W Durham
University

AR

Durham E-Theses

Galvanomagnetic effects in antimony and doped
antimony single crystals

Oktu, Ozcan

How to cite:

Oktu, Ozcan (1967) Galvanomagnetic effects in antimony and doped antimony single crystals, Durham
theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/9241/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses
e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk


http://www.dur.ac.uk
http://etheses.dur.ac.uk/9241/
 http://etheses.dur.ac.uk/9241/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

GALVANOMAGNETIC EFFECTS IN ANTIMONY AND

DOPED ANTIMONY SINGLE CRYSTALS

A thesis submitted to the University
of Durham for the Degree of Doctor

of Philosophy

Ozcan Bktl

Department of Applied Physics,
Science Laboratories,
South Road,

Durham.

September, 1967.




ABSTRACT

The twelve components of the magnetoresistivity
tensor in antimony up to second order in magnetic field have
been measured at 273°K, 225°K, 183°K, 139°K and 77°K. Results
are interpreted in terms of a two carrier, multi-valley band
model to obtain carrier mobilities and densities as a function
of temperature and details of the nature of the Fermi surface.
In agreement with recent theoretical band structure calculations
the electrons aré shown to be sited in pockets with a small
tilt angle (50) away from the trigonal axis, while the extrema
containing holes have a large tilt angle (24°). The temperature

dependence of mobilities of electrons and holes are found to be

T_1’42 and T_l'48 respectively. Carrier densities are almost
independent of temperature, ranging from 3.9 x 1019 c:m_3 at
19 -3

77°K to 4.2 x 10 cm at 273°K for both electrons and holes.
The Seebeck coefficient of antimony can be interpreted
by inserting the mobility data obtained in a two parabolic band
model. Results suggest that the Fermi energies are equal to
0.098 eV for electrons and 0.067 eV for holes giving a band
overlap energy of 0.165 eV. These energy parameters are
essentially temperature independent between 77°K and room
temperature, but increase markedly at higher temperatures.

Holes probably occupy six and electrons three pockets.




Conductivities, Hall coefficients and some of the
magnetoresistivity coefficients have been measured in tin-
antimony alloys of compositions 1.7 at.%, 2.0 at.%, 2.5 at.%
3.0 at% and 8 at.% tin at 77°K, 183°K and 273°K to obtain
further knowledge of the valence band structure. Results
cannot be explained quantitatively by a simple tilted
ellipsoidal band model, although they evidence that holes are

to be assigned to the highly tilted ellipsoids.
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CHAPTER I

The Crystal and Band Structure of Antimony

1.1. Introduction

The group V elements bismuth, antimony and arsenic are
semimetals. All have a rhombohedral crystal structure (space
group R3m) with two atoms in each unit cell. Thus, the first
five Brillouin zones contain just enough states to be filled
completely by the ten electrons in the unit cell. However,
the fifth zone just overlaps the sixth; a small amount of
electrons (in Sb about 1073 per afom) spill over into the
conduction band, leaving an equal number of holes in the
valence band, see figure 1l.1. The small carrier density
and resultant low Fermi energies of the electrons and the holes
give these elements a relatively different character from metals:
electrical conductivities are less, while Hall,magnetoresistivity
and Seebeck coefficients are greater. For these reasons they
are called semimetals. Both electron and hole effective masses
are small and at the same order of magnitude; the Fermi level
remains pinned near the middle of the band overlap at all
temperatures below the melting point: carrier polulations are
degenerate. These features of the semimetals dominate the

transport properties, the main object of this work.




FIGURE 1.1

Fermi level

Electrons

Schematic diagram of the electron and hole bands in

semimetals. In antimony ;-Eb is about 0.2 eV.
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To obtain details of carrier mobilities and densities
and the band structure of antimony, the low field galvanomagnetic
effects have been measured between 77°K and 273°K. For
quantitative assessment of the transport properties, a model
of the Fermi surface is required in the solution of the Boltzmann
equation. When the present studies were started, the band
structure of antimony was a subject of controversy: although
many experimental studies had indicated that the Fermi surface
consists of two sets of ellipsoids, their number and arrange-
ment in the Brillouin zone and in particular the true assignment
of the electrons and the holes to these sets were not known.

A three band model was also suggested. Because of this lack
of knowledge experimental data for room temperature low field
galvanomagnetic effects and thermoelectric power data
(Saunders et al 1965) had not been fully explained.

During the progress of this work, a theoretical band
structure calculation has been completed (Falicov and Lin
1966). Together with this theoretical work, experimental
studies of the cyclotron resonance (Datars and Vanderkooy 1964)
and the de Haas-~Van Alphen effect in both pure (Windmiller and
Priestley 1965) and tin and tellurium doped antimony (Ishizawa
and Tanuma 1965) have established certain aspects of the band
structure of antimony. These will be detailed in section 1.3.
But further experimental evidence is desirable from which to
assign the electrons and the holes to the correct sets of

pockets, oneaim of this work: experimental measurements of
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the Hall coefficient and the Seebeck effect, both positive in
sign, shouldallow direct discrimination between the carriers.
In the present work the low field galvanomagnetic effects in
antimony have been explained by the band structure model
determined by Falicov and Lin (1966). The Seebeck coefficient
data is also explained using the carrier mobilities obtained
from the galvanomagnetic effects. Measurements of antimony-tin
alloys are also employed to give further evidence of the band
structure of antimony.

To analyse the galvanomagnetic effects, a2 model of the
Fermi surface must be assumed. Before discussion of this
model, the crystal structure and the Brillouin zone of the

group V semimetals will be described.

1.2 The Crystal Structure and Brillouin Zone

The group V semimetals bismuth, antimony and arsenic
all have the arsenic (A7) crystal structure, which is closely
related to the face centred cubic structure. The unit cell is
rhombohedral and contains two atoms. A rhombohedral lattice
can be constructed in a simple cubic structure so that each
cell contains two atoms, one at the corners and the other at the
body centre of the cell, figure 1.2. In this case the
rhombohedral angle is 60°. The A7 structure can be obtained
from this cubic lattice by applying two independent distortions;

a shear and an internal displacement of the atoms. The shear




FIGURE 1.2
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is applied along the body diagonal of the cube so that the
rhombohedral angle 2 is reduced from 60° to the values shown,
together with a parameter u, a measure of the internal dis-

placement, in table 1.1.

Table 1.1.

Structure a u £

Simple cubic 60° 0.250 o)
Bi 57° 14 0.237 0.0420
Sb 57° 14 0.234 0.0416
As 54° 10 0.226 0.0877

The internal displacement of the atoms can be visualised easily
by considering the simple cubic structure as being composed of
two interpenetrating face centered cubic lattices. If it is
assumed that the shear along the body diagonal has already been
applied, the face centred cubic lattices in fact form two face
centred rhombohedral lattices. Then, the A7 structure is
obtained by shifting one of these rhombohedral lattices towards
the other along the sheared diagonal, which retains its symmetry
and becomes the trigonal axis of the A7 structure. The parameter

u is defined by

T= ud ; u L 1/4 (1.1)

where 2t is the smaller vector in the trigonal direction separating
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the two interpretating lattices and d is the trigonal body
diagonal of one of the lattices. The value u = 1/4 corresponds
to that simple rhombohedral structure constructed in a simple
cubic lattice.

The rhombohedral primitive translation vectors of the
A7 structure can be expressed in the Cartesian co-ordinate system

formed by the cubic axes in the absence of shear. These are

a; = ag {6, 1, 1}
ag = ag {l,l& , 1}
az = aj il, 1, £ } (1.2)

where %}- indicates rectangular co-ordinates and £ is related

to the shear angle by
€= [1 - (1 + cosa - 2 c:os'zot)l/2 /Cosa
or cosa = (1 + 28)/(2 + £2) (1.3)

The A7 structure retains some of the cubic symmetry
elements, including the trigonal axis along which the distor-
tion of the cubic system has taken place. In the cubic system
this axis has Miller indices [11;]. A stereographic projection
of the cubic system is shown in figure 1.3 and on which are
indicated the symmetry properties of antimony, The other
symmetry elements of the cubic system remaining after the dis-

tortion are the three binary axes perpendicular to the trigonal




FIGURE 1.3

BIS.
24
B%(l)\ll | | mirror| plane ‘ 1o
[ o
rLell
™ ° ™ ®
m | 2

pOIl

ol

X3

110 <101
BIN. ' -~

Standard (I11) projection. for cubic crystals showing those

 symmetry planes and directions used to describe the A7 structure
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axis (in cubic indices [110], [Oli], [101] ) and three mirror
planes, containing the trigonal axis and perpendicular to the
binary axes, all are shown in figure 1.3. As @ deviates from
60°, all the other symmetry elements of the cubic system lose
their symmetry although they retain some vestige of their
identity. For example, an X-ray photograph of antimony taken
along the direction corresponding to the [100] direction of the
cubic system shows almost four-fold symmetry. Similarly the
[lli] direction has "pseudo-trigonal'" symmetry. These two are
the interesting pseudo-symmetry elements of the A7 structure.

A set of X-ray photographs taken along the trigonal, the binary,
the bisectrix axes and these two pseudo-symmetry directions

are presented in figures 1.4. to 1.8.

The physical properties of group V semimetals afe
usually referred to a right handed Cartesian co-ordinate systemn,
see figure 1.9., based on these symmetry elements. The (x)
and the (z) axes of the co-ordinate system are the binary and
the trigonal axes respectively of the crystal. The (y) axis,
called the bisectrix axis, is defined in the mirror plane to
form the rlght handed co-ordinate system. Since the binary
axis cannot be defined uniquely (figure 1.3), there are two
independent co-ordinate systems. However by means of the pseudo-
symmetry elements of the crystal, the two co-ordinate systems can
be distinguished. This will now be discussed particularly in
relation to the Brillouin zone which shows all these symmetry

elements of the A7 structure.
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Once the crystal structure is known, the Brillouin\
zone can be obtained by geometrical construction in k-space.

The first Brillouin zone of the A7 structure with the symmetry
points in standard notations is shown in figure 1.10.(Jones 1960).
This can be considered as the Brillouin zone of the face centred
cubic structure compressed along the trigonal direction (' T.

The square faces in the Brillouin zone of face centred cubic
structure now became rectangular and the hexagonal faces not
normal to the trigonal direction now have unequal adjacent sides.
The faces normal to the trigonal axis remain hexagons. One of
the mirror planes is exemplified by UTZLNXUY in the Brillouin
zone. The binary UK, and the bisectrix "N, axes are also shown.
V"X and "L correspond to the pseudo-four fold and pseudo-three
fold directioms of the crystal structure respectively.

An important feature is that in the mirror plane rotation
from the trigonal axis T towards the bisectrix axis can be
taken in one of the two senses, either through the point X or
through the point L (Windmiller 1966). The ambiguity, arising
from the fact that binary axes cannot be uniquely defined, can
be resolved through consideration of the sense of this rotation.
Thus, one rotational Cartesian co-ordinate system can be defined
so that the rotation sense is that from the trigonal axis (T
towards the bisectrix axis passing through "L. Equally the
system could be defined in the sense passing through ©'X.

In this work, the former definition is employed while Windmiller
(1966) and Falicov and Lin (1966) used the latter. Once the

Brillouin zone is known the band structure can be discussed and
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we now turn to this.

1.3. The Band Structure:

The many studies of semimetals have shown that the
Fermi surface consists of a number of pieces in each band.
These pockets are locecated at equivalent points in the Brillouin
zone so that they have in total the same symmetry as the
reciprocal lattice. The Fermi surface of antimony consists of
two sets of closed, somewhat warped prolate ellipsoids, one which
corresponds to electrons, the other to holes. Development of
this model has followed from extensive experimental studies of
the de Haas-van Alphen effect (Shoenberg 1952, Saito 1964,
Windmiller and Priestley 1965, Ishizawa and Tanuma 1965), the
de Haas -~ Shubnikov effect (Ketterson and Eckstein 1963, Rao et
al 1964), the ultrasonic attenuation (Eriksson et al 1964), tHe
cyclotron resonance (Datars and Dexter 1961, Datars and Vanderkooy
1964), the infra-red absorption (Nanney 1963), and the low
field galvanomagnetic effects (Freedman and Juretschke 1961,
Epstein and Juretschke 1963). In particular the recent experi-
ments on the cyclotron resonance (Datars and Vanderkooy 1964)
and the de Haas-van Alphen effect (Windmiller and Priestly 1965
and Windmiller 1966) clearly show the presence of the two sets
of pockets.

The experimental information can be summarized in the

following way (Falicov and Lin 1966):

(i) Both sets of pockets have at least: binary or mirror

symmetry.
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(ii) Both sets of pockets are tilted in the trigonal-bisectrix
plane, i.e. exemplified by UTZLNXUDM in figure 1.10. The de
Haas-van Alphen data of Windmiller (1966) shows that one set
gives a maximum area for a maghetic field direction of about
6.5° from the trigonal axis in the quadrant containing "T, T'L
and "N (henceforth these will be described as thé small tilt
pockets), see figures 1.10 and 1.11. The other set gives a
maximum area at a magnetic field direction of about 31° in the
same quadrant (to be described as the large tilt pockets).
But the pockets are not true ellipsoids: the directions of the
minumum areas are 87.7° and 52.6° respectively in the adjacent
quadrant containing "T, "X and "N. The deviation of pockets
from ellipsoids is clear: for true ellipsoids the sum of the
two angles of minimum and maximum area directions measured in
the two adjacent quadrants would be equal to 900, see figure 1.11.
(iii) The ratio of the volumes between single pockets of small
and large tilt angles is 2:1 within experimental error.

A theoretical calculation of the band structures
of semimetals has been carried out by Cohen, Falicov and Golin
(1964). Their calculation is based on the crystal structure
and chemistry of group V elements and uses the pseudo-potential
technique. More recently Falicov and Lin (1966) have completed
the pseudo-potential calculations for antimony. Results show
that the location of the holes is at or near the point T and that

of the electrons should be at or close to the point L in the

Brillouin zone. Group theoretical arguments (Falicov and Lin 1966)
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have given the possible location, number and symmetry properties
of the pockets. The holes can be located

(a) in a single pocket of symmetry 3m centred at T;

(b) in two equivalent pockets centred at A along the trigonal
axis (each pocket having a symmetry 3m and the net symmetry is
then 3 m): |

(c) in six equivalent pockets, each of symmetry 2, centred at Q
along the binary axis;

(d) in six equivalent pockets, each of symmetry m, centred on
the mirror plane close to T;

(e) in twelve equivalent pockets of no symmetry at a general
point in the vicinity of T.

The electrons can be located

(A) in three equivalent pockets each of symmetry 2/m, centred
at the points L;

(B) in six equivalent pockets, each of symmetry 2, centred at Y
along the binary axis:

(C) in six equivalent pockets,each of symmetry m, centred on the
mirror plane near L;

(D) in twelve equivalent pockets of no symmetry at a general point
close to L.

From comparison of experimental and group theoretical
arguments, the Fermi surface of antimony has resulted. Possibilities
(e) and (D) which have no symmetry are eliminated by reference
to the experimental results. Furthermore, since the ratio of

the volumes of the single pockets of small and large tilt is 2:1,
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the result is restricted to cases (A) for the electrons and

(c) or (d) for the holes. Thus, there should be six hole
pockets close to T each having either binary or mirror symmetry
and three electron pockets with 2/m symmetry centred at L .

This can only be true, if the holes are assigned to the large
tilt pockets and the electrons to the small tilt pockets. Thus,
because the number of electrons is equal to the number of holes,
in this model the volume of small tilt pockets must be twice
that of the large tilt pockets. Experimental evidence for fhis
predicted model of Falicov and Lin (1966) has been provided by
Ishizawa and Tanuma (1965). They find, when antimony is doped
with tin, a decrease in the period of the de Haas-van Alphen
oscillations corresponding to carriers in the large-tilt
pockets while the periods due to extrema with small tilt angle
increase. Tin doping introduces holes. Now the period of the
de Haas-van Alphen oscillations is related to the cross-sectional

area of the Fermi surface by

P= —— (1.4)
hcA
Therefore, since the cross-sectional area of the large tilt
angle pockets increases on tin doping, thus suggest that these
are the pockets containing holes. Further experimental evidence
of the placement of the carriersto the correct pockets arise from
the present work; the galvanomagnetic effects both in pure and

tin-doped crystals can only be explained by assigning the holes
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to the large tilt pockets. Verification of this point is of some
importance: it is contrary to previous assumption.

Previously the large-tilt ellipsoids, which were first
observed by Shoenberg (1952), have been taken to contain electrons.
If the large-tilt pockets are assumed to contain electrons, it
is not possible to explain the low field galvanomaghetic effects
(Juretschke et al 1961, 1963) and the Seebeck coefficient data
of antimony (Saunders et .al 1965) by the two band model. To
explain the galvanomagnetic effects, with the assumption that
Shoenberg carriers are electrons, Hall and Koenig (1964) had
to postulate a three band model for antimony. Their model was
based on the finding of heavy holes by a cyclotron resonance
experiment (Datars and Dexter 1961). However in the later
cyclotron resonance experiment by Datars and Vanderkooy (1964)
and in the de Haas-van Alphen experiment of Windmiller (1966)
there is no evidence of a third carrier.

From fuirther theoretical procedures, Falicov and Lin
(1966) have shown that the case (d) and not (c) correspond to
the true structure for the hole pockets in antimony, i.e.
there are six pockets of mirror symmetry located on the mirror
planes, close to T. Their calculated, cross-section of the
electron and the hole pockets in the mirror plane are reproduced
in figures 1.12 and 1.13 respectively. The tilt angles shown
on the figures correspond to the minimum and maximum area of the
pockets and are compared in table 1.2. with the data of

Windmiller (1966).
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Table 1.2.

The comparison of the calculated (Falicov and Lin 1966) and
measured (Windmiller 1966) tilt angles of the electron and the

hole pockets

Electron Hole
Exp. The. Exp. The.
Tilt angle of max. area +6.5° +7° 31° -
Tilt angle of min. area -87.7° -87.5° -52,6° -41°

Now to summarise. the recent theoretical and experi-
mental predictions. The electron and the hole pockets, can both
be approximated to ellipsoids, this can be seen from figures
1.12 and 1.13, and lie in the sets of three trigonal-bisectrix
planes exemplified by MZLNUXD™ in the Brillouin zone. There
appear to be three electron ellipsoids located at points
L and six hole ellipsoids placed close to T. A further result
is that one principal axis of the ellipsoids is coincident with
the binary axis of the crystal, while the other two lie in the
mirror plane, figure 1.11. A photograph of a model of the
Fermi surface of antimony contructed in the Brillouin zone of the
face centred cubic crystal structure is shown in figure 1.14.

The two properties of antimony, the crystal and the
band structure essential for the discussion of the galvanomagnetic

effects in antimony have now been described. In the next chapter




FIGURE 1.14 A model of the Fermi surface of
antimony. Dark surfaces contain electrons

and the others holes.
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the theory of the galvanomagnetic effects, the basis of the

interpretation of the experimental data, is to be discussed.
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CHAPTER 11

The Theory of the Galvanomagnetic Effects

in Antimony.

2.1. Introduction

Measurements of electrical resistivity, Hall coefficient
and magnetoresistivity provide basic information about the
conduction processes in solids. As a starting point, for an
isotropic solid the mobilities and carrier densities can be
derived for a simple band model composed of spherical energy
surfaces centred at k = O. Such a model does not apply for an
anisotropic material like antimony. Even many cubic semiconductors
have a complicated, multivalley band structure and show, for example,
a finite longitudinal magnetoresistance (see Putley 1960), which
on the simple model should be zero. Of course, this model is
useful for first analysis of transport data on new materials.

When the band structure is described by a multivalley
system with quadratic constant energy surfaces as in antimony,
the Boltzmann equation is to be solved to relate the galvano-
magnetic coefficients to the carrier mobilities and densities.

The procedure for solving the Boltzmann equation for a
multivalleyed band structure is developed in this chapter. But
before this discussion a description of the relationship between

crystal structure and galvanomagnetic effects is introduced in
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the next section, followed by the experimental design used for

measurement -of the galvanomagnetic coefficients.

2.2, Phenomenological Theory

In an anisotropic solid the relation between the current
density J, and applied electric field E involves a tensor, and

in the Cartesian co-ordinate system it takes the form

J; = Gj:j EJ. (2.1)
or Ei = f%j Jj (2.2)

where GIj and fﬁj are called the conductivity and the resistivity
tensors respectively, and repeated indices indicate summation

3
over 1, 2, 3, i.e. E; =_f§j Jj = j=1.f§j Jj‘ The number of
independent tensor components depends upon the crystal structure
and symmetry. For an uniaxial crystal, such as antimony, two
components are needed to define the resistivity completely, one
along (j%s) and the other perpendicular gfal) to the trigonal

axis. Thus

P ) 0
fuo = ° i 0
| 0 0 33

In a magnetic field H, the components of the resistivity

and conductivity tensors are general functions of H and Ohm's
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law can be written as

I = 9 (H) E, (2.3)

I

or BE.
i

Py @ 3, (2.4)

GIJ(E) and‘fﬁj(g) are called magnetoconductivity and magneto-

resistivity tensors respectively and obey the Onsager relation,

Oy @ =g (-B) and p,E) = P, (-H) (2.5)

OIJ(E) and,Fﬁj(E) also are subject to the restrictions imposed
by the crystal symmetry.
Any second-rank tensor can be devided into two parts;
one (Sij) is symmetrical and the second (aij) antisymetrical.

Therefore, equation (2.4) can be written as

E; = s;5(H) Jj +ay (@) J, - (2.86)
and Sij = 1/2 ( fﬁj +.ng) = 8540
a5y = 1/2 (pij _pji) =-ag; (2.7)

also hold. Then Onsager's relations can be written for sij(g)

and aij(g) as
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s. . (H)

15 H Sij(—E) = s,..(H)

Ji

)
~~
j=e
g
Il

For low magnetic fields, when uH<g'l, where p isthe
carrier mobility, sij(g) and aij(g) can be expanded in terms
of a rapidly converging series of increasing powers of the

magnetic field H, i.e.

Sig @ = Pi5 * Aigka B By * Fijiamn B By By Hy o+ o--m-e- ;
aij(g) = Rijk Hk + Tijklm Hk H1 Hm Fo—————— . (2.9)
The coefficients fﬁj’ Rijk’Aijkl are called galvanomagnetic‘

coefficients. In general, the coefficients of the antisymmetrical

part of the magnetoresistivity tensor components, i.e. Rijk’
etc., are called Hall, and coefficients of the symmetrical

Ty kim’
part, i.e. Aijkl, Fijklmn’ etc., magnetore31stlvlty coefficients.
They have the following symmetry relations (Juretschke 1955)

5%j=%i

Aijkl o Ajikl = Aij (all permutations of k 1)

Bijk = Byix (2.10)

Tijklm = —Tjiklm = Tij(all permutations of k 1 m)

These symmetry relations reduce the number of independent




- 19 -

coefficients which also depend upon the crystal structure.

For example, the explicit expression of (H) up to H2 is
o=

P12@) = Pry + Rygq Hy + Ryjp Hy + Rygg Hy +

2 A H2 + A Hz + A H, H, +

A B 1122 Hp * Ayy33 Hg + Ay545 Hy Hy

1111 1 7

Aiq13 By Hg + Ajgo0 Hy Hy + Ajgoq Hy H 5 4+

+ A H. H

A i 1132 73 "2°

1131 H3 By
This contains 13 coefficients. If the symmetry relations (2.10)

are applied, i.e.

R = -R = 0 together with R = R = Q

112 113

Ajq33 T B3

A1123 = A4132 -

the number of independent coefficients reduces to 'seven. For a
cubic system all but four coefficients vanish. The nonvanishing
coefficients are ;ﬁl’ Allll’ A1122 and A1133, and furthermore
cubic symmetry implies that A1122 equals to A1133.‘ Therefore,
three constants are sufficient to express the magnetoresistivity

tensor component-fal(g). For the rhombohedral system (R3m), two
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of the seven coefficients vanish A1112 and A1113, leaving five
independent coefficients in fﬁl(H)'

Juretschke (1955) has detailed the results for the
rhombohedral structure and gives the following expressions

for all the magnetoresistivity tensor components, for terms up to

second order in magnetic field:

2 2 2

Pra@ = Qg+ AT+ A GHT + A SHST - 24, HoH,,
(H) = P, + A H 2 i A B2+ A .82+ 20 HEH
oo 11+ Apofly 1189 13Y3 o4HoHs,
() = Qg + A H 2 v a2+ a.02 (2.11)
P53 H 33 + Az Hy 31Hs 33fs > .
s @) = Ryo H ~ A H 2. H2 .08 HEH
o3 (H 9318 — A40thy 4280 448083

5 () = Rogyfly + 28, ,HH) — 24,00y,

Pig () = RygaHy - 24, HoH, + (A, - A; ) H Hy.

The remaining components of ;EJ(H) are obtainable from the

Onsager relation f&j(H) = Séi(_H)' Antimony then has twelve
independent, isothermal, galvanomagnetic coefficients to

second order in the magnetic field, there being two resistivity
components,‘P11 and F%S’ two Hall coefficients R231 and R123, taken

as the negatives of the conventionally defined Hall coefficients,

and eight magnetoresistance coefficients A (the short notation

11
for Ayy, 17) Ajp(Agy 99)y Ayg(Ay5,33), Agy(Agg,q9), A (A5, 05),
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A, (A A, (A and A42(A23,22). These coefficients

24( 22’23)’ 33( 33? 33)’
are defined conveniently with respect to the usual orthogonal
co-ordinate system described in the first chapter, having 1 along
the binary (x-) axis, 2 along the bisectrix (y-) axis and 3

along the trigonal (z-) axis.

The magnetoresistivity coefficients are the experiment-
ally measured quantities. However, theoretical calculations are
more conveniently carried out in terms of the conductivity tensor.
There is a complete correspondence between the magnetoresistivity
and magnetoconductivity tensor components. In fact the same
discussion just carried out for the magnetoresistivity tensor
can be applied to the magnetoconductivity tensor, one being the

reciprocal tensor of the other. Thus, magnetoconductivity tensor

components can also be expanded in terms of increasing powers of

H, i.e.
Cj_’j (E) = G;:_j and Piijk - BijlekHl had s e 2 5 0 8 0 (2. 12)

where CEB are the conductivity, Pijk are Hall conductivity and

B are the magnetoconductivity coefficients. The reason why

ijkl
negative signs are used in the expansion (2.12) is as follows:
the magnetoresistivity coefficients are positive (as they must
be since the applied magnetic field increases the resistance)
and thus the magnetoconductivity coefficients must be negative.
But, because it is more convenient to deal with positive

quantities, the expansion, in general, is represented in the

above form (2.12) and the coefficients defined in this way
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have positive signs.
One can relate the coefficients sz, Pijk’ Bijkl to
jﬁj’ Rijk’ Aijkl by solving the equation

G, ® P - S, (2.13)

where Sij is the Kronecker delta, being equal to 1 for i = j
and zero for i # j. The calculations have been completed by
Juretschke (1955) for the rhombohedral (R3m) structure for terms
up to second order in magnetic field. With the assumption that
the expressions are in the form (2.9) and (2.12), the results

are given by

1 1 R
O‘ = =, G:;S = oem— P 23 = __%&3_
11 0, 33 1 P
_ Paga 5 -1 5 - 33
Po31 11 -2 33~ T3
511f53 P11 P33
B - A24 5 o a2
24 , 42 = FR
Pll Pr1Pa3
2 2
s -1z Fam s -3 Pias
= s = +
12 ‘Fp 2 13 3 3
o Pufss P Pu
A RZ A 1 R
5o a1, PFam | 5 44 RBi23 Bo3p

= 5 - (2.14
- Pga Plljjg?) 0 Pufes 921 Ps3 14
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and G~.,

These equations remain valid when Fﬁj’ Rijk’ Aijkl i

Pijk’ Bijk are interchanged throgghout.
In the present work, the twelve components of the resist-

ivity tensor of antimony, have been measured as a function of

temperature both in pure and tin doped single crystal specimens.

In the following section the experimental configurations

necessary for the measurements will be described.

2.3. Design of Experiments

Different experimental configurations have been
employed by various workers to measure the low field galvanomag-
netic coefficients in antimony and bismuth. In the present
work, the experimental configuration is based upon those described
by Epstein and Juretschke (1963) who obtained all the 12 co-
efficients at room temperature from two differently orientated,
long single cfystal rods with rectangular cross-section. The
two convenient sample:: orientations are, one having the trigonal
axis perpendicular (90O orientation) and the other having the
trigonal axis parallel (OO orientation) to the rod axis. The
rod axis of the'sample determines the current direction and the
measured galvanomagnetic fields are either parallel or perpend-
icular to this axis. The magnetic fieid direction is fixed and
the specimens are rotated about the vertical axis (see figure 2.1).
All the twelve coefficients can be obtained from the following
three sets of measurements

(1) The first set of measurements

A 90° - specimen is placed in the magnetic field H
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as shown in figure 2.1 - (a) and is rotated about its long

axis, which makes an angle © with the binary axis of the crystal.
@ is the angle between the trigonal axis and the magnetic field
direction. Then the components of the current density J and

magnetic field H with respect to the crystallographic axes

are:
J; = J cos © H, = -H sin 0 sin (%)
J, = J sin © H, = H cos © sin @ (2.15)
Jz =0 H, = H cos %)

The measured galvanomagnetic fields Eﬂ’ EE and Eﬂ < Z can

be written in terms of the components of the electric field

E as
Eﬁ = E1 cos @ + E2 sin ©
(2.16)
Ez = E3
Ei - i = El sin © + E2 cos ©

These fields (2.16) are obtained in terms of the galvanomagnetic
coefficients by substituting the camponents of J and H from

equations (2.15) in the relation

By = Piy @ 9,

where fﬁj (H) is given by the equations (2.11). By algebraic
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manipulation the following results are obtained:

o 2 . 2 2 .
EEI ~‘P11J + JH"(A;, sin”@ + A ,cos”d - A, cos30sin20)
E = JHR... sin @ + JH?A _sin30 sinZ@ (2.17)
z 231 42 ’
_ 2 . .
EE < J = —JHRlzscosﬂ + JH A2431n30 sin2@

From the measurements of these fields, seven coefficients

(fﬁl’ Ry31s Ryggr Ajps Aygs A,y and A423 can be determined.

The optimum value for O is 15°: in this case the contributions
of the terms containing A24 and A42 are maximized. The
dependence of the fields on @ permits the separation of the
measured field into contributions from the various coefficients.

(2) The second set of measurements

A 90° - specimen is placed in the magnetic field as
shown in figure 2.1 - (b). Now the rotation axis is perpen-
dicular one of the lateral faces. The measured fields are
obtained in terms of the galvanomagnetic coefficients as

above with these results

2 . 2 2 . .
Fﬂ “.FﬁlJ + JH (A11s1n g + AlSCOS g + A24s1n3951n2¢)
E = JHZ(-A sinBOSinzﬂ - A, sin2@)
z 42 44

2 .
EEXQ = —JHR12300s¢ + JH A24cos3051n2¢ _ (2.18)
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Two additional coefficients Al and A44 are obtained as well

1
as duplicates of some of the coefficients measured from the
first arrangement, which serve to check the two sets of results.
This experimental configuration can be obtained from
the arrangement shown in fig 2.1 -(a) by rotating the sample

90°

along the trigonal axis. Thus the two sets of measurements
can be taken on the same sample.

(3) The Third Set of Measurements

A 0° - specimen is rbtated in a plane containing H
and J, see figure 2.1 -(c). The lateral faces of the sample
are chosen parallel to the binary and bisectrix axes of the
crystal, although this is not essential to obtain the remaining

three coefficients (f%S, A3 and ASB)’ but does enable a

1

checking determination of the coefficient A44. The fields are

related to the galvanomagnetic coefficients by

~ 2 2 | 2

Ei = f%BJ + JH (A31S1n g + As4cos 3)

EE = —JHRZSlsinﬂ

E = JH2(A sinzﬂ + A sin2@) (2.19)
y 42 44 '

Rygy and A, can be measured besides ;%3’ Agy, Ags and A, .
The equations (2.17), (2.18) and (2.19) are not
invariant under the transformation © — O + 1/3nm, where n

can be 1, 3, 5 etc., when the coefficients A24 and A42 change

sign. O is defined as the angle between the current direction
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and a binary axis. Therefore, this transformation changes the
selection of the binary axis. Thus the sign of these two
coefficients depends upon the choice of this axis which can be
defined conveniently by referring to one of the two rotational
right handed Cartesian co-ordinate systems described in the
firstvchapter.

| This experimental design allows determination of the
12 magnetoresistivity coefficients of antimony. Further
details of how the experimental measurements were made will

be deferred until chapter 4.

2.4 The Boltzmann Equation

When an external field, either electric or magnetic,
or a temperature gradient is applied to a solid, then the
equilibrium distribution function of the carriers is continually
being disturbed through acceleration of the carriers. Balance
of the electron distribution function is restored by scattering
of the electrons with lattice vibrations, fofeign atoms or other
defects in the lattice. When the local concentration of carriers
in the state k in the neighbourhood of the point r in sp#ce
is written as fk(E’t)’ then the condition for the steady state,

known as the Boltzmann equation, is

Of Y of
—k L —Eili—— + |—X | =0 (2.20)
Dt ot Ot

diff. fields scatt.
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The explicit forms of the first two terms are given by

Of = —Xk . _E__:E = - Kk . grad . f (2.21)
| Ot Jgipr, r - -
Fa ]
and |0f - -2 @®+1v x® graq (2.22)
| Ot fie1d n ¢ - -
where Yk is the velocity of the carrier in the state k, e is

the electronic charge, E and H are the applied electric and
magnetic fields respectively. 1If Q(g,g') is the probability
per unit time that an electron makes a transition from the
state k to the state k' (equals to Q(k', k) a measure the
transition rate from k' to k), the rate of change of

£, (x, t) will be

Of
ot

1

— — — 2 2
fE'(l fE) fE(l fE')} Qk,k )dg (2.23)
scatt.
a general form of the scattering term. Here to take into
account the effect of the exclusion principle, QQE,E') is

nmultiplied by £ the number of carriers in the state k and

Kk’
(1 - fk*)’ the ;umber of vacancies available in the final
state.— In the equilibrium state, when no fields and temperature
gradients are present, this expression, as it must, vanishes

and fk is replaced by fg, the equilibrium distribution function,

which for a metal is the Fermi distribution function,
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1
(&) = (2.24)

exp{(&- EF)/kT} +1

When the scattering processes in the solid are
representable by a relaxation time, the Boltzmann equation

reduced to the form,

f - =
T

(E + V x E)gradk (2.25)

B jo
0 |+

The relaxation time T, in general, is a function of wave vector
k and should have the same symmetry of the crystal as energy-

wave vector relation 6(5).

2.5 Electrical Conductivity

Electrical conductivity is measured in a conductor to
which an electric field E is applied in the absence of a
temperature gradient and magnetic fields. Now gradrf and H
can both be put equal to zero in equation (2.25) wh;ch then
reduces to the form

E . grad, f = - f-1f (2.26)
- = T

B lo

If the applied electric field is small, then the distribution
function in the steady state will not be far from £° and
therd fore f can be replaced by £° in the left hand side of
the equation (2.26). However, f - £° has a finite value,
which is in fact the measure of the deviation from the

equilibrium state. Therefore from equation (2.26), the steady




- 30 -~

state distribution function

_ .0 e o
f=f +g.7TE graqli f (2.27)
is obtained . From the relations
o 2f%  2%° Y3
gradE £~ = aE SE . 35. ,
1 ¢
and v = ) E

equation (2.27) takes the form

0 21° (2.28)

The number of electrons per unit volume of the crystal, whose

wave vectors lie in the interval dk = (dkl, dk,,, dkg), is

—= £ dk (2.29)

Then the current density is given by

e
Jd = = ——f v f. dk (2.30)
- 4113/_.12 k"=

and using the equation (2.28) it becomes

_.1=-;;§ fcz.(z._E_)S—é-.d_lg (2.31)
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Writing Ohm?!s law in an anisotropic solid

and using the equation (2.31), the conductivity tensor takes

the form
2 o)
e of
= - —3 T V. . —— dk 2.32
Cqb 47 //— Vi Y5 5 % ( )

The integration is carried out over constant energy surfaces
in k-space. If dk is the element of k-space between the surfaces

£ and £+ dé, then

dsde
Igradkﬁl

dk =

, (2.34)

where dS is an element of the surface &(E).

Therefore equation(2.32) becomes

o 2 [ d¢° . Tv,;v,dS , )
i - " —3 a 2.35
+ 4w o€ lgradkil,

o
For a metal %%f behaves like a delta function at the Fermi level

c

g and equation (2.35) takes the form

e2 Ty .v.dS

Or. = 1 J (2.36)
1J 4v3 ,gradk€|

The integration is carried out over the Fermi surface. To

evaluate this integral for a particular material a specific model
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of the Fermi surface must be considered, for antimony, for

instance, the ellipsoidal model. For an isotropic metal with

spherical energy surfaces in which the energy is related to the
E’ 1.2. 2, * .. .

wave vector by = Eh k“/m , the conductivity equation reduces

to

—— | (2.37)

where N is the number of carriers, Ty is the relaxation time
*
appropriate to the Fermi energy and m is the effective mass

of the carriers.

2,6 A Relaxation Time Expression for Semimetals

The rate of change of f, due to scattering,

Of
k ot scatt.’
given by the integral (2.23) can be evaluated for metals and

semimetals to obtain an expression for the relaxation time
with the following assumptions (Wilson 1953):

(i) Only elastic scattering between electrons and
lattice waves 1is to be considered,

(ii) & (k) is a quadratic function of k and so has
spherical symmetry (free electron model with effective mass m*)

(iii) The frequencies of the lattice vibrations are the
same as those of an elastic continﬁum.
The relaxation time T for a metal then becomes for temperatures

T >0 where © is the Debye temperature

202 A
(1/2 n)2 p

.8 g32 (2.38)
T
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Here /\ and D are constants of the crystal,
If the carriér density N<:% Na’ where Na is the number of

atoms per unit volume, the relaxation time T is given by

2
n“p/\ 0o 1
2(1/2 m) T £
1/2 . .
for temperatures T§>(2 /D) ©. For semimetals with small

number of carriers, the latter expression is applicable: briefly
the reason for this is as follows. In the derivation of the
equation (2.38), it is assumed that electrons can be scattered
by lattice vibrations with all wave vectors ]glé q ., where

a is the Debye cut-off frequency and proportional to the
number of atoms per unit volume of the crystal. However to
conserve +the energy and momentum in any collision

|E| =}k + 4| and, therefore, an electron in the state k

can only interact with phonons having momentum lglé 2[5] .

In a metal electron with |E |= ko’ where kO is the wave

vector of the electrons on the Fermi surface, is to be consid-
ered. Thus, if 2ko< a4y 2ko is taken as the upper limit for the
evaluation of the integral (2.23) which leads to the equation
(2.39) (Sondheimer 1952). Sondheimér shows that 2k0< a, is
satisfied when n, < 1/4, where n, is the number of conduction
electrons per atom. This is true for the semimetals As, Bi,

Sb and graphite, i.e. for antimony n, is of the order of 10_3.

Therefore, in semimetals the carriers are scattered by only

long~wave phonons.
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2.7, Isothermal Galvanomagnetic Effects in Anisotropic

Conductors.

The Boltzmann equation can be written conveniently by

defining the distribution function f, in the form

k

=
i
b

O
_ o, 9% (2.40)

E =

o0&

=
[-rlle)
1=

The new function ¢k‘is a measure of the deviation from

equilibrium of the electron distribution in the steady state,
o)
and it is weighted with Eé? which depends upon the form

of that distribution. In the case of Fermi - Dirac statistics,
o
-—— is equal to

OE
£ a - £9)

kT

which maximizes sharply at the Fermi surface. Introducing
fk in this form into equation (2.25), reduces the Boltzmann

equation for an isothermal metal to the form (Wilson 1953)

e

l o + E.grad£+——-2——EQ(D=O (2.41)

e
T h h ¢

where Q = gradké,x gradk , an operator. The operator Q is

conveniently written in tensor notation as

d
. . S A (2.42)
i ikl K, Ok,
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where the tensor €ik1 is defined by

123 231 312

€931 = S132 = o1 =1

and all the other components are zero.
A solution for the equation (2.41) has been given by
Jones and Zener (1934) as a series of increasing powers of the

magnetic field H in the form

0o=-2 [rg grad& - 95 tH Q(tg.gradﬁ )
h hc
o2
+ & rH.Q{cHQ(cE.gradzﬂ-+..., (2.43)
h402 - -7

Then the electric current density previously given by equation

(2.30) becomes

J = e E afo
1= gradg 0 Y dk . (2.44)
47

Becuase 0 is given by a series of increasing powers of

H, then J can be written in the form

Ji = cajEj + PijkEij + BijklEijHl Fuunn (2.45)

This is equivalent to the series (2.12) of the phenomonological
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theory andozj, p are the magnetoconductivity

ijk’ Bijk1r -
tensor coefficients. Using equations (2.44) and (2.45)
these coefficients up to second order in the magnetic field

can be expressed in the following form (Abeles and Meiboom

1954)

2

e [ 217 de e

C~. = T
1J 41r3h2 0E ) ki o kj -

=* 1% e 3¢
- , ) 28 ¢
Fijk 4w3hacﬁ 6 Ok, Ok, Ok (T Bk; kin %

4 o
_ T DE dE ) .98 .
Bijk1 = 38 2/ °© . T (t )
J 41°n°c 0f  dk, Jk_ Ok dk_ Ok Ok.
1 p q m n J
1
X ; 6qpl 6nmk Eqpkenml dk (2.46)
If A and v‘j in equation (2.32) in section 2.5 are replaced
1 93¢ 1 Q€ . .
by B OOk and E'Sij respectively, then the result for G;j is
obtained.

These integrals (2.46) can be evaluated in principle
if E&E), t(k) and £°, the equilibrium distribution function,
are known. Probably for all crystals E(E) and T(k) are
complicated functions of the wave vector k. But to evaluate
the above integrals for such a case is prohibitively difficult.
However, if an isotropic relaxation time is assumed, then T

can be taken outside to simplify the integrals. In fact,
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when T(g) is not too anisotropic, and the magnitudes of the
tensor components of T(k) differ by only as much as a factor of
2, this approach is a good approximation (Herring and Vogt
1956). Further simplification of the calculations is obtained
by assuming a simple shape for the surfaces of constant energy
in k-space. For low carrier densities, the constant energy
surfaces near the extrema can usually be described by
ellipsoids; the band structure of antimony will be treated this
way. Then the above integrals can be evaluated so that the
magnetoconductivity coefficients are related to the band
parameters, such as mobilities ui(equal to er/m:), which
are defined along the principal axes of the ellipsoids and
N, number of carriers.

This method was first applied to biSmuth by Jones (1936)
to explain the obser?ed large magnetoresistivity. He used a
single-valleyed band model, with ellipsoidal, constant energy
surfaces, and obtained some qualitative features of the
galvanomagnetic effects. Abeles and Meiboom extended the
problem to a many-valleyed system, and explained quantita-
tively the experimental observations in n-type germanium
(1954) and in bismuth (1956).

A clear discussion and evaluation of the integrals
(2.46) for a many-valleyed ellipsoidal band model in the
rhombohedral crystal system has been developed by Drabble and
Wolfe (1956). The following explanation leans heavily on

their work. For the calculations the following assumptions
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are made.

(a) Only one type of carrier is considered at a time.
(b) The energy surfaces in k-space have a number of
minima at equivalent points Eé . The whole set of surfaces
in a given band must have the rhombohedral (3m) symmetry of
the crystal.

(c) Constant energy surfaces in k-space are a set of
similar ellipsoids centred at points Eé . With appropriate

choice of the co-ordinate system, they can be written as

2 i i42 i i 42 i i 42
h (x7 - ki) (k5 - k5.) (ks - k5.)
£= g?>+ . 1 10 + 2 20 + 3 30 (2.47)
2 my m, ng
where Eb is the minimum energy in the band and my, M, and mg

are the effective masses along the principal axes of the
ellipsoids.
(a) A relaxation time exists and it does not depend upon

k and can be written in the form
=~ pEA

where A and b depend upon the scattering mechanism. b,
generally, is a function of temperature, as shown, for instance,
by equations (2.38) and(2.39).

(e) Intervalley scattering is neglected. 1In other words

the relaxation process only takes place for transitions

between states belonging to the same extremum. Thus, each
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pocket can be treated independently, and the total current
can be obtained as the sum of the contributions from all of
them.

Then, for each valley, in its own principal axes
system, the evaluation of the integrals (2.46) leads to the

following expressions:

. A
(1) _

o’ "o O
i

ijk ijk

1J m.m,
1]

) L% e e e e (2.49)
ijkl mimjmn[ nil jnk njk Jn1J

where A, B and C are constants whose values depend upon fo,

b and A, and for a completely degenerate conductor are given

by
o2 2mY 3/2 )3/2 Y
A= b (—z) (
372 n2 F
e b2 (2mT) 3/2 & )3/2 - 2\
B = ——
312 ¢ nZ ¥
e* b3 oml 3/2 3/2 - 3%
C=— 5 () (&p (2.50)

6w c 1
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)1/3, the

Here 8F is the Fermi energy and mT is (mlmzm3
density of states effective mass. Drabble and Wolfe also
give the results for the non-degenerate case.

To obtain the conductivity tensor coefficients of
the crystal as a whole, the contributions of a single valley
aré transformed to a common co-ordinate system and then they
are summed over all the valleys. This procedure involves
two orthogonal matrié%; one of them carries the transformation
of the valley (i) ihto each of the other valleys and the
second specifies the transformations of valleys to the
principal crystal axes. In order to complete the calculations
a specific crystal structure and band model have to be
considered. The problem has been solved for the rhombohedral
structure (A7) with a band model of six tilted ellipsoidal
valleys centred on the mirror planes of the Brillouin zone
(i.e. the valence band structure of antimony) by Drabble
and Wolfe (1956). Their general results for the twelve
magnetoconductivity tensor coefficients can be written in

the following form for a degenerate carrier population:

2 2
N 2 /1 a B
Cl, =5 et + — + —)
11 2 m1 m, mg
2 2
Cgé = Nezr(E— + L)
Ny Mg
3.2 2 2
p Ne“t ( 1 + B3 a

= e — +
231 2c mzm3 m,moy m,mqg
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RS Ot B S W | I SRS BPC 2
42 4dc m m m,m m m m
2 3|[M2™s ™ M2 3
43 | .2 2 2 2
B, = Ne : AN 2 N I S (2.51)
2¢ Mg Wz || Wy My Mg

where N is the total density of electrons, given by the

relation
ot 3/2
1 (2.52)
N—;E ( (EF)

and a = cos\P, B = siﬂ@/are the tilt angles defined in figure
1.11. These equations apply equally to sets of eit her 3 or
6 ellipsoids in the mirror planes, UTZLNXU[" in figure 1.10,

arranged in the Brillouin zone to produce in total 3m symmetry.

2.8. The Relevant Relationship Between the

Magnetoconductivity Tensor Components and

Band Parameters of Antimony.

The relations (2.51) can be applied to antimony by

extending them to the two carrier case. By introducing

et _ et
Hi T —e1) and v, ()
-omy i

defined as the mobilities along the principal axes of the
ellipsoids containing electrons and holes respectively, the

relevant equations become
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_ 2 2 2 2
207, = Ne {(ul + Ay + 61”3) + (v1 + AU, + Bzvg)]

3”3)}

%3

Ne [(Bluz + alus) + (B + a

i 2 2
-2cP231 = Ne{[vzv3 + vy (Bzv2 + QZVB)]

2 2
- {“2“3 + by (Biuy + “1“3>J}

2
~CP 55 = Ne {[v (a2 g + B2 oV )] {ul(a%"‘z + BIHB)}} (2.53 -a)

The rest of the equations are written more conveniently by
including only the contributions from electrons, those from

the holes being identical in form and simply added on:

2. 2 2 2 2
2¢7By3 = Ne [”1 T oAby B1“‘3”“1(“1”2 + 31“3)]

2. 2 2 2 2
2c Bz, = Ne [31”2 + “1”3}[”2“3 * oy (Bypy + “1”3)}

2 2 2 2 2
~2¢ By, = Ne [31”2 + “1“3] [”1(“1”2 + B1”3)}

2 ~ 2 2 2 2
c”(3Byy -Byy -2By,) = Ne[“l T Glgt 31“%””2“3 + g (Bypgt “1”3)}
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8¢ Byy = Ne[‘31“2(“1 - Bg)T o+ agiey - ey 1Bk (g = 3) ]

2
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8c"Byg = Ne[331“2(”1 + 1) + sadug (i ) + afBIu (uy - ug)

* 2”1“2“3]

2

2¢c’B 252

= 2Ne a-'B

2
44) 1878 (kg = 13)

+ 3B - 2B

2
= ¢ (-Byy 11

33

2. 2 2
4c"Byy = Ne @) Bypy (g - #g) (g + Gjuy + Biug)

?MS)J (2.53 -]

2 _ 2
4c"Byy = Ne o;B, (ny - p3) {“2“3 - by (Bypg + @
Here the carrier densities N of holes and electrons are
assumed equal and a and B are the cosine and sine of the
tilt angles\Pe and\Vh. These equations are invariant under
the operations

a == B

HoT= Kq

Vg 5= Vg3

except for simultanious changes of signs of B24 and B42.

In figure 2.2. the cross-section of an ellipsoid in the

mirror plane is presented; if, before this transformation




FIGURE 2.2

By

Cross-section of an ellipsoid in the y-z plane.

The binary axis is towards the viewer for the
gquadrant containing L, but in the opposite
direction for the adjacent quadrant.
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the tilt angle is \V' and the principal mobilities in the
mirror plane are Hos and Hgs, then after the transformation
the tilt angle will be \y”and the corresponding principal
mobilities will lie along the axes 2’ and 37 . Therefore,
this transformation changes the algebraic representation of
the ellipsoids, and so the equations (2.53), from one
rotational system to the other in the y-z plane. The only
differences between the representation of the equations
(2.53) in one or other co-ordinate system are the signs of
B24 and B42, which accords with the result of the
phenomonological theory; the signs of the two magneto-
resistivity tensor coefficients A24 and A4:2 depend upon
the selection of the co-ordinate system.

These twelve equations contain nine parameters,'i.e.
N numbers of carriers, three principal electron mobilities
Hy and three principal hole mobilities vi, where i is 1, 2
or 3. There must be three identities connecting the
equations. Two of them are known (Freedman and Juretschke

1961);

2B35 = 3Byy - By, - 2B,

and 4Pysy [cil('2B44) - 033 Byg

= P123[4°I1 Bgy = G33(8By, - Byy - 2344)}

(2.54).
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They have some importance since they allow ready
experimental verification of the band model.

The equations (2.53) have been employed by
Freedman and Juretschke (1961) and Epstein and Juretschke
(1963) to explain the room temperature low field galvano-
magnetic effects in antimony. In the present work the
galvanomagnetic effects have been measured between 770K
and 2730K; results have been analysed on the basis of the
theory discussed in this chapter. Before introducing these
results, the growth of single crystals and the methods of

measurements will be described.
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CHAPTER ITI

Growth of Single Crystals of Antimony and

Antimony-Tin Alloys

3.1. Introduction

Square - sectioned (0.25 cm x 0.25 cm), pure and tin
doped, antimony single crystal rods up to 10 cm long were
grown in a nitrogen atmosphere by a method due to Epstein
(1962). Precast rods were seeded in the two major crystal-
lographic directions, with the (111) plane perpendicular or
parallel to the rod axis. A distinct feature of the method
in comparison with that of earlier workers (Kapitza 1928,
Hasler 1933, Rausch 1947) was the use of high growth rates,
from 2 cm. per minute to 10 cm. per minute. Epstein could
not grow single crystal rods with c-plane perpendicular to rod
axis, when the growth rate was smaller than 2 cm. per minute.
Similar attempts in this work were also unsuccessful.

Although high growth rates may introduce some
imperfections to the crystals, this method was used to obtain
pure and heavily doped antimony samples for the following two
reasons.

(1) Difficulty in cutting samples without introducing
mechanical stress. Particularly it is difficult to cut single

crystal rods with c-plane perpendicular to the long axis

because of easy cleavage of antimony along (111) planes.
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(ii) Tin has a very small equilibrium segregation coef-
ficient (~0.2). Thus, by employing fast growth rates, the
effective segregation coefficient can be made close to unity.

Epstein and Juretschke (1963) grew their pure and
doped (0.2% and 0.8% at tin) samples by this method and
obtained comparable results for magnetoresistivity coefficients
at room temperature to those measured on specimens grown at
slow rates by Bridgman method (Freedman and Juretschke 1961).

For succesfull growth of single crystals it is neces-
sary to use a crucible material having a low heat conductivity
relative to antimony. Antimony expands during solidification.
Therefore, the crucible must be designed in such a way as to
minimise strain in the growing crystals. The furnace and
crucible are kept statiohary. To obtain high growth rates,
the temperature gradient is swept along the furnace axis
by reducing the heater power.

99.999% pure antimony as supply by Johnson, Matthey
and Co. Ltd., was used for the experiments. Tin dopant

(99.99% pure) was also obtained from the same company.

3.2. Description of Apparatus.

Furnace The furnace was constructed from two concentric tubes,
figure 3.1. Kanthal wire was wound openly, about 6 turns per
inch between L and G, and about 12 turns per inch between G
and H, on the inner clear quartz tube to allow development of

a steep temperature gradient around G. It was found that a
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slight temperature gradient (AJ5°C per cm.) along the axis of
the higher temperature zone (GH) was convenient for growth
of longer single crystal rods. This temperature gradient along
GH was obtained by pushing the windings towards H, so having
more turns per inch near to H. The wires between G and H,
where transparency was not essential, were covered by alumina
cement to fix them. The resistance of the heater was 50 ohms.
The temperature gradient in the furnace depends upon
the nitrogen flow and applied heater power. An approximate
plot is shown in figure 3.2. The temperature gradient at G
was about 30°C per cm. and along GH between 3 to 5°C per cm.
The gas flow was measured by an uncalibrated, o0il manometer
which read the pressure difference between the two end points
of a capillary tube. Suitable flow rates were found by
experience. Temperature was measured by a chromel-alumel
thermocouple.
Crucible - Three long (15 cm.), thin (0.25 cm.) slats made of
pyrophyllite, and then baked at 115000, were used as the
crucible mould. They were rigidly held together by two
channelled, pyrophyllite blocks, leaving a square cross-
sectioned (0.25 cm. x 0.25 cm.) channel, figure 3.3. A 1lid
(0.7 x 0.3 x 10 cm) was used to cover the channel into which
was placed the precast antimony rod. Pyrophyllite neither
adheres to nor reacts with antimony at or below 700°C. It

has also a low heat conductivity relative to antimony. The

design of the crucible mould from three thin slats has two




FIGURE 3.3

The pyrophyllite crucible
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motives: firstly, it minimises straining of the growing crystal
and secondly, removes the possibility of damaging the crystal-

lized rod while removing it from the crucible.

3. 3. Growth Procedure

The following steps were followed to grow the single
crystal rods.
(1) The slats of the crucible mould were rubbed with a
fine emery cloth, washed in concentrated nitric acid followed
by distilled water and then baked at about 700°C to remove
any traces of small crystallites and oxide.
(2) The precast antimony rod, prepared under nitrogen
atmosphere, cleaned by etching in CP4 for a few seconds and,
subsequently, washed in distilled water, was placed in the
crucible channel and covered with the pyrophyllite 1lid.
About 2 mm. of the rod was left exposed to view at the place
where the seed junction would be. A single crystal seed,
accurately orientated and cut to be a snug fit in the groove,
was placed about 1 cm. away from the exposed end of the rod.
This seed was of sufficient size todllow about 2 mm. of it to
melt, yet leave enough solid to maintain orientation.
(3) The crucible mould was placed in the furnace so that
the exposed end of the rod was at G, the highest temperature
gradient point of the furnace. Nitrogen was passed for some

20 minutes to remove any oxygen present in the system, then
the flow almost reduced to zero.

(4) The furnace temperature was increased, while the
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protruding end of the melt was observed. The furnace current
was about 3.5 amps. This applied power (about 500 W.) sufficed
to melt the antimony rod ( M.P 63000) in about ten minutes.

At the instant when the exposed end melted, the seed was pushed
by a tin silica rod, s in figure 3.1l., along the groove up to
the molten metal. If the seed was pushed right into the melt,
a blob formed at the seed—meit Jjunction and orientation was
lost. To preserve seed orientation, the blob size was kept

to a minimum by pushing the seed just into contact with

the melt so that surface tension drew the melt over the seed
face. When about 1 to 2 mm of the seed had melted, the furnace
power was sharply reduced to about 50 watts so as to sweep

the temperature gradient along the rod.

(5) When crystallization was completed, the furnace power
was further reduced and the crystal was cooled slowly fo

room temperature under a nitrogen atmosphere. The rod was
removed by. taking the two holding blocks away from the slats and
moving out the slats. Usually, any grain structure could be
seen on the grown rod, probably due to thermal etching.

Dilute aqua regia (50% HCL - 50% H,NO;) was also used to

show grain boundaries. The most frequent defect consisted of

a few small grains of less then 1 mmz.along the féces of the
rod. These were attributed to nucleation at the slat inter-
face. Therefore, the slats were cleaned, as described above.

The crystals grew up to a length of about 8 cm., beyond this

a polycrystalline section at the far end of the rod was
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common. It was found that when the antimony melted completely,
if the furnace was tapped gently before seeding, the final
crystal would have a more uniform cross-section along its

length,

3.4. Pure Antimony Samples.

To obtain better crystals the growth rate was kept
close to the minimum rate ( 2 cm./min.) by not cutting off
the heater power but reducing it to about 50 watts. The growth.
rate was estimated as 3 - 5 cm./min.

X-ray back reflection Laue photographs were taken
of each single crystal rod to determine the crystallographic
directions relative to rod faces and axis. The crystals obtained
were relatively unstrained: the lack of‘splitting of the
Laue spots of the X-ray photographs taken from the two samples
can be seen in figuresl.4 to 1.8 of the first chapter. Crystals
were etched with CP4 etching reagent, as described by Wernick
et al (1958) who obtained etch pits on zone-refined, slowly
grown crystals. The number of dislocation etch pits on the

(111) cleaveage planes was found between 3x104 cm_z. to

7x104 cm—z. in accord with their results of the order of

10% cm™2, Figure 3.4. shows the triangular etch pits
obtainable on the (111) faces.
To fit the experimental requirements, 18 mm. and

25 mm. long specimens were prepared by cleaving (c-plane

perpendicular rods) or by trimming with a spark erosion cutter
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(c-plane parallel rods). Sample dimensions were measured

by a travelling microscope.

3.95. Growth of tin-antimony alloys

The tin-antimony phase diagram can be found in
Hansen (1958). Crystals of these alloys having the antimony
structure can be grown containing up to about 8% tin. It is
usual when growing alloys by normal freezing methods to have
difficulty in preparing homogeneous samples. In the present
case, the equilibrium segregation coefficient has been
estimated from the phase diagrﬁm as about 0.2. Epstein (1962)
found that by use of the fast growing method, described in
this chapter, it is possible to grow apparently homogeneous
alloy crystals. He observed, for instance, less than 1%
change in electrical resistivity measured along single crystal
rods of 0.2% and 0.8% +tin alloys.

Alloy single crystal rods, containing 1.7%, 2.0%,
2.5%, 3.0% and 8.0% tin, were grown using the following
procedure.
(i) A weighed amount of tin was placed eﬁenly along the
crucible mould containing the antimony pieces.
(ii) The mould was covered with the 1lid and heated to
700°C under nitrogen atmosphere and left in order to allow
diffusion of tin into antimony. After about 30 minutes the
furnace power was cut off and the nitrogen flow increased to

cause rapid solidification.
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(iii) The precast rod obtained was about 10 to 12 cm. long.
This rod was cut into two pieces. Each piece was seeded -
doped seeds were used - with the two principal orientations.
The growth rate was about 5 cm. per minute.

Microscopic examination particularly of the 8% tin
alloy reveals regions in the crystal of somewhat different
appe%énce than the surrounding material. These crystals
still remain single, as evidenced by back reflection Laue
photographs. Plausibly, there are segregation zones (see
Guinier 1963), consisting of domains of solid solution of
composition different from the surrounding matrix but coherent
with it. These have been considered as extended defects of the
solid solution and not as a grain of a second phase introduced
into the matrix.

Tin concentration along the rod axis of c-plane
perpendicular crystals was examined by the X-ray fluorescence
technique. A piece was cleaved from the each end of the
specimens. Antimony Ka and tin Ka X-ray radiation was assessed
by a scintillation counter. Relative compositions for
these end pieces were compared and the results are summarized
in table 3.1. The total statistical error could not be
reduced below 4% because the samples were rather small and
the count depends upon the specimen position in the instrument
cavity, in which the intensity is not uniform. Samples were

centralized in the cavity. These results demonstrate that the

crystals are homogeneous within experimental error on a

macroscopic scale.
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Table 3.1.

Composition Tin counts/Antimony counts
(at %) Seed end Far end
2.0% 0.030 0.034
2.5% 0.043 0.055
3.0% 0.073 0.072
8.0% 0.149 0.156

Total statistical error is 4% for all the ratios.
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CHAPTER 1V

Details of the Apparatus and the

Experimental Procedure

4.1. The Cryostat and the Sample Holder.

Potentiometric measurements were made on single crystal
specimens placed in a cryostat designed to give a constant
temperature bath between 77°K and 273°K. This cryostat, shown
in figure 4.1., was a metal Dewar constructed from two con-
centric, german silver tubes. A brass tail was hard-soldered
onto the bottom of the outer tube. The upper half of the thick
walled (1 mm), inner, german silver tube was machined to about
half the original thickness to reduce heat conduction. The
metal Dewar interspace was evacuated by a standard pumping
system and the pressure measured by a Pirani gauge sensitive
to pressures of the order of 10—3 mm. Hg. A heater, made of
40 gauge copper wire, was wound onto the tail of the inner
tube and coated with araldite. The heater power, up to 2
watts, was obtained from a 4 volt battery regulated by a vari-
able series resistance. The cryostat was placed inside an
outer glass Dewar filled with liquid nitrogen.

The sample holder was made of a heavy copper cylinder

with a flat face, machined onto it, on which to mount the
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samples, figures4.l1l. and 4.2. Samples were insulated from the
sample holder by fine paper and nail polish. Rotation of the
sample holder in the magnetic field, and consequently of the
specimens, was performed by a rotation head, shown in figure
4.1., whose axis was accurately perpendicular to a levelled
horizontal support plate on which the cryostat was mounted.

‘To ensure that the support rod axis at the bottom rotated

in the vertical, a kinematic adjustment was placed between the
support rod and the -sample holder. This allowed accurate
specimen alignment in the magnetic field. By using the kinematic
adjustment the cylinder axis of the sample holder was made
parallel to the magnet poles for any rotation position; samples
were mounted along the cylinder axis.

For measurements at 139°K and 183°K the samples were
immersed in the non~flammable, five component, organic liquid
mixture of 14.5% chloroform, 25.3% methylene chloride, 33.4%
ethyl bromide, 10.4% transdichloroethylene and 16.4% trichloro-
methylene which remains liquid to below 130°C (White 1959).
Because this mixture develops an appreciable conductivity above
about ZOOOK, normal hexane was used as the liquid bath at
225°K and 273°K. Two precalibrated, copper-constantan
thermocouples, one at each end of the sample, were used to
neasure the sample temperature. The bath temperature was
controlled by adjustment of the pressure in the metal Dewar

interspace through a needle valve, and fine control was

achieved with the heater. To reach thermal equilibrium just




FIGURE 4.2 The sample holder; the sample

shown is a 3.0 at.% tin alloy (S-90°).

FIGURE 4.3 Geometry of the probes positions.
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at the required temperature, although possible was a rather long
process and not essential. Therefore, a limiting value of

+ 0.5 degK was accepted. Because the measured magnetoresistivity
coefficients are not a very strong function of temperature, the
error arising from this temperature variation is negligible in
comparison with other errors.

The large thermal capacity of the system facilitated
control of the bath temperature to better than 0.05 degK over
long intervals. Measured magnetoresistivity coefficients for
undoped antimony were of the order of 10"9 ohm - cm per square
kilogauss. For example, at 183°K the temperature dependence of
the resistivity (fql) was estimated as about 2 x 10”° ohm - cm
per 0.0l degK. Therefore, it was necessary to keep the bath
temperature constant to better than 0.01 degK for measurements
at low magnetic fields. This was also achieved for shorter

periods of about 10 to 20 minutes.

4.2, Current and Potential Contacts to Crystals

Current leads were soldered to the crystal ends by
60% tin/lead solder using tricene flux. Subsequently, samples
were washed with distilled water to remove any tricene present.
Two sets of three voltage probes of enamelled, 36 gauge,
copper wire were spot welded to each pair of opposite faces,

figures 4.2 and 4.3, each probe being aligned on the centre

line.
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To prevent shorting out of the Hall field, the
potential contacts must be far from the ends. For any rectangular
specimen with Hall voltage probes at a distance x from the

ends, the measured Hall voltage is (Volger 1950)

Vg = Ry (%) £(1/b, x/1) (4.1)

where RH is the Hall coefficient, H the magnetic field, I

the current, and 1,b and d the length, width and thickness of
the sample, figure 4.3. The function f, determined by the
relative dimensions of the sample and the position of the probes
on it, has values between O and 1 and measures the non-shorted
fraction of the Hall field. Some calculated values of f for

different values of 1/b and x/1 are presented in table 4.1.

Table 4.1.

Some values of function f (Volger 1950)

x/i\\g/b 2.0 4.0 oo
0.250 0.82 0.98 1.00
0.500 0.92 1.00 1.00

To obtain the true values of the Hall and magnetoresistivity
coefficients directly, f ought to be made equal to unity. The
values of 1/b of the samples used in the experiments are between
8 and 10. Thus, from the table 4.1. it can be seen that

placing the probes at one fourth of the sample length away

from the ends is sufficient to prevent end effects. For pure
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antimony specimens the potential probes are placed at about
1/3 and for doped specimens at 1/4 of the sample length away

from the ends.

4.3. The Measuring System.

Magnetic fields were obtained from 4" electromagnet
and measured by a fluxmeter. The cryostat size limited to
pole gap to 2" and, consequently, the magnetic fields up to
6000 gauss, quite adequate for the low field galvanomagnetic
effect measurements.

Figure 4.4. represents the main features of the
system for measuring sample potentials necessary for deter-
mination of the resistivity and the Hall and magnetoresistivity
coefficients. Potential measurements were made using a precision
decade potentiometer (Pye, Cat.No. 7600), a galvanometer
preamplifier (Pye, Cat.No. 11330) and a galvanometer (Pye,
Cat.No. 7903/8). On the lowest range of the potentiometer,
potentials below 0.02 volts were measurable in steps of 0.1pV.
The overall sensitivity of the preamplifier - galvanometer pair
is about 2000 mm. per pA on the most sensitive range. A
10 turn helical 1 ohm slide wire, kept in a closed tufnol box,
was used to balance out the "IR drop" occurring in the transverse
galvanomagnetic field measurements. All electrical connections
were sited in a closed box to keep them at a constant temper-
ature and minimize contact e.m.f.'s. Screened copper wires

to prevent capacitive pick-up were used for electrical connections
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from the connectibbns box to the potentiometer and from the
potentiometer to the galvanometer preamplifier.

Sample current, usually about 40 A per cm2 and cons-
tant to better than 1 part in'104, was obtained from two 2V
batteries connected in parallel, figure 4.4. A separate
potentiometric system was used to measure the current by
monitoring across a 0.0l ohm standard resistance. Any change
in the current was corrected manually. For tin doped specimens
a current density of about 75 A per cmz was employed. A 42 and

—A44 were also measured for antimony specimens with this current

density.
4.4, Experimental Procedure.
4.4.1 Measurements on Pure Antimony Samples.

The types of experimental configurations necessary
for measurement of the twelve magnetoresistivity coefficients
up to second order in magnetic field have been described in
section 2.3 (page 23) and are shown in figure 2;1. The
coefficients were obtained from twé different sets of one
S - 0° and two S - 90° specimens. The six particular experi-
mental specimen orientations used are shown in figure 4.5,
Here are shown the orientation of the crystals, the galvano-
magnetic fields, which were measured, and the directions of the
current J and the mdgnetic field H. For specimen s - 0°- 1
only, the experimental configuration differs from that shown
in figure 2.1-(c). During the experiments, the magnetic field

is fixed and the samples are rotated about the vertical axis.
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For particular selected values of the angle @, only one coef-
ficient contributes markedly to the measured galvanomagnetic
field E and such values of O were chosen for measurements.
However, some of the coefficients cannot be separated from
others by changing @; in these cases the galvanomagnetic
field E is measured for different suitable values of @ and the
required coefficients calculated from the configuration
equations 2.17, 2.18, and 2.19 (pages 25 and 26).

Arbitrary choice of co-ordinate systems of the x,
y, and z axXes were made during the experiments. All magneto-
resistivity coefficients including the absolute values of A24
and A42 can be determined without referring to a particular
rotational co-ordinate system. The necessity to define a
specific co-ordinate system arises when the signs of A24
and A42 are significant. In the right handed Cartesian co-
ordinate system defined by rotation in the y-z plane away
from the trigonal axis through the pseudo-trigonal point
and A

towards the bisectrix axis, A have positive signs.

24 42
An experiment to find out the sign of A42 is presented in

detail in section 4.5, because of its importance in determination
of the sense‘of the tilt angle of the ellipsoidal surfaces in
k-space through calculated signs of B24 and B42. The sign

of the other magnetoresistivity coefficients are positive

except that of A44.
Generally, one or more galvanomaghetic coefficients

higher than second order in magnetic field contribute to
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each measured galvanomagnetic field. The contribution of
higher order terms increases with decreasing temperature.
These contributions have to be eliminated, and this is done
conveniently by a graphical method.

The transverse galvanomagnetif fields: determination

of the Hall coefficients R,,, and R,,,, and the

=~y

magnetoresistivity coefficients A,, and -A, ,

The measured, transverse galvanomagnetic field, in
general, contains both symmetrical and antisymmetrical terms

and can be written symbolically in the form

E_ = JHR(B) + JHPA(O, §) + JHOT(0,8) + ...... (4.2)

where J is the current density and H the magnetic field. R(@)

and A(0,0) are some function of coefficients Rijk

respectively, depend upon the angles © and @, and have the

and A, .
1]

explicit form given by the configuration'equations (2.17 to
2.19). T(©, ¥) and higher order functions relating to higher
powers of magnetic field are the coantributions which are to be
removed. Et is set equal to zero for H = O and the symmetrical
and antisymmetrical terms are separated by taking measurements
for +H. The intercept of the graph {Et(g) + Et(_E)] /JH2
plotted against H® determines 2A(0,08). The value of 2R(@)

is found as the intercept on the graphs of [Et(g)—Et(—Eﬂ /JH
versus Hz; if the value of the function T(O;ﬁ) is required,

it can be readily found from thgélope of the linear region

of this curve. But no systematic measurements of the higher
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order terms have been made. Any contribution of the Nernst

field due to a temperature gradient along the specimen is elim-

inated by taking measurements for + J and averaging the results.
Antimony has two independent low field Hall coefficients,

—R123 (where the last indice shows the magnetic field direction)

and —R231, measurable when the magnetic field is parallel and

perpendicular to the trigonal axis respectively. -~R can

123
only be measured from s - 90° samples. For the experimental

configuration of samples s - 90° - 1 and s - 90° - 3, shown

in figure 4.5., the galvanomagnetic field EZ including

x J’
the terms up to H3, is given by (Juretschke 1955)

E = —JHR cos B + JHZA

v x J 123 sin 30 sin 29

24
(4.3)

3 . 3 . 2 3
- JH° (T cos 30sin“@ + 3T33131n dcos@ + T535C0S a3).

322
This takes the form, for @ = o

2

E + H TBSB) (4.4)

2 x J = - JH(R

123

Eqguation 4.4 also applies to the configuration of samples
s ~90° - 2 and s - 90° - 4, for & = o.

—R123 was measured from samples s - 90° - 1 and
s ~90° - 3 for ¥ = 0 and 7. The plot of E J/JH against
H2 is shown in figure 4.6. for sample s - 560 r 1. No
contribution of the phenomonological coefficient T333 was
present up to a magnetic field of 4000 gauss, even at 77°K.

Similar straight lines were obtained for specimen s - 90° - 3.
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The agreement between the measured values of -R from the

123
two specimen was within 1.5%. At 77°K carrier mobilities
have been estimated as of the order of 5 x lO6 e.s.u.
Then, for instance, for H = 3 Kgauss pH is 0.5; thus the
condition pH< 1 is not satisfied. Therefore one might expect
to observe contributions of higher order terms : T333 nust
be close to zero.

-R231 can be determined from both types of sample.
For samples s - 90° - 1 and s - 90° - 3 the measured galvano~-
magnetic field EZ is given by

~ : 2 . .2
EZ = JHR23151n¢ + JH A42s1n39 sin“@

3 .. 3 . 2 .. 2
+JH (3T112s1n d + 3T11381n¢cos g + 3T224 cos30sin“@

cos@d) (4.5)

and takes the form for @ = %

+ JH2A _sin30 + 3JHT. .. (4.6)

E, = JHRyq, 42 112

The galvanomagnetic field EX for samples s - 0° - 1 and

s - 0° - 2, measured at @ =—%, has the form of equation (4.6)
except in the second term which vanishes. ,‘R231 was determined
from specimens s - 0° - 1 and s - 90° - 3 at all temperatures
and from other specimens at some temperatures. The spread of
values was about 4%. The graph of EZ/JH against HZ as a
function of temperature for sample s‘— 0% -1 is shown in

figure 4.7. The curves evidence the contribution, particularly

at lower temperatures, of higher-order coefficients. From
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the linear region of the curves, the value of T112 was
determined and is presented in table 4.2,
Table 4.2,
Tenp. Ti1g T1z_
K (s - 0 -1) (s - 907 - 3)
273 0.23 0.23
183 1.1 1.0
77 5.5 4,0

Units; 10”2 ohm - cm kG .

The values of A42 and —A44 can only be determined
from the transverse field measurements. It was not possible
to determine accurately the value of A42 when the components

of _Rijk were present in the measured field. However, for two
experimental configurations, shown in figure 2.1-(b) and (c),
the Hall coefficients do not contribute to the transverse

fields E, and E; respectively. These fields allow determ-

ination of A42 and -A The coefficients A42 and -A44 were

44"
determined from the samples s - 90° - 4 and s - 0° - 2. The

galvanomagnetic field Ez’ for experimental configuration of

s - 90° - 4, is given by

_ 2 . . 2
EZ = -JH (A4231n3951n ?+ A

44sin2¢). : 4.7)

Suitable values of the angle @, for the measurements, are
- )

5 and %-. For @ = %, only A o, contributes to field E, and was
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obtained as the intercept of the graph [EéH) + Ez(_Hﬂ /2JH>
against Hz, figure 4.8. The intercept should be equal to
1 - 7

E‘A42|+|A44, for measurements at @ = ok A44 was calculated
from this intercept by using the already determined value of

A42. EZ has a maximum value at @ = % and a minimum at

0 = % + % in the co-ordinate system where A42 is positive.

In the second co-ordinate system, in which A42 is negative,

the maximum occurs at @ = % + % and the minimum at @ = % .

Thus, the absolute value of A42 can be determined by finding

out the maximum value of EZ without defining the co-ordinate
system. This discussion a;ﬁlies equally to sample s - o° - 2
from which A42 and A44 have been determined through measurements
of the galvanomagnetic field Ey'

The longitudinal galvanomagnetic fields: determin-

ation of the magnetoresistivity coefficients A11

Aygs Ajg3, B54, Agq, and A,

The longitudinal galvanomagnetic field E

1> which
contains only symmetrical terms, for any experimental

configuration can be written symbolically in the form
- 2 4
E, = fd + JHTA(Q,8) + JHF(6,8) + ..... (4.8)

where/p is the resistivity. The intercept of the graph

[El(H) - El(O)] /JH2 plotted against 12 determines the function
A(O,é0 } and the value of the function F(9,8) can be found
from the slope of the linear region of the curve. But F(0,0)

bears a complicated relatiénship with the band structure
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parameters and cannot be used to extract information. Any
contributions of Hall coefficients to the longitudinal galvano-
magnetic field due to misalignment of the contact probes were
cancelled out by measuring El(H) for both magnetic field
directions and averaging. In the present measurements El(H)
were determined in the order, E (0)™™*, E (H), E (<), E (0)T1
for a given current direction and angle @. The mean value of
E (H) - E (0™ and B (-H) - E (0" vere calculated and
used in the plot. If any significant change was observed in
the readings El(O)in and El(O)fin, these were discarded.
Measurements have been taken for @ and @ + 7 and for both
current directions, and the results obtained were plotted
separately.

The values of A12’ A13 and A24 were determined through
the galvanomagnetic field EJ for samples s -~ 90° -~ 1 and

S - 90° - 3. The field EJ, given in terms of the phenomonological

coefficients up to second order in H in equation 2.17.(page 25),
takes the form for @ = O

i 2
Ei = falJ + JHA L (4.9)

and for @ = %

2

A (4.10)

Ey = P19 + JHA,

Thus, A13 and A12 were determined as the intercept of the

graph[EJ(H) - EJ(O)] /JH?plotted against H2 for @ = 0 and
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¢=% respectively. For @ = % and @ = §% the field Ej,

depending on the sign of A24, is given by

13 2400539) (4.11)

_ 2.1 1 -
Ei—-PllJ+JH (G A, +545FA
Once the values of A12 and A13 were known, A24 was determined
from the intercept obtained from the measurements of the field

EJ at both the suitable values of angle @ and the results were

a;eraged. The graph, necessary to determine these coefficients,
obtained for sample s - 90° - 1 at 1399K is presented in
figure 4.9. The plot of the intercepts obtained from figure
4.9. against @ is shown in figure 4.10., together with the
values of the intercepts determined from similar graphs at the
other temperatures. The curves were fitted by using the
equation 2.17 with the average value obtained for A24.

Al1 was found from the measurements of the field EJ
at @ = % for samples s - 90° — 2 and s - 900 - 4, The grapg
of [EJ(H) - EJ(Oﬂ /JH2 against 2 plotted at different
tempe;étures E@r sample s - 90° - 4 is shown in figure 4.11;
the intercept gives the value  of All’ see equation 2.18 (page
25). A;5 and A24 could also be found from these samples. They
have been determined at several temperatures in order to compare
them with the results obtained from the first experimental
configuration.

The remaining two coefficients A31 and A33 were

obtained from the sample s =~ 0° - 2 with suitable selections
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of the angle 8. An example of the determination of these
coefficients at 779K is presented in figure 4,12, A31
was also found from specimen s - 0° - 1.

The contributions to the galvanomaghetic field of higher
order phenomonological coefficients, particularly at 77°K
are substantial, as can be seen from the figures presented
here. Although, from the slope of the linear region of the

curves some of the coefficients F.

ijklmn could be found, no

attempt was made to determine them.

4.4.2, Measurements in Tin Alloyed Specimens

Two samples at each composition, one s - 900 and one
s - OO, were employed to determine some of the coefficients
in tin-alloy single crystals at 770K, 183°K‘and 273°K. The
experimental configuration used for s - 90° samples was that
shown in figure 2.1-(a) and for s -O° samples that in (c).
These coefficients measured were fﬁl’ f%S’ —R123, —R231’

A12’ A13’ A31’ and A33. —R231 could be measured from both
s - 90° and s - 0° specimens; this enables assesment of the
matching of each pair of alloyed specimens.

For tin-alloy specimens, the carrier mobilities were
relatively small; the higher order terms were not observed
even at 77°K with the maximum applied magnetic field of 6
kilogauss. Therefore, to obtain the values of the galvano-
magnetic coefficients, the quantities [El(H) —El(O)] /JH2
and [Et(H) - Et(—Hﬂ /2JH determined from different magnetic
field values were simply averaged.

There was = a slight, steady change of temperature of
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the coolant liquid with time. The rate of temperature change
was generally about 0.0l deg.K per 15 minutes. If the measured
longitudinal galvanomagnetic field was of the order of a few
LV, this temperature change introduced an error of up to

10%.in the measured potential difference El(H)—El(O). This
error was usually negligible in pure antimony but it was
important in tin-alloy specimens where the coefficients

10 ohm - cm/sz. When this

measured were of the order of 10~
effect was important, the procedure of determination of

E,(H) - E,(0) was carried out in the following way El(O)in,

E, (H), El(O)mid, E, (-H), El(O)fin were measured for each value
of H; and El(H) - El(O) was found by appropriate averaging

of the two results for each magnetic field direction.

4,5, Determination of the Sign of the Coefficient A42

The sign of A42 can be conveniently determined from
the galvanomagnetic field Ey for sample s - o° - 2, figure
4,5, For @ = % (i.e. bisectrix axis parallel to the applied

magnetic field) Ey is given simply by

E. = JH2A (4.12)

y 42

The sign of E_ determines the sign of the coefficient A42.

y
In figure 4.13-(a) the experimental configuration is shown
relative to the major crystallographic directions on which
the rotational co-ordinate systems are based. The symbol A

refers to the right handed co-ordinate system defined by
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rotation through the pseudo~trigonal direction and the symbol (J
to a rotation through the pseudo-fourfold direction. The z-
axis is common in both systems and is determined by the
direction of the current J. Since Ey is proportional to Hz,
the sign of the magnetic field, applied along the y-axis,

need not be considered.

The experiment was carried out at liquid nitrogen
temperature for magnetic fields between 3 and 5 k.gauss. The
polarization obtained in the magnetic field is shown in figure
4,13~(b), Ey is positive in the co-ordinate system of axes

A

X", yA and z , giving a positive sign for A in this systemn.

42

In the other co-ordinate system of axes ﬁj, yD

and z , A42
has a negative sign. If the current direction is altered, the
sign of Ey changes, together with the direction chosen for the
z-axis: the system defined are now rotated 180° about the

x-axis. Results are the same,

4,6, Estimation of Errors.

The following errors were present in each measured
galvanomagnetic field E:
(i) a systematic geometrical error arrising from the
determination of the cross sectional area of the rods (+ 2%)

and the distance between the potential probes (+ 0.5%);

(ii) an error of about * 2% in the magnetic field;
(iii) an error of + 0.2 pV in reading the potential
difference.

Other sources of error were present in the galvano-
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magnetic field measurements. These include misalignment of the
sample in the magnetic field, thermomagnetic effects, fluctua-
tion of sample current and temperature variation of the coolant
liquid; for pure antimony specimens these were negligible in
comparison to the errors detailed above. However in alloy
specimené fluctuation of sample current (a high current density
of about 75 A per cm2 was employed) and temperature variations
of the coolant liquid were important in longitudinal galvano-
magnetic field measurements. For these two sources of error
and relatively large error in the smaller potential difference
readings, the spread of values of the coefficients Aij obtained
from different measurements were between 15% to 30%.

In pure antimony spécimens, the values of -R. d

ijk &%
Aij were estimated graphically from many measurements taken
at different magnetic field. This ought to reduce the unsystematic
errors. Some of the intercepts on the graphs were calculated
by the least square method from the linear region of the
curves. The calculated standard deviations for the intercepts
were between + 1% to + 3%.

The value of the angle © was only needed in deter-
mination of three coefficients A,,, A42 and -A,,. ’The error
on determination of the angle © was estimated as F 1°.

Since the relations are proportional to 30, an additional

error of about + 5% is present in the values of these

coefficients.
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CHAPTER \

Experimental Results from Antimony

Single Crystals

5.1. Introduction

The twelve coefficients of the magnetoresistivity
tensor components up to second order in magnetic field have
been measured at 77°K, 139°K, 183°K, 225°K and 273°K. The
experimental results are presented in this chapter and compared
with the previous data of Freedman and Juretschke (1961),
Epstein and Juretschke (1963) and Kechin et al (1966). Kechin
et al have measured the galvanomagnetic coefficients at 2930K,
2730K, 195°K and 77°K and their results were published during
the progress of the present work. Specimén galvanomagnetic
coefficients obtained at all temperatures are given in Appendix

A and in table 5.1. collected representative values.
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5.2. The Components of the Resistivity, f%j

The temperature dependence of the resistivity tensor
components, f&l and‘fES, obtained from two samples for each
direction are shown in figure 5.1. The spread of measured
values of fal is 2%, which is comparable with the estimated
geometrical error of 2.5%. Within experimental error, the
results agree with those of Lane and Dodd (1942), and Kechin
et al (1966). The average value of fﬁl (45.0 x 10_6 ohm cm)
at 293°K is in accord with Epstein and Juretschke's room
temperature results of 44.3 x 1078 ohm cm.

The measured values of f%3 for the two samples are
in disagreement by about 9%, more than the estimated error.
A third specimen, prepared by cutting with a spark erosion
cutter from a slowly grown, Bridgman crystal, has values of
Pz of 33.3 x 107® ohm cm at 293°K and 5.6 x 10~ ohm cm
at 77°K, almost equal to the results obtained from sample
s -0° - 2, figure 5.1. Epstein and Juretschke, and other
investigaters also observed more spread inlfés than fal’
Epstein and Juretschke!s average value of f%B at room tempera-
ture is 34.6 x 10—6 ohm cm and lies between the two results
obtained in the present measurements at 293°K. The values
of f%s given by Kechin et al and Freedman and Juretschke

agree within 2% with that of sample s - o° - 2.
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5.3, The Hall Coefficients, R -

The temperature dependences of the Hall coefficients

R and R of antimony are shown in figure 5.2. Both

123 231
coefficients are positive in sign and are of the same order of
magnitude. The Hall coefficients, when extrapolated to room
temperature, agree with those obtained by Epstein and
Juretschke (1963). Both are about 10% less than the results
of Kechin et al over the temperature range. At 77°K Kechin

et al give -Rygy as 2.46 x 10~7 ohm cm kG™! which is about

15% less than their measured value at 195°K and equal to their
room temperature value. However in the present measurements

all samples show a steady increase in the measured value of

—R231 with decreasing temperature, figures 4.7 and 5.2.

5.4, The Magnetoresistivity Coefficients, Aij'

All magnetoresistivity coefficients show similar
temperature dependences between 77°K and 273°K, as shown in
figure 5.3. The values of Aij used in the fugure are the
representative values at each temperature taken from table
5.1. They are strongly temperature dependent. The ratio
Aij(at 77°K)/Aij(at 273°K) is the same for all the coefficients
being 7.1 ¥ 0.4. The values of Aij extrapolated to room
temperature are smaller (up to about 10%) than those of
Epstein and Juretschke (1963). The results of Kechin et al

(1966) at 273°K agree with the present values but at 77°K
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are up to 30% smaller for some coefficients (All, A12 and

Agy).

5.5. The Magnetoconductivity Coefficients.

The magnetoconductivity coefficients have been
calculated from the average values of the magnetoresistivity
coefficients in table 5.1.- by using the equations 2.14
(page 22) and are presented in table 5.2. The maximum errors
are included. The values of the coeffiéients Bi' are

J

proportional to us and v3, while the P, depends upon uz

ijk
and v2 and sz are determined by g and v. Therefore, if N,
the number of carriers, is constant over the temperature

range and § and v have similar temperature dependences, then
log Bij versus log T plots should be straight lines with
slopes determined by the temperature dependences of mobilities.
Such plots are preSented in figures 5.4 to 5.7, and the
temperature dependences of average mobilities have been

estimated from the Bij 's as T—1'42, from the P, 's as

ijk
7150 4ng from the GZ& 's as T—1’39. These results
indicate constant carrier densities and similar temperature

dependences for both carriers. This will be confirmed by

detailed computations in Chapter 6.
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5.6. Experimental Verification of the Two Identities

Imposed by the Band Model Assumed.

The equations (2.53) relating the parameters of the
band structure to the magnetoconductivity tensor coefficients
of antimony predict three identities of which two are known.

These identities, also given in chapter 2, are

2B, = 3By, - B, - 2B, (5.1)
11 |
and 4P231 [o_"—é-é- (—2B44) - Bl3
_ 4 073
=Pja3 s (Bgy) - (8Byy - Byy - 2344)J (5.2)

The left and right-hand sides of these identities have been

calculated and are presented in tables 5.3 and 5.4 respectively.

Table 5.3.
Temp. °K 2B, 3B,,-B;,-2B,,
273 , , 0.44 0.53
225 1.08 1.09
183 2.76 3.63
139 9.4 15.4
77 119.8 ; 152.8

Unit : 10 ohm cm kG_2
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Table 5.4.
G 4G+
Temp. °K 4P231[6%§(—2B44)—B13] Plzs[TaéiBél—(SBlz—Bll-ZB

293¥ -9 - 0.30 x 10° 0.37 x 10°
29389 - 0.55 x 10° 0.52 x 10°
273 -1.00 x 10° 0.97 x 10°
225 - 5.50 x lO3 2.40 x 103
183 - 27.7 x 10° 14.9 x 10°

139 - 17.7 x 10* 12.7 x 10%
77 - 12.5 x 10° 8.56 x 10°

Unit : ohm2 cm2 kG"3

The first.identity (56.1) is satisfied within experimental
error. For the second identity, values taken at the centres
of the ranges of experimental error in the coefficients lead
to negative quantity for the left-hand side but a positive
value for the right-hand side. This is common for all
temperatures, and also for the room temperature results

of Freedman and Juretschke (1961) and Epstein and Juretschke
(1963), see table 5.4. However, if the coefficients are
changed within experimental error (up to 15% for the Bij 's)
the identity can be satisfied for all temperatures. An
example, showing how the identity 5.2 can be verified by

altering the coefficients within experimental error is shown

in table 5.5.

44)
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Table 5.5.

To show the steps in the computations necessary to
satisfy the identity 5.2. Each coefficient in turn is
altered within the experimental error. The results are
those for 183°K but almost identical percentage changes are
required at the other temperatures and for the results of

Juretschke et al (1961), (1963).

(1 +$>)Bij Left hand side Right hand side
0.88 B, ~19.6 14.9
1.15(-B,4) -13.5 13.3
0.88 By, ~13.5 _2.8
1.08 By, ~13.5 ~12.7
0.95 Py, ~12.7 ~12.7

Unit: 10° ohm® cm® kG™°.

The important feature is that it is necessary to change the
same coefficients about the same fraction for each set,
including those of the previous workers. Therefore, one
concludes that this systematic descrepancy arises either

from the inadequacies of the model assumed in the develop-

ment of the equations 2.53 or a systematic experimental

error. The latter case must be omitted; the three experimental

determinations of the magnetoconductivity tensor coefficients

(Juretschke et al 1961, 1963 and the present work) have been
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made in different experimental conditions and on single
crystal specimens prepared by different methods. Thus,

the systematic discrepancy must be attributed to the assump—x
tions made in the derivation of the equations 2.53. However,
because both identities are verified within experimental
error, theeguations can be considered a good approximation
from which to explain the galvanomagnetic effects in

antimony.
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CHAPTER VI

Computation of the Band Parameters

of Antimony

6.1. Introduction

The nine parameters of the band structure, that is
the principal electron and hole mobilities sy and vi
respectively (where i = 1, 2 and 3), the number of carriers
N, and the tilt angles IVe and \Ph can be obtained as a
function of temperature from the experimental values of the
magnetoconductivity tensor coefficients through solving the
equations 2.53 (page 43). Although a direct solution of
these equations can be found, this is impracticable
because the magnetoconductivity coefficients depend on
the parameters in a most complicated way. Therefore, it
is necessary to develop a different method of solution.
By making use of a computer, many possibilities arise. One
can estimate the order of magnitude of the parameters, then
calculate the twelve magnetoconductivity coefficients for an
arbitrary set of parameters selected from this estimated

range and then compare the calculated coefficients with the
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éxperiméntal values. This procedure is repeated until a
satisfactory fit is obtained. A faster computer than was
available is necessary for this method. An alternative method
is to estimate some of the parameters by solving some of the
equations among the set 2.53, and then changihg the rest
arbitrarily. Such a method was developed by Freedman and
Juretschke (1961) to analyse their room temperature results.
In the present work these lines have been followed. The

procedure will be detailed in the next section.

6.2. The Method for Calculation

The equations for the conductivities ( Oy and

053), the inverse Hall coefficients (P and P and

123 231)’

the magnetoresistivity coefficients (B13, B31, B44 and
the combination SB12 - B11 - B44) can be written in
a comparatively simple form by defining the following eight

new variables;

~ 2 2
Big = Bg + iy + By pg

2 2
bge = Bikg + 2jlg
B 2 2
Vig T Vy T %gVp * Boug
.2 2
Vgo = Bglg + 2yvg
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big = KoMy t B (BlEg + aTpg)

_ 2 2
gy = Ky (agpy + Biug)

B 2 2
Vig = Vo¥g *+ vl(Bzv2 + a2v3)

B 2 2
Vag = vl(azv2 + Bzys) (6.1)

One now obtains eight equations in nine variables, namely

the newly defined, combined mobilities and N, number of
carriers. Since an identity 5.2 (page 80 ) exists between
the equations, there are in fact only seven independent
equations in nine variables. By selecting two variables
arbitrarily, the equations can be solved. Freedman and
Juretschke started at this paint . They then defined further
new variables to reduce the equations to a yet simpler

form. They defined a function f, which measures the contri-

bution of electrons and holes to the conductivities, by

By * kg + pg = 18 (6.2)
vy + Vg + Vg = (1 - £)S (6.3)
2 g7, + 03
where S = il 33 (6.4)

eN
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This arises from the property of the conductivity relations

‘that

o = ul+u2+u3+yl+u2+v3 = S (6.5)

The value of f must lie between O and 1 and measures the
electron contribution to the conductivity, while (1-f)
measures the hole contribution. It is also convenient to
introduce the following dimensionless parameters, which

measure the principal mobilities

K Ho p
£8 £8 ¢ s
v v
x = _1 v, = 2 z  =_"3 (6.6)
(1-£)S (1-£)8 (1-£)S
Therefore, from the relations 6.2 and 6.3,
X 4+ Y + 7 =1=X 4V, +2Z (6.7)

The physically meaningful ranges of X, ¥ and Z2Z are
between O and 1. By using these dimensionless quantities, a
new set of variables is defined instead of the relations

6.1;
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K1e = x al ye + B ze
K + BZ Yy + o =
3e 1 e 1l e
L =y Z + X (B2 y_ o+ af =z)
le 1l e 1
_ 2 2
L3e = Xe(al Ve T B1 ze)

_ 2
1h h 2Yn

3h 2%n

_ 2 2
Ly, = %, (@gy, + Bzzh) (6.8)
Here Kle + K3e = ]
and th + K3h = 1 (6.9)

With these new variables the first eight equations of
2.53 can be rewritten in the following form tb obtain
two sets of four equations in ten variables; the first

set is
2oy _
1h 2 Gy1 + O35 1

1
(4]

lee + (1-f)K
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2eNcP
2 2
£ L1e - (1-f)° L

231
(2 G7; + 035

h 2

1 )
2(eNc)2B31 5

= = N°S

3
(207,+ 033)

3

£9L. K, + (1-£)°L

ev3e

1 1hK3h

2
(eNc) (3B12—B11—2B44)

(26G3; + 033)3

£31,

K, + (l-f)aL

1e%1e 1n¥1n=

(6.10)

where in the third equation KSe and th can be removed

by replacing with (l—Kle) and (1—K1h) respectivdy. Then,

for a given value of N and £, these equations can be

solved to obtain Kle’ th, L1e and Llh'

The second set of equations is

fK, + (L-f)K, = 033 -8
3e 3h T o . o- 3
11 33
eNc P
fzbge - (1—f)2L3h = 123 , = NS,
(2 67+ G33)
5 5 (eNc)z(—2B44) .
'L K +(-£)°L K = 5 = N5,
3e 3e 3h 3h (2 071+ 053)
3 3 (eNc)2 2B13 9
°L. K.+ (1-f)°L, K., = = N°S
3etle 3n°1n T o 053)3 9

(6.11)
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In the last equation K1e and th can be removed by replace-

ment with (1—K3e) and (l?KSh). Then K K L3e and

3e? T3h’
L3h can be obtained by solving these equations for a given
pair of values of f and N.

The two sets of equations are not independent,

because of the identity 5.2, which can be rewritten in terms

of S, through to S, (defined in the equations 6.10 and 6.11)

1 9
as
S4(Sls8 - 8389)5587(8185 - SSSG) (6.12)
and the relation
S1 + S3 = 1 (6.13)

Therefore, when the two sets are considered together there
are six independent equations with eight independent un-

knowns N, £, K K L L L and L,, . Because the

le’ "1h’ Tle’ "1h’ "3e 3h
relation 6.12 is not satisfied exactly by the experimental
data, it is somewhat difficult to solve the two sets of
equations simultaniously; the values calculated for K1e
and ng (similarly th and K3h) do not satisfy the relations
6.9. Therefore, Freedman and Juretschke used a method of
least-squares distribution of errors to determine the most

probable values of the coefficients which satisfy the

identity 6.12, and at the same time to find a consistent
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set of parameters for the eight equations. This is not
essential to solve these equations, since when the two
sets are solved independently for the same value of N and f
the values obtained for Kle’ K3e’ th and K3h almost satisfy
the relation 6.9. The equality range is estimated as 0.8
to 1.2. Therefore, in the present work, the two sets were
solved separately for the same value of N and f by using
the experimental data as obtained, and then the results
averaged.

Once the values of Kle’ KBe’ th, K3h’ Lle’ Llh’
LSe’ L3h are known, the dimensionless parameters ::e,y'e,ze,‘

and z and the tilt angle of the ellipsoids can be

Xh’yh h)

determined from the following relations

1 _ 5 172
x, =5 K [1 F o - 4L36/K1e) ]
_1/2
1 [ 2
Ve = 501 —Xe){l— 1-4(L, -x K5 )/(1=x ) | }
r J1/2
=1 2
z = 5(1 -xe){1+ ' 1—4(Lle -XeKSe)/(l—Xe) |
o] = (Kyy - 7)/(z, - V) (6.14)

These relations, pertaining to the electron ellipsoids,
have been obtained from the equations 6.7 and 6.8. A

set of relationships identical in form hold for the hole
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ellipsoids and can be obtained on replacing K by K

le 1h’

L by L etc. The principal mobilities are easily

e 3h
obtained from the relations 6.6.

Two important features of the solutions obtained
in this way are firstly, that X and Xy have two distinct,
physically acceptable values each and therefore, the
method predicts four separate solutions for a given value
of £ and N. Secondly, y and z are obtained as the two
roots of a quadratic equation; the selection of these in

the form 6.14 is arbitrary and corresponds to a particular

choice of co-ordinate system; the operations

transform the representation from one rotational co-ordinate
system to the other. This is true for both electrons and
holes and can be applied separately; the number of possible
solution increases to eight in a particular system. However,
the de Haas-van Alphen data of Windmiller and Priestley
(1965) shows that both electron and hole ellipsoids are
tilted in the same sense in antimony. Therefore, in the
calculations the arbitrary selection of y and Z has been

made in the same sense for both electrons and holes. Hence
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the number of possible solutions to be considered is four
in a given rotational co-ordinate system.

The calculations are conveniently carried out by a
computer. For a given f and N, the mobilities and tilt angles
are determined and then all magnetoconductivity coefficients
are calculated by means of the equations 2.53. and compared
with the experimental data. The computer is programmed so
that the unphysical answers are automatically rejected. This
can be done easily: the physically meaningful range of values
are between O and 1. It is

of x y and z

e, e,Ze,Xh,yh, h
also convenient to restrict acceptable solutions to those
whose calculated coefficients are within a certain limit.
The range of N is taken as 1019 cm_3. Since holes dominate
the conductivity, the physically acceptable range of f must

be smaller than 0.5.

6.3 Calculations

An ALGOL programme has been prepared and run on an
Elliot 803 computer. The computer programme is presented in
Appendix Bl and a typical output in Appendix B2. In particular,
extensive calculations for all four types of solution have
been performed for the experimental data obtained at 183°K.
The four solutions, denoted by A, B, C and D, have been
searched through to find the best fit to the experimental

data. The band parameters of all the solutions obtained for
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the best fit are shown in table 6.1. In table 6.2, the
recalculated coefficients of these solutions are compared
with the experimental data.

The solution type -B and type ~-C cover broad
ranges of f and N: for type -B values of f lie between 0.370
to 0.400 and N between 3.6 x 1070 to 4.0 x 10%° cmfs. The
ranges of £ and N are even wider for solution C, 0.370 to
0.430 and 3.6 x 10*° to 4.3 x 10° cn™3 respectively.
For the other two types of solution A and D, the physically
acceptable solutions lie only in a very narrow range of
f and N. These ranges have been found to be £ = 0.390 t 0.005

19 ¢ 0.2 x 1019 cm_3 for both solutions.

and N = 4.0 x 10
This narrow range results from small tilt angle of the
electron ellipsoids of these solutions.

Although in the calculations a somewhat different
procedure than that of Freedman and Juretschke (1961) was
used, the solution C given'in table 6.1 is identical in form
to the result obtained from their room temperature galvano-
magnetic data. Their solution is presented in table 6.3,
together with the results of Epstein and Juretschke (1963),
who give the two types of solution C and D.

It is not possible to select the true solution
from the four types without taking into account other experi-
mental results. From table 6.2, it can be seen that the fit
for solution types A and B are poorer than C and D. However,

because they are solutions of the equations 2.53, one could
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Table 6.1

Calculatedband parameters of antimony for solutions type

A, B, C and D at 183°K

A B C D
N 4.0 3.7 3.8 4.0
b 0.390 0.380 0.420 0.390
ul 4.57 0.30 0.11 4.59
Ho 0.10 ) 2.59 2.37 0.10
Hg 3.18 6.33 7.20 3.81
o ) o o
Ve 6 53 51 | 6
Vl 1.19 1.08 7.20 7.20
vz 3.67 2.97 0.39 0.26
VS 8.42 10.5 5.80 5.83
Wi 60° 56° 23° 24°
Units: mobilities, 10° cn? volt™! sec”l:

N, 1019 cm™3.
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Table 6.3

The solutions given by Freedman and Juretschke (1961)
and Epstein and Juretschke (1963) obtained from the

room temperature galvanomagnetic effects data.

Solution given by Solutions given by
Freedman and Epstein and

Juretschke Juretschke

type -C type -C type -D
N 3.7 4.3 4.3
Ml 0.15 0.17 1.45
Ho 1.18 1.63 0.18
g 4.05 2.43 2.68
Ve 60° 54° 10°
vy 3.56 3.80 4.07
Vo 0.13 0.13 0.20
'93 3.30 2.42 2.4
Yy 27° 22° 20°

Units : mobilities, 10° cm? volt™! sec_l;

N, 10%° em™3.
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by many more calculations obtain a better fit. Changing the‘
input data within experimental error does not alter the

main structure of the solutions: the tilt angles and mobi-
lities are only slightly changed.

The true physical answer is believed to be solution
D. In table 6.4 this solution is presented at all tempera-
tures, and in table 6.5 recalculated magnetoconductivity
coefficients are compared with the experimental results.
Agreement is very good at all temperatures. The number of
carriers increases slightly with temperature but the tilt
angles are not temperature dependent.

Solution D is referred to the rotational system in
the y-z plane taken from the trigonal axis through "L; then
the calculated values of B24 and 842 are positive, in agree-
ment with the experimental data for A24 and A42. The tilt
angles of the electron ellipsoids (5°) and the hole
ellipsoids, although rather smaller (240), accord with the
other experimental and theoretical results summarized in the

first chapter. Furthermore, the mobilities equal to %;

compare qualitatively along each ellipsoid axis with the
effective mass data of Windmiller (1966); the largest
mobilities lie along the equivalent direction to the smallest

effective masses, figures6.1 and 6.2.
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6.4.

Calculated band parameters of

antimony for solution type D.

K 273

4.22

0.405

0.18

3.22

24°

Units: N, 10

225

4.12

0.397

3.34
0.09

2.90

5.34
0.33

3.93

22°

19 -
cm

183

4.00

0.390

4.59
0.10

3.81

7.20
0.26

5.83

24°

3; Mobilities,

139

3.92

0.387

6.91
0.17

5.46

10.2
0.44

9.16

24°

77
3.86

0.385

16.2
0.38

12.6

23.6
1.70
2.14

24°

1 -1

103 cm2 volt™ ~ sec
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Only solution D and solution C, presented in
table 6.6, were obtained at all temperatures. The effect
of change of input data within experimental error on solution
D was examined at 183°K. The tilt angles and the number
of carriers remain practically unaltered. However, the
mobilities do change slightly, This can be readily seen
by reference to the ratios of the mobilities uX/vX and
uz/vz, where p_ and v_, and ¢ and v, are the electron and
hole mobilities along the x and the z axes of the crystals

and are given by the equations

1 2 2

by =g (g *+ Gy + Big)

By = Bi”z * a%“S

v, = % (v1 + agvz + B§v3)

v, = Bgvz + agvg (6.15)

The range of solutions with a good fit to the experimental

data gives ux/vX between 0.45 to 0.56 and uz/vZ between

0.75 to 0.95. The solution given in table 6.1 gives values

for ux/vX = 0.56 and pz/vz = 0.76, and represents one end

of the range. A solution at the other limit is presented in
table 6.7. It is not possible to assess from the galvano-
magnetic effects alone where the true solution lies in the
range of D. However, the thermoelectric power data of antimony

very much depends upon the values of the ratios ux/vx and
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Table 6.6

Calculatedband parameters of antimony

for solution type C (f = 0.420).

Temp. °K 273 225 183 139 77
N 4.13 3.90 3.78 3.70 3.60
by 0.11 0.10 0.11 0.19 0.37
By 1.54 1.86 2.37 3.43 7.66
bo 3.43 5.13 7.20  10.7 26.1
Ve 59° 51° 51° 52° 52°
vy 3.60 5.42 7.20 10.1 23.6
v, 0.26 0.28 0.39 0.77 2.20
Vg 3.15 4.06 5.80 8.96 21.3

23° 23° 23° 23° 23°

Units: N, 10%? cm—B; Mobilities, 10° cn? volt™! sect.
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Table 6.7 -(a)

A solution type -D obtained at 183°K and towards
the end of the region of physical acceptibility.

N 3.98 f 0.385
By 4,12 vy 7.94
Hy 0.09 v, 0.27
TS 4.22 ' 2 5.23
We 0° Wy 23°
uX/vX 0.47 uz/vZ 0.94

Units : N, 10'%m™3, mobilities, 10°cm?volt tsec™t.

Table 6.7 —(b)

To compare the solution given in table 6.7 -(a)

with the experimental data.

Cal. Cal/Exp Cal. Cal/Exp
OIi 4.20 1.00 B13 2.43 0.88
Ggé 5.54 0.99 B31 7.66 0.88
—P123 5.05 0.99 B33 1.64 1.20
—P231 6.13 1.00 —B44 1.23 1.15
B11 3.24 1.00 824 1.57 1.13
B12 8.90 1.07 B4:2 0.98 0.94

J

Units: G-, 10%hm~ten™!; P, 10%ohm~lemlk6™1; B, 10 ohm~lem=lkg~Z.
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uz/vZ and can be explained by taking certain values of these

ratios. This will be discussed in the last chapter.

6.4. Discussion.

For electron ellipsoids the tilt angle is in very
good agreement with that of obtained by Windmiller (1966). He
gives a tilt angle of 6.50, corresponding to the larger cross-
section in the quadrant containing "L and 87.7° for the smaller
cross-section in the adjacent quadrant, figure 6.1 -(a).
Therefore, one would expect, in the ellipsoid approximation
to the warped pockets, that the tilt angle should be between
2.3°% (= 90° —‘87.70) and 6.5°, which accords with the results
(30 to 60) given in table 6.4. For hole ellipsoids the agree-
ment is not so good. For figure 6.2 -(a), with similar
discussion, one would expect an average tilt angle between
319 to 37° ( 90° - 530), not in good agreement with the value
of 24° calculated in solution D.

This discrepancy between the two answers for the tilt
angle for hole pockets was first atributed to the method of
calculations. It was thought that, if the mobilities obtained
were altered arbitrarily within maximum calculation error,
about 30%, the recalculated magnetoconductivity coefficients
would fit to the experimental data for fixed values of tilt

angles; for instance, qye equal to 4° and \Vh between 30°

to 360, an angle closer to the value obtained from the other
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measurements. A new computer programme was prepared (presented
in Appendix Cl and a typical output in Appendix C2) and the
magnetoconductivity coefficients were recalculated for

\Ph = 26° to 36° and results compared with the experimental
data. The best fits obtained for XPh = 30° and 36° are shown
in table 6.8 and the recalculated coefficients are compared
with the experimental data in table 6.9. Fits become poorer

as the tilt angle of the hole ellipsoids is increased towards
36°., The anisotropy of the recalculated coefficients also
deviate  from the observed values. Particularly the ratio
P123/P231g which has an experimental value of 0.83 ¥ 0.17,
shows a steady increase with a larger value of lyh. A
satisfactory fit to the experimental data can only be cbtained
when \J is between 0° to 7°, and \]Uh is between 22° to 26°.
Therefore, the discrepancy between the tilt angles of the

hole ellipsoids obtained in the present work and the other
measurements is believed to originate from physical differences
between the properties measured and their relationship to the
Fermi surface.

The carrier densities are essentially temperature indep-
endent, and in agreement with those obtained by other methods, see
table 6.10. The temperature dependences of the principal electron
mobilities By and kg are plotted in logarithmic scale, figure k
6.3. Both By and Hg show same temperature dependences, as exp—r

ected from the uniform relaxation time assumption. Similarly the hole
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Table 6.8

Solution type D obtained as the closest fit to the

experimental data for a given \%é and \+£ at 183°K.

Solution D Solution D
— an© @O
W, = 30 Y, = 36
N 4.4 4.3
£ 0.380 0.380
By 2.86 3.01
Ho 0.23 - 0.18
“3 4.43 4.44
7° 4°
Ve
vl 6.63 6.91
vz 0.28 0.17
Vg 5.37 5.48

Units: N, 10%? cm_S; mobilities, 10° cm? volt™! sec™!
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Table 6.9

To compare the recalculated magnetoconductivity tensor

coefficients for solutions given in table 6.8 with the

experimental values.

Solution D Solution D
VY, = 30° Y, = 36°
Cal. Cal/Exp Cal. Cal/Exp

Gil 4.00 0.95 4.19 0.99
'G§3 5.96 1.07 5.55 0.99
—P123 6.65 1.31 9.10 1.79
—P231 5.33 0.87 4.03 0.66
B11 ’ 2.76 0.85 2,87 0.89
B12 6.28 0.76 6.16 0.75
B13 3.06 1.11 4.32 1.57
B31 6.20 0.71 5.46 0.62
B33 2.31 1.67 3.05 2.21
--B44 1.61 1.50 1.83 1.71
B24 1.37 0.99 1.51 1.09
B42 1.09 1.04 1.12 1.06

Units: G-, 10% ohm™! cm” ; P, 10° ohm =~ cm ~ kG ;

B, 10 ohm ' cm t kG2,
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Table 6.10

Carrier densities in antimony

Reference Carrier density Temperature
per cm3
EriK sson et al Ne = 4,2 x 1019 1.5°K
(1964) N, = 4.4 x 10°° 1.5°K
Epstein and Juretschke Ne = Nh = 4,3 x lO19 293°k
(1963)
Ketterson and Eckstein Ne = Nh = 4,07 x 1019 1.15°K
(1963)
_ _ 19 o
Rao et al (1964) Ne = Nh = 5,05 x 10 4.27K
_ _ 19 o
Present work Ne = Nh = 4,22 x 10 273K
(solution D) - 4.12 % 1019 295K
= 4.00 x 101° 183°%K
= 3.92 x 1012 139°K
- 3.86 x 10%° 77°K
. . _ _ 19 o
Windmiller and N =N = 5.5x 10 1.26°K

Priestley (1965)
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mobilities are illustrated in figure 6.4. Both sets of

carriers have almost identical temperature dependences of
mobility, 77142 for electrons and T1'%® for holes.

Before going into further discussion of the carrier
mobilities and band structure of antimony the results obtained

from tin-antimony alloys, relevant to the overall picture,

will be presented in the next chapter.
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CHAPTER VII

Experimental Results in Antimony-Tin Alloys

and Computation of Valence Band Parameters.

7.1. Introduction

Further verification of the new assignment of the
carriers (electrons to low tilt angle pockets and the holes to
the highly tilted extrema) has come from the low field galvano-
magnetic effects in tin-antimony alloys. Tin (GroupIV ) has
one fewer valency electron than antimony, and when substituted
for antimony in the lattice, removes electrons from the conduction
band. In the simplest case each tin atom would remove one
electron from the conduction band. However, to adjust the
Fermi level a number of electrons from the lower Brillouin zone
must spill over into the conductiqn band. The number of spilled
electrons depends upon the density of states in the two zones.

If the density of states are the same in both bands, then after
the addition of 2§ tin atoms, there will be N -8 electrons

in the conduction band and N + & holes in the valence band.

For a parabolic band, the density of states g(£)dE in the energy
interval (£ + dg) - £ is given by

om 3/2 3/2 1/2
g(g) d€ = 41r(—h,22—) (mT) & d€ . (7.1)




- 111 -

Here mT = (mlmzmgl/3 is the density of states effective mass
in units of m, and energyEE is measured from the band edge.
Therefore, on this basis in antimony, where mT is larger for
electrons than for holes, the density of states at the Fermi
level should be greater in the conduction band than in the
valence band. In this case the addition of 25 tin atoms
should introduce slightly less than 5 holes for small concentra-
tions of tin. However, the density of states decreases as the
band edge is approached, and the addition of a high concentration
of tin atoms is less effective in removing electrons from the
conduction band than in creating holes in the valence band.
Thus, for high doping levels, the situation is the reverse
from that at low doping. Although, this discussion shows some
qualitative features of the nature of what happens when semi-
metals are alloyed, the actual process is complicated. For
instance, when bismuth is doped with the group EY elements
tin or lead, both introduce holes, but tin is three times more
efficient than lead (see Wilson 1953, p. 229). Therefore, it
is difficult to asses the amount of tin necessary to produce a
purely p-type alloy of antimony. From the galvanomagnetic
effect data of Epstein and Juretschke (1963) for tin doped
antimony (0.2 at.% and 0.8 at. % Sn), it turns out that 1% or
more tin is required to ensure conduction by holes alone.
Samples have been prepared with compositions of 1.7 at.%

2.0 at.%, 2.5 at.%, 3.0 at.% and 8 at.% tin. In these samples,
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the resistivities fﬁl and f%S’ the Hall coefficients -R;,q
and —R231, and four magnetoresistivity coefficients up to
second order in magnetic field A12’ A13, A31 and A33 have
been measured at 273°K, 183°K and 77°K.

By assuming that the six tilted ellipsoidal model
still holds for the valence band of antimony with the pockets
simply being expanded, the band parameters are related to the

selected measured coefficients by

2

_ 2
26‘1‘1 = Pe (v1 + @'y, + B vS)
_ 2 2
053 = Pe (B vy t+ @ VS)
-2cP = Pe |Vv,V, + V (Bzv + azv )
231 2”3 1 2 3
— 2 2
—cPl23 = Pe vy (a vy + B v3)
2 _ 2 2 2 2 2 2
8c B12 = Pe [38 vz(v1 + u3) + 3a v3(v1 + vz)
2.2 2
+ a“B vl(v2 - v3) + 2v1v2v3 ]
2 B 2 2 2 2
2¢c B13 = Pe(v1 + @y, + B v3) vl(a v, + B US)
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3 2 2 2 2
2c 331 = Pe(B vy + @ v3) [vzv3 + vl(B vy + @ vs)]

2.2
33 2Pe a”B vy (v

I

2¢2B (7.2)
Here P is the number of holes, & and B are the cosine and

sine of the tilt angle 1#% and Vis Vg and vy are the principal
mobilities defined along the principal axes of the hole
ellipsoids. These eight equations can be solved in a number
of ways to obtain the five parameters (P, v, v,, Vg and’#@).
Two identities imposed by the equations 7.2 are useful.

These are

G, (-P )
Pec = 11B 123 (7.3)
13
O32 (=Pgaq)
and Pec = 33 231 : (7.4)
B3

The number of holes can be obtained from the identities 7.3
and 7.4 separately, and if the model holds the two values must
be compared within experimental error. Once P is known,

the first four equations ( G7 Gg', -P and -P,,.) of the

11° 123 231
set 7.2 are solved to obtain the principal mobilities and the
tilt angle. Recalculated magnetoconductivity coefficients

from these parameters serve as a check.
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7.2 Experimental Results

Experimental results obtained from the two specimens
of different orientation at each composition are shown in
table 7.1. The values of —R231 measured from different specimen
orientations agree within about 10 % for all the compositions,
except for the set determined from the samples of composition
2.0 at.% Sn. For this composition the disagreement is about
40%, well above the estimated experimental error of about 6%.
For the other compositions the matching of each pair of alloyed
specimens is reasonable: the Hall coefficients are strongly
dependent on composition. The temperature dependences of
conductivities (GIi and G§3) between 77°K and room temperature
are shown logarithmically in figure 7.1. Tangents to the
curves at room temperature, which assume G;j o T-X, give
the values presented in table 7.2 for the exponent x, which
decreases for higher doping level. The values of x obtained
from the both components of conductivity are the same for
each composition : there is no anisotropy in the temperature

dependence of the carrier mobilities.
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Table 7.2

The values at 293°K of the exponent x estaimated

from the temperature dependence of the conductivities.

Composition Exponent x
(% sn) i1 G33
pure -1.39 . -1.39
1.7 ~0.84 -0.85
2.0 -0.73 -0.75
2.5 -0,64 ~0.63
3.0 -0.62 -0.59
8.0 -0.49 -0.49

Figure 7.2 illustrates the composition dependence
of the two components of resistivity at room temperature.
The values for the compositions 0.2 at. % and 0.8 at. %
tin are taken from the data of Epstein and Juretschke (1963).
fES increases continuously with increasing tin concentré-
tion, while fﬁl decreases first and passes through a minimum.
This concentration dependence of resistivities can be
explained by considering the mobility ratios pux/vx = 0.47

and pz/vz = 0.94 obtained for antimony given in table 6.7 -(a)
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(page 103 ) for the solution type D. To simplify the discussion
these ratios can be taken as 0.50 and 1.00 respectively:
thus, p = vX/2 =V1x and p, = v, = V\z. Then the resistivity

components for pure antimony can be written in the form

1 1

ﬁll = NeY\X + 2Pe ’VLX - (N + 2P)V’LX

1

IR

(7.5)

f%g (N + P) eVlZ

where N and P, equal in pure antimony, are the number of
electrons and holes respectively. On alloying, the number of
electrons becomes (N-—é) and holes (N-+é). The resistivity

components then take the form

’ 1l 1
Pll "(N—B+2(N+b))evl-}’{ - (3N+§)eyz:x,

1

’ 1
P33A"<N-3+N+S>e~£§ Qﬁé‘:@‘“- (7.6)

The origin of the difference in behaviour of‘fal and/%3 can
be seen by inspection of equations 7.5 and 7.6. Since QZ;‘<:?E
(due to increased scattering), thenlf%§>>/%3. However, for

the other component g/il) although,?;<:7k holds, the

increment of carriers outweighs ' the mobility decrease at
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small concentrations and, therefore, the resistivity curve shows
a minimum. Further increase of tin concentration enhances
scattering, and ’Q; decreases rapidly : F&i begins to rise
again. At low temperatures, below about ZOOOK, where the
‘impurity scattering dominate, this minimum is not observable.
In figure 7.3 a set of similar curves are shown for the
resistivity component }911 at temperatures 4.2°K, 1OOOK,
200°K and 300°K. The values have been taken from the data .
of Lane and Dodd (1942).

Similarly the composition dependence of Hall coefficients
are shown in figure 7.4. —R231 has a maximum at about 0.2%
tin concentration, while —R123 decreases monotonically with
increasing tin.

Magnetoconductivity coefficient calculated from the
magnetoresistivity coefficients given in table 7.1 are shown
in table 7.3. The number of carriers has been estimated
from the two identities 7.3 and 7.4, and are presented in

table 7.4.
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Table 7.4

Calculation of number of holes from the

two identities 7.3 and 7.4.

Composition P =
(atomic %) Ofl (‘Plzs)
ecB13
1.7% 1.20
2.0% 1.30
2.5% 1.63
3.0% 1.25
20 -3

P is quoted in units of 10 cm
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7.3 Computation of the Band Parameters of Antimony-

Tin Alloys.

The method of solution of the first four equations of
the set 7.2 is presented in Appendix D1 together with the
computer programme by which the calculations were carried out
for various values of P. In particular extensive calculations
were performed for the data obtained at 77°K for the composi-
tions 1.7 at.% and 2.5 at.% tin. No solutions were found
for the estimated range of P, shown in table 7.4, from the
identities 7.3 and 7.4. However, when the input data had
been altered within experimental error, some solutions were
obtained with values of P about 2 or 3 times larger than
those of shown in table 7.4. The solutions with best fit
to the experimental data found for both compositions are
presented in table 7.5, and the comparison of the calculated
coefficients to the experimental data is shown in table 7.6.
These solutions can be compared with the valence band structure
of antimony given in tables 6.4 and 6.7 -(a); the tilt angles
found are 31° for 1.7 % and 30° for 2.5% composition, in
accord with that of 24° : the principal mobilities in each
direction are in good qualitative agreement. However, the fit,
demonstrated in table 7.6, is poor, particularly for the
components of the coefficients Bij'

The calculations for the rest of the compositions

and at all temperatures were carried out by Dr. G.A. Saunders
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Table 7.5

Band parameters of antimony-tin alloys for

compositions of 1.7 at.% and 2.5 at.% tin.

Composition 1.7 at.% 2.5 at.%
p 2.5 4.0
vy 2.12 1,00
Vo 0.05 0.01
Vg 1.18 0.51
o 30°

\Vh 31

Units: P, 1029 cm—s; mobilities, 10% en? vo1t~t sec™t
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Table 7.6

To compare the recalculated values of the
magnetoconductivity coefficients for the
solutions given in table 7.5 with the

experimental data.

Composition 1.7 at. % 2.5 at.%
Cal. Cal./Exp Cal. Cal./Exp
OEl 4,94 0.93 3.61 0.90
053 3.46 0.90 2.44 0.94
P03 3.01 1.10 0.83 1.15
B12 6.22 0.58 0.95 0.48
B13 3.72 0.49 0.47 0.42
B31 3.26 0.28 0.46 0.29
B33 2.14 0.53 0.31 -
4 1 -1 2 -1 -1 -1

107 ohm cn kG —;




- 125 -

with the assumption that Vg is equal to zero. Since vy

is much smaller than vy and Vg as found for antimony, this
is a good approximation and allows estimation of the number
of carriers from the equations relating band parameters to
the components of conductivities (G‘l'1 and 653) and inverse
Hall coefficients (-P

and -P The calculated band

123 231)‘
parameters are detailed in table 7.7. This different

method of calculation neither changes the main structure

of the solution given in table 7.5 nor improves the fit

to the experimental data. The tilt angles then are found

to be 30° ¥ 3° and are invariant with temperature and
composition, even out to 8 at.% tin. But the calculated
values of Bij are about the half of those found by experiment.
Carrier densities indicate that, for alloys containing between

1.7% and 3.0% tin, each tin atom contributes 0.75 ¥ 0.15

carrier to the holes.
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Table 7.7

Calculated Band Parameters of Antimony-Tin Alloys

Composition Temperature Hole Mobilities Carrier Tilt
(% Sn) °k v v Density  Angle
1 3
@)
1.7% 77 1.75 1.03 3.2 32.5°
183 1.05 0.60 3.5 32.5°
273 0.68 0.40 4.0 32.1°
: O
2.0% 77 0.90 0.54 5.1 26.8
183 0.62 0.33 5.4 26,9°
273 0.45 0.23 5.6 26,9°
2.5% 77 0.85 0.40 5.3 29,5°
183 0.57 0.26 5.6 29.0°
273 0.49 0.21 5.5 27.2°
3.0% 77 0.52 0.20 8.2 31.8°
183 0.37 0.14 8.8 30.7°
273 0.30 0.12 8.3 30.4°
8% 77 0.079  0.033 33.0 32.9°
Units: Hole mobilities, 10° cm? volt™t sec—l;
carrier density, 1029 cn=3.
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7.4 Discussion

Discrepancies between experimental and calculated
values of Bij give notice that the band structure is more
complex than the model employed. By introducing more holes
the volumes of the ellipsoid-like pockets are increased:
the ellipsoidal approximation may no longer hold, as a
result of the extention of the pockets. In fact the hole
ellipsoids in antimony are already warped. The carrier
densities in these alloys are of the same order as that
of arsenic (2.1 x lO20 cm_s). The holes in arsenic are
contained in a multiply-connected surface of six warped,
ellipsoid-like pockets joined by necks (Priestley et al
1967). The antimony~tin alloys may have a similar band
structure. Effects of inhomogeneity of the samples have
been neglected. This may have profound effect on observed
coefficients.

Addition of 1.7% or more tin depresses the Fermi
level well below that of pure antimony. Theréfore, it is
possible to assume a second valence band as in bismuth
(see Morimoto and Takamura 1967 for references), in which
the carriers have different effective masses. Some
preliminary calculations carried out by Dr. G. A. Saunders
have shown that a very good fit to the experimental data can

be obtained by assuming a second valence band consisting
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of either one or two ellipsoids of revolution about the
trigonal axis. The carrier density in the second band
is about two orders of magnitude smaller and carriers
are more mobile than those in the primary band, which

keeps its original structure.
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CHAPTER VIII

Discussion

In chapter 6 it was éhown that the low field galvano-
magnetic effects in antimony, measured between 77°K and 2730K,
can be explained by the multi-valleyed band model with holes
occupying highly tilted ellipsoids, while electrons are
contained in the extrema of low tilt angle. The nine band and
mobility parameters have been determined: temperature dependences
of carrier densities and mobilities are then resolved. These
now be discussed in the first section of this chapter. At
the onset of this work, the Seebeck coefficient could not be
explained quantitatively (Saunders et al 1965): +the band model
was not then complete and the temperature dependences of the
carrier mobilities in antimony were not known. With the aid of
the present data, the Seebeck coefficient has been fitted by
a two parabolic band model. The calculations were mainly
carried out by Dr. G. A. Saunders. However, since the findings

are interesting and closely related to the results obtained
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from the galvanomagnetic effects, a short summary of these
calcqlations and conclusions are given in section 8.2, Finally,

the band structure of antimony will be summarized.

8.1. Carrier Mobilities and Densities

In section 2.6. it was shown that, when the number of
conduction electrons per atom n_  is smaller than 1/4, the

relaxation time is given by

t=art1l gl/2 (8.1.)

where a is a constant. This expression is equivalent to
equation 2.39 (page 33) and applies to semimetals. The present

-1.42 and p~1-48 laws for scattering of electrons

finding of T
and holes respectively evidence a similar scattering mechanism
for both types of carriers. The exponent may be compared

with that of -2.1 for bismuth (Gallo et al 1963) and -1.2 for
single crystal graphite (Soule 1958). In a semiconductor,

the mean energy of the non-degenerate carrier is proportional to

-1/2

T and, hence, for acoustic mode lattice scattering, the

relaxation time and carrier mobilities obey a T_l'5 law. In
metals and semimetals, where degenerate statistics is applicable,
only carriers on the Fermi surface need be considered. The
Fermi level in semimetals has only a weak temperature dependence

and is constant in metals. The Seebeck coefficient data of

antimony, which will be discussed in the next section, show that
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the Fermi energies of electrons and holes are constant between
77°K and 300°K and then increase above room temperature. Thus,
for acoustic mode intravalley scattering, a mobility temperature

~1.0 yotween 77°K and 300°K would be

dependence closer to T
expected. To examine this discrepancy further, the measurements

of the conductivity component &7, have been extended up to

11
about 700°K and are shown, plotted on a logarithmic scale in
figure 8.1. Inspection of this figure reveals that only a

slight change takes place in the slope above room temperature
where the Fermi energy and density of both carriers increase.

Assuming G;j a T~*, the exponent x gives a value of 1.39 at

low temperatures but reduces to 1.16 towards 700°K. The 1.9
dependence of mobilities does not appear to have a simple
explanation, Further theoretical studies should clarify the
situation and assess possible contributions from other
mechanisms such as intervalley scattering and electron-hole
collisions.

From the effective mass tensor data of Datars and
Vanderkooy (1964) and the principal mobilities determined
in solution D (see table 6.4, page 99), the carrier relaxation
times have been estimated and are shown in table 8.1. Carrier
signs assumed bvaatars and Vanderkooy were inverted. These
relaxation times are not highly anigsotropic, and are an order
of magnitude larger than those in metals at the same temperature

14

(i.e. for copper at 0°C, T~ 3x107"* sec. Mott and Jones 1936,
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Table 8.1

Relaxation times for electrons and holes in antimony
calculated from the cyclotron effective masses (Datars
and Vanderkooy 1964) and mobility data from solution D.

Relaxation Times 273°k  225°k  183°k  139°k  77°k
Electrons
Ty 1.4 1.7 2.4 3.6 8.6
Tg 0.7 0.6 0.7 1.1 2.5
Tqg 1.0 1.5 1.9 2.7 6.3
Holes
Tl 1.4 2.0 2.7 3.9 9.1
Tq 1.0 1.7 1.4 2.3 8.9
Tqg 0.9 1.1 1.6 2.6 6.1
Relaxation times are quoted in units of 10_13 sec.

page 286). This arises since in semimetals only the longest-
wavelength phonons can scatter the carriers, as discussed in
section 2.6. Sondheimer (1952) has shown that the relaxation time
is proportional to (4na)'4/3. A decrease in relaxation time

follows qualitatively through the sequence of semimetals, at

77°K, with increasing carrier density
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bismuth: n = 1.7x107° t _~ 1071 sec.
a av
. _ -3 -12
graphite: na = 5x10 TaanZXIO sec.
and antimony: na = 1.22{10—3 Taan7X10_13 sec.

The long relaxation time coupled with the small carrier effective
masses accounts for the comparatively high mobilities found for
semimetals, which in turn provides measurable galvanomagnetic
coefficients of high order.

Carrier densities, calculated in solution D as
3.9 x 1071% en™® at 77°Kk and 4.2 x 10719 cu3 at 273K, are
essentially temperature independent in this temperature range.
These values are about 25% less than that (5.5 x 10° 19 cm_s)
obtained by the de Haas-van Alphen effect measurements of
Windmiller and Priestley (1965), while in agreement with that
from the de Haas-Shubmikov effect data (4.07 x 10”12 cm™)
of Ketterson and Eckstein (1963) and the ultrasonic attenuation

19

measurements (4.2 x 10~ cm_s) of Eriksson et al (1964).

8.2. The Seebeck Coefficient of Atimony Single Crystals

and the Fermi Energies of Electrons and Holes.

The Seebeck coefficiehts 833 and Sll’ which can be
obtained respectively franmeasurements made along the trigonal
axis and in the plane perpendicular to this axis, have been
measured between 77°K and 300°K by Saunders et al (1965).

Measurements have now been extended up to 700°K. Using the

carrier mobilities obtained from solution D, the results have been
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analysed by the transport theory methods employed in the study
of bismuth (Chandrasekhar 1959, Gallo et al 1963). The
experimental results are plotted as a function of temperature
in figure 8.2. Experimental errors are estimated as + 4% at
low temperatures but about + 6% above room temperature. For
both components a maximum is extant at about 400°K.

Assuming isotropic ralaxation time, which can be
written as T = Toéis, for both electrons and holes, the
isotropic, partial Seebeck coefficients Se and S, are obtained

h
from

(Gé)ll S, + (<Th)11 S, (ux/vx) S, + 8
S1; = : = (8.2)

( G;)ll + ( Gh) (ux/vx) + 1

11

833 = = (8.3)

Here G, and GE are the partial conductivities of electrons
and holes. The partial Seebeck coefficients are related to the

reduced Fermi energies of electrons '§é= Ei;/kT and holes

%h = 612/I<T by

s =
e

k|6/2+8) Fy/p5 s (B) _ % (8.4)
e| 3/2 + 8) Fp p 45 (€
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S k [ (5/2 +8) Fy,p g (E)
h e | (3/2 + s) Fl /9 i s ("Eh)

(8.5)

where s is taken as -1/2 for acoustic mode intravalley scattering.
These equations lead to the calculation of the Fermi energies in
both bands and the overlap energy L—éﬂ, measured from the top
of the valence band to the bottom of the conduction band. The
negative sign arises from use of the same convention employed
for semiconductors.

For quantitative resolution of the Seebeck coefficient,
it is necessary to know the electron and hole mobility ratios
LX = ux/vX and LZ = uz/vZ and their temperature dependences. It
was shown in chapter 6 that it is not possible to assess the
values of these ratios uniquely from solution D: they cover
a physically acceptable range of between 0.47 and 0.56 for LX
and between 0.76 to 0.94 for LZ. However, since the hole and
electron mobilities show almost identical temperature dependences
between 77°K and 2730K, the mobility ratios can be assumed
independent of temperature. When the electron-hole mobility
ratios LX and LZ are taken as 0.50 + 0.03 and 0.90 + 0.03
respectively, the calculated values of ‘E?, 5? and - Eb,
which are sensitive to the mobility ratios, agree with the
results found by other methods. The effect of changes in the
electron-hole mobility ratio LX and LZ on the calculated Fermi

energies and the band overlap are summarized in table 8.2,



- 136 -

Table 8.2

To show the effect of changes in the electron/
hole mobility ratio LX and LZ on the calculated

Fermi energies and the band overlap.

Energy Tgmp LX = 0.50 LX = 0.47 LX = 0.47
(e7) K Ly = 0.90 1X = 0.87 LX = 0.92
Ep 100 0.098 0.10 0.12

300 0.099 0.10 0.12
500 0.17 0.18 0.16
700 0.31 0.31 0.37
&n 100 0.067 0.070 0.070
300 0.067 0.070 0.070
500 0.083 0.089 0.11
700 0.16 0.18 0.20
-&, 100 0.16 0.17 0.19
300 0.16 0.17 0.19
500 0.25 0.27 0.27
700 0.47 0.49 0.57

For the pair (LX = 0.50 and L, = 0.90) the results are plotted
as a function of temperature in figure 8.3 and in figure 8.4

the partial Seebeck coefficients are shown.
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Between 77°K and room temperature 5; is 0.098 eV
andtfg is 0.067 e€V. The overlap energy, estimated as 0.165
eV, agrees with that obtained at liquid helium temperatures
from the de Haas-Shubnikov effect (0.20 e¥) by Rao et al (1964).
The Fermi energies and the band overlap energy are esentially
temperature independent up to 300°K and then increase markedly.
The assumption of constant mobility ratios might not be quite
correct beyond 300°K: the results obtained at higher tempera-
tures must be treated cautiously. However, this does not
change the general behaviour.

Falicov and Lin (1966) predict location of the holes
in six and the electrons in three pockets. This can be verified
through comparing the Fermi energies obtained from the Seebeck
coefficient with that calculated from the carrier density taking
various numbers of ellipsoids. For a parabolic band containing

n ellipsoids
N 4T N 3/2 T 3/2
—- 5 Gmgm @D, (B) (8.6)

where N is total number of carriers, being equal for electrons

and holes, and mT (in units of mo) is the density of states

effective mass per ellipsoid, given by (mlmzﬁg)l/s. mT and

e
mg, the electron and hole density of states effective masses,
have been estimated from the cyclotron resonance data of Datars

and Vanderkoy (1964) as 0.2 * 0.01 and 0.15 % 0.01 respectively.

On the assumption that each band contains three or six
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ellipsoids, the Fermi energies E; and gg have been calculated
by Dr. G. A. Saunders and results are shown in table 8.3,
together with that estimated from the Seebeck coefficient.
Reasonable agreement obtains only for the model with six
extrema in the valence band and three in the conduction band,
verifying the prediction of Falicov and Lin. The Seebeck
coefficient of antimony can be fitted with the simple, two
parabolic band model.

Probably the closest solution to the true mobility
values in antimony is that given in table 6.7 —(a) (page 103 ):
the Seebeck coefficient and changes in resistivity on alloying
with tin are best explained with mobility ratios,
uz/vz = 0.94 and ux/vX = 0.47, which are very close to the
values found for this solution.

In semimetals with overlapping bands and electron
and hole effective masses of similar magnitudes, the)Fermi
level is constrained towards the centre of the region of the
band overlap and is closer to the edge of that band containing
the heavier carriers. When the temperature increases, the
tendency of the Fermi level in each band to decrease is
compensated by the thermal excitation of more carriers. Hence,
while the number of carriers increases in the two bands, the
Fermi level should stay at about the same position at all
temperatures; the carriers in each band will be at least

partially degenerate. The present finding of increases in
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Fermi energies above room temperature can be understood by the
shift of the band edges, plausibly due in part to thermal expan-
sion; when the lattice spacing changes, the band structure is
altered and results in an increased overlap. Similar temperature
dependences of the Fermi and overlap energies have been obtained
for bismuth from the thermoelectric power (Gallo et al 1963).

The concept of degeneracy temperature, defined by setting the
Fermi energy equal to kTD, can have no physical significance, if
the band overlap increases, while the Fermi level remains practically
pinned between the two band edges. In antimony the carrier pop-
ulations always remain at least partially degenerate below 700°K

and ?%e and T%h never fall below 3.5 and 2.0 respectively.

8.3. Relationship Between the Galvanomagnetic Effects

and the Band Structure of Antimony.

The features of the galvanomagnetic data have been

interpreted quantitatively on the basis of a two multi-valley

band model. Carrier mobilities obtained in the solution D match
the cyclotron resonance effective masses of Datars and Vanderkooy
(1964), if an isotropic relaxation time is assumed. Furthermore,
the Seebeck coefficient can be fitted with the model and mobility
ratios found in this solution. The conclusive feature is the
agreement between the tilt angles of solution D and those obtained
by other methods. In table 8.4 two groups of tilt angles are

collected, the first group containing data from experiments of



- 140 a -~

Table 8.4.

Tilt angles in antimony. In some cases tilt away from the bisectrix
axis was referred to originally but, for an ellipsoidal model, can
be considered as equivalent to tilt away from the trigonal axis in
the adjacent quadrant. For compilation of this table, the basic
rotation in the y-z plane away from the trigonal axis is taken
through P'L. Data from Windmiller and Priestley refer to the tilt
angle of the maximum Fermi surface area while in the present work
tilt is considered for the minor ellipsoid axis (3%') corresponding
to the largest carrier mobility in the mirror plane.

, First Second Electrons Holes
Reference Carrier Carrier

de Haas-van Alphen
oscillations:

Shoenberg (1952) 35°

Saito (1964) o° :

Ishizawa and Tanuma (1965) 36°

Windmiller and Priestley

(1965) 6.5

de Haas -~ Shubnikov Effect:

Ketterson and Eckstein o o
(1963) 4 36

o

Cyclotron resonance:

Datars and Dexter (1961) 36°
Datars and Vanderkooy(1964) 4° 36°

Galvanomagnetic effects:

Freedman and Juretschke
(1961) 60° 27°

Epstein and Juretschke 10° 20
(1963)

Present experiment 5° 24°
Ultrasonic attenuation:
Eriksson et al (1964) 2.5

Theoretical; using a
pseudopotential technique:

Falicov and Lin (1966) 2.5° 49

35
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which the assignment of carriers into one of the two sets of
ellipsoids is not possible, while the second group shows data
obtained from methods which allowed correct plaqement of the
carriers. One set of pockets has a small tilt angle of about

0, while the tilt angle of the second set is about 35°,

4
Previously, the large tilt angle ellipsoids have been assumed
to contain electrons. However, for this case there are no
solutions to the galvanomagnetic effects. A direct experiment
carried out (Ishizawa and Tanuma 1965) on the de Haas-van
Alphen effect in tin—doped}antimony first indicated that holes
should be assigned to the large tilt pockets. The recent
theoretical determination of the band structure by the
pseudopotential technique verifies this new carrier assignment
(Falicov and Lin 1966).

The preliminary analysis of galvanomagnetic data in
antimony~tin alloys, based on the rigid valence band model
adds authority to this placement of the holes in the highly
tilted pockets and demonstrates that the major contribution
to the conductivity . sz in the alloys come from holes sited
in similar pockets to those in antimony itself. But the
discrepancies (Bij cal, ~ 0.4 Bijvexp.) between the experimental
and calculated values of the magnetoconductivity tensor
coefficients suggest that the valence band structure in the
alloys is more complicated. Calculations, mentioned previously,

have shown that the galvanomagnetic effects in the alloys can
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be interpreted if a second set of more mobile holes is present
(G.A. Saunders - private communication),

Some light is shed on the possible presence of a
third set of carriers by the self consistency of solution
D over the temperature range. If a third carrier is present in
antimony, then changes in the population ratio between the
two valence bands might be expected. This effect must distort
the values of the tilt angles and carrier densities. This is
not observed. Minority carriers can play atmost a minimal
role in transport processes over the temperature range 77°K -
273°K.

In the present work the small tilt angle (3° to 6°)
found accords with the results of other workers, shown in table
8.4. But the other tilt angle of 24° is not in close agreement
with the usual value of about 350. Assumptions made in the
model must give rise to this discrepancy. It has been assumed
that the constant energy surfaces are ellipsoidal. However,
it is known that both sets of ellipsoids are in fact warped;
the deviation is more marked for the hole pockets, as discussed
in the first chapter. The effective tilt angle measured by
the galvanomagnetic effects is only a mean value. Tilt angles
measured by the de Haas-van Alphen effect are those of a different
property, that of the extremal cross-section of the Fermi

surface. Assumptions made in carrier scattering and isotropic

relaxation times might be responsible in part for the discrepancy.
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8.4, Summary
The galvanomagnetic effects in antimony measured
between 77°K and 273°K are found to be in reasonable agree-
ment with the theoretical model of the Fermi surface determined
by Falicov and Lin (1966). This theoretical work shows that
there are three electron pockets, having a tilt angle of
about 50, located at the centres L of the six pseudo-hexagon
faces of the Brillouin zone, illustrated in figures 1.10 and
1.14, and six hole pockets, those with a large angle of tilt,
contained on the trigonal-bisectrix planes close to points T.
Carrier densities, equal for electrons and holes,
are essentially temperature independent up to 273°K. There are
1,4 X 1.019 electrons/cm3 in each electron pocket and 0.7 x 1019
holes/cm3 in each hole extremum. Both sets of carriers have

almost identical temperature dependences of mobility, T"l‘42

tor electrons and T 1**® for noles.

The Seebeck coefficient data can be analysed on
the basis of a two parabolic band model from the mobility ratios
obtained in solution D. The partial Fermi (C; = 0.098 eV and
6? = 0.067 eV) and the band overlap (0.165 eV) energies remain

constant between 770K and 300°K but increase rapidly as tempera-

ture rises above room temperature.




a8ed 31x8u uo pPoNUTIUO)

€°¢ L°T 8T°¢ ¢G°GT T°¢€g ¢—o0"S
7°c 6°T 0°'9 ge’8 AN 4 ¢100m|m
8°¢ 1°9 1S A 0Z2°¢ IS6°¢ 8°'1¥ €-,06-8
0o°¢t ¥¢°¢c ¥°0¢g ﬂloolm
°8 O°'1¥ NlOOmlm
AR £€°9 1 °0¢ ¢V "¢ 1S 0} Hloomum
Nw< ¢N< ¢¢<n mm< Hm< MH< NH< Hﬂ< Hmmml mNHml mm\ Hm&. oTdueg
Momhm
.leM.Eo.Eso mloH L1 MHIwM.Eo.Eso thH “Mhﬂm fwo *uyo muOH nhM\ 1SqTUn

ALl PUC H,6ET ‘N, €8T ‘M, G2% ‘M, ELZ 3® USWIOSAS [O¥S WOJIJ POUI€Iq0 I0SUST

£1TAT)STSOI00US RN OYJ JO SIUSIOTIJO00 OATOM] 29Uyl JOJ SonTeA TBIUSWTJIodXT

Y XIAdNdIddv

- YL -

®




o8ed 3xXou UO PONUTIUO)

€% 8% S'%  ¥°LE 88T g~ ,0-S
8" ¥ (A LTI 9°81 2°'¥e 7= 506-8
g1 vy 65°C  06°C G ¥g £-,06-S
v ve c9°% g LT 1-,0-S
81 | £-gz Z-006-S
8°L c'gl &'a¥ L8°C G- €g 1-,06-S
3,81
) 6°T 91'g 861 . 0°S% Z-,0-S
z'€ €°2 1°8 63T 6°1¢ 7= ,06-S
0% 2 6°1¢ €~ ,06-S
€°LT Sv° g 6°2% T-,0-S
0°1€ g-,06-8
89 ¢'g8  8°0¢ 69°% 1°1¢ 1-,06-S
vy Ve, Yhy.  EE,.  Te, €T, 8L, TII, 183, €8l £gr Ty oTdumeg
M,525



S ¥l v'8T 9°9T G°.8 Ly g g—,0-S
781 g g1 9" ¥¥ 9°c9 9T°L  ¥-,06-S
ST ¥ 96T 06°2  OF'€ 0g°L  €-,06-S
16 o1°€ 80°¢G I-,0-S
19 €1"L g-,06-S
o€ 8°S¥  8°0GIT LY € gL L I-,06-S
A LL
€°9 I°g 0°L  g'6¢ 83l g~ ,0-S
L9 9°g G LI L°0g 9'9T  ¥-,06-S
VL'Z L°9T  €-,06-S
9°L¢€ 982 9° 1T I-,0-S
7°8% S'9T  3-,06-S
L2l L°6T  ¥'%9 ¢8'z  60°€ ¥'9T  T-,06-S
evy  VBy WPy €8y Te, €T, 8Ly T, TGy €8Ty, eg Tlf odureg
M ,6€T

VT -




~ 147 -

APPENDIX Bl

The Computer programme used to calculate the band

parameters of antimony. Some symbols employed in the programme

are different from those given in the equations 6.1 to 6.11.

The definitions are as follows:

In the equations in the programme
f F
a, : CE
Bl | SE
2, CH
Bz SH
By El
Ho E2
u3 E3
vy ' H1
Vg H2
Vg H3
by EX
Vo ‘ HX
uZ EZ
v, HZ
Oil D11
G33 D33
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Since only capital letters are available on the teleprinter,
the other symbols such as Kle’ Lle’ X ete., are written as
K1E, L1E, XE, etc. The identifiers D11, D33, P123, etc. are
used for the calculated values of the magnetoconductivity
coefficients and D11E, D33E, P123E etc. for the experimental
values. The mean values of K1E, K1H, K3E and K3H are obtained

from the relations

K1E + K3E

i
o

K1H + K3H

i
)

If the calculated values of these four related unknowns obtained
from the two sets of equations (6.10 and 6.11, pages 88 and
89 ) are represented by KLEA, K3EA, KIHA and K3HA, then the

averages are found from the following relations

K1EA + (1 - K3EA)

K1E =
2

x3g — KSEA + (1 - KIEA)
2

kg -~ KLHA + (1 - K3HA)
2

k3 ~ KSHA + (1 - KIHA)
2

Here, for instance, K1EA is the value of KI1E obtained from the

set 6.10 and (1-K3EA) is that found from the sechad set

6.11.
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The equations are given in electrostatic Gaussian
units, i.e. conductivities and mobilities in e.s.u. and
magnetic fields in gauss. The computer programme is presented
on the following pages and a typical set of results from the

computer in Appendix B2.
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T0OUOKTY CCALCULATION OF "RAND "PARAMETERS OF "ANTIMONYs 31 "#AY

NBEGIN

ANREAL N3 Fs81:83554558555628T7558,5859,50,5%,7T,
FlsFOsDF-NTNGs DN,
KIEA,KIHA,KIEA, K3HA,
LIELLIHL3E, L3H,K1E, K 1H>K3E,K3H s
cXKESYESZECE, SE»XH, YH,ZHsCHs SHs
XKIEs XZE»X1H,X2H,DISKE,DISKH,DISYELDISYH,
FE1,E2,E3,E4sESsH1H2,HA3» H4,HSEXSEZ»HXsHZ s
D11,D33,P123,P231,8313,83158B11,812,833,B44,824,B42,
DI1ELDA3E,PIR3E,P231E,B11E,B12E,B13E:831E,
ArGoHL I JsR5il5Vs
NSWITCH SES:=Q1,02,03,04,05,H63
NREAD Ty 515545555565 535575885895,80,F1-F0sDFNTsNOsDNS
DI1ESD33E,PI23E,P231E,B11E,3128,B13E:831E,
AsGoMsls JaRyiJsVs
Fr=p1
QlaNIF F<FO NTHEN Fe=F+DF NELSE NGOTO @33
Nes=NI;
AZINTF NeND NTHREN N3=N+DN
NELSE NBEGIN NPRINT ##L.327;
NGOTO @13
- NEND 3
LIE:=(N*% (1 -F2%S4+N1 2% (855+56))/F1 23
LIHe=(NT 2Kk (S5+5348)-N4F%54)/(1-F)t 23
L3E:=(N*k(1-FXY*ST+Nt 2% (58+32))/Ft 2}
L3He =Nt 2k (S8+S59)-N%Fk37)/(1-F)t 23
KI1EA=(31#%(1=-FI1 2% 1H=-NT12%S8)/(Fk(1-F)t2%kL IH-F*3%L1E);
KIHAT= (N1 2%S4~-Fr 2%L1E*S1)/7((1=-F)t 3%L1H-(1~-F)*Fr2%L1E)3
HKB3EAz= (534 (1=F)t 2kL3H~-Nt2%SE)/(F*%(1-F)t2%L3H-Ft 3%xL3E)3
H3HA:= (Nt 2*%SE-F1 2k 3E*S3)/((1=F)t 3xL3H-(1=F)Y*Ft2%[ 3E);
NIF O KIEA>T NOR KIEA<U NOR K3EA>]1 \OR K3EA<D) \NOR K1HA> ]
ANOR KIHA<UO \DOR K3HA>1 \OR K3HA=<( \NIJR L3E<U \NOR L1E<U
STHEN NGOTO 223
KIE:=(1+KIEA-K3EAY/23 K3E
KiHe=(1+K1HA-K3HA)/ 23 K3H
DISAR =1 -4%L3E/KIET23
NIF DISXE<(G

= 1+K3EA-KI1EA) /23
= (1 +K3HA-K1HAY /23

19663

NTHEN NBEGIN \NPRINT ##L3?2DISXKE:=7,; SAMELINE,PREFIX(#43227),

DISKE,FsN,L3EKIEASKIES
NGOTO &2

NEND
NELSE NBEGIN XIE:=U.5K1E*(1+5ARTIDISKED )
X2Ee=0e 5*K1E*(1-SARTCDISKXEY

NEND 3

PDISAH:=1-4%L.3H/K1H? 23
NIF DISKH<U

NTHEN \BEGIN \PRINT ##L37DISXH:=?,SAMELINE,PREFIX(##£52?27),

DISAH, FaNsL3HKIHA,K1H:
NGDTO 923
NEND
NELSE NBEGIN X1H:=0¢9%KIH%(1+3ART(DISKH)YD 3
XK2Hs =0 5K 1HK (1 -SARTDISAHY I 3
NEND 3
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\RBEGIN
NFOR XE:$=X1E,%X2E \DO
\BEGIN DISYRE:=1-4%(L1E-XE*K3E)/(1~-XE)t23
NIF O DISYE<D \OR DISYE>1 NTHEN \GDTO 24
\ELSE \BEGIN YE:=0.5%(1=-XE)*(1-38RT(DISYE)Y);
ZE:$=Ue 5% (1=-XE)4 (1 +3ORTC(DISYE) )Y 3
NIF YE>K3E \DR YE>ZE NTHEN \GOTO 94
\ELSE CE:=SORT((KIE=-YE)/(ZE=-YE));
NIF CE>1 ONTHEN NGOTO Q43
NENDs
NFOR XHs=X1H,X2H \DO
NBEGIN DISYH:=1-4%(L1H=-XH*K3HI/ (1-XH) 23
NIF DISYH<O NOR DISYH>1 NTHEN \NGOTH as
\ELSE \BEGIN YH:=0.5%(1=-XH)*(1~-SART(DISYHY )
ZH3=0e 5% (1 =-XH) % (1 +SART(DISYH) )3
NIF YH>K3H NOR YH>ZH NTHEN \NGOTO 85
\ELSE CH:=S0RTC((K3H=YHI/ (ZH~-YH) )3
NIF CH>1 NTHEN \GOTD 053

NENDS
NBEGIN

SE2=833RT(1-CE12);
SHe=SARTC1-CH*2)
Se=S50/N;
Ele=FxS%XFE;s
E2s=F4xS*xYES$
E3s=F%S%7E;3
Hie=(1=F)x3%xXH3
HZ2e={(1=-FO>%SkYH3s
HA3:={1=F)*S%xZH3
EXezl 5% (R14+CEt2%xE2+85Er2%E3) s
EZs=SEt2%E2+CEr2%E3;
Ea1=E2*xE3+E1 %E7Z3
ES5e=E1%(CEt2%E2+SEr2%E3) 3
HX 2= 5% (H1+CHr 2 *%J+\Hf9*H3),
HZ:=$H?2*40+bHT°*ﬂ
Has=H2xH3+H] «HZ
Hﬁ:zHl*(Cﬁ?D*H9+%HrQ*43).

Dlls=4e 851000 (=10 %kNR(EX+HK) 3

D33:=4. %*1UT("1U)kM*(h£+47),
P231s=8%1Ur (-21 )Nk (H4=-E4) 3
PI23s=1s6% 101 (=201 4N*{H5-E5) 3

B13:=0.33%10+ (~-31)N*(EX*ES+HX*H5) 3

B31:=2.66%10t (~31) N4 (EZ%E4+HZ*xH4) 3

B311:56 661U (~324N*(E1t 2% (SEt 2%E2+CEr %E3)+CET2*E2t 2% (3% SEr 24K 1 +
E3)+SEr2%E37 2% (3%CEt24E1+E2) ~E1#E2*E 3% (2+6%CET 24 SE+ 2)+H 1t 2% (SHt 2% H2+
CHr2xHZ)+CHr 2% HZ 2k (3 SHT 2k HI+H3Y +SH 2% H3t 24 (3% CHT 25H 1+H2) ~H1*H2*H3*
(2+6xCHr22SH12303

Bl2:=6.66%10t (~320%N* (3*%E1 124 (SE? 2%xE2+CE® 2%E3)+CE 2%E2t 2% ( SEr2%xE 1 +
3xEII+SET2*EZ1 22 (CET 2*E 1+ 3%E2)+E 1 *E2*E3% (2~ 2%CET 2% SEt 2)+3*xH 1+ 2% ( SH1 2%
H2+CHt 2%H3 ) +CHr 2% H2 0 26 (SH? 2% H I+ 3%H3) +SHE 2xH3 2k (CH 2% H 1+ 3%H2 ) +H 1% HI*H 3%
(2-2%Crie2x8Ht2) )3

B33:=5.334%107(~-31)xN*(CE? 2xSEr 2%E1%(E2~E3)r 2+CHr 2%3Ht 2% H 1% (H2~-H3) ¢
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B44:=2-2.66%1 0t («231)*NE(EZXES+HZAH3) 3 ,
B24:=133%1 11 (=31 )N (CE#SE4E1*(E2-E3)* (~E1+CEr2%E2+35Er 2%E3)+CH*
SHEHTA(HZ2=-H3) % (=H]1 +0Hr 24H2+3Hr 2%H3) ) 3
BAa2:=1.33%1 01 (=31)xN*{(CE*SEX(E2-E3)*(E2%E3-E1*x(SEt2XxE2+CE* 2%E3) )+
CHSHE(H2-H3) % (H2%H3-H1 % (SHt 2% H2+CHr 2%H3>) ) 3
NIF DIT<DIIE®CI~Ue 01%A) NOR D11>DIIE*{1+0.01%A) \NOR D33<D33E%(1~
Oe U1P%G) NOR D33>D3ZEX(1+U0. D1%xGd \OR PI23<P123E%(1-0.31%H) \OR P123>
DIZ23Ek (T +0. J14kH) NOR P231<PR23IEX*(1~0. J1%I ) NOR P231>P231Ex(1+Js01%1)
WOR B11<BIIE*(I-Ue01%J) NOR B11>BlIEx(1+0.U1%J) NOR BIZ2<B12Ex(1~0.01
*RY NOR B12>B12E#01+0. 014%R) N\OR BI13<BI3Ex{1-0.01%1J) \NOR Bi3>BI3E#x(1+
e 1111 NOR RBR3T<RIIERC1I=0.U1%V) \OR B31>B3IEx(1+0.01%W)
NTHEN NGOTD 263
NBEGIN NPRINT ##L377:3
NPRINT THoSAMELINESPREFIX(##332?2)sN,F3
WPRINT XELSAMEL INELPREFIX(HASI?? IS YESZESKH YH,ZH s
ANPRINT E1,SAMELINE, PREFIX(##532?2):E2:sE3,CE>EX,EZs
NPRINT H1SAMELINE,PREFIX(##S3?2?2),H2,HA3,CH,HX, HZ
MPRINT DI1,SAMELINE,PREFIXK(##5327),D33,P123,P231,811,8123
NPRINT B13,3AMELINE,PREFIA(##5322)5831,833,344,824,8423 \END3
GHINENDs '
QO5eNEND:
RAINENDS
NGOTO 923
NEND S
B3INEND3
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APPENDIX B2

A typical set of results obtained at 183°K from the

computer programme presented in Appendix Bl. All four types

of solutions are shown : the best fits to types A and D are

framed. To compare the calculated values of magnetoconductivity
coefficients with the experimental data, the experimental values
of the magnetoconductivity coefficients at 183°K are transformed

to Gaussian units, as follows

D11 = 3.78 x 1016 e.s.u. conductivity
D33 = 5.00 x 10%°
_ 11 . -1
-P123 = 4.58 x 10 e.s.u, conductivity gauss
-P231 = 5.51 x 10%1
_ 6 Lo -2
B11 = 29,1 x 10 e.,s.u. conductivity gauss
Bl2 = 73.6 x 106
B13 = 24.7 x 106
6

B31 = 78.8 x 10

B33 = 12.5 x lO6

_B44 = 9.63 x 10°
B24 = 12.4 x 10°
6

B42 = 9.46 x 10
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APPENDIX Cl

The computer programme used to search through

solutions type D with fixed values of the tilt angles \P%

and Y, . Mobilities are varied within about 30%. The
calculations can be performed by writing the equations 6.14

(page 91) in the form

x = AE
e
=L@ -aE) a - B8R
ye 2
z =1 (1 - AE) (1 + BE)
e 2
1 2 .1/2
where AE = 3 K1e [l + (1 - 4L3e/K1e) ]
5 11/2
and BE = [1 - 4(L1e - xeKSe/(l - xe) ]

Once the approximate values of the new variables AE and BE

are determined, the three dimensionless quantities X ¥

e’ e’

which are related to the principal mobilities ul, o, Mg

by the set of equations 6.6. (page 87), can be altered within

a required range. A set of similar relationships identical

in form hold for the hole ellipsoids. Use of equations 6.14

reduces the arbitrary selections of unknowns from six to four.
The computer programme is presented on the following

page and a set of typical ouput in the next Appendix.
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OO TI, URPYST, 21 T 663
NBEGIN NREAL NsFsS»80,TsFI>FO,DFNINO,DN,
AEL,AE T, DAE, AED, BE,BEI, DBE,BED,
AHLAHT » DAHSAHO > BH,BHI» DBH, BHO »
AE s YR s ZESCES SE» XH,YH» ZH, CHs SH»
El1sER-E23,E4,E5,HI H2,H3, H4,HSEXSEZ,HX»>HZ
D115D33,P123,PR231,813,831,B11,B12,833,844,824,342,
DIIED33E,PI23E,P231E,B1IE,BIRE,BI3E-B31E,
AsGoMalsdsRsUs V3
NSWITCH SS55:=81,082,335063
NREAD T80 CESESCHLSHHFILFO,DFNISNOQSDNS
ARET S AED, DAELBEILBEO,DBE,AHI> AHO » DAH,BHI » BHO > DBH»
DI1E,D33E,PI23E,P231E,B11E,BI2E,B13E,B31E,
AsGoHs I, JsR515V3
Fe=F1s
Q1eNIF F<FD NTHEN Fe=F+DF \NELSE \NGODTO Q233
Ni=NT3
D2:NTF N<NO NTHEN N:=N+DN \NEL3E \NGOTO 13
St=50/Ns
NBEGIN NFOR AE:=AEI N3TEP DAE NUNTIL AED \DD
NBEGIN NFOR BE:=BEI \NSTEP DBE \NUNTIL BEO NDO
\BEGIN XEs:=AR:3
YEes=(})s 5*(1‘A5 )*(1 ~-BE)s
ZEs=00a5%(1~-AEYX(1+BE)3
NEND S .
NEEGIN NFOR AH:=AHI \NSTEP DAH NUNTIL AHD \NDO
NBEGIN NFOR BH:=BHI \NSTEP DSH NUNTIL S8HO \DO
NBEGIN XH:=AHM3
YH:=U0e 5% (1=AHI*(1-BH);
ZH:=U0e 5% (1 ~AHI K (1+8H) 3

\NEND3

NBEGIN Elt=F*S%%XE3

ER2s=F®3%YE;s

E3e=F%S%7Ks

Hle={1~F)%kSkXH;

H28=(1~F)xS%YH3

H3:=(1-FI3%S%7H;

EXs=Ue Sk (E1+CET2%xE2+5Et 2%xE3) 3

EZ:=SEt2%E2+CEt2%E 33

EAa:=E2%E3+E1%EZL3

ES5¢=E1%(CRt2#E2+8R12%K3)3

HXt=0 5% (H1+CH2%H2+SHr 2%H3) 3

HZ t=S5Ht 2%H2+CHr2%H33

Hgs=H2xH3+H1 %HZ;3

HE e =H1#(CH1 24H2+SHT 2%xH3) 3
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D11:=24e 85102 (=10 xNK(EX+HX) 3

N33t=4.83%x1 0t (~1U0)RN4(EZ+HZ) 3

P31 e=8%101(=21)%N*x(H4-E4) 3

P123:=1 6% (=-20)%N*(H5~E5)3

B13:=5.33%1Ur (~31)*kN*¥{EXKES+HX*HS) 3

A31:=2.486% 10t (~31)EN*(EZkEA+HZkHE) 3

R112=26.66%101 (=32)%N*(F112%(SEt2%E2+CEt 2*xE3)+CEt 2%xE21t 2% ( 34 SEt 2xE 1+
E33+3Et2%E312%(3*CET2%E1+E2)-E1*¥E2%E3% (2+64%CE®t 2%SEr2)+H 1+ 2% ( SHt 2*xH2+
CHr2%H3Y+CHT 24xH2t 2% (3% SHr 2%H1+H3)+5H 2%xH3r 2% (3« CHY 2% H 1 +H2) ~H 1 kHI2%H 3%
(2+H%CHT 2%SHT2) )3

RB12:=6.66% 101 (~32)%N®x(3%E1t 2% (SEt 2*%E2+CEt 2%E3)+CEt 2%ER2t 2% (SE? 2% 1 +
I4EZI+SEr 2%ERt 2% (CET2%E 1+ 3%E2)+E1#E24E3% (224 CEr 24SEt 2) + 3xH 1+ 2k (SHr 2%

(2-2%xCHr2%SHT2)) 3

NIF DI1<DIIE«RCI=-0.01%4) NOR DI1>DIIER(1+0.031%A4) \NOR D33<D33Ex(1~
e 31%GY \NOR D33>D33E#(1+0.111%G) \NOR P123<PI123E%x(1~-0.01%H) \NOR P123>
PI123Ex(1+0e U1 %H) NOR P231<P231Ex(1-0.01%1) \OR P231>P231E*x(1+0.01%1)
NOR B11<B11Ex(1-0.01%3) \OR B11>B11Ex(1+0.01%J) \NOR B12<BI2E*(1-0.U1
AR ONIR B12>BI2E+(1+0.01%R) \OR B13<B13Ex(1-0.01%UJY \NOR Bi13>B13E*x(1+
e 1 %) NOR B31<B3IEX(1-0.01%V) \NOR BI31>B31E%(1+0.01%Y)
NTHEN NGDTO 963
NBEGIN
B33:=8.33%1 01 (=310 4N*(CEt 24SET 2%E 1% (E2~E3)1 2+CHr 24SHr 2xH1%x(H2-H3)1
2733
B4 ==, 66%1 U1 (=3 1) N*(EZ*ES5+HZ*%H5) 3
B24:=1.33%101t (~31)*N*(CEX*SE#E1*(E2-E3)*(~E1+CEt2%E2+3Er 2%E3) +CH*
SHEH1 4 (H2-HAY 4 (~HI+CHT 2%xH2+SHt 2%H3) 3 ;3
B4P1=1.33% 10t (=31 N, (CEXSE*(ER2-E2) % (E2%xE3-E1 % (SEt 2+E2+CE12%E3) ) +
CH¥*SHE (H2=H3) % (H2*H3-H1 % {SHr 2%HR2+CH1 2%xH3) 3 ) 3
NPRINT ##1L.3773
NPRINT T,SAMELINELPREFIXC(##5322),N5F,8E,8BH3s
NPRINT XE,SAMELINE,PREFIX(##S3?22),YE»ZE» AHs YH, ZHs
NPRINT El1,SAMELINE, PREFIX(##53?22)sE25E3,CEEX,EZ
NPRINT HI»SAMELINE,PREFIX(##53722)sH2,H3,CHyHXHZ s
NPRINT DI1,SAMELINELPREFIX(##S3?72):sD33,P123,P231,811,812;3
NPRINT BlI3,SAMELINE,PREFIX(##5322),831,833,244,824,842;
NEND:
QEINENDS
NENDS
NENDS

NENDs
NGOTO QZ23NENDs
D3:NENDs
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APPENDIX C2

A typical output obtained from the programme given

fit is framed.

in Appendix C1 for}%é = 4

o

and T#h = 28°; the best

18300000 4,300,+19  ,3R000000 94000000 97000000
L40000000 02100000 ,BT900000  ,BTON0000 00860000 42140000
924372,09  48529,534  1338028,6 99756000  489588,28  1331743.2
2149165, 1 32425.992  1588%74,0 88205000  1262317,8  1245834,0
3,816,418 5,320,416 5,203,411 4,930,411 26575610 62972718
23914309 58828886 20673843  ~12270561 14477757 10287695
183,00000 4,300,419 38000000 ,94000000 ,97NGONOO

L42000000 02030000 55970000 55000000 00900000 44100000
970590,69  46911,883  1203427,7 99756000  511784,17  1287351,7
2073755,8  33934,184  1662775,1 ,88295000  1233345,0  1303779.8
3,602,416 5,348,416 5,252,411  4,988,+11 26779986 62543810
23636512 50452924 21834374  -12008603 13901118 10811983
183,00000 4,300,419 ,38000000 94000000 97000000

LAZO0ODON 02030000 55970000 57000000 ,00860000 42140000
970590,69  46911,883  1203427,7 99756000  511784,17  1287351.7
2149165,1  32425,908  1583874,0 88205000  1262317,8  1245834,0
3,662,416  5,22R.+16  5,198,+11  4,881,+11 26794169 63605682
23948994 58180061 20670631  ~12256028 14507079 10279020
183,00000 4,300,418 38000000 94000000 97000000

SA400N00N 01960000 54040000 55000000 00900000 44100000
1016809,3  45294,232  1248826,7 99756000  533980,08  1242960,3
2073755.8  23934,184  1662775,1 .88295000  1233345,0  1303779,8

3,648,416
23669903

183, 00000
44000000
1016809, 3
2149165,1
3,708,416
23982384

5,256,416
59933403

4,300,419
01960000
45294,232
32425, 998
5,137,416
57660540

5,248,411
21830460

» 33000000
,54040000
1248826,7
1588874, 0
5,194,411
20666716

4,953,411
~128900938

. 94000000
LBT000000
99756000
. 88295000
4,846,411

-12238323

2689926902
13929597

« 97000000
+ 00860000
533980,06
1262317,8
27006875
145355658

83154288
108060496

« 42740000
1242960,3
12458340
64216160
10267532
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APPENDIX D1

Calculation of the band parameters of antimony-tin

alloys.
26, .+ G
Define V.4V 4V, = 11 33 _ g (1)
17273
eN
v
and X = —%
y="2
S
v
z = S (2)
S

where x + y + z = 1. Then, the first four equations ((711,

G§3, P53, —P231) of the set 7.2 ( page 112) can be rewritten

in terms of the following variables

K. = x + dzy + Bzz

1
Ky = Bzy + a2z
Ly = yz + x (Bzy + 422)
Ly = x(a®y + 8%2) (3)

Here K1 + K3 = 1. The values of Kl’ KS’ L1 and LS-can be

obtained from the experimental values of the coefficients by
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the relations

_ 267, _
K, = -8,
2G7; + Og3
G33
K, = = 8,
26/, + Gzg
_ 2eNcP231
(267, + T33)
eNcP
~ 123
Ly = —222 _ = Nsg | (4)

(267, + Ggy)

Thus the dimensionless parameters x, y and z, and the tilt angle

\#% are found by solving the relations (3); the solution is

1
x = - K, [1 + 1 - 4L3/K?)1/2]
1 1/2
y = —(1 - x) {1 - [1 - 4(Ll'— xK3)/(1 -~ X)2] }
2
1 1/2
z = — (1 - x) {1 +[ 1 - 4(L1 - XKB)/(l - x)z} }
2
Ko -y
2 - 37 (5)

The principal mobilities are then obtained by using the relations

(2). Numerical calculations were carried out by a computer.
The computer programme is presented on the next page and a

typical ouput in Appendix D2.
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DOPED ANTIMONY,FEB. 1967 NO. 1043
NBEGIN ANREAL ToNL>NI>NDsND»S5:50,K15K3,L15L3,0,
DISKsDISY s XsYs ZsCE»SESEL1SER,EZ,EXSEZSE4,E5,
D11:D33,P123,P2315sB11,R812:s8135B31,8B33,
BR4,B42,344,D11E,D33E,P123KE,P231E;
NSWITCH 33S:=01,323
NREAD TLCsNINNDSNDDIIESD33E,PIR23E,PR231Es
SO:=2%xD11E+D33Es
ABEGIN NFOR N2=NI NSTEP ND NUNTIL NO NDO
NBEGIN Kis "9$D11V/§Di K3:=D33E/503
L1:=28.8%N*%P231E/50123 L3:=14.4xN*%P123E/50123
DISX:=1~4*L3/K1f2' NIF DISX<U NOR DISKs1 NTHEN NGOTD @1 NELSE
NBEGIN Xe=Ue 53K 1k (1+38RTIDISXIISNIF X>0e99 NTHEN NGOTO QISNENDS
ABEGIN DISYs=1-4%(L1~X*kK3)Y/(1-RA)123
NIF DISY<i NOR DISY>1 NTHEN NGOTD G2 \NELSE NBEGIN
Yi=Ue 5k (1=-XI*(1-5SQRTIDISYIIS Z:=0.5%x(1=X)%CI+SARTIDISY X))
NIF O Y>K3 NOR O Y»Z O NTHEN NGOTO @2
NELSE CE:=SQRT({K3=-YI/(Z~Y))3 NIF CE>1 NTHEN NGDTD Q23N\END3

SE:=3QRTC]1~-CEr*2)3

S1=24, 8?*1”??*\3/V:

Els=3%X; E2:=85%Ys E3:=5%7;

Ex:za.5*(&1+P&r°*E9+SFfD*F?)'

FZe=SEt24E2+0E1 2%E 33

has=FE2%xE3+L1%*E73

ES:=E1*(CEt2%E2+3E12%E3) 3
Dite=d4e®x10t (=11 N2EX; D33:=4.83% 100 (-1 %N*%K7 3
P231:=84% 1t (~210%kN%E45 P123¢=1.46%10t (~20)*%N*xE53

B13:=5.33% iUt {-31)#N#EX*ES3: B31:=22.66%101 (~31)%N*EZ%E 43
Bl1:=6.66%1 U (=32)*kN*(E1t 2% (SEt2%E2+0Er 24E3)+CET2%E21 2% ( 3% 3Et 2%xE {1 +
E3)1+SE12%E312%(34%CET2xE1+E2)~E1*E2*E3*x(2+46%CET 2xSEt2) )3
Bl12:=6.66%10t (~32)%N%(3%E112%(SET 2%E2+CEt 24E3)+CEt 2%E2+ 2% (SEr 2%E T+
3I%kE3)+% »10*F3rzx(cg?0*tl+3*F?)+E1*E9*L3*(P 2xCEt2%5Et2) )3
B33:=5.33%1 1t (~31)%Nx{CEr 2%SE1+2%E1%(E2-E3)t2)3;
844:m-2.66*101(=31)*N*EZ*Eﬁ;
BRA:=1.33%x1 01 (~3104N*(CE*SEXE1*(ER-E3)*(~E1+CET2%E2+5Et 2%E3));
B42:=1323%1 Ut (~31) Nk (CEXSE*(E2-E3)*%(E2%E3-E1*(SE*2%E2+CEt 2%E3))) 3
NBEGIN NPRINT ##L.3773
NPRINT ALIGNEDC(3,2), TH5AMELINE, ##55272,C35\PRINT ##L 1773
NPRINT ##S8S227,SAMELINESCALED(3) >N, #4S32?2,ALIGNEDC(153) s XHo PREFIX(##56772)
YsZsCEINPRINT ##L1273
NPRINT ##327272, SAMELINE,SCALED(3)HE1,PREFIX(A#ES 3?2 )I5E2,E3:EX2EZ3
NPRINT #4#L17723
NPRINT #4#5272 72, SAMELINESSCALEDC(3) D11 .PREFIX(##53?2225D33-,P123,P231.,
B11-BI123\PRINT ##L1?7;
NPRINT ##527272, SAMELINE, SCALED(3)Y, BUSPREFIX(##53?272)5,831,R33,RB44,R24,
B4235 \END3: '
A2 2NENDS
DT eNENDINENDSs
NEND:



file:///SWITCH
file:///3EGIN
file:///THEN
file:///GOTO
file:///ELSE
file:///G0T0
file:///GOTO
file:///ELSE
file:///GOTO
file:///ELSE
file:///THEN
file:///GOTO
file:///PRINT
file:///PRINT
file:///PRINT
file:///END5
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APPENDIX D2

A typical ouput of the programme given in Appendix

D1, The results are those obtained at 77°K for the compos-—
ition 2.5 at.% Sn. The best fit is framed. To compare the
calculated values of the magnetoconductivity coefficients with

the experimental data, the experimental values are presented

in Gaussian units :

011 = 3,62 x 1016 e.s.u. conductivity
_ 16

-P155 = 0.65 x 1001 e.s.u. conductivity gauss_l

11

_P231 = 1,00 x 10

Bjp = 1.78 x 10° e.s.u. conductivity gauss—z
_ 6

B13 = 1,00 x 10

B,, = 1.45 x 10°
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