
Durham E-Theses

Sequential Decision Making For Choice Functions On

Gambles

HUNTLEY, NATHAN

How to cite:

HUNTLEY, NATHAN (2011) Sequential Decision Making For Choice Functions On Gambles, Durham
theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/923/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/923/
 http://etheses.dur.ac.uk/923/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Sequential Decision Making For
Choice Functions On Gambles

Nathan Huntley

A Thesis presented for the degree of

Doctor of Philosophy

Statistics and Probability Group

Department of Mathematical Sciences

Durham University

UK

June 2011

Sequential Decision Making For Choice Functions

On Gambles

Nathan Huntley

Submitted for the degree of Doctor of Philosophy

March 2011

Abstract

Choice functions on gambles (uncertain rewards) provide a framework for study-

ing diverse preference and uncertainty models. For single decisions, applying a choice

function is straightforward. In sequential problems, where the subject has multiple

decision points, it is less easy. One possibility, called a normal form solution, is to

list all available strategies (specifications of acts to take in all eventualities). This

reduces the problem to a single choice between gambles.

We primarily investigate three appealing behaviours of these solutions. The

first, subtree perfectness, requires that the solution of a sequential problem, when

restricted to a sub-problem, yields the solution to that sub-problem. The second,

backward induction, requires that the solution of the problem can be found by

working backwards from the final stage of the problem, removing everything judged

non-optimal at any stage. The third, locality, applies only to special problems such

as Markov decision processes, and requires that the optimal choice at each stage

(considered separately from the rest of the problem) forms an optimal strategy.

For these behaviours, we find necessary and sufficient conditions on the choice

function. Showing that these hold is much easier than proving the behaviour from

first principles. It also leads to answers to related questions, such as the relationship

between the normal form and another popular form of solution, the extensive form.

To demonstrate how these properties can be checked for particular choice functions,

and how the theory can be easily extended to special cases, we investigate common

choice functions from the theory of coherent lower previsions.

Declaration

The work in this thesis is based on research carried out at the Statistical and Prob-

ability Group, the Department of Mathematical Sciences, Durham University, UK.

No part of this thesis has been submitted elsewhere for any other degree or quali-

fication and it is all my own work unless referenced to the contrary in the text. In

particular, Chapter 4 and Section 6.5.1 are based on joint work with Ricardo Shirota

Filho, adapted from [76].

Copyright c© 2011 by Nathan Huntley.

“The copyright of this thesis rests with the author. No quotations from it should be

published without the author’s prior written consent and information derived from

it should be acknowledged”.

iii

Dedicated to
Tony Kiddle.

Acknowledgements

I am indebted to the support of my parents, as well as my supervisor Matthias

Troffaes, my team-mates at Durham and Middlesbrough Chess Clubs, and my

other friends, enemies and traitors; in particular Rebecca Baker, Ally Bletsas, Ric

Crossman, Jonathan Cumming, David Goodman, Ruth Hilton, Joey Oliver, Re-

becca O’Neil, John Rhodes, Luke Stanbra, James Thompson, Stevie Wells, Danny

Williamson, and most especially my long-suffering office-mate Rachel Oxlade (a

clever hobbit indeed).

v

Contents

Abstract ii

Declaration iii

1 Introduction 1

1.1 Outline . 1

1.2 Definitions and Notation . 6

1.2.1 Gambles . 6

1.2.2 Choice Functions . 7

1.2.3 Decision Trees . 11

1.2.4 Solving Decision Trees: Extensive and Normal Forms 16

1.2.5 Normal Form Operator Induced by a Choice Function 22

2 Subtree Perfectness For Normal Form Operators 28

2.1 Definition of Subtree Perfectness . 28

2.2 Subtree Perfectness Properties . 32

2.3 Subtree Perfectness Theorem . 39

2.4 Special Case: Subtree Perfectness In Statistical Decision Theory . . . 48

2.5 Equivalence of Normal Form and Extensive Form 50

2.5.1 Equivalence for General Operators 50

2.5.2 Equivalence For Choice Functions 54

2.6 Links to Other Work . 57

3 Backward Induction 62

3.1 Normal Form Backward Induction . 63

vi

Contents vii

3.1.1 Definition . 63

3.1.2 Backward Induction Properties 64

3.1.3 Backward Induction Theorem 71

3.1.4 Relationship with Subtree Perfectness 76

3.1.5 Computation of backopt Using Other Choice Functions 80

3.2 Extensive Form Backward Induction 86

3.3 Backward Induction or Subtree Perfectness? 94

4 Locality 102

4.1 Introduction . 102

4.2 Problem Specification . 106

4.3 Normal Form Solution . 108

4.3.1 Normal Form Decisions . 108

4.3.2 Gambles . 108

4.3.3 Normal Form Solution . 110

4.4 Locality . 110

4.4.1 Sequential Distributivity . 112

5 Optimal Control and Deterministic Discrete-Time Systems 115

5.1 Problem Specification . 115

5.2 Backward Induction Theorem . 119

5.3 Subtree Perfectness . 124

6 Application To Coherent Lower Previsions 128

6.1 Coherent Lower Previsions and Credal Sets 128

6.1.1 Credal Sets and Coherent Lower Previsions 129

6.1.2 Choice Functions and Optimality 134

6.2 Backward Induction Properties for Coherent Lower Previsions 138

6.2.1 Results for General Choice Functions 138

6.2.2 Maximality . 141

6.2.3 E-admissibility . 142

6.2.4 Interval Dominance . 143

Contents viii

6.2.5 Γ-maximin . 145

6.3 Backward Induction Examples . 146

6.3.1 Lake District Problem . 147

6.3.2 The Oil Wildcatter . 150

6.4 Subtree Perfectness . 154

6.5 Cumulative Decision Processes . 159

6.5.1 Locality . 159

6.5.2 Dynamic Programming . 174

6.6 Summary . 175

7 Conclusion 176

7.1 Overview . 176

7.2 Discussion . 178

7.3 Further Work . 182

7.3.1 Subtree Perfectness . 182

7.3.2 Backward Induction . 183

7.3.3 Act-State Independence . 183

7.3.4 Changes To Decision Trees . 185

7.4 Concluding Remarks . 187

Bibliography 189

Appendix 197

A List of Properties 197

B Supplementary Definitions and Proofs 201

B.1 Definition Of Decision Trees . 201

B.2 Results for Sets of Gambles . 202

B.3 Lemmas for the Backward Induction Theorem 205

B.4 Proofs for Weak Subtree Perfectness Theorem 210

List of Figures

1.1 A decision tree for walking in the lake district. 12

1.2 Extensive form solution to Fig. 1.1 with c = 1.2. 19

1.3 Normal form solution to Fig. 1.1 with c = 1.2. 20

2.1 For a subtree perfect extensive form operator, optimisation and re-

striction commute. 30

2.2 Decision tree for Example 2.2. 31

2.3 Decision trees for Lemma 2.10. 43

2.4 Simple sequential decision tree with one decision node per branch . . 48

2.5 An example for non-correspondence of extensive and normal form

solutions. 51

2.6 Example for the difference between Definition 2.23 and 2.24 59

3.1 A tree for which extopt can choose globally non-optimal arcs. 89

3.2 An example for Seidenfeld’s backward induction method. 91

3.3 Seidenfeld’s method: stage two. 91

3.4 Seidenfeld’s method: solution. 91

3.5 Consistency does not imply subtree perfectness. 96

5.1 A simple deterministic system. 116

5.2 The decision tree for Fig. 5.1. 117

5.3 The deterministic system tree for Fig. 5.1. 118

5.4 Decision trees for Theorem 5.1. 120

6.1 Relationships between the choice functions 137

6.2 An example for backward induction using Γ-maximin 146

ix

List of Figures x

6.3 Solving the lake district example by backward induction. 148

6.4 Decision tree for the oil wildcatter. 151

6.5 Solving the oil wildcatter example by normal form backward induction.152

7.1 The problem of hidden options. 186

Chapter 1

Introduction

1.1 Outline

Decision making under uncertainty is a common problem in many fields. Appli-

cations abound in, for example, medicine [39, 48], artificial intelligence [15, 21],

economics [70, 59], environmental science [20, 37], operations research [19, 83], and

engineering [2, 33]. Sequential decision making (where the subject needs to make

decisions in sequence, possibly with other events or observations occurring between

decisions) are of particular theoretical and philosophical interest, because they raise

two related questions: how should we choose between uncertain outcomes, and,

given a means of doing this, how should we make plans for sequential problems?

Classically, the answer to the first question is to assign probabilities to events

and utilities to outcomes, and maximize expected utility [78, 61]. The properties

of expected utility lead to convenient backward induction solutions [46, 7, 56]. The

behaviour of this solution is well known and exhibits many attractive properties,

but is not universally accepted. Some argue that the independence axiom (also

known as the sure-thing principle [61] or substitutability), a fundamental assumption

underlying expected utility theory, does not correctly mirror human behaviour [1,

18, 34] and disallows apparently reasonable alternative criteria [49, 50]. Others

claim that, when confronted by severe uncertainty, it is unreasonable to expect

exact probabilities to be available [44, 8], and it may therefore be unreasonable to

state a single action as “optimal” [63, 79].

1

1.1. Outline 2

For these reasons, many alternatives to expected utility have been proposed,

including prospect theory [34], weighted utility [29], subjectively weighted util-

ity [35], Dempster-Shafer belief functions [16, 68], imprecise probability [81, 79],

game-theoretic probability [69], optimism/pessimism [28], info-gap theory [8], and

anticipated utility [54]. With such theories, different plausible approaches to solu-

tions of sequential problems give different answers, as observed by, among others,

LaValle and Wapman [42], LaValle and Fishburn [41], and Machina [50]. Often,

such observations in the literature take the form of counter-examples for a partic-

ular theory, but, inspired in particular by Hammond [24] and McClennen [51], we

follow a different route, seeking necessary and sufficient conditions for a theory of

choice to satisfy a particular behaviour.

With this in mind, we need to find a fairly general language for choice under

uncertainty. A natural tool for this is the concept of choice functions. These have

their roots in social choice theory [55, 5, 66] and are, in their simplest form, functions

that map any sets of options to non-empty subsets (the non-empty restriction is

called minimal intelligible choice by McClennen [51]). The interpretation is that,

given a set of options, a subject (or group of subjects) should select an option from

the set returned by the choice function.

Of particular use in single-agent decision making under uncertainty are choice

functions on gambles, which are uncertain rewards—these can be seen as generaliza-

tions of random variables. Savage [61] considers acts and gambles to be equivalent:

since a particular act gives a particular gamble, choice is simply a matter of choosing

between gambles. Similarly, Hammond [24] proposes that acts should be valued by

their gambles, and therefore a choice function between acts should be equivalent to

a choice function on gambles (a key property that he calls consequentialism). Using

choice functions on gambles rather than acts is intuitive (since it is the outcome

of acts that the subject is interested in) and is a natural extension of maximizing

the expected utility of random variables. Further, many theories of choice can eas-

ily be represented in the framework of gambles, and so throughout this thesis we

will consider, for the most part, uncertainty and preference models based on choice

functions on gambles.

1.1. Outline 3

Choice functions on gambles give a method for decision making in “static” situ-

ations when the subject must choose one act from a set. In the sequential setting, it

is less clear how to apply the choice function. One natural way, commonly called the

normal form solution and the method we investigate the most, is to list all possible

strategies the subject can take, and then apply the choice function to this set. This

essentially turns a sequential problem into a static one. An alternative approach is

to determine the decision that will be taken at the final layer of nodes, eliminate

all others, move back to the next layer of decision nodes, and so on. This ensures

that at every layer the problem is again a “static” choice between acts, and so the

choice function can be applied. This solution method is usually called the extensive

form. Details of these methods of solution can be found in many books on decision

theory, e.g. [46, 56, 45, 11].

Unfortunately, the standard extensive form method is impossible to apply if

the choice function does not return a single optimal gamble, or set of equivalent

gambles, at every set. Therefore, following Hammond [24], in Section 1.2.4 we

introduce a wider class of extensive form solutions that can handle more complicated

choice functions. We also consider more general normal form solutions: instead of

considering the set of all strategies and then applying the choice function, we simply

allow a normal form solution to be a subset of strategies. Although, as mentioned,

the normal form solution using a choice function on gambles is of principal interest to

us, whenever a result can be proved in wider generality we shall take the opportunity.

Our main goal, then, is to examine the normal form solution induced by a choice

function, identifying certain behaviours and finding simple conditions on the choice

function for these behaviours to hold. There are two main motivations for doing so.

The first is that, should a particular behaviour be judged necessary for rationality,

identifying exactly the set of choice functions implying that behaviour allows us

either to dismiss all other choice functions, or to dismiss the idea of normal form

solutions via choice functions (see for instance [41, 24] for accounts with this goal).

The second reason is that it is much more convenient to check a few simple properties

on a choice function than to determine whether the behaviours hold for a particular

choice function by first principles (since the core proofs are often long-winded and

1.1. Outline 4

somewhat tedious). Since there are many proposed choice functions whose sequential

properties are not known, and presumably there are even more plausible choice

functions not yet proposed, having quick methods to determine their behaviour is

very useful.

The first behaviour we investigate, in Chapter 2, is subtree perfectness. This is

related to Hammond’s consistency property [24], and named after Selten’s concept

of subgame perfectness in extensive form games [65]. Subtree perfectness means

that a solution of a sequential problem, when restricted to a smaller part of the

problem, should agree with the solution of that smaller problem. Simply put, the

solution’s implications in a sub-problem can be obtained by “snipping off” the rest of

the problem and solving the sub-problem separately. This is a very useful property

to have, since lacking it could suggest that the solution has some sort of dynamic

inconsistency [63] and should be regarded with suspicion. However, some authors

have defended lack of subtree perfectness as perfectly rational [50, 51]. Nonetheless,

a choice function with this property is likely to be more palatable than one without.

Unfortunately, we find that the normal form solution is only subtree perfect for a very

restricted set of choice functions, mirroring Hammond’s results for extensive form

solutions [24]. This suggests that there is a strong link between subtree perfectness

and the equivalence of the two forms of solution; we investigate this in Section 2.5.

Perhaps because of this link, it has often been suggested that lack of sub-

tree perfectness implies failure of backward induction (or “rolling back” decision

trees) [42, 50]. Given the typical extensive form interpretation of backward induc-

tion, this suggestion is understandable. Kikuti et al. [38], however, suggested a

backward induction algorithm that finds normal form solutions. Further, this nor-

mal form backward induction can be applied to any choice function on gambles,

not just weak orders. In Chapter 3 we formalize this idea and find necessary and

sufficient conditions on the choice function for backward induction to work (that

is, to give the same solution as applying the choice function directly). Considera-

tion of whether satisfying backward induction but not subtree perfectness is sensible

behaviour is given in Section 3.3. This chapter also contains some ideas of general-

izations of extensive form backward induction.

1.1. Outline 5

Chapters 4 and 5 consider special types of sequential decision problems in which

rewards are received after every stage rather than all at the end of the process,

such as Markov decision processes [60] or dynamic programming for discrete-time

systems [7, 47, 13]. This allows more realistic modelling of problems and more

convenient methods of solution. The chapters demonstrate how the general ideas of

the previous two chapters can be adapted easily to deal with other models.

Finally, in Chapter 6, we apply the results of the previous chapters to the popular

choice functions of a model of uncertainty called coherent lower previsions [81, 79].

This uncertainty model is applicable when the subject does not feel able to express

exact expectations for all relevant gambles, but can express bounds for them, or,

equivalently, can provide a convex set of probability distributions representing her

knowledge. As an example, consider the extreme case of complete ignorance about

what might happen. If a particular gamble gives a minimum reward of 1 and a

maximum reward of 2, then we can say that the value of the gamble is bounded by

1 and 2. The theory can be cast in terms of buying and selling prices for gambles, in

the same vein as De Finetti’s theory of previsions [14]. Having expressed bounds for

the values of whichever gambles she feels comfortable, the subject can use the theory

of coherent lower previsions to extend these to find the intervals for the values of

other gambles, including conditional values.

Chapter 6 is useful in three ways. First, it provides what is to our knowledge the

most comprehensive investigation of sequential decision making using coherent lower

previsions. Second, it demonstrates how the theory of the previous chapters works

in practice. Finally, Sections 6.4 and 6.5, show that, even when a choice function for

an uncertainty model does not in general show a particular behaviour, the standard

approaches from the previous chapters can be easily adapted to find the minimal

restrictions that must be places on the uncertainty model or decision problem for the

required behaviour to be exhibited. Since subtree perfectness in particular is a very

difficult property to satisfy in general, it is useful to know under what circumstances

it will hold for one’s preferred uncertainty model and choice function. For coherent

lower previsions it turns out that, while no choice function is subtree perfect in all

circumstances, in some relevant special cases subtree perfectness can hold.

1.2. Definitions and Notation 6

For the rest of this chapter, we introduce the necessary definitions and notation

for working with the normal and extensive form solutions of decision problems that

can be represented as decision trees [56, 45, 11].

1.2 Definitions and Notation

This section introduces the concepts and notation required for working with deci-

sion trees, choice functions, and gambles. These are used consistently throughout

Chapters 2 and 3, and most of Chapter 6 (Sections 6.1 to 6.3, and Section 6.4).

Chapter 4 uses some different notation because the decision processes involved use

different graphical representations from standard decision trees; the specific notation

required for these processes are contained in the relevant sections of that chapter.

Chapter 5 makes a few alterations to the standard notation.

1.2.1 Gambles

The decision processes investigated in this thesis involve the subject’s making several

choices, sequentially, between uncertain outcomes. It is instructive to first consider

the simplest case of choice: the subject must choose one action from a set of actions,

each of which gives a reward, where the reward received depends on the state of the

world and the option chosen. Formally, let Ω be the possibility space: the set of all

possible states of the world. Elements of the possibility space are called outcomes.

Let R be a set of rewards. Rewards represent the possible results that the subject

can receive; for example, a free hamburger, or death (despite the name, rewards do

not have to be desirable). Although in practice rewards are often expressed in units

of either money or utility, we place no restriction on what the elements of R can be.

In our simple problem, the reward received after having chosen a particular action

depends on the state of nature. We define a gamble to be a function X : Ω → R.

The interpretation is that, should ω ∈ Ω be the actual state of the world, the gamble

X will give the subject the reward X(ω). Then the simple decision problem becomes

the following: if we must choose one gamble from a set of gambles, which gamble

should be chosen?

1.2. Definitions and Notation 7

Some further notation is required. Elements of Ω are usually denoted by ω. Sub-

sets of Ω are called events and are usually denoted by A, B, or E. The complement

of an event is denoted by A and so on. Gambles are usually denoted by X, Y , or

Z, and sets of gambles by X and so on. Rewards are usually denoted by r. Unless

otherwise specified, any set or event considered will always be finite and non-empty.

Now consider the following situation: if event A occurs, the subject receives

gamble X, otherwise she receives gamble Y . Clearly this is still a gamble, since the

reward acquired is determined by the true ω: the reward is X(ω) if ω ∈ A and Y (ω)

otherwise. We use the following notation:

AX ⊕ AY =

X(ω) for ω ∈ A

Y (ω) for ω ∈ A

In other words, ⊕ is an operator that combines partial maps defined on disjoint

domains (where for example AX is X|A, the restriction of X to A). This idea can

be extended to any partition A1, . . . , An and any gambles X1, . . . , Xn by

n⊕
i=1

AiXi =

X1(ω) for ω ∈ A1

...
...

Xn(ω) for ω ∈ An

It proves necessary to extend this notation to combinations of sets of gambles.

For any partition A1, . . . , An and sets of gambles X1, . . . ,Xn, define

n⊕
i=1

AiXi =

{
n⊕
i=1

AiXi : Xi ∈ Xi

}
.

Finally, the following extension of the ⊕ notation is convenient: for any gamble Z,

event A 6= Ω, and set of gambles X , define

AX ⊕ AZ = {AX ⊕ AZ : X ∈ X}.

1.2.2 Choice Functions

Suppose one is given a set of options from which one must be chosen. Ideally, one

would be able to determine from any set a uniquely optimal action. In practice, this

will be impossible in some situations. Even if one follows classical decision theory

1.2. Definitions and Notation 8

[78, 46, 56], specifying probabilities for all events and utilities for all rewards, at best

one only arrives at a weak order (two different actions can have the same expected

utility). So even here a uniquely optimal action will not always be available.

It is more reasonable to assume that, for any set of options, one can identify

a subset that can be eliminated from consideration. Of course, if one has limited

information about the consequences of each action then this subset may be empty.

The actions that have not been eliminated can then be reported as optimal : any

action that remains is a plausible candidate to be picked. So, for any set of options,

we can assume that the subject is able to report a subset of unacceptable options, or

equivalently a non-empty subset of acceptable options. We could work with either

of these subsets, and it proves most useful to use the latter, which corresponds to

the concept of a choice function from the social choice literature [5, 66]: the subject

has a function, opt, that maps sets of options to non-empty subsets.1

This concept has been introduced for sets of options of any type, but we are

only interested in sets of gambles. So, we suppose that, for any set of gambles,

the subject can identify an acceptable subset; that is, she has a choice function on

gambles. For brevity, and since there are no other types of choice function in this

thesis, we simply use choice function to refer to these.

Since we deal with sequential decision making, there will be occasions where

choices have to be made after some event has been observed. Therefore we consider

conditional choice functions.

Definition 1.1. A conditional choice function opt is a function that, for any non-

empty event A, maps each non-empty finite set X of gambles to a non-empty subset

of that set:

∅ 6= opt(X|A) ⊆ X .

Note that most uses of choice functions in the literature do not refer to condition-

ing. All choice functions in this thesis are in fact conditional choice functions, so for

1The usual notation in the literature is to represent a choice function by C; we prefer opt to

link with work by De Cooman and Troffaes [13], which is very similar to our backward induction

schemes.

1.2. Definitions and Notation 9

brevity we omit the word ‘conditional’, and use the shorthand opt(X) = opt(X|Ω).

If the subject provides a choice function, then the simple decision problem of the

previous section can be solved: if the subject must choose from X , then the solution

is opt(X). Of course, since this may not return a singleton, the subject must find

some way of picking which gamble in opt(X) she will take. The role of the choice

function is to contain all the information her knowledge and preferences can give her

about what to do, and if that is insufficient to choose a single option then something

more arbitrary is required. One possibility is to use another choice function that

always returns a singleton, and apply this to the result of the first choice function.

This second choice function is called a security criterion by Levi [43, § VII]. Other

methods exist (for instance, randomization), but this question of how the subject

actually picks what to do in a particular instance is not the focus of our investigation.

So far we have not restricted the choice function in any way, although it is

clear that there are many properties that one may wish to enforce. For example,

if opt(opt(X)) 6= opt(X), the choice function does not seem to have a sensible

interpretation at all. Studying simple one-stage decision problems as introduced in

the previous section can yield many plausible restrictions on choice functions. An

illuminating investigation of some of these and the arguments behind them can be

found in Luce and Raiffa [46, §13.3].

We pursue a similar goal for sequential problems: there are many characteristics

that one may want for solutions to a class of sequential decision problems. If the

solutions are in some way induced by a choice function, then what properties must

the choice function satisfy to display these characteristics? In doing so, we shall not

make any general restrictions upon the choice function, no matter how obviously

rational they may seem, in order to find the minimal conditions required for a

particular type of behaviour. Of course, we are still assuming existence of the choice

function (and therefore implicitly the possibility space and the reward set).

To achieve this, we first need some way of solving a sequential decision problem

using choice functions. It is not as easy to see how to represent a problem with

multiple decision points using gambles as it is when only one decision needs to be

made. There are, however, several possibilities for each class of problem. In Chap-

1.2. Definitions and Notation 10

ters 2 and 3 we examine sequential decision problems that are modelled by decision

trees, which we will now introduce and consider how they may be transformed into

sets of gambles.

A Note on Act-State Dependence

This use of a choice function on gambles assumes that taking an act can be considered

equivalent to receiving a gamble. This is a sensible assumption only in the case of

act-state independence, that is, when the action taken does nothing to influence the

underlying state of nature. In the main examples we use throughout, this assumption

is clearly reasonable, but there are many situations where it would be dubious. For

instance, suppose the subject is investing in security for her house. The relevant

state of nature would naturally be a successful burglary, and clearly the subject’s

belief about this event will be influenced by the chosen level of security.

Should the subject be able to specify a probability of successful burglary for each

possible level of security, then the optimal solution is easily found: one can find the

expected utility of each choice. How this generalizes to arbitrary choice functions

(or even particular ones: it is not clear how the generalization of expected utility

maximization given in Chapter 6 should be adapted to deal with act-state depen-

dence) is not obvious. It is conceivable that a general approach for arbitrary choice

functions and act-state dependence is unachievable. For simplicity, we assume act-

state independence throughout, commenting again on this issue only in Chapter 7

(in particular, there we argue that most problems can be reformulated as act-state

independent ones, though at the cost of exponentially increasing Ω).

Properties of Choice Functions

In Chapters 2–5 we investigate different types of behaviour in various sequential

decision problems. Our principal goal throughout is to identify necessary and suffi-

cient conditions on choice functions for these behaviours to exist, and express these

conditions as collections of simple properties. Since there are many such properties

in our work, for convenience we have reproduced all of them in Appendix A on

page 197.

1.2. Definitions and Notation 11

rain no rain

E1 E2

waterproof d1 10 15

no waterproof d2 5 20

Table 1.1: Payoff table for the rain and waterproof problem.

1.2.3 Decision Trees

Decision trees are a graphical representation of a type of decision problem, in which

the subject makes decisions and observes information sequentially until at some stage

she receives a reward and the process ends. A formal definition is not particularly

illuminating, so we begin with an example, which is both simple enough to admit

easy study, and complex enough to demonstrate all concepts involved in decision

trees.

Tomorrow, a subject is going for a walk in the lake district. Tomorrow, it may

rain (E1), or not (E2). The subject can either take a waterproof (d1), or not (d2).

But the subject may also choose to buy today’s newspaper to learn about tomorrow’s

weather forecast (dS), or not (dS), before leaving for the lake district. For the sake

of simplicity, we assume that the forecast can have either two outcomes: predicting

rain (S1), or not (S2). The possibility space for this problem therefore has four

elements: “the newspaper predicts no rain, and it rains” and so on.

The reward space has eight elements, for instance “it rains, the subject does not

have the waterproof, and she paid for the newspaper”. To simplify this example,

let the rewards be in utiles. The utility of each combination, if the subject does not

buy the newspaper, is summarized in Table 1.1. If the subject buys the newspaper,

then c utiles are subtracted from the utilities.

The decision tree corresponding to this example is shown in Figure 1.1. Decision

nodes are depicted by squares, and chance nodes are depicted by circles. From each

node, a number of branches emerge. For decision nodes, each branch corresponds to

a decision; for chance nodes, each branch corresponds to an event. For each chance

node, the events which emerge form a partition of the possibility space: at least one

1.2. Definitions and Notation 12

N1

N1
1

N1
1
1

N1
1
1

1
10− cE1

15− cE2

d 1

N1
1
1

2
5− cE1

20− cE2

d
2

S 1

N1
1
2

N1
1
2

1
10− cE1

15− cE2

d 1

N1
1
2

2
5− cE1

20− cE2

d
2

S
2

d S

N12

N12
1

10E1

15E2

d 1

N12
2

5E1

20E2

d
2

d
S

Figure 1.1: A decision tree for walking in the lake district.

1.2. Definitions and Notation 13

of the events must obtain, and no two can obtain simultaneously.

In the lake district problem, the subject is first confronted with the decision to

buy the newspaper or not, hence the tree starts off with a decision node. If the

subject buys the newspaper (dS), then it can inform him about tomorrow’s weather

forecast. Thus, the chance node following the subject’s decision dS has two branches,

forecasting rain (S1), or no rain (S2). Next, when the subject leaves for the lake

district, she can take either her waterproof with her (d1) or not (d2), hence the

decision node following S1. Finally, during the walk, it can either rain (E1) or not

(E2), which is depicted by a chance node for each possible combination of events

and decisions preceding the actual walk.

So, each path in a decision tree corresponds to a particular sequence of decisions

and events. The payoffs resulting from each such sequence is put at the right end of

the tree.

Precise definitions of decision trees vary slightly in the literature. Of particular

interest to us in Chapter 2 is the work of Hammond, who gives a formal definition

of a decision tree with some important differences [24, p. 31]. Events at Hammond’s

chance nodes form a partition of the set of all states of nature still possible upon

reaching the chance node; in other words, they partition the intersection of all events

leading up to the chance node. A further difference to note is that our chance

nodes are called natural nodes by Hammond. Hammond’s chance nodes involve

probabilities and do not appear in our decision trees.

We do not find a formal definition of our decision trees useful for our purposes,

but readers who disagree or who want to compare with Hammond’s definition can

find one in Appendix B.1. We do, however, find that the following notation is very

useful for complicated definitions and proofs.

Decision trees can be seen as combinations of smaller decision trees: for instance,

in the lake district example, one could draw the subtree corresponding to buying

the newspaper, and also draw the subtree corresponding to making an immediate

decision. The decision tree for the full problem is then formed by joining these two

subtrees at a decision node.

Hence, we can represent a decision tree by its subtrees and the type of its root

1.2. Definitions and Notation 14

node. Let T1, . . . , Tn be decision trees and E1, . . . , En be a partition of the

possibility space. If T is rooted at a decision node, we write

T =
n⊔
i=1

Ti.

If T is formed by combining the trees at a chance node, with subtree Ti being

connected by event Ei , we write

T =
n⊙
i=1

EiTi.

For instance, for the tree of Fig. 1.1, we write

(S1(T1 t T2)� S2(T1 t T2)) t (U1 t U2)

with

T1 = E1(10− c)� E2(15− c) U1 = E110� E215

T2 = E1(5− c)� E2(20− c) U2 = E15� E220

Admittedly, this notation is not really useful here, particularly when compared

with the tree itself, but it becomes very convenient when considering recursive def-

initions and proofs, and when dealing with general trees rather than specific ones

we can draw.

For some proofs we need to consider decision trees formed by adding a decision

node in front of a tree T , that is, a decision tree whose root is a decision node where

there is only one option. This is denoted by tT .

The decision tree notation extends easily to sets of trees. Consider all possible

ways that sets of decisions trees T1, . . . , Tn can be combined. Combining at a decision

node is represented by
n⊔
i=1

Ti =

{
n⊔
i=1

Ti : Ti ∈ Ti

}
.

For any partition E1, . . . , En, combination at a chance node is represented by

n⊙
i=1

EiTi =

{
n⊙
i=1

EiTi : Ti ∈ Ti

}
.

We often consider particular types of subtrees of larger trees, obtained by “snip-

ping off” everything before a certain node in the full tree.

1.2. Definitions and Notation 15

Definition 1.2. A subtree of a tree T obtained by removal of all non-descendants of

a particular node N , but retaining N , is called the subtree of T at N and is denoted

by stN(T).2

These subtrees are called continuation trees by Hammond [24]. The definition

extends to sets of trees.

Definition 1.3. If T is a set of decision trees and N a node, then

stN(T) = {stN(T) : T ∈ T and N in T}.

For subtrees, it is important to know the events that were observed in the past.

Two subtrees with the same configuration of nodes and arcs may have different

preceding events, and should be treated differently. Therefore we associate with

every decision tree T an event ev(T) representing the intersection of all the events

on chance arcs that have preceded T . Hammond [24, p. 27] denotes these events by

S(n).

Since the only restriction on the events at each chance node is that they must

form a partition of the possibility space, there is no guarantee yet that all paths

through the tree are possible. It could be that due to a modelling oversight a tree

is drawn such that a chance arc is impossible given the preceding events. This will

cause problems when we attempt to use conditional choice functions at this point,

since it would involve conditioning on the empty set, and so we choose to work only

with trees that avoid this issue. If one’s decision tree has an impossible arc, it can

be amended by removing the arc and changing the partition at this chance node.

For example, if event A1 has been observed, and the partition at a following chance

node is A1, A2, A3, one could change the partition to A1∪A2, A3. Of course this is an

arbitrary choice, but it seems sensible that one’s method of solution should not be

influenced by which arcs the impossible outcomes are redistributed to. Therefore,

2Formally, if N is the set of nodes comprising N and all its descendents, then stN (T) is the

subgraph of T induced by N (the subgraph of T induced by vertex set N is the graph U whose

vertex set is N and where, for each pair of vertices N1, N2 ∈ N , N1N2 is an arc of U if and only

if it is an arc of T).

1.2. Definitions and Notation 16

if the arbitrary choice were to matter, the method of solution could be considered

questionable.

We say that a decision tree without impossible branches is consistent.

Definition 1.4. A decision tree T is called consistent if, for every node N of T ,

ev(stN(T)) 6= ∅.

Clearly, if a decision tree T is consistent, then for any node N in T , stN(T) is also

consistent. One might consider the above definition slightly too restrictive: suppose

that an arc leading to a reward node from a chance node causes inconsistency in a

tree, but the rest of the tree is consistent. We would never in practice need to apply

a choice function at the inconsistent point (since there is no choice once a reward

node is reached), and so we would never have to worry about conditioning on the

empty set in this tree. It seems that this special type of inconsistent tree would

be reasonable to consider. This is true, but since correcting an inconsistent tree

should not be a problem anyway, particularly in this extreme situation (eliminate

the inconsistent reward node!), it does not seem worth making the exception.

In many proofs we work with the children (the immediate successors) of the root

node of a tree. We refer to this set of nodes as ch(T).

1.2.4 Solving Decision Trees: Extensive and Normal Forms

The traditional methods of solving decision trees are to use either the classical

extensive form or the classical normal form. These rely on having probabilities for

all events and utilities for all rewards. Let us consider how decision trees can be

solved in this simple situation.

The classical extensive form solution relies on backward induction, calculating

expected utilities in subtrees and eliminating branches by maximization. Let us use

the decision tree in Fig. 1.1 as an example. Suppose that p(S1) = 0.6, p(E1|S1) = 0.7,

and p(E1|S2) = 0.2, so p(E1) = 0.5. We first calculate the expected utility of the

final chance nodes. For example, the expected utility at N1
1
1

1 is

0.7(10− c) + 0.3(15− c) = 11.5− c,

1.2. Definitions and Notation 17

and the expected utility at N1
1
1

2 is 9.5− c.

We now see that at N1
1
1 it is better to choose decision d1. We then replace

N1
1
1 and its subtree with the expected utility of N1

1
1

1: 11.5 − c. Also follow this

procedure for N1
1
2 and N12, and the tree has been reduced by a stage. We find that

d2 is optimal at N1
1
2 with value 17− c, and at N12 both decisions are optimal with

value 12.5.

Next, take expected utility at N1
1, which is 0.6(11.5−c)+0.4(17−c) = 13.7−c.

At N1, we therefore take decision dS if c ≤ 1.2 and dS if c ≥ 1.2. So, if c < 1.2 then

choose to buy the newspaper, if the newspaper predicts rain then take the waterproof

and if the newspaper does not predict rain then do not take the waterproof. If

c > 1.2, then do not buy the newspaper, and then arbitrarily decide whether or not

to take the waterproof. If c = 1.2, then arbitrarily decide whether or not to buy the

newspaper.

The alternative method of solution is the classical normal form. This involves

listing all possible strategies, such as “buy the newspaper, and take the waterproof

only if the newspaper does not predict rain”. There are six such strategies in this

decision tree. The expected utility of each strategy can be calculated, since the

outcome of a strategy depends only on the true state of nature.

Computing these expectations is tedious and left as an exercise, but the result

is unsurprising. If c < 1.2, the optimal strategy is to buy the newspaper and take

the waterproof only if rain is predicted. If c > 1.2, there are two optimal strategies:

do not buy the newspaper and take the waterproof; do not buy the newspaper and

do not take the waterproof. If c = 1.2, all three previous strategies are optimal. In

situations where more than one strategy is optimal, the subject then just picks one

to carry out.

We see in this example that it does not really matter which method is used. When

c > 1.2, the normal form solution and the extensive form solution are identical.

When c ≤ 1.2, they differ only in the point where an arbitrary choice has to be

made. For instance, for c = 1.2, using the normal form the subject has to pick

today whether to buy the newspaper and follow its advice, to reject the newspaper

and take the waterproof tomorrow, or to reject to newspaper and go without the

1.2. Definitions and Notation 18

waterproof tomorrow. In the extensive form, the subject needs only pick whether

to take the waterproof or not when tomorrow actually comes, and only needs to do

this if she rejected the newspaper today. But the actions that are judged optimal

are all the same for both methods. This property holds for maximizing expected

utility in all decision trees [56], when probabilities are non-zero [24, p. 44].

For other choice functions, there is no reason to assume that the two methods

will give the same optimal acts, and indeed it is not even obvious how the extensive

form method should be generalized to choice functions that do not correspond to a

total preorder. Further, they represent two possible ways of solving decision trees,

which make good sense for expected utility, but plenty of other possibilities exist.

Therefore we wish to extend the concepts of normal and extensive form, so that they

can be used to describe solutions for general choice functions and even solutions that

do not require choice functions, while retaining what we consider to be their core

feature: the point at which decisions are made.

For extensive form solutions, decisions are made when decision nodes are reached.

They involve selecting some arcs at decision nodes that are unacceptable and remov-

ing them, but not stating which remaining branch will be chosen until that node

is actually reached. An extensive form solution can be represented by a decision

tree. For normal form solutions, all decisions are made initially; however, we do not

require the solution to include only one strategy, rather it can be many strategies

from which the subject can pick a single one to enact. Normal form solutions can

then be represented by a set of decision trees.

Definition 1.5. An extensive form solution of a decision tree T is a decision tree

obtained by removing, at each decision node of T , some (possibly none, but not all)

of the decision arcs. All nodes following deleted arcs are also removed.

For example, in the lake district example, the expected utility extensive form

solution for c = 1.2 that we calculated earlier is represented in Fig. 1.2. The inter-

pretation of the extensive form solution is as follows: upon reaching a decision node

in T , the subject picks one of the decision arcs in the extensive form solution and

follows it. The subject only needs to decide which arc to follow at a decision node

upon actually reaching that node.

1.2. Definitions and Notation 19

N1

N1
1

N1
1
1 N1

1
1

1
10− cE1

15− cE2

d1

S 1

N1
1
2 N1

1
2

2
5− cE1

20− cE2
d2

S
2

d S

N12

N12
1

10E1

15E2

d 1

N12
2

5E1

20E2

d
2

d
S

Figure 1.2: Extensive form solution to Fig. 1.1 with c = 1.2.

Definition 1.6. A normal form decision is an extensive form solution with precisely

one arc at each decision node.

Normal form decisions have also been called strategies, pure strategies [46, p. 51],

plans [51, §6.3], and policies [30].

Definition 1.7. The set of all normal form decisions of a tree T is denoted by

nfd(T). The set of all normal form decisions of a set of trees T is given by

nfd(T) =
⋃
T∈T

nfd(T).

With a normal form decision, the subject’s actions are uniquely determined in

every eventuality. If a subject could specify for any decision tree a unique normal

form decision that they considered optimal (or equivalently they specified that their

extensive form solution was a normal form decision) this would be ideal, and the

distinction between the normal form and the extensive form would be immaterial.

But, as with choosing from sets of gambles, this will in general be impossible (as we

1.2. Definitions and Notation 20

N1 N12 N12
1

10E1

15E
2

d1

dS
N1 N12 N12

2
5E1

20E
2

d2dS

N1 N1
1

N1
1
1 N1

1
1

1
10− cE1

15− cE2

d1

S 1

N1
1
2 N1

1
2

2
5− cE1

20− cE2
d2

S
2

dS

Figure 1.3: Normal form solution to Fig. 1.1 with c = 1.2.

saw even in the case of maximizing expected utility). Therefore we introduce the

concept of normal form solutions.

Definition 1.8. A normal form solution of a decision tree T is a non-empty subset

of nfd(T).

For example in the lake district example, for c = 1.2, the expected utility normal

form solution that we calculated earlier is represented in Fig. 1.3. The interpretation

of the normal form solution is that the subject picks one of the normal form decisions

and follows the specified actions. As with choice functions, the idea is that specifying

the normal form solution uses all the subject’s knowledge and preferences, and the

picking of the normal form decision must be arbitrary.

Note that in these definitions we have abandoned the popular link between back-

ward induction and the extensive form. This is because there are methods of solution

that have extensive form properties yet have nothing to do with backward induction,

and that, as we shall see in Section 3.1, backward induction can often be employed

to find normal form solutions.

Whenever normal form and extensive form solutions are introduced, it is common

to consider whether they are equivalent. In the simplest case when the normal form

solution is a singleton this is of course trivial to check. In general, it is not even

clear what equivalence of these forms even means. We defer consideration of this

1.2. Definitions and Notation 21

issue to Section 2.5.

These two forms of solutions are by no means the only possibilities. For example,

McClennen [51] considers the following form of solution (the name of the form is

ours).

Definition 1.9. A dynamic normal form solution of a decision tree T is a collection

of subsets of nfd(stN(T)) for each decision node N of T (including the root).

So, a dynamic normal form solution specifies a set of normal form decisions at

every node in the tree. McClennen is not clear about the interpretation of this type

of solution. Apparently, the subject chooses a normal form decision each time she

reaches a decision node. But why choose a normal form decision if the next time

she reaches a decision node she can choose a different one? Note that our normal

form solutions could be seen as special cases of dynamic normal form solutions, in

which the acceptable plans at a particular node are simply the restriction, to the

node in question, of the acceptable plans at the root node. McClennen calls this

a dynamically consistent solution and seems to suggest [51, p. 116] that restricting

attention to dynamically consistent solutions is sensible, so the confusion about the

interpretation of solutions failing this property is not so important.

Extensive form and normal form solutions as defined here represent solutions

to a particular decision tree. Usually we consider methods that can be applied to

any decision tree with a suitable uncertaintly model, such as maximizing expected

utility when probabilities are available. We describe these by means of extensive

form and normal form operators.

Definition 1.10. An extensive form operator ext is a function mapping decision

trees to extensive form solutions. A normal form operator norm is a function map-

ping decision trees to normal form solutions.

Clearly the two classical methods of maximizing expected utility are extensive

form and normal form operators respectively, which is reassuring. Hammond [24,

p. 28] calls extensive form solutions behaviour norms.

1.2. Definitions and Notation 22

1.2.5 Normal Form Operator Induced by a Choice Function

As mentioned previously, there are many possible ways of defining extensive form

and normal form operators using choice functions, some of which are not particu-

larly obvious. In this section we introduce possibly the simplest approach, which is

popular in the literature. Much of our investigation in following chapters is based

upon the behaviour of this operator, or very similar alternatives. It generalizes the

classical normal form operator based on expected utility. The basic idea is simple:

reduce a decision tree to a set of gambles, apply a choice function to find the op-

timal subset, and then transform each optimal gamble to a normal form decision,

thereby obtaining an optimal subset of normal form decisions, hence, a normal form

solution.

Recall that a normal form decision prescribes the subject’s actions, so, once one

has been chosen, the reward the subject receives is determined entirely by the events

that obtain. In other words, a normal form decision has a corresponding gamble,

which we call its normal form gamble. We denote the set of all normal form gambles

associated with a decision tree T by gamb(T). So, gamb applied to a normal form

decision returns a singleton containing its normal form gamble, and for any other

tree

gamb(T) =
⋃

U∈nfd(T)

gamb(U). (1.1)

Let us explain how to find the gamble corresponding to a normal form decision,

using Fig. 1.1 as an example, with c = 1. Instead of looking at the full tree, for

simplicity let us first consider the subtree with root at N1
1
1. The only two normal

form decisions in this subtree are simply d1 and d2. The former gives reward 9 utiles

if ω ∈ E1 and 14 utiles if ω ∈ E2, which corresponds to a gamble

E19⊕ E214. (1.2)

In the above expression, the ⊕ operator combines partial maps defined on disjoint

domains (i.e. the constant partial map E19 defined on E1, and the constant partial

map E214 defined on E2).

Now consider the subtree with root at N1
1, and in particular the normal form

decision ‘d1 if S1 and d2 if S2’. This gives reward 9 if ω ∈ S1 ∩ E1, reward 14 if

1.2. Definitions and Notation 23

ω1 ω2 ω3 ω4

E19⊕ E214 9 9 14 14

S1 (E19⊕ E214)⊕ S2 (E14⊕ E219) 9 4 14 19

Table 1.2: Example of normal form gambles.

ω ∈ S1 ∩ E2, and so on. The corresponding gamble is

(S1 ∩ E1)9⊕ (S1 ∩ E2)14⊕ (S2 ∩ E1)4⊕ (S2 ∩ E2)19,

or briefly, if we omit ‘∩’ and employ distributivity,

S1 (E19⊕ E214)⊕ S2 (E14⊕ E219) , (1.3)

where multiplication with an event is now understood to correspond to restriction,

i.e., 9 is a constant map on Ω, E19 is a constant map restricted to E1, and S1(E19)

is obtained from E19 by further restriction to E1 ∩ S1. For illustration, we tabulate

the values of some normal form gambles in Table 1.2, where Ω = {ω1, ω2, ω3, ω4},

E1 = {ω1, ω2}, and S1 = {ω1, ω3}.

Observe that the gamble in Eq. 1.3 incorporates the gamble in Eq. (1.2) from

N1
1
1. Relationships between sets of normal form gambles for different subtrees allow

a very convenient recursive definition of the gamb operator, given next. First, we

extend ⊕ to sets of gambles.

Definition 1.11. For any events E1, . . . , En which form a partition, and any finite

family of sets of gambles X1, . . . , Xn, we define the following set of gambles:

n⊕
i=1

EiXi =

{
n⊕
i=1

EiXi : Xi ∈ Xi

}
. (1.4)

An equivalent form of Eq. (1.4) that is employed in some proofs is

n⊕
i=1

EiXi =
⋃

X1∈X1

· · ·
⋃

Xn∈Xn

{
n⊕
i=1

EiXi

}
. (1.5)

With these tools at hand, we can easily define the set of all normal form gambles

associated with a decision tree:

1.2. Definitions and Notation 24

Definition 1.12. With any decision tree T , we associate a set of gambles gamb(T),

recursively defined through:

• If a tree T consists of only a leaf with reward r ∈ R, then

gamb(T) = {r}. (1.6a)

• If a tree T has a chance node as root, that is, T =
⊙n

i=1EiTi, then

gamb

(
n⊙
i=1

EiTi

)
=

n⊕
i=1

Ei gamb(Ti). (1.6b)

• If a tree T has a decision node as root, that is, if T =
⊔n
i=1 Ti, then

gamb

(
n⊔
i=1

Ti

)
=

n⋃
i=1

gamb(Ti). (1.6c)

In Hammond’s notation, gamb(stN(T)) is denoted by F (T, n). McClennen writes

G(T) for gamb(T). Extension of gamb to apply to sets of trees is natural and easy.

Definition 1.13. For any set T of decision trees,

gamb(T) =
⋃
T∈T

gamb(T)

It should be obvious from Definition 1.12 that the recursive definition gives the

correct gamble for a normal form decision. Lemma B.2 provides the less obvious

result that it satisfies Eq. (1.1). The recursive definition works for sets as well:

gamb

(
n⊙
i=1

EiTi

)
=

n⊕
i=1

Ei gamb(Ti), (1.7)

and

gamb

(
n⊔
i=1

Ti

)
=

n⋃
i=1

gamb(Ti). (1.8)

Most decision problems can be represented by several decision trees. This sug-

gests the following definition (see for instance [41, 50]):

Definition 1.14. Two decision trees T1 and T2 are called strategically equivalent

if gamb(T1) = gamb(T2).

1.2. Definitions and Notation 25

Strategically equivalent trees are called consequentially equivalent trees by Ham-

mond [24, p. 38]. One could consider a sensible addition to this definition, namely

to require that ev(T1) = ev(T2), since only then would it model the same problem.

This is widely ignored in the literature, so we avoid this addition.

The function gamb allows us to transform a decision tree to a set of gambles. A

choice function opt then allows us to map this set of gambles to an optimal subset.

Mapping back to normal form decisions is easy: the optimal normal form decisions

are all elements of nfd(T) whose normal form gamble is an element of the optimal

set of gambles.

Definition 1.15. For a choice function opt, the normal form operator induced by

opt is defined for any decision trees T with ev(T) 6= ∅ by

normopt(T) = {U ∈ nfd(T) : gamb(U) ⊆ opt(gamb(T)|ev(T))} (1.9)

Of course, since U is always a normal form decision, gamb(U) is always a single-

ton in this definition. In particular, the following equality holds,

gamb(normopt(T)) = opt(gamb(T)|ev(T)), (1.10)

which will be used extensively further on.

Note that, although normopt is applied to trees, it really depends only on the set

of normal form gambles associated with the tree. Hence, regardless of the properties

of opt, the operator normopt will respect strategic equivalence:

Theorem 1.16. If T1 and T2 are strategically equivalent, then

gamb(normopt(T1)) = gamb(normopt(T2))

whenever ev(T1) = ev(T2) 6= ∅.

This is of course an attractive property, as a decision tree is a graphical repre-

sentation of a problem, and there may be several strategically equivalent trees that

are plausible representations of the same problem. The above theorem guarantees

that our solution is independent of the particular representation we use.

In the next two chapters we investigate how the properties of opt influence the

behaviour of normopt. To do this, we need to know when a set of gambles X can

1.2. Definitions and Notation 26

be represented by consistent decision trees conditional on an event A. If there is no

consistent decision tree with ev(T) = A and gamb(T) = X then the properties of

opt(X|A) are irrelevant.

Definition 1.17. A set of gambles X is called A-consistent if there exists a consis-

tent decision tree T with ev(T) = A and gamb(T) = X .

Of course, it is always possible to find a decision tree with X as its normal form

gambles, so it is only the consistency of the tree that needs to be checked. We now

show how to deduce that X is A-consistent without needing reference to trees.

Theorem 1.18. For a non-empty event A, a set of gambles X is A-consistent if

and only if, for every r ∈ R and every X ∈ X such that X−1(r) 6= ∅, it holds

that X−1(r) ∩ A 6= ∅. In other words, the image of X equals the image of AX:

X[A] = X[Ω].

Proof. “only if”. Let T be a decision tree with gamb(T) = X and ev(T) = A, and

suppose that there is X ∈ X such that X[A] 6= X[Ω], so there exists r ∈ R such that

X−1(r) ∩ A = ∅. We know that there is a reward node N in T corresponding to r.

By definition, ev(stN(T)) ⊆ A ∩X−1(r): if ev(T) = Ω, then ev(stN(T)) ⊆ X−1(r).

Since A∩X−1(r) = ∅, T is not consistent. Therefore if there is a consistent decision

tree T with gamb(T) = X and ev(T) = A, then X[A] = X[Ω].

“if”. Suppose that for every r ∈ R and every X ∈ X such that X−1(r) 6= ∅, it

holds that X−1(r) ∩ A 6= ∅. Consider the decision tree

T =
⊔
X∈X

⊙
r∈R

X−1(r)6=∅

X−1(r)r (1.11)

with ev(T) = A. The notation may mask the simplicity of the tree: for each X ∈ X

it is obvious how to draw a trivial corresponding decision tree with a chance node

as the root and all other nodes being reward leaves. Then, combine all these trees

at a decision node. This constructs precisely T .

Let N(X) denote the chance node of T associated with X, and let N(X, r)

denote the reward node of T associated with X and r (of course N(X, r) only exists

for X−1(r) 6= ∅, by definition of T).

1.2. Definitions and Notation 27

Clearly, T is consistent, because ev(stN(X)(T)) = ev(T) = A 6= ∅ and

ev(stN(X,r)(T)) = ev(stN(X)(T)) ∩X−1(r) = A ∩X−1(r) 6= ∅

by assumption, and

gamb(T) =
⋃
X∈X

gamb

 ⊙
r∈R

X−1(r)6=∅

X−1(r)r

=
⋃
X∈X

⊕
r∈R

X−1(r)6=∅

X−1(r)r

 =
⋃
X∈X

{X} = X

which establishes that Definition 1.17 is satisfied.

Chapter 2

Subtree Perfectness For Normal

Form Operators

In this chapter we briefly outline Selten’s concept of subgame perfectness for multi-

agent sequential games [65], and extend the concept to decision trees, in particular

to normal form operators induced by choice functions. It turns out that subtree

perfectness for normal form operators is closely linked to Hammond’s (extensive

form) consequentialist theory [24]. The question of normal form and extensive form

equivalence is also easily answered when subtree perfectness is satisfied.

2.1 Definition of Subtree Perfectness

Selten [65] introduced a concept called subgame perfectness for multi-agent sequen-

tial games. Since game theory is not our focus here, we do not go into detail,

mentioning it only for motivation of our term and concept. An equilibrium in a

sequential game is subgame perfect if it is a Nash equilibrium for every subgame of

the full game. In other words, if the subject were playing any smaller game that

is embedded in the larger game, then there would be an equilibrium strategy ex-

actly given by the restriction of the full subgame perfect equilibrium strategy to this

smaller game.

In the idea of a single-agent sequential decision problem, we call the correspond-

ing concept subtree perfectness. Subtree perfectness (or rather, the lack of it) is best

28

2.1. Definition of Subtree Perfectness 29

illustrated by an example. Although our focus is on normal form operators for the

most part, subtree perfectness is also easier to understand for extensive form opera-

tors. Suppose we are applying an extensive form operator to the tree T in Fig. 1.1.

This operator will delete some (possibly none) of the decision arcs at N = N1
1
1. Let

us suppose that the arc d1 to N1
1
1

2 is deleted. Now consider a second decision tree T ′

that is identical to T , except that N12
2 is not present (if the subject does not buy the

newspaper, then for some reason she is forced to take the waterproof). N appears

in this tree as well. Suppose that the extensive form operator does not remove any

of the arcs at N for this new tree. So, we have a situation where stN(T) = stN(T ′)

but stN(ext(T)) 6= stN(ext(T ′)). In other words, behaviour in a subtree depends

on the larger tree in which the subtree is embedded. We say that ext lacks subtree

perfectness. Hammond [24, p. 34] has an identical property to subtree perfectness

for behaviour norms (extensive form operators) only, that he calls consistency.

It may not be immediately clear that this concept is analagous to subgame

perfectness as introduced by Selten. Recall that subgame perfectness states that an

equilibrium point (of the full game) restricted to a subgame is an equilibrium point

of that subgame. The corresponding idea for an extensive form operator would be

that the extensive form solution, when restricted to a subtree, is the extensive form

solution of that subtree. This is how we choose to define subtree perfectness; a brief

examination of the following definition should convince one that this approach is

equivalent to the informal definition in terms of embedding that was given above.

Definition 2.1. An extensive form operator ext is called subtree perfect if for every

consistent decision tree T and every node N such that N is in ext(T),

stN(ext(T)) = ext(stN(T)).

An normal form operator norm is called subtree perfect if for every consistent

decision tree T and every node N such that N is in at least one element of norm(T)

stN(norm(T)) = norm(stN(T)).

Observe that norm(T) is a set of trees so it is Definition 1.3 being applied on the

left and Definition 1.2 being applied on the right.

2.1. Definition of Subtree Perfectness 30

T stN(T)

ext(stN(T))

optimize

restrict

ext(T) stN(ext(T))
restrict

optimize

if N in ext(T)

Figure 2.1: For a subtree perfect extensive form operator, optimisation and restric-

tion commute.

In other words, for a subtree perfect operator, it does not matter whether we

first restrict our attention to a subtree at a particular node N and then optimize this

subtree, or first optimize, and only then look at the resulting subtree at a particular

node N : roughly speaking, subtree perfectness means that optimization and restric-

tion commute, as in Fig. 2.1 for an extensive form operator. If the operator lacks

subtree perfectness, stN(ext(T)) can differ from ext(stN(T)) for some decision trees

T and nodes N in ext(T). The corresponding diagram for normal form operators is

similar.

Note that the definition for subtree perfectness requires the node N to appear

somewhere in the solution. In other words, we do not care how the operator would

behave in subtrees that the subject would never choose to reach.

So, we have two different interpretations of subtree perfectness, each with logical

motivation. The interpretation from Definition 2.1 states that the global solution

is built from local solutions of smaller problems. This is inuitively attractive on

both computational and philosophical grounds. The interpretation of the example,

that behaviour in a subtree does not depend on the tree in which it is embedded,

is appealing because one never has to worry about what larger system a problem is

part of. Suppose for instance one is carrying out a policy in a decision tree, and upon

reaching a decision node some new option, not in the original tree, presents itself.

The natural response is just to solve the local problem. If subtree perfectness holds

2.1. Definition of Subtree Perfectness 31

A A

X −1 −1

Y −2 2

Z 0 0

N

−1

−2A

2A
0

Figure 2.2: Decision tree for Example 2.2.

then this is unambiguously the correct approach, but without subtree perfectness,

it may be necessary to consider the whole tree, including the consequences of events

that are now impossible. It is hard to criticise someone who finds this unpalatable.

The extensive form operator corresponding to the usual backward induction

using expected utility (as briefly described in Section 1.2.3) is well known to be

subtree perfect, provided probabilities at chance nodes are non-zero. Also, the

usual normal form operator corresponding to maximizing expected utility over all

normal form decisions is subtree perfect, because it is equivalent to the extensive

form operator.

Before we examine subtree perfectness in more detail, we give an example of a

choice function that lacks the property: pointwise dominance.

Example 2.2. Let T be the decision tree in Fig. 2.2, where X, Y , and Z are its

normal form gambles. Under pointwise dominance, X and Y are incomparable, as

are Y and Z. Hence, norm(stN(T)) is {UX , UY }, where UX is the normal form

decision with corresponding gamble X, and similarly for UY . But, since Z clearly

dominates X, we have opt({X, Y, Z}) = {Y, Z}, therefore normopt(T) = {UY , UZ}.

Restricting this solution to stN(T) gives the normal form solution {UY }. Concluding,

{UX , UY } = norm(stN(T)) 6= stN(norm(T)) = {UY }

and therefore the normal form operator induced by pointwise dominance lacks subtree

perfectness.

We wish to determine for which choice functions the induced normal form oper-

ator satisfies subtree perfectness. Since the behaviour of such an operator is entirely

2.2. Subtree Perfectness Properties 32

determined by the choice function, this amounts to finding a collection of properties

for choice functions that are necessary and sufficient to imply subtree perfectness.

2.2 Subtree Perfectness Properties

It turns out that only three very simple properties are required for subtree perfect-

ness to hold for normal form operators induced by choice functions. We first present

them, before discussing their meaning and links to other properties in the theory

of choice functions, and consider some further properties that can be derived from

combinations of the three.

Property 1 (Conditioning Property). Let A be a non-empty event, and let X be a

non-empty finite A-consistent set of gambles, with {X, Y } ⊆ X such that AX = AY .

If X ∈ opt(X|A), then Y ∈ opt(X|A).

Property 2 (Intersection property). For any event A 6= ∅ and any non-empty finite

A-consistent sets of gambles X and Y such that Y ⊆ X and opt(X|A) ∩ Y 6= ∅,

opt(Y|A) = opt(X|A) ∩ Y .

Property 3 (Mixture property). For any events A and B such that A∩B 6= ∅ and

A∩B 6= ∅, any A∩B-consistent gamble Z, and any non-empty finite A∩B-consistent

set of gambles X ,

opt(AX ⊕ AZ|B) = A opt(X|A ∩B)⊕ AZ.

Conditioning places a fairly weak and very sensible restriction on a choice func-

tion. It states that if two gambles are equal on A, then either both are optimal

in X given A or neither is. This is weaker than the quite reasonable condition

that removing either Y or X from X effectively changes nothing, so Conditioning

ought not to arouse any controversy. Failure of the property implies a rather strange

form of conditional preference that would cause more concern than lack of subtree

perfectness anyway.

Intersection states that, if we have a set of gambles Y and add elements to

reach X , either everything from Y becomes non-optimal, or the optimality of a

2.2. Subtree Perfectness Properties 33

particular Y ∈ Y is unchanged. It turns out that this property is equivalent to

several ordering properties commonly discussed in the choice function literature,

including Arrow [5], Sen [66], and Luce and Raiffa [46], the last-mentioned giving

the following illuminating summary of the property’s meaning:

The addition of new acts to a decision problem under uncertainy

never changes old, originally non-optimal acts into optimal ones and, in

addition, either

(i) All the old originally optimal acts remain optimal, or,

(ii) None of the old originally optimal acts remain optimal.

We now give formal definitions of these other properties and prove their equiva-

lence.

Property 4 (Strong path independence). For any non-empty event A and any

non-empty finite A-consistent sets of gambles X1, . . . ,Xn, there is a non-empty I ⊆

{1, . . . , n} such that

opt

(
n⋃
i=1

Xi

∣∣∣∣∣A
)

=
⋃
i∈I

opt(Xi|A).

This property states that, if a set of gambles X is partitioned, then each element

Xi of the partition either contributes nothing to opt(X|A) or contributes all of

opt(Xi|A).

Property 5 (Very strong path independence). For any non-empty event A and any

non-empty finite A-consistent sets of gambles X1, . . . ,Xn,

opt

(
n⋃
i=1

Xi

∣∣∣∣∣A
)

=
n⋃
i=1

Xi∩opt(∪n
i=1Xi|A)6=∅

opt(Xi|A)

This property is obviously implied by Strong Path Independence, differing only

in that the set I is explicitly defined.

Property 6 (Total preorder). For every event A 6= ∅, there is a total preorder �A
on A-consistent gambles such that for every non-empty finite set of A-consistent

gambles X ,

opt(X|A) = {X ∈ X : (∀Y ∈ X)(X �A Y)}

2.2. Subtree Perfectness Properties 34

A total preorder, or weak order, is frequently assumed as a minimum requirement

for rational choice, although, as Luce and Raiffa argue [46, pp. 289–290], it is difficult

to see why without invoking elaborate arguments such as subtree perfectness.

Lemma 2.3. Intersection, Strong Path Independence, Very Strong Path Indepen-

dence, and Total Preordering are equivalent.

Proof. In this proof, A is a non-empty event and all gambles are A-consistent.

Intersection =⇒ Very Strong Path Independence. Let X1, . . . ,Xn be non-empty

finite sets of gambles, and let X =
⋃n
i=1Xi. If opt(X|A) ∩ Xk 6= ∅, then

opt(Xk|A) = opt(X|A) ∩ Xk.

Hence,

opt(X|A) =
n⋃
k=1

opt(X|A) ∩ Xk =
n⋃
k=1

Xk∩opt(X|A)6=∅

opt(X|A) ∩ Xk

=
n⋃
k=1

Xk∩opt(X|A)6=∅

opt(Xk|A)

Very Strong Path Independence =⇒ Strong Path Independence. Immediate.

Strong Path Independence =⇒ Total Preordering. Define X �A Y if X ∈

opt({X, Y }|A). First, we prove that �A is a total preorder (i.e. total, reflexive, and

transitive). Clearly, �A is total since X ∈ opt({X, Y }|A) or Y ∈ opt({X, Y }|A),

hence X �A Y or Y �A X, for all gambles X and Y . Obviously, �A is reflexive. Is

�A transitive? Suppose X �A Y and Y �A Z.

By Strong Path Independence, using the partition {X} and {Y, Z},

opt({X, Y, Z}|A) =

opt({Y, Z}|A), or

{X}, or

opt({Y, Z}|A) ∪ {X}.

Since, Y �A Z, it follows that opt({X, Y, Z}|A) 6= {Z}.

2.2. Subtree Perfectness Properties 35

Again, by Strong Path Independence and the partition {X, Y } and {Z},

opt({X, Y, Z}|A) =

opt({X, Y }|A), or

{Z}, or

opt({X, Y }|A) ∪ {Z}.

As we just showed, the middle case is impossible. Hence,

X ∈ opt({X, Y }|A) =⇒ X ∈ opt({X, Y, Z}|A).

Once more by Strong Path Independence and the partition {X,Z} and {Y },

opt({X, Y, Z}|A) =

opt({X,Z}|A), or

{Y }, or

opt({X,Z}|A) ∪ {Y }.

We just showed that X ∈ opt({X, Y, Z}|A), hence the second case cannot occur and

it can only be that also X ∈ opt({X,Z}|A), establishing X �A Z.

Finally, we prove that

opt(X|A) = {X ∈ X : (∀Y ∈ X)(X �A Y)},

or equivalently, we prove for any X ∈ X that X ∈ opt(X|A) if and only if X ∈

opt({X, Y }|A) for all Y ∈ X .

Indeed, by Strong Path Independence, for any X and Y in X , it holds that

opt(X|A) =

opt({X, Y }|A), or

opt(X \ {X, Y }|A), or

opt({X, Y }|A) ∪ opt(X \ {X, Y }|A).

and hence, if X ∈ opt(X|A) then the second option is impossible and therefore

X ∈ opt({X, Y }|A) for all Y ∈ Y .

Conversely, again by Strong Path Independence

opt(X|A) = opt

(⋃
Y ∈X

{X, Y }

∣∣∣∣∣A
)

=
⋃
Y ∈Y

opt({X, Y }|A)

2.2. Subtree Perfectness Properties 36

for some subset Y of X , and hence, if X ∈ opt({X, Y }|A) for all Y ∈ X , then

X ∈ opt(X|A).

Total Preordering =⇒ Intersection. Assume that opt(X|A) ∩ Y 6= ∅. This

means that there must be a Y ∗ ∈ Y such that Y ∗ �A X for all X ∈ X . Clearly,

Y ∗ ∈ opt(Y|A). But, for all Y ∈ opt(Y|A) it must also hold that Y �A Y ∗, and

hence Y �A X for all X ∈ X as �A is transitive. We conclude:

opt(Y|A) = {Y ∈ Y : (∀X ∈ X)(Y �A X)} = opt(X|A) ∩ Y .

Mixture is closely related to the famous Independence Axiom (see e.g. [49]). This

principle has many forms, depending on context (McClennen considers many: see

properties CIND, CIND-E, CIND-S, IND, and ISO [51, pp. xi–xii]). In its simplest

form, the principle states that the subject prefers reward r1 to r2 if and only if, for all

rewards r3 and any non-zero probability p, she prefers pr1⊕(1−p)r3 to pr2⊕(1−p)r3.

Our property is a natural generalization of this to include gambles instead of rewards,

and sets instead of pairwise comparisons. In relation to the various properties in the

literature, it seems in essence to be McClennen’s CIND [51, pp. 57–58] (roughly, this

is Mixture but with probabilities and unconditional preference) adapted to involve

Arrow’s concept of conditional preference [4].

The Independence Axiom and its variations have attracted more widespread

criticism and questioning than the weak order property. The paradoxes of Allais [1]

and Ellsberg [18] demonstrate experimental violations of the axiom, and accounts

including Kahneman and Tversky [34], Machina [50], and McClennen [51] have

argued that violations may be philosophically acceptable.

The issue is one of “context sensitivity”: if one considers the relative worth of

rewards to depend on the gambles in which they are embedded, then violations are

reasonable. Machina’s example [50, § 6.6] is illuminating. Suppose that, in the for-

mulation of the Independence Axiom above, r1 and r3 are rewards of a similar type,

but r3 is vastly superior (Machina’s example has r3 as a romantic week with a beau-

tiful movie star, and r1 as watching one of their movies), and r2 is something rather

different (a gourmet hamburger). It is reasonable to suppose that r1 is preferable to

r2, but the gamble 0.97r3⊕ 0.03r2 is preferable to 0.97r3⊕ 0.03r1, since in the latter

2.2. Subtree Perfectness Properties 37

case the disappointment of failing to obtain r3 would make watching the movie very

upsetting. We return to this discussion later, in Section 3.3.

If the arguments in favour of Mixture seem plausible, then the following stronger

property should also be appealing.

Property 7 (Multiple Mixture Property). For any event B and partition A1, . . . , An

such that Ai∩B 6= ∅ for all i, and sets of gambles X1, . . . ,Xn such that Xi is Ai∩B-

consistent,

opt

(
n⊕
i=1

AiXi

∣∣∣∣∣B
)

=
n⊕
i=1

Ai opt(Xi|Ai ∩B). (2.1)

This is simply an extension of Mixture to consider more complicated mixtures

of gambles. There is a link between it and Intersection and Mixture. Note that the

opposite implication in this lemma does not hold.

Lemma 2.4. Intersection and Mixture together imply Multiple Mixture.

Proof. The statement is trivial if n = 1 (because, in that case, A1 = Ω). Let us

prove the statement also in case n ≥ 2. Our proof relies on the technical Lemma B.3

from the Appendix.

Let X =
⊕n

i=1AiXi. The idea of the proof is, for each i, to partition X into sets

of the form AiXi ⊕ AiZ, and then apply Mixture. Consider any k ∈ {1, . . . , n} and

let

Zk =
⊕
j 6=k

A′jXj

where (A′j)j 6=k forms an arbitrary partition of Ω such that Ak∩A′j = Aj for all j 6= k.

Clearly, Zk is Ak ∩ B-consistent because we can trivially find a consistent decision

tree T with ev(T) = Ak ∩B and gamb(T) = Zk, using the Aj ∩B-consistency (and

hence, Ak ∩ A′j ∩B-consistency) of each Xj for j 6= k.

Now, observe that by construction of Zk,

X = AkXk ⊕ AkZk =
⋃

Zk∈Zk

(AkXk ⊕ AkZk),

where the latter equality follows from using a combination of the two representations

for ⊕: Eq. (1.4) and Eq. (1.5). Note that X is B-consistent (indeed, because each Xi

2.2. Subtree Perfectness Properties 38

is Ai∩B-consistent, we can trivially find a consistent decision tree T with ev(T) = B

and gamb(T) = X).

Since Intersection holds, Strong Path Independence holds as well by Lemma 2.3.

So, if we apply opt(·|B) on both sides of the above equality, then it follows from

Strong Path Independence that

opt(X|B) =
⋃

Zk∈Z∗k

opt(AkXk ⊕ AkZk|B),

for some Z∗k ⊆ Zk. By Mixture,

=
⋃

Zk∈Z∗k

(Ak opt(Xk|Ak ∩B)⊕ AkZ)

= Ak opt(Xk|Ak ∩B)⊕ AkZ∗k (2.2)

Since this holds for each k ∈ {1, . . . , n}, we arrive at Eq. (2.1), by Lemma B.3.

In the next section we show that Conditioning, Intersection, and Mixture are

necessary and sufficient for subtree perfectness of normopt. Before doing so, we

demonstrate that it is possible to satisfy any two properties without satisfying the

other, so they are indeed distinct.

Example 2.5. Assume real-valued rewards in this example.

• Conditioning and Intersection but not Mixture. Let opt be the maximin choice

function: opt(X|A) = arg maxX∈X minω∈AX(ω). It is clear by definition that

the two required properties are satisfied. Mixture fails trivially: suppose that

the minimum reward for all AX ⊕ AZ comes only from AZ.

• Conditioning and Mixture but not Intersection. Let opt be the choice function

corresponding to the pointwise dominance strict partial order >A: X >A Y

if X(ω) ≥ Y (ω) for all ω ∈ A and X 6= Y . This is not a total preorder,

therefore Intersection fails, but the other two properties follow immediately

from the definition.

• Intersection and Mixture but not Conditioning. Suppose that opt is a choice

function corresponding to maximizing expected utility under some mass func-

tion p for which all events have positive probability. Suppose that there are a

2.3. Subtree Perfectness Theorem 39

particular X, Y such that AX = AY but X 6= Y , and no other gamble with the

same expected value to X and Y conditional on A. Let opt∗ be the choice func-

tion obtained by using opt but modifying the ordering so that X is preferred

to Y given A, changing nothing else. This construction violates Conditioning,

but still satisfies the other two.

2.3 Subtree Perfectness Theorem

Theorem 2.6 (Subtree perfectness theorem). A normal form operator normopt is

subtree perfect if and only if opt satisfies Conditioning, Intersection, and Mixture.

The proof relies on several technical lemmas, which give some insight into the

various roles of the three properties. The first lemma checks that, for decision trees

whose root is at a decision node, the initial decisions that are in optimal normal

form decisions are determined exactly by the I of Very Strong Path Independence.

Lemma 2.7. Consider a consistent decision tree T whose root is a decision node,

so T =
⊔n
i=1 Ti, and any choice function opt. For each tree Ti, let Ni be its root.

Then, Ni is in at least one element of normopt(T) if and only if

gamb(Ti) ∩ opt(gamb(T)|ev(T)) 6= ∅. (2.3)

Proof. By Eq. (1.1), Eq. (2.3) holds if and only if

gamb(nfd(Ti)) ∩ opt(gamb(T)|ev(T)) 6= ∅,

or equivalently, if and only if there is a normal form decision U ∈ nfd(Ti) such that

gamb(U) ⊆ opt(gamb(T)|ev(T)) (remember that gamb(U) is a singleton).

But, by definition of the gamb operator, it also holds that gamb(U) = gamb(tU).

Hence, Eq. (2.3) holds if and only if there is a normal form decision U ∈ nfd(Ti)

such that gamb(tU) ⊆ opt(gamb(T)|ev(T)) . Since U is a normal form decision of

Ti, and T is formed by combination at a decision node, tU is a normal form decision

of T . By definition of normopt, this is equivalent to stating that Eq. (2.3) holds if

and only if Ni is in at least one element of normopt(T).

2.3. Subtree Perfectness Theorem 40

As mentioned earlier, gambles are much easier to work with than normal form

decisions, so we use them wherever possible. The following two lemmas allow us to

switch from optimal gambles to optimal normal form decisions.

Lemma 2.8. If T is a consistent decision tree with a chance node as the root, so

T =
⊙n

i=1 EiTi, and opt is a choice function satisfying Conditioning, then

gamb(normopt(T)) =
n⊕
i=1

Ei gamb(normopt(Ti)) (2.4)

implies

normopt(T) =
n⊙
i=1

Ei normopt(Ti).

Proof. Assume that Eq. (2.4) holds.

First, consider a normal form decision U ∈
⊙n

i=1Ei normopt(Ti). Obviously,

gamb(U) ⊆ gamb

(
n⊙
i=1

Ei normopt(Ti)

)

so, by the definition of gamb, Eq. (1.7) in particular,

=
n⊕
i=1

Ei gamb(normopt(Ti))

and hence, by Eq. (2.4),

= gamb(normopt(T)).

So, there is a V ∈ normopt(T) such that gamb(V) = gamb(U). Since U ∈ nfd(T),

by definition of normopt we have U ∈ normopt(T). So we have shown that

normopt(T) ⊇
n⊙
i=1

Ei normopt(Ti).

Next, consider a normal form decision U ∈ normopt(T). We know by Eq. (2.4)

that

gamb(U) ⊆
n⊕
i=1

Ei gamb(normopt(Ti)).

We can write U =
⊙n

i=1 EiUi, where Ui ∈ nfd(Ti), so

n⊕
i=1

Ei gamb(Ui) ⊆
n⊕
i=1

Ei gamb(normopt(Ti)).

2.3. Subtree Perfectness Theorem 41

Consider any k and any normal form decision Vk ∈ normopt(Tk). By the above

equation and Eq. (1.10), we can choose each Vk such that Ek gamb(Vk) = Ek gamb(Uk).

Of course, because Vk ∈ normopt(Tk),

gamb(Vk) ⊆ opt(gamb(Tk)|ev(Tk)).

We wish to establish that also gamb(Uk) ⊆ opt(gamb(Tk)|ev(Tk)).

This will follow from Conditioning if we can check that all the conditions hold.

Observe that both singletons gamb(Uk) and gamb(Vk) are subsets of gamb(Tk),

Ek gamb(Uk) = Ek gamb(Vk), and gamb(Vk) ⊆ opt(gamb(Tk)|ev(Tk)). Consistency

of T confirms that gamb(Tk) is ev(Tk)-consistent. Hence, Conditioning applies, and

gamb(Uk) ⊆ opt(gamb(Tk)|ev(Tk)).

Therefore, Uk ∈ normopt(Tk) by definition of normopt(Ti). Since this holds for

any k, we conclude that U ∈
⊙n

i=1 Ei normopt(Ti). So, we have shown that also

normopt(T) ⊆
n⊙
i=1

Ei normopt(Ti).

Lemma 2.9. If T is a consistent decision tree whose root is a decision node, so

T =
⊔n
i=1 Ti and opt is a choice function satisfying Intersection, then

gamb(normopt(T)) =
⋃
i∈I

gamb(normopt(Ti)) (2.5)

implies

normopt(T) = nfd

(⊔
i∈I

normopt(Ti)

)
,

where I = {i ∈ {1, . . . , n} : gamb(Ti) ∩ opt(gamb(T)|ev(T)) 6= ∅}.

Proof. Assume that Eq. (2.5) holds.

Consider any normal form decision V ∈ nfd
(⊔

i∈I normopt(Ti)
)
. By definition of

gamb,

gamb(V) ⊆
⋃
i∈I

gamb(normopt(Ti))

2.3. Subtree Perfectness Theorem 42

and, by Eq. (2.5),

= gamb(normopt(T)).

Hence, by definition of normopt, and the obvious fact that V ∈ nfd(T), it follows

that V ∈ normopt(T). So we have shown that

normopt(T) ⊇ nfd

(⊔
i∈I

normopt(Ti)

)
.

Conversely, let V ∈ normopt(T). Then, again by Eq. (2.5),

gamb(V) ⊆ gamb(normopt(T)) =
⋃
i∈I

gamb(normopt(Ti)).

Now V = tU where U ∈ nfd(Ti) for some i ∈ I. We want to show that U ∈

normopt(Ti).

Indeed, let X be the gamble corresponding to V , and also U ,

gamb(V) = gamb(U) = {X}.

Because V ∈ normopt(T), we know that X ∈ opt(gamb(T)|ev(T)). It is established

that U ∈ normopt(Ti) if we can show thatX ∈ opt(gamb(Ti)|ev(Ti)). But this follows

from Intersection, because i ∈ I (recall the definition of I), gamb(Ti) ⊆ gamb(T),

ev(T) = ev(Ti), X ∈ gamb(Ti), and all sets of gambles are consistent with respect

to the relevant events:

opt(gamb(Ti)|ev(Ti)) = opt(gamb(T)|ev(T)) ∩ gamb(Ti).

Concluding, also

normopt(T) ⊆ nfd

(⊔
i∈I

normopt(Ti)

)
.

The next lemma concerns necessity of Conditioning, Intersection, and Mixture

for subtree perfectness—to establish this result, interestingly, it suffices to consider

only the two decision trees in Figure 2.3.

Lemma 2.10. If normopt is subtree perfect, then opt satisfies Conditioning, Inter-

section, and Mixture.

2.3. Subtree Perfectness Theorem 43

N

X1

...

Xn

A

ZA

N

Y1

...

Ym

X1

...

Xn

Figure 2.3: Decision trees for Lemma 2.10.

Proof. Assume that normopt is subtree perfect.

We first establish Conditioning. Let A be a non-empty event, and let X be a

non-empty finite set of A-consistent gambles such that {X, Y } ⊆ X with AX = AY

and X ∈ opt(X|A). We show that Y ∈ opt(X|A). If A = Ω the result is trivial, so

assume A ⊂ Ω.

Consider a consistent decision tree T = AT1 � AT2, where gamb(T1) = X ,

ev(T) = Ω, and T2 is a normal form decision with gamb(T2) = {Z}, an A-consistent

gamble (see the left tree in Fig. 2.3). We know by consistency of the gambles that

there is such a T (see Definition 1.17).

Consider U ∈ nfd(T1) with gamb(U) = {X} and V ∈ nfd(T1) with gamb(V) =

{Y }. By definition of normopt, we have U ∈ normopt(Ti). Therefore by subtree

perfectness, AU �AT2 ∈ normopt(T) and of course AV �AT2 ∈ normopt(T). Again

by subtree perfectness, V ∈ normopt(Ti), whence Y ∈ opt(X|A).

Next, we establish Intersection. Let A be a non-empty event, and let Y ⊆ X

be non-empty finite A-consistent sets of gambles such that opt(X|A) ∩ Y 6= ∅. We

show that opt(Y|A) = opt(X|A) ∩ Y .

Let T = T1 t T2 be a consistent decision tree with ev(T) = A, gamb(T1) = Y

and gamb(T2) = X (see the right tree in Fig. 2.3). We know by consistency of the

gambles that there is such a T .

Let N be the decision node at the root of T1. By subtree perfectness, we have

gamb(stN(normopt(T))) = gamb(normopt(stN(T))).

2.3. Subtree Perfectness Theorem 44

The right-hand side is equal to opt(Y|A). Also,

gamb(stN(normopt(T))) = gamb(normopt(T)) ∩ gamb(stN(T))

= opt(X|A) ∩ Y

as required.

Finally, we establish Mixture. Let A and B be events such that A ∩ B 6= ∅ and

A ∩ B 6= ∅, let X be a non-empty finite A ∩ B-consistent set of gambles, and let Z

be a A ∩B-consistent gamble.

Let T = AT1�AT2 be a consistent decision tree such that ev(T) = B, gamb(T1) =

X , and gamb(T2) = {Z} (see the left tree in Fig. 2.3).

By subtree perfectness, we have (letting N be the root node of T1)

gamb(stN(normopt(T))) = gamb(normopt(stN(T))).

Here, the right-hand side is opt(X|A ∩B), and

gamb(stN(normopt(T))) = {X ∈ X : AX ⊕ AZ ∈ opt(AX ⊕ AZ|B)},

whence Mixture follows.

The method of proof we use for Theorem 2.6 is structural induction: assume that

subtree perfectness holds for all subtrees of a tree T , and show it then holds for T .

The following lemma shows that it is only the immediate successors of the root node

of T that need to be examined, making the ultimate proof more straightforward.

Recall that ch(T) is the set of immediate successor nodes of the root node of T .

Lemma 2.11. Let norm be any normal form operator. Let T be a consistent decision

tree. If,

(i) for all nodes K ∈ ch(T) such that K is in at least one element of norm(T),

stK(norm(T)) = norm(stK(T)),

(ii) and, for all nodes K ∈ ch(T), and all nodes L ∈ stK(T) such that L is in at

least one element of norm(stK(T)),

stL(norm(stK(T))) = norm(stL(stK(T))),

2.3. Subtree Perfectness Theorem 45

then, for all nodes N in T such that N is in at least one element of norm(T),

stN(norm(T)) = norm(stN(T)).

Proof. If N is the root of T , then the statement is trivial. If N ∈ ch(T), then the

statement follows from (i). Otherwise, N must belong to stK(T) for one K ∈ ch(T).

First, note that K is a node of at least one element of norm(T). Indeed, it is

given that N is a node of at least one element, say U , of norm(T). Then, obviously,

K must also be a node of U , simply because any node on the unique path within

T between the root of T and N must be a node of U , and one of those nodes is K.

So, K is a node of an element of norm(T).

Secondly, note that N is also a node of at least one element of norm(stK(T)).

Indeed, N is a node of an element of norm(T), and hence, in particular also of

stK(norm(T)). But, by (i), and the fact that K is a node of at least one element of

norm(T) (as just proven), it follows that stK(norm(T)) = norm(stK(T)). Hence, N

is also a node of at least one element of norm(stK(T)).

Combining everything, it follows that

norm(stN(T)) = norm(stN(stK(T)))

so, by (ii), and because N is in at least one element of norm(stK(T)),

= stN(norm(stK(T)))

hence, by (i), and since K is in at least one element of norm(T),

= stN(stK(norm(T))) = stN(norm(T)).

These are all the necessary ingredients to prove the subtree perfectness theorem.

Proof of Theorem 2.6. “only if”. See Lemma 2.10.

“if”. We proceed by structural induction on all possible arguments of normopt,

that is, on all consistent decision trees. In the base step, we prove the implication

for trees consisting of only a single node. In the induction step, we prove that

2.3. Subtree Perfectness Theorem 46

if the implication holds for the subtrees at every child of the root node, then the

implication also holds for the whole tree.

First, if the decision tree T has only a single node, and hence, a reward at the root

and no further children, then subtree perfectness is trivially satisfied. No properties

of opt are required at this stage.

Next, suppose that the consistent decision tree T has multiple nodes. Let

{N1, . . . , Nn} = ch(T), and let Ti = stNi
(T). The induction hypothesis says that

subtree perfectness is satisfied for all subtrees at every child of the root node, that

is, for all Ti. More precisely, for all i ∈ {1, . . . , n}, and all nodes L ∈ Ti such that L

is in at least one element of normopt(Ti),

stL(normopt(Ti)) = normopt(stL(Ti)).

We must show that

stN(normopt(T)) = normopt(stN(T))

for all nodes N in T such that N is in at least one element of normopt(T). By

Lemma 2.11, and the induction hypothesis, it suffices to prove the above equality

only for N ∈ ch(T), that is, it suffices to show that

stNi
(normopt(T)) = normopt(Ti) (2.6)

for each i ∈ {1, . . . , n} such that Ni is in at least one element of normopt(T).

If T has a chance node as its root, that is, T =
⊙n

i=1EiTi, then all Ni are

actually in every element of normopt(T), so we must simply establish Eq. (2.6) for

all i ∈ {1, . . . , n}. Observe that, if we can establish

normopt(T) =
n⊙
i=1

Ei normopt(Ti), (2.7)

then Eq. (2.6) follows immediately. Eq. (2.7) is most easily derived using Lemma 2.8.

Indeed, by Eq. (1.10),

gamb(normopt(T)) = opt(gamb(T)|ev(T))

2.3. Subtree Perfectness Theorem 47

and by the definition of the gamb operator, Eq. (1.6b) in particular,

= opt

(
n⊕
i=1

Ei gamb(Ti)

∣∣∣∣∣ev(T)

)
and so by Lemma 2.4,

=
n⊕
i=1

Ei opt(gamb(Ti)|ev(T) ∩ Ei)

so, since ev(T) ∩ Ei = ev(Ti), and again by Eq. (1.10),

=
n⊕
i=1

Ei gamb(normopt(Ti)),

whence Eq. (2.7) follows by Lemma 2.8.

Finally, assume that T has a decision node as its root, that is, T =
⊔n
i=1 Ti. Let

I be the subset of {1, . . . , n} such that i ∈ I if and only if Ni is in at least one

element of normopt(T). We must establish Eq. (2.6) for all i ∈ I. Equivalently, we

must show that

normopt(T) = nfd

(⊔
i∈I

normopt(Ti)

)
. (2.8)

Indeed, by Eq. (1.10),

gamb(normopt(T)) = opt(gamb(T)|ev(T))

and by the definition of the gamb operator, Eq. (1.6c) in particular,

= opt

(
n⋃
i=1

gamb(Ti)

∣∣∣∣∣ev(T)

)
and so by Very Strong Path Independence,

=
⋃
i∈I∗

opt(gamb(Ti)|ev(T)),

where I∗ = {i ∈ {1, . . . , n} : gamb(Ti) ∩ opt(gamb(T)|ev(T)) 6= ∅}, and so because

ev(T) = ev(Ti), and again by Eq. (1.10),

=
⋃
i∈I∗

gamb(normopt(Ti)).

Hence, the conditions of Lemma 2.9 are satisfied, and I∗ = I by Lemma 2.7, so

Eq. (2.8) is established.

2.4. Special Case: Subtree Perfectness In Statistical Decision Theory 48

X1d1

...

Xm
dmE 1

...

X1d1

...

Xm
dm

E
n

Figure 2.4: Simple sequential decision tree with one decision node per branch

2.4 Special Case: Subtree Perfectness In Statis-

tical Decision Theory

The conditions required for subtree perfectness are highly restrictive, and only very

few choice functions will satisfy them. For other choice functions, we can at least

investigate particular classes of decision tree for which subtree perfectness holds.

We consider a well-known simple sequential decision problem. A subject is going

to observe the outcome of some experiment, and then must choose one action from

a set D. Hypothesis testing and parameter estimation are examples of this type

of problem. Assuming that there are finite possible values for the experiment, and

finite actions in D, this problem can be represented on a decision tree, as in Fig. 2.4.

It is straightforward to see that subtree perfectness for such a tree would follow

from Conditioning and Multiple Mixture, so Intersection is not necessary. In fact,

only a weaker version of Multiple Mixture is necessary for subtree perfectness of

Fig. 2.4. This is because Multiple Mixture requires all combinations of optimal

subgambles to be optimal in a mixture, whereas subtree perfectness requires only

that any optimal subgamble is part of at least one optimal mixture.

Property 8 (Weak Multiple Mixture Property). For any non-empty event B and

partition A1, . . . , An such that Ai∩B 6= ∅, and any non-empty finite sets of gambles

2.4. Special Case: Subtree Perfectness In Statistical Decision Theory 49

Xi, . . . ,Xn such that Xi is Ai ∩B-consistent,

• if
⊕

AiXi ∈ opt (
⊕

AiXi|B), then Xi ∈ opt(Xi|Ai ∩B), and,

• if Xk ∈ opt(Xk|Ak ∩ B), then for each j 6= k, there is a Xj ∈ Xj such that⊕
AiXi ∈ opt (

⊕
AiXi|B).

Theorem 2.12. Let T =
⊙

EiTi be a consistent decision tree where each of the Ti

has a decision node as the root, and there is only one decision node in every branch.

If opt satisfies Conditioning and Weak Multiple Mixture, then normopt is subtree

perfect for T .

Proof. By the special structure of T , we just need to show that, for each N ∈ ch(T),

normopt(stN(T)) = stN(normopt(T)).

Suppose U ∈ normopt(Tk) for some k, with gamb(U) = {X}. We show that there is

a
⊙n

i=1 EiUi ∈ normopt(T) with Uk = U . We know that

X ∈ opt(gamb(Tk)|Ek ∩ ev(T)),

and so by Weak Multiple Mixture there is a gamble

n⊕
i=1

EiXi ∈ opt(gamb(T)|ev(T))

with Xk = X. By definition of normopt, there is a
⊙n

i=1EiUi ∈ normopt(T) with

Uk = U .

Next, suppose there is a V =
⊙n

i=1EiUi ∈ normopt(T). If Xi ∈ gamb(Ui) for

each i, then Xi ∈ opt(gamb(Ti)|Ei ∩ ev(T)) for each i, by Weak Multiple Mixture.

By Conditioning, Ui ∈ normopt(Ti) for each i.

It is natural to wonder whether there are larger trees that are subtree perfect

under Weak Multiple Mixture rather than Mixture, for instance by taking trees

that are subtree perfect by Theorem 2.12 and joining them together. The next

theorem demonstrates subtree perfectness of any tree that has a chance node for

a root, and all subtrees satisfy subtree perfectness. Note that this results requires

not only Conditioning and Weak Multiple Mixture but also Path Independence (see

Section 3.1.2).

2.5. Equivalence of Normal Form and Extensive Form 50

Theorem 2.13. If T has a root at a chance node, so T =
⊙

EiTi, opt satisfies Con-

ditioning, Path Independence, and Weak Multiple Mixture, and normopt is subtree

perfect for all subtrees of T , then normopt is subtree perfect for T .

Proof. It suffices to show that subtree perfectness holds between T and any of its

children Ti. If this is established, then subtree perfectness of each Ti can be invoked

to arrive at the result.

Observe that for each i, we can find T ′i such that T ′i has only one decision node,

at the root, and T ′i and Ti are strategically equivalent. So, if Ui ∈ normopt(Ti), there

is a Vi ∈ normopt(T
′
i) with gamb(Ui) = gamb(Vi).

If U1 ∈ normopt(T1) then there is a V1 ∈ normopt(T
′
1) with gamb(U1) = gamb(V1).

By Theorem 2.12, there is a V ∈ normopt(
⊙

EiT
′
i) with stT ′1(V) = V1. By strategic

equivalence, there is a U ∈ normopt(T) with stT1(U) = U1. This extends to any i.

So we have shown that if Ui is optimal in Ti it forms part of an optimal normal

form decision in T . The proves one direction of subtree perfectness. Backward

induction provides the other direction.

2.5 Equivalence of Normal Form and Extensive

Form

2.5.1 Equivalence for General Operators

A normal form solution specifies the subject’s actions from the beginning. It can be

argued that, if the problem has been posed as a sequential one (that is, as a decision

tree with a decision node somewhere other than the root) then the solution should be

of extensive form, since the subject in reality needs only to make decisions at decision

nodes, not in advance. When a normal form operator admits a unique normal form

decision, this is not a problem, since the normal form solution is then an extensive

form solution anyway. Difficulties arise for indeterminate normal form solutions,

because for most decision trees there are more possible normal form solutions than

extensive form ones.

Consider the decision tree in Fig. 2.5. Suppose that the normal form solution

2.5. Equivalence of Normal Form and Extensive Form 51

r1
1d

1
1

r1
2

d 1
2

r2
1d

2
1

r2
2

d 2
2

Figure 2.5: An example for non-correspondence of extensive and normal form solu-

tions.

contains only two normal form decisions: namely d1
1d

2
2 and d1

2d
2
1. If we wanted to

transform this solution into an extensive form solution, the only possibility would be

to include all four decision arcs, thus returning the original tree. But suppose instead

the normal form solution were that all four normal form decisions are optimal.

Clearly transforming this solution to an extensive form solution would again return

the whole tree.

A one-to-one correspondence between extensive form and normal form solutions

therefore does not exist. We have seen that any sensible map from normal form

solutions to extensive form solutions will not be injective. Is there a sensible injec-

tive map from extensive form solutions to normal form solutions? We would claim

that there is. The interpretation of an extensive form solution was that the subject,

upon reaching a decision node, picked an arc to follow without considering what she

would pick at any different decision node. Therefore, the normal form solution cor-

responding to an extensive form solution should be the set of normal form decisions

of the extensive form solution.

Definition 2.14. If ext(·) is an extensive form operator then its normal form cor-

respondent is nfd(ext(·)).

Proposition 2.15. If ext1 and ext2 are extensive form operators, and T is a decision

tree such that nfd(ext1(T)) = nfd(ext2(T)), then ext1(T) = ext2(T).

Proof. We use proof by contradiction. Two extensive form solutions of the same

decision tree can only differ if one, say ext1(T) includes a decision arc that the other

2.5. Equivalence of Normal Form and Extensive Form 52

does not. In such a case, nfd(ext1(T)) includes at least one normal form decision

featuring this decision arc, whereas nfd(ext2(T)) does not. Therefore, if the normal

form correspondents are the same then the extensive form solutions must be the

same.

So, we have a sensible way to move from an extensive form solution to a normal

form solution, and this map is injective. What is the most sensible way to define

the extensive form correspondent of a normal form solution? If a decision arc is in

one of the normal form decisions then it should be in the extensive form solution,

and if it is not in any of the normal form decisions then it should be absent from

the extensive form solution.

Definition 2.16. Let T be a normal form solution. Its extensive form correspondent

is constructed as follows: a node N is in the extensive form correspondent if it is

in at least one element of T . If norm is a normal form operator then its extensive

form correspondent is the extensive form operator that maps each T to the extensive

form correspondent of norm(T).

We are interested in the situation where operators norm and ext are equivalent.

We define this as follows.

Definition 2.17. A normal form operator norm and an extensive form operator ext

are equivalent when each is the correspondent of the other.

It is worth checking whether this condition of equivalence can ever be satisfied.

In fact, by construction, moving from extensive form to normal form and then back

will always return the original solution. So, in particular, an extensive form operator

always has an equivalent normal form operator.

Lemma 2.18. Let ext be an extensive form solution, let norm be its normal form

correspondent, and let ext∗ be the extensive form correspondent of norm. Then

ext = ext∗.

Proof. For any T , if N is a node in ext(T) then it is a node in an element of

nfd(ext(T)) = norm(T) and so by definition is in ext∗(T). Similarly if N is not in

ext(T) then it is not in ext∗(T).

2.5. Equivalence of Normal Form and Extensive Form 53

It turns out that equivalence of operators is closely related to subtree perfectness.

Lemma 2.19. Suppose that ext and norm are equivalent. Then, norm is subtree

perfect if and only if ext is subtree perfect.

Proof. “if”. Suppose ext is subtree perfect and a node N is in ext(T), then N is in

at least one element of norm(T). Because nfd and stN commute, we have

norm(stN(T)) = nfd(ext(stN(T))) = nfd(stN(ext(T)))

= stN(nfd(ext(T))) = stN(norm(T)).

This demonstrates subtree perfectness of norm.

“only if”. By Lemma 2.18, for a particular norm there can be no more than one

equivalent ext. We show that this ext is subtree perfect. A node N is in this ext

if and only if it is in at least one element of norm(T). Similarly, a node M is in

stN(ext(T)) if and only if M is in at least one element of stN(norm(T)). By subtree

perfectness of norm, the latter is satisfied if and only if M is in at least one element

of norm(stN(T)). But, again by definition of ext, the latter is satisfied if and only if

M is in ext(stN(T)). This establishes subtree perfectness of ext.

We know that a normal form operator may not have an equivalent extensive

form representation. One might hope that if norm is subtree perfect then there is

guarenteed to be an extensive form representation. Unfortunately this is not true.

Consider again the tree in Fig. 2.5, and the first normal form solution we considered.

Suppose that our normal form operator, when applied to the upper subtree only,

returns both decisions as optimal, and does the same when applied to the lower

subtree. Then by Definition 2.1, we have subtree perfectness. But of course there is

no equivalent extensive form operator. This may suggest that subtree perfectness is

not the strongest condition we could wish to impose.

Definition 2.20. Consider a consistent decision tree T , a normal form operator

norm, a normal form decision U ∈ norm(T), a node N such that N is in U , a

normal form decision V ∈ norm(stN(T)), and the normal form decision U∗ such

that stN(U∗) = V and U∗ coincides with U everywhere else. Then, norm is strongly

2.5. Equivalence of Normal Form and Extensive Form 54

subtree perfect if it is subtree perfect and, for any such T , U , N , V , we have

U∗ ∈ norm(T).

Strong subtree perfectness says that any optimal strategy containing N can be

amended by replacing the substrategy in stN(T) with any optimal substrategy in

stN(T). It should not be too surprising that this condition leads to extensive form

equivalence. For our purposes, however, the strengthening is not so interesting

because, when restricting attention to normal form operators induced by choice

functions, any subtree perfect operator has an extensive form equivalent; that is,

strong subtree perfectness is implied by subtree perfectness for normopt.

2.5.2 Equivalence For Choice Functions

In this section we show that any subtree perfect normal form operator induced

by a choice function has an equivalent extensive form solution. Choice functions

that induce normal form operators that lack subtree perfectness may or may not

have equivalent extensive form solutions; finding conditions for this remains an open

problem.

Theorem 2.21. If a normal form operator normopt induced by a choice function

opt is subtree perfect, then there exists an equivalent subtree perfect extensive form

operator ext.

Proof. By Lemma 2.19, if an equivalent ext exists then it is subtree perfect. Let

ext be the extensive form correspondent of normopt (see Definition 2.16). We must

show that ext satisfies

normopt(T) = nfd(ext(T))

for all consistent decision trees T .

We now proceed by structural induction. The base step, that nfd(ext(T)) =

normopt(T) for any decision tree comprising only a single node, is as usual satisfied

trivially.

Let us proceed with the induction step. The induction hypothesis states that,

for any node K in ch(T), nfd(ext(stK(T))) = normopt(stK(T)). We must show that

normopt(T) = nfd(ext(T)).

2.5. Equivalence of Normal Form and Extensive Form 55

It is useful to show first that, if K is the set of all K ∈ ch(T) that appear in at

least one element of normopt(T) (or equivalently, that appear in ext(T)), then for

any K ∈ K,

stK(nfd(ext(T))) = stK(normopt(T)). (2.9)

Consider any node K in ch(T) that appears in ext(T). Clearly,

stK(nfd(ext(T))) = nfd(stK(ext(T)))

and since we just proved that ext is subtree perfect,

= nfd(ext(stK(T)))

and by the induction hypothesis,

= normopt(stK(T))

but, by definition of ext, the node K also appears in at least one element of

normopt(T), so by the subtree perfectness of normopt,

= stK(normopt(T)).

This establishes Eq. (2.9).

Now, suppose that the root of T is a decision node. Observe that

nfd(ext(T)) =
⊔
K∈K

nfd(stK(ext(T))),

and since st(·) and nfd(·) commute,

=
⊔
K∈K

stK(nfd(ext(T))).

Also, because opt satisfies Conditioning and Intersection, we have (as seen in the

proof of Theorem 2.6)

normopt(T) =
⊔
K∈K

stK(normopt(T)),

whence by Eq. (2.9),

normopt(T) = nfd(ext(T)).

2.5. Equivalence of Normal Form and Extensive Form 56

Finally, suppose that the root of T is a chance node. Here, K is always simply

ch(T) = {K1, . . . , Kn}. Similarly to before, we have

nfd(ext(T)) =
n⊙
i=1

Ei nfd(stKi
(ext(T)))

=
n⊙
i=1

Ei stKi
(nfd(ext(T))).

Since opt satisfies Conditioning, Intersection, and Mixture, we have (as seen in the

proof of Theorem 2.6),

normopt(T) =
n⊙
i=1

Ei normopt(stKi
(T))

=
n⊙
i=1

Ei stKi
(normopt(T)),

whence by Eq. (2.9), we have

nfd(ext(T)) = normopt(T).

One may wonder why this proof cannot be extended to normal form operators

not induced by choice functions. It is because the proof relies on a consequence of

Lemmas 2.4 and 2.8:

normopt

(
n⊙
i=1

EiTi

)
=

n⊙
i=1

Ei normopt(Ti).

Subtree perfectness for normopt implies equality here, but for general operators

equality need not hold.

So, given a subtree perfect choice function, there is an extensive form equivalent.

Since the normal form solution induced by a choice function is usually inconvenient

to find, perhaps the extensive form equivalent is more efficient. Recall the backward

induction scheme for expected utility from Section 1.2.4. In this, at every stage we

only need to retain from each decision node the maximum expected utility (and of

course the decision arcs leading to this maximum). For an arbitrary choice function

we cannot simply replace nodes with a number, but one would hope we could replace

nodes with a single gamble (any one of the optimal normal form gambles at this

2.6. Links to Other Work 57

stage), and that Intersection and Mixture ensure that no matter which of the gambles

we choose, we arrive at the extensive form equivalent. It turns out that this approach

always works. The investigation of this is delayed until Section 3.2, because it relies

on various ideas of backward induction that have not yet been introduced.

2.6 Links to Other Work

As mentioned earlier, our results have strong links with the work of Hammond [24],

Machina [50], and McClennen [51].

Machina [50] assumes probabilities at chance nodes and choice functions that

correspond to total preorders. Under these assumptions, a necessary condition for

subtree perfectness of normopt is that opt satisfies separability over mutually exclusive

events. Consider a partition with n events with probabilities p1, . . . , pn, a gamble

giving reward ri ∈ R if event i obtains, and a second gamble that gives reward ri if

event i occurs for i > 1 and r∗ ∈ R for i = 1. In other words, the two gambles differ

on only one event. Machina’s condition of separability says that the second gamble

is preferred to the first if and only if r∗ is preferred to r1. Several conditions called

separability exist, so we shall refer to this one as Machina-separability.

There are various ways to adapt separability for our more general setting. For

example, consider a non-trivial event A and gambles X and Y such that AX =

AY , AX = Ar1, and AY = Ar2 for some rewards r1 and r2 ∈ R. Machina-

separability could be: opt({X, Y }) = {X} if and only if opt({r1, r2}) = {r1}. Note

that Mixture implies this. Indeed, Mixture can be seen as a strong form of Machina-

separability, for it implies every reasonable generalization of Machina-separability.

Further, Multiple Mixture would be the strongest generalization abandoning a total

preorder.

As already noted, Hammond’s [24] results are slightly different from ours because

of the definition of decision trees, and whether gambles involving probabilities are

admitted. If such details are dealt with, then his results become very similar to

ours. Using our terminology and notation, Hammond’s first defines:

2.6. Links to Other Work 58

Definition 2.22. An extensive form operator ext is consistent if

ext(stN(T)) = stN(ext(T))

for any N in ext(T).

So, consistency is just another term for subtree perfectness.

Definition 2.23. An extensive form operator ext is consequentialist if, for any

decision trees T1 and T2 such that gamb(T1) = gamb(T2) and ev(T1) = ev(T2),

gamb(ext(T1)) = gamb(ext(T2)).

In other words, consequentialism means respecting strategic equivalence. It is not

entirely clear whether this is precisely what Hammond means by consequentialism,

though. He writes that, following Anscombe [3, p. 9], consequentialism means that

acts are valued by their consequences.

He then states that Definition 2.23 follows from this. Then, throughout the paper,

he uses only Definition 2.23. But, while the definition is certainly a corollary of the

above quotation, it is not equivalent.

Consider as an example Fig. 2.6, where U and V represent normal form decisions

that form the continuation of the trees at these points. A possible extensive form

solution removes the upper decision arc at the initial node, and removes nothing at

the second node. It is easy to make this subtree perfect, and therefore Hammond-

consistent, and it also satisfies Definition 2.23. But it does not “value acts by their

consequences”, since one branch corresponding to U is deleted yet the other is not.

This distinction is, admittedly, somewhat artificial, yet has important conse-

quences for equivalence results. Clearly, the extensive form solution in this example

cannot be equivalent to any normal form solution induced by a choice function, and

so Definition 2.23 is insufficient to reproduce the results of Section 2.5. However,

“acts are valued by their consequences” can be more carefully formulated into the

condition we call strong consequentialism.

Definition 2.24. An extensive form operator ext is strongly consequentialist if it

is consequentialist and, for any U ∈ nfd(T) such that gamb(U) ⊆ gamb(ext(T)),

U ∈ nfd(ext(T)).

2.6. Links to Other Work 59

U

U

V

Figure 2.6: Example for the difference between Definition 2.23 and 2.24

Hammond argues that consistent and (not necessarily strongly) consequentialist

extensive form operators induce a choice function on gambles as follows.

Definition 2.25. For a consistent and consequentialist extensive form operator ext,

define its corresponding choice function optext by

optext(X|A) = gamb(ext(T)),

where T is any consistent decision tree with gamb(T) = X and ev(T) = A. Because

ext is consistent and consequentialist, this choice function exists and does not depend

on the choice of T .

With these definitions, we can prove a slightly stronger version of Hammond’s

results [24, Theorem 5.4, Theorem 6, Theorem 7, and Theorem 8].

Theorem 2.26. A choice function opt satisfies Conditioning, Intersection, and

Mixture if and only if there is a consistent and strongly consequentialist extensive

form operator ext such that optext = opt.

Proof. “if”. Follow the approach of Hammond [24, Theorem 5.4 and Theorem 7].

Note that these proofs require only consequentialism.

“only if”. Suppose opt satisfies Conditioning, Intersection, and Mixture. By

Theorems 2.6 and 2.21, normopt is subtree perfect and has an equivalent subtree

perfect extensive form operator ext. By definition of normopt, for any strategically

equivalent trees T1 and T2, gamb(normopt(T1)) = gamb(normopt(T2)), and so the

same holds for ext. Hence, ext is consistent and consequentialist. By construction,

ext is also strongly consequentialist, and obviously also optext = opt.

2.6. Links to Other Work 60

It is easily seen that, for a particular choice function opt, there is exactly one

consistent and strongly consequentialist extensive form operator that induces opt.

Therefore, there is an equivalence between the consistent and strongly consequen-

tialist extensive form operator inducing opt and the subtree perfect normal form

operator induced by opt. This equivalence is not present in Hammond’s account,

since multiple consistent and (not strongly) consequentialist extensive form opera-

tors can induce the same choice function.

As with Hammond, McClennen’s [51] decision trees differ in that some chance

nodes can have probabilities for events. Also, there seems to be no concept of

conditioning in McClennen’s account. As noted in Section 1.2.4, McClennen uses

dynamic normal form solutions, which are generalizations of normal form solutions.

Some of his results [51, Theorems 8.1 and 8.2] are similar to ours, and are based on

three restrictions placed on his solutions.

Definition 2.27 (McClennen, [51, p. 120]). A dynamic normal form solution sat-

isfies dynamic consistency if, for every node N in the tree, the restriction of the

optimal set at the root node to N is exactly the optimal set at N .

There is a one-to-one correspondence between dynamic normal form solutions

satisfying dynamic consistency, and our normal form solutions. Therefore normopt

implicitly satisfies dynamic consistency.

Definition 2.28 (McClennen,[51, p. 114]). A dynamic normal form solution satis-

fies plan reduction if, for every normal form decision in T that induces the same

gamble, either all or none of them are optimal.

By definition, normopt satisfies plan reduction.

Definition 2.29 (McClennen,[51, p. 122]). A dynamic normal form solution satis-

fies separability if, for any tree T and any node N in T , the set of optimal plans at

N is the same as the set of optimal plans of the separate tree stN(T).

On its own, separability is not exactly subtree perfectness, but if dynamic con-

sistency holds then the two properties are equivalent. McClennen’s two theorems

can then be adapted into our setting as:

2.6. Links to Other Work 61

Theorem 2.30. If a dynamic normal form solution satisfies plan reduction, dy-

namic consistency, and separability, then then it coincides with normopt for a choice

function opt satisfying Conditioning, Intersection, and Mixture.

Proof. The proof is essentially identical to that of Lemma 2.10.

Chapter 3

Backward Induction

Typically, one considers solution of decision trees by some method of backward

induction. An example can be seen in Section 1.2.4. There are two principal reasons

for such an approach. The first is computational efficiency: the total number of

gambles in a decision tree increases exponentially with the tree depth, and so a

method of eliminating some decisions at the right of the tree will lead to elimination

of many decisions further to the left. This is especially useful if dealing with choice

functions whose computational cost is worse than linear in the size of their argument.

Then, many applications of the choice function to small sets will be more efficient

than a single application to a very large set.

The second reason is more philosophical. When considering what to do in the

present, one is likely to think of future decision points and think what one would

expect to do at these. Anything one thinks will be rejected in the future should not

be part of one’s present plan: why intend to take an action that one will want to

reject upon reaching it? It seems that backward induction is a natural way to think

about sequential decision problems.

In most of the literature [78, 46, 56, 7, 41, 64] (but notably not Kikuti et al. [38],

whose ideas we later follow), backward induction schemes are essentially presented

as subtree perfect extensive form solutions. We address these for general choice

functions in Section 3.2, but first we examine backward induction as a means of

finding (potentially subtree imperfect) normal form solutions.

62

3.1. Normal Form Backward Induction 63

3.1 Normal Form Backward Induction

3.1.1 Definition

Although the operator normopt is a simple and popular way of defining a normal

form solution, it has a major practical difficulty. The set of normal form decisions

associated with T grows at least exponentially with the size of the tree, and so

gamb(T) may have many elements. For example, if a tree T has at least n decision

nodes in every path from the root to any leaf, and each decision node has at least

two children, then there will be at least 2n normal form decisions associated with

T (and often a lot more). Moreover, some choice functions are computationally

expensive when applied to very large sets. For instance, maximality with respect to

a lower prevision (discussed further in Chapter 6) requires us to solve k(k−1)
2

linear

programs for a set of k decisions. Hence, direct calculation of normopt will usually

be impractical, if not impossible. For this reason, we suggest the following backward

induction method. First, for notational convenience we extend normopt to sets of

trees.

Definition 3.1. Given a choice function opt and any set T of consistent decision

trees, where ev(T) = A for all T ∈ T ,

normopt(T) = {U ∈ nfd(T) : gamb(U) ⊆ opt(gamb(T)|A)}.

Care should be taken over this definition. It can be understood in the following

way: if there is a set of decision trees T and we must choose one tree and one strategy

in that tree, then normopt(T) should be our optimal set. With this extension, there

is a corresponding result to Eq. (1.10) for sets of trees: if T is a set of consistent

decisions trees where ev(T) = A for all T ∈ T , then

gamb(normopt(T)) = opt(gamb(T)|A). (3.1)

We can now define our backward induction algorithm through a normal form

operator backopt. This is a formalization of an algorithm by Kikuti et al. [38].

Definition 3.2. Let backopt be a normal form operator defined for any consistent

decision tree T through the following identities:

3.1. Normal Form Backward Induction 64

• If a tree T consists of only a leaf with reward r ∈ R, then

backopt(T) = {T}. (3.2a)

• If a tree T has a chance node as root, that is, T =
⊙n

i=1EiTi, then

backopt

(
n⊙
i=1

EiTi

)
= normopt

(
n⊙
i=1

Ei backopt (Ti)

)
(3.2b)

• If a tree T has a decision node as root, that is, if T =
⊔n
i=1 Ti, then

backopt

(
n⊔
i=1

Ti

)
= normopt

(
n⊔
i=1

backopt(Ti)

)
. (3.2c)

It is instructive to compare the definition of the gamb operator (Definition 1.12)

with the above definition of backopt. The main difference is that backopt inserts

normopt at every stage of the recursion, to eliminate as many normal form decisions

as possible, early on.

If backopt always yields the same normal form solution as normopt, we can use

the former as an efficient way of calculating the latter. Of course, such a procedure

only works if a normal form gamble that is non-optimal in a subtree at a node

cannot be part of an optimal gamble in the full tree. It is well known that choice

functions exist for which this property does not hold: for examples, see LaValle and

Wapman [42], Jaffray [32], and Seidenfeld [64]. In such cases, there exist trees such

that backopt(T) 6= normopt(T), and our approach cannot be used.

We now investigate necessary and sufficient properties of choice functions for

backopt(T) to coincide with normopt(T) for any consistent decision tree T . Readers

wishing first to see an example of backopt in action before continuing should proceed

to Chapter 6, in particular Sections 6.1 and 6.3.

3.1.2 Backward Induction Properties

As with subtree perfectness, the behaviour of backopt can be understood by several

conditions on choice functions. Perhaps unsurprisingly, they turn out to be closely

related to but weaker than the subtree perfectness properties.

3.1. Normal Form Backward Induction 65

Property 9 (Backward conditioning property). Let A and B be events such that

A ∩B 6= ∅ and A ∩B 6= ∅, and let X be a non-empty finite A ∩B-consistent set of

gambles, with {X, Y } ⊆ X such that AX = AY and X ∈ opt(X|A ∩B). If there is

an A ∩B-consistent gamble Z such that

AX ⊕ AZ ∈ opt(AX ⊕ AZ|B),

then Y ∈ opt(X|A ∩B).

Property 10 (Insensitivity of optimality to the omission of non-optimal elements).

For any event A 6= ∅, and any non-empty finite A-consistent sets of gambles X and

Y,

opt(X|A) ⊆ Y ⊆ X ⇒ opt(Y|A) = opt(X|A).

Property 11 (Preservation of non-optimality under the addition of elements). For

any event A 6= ∅, and any non-empty finite A-consistent sets of gambles X and Y,

Y ⊆ X ⇒ opt(Y|A) ⊇ opt(X|A) ∩ Y .

Property 12 (Backward mixture property). For any events A and B such that

B ∩ A 6= ∅ and B ∩ A 6= ∅, any B ∩ A-consistent gamble Z, and any non-empty

finite B ∩ A-consistent set of gambles X ,

opt
(
AX ⊕ AZ|B

)
⊆ A opt(X|A ∩B)⊕ AZ.

If opt satisfies Insensitivity To Omission, then removing non-optimal elements

from a set does not affect whether or not each of the remaining elements is optimal.

The property is called ‘insensitivity to the omission of non-optimal elements’ by

De Cooman and Troffaes [13], and ‘property ε’ by Sen [66] who attributes this

designation to Douglas Blair. It seems a very natural condition to impose on a

choice function, but is not seen so often in the literature, perhaps because it is a

consequence of the more popular ‘property β’ [66, p. 65].

Preservation Under Addition is called ‘property α’ by Sen [66, p. 64], Axiom

7 by Luce and Raiffa [46, p. 288], and ‘independence of irrelevant alternatives’ by

3.1. Normal Form Backward Induction 66

Radner and Marschak [55].1 It states that any gamble that is non-optimal in a set

of gambles Y is non-optimal in any set of gambles containing Y ; in other words,

adding new gambles cannot make previously non-optimal gables become optimal.

Insensitivity To Omission and Preservation Under Addition are together equiv-

alent to another property, called path independence. Compare this property with

Strong Path Independence and Very Strong Path Independence from Section 2.2.

Property 13 (Path independence). For any non-empty event A, and for any finite

family of non-empty finite A-consistent sets of gambles X1, . . . , Xn,

opt

(
n⋃
i=1

Xi

∣∣∣∣∣A
)

= opt

(
n⋃
i=1

opt(Xi|A)

∣∣∣∣∣A
)
.

Lemma 3.3 (Sen [66, Proposition 17]). A choice function opt satisfies Preservation

Under Addition if and only if, for any non-empty event A and any finite family of

non-empty finite A-consistent sets of gambles X1, . . .Xn,

opt

(
n⋃
i=1

Xi

∣∣∣∣∣A
)
⊆ opt

(
n⋃
i=1

opt(Xi|A)

∣∣∣∣∣A
)
⊆

n⋃
i=1

opt(Xi|A).

Lemma 3.4 (Sen [66, Proposition 19]). A choice function opt satisfies Insensitivity

To Omission and Preservation Under Addition if and only if opt satisfies Path

Independence.

Insensitivity To Omission, Preservation Under Addition, and Path Independence

are expressed slightly differently here than in Sen [66], who does not use the concepts

of conditioning and consistency. Despite this, the proofs of Lemmas 3.3 and 3.4

proceed identically to the corresponding propositions by Sen. Also, Sen defines path

independence only for pairs of subsets (n = 2), but Plott [53, Theorem 1, p. 1082]

shows that path independence for n = 2 is indeed equivalent to Path Independence.

Path independence appears frequently in the social choice literature. Plott [53]

gives a detailed investigation of path independence and its possible justifications.

Path independence perhaps is most easily understood by reference to Axiom 7′ of

Luce and Raiffa [46, p. 289]:

1This is different from several other properties bearing the same name, such as that of Arrow’s

Impossibility Theorem. For further discussion, see Ray [58].

3.1. Normal Form Backward Induction 67

The addition of new acts does not transform an old, originally non-

optimal act into an optimal one, and it can change an old, originally

optimal act into a non-optimal one only if at least one of the new acts

is optimal.

We can formulate this axiom mathematically as follows.

Property 14 (Luce and Raiffa’s Axiom 7′). For any non-empty event A and any

non-empty finite sets of gambles X and Y such that Y ⊆ X ,

opt(Y|A) ⊇ Y ∩ opt(X|A)

and

opt(X|A) 6⊂ opt(Y|A).

Proposition 3.5. Path Independence and Axiom 7′ are equivalent.

Proof. First, note that the first condition is equivalent to Preservation Under Ad-

dition. Now, suppose that opt satisfies Insensitivity To Omission. We have that

opt(X|A) = opt(Y|A) and so the second condition follows.

Now suppose that opt satisfies Axiom 7′, and suppose that opt(X|A) ⊆ Y ⊆ X .

By the first condition we know that opt(Y|A) contains opt(X|A). But by the second

condition we know that opt(X|A) is not a strict subset of opt(Y|A). The only

possibility remaining is opt(X|A) = opt(Y|A), so Insensitivity To Omission holds.

Finally, Lemma 3.4 completes the proof.

Backward Conditioning only differs from Conditioning by Z. The mysterious

appearance of this gamble is explained in Lemma 3.17. In the presence of Preserva-

tion Under Addition, Backward Conditioning can be strengthened to the following

property, which proves more useful in the proofs.

Property 15 (Strong backward conditioning property). For any events A and B

such that A ∩B 6= ∅ and A ∩B 6= ∅ and any non-empty finite set A ∩B-consistent

set of gambles X with {X, Y } ⊆ X such that AX = AY , X ∈ opt(X|A∩B) implies

Y ∈ opt(X|A ∩ B) whenever there is a non-empty finite A ∩ B-consistent set of

gambles Z such that, for at least one Z ∈ Z,

AX ⊕ AZ ∈ opt(AX ⊕ AZ|B).

3.1. Normal Form Backward Induction 68

Lemma 3.6. Suppose opt satisfies Preservation Under Addition. Then opt satisfies

Backward Conditioning if and only if opt satisfies Strong Backward Conditioning.

Proof. “only if”. If a Z exists, take Z = {Z}, and the result is immediate. Other-

wise, consider any non-empty finite set of A ∩ B-consistent gambles Z. By Preser-

vation Under Addition,

opt(AX ⊕ AZ|B) = opt

(⋃
Z∈Z

AX ⊕ AZ

∣∣∣∣∣B
)

⊆ opt

(⋃
Z∈Z

opt(AX ⊕ AZ|B)

∣∣∣∣∣B
)

Since there is no Z such that AX⊕AZ ∈ opt(AX⊕AZ|B), there is no Z and Z ∈ Z

such that AX ⊕AZ ∈ opt(AX ⊕AZ|B). Therefore Strong Backward Conditioning

holds.

“if”. Suppose Z is a set of the required form in Strong Backward Conditioning,

and X and Y are the gambles in question. It is clear that if a required Z does not

exist then Backward Conditioning follows trivially. Let Z ∈ Z be a gamble such

that

AX ⊕ AZ ∈ opt(AX ⊕ AZ|B). (3.3)

We know AX ⊕ AZ ⊆ AX ⊕ AZ, and so by Preservation Under Addition,

opt(AX ⊕ AZ|B) ∩ (AX ⊕ AZ) ⊆ opt(AX ⊕ AZ|B).

By Eq. (3.3) it follows that

AX ⊕ AZ ∈ opt(AX ⊕ AZ|B).

Lemma 3.7. If opt satisfies Strong Backward Conditioning and Mixture, then opt

satisfies Conditioning.

Proof. First, observe that if AX = AY then (A ∩B)X = (A ∩B)Y , and so Strong

Backward Conditioning implies Conditioning whenever a suitable Z exists. We show

that Mixture guarantees the existence of such a Z.

3.1. Normal Form Backward Induction 69

By Mixture, for any A ∩B-consistent gamble Z,

opt(AX ⊕ AZ|B) = A opt(X|A ∩B)⊕ AZ,

and so AX ⊕ AZ ∈ opt(AX ⊕ AZ|B). Take Z = {Z}.

Backward Mixture is just Mixture but with inclusion rather than equality. We

do not need the equality because backward induction moves from right to left in the

tree. Equivalently, the property is a form of the Independence Axiom in which only

one direction of implication is required. We have not encountered such a property

elsewhere in the literature, perhaps because it seems to have no justification other

than ensuring that backward induction works.

As with Mixture, there is an extension to arbitrary partitions of Ω. And again,

this extension is implied by the combination of several of the properties already

introduced.

Property 16 (Multiple Backward Mixture Property). For any partition of Ω A1,

. . . , An, any non-empty event B such that Ai ∩ B 6= ∅ for all Ai, and for any

non-empty finite sets of gambles X1, . . . , Xn where each Xi is Ai ∩B-consistent,

opt

(
n⊕
i=1

AiXi

∣∣∣∣∣B
)
⊆

n⊕
i=1

Ai opt(Xi|Ai ∩B). (3.4)

Lemma 3.8. Let A1, . . . , An be a finite partition of Ω. Let B be any event such

that Ai ∩ B 6= ∅ for all Ai. Let X1, . . . , Xn be a finite family of non-empty finite

sets of gambles where each Xi is Ai ∩ B-consistent. If a choice function opt satis-

fies Preservation Under Addition and Backward Mixture, then opt satisfies Multiple

Backward Mixture.

Proof. Let X =
⊕n

i=1AiXi. Consider any k ∈ {1, . . . , n} and let

Zk =
⊕
j 6=k

A′jXj

where (A′j)j 6=k forms an arbitrary partition of Ω such that Ak∩A′j = Aj for all j 6= k.

Clearly, Zk is Ak ∩ B-consistent because we can trivially find a consistent decision

tree T with ev(T) = Ak ∩B and gamb(T) = Zk, using the Aj ∩B-consistency (and

hence, Ak ∩ A′j ∩B-consistency) of each Xj for j 6= k.

3.1. Normal Form Backward Induction 70

Now, observe that by construction of Zk,

X = AkXk ⊕ AkZk =
⋃

Zk∈Zk

(AkXk ⊕ AkZk).

Note that X is B-consistent (indeed, because each Xi is Ai ∩ B-consistent, we can

trivially find a consistent decision tree T with ev(T) = B and gamb(T) = X).

If we apply opt(·|B) on both sides of the above equality, then it follows from

Lemma 3.3 that

opt(X|B) ⊆
⋃

Zk∈Zk

opt
(
AkXk ⊕ AkZk|B

)
and by Backward Mixture (once noted that Xk is Ak ∩B-consistent by assumption,

and Zk is Ak ∩B-consistent by construction),

⊆
⋃

Zk∈Zk

(Ak opt(Xk|Ak ∩B)⊕ AkZk)

= Ak opt(Xk|Ak ∩B)⊕ AkZk

whence by Lemma B.4,

opt(X|B) ⊆
n⊕
i=1

Ai opt(Xi|Ai ∩B).

Lemma 3.9. If a choice function opt satisfies Insensitivity To Omission, Preser-

vation Under Addition, and Backward Mixture, then

opt

(
n⊕
i=1

AiXi

∣∣∣∣∣B
)

=
n⊕
i=1

Ai opt(Xi|Ai ∩B). (3.5)

Proof. By Lemma 3.8 and the definition of opt,

opt

(
n⊕
i=1

AiXi

∣∣∣∣∣B
)
⊆

n⊕
i=1

Ai opt(Xi|Ai ∩B) ⊆
n⊕
i=1

AiXi,

whence Eq. (3.5) follows by Insensitivity To Omission.

As in Section 2.2, we can ask whether the properties are indeed distinct. From

the work in that section it ought to be clear that the only question worth considering

is whether Insensitivity To Omission and Preservation Under Addition are distinct.

The simplest situation where they are distinct is when there are only three gambles

available.

3.1. Normal Form Backward Induction 71

Example 3.10. Suppose there are three possible gambles, X, Y, Z. Suppose we have

X, Y X,Z Y, Z X, Y, Z

opt X X,Z Y, Z X, Y, Z

This satisfies Insensitivity To Omission. But set Y = {X, Y } and X = {X, Y, Z}

and Preservation Under Addition fails.

Example 3.11. Suppose there are three possible gambles, X, Y, Z. Suppose we have

X, Y X,Z Y, Z X, Y, Z

opt X, Y X,Z Y, Z X

This satisfies Preservation Under Addition. But set Y = {X, Y } and X = {X, Y, Z}

and Insensitivity To Omission fails.

We now turn to our main result, and characterize precisely when backopt gives

normopt for all consistent decision trees.

3.1.3 Backward Induction Theorem

Theorem 3.12 (Backward induction theorem). Let opt be any choice function. The

following conditions are equivalent.

(A) For any consistent decision tree T , it holds that backopt(T) = normopt(T).

(B) opt satisfies Backward Conditioning, Insensitivity To Omission, Preservation

Under Addition, and Backward Mixture.

The proof of this theorem, while long, is very similar to that for Theorem 2.6.

The required lemmas are also very similar, and so their proofs have been moved to

Appendix B.3.

Lemma 3.13. For any consistent decision tree T =
⊙n

i=1EiTi and any choice

function opt satisfying Backward Conditioning,

gamb(normopt(T)) = gamb

(
normopt

(
n⊙
i=1

Ei normopt(Ti)

))
(3.6)

implies

normopt(T) = normopt

(
n⊙
i=1

Ei normopt(Ti)

)
.

3.1. Normal Form Backward Induction 72

Lemma 3.14. For any consistent decision tree T =
⊔n
i=1 Ti, and any choice function

opt satisfying Preservation Under Addition,

gamb(normopt(T)) = gamb

(
normopt

(
n⊔
i=1

normopt(Ti)

))
(3.7)

implies

normopt(T) = normopt

(
n⊔
i=1

normopt(Ti)

)
.

Lemma 3.15. If backopt(T) = normopt(T) for any consistent decision tree T , then

opt satisfies Backward Conditioning.

Lemma 3.16. If gamb(backopt(T)) = gamb(normopt(T)) for any consistent decision

tree T , then opt satisfies Path Independence.

Lemma 3.17. If gamb(backopt(T)) = gamb(normopt(T)) for any consistent decision

tree T , then opt satisfies Backward Mixture.

Proof of Theorem 3.12. (A) =⇒ (B). By Lemmas 3.15, 3.16, and 3.17, we see that

(A) implies Backward Conditioning, Backward Mixture, and Path Independence.

Lemma 3.4 completes the proof.

(B) =⇒ (A). We prove this part by structural induction on the tree. In the base

step, we prove that the implication holds for consistent decision trees that consist

of only a single node. In the induction step, we prove that if the implication holds

for the subtrees at every child of the root node, then the implication also holds for

the whole tree.

First, if the decision tree T has only a single node, and hence, a reward at the

root and no further children, then by definition (Eq. (1.6a) in particular) we have

backopt(T) = normopt(T).

Next, suppose T is consistent and has a chance node as its root: T =
⊙n

i=1EiTi.

By the induction hypothesis, we know that for every Ti,

gamb(backopt(Ti)) = gamb(normopt(Ti)). (3.8)

We show that backopt(T) = normopt(T). By Lemma 3.13, it therefore suffices to

show that gamb(normopt(T)) = gamb(backopt(T)). By Eq. (1.10) and the definition

3.1. Normal Form Backward Induction 73

of gamb,

gamb(normopt(T)) = opt(gamb(T)|ev(T))

= opt

(
gamb

(
n⊙
i=1

EiTi

)∣∣∣∣∣ev(T)

)

= opt

(
n⊕
i=1

Ei gamb(Ti)

∣∣∣∣∣ev(T)

)
,

and by Eq. (3.8), Eq. (1.10), and the definition of gamb,

gamb(backopt(T)) = gamb

(
normopt

(
n⊙
i=1

Ei backopt(Ti)

))

= opt

(
gamb

(
n⊙
i=1

Ei backopt(Ti)

)∣∣∣∣∣ev(T)

)

= opt

(
n⊕
i=1

Ei gamb(backopt(Ti))

∣∣∣∣∣ev(T)

)

= opt

(
n⊕
i=1

Ei gamb(normopt(Ti))

∣∣∣∣∣ev(T)

)

= opt

(
n⊕
i=1

Ei opt(gamb(Ti)|ev(T) ∩ Ei)

∣∣∣∣∣ev(T)

)
,

whence equality follows from Backward Mixture and Preservation Under Addition,

and Lemma 3.9.

Finally, suppose that the root of the consistent tree T is a decision node, that is

T =
⊔n
i=1 Ti. We show that backopt(T) = normopt(T). By Lemma 3.14, it suffices

to show that gamb(backopt(T)) = gamb(normopt(T)). Indeed,

gamb(normopt(T)) = opt(gamb(T)|ev(T))

= opt

(
gamb

(
n⊔
i=1

Ti

)∣∣∣∣∣ev(T)

)

= opt

(
n⋃
i=1

gamb(Ti)

∣∣∣∣∣ev(T)

)
,

3.1. Normal Form Backward Induction 74

and,

gamb

(
normopt

(
n⊔
i=1

backopt(Ti)

))
= opt

(
gamb

(
n⊔
i=1

backopt(Ti)

)∣∣∣∣∣ev(T)

)

= opt

(
n⋃
i=1

gamb(backopt(Ti))

∣∣∣∣∣ev(T)

)

= opt

(
n⋃
i=1

gamb(normopt(Ti))

∣∣∣∣∣ev(T)

)

= opt

(
n⋃
i=1

opt(gamb(Ti)|ev(Ti))

∣∣∣∣∣ev(T)

)

= opt

(
n⋃
i=1

opt(gamb(Ti)|ev(T))

∣∣∣∣∣ev(T)

)
,

whence equality follows from Insensitivity To Omission and Preservation Under

Addition, and Lemma 3.4.

Concluding, we have shown that the implication holds for consistent decision

trees consisting of a single nodes, and that if the implication holds for all children

of the root node then it also holds for the whole tree. By induction, the implication

holds for any consistent decision tree.

Theorems 1.16 and 3.12 together imply the following corollary.

Corollary 3.18. If opt satisfies Backward Conditioning, Insensitivity To Omis-

sion, Preservation Under Addition, and Backward Mixture, then for any strategi-

cally equivalent consistent decision trees T1 and T2 with ev(T1) = ev(T2), it holds

that gamb(backopt(T1)) = gamb(backopt(T2)).

It should be noted that even if gamb(backopt(T1)) = gamb(backopt(T2)) for all

strategically equivalent trees, Backward Conditioning may not hold. It does imply

the other three properties, however, as the following weakening of Theorem 3.12

shows.

Theorem 3.19. Let opt be any choice function. The following conditions are equiv-

alent.

(A) For any consistent decision tree T , it holds that

gamb(backopt(T)) = gamb(normopt(T)).

3.1. Normal Form Backward Induction 75

(B) opt satisfies Insensitivity To Omission, Preservation Under Addition, and

Backward Mixture.

(C) For any strategically equivalent consistent decision trees T1 and T2 such that

ev(T1) = ev(T2), it holds that

gamb(backopt(T1)) = gamb(backopt(T2)).

Proof. (A) =⇒ (B). This follows from Lemmas 3.16 and 3.17.

(B) =⇒ (A). Follow the same method as in the corresponding part of the

proof of Theorem 3.12, but using Eq. (3.8) as the induction hypothesis rather than

backopt(Ti) = normopt(Ti). In the proof of Theorem 3.12, we arrive at

gamb(backopt(T)) = gamb(normopt(T))

using only Eq. (3.8) and Insensitivity To Omission, Preservation Under Addition,

and Backward Mixture.

(A) =⇒ (C). This follows immediately from Theorem 1.16.

(C) =⇒ (A). We show that for any consistent T1, we can find a strategically

equivalent T2 with ev(T1) = ev(T2) and backopt(T2) = normopt(T2). Then the result

will follow from Theorem 1.16. Indeed, let T2 be a consistent decision tree with

ev(T2) = ev(T1), gamb(T2) = gamb(T1), and only one decision node (at the root).

Theorem 1.18 assures us of the existence of T2 (see the tree defined in Eq. (1.11), with

X = gamb(T1)). By definition of backopt, it follows that backopt(T2) = normopt(T2).

Now, by definition, gamb(normopt(T1)) = gamb(normopt(T2)). Recall that we

have gamb(backopt(T1)) = gamb(backopt(T2)) by assumption. Therefore

gamb(backopt(T1)) = gamb(normopt(T1))

as required.

This weakening could be useful, because the equality normopt(T) = backopt(T)

may be considered unnecessarily restrictive in practice. In Theorem 3.19, a normal

form decision U ∈ normopt(T) may not be present in backopt(T), but there is a

V ∈ backopt(T) with gamb(V) = gamb(U). Since choosing V would give exactly

3.1. Normal Form Backward Induction 76

the same reward as U for all outcomes, from a practical perspective it may not

matter that U has been eliminated. Further, when using normal form backward

induction in practice, one would presumably carry back the optimal gambles rather

than the optimal normal form decisions from each stage, and only upon reaching the

root transform back to normal form decisions. With such a method, Theorem 3.19

and Definition 1.15 assure us that normopt will be obtained.

3.1.4 Relationship with Subtree Perfectness

It is unsurprising, given the similarities between the properties, that backward in-

duction is closely related to subtree perfectness. Obviously, Conditioning implies

Backward Conditioning, and Mixture implies Backward Mixture. Also, it is easily

shown that:

Lemma 3.20. Intersection implies Insensitivity To Omission and Preservation Un-

der Addition.

Hence, from Theorems 2.6 and 3.12, we can immediately conclude that subtree

perfectness is sufficient for backward induction.

Corollary 3.21. If normopt is subtree perfect, then normopt = backopt.

Subtree perfectness is, however, not necessary for backward induction. For exam-

ple, it is easy to see that point-wise dominance satisfies Conditioning, Insensitivity

To Omission, Preservation Under Addition, and Backward Mixture, but as we saw

in Example 2.2, it lacks subtree perfectness.

Backward induction does, however, imply a weaker form of subtree perfectness.

Suppose backopt(T) = normopt(T) for all consistent decision trees. Then, by defini-

tion of backopt, for any node N such that N is in at least one element of backopt(T)

we have

stN(normopt(T)) = stN(backopt(T)) ⊆ backopt(stN(T)) = normopt(stN(T)).

Why can this be seen as a type of subtree perfectness? Recall that a subgame

perfect equilibrium point is one that induces an equilibrium point in all subgames.

3.1. Normal Form Backward Induction 77

According to our definition earlier, a subtree perfect normal form operator is one that

induces its normal form solution in all subtrees. If the conditions of the backward

induction theorem are satisfied, then every optimal normal form decision induces an

optimal normal form decision in any subtree. That is, although the restriction of the

solution to a subtree is not necessarily the solution to the restriction, the restriction

of every element of the solution is an element of the solution of the restriction. So

while we do not have subtree perfectness of solutions we do have subtree perfectness

of decisions.

Definition 3.22. A normal form operator norm is subtree perfect for normal form

decisions if for every N in T such that N appears in at least one element of norm(T),

stN(norm(T)) ⊆ norm(stN(T)).

It is clear that backward induction implies subtree perfectness for normal form

decisions. It turns out that the opposite implication does not hold: Insensitivity To

Omission is not necessary for subtree perfectness for normal form decisions. We can

prove that subtree perfectness for normal form decisions of normopt is equivalent to

Backward Conditioning, Preservation Under Addition, and Backward Mixture.

Theorem 3.23. For any choice function opt, normopt is subtree perfect for nor-

mal form decisions if and only if opt satisfies Backward Conditioning, Preservation

Under Addition, and Backward Mixture.

The proof will again rely on structural induction. The following lemma helps

with the inductive step by requiring us only to check subtree perfectness for normal

form decisions at the immediate successors of the root of a tree.

Lemma 3.24. Let norm be any normal form operator. Let T be a consistent decision

tree. If,

(i) for all nodes K ∈ ch(T) such that K is in at least one element of norm(T),

stK(norm(T)) ⊆ norm(stK(T)),

3.1. Normal Form Backward Induction 78

(ii) and, for all nodes K ∈ ch(T), and all nodes L ∈ stK(T) such that L is in at

least one element of norm(stK(T)),

stL(norm(stK(T))) ⊆ norm(stL(stK(T))),

then, for all nodes N in T such that N is in at least one element of norm(T),

stN(norm(T)) ⊆ norm(stN(T)).

Proof. If N is the root of T , then the result is immediate. If N ∈ ch(T), then the

result follows from (i). Otherwise, N must be in stK(T) for one K ∈ ch(T).

By assumption, there is a U ∈ norm(T) that contains N (and of course also K).

Therefore, U ∈ stK(norm(T)), and by (i), stK(U) ∈ norm(stK(T)), and so N is also

in at least one element of norm(stK(T)).

We use the fact that, if U and V are sets of normal form decisions such that

U ⊆ V , then for any node N , stN(U) ⊆ stN(V). Combining everything, by (i),

stN(stK(norm(T))) ⊆ stN(norm(stK(T)))

hence, since N is in at least one element of norm(stK(T)), by (ii) we have

⊆ norm(stN(stK(T))),

whence the desired result follows, since stN(stK(T)) = stN(T).

Unsurprisingly, the proofs of necessity are very similar to those for the backward

induction theorem. They can be found in Appendix B.4.

Lemma 3.25. If normopt is subtree perfect for normal form decisions, then opt

satisfies Backward Conditioning.

Lemma 3.26. If normopt is subtree perfect for normal form decisions, then opt

satisfies Preservation Under Addition.

Lemma 3.27. If normopt is subtree perfect for normal form decisions, then opt

satisfies Backward Mixture.

3.1. Normal Form Backward Induction 79

Proof of Theorem 3.23. “only if”. Follows from Lemmas 3.25, 3.26, and 3.27.

“if”. We proceed as usual by structural induction. The base step is trivial as

usual. Let ch(T) = {K1, . . . , Kn} and let Ti = stKi
(T). The induction hypothesis

says that normopt is subtree perfect for normal form decisions on all Ti. More

precisely, for each Ti, and for every L that is in at least one element of normopt(Ti),

stL(normopt(Ti) ⊆ normopt(stL(T)).

We must show that, for any N in at least one element of normopt(T),

stN(norm(T)) ⊆ norm(stN(T)).

By the induction hypothesis and Lemma 3.24, it is enough to show this only for

N ∈ ch(T), that is, to show that

stKi
(normopt(T)) ⊆ normopt(Ti) (3.9)

for each i such that Ki is in at least one element of normopt(T).

Suppose the root of T is a decision node, so T =
⊔n
i=1 Ti. Let U be an element of

normopt(T). There is a j such that Kj is in U ; let Uj denote stKj
(U). To establish

Eq. (3.9) we must show that Uj ∈ normopt(Tj).

Note that gamb(Uj) = gamb(U) ⊆ opt(gamb(T)|ev(T)) since U ∈ normopt(T).

Obviously, also gamb(Uj) ∈ gamb(Tj) by definition of gamb. Hence, it must hold

that

gamb(Uj) ⊆ opt(gamb(T)|ev(T)) ∩ gamb(Tj),

but, also, because gamb(Tj) ⊆ gamb(T), and once noted that ev(T) = ev(Tj), it

follows from Preservation Under Addition that

⊆ opt(gamb(Tj)|ev(Tj))

Putting everything together, we confirm that Uj ∈ normopt(Tj). This proves the

induction step for decision nodes.

Now suppose that the root of T is a chance node, so T =
⊙n

i=1EiTi. Again,

let U =
⊙n

i=1 EiUi ∈ normopt(T). To establish Eq. (3.9) we must show that Ui ∈

normopt(Ti) for all i.

3.1. Normal Form Backward Induction 80

Indeed, since U ∈ normopt(T),

gamb(U) ∈ opt(gamb(T)) = opt

(⊕
Ei gamb(Ti)

∣∣∣∣∣ev(T)

)

so by Lemma 3.8,

⊆
⊕

Ei opt(gamb(Ti)|ev(T) ∩ Ei).

So, for each Ti, there is a normal form decision Vi ∈ normopt(Ti) such that

Ei gamb(Vi) = Ei gamb(Ui).

Can we apply Backward Conditioning?

Obviously, {gamb(Vi), gamb(Ui)} ⊆ gamb(Ti), and

Ei gamb(Vi)⊕ EiZ = gamb(U) ⊆ opt
(⊕

Ei gamb(Ti)
∣∣ev(T)

)
= opt(Ei gamb(Ti)⊕ EiZ|ev(T))

for suitable choices for Z and a Z ∈ Z. Therefore we can apply Backward Condi-

tioning and Lemma 3.6 to conclude that Ui is in normopt(Ti) for each i. This proves

the induction step for chance nodes.

3.1.5 Computation of backopt Using Other Choice Functions

If the conditions of Theorem 3.12 are met, we can use backopt to find normopt(T)

without having to compare every normal form decision, potentially saving time for

large trees. If opt is very computationally expensive, however, repeated applications,

even on smaller sets, may be too difficult. Instead of performing backward induction

using opt, one might wish to use a more conservative choice function if it is more

tractable, and apply opt only at the end of the process. The following theorem

establishes the validity of this method. In fact, it is a corollary of our more general

and powerful Theorem 3.32 presented later in this section, which is the theorem one

would want to apply in practice, but to understand the process it is more useful to

state and prove the weaker theorem first.

3.1. Normal Form Backward Induction 81

Theorem 3.28. Let opt1 and opt2 be choice functions such that opt1 satisfies Back-

ward Conditioning, Insensitivity To Omission, Preservation Under Addition, and

Backward Mixture, and for any non-empty event A and any non-empty finite set of

A-consistent gambles X ,

opt1(X|A) ⊆ opt2(X|A).

Then, for any consistent decision tree T ,

normopt1(T) = normopt1(backopt2(T)). (3.10)

Lemma 3.29. Let A be any non-empty event, and let opt1 and opt2 be choice

functions such that opt1 satisfies Insensitivity To Omission, and such that for any

non-empty finite set of A-consistent gambles X ,

opt1(X|A) ⊆ opt2(X|A). (3.11)

Then, for any set T of consistent decision trees, where ev(T) = A for all T ∈ T ,

normopt1(normopt2(T)) = normopt1(T).

Proof. For brevity of notation, we assume A = Ω and ev(T) = Ω for all T ∈ T ; the

argument for a more general A is identical.

We have, by the definition of normopt1 ,

normopt1(normopt2(T))

= {U ∈ nfd(normopt2(T)) : gamb(U) ⊆ opt1(gamb(normopt2(T)))}

= {U ∈ normopt2(T) : gamb(U) ⊆ opt1(gamb(normopt2(T)))}

and now, by Eq. (1.10) for normopt2 ,

= {U ∈ normopt2(T) : gamb(U) ⊆ opt1(opt2(gamb(T)))}

and now, by Eq. (3.11) and Insensitivity To Omission of opt1 (using X = gamb(T)

and Y = opt2(X)),

= {U ∈ normopt2(T) : gamb(U) ⊆ opt1(gamb(T))}

3.1. Normal Form Backward Induction 82

and now, by definition of normopt2 ,

= {U ∈ nfd(T) : gamb(U) ⊆ opt2(gamb(T)) and

gamb(U) ⊆ opt1(gamb(T))}

and finally, again by Eq. (3.11),

= {U ∈ nfd(T) : gamb(U) ⊆ opt1(gamb(T))}

= normopt1(T).

Lemma 3.30. If T ⊆ U ⊆ V are sets of consistent decision trees, with ev(T) = A

for all T ∈ V, opt satisfies Insensitivity To Omission, and normopt(T) = normopt(V),

then normopt(U) = normopt(V).

Proof. By assumption, we have that

opt(gamb(V)|A) = opt(gamb(T)|A) ⊆ gamb(T) ⊆ gamb(U) ⊆ gamb(V),

Hence, by Insensitivity To Omission,

opt(gamb(T)|A) = opt(gamb(U)|A) = opt(gamb(V)|A)

So,

normopt(U) = {U ∈ U : gamb(U) ⊆ opt(gamb(T)|A)}

⊇ {U ∈ T : gamb(U) ⊆ opt(gamb(T)|A)} = normopt(T)

because U ⊇ T , and

normopt(U) = {U ∈ U : gamb(U) ⊆ opt(gamb(V)|A)}

⊆ {U ∈ V : gamb(U) ⊆ opt(gamb(V)|A)} = normopt(V)

because U ⊆ V . We conclude that

normopt(T) ⊆ normopt(U) ⊆ normopt(V).

Now use normopt(T) = normopt(V).

3.1. Normal Form Backward Induction 83

Proof of Theorem 3.28. We prove this by structural induction. Let T be any consis-

tent decision tree. The base step, that the result holds for decision trees comprising

only one node, is trivial. The induction hypothesis is that, when T =
⊔n
i=1 Ti or

T =
⊙n

i=1 EiTi, we have

normopt1(Ti) = normopt1(backopt2(Ti)).

Suppose T =
⊙n

i=1EiTi. We know by Theorem 3.12 and the definition of backopt1

that

normopt1(T) = backopt1(T)

= normopt1

(
n⊙
i=1

Ei backopt1(Ti)

)

= normopt1

(
n⊙
i=1

Ei normopt1(Ti)

)
,

whence, using the induction hypothesis,

= normopt1

(
n⊙
i=1

Ei normopt1(backopt2(Ti))

)
. (3.12)

On the other hand, by definition of backopt2 ,

normopt1(backopt2(T)) = normopt1

(
normopt2

(
n⊙
i=1

Ei backopt2(Ti)

))
.

and from opt1(X|A) ⊆ opt2(X|A), and Insensitivity To Omission, it follows quickly

from the definition of normopt that normopt1(normopt2(T)) = normopt1(T), and so

we have

= normopt1

(
n⊙
i=1

Ei backopt2(Ti)

)
. (3.13)

It is fairly easy to see that

n⊙
i=1

Ei normopt1(backopt2(Ti)) ⊆
n⊙
i=1

Ei backopt2(Ti) ⊆
n⊙
i=1

Ei nfd(Ti).

But, by Eq. (3.12), together with nfd(T) =
⊙n

i=1 Ei nfd(Ti) and normopt1(nfd(T)) =

normopt1(T), we can apply Lemma 3.30, and hence

normopt1

(
n⊙
i=1

Ei backopt2(Ti)

)
= normopt1(T)

3.1. Normal Form Backward Induction 84

Now using Eq. (3.13), we find indeed that

normopt1(backopt2(T)) = normopt1(T).

Suppose finally that T =
⊔n
i=1 Ti. The proof proceeds in the same way as for

chance nodes: by Theorem 3.12,

normopt1(T) = normopt1

(
n⊔
i=1

normopt1(backopt2(Ti))

)
,

and by Insensitivity To Omission and opt1(X|A) ⊆ opt2(X|A),

normopt1(backopt2(T)) = normopt1

(
n⊔
i=1

backopt2(Ti)

)
.

Again, it is easy to see that

n⊔
i=1

normopt1(backopt2(Ti)) ⊆
n⊔
i=1

backopt2(Ti) ⊆
n⊔
i=1

nfd(Ti),

whence we find, as before,

normopt1(backopt2(T)) = normopt1(T).

In fact, we can generalize this theorem to an even more useful one. At some steps

of the backward induction we may wish to use opt2. At other steps we may wish to

use opt1. Or we may wish to use opt2 followed by opt1 (although Insensitivity To

Omission tells us this is the same result as using opt1 only, so we ignore this possi-

bility). Or perhaps another opt3 ⊇ opt1 (for instance the identity choice function:

don’t try to eliminate anything at this stage). One might want such a complicated

scheme because one has a good idea of what stages nothing is worth applying, what

stages opt2 will do well, and what stages opt1 is easy enough to apply.

We can define a normal form operator to deal with such a scheme. Suppose that

opt1, . . . , optm are a set of choice functions such that opt1 satisfies Backward Con-

ditioning, Insensitivity To Omission, Preservation Under Addition, and Backward

Mixture, and of every i, opt1 ⊆ opti. Let mix be a normal form operator defined as

follows.

3.1. Normal Form Backward Induction 85

Definition 3.31. For each decision tree T , identify optT ∈ {opt1, . . . , optm}, the

choice function to use for that tree.

• If a tree T consists of only a leaf with reward r ∈ R, then

mix(T) = {T}.

• If a tree T has a chance node as root, that is, T =
⊙n

i=1EiTi,

mix

(
n⊙
i=1

EiTi

)
= normoptT

(
n⊙
i=1

Ei mix (Ti)

)

• If a tree T has a decision node as root, that is, if T =
⊔n
i=1 Ti, then

mix

(
n⊔
i=1

Ti

)
= normoptT

(
n⊔
i=1

mix(Ti)

)
.

Theorem 3.32. For any consistent decision tree T ,

normopt1(T) = normopt1(mix(T)).

Proof. We proceed by structural induction. The base step is, as usual, trivial. The

induction hypothesis is that, for T =
⊙n

i=1 EiTi or T =
⊔n
i=1 Ti, we have for all i

that

normopt1(Ti) = normopt1(mix(Ti)).

Suppose that T has root at a chance node, so T =
⊙n

i=1 EiTi. By insensitivity

to the omission of non-optimal elements, Lemma 3.29, and opt1 ⊆ optk for all k, we

have

normopt1(mix(T)) = normopt1

(
normT

(
n⊙
i=1

Ei mix(Ti)

))

= normopt1

(
n⊙
i=1

Ei mix(Ti)

)
,

since normopt1 ◦ normoptk
= normopt1 for any optk, in particular for optT . Now, by

Theorem 3.12,

normopt1(T) = normopt1

(
n⊙
i=1

Ei normopt1(Ti)

)

3.2. Extensive Form Backward Induction 86

and by the induction hypothesis

= normopt1

(
n⊙
i=1

Ei normopt1(mix(Ti))

)
.

Now, clearly
⊙n

i=1Ei normopt1(mix(Ti)) ⊆
⊙n

i=1Ei mix(Ti) ⊆ nfd(T), and we have

shown that applying normopt1 to the first set is the same as applying normopt1 to

the third set, so we can apply Lemma 3.30 to find

normopt1(mix(T)) = normopt1

(
n⊙
i=1

Ei mix(Ti)

)
= normopt1(T)

as required. If T has its root at a decision node there is absolutely no difference in

the proof.

3.2 Extensive Form Backward Induction

Backward induction seems to represent the intuition that, in sequential decision

making, the subject can delete options that are locally non-optimal because, upon

reaching that decision point, she would never choose them. This reasoning is of a

decidedly extensive form nature, and so it makes sense to investigate extensive form

solutions obtained by backward induction. For general choice functions there are

several plausible ways of doing this. These can appear quite complicated but we

now have all the tools and ideas necessary to investigate them and their relationship

to normopt.

If opt violates the conditions of Theorem 3.12, then any attempt to use backward

induction is likely to lead to problems for some decision trees. It is still possible to

use any of this section’s extensive form solutions in such cases, but the results may

not be appealing. When comparing these backward induction methods, it will cause

confusion if problems appear because opt is badly behaved rather than because the

method is badly behaved, so for this section we assume that opt satisfies Backward

Mixture, Insensitivity To Omission, Preservation Under Addition, and Backward

Conditioning.

The first possibility is very simple: use the extensive form equivalent to backopt

(and, by assumption, normopt). Since any decision arc in this solution is part of an

3.2. Extensive Form Backward Induction 87

optimal normal form decision, the subject will not choose any obviously foolish arcs.

However, it lacks subtree perfectness. It is also not an extensive form solution in

spirit, being based entirely on normal form logic. Finally, its normal form equivalent

may not be the original normal form solution (recall Fig. 2.5).

We can refine this approach to enforce subtree perfectness and a true extensive

form interpretation. At each node N in T , delete all decision arcs that do not

appear in at least one element of backopt(stN(T)). In other words, at a particular

node, remove any arc for which, out of all remaining strategies for this subtree,

none of the optimal ones at this stage contain said arc. When backopt = normopt,

the interpretation is even clearer: remove any arc that has no optimal strategies

associated with it in this subtree. Call this extensive form operator extbackopt (this

inelegant notation shall shortly be made obsolete by Proposition 3.34)

We can provide an alternative definition of this approach without explicit refer-

ence to backopt.

Definition 3.33. Define the extensive form operator extopt, for a particular choice

function opt, recursively as follows. For reward nodes, extopt(T) = T . At chance

nodes,

extopt

(
n⊙
i=1

EiTi

)
=

n⊙
i=1

Ei extopt(T1),

so extopt eliminates nothing that was not eliminated in subtrees. At decision nodes,

where T =
⊔n
i=1 Ti, let di represent the arc from the root to Ti. Find all normal form

decisions U such that

U ∈ nfd

(
n⊔
i=1

extopt(Ti)

)
, and

gamb(U) ⊆ opt

(
gamb

(
n⊔
i=1

extopt(Ti)

)∣∣∣∣∣ev(T)

)
. (3.14)

Let I be the set of i such that di is in at least one such U . Then

extopt

(
n⊔
i=1

Ti

)
=
⊔
i∈I

extopt(Ti).

Proposition 3.34. For any choice function opt, extbackopt = extopt.

3.2. Extensive Form Backward Induction 88

Proof. The structural induction for this proof is very simple. The base step, that

the two operators coincide at reward nodes, is trivial. The induction hypothesis is

that the two operators coincide for all immediate successors of the root of T .

When T is a chance node, then both operators simply mix the extensive form

solutions of their immediate successors at a chance node, and so the induction

hypothesis provides the result immediately.

When T =
⊔n
i=1 Ti, then the set of normal form decisions satisfying Eq. (3.14)

becomes, by the induction hypothesis, the set of U such that

U ∈ nfd

(
n⊔
i=1

extbackopt(Ti)

)
, and

gamb(U) ⊆ opt

(
gamb

(
n⊔
i=1

extbackopt(Ti)

)∣∣∣∣∣ev(T)

)
.

Observe that this is equivalent to the set of U such that

U ∈ nfd

(
n⊔
i=1

backopt(Ti)

)
, and

gamb(U) ⊆ opt

(
gamb

(
n⊔
i=1

backopt(Ti)

)∣∣∣∣∣ev(T)

)
,

that is, this set is exactly backopt(T). So, extopt deletes any decision arc from the

root of T that is not in any strategy in backopt(T) and so both extopt and extbackopt

delete the same decision arcs at the root of T .

It is clear from the definition that extopt is subtree perfect. If backopt = normopt,

then also the subject will never follow an arc that is only included in non-optimal

normal form decisions in the particular subtree in question. This does not prevent

the subject from following an arc that is not part of an optimal normal form decision

in the full tree (clearly, else this method would be identical to the first proposal).

This can be seen most simply in Fig. 3.1 and pointwise dominance. If X and Y are

gambles such that neither pointwise dominates the other, then there is a c such that

Y does not dominate X − c and X does not dominate Y − c. So, applying extopt to

the tree in the figure will simply return the whole tree. But X − c and Y − c are

not part of any optimal strategy at the root node.

3.2. Extensive Form Backward Induction 89

X

Y − c

Y

X − c

Figure 3.1: A tree for which extopt can choose globally non-optimal arcs.

We should not be surprised by this: if normopt is not subtree perfect then we

cannot expect to find a subtree perfect extensive form solution that mimics its

behaviour. Should normopt be subtree perfect, then extopt and normopt will be

equivalent.

Theorem 3.35. normopt and extopt are equivalent if and only if normopt is subtree

perfect.

Proof. “only if”. Observe that extopt is subtree perfect. By Lemma 2.19, normopt is

subtree perfect.

“if”. Use the definition of extopt that invoked backopt. By subtree perfect-

ness and backward induction, for any consistent decision tree T , stN(normopt(T)) =

backopt(stN(T)) for all N that are in at least one element of normopt(T) (equivalently,

all N in extopt(T)). Therefore by definition, extopt is the extensive form correspon-

dent of normopt. By Theorem 2.21, normopt has an extensive form equivalent. This

must be extopt.

Using extopt rather than the extensive form correspondent to backopt is appealing

because of subtree perfectness and a truer extensive form nature, but there is still the

remains of normal form reasoning: arcs are deleted based on optimal gambles, and

these gambles are obtained via normal form decisions. It may seem as though any

extensive form operator based on a choice function must have this feature. Choice

functions act on gambles, and how else can gambles appear if not through normal

form decisions? Seidenfeld [63] provides an intriguing alternative.

His method relies on having a choice function capable of encoding the concept of

3.2. Extensive Form Backward Induction 90

complete ignorance about which event in a particular partition will obtain. In the

particular application Seidenfeld is considering, the subject represents her beliefs as

a set of probability mass functions, and considers any gamble optimal if it maximizes

expected utility for at least one element of this set (this is called E-admissibility; see

Section 6.1 for more details). In such a setting, complete ignorance about a partition

is easy to represent. For other choice functions, representation may be difficult or

impossible. For instance, if one wishes to use a single probability mass function,

then the uniform distribution over the partition is the only sensible possibility, but

this can easily be criticised too [79, §5.5.1].

So, in what follows, assume that the subject’s belief model can express complete

ignorance. Seidenfeld’s algorithm then runs as follows. At ultimate decision nodes,

opt can be applied to the gambles. Delete any arc corresponding to a non-optimal

gamble. Then, to move backwards, transform the decision node into a chance node,

expressing complete ignorance about what will be chosen. The interpretation is

that the subject’s choice in the future is an event, about which she knows nothing

at present. Thus, the final layer of decision nodes turns into a layer of chance nodes,

and the penultimate decision nodes become ultimate. The process is repeated until

all decision nodes have been dealt with.

As an example (which will also serve as a demonstration of some inconvenient

behaviour of this method), consider Fig. 3.2, again using pointwise dominance and

where neither X nor Y dominate the other. Applying the choice function to the

upper decision node eliminates the X − c branch. Nothing is deleted from the lower

branch. Replacement by chance nodes leads to Fig. 3.3.

Now the process moves to the root node. The possibility space has become

larger, with each element ω splitting into four (E1 and E2 obtain, E1 and E2 obtain,

E1 and E2 obtain, E1 and E2 obtain). Is either decision arc non-optimal? Clearly

the upper arc must be optimal. For the lower arc, consider an ω in the initial Ω

where X(ω)− c > Y (ω). In the new possibility space, there is an outcome ω∗ where

E1X(ω∗)⊕E1Y (ω∗) = Y (ω) and E2(X(ω∗)−c)⊕E2(Y (ω∗)−c) = X(ω)−c > Y (ω).

So, the lower arc is not pointwise dominated by the upper, and the extensive form

solution is given in Fig. 3.4.

3.2. Extensive Form Backward Induction 91

X

Y

X − c

Y − c

X − c

Figure 3.2: An example for Seidenfeld’s backward induction method.

XE1

YE
1

Y − cE2

X − cE
2

Figure 3.3: Seidenfeld’s method: stage two.

X

Y

Y − c

X − c

Figure 3.4: Seidenfeld’s method: solution.

3.2. Extensive Form Backward Induction 92

Compare this with extopt. At the first stage, extopt eliminates the X − c arc

in the upper branch identically (the first stage of extopt is always the first stage of

Seidenfeld’s method). At the root, extopt notes that Y − c is dominated by Y and

X − c is dominated by X, and so removes the lower arc. This seems intuitively

reasonable: suppose one is offered either to choose between two options or to pay

to choose between the same options. Would anyone choose to pay? On the other

hand, Seidenfeld’s method can be justified by arguing that, since one does not know

what one will do in either case, one cannot exclude the possibility that one would

choose X in the upper branch, Y − c in the lower branch, and end up doing better

out of Y − c. We find this reasoning difficult to dismiss, but are uncomfortable with

the solutions it induces.

The problem for this particular example can be eliminated by forcing E1 = E2,

so that the subject assumes she will make the same choice in the future whether

she is confronted with {X, Y } or {X − c, Y − c}. Unfortunately, generalizing this

to more complicated trees does not seem to lead anywhere useful. Which of the two

solutions to use seems to depend on whether or not one finds the solution in Fig. 3.4

sensible.

Finally, we consider a special extensive form backward induction method that

is only available in certain circumstances. Recall that the traditional approach for

backward induction involved replacing decision nodes with more convenient objects,

namely expected utilities. With backopt, we looked at a generalization that works

with any choice function, effectively replacing decision nodes with sets of gambles. A

simpler approach would be to replace a decision node with a single gamble: one of the

optimal gambles in this subtree. Of course, for most choice functions this procedure

depends on the arbitrary choice of a single gamble to retain. We investigate for

what choice functions the procedure yields a well-defined extensive form operator.

Definition 3.36. Let ext∗opt be an extensive form operator defined as follows. If the

root of T is an ultimate decision node, ext∗opt(T) = extopt(T). If T =
⊙n

i=1EiTi,

then

ext∗opt(T) =
n⊙
i=1

Ei ext∗opt(Ti).

If T =
⊔n
i=1 Ti and its root is a non-ultimate decision node, then for each i choose

3.2. Extensive Form Backward Induction 93

a single gamble Xi ∈ normopt(ext∗opt(Ti)), and find opt({X1, . . . , Xn}|ev(T)). Delete

arc di if its gamble does not appear in this set.

Lemma 3.37. Suppose normopt is subtree perfect, T =
⊔n
i=1 Ti, and ext∗opt(Ti) does

not depend on any of the gamble choices for all i, with ext∗opt(Ti) = extopt(Ti). Then

ext∗opt(T) does not depend on the choice of gambles, and ext∗opt(T) = extopt(T).

Proof. Since ext∗opt(Ti) = extopt(Ti), and

gamb(extopt(Ti)) = gamb(nfd(extopt(T)))

= gamb(normopt(T))

= opt(gamb(Ti)|ev(T)),

whichever gamble Xi we pick to use from ext∗opt(Ti) will be in the same position pi

in the total preorder (where we write pi > pj if pi is higher in the order than pj).

Then, opt({X1, . . . , Xn}|ev(T)) = {Xi : (∀j)(pi ≥ pj)}, so the set D of arcs deleted

by ext∗opt is

D = {di : Xi ∈ opt({X1, . . . , Xn}|ev(T))}

= {di : (∀j)(pi ≥ pj)},

and this is independent of the choices of X1, . . . , Xn. Therefore ext∗opt(T) is well-

defined. Further, again by total preordering, applying opt to {X1, . . . , Xn} will

delete the same arcs as applying opt to
⋃n
i=1 gamb(ext∗opt(T1)). So, ext∗opt(T) =

extopt(T).

Theorem 3.38. If normopt is subtree perfect, then ext∗opt does not depend on any of

the choices of gambles, and ext∗opt ≡ extopt.

Proof. We proceed as usual by structural induction. The base step is satisfied triv-

ially. The induction hypothesis is that, for any consistent tree T =
⊙n

i=1EiTi or

T =
⊔n
i=1 Ti, the ext∗opt(Ti) are well-defined and ext∗opt(Ti) = extopt(Ti).

If T =
⊔n
i=1 Ti then, by Lemma 3.37, ext∗opt(T) is well-defined and ext∗opt(T) =

3.3. Backward Induction or Subtree Perfectness? 94

extopt(T). If T =
⊙n

i=1 EiTi, then by definition and the induction hypothesis,

ext∗opt(T) =
n⊙
i=1

Ei ext∗opt(Ti)

=
n⊙
i=1

Ei extopt(Ti)

= extopt(T).

3.3 Backward Induction or Subtree Perfectness?

In this section we consider various arguments for or against backward induction

and subtree perfectness. When we say “against backward induction” we mean an

argument that a choice function opt with backopt 6= normopt can be acceptable.

Similarly, an argument against subtree perfectness is an argument in favour of using

choice functions for which normopt lacks subtree perfectness. Given the relationship

between backward induction and subtree perfectness, there are three possible theses:

• Subtree perfectness is necessary;

• Backward induction is necessary but subtree perfectness is not;

• Backward induction is not necessary.

We review some common criticisms and defences of these positions. Often,

the distinction between subtree perfectness and backward induction is rarely made

clearly, so on occasion an argument apparently against one is in truth an argument

against the other. Usually this confusion is caused by implicit assumption of Total

Preordering, under which the two concepts become very similar. Indeed, we are

not aware of any notable choice function satisfying Total Preordering that satisfies

Backward Mixture but not Mixture.

Criticisms of failures of subtree perfectness and backward induction can be

broadly split into three categories. The first is that the subject should not choose a

strategy that involves a substrategy that is locally non-optimal. This is an appeal

3.3. Backward Induction or Subtree Perfectness? 95

to the logic of backward induction. Authors may go on from here to argue that,

following this logic, subtree perfectness must hold, but this only follows from other

assumptions they have made. Without appeal to other principles, for instance Total

Preordering, this is an argument that only backward induction is necessary.

A second argument is that the subject should be free to make a local decision in a

subtree based only on the current subtree. This was our motivation for introducing

subtree perfectness. Hammond [24] in particular strongly argues for this princi-

ple. Consider the decision tree in Fig. 3.5. Suppose that opt({X, Y, Z}) = {Z},

opt({Y, Z})]{Y }, and opt({X, Y }) = {X}. The motivation for this example is the

potential addict in [23, § 3]: X corresponds to avoiding an addictive drug, Z to try-

ing it once but never again, and Y to becoming an addict. Should local decisions,

and hence subtree perfectness, be required, then the solution must either be X, Y ,

or both. Thus, normopt is not an acceptable solution. If the solution chosen is Y ,

then the subject is called myopic: she travels to the second decision node because it

has the preferred Z, knowing well that when she reaches it she will choose Y . This

behaviour has been widely criticized.

The alternative strategy, X, is called sophisticated, defended for instance by

Hazen [27]. The subject realizes that at the second decision node she will choose Y ,

so eliminates Z from her considerations. This solution corresponds to backopt, and,

even though backward induction does not “work” here in the sense we mean it, this

solution is much more acceptable than myopic behaviour. Hammond [24] argues

against this solution, however, invoking his second and more celebrated principle of

consequentialism: a subject’s decision at a particular node should depend only on

all of the available gambles. Calling for consequentialism not only rejects normopt

as unacceptable (because of the violation of local decision making), but also rejects

other sensible solutions based on opt (any solution based on opt that is not normopt

must violate consequentialism).

Finally, it may be argued that the properties required for subtree perfectness

or backward induction are rational, for other reasons (in particular, static rather

than sequential). For instance, the motivation for the simplest form of the Inde-

pendence Axiom seems quite natural: if one will receive r1 if a coin lands heads,

3.3. Backward Induction or Subtree Perfectness? 96

X

Y

Z

Figure 3.5: Consistency does not imply subtree perfectness.

and can choose to receive either r2 or r3 if the coin lands tails (choosing before the

coin is tossed), one would probably decide whether r2 or r3 is preferable without

reference to r1. More complicated formulations, up to Mixture can be justified sim-

ilarly. Similarly, Insensitivity To Omission and Preservation Under Addition are

quite straightforward to justify (see for instance [46]), although one must be careful

to ensure that adding or removing options from a set gives the subject no further in-

formation about the options.2 Further, we believe that it is very difficult to imagine

wanting to violate Conditioning.

This leaves only Total Preordering, a very popular property indeed, and yet

difficult to justify independently. Indeed, Luce and Raiffa suggest a possible ra-

tionalization of the property and then immediately conclude it is “apparently not

suitable” when combined with other, much more reasonable, properties [46, p. 289].

It is also instructive to observe that Hammond, a proponent of Total Preordering,

immediately uses sequential arguments to criticize Seidenfeld’s abandoning of Total

Preordering [63].

Let us now consider how these criticisms can be answered by those who wish

to fail backward induction or subtree perfectness. The third criticism can be an-

swered in two ways. The first, following for instance Allais [1], Ellsberg [18], and

2Luce and Raiffa give the example of a diner choosing from a menu, and then finding extra

options that he doesn’t like, yet changing his order anyway. Their idea is that simply seeing that

certain options are available can inform about the quality of restaurant, hence potentially switching

a decision from a meal that is “safe” at any restaurant to a meal that would only be pleasant at a

fine restaurant.

3.3. Backward Induction or Subtree Perfectness? 97

Kahnemann and Tversky [34], is to observe that one can experimentally verify that

people violate forms of mixture properties, and apparently are sometimes content

with doing so even when the violation is pointed out to them. One can argue from

this that the principle is not compelling, since people do not want to follow it. We do

not consider this argument particularly convincing: when investigating normative

decision making, it is not sufficient for an individual to hold a particular opinion if

it cannot be justified. Still, if one has a choice function violating the mixture prop-

erties but otherwise providing appealing results, it would be comforting to know

its behaviour may not be abhorrent to many people. And certainly when trying to

model the way other people make decisions, the importance of these results cannot

be dismissed.

In a related argument, McClennen [51, §14.7] gives a robust defence of indeter-

minate choice functions. He observes that in the literature of normative decision

theory, the call for determinism is louder than is perhaps justified, and postulates

that a principal reason for this may be linked to descriptive theory. In a descriptive

theory, he argues, a determinite answer is certainly preferable, and suggests that

this preference may be transferred to normative theory without justification. This

underlines the earlier point that arguments in favour of Total Preordering tend not

to have as strong a normative justification as most of the other properties.

The other possible counter-argument, following Machina [50] among others, is

that violations of mixture properties may be much more convenient for modelling

decision making. The argument is given only in terms of mixture properties, but

could presumably be extended to allow violations of the others. A small example is

illuminating.

Suppose that one has a choice between gambles pZ+(1−p)X, and pZ+(1−p)Y ,

where p is a probability near one, independent of all of the gambles. By Mixture,

the choice will depend only on the choice between X and Y . Suppose that X is

preferred to Y . But suppose we are in a situation where the gambles Z and X are

gambles about the “same sort of thing”, but with Z much better than X, whereas

Y is something of a quite different order. Machina’s example has X to be watching

a movie featuring a very attractive star, and Z to be a romantic week with them.

3.3. Backward Induction or Subtree Perfectness? 98

The argument then is that, having had a high probability to attain Z but failing,

watching the movieX would involve merely several hours of miserable regret. Better,

perhaps, to choose Y .

Is this argument convincing? As Machina points out, a defender of subtree

perfectness can reason as follows. Gamble X is not simply the gamble “watch

a movie with the beautiful star” but in fact “watch a movie with the beautiful

star having failed to achieve an almost-certain week with said star”. Therefore

opt({X, Y }) = {X} and Mixture is satisfied. In short, some of the rewards are not

just the physical reward but also the regret of not having received the best reward.

Machina argues that this is an inelegant solution, and that encoding the regret in

a context-sensitive preference model is more artful. He questions whether there is

any point in choosing the more complicated subtree perfect model. Our answer

would be that the advantages of subtree perfectness and hence backward induction

will be vital in large problems, and so it is well worth the effort. Further, is one

supposed to, when solving a decision problem, remember the full tree in which one

is embedded? Machina’s response, to deal with this by “assuming (or hoping)” that

the effects of distant decisions on the current decision should become negligible, is

perhaps tenuous. One can certainly imagine that failing to win a romantic week

with a beautiful movie star would be remembered for a long time.

Also, in our setting, the failure to acquire Z is an event, say A, and so we are not

considering opt({X, Y }) but in fact opt({X, Y }|A), and there is no reason why we

should have those two sets equal. Indeed, even if it were a choice between rewards

rather than gambles, there is nothing in our framework to prevent choice between

basic rewards from being different conditional on events (a form of state-dependent

preferences [36, 62]). We believe that these are sufficient reasons to be suspicious of

this particular criticism.

Now, consider the first criticism of failing backward induction. The argument is

that we should not do anything that is non-optimal in a subtree. This is really a

weaker version of the second criticism (that we should be able to make free choice

in subtrees), so it makes sense to consider both criticisms at once. These are quite

strong arguments that are difficult to answer. In particular, if one cannot make

3.3. Backward Induction or Subtree Perfectness? 99

local decisions, how does one react to changes in the tree? We are not aware of a

satisfactory solution to this problem (see [23] for more information).

We turn instead to the following argument: if the normal form solution leads

to a subtree in which the subject’s local preferences overrule the solution, then the

solution is flawed because the subject would just choose whatever they want in this

region. In the setting of Hammond’s potential addict, the subject should not say

they will try something addictive but not more than once, because having tried it

they will want to try it again, and will do so.

Following McClennen [51] and others, we consider the concept of present and

future selves. At the root node, the subject is the present self, and has to take into

account not only what she wants to happen in the future but also what her future

selves will want to happen at the point at which they make decisions. The future

selves, one for each future decision node, have preferences determined locally (only

depending on their subtree). The potential addict’s present self may wish her future

self to take a certain decision, but in reality, the future self will ignore her.

Violations of subtree perfectness require some form of co-operation between the

selves at different times, or an acceptance by the future selves of the authority of

the past selves. McClennen [51] considers the concept of resolute choice, where

the future selves agree to make some sacrifices in order to be resolute with the

present self’s decision. Consider Fig. 3.5 again. Suppose that the present self judges

X > Z > Y and the future self judges Y > X > Z. McClennen suggests that,

should the present self choose to move to the future self’s decision node (intending

to move to X), the future self ought to choose X, co-operating with the present

self’s rejection of Z.

This form of co-operation may make some sense if X and Y are considered

significantly better than Z for the future self. Imagine it is not present and future

selves but two friends. If your friend had given you the choice between X and Y

instead of the very unpleasant Z (that the friend wouldn’t have really minded), but

had indicated that she would like you to choose X, it seems churlish to choose Y .

Jaffray [32] tried to quantify some sort of co-operation parameter, but, as he notes,

this seems rather fictitious and arbitrary. Further, why would a future self even

3.3. Backward Induction or Subtree Perfectness? 100

follow it? After all, the past self is no longer in a position to fight back! When

considering the analogy of two friends, part of the reason the friend would choose

X would be to retain his friend. The future self has neither the ability nor the

motivation to retain the past self.

When subtree perfectness fails wildly, so the future self wants to do only actions

that the past self definitely did not want, this resolute choice approach seems very

tenuous. If a future self has a decision to make, why would it reject what it wants to

do in favour of some past self? No satisfactory answer seems to exist. When subtree

perfectness fails but backward induction works, a situation that apparently has not

been considered by the proponents of this idea, it perhaps makes more sense.

Imagine the problem again as a decision between two friends. The first friend

has opt({X, Y, Z}) = {X}. The second friend has opt({X, Y }) = {X, Y }. The first

friend chooses to move towards X, whereupon the second friend has to option to

go along with X or overrule the first friend. In the spirit of friendship, the second

friend elects to resolve his indecision according to friendship, by accepting the first

friend’s wish, to move to X. We can assume that present and future selves should

be friends, and so this behaviour seems much more acceptable. Assuming backward

induction holds, then the future selves will always be satisfied with the present self’s

decision.3

This is not quite how things work with normal form solutions, since the present

self picks all the choices for the future selves. But on the other hand there is now no

reason for the future self to deviate: it might have choices that are not worse than

the chosen decision, but none that is better, so why not go along with the initial

plan?

Astute readers will observe that this argument could be framed in the opposite

direction. Suppose we do not have subtree perfectness for normal form decisions,

but instead the opposite inclusion in Definition 3.22. In this situation, the first self

may have plans available that her future selves would disagree with. Her future

selves this time have no optimal plans that she disagrees with. This is actually

3In fact, this does not even require backward induction, just subtree perfectness for normal

form decisions (Section 3.1.4)

3.3. Backward Induction or Subtree Perfectness? 101

even more appealing than the backward induction argument, since no agreement is

even required: the first self can choose any plan she likes, and the future selves can

overrule it if they find it non-optimal. If the first self must choose a normal form

decision, she may as well choose one that her future selves are happy with, because

she knows that otherwise she will be overruled.

Without going into details (the proofs are effectively the same as those for

subtree perfectness for normal form decisions), the required properties for this

behaviour are modified versions of Preservation Under Addition and Backward

Mixture, changed so that the direction of inclusion is changed in each. Interest-

ingly, no type of conditioning property is needed here (they protect from problems

when moving backwards, whereas this is a form of “forward induction”). Finding

popular choice functions that obey these two modified properties is not easy, but

optmaximin(X|A) = arg maxω∈AX(ω) is one, as is the corresponding maximax choice

function, but interestingly none of the intermediate Hurwicz criteria (maximizing a

convex combination of maximum and minimum reward) is.

Another advantage of this opposite form of subtree perfectness is that there is

no difficulty if the decision tree changes mid-problem. The self at the time of the

change can just pick a locally optimal strategy, knowing that the past selves would

all be satisfied by it. A disadvantage would be computation: no backward induction

would be available to find the overall solution (although it is likely that some form

of backward induction could find some optimal strategies).

Chapter 4

Locality

This chapter is based on joint work with Ricardo Shirota Filho, adapted from [76].

4.1 Introduction

So far we have investigated a particular representation of sequential decision prob-

lems, namely decision trees. Although most problems that can be solved using choice

functions on gambles should be representable as a decision tree, often it is more con-

venient and intuitive to describe them in different ways. Suppose, for example, that

rewards are actually gained not at the end of a branch but at certain points along

it. It seems natural to try to use this structure to simplify the problem and the

solution. In this chapter and the next, we examine some particular structures of

decision problem that allow such simplifications. It is noticeable that the underlying

results and proofs follow similar lines to those we have seen earlier. This indicates

that the approach of the previous two chapters will be useful in many circumstances.

The particular types of problem investigated are those in which rewards are not

received at the end of the process, but rather some reward is generated after ev-

ery stage. Thus, the overall reward is the sum of all these rewards. Such problems

could be represented as a standard decision tree with the sum of all relevant rewards

present on the reward leaves as usual. But instead, when working in a particular

subtree, it may be possible to ignore all the rewards that have already been gener-

ated.

102

4.1. Introduction 103

Consider the following simple example. A coin is going to be tossed a fixed

number of times. At each stage, before the coin is tossed, the subject must choose

one of two acts: predict the toss for this stage will be heads, or predict tails. A

successful prediction is worth 1 utile, and an unsuccessful prediction is worth −1.

Given a particular choice function, how can the subject determine an optimal policy?

Clearly one could represent this problem as a standard decision tree and use the

approach of the previous chapters. But this problem has particular structure: at

each stage, a part of the total reward is received. Were we to want to apply backward

induction, why not ignore all the rewards that have already been received? In terms

of the decision tree, this essentially means that rewards are associated with chance

arcs rather than terminal nodes. If representing the problem with an influence

diagram [67], this would involve multiple value nodes (see for instance [73]).

This suggests the following method of solution. Each stage can be viewed as a

separate decision problem: choose between the two bets. For a particular stage, we

can find the optimal gambles conditional on every possible sequence of events that

can lead up to that stage. All these local solutions can then be combined in all

possible ways to form a set of normal form decisions for the global problem.

If this method agrees with normopt, we say that opt satisfies locality. Locality

essentially represents a very strong form of subtree perfectness for particular deci-

sion problems: locality means that the global sequential problem can be solved by

solving a local problem at each stage, for each stage taking only into account rewards

incurred locally at that stage, and any events observed from previous stages. An im-

portant special case of a sequential decision problem which ought to satisfy locality is

a sequence of unrelated (in the sense of rewards and information) decision problems.

The latter example is philosophically particularly important, because it means that

the intuitively logical answer—solving each decision problem separately—coincides

with the answer where one models the sequential problem in full and solves them

jointly in the normal form. Locality implies this not only for unrelated decision prob-

lems, but also for slightly more general situations where information and rewards at

each stage depend on previous stages.

Since the coin-tossing example is not particularly interesting or useful, consider

4.1. Introduction 104

the ways it could be generalized.

• The possibility space could change from stage to stage. For example, introduce

a second coin at stage 4.

• The possible actions could change from stage to stage. For example, the

subject could be allowed to decline to bet in the first two stages, but then

must bet from stage 3 onwards.

• The rewards could depend on the history. For example, successfully betting

on heads could give a higher reward if relatively few heads have been observed.

• The possible actions could depend on the sequence of observed events. More

generally, the possible actions could depend on the path taken through the

problem, which corresponds to the sequence of both observed events and pre-

viously selected decisions.

• The possibility space at a particular stage could depend on the sequence of

observed events.

• Act-state independence could be violated. For example, the subject could

have the option to tamper with the coin. This would influence the coin’s

future behaviour.

In our investigation, we allow generalizations of the first three types. The fourth

type is not allowed, but can be partially addressed as we shall see later. The last

two types are not allowed. In other words,

• rewards can depend on the full state history,

• state spaces and decision spaces can depend on the stage.

Before we continue, it is useful to consider what locality means for a Markov

decision process. Consider a classical Markov decision process with discount rate

0 ≤ γ < 1, and transition probabilities pdst and rewards rdst (real-valued, i.e. utilities)

4.1. Introduction 105

for going from state s to t under decision d. For a one-stage Markov decision process

starting in state s1, the optimal expected utility is

V1(s1) = max
d1

∑
s2

pd1s1s2r
d1
s1s2

(4.1)

For a two-stage process starting in state s1, the optimal expected utility is

V2(s1) = max
d1,d2(·)

∑
s2s3

pd1s1s2(r
d1
s1s2

+ γpd2(s2)
s2s3

rd2(s2)
s2s3

) (4.2)

= max
d1

∑
s2

pd1s1s2(r
d1
s1s2

+ γmax
d2

∑
s3

pd2s2s3r
d2
s2s3

) (4.3)

= max
d1

∑
s2

pd1s1s2(r
d1
s1s2

+ γV1(s2)) (4.4)

In general,

V0(s) = 0 Vn+1(s) = max
d

∑
t

pdst(r
d
st + γVn(t)) (4.5)

This corresponds to the usual value iteration algorithm [72, Sec. 4.4] for finding

optimal policies in infinite horizon Markov decision processes, with precisely one

policy evaluation step and one policy improvement step at each stage.

Under act-state independence, transition probabilities do not depend on the

decisions, and the solution turns out to be extremely simple:

Vn+1(s) =

(
max
d

∑
t

pstr
d
st

)
+ γ

∑
t

pstVn(t) (4.6)

In other words, at every stage, the optimal decision d∗ can be obtained by solving a

simple one-stage problem, and the sequential decision problem reduces to a sequence

of static decision problems. In essence, this property is what we will call locality.

Of course, under act-state dependence, locality is clearly no longer a reasonable

requirement, since in such case Markov decision processes cannot be solved just

locally, and backward induction techniques are required. As stated before, we will

not be concerned with the act-state dependent case.

Throughout the section we clarify the concepts presented by using the coin-

tossing example.

4.2. Problem Specification 106

4.2 Problem Specification

The notation for this section is similar to that for decision trees, but requires some

refinements. As we will be concerned with sequential decision processes, we will

consider for Ω a Cartesian product of state spaces S0, S1, S2, . . . , Sn:

Ω = S0 × S1 × · · · × Sn

where S0 is the set of possible states of the system at time 0, and so on. Particular

elements of these spaces are denoted by s0, s1, . . . , sn. We identify any such element

sk also with an event Esk
= {(s′0, . . . , s′n) : s′k = sk}. For brevity, we will sometimes

write sk instead of Esk
when no confusion is possible, for instance when conditioning.

The states are observed sequentially, and after each observation, we can take a

decision from some set, and receive a reward from a set R. Let hk be the history of

events up to stage k, so hk = (s0, . . . , sk). We can describe the process as:

• observe s0 ∈ S0,

• choose d1 ∈ D1, observe s1 ∈ S1, receive r1(s0d1s1) = r1(h0d1s1),

• choose d2 ∈ D2, observe s2 ∈ S2, receive r2(s0s1d2s2) = r2(h1d2s2),

• . . .

• choose dn ∈ Dn, observe sn ∈ Sn, receive rn(hn−1dnsn).

The total reward resulting from the above process is again assumed to be an element

of R. More precisely, we now need to assume an operator + on R which maps every

two elements r and r′ of R to another element r+ r′ of R. To avoid some technical

details in results, we may assume that + has an identity element 0; no further

properties of + are assumed. To avoid many brackets in our notation, we always let

+ evaluate from right to left. The total reward is assumed to be:

r1(h0d1s1) + r2(h1d2s2) + · · ·+ rn(hn−1dnsn)

Finally, we assume that our preferences over any non-empty finite set X of

gambles on Fk+1 = Sk+1×· · ·×Sn (where 0 ≤ k < n), given any event hk = s0 . . . sk,

4.2. Problem Specification 107

can be represented by a choice function opt(X|hk). At this point it becomes clear

that the apparent restriction that Dk must not depend on hk−1 is irrelevant, because

the rewards can depend on hk−1. So, if one wanted a decision to become available

only for certain hk−1, then one could simply make that decision’s gamble have terrible

rewards for other possible histories. This ensures that the choice function will only

choose that decision for histories where it is allowed. In short, making a decision

unavailable and making a decision unacceptable are practically equivalent.

The process described above is a special case of a sequential decision problem

(or, decision tree), in the sense that:

• chance and decision nodes follow each other consecutively, hence the problem

consists of clearly defined stages,

• a variable is observed regardless of the history (for instance, you cannot decide

to observe a different variable),

• at each stage, a decision incurs a reward, which may depend on the state

history, the current decision, and the next state, but not on anything else,

• the final reward is obtained through combining local rewards.

In our toy example (sequential coin tossing), at each stage, the agent must bet

on the outcome—hence, there are also two possible decisions: heads or tails—and

the agent loses one utile if wrong, but gains one utile if right. So,

S1 = S2 = · · · = Sn = {H,T},

D1 = D2 = · · · = Dn = {dH , dT},

and

rk(hk−1dksk) =

1 if dk matches sk,

−1 otherwise.

Note that the initial state s0 is not of relevance in this problem. For mathematical

convenience, we can simply let S0 be a singleton.

4.3. Normal Form Solution 108

4.3 Normal Form Solution

4.3.1 Normal Form Decisions

Normal form decisions can be constructed as usual. Consider our decision process

after a particular sequence of decisions and states s0d1s1 . . . dk−1sk−1 has already

occurred. A normal form decision for our sequential decision process at this stage

consists of a specification of a decision dk ∈ Dk and decision functions dk+1(·) : Sk →

Dk+1, . . . , and dn(·) : Sk × · · · × Sn−1 → Dn:

• dk ∈ Dk,

• dk+1(sk) ∈ Dk+1,

• . . .

• dn(sk . . . sn−1) ∈ Dn,

The set of all normal form decisions is denoted by Πn
k :

Πn
k = Dk ×DSk

k+1 × · · · ×D
Sk×···×Sn−1
n

In our toy example, normal form decisions include ‘always bet tails’, ‘always bet

heads’, ‘bet tails on odd stages, and heads on even stages’, and ‘bet tails if we have

observed more tails than heads in the past, otherwise bet heads’. Of course there

are many others.

4.3.2 Gambles

As usual, we need to find the gambles associated with normal form decisions. Each

state history s0s1 . . . sk−1 = hk−1 in Hk−1 and each normal form decision πnk =

(dk, dk+1(·), . . . , dn(·)) in Πn
k incurs a gamble Xn

k (hk−1, π
n
k), that is, a mapping from

Sk × · · · × Sn to R:

⊕
sk

Esk

⊕
sk+1

Esk+1
. . .
⊕
sn

Esn

(
rk(hk−1dksk) + rk+1

(
hkdk+1(hk)sk+1

)
+ . . .

· · ·+ rn
(
hn−1dn(hn−1)sn

))

4.3. Normal Form Solution 109

which we can also write as

⊕
sk

Esk

(
rk(hk−1dksk) +

⊕
sk+1

Esk+1

(
rk+1

(
hkdk+1(hk)sk+1

)
+ . . .

· · ·+
⊕
sn

Esnrn
(
hn−1dn(hn−1)sn

))
. . .

)

For the sake of brevity, we have slightly abused notation: d`(h`−1) denotes of course

simply d`(sk . . . s`−1).

The gamble Xn
k (hk−1, π

n
k) describes the reward Xn

k (hk−1, π
n
k)(fk) that we receive

for each possible sequence of future states fk = (sk, . . . , sn) when we follow normal

form decision πnk after having observed state history hk−1.

The gamble Xn
k (hk−1, π

n
k) generalizes the classical value function V (hk−1, π

n
k) of

a policy at a given state history to the case where probabilities are not given and

rewards are not assumed to be expressed in utiles. Indeed, if we were given a

probability p(·|hk−1) on Fk = Sk × · · · × Sn, and rewards were expressed in utiles,

then the expected value of a given normal form decision πnk at state history hk−1

would be precisely

V (hk−1, π
n
k) =

∑
fk

p(fk|hk−1)Xn
k (hk−1, π

n
k)(fk)

Again, considering our toy example, the gamble corresponding to the normal

form decision ‘always bet tails’ would be:

Xn
k (hk−1, π

n
k)(fk) = nT − nH

where nT is the number of tails in fk, and nH the number of heads in fk, because

under the given normal form decision ‘always bet tails’, we gain one utile for each

tail in fk, and lose one utile for each head in fk. As an other example, in a single

stage problem, the normal form decision ‘bet heads’ has gamble:

Xk
k (hk−1, dH)(sk) =

1 if sk = H

−1 if sk = T

. (4.7)

More elaborate normal form decisions become quickly complicated, even in this

simple case.

4.4. Locality 110

4.3.3 Normal Form Solution

A normal form decision πnk is optimal for a given state history hk−1 if

Xn
k (hk−1, π

n
k) ∈ opt(X n

k (hk−1)|hk−1)

where X n
k (hk−1) is the set of gambles incurred by all normal form decisions when

we start from state history hk−1. The set of all optimal normal form decisions, for

a given state history hk−1, is the normal form solution and is denoted by Πn
k(hk−1).

So,

Πn
k(hk−1) = arg opt

πn
k∈Πn

k

(Xn
k (hk−1, π

n
k)|hk−1)

= {πnk ∈ Πn
k : Xn

k (hk−1, π
n
k) ∈ opt(X n

k (hk−1)|hk−1)}.

If we instead drew the decision tree corresponding to the problem, then this would

be just the same as applying normopt to the tree.

The set of optimal gambles opt(X n
k (hk−1)|hk−1) generalises of course the clas-

sical (optimal) value function V (hk−1) at a given state history to the case where

probabilities are not given and rewards are not assumed to be expressed in utiles.

Indeed, if we were given a joint probability p on Fk = Sk × · · · × Sn, and rewards

were expressed in utiles, then the (optimal) value function at hk−1 would be

V (hk−1) = max
πn

k∈Πn
k

V (hk−1, π
n
k)

which is, for this case, the expectation of (any element of) opt(X n
k (hk−1)|hk−1).

4.4 Locality

As seen previously, under act-state independence, we can solve an n-stage Markov

decision process simply by solving n one-stage ones. We now generalize this idea.

To express locality conveniently, we first introduce some further notation. Let

Πk
k(·) denote all locally optimal decision functions:

Πk
k(·) = {dk(·) ∈ (Dk)

Hk−1 : dk(hk−1) ∈ Πk
k(hk−1)}

4.4. Locality 111

(It may be useful at this point to recall that Πk
k = Dk.) More generally,

Πn
k(·) = {(dk(·), dk+1(·), . . . , dn(·)) ∈ (Πn

k)Hk−1 :(
dk(hk−1), dk+1(hk−1·), . . . , dn(hk−1·)

)
∈ Πn

k(hk−1)}

where we used the identity

(Πn
k)Hk−1 =

(
Dk ×DSk

k+1 × · · · ×D
Sk×···×Sn−1
n

)Hk−1

= D
Hk−1

k ×DHk−1×Sk

k+1 × · · · ×DHk−1×Sk×···×Sn−1
n

= D
Hk−1

k ×DHk
k+1 × · · · ×D

Hn−1
n

With any opt on S0, . . . , Sn, we can associate the following property:

Property 17 (Locality). A choice function opt satisfies locality on S0, . . . , Sn

whenever, for each sequential decision process on S0, . . . , Sn and each 1 ≤ k < n,

Πn
k(·) = Πk

k(·)× Πk+1
k+1(·)× · · · × Πn

n(·).

For instance, in the coin-tossing example, we can work out at each stage and

for every different history whether it is optimal to bet on heads, tails, or either.

If locality holds, then the optimal strategies are all combinations of these local

decisions.

Perhaps surprisingly, locality on two stage problems is (necessary and) sufficient

for locality on problems of any number of stages:

Lemma 4.1. For every 1 ≤ k < n,

Πn
k(·) = Πk

k(·)× Πn
k+1(·) (4.8)

if and only if, for every 1 ≤ k < n,

Πn
k(·) = Πk

k(·)× Πk+1
k+1(·)× · · · × Πn

n(·).

Proof. Apply the given equality recursively:

Πn
k(·) = Πk

k(·)× Πn
k+1(·)

= Πk
k(·)× Πk+1

k+1(·)× Πn
k+2(·)

= . . .

= Πk
k(·)× Πk+1

k+1(·)× · · · × Πn
n(·)

4.4. Locality 112

4.4.1 Sequential Distributivity

Following our usual approach, we now show that one simple condition on opt is

equivalent to locality. Recall Hk = S0× · · · ×Sk, and Fk = Sk × · · · ×Sn. With any

opt on S0, . . . , Sn, we can associate the following property:

Property 18 (Sequential Distributivity). For any 1 ≤ k < n, any value hk−1 of

Hk−1, all finite sets of gambles X on Sk, all finite sets of gambles Y(sk) on Fk+1

(one such set for each sk ∈ Sk), and all X ∈ X and Y (sk) ∈ Y(sk):

X +
⊕
sk

Esk
Y (sk) ∈ opt

(
X +

⊕
sk

Esk
Y(sk)

∣∣∣∣hk−1

)

⇐⇒ X ∈ opt(X|hk−1) and Y (sk) ∈ opt(Y(sk)|hk−1sk) for all sk.

We shall show that the above property is necessary and sufficient for our normal

form solution induced by opt to reduce to a sequence of n single-stage normal form

solutions.

Theorem 4.2. A choice function opt satisfies locality if and only if opt satisfies

sequential distributivity.

Proof. Before we start the proof, note that we can write Πn
k as

Πn
k = Dk ×DSk

k+1 × · · · ×D
Sk×···×Sn−1
n

= Dk ×
(
Dk+1 ×DSk+1

k+2 × · · · ×D
Sk+1×···×Sn−1
n

)Sk

= Dk × (Πn
k+1)Sk

In other words, any normal form decision πnk can be interpreted as a 2-stage normal

form decision, where we first choose dk ∈ Dk, and then πnk+1(sk) ∈ Πn
k+1 depending

on the event sk that occurred. Throughout the proof, we will make use of this

correspondence, and typically write πnk as (dk, π
n
k+1(·)) instead of the more usual

(dk, dk+1(·), . . . , dn(·)).

“if”. We must show that opt satisfies locality, given that it satisfies sequential

distributivity. By Lemma 4.1, it suffices to show that Πn
k(·) = Πk

k(·) × Πn
k+1(·) for

all 1 ≤ k < n.

4.4. Locality 113

Consider any 1 ≤ k < n. For every hk−1, we must show that πn∗k = (d∗k, π
n∗
k+1(·)) ∈

Πn
k(hk−1) if and only if d∗k ∈ Πk

k(hk−1) and πn∗k+1(sk) ∈ Πn
k+1(hk−1sk) for every sk.

Equivalently, we show that, regardless of hk−1,

Xn
k (hk−1, π

n∗
k) ∈ opt(X n

k (hk−1)|hk−1) (4.9)

if and only if

Xk
k (hk−1, d

∗
k) ∈ opt(X k

k (hk−1)|hk−1) and (4.10)

Xn
k+1(hk−1sk, π

n∗
k+1(sk)) ∈ opt(X n

k+1(hk−1sk)|hk−1sk) for all sk. (4.11)

First, note that, for any πnk = (dk, π
n
k+1(·)) ∈ Πn

k ,

Xn
k (hk−1, π

n
k) = Xk

k (hk−1, dk) +
⊕
sk

Esk
Xn
k+1(hk−1sk, π

n
k+1(sk)) (4.12)

simply by the definitions of Xn
k (hk−1, π

n
k), Xk

k (hk−1, dk), and Xn
k+1(hk−1sk, π

n
k+1(sk)).

Taking the union over all πnk ∈ Πn
k , it follows that also

X n
k (hk−1) = X k

k (hk−1) +
⊕
sk

Esk
X n
k+1(hk−1sk). (4.13)

Now, simply apply sequential distributivity, and use Eqs. (4.12) and (4.13) to see

that Eq. (4.9) holds if and only if Eqs. (4.10) and (4.11) hold.

“only if”. Let 1 ≤ k < n. By the locality assumption, we know that Πn
k(·) =

Πk
k(·)× Πn

k+1(·). We show that sequential distributivity holds.

Indeed, consider any value hk−1 of Hk−1, any set of gambles X = {X1, . . . , Xp} on

Sk, any finite sets of gambles Y(sk) = {Y1(sk), . . . , Yq(sk)} on Fk+1 (one such set for

each sk ∈ Sk)—for simplicity of notation, for each sk we use an index set for Y(sk) of

the same size q: this goes without loss of generality as we can always allow some of

the Yj(sk) to be equal to one another—and any Xi ∈ X and Yj(sk)(sk) ∈ Y(sk)—so

j(·) is a mapping from Sk to {1, . . . , q}.

We must show that

Xi +
⊕
sk

Esk
Yj(sk)(sk) ∈ opt

(
X +

⊕
sk

Esk
Y(sk)

∣∣∣∣hk−1

)

⇐⇒ Xi ∈ opt(X|hk−1) and Yj(sk)(sk) ∈ opt(Y(sk)|hk−1sk) for all sk. (4.14)

4.4. Locality 114

To this end, consider any n-stage process where

Dk = {x1, . . . , xp}

Dk+1 = · · · = Dn−1 = {d}

Dn = {y1, . . . , yq}

and

rk(hk−1xisk) = Xi(sk)

rk+1(hkdsk+1) = · · · = rn−1(hn−2dsn−1) = 0

rn(hn−1yjsn) = Yj(sk)(sk)(fk+1)

where 0 is the identity element in R with respect to +. Observe that, for this

process,

X k
k (hk−1) = X ,

X n
k+1(hk−1sk) = Y(sk),

and, as shown before,

X n
k (hk−1) = X +

⊕
sk

Esk
Y(sk).

But, note that Πn
k(·) = Πk

k(·)× Πn
k+1(·) means that, for any πnk = (xi, yj(·)) ∈ Πn

k ,

(xi, yj(·)) ∈ Πn
k(hk−1)

⇐⇒ xi ∈ Πk
k(hk−1) and yj(sk) ∈ Πn

k+1(hk−1sk) for all sk.

By definition of Πn
k(hk−1), Πk

k(hk−1), and Πn
k+1(hk−1sk), and because of what we have

just shown about X n
k (hk−1), X k

k (hk−1), and X n
k+1(hk−1sk), this is exactly equivalent

to Eq. (4.14).

Chapter 5

Optimal Control and

Deterministic Discrete-Time

Systems

5.1 Problem Specification

In this chapter we formalize and extend the results of de Cooman and Troffaes [13]

for deterministic discrete-time systems with uncertain gains. This is a branch of

control theory [7, 47], which more generally covers the behaviour and control of a

multitude of dynamic systems. The particular class of systems we investigate is best

illustrated by example. Consider Fig. 5.1. This depicts a system that starts at N1,

and can reach N4 by multiple paths. The subject, who controls the system, can

choose the path the system will take. Travelling down a particular arc gives the

subject an associated reward. For instance, choosing the arc from N1 to N2 will give

the subject X. The subject’s task is to find the optimal path for the system to take.

This is an example of a deterministic discrete-time system. If V,W,X, Y, Z are

certain rewards, so the subject knows exactly what she will receive when choosing a

particular route, this is a system with certain gains. This would be a relatively trivial

type of problem to solve: simply find the path with the highest total reward. We

instead consider systems with uncertain gains, allowing V,W,X, Y, Z to be gambles.

The overall reward for a particular path is then determined by the sum of the gambles

115

5.1. Problem Specification 116

N1

N2

N3

N4

X

Y

Z

W

V

Figure 5.1: A simple deterministic system.

for all arcs in the path. The sum is performed using the + operator introduced in

Section 4.1; we also later need to assume that r1 + r2 = r1 + r3 implies r2 = r3;

this holds for instance if every reward r ∈ R has a left inverse −r ∈ R, so (−r) + r

equals the left identity element 0.

With uncertain rewards, there are two possible concepts of a normal form deci-

sion. If the subject receives the reward from a gamble as soon as that arc is chosen,

and is able to react to it, then she can use this information to choose her next arc.

For example, an informal strategy for Fig. 5.1 could be “choose Y , and then choose

W if Y has given a large reward, V otherwise”. Alternatively, the subject may not

be allowed to do this, and so could have no strategy more complicated than, say

“choose Y , then W”. This could be because she does not learn of the outcome of

Y until later, or because she has no power to change her strategy while the system

operates. The latter set-up is followed by de Cooman and Troffaes, and so we follow

it too. Normal form decisions are thus very simple, and no concept of conditioning is

required either. Also, since in this case everything is completely deterministic until

the final decision has been made, it seems natural to use normal form solutions for

such a model.

These problems can be represented as decision trees, such as Fig. 5.2 (truncated

at the chance nodes, since we have not defined what comes after). We could use

the backward induction method from Section 3.1, but this would not be particularly

helpful or interesting. Instead, we can exploit the special structure of the problem

and employ a type of backward induction developed by Bellman [7], usually called

5.1. Problem Specification 117

X + Z
dZ

dX

Y +W

dW

Y + V

d
V

d
Y

Figure 5.2: The decision tree for Fig. 5.1.

dynamic programming. First, we would find opt({W,V }). Suppose this is {W}.

Then, we would find opt({X + W,Y + Z}) and this would determine the normal

form solution. If opt({W,V }) = {W,V }, we would instead calculate opt({X +

W,X + V, Y + Z}), and so on.

To formalize this idea, it is clearer and more convenient to represent the systems

as a different sort of tree, in which the chance node and reward nodes are removed

entirely and the gambles are placed on arcs. A deterministic system tree is a rooted

tree of nodes of two types: decision nodes and terminal nodes. All branches end with

a terminal node, and all terminal nodes appear at the end of branches. Every arc

corresponds to a decision, and each arc has an associated gamble. The deterministic

system tree for Fig. 5.1 is shown in Fig. 5.3 (where the terminal nodes lie at the end

of each branch, but are invisible). It must be emphasised that, although gambles

are acquired upon choosing a decision arc, their value is not discovered until the

terminal node is reached. Therefore there is no learning or conditioning involved in

this model.

We are interested in determining when this dynamic programming method gives

the same answer as normopt. Bellman [7] introduced his famous principle of opti-

mality to help answer this question.

An optimal policy has the property that, whatever the initial state

5.1. Problem Specification 118

Z

X

W

V

Y

Figure 5.3: The deterministic system tree for Fig. 5.1.

and initial decision are, the remaining decisions must constitute an op-

timal policy with regard to the state resulting from the first decision.

We recognize this as subtree perfectness for normal form decisions (see p. 77).

Although Bellman states the principle in terms of the first decision only, it is clear

that it implies that the restriction of an optimal policy to any subtree must be

optimal. We formalize the principle into the following property.

Property 19 (Bellman’s principle of optimality). A normal form operator norm

satisfies the principle of optimality if, for any deterministic system tree T , and any

node N in at least one element of norm(T),

stN(norm(T)) ⊆ norm(stN(T)).

Equivalently, for any normal form decision U ∈ norm(T) and any node N in U ,

stN(U) ∈ norm(stN(T)).

As is the case in Chapter 3, and as shown by de Cooman and Troffaes, Bellman’s

Principle of Optimality is not sufficient for backward induction to work: it again

needs to be augmented by Insensitivity To Omission. Our contribution is to show

that Bellman’s Principle of Optimality can be reduced to two simple conditions on

opt, then to formulate de Cooman and Troffaes’s backward induction theorem into

5.2. Backward Induction Theorem 119

the langauge of deterministic system trees, and finally to extend the theory to cover

subtree perfectness.

The proofs proceed on similar lines to previous chapters, showing that our ap-

proach is useful for several types of model, and requires surprisingly few notational

changes. First, any deterministic system trees T1, . . . , Tn joined at a decision node,

with Xi the gamble on the arc to Ti, can be written as

n⊔
i=1

XiTi.

Normal form decisions and solutions are defined as usual. In particular, a normal

form decision in a deterministic system tree is a path from the root node to a terminal

node. The gamble associated with a normal form decision is simply the sum of the

gambles for all the arcs in the path. The gamb operator is as usual defined as

gamb(T) =
⋃

U∈nfd(T)

gamb(U).

The recursive definition from Definition 1.12 now becomes

gamb

(
n⊔
i=1

XiTi

)
=

n⋃
i=1

(Xi + gamb(Ti)),

where we use the notation

X + Y = {X + Y : Y ∈ Y}.

The operator normopt can be defined as usual, and interestingly so can backopt:

backopt

(
n⊔
i=1

XiTi

)
= normopt

(
n⊔
i=1

Xi backopt(Ti)

)
.

5.2 Backward Induction Theorem

In this section we show that Bellman’s Principle of Optimality and Insensitivity To

Omission are necessary and sufficient for backward induction to work. We also show

that Bellman’s Principle of Optimality is equivalent to Preservation Under Addition

and a new property, Backward Addition. Note that all properties in this section are

the unconditional versions.

5.2. Backward Induction Theorem 120

Y 1

...

Y
n

X

Y 1

...

Y
m

0

Z 1

...

Z
n

0

Figure 5.4: Decision trees for Theorem 5.1.

Property 20 (Backward Addition Property). For any gamble X and any non-empty

finite set of gambles Y,

opt(X + Y) ⊆ X + opt(Y).

Theorem 5.1. normopt satisfies Bellman’s Principle of Optimality if and only if

opt satisfies Preservation Under Addition and Backward Addition.

Proof. “only if”. Let X be a gamble and Y = {Y1, . . . , Yn} be a set of gambles.

Consider the upper tree in Fig. 5.4. If X + Yk ∈ opt(X + Y), then by Bellman’s

Principle of Optimality it follows that Y ∈ opt(Y), hence Backward Addition holds.

Next, consider the lower tree. Let Y = {Y1 . . . , Ym}, Z = {Z1, . . . , Zn} and suppose

Y∩Z = ∅. Now let X = Y∪Z. By Bellman’s Principle of Optimality we know that

if Y ∈ Y ∩ opt(X), then Y ∈ opt(Y), hence Preservation Under Addition holds.

“if”. We proceed by structural induction. Let T be a deterministic system

tree. The base step, to show the result when T consists of a terminal node only,

is trivial. The inductive step is to suppose that Bellman’s Principle of Optimality

holds for every stK(T) where K ∈ ch(T), and then show that Bellman’s Principle

of Optimality holds for T . By Lemma 3.24, we need only show that for every

K ∈ ch(T) that is in at least one element of normopt(T),

stK(normopt(T)) ⊆ normopt(stK(T)).

5.2. Backward Induction Theorem 121

So, the proof is established if we can show that, for every U ∈ normopt(T) passing

through K ∈ ch(T),

stK(U) ∈ normopt(stK(T)). (5.1)

We now express this in terms of gambles—but first we introduce some notation.

Let ch(T) = {K1, . . . , Kn}, and K = Kk. Let gamb(stKi
(T)) = Yi, and let Xi

be the gamble corresponding to the arc to Ki. That is,

T =
n⊔
i=1

Xi stKi
(T).

Recall, U contains the node Kk, so gamb(U) = Xk + Yk for some Yk ∈ Yk.

Now, because U ∈ normopt(T), we know that

Xk + Yk ∈ opt(gamb(T)) = opt

(
n⋃
i=1

(Xi + Yi)

)
. (5.2)

To establish Eq. (5.1), we must simply show that Yk ∈ opt(Yk).

Indeed. Obviously,

Xk + Yk ⊆
n⋃
i=1

(Xi + Yi).

Applying Preservation Under Addition,

opt(Xk + Yk) ⊇ opt

(
n⋃
i=1

(Xi + Yi)

)
∩ (Xk + Yk).

However, by Eq. (5.2), Xk + Yk belongs to the right hand side, whence, it must also

belong to the left hand side. Now, apply Backward Addition, to see that indeed

Yk ∈ opt(Yk). This completes the inductive step.

Theorem 5.2. Let opt be any choice function. The following conditions are equiv-

alent.

(A) For any deterministic system tree T , it holds that backopt(T) = normopt(T).

(B) For any strategically equivalent deterministic system trees, T1 and T2, it holds

that

gamb(backopt(T1)) = gamb(backopt(T2)).

(C) opt satisfies Insensitivity To Omission and Bellman’s Principle of Optimality.

5.2. Backward Induction Theorem 122

Lemma 5.3. If, for all strategically equivalent deterministic system trees T1 and T2,

it holds that

gamb(backopt(T1)) = gamb(backopt(T2)),

then opt satisfies Insensitivity To Omission.

Proof. Let X and Y = {Y1, . . . , Yn} be sets of gambles such that opt(X) ⊆ Y ⊆ X .

Let T1 be a deterministic system tree with just one decision node and gamb(T1) = X .

Let T2 be a deterministic system tree constructed as follows: there is one decision arc

with gamble 0 that leads to T1, and n other decision arcs, each leading immediately

to a terminal node, with gambles Y1 to Yn. Clearly, gamb(T2) = X . We have

gamb(backopt(T2)) = opt(opt(X) ∪ Y) = opt(Y).

because opt(X) ⊆ Y . Since backopt is assumed to preserve strategic equivalence,

and T1 and T2 are strategically equivalent by construction, it follows that opt(Y) =

opt(X), as required.

Lemma 5.4. If, for all strategically equivalent deterministic system trees T1 and T2,

it holds that

gamb(backopt(T1)) = gamb(backopt(T2)),

then normopt satisfies Bellman’s Principle of Optimality.

Proof. We show that opt must satisfy Preservation Under Addition and Backward

Addition and invoke Theorem 5.1. We can again use the two trees from Fig. 5.4.

Let the upper tree be called T1, and let T2 be a tree with only one decision node

and gamb(T2) = X + Y . Then,

opt(X + Y) = gamb(backopt(T2))

= gamb(backopt(T1))

= opt(X + opt(Y)) ⊆ X + opt(Y),

so Backward Addition holds.

Let T1 be the lower tree in Fig. 5.4, with {Y ,Z} a partition of X . Let T2

have one decision node and gamb(T2) = X . As assumed, gamb(backopt(T1)) =

5.2. Backward Induction Theorem 123

opt(opt(Y) ∪ opt(Z)) = opt(X). So,

opt(X) ∩ Y = opt(opt(Y) ∪ opt(Z)) ∩ Y

⊆ (opt(Y) ∪ opt(Z)) ∩ Y

= opt(Y) ∩ Y = opt(Y),

so Preservation Under Addition holds.

Proof of Theorem 5.2. (A) =⇒ (B). Immediate, since for strategically equivalent

trees, normopt(T1) = normopt(T2) by definition.

(B) =⇒ (C). See Lemmas 5.3 and 5.4.

(C) =⇒ (A). We proceed by structural induction. The base step is trivial. The

induction hypothesis is that, for a T =
⊔n
i=1XiTi, we have normopt(Ti) = backopt(Ti)

for all i. The induction step is to show that this implies normopt(T) = backopt(T).

Let Ki be the root node of Ti. For any i such that Ki is in at least one element

of normopt(T), we know from Bellman’s Principle of Optimality that

stKi
(normopt(T)) ⊆ normopt(Ti) = backopt(Ti).

If instead Ki is not in at least one element of normopt(T), then nothing from

backopt(Ti) is involved in normopt(T). Therefore,

normopt(T) ⊆
n⊔
i=1

Xi backopt(Ti) ⊆ nfd(T).

Since normopt(nfd(T)) = normopt(T) and it follows from Insensitivity To Omission

that

normopt(normopt(T)) = normopt(T), 1

we can use Lemma 3.30 to conclude that

backopt(T) = normopt

(
n⊔
i=1

Xi backopt(Ti)

)
= normopt(T).

1Use Y = opt(X) in Insensitivity To Omission.

5.3. Subtree Perfectness 124

5.3 Subtree Perfectness

De Cooman and Troffaes [13] only investigate backward induction for these decision

problems, and do not mention subtree perfectness. Given the similarities between

the proofs for subtree perfectness and backward induction with decision trees, one

would not be surprised to find identical relationships for deterministic system trees,

and indeed this turns out to be the case. We provide the analagous result to Theo-

rem 2.6 for deterministic system trees. We conjecture that the previous results for

extensive form equivalence would work in the same way for deterministic system

trees, but have not pursued this investigation.

Property 21 (Addition Property). For any gamble X and any non-empty finite set

of gambles Y,

opt(X + Y) = X + opt(Y).

Theorem 5.5. The normal form operator normopt is subtree perfect for determin-

istic system trees if and only if opt satisfies Intersection and Addition.

Lemma 5.6. Consider a deterministic system tree T =
⊔n
i=1 XiTi, and any choice

function opt. For each tree Ti, let Ki be its root. Then, Ki is in at least one element

of normopt(T) if and only if

(Xi + gamb(Ti)) ∩ opt(gamb(T)) 6= ∅. (5.3)

Proof. Eq. (5.3) holds if and only if there is a normal form decision U ∈ nfd(Ti) such

that Xi + gamb(U) ⊆ opt(gamb(T)). This is equivalent to there being a U such

that gamb(tXiU) ⊆ opt(gamb(T)). Clearly, tXiU is a normal form decision of T ,

and so by definition of normopt, Eq. (5.3) holds if and only if tXiU is in normopt(T),

which holds if and only if Ki is in at least one element of normopt(T).

Lemma 5.7. If T =
⊔n
i=1XiTi, and opt is a choice function satisfying Intersection

and Addition, then

gamb(normopt(T)) =
⋃
i∈I

(Xi + gamb(normopt(Ti))) (5.4)

5.3. Subtree Perfectness 125

implies

normopt(T) = nfd

(⊔
i∈I

Xi normopt(Ti)

)
,

where I = {i ∈ {1, . . . , n} : (Xi + gamb(Ti)) ∩ opt(gamb(T)) 6= ∅}.

Proof. We first show that

normopt(T) ⊇ nfd

(⊔
i∈I

Xi normopt(Ti)

)
.

Consider a normal form decision U ∈ nfd
(⊔

i∈I Xi normopt(Ti)
)
. To show that

U ∈ normopt(T), we must show that U ∈ nfd(T) and gamb(U) ⊆ gamb(normopt(T)).

The former is obvious, and the latter is established by Eq. (5.4):

gamb(U) ⊆
⋃
i∈I

(Xi + gamb(normopt(Ti)))

= gamb(normopt(T)).

Next we show that

normopt(T) ⊆ nfd

(⊔
i∈I

Xi normopt(Ti)

)
.

Let U ∈ normopt(T). Let V be U with the root node removed, that is, U = tXkV

for some k. Clearly, V ∈ nfd(Tk). It suffices to show that V ∈ normopt(Tk). Let

{Y } = gamb(V) and let Y = gamb(Tk). We know that Xk + Y ∈ gamb(T), and

Y ∈ gamb(Tk). Also, Xk + Y ⊆ gamb(T). By Intersection and Lemma 5.6,

opt(Xk + Y) = opt(gamb(T)) ∩ (Xk + Y).

By Addition,

Xk + opt(Y) = opt(Xk + Y),

whence

Xk + opt(Y) = opt(gamb(T)) ∩ (Xk + Y).

We know Xk + Y is in the right hand side, so Xk + Y is in the left hand side.

Therefore Y ∈ opt(Y) and V ∈ normopt(Tk).

Lemma 5.8. If normopt is subtree perfect then opt satisfies Intersection.

5.3. Subtree Perfectness 126

Proof. Let X and Y be sets of gambles such that Y ⊆ X . Let T1 and T2 be

deterministic system trees with exactly one decision node, and gamb(T1) = X ,

gamb(T2) = Y . Let T = T1 t T2 (so the arcs to T1 and T2 have reward 0), and

N be the node at the root of T2. So, gamb(T) = X . Now, gamb(normopt(T)) =

opt(X), and gamb(stN(normopt(T))) = gamb(Y) ∩ opt(X). By subtree perfectness,

Intersection follows.

Lemma 5.9. If normopt is subtree perfect, then opt satisfies Addition.

Proof. Let X be a gamble and let Y be a non-empty finite set of gambles. Let T1

be a deterministic system tree with exactly one decision node and gamb(T1) = Y .

Let T = tXT1, so gamb(T) = X + Y . Now,

gamb(normopt(T)) = opt(X + Y)

and

gamb(normopt(T1)) = opt(Y).

By subtree perfectness and the definition of normopt, we must have that, first, any

gamble X +Y ∈ opt(X +Y) must have Y ∈ opt(Y) (else there is a U ∈ normopt(T)

that is non-optimal in T1), and second, any Y ∈ opt(Y) must have X + Y ∈

opt(X+Y) (else there is a U ∈ normopt(T1) with tXU non-optimal in T). Therefore

opt(X + Y) = X + opt(Y).

Proof of Theorem 5.5. “only if”. Follows from Lemmas 5.8 and 5.9.

“if”. We proceed by structural induction as usual. The base step is trivial. The

induction hypothesis is that, for a T =
⊔n
i=1XiTi, we have subtree perfectness at all

Ti. If we can show that

gamb(normopt(T)) =
⋃
i∈I

(Xi + gamb(normopt(Ti)))

for I = {i ∈ {1, . . . , n} : (Xi + gamb(Ti))∩ opt(gamb(T)) 6= ∅}, then by Lemma 5.7

and Lemma 2.11, subtree perfectness holds for T .

We have

gamb(normopt(T)) = opt

(
n⋃
i=1

(Xi + gamb(Ti))

)

5.3. Subtree Perfectness 127

whence by Very Strong Path Independence

=
⋃
i∈I

opt(Xi + gamb(Ti))

whence by Addition

=
⋃
i∈I

(Xi + opt(gamb(Ti)))

=
⋃
i∈I

(Xi + gamb(normopt(Ti)))

as required.

Chapter 6

Application To Coherent Lower

Previsions

In this section we examine the behaviour of several popular choice functions for a

generalization of subjective probability theory called coherent lower previsions (also

often called imprecise probability, although this term also sees use for a broader

set of theories). Particular attention is paid to normal form backward induction,

because this has not been thoroughly investigated in the literature. We can also

apply the theory for subtree perfectness, but none of the choice functions satisfies

all the conditions. Instead, we can investigate special cases where subtree perfectness

does hold. Similarly, locality works only in restricted cases. We do not investigate

dynamic programming in detail, since most of the work has already been done by

de Cooman and Troffaes [13].

6.1 Coherent Lower Previsions and Credal Sets

First, we outline a straightforward generalization of the theory of probability, allow-

ing the subject to model uncertainty in cases where too little information is available

to identify a unique probability distribution (see for instance [10, 57, 14, 71, 81, 82,

79]).

128

6.1. Coherent Lower Previsions and Credal Sets 129

6.1.1 Credal Sets and Coherent Lower Previsions

Suppose that

• rewards are expressed in utiles, so R = R,

• the subject can express her beliefs by means of a closed convex set M of

probability mass functions P on the power set of Ω (M is called the credal

set), and

• each probability mass function P ∈M satisfies P (ω) > 0, for all ω ∈ Ω.

• Note that the subject does not express beliefs about the relative plausibility

of the distributions, so there is no second-order probability over the set.

Under the above assumptions, each P inM determines a conditional expectation

EP (X|A) =

∑
ω∈AX(ω)P (ω)∑

ω∈A P (ω)
,

and the whole set M determines a conditional lower and upper expectation

P (X|A) = min
P∈M

EP (X|A) P (X|A) = max
P∈M

EP (X|A), (6.1)

and this for every gamble X and every non-empty event A.

In general, the first two assumptions are all that is required to define a coherent

lower prevision: the credal set can contain mass functions assigning zero probability

to some events. Clearly in such cases, one cannot use (6.1) to define the conditional

lower and upper expectations when A has lower probability zero. Rather than deal

with the complications of the more general setting, and because all of our results fail

when zero probabilities are involved, we prefer to restrict attention to credal sets

containing only positive probabilities. It is important to note, however, that the

theory can be extended, and indeed occasionally we see zero probability appear in

a couple of examples (to illustrate how easily they can crop up). In practice, lower

probability zero can be dealt with through small perturbations; see Section 6.5.1 for

more details.

Why do our results not work with lower probability zero? Consider for instance

the more familiar case of having a single probability mass function, and maximizing

6.1. Coherent Lower Previsions and Credal Sets 130

expected utility. If a chance arc has probability zero, then that arc will contribute

zero to the expected utility for every normal form decision. Therefore Mixture

and Backward Mixture will fail (unless the choice function conditional on an event

of probability zero is assumed to be the identity, which would violate pointwise

dominance). This issue is highlighted by Hammond [24, p. 44]. It turns out that

all of our results for coherent lower previsions also do not hold if any events in

the decision tree have probability zero for some P ∈ M (except for deterministic

system trees; the problems arise from decisions following events of lower probability

zero, and this never occurs in a deterministic system tree). Rather than taking the

trouble to define coherent lower previsions in the more general case, only to show

that the generality adds nothing for our application, it is more convenient to ignore

such credal sets entirely.

The functional P is called a coherent conditional lower prevision, and similarly,

P is called a coherent conditional upper prevision. Although here we have defined

these by means of a set of probability measures, there are different ways of obtaining

and interpreting lower and upper previsions (see for instance Miranda [52] for a

survey). Indeed, the meaning of credal set or how to specify it is not clear from

our definitions. A more meaningful approach is the interpretation of lower and

upper previsions as buying and selling prices for gambles, generalizing De Finetti’s

definition of expectation as the fair price for a gamble [14].

For a particular gamble X, suppose that the subject can assess a supremum

buying price for X, P (X). By this, the subject is stating that she has a clear

preference to buy X for any price µ < P (X) (in other words, choose the gamble

X−µ over the status quo). Suppose the subject also states an infimum selling price

P (X), which is a statement that she has a clear preference to sell X for any price

µ > P (X) (i.e. choose the gamble µ−X over the status quo). Conditional buying

and selling prices can be defined in terms of called-off bets: the lower prevision

P (X|A) is the supremum price the subject is disposed to pay to receive the gamble

X if the bet is called off (and the subject’s money returned) in the event that A

does not obtain.

6.1. Coherent Lower Previsions and Credal Sets 131

Clearly, not just any specifications of buying and selling prices will do. For

instance, if P (X) > P (X), then the subject is apparently disposed to buy a gamble

and then immediately sell it for less. This behaviour is called incurring sure loss.

Also, suppose the subject specifies P (X) = 1, P (Y) = 1, P (X + Y) = 1. She is

disposed to pay up to 1 for X and up to 1 for Y , and so should be disposed to

pay up to 2 for X + Y , conflicting with P (X + Y) = 1. This behaviour is called

incoherence. We assume all specifications a subject makes both avoid sure loss and

are coherent. Further, we assume all events of interest have strictly positive lower

prevision (for the reasons outlined above).

It is often unreasonable to expect the subject to make such specifications for

all gambles, or even all gambles of interest. A limited number of specifications

that avoid sure loss is, however, enough to infer lower and upper previsions for any

gamble, by a process called natural extension [79, §3.1]. This process also shows

the link between buying and selling prices and the credal set. If A is the set of

all relevant conditioning events, and XA is the set of all gambles X for which the

subject has specified P (X|A), then we can define a credal set via

M = {P : (∀A ∈ A, X ∈ XA)(EP (X|A) ≥ P (X|A))}.

Then, as shown by Williams [81], if the original specifications were coherent, the

equalities in (6.1) are satisfied for all relevant X and A. Further, these equalities

can be used to find upper and lower previsions for any other gamble, and this

is guaranteed to be coherent. Note also that, if the original specifications were

incoherent (but avoided sure loss), then this method can be used to automatically

correct the incoherence. For instance, in the example of incoherence in the previous

paragraph, natural extension would correct the lower prevision for X + Y to 2.

At this point, a simple example of calculating upper and lower probability for

events, including conditioning, may be useful.

Example 6.1. Suppose that A,B,C are logically independent events with P (A) =

0.4, P (A) = 0.7, P (B) = 0.5, P (B) = 0.8, P (C) = 0.51, P (C) = 0.7. What is

P (A ∪B), P (A ∪B), P (C|A ∪B) and P (C|A ∪B)?

Let D = A ∪ B. Observe that we can find some P ∈ M such that P (A) = 0.4,

6.1. Coherent Lower Previsions and Credal Sets 132

P (B) = 0.5, and P (A∩B) = 0.4. In this case, P (D) = 0.5. This must be the lowest

probability for D in M. Therefore we have P (D) = 0.5. Also, observe we can find

some P ∈ M with P (A) = 0.7, P (B) = 0.8, and P (A ∩ B) = 0.5, so P (D) = 1.

Therefore P (D) = 1.

Consider next P (C|D). As just shown, there are P ∈ M such that P (D) =

0.7. We can find one of these that has P (C) = 0.7 and P (C ∩ D) = 0.7, so that

P (C|D) = 1. Clearly P (C|D) = 1.

Finally, consider P (C|D). If we have a P ∈ M with P (D) = p, then we would

want to minimize P (C ∩ D). To do this, we should take P (C) = 0.51. We should

also assign as much probability as possible to C ∩ D: this is 1 − P (D). Then

P (C ∩D) = P (C)− (1− P (D)) = P (D)− 0.49. So,

P (C|D) =
P (D)− 0.49

P (D)
.

This is minimized by P (D) = 0.5 giving P (C|D) = 0.02. So P (C|D) = 0.02. Ob-

serve how the conditional for C given D is almost vacuous. This is because the initial

specifications provided very little information about the unions and intersections of

events.

Observe that, since P (D) = 1, P (D) = 0. Thus, there are events of lower

probability zero in this example! In practice this only causes problems for our results

if one of these events appears on a chance arc.

Below are some properties of coherent conditional lower and upper previsions

that we require later (see Williams [81, 82] or Walley [79] for proofs). Following De

Finetti [14], where it is convenient we denote the indicator gamble IA = 1A ⊕ 0A

simply by A as well, so we write for instance P (A|B) for P (IA|B). We also drop

the ⊕ notation, simply using +.

Proposition 6.2. For all non-empty events A,B, gambles X, Y , and constants

λ > 0:

(i) If AX = AY then P (X|A) = P (Y |A).

(ii) P (X|A) + P (Y |A) ≤ P (X + Y |A) ≤ P (X|A) + P (Y |A).

6.1. Coherent Lower Previsions and Credal Sets 133

(iii) P (λX|A) = λP (X|A) and P (λX|A) = λP (X|A).

(iv) P (X|A) = −P (−X|A).

(v) P (A(X − P (X|A ∩B))|B) = 0.

By property (iv), we see that a coherent lower prevision over every gamble com-

pletely determines the upper previsions. Thus, in what follows we need only assume

the existence of the lower prevision. Property (v) is a generalization of the gen-

eralized Bayes rule [79, p. §6.4], and shows how conditional lower previsions are

related.

If a lower prevision is self-conjugate, so that P (X|A) = P (X|A) for all X and

A, then this coincides with De Finetti’s concept of previsions [14]. We call these

linear previsions. Since upper and lower previsions are always the same for linear

previsions, we can simply call them P .

Finally, recall the law of iterated expectation for classical probability. The the-

orem does not in general hold for lower previsions, becoming an inequality instead.

We introduce some notation to express this conveniently. If A = {A1, . . . , An}, then

define P (X|A) to be the gamble

P (X|A) =
n∑
i=1

AiP (X|Ai).

Then for a coherent lower prevision, the following inequalities hold:

P (X|B) ≥ P (P (X|A ∩B)|B) P (X|B) ≤ P (P (X|A ∩B)|B).

It is possible to have equality for some partitions. If there is equality for a

particular partition, then P is said to satisfy marginal extension [79, §6.7.2] for this

partition. It turns out that satisfying marginal extension over all partitions in a

decision tree often yields better-behaved normal form solutions.

Definition 6.3. Let P be a coherent lower prevision, X be a gamble, B be an event,

and A = {A1, . . . , An} be a partition of Ω. P satisfies marginal extension for X

with respect to A and B if

P (X|B) = P (P (X|A ∩B)|B) = P

(
n∑
i=1

AiP (X|Ai ∩B)

∣∣∣∣∣B
)
.

6.1. Coherent Lower Previsions and Credal Sets 134

6.1.2 Choice Functions and Optimality

We now consider four popular choice functions that have been proposed for choosing

between gambles given a coherent lower prevision. Further discussion of the criteria

presented here can be found in Troffaes [77].

Maximality

Maximality is based on the following strict partial preference order >P |A.

Definition 6.4. Given a coherent lower prevision P , for any two gambles X and Y

we write X >P |A Y whenever P (X − Y |A) > 0.

If P (X − Y |A) > 0, then the subject would be willing to pay to swap Y for X.

If forced to choose between X and Y , it is then reasonable to prefer X to Y . This

gives rise to the choice function maximality, proposed by Condorcet [12, pp. lvj–lxix,

4.e Exemple], Sen [66], and Walley [79], among others.1

Definition 6.5. For any non-empty finite set of gambles X and each event A 6= ∅,

opt>P|·(X|A) = {X ∈ X : (∀Y ∈ X)(Y 6>P |AX)}.

Interpreting maximality from a credal set perspective, a gamble X is optimal in

X if, for each Y ∈ X , there is a PY ∈ M such that PY (X|A) ≥ PY (Y |A). Observe

that the linear prevision used can change with Y , so that there may be no P ∈ M

for which X maximizes expected utility. This suggests the following refinement.

E-admissibility

Another criterion is E-admissibility, proposed by Levi [44]. Recall that P (·|A) is the

lower envelope of M. For each P ∈M we can maximize expected utility:

optP (X|A) = {X ∈ X : (∀Y ∈ X)(EP (Y |A) ≤ EP (X|A))}.

Then the set of E-admissible options is defined by:

1Because all probabilities in M are assumed to be strictly positive, Walley’s admissibility con-

dition is implied and hence omitted in Definition 6.5.

6.1. Coherent Lower Previsions and Credal Sets 135

Definition 6.6. For any non-empty finite set of gambles X and each event A 6= ∅,

optM(X|A) =
⋃
P∈M

optP (X|A).

A gamble X is therefore E-admissible when it maximizes expected utility under

at least one P ∈M. Any E-admissible gamble is maximal [79, p. 162, ll. 26–28].

Interval Dominance

Interval dominance is based on the strict partial preference order =P |A.

Definition 6.7. Given a coherent lower prevision P , for any non-empty event A

and any two A-consistent gambles X and Y we write X =P |A Y whenever P (X|A) >

P (Y |A).

This ordering induces a choice function usually called interval dominance [84, 77]:

Definition 6.8. For any non-empty finite set of gambles X and each event A 6= ∅,

opt=P|·
(X|A) = {X ∈ X : (∀Y ∈ X)(Y 6=P |AX)}.

The above criterion was apparently first introduced by Kyburg [40] and was

originally called stochastic dominance. The motivation is quite simple. If the upper

prevision of X is lower than the lower prevision of Y , then if X and Y are among

our options we should never choose X. The motivation for this can be seen from

the behavioural interpretations. Suppose one chooses X. Then one would sell X for

P (X) + ε if offered. One would then also buy Y for P (Y)− ε, thus one would have

P (X)− P (Y) + Y < Y . It would have been more sensible to have chosen Y in the

first place.

It follows from this argument that any choice function for coherent lower previ-

sions should give a subset of interval dominance, but not that interval dominance

is the best choice or even a vaguely sensible one. For instance, maximality is a

subset of interval dominance, and the extra gambles it removes seem sensible to

omit. The credal set interpretation of interval dominance clearly demonstrates its

shortcomings. A gamble X is optimal if there is a P ∈ P such that, for each gamble

Y there is a QY ∈ P such that P (X) ≥ QY (Y). Note that the QY can be different

6.1. Coherent Lower Previsions and Credal Sets 136

for different Y . This is hardly compelling reason to call X optimal. After all, this

means that interval dominance can rarely choose between X and X − ε. Still, inter-

val dominance is easier to calculate than maximality or E-admissibility, and so may

be attractive in large problems.

Γ-maximin

Γ-maximin selects gambles that maximizes the minimum expected reward.

Definition 6.9. For any non-empty finite set of gambles X and each event A 6= ∅,

optP(X|A) = {X ∈ X : (∀Y ∈ X)(P (X|A) ≥ P (Y |A))}.

Γ-maximin is a total preorder, and so usually selects a single gamble regard-

less of the degree of uncertainty in P . Γ-maximin can be criticized for being too

conservative (see Walley [79, p. 164]), as it only takes into account the worst pos-

sible scenario. That this is a risk-averse choice can also be seen from a credal set

interpretation: whatever gamble X we choose, assume that the “true” P ∈ P is

the worst case one, that is, the one that minimizes P (X). Under this assumption,

we choose the gamble for which this minimum is greatest. Γ-maximin has roots in

robust Bayesian statistics, and is discussed by Berger [9, § 4.7.6]. Another criticism

of Γ-maximin is that it fails to take into account the possibility of indecision even

when the intervals between upper and lower previsions are large. Of course, being

able to always choose one optimal decision can also be seen as a desirable propery.

Two criteria related to Γ-maximin are Γ-maximax (maximizing upper expec-

tation), and Hurwicz (maximizing a combination of upper and lower previsions).

These properties of these two choice functions tend to be similar to or worse than

Γ-maximin for subtree perfectness and backward induction, and they do not appear

so commonly in the literature of coherent lower previsions, so we shall not consider

them in detail.

Relationships between the choice functions

The relationships between the choice functions are shown in Fig. 6.1, from [77].

So, for instance, a gamble that is Γ-maximin is always maximal but may not be

6.1. Coherent Lower Previsions and Credal Sets 137

Γ-maximax Γ-maximin

E-admissibility maximality

interval dominance

?

HHH
HHH

HHj ??
-

HH
HHH

HHHj ?

Figure 6.1: Relationships between the choice functions

ω1 ω2

X 0 1

Y 1 0

Z 0.4 0.4

Table 6.1: Gambles for Example 6.10

E-admissible.

The following example (as seen for instance in Seidenfeld [64]) is instructive to

see how the differences between E-admissibility, maximality, and Γ-maximin arise.

Example 6.10. Let Ω = {ω1, ω2}, and let X, Y , and Z be the gambles in Table 6.1.

Suppose that we are completely ignorant about which of ω1, ω2 is true, and so assign

the vacuous lower prevision, P (ω1) = P (ω2) = 0. Then, optP({X, Y, Z}) = {Z}

since its lower prevision is 0.4 rather than 0. But consider a P ∈M. If P (ω1) ≥ 0.5,

then P (Y) ≥ 0.5 > P (Z). And if P (ω1) ≤ 0.5, then P (X) ≥ 0.5 > P (Z). So there

is no P ∈M such that Z maximizes expected utility, and so Z /∈ optM({X, Y, Z}) =

{X,Z}. But Z is maximal, since there is a P ∈ M such that P (ω1) ≤ 0.4 and a

P ∈M such that P (ω2) ≤ 0.4.

These differences can be easily understood by considering the randomized gamble

that chooses X with probability 1/2 and Y with probability 1/2. For any P ∈ M,

this randomized gamble has expected value 0.5, and so dominates Z everywhere in

M. That is, P (1/2X+1/2Y −Z) = 0.1 > 0, so in the set of all randomized gambles

of {X, Y, Z}, Z is not maximal, and is therefore not E-admissible in {X, Y, Z}.

6.2. Backward Induction Properties for Coherent Lower Previsions 138

6.2 Backward Induction Properties for Coherent

Lower Previsions

In this section we formally investigate which of the choice functions for coherent

lower previsions satisfy the conditions of Theorem 3.12(B). It turns out that only

maximality and E-admissibility do, although interval dominance does not behave

too badly. Some of the proofs are based on the following results for more general

choice functions.

6.2.1 Results for General Choice Functions

This section details intermediate results required for the proofs in Section 6.1. Since

the results could be applicable for choice functions that are nothing to do with

coherent lower previsions, and so may be useful for investigating other uncertainty

models, we present them separately.

Proposition 6.11. For each non-empty event A, let �A be any strict partial order

on A-consistent gambles. The choice function induced by these strict partial orders,

that is,

opt�|·(X|A) = {X ∈ X : (∀Y ∈ X)(Y 6�A X)}

satisfies Insensitivity To Omission and Preservation Under Addition.

Proof. By Lemma 3.4, it suffices to show that opt�|· is path independent. Let X1,

. . . , Xn be non-empty finite sets of A-consistent gambles, and let A be a non-empty

event. Let X =
⋃n
i=1Xi and Z =

⋃n
i=1 opt�|·(Xi|A). We show must show that

opt�|·(X|A) = opt�|·(Z|A). (6.2)

By definition,

opt�|·(Z|A) = {Z ∈ Z : (∀Y ∈ Z)(Y 6�A Z)},

and, observe that, if X ∈ X but X /∈ Z, by transitivity of �A and finiteness of X ,

there is a Y ∈ Z such that Y �A X. Therefore again by transitivity of �A, for any

Z ∈ Z such that X �A Z, we have Y �A Z. So,

= {Z ∈ Z : (∀Y ∈ X)(Y 6�A Z)},

6.2. Backward Induction Properties for Coherent Lower Previsions 139

and once again, by definition of Z, if X ∈ X but X /∈ Z there is a Y ∈ X such that

Y �A X, so we have

= {X ∈ X : (∀Y ∈ X)(Y 6�A X)}

= opt�|·(X|A).

Proposition 6.12. Let {opti : i ∈ I} be a family of choice functions. For any

non-empty event A and any non-empty finite set of A-consistent gambles X , let

opt(X|A) =
⋃
i∈I

opti(X|A).

(i) If each opti satisfies Insensitivity To Omission, then so does opt.

(ii) If each opti satisfies Preservation Under Addition, then so does opt.

(iii) If each opti satisfies Backward Mixture, then so does opt.

(iv) If each opti satisfies Backward Conditioning, Preservation Under Addition,

and Backward Mixture, then opt satisfies Backward Conditioning.

(v) If each opti satisfies Mixture then so does opt.

(vi) If each opti satisfies Preservation Under Addition, Mixture, and Backward

Conditioning, then opt satisfies Conditioning.

Proof. (i). By definition of opt and by assumption, for any finite non-empty sets of

gambles X and Y such that Y ⊆ X and for any i ∈ I, opti(X|A) ⊆ opt(X|A) ⊆ Y ,

and therefore by Insensitivity To Omission, opti(X|A) = opti(Y|A). Whence,

opt(Y|A) =
⋃
i∈I

opti(Y|A) =
⋃
i∈I

opti(X|A) = opt(X|A).

(ii). By assumption, for any finite non-empty sets of gambles X and Y such that

Y ⊆ X and for any i ∈ I, opti(Y|A) ⊇ opti(X|A) ∩ Y . Therefore,

opt(Y|A) =
⋃
i∈I

opti(Y|A) ⊇
⋃
i∈I

(opti(X|A) ∩ Y)

= Y ∩
⋃
i∈I

opti(X|A) = opt(X|A) ∩ Y .

6.2. Backward Induction Properties for Coherent Lower Previsions 140

(iii). By assumption, for any non-empty finite set of gambles X , any gamble Z,

any events A and B such that A ∩B 6= ∅, and for any i ∈ I,

opti(AX ⊕ AZ|B) ⊆ A opti(X|A ∩B)⊕ AZ,

whence

opt(AX ⊕ AZ|B) =
⋃
i∈I

opti(AX ⊕ AZ|B)

⊆
⋃
i∈I

(A opti(X|A ∩B)⊕ AZ)

= AZ ⊕ A
⋃
i∈I

opti(X|A ∩B)

= AZ ⊕ A opt(X|B).

(iv). Let A and B be events such that A ∩ B 6= ∅ and A ∩ B 6= ∅, Z be a

A∩B-consistent, and X be a non-empty finite set of A∩B-consistent gambles such

that there is {X, Y } ⊆ X with AX = AY , and AX + AZ ∈ opt(AX + AZ|B). If

this situation does not exist then opt satisfies Backward Addition automatically.

By definition of opt, there is a j such that AX + AZ ∈ optj(AX + AZ|B).

We show that both X and Y are in optj(X|A ∩ B), and therefore are both in

opt(X|A∩B). It follows from Preservation Under Addition and Backward Mixture

that

optj(AX + AZ|B) ⊆ A optj(X|A ∩B) + AZ.

Therefore, there is a W ∈ optj(X|A ∩ B) with AW = AX. Finally, optj satisfies

Backward Conditioning, and therefore both X and Y must be in optj(X|A ∩ B).

This establishes Backward Conditioning for opt.

(v). By assumption, for any non-empty finite set of gambles X , any gamble Z,

any events A and B such that A ∩B 6= ∅, and for any i ∈ I,

opti(AX ⊕ AZ|B) = A opti(X|A ∩B)⊕ AZ,

6.2. Backward Induction Properties for Coherent Lower Previsions 141

whence

opt(AX ⊕ AZ|B) =
⋃
i∈I

opti(AX ⊕ AZ|B)

=
⋃
i∈I

(A opti(X|A ∩B)⊕ AZ)

= AZ ⊕ A
⋃
i∈I

opti(X|A ∩B)

= AZ ⊕ A opt(X|B).

(vi). By the above results, opt satisifes Preservation Under Addition, Mixture,

and Backward Conditioning. By Lemma 3.6, opt satisfies Strong Backward Condi-

tioning. By Lemma 3.7, opt satisfies Conditioning.

6.2.2 Maximality

Maximality is a strict partial order, so Insensitivity To Omission and Preservation

Under Addition hold, by Proposition 6.11.

Proposition 6.13. Maximality satisfies Conditioning.

Proof. We show that maximality satisfies Conditioning. Let A be a non-empty

event, X be a non-empty finite set of A-consistent gambles, and {X, Y } ⊆ X with

AX = AY . We show that, for any event B such that A∩B 6= ∅, X ∈ opt>P|·(X|A∩

B) implies Y ∈ opt>P|·(X|A ∩B).

If X ∈ opt>P|·(X|A ∩ B), then for every Z ∈ X , P (Z − X|A ∩ B) ≤ 0. But

AX = AY implies (A∩B)X = (A∩B)Y , and, by Proposition 6.2(i), P (Z −X|A∩

B) = P (Z−Y |A∩B), and so it immediately follows that Y ∈ opt>P|·(X|A∩B).

Proposition 6.14. Maximality satisfies Backward Mixture.

Proof. Consider events A and B such that A ∩B 6= ∅ and A ∩B 6= ∅, a non-empty

finite set of A ∩ B-consistent gambles X , and an A ∩ B-consistent gamble Z. To

establish Backward Mixture, it suffices to show that for any Y ∈ X ,

Y /∈ opt>P|·(X|A ∩B) =⇒ AY + AZ /∈ opt>P|·(AX ⊕ AZ|B).

6.2. Backward Induction Properties for Coherent Lower Previsions 142

If Y /∈ opt>P|·(X|A∩B) then there is an X ∈ X with P (X−Y |A∩B) > 0. The result

follows if we show that P (AX+AZ−(AY +AZ)|B) > 0. By Proposition 6.2(ii)–(v),

0 = P (A(X − Y − P (X − Y |A ∩B))|B)

≤ P (A(X − Y)|B) + P (−AP (X − Y |A ∩B)|B)

= P (A(X − Y)|B)− P (AP (X − Y |A ∩B)|B)

= P (A(X − Y)|B)− P (A|B)P (X − Y |A ∩B)

where we relied on P (X − Y |A ∩B) > 0 in the last step. So, indeed

P (A(X − Y)|B) ≥ P (A|B)P (X − Y |A ∩B) > 0.

Corollary 6.15. For any consistent decision tree T , it holds that

backopt>P|·
(T) = normopt>P|·

(T).

Proof. Immediate, from Propositions 6.11, 6.13, and 6.14, and Theorem 3.12.

6.2.3 E-admissibility

Since E-admissibility is a union of maximality choice functions we have:

Corollary 6.16. For any consistent decision tree T , it holds that

backoptM(T) = normoptM(T).

Proof. Immediate, from Proposition 6.12, Corollary 6.15, and Theorem 3.12.

Further, from Theorem 3.28, we have:

Corollary 6.17. For any consistent decision tree T ,

normoptM(T) = normoptM(backopt>P|·
(T)).

6.2. Backward Induction Properties for Coherent Lower Previsions 143

A A

X 1 1

Y 1.5 3.5

Z 0 4

P (·|B) P (·|B)

X 1 1

Y 2 3

Z 1 3

P P

BX +BZ 1 2

BY +BZ 1.5 3

Table 6.2: Gambles and their lower and upper previsions for Example 6.18.

6.2.4 Interval Dominance

By Proposition 6.11, interval dominance satisfies Insensitivity To Omission and

Preservation Under Addition, and it satisfies Backward Conditioning because AX =

AY implies P (X|A) = P (Y |A) and P (X|A) = P (Y |A). We now show that interval

dominance fails Backward Mixture.

Example 6.18. Suppose A and B are events, and X, Y , and Z are the gambles

given in Table 6.2. Let M contain all mass functions P such that A and B are

independent, 1/4 ≤ P (A) ≤ 3/4, and P (B) = 1/2. Let P be the lower envelope of

M.

Lower and upper previsions of relevant gambles are given in Table 6.2; for ex-

ample,

P (BY +BZ) = max
P∈M

P (BY +BZ) = max
P∈M

P (B)P (Y |B) + P (B)P (Z|B)

=
1

2
max
P∈M

(P (Y) + P (Z)) =
1

2
max
p∈[1

4
, 3
4

]
(1.5(1− p) + 3.5p+ 4p) = 3

and similar for all other gambles. Clearly, Y interval dominates X conditional on

B, however, BY + BZ does not interval dominate BX + BZ, violating Backward

Mixture.

Even though interval dominance violates Backward Mixture, it can still be of

use in backward induction. It is easily shown that (see for instance Troffaes [77])

opt>P|·(X|A) ⊆ opt=P|·
(X|A).

By Theorem 3.28, we therefore have:

6.2. Backward Induction Properties for Coherent Lower Previsions 144

Corollary 6.19. For any consistent decision tree T ,

normopt>P|·
(T) = normopt>P|·

(backopt=P|·
(T))

normoptM(T) = normoptM(backopt=P|·
(T))

It can also be shown that backopt=P|·
(T) ⊆ normopt=P|·

(T) for all T , so all strate-

gies found by backward induction will be optimal with respect to opt=P|·
.

Lemma 6.20. For any non-empty event A and any coherent lower prevision P , if

Z >P |A Y and Z 6=P |A X, then Y 6=P |A X.

Proof. Let P (Y |A) + ε = P (X|A). Then

P (Y |A) + ε ≥ P (Z|A).

So,

0 ≤ P (Y |A)− P (Z|A) + ε

= P (Y |A) + P (−Z|A) + ε

≤ P (Y − Z|A) + ε

≤ ε.

Therefore, ε > 0 and Y 6=P |A X.

Theorem 6.21. For any lower prevision P and any consistent decision tree T ,

backopt=P|·
(T) ⊆ normopt=P|·

(T)

Proof. We must show that there are no elements of backopt=P|·
(T) that are not in

normopt=P|·
(T). Since opt=P|·

corresponds to a partial order, this can only happen

if there is a V ∈ backopt=P|·
(T) and a U ∈ normopt=P|·

(T) \ backopt=P|·
(T) such that

gamb(U) =P |ev(T) gamb(V).

For any U ∈ normopt=P|·
(T)\backopt=P|·

(T), there is anN in U such that stN(U) 6∈

normopt=P|·
(stN(T)) (for instance, let N be a node at the first level of T where

backopt=P|·
and normopt=P|·

differ; note that this cannot be the root of T). Because

interval dominance contains all maximal gambles, stN(U) 6∈ normopt>P|·
(stN(T)).

6.2. Backward Induction Properties for Coherent Lower Previsions 145

By Theorem 3.12, U 6∈ normopt>P|·
(T). So, there is at least one W ∈ normopt>P|·

(T)

such that gamb(W) >P |ev(T) gamb(U). By Theorem 3.28, W ∈ normopt=P|·
(T).

For any V ∈ backopt=P|·
(T), we know

gamb(W) 6=P |ev(T) gamb(V)

. By Lemma 6.20, gamb(U) 6=P |ev(T) gamb(V) for any U ∈ normopt=P|·
(T) \

backopt=P|·
(T).

6.2.5 Γ-maximin

It has been shown that Γ-maximin fails Theorem 3.12(A). To demonstrate this,

we give a variation on a counter-example by Seidenfeld [64, Sequential Example 1,

pp. 75–77].

Example 6.22. Consider two coins. One is known to be fair (with probability

1/2 of landing heads, and 1/2 of landing tails). Nothing is known about the other,

so it has lower probability 0 of landing heads, and lower probability 0 of landing

tails (we use 0 here for simplicity: although this violates the assumption that lower

probabilities are positive, we can replace 0 with some small ε > 0 and nothing would

change). It is known that the result of tossing one coin does not influence the other.

Consider the following gamble, X: the subject receives 1 if both coins land heads, 1

if both coins land tails, and 0 otherwise. It turns out there is no imprecision in this

gamble: there is a 1/2 chance that the fair coin agrees with the mysterious coin, so

P (X) = P (X) = 0.5,

Now suppose the subject is offered the sequential problem in Figure 6.2. She has

two choices initially: to pay 0.4 for the randomization X, or to be given 0.05 to

observe the fair coin. After observing the fair coin, she again must decide whether

or not to buy X for 0.4. Of course, at this point X is no longer a randomization

because the fair coin’s result is known. Having observed H, X is equivalent to a

gamble giving 1 if the mysterious coin lands heads and 0 otherwise, and similarly

for observing T . Since nothing is known about the mysterious coin, these two gambles

have lower prevision 0.

6.3. Backward Induction Examples 146

N1

X − 0.4

N2

0.05

X − 0.35

H

N3

0.05

X − 0.35
T

Figure 6.2: An example for backward induction using Γ-maximin

So, applying Γ-maximin at N2 and N3 will eliminate the X − 0.35 branches.

Backward induction therefore chooses the normal form gamble X − 0.4, since this

has higher prevision than 1/2 · 0.05 + 1/2 · 0.5. But observe that there is a normal

form gamble H(X − 0.35)⊕ T (X − 0.35) = X − 0.35. Therefore X − 0.4 cannot be

an optimal normal form gamble.

Since Γ-maximin is induced by an ordering, it satisfies Insensitivity To Omission

and Preservation Under Addition by Proposition 6.11. As for interval dominance,

Γ-maximin satisfies Backward Conditioning. Hence, Γ-maximin must fail Backward

Mixture. Indeed, backward induction can fail in a particularly serious way: it

can select a single gamble that is inferior to another normal form gamble. Hence,

backward induction may not find any Γ-maximin gambles.

Later we see that if P satisfies marginal extension for all partitions in a decision

tree, normoptP is subtree perfectness, and therefore in such situations backward

induction does work.

6.3 Backward Induction Examples

In this section we give two examples of the use of backopt to solves simple decision

trees.

6.3. Backward Induction Examples 147

6.3.1 Lake District Problem

Consider again the lake district problem depicted in Fig. 1.1, but now suppose that

the subject has specified a coherent lower prevision, instead of a singe probability

measure. For this example, we consider an ε-contamination model: with probability

1− ε, observations follow a given probability mass function P , and with probability

ε, observations follow an unknown arbitrary distribution. One can easily check that,

under this model, the lower expectation for a gamble X is

P (X) = (1− ε)EP (X) + ε inf X

The conditional lower expectation is [79, p. 309]

P (X|A) =
(1− ε)EP (AX) + ε infω∈AX(ω)

(1− ε)P (A) + ε

As before, let P (S1) = 0.6, P (E1|S1) = 0.7, and P (E1|S2) = 0.2, so P (E1) = 0.5.

Let ε = 0.1.

Naively, she could solve the problem using normopt>P|·
: she lists all possible

strategies, finds the corresponding gambles, and applies maximality.

Table 6.3 lists all strategies and their gambles. Each strategy gives a reward

determined entirely by ω, and hence has a corresponding gamble. For example, the

gamble for the last strategy is

(5− c)S1E1 + (20− c)S1E2 + (10− c)S2E1 + (15− c)S2E2 = S1Y + S2X − c,

with X = 10E1 + 15E2 and Y = 5E1 + 20E2. Here, and in the following, we denote

the indicator function IA(ω) =
{

0 if ω∈A
1 if ω 6∈A of an event A also simply by A: for instance,

(5− c)S1E1 is just a shorthand notation for (5− c)IS1IE1 .

Maximality can then be applied to find the optimal gambles: this requires com-

parison of all six gambles at once. Skipping the details of this calculation, for

instance with c = 0.5, we find that we should buy the newspaper and follow its

advice.

More efficient is to use backopt>P|·
, as illustrated in Fig. 6.3.

Denote subtrees at a particular node N∗∗ by T ∗∗ = stN∗∗ (T).

(i) First, write down the gambles at the final chance nodes. For example, at N1
1
1

1

the gamble is (10− c)E1 + (15− c)E2 = X − c, and similarly for all others.

6.3. Backward Induction Examples 148

strategy gamble

dS, then d1 X

dS, then d2 Y

dS, then d1 if S1 and d1 if S2 X − c

dS, then d2 if S1 and d2 if S2 Y − c

dS, then d1 if S1 and d2 if S2 S1X + S2Y − c

dS, then d2 if S1 and d1 if S2 S1Y + S2X − c

Table 6.3: Strategies and gambles for the lake district problem.

(i) N1

N1
1

N1
1
1

{X − c}d1

{Y − c}d2

S 1

N1
1
2

{X − c}d1

{Y − c}d2

S
2

dS

N12

{X}d1

{Y }d2

d
S

(ii) N1

N1
1

opt({X − c, Y − c}|S1) = {X − c}S1

opt({X − c, Y − c}|S2) = {Y − c}S2

dS

opt({X, Y }) = {X, Y }d
S

(iii) N1

opt({S1(X − c) + S2(Y − c)}) = {S1X + S2Y − c}dS

{X, Y }d
S

(iv) opt({S1X + S2Y − c,X, Y }) =

{S1X + S2Y − c} if c < 29/50

{X, Y } if c > 79/50

{S1X + S2Y − c,X, Y } otherwise

Figure 6.3: Solving the lake district example by backward induction.

6.3. Backward Induction Examples 149

(ii) Let us first deal with the branch corresponding to refusing the newspaper. At

the decision node N12, we have a choice between two strategies that corre-

spond to the gambles X and Y . We also have ev(T 12) = Ω. So to determine

the optimal strategies in this subtree, we must compare these two gambles

unconditionally:

P (X − Y) = P (Y −X) = −5ε = −1/2,

so at T 12 the strategies d1 and d2 are both optimal.

Now we move to the branch corresponding to buying the newspaper. At N1
1
1,

we need to compare X − c and Y − c. We have that ev(T 1
1
1) = S1, and

P ((X − c)− (Y − c)|S1) = 6−31ε
3+2ε

> 0,

so X−c >P |S1 Y −c and the uniquely optimal strategy is d1. Next, considering

N1
1
2, we see that ev(T 1

1
2) = S2, and

P ((Y − c)− (X − c)|S2) = 6−31ε
2+3ε

> 0,

so the optimal strategy here is d2.

(iii) Moving to N1
1, we see that only one of the original four strategies remains:

“d1 if S1 and d2 if S2”, corresponding to the gamble S1X + S2Y − c.

(iv) Finally, considering the entire tree T , three strategies are left: “d1 if S1 and

d2 if S2”; “dS, then d1”; “dS, then d2”. Therefore we need to find

opt>P|·({S1X + S2Y − c,X, Y }).

We have

P (X − (S1X + S2Y − c)) = c− (6 + 19ε)/5 = c− 79/50

P ((S1X + S2Y − c)−X) = (6− 31ε)/5− c = 29/50− c

P (Y − (S1X + S2Y − c)) = c− (6 + 19ε)/5 = c− 79/50

P ((S1X + S2Y − c)− Y) = (6− 31ε)/5− c = 29/50− c

Concluding (see Fig. 6.3(iv)):

6.3. Backward Induction Examples 150

• if the newspaper costs less than 29/50, we should buy and follow its

advice.

• if it costs more than 79/50, we do not buy, but have insufficient informa-

tion to decide whether to take the waterproof or not.

• if the newspaper costs between 29/50 and 79/50, we can take any of the

three remaining options.

Comparing this with the solution calculated in Section 1.2.4, we observe that

the imprecision has created a range of c for which it is unclear whether buying the

newspaper is better than not, rather than the single value for c in the precise case.

Despite this, should the subject decide to buy the newspaper, she will follow the

same policy in both cases: take the waterproof only if the newspaper predicts rain.

Finally it should be noted that, although in both cases both dSd1 and dSd2 are

involved in optimal normal form decisions for some values of c, in the precise case

this is because they are equivalent and in the imprecise case they are incomparable.

A tiny increase in value for, say, not taking the waterproof and no rain, would make

dSd1 always non-optimal under EP but still optimal under P for c ≥ 29/50.

6.3.2 The Oil Wildcatter

The oil wildcatter is a classic introductory example of a decision tree. We solve the

version used by Kikuti et al. [38, Fig. 2]. Fig. 6.4 depicts the decision tree, with

utiles in units of $10000. The subject must decide whether to drill for oil (d2) or

not (d1). Drilling costs 7 and provides a return of 0, 12, or 27 depending on the

richness of the site. The events S1 to S3 represent the different yields, with S1 being

the least profitable and S3 the most. The subject may pay 1 to test the site before

deciding whether to drill; this gives one of three results T1 to T3, where T1 is the

most pessimistic and T3 the most optimistic.

Lower and upper probabilities are given for each Ti (Table 6.4), and for each Si

conditional on Ti (Table 6.5). (Some intervals are tighter than those in Kikuti et

al., since their values are incoherent—we corrected these by natural extension [79,

§3.1].)

6.3. Backward Induction Examples 151

N1

N1
1

N1
1
1

−1
d1

N1
1
1

2

−8
S1

4
S2

19
S

3

d
2

T 1

N1
1
2

−1
d1

N1
1
2

2

−8
S1

4
S2

19
S

3

d
2

T2

N1
1
3

−1
d1

N1
1
3

2

−8
S1

4
S2

19
S

3

d
2

T
3

d T

N12

0
d1

N12
2

−7
S1

5
S2

20
S

3

d
2

d
T

Figure 6.4: Decision tree for the oil wildcatter.

T1 T2 T3

0.183, 0.222 0.333, 0.363 0.444, 0.454

Table 6.4: Unconditional lower and upper probabilities P (Ti) and P (Ti) for oil

example.

T1 T2 T3

S1 0.547, 0.653 0.222, 0.333 0.111, 0.166

S2 0.222, 0.272 0.363, 0.444 0.333, 0.363

S3 0.125, 0.181 0.250, 0.363 0.471, 0.556

Table 6.5: Conditional lower and upper probabilities P (Si|Ti) and P (Si|Ti) for oil

example.

6.3. Backward Induction Examples 152

(i) N1

N1
1

N1
1
1

{−1}d1

{X − 1}d2T 1

N1
1
2

{−1}d1

{X − 1}d2
T2

N1
1
3

{−1}d1

{X − 1}d2

T
3

d T

N12

{0}d1

{X}d2

d
T

(ii) N1

N1
1

opt({−1, X − 1}|T1) = {−1, X − 1}T1

opt({−1, X − 1}|T2) = {X − 1}
T2

opt({−1, X − 1}|T3) = {X − 1}
T3

dT

opt({0, X}) = {X}d
T

(iii) N1

opt({T1(−1) + T2(X − 1) + T3(X − 1), T1(X − 1) + T2(X − 1) + T3(X − 1)})

= {(T2 + T3)X − 1, X − 1}

dT

{X}d
T

(iv) opt({(T2 + T3)X − 1, X − 1, X}) = {X}

Figure 6.5: Solving the oil wildcatter example by normal form backward induction.

By marginal extension [79, §6.7.2], the lower prevision of a gamble Z is then

P (Z) = P (T1P (Z|T1) + T2P (Z|T2) + T3P (Z|T3)).

Let X = −7S1 + 5S2 + 20S3, and again let T ∗∗ = stN∗∗ (T). Since we will only be

concerned with maximality, and normal form decisions in this problem are uniquely

identified by their gambles, we can conveniently work with gambles in this example.

Therefore, we use the following notation:

opt = opt>P|· back = gamb ◦ backopt>P|·
norm = gamb ◦ normopt>P|·

(i) Of course, back(·) at the final chance nodes simply reports the gamble:

back(T 1
1
1

2) = back(T 1
2
1

2) = back(T 1
3
1

2) = {X − 1},

and back(T 12
2) = {X}.

6.3. Backward Induction Examples 153

(ii) For T 1
1
1, we must find P ((X − 1)− (−1)|T1) and P (−1− (X − 1)|T1). These

lower previsions can be computed using Table 6.5 as follows: X will have

lowest expected value when the worst outcome S1 is most likely (probability

0.653) and the best outcome S3 is least likely (probability 0.125), and so the

probability of S2 is 0.222. So, P (X|T1) = −7 × 0.653 + 5 × 0.222 + 20 ×

0.125 = −0.961. Similarly, P (−X|T1) = −1.151. Neither of these is positive,

so back(T 1
1
1) = {X − 1,−1}.

For T 1
1
2, P ((X − 1) − (−1)|T2) = 4.754, and therefore d2 dominates d1, so

back(T 1
1
2) = {X−1}. Similarly, P ((X−1)−(−1)|T3) = 10.073, so back(T 1

1
3) =

{X − 1}.

For T 12, we need to find P (X − 0). By marginal extension we have

P (X) = P (T1P (X|T1) + T2P (X|T2) + T3P (X|T3))

= P (−0.961T1 + 4.754T2 + 10.073T3)

= 0.222×−0.961 + 0.334× 4.754 + 0.444× 10.073 = 5.846906.

This is greater than zero, so back(T 12) = {X}.

(iii) At T 1
1 there are two potentially optimal gambles: T1(X − 1) + T2(X − 1) +

T3(X−1) = X−1 and T1(−1)+T2(X−1)+T3(X−1) = (T2+T3)X−1. We must

find P ((X−1)−((T2+T3)X−1)) = P (T1X) and P (((T2+T3)X−1)−(X−1)) =

P (−T1X). Using marginal extension,

P (T1X) = P (T1P (X|T1)) = P (−0.961T1) = 0.222×−0.961 = −0.213342 < 0,

P (−XT1) = P (T1P (−X|T1)) = P (−1.151T1) = 0.222×−1.151 = −0.255522 < 0,

so back(T 1
1) = {X − 1, (T2 + T3)X − 1}.

(iv) Finally, for T , we must consider {X,X − 1, (T2 + T3)X − 1}. It is clear that

P (X − (X − 1)) = 1 > 0, so X − 1 can be eliminated. It is also clear that if a

gamble does not dominate X − 1 then is also does not dominate X, so by our

calculation at T 1
1 we know that X is maximal. We finally have

P (X − ((T2 + T3)X − 1)) = P (T1X + 1) = P (T1X) + 1 = −0.213342 + 1 > 0,

so back(T) = {X}. So, the optimal strategy is: do not test and just drill.

6.4. Subtree Perfectness 154

We found a single maximal strategy. By Corollary 6.17, it is also the unique E-

admissible strategy. (Our solution differs from Kikuti et al. [38]; since they do not

detail their calculations, we could not identify why.) Of course, if the imprecision

was larger, we would have found more, but it does show that non-trivial sequential

problems can give unique solutions even when probabilities are imprecise.

In this example, the usual normal form method requires comparing 10 gambles

at once. By normal form backward induction, we only had to compare 2 gambles at

once at each stage (except at the end, where we had 3), leading us much more quickly

to the solution: the computational benefit of normal form backward induction is

obvious.

6.4 Subtree Perfectness

Since Γ-maximin and interval dominance fail to satisfy the conditions of Theo-

rem 3.12, they lack subtree perfectness (Corollary 3.21). Since maximality and

E-admissibility are not total preorders, they lack subtree perfectness because of

Intersection.

All is not lost, however. For particular restrictions on P or special types of

decision tree, some of the choice functions have subtree perfectness. Further, these

restrictions and special cases are practically useful. It is only interval dominance for

which such interesting cases could not be found (any effort to do so seems to give a

trivial tree or a linear prevision).

Γ-maximin

Although Γ-maximin can be criticised strongly for failing to model the indecision

inherent to an imprecise model, it is the most fruitful for subtree perfectness. This

is because the indecision is precisely the feature that causes Intersection to fail, and

so any choice function that accurately models it must fail subtree perfectness. For

Γ-maximin, all we need to do is to force P to satisfy Mixture. It turns out that all

we need for this is marginal extension on all relevant partitions.

6.4. Subtree Perfectness 155

Definition 6.23. Let P be a coherent lower prevision, T be a consistent decision

tree, and N be a chance node in T . Let E be the partition of Ω at N , and B =

ev(stN(T)). P satisfies marginal extension at N if, for all X ∈ gamb(stN(T)), P

satisfies marginal extension for X with respect to E and B:

P (X|B) = P (P (X|E ∩B)|B).

Since Γ-maximin satisfies Conditioning and Intersection, we only need to show

that it satisfies Mixture for all relevant events and gambles. It is perhaps more in-

structive to show that it satisifes Multiple Mixture instead. First we need a technical

detail about lower previsions.

Lemma 6.24. For any lower prevision P , any non-empty events A and B with

A ∩B 6= ∅, any real numbers λ, µ with λ > µ, and any gamble X,

P (λA+X|B) > P (µA+X|B).

Proof. For any P ∈M,

P (λA+X|B) = λP (A|B) + P (X|B) > µP (A|B) + P (X|B) = P (µA+X|B).

Therefore,

min
P∈M

P (λA+X|B) > min
P∈M

P (µA+X|B).

Lemma 6.25. Let P be a coherent lower prevision, B be a non-empty event, A =

{A1 . . . , An} be a partition of Ω such that Ai ∩ B 6= ∅ for all i, X1, . . . ,Xn be non-

empty finite sets of gambles where Xi is Ai ∩ B-consistent for all i. If P satisfies

marginal extension for each
∑n

i=1AiXi ∈
∑n

i=1 AiXi (with respect to A and B), then

optP

(
n∑
i=1

AiXi

∣∣∣∣∣B
)

=
n∑
i=1

Ai optP(Xi|Ai ∩B).

Proof. Let
∑n

i=1 AiXi ∈
∑n

i=1AiXi. By marginal extension,

P

(
n∑
i=1

AiXi

∣∣∣∣∣B
)

= P

(
n∑
i=1

AiP (Xi|Ai ∩B)

∣∣∣∣∣B
)
.

6.4. Subtree Perfectness 156

Suppose there is a k such that Xk /∈ optP(Xk|Ak ∩ B). Then there is a Yk ∈ Xk
such that P (Yk|Ak ∩ B) > P (Xk|Ak ∩ B). Since P (Ak|B) > 0, replacing Xk by

Yk in
∑n

i=1AiXi will increase the lower prevision of this gamble by Lemma 6.24.

Therefore
∑n

i=1 AiXi is not optimal with respect to Γ-maximin.

Suppose instead that Xi ∈ optP(Xi|Ai ∩ B) for all i. We know that, for any i

and any Yi ∈ Xi, P (Xi|Ai ∩B) ≥ P (Yi|Ai ∩B). Therefore,

P

(
n∑
i=1

AiP (Xi|Ai ∩B)

∣∣∣∣∣B
)
≥ P

(
n∑
i=1

AiP (Yi|Ai ∩B)

∣∣∣∣∣B
)

= P

(
n∑
i=1

AiYi

∣∣∣∣∣B
)

for any Y1 ∈ X1, . . . , Yn ∈ Xn. Therefore
∑n

i=1AiXi is optimal with respect to

Γ-maximin. This establishes Multiple Mixture.

Theorem 6.26. Let P be a coherent lower prevision. For any consistent decision

tree T such that P satisfies marginal extension for all chance nodes in T , normoptP

is subtree perfect in T .

Proof. We follow the same approach as in the proof of Theorem 2.6, omitting details

for brevity. The induction hypothesis is that subtree perfectness holds in each

subtree at the immediate successors of the root node. The inductive step is to show

that for all K ∈ ch(T),

normoptP(stK(T)) = stT (normoptP(T)).

If T has its root at a decision node then this follows immediately from Intersection as

we have seen before. If T has its root at a chance node, then this follows immediately

because the conditions of Lemma 6.25 are satisfied, and optP satisfies Conditioning.

Therefore subtree perfectness follows from Lemma 2.11.

It appears that marginal extension is enough to ensure subtree perfectness (and

hence also backward induction) for Γ-maximin. Unfortunately, although marginal

extension may be satisfied for P for all relevant partitions of a particular decision

tree, for any P that is not linear we can always find a decision tree where marginal

extension is not satisfied for the relevant partitions. Thus, marginal extension can

provide subtree perfectness for some problems, but it does not solve everything.

Interestingly, we see in Proposition 6.34 that marginal extension is not sufficient for

locality.

6.4. Subtree Perfectness 157

E-admissibility

E-admissibility satisfies Conditioning and Mixture but not Intersection. As can be

seen in the proof of Lemma 2.10, the failure of Intersection causes problems in trees

with multiple decision nodes. These problems would not manifest in trees where

E-admissibility selects only one option at every decision arc. But in such trees,

using E-admissibility would then be equivalent to just picking any one P ∈ M

and maximizing expected utility under that; the choice of P is irrelevant. It is not

particularly interesting that E-admissibility is subtree perfect for problems where

using any consistent P would be identical.

We can, however, use the results of Section 2.4 to demonstrate subtree perfectness

for trees with at most one decision node per branch. Here, failure of Intersection is

not a problem.

Lemma 6.27. Let {opti : i ∈ I} be a family of choice functions. For any non-empty

event A and any non-empty finite set of A-consistent gambles X , let

opt(X|A) =
⋃
i∈I

opti(X|A).

If all the opti satisfy Weak Multiple Mixture then so does opt.

Proof. We have

opt

(
n⊕
j=1

AjXj

∣∣∣∣∣B
)

=
⋃
i∈I

opti

(
n⊕
j=1

AjXj

∣∣∣∣∣B
)
.

If
n⊕
j=1

AjXj ∈ opt

(
n⊕
j=1

AjXj

∣∣∣∣∣B
)
,

then there is at least one i such that

n⊕
j=1

AjXj ∈ opti

(
n⊕
j=1

AjXj

∣∣∣∣∣B
)
.

By assumption, for such an i,

Xj ∈ opti(Xj|Aj ∩B),

and so by definition of opt,

Xj ∈ opt(Xj|Aj ∩B).

6.4. Subtree Perfectness 158

This proves the first part of the property.

If Xk ∈ opt(Xk|Ak ∩ B), then there is at least one i ∈ I such that there are

Xj ∈ Xj for each j 6= k such that

n⊕
j=1

AjXj ∈ opti

(
n⊕
j=1

AjXj

∣∣∣∣∣B
)
,

whence
n⊕
j=1

AjXj ∈ opt

(
n⊕
j=1

AjXj

∣∣∣∣∣B
)

as required.

Corollary 6.28. Let T =
⊙

EiTi be a consistent decision tree where each of the Ti

has a decision node as the root, and there is only one decision node in every branch.

Then normoptM is subtree perfect in this tree.

Proof. Follows from Lemmas 6.12 and 6.27 and Theorem 2.12.

Maximality

Weak Multiple Mixture has so far resisted proof or counter-example for maximality.

There are, however, some special cases where it is easy to demonstrate.

Lemma 6.29. Maximality satisfies Weak Multiple Mixture when, for all i, |Xi| ≤ 2.

Proof. The first part of Weak Multiple Mixture is just Backward Mixture, which

holds for maximality. For the second part, let Xk ∈ opt>P|·(Xk|Ak ∩ B) for some

k. It follows immediately from the definitions of E-admissibility and maximality

that optM(Y|A) = opt>P|·(Y|A) if |Y| ≤ 2. Therefore, Xk ∈ optM(Xk|Ak ∩ B).

E-admissibility satisfies Weak Multiple Mixture, so for each j 6= k there is an Xj ∈

Xk such that
∑n

i=1 AiXi ∈ opt (
∑n

i=1AiXi|B). Now, any E-admissible gamble is

maximal [77], so the second part of Weak Multiple Mixture holds for maximality.

Unsurprisingly, Weak Multiple Mixture holds whenever P satisfies marginal ex-

tension on the relevant gambles and events. In fact, Multiple Mixture holds (this is

also true for E-admissibility, by a similar proof).

Lemma 6.30. Suppose P satisfies marginal extension for
∑n

i=1AiXi with respect

to A and B. Then, maximality satisfies Multiple Mixture for these Xi, Ai, B.

6.5. Cumulative Decision Processes 159

Proof. Let X1, . . . , Xn be gambles such that Xi ∈ opt(Xk|Ak ∩ B). Let
∑n

i=1 AiYi

be a gamble in
∑n

i=1AiXi. Then,

P

(
n∑
i=1

Ai(Yi −Xi)

∣∣∣∣∣B
)

= P

(
n∑
i=1

AiP

(
n∑
j=1

Aj(Yj −Xj)

∣∣∣∣∣Ai ∩B
)∣∣∣∣∣B

)

= P

(
n∑
i=1

AiP (Yi −Xi|Ai ∩B)

∣∣∣∣∣B
)

≤ 0

by conditional maximality of each of the Xi. Therefore

opt>P|·

(
n∑
i=1

AiXi

∣∣∣∣∣B
)
⊇

n∑
i=1

Ai opt>P|·(Xi|Ai ∩B).

The opposite inclusion follows from backward induction.

6.5 Cumulative Decision Processes

In this section we apply the theory for locality and deterministic system trees to

imprecise probability.

6.5.1 Locality

This section is based on joint work with Ricardo Shirota Filho, adapted from [76].

It is interesting that the property of locality does not in general hold for any of

the choice functions. We shall instead investigate minimal restrictions on the form

of P for each of the choice functions to work. As with subtree perfectness, we find

that marginal extension is crucial. We need to express marginal extension in a form

consistent with our notation for this subject.

Definition 6.31. Let the possibility space be Ω = S0 × · · · × Sn. A coherent lower

prevision P is then said to satisfy marginal extension with respect to S0, . . . , Sn

whenever, for all 1 ≤ k < n, all gambles Z on Fk, and all hk−1 ∈ Hk−1,

P (Z|hk−1) = P (P (Z|hk−1Sk)|hk−1)

6.5. Cumulative Decision Processes 160

In the above definition, P (Z|hk−1Sk) denotes the gamble

P (Z|hk−1Sk) : sk 7→ P (Z|hk−1sk)

Note that the order of the state spaces is relevant for marginal extension. For

instance, satisfying marginal extension with respect to S0, S1, S2, is not equivalent

to satisfying marginal extension with respect to S0, S2, S1.

Finally, note that for conditional previsions EP , marginal extension corresponds

to disintegrability [17, p. 90, Eq. (3)], and hence is always satisfied in our case (since

we are concerned with finite state spaces only).

Maximality

Assume that we are given a coherent lower prevision P (·|·)—by natural (or regular)

extension, we may assume without loss of generality that P (·|·) is defined on all

gambles on S0× · · · × Sn, and conditional on all non-empty events in S0× · · · × Sn.

Then, a policy πn∗k ∈ Πn
k is optimal, in the sense of maximality, whenever

P (Xn
k (hk−1, π

n∗
k)−Xn

k (hk−1, π
n
k)|hk−1) ≥ 0 (6.3)

for all policies πnk ∈ Πn
k .

Proposition 6.32. Maximality with respect to a coherent lower prevision satisfies

locality on S0, . . . , Sn, if and only if P satisfies marginal extension with respect to

S0, . . . , Sn.

Proof. By Theorem 4.2, it suffices to show that maximality satisfies sequential dis-

tributivity if and only if the given condition holds.

“if”. Consider any 1 ≤ k < n, any value hk−1 of Hk−1, any finite set of gambles

X on Sk, any finite sets of gambles Y(sk) on Fk+1 (one such set for each sk ∈ Sk),

and any X ∈ X and Y (sk) ∈ Y(sk). We must show that

X +
⊕
sk

Esk
Y (sk) ∈ opt

(
X +

⊕
sk

Esk
Y(sk)

∣∣∣∣hk−1

)

⇐⇒ X ∈ opt(X|hk−1) and Y (sk) ∈ opt(Y(sk)|hk−1sk) for all sk.

6.5. Cumulative Decision Processes 161

or, by the definition of maximality, that

∀X ′ ∈ X , sk ∈ Sk, Y ′(sk) ∈ Y(sk) :

P

(
X +

⊕
sk

Esk
Y (sk)−X ′ −

⊕
sk

Esk
Y ′(sk)

∣∣∣∣∣hk−1

)
≥ 0 (6.4)

is equivalent to

∀X ′ ∈ X : P (X −X ′|hk−1) ≥ 0, and (6.5)

∀s′k ∈ Sk, Y ′′(s′k) ∈ Y(s′k) : P (Y (s′k)− Y ′′(s′k)|hk−1s
′
k) ≥ 0 (6.6)

Obviously, Eq. (6.4) implies Eq. (6.5): simply consider the case in Eq. (6.4)

where Y ′(sk) = Y (sk) for all sk.

Next, we show that Eq. (6.4) implies Eq. (6.6). Consider any s′k and Y ′′(s′k).

In Eq. (6.4), take X ′ = X, and Y ′(sk) = Y (sk) for all sk except s′k, for which

Y ′(s′k) = Y ′′(s′k):

0 ≤ P

(⊕
sk

Esk
Y (sk)−

⊕
sk

Esk
Y ′(sk)

∣∣∣∣∣hk−1

)

= P
(
Es′k(Y (s′k)− Y ′′(s′k))|hk−1

)
and by coherence [79, 6.3.5(5), p. 296],

≤ P
(
P
(
Es′k(Y (s′k)− Y ′′(s′k))

∣∣∣hk−1Sk

) ∣∣∣hk−1

)
and by separate coherence,

= P
(
Es′kP (Y (s′k)− Y ′′(s′k)|hk−1s

′
k)
∣∣∣hk−1

)
But, because P (Es′k |hk−1) > 0, the above inequality can only hold if

P (Y (s′k)− Y ′′(s′k)|hk−1s
′
k) ≥ 0

which establishes the desired implication.

To complete the proof we show the opposite implication: if Eqs. (6.5) and (6.6)

hold, will Eq. (6.4) hold too?

6.5. Cumulative Decision Processes 162

Consider any X ′ ∈ X , sk ∈ Sk, and Y ′(sk) ∈ Y(sk). Then,

P

(
X +

⊕
sk

Esk
Y (sk)−X ′ −

⊕
sk

Esk
Y ′(sk)

∣∣∣∣∣hk−1

)

= P

(
X −X ′ +

⊕
sk

Esk
(Y (sk)− Y ′(sk))

∣∣∣∣∣hk−1

)

and by assumption on P ,

= P

(
P

(
X −X ′ +

⊕
sk

Esk
(Y (sk)− Y ′(sk))

∣∣∣∣∣hk−1Sk

)∣∣∣∣∣hk−1

)

and by separate coherence,

= P

(
X −X ′ +

⊕
sk

Esk
P (Y (sk)− Y ′(sk)|hk−1sk)

∣∣∣∣∣hk−1

)

and by monotonicity of P , and Eq. (6.6),

≥ P (X −X ′|hk−1)

and by Eq. (6.5),

≥ 0.

“only if”. We prove this part by contradiction. Assume that

P (Z|hk−1) > P (P (Z|hk−1Sk)|hk−1).

for some gamble Z and hk−1 (indeed, if equality does not hold, we must have a strict

inequality as given, by [79, 6.3.5(5), p. 296]).

Consider the following sets of gambles:

X = {P (P (Z|hk−1Sk)|hk−1), P (Z|hk−1Sk)}

Y(sk) = {Z(sk, ·), P (Z|hk−1sk)} for all sk

Let X = P (P (Z|hk−1Sk)|hk−1) and Y (sk) = P (Z|hk−1sk). We can easily show that

X ∈ opt(X|hk−1):

P (P (P (Z|hk−1Sk)|hk−1)− P (Z|hk−1Sk)|hk−1)

= P (P (Z|hk−1Sk)|hk−1) + P (−P (Z|hk−1Sk)|hk−1)

= P (P (Z|hk−1Sk)|hk−1)− P (P (Z|hk−1Sk)|hk−1) = 0.

6.5. Cumulative Decision Processes 163

If we can also show that

Y (sk) ∈ opt(Y(sk)|hk−1sk) for all sk (6.7)

but

X +
⊕
sk

Esk
Y (sk) 6∈ opt

(
X +

⊕
sk

Esk
Y(sk)

∣∣∣∣hk−1

)
(6.8)

then it is established that Sequential Distributivity cannot hold.

Indeed, for any Y ′′(sk) ∈ Y(sk),

P (Y (sk)− Y ′′(sk)|hk−1sk) = P (P (Z|hk−1sk)− Y ′′(sk)|hk−1sk)

= P (Z|hk−1sk) + P (−Y ′′(sk)|hk−1sk)

= P (Z|hk−1sk)− P (Y ′′(sk)|hk−1sk)

but, Y ′′(sk) is either P (Z|hk−1sk) or Z(sk, ·), and in either case,

= 0.

which shows that Eq. (6.7) is satisfied.

However, for X ′ = P (Z|hk−1Sk) and Y ′(sk) = Z(sk, ·), we have that

P

(
X ′ +

⊕
sk

Esk
Y ′(sk)−X −

⊕
sk

Esk
Y (sk)

∣∣∣∣∣hk−1

)

= P (P (Z|hk−1Sk) + Z − P (P (Z|hk−1Sk)|hk−1)− P (Z|hk−1Sk)|hk−1)

= P (Z|hk−1)− P (P (Z|hk−1Sk)|hk−1) > 0

which means that Eq. (6.8) is satisfied.

A first observation is that locality provides a behavioural argument for marginal

extension: violating marginal extension with respect to some sequence of states S0,

. . . , Sn, implies violating locality for some act-state independent sequential decision

problems on S0, . . . , Sn. Although marginal extension is a convenient assumption

to make, for instance due to computational reasons [79, §6.7.5, p. 316], we are not

aware of any other behavioural motivation.

How does locality work in practice for maximality? Let us return to our coin-

tossing example. First, our agent must assess a coherent lower prevision P (·|·) re-

flecting his beliefs about the coin. For instance, he could use the imprecise Dirichlet

6.5. Cumulative Decision Processes 164

model (IDM) [80], which states that, for any gamble X on Sk = {H,T}:

P (X|hk−1) =
nHX(H) + nTX(T) + smin{X(H), X(T)}

nH + nT + s

where nH is the number of heads observed in hk−1, nT is the number of tails in hk−1,

and s is a hyper-parameter of the model, usually taken to be 1 or 2. Eq. (6.9) is

called the predictive lower prevision. Similarly, the predictive upper prevision is

P (X|hk−1) =
nHX(H) + nTX(T) + smax{X(H), X(T)}

nH + nT + s

The IDM models a completely vacuous state of knowledge if nH = nT = 0, and con-

verges to the empirical expectation as nH +nT grows, hence this seems a reasonable

model. It does, however, involve events of lower probability zero, so this does not fall

within our restricted class of coherent lower previsions. It is well known, however,

that a small perturbation of a coherent lower prevision does not affect optimality

much [75]. So, for small ε, we can use the alternative specifications

P (X|hk−1) =
nHX(H) + nTX(T) + smin{X(H), X(T)}

nH + nT + s
· (1− ε) + εQ(X|hk−1)

(6.9)

and

P (X|hk−1) =
nHX(H) + nTX(T) + smax{X(H), X(T)}

nH + nT + s
· (1− ε) + εQ(X|hk−1),

(6.10)

where Q is a linear prevision (i.e. expectation) that has all probabilities strictly

positive—for example, the conditional expectation with respect to the uniform mass

function. This ensures that all events have positive lower probability. We can then

combine all these marginal predictive lower previsions into a joint model satisfying

marginal extension, and apply the theorem.

Applying maximality to our example is now straightforward. By definition of

maximality (Eq. (6.3)), betting on heads is locally maximal if

P (Xk
k (hk−1, dH)−Xk

k (hk−1, dT)|hk−1) ≥ 0.

By Xk
k (hk−1, dH) = −Xk

k (hk−1, dT), and Eqs. (4.7) and (6.10), we conclude that, for

ε sufficiently small, betting on heads is locally optimal whenever nH ≥ nT − s, and

6.5. Cumulative Decision Processes 165

similarly, betting on tails is optimal whenever nT ≥ nH − s. By construction, P (·|·)

satisfies marginal extension, so applying Proposition 6.32, we conclude that this is

also the global solution.

E-admissibility

Perhaps surprisingly, E-admissibility satisfies locality if and only if maximality does:

Proposition 6.33. E-admissibility satisfies locality on S0, . . . , Sn if and only if P

satisfies marginal extension with respect to S0, . . . , Sn.

Proof. “if”. If

X +
⊕
sk

Esk
Y (sk) ∈ opt

(
X +

⊕
sk

Esk
Y(sk)

∣∣∣∣∣hk−1

)
,

then, by definition of E-admissibility, there is a Q ∈M such that

X +
⊕
sk

Esk
Y (sk) ∈ optQ

(
X +

⊕
sk

Esk
Y(sk)

∣∣∣∣∣hk−1

)
.

Since we assumed that P (Esk
|hk−1) > 0, we know that Q(Esk

|hk−1) > 0. Given

this, and Bayes theorem for linear previsions, it follows easily from Proposition 6.32

that Sequential Distributivity holds for maximality with respect to Q. Therefore,

X ∈ optQ(X|hk−1) and Y (sk) ∈ optQ(Y(sk)|hk−1sk) for all sk.

and so, again by definition of E-admissibility,

X ∈ opt(X|hk−1) and Y (sk) ∈ opt(Y(sk)|hk−1sk) for all sk.

We have proved one direction of Sequential Distributivity.

Let us now prove the other direction. If

X ∈ opt(X|hk−1) and Y (sk) ∈ opt(Y(sk)|hk−1sk) for all sk,

then for all sk there are linear previsions Q(·|hk−1) ∈ M(·|hk−1) and R(·|hk−1sk) ∈

M(·|hk−1sk) such that

X ∈ optQ(X|hk−1) and Y (sk) ∈ optR(Y(sk)|hk−1sk) for all sk.

6.5. Cumulative Decision Processes 166

By the lower envelope theorem for marginal extension [79, 6.7.4], the linear prevision

Q, where

Q(·|hk−1) = Q(R(·|hk−1Sk)|hk−1),

belongs to M(·|hk−1). But, using the linearity of Q, Bayes theorem, and the above

decomposition of Q,

max
X′∈X

Y ′(sk)∈Y(sk)

Q

(
X ′ +

⊕
sk

Esk
Y ′(sk)

∣∣∣∣∣hk−1

)

= max
X′∈X

Q(X ′|hk−1) +
∑
sk

Q(Esk
|hk−1) max

Y ′(sk)∈Y(sk)
Q(Y ′(sk)|hk−1sk)

= max
X′∈X

Q(X ′|hk−1) +
∑
sk

Q(Esk
|hk−1) max

Y ′(sk)∈Y(sk)
R(Y ′(sk)|hk−1sk)

= Q(X|hk−1) +
∑
sk

Q(Esk
|hk−1)R(Y (sk)|hk−1sk)

= Q(X|hk−1) +
∑
sk

Q(Esk
|hk−1)Q(Y (sk)|hk−1sk)

= Q

(
X +

⊕
sk

Esk
Y (sk)

∣∣∣∣∣hk−1

)
so,

X +
⊕
sk

Esk
Y (sk) ∈ optQ

(
X +

⊕
sk

Esk
Y(sk)

∣∣∣∣∣hk−1

)
,

whence

X +
⊕
sk

Esk
Y (sk) ∈ opt

(
X +

⊕
sk

Esk
Y(sk)

∣∣∣∣∣hk−1

)
.

“only if”. Assume that

P (Z|hk−1) > P (P (Z|hk−1Sk)|hk−1).

for some gamble Z and hk−1 (indeed, if equality does not hold, we must have a strict

inequality as given, by [79, 6.3.5(5), p. 296]).

Consider the sets of gambles used in the maximality proof:

X = {P (P (Z|hk−1Sk)|hk−1), P (Z|hk−1Sk)}

Y(sk) = {Z(sk, ·), P (Z|hk−1sk)} for all sk

6.5. Cumulative Decision Processes 167

Let X = P (P (Z|hk−1Sk)|hk−1) and Y (sk) = P (Z|hk−1sk). When a set of gambles

has only two elements, E-admissibility and maximality coincide. So we know from

the previous proof that, for E-admissibility,

X ∈ opt(X|hk−1)

Y (sk) ∈ opt(Y(sk)|hk−1sk) for all sk.

The set of E-admissible gambles is always a subset of the maximal gambles, so

if a gamble is non-maximal in a set, it is not E-admissible either. In the proof for

maximality, we showed that

X +
⊕
sk

Esk
Y (sk)

is not maximal in

X +
⊕
sk

Esk
Y(sk),

and so it is not E-admissible. Hence, again, Sequential Distributivity does not

hold.

In order to apply E-admissibility to the example, simply note that E-admissibility

is equivalent to maximality in case of binary choice: indeed, a gamble X is maximal

in {X, Y } if and only if

P (X − Y) ≥ 0

which is, by the lower envelope theorem [79, p. 134, §3.3.3], equivalent to

∃Q ∈M : Q(X − Y) ≥ 0,

which means exactly that X is E-admissible in {X, Y }.

Hence, locally, E-admissibility and maximality coincide and the agent always

selects the same action in both cases. So, by Proposition 6.33, whose conditions we

already verified earlier, E-admissibility and maximality also coincide globally.

Γ-maximin

Γ-maximin satisfies locality only in very restricted cases.

Proposition 6.34. Γ-maximin with respect to a coherent lower prevision P satisfies

locality on S0, . . . , Sn if and only if the following conditions hold:

6.5. Cumulative Decision Processes 168

(i) P satisfies marginal extension with respect to S0, . . . , Sn, and

(ii) P is locally linear in the sense that, for all 1 ≤ k < n and all gambles X and

Y on Sk,

P (X + Y |hk−1) = P (X|hk−1) + P (Y |hk−1),

Proof. “if”. Consider any 1 ≤ k < n, any value hk−1 of Hk−1, any finite set of

gambles X on Sk, any finite sets of gambles Y(sk) on Fk+1 (one such set for each

sk ∈ Sk), and any X ∈ X and Y (sk) ∈ Y(sk). We must show that

X +
⊕
sk

Esk
Y (sk) ∈ opt

(
X +

⊕
sk

Esk
Y(sk)

∣∣∣∣hk−1

)

⇐⇒ X ∈ opt(X|hk−1) and Y (sk) ∈ opt(Y(sk)|hk−1sk) for all sk. (6.11)

We have, by marginal extension,

P

(
X +

⊕
sk

Esk
Y (sk)

∣∣∣∣∣hk−1

)

= P

(
X +

⊕
sk

Esk
P (Y (sk)|hk−1sk)

∣∣∣∣∣hk−1

)

whence, by local linearity

= P (X|hk−1) + P

(⊕
Esk

P (Y (sk)|hk−1sk)

∣∣∣∣∣hk−1

)
. (6.12)

This expression can clearly be maximised by choosing X to maximise P (X|hk−1) and

choosing each Y (sk) to maximise P (Y (sk)|hk−1sk). That is, if X ∈ opt(X|hk−1) and

Y (sk) ∈ opt(Y(sk)|hk−1sk) for all sk, then Eq. (6.12) is maximal. This establishes

the left implication in Eq. (6.11).

Next, suppose that

X +
⊕
sk

Esk
Y (sk) ∈ opt

(
X +

⊕
sk

Esk
Y(sk)

∣∣∣∣hk−1

)
,

so there is no other gamble in X +
⊕

sk
Esk
Y(sk) with a higher lower prevision.

Again considering Eq. (6.12), it is clear that X ∈ opt(X|hk−1), since otherwise we

could increase the lower prevision by instead using an optimal element of X . Also,

6.5. Cumulative Decision Processes 169

because P (Esk
|hk−1) > 0, we see that Y (sk) ∈ opt(Y(sk)|hk−1sk), for otherwise

we could increase the lower prevision by using an optimal element of Y(sk). This

establishes the right implication in Eq. (6.11).

“only if”. Suppose that P (·|hk−1) is not locally linear for some hk−1 ∈ Hk−1.

Then there must be gambles X and Y on Sk, and an ε > 0, such that

P (X|hk−1) + P (Y |hk−1) + ε < P (X + Y |hk−1).

Let X = {X,P (X|hk−1) + ε} and Y(sk) = {Y (sk)}. Obviously, opt(X|hk−1) =

{P (X|hk−1) + ε}, and opt(Y(sk)|hk−1) = {Y (sk)}. However,

opt

(
X +

⊕
sk

Esk
Y(sk)

∣∣∣∣∣hk−1

)
= opt({X + Y, P (X|hk−1) + ε+ Y }|hk−1)

= {X + Y }

because

P (P (X|hk−1) + ε+ Y |hk−1) = P (X|hk−1) + ε+ P (Y |hk−1)

< P (X + Y |hk−1).

So, locality fails whenever local linearity fails.

Next, we show that marginal extension must hold. Suppose it does not, and

hence that

P (Z|hk−1) > P (P (Z|hk−1Sk)|hk−1).

for some gamble Z and hk−1.

Consider the following sets of gambles:

X = {P (P (Z|hk−1Sk)|hk−1), P (Z|hk−1Sk)}

Y(sk) = {Z(sk, ·), P (Z|hk−1sk)} for all sk

Let X = P (P (Z|hk−1Sk)|hk−1) and Y (sk) = P (Z|hk−1sk). It is immediate that

opt(X|hk−1) = X and opt(Y(sk)|hk−1sk) = Y(sk). But as we saw in the proof

of Proposition 6.32, the gamble X +
⊕

sk
Esk

Y (sk) is not maximal. A Γ-maximin

gamble is always maximal [79, 3.9.7], and therefore X +
⊕

sk
Esk

Y (sk) is not Γ-

maximin either, and so locality fails.

6.5. Cumulative Decision Processes 170

The locality conditions for Γ-maximin imply full linearity on all gambles on

S0 × · · · × Sn−1, i.e. linearity on every gamble that does not involve the final state

Sn. Of course, in cases where such strong form of linearity is satisfied, usually full

linearity will actually be satisfied. In other words, one cannot really endorse locality

for Γ-maximin and at the same time use imprecise probabilities.

Corollary 6.35. If Γ-maximin satisfies locality, then for any 1 ≤ k < n, any gamble

Z on Sk × . . . Sn−1, and any hk−1 ∈ Hk−1,

P (Z|hk−1) = P (Z|hk−1).

Proof. Simply apply local linearity and marginal extension repeatedly. Indeed, the

case k = n−1 follows from local linearity. Suppose that we have already established

the result for k = m + 1, let us show that it also holds for k = m. For any gamble

Z on Sm × · · · × Sn−1, we have, by marginal extension

P (Z|hm−1) = P (P (Z|hm−1Sm)|hm−1)

but, P (Z|hm−1Sm) is a gamble on Sm, and hence, by local linearity,

= P (P (Z|hm−1Sm)|hm−1)

but, by the induction hypothesis, P (·|hm−1sm) is linear for all sm ∈ Sm, and hence,

= P (P (Z|hm−1Sm)|hm−1)

and hence, again by marginal extension,

= P (Z|hm−1)

which establishes the desired result.

However, a locally Γ-maximin policy is always locally maximal, and so if marginal

extension holds it is globally maximal, by Proposition 6.32. So, using a locally Γ-

maximin policy may be a reasonable choice, even though it is not always globally

Γ-maximin.

6.5. Cumulative Decision Processes 171

In our example, betting on heads is optimal under local Γ-maximin whenever

P (Xk
k (hk−1, dH)|hk−1) ≥ P (Xk

k (hk−1, dT)|hk−1).

By Eqs. (4.7) and (6.9), we obtain (ignoring Q)

nH ≥ nT .

So, betting on heads is approximately locally optimal if nH ≥ nT and similarly on

tails when nT ≥ nH . However, by Proposition 6.34, for this also to be guaranteed to

be a global Γ-maximin policy, P would be required to be a linear prevision (except

on the last stage). Because the imprecise Dirichlet model starts with a vacuous

lower prevision as prior, P does not satisfy the linearity condition, and hence, the

policy we just found is not necessarily globally Γ-maximin. Nevertheless, the local

Γ-maximin policy is still an interesting alternative for the reasons we highlighted

earlier.

Interval Dominance

Interval dominance with respect to a coherent lower prevision P is:

opt(X|A) = {X ∈ X : (∀Y ∈ X)(P (X|A) ≥ P (Y |A))}.

Proposition 6.36. Interval dominance with respect to a coherent lower prevision

P satisfies locality on S0, . . . , Sn if and only if

(i) P satisfies marginal extension with respect to S0, . . . , Sn, and

(ii) P (·|hk−1) is locally linear, in the sense that for all 1 ≤ k ≤ n, hk−1 ∈ Hk−1,

and gambles X on Sk,

P (X|hk−1) = P (X|hk−1)

Proof. “if”. If P satisfies properties (i) and (ii), then it is easy to show that P (·|hk−1)

is linear for any 1 ≤ k ≤ n and all gambles on Sk × · · · × Sn (see the proof of

Corollary 6.37). This implies that interval dominance and maximality coincide at

every stage, and so by Proposition 6.32, interval dominance satisfies locality.

6.5. Cumulative Decision Processes 172

“only if”. Suppose first that P (·|hk−1) is not locally linear for some 1 ≤ k < n

and hk−1 ∈ Hk−1. Then there must be a gamble X on Sk and an ε > 0 such that

P (X|hk) + ε < P (X|hk).

Let X = {0} and Y(sk) = {X(sk), X(sk) + ε}. Obviously, opt(X|hk−1) = {0},

and opt(Y(sk)|hk−1sk) = {X(sk) + ε}. However,

opt

(
X +

⊕
sk

Esk
Y(sk)

∣∣∣∣∣hk−1

)
= opt

(
{X + εIE : E ⊆ Sk}

∣∣∣∣∣hk−1

)

= {X + εIE : E ⊆ Sk}

because

P (X + εIE|hk) ≤ P (X + ε|hk) < P (X|hk)

for all E ⊆ Sk. We have shown that locality fails, or, in other words, local linearity

for 1 ≤ k < n is necessary for locality to hold for interval dominance (we will

establish local linearity for k = n further).

Next, suppose that local linearity holds for 1 ≤ k < n, but

P (Z|hk−1) > P (P (Z|hk−1Sk)|hk−1).

for some gamble Z on Sk × · · · × Sn and hk−1 (indeed, if equality does not hold, we

must have a strict inequality as given, by [79, 6.3.5(5), p. 296]).

Consider the following sets of gambles:

X = {0}

Y(sk) = {Z(sk, ·), P (Z|hk−1sk)} for all sk

Let X = 0 and Y (sk) = P (Z|hk−1sk). These gambles are maximal in their respective

sets so they must also be optimal with respect to interval dominance. We have

P

(
X +

⊕
sk

Esk
Y (sk)

∣∣∣∣∣hk−1

)
= P (P (Z|hk−1Sk)|hk−1)

and by local linearity

= P (P (Z|hk−1Sk)|hk−1)

6.5. Cumulative Decision Processes 173

Now consider the gamble

X +
⊕
sk

EkZ(sk, ·) = Z.

We have

P (Z|hk−1) > P (P (Z|hk−1Sk)|hk−1)

= P

(
X +

⊕
sk

Esk
Y (sk)|hk−1

)
,

so we have found a gamble in X +
⊕

sk
Esk
Y(sk) that dominates X +

⊕
sk
Esk

Y (sk)

with respect to interval dominance, and so locality fails. In other words, if local

linearity holds for 1 ≤ k < n then marginal extension is necessary for locality to

hold for interval dominance. From our result earlier in the proof, this implies that

local linearity for 1 ≤ k < n and marginal extension are necessary.

Next, suppose that local linearity for 1 ≤ k < n and marginal extension hold,

but local linearty for k = n fails. Then, there must be an hn−1 = hn−2s
′
n−1 ∈ Hn−1,

a gamble Z on Sn, and an ε > 0, such that P (Z|hn−1) + ε < P (Z|hn−1). Let

Y(sn−1) = {0} for all sn−1 except Y(s′n−1) = {Z}. Let X = {0, εP (Es′n−1
|hn−2)}.

Then by marginal extension and local linearity for stage n− 1,

P
(

0 + Es′n−1
Z|hn−2

)
= P (Es′n−1

P (Z|hn−1)|hn−2)

= P (Es′n−1
|hn−2)P (Z|hn−1)

≥ P (Es′n−1
|hn−2)(ε+ P (Z|hn−1)),

but

P
(
εP (Es′n−1

|hn−2) + Es′n−1
Z|hn−2

)
= P (εP (Es′n−1

|hn−2) + Es′n−1
P (Z|hn−1)|hn−2)

= P (Es′n−1
|hn−2)(ε+ P (Z|hn−1)).

Therefore the gamble 0+Es′n−1
Z is optimal with respect to interval dominance. But

clearly, opt(X|hn−2) = {εP (Es′n−1
|hn−2)} and so locality fails. In other words, if

local linearity holds for 1 ≤ k < n and marginal extension holds, then local linearity

for k = n is necessary for locality to hold for interval dominance.

So, marginal extension and local linearity for 1 ≤ k ≤ n are necessary for locality.

The proof of Corollary 6.37 shows that these conditions imply full linearity of P .

6.5. Cumulative Decision Processes 174

Interval dominance requires even stronger conditions than Γ-maximin. Indeed,

we have the following corollary.

Corollary 6.37. If interval dominance satisfies locality on S0, . . . , Sn, then, for all

1 ≤ k ≤ n, all gambles X on Fk, and all hk−1 ∈ Hk−1,

P (X|hk−1) = P (X|hk−1).

Proof. Almost identical to the proof of Corollary 6.35.

So, for interval dominance to satisfy locality, P must essentially correspond to

a coherent prevision EP for some full conditional probability P : you cannot be

imprecise, and, at the same time, endorse locality for interval dominance.

6.5.2 Dynamic Programming

De Cooman and Troffaes [13, §3.2–3.5] investigate whether dynamic programming

works for maximality, E-admissibility, Γ-maximin, and interval dominance. The first

two satisfy all properties, and the latter two fail Backward Addition. Γ-maximin and

interval dominance fail because of the non-additivity of a coherent lower prevision.

For subtree perfectness, none of the choice functions satisfies all the neces-

sary properties. Intersection requires a total preorder, and, of the four, only Γ-

maximin is. Since Γ-maximin fails Backward Addition, it automatically fails Addi-

tion. These results mirror those for standard decision trees [31]: only maximality

and E-admissibility allow backward induction, and nothing is subtree perfect.

As mentioned by de Cooman and Troffaes, Γ-maximin could satisfy Addition

for certain lower previsions. Suppose that Ω is a product of possibility spaces

Ω1, . . . ,Ωm, and the gambles on the ith decision arc in any path is a gamble on

Ωi. If the overall lower prevision P is a suitable independent product of lower pre-

visions P i on the Ωi, then for any gambles X1 on Ω1, X2 on Ω2, and so on, it will

hold that

P

(
m∑
i=1

XI

)
=

m∑
i=1

P i(XI).

We refer to [13, §3.4] for more details and references. Note that de Cooman and Trof-

faes mention only that, under such circumstances, dynamic programming will work

6.6. Summary 175

Property

1 2 3 7 8 9 10 11 12 18 20 21

E-admissibility X X X X X X X X X

Maximality X X ? X X X X X X

Γ-maximin X X X X X

Interval Dominance X X X X

Table 6.6: Properties of various choice functions.

Property

1 2 3 7 8 9 10 11 12 18

E-admissibility X X X X X X X X X

Maximality X X X X X X X X X

Γ-maximin X X X X X X X X X

Interval Dominance X X X X

Table 6.7: Properties of various choice functions under marginal extension.

for both Γ-maximin and interval dominance. We can add that subtree perfectness

will also hold for Γ-maximin (but not interval dominance).

6.6 Summary

We have shown that backward induction works only for E-admissibility and maxi-

mality, that subtree perfectness fails for every choice function but is satisfied under

marginal extension by Γ-maximin, that locality fails for every choice function but

is satisfied under marginal extension for maximality and E-admissibility, and that

dynamic programming works for maximality and E-admissibility. Summaries of the

important properties satisfied by each choice function are given in Tables 6.6 (the

case without marginal extensions) and 6.7 (the case with marginal extension).

Chapter 7

Conclusion

7.1 Overview

Our goal has been to identify interesting properties of particular forms of solution

to decision trees, and to find simple necessary and sufficient conditions for these

properties to hold, while making as few assumptions as possible about the criteria the

subject use to make their decision. It is much easier to check these conditions than

check whether the original properties hold, making it more convenient to determine

whether a newly-proposed solution would satisfy the properties.

We have primarily investigated normal form solutions [56, § 1.3] to decision trees

under act-state independence (meaning that the true state of nature does not depend

on the actions the subject takes). Normal form solutions involve making a decision

for all eventualities immediately, and then implementing those decisions. In simple

cases, one may be able to identify a uniquely optimal decision for every decision

point, thus leading to a single strategy to follow. In more complicated situations,

this may not be feasible, and so we defined a normal form solution to be a set of

such strategies. The subject may then pick any of these strategies and implement

it.

Upon choosing and implementing a strategy, the subject no longer has any

choices to make, and the result of the strategy is completely determined by nature.

Therefore each strategy corresponds to an uncertain reward (called a gamble [14]),

and identifying a normal form solution corresponds to choosing a set of acceptable

176

7.1. Overview 177

gambles. The language of choice functions [66] was used to described such choice:

a choice function maps a set of options to a non-empty (optimal) subset. Many

popular uncertainty and preference models involve choice functions on gambles, so

this is a useful way of representing the problem.

Given a choice function on gambles, a natural normal form solution presents

itself. One can find the set of all strategies associated with a decision tree, and

hence the set of all associated gambles. Next, the choice function can be invoked to

find the optimal subset of these gambles. Finally, the set of all strategies associated

with these gambles can be found. This provides an optimal set of strategies, from

which the subject can pick one to follow.

We principally considered two possible properties of this solution. The first,

subtree perfectness (inspired by Selten’s concept of subgame perfectness for multi-

agent games [65]), links the solution of a decision tree to the solutions of any subtree.

Informally, a solution satisfies subtree perfectness if, for every subtree of the decision

tree, the solution of the decision tree restricted to that subtree is exactly the solution

of that subtree. We showed that subtree perfectness only holds in general for very

few choice functions: it requires that the choice function corresponds to a total

preorder, and also that it satisfies a condition very closely related to the famous

Independence Axiom [78]. Thus, it is not possible to stray far from expected utility

without violating subtree perfectness.

The second property, backward induction (following the method of Kikuti et

al. [38]), allows a decision tree to be solved by folding back from right to left,

eliminating arcs that are non-optimal in subtrees. If the choice function corresponds

to a total preorder, backward induction is quite similar to subtree perfectness. We

have shown, however, that a total preorder is not necessary for backward induction

to work: it can be relaxed to a condition called path independence (a stronger

form of independence of irrelevant alternatives). Path independence is satisfied for

a much wider variety of choice functions, such as those corresponding to a partial

order. Indeed, a choice function can satisfy path independence without even being

an ordering at all.

We then applied these results to the theory of coherent lower previsions [79],

7.2. Discussion 178

a generalization of probability theory for cases where a single probability measure

cannot be identified. Four popular choice functions in this theory were examined

(maximality, E-admissibility, interval dominance, and Γ-maximin), providing several

new and important results. Normal form backward induction works for maximality

and E-admissibility, the two most logically motivated of the choice functions. Inter-

val dominance, although rightly criticised for being too conservative, can be used

to aid calculation of maximality or E-admissibility when using backward induction,

potentially saving time. E-admissibility is subtree perfect for trees containing only

one decision node per branch, for example trees representing a decision after ob-

serving an experiment (see Augustin [6] for more details of solving such problems

with coherent lower previsions). Although such trees are very basic, they are also

important for a multitude of statistical applications, and it is reassuring to know

that E-admissibility can be used for those without having to worry about whether

subtree perfectness is violated or whether such a violation is unacceptable.

Finally, Γ-maximin was shown to be subtree perfect whenever a particular prop-

erty of coherent lower previsions called marginal extension holds over all relevant

partitions. Γ-maximin is popular because of its simplicity, its conservative nature,

and its tendency to choose a single decision. It is criticised for failing to take into

account the imprecision inherent in the model, for sometimes choosing gambles that

are not E-admissible, and for being wildly subtree imperfect in sequential decision

problems. Our results show that one of these criticisms can be avoided, although it

requires specification of beliefs in a particular way.

7.2 Discussion

Normal form solutions involve making all decisions in advance; effectively turning

the sequential problem into a static one. The standard normal form solution induced

by a choice function defined in Section 1.2.5 can be seen as a transformation of the

original decision tree to a tree with a single decision node, suggesting that normal

form solutions correspond to “flattening” of a tree. We have instead treated normal

form solutions as sets of subtrees. This is a more general representation than using

7.2. Discussion 179

a static decision tree; for instance, it allows modelling of normal form solutions that

do not respect strategic equivalence. This definition departs somewhat from the

commonly understood use of the term. We believe this departure is more expressive

and convenient (for example, being able to define normal form backward induction).

The framework of choice functions proved to be a powerful tool for investigating

normal form solutions, being capable of describing a variety of different uncertainty

and preference models without having to make too many assumptions. Having said

this, there can be problems or models that cannot be generalized to arbitrary choice

functions on gambles. In particular, the language of choice functions and gambles

is not rich enough to deal with problems of act-state dependence except in special

cases (trying to adapt the method to work with influence diagrams, for example,

does not seem to lead anywhere useful). This restriction is particularly noticeable

in Chapter 4, where the problems we were able to treat without losing act-state

independence are very basic and not widely applicable.

Our purpose was to investigate different properties of solutions to decision prob-

lems: primarily backward induction and subtree perfectness. One way to do this

is to investigate such properties for specific choice functions (see for instance [41,

50, 6, 64]), but this is clearly an inefficient approach. Another possibility, one of-

ten followed, is to first argue for some restrictions on the choice function (Total

Preordering is a popular choice) and then determine what choice functions behave

acceptably under these restrictions. We avoided this route because it risks overlook-

ing some important distinctions, such as only requiring Backward Mixture rather

than Mixture for backward induction.

If one wants to argue that certain things are the requirements of “rational be-

haviour”, then the above approach makes sense. If one has decided that a certain

property is necessary to be rational, it seems sensible to assume that property in all

that follows. There seems little point in showing that Path Independence is neces-

sary for backward induction if Total Preordering is already required. Similarly, it is

not unreasonable to argue that normal form and extensive form equivalence should

hold; if so, there is no need to ask what happens when equivalence does not hold.

Our goal was different. We wanted to identify particular concepts, such as back-

7.2. Discussion 180

ward induction, and specify exactly what restrictions on the choice function are

equivalent. For the most part, we do not try to argue that a particular concept

must hold for the solution to be sensible (although all the concepts are at least

intuitively appealing—there has to be some reason to investigate them!), nor do we

restrict ourselves to only a subset of possible choice functions. Observe that even

the apparently obvious conditioning properties are not initially assumed, nor is the

fundamental equality opt(opt(X)) = opt(X).1

Another unusual approach we make is the avoidance of probabilities and utili-

ties. This might seem a very important step, but, at least for the case of subtree

perfectness, the conclusion effectively agrees with Hammond [24], who has some

chance nodes with probabilities and some without. So it is not clear if we really

gain anything concrete by this distinction.

Chapter 2 also shows the interesting result that subtree perfectness is not, in

general, sufficient for the equivalence of normal form and extensive form, outside of

the choice function framework. Intuitively one might expect that “the solution in

a subtree does not depend on the full tree in which it is embedded” is exactly the

condition that would lead to equivalence, but, as we saw, even with this condition

there are still more normal form solutions than extensive form ones. The startling

discovery is that, when using the canonical normal form solution, subtree perfectness

and equivalence of forms coincide exactly. This is because the necessary properties

for choice functions combine to form properties that are sufficient for strong subtree

perfectness (p. 53). This may also suggest that strong subtree perfectness is the

core property to be required.

Having confirmed that, as expected, very few practical choice functions will sat-

isfy subtree perfectness, in Chapter 3 we turned attention to the less obvious matter

of backward induction, proposing a method to find normal form solutions via back-

1“Fundamental” because, without it, the choice function does not seem to have the interpreta-

tion from Section 1.2.2: our interpretation of a choice function is that, confronted by X , the subject

would be willing to choose any of opt(X) but no other gamble. That is, the acceptable subset of

X is opt(X). If opt(opt(X)) ⊂ opt(X) then opt(X) can hardly be said to be the acceptable subset

of X .

7.2. Discussion 181

ward induction (rather than the usual extensive form ones). Presenting backward

induction as a normal form method allows an easy definition for an arbitrary choice

function, whereas we saw in Section 3.2 that defining backward induction for some-

thing more complicated than a total preorder is non-trivial. Although in Section 3.3

we presented a possible argument for backward induction but not subtree perfect-

ness to be considered a requirement for rationality, the main motivation for this

chapter was for more efficient computation of normal form solutions.

Although subtree perfectness holds for very few choice functions, backward in-

duction is more fruitful for those wishing to avoid expected utility theory. It will

not help those who consider the Independence Axiom as misguided, since Back-

ward Mixture will fail for the typical examples where the Independence Axiom

fails (see Machina [50] for a review). It is more appealing for those who consider

Total Preordering too restrictive. Path Independence is a much weaker condition

(even allowing choice functions that do not correspond to any type of ordering),

but is relatively easy to justify. Simple explanations of why Insensitivity To Omis-

sion and Preservation Under Addition are appealing can be found in Luce and

Raiffa [46, §13.3]. Although arguments abound as to why Total Preordering is un-

acceptable [46, 44, 51, 79], we are not aware of significant normative objections to

Path Independence.

Also in Chapter 3 is Theorem 3.32, allowing calculation of normopt using different

choice functions. Although rather distinct from the general theme of the thesis, this

is a useful example of the sorts of things that are possible with choice functions that

are apparently not so useful. As observed in Chapter 6, the interval dominance choice

function for coherent lower previsions only satisfies our main sequential conditions

in trivial cases, but according to this theorem it could be useful when trying to solve

difficult problems using maximality. We expect that there will be more results like

this that allow the use of the lesser choice function to help with calculations.

Chapters 4 and 5 extends normopt to some related decision problems, that feature

cumulative rewards. Not only does this provide corresponding results for these

special processes, it also demonstrates that, given a new type of decision problem,

the same sort of approach can often work well. Once one understands the concepts

7.3. Further Work 182

for one type of problem, extending them to other types can be intuitive.

Chapter 6 demonstrated application of the main theorems to four major choice

functions from the theory of coherent lower previsions: maximality, E-admissibility,

interval dominance, and Γ-maximin. This not only demonstrates practical value,

but also how they can be easily adapted to provide more information about specific

uncertainty and preference models. For instance, it was already known (if not stated

explicitly) in the literature that all the imprecise probability choice functions failed

subtree perfectness, but we saw it was also easy to find special cases in which subtree

perfectness can hold for some of the choice functions. The salient point is that,

although the theorems deal with all possible consistent decision trees, it is possible

to use analogous ideas to deal with restricted sets of decision trees: the theory

remains broadly the same in such cases.

7.3 Further Work

7.3.1 Subtree Perfectness

It seems that there is little more work to be done on normal form subtree perfectness

in the general case: we could try to determine exactly how small the set of subtree

perfect choice functions is, but it is difficult to find anything that does not correspond

to expected utility or lexicographic expected utility [26, 22]. More progress may be

possible when looking at more restricted cases, such as we did in Section 6.4. For

instance simplifying the unwieldy formulation of Weak Multiple Mixture would be

useful, as would a more rigorous treatment of some results in that section.

Subtree perfect extensive form solutions have more potential. In Section 3.2 we

introduced a few subtree perfect extensive form operators based on choice functions,

but only looked in detail at when normopt is subtree perfect, and all the different

operators coincide. Investigating their differences when normopt is not subtree per-

fect could be enlightening. In particular, Seidenfeld’s extensive form operator looks

to yield fairly sensible results for E-admissibility, and is probably quite efficient

to compute (when compared with extopt). There are possibilities that some tech-

niques, based on clever choices of events for future choices, could eliminate the sorts

7.3. Further Work 183

of unappealing behaviour seen in Fig. 3.2.

7.3.2 Backward Induction

For backward induction, we could try to find special tree structures that allow

unruly choice functions to work, but this would probably force the decision tree

to be too trivial for backward induction to have much computational use. More

computational tricks like Theorem 3.32 would be useful; for instance, is there any

quick way to deduce which choice function would be worth applying at a particular

node in Theorem 3.32? Presumably, this question would be have to be answered on

a case-by-case basis rather than with a general method. Also, the way that backopt is

actually defined is not particularly useful in practice: observe in Section 6.3 that we

did not need to compare gambles we had already compared when moving back. A

real algorithm would need to have such tricks built in. In particular, should Multiple

Mixture hold, then chance nodes become much more convenient to deal with.

7.3.3 Act-State Independence

The work in Chapter 4 is limited to act-state dependent problems, which are very

restrictive for the particular type of problem under consideration. To study prob-

lems that are much more widely applicable, we need the transitions to depend on

the actions taken, that is, we need to introduce act-state dependence. As mentioned

in Section 1.2.2, this is not easy. Classically we would just make the decisions affect

the transition probabilities, but this relies on the nature of maximizing expected

utility: to compare two gambles, one calculates a value for the first, and a value

for the second, and then one checks which is higher. In the case of act-state in-

dependence, this is equivalent to using a choice function on gambles, but in the

act-state dependent case, it is more complicated. Recall that gambles are functions

from the possibility space to the reward set. For act-state dependence, we need a

type of “generalized” gamble that also contains information about the implication

of choosing that gamble on the probabilities of the events. So, a generalized gamble

for expected utility would be a list of the form (X, p) where X is a map from Ω to

7.3. Further Work 184

R and p is a probability mass function. The expected utility choice function would

then order sets of gambles according to P ((X, p)) = Pp(X).

So far, our choice functions have encoded both the uncertainty model and the

preference model being used. Generalizing the above approach for dealing with act-

state dependence would leave the choice function representing only the preference

model given the uncertainty model, with the uncertainty model itself being encoded

as part of a generalized gamble. So instead of choice functions on gambles, we would

be looking at choice functions on generalized gambles. What effects this will have

on the theory is unclear.

One clear effect of this generalization would be found when looking at coherent

lower previsions. Consider how the maximality partial order compares gambles: by

finding the lower prevision of their differences. But if each gamble corresponds to a

different lower prevision, this approach cannot be used. It would seem that, unless

the lower previsions are the same, then in such a case interval dominance would

have to be used instead [25, 74]. This seems very restrictive, especially since if X

is preferred to Y under P according to maximality but not interval dominance, and

Q is only different from P by a tiny degree, one would hope that (X,P) would be

preferred to (Y,Q), but apparently we cannot say this. Treatment of maximality

and E-admissibility under act-state dependence is an open problem in imprecise

decision theory.

There is another way of dealing with act-state independence: try to adapt the

model so that it disappears. This generally will lead to much larger possibility spaces

and will make specifying the uncertainty model more difficult. Consider the simplest

non-trivial situation, with Ω = {ω1, ω2}, X = {X, Y }. Suppose that, if X is chosen,

P (ω1) = 0.4, and if Y is chosen, P (ω1) = 0.5, so we have act-state dependence.

Now, consider a different possibility space Ω∗ = {ω11, ω12, ω21, ω22}, where outcome

ωxy represents the outcome “if X is chosen then ωx obtains (from the original Ω),

and if Y is chosen then ωy obtains”. The gambles X and Y are updated according

to X(ωxy) = X(ωx) and Y (ωxy) = Y (ωy).

Act-state dependence has been eliminated, but at what cost? Clearly, the size of

the possibility space has increased. In general, if |Ω| = a and |X | = b, then |Ω∗| = ab.

7.3. Further Work 185

For large problems this could become a burden. Also, consider the uncertainty

model for Ω∗ consistent with that for Ω. We know that P ({ω11, ω12}) = 0.4 and

P ({ω12, ω22}) = 0.5, but nothing more. This leads to P (ω11) = 0, P (ω11) = 0.4, and

so on; we have a lower prevision on Ω∗. This is not really a problem here, since there

is no reason to use the lower prevision when the precise probabilities are available,

but it could cause problems in attempts to generalize the method, for instance when

the original act-state dependent uncertainty models are themselves lower previsions.

Given a set of gambles with act-state dependent coherent lower previsions, we

could move to a single act-state independent coherent lower prevision by extending

the method above, but this may not always be a good idea. In the precise example

above, we took the most conservative lower prevision consistent with the original

probabilities. The properties of the gambles and of maximizing expected utility

assure us, however, that we could have taken any consistent lower prevision. If the

initial problem contained lower probabilities instead, choosing a less conservative

lower prevision for Ω∗ could lead to a different optimal set of gambles.

This could be exploited in cases where we actually think we know more about the

problem than can be contained in the separate act-state dependent lower previsions.

Suppose for instance that ω1 represents a machine’s working correctly in a certain

time period, and that the act inducing gamble Y involves performing maintenance

on the machine, whereas X involves no maintenance. Assume the probabilities from

above, and that maintenance cannot accidentally degrade the machine (a bold as-

sumption, admittedly). Then one might argue there is only one sensible uncertainty

model for Ω∗: P (ω11) = 0.4, P (ω21) = 0.1, P (ω22 = 0.5).

7.3.4 Changes To Decision Trees

Returning to normal form decision making in general, problems will arise when cir-

cumstances change during implementation of a normal form decision. For instance,

new options may have become available, or more information may become known.

The originally chosen normal form decision may not be optimal in the new prob-

lem. If subtree perfectness holds, there is nothing to worry about: the subject can

draw a new decision tree with root node being her current node, solve this, and pick

7.3. Further Work 186

X

Y − c
A

Y

X − c

A

AY ⊕ AX

Figure 7.1: The problem of hidden options.

a new optimal strategy. If subtree perfectness does not hold, this might be more

questionable, because this could result in choosing a strategy that was not originally

optimal.

It could be argued that we should not worry about whether something was orig-

inally optimal any more, since things have changed and so the original problem

is now irrelevant, but this seems to be part of a more general argument in favour

of subtree perfect extensive form solutions. For the purpose of this discussion we

assume that originally non-optimal choices should be avoided where possible. The

problem becomes more complicated after observing that as well as the original so-

lution of the global problem and the new solution of the (altered) local problem,

there is also the new solution of the altered global problem to worry about. It may

seem that this third solution need not be considered, since the subject never had

the opportunity to pick a strategy from the altered global problem. The following

example, adapted from Machina [50, Fig. 12, p. 1657], casts some doubt on this.

Suppose that the subject is confronted by the tree in Fig. 7.1, where the dashed

lines represent arcs that are not revealed until their node is reached. Also suppose

that AX ⊕ AY is preferred to AY ⊕ AX, but Y − c is preferred to X given A and

X − c is preferred to Y given A (so the choice function fails Multiple Backward

Mixture). The subject will initially choose the upper arc. Suppose A occurs, and

so Y − c becomes available. If the subject considers only the new local problem (in

7.4. Concluding Remarks 187

which Y − c is optimal) and the old global problem (in which Y − c didn’t exist)

then she would choose Y . Similarly, should A occur then X − c would be chosen.

This corresponds to choosing the gamble A(Y − c) ⊕ AX, an inferior version of a

gamble she initially rejected. Of course, if some options are hidden then solutions

may behave poorly, but it is worrying if hidden options can certainly lead the subject

to choose the worst possible strategy.

If backward induction holds, there are fewer problems like this. The following

procedure should provide reasonable results if the subject encounters something

unexpected. If the originally chosen strategy is still locally optimal, continue to

follow it. If it is not, search for a strategy that was originally optimal and still

locally optimal, and follow that. If no such strategy exists, choose a locally optimal

strategy that did not exist before. If no such strategy exists, then choose any locally

optimal strategy. Only in the last case will we select a strategy that was initially

non-optimal globally. The backward induction conditions make this last case only

appear in circumstances where it is reasonable, such as if the conditioning event is

not what was expected, or if all initially optimal arcs do not actually exist. Exactly

how this procedure performs would require investigation, particularly when many

different changes are made at once. At the very least it should usually ensure that

the subject avoids following a strategy that is worse than one already rejected, unless

there really is no better option (this might not hold if previous-optimal arcs turn out

not to exist; in such circumstances it may be justified to solve the initial problem

with the non-existent arcs removed).

7.4 Concluding Remarks

In conclusion, we have given a fairly general framework for analysing particular prop-

erties of solutions to sequential decision problems, principally using choice functions

on gambles and normal form solutions. We have found simple conditions for various

behaviours, which are easy to check if one has a new choice function to test. We

have shown that the methods can often be extended to different types of problem

without much difficulty, and also can be directed at specific cases of a more general

7.4. Concluding Remarks 188

problem to find special behaviour in those restricted instances. However, we have

found a number of extensions that do not follow easily, such as act-state dependence

and changes to the problem.

Bibliography

[1] M. Allais. Le comportement de l’homme rationnel devant le risque: critique des

postulats et axiomes de l’école Américaine. Econometrica, (21):503–546, 1953.

[2] E. Altman. Applications of Markov decision processes in communication net-

works: a survey. Technical report, INRIA, 2000.

[3] G. E. M. Anscombe. Modern moral philosophy. Philosophy, 33(124):1–19, Jan

1958.

[4] K. Arrow. Exposition of the theory of choice under conditions of uncertainty. In

C. McGuire and R. Radner, editors, Decision and Organization, pages 19–55.

[5] K. J. Arrow. Rational choice functions and orderings. Economica, 26(102):121–

127, May 1959.

[6] T. Augustin. On decision making under ambiguous prior and sampling infor-

mation. In G. de Cooman, T.L. Fine, S. Moral, and T. Seidenfeld, editors,

ISIPTA 01: Proceedings of the Second International Symposium on Imprecise

Probabilities, 2001.

[7] R. Bellman. Dynamic Programming. Princeton University Press, Princeton,

1957.

[8] Y. Ben-Haim. Info-Gap Decision Theory: Decisions Under Severe Uncertainty.

Academic Press, 2001.

[9] J. O. Berger. Statistical decision theory and Bayesian analysis. Springer-Verlag,

New York, second edition, 1985.

189

Bibliography 190

[10] G. Boole. An investigation of the laws of thought on which are founded the

mathematical theories of logic and probabilities. Walton and Maberly, London,

1854.

[11] R. T. Clemen and T. Reilly. Making Hard Decisions. Duxbury, 2001.

[12] Marquis de Condorcet. Essai sur l’Application de l’Analyse à la Probabilité des

Décisions Rendues à la Pluralité des Voix. L’Imprimerie Royale, Paris, 1785.

[13] G. De Cooman and M.C.M. Troffaes. Dynamic programming for deterministic

discrete-time systems with uncertain gain. International Journal of Approxi-

mate Reasoning, 39(2-3):257–278, Jun 2005.

[14] B. de Finetti. Theory of Probability: A Critical Introductory Treatment. Wiley,

New York, 1974–5. Two volumes.

[15] T. Dean, L. P. Kaelbling, J. Kirman, and A. Nicholson. Planning under time

constraints in stochastic domains. Artificial Intelligence, 76:35–74, 1995.

[16] A. P. Dempster. Upper and lower probabilities induced by a multivalued map-

ping. Ann. Math. Statist., 38:325–339, 1967.

[17] L. E. Dubins. Finitely additive conditional probabilities, conglomerability and

disintegrations. The Annals of Probability, 3(1):89–99, Feb 1975.

[18] D. Ellsberg. Risk, ambiguity, and the savage axioms. Quarterly Journal of

Economics, 4(75):643–669, 1961.

[19] T. Fabian, J. L. Fisher, M. W. Sasieni, and A. Yardeni. Purchasing raw material

on a fluctuating market. Operations Research, 7(1):107–122, Jan.-Feb. 1959.

[20] S. Faucheux and G. Froger. Decision-making under environmental uncertainty.

Ecological Economics, 15(1):29–42, 1995.

[21] D. Ferguson and A. Stentz. Focussed processing of MDPs for path planning. In

Proceedings of the 16th IEEE International Conference on Tools with Artificial

Intelligence (ICTAI 2004), 2004.

Bibliography 191

[22] P. C. Fishburn. A study of lexicographic expected utility. Management Science,

17(11):672–678, 1971.

[23] P. Hammond. Changing tastes and coherent dynamic choice. The Review of

Economic Studies, 43(1):pp. 159–173, 1976.

[24] P. Hammond. Consequentialist foundations for expected utility. Theory and

Decision, 25(1):25–78, Jul 1988.

[25] D. Harmanec. Generalizing Markov decision processes to imprecise probabili-

ties. Journal of Statistical Planning and Inference, 105(1):199–213, Jun 2002.

[26] M. Hausner. Multidimensional utilities. In R. M. Thrall, C. H Coombs, and

R. L. Davies, editors, Decision Processes, chapter 12, pages 167–180. John

Wiley, 1954.

[27] G. Hazen. Does rolling back decision trees really require the independence

axiom? Management Science, 33(6):807–809, Jun 1987.

[28] J. D. Hey. The economics of optimism and pessimism: A definition and some

applications. Kyklos, 37(2):181–205, 1984.

[29] Chew Soo Hong. A generalization of the quasilinear mean with applications to

the measurement of income inequality and decision theory resolving the allais

paradox. Econometrica, 51(4):1065–1092, 1983.

[30] N. Huntley and M. C. M. Troffaes. An efficient normal form solution to decision

trees with lower previsions. In Didier Dubois, M. Asunción Lubiano, Henri

Prade, Maŕıa Ángeles Gil, Przemyslaw Grzegorzewski, and Olgierd Hryniewicz,

editors, Soft Methods for Handling Variability and Imprecision, Advances in

Soft Computing, pages 419–426. Springer, Sep 2008.

[31] N. Huntley and M. C. M. Troffaes. Characterizing factuality in normal form

sequential decision making. In Thomas Augustin, Frank P. A. Coolen, Serafin

Moral, and Matthias C. M. Troffaes, editors, ISIPTA’09: Proceedings of the

Sixth International Symposium on Imprecise Probability: Theories and Appli-

cations, pages 239–248, 2009.

Bibliography 192

[32] J. Jaffray. Rational decision making with imprecise probabilities. In 1st Inter-

national Symposium on Imprecise Probabilities and Their Applications, 1999.

[33] A. Jayakumar and S. Asgarpoor. Maintenance optimization of equipment by

linear programming. Probability in the Engineering and Informational Sciences,

20:186–193, 2006.

[34] D. Kahneman and A. Tversky. Prospect theory: An analysis of decision under

risk. Econometrica, (47):263–291, 1979.

[35] U. S. Karmarkar. Subjectively weighted utility: A descriptive extension of

the expected utility model. Organizational Behavior and Human Performance,

21(1):61–72, 1978.

[36] E. Karni. Decision Making Under Uncertainty—The Case of State Dependent

Preferences. Harvard University Press, 1985.

[37] G. A. Kiker, T. S. Bridges, A. Varghese, T. P. Seager, and I. Linkov. Application

of multicriteria decision analysis in environmental decision making. Integrated

Environmental Assessment and Management, 1(2):95–108, 2005.

[38] D. Kikuti, F. Cozman, and C. P. de Campos. Partially ordered preferences

in decision trees: Computing strategies with imprecision in probabilities. In

R. Brafman and U. Junker, editors, IJCAI-05 Multidisciplinary Workshop on

Advances in Preference Handling, pages 118–123, 2005.

[39] P. Kolesar. A Markovian model for hospital admission scheduling. Management

Science, 16(6):B384–B396, February 1970.

[40] H.E. Kyburg. Rational belief. Behavioral and Brain Sciences, 8(2), 1983.

[41] I. H. LaValle and P. C. Fishburn. Equivalent decision trees and their associated

strategy sets. Theory and Decision, (23):37–63, 1987.

[42] I. H. LaValle and K. Wapman. Rolling back decision trees requires the inde-

pendence axiom! Management Science, 32(3):382–385, Mar 1986.

Bibliography 193

[43] I. Levi. On indeterminate probabilities. Philosophy of Science, 71(13):391–418,

Jul 1974.

[44] I. Levi. The Enterprise of Knowledge. MIT Press, London, 1980.

[45] D. V. Lindley. Making Decisions. Wiley, London, 2nd edition, 1985.

[46] R.D. Luce and H. Raiffa. Games and Decisions: introduction and critical

survery. Wiley, 1957.

[47] D. G. Luenberger. Introduction to Dynamic Systems. Wiley, 1979.

[48] L. B. Lusted. Decision-making studies in patient management. New England

Journal of Medicine, 284(8):416–424, 1971.

[49] M. J. Machina. “Expected utility” analysis without the independence axiom.

Econometrica, 50(2):277–323, Mar 1982.

[50] M. J. Machina. Dynamic consistency and non-expected utility models of choice

under uncertainty. Journal of Economic Literature, 27(1622-1688), 1989.

[51] E. F. McClennen. Rationality and Dynamic Choice: Foundational Explorations.

Cambridge University Press, 1990.

[52] E. Miranda. A survey of the theory of coherent lower previsions. International

Journal of Approximate Reasoning, 48(2):628–658, 2008.

[53] C.R. Plott. Path independence, rationality, and social choice. Econometrica,

41(6):1075–1091, Nov 1973.

[54] J. Quiggin. A theory of anticipated utility. Journal of Economic Behavior &

Organization, 3(4):323–343, 1982.

[55] R. Radner and J. Marschak. Note on some proposed decision criteria. In R. M.

Thrall, C. H Coombs, and R. L. Davies, editors, Decision Processes, pages

61–68. John Wiley, 1954.

[56] H. Raiffa and R. Schlaifer. Applied Statistical Decision Theory. Harvard Uni-

versity Press, 1961.

Bibliography 194

[57] F. P. Ramsey. Truth and probability. In R. B. Braithwaite, editor, Founda-

tions of Mathematics and other Logical Essays, chapter VII, pages 156–198.

Routledge and Kegan Paul, London, 1931. Published posthumously.

[58] P. Ray. Independence of irrelevant alternatives. Econometrica, 41(5):987–991,

Sep 1973.

[59] J. Rust. When is it optimal to kill off the market for used durable goods?

Econometrica, 54(1):65–86, 1986.

[60] J. K. Satia and R. E. Lave Jr. Markovian decision processes with uncertain

transition probabilities. Operations Research, 21(3):728–740, May-June 1973.

[61] L. J. Savage. The Foundations of Statistics. Dover, New York, 1972. Second

revised edition.

[62] M. J. Schervish, T. Seidenfeld, and J. B. Kadane. State-dependent utilities.

Journal of the American Statistical Association, 85(411):840–847, Sep 1990.

[63] T. Seidenfeld. Decision theory without ‘independence’ or without ‘ordering’:

What is the difference? Economics and Philosophy, 4:267–290, 1988.

[64] T. Seidenfeld. A contrast between two decision rules for use with (convex) sets

of probabilities: Γ-maximin versus E-admissibility. Synthese, 140:69–88, 2004.

[65] R. Selten. Reexamination of the perfectness concept for equilibrium points in

extensive games. International Journal of Game Theory, 4(1):25–55, Mar 1975.

[66] A. K. Sen. Social choice theory: A re-examination. Econometrica, 45(1):53–89,

1977.

[67] R. D Shachter. Evaluating influence diagrams. Operations Research, 34(6):871–

822, Nov–Dec 1986.

[68] G. Shafer. A Mathematical Theory of Evidence. Princeton University Press,

1976.

Bibliography 195

[69] G. Shafer and V. Vovk. Probability and Finance: It’s Only a Game! Wiley,

2001.

[70] H. A. Simon. Theories of decision-making in economics and behavioral science.

The American Economic Review, 49(3):253–283, 1959.

[71] C. A. B. Smith. Consistency in statistical inference and decision. Journal of

the Royal Statistical Society, B(23):1–37, 1961.

[72] R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT Press,

Cambridge, 1998. http://www.cs.ualberta.ca/∼sutton/book/the-book.html.

[73] J. Tatman and R. D. Shachter. Dynamic programming and influence diagrams.

IEEE Transactions on Systems, Man and Cybernetics, 20(2):365–379, 1990.

[74] M. C. M. Troffaes. Learning and optimal control of imprecise Markov decision

processes by dynamic programming using the imprecise Dirichlet model. In

M. Lopz-Daz, M. Gil, P. Grzegorzewski, O. Hyrniewicz, and J. Lawry, editors,

Soft Methodology and Random Information Systems, pages 141–148. Springer,

2004.

[75] M. C. M. Troffaes. Finite approximations to coherent choice. International

Journal of Approximate Reasoning, 50(4):655–665, April 2009.

[76] M. C. M. Troffaes, N. Huntley, and R. Shirota Filho. Sequential decision

processes under act-state independence with arbitrary choice functions. In

E. Huellermeier, R. Kruse, and F. Hoffmann, editors, Information Processing

and Management of Uncertainty in Knowledge-Based Systems, pages 98–107.

Springer, 2010.

[77] M.C.M. Troffaes. Decision making under uncertainty using imprecise probabil-

ities. International Journal of Approximate Reasoning, 45:17–29, 2007.

[78] J. Von Neumann and O. Morgenstern. Theory of games and economic behavior.

Princeton University Press, Princeton, third edition, 1953.

Bibliography 196

[79] P. Walley. Statistical Reasoning with Imprecise Probabilities. Chapman and

Hall, London, 1991.

[80] P. Walley. Inferences from multinomial data: Learning about a bag of marbles.

Journal of the Royal Statistical Society. Series B (Methodological), 58(1):3–57,

1996.

[81] P. M. Williams. Notes on conditional previsions. Technical report, School of

Math. and Phys. Sci., Univ. of Sussex, 1975.

[82] P. M. Williams. Notes on conditional previsions. International Journal of

Approximate Reasoning, 44(3):366–383, 2007.

[83] K. Yin, H. Liu, and N. E. Johnson. Markovian inventory policy with application

to the paper industry. Computers and Chemical Engineering, 26:1399–1413,

2002.

[84] M. Zaffalon, K. Wesnes, and O. Petrini. Reliable diagnoses of dementia by

the naive credal classifier inferred from incomplete cognitive data. Artificial

Intelligence in Medicine, 29(1–2):61–79, 2003.

Appendix A

List of Properties

For convenience, we present a list of all properties in order of appearance, with their

abbreviated name and page reference.

Property 1 (Conditioning, p. 32). Let A be a non-empty event, and let X be a non-

empty finite A-consistent set of gambles, with {X, Y } ⊆ X such that AX = AY . If

X ∈ opt(X|A), then Y ∈ opt(X|A).

Property 2 (Intersection, p. 32). For any event A 6= ∅ and any non-empty finite

A-consistent sets of gambles X and Y such that Y ⊆ X and opt(X|A) ∩ Y 6= ∅,

opt(Y|A) = opt(X|A) ∩ Y .

Property 3 (Mixture, p. 32). For any events A and B such that A ∩ B 6= ∅ and

A∩B 6= ∅, any A∩B-consistent gamble Z, and any non-empty finite A∩B-consistent

set of gambles X ,

opt(AX ⊕ AZ|B) = A opt(X|A ∩B)⊕ AZ.

Property 4 (Strong Path Independence, p. 33). For any non-empty event A and

any non-empty finite A-consistent sets of gambles X1, . . . ,Xn, there is a non-empty

I ⊆ {1, . . . , n} such that

opt

(
n⋃
i=1

Xi

∣∣∣∣∣A
)

=
⋃
i∈I

opt(Xi|A).

197

Appendix A. List of Properties 198

Property 5 (Very Strong Path Independence, p. 33). For any non-empty event A

and any non-empty finite A-consistent sets of gambles X1, . . . ,Xn,

opt

(
n⋃
i=1

Xi

∣∣∣∣∣A
)

=
n⋃
i=1

Xi∩opt(∪n
i=1Xi|A)6=∅

opt(Xi|A)

Property 6 (Total Preordering, p. 33). For every event A 6= ∅, there is a total

preorder �A on A-consistent gambles such that for every non-empty finite set of

A-consistent gambles X ,

opt(X|A) = {X ∈ X : (∀Y ∈ X)(X �A Y)}

Property 7 (Multiple Mixture, p. 37). For any event B and partition A1, . . . , An

such that Ai ∩ B 6= ∅ for all i, and sets of gambles X1, . . . ,Xn such that Xi is

Ai ∩B-consistent,

opt

(
n⊕
i=1

AiXi

∣∣∣∣∣B
)

=
n⊕
i=1

Ai opt(Xi|Ai ∩B).

Property 8 (Backward Conditioning, p. 65). Let A and B be events such that

A ∩B 6= ∅ and A ∩B 6= ∅, and let X be a non-empty finite A ∩B-consistent set of

gambles, with {X, Y } ⊆ X such that AX = AY and X ∈ opt(X|A ∩B). If there is

an A ∩B-consistent gamble Z such that

AX ⊕ AZ ∈ opt(AX ⊕ AZ|B),

then Y ∈ opt(X|A ∩B).

Property 9 (Insensitivity To Omission, p. 65). For any event A 6= ∅, and any

non-empty finite A-consistent sets of gambles X and Y,

opt(X|A) ⊆ Y ⊆ X ⇒ opt(Y|A) = opt(X|A).

Property 10 (Preservation Under Addition, p. 65). For any event A 6= ∅, and any

non-empty finite A-consistent sets of gambles X and Y,

Y ⊆ X ⇒ opt(Y|A) ⊇ opt(X|A) ∩ Y .

Appendix A. List of Properties 199

Property 11 (Backward Mixture, p. 65). For any events A and B such that B∩A 6=

∅ and B ∩A 6= ∅, any B ∩A-consistent gamble Z, and any non-empty finite B ∩A-

consistent set of gambles X ,

opt
(
AX ⊕ AZ|B

)
⊆ A opt(X|A ∩B)⊕ AZ.

Property 12 (Path Independence, p. 66). For any non-empty event A, and for any

finite family of non-empty finite A-consistent sets of gambles X1, . . . , Xn,

opt

(
n⋃
i=1

Xi

∣∣∣∣∣A
)

= opt

(
n⋃
i=1

opt(Xi|A)

∣∣∣∣∣A
)
.

Property 13 (Axiom 7′, p. 67). For any non-empty event A and any non-empty

finite sets of gambles X and Y such that Y ⊆ X ,

opt(Y|A) ⊇ Y ∩ opt(X|A)

and

opt(X|A) 6⊂ opt(Y|A).

Property 14 (Strong Backward Conditioning, p. 67). For any events A and B be

events such that A ∩ B 6= ∅ and A ∩ B 6= ∅ and any non-empty finite set A ∩ B-

consistent set of gambles X with {X, Y } ⊆ X such that AX = AY , X ∈ opt(X|A∩

B) implies Y ∈ opt(X|A∩B) whenever there is a non-empty finite A∩B-consistent

set of gambles Z such that, for at least one Z ∈ Z,

AX ⊕ AZ ∈ opt(AX ⊕ AZ|B).

Property 15 (Multiple Backward Mixture, p. 69). For any partition of Ω A1, . . . ,

An, any non-empty event B such that Ai ∩B 6= ∅ for all Ai, and for any non-empty

finite sets of gambles X1, . . . , Xn where each Xi is Ai ∩B-consistent,

opt

(
n⊕
i=1

AiXi

∣∣∣∣∣B
)
⊆

n⊕
i=1

Ai opt(Xi|Ai ∩B).

Property 16 (Locality, p. 111). A choice function opt satisfies locality on S0, . . . ,

Sn whenever, for each sequential decision process on S0, . . . , Sn and each 1 ≤ k < n,

Πn
k(·) = Πk

k(·)× Πk+1
k+1(·)× · · · × Πn

n(·).

Appendix A. List of Properties 200

Property 17 (Sequential Distributivity, p. 112). For any 1 ≤ k < n, any value

hk−1 of Hk−1, all finite sets of gambles X on Sk, all finite sets of gambles Y(sk) on

Fk+1 (one such set for each sk ∈ Sk), and all X ∈ X and Y (sk) ∈ Y(sk):

X +
⊕
sk

Esk
Y (sk) ∈ opt

(
X +

⊕
sk

Esk
Y(sk)

∣∣∣∣hk−1

)

⇐⇒ X ∈ opt(X|hk−1) and Y (sk) ∈ opt(Y(sk)|hk−1sk) for all sk.

Property 18 (Bellman’s Principle of Optimality, p. 118). A normal form operator

norm satisfies the principle of optimality if, for any dynamic programming tree T ,

and any node N in at least one element of norm(T),

stN(norm(T)) ⊆ norm(stN(T)).

Equivalently, for any normal form decision U ∈ norm(T) and any node N in U ,

stN(U) ∈ norm(stN(T)).

Property 19 (Backward Addition, p. 120). For any gamble X and any non-empty

finite set of gambles Y,

opt(X + Y) ⊆ X + opt(Y).

Property 20 (Addition, p. 124). For any gamble X and any non-empty finite set

of gambles Y,

opt(X + Y) = X + opt(Y).

Property 21 (Weak Multiple Mixture, p. 48). For any non-empty event B and

partition A1, . . . , An such that Ai∩B 6= ∅, and any non-empty finite sets of gambles

Xi, . . . ,Xn such that Xi is Ai ∩B-consistent,

• if
⊕

AiXi ∈ opt (
⊕

AiXi|B), then Xi ∈ opt(Xi|Ai ∩B), and,

• if Xk ∈ opt(Xk|Ak ∩ B), then for each j 6= k, there is a Xj ∈ Xj such that⊕
AiXi ∈ opt (

⊕
AiXi|B).

Appendix B

Supplementary Definitions and

Proofs

B.1 Definition Of Decision Trees

Hammond [24, pp. 31–32] gives a definition of consequentialist decision trees. The

decision trees we introduce informally in Section 1.2.3 are very similar; they model

essentially the same problems as Hammond’s. It is easy to provide a definition of

our decision trees that follows the same approach as Hammond. We do not find this

adds any use or understanding, but the reader may disagree.

Definition B.1. A decision tree is a collection

T = (Ω,R,N ,D, C,L, N0, succ(·), S(·), rew(·), ev(T)) ,

where

• Ω is a possibility space;

• R is a reward set;

• N is a set of nodes partitioned into the three sets D, C, L described below;

• D is a (possibly empty) set of decision nodes;

• C is a (possibly empty) set of chance nodes;

201

B.2. Results for Sets of Gambles 202

• L is a non-empty set of leaves or reward nodes;

• N0 is the initial node;

• succ : N → P(N) is the immediate successor function satisfying

– For all N ∈ N , N /∈ succ(N);

– For all N ∈ N , succ(N) = ∅ ⇐⇒ N ∈ L;

– For all N,N ′ ∈ N , succ(N) ∩ succ(N ′) 6= ∅ ⇐⇒ N = N ′;

– For all N ∈ N , N = N0 if and only if, for all N ′ ∈ N , N /∈ succ(N ′);

• S is a function defined on the set of all nodes whose immediate predecessor is

a chance node, and maps each such node to an event, such that, for all N ∈ C,

{S(N ′) : N ′ ∈ succ(N)} forms a partition of Ω;

• rew : L → R identifies the reward received for reaching each leaf;

• ev(T) is a non-empty subset of Ω, representing all events observed prior to N0.

B.2 Results for Sets of Gambles

This section details a few useful results about the behaviour of certain sets of gam-

bles.

Lemma B.2. For any decision tree T , gamb(T) = gamb(nfd(T)).

Proof. We prove this by structural induction. In the base step, we prove the equality

for trees comprising only one node. In the induction step, we prove that if the

equality holds for the subtrees at every child of the root node of T , then the equality

also holds for T .

If T consists of only a single node, namely a reward node, then nfd(T) = {T}

and the result holds trivially. Thus the base step is confirmed.

Suppose T has a chance node at the root, that is, T =
⊙n

i=1EiTi. Each element

of nfd(T) is of the form
⊙n

i=1 Ui, where Ui ∈ nfd(Ti). In other words, nfd(T) is the

B.2. Results for Sets of Gambles 203

set of all possible mixtures of the elements of nfd(Ti), that is,

nfd(T) =
n⊙
i=1

Ei nfd(Ti).

The induction hypothesis is gamb(Ti) = gamb(nfd(Ti)) for each i. We have

gamb(nfd(T)) = gamb

(
n⊙
i=1

Ei nfd(Ti)

)

= gamb

({
n⊙
i=1

EiUi : Ui ∈ nfd(Ti)

})

=
n⊕
i=1

Ei gamb(nfd(Ti))

=
n⊕
i=1

Ei gamb(Ti)

= gamb(T).

On the other hand, if T has a decision node as a root, that is, T =
⊔n
i=1 Ti, then

nfd(T) =

{
t U : U ∈

n⋃
i=1

nfd(Ti)

}
,

and, since gamb(tU) = gamb(U) for any U ,

gamb(nfd(T)) =

{
gamb(tU) : U ∈

n⋃
i=1

nfd(Ti)

}

=

{
gamb(U) : U ∈

n⋃
i=1

nfd(Ti)

}

=
n⋃
i=1

gamb(nfd(Ti))

and again, the induction hypothesis says that gamb(Ti) = gamb(nfd(Ti)) for each i,

so

=
n⋃
i=1

gamb(Ti)

= gamb(T).

This completes the induction step.

B.2. Results for Sets of Gambles 204

Lemma B.3. Let A1, . . . , An be a finite partition of Ω, n ≥ 2. Let X , and X1, Z1,

. . . , Xn, Zn be non-empty finite sets of gambles. If

X = AkXk ⊕ AkZk

for all k ∈ {1, . . . , n}, then

X =
n⊕
i=1

AiXi.

Proof. Let X ∈ X . Then X ∈ AkX ⊕ AkZk for all k. Therefore, AkXk ∈ AkXk for

all k, where AkXk is all the restrictions of gambles of Xk to Ak. So, X ∈
⊕n

i=1 AkXk,

establishing that X ⊆
⊕n

i=1 AkXk.

Now we show using induction that
⊕n

i=1 AiXi ⊆ X . The inductive step is to

show that, if

X = A1X1 ⊕ . . .⊕ AkXk ⊕ Ak+1Zk+1 ⊕ . . .⊕ AnZn ∈ X ,

for any X1 ∈ X1, . . . , Xk ∈ Xk and some Zk+1, . . . , Zn, then for any Xk+1 ∈ Xk+1,

A1X1 ⊕ . . .⊕ Ak+1Xk+1 ⊕ Ak+2Zk+2 ⊕ . . .⊕ AnZn ∈ X .

The base step, for k = 1, clearly holds by definition of X . Suppose k > 1. Observe

that X can be rewritten as

X = Ak+1Zk+1 ⊕ Ak+1X,

that is, X ∈ Zk+1. Therefore Ak+1Xk+1 ⊕ Ak+1X ∈ X for all Xk+1 ∈ Xk+1. But

Ak+1Xk+1 ⊕ Ak+1X = A1X1 ⊕ . . .⊕ Ak+1Xk+1 ⊕ Ak+2Zk+2 ⊕ . . .⊕ AnZn,

proving the inductive step.

Lemma B.4. Let A1, . . . , An be a finite partition of Ω, n ≥ 2. Let X , and X1, Z1,

. . . , Xn, Zn be finite sets of gambles. If

X ⊆ AkXk ⊕ AkZk

for all k ∈ {1, . . . , n}, then

X ⊆
n⊕
k=1

AkXk.

B.3. Lemmas for the Backward Induction Theorem 205

Proof. Let X ∈ X , then X ∈ AkXk ⊕AkZk for all k. Therefore, for each k, there is

an Xk ∈ Xk such that AkX = AkXk. Whence,

X =
n⊕
k=1

AkXk ∈
n⊕
k=1

AkXk.

B.3 Lemmas for the Backward Induction Theo-

rem

This section provides proofs for some of the intermediate results required for Theo-

rem 3.12.

Proof of Lemma 3.13. In this proof we require Eq. (1.10), and the following conse-

quence of Eq. (1.7):

gamb

(
normopt

(
n⊙
i=1

Ei normopt(Ti)

))

= opt

(
n⊕
i=1

Ei opt(gamb(Ti)|ev(T) ∩ Ei)

∣∣∣∣∣ev(T)

)
. (B.3.1)

We first show that

normopt(T) ⊇ normopt

(
n⊙
i=1

Ei normopt(Ti)

)
.

Consider a normal form decision U ∈ normopt(
⊙n

i=1Ei normopt(Ti)). We have,

by Eq. (3.6),

gamb(U) ⊆ gamb

(
normopt

(
n⊙
i=1

Ei normopt(Ti)

))
= gamb(normopt(T)).

So, there exists a normal form decision V ∈ normopt(T) such that gamb(V) =

gamb(U). Since U ∈ nfd(T), by definition of normopt, U ∈ normopt(T), which

establishes the claim.

Next, we show that

normopt(T) ⊆ normopt

(
n⊙
i=1

Ei normopt(Ti)

)
.

B.3. Lemmas for the Backward Induction Theorem 206

Consider a normal form decision U ∈ normopt(T). We know by Eq. (3.6) and

Eq. (B.3.1) that

gamb(U) ⊆ opt

(
n⊕
i=1

Ei opt(gamb(Ti)|ev(T) ∩ Ei)

∣∣∣∣∣ev(T)

)
.

We can write U =
⊙n

i=1EiUi, where Ui ∈ nfd(Ti), so by Eq. (1.6b),

n⊕
i=1

Ei gamb(Ui) ⊆ opt

(
n⊕
i=1

Ei opt(gamb(Ti)|ev(T) ∩ Ei)

∣∣∣∣∣ev(T)

)
.

Consider normal form decisions Vi ∈ normopt(Ti). The above equation and Eq. (1.10)

tell us that, for each i, we can find Vi such that Ei gamb(Vi) = Ei gamb(Ui). Of

course, because Vi ∈ normopt(Ti),

gamb(Vi) ⊆ opt(gamb(Ti)|Ei ∩ ev(T)).

We further have, for V =
⊙n

i=1EiVi, gamb(V) = gamb(U) and V ∈ nfd(T), and so

V ∈ normopt(T).

If we can establish that

gamb(Ui) ⊆ opt(gamb(Ti)|Ei ∩ ev(T)), (B.3.2)

then, by definition of normopt and because Ui ∈ nfd(Ti), it follows that Ui ∈

normopt(Ti). So, in that case, there is a V ∈ normopt(
⊙n

i=1Ei normopt(Ti)) such

that gamb(V) = gamb(U), and U ∈ nfd(
⊙n

i=1 Ei normopt(Ti)). Therefore by defi-

nition of normopt, we will have U ∈ normopt(
⊙n

i=1 Ei normopt(Ti)), establishing the

desired result.

We use Lemma 3.6 to show that Eq. (B.3.2) indeed holds by Backward Con-

ditioning. When n = 1 the result is trivial, so assume n ≥ 2. Observe that

both singletons gamb(Ui) and gamb(Vi) are subsets of gamb(Ti), Ei gamb(Ui) =

Ei gamb(Vi), and gamb(Vi) ⊆ opt(gamb(Ti)|Ei ∩ ev(T)). Further, gamb(Ti) is

Ei ∩ ev(T)-consistent. We are almost ready to apply Backward Conditioning We

use Lemma 3.6 and Strong Backward Conditioning.

We know that

gamb(V) =
n⊕
i=1

Ei gamb(Vi) ⊆ opt(gamb(T)|ev(T))

= opt

(
n⊕
i=1

Ei gamb(Ti)

∣∣∣∣∣ev(T)

)
.

B.3. Lemmas for the Backward Induction Theorem 207

Letting

Z = (E1 ∪ E2) gamb(V2)⊕ E3 gamb(V3)⊕ . . .⊕ En gamb(Vn)

and

Z = (E1 ∪ E2) gamb(T2)⊕ E3 gamb(T3)⊕ . . .⊕ En gamb(Tn),

we see that Z ∈ Z and Z is E1 ∩ ev(T)-consistent. Further,

E1 gamb(V1)⊕ E1Z =
n⊕
i=1

Ei gamb(Vi) = gamb(V)

and

E1 gamb(T1)⊕ E1Z =
n⊕
i=1

Ei gamb(Ti).

We see that

E1 gamb(V)⊕ E1Z ⊆ opt(E1 gamb(T1)⊕ E1Z|ev(T)).

Hence we have found a Z and a Z ∈ Z required to apply Strong Backward Condi-

tioning. Finally, by E1 gamb(U1) = E1 gamb(V1), and Strong Backward Condition-

ing, we have

gamb(U1) ⊆ opt(gamb(T1)|E1 ∩ ev(T)).

This argument applies for any index i and therefore Eq. (B.3.2) has been shown,

establishing the result.

Proof of Lemma 3.14. In this proof we require Eq. (1.10). For clarity, let A =

ev(T) = ev(Ti). We first show that

normopt(T) ⊇ normopt

(
n⊔
i=1

normopt(Ti)

)
.

Consider a normal form decision U ∈ normopt(
⊔n
i=1 normopt(Ti)). To show that

U ∈ normopt(T), we must show that U ∈ nfd(T) and gamb(U) ⊆ gamb(normopt(T)).

The former is obvious, and the latter is established by Eq. (3.7):

gamb(U) ⊆ gamb

(
normopt

(
n⊔
i=1

normopt(Ti)

))
= gamb(normopt(T)).

B.3. Lemmas for the Backward Induction Theorem 208

Next we show that

normopt(T) ⊆ normopt

(
n⊔
i=1

normopt(Ti)

)
.

Let U ∈ normopt(T). To show that U ∈ normopt(
⊔n
i=1 normopt(Ti)) we must show

that U ∈ nfd(
⊔n
i=1 normopt(Ti)) and that

gamb(U) ⊆ gamb

(
normopt

(
n⊔
i=1

normopt(Ti)

))
.

The latter requirement follows immediately from Eq. (3.7):

gamb(U) ⊆ gamb(normopt(T)) = gamb

(
normopt

(
n⊔
i=1

normopt(Ti)

))
.

We now prove that U ∈ nfd(
⊔n
i=1 normopt(Ti)). Let V be U with the root

node removed, that is, U = tV . Clearly, for some k, V ∈ nfd(Tk). It suffices

to show that V ∈ normopt(Tk). Let {X} = gamb(U) = gamb(V). We know

that X ∈ opt(gamb(T)|A), and also that X ∈ gamb(Tk). If we can prove that

X ∈ gamb(normopt(Tk)) = opt(gamb(Tk)|A), then V ∈ normopt(Tk). Indeed, using

Preservation Under Addition and gamb(Tk) ⊆ gamb(T) we have

opt(gamb(Tk)|A) ⊇ gamb(Tk) ∩ opt(gamb(T)|A).

So we have shown that indeed X ∈ opt(gamb(Tk)|A), establishing the claim.

Proof of Lemma 3.15. Let A and B be non-empty events, and X be a non-empty

finite set of gambles, and Z be a gamble, such that the following properties hold:

A ∩B 6= ∅, A ∩B 6= ∅, X is A ∩B-consistent, Z is A ∩B-consistent, and there are

X, Y ∈ X such that AX = AY , X ∈ opt(X|A ∩ B), and AX ⊕ AZ ∈ opt(AX ⊕

AZ|B). If it is not possible to construct such a situation, then opt satisfies Backward

Conditioning automatically. Otherwise, to prove that Backward Conditioning holds,

we must show that Y ∈ opt(X|A ∩B).

Consider a consistent decision tree T = AT1�AT2, where ev(T) = B, gamb(T1) =

X , and gamb(T2) = {Z}. Since X is A ∩ B-consistent and Z is A ∩ B-consistent,

we know from Definition 1.17 that there is such a T . We have gamb(normopt(T)) =

opt(gamb(T)|B) = opt(AX ⊕ AZ|B). So, AX ⊕ AZ ∈ gamb(normopt(T)), and of

course AX ⊕ AZ = AY ⊕ AZ.

B.3. Lemmas for the Backward Induction Theorem 209

Therefore, any normal form decision in nfd(T) that induces the gamble AY ⊕AZ

must be in normopt(T). In particular, by Lemma B.2 there is a normal form decision

U ∈ nfd(T1) such that gamb(U) = {Y }, and a normal form decision V ∈ nfd(T2)

such that gamb(V) = {Z}. So AU � AV ∈ nfd(T) and gamb(AU � AV) = {AY ⊕

AZ}. Indeed, because AX ⊕ AZ ∈ opt(AX ⊕ AZ|B), it follows that AU � AV ∈

normopt(T) = backopt(T). By definition, backopt(T) = normopt(A backopt(T1) �

A backopt(T2)), and so it must hold that U ∈ backopt(T1) = normopt(T1). Whence,

gamb(U) ⊆ gamb(normopt(Ti)) = opt(X|A ∩ B). Since gamb(U) = {Y }, we have

Y ∈ opt(X|A ∩B), establishing Backward Conditioning.

Proof of Lemma 3.16. Let A be any non-empty event, and X1, . . . , Xn be any non-

empty finite sets of A-consistent gambles. Let T =
⊔n
i=1 Ti be a consistent decision

tree, with gamb(Ti) = Xi for each i, and where ev(T) = A. The existence of T

is assured by A-consistency of X (see Definition 1.17). We have, with repeated

applications of Eq. (1.10) and Eq. (1.8),

opt

(
n⋃
i=1

Xi

∣∣∣∣∣A
)

= gamb(normopt(T)) = gamb(backopt(T))

= gamb

(
normopt

(
n⊔
i=1

backopt(Ti)

))

= opt

(
gamb

(
n⊔
i=1

backopt(Ti))

∣∣∣∣∣A
)

= opt

(
n⋃
i=1

gamb(backopt(Ti))

∣∣∣∣∣A
)

= opt

(
n⋃
i=1

gamb(normopt(Ti))

∣∣∣∣∣A
)

= opt

(
n⋃
i=1

opt(gamb(Ti)|A)

∣∣∣∣∣A
)

= opt

(
n⋃
i=1

opt(Xi|A)

∣∣∣∣∣A
)
.

Proof of Lemma 3.17. Let A and B be non-empty events such that A ∩B 6= ∅ and

A∩B 6= ∅, let X be a non-empty finite set of A∩B-consistent gambles, and let Z be

B.4. Proofs for Weak Subtree Perfectness Theorem 210

an A∩B-consistent gamble. Let T = AT1�AT2 be a consistent decision tree, where

ev(T) = B, gamb(T1) = X , and gamb(T2) = {Z}. The existence of T is assured by

A ∩B-consistency of X and A ∩B-consistency of Z. By assumption,

gamb(normopt(T)) = gamb(backopt(T))

= gamb(normopt(A backopt(T1)� AT2)).

From Eq. (1.10), we have gamb(normopt(T)) = opt(gamb(T)|B). Similarly, with

repeated applications of Eq. (1.10) and Eq. (1.7),

gamb(normopt(A backopt(T1)� AT2)) = opt(gamb(A backopt(T1)� AT2)|B)

= opt(A gamb(backopt(T1))⊕ AZ|B)

= opt(A gamb(normopt(T1))⊕ AZ|B)

= opt(A opt(gamb(T1)|A ∩B)⊕ AZ|B).

Finally we note that gamb(T) = AX ⊕ AZ, and gamb(T1) = X . Therefore,

opt(AX ⊕ AZ|B) = opt(A opt(X|A ∩B)⊕ AZ|B) ⊆ A opt(X|A ∩B)⊕ AZ.

B.4 Proofs for Weak Subtree Perfectness Theo-

rem

This section provides proofs for some intermediate results required for Theorem 3.23.

Proof of Lemma 3.25. Let A and B be non-empty events, X ,be a non-empty finite

set of gambles, and Z be a gamble, such that the following properties hold: A∩B 6= ∅,

A ∩ B 6= ∅, X is A ∩ B-consistent, Z is A ∩ B-consistent, and there are X, Y ∈ X

such that AX = AY , X ∈ opt(X|A∩B), and AX⊕AZ ∈ opt(AX ⊕AZ|B). If it is

not possible to construct such a situation, then opt satisfies Backward Conditioning

automatically. Otherwise, to prove that Backward Conditioning holds, we must

show that Y ∈ opt(X|A ∩B).

B.4. Proofs for Weak Subtree Perfectness Theorem 211

Consider a consistent decision tree T = AT1�AT2, where ev(T) = B, gamb(T1) =

X , and gamb(T2) = {Z}. Since X is A∩B-consistent and Z is A∩B-consistent, we

know from Definition 1.17 that there is such a T . By Lemma B.2, there is a normal

form decision U ∈ nfd(T1) such that gamb(U) = {Y }, and a normal form decision

in V ∈ nfd(T2) such that gamb(V) = {Z}.

Since, by assumption, AX = AY , obviously AX ⊕ AZ = AY ⊕ AZ, and hence,

also AY ⊕ AZ ∈ opt(AX ⊕ AZ|B). Therefore, by definition of normopt, AU �

AV ∈ normopt(T). In particular, U ∈ stN(normopt(T)), where N is the root of T1.

Because normopt is subtree perfect for normal form decisions, it follows that also

U ∈ normopt(stN(T)) = normopt(T1). Again applying the definition of normopt, we

conclude that indeed Y ∈ opt(X|A ∩B).

Proof of Lemma 3.26. Let A be a non-empty event, and let X be a non-empty finite

set of A-consistent gambles. Let Y be a non-empty subset of X . Let T = T1 t T2,

where ev(T) = A, gamb(T1) = Y , and gamb(T2) = X . Let N be the root of T1.

If opt(X|A) ∩ Y = ∅ then Preservation Under Addition holds automatically.

Suppose opt(X|A) ∩ Y 6= ∅. By definition of normopt, N appears in at least one

element of normopt(T), and

opt(X|A) ∩ Y = gamb(stN(normopt(T))),

and by subtree perfectness of normal form decisions

⊆ gamb(normopt(T1))

= opt(Y|A).

Proof of Lemma 3.27. Let A and B be non-empty events such that A ∩B 6= ∅ and

A ∩ B 6= ∅, let X be a non-empty finite set of A ∩ B-consistent gambles, and let Z

be an A ∩ B-consistent gamble. Let T = AT1 � AT2 be a consistent decision tree,

where ev(T) = B, gamb(T1) = X , and T2 is simply a normal form decision with

gamb(T2) = {Z}. The existence of T is assured by A ∩ B-consistency of X and

A ∩B-consistency of {Z}. Let N be the root of T1.

B.4. Proofs for Weak Subtree Perfectness Theorem 212

Consider any gamble AX ⊕ AZ ∈ opt(AX ⊕ AZ|B). By Lemma B.2, there

is a U ∈ nfd(T1) such that gamb(U) = X. By definition of normopt, it follows

that AU � AT2 ∈ normopt(T), and hence, in particular, U ∈ stN(normopt(T)). By

subtree perfectness for normal form decisions, U ∈ normopt(T1). Again applying the

definition of normopt, we find that X ∈ opt(X|A ∩ B), thus indeed AX ⊕ AZ ∈

A opt(X|A ∩B)⊕ AZ, whence Backward Mixture is established.

