannot conclude that the above non-decreasing nature of the relevant determinant is due to the exclusion of the contribution of the P-waves in the calculation.

Considering the very mach involved nature of the calculation described in this chapter, the results we have obtained for the masses of the baryon Octet and Decouplet are reasonably comparable to the experimental ones. In conclusion, we may add that the bootstrap hypothesis, in particular, the N-N* bootstrap of Chew not only works in $\operatorname{SU}(2)$ symmetry but it also appears to be reasonably true in higher symmetries as well. Purther, we are led to belleve that the $\mathbb{U}(6,6)$ theory combining the internal symmetry with the space-time symmetries of the strong Interactions of the Hadrons has provided us with a reasonably good basis for carrying out the s-matrix calculations like the one that has been described in this chapter.

APPMOIX A

Phase-conventions and su(3) vertices

In writing su(3) invariant Iukawa type strong interaction Lagrangians one has to fix the relative phases of the eigenstates of the multiplets. Betermination of the relative phases bas been discussed by de Ewart ${ }^{64}$) who has used Condon-Shortleff ${ }^{(5)}$ phase convention in $\mathbb{S U}(3)$. Following de Swart, we discuss in this appendix how we have fixed the relative phases of the states of some SU(3)-miltiplats which we have considered in our calculations. The procedures we have followad are as follows:
(1) We first fix the phase (real) of an eigenstate (usually the state having the highest weight) then determine the relative phases of the other members of that isomaltiplet by the actions of the isospin raising or the isospin lowering $I \pm$, operators. Following Coadon-Shortley phase convention we have,

$$
\begin{equation*}
I_{ \pm} \Phi\left(I, I_{3}, Y\right)=\left[\left(I \mp I_{s}\right)\left(I \pm I_{s}+I\right)\right]^{\frac{1}{2}} \oplus\left(I, I_{s} \pm I, I\right) \tag{A.1}
\end{equation*}
$$

(2) The actions of the operators \mathbb{U} and $V \pm$ (1.9) take us to different isospin miltiplets. Thus, using these operators, we can determine the phases of the other iso-multiplets relative to that of the one we started with. As it is in (A.I), the action of $V+$ on an eigenstate $\phi\left(I_{,} I_{3} Y\right)$ is given by,

$$
\begin{equation*}
V+\phi\left(I_{s} I_{s} Y\right)=a+\phi\left(I+\frac{1}{2}, I_{s}+\frac{1}{2}, Y+I\right)+a-\phi\left(I-\frac{1}{2}, I_{s}+\frac{1}{2}, Y+I\right) \tag{A.2}
\end{equation*}
$$

where

$$
\begin{gather*}
a_{+}=\left\{\left(I+I_{s}+I\right)\left[\frac{1}{3}(p-q)+I+\frac{Y}{2}+1\right]\left[\frac{1}{3}(p+2 q)+I+\frac{Y}{2}+2\right]\right. \\
\left.\left[\frac{1}{3}(2 p+q)-I-\frac{Y}{2}\right] / 2(I+1)(2 I+I)\right\}^{\frac{1}{2}} \tag{A.3}\\
a_{-}=\left\{\left(I-I_{s}\right)\left[\frac{1}{3}(q-p)+I-\frac{Y}{2}\right]\left[\frac{1}{3}(p+2 q)-I+\frac{Y}{2}+1\right]\right. \\
\left.\left[\frac{1}{3}(2 q+p)+I-\frac{Y}{2}+I\right] / 2 I(2 I+I)\right\}^{\frac{1}{2}} \tag{A.4}
\end{gather*}
$$

where p, q are respectively the mabers of lower and upper indices of the irreducible tensors symetric in either indiees. The effects of the other operators $V-, \boldsymbol{U} \pm$ can be obtained by using the commatation relations (1.10).

Fig. A.la

Weight diagram for $D^{3}(10)$

Pig. A.lb
Weight diagram for $D^{s^{*}}$ (01)

The operators $A_{l}^{k}(1.7)$ can be written in the form:

$$
\begin{equation*}
A_{l}^{k}=x_{l} \frac{\partial}{\partial x^{k}}-\frac{1}{3} 8_{l}^{k} x_{n} \frac{\partial}{\partial x^{n}} \tag{A.5}
\end{equation*}
$$

How, for the three quarks we have the basis vectors x_{1}, x_{2}, x_{s}. Phases are so chosen that we make the following identifications.

$$
\begin{equation*}
Q_{1}=x_{1} ; \quad Q_{2}=x_{2} ; \quad Q_{3}=x_{3} \tag{A.6}
\end{equation*}
$$

The action of A_{l}^{k} on X_{k} is given by,

$$
\begin{equation*}
A_{l}^{k} x_{m}=\delta_{m}^{k} x_{l}-\frac{1}{3} 8_{l}^{k} x_{m} \tag{A.7}
\end{equation*}
$$

For the three antiquarks we have the basis vectors x^{2}, x^{2}, x^{3}. Phases are to be so chosen that these form the basis of the 3-dimensional contragradient representation. Consequently, we have to choose the following phases:

$$
\begin{equation*}
\bar{Q}_{1}=-x^{1} ; \quad \bar{Q}_{2}=x^{2} ; \quad \bar{Q}_{3}=x^{3} \tag{A.8}
\end{equation*}
$$

With the above phases, the action of A_{l}^{k} on x^{m} is given by,

$$
\begin{equation*}
A_{\ell}^{k} x^{m}=-\left(8_{l}^{m} x^{k}+\frac{1}{3} 8_{\ell}^{k} x^{m}\right) \tag{A.9}
\end{equation*}
$$

Fig. A. 2

The irreducible tensor for the octet is,

$$
\begin{equation*}
\phi_{j}^{i}=x^{i} y_{j}-\frac{1}{3} 8_{j}^{1}\left(x^{2} y_{l}\right) \tag{A.10}
\end{equation*}
$$

Using (A.7) and (A.9) we have, from (A.10),

$$
\begin{equation*}
A_{l}^{k} \phi_{j}^{i}=8_{j}^{k} \phi_{l}^{i}-8_{l}^{i} \phi_{j}^{k} \tag{A.11}
\end{equation*}
$$

For the pseadoscalar octet we write,

$$
\begin{align*}
& \mathbf{P}_{1}=\mathbf{K}_{+} ; \quad \mathbf{P}_{2}=\mathbf{K}_{0} ; \quad \mathbf{P}_{3}=\pi+; \quad \mathbf{P}_{4}=\pi_{0} ; \\
& \mathbf{P}_{5}=\pi_{-} ; \quad P_{6}=\boldsymbol{\eta} ; \quad \mathbf{P}_{7}=\bar{K}_{0} ; \quad \mathbf{P}_{8}=K_{2} \tag{A.12}
\end{align*}
$$

Calculating the eigenvalues, the identifications of the components of the mixed tensor ${ }_{f}^{1}$ with the physical particles with arbitrary phases can be given by,

$$
\begin{array}{ll}
\phi_{1}^{3}=\eta_{1} P_{2} ; \quad \phi_{2}^{3}=\eta_{2} P_{2} ; \quad \phi_{1}^{2}=\eta_{3} P_{3} ; \\
\phi_{2}^{1}=\eta_{3} P_{5} ; \quad \phi_{3}^{2}=\eta_{7} P_{7} ; \quad \phi_{3}^{2}=\eta_{3} P_{3} \tag{A.13}
\end{array}
$$

For convenience we set $\eta_{3}=-1$, ie. $P_{s}=-\phi_{1}^{2}$. The other phases can then be fixed by making use of the actions of $I_{ \pm}, U_{ \pm}$, $\mathbf{V}_{\mathbf{+}}$ on the various states. In order to obtain the phases of P_{4} and \boldsymbol{P}_{6} we make use of,

$$
\begin{aligned}
& I-P_{3}=\sqrt{2} P_{4} ; \quad A_{2}^{1} \phi_{1}^{2}=\phi_{2}^{2}-\phi_{1}^{1} \\
& K-P_{1}=\frac{1}{\sqrt{2}} P_{4}+\frac{\sqrt{6}}{2} P_{6} ; \quad A_{3}^{1} \phi_{1}^{3}=\phi_{3}^{3}-\phi_{1}^{1}
\end{aligned}
$$

and the traceless condition $\phi_{1}^{1}+\phi_{2}^{2}+\phi_{3}^{3}=0$. Then solving for P_{4} and P_{6}

$$
P_{4}-\frac{\Phi_{1}^{1}-\phi_{2}^{2}}{\sqrt{2}} ; \quad P_{6}=-\frac{\sqrt{3}}{\sqrt{2}} \phi_{3}^{3}
$$

Now, determining all the relative phases, the pseudoscalar meson octet can be written in the matrix form:

$$
\mathbf{P}_{\mathbf{i}}^{\mathbf{k}}=\left|\begin{array}{ccr}
\frac{\mathbf{P}_{4}}{\sqrt{2}}+\frac{\mathbf{P}_{6}}{\sqrt{6}} & -\mathbf{P}_{\mathbf{s}} & -\mathbf{P}_{1} \tag{A.14}\\
\mathbf{P}_{5} & -\frac{\mathbf{P}_{4}}{\sqrt{2}}+\frac{\mathbf{P}_{6}}{\sqrt{6}} & -\mathbf{P}_{\mathbf{2}} \\
\mathbf{P}_{\mathbf{8}} & -\mathbf{P}_{7} & -\frac{\sqrt{2}}{\sqrt{3}} \mathbf{P}_{6}
\end{array}\right|
$$

where the lower and upper indices denote rows and columns. respectively. The vector octet can also be written in the above form:

$$
V_{i}^{k}=\left|\begin{array}{ccc}
\frac{V_{4}}{\sqrt{2}}+\frac{V_{6}}{\sqrt{6}} & -V_{3} & -V_{1} \tag{A.15}\\
V_{5} & -\frac{V_{4}}{\sqrt{2}}+\frac{V_{6}}{\sqrt{6}} & -V_{2} \\
V_{8} & -V_{7} & -\sqrt{\frac{2}{3}-V_{8}}
\end{array}\right|
$$

where, the physical vector meson-fields have been replaced by $\mathrm{V}^{\mathbf{\prime}} \mathrm{s}$ in (A.15). These relations are as follows:

$$
\begin{align*}
& \nabla_{1}=X_{+}^{*} ; V_{2}=K_{0}^{*} ; \nabla_{3}=\rho_{+} ; \nabla_{4}=\rho_{0} ; \nabla_{5}=\rho_{-} \\
& \nabla_{6}=\omega_{0} ; \quad \nabla_{7}=\bar{K}_{0}^{*} ; \quad \nabla_{8}=K_{-}^{*} \tag{A.15'}
\end{align*}
$$

For the baryon octet we make the following assignments

$$
\begin{align*}
& B_{1}=p ; B_{2}=n ; B_{3}=\Sigma_{+} ; B_{4}=\Sigma_{0} ; B_{5}=\Sigma_{-} \\
& B_{6}-\Lambda_{0} ; B_{7}=B_{0} ; B_{B}=E \quad 1 \tag{A.16}
\end{align*}
$$

Calculating the eigenvalues of the components of the mixed tensor $\phi_{k}^{i}(A .10)$ we can mace similar association as in (A.13) with the physical particles (A.16). As in the case of meson octets we set $B_{s}=-\phi_{1}^{2}$ and then calculate the relative phases of the other states. Finally, we also write the Baryon octet in the matrix form,

$$
\mathbf{B}_{i}^{k}+\left|\begin{array}{ccc}
\frac{B_{4}}{\sqrt{2}}+\frac{B_{6}}{\sqrt{6}} & -B_{5} & -B_{1} \tag{A.17}\\
B_{5} & -\frac{B_{4}}{\sqrt{2}}+\frac{B_{6}}{\sqrt{6}} & -B_{2} \\
B_{B} & -B_{7} & -\sqrt{\frac{2}{3} B_{6}}
\end{array}\right|
$$

For the assigrments of the antiparticle states we make use of the following relation:

$$
\begin{equation*}
\mid \mathbb{N}^{*} ; I I_{3} Y>=(-1)^{I_{3}+\frac{Y}{2}}\left\{\mid \mathbb{I} ; I,-I_{3},-I>\right\}^{*} \tag{A.18}
\end{equation*}
$$

where N denotes the dimension of the irreducible representation and \mathbb{F}^{*} that of the contragradient representation. Making use of (A.18) we obtain from (A.16) and (A.17) for the anti-baryon octet the following assigments:

$$
\overline{\bar{B}}_{i}^{k}-\left|\begin{array}{ccc}
\frac{\bar{B}_{4}}{\sqrt{2}}+\frac{\bar{B}_{6}}{\sqrt{6}}, & -\bar{B}_{5}, & -\bar{B}_{8} \tag{A.19}\\
\overline{\mathrm{~B}}_{3} & -\frac{\bar{B}_{4}}{\sqrt{2}}+\frac{\bar{B}_{6}}{\sqrt{6}} & -\overline{\mathrm{B}}_{7} \\
\overline{\mathrm{~B}}_{1} & -\overline{\mathrm{B}}_{2} & -\sqrt{\frac{2}{3} \overline{\mathrm{~B}}_{6}}
\end{array}\right|
$$

Fig. A. 3

The fully symmetrised tensor (1.15) of rank 3 and with all the lower indices is,

$$
\begin{array}{r}
D_{\text {qq }}=\frac{1}{6}\left[x_{p} y_{q} z_{\gamma}+x_{q} y_{\gamma} z_{p}+x_{\gamma} y_{p} z_{q}+x_{\gamma} y_{q} z_{p}+x_{q} y_{p} z_{\gamma}+x_{p} y_{\gamma} z_{q}\right] \\
\text { (A. } 20 \text {) }
\end{array}
$$

Now, the actions of the operator $A_{\mathcal{L}}^{k}$ on the quantities X_{p}, y_{q}, z_{γ} are given by (A.5), so that we have,

$$
\begin{gather*}
A_{\ell}^{k} x_{p} y_{q}^{z} \gamma=\delta_{p}^{k} x_{\ell} y_{q}^{z} \cdot \gamma+\delta_{q}^{k} x_{p} y_{\ell}^{z} \gamma+\delta_{\gamma}^{k} x_{p} y_{q} z_{\ell} \\
-\delta_{\ell}^{k} x_{p} x_{q} z_{\gamma} \tag{A.21}
\end{gather*}
$$

For the states in the decouplet we first make the following assignments:

$$
D_{1}=\mathbb{H}_{++}^{*} ; \quad D_{2}=N_{+}^{*} ; \quad D_{s}=N_{0}^{*} ; \quad D_{4}=\mathbb{E}_{-}^{*} ; D_{5}=Y_{+}^{*}
$$

$$
\begin{equation*}
D_{8}=Y_{0}^{*} ; D_{7}=I_{-}^{*} ; D_{0}=E_{-}^{*} ; D_{0}=E_{0}^{*} ; D_{10}=\Omega_{-} \tag{A.22}
\end{equation*}
$$

Choosing arbitrary phases, the physical particles (A.22) can be identified with the independent components of the tensor $D_{p q} \gamma$ (A.20) as follows:

$$
\begin{aligned}
& D_{111}=\eta_{1} D_{1} ; D_{112}=\eta_{2} D_{2} ; D_{221}=\eta_{3} D_{3} ; \\
& D_{222}=\eta_{4} D_{4} ; D_{113}=\eta_{5} D_{5} ; D_{123}=\eta_{6} D_{6} ; \\
& D_{223}=\eta_{1} D_{7} ; D_{391}=\eta_{8} B_{8} ; D_{332}=\eta_{8} D_{9} ; \\
& D_{333}=\eta_{10} D_{20}
\end{aligned}
$$

We choose $\eta_{1}=1$, i.e. $D_{111}=D_{1}$, for the sake of convenience. The other phases are fixed by the actions of A_{l}^{k} on $D_{p q \gamma}$ and using the phase conventions (1) and (2). Thus, we obtain the following assignments:

$$
\begin{align*}
& D_{1}=D_{111} ; D_{2}=\sqrt{3} D_{112} ; D_{3}=\sqrt{3} D_{122} ; \\
& D_{4}=D_{222} ; D_{5}=\sqrt{3} D_{113} ; D_{6}=\sqrt{6} D_{123} ; \\
& D_{7}=\sqrt{3} D_{223} ; D_{8} m \sqrt{3} D_{138} ; D_{9}=\sqrt{3} D_{238} ; \\
& D_{10}=D_{383} \tag{A.24}
\end{align*}
$$

For the anti-decimet states we use (A.18) and obtain the following assignments:

$$
\begin{align*}
& \overline{\mathrm{D}}_{1}=\overline{\mathrm{D}}^{111} ; \overline{\mathrm{D}}_{2}=-\sqrt{3} \overline{\mathrm{~B}}^{112} ; \overline{\mathrm{D}}_{3}=\sqrt{3} \overline{\mathrm{~B}}^{122} ; \\
& \therefore \overline{\mathrm{D}}_{4}=-\overline{\mathrm{D}}^{222} ; \overline{\mathrm{D}}_{5}=-\sqrt{3} \overline{\mathrm{~B}}^{113} ; \overline{\mathrm{D}}_{6}=\sqrt{6} \overline{\mathrm{D}}^{123} ; \\
& \overline{\mathrm{D}}_{7}=-\sqrt{3} \overline{\mathrm{D}}^{223} ; \overline{\mathrm{D}}_{8}=\sqrt{3} \overline{\mathrm{D}}^{193} ; \overline{\mathrm{D}}_{9}=-\sqrt{3} \overline{\mathrm{D}}^{233} ; \\
& \overline{\mathrm{D}}_{10}=-\overline{\mathrm{D}}^{\text {sss }} \tag{A.25}
\end{align*}
$$

Fig. A.4b Weight diagram for $D^{2}(1,2)$

A traceless tensor of rank 3 with one upper and two lower indices (symmetric in the lover indices) form the basis of 15 -piet of
sण . Such a tensor is given by 60 ,

$$
\begin{align*}
D_{i j}^{k}= & \frac{1}{2}\left(x_{i} y_{j}+x_{j} y_{i}\right) z^{k}-\frac{1}{8}\left[8_{i}^{k}\left(x_{\ell} y_{j}+x_{j} y_{\ell}\right) z^{\ell}\right. \\
& \left.+8_{j}^{k}\left(x_{i} y_{\ell}+x_{\ell} y_{i}\right) z^{\ell}\right] \tag{A.26}
\end{align*}
$$

How, the actions of the operators A_{l}^{k} on the quantities $x_{1} y_{j} z^{k}$ are given by,

$$
A_{j}^{i} x_{k} y l^{z} z^{m}=8_{k}^{1} x_{j} y_{l} z^{m}+8_{l}^{i} x_{k} y_{j} z^{m}-8_{j}^{m} x_{k} y_{l} z^{i}-\frac{1}{3} 6_{j}^{i} x_{k} y_{l} z^{m}
$$

(A.27)

As explained in the weight diagram (Pigure A.4a) we can readily make the following identifications:

$$
\begin{align*}
& B_{11}^{s}=\eta_{1} D_{1} ; D_{12}^{3}=\eta_{2} D_{2} ; D_{22}^{s}=\eta_{3} D_{3} ; D_{11}^{2}=\eta_{4} D_{4} \\
& D_{22}^{1}=\eta_{7} D_{7} ; D_{13}^{2}=\eta_{10} D_{10} ; D_{23}^{2}=\eta_{12} D_{12} ; \\
& B_{35}^{2}=\eta_{14} D_{14} ; D_{33}^{1}=\eta_{13} D_{15} \tag{A.28}
\end{align*}
$$

We have chosen $\eta_{4}=1$, i.e. $D_{4}=D_{11}^{2}$ for the sake of convenience. The other phases in (A.28) are determined by the same procedure as we have used before. The phases of the other six states are obtained by considering the following three trace
conditions:

$$
\begin{align*}
& D_{11}^{1}+D_{21}^{2}+D_{31}^{3}=0 ; \quad D_{12}^{1}+D_{22}^{2}+D_{32}^{s}=0 \\
& D_{19}^{1}+D_{23}^{2}+D_{33}^{s}=0 \tag{A.29}
\end{align*}
$$

Then all the states of the 15 -piet are expressed in terms of the independent components of the tensor $\mathbb{D}_{\mathrm{ij}}^{\mathrm{k}}(\mathrm{A} .26)$ as follows:

$$
\begin{align*}
& D_{1}=D_{11}^{3} ; D_{2}=\sqrt{2} D_{12}^{3} ; D_{3}=D_{22}^{3} ; D_{4}=D_{11}^{2} \\
& D_{5}=-\frac{1}{\sqrt{3}}\left(D_{11}^{1}-2 D_{21}^{2}\right) ; D_{6}=\frac{1}{\sqrt{3}}\left(D_{22}^{2}-2 D_{12}^{1}\right) \\
& D_{7}=-D_{22}^{1} ; D_{8}=-\frac{4}{\sqrt{6}}\left(D_{11}^{1}+D_{21}^{2}\right) ; \\
& D_{8}=-\frac{4}{\sqrt{6}}\left(D_{22}^{2}+D_{12}^{1}\right) ; D_{10}=\sqrt{2} D_{13}^{2} ; \\
& D_{11}=D_{23}^{2}-D_{13}^{1} ; D_{12} \\
& D_{14}=D_{3 s}^{2} ; D_{15} m-D_{2 s}^{2} ;
\end{align*}
$$

Since the states belonging to 15-plet are associated with fractional
charge, we cannot make use of (A.18) to determine the phases of the states of the contragradient representation. Therefore, we have to follow the same. procedure as we have used for the 15-plet and the results are as follows:

$$
\begin{aligned}
& \bar{D}_{1}=\bar{D}_{3}^{11} ; \bar{D}_{2}=-\sqrt{2} \bar{D}_{3}^{12} ; \bar{D}_{3}=\bar{D}_{3}^{22} ; \bar{D}_{4}=\overline{\mathrm{D}}_{2}^{11} \\
& \bar{D}_{5}=\frac{1}{\sqrt{3}}\left(\bar{D}_{1}^{11}-2 \overline{\mathrm{D}}_{2}^{21}\right) ; \bar{D}_{6}=\frac{1}{\sqrt{3}}\left(\bar{D}_{2}^{22}-2 \bar{D}_{1}^{12}\right)
\end{aligned}
$$

$$
\overline{\mathrm{D}}_{7}=\overline{\mathrm{D}}_{1}^{22} ; \quad \overline{\mathrm{D}}_{8}=\frac{4}{\sqrt{6}}\left(\overline{\mathrm{D}}_{1}^{11}+\overline{\mathrm{D}}_{2}^{21}\right) ; \quad \overline{\mathrm{D}}_{8}=-\frac{4}{\sqrt{6}}\left(\bar{D}_{2}^{22}+\overline{\mathrm{D}}_{1}^{12}\right)
$$

$$
\bar{D}_{10}=-\sqrt{2} \bar{D}_{2}^{13} ; \quad \bar{D}_{11}=\bar{D}_{2}^{23}-\bar{D}_{1}^{13} ; \quad \bar{D}_{12}=\sqrt{2} \cdot \bar{D}_{1}^{23}
$$

$$
\overline{\mathrm{D}}_{13}=-\sqrt{2}\left(\overline{\mathrm{D}}_{2}^{13}+\overline{\mathrm{D}}_{2}^{23}\right) ; \quad \overline{\mathrm{D}}_{24}=\overline{\mathrm{D}}_{2}^{33} ; \quad \overline{\mathrm{D}}_{15}=\overline{\mathrm{D}}_{1}^{30}
$$

Fig. A.5a
Weight diagram for $D^{\text {®* }}$ (02)

Fig. A. 5b
Weight diagrem for $D^{6}(2,0)$

A traceless tensor of rank 3 with one upper and two lower indices (antisymmetric in the lower indices) form the basis of 6^{*}-plat of SIS $_{3}$. Such a teaser is given by ${ }^{60}$.

$$
\begin{gather*}
s_{i j}^{k}=\frac{1}{2}\left(x_{i} y_{j}-x_{j} y_{i}\right) x^{k}-\frac{1}{4}\left[8_{i}^{k}\left(x_{\ell} y_{j}-x_{j} y_{l}\right) z^{\ell}\right. \\
\left.+8_{j}^{k}\left(x_{i} y_{l}-x_{l} y_{i}\right) z^{\ell}\right] \tag{A.32}
\end{gather*}
$$

Let $g_{k}(k=4, \ldots 6)$ denote the six states (Figure A.5a) of the 6*-plet. .Then following the same procedure as we have used in the case of 15-plet, we obtain the following identifications:

$$
\begin{aligned}
& s_{1}=\sqrt{2} s_{12}^{s} ; s_{2}=2 s_{12}^{2} ; s_{3}=-2 s_{12}^{1} ; \\
& s_{4}=-\sqrt{2} s_{13}^{2} ; s_{s}=2 s_{13}^{1} ; s_{6}=\sqrt{2} s_{23}^{1} \\
& s_{s 2}^{s}=-s_{12}^{1} ; s_{12}^{2}=-s_{13}^{s} ; s_{23}^{3}=-s_{13}^{1} \\
& s_{11}^{k}=s_{22}^{k}=s_{s 3}^{k}=0
\end{aligned}
$$

For the states belonging to the 6-plet we follow the same procedure as we used in the case of 6^{*}-piet above. The results are as follows:

$$
\text { (A. } 34 \text {) }
$$

Having determined in the above the fields of the particles belonging to the irreducible representations of $8 g_{g}$, we can now easily write down the SO_{3} - invariant Fukava type strong interaction Lagrangians. In what follows, we write down those gU(3) vertices which we need in our calculations.

For meson-quark scattering with a Quark in the intermediate state the following interaction Lagrangian which we obtain by using (A.6), (A.B) and (A.14), occurs at both the vertices

$$
\begin{align*}
& \mathcal{L}(\bar{Q} Q \phi) \quad \bar{\phi}_{\beta}^{\alpha} \phi_{\alpha}^{\beta}=\left\{P_{1} \bar{Q}_{1} Q_{3}-P_{2} \bar{Q}_{2} Q_{3}+P_{3} \bar{Q}_{2} Q_{2}\right. \\
&-\frac{1}{\sqrt{2}} P_{4}\left(\bar{Q}_{2} Q_{1}+\bar{Q}_{2} Q_{2}\right)+P_{5} \bar{Q}_{2} Q_{1}+\frac{1}{\sqrt{6}} P_{6}\left(-\bar{Q}_{1} Q_{1}\right. \\
&\left.\left.+\bar{Q}_{2} Q_{2}-2 \bar{Q}_{3} Q_{3}\right)-P_{7} \bar{Q}_{3} Q_{2}+P_{B} \bar{Q}_{3} Q_{1}\right\} \tag{A.35}
\end{align*}
$$

$$
\begin{aligned}
& \overline{\mathcal{B}}_{1}=-\sqrt{2} \overline{\mathbf{B}}_{3}^{12} ; \quad \overline{\mathrm{s}}_{2}=-2 \overline{\mathrm{~B}}_{2}^{12} ; \quad \overline{\mathrm{B}}_{3}=-2 \overline{\mathrm{~B}}_{1}^{12} \\
& \overline{\mathrm{~s}}_{4}=\sqrt{2} \overline{\mathrm{~s}}_{2}^{13} ; \overline{\mathrm{B}}_{5}-2 \overline{\mathrm{~s}}_{1}^{13} ; \overline{\mathrm{s}}_{6}=-\sqrt{2} \overline{\mathrm{~s}}_{1}^{28} \\
& \overline{\mathrm{~s}}_{1}^{12}=-\overline{\mathrm{S}}_{3}^{92} ; \overline{\mathrm{S}}_{2}^{12}=-\overline{\mathrm{s}}_{3}^{18} ; \overline{\mathrm{s}}_{1}^{13}=-\overline{\mathrm{S}}_{2}^{23} \\
& \overline{\mathbb{B}}_{k}^{11}=\overline{\mathrm{S}}_{\mathrm{k}}^{22}=\overline{\mathbf{S}}_{\mathrm{k}}^{\mathrm{ss}}=0
\end{aligned}
$$

The vertices involving one Quark, one meson and a 15 -plet can be obtained by using (A.6), (A.8), (A.14), (A.30) and (A.31) and these are as follows:

$$
\begin{aligned}
& I_{1}(\bar{D} \phi Q)=\bar{D}_{\gamma}^{\alpha \beta} \phi_{\beta} \phi_{\alpha}^{\gamma}=\left\{P_{1}\left(-\bar{D}_{1} Q_{1}+\frac{1}{\sqrt{2}} \bar{D}_{2} Q_{2}+\frac{\sqrt{3}}{2 \sqrt{2}} \bar{D}_{8} Q_{3}\right)\right. \\
& +P_{2}\left(\frac{1}{\sqrt{2}} \bar{D}_{2} Q_{1}-\bar{D}_{3} Q_{2}-\frac{\sqrt{3}}{2 \sqrt{2}} \bar{D}_{9} Q_{8}\right)+P_{3}\left(-\bar{D}_{4} Q_{2}\right. \\
& \left.+\frac{1}{\sqrt{3}} \bar{D}_{5} Q_{2}-\frac{1}{2 \sqrt{6}} \bar{D}_{8} Q_{2}+\frac{1}{\sqrt{2}} \bar{D}_{20} Q_{3}\right)+ \\
& +P_{4}\left(\frac{\sqrt{2}}{\sqrt{3}} \bar{B}_{5} Q_{1}+\frac{1}{4 \sqrt{3}} \bar{D}_{8} Q_{1}-\frac{\sqrt{2}}{\sqrt{3}} \bar{D}_{8} Q_{2}\right. \\
& \left.+\frac{1}{4 \sqrt{3}} \bar{D}_{9} Q_{2} \frac{1}{\sqrt{2}} \bar{D}_{11} Q_{3}\right)+P_{5}\left(-\frac{1}{\sqrt{3}} \bar{G}_{6} Q_{1}-\frac{1}{2 \sqrt{6}} \bar{D}_{9} Q_{1}\right. \\
& \left.+\bar{D}_{7} Q_{2}+\frac{1}{\sqrt{2}} \bar{D}_{12} Q_{3}\right)+P_{8}\left(\frac{3}{4} \bar{D}_{8} Q_{1}-\frac{3}{4} \bar{B}_{8} Q_{2}\right. \\
& \left.-\frac{\sqrt{3}}{2} \bar{D}_{13} Q_{3}\right)+P_{7}\left(\frac{1}{\sqrt{2}} \bar{D}_{10} Q_{1}-\frac{1}{2} \bar{D}_{11} Q_{2}\right. \\
& \left.+\frac{1}{2 \sqrt{2}} \bar{D}_{13} Q_{2}-\bar{D}_{14} Q_{3}\right)+P_{8}\left(-\frac{1}{2} \bar{D}_{11} Q_{1}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.-\frac{1}{2 \sqrt{2}} \bar{D}_{13} Q_{1}+\frac{1}{\sqrt{2}} \bar{D}_{12} Q_{2}+\bar{D}_{25} Q_{s}\right)\right\} \\
& \text { (A.36a) } \\
& I_{2}\left(\bar{Q}_{2} \phi D\right)=\bar{\phi}^{\alpha} D_{\alpha \beta}^{\gamma} \phi_{\gamma}^{\beta}=\left\{P _ { 1 } \left(-\frac{1}{2} \bar{Q}_{1} D_{11}-\frac{1}{2 \sqrt{2}} \bar{Q}_{1} D_{13}\right.\right. \\
& \left.+\frac{1}{\sqrt{2}} \bar{Q}_{2} D_{12}+\bar{Q}_{3} D_{15}\right)+P_{2}\left(\frac{1}{\sqrt{2}} \bar{Q}_{1} D_{10}-\frac{1}{2} \bar{Q}_{2} D_{11}\right. \\
& \left.+\frac{1}{2 \sqrt{2}} \bar{Q}_{2} D_{13}-\bar{Q}_{3} B_{14}\right)+P_{3}\left(-\frac{1}{\sqrt{3}} \bar{Q}_{2} D_{6}\right. \\
& \left.-\frac{1}{2 \sqrt{6}} \bar{Q}_{1} D_{9}+\bar{Q}_{2} D_{7}+\frac{1}{\sqrt{2}} \bar{Q}_{3} D_{12}\right)+P_{4}\left(\frac{\sqrt{2}}{\sqrt{3}} \bar{Q}_{1} D_{5}\right. \\
& \left.+\frac{1}{4 \sqrt{3}} \bar{Q}_{i} D_{B}-\frac{\sqrt{2}}{\sqrt{3}} \bar{Q}_{2} D_{B}+\frac{1}{4 \sqrt{3}} \bar{Q}_{2} D_{B}-\frac{1}{\sqrt{2}} \bar{Q}_{3} D_{11}\right) \\
& +P_{5}\left(-\bar{Q}_{1} B_{4}+\frac{1}{\sqrt{3}} \bar{Q}_{2} D_{5}-\frac{1}{2 \sqrt{6}} \bar{Q}_{2} D_{B}+\frac{1}{\sqrt{2}} \bar{Q}_{3} D_{10}\right) \\
& +P_{8}\left(\frac{3}{4} \bar{Q}_{1} D_{B}-\frac{3}{4} \bar{Q}_{2} B_{9}-\frac{\sqrt{3}}{2} \bar{Q}_{3} D_{13}\right)+P_{7}\left(\frac{1}{\sqrt{2}} \bar{Q}_{1} D_{2}\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.-\bar{Q}_{2} D_{3}-\frac{\sqrt{3}}{2 \sqrt{2}} \bar{Q}_{3} D_{8}\right)+P_{8}\left(-\bar{Q}_{1} D_{1}+\frac{1}{\sqrt{2}} \bar{Q}_{2} D_{2}\right. \\
& \left.\left.+\frac{\sqrt{3}}{2 \sqrt{2}} \bar{Q}_{3} B_{8}\right)\right\} \tag{A.36b}
\end{align*}
$$

The vertices involving one quark, one meson and a 6*-plet can be obtained by using (A.6), (A.8), (A.14), (A.33) and (A.34) and these are as follows:

$$
\begin{aligned}
& I_{2}(\bar{B} \phi Q)=\bar{S}_{\gamma}^{\alpha \beta} \phi_{\alpha} \phi_{\beta}^{\gamma}=\left\{P_{1}\left(-\frac{1}{\sqrt{2}} \bar{B}_{1} Q_{2}+\frac{1}{2} \bar{S}_{2} Q_{s}\right)\right. \\
& +P_{2}\left(\frac{1}{\sqrt{2}} \bar{\delta}_{1} Q_{1}+\frac{1}{2} \bar{S}_{3} Q_{3}\right)+P_{3}\left(-\frac{1}{2} \bar{S}_{2} Q_{2}+\frac{1}{\sqrt{2}} \bar{S}_{4} Q_{3}\right) \\
& +P_{4}\left(\frac{1}{2 \sqrt{2}} \bar{\delta}_{2} Q_{1}+\frac{1}{2 \sqrt{2}} \overline{\mathrm{~S}}_{3} Q_{2}-\frac{1}{\sqrt{2}} \overline{\mathrm{~B}}_{5} Q_{3}\right)+P_{5}\left(-\frac{1}{2} \overline{\mathrm{~B}}_{3} Q_{1}\right. \\
& \left.+\frac{1}{\sqrt{2}} \bar{s}_{6} Q_{3}\right)+P_{6}\left(-\frac{\sqrt{3}}{2 \sqrt{2}} \bar{s}_{2} Q_{1}+\frac{\sqrt{3}}{2 \sqrt{2}} \bar{s}_{3} Q_{2}\right) \\
& \left.+P_{7}\left(-\frac{1}{\sqrt{2}} \bar{S}_{4} Q_{2}+\frac{1}{2} \bar{S}_{5} Q_{2}\right)+P_{8}\left(\frac{1}{2} \bar{S}_{5} Q_{1}-\frac{1}{\sqrt{2}} \bar{S}_{6} Q_{2}\right)\right\}
\end{aligned}
$$

$$
\begin{align*}
& L_{2}(\bar{Q} \phi B)=\mathcal{D}^{\alpha} s_{\alpha \beta}^{\gamma} \phi_{\beta}^{\gamma}=\left\{P_{1}\left(\frac{1}{2} \bar{Q}_{1} s_{3}-\frac{1}{\sqrt{2}} \bar{Q}_{2} s_{6}\right)+P_{2}\left(\frac{1}{2} \bar{Q}_{2} s_{5}\right.\right. \\
& \left.-\frac{1}{\sqrt{2}} \bar{Q}_{1} s_{4}\right)+P_{s}\left(-\frac{1}{2} \bar{Q}_{1} s_{s}+\frac{1}{\sqrt{2}} \bar{Q}_{3} s_{6}\right)+P_{4}\left(\frac{1}{2 \sqrt{2}} \bar{Q}_{2} s_{2}\right. \\
& \left.+\frac{1}{2 \sqrt{2}} \bar{Q}_{2} s_{s}-\frac{1}{\sqrt{2}} \bar{Q}_{s} s_{s}\right)+P_{5}\left(-\frac{1}{2} \bar{Q}_{2} S_{2}+\frac{1}{\sqrt{2}} \bar{Q}_{3} s_{4}\right) \\
& +P_{6}\left(-\frac{\sqrt{3}}{2 \sqrt{2}} \bar{Q}_{1} s_{2}+\frac{\sqrt{3}}{2 \sqrt{2}} \bar{Q}_{2} s_{3}\right)+P_{7}\left(\frac{1}{\sqrt{2}} \bar{Q}_{1} s_{1}\right. \\
& \left.\left.+\frac{1}{2} \bar{Q}_{3} s_{3}\right)+P_{8}\left(-\frac{1}{\sqrt{2}} \bar{Q}_{2} s_{1}+\frac{1}{2} \bar{Q}_{3} s_{2}\right)\right\} \tag{A.37b}
\end{align*}
$$

The vertices involving two nucleons and one meson are obtained by using (A.14), (A.17) and (A.19). In our calculations we require the following:

$$
\begin{aligned}
\mathscr{L}(\bar{B} \emptyset B) F & =\left\{P _ { 1 } \left(-\frac{1}{\sqrt{2}} \bar{B}_{4} B_{B}+\frac{1}{\sqrt{2}} \bar{B}_{1} B_{4}+\bar{B}_{3} B_{7}-\bar{B}_{2} B_{5}\right.\right. \\
& \left.-\frac{\sqrt{3}}{\sqrt{2}} \bar{B}_{6} B_{8}+\frac{\sqrt{3}}{\sqrt{2}} \bar{B}_{1} B_{6}\right)+P_{2}\left(\bar{B}_{5} B_{8}-\bar{B}_{1} B_{5}\right. \\
& \left.-\frac{1}{\sqrt{2}} \bar{B}_{4} B_{7}+\frac{1}{\sqrt{2}} B_{2} B_{4}+\frac{\sqrt{3}}{\sqrt{2}} \bar{B}_{6} B_{7}-\frac{\sqrt{3}}{\sqrt{2}} \bar{B}_{2} B_{6}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +P_{3}\left(-\sqrt{2} \bar{B}_{4} B_{8}+\sqrt{2} \bar{B}_{3} B_{4}+\bar{B}_{1} B_{2}-\bar{B}_{7} B_{8}\right) \\
& +P_{4}\left(\sqrt{2} \bar{B}_{5} B_{5}-\sqrt{2} \bar{B}_{3} B_{8}-\frac{1}{\sqrt{2}} \bar{B}_{1} B_{2}-\frac{1}{\sqrt{2}} \bar{B}_{2} B_{2}\right. \\
& \left.+\frac{1}{\sqrt{2}} \bar{B}_{7} B_{7}+\frac{1}{\sqrt{2}} \bar{B}_{8} B_{8}\right)+P_{5}\left(-\sqrt{2} \bar{B}_{5} B_{4}\right. \\
& \left.+\sqrt{2} \bar{B}_{4} B_{3}+\bar{B}_{2} B_{2}-\bar{B}_{8} B_{7}\right)+P_{8}\left(-\frac{\sqrt{3}}{\sqrt{2}} \bar{B}_{1} B_{1}\right. \\
& \left.+\frac{\sqrt{3}}{\sqrt{2}} \bar{B}_{2} B_{2}-\frac{\sqrt{3}}{\sqrt{2}} \bar{B}_{7} B_{7}+\frac{\sqrt{3}}{\sqrt{2}} \bar{B}_{8} B_{8}\right)+P_{7}\left(\overline{B_{B}} B_{5}\right. \\
& -\bar{B}_{3} B_{1}-\frac{1}{\sqrt{2}} \bar{B}_{7} B_{4}+\frac{1}{\sqrt{2}} \bar{B}_{4} B_{2}+\frac{\sqrt{3}}{\sqrt{2}} \bar{B}_{7} B_{6} \\
& \left.-\frac{\sqrt{3}}{\sqrt{2}} \bar{B}_{6} B_{2}\right)+P_{8}\left(-\frac{1}{\sqrt{2}} \bar{B}_{8} B_{4}+\frac{1}{\sqrt{2}} \bar{B}_{4} B_{1}+\bar{B}_{7} B_{3}\right. \\
& \left.\left.-\bar{B}_{8} B_{2}-\frac{\sqrt{3}}{\sqrt{2}} \bar{B}_{8} B_{6}+\frac{\sqrt{3}}{\sqrt{2}} \bar{B}_{6} B_{1}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}(B \phi B) D & +\frac{2}{3} F=\left\{P _ { 1 } \left(-\frac{5}{3 \sqrt{2}} \bar{B}_{4} B_{8}-\frac{1}{3 \sqrt{2}} \bar{B}_{1} B_{4}+\frac{E_{3}}{3} \bar{B}_{3} B_{7}\right.\right. \\
& \left.+\frac{1}{3} \bar{B}_{2} B_{5}+\frac{\sqrt{3}}{\sqrt{2}} \bar{B}_{2} B_{6}-\frac{1}{\sqrt{6}} \bar{B}_{6} B_{8}\right)+P_{2}\left(\frac{5}{3} \bar{B}_{5} B_{B}\right. \\
& +\frac{1}{3} \bar{B}_{4} B_{5}-\frac{5}{3 \sqrt{2}} \bar{B}_{4} B_{7}-\frac{1}{3 \sqrt{2}} \bar{B}_{2} B_{4}-\frac{\sqrt{3}}{\sqrt{2}} \bar{B}_{2} B_{6} \\
& \left.+\frac{1}{\sqrt{6}} \bar{B}_{6} B_{7}\right)+P_{5}\left(\frac{5}{3} \bar{B}_{1} B_{2}+\frac{1}{3} \bar{B}_{7} B_{8}-\frac{\sqrt{2}}{\sqrt{3}} \bar{B}_{6} B_{5}\right. \\
& \left.-\frac{\sqrt{2}}{\sqrt{3}} \bar{B}_{8} B_{6}-\frac{2 \sqrt{2}}{3} \bar{B}_{4} B_{5}+\frac{2 \sqrt{2}}{3} \bar{B}_{3} B_{4}\right) \\
& +P_{4}\left(\frac{\sqrt{2}}{\sqrt{3}} \bar{B}_{4} B_{6}+\frac{\sqrt{2}}{\sqrt{3}} \bar{B}_{6} B_{4}-\frac{5}{3 \sqrt{2}} \bar{B}_{2} B_{1}-\frac{5}{3 \sqrt{2}} \bar{B}_{2} B_{2}\right. \\
& \left.-\frac{1}{3 \sqrt{2}} \bar{B}_{7} B_{7}-\frac{1}{3 \sqrt{2}} \bar{B}_{8} B_{8}+\frac{2 \sqrt{2}}{3} \bar{B}_{5} B_{5}-\frac{2 \sqrt{2}}{3} \bar{B}_{8} B_{8}\right) \\
& +P_{5}\left(\frac{5}{3} \bar{B}_{2} B_{1}+\frac{1}{3} \bar{B}_{8} B_{7}-\frac{\sqrt{2}}{\sqrt{3}} \bar{B}_{5} B_{6}-\frac{\sqrt{2}}{\sqrt{3}} \bar{B}_{8} B_{3}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\frac{2 \sqrt{2}}{3} \bar{B}_{5} B_{4}+\frac{2 \sqrt{2}}{3} \bar{B}_{4} B_{3}\right)+P_{6}\left(-\frac{\sqrt{2}}{\sqrt{3}} \bar{B}_{3} B_{3}\right. \\
& +\frac{\sqrt{2}}{\sqrt{3}} \bar{B}_{4} B_{4}-\frac{\sqrt{2}}{\sqrt{3}} \bar{B}_{5} B_{5}-\frac{\sqrt{2}}{\sqrt{3}} \bar{B}_{6} B_{6}-\frac{1}{\sqrt{6}} \bar{B}_{1} B_{2} \\
& \left.+\frac{1}{\sqrt{6}} \bar{B}_{2} B_{2}-\frac{\sqrt{3}}{\sqrt{2}} \bar{B}_{7} B_{7}+\frac{\sqrt{3}}{\sqrt{2}} \bar{B}_{8} B_{8}\right)+P_{7}\left(\frac{\sum}{3} \bar{B}_{B} B_{5}\right. \\
& +\frac{1}{3} \bar{B}_{8} B_{1}-\frac{5}{3 \sqrt{2}} \bar{B}_{7} B_{4}-\frac{1}{3 \sqrt{2}} \bar{B}_{4} B_{2}+\frac{1}{\sqrt{6}} \bar{B}_{7} B_{6} \\
& \left.-\frac{\sqrt{3}}{\sqrt{2}} \bar{B}_{6} B_{8}\right)+P_{8}\left(-\frac{5}{3 \sqrt{2}} \bar{B}_{8} B_{4}-\frac{1}{3 \sqrt{2}} \bar{B}_{4} B_{1}\right. \\
& \left.\left.+\frac{5}{3} \bar{B}_{7} B_{3}+\frac{1}{3} \bar{B}_{5} B_{2}-\frac{1}{\sqrt{6}} \bar{B}_{8} B_{6}+\frac{\sqrt{3}}{\sqrt{2}} \bar{B}_{6} B_{1}\right)\right\}
\end{aligned}
$$

(A. 38b)

The vertex involving one meson and two decouplets can be obtained from (A.14), (A.24) and (A.25) and is as follows:

$$
\mathscr{L}(\bar{D} \phi D)=\left\{P _ { 1 } \left(-\frac{1}{\sqrt{3}} \bar{D}_{1} B_{5}+\frac{\sqrt{2}}{3} \bar{D}_{2} B_{6} \frac{1}{3} \bar{D}_{3} D_{7}+\frac{2}{3} \bar{D}_{5} B_{8}\right.\right.
$$

$$
\begin{aligned}
& \left.-\frac{\sqrt{2}}{3} \bar{D}_{6} D_{9}-\frac{1}{\sqrt{3}} \bar{D}_{8} D_{10}\right)+P_{2}\left(\frac{1}{3} \bar{D}_{2} D_{5}-\frac{\sqrt{2}}{3} \bar{D}_{3} D_{6}\right. \\
& \left.+\frac{1}{\sqrt{3}} \bar{D}_{4} D_{7}-\frac{\sqrt{2}}{3} \bar{D}_{6} D_{8}+\frac{2}{3} \bar{D}_{7} D_{9}+\frac{1}{\sqrt{3}} \bar{D}_{9} D_{10}\right) \\
& +P_{3}\left(-\frac{1}{\sqrt{3}} \bar{D}_{2} D_{2}+\frac{2}{3} \bar{D}_{2} D_{3}-\frac{1}{\sqrt{3}} \bar{D}_{3} D_{4}+\frac{\sqrt{2}}{3} \bar{D}_{5} D_{6}\right. \\
& \left.-\frac{\sqrt{2}}{3} \bar{D}_{6} D_{7}-\frac{1}{3} \bar{D}_{8} D_{8}\right)+P_{4}\left(\frac{1}{\sqrt{2}} \bar{D}_{2} D_{1}-\frac{1}{3 \sqrt{2}} \bar{D}_{2} D_{2}\right. \\
& -\frac{1}{3 \sqrt{2}} \bar{D}_{3} D_{3}-\frac{\sqrt{2}}{3} \bar{D}_{5} D_{5}+\frac{1}{3 \sqrt{2}} \bar{D}_{8} D_{8}+\frac{1}{\sqrt{2}} \bar{D}_{4} D_{4} \\
& \left.+\frac{\sqrt{2}}{3} \bar{D}_{7} D_{7}+\frac{1}{3 \sqrt{2}} \bar{D}_{8} D_{8}\right)+P_{5}\left(-\frac{1}{\sqrt{3}} \bar{D}_{2} D_{2}+\frac{2}{3} \bar{D}_{3} D_{2}\right. \\
& \left.-\frac{1}{\sqrt{3}} \bar{D}_{4} D_{3}+\frac{\sqrt{2}}{3} \bar{D}_{6} D_{5}-\frac{\sqrt{2}}{3} \bar{D}_{7} D_{6}-\frac{1}{3} \bar{D}_{8} \dot{D}_{8}\right) \\
& +P_{6}\left(\frac{1}{\sqrt{6}} \bar{D}_{1} D_{1}-\frac{1}{\sqrt{6}} \bar{D}_{2} D_{2}+\frac{1}{\sqrt{6}} \bar{D}_{3} D_{3}-\frac{1}{\sqrt{6}} \bar{D}_{4} D_{4}\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.-\frac{1}{\sqrt{6}} \bar{D}_{8} D_{B}+\frac{1}{\sqrt{6}} \bar{D}_{9} D_{9}+\frac{\sqrt{2}}{\sqrt{3}} \bar{D}_{10} D_{10}\right) \\
& +P_{7}\left(\frac{1}{3} \bar{D}_{5} D_{2}-\frac{\sqrt{2}}{3} \bar{D}_{6} D_{3}-\frac{\sqrt{2}}{3} \bar{D}_{8} D_{6}+\frac{1}{\sqrt{3}} \bar{D}_{7} D_{4}\right. \\
& \left.+\frac{2}{3} \bar{D}_{9} D_{7}+\frac{1}{\sqrt{3}} \bar{D}_{10} D_{8}\right)+P_{8}\left(-\frac{1}{\sqrt{3}} \bar{D}_{5} D_{1}\right. \\
& +\frac{\sqrt{2}}{3} \bar{D}_{6} D_{2}-\frac{1}{3} \bar{D}_{7} D_{8}+\frac{2}{3} \bar{D}_{8} D_{5}-\frac{\sqrt{2}}{3} \bar{D}_{8} D_{6} \\
& \left.\left.-\frac{1}{\sqrt{3}} \bar{D}_{10} D_{8}\right)\right\} \tag{A.39}
\end{align*}
$$

The vertices involving one meson, one baryon and one decouple are obtained by using (A.14), (A.17), (A.19), (A.24) and (A.25) and these are as follows:

$$
\begin{aligned}
I_{1}(\bar{B} \phi H)= & \left\{P _ { 1 } \left(-\frac{\sqrt{2}}{\sqrt{3}} \bar{D}_{2} B_{4}+\frac{1}{\sqrt{3}} \bar{B}_{3} B_{5}+\bar{D}_{1} B_{3}-\frac{1}{\sqrt{3}} \bar{D}_{5} B_{7}\right.\right. \\
& \left.+\frac{1}{\sqrt{6}} \bar{D}_{6} B_{8}\right)+P_{2}\left(-\frac{1}{\sqrt{3}} \bar{D}_{2} B_{3}+\frac{\sqrt{2}}{\sqrt{3}} \bar{D}_{3} B_{4}-\bar{D}_{4} B_{5}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\frac{1}{\sqrt{6}} \bar{D}_{6} B_{7}-\frac{1}{\sqrt{3}} \bar{D}_{7} B_{8}\right)+P_{3}\left(-\bar{D}_{1} B_{1}+\frac{1}{\sqrt{3}} \bar{D}_{8} B_{2}\right. \\
& \left.+\frac{1}{\sqrt{6}} \bar{D}_{5} B_{4}+\frac{1}{\sqrt{2}} \bar{D}_{5} B_{6}-\frac{1}{\sqrt{6}} \bar{D}_{6} \cdot B_{5}-\frac{1}{\sqrt{3}} \dot{\bar{B}}_{8} B_{8}\right) \\
& +P_{4}\left(\frac{\sqrt{2}}{\sqrt{3}} \bar{D}_{2} B_{2}-\frac{\sqrt{2}}{\sqrt{3}} \bar{B}_{3} B_{2}-\frac{1}{\sqrt{6}} \bar{D}_{5} B_{3}-\frac{1}{\sqrt{2}} \bar{B}_{6} B_{6}\right. \\
& \left.+\frac{1}{\sqrt{6}} \bar{D}_{7} B_{s}+\frac{1}{\sqrt{6}} \bar{D}_{B} B_{7}+\frac{1}{\sqrt{6}} \bar{D}_{8} B_{8}\right) \\
& +P_{5}\left(-\frac{1}{\sqrt{3}} \bar{D}_{3} B_{1}+\bar{D}_{4} B_{2}+\frac{1}{\sqrt{6}} \bar{B}_{6} B_{3}-\frac{1}{\sqrt{6}} \bar{D}_{7} B_{4}\right. \\
& \left.+\frac{1}{\sqrt{2}} \bar{D}_{7} B_{6}-\frac{1}{\sqrt{3}} \bar{D}_{8} B_{7}\right)+P_{6}\left(-\frac{1}{\sqrt{2}} \bar{D}_{5} B_{3}\right. \\
& \left.+\frac{1}{\sqrt{2}} \bar{D}_{6} B_{4}-\frac{1}{\sqrt{2}} \bar{D}_{7} B_{5}+\frac{1}{\sqrt{2}} \bar{B}_{8} B_{7}-\frac{1}{\sqrt{2}} \bar{D}_{8} B_{8}\right) \\
& +P_{7}\left(\frac{1}{\sqrt{3}} \bar{B}_{5} B_{1}-\frac{1}{\sqrt{6}} \bar{D}_{6} B_{2}-\frac{1}{\sqrt{6}} \bar{D}_{8} B_{4}\right. \\
& \left.-\frac{1}{\sqrt{2}} \bar{D}_{B} B_{6}+\frac{1}{\sqrt{3}} \bar{D}_{9} B_{5}+\bar{D}_{10} B_{8}\right)+P_{8}\left(-\frac{1}{\sqrt{6}} \bar{D}_{6} B_{2}\right.
\end{aligned}
$$

$$
\begin{align*}
& +\frac{1}{\sqrt{3}} \bar{D}_{7} B_{g}+\frac{1}{\sqrt{3}} \bar{D}_{8} B_{8}-\frac{1}{\sqrt{6}} \bar{D}_{8} B_{4}+\frac{1}{\sqrt{2}} \bar{D}_{8} B_{6} \\
& \left.\left.-\bar{D}_{10} B_{7}\right)\right\} \tag{A.40a}\\
& I_{2}(\bar{B} \phi D)=\left\{P _ { 1 } \left(-\frac{1}{\sqrt{6}} \bar{B}_{1} D_{6}+\frac{1}{\sqrt{3}} \bar{B}_{2} D_{7}+\frac{1}{\sqrt{3}} \bar{B}_{s} D_{B}\right.\right. \\
& \left.-\frac{1}{\sqrt{6}} \bar{B}_{4} D_{9}+\frac{1}{\sqrt{2}} \bar{B}_{8} D_{9}-\bar{B}_{7} D_{10}\right)+P_{2}\left(\frac{1}{\sqrt{3}} \bar{B}_{1} D_{9}\right. \\
& -\frac{1}{\sqrt{6}} \bar{B}_{2} D_{6}-\frac{1}{\sqrt{6}} \bar{B}_{4} D_{8}+\frac{1}{\sqrt{3}} \bar{B}_{5} D_{9}-\frac{1}{\sqrt{2}} \bar{B}_{6} D_{B} \\
& \left.+\bar{B}_{8} D_{10}\right)+P_{s}\left(-\frac{1}{\sqrt{3}} \bar{B}_{1} D_{s}+\bar{B}_{2} B_{4}+\frac{1}{\sqrt{6}} \bar{B}_{3} D_{6}\right. \\
& \left.-\frac{1}{\sqrt{6}} \bar{B}_{4} D_{7}+\frac{1}{\sqrt{2}} \bar{B}_{6} D_{7}-\frac{1}{\sqrt{3}} \bar{B}_{7} D_{8}\right)+P_{4}\left(\frac{\sqrt{2}}{\sqrt{3}} \bar{B}_{1} D_{2}\right. \\
& -\frac{\sqrt{2}}{\sqrt{3}} \bar{B}_{2} D_{3}-\frac{1}{\sqrt{6}} \bar{B}_{3} B_{5}+\frac{1}{\sqrt{6}} \cdot \bar{B}_{5} D_{7}-\frac{1}{\sqrt{2}} \bar{B}_{6} D_{6} \\
& \left.+\frac{1}{\sqrt{6}} \bar{B}_{7} D_{8}+\frac{1}{\sqrt{6}} \bar{B}_{8} D_{8}\right)+P_{5}\left(-\bar{B}_{2} D_{2}+\frac{1}{\sqrt{3}} \bar{B}_{2} D_{2}\right.
\end{align*}
$$

$$
\begin{align*}
& \left.+\frac{1}{\sqrt{6}} \bar{B}_{4} D_{5}-\frac{1}{\sqrt{6}} \bar{B}_{5} D_{6}+\frac{1}{\sqrt{2}} \bar{B}_{8} D_{5}-\frac{1}{\sqrt{3}} \bar{B}_{B} D_{8}\right) \\
& +P_{6}\left(-\frac{1}{\sqrt{2}} \bar{B}_{3} D_{5}+\frac{1}{\sqrt{2}} \bar{B}_{4} D_{6}-\frac{1}{\sqrt{2}} \bar{B}_{5} D_{7}\right. \\
& \left.+\frac{1}{\sqrt{2}} \bar{B}_{7} D_{B}-\frac{1}{\sqrt{2}} \bar{B}_{8} D_{8}\right)+P_{7}\left(-\frac{1}{\sqrt{3}} \bar{B}_{3} B_{2}\right. \\
& \left.+\frac{\sqrt{2}}{\sqrt{3}} \bar{B}_{4} D_{3}-\bar{B}_{5} D_{4}+\frac{1}{\sqrt{6}} \bar{B}_{7} D_{6}-\frac{1}{\sqrt{3}} \bar{B}_{8} D_{7}\right) \\
& +P_{8}\left(\bar{B}_{3} D_{1}-\frac{\sqrt{2}}{\sqrt{3}} \bar{B}_{4} D_{2}+\frac{1}{\sqrt{3}} \bar{B}_{5} D_{3}-\frac{1}{\sqrt{3}} \bar{B}_{7} D_{5}\right. \\
& \left.\left.+\frac{1}{\sqrt{6}} \bar{B}_{8} D_{6}\right)\right\} \tag{A.40b}
\end{align*}
$$

Again the vertex involving a meson-singlet and two baryon octets is given by,

$$
\begin{align*}
\mathscr{L}\left(\bar{B} \phi^{0} B\right)_{s} & =\bar{B}_{\alpha}^{B} B_{\beta}^{\alpha} \phi_{\alpha}^{\alpha}=\frac{1}{3} P_{0}\left(-\bar{B}_{1} B_{1}+\bar{B}_{2} \dot{B}_{2}-\bar{B}_{3} B_{3}+\bar{B}_{4} B_{4}\right. \\
& \left.-\bar{B}_{5} B_{5}+\bar{B}_{6} B_{6}+\bar{B}_{7} B_{7}-\bar{B}_{8} B_{8}\right) \tag{A.41}
\end{align*}
$$

Similarly the vertex involving a meson singlet and two decouplets is,

$$
\begin{align*}
\mathcal{L}\left(\bar{B}_{\phi^{\circ}} D_{0}\right)= & \bar{D}^{\alpha \beta P \gamma} D_{\alpha \beta \gamma} \phi_{\gamma}^{\gamma}=\frac{1}{3} P_{0}\left(\bar{D}_{1} D_{1}-\bar{D}_{2} D_{2}+\bar{D}_{3} D_{3}-\bar{D}_{4} D_{4}\right. \\
& \left.-\bar{D}_{5} D_{5}+\bar{D}_{6} D_{6}-\bar{D}_{7} D_{7}+\bar{D}_{B} D_{8}-\bar{D}_{8} D_{8}-\bar{D}_{10} D_{20}\right) \tag{A.42}
\end{align*}
$$

In the derivations of the above Lagrangians we have, for convenience, omitted the space-time factors which are required to make these vertices Lorentz invariant. These factors are to be taken into account when we use these vertices in the related calculations.

APPHTDIX

Calculations of go (3) Coupling Coefficients

In almost all the dymamical calculations involving sU(3) symmetry, we require $s \in(3)$-coupling coefficients. Here, in this appendix, we discuss a method which makes use of the gE (3) invariant vertices (appendix A) for calculating the pole coefficients corresponding to a direct chamel scattering diagram. This method can also be used for the exchange diagram; but it is always convenient to use the crossing matrix when direct chanmel pole coefficients are known.

Let us consider the case of quark-meson scatteriag. There can oceur, in this case, three poles in the direct-channel as shown in the followcing diagrams:

Fig. B. 1

Fig. B. 2

Fig. B. 3

The method we have used can be described as follows: we construct a state $\mid \mathrm{M} ; \mathrm{I}_{\mathrm{s}} \mathrm{Y}>$ in terms of the product states $\left.\left|H_{1} ; I_{1} I_{1 z} Y_{1}>\right| N_{2} ; I_{2} I_{2 z} Y_{2}\right\rangle$ of the two particles involved in the scattering process. As I, I_{3} and Y are conserved in the strong interactions, the state $\left|\mathrm{N} ; ~ \mathrm{I}, \mathrm{I}_{\mathbf{3}}, \mathrm{Y}\right\rangle$ must occur in the intermediate state of the above diagrams (Fig. B.1,2,3). We are then to pick out those coefficients from the two vertices associated with the above diagrams such that we get, by contraction, the relevant state $\mid \mathbb{Y} I_{s} \mathbf{Y}>$ as the intermediate state as well as the related external particles at the initial and theffinal states. We shall follow this method to calculate all the $\operatorname{sU}(3)$-coefficients we require in our calculations.

For the $3 \quad 15$ and 6* pole coefficients we construct the following states:

$$
\begin{align*}
|3 ; 00-2 / 3>=| \frac{3}{3} Q_{3}> & =\frac{1}{2 \sqrt{2}}\left[-\sqrt{2}\left|P_{6} Q_{3}\right\rangle\right. \\
& \left.\left.-\sqrt{3 \mid P_{7}} Q_{2}>+\sqrt{3} \mid P_{8} Q_{1}\right)\right] \tag{B.1}
\end{align*}
$$

$$
\begin{align*}
& \left|15 ; 00-Q_{3}\right\rangle=\left|15 ; D_{13}\right\rangle=\frac{1}{2 \sqrt{2}}\left[\sqrt{6 \mid P_{6}} Q_{3}\right\rangle-\left|P_{7} Q_{2}\right\rangle \\
& \left.+\left\lvert\, \begin{array}{ll}
P_{8} & \left.\theta_{4}\right\rangle
\end{array}\right.\right] \tag{B.2}
\end{align*}
$$

$$
\begin{equation*}
\left|6^{*} ; 00 \frac{4}{3}\right\rangle=\left|6 * ; B_{2}\right\rangle=\frac{1}{\sqrt{2}}\left[\left|Q_{1} P_{2}\right\rangle-\left|Q_{2} P_{1}\right\rangle\right] \tag{B.3}
\end{equation*}
$$

Considering the diagram (Fig. B.1) and using the interaction Lagrangian (A.35) we obtain for 3-pole coefficient,

$$
\begin{aligned}
\langle\underline{3} \mid \underline{2}\rangle & =\frac{1}{8}\left[\frac{2}{\sqrt{3}}+\sqrt{3}+\sqrt{3}\right]\left[\frac{2}{\sqrt{3}}+\sqrt{3}+\sqrt{3}\right] \\
& =\frac{1}{8} \cdot \frac{8}{\sqrt{3}} \cdot \frac{8}{\sqrt{3}}=\frac{8}{3}
\end{aligned}
$$

For the 15-pole coefficient we consider the diagram (Fig. B.2) and use (A.36a) and (A. 3) for vertices 1 and 2 respectively. Thus, we obtain,

$$
\langle 15 \mid 15\rangle=\frac{1}{8}\left[-\frac{3}{\sqrt{2}}-\frac{1}{2 \sqrt{2}}-\frac{1}{2 \sqrt{2}}\right]\left[-\frac{3}{\sqrt{2}}-\frac{1}{2 \sqrt{2}}-\frac{1}{2 \sqrt{2}}\right]=1 .
$$

For 6* we use Fig. B. 3 and consider for the vertices 1 and 2 the Lagrangians (A.37a) and (A.37b) and obtain the following:

$$
\left\langle\underline{6}^{*} \mid 6^{*}\right\rangle=\frac{1}{2}\left[\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right]\left[\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right]=1
$$

Thus, collecting all the above pole-coefficients we have

$$
\begin{equation*}
\langle 2 \mid Z\rangle=\frac{8}{3} ; \quad\langle 15 \mid 15\rangle=1 ; \quad\left\langle 6^{*} \mid 6^{*}\right\rangle=1 \tag{B.4}
\end{equation*}
$$

In the Baryon mass-splitting calculations, we consider the scattering of Baryons (Octet as well as Decouplet) and Mesons (Pseudoscalar Monet as well as vector Monet). The BU (3) coupling coefficients which are required correspond to the Baryong Octet and Decouplet poles in the direct channel. Following the method discussed earlier in this appendix we calculate all the $80(3)$ coupling coefficients that are required in the above mentioned calculations. For this purpose, we have to consider the following uncrossed Feynman diagrams:

Fig. B. 7

Fig. B. 8

Fig. B. 9

Fig. B. 10

Fig. 1.11

Where, P, V denote the pseudoscalar and vector octet reapectively and B, D the baryon octet and decouplet respectively. $\mathbf{P}_{0}, \mathbf{V}_{0}$ are respectively the pseudoscalar and vector singlet.

To calculate the Octet and Becouplet pele coefficients for the pracesses involving pseudoscalar mesons (Octet or siaglet) we can follow the same procedure as we used in the case of quarkmeson scattering process. As an example, let us calculate the baryon Octet pole coefficient in the process PB \rightarrow PB (Fig.B.4). For that purpose, we constinuct the following states ${ }^{67 \text {) }}$:

$$
\begin{aligned}
\mid B ; 000> & =\frac{1}{\sqrt{5}}\left[\frac{1}{2}\left|P_{1} B_{8}>-\frac{1}{2}\right| P_{2} B_{7}>-\left|P_{s} B_{5}>+\right| P_{4} B_{4}>\right. \\
& \left.\left.-\left|P_{5} B_{8}>-\right| P_{6} B_{6}\right\rangle-\frac{1}{2}\left|P_{7} B_{8}\right\rangle+\frac{1}{2}\left|P_{8} B_{1}\right\rangle\right]
\end{aligned}
$$

$$
\begin{equation*}
|8 ; 000\rangle=\frac{1}{2}\left[\left|P_{1} B_{8}\right\rangle-\left|P_{2} B_{7}\right\rangle+\left|P_{7} B_{2}\right\rangle-\left|P_{8} B_{1}\right\rangle\right] \tag{B.6}
\end{equation*}
$$

where $8,8^{2}$ denote the symmetric and antisymmetric octet representation respectively.

Using (B.5) and (B.6) we obtain from (A.38b) the following Baryon Octet pole coefficients:

$$
\begin{aligned}
\langle 8 \mid 8\rangle= & \frac{1}{5}\left\{-\frac{1}{2 \sqrt{6}}-\frac{1}{2 \sqrt{6}}+\frac{\sqrt{2}}{\sqrt{3}}+\frac{\sqrt{2}}{\sqrt{3}}+\frac{\sqrt{2}}{\sqrt{3}}+\frac{\sqrt{2}}{\sqrt{3}}+\frac{\sqrt{3}}{2 \sqrt{2}}\right. \\
& \left.+\frac{\sqrt{3}}{2 \sqrt{2}}\right\}\left\{-\frac{1}{2 \sqrt{6}}-\frac{1}{2 \sqrt{6}}+\frac{\sqrt{2}}{\sqrt{3}}+\frac{\sqrt{2}}{\sqrt{3}}+\frac{\sqrt{2}}{\sqrt{3}}+\frac{\sqrt{2}}{\sqrt{3}}\right. \\
& \left.+\frac{\sqrt{3}}{2 \sqrt{2}}+\frac{\sqrt{3}}{2 \sqrt{2}}\right\} \\
= & \frac{1}{5} \cdot \frac{10}{\sqrt{6}} \cdot \frac{10}{\sqrt{6}}-\frac{10}{3} \\
\left\langle 8^{7}\right| 8^{2}>= & \frac{1}{4}\left\{-\frac{1}{\sqrt{6}}-\frac{1}{\sqrt{6}}-\frac{\sqrt{3}}{\sqrt{2}}-\frac{\sqrt{3}}{\sqrt{2}}\right\}\left\{-\frac{1}{\sqrt{6}}-\frac{1}{\sqrt{6}}-\frac{\sqrt{3}}{\sqrt{2}}-\frac{\sqrt{3}}{\sqrt{2}}\right\} \\
& =\frac{1}{4} \cdot-\frac{6}{\sqrt{6}} \cdot-\frac{8}{\sqrt{6}}=\frac{8}{3}
\end{aligned}
$$

$$
\left\langle 8^{3} \mid 8\right\rangle=\frac{1}{2} \cdot \frac{1}{\sqrt{5}} \cdot\left(-\frac{8}{\sqrt{6}}\right) \cdot \frac{10}{\sqrt{6}}=-\frac{4 \sqrt{5}}{3}
$$

For the Decouplet pole coefficient corresponding to the same process (Fig. B.10) we construct the following state:

$$
\begin{equation*}
\left.\mid 10 ; 00-2>=\frac{1}{\sqrt{2}}\left[\left|P_{7} B_{8}>-\right| P_{8} B_{7}\right\rangle\right] \tag{B.7}
\end{equation*}
$$

Then, using (B.7) we have from (A.4Ob) and (A.40a)

$$
\langle 10 \mid 10\rangle=\frac{1}{2}[1+1][1+1]=2
$$

The above results have been checked against those calculated by a number of authors ${ }^{19,68)}$. Following the above procedure we can calculate all the relevant $\operatorname{sU}(3)$ coefficients corresponding to the processes involving only the pseudoscalar mesons at both the vertices. For the processes involving vector meson (0etet or Singlet) at both the vertices or vector meson at one vertex and pseudoscalar meson at the other the situation is, however, slightly different owing to the occurrence _ of two types of couplings (Chapter I section 3). For this specific purpose, we write the relevant vertices in the following form:

For the vector (Octet) at the final vertex we write:

$$
\begin{equation*}
\mathcal{L}_{2}\left(\bar{B} \phi_{\mu}^{*} B\right)=\alpha^{1} \mathcal{L}\left(\bar{B} \phi_{\mu}^{*} B\right)_{F}+\beta^{\prime} \mathscr{L}\left(\bar{B} \phi_{\mu}^{*} B\right)_{D}+\frac{2}{3} F \tag{B.8a}
\end{equation*}
$$

Similarly for the vector octet at the initial vertex we have,

$$
\begin{equation*}
\mathcal{L}_{2}\left(\bar{B} \phi_{\mu} B\right)=\alpha \mathscr{L}\left(\bar{B} \phi_{M} B\right)_{P}+\beta \mathcal{L}\left(\bar{B} \phi_{M} B\right)_{D}+\frac{2}{3} F \tag{B.8b}
\end{equation*}
$$

Again, for the vector singlet at the final and initial vertices we write mespectively,

$$
\begin{align*}
& \mathscr{L}_{1}\left(\bar{B}_{\mu}^{0} B\right)=\alpha_{0} \mathcal{L}\left(\bar{B} \phi_{\mu}^{0} B\right)+\beta^{2} \cdot \mathcal{L}\left(\bar{B} \phi_{\mu}^{0} B\right) \tag{B.9b}
\end{align*}
$$

In the above, α, β are the kinematic factors of the vertices concerned. For the Becouplet, on the other hand, the vertices are of the same form as with the pseudoscalar mesons. So, we need to calculate the coefficients corresponding to only one type of meson. Having discussed the relevant procedures and the notations, we present the results in the following tables:

Table B 1: B-pole coefficients in the direct channel:

PROCRESS	POLRES	POLR	COHFPICIENTS
$\mathrm{FB} \longrightarrow \mathrm{PB}$	$8 \longleftrightarrow 8$		10/3
	$8^{\prime} \longmapsto 8$		$+4 \sqrt{5 / 3}$
	$8^{2} \longmapsto 8^{\prime}$		8/3

Table B 1: B-pole coefficients in the direct channels:

FROCESS	POLES	POLS COLFITCLEHMS
$\mathrm{PB} \rightarrow \mathrm{PB}$	$8 \longleftrightarrow 8$ $8 \longleftrightarrow 8^{8}$	$\begin{array}{r} -5 / \sqrt{3} \\ -2 \sqrt{5} / \sqrt{3} \end{array}$
$\mathrm{PB} \leftrightarrow \mathrm{P}_{0} \mathrm{~B}$	$\begin{aligned} & 8 \leftrightarrow 8 \\ & 8 \leftrightarrow 8^{7} \end{aligned}$	$\begin{aligned} & 2 \sqrt{5 / 3} \sqrt{6} \\ & +4 / 3 \sqrt{6} \end{aligned}$
$\begin{aligned} P D & \leftrightarrow P D \\ P_{0} B & \leftrightarrow P_{0} B \\ P_{0} B & \leftrightarrow P D \end{aligned}$	$\begin{aligned} 8 & \leftrightarrow 8 \\ 88 & \leftrightarrow 8 \\ 8 & \leftrightarrow 8 \end{aligned}$	$\begin{gathered} 5 / 2 \\ 1 / 9 \\ -\sqrt{5} / 3 \sqrt{2} \end{gathered}$
PB $\leftrightarrow \mathbf{V B}$	$\begin{aligned} & 8 \leftrightarrow 8 \\ & 8^{\prime} \leftrightarrow 8 \\ & 8^{\prime} \leftrightarrow 8^{\prime} \end{aligned}$	$\begin{gathered} 10 \beta!/ 3 \\ +2 \sqrt{5} \alpha^{2}+4 \sqrt{5} \beta^{\prime} / 3 \\ 4 \alpha^{2}+8 \beta^{\prime} / 3 \end{gathered}$
$P B \leftrightarrow V_{0} B$	$\begin{aligned} & 8 \leftrightarrow 8 \\ & 8 \leftrightarrow 8^{8} \end{aligned}$	$\begin{gathered} 2 \sqrt{5} \alpha^{\prime} / \sqrt{6}+2 \sqrt{5} \beta^{\prime} / 3 \sqrt{6} \\ +4 \alpha^{2} / \sqrt{6}+4 \beta^{\prime} / 3 \sqrt{6} \end{gathered}$
$P B \leftrightarrow$ VD	$\begin{aligned} & 8 \leftrightarrow 8 \\ & 8 \leftrightarrow 8 \end{aligned}$	$\begin{gathered} -5 / \sqrt{3} \\ -2 \sqrt{5} / \sqrt{3} \end{gathered}$
$P_{0} B \leftrightarrow \sqrt{B}$	$\begin{aligned} & 8 \leftrightarrow 8 \\ & 8^{\prime} \leftrightarrow 8 \end{aligned}$	$\begin{gathered} 2 \sqrt{5} \beta^{\prime} / 3 \sqrt{6} \\ +\sqrt{6} \alpha^{2} / 3+2 \sqrt{2} \beta^{2} / 3 \sqrt{3} \end{gathered}$
$P_{0} B \leftrightarrow \nabla_{0} B^{\prime}$	$8 \longleftrightarrow 8$	$\alpha^{2} / 3+\beta^{2} / 9$
$\mathbf{P}_{\mathbf{O}} \mathbf{B} \leftrightarrow \mathrm{VD}$		$-\sqrt{5 / 3} \sqrt{2}$

Process	POLES	FOLS COLAFPICIMNES
PD \mapsto VB	$\begin{aligned} & 8 \leftrightarrow 8 \\ & 8^{2} \leftrightarrow 8 \end{aligned}$	$\begin{gathered} -5 \beta^{\prime} / \sqrt{3} \\ -\sqrt{15 \alpha^{2}} 42 \sqrt{5 \beta^{\prime} / \sqrt{3}} \end{gathered}$
$\begin{aligned} & \mathrm{FD} \leftrightarrow \mathrm{~V}_{\mathrm{B}} \mathrm{~B} \\ & \mathrm{PD} \mapsto \mathrm{VD} \end{aligned}$	$\begin{aligned} & 8 \longleftrightarrow 8 \\ & 8 \leftrightarrow 8 . \end{aligned}$	$\begin{gathered} -\sqrt{5} \alpha^{\prime} / \sqrt{2}-\sqrt{5} \beta^{\prime} / 3 \sqrt{2} \\ 5 / 2 \end{gathered}$
VB \longleftrightarrow VB	$\begin{aligned} & 8 \leftrightarrow 8 \\ & 8^{\prime} \leftrightarrow 8 \\ & 8^{\prime} \leftrightarrow 8^{\prime} \end{aligned}$	$\begin{gathered} 10 \beta \beta^{\prime} / 3 \\ +2 \sqrt{5 \alpha^{\prime} \beta+4 \sqrt{5} \beta^{\prime} \beta / 3} \\ 6 \alpha^{\prime} \alpha+4 \alpha^{\prime} \beta+4 \alpha \beta^{\prime}+8 \beta^{\prime} \beta / 3 \end{gathered}$
$V B \longmapsto \nabla_{0}{ }^{\text {B }}$	$\begin{aligned} & 8 \leftrightarrow 8 \\ & 8 \longleftrightarrow 8^{\circ} \end{aligned}$	$\begin{gathered} 2 \sqrt{5} \alpha^{\prime} \beta / \sqrt{6}+2 \sqrt{5 \beta^{\prime} \beta / 3 \sqrt{6}} \\ +\sqrt{6} \alpha^{\prime} \alpha+4 \alpha^{\prime} \beta / \sqrt{6}+2 \beta^{\prime} \alpha / \sqrt{6}+4 \beta^{\prime} \beta / 3 \sqrt{6} \end{gathered}$
$V \mathrm{~B} \leftrightarrow \mathrm{WD}$	$\begin{aligned} & 8 \leftrightarrow 8 \\ & 8 \leftrightarrow 8^{\prime} \end{aligned}$	$\begin{gathered} -5 \beta / \sqrt{3} \\ -\sqrt{15} \propto 2 \sqrt{5 \beta / \sqrt{3}} \end{gathered}$
$\begin{gathered} V_{0} B \leftrightarrow V_{0} B \\ V_{0} B \leftrightarrow V_{D} \\ V_{D} \leftrightarrow V_{D} \end{gathered}$	$\begin{aligned} & 8 \longleftrightarrow 8 \\ & 8 \longleftrightarrow 8 \end{aligned}$	$\begin{gathered} \alpha^{2} \alpha+\alpha^{3} \beta / 3+\beta^{\prime} \alpha / 3+\beta^{\prime} \beta / 9 \\ -\sqrt{5} \alpha / \sqrt{2}-\sqrt{5} \beta / 3 \sqrt{2} \\ 5 / 2 \end{gathered}$

Table B 2: D-pole Coefficients in the direct channel:

Process	POLES	POLT	COLHPICIENTS
PB \longleftrightarrow PB	$10 \longleftrightarrow 10$		2
$\mathrm{PB} \longleftrightarrow \mathrm{FD}$	$10 \longleftrightarrow 10$		$4 / \sqrt{6}$
$\mathrm{PD} \longleftrightarrow \mathrm{PD}$	$10 \longleftrightarrow 10$		4/3
$\mathbf{P}_{0} \mathbf{D} \longleftrightarrow$ PB	$10 \longleftrightarrow 10$		$+\sqrt{2 / 3}$
$\mathbf{P}_{0} \mathrm{D} \longleftrightarrow \mathrm{PD}$	$10 \longleftrightarrow 10$		$+2 / 3 \sqrt{3}$
$\mathbf{P}_{0} \mathrm{D} \longleftrightarrow \mathrm{P}_{0} \mathrm{D}$	$10 \longleftrightarrow 10$		1/9

APPMMIBTX C

Helicity Formalism and Rotation Matrices

When dealing with the scattering of particles having spins it is always convenient to work with the helicity representations of the scattering amplitudes. In order to obtain that one has to construct the helicity states of free particles and this appendix will be devoted to that purpose. In our calculations, we are concerned with the two-particle scatterings and consequently we require the helicity states of the two-particle systems. First, we shall discuss the helicity states of those single free-partiales which we encounter in our calculations and then construct the helicity states of the two-particle systems in the form which can be convenientily used in obtaining the helicity representations of the scattering amplituces. While discussing the helicity states of the free particles we assume that the threecomponent momenta of the particlpes are in the $x z$-plane so that we can set the azimuthal angle $1 m 0$ in our calculations. The inclusion of ϕ in the representation, in fact, does not make any difference in the final results of the calculation when one is working in the centre of mass systems. As regards the phases and the nommalisations of the helicity states we shall mostly follow the conventions used by Jacob and Wick ${ }^{58}$).

1. Helicity states of spin $\frac{1}{2}$ particles :

The four-component positive-energy spinor u with momentum \mathfrak{p} is,

$$
u_{\lambda}(p)=\frac{1}{\sqrt{2 m(\mathbb{R}+m)}}\left|\begin{array}{l}
E+m \tag{C.I}\\
\alpha \cdot p
\end{array}\right| x_{\lambda}
$$

where $E=\sqrt{p^{2}+m^{2}} ;(\sigma \cdot p) x_{\lambda}=2|p| \lambda \cdot x_{\lambda}$, where λ is called the helicity of the particle. For spin $\frac{1}{2}$ particle we have $\lambda= \pm \frac{1}{2}$. The normalisation constant is so chosen that una $u^{+} \gamma_{0}=I_{\text {a }}$ In (C.I) m is the mass of the spin $\frac{1}{2}$ particle and $\dot{\sim}^{2} s$ are the familiar Pauli matrices. For the momentum \mathbf{R} in the z-direction, the helicity states X_{λ} are well known and given by,

$$
\begin{equation*}
x_{\frac{1}{2}}=\binom{1}{0} \quad x_{-\frac{1}{2}}=\binom{0}{1} \tag{c.2}
\end{equation*}
$$

The melicity states corresponding to the momentum p in a direction making an angle θ with the positive z-direction can be obtained by applying rotation around the y-axis. This is given by the following relation,

$$
\begin{equation*}
x_{\lambda}=\sum d_{\lambda^{\prime} \lambda}^{\frac{1}{2}}(\theta) x_{\lambda} \tag{c.3}
\end{equation*}
$$

where $d_{\lambda^{\prime} \lambda^{2}}^{\frac{1}{2}}(\theta)$ is the matrix representation of a rotation by an angle θ around the Y-axis. This is given by ${ }^{60}$,

$$
d_{\lambda}^{\frac{1}{2}}(\theta)=\begin{array}{lll}
\frac{1}{2} & \cos \theta / 2 & -\sin \theta / 2 \tag{c.4}\\
-\frac{1}{2} & \sin \theta / 2 & \cos \theta / 2
\end{array}
$$

ring (C.2) and (C.4), the representation of the helieity states of a spin $\frac{2}{2}$ particle with momentum in a direction making an angle θ with the z-axis are obtained from (C.3).

$$
x_{\frac{1}{2}}=\left|\begin{array}{l}
\cos \theta / 2 \tag{C.5}\\
\sin \theta / 2
\end{array}\right| \quad x_{2}=\left|\begin{array}{c}
\sin \theta / 2 \\
\cos \theta / 2
\end{array}\right|
$$

While working in the com. system, one requires the representations of the helicity states corresponding to the momentum F_{m} in a direction making an angle θ° with the positive z-direction, where $\theta^{*} \pi$ or $\pi+\theta$. In such a case the corresponding felicity states are obtained from the following relation

$$
\begin{equation*}
x_{\lambda}=\sum_{\lambda^{s}}(-1)^{s-\lambda} d_{\lambda^{i} \lambda}^{s}(\theta) x_{\lambda} \tag{C.6}
\end{equation*}
$$

where s is the spin of the particle. Here, the phase factor $(-1)^{s-\lambda}$ is introduced for convenience in such a way that for the particle at rest $|p|=0$, the helicity states corresponding to the momentum in the negative $z(\pi+\theta)$ direction reduce to those corresponding to the momentum in the positive $z(\theta)$ direction.

Thus, using (c.2) and (c.4) the helicity states corresponding to the momentum p in the negative z-direction are obtained from (c.6) given by

$$
\begin{equation*}
x_{\frac{1}{2}}=\binom{0}{1} \quad x_{-\frac{1}{2}}=\binom{1}{0} \tag{c.7}
\end{equation*}
$$

The helicity atates corresponaing to the momentum p in $\boldsymbol{\pi}+\boldsymbol{\theta}$ direction can be, similarly, obtained and are,

$$
x_{\frac{1}{2}}=\left|\begin{array}{c}
-\sin \theta / 2 \tag{c.8}\\
\cos \theta / 2
\end{array}\right|, \quad x_{-\frac{1}{2}}=\left|\begin{array}{l}
\cos \theta / 2 \\
\sin \theta / 2
\end{array}\right|
$$

2. Helicity states of spin 1 particles:

Let us _now discuss the representations of the helicity states of a spin 1 particle corresponding to the different situations discussed just above. Here, there are three helicity states which are given by,

$$
\begin{equation*}
\epsilon^{(\pm)}=\left\{0, \eta^{(\pm)}\right\} ; \epsilon^{(0)}=\frac{1}{\mu}\left\{|k|, \infty \eta^{(0)}\right\} \tag{0.9}
\end{equation*}
$$

where μ is the mass of the particle and ω is the energy such that $\omega=\sqrt{|k|^{2}+\mu^{2}}$. For thie momentum $\underset{\sim}{k}$ in the positive z-direction, the representations of the three-component polarization vectors
$\eta^{(+)}, \eta^{(0)}$ are given by,

$$
\eta^{(+)}=\frac{1}{\sqrt{2}}\left|\begin{array}{c}
-1 \\
-1 \\
0
\end{array}\right| ; \quad \eta^{(0)}=\left|\begin{array}{l}
0 \\
0 \\
1
\end{array}\right| ; \quad \eta^{(-)}=\frac{1}{\sqrt{2}}\left|\begin{array}{c}
1 \\
-i \\
0
\end{array}\right|
$$

The helicity states corresponding to other three situations discussed in comection with apin $\frac{1}{2}$ particles can be obtained by using (c.9) and (c.10) from the relations similar to (c.3) and (c.6), the rotation matrix $d_{\lambda^{\prime} \lambda}^{1}(\theta)$ in this case being,

Thus, for the momentum $\underset{\sim}{\mathbb{k}}$ in a direction making an angle θ with the positive z-direction, the representations of the polarization vectors $\eta_{1}^{(\dagger)} \eta^{(0)}$ are,

$$
\begin{gather*}
\eta^{(+)}=\frac{1}{\sqrt{2}}\left|\begin{array}{cc}
-\cos \theta \\
-1 \\
\sin \theta
\end{array}\right| \AA^{(0)}=\left|\begin{array}{c}
\sin \theta \\
0 \\
\cos \theta
\end{array}\right| \\
\eta^{(-)}=\frac{i}{\sqrt{2}}\left|\begin{array}{c}
\cos \theta \\
-1 \\
-\sin \theta
\end{array}\right| \tag{c.12}
\end{gather*}
$$

Taking into account the phase-factor discussed above, the
 the negative z-direction are,

$$
\eta^{(+)}=\frac{1}{\sqrt{2}}\left|\begin{array}{c}
1 \tag{0.13}\\
-1 \\
0
\end{array}\right| ; \quad \eta^{0}=\left|\begin{array}{l}
0 \\
0 \\
1
\end{array}\right| \quad \eta^{(-)}=\frac{1}{\sqrt{2}}\left|\begin{array}{c}
-1 \\
-1 \\
0
\end{array}\right|
$$

where, $\epsilon^{(0)}=\frac{-1}{\mu}\left\{|k|,-\infty \eta^{(0)}\right\}$
Following the similar procedure corresponding to the momentum $\underset{\sim}{\mathrm{k}}$ in the direction $\theta+\pi$ with the z-axis we have,

$$
\begin{gather*}
{\underset{\eta}{ }}_{(+)}=\frac{1}{\sqrt{2}}\left|\begin{array}{c}
\cos \theta \\
-i \\
-\sin \theta
\end{array}\right| \quad \eta^{(0)}=\left|\begin{array}{c}
\sin \theta \\
0 \\
\cos \theta
\end{array}\right| \\
\eta^{(-)}=\frac{1}{\sqrt{2}}\left|\begin{array}{c}
-\cos \theta \\
-i \\
\sin \theta
\end{array}\right| \tag{c,14}
\end{gather*}
$$

With, $\quad \epsilon^{(0)}=\frac{-1}{\mu}\left\{|k|,-\infty \eta^{(0)}\right\}$
3. Helicity states of spin 3/2 particles:

The four helicity states corresponding to the spin $3 / 2$ particles are obtained by taking the vector addition of the helicity states off the spin $\frac{1}{2}$ and spin 1 particles. Corresponding to the four situations described above, there will be four sets of such states. If s_{λ} denotes a helicity state of spin $3 / 2$ particles, then corresponding to any of the four-combinations that we can obtain we have,

$$
\begin{align*}
& s_{3 / 2}=u_{\frac{1}{2}} \cdot \epsilon^{(+)} \\
& \xi_{\frac{1}{2}}=\frac{1}{\sqrt{3}}\left\{u_{-\frac{1}{2}} \epsilon^{(+)}+\sqrt{2} u_{\frac{1}{2}} \epsilon^{(0)}\right\} \tag{C.15}\\
& \xi_{-\frac{1}{2}}=\frac{1}{\sqrt{3}}\left\{u_{\frac{1}{2}} \epsilon^{(-)}+\sqrt{2} u_{\frac{1}{2}} \epsilon^{(0)}\right\} \\
& \xi_{-3 / 2}=u_{-\frac{1}{2}} \epsilon^{(-)}
\end{align*}
$$

We shall also require the matrix $d_{\lambda^{\prime} \lambda}^{3 / 2}(\theta)$, the elements of which are obtained from (c.4) and (C.1l) with the help of the related ClebschGordon coefficients ${ }^{60}$). Thus, we obtain the following:
4. Two-particle states and helicity representation of the scattering amplitudes:

Let us construct the felicity states of two free particles 1 and 2 with masses m_{1} and m_{2}, and spins s_{1} and s_{2}. These states may, of course, be constructed as direct product $\mathbb{R}_{\phi_{1}, \theta_{1},-\phi_{1}}^{(1)} \phi_{p_{1} \lambda_{1}}$
${ }_{R_{\phi_{2}}, \theta_{2},-\phi_{2}}^{(2)}{ }_{P_{2} \lambda_{2}}$ of the individual states of the above particles, where ${ }_{R_{\phi_{1}}^{(i)}, \theta_{i},-\phi_{i}}$ are the rotation operators corresponding to the rotations by the Faler's angles $\phi_{i}, \theta_{i}, \boldsymbol{-}_{i}$, operating on the $i-t h$ particle. When one is dealing with a scattering problem one works in the C.M. system of the two particles. In C.M. system, we have $p_{1}=-p_{2}=p$ with zero total linear momentum. If the linear momentum p is directed along a direction defined by the angles θ, ϕ, then $\theta_{1}=\theta, \phi_{1}=$ and $\theta_{2}=\pi-\theta_{2}= \pm \pm$ and the two rotations $R^{(1)}$ and $R^{(2)}$ can be replaced by a single rotation R involving the total angalar momentum $\underset{\sim}{J}={\underset{\sim}{2}}^{J}+J_{2}$ of the two particles. In order to obtain that one usualiny takes the relative momentum p of the two-particles in the C. 㯰. system along the g-axis. Taking into account for one of the two particles the phase-factors discussed earlier in this appendix we can define a preduct state for the two particles,

$$
\begin{equation*}
\phi_{p \lambda_{1} \lambda_{2}}=\phi_{p \lambda_{1}(1)^{x} p \lambda_{2}(2)} \tag{c.17}
\end{equation*}
$$

where the relative momentum is directed, along the positive z-direction. States with the direction of p defined by the angles θ - are obtained by applying a rotation,

$$
\begin{equation*}
\left|p \theta \phi, \lambda_{1} \lambda_{2}\right\rangle-R_{\phi, \theta,-\phi} \phi_{p \lambda_{2} \lambda_{2}}=e^{i \lambda \phi} R_{\phi \theta 0} \phi_{p \lambda_{1} \lambda_{2}} \tag{c.18}
\end{equation*}
$$

where, $\lambda=\lambda_{1}-\lambda_{2}$ is the resultant angular momentam of the two particle system, the particle mumbered 2 having been taken initially with momentum in the negative z-direction.

How, the method of constructing a state of two particles having definite helicities, relative momentum \mathcal{P}; total angular momentum J with $J_{z}=M$ is well known. Such a state is constructed as follows:
$\left|\mathrm{p} ; \mathrm{J} M \lambda_{1} \lambda_{2}\right\rangle=\frac{N}{2 \pi} \int \underset{\sim}{d u} \mathrm{P}_{\mathrm{Ma}}^{*}(\alpha \beta \gamma) \mathrm{R}_{\alpha \beta \gamma} \boldsymbol{\phi}_{\mathrm{p} \lambda_{1} \lambda_{2}}$
where $R_{\alpha \beta \gamma}$ is a rotation operator corresponding to a rotetion
 corresponding representation and: is given by,

$$
\begin{equation*}
p_{1 \lambda \lambda}(\alpha \beta \gamma)=e^{-i M \alpha} \alpha_{1 \Omega}^{J}(\beta) e^{-i \lambda \gamma} \tag{c.20}
\end{equation*}
$$

The integral in (c.19) extends to thre region $0<\alpha<2 \pi, 0<\beta<\pi$, $0<\gamma<2 \pi$ and $\quad d u=\sin \beta d \alpha d \beta d \gamma$.

How, substituting (c.18) into (c.19) and performing the integration over one "\& wave,

$$
\begin{equation*}
\mid \mathrm{p} ; \text { Ј м } \lambda_{1} \lambda_{2}>=\mathbb{M} \int \mathrm{D}_{\mathrm{M} \cdot}^{*}(\phi, \theta,-\phi) \mid \mathrm{p} \theta \phi ; \lambda_{1} \lambda_{2}>d \Omega \tag{c.21}
\end{equation*}
$$

where $d \Omega=\sin \theta d \theta d \phi$.

How for the product state $\left|p_{1} p_{2} \lambda_{2} \lambda_{2}\right\rangle$ with the independent momenta for the two particles we assume the following normalisation,

$$
\begin{equation*}
\left\langle p_{1}^{\prime} p_{2}^{\prime} \lambda_{1}^{\prime} \lambda_{2}^{\prime} \mid p_{1} \underline{L}_{2} \lambda_{1} \lambda_{2}\right\rangle=8\left(p_{1}-p_{1}^{\prime}\right) 8\left(p_{2}-p_{2}^{\prime}\right) \delta_{\lambda_{1}} \lambda_{1} \delta_{\lambda_{2}} \lambda_{2}^{\prime} \tag{c.22}
\end{equation*}
$$

Then introducing the new variables $P_{\mu} \equiv\left(P_{0}, P\right)$ with $P_{0} F_{1}+F_{2}$ and $\underset{\sim}{P}=\mathcal{E}_{1}+\mathcal{E}_{2}$ and the two polar angles θ, ϕ to specify the
 matrix s corresponding to the two -particle scattering can be written in the form:

$$
\begin{align*}
& \left.x<\theta^{\prime} \phi^{\prime} \lambda_{1}^{\prime} \lambda_{2}^{\prime}|\theta| \theta \phi \lambda_{1} \lambda_{2}\right\rangle \tag{c.23}
\end{align*}
$$

where, $v p$ and v^{\prime}, p^{\prime} are the magnitudes of relative velocity and the momentum in the C.M. system of the initial and the final states respectively.

Equation (c.22) together with (c.23) then fixes the following normalisation:

$$
\begin{gathered}
\left\langle\theta^{\prime} \phi^{\prime} \lambda_{1}^{\prime} \lambda_{2}^{\prime} \mid \theta \phi \lambda_{1} \lambda_{2}\right\rangle=8\left(\cos \theta-\cos \theta^{\prime}\right) 8\left(\phi-\phi^{\prime}\right) \delta_{\lambda_{2} \lambda_{1}^{\prime}} \delta_{\lambda_{2} \lambda_{2}^{\prime}} \\
\text { (c.24) }
\end{gathered}
$$

The orthogonality relation of the rotation $D(\alpha \beta \gamma)$ is,
(C.25)

From (C.25) 'we obtain,

$$
\begin{equation*}
\int_{0}^{\pi} d_{m \mu}^{j}(\beta) d_{m l^{\prime}}^{j^{\prime}}(\beta) \sin \beta d \beta=\frac{2}{2 j+1} \delta_{j J \prime} \tag{c.26}
\end{equation*}
$$

Also, we have,

$$
\frac{1}{2} \sum_{j}(2 j+1) \alpha_{m \mu}^{j}(\beta) d_{m \mu}^{j}\left(\beta^{\prime}\right)=8\left(\cos \beta-\cos \beta^{\prime}\right) \quad \text { (C.27) }
$$

Now, using (C.24) - (C.26) we obtain from (C.21) the following normalisation:
where we have chosen $\mathbb{H}_{J}=\{(2 J+1) / 4 \pi\}^{\frac{1}{2}}$. Again, using (c.24) the transformation matrix obtained from (c.21) is, .

$$
\left\langle\theta \phi \lambda_{1}^{\prime} \lambda_{2}^{\prime} \mid J M \lambda_{1} \lambda_{2}\right\rangle=耳_{J} \delta_{\lambda_{1} \lambda_{1}^{\prime}}{ }^{\delta} \lambda_{2} \lambda_{2}^{\prime} D_{M \lambda}^{J^{*}}(\phi, \theta,-\phi) \quad \text { (c.29) }
$$

where $\lambda=\lambda_{1}-\lambda_{2}$ and H_{J} is given as in (c.28).
The above ($\mathbf{C} .29$) transformation matrix satisfies the following unitarity conditions:

$$
\begin{align*}
& \int d \Omega<\theta \phi \lambda_{1} \lambda_{2}\left|J M \lambda_{1} \lambda_{2}><\theta \phi \lambda_{1} \lambda_{2}\right| J^{2} M^{p} \lambda_{1} \lambda_{2}>*=\delta_{J J^{\prime}} \delta_{3 M M^{4}} \\
& \text { (0.30a) } \\
& \sum_{J M}<\theta \phi \lambda_{1} \lambda_{2}\left|J M \lambda_{1} \lambda_{2}><\theta^{9} \phi^{2} \lambda_{1} \lambda_{2}\right| J M \lambda_{1} \lambda_{2}>{ }^{*} \sigma\left(\cos \theta-\cos \theta^{\theta}\right) \\
& \times 8\left(\phi-\phi^{2}\right) \tag{c.30b}
\end{align*}
$$

5. Representations of $\mathrm{a}^{\mathrm{J}}(\theta)$ matrices in terms of the Legendre polynomials:

In order to obtain the partial wave amplitude one needs to express the matrices $\alpha^{J}(\theta)$ in terms of the Legendre polynomials $P_{\ell}(\cos \theta)$. The following matrices are required for our purpose:

$$
\begin{aligned}
& {\underset{\text { did }}{2}}_{J}^{d}(\theta)=\frac{1}{2 \cos \theta / 2}\left[P_{J+\frac{1}{2}}+P_{J-\frac{1}{2}}\right] \\
& d_{3 / 2 \frac{1}{2}}^{J}(\theta)=\frac{\left[\left(J-\frac{1}{2}\right)(J+3 / 2)\right]^{\frac{1}{2}}}{4(1+\cos \theta) \sin \theta / 2}\left[\frac{1}{J+1} \cdot P_{J+3 / 2}+\frac{1}{J} P_{J}+\frac{1}{2}\right. \\
& \left.-\frac{1}{J+1} P_{J-\frac{1}{2}}-\frac{1}{J} P_{J-3 / 2}\right] \\
& \alpha_{3 / 2}^{J}{ }_{3 / 2}(\theta)=\frac{1}{4(1+\cos \theta) \cos \theta / 2}\left[\frac{J-\frac{1}{2}}{J+1} P_{J+3 / 2}+\frac{3\left(J-\frac{1}{2}\right)}{J} P_{J+\frac{1}{2}}\right. \\
& \left.+\frac{3(J+3 / 2)}{J+1} P_{J-\frac{1}{2}}+\frac{(J+3 / 2)}{J} P_{J-3 / 2}\right]
\end{aligned}
$$

The other elements of $\mathrm{a}^{\mathrm{J}}(\theta)$ are obtained from (A. 3l) using the following symmetry relations:

$$
\begin{align*}
& { }_{d_{\lambda \mu}}^{J}(\theta)=(-1)^{J+\lambda}{ }_{d_{\lambda,-\mu}}^{J}(\pi-\theta) \tag{c.32}
\end{align*}
$$

The above representations of the matrices $\mathrm{a}^{\mathrm{J}}(\theta)$ will be very often used in the calculations of exchanged Born terms.

APPENDIX

Some Useful Relations for the Calculations of Exchange Born Terms

$$
\begin{align*}
& \text { We have, } \\
& \mathrm{F}^{*}=\mathrm{E}-\mathrm{W} ; \mathrm{k}^{1}-2 \mathrm{k} \cos \theta / 2 ; \mathrm{K}^{2}=\mathrm{k}^{2}+\mathrm{m}^{2} \\
& a_{1}=\left(x^{2}+m\right) k-(E+m) k^{2} ; \quad a_{2}=\left(E^{2}+m\right) k+(E+m) k^{2} \tag{D.2}\\
& a_{3}=(E+m)\left(E^{\prime}+m\right)-k k^{2} ; a_{4}=(E+m)\left(E^{1}+m\right)+k k^{1} \tag{D.3}\\
& E=\sqrt{k^{2}+m^{2}} ; w=\sqrt{k^{2}+\mu^{2}} \tag{3.4}\\
& \text { Let, } \\
& c=(E+m)\left(F^{1}+m\right) \tag{Di}
\end{align*}
$$

Then using the above relations we obtain the following:

$$
\begin{align*}
& \left.\begin{array}{c}
a_{1}^{2}+a_{2}^{2}=4 c\left(E B^{2}-m^{2}\right) ; a_{1}^{2}-a_{2}^{2}=-4 c k k^{i} \\
a_{1} \cdot a_{2}=2 m c\left(E-B^{i}\right)
\end{array}\right\} \tag{D.6}\\
& a_{s}^{2}+a_{4}^{2}=4 c\left(E E^{2}+m^{2}\right) ; a_{s}^{2}-a_{4}^{2}=-4 k k^{1} c \\
& a_{3} a_{4}=2 m c\left(E+E^{2}\right) \quad \text {, } \tag{B.7}
\end{align*}
$$

$$
\left.\begin{array}{c}
a_{1} a_{3}=2 c\left(E^{2} k-E k^{2}\right) ; a_{1} a_{4}=2 m c\left(k-k^{2}\right) \\
a_{2} a_{3}=2 m c\left(k+k^{2}\right) ; a_{2} a_{4}=2 c\left(E^{2} k+E k^{2}\right)
\end{array}\right\}
$$

$$
\left.\begin{array}{c}
a_{1}\left(a_{1} k-a_{3} E\right)+a_{2}\left(a_{2} k-a_{4} k\right)=-4 m^{2} c k \\
a_{1}\left(a_{1} k-a_{3} E\right)-a_{2}\left(a_{2} k-a_{4} k\right)=4 m^{2} c k^{\prime}
\end{array}\right\}
$$

REAFETREMGESS

1) W. Heisenberg, Z. Physik, 120 513, 673 (1943).
2) T. Regge, Fuovo Cim., 14, 951 (1959) and 18, 947 (1960)

See also, S.C. Prautschi, "Regge Poles and S-matrix Theory" W.A.Benjamin, Inc. M.Y. 1963. and,
E.J Squires, "Complex Angular Momenta and Particle Physics" W.A.Benjamin Inc. N.Y. 1963.
3) G.F.Chew and S. Mandelstam, Fhovo Cim., 12, 752 (1961).
4) F. Zachariasen, Phys. Rev. Lett., 1, 112, 268 (1961).
5) F. Zachariasen and C. Zemach, Phys. Rev., 128, 849 (1962).
6) G.F.Chew, Phys. Rev. Lett., 2, 233 (1962).
7) E. Abers and C. Zemach, Phys. Rev., 131, 2305 (1963).
8) M. Gell-Mann and Y. Ne'eman, MThe Eightfold Way", W.A.Benjamin Inc. N.Y. 1964.
9) V.S.Singh, Huovo Cim., 33, 763 (1964).
L.A.P.Balãzs, V. Singh and B.M.Udgaonkar, Phys. Rev., 139, B1313 (1965).
I.S.Gerstein and K.T.Mahanthappa, Nuovo Cim., 迆, 239 (1964).
Y. Hara, Phys. Rev., 135, Bl079 (1964), Phys. Rev., 137, Bl553 (1965)

10）R．H．Capps，Phys．Rev．，134，B1396（1964），Phys．Rev．，137，B125 （1965）and Phys．Rev．，137，B1545（1965），Phys．Rev．Lett．， 10， 312 （1963）．

11）M．Gell－Mann，Phys．Lett．，${ }^{8}$ ， 214 （1964）；G．2weig，CKRN preprint （1964）；An $\operatorname{su}(3)$ model for strong interaction symmetry and its Breaking I and II．

12）A．Salam，R．Delbourgo and J．Strathdee，Proc．Roy．Soc．A284， 146 （1965）

A．Salam，R．Delbourgo，MoA．Rashid and J．Strathdee，Proc．Roy． Soc．，A285， 312 （1965）．

13）G．F．Chew and S．Mandelstam，Phys．Rev．，119， 467 （1960）．

14）S．L．Glashow and M．Baker，Phys．Rev．，128， 2462 （1962）．
R．E．Cutkosky and P．Tarjanne，Phys．Rev．，132， 1354 （1963）． R．H．Capps，Phys．Rev．，1每4，B460（1964）．

15）S．Sakata，Prog．Theoret．Phys．g：16， 686 （1956）．

16）H．Weyl，＂The Classical Groups＂Princeton Univ．Press，Princeton， N．J． 1946.

17）M．Gell－Mann，Phys．Rev．，22， 833 （1953）．
K．Nishijima，Prog．Theoret．Phys．，13， 285 （1955）．

18）M．Hammermesh，＂Group Theory＂Addison－Wesley publishing Co．Inc． Reading，Massachusetts 1964.
19) A.W.Martin, and K.C.Wali, Phys. Rev., 130, 2455 (1963).
A.W.Martin, and K.C.Wali, Huovo Cim., 31, 1324 (1964).
20) R.E.Cutkosky, Ann. Phys., 23, 415 (1963).
21) M.A.Rashid and I.I. Yamanaka, Phys. Rev., 131, 2797 (1963).
22) Susumu Okubu, Journal of the Physical Society of Japan, 19 1507 (1964).
23) F. Glllsey and L.A.Radicati, Phys. Rev. Lett., 13, 173 (1964). B. Sakita, Phys. Rev., 136, B1756 (1964).
24) E. Wigner, Phys. Rev., 51, 106 (1937).
25) C.R.Hagen and A.J.Macfarlane, Journ. Math. Phys., 6, 1366 (1965). C. Itzkson and M. Nanenberg, Rev. Mod. Phys., 38, 95 (1966).
A. Pais, Rev. Mod. Phys., 38, 215 (1966).
26) B. Sakita, Phys. Rev. Lett., 13, 643 (1964).
T.K.Kuo and Tsu Yao, Phys. Rev. Lett., 13, 415 (1964).
A. Pais, Phys. Rev. Lett., 13, 175 (1964).
27) M.A.B.Beg and V. Singh, Phys. Rev. Letters, 13, 418 (1964).
28) C.H.Chan and A.Q.Sarker, Phys . Rev. Lett., 13, 731 (1964).
29) B. Sakita, "Higher Symmetries of Hadrons". A Review Report on Higher Symmetries. Argonne National Laboratory, Argonne, Illinois, March 1966.
30) W. Rth1, Nuovo Cim., 37, 301 (1965).
T. Fulton and J. Wess, Phys. Lett., 14, 57 (1965).
31) B. Sakita and K.C.Wali, Phys. Rev., 139, B1355 (1965).
-K. Bardacki, J.M.Cornwall, P.G.O.Freund and B.W.Lee, Phys. Rev. Lett., 14, 48 (1965).
M.A.Beg and A. Pais, Phys. Rev. Lett., 14, 267 (1965).
32) "High Fnergy Physics and Elementary Particles" International

Atomic Energy Agency Publication, Vienna, 1965.
33) R.E.Marshak and S. Okubu, Phys. Rev. Lett., 13, 817 (1964). M. Gell-Mann and R. Dashen, Phys. Rev. Lett., 17,412 (1965).
34) J.M.Charap, P.T.Matthews and R.F.Streater, Proc. Roy. Soc.,

A290, 24 (1965).
35) J.M.Janch and F. Rohrlich, "The Theory of Photons and Electrons"

Addison and Wesley Publishing Company Inc. N.Y. 1955.
36) M.A.B.Beg, Phys. Rev. Lett., 14, 509 (1965).
R. Blankenbecker, M.L.Goldberger, K. Johnson and S.B.Treiman, Phys. Rev. Lett., 14, 518 (1965).
J.E.Cornwall, P.G.O. Freund and K.T. Mahanthappa, Phys. Rev. Lett., 14, 515 (1965).
37) G. Feldman and P.T.Matthews, Phys. Rev., 151, 1176 (1966).
38) 5. Mandelstam, Phys. Rev., 112, 1344 (1958), 115, 1741, 1752, (1959).

See also G.F.Chew, "S-matrix Theory of Btrong Interactions", W.A.Benjamin Inc: N.Y. 1962.
39) L. Castillejo, R.H.Baikitz and F.J.Byson, Phys. Rev., 101, 453 (1956).
40) J.L.Uretsky, Plys. Rev., 123, 1459 (1961).
41) P. Nath and G.L.Shaw, Phys. Rev., 137, B711 (1965).
G.L.Shaw, Phys. Rev. Lett., 12, 345 (1964).
42) M. Baker, Ann. Phys., 4, 271 (1958).
43) S.C.Fraitschi and J.D.Walecka, Phys. Rev., 120, 1486 (1960).
44) H. Pagels, Phys. Rev., 140, B1599 (1965).
45) D.A Amati, H. Beery, J. Nuyts and J. Prentki, Nuovo Cim., 34, 1732 (1964).
P. Glirsey, T.D.Lee and M. Nauenberg, Phys. Rev., 135, B467 (1967).
46) D.R.O.Morrison, Phys. Lett., 2, 199 (1964).
L.B.Leipuner, W.T.Chu, R.C.Larsen and R.K.Adaire, Phys. Rev.

Lett., 12, 423 (1964).
V. Hagopian, W. Selove, R. Ehrlich, E. Leboy, R.Lanza and M.Webster, Phys. Rev. Lett., 13, 280 (1964)
A.W. Sunyar, A.Z.Schwarzschild and P.I.Conors, Phys. Rev., 136, B1157 (1964).
D.A.Delise and Theodore fowen, Phys. Rev., 140, B458 (1965).
W.A.Chupka, J.P.Schiffer and C.M.Stevens, Phys. Rev. Lett., 17, 60 (1966).
47) J.J.De Swart, Nuovo Cim., 32, 420 (1964).
H.S.Mani, G. Mohan and L..K.Pande, Ann. Phys., 36, 285 (1966).
48) A.R.Edmonds, Proc. Roy. Soc., A268, 567 (1962).
49) M.M.Nieto, Phys. Rev., 140, B434 (1965).
50) A. Wazed, Nuovo Cim., 39, 292 (1965).
51) M.M.Nieto, Phys. Rev., Lett., 17, 43 (1966).
52) D.A.Akyeampong and R. Delbourgo, Phys. Rev., 140, Blol3 (1965). M.S.Marionov, Phys. Lett., 16, 320 (1965).
R. White, International Centre for Theoretical Physics preprint: "Consequences of $\boldsymbol{f}(12)$ Symmetry in Baryon-Meson Scattering".
53) R. Oehme, Phys. Rev. Lett., 14, 664, 866 (1965).
J.M.Charap, and P.T.Matthews, Phys. Lett., 16, 95 (1965).
P.G.O. Freund, Phys. Rev. Lett., 14, 803 (1965).
54) F. Hussain and P. Retelli, Phys. Lett., 15, 183 (1965).
R. Delbourgo, Phys. Lett., 15, 347 (1965).
C.S.Lai, Nuovo Cim., A41, 1 (1966).
55) R.J.Rivers, Huovo Cim. , Al2, 593 (1966).
56) R. Gatto and G. Vaneziano, Phys. Lett., 12, 512 (1965).
57) H.J.Lipkin and S. Meshkov, Phys. Rev. Lett., 14, 670 (1965).
58) M. Jacob and G.C.Wick, Ann. Phys., 7, 404 (1959).

See also, M. Jacob and G.F.Chew, "Strong Interaction Physics" W.A.Benjamin Inc. N.Y. 1964.
59) P.G.Federbush, M.T.Grisaru and M. Tausher, Ann. Phys., 18, 23 (1962).
60) M.E.Rose, "Elementary Theory of Angular Momentum" John Wiley and Sons Ltd. N.Y. 1961.
A.R Edmonds, "Angular Momentum in Quantum Mechanics" Princeton Univ. Press. Princeton N.J. 1963.
R. Saito and M. Morita, Prog. Theoret. Phys., 13, 540 (1955).
D.L.Falkoff, G.S.Colladay and R.E.Sells, Can. Journ. Phys., 30, 253 (1952).
61) S. Mandelstam, J.E.Paton, R.F.Peierls and A.Q.Sarker, Ann. Phys. 18, 198 (1962).
62) M. Huq and A. Wazed, Durham Univ. preprint "On the Construction of Exchange Born Terms for Particles with Spin" Durham, May 1966.
63) T.L.Trueman and G.C.Wick, Ann. Phys., 26, 322 (1964).
64) J.J. de Swart, Rev. Mod. Phys., 35, 916 (1963).
65) E.U.Conion and G.H.Shortley, "The Theory of Atomic Spectra" Cambridge Univ. Press., Cambridge, 1963.
66) R.E.Benrends, J. Breitlein, C. Fronsdal and W. Lee, Rev. Mod. Phys., 34, 1 (1962).
67) S.J.P.Mclfamee and F.Chilton, Rev. Mod. Phys., 36, 1005 (1964).
68) P. Tarjanne, Physica, AVI, 105, 1 (1962).

