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Abstract

Polycrystalline and single crystal specimens of silicon
iron were strained up to the yield point by the application
of external stresses, A bending technique was found to be
the most convenient method for doing this. Domain patterns
were observed by means of the Bitter techniqgue,

Tensional stresses were applied along the [110] and
[001] directions of (110) surfaced specimens and the result-
ing structures described in detail. This necessitated an
analysis of the effect of stress on Bloch Wall energies for
various wall orientations. Domain patterns were also
examined on (100) surfaced specimens under the effect of
compressive forces in the [110] and f00]directions. 1In
the first case the maze patterns so produced were compared
with theoretical considerations while in the second example
the nucleation and growth of transverse domains were
examined. A new model of fir tree structures, proposed by
Spacek, was evaluated using a different expression for the
magnetostatic energy and this was then applied to measurements
on the effect of stress on fir tree closure domains, The
theory did not compare very favourably with experiment.

The work of Chikazumi and Suzuki, in which large
stresses were applied to a (100) surfaced specimen by

scratching the surface, was extended to (110) surfaces,
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CHAPTER ONE

INTRODUCTION

1.1 Ferromagnetism

At the beginning of the century basic experimental
knowledge of various ferromagnetic phenomena had been
established, It had been noted that there existed a
temperature, called the Curie Temperature, below which
it was possible to attain magnetic saturation by the
application of small magnetic fields., At the same time
it was possible for the magnetization of the same specimen
to be zero in zero applied field,

In order to account for these observations Weiss
(1907) proposed two basic concepts, In the first he-
postulated a strong molecular field which produces a
resultant magnetization by the alignment of magnetic
carriers, In the second he assumed that actual ferro-
magnetic specimens are composed of a number of small
regions called domains, each one being magnetically
saturated, but with the direction of magnetization in

different domains not necessarily parallel,

1.1.1. Molecular Field Theory

Weiss followed the work of Langevin (1905) on para-

magnetism, except that he introduced an additional field,
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called the molecular field, acting on the elementary
magnets and proportionsl to the intensity of magnetiza-
tion. By using the supposition that the dipole orienta-
tion is governed by Boltzmann's Distribution Law, he
showed that the magnetic susceptibility becomes infinite
at a specific temperature and that below this temperature
the saturation megnetization is a definite function of
temperature, If this variation is plotted in reduced
units see Fig, 1 then a curve which is approximately
correct for all ferromagnetics is obtained.

Weliss himself did not make any specific predictions
about the origin of the molecular field though he did show
that its size, about 107 cersteds, was far too large to be
explained by normal magnetic moment interactions., In 1928
an explanation of the origin of the field was put forward
by Heisenberg, He showed, as a result of a quantum mech-
snical treatment, that the force is due to an electro-
static term arising from overlapping orbital functions.
Since there is a correlation, due to the Pauli exclusion
principle, between the orbital symmetry and the spin
alignment, there is an effective spin-spin coupling. The

exchange energy between two atoms i,j is given by

E . = =2 Jij si~sj (1.1)
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where Si is the spin of atom i and J the exchange integral.
If J is positive then the minimum energy condition is for
the parallel alignment of spins,

It has been shown experimentally, from work on the
gyromaegnetic ratio, that about 90% of the saturation mag-
netization is due to electron spins, the rest being due
to orbital motion.

Van Vleck (1952) has shown that the spins responsible
for ferromagnetism are not those of valence electrons but
of unfilled inner electron shells, Thus for a substance
to be ferromagnetic, not only must it have an incomplete
inner shell but the exchange integral must be positive,
Slater (1930) pointed out that this is most likely to
occur when a substance with an incomplete inner shell of
large redius forms a crystal lattice with a small inter-
atomic spacing.

The non-polar approach by Heisenberg is supplemented
in other aspects of ferromagnetism by a band structure
model., This is particularly useful in explaining how the
number of electron spins per atom participating in the
spontaneous magnetization may be non-integral, as is the

case in the three common ferromagnetic elements.




1.1.2. The Domain Concept

This was the second hypothesis put forward by Weiss.
Since the field needed to increase magnetization from
zero to saturation is very small compared with thé:molecular
field it must be assumed that some form of process
involving reorientation of domain magnetization direc-
tions is taking place rather than an increase in the
intrinsic magnetization. Therefore magnetization curves
can be analysed in terms of domain wall displacements,
irreversible and reversible, and the rotation of the
magnetization direction in domains. Even so this does
not give any idea of the size and shape of domain struc-
tures, Bitter (1931) was the first to take measurements
on domasin sizes by making the domain walls visible with
a magnetic colloid. Unfortunately most of this early
work was carried out on mechanically strained surfaces
so that the observed struéture did not bear any resem-
blance to the underlying structure. It was not until
1935 that Landau and Lifshitz proposed theoretical domain
structures, They pointed out that a domain configuration
constituted a system of minimum energy. Each of the
forms of energy involved in these considerations will be

dealt with, in detail, in the next section,



5.

1.2. Domain Energy Contributions

1.2.1. Exchange Energy

When equation 1.1 is summed over all values ij
E“ z = st‘z.lv)¢‘j (1.2)
ty;

is 6btained if only nearest neighbour interactions are
considered, Eex is the exchange energy and ¢ij the angle
between the spin vectors, In a domain where the spins
are parallel the exchange energy is zero but this is not
the case when dealing with the region between domains,
It is then essential to know the value of 2JS2 or more

often

2782

A==
when considering energy densities, a being the lattice
constant,

Of the several determinations of J,Kittel (1949)
favours the one relating the experimental value of C in
the Bloch Law

I=1I,(1-0c172) (1.3)

for the temperature dependence of saturation magnetiza-

tion at low temperatures to J by means of

o= B ()" (1.

for a body centred cubic structure, This gives J = 205k,

where k is Boltzmann's constant,
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end A = 2.0 x 10 ° ergs/cm, Measurements by Fallot

(1936) indicate that for 4% silicon iron a value of A of

1.7x1o"6

ergs/cm should be used. The value of Y, the
energy per unit area of a 90o wall with its normel in a
[001] direction, is 0.9 ergs/cm2 for iron and 0.7 ergs/cm2
for silicon iron, using this value of A. Néel (49Lc)
using a different method obtained a value of Yo for iron
of 0.7 ergs/cma. Stoner (1950) obtained a value of 0,62

2 for iron from the relationship given in equation

ergs/cm
(1.17a)., However he pointed out the inaccuracies in the
evaluation of Yo due to the many uncertainties in the

detailed treatment of exchange interaction effects,

1.2.2. Anisotropy Energy

Upon investigating the magnetizaetion curves of
ferromagnetic crystals it can be seen that differing
amounts of energy are required to magnetize specimens in
different crystallographic directions. The direction
requiring the least amount of energy is called the easy
direction and is the [100] direction in iron, the [111]
direction in nickel and the [0001 direction in cobelt,
The energy required to magnetize a specimen can be
expressed in terms of the direction cosines oy of the

magnetization vector with respect to the crystallographic
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exes., For a cubic system only even powers of xy are
consistent with symmetry requirements and a good repre-
sentation of the energy of magnetization Ean per unit

volume is given by an expression of the form

Em= K, (d.::(:c o‘,&; ¢ d"d;) ¢ Kool o’ (1.5)

Terms involving higher powers of oy may also be introduced
but the constants K3, Ku etc, are usually of rgpidly
decreasing magnitude. The values of the anisotropy
constants for pure iron are K1 = L.2 X 105 ergs/cm; and
K2 = 1.5 x 105 ergs/cm§ at room temperature. Fig. (2a)
shows the variation of K1 for silicon iron with varying
amounts of silicon.

The physical origin of anisotropy is rather a
difficult problem, Exchange energy, being only a function
of the angles between spins, does not lead to anisotropy.
A consideration of the interaction of magnetic dipoles
localized at lattice points does give rise to small anisot-
ropy effects but these show little agreement with experi-
mental evidence, '

The most promising approach so far is to consider
that the magnetization, that is the electron spins, inter-
act with the crystal lattice by means of the orbital

momenta of the electrons. Recently this has been developed

by Fletcher (1955), using the collective electron theory,
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for the evaluation of K1 for nickel at absolute zero.

He obtained a value for K1 of -5 x 107 ergs/cm} compared

with the experimental velue of -8 x 105 ergs/cmB.

1.2.3. Magnetoelastic Energy

When a crystal undergoes mechanical strain there is
an additional energy due to the interaction between the
magnetization and the mechanical strain. This is known
as the magnetoelastic energy and is equal to zero for an
unstrained lattice. It is the reverse effect of magneto-
striction, the change in length upon magnetizing a ferro-
magnetic substance, A formal theory of magnetostriction
was developed by Becker and Doring (1939) by minimising
the total energy of a crystal i.e, the anisotropy energy,
the magnetostrictive energy and the elastic energy.

Thus if a state of constant stress is considered, the
change in length in a direction specified by direction

‘cosines Bi and by magnetization cosines.ai is
S AA B A L) bt g AR 4AAR) (g

+ higher terms.
It is more usual to express the constants h1 andihzin té€rms of
the longitudinal magnetostrictions %100 and %111, the
changes in length measured along the directions of mag-

netization in the [100] direction and the [111] direction



respectively.
2
Where 3 h1 = %100
2
and 3 By = Ny

Fig. (2b) shows the variation of Noo end N4 for various
percentages of silicon in silicon iron at room temperature.
In an analogous way to the method of Becker and
Doring, mentioned above, an expression can be worked out
for the energy arising from the magnetostrictive distor-
tion when a specimen is in a stress field, If the stress
is defined by the stress tensor Hik and the strain by the

strain tensor Aik then the energy Ecr is given by

Ee = X“KKA';I‘ (1.7)
ik

It Ai is expressed in a power series of oy up to the

k
second order, this leads to

S T LA P C B MR RS RERAN WS

In our case the most interesting type of stress is the
pure tension o dynes/cmz. If this has direction cosines
(¥4Y5Y3) then
My = o Y30y
and '
Eo® -3a[ A, 0t L8 v oY,

L4 2 0ot 9 & o5 0, 393 (1.9)

¢+ zx"o (0‘.0‘.3.3, 0‘,‘,‘,‘, 4 “,“. 3‘%. ) ]
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A much quoted equation is that obtained from equation
(1.9) by putting Noo = M14 = N end expressing the
angles in terms of 6, the angle between the stress and
the magnetization. It is

Er = -;%cm,*e (1.10)
This implies that if N is positive then the stress energy
is a minimum when the magnetization is rotated into the
stress direction, Note that the magnetostriction in this

case 1s isotropic,

1.2.4. Magnetostatic Energy

The last energy expression to be considered is the
energy of a magnetic vector in its own field and is known

as the magnetostatic energy. The energy is given by

E ) "l I.H d
S, Zj v (1.11)

where I is the magnetization and H is the field arising
from the magnetization, the integration being carried out
over the volume of the specimen., Perhaps the most impor-
tant situation to be worked out in domain theory is the
magnetostatic energy of parallel strips of poles of
alternate sign. The method is that due to Kittel (1949).
Let the strips lie in the x,y plane, the y axis being

parallel to the axis of the strips. The-surface density

p of magnetic poles is expanded as a Fourier series Epn




1.,

and the solution for the potentisl & expressed thus

§u . Z A,P“.,,,('Qz'") (1.12)

An is determined from the boundary conditions,

M- oo

dz
Z 340
As the magnetostatic energy for a two dimensional problem

in (x,z) can be written

(x)@(x.0) &
Eus® Jijp Pl & (1.14)

Em.s can be found. In the case of magnetization normal
to the surface, and strips of width D
E o = +852 1°D

In cases where the magnetization vector mekes a small angle
8§ with the surface of the specimen the alternating pole
density is given by I sin 8§, Shockley (1948) has shown
that in this case the magnetization can move slightly from
the easy direction giving an effective permegbility u+.

In the stress free case, this can be shown to be given by

rLt = | zl!;x

K, (1.15)

for a (100) surface of a cubic system. This is introduced

into & correcting factor T%ﬁ+ for the magnetostatic

energy.


file://'/9Li.8
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1¢3. Bloch Walls

A ferromagnetic may be considered to be made up of
a system of domains, each one being megnetized along a
direction of easy magnetization. The region between two
such domains is known as a Bloch Wall after some prelim-
inary work on its energy and thickness by Bloch (1932).
Neel (194)) has shovn that the component of magnetization
normal to the boundary, must not only be the same on both
sides of the wall but also in the transition region., Let
us consider the energy associated with free poles formed
when the wall makes a small angle 6 to the zero pole
position, The pole density on the wall will be #2 I sin e
and the field produced normal to the wall will be 2IW2I'sin 6.
The magnetic energy will be 2HI2 sin e per unit volume |
which is 2 x 10’ sin o ergs/cc for iron.,. Thus the energy
of the system would increase greatly if magnetic poles
were formed on the boundary wall, With this in mind it
is possible to visualize two main types of boundary in
iron, a 180° boundary with its normal moving in a (100)
plane and a 90° boundary with a normal in a (110) plane.

Since the magnetization vectors rotate from one easy
direction to another in the boundary wall, the wall energy
must be expressed by

ETOTAL = Bgn + Eex
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At equilibrium it can be shown that the exchange and
anisotropy contributions to the total energy are equal,
Let the magnetization vector I be specified by the co-
ordinates (e,¢) where 6 is the angle between I and the
normal to the wall (x direction) and ¢ is the angle
between the projectiqn of I on the wall and the y direc-

tion. The wall energy can be expressed by

‘z IJE“ dx
liwits of wall

As the angle between spins in adjacent layers is sin 6d¢

2
E = a a2 sinze (QQ)

(1.16)

ex dx

Putting Ean = Bfan one obtalns

‘ ¢ .
% - deej f. d¢ (1.17)

° ¢'
2 i
where Yo (oo a° B)2 (1.17p)
is a unit for the energy per unit area of boundary wall,
Fig. 3 shows the variation of ¢ with distence
through a 180° wall making an angle of 1° with the [100]
direction, The effective width of the boundary is the

distance AB which can be expressed analytically by

%: (gt’sa) $ "*-(%). s m'é‘)(ag%)‘ (1.18)

where (¢a, Ea) (¢c,§c) are the first and third points of

inflexion and



4.

This above treatment is due to Lilley (1950) and deals
only with boundaries with normals in the [100], [110]
and [111] directions. The results are shown in the
table below.
Values of Energies in Y/Yo
Type of Boundary Normals [100] [110] (111]
90° 1,000  1.727  1.185

Iron o
180 2,000 2,760

Several workers have dealt with a general expression
for the orientation of a 90° Bloch Wall in iron, Graham
(1958) solved the problem graphically, whereas Kaczer and
Gemperle (1959) took

. 4&0
¥ . umej{g dg
e [
where, once again fan is the reduced dependence of the
enisotropy energy and is a polynomial of the fourth degree
in cos ¢, The integral is however one of an elliptic
function and so was solved numerically, to an accuracy of
about 1%.

The energy of the wall, expressed as a function of
¢, the angle between the normal of the wall and the [100]

direction becomes

I .14 1228%;mp + 0508wy (o)
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This relationship is shown in Fig. 4. Also shown is an
approximation to the solution by Chikazumi and Suzuki

(1955). Upon obtaining é, '
¥: zJima\oj g(8,4)" df

. # 278°
where g(6,9) is the anisotropy energy and A = =,

they express the anisotropy energy by a Fourier series

thus

5(9,¢) 3 90 It 9.(.0)([2) 4 %M(Lg‘ﬁ), -t (1.20)

and then approximately

g18,9) = 29,0 l%. (1.21)
where 90 * Sigfa

They obtain the result

¥ - 5\@-\‘}_'_) (1.22)
1\ A P

This can be seen to be quite a good approximation in the

range ¢ 0°-65° to the more exact work of Kaczer and

Gemperle, (Fig., L).

The effect of stress on wall energies will be dis-

cussed later.

1.4, Domain Systems in Iron

Domain structures are a function of the shspe, size
and orientation of any particular crystal. A few simple
structures will be considered and it will be shown how

they compare with experimental work,



o0
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A crystal cut as shown in Fig. 5 has a main (100)
surface and is bounded by [ 100] edges. Evaluating the
energy for a surface area L, one obtains

Wall energy = yLt
D

and magnetoelastic energy due to closure domains

_ 1 2 Dt
=201 Moo 3

Minimising the sum of these energies with respect to D,

AC11 Moo

In a paper by Bozorth, Williems and Shockley (1949),

one obtains

structures similer to this were observed, By teking
measurements near the corner of a crystal with a (100)
surface and [110) edges, values of D as a function of L
were obtained., The measurements did not sgree very well
with theIﬁxL% relationship, prohably because the edges
of the crystal were not in [100] directions. (Fig., 6).
Systems similar to the above except that the main
(100) surface is bounded at the ends by (111) planes have
been investigated in the range L>1cm by Martin (1957),
L1 -.1 cnby Carey (1960) and L less than.l cm by

Martin and Bloor (1959). The theoretical relationship is

D=1.,32( X F o3
- .3<kf L3
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and the experimental results egree quite well with this.

A similar structure to the one mentioned above is
observed on a (110) surface of polycrystalline silicon
iron with the megnetization in the surface easy direction
separated by 180° walls., There are no closure domains in
this case therefore the contributions to the domain energy
are the megnetostatic energy and the wall energy, This

gives as a minimum energy condition

D:J.__YL_
1.7 182

for a single crystal with no closure domain. This rela-
tionship has not been verified experimentally,

Bates and his co-workers (Bates and Neale (1950),
Bates and Mee (1952) and Bates and Hart (1956)) have done
much interesting work on a Ne€el cut specimen (see Fig. 7)
with magnetic fields of various sizes along the direction
indicated., They have been interested for the main part
in the variation of D with the thickness L in the [110]
direction and the spplied field H., ZFrom the latermeasure-
ments they were able to check some theoretical measurements

of Néel (1944a).

1.5 Observation of Domains

The two main methods of domain observation are the

Bitter pattern technique introduced by Bitter (1931) and-
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a much later technique using the Kerr Magneto-Optical
Effect, developed by Fowler and Fryer (1954).

The Bitter technique consists of placing a colloidal
suspension of iron oxide on the ferromagnetic under
investigation, The particles are drawn to regions in
which the magnetic field gradient has a local maximum,
These regions are usually intersections of a Bloch Wall
with the surface of the specimen. Colloid is also attrac-
ted to scratches which lie normal to the magnetization
direction., This affords a useful technique for the
detection of magnetization directions. The main disad-
vantage of the method is that it is impossible to obtain
patterns with specimens of low anisotropy and consequently
relatively wide walls, because of the low stray field at
the Bloch Walls. Another disadvantage of the method is
that the colloidal solution tends to dry and stein the
surface of the specimen limiting the maximum time avail-
able for investigations to much less than an hour,

The normal Bitter technique has been supplemented by
a method of Craik (1956) for observing- domains under high
magnification, He prepared colloid in a solution of
'Celacol' which when dried formed an undistorted thin
film., This was then peeled off the surface and examined

under gn electron microscope.
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The Kerr Magneto-Optical method suffers from neither
of these dforementioned disadvantages. The principle of
the method is that the rotation of the plane of polariza-
tion of reflected light depends upon the amount and
direction of megnetization at the surface., In the case
where the magnetization vector is parallel to the surface
the Kerr rotation is zero at normal incidence and resaches
8 meximum of about 5' at 60° incidence. It is therefore
a very critical technique‘to'set up and a method of
reducing the background noise has to be used., This con-
sists of superposing the positive photograph of the mag-
netically ssturated specimen on the negatives of the
specimen in varying states of magnetization and printing
the combined photographs. The disadvantage of this method,
therefore, is its complexity which outweighs those of the
Bitter technique for observations on iron and silicon-iron.

In order to use these techniques the specimen must be
prepared so as to remove the mechanically deformed layer
on the surface caused by polishing. This is done either
by annealing or by electropolishing, details of which will

be given later,
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1.6 Previous Work on the Effect of Stress on Domain

Structures

Di jkstra and Martius (1953) investigated the effect
of stresses, up to the yield point, applied to a (110)
surface of polycrystalline silicon-iron sheet, When a
tensional stress was applied along a [100] direction no
change of pattern was observed., A similsr stress along
a [110] direction proved more interesting. At a stress

of sbout 0.1 kgm/mm>

the domain structure changed to one
where the main magnetization directions :are the easy
directions nearest to the direction of stress., At higher
unspecified stresses s second type of structure appeared
which was not interpreted. Both of these structures will
be considered in more detail later.

Kirenskii, Dylgerov and Savchenko (1957) applied
tensional stresses along a [100] direction on a (110)
surface of silicon-iron and found that at about 15 kgms/mm2
a marked change of structure occurred, Domains tended to
split up by the formation of new walls between the existing
ones, No explanation for this was made, The effect of
stresses along a [100] direction of & crystal surface a
few degrees off a (110) plene was investigated. The
elimination of the dagger closure domains was explained
in a quantitative manner as due to the rotation of the

easy direction into the surface, Similar work to this
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has been carried out by Shur and Zaikova (1958).

The work on (100) surfaces seems to have been mainly
limited to investigations of maze patterns produced by
strains arising from the mechanically polishing of a
surface. In a paper Chikazumi and Suzuki (1955) put
forward a model in which the main domains are magnetized
normel to the surface, Triangular domains at the surface
close the flux, and the walls forming them are zig-zsg in
nature, They showed how the system varied with stress
and predicted a theoretical relationship between this and
the zig-zag angle., Bates (1957) has suggested modifica-
tions purely on qualitative grounds, for the system when
under high stresses.

Maze type patterns were produced on silicon-iron
single crystals by Kaczer (1958) by the application of
external forces., He gpplied a uniform compression to
the sides of a cylindrical crystal of iron and found that
the stress patterns appeared at 10 kgms/mmz, though no
measurenments were taken on them. Photographs show them
to be highly irregular,

Stephan (1956), (1957) carried out investigations on
stress patterns on (100) surfaces obtained by quenching
specimens from various temberatures. At fairly high
stresses complicated zig-zag structures were formed by

the splitting of main zig-zag boundaries. He calculated
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the magnitude of the internal stresses by finding the
magnetic fields needed to destroy the stress pattern.
By this method he obtained stress values up to 70 kgms/mmz.
External forces have been applied to maze patterns
by Suda (1956). He rieeded:to.apply a stress of 60 kgms/
mm2 before the structure changed to an effectively stress
free pattern of dagger domains. Again the experiment was
gnly qualitagtive, |
The gpplication of tensional stresses to surfaces a
few degrees off a (100) plane of silicon-iron was inves-
tigated by Bozorth, Williams and Shockley (1949), though
again only quantitatively, They showed how fir tree

structures changed under such conditions,

1.7 Object of Investigations

Di jkstra and Martius applied stresses to their poly-
crystalline silicon-iron sheet by stretching with a
calibratéd spring. This method is inherently inaccurate,
unless strain gauges are used, as the strain in the
specimen will be determined by the aversge Young's Modulus
of differently orientated grains., By using their work as
a starting point, and at the same time explaining the
structures more fully with special reference to the
transitional period, it was hoped to develop a straining

technique which was more suited to work on small single
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crystals and elso polycrystalline sheet,

It was then hoped to verify Chikazumi and Suzuki's
theoretifal predictions by applying unidirectional
stresses along the [110] direction on a (100) surface,

Further work could be carried out on a (100) surface
by epplying a stress along a [100] direction and examin-
ing the nucleation processes taking place when the bulk
of the magnetization changes from one surface easy direc-
tion to the other. At the same time quantitative
measurements could be made on the effect of stress on fir
tees, Recently Spacek (1957), (1958) (1959) has intro-
duced a theory explaining these and it was hopedithat.this
might be used to obtain a theoretical relationship between
the size of the fir tress and the applied stress,

The work of Chikazumi and Suzuki could then be
extended to a (110) surface. By using a scratch technique

e can be agpplied.

very large loads of over 100 kgms/mm
It was with these problems in mind that the following

work was carried out,
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CHAPTER TWO

PREPARATION OF SPECIMENS

2.1 Introduction

Specimens of Goss type (110) surface silicon iron
sheet, 0,37 mms thick, with grain size varying from 1 mm
to 10 mms, were obtained from the Steel Company of Wales,
A chemical analysis showed the main constituents besides
iron to be

3.10% Silicon

0,014% Phosphorus

0.005% Sulphur

0.004% Carbon
This sheet proved useful for most of the experiments on
(110) surfaces but specimens were needed with (100)
surfaces. It was therefore decided to grow single
crystals of iron, though later (100) cube textured poly-
crystalline sheet, of similar thickness and grain size to
the Goss type sheet, was obtained from the G.E.C. of

America,

2.2 Growth of Single Crystals

The raw materiasl for these experiments was obtained
from B,I.S.R.,A., Sheffield. It was decided to use their

pure Swedish iron A.A.K. , even though the yield point
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12 kgms/mm2 is fairly low, in preference to their silicon
iron which contains a rather high amount of non-metallic
inclusions, The main impurities in the iron are 0.02%
carbon and 0,02% silicon.,

The crystals were grown by a strain and anneal method
following the technique of Holden and Holloman (1949).
The specimens are so shaped (see Fig. 8) that recrystalli-
sation is limited to a small volume of critically strained
material., Greains formed in this region grow into the
lesser strained regions giving finally a large grained
product. | |

Holden and Holloman found that they needed a certain
critical grain size, 32 grains/mmz, before straining the
specimen to obtain maximum grain growth. Several small
pieces of iron, %" x 3" x 3", were therefore heated up to
various temperatures to find the conditions needed to
produce this grain size. The test pieces were held at
their maximum temperature for 18 hours then allowed to
cool at 60° per hour, in an atmosphere of wet hydrogen.
This was obtained by bubbling cylinder hydrogen through
water maintained at 62°C. Fig., 9 shows the variation of
grain size with the temperature of anneal. A specimen,
shaped as in Fig. 8, was machined from the bar of
Swedish iron and then heated, under the same conditions

as the test pieces, at the critical temperature 860°C.
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It was then strained the critical amount, a change in
width at the centre of 1.6%., This corresponded to an
applied load of 1.4 tons. The strained specimen was
then annealed in pure dry hydrogen at 890°C for 72
hours followed by cooling aﬁ a rate of 70°C/hour. The
hydrogen was purified by passing cylinder hydrogen over
platinised asbestos at 300°C - uOOOC to remove oxygen
and then through a phosphorus pentoxide tube to remove
water vapour,

Using this technique crystals up to ; ecms x 1.5 cms

X .63 cms were obtained.,

2.3 Orientation of Crystals

The crystals were initially orientated to within
30 by reflecting light from etch pits and measuring the
angle with an optical goniometer., By using an etchant
consisting of 1 part concentrated nitric acid and 4 parts
water for 5 minutes, well developed pits with (100) faces
were formed.

A more accurate determination was then carried out
using a back reflection X-ray technique. The specimen was
set at a fixed distance from the film, 3 cms for con-
venience, and knowing this the angles defining specific
zones of the crystal could be worked out., Three inter-

geding zones wére chosen on the film and by plotting these
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on a sterogram as a function of ¢, the angle of the zone
axis to the film, and a, the angle between the vertical
direction and the axis of the zone, the angles between
the zones could be worked out. These angles were then
compared with a table of angles between prominent zones
for the cubic system, see Barrett (1943). The indices
(h,k,1) of a face which is common to the zones (u,v,w)

and (u',v',w') can be evaluated from the relationship

t

h=vw'-v'w
X = wu' - w'u
1 =uv' - u'v

This method is capable of determining the orientation of

e crystal to within + %o with the apparatus used.

2., Cutting and Sheping the Crystals

Next it was necessary to cut certain crystallographic
planes in the orientated crystals and also to cut certain
shapes from the polycrystalline sheet., It is essential
that this cutting is as strain free as possible since this
will reduce the amount of reannealing needed., Also if
the specimen is badly strained then it could possibly

recrystallise on annealing.
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2.4.1. Apparatus

For the above reasons it was decided to carry out
the cutting operations using an electrospark technique
[Nosov and Bykov (1956) ; Cole,.Bucklow and Grigson (1961) J.
In this method an electric discharge passes between two
electrodes ".aad = erodes the contacting areas away. As
the specimen is the anode it wears away at a greatér rate
than the tool, the cathode.

The apparatus used is shown in Fig 10 (a and Db).

The perspex rod P which carries the cutting tool is
located in a vertical plane by means of three roller
races, one of which is spring loaded. The cutting arm
is counterbalanced by an adjustable weight M, Friction
is reduced to a minimum in the system by carrying the
load on two pulleys fitted with ball races,

The cutting is controlled electromagnetically by
.means of a soft iron core fitted into the top of the
perspex rod, which moves inside a smali solenoid 8. This
has 3,000 turns of 30 s.w.g. CODpEr wire giving a field
of about 500 oersteds/amp., The control works in the
following way. When the machine is sparking there is a
small current flowing through the solenoid. This is cut
off when the distance between the electrodes is too great
for a spark to pass and so the tool moves downwards, due

to the effective increase in weight, until sparking once
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more takes place,

The specimen is mounted on a twin arc goniometer,
both arcs being accurate to within 10'., The goniometer
itself can rotate about a vertical axis over a scale which
can be read to about 15', and can move in a horizontal
Plane a maximum of 1 cm on two slides at right angles.
Thus the specimen can be set up at any desired angle with
respect to the cutting tool to an accuracy better than
that with which the orientation of the specimen has been
determined. The anode is mounted in a perspex tank
15 cms x 15 cms x 10 cms which contains the coolant,
transfiormer oil, which was chosen for its low viscosity
and high dielectric constant, This prevents the elec-
trodes melting and fusing. The power is derived from a

mains rectifier capable of giving 100 watts,

2.4.2. Working Conditions and Results

Various charging potentials, ranging from 25 volts
to 100 volts were tried with a fixed capacitance 16uF.
The rate of cutting was directly proportional to the
voltage. At maximum voltage this was I cu. mm/min/y ¥
enm,~ length of electrodes. The surfaces produced were
examined under a microscope and found to be pitted to a
depth of 10-20 microns., As the depth of the pits seemed

independent of applied voltage the apparatus was normelly
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run at 100 volts,

Several metals were tried as cutting tools., Steel
eroded at almost the same rate as the iron and silicon
iron crystasls, whereas brass and éopper wore away at
eabout half the rate, Due to its ease of mechining and
availability, brass was always used in preference to
copper.

The surfaces so prepared showed very little contam-
ination from the decomposition of o0il and cathode material,

In some cases the surfaces were found to be a degree
or so from that desired. A convenient method for obtaining
the desired orientation was by fine grinding. The specimen
was fixed by means of a goniometer head to a.spring loaded
horizontal arm which moved. about an accurately vertical
arm, across a steel polishing wheel once every minute,

The surface of the specimen was first set up parallel to
the surface of the wheel by covering the latter with mark-
ing blue. The specimen was then rotated by means of the
goniometer head, the same one as used in the electrospark
apparatus, to the desired orientation., Wet carborundum

was used as an abrasive in grades varying from 2,0 to 3F,

2.5 Polishing and Annealing

The specimens were polished by hand using successive
grades of emery. paper from 1F to u/o. They were then

polished on & rotating wheel using Hyprez Diamond Compound
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of grades 8 micron, 3 micron and } micron as abrasives,

The crystals so prepared were then annealed. First
annealing in a stream of pure dry hydrogen, purified as
described before, at 820°C for 8 hours followed by a
30°Q/hour cool was tried., This proved unsuccessful as a
thin layer of impurity formed on the surface necessitating
further polishing. A method was then tried of placing
the specimen in a silica tube inside a steel vessel (see
Fig. 11). This was filled with hydrogen, sealed, then
annegled as before in a stream of pure hydrogen. Once
egain a clean surface was not obtained.

However good results were obtained using a vacuum
furnace., The vacuum was obtained using an Edwards 2M2
Mercury Diffusion Pump working with a rotary backing pump.
The heater was of 0.012 inchdiameter tungsten wire wound
on a 11/16" diameter grooved, 1/32" pitch, silica tube.
This was surrounded by a 3" internal diameter mullite
tube to reduce heat losses, In order to keep the temper-
ature, which was measured with an iron constantan thermo-
couple, at 830°C, a satisfactory temperature of anneal,
4O watts were dissipated. Even at this temperature the
pressure was kept as low as 0,08 microns. Satisfactory
strain free domain structures were obtsined after anneal-

ing at 830°C for 3 hours sand cooling at 300°C/hour.




T

32,

Even though domain structures could be seen at this
stage it was found necessary to remove the slight
scratches remaining by & light electropolish. The
epparsatus used was very similar to that described by
Bates and Mee (1950) having a stationary cathode and
rotating anode, Stainless steel cathodes were used in
sizes varying from 2" diameter to 43" diesmeter depending
upon the size of the specimen being polished. The
specimen was attached to the rotating spindle by means of
a small horseshoe magnet, This, and any part of the
specimen not needing polishing, were coated with a layer
of polystyrene cement. It was found essential for good
polishing, that the centre of rotation of the anode should
lie outside the specimen, The electrolyte used was made
up of 133 ccs glacial acetic acid, 25 grams chromium
trioxide and 7 ccs water,

By using a Wheatstone Bridge net, as described by
Bates and Mee, the optimum polishing conditions, which
correspond to maximum cell resistance, were found., A
typical voltage resistance graph is shown in Fig. 12.
Using an anode rotation of 70 r.p.m. good results were
obtained with a cell voltage of 25 volts for a silicon
. iron specimen, and 23 volts for a pure iron specimen.

The current density was 0.25 amps/cmz,
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When the specimen had been vacuum annealed after
mechanical polishing, a 5 minute electropolish was
sufficient to produce a smooth surface. However in some
cases, when the specimen was too large for the furnace,
it had to be electropolished directly after mechsnicsal
polishing. In these éases polishing times of up to 30
minutes were necessary, resulting in raether uneven sur-

faces,

2.6 Observation of Domains

Before observing the domain structure the specimens
were demagnetized by exposure to a decreasing alternating
magnetic field., A magnetic colloid technique was used
for the observation of domains. The colloid recipe used
was that of Elmore (1938) with one slight difference., It
was made up to a concentration 4 times that described by
Elmore. The staining of the surface by the colloid was
not & serious problem as this took about % an hour.
Often.the experiment could be carried out in this period,
and if this was not possible the surface could be cleaned
by soaking in absolute alcohol.

The domains were observed using a Cooke Troughton &
Simms reflected light microscope at magnifications varying
from 50x to 400x, although the most useful magnificeation

was found to be 100x., Photographs were taken with a Leica
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35 mm camera which was coupled to the microscope by means
of an adaptor with a focussing eyepiece. The film used
was Ilford Pan F, chosen for its high contrast and small
grain size and was developed in ID 11. Exposure times
between 1 second end 10 seconds were found necessary
depending upon lighting conditions,

Measurements on the films were carried out by pro-
jecting the negatives onto a ground glass screen at 10x
magnification by means of a Durst 609 enlarger. This
allowed direct measuremepts to be made with a ruler and

protractor on the ground glass screen,
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CHAPTER THREE

EFFECT OF EXTERNAL STRESSES UP TO THE YIELD POINT

ON A (110) SURFACE

3.1 Tensional force along the [ 110 ldirection

3.1.1. Introduction

Dykstra and Martius (1953) studied the effect of a
tensional stress, applied by means of a calibrated
spring, along a [10] direction on & (110) surfsce of
silicon iron polycrystalline sheet. In this section the
results obtained by applying tensional stresses by direct

loading and by cantilever bending will be compared.

3e1e1.1. Effect of Stresses on Magnetization Directions

It is important in interpreting new domein structures
to consider the effect of stress on megnetization direc-
tions. In a zero stress system the magnetization direc-
tion in a single domein is governed solely by the magnetic
snisotropy energy. In a domain under stress a further
energy term, given by equation (1.9) must be teken into
account.

Consider a compressive stress o dynes/cm2 applied
along the [001] surface direction of a specimen with a
(110) surface. The energy E[OO1] associated with magnet-
ization along the [001] direction equals + % TN g While

the energy of magnetization along the [010] and [100 ]
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directions remains zero, It is therefore conceivable
that a system originally magnetized along the [001]
direction could change under this stress to a system
magnetized mainly along the [010] direction.

The energy §j11o] for magnetization along the
[110] direction is K1/u and so taking the values of Kj
and )WOO for silicon iron, the energy E[11O] equals
E[ooﬂ at a stress of 23 kgma/mm2. This does not mean
that above this stress the magnetization‘will rotate
from the [ 001] direction to the [110] direction as
these two minima are separated by an energy maximum,
To find the stress required to do this, it is necessary
to consider the general case with the magnetization
meking an angle o with the [001] direction while still

lying in the (110) plane, The total energy is then

Eror = 30A,,,cn'h ¢+ K,cn'daia' + Kiaa*d
2 T

the first term being due to magnetoelastic energy and the
last two due to anisébtropy energy.
Minimising this with respect to a, three roots are

obtained,

n
(@

CcCOoS A

sin o =0

Ky ¢ 30N o0
3K1

and 0052 o
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The first two are minima up to o = 2K1 = 91 kgms/mmz.

Moo
The maximum given by the third equation corresponds a

zero stress to o = 550. As the stress increases, the
angle between the maximum and the [001] direction, the
direction of stress, becomes smaller until at o = 91
kgma/mm2 it equals zero, VWhen a .= 0 the [001] direc-
tion becomes a point of inflexion and so above this
critical stress the magnetization will rotate into a
[110] direction. It is interesting to note that there

is no rotation away from the crystallographic axes before
this stress of 91 kgma/mmz.

It can readily be seen that similar results can be
obtained by applying a tensional stress o dynes/cm2 along
the [110] direction. Once again, taking o to be the
angle between the magnetization direction and the [001 ]
direction and differentiating the total energy with

respect to a, three turning points are obtained

sin ¢ = O
cos o =0
.2 _ _ 3
and sin“ a = 2 K1 27(7ﬂ00 + 7ﬁ11)

3K1
At & stress given by sin2 @ = 0, the [001] direction again
becomes & point of inflexion while the [110] direction

still remains a minimum, This stress is given by
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o = m(1
Moo + M1q)

22 kgms/mm2

Fig (2d) shows the variation of yield point for various
percentages of silicon in silicon iron due to Yensen

(1915). The value of the yield point for the silicon

iron used in the following experiments is about 4O kgma/mmz.
Therefore as these experiments are carried out in the
elastic range the only favouragble direction of magnetiza-
tion in the surface must be the [001 ] direction.

This treatment shows that it needs stresses greater
than the yield point to make the [110] direction an easy
direction and the stresses required to change the magnet-
ization from & [001] direction, given by‘Et001] = % ™N oo
to a [010] direction, B o10) = 0, must be greater than
zero. In fact the latter change-over stress is very
dependent on the specimen shape and therefore the energies
of the two domaln systems, and factors such as these must
be taken into account when working out the change-over
stress.

It is interesting to consider the effect of the
compressive stress o dynes/cm2 along the [110] direction
on the two easy direction [100] and [010] which make an
angle of u5° to the direction of stress, This will apply

to some work in chapter four, If this magnetization vector
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mekes an angle a to the [00] direction in the (001)
plane, the total energy can be expressed as

E'ro'r = Kiwa'dawm'd + %o-xwo ¥ ao'xno I panel
2

Upon minimising this with respect to a, three roots are

obtained
sin o = cos a = 1/J2
and sin a cos o = '3oﬁ\11
LK

The roots for a = u5° give a maximum up to a stress of
351 kgms/mm2 at which they become points of inflexion.,
Above this stress the [110] direction is a minimum, The
easy directions are given by

cos a sin a = :20?ﬁ11

by
Fig. 13 shows the variation of the easy directions with
stress, It is very interesting to note that they rotate
into the stress direction as the stress is increased due
to the fact that %111 is negative. At stresses below
the yield point this rotation is slmost negligible, the

maximum amount being uo.

3.1.2. Experimental Technique

3.1.2+1. Direct Tension Method

The first attempt to strain polycrystalline specimens
was made by directly loading the specimens with weights,

One end of the specimen, 5 cms x 1 em x 0,035 cms, was
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clamped by means of screws to a block, fixed on the
substage of the microscope, while the other end was
similarly fixed in a :'movable block., This was connected
to the weights by means of a steel wire running over a
pulley. The height of the pulley was so arranged that
while under tension the specimen was horizontal. The
disadventages of this system were the difficulty of
applying high stresses and the uncertainty of the exact
stress in the grain under investigation., As it was
thought unwise to use specimen widths less than 0,75 cms
due to spurious edge effects, loads of the order of
4O kgms only produced stresses of about 15 kgms/mmz. At
these loads the specimen tended to slip out of its holders,
so that other attempts were made to anchor the specimens
more firmly, None of the methods tried were very satis-
factory for if they held the specimens securely they
tended to create large unmeasureable stresses., The method
used by Dijkstra and Martius, one of electrosparking holes
in the specimens and applying the load through pins, was
tried but found unsuccessful, The pins ripped out of the
holes at falrly low stresses.

A micro-temsile test apparatus was kindly loaned
by King's College Metallurgy Department., The sprihgs in
this machine were calibrated by stretching a uniform mild

steel rod of 0.15 cm radius., The distance between two
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scratches on the rod, just over 7 cms apart, was measured
by means of a travelling microscope to an accuracy of
0.002 ecms. By plotting the extension of the springs
against the extension of the rod, and knowing the value

"1 gynes/em®) for mild steel,

of Young's modulus (20 x 10
a mean value of the force applied on stretching the spring
a fixed amount could be worked out. This was 677 + 35
kgms/cm, _The specimens were gripped in taper jaws and
had to be 20 cms long due to the unwieldly nature of the
apparatus, They were cut as wide as possible, 2-3 cms,
so as to include as many grains as possible., The grain
size was much larger, 5-10 mms in diameter, than in the
sheet used by Dijkstra and Martius in which grains were
about 1 mm in diameter. The microscope was set up on the
tensile machine, A grain was chosen near the centre of
the strip with its [110] direction along the axis of
tension. This was done by lining up the domain pattern
with one pert of a crosswire in the eyepiece, the other
part having'previously been lined up with the axis of
tension, An accuracy of + 1° was obtained.

The sensitivity of the experiment was not very good.
The travelling microscope could be read to only 0,005 cms
as during the experiment there was not enough time to

take a series of readings, This corresponded to 2 kgms
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which works out, for the size of specimens mentioned
above, to a stress of about 2 kgms/mmz.

Magnetic fields were agpplied along the axis of the
strip by means of a pair of Helmholtz coils 7 cms in
diameter and each containing 300 turns of wire. Although
it was not necessary to know the value of the applied
field to a very high accuracy, + 10 oersteds, the coils
were calibrated by means of a fluxmeter and search coil,
They gave a linear current/field relationship up to a
field of 90 oersteds at 1 amp, A vertical field was
applied by means of a small solenoid 3.5 cms in diameter,
1.2 cms deep, containing 300 turns, This was placed on
the specimen, and the field on its surface was calculated
to be 100 oersteds et 1 amp. The magnetic fields were
used to help in the determination of magnetization direc-
tions for which purpose values between 10 and 20 oersted
were usually necessary.

The results obtained from this method corresponded

directly to those obtained by Dijkstra and Martius.,

3.1.2.2, Bending Technique

There are two main disadventages of the technique
just described, The need for very long specinmens vir-
tually rules out single crystal work. Also the apparatus

cannot be used for applying compressive forces. This is
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necessary, for instance, when dealing with a single
crystal having a (100) surface. The main domains are
magnetized along the length of the specimen, the [001]
direction, and the only method of rotating the magnetiza-
tion into the other surface easy direction (100] , 1is by
applying a compressive force, along the [001] airection.

The work on a (110) surface was repeated, using a
bending technigue to strain the specimens, to see in what
way the presence of a stress gradient across the specimen
affected the results,

Consider a strip of thickness t, clamped at one end,
bent into an arc of radius r. If the central part of the
strip is considered to be at zero stress then the change
in length at the top surface equals

t
2r

If the vertical displacement of the end of the specimen
is A, and the length of the specimen L then
cos b = r-A

r L
As b/r is fairly smell, cos b/r can be taken, to a fairly
good approximation, to be

2
1 - LL—)-LZP

And the strain AL in the surface layer is given by

L
A.L = LA; (301)
L L
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As this strain epplies to all the surface layer, a
knowledge of the value of Young's modulus in any parti-
cular grain allows the stress in that grain to be evalu-
ated., Benford (1946) obtained the following values of
Young's modulus for various directions in a single
crystal of 3.2% silicon iron. The units are dyne em™2,
Yoo 11030 % 1012 Y[y40] 2-06 % 10'% Yo, 2.81 x 102

For a specimen of thickness 0,035 cms and bending arm
2 cms, a stress of 30 kgms/mm2 is produced with A = 2 mms.
It was found possible to illuminate a specimen with
L= 2 cms fairly evenly by adjusting the position of the
light source up to values of A of I mms, so long as & high
magnification (about }00x) was not used.

Fig. (14) shows the apparatus used. Specimens were
compressed by a lever pivoted at its centre. A was cal-
culated directly from tha micrometer deflection of the end
of the lever as a = b. The block B, which held the speci-
men firmly, was movable so that the bending arm could be
adjusted from 1,5 cms to 3 cms according to the sensi-
tivity required. For epplying extensional forces a lever
pivoted at one end was used, with the ratio of the arms
a:b=1:1.5. A spring et the end nearest the pivot kept the

lever in constant contact with the micrometer.
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In calculating the stress produced L was measured
to an accuracy of 1 part in 500, while A, the micrometer
reading, could be read to 1/100 mm, which corresponds to
1/10 kgm/mm® in the above example. The thickness t of
the specimen was measured to an accuracy of about 1%.
From these considerations the stress applied to the

specimen could be obtained to an accuracy of 1-2%,

3e1e2.3. Strain Gauge Verification

The stresses in silicon iron strips, 5 cms x 1 cm x
0.033 cms, were checked with strain géuges. A surface
of the specimen was roughened with 2/0 emery paper and a
Tinsley Type 6E strain gauge, of 100 ohm resistance was
stuck to it with 'Durofix', The gauge was left for 3
days to dry thoroughly.,

The resistance of the gauge was measured in a
Wheatstone net, which.alsd contained a dummy gauge to act
as a temperature compensator (seé Fig. 15). Even so the
current was usually switched on half an hour or so before
a reading was to be taken, The fixed resistance RM was
taken as 9,900 ohms and the bridge balanced with R2 to an
accuracy of 1/10 ohm,

The relationship between the strain and the change of

resistance of the gauge is given by

AL _ B3R

L R S
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where S is the gauge factor, 2,18 for the gauges used.

Using eq.(3.1), A L2
(5‘R = t.R"s. (30 2)

Pig. (16) shows a typical A, §R straight line graph for
a specific value of L. Using the gradients of these
graphs and plotting them against L2 should give a
straight line with gradient '/t.R.S. according to
equation (3'2). The experimental values are shown in
Fig. (17). The experimental velue of the gradient is
1.5 x 107 while a theoretical value, using R =

9875 ohms, t = 0.033 oms and S = 2.18 gives 1.40 x 1072,
Allowing for experimental error this shows that the
method is quite suitable over the range of A's and L's
used and that there was probably no sagging at the

supports,

3.1.3. Experimental Results and Discussion

3.1e3.7, Zerb Stress Pattern

The zero stress structure has been interpreted in
section 1.l The domain spacing is governed by the sum
of the Bloch wall energy and the magnetostatic energy.

Graham (1957) considers the orientation of a 180°
domain wall in such a system, If Yo is the energy per
unit area of a 180° wall with its normal in a [ 100]

direction, then the total energy for unit surface area
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of specimen of this wall is YdJZt, where t is the
thickness of the specimen, There is an energy minimum
between this position and that where the normal to the
wall is in & [110] direction and the total energy is
1.387y t. In his calculations, using the expression of
Lilley for the wall energy, Graham ignores the terms
containing Kz’ This is because its value is not known
at all accurately, see Tarasov (1939), and if its maxi-
mum value of 150 x 107 ergs/cc for pure iron is taken,
the energy so produced only accounts for a few percent
of the major term. The resulting expression shows a
minimum for the Bloch wall energy at A = 130, where N
is the angle between the wall and the [100] direction
(Fig., 18). Graham tried to confirm this theory experi-
mentally by examining two sides of a silicon iron (110)
surf'aced sheet. The results were not at all conclusive
as there was no obvious correlation between the two
domain patterns. He explained this by suggesting that
the walls could bend from one minimum energy plane to
gnother, giving a range of displacements from O to

t. tan. 32°.

3.1.3.2. Transitional Range

When a tensional stress is applied along the [110]

directibn, the initial pattern starts to break up at
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stresses between 0.7 and 1.5 kgms/mmz. This is a gradual
process, the stress at which it starts slightly varying
from place to place in a single grain, It is followed by
a transitional range, of about 1-2 kgms/mm?, in which
there is no visible domain structure after which stress
pattern I starts to form,

The stresses at which the change over took place
varied from specimen to specimen though always in the
gbove stated range. Exactly the same range of values
were obtained using tensional stresses by both direct
pulling and bending.

It is possible that the original domain walls still
exist in the transitional period and that the stray field
at their intersection with the crystal surface is too
weak to attract any magnetic colloid. In order to con-
sider this possibility it is necessary to calculate the

effect of stress on domain wall thicknesses,

The effect of stress on Bloch Wall Thickness

The effect of an externally applied stress o dynes/

cm2 on the Bloch Wall thickness can be calculated by
adding the strain components A'ij so produced to those
due to magnetostriction Aij‘ As the effect of stress on
domain wall thicknesses is an extension of the effect of

megnetostriction we will firstly deal with the treatment
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by Lilley of the latter effect.

Equation (1.8) can be written in terms of the strain

components Ajx thus

b B 5 )

EmC = -3(‘“-;4_‘!)&“ [d“A‘"“A ":An]

- B‘Nzxm [dld; Au ¢ d"' Aﬂ * d'd' A"] ( )
3. 3

where cjj are the elastic compliances.
To this must be added the elastic part of the energy
(Becker and Dbring 1939 p. 146). |

E 3 %C'(A..O Au‘Aﬂ)‘ 4 c.(nu"' At: | A”‘)

¢ 2¢, (A PRI AY) (3.0

Under these zero stress conditions the values of Ajx can
be obtained by minimising the sum of equations (3.3) and

(3.1) with respect to Ajx giving
ACK s éxmd:dk
b

Ai\' L ; xwo d"‘ - Cun ]
Z ZC“‘ Cw
For s 1800 boundary with the adjacent domains magnetized

in the [001] and [ 005] directions, the magnetization
direction in the wall is given by (- sin)\ sin ¢, cos A
sin ¢, cos ¢) where the normal to the boundary is speci-

fied by (— cos A, = 8in A, 0).
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Substituting the co-ordinate values for the magneti-
zation in the Bloch well in equations 3.3 and S.L and
subtracting from this energy the energy of magnetization
in the adjacent domains, the reduced magnetostriction

energy term

. o = l u"‘u)).:, At
Bf ale é

(3.5)
is obtained., This is added to the crystalline anisotropy
energy term £u~ = . x¢ - r‘a;“ﬁ¢

s ¢ Loy LA
where f‘ 1—8!':-

The total anisotropy energy term, taking into account

magnetostriction can now be expressed by

fon = (1e TNt - pain®g) (3.6)
where r& = TE-_;
tl = 9 (Cn'(ll) X:“
and “_K

Using these expressions and equation (1.18) Lilley obtained
b . 2017 a2 pa 2
b, ' 1 (3.7)
In order to add the strain tensors due to the applied
stress to those due to magnetostriction it is necessary to

express the applied stress in terms of stmin tensors A&k-
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The general relationship between the strain
components Ajj and the stress components 13 is given by
Ay z 5,y ¢ 55T, ¢ 55T, o s““u + sg,, 4 LR 1Y

Aoz sy MWy 45, T, 0 s, Ty ¢ 5, Wpe ;5T 4 8,0,

Ay = STl ¢85 T, ¢ 5Ty & s Ty * s Ty ¢ g Ty
Where Sij are the stiffness constants.,

For a cubic system the above expression reduces to

the following matrix

511 842 840 0 0
Si3 = | B42 81 520 0 O
812825840 00
0 0 08, 0 0
0 0 0 08, O
0o 0 0 0 08y

For a tensional stress a'dynes/cm2 in a direction speci-

fied by direction cosines (Y1, Yngj) the strain compo-

nents are given by

H.n 3 C'[Sux.; ¢ S l‘: + x:)]

n'u R~ [Sn K: ¢ S, ‘xl" x)‘)]

n;‘l 3 O [Su 8; 4 5!1(‘,‘* U.’)] (3.8)
A.n = O 8- xa Suy

A..’ 4 r‘,x; Sey

'n = sz‘; Suw

FPor cubic crystals the elastic constants cjj are related

to the stiffness constants Sij by
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s“ - c & c.‘
lcu“ an(cu 4 ‘ZC';,

Sn = =€

(= Cux‘n 14 Zc:)

Suy = 1
Cuy
Now consider what effect an applied tensional force

o dynes/cm2 along the [11d]direction has on the domain
walls in a [001] direction., The resulting strain com-

ponents are
'

Aush,. = T Cu
2 ((.u - ‘lt“‘u < 2‘.:)
A.,; ] ~0Ga
( Cu~ C-;‘(Cu & 2(..-,)
A, : o A, =N,=0
2 Cyy

The strain components due to magnetostriction according

to Lilley are
An‘ nu’ﬂ,. = 0

n,s A, = - A.ﬂCg&
S 2(2c, + ) (3.9)

n;; s 3xm Ciz & Cn)
2(2¢n d Cus
Adding both strain components, the reduced anisotropy

energy term becomes

- it - -3 ltu"f-u) 3 ).,.M\m\
for atett[-20le )30 )
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Therefore the effective wall thickness b/bO cen be
calculated for various stresses: and various wall
orientations specified by A« It is rather complex
mathematically to evaluate the stress required to
produce a given finite wall width for a given A\. There-
fore consider the requirements for the wall to become
infinitely thick. These are either
1 = u' =0 or
7' = -1

As the stresses needed to satisfy; 7' = -1 are much higher
than those for 1 - u' = 0, we shall deal with this latter
relationship.

It becomes 7' = u - 1, (3.10)
By solving equation (3.10) for various values of A, a
series of values of stress which maeke the wall infinitely
wide ére obtained., These values are shown in Fig, (19).
It can be seen that this stress is 8 kgms/mm2 for the
equilibrium value, at zero stress, of the wall (A = 139).
The stress value only falls in the range 0.7 - 1.5 kgms/
mm? for values of )\0-30.

The minimum position of the wall has been worked out
at a stress of 1 kgm/mm? end was found to lie at A = 12°,
It therefore seems unlikely that this sort of mechanism

can explain the disappearance of the Bloch wall in the
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transition range. Further information might be found out
about this region by using a magneto-optical method for

observing the domain structure,

3e1e3e3. Stress Pattern I

Similar observations to those of Dijkstra ahd Martius
were recorded, A series of photographs (Plate I) show
the development of these domains and also of the:more complex
pattern II. The previous workers showed that the surface
structure is a closure structure magnetized in the [001]
direction, with the main domains magnetized in the [100]
directions (Fig; 20). This can be deduced from the fact
that & vertical magnetic field of about 10 oersted pola-
rizes the megnetic colloid and causes it to collect on
alternate Bloch walls, As the stress is increased the
wall spacing 4 decreases while the concentration of colloid
at these walls increases, This latter fact was explained
by Dijkstra and Martius as-due to an opening up of the
closure domains and consequently the appearance on the
surface of strips of the main domains., This is probably
not true. A similar occurrence on a (100) surface was
explained by Chikazumi and Suzuki. They proposed that
an increasing'stress decreases the depth of the closure
domains causing the normal component of the magnetiza-

tion vector to vary across the wall. The pole density so
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formed is proportional to the applied stress. There-
fore the stray field at the wall increases with increas-

ing stress,

Theoretical Considerations of Domain Structure

Dijkstra and Martius considered the effect of a

tensional stress o dynes/cm2

on their proposed domain
structure.
The energy per unit surface area of the zero stress

structure can be expressed as

1}
Efd, + gI (3.11)
o]
Where E'do is the magnetostatic energy term. A tensional
stress along a [110] direction has no effect on the above
terms,
The energy of the stress pattern I per unit surface

ares is

(5- 4R+ thr( ) ¥4

The magnetostatic energy term E' = (1.ZI2sin26i§is the

1 4+ pt
same in equations (3.11) and (3.12) because the surface

magnetizations in both cases are in the same direction,
and consequently the deviation of the [001] direction

from the surface, &, is the same.
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If equations (3.11) and (3.12) are each differen-
tiated with respect to d0 and 4 respectively, both equi-
librium spacings can be calculated as a function of
stress, The zero stress pattern spacing is given by

-t
“\E
and is independent of stress.

The spacing in stress pattern I is given by

d = k¥
e o_l_x o (3.13)
82

If the vealues of d and do are substituted back into

equation (3.11) and (3.12), and the two energies equated,
the following relationship for the transitional stress

o 1s obtained,

crit
L
2(E'ty)t = [ £]¥ - 2habe, ¢ zlt!)"[e i
- 37
Teking experimentsgl values of t = 0.035 cms
I = 1608
¥ = 1,3 dynes/cm
one obtains ¢,y = 0.05 kgms/mm2 for § = %0
2 o}
and Topit = O-0L kgms/mm“ for § =1,

The latter value compares directly with a theoretical value
of 0.2 kgms/mm2 derived by Dijkstra and Martius. The
experimental values obtained are 10 times larger than the

theoretical values,
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If 1/d2 is plotted against o (from equation 3.,13)
a linear relationship should be obtained, if ¥y is indepen-
dent of stress, with a gradient given by 535 Y400 . The

ty
t
intercept on the ¢ axis is given by —%Kgig .

100
The effect of a compressive stress o dynes/cm2

applied along the [001] direction gives similar results
to the case studied above, Once agein a stress pattern
tekes over from the zero stress pattern as the stress is
increased., The energy of the first system is given by
’
Ede ? + 3t°'>\...
o 2
and that of the second by
[]
Ed ’\t' | ‘E)K » ;'Anoo.é
a4 & 2 23
The relationship obtained for the equilibrium spacing of

the stress pattern I is

d s J/
E e 3x...v/wz (3e10)
This differs from equation (3.13) by only a factor of 2

in the stress term.

Effect of stress on the main domain walls

Consider the effect of a tensional force a‘dynes/cm2
acting alohg the [101] direction on the main Bloch wall
of stress pattern I, If the adjacent domains are considered
to be magnetized along the [001],[{007] directions then the

normal to the wall is in a [010] direction.
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The strain tensors are given by

A': Ay = o cu
" B 2 ( Cn - Cn)(‘n 4’2(;;)
Arg‘ s = T \ A“' 2 O
(C“ - cnj( Cy ¢ 2‘.1\ 1 Cut
and Ay'z Ay = O

Using the same method as described before, the reduced
anisotropy energy becomes

p'ﬁ‘ = 0%),” AM\‘*[G' ¢ 3).00 (h"Cu)]
As N = O for the wall under consideration, the wall
energy is given by (Lilley 1950) .

. 2 [GeT)s ¢ Taan(79)]

° _
where Yo is the energy of a 90O wall with its normal in

a [001 ] direction. The relationship between Y/Yo and
o is shown in Fig. (21). A similar relationship can be
calculated when is a compressive stress acting in a

[010] direction. In this case the strain components are

A“' s (N
(6.. - C-.;)(fm 4 2 Cn,)
l‘ll = - O {Cn * Cn)
((.n -Cu)(‘n ¢ 2‘.;)
n,; s Cnw o~

(C“' C")( ‘Cll + 7.‘.-._)
' ' ‘
Rn=* As » Ay = 0
This gives  BY s + 3 Ao, aintg L3N, leu-cu) + 2]
4
The Y/¥,,0o relationship obtained from this is also shown

in Pig. (21).
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Results

Di jkstra and Martius fitted their experimental
results with a straight line graph of gradient 1.5 x 10_u
(See Fig., 23). They did not state the thickness of the
specimen, except as an order of magnitude, but by taking
8§ = 0.032 ecms ¥ = 1,35 ergs/cm2 and substituting in
equation (3.13) the value of the gradient becomes 1.66 x
1of“. Their experimental points did not fit the straight
liﬁe relationship very well as there appeared a marked
kink in the graph at about 30 kgms/mmz. The intercept on

the stress axis is +16 kgma/mm2. The theoretical inter-

t

cept is given by o = 'ngJz-, which for an sngle of 1°
100

degree between the [001] direction and the surface works

2 and for sn angle of 1° to -0,02

out to -0,08 kgms/mm
kgms/mmz. From their stress free pattern it can be seen
that the inclination must be of this order of size as

the surface is free from closure domains,

The variation of +16 kgm/mm2 and -~0,1 kgms/mm2
between experiment and theory suggests some inaccuracies
in their experiment., Fig., (22) shows a typical 1/d2 o
relationship obtained by applying a tensional stress along

the [110] direction, The points seem to fit quite well

the curve drawn with a gradient

M o0
& 2tey

o=0
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where ¢ is a multiplying factor for the wall energy and
is a function of stress, ﬁr:O is the value of the wall
energy at zero stress, The experimental values for this
particular curve are t = 0,032 cms N = 27 X 10"6 and
Yoo = 1.35 ergs/cmz. If E' is a function of stress,
which will be discussed later, it will have a negligible
effect on the shape of the curve, It had been hoped to
correlate the intercept on the stress axis, which is
proportional to E', with do, the stress free domain
spacing but the error involved in extrapolating the
curved greph, and the very small values of intercepts,
made the errors far too large. A fairly large range of
intercepts for different specimens was found, varying
from =3 kgms/mm2 to +5 kgms/mmz. This was probably due
to differing amounts of residual stress in the specimens,

For comparison a theoreticel graph, teking into
account the variation of wall energy with stress, is
superimposed on the experimental points of Dijkstra and
Martius (see Fig., 23). By taking the same zero stress
gradient, and an intercept of +9 kgms/mm2 a better fit is
obtained than with the straight line relationship.

Also shown on Fig. (22) are the experimental points
obtained by applying a tensional stress along the [110]
direction by bending the specimen, They give the same

/42 & relationship as obtained with a tensional pull,
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allowing for experimental errors, As the results on

stress pattern I are identical in both cases it seems
that this bending technique will give useful results

when applied to other specimens,

Fig. (24) shows results obtained by compressing
the specimen, by bending, along a [001 ] direction. In
the example shown, the points are fitted with a curve of
gradient B)HOO/M¢2t9Ya:O and intercept o¢=0 kgms/mmz.
The £it would have been much better had the points been
fitted with a curve of intercept o = 3 kgms/mmz. Again
intercepts in the range -1 to +3 kgms/mm2 were obtained

with different specimens,

Chain structure

A faqt not observed by Dijkstra snd Martius was the
growth of a chain structure on the surface of the speci-
men along the walls of stress pattern I, Photographs of
this structure are shown in Plate 2, A typical growth
gequence is described below.

Stress 28 kgms/mm°s~ Small ellipticelly shaped
domains, length ~1/1Od, formed, seemingly at random,
along the walls by the splitting of the wall,

Stress 31 kgms/mng- These have grown to a length

of about 4 with a corresponding increase in width.
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Stress 35 kgms/mm2:— The number of links has increased
until there is no straight well left, just a continuous
chain structure, At this stress, each link is still
elliptically shaped.

Stress 37 kgms/mmzz— up to the yield point:- the
links have become barrel shaped, being up tOJQ/u in width
and d-24 in length,

If a vertical field was applied, alternate chains
disappeared indicating that Fig. (25a) is probably a
reasonably good representation of the facts, As no colloid
was polarized over the surface of the chain under the
influence of a vertical field, the direction of magnetiza-
tion must lie in the surface of the specimen. An attempt
to discover the magnetization direction using the scratch
technigue proved unsatisfactory. Colloid was not attracted
to scratches running in either the [001] or [110] direc-
tion, The conclusion that they are small demagnetized
regions must be excluded from simple energy considerations.
It seems probable that they are regions magnetized in [ 001]
and[00T ] directiong the reduction in closure domain-.
volume energ& being sufficient to compensate the formation
of free poles on their undersurface (Fig. 25b). These
structures did not form on all examples of stress pattern

I,
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It is interesting to compare this structure with
the one observed by Bates and Hart (1956) on a (110)
surface of silicon iron, A structure the same as stress
pattern I was observed on a single crystal of silicon
iron, measuring 1.25 cms x 0,58 cms x 0,025 cms with a
field of 10 oersteds applied along the [110] surface
direction. This field favours the [100] and [ 010] easy
directions. At a field of about 30 oersteds the domain
walls at the surface broadened and assumed a chain like
appearance, A further increase in field caused the
chains to become wider and at this stage they appesar,
from photographs, to be the same as those observed on
the strained specimen,

However Bates and Hart suggested that the chain
structure was formed by the shrinking of the closure
domains, due to an increase in the magnetic field, and
therefore the appearance of strips of free poles between
the closure domains., This indicates that the chains are
in fact magnetized along the [100 ] direction, which is not

the case for those observed on the strained specimens.

3.1¢3%.4. Stress Pattern II

At tensional stresses in the range 20-30 kgms/mm2
and compressive stresses between 13-20 kgms/mm2 a second

type of domain structure developed. This was called
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stress pattern II. Once formed it grew at the expense
of pattern I with increasing stress, until at stresses
nearing the yieid point it covered nearly the whole of
the surface, Fig. (26) shows the percentage area of
pattern 11 as a function of stress for a typical speci-
men,

The structure consists of mein zig-zag walls, with
a spacing between 1.5 and 2 times that of stress pattern
I, running in a [001] direction. A vertical field caused
alternate main walls to disappear (see plate 3) while a
field in a [110] direction caused alternate areas between
these walls to increase snd decrease in size. This
suggests that the main underlying domsins are magnetized
in the [100) and [Too] directions, as in stress pattern
I, but separated by 180° walls with normels in the [010]
direction,

Between these main walls lies a complicated surface
structure. Under a high magnification this was seen to
consist of alternately wide and narrow domains at an
angle B. to the [110] direction. The spacing of these
subsidiary domains varied across the main domains. A
vertical field caused alternate walls to disappear indi-
cating that they are probsbly small closure domains under-

neath which is a domain structure alternately magnetized

up and down.
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Upon increasing the stress B was found to .decrease

as shown in Fig. (27).

Proposed Closure Structure

The proposed structure for the closure domains is
shown in Fig., (28). It is similar to that described by
Martin (1957). He examined the surface structure on a
(100) surface of silicon iron in the form of a flat disc.
The edges of the disc were of the (0,k, ) family. By
this means he was able to observe direcfly the structure
beneath a (111) face. He found that near the edge of
the disc the main 180° wall structure branched into what
he called an echelon structure, which nearer the surface
subdivided again. The similarity between the two systens,
one where there is no easy direction in the surface, and
the other where the easy surface direction is made un-~
favourable by applied stresses is obvious.

As a model for the theoretical analysis of this type
of struéture a simplified echelon system will be considered
in which the spacing of the secondary structure is constant
in widtﬁ across the main domain and the angle to the [110]
direction is only B and not B and 90°-8,

In ordef that there are no free poles on the wall ABCD

the values of o, and x, must be related to B by

1
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tm1a2 = sin
N2 cos B - sin B

and tan oy sin

N2 cos B + sinp

The volume of the closure domains, for unit width of

domain is x° tan o, + /d-x\2 tan a
T 1 L 2

If this is minimised with respect to x, one obtains

X tan a2

d-x tan a

which becomes in terms of B

X sin B + ¥2 cos B
d-x ~J2 cos B - sin B

If an experimentally observed value of B = 300 is teken,

the ratio becomes 2,5. This agrees well with a

=
d-x
measured value of 3.

A further simplification, the assumption that the
wall energy vy is independent of stress is made in a con-
sideration of the energy of the system,

The total energy is made up of the Bloch wall energy
and the magnetoelastic energy, the magnetostatic energy
being zero.

The total length of walls KN + AB + NO for the system

is given by L = 2 z

- u.‘ ')

And the wall energy of KN AB etc per unit surface area is

¥ .
2o ﬁ‘ ‘) (3.15)
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The length of walls ABCDE can be approximately expressed

by i)
2 sin B
Domains like KA'MB', NSOR, .. magnetized at right angles

to the bulk magnetization,therefore contribute an amount

2

of elastic energy given by C11%100 per unit volume

Volume = d.‘ i'

52‘

“\‘ - | ..X )do
ey 2 e in [m. ] (3.16)

A compressive stress ¢ dynes/cm2 in the [001] direction

acts on the surface closure domains.

The volume of these = o} tana1tana2

L
tanoc1 + tana2

Therefore the stress energy
= %%E Moo tan B
Substituting 2d,=d end a=D¥2 in equation (3.15) and (3.16)

the total energy of the system becomes

E- 3, ohapg fiﬂ[“ K(m}]..‘id;%[%u] (5.17)

Minimising the total energy with respect to B gives

pinfd , lbfa [-ﬂ. 8‘“ ‘)] (3.18)

wip 3dA,., T
By substituting experimental values of d and a/d into

equation (3.,18) a theoretical curve is obtained relating

B and ¢, see Fig, (27). Even though the g/d is taken as
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a mean value, the curve agrees quite well with the
experimental points.
If the total energy is minimised with respect to

d another relationship is obtained

G | X ¢ &
U RN z:....p]

As it is extremely difficult to eliminate B between these

(3.19)

equations, the result may be tested numerically by sub-
stituting
B = 30°

20 kgms/mm2

qQ
]

and a = 6 x 10”2 cms.
in equation (3.19). This gives a value of d = 6.2 x 10k

cms, therefore a/d = 10. The observed value was &/d = 5,

Change-0ver from Pattern I to Pattern II

Although this closure structure fits the experimental
results well, it does not explain why it should be more
favourable at high stresses than the stress model I,

Section 3.1.3.3. shows how the main domain wall:energies in
the stress model I increase with tensional and compressive
stresses., Now consider the effect of stress on the main
domain walls of stress pattern 11,

If the domeins are considered to be magnetized in
[001], [007] directions, the wall normal will be in the

[010] direction and the stress co-ordinates for an exten-
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sional stress o dynes/cm2 will ve [011] .

The reduced anisotropy energy for this system is

Pt = 9 (- )Mipoain®d = 3Dl Taingung

Unfortunately the g&n ¢ cos ¢ term makes the integra-
tion, necessary to obtain the wall energy, too difficult.
Nevertheless 1t can be seen that this energy will decrease
with increasing stress. If it is supposed that the change
over between the two patterns depends only on the energies
of the main wall structures then this critical energy
would be expressed by J2YII = Yqo If the energy of wall
IT is taken as constant this corresponds to a stress of
38 kgms/mm2 (Fig. 21). The value is probably less than
this as the energy of wall II decreases and so compares
favourably with the experimental values of 20-30 kgms/mmz.

Using this supposition the changeover stress when the
the system is under a compressive stress o dynes/cm2 in a
[100] direction can be evaluated. The strain components

in wall II are

Au: 2 - o | Cy * Cc;.)
] . ‘C" - C.;)‘ Cn & 2‘11.)
A = By, 2 S T

t‘l\ - Cn)(cn 4 ‘Zc‘.J
LN '
Ay = Ay 2 Ay = 0
This gives a value of the reduced anisotropy of

Pho = Ll culd,, ain’

which is independent of stress,
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A more exact value of the change-over stress can
now be calculated. From Fig. (21) a value of 19 kgms/
mm2 is obtained, As the experimental values lay between
13=20 kgms/mm2 it seems likely that this mechanism con-

tributes a major term in the evaluation of the change-

over stress.,

3.2, Tensional Stresses along the [100] direction

3.2.1. The surface a (110) plane to within one degree

Introduction

The strain free surface is characterised by 180°
Bloch walls in a [100] direction. A tensional stress is
applied along the magnetization direction making it more
energetically favourable than the other easy directions.

Di jkstra, Martius, Chalmers and Cavanagh (1954)
applied such stresses up to the yield point on polycrys-
talline silicon iron and found no change in structure
whereas Shur and Zaikova (1958) found that stresses
greater than 10 kgms/mm2 caused a reduction in the domain
spacing. They did not make any measurements of domain

width against stress,

Results
This work was repeated using a bending technigue for
applying the tensional stresses., Stresses up to the

yield point appeared to have no effect on the domain
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structure, Slight changes of structure occurred near
inclusions and other surface imperfections but the main

spacing remained unchanged.

Thecoretical Considerations

The domain spacing & is given by

d = <%¥> : (3.20)

where E' = 1.7I%sin%s 2

A

1+u
The effect of stress on the components of equation (3.20)

will be considered.

Wall Energy

As the surface of the specimen mekes an angle of
one degree or less with the [001] direction the stress
will be considered to act along the [001] direction,

The strain tensors produced by & stress of o dynes/

cm2 are

At . A..‘ . e
) l ‘cu - Cﬁ.)“n" Zc.;)

!
R” s C'l(ﬁ v Ca)
(c“- Gl ¢ 26.;

Al"l s At“! 2 A'n = 0

This gives an expression for the reduced anisotropy of
'

T = S__Moo( 3\.,,‘&"(':) + 26]
Iy K,
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A graph of the variation of wall energy with stress for
A=0 is shown in Fig. (21). If this is approximated by
| a straight line through the origin, the wall energy ¥y
at a stress of o kgma/mm? can be related to the energy
ﬁr:O at zero stress by
Y=v_o [1+ 0.0180]

If the wall energy is calculated for various stresses
and various values of A, using equation (1.17) and then
multiplied by a factor 335(%§:X)’ to take into account
the thickness of the wall, the value of N corresponding
to the minimum effective wall energy can be calculated
as a function of stress, This is shown in Fig. (29).
With increasing stress the wall rotates away from the
(100) plane until at a stress of 20 kgms/mm2 it lies in
the (110) plane. Therefore the increase in effective
wall energy will not be as large as shown in Fig. (21).

For example at zero stress N = 130 and

Yerr

YO’:O

= 2,63
while at 10 kgms/mm° X\ = 31° and

Yers

YG":O

= 3-125

If the change in d was dependent on the wall energy alone

then d
0_210 — 30125
™
dv:O 12,63
= 1,09

At o = LO kgms/mm® this fraction is 1.21.
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One would therefore expect the wall energy to increase by

the amount shown above,

Magnetostatic Energy

As 8, the angle between the [001] direction and the
surface, has been considered to tend to zero, the stress
cannot have any effect on the effective permeability or 8.
One would therefore expect the domain spacing to increase
slightly with stress due to the increase in wall energy.

However in this case, when & tends to zero, the
magnetostatic energy probably depends upon free poles
formed at the grain boundary. Therefore the orientation
of the surrounding grains and the effect of stress on them
may well be important.

In order that the domain spacing remains constant the

magnetostatic energy must increase at the same rate.

2.2.2., Surface a few degress off a (110) plane

Introduction

When the [001] direction mekes an angle of between
3 and 4 degrees with the surface a system of closure
domains are formed on the surface to reduce magnetostatic
energy. This closure structure consists of dagger like
domains magnetized along the D07 direction in a main
domain magnetized in a [001] direction. In order that

there are no free poles on the main part of the dagger
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structure, the walls should lie at equal angles to the
[110] direction and therefore intersect along a [001]
line, The angle A which these walls make with the
[100] and [ 010] directions will be governed by the
minimum energy orientation of a 180° wall, This has
been shown at zero stress to be 130.

A series of photographs (plate ;) shows the effect
of stress on this structure. As the stress increases the
daggers become smaller in both length and width and the
main 180°wellsbecone more distinct. At a stress of about
20 kgms/cm2 the dagger structure dissappesrs altogether.

A small vertical field, applied at this stress, polarizes
the colloid over slternate domains showing that the mag-
netization vectors still make an angle with the surface,

Shur and Zaikova (1958) observed these changes and
on purely gualitative grounds, as they did not apply
vertical fields to ascertain the magnetization direction,
suggested that the dissppearance of closure domains was
due to the rotation of the magnetization vectors into the

surface,

Theoretical Considerstions

Equation 1.10 shows that for isotropic magnetostric-

tion the stress energy is given by

2
E = - cos“e
- 3 oA\ CO

2
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where ¢ is the angle between the stress and magnetization
directions., If this is minimised with respect to e, it
gives the limiting direction into which the magnetization
direction rotates when the stress energy is much larger
then the anisotropy energy. This is 6=0,

The more general case when %ﬂ11#: %100 will now be

considered, The magnetization direction cosines are

N2 N2

(cos o, s8in o, sin a2 and the direction cosines of the
stress sdre cos ¥,

in ¥, sin ¥ \.
N2 V2
The differential of the energy with respect to a gives

amd ko BN ¢ X)) - Lindsadud BN+ 2 w8 anElind - it ) =0

If the sin2Y term is neglected the equation becomes

_‘ikmw:thL 2 Moot $1on 208

and .’MI‘ = "Mx %ﬂ (B.Z)

This equation corresponds to a position of minimum energy.

Substituting into equation 3,21

Mg =0 X 107°
Moo = * 27 X 1070
and vy = 5°
gives the result % = -1° 50"

The limit to which the magnetization tends at high stresses
is 1° 50' away from the easy direction, and the surface

direction.
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Effect of Stress on effective permegbility

The method used is that due to Kittel (1949)., If
the magnetization vector makes en angle ¢ with the [001]
direction the anisotropy energy can be written
_ 2
Ean = K¢
Similarly, neglecting the effect of x111, the magneto-
elastic energy is given by
2,2
EO" =—%0‘ )\100(1 +a¢)
where a is direction of stress,

The energy due to a smell field H, gpplied normal

to the surface

o =

H HI¢

Minimising the total energy with respect: to ¢ gives
HIs

K - 3"100‘7‘Jc2

This gives a susceptibility
2
Is

X - 37‘1000‘)‘2

and an effective permegbility

Lo o= 1 + L;HIS2
2K~ 3% o
For the stress term to have any effect on the anisotropy
term ¢ must be about Toas kgms/mmz.
Therefore up to 20 kgms/mm2 the stress has a neg-

ligible effect on the effective permeability.
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Conclusion

It has therefore been shown that the cause of the
disappearance of the dagger structure is not due to a
reduction of the magnetostatic energy by either the
rotation of the magnetization vector into the surface
or by an increase in the effective permegbility.

The important factor must be the rotation of the
position of minimum energy of the 180° wall, specified by
Ns 8s shown in Fig., 29. At zero stress the reduction of
magnetostatic energy, due to the formation of daggers
must be balanced by the wall energy of these structures.
As the stress increases the vaslue of A increases, thus
increasing the ares of Bloch wall for a specific surface
area of dagger. Also the energy of the wall per unit
grea increases, The wall energy will now be greater than
the reduction of magnetostatic energy and so the size of
the dagger must decrease to restore the energy balance,

At a stress of 20 kgms/mm2 the dagger walls should
be normal to the surface, and therefore would not contri-
bute any reduction in the magnetostatic energy. There-
fore one would expect the daggers to disappear at this

stress, This agrees very well with the observed value.



CHAPTER FOUR



0ot 'Ol4

aJinionuys

Boz b1z jo wouboip NELT]

T

uoI132341p ﬁ:o“_ D

(4>

ul $S94}S

JHW Jswby

09 oS

ov

Old

WM 2)bun

SS3YIS

ot o¢c

foz Biz ;0o uolDWDA

oL o

*

06

—_——t

v6

saoaubap

86

'.‘*jx—‘

col

L
vm% %HX\ [to0)

TUl

901




78.
CHAPTER FOUR

THE EFFECT OF BXTERNAL STRESSES UP TO THE YIELD

POINT ON (100) SURFACES

L.1. A compressive stress applied along the [011]

direction on a (100) surface.

Let.1. Introduction

A compressive force applied in the [011] surface
direction, as shown in section 3,1,1.1. will make the
easy [100] direction normal to the surfsce more favourable
energetically than the two easy directions lying in the
surface, It is therefore equivalent, in these respects,
to a tensional force in the [100] direction. This
system has been considered by Chikazumi and Suzuki (1955).
The structure formed under this stress consists of main
domains magnetized normal to the surface, the flux being
closed by triangular domains magnetized in one of the
surface easy directions, see Fig. 30. The Bloch wall
of the closure domains is shown to be zig-zag in nature,
This is because the only requirement for no free poles
to form on the wall is that the normal to the wall should
lie in the (110) plane. As the wall energy is a function
of orientation the wall will lie in its minimum energy
position. This position corresponds to an angle of ¢ =
62° (Fig. L), where 2y is the angle between adjacent

strips of zig-zag surface. The minimumy = 62° is equiva-
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lent tow = 1060, w being the observed zig-zag angle
at the surface,

Chikazumi and Suzuki applied this model and its
variation with changing stress to the maze structure
formed on a mechanically polished surface and to the
strain pattern produced by a deep scratch in a [001]
direction on a (100) surface. In neither case were
they able to verify quantitatively their experimental

considerations,

Le1l.2. Experimental Details

Single crystals of silicon iron were prepared in
strips 44 em x 1 em:x 0.032 em with the main (100)
surface plane bounded by edges in the [011] directions,
This is known as the Ne€el cut. The specimens were
compressed along the [011] direction, or the [0T1]
direction using the bending technique. It was possible
to repeat this work on polycrystalline material as a
piece of 3% silicon iron cube textured sheet, with
average grain dismeter of about 5 mms and thickness
0.032 cms, was obtained from the General Llectric
Company, U.S.A. This was cut into specimens of approx-

imately the same size and shape as the single crystals.
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Le1.3. Results

The results obtained from the single crystal work
were rather disappointing. The gzero stress structure
was not the same as that described by Néel, being much
more complex, probably due to the presence of random
stresses in the material, Upon applying a compressional
force along the [Oﬁ1] direction this pattern disappeared
at about 15 kgms/mm2 and after a short transitional
range of stress the strain pattern as described by
Chikazumi and Suzuki appeared. Unfortunately the
structure was not at all regular and relationships
between 1/d2 (4 being the domain spacing) and stress or
between w and stress could not be obtasined, The patterns
appeared very much like those obtained by Kaczer (1958)
by applying a compressive force of cylindrical symmetry
to a single crystal of L% silicon iron cut in a cylindri-
cal shape 1 cm long and 8 mms in diameter. He found that
the zig-zag structure appeared at about 10 kgms/mmz, which
must be multiplied by ¥2 to compare directly with the
result obtained in the above experiment i.e. 17 kgms/mmz.

However very good results were obtained upon strain-
ing the polycrystalline silicon iron specimens, Flate 5
shows a typical series of photographs taken at various

stages of stress,
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At a stress of sbout 1 kgm/mm®

the initial structure
began to break up and disappear. After a transitional
range of about 3 kgms/mm2 with‘no apparent domain
structure,the stress pattern appeared with zig-zag
walls running along the [ 001] direction. A vertical
magnetié field caused alternate walls to disappear,
showing the presence of a vertical component of magneti-
zation. As the stress was increased the domain spacing
decreased, Fig, 31 shows a typical 1/d2, o graph. The
same patterns were also photographed at a magnification
of 400x, so that measurements could be taken on the zig-
zag engles, Lven so, the error involved in measuring
these proved fairly high and in order to obtain satis-
factory results 50 measurements had to be taken at each
value of stress. These results are plotted in Fig. 32.
This type of stress pattern remained on the surface

of the specimens up to the limit of the experiments, i.e.

L5 kgms/mmz, and no other structure was formed.

lelel;s Theoretical Considerations

Leloelie1. Variation of domsin spacing with stress

The polycrystalline case only will be considered
in an attempt to interpret the observations made under

these stress conditions. The initisl structure consists

of 180° walls in a [001] direction. The energy for unit
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surface area of this system, under the influence of a
compressive stress ¢ dynes /cm2 acting in the [o11]
direction, can be written as the sum of the magnetostatic,

magnetoelastic, and domain wall energies thus

% ' id..,t + R (4et)

t being the thickness of the specimen,
Assuming 2Y9O = Y186 = ¥, and assuming that ¥ is
independent of orientation, the energy of the stress

pattern for unit surface area becomes

x[s-u&]. 3gh,.d o+ Nd
T X

d (4. 2)

The equilibrium spacings of the two systems can be found
by minimising expressions (4.2) and (4.1) with respect
to d and dg. The stress pattern spacing thus obtained is

given by

i . 30X A
4> g (139

where y is the energy of the main vertical wall,

If the magnetization on either side of the main wall
is considered to be in [001] and [001] directions, then
the stress o dynes/cm2 ig epplied in the [110] direction

and the reduced anisotropy energy in the wall is

P.{“‘ = +3 M$¢A... [sxtu‘%"-u)“ 6"]
™
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‘As N=0, the variation of wall energy with stress has
previously been evaluated and is shown in Fig. 21,

Upon substituting values of t = 0,032 cms, A
6

100 ~
26 x 10 7, ¥ = 1.35 ergs/cm2 and A = 50 (corresponding
to & = 1°) into equation (L4.3), a value for the inter-
cept on the stress axis at 1/d2 =0 of - % kgm,/mm2 is
obtained,

A theoretical greph, taking into account the
variation of wall energy with stress is shown in PFig. 31.

It has an intercept of 1/d2 = 0 of 0 and a gradient given

by % 7\100 . The experimental points would be fitted more
vt

closely by taking an intercept of about 7 kgms/mmz. A
range of intercepts between -1 and +8 kgms/mm2 was
obtained for different specimens. As explained before
this is probably due to random stresses in the material.
The cut-off value, that is the stress at which the
energies of the two systems are egual, was calculated in
the same way as described in section 3.1.3%.3. for the

(110) surface. For a value of § = 1° i.e. A = 50 this

2

becomes 0,02 kgms/mm“ which is about 20 times smaller

than the observed.value,

Lhetel4e2., Variation of zig~-zag angle with stress

In their treatment of the variation of zig-zag angle

with stress, Chikazumi and Suzuki did not consider the
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effect of stress on the Bloch wall energy of the closure
domains. They assumed that the only effect of stress
was to vary the magnetic pole density formed on these
walls. |

The effect of stress on the wall energy will now be
considered, Chikazumi and Suzuki calculated the varia-
tion of the energy per unit area of the average plane of
the zig-zag wall ¥y/sin ¢ by approximating the anisotropy
energy g(e,¢) with 28, cosz<%% > where g_ = giﬁé—l .
The direction cosines (6,$=0) lan be written in terms of
the angles ¢ and ¢ thus (:}'5_03““*\‘): {fi“""w*q')' —“”(e"‘))
Therefore g, * %‘M‘(OOV,«)[ i+ 3m"90\b)]

By substituting the magnetization direction cosines and
the stress direction cosines (O,J% ’V& ) into equation

(1.9), the magnetoelastic energy ET becomes
E- *&{m‘m'(o*\b)'éﬁﬂﬁﬂ)) o Dl w:U*‘I-)ms\thV—)}
212 2 V2

If the zig-zags ere symmetrical sebout the [011] direction
then the above energy expression represents the effect of

stress on one part of the zig-zag wall and

E = 3 [ dge | (004) + sl (004)) - g inloroinloni) ]

represents the energy of the other part of the wall,
At a first gpproximation let the stress energy of

the total wall be given by
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€= ¢ &[%.\m*(m)e ain’ ’zt_o_se)* )]

2

as the second term in each expression is smaller than

the first, The total anisotropy energy now becomes
q= K,{a'u: leow)[sg‘(gqﬂo l] . 3;_‘:"&,,[:8(004,) + Mlgose)] } (Lo ly)
° '

Fig. 33 shows a series of curvesof y/sin ¢ against ¢ for
various values of the compressive stress, Up to about

200 kgma/mmz it can be seen that remains effectively

¢min
constant while the value of wall energy at ¢min increases
with stress, Chikazumi and Suzuki approximated their

2
)

zero stress curve using a (¢y-¢ relationship thus

min
Y =C4+ 6,73 x 1078 (¢-¢min)2~fAK

where ¢ is expressed in degrees. As this is differentiated
with respect to ¢ to find the variation of ¢ with stress,
the value of C is not important. However upon taking
measurements on the graphs it was found that the multi-
plying constant of (¢-¢min)2 varied with stress and this
is shown in Fig. 34. This variation may be represented
approximately by a linear relationship of the form

Y = C+ 6,73 x 107%1 + 3,92 x 10'3¢)(¢-¢mﬂ)2 WAK
where ¢ i8 expressed in kgms/mm2

Chikazumi and Suzuki minimised the wall energy term

with the free pole energy term
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- ,
E = const + 1,23 x 107+ mey®

where ¢ is the amplitude of the zig-zag and m the pole
density-is given by

m =O'18K1OOTxx
I

Txx is a tensional force normal to the surface, When
dealing with a compressive force ¢ along the [011]

direction this becomes

m =O-—°128 N oo
1

Experimental values of ¢ were found to vary between

2.8 x 10~% cms and 3.7 X 10~% cms. However by taking
the value used in the calculations of Chikazumi and
Suzuki of 4 x 107k cms, the variation of zig-zag angle.w
with o becomes

o (kgms/mm®) = 2 x 429 1 + 3,92 x 10 20 ¥min - g
w + 25

This is shown in Fig. 35. The variation of () with o is
much less than that derived by Chkazumi and Suzuki and

2 is effectively

in the experimental range 0-50 kgms/mm
constant., The experimentally measured value of w at
L5 kgms/mm® is 90° + 3° which is 14° less than the value
at 5 kgms/mmz.

Section 3.1.1.1. shows how the easy directions

deviate from the crystallographic axes under the influence
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of a compressive force in a [ 011] direction. At about
50 kgms/mm2 this deviation is only 5O and it is difficult
to see how this would affect the value of the zig-zag

angle,

4.2, A compressive stress applied in a [011] direction on

a surface a few degrees off a (100) plane.

Li.2.1. Experimentsl Details

Specimens of polycrystalline cube textured sheet were
cut into strips L cms x 1 em x 0,032 cms with edges in
[110] and [1710] directions and compressed along the [ 011]
surface direction, Grains with a zero stress structure
consisting of fir tree closure domains were examined,
These grains are orientated so that the [001] direction
makes an angle of between .50 and 1,3° with the surface
see Bozorth, Williams and Shockley (1949). Plate 6 shows

the variation of the domain structure with stress,

e2.2. Results

At a stress of between 1 and 2 kgms/mm2 the fir tree
structure broke up and in its place appeared, after a
2 kgm/mm2 transition range, a zig-zag structure with the
zig-zag walls lying in the [010] direction. Between the
zig-zag walls were arrowhead closure structures with the
arrowhead pointing in the [001] direction, A small verti-
cal field caused alternate zig-zsg walls to disappear and

colloid to collect over alternéte areas between the zig-
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zags., In most cases no colloid collected on the arrow-
heads though in a few cases it collected over one side
of each structure.

As the stress increassed the zig-zag spacing
decresgsed as did the size of the arrowheads, At a stress
of between 10 and 15 kgms/mm2 the arrowheads disappeared
altogether., As soon as this happened the colloid on the
surface of the closure domains was concentrated into a
line running in a [010] direction along the centre of
each domein., At this stage a vertical field showed an
alternating straight line and zig-zag structure with the
line deposit much closer to one zig-zag than the other,

This type of structure persisted up to the yield

point,

Le2.3. Interpretation

The application of g stress causes the fermation of
a domain structure with main domains magnetized nearly
normal to the surface and with closure domains magnetized
in the [001] direction. As the magnetization in the
closure domain is not perallel to the surface a free pole
derisity I sin 8 is formed on each domain (Fig. 36a). This
is demonstrated by the polarisation of colloid on alternate
domains upon the application of a vertical field. The

magnetostatic energy due to these poles is reduced by the
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formation of arrowhead closure domains which must be
magnetized -in the [010] and [0TQ directions. Thus

if this direction is parallel to the surface no colloid
is deposited on the arrowheads. However if the [010]

direction maekes an angle §, with the surface, colloid

1
will be collected over the arrowhead and, as it is collec~
ted over half of each arrowhead in turn, each half must
be magnetized in opposite directions (Fig. 36b). As the
stress is increased the magnetization direction in the
arrowheads becomes more and more unfavoursaeble, thus
causing them to decrease in size,

Upon the disappearance of the arrowheads the stray
field at the surface becomes much simplified. It consists
of a pole strength I cos & at the zig-zag walls with
I sin 8 between them., Consider the effect of this type
of pole distribution on the concentration of magnetic
colloid, If the width of the zig-zag wall is 1076 cms
then the pole density at the wall is I x 1070 gauss/sq cm.
The distance from the wall at which this field equals that

on the surface I sin & is given by r where

-6
I—-—’%Q— = I sin 8
r

Taking §4° r = 10" %cms. This is a very approximate value.

The separation of the zig-zag walls is 0,05 mm, then if r~
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2 x 10-3cms, any colloid closer to the wall than this
value of r would be drawn towards the wall. This type
of mechanism would therefore cause the colloid to be

3

concentrated in a narrow strip 10 - cms wide at the centre
of each closure domain, The application of a vertical
field would cause alternate pairs of lines and zig-zag

walls to disappear as is seen experimentally.

L.2.4. Conclusion

This type of strain structure has been observed
previously. In a recent paper, Bates and Carey (1960)
described this structure which they called a band struc-
ture. It had formed on grains in a sheet of cube textured
polycrystalline silicon iron material, but was mainly
removed by ennealing., Bates (1957) proposed a model for
the formation of this type of line and zig-zag structure,
In this model the lines at the surface are due to the
appearance of the [ 100] domains at the surface caused by
branching Fig. (37). This type of branching is similar
to that described by Lifshitz (194)4). Bates suggested
that this type of branching only occurred at high stress
differences between the closure domains and the main under-
lying domains, Unfortunately this does not agree with the
experimental results which have been obtained. Firstly,
on the basis of his model, a vertical field would produce

a domain' structure at variance with that observed.
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Secondly this type of structure was observed on specimens
under relatively small stresses and is obviously depen-
dent on the orientation of the surface and not on the

size of the strain.

L.3. A stress applied along the [001 ] surface direction

Le3.1., Introduction

Theoretically a single crystal of iron with a (100)
surface, bounded by [001] and [ 010] edges has a domain
structure consisting of main domains magnetized along
the length of the specimen (Fig. 5). Flux closure is com-
plated at the ends of the specimen by means of triangular
domeins, If a compressive stress is applied along the
length of the specimen, the direction of magnetization of
the main domains will become less favourable than the
other easy directions, Therefore if the thickness of the
specimen is much less than the width, it seems likely
from energy considerations that the stress pattern will
consist of main domains magnetized in the [010] direction
separated by 180° Bloch walls.

In the previous cases, the change over from the
stress free pattern to the stressed pattern has been
separated by a range of stress in which there has been
no visible structure., In this case, as there are domains

in the stress free case magnetized in the transverse
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direction e.g. spikes and fir trees, it seems likely
that growth processes will be revealed. These can
be observed as well as the value of the stress at which

the change-over occurs,

L.3.2. Nucleation Processes

Nucleation processes, which take place when a domain
structure changes from one mode to another characterised
by & larger number of phases, have been studied by many
workers notasbly Bates and Martin (1956) and Goodenough
(1954). In the main they have been concerned with the
formation of domains of reverse and transverse magnetiza-
tion, which are created in going from a single phase,
magnetically saturated state,to a six phase demagnetized
state, Their results differed by the order of 100 from
theoretical estimates by Kittel (1949) which give the
lower limit for the criticael reverse field to initiate

ZKtq . This is probably due to the

nucleation to be
existence of high fields in the vicinity of non-magnetic
inclusions,

The processes involved in nucleation are rather
interesting. Bates and Martin showed that firstly
transverse domains were formed at non-magnetic inclusions.

The formation of domains of reverse magnetization took

place at lower fields and was more difficult to observe,
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They suggested that these were produced by encounters
between 90O walls and large surface pits.

We shall be concerned with two cases. One where
the zero stress case is a four phase system, which under
the influence of stress, changes to a two phase system,
This is in fact the reverse of a nucleation process, In
the second case the stress free system is a two phase
mode which, under the influence of stress, changes to a

different two phase mode via a four phase mode,

L4e3.3. Experimental CObservations

Single crystals of iron 3.5 ecm x 1 cm x 0,03 cms,
with the magnetization of the main domains direcfed
along the length of the specimen, the [001] direction,
were compressed in this direction using the bending
technique. Also similarly shaped specimens of poly-
crystalline silicon iron sheet were compressively stressed
along the direction of main magnetization in suitably
orientated grains, i.e. those with the sufface not more
then 1° away from a (100) plane,

Measurements of the ratio of the surface areas of
magnetization in the two easy surface directions were made
for varying stress conditions, Two typical graphs of
experimental results are shown in Fig. 38 and‘Fig. 39.

In all cases, independent of the mode of growth, the bulk
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of the magnetization is rotated through 900 in a stress
range of about 6 kgms/mm2. The stress at which this
change~over was initiated seemed somewhat variable,
ranging from 0.5 kgms/mm2 to 7 kgms/mmz. Although by
far the majority of cases lay between 0.5 kgms/mm2 and
3 kgms/mmz. Presumably this is due to random stresses
in the specimen as it was not possible to relate this

variation to the type of transverse magnetization growth,

Nature of growth of transverse magnetization

If the zero stress pattern consisted of a fir tree
structure, with no spikes on the main domain surfaces,
the transverse growth took place by means of square
doméins on the main walls, with the diagonal along the
length of the wall., Although the fir trees were magnetized
in favourable directions they did not grow in size (see
Plate 7.). The square domains appeared to grow at random
elong the walls presumebly from points of high stress.
Usually the square domains consisted of two triangular
domains, magnetized in opposite direction (Fig., 4Oa), although
in a few cases more complicated structures (Fig. LOD) were
observed, In all cases there is a continuity of magnetiza-
tion across the domain walls, although at first this did
noﬁ seem to be so., Measurements of the angles of the

'square' showed them to vary between 80° and 990 and it
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was noted that generally opposite angles were supplemen-
tary.

On small grains, of about 0.5 cm diameter, in the
polycerystalline material, there was usually only one
such square domain, which grew with increasing stress
until it occupied the whole of the grdn. There were more
transverse domains on the single crystal specimens so
that the intermediate stage, equal areas magnetized in
the [010] and [001] directions, was very complicated
congisting of many small domains bounded by 90o walls,

As the stress was increased further the area of
magnetization in the initial direction became less, until
it was confined to small square domains sited on the main
Bloch Walls. The way these areas decreased with increas-
ing stress was rather interesting. The transverse domain
became elongated and finally hroke off from the main wall
forming a spike on a domain of reverse magnetization
(Fig. 41).

In those cases where the surface was exactly a (100)
plane, the only transversely magnetized areas were small
spikes formed either at non-magnetic inclusions or on
domains of reverse magnetization. Growth usually took
place from both types of spike, the process being the

reverse to that described above,
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Le3e b Thepretical Considerations

It is important to know whether the square domains
are only surface structures or whether they penetréte to
a reasonable depth. It is possible to infer this from
the angles B, and B, (see Fig. l,0) of the square,
assuming that no free poles form on the domain walls.
If the surface is exactly a (100) plane then the condi-
tion that there are no free poles on the wall is given by

By = By = 90°

no matter to what depth the domains penetrate,

However if the surface makes an angle & with the
[010] direction, the surface angles 31 and 52 are related
to ¢ the angle between the domain wall end the [011]

direction by

tan 61 - 1 1
cos § 1 - w2 tan &

tan Y

and tan B, = L
2 T cos & [1 + 42 t

tan¢/
The table below shows the variation of 51 end Bz with ¢
for S = 10,
g®  70° 60 50 4O 30 20 10 5

B, LL® 58" LL° 36" w26 W®11' 13°48" 43° 7' °11 " 370 57
B, 15° 16" 15° 26' 15°37" 15%52' 16°16' 1470 11 49°19" B° 2
As Py = By and P, = P it cen be seen that in the above

range B3 + By + Bo + Bu‘-‘.-’-. 180°,
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The graph in Fig. 39 shows the variation of surface
magnetization withstress, This can now be modified so as
to express the ratio of the volumes of magnetization
against stress. For most of the structures y is less
than u5° which represents a depth of domain less than
0.01 mms, This is negligible compared with the thick-
ness of the specimen 0,32 mms, As far as can be deduced,
the ratio of the volume magnetization against stress can
be represented by the dotted line in PFig. 39. The change
over takes place in, at the most, a 2-3 kgm/mm2 range,

The energies of the zero stress structure and the
final stress structure will now be considered, The zero
stress structure is shown in Fig. 5. The final structure
has the same form as this only the mein domains are mag-
netized along the [010) and[ 0T0] directions.

The energy of the initial structure under the effect
of a compressive stress o-dynes/cm2 in the [001] direc-
tion can be written as the sum of the magnetoelastic and

wall energies thus

wald sudace . 3 r ‘
Ewr/ area 2 %[8 l.?l-(c.x“. 3°'x'“)J 4 %fxm (4e5)

minimising this with respect to D gives the following

expression for the domain spacing

A ™ (W
f"ux& -3'x|00 (L\L.6)
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;.. The energy of the first system can now be written,

substituting equation (4.6) into equation (L.5)

E‘ 4 \/L&&g ZQLXJ”W ' oA

~iw

Similarly the energy of the second structure per unit

surface area can be writteén

€, [l Fehals
Y

By taking ¥ constant and putting Y =1 cm and L = [ cms
curves are obtained as in Fig., 42 for the variation of
the energies of the two systems with stress., The second
system can be seen to become more favourable than the
first at 0.0075 kgms/mmz. If L =4 mns and Y = 1 mm this
would be increased to 0,024 kgms/mmz. When considering
such small variations of stress, the assumption that the
wall energy remains constant is perfectly valid.

Change over values can be calculated for surfaces a
few degrees off a (100) plane, under the effect of the
compressive force, by adding a magnetostatic energy term
to equation (L4.5).

The resulting.energies for a unit surface area

E - \/m.&mrwm-sm v 3 Moo

become

L

and

E; - J(.'ﬂ‘l.&;! ¢ L V'S, Y + 3 o leo) ¥
Y
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Taking L = 4, em end ¥ = 1 cm,

o} 2
8§, =0 8, =2 E, = E, at 0,04 kgms/mm
2
8, =8,=0 E, = E, 0,01 kgms/mm
(o]
5, =0 8,=1° E,=E 0,02 kgms/mn°,

Whatever the conditions considered, the eﬂergies of the
two systems become equal at stresses the order of 100
times smaller than the observed change over stress.

There are two main reasons for this., Kersten (1930)
has shown that in cooling a ferromagnetic through its
Curie temperature stresses are set up of magnitude %BY.
Upon teking Y as Y100’ as the magnetization vectors i1ie
along the easy directions, a stress of 0.65 kgms/mm2 is
obtained. Therefore stresses greater than this must be
gpplied to change the direction of magnetization even if
the specimens have been perfectly annealed.

Secondly the equating of the energies of the two
systems does not take into account the energy of the
intermediate system, This has been observed to be a
fairly complicated structure with large areas of Bloch
wall, Besides the energy needed to create this domeain
wall there is also energy needed to move it from one
position to another., The system is so complex that it
seems impossible to work out any rigorous model of what
happens without a detailed knowledge of the stress and

structure inhomogeneities in the specimen.
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L4 The stress applied along the [010] direction on a

surface 3° off a (100) plane.

LGelie1. Experimental detsils and Results

Specimens of polycrystalline cube textured silicon
iron sheet, 4 cms x 1 cms x 0,032 cms were compressed
along the [010) direction. Grains orientated with the
direction of magnetization, the [010] direction, in the
surface and with the other surface easy direction, the
[001] direction, making an angle of about 30 with the
surface, were observed, Plate 8 shows the change in
structure under stress. At a stress of about 1 kgms/mm2
the original domain structure disappeared. This was
followed by a transitional range of between 1 kgm/mm2 and
3 kgms/mm2 in which no domain structure was apparent.

After this a domain structure sppeared. It consisted
of very small fir tree like structures joined end to end,
so as to fom a continuous line., At low stresses these
'lines' seemed rather randomly orientated but as the
stress increased the spacing of the lines decreased and
they roteted so as to lie along the [001) direction, at
right engles to the compressive force. Upon the applica-

tion of a vertical field colloid was deposited over

alternate lines.
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Therefore the structure was identical to that
observed by Bozorth, Williams and Shockley (1949) on
(100) surfaces with the [001] direction meking an sengle
of between 1.9O end 3.9° to the surface., A block dia-
gram of the structure is shown in Fig. 43.

The main domains are magnetized along the [ 001 ]
direction which has been made more favoureble than the
(010] direction by the compressive force, The vertical
component of magnetization I sin & is closed by surface
closure domains magnetized in the [010] direction. These
do not cover the whole of the surface leaving narrow
strips of the underlying structure which are observed as
lines of fir trees. As the stress is increased the
closure domains become more unfavourable and their
volume is reduced by & decrease in the domain spacing.
The variation of domain spacing d1 was measured and
Figs. L4, L45. show 1/d12 plotted against the stress o for

© and the other

two typical specimens, one with § = 3
§ = 1°,

At stresses above 12 kgms/mm2 the domain spacing d1
remained constant but the width d, of the [001] domein

at the surface increased so reducing the volume of the

closure domains even further.
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L4.ljo2. Theoretical Considerations

At a first approximetion it is assumed that the
[001] domains are bounded by straight lines at the surface,
as shown in Fig. 43. In order that no free poles are
formed on the closure domain walls the angle oo is given
by

tan o = sin §

As 8nv3°, to a good approximation o equals §,

The effect of stress on the system will now be
considered, The total energy of the system consists of
the sum of the magnetostatic, magnetoelastic, and wall

energies,

Magnetostatic Energy

The method of evaluating the megnetostatic energies
has been described in section 1.2.4. The pole density
can be represented by the square wave shown in Fig. L6a.
A fourier analysis of this gives the following expres-
sion for the pole deng}ty

P ) i o ol o[ o
] ~f 2] v ) D

and the magnetic potential

R L LR CORCURES
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A can be evaluated from the boundary conditions. The

magnetostatic energy density Em g can be shown to be
1
Emé.z 814u~8b 1 ‘(ﬁ“dé
oy n? 2y
o“ ‘h"

Taking the first term only, n=1, as the higher terms
rapidly diminish

Epg, = 8lain'SD u*(Nd
h e LD

Megnetoelastic Energy

The volume of the closure domains/unit surfece area
= 4% ten s
2D
The energy of these domains consists of the stress
energy 3/20?ﬂ00, where ¢ is in dynes/cm2, and the mag-
C s 4 2
netostrictive energy 2011%100 .
Therefore Total magnetoelastic energy =

1|’M8 (3 o+ _%. c..x,.:)

Wall Energy

The wall energy of the closure domains/unit surface

area = El % % ,while that of the main domain walls = %g.
cos 3§

t being the thickness of the specimen, Writing D =

d + d the total energy of the system becomes

(ZJ- + t) + o]l S(J *J,)m‘ Tida
de+d, 2(d,+d)

zzg.:‘ds ( 3oheo ¢ Leuhl, )
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Minimising the total energy with respect to d1 leads to

a rather complex expression

lbIM‘S Nda
_ﬁw,) u e " o’ ltd.odJ)

o 161008 s m_)m ) M(s,x re )\ ) d}¢2d.d, ¢
wid, +d,) pld,+d), 2d, +4d,) 100 (d,+d,)*

Taking d2 = n&1 and assuming that both n and Yy are con-

stant in the stress range under consideration,an expres-

sion of the form

1
—7 = mor + C

d4
is obtained, where m = N\ g, (1+2n) tan §
In the stress range 0 - 10 kgms/mmz, the wall energy
will increase by a factor of 1.2, while n will increase
from gbout 0.02 to 0.2, This means that (1+2n) will
increase by about 1.l times. It therefore seems reasonable
to consider that the resulting relationahip of 1/d12
against ¢ should be approximately linear, The experimental
relationships are shown in Fig, L4 and Fig., 45. The
gradient obtained from the specimen with & = 3° is
3,9 x 10"2 while a theoretical value taking n = 0.1,
¥ = 1.3 ergs/cm2 gnd t = 0.032 cms is 3.0 x 102, The
gradient obtained from the specimen with § = uo is
6.l X 1072 which compares with a theoretical value of

Le7 x 10_5. Considering that the grain orientation was

determined to an accuracy of +% , the agreement is quite
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good, although in both cases the theoretical value is
.about 25% low. The experimental values of the inter-
cepts at 1/d12 = 0 are 0,07 kgms/mm? and 5.5 kgms/mm2
compared with a theoretical value between - kgm/mm2 and
0.

The case when d1 remains constant and d2 increases,
that is above g = 12 kgms/mmz, cannot be simply calculated
using this model as the approximation of straight line
intersections of closure domains at the surface looses its

validity.

Le.5. The effect of stress on fir tree structures

L.5.1. Introduction

The first work on (001) surfaces with the [ 010]
direction inclined at a small angle &, to the surface,
was carried out by Bozorth, Williams and Shockley (1949).
They found small ciosure domains along the main 180°
domain walls., These they called fir tree structures and
their variation with & was examined,

°© no fir trees formed.

§ less than %

§ 0.5° - 0.65° Fir trees form and grow to P/Z (D being
the main domein spacing)

S 0.65O - 1.30° Fir trees fill more of pattern until

they eliminate the main domain wall at the

surface.



Block diagram of a tir tree structure ., Spacek (1957)

The side walls of the fir tree each make an angle lb with
the (110]  direction

Plan view ot tir tree structure

FIG. 48
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) 1.30 - 3.90 Fir tree branches increase in length
until all but & narrow strip of underlying
domain is visible at the surface,

They suggested that the fir trees were elliptical cones,
and calculated theoretical values of their width and
separation on the assumption that the branches neutralise
the flux of the underlying domains., Due to their ellip-.
tical shape free poles were assumed to be formed on the
under surface of the closure domains as well as on the
surface of the specimen. They estimated the size of the
magnetostatic energy so produced by replacing fhe fir tree
system by parallel strips, of width D and pole density

+ I sin &, running along the [110] direction., The result-

ing magnetostatic energy equals a
I:710 1 2an*8 _
Cie ptliep)/2]%

Recently a more rigorous model for the fir tree structure

has been proposed by Spacek (1957) (1958). The normals
to the fir tree walls Iie in a (110) plane therefore no
free poles are formed on them, The angle between the
(001) plane and the wall is specified by the angle ¢.
The proposed structure is shown in Fig, 47. A plan view
of a fir tree system is shown in Fig. U48.

In evaluating the variation of o, the angle at the
spike of the fir tree, with &, Spacek assumed that the

width of the fir trees equaled ©/2 and that a = b. The
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model used by Spacek for calculating the magnetostatic
energy of the system consisted of strips of width ?g,

in a [110] direction, with magnetic pole densities °

I sin &, 0, -I sin 8, 0. This gave a value of the
magnetostatic énergy which was proportional to Da., OFf
the rest of the energy expressions, the maegnetoelastic
energy was independent of a. The wall energy expression
consisted of a term for the area of the Bloch wall multi-
plied by one for the variation of wall energy with
orientation., Upon minimising the total energy, magneto-

static, magnetoelastic and wall, with respect to o he

obtained.

oL 01’ + l,,;.;‘SoD"lSI..‘D A%, ,.:..‘S)o(" 0-NAs$20 (1. 7)
’ X't

The variation of o with & for a specific value of D
(0,06 cm) is shown in Fig. 49. Although no systematic
experimental values of @ as a function of & have been
measured, Bozorth, Williams and Shockley did show that
for § = 1% a = 7°, which agrees quite well with Spacek's
work.,

Kaczer pointed out that the variation of Bloch wall
energy with ¢, and consequently a, used by Spacek was
incorrect, and that the relationship obtained by him (see

Fig. L4) should be used, Transforming the Yy ¢ relationship

in terms of ¥ and o using
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tan « 1 tan §

2 W2 Tan ¢
and not equation (20) (Czech J. Phys. 7 719 1957) a
series of curves for various values of & are obtained,.
Upon fitting the curves with a paraebola of the form

y-A = K(a-m)?
the equation relating o and & (the equivalent to eq. L.7)

becomes

LYot L [ain’§ ¢ 2435 0135 510°DasnS ﬁl‘,, Bin® ]
K
- ein8[AvKm'] 20
K

Multiplying through by 10“, calling 10m = G and B =
2

sin"§ x 10h the above equation becomes
4

o 0 0G0’ «* [ch oL210%, lo‘*m‘S] . B [5 R m‘] =0
y 5 K

(L4.8)

The values of the constants, using the correct wall

energy veaslues, are shown in the table below.

5 ¢ 6 x 10°¢ /D B MK
20 1.22  12.4 .339 . 267
4O 1.64 549 1,26 . 322
10 2. liL 289 3.0L .72
2° 3.35 659 12,17 4369

3° L7 2747 148.7 .350
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The result obtained by solving equation (L.8) graphi-
cally for various values of 8§, again taking D = 0.06". cms,
is shown in fig. 49. The results can be seen to be much
lower than those given by Spacek, At § = 1

which is roughly half the experimental value,

L+5.2., Proposed Magnetostatic Model

The modelused by Spacek for calculating the magnet-
ostatic energy gives a result proportional to a. As he
has assumed a=b a change in a will only alter the scale
of the fir tree pattern along the main wall, and not the
relative amounts of free pole and zero pole along unit
length of wall. Under these circumstances it is difficult
to imagine how a change in o will alter the magnetostatic
energy. Besides the rather curious result obtained by
this method, it is extremely limited in its applications,
The variation of magnetostatic energy with other para-
meters, the separstion of fir trees b, and the width of fir
tree y, cannot be evaluated.

As the rigorous solution of the megnetostatic energy
involves a rather complicated two dimensional integra-
tion, the following model (see Fig. L46b) is proposed for
the simplification of the problem. If the pole density
is to be represented by a square wave, then it seems

logical that the period should remain 2D, However as this
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represents in one dimension, x direction, what happens in
the y direction too, it seems logical to assume that the
effective pole strength at the main domain wall is
I sin 8(& b> while that between y and = (centre of the
domain) remains at I sin 8. In the limlt, when a-o and
v = 9/2 the model used is a triangular wave.

Consider the genersl case with a, y and b not
particularised. Upon representing the wave with a
Fourier expansion, the following pole density expression

can be obtained

P l&I«»SZ { Anlln, | b?
a+b 2 RNias
The potentlal ¢ is given by

§ h];——lizzd 2 snln o iL..lE:fE:) .}ar) ﬂhsx.cmrle%%nz)

atb 2 m(«b)(ﬂ 2“4.)

15
b)(g - Mg

103 LMnx
)

From these the magnetostatic energy per unit surface area

E can be obtalne .

e, 1l Y4, {] wtpn L] 4 (] e

- GIA,.;..JSZ Z ] jmz ‘;E w,zrrdm‘ dw

Nt msi

hot (1. & nTs bom (25)
asb 2 n | 0‘5)(“ u.)
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The integral can be evaluated between O and kd/2, the
same energy density being obtained for any integral
value of k.

The energy density =
Az ®d

$ sinb d Z { ainlla o1 __ b w,z_ug_.]‘
213 nlasb 2 Mub)(!; -11!_4-) d
a4

As the expression decreases rapidly (the second term
n=3 is 1/27th the magnitude of the first term) with
increasing n, it is a reasonable approximation to con-
sider the first term only, Teking 2D = d: d, = /2-y:
and b = 2ya, the following energy density expression

can be obtained

b 2
Ems = 8]:4‘“'81, {. + _2DA 0&N1E§‘]
oo 2yok ‘I'l’(au?. o) »
When the effectlve permeablllty u is taken into account

2
. 01§
a correction factor T:ﬁ+ multiplies Em.s.'

And

Emg > 16L0a’8D "au Ql‘datl-’]z (L4.9)
(\rp\’)ﬂ"ac-'l’o()‘ | 3
In the 1limit, when the fir trees disappear y-0 and
Eu.g = 161 s § D
' w2 { e p?)
which is the value, tsking only the first term in the

series, given by Kittel (1949) for parallel strips of

width D end pole density + I sin 8.
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L4e5.3. Application to stress free case

4.5.3.1. The relationship between a and 3

The relationship between o and & can be evaluated
by substituting the magnetostatic energy given in
equation (L4.9) for the one used by Spacek, Taking the
same conditions as used by Spacek namely

y:%anda:Zkya

Spacek put k=1

B - JeIantéD(2qks 20/ )7
5 ey P liek)?

Therefore the magnetostatic energy per unit surface area

is independent of o under these conditions.

Evaluation of the magnetoelastic energy

The volume of a single fir tree: brench = _1 D351n2§
T2v2  tan ¢

The number of fir trees for a unit length of main wall

= 1
N2 D tan & + kW2 D tan &
tan ¢ tan ¢

Therefore the volume of fir tree structures in a surface
area 9/2 is

D° sin® 8
T2V3 Tan § DV2 (17K)

The magnetoelastic energy is independent of ¢, and conse-
quently a, as it is derived from the product of the fir

tree volume and the magnetoelastic energy density.
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Bloch Wall energy

As both the magnetoelastic and magnetostatic energies:
are independent of « the equilibrium value of o must be
found from the wall energy term salone.

Spacek gives the surface area of a single fir tree
branch as

D2 tan §

2¥2 sin ¢

To this must be added a second order term which takes into
account the fact that the fir tree walls lie at uﬁo to the
main domain wall.

The surface area becomes

2 2 . 3 2
D tan & D~ tan”é cos ¢
N2 sin ¢t IN2 T (4.10)

The total Bloch wall energy for the fir trees existing in

a surface area 9/2. is

[Pithﬂé.s Jg‘huébunﬁ& ],_ Yan
Wi s} 4fd S 2 V2 DFan§ (14 k)

The energy of a 90O Bloch wall has been expressed by
Kaczer (1959) as

Y = v, (1,727 - 1.2289 cos ¢ + 0.5015 cosy)
Teking the value of Yo used by Spacek, the wall energy

for a surface area 9/2 is given by

_D_ , Ltan$ 1-59 = \-13 0-ybluos®
20 (k) [&!'w 7 ‘ﬁ*\p][ ot g
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Minimising this with respect to ¢, the equation
1:5%pmy_ 0-hblasny = Fan'$ (15401 +n'y) =1 3unyp + 04l (3umy - Ln*y)] 5 ©
'y Loy
is obtained.
This equation was solved graphically for various
values of 8. The values of ¢ were converted to o, and
the resulting aé relationship is shown in Fig. 50. The

© is 10° which seems in quite good

value of o for & =1
agreement with available experimental results.

It is important to note that these values of a are
independent of D and k, whéreas Spacek's theory showed
o to be strongly dependent on D and also k, This latter
fact invalidates the results of Spacek because as §
varies from O to 1.50, k changes from o« to O, and by

putting k = 1 Spacek ignores this large range of varia-

tion,

4e5.3.2., Variation of Fir tree spacing & with §

Unfortunately there are no experimental results
showing the effect of inclination of the [010] direction
to the surface upon the fir tree angle a, in order to
confirm the theoretical results obtained above, As
Bozorth, Williams and Shockley (1949) did make measure-
ments of the variation of a with 8, these can provide a

basis for the confirmation of theoretical results under
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a
o 6
0 AN
40’ 50’ 1°
6
Variation of fir tree spacing a  with deviation of surtace
from (100) plane

FIG. 51
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zero stress conditions, Taking y = 9/2.
The magnetoelastic energy of the fir tree domains

D
for a surface area /2 becomes

1 P?ain8 cudiow
2'}& [\ﬁ.bh&tal’m\p] (14»-11)

The wall energy for surface area 2/2

= D' tanblI53- 1By ¢ 0-4blun*y]
202 WL [ViDhnd + atany]

(4e12)

The magnetostatic energy for a surface area 9/2

L3 Dtn 8 1
- _s_ltaiuts D"["a ¢ rq‘\\:“

(e *) [a + 2Dt ]?
Fan\l

oTAL = Em.e * Bwarr * En,s.

(Le13)

E

Minimising the total energy with respect to a gives the

following expression

[.ruy. ¢ ﬁbh«S} 25...&. a8 + |54 - 13wy ¢ O-Lblwn’Y

42 202wy
= M‘ [“c"cm\‘ + 2D hﬂ‘)
T {1+ p’)

By substituting various values of & into the above
equation, and at the same time the value of ¢ correspond-
ing to this (as shown in previous section), the value of
8/D equivalent to a specific 8 can be calculated. The
relationship is shown in Fig. 51. It shows that at

§ = 55' a = O while at § = J1' a—xo. Between these limits

a varies very rapidly with 8, -The results obtained by
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Bozorth (1949) show that at & = 1° 18" a = 0, at &§ = 1°
8D = /17 and in the range 8 0' to 30' there are no fir
trees i.e., 840, Also in the range § 30' to 40' y increases
from 0 to 9/2.

The theoretical values show a reasonable agreement

with experimental results.

LeHole Stress gpplied to fir tree structure

LeHole1. Experimental results

Specimens of polycrystalline silicon iron were
stained by bending, so that in particular grains showing
fir tree structure an extensional force o dyn.es/cm2 was
applied along the direction of magnetization of the main
domains. This contributes an energy - % V%100 per unit
volume to the main domains maeking them more favourable
'than the fir tree structure. Therefore a reduction in
fir tree size would be expected with increésing stress,

This was observed experimentally. As the stress was
increased the length of the branches y decreased until gt
stresses varying between U kgms/mm2 and 14 kgms/mm2 they
disappeared asltogether. Two typical graphs of y against
oo are shown in Figs., 52 and 53. Fig. 52 shows the
variation for 8, = 0 (the subscript represents the zero
stress condition) and an experimental value.of a of 140,
which corresponds to § = 1° 40'. The second graph Fig. 53

o

shows the variation for a = 2y &, the value of o« = 7
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indicating 8 to be L4O'.
An important result observed was that the number of
fir trees per unit length of the main wall remained
constant with varying stress. As far as could be
measured a also remained constant with stress, although
this angle became very difficult:-to measure-wheh theé length of the

fir tree tended to zero.

Le5.4.2. Theoretical Considerations

The variation of the fir tree angle o with stress
does not depend upon the value of the wall energy Yiin?
at the minimum position, but depends upon the size of
¢min’ It seems likely however, upon cohsidering previous
work on the variation of Yrin with stress, that in the

range 0 - 15 kgms/mm2 will remain effectively con-

Wmin
stant, It will therefore be assumed that « remains
constant,

Converting values of ¢ to a in equations (4e11),
(4.12) and (4.13) and adding en extra term due to the

effect of stress on the main domains, the total energy

of the system, for a surface area P/Z can be written as

%TlLﬁT;‘i,_T[ oo B anlyl'- [3 - | e ec)]“ﬂ”’

.Lc..\,, Loind 4 3 __ "J:L‘&IS’ (La1l)
b 4021 a&lsjd
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If the length of the fir tree at zero stress is Yo and
the initial separation of the fir trees a,s then the
number of fir trees per unit length of main wall

= 1

2yax+ao

When the length of the fir tree changes to y
g =a  + 2yoa'— 2yo.
Substituting this into equation (L.1L4) gives

DT ain$ e gl - gk + 2Dk oim My |°
w*{ie )\c.ﬂ.,o‘) { Yo ] w ’f’] (4e15)

[D j,‘j ér} tc.x:o;"’(doss e 8q‘\‘°‘"28"
2 3 ao- lc’oL 6(6041,:() C‘z",“

This equation can now be minimised with respect to y.

1O

Taking a =O, and 8§ = , which corresponds to the first

case to be considered, one obtains,

-t [l - 1{9) ' Lml‘:;“m[[g -|] ¢ ‘%)’[s-zaro 0-121]
* I-SG(%) = 0

Solving this equation graphically a series of velues of
(Y/D) are obtained corresponding to various values of &,
which are shown in Fig. 54. It can be seen that Y/D
decreases with increasing stress until a stress of .5
kgms/mm2 i's reached when a reduction of ¥/D is accompanied
by a reduction in stress., Experimentally this would mean
that fir trees could not exist with °/D less than .28.

At a stress of .5 kgms/mm2 the fir trees would disappear.,
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As this does not agree with the experimental values
-(Fig, 52)the instability below s specific value of
y/D could probably be brought into line with theory

by a reduction in o with stress, Nevertheless the
value of the stress required to cause the fir trees to
disappear is experimentally a factor of 10 times larger
than the theoretical value,

A family of curves similar to Fig. 54 can be
obtained for verious zero stress conditions. As 8 de-
cresses, the curves still remain the same shape but
o decresses and (/D) increases. For instance,

max max

when a_ = 2y & (8 = 45') a value of Tax ©F 0,08 kgms/mm2

ax
was obtained. This does not compare very well with the

experimental value of L kgms/mmszig. 53. )

L.5.4+3. Conclusion

The proposed magnetostatic energy model, combined
with the fir tree structure proposed by Spacek, gives
results which are in quite good agreement with experiment
when dealing with the stress free case, However it seems
to bresk down when dealing with the fir trees under stress.
This seems to indicate that the model is fairly good in
predicting the variation of msgnetostatic energy with g,

but not so accurate when dealing with the variation of y.
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CHAPTER FIVE

THE EFFECT OF SCRATCHES ON (100) AND (110) SURFACES

5.1. Scratches on a (100) Surface

The work of Chikazumi and Suzuki, in which they
obtained strain patterns on (100) surfaces of silicon
iron by drawing a deep scratch on the surface of the
specimen, has been described in section 4L.1.1. This
work was repeated and identical experimental results
were obtained. From the width of the scratch produced,
1.1 x 1072 cms, and the size of the applied load, 1 kgm,
the pressure on the scratch can be calculated to be
approximately 100 kgms/mmz. The distribution of stresses
near the scratch is not known, though Chikazumi and
Suzuki assumed them to be tensional forces normal to the
surface,

A zig-zag structure is observed with the zig-zag
walls running along the [001] direction when the scratch
lies in a [010] direction (see plate 9). The zig-zags

6

first appear at a distance of about 2,6 x 10" " cms from
the edge of the scratch and disappear at sbout 9 x 1073
cms from the scratch, In this range the domain spacing

3 cms, while the zig-zag angle

remains constant at 10"
varies from sbout 60° nearest the scratch to 105o

farthest away. A typical variation is shown in PFig. 55.
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Assuming that the stress pattern is due to a ten-
sional force, o dynes/cm2 normal to the surface, the

domain spacing 4 is given by

d = 8yL 3 (
5.1)
Moo @

Where L is the thickness of the structure.

The zig-zag angle stress relastionship, obtained by
Chikazumi and Suzuki is shown in Fig. 57.

If L is taeken as 0.2 mms, the value used by
Chikazumi and Suzuki, a value of ¢ = 32 kgms/mm? can be
calculated from equation (5.1), whereas the variation of
w indicates a change of stress along the scratch from
0 kgms/mm2 to 370 kgms/mmz. These two results are not
entirely incompatible as it may be that L increases with
decreasing distance from the scratch so that with ¢
increasing at the same rate, a constant value of d would
result,

Whet is difficult to imagine is how a compressive
force of 100 kgms/mm2 can change into an extensional
force of 370 kgms/mm2 only 2.6 x 1072 cms away from its
point of action. It leaves the variation of w with o,
obtained by Chikazumi and Suzuki, in some doubt. It will
be noticed that in their derivation they ignored the

efrfect of stress on Bloch wall energy.
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The extent to which this effects the w,o relation-
ship will now be considered,

Using the nomenclature &s in section L.1.4.2., the
anisotropy energy of the wall, taking into account the
effect of the tensional stress o dynes/cm2 in a [100]

direction, is given by

q, * %a&n‘(evw)[sm‘ww)n]'- %o'km aw’(B+y) (5.2.)

Using this value of go' and working out the values of

Y/sin ¢ for various values of ¢, the value of ¢ for a

min
particular value of ¢g- can be evaluated. The variation is
shown in Fig. 56 and ¢ can be seen to vary considerably
with o in the range O to 60 kgms/mm®. Therefore in this
case this 1is thé main contribution to the variation of w,
with stress, the free pole energy contribution being
negligible by comparison;

Converting the angles ¢ to w using

w= 2,09 ¢ - 25,1

the wyo variation as shown in Fig. 57 was obtained.

Equation (5.2) tends to zero when

K a0 3ca'(019) 1= 3ok, an’(oey) (5.3)

Thus for a particular value of ¢ the value of o, 0,nj4»

at which the energy of the wall tends to zero can be

evaluated, This corresponds to zero anisotropy, and
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consequently infinite wall thickness and the disappearance

of the zig-zag structure, The variation is shown in

Fig. 58. If this is superimposed on the graph in Fig. 57

the value of the cut off angle Wopit = u}o is obtained.
These results are most interesting. They show that

the value of o along the pattern varies from only

10 kgms/mm2 to 45 kgms/mm2 which agrees far better with

the evaluation of ¢ from the domain spacing than that

obtained by Chikazumi and Suzuki., More important still,

they predict a cut off value for w at u3° while in

practice a value of about 50o was obtained (see Fig, 55).

5.2. Scratches on a (110) surface

A scratch was ruled in a [110] direction on a (110)
surface of silicon iron using a ball pen loaded with a
one kgm weight as was used on a (100) surface,

Plate 10 shows the domain structure observed., It
consisted of stress pattern II extending from the edge
of the scratch for 1.2 x 10_2 cms, The main walls of this
structure were in a [100] direction being spaced 2.0 x
1072 cms spart. (Fig., 59a)., Stress pattern II then
merged into stress pattern I which extended for a further
3.5 x 1072 cms.

The change over from stress pattern I to stress

pattern II at surface compression stresses of about
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20 kgms/mm2 was explained (see section 31.3.4.) as due
to the variation of the main wall energies of the two
systems under stress. The effect of a tension stress

o dynes/cm2

along the normal to the surface, on these
energies will now be considered.
The energy of the main wall in pattern I increases

under the stress by an amount given by
/3:‘:“ I %X.“M¢[3X.oo(a.—cu) 4 0')

The energy of the wall given by this reduced anisotropy
has been shown in Fig., 21.
The energy of pattern II also increases, this time

the reduced anisotropy energy is

P‘f... : AN (w-cndawn'd + 3Dl gomgung

g
Unfortunately the evaluation of the wall energy, which
involves an integration of B'{,,% is made very complicated
by the sin ¢ cos ¢ term and has not been carried out.
However it seems likely that it does not increase as
rapidly with stress as the pattern 1 energy because the
stress term involves %111 which is much smaller than )ﬂOO‘
It is therefore probable that even under & tensional

stress o, pattern II will become more favourable than

pattern I at high values of stress,
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From the zig-zag spacing on the (100) surface the
size of the normal extensive force oy, can be found to
be 30 kgms/mmz. This cannot be the only stress in the
system as the zig-zag walls lie normal to the scratch
and not parallel to it., This implies the existence of
a small compressive force vy normal to the scratch, see
Fig. 59. The size of this will not affect the stress
energy of the system as the magnetization direction of
both the closure domains and the main domains are normal
to it.

Assume that the strains produced by the scratches
are the same on the (100) surface and the (110) surface,
This seems reasonable because near the scratch the
specimen has been deformed beyond the yield point.

In all examples let the stress normal to the surface
be given by Oys that parallel to the scratch by Ty and
that normal to the scratch by a&. Therefore o, and ay lie
in the surface,

In the (110) system, the extensive force Uk' is

related to the tensional force ¢, hormal to the (100)

surface, by

1
9% _ %
Yyi90 Y100 >
v _ 30 x 2,06 kgms/mm
Ix = 7123
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To simplify the calculations, it will be assumed that
stress pattern I exists over the area occupied by stress
pattern II., This will not alter the size of the domain
spacings.

Consider the energy of the system under the two
forces mx' and oy

The volume of the closure domains/unit surface area

__4a
= 2

The energy of these domains/unit surface area for com-

pressive stress a&

a
= % Ty Moo W3 °

Similarly the energy of the main domains

=" ﬁ % “1oo<t “§%§>
The domain wall energy/unit surface area

§ - ey
Neglecting the magnetostatic energy which has been shown
before to be negligible in this case, and the effect of
stress on domain wall energy, the equilibrium domain

spacing d is given by

g a _:}_Awo[c'y"‘c_i']
ar 4 73 2

At a specific distance from the scratch, where 0y =

(5.4)

30 kgms/mm2 on a (100) surface, on a (110) surface
d = 2.0 x 10~° cms. Asswning the thickness t of the

strained layer to be the same in both cases i.e., 0.02 cms
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and asllowing for the fact that the observed spacing on
stress pattern II is ¥2d, a value of
oy = -16 kgms/mm2
can be obtained from equation (5.4).

This is obviously an unreasonable result for
although this extensive stress, normal to the scratch,
is needed to explain the structure on a (110) surface,
it would mean that on a'(110) surface the zig-zag walls
should lie parallel to the scratch,

Even though the tensional force normal to the
surface explains the zig-zag structure on a (100) surface
very well, it seems necessary to consider other stress

distributions to interpret the stress patterns produced

on all surfaces.,

5.3. Stress patterns due to compressive surface stresses

Application of external stresses to a (100) surface
has shown that zig-zag structures can be produced by
compressive forces acting along the surface easy directions.

Therefore it will be assumed that the scratch pro-
duces compressive forces a& and o, in the surface with no
force normal to the surfece, For a (100) surface the domain
spacing 4 will depend upon 0y which has been shown pre-
viously to be 30 kgms/mm2.- For the zig-zags to exist

normal to the scratch ay>aé.
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A (110) Surface

Using the same structure as was considered when
desling with a tensional stress normal to the surface
(see previous section) the energy of the system can be

written

L 3
€., = (% & By » gy -

Yor

hes(r- )

3
4
Minimising this with respect to d, the equilibrium spacing
as a function of stress is given by

Y o 3\ lo-, - a-,)

a4 Wi 3 (5.5)

Substituting into equation 5.5 the values used before gives
oy = 36 kgms/mm2
As the normal to the scratch on a (110) and (100) surface
is a [010] direction, the above stress obeys the require-
ments of a (100) surface also as

a&>aé
This stress distribution can now be applied to a similar
scratch in a [001] direction on a (110) surface., Plate 11
shows the stress pattern obtained., At the distgnce from
the scratch considered above, 6 X 10—3 cms, there is no
stress pattern, Instead the zero stress structure, with

magnetization along the 001 surface easy direction,

exists,
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In this case the stress normsl to the scratch is
given by

ééT%E%LQQ kgms/mmz.

If a stress pattern existed, the main domains would be
magnetized in a [010] direction, and the stress energy

associated with this direction of magnetization is

2% Moo
V4
= 45.2 Ngg

The energy associated with magnetization in the surface

easy direction

% Moo Tz

= 45 Moo,
A stress pattern would not be expected to exist as the
surface easy direction remasins easier than the other
possible magnetization directions. This agrees with the

experimental observations.

5.4. Suggestion for the variation of w with distance from

the scratch

The proposed system of surface stresses seems to
agree quite well with experimental results at a fixed
distence 6 x 1072 cms from the scratch, No suggestion
has been made as to the variation of these stresses, with

distance from the scratch, This is because it is impos-




130,

sible to infer this from the surface structure as the
variation of the thickness of the strained layer with
distance is not known,

The variation of siz-zag angle with different surface
forces ay =0, is shown in Fig. 35. If 0& equals
36 kgms/mm2 at all points along the zig-zag structure then
w should remain constant,

Consider how the zig-zag angle alters for values of
o renging from 60 kgms/mm2 to 270 kgms/mm2 with o,
constant at 30 kgms/mm2.

The anisotropy energy term in the expression for the

wall energy can be written

% = £ sint 18eg) 3w (04) «1] ¢ %"iv[%""“‘“‘\‘)‘:* w”“"f)'z]

The table below shows the values of Y2 and Y3, the stress

direction cosines for various values of ¢ .,

y
kgms/ 2 ok ms/mm2
O’y gms/ mm Y2 Y3 vz g
60 63° 26" 26° 3' 67,08
90 71° 3¢ 189 26! 9. 89
150 78° L2° 11°18'  153.1
200 81° 29! 8% 31! 202, 8

270 83° 40! 6° 20' 273.0
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Fig., 60 shows the variation of ¢min with o . It is
therefore possible that the decrease in W, and consequently
¢, with decrease in distance from the scratch can be
explained by the increase in vy. The value of w, not
allowing for the effect of free pole formation on the
walls for o, = 300 kgms/mm? is 719,

However this treatment does not predict a cut off
value of w. This is only one way of dealing with the
problem of a variation of w with constant zig-zag spacing.
One could consider T, increasing with L increasing at the
same rate or the variation of a compressive force normal
to the surface Ox» 8O that Uy - 0y remained constant while

o, increased. The actual stress variation is probably a

combination of all three,

Stress Patterns on the Scratches

The scratched surfaces were electropolished for 7
minutes., This was enough to remove the damanged layer
caused by the load but left the surrounding stress pattern
very much as before.

No domain patterns were observed on scratches on the
(100) plane, The structure on the scratch in a [100]
direction on a (110) surface is shown in plate 12. It
consists of domains magnetiZed in the easy direction
neercest the surface separated by 180° Bloch walls. The
domain spacing is rather variable but the order of

1.5 x 10'3 cms,
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A scratch in a [110] direction produces a domain
structure consisting of Bloch walls in a [110] direction
with a spacing of about 10_3 cms, as shown in plate 13,
A small verticd magnetic field polarized the magnetic
colloid on alternate walls indicating that the structure
is stress pattern I with surface c¢losure domains and main
[100] domains. Therefore the domain structure changes
from stress pattérn I to stress pattern II and back to
stress pattern I, with distance from the centre of the
scratch,

Any explanation of the patterns on a scratch on a
(110) surface by a combination of stresses fails to
explain the non-appearance of a domain structure on a

scratch on a (100) surface.
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CHAPTER SIX

SUMMARY OF RESULTS

The work on the effect of a tensional force in a
[110] direction on a (110) surface proved quite satis-
facﬁory. The results of Dijkstra and Martius, and also
their interpretation were found to be inaccurate and not
comprehensive, The accuracy of the experiment was im-
proved by using a bending technique, while a more detailed
interpretation of the results was carried out. This
involved a theoretical study of the effect of stress on
Bloch walls and the proposal of a structure for stress
pattern II, both of which agreed well with experimental
results, The main gap in this work is the lack of know-
ledge of the domain structure in the transitional stress
range between the zero stress pattern and the stress
pattern I. However, interesting information might be
obtained of this region if the specimens were examined
by the Kerr magnetosoptical effect.

The main inconsistencies in this work, and also work
oh (100) surfaces seemed to be the residusal strain in the
specimen which is in a supposed stress free state, Even
though specimens were prepared using the most strain free
methods possible, and then well annealed, measurements

seemed to indicate internal stress of up to 10 kgms/mm2.
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A tensional force in a [100] direction on a (110)
surface gave rather negative results, Theory predicts
an increase, admittedly very small, in the stress range
used, in the domain spacing, whereas experiment showed
this spacing to be constant, Previous workers indicated
that under such circumstances the domsin spacing had
decreased, This problem could be better resolved by
using a specimen with a similar yield point and magnetic
anisotropy as iron but with a much higher magnetostric-
tion constant., It would mean that the efrect of stress
would be much more pronounced than in the case of iron.
50% nickel iron might be useful with its low anisotropy
5 x 195 ergs/cm® and A equal to 25 x 10™°, although the
magnitude of the anisotropy indicates that a magneto-
optical method would probably be necessary.

The explanation of the removal of dagger structures
from a surface, a few degrees off a (110) plane, by the
application of a tensional stress along the [100] direc-
tion, as due to the rotation of the minimum energy posi-
tion of the 180° wall and not the rotation of the magnet-
ization direction into the surface, was supported by
experimental evidence.

The application of a compressive stress in a [110]
direction on a (100) surface gave experimental verifica-~

tion for the relationship between the inverse square of
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the zig-zag spacing and the applied stress. The results
of the relationship between zig-zag asngle and stréss
were rather variable due probably to small stress
irregularities in the specimen., In these respects a
homogeneous crystal, such as an iron whisker, would be
useful even though difficulties in manipulation and the
application of small stresses would have to be overcome,

A modification of the theory of Chikazumi and Suzuki
shows that in this stress range the zig-zag angle should
remain effectively constent. However, the same modifica-
tion, when epplied to the variation of zig-zag angle with
stress, directed normsl to the surface in a [100] direc-
tion, predicts & different variation to the above one,
with a specific cut off value., Unfortunately an experi-
mental verification was not possible.

The main drawback of the experiments on a (100)
surface concé;ning the change of the magnetization from
one surface easy direction to another, by the application
of stress, was the complexity of the systems under obser-
vation. Results showed that the change over occurred in
a very small stress range, perhaps less than 1 kgms/mmz.
More useful information about the mechanism of change
over would probably be obtained by using an iron whisker

which has & much simplified domain structure.
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Fir tree structures were investigated. The papers
of Spacek, in which he proposed a new fir tree model, were
criticised with respect to the expression for the meg-
netostatic energy of the system, Using another expression
for this, relationships between the size of the fir trees
snd the orientetion of the surface were evaluated for
stress free systems, These agreed well with the available
experimental results. Unfortunately these are rather
incomplete and there is room for systematic work on 1)
the variastion of the angle of tip with the inclination of
the surface to a (100) plane, the domain width, being
fixeds 2) the variation of the angle of the tip with the
domain width, the inclination of the surface being fixeds
3) the variation of the fir tree spacing with the inclina-
tion of the surface to a (100) plane.

The application of a tensional stress along the
direction of magnetization in the main domains caused the
fir trees to decrease in size, as expected, but not as
predicted by theory. This is either due to a fault in
the theory or, once again, to inconsistencies in the zero
stress state of the specimens.

Stress patterns were also obtained by scratching the
specimens, This method is of limited use because of the

lack of knowledge of the stress distributions so produced.
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