

Durham E-Theses

Spectral identification of non linear devices

Armstrong, R

How to cite:

Armstrong, R (1983) Spectral identification of non linear devices, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/9339/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
Please consult the full Durham E-Theses policy for further details.

SPECTRAL IDENTIFICATION OF NON LINEAR DEVICES

by
B.Sc(Hons), M.Sc., C.Eng., M.I.E.E., A.F.I.M.A.

A thesis submitted to the Faculty of Science, University of Durham, for the degree of Doctor of Philosophy

The copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged.

ABSTRACT

A method of non-linear device identification derived from the measured spectral response to a sinnusoidal drive is developed. From these considerations the concept of dynamic characteristics is proposed as a generalisation of the static characteristics. An example of the design of a frequency multiplying circuit based on the test spectrum is given. Important parameters sucif as internal capacitance and characteristic conductance are derived in terms of the components of the test spectrum.

The effect of series resistance on the performance of exponential diodes is fully discussed. Three new diode models are proposed:-
(i) a two-term functional expausion,
(ii) a logarithmic approximation,
(iii) a bi-linear model with exponential correcting cusp.

Model (iii) is used to develop expressions to predict the spectral response to a ainusoidal drive voltage and the importance of the curvature of the diode characteristic is discussed.

The effect of parasitic capacitance on the performance of lattice mixers is examined and the resulting angle of delay in the diode current is predicted.

A new spectrum analyser system is designed and developed wiinch is capable of measuring harmonic amplitudes and phases up to a maximum frequency of $1 \mathbf{c B z}$.

ACKNOWLEDGEMENTS

I would like to express my thanks and appreciation to my supervisor Dr. B.L.J. Kulesza for his continued guidance and interest throughout this project. I found his lively enthusiasm very stimulating which spurred me on to greater efforts.

I would also like to thank my friends at Newcastle Polytechnic, especially Mr. E. Korolkiewicz and Mr. D.F. Oxford for their help and encouragement. Many thanks are also due to Professor P.H. Roberts (School of Mathematics, University of Newcastle), who first introduced me to perturbation techniques, and to Dr. Robin Johnson who gave considerable assistance with the asymptotic expansions developed in Chapter 5.

My appreciation must also extend to the Directorate of Newcastle Polytechnic, Mr. A. Ritchey, (Head of School of Electronics, Newcastle Polytechnic) and to Prnfessor G.G. Roberts (Department of Applied Physics and Electronics, University of Durham) for placing the facilities of their departments at my disposal and also to Mrs. L. Bateson for typing the thesis.

Finally I wish to thank my wife Angela, and my two children, Jonathan and Jayne, for their encouragement and understanding wile I have been involved with this project.
R. Armstrong, April 1983.
CONTENTS
Page No.
CHAPTER 1 INTRODUCTION 1
CRAPTER 2 non linear spectral analysis 9
2.1 Modelling of non-linear devices from their spectral response. 9
2.2 The Chebyshev representation. 10
2.3 Properties of CheErssiev polynomials. 12
2.4 Dynamic portraits. 13
2.5 Small aignal equations. 13
2.6 Time varying paramaters. 15
2.7 The anslysis of multiplying circuits 16 using Chefysfiey polynomials.
2.8 Discussion. 29
CHAPtER 3 tee EXPONEATTAL DIODE hIth SERIES RESTSTANCE, Static Characteristics. 31
3.1 Introduction. 31
3.2 The normalised equations. 32
3.3 The first term approximation. 33
3.4 The two term approximation. 35
3.5 Solution in terms of initial variables. 37
3.6 The significance of the logarithmic form. 38
3.7 Exponential correction to the bi-linear 42 mode1.
CHAPTER 4 THE EXPONEATTIAL DIODE WIIH SERIES RESISTANCE, 45 Dynamic Considerations.
4.1 Introduction. 45
4.2 Low-level drive. 46
4.3 Hard driven diodes. 48
4.4 Intermediate drive levels. 51
4.4.1 The positive cusp current. 51
4.4.2 The negative cuap current. 55
4.5 The incremental conductance. 56
CRAPTER 5 DELAYED DIODE CONDUCTION IN A LATTICE MIXER 59 WITH CAPACITANGE
5.1 Introduction. 59
5.2 Simple theory of lattice mixar. 60
5.3 The effect of diode capacitance on the switching of bi-1inear diodes in lattice 61 mixers.
5.4 The effect of diode capacitance on the switching of exponential diodes in 64 lattice mixers.
5.5 Conclusions. 72
CHAPTER 6 COMPUTER ATDED MEASUREMEATI OF HARMONIC 74 AMPLTITUES AND PHASES
6.1 Introduction. 74
6.2 Signal sampling. 75
6.3 Transfer of data to computer. 79.
6.4 Errors introduced prior to transfer of 80 data to computer.
6.5 Proving tests. 81
6.6 Discussion. 82
CHAPTER 7 EXPERTMENTAL RESULTS 84
7.1 Introduction. 84
7.2 Device identification from spectral 84.
7.3 Static characteristics of exponential 88 diode with series resiatance.
7.4 Comparison of predicted and measured 90 wayeforms.
7.5 Comparison of predicted and measured 20 spectrum.
7.6 Effect of parasitic capacitance on 92 lattice array of difodes.
7.7 Discussion of results. 92
7.8 Suggestions for further investigation. 26
CHAPTER 8 CONCLUSIONS 99
REFEREANCES 102

APPENDICES

APPENDIX A
A1 List of Publications A1
A2 Publications A2

APPEANDX B

B1 Expansion of $T_{n}(X)$
B1

APPENDIX C

C1 Determination of modified parameters $\mathbf{r m}_{\mathrm{m}}$ and $\boldsymbol{\nabla}_{1} \quad \mathbf{C 1}$

APPEADIX D

D1 Normal curve form of positive exponential cusp current D1
D2 Numerical comparison of exact and approximate positive D3 cusp current

D3 Harmonic components of positive exponential cusp current D5
D4 Numerical comparison of exact and approximate negative D7 exponential cusp current

D5 Harmonic components of negative exponential cusp current D9

APPERDIX E

E1 Solution of E1
$\frac{\varepsilon d y_{0}}{d \theta}=y_{0} \sin \theta-y_{0}^{2}$
E2 Evaluation of \quad E2

$$
\frac{1}{\varepsilon} \int_{0}^{\theta} \exp \left(\cos \theta_{c}-\cos \phi\right) / \varepsilon d \phi
$$

APPENDIX F
F1 Sampling Theorems
F2 Programme to transfer data to computer and evaluate harmonic content

F3 Error due to false periodic time
F4 Effect of quantising error

APPENDIX G
G1 Measured difode waveforms
G2 Predicted diode waveforms
G3 Programme to transfer data to computer and print sample values

G4 Measured spectrum (20 kilm
G5 Predicted spectral response (20 kHzl
G6. Predicted and measured spectrum (10 Mifs)
G7 Harmonic contribution from positive exponential cusp by method of steepest descent

Chapter 1

i Diode current
$I_{\text {B }}$ Diode reverse saturation current
の Diode exponential factor
V Local oscillator voltage
C Reverse biassed incremental diode capacitance
C_{0} Zero volts incremental diode capacitance
∇_{T} Diode turn-on voltage
Y Capacitance index
I Diode series substrate resistance

Chapter 2

$\hat{\nabla} \quad$ Peak value of local oscillator voltage
(1) Angular frequency
t. Time
θ Angle (radians)
$I_{n} \quad$ Peak magnitude of $n^{\text {th }}$ harmonic component of diode current
T_{n} Chebyshev polynomial of the first kind of order n
$\mathbf{U}_{\mathbf{n}} \quad$ Chebyshev polynomials of the second kind of order n
In Peak magnitude of in-phase component of $n{ }^{\text {th }}$ harmonic component
$I_{\text {In }} \quad$ Peak magnitude of quadrature component at $n^{\text {th }}$ harmonic component
E d.c. bias voltage
$g(t)$ Time varying incremental conductance $n^{\text {th }}$ harmonic component of time varying conductance

Peak value of sinusoidal teat voltage
Q. Peak value of $k^{\text {th }}$ harmonic component of test charge spectrum

Bé Real part of a complex number
a Normalised input voltage of varactor multiplier
b Normalised output voltage of varactor multiplier
c_{1}, c_{2}
G_{1} Output conductance to varactor multiplier
G_{21} Test transconductance of varactor
$G_{0} \quad$ Characteristic conductance of varactor multiplier
δ Loss angle of varactor
$\mathrm{g}_{1} \quad$ Fundamental loss conductance

Chapter 3

x Normalised diode current
ع Normalised diode voltage
$\mathbf{V}_{0} \quad$ First estimate of diode turn-on voltage
V_{1} Corrected estimate of diode turn-on voltage
Im Modified diode resistance parameter

Chapter 4

∇_{6} Diode bias voltage
$\nabla_{2} \quad$ Bffective diode tumnon voltage
K Effective diode reverse saturation current
Z Effective exponential diode factor
$\mathrm{T}_{\mathbf{n}}$ Bessel function of the first kind, order n
Angular position of diode voltage waveform corresponding to diode turn-on voltage
$\sqrt{X} \quad$ Diode overdrive coefficient
B Diode bias coefficient
a_{n-}
$\mathrm{n}^{\text {th }}$ harmonic component of positive exponential cusp current $n^{\text {th }}$ harmonic component of negative exponential cusp current
gm Modified diode conductance
g_{1} Incremental conductance due to bi-linear diode model
g_{+}Incremental conductance due to positive exponential cusp current
8_ Incremental conductance due to negative exponential cusp current

Chapter 5

$I_{p} \quad$ Local oscillator drive current
$\omega_{p} \quad$ Local oscillator angular frequency
i_{s}
$\omega_{s} \quad$ Angular frequency of signal current
S(t) Switching Function
Ce Equivalent capacitance of lattice array of diodes
${ }^{0}$ c Delayed diode conjunction angle
K Effective normalised saturation current
$\varepsilon \quad$ Normalised effective capacitance
y Effective normalised diode current
Yo Outer solution for diode current
Io Inner solution for diode current

CBAPLER 1

THIRODUCTION

This report is concenned with the analysis, and subsequent experimental verification, of the response of passive non-linear devices to periodic excitations. It is the rule rather than the exception that the variablesdescribing the behaviour of such physical syatems are not directly proportional to one anothar, i.e. tiey are related in a nonlinear fashion. A vast body: of knowledge exists concerning linear systems and in some practical situations the rastricted rangen of the variables or a small degree of nonlinearity allows the application of linear theory in the analysis to predict the performance. However, in the field of electrical comnuication systems the processes of frequency conversion. all forme of modulation and demodulation, the generation of carrfer frequencies from a lower frequency: crystal-controlled; oscillator depend for their operation on the nonlinearities of the componente. Indeed, it can be said that electronic commanication syatems as we bnow them today would be non-exiatent if only linear devices vere available. It is apparent therefore, that the nead for a conceptual and quantitative understanding of the nonlinearities and their effects: is essential in the study of such systems.

Additional to the intrinsic monlinearities all solid state devices. exhibit parasitic effects such as semiconductor bulk resistance, atray capacitance and inductance. Some of these parasitic effecte may be linear, such as diode package capacitance. Other parasitic effects are themselves nonlinear, e.g. diode depletfon layer capacitance, which of course adds to the complexity of the overall system. Unlike linear
systems, a unified simple nonlinear theory does not exist and thus the nonlinear nature of devices used in frequency converting systems introduces sevare mathematical difficulties into the analysis.

Before the onset of readily accessible digital computers the aforementioned mathematical difficulties forced many investigators to introduce severe reatrictions into their analyses in order to obtain information regarding frequency conversion processes. The understanding and the accuracy of predictions are related to the degree of approximations made to obtain the analytic solutions. With the advent of high speed computing facilities, more detailed numerical information may now be achieved these results being invaluable to improve and optimize the deaign of frequency converting circuite. However, the numerical form of the resulta does not readily aid in the fundamental underatanding of the frequency generating properties and behaviour of nonlinear elements.

Thare are three main groups of passive nonlinear elements namelys-
(i) resistive elements,
(ii) reactive elements.
Ciii) negative resistance elementa.

Group (i) includes devices sưch as Schottky barrier diodes, point contact diodes and backward diodes. The voltage-current characteristice of these devices are of the exponential form

$$
i=I_{8} \operatorname{axp}(\alpha v)-I_{8}
$$

Elements in group (ii) include varactor diodes (abrupt and graded. junction). The incremental capacitance of theae elements follows a law of the form

$$
C=c_{0} / C 1-\nabla / y_{T} I^{r}
$$

where the index γ lies in the range $1 / 2>Y>1 / 6$ for practical diodes: Both groups of elemants display a diffusion capacitance due to charge storage effects and this phenomenon has been exploited in the steprecovery diode used to produce high order frequency multiplication. Group (iii) contains elements such as tunnel diodes, gunn effect diodes and impatt diodes. These devices are generally used in a free oscillation mode, i.e. autonomous. aystems, in which the frequency of oscillation is essentially dictated by the imbedding network. Elements of this kind vill not be considered.

The response of exponential diodes to sinusoidal drives has been the subject of many investigations. The simpleat approach by Torrey and Whitmar (${ }^{(1)}$ was. to assume that the diode junction voltage was siausoidal., the harmonic components of the current are then given by the well known Bessel function.

In 1963. Kahng (2) showed that the terminal behaviour of the diode deviated from the true exponential form aince the voltage drop acrose the series substrate resistance reaulted in a non-sinusoidal diode junction voltage and consequently the diode equation mast be modified to

$$
i=I_{8} \exp (\alpha V-\alpha i r)-I_{s}
$$

This: equation is taplicit in the untanom current; and in order to pradfict the harmonic content of the current Mi11 (3) expanded the above equation Into a powers series in the applied voltage. The computation of the derivatives of this function to give the Taylor series coefficient is labourious and requires numerical computation if a large number of terms is required. More recently Katib. ${ }^{(4)}$ (1976) approached this problem from a similar point of vieve and shomed that the coefficients. in the power series expansion could be represented in terms of Stiring numbers
of the second kind, Horever, the reaulting series for the harmonic componenta were found to converge extremely slowly. From the aforegoing remarke it is obvious that at present there is no known analytic solution for the exponential diode which includes the effect of the series resistance.

In view of the extreme analytic difficulties encountered to obtain the large signal behaviour some authors: 5,62 have made the simplifying assumption that the diode with series resistance may be represented by a piece-wise linear model switched betwaen the diode reverse and series resistance levels. This bi-linear approximation considerably aimplifies the analyais but clearly ignores the curvature of the diodes characteristic in the neighbourhood of the turn-on voltage.

To improve design and optimize performance many investigators have obtained the large signal solution by pumerical means. Indeed in 1972 a numerical inveistigation by Glover ${ }^{(7)}$ et, al. into a ringle diode mixer showed that the bi-1inear approximation is sufficiently accurate when : Biased in the maric-space ratios from 0.1 to 0.9. For mark-space' ratios less than 0.1 , required to realize low loss condition, it was found that the bi-linear approximation is not sufficiently accurate and the diode must be represented by its exponential characteristic with the series resistance.

As the demand to operate mixers at higher frequencies increased it became clear that the effect of depletion layer capacitance mat also be taken into account. In 1970, Liechta (8). incorporated the capacitance effect into the numerical analysis in order to investigate the noise performance of mixers. The numerical analysis of Flexi and Coben (9) in 1973 verified that the diode jumction voltage departs significantly from a sinerave. The effect of diode junction capacitance on conversion $108 s$ was also examined By Mania and Stracca (10) in $19: 74$ with thie assumption
that the capacitance was constant; again the large signal solution being obtained by numerical methods.

The depletion layer capacitance which appears as a parasitic in resistive diode circuits has application in its own right in frequency multiplying systems. In such systems the diode is biased so that forward conduction is not allowed and harmonic generation results from the nonlinear depletion layer capacitance. Leison and Weinreb ${ }^{\text {(11) }}$ have obtained a small signal analysis for general values of the index r by expanding the nonlinear $q-v$ characteristic in a power series having a limited number of terms. In 1965, Scanlan and Laybourn ${ }^{(12)}$ presented a large signal analysis taking into account the modification of the diode waveform due to the harmonic output when the index $\gamma=1 / 2$, but mathematical difficulties necessited numerical solutions for general values of γ.

In recent years attention has been focussed on the step-recovery diode used to obtain high order multiplication of frequency. Initially, investigators ${ }^{(13,14)}$ represented the charge storage capacitance as a perfect capacitor under forward voltage conditions and zero capacitance when the voltage was negative, i.e. a bi-1inear capacitance. An alternative approach by Gardiner and Wagiealla ${ }^{(15)}$ was to represent the step-recovery effect as a charge-controlled switch. This alloved the device to be represented as a time-varying element which permitted the application of linear circuit theory.

The aforegoing remarks clearly indicate that the main mathod of attack to obtain the analytic information has been through piece-rise linearisation and power series expanaion. Only in the isolated cases (exponential diode with no parasitics, the varactor diode with $\gamma=1 / 21$ is the nonlinear problem solvable directly in closed analytic form. In all cases the analyses have proceeded from a precise mathematical law of the device and it is logical to asoume that all the information
necesary to predict the beltaviour of a nonlinear device must Be present in the spectrum produced when it is driven with a sinewave.

In this work it is shown that nonlinear devices may be assessed by their spectral performance and the information is made available in terms of Chabyshev polynomials. The coefficients of the Chebyshev representation are directly related to the spectral response of the device. The concept is analogous to system identification testing and indeed a device or system may be repreaented in analytic form even though precise mathematical laws are not available. This approach to nonlinear problems also leads to the generalisation of device characteristics in terms of dynamic time-domain portraits. Such portraits contain information relating to resistance, reactance, energy torage and may be of value in selecting high quality devices from large production yields. The technique is regarded as a generalisation of the power series expansion method which has not been used in this context before.

Whilat the Chebyshev expansion procedure appears to be useful, information may often be determined by other forms of analysis. A technique wich has had some success in handling nonlinear problems is perturbation theory (16) leading to aolutions in terms of asymptotic expansions. Apart from obtaining the small signal behaviour of mixer circuits as a perturbation of the large signal solutions this method has not in general been applied to the devices and systems previously mentioned. The perturbation methods available have greatest utility when the solution required is perturbed from a known solution by the presence of a amall paramater and therefore have applicability in determining the effects of parasitics.

A successful application of a perturbation technique, similax in character to the classical method of variation of parameters, is the analysis of the exponential diode with a series resistance. The essential elements of this original analysis have been published by the author et al and the paper is reproduced in Appendix Al.

Another successful application of perturbation methods in the form of matched asymptotic expansions was the prediction of the effect of package capacitance on the switching waveforms of balanced mixers. This analysis has been published by the author et al and is reproduced in Appendix A1.

In Chapter 2 method of device identification based on the spectral response to a sinusoidal test drive is developed. A frequency multiplying network is studied to demonstrate that spectral information may be of considerable use in predicting the performance of non-linear devices embedded in frequency selective circuits.

Chapter 3 deals with the atatic characteristic of an exponential diode with series resistance. Three new mathematical models are developed which may be used to predict the diode current in terms of the applied voltage and the device parameters. In addition the proposed models also predict secondary parameters, i.e. diode turn-on voltage and effective diode forward resistance, in terms of the basic diode parameters.

The dynamic response of an exponential diode with series resistance to a sinusoidal voltage drive is examined in Chapter 4. A bi-linear model with exponential correcting terms is used to demonstrate that the current waveshape changes from a gaussian to an offset sinusoidal pulse as the voltage drive is increased. The harmonic components of the diode current are also predicted and their dependence on bias voltage and degree of overdrive beyond the turn-on voltage identified.

Chapter 5 is devoted to an investigation of the effect of parasitic capacitance on the switching performance of a lattice of exponential diodes. The predicted delay in conduction of the diode has considerable effect on the frequency converting properties of balanced mixers.

The development of a computer aided harmonic measuring system is described in Chapter 6. The system described is capable of measuring both magnitude and phase (or real and imaginary parts) of the Fourier decomposition of a periodic wave. The effects of sampling and digitising errors on the accuracy of the system is fully discussed.

Chapter 7 contains descriptions of experimental investigations and summaries of experimental test results for comparison with the theoretical predictions made in preceding chapters.

CBAPTER 2

NOE LTNEAR SPECTRAL ANALYSIS

2.1 Modelling of non-linear devices from their spectral response

The usual approach in analysing non-linear frequency converting networks is to use as the Basis a theoretical equation derived from the physics of the device being used. Such analyses are valid provided the precise law is known. In many ingtances however, the law is only approximate and intrinsic parasitic effects may not be known accurately. In addition, it may be necessary to introduce severe approximations into the analysis to obtain a closed form solution.

If a non-linear device is driven by a single frequency drive (voltage or current) it is logical to assume that the generated spectrum contains all the necessary information required to model the device. Consequently the spectral response of a lärge signal dyamic test will contain information on effects wifich mate amplitude and or frequency dependent not bet present with ätatic testing procedures. The tent spectrum will aiso include information reflecting strayeffects.

The technique used is the inverse of a method proposed by Levis (17) whio, shovad hor to determine the harmonic reaponse to a sinnusoidal drive. The method was extended by Douce (18I to include the case af rapuotisignals whilat Karybaleas (19) applied it to obtain the describing function for use in non-linear control syatems.

2.2 The Chebyshev representation

The connection between the device characteristic and its spectral response may be expressed in tema of Chebyshev polynomials. To appreciate this, consider the case of a pure non-linear resistor driven-by a ainusoidal voltage.

If the applied voltage is

$$
\begin{equation*}
v=\hat{\nabla} \cos \theta, \tag{2.1}
\end{equation*}
$$

where $\theta=\omega t$
then the resulting current may be represented by a Fourier series as

$$
\begin{equation*}
i=I_{0} / 2+\sum_{I}^{\infty} I_{n} \cos n \theta \tag{2.2}
\end{equation*}
$$

Frow equation (2.1), the angle θ may be expressed as

$$
\begin{equation*}
\theta=\cos ^{-1} \operatorname{cv/V} / \tag{2.3}
\end{equation*}
$$

which when gubstituted into C2.2I gives

$$
\begin{equation*}
i=I_{0} / 2+\sum_{1}^{\infty} I_{n} \cos n\left(\cos ^{-1} \nabla / \hat{\nabla}\right) \tag{2.4}
\end{equation*}
$$

leading to the Chebyshev expansion since these polynomials may be defined as ${ }^{(20)}$

$$
\begin{equation*}
T_{n}(x)=\cos \left(n \cos ^{-1} x\right) \tag{2.5}
\end{equation*}
$$

and (2.4) can then be written

$$
\begin{equation*}
\hat{i}=I_{0} / 2+{\underset{1}{2}}_{1}^{\infty} I_{n} T_{n}(\hat{v} / \hat{V}) \tag{2.6}
\end{equation*}
$$

The case of a sinusoidal current drive may be treated similarly with a trivial change in notation.

From thia analysis it may be concluded that
(a) if the device is driven over its maximum working range and the harmonic spectrum is measured then the characteristic inn the inv plane is given by (2.6),
(i) conversely given the $i \rightarrow$ characteristic over the range $-\hat{v}$ to + $\hat{\nabla}$ then the liarmonic apectrani to a sinusoidal drive of magnitude $\hat{\nabla}$ min . Be predicted uning the Chebyshev expanaions.

It is not possible to obtain a pure resistive element and espacially at high frequencies apparently resistive devices will exhibit parasitic reactance. It is therefore appropriate to indicate hor the characteristic. of a non-linear reactance is related to its spectral response. The $q-\nabla$ characteristic is determined as for the resistive case provided harmonic components of charge (q) mife measured.:- Since it is much easier to measureseurrent it is better to obtain an equivalent ing characteristic. If the applied voltage is given by (2.1) then for a pure non-linear capacitance the currant will be of the form

$$
i=\sum_{I}^{\infty} I_{n} \sin n \theta
$$

Again using (2.3) the current spectrum may be written as

$$
\begin{equation*}
i=\sqrt{1-\left(v / \hat{)^{2}}\right.} \sum_{-1}^{\infty} I_{n} \mathbb{X}_{n-1}(v / \hat{v}) \tag{2.8}
\end{equation*}
$$

where the Chebysher polynomials of the second kind are defined as:

$$
\begin{equation*}
v_{n-1}(x)=\sin \cos \cos ^{-1} x / \sqrt{1-x^{2}} \tag{2.9}
\end{equation*}
$$

The $i \rightarrow$ characteristic is double-valued and forms a closed loop in the i-v plane and is symetrical ationt the y axis for a purely reactive case.

The general case of a non-linear resistor and nor-linear reactance is now aasily treated for a minnsoidal woltage drive. In which case the currant will have the form

$$
\dot{i}=I_{0} / 2+\begin{gather*}
\infty \tag{2.10}\\
1
\end{gather*}\left[I_{I n} \cos n \theta+I_{2 n} \sin n \theta\right]
$$

Which has the corresponding $i-v$ representation of

$$
\begin{equation*}
i=I_{0} / 2+\sum_{1}^{\infty}\left[I_{\operatorname{mn}} T_{n}(\dot{V} / \hat{V}) \pm I_{x n} \sqrt{1-(\nabla / \hat{V})^{2}} U_{n-1}\right] \tag{2.11}
\end{equation*}
$$

In order to obtain this representation it is mecessary to measure the in-phase and quadriature components of the harmonic currents (I $\mathbf{I n}$ and I_{xn}). This is indeed possible up to frequencies of the order of 1 GHz using the aystem outlined in Chapter 6.

2.3 Properties of Chebyshev polynomials

Since Chebyshev polynomials appear to be naturally related to the spectral response of non-linear devices it ie important to appreciate some of the salient features of these functions. Proofs of the following statemente may be found in Snyder (20):-
(i) Chebrshev polynomials are ortfiogönal over a closed"interval,
(ii) of all possible orthogonal polynomial approximations to a given characteristic the Chebyshev representation has the least deviation.
(iii) in the class of ultra-spherical polynomials, the Chebyshev polynomials display the strongest possible convergence, (Taylor series displays the weakest),
(iv). the error created in truncating a Chebyshev series is of the order of the first term neglected.

The speed of convergence of Chebyshey polynomials is aptly illuatrated by calculating $\exp (x),-1 \leqslant X<1$, to within 17 by Taylor series and Chebyshev polynomials. The former requires five terms of the series whilst the latter only requires a three term expansion. This economisation process has been used by Holt et.al. (21) to approximate the transfer function of distributed RC transmission lines.

2.A: Dynamic portraits

A natural generalisation of a static characteristic is the dynamic characteristic of the device obtained by eliminating time from the equation (2.10) which fs the Chebyshev representation of (2.11). Such a characteristic may be termed a dynamic portrait of the device. Such a characteristic can easily be displayed on a cathode ray oscilloscope (C.R.O.). Some typical dynaific portraits are shown in Figure (2.1).

Certain information may be determined by examination of the portrait of a device,
(a) if no reactance is present the portrait is single valued.
(b) if the portrait. is a closed loop then reactance is present.
(c) if the loop is symmatrical abont the horifontial axia then the device is purely reactive,
(d): the wider the loop the larger the reactance.

2.5. Small signal equations

With the Chebyshev representation established from test it is possible to determine the behaviour of a non linear device for small signals superimposed upon a d.c. bias by expanding (2.61 in a Taylor series about the bias point. To do this Let

(a)
non-linear resistance (exponential diode)

*
(b) non-linear resistor with parallel linear capacitance

(c) non-linear capacitance (reversed biassed diodel

(b) non-linear resistance and non-linear capacitance (exponential diode + depletion layer capacitance + diffusion capacitance).

Figure 2.1

Typical Time Domain Portraits

Vertical axis-current: Horizontal axis-voltage

$$
\begin{equation*}
\mathbf{V}=\mathbf{E}+\mathbf{V}_{8} \tag{2.12}
\end{equation*}
$$

where

$$
\begin{equation*}
\nabla_{s}=a \cos \theta, \quad \theta=\omega t \tag{2.13}
\end{equation*}
$$

with

$$
|\mathbf{E}|<\hat{\mathbf{V}}
$$

then

$$
\begin{equation*}
\dot{i}=\sum_{0}^{\infty} I_{n} T_{n} \frac{E+v_{g}}{\underset{V}{V}} \tag{2.14}
\end{equation*}
$$

and for small ∇_{s} the Taylor series approximation is

$$
\begin{equation*}
=\beta_{0}+\beta_{1} T_{1}\left(v_{8} / a\right) \tag{2.15}
\end{equation*}
$$

and. $\quad B_{1}=\frac{a}{\hat{V}} \sum_{1}^{\infty} n U_{n-1}(E / \hat{\nabla})$
Thus it is possible to deduce small signal behaviour from a large signal dynamic test whilst it is not possibile to deduce large signal performance from a single small signal test.

$$
\begin{aligned}
& \approx \sum_{0}^{\infty} I_{n} T_{n}\left(\frac{E}{\hat{V}}\right)+\nabla_{g} \frac{d}{d E} \sum_{0}^{\infty} T_{n}\left(\frac{E_{V}}{\nabla}\right) \\
& =\sum_{0}^{\infty} I_{n} T_{n}(E / \hat{V})+\nabla_{8} \frac{1}{\hat{V}} \sum_{0}^{\infty} n_{n-1} U_{V}\left(\frac{\mathbb{V}}{\hat{V}}\right) \\
& =\sum_{0}^{\infty} I_{n} T_{n}(\underline{E} / \hat{V})+\frac{V_{8}}{a} \frac{a}{\hat{V}} \sum_{1}^{\infty} n U_{n-1}(\hat{\beta} / \hat{V})
\end{aligned}
$$

2.6 Time varying parametera.

Once the harmonic spectrum of a non-linear device is known it is also possible to predict time varying parameters such as incremental conductance or resistance for use in mixer analysis where the small signal source voltage is superimposed on the large local oscillator voltage.

The incremental conductance is the slope of the i-v characteristic which changes in sympathy with the local oscillator drive thus

$$
\begin{align*}
g(t) & =\frac{d i}{d v}=\frac{d i / d \theta}{d v / d \theta}=\frac{\frac{d}{d \theta} \cdot\left(I_{0} / 2+\sum_{1} \cos n \theta\right)}{d / d \theta(\dot{V} \cos \omega \theta I d \theta} \\
& =\frac{\sum_{n}^{n} I_{n} \sin n \theta}{V \sin \theta} \tag{2.17}
\end{align*}
$$

Now $g(t)$ is obviously periodic with period 2π and furthermore $g(t)$ is an even function of θ and so the Fourier expansion takes the form

$$
\begin{equation*}
g(t)=g_{0} / 2+\sum_{1} g_{n} \cos n \theta \tag{2.18}
\end{equation*}
$$

Equating (2.17) to (2.18), cross multiplying by $\hat{\nabla}$ sin $\theta_{\text {e }}$ and comparing coefficients yields the following two sequences of equations:

$$
\begin{array}{cc}
g_{0}-g_{2}=2 I_{1} / \hat{V} & , \\
g_{2}-g_{4}=2 I_{3} \hat{V} & g_{3}=2 I_{2} / \hat{V} \\
g_{4}-g_{6}=2 I_{5} / \hat{V} & g_{3}-g_{5}=2 I_{4} / \hat{V} \\
\text { etc } & g_{5}-g_{6}=2 I_{6} / \hat{V} \\
\text { etc } \tag{2.19}
\end{array}
$$

The solution to the above infinite sets of equations is acconplished Fiy noting that $I_{n}+0$ as $n \rightarrow \infty$ and therefore $g_{n}+0$ as $n+\infty$. If the set of equations containing the even coefficients of g are now added together then

$$
\begin{equation*}
g_{0}=\frac{2}{\hat{V}} \sum_{k=0}^{\infty}(2 k-1) I_{2 k}-1 \tag{2.20}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
g_{2 a}=\frac{2}{\hat{\nabla}} \sum_{k=n}^{\infty}(2 k-1) I_{2 k}-1, n=0,1,2 \ldots \tag{2.21}
\end{equation*}
$$

In a similar mannar the odd coefficients of g may be shown to be

$$
\begin{equation*}
g_{2 n+1}=\frac{2}{\hat{\nabla}} \sum_{k=n}^{\infty}+1{ }^{2 k I_{2 k}} \quad, \quad n=0,1,2 \ldots \tag{2.22}
\end{equation*}
$$

Alternatively, the coefficients of the incremental conductance may be found by direct Fourier Analysis. The p th coefficient is given by

$$
\begin{equation*}
g_{p}=\frac{1}{\pi} \int_{0}^{2 \pi}\left(\frac{\Sigma n I_{n} \sin n \theta}{\hat{\nabla} \sin \theta}\right) \cos p \theta d \theta \tag{2.23}
\end{equation*}
$$

which is readily evaluated by contour integration to give the same results as (2.21) and (2.22).

2.7 The analysis of multiplying circuits using Chebyshey Polynomials:

As outlined in section 2.2 the characteriatics of a non-Iinear capacitance (varactor diodel can be darived by measurement of the current spectrum when the device is driven with a single frequency forcing function. Neglecting any resiative effecta the current spectrum will be of the form

$$
i=-\sum_{k=1}^{\infty} \hat{I}_{k} \sin k \theta, \quad \theta=\omega t
$$

when the applied voltage is

$$
\begin{equation*}
V=\ddot{\nabla}_{T} \cos \theta \tag{2.25}
\end{equation*}
$$

where v is the deviation from the d.c. bias level and $\hat{\nabla}_{T}$ is the peak value of the test voltage. Integrating (2.24) gives the charge

$$
\begin{equation*}
q=Q_{0}+\sum_{k=1}^{\infty} Q_{k} \cos k \theta \tag{2.26}
\end{equation*}
$$

where Q_{0} is the constant of integration, and $Q_{k}=-I_{k} / k \omega$ With

$$
\begin{equation*}
x=v / \hat{v}_{T} \tag{2.27}
\end{equation*}
$$

equation (2.26) Becomea

$$
\begin{equation*}
q=Q_{0}+\sum_{k=1}^{\infty} Q_{k} T_{k}(x) \tag{2.28}
\end{equation*}
$$

which is the algebraic representation of the device characteristic. Consider now a frequency doubler circuit as shown in Figure (2.21. Higher order multiplication systeme may be analysed using an fidentical procedure. The two tuned circuits are assumed ideal so that the input circuit operates at frequency ω whilst the output circuit. operates at frequency 2w.

The output voltage from the arstem will therefore be

$$
\nabla_{2}=\hat{v}_{2} \cos (2 \theta,-\phi)
$$

where $\hat{\nabla}_{2}$ and ϕ have to bie determined, The voltage exieting across the non-linear capacitor is then given by

$$
v=v_{1}-v_{2}=\hat{v}_{1} \cos \theta-\hat{v}_{2} \cos (2 \theta-\phi)
$$

which in terms of the test voltage may be represented as

$$
\begin{equation*}
x=a \cos \theta-b \cos (2 \theta-\phi) \tag{2.31}
\end{equation*}
$$

N.L.D. Non linear device

$-\infty-\infty-$ path of fundsmental current
\rightarrow - \rightarrow path of gecond harmonic current
Figure 2.2
Basic Circuit of Frequency Doubler
where $a=\hat{\mathbf{V}}_{\mathbf{1}} / \hat{\mathbf{V}}_{\mathrm{T}}$

$$
\begin{equation*}
b=\hat{\nabla}_{2} / \hat{\mathbf{V}}_{T} \tag{2.32}
\end{equation*}
$$

with $0<b<a \leqslant 1$

Equations (2.30) and (2.31) assume that the applied voltage \hat{V}_{1} will be less than $\hat{\mathbf{V}}_{T}$. This is necessary since the second harmonic voltage developed at the output may enfance the voltage across the non-linear capacitance during a fundamental cycle such that $\mathbf{v}_{1}-\mathbf{v}_{2}$ may exceed $\hat{\boldsymbol{V}}_{\mathrm{T}}$. If $\boldsymbol{V}_{\mathrm{T}}$ is taken as maximin possible working voltage across the device, then the device could breakdown due to second harmonic "punch through". Thus there is a constraint on v_{1} and v_{2} such that

$$
\begin{equation*}
\max \left|v_{1}-v_{2}\right| \leqslant \hat{V}_{T} \text { or }|a \cos \theta-b \cos (2 \theta-\phi)| x 1 \tag{2.33}
\end{equation*}
$$

The charge spectrum existing on the non-linear capacitor is given from (2.28) and (2.31). Because of the presence of the two tuned circuits it is only necessary to evaluate the fundamental and second harmonic components of these equations, the appropriate expansions of equation (2.28) up to the term involving Q_{3} are given in Appendix B1. The expansion is limited to terms in Q_{3} since examination of typical spectra of varactor diodes shows that the harmonics of the current are less than 5% of the fundamental current for harmonic numbers exceeding three. Furthermore, the charge spectrum is reliated to the current spectrum by

$$
\begin{equation*}
Q_{k}=\frac{-I_{k}}{k w} \tag{2.34}
\end{equation*}
$$

and will consequently diminish more rapidly as kw increases.

Osing the expansions developed in Appendix B1 the input and output charge spectra are given by

$$
\begin{align*}
q_{1} & =\left[a Q_{1}-2 a b Q_{2} \cos \phi+3 Q_{3} a\left(a^{2}+2 b^{2}-1\right)\right] \cos \theta \tag{2.35}\\
& -\left[2 a b Q_{2} \sin \phi\right] \sin \theta \\
q_{2} & =\left[-b Q_{1} \cos \phi+a^{2} Q_{2}-3 b Q_{3}\left(B^{2}+2 a^{2}-1\right) \cos \phi\right] \cos 2 \theta \\
& +\left[-b Q_{1} \sin ^{-} \phi-3 b Q_{3}\left(b^{2}+2 a^{2}-1\right) \sin \phi\right] \sin 2 \theta \tag{2.36}
\end{align*}
$$

The input and output current spectra may now be obtained by differentiation

$$
\begin{align*}
i_{1}= & -\left[a Q_{1}-2 a b Q_{2} \cos \phi+3 a Q_{3}\left(a^{2}+2 b^{2}-1\right)\right] \omega \sin \theta \\
& -\left[2 \omega a b \sin \phi Q_{2}\right] \cos \theta \\
i_{2}= & -2 \omega\left[-b Q_{1} \cos \phi+a^{2} Q_{2}-35 Q_{3}\left(b^{2}+2 a^{2}-1\right) \cos \phi\right] \sin 2 \theta \\
& +2 \omega\left[-b Q_{1} \sin \phi-35 Q_{3}\left(\sigma^{2}+2 a^{2}-1\right) \sin \phi\right] \cos 2 \theta \tag{2,38}
\end{align*}
$$

To interpret the engineering implication of the above two equations, consider first the output current, and dafine

$$
\begin{align*}
& \cos 2 \theta=\operatorname{Rec} \exp (-j 20) \tag{2.39}\\
& \sin 2 \theta=\operatorname{Im} \exp (-j 20 I \tag{2.40}
\end{align*}
$$

and consequently i_{2} may be written as

$$
\begin{align*}
i_{2}= & -2 \omega b \sin \phi\left[Q_{1}+3 Q_{3}\left(\sigma^{2}+2 a^{2}-1\right)\right] \\
& -j 2 \omega b \cos \phi\left[Q_{1}+3 Q_{3}\left(b^{2}+2 a^{2}-1\right)\right] \tag{2.41}\\
& +j \omega a^{2} Q_{2}
\end{align*}
$$

Equation (2.41) divides the output current into three component currents, as shown in Figure (2.3al. The last component (jwa ${ }^{2} Q_{2}$) is independent of the output voltage ' b ', depending only on the input voltage ' a ', and mas therefore be interpreted as the current injected into the output circuit by the voltage applied to the input circuit. The other two components of the output current depend on the output voltage. These two components of current may be related to the output voltage

$$
\begin{align*}
& \nabla_{2}=\hat{\nabla}_{2} \cos (2 \theta-\phi) \\
& \rightarrow \hat{\nabla}_{2} \cos \phi-j \hat{\nabla}_{2} \sin \phi \tag{2.42}
\end{align*}
$$

by an admittance I (as shown in Figure (2.3i)). Thus,

$$
\begin{equation*}
Y=\frac{\left.2 \omega \overline{(} Q_{1}+3 Q_{2}\left(\sigma^{2}+2 a^{2}-1\right)\right)(\sin \phi+j \cos \phi)}{\hat{V}_{2}(\cos \phi-j \sin \phi 2} \tag{2.43}
\end{equation*}
$$

wifh rationalises to

$$
\begin{equation*}
T=\frac{j 2 \omega}{\nabla_{T}}\left[Q_{I}+3 Q_{3}\left(b^{2}+2 a^{2}-1\right)\right] \tag{2.44}
\end{equation*}
$$

and is the admittance of a capacitor

$$
\begin{equation*}
c_{2}=\frac{Q_{1}+3 Q_{3}\left(b^{2}+2 a^{2}-1\right)}{\hat{V}_{T}} \tag{2.45}
\end{equation*}
$$

The output circuit must be conatrained to operate at the second harmonic and the presence of the above capacitance as an internal element of the non-linear device will alter the resonant frequency of the output filter. To obviate this problem it is necessary to conneat a shumt susceptance B_{L} at the load terminals of equal fut opposite type to the internal susceptance of the device.

Figure 2.3(a)

- Corryare Balance in Outpat Circuit of Frequency Doubler

$$
\begin{aligned}
& C_{2}=Q_{1}+3 Q_{3}\left(h^{2}+2 a^{2}-12 / \nabla_{T}\right. \\
& B_{L} \text { cancels } C_{2}
\end{aligned}
$$

Figure 2.3(6)
Equivalent Circuic of Output of Frequency Doubler

In practice the outputtumed circuit will be constructed to resonate above the second harmonic when not connected to the device. When embedded into the circuit the effect of C_{2} will be to detune to the required frequency. Trimmer capacitors will also be added for final tuning.

The current which will flow through B_{L} will be antiphase to the current through the capacitor C_{2} leaving the component (jwa ${ }^{2} Q_{2}$) to flow through the load conductance G_{L}. The output voltage will then be

$$
\hat{\nabla}_{2} \cos \phi-j \hat{\nabla}_{2} \sin \phi=j \omega 2 a^{2} Q_{2} / G_{L}
$$

wich implies that $\phi= \pm \pi / 2$,
and consequently

$$
\left.\hat{\nabla}_{2}=-2 \omega a^{2} Q_{2} \sqrt{G_{L}} \sin (\pm / 2\rangle\right] .
$$

To make $\hat{\mathrm{V}}_{2}$ positive then

$$
\begin{equation*}
\phi=-\pi / 2 \tag{2.48}
\end{equation*}
$$

This last result is in agreement with the numerical analysis of Scanlan and Laybourn ${ }^{(12)}$.

Analysis of the input proceeds, in an identical manner and is simplified by the condition that cos $\phi=0$ and sin $\phi=-1$. Complex notation is introduced by

$$
\begin{equation*}
\cos \theta=\text { Rec } \exp (j \theta) \tag{2.42}
\end{equation*}
$$

$\sin \theta^{\circ}=\operatorname{In} \exp (-j \theta)$
and the input voltage is taken as $\nabla_{1}=\hat{\nabla}_{1}$ cos θ. The input conductance to the system is easily sifown to be

$$
G_{1}=2 \omega \hat{\nabla}_{2} Q_{2} / \nabla_{T}^{2}
$$

which ह̄y (2.43) may be written as

$$
\begin{equation*}
G_{1}=4 \omega^{2}{\hat{V_{1}}}_{2}^{2} Q_{2}^{2 / V_{T}^{4} G_{L}, ~} \tag{2.51}
\end{equation*}
$$

The second harmonic component of the test spectrum is given by

$$
\begin{equation*}
I_{2}=-2 \omega Q_{2} \tag{2.52}
\end{equation*}
$$

and therefore (2.51) becomes

$$
\begin{equation*}
G_{1}=\hat{V}_{1}^{2} I_{2}^{2} / V_{T}^{4} G_{L} \tag{2.53}
\end{equation*}
$$

Define the teat transcondactance by

$$
\begin{equation*}
G_{21}=I_{2} / V_{T} \tag{2.54}
\end{equation*}
$$

allow (2.53) to be expressed as

$$
\begin{equation*}
G_{1} G_{L}=\left(G_{21}\right)^{2} \frac{\hat{\nabla}_{1}^{2}}{\hat{\nabla}_{T}^{2}} \tag{2.55}
\end{equation*}
$$

Since the device is assumed lossless the conductance G_{I} is the reflected image of the laad conductance G_{L}. The load C_{L} is operating at the second harmonic components of frequancy whilst the conductance G_{1} accepta pover at the fundamental frequency.

The input capacitance of the system is readily found to be

$$
\begin{equation*}
C_{I}=\frac{Q_{I}+3 Q_{3}\left(a^{2}+2 b^{2}-1\right)}{\hat{\nabla}_{\dot{T}}} \tag{2.56}
\end{equation*}
$$

and the input generator circuit must include an inductance to cancel this capacitance to permit operation at the fundamental frequency

Maxcimum power transfer chrough the system will be obitained when the source conductance G_{S}.equals the input conductance G_{1} and by (2.55) thia ia given by

$$
\begin{equation*}
\epsilon_{S} G_{L}=\left(G_{21}\right)^{2} \frac{\hat{\nabla}_{1}^{2}}{\hat{\nabla}_{T}^{2}} \tag{2.57}
\end{equation*}
$$

Equation (2.57) defines the impedance transforming property of the multiplying network, in an analogous manner to say a quarter wavelength transformer where $Z_{i n} Z_{L}=Z_{0}{ }^{2}$. It is therefore convenient to define a characteristic conductance for the system, as

$$
\begin{equation*}
G_{0}=G_{21} \hat{\nabla}_{1} / \hat{\nabla}_{T} \tag{2.58}
\end{equation*}
$$

and to design the system to work between $G_{E}=G_{L}=G_{0}$. If the actual system conductances between wifich the multiplier must work differ from G_{0} then passive impedance changing network can be added to the input and output as necessary. The complete equivalent circuit for the multiplier is shown in Figure: (2.4).

The effect of resistive losses in the non-linear capacitor can be taken into account from a knowledge of the test spectrum. The test spectrum will be of the form

$$
\begin{equation*}
\hat{i}=\sum_{1}^{\infty} \Gamma_{R_{k}} \cos k \theta-\sum_{i}^{\infty} r_{k} \sin k \theta \tag{2.59}
\end{equation*}
$$

where $r_{R_{k}}$ represents the harmonic amplitudes of the resistive portion of the spectrum and I_{k} represents the amplitudes due to the capacitance effect of the device. Equation (2.59) segregates the two components of current to represent the device as a parallel cominination of a non-linear reaistance and a non-linear reactance as shown in Figure (2.5). The same voltage appears across the two non-linear elements and thus the fundamental and second harmonic components of currents flowing in these two elements may be determined as shown previousiy. The components of currents flowing in the non-1inear capacitor will be as given by equations (2.37) and (2.38) and the components in the non-linear resistance will be

Figure 2.4
Complete Equivalent Circuit of a Lossfree
Frequency Doubler

N.L.D. Non-1fnear device

N.L.R. non-linear resistor
N.L.X. non-linear reactance

Figure 2.5
Paralliel Representation of a Non Linear Device

$$
\begin{align*}
i_{r_{2}}= & {\left.\left[-b I_{R_{1}} \cos \phi+Q^{2} r_{R_{2}}-35 I_{R_{3}} \sigma^{2}+2 a^{2}-1\right) \cos \phi\right] \cos 2 \theta } \\
& +\left[-b I_{R_{1}} \sin \phi-36 I_{R_{3}}\left(b^{2}+2 a^{2}-1\right) \sin \phi\right] \sin 2 \theta \tag{2.60}\\
i_{r_{1}}= & {\left[a I_{R_{1}}-2 a b I_{R_{2}} \cos \phi+3 r_{R_{3}}^{a}\left(a^{2}+2 b^{2}-1\right)\right] \cos \theta } \\
& -2 a b r_{R_{2}} \sin \phi \sin \theta \tag{2.61}
\end{align*}
$$

The second harmonic component has terms independent of \bar{B}, the normalised output voltage, and this represents the current injected into the output circuit by the input. These are,

$$
\begin{equation*}
i_{g}=+a^{2} I_{R_{2}}+j 2 w a^{2} Q_{2} \tag{2.62}
\end{equation*}
$$

where complex notation has been introduced ty means of (2.39) and (2.40).
The admittance representation of the remaining second harmonic currente is

$$
\begin{align*}
& Y=2 \omega \mathrm{~B} \frac{\left[Q_{1}+3 Q_{3} \cdot \omega^{2}+2 a^{2}-12\right] \operatorname{coin} \theta+j \cos \phi L}{\hat{V}_{2}(\cos \phi+j \sin \phi I} \\
& +\frac{\mathrm{bI}_{R_{1}}(\cos \phi-j \sin \phi I}{\hat{\nabla}_{2}(\cos \phi-j \sin \phi I}+\frac{3 \mathrm{~K} \mathrm{I}_{\mathrm{R}_{3}} \mathrm{OB}^{2}+2 \mathrm{a}^{2}-11(\cos \phi-j \sin \phi I}{\hat{\nabla}_{2}(\cos \phi-j \sin \phi I} \\
& =\frac{I_{R_{1}}}{\nabla^{T}}\left[1+\frac{3 I_{R_{3}}}{I_{R_{1}}}\left(b^{2}+2 a^{2}-1\right)\right]+\frac{j 2 \omega Q_{1}}{\nabla_{T}}\left[1+\frac{3 Q_{3}}{Q_{1}} \sigma^{2}+2 a^{2}-12\right] \\
& =\epsilon_{2}+j 2 \omega C_{2} \tag{2.63}
\end{align*}
$$

which represent the internal conductance and capacitance of the device. To constrain operation of the system to the second harmonic the load must include an inductance to cancel the internal capacitance \mathbf{C}_{2}.

The output current now available to develop a voltage acrose
the load is that from the constant current generator, equation (2.62) together with the resistive current through G_{2} and therefore

$$
\begin{align*}
G_{L} \hat{\nabla}_{2} & \left(\cos \phi-j \sin \phi L=j \omega 2 a^{2} Q_{2}+a^{2} I_{R_{2}}\right. \\
& -\left[b I_{R_{1}}+3 b I_{R_{3}} \sigma^{2}+2 a^{2}-12\right](\cos \phi-j \sin \phi) \tag{2.64}
\end{align*}
$$

which separates into real and imaginary parts

$$
\begin{align*}
& \left\{G_{L} \hat{\nabla}_{2}+\left[b r_{R_{1}}+36 r_{R_{3}}\left(2 a^{2}+b^{2}-1\right\rangle\right]\right\} \cos \phi=a^{2} I_{R_{2}} \tag{2.65}\\
& \left\{G_{L} \hat{\nabla}_{2}+\left[\Delta r_{R_{1}}+36 r_{R_{3}}\left(2 a^{2}+\delta^{2}-1\right)\right]\right\} \sin \phi=-20 a^{2} Q_{2} \tag{2.66}
\end{align*}
$$

The unknown phase shift ϕ may be determined from the ratio of the above equation as

$$
\begin{equation*}
\tan \phi=\frac{-2 \omega a^{2} Q_{2}}{a^{2} r_{R_{2}}}=\frac{-2 \omega Q_{2}}{r_{R}} \tag{2.67}
\end{equation*}
$$

In practice for a reverse-biassed varactor diode the current due to the parasitic resistance will be very small and consequently the phase mast be close to - $\pi / 2$ as given for the lossfree case. Define

$$
\begin{equation*}
\phi=\delta-\pi / 2, \quad \delta \text { small } \tag{2.68}
\end{equation*}
$$

and therefore

$$
\begin{align*}
& \cos \phi=-\tan \delta=-T_{R_{2}} / 2 \omega Q_{2} \\
& 1 / \delta=\frac{2 \omega Q_{2}}{I_{R_{2}}}=\frac{-I_{2}}{T_{R_{2}}}
\end{align*}
$$

Equation (2.69) is the ratio of the second harmonic components of the test capacity current to the resistive current and is a measure of the quality of the device. It is independent of the input and output voltage depending only on the device parameters as measured by a large signal spectrum test. Furthermore equation (2.62) (the injected current into the output circuith may be written as

$$
\begin{equation*}
i_{g_{2}}=j 2 \omega a^{2} Q_{2}(1-j \delta) \tag{2.70}
\end{equation*}
$$

which indicates the change in the current due to the presence of resistance.

The output voltage may be oficained from (2.65) and (2.66) by squaring and adding to give

$$
G_{L} \hat{\nabla}_{2}+b I_{R_{1}}\left[1+\frac{3 R_{R_{3}}}{I_{R_{1}}}\left(2 a^{2}+E^{2}-1\right)\right]=\sqrt{\left(2 \omega a^{2} Q_{2}\right)^{2}+a^{2} r_{R_{2}}^{2}}
$$

The left hand side of equation (2.71) can be simplified providied $T_{R_{3}} / I_{R_{1}} \ll 1$ and also the right hand member can be modified with the aid of (2.64) cherefore

$$
\hat{\nabla}_{2}\left(G_{L}+\frac{T_{R_{1}}}{\nabla_{T}}\right)=2 \omega a^{2} Q_{2} \sqrt{1+\delta^{2}}
$$

or

$$
\hat{\nabla}_{2}=2 \omega a^{2} Q_{2} \sqrt{1+\delta^{2}} /\left(\epsilon_{L}+g_{1}\right)
$$

where

$$
\begin{equation*}
g_{1}=I_{R_{1}} / V_{T} \tag{2.73}
\end{equation*}
$$

which may be defined as the fundamental lose conductance. As the parasitic effects are reduced to zero, the lossfree situation is recovered.

The input circuit may be deduced ty taking $\phi=-\pi / 2$ so that $\cos \phi=0$ and $\sin \phi=-1$. The input current is then approximated by

$$
\begin{align*}
i_{i n} & =a\left[I_{R_{1}}+3 I_{R_{3}}\left(a^{2}+2 b^{2}-1\right)\right]+2 \omega a b Q_{2} \tag{2.74}\\
& +j \omega a\left[Q_{1}+3 Q_{3}\left(a^{2}+2 b^{2}-1\right)\right]-j 2 a b I_{R_{1}}
\end{align*}
$$

where as before $\nabla_{1}=\hat{\nabla}_{1}$ cos θ
The input admittance is then given by

$$
\begin{align*}
I_{i n} & =\frac{\hat{i}_{i}}{\nabla_{1}}=\frac{2 \omega \hat{\nabla}_{2} Q_{2}}{\nabla_{T}^{2}}+\frac{I_{R_{1}}}{\nabla_{T}}\left[1+\frac{3 I_{R_{3}}}{I_{R_{1}}}\left(a^{2}+2 b^{2}-1\right)\right] \\
& +j \omega\left[\frac{Q_{1}+3 Q_{3}\left(a^{2}+2 \mathrm{~B}^{2}-1\right)}{\nabla_{T}}-\frac{2 \nabla_{2} T_{R_{2}}}{\omega \nabla_{T}^{2}}\right] \tag{2.75}
\end{align*}
$$

Operation of the input circuit at the fundamental frequency is maintained by including a source inductance to cancel the capacitance term in equation (2.75).

The input conductance to the system is then given by

$$
\begin{align*}
G_{1} & =\frac{2 \omega \dot{\nabla}_{2} Q_{2}}{\nabla_{T}^{2}}+\frac{T_{R_{1}}}{\nabla_{T}}\left[1+\frac{3 T_{R_{3}}}{T_{R_{1}}}\left(a^{2}+2 \delta^{2}-1\right)\right] \tag{2.76}\\
& \dot{\otimes} \frac{2 \omega \hat{\nabla}_{2} Q_{2}}{\nabla_{T}^{2}}+g_{1}
\end{align*}
$$

provided $\mathrm{I}_{\mathrm{R}_{3}} / \mathrm{I}_{\mathrm{R}_{1}} \ll \mathrm{I}$.
By (2.72) the input conductance may then be expressed as

$$
\begin{equation*}
G_{1}=\frac{a^{2} G_{21}^{2}}{G_{L}+g_{1}} \sqrt{1+\delta^{2}}+g_{1} \tag{2.77}
\end{equation*}
$$

where G_{21} is given by equation (2.54).
The complete equivalent circuit is shown in Figure 2.6.

1-8- $\pi / 2$
1
Equivalent Circuit of a Frequency
Doubler Including Losses

The input conductance consists of two parts:-
i) the reflected conductance of the output circuit (load plus device conductance),
ii) a conductance g_{1} to absorb the power loss associated with the input circuit.

It remains now to determine the permissible values of the input signal in order that breakdown of the device can be prevented due to violation of equation (2.33).

$$
\begin{equation*}
a \cos \theta-b \sin 2 \theta \leqslant 1 \tag{2.78}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
a \leqslant \sec \theta-2 b \sin \theta \tag{2.79}
\end{equation*}
$$

This equation is plotted in Figure (2.7) and illustrates the permissible values of ' a ' and ' b ' which satisfy equation (2.33). But ' a ' and " b ' are further constrained by equation (2.43), i,e.

$$
\begin{equation*}
\hat{\nabla}_{2}=2 \omega a^{2} Q_{2} / G_{L} \tag{2.80}
\end{equation*}
$$

which may be rewritten as

$$
\begin{equation*}
a=\sqrt{b G_{L} / G_{12}} \tag{2.81}
\end{equation*}
$$

Equation (2.81) is also plotted with the ratio G_{L} / G_{12} as a runing parameter. The point of operation of the multiplier mast lie on one of these quadratic curves and lie within the permissible working range. For example if $G_{L}=G_{12}$ then maximum value for ' a ' will be 0.68 and the maximum value of ' b ' will be 0.47 as given by point P. If ' a ' is reduced to say 0.6 then ' b ' will reduce to 0.35 (point Q) on the curve $G_{\mathcal{L}} J_{12}=1$.

The complete performance of the system can now be specified inciuding for example the input power, output power and efficiency.

Figure 2.7

Operating Chart for Frequency Doubler
limit of operation to prevent breakdown
_-........ constant load conductance curves

2.8 Discussion

The aforegoing analysis shows that the performance of frequency multiplying circuits can be predicted in terms of the spectrum of the non-linear device to a sinusoidal drive. If the device characteristics are known the methods developed in this chapter are still applicable provided the Fourier Series coefficients can be evaluated.

Inportant ratios of spectral components which influence the performance of frequency multiplying systems have been identified. These are:-
(i) the transconductance $G_{12}=I_{2} J V_{T}$
(ii) a Quality Factor $1 / \delta=I_{2} / I_{R_{2}}$
and (iii) the loss conductance $\mathrm{g}_{\mathbf{1}}=\mathrm{I}_{\mathbf{R}_{\mathbf{1}}} / \mathrm{V}_{\mathrm{T}}$
The above parameters are independent of input and output voltage and are properties of the non-linear device, obtainable from spectrum tests.

The conductance changing property of frequency multiplier systems has been demonstrated to depend on the-transconductance Cagain a property of the devicel and the possifle use of a characteristic conductance to aimplify design has been introduced.

A disadvantage of the proposed methods is tixi necessity to expand the Chebyshev representation of the device characteristic for a complex drive. Provideat, the spectrum of the device reduces rapidly for an increasing harmonic number the technique is acceptable.

The analyses presented here is bieing employed by D.F. Oxford to design shunt and series frequency maltiplying circuits using strip line and coaxial resonant circuits, and incorporating the affects of idler circuits into the analysis.

Suggestions for Furcher Investigations

1. Determination of transductance, quality factor and loss conductance from time domain portraits.
2. A numerical method of obtaining the modified spectrum when the device is stimulated with a complex drive.

CHAPTER 3

the Exponential diode with series resistance

Static Characteristics

3.1 Introduction

In this chapter attention is focussed on the characteristics of a Schottky-Barrier diode whose current varies as the exponential of the junction voltage. All practical diodes possess parasitic spreading resistance in series with the diode junction. Any test circuit devised to verify analytic results will have a source resistance which increases the effective device resistance. When the source voltage is sufficiently large to drive the diode hard into conduction the bi-1inear approximation is adequate. In other situations, such as the reversebiased diode mixer circuit arranged to obtain minimum conversion loss, this approximation breaks down and the curvature in the neighbourhood of the diode turn-on voltage must be taken into consideration ${ }^{(7)}$. It is therefore necessary to solve the practical diode equation, i.e.

$$
\begin{equation*}
i=I_{s} \exp (\alpha \nabla-\alpha i r)-I_{s} \tag{3.1}
\end{equation*}
$$

All previous attempts ${ }^{(3,4)}$ to solve this equation have used the power series expansion method which fails because of the slow rate of convergence.

This slow rate of convergence is due to the rapid change in thie slope of the diode curve in the vicinity of the turn on voltage. The approach adopted in this work is to determine a functional expansion. It will be seen that the solution requires the sum of only two functional terms to obtain the necessary accuracy, the second term being a small correction to the
first term. The rapid convergence of this two-term approximation may be attributed to the fact that each of the functions is swritten in a closed form and replaces the power series expansions of the aforementioned methods. As the two term expansion solution of equation(3.1) is original a complete derivation is given within this chapter.

3.2 The Normalised Equation

The solution to equation(3.1) is best approached by modifying it to a suitable mathematical form First, we rearrange the equation as

$$
\begin{equation*}
\left(i+I_{s}\right)=I_{s} \exp \left[\left(\alpha V+\alpha I_{s}\right)-\alpha r\left(i+I_{s}\right)\right] \tag{3.2}
\end{equation*}
$$

which leads to

$$
\begin{equation*}
I=A \exp (-\alpha r I) \tag{3.3}
\end{equation*}
$$

where

$$
\begin{equation*}
A=I_{s} \exp \left(\alpha \nabla+\alpha r I_{s}\right) \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{I}=i+I_{s} \tag{3.5}
\end{equation*}
$$

Further modification gives

$$
\begin{equation*}
I / A=\exp (-\operatorname{ar} A I / A) \tag{3.6}
\end{equation*}
$$

which may finally be written as

$$
\begin{equation*}
x=\exp (-x / \varepsilon) \tag{3.7}
\end{equation*}
$$

where

$$
\begin{equation*}
x=I / A=\left(i+I_{B}\right) / I_{s} \exp \left(\alpha V+\alpha r I_{s}\right) \tag{3,8}
\end{equation*}
$$

and

$$
\begin{equation*}
\varepsilon=1 / \alpha r A=1 / \alpha r I_{B} \exp \left(\alpha V+\alpha r I_{s}\right) \tag{3.9}
\end{equation*}
$$

Equation (3.7) is the simplest form of the equation (3.1) whilst equation (3.8) and (3.9) are the transformations which enable the solution, in terms of the original variables i, and η, to be recovered. It is of interest to note than this type of implicit exponential equation occurs in connection with black body radiation and with the stability of differential-difference equations (22). The method outlined above may be used to transform any equation of the form

$$
\begin{equation*}
A i=B \exp (a V+c-b i)+c, \quad b>0 \tag{3.10}
\end{equation*}
$$

into equation (3.7) and therefore the results obtained for the diode equation may be of direct use in other areas of science.

3.3 The First Term Approximation

Now that the diode equation is. reduced to its modified form, the variation of the roots of the equation can be displayed graphically for different values of the parameter ε. In Figure (3.1) the roots of equation (3.7) are shown as the intersections on the curves $y=x$ and $y=\exp (-x / \varepsilon)$. Also shown (broken lines) in Figure 3.1 are the approximate roots obtained if the exponential term is replaced by a linear approximation, i.e.

$$
\begin{equation*}
\exp (-x / \varepsilon) \simeq 1-x / \varepsilon \tag{3.11}
\end{equation*}
$$

leading to

Figure 3.1

Exact and Approximate roots of che equation

$$
x=\exp (-x / \varepsilon)
$$

$$
\begin{equation*}
x=1 /(1+1 / \varepsilon) \tag{3.12}
\end{equation*}
$$

It will be seen that the ratio of the exact root to the approximate root varies from 1.01, through 1.096 to 1.7 as the parameter ε varies from 10, through 1.0 to 0.1 . This argument suggests that it may be possible to find a better approximation by introducing a modifying factor to the solution of equation (3.7) in the form

$$
x \propto f(\varepsilon) /(1+1 / \varepsilon)
$$

where $f(\varepsilon)$ is a slowly varying function with $f(\infty)=1.0$. To determine the unknown function $f(\varepsilon)$, equation (3.13) is substituted into equation (3.7) to obtain

$$
f(\varepsilon) /(1+1 / \varepsilon)=\exp \left[-\frac{f(\varepsilon)}{\varepsilon(I+1 / \varepsilon I}\right]
$$

The logarithmic equivalent of (3.14) is

$$
\begin{equation*}
\ln f(\varepsilon)-\ln (1+1 / \varepsilon)=-f(\varepsilon) /(1+\varepsilon) \tag{3.15}
\end{equation*}
$$

The function $\mathbf{f (\varepsilon)}$ is greater or equal to unity and therefore $\ln \mathrm{f}(\varepsilon)$ is always positive. Since $f(\varepsilon)$ changes slowly for large changes in ε then $\ln (f(\varepsilon) I$ will change even more slowly. The second term in equation (3.15) i.e. $\ln (1+1 / \varepsilon)$ behaves $a s[-\ln (\varepsilon)]$ as ε approaches zero. The left hand side of equation(3.15) is therefore dominated by this latter term and it is therefore possible to neglect $\ln \mathrm{f}(\mathrm{E})$. This enables $\mathrm{f}(\mathrm{E})$ to be found as

$$
f(\varepsilon)=(1+\varepsilon) \ln (1+1 / \varepsilon)
$$

If (3.16) is now substituted into (3.13) the first term approximation to the root of (3.17) is obtained as

$$
\begin{equation*}
x \approx \varepsilon \ln (I+1 / \varepsilon) \tag{3.1/}
\end{equation*}
$$

If ε is very large Figure 3.1 shows that x approaches unity and equation (3.17) then becomes

$$
\begin{equation*}
x \approx \varepsilon \ln (1+1 / \varepsilon) \propto \varepsilon .1 / \varepsilon+1 \tag{3.18}
\end{equation*}
$$

On the other hand, if ε is small the root of equation (3.7) must approach zero and for this condition equation (3.17) becomes

$$
\begin{equation*}
x=\varepsilon \ln (1+1 / \varepsilon)=\varepsilon \ln (1 / \varepsilon) \rightarrow 0 \tag{3.19}
\end{equation*}
$$

Thus equation (3.17) has the correct asymptotic behaviour. For intermediate values of ε it will be seen from Figure 3.2 that (3.17) follows the general trend of the exact function but is not sufficiently accurate. In Figire 3.2 the exact function is computed by assigning values to x and calculating ε. The computed results from which Pigure 3.2 is derived are given in Table 3.1.

3.4 The Two. Term Approximation

The accuracy of the approximation may be further improved by obtaining a more accurate equation for $f(\varepsilon)$. This may be accomplished by assuming

$$
\begin{equation*}
f(\varepsilon)=f_{0}(\varepsilon)+f_{1}(\varepsilon) \tag{3.20}
\end{equation*}
$$

where $f_{0}(\varepsilon)$ is given by equation (3.162 and $f_{1}(\varepsilon)$ is assumed to be a saall correction, i.e.

$$
\begin{equation*}
f(\varepsilon)=f_{0}(\varepsilon)\left[1+f_{1}(\varepsilon) / f_{0}(\varepsilon)\right]=f_{0}(\varepsilon)[1+\varepsilon] \tag{3.21}
\end{equation*}
$$

where

$$
z=f_{1} / f_{0} \ll 1
$$

Table 3.1

[^0]With this assumption (3.17) then takes the form

$$
\begin{equation*}
\ln \left[f_{0}(1+z)\right]-\ln (1+1 / \varepsilon)=-f_{0}(1+z) /(1+\varepsilon) \tag{3.23}
\end{equation*}
$$

which upon rearranging and cancelling common terms becomes

$$
\begin{equation*}
(1+\varepsilon) \ln f_{0}+(1+\varepsilon) \ln (1+z)=-f_{0} z \tag{3.24}
\end{equation*}
$$

For small z the term $\ln (1+z)$ may be replaced by z to give

$$
\begin{equation*}
(1+\varepsilon) \ln f_{0}+(1+\varepsilon) z=-(1+\varepsilon)[\ln (1+1 / \varepsilon)] z \tag{3.25}
\end{equation*}
$$

which is readily solved to give

$$
\begin{equation*}
z=\frac{-\ln f_{0}}{1+\ln (1+1 / \varepsilon)} \tag{3.26}
\end{equation*}
$$

The improved value for the function $f(\varepsilon)$ is now given by

$$
\begin{align*}
& f(\varepsilon)=(1+\varepsilon) f_{0}=f_{0}+z f_{0} \\
& =(1+\varepsilon) \ln (1+1 / \varepsilon)-\frac{(1+\varepsilon) \ln (1+1 / \varepsilon)}{1+\ln (1+1 / \varepsilon)} \ln [(1+\varepsilon) \ln (1+1 / \varepsilon)]
\end{align*}
$$

The two term approximation for x is finally obtained, i.e.

$$
\begin{aligned}
& x=f(\varepsilon) /(1+1 / \varepsilon) \\
& =\varepsilon \ln (1+1 / \varepsilon)-\frac{\varepsilon \ln (1+1 / \varepsilon)}{1+\ln (1+1 / \varepsilon)} \ln [(1+\varepsilon) \ln (1+1 / \varepsilon)]
\end{aligned}
$$

The above is also plotted in Figure 3.2 where it is comparied vith the exact function from which it can be seen that the approximation to the exact solution is extremaly good over a wide range of the variable ε. The computed results from which the grapi of two term approximation stiown in Figure 3.2 is derived are sfiom in Table 3.2

Table 3.2

[^1]
3.5 Solution in Terms of Initial Variables

Equation (3.28) has been shown to be a valid mathematical solution for the transcendental exponential equation, however to appreciate the physical implication of the solution it is necessary to transform equation (3.28) to the initial variables by means of (3.8) and (3.2). Before quoting the final result it is useful to examine the relation Betreen ε and ∇, i.e.

$$
\begin{equation*}
1 / \varepsilon=\alpha r I_{s} \exp \left(\alpha \nabla+\alpha r I_{s}\right) \tag{3.29}
\end{equation*}
$$

obtained by inverting (3.9). The multiplier of the exponential arr ${ }_{8}$ may be incorporated into the argument of the exponential by introducing an auxiliary voltage V_{0}, i.e.

$$
\begin{equation*}
\alpha r I_{s}=\exp \left(-\alpha \nabla_{0}\right) \tag{3.30}
\end{equation*}
$$

Consequently equation (3.29) may now be written in the form

$$
\begin{equation*}
1 / \varepsilon=\exp \left(\alpha \nabla-\alpha \nabla_{0}\right)=\exp (u) \tag{3.31}
\end{equation*}
$$

where the term arIs in the argument of the exponential has been neglected since I_{s} is of the order of 10^{-9}, and

$$
\begin{equation*}
u=a\left(V-\nabla_{o}\right) \tag{3.32}
\end{equation*}
$$

The two term approximation may finally be written as

$$
\begin{equation*}
i+I_{s}=\frac{1}{\alpha r} \ln \left(1+e^{u}\right)\left[1-\frac{\ln \left[\left(1+e^{-u}\right) \ln \left(1+e^{u}\right)\right]}{1+\ln \left(1+e^{u}\right)}\right] \tag{3.33}
\end{equation*}
$$

Graphical comparisons of the one-term and two term approximations with the exact diode equation are shown in Figures (3.3) and (3.4), respectively. The validity of the two texm approximation is immediately apparent from Figure (3.4) and to appreciate its accuracy a numerical comparison is made in Table (3.3). The percentage error between the voltage recovered from the exact diode equation and the true voltage for a given current ranges from -0.0028% at 1.9 volts, through -0.1196% at 0.3 volts to - . 0002% at 0.1 voles. The solution is an extremely good approximation to the exact diode equation. The accuracy is maintained for other values of $x_{,}, r_{\text {, }}$ and I_{s} and has been checticed for values of r ranging from 10 to 1000 ohms.
3.6 Tha Significance of the Logarithmic Form

Although one term approximation is not aufficiently accurate it is useful to examine its behaviour as it highlights the physical nature of the device governed by an equation of the form

$$
\begin{equation*}
i+I_{s}=\frac{1}{\alpha r} \ln \left[1+\exp \alpha\left(\nabla-\nabla_{0}\right)\right] \tag{3.34}
\end{equation*}
$$

If $V>\nabla_{0}$, and since α is large (typically of the order of 40) then

$$
\begin{equation*}
\exp \left[\alpha\left(\nabla-V_{0}\right] \gg 1\right. \tag{3.35}
\end{equation*}
$$

and equation (3.34) becomes:

$$
\begin{align*}
i+I_{s} & \propto \frac{1}{\alpha r} \ln \left[\exp \left\{\alpha\left(r-y_{0}\right\}\right]\right. \\
& =\frac{\nabla-\nabla_{0}}{r}
\end{align*}
$$

Figure 3.3

Comparison of one-cerm approximation with exact diode characteristic

$*-\ldots$ diode characteristic $\left(i=I_{s} \exp (a V-\alpha i r)-I_{s}\right)$
$\alpha=40, \quad r=10$ ohms,
$\mathrm{I}_{\mathrm{a}}=10^{-8}$ aipores

Figure 3.4
Comparison of two term approximation with exact diode characteristic
two term approximation
$\rightarrow \quad \underset{\sim}{*}$ diode characteriatic
$\alpha=40, i=100 \mathrm{bms}, I_{s}=10^{-8}$ amperes

Table 3.3

Numerical comparison of one and two term approximations with exact diode equation

Thus for $\nabla>\nabla_{0}$ the logarithmic form of equation (3.342 behaves linearly with slope $1 / r$ which is precisely the manner in which the bi-1inear approximation is used to represent diode behaviour when driven hard into conduction. Furthermore, if this straight line is extrapolated it cuts the ∇ axis at $\nabla=\nabla_{0}$. This fact gives the physical interpretation to. ∇_{0} as being the turn-on voltage of the diode and for $\alpha=40, x=10$, $I_{s}=10^{-8}$ it is seen that

$$
\begin{equation*}
\nabla_{0}=-\frac{1}{\alpha} \cdot \ln \left(\operatorname{cur} r_{s}\right)=0.31 \text { volts } \tag{3.38}
\end{equation*}
$$

which is close to the empirically observed turn-on voltage. The fact that the turn on voltage of diodes appears to be independent of series resistance r may be explained by the fact that $\alpha \mathrm{II}_{\mathrm{s}}$ is dominated by I_{s} and extremely large changes in I are required to produce a significant change in $\mathrm{ln}_{\mathrm{n}}\left(\mathrm{arI}_{\mathrm{B}}\right)$.

When $V<\nabla_{0}$ the exponential term in equation (3.34) becomes small compared to unity and then using (3.30I gives

$$
\begin{equation*}
i+I_{s}=\frac{\exp \left[\alpha\left(\nabla-\nabla_{0}\right)\right]}{\alpha r}=I_{s} \exp _{i} \operatorname{cov} \eta \tag{3.39}
\end{equation*}
$$

which tends to zero for negative voltage. This again is the manner in which the bi-linear approximation represents diode behaviour for reverse biased condition.

The aforegoing discussion suggests that it may be possinie to obtain an approximation to the diode characteristic by assuming an equation of the form

$$
i+I_{s}=\frac{1}{\alpha r_{m}} \ln \left[1+\exp \alpha\left(\nabla-\nabla_{1}\right)\right]
$$

where $r_{\text {m }}$ is a modified resistance parameter to account for the slight reduction in slope of the exact curve as shown in Figure 3.3 and ∇_{1} is chosen to represent the turn on voltage.

The appropriate parameters r_{m}, and ∇_{1} may be obtained by expanding the two term approximation (equation 3.33) for $\nabla>\nabla_{0}$ to obtain

$$
\begin{equation*}
i+I_{s} m \frac{\nabla-\nabla_{0}}{r} \frac{1}{a r} \ln \left[a\left(\nabla-\nabla_{0} 2\right]\right. \tag{3.41}
\end{equation*}
$$

This equation is not linear in ∇, however, the curvature due to the logarithmic term is amall and over practical working ranges may be linearised about $V=2 \nabla_{0}$ to give

$$
\begin{equation*}
i+I_{s} \cong \frac{\nabla\left(1-1 / \alpha \nabla_{0}\right)}{I}-\left(2-\ln \alpha \nabla_{0}-\alpha \nabla_{0}\right) / \alpha \tag{3.42}
\end{equation*}
$$

This asymptote will intercept the ∇ axis at

$$
\nabla_{1}=\frac{\alpha \nabla_{0}+\ln \alpha \nabla_{0}-2}{\alpha\left(1-1 / \alpha \nabla_{0}\right)}
$$

and the inverse of the slope will give the modified resistance parameter.

$$
\begin{equation*}
r_{m}=r /\left(1-1 / \alpha \nabla_{0}\right) \tag{3.44}
\end{equation*}
$$

The appropriate logarithmic approximation will then be given by equation (3.40) with the parameters r_{m} and ∇_{1} given by equations (3.43) and (3.44), respectively. Graphical and numerical comparisons of the logarithmic approximation with the exact diode equation are shown in Figure (3.5) and Table (3.4) for diode parameters $\alpha=40, r=10, I_{s}=10^{-8}$. The corresponding value of the turn-on voltage V_{1} for these parameters as given by equatiou (3.43) is 0.35 volts wich agrees with the intercept in Figure (3.5). The modified resistance r_{m} as given by equation (3.44) is $\mathbf{1 0 . 9 7 5}$ ohms, an increase of approximately 9% on the true series resistance. It should be noted that r_{m} is not directly proportional to r since ∇_{0} is dependent on r.

Figure 3.5

Comparison of cranslated one-term expansion: with two-term approximation

```
translated (logarithmic)
```


Table 3.4

Comparison of logarithmic and two term

 approximations$\alpha=40, \quad r=10$ ohms, $I_{s}=10^{-8}$ amperes

$$
\nabla_{0}=0.3107 \text { volts }
$$

$\nabla_{1}=0.352 \mathrm{volts}$

voltage
 마동

0
.1
.2
. 3
.4
. 5
.6
.7 .
.8
. 9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
two term:
1×10^{-8}
5.458×10^{-7}
2.946×10^{-5}
1.053×10^{-3}
6.437×10^{-3}
1.445×10^{-2}

$$
2.329 \times 10^{-2}
$$

$$
3.248 \times 10^{-2}
$$

$$
4.185 \times 10^{-2}
$$

$$
5.135 \times 10^{-2}
$$

$$
6.093 \times 10^{-2}
$$

$$
7.056 \times 10^{-2}
$$

$$
8.024 \times 10^{-2}
$$

8.296×10^{-2}
9.970×10^{-2}
1.095×10^{-1}
1.193×10^{-1}
1.291×10^{-1}
1.389×10^{-1}
1.487×10^{-1}
logarithmic
amperes
1.8×10^{-9}
9.612×10^{-8}
5.242×10^{-6}
2.700×10^{-4}
4.724×10^{-3}
1.361×10^{-2}
2.280×10^{-2}
3.199×10^{-2}
4.119×10^{-2}
5.038×10^{-2}
5.958×10^{-2}
6.877×10^{-2}
7.797×10^{-2}
8.717×10^{-2}
9.636×10^{-2}
1.056×10^{-1}
1.148×10^{-1}.
1.240×10^{-1}
1.331×10^{-1}
1.423×10^{-1}

It will be observed from Figure (3.5) that the two curves are an extremely good match in the vicinity of 0.7 volts, (approximately $2 \mathrm{~V}_{\mathrm{o}}$) but that they deviate slightly for other voltages. The choice of $2 \nabla_{0}$ as the point to fit the logarithmic curve is arbitrary. The main requirement is that the logarithmic curve should be fitted at a point beyond the curvature in the vicinity of the turn-on voltage. Other than this the point at which the two curves are made to fit will be largely dictated by the intended voltage swing imposed on the diode. For example if the maximum positive voltage is to be of the order 0.5 volts the fit can be made at say 0.45 volts which will clearly improve the accuracy of the approximation. If on the other hand a large voltage swing is anticipated a point about mid-way between the turn-on voltage and the maximum voltage will give a reasonably accurate representation. The determination of the parameters as I_{m} and ∇_{1} wher the two term approximation is linearised about a voltage differing from $2 \mathrm{~V}_{0}$ is given in appendix C1.

With regard to the measure of the accuracy of the logarithmic approximation this will depend on the error norm used. In this respect Figure (3.6) illustrates the variation of the percentage error at different voltage levels from which it will be seen that the error is large for voltages below the turn-on voltage falls to the order of 2 . percent at 0.7 volts and rises slowly to around 4 percent at 1.9 volts. The large percentage error at low values of voltage is due to the extremely small current level attained. The percentage error measures the deviation of the estimated point from its true value and takes no regard to the variation of the curve. The root mean square (r.m.s.) error the other hand gives a measure of the average deviation of the approximation curve from the true curve over the working range of the

Pigure 3.6
Variation of percentage error wich applied voleage
curve Figure (3.7) indicates the r.m.s. error over the working ranges coyered. This curve shows a converse type behaviour to the percentage error curve giving a small error norm below the turn-on voltage and a considerably larger but roughly constant norm above the turn on level. This measure of error increases with Increasing voltage range Because it is proportional to the square of the area between the two curves.

3.7 Exponential Correction to the Bi-1inear Model

In the previous section it has been shown how the logarithmic
 of a much used bí-linear model. Working from the logarithmic form it is also possible to produce a diode model which is bi-1inear model rithan exponential "cusp" correction as shonn in Figure (3.8). The advantage of this model is that the two terms are additive wereas in the logarithmic model the Bi-1inear effect and the exponential curvature are included in a single function.

To obtain this useful approximate form, the logaritimic equation (3.40) is first expanded about the point $V=V_{1}$.

For $\nabla \leqslant \nabla_{1}$ equation (3.40) may be written as

$$
\begin{equation*}
i+I_{s}=\frac{1}{\alpha I_{m}} \sum_{k=1}^{\infty}(-1)^{i x+1} \frac{\exp \left[\operatorname{kco}\left(\nabla-\nabla_{1}\right)\right]}{k} \tag{3.45}
\end{equation*}
$$

since the exponential term is less or equal to unity.
For $V \geqslant \nabla_{1}$ equation (3.40) is rearranged as

$$
\begin{aligned}
\left(i+I_{s}\right) & =\frac{1}{\alpha r_{m}} \ln \left\{\exp \left(\alpha\left(\nabla-\nabla_{1}\right)\right)\left[1+\exp \left(-\alpha\left(\nabla-\nabla_{1}\right)\right)\right]\right\} \\
& =\frac{\nabla-\nabla_{1}}{r_{m}}+\ln \left\{1+\exp \left[-\alpha\left(\nabla-\nabla_{1}\right) \cdot:\right]\right\}
\end{aligned}
$$

Figure 3.7
Variation of r.m.s. error with
applied volcage

Figure 3.8
Cusp correction to bi-linear model

$$
=\frac{\nabla-\nabla_{1}}{r_{m}}+\frac{1}{\alpha r_{m}} \sum_{k=1}^{\infty}\left(-12^{k+1} \frac{\exp \left[-k \alpha\left(\nabla-\nabla_{1}\right)\right]}{k}(3.46)\right.
$$

Bvaluation of equations (3.45) and (3.46) will give identical numerical results as the logarithmic equation. Because of the large value of the parameter α the series of exponentials will rapidly approach zero for $\nabla \gg \nabla_{1}$, i.e. the higher order term of the series give negligible contribution when $V \gg \nabla_{1}$ and under such circumstances the first term of the series will suffice.

When $\nabla=\nabla_{1}$ the series in (3.45) and (3.46) will take on the value

$$
\begin{equation*}
\left(i+I_{s}\right)=\ln (2) / a r_{m} \tag{3.47}
\end{equation*}
$$

whilst the slope of the function at $\nabla=\nabla_{1}$ will be

$$
\begin{align*}
\frac{d\left(i+I_{s}\right)}{d \nabla} & =\frac{1}{\alpha x_{m}}\left[\pm \alpha \frac{\exp \left[\pm \alpha\left(\nabla-\nabla_{1}\right)\right]}{1+\exp \left[\pm \alpha\left(\nabla-\nabla_{1}\right)\right]}\right] \\
& = \pm \frac{1}{2 x_{m}}
\end{align*}
$$

Consider now the single exponential

$$
\begin{equation*}
\frac{1}{\alpha r_{m}} \ln (2) \exp \left[\pm a\left(v-\nabla_{1}\right) / \ln (4) \vdots\right] \tag{3.49}
\end{equation*}
$$

When $v=\nabla_{1}$ equation (3.49) takes on the value $\ln (2) / \alpha r_{m}$ and the initial slope is $1 / 2 \mathrm{r}_{\text {m }}$ which agrees with equation (3.47) and (3.48). Furthermore for $\nabla \neq V_{1}$ the exponential decays rapidly to zero and thus has a similar asymptotic behaviour as equations (3.45) and (3.46). - A comparison of equation (3.49) with the logarithmic approximation is shown in Figure (3.9). With this simple exponential approximation the solution may now be written,

for $\boldsymbol{V} \leqslant \nabla_{1}$

$$
\begin{equation*}
i+I_{s}=\frac{1}{\alpha r_{m}} \ln (2) \exp \left[\alpha\left(\nabla-\nabla_{1}\right) / \ln (4) \cdots\right. \tag{3.50}
\end{equation*}
$$

and for $V \geqslant \nabla_{1}$

$$
\begin{equation*}
i+I_{s}=\frac{\nabla-\nabla_{1}}{r_{m}}+\frac{\ln (2)}{\alpha r_{m}} \exp \left[-\alpha\left(\nabla-\nabla_{1}\right) / \ln (4)\right] \tag{3.51}
\end{equation*}
$$

In this form the solution is seen to be the bi-linear approximation with exponential correcting terms to represent the diode curvature. Equations (3.50) and (3.51) have the additional advantage that when differentiated, to obtain the incremental time-varying parameters, they will give rectangular pulse waveform (obtainable from the bi-linear theory) with exponential correcting additive terms. Thus the problem of predicting the harmonic content of the current from equations (3.50) and (3.51) is identical to predicting the coefficients of the time varying conductance.

CHAPTER 4

THE EXPOAEHTIAL DIODE WITH SERTES RESISTARCE DYIAMIC COISIDERATIONS

4.1 Introduction

In the previous chapter explicit equations were derived for the diode current in terms of the system voltage when the junction voltage . is modified due: to the presence of series resistance. This is a necessary prerequisite in the determination of the harmonic response to a sinusoidal driving voltage. The most useful approximation for this purpose is the bi-linear model with exponential correcting terms. In this way the effect of diode curvature may be compared with the pradictions of the bi-linear model. In many practical applications the diode is driven with a sinusoidel voltage superimposed on a d.c. bias voltage, i.e.

$$
\begin{equation*}
V=-y_{E}+\dot{V} \cos \omega t \tag{4.1}
\end{equation*}
$$

The cerms ($V-\nabla_{1}$) in equations (3.50) and (3.51) chen cake the form

$$
\begin{align*}
& -\dot{\nabla}_{b}-\dot{\nabla}_{1}+\hat{\nabla} \cos \omega t \\
& o r-\nabla_{2}+\hat{\nabla}^{c o s} \omega t \tag{4.2}
\end{align*}
$$

where

$$
\begin{equation*}
\nabla_{2}=\nabla_{b}+\nabla_{1} \tag{4.3}
\end{equation*}
$$

Thus ∇_{2} may be regarded as a neve turn-on voleage relative to the sinusoidal drive voltage wich translates the diode characteristic along the ∇ axis dependiag on the degree of bias ∇_{b}. Thus wichout lose of generality the terms $\left(\nabla-\nabla_{1}\right)$ may be replaced with $\left(\nabla-\nabla_{2}\right)$ where

$$
\begin{equation*}
\nabla=\dot{\hat{\theta}} \cos \theta, \quad \text { and } \quad \theta=\omega t \tag{4.4}
\end{equation*}
$$

With the time origin chosen so as to make the voltage drive cosinusoidal the current flowing in the diode is an even function of time and contains cosine terms only in its Fourier expansion ise.

$$
\begin{equation*}
i(\theta)+I_{s}=\frac{a_{0}}{2}+{ }_{n} \tilde{m}_{1} a_{n} \cos n^{\prime} \cdot \theta \tag{4.5}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{n}=\frac{2}{\pi} \int_{0}^{\pi}\left(i+I_{s}\right) \cos n \theta d \theta \tag{4.6}
\end{equation*}
$$

4.2 Low-level drive $\hat{\nabla} . \leqslant \dot{\nabla}_{2}$

If the peak level of che local oscillator does not exceed the effective turn-on voltage ∇_{2} then equation (3.50) suffices to predict the harmonic concent. It is convenient to hovever rewrite it in the form

$$
\begin{aligned}
i+I_{s} & =\frac{\ln (2) \exp \left(-\alpha \nabla_{2} / \ln 4\right) \exp (\alpha \hat{\mathrm{v}} \cos \theta / \ln 4)}{\alpha r_{m}} \\
& =K \exp (Z \cos \theta)
\end{aligned}
$$

where

$$
\begin{equation*}
K==\ln (2) \exp \left[\left(-\alpha \nabla_{2} / \ln 4\right] / a r_{m}\right. \tag{4.8}
\end{equation*}
$$

and

$$
z=\alpha \hat{V} / \ln (4):
$$

The harmonic coefficients are then readily expressed in terma of the modified Bessel functions of the first kind, i.e.

$$
\begin{equation*}
a_{n}=2 \pi \mathcal{I}_{h}(z) \tag{4,2}
\end{equation*}
$$

and the Fourier expansion for the diode current will then be

$$
\begin{equation*}
i(\theta)+I_{s}=\operatorname{KIF}_{0}(Z)+2 K E I_{n}(Z) \cos n \theta \tag{4,10}
\end{equation*}
$$

In this form the effect of series resistance may be explained by observing that from equation (3.44) that as I increases, r_{m} increases
and I decreases. Thus the percentage harmonic content is unchanged siace K multiplies all harmonic components. Change of bias hias a similar effect since only K is altered ty a change in \boldsymbol{V}_{2}.

It would clearly be inappropriate to use the bi-linear model for the low level drives under discussion. On the other hand if the series resiatance was neglected and the exponential diode model assumed then the harmonic spectrum would have che form given by equation (4.10) but with

$$
X^{\prime}=I_{s} \exp \left(-\alpha_{V_{b}}\right) \text { and } Z^{\prime}=\alpha \hat{\nabla}
$$

Since if \mathbf{r} is zero then the diode current is

$$
\begin{equation*}
\text { i- } \left.I_{s}=I_{a} \exp \alpha\left(V-\nabla_{b}\right)=I_{s} \exp \left(-\alpha \nabla_{b}\right) \exp (\alpha \hat{V}) \cos \theta\right) \tag{4.11}
\end{equation*}
$$

It is of interest to compare the magnitudes of the currencs given by equation (4.7) and the diode junction equation

$$
\begin{equation*}
i+I_{s}=I_{s} \exp [\hat{a} \hat{v} \cos \theta] \tag{4,12}
\end{equation*}
$$

This comparison can be made by manipulating equacion (4.7) into the form

$$
\begin{equation*}
i+I_{s}=I_{s}^{\prime} \exp \left(-a^{\prime} \nabla_{b}\right) \exp \left(a^{\prime} \dot{\nabla} \cos \theta\right) \tag{4.13}
\end{equation*}
$$

where

$$
\begin{align*}
& I_{s}^{\prime}=\ln (2) \exp \left[-\alpha V_{1} f \ln (4)\right] / \alpha r_{m} \tag{4.14}\\
& \alpha^{\prime \prime}=\alpha / \ln 4 \tag{4.15}
\end{align*}
$$

For $\alpha=40, I_{s}=10^{-8}, T=10$ ofims, and $\nabla_{b}=0$,
$I_{s}{ }^{\prime}=10^{-10} I_{s}$ and $\alpha^{\prime}=29$.
Thus the effect of series resiatance is to reduce the effective diode parametere considerably resulting in a mach reduced current andconsequent reduction in harmonic leyel: Therefore for these
low level drives it is not justifiable to ignore the series resistance.

4.3 Hard driven diodes
 High level drives $\quad \nabla>\nabla_{2}$

If the voltage drive is such that the effective turn on voleage $\boldsymbol{\nabla}_{\mathbf{2}}$ is exceeded then the non-zero segment of the bi-linear part of the characteristic will contribute to the wavaform and the harmonic components associated with it are foum to be

$$
\begin{align*}
& \frac{a_{0}}{2}=\hat{\nabla} \sin \left[\theta_{0}\left(1-\theta_{0}\right] / \pi r_{m},\right. \tag{4.16}\\
& a_{n}=\frac{\hat{\nabla}}{n \pi r_{m}}\left(\frac{\sin (n-1) \theta_{0}}{n-1}-\frac{\sin (n+1) \theta_{0}}{n+1}\right) \tag{4.17}
\end{align*}
$$

where

$$
\begin{equation*}
\theta_{0}=\cos ^{-1}\left(\hat{v} / \nabla_{2}\right) \tag{4.18}
\end{equation*}
$$

As can be seen from figure 4.1 the cusp current, i.e. the component of current flowing in the diode due to the cusp section of the character istic is symmerrical for sufficiently large driving voltages. This condition will be achieved when the index of the negative exponential cusp exceeds a value of three for the exponential then is within 5% of zero. Thus, to obtain symmatrical cusp current the condition

$$
\alpha\left(\hat{V}-\nabla_{2}\right) / \ln 4 \geqslant 3
$$

or

$$
\begin{equation*}
\hat{\nabla} \quad: \geq \nabla_{2}+3 \ln 4 / \alpha \tag{4.19}
\end{equation*}
$$

must be satisfied. The term $38 n 4 / \alpha$ may be regarded as a measure of the excess of voltage beyond the effective turn-on voltage ∇_{2} necessary to produce a symatrical cusp currant.

Curve 1 of Figure 4.1 illustrates the condition to produce a aymetrical cusp current. We see that the cosine voltage drive may be replaced by ics cangent at the point $\theta=\theta_{0}$, for both exponential parts of the cusp, the curvarure of the cosine wave only occurs when the exponencials have decayed essentially to zero and therefore give little contribution to the harmonic components. Changing the variable by

$$
\begin{equation*}
\theta=\theta_{0}-\phi_{1} \tag{4.20}
\end{equation*}
$$

where ϕ varies from θ_{0} to 0 as θ varies from 0 to θ_{0}, converts the negative cusp current i_{c-} equation

$$
\begin{equation*}
i_{c-}=\frac{\ln 2}{\alpha r_{m}} \exp \left[-\alpha \dot{\nabla}\left(\cos \theta-\cos \theta_{0}\right) / \ln 4\right] \tag{4.21}
\end{equation*}
$$

into

$$
\begin{equation*}
i_{c-}=\frac{\ln 2}{\alpha r_{m}} \exp \left[-\alpha \dot{\nabla}\left(\cos \theta_{0} \cos \phi_{1}+\sin \theta_{0} \sin \phi_{1}-\cos \theta_{0}\right) / \ln 4\right] \tag{4.22}
\end{equation*}
$$

Since a is a large parameter ${ }^{\text {(23) }}$, it is possible to replace cos ϕ_{1} and $\sin \phi_{1}$ by the leading terms of their respective power series expansions andobtain the required linearised form of

$$
\begin{equation*}
i_{c-}=\frac{\ln (2)}{\alpha r_{m}} \exp \left[\left(-\alpha \hat{\nabla} \sin \theta_{0} \phi_{1}\right) / \ell \ln 4\right] \tag{4.23}
\end{equation*}
$$

In a similar manner, changing the variable to

$$
\begin{equation*}
\theta=\theta_{0}+\phi_{2} \tag{4.24}
\end{equation*}
$$

converts the positive exponential cusp current into the form

$$
\begin{equation*}
i_{c+}=\frac{\ln (2)}{\alpha r_{m}} \exp \left[\left(-\alpha \dot{V} \sin \theta_{0} \phi_{2}\right) / \ln (4)\right] \tag{4.25}
\end{equation*}
$$

The harmonic components of the cuap current can now be determined from

$$
\begin{align*}
a_{n} & =\frac{2}{\pi} \int_{\theta_{0}}^{0} i_{c-} \cos n \cdot\left(\theta_{0}-\phi_{1}\right)\left(-d \phi_{1} 2\right. \\
& +\frac{2}{\pi} \int_{0}^{\pi-\theta_{0}} i_{c+} \cos n\left(\theta_{0}+\phi_{1}\right) d \phi_{2} \tag{4.26}
\end{align*}
$$

Since the range of both integrals completely traverses the range of the cusp the upper limits of the incegrals in (4.26) may be replaced by infinity ${ }^{(23)}$ alhis allows both integrals to combine with cancellation of conmon(sin $n \theta_{0} \sin n \dot{\phi}$)terms and therefore

$$
a_{n}=\frac{4}{\pi} \frac{\ln (2)}{\alpha r_{m}} \int_{0}^{\infty} \cos n \theta_{0} \cos n \phi \exp \left[\left(-\alpha \alpha \hat{\nabla} \sin \theta_{0}\right) / \ell n 4\right] d \phi \quad \text { (4.27) }
$$

Rquation 4.27 is readily integrated ${ }^{\text {(24) }}$ to give

$$
\begin{equation*}
a_{n}=\frac{4}{\pi} \frac{\ln (2)}{\alpha r_{m}} \cos \left(n \theta_{0}\right) \ln 4 \frac{\alpha \hat{V} \sin \theta_{0}}{\alpha^{2} v^{2} \sin ^{2} \theta_{0}+(\ln 4)^{2} n^{2}} \tag{4.28}
\end{equation*}
$$

The effect of diode curvature may now be deduced from equarion (4.28). The minimum value of sin θ_{0} is 0.63 and this occurs when the equality is satisfied in equation (4.19) and ∇_{2} is taken as $\nabla_{1}=0.35$ i.e. zero Bias conditions. The peak voltage will then be 0.45 volts. Thus $\left(\alpha \hat{\nabla} \text { sin } \theta_{0}\right)^{2}=128$ and will dominate the denominator of equacion (4.28). if the harmonic number n is less chan 8 ; Whilst this condition is satisfied (4.28) approximares to

$$
\begin{equation*}
a_{n}=\frac{4}{\pi} \frac{\ln (2) \ln (4)}{\alpha \tau_{m}} \frac{\cos \operatorname{n}_{0}}{\alpha V \sin \theta_{0}} \tag{4.29}
\end{equation*}
$$

As the degree of overdrive beyond the curnon voltage increases equation (4.29) will hold for even larger harmonic numer. Thus the currature of the diode contributea terms to the harmonic components which are proportional to cos $n \theta_{0}$ and diminish as the drive level increases,

As the harmonic number increases the coefficients will eventually decrease to zero because of the presence of the n^{2} term in the denominator of (4.28). The components due to the bi-linear portion of the characteristic on the other hand increase with drive voltage. Thus it may be concludad chat diode curvature decreases in aignificance with increasing volvage drive.

The above results have been deduced on the basis of zero bias
conditions. However, they are general and hold for other conditions whith can be seen by observing that the term $\hat{\nabla}$ sin θ_{0} may be expressed in the form

$$
\begin{equation*}
\dot{\nabla} \sin \theta_{0}=\nabla_{2} \sqrt{\frac{\hat{v}^{2}-\nabla_{2}^{2}}{\nabla_{2}^{2}}}=\nabla_{2} \sqrt{x} \tag{4.30}
\end{equation*}
$$

where X may be defined as the overdrive coefficient and equations (4.28) and (4.29) will hold for identical overdrive factors, regardless of $\tilde{\boldsymbol{v}}$ and ∇_{2}. Furthermore if the bias coefficient β is defined as

$$
\begin{equation*}
B=\alpha V_{2} / \ln 4 \tag{4.31}
\end{equation*}
$$

then equation (4.28) may be written as

$$
\begin{equation*}
a_{n} \equiv \frac{4}{\pi} \frac{\ln (2)}{\alpha r_{m}} \frac{B \sqrt{x} \cos n_{0}}{\beta^{2} x+n^{2}} \tag{4.32}
\end{equation*}
$$

4.4 Intermediate drive levels

4.4.I The positive cusp curtent

It remains now to consider the behaviour of the cusp current when peak level of the applied voltage is such that the negative exponential portion of the cusp is not completely traversed. This situacion arises when
$\nabla_{2^{\prime}} \leqslant \dot{\nabla} \cdot \leqslant \nabla_{2}+3 \ln 4 / \alpha$

With this restriction in voltage level, figure 4.1 illustrates that the positive exponential part of the cusp is fully traversed and that the tangent to the cosine drive voltage departs considerably from the true voltage within the range of the exponential decay and. consequently the curvature of the cosine:wave mast be taken into account. This can be achieved by first changing the variable as defined in (4.24) and replacing cos ϕ by $1-\phi^{2} / 2$ and sin ϕ by ϕ to obtain

$$
\begin{equation*}
\left.i_{c+}=\frac{\ln (2)}{\alpha x_{m}} \exp \left[-\frac{\alpha \bar{y}}{\ln (4)} \rho^{2} \cos \theta_{0}+\phi \sin \theta_{0}\right)\right] \tag{4.34}
\end{equation*}
$$

As shown in Appendix CD1) equation (4.34) may be transformad inco a gaussian curve by complecing the square in the argument of the exponential. The poaitive cusp current is then given by
$i_{c+}=A \exp -\left(q^{2} / 2 \sigma^{2}\right)$
where
$A=\frac{\ell n(2)}{\alpha I_{m}} \exp \left[\frac{\alpha \bar{v} \sin \theta_{0} \tan \theta_{0}}{2 \ln 4}\right]$
$q=\left(\phi+\tan \theta_{0}\right)$
$\sigma=\sqrt{\ln (4)} / \alpha \cos \hat{\theta}_{0}$

A graphical and numerical comparison of equations (4.35)- with the posicive cusp current is given in figure (4.2), and Appesdǐx B2. Equation (4.35) defines a gaussian curve centred on $\phi=-\operatorname{can}^{\boldsymbol{\theta}} \boldsymbol{\theta}_{\text {。 }}$ with, (using probability nomenclature) a standard deviation of

$$
\begin{aligned}
\sigma & =\sqrt{\ln (4)} / \alpha \hat{\nabla} \cos \theta_{0} \\
& =\sqrt{\ln 4} / \alpha \nabla_{2} \\
& =1 / \sqrt{B}
\end{aligned}
$$

Thus the standard deviation of the curve is independent of che over drive, depending only on the effective curn on voltage which may be controlled by the bias.

For small degrees of ovardrive the curvature due to the peak of the cosine drive is reflected by the curvature of the gaussian curve near its origin. As the drive voltage increases the normal curve is offset and the point $\phi=0$ will occur on the failing side of the normal curve, and evantually the posicive cusp component will tend to an exponential decay as $\mathbf{c o s}^{2}$ coa $002 / 2$ becomes anall compared to ϕ êfin 0_{0}°

The offset in the gaussian curve which controls the shape of the positive cuap current may be expressed in terms of the turnon voltage and the drive voltage as

$$
\begin{equation*}
\mu=\tan \theta_{0}=\sqrt{\left(\nabla^{2}-\nabla_{2}^{2}\right) / \nabla_{2}^{2}}=\sqrt{x} \tag{4.38}
\end{equation*}
$$

In terms of these two dimensionless parameters B and χ the constant A in equation (4.36) may be expressed as

$$
\begin{equation*}
A=\frac{\ln (2)}{a x_{m}} \exp (B X / 2) \tag{4.39}
\end{equation*}
$$

The harmonic contribution is then given by
$a_{n t}=\frac{2}{\pi} \int_{\theta=\theta_{0}}^{\pi} \cos (\cos) A \exp \left(-q^{2} / 2 \alpha^{2}\right) d \theta$
Ir is not possible to integrate (4.40) exactly But approximate expressions can be decermined ty using Laplaces method as show in Appendix 03 providing cos n0 does not change too rapidily within the range of che normal curve. Examination of figure (4.2) shows that the most onerous condition is when the overdrive coefficient is zero and under such circumatances the method will
become inaccurate for the harmonic numbers exceeding three. The accuracy and range of the method will improve as the overdrive coefficient increases as can be seen from figure (4.2). Furchermore che width of che gaussian curve will reduce as the bias coefficient increases reaulting in improved accuracy of the mechod, which makes it actractive for the case of mixars arranged for low-loss condicions. With these comments in mind the harmonic contribution of the positive cusp current is: shown to be

$$
\begin{align*}
& a_{n+0}=\frac{\ln (2)}{\alpha r_{m}}\left\{\sqrt{\frac{2}{2 \pi \beta}} \exp \left(\frac{\beta x}{2}\right) \operatorname{exfc}\left[\sqrt{\frac{\beta X}{2}}\right]\left(\cos n \theta_{0}+n \sqrt{X} \sin n \theta_{0}\right)\right. \\
& \left.-\frac{2}{\pi \beta} n \sin n \theta_{0}\right\} \tag{4.41}
\end{align*}
$$

The worst case accuracy of equation (4.41) may be assessed by noting chat as the overdrive coefficient is reduced to zero the wave-shape should match that dictated by the limit of equation (4.7) as the drive voltage equals the turn on voltage i.e. the "upper" limiting form of the low level drive equation equals the "lower" limiting form of the overdriven equation. Comparison of the exact spectrum of the low level case as given by equation (4.10) with the approximate spectrum of the overdriven case evaluated from (4.41) will therefore give an indication of the worse case accuracy of equation (4.41). This comparison is shown in table 64.1) for the bias coefficient B having values of 10.15 and 20 , corresponding to peak dirive levels of 0.352 and 0.692 volts and confirms the statements made with regard to the derivation of equation (4.41) The worst case accuracy may be improved by obtaining additional terms of the assymptotic expansion of equation (4.40) as shown in Appendix D3. The effect of the second order terms is also indicated in table (4.1) were it will be

Table (4.1)

Comparison of Exact and Approximate spectrum of exponential cusp current

Overdrive factor $X=0$

$$
\begin{aligned}
& \frac{a n_{t}}{\ln (2) \sqrt{a r_{m}}}=\sqrt{\frac{2}{\pi^{B}}}-\frac{n^{2}}{2 B} \sqrt{\frac{2}{\pi B}} \\
& \alpha=40, \quad \hat{V}=v_{2}=0.352 \text { volts }
\end{aligned}
$$

$$
\text { Bias factor } B=\alpha \hat{V} / \ln (4)=10.15
$$

Harmonic Number n	Exact Coefficient$2 e^{-\beta} I_{n}(\beta)$	Approx Coefficient		
		$\sqrt{2 / \pi \beta}$	$n^{2} \sqrt{2 / \pi \beta} / 2 \beta$	$\mathrm{a}^{\text { }}{ }^{\text {²}}$
0	. 253	. 250	0	. 250
1	. 242	. 250	. 012	. 238
2	. 206	. 250	. 049	. 201
3	. 160	. 250	. 111	. 132

$\alpha=40, \quad \hat{\nabla}=\nabla_{2}=0.692$ volts
Bias factor $\mathrm{B}=\mathbf{2 0}$

0	.179	.178	0	.178
.1	.175	.178	.005	.173
2	.162	.178	.018	.160
3	.143	.178	.040	.138
4	.119	.178	.071	.107

* All coefficients normalized by division by $\ln (2) / a r_{m}$
observed that the worst case error is considerably reduced. The good correlation bieveen these results for the worst case condition promotes confidence in the techniques uged.

4.4.2 The negative cusp current

Finally it is necessary to determine the effect on harmonic response of the negative cusp current. The approach adopted in this range differs from that of the positive ciep current. It will be observad from figure (4.12 that the curvature of the cosine wave does not occur at the peak of the exponencial. Thus the dominant effect is due to che almost linear sides of che wave and as the peak is approached the curvature reduces the rate of decay of the cusp current. The change of variable
$\theta=\theta_{0}-\phi$
transforms the negative cuap current
$i_{c-}=\frac{\ln (2)}{\alpha \dot{r}_{m}} \exp \left[-\alpha \dot{\nabla}\left(\cos \theta-\cos \theta_{0}\right) \cdot / \ln 4\right]$
into nan approximate expression
$\left.i_{c-}=\frac{\ln (2)}{\alpha r_{m}} \exp \left[-\alpha \frac{\tilde{y}}{} \cdot \operatorname{cosin} \theta_{0}-\frac{\phi^{2} \cos \theta_{0}}{2} 2\right] \operatorname{sn} 4\right]$
where cos ϕ and sin ϕ have been replaced by the leading terms of their series. Since the dominant effect is one of exponential decay due to the ϕ sin θ_{0} term the exponential concaining $\boldsymbol{\phi}^{2} / 2 L \cos \theta_{0}$. is approximated by the first two cerms of its Taylor series expansion i.e.
$i_{c-}=\frac{\ln (2)}{\alpha z_{m}}\left[\exp -\left(\alpha \hat{\nabla} \sin \theta_{0^{-}} \phi / \ln 4\right)\right]\left[\begin{array}{l}\alpha \hat{\nabla} \cos \theta_{0} \phi^{2} \\ 2 \ln 4 \\ -\end{array}\right]$

A comparison of (4.45) with (4.432 is given in Figure (4.2) and Appendix D4. In terms of the overdrive and Gias coefficients (4.45) becomes

$$
\begin{equation*}
i_{c-} \simeq \frac{\ln (2)}{\alpha r_{m}}\left(1+B \phi^{2} / 2\right) \exp (-\beta \sqrt{x} \phi) \tag{4.46}
\end{equation*}
$$

The harmonic contribution may now be obtained by direct integration and is shown in Appendix D5 to be

$$
\begin{align*}
& a_{n-}=\frac{2}{\pi} \frac{\ln (2)}{\alpha} \frac{\beta \sqrt{x} \cos n \theta_{0}+n \sin n \theta_{0}-\beta \sqrt{x} \exp \left(-\beta \sqrt{\left.x \theta_{0}\right)}\right.}{n^{2}+\beta^{2} x} \\
& -\frac{2}{\pi} \frac{\ln (2)}{\alpha r_{m}} \frac{\beta \sin n \theta}{n\left(n^{2}+\beta^{2} x\right)} \tag{4.47}\\
& +\frac{\beta}{2} \frac{\exp \left(-\beta \sqrt{x \theta_{0}}\right)}{\left(n^{2}+\beta^{2} x\right)}\left(\beta \sqrt{x} \theta_{0}^{2}+\frac{2\left(\beta^{2} x-n^{2}\right) \theta_{0}}{\left(n^{2}+\beta^{2} x\right)}+\frac{2 \beta \sqrt{x}\left(\beta^{2} x-3 n\right.}{\left(n^{2}+\beta^{2} x\right)^{2}}\right.
\end{align*}
$$

When the drive coefficient is zero, θ_{0} is zero and (4.47) correctly indicates that the negative cusp current contributes nothing to the harmonic content. As the drive coefficient increases the exponential term approaches zero and the harmonic content will tend to

$$
\begin{equation*}
a_{n}=\frac{2}{\pi} \frac{\ln (2)}{\alpha r_{m}} \frac{\cos n \theta_{0}}{\beta \sqrt{x}}{ }_{0} \tag{4.48}
\end{equation*}
$$

which is half the value given by equation (4.32) for the hard driven case - the remainder being produced by the positive cusp component.

4.5 The incremental conductance

The incremental conductance of the system (diode with series resistance) is readily determined as the derivative of the current with respect to the voltage.

For the low-level drive condition differentiation of equation (3.50) gives the normalised conductance as

$$
\begin{equation*}
\frac{g}{g_{m}}=\frac{1}{2} \exp \alpha\left(v-v_{2}\right) / \ln 4 \tag{4.49}
\end{equation*}
$$

Curve Peak Voltage Drive $\hat{\nabla}$ | a |
| :--- |
| $\stackrel{9}{8}$ |

000000000

$$
=\alpha r_{m}\left(i+I_{s}\right) / \ln 4
$$

where

$$
\begin{equation*}
g_{m i}=1 / r_{m} \tag{4.50}
\end{equation*}
$$

Thus the harmonic componente of the incremental conductance when the voltage varies cosinusoidally,i.e. the rime varying parameters, may be obtained from the spectrum of the current given in equation (4.2).

When the voltage level is such that che diode is driven beyond the effective turn ou voleage the incremental conductance has three components:-
(i) a rectangular pulse derived from the bi-linear segments.
(ii) an addicive rising exponential cuap produced by the positive exponential portion of the cusp characteristic.
(iii) a subtractive exponential cuap due to the negative exponential part of the cuep characteristic.

Differentiation of the appropriace equations yields the following equations for the normaised incremental conductances.

$$
\begin{equation*}
\frac{g_{1}}{g_{m}}=E\left(\nabla-\nabla_{2}{ }^{2}\right. \tag{4.51}
\end{equation*}
$$

where I is the Heavyoide shift oparator,

$$
\begin{align*}
\frac{g_{+}}{g_{\text {mi }}} & =\frac{1}{2} \exp \left[\alpha\left(v-\nabla_{2}\right) / \ln 4\right] \\
& \because \frac{\alpha r_{m}}{\ln (4)} i_{c t} \tag{4.52}\\
\frac{g_{0}}{g_{m}} & =-\frac{1}{2} \exp \left[-\alpha\left(v-\nabla_{2}\right) / \ln 4\right] \\
& =-\frac{\alpha r_{m}}{\ln 4} i_{c-} \tag{4.53}
\end{align*}
$$

The cime varying parameters may chen be easily determined as the combination of the apectrum of a rectangular pulse with che spectra of the cusp currents: For the hard driven diode it is inmediately apparent that diode curvature has litrle effect since the apectra of the positive and negative cusp currencs are equal. The critical range where diode curvature will be significant is when the applied volcage drive is wichin the range of the negative cusp portion of thie characteristic since then the cusp current is not symmerrical. The waveforms of the time varying conductance as given by equations (4.51), (4.52) and (4.53) are shown in figure 4.3 for various levels of overdrive and clearly indicate the transicion from a gaussian pulse to a rectangular pulse as che degree of overdrive increases.

GBAPTER 5

DELAYED DIODE COXDUCIION IN A LAMTICE MLXER WITH CAPACITANCE

5.1 Introduction

In previous chapters studies have been made of the response to periodic drives of:-
(i) a predominately reactive device with parasitic resistance,
(ii) a non-linear resistive device with parasitic linear resistance.

In this chapter a study of a non-linear resistance syster with capacitive parasitics is undertaken and the effect on the distribution of the local oscillator current between diode and capacitance is studied.

The syster under discussion is shown in Figure 5.1 and is usually referred to as a lattice or double-Galanced mixer. Numerical analyses (25 ,. 26) have shown that current driven mixers are the most promising to obtain a low system noige figure and consequently the current driven case has been chosen for analysis.

The effect of parasitic capacitance on the small signal performance of lattice mixers has been investigated ${ }^{(10)}$ Eut as in the case of aingle diode mixers the effect of capacitance on the local oscillator waveform is usually neglected because of thie severe mathematical difficulties involved. The numarical procedures of Rustom and Howson (25), and stracca ${ }^{\text {(26) }}$, wich used resistive models of a lattice mixer also neglected parasitic capacitance.

The analysis presented here clearly indicates that a significant modification in the distribution of the local oscillator current is produced due to the presence of capacitance. The capacitance of the system cannot change its voltage instantaneously and in order to reverse
its polarity the system capacitance extracts current from the local oscillator source which prevents diode conduction for a period of time. Consequently a situation arises in which both the currents and voltages associated with each diode of the lattice are unknown and non-sinusoidal. The approach adopted in this chapter is to determine the waveshape of the diode current from which the spectral response of the system may be evaluated. Based on these findings Korolkiewicz (27) has investigated the effect of parasitic capacitance on the small signal performance of current driven lattice mixers.

5.2 Simple Theory of Lattice Mixer

A schematic diagram of a current driven lattice mixer is shown in Figure 5.1. The diodes are switched by the large local oscillator current I_{p}, at an angular frequency ω_{p}. The signal current i_{s} is at a frequency of ω_{s}. The switching of the diodes is made independent of the signal by making $\left|\hat{I}_{p}\right| \gg\left|\hat{\mathbf{i}}_{s}\right|$. The interaction of the pump and signal currents in the diodes produces currents at frequencies $\omega_{s} \pm n \omega_{p}$ in the output. By appropriate filtering at the output the components $\omega_{0}=\omega_{s}-n \omega_{p}$ can be selected. If $\omega_{s}>\omega_{p}$. then the output will be a low frequency version of the input signal.

During the positive excursion of the pump current diodes D_{2} and D_{4} do not conduct and the signal current is passed to the output transformer via the conducting diodes D_{1} and D_{3}. During the negative excursion of the pump current diodes D_{1} and D_{3} are not conducting and the signal is passed to the output via the conducting diodes D_{2} and D_{4}. However during the negative excursion of I_{p} the direction of the signal current in the output transformer is reversed. The current available at the output may therefore be represented as

$$
\begin{equation*}
i_{0}=\hat{i}_{s} s(t) \cos \omega_{8} t \tag{5.1}
\end{equation*}
$$

where $S(t)$ is a switching function, being $\div 1$ for positive I_{p} and -1 for negative I_{p}. Then

$$
\begin{equation*}
S(t)=\frac{4}{\pi} \sum_{n \text { odd }}^{\infty} \frac{\cos n_{p} t}{n} \tag{5.2}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
i_{0}=\frac{4 \hat{i}}{\pi} \sum_{1}^{\infty} \frac{\cos \omega_{s} t \cos n \omega_{p} t}{n} \tag{5,3}
\end{equation*}
$$

The above analysis is a eimplified explanation of the frequency converting properties of the lattice mixer and more detailed treatments are readily available ${ }^{(5,28)}$ The aignificant fact is that the switching function is always found to be symatrical for all diodes of the lattice. It will now be shown that this symmetrical property is lost if the diode capacitance is included in the analysis.

5.3. The Effect of Diode Capacitance on the Switching of Bi-1incear Diodes

in Lattice Mixers:

The switching of the diodet is independent of the high frequency input and low frequency output signals and therefore these small signals may be ignored when determining the response to ehe local oscillator, i.e. "pump" supply. As viewed from the local oscillator the equivalent circuit of the lateice configuration will be al shown in Figure 5.2(a) whare the diode parasitics (diode junction capacitance C_{j}, diode package capacitance C_{p}, and diode series resistance $r_{s} \mathfrak{h}$ have been included. Atlow frequencies reactance of the diode capacitances is sufficiently large for their effect to be neglected. As the frequency of operation is increased however they camot be ignored. The diode junction capacitance is non-linear but because of the presence of the reverse connected diode each junction capacitance may be approximated $(24,30)$ by a conatant value given by

Figure 5.1
Current Driven Lattice Mixer

Figure $5.2(\mathrm{a})$.

Figure 5.2(b)
(a) Large. Signal Circuit of Lattice Mixer
(b) Simplified Large Signal Equivalent Circuit

$$
\begin{equation*}
c_{j} \approx\left(C_{j \max }-C_{j \min }\right) / 2 \approx c_{0} / 2 \tag{5.4}
\end{equation*}
$$

where $\mathbf{C}_{\mathbf{j} \text { max }}$ and $\mathbf{C}_{\mathbf{j} \text { min }}$ are the junction capacitances at the extremes of the operating conditions and C_{0} it the junction capacitance at zero diode voltage. The package capacitance C_{p} may be assumed constant, independent of frequency and level of local oscillator current drive. The diodes are assumed bi-linear with forward resistance r_{f} and for simplicity the reverse resistance is assumed infinite. The diodes are assumed to conduct when the voltage exceeds the tyrn-on voltage ∇_{T}. The simplified large signal equivalent circuit is cherefore as shown in Figure 5.2(b), where

$$
\begin{equation*}
C_{e}=4 C_{p}+2 C_{0} \tag{5.5}
\end{equation*}
$$

To understand the operation of the circuit assume that diodes D_{2} and D_{4} are conducting. As the pump current I_{p} approaches zero then the voltage ∇ across the system will approach, $-\nabla_{T}$. As the pump current becomes positive it cannot flow through diodes D_{1} and D_{3} since the voltage, $-\nabla_{T}$, stored on the capacitance C_{e} folds these diodes in reverse bias. The total pump current must then be diverted thirough the capacitor to change the voltage to, $+\nabla_{T}$, according to

$$
\begin{equation*}
c_{e} \frac{d V}{d t}=I_{p} \sin \omega_{p} t \tag{5.6}
\end{equation*}
$$

with $\nabla=-\nabla_{T}, \quad \varepsilon=0$
By. integrating (5.6) the veltage across the diodes is

$$
\begin{equation*}
\nabla=\frac{2 I_{p}}{\omega_{p} C_{e}} \sin ^{2}\left(\frac{\theta}{2}-\nabla_{T}\right. \tag{5.7}
\end{equation*}
$$

where

$$
\theta=\omega_{p} t
$$

The system voltage will therefore reack, $+\nabla_{T}$, when θ reaches the critical angle θ_{c} given by

$$
\begin{equation*}
\sin \left(\theta_{c} / 2\right)=\sqrt{\omega_{p} C_{e} \bar{V}_{T} / I_{p}} \tag{5.8}
\end{equation*}
$$

At this angle diodes D_{1} and D_{3} are sufficiently forward biassed for conduction to be maintained and the pump current is diverted from the capacitor into the diodes. For angles exceeding ${ }_{c}$ the resistance of the diodes, $\left(r_{f}+r_{s}\right) / 2$, is much smaller than the reactance of the capacitor and consequently the voltage across the system whilst the diodes are conducting approximates to

$$
\begin{equation*}
\nabla=\nabla_{T}+\frac{I_{p}\left(r_{f}+r_{s}\right)}{2} \sin \omega_{p} t \tag{5.9}
\end{equation*}
$$

Typical current and voltage vaveforms are shown in Figure 5.3.
The aforegoing argumant shows that the diode - capacitor circuit of the lattice mixer produces a delayed conduction action in the diodes, and consequently the switching function wifich is necessary to analyse the small signal performance of the mixer is no longer an odd function and will therefore modify the befiaviour of the mixer. Experimental evidence from teats conducted at 50 fry on the circuit of Figure (5.2a) with parameter values chosen to simulate fighi frequency (1.5 efizl behaviour verified that sin $0_{c} / 2$ was directly proportional to $\sqrt{C_{e}}$. However the coefficient of proportionality was found to differ significantly from $\sqrt{\omega_{p} V_{T} / I_{p}}$ This discrepancy can be accounted for by representing the diodes by the more realistic exponential functions as shown in the next section.

Large Signal Currents and Voltage
(Bi-Linear Diode Model)

5.4 The Effect of Diode Capacitance on the Suitching of Rxponentisi Diodes

in Lattice Mixers

The equivalent circuit is again that of Figure 5.2a, but the currents in the diodes D_{1} and D_{3} are given by

$$
\begin{equation*}
i=I_{s} \exp (\alpha \nabla)-I_{s} \tag{5.10}
\end{equation*}
$$

and the currents flowing in D_{2} and D_{4} by

$$
\begin{equation*}
i=I_{s}-I_{s} \exp (-a V) \tag{5.11}
\end{equation*}
$$

The series reaistance r_{k} is neglected since the switching action occurs near the turn on voltage where the diode resistance is still considerably larger than the series resistance. The current balance of the circuit is given by

$$
\begin{equation*}
C_{e} \frac{d v}{d t}+2 I_{s} \exp (\alpha V)-2 I_{s} \exp (-a V)=\hat{I}_{p} \sin \omega_{p} t \tag{5.12}
\end{equation*}
$$

which can be written as

$$
\frac{\omega_{P} C_{e}}{\hat{I}_{p}} \frac{d V}{d \theta}+K \exp (\alpha V)-K \exp (-\alpha V)=\sin \theta
$$

where

$$
\begin{equation*}
\theta=\omega_{p} t \tag{5.13}
\end{equation*}
$$

and

$$
K=2 I_{s} f \hat{I}_{p}
$$

The exponential term can now be removed from the equation by means of the substitution

$$
\begin{equation*}
y=\mathbb{K} \exp (\alpha V) \tag{5.14}
\end{equation*}
$$

The diode currenta are related to the variable y by

$$
\begin{equation*}
i_{D 1}+i_{D 3}=\hat{I}_{P}\left(y+2 I_{s}\right) \tag{5.15}
\end{equation*}
$$

where for matched diodes

$$
\begin{equation*}
i_{D 1}=i_{D 3}=\hat{I}_{p}\left(F+2 I_{s}\right) / 2 \tag{5.16}
\end{equation*}
$$

The derivarive in equation (5.13) transforms according to

$$
\begin{equation*}
\frac{d y}{d \theta}=\alpha x \exp (\alpha V) \frac{d V}{d \theta}=\alpha y \frac{d V}{d \theta} \tag{5.17}
\end{equation*}
$$

and therefore equation (5.13) becomes

$$
\begin{equation*}
\varepsilon \frac{d y}{d \theta}+y^{2}-K^{2}=y \sin \theta \tag{5.18}
\end{equation*}
$$

where $\varepsilon=\omega_{p} C_{e} / \alpha \hat{I}_{p}$
For practical diodes the parameters K and ε are typically of the order of 10^{-7} and 0.025 respectively at a frequency of 1.5 GHz and a pump currenc of 1 mA .

Figure 5.4 shows a graph of the zero slope isocline of equation (5.18). The effect of the small paramater K^{2} may be noted by first observing that if $\mathrm{K}^{2}=0$ the rezo slope isoclinas are given by

$$
\begin{equation*}
y=0 \tag{5.20}
\end{equation*}
$$

and $y=\sin \theta$

The effect of the non-zaro parameter K is therefore to divide tha two isoclines as shown in Figure (5.4).

The effect of the small parameter ε multiplying the derivative is to make the isoclines of large gradient group close to the zero slope isocline: as shown in Figure (5.5). Superimposed in Figure (5.5.) is an integral curve (solution curvel of equation (5.18) winich closely

Figure 5.4

Zero slope isocline of equation
$\varepsilon \frac{d y}{d \theta}+y^{2}-x^{2}=y \sin \theta$

Isoclines of equation
$\varepsilon \underline{\frac{d y}{d \theta}+y^{2}-x^{2}=y \sin \theta:}$
--- - integral curve
Closed isocline contours have positive slope
resembles the waveform predicted in section 5.3. To obtain a periodic solution equation (5.18) must be solved subject to the condition

$$
\begin{equation*}
\mathbf{Y}(0)=\mathbf{y}(2 \pi) \tag{5.21}
\end{equation*}
$$

In engineering terms this is equivalent to choosing the initial switch on time such that the currents do not exhibit transients, and the system enters immediately into its steady state behaviour.

The solution to equation (5.18) is a function of the two parameters K^{2} and ε but since \mathbb{R}^{2} is very much smaller then ε it is appropriace to develop a solution in the form of an dsymptotic expansion in powers of $\mathbf{k}^{\mathbf{2}}$ i.e.

$$
\begin{equation*}
y\left(\theta, \varepsilon, \mathbb{K}^{2}\right)=\sum_{n=0}^{\infty} \mathbb{R}^{2 n} \cdot y_{n}(\theta, \varepsilon) \tag{5.22}
\end{equation*}
$$

where the functions $y_{n}(0, \varepsilon)$ are to be determined. From (5.18) and (5.22) the first term of the expansion (5.22) must satisfy

$$
\begin{equation*}
\varepsilon \frac{d y_{0}}{d \theta}+y_{0}^{2}=y_{0} \sin \theta \tag{5.23}
\end{equation*}
$$

and the periodicity condition (5.21).
It is shown in Appendix El that

$$
\begin{equation*}
y_{0}(\theta, \varepsilon)=\frac{\varepsilon \exp (-\cos \theta / \varepsilon)}{A+\int_{0}^{\theta} \exp (-\cos \phi / \varepsilon) \mathrm{d} \phi} \tag{5.24}
\end{equation*}
$$

To determine the constant of integration A in the above equation let the initial value $Y_{0}(0)=\hat{Y}_{0}$, then from (5.24)

$$
\hat{y}_{0}=\varepsilon \exp (-1 / \varepsilon) / A
$$

and equation (5.24) becomes

$$
\begin{equation*}
y_{0}(0, \varepsilon)=\frac{\hat{y}_{0} \exp (1-\cos \theta) / \varepsilon}{1+\frac{Y_{0}}{\varepsilon} \exp \left(1 / \varepsilon L \int_{0}^{\theta} \exp (-\cos \phi / \varepsilon) d \phi\right.} \tag{5.26}
\end{equation*}
$$

Figure (5.5) shows that \hat{y}_{0} is anall and it is therefore convenient to let

$$
\begin{equation*}
\hat{y}_{0}=\exp \left[\left(\cos \theta_{c}-1\right) / \varepsilon\right] \tag{5.27}
\end{equation*}
$$

which shows that the constant θ_{c} lies in the range 0 to $\pi / 2$.

$$
\begin{align*}
& \text { In terms of the unknown constant } \theta_{c} \text { equation (5.26) becomes } \\
& I_{0}(\theta, \varepsilon)=\frac{\exp \left[\left(\cos \theta_{c}-\cos \theta\right) / \varepsilon\right]}{1+\frac{1}{\varepsilon} \exp \left(\cos \theta_{c} / \varepsilon\right) \int_{0}^{\theta} \exp (-\cos \phi / \varepsilon) d \phi} \tag{5.28}
\end{align*}
$$

This is clearly a very complex function, hovever it is immediately apparent that the periodicity condition canot be satisfied since the integral in the denominator is always positive, the solution as given by (5.28) will tend to zero as θ increases. Furthermore, it is apparent that when $\theta<\theta_{c}$ the solution becomes large because of the form of the numerator. Thus the solution given by (5.28) does in fact represent the sudden increase in current. It is therefore necessary to investigate the nature of the solution as given by (5.28) In exder to determine the region where this solution becomes inapplicable. This can be accomplished by making use of the fact that ε is small and employing Laplaces method as shown in Appendix E2 to evaluate the integral as θ varies over the range $(0-2 \pi)$.
(i) Range 1, θ close to θ_{c}

$$
\begin{equation*}
y_{0}(\theta, \varepsilon)=\frac{e\left[\left(\cos \theta_{c}-\cos \theta\right) / \varepsilon\right]}{1+\frac{1}{\sin \theta_{c}}+\frac{\left(\theta-\theta_{c}^{2}\right.}{\varepsilon}} \tag{5.29}
\end{equation*}
$$

on using the result from Appendix E2
Let $\theta=\theta_{c}+\varepsilon \tau$ then

$$
y_{0}(0, \varepsilon)=\frac{e^{\left[\sin \theta_{c} \tau\right]}}{1+\frac{1}{\sin \theta_{c}}+\tau}
$$

When τ is negative the solution is exponentially small provided sin ${ }_{c}$ is not zero. When τ is positive the solution is exponentially large. This indicates there is a rapid rise in the solution near $\tau=0\left(\theta=0 c^{2}\right.$. This rapid rise takes place within an interval of order ε.
(ii) Range 2, ${ }_{c}<0<\pi$

From Appendix $\mathrm{E} 2^{-}$in this range the integral fe exponentialily large and therefore

$$
\begin{align*}
& y_{0}(\theta, \varepsilon)=\frac{\exp \left[\left(\cos \theta_{c}-\cos \theta\right) / \varepsilon\right] \cdot \sin \theta}{\exp \left[\left(\cos \theta_{c}-\cos \theta\right) / \varepsilon\right]} \\
& y_{0}(\theta, \varepsilon) \approx \sin \theta \tag{5.31}
\end{align*}
$$

(iii) Range 3, $\pi<\theta^{\circ} \leqslant 2 \pi$

In this range the integral is again exponentially large and with the aid of the result derived in Appendix $\overline{\mathrm{E} 2}$ the solution can be written as

$$
\begin{align*}
y_{0}(\theta, \varepsilon) & \approx \frac{\exp \left(\cos \theta_{c} / \varepsilon\right) \exp (-\cos \theta / \varepsilon)}{\frac{1}{\varepsilon} \exp \left(\cos \theta_{c} / \varepsilon\right) \exp (-1 / \varepsilon) \sqrt{2 \pi \varepsilon}} \tag{5.32}\\
& =\sqrt{\frac{\varepsilon}{2 \pi}} \exp [-(1+\cos \theta) / \varepsilon] \tag{5.33}
\end{align*}
$$

In particular

$$
y_{0}(\pi, \varepsilon)=\sqrt{\varepsilon / 2 \pi}
$$

and

$$
\begin{equation*}
y_{0}(2 \pi, \varepsilon)=\sqrt{\frac{\varepsilon}{2 \pi}} \exp (-2 / \varepsilon) \tag{5.35}
\end{equation*}
$$

But the initial value of y at $\theta=0$ is

$$
\begin{equation*}
y_{0}(0, \varepsilon)=\exp \left[\left(\cos \theta_{c}-1\right) / \varepsilon\right] \tag{5.35a}
\end{equation*}
$$

and therefore $\bar{\gamma}(2 \pi)$ << $\bar{Y}(0)$. To have a periodic solution these two values must be equal. The reason for this discrepancy is that in the range
$\pi<\theta \leqslant 2 \pi$ the approximation of neglecting X^{2} is no longer valid.

In this range let

$$
\begin{equation*}
Y=\mathbb{K}^{2} \mathbf{Y} \tag{5.36}
\end{equation*}
$$

so that equation (5.18) becomes

$$
\begin{equation*}
\frac{\varepsilon d Y}{d \theta}+R^{2} Y^{2}=1-Y \sin \theta \tag{5.37}
\end{equation*}
$$

Again by assuming an expansion of the form

$$
\begin{equation*}
I\left(\theta, E ; K^{2}\right)=\sum_{n=0}^{\infty} Y_{n}(\theta, \varepsilon) K^{2 n} \tag{5.38}
\end{equation*}
$$

the equation governing Y_{0} can be seent to be

$$
\begin{equation*}
\frac{\varepsilon d Y_{0}}{d \theta}+Y_{0} \sin \theta=1 \tag{5.39}
\end{equation*}
$$

By use of an integrating factor the solution is readily found to be

$$
\begin{equation*}
Y_{0}=\frac{1}{\varepsilon} \exp (-\cos \theta / \varepsilon) \int_{\theta}^{\theta} e^{\cos \theta / \varepsilon} d \phi \tag{5.40}
\end{equation*}
$$

where ${ }_{1}$ plays the role of an arbitrary constant and must be chosen so as to
(a) allow $K^{2} Y_{0}(\theta, \varepsilon)$ to match with $Y_{0}(\theta, \varepsilon)$ and
(b) to satisfy the periodicity condition.
(a) Matching

The behaviour of X_{0} near θ_{1} can be determined by putting

$$
\begin{equation*}
\phi=\theta_{1}+\delta \tag{5.41}
\end{equation*}
$$

and substituting in equation (5.40) to obtain

$$
\begin{equation*}
Y_{0} \approx \frac{1}{\varepsilon} \exp (-\cos \theta / \varepsilon) \int_{0}^{\infty} \exp \left(\cos \theta_{1} / \varepsilon L \exp \left(-\sin \theta_{1} \varepsilon / \varepsilon I d \delta\right.\right. \tag{5.42}
\end{equation*}
$$

In the range $\pi<0 \pi, K^{2} Y_{0}$ mast match withi y_{0} as given by equation (5.332 i.e.

$$
\begin{equation*}
\frac{k^{2} \exp \left(\cos \theta_{1} / \varepsilon\right) \exp (-\cos \theta / \varepsilon)}{\sin \theta_{1}}=\sqrt{\frac{\varepsilon}{2 \pi}} \exp \left(-\frac{1}{\varepsilon}\right) \exp (-\cos \theta / \varepsilon) \tag{5.43}
\end{equation*}
$$

and therefore both approximations vary with θ in the same manner provided

$$
\begin{equation*}
\frac{x^{2} \exp \left(\cos \theta_{1} / \varepsilon\right)}{\sin \theta_{1}}=\sqrt{\frac{\varepsilon^{\prime}}{2 \pi}} \exp \left(-\frac{1}{\varepsilon^{2}}\right) \tag{5.44}
\end{equation*}
$$

(b) Periodicity

To produce periodicity $Y_{0}(0)=K^{2} Y_{0}(2 \pi)$. To determine the value of Y_{0} at 2π put $\phi=2 \pi-\delta, \cos \delta=1-\delta^{2} / 2$, and $\theta=2 \pi$ toobtain

$$
\begin{aligned}
Y_{0}(2 \pi) & =\frac{1}{\varepsilon} \exp (-\cos 2 \pi / \varepsilon) \exp (1 / \varepsilon) \int_{0}^{\infty} \exp \left(-q^{2} / 2 \varepsilon\right) d q \\
& \approx \sqrt{\pi / 2 \varepsilon}
\end{aligned}
$$

and therefore

$$
\begin{equation*}
x^{2} \sqrt{\pi / 2 \varepsilon}=\exp \left[\left(\cos \theta_{c}-1\right) / \varepsilon\right] \tag{5.46}
\end{equation*}
$$

The solution will be complete when θ_{c} and θ_{1} are determined from (5.44) and (5.462. This can be achieved by the elimination of K^{2} from these two equations to give

$$
\begin{equation*}
\operatorname{excp}\left[\left(\cos \theta_{1}+\cos \theta\right) / \varepsilon\right]=\left(\sin \theta_{1}\right) / 2 \tag{5.47}
\end{equation*}
$$

The approximate location of the roots of this equation are shown in Pigure (5.6) where the fact that ε is small has been exploited to reveal that $\theta_{1} \approx \pi$ and $\theta_{1} \approx \pi-\theta_{c}$. The root near $\theta_{1}=\pi$ leads to an urrealizable solution as seen from equation (5.421. To obtain a more accurate assessment of the root near to $\pi-\theta_{c}$ let

$$
\begin{equation*}
\theta_{1}=\pi-\theta_{c}+\delta \tag{5.48}
\end{equation*}
$$

Tigure 5.6
Approximate Location of roots
$\exp \left[\left(\cos \theta_{1}+\cos \theta_{c}\right) / \varepsilon\right]=\left(\sin \theta_{1}\right) / 2$
$----Y_{1}=\left(\sin \theta_{1}\right) / 2$
$\ldots I_{2}=\exp \left[\left(\cos \theta_{1}+\cos \theta_{c}\right) / \varepsilon\right]$
and so (5.47) becomes

$$
\begin{equation*}
\exp \left(-\delta \sin \theta_{c} / \varepsilon\right)=\left(\sin \theta_{c}\right) / 2 \tag{5.49}
\end{equation*}
$$

which is easily solved to give

$$
\begin{equation*}
\delta=-\varepsilon \ln \left[\sin \theta_{c} / 2\right] / \sin \theta_{c} \tag{5.50}
\end{equation*}
$$

To obtain θ_{c}, the conduction angle, put $\cos \theta_{c}-1=-2 \sin ^{2}\left(\theta_{c} / 2\right)$ and substitute into (5.46) to obtain

$$
\begin{equation*}
\sin ^{2}\left(\theta_{c} / 2\right)=\frac{\varepsilon}{2} \ln \left[\frac{1}{x^{2}} \sqrt{\left.\frac{2 \varepsilon}{\pi}\right)}\right] \tag{5.51}
\end{equation*}
$$

The logarithmic term in equation (5.51) is a slowly varying function of ε because it is dominated by the large parameter ($1 / K^{2}$) i.e.

$$
\left.\ln \left[\frac{1}{K^{2}} \sqrt{\frac{2 \varepsilon}{\pi}}\right)\right]=2 \ln \left(\frac{1}{R}\right)+\ln (2 \varepsilon / \pi) / 2
$$

and therefore

$$
\begin{equation*}
\sin ^{2}\left(\theta_{c} / 2\right) \simeq \varepsilon \ln (1 / K)=\varepsilon \ln \left(\hat{I}_{p} / 2 I_{s}\right) \tag{5.52}
\end{equation*}
$$

over a large range of ε.
Experimental investigation detailed in Chapter 7 verifies that equation (5.52) is a reasonable estimate of the conduction-angle ${ }^{-\theta} c^{\prime}$, for restricted values of ε and K. Further experimental work is required to test the validity of equation (5.52) for general values of E and K .

Comparison of equation (5.8) and (5.52) shows that the two equations would give identical results if V_{T} in equation (5.8) is taken as $\ln \left(\hat{I}_{\mathrm{p}} / 2 \mathrm{I}_{\mathrm{s}}\right) / \mathrm{a}$.

5.5 Conclusions

It has been shown that the diode parasitic capacitance significantly changes the waveform of the diode currents in the sense that conduction is delayed up to a critical angle θ_{c} depending on the circuit parameters and the drive level. The delay in conduction will significantly affect the harmonics generated by the diodes and will consequently affect the small signal frequency converting properties of the lattice mixer. This delay in diode conduction has not been discussed previously in the literature dealing with lattice mixars and obviously opens up a new area of investigation (27). In this work the significant fact is the use of matched asymptotic expansions to obtain accurate quantitative information relating to the conduction angle; the simpler bi-linear approximation hovever offers valuable insight into the mechanism of the delay. It is the author'sstrong belief that perturbation methods are a valuable tool to the engineer and the analytic information so obtained may often be more useful than information obtained by numerical experimentation with mathematical models repreanting electronic systems.

Suggestions for further investigation

In high frequency circuits it is standard practice to obtain sinusoidally varying current drives from voltage sources via series tuned circuits. If a lattice mixer is driven from such a source then it must satisfy the following equations

$$
\begin{align*}
& \omega_{p} c_{e} \frac{d v_{d}}{d \theta}+I_{s} \exp \left(\alpha V_{d}\right)-I_{s} \exp \left(-\alpha V_{d}\right)=i \tag{A}\\
& \frac{d_{i}^{2}}{d \theta^{2}}+\frac{1}{Q} \frac{d i}{d \theta}+i=\frac{\hat{\nabla}_{p} \cos \theta}{\omega_{p} L}-\frac{i d v_{d}}{i d \theta} \tag{B}
\end{align*}
$$

The pump current in equation (A) is controlled by the filter equation (B), where Q is unloaded magnification factor of the tuned circuit, L is the inductance and $\mathbf{V}_{\mathbf{p}}$ is the voltage drive level. Does this system balance similar to the system of equation (A) (i will be sinusoidal for infinite Q), or is there a significant difference?

Further experimental work is required to test the validity of equation (5.52) over a wider range of the variables.

CHAPTER 6

COAPUTER AIDED MEASORKYENT OF GARMONİC AMPL ITUDES AND PHASES

6.1 Introduction

From the analyses and diecusgions presented in previous chapters it will be appreciated that the spactral content of the response of non-linaar systems to periodic drives is of paramount importance in the understanding, predicting and design of. frequency converting networks. It has also been demonstrated in Chapter 2 that there is a wique relationship between the characteristic of a non-linaar device or systen and its mpectral components generated bia sinasoidal drive. In order to verify predicted apectrum from mathematical analysis, and to determine device characteristics from apectral components, the magnitude and phase of the componenta-relative to a fundemental drive function sugt be measured.

The circuit and systems discussed in previous chapters may be used at any frequency but find great applicability at high frequencies. The spectral response at these frequencies is therefore wide-band systen with a very high fundamantal frequency wich imposes stringent conditioñ (linearity in gain and phase) on the elactronic circuitry associated with the maseurement of the epectrum. There are coumercially available harmonic measuring syatem (usually called harmonic or apectrun analysers) but these only measure harmonic amplitudes and do not give batmonic phase information. To resolye acme of these problems it was decided to design and construct a spectrum amalyser system: wich would fulfill the following functions:
(i) to obviate the bigh frequency problems by down converting the original aignals to a lower frequency by a sampling technique hown as aliasing. This process is performed by a commercially available instrument known as a Vector Voltmeter witch converte e signol jinose epectrum lies vithin the range 1 MHE to 1000 MHz to a 20 kHz signal having identical wave shape, and therefore the same relative spectrum.
(ii)nto design a computer based aystem, which would compute the harmonic components in both magnitude and phase of the 20 kHz wave shape. The 20 kHz replicas of the input drive and output response are sampled and then "trapped" or stored by tiransient recorders. The stored information is then trangferred to a mini-computer for processing and the harmonic content is made available as a numerical print out. The transfer of the data from the transiant recorders is under the control of the computer and a single cycle of the waveform to be analysed is transferred for processing. The time origin of chis wave is chosen by appropriate settings of the transient recorder so that it corresponds to the peak of the sinusoidal drive; in this way the harmonics are computed relative to a cosinusoidal drive.

6.2 Signal Sampling

The theory of sampling is well established and documented 31 tiowever to understand the performance and associated errors of the proposed analyser system the pertinent theorems and proofs are given in Appendix. F1. The principle of aliasing is embodied in result number 7, of Appendix $\widehat{\text { EI }}$ and displayed graphically in Figure (6.1). The signal to be down converted is periodic and therefore has: a discrete spectrum the lowest frequency of which is ω_{L} all other components being multiples of this frequency. The signal is non-return to zero ON.R.Z) sampled at a sampling frequency ω_{s}. The two frequencies (ω_{k} end ω_{g}) are fncomenturate so that there exiets a raminder ω_{1} such that

$$
\begin{equation*}
\omega_{L}=k \omega_{s}+\omega_{I} \tag{6.1}
\end{equation*}
$$

where k is an integer.

For simplicity take the case of $k=1$ and consider first the translations in frequency as expressed by

$$
\begin{equation*}
\sum_{n=-\infty}^{+\infty} F\left(\omega-n \omega_{s}\right) \tag{6.2}
\end{equation*}
$$

From Figure (6.1) it will be seen that the component at ω_{L} translates direct to ω_{1}. The component at $2 \omega_{L}$ requires two translations, the first transfers $2 \omega_{L}$ to $\omega_{L}+\omega_{I}$ and the second translates this to $2 \omega_{1}$, i.e. $n=2$ in equation (6.2) when $\omega=2 \omega_{L}$. Similarly, the third harmonic at $3 \omega_{L}$ requires three translations etc. The n which controls the translation is agsociated with the harmonics of the impulse sequence formed at the leading edges of the sampling intervals. Each harmonic of the signal spectrum requires a different harmonic of the impulse sequence to produce the alias conversion. Equation 6.1 also indicates that the set of frequencies $n \omega_{1}$ form a residue class modulo ω_{g}, which is an interesting algebraic interpretation of aliasing. In this manner the component at ω_{L} and associated harmonics are translated to ω_{1} and mitiples. of ω_{1}. Other groupings of the harmonics also occur around u_{L} and its harmonics as shown in Figure 6.1. If the integer k is taken as 2 there will be two groupings of the harmonics as shown in Figure 6.1 and therefore in general there will be k groupings of harmonics between ω_{1} and ω_{L} for any choice of k.

Secondly, consider the effect of the distortion on amplitude of the translated apectra as dictated by the Sampling Function multiplier

$$
\mathrm{Sa}\left(\omega \mathrm{~T}_{\mathrm{s}} / 2\right)
$$

This function passes through zero when ω is a multiple of w_{s}. As can be seen from Figure 6.1 amplitude distortion is present in all harmonic groupings but is least significant in the lowest frequency group. Furthermore, by correct choice of ω_{1} and ω_{g} for a given ω_{L} the distortion of this lowest order group can be reduced by conpressing the spectra into the frequency range where the sampling function is approximately unity. Finally, phase distortion also occurs due to the presence of the term

$$
\omega_{L}=\omega_{s}+\omega_{1}, k_{k}=1
$$

Signal Aliasing $C=1)$

Signal Aliasing $K=21$

Phase Distortion
Figure 6.I

Frequency down converting by Aliasing

$$
\begin{equation*}
\exp \left(-j \omega T_{s} / 2\right) \tag{6.4}
\end{equation*}
$$

This phase error increases from zero to π radiani as ω varites from 0 to ω_{s} hence this error can be kapt small provided the highest harmonic of ω_{1} is mach less than ω_{s}.

If k is greater than unity the higher harmonic groups may easily be removed by means of a low pass filter. The output signal after aliasing is therefore a low frequency replica of the original high frequency signal.

The 20 kHz signals (replicas of the cosine drive signal and the periodic response aignal) are then stored in the transient recorders. To perform this function each transient recorder samples its signal again using H.R.Z. type samples with the sampling frequency ω_{s} being much higher than the basic 20 laHz . The principle is embodied within result 7 of Appendix F1 and illustrated graphically in Figure (ri) of that Appendix. It will be seen that if the original signal is strictly band limited then the sampling frequency ω_{s} must be greater than twice the highest frequency present in the original spectrum. The spectrum to be analysed however is a Fourier series and although the harmonic amplitudes tend to zero the signal is not strictly band 1 fimited. Thus the tail of the first harmonic group will intermingle with the lower ordar harmonics of the eecond grouping producing an aliasing error. To reduce this error the sampling frequency mast be significantly higher than the anticipated highest measurable harmonic. In the proposed system, the maximum sampling rate of the transient recorders is 5 Miliz, which corresponds to a sampling interval of $0.2 \mu \mathrm{sec}$. The recorders are capable of storing 1024 samples and the number of samples in one cycle of the 20 KHz signals is 250 . If it is required to measure up to ten harmonics of the signal (i.e. up to $200 \mathrm{k} k \mathrm{Bn}$) then the amplitude distortion introduced by sampling will be

$$
\frac{\sin \left[\omega T_{8} / 2\right]}{\omega T_{8} / 2}=\frac{\sin \left(\pi \omega / \omega_{8} 2\right.}{\pi \omega / \omega_{8}}
$$

and the phase distortion will be

$$
\exp \left(-j \omega T_{s} / 2\right)=\exp \left(-j \pi \omega / \omega_{s}\right)
$$

The amplitude and phase distortion at 200 kPlz will therefore be

$$
\begin{aligned}
1-\frac{\sin [\pi(.2 / 5)]}{\pi(.2 / 5)} & =0.0026 \\
& =.265 \\
\text { and } \pi(.2 / 5) \quad & =.1257 \text { rads } \\
& =7.2 \text { degrees }
\end{aligned}
$$

The sampling of the signal will not therefore introduce significant errors in the results.

During each sampling interval the 'held leval is converted into an eight bit binary number, the signals having first bean scaled to lie between 0 and 1 volt by the transient recorder input amplifiers. Thus the range 0 - 1 volt is resolved into 2^{8} - 256 possible levels giving a possible error of $\pm 1 / 512$ on each sample.

Once triggered the transients recorders can atore four complete cycles of the 20 kHz waves. The two recorders are arranged in a master-slave configuration. The slave recorder is first "armed" and is triggered elactronically from the master at the same instant as the master is triggered manually by the operator. The two signals stored in separate instruments are therefore locked in time with each other. In this way a point in the cosine drive signal which occurs at the same time as a point on the response signal are placed in identical store addresses in the two transient recorders. The two stored aignals are displayed on monitor oscilloscopes by repetitively reading through the recorder stores. Each recorder is equipped with store address indicatora which can be set by the operator to any address in the range 0 to 1024. Once set, the portion of the vaveform stored in locations
having a lower address than the indicator aetting can be intensified on the monitor oscilloscope using intensity modulation. In this manner the address at wifich the peak of the cosine drive occurs may be determined, which is also the address in the slave recorder of the start of the response signal. In a similar way the address of the sample at the end of the cycle can be determined. A typical intensified record of a waveform is illustrated in Figure 6.2.

6.3 Transfer of data to computer

The sampled and held waveform of the system response stored in the slave transient recorder is transferred to the computer under programe control. The timing diagram of the transient recorder is shown in Figure (6.3). The digital output'enable' is grounded permanently thus the transient recorder is always enabled. The digital output'request' is connected to the CB 2 terminal of the digital port of the computer. Whilst CB 2 is held at logic level I under computer control digital output is unavailable. When the programe sets CB 2 low the transient recorder output flag is set bigh to indicate digital output is available and the first sample stored as an eight bit digital word is placed on the 8 bit parallel bus system. At the same time as word 1 is placed on the bus the transient recorder aeta the data ready signal high. This level is passed to the computer by the CA 1 terminal of the compucer interface. The programme tests terminal CA 1 to determine whecher word 1 is available and thien jumps to a programme area which transfers word 1 to computer memory. The CB 2 output is then set high by programe wifich is interpreted by the transient recorder as word off request. When word 1 is removed from the bus and the data ready flag sets to zero; the programme then tests CA 1 and if low sets CR 2 low to request the gext word. The "handshaking" process continues in thie mamer until all 1024 digital words are transferred.

(a) 1024 samples of response waveform

(b) enhanced brightness of samples before start of cycle (address No. 47)

(c) enhanced brightness to end of first cycle (address No. 295) Samples per cycle $=248$

(d) enlargement trace of (c)

Figure 6.2
Location of start and finish address numbers

Digital output enable

ground

Digital output request

1

Digital outpue flag.

Not comnected

Data Ready Signal

Figure 6.3
"Handshaking" signals between Computer and Transient Recorder

The addresses of the start and finisk of one complete cycle of the responge signal (previously set on the transient recorders) are entered into the computer from the keyboard together with scale information relating to the amplifier settings on the transient recorder. The data associated with one cycle of the waveform is then processed by a Pourier Analysis Programme stored in the computer and the hamonic components are displayed On a line printer. A copy of the programme wich transfers the data and evaluates the harmonic components is shown in Appendix. F 2 and a schematic diagram of the complete maasuring system is shown in Figure (6.4).

6.4 Errors introduced prior to transfer of data to computer

(A) False Period Error

The length of the data record i.e. one cycle, to be transferred from the transient recorder to the computer is determined manually by che operator. The timing of the system is such that approximately 250 samples are taken per cycle. Thus each sample corresponds to approximately 1.5 degrees. Practically it is very difficult to determine the peaks of the cosine drive exactly using brightness intensity and consequently the data record transferred to the computer may be longer or shorter thian an exact cycle by ± 3 degrees. The periodic wave analysed by the computer is therefore not exactly the wave stored in the recorder. As shown in Appendix R3 an error is fneroduced in the coefficients of the harmonics due to the false assessment of periodic time. This error affects both the amplitude and phase of the measured response and furthermore would produce higher harmonic distortion even in a strictly bandlimited signal.

The most significant term in the expanaion for the modified coefficient \bar{c}_{k} is given by

$$
\begin{equation*}
\overline{C_{k}} \approx C_{k} \exp (j k e \pi) S a(k \in \pi) \doteq C_{k} \exp (j l k e \pi L \tag{6.5}
\end{equation*}
$$

where Sa is the sampling function.

Pigure 6.4

Schematic Diagram of New Spectrum Analyser System
provided ke << 1 which shows that the most significant effect of the false periodic time is to produce pluse distortion, and the dagree of phase distortion is directly proportional to the harmonic number. For an error e $=3 / 360$, the phase distortion produced in say the tenth harmonic will be approximately 15 degrees.

(B) Quantiaing Error

The samples stored in the tranisient recorder are aubject to quantising error. It is shown in Appandix R4; that the worst case error introduced into the calculation of the cosine and sine coefficients is given by

$$
\begin{equation*}
2 \mathrm{X}(1+\mathrm{p} \pi / \mathrm{N}) / \pi \mathrm{M} \tag{6.6}
\end{equation*}
$$

where p is the hammonic number
N is the number of samples per cycle
M is the number of quantising levels
K is the acale factor of the measuring syatem

For $H=M=256$ the $\boldsymbol{x}=\mathbf{a b s o l u t e}$ errors for $p=1$ and $p=10$ are

$$
2.52 \times 10^{-3} \times \text { Voles Full Scale }
$$

and
$2.79 \times 10^{-3} \times$ Volts Full Scale

The percentage error in the coefficiant depends on the coefficient
 scale voltage this would be equivalent to approximately 0.5% error.

[^2]

MRGN I TUDE . 507192685	FHASE

Test Voltage 0.351∇ r.m.s. cosine wave (. 497 Volts peak)

Signal Source 0.1% low distortion test oscillator
Level set by 0.1% digital voltmeter

```
Error \(=.507-.497=0.01\)
\% Error = \(\mathbf{2 7}\)
Phase Error = 2 degrees
```


Table 6.1

Typical results for a sine wave test

MIEASUEED BARMONIC COMPONEMTS

"TRCHITUDE' (volts)
.633510169
. 3565117742
.299514155
.036402948
.223732409
.2352221412
.0662831629
.0359700885
. 8649641794

- 0356478628
.2509991472
- 0352568175
.2410187689
.0347985975
0334570152

FHASE (degrees)
-39.6120908
-. 52469663

- 88.8190931
-1.04429366
-37.97642
-1. 5.5436357
-87.0368509
-2.08353177
-85,9634814
-2. 59962862
-84. 8982494
-3.11241532
-83.1706032
-3.62110363
-81.2385697

Harmonic	Theoretical	Error	Z Error	Phase (deg)
1	.637	2.6×10^{-3}	0.4	0.4
3	.212	2.2×10^{-3}	1.05	1.2
5	.127	3.3×10^{-3}	2.7	2.0
7	.091	4.9×10^{-3}	5.75	3.0
9	.071	5.7×10^{-3}	8.8	4.04
11	.058	6.8×10^{-3}	13.0	5.3
13	.049	7.9×10^{-3}	19.4	6.8
15	.042	9.4×10^{-3}	28.6	8.7

Test Voltage 1 Volt peak-peak Square Wave at 20 kHz

Table 6.2

Measured and Theoretical Harmonics of a Square Wave
from such a test are shown in Table (6.1). The system was then tested wich a square wave and the measured spectrum was compared with the theoretical spectrum in Table (6.2).

6.6 Discusaion

The sine wave tests on the spectrum analyser system reveal that the basic accuracy of the system is approximately 2% with a phase error of two degrees. The error in amplitude is due to the combined effects of sampling, quantising, numerical computing errors, and the basic accuracy of the input amplifiers of the transient recordera. Because the test was referenced to a cosine wave the majority of the phase error may be due to false measurement of period since the phase distortion due to sampling is approximately 0.7 degrees for the sampling rates used.

The results of the square wave teat siowed that up to the fifteentin havmonic could be measured with an absolute error varying from 2.6×10^{-3} to 9.4×10^{-3} where full scale is unity (0.5 volts peak). The percentage errors range from 0.4π at fundamental to 28.6% at the fifteanth harmonic. The large percentage errors at the lifgher harmonics are perfaps misleading in the sense that they appear large because of division by the amall amplitude.

The phase error ranges from 0.4 dagrees at fundamental to 8.7 degrees at the fifteenth harmonic. This error appears to be dominated 的 the sampling process which accounts for plise sfifts betweer 0.72 and 10.8 degrees. The error due to false period measurement in tifis test would he gasall since the wave was referenced to the edges of the square wave which can be accurately set up by vianal means using the brigtitnesa intensity. This choice of reference point explaing why the odd harmonic have phase anglea of the order of 90 degrees, since the system measures phase relative to a cosine waye.

It is interesting to observe that the system indicates the presence of even harmonics of almost constant amplitude. As shown in Appendix: F3 false period measurement introduces such effects. Additionally the digital nature of the computed results may also produce these additional frequencies. The constant level of these even harmonics, not present in the test wave form, suggests that this is the "noise" level of the system, where the term noise is meant to encompass all unvanted effects generated internally within the system.

The system can be improved in a number of ways. The data transfer "handshaking" is set up using BASIC prograuming language and consequently is slow because of the interpretation time of each BASIC statement. Considerable improvement in speed of transfer can be achifered by setting up the "handshaking" ding mackine coide.

Sampling errors (especially phase error) and false periodic measurement errors can "be reduced by taking more samples per cycle. This would require a greater computational effort but this can be overcome by using F.F.T. (Tast Fourier Transform) algoritims. The software of the system could easily be extended to produce graplis of waveforms and the spectrum.

CHAPTER 7

EXPERTMENTAL RESULTS

7.1 .Introduction

In this chapter experimental evidence is presented to support the theoretical results derived in previous chapters. The experimental procedures are described and comparisons between theoretical and practical results are presented for the major areas of investigation, which were
(i) device identification from spectral response (discussed in Chapter 2),
(ii) static characteristic of exponential diodes with series resistance (discussed in Chapter 3),
(iii) spectral response of exponential diodes with series resistance to sinusoidal drive, (discussed in Chapter 4),
(iv) effect of parasitic capacitance on the large signal waveforms of lattice mixers, (discussed in Chapter 5).
7.2 Device identification from spectral résponse

A varactor diode, type BAlli; was tested at a 100 kHz by two methods. Method 1

The first method of test was to bias the diode at various negative voltages and to determine the incremental capacitance by application of a .small alternating voltage superimposed on the d.c. level. A Q meter was then used to produce resonance at this frequency. From a knowledge of the inductance and capacitance set on the Q meter the extra capacitance provided by the varactor diode is then readily evaluated. The test circuit was as shown in Figure 7.1a. The capacitor C_{b} is a blocking capacitor to
isolate the Q meter circuit from the dc bias. The value of the blocking capacitor is of the order of 10^{6} times larger than the capacitance of the varactor diode and consequently had negligible effect on the measurement. The shunt combination of R_{g} and C_{g} represents the input impedance of an oscilloscope used to detect resonance. The resistance in series with the d.c. bias supply is included to reduce the alternating current through the bias supply to an acceptably small level and at the same time maintain a reasonably high Q factor for the circuit. When resonance is achieved the incremental capacitance of the varactor diode is given by

$$
\begin{equation*}
c_{i}=\left(1 / \omega^{2} L\right)-\left(C_{q}+C_{s}\right) \tag{7.1}
\end{equation*}
$$

Method 2

The second method of test was to measure the spectrum produced by the varactor diode when driven with a large signal sinusoidal voltage superimposed on the d.c. bias and to compute the device characteristic as outlined in Chapter 2. The test circuit is as shown in Figure 7.1b. The sinusoidal supply had a fifty obm internal resistance and the current was detected by monitoring the voltage across a fifty ohm series resistance. The capacitor C_{b} is a bypass capacitor"so that the current at a fundamental frequency of 100 kHz , does not pass through the d.c. bias supply. Direct current is prevented from flowing because of the reverse bias on the diode. From manufacturers specifications, and the results of the previous incremental tests, an average value of incremental capacitance is approximately 40 pF . At a test frequency of 100 kHz the reactance of the reverse biassed diode is of the order of $40 \mathrm{k} \Omega$ as compared with the total series resistance of the test circuit of 100Ω. Even at the tenth harmonic the varactor diode would offer a reactance of 4 kR and therefore the series resistance has a negligible effect on the harmonic generating properties of the diode.

Figure 7.1a
Test Circuit to Determine Incremental Capacitance
Osing Q Meter f = 100 kHz

Figure 7.1b
Test Circuit to Determine Spectral Response of
Varactor Diode

To determine the device characteristic from the current spectrum use is made of the basic law

$$
\begin{equation*}
i=\frac{d q}{d t}=\frac{d q}{d V_{d}} \frac{d V_{d}}{d t}=c_{i}\left(V_{d}\right) \frac{d V_{d}}{d t} \tag{7.2}
\end{equation*}
$$

where C_{i} is the incremental capacitance, ∇_{d} is the voltage across the diode which equals the drive voltage of the test circuit since resistance loss is negligible. The drive to the circuit is

$$
\begin{equation*}
\nabla=\nabla_{d}=\hat{V} \cos \theta-E, \quad \theta=\omega t, \quad E \geqslant 0 \tag{7.3}
\end{equation*}
$$

where to prevent the diode entering into the conduction region the condition $\vec{\nabla} \leqslant \mathrm{E}$ must be imposed, and Eis. the d.c. bias moltage. Equation (. 7.22 now becomes

$$
\begin{align*}
i & =C_{i} \frac{d}{d t}(\hat{\nabla} \cos \theta-E I \\
& =-\hat{\nabla} \omega C_{i} \sin \theta \tag{7.4}
\end{align*}
$$

The diode current is of the form

$$
\begin{equation*}
i=\sum_{1}^{\infty} I_{n} \sin n \theta \tag{7.5}
\end{equation*}
$$

and to obtain equality in equation (7.4) the incremental capacitance must contain no sine terms, and therefore

$$
\begin{equation*}
c_{i}=c_{0} / 2+\sum_{i}^{\infty} c_{n} \cos n \theta \tag{7,6}
\end{equation*}
$$

Consequently 0.42 may be rewritten as

$$
\begin{equation*}
\sum_{1}^{\infty} I_{n} \sin n \theta=-\omega \dot{y} \sin \theta\left[C_{0} 72+\sum_{1}^{\infty} C_{n} \cos n \theta\right] \tag{7.7}
\end{equation*}
$$

To balance the harmonics on either side of equation (7.7) then

$$
\begin{equation*}
c_{2 p}=\frac{-2}{\omega \overline{\frac{1}{y}}}{ }_{2 p}^{\infty}+1 \quad I_{n}, \quad p=0,1,2 \ldots \ldots \tag{7.8}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{2 p+1}=\frac{-2}{\omega \bar{V}} \sum_{2 p+2}^{\infty} I_{n}, \quad p=0,1,2 \tag{7.9}
\end{equation*}
$$

which represents the incremental time varying coefficients in terms of the harmonic currents, and therefore the incremental capacitance may be obtained as

$$
\begin{equation*}
c_{i}=c_{0} / 2+\sum_{i}^{\infty} \quad c_{n} T_{n}(\nabla / \hat{V}) \tag{7.10}
\end{equation*}
$$

The large signal test was performed with a bias voltage of $\mathbf{- 6}$ volts and a peak sinusoidal drive of 5.95 volts (4.2 V rms) at a frequency of 100 kHz . The measured spectrum developed across the 508 monitor resistor is given in Table 7.1. Converting to current and using equations (7.8) and (7.9) gives the time varying components which are shown in Table 7.2. The device characteristic may than be identified by use of equation (7.10). Table 7.3 sumarizes the values of $\mathbf{C}_{\mathbf{i}}$ for various values of deviation from the bias voltage. The values deduced from the spectral response of the device are plotted in Figure 3.2 where they are compared with the results obtained from the \mathbf{Q} mater test.

\longrightarrow Predicted from Spectrum

* $\boldsymbol{x}-\boldsymbol{*}$ Incremental Tests

Figure 7.2
Comparison of Varactor Characteristic as Predicted from Spectrum and Measured on Q Meter

TABLE 7.1
Measured Spectral Coefficients

Frequency (Kitz)	Voltage (mv)
100	6.8
200	0.9
300	0.44
400	0.16
500	0.08
600	0.04
700	0.024
800	0.01

TABLE 7.2
Coefficients of Incremental Capacitance

C_{0}	111.335 pF
C_{1}	16.83
C_{2}	8.247
C_{3}	3.18
C_{4}	1.58
C_{5}	0.758
C_{6}	0.364
C_{7}	0.1516

Table 7.3

Evaluation of Device Characteristic

$\Delta V=V-E$	0	1.19	2.38	3.56	4.75	5.94
$x=\Delta V / a$	0	.2	.4	.6	.8	$\cdots 1.0$
$\frac{C_{0}}{2} T_{0}(x)$	55.7	55.7	55.7	55.7	55.7	55.7
$C_{1} T_{1}(x)$	$0 *$	± 3.36	± 6.72	± 10.08	± 13.44	± 16.8
$C_{2} T_{2}(x)$	-8.3	-7.57	-5.6	-2.3	+2.3	+8.23
$C_{3} T_{3}(x)$	0	+1.78	+2.94	+2.94	+1.09	± 3.13
$C_{4} T_{4}(x)$	+1.58	± 1.09	-0.13	-1.33	-1.33	+1.58
$C_{5} T_{5}(x)$	0	± 0.64	± 0.67	+0.06	+0.75	± 0.76
$C_{6} T_{6}(x)$	-.364	-.13	+.28	+.27	-.27	+.364
$C_{7} T_{7}(x)$	0	+.15	$\pm .04$	$\pm .15$	+.03	$\pm .15$
$x \geq 0$	48.68	51.16	54.74	60.21	67.97	86.71
$x x_{0}$	48.68	47.01	45.76	45.11	44.83	45.03

* Use upper sign for $x \geqslant 0$

Use lower sign for $\mathrm{x} \leqslant 0$

7.3 Static Characteristics of the Exponential Diode with Series Resistance

 To compare the theoretical predictions of the two-term approximation with measured results obtainable from tests on practical diodes it was first necessary to ascertain the primary parameters of the diodes, i.e. α, I_{s}, and I_{s}.For the condition when the series resistance drop ir s_{s} is much smaller than the diode voltage ∇, the defining exponential law

$$
\begin{equation*}
i=I_{s} \exp \left(\alpha V-\alpha i r_{s}\right)-I_{s} \tag{7.11}
\end{equation*}
$$

may be approximated and rearranged as

$$
\begin{equation*}
\ln (i)=\alpha V-\ln \left(I_{s}\right) \tag{7.12}
\end{equation*}
$$

Thus by plotting $\ln (i)$ against V the parameters α and I_{s} may be determined from the slope and intercept of the graph of the measured results.

When the diode current is such that the series resistance drop cannot be ignored then equation (7.11) may be rearranged as

$$
\begin{equation*}
\ln (i \exp (V))=\alpha r_{s} i+\ln \left(I_{s}\right) \tag{7.13}
\end{equation*}
$$

A graph of the experimental results in the form of equation (7.13) will therefore give αr_{s} as the slope and a second independent determination of $\ln \left(I_{s}\right)$ from the intercept.

The test circuits used to determine the parameters are shown in Figures (7.3a) and (7.3b). The voltmeters used for these tests were four digit, high input resistance ($1 \mathrm{M} \Omega$) voltmeters previously checked against a six digit, 0.01% standard and their accuracies confirmed as 0.1%. In both test circuits the resistance of the voltmeter across the series monitor resistor is sufficiently high so that the current through the monitor resistor is greater than 99% of the diode current.

Figure 7.3(a)
Test circuit to determine α and I_{s}

Figure 7.3(b)
Test circuit to determine r and I_{g}

Typical teat results are shown in Tabler (7.4) and (7.5) together with appropriate calculations. The test results for four diodes are displayed in graphical form in Figures (7.4) to (7.11) and a summary of the parameters determined from these tests are shown in Table (7.6).

The paremeters obtained from the aforementioned tests were used in the two term approximation to predict the static characteristic of the experimantal diode with series resistance. A typical set of results for these calculations is shown in Table (7.7). The first set of calculations (Table 7.7a) pradicts the current flowing in a diode with an additional 100 ohms saries resistance. The second set of results (Table 7.76) predicts the current flowing in a diode when only the parasitic series resistance is present. Also shown in Table 7.7 are calculated diode currents assuming the logarithmic model of the diode. Table (7.7c) and (7.7d) show results when the logarithmic curve is fitted at two different voltages, the first for use in a hard driven situation and the second for use in a low-1evel drive situation.

The static characteristics predicted for the four diodes are shown in Fig ure (7.12) to (7.15) where a comparison is made with practical results obtained from measurements on the teat circuit of Figure (7.3b). Also superimposed on these graphs are the predicted characteriatics of the diodes including only their parasitic series resistance. The practical results shown for comparison purposes, were obtained by subtracting the yoltage drops produced in the source and monitor resistore from the voltage applied to test circuit shown in Figure (7.36).

Table 7.4
Typical Set of Results for the Determination of α and I_{s}
Diode Type HP 5082-2817

$\nabla_{R D}(\mathrm{mV})$	$\nabla_{R}(m \nabla)$	$\nabla_{D}=\nabla_{R D}-\nabla_{R}$ (mV)	$i(\mathrm{maps})$
150	.51	149.5	5.1×10^{-8}
160	.78	159.3	7.8
170	1.2	168.8	1.2×10^{-7}
180	1.75	178.3	1.75
190	2.54	186.5	2.54
200	3.65	196.4	3.65
210	4.98	205.2	4.98
250	15.7	334.3	1.6×10^{-6}
300	41.1	258.6	4.14
400	115.1	284.9	1.151×10^{-5}
500	199	299	1.99
600	289	311	2.89
700	382	318	3.82

From the graph of above results in Figure (7.8)

$$
\begin{aligned}
\nabla_{d} & =.342 \text { volts } \quad i=10^{-4} \text { amps } \\
\nabla_{d} & =.164 \text { volts } \quad i=10^{-7} \text { amps } \\
\ln (i) & =\ln \left(I_{s}\right)+\alpha \nabla_{d} \\
\therefore \alpha=\text { slope } & =\frac{\ln \left(10^{-4}\right)-\ln \left(10^{-7}\right)}{.342-.164} \\
& =(\ln 1000) / .178=38.8
\end{aligned}
$$

To find I_{s} add the following

$$
\begin{aligned}
\ln \left(10^{-4}\right) & =\ln \left(I_{s}\right)+.342 \alpha \\
\ln \left(10^{-7}\right) & =\ln \left(I_{s}\right)+.164 \alpha \\
\ln \left(I_{8}\right) & =\frac{\ln \left(10^{-11}\right)-19.6328}{2} \\
& =-22.480618 \\
\therefore I_{s} & =1.725 \times 10^{-10}
\end{aligned}
$$

Table 7.5
Typical Set of Results for the Determination of X_{s} and r_{s} Diode Type 5082-2817

$i(\mathrm{~mA})$	$\nabla_{R}(\mathrm{~mA})$	$\nabla_{R D}(\overline{\mathrm{IV}})$	$\nabla_{D}(\mathrm{mV})$	$i \exp (\mathrm{~V})(\mathrm{mA})$
5.0	500	992	492	2.56×10^{-8}
4.5	450	936	486	2.91
4.0	400	877	477	3.67
3.5	350	820	470	4.20
3.0	300	760	460	5.32
2.5	250	701	451	6.29
2.0	200	640	440	7.70
1.5	150	577	427	9.57
1.0	100	510	410	1.23×10^{-7}
0.5	50	438	388	1.44

From graph of above resulte in Figure (7.9)

$$
\begin{aligned}
& \text { Intercept }=1.73 \times 10^{-7} \mathrm{~mA} \\
& \\
& =1.73 \times 10^{-10} \mathrm{amps} \\
& \text { slope }=\alpha r=\frac{\ln \left(1.73 \times 10^{-7}\right)-\ln \left(3.5 \times 10^{-8}\right)}{4(\mathrm{BA}} \\
& =\frac{\operatorname{Ln}(17.5 / 3.5)}{4}=0.40236 \\
& r
\end{aligned}
$$

Table 7.6
Measured Diode Paramaters

Diode Type	Sauple No.	α	r_{8} (ohms)	I_{8} (amps)
HP 5082-2800	1	37.54	22.65	3.4×10^{-9}
HP 5082-2811	1	37.54	22.02	3.0×10^{-9}
HP 5082-281J	1	37.14	9.04	8×10^{-10}
HP 5082-2835	1	38.81	10.37	1.73×10^{-10}

Diode Type EP 5082－2800

$a=37.54$
mymititi
IMIM11114

 मिमी

 （10
 3

者足
 （2

－Sample 2 $\alpha=37.5$回

0.1

0.1
0.2
0.3

Diode Voltage (Voltsl
Figure 7:8

7 : : :

3.03.0
zem.

$-\cdots$

TABLE 7.7a: Diode Type $\mathrm{HP} 5082-2835$

TABLE 7.7b: Diode Type EP5082-2835
a 38.16 $\nabla_{0}=.335685394$

Diode VoItage

(Toltas)
39
.38
.37
.36
: 35
.34
.245
.345
. 355
.335
. 32
.31
.3
.235
.27
.255

$$
I_{s}=3.9 \mathrm{E}-09
$$

Diode Current
5. 11466656E- 03
$4.38333364 E-63$
3.7031169E-03
3. $07906832 E-0.3$
$2.51561001 E-03$
2. $01622068 \mathrm{E}-03$
9.91730413E-05
2.25774337E-03
2.78952589E-03

1. $-79127675 \mathrm{E}-03$
1.21660343E-03
2. $15273622 \mathrm{E}-04$
3. $74634314 E-04$
4. $13653752 \mathrm{E}-04$
5. $45983558 \mathrm{E}-14$ L. 43236666E-04

table 7.7 continued

TABLE 7.7e Logarithmic Approximation

Diode Type 4 [P 5082-2835

$a=36.15$
U3=
$\because \theta=$
. 267631882

$\mathrm{VI}=$. 303723187	$\mathrm{BM}=$:48.677666
. 86	4.8394886		
. 31	4.2376566		
. 76	3.3642036		
.67	3.1019937		
- 82	2.6785498		
. 59	2. 424462		
. 52	1.3317862		
. 46	1.3240732		
. 4	8.20930074		
. 36	5.0111946		
. 34	3.5683905		
3	1.38626596		
. 25	2. 5373695		

TABLE 7.7d Logaritimic Approximation

Diode Type BP 5082-2835

的
0

0.2

0.4
0.6
0.8
Figure 7.14
Diode Static Characteristics
Predicted current (logaritimic approximation)
Bilinear fitted at 0.55V
[] [© logarithmic fitted at 0.35V
$\times \times \times$ Measured diode current

Diode Type EP 5082-2817

$$
\alpha=38.81
$$

4.0
$I_{s}=1.73 \times 10^{-10}$ amps
$\mathrm{r}_{\mathrm{s}}=10.37$ ohms
$\mathrm{R}=100$ ohms

0.6
0.8
Voltage (VoIts)
Figure 7.15

7.4 Comparison of predicted and measured waveforms

For these tests the diode was driven from a low distortion sinusoidal test oscillator. The level of the test voltage was set by measuring the open circuit voltage of the oscillator with a digital voltmeter having an accuracy of 0.1%. With the diode and the monitor resistor $\mathbf{R}_{\mathbf{m}}$ connected as shown in Figure 7.16, the transient recorders (T.R.) were adjusted to store the waveforms of the voltage ∇_{D} and V_{R}. As explained in Chapter 6 a single cycle of the diode current waveform was transferred to the computer. By a suitable modification of the Fourier Analysis programme the magnitudes of the samples of the current waveform were made available as a numerical print out on the line printer. A typical set of measured sample: levels for various voltage drives are shown in Appendix G1. These measured sample levels were then compared with results predicted from the bi-linear model with exponential correcting cusps. The numerical values as given by this model are shown in Appendix $\mathbf{G 2}$ and a graphical comparison between the measured and theoretical results is shown in Figure 7.17. The programmes required to print out the samples of the current waveform and to evaluate the theoretical formulea [equation (3.50) and (3.51)] are shown in Appendix 63.

7.5 Comparison of predicted and massured spectrum

(a) Low frequency tests at 20 kHz

The diodes were tested using the system shown in Figure 7.16. The sampled waveforms stored in the Transient Recorders were transferred to the computer and one cycle of the measured diode current was harmonically analysed using the Fourier analysis programme. A typical set of results are shown in Appendis $G 4$ for various levels of voltage drive. The harmonic content as given by the equations derived in Chapter 4 was also computed and are shown in Appendix 65. Comparisons of the predicted and measurad spectral decomposition for various voltage drives are shown in graphical form in Figure 7.18.

Figure 7.16.
Test circuit for measurement of diode current
T.R. Transient Recorder

Diode Type HP 5082-2800

	Predicted (Bi-1inear + exponential cusps)
$\mathbf{x} \quad$ Decreasing measured current	
$\ddot{\theta} \quad$ Increasing measured current	

Figure 7.18 (a and b)
Comparison of predicted and measurè spectrum
Predicted (Bi-lineantexponential cusps)
Predicted (Bi-linear)
Measured

Figure 7.18 (c and d)
Comparison of predicted and measured spectrum
©) Predicted (Bi-1inear)
（b）High frequency tests at 10 MHz Tests were carried out at 10 MHz using a low distortion sine wave oscillator．The open circuit output voltage of the oscillator was set to the desired drive level by means of the vector voltmater．With the diode and 50 ohm monitor resistor connected to the 10 MHz source the supply voltage and diode current were monitored by the vector voltmeter． The 20 kHz replicas of the $10 \mathrm{M} ⿴ 囗 十 \mathrm{z}$ waveforms were then stored in the transient recorders and passed to the computer for Fourier analysif．

The 20 kBr replicas of the diode voltage and current wave－forms are shown in Figure 7.19 together with a time－domain portrait of the diode characteristic．Figure 7.20 shows graphical comparisons batween predicted and measured harmonic content of the diode current waveshape．The measured test resulte obtained as a numerical print out from the computer and the theoretical resulte are shown in Appendix G6．

-

Figure $T .19$

Figure 7.20
Comparison of Predicted and Measured Spectrum Predicted (Bi-linear + Exponential Cusps)
© - Predicted (Bi-linear)
x Measured

7.6 Rffect of parasiric capacitance on Lattice array of diodes

An analogue model of a lattice array of diodes was constructed and tested at 50 kHz . The diodes used were type HP 5082-2833 and from preliminary tests the diode paramaters where found to be $\alpha=36.5, r_{5}=$ 11.3 ohms and $I_{5}=8 \mathrm{x} 10^{-10}$ amperes.

The diode current and voltage were monitored and typical waveforms are shown in Figure 7.21 for different values of parasitic capacitance wich clearly indicates the nature of the predicted delay in diode conduction. Figure 7.22 gives a graphical comparison of the predicted and measured delay angle for varions values of parasitic capacitance.

The harmonic content of the diode current may be predicted fy assuming that the diode currant is zero for angles less than the delay angle θ_{c} and sinusoidal for θ_{c} to π. The theoretical and measured harmonic componenta of the diode current are shown in Figure 7.23.

The harmonic spectrum of the voltage across the diodes may be obtained by integrating the expression for the capacitor current. A comparison between theoretical and measured values of harmonic components are shown in Fígure 7.24.

7.7 Discussion of Results

(a) Device Identification

The results pregented in section 7.2 relating to device identification by spectral response clearly indicate the faesibility of the proposed method. The incremental capacitance variation with applied voltage is obtained from a simple apectral test in a straight forward manner as compared witin a tedious point by point incremantal test using a Q-meter. The time varying incremental capacitance coefficients are also obtained as part of the process of datermining the device characteristic which is an added advantage of the method. The difference Getween the two curves shown in Figure $\mathbf{7 . 2}$ may .Be due to

(a)

(b)

Figure 7.21
Current and Voltage waveform in Lattice array of diodes
Upper Traces are diode current
Lower Traces are diode voltage
(a) Small parasitic capacitance
(b) Larger parasitic capacitance

(
Theoretical -
Measured X
 (
(i) the small number of barmonica used to identify the device and,
(ii) error involved in the measurement of the harmonic components. This measurement error compounds the basic error involved when representing a device characteristic by a polynomial of finite degree.

Thus if the device characteristic is based on the measurement of n harmonics the mathematical difference between the device characteristic and the $n^{\text {th }}$ degree Chebyshev polynomial is approximately $I_{n+1}{ }^{(20)}$ provided: the harmonic components are measured with no error. If each harmonic component is subject to an addition measurement error ε_{n}, then the practical difference between the two curves will be $\left|I_{n+1}\right|+\sum_{1}^{N}\left|\varepsilon_{n}\right|$.

As explained in Chapter 2 the coefficients of the spectral response to a sinusoidal drive have importance in their own right since ratios of these test coefficients identify many of the significant parameters of frequency converting networks.

(b) Static Characteristics of Exponential Diodes

The comparisons of the measured static characteristics of the exponential diode with series resistance and the two term approximation are excellent. The solution presented in Chapter 3 will predict accurately the diode current for a wide ranges of diode parameters, series resistance and applied voltage.

The logarithmic model, introduced as a simplification of the two term approximation, introduces errors in the ficinity of the diode turn-on voltage whan the translation has been established for high working voltages. This is not considered a serious deficiency in the model since it has been shown Chapter 4, Section 4.31 that diode curvature is of decreasing importance in the spectral response with high drive voltages. For low level drive voltages the technique of fitting the logarithmic approximation at Lovar voltages show that the model can be chosen to match the diode curvature near the turn-on voltage (Figure 7.12 to 7.15).

The comparisons between measured and predicted waveforms (Figure 7.17) show good agreement and the transition of the diode current from a gaussian pulse to an offset sinewave is clearly evident. The major errors introduced in these results are due to :-
(i) determining the effective zero current level since the samples stored in the transient analyser are all offset and lie above zero,
(ii) identifying the sample wifh corresponded to the peak current level,
(c) spectral Response of Exponential Dioder.

Consider first the situation with high drive wevels (Tigure 7.18 al ... For this condition the predicted and measured spectral response are in close agreement up to the tenth harmonic. The contributions from the exponential cusp are of the order of 0.1% of the contribution from the bi-linear segnents as can be seen from the numerical print out in Appendix G5. The theoretical discussion in section 4.3 also indicates that diode curvature is of small significance for such drive levels. It may therefore be concluded, based on experimental and theoretical inveatigations, that diode curvature may be ignored for large dxive levels.

As the drive level is reduced (Figure 7.186 It will be seen that the bi-linear approximation is adequate up to the tenth harmonic, although slightly over-estimating the masured response. The effect of the correction due to the contribation from the exponential cusps is to reduce the predicted level to slightly below the measured results. For harmonic numbers exceeding five the cusp corrections becone excessive and do not improve on the accuracy of the bi-linear model.

For lower voltage levels atill (Figure 7.18c and d) the pattern of behaviour is similar but with the bi-linear contribution having increasing error. The exponential cusp corrections are in the correct direction but are too large and clearly are divergent for harmonic numbers in excess of five.

Similar remarks hold for the tests carried out at 10 MHz only in these cases it appears that the bi-linear approximation is adequate even at these low drive levels.

In concluding that the bi-linear approximation is adequate to predict the harmonic response up to the fifth harmonic it should be appreciated that an adaptive bi-linear approximation is being used. Thus the bi-linear model used for the hard drive case would be very inaccurate if used in the low drive level situation.

For low-level drives the bi-linear contributions to the spectral content are inaccurate at higher harmonic numbers and a simple corrective term is still required since the exponential cusp correction term is diverging in this region. Examination of the numerical print-outs in Appendices $\mathbf{G 5}$ and G6 reveal that the term responsible for the divergence of the cusp correction is the positive exponential part of the correction.

A re-examination of the equation for the positive and negative exponential cusp contributions shows that the integrands for both systems were approximated in similar ways, [Equations (4.34) and (4.46)] but whereas the negative component admitted direct integration the positive cusp component could only by approximately integrated using Laplaces method. The exact integration of the negative cusp components results in terms of the form

$$
\left(n^{2}+\beta^{2} x\right)^{-1}
$$

appearing in the equation which prevent divergence of the expressions for large n or small X. However, the approximate integration of the positive cusp components, gives rise to terms in n and n^{2} in the expansion which will eventually dominate the magnitude of the expression as n increases. Thus the asymptotic expansion of the integral for the positive exponential cusp components becomes non-uniform for increasing harmonic number. The possibilities of obtaining a uniform expansion will be considered later.
(d) Effect of parasitic capacitance on switching of diodes in Lattice Array The predicted and measured delay angle of conduction are in good agreement for a wide range of parasitic capacitance met in practice. The predicted harmonic components produced by the delayed conduction phenomena also agreed closely with the measured values. As explained in Chapter 5 the curvature of the diodes plays a significant role in the determination of the conduction angle. Delayed conduction in diodes with atray capacitance is an unuaual effect, yet basic conceptual appreciation is readily gained by application of the bi-linear diode model, although the more rafined analysis incorporating the exponential nature of the diode is necessary to obtain quantitative information.

7.8 Suggestions for Further Investigation

The concept of time varying portraits, introduced in this work. as a generalisation of static characteristic, is worthy of further investigation. It is easily displayed on an oscilloscope, and as has been previously mentioned, the presence of resistive andreactive components is immediately apparent from the shape of the portrait. The possible use to select high grade components from batch production may well be a useful addition to a production line. The technique may possible extendin to other areas e.g. linearity of amplifiers, identification in control systems etc.

For a linear resistive element it is trivial to show that the area mider the $i \rightarrow$ characteristic equals the average power per cycle when the device is ginusoidally excited.

For non-linear resistive elements MacFarlane: ${ }^{(32)}$ introduced the idea of content and co-content i.e.

$$
\mathrm{vi}=\int \hat{i} d v+\int \mathbf{v} \mathrm{di}
$$

where $\int i d v$ is the content C and $\int v d i$ is the co-content $C c$. Thus instantaneous power

$$
p=C+C c
$$

In linear resistive systems $C=C$. In non linear resistive systems C 4 Cc, whilst both C and Cc are positive quantities.

For a linear reactive element the time varying portrait will be an ellipse. Again it is trivial to show that the rectangle bounded by the ellipse which has maximum area represents four-times the peak stored energy. Extending the concept of content and co-content to reactive elements it is readily shown that the content is positive winilst the co-content' is negative.

For a linear resistive-reactive systen the time-varying portrait is an incined ellipse. As pointed out in Chapter 2 these are readily separated so that a meadure of devica or system quality Q may be obtained from geometrical constructions on the time domain portrait.

In view of the above results is it possible to find geomatrical constructions for non-linear time varying portraits which would measure average powar and energy storage? The feasibility of identifying a device from its apectral response to a sinnusoidal stimulus has been established. However, more experimental investigations are still necessary especially at higher frequencies where the measurement of the effects of resistive loss on the spectrum requires evaluation. Harmonic current is detected as a voitage across a monitor resistance, and the system source will in general contain resistance. A method of "stripping" the effects of source and monitor resistance from the measured spectrum will need to be developed.

The asymptotic evaluation of the integral to obtain the spectral components due to the positive exponential cusp requires further analysis. One disadvantage of the method proposed in Chapter 4 is the assumption that $\cos n \theta$ remains dominated by the exponential decay of the other member of the integrand. Clearly for sufficiently large harmonic number n the cosne term will eventually oscillate faster than the rate of decay of the exponential. This effect is possibly enhancing the degree of non-
uniformity of the proposed expansion. To overcome such effects the replacement of $\cos n \theta$ by $\exp (-j n \theta)$, generalisation into the complex plane, and using the method of steepest descent ${ }^{(23)}$ as shown in Appendix G7 results in the following.

Degree of overdrive $\sqrt{x}=0$

$$
a_{n^{+}}=\frac{\ln (2)}{\alpha r_{m}} \sqrt{\frac{2}{\pi \beta}} \exp \left(-n^{2} / 2 \beta\right)
$$

Degree of overdrive $\sqrt{x}>0$
$a_{n+}=\frac{2 \ln (2)}{\pi \alpha r_{n}} \frac{\cos \left(n \theta_{0}+\psi\right)}{\sqrt{n^{2}+\beta^{2} X}}$
where $\tan \psi=n / \beta \sqrt{x}$

The above equations do not diverge with increasing harmonic number n. For sufficiently large B the harmonic contribution may be approximated by

$$
a_{n+}=\frac{\ell n(2)}{\alpha r_{m}} \sqrt{\frac{2}{\pi \beta}}\left(1-\frac{n^{2}}{2 \beta}\right), \sqrt{X}=0
$$

which is also the limiting form of equation (4.41) used to compile Table 4.1.

CHAPTER 8

CONCLUSIONS

The theory developed in Chapter 2 and the supporting experimental reaults in Chapter 7 clearly indicate the feasibility of idencifying a device (or system) from its spectral response to a sinusoidal drive. This new approach to non-linear spectral analysis avoids the need $t 0$ develop the response vavaform inco its harmonic componencs. The mathod suggested is well suited to situations where the mathematical model of the device (or system) is difficult, or perhaps impossible, to ascertain. The process is easily compaterised, and providing the problen of wide-band high frequency tersing can be resolved, the amount of information made available is proportional to the sophistication of the supporting "software". The concept of time-varying portraits provides another view of non-linear elements. These novel concepta have not been investigated previously and some useful areas for future investigations have bean indicated. The latter sections of Chapter 2 indicate that it is possible to design frequency converting syatems directly from a knowledge of spectra with obviates the need for the device characteristic, i.e. paramaters of the device are represented By the magnitude of specific harmonic components in the test spectrum. This approach would therefore give indications of the Best device to use for specific purposes, wich is of considerable value to designers and could be a criterion for device manufacturers. Just as importanc is the fact that system paramaters (for example, input and output admittances (or impedances), transfer parameters, characteristíc admittance (or impedance), loss coefficients may be identified in terms of the test spectrum.

In Chapter 3 the static characteristics of an exponential diode with series resistance were studied. The presence of resistance considerably modifies the harmonic generating properties of the diode. In this case the natural mathematical model takes the form of an implicit equation in terms of the unknown current and is an example of a situation where it was previously impossible to obtain an explicit representation of the device characteristic. However, by an application of a variation of parameter technique an explicit reprasentation of the device is found as a functional expansion. The theoretical and practical investigations revealed that only two terms of this expansion are necessary to obtain highly accurate results over the entire practical working range of the diode. Interpretation of the form of this expansion revealed that it was possible to devise two addítional diode models (the logarithmic model and the bi-linear model with exponential cusp correctionl. The yalidity of these models is adequately supported by the experimental evidence in Chapter J. Thie model incorporating the exporiential cusp correction is significant in the sense that the reproductive nature of the exponential function with respect to differentiation implies that the amall aignal incremental parameters may be obtained in the same manner as the diode spectrum.

The prediction of the spectral response of the exponential diode vith series resistance has heen solved and experimantally verified. A uniform expansion for the harmonic contribution of the positive exponential cusp current which is valia for large harmonic numbers has been obtained and extends this range of validity of the methods proposed in this report.

The effect of delayed conduction in lattice diode mixers is highly significant. It has been shown ${ }^{(25)}$ thiat in the absence of capacitive effects the conversion loss and noise figure of these mixers is
considerably improved when driven by an oscillator having a high output impedance. As a consequence of the prediction of delayed conduction as obtained in Chapter 5 it has been shown ${ }^{(27)}$ that a compromise must be made betwen the need to have a high source impedance for low noise figure and a reduced source impedance to minimise the delay in diode conduction.

The new rechnique used to masure spectral content described in Chapter 6 has proved to be a versatile and accurate system being capable of assessing harmonic content up to frequancies of the order of 50 MHz . Again the "software" system may be readily extended to give graphical outputs of waveform and spectrum if so desired. Performance at higher frequencies may also be posicible with the aid of a purpose-designed sampling unit to accomplish the alias conversion.

The results presented here are of importance in their own right as they have led to a conceptual and quantitative appreciation of factors governing the harmonic generating properties of non-linear devices. They are also a means to an end with the response to the local oscillator determined, the amall signal performance must also. Be oftained. Therefore the manner in which the results may be applied has been indicated (i,e. equivalent circuits of multipliers, incremental conductances, and switching functions2.

The philosophy adopted in the theoretical investigations has.been to use techniques with strong convergence properties since the classical: power series expansions converge too slowiy. The application of these techniques to frequency converting circuits has clarified certain aspects of performance and opened up-a number of new avenues of investigation.

1. Torrey, H.C., \& Whitmer, C.A., 'Crystal Rectifiers', (M.I.T. Rediation Laboratory Series), Vo1. 15., New York; McGraw-Hill, 1948.
2. Kahng, D., 'Conduction Properties of the Avi-n Type Si Schottky Barrier', Solid State Electron, 6, p. 281, 1963.
3. Mill, H.D., 'On the Equation $1=I_{s}(\exp (V-R i)-1) '$, I.B.M. Jovrn, 11, pp. 553-554, 1967.
4. Katib, M.K., 'Evaluation of Harmonic Generating Properties of Schottky Barrier Diodes', Ph.D. Thesis, Durham, 1976.
5. Howson, D.P., 'Rectifier Modulators with Frequency Selective Terminations', Proc. I.E.E., Vol. 107, Part B, pp. 261-272, Jan 1960.
6. Rafuse, R.P., 'Low Noise and Dynamic Range in Syamamatric Mixar Circuits', Proc. of the 1st, Biemnial Cornell Conf., Pub. Cornell Univ. : pp. 147-154, 1967.
7. Glover, K.J., Gardiner, J.G. \& Koweon, D.P., 'Double-Tuned Modulator Calculations using an Improved Diode Model', The Radio and Electronic Engineer, Vol. 42, No. 1, Pp. 37-44, Jan. 1972.
8. Liechti, C.A., 'Down-Converters using Schothky Barrier Diodes', IEEE Trans., Vol. ED-17 No. 11, pp. 975-983, Nov. 1970.
9. Fleri, A.F., \& Cohen, L.D., 'Non-Linear Analysis of the Schottky Barrier Mixer Diode', TRES Trans., Vol. NITT-21, No. 1, Pp. 39-43, Jan 1973.
10. Mania, L., \& Stracca, G.B., 'Effect of the Diode Junction Capacitance on the Conversion Loss of Microwave Miners', IEEE Trans., Vol. Comm-22, No. 9, Pp. 1428-1435, Sep. 1974.
11. Leeson, D.B., \& Weinreb, S., 'Frequency Multiplication with NonLinear Capacitors - a Circuit Analysis', Proc. Inst. Radio Engrs., 46, p. 2076, 1959.
12. Scanlan, J.O., \& Laybourn, P.J.R., 'Large Signal Analysis of Varactor Harmonic Generators without Idlers'.
13. Scanlan, J.P., \& Laybourn, P.J.R., 'Analysis of Varactor Harmonic Generators with Axbitrary Drive Levels'; Proc. IEGE., Vol. 14, No. 11, Pp. 1598-1604, Nov. 1967.
14. Petrov, B.I., 'Stability of Steady States of Varactor Frequancy Multipliers', Radio Engineers and Electronic Phyeics, Vol. 21, Part 6, PP. 81-89, 1976.
15. Gardiner, J.G., \& Wagiealla, M.Z., 'The Step Recovery Diode in Series Mode Harmonic Generation', Report No. 144, Postgraduate School of Electrical and Electronic Engineering, Dniversity of Bradford, March 1973.
16. Nayfeh, A., 'Perturbation Mathods', Jobn Wiley \& Sons, 1973.
17. Lewis, L.T., 'Harmonic Analysis for Mon-Linear Characteristice', Trans. A.I.E.E., 73, Part 1. PP. 693-699, 1954.
18. Douce, J.L., 'A Note on the Evaluation of the Response of a NonLinear Elemant to Sinusoidal and Random Signals', I.E.E. Monograph No. 257M, Pp. 88-91, Oct 1957.
19. Karybalcus, C.A., 'A Reviev of the Describing Function Calculations of Double Valued Characteristics, The Inverse Problem, Int. J. Control, Vol. 17, Mo. 5, pp. 955-963, 1973.
20. Snyder;, M.A., 'Chebyshev Methods in Numerical Approximations', Pentice Hall, 1966.
21. Eolt, A.G.J., Attikourel, J., and Chapman, R., 'Chebyahev Approximations for Distributed RC Ketworks', Proc. I.E.E., Pp. 815-817, May 1975.
22. Kahan, W.M., 'Numerical equation Solver for any Equation $f(x)=0$ ', Hewlett Packard Journa1. pp. 20-26, Dacember 1979.
23. Carrier, G.F., Krook, M., and Pearson, C.E., 'Functions of a Complex Variable', McGraw-Hill Inc, Pp. 249-254, 1966.
24. Gradshteyn, I.S., and Rymik, I.M., 'Tables of Integrals Series and Products', Academic Press, 1965.
25. Rustom, S., and Howson, D.P., 'Mirser Noise Figure using an Triproved Resistive Model', Int. J. Electronics, Vol. 41, 1976.
26. Stracea, G.B., 'Noise in Frequency Mixers using Nom-1inear Resistors', Atta Feq., Vol. 6, 1971.
27. Korolkiewivz, E., and Kulesza, B.I.J., 'Influence of Capacitance on Performance of Balanced Microwave ufixars', Electronic Letters, Vol. 17, No. 3, pp. 144-146, 1980.
28. Kalesza, B.L.J., 'General Theory of a Lattice Mizer', Proc. I.E.E. Vo1. 8, No. 9, 1971.
29. Fei, F.S., and Mattanch, R.J., "High Frequency Resistive Mixer Diode Analysis Capacitance Analyais?, Proc. F.E.E.E., Vol. 64, pp. 141-143, 1976.
30. Rafuse, R.P., 'Low Koise and Dynamic Range in Symatrical hixer Circuita', Proc. of the 18t Bienial Conference, PP. 147-154, 1967.
31. Papoulis; A., 'Circuits and Syscems', Holt, Rinehart and Winston Inc., 1980.
32. MacFarlane, A.G.J., 'Engineering System Analysis', Harrop and Co Ltd., PP. 38-44, 1964.

APPENDICES

APPENDIX A

A1. .List of Publications

A2. Publications

Appendix A

Publications

Armstrong, R., 'Magnetic induction in materials of varying permeability', MSc Thesis, September 1974.

Armstrong, R., 'Magnetic effects of large currents involved in U shaped array in lengthwise graphitisation', Private report to Anglo Great Lakes Corporation, Report No. RD 144, June 1975.

Armstrong, R., 'Four terminal network theory applied to tap staggering', Int. J. Elect. Enging Educ., Vo1. 14, pp. 359-363, 1973.

Armstrong, R., 'Predicting the electrical performance of arc furnaces', IEE J. Elect. Power Appl., Vol. 1, No. 3, pp. 86-90, August 1978.

Arnstrong, R., Korolkiewicz, E., and Kulesza, B.L.J., 'Large signai waveforms in microwave balanced mixer with capacitance', Proc. IEE, Vol. 125, No. 8, pp. 728-729, August 1978.

Armstrong, R., and Ince, A., 'Un diagramme operatorie pour les fours a arc', Journal du four electrique and des industries electrochemiques No. 6, pp. 21-29, June-July 1979.

Armstrong, R., 'The electric arc furnace - useful teaching system', Int. J. Elect. Enging. Educ., Vol. 17, pp. 51-57, 1980.

Armstrong, R., and Kulesza, B.L.J., 'An approximate solution to the equation $x=\exp (-x / \varepsilon)^{i}$, The Bulletin of the Institute of Mathematics and Its Application. Vol. 17, No. 2/3, Feb/March 1981.

Armstrong, R., and Korolkiewicz, E., 'Application of Resonant Circuit Theory to Matching Networks', Int. J. Elect. Eng., Ed., Vol. 18, Sept 1981.

An Approximate Solution to the Equation $x=\exp (-x / \epsilon)$

R. ARMSTRONG, AFIMA

and B. L. J. KULESZA
Department of Physics and Electronics, University of Durham Department of Electrical Engineering and Physical Electronics. Newcastle-upon-Tyne Polytechnic

A PROBLEM of importance in the analysis of resistive mixers is to determine the current flowing in an exponential diode with series resistance in terms of the applied voltage and the circuit parameters. The system is characterised by the equation

$$
\begin{equation*}
I=I_{s} \exp (\alpha V-\alpha I r)-I_{s} \tag{1}
\end{equation*}
$$

By means of the substitutions

$$
\begin{gather*}
x=\left(I+I_{s}\right) / I_{s} \exp \left(\alpha V+\alpha r I_{s}\right) \tag{2}\\
\varepsilon=1 / \alpha r I_{s} \exp \left(\alpha V+\alpha r I_{s}\right) \tag{3}
\end{gather*}
$$

equation (1) may be transformed into its essential mathematical form of

$$
\begin{equation*}
x=\exp (-x / \varepsilon) \tag{4}
\end{equation*}
$$

which has the equivalent inverse form of

$$
\begin{equation*}
x=-\varepsilon \ln (x) . \tag{5}
\end{equation*}
$$

Asymptotic expansions of (4) or (5) are readily obtained for large or small values of the parameter ε.
(i) ε large

$$
\begin{equation*}
x \sim 1-\varepsilon^{-1}+\frac{3}{2} \varepsilon^{-2}+\ldots \quad \text { as } \varepsilon \rightarrow \infty \tag{6}
\end{equation*}
$$

(ii) ε small

$$
\begin{equation*}
x \sim \varepsilon \ln (1 / \varepsilon)-\varepsilon \ln (\ln 1 / \varepsilon)+\ldots \quad \text { as }-6 \rightarrow 0 . \tag{7}
\end{equation*}
$$

We now seek a solution to equation (4) valid for all ε which is asymptotically correct for both large and small E. To do this we first replace the exponential term by its linear approximation of $1-x / \varepsilon$ to give

$$
\begin{equation*}
x \approx 1 /(1+1 / \varepsilon) . \tag{8}
\end{equation*}
$$

To refine the solution we assume that

$$
\begin{equation*}
x=f(\varepsilon) /(1+1 / \varepsilon) \tag{9}
\end{equation*}
$$

where $f(z)$ is a slowly varying modulating function, with $f(\infty)=1$. Substituting (9) into (5) expanding, and neglecting $\ln (f)$ we obtain

$$
\begin{equation*}
x=\varepsilon \ln (1+1 / \varepsilon) . \tag{10}
\end{equation*}
$$

To determine a two term expansion we write

$$
\begin{equation*}
f=f_{0}(1+z), \quad f_{0}=(1+\varepsilon) \ln (1+1 / \varepsilon) \tag{11}
\end{equation*}
$$

substitute into (9) and expand for small z to obtain

$$
\begin{align*}
x= & \varepsilon \ln (1+1 / \varepsilon) \\
& \quad-\frac{\varepsilon \ln (1+1 / \varepsilon)}{1+\ln (1+1 / \varepsilon)} \ln [(1+\varepsilon) \ln (1+1 / \varepsilon)] \tag{12}
\end{align*}
$$

Examination of equation (12) reveals that it has the same asymptotic forms as (6) and (7) for large and small ε. Equation (12) is shown in graphical form in Fig. 1 and compared with the exact solutions, these being obtained by assigning values to x and calculating ε. The two term expansion is thus seen to be an extremely good approxi--mation to the exact solution.

LARGE SIGNAL WAVEFORMS IN A MICROWAVE BALANCED MIXER WITH CAPACITANCE

Indexing terms: Mixers (circuits), Solid-state michowrve circuits

Abstract

The correspondence describes the effoct of the diode capacitance on the current and voltage waveforms developed in a current-driven balanced mixer operating at microwave frequencies. It is shown that the current through the 'on' diode is a truncated halfwave sinewave, the angle of truncation being a function of the diode capacitance. drive level and the diode incremental resistance at the origin. The closed-form solution for the: angle of truication provides valuable insight into the deterioration in performance of balanced mixers at microwave frequencies owing to diode parasitic capacitance.

Introduction

A large variety of balanced: mixers are available in integrated circuit form with operating frequency ranges of the order of 100 MHz . At microwave frequericies, however, the 2 -diode balanced and the $4-$ diode double-balanced mixers are still inevitubly used. Thess two mixer circuits have been comprahensively analysed in many pubfcations assuming that the current through each diode is sinumoid during conduction. At low frequencies this assumption is valld, but at microwave frequencles the diode parasitic capacitance considerably alters the large signal waveform, in that the current waveform.through the 'on' diode is a truncated halfwave rectified sinewave, as shown it. Fig. 1. This effect of the diode capacitance has not been observed anp

Fig. 1
Truncased half-wave rectified sinewave
728
analysed in any literature relating to mixer perfurmiance. Experimental results using a low-frequency model are found to be in good ayreement with the theoretical predictions. A Fourier analysis on the diude curtent waveform shown in Fig. 1 and the resulting voltage waveform developed across each diode also shows good correlation with the practical results.
 oscillator cufrent drive for a balanced 2-diode mikyr is stiown in. Fig. 2a This ctrcuit is also valid for a 4 -diode doubigetalinoed indxer if each diode shown in Fig. $2 a$ represents the apprippriate two diodes in parallel. Experimental inventigations indicated thata 100% change in the value of the diode series resintance R, did popt jignificantly affect the eurrent waveform and honce tts effect has bean neglected in the analyate. It has been shown ${ }^{1,2}$ that the diode junction capacitunce C_{j} can be approximated by a consfant value given hy

$$
\begin{equation*}
C_{l}=C(0) \approx\left[C_{\text {max }} C C_{\text {min }}\right] / 2 \tag{1}
\end{equation*}
$$

where $C(0)$ is the value of C_{j} at zero voltage The effective total capactance across the diodes is therefore

$$
C=4 C_{p}+2 C_{y} \quad \text { (double-balanced maxat) }
$$

PROC:TEE, Vol 125, Na. 8, AUGUST 1978

$$
\begin{equation*}
C=2 C_{p}+C_{p} \quad \text { (halanced mixer) } \tag{2}
\end{equation*}
$$

where C_{p} is the dilule package capacitance.
The equivalent ctrcuit to be analysed therefore reduces to that thown in Fig. $2 h$ and is governed by the following differential equation:

$$
\begin{equation*}
\frac{C d V}{d t}+n I_{a}[\exp (\alpha V)-\exp (-\alpha V)]=I_{p} \sin \omega_{p} I \tag{3}
\end{equation*}
$$

where $\alpha=q / K T, 4$ is the diode saturation current and $n=2$ for a double-balanced hixer os $n=1$ for a balanced mixer. It is convenient at this stage to introduce the following normalised parameters:

$$
\begin{align*}
\theta & =\omega_{p} I_{Y} \tag{4a}\\
K & =n I_{s} / I_{j}^{j} \tag{4b}\\
\therefore & =\omega_{j} C l / \alpha I_{p}=\omega_{p} C_{p} K / n \tag{4c}
\end{align*}
$$

where

$$
r_{b}=\left.\frac{d V}{d I}\right|_{0} ^{0}=\frac{1}{a I_{0}}
$$

Subatituting the normalised parameters of egn. 4 and a niow variable defined by

$$
\begin{equation*}
y=K \exp (a V) \tag{5}
\end{equation*}
$$

ogn. 3.bocomes

$$
\begin{equation*}
\frac{d y}{d \theta}+y^{2} \frac{1}{d} R^{2}=y \sin 0 \tag{6}
\end{equation*}
$$

Thie analytical solution to this nonlinear differential equiation is difficult, but an approximate expression for the angle of truncation $\boldsymbol{\theta}_{\mathrm{c}}$ cap be obtained by colving eqn. 6 in two regions:

$$
\begin{gathered}
\because K^{2}<y^{2} \\
\text { and } \\
y^{2}<K^{2}
\end{gathered}
$$

and matching these two solutions to satinfy the condition of periodicity for y, The condition $K^{2}<v^{2}$ cofresponds to the part of the cycle whan the diode is fully conducting and therefore the diode current is much greater than I_{s}. On the other hand, when the diode is

Fig 3
Theoritical and mearured valuma of delay angle against diode capactiance
\mathbf{x} massired racults
 angle of truncation θ_{c} is then glven by

$$
\begin{equation*}
\sin ^{2}\left(0_{\mathrm{e}} / 2\right)=\frac{\varepsilon}{2} \log \left(\exp \left[(2 \epsilon / \pi)^{1 / 2} / K^{:}\right]\right) \tag{0}
\end{equation*}
$$

Eqn. 7 may be further simplified for a practical diode to

$$
\begin{equation*}
\sin ^{2}\left(\theta_{e} / 2\right) \simeq A e / 2 \tag{}
\end{equation*}
$$

Where \mathcal{A} represents the logarithmic term in eqn. 7 and ctan be regardec as a constant since it varies slowly for large changes in ϵ.

Experimental results

A low-frequency equivalent circuit, shown in Fig. 2b, wai constructed using Scliottky barrier djodes. A test frequency of SC 4 Hz was chosen 20 that :the inherent capacitive effect of the diodes was negligible. The high-frequency performance of the diodes was tmulated by an external capacitor. The magnitudo of this capacito was determined by scaling a typical parasitic capacitive value in the attio of working frequency. (i GHz) to the test frequency. Preliminary tests carried out on the diodes (type HP 2833) indicated that $L_{4}=$ $\delta \times 10^{-7} \mathrm{~A}$ and $r_{b}=34 \times 10^{7} \Omega$. The current drive was adjusted 30 that the normalised current-drive factor K was 7×10^{-7}.
Fig. 3 shows a comparison of the theoretical values of θ_{a} with中easured values for varying values of capacitance. The divergence between the theoretical and practical results for large values of capacitance may be explained by the fact that the assumption of a sharp turn on of the diode current is no longer valid in that region. The effect of the truncated angle θ_{e} on the frequency spectrum of the diode current and voltage wes also found to be in close agreement with the measured results.

Conclusion

. Seleh ${ }^{3}$ has shown that the optimum performance of a balapced mixer in the absence of the diode parasticics is obtained when the time varying resistance $r(t)$ of the pumped diodes is a square wave. The diode capecitance in the came of practical microwave balanced mixer causes the current waveform to be truncated and hence the suggested optimum performance can nover be practically obtained.

Acknowledgments.

The authons wish to gratefully acknowledge the valuable assistance given by Prof. P.H. Roberts, Department of Mathematucs, University of Newcastle upon Tyne.
Ist March 1978
R. ARMSTRONG
E. KOROLKIEWICZ

Department of Electrical \& Electronic Engineering
Newciastle upon Tyne Polytechnic
Ellison Butlding
Ellison Place
Newcestle upon Tyne NE7 85T
England
B.l.J. KULESZA

Dopartment of Physics \& Electronica
University of Durham.
South Road
Durham DH1 3LE
England

Reforencas

1 FEI, F.S., and MATTAÜCH, RJJ- "Hiqh frequency mestotve mixer diode capadiancer inalystis', Priee JEVEE, 1976, 64, Pp. 141-143
2 RAFUSE, RiP.: "Low nolye and dynamic.range in symmetric mixer circuits". Prociedingit of the 1ut Bjennial Corvall conforence, 1967; pp. 147-154
3 SALEAH, A.A.M.: 'Theory of reodetance mixeri' (MIT Fress, 1971), pp. 54-55

Predicting the electrical performance of arc furnaces

R. Armstrong

Indexing revin: Anc furnaces

Abstract

The paper develops a method of predicting the electrical performance of arc furneces. The technique is based on a power chart darfved from an equivalent phasor diagram. Comparisons with other methodis of prediction and with practical observations are made. An approximate form of.the operating chart is also prosented which is applicable to systems having a low resistance/reactance ratlo.

List of principal symbols

$E_{a}=$ level of arc voltage
$V_{0}, V_{a}=r \mathrm{~ms}$. values of äpply voltage and fundamental componentof are voltage
$e_{1}, e_{2}, e_{3}=$ instantaneous vilues of are voltages
$\nu_{1}, \nu_{2}, \nu_{3}=$ instantancous values of supply voltages
$-i_{2}, i_{2}, i_{2}=$ instantmeous vilues of supply currents

- $\boldsymbol{R}=$ gystem resistance
$X=$ system reactance
$\phi=$ intrinsic phase difference between V_{a} and V_{a}
$\delta=$ system angle $\tan ^{-1}(R / X)$
$\rho=$ radius of nomalised operating circle
$S=$ apparent power
$P=$ power
$\boldsymbol{Q}=$ reactive power
subscript b refers to base values

1 Introduction

The electric are fumace is at present the most efficient way of producing special-alloy steels. in quantities required to meet the needs of industry. In these times when great emphasts is placed on the conservation of energy, it is imperative that the energy consumed by arc furnaces is fully utilised. This requires a method of accurately predicting the electrical performance which can easily be applied by personnel responsible for arc-furnace operations.

A number of manufacturers have installed arc furnaces to augment their supply of these specialalloy steels. In such instances the production engineer in charge of the furnace usually has a metallurgical background, yet is required to make decisions regarding the electrical performance of the fumace. Again there is a need for a method to amsist him in his decisions.

This paper outlines a method of predicting the electrical. performance of arc furnaces. The method is based on an equivalent phasor diagram; the derivation of which highlights some of the salient features of the system. The power chart, derived from the phasor diagram, can be used without resorting to the underlying theory and has the added advantage that variations in all the quantities involved can be visualised.

[^3]
2 The arc furnece power diagram

In order the analyse the behaviour of an electric arc fumace system we make the following assumptions:
(a) The 3 -phase supply to the furnace is balanced and sinusoidal.
(b) The phases of the arc fumace system are electrically balanced.
(c) The voltage developed across each arc is constant during conduction at level E_{a} and reverses each half cycle.
(d) The arcs fire symmetrically with 120° phase displace. ment.

Fig. 1 Typical voltage and current waneforms:

Filg. 2 Equibalent chrouts of a 3-phase are furnace
ELECTTRIC POWER APPLICATIONS, AUGUST 1978, Vol. 1, No. 3.

The arcs can only be maintained when the applied voltage is in excess of the level E_{a} consequently there is an inherent phase delay ϕ between the supply and arc voltages as shown in Fig. 1. The equivalent circuit of a 3 -phase arc furnace is shown in Fig. 2 and the solution of the differential equation of the system is shown in Appendix 8.1, from which it will be seen that for stable arcs (arcs which conduct for a full half cycle) the following condition must be satisfied:

$$
\begin{equation*}
\cos (\phi+\delta)=V_{a} / 2 \rho(R / X) V_{e} \tag{1}
\end{equation*}
$$

Pin. 3 Varlation of p and 6 whth aytern parumeners
8

Fig. 4 Equivalent phasor dignoun for a 3-phase ërc furnace

The variation in system angle δ and the function ρ for different values of R / X are shown in Fig. 3, and, for given values of R / X and V_{n}, eqn. 1 represents a semicircle of radius $\rho(R / X) V_{s}$. inclined to the vertical axis by the angle δ jas shown in Fig. 4, the centre of the semicircle being at point P. Also chown in Fig. 4 are the resistance and reactance voltage drops. The complete Figure is, in fact, the phasor diagram representing the relationships between the firndamental components of the varioris voltages and currents existing in the system.

The power diagram indicated in Fig. 5 is obtatned by muitiplying all sides of the $V_{s}, V_{G}, I Z$ triangle by V_{s} / Z,
and rotating through an angle δ. The diagram can be made universal by dividing all sides of the triangle by a base MVA, defined by .

$$
\begin{equation*}
S_{b}=V_{b} I_{b} \tag{2}
\end{equation*}
$$

where the base voltage V_{b} is taken as the phase value of the furnace supply voltage and the base current given by

$$
\begin{equation*}
I_{b}=V_{b} / Z \tag{3}
\end{equation*}
$$

In the normalised diagram the radius of the operating circle is $\rho(R / X)$. The stable region of the diagram is to the right of the line indicating the theoretical limit of instability which is shown in Appendix 8.2 to be

$$
\begin{equation*}
\phi_{c}=\tan ^{-1}\left\{\frac{(\rho \pi \cos \delta) / 3}{1+(\rho \pi \sin \delta) / 3}\right) \tag{4}
\end{equation*}
$$

If required, other limits of operation may be superimposed on the diagram, es. the transformer rating and the maxdmum illowable arc voltage.

For systems whose R / X ratio is less than 0.2 , which is typical for systems fed direct from the 275 kV aystem, an interesting approximation is possible. We first observe from Fig. 3 that the radius of the operating.circle is 0.46 and the centre of the circle is almost on the \boldsymbol{Q} axis. Considering now the case where R is zero, the radius of the circle is $0-456$ and the centre lies on the Q axis. These two circles are approximately coincident; the socond circle may be rogarded as the first circle rotated through an angle. This allows an approximate power chart to be drawn, assuming \boldsymbol{R} to be zero, as shown in Fig. 6 where the are power loci have,been superimposed.

Fig. 5 Power chart for a 3-phase are furnace

3 Comparisons with other methods of pradiction

To illustrate the use of the power chart a specimen calculation is shown below, the appropriate power chart being shown in Fig. 7. The example is relevant to a system pubHished by Freeman and Medley ${ }^{2}$ and a comparison with their results is illustrated in Fig. 8.

3tit Specimencica/culation

Systim $Z=(456+j 2772) \times 10^{-6} \Omega$

$$
\bar{Z}=2809 \times 10^{-6} \Omega
$$

Base volitage $V_{b}=525 / \sqrt{3}=303 V$
Base current $I_{b}=V_{b} / Z=303 \times 10^{6} / 2809=108 \mathrm{kA}$
Base MVA/phase $S_{b}=V_{b} J_{b}=303 \times 108=33 \mathrm{MVA} / \mathrm{ph}$
$R / X=456 / 2772=0.1645$
From Fig. $38=9.34$ degrees

$$
\rho(R / Z)=0.46
$$

The normalised are power P_{a} is determined by subtracting the normalised $I^{2} R$ loss from the total input power.

Comparisons were also made with results published by Pagchisis and Persson ${ }^{2}$ for a system with a R / X ratio of 052. This is desirable since Freeman and Medley based pheir calculations on the concept of an operational reactance, whereas the results of Paschkls and Persson are фased on a square-wave are voltage and include the effects ϕf harmonics in the current waveform. This comparison is indicated in Fig. 9.

mite: Approxtmate power chart
Comparison with practical roult:
The chart was also used to predict the performance of a 150 tom, 50 MVA arc furnace, and the reaults so obtained colmpared with measured operating conditionis. A summary of the comparison is given in Table 1 where the powier and. MYA are 3-phase values.

5

Gonielusions
Thif ctesults of Freeman and Medley fall off more rapidly thinh those produced from the chart for high levois of arc cuifent. Their calculations are based on the concept of an opdrating reactance which is 15% greater than the short ditcuit reactarice. The difference in the two sets of results at high current levels is probably because the operating. reftaining is dependent on current level and not strictly coinstintit.

Comititrison with the results of Paschicis and Persson show that the values obtained from the chart are lower for hifit current levels. This is because the operating chart does not include the effects of hamonic components of

Table 1: Comparison with precieal raultes

Tap volrage	prealcted			meseured		
	\bar{P}	MVA	p.f.	P	MVA	p.t.
550	44.2	$60-4$	0.743	40-8	60.3	0.711
525	43	64	0.682	45.3	62.4	0858
476	388	$85 \cdot 8$	0.888	37	68	0.58
425	28.3	40.4	0.719	32.6	41.3	0.744
375	28.8	39.7	0.725	286	33.3	0.762
32\%	18.25	250	0.707	10.3	26.8	0.725
275	1288	179	0.726	13-8	18.0	0.746
200	7.34	10.63	$0 \cdot 8$	7.5	11.2	0.48

currents which will become more significant at high levels of current.

The operating chart therefore gives results which are comparable with other publithed remults over the lower range of arc currents and are intermediate for higher current levels.

The results shown in Table 1 indicate that the operating chart gives excellent predictions of actual operation. When -using the chart in practice it would be more convenient to scale the diagram in actual power levels. Having selected a particular tap voltage the arc-voltage level is marked on the operating circle. Since the are voltage vaies with slag basieitys better results will be achieved by using measured values of arc voltage rather than values computed from are length. For a given fumace installation with a known R / X ratio the arc-power curve can also be drawn on the diagram giving immediate indication of arc power.

Fig. 7 Power chert for syreten discussed in Section 3

6 Acknowiedgment

I wish to acknowledge advice and help given by A. Ince of Anglo Great Lakes Corporation and also the help of Round Oak Steelworks, Brierly Hill.

7 Reforences

 In clectic are furnmesp', DEE J. Elcetr. Fower Apph. 1978, 1, pp. 17-24
2 PASCHKIS. V., and PERSSON, J.: Industrial electric futnacos and applinnces' (Intersciance, 1960) p. 220
3 PIROZHNIKON, V.E.: Efrects of clag on thermal process in electric furnaces', Stal, March 1967, Pp. 222-224

Fing. 8 Comprison of remules
$-x-x-$ operating chart
-0-0- Freeman and Medley

8 Appendixues

8.1 Detarminetion of the phace angle ϕ.

Let D be the differential operator defined by

$$
\begin{equation*}
D(\cdot)=\left(L \frac{d}{d t}+R\right)(\theta) \tag{5}
\end{equation*}
$$

then the system shown in Fig- 2 is govemed by

$$
\begin{align*}
& v_{1}-c_{1}+e_{2}-v_{2}=D i_{1}-D i_{2} \tag{6}\\
& v_{2}-\dot{c}_{2}+\dot{c}_{3}-v_{3}=D i_{2}-D i_{3} \tag{7}\\
& i_{1}=-\left(i_{2}+i_{3}\right) \tag{8}
\end{align*}
$$

where e_{1}, e_{2}, and e_{3} represent the square-wave arc. voltages each displaced by 120° in accoriance with assumption (c).

Eliminating y_{2}, v_{3}, i_{2} and i_{3} we see that i_{1} is governed by

$$
\begin{equation*}
D 1_{1}=v_{1}-\frac{2}{3}\left(e_{1}-\frac{\dot{e}_{2}+e_{3}}{2}\right) \tag{9}
\end{equation*}
$$

Since the are current can only be maintained providing the applied voltage exceeds the level E_{a} then a phase shift ϕ must exist between v_{1} and e_{1} and to include this effect in the analysis we write

$$
\begin{equation*}
\nu_{1}=\dot{V}_{c} \sin (\omega t+\phi) \tag{10}
\end{equation*}
$$

The equivalent are voltage on the lefthand side of eqn. 9 is discontinuous and the current i_{1} is given below for the time intervals indicated:

$$
\begin{aligned}
& i_{1}=A_{1} \exp (-\omega t R / X)+\frac{\hat{V}_{t}}{Z} \sin (\omega t+\phi-\alpha)-\frac{2}{3} \frac{E_{\mathrm{g}}}{R} \\
& 0<\omega t<\pi / 3
\end{aligned}
$$

$$
=A_{2} \exp (-\omega t R / X)+\frac{\hat{V}_{6}}{Z} \sin (\omega t+\phi-\alpha)-\frac{4}{3} \frac{E_{a}}{R}
$$

$$
\pi / 3<\omega t<2 \pi / 3
$$

$$
=A_{3} \exp (-\omega t R / X)+\frac{\hat{V}_{a}}{Z} \sin (\omega t+\phi+\alpha)-\frac{2}{3} \frac{E_{a}}{R}
$$

$$
\begin{equation*}
2 \pi / 3<\omega t \leqslant \pi \tag{11}
\end{equation*}
$$

Fin. P. Compriton of resultes
$-x-8-$ operations chart
-0-0 Paschlis and Fersena

In the above equation there are four unknowns, namely \boldsymbol{A}_{1}, A_{2}, A_{2} and ϕ. Eliminating A_{2} and A_{3} and using the condition that i_{1} is zero at $\omega t=0$ and $\omega t=\pi$ we find that ϕ must satisfy the condition

$$
\begin{equation*}
\frac{\dot{V}_{g}}{Z} \sin (\varphi-\alpha)=2 \frac{E_{a}}{3 R}\left(\frac{1-x^{2}}{1-x+x^{2}}\right) . \tag{12}
\end{equation*}
$$

where

$$
\alpha=\tan ^{-1}(X / R)
$$

and

$$
X=\exp (\pi R / 3 X) .
$$

By putting $\alpha=(\pi / 2-\delta)$ and rearranging we find that

$$
\begin{equation*}
\cos (\phi+\delta)=\frac{2 E_{a}}{3 \dot{V}_{0}} \frac{\sqrt{1+R^{2} / X^{2}}}{R / X} \frac{x^{2}-1}{x^{2}-x+1} \tag{13}
\end{equation*}
$$

The above equation can be expressed in terms of the rm.s. level of the supply voltage and the rm . level of the fundamental component of the square-wave arc voltage to obtain

$$
\begin{equation*}
\cos (\phi+\delta)=V_{a} / 2 \rho(R / X) V_{a} \tag{14}
\end{equation*}
$$

where the function $\rho(R / X)$ is given by

$$
\begin{gather*}
\rho(R / X)=\frac{3}{\pi} \frac{R / X}{\sqrt{1+R^{2} / X^{2}}\left(\frac{x^{2}-x+1}{x^{2}-1}\right)} \\
x=\exp (\pi R / 3 X) \tag{15}
\end{gather*}
$$

Eqn. 14 defines a semicircle of radius $\rho(R / X)$ where V_{a} / V_{a} is the noimalisod arc voltage. As a special case we observe that as R tends to zero then

$$
\begin{equation*}
\rho=9 / 2 \pi^{2} \approx 0.45 \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\cos \phi=\pi^{2} V_{a} /\left(9 V_{s}\right) \approx \dot{V}_{a} /\left(09 \cdot V_{s}\right) \tag{17}
\end{equation*}
$$

With the phase shift betwean V_{a} and E_{a} established, the r.m.s. level of the fundamental component of the are volt-
age can be used to determine the fundamental component of current.

8.2 Anc stability

At $t=0$, the rate of change of the arc current must be greater than zero for the arc to establish. If di/dt is negative at $t=0_{+}$then the arc current is attempting to flow in a negative direction whilst the arc voltage is positive which is not possible.

In the ragion $0<\omega t \leqslant \pi / 3$ the current is characterised by

$$
\begin{equation*}
\frac{d d_{1}}{d t}+\frac{R d}{L} 1=\frac{\dot{V}_{a}}{L} \sin (\omega t+\phi)-\frac{2}{3} \cdot \frac{E_{a}}{L} . \tag{18}
\end{equation*}
$$

At $t=0, i_{1}=0$ and the onset of are instability is given by $d i / d t=0$ and the above equation indicates that the critical angle ϕ_{c} is given by

$$
\begin{equation*}
\sin \phi_{e}=\frac{2}{3} \frac{\dot{E}_{a}}{V_{s}}=\frac{\pi}{6} \frac{V_{a}}{\vec{V}_{\theta}} \tag{19}
\end{equation*}
$$

But also

$$
\begin{equation*}
\cos \left(\phi_{c}+\delta\right)=V_{a} / 2 \rho V_{s} \tag{20}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\sin \phi_{c}=\frac{\pi}{3} \rho(R / X) \cos \left(\phi_{c}+\delta\right) \tag{21}
\end{equation*}
$$

which has solution

$$
\begin{equation*}
\dot{\phi}_{e}=\tan ^{-1} \cdot \frac{\rho \pi \cos \delta / 3}{1+\pi \rho \sin \delta / 3} \tag{22}
\end{equation*}
$$

whilst the limiting value of ϕ_{c} as R tends to zero is

$$
\begin{equation*}
\phi_{f}=\tan ^{-1}(3 / 2 \pi) \tag{23}
\end{equation*}
$$

Examination of the expression for the critical angle reveals' that the presence of resistance improves arc stability.

Int. J. Elect. Enging Educ, Vol. 17, pp. 51-57. Manchenter U.P, 1980. Printed in Great Britain

THE ELECTRIC ARC FURNACE-A USEFUL TEACHING SYSTEM

R. ARMSTRONG
Department of Electrical Engineering and Physical Electronics, Newcastle upon Tyne Polytechnic, England

1 INTRODUCTION

Of necessity the various techniques used in solving eiectrical engineering problems are taught separately, with the inevitable result that the student is presented with a set of apparently disjoint facts. It is therefore of immense educational value to study a system which draws on a variety of principles. Such a system is the electric arc furnace which has the following salient features.
(i) The system is non-linear by virtue of the electric arc.
(ii) A linearising technique is required to make the systems amenable to analysis.
(iii) The differential equation of the system must be examined in the time dorain to determine a fundamental constraint on the solution.
(iv) Fourier Series may be used to obtain steady state behaviour of the system.
(v) The fundamental constraint mentioned in (fii) enables the steady state solution to be represented by a locus diagram which can be converted into a universal power chart, which gives accurate assessments of current, power, volt-amperes and power factor. This obviates the necessity to evaluate complex formulae and gives a visual insight into the variations of the various quantities under consideration.
(vi) The problem exhibits a form of instability, which may be predicted from the differential equation.
Practical details can often stimulatestudehts' interest and the following will be helpful in this respect. A typical three-phase arc furnace may have an electrical rating of 50 MVA and be capable of melting 150 tons of steel in three hours. The currents taken by such furnaces can be as high as $70-80 \mathrm{KA}$ at voltage levels variable between 200 to 550 volts (line) in steps of 25 volts. The energy liberated ${ }^{1}$ per hour has been estimated to be $96 \mathrm{MJ}(27 \mathrm{KWh})$ per cubic cm of arc volume at temperatures of the order of 10,000 to $18,000^{\circ} \mathrm{C}$. When the arc is conducting, the voltage across the arc is approximately constant.

2 ELECTRO-MAGNETIC EFFECTS

The arcs are struck between the charge (scrap to be melted) and three vertical graphite electrodes, the electrodes being positioned at the corners of an equilateral triangle. Some interesting practical effects can be explained by examination
of the magnetic forces set up between the electrodes. Assuming balanced currents, application of the simple magnetic force rule

$$
\begin{equation*}
F=B \times I \text { Newton/metre } \tag{1}
\end{equation*}
$$

shows that the force on an electrode has the form

$$
\begin{equation*}
F=\frac{\mu_{0} \sqrt{ } 3 R^{2}}{-8 \pi a}\{1 i+\cos 2 \omega t i+\sin 2 \omega t j\} \tag{2}
\end{equation*}
$$

where ' a ' is the electrode separation and i and j lie in the plane perpendicular to the electrode axis, i being perpendicular to a plane parallel to the 'yellow' and "blue' electrodes.
The above expression indicates that the force possesses a constant 'repulsive' part and a rotating part $(\cos 2 \omega t i+\sin 2 \omega t j$). These forces are not sufficiently large to deflect or break the clectrodes, but a force of the same basic nature also acts on the arcs which are.flexible. If the arc length is too long ${ }^{2}$ the constant repulsive force deflects the arc towards the side of the furnace bath which may damage the expensive refractory lining of the furnace. The rotating force on the other hand has an advantageous effect in that it causes the arc to rotate around the base of the electrode producing even wear. Proximity effects cause the current to flow in the outer parts of the electrode. Since the complete electrode is formed by joining short lengths at screw joints this turning moment can unscrew the electrode joints should the phase sequence be wrong.

3 ELECTRICAL ASPECTS

For analytic convenience we will examine the electrical performance of a single-phase arc furnace. The three-phase arc furnace may be ${ }^{3}$ analysed by the same technique.

3.1 The intrinsic phase shift

The electrical system of a single phase are furnace is as shown in Fig. 1. As mentioned in section 2 , the arc voltage can be regarded constant at a level E during conduction and reverses each half cycle and consequently the non-linear $V-i$ arc characteristic need not be considered if the arc. voltage is expressed as a square wave. However it cannot be assumed that the arc begins to conduct at the same instant as the supply voltage passes through zero, and so we incorporate an intrinsic phase shitt ϕ into the analysis by specifying the supply voltage as
$0=\nabla \sin (\omega t+\phi)$
The intrinsic phase shift ϕ is unknown and must be determined as part of the solution.
The difforential equation of the system is

$$
\begin{equation*}
\frac{L d t}{d t}=\nabla \sin (\omega t+\phi)-e(t) \tag{4}
\end{equation*}
$$

FIG. 1 Electrical system of a singlephase arc furnace.

FIG. 2 Equivalent circuit for the fundamental component of current.
where $e(t)$ represents the square-wave arc voltage mentioned previously. The solution to equation (4) is

$$
\begin{equation*}
i=A-\frac{\nu}{X} \cos (\omega t+\phi)-\frac{E \omega t}{X} \tag{5}
\end{equation*}
$$

At time $t=0$, the arc begins to conduct and the current i commences to rise from zero and therafore

$$
\begin{equation*}
A=\frac{D}{X} \cos \phi \tag{6}
\end{equation*}
$$

At $\omega t=\pi$, the current must fall to zero prior to re-establishing itself in the negative direction and hence

$$
\begin{equation*}
0=A-\frac{D}{X} \cos (\pi+\phi)-\frac{E \pi}{X} \tag{7}
\end{equation*}
$$

Eliminating A between equations (6) and (7) we find that the intrinsic phase delay must satisfy the condition

$$
\begin{equation*}
\cos \phi=\pi E / 2 P \tag{8}
\end{equation*}
$$

and hence

$$
\begin{equation*}
A=\pi E / 2 X \tag{9}
\end{equation*}
$$

3.2 Frequency domain solution

At this stage we could use the time domain solution (equations (5)(8) (9)).
However, it is more illuminating to consider the frequency domain solution. To do this we represent the square wave arc voltage by its Fourier Series and use the principle of superposition. The equivalent circuit for the fundamental component of current is then as shown in Fig. 2. This equivalent system contains only sinuscidally varying quantities of the same frequency and we are at liberty to represent its behaviour by a phasor diagram. In doing this we must retain the fact that ϕ is not arbitrary but is constrained by equation (8) and in keeping with all steady state sine-wave behaviour we represent all voltages and currents by their rms. values.

Rewriting equation (8) in terms of r.m.s. values we see that the constraint on
ϕ is given by

$$
\begin{equation*}
\cos \phi=\frac{\pi^{2} V_{\mathrm{a}}}{8 V}=\frac{V_{\mathrm{a}}}{2 \rho V} \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho=\frac{4}{\pi^{2}} \simeq 0.4 \tag{10}
\end{equation*}
$$

As shown in Fig. (3), equation (9) can be regarded as representing a semicircle of radius ρV. Fig. 4 shows this semicircle with the reactance drop superimposed, which allows the power factor angle to be displayed. This phasor diagram can be converted to the power chart of Fig. 5 by multiplying all sides of the $V, V_{a,} I X$ triangle by V / X. Furthermore the diagram can be made universal by dividing all sides by a base MVA,

$$
\begin{equation*}
S_{b}=I_{b} V_{b} \tag{11}
\end{equation*}
$$

where the base voltage is taken as the supply voltage and the base current is given by

$$
\begin{equation*}
I_{b}=V_{b} / X \tag{12}
\end{equation*}
$$

We see immediately from the power chart that for a given input voltage there is a maximum fundamental input power and that all other power levels can be transmitted at two possible power factors, and two associated current levels.

3.3 Effects of higher harmonics

Only voltages and currents at the same frequency can interact to produce power. Since the supply voltage is derived from an infinite source (the grid system) it is constrained to be sinusoidal and hence knowledge of the funda-

FIG. 3 Phasor representation of the constraint $\cos (\phi)=V / 2 \rho V$.

FIG. 4 Phasor diagram of the fuindamental components of voltage and current.

F1G. 5 Power chart for a single-phase arc firnace.
mental component of current is sufficient to predict input power. The higher harmonics, however, do contribute to the r.m.s. value of the current and hence to the power factor. The harmonics in the current waveform reduce.approximately as $1 / n^{2}$ because the harmonic voltage falls as $1 / n$ whilst the reactance increases as n. In practice the error introduced by these components can be ignored.

3.4 Arc stability

A practical problem associated with arc furnaces is setting the levels of the system such that the arc is stable i.e. conducts for a full half-cycle. It is interesting to observe that this is the converse of the switchgear problem of extinguishing the arc as quickly as possible.

At $=0$ the rate of change of the arc current must be greater than zero for the arc to establish. If di/dt is negative then the are is attempting to flow in a negative direction whilst the arc voltage is positive; which is not possible. Examination of equation (4) indicates that di/dt is zero at $t=0$ when the intrinsic phase angle ϕ has the critical value ϕ_{c} given by

$$
\begin{equation*}
\sin \phi_{c}=E / D=\pi V_{a} / 4 V \tag{13}
\end{equation*}
$$

But also
$\cos \phi_{c}=V_{a} / 2 \rho V$
and therefore

$$
\begin{aligned}
\tan \phi_{c} & =\rho \pi / 2=2 / \pi \\
\phi_{c} & =32.5^{\circ}
\end{aligned}
$$

4 CONCLUSIONS

It is interesting to observe that rotating pagnetic fields have significance in areas other than electrical machines. The magnitude of the magnetic forces is not important but the analysis is relevant since it reveals the fundamental mechanism causing arc deflection and rotation.

From a mathematical point of view the circuit problem of the are furnace is solved once the time domain solution has been found. The rim.s. current, power, and power factor may be obtained by well-known methods. However, a deeper insight into the performance of the system is obtained from the alternative viewpoint of the frequency domain solution. Replacing the square wave arc voltage by its fundamental component (i.e. its describing function) is valid because of the filtering action of the series inductance on the higher harmonics of current. This approximation then allows conventional circuit theory to be used to produce a locus diagram. The conclusion to be drawn here is that even though a solution to a problem is known, an alternative viewpoint may add considerable engineering information and emphasize important aspects of performance
It is considered that the system studied in this article is sufficiently simple to allow the student to see the significance of the various techniques used to obtain a meaningful enginearing solution.

5. REFERENCES

 Elect. Power Appl, 1, pp. 17-24, (1977).
[2] Schwabe, W. E, Ultre high power furmaces', Irow and Sted Engo pp. 132-137, (Sept. 1969)
[3] Acmetrong, R_{3} 'Predicting the eloctical performance of arc furnaces', IEE J. Elect. Powe Apph, 1, No. 3, pp 86-90, (1978).

ABSTRACTS-ENGLISH, FRENCH, GERMAN, SPANISH

The elocetrie wre furavice - a urefial teaching system
A simplified stindy of problemes refating to an clectric arc furnace syatem is pcosented as a monns of illustruting a variety of principles required to produce a meaningful solution. Features discussed in the articte arce Rotating magetic fiolis, Lincarieation tochniques Time domain solution; Frequepey domain sohution; Locus diagram; Stability timit.

Le four ì arc electriquer mi zymitue utile drenselfanement
Uno etrude simpilifite des problemes relatifs à un four à arc alectrique ent prinentie comme illustration de la varitue des principes nbessaires a loobtention druhe solution reatiste. Leselfenents ciscutts danis cet article sont: champs magnetique rotatifs; technique de linearisation; solution danas Ie domaine temper solution dens le domaine:fríquence; diagrammo des lieux; linites de stabilite.

uN DIAGRAMME OPÉRATOIRE POUR LES FOURS A ARC

 oferaioire ='un four à arc pour l'adapter à diverses conditor:s relève généraiement de l'empirisme. Méme si un programme satisfaisant a ète établi, il n'en demeure pas pmoins qu'on peut se demander si l'utilisation de la puissance est effectivement la meilleure possible. Comme les ressources mondiales en ènergie diminuent et que son coût augmente. les opérateurs de fours à arc subissent une - pression constante en vue d'en assurer une utilisation v, optimale.Il est donc évident qu'il est désirable de disposer d'une méthode de prévision des performances des fours à arc. capable d'être directement utitisée par les métallurgistes.
Cet article se propose de répondre à cette demande en décrivant la construction et l'emploi d'un diagramme opèratoire pour les fours à arc. Base sur des principes bien «connus, il peut étre utilisé sans recours à la théorie et possède cet avantage que' les effets des variations des divérs paramètres électriques : puissance, tension, intensité, facteur de puissance, pour diverses longueurs d'arc peuFent être visualisėes at mesurées simultanément.
On exposera ici seulement la construction et l'utilisation du diagramme. Les lecteurs intéressés par les implications héoriques ou par des comparaisons avec des résultats pratiques de mesures pourront se reporter à l'article Pd'Armstrong (1).

Liste des symboles utilisés
\vee. tensicn entre phases (prise du transformateur)
1: intensitè
$\mathcal{A}:$ résistance
X : réactance
${ }^{*} P$ puissance active (MW)
0 : puissance reactive (MVAr)
\$: puissance (MVA)
Ya : tension d'arc.
Les indices b concerneront les grandeurs rapportèes à l'unité (explications ci-dessous).

[^4]
Tension de base $\mathbf{V}_{\mathbf{b}}$

Elle est définie comme la tension par phase coriespon. dante à la prise du transformateur. Par exemp.e. pour jas tension entre phases de 525 V . la tension de bese (égaie à l'unité) sera $525 / \sqrt{3}=303 \mathrm{~V}$ et une lecture - normelisée $=$ (c'est-à-dire rapportèe à lunité) de 0.7 doit corres. pondre à une tension réelle de $0,7 \times \mathrm{V}_{b}=212 \mathrm{~V}$.

Intensitè de base I_{b}

Elle est définie par le rapport de la tension de base V a la réactance de court-circuit du systeme soit

$$
I_{b}=V_{b} / x \text { (intensité de court-circuit) }
$$

Puissance apparente de base S_{b}

Elle est définie comme le produit de la tension de base par le courant de base.

$$
S_{b}=V_{b} l_{b}(M V A)
$$

Toutes les puissances mesurèes sur le diagramme représentent une fraction de la puissance de base en MVA.
Ainsi une lecture de 0,3 correspond a une puissance rèe:'e de

$$
0.3 \times S_{b} \text { (MW par phase) }
$$

alors qu'une puissance réactive de 0,4 indique une valeur réelle de

$$
0.4 \times S_{b} \text { (MVAR par phase) }
$$

Comme on peut le voir sur la figure 1, l'axe unitaire ou normalise relatif aux puissances (axe P) est horizontal et liaxe unitaire relatif aux puissances reactives (axe Q) est vertical. Le cercle opératoire (lieu géométrique de tous ides points possibles de fonctionnement) est un demi-cercle de rayon

$$
\begin{aligned}
9 / 2 \pi^{3} & \approx 0,45 \text { unité centré sur l'axe } Q \text { à } \\
Q & =1-9 / 2 \pi^{3} \approx 0,55 \text { unité }
\end{aligned}
$$

La limite de stabilité de larc est indiquee par la d-oite $x y$, la région stable se situant à droite.
Le point de fonctionnement - a - se trouve a l'intersection du cercle opératoire et de l'arc de cercle correspondant à une tension d'arc constante. Noter que la tension d'arc est aussi représentée par une fraction de la tension de base.
La longueur du segment joignant lorigine au point de fonctionnement (oa) donne à la fois la puissance totale (VA) et l'intensité. La projection de ce segment sur l'axe P donne la puissance active alors que sa projection sur l'axe Q donne la puissance reactive. Enfin l'angle entre cette droite et l'axa P est langle de phase \varnothing (facteur de puissance $\cos \varnothing$).

fig. 1. - Le diagramme operatoire.

Exemple :

Les principales particularités du diagramme étant exposées, nous allons maintenant liillustrer par un exemple. Le - ${ }^{4}$ système ètudié sur la figure 3 et correspondarit au diagramme de la figure 2 est celui publié par Freeman et Medley (2).

- Le four' fonctionne sur la prise de tension maximale a 525 V avec un arc de $15,25 \mathrm{~cm}^{\text {² }}$ (6 inches). La tension d'arc (*) ast donnée par

$$
\begin{aligned}
V \mathrm{Va} & =30+12 \times \text { longueur dare }(\mathrm{cm}) \\
& =30+12 \times 15,25=213 \text { volts }
\end{aligned}
$$

Dlous póuvons maintenant établir les valeurs des grandeursunités (valeurs de base).
${ }^{\wedge}$ Tension de base : $V_{b}=525 / \sqrt{3}^{-}=303 \mathrm{~V}$.
Héactance totale : $X=(2342+430) \cdot 10^{-6}=2772 \cdot 10^{-6} \Omega$.
Courant de base : $I_{b}=V / X=303 / 2772.10^{-6}=109 \mathrm{KA}$.
Puissance de base MVA :

$$
S_{b}=V_{b} \cdot I_{b}=303 \times 109=33 \mathrm{MVA}
$$

-Tension d'arc (rapportée a l'unité) : $V_{a} N_{b}=213 / 303=0,7$.
Du diagramme de la figure 2 nous pouvons extraire les valeurs suivantes et les convertir en valeurs réelles.

	TABLEAU I			
Grandeurs	Rapportée à lunité	Rėelle	Segment sur Te	
diagramme				

[^5]

Fig. 3. - Schéma de l'installation relative à l'exemple 1.

Fig. 2. - Exemple n 1. Détermination des puissances actives et reactive fournles au transformateur ainsi que la puissance Jans l'arc.
four es: equilibré: chaque phase fournit la mème
issar Te de telle sorte que la puissance totale est :

$$
P=3 \times 14.85=44.55 \mathrm{MW}
$$

el de teeme. ies VA totaux sont -

$$
S=3 \times 23,43=70,29 \mathrm{MVA}
$$

Les volqurs obtenues ci-dessus (sauf lintensitè) sont celles qui pourratent ètre lues sur les instruments appropriés places au point A (fig. 3) du montage. Si l'instrumentation de confrôle se situe en B les valeurs fournies par le yiagramme ne correspondent plus. Pour trouver les valeurs réelles en B nous devons soustraire la puissance et les dertes féactives relatives à la portion d'équipement com-prise-entre A et B. Céci est realisé comme suit :
Pertes ohmiques entre A et. $B:{ }^{12} \cdot \mathrm{R}_{\mathrm{s}}\left(\mathrm{R}_{\mathrm{s}}=\right.$ résistance dite .- de source .).
'Pertes fapportées à l'unité :

Dans cet éxemple l'intensité rapportè à l'unité est 0,71 donc la puissance correspondante perdue dans la section AB est

$$
(0.71)^{:} \frac{6.10^{-6}}{2772.10^{-6}}=0,001
$$

Ainsi, la puissance rapportée à l'unité et parvenant au transformateur du four est

$$
0.45-0.001=0.449
$$

La soustraction peut aussi ètre opérée sur le diagramme ét correspond à un déplacement vers la gauche de $0,01 \mathrm{pu}$. -Ea comparant avec la puissance totale, cette perte est insignifiahte et peut ètre négligée.
Une telle situation est classique pour un four alimentè par un:reseau THT :
Les pertes réactives entre A et B sont $I^{2} . X$, soit en rappor-- tant à l'unité

Le tableau II resume les resultats.

tableau il			
Grandeurs	Rapportées à l'unitè (d'après le diagramme	Reelles	
		Par phase	3 phases
Puissance totale	0,45	14,85	44.55 MW
VArs totaux	0,55	18,15	54,45 MVAr
MVA totzux	0.71	23,43	70,29 MVA
Intensité	0.71	77.39 KA	-KA
Angle de phase	500	500	500
Facteur de puissance	0,642	0.642	0,642
$\begin{aligned} & \text { Pertes à l'alimenta- } \\ & \text { tion } \end{aligned}$. . .		
en puissance	0.001	0,33	0,099 MW
reactives	0,08	2.64	7.92 MVAr
Entrée au transformateur du four			
Puissance	0,449	14,8	44.45 MW
VÁrs	0,47	15,51 :	46,53 MVAr
MVA	0.66	21.78	65,34 MVA
Angle de phase	470	470	470
$\operatorname{Cos} \varnothing$	0,682	0.682	0.682
Pertes totales	0,08	2.64	7.92 MW
Puissance dans l'arc	0,37	12,21	36,63 MW
Rendement	82 \%	82 \%	82 \%

$$
\frac{1^{2} \cdot \dot{X}_{5}}{S_{b}}=\left(\frac{1^{2}}{1^{2}}\right)\left(\frac{X_{5}}{x}\right)=1_{p u}^{2}\left(\frac{X_{5}}{x}\right)=(0,71)^{2} \frac{430.10^{-6}}{2772.10^{-6}}=0.078 \sim 0.08
$$

Ainsi la. puissance réactive parvenant au transformateur de four est

$$
0,55-0 ; 08=0.47
$$

La puissance totale est représentée par le segment obsoit 0,66 unité ce qui correspond à une puissance d'entrée de $0.66 \times S=0.66 \times 33=21,78$ MVA par phase soit au total $3 \times 21.78=65,34 \mathrm{MVA}$.

- L'angle de phase qui serait mesurè en B est celui compris entre le segment ob et l'axe P. Il est de 47 degrés ce qui óonne un facteur de puissance $\cos \varnothing=0,682$.
Nous constatons que la puissance reçue par le transformateur du four est supérieure à sa puissance nominale et, en conséquence, l'opération avec les conditions précédentes ne peut être envisagèe que pendant un temps - lifnité.

Nous pouvons maintenant calculer la puissance effective dans larc en soustrayant les pertes totales de la puissance d"entrèe.

Variation de le tension d'entrée

Quand on calcule le rendement dun four pour diverses tensions d'alimentation, il n'est pas exact d'admettre que la. résistance et lo réactance dites de sources - (entre A et B dans l'e..smple précédent) sont constantes. Ceci est dũ au fait que la valeur de la haute tension d'entrée du transformateur a èté référée à 525 V . Pour une autre prise (tension VT) les nouvilles valeurs correspondantes (primées ci-après) sont données par :

$$
\begin{aligned}
R_{s} & =\left(\frac{V T}{525}\right)^{2} \times R_{5} \\
X_{s} & =\left(\frac{V T}{525}\right)^{12} \times X_{5} .
\end{aligned}
$$

$$
\text { Total des pertes (rapportées à l'unité) }=\frac{1^{2} \cdot R^{\prime}}{I_{b}{ }_{6} \cdot X}=I^{2} \rho_{u} \frac{R}{X}=(0.71)^{2} \cdot \frac{456.10^{-6}}{2772.10^{-6}}=0.083 \sim 0,08
$$

La puissance dans l'arc rapportée à l'unité est alors $0,45-0,08=0,37$ ce quii est équivalent à la distance a d du d:atgramme. En valeur réelle ceci donne 12,21 MW par phase ($36,63 \mathrm{MW}$ au total). Finalement on accède au rendement.

$$
\text { 'Rendement }=\frac{\text { Puissance dans l'arc } \times 100}{\text { Puissance totale d'entrée }}=\frac{c \mathrm{~d} \times 100}{\ldots \text { a } d}=\frac{0,37 \times 100}{0.45}=82 \%
$$

Ainssi pou: fonctionnement sous 425 !' les valeurs appropriées sont.

$$
\begin{aligned}
& R_{S}=0,6553 \times 6 \times 10^{-6}=4.10^{-6} \\
& X_{S}=0,6553 \times 430 \times 10^{-6}=281.10^{-6}
\end{aligned}
$$

La nouvelle tension de base est $425 / \sqrt{3}=245 \mathrm{~V}$.

* La réactance totale du système est
(281 +2342). $10^{-6}=2623.10^{-6}$ ce qui donne un courant de base de $245 / 2623.10^{-6}=93.3 \mathrm{KA}$ et une nouvelle puissance totale de $93.3 \times 245=22,8$ MVA.
la s:uite du calcul est inchingeée.

Exemple 2

- Supposons maintenant que le four fonctionne sous 425 V et que l'on demande de calculèr la tension d'arc corres-
- w pondant au maximum de puissance utile. Pour cela, nous devons calculer les puissances dans l'arc pour diverses valeurs de la tension d'arc.
- Ainsi, si la tension d'arc est 0.7 pu on a :

Tension de base $V_{b}=424 / \sqrt{3}=245 \mathrm{~V}$.
Péactance totale $X=282+2346.10-6=2624.10^{-6}$.

- Courant de base $I_{b}=V_{b} P=93 \mathrm{KA}$.
- Pour úne tension d'arc de 0.7 pu nous tirons du diagramme. Puissance d'entrée pu $=0,45$.
* Courant (pu) $=0,72$.
- Rapport total R/X $=0,173$.
- Pertes $=(0,72)^{2}(0,173)=0,09$.

Puissance dans l'arc $\mathrm{Pa}=0,45-0.09=0,36$.
Ce :calcul est répété pour diverses tensions d'arc. les résultats.'ètänt résumés dans le tableau 3.

	TABLEAU III				
Tension d'arf	Intensité	Pertes	Puissance d'entrée	Puissance dans l'arc	
0,70	0,72	0,09	0,45	0,36	
0,75	0,67	0,078	0,445	0,367	
0,80	0,60	0,062	0,425	0,363	
0,85	0,525	0,048	0,390	0,342	

Ees résultats sont maintenant transcrits sur le diagramme comme le montre la figure 4. La puissance maximale dans l'arz correspond au point a. Le segment a b représente Hes pertes et donne le point opératoire b. Le fonctionnement au point c demanderait un courant de 0,72 unité avec

- run cos \varnothing de 0,63 pour établir une puissance d'arc de 0.36 unitè. D'un autre côté, lopération au point b fournit
" üne puissance d'arc de 0,37 unité pour un courant réduit
à 0,65 unité et un cos \varnothing supérieur (0,69). Nous constatons également que la courbe de puissance dans l'arc est insensible à de pétites variations proches du maximum et si d est pris comme point de fonctionnement nous pobtenons une puissance d'arc de 0.365 (variation de 1.35% par rapport à l'optimum) pour un courant de 0,6 unité (réduction de 0.7%) avec un nouvel accroissement du facteur de puissance à 0,72 .
Le point 'de fonctionnement b pour obtenir la puissance d'arc máximale étant déterminé, les autres paramètres requis (intensité, cos \varnothing...) sont calculés comme dans liexemple 1. Le lecteur pourra vérifier que les valeurs indiquées au tableau 4 correspondent à un fonctionnement rak maximum de puissance d'arc.

Exemple 3

Le premier exemple correspondait à une tension d'alimentation fixe et une longueur d'arc fixe alors que pour le second la tension ètait fixe et la longueur d'are variable. Maintenant, considérons une longueur d'are fixe avec des tensions variables.

TABLEAU IV		
Grandeurs	Rapportees à l'unité	Reelles par phase
Puissance	0.44	10,0 MW
VArs	0,46	10,5 MVAr
MVA	0,65	14.8 MVA
Courant	0,65	60.5 kA
Cos Ω	0,69	0,69
Pertes		
Pertes totales en puissance	0.075	
Pertes VAr - source -	$\begin{aligned} & 0,075 \\ & 0,0,45 \end{aligned}$	1.0 MVAr
Entrée al four		
Puissance	0.44	10,0
VArs	- 0.415	9,5
MVA	0.62	14,0
Cos \varnothing	0,73	0,73
Tension d'arc	. 0,76	186 V
Puissance d'arc	0,37	8,4 MW

Fig. 4. - Exemple no 2. Détermination des cond/tions d'obtention de la puissance maximale dans l'arc.

Une telle situation correspond peut-être à un four charge en continu. Comme il travaille généralement en a bain plat s. nous pouvons supposer que la longueur d'arc est fixée. par exemple à $10,16 \mathrm{~cm}$ (4 inches), pour éviter l'usure excessive des réfractaires. Pour utiliser pleinement la puissance investie, on peut se demander s'il est possibie de travailler en continu avec le transformateur à sa puissance maximale soit 54 MVA (18 MVA par phase).
Pour rèsoudre ce problème nous testerons diverses tensions d'alimentation et calculerons pour chacune les conditions de travail. Cette analyse s'effectue de la méme manière que pour l'exemple 1 et les résultats en sont résumés dans le tableau 5, les points de fonctionnement apparaissant sur la figute 5 .

Tengion VT		R R $^{\text {. }} 0^{-6}$	$x^{*} .10^{-6}$	R. 10^{-6}	$\times .10^{-6}$	V_{b}	V_{0} / V_{b}	l_{b}	S_{6}	18. S_{6}	x_{6} / x	R/X	Point de forictionne ment
525	1.00	6	430	456	2772	303	0.5	109	33	0,55	0,155	0,165	a
47	0.8185	4.9	352	455	2694	274	0,55	102	28	0,64	0,131	0,169	b
425	0,6533	3.9	282	454	2.624	245	0,62	93	23	0,78	0,107.	0,173	c
375	0.5102	3.06	219	453	2561	216	0.7	84	18	1,00	0.086	0.177	d
325	0.3832	2,3	165	452	2507	188	0,81	75	14	1.28	0,066	0,180	-
Prise iension	MVA totaux	Pertes réactives	MVA au four		Pertes	Puissance totale	uissance arc	$\operatorname{Cos} \square$	MVA	eurs réel Intensité	es Puissance arc	Cos $\%$	Rendement
	0,87		0.765			passe is	uissance	nominale		KA	MW		
475	0,84	0.092	0.765	$>0,64$		du tre	isformat						
425	0.785	0,066	0.735	<0.78	0.11	0.445	0,335	0.62	16,9	73	7.7	0.62	75%
375	0,72	0,046	0.685	$<1,00$	0,09	0.45	0,36	0,68	12.33	60,5	6.48	0.68	80%
325	0,58	0.022	0,565	$<\cdot 1,28$	0,06.	0,425	0,365	0.76	7.9	43.5	5.11°	0.76	86%

* Ces résultats montrent qu'il est nécessaire d'ópérer à .425 V ou au-dessous. Avec 375 V au lieu de 425 V nous constatons ceue la puissance d'arc est.réduite de $15,5 \%$
i. pendiatt que 'e courant diminue de 27% pour une augmentetian du cos z de 0,62 à 0,68 .
4 Cette diminution de puissance peut augmenter le temps d'opération mais, en contre partie, l'accroissement du facteur de puissance et la réduction corrèlative des coûts lí , peut rendre l'opération à 375 V économiquement souhaitable.

CONCLUSIONS

(P) Pour utiliser le diagramme, on doit se souvenir des points suivants :

- Le rapport R/X ne doit pas dépasser 0,2. Un diagramme
- plus sophistiqué valable pour des rapports R / X supérieurs est fourni par Armsirong (${ }^{(H) \text {. }}$
- Dans cet article. la tension d'arc est lièe à sa longueur par la formule

$$
v=30+12 \times(\mathrm{cm})
$$

mais comme l'a noté Pirozhnikov (3) la tension d'arc varie considérablement avec la basicité, du laitier et il est préfé-

- rable dfutiliser une valeur expérimentale de V.
- La résistance et la réactance - de source . (réseau "fournisseur) doivent aussi être connues. En vue d'obtenir - 'es performance maximales les informations nécessaires doivent ètre demandées aux responsables du réseau.
- Le diagramme fournit des indications raisonnables pour un travail sur a bain plat =. mais pour les conditions de - fusion avec formation des - puits -. tout ce qu'on peut en espérer est qu'il permette d'obtenir les valeurs moyennes. - rde perfфrmances électriques.
r- Aved un four non équilibré sur ses 3 phases on note des différences entre les valeur effectives et les valeurs. précalculées.
Les exemples prèsentés dans cet article montrent que le diagramme opèratoire permet d'effectuer une - simulation. capable de conduire à un programme d'utilisation aṕpro" ${ }^{4}$ priè.
- - Bien que quelques connaissances complémentaires (par exemple l'effet de la basicité du laitier) soient souhaitables.
- \#1 doit déjà amener les métallurgistes à déterminer par eux-mënes des conditions de marche satisfaisante, et dans de nombreux cas. améliorées.
Il est sans doute exact de dire que l'opération au four à arc, ètant plus un art quiune science. fait partie des domaines de la technologie.
Le diagłamme proposé permet cependant d’éclairer certains mystères techniques mais il est certain que pour

Fig. 5. - Exemple ñ 3. Recherche ale la temsion optimale.
l'évaluation des résultałs, la compétence et l'expérience sont encore nécessaires. Le succès d'un diagramme de ce. genre dépend de son application à des conditions variées et ceci doit ètre effectué avec la coopération des acléristes. Il est souhaitable que l'utilisation du diagramme. pendant des périodes de travail bien contrôlėes, donne lieu à une collecte de résultats qui permettront les comparaisons entre les valeurs réelles et les valeurs prédites.

REFERENCES

1. Armstrong (R.). - Predicting the performance of elect:.: arc furnace -. I.E.E. Journal on Electric Power App:sations.
2. Freeman (E.R.) et Medley (J.E.). Efficient use of power in electric arc furnaces. I.E.E. Journal on Electric Power Applications. February 1978, vol. 1. no 1, p. 17-24.
3. Pirozhnikov (V.E.). Effects of slag on thermal process In electric furnaces. Stal, March 1976 p. 222-224.
[^6]
APPLICATION OF RESONANT CIRCUIT THEORY TO MATCHING NETWORKS

R. ARMSTRONG and E. KOROLKIEWICZ
School of Electronic Engineering, Newcastle upon Tyne Polytechnic, England

1 INTRODUCTION

In high frequency communication systems, matching the source impedance to the load impedance is important, to prevent reflections and consequent distortion. Transmitters should transfer the maximum amount of power to the aerial, whilst in receiving systems low power levels also dictate maximum power transfer conditions. High frequency systems must accommodate modulated signals, and the bandwidth of a matching network must be adequate to allow the side bands to propagate. The basic building block of such matching networks is the paraliel or series tuned circuit. This article shows how the theory of resonant circuits may be used to design apparently complex matching networks ${ }^{-3}$. An example is given to illustrate the design process using both analytical and graphical methods. From an edicational point of view the student sees the tuned circuit from a different aspect whilst the graphical method of solution is an excellent example on the use of a Smith Chart.

2 THE BASIC BUILDING BLOCK

Consider the problem of matching two resistors, R_{s} to \boldsymbol{R}_{m} at a single frequency by means of the network shown in Fig. 1(a). As viewed from the terminals AB the matching network and the load appear as a parallel circuit as shown in Fig. 1(b). This network is equivalent to the three-element shunt network of figure 1(c).
The dynamic resistance is
$R_{D}=\left(R_{m}{ }^{2}+X_{L 1}{ }^{2}\right) / R_{m}$
and the equivalent parallel inductive reactance is

$$
\begin{equation*}
x_{L D}=\left(R_{m}{ }^{2}+X_{L 1}{ }^{2}\right) / X_{L 1} \tag{2}
\end{equation*}
$$

For matching at a single frequency it is required to choose values of $X_{L 1}$ and $X_{C 1}$ such that $R_{D}=R_{g}$ and from equation (1) it will be seen that $X_{L 1}$ must be given by,

$$
\begin{equation*}
X_{\mathrm{LI}}=\sqrt{R_{m}\left(R_{3}-R_{m}\right)} \tag{3}
\end{equation*}
$$

Equation (3) shows that R_{s} must be greater than R_{m} to make $X_{L 1}$ inductive. From Fig. 1(c) the magnitude of $X_{\mathbf{c} 1}$ must equal the effective inductive re-

(b)

(c)

FIG. 1 LC matching section when $R_{\mathrm{s}}>R_{m}$ and its equivalent parallel network.
actance at the working frequency and therefore,

$$
\begin{equation*}
X_{C 1}=\left(R_{m}^{2}+X_{L_{1}}{ }^{2}\right) / X_{L 1} \tag{4}
\end{equation*}
$$

The Q factor of the resonant circuit in Fig. 1(c) is defined as the ratio of the current I_{L} in the inductance to the current I_{R} in the resistance at resonance i.e,

$$
\begin{equation*}
Q_{i}=I_{L} / I_{R}=R_{D} / X_{L D} \tag{5}
\end{equation*}
$$

Substituting equations (1) and (2) into equation (5), the Q factor of the resonant circuit in Fig. $1(c)$ is,

$$
\begin{equation*}
Q_{1}=X_{L_{1}} / R_{m} \tag{6a}
\end{equation*}
$$

When R_{2} is connected across $A B$ the loaded Q is given by,

$$
\begin{equation*}
\mathbf{Q}_{1 L}=\mathbf{Q}_{1} / \mathbf{2} \tag{6b}
\end{equation*}
$$

which determines the bandwidth of the network shown in Fig. 1(c).
If the terminating resistance values are specified, then the Q, and hence the bandwidth are automatically fixed. Alternatively, from equation (1) with $\boldsymbol{R}_{\boldsymbol{D}}$ $=R_{\text {s }}$ it is easily shown that,

$$
\begin{equation*}
R_{m}=R_{\downarrow}\left(1+Q_{1}^{2}\right) \tag{7}
\end{equation*}
$$

from which \boldsymbol{R}_{m} may be determined if R_{z} and \boldsymbol{Q}_{1} are specified.
To match from a low resistance R_{m} to a high resistance R_{L} the matching network is reversed as shown in Fig. 2 and identical analysis yields,

$$
\begin{align*}
& X_{L 2}=\left(R_{m}\left[R_{L}-R_{m}\right]\right)^{\frac{1}{2}} \tag{8}\\
& X_{C 2}=\left(R_{m}^{2}+X_{L 2}{ }^{2}\right) / X_{L 2} \tag{9}
\end{align*}
$$

FIG. 2 LC matching section when $\boldsymbol{R}_{\mathrm{m}}<\boldsymbol{R}_{\boldsymbol{L}}$.

$$
\begin{align*}
& \mathbf{Q}_{2}=X_{L 2} / R_{m} \tag{10}\\
& R_{m}=R_{L} /\left(1+Q_{2}^{2}\right) \tag{11}
\end{align*}
$$

In a majority of high frequency applications it is often necessary to match between a complex impedance and 50Ω. This can be done readily using the above theory. For example, if the source impedance is complex then the R_{8} of ligure $l(a)$ is the effective parallel resistance of the source and the effective parallel susceptance is included as part of $X_{C 1}$. Alternatively, in Fig. 2 the complex impedance-may be regarded as a resistor R_{m} in series with a reactance which is included as part of $X_{\mathbf{L L}}$. In both cases the above theory is sufficiently general to design the matching networks.
The range of complex impedances that can be matched to a 502 load by each of the two LC matching networks can be readily obtained ${ }^{4}$ and are shown in Fig. 3.

3π MATCHING NETWORKS

For the simple L-C networks analysed in section (2) the bandwidth is automatically fixed by the specified source and load resistances. If it is required to specify the bandwidth in addition, then the π network shown in Fig. 4(a) may be used. Such a network also has the advantage of being able to match any complex impedances. By splitting the π network into two simple $L C$ sections as shown in Fig. 4(b) the value of \boldsymbol{R}_{m} may be chosen to achieve the desired bandwidth. For matching, the required R_{m} is given by equations (7) and (11).

$$
\begin{equation*}
R_{m}=R_{j} /\left(1+Q_{L}{ }^{2}\right)=R_{L} /\left(1+Q_{2}{ }^{2}\right) \tag{12}
\end{equation*}
$$

This equation shows that the node with the highest terminating resistance has the largest \mathbf{Q} and hence dictates the bandwidth of the system.
It is shown in the appendix that constant Q curves on the Smith Chart are described by the following equation of a circle

$$
\begin{equation*}
U^{2}+(V+1 / Q)^{2}=1+1 / Q^{2} \tag{13}
\end{equation*}
$$

where U and $j V$ are the real and imaginary axes on the-Smith Chart of the

(a)

(b)

FIG. 3 (a) Shaded region shows range of complex impedance Z_{3} that can be matched to 50Ω using circuit shown in Fig. 1. (b) Shaded region shows range of complex impedance Z_{m} that can be matched to 502 using circuit shown in Fig. 2.

FIG4 π matching section.
voltage reflection coefficient. It is possible therefore to use the Smith Chart to evaluate the elements of the π matching network as showi in the following example.

4 EXAMPLE

Suppose it is necessary to match an output admittance $(0.01+j 0.02) S$ of an amplifier to a 50Ω load and the required value of Q being 5 at the working frequency.

The output susceptance of the amplifier can be combined with the $\boldsymbol{X}_{\mathbf{c} 1}$ of the matching network to produce an equivalent reactance ($X_{c \tau}$) and therefore it is only necessary to match 100Ω to 50Ω. The Q is associated with the 100Ω node and the desired equations can be used to determine the required elements of the matching network as shown below.

$$
\begin{aligned}
& R_{m}=R_{v} /\left(1+Q_{1}{ }^{2}\right)=3.85 \Omega \\
& X_{L 1}=\sqrt{R_{m}\left(R_{s}-R_{m}\right)}=19.24 \Omega \\
& X_{C T}=\frac{R_{m}{ }^{2}+X_{L 1}{ }^{2}}{X_{L 1}}=20.0 \Omega \\
& X_{L 2}=\sqrt{R_{m}\left(R_{L}-R_{m}\right)}=13.32 \Omega \\
& X_{C 2}=\frac{R_{m}{ }^{2}+X_{L 2}{ }^{2}}{X_{L 2}}=14.45 \Omega
\end{aligned}
$$

The required elements of the matching network are shown in Fig. 5.
The values of the elements of the series equivalent circuit of the parallel circuit consisting of a. 100Ω resistance in parallel with $X_{c r}$ is given by the intersection of the constant $Q(=5)$ circle and constant conductance ($G=0.5$) circle at point A. The required value of $X_{c r}$ in parallel with the 100Ω resistance is found by moving diametrically opposite point A to point A^{\prime}, which gives the admittance values of the elements of the parallel network i.e. $\bar{G}=0.5$ and \bar{B} $=2: 57$, from which $X_{C T}=1 / 2.57=0.39$ and hence $X_{C T}=19.5 \Omega$
The required normalized value of $\boldsymbol{X}_{\mathrm{L}}$ is found by travelling from point A on the constant resistance circle (0.075) to the intersection of the constant con-

FIG. 5 Required elements of the π matching section.

FIG. 6. Design of the π matching section using a Smith chart.
Potnt $A=0.075-j 0.38$, point $A^{\prime}=0.5+j 2.55$,
point $B=0.075+j 0.256$, point $B=1-j 3.7$ and point $C=0.075+j 0$.
ductance $(G=1)$ circle at point B. The normalized value of $X_{c z}$ is obtained in a similar manner to that already described for $X_{C r}$, from a point diametrically opposite to \mathbf{B} ie. \mathbf{B}^{\prime}.
Renormaliving the results determined from the Smith chart the values of the required clements of the π matching section are,
$R_{m}=3.75 \Omega$ (point $C_{\text {) }}, X_{C T}=19.5 \Omega, X_{L 1}=19.0 \Omega, X_{L 2}=12.8 \Omega, X_{C 2}=13.5 \Omega$ As can be seen, the results obtained using the Smith chart are comparable with those given by the analytic method.

5 CONCLUSIONS

The aforegoing analysis has shown how parallel resonant circuits form the basis of π matching networks. The important point is to find the effective: resistance \boldsymbol{R}_{m} of the two back-to-back $L C$ sections to give the desired bandwidth. If the source and load are complex the problem is reduced to matching resistive elements by combining the effective parallel susceptance with the capacitive shunt arms of the matching section. This concept may be used to explain how the first capacitive element of the matching network may be used as part of the tank circuit in an rf. amplifier.

The same principles also apply to tee networks where the central element is
divided in such a manner as to produce the required bandwidth. In this case the effective resistance \boldsymbol{R}_{m} will exceed both \boldsymbol{R}_{s} and \boldsymbol{R}_{L} and the design equations follow directly from the theory of series resonant circuits.

In an identical manner it is also possible to design matching networks with the inductance and capacitance interchanged on either one or both of the basic half sections. The choice of the form of the matching network may often depend on the nature of the source and load impedance. For example, if the output capacitance of an amplifier exceeds the value of X_{1} in a π matching network then clearly the first shunt element of the network must be inductive.

It is considered that the results presented in this article give a valuable insight into the many apparently diverse matching networks used in practice. The graphical solution is another indication of the versatility of the Smith chart.

6 REFERENCES

[1] Coluesi, E J., 'Ipternally matched R. F. power transistors', Microwave Journal, 21, No. 4, pp. 81-84.
[2] Przedpelski, A.B., 'Bandwidth of transmission line matching circuits’, Microwabe Journal, 21, No. 4, pp. 71-76.
[3] Gelnovatch, V. G. Burke, J. F. Computer aided design of wide-band integrated microwave transistor amplifiess on high dielectric substrates' IEEE Journal of Soldd-State Circutta (Jume, 1968).
[4] Smith, P. H. Electrowde Applicationis of the Smith Chart, McGraw-Hill, pp. 115-127 (1969),

APPENDIX

The relationship between normalized impedance \bar{Z} and the voltage reflection coefficient p is given by,

$$
\begin{equation*}
p=U+j V=\frac{\frac{\dot{z}}{\bar{z}}-1}{\bar{z}+1} \tag{A1}
\end{equation*}
$$

Equation (A1).can also be expressed in the form shown below,

$$
\begin{equation*}
\dot{z}=\bar{r}+j \vec{x}=\frac{(1+U)+j V}{(1-U)-j V} \tag{A2}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\vec{r}=\frac{1-U^{2}-V^{2}}{(1-U)^{2}+V^{2}} \tag{A3}
\end{equation*}
$$

and,

$$
\begin{equation*}
\bar{x}=\frac{2 V}{(1-U)^{2}+V^{2}} \tag{A4}
\end{equation*}
$$

The \mathbf{Q} of a circuit is defined as,
$\boldsymbol{Q}=\bar{x} / \bar{F}$
and hence from equations (A3) and (A4) it can be shown that,

$$
\begin{equation*}
U^{2}+\left(V+\frac{1}{Q}\right)^{2}=1+\frac{1}{Q^{2}} \tag{A5}
\end{equation*}
$$

which is an equation of a circle of radius $\left[1+\frac{1}{Q^{2}}\right]^{\frac{1}{2}}$ and centre $U=0$ and $V=-1 / Q$.

In a similar manner it may be shown that when dealing with admittance equation (A5) is modified to,

$$
\begin{equation*}
U^{2}+\left(V-\frac{1}{Q}\right)^{2}=1+\frac{1}{Q^{2}} \tag{A6}
\end{equation*}
$$

which is a circle centred on,

$$
U=0 \text { and } V=+\frac{1}{Q}
$$

ABSTRACTS-ENGLISH, FRENCH, GERMAN, SPANISH

Application of resonaat elicicut theory to matching networks
A wide variety of matching networks are used in high frequency communication systems and this papar shows how such networks can be conveniently deaigned using the theory of resonant circuits. A graphical method is also included which provides a valuable insight into the properties of the smith Cluart.

Application de le theorie dea circuitus riscomanase aux riseaax adaptateurs Une grande variéte de revenux adaptateurs eat utilisbe dans les syatèmes de communication a haute. fréquenco. Cet article montre comment de telè réseaux peuvent être calculés de facon commode par La theorie des circuits résonnants. Une methode graphique utilisie donne en outre up pricienx aperçu des propritides de:Iabeque de Smith.

- Auwenduag der Resonanakrelecthcorie auf Ánpeassungsaetawerke

Eine groge Vielfaht von Anpassungenetzwarken wird in Hochfrequenz-Fernmeldesystemen verwendet; diese Arbeit zeigt, wie-derartige Necawerke bequem bei Benutzung der Theorie von Resomanakrecisen eatworfen werden könnèn. Ferner wind eine graphische Methode angegeben, die cinom wertvollen Binblick in die Eigenschaftea des Smithschen Leitungediagramome gibt.

Apliceción de la tecrís de chrcirtoe resonantes para redes de acoplamiento
Una amplian varieded de rodes de mcoplamionto se utilizen en los sistemas de commaicacion de alta frecuencia. En cate.articulo se muestra dimo tales redes pueden calcularse apropiadamente utibzando la teoria de circuitos rasomanter. Se inclaye ua método gréfico que proporciona una valiois profundización en les propiededes de le carta de Smith.

APPENDIX B

B1. Expangion of $T_{n}(X)$
$x=a \cos \theta-b \cos (2 \theta-\phi)$

Appendix BI

Expansion of $T_{n}(x), x=a \cos \theta-b \cos (2 \theta-\phi)$.
The equation of the Chebyshev polynomial $T_{n}(X)$, where $X=a \cos \theta$ $b \cos (2 \theta+\phi)$ is facilitated by the recurrence relationship ${ }^{(20)}$.

$$
\begin{aligned}
& T_{0}(x)=1 \\
& T_{1}(x)=x \\
& T_{n+1}(x)=2 \quad T_{n}(x)-T_{n-1}(x)
\end{aligned}
$$

Thus

$$
\begin{aligned}
& T_{0}(x)=1 \\
& T_{1}(x)=a \cos \theta-b \cos (2 \theta-\phi)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Fundamental component }=a \cos \theta \\
& \text { (1) } \\
& \text { Second harmonic }=-\frac{1}{c} \cos \phi \cos 2 \theta-5 \sin \phi \sin 2 \theta \\
& T_{2}(X)=2[a \cos \theta-b \cos (2 \theta-\phi)][a \cos \theta-b \cos (2 \theta-\phi)]-1 \\
& =a^{2}+b^{2}-1 \\
& -2 \mathrm{ab}(\cos \phi \cos \theta+\sin \phi \sin \theta) \\
& +a^{2} \cos 2 \theta \\
& -2 a b(\cos \phi \cos 30+\sin \phi \sin 30) \\
& +b^{2}(\cos 2 \phi \cos 4 \theta+\sin 2 \phi \sin 4 \theta 2
\end{aligned}
$$

Fundemental $=-2 \mathrm{ab}(\cos \phi \cos \theta+\sin \phi \sin \theta)$
Second Harmonic $=a^{2} \cos 2 \theta$

$$
\begin{aligned}
T_{3}(x) & =2[a \cos \theta-b \cos (2 \theta-\phi)] x T_{2}(x)-[a \cos \theta-b \cos (2 \theta-\phi)] \\
& =-3 a^{2} b \cos \phi \\
& +3 a\left(a^{2}+2 b^{2}-1\right) \cos \theta \\
& -3 b\left(b^{2}+2 a^{2}-1\right) \cos (2 \theta-\phi) \\
& +3 a b^{2} \cos (3 \theta-2 \phi)+a^{3} \cos 3 \theta \\
& -3 a^{2} b \cos (4 \theta-\phi) \\
& +3 a b^{2} \cos (5 \theta-\phi) \\
& -b^{3} \cos (6 \theta-3 \phi)
\end{aligned}
$$

Fundamental $=3 a\left(a^{2}+2 b^{2}-1\right) \operatorname{coa} \theta$ (31)

Second harmonic $=-3 b\left(b^{2}+2 a^{2}-12 \cos \phi \cos 2 \theta+\sin \phi \sin 2 \theta\right.$ C3al
A. device having a characteristic of the form

$$
\begin{equation*}
q=Q_{0}+Q_{1} T_{1}(x)+Q_{2} T_{2}(x)+Q_{3} T_{3}(x) \tag{C42}
\end{equation*}
$$

when stimulated by a drive of the form

$$
x=a \cos \theta-b \cos (2 \theta-\phi)
$$

has a fundemental component given by the weighted sum of equations (1), (2) and (3), i.e.

$$
\begin{align*}
q_{1} & =Q_{1} a \cos \theta+Q_{2}(-2 a b[\cos \phi \cos \theta+\sin \phi \sin \theta] I \\
& +Q_{3}\left[3 a\left(a^{2}+2 b^{2}-1\right)\right] \cos \theta \tag{62}
\end{align*}
$$

up to terms of third order.

APPENDIX C

C1. Determination of modified paramater $\mathbf{r m}_{\mathbf{m}} \& \mathbf{V}_{\mathbf{1}}$

Appendix C1

Determination of modified parameters r_{m} and ∇_{1}
The term $\ln \left(1+\exp C o\left(v-\nabla_{0}\right)\right.$

$$
\begin{aligned}
& =\alpha\left(\nabla-\nabla_{0}\right)+\ln \left(1+\exp \left[-\alpha\left(\nabla-\nabla_{0}\right]\right)\right. \\
& \propto \alpha\left(\nabla-\nabla_{0}\right)+\exp \left[-\alpha\left(\nabla-\nabla_{0}\right]\right] \\
& \exp \left[-\left(\alpha\left(\nabla-\nabla_{0}\right)\right)\right] \ll 1
\end{aligned}
$$

if

Furthermore if $\alpha\left(\nabla-\nabla_{o}\right) \geqslant 3$, i.e. if

$$
\nabla \geqslant \nabla_{0}+3 / \alpha
$$

then

$$
\ln \left(1+\exp \left[a\left(\nabla-\nabla_{0}\right)\right]=\alpha\left(\nabla-\nabla_{0}\right)\right.
$$

For this condition the two term solution becomes

$$
i+I_{s}=\frac{\nabla-\nabla_{0}}{r}-\frac{1}{r} \frac{\left(\nabla-\nabla_{0}\right)}{\left.1+\alpha\left(\nabla-\nabla_{0}\right)\right]} \ln \left[\alpha\left(\nabla-\nabla_{0}\right)\right]
$$

To linearise the equation about a point $\nabla_{p} \geqslant \nabla_{0}+3 / a$ let

$$
\begin{aligned}
\nabla & =\nabla_{p}+x, \quad x \text { small and then } \\
\nabla-\nabla_{0} & =\left(\nabla_{p}-\nabla_{0}\right)+x \\
& =\Delta \nabla+x
\end{aligned}
$$

where $\quad \Delta V=\nabla_{p}-\nabla_{0}$
The following are ther readily determined

$$
\begin{aligned}
& \text { (i) } \frac{V-\nabla_{0}}{T}=\frac{\Delta V}{T}+\frac{x}{r} \\
& \text { (ii) } \frac{1}{1+\alpha\left(\bar{\nabla}-\nabla_{0}{ }^{2}\right.}=\frac{1}{Q+\alpha \Delta V I\left(1+\frac{\alpha X}{1+\alpha \Delta V^{\prime}}\right)} \\
& \approx \frac{1}{1+\alpha \Delta V}\left(1-\frac{\alpha \nabla}{1+\alpha \Delta \nabla}\right) \\
& \text { (iii) } \frac{1}{x} \frac{\left(\nabla-\nabla_{0} 2\right.}{1+\alpha\left(\nabla-\nabla_{0}^{2}\right.}=\frac{\Delta \nabla+x}{1+\alpha \Delta \nabla}\left(1-\frac{\alpha x}{1+\alpha \Delta \nabla}\right) \\
& =\frac{1}{T} \frac{\Delta \nabla}{1+\alpha \Delta V}\left(1+\frac{x}{\Delta V}\right)\left[1 \frac{\alpha-\alpha \cdot}{1+\alpha \Delta V}\right] \\
& =\frac{1}{r} \frac{\Delta V}{1+\alpha \Delta V}\left[1+x\left(\frac{1}{\Delta V}-\frac{\alpha}{1+\alpha \Delta \nabla V}\right)\right] \\
& \text { (iv) } \ln \left[\alpha\left(V-\nabla_{0}\right)\right]=\ln [\alpha(\Delta v+x)] \\
& =\ln \alpha \Delta V \ln (1+x / \Delta V) \\
& =\ln [\alpha \Delta \nabla]+x / \Delta V
\end{aligned}
$$

The equation of the tangent to the $i-\nabla$ curve at the point ∇_{p} may then Be determined as

$$
i+I_{\mathrm{B}}=\frac{1}{r}\left[\Delta V-\frac{\Delta V \ln \alpha \Delta V}{1+\alpha \Delta V}\right]+\frac{x}{r}\left[1-\frac{1}{1+\alpha \Delta V}-\frac{\ln \alpha \Delta V}{(1+\alpha \Delta V)^{2}}\right]
$$

The slope of the tangent is

$$
\begin{aligned}
\frac{1}{r_{m}} & =\frac{1}{r}\left[1-\frac{1}{1+\alpha \Delta V}-\frac{\ln \alpha \Delta V}{(1+\alpha \Delta V)^{2}}\right] \\
& =\frac{1}{r}\left[1-\frac{1}{1+\alpha \Delta V}\right]
\end{aligned}
$$

and therefore

$$
r_{m}=r(1+1 / \alpha \Delta V)=r\left(1+\frac{1}{\alpha Q_{p}-\nabla_{0}{ }^{2}}\right)
$$

The turn on voltage is given by $x=x_{0}$ when $i=0$ ie.

$$
V-\frac{\Delta V \ln a \Delta V}{1+\alpha \Delta V}=-x_{0}\left[1-\frac{1}{1+\alpha \Delta V}\right]
$$

and therefore

$$
x_{0}=-\frac{(1+a \Delta V-\ln \alpha \Delta V)}{a}
$$

when $x=x_{0}$ let $V=\nabla_{1}$ so that

$$
\begin{aligned}
\nabla_{1} & =\nabla_{p}+x_{0} \\
\therefore \nabla_{1} & =\nabla_{p}-\frac{1+\alpha \Delta \nabla-\ln \alpha \Delta \nabla}{\alpha} \\
& =\nabla_{p}-\left\{\frac{1}{\alpha}+\frac{\alpha\left(\nabla_{p}-\nabla_{0}\right)}{\alpha}-\ln \left[\alpha \frac{\left(\nabla_{p}-\nabla_{0}\right]}{\alpha}\right)\right. \\
& =\nabla_{0}+\frac{1}{\alpha}\left(\ln \left[\alpha\left(\nabla_{p}-\nabla_{0}\right)\right]-1\right)
\end{aligned}
$$

If \mathbf{V}_{p} is taken as $2 \mathbf{V}_{0}$ then

$$
r_{m}=r\left(1+\frac{1}{\alpha \nabla_{0}}\right)
$$

and $\nabla_{1}=\nabla_{0}+\frac{1}{\alpha}\left[\ln \left(\alpha \nabla_{0}\right)-1\right]$

APPENDIX D

D1. Normal curve ferm of positiye axponential cusp current

D2. Numarical comparison of esact and approximate positiyp cuap cmrrant

D3. Harmonic componenta of positive exponential cuep current

D4. Numerical comparison of exact and appraicinate negative exponential cusp current

D5. Harmonic componente of negative exponential cusp current

Appendix D1

Normal curve form of positive exponential cusp current. The positive exponential cusp current is given by

$$
i_{c^{+}}=\frac{\ln (2)}{\alpha I_{m}} \exp \left[\hat{\alpha}\left(\cos \theta-\cos \theta_{0}\right) / \ln (4)\right]
$$

which becomes

$$
i_{c+}=\frac{\ln (2)}{\alpha r_{m}} \exp \left[-\alpha \hat{\nabla}\left(\frac{\phi^{2}}{2} \cos \theta_{0}+\phi \sin \theta_{0}\right) / \ln (4)\right]
$$

under the change of variable

$$
\theta=\theta_{0}+\phi, \quad \phi \geqslant 0
$$

together with the approximations
$\sin \phi \propto \phi$ and $\cos \phi \approx 1-\phi^{2} / 2$

The argument of the exponential may be modified as follows:-
$\left.\alpha \hat{\nabla} \quad \frac{\phi^{2}}{2} \cos \theta_{0}+\phi \sin \theta_{0}\right) / \ln (4)$
$=\frac{a \hat{V} \cos \theta_{0}}{2}\left(\phi^{2}+2 \tan \theta_{0} \phi\right) / \ln (4)$
$=\frac{\alpha \hat{\nabla} \cos \theta_{0}}{2}\left[\left(\phi+\tan \theta_{0}\right)^{2}-\tan ^{2} \theta_{0}\right] / \ln (4)$
The positive cusp current will then be

$$
i_{c^{+}}=\frac{\ln (2)}{\alpha r_{m}} \exp \left[\frac{\alpha \hat{V} \sin \theta_{0} \tan \theta_{0}}{2 \ln (4)}\right] \exp \left[\frac{-\alpha \hat{V} \cos \theta_{0}\left(\phi+\tan \theta_{0} I^{2}\right.}{2 \ln (4)}\right]
$$

$=\quad A \exp \left(\frac{-q^{2}}{2 \sigma^{2}}\right)$
where

$$
\begin{aligned}
& A=\frac{\ln (2)}{\alpha r_{m}} \exp \left(\frac{\alpha \hat{\bar{V}} \sin \theta_{0} \tan \theta_{0}}{2 \ln (4)} 2\right. \\
& q=\left(\phi+\tan \theta_{0}\right) \\
& \sigma^{2}=\ln (4) / \alpha \hat{V} \cos \theta_{0}
\end{aligned}
$$

In terms of the dimensionless variables
$B=\alpha \nabla_{2} / \ln (4)$ (Bias coefficieintl.
$X=\sqrt{\frac{\hat{v}^{2}-\nabla_{2}{ }^{2}}{\nabla_{2}{ }^{2}}}$ (overdrive coefficient)
the parameters of the gaussian curve become

$$
\begin{aligned}
A & =\frac{\ln (2)}{\alpha r_{\text {II }}} \exp \cdot\left(\frac{\beta x_{2}}{2}\right) \\
2 & =\ln (4) / \alpha \dot{\nabla} \cos \theta_{0} \\
& =\ln (4) / \alpha V_{2}=1 / B
\end{aligned}
$$

Furthermore the mean value of the gaussian curve $\tan \theta_{0}=\frac{\sin \theta_{0}}{\cos \theta_{0}}=\sqrt{\frac{\hat{v}^{2}-\nabla_{2}{ }^{2}}{\nabla_{2}{ }^{2}}}=1 x$

Hence the positive cusp component of current may be expressed as

$$
i_{c+}=\frac{\ln (2)}{\alpha r_{m}} \exp \left(\frac{\beta x}{2}\right) \exp \left[-\left(\frac{\phi+\sqrt{x})_{2}^{2}}{2 / \beta}\right]\right.
$$

Appendix: D2
Numerical Comparison of exact and approximate values of positive cusp current ict

```
    10 INPUTA,R,I1:FRINTA,R,I1.
    20 OPENI,4:PRINT#1,R,R,I1:CLOSE1
    30 V0=LOG(A**R*II)/(-A):PRINTY0
```



```
    50 OPEN1,4:PRINT#1, YO,V1:CLOSE1
    60 PRINT"INPUT PEAK VOLTS":INFUTV2:PRINTV2
    70 OPEN1,4:PRINT#1,V2
    80 T=SQR(V2*V2-V1*V1):Q=ATN(T/V1):PRINTQ
    90 PRINT#1,Q:CLOSE1
    105 INPUT U
    106 W=180:WU/\pi
    110 Y1=EXP((A**V2)*(COS(U)-COS(Q))/LOG(4))
    120 T=TAN(Q):S=SIN(Q):C=COS(Q)
    130 Z=R淮\2*C*T*T/(2*LOG(4))
    135 B=((U-Q)+T): B=B**B
    140 Y=A:*v2**:*B/(2*LOG(4))
    150 Z=EXP(Z):Y=EXP(-Y):YZ=##*'\
    160 PRINTW,Y1,Y2
    170 OPEN1,4:FRINT#1,W,Y1,'V2:CLOSEI
    180 GOTO105.
RERDY.
```

$$
\alpha=40, \quad r=10, \quad I_{s}=10^{-8} \quad \nabla_{1}=.352 \quad \hat{\nabla}=0.352 \nabla
$$

angle(degrees)
$2.55502501 E-03$
2. $5733.318 \mathrm{E}-63$
2. $36478698 \mathrm{E}-03$
$3.43774675-05$
5.72957.95E-03
. 2572957795
. 572957795
5.72957795
3.30253575
5.3754935
…138733:
$7 .+4845134$
3. 32 ± 40914
3. 59436693
Э. : G732473
10.2132403
14.4591559
12.5050715
$: 4.3239449$
:7. 1387339
30.5535223
22. 3183113
25. 7331008
28.5478898
24.3774677
+6. 1070457 .
45.3356236

E1. E6E2015
57. -957795
35.3436693
exact values
1
.799999997
. 309999992
. 599999959
. 999994931
. 399492233
.250517501
. 346451511
. $223553: 02$
. 39543959
.317354358
.905391428
.892199349
. 378316853
. 343640961
. 316696456
. 782330835
.2929653
. ESET258
. E4-6173752
. 48465634
.5 E 3753523
. 88361183
. 57606082
. $\mathbf{6 9 1 7 4 1 4 1 5 3}$
. 0459171982
.2214128585
9. 37504783E-03
7. $95083354 \mathrm{E}-05$
appróximate values
1
.999999999
.999999997
.999999992
.399999959
999994931
.999492223
.350477283
.949393257
.92947156
395439249
.917743971
.905244321
.392008336
.378073461
.848264364
.316144392
. T82056268
. 7×8007514
6.33104843
.536767589
.443677902
. 357536333
.266694628
. 160658069
. 0830128121
. 0387499533
.0163410765
$6.2254926 \mathrm{E}-03$

1. $0836565 \mathrm{E}-15$
angle(degrees)
22.1697394
22.345354
22.915311E
23.4912596 24.0E42274
24.6371852
25.210143
25.8631608
25.3560585
2. 2290164
27.5019742
33.374932
28.5478998
3. 7930054
39.939721
4. 0856366
37.2315521
34.3774677
37.2423567
5. 1070457
42.9718347
45.3366236
48.7014126
51.5662016

E7. 235735
35.9436693
$\tilde{\mathrm{V}}=0,6$ volts.
angle(degrees)
54.072509
59.8530328
54.4009906
55.0639484
55.5769062
56. 149864
56.1223217
57.2957795
63.025:3575
s0. 1605635
68.7549354
74.4645134
35.3436693

Exact values
1
.983088233
.942472579
.302522926
.863569365
.325417616
788146081
. 751811911
. 7.6445089
.532071557
.543712732
. 56365679
. 565163248
.52579377
470540254
.+19583907
.372753134
. 329945536
.239414551

- 169974509
: 118171801
. 280525849
. 2538349764
. $\mathbf{0 3 5} 3458525$
.2144932776
E. $41753333 E-05$

Approximate Values
.953088186
.342470741
. 902614095
. 363565294
825366967
788057346
. 751670308
. 716235435
.631773999
.648319558
E55877071
. 584464923
.524761277
463246562
.417903293
.37066361
.327433571
.235925105
.155724996
.11349396
675775419
.3493236054
. 8313005631
$.3: 16304461$
1.34182317E-65

Approximate Values
1.05380329
.315343623
.795135906
. 689636959
.597628363
. 517196241
.447209502
.0988106125
. 212896144
.0197233025
3.55663365E-03
8.52724259E-05

Appendix D3
Harmonic components of positive exponential cusp current.

The harmonic components of the positive cusp currents is given by

$$
\begin{aligned}
a_{n+} & =\frac{2}{\pi} \int_{\theta_{0}}^{\pi} i_{c+} \cos n \theta d \theta \\
& =\frac{2 A}{\pi} \int_{0}^{\infty} \cos n\left(\theta_{0}+\phi\right) \exp \left[-\frac{\left(\phi+\tan \theta_{0}\right)^{2}}{2 \sigma^{2}}\right] d \phi
\end{aligned}
$$

where $\theta=\theta_{0}+\phi, \phi \geqslant 0$ and the upper limit $\phi=\left(\pi-\theta_{0}\right)$ has been replaced by ∞ in accordance with Laplaces method because of the dominance of the exponential for large values of ϕ.

Again in accordance with Laplaces mathod the term cos. $n\left(\theta_{0} * \phi\right)$ may be replaced by

$$
\left(1-\frac{n^{2} \phi^{2}}{2}\right) \cos n \theta_{0}-n \phi \sin n \theta_{0}
$$

and therefore a_{n+} may be written as

$$
\begin{aligned}
a_{n+} & =\frac{2 A}{\pi} \int_{0}^{\infty} \cos n \theta_{0} \exp \left[-\frac{\left(\phi+\tan \theta_{0}\right)^{2}}{2 \sigma^{2}}\right] d \phi \\
& -\frac{2 A}{\pi} \int_{0}^{\infty} n \sin \left(\theta_{0}\right) \phi \exp \left[-\frac{\left(\phi+\tan \theta_{0}\right)^{2}}{2 \sigma^{2}}\right] d \phi \\
& -\frac{2 A}{\pi} \int_{0}^{\infty} \frac{n^{2}}{2} \cos \left(n \theta_{0}\right) \phi^{2} \exp \left[-\frac{\left(\phi+\tan \theta_{0}\right)^{2}}{2 \sigma^{2}}\right] d \phi
\end{aligned}
$$

The first two intagrals of this expression are dominant, the last term takes account of the curvature of $\cos n \phi$. The first integral ia easily expressed in terms of error functions and the remaining two integrals may be determined by integration by parts.

In terms of the normalised paramaters B and X the harmonic components are then given by

$$
\begin{aligned}
& a_{n+}=\frac{\ln (2)}{\alpha r_{m}} \cdot \sqrt{\frac{2}{\pi \beta}} \exp \left(\frac{x^{\beta}}{2}\right) \cdot \operatorname{erfc}\left[\sqrt{\frac{x^{B}}{2}}\right] \cos n \theta_{0} \\
& -\frac{\ln (2)}{\alpha I_{m}} \frac{2 n \sin n \theta_{0}}{\pi \beta} \\
& +\frac{\ln (2)}{d x_{m}} \sqrt{\frac{2 x}{\pi \beta}} \exp \left(\frac{x \beta}{2}\right) \operatorname{erfc}\left[\sqrt{\frac{x^{B}}{2}}\right] \sin \sin \theta \\
& +\frac{\ln (2)}{\alpha r_{m}} \frac{\sqrt{X}}{\pi \beta} \mathrm{a}^{2} \cos n \theta_{0} \\
& -\frac{\ln (2)}{\alpha r_{m}} \cdot \sqrt{\frac{2}{\pi \beta}}\left(\frac{1}{\beta}+x\right) \exp \left(\frac{x^{\beta}}{2}\right) \operatorname{exfc}\left[\sqrt{\frac{X^{B}}{2}}\right] \frac{n^{2}}{2} \cos n \theta_{0}
\end{aligned}
$$

The last two terms of this expression are due to the curvature of cos nd and is a second order correction. The limiting case when the overdrive coefficients is zero is given by

$$
\begin{aligned}
a_{n+}(x & =0)=\frac{\ln (2)}{\alpha r_{n}} \sqrt{\frac{2}{\pi B}} \exp (0) \operatorname{erfc}(0) \cos 0 \\
& -\frac{\ln (2)}{\alpha r_{m}} \cdot \sqrt{\frac{2}{\pi B}} \frac{n^{2}}{2 \beta} \exp (0) \operatorname{erfc}(0) \cos 0 \\
& =\frac{\ln (2)}{\alpha r_{m}} \sqrt{\frac{2}{\pi B}}\left(1-\frac{n^{2}}{2 B^{2}}\right.
\end{aligned}
$$

Numerical values of a_{n+} for $x=0$ given in tanle 4.1.

Appendix D4
Numerical Comparison of exact and approximate values of negative exponential cusp currents
＝EFDr．

```
    \thereforeG :IFUTA.R,ILFRINTA,R,II
    -O SFEN1,4:PRIMT年1,A,R.I:CLOSE!
    30 wG=LCG(A*R*N1)>(-A):PFINTVG
```



```
    SQ OFEN1,4:FRINT年1,VO, V1:CLOSE1
    50 FRINT"IHPUT FEFK VOLTS":I&MFUTUZ:FEINTVQ
    B EFEN1,4:PRINT#1, W2
```



```
    31 Q:=1EQ*Q/\pi:FRINTQ1
    36 FRIHT#1.Q.Q1:CLOSE1
    104 PRINT"IHPUT fHGGLE IN DEGFEES"
    :5S IHPUT W
```



```
    110 'r'1=EXP((G:*V)来(cos(U)-cos(Q)), LOG(4))
    111:1=1%1
    :=0 T=T.FN(Q):S=EIN(Q):C=COS(Q)
    130 T2=1+H**)**C*(6-D)*(Q-U),LOD(8)
```



```
    160 PRINTH, '1,\2
    :70 OFEN1,4:FFINT#1,N.'T1,'Y2:CLOSE1
    :50 G0TO155
B=D%.
```

$\alpha=40, \quad r=10, \quad I_{s}=10^{-8}, \quad V_{1}=.352$
$\hat{V}=.38$ volts
angle（degrees）
9
4
8
12 15

19
20
21
22
22． 1097
exact
． 746517414
． 458504103
.49679824
． 507408014
.632814924
.753656711
.811463179
.864989694
.924945334
.992145466
.99999716
approximate
． 408551226
.454915465
． 510535387
.584584006
.693586207
． 759694098
． 315273538
.866912144
.925525428
.302151624 .399997158

angle(degrees)

10
20
30
40
35
41
42
43
44
45
45.24

exact

-

0139993417 .0174299171 . 0334169039
. 0967233806
. 409229255
. 199203547
. 481932
. 569436442
. 675029998
.802780306
.957739327
.99963191

approximate

$1.6024109 \mathrm{E}-03$ 6. $533145.34 \mathrm{E}-0.3$

- 0253724974
- 1969346311
.413898772
194880174
.48576798
. 572224423
.676577569
.303401306
.957759139
.999631908
$\hat{\nabla}=0.8$ volts

angle(degrees).	exact
5	2.43657976E-06
20	3. $30289584 E-0.6$
40	5. 39703369E-04
50	2. $2951537 \mathrm{E}-83$
55	- 645859877
58	. 125633944
59	- 173139224
60	. 350735947
61	. 356039522
62	. 507294634
63	. 725196903
63.5	. 368113735
63.3	. 967415252
53.8916	. 99999512

approximate
3.62659309E-10 6. $32026422 \mathrm{E}-0.7$ $3.33936495 \mathrm{E}-04$ 9. 18271968E-0.3
. 0466251143
.127169076
: 178807326
.252310266
.357367836
. 50815495
.725463837
.368131406
.967419432
999997519

Appendix D5
Harmonic Components of negative exponential cusp current

The harmonic components of the negative exponential cusp current is given by

$$
a_{n-}=\frac{2}{\pi} \hat{f}^{0} i_{c+} \cos n \theta \cdot d \theta
$$

With the change of variable

$$
\theta=\theta_{0}-\phi . \quad \phi \geqslant 0
$$

the above equation becomes

$$
\begin{aligned}
a_{n-} & =\frac{2}{\pi} \int_{\theta_{0}}^{0} \frac{\ln (2)}{\alpha r_{m}}\left(1+\frac{\beta \phi}{2}\right) \exp (-\beta \sqrt{X} \phi) \cos \left(\theta_{0}-\phi\right)(-d \phi) \\
& =\frac{2}{\pi} \frac{\ln (2)}{\alpha r_{m}} \int_{0}^{\theta_{0}}\left(\cos n \theta_{0} \cos n \phi+\sin n \theta_{0} \sin n \phi \sum^{2} \exp (-\beta \gamma \bar{x} \phi) d \phi\right. \\
& =\frac{2}{\pi} \frac{\ln (2)}{\alpha r_{m}} \int_{0}^{\theta_{0}}\left(\cos n \theta_{0} \cos n \phi+\sin n \theta_{0} \sin n \phi\right) \frac{\beta \phi^{2}}{2} \exp (-\beta \sqrt{X} \phi) d \phi
\end{aligned}
$$

The above are standard integrals ${ }^{(24)}$ and reduce to

$$
\begin{aligned}
& a_{n-}=\frac{2}{\pi} \frac{\ln (2)}{\alpha r_{m}} \frac{\beta \sqrt{x} \cos n \theta_{0}+n \sin n \theta_{0}-\beta \sqrt{x} \exp \left(-\beta \sqrt{x} \theta_{0}\right)}{n^{2}+\beta^{2} x} \\
& -\frac{2}{\pi} \frac{\ln (2)}{\alpha r_{m}} \frac{\beta \sin n \theta_{0}}{n\left(n^{2}+\beta^{2} x\right)} \\
& +\frac{\beta}{2} \frac{\exp \left(-\beta \sqrt{\chi} \theta_{0}\right)}{\left(n^{2}+\beta^{2} x\right)}\left(\beta \sqrt{\chi} \theta_{0}^{2}+\frac{2\left(\beta^{2} x-n^{2}\right) \theta_{0}}{\left(n^{2}+\beta^{2} x\right)}+\frac{2 \beta \sqrt{x}\left(\beta^{2} x-3 n^{2}\right)}{\left(n^{2}+\beta^{2} x\right)^{2}}\right.
\end{aligned}
$$

when $\theta_{0}=0, x=0$ and the contribution from this term is seen to be zero, as it should be. As. the overdrive increases i.e., as $\chi \rightarrow \infty$, the exponential terms tend to zero and the expression is dominated by

$$
\begin{aligned}
& \frac{2}{\pi} \frac{\ln (2)}{\alpha r_{m}} \frac{\beta \sqrt{x} \cos n \theta_{0}+n \sin n \theta_{0}-(\beta / n) \sin n \theta_{0}}{n^{2}+\beta^{2} x} \\
\longrightarrow & \frac{2}{\pi} \frac{\ln (2)}{\alpha r_{m}} \frac{\beta \sqrt{x} \cos n \theta_{0}}{\beta^{2} x}+\frac{n \sin n \theta_{0}}{\beta^{2} x}-\frac{\beta \sin n \theta_{0}}{n \beta^{2} x}
\end{aligned}
$$

The most significant contribution is then seen to be given by

$$
\frac{2}{\pi} \frac{\ln (2)}{a I_{m}} \frac{\cos n \theta_{0}}{8 \sqrt{x}}
$$

which agrees with the expression obtained for the hard driven case as given by equation (4.32).

APPENDIX E

E1 Solution of

$$
\varepsilon \frac{d y_{0}}{d \theta}=y_{0} \sin \theta-y_{0}^{2}
$$

E2 Evaluation of
$\frac{1}{\varepsilon} \int_{0}^{\theta} \exp \left[\left(\cos \theta_{c}-\cos \phi\right) / \varepsilon\right] d \phi$

Appendix E1

Solution of

$$
\begin{equation*}
\frac{\varepsilon d y_{0}}{d \theta}=y_{0} \sin \theta-y_{0}^{2} \tag{1}
\end{equation*}
$$

Put $y_{0}=u V$
then (1) becomes

$$
\begin{equation*}
\frac{\varepsilon u d \nabla}{d \theta}+\frac{\varepsilon \nabla d u}{d \theta}=u \nabla \sin \theta-u^{2} v^{2} . \tag{3}
\end{equation*}
$$

Equate $\frac{\varepsilon u d V}{d \theta}=u V \sin \theta$
to give

$$
\begin{equation*}
\frac{d V}{V}=\frac{\sin \theta d \theta}{\varepsilon} \tag{5}
\end{equation*}
$$

from which is obtained

$$
\begin{equation*}
\nabla=\exp (-\cos \theta / \varepsilon) \tag{6}
\end{equation*}
$$

Now equate

$$
\begin{equation*}
\frac{\varepsilon \nabla d u}{d \theta}=-u^{2} v^{2} \tag{7}
\end{equation*}
$$

wich becomes

$$
\begin{equation*}
-\frac{d u}{u^{2}}=\frac{1}{\varepsilon} \exp (-\cos \theta / \varepsilon) \tag{8}
\end{equation*}
$$

on cancelling a common factor and uging cquation (6) and therefore

$$
\begin{equation*}
\frac{I}{u}=A+\frac{1}{\varepsilon} \int_{0}^{0} \exp (-\cos q / \varepsilon) d q \tag{9}
\end{equation*}
$$

where q is a dumy variable. The required solution is therefore

$$
\begin{equation*}
y_{0}=u \nabla=\frac{\exp (-\cos \theta / \varepsilon)}{A+\frac{1}{\varepsilon} \int_{0}^{\theta} \exp (-\cos q / \varepsilon I d q} \tag{10}
\end{equation*}
$$

Appendix E2

Evaluation of $\frac{1}{\varepsilon} \int_{0}^{0} \exp \left[\left(\cos \theta_{c}-\cos \phi\right) / \varepsilon\right] d \phi$
Figure El shows a graph of the variation of the intergrand over the range 0 to 2π. The function achieves a local maximum at $\phi \pi$, and the effect of the sal parameter ε is to concentrate the majority of the area in the neighbourhood of $\phi=\pi$.

Range 1, θ close to θ_{c}
Let $\phi=\theta_{c}+q$ and therefore $d \phi=d q$
When $\phi=0, q=-\theta_{c}$

$$
\begin{aligned}
& \phi=\theta_{c} \quad q=0 \\
& \phi=\theta \quad q=\theta-\theta_{c}
\end{aligned}
$$

Also $\cos \theta_{c}-\cos \theta=q \sin \theta_{c}$
Then

$$
\begin{aligned}
& \frac{1}{\varepsilon} \int_{0}^{\theta} e^{\left(\cos \theta_{c}-\cos \phi\right) / \varepsilon} d \phi=\frac{1}{\varepsilon} \int_{0}^{\theta_{c}} e^{\left(\cos \theta_{c}-\cos \phi\right) / \varepsilon} d \phi \\
& =-\frac{1}{\varepsilon} \int_{\theta_{c}}^{\theta} e^{\left(\cos \theta_{c}-\cos \theta\right) / \varepsilon} d \phi \\
& =\int_{-0}^{0} \frac{e^{q \sin \theta_{c} / \varepsilon}}{\varepsilon^{n}} d q+\int_{0}^{0-0} c \frac{e^{q \sin c^{\prime} / \varepsilon} d q}{\varepsilon} \\
& \left.=\left.\frac{e^{q \sin \theta_{c} / \varepsilon}}{\sin \theta_{c}}\right|_{-0} ^{0}+\frac{e^{q \sin \theta_{c} / \varepsilon}}{\sin c} \right\rvert\, \begin{array}{l}
\theta-\theta_{c} \\
0
\end{array} \\
& =\frac{1}{\sin \theta_{c}}\left(1-e^{-\theta^{\sin \theta_{c} / \varepsilon}}\right)+\frac{1}{\sin \theta_{c}}\left(e^{\left(\theta-\theta_{c}\right) \sin \theta_{c} / \varepsilon}-1\right)
\end{aligned}
$$

Since ε is small the first term approximates to $1 / \sin \theta_{c}$ and if θ is close to θ_{c} the second term approximates to $\left(\theta-\theta_{c}\right) / \varepsilon$. Thus when θ is close to ${ }_{c}$ the integral approximates to

$$
1 / \sin \theta_{c}+\left(\theta-\theta_{c}\right) / \varepsilon
$$

Range 2, $\theta_{c}<\theta<\pi$
In this range the supremum of the integrand occurs at the upper limit of integration. The substitution $\theta=\phi+q$ transforms the integral into

$$
\frac{1}{\varepsilon} \int_{0}^{\theta} \frac{\cos \theta_{c}-\cos \theta}{\varepsilon} e^{-q \sin \theta / \varepsilon} d q
$$

which readily integrates to

$$
\frac{\exp \left[\left(\cos \theta_{c}-\cos \theta\right) / \varepsilon\right]}{\sin \theta}
$$

which is exponentially large since $\cos \theta_{c}>\cos \theta$

Range 3, $\pi<0 \leqslant 2 \pi$
In this range the integrand has a local maxima at $\theta=\pi$. The. substitution

$$
\pi+q=\emptyset
$$

converts - cos ϕ into
$-\cos (\pi+q)=-\cos \pi \cos q+\sin \pi \sin q$

$$
\dot{=}+\left(1-q^{2} / 2\right)
$$

hence the integral becomes
$=e^{\cos \theta_{c} / \varepsilon} e^{+1 / \varepsilon}$

Note: this value is achieved for θ exceeding π by approximately $3 / E$, the value of the integral remains essentially constant for values of θ exceeding $\pi+3 \sqrt{\varepsilon_{0}}$

APPENDIX F

F1 Sampling Theorems
F2 Programme to transfer data to compurer and evaluate harmonic content

F3 Error due to false periodic time
F4. Effect of quantising error

Appendix F1

Sampling Theorems

1. Definition

The spectral density function $F(\omega)$ of a time signal $f(t)$ is the Fourier Transform at $f(t)$ and fis given by

$$
F(\omega)=\int_{-\infty}^{+\infty} f(t) \exp (-j \omega t) d t
$$

2. The Prequency Translation Theorem

If the spectral density of $f(t)$ is $F(\omega)$ then the spectral density of $f(t) \exp (j a t)$ is $F(\omega)=a l$

Proof
By definition 1 the apectral density of $f(t) \exp$ (at) is

$$
\begin{aligned}
& \int_{-\infty}^{+\infty} f(t) \exp (j a t) \exp (-j \omega t) d t \\
& +\infty f(t) \exp [-j(\omega-a) t] d t
\end{aligned}
$$

$$
=F(\omega-a)
$$

3. The spectral density of the gate function $G_{E}(t, T)$, defined as unity for $T=\varepsilon / 2 \leqslant t \leqslant T+\varepsilon / 2$

$$
F(\omega)=\varepsilon \exp (-j \omega T) \operatorname{Sa}(\omega غ / 22
$$

where $\mathrm{Sa}(\mathrm{We} / 2)$ is the sampling function definad by

$$
\operatorname{sa}(\omega \varepsilon / 2)=\frac{\sin (\omega \varepsilon / 2)}{\omega \cos / 22}
$$

Proof $\quad T+/ 2$

$$
\begin{aligned}
& F(\omega)=\int_{T-/ 2} \exp (-j \omega t) d t \\
& =\varepsilon \cdot \exp (-j \omega T) \frac{\exp (j \omega \varepsilon / 2)-\exp (-j \omega \varepsilon / 2)}{2 j(\omega \epsilon / 22}
\end{aligned}
$$

$-\varepsilon \exp (-j \omega T) S a(\omega \in / 2)$
4. Fourier Series of an Impulse Chain

Let $I\left(t, T_{s}\right)$ be an infinite chain of unit impulses of periodic time T_{s} i.e.
$I\left(t, T_{s}\right)=\underset{-\infty}{+\infty} \delta\left(t-k T_{s}\right) \quad$ where $\delta(t)$ is the dirac impulse function
Then the complex Fourier coefficients C_{n} (jowl are

$$
C_{n}(j \omega)=1 / T_{s} \text { for all } n,
$$

and

$$
I\left(t, T_{s}\right)=\frac{1}{T_{s}} \sum_{-\infty}^{+\infty} \exp \left(j n \omega_{s} t \Sigma\right.
$$

Proof

$$
\begin{aligned}
& C_{n}(j \omega)=\frac{1}{T_{s}} \int_{-T_{s} / 2}^{+T_{s} / 2} \delta(t) \exp \left(-j n^{\prime} \omega_{s} t\right) d t \\
& =1 / T_{i}
\end{aligned}
$$

5. The spectral density of an impulse sampled waveform

Let $f(t)$ be a $t i m$ signal having a spectral density $F(w)$. Then the impulse sampled waveform ${ }^{\text {Is }}$ is given by

$$
f_{I S}=\sum_{-\infty}^{+\infty} f(t) \delta\left(t-n T_{s}\right)
$$

where T_{g} is the sampling interval
then

$$
\begin{aligned}
& \mathbb{F}_{I S}(\omega)=\sum_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \delta\left(t-n I_{s}\right) f(t) \exp (-j \omega t) d t \\
& F_{I S}(\omega)=\sum_{\infty}^{\infty} f\left(n I_{s}\right) \exp \left(-j n \omega T_{s}\right)
\end{aligned}
$$

Alternatively

$$
\begin{align*}
& f_{I S}(t)=f(t) . I\left(t, T{ }_{s}\right) \\
& =f(t) \frac{1}{T_{B}} \sum_{\infty}^{\infty} \exp _{0}\left(j n \omega_{s} t\right) \tag{4}\\
& \therefore F_{I S}(\omega)=\frac{1}{T_{B}} \sum_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(t) \exp \left(j n_{s} t\right) \exp (-n \omega t) d t \\
& =\frac{1}{T_{s}} \sum_{-\infty}^{+\infty} F\left(\omega-n \omega_{s}\right) \cdots \cdots \text { by the Translation Theorem }
\end{align*}
$$

hence

$$
F_{I S}(\omega)={\frac{1}{T_{8}}}^{+\infty} T\left(\omega-n \omega_{8}\right)=\Sigma \in\left(n T_{8} L \exp \left(-j n \omega T_{g}\right)\right.
$$

6. Return to Zero Sample and Hold (BL)

Let $F(G)$ be the spectral densicy of $f(t)$ then the sampled-and-held waveform may be expressed as

$$
f_{R Z}(\varepsilon)=\dot{E} f\left(X_{\varepsilon}\right) G_{\varepsilon}\left(\dot{I}_{s}+\varepsilon / 2\right)
$$

 tije gate function of width ε centred on $t=\left(n T s+E_{s} / 2\right)$
Then

$$
F_{R Z}(\omega)=\sum_{\infty}^{\infty} f\left(n T_{s}\right) \int_{\infty}^{\infty} G_{E}\left(n T_{s}+\varepsilon_{/ 2}\right) \exp (-j n \omega t) d t
$$

which by 3 becomes

$$
\varepsilon \exp (-j \omega E / 2) S a(\omega E / 2) \underset{-\infty}{+\infty} f\left(n T_{s}\right) \exp \left(-j \cdot n \omega T_{s}\right)
$$

which by 5 is

$$
F_{\mathrm{BZ}}=\frac{\varepsilon}{\mathrm{T}_{8}} \exp (-j \omega \varepsilon / 2) \operatorname{sa}\left(\omega \varepsilon / 2 I \sum_{-\infty}^{+\infty} F\left(\omega-\omega_{\delta} I\right.\right.
$$

7. Mon Return to Zero Sampling OVZZ

In this form of sampling the sample width ε equals the sampling interval $\mathbf{T}_{\mathbf{s}}$. From (6) the spectral density will be

$$
F_{\text {VIZ }}(\omega)=\exp \left(-j \omega T_{s} / 2\right) \operatorname{Sa}\left(\omega T_{s} / 2\right) \stackrel{+\infty}{E} F\left(\omega-n \omega_{s}\right)
$$

Figure P1
Bffect of Sempling on Signal Spectrum

```
SEADY.
0 DPENT,4
    REM DATA TRANSFER FROM 901 TOPET
2 PRINT"**
3 PRINT"" THIS PROGRAM ENABLES THE 1024 WORD STORED":
4 PRINT" IH THE 901 MEMOR'4 TO BE READ OUT IH SEQUENCE TO THE FET.":
S PRINT"THE MUMBER OF WORDS OR SAMPLES TO BE STORED IN THE PET";
S PRINT"IS GIVEN BY (N+1) HHERE H=N2-N1 H2>NI";
7 PRIHT", FND N&,H2 ARE THO HLMBERS BETWEEN O FND 1023 IHCLUSIVE."
3PRINT"THE ARRAI'S ALLOCATED FOR DATA STORAGE FRE FROM K(g) TO K(H).";
9 PRIMT"NAKIMLM RRRAY SIZE IS 255."
12 PRINT:FRINT:PRIHT
:1 9=594S7:FOKE 3999,PEEK (Q)
12 p=59459 :POKE B,0
13 C=59468:POKE C,FEEK. (C) OR I
14 D=59467:POKE D,FEEK (D) PND 227 OR 1
15 E=59469 :L=0
15 [NPUT MNI=":H1:PRINT#1,"N1=",N1
17 IHPUT "42=";*2:-PRINT#1, "N2=",N2
IS IF H2)1023 OR NICO THEN 40
19 IF HECNI THEN 40
29 H=N2-NI
21 DTM X(N):INPUT"RESISTOR VALUE";RES
22 INPUT "VOLTS FULL SCPLE=";F
23 PRINT:PRINT"DATA TRFHSFER BEGINS.WATCH THE SCOPE"
24 FOR I=0 TO 1023
25 POKE C.PEEK (C) OR 224
25 PCKE C,PEEK (C) RND 31 OR 192
27 WAIT E,2
28 IF N1=<I RND IC=N2 THEN 30
29 С0T0 32
30 K=I-N4
34 X(K)=PEEK (A)*F\(256*RES)
32 NEXT I
33 PRINT"END OF DATA TRANSFER"
34 PRIMT"#"
35 FOR J=N1 TO N2
36 K=J-N1
37 FRINT J.X(K)
38 NEXT J
39 G0TO 80
40 PRINT"TR4 AGAIN"
41 IF L=:3 THEN 43
42 L=L+1:G0TO 15
```

```
46G0T0 19
47 IF NC255 G0T0 82
48 PRINT"ERROR RRRAY CAN OHL'' HANDLE 25E GAMFLES"
30 PRINT "HON MANH HRRMONICE REQUIRED".
31 INFUT H
B2 DIM R(H+1),3(H+3)
83 IF U>0.G0T0 86
34 PRINT "ERROR"
85 G0T0 410
36 IF HCNI2 GOTO }8
S7 PRINT "ERROR TOO MANY HARMOMICS REQUESTED"
8 GOTD 410
39. COEFF=2.0,}(N-1
90.K1=\pi*COEFF
21 S1=SIH(K1)
100. E1=cos(K1)
110 C=1.0
120 S=0.0
121 PRIHT"PLERSE DOH'T WORRY! COMPUTRTION TRKES TIME"
130 J=1
:40 FTTZ=R(1)
150 U2=0.0
150U1=0.0
170 I=N
130 U0=K<I)+2.0*CDUU1-U2
:90 U2=111
200 U1=U0
210 I=I-1
220 IF (I-1)>0 GOT0180
230 A(J)=COEF*(FTTZ+CWU1-U2)
240 B(J)=COEF*S**U1
250 IF (J-H-0)>0 GOTO 301
260. Q=C1:*L-S1*S
270 S=C1**S+S1紬
280. C=Q
290J J=J+1
300 G0T0 150
301 PRINT#1,"RESISTOR VALUE=",RES
302 PRINT#1, "VOLTS FULL SCALE=",F
310. A(1)=A(1)*0.5
311 FRINT#1,"DE YALLUE=",F(1)
312 PRINT"1, "COS TERM",. "SIN TERM"
```



```
340 INPUT Y
350 IF Y=0 00T0 410
360 DIM R(H+1),P(H+1)
365 PRINT#1, "MAGNITUDE . PHFGE"
370 FOR L=2 TO H+1
380R(L)=S*R(ACL)+2+B(L)TE)
300 P(L)=ATH(-B(L))A(L)):*180,}
400 PRINT#I,R(L),P(L):NEXT L
```

```
1:0 PRINT"FOR CHEBUCHEV THFE 1, OTHERWISE Q"
420 IHPUT U
%0 IF :=0 GOTO 630
440 DIM D(13)
450 FOR E=1 TO 13:OEAD D(E):YEXT E
460 DATA -1,-0. 366,-0.63,-.5,-0.33,-4.167,0,0.157,6.33,0.5,0.66.0.866,1
4E: DIMBI(H+3)
462 DIM A1(13)
470 FOR E=1TO 13
40日 M=2*D\E;
800 B1 (H+2)=0
510 }21(H+1)=
S20 FOR I=H+1TO2 STEP -!
S30 B1(I)=A(I)+M*B1(I+1)-B1(I+2)
534 NEXT I
E40 A1(E)=(A(1)-B1(3))+B1(2)*D(E)
E4: NEXT E
549 V=H+2
S60 DIMF1(13)
565 DIMT(V)
566 FOR E=1 TO 13
570 T(H+2)=0
580 T(H+1)=0
590 FOR I=H TO 2STEP-1
600 T(I)=B(I+1)+M䒾T(I+1)-T(I+2)
S10 NEXT I
620 F1(E)=(B(2)-T(3))+T(2)*2*D(E)
G21 F1(E)=SQR(1-D(E) 2)浽1(E)
B22 NEXT E
S29 PRINT#1, "A(N) 
631 FOR E=1 TO 13:PRINT#1,F1(E),F1(E):NEMT E
6 3 2 ~ C L O S E I ~
650 END
EADU.
```


Appendix F3

Error due to false periodic time

Let $f_{T}(t)$ be the periodic wave under investigation, where T is the true periodic cime. Then it may be represented as

$$
\begin{equation*}
f_{T}(t)=\sum_{n=-\infty}^{+\infty} C_{n} \exp \left(j \omega_{0} t\right) ; \quad \omega_{0} T=2 \pi \tag{1}
\end{equation*}
$$

Let the measurement of the periodic time be \bar{T}, then the signal transferred. for computation will be

$$
\begin{equation*}
f(t)=\sum_{k=-\infty}^{+\infty} \bar{C}_{k} \exp \left(\alpha_{j} \bar{\omega}_{0} t\right) ; \quad \bar{\omega}_{0} T=2 \pi \tag{2}
\end{equation*}
$$

To determine the modified coefficients $\bar{C}_{K}, f_{T}(t)$ may be written as

$$
\begin{equation*}
f_{T}(t)=\sum_{n} C_{n} \exp \left(j n \omega_{0} t\right) \tag{3}
\end{equation*}
$$

with $0 \leq t \leqslant \bar{T}$
and then

$$
\begin{equation*}
\bar{C}_{k}=\frac{1}{\bar{T}} \int_{0}^{T}\left(\Sigma_{n}^{T} C_{n} \exp \left(j n \omega_{0} t\right) \exp \left(-j k \bar{\omega}_{0} t\right) d t\right. \tag{4}
\end{equation*}
$$

wich integrates to

$$
\begin{equation*}
C_{k}=\sum_{n} C_{n} \exp \left[-j\left(n \omega_{0}-k \bar{\omega}_{0}\right) T / 2\right] \operatorname{Sa}\left[\left(\omega_{0}-k \bar{\omega}_{0}\right) \bar{T} / 2\right] \tag{5}
\end{equation*}
$$

where Sa is the sampling function

The arguments of the functions in (5) may be modified as follows

$$
\left.\left.\begin{array}{rl}
\left(n \omega_{0}-k \omega_{0}\right) & T / 2
\end{array}\right)=\left(n \omega_{0} / \bar{\omega}_{0}-k\right) \pi\right] \text { }
$$

where

$$
\frac{\omega_{0}}{\omega_{0}}=\frac{\bar{\omega}_{0}-\frac{\Delta \omega}{\omega_{0}}}{\bar{\omega}_{0}}=1-\varepsilon
$$

Δx is the error in angular frequency
and ε is the per unit error in ω_{0}

The modified coefficients are then given by

$$
\begin{equation*}
\bar{c}_{k}=\sum_{n} C_{n} \exp [-j(n-k-n \varepsilon) \pi] \operatorname{sa}[(n-k-n \varepsilon) \pi] \tag{7}
\end{equation*}
$$

Note that if $\varepsilon=0$ then the $\operatorname{sampling}$ function is unity for $n=k$ and zero othervise and

$$
\begin{equation*}
c_{k}=c_{k} \tag{B}
\end{equation*}
$$

as expected.

Special Case

Consider the case of a cosinnsoidal wave

$$
\begin{align*}
f_{T}(t) & =c_{0}+a_{1} \cos \omega_{0} t \tag{9}\\
& =c_{-1} \exp \left(-j \omega_{0} t\right)+c_{0}+c_{1} \exp \left(j \omega_{0} t\right)
\end{align*}
$$

whare

$$
c_{-1}=c_{1}=a_{1} / 2
$$

Then equation (7) shows that

$$
\begin{align*}
& C_{0}=C_{0}-\varepsilon a_{1} \tag{10}\\
& C_{1}=\frac{a_{1}}{2} \exp (j \varepsilon \pi)-\frac{\varepsilon a_{1}}{4} \exp (-j \varepsilon \pi) \tag{11}\\
& C_{-1}=\frac{a_{1}}{2} \exp (-j \varepsilon \pi)-\frac{\varepsilon a_{1}}{4} \exp (+j \varepsilon \pi) \tag{12}
\end{align*}
$$

resulting in

$$
\begin{align*}
{\overline{a_{1}}} & =\bar{c}_{1}+\bar{c}_{-1} \\
& =a_{1}-\varepsilon_{a_{1}} / 2 \tag{13}
\end{align*}
$$

and

$$
\begin{equation*}
\bar{\sigma}_{1}=-a_{1} \varepsilon \pi-\varepsilon^{2} a_{1} / 4 \tag{14}
\end{equation*}
$$

where $\quad b_{1}$ is the magnitude of the sine component created by the false measurement of perfodic time which creates a phase error of

$$
\begin{equation*}
\phi_{\varepsilon} \approx \operatorname{can}^{-1}\left[\frac{-a_{1} \varepsilon \pi}{a_{1}}\right] \approx-\varepsilon \pi \tag{15}
\end{equation*}
$$

In a similar manner the second harmonic coefficient \bar{C}_{2} of the modified wave may be expressed in terms of c_{0} and a_{1} as

$$
\begin{equation*}
C_{2}=\frac{-\varepsilon a_{1}}{3.2} \exp (-j \varepsilon \pi)+\frac{\varepsilon a_{1}}{2} \exp (j \varepsilon \pi) \tag{16}
\end{equation*}
$$

which shows that higher harmonics are present in the wave-form which is transferred to the computer than in the wave-form stored in the transient recorder.

Appendix F4

Bffect of Quantising Error

Lat one cycle of a waveform be sampled N times, where the samples are mumered from 0 to $\mathbb{N}-1$. For convenience rake \mathbb{N} odd so that $\mathbb{N}-1$ is divisible by powers of 2.

The coofficient of cos po, is given by

$$
\begin{equation*}
a_{p}=\frac{1}{\pi} \int_{0}^{2 \pi} f(\tau) \cos p \theta d \theta \tag{1}
\end{equation*}
$$

which may be approximated by the sum

$$
\begin{equation*}
a_{p}=\frac{2}{N} \sum_{k=0}^{N-1} f\left(\frac{k 2 \pi}{N}\right) \cos \left(\frac{p k 2 \pi}{N}\right) \tag{2}
\end{equation*}
$$

Now $\mid f(2 \pi k / N)-\bar{f}(2 \pi k / N \mid \leqslant 1 / 2 M$
where \mathbf{F} represented the quantised level and M is the number of levels available.
If a_{p} is the coefficient representing the quantised weve then

$$
\begin{equation*}
\left|a_{p}-\bar{a}_{p}\right|=\frac{2}{\bar{N}}\left|{ }_{k=0}^{\mathbb{N}-1}[f(2 \pi k / N)-\bar{f}(2 \pi k / N)] \cos (p k 2 \pi / N)\right| \tag{4}
\end{equation*}
$$

$\leqslant \frac{I}{N L I} \int_{0}^{\mathrm{N}-1}|\cos (\mathrm{p} k 2 \pi / \mathrm{Ni})|$
$-\frac{4}{\operatorname{NiNI}}{\underset{0}{(N-1) / 4}}_{\sum_{0}^{(2)}}|\cos p k 2 \pi / N|$
Equation (5) is readily summed to give

$$
\begin{equation*}
\left|a_{p}-\bar{a}_{p}\right| \leqslant \frac{4 p}{N M} \frac{\sin \left\{\left[\frac{(\pi-1)}{4}+p\right] \pi / N\right\} \cos \left(\frac{N-1}{N} \frac{\pi}{4}\right)}{\sin (p \pi / \mathbb{N})} \tag{6}
\end{equation*}
$$

If the $(\max p) / \mathbb{N}$ is amall equation (6) simplifies to

$$
\begin{equation*}
\frac{2}{\pi M}\left(1+\frac{p \pi}{N^{2}}\right) \tag{02}
\end{equation*}
$$

Equation (7) gives the error per full scale; the absolute error is then given by multiplying equation (7) by the system scale factor. If N is even the effect of the extra term may be added separately. An identical argument shows that the quantising error produced in the coefficient of sin po is also given by equation (7).

APPENDIX G

G1 Measured diode wavaforms
G2 Predicted diode waveforms.
G3 Programme to transfer data to computer and print sample valuas.

G4 Measured spectrum (20 kHz).
65 Predicted spectrial response (20 kHzl
G6 Predicted and measured spectrum (iO NHzI
G7 Harmonic contribution from positive exponential cusp by method of steepest descent.

Appendix G1

Measured diode Waveforms

DIODE TrPE	HF 5082-2600			
ALFHA $=$	37.54	IS=	3.4E-09	RS $=22.65$
TEST FREQ=	. 40900.			
TEST VOLTS=	. 499142		SQURCE RES $=$	E5
WOLTS FULL	SCHLE $=1$		MONITOR FES=	45
HS=	151 HF=		275	SAMPLES= 215
$\mathrm{RT}=$	122.65			
$40=$. 294745568	V3 $=$.45	
$\Psi 1=$. 315063016	RM=	143.69	4048
6	-3.48583878E-65			
4	$1.25490196 E-93$.
8	1.08932462E-03			
12	T. $23028323 \mathrm{E}-04$			
i6	4.53159642E-64			
20	$1.1388976 E-04$		\checkmark	
24	S. $71459695 \mathrm{E}-06$.	.	
29	6			
32	0			
36	0			
46	0			
44	0			
48	3			
5	0			
56	6			
60	0			
54	0			
68	0		.	
\cdots	0			
\vec{T}	0			
56	0			
84	0			
88	0			-
92	0			
96	0			
100	0			*
104	4.35729848E-05			
108	$\therefore 2.70152505 \mathrm{E}-64$			
112	6. $2745098 E-64$			
116	9.32461874E-04	\sim	-	
120	1. $17647059 \mathrm{E}=0.3$			
124	$1.28184575 E-0.3$			

MIARE THPE	37.54	IS=	3.4E-03	$\mathrm{RS}=22.65$
TEST FREQ=	40000			
TEST YOLTS	. 33936		SOURCE RESS=	55
VOLTS FULL	LEE : . 02		MONITOR RES=	45
MS=	158 . $\mathrm{kF}=$		232 .	SAMPLES $=125$
RT=	122.65			
V $0=$	- 294745568	$43=$.4	
V1=	. 304799135	$\mathrm{RM}=$	153.6907	799
0	$5.22875817 \mathrm{E}-96$			
3	3.19239651E-04			
6	2.61437909E-04			
9	1.84749455E-04		.	
12	$1.04575163 E-84$			
15	4.53159042E-05			.
18	1.39433551E-05			
21	3.48583878E-06			
24	0		-.	
27	0			
30	0			.
33	0			-
36	0			
39	-1.74291939E-06			
42	0			
45	-1.74291939E-06			
48	0			
51	0			
54	-1.74291939E-06			
57	0			
60	-1.74291939E-06			
63	0			
EG	0			
69	0			
72	9			
75	0			
78	6			
81	0			
34	- 0			
37	\square			
90	0			
33	0			
96	0			
99	0			
102	1.74291939E-06			
105	8. $71459695 E-66$			
108	$3.31154684 E-65$.	
111	8.71459695E-05			.
114	$1.60348584 E-04$			
117	2.37037037E-04			
120	2.98039216E-04	\sim	- .	
123	3.24183007E-64			

Predicted Diode Waveforms Diode Type 日P5082-2800

Peak Test Voltage $=0.7$ Volts

Sample	System Voltage
Number	(Volts)
0	. 69286
3	. 684870163
6	. 661084925
9	. 622052853
12	. 568674158
15	. 502179931
18	. 424103751
21	. 336246318
24	. 249633918
27	. 139471693
30	. 0350927836
33	-. 0.700954335
36	-. 173667113
39	-. 273233398
42	-. 366498004
45	-. 451309938
48	-. 525713152
51	-. 58,991659
54	-.636709109
57	-. 670741912
60	-. 689305159
63	$=.691970719$

Diode Current
(amperes)
$2.6980 .1267 \mathrm{E}-03$
2.63809976E-03
2.4597461E-03
2.16708514E-03
$1.7669838 E-6.3$
1.26953733E-03
6.94401731E-04
1.50857765E-04
1.13294623E-05
7.31978375E-07
$4.33468573 \mathrm{E}-08$
2.51129995E-69
$1.52002911 E-10$

1. $02543893 E-11$
8.20499131E-13
8.25379149E-14
1.10062622E-14
2.0380647E-15
$5.44853703 E-16$
2.16790168E-16
2. $3113779 \mathrm{E}-16$
$1.22005591 \mathrm{E}-16$

Peak Test Voltage $=0.5$ volts

Sample		Systam Voltage
Number		(Volts)
0		. 499142
4		. 489245256
3		. 459947479
12		. 412410474
16		. 348519322
20	-	. 270807627
24		. 18235705
28		. 0866750989
32		-. 0124439553
36	.	-. 111069544
40		-. 205290667 .
44		-. 291370984
48		-. 365896977
52		-. 425913317
56		-. 469040053
60		-. 493566996
64		-. 498521527

Diode Cuxrent (amperes).
$1.28192719 E-63$
1.21332366E-03 1.01082528E-033 6.8666884E-04

- 2.84761772E-04 3.87641355E-05 $3.53356814 \mathrm{E}-06$ 2. $64821222 E-07$

1. $80829923 \mathrm{E}-08$
1.25138567E-09
9.75686856E-11
2. $48350983 \mathrm{E}-12$
3. $2604091 \mathrm{E}-12$
2.48138238E-13
7.71800978E-14
3.97244123E-14
3.47368214E-14

Peak Voltage $=0.34$ Volts

Sample Number	System Voltage (Volts)	Diode Current (amperes).
9	. 33936	2. $72466566 \mathrm{E}=04$
3	. 33544661	2.52258921E-04
6	. 323796698	$1.95842792 E-04$
9	. 304678948	$1.20040643 E-04$
12	. 278534281	$5.91365305 E-05$
15	. 24596568	2.44813365E-05
18	. 207724286	8.69160544E-06
21	. 164692074	2.71033375E-06
24	. 117861511	7.62562265E-07
27	. 0683126659	$1.99324047 \mathrm{E}-07$
30	. 0171883022	$4.99246815 E-98$
33	-. 0343324817	1. $23711149 \mathrm{E}-08$
36	-. 0850614433	3.13194803E-09
39	-. 13.3828603	8. $36164806 E-10$
42	-. 179509226	2. $42699122 E-10$
45	-. 221049766	$7.88013561 E-11$
43	-. 257492156	$2.93734922 \mathrm{E}-11$
51	-. 237995915	1.28593297E-11
54	-. 311857523	6.73900239E-12
57	-. 328526651	4.29101005E-12
60	-. 337618853	3.35452738E-12
63	-. 338924434	3.23809233E-12

READT.

```
: REM DATA TRANSFER FROM 901 TO PET
2 PRINT"J"
3 PRINT" THIS PROGRAM ENAELES THE 1024 WORD STORED";
4 PRINT" IN. THE 901 MEMORY TO BE READ OUT IN SEQUENCE TO THE FET.";
5 PRINT"THE NUMBER OF WORDS OR SAMPLES TO BE'STORED IN THE PET";
PRINT" IS GIVEN EY ( \(\mathrm{N}+1\) ) WHERE \(\mathrm{N}=\mathrm{N} 2-\mathrm{H} 1 \mathrm{~N} 2\) ) H1";
P FRINT", AND N1, N2 FRE TWO NUMEERS BETWEEN O AND 1023 INCLUSIVE."
3 PRINT"THE ARRAYS ALLOCATED FOR DATA STORAGE ARE FROM \(\mathrm{K}(0)\) TO \(\mathrm{K}(\mathrm{N}) . "\)
3 PRINT"MAXIMUM ARRAY SIZE IS 255."
10 PRINT:PRINT:PRINT
11 A=59457:POKE 3999. PEEK (A)
12 B=59459 : POKE B, ©
13 C=5946s:POKE C,FEEK (C) OR 1
14 D=59467:POKE D.FEEK (D) AND 227 OR 1
\(5 \mathrm{E}=59469: L=0\)
16 IHPUT "NI="; H1
17 INPUT "NZ="; N 2
\(1 \varepsilon\) IF N2 1023 OR N1CO THEN 40
19 IF N2CN1 THEN 40
\(20 \mathrm{~N}=\mathrm{N}_{2}-\mathrm{N} 1\)
21 DIM M(H)
23 PRINT:PRINT"DATA TRANSFER BEGINS. WATCH THE SCOPE"
24 FOR \(I=0\) To 1023
25 FOKE C.FEEK (C) OR 224
26 POKE C.PEEK (C) AND 31 OR 192
37 HAIT E, 2
58 IF \(\mathrm{N}:=\mathrm{CI}\) AND ICAH2 THEN 30
29 goto 32
\(30 \mathrm{~K}=\mathrm{I}-\mathrm{N} 1\)
\(31 K(K)=F E E K\) ( \(A\) )
32 NEXT I
33 PRINT"END OF DATA TRANSFER"
34 PRINT"I"
35 FOR J=N1 TO N2
\(36 \mathrm{~K}=\mathrm{J}-\mathrm{N} 1\)
37 PRINT J, X(K)
38 NEXT J
39 goto 50
49 PRINT"TRY RGAIN"
41 IF L=3 THEN 43
\(42 \mathrm{~L}=\mathrm{L}+1\) : goto 15
43 PRINT:PRINT"POOR OLD CHAPİ YOU C̃N'T EVEN THINK OF TWO SIMPLE NUMBER:
45 PRINT"WELL TRY N1 \(=0, \mathrm{~N} 2=1023^{\prime \prime}\)
46 GOTO 19
47 IF NC255 GOTO 50
48 FRINT"ERROR ARRAY CAN ONLY HAMDLE 255 SAMPLES"
50 PRINT
51 IMPUT"TYPE NUMBER"; TYPE末:PRINTTYPE \(\$\)
55 INPUT"ALPHA IS RS";AA,IS,RS
```



```
61 INPUT"SOURCE RES";RG
62 INPUT"TEST FREQUENCY"; FT:PRINT FT
33 INPUT"VOLTS FULL SCRLE"; F:PRINT F
34 INPUT"RESISTOR YRLUE";RES:PRINTRES
```

```
    100 INPÜT"NSSNF";NS,NF:PRINTNS,NF
    102 SA=NF-NS+1:PRINTSA
    104 TS=2*\pi/(NF-NS):PRINTTS
    112 RT=RG+RES+RS:PRINTRT
    114 vG=LOG(AA;禺T*IS)((-AF):PRINTYO
    116 E=VQ+(3,AR):PRINT"Y3 MUST EXCEED", B
    118 INPUT"V3="; V3:PRINT V/3
    120 \1=V0+(LDG(AR米(V3-VO))-1)/AR:PRINT V1
```



```
    200 FRIHT"BO 'GU REQUIRE A FRINT OUT OF SAMPLE UPLUES IFOR YES Q FOR HO"
    201 INPUT PR:IF FR=0 GOTD228
    z02 FRINT"I WILL PRINT EVERY J,TH SAMPLE":IHPUT"J=";J
    203 SC=F%(255*RES):INFUT"ZERO REF=";M
    204 M=M-N1:Z=K(M)
    205 FOR K=0TO(N2-N1)
    206 X(K)=SC*(X(K)-Z)
    208 NEXTK: OPEN1,4
    209 IHPUT"HERDIMG5" ; H: IFH=0GOTO220
    210 PRINT*1, "DIODE TYFE",TYPE$
    212 PRINT#1, "ALFHA=", AR, "IS=",IS,"RG="; RS
    213 PRINT#1,"TEST FREQ=";FT
    214 PRINT#1,"TEST YOLTS=",VT,"SOLIRCE RES=",RG
    216 PRINT#1, "YOLTS FULL SCRLE=",F, "MONITOR PES=":RES
    217 PRINT#1, "NS=",NS, "NF=",NF, "SAMPLES=",SA
    218 PRINT萛1, "RT=",RT:PRINT井1, "YG=", Y0, "VB=", V3
    213 FRINT#1,"Y1=", M1,"RM=",RM:PRINT#1
    220 FOR K=0 TO (NF-NS)STEP J
    222 FRINT#1,K,KKK
    224 NEXTK
    225 CLOSE1
    228 LDAD"MF"
    230 END
BEAD'%
```

Progranme to evaluate prodicted diode currentefrom equations－（3．50）and（3．51）

FEAD＇T．
10 REM WF
12 OPEN1， 4 ：PRINT\＃1：PRINT\＃1

18 PRINT＂I WILL CRLUATE EVERY J，TH SAMPLE＂
20 INPUT＂J＝＂；J：K＝0
$22 \mathrm{~V}=\mathrm{VT} * \operatorname{Cos}(K * T S):$ IFV）V1G0T030

$26 I D=I P+I N+I B$
28 PRINT\＃1，K，V，ID：G0T036
30 IF $=0$ ：$I N=K N / E X P(A R * V / \operatorname{LOG}(4)): I B=(V-V 1) / R M$
$32 I D=I P+I N+I B$
34 FRINT\＃1，K，V，ID
36 IF K）（NF－NS）／2GOTO40．
$38 \cdot K=K+J: G 0 T 022$
40 CLOSE1
42 END
RERDY＇．

Appendix CL_{4}

Measured Specterum

Díode Type HP5082-2800/1
Source Resistance $=50$, Monitor Resistance $=50 \Omega$

Test 1 Peak Volte $=0.848$ (0.6 V rme)

$41=\cdots \quad 330$
$42=\quad E 7:$

RESISTOR VFLUE=
YOLTE FULL BCTHLE= TC WRLUE=
cos TENA

- 1.533661685-92
$\therefore .34697485-90$
$\div .9095701 E-34$
E. $45 \mathrm{ESO6} 9 \mathrm{E}-\mathrm{GE}$
$-3.3953404 E-05$
-2.6687:597ㄷ-95
E. 34900:58E-65
E.3960405e-95
$3 . \operatorname{cscsen}-\mathrm{E}$
$\therefore .483742=-0$

$\begin{gathered} 50 \\ =1.09057: 5 E-03 \end{gathered}$
-5. $63042785-65$
- 3.65338505
-4.88Pe731.
-2.74587574E-65
1.75178647드의
$1.215159685-05$
-5.41300492E-96
-4.21106481E-05
-3.97974576E-0

AESUTTME
$\therefore 2501 E-50$
$\therefore .0439547 E-08$
4. $33730541 \mathrm{E}-64$
2. $37998335-05$
9.0679767E-05
2. $35527401 \mathrm{E}-05$
$5.37632069 \mathrm{E}-05$
E. $39414531 E-85$
2.74852536E-05
2.55266826E-05

P4SE

$$
\begin{gathered}
E .34165437 \\
4.3653812 \\
E .6594734 \\
: 1.2030525 \\
20.3264351 \\
5.7784634 \\
10.1173996 \\
4.71266735 \\
-21.1337935
\end{gathered}
$$

Test 2 Peak Volts 0.6 V (0.424 V rms)

\square
$\begin{array}{ll}4= & 329 \\ 574\end{array}$
EESISTOR VALUE=
UOLTS FHLL SCRLE=
DC YRLUE=
COS TERM
7. 36452531E-04
5. $30624503 \mathrm{E}-04$
2. 35301135E-04
9. $09527686 \mathrm{E}-05$
-9.6576e6E-06
-2. 543こ2943E-05
-2.54131763E-66
2. $200651 E-65$
3. $398611635-85$
$\therefore .200510435-05$
ARCNITUDE
$7.369046185-94$
$5.321645 \geq-64$
$-.3730966 \mathrm{E}-34$
3. $21532685 \mathrm{E}-05$
2. 37 7311235-66
2. $7420685 \mathrm{E}-65$
$4.5936675 \mathrm{EE}-06$
$2.22069954 E-05$
2.94046648E-65
2.22241329E-05

50
.1
4. $46369261 E-04$

SIN TERM
$-2.82519206 E-05$
-4.11337913E-65
-3.3913985:E-65
-1.488893535-65
2. $07439776 \mathrm{E}-6 \mathrm{E}$
7. $29461299 E-66$
3.75835376E-66
-2. $93456906 E-E 6$
$-4.24361055 E-86$
$-3.11246956 \mathrm{E}-96$
PHASE
2. 13769023
4.43250015
5.77901063
3.29633936

1E. 233.58
15.4260946
54.9009965
7.59495303
9.67674194
8.25066634

Test 3 Peak Volts 0.5 V (. 354 V rms)

$41=$ $42=$ 574	
RESISTOR URLUE=	50
YOLTS FULL SCALE=	
DC VRLUE=	5407959E-04
COS TERM	SIH TERM
$4.611933 \mathrm{E}-94$	-1.10142043E-05
3.45571718E-64	-1.59629379E-05
2. $03799057 E-04$	-1.42269299E-95
3.24733221E-05	-8.93353743E-06
9.36601491E-06	-2.63473176E-86
-1.46335531E-05	1.5845506E-06
-8.24680673E-96	$2.36439601 \mathrm{E}-06$
6.90848645E-06	1.6137792E-08
1.593624225-05	-6.95292694E-67
$1.68461428 E-65$	-1.65722197E-06
MAGNITUDE	FHASE
$4.61324802 \mathrm{E}-04$	1.36807607
3.45940208E-04	2. 64477453
$2.04295034 \mathrm{E}-64$	2.79325618
6.29557529E-05	5.18219375
9.72954503E-06	15.7115994
1.47190922E-05	6.18002306
6.5791931E-06	16.3016415
$6.90850525 E-06$	-. 135639112
1.5951+627E-05	2.49321055
1.69294507E-95	5.61767352

Test 4. Peak. Volts 0.4.6.283 V rms)

$\begin{aligned} & \begin{array}{l} N 1= \\ N 2 \end{array} \quad 374 \end{aligned}$	
PESISTOR VALUE=	50
YOLTS FLLL SCALE=	. 05
DC YRLLUE=	3. $06146316 \mathrm{E}-64$
COS TERM	SIN TERM
2.19622213E-64	3.34533219E-06
1.72106109E-04	4.90251035E-06
1.11663236E-04	3. $34691099 \mathrm{E}-86$
$5.62774548 \mathrm{E}-05$	$1.79420399 \mathrm{E}-96$
1.31903314E-05	-3.56615136E-97
-3.70092663E-07	-1.89934604E-96
-3.76958238E-06	-2.06981302E-06
-2.87143651E-08	-1.33218487E-86
4.38797696E-66	-6.07366361E-67
$5.37503678 \mathrm{E}-06$	-8.88715326E-08
MRGMITUDE	PHASE
2.19647639E-64	-.872673995
1.7217592E-04	-1. 63165164
1.11732969E-64	-2.02436577
$5.63060484 \mathrm{E}-05$	-1.8260511
$1.31938267 E-05$	1.12312001
1.93506691E-06	-78.9739229
4.30045323E-66	-28.7704917
1.38-4331E-06	-83. 8098732
$4.42961215 E-66$	7.68058104
6.97560492E-06	. 729987683

Predicted Spectral Response
Bi-linear approximations fitted at ∇_{3} volts Effective turn voltage ∇_{1} volts
Effective total resistance RMI

$3.3555034 E-04$
1. $20434515-93$
1. $3455709 \mathrm{E}-63$
$4.2231 .099 \mathrm{E}-04$
-: 5
-: $45 E 65 \cdot \mathrm{EE}-64$
- $-4997231 E-95$
2.360653.E-95
E. $21445420 \mathrm{E}-\mathrm{gs}$
$\therefore 308446655-65$
$-2.4797345-5$
$4.30205406 E-96$
ㅍ, $3380295-37$
$-1.7525-4 E-65$
-i.34.6853.6E-7
4. $46353594 \mathrm{E}-\mathrm{CE}$
$\therefore .939137985-65$
3:37506649E-96
-2. 5973736E-96
2.3685037c-06
$\therefore .712010505-05$
$-1.65430: 5 E-05$
$9429450-96$
$1 . \sec 50-20$
$-2.29465 E \mathrm{EE}$
$-3,3104175 E-06$
$-5.4696529 E-07$
$-18-533 \mathrm{~B}-06$

- tevecse-e6

[^7]\[

$$
\begin{aligned}
& 7.4935945-25 \\
& \therefore .564550-66 \\
& \therefore .3606 \mathrm{ce}-95 \\
& -3 \div 4 \text { - } 4 \text { E-55 } \\
& \because=4-15 \\
& 2,-1-85 c-8 \\
& \text { 9eces } 0 \\
& -2,-20510=-2 \\
& \text { 5.3504-950-4 } \\
& \therefore .442 \mathrm{TE}-\mathrm{E}-\mathrm{E} \\
& 4251555 \mathrm{E}-25 \\
& \text { 9. } 41854194 \mathrm{E}-104 \\
& \text { 1. } 6332423 \text { E }-6.5 \\
& \text { 1.02985703E-63 } \\
& \text { 3.90817158E-04 } \\
& \text {-i. 17961999E-95 } \\
& \text {-1.23406779E-0. } \\
& -6.29171863 E-95 \\
& \text { 2.58851448E-05 } \\
& \text { 6.4154503E-05 } \\
& \text { 3. } 44324782 \mathrm{E}-05 \\
& -3.90469638 E-65 \\
& (b)+(c) \\
& (\mathrm{al})+(b)+(c)
\end{aligned}
$$
\]

(b)
positive
exponential
cuap

$$
37 . \operatorname{inF}_{4} 5032-2800 \mathrm{~L} \frac{1}{\mathrm{I}}=
$$

$$
3.4 E-69
$$

$8=22.65$

$5.90345549 E-06$
3. $39961751 E-06$
-1!.75781511E-05
-3.09119382E-05
-9.71325281E-06
3.5438181E-05
5.80861112E-05
2.32126361E-05
-4.74385724E-95
-8.58896064E-05
-4.32356123E-05
4.03959603E-06
2. $20279357 E-06$

- $1.40429633 E-06$
$-3.92232099 \mathrm{E}-06$ $-3.3051255 E-96$ $4.93448669 E-08$
$3.50715465 E-96$

4. $20098914 \mathrm{E}-06$
5. $37609698 \mathrm{E}-06$
-2. $30708318 E-06$
-4. $3526871 E-06$
(a) $\quad \therefore \quad 9.94305152 E-06$
bi-linear $5.60241108 E-06$
$-1.39824474 E-05$
$-3.48342592 \mathrm{E}-05$
-1.30233733E-05
3.54875259E-05

(b)

positive
 exponential cusp

6. $15932658 \mathrm{E}-65$
2.74136253E-05
$-4.50624754 E-05$
-3. 36966896E-05
-4.31382994E-05
(b) + (c)
7. 28908365E-04
8. 63759433E-04
9. 3200071E-04.
10. $61319205 E-04$
6.77989856E-05
-5. $30759799 \mathrm{E}-06$
-4.36971919E-06
-5.37147256E-06
$-3.58283588 E-05$
-6.10842901E-65
$-2.97231936 E-05$
(a) $+(6)+(c)$

(c)
negative
exponential cusp

RRDIANS
DEGREES

RADIANS1.00332666
57.4363833

10
.5
132500019
138.567716
3.73310247
1.56886266

50
122.65

294745568
$5 \quad .6$
5 -

BMRE FES＝ \therefore NITOR TES＝ TOTAL FEG＝ GEFK UPLTS＝ 5.9 50 ：2E．65

7． $50925 \mathrm{CEE}-36$
․ 505185605－66
－ 5.5851554 TE－05
$-3.7505125-85$
－-647434 4 $4 \mathrm{E}-85$
… $120271 \mathrm{E}-25$
$3.50800 \cdot 4=-05$
－．＋765R7：Ec－05
$\therefore \therefore 45727135-05$
－：2こ480アT4E－04
－： $4596968 E-04$

4．38721012E－06
2．52052955E－06
$-4.35947849 E-67$
－3．E511：1E－06
－4． $25963737 E-06$
－
․ 5Еラ53707E－67
2． $36631: 5 \mathrm{E}-36$
$4.367799 \mathrm{E}-06$
．． $53060472 \mathrm{E}-96$
$-1.706701: 5 E-06$
.699060816
50.9405764
cs＝
\qquad .89474556
\qquad 15
315063016
143.694048
． 5

（a） ．Gi－linear		（b）$+(\mathrm{c})$
（b） positive exponential cusp	2．5EP9606：E－04 4．50924139E－04 $3.2944,8955-24$ 1．75732461E－04 6．487254：4E－95 $3.21863915 E-05$ $4.86242571 E-65$ $4.27046251 E-85$ $-2.566064885-05$ $-1.14876473 E-04$ －1．320228825－04	（a）$+(\mathrm{b})+(\mathrm{c})$
（c） negative exponential cusp		

RADIFils degrees
$: 0$

Msagured Spectrum

Diode Type EP5082-2835
Peak Volts. 0.47 V
Fréquency 10 Mize
$\mathrm{H}_{2}=\cdots \quad-\quad 35$

RESISTOR YRLUE= YOLTS FULL SCALE= DC VALUE= COS TERM 5.2063247E-04 3.97284068E-04 2. $40875748 E-94$ $9.37959815 E-05$ 1.14059892E-05

50
.1
6.34475435E-04

SIH TERM
$-1.94308653 E-0.5$
$-9.49837528 E-06$
-4. $63403513 E-66$
3.27697944E-06
3. $62619613 E-06$

MAGHI T!JDE
PHASE
2. 13738128
1.36958213
1.10213631
-1.89975622
-37.099726

Measured Spectrum
Diode Type BP5082-2835
Peak Volts 0.41 V
Frequency 10 MEz

$41=$	335
$42=$	375

RESISTOR VRLUE=
VOLTS FULL SCALE=
DC VALUE=
COS TERM
2.84874715E-04
2. $33445223 E-04$
1.56948927E-04
8.06362228E-05
2.7033297E-05

MAGMITUDE
2.36226933E-04.
2. $34498751 E-04$
1.5807689E-04.
3.12325771 ㄷ-95

$$
\therefore \quad 50.05
$$ SIN TERM

-2.77894511E-05
-2.22034239E-95
-1.38503976E-05
-9.32562714E-06
$-2.58416739 E-07$
PHASE
5.57155946
5. 43316775
6.8487208
6.94689524
.54768534

Appendix G7

Harmonic contribution from positive exponential cusp (using method of steepest descent).

Using the "normal" form of the positive exponential cusp current the harmonic contribution may be written as

$$
\begin{equation*}
a_{n+}=\frac{2 A}{\pi} \int_{0}^{\infty} \cos \left(n \theta_{0}+n x\right) \exp \left[-\frac{\beta}{2}(x+\sqrt{x})^{2}\right] d x \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
& A=\frac{\ln (2)}{\alpha r_{m}} \exp \left(\frac{B}{2} x\right) \tag{2}\\
& \theta=\theta_{0}+x
\end{align*}
$$

The cosine function may be replaced by the complex exponential function $\exp \left[-j\left(n \theta_{0}+n x\right)\right]$ and therefore

$$
\begin{equation*}
a_{n+}=\operatorname{Re} \frac{2 A}{\pi} \exp \left(-j n \theta_{0}\right) \int_{0}^{\infty} \exp \left[-\frac{\beta}{2}(x+\sqrt{X})^{2}-j n x\right] d x \tag{4}
\end{equation*}
$$

where Re denotes the real part is to be taken By completing the square in the exponential contained in the intergrand the integral may be written as

$$
\begin{equation*}
a_{n+1}=B \int_{0}^{\infty} \exp \left[-\frac{f}{2}\left(x+z_{0}\right)^{2}\right] d x \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
B=\frac{2 A}{\pi} \exp \left(-n^{2} / 2 \beta\right) \exp \left[j n\left(\sqrt{x}-\theta_{0}\right)\right] \tag{6}
\end{equation*}
$$

and $Z_{0}=\sqrt{x}+j n / B$
The integral in (5) may be written as an integral in the complex plane as follows:-

$$
\begin{equation*}
I=\int_{0}^{\infty} \exp \left[-\frac{\beta}{2}\left(x+Z_{0}\right)^{2}\right] d x=\int_{T_{1}} \exp \left[-\frac{\beta}{2}\left(Z+Z_{0}\right)^{2}\right] d z \tag{8}
\end{equation*}
$$

where the path of integration T_{1} is the real line and $Z=x+j y$. The complex integral in (8) may be written concisely by means of the substitution

$$
\begin{equation*}
z_{1}=z+z_{0} \tag{9}
\end{equation*}
$$

so that

$$
\begin{equation*}
I=\int_{T_{2}} \exp \left(-\frac{\beta}{2} z_{1}^{2}\right) d z_{1} \tag{10}
\end{equation*}
$$

where T_{2} is the line parallel to the real axis starting at Z_{0}, i.e.

$$
\begin{equation*}
y=j n / B, \quad \sqrt{x} \leqslant x<\infty \tag{11}
\end{equation*}
$$

Lines of constant magnitude and phase may be obtained by observing that

$$
\begin{equation*}
z_{1}^{2}=\left(x^{2}-y^{2}\right)+j 2 x y \tag{12}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\exp \left(-\frac{\beta}{2} z_{1}^{2}\right)=\exp \left[-\frac{\beta}{2}\left(x^{2}-y^{2}\right)\right] \exp [-j \beta x y] \tag{13}
\end{equation*}
$$

Lines of constant magnitude and phase are shown in Figure G1. The origin, $Z_{1}=0$, is a saddle point. The initial limit of the integral, $Z_{1}=\sqrt{x}+j n / B$, is dictated by the degree of overdrive \sqrt{x}, the harmonic number n, and the bias factor B. Since the function to be integrated is analytic, Cauchy's. Theorem allows the path of integration to be distorted along a line of constant phase i.e. mazimum descent, as shown in Figure G1.

For the case $\sqrt{\mathbf{X}}=0$, the lines of maximum descent consist of the axes $y=0$ and $x=0$.

Then

$$
\begin{align*}
I & =\int \exp \left[-\frac{\beta}{2} z_{1}^{2}\right] d z_{1} \\
& =\int_{\frac{n}{B}}^{0} \exp \left[\frac{\beta y^{2}}{2}\right] j d y+\int_{0}^{\infty} \exp \left[-\frac{\beta}{2} x^{2}\right] d x \tag{15}\\
& =j Y+\sqrt{\frac{\pi}{2 B}} \tag{15}
\end{align*}
$$

where I represents the value of the integral along the imaginary axis.

$$
\begin{align*}
a_{n+} & =\operatorname{Be}\left\{\frac{2 A}{\pi} \exp \left(-n^{2} / 2 \beta\right)\left[j Y+\sqrt{\frac{\pi}{2 \beta}}\right]\right\} \tag{16}\\
& =\frac{2 \ln (2)}{\pi \alpha r_{m}} \exp \left(-n^{2} / 2 \beta\right) \sqrt{\frac{\pi}{2 \beta}} \\
& =\frac{\ln (2)}{\alpha r_{m}} \sqrt{\frac{2}{\pi \beta}} \exp \left(-n^{2} / 2 \beta\right) \tag{17}
\end{align*}
$$

Equation (17) gives the harmonic contribution when the overdrive $\sqrt{x}=0$ and is uniform for all harmonic numbers. For sufficiently large bias factor 8 , (17) may be approximated as

$$
\begin{equation*}
\frac{\ln (2)}{\alpha r_{m}} \sqrt{\frac{2}{\pi \beta}}\left(1-n^{2} / 2 \beta\right) \tag{18}
\end{equation*}
$$

which is the limiting case of equation (4.41) used to compile Table (4.1). It will be observed that the non-zero integral along the y axis does not contribute to the harmonic content.

For $\sqrt{x}>0$ the integral in (10) may be transformed by the conformal mapping.

$$
\begin{equation*}
\omega=u+j v=z_{1}^{2}=(x+j y)^{2} \tag{19}
\end{equation*}
$$

into

$$
I=\underset{T_{\psi_{0}}}{\rho} \exp \left[-\frac{\rho}{2} z_{1}^{2}\right] d z_{1}=\int_{T_{v o}} \frac{\exp [-\beta \omega / 2] d \omega}{2 \sqrt{\omega}}
$$

where $T_{v o}$ is a line of constant phase given by

$$
\begin{equation*}
v_{0}=\sqrt[2]{X} n / B \tag{21}
\end{equation*}
$$

and therefore

$$
\begin{align*}
I & =\int_{u_{0}}^{\infty} \frac{\exp \left[-\frac{\beta}{2}\left(u+j \nabla_{0}\right]\right]}{2 \sqrt{u+j v_{0}}} d u \\
& =\frac{1}{2} \exp \left(-\frac{j \beta \nabla_{0}}{2}\right) \int_{u_{0}}^{\infty} \frac{\exp \left[-\frac{\beta u}{2}\right]}{\sqrt{u+j v_{0}}} d u \tag{22}
\end{align*}
$$

where $u_{0}=\chi^{2}-n^{2} / \beta^{2}$
For sufficiently large β and since $u \neq 0$ on $T_{v_{0}}$ then the integral in (22) is dominated by values close to u_{0}.

The substitution

$$
\begin{equation*}
u=u_{\sigma}+\delta \tag{24}
\end{equation*}
$$

converts (22) into

$$
\begin{align*}
& I=\frac{1}{2} \exp \left(\frac{-j \beta \nabla_{0}}{2}\right) \int_{0}^{\infty} \frac{\exp \left(\frac{-\beta u_{0}}{2}\right) \exp \left(-\frac{\beta \delta}{2}\right) d \delta}{\sqrt{u_{0}+j V_{0}+\delta}} \tag{25}\\
& I=\frac{I}{2} \exp \left(\frac{-B Z_{0}^{2}}{2}\right) \int_{0}^{\infty} \frac{\exp (-\beta \delta / 2)}{Z_{\alpha} \sqrt{I+\delta / Z_{0}{ }^{2}} d \delta} \tag{26}
\end{align*}
$$

since $w_{0}=u_{0}+j \nabla_{0}=z_{o}^{2}$
Application of Watsons Lemma (23) now gives an asymptotic expansion for large B, i.e.

$$
\begin{align*}
I & =\frac{1}{2 Z_{0}} \exp \left(\frac{B Z_{0}^{2}}{2} \int_{0}^{\infty} \exp \left(\frac{-\beta \delta}{2}\right)\left[1-\frac{\delta}{2 Z_{0}^{2}}+\frac{3}{8} \frac{\delta^{2}}{Z_{0}^{4}}-\cdots\right]\right. \tag{28}\\
& =\frac{1}{B Z_{0}} \exp \left[-\frac{B Z_{0}^{2}}{2}\right]+0\left(1 / \beta^{2}\right) \tag{29}
\end{align*}
$$

Substituting (29) into (5), combining the exponentials and selecting the real part we find that the contribution to the harmonic component from the first term of the asyaptotic series (29) is given by

$$
\begin{equation*}
a_{n+}=\frac{2 \ln (2)}{\pi \alpha r_{m}} \frac{\cos \left(n \theta_{0}+\dot{m}\right)}{\sqrt{n^{2}+B^{2} x^{7}}} \tag{30}
\end{equation*}
$$

where $\tan \psi=n / B \sqrt{X}$
Equation (30) is uniform for all harmonic numbers n, and resembles the form of the denominator for the expansion of the negative cuap hamonic contribution, which were exactly integratable. Regretably (30) does not contain the case of zero overdrive as a limiting form. If $\sqrt{x}=0$, but $n \neq 0$ then since the integral is dictated by values of the variable close to the supremum of the function the process would force the integral to be purely imaginary which as has been seen does not contribute to the Fourier coefficients. If both \sqrt{X} and n are zero then $Z_{0}=0$ and the expansion of the denominator of (26) is not possible.

$$
\begin{aligned}
& -=- \text { Constant magnitude } \\
& \text { Curve A exp }[+5] \\
& \text { Curye } B \text { exp }[0] \\
& \text { Curve } C \text { exp }[-5] \\
& \rightarrow m \text { Constant phase } \\
& \text { Curve a } \sqrt{X}=0.25 \quad n=5 \\
& \text { Curye b } \sqrt{X}=0.25 \quad n=10 \\
& \text { Curye } c \sqrt{X}=1.0 \quad n=5 \\
& \text { Curye } d \sqrt{X}=1.0 \quad n=10
\end{aligned}
$$

[^0]: ${ }^{*} \varepsilon_{r}$ calculated from inverse of equation (3.7) i.e. $\varepsilon_{r}=-x / \ln (x)$

[^1]: *As for Table 3.1

 $$
 \varepsilon_{r}=-x / \ln (x)
 $$

[^2]: 6.5 Proving tests

 The syatem was tested with a sine wave suppliad from a lov distortion cest oscillator, (overall percentage harmonic diatortion < 0.1\%) at a. frequency of 20 kHz . The level of the wave was set using a previousiy calibrated digitalin. voltmeter Faving an accuracy of 0.1\%. Typical results

[^3]: Paper T223 P, recalved. 30th May 1.978.
 Fir. Armastrons is with the Departuent of Blectrical e. Electironic Antinearing, Nowenatie upon Tyne Polytechnic, Iulteon Butlding Ftition Place, Howeantie epron True NEI 8ST, Eaciand

[^4]: DESCRIPTION DU DIAGRAMME OPERATOIRE 1
 "Le diagramme relatif à un four à arc triphasè, valable pour , Hup rapport = résistance/réactance = inférieur à 0,2, est représenté figure 1 . Le diagramme est universel car il s'applique ì tous les fours quelles que soient puissances et tensions: ceci implique qu'il ne doit pas être retrace pour chaque valeur de la tension appliquée ou de la tension d'arc. Cette adaptabilité est obtenue en considérant toutes les variables comme des fractions d'une certaine valeur de base (ègale à l'unitè) définie ci-dessous.

[^5]: (ㅇ) La tension d'arc dépend aussi de la basicité du laitler (3).

[^6]: "Iflit. J. Elect. Enging Educ., Vol. 18, pp. 351-358. Mancheser U.P., 1981. Printed in Greal Britain

[^7]: (c)
 negative exponential

