

Durham E-Theses

A study of a population of perch (Perca fluviatilis L.) in a eutrophic pond
 Johnston, C

How to cite:

Johnston, C. (1974) A study of a population of perch (Perca fluviatilis L.) in a eutrophic pond, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/9243/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
Please consult the full Durham E-Theses policy for further details.
C. JOHNSTONT.

A thesis submitted in part fulfilment
of the degree of M. Sc.

September 1974.
CHAPTTRR ONE. INTRODUCTTON. 1
CRAPTER TWO. METHODS OB CAPIURE AND WXAMINATION. 4
2. 1. The Area of Study - Brasside Pond. 5
2.2. Methods of Capture. 11
2. 3. Length Measurements. 12
2. 4. Weight Measurements. 12
2. 5. Age Detemmination. 13
2. 6. Marking the Fish. 13
2. 7. Stomach Analysis and Bottom Rauna. 14
2. 8. Final Recaptures for Population Estimate. 18
CHAPTER RHREA ANALYSTS OP RESULTS. 20
3. 1. Comparison of Methods of Capture. 21
3. 2. Length - Weight Relationship. 24
3. 3. Feeding and Growth. 29
3. 4. Analysis of Recapture Data. 37
3. 5. Population Estimetion. 40
CHAPMER POUR. SUMMARY. 43
CHAPMER FIVE. APPENDX. FULT FTELD DATA. 45
Table 2. Year-Class 1. 46
Table 3. Year-Class 2. 48
Teble 4. Year-Class 3. 52
Table 5. Year-Class 4. 54
Table 6. Year-Class 5. 56
Table 7. YearmClass 6. 58
Table 8. Year-Class 7. 60
Table 9. Details of All Recaptures. 61
Table 10. Surnmary of Methods of Capture. 66
Table 11. Final Recapture Details. 67
CEAPTER SIX. BIBLIOGRAPEY. 71
CHAPTER SEVEN ACKMOMLEDGEIETTS. 74

CHAPMER OME

IHPRODUCTION

The perch (Perca fluviatilis I.) is widely distributed throughout Europe, and is found in ponds, lakes and reservoirs, as well as slow or moderately quickly flowing rivers and streams. In fact, its distribution appears to be increasing rapidly as bodies of still water, which were once game-fisheries, are rapidly being taken over by the perch as the amount of eutrophication increases.

Most of the published work on the perch (references given later) has been done as a result of studies of comperatively large and deep lakes, such as Leke Windermere. Very little appears to have been done on small, shallow ponds which are eutrophic.

In order to obtain knowledge about a fish stock - its specific taxonomy, sexand year-class composition, and the rates of growth, mortality and recruitment It is necessaxy to obtain specimens from the stock, either alive or dead. For reasons of conservation it is obviously better if the specimens can be obtained alive, studied, and at least some of the specimens returned to the stock.

There are several methods of obtaining live samples, the main ones of which are:
*
Removal. of water by draw-down or pumping;
Anaesthesiag
Hook and line fishing:
*
Mlectronarcosis or galvanotaxis;
Active netting (seine nets, trawls);
Impounding (traps, weirs, set-back or swing nets).
The methods currently most widely used are asterisked. Obviously, not all methods are suitable for all environments, and this applies particularly to eutrophic ponds. The removal of water is expensive, and can pemanently damage the habitat. Anaesthesia is still in its infancy. Electronarcosis or galvanotaxis may not be possible if the eutrophication is high enough to result in a high conductivity, and the presence of laxge beds of weeds will obviously
inhibit active netting. This leaves two main rethods which would appear to be suitable for the investigation of such a habitat - hook and line fishing, and impounding.

For the purpose of this study, therefore, it was decided to investigate a population of perch in a small eutrophic pond, and compere the findings with those obtained by other workers from larger, less eutrophic bodies of water, At the same time comparison would be made between the efficiency of two different methods of obtaining live samples from the environment. Hence the results from traps (a method curcently widely used) are compared with those obtained by angling (a method not widely used in fish population studies).

Finally, it was hoped to establish the relationship between the food svailable and the YearmClasses of fish present in order to determine whether or not the pond was supporting its full potential of fish.

CHAPIER THO

METHODS OP CAPIURE AMD EXAMTITATION

2. 1. The Area of Study - Brasside Pond.

Brasside Ponds (M.G. Ref. NZ 292 455) Iie two and a half miles NorthHast of Durham City. They are the result of extensive excavations into the laminated clays of the old submexged valley of the River wear, (Maling, 1955), and there has probably been open water in this area for over fifty years.

The two main ponds are separated by a narrow strip of land ranging from two to twenty metres in width. It was decided to carry out this study on the smaller of these ponds for the following reasons:
a) An area of 3.4 acres (compared with the larger pond of 13.3 acres) appeared to be more suitable for a short term study.
b) Originally the smaller pond hed been over nine acres in area but two thirds of it had been reclaimed as a result of infilling in the 1950 s. The Northem and Rastern boundaries are now arable famland which is regularly treated with artificial fertilisers, some of which is washedoy rainfall into the smallex pond resulting in this being eutrophic.
c) In 1952 some toxic material was dumped in the smaller pond and apparently killed off all the fish life. Although no artificial re-stocking has taken place it now holds a stock of pexch, which may have come from the larger pond. Prior to 1966 the mater-table of the smaller pond was at a bigher level than that of the larger pond but, as a result of bank erosion, the two ponds becane connected by a shallow stream which would allow the passage of small fish.

The maller Brasside Pond thus offered the right conditions for the proposed study. It was or a suitable size, was eutrophic, carried a dense crop of aquatic flora, and supported a population of perch.

An initial survey was cerried out with the aid of a rubber dingy and a large raft in order to detemine the hydrography, as a result of which the
pond was divided into nine major areas (see Fig. 1). Areas 1, 2, 5 and 6 are bankside regions with an average depth of two metres. Area 6 varies, however, in that it gradually shallows to the East. Area 3 is very shallow, as are areas 8 and 9. The deepest part of the pond is found in areas 4 and 7 (average 3.5 metres) which are very similar and are separated purely for ease of sampling. The point at which areas 2, 4, 7 and 8 meet is a submerged island on which was anchored the raft when it was not in use.

Wher the study started, in May, 1974, over 70 per cent of the surface of the water was covered by vegetation. Even those areas which appeared to be clear, that is, the deeper areas, had dense vegetation growing to within a few centimetres of the surface. Initially, therefore, small areas were cleared in order to be able to fish for the perch. As the season progressed the amount of vegetation diminished, and this was aided by the presence of eight swans. Plates 1 to 4 show views of the water taken on August 13th, by which time comparatively large areas were clear of vegetation.

A summary of the distribution of the main species of weed is given in

PLATE 1. View A --- B

PLATE 3. View D -- E

TABLE 1.
DOMINANT PLAMNT SPECIES

Margins and Shallow Water (<1.0 metre deep)

Typha latifolia
Juncus effusus
Alisma Plantago - aquatica
Hippuris vulgaris
Eurhynchium riparoides

Mifriophyllum spicatum

Potamogeton friesii

2. 2. Methods of Cepture.

The dense areas of aquatic vegetation were a limiting factor which detemmined the possible means of capturing the perch. Consequently two methods were used.

The Windemere perch trap (Worthington, 1950) essentially consists of thee semi-circular fencing-wire hoops, 57 cm . in height, covered with 1.3 cm . hexagonal wire netting, to give a trap with a flat base $76 \times 67 \mathrm{~cm}$. At one end is a funnel directed inwards for 44 cm . to an opening 8.5 cm . in diameter; at the other end is a door for the removal of the catch. One of these traps was bomrowed from the Freshwater Biological Association and a further two were made. The three traps were laid unbaited on the bed of the pond and Iffted every 3 or 4. days. The position of the traps was manked by a moat attached to the top of the trap by rope. The raft was used both to lay and Iift the traps, and as a working platfom for weighing and measuring the cetch. This ensured that the fish were always returned to the area from which they were caught. On lifting, any fish were tipped into a large container of water from which they were lifted separately for examination.

The second method of capture, which was carried out concurrently, was angling with beit. In an endeavour to prevent this method being selective as regard size, the tackle was kept as fine as possible. The hooks used were size 16 , attached to 750 gram breaking-strain line, and supported by fine quill floats. The use of long rods (4 metres) enabled one to fish ovex the peripheral vegetation, and into the holes in the weed beds. As the fish were caught they wexe placed in laxge keep-nets until they vere examined.

Full details of all fish ceught are given in the Appendix.

2. 3. Length Measurements.

The length of the fish vas measured with the aid of a measuring board graduted in millimeters.

Initially two length measurements were taken:
a) tork length, median length, Schmidt's length or AC length. This is measured from the anteriormost extremity of the fish to the tip of the median rays of the caudel fin.
b) Total length, absolute length or AB length. This is the greatest length of the fish from the anteriomost extremity to the end of the tail fin.

However, several of the fish captured in the traps were noticed to have frayed and shortened tail fins, as a result of abrasion with the netting. Consequently, the second measurement of length was discarded and ail measurements given are fork length.

2. 4. Weight Measumements.

In the study of any fish population one of the most difficult measurements to make is that of weight, not only because of the large range in size, but also because of the varying anounts of water which are on or in the fish.

The balance used in this study was a beam balance designed for fishing matches, weighing up to ten pounds in 2 dram divisions, (2 drams $=\frac{7}{8}$ ounce $=$ 3.54 grams) . By careful manipulation it is possible to weigh to 1 dram. The balance was zeroed for each weighing, and each fish was shaken carefully to remove surplus surface water. Periodically fish were weighed twice to check accuracy.

The weights given in the tables are in drans, but for comparative purposes with other studies the Leans and other relevant data have been converted to grams.

2. 5. Age Determination.

From each fish caught was taken a sample of scales for the determination of the age of the fish by annuel rings. All scales were removed, with the aid of forceps, from the area imediately behind the base of the pectoral fin. In this population of perch the annual rings were generally obvious (except for Year 1 fish - see leter) but as a check on accurecy operculer bones were removed fron fish which died, and exanined according to the method of E. D. LeCren, (1947).

Win the smaller fish it was noticed that anmal rings were not always present, but transfomation of the size-frequency curves using probabjliby paper showed that those fish without anual rings belonged to the Year Class 1, and thet anmual rings only appeared after the second winter.

Perch tend to hatch in May / June, and the birthady of the fish has been brought forward to January 1st for Year Class determination. Thus, a fish hatching in June 1967 belongs to Year Cless 0 until December 31st, 1967. From Jenuary 1st, 1968 to December $31 s t, 1968$ it is in Year Class 1.
 and so on This is the system as proposed by Hile, (1945) for the ageing of fish in the Northern Hemisphere.
2. 6. Maxing The Fish.

Charecteristically, the perch has well separated dorsal fins, the first of which has thirteen to seventeen strong spines. Each fish caught was given an individual number by clipping these spines which were nubered gccording to the binaxy system. Thus, spine $1=$ number 1

```
                                    spine 2 = number 2
```

 spine \(3=\) number 4
 spine \(4=\) mamber 8 etc.
 Figure 2 gives the full manking system, together with examples, and Plate 5 shows fish number 79 which was first caucht and numbered on June 24th, 1974, and photogrephed on August, 13th, 1974.

The actual marking was done with sharp scissors whilst the fish was held under water.

2. 7. Stomach Analysis and Bottom Fauna.

All stomach enalyses were taken at the end of July, as were the samples of the fauna of the pond. For fish of Year Class 3 and older, a stomach pump as shown in Tigure 3 was used. Water was pumped into the stomach until no more lood was being washed out. The gills and throat were then examined to ensure that no organisms hed become trapped in these regions. Although no dissections were performed to check on the efficiency of the purp, the ract that those fish caught with minnow-bait produced the minnow in their stomach washings indicates that the pump was able to remove food of any size that the fish may teke. Plate 6 shows the pump in use.

For the younger fish no suitable pump could be made and so a different technique was used. Ten specimens of each of Year Classes 1 \& 2 were caught and killed and their stomachs removed.

The contents of the stomachs of the larger fish, and the complete stomachs of the younger fish, were placed in individual specimen tubes, labelled, and preserved in 70\% alcohol. Analysis was carried out by identification and counting under a binocular microscope.

Semples of the weed- and bottom- fauna were taken at the same time as the samples of fish used for stomach analysis. In each of the areas in which the fish were caught (i.e. axeas 1, 2, 4, 5, 6 and 7) two separete square metres wexe sampled as follows. A metre quadrat was thrown randomily into the water over the shoulder. All plents present in the quadrat were cropped with a long-handled scythe, netted out, and paced carefully in polythene bags. When the mud in the quadrat was sampled by sweeping a. standaxd F.B.A. net along the bottom of the pond so that it picked up about

FIGURE 2. MEYHOD OF HRKING PERCH BY CLIPPING DORSAL EIY.

EXAMPLES:

FISH INUMBER.	SPINES CLIPPED.
11	$1,2,8$.
47	$1,2,4,8,32$.
123	$1,2,8,16,32,64$.
192	$64,128$.
312	$8,16,32,256$

TOTAL POSSIBLE INDIVIDUAL LABELLING USING THIRTFEDN SPINES $=8,191$ FISH.

PLATE 5.

PLATE 6.

the top two centimetres of the botton debris. The contents of the net Were washed to remove fine mud, and the remainder was placed in large jars With ample water. The weed and mud samples were taken back to the laboratory where they were hand-sorted, and all animals present were identified and counted.

The figures for all twelve quedrats were combined to give an overall total of each species of animal present in the twelve square metres. These figures were then converted to tpercentage occurrence', which is the number of each species of animel expressed as a percentage of the total muber of animels in the combined samples.

Almost certainly the methods used for sampling the weed and bottom fauna are prone to error - the net, for example, catching different animals with different efficienciea. However, the depth of water prevented one from enclosing a colum of water to prevent animals escaping. As the selectivity of the net is probably in fevour of the less motile animals, and the more motile animals would have a greater chance of similanly escaping from fish, it is probable that any errons in the sampling technicque are minimal.

2. 8. Binal Recaptures for Population Dstimate.

Initially it was intended to use a third method of capture for the final recapture for population estimate. This was to be by electrofishing with a pulsed direct cument and an outfit was made, using a portable petrol Honda generator, to the design of W. H. Moore, (1968).

Uafortunately, the conductivity of the pond water was too high (1,200 + μ mhos) and the generator was uncble to produce sufficient output.

An examination of the data for muning recaptures showed that of 121 fish originally caught in traps, only 2 were recaught by this method indicating that the fish became trap-shy. However, of the 191 fish oxiginally caught by bast, 21 had been recaptured by bait. Furthermore, most of the bait fishing had been done with maggot. Consequently, it was decided to do the final recaptures by angling, using earthwoms as bait.

An 'angling match' was organized and 15 competent anglers fished the pond for three hours. They were instructed to Asch with small hooks (size 16) and fine tackle, and to use small brandling worms (Eisenia foetida) or tails of branding worms as bait. The principal behind the capture was expleined, and they vere asked to endeavour to capture all Age-Classes. 41 fish caught were measured, weighed and had scales removed for age determination. A summary of the xesults is given in Table 11 (Appendix). All fish were returned, unmarked ones being marked.

Two weeks latex, the procedure was repeated. This time, because of shortage of tine, no lengths or weights were taken, only scales for YearClass determination.

During both recaptures every effort was made to sample all areas in which fish were known to be from earlier investigations.

An estimation of the population structure from both these recaptures is given in table 14 (page 42).

CHAPMPRTHRET

AMALYSIS OF RESULIS

CHAPTIER THREE

ANALYSIS OF RESULTS

3. 4. Comparison of Methods of Capture.

Angling by hook and line, and passive capture by unbaited traps, are two rather different methods of capturing fish. The former, if done carefully, relies on the natural behaviour of the fish to take available food, whereas the latter must apparently rely on some form of curiosity. Since most fishing operations are selective, catches by different methods can produce very different results. Selectivity cen result from extrinsic factors (for example, the form of the gear and its method of use) and intrinsic factors (such as behavioural differences among or within species according to sex, size, habits, season etc.).

For the purpose of this study it was necessaxy that both methods, as near as possible, gave similer samples of the fish population. The use of the Windermere perch trap is well established as a tool for the study of fish populations (e.g. Worthington 1950, Bagenal 1972), but in inland waters, other than sport fisheries, hook-and-line fishing methods have generally not been used in fish population studies. (K.F. Lagler in I.B.P. Hendbook No. 3. 1968). The following table shows the comparative catches by the two methods, in Year Classes, from 21. 5. 1974 to 6. 3. 1974.

YRAR-CLAS	1	2	3	4	5	6	7	Total
AIGIIIG	63	48	14	28	20	17	1	191
TRAPPING	1	42	20	24	19	11	4	121
Motal	64	90	34	52	39	28	5	312

The major difference in the two methods is seen in Year-Class 1, where only one fish was caught in a trap. In fact, this individual had 'gillnetted itself by trying to enter the trap through a distorted hole in the side netting (i.e. a hole that was smaller than normal). Presuming that this Year-Class does enter the traps, they either leave through the mesh
openings or are eaten by any of the laxger fish present. Ihis latter hypothesis is e distinct possibility for, in the early stages of the study, it wes noticed that it smell fich were kept in keepnets with larger fish some of them disappeared. (Consequently, they were leter kept separate). Unfortunately, no stomach analyses were done of trapped fish.

Year-Class 7 has insufficient data for statistical analysis, but a Chi-Square analysis of Year-Classes 2 to 6 shows that there is no significant difference in the two methods of capture fox these Year-Classes.

It would therefore appear that, except for Year-Cless 1, there is no significant djfference in the selectivity of the two methods as regards Year-Classes. There is similarly no significant difference between the mean length for each Year-Class caught by each method.

There are significant differences in the mean weights of fish caught Dy the two methods for each Year-Class but this is not a function of selectivity, but the result of weight lost whilst in the trap. Further discussion of this will be considered with the recapture data.

Occasionally, eels appeared in the traps. It was stated by Worthington (1950) that The predeceous species which nomally feed on perch or their spawn, namely pike and eel, often enter the traps ... they complicated the results in that, once a pike or an eel was inside, no more perch would enter the trap until the predator was removed, but no direct evidence for this was given. However, Bagenal (1972), in an analysis of perch-trap catches, found thet, of sixty eight traps with eels present, forty three had larger-than-average perch catches. In an endeavour to solve this problem one of the traps was "baited" with two live eels. Over a pexiod of 200 hours, in several different regions of the pond where perch were known to be present, no perch entered the trep.

It would appear therefore thet Worthington was right, and that the results of Bagenal cen be explained by the Iarger-than-average numbers of perch attracting the eels to the traps.

The traps in the study were used for a total of 3,144 hours, during
which time they caught 121 fish. In comparison, only 107 hours were spent angling in order to catch 191 fish. Angling would appear to be more efficient regaxding tine, but the following must be taken into consideration:
a) The traps can be left unattended most of the time.
b) The fish were only found to feed at certain times of the day (approxinately two hours before sunset and two hours after sumrise) and hence the one hundred and seven hours represents about fifty angling sessions.

Lagler (I.B.P. Handbook No. 3, page 24) states: 'Ordinarily the size of the fish caught is positively correlated both with the size of hook and with the size of lure used'. For most of the study the bait used was blowfly larvae, and so occasionelly the method was varied in an attempt to catch any larger fish present that may be selected against by maggot or trap.

The two other baits used were worm (hook size 14) and live minnow (hook size 10). Table 10 (Appendix) gives a sumary of the results of the different methods of capture. Worms caught a representative sample of Year-Classes 1 to 7, and with a smaller hook would probably have caught more of Year-Class 1. (See data on recapture). Minnows were too large for the smaller perch, but did not catch any fish over Year-Class 6. A statistical comparison of the catches by maggot, worm and minnow is not feasible as they were used for different lengths of time and not all areas were fished with worm and minnow (there is evidence that the fish tend to shoal in particulax areas - see recapture data).
3.2. Length - Weight Relationship.

The relationship between length and weight in fish can be directed towards two rather different objectives. It can be used mathematically to show the relationship between length and weight so that one may be calculated from the other. This is particularly so in the calculation of weight, for length is a much more easily determined measurement. Furthermore, it is possible to calculate the earlier length of the fish by back-calculation from scale annuli, and hence, if the lengthwreight relationship is known, its earlier weights.

Secondly, it is possible to measure the variation from the expected relationship for any fish or population of fish so that the general nellbeing, or fitness of the fish, can be indicated. Usually this second approach is termed the 'condition factor'.

In fish the weight usually varies with length according to the formula:

$$
W=a I^{b}
$$

where $w=$ weight
$I=$ length
$\left.\begin{array}{l}a \\ b\end{array}\right\}=$ growth coefficients.
This equation is usually converted to:

$$
\log w=\log a+(\log 1)^{b}
$$

If the log of the weight is plotted against the log of the length, and the regression line calculated (usually by method of least squares), then the regression coefficient is 'b' and 'log a ' is the intercept of the line with the Y-axis.

Normally 'b' is an exponent with a value between 2 and 4 , of ten close to 3. A value of ' b ' $=3$ describes symmetrical or isometric growth such as would characterise a fish having unchanging body for and constant specific gravity. Usually, however, in all but completely demersal fish, the specific gravity of the fish as a whole is maintained at that of the surrounding water
by the swim bladder, and so changes in weight for length are the result of changes in body fom on volume. Thus, changes in the velue of 'b' can be the result of ratations in stomach contents, time of year and spaming condition (Ricker, 1958).

As a result of the dbove conditions the length-weight relationships of the marked fish have not been used in the following analysis for they include fish ceptured over a considerable period, that is, fish ready to spawn, spent fish and recovered fish. loreover, mony of the fish caught in the traps have a low weight/ Iength ratio because of loss of weight due to forced' atarvation. Consequently, the data obteined on August 15th, for a population estimate (Table 14, page 42) is also used for the calculation of length-weight relationships.

During their development fish typically pass through several stages or stanzes, several of which may occux durine their lamel life. Dach of these stanzas may have its om length-weigh relationship. The 143 fish caught on August 15 th, were separated into Year-Classes and their weights converted from drans to erans. The comesponding weight and length for each fish was then plotted as a "dot diagrom' on log / log graph paper and the line of 'best fit' by eye for each Year Class was drawn. (Graph 1.) These lines of 'best fit' are the approximate regression lines for each Year-Class, the slope of which is the value of ' b '.

The same length and weight data was then converted to log values, and with the aid of a computer, the values of the regression line, intercept and correlation coeffieient for each Year-Class was calculated. Year-Classes 1 and 2 combined, and Year-Classes 3 to 6 combined, were similarly treated.

For Year-Classes 1, 2, 3, 4 and 6 the correlation coefficient in all cases gave a value of $P=<0.001$ and the calculated regression line is very similar to that drawn by eye. However, a further calculation of the 't' teat on the standard errors of these slopes showed that they are not significantly different.

The data for Year-Class 5, with a value of 'b' 7 , can be explained

GRPR 1.
'DOT DTAGRAM' OR VBTGRT AGATNSR LENGRE, FLOMTED OW DOUBLS DOGARITHITC

by the small sample with a correlation coefficient of $P=<0.1$.
Thus, with the separate Year-Classes, there appears to be no definite stanzas. However, with the combined results a different picture emerges.
$\frac{\text { Correlation }}{\text { Coefficient }} \quad \frac{\text { Regression }}{\frac{\text { Iine }}{\left(1 b^{\prime}\right)}} \quad \frac{\text { Intercept }}{\left({ }^{\prime} a^{\prime}\right)}$

Year-Classes 182
$P=20.001$
2.957
6.14

Year-Classes
3 to 6
$P=\$ 0.001$
3.716
7.45

The value of "b" for Year-Classes 1 and 2 is not significantly different from the isometric value of 3 , whereas the value of 3.716 for Year-Classes 3 to 6 is significantly different. This indicates that a change in growth pattern occurs between Year-Classes 2 and 3, and is obviously the result of the fish developing sexually. The growth of gonads and change in body form results in a 'stockier' fish with a higher weight / length ratio.

These results are very similar to those of Le Cren (1951) but the value of 'b' for the mature fish is higher (3.7 compared with 3.4 in Le Cren's work).

Obviously, then, no single formula will give the length / weight relationship for perch and, in fact, Le Cren showed that there was a different significant value of 'b" for larval fish of 3.59163.

Graph 2, of log weight x log length on linear paper, shows the two significant regression lines and points of intercept for the population of perch in Brasside.

GRAPHI2.

COMPUTED REGRHSSION LINBS OR LOG. WETGFT - IOG. JENGTH FOR:

```
A - TRAR-CLASSES 1&2
B - YMR-CLASSES 3 to 6.
```


3. 3. Feeding and Growth.

Beverel methods 10 r theenumeration of stomach contents heve been employed by different workers, but in most studies substantially the same comparative results axe obtained with all of them.

Briefly, the main approaches are:
a) Frequency of occurrence - where the number of stomachs in which a particular food item occurs is recorded and expressed as a percentage of the total number of storachs examined.
b) Wumerical method - this is the quotient of the total number of a particular itern of food and the grand total of all iterss of food.
c) Volumetric method - here the volune of each type of food item is expressed as a percentage of the totel volune of food.
d) Gravimetric method - which is essentially the same as the volumetric method except that volume is replaced by either dry weight or wet weight.
e) 'Points' method - essentially an approxinate volumetric method. Bach food item is allotted 'points' depending upon size and abundance. The food items are graded as 'common', 'frequent', etc., and one large item is considered equivalent to many small. All the points geined by each food item are sumed and scaled down to percentages, to give percentage composition of the food of all the fish examined.

1) Dominance method - involves determining the food type winich is both numerically and volumetrically the chief constituent of all stomachs examined and is expressed as a percentage of all stomachs examined.

Obviously each method has inherent drawbacks and of ten a combination of methods is used.

The aim of the gut analyses in this particular study was two-fold. Firstly, to see if there was any difference in the types of food consumed by the different Year-Classes and, secondly, to investigate whether or not all the available food items were utilised fully by the population of perch.

The practical techniques for obtaining the samples has been explained in Chapter 1. For the analysis of the data obtained it was decided to use the
same method as Neill (1938). He compared the percentage by number of each food species in the fish with the percentage by number of the same species present in samples of the environmental fauna. Form this he obtained data on the availability of food species and selection by the fish.

Hess and Swartz (1941) termed this index 'forage ratio', i.e. Forage ratio $=\frac{-}{b}$
where; $s=$ percentage representation of a food organism in the stomach
$\mathrm{b}=$ percentage representation of the same organism in the environment.
They state that the percentage representation can be numerical, volumetric or gravimetric. They also argue that, knowing these ratios for every member of the edible fauna, it is possible, on the basis of simple faunal counts, to discover what density of fish a given habitat is able to support, and they therefore claim that knowledge of these ratios is an important tool in fisheries research.

Table 12 sumarises the analyses of fifty eight guts, and gives the average percentage occurrence of each food item for each Year-Class. Table 13 gives the percentage occurrence of each food item in the environment, followed by the forage ratios for each Year-Class. The lower limit for the forage ratio is zero and is indicated by '-'; the upper limit is infinitely large.

A forage ratio of 1 shows no selectivity on the behalf of the fish, a higher result indicated that the fish is selecting that food item, whilst a lower figure indicated that the fish is taking that particular food item less frequently than its occurrence would allow.

The two most common food items in Brasside Pond are Asellus (Isopoda) and zooplankton. In this latter group I have included all the 'microscopic' animals such as Daphnie, Bosmina, Copepods, etc. As these latter animals were present in extremely large numbers in the environnental samples, and only appeared in the gut analyses of Year-Class 1, I have omitted them from the 'Percentage occurrence' and 'Forage ratio' figures.

The fact that the samples were only taken over a short period of time,

YEAR GLASS	KTIY． i．$=$ ．Nymph L．＝Larva $P_{0}=P u p a$ $\mathrm{A}_{\mathrm{s}}=$ Adult	$\begin{aligned} & \text { 合 } \\ & \text { B } \\ & \text { Hin } \end{aligned}$									$\begin{aligned} & \text { 霖 } \\ & \text { 要 } \\ & \text { 令 } \end{aligned}$			$\begin{aligned} & \text { 葍 } \\ & \text { B } \\ & 8 \\ & 8 \\ & \hline 8 \end{aligned}$	
1	ATIMALS TI 10 GUTS PRFCEMTAGF OCCURBEMCE	$\begin{array}{r} 51 \\ 20.7 \end{array}$	$\begin{aligned} & 31 \\ & 15.1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 37 \\ & 14.8 \end{aligned}$	$\begin{aligned} & 2 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 4 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 4 \\ & 1.5 \end{aligned}$	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 15 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 5 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 93 \\ & 38.3 \end{aligned}$
2	ANTMALS IN 10 GUTS PBRCUTTAGP OCOURRENGEA	$\begin{array}{r} 522 \\ 84.4 \end{array}$	$\begin{aligned} & 79 \\ & 12.8 \end{aligned}$	$\begin{aligned} & 4 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 5 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0.9	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			
3	Antinals in 8 gurs PBRCBNPAGE OCCUBRMCE	$\begin{aligned} & 1084 \\ & 94.9 \end{aligned}$	$\begin{aligned} & 24 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 14 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 6 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 6 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 6 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 2 \\ & 0.2 \end{aligned}$	0
4	ANTVALS IN 10 GUTS PHechinTAGE OCCURRENCE	$\begin{array}{r} 571 \\ 92.7 \end{array}$	$\begin{aligned} & 14 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 9 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 4 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 9 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 1 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 1 \\ & 0.2 \end{aligned}$	0
5	ANDALS IT 10 GUTS 	$\begin{aligned} & 1593 \\ & 86.7 \end{aligned}$	80 4.4	$\begin{aligned} & 9 \\ & 0.5 \end{aligned}$	89 4.8	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 30 \\ 1.8 \end{gathered}$	$\begin{aligned} & 5 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 3 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 5 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 20 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 4 \\ & 0.2 \end{aligned}$	0
6	ANIMALS IT 10 GUTS PBRCFATACE OCCURREICE	$\begin{aligned} & 2520 \\ & 96.1 \end{aligned}$	$\begin{gathered} 34 \\ 1.3 \end{gathered}$	$\begin{aligned} & 4 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 8 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 12 \\ 0.6 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 16 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 6 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 2 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 18 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 2 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$

TABLE 12．GUT AMALYBES．

Motyivtciooz	8								
ETYCIXIT00	$\stackrel{\sim}{\sim}$	\％		\pm	$\stackrel{?}{\square}$	$\stackrel{\sim}{\square}$	$\stackrel{\text { ¢ }}{\stackrel{-}{-}}$	$\stackrel{+}{\square}$	1
	$\stackrel{\sim}{\sim}$	ふ๊		＇	1	1	$\stackrel{\square}{\circ}$	1	$\stackrel{\square}{0}$
－It praidorioo	\％	¢		$\begin{array}{r} \underset{2}{2} \\ \stackrel{2}{2} \end{array}$	$\stackrel{\sim}{0}$	$\stackrel{\square}{\square}$	＋	$\stackrel{\circ}{\circ}$	$\stackrel{\square}{-}$
vintyofacxi	$\stackrel{\text { ¢ }}{\square}$	$\stackrel{\sim}{\square}$		1	1	1	：	1	$\stackrel{\square}{\circ}$
	珨	$\stackrel{\circ}{\circ}$		1	1	＇	1	$\stackrel{\square}{\circ}$	$\stackrel{\square}{0}$
$\cdots \mathbb{1}$ Wericiosx	$\stackrel{\infty}{\sim}$	$\stackrel{\square}{\square}$	t_{2}	1	1	1	$\stackrel{\square}{\circ}$	${ }_{5}^{\circ}$	$\stackrel{+}{*}$
mgicoluran	¢	\bigcirc	骎	$\stackrel{\rightharpoonup}{\mathrm{c}}$	＇	O．	1	\％	1
	$\stackrel{\%}{\circ}$	\pm	管	$\stackrel{\square}{-}$	\bigcirc	$\stackrel{\rightharpoonup}{\circ}$	に	$\stackrel{\sim}{\sim}$	\％
－I Mrymill	®ั	$\stackrel{\square}{-}$		$\stackrel{\square}{\circ}$	1	1	＇	1	1
	$\stackrel{m}{r}$	\％		$$	$\stackrel{\circ}{-}$	$\stackrel{+}{\square}$	$\stackrel{\square}{\square}$	$\stackrel{+}{\text { i }}$	3
vGodozisfo	\％̈	$\stackrel{9}{\square}$		$\stackrel{\square}{\circ}$	$\underset{o}{0}$	$\stackrel{\square}{\circ}$	$\stackrel{\square}{\circ}$	$\stackrel{\square}{5}$	$\stackrel{\square}{\circ}$
	岕	$\stackrel{\circ}{\circ}$		$\begin{array}{\|c\|} \hline \dot{m} \\ \hline \end{array}$	$\stackrel{\sim}{m}$	$\stackrel{\sim}{\circ}$	\bigcirc	$\stackrel{\square}{-}$	$\stackrel{\sim}{0}$
YCOCiosi	$\stackrel{N}{5}$	$\stackrel{\square}{5}$		$\stackrel{3}{0}$	$\stackrel{\square}{\square}$	$\stackrel{\text { ¢ }}{\sim}$	$\stackrel{\square}{\square}$	$\stackrel{\square}{-}$	$\stackrel{?}{r}$
				－	\sim	m	＋	in	\bigcirc

Pbrcimitage occurgence in materr
and that the number of gut analyses is not very large, means that only general conclusions can be drawn from the data. However, several obvious differences can be seen.

Year-Class 1 is the only group which appears to be selecting against Asellus, and shows extremely high forage ratios for Chironomids, Coleoptera larvae and Corixids. There would appear to be two possible explanations for this. Most of these fish are to be found in Area 6 (see Table 2 - Appendix) and it is possible that at the time of capture of the fish used for gut analyses the fauna of this area was significantly different from that of the pond in general. However, it is felt that this is not the case and that the difference probably results from the fish showing selection of their food according to size - the Isopods being generally too large. This is supported by the high percentage of Zooplankton and the fact that it was noticed at the time of analysis that the contents of the guts were generally of a small size (i.e. early larval instars).
K. R. Allen (1935), working on Windermere perch, found that fish of less than fourteen centimetres in length fed chiefly on plankton, and that the smaller the fish, the smaller was the food it ate. Whereas one cannot state that equivalent fish in Brasside Pond feed chiefly on plankton, it certainly constitutes a high percentage in numbers, though not in volume. The fish of seven to ten centimetres in this habitat would appear to depend mainly on small insects and isopods for the bulk of their food.

The forage ratios for Isopoda for Year-Classes 2 to 6 are near enough to unity to indicate no selection. Further, the percentage occurrence in the guts is always very high - 84% to 96%. Obviously, then, Asellus forms the main food item for these Year-Classes, possibly because it is an animal which is present in very large numbers, and only moves slowly.

The other food items which the perch generally make full use of are Ephemeroptera nymphs, Chironomidae, Coleoptera larvae and Corixidae. In fact, Table 13 shows that at times particular groups are apparently 'searched for' as the forage ratios are occasionally quite high.

Some food items, however, are not fully utilised. These include Dipteran laxvae other than Chironomids, Zygoptera nymphs, Trichoptera larvae, Gastropoda, Hydracarina and Coleoptera adults. This is probably explained by the fact that these animals are either buried in the mud, can bite, have hard indigestable cases or can swim quickly, whereas there is a plentiful supply of more easily obtained food in the form of the Isopods. However, it does indicate that the pond has the potential to support a higher population of fish. A possible explanation of this is given later, in the discussion of the population size.

During the analysis of the gut contents it was noticed that Year-Classes 2 to 6 contained all sizes of Asellus, and there was no obvious indication of the laxger fish eating mainly larger specimens. This would suggest that the larger fish have to work much harder in order to obtain sufficient calories for maintenance and growth.

However, two potential items of food that are present in the pond do not appear in either Table 12 or 13. These are perch fry, and a fairly large population of sticklebacks (Gasterosteus aculeatus). Their absence from the environment samples can be explained by their speed of swimming - they were able to avoid the comparatively small net. No remains of Vertebrates were found in the 58 gut samples, and yet Allen found that fish over 14.5 cms . (Year-Class 3 at Brasside Pond) were able to feed on small fish, whilst those over 18 centimetres in length fed mainly on small fish. The answer to this anomaly probably lies in the dense weed beds present during the period of study. Apparently, the perch fry and the sticklebacks are able to shelter in the vegetation and so avoid predation.

Graph 3 shows the mean lenghts of each Year-Class for each month of the period of study. If, however, it is also taken to represent the growth rate of a typical fish over a period of seven years then it correlates with what has been discussed about the food in Brasside Pond, and the findings of Allen.

Year-Classes 1 and 2 show significant growth over the four-month period and as these fish feed solely on Zooplankton and Invertebrates this is to be
expected. However, none of the Year-Classes 3, 4, 5, 6 or 7 indicate much growth over the same four months, but there is a significant difference in the mean lengths for each Year-Class. Consequently a lot of growth must occur between the months of September and April.

It would appear, therefore, that in a eutrophic environment such as Brasside Pond a fish is able to show the normal growth pattern for the first two years of its life, when it is feeding on invertebrates. Thereafter, the pattern changes. Perhaps this is because during the Spring and Summer months, when the vegetation is dense, the fish are only able to obtain maintenance calories in the form of invertebrate food. During the Autumn, as the vegetation dies back, the small vertebrates will become more accessible and so a fish will be able to increase its daily intake of calories and so produce growth. It would also appear, if this is the case, that the size of the perch in Brasside Pond is being limited, not by lack of food, but by the absence of some herbivore to keep the vegetation grazed to lower levels.

I propose to carry out further re-captures during the Autumn and Winter to see if the size of the fish increases as postulated.

Also, from Graph 3, it can be seen that by August the mean length of the fish of Year-Class 1 is almost that of the May result for Year-Class 2. There is a small difference in the mean weights - 13.7 gms. to 14.4 gms. There are two possibilities for this which warrant further study. The amount of food of a.suitable size may now diminish and so slow down the growth-rate of Year-Class 1. Alternatively, this may be a 'stronger' population of fish which will continue to produce a larger than normal fish. The 'stronger' population could be the result of either:
a) an increase in the zooplankton and small invertebrates as a result of increased eutrophication, or,
b) an increase in predation, during larval stage, resulting in an increase of suitable food per surviving fish. This is possible if, as will be discussed later, the population of perch is increasing in number, as a result of it only being present for a few years i.e. seven.

3. 4. Analysis of Recapture Data.

During the period of May to August, when the fish population was being sampled by trapping and angling, several of the fish which had been previously caught and marked were recaptured. Thus, for some of the fish, data is available on their weight, length and location on different occasions. A summery of this data is given in Table 9 (Appendix).

Of the original 255 fish which were marked, 51 were recaptured between May 5th and August 15th, (i.e. 20\%). Thirty eight of these were recaught only once, 11 were recaptured twice, and two were recaught thrice.

The shortest interval between capture and recapture was shown by fish number 22, with a time interval of only one day. In contrast, fish numbers 10 and 6 were originally caught on May 22nd, and not recaptured until August 15 th - a time interval of 85 days, only one day less than the tatal length of the study period. Similarly, four fish (Numbers 6, 10, 11 and 12) showed an identical time interval between capture and final recapture, but had other recaptures within this period. The mean interval between recaptures for the 51 fish recaught was 26 days. When considering this figure it must be born in mind that not only was the study-period limited to 86 days, but that the fish were being caught and marked throughout this period.

One of the aims of the running - recaptures was to investigate the effects of the general 'handing' of the fish on the fish themselves, so that some conclusion could be reached on the suitability of the techniques for further studies. The best way to do this initially appeared to be a comparison of the weight and length of recaptured fish with the mean weights and lengho of newly caught fish, of the same Yeax-Class, at the same time.

However, each Year-Class has such a range of length and weight that a recaptured individual could have shown nommal growth since its original capture and still be considerable less (or more) than the mean weight or length of its Year-Class. Further, it has already been pointed out (page 35) that Year-Classes 3 to 7 showed very little growth over the study period. Thus, any compaxison of growth rates can only be superficial. Bearing this
in mind, it was felt that a minimum period of 30 days was necessary between capture and recaptured for any results to be at all valid. If the stady had been over a longer period of time a longex time interval would obviously have been better. Of the 51 fish recaught, 25 gave time intervals of more than 30 days. These low numbers of suitable recaptured fish prevent statistical analysis, for growth rates must be considered in Year-Classes. However, a general comparison of the weights and lengths of recaptured fish Table 9 - Appendix) with those of the newly-caught fish (Table 2 to 8, and 11 - Appendix) gives the following indications:-
a) For all recaptured fish there are no obvious differences in their growth rates in length compared with what would have been expected had they not been cught and marked.
b) The increase in weight of the fish caught and recaptured by angling is also what would have been expected had they not been caught and marked.
c) Fish originally caught by angling, and then recaptured by trap, of ten show a lower weight than would be expected.

These results would seem to indicate that;
a) The marking system used on the perch appears to have no adverse effect on the fish.
b) Angling appears to have little adverse effect on the fish, but trapping can affect their weight measurements.

This latter point is perhaps more obvious if one considers the figures for some of the fish which were recaptured after a period of less than thirty days, as shown in the following table:

Fish Number	$\frac{\text { Oxiginal Weight }}{\text { (gms.) }}$	$\frac{\text { Time Interval }}{\text { Between Captures }}$ (days)	$\frac{\text { Weight Loss }}{(\mathrm{gms})}$	Percentage Weight Loss
9	279.5	15	32	11.4
12	134.5	15	14	10.5
16	297.0	15	32	10.5
68	72.5	17	6.0	8.3
141	44.0	22	12.5	28.0
67	24.5	14	5.5	21.5

These weight losses are almost certainly due to forced starvation during the period in the trap, and will obviously depend upon the time interval spent in the trap. (In this work the traps were emptied every 3 to 5 days). If the traps are lifted too frequently, in an endeavour to minimize this weight loss, then the likelyhood of fish entering the traps will probabl申 be reduced.

Consequently, it is obvious that care must be taken in using weight readings from trap-caught fish in studies of length-weight relationships, or of condition factor.

Of the one hundred and twelve fish originally caught by trap, only two were recaptured by this method - clear proof that the fish become 'trapshy'. Thus, in population studies, it would appeax that any figures which rely solely on the sampling of the population by traps must be suspect.

Conversely, Table 10 (Appendix) indicates that with angling, particularly if the bait is varied, there is little indication of 'shyness' developing.

Table 9 (Appendix) also gives the area in which each fish was caught, both for the original capture and all subsequent recaptures. If these areas are considered, in conjunction with Figure 1 (Page 7), the following emerges:

Number of recaptures in the same area where originally caught $=54$
Mumber of recaptures in an area adjacent to original axea $=8$
Number of recaptures in an area distant from original area $=4$

It would appear, therefore, that the perch have 'territories', that is, areas away from which they seldom move. This, of course, is only over a period of three months and it will be interesting to see what the distribution of the fish is in the proposed Autumn and Winter recaptures. However, the fact that the pond is generally very uniform in depth would suggest that these territories will be maintained.

3. 5. Population Estimation.

Details of the method used for the final recaptures for the estimation of the populating size are given in Chapter 2, and the results of these are shown in Table 14.

As there was no migration from, or immigration into, the population, the formula used for the estimation of the population was the Simple Iincoln Index, namely:-

$$
N=\frac{m c}{m}
$$

where: $\quad N=$ Total number of fish in the population
$m=$ Total number of marked fish in the population
$c=$ number of fish in the sample
$r=$ number of marked fish recaptured in the sample.
The standard exror of N, designated by S.E. (N), was estimated by the formula:

$$
\text { S.E. }(N)=N \sqrt{\frac{(N-m)(N-c)}{m c(N-1)}}
$$

The two successive estimations of the population size are very similar, both in the numbers of each Year-Class, and the numbers of the total population. The second estimate, because of its lower standard errors, is probably the most accurate.

As the numbers of an animal population are generally naturally regulated, often by available food, it might be concluded that the optimum population of perch in Brasside Pond is the one given in Table 14. Fowever, in the
discussion on food and forage ratio, it was pointed out that there apppeared to be an excess of food which the perch were not utilising. Consequently, the population of perch in the pond may not be a stable one, but one which has not yet reached its maximum numbers.

In Chapter 2 it was noted that the pond was polluted in the 1950 's, and thet all fish life was killed. Further, bank erosion at the end of 1966 led to a stream connecting the pond with its larger neighbour. This stream disappeared when the levels of the two ponds became equal, and is now only seen as a small trickle ofter long periods of heavy rain. It is therefore suggested that, during 1967, whilst the stream was still flowing, some perch fry moved from the larger pond into the smaller one, by which time the pollution had cleared. These perch formed the basis of the present population, which has not yet reached its maximum in either numbers or YearClasses. It is intended to continue fishing the pond over the next few years to see if this is the case.

15 TH AUGUST, 1974

YEAR-CLASS	$\frac{\text { TOTAL }}{\text { MARKFD }}$	$\begin{aligned} & \text { TOTAL } \\ & \text { RIECAP. } \end{aligned}$	$\frac{\text { MAPKED }}{\text { RECAP. }}$	POPULATION \pm S.E.
1	62	45	3	930 ± 506
2	60	38	5	456 ± 182
3	27	22	5	119 ± 42
4	41	19	8	97 ± 23
5	35	8	4	70 ± 23
6	22	9	3	66 ± 17
7	5	2	1	10 ± 6
HOTAL 1748				

27TH AUGUST, 1974

YEAR-CLASS	$\begin{aligned} & \text { TOTAL } \\ & \text { MARKEID } \end{aligned}$	$\begin{aligned} & \text { TORAL } \\ & \text { RECAP. } \end{aligned}$	$\frac{\text { MARKMD }}{\text { RECAP. }}$	POPULATTON \pm S.E.
1	104	63	7	936 ± 322
2	93	52	10	484 ± 130
3	42	30	10	126 ± 28.5
4	52	28	14	104 ± 16.9
5	39	13	7	72 ± 16.7
6	28	15	6	70 ± 19.8
7	6	3	2	9 ± 3.2
			HOTAL	1801

CHAPTYR FOUR

SUMMARY

1) A study was camied out on a population of perch in a eutrophic pond in County Durham.
2) Analysis of the length-weight relationship showed that the growth for Year-Classes 1 and 2 is isometric (cuboid), but that for Year-Classes 3 to 7 it is allonetric - the fish growing heavier in relation to their length
3) An investigation of gut analyses and availeble food showed that the young fish had ample food, and were able to grow successiully during the Bumer months. The older fish, however, showed little growth during this period and were possibly only able to obtain sufficient food (lasgely Asellus) for maintenance because of the temporary non-availability of the larger food items
4) A comparison of angling and trapping as tools in fishexy research is made, and in the particular situation investigated angling generally proved to be the better method.
5) An estimate of the population size and age structure is given, and suggestion is made that this particular population is still developing and has not yet reached its potential proportions.

CHAPTER FIVE

APPGNDIX

FULI FTEID DATA

TABLES 2 to 11

DATE	LBNGTE	WEIGHT	MEITHOD	AREA	NOMBEP
21．5．74	7.0 cm ．	4dr．	Maggot	6	2
22．5．74	6.5 cma	4 dr 。	＂	＂	5
＂	6.7 cm ．	4 dr 。	＂	＂	10
29．5．74	7.5 cm 。	3dr．	＂	＂	19
＂	6.3 cm ．	$4 d x$ 。	＂	＂	25
＂	7.0 cm ．	4dx．	＂	＂	26
＂	7.2 cm.	38 r ．	＂	＂	30
＂	7．0cm，	30x．	＂	＂	31
＂	7．2m．	$30 x$.	＂	＂	32
＂	7.0 cm ．	3dr．	＂	＂	33
＂	7.1 cm ．	3 ar 。	＂	＂	36
＂	$6.4 \mathrm{cm}$.	2 dr ．	＂	＂	38
14．7．74	9.5 cm ．	7 dr ．	Worm	2	163
15．7．74	8.7 cm ．	6 dr ．	Trap	1	164
19．7．74	9.8 cm ．	7dx．	Worm	2	187
6．8．74	9.9 cm ．	8 dr ．	Maggot	6	220
＂	9.6 cm ．	7 dr 。	＂	＂	221
＂	9.0 cm ．	6 dr ．	＂	＂	222
＂	9.5 cm ．	7 dr 。	＂	＂	223
＂	9．4．cra．	7dx．	＂	＂	224
＂	9.7 cm ．	7 dr	＂	＂	225
＂	9.0 cm ．	7 dr 。	＂	＂	227
＂	8．0cri．	5 dr ．	＂	＂	228
＂	9.8 cm ．	7 dr 。	＂	＂	229
＂	9.0 cm 。	7 dr ．	＂	＂	230
＂	8.9 cm ．	7 dr ．	＂	＂	231
＂	9.5 crn ．	7 dx 。	＂	＂	232
＂	9.5 cm ．	7 dr ．	＂	＂	234

TABLE 2．（Cont．）

6．8． 74	9.3 cm ．	7 dr 。	Maggo			6	235
＂	9.5 cm ．	5 dr 。	＂			＂	239
＂	9.8 cm ．	5 dx 。	＂			＂	240
＂	9.0 cm ．	4dr．	＂			＂	241
＂	9.5 cm 。	5 dr ．	＂			＂	242
＂	8.5 cm ．	3 dr ．	＂			＂	243
＂	9.1 cm ．	4dr．	1			＂	244
＂	9.0 cm ．	4 dr ．	1			＂	245
＂	9.1 cm ．	4 dr ．	＂			＂	246
1	9.1 cm ．	42x．	＂			＂	247
＂	8.5 cm ．	3 dr	＂			＂	248
11	9.0 cm ．	4 dr 。	＂			＂	249
＂	9.1 cm	4dr．	＂			＂	250
19．7．74	9.4 cm ．	6 dr ．	Worm			2	184A
			2 （Standard Error）				
	qOTAL meas lbigre		$8.6 \pm 0.3 \mathrm{~cm}$ ．				
	MEAN Liengiti－May		$6.9 \pm 0.2 \mathrm{~cm}$ ．				
	WEATY LIMGITI－July／Aug．		$9.2 \pm 0.2 \mathrm{~cm}$ ．				
	TOTAL NEAT WETGHT		$\begin{array}{r} 5.0 \pm 0.5 \mathrm{dr} \\ =8.9 \end{array}$				

LABLI 3．YEAR CLASS 2－NUNBBREFD

DATm	LTHGTE	WEICHTP	DITHOD	AREA	MUMBER
22.5 .74	9.0 cm	6dr．	Maggot	6	3
＂	10.0 cm ．	11 dx 。	＂	＂	4
＂	12.0 cm ．	14dx．	＂	＂	6
＂	10.5 cm ．	8 dr	＂	＂	14
11	10.5 cm ．	8 dr	＂	＂	15
＂	9.5 cm ．	8 dr ．	＂	11	18
$27.5 \cdot 74$	9.8 cm ．	$8 d r$.	＂	＂	20
28．5．74	10.4 cm	$8 \mathrm{dr}$.	＂	11	22
＂	8.5 cm ．	6 dr 。	＂	＂	23
＂	9.5 cm ．	8 dr ．	＂	＂	24
29．5．74	10.7 cm ．	80 r．	＂	＂	34
＂	11．0cm．	10dr．	＂	＂	35
＂	10.0 cm	7 dr ．	＂	＂	37
＂	9.2 cm	4dr．	＂	＂	39
6.6 .74	10.0 cm 。	6 drs ．	Trap	6／7	50
＂	11.2 cm ．	8dr．	＂	＂	51
13．6．74	11.4 cm ．	8 dr	＂	＂	1A．
＂	11．4．cm．	8 dr	＂	＂	56
＂	8.6 cm ．	$2 d r$.	＂	＂	57
＂	9.2 cm.	3 dr ．	＂	＂	58
＂	13.0 cm ．	18dr．	Maggot	6	59
24．6．74	10.7 cm ．	14dr．	Trap	1	66
1	11．0cm．	14dr．	＂	＂	67
＂	13．20in．	22 dr ．	＂	＂	69
＂	12.2 cm ．	19dr．	＂	＂	70
＂	11.1 cm ．	16 dr.	＂	＂	71
26.6 .74	12.2 cma	14 dr ．	Maggot	2	93
＂	10．5cm．	8dr．	＂	＂	94

TABLE 3. (Conto)

26.6. 74	12.4 cm.	14dx.	Maggot	2	95
2.7.74	11.4 cm .	12dx.	Trap	4	106
"	11.5 cm .	10dr.	"	"	107
"	10.6 cm .	102 r .	"	"	108
"	10.9 cm .	10dr.	"	"	109
"	11.7 cm 。	11dr.	"	"	110
"	11.5 cm .	10dx.	"	"	111
7.7.74	12.0 cm 。	12dr.	Maggot	2	116
"	12.1 cm .	13dx.	"	"	117
"	10.5 cm .	8dr.	"	"	118
"	12.4 cm .	13dr.	"	"	119
"	11.40m.	12dr.	"	"	120
8. $7 \cdot 74$	12.5 cm .	14dr.	Trap	1	124
"	12.10ra.	13dr.	"	"	125
"	14.5 cm .	23dr.	"	"	126
"	14.0 cm .	20dr.	"	"	127
"	12.3 cm .	14dr.	"	"	128
"	11.4.cra.	8 dr .	"	5	132
"	12.4cra.	13dr.	"	"	133
"	11.4.cm,	9dr.	"	1	134
11.6. 74	13.3cm.	15dr.	Trap	1	142
12.7.74	12.5 cm .	18dr.	Maggot	2	128A
14.7. 74	12.0 cm ,	16dr.	Worm	2	162
15.7.74	14.6 cm .	24dx.	"	"	168
"	12.5 cm .	17dx.	"	"	169
"	13.1 cm .	19dx.	"	"	172
"	12.9 cm	17dx.	"	"	173
"	12.7 cm .	17dr.	"	"	174
"	12.9 cm .	17 dr .	11	"	175

TABLE 3. (Conto)

15.7.74	12.4. ${ }^{\text {cm }}$.	14dr.	Maggot	2	176
17.7.74	11.2 cm .	11dr.	Trap	7	179
"	12.1 cm .	12dr.	"	"	180
"	10.6cra.	9dr.	"	"	181
19.7.74	12.3 cm .	15dr.	Worm	2	185
1	12.1 cm .	15dr.	"	"	186
22.7.74	13.2 cm .	16 dr .	Trep	7	192
"	12.9 cm .	14dr.	"	5	196
"	11.4cm.	9dr.	"	"	199
"	10.9 cm .	8 dr .	"	"	200
\#	10.3 cm .	6 dr .	"	"	201
31.7.74	12.5 cm .	11 dr .	"	2	203
"	13.1 cm .	13dx.	"	"	204
"	11.2 cm .	6 dr .	"	"	205
1	12.6 cm .	8 dr	"	"	211
"	11.2 cm .	9dr.	"	"	212
"	13.9 cm .	19dr.	"	"	213
"	13.4cm.	18dr.	"	"	214
"	12.2m.	13dr.	"	"	215
1.8.74	13.3 cm .	17dr.	Worm	"	218
6.8.74	11.5 cm .	13dx.	Maggot	6	219
"	13.6m.	20dr.	"	"	226
"	13.0cm.	18dx.	"	"	233
"	11.6 cm .	14 dr .	"	"	236
"	11.8 cm .	11dr.	"	"	238

TABLE 3. (Cont.)

DATEP	LHMGME	WETGIT	MEITOOD	AREA	INMBET
21. 5. 74	16.0 cm .	28 dr .	Maggot	6	1
22, 5. 74	16.0 cm .	32dx.	"	"	13
29.5.74	17.0crn.	36 dr .	"	"	40
6.6.74.	17.0 cm .	34dr.	Trap	6/7	44
"	14.7 cm .	24dr.	"	"	49
12.6.74	17.0 cm .	36 dr .	Maggot	1	53
24.6.74	16.8 cm .	40 dr .	Trap	1	65
"	16.3 cm .	418 m	"	"	68
26.6. 74	17.2 cm .	38dr.	Maggot	2	87
"	17.2 cm	42dr.	"	"	96
2.7.74	16.0 cm .	320 r .	Trap	1	104
8.7.74	17.7 cm .	40dr.	"	5	131
"	14.5 cm .	$230 x$.	"	1	126
9.7.74	15.2 cm .	25 dr .	Maggot	2	141
11.7.74	17.4cm.	38 dr .	Trap	1	144
14.7.74	15.10m.	$24 \mathrm{~d} \times$	ISinnow	"	157
"	16.2 cm .	$36 \mathrm{dr}$.	Worm	2	161
15.7.74	19.5 cm .	64 dr .	"	"	171
17.7.74	17.4 cm .	40dr.	Trap	7	178
22.7.74	17.9 cm .	44 dx .	"	"	158
"	17.5 cm .	32dx.	"	"	190
"	15.7 cm .	31 dx 。	"	"	191
"	18.1 cm .	46 dr .	"	5	195
\|"	16.4cm.	32 dr .	"	"	198
31.7.74	17.2 cm .	38dr.	"	2	202
"	18.2 cm.	36 dr .	"	"	209
"	16.6 cm .	28 dr .	"	"	210

TABLIE 4. (Cont.)

	2 (Standard Error)		
TORAL MHAN Lemghi	16.7	0.4	cm.
	16.5	0.	crin
Meaff Lengrin Juiy	16.9	0.6	cm
man veigat - Trap	$\begin{array}{r} 35.2 \\ =62.0 \end{array}$	3.2	$\begin{aligned} & \mathrm{dr} \\ & \mathrm{gr} \end{aligned}$
Weas werchi - Bait	$\begin{array}{r} 36.1 \\ =63.9 \end{array}$	3.6	dr. gr.

DATP	LEMGITE	WEIGHP	METHOD	APEA	NOMBIP
22．5．74	19.5 cm ．	6402.	Maggot	6	7
＂	20.5 cm ．	72 dr ．	＂	＂	8
＂	19.0 cm ．	52 dr 。	＂	＂	11
＊	20.5 cm ．	76 dr ．	＂	＂	12
＂	20.5 cm ．	72 dr ．	＂	＂	17
29．5．74	22.2 cm ．	84dx．	＂	＂	21
6．6．74	21.5 cm ．	78 dr ．	Treap	6／7	45
＂	21.0 cm ．	74 dr 。	＂	＂	47
12． 6.74	21．5cm．	82dr．	Maggot	1	52
＂	21．0cm．	80dr．	＂	＂	54
20．6． 74	20.5 cm ．	52dr．	＂	6	62
24．6． 74	22.6 cm ．	84dr．	Trep	2／8	72
＂	22．0cm．	86dr．	＂	＂	74
＂	20.5 cm 。	70 x ．	＂	＂	75
1	20．2cm．	58 dr ．	＂	＂	77
＂	20.5 cm ．	66dr．	＂	＂	78
＂	19．6mm．	$62 d x$.	＂	＂	79
26．6．74	20．0ckn．	65 dr.	Masgot	2	83
＂	21.0 cm ．	72dr．	＂	＂	84
11	22.1 cm.	84dr．	＂	＂	86
＂	22．0．cm．	86dr．	＂	＂	91
＂	21.5 cm ．	$84 d x$ ．	＂	＂	92
28．6．74	21.8 cm ．	87ar．	Trap	2／8	99
＂	21.0 cm ．	76dr．	＂	＂	101
＂	20.6 cm ．	72dr．	＂	＂	102
＂	19．4．cm．	58 dr ．	＂	＂	103
4．7．74	20.5 cm.	68dr．	＂	5	113
8． 7.74	19.7 cm ．	60 dr ．	＂	1	122

TABLE 5. (Cont.)

8. 7.74	18.7 cm.	45dr.	Treap	5	136
9.7.74	18.4 cm .	51 dr .	Maggot	2	139
11. 7. 74	19.9 cm .	64 dr .	Trap	1	129
\%	20.3 cm .	$68 \mathrm{dr}$.	"	5	146
12. 7.74	19.5 cm .	66 dr.	Masgot	1	156
15.7.74	22.1 cm .	95 dr 。	Minnow	2	167
17.7.74	22.8 cm 。	100dr.	Trap	7	176
"	21.4 cm .	80dr.	"	"	182
"	20.4cra.	66 dr .	Minnow	1	184
21. 7.74	21.9 crin .	86dr.	Worm	2	189
22. $7 \cdot 74$	22.5 cm .	80dr.	Trap	5	194
"	19.5 cm	568 r .	"	"	197
6.8. 74	20.8 cm .	76 dr.	Maggot	6	237

DATEE	Lemari	WTEIGHPT	METHOD	AREA	WUMBIR
28．5． 74	23.5 cm ．	115dr．	Macgot	1	28
＂	23.0 cm ．	107dx．	＊	＂	29
4． 6.74	23.0 cm ．	106dr．	Minnow	4	42
6．6．74	23.5 cm 。	98dr．	Trap	$6 / 7$	43
＂	23.5 cm 。	108dr．	＂	＂	46
＂	22.5 cm 。	84dr．	＂	＂	48
12．6． 74	22.5 cm 。	98dr．	Macgot	1	55
13．6． 74	23.0 cm ．	99dr．	＂	6	60
20．6．74	24．0cra．	113dx．	＂	＂	51
24．6． 74	21.7 cra ．	$92 d x$.	Trap	1	64
＂	22.5 cm ．	98 dx ．	＂	2／8	73
＂	24．7cra．	136dr．	＂	＂	80
＂	23.0 cm 。	106dr．	＂	11	81
＂	23.3 cm 。	106dr．	＂	＂	82
26．6． 74	23.7 cm ．	108dr．	Mageot	2	85
＂	25.0 cm 。	132dr．	＂	＂	88
＂	24.5 cm ．	135dr．	＂	＂	90
28．6．74	20.7 cm ．	74 dr ．	Trap	2／8	100
4．7． 74	22.5 cm ．	84dr．	＂	5	112
7．7．74	21.0 cm ．	84dr．	Maggot	2	115
8.7 .74	22.3 cm ．	84dr．	Trap	5	135
＂	21．0cm．	80dr．	＂	1	123
＂	22.2 cm ．	103dr．	＂	＂	121
＂	21.0 cm ．	76 dr ．	＂	5	137
11．7．74．	22.7 cm 。	94dr．	＂	＂	145
＂	21.1 cm ．	76 dr ．	＂	＂	147
12．7．74	22.5 cr ．	112dr．	Minnow	＂	154
＂	23.0 cm 。	105dr．	Maggot	1	155

TABER 6. (Cont.)

14.7.74	$24.5 \mathrm{cm}$.	134dr.	Worm	2	160
15.7.74	25.4 cm .	158dr.	Minnow	"	165
"	24.00m.	112d.	"	"	166
11	25.5 cm .	1540.	Worm	"	170
17.7.74	23.0 cm .	108dr.	Trap	7	177
22.7.74	24.00 mm .	106dx.	"	5	193
31.7.74	22.5 cm .	$92 d r$.	"	2	208

	'2 (Standerd Error)		
TOTAL MBAN LEVGIT	23.0	0.4	cm .
Wuat Lemami May/June	23.2	0.5	cm.
Mhal mbighm July	22.8	0.7	cm .
MEAT UETGHT - Trap	$\begin{array}{r} 94.9 \\ =117.6 \end{array}$	7.1	$\begin{aligned} & \mathrm{dr} \\ & \mathrm{gr} . \end{aligned}$
HEAN WEICHT - Bait	$\begin{array}{r} 117.0 \\ =207.1 \end{array}$	10.1	$\begin{aligned} & d r \\ & \text { gr. } \end{aligned}$

TABLE 7．YaAR CLASS 6－NUNBERED

DATTE	LEMGTIE	WBIGHT	METHOD	AREA	MUMB退
22． $5 \cdot 74$	25.0 cm 。	158dr．	Maggot	6	9
＂	26.0 cm 。	168dr．	＂	＂	16
28．5．74	25.5 cm 。	150dr．	＂	＂	27
24．6．74	26.0 cm ．	166dr．	Trap	1	63
＂	24.5 cm ．	130dx．	＂	2／8	76
26．6． 74	26.3 cm 。	160dr．	Maggot	2	89
28．6．74	27.3 cm ．	172dr．	Trap	2／8	98
2． 7.74	26.2 cm ．	140dx．	＂	4	105
4．7．74	26.0 cm 。	168dr．	Maggot	5	114
8．7．74	24.2 cm ．	108dr．	Trap	＂	138
9．7．74	24．0cm．	132dr．	Maggot	2	140
11．7．74	24.0 cm ．	124ar．	Trap	5	143
＂	23.8 cma	108dr．	＂	＂	148
12．7．74	23．0cm．	104dx．	Minnov	2	149
14．7．74	25．0mm．	140dr．	＂	1	150
1	25．0cm	140dr．	＂	＂	151
＂	25.0 cm ．	134dr．	＂	2	152
＂	25.0 cm ．	148dr．	＂	＂	153
＂	25.0 cm ．	156dx．	＂	＂	159
21． 7.74	26.0 cm ．	158dx．	Worm	＂	188
31．7．74	26．0cm．	$99 \mathrm{dr}$.	Trap	4	216
1．8． 74	25.7 cm ．	120dr．	Worm	2	217

TABLIT 7. (Cont.)

2 (Standard Error)

TORAL Imat mengry	25.2	0.4	CiII.
MEAN LBugrie May/June	25.8	0.7	m.
mbat Imante July	24.9	0.5	cm .
MEAT WEIGHP - Trap	$\begin{array}{r} 130.9 \\ =231.7 \end{array}$	19.1	dr 。
WEAT WGIGHT - Bait	$\begin{array}{r} 145.4 \\ =257.4 \end{array}$	9.9	。

TABLE 8. YPAR CLASS 7- NOMBERRD

TABLE 9. RECAPTURES.

NOUTB	$\frac{Y \mathrm{YAR}}{\text { CLASS }}$	DATE	$\begin{gathered} \text { (DAYS) } \\ \text { INTIRVAL } \end{gathered}$	METHOD	AREA	LEMGTE	WEIGHP
10	1	22. $5 \cdot 74$	85	Maggot	6	6.7 cm .	4 cr
		15.8.74		"	"	10.7 cm .	$8 \mathrm{dr}$.
25	1	28.5.74	79	Maggot	6	6.3 cm .	4 dr
		15.8.74		"	"	9.1 crin.	$8 \mathrm{dr}$.
32	1	29.5.74	78	Maggot	6	7.2 cm .	$3 d r$.
		15.8.74		"	"	9.5 cm ,	$70 x$.
6	2	22.5.74	85	Maggot	6	12.0 cm	142 r .
		15.8.74		form	"	13.9 cm .	21 dr .
22	2	28.5.74	1	Maggot	6	10.4cm.	8 dr
		29.5.74		"	"	10.4 cm .	8 dr .
67	2	24.6.74	14	Trap	1	11.0cma.	14dr.
		8.7.74		"	"	11.3 cm .	11dr.
109	2	2. 7.74	5	Trap	4	10.9 cri.	10dx.
		7.7.74		Maggot	2	11.1 cm .	10dr.
		19.7.74		Worm	"	11.7 cm .	110x.
117	2	7.7.74	8	Maggot	2	12.1 cm .	13dr.
		15.7.74		"	"	12.5 cm .	13dr.
120	2	7.7.74	25	Maggot	2	11.4 cm .	12dx.
		1.8. 74		Worm	"	12.2 cm .	14dx.
172	2	15.7.74	31	Worm	2	13.1 cm .	19dr.
		15.8.74		11	"	13.8 cm .	20dr.
173	2	15.7.74	17	Worm	2	12.9 cm .	17 dr .
		1.8. 74		"	"	13.5 cm 。	18dr.
174	2	15.7.74	4	Worm	2	12.7 cm .	17dr.
		19.7.74		"	"	12.9 cm .	16 dr .
185	2	19.7.74	13	Worm	2	12.3 cm .	15dr.
		1.8.74		"	"	12.4 cm .	15dr.
		15.8.74	14	"	"	12.9 cm .	18dx.

TABLIE 9. (Cont.)

WUMBER	$\frac{\mathrm{YEAR}-}{\text { CLASS }}$	DATT	$\begin{gathered} \text { (DAYS) } \\ \text { IMTPRVAL } \end{gathered}$	METHOD	AREA	LEVGITE	WEIGHP
203	2	31.7.74	15	Trap	2	12.5 cm .	11dr.
		15.8. 74		Maggot	"	13.0 cm .	17 dr 。
186	2	19.7.74	27	Worm	2	12.1 cm.	15dr.
		15.8.74		"	"	12.7 cm .	16dx.
40	3	29.5.74	8	Maggot	6	17.0 cm .	36dr.
		6.6 .74		Trap	"	17.0cm.	36dr.
53	3	12. 6. 74	26	Maggot	1	17.0 cm .	36dr.
		8. 7.74		"	6	17.5 cm .	42 dr .
65	3	24.6.74	52	Trap	1	16.8 cm .	40dr.
		15.8.74		Worm	"	18.0 cm .	$42 d x$.
68	3	24.6.74	17	Theap	1	16.3 cm.	41 dr 。
		11.7.74	35	"	"	16.7 cm .	34dr.
		.15.8.74		Worm	"	17.9 cm .	48dr.
87	3	26.6. 74	13	Magsot	2	17.2 cm .	38dr.
		9.7.74		"	"	19.4 cm.	50dr.
141	3	9.7.74	22	Maggot	2	15.2 cm .	25 dr .
		31.7.74		Irap	11	15.50m.	18ar.
157	3	14.7.74	31	Minnow	1	15.1 cm .	24dx.
		15.8.74		Worm	"	16.2 cm .	34dx.
161	3	14.7.74	18	Worm	2	16.20m.	36dr.
		1.8.74		"	"	16.4 cm .	38 dr .
		15.8.74	14	"	1	16.7 cm .	38dr.
171	3	15.7.74	17	Worm	2	19.5 cm .	64 dx .
		1.8.74		"	"	20.3 cm .	67 dr .
		15.8.74	14	1	"	20.3 cm .	68dr.

IWUMBEP	$\frac{\mathrm{YDAR}}{\text { CLASS }}$	DATE	$\begin{gathered} \text { (DAYS) } \\ \text { INTERTAS } \end{gathered}$	METEOD	ARTA	LWNGIT	WEIGET
8	4	22．5． 74	49	liaggot	6	20.5 cm ．	72dx．
		9．7．74		＂	2	20.5 cm 。	740r．
11	4	22．5． 74	7	Maggot	6	19.0 cm ．	52 mr ．
		29．5． 74		＂	＂	19.0 cm ．	52dr．
			13				
		11． 6.74		Trap	＂	19.5 cm ．	56dx．
		15．8． 74	65	Worrn	＂	19.5 cm ．	56dr．
12	4	22．5．74	15	Haggot	6	20.5 cm ．	76 dr 。
		6． 6.74		Treap	＂	20.5 cm ．	68 dr．
		15．8．74		Worm	＂	21.0 cm ．	$72 d \mathrm{r}$ ．
17	4	22．5．74	15	Maggot	6	20.5 cm ．	72 dr ．
		6．6． 74		Trap	＂	20.5 cm ．	68 dr ．
		26．6． 74		Mageot	2	20.5 cm 。	68 dr ．
75	4	24．6． 74	52	Trap	2／8	20.5 cm 。	70 dr ．
		15．8．74		Worm	2	21.6 cm ．	79 dr ．
78	4	24．6．74	52	trap	2／8	20.5 cm ．	68 dr ．
		15．8．74		Worm	2	21.7 cm ．	88dr．
83	4	26．6．74	14	Maggot	2	20.0 cm ．	65 dr ．
		9．7．74		＂	＂	20.0 cm ．	70 dr ．
		21．7．74		Worm	＂	20.3 cm ．	72 ar ．
84	4	26．6． 74	13	Maggot	2	21.0 cm ．	$72 d \mathrm{r}$ 。
		9．7．74		＂	＂	21.0 cm ．	$82 d r$ ．
92	4	26．6． 74	13	Maggot	2	21.5 cm ．	84dr．
		9．7．74		1	＂	21.9 cm ．	92dr．
103	4	28．6． 74	17	Trap	2／8	19．4cm．	58dr．
		15．7．74		Worm	2	19.5 cm ．	60 dr ．
113	4	4． $7 \cdot 74$	42	Trap	5	20.5 cm ．	68 dr ． 86dr．
		15．8．74				21.5 cm ．	

RABLI 9．（cont．）

MOMBER	$\frac{\mathrm{YaR}}{\mathrm{CLASE}}$	DATE	$\begin{aligned} & \text { (DAYS) } \\ & \text { IITIERVAL } \end{aligned}$	METHOD	AREA	Limvati	WIGIET
146	4	11．7． 74	35	Trap	5	20.3 cm ．	68 dr ．
		15．8． 74		Worm	4	20.7 cm ．	73 dr ．
156	4	12． 7.74	34	Maggot	1	19.5 cm ．	$68 \mathrm{dr}$.
		15．8．74		Worm	＂	20.8 cm ．	72 dr ．
237	4	6．8． 74	7	Maggot	6	20.8 cm ．	760 r ．
		15．8．74		Worm	＂	21.3 cm 。	76 dr ．
48	5	6．6． 74	14	Trep	$6 / 7$	22.5 cm ．	84dr．
		20．6． 74		Maggot	6	22.6 cm ．	88 dr ．
61	5	20．6． 74	25	Maggot	6	24.0 cm ．	113dr．
		15．7．74		Worm	2	24.5 cm ．	125dr．
		19．7．74		＂	＂	24.7 cm ．	121dx．
		15．8．74		$"$	＂	24.7 cm ．	128dr．
81	5	24．6．74	52	Trap	2／8	23.0 cm 。	106dr．
		15．8．74		Worm	2	23.5 cm ．	108dr．
115	5	7．7．74	8	Maggot	2	21.0 cm ．	84 dr ．
		15．7．74		＂	＂	21.2 cm ．	86 ar ．
		15．8． 74		Worm	＂	21.9 cm ．	92dr．
145	5	11．7．74	35	Trap	5	22.7 cm．	$94 d x$ ．
		15．8．74		Worm	＂	23.0 cm 。	100dr．
177	5	17．7．74	29	Trap	7	23.0 cm ．	108dx．
		15．8． 74		Worm	＂	23.0 cm ．	100dr．
9	6	22．5．74	15	Maggot	6	25.0 cm ．	158dr．
		6．6． 74		Trap	＂	25.0 cm 。	140dr．
16	6	22．5． 74	15	Maggot	6	26.0 cm ．	168dr．
		6．6． 74		Trap	＂	26.0 cm 。	150dr．
89	6	26．6． 74		Maggot	2	26.3 cm ．	160dr．
		15．7．74		Worm	＂	26.5 cm ．	160dr．
		15．8． 74	31	＂	＂	26.5 cm ，	162dr．

LABLE 9. (Cont.)

NUMBEIE	$\frac{\mathrm{YHAR}}{\text { CLASS }}$	DATE	$\begin{gathered} \text { (DAYS) } \\ \text { INTERVAL } \end{gathered}$	METHED	AREA	LENGTT	WaICHP
140	6	9.7.74		Maggot	2	24.0 cm .	132dr.
		15.7.74		Worm	"	24.1cm.	123ةr.
		15.8.74	31	"	"	24.5 cm .	135dr.
149	6	12. 7.74	20	Minnow	2	23.0 cm 。	104dr.
		1.8. 74		Worm	"	24.5 cm .	108ar.
159	6	14.7.74	3	Minnow	2	25.0 cm .	1560 .
		17.7.74		Trap	7	25.0 cm 。	1440r.
206	7	31. 7.74		Trap	2	28.0 cm .	158dr.
		15.8.74		Worm	"	28.0 cm .	174dr.

TEAR-CLASS ${ }^{\text {S }}$	MAGGOT	WOEM	ammoys	TRAP
1	60	3	-	1
2	33	15	-	42
Including:	$2 \pi / M$	$3 \mathrm{~W} / \mathrm{W}$		$1 \mathrm{~T} / \mathrm{T}$
	$1 T / W$	$1 \mathrm{~m} / \mathrm{L} / \mathrm{T}$		$1 \mathrm{~T} / \mathrm{M} / \mathrm{W}$
	$1 \mathrm{M} / \mathrm{W}$	$1 \mathrm{M} / \mathrm{W}$		
3	9	4	1	20
Including:	2 M/L	$2 \mathrm{~W} / \mathrm{W}$		$1 \mathrm{~T} / \mathrm{T}$
	2M/T			$2 \pi / T$
4	23	3	2	24
	$3 \mathrm{M} / \mathrm{m}$	$1 \mathrm{~m} / \mathrm{T}$		$1 \mathrm{M} / \mathrm{T} / \mathrm{m}$
	$1 \mathrm{~m} / \mathrm{m} / \mathrm{m}$	$1 \mathrm{NL} / \mathrm{NW} / \mathrm{m}$		$1 \mathrm{M} / \mathrm{T}$
Including:	1H/T			$1 \mathrm{M} / \mathrm{M} / \mathrm{T}$
	1N/M/W			
	$1 \mathrm{M} / \mathrm{N} / \mathrm{T}$			
5	12	4	4	19
Including:	$1 \mathrm{H} / \mathrm{N}$	$1 M / W / W$		1 T/
	$1 \mathrm{~N} / \mathrm{W} / \mathrm{W}$			
	1 T			
6	6	5	6	11
Including:	$2 M / T$	$1 \mathrm{~F} / \mathrm{W}$	$1 \mathrm{~F} / \mathrm{T}$	$2 N / T$
	$2 \mathrm{M} / \mathrm{W}$	$2 W / W$	$1 F / W$	$1 \mathrm{~F} / \mathrm{T}$
7	1			4
	KHY: M	ggot	for recapture	
		nnow		
COMPARATIVE TMESS		MG - HOURS	3,144	
		G MAN/HOURS	107	

YEAR－CLASS 1：

IMTGMTE	WHIGHT	LImGery	VEIGEP	LeIGITH	WEICHP
8.4 cm ．	$5 d x$.	9.6 cm.	7 dr ．	10.2 cm ．	8 dr ．
8.8 cr	6 dx.	9.6 cm ．	7 dr	10.2 cm ．	92 r.
8.8 cm ．	6 dr ．	9.6 cm ．	7 dr ．	10.2 cm ．	9dr．
8.9 cr ．	7 dr 。	9.6 cm ．	8 dr	10.3 cm ．	9 dr
9.1 cm ．	7 dr ．	9.6 cra ．	8dx．	10.3 cm ．	9 dr ．
$9.1 \mathrm{cm}$.	78 x	9.7 cm ．	7 dr ．	10.3 cm ．	9dr．
9.1 cm．	8 ar ．	$9.8 \mathrm{cm}$.	8 dx 。	19.3 cm ．	9dr．
9.2 cm 。	7 dx	9.8 cm 。	8 dr	10.4 cm ．	8 dr.
9.4 cm ．	7 dr 。	9.9 cm 。	8 dr ．	10.5 cm ．	7 dr ．
9.5 cm ．	6 dr ．	10.0 cm ．	$72 r$.	10.5 cm ．	8 dr ．
9.5 cm ．	$6 d^{6}$.	10.0 cm 。	8 dr	10.6 cm ．	10dr．
9.5 cm ，	$7 \mathrm{~d} x$.	10.0 cm ．	8 dx ．	10.7 cm ．	$8 d x$.
9.5 cm	7 dr	10.1 cm ．	8 dr	10.7 cm ．	8 dr ．
9.5 cm ．	8dx．	10.1 cri．	8 dr	10.7 cm ．	10dr．
9.5 cm	8 ar ．	10.1 cra ．	90．r．	10.8 cm ．	9ar．
			2 （Standard Error）		
	MBAN Limuch	$=$	$9.8 \pm$	m，	
	Wean whicer	$=$	$\begin{array}{r} 7.7 \pm \\ 13.7 \end{array}$	$\begin{aligned} & \mathrm{dr} . \\ & \mathrm{gx} \text { 。 } \end{aligned}$	

THAR-CLASS 2:

LEMGTH	WEIGITP	Limgili	WEIGHT	Lemarit	WEIGHI
11.4 cm .	12dr.	12.4cm.	16 dr .	13.3 cm .	182 x
11.60m.	11 dr .	12.7cm.	16dr.	13.3 cm .	18dx.
11.7 cm .	10dx.	12.8 cm .	163r.	13.3 cm .	20dr.
11.7 cm .	12dx.	12.8 cm .	17dr.	13.6 cm .	18ar.
11.8 cm .	11dr.	12.9 cm .	13dr.	13.7 cm .	22dr.
11.8 cm.	13dr.	12.9 cm .	16 dr .	13.8 cm .	20dr.
12.0cm.	12dx.	12.9 cm .	18dr.	13.8 cm .	21dx.
12.0 cm .	12dr.	12.9 cm .	18dr.	13.9 cri .	21dr.
12.0 cm .	13dr.	13.0 cm .	17 dr .	13.9 cm .	21 dr .
12.0cm.	14dr.	13.1 cm .	16dr.	14.0 cm 。	20dr.
12.0 cm .	16 dr .	13.2 cm .	16 dr.	14.1 cm .	21 dr .
12.2 cm .	142 r.	13.2 cm .	16 dr .	14.1 cm .	210.
12.3 cm .	14 dr .	13.2 cm .	16 dr.		

	2 (Stendard Error)
MEAN LBHGITA	$=12.8 \pm 0.3 \mathrm{~cm}$.
MHAN WBIGIT	$=16.2 \pm 1.1 \mathrm{dr}$.
$=$	28.7

LEIGMIE	WEIGHP	LEITGTE	WEIGHI	IEMGITH	WEIGEP
14．4cm．	20dr．	16.7 cm ．	38dr．	17.9 cm ．	48 dr ．
14．4cm．	22dr．	16.9 cm ．	39dx．	18.0 cm ．	42 dr ．
14．4cm．	22dx．	17.0 cm ．	$42 d \mathrm{r}$ ．	18.0 cm ．	45 dr ．
14.5 cm 。	25dr．	17．3cm．	45 dr ．	18.9 cm ．	53dr．
14．8cm．	24dr．	17.5 cm ．	40dr．	19.1 cm ．	53 ar ．
14.8 cm ．	24．0．	17.6 cm.	$42 d r$.	19.6 cm ．	540 r ．
15．0cm．	24dx：	17.7 cm ．	38dr．	20．2cm．	68 dr ．
16.2 cm ．	$34 \mathrm{dr}$.				

MEAN LGIGMH	$=16.9 \pm 0.8 \mathrm{~cm}$.
MEAN WEIGETP	$=38.3 \pm 5.5 \mathrm{dr}$.
	$=67.8$

YAAR－CLASS 4：

Lewaris	WeIGITP	IENGIT	WEIGHT	ITHGTH	WEIGEI
19．2cm．	$56 \mathrm{dr}$.	21．0cra．	72 dr ．	21.6 cm ．	79dr．
19.8 cm ．	70dr．	21.3 cm ．	76 dr 。	21.7 cm ．	98 ar ．
20.4 cm ，	69 dr ．	21.3 cm ．	78 dr ．	22.0 cm 。	91dr．
20.4 cm ．	69 dr ．	21.3 cm ．	78dr．	22.8 cm ．	104dx．
20.6 cm ．	74dr．	21.5 cm ．	76 dr ．	22.8 cm ．	106dr．
20．70m．	73dr．	21.5 cm ．	86 dr ．	23.0 cm ．	103dr．
20.88 cra ．	$72 \mathrm{dr}$.				

	2 （Standard Error）
MEAT LEMGTH	$=21.2 \pm 0.5 \mathrm{~cm}$.
$M E A T$ WBIGHT	$=80.5 \pm 6.3 \mathrm{dr}$.
	$=142.5$

YEAR－CLASS 5：

LTHGMIT	Wetcrer	LITGUTH	Wetget	LEINGTII	WEIGITT
21.9 crn ．	102dr．	23.3 cm 。	86ar．	24.0 cm ．	123dr．
23.0 cm ．	96dr．	23.5 cm 。	108dr．	24．0cm．	1240r．
23.0 cra 。	100dr．	24．0cm．	122dr．		
			2 （Standard Error）		
	Meas lingati $=23.3 \pm 0.5 \mathrm{~cm}$ ．				
TOAT WEIGHT			107.6	dr．	
			190.0	gr．	

YBAR－CLASS 6：

YPAR－CLASS 7：

ILATGIT WEICRT
28．0cm．174dr．
28.0 cm ．198dr．

Nonim Ligity $=28.0 \mathrm{~cm}$ ．
WEAN Witgrre $=186.0 \mathrm{dr}$ ．
$=329.2 \mathrm{gr}$ ．

CHAPMER STX

BIBLIOGPAPHY

Allen, K.R. (1935) The food and migration of perch (Perca fluviatilis I.) in Windermere.
J. An. Ecol. 4. 264-273

Allen, K.R. (1942) Comparison of bottom faunas as sources of availeble fish food.

Trans. Am. Fish Soc. 71. 275-283
Begenal, T.B. (1972) The variability in numbers of perch caught in traps. Freshwater Biology 1972. Vol. 2. $27-36$

Hartley, P.H.T. (1940) The food of coarse fish; being the interim report of the coarse fish investigation.
Preshwater Biol. Ass. Sc. Pub. No. 3.
Hess, A.D. \& Swartz, A. The forage ratio and its use in determining the food (1941)

File, R. (1945) Standardization of methods of expressing lengths and weights of fish. Treans. Am. Fish Soc. 1945.

Hynes, H.B.H. (1950) The food of freshoter sticklebcks, with a review of methods used in studies of the food of fishes.
J. An. Bcol. 19. 1. 36-58

Laglex, K.F. (1968) In; - Methods Lor assessment of fish production in fresh waters. Blackwell, Oxford.

Le Cren, E.D. (1947) The determination of the age and growth of the perch (Perca fluviatilis) from the opercular bone. J. An. Ecol. 16. 2. 188-204

Le Cren, H.D. (1951) The Iength-weight relationship and seasonal cycle in gonad weight and condition in perch.
J. An. Ecol. 20. 201-219

Macan, T.T. (1959) A guide to freshwater invertebrate animals. Longmans, London.

Maling, D.H. (1955) The Geomorphology of the Wear Valley. PH. D. Thesis. Univ. of Durham.

Moore, W.G. (1941)	Studies on the feeding habits of fishes. Ecology 22. 91-96
Moore, W.E. (1968)	A Iight-weight pulsed D. C. Fish Shocker. J. Appl. Ecol. 5.
Neill, T. M. (1938)	The food and feeding of the brown trout (Salmo trutta Is) in relation to the organic environment. Trans. Roy. Soc. Edinb. 59. 481-520
Ricker, V.t. (1958)	Handbook of computations for Biological statistics of fish populations. Fish. Res. Bd. Can. Bull. No. 119.
Ricker, W. T. (1968) (Ed.)	Methods for assessment of fish production in freshwaters. Blackwell, Oxford.
Syynnerton, G. H. \& Worthington, E.B. (1940)	Note on the food of fish in Haweswater (Westmoreland). J. An. Ecol. 16. 2. 188-204
Wheeler, A. (1969)	The Pishes of the British Isles and N. W. Europe. Macmillan, London.
Worthington, E.B. (1950)	An experiment with populations of fish in Windermere. Proc. Zoo. Soc. Lond. 120. 113-149.

CHAPTIR STVRN

CHAPTER SEVENT

ACKMONLEDGEMEHMS

I wish to offer my grateful thanks to the following:
The Governor, Remand Centre, Durhan: for permission to use the pond The Northumbrian River Authority: for permission to carry out the study T. B. Bagenal, Esq., F.B.A.g: for his advice, suggestions and loan of the Windermere perch trap. Staff and fellow students at the University: for their help and encouragement.

