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Abstract 
P o l y c r y s t a l l i n e and s i n g l e c r y s t a l specimens of s i l i c o n 

i r o n were s t r a i n e d up to the y i e l d p o i n t "by the a p p l i c a t i o n 
of external stresses. A "bending technique was found t o he 
the most convenient method f o r doing t h i s . Domain p a t t e r n s 
were observed "by means of the B i t t e r technique. 

Tensional stresses were applied along the [110] and 
[001] d i r e c t i o n s of (110) surfaced specimens and the r e s u l t ­
i n g s t r u c t u r e s described i n d e t a i l . This necessitated an 
analysis of the e f f e c t of stress on Bloch Wall energies f o r 
various w a l l o r i e n t a t i o n s . Domain pat t e r n s were also 
examined on (100) surfaced specimens under the e f f e c t of 
compressive forces i n the [110] and pO 0 ] d i r e c t i o n s . I n 
the f i r s t case the maze p a t t e r n s so produced were compared 
w i t h t h e o r e t i c a l considerations while i n the second example 
the n u c l e a t i o n and growth of transverse domains were 
examined. A new model of f i r t r e e s t r u c t u r e s , proposed by 
Spacek, was evaluated using a d i f f e r e n t expression f o r the 
magnetostatic energy and t h i s was then applied t o measurements 
on the e f f e c t o f stress on f i r t r e e closure domains. The 
theory d i d not compare very favourably w i t h experiment. 

The work of Chikazumi and Suzuki, i n which l a r g e 
stresses were applied t o a (100) surfaced specimen by 
scratching the surface, was extended t o (110) surfaces,. 
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1. 

CHAPTER ONE 

INTRODUCTION 

1.1 Ferromagneti sm 
At the "beginning of the century "basic experimental 

knowledge of various ferromagnetic phenomena had "been 
established. I t had been noted t h a t there e x i s t e d a 
temperature, c a l l e d the Curie Temperature, below which 
i t was possible to a t t a i n magnetic s a t u r a t i o n by the 
a p p l i c a t i o n of small magnetic f i e l d s . At the same time 
i t was possible f o r the magnetization of the same specimen 
to be zero i n zero applied f i e l d . 

I n order t o account f o r these observations Weiss 
(1907) proposed two basic concepts. I n the f i r s t he 
p o s t u l a t e d a strong molecular f i e l d which produces a 
r e s u l t a n t magnetization by the alignment of magnetic 
c a r r i e r s . I n the second he assumed t h a t a c t ual f e r r o ­
magnetic specimens are composed of a number of small 
regions c a l l e d domains, each one being magnetically 
saturated, but w i t h the d i r e c t i o n of magnetization i n 
d i f f e r e n t domains not ne c e s s a r i l y p a r a l l e l . 

1 . 1 . 1 . Molecular F i e l d Theory 
Weiss f o l l o w e d the work of Langevin (1905) on para­

magnetism, except t h a t he introduced an a d d i t i o n a l f i e l d , 
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2. 

c a l l e d the molecular f i e l d , a c t i n g on the elementary 
magnets and p r o p o r t i o n a l t o the i n t e n s i t y of magnetiza­
t i o n . By using the supposition t h a t the d i p o l e o r i e n t a ­
t i o n i s governed by Boltzmann's D i s t r i b u t i o n Law, he 
showed t h a t the magnetic s u s c e p t i b i l i t y becomes i n f i n i t e 
at a s p e c i f i c temperature and t h a t below t h i s temperature 
the s a t u r a t i o n magnetization i s a d e f i n i t e f u n c t i o n of 
temperature. I f t h i s v a r i a t i o n i s p l o t t e d i n reduced 
u n i t s see Fig. 1 then a curve which i s approximately 
c o r r e c t f o r a l l ferromagnetics i s obtained. 

Weiss himself d i d not make any s p e c i f i c p r e d i c t i o n s 
about the o r i g i n of the molecular f i e l d though he d i d show 
that i t s s i z e , about 10^ oersteds, was f a r too large t o be 
explained by normal magnetic moment i n t e r a c t i o n s . I n 1928 

an explanation of the o r i g i n of the f i e l d was put forward 
by Heisenberg. He showed, as a r e s u l t of a quantum mech­
a n i c a l treatment, t h a t the f o r c e i s due to an e l e c t r o ­
s t a t i c term a r i s i n g from overlapping o r b i t a l f u n c t i o n s . 
Since there i s a c o r r e l a t i o n , due t o the P a u l i exclusion 
p r i n c i p l e , between the o r b i t a l symmetry and the spin 
alignment, there i s an e f f e c t i v e s p i n - s p i n coupling. The 
exchange energy between two atoms i , j i s given by 

E e x = " 2 J i j S i ' S j 
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where Ŝ  i s the spin of atom i and J the exchange i n t e g r a l . 
I f J i s p o s i t i v e then the minimum energy c o n d i t i o n i s f o r 
the p a r a l l e l alignment of spins. 

I t has "been shown experimentally, from work on the 
gyromagnetic r a t i o , t h a t about 90% of the s a t u r a t i o n mag­
n e t i z a t i o n i s due t o e l e c t r o n spins, the r e s t being due 
to o r b i t a l motion. 

Van Vleck (1952) has shown t h a t the spins responsible 
f o r ferromagnetism are not those of valence electrons but 
of u n f i l l e d inner e l e c t r o n s h e l l s . Thus f o r a substance 
to be ferromagnetic, not only must i t have an incomplete 
inner s h e l l but the exchange i n t e g r a l must be p o s i t i v e . 
S l a t e r (1930) pointed out t h a t t h i s i s most l i k e l y t o 
occur when a substance w i t h an incomplete inner s h e l l of 
large r a d i u s forms a c r y s t a l l a t t i c e w i t h a small i n t e r ­
atomic spacing. 

The non-polar approach by Heisenberg i s supplemented 
i n other aspects of ferromagnetism by a band s t r u c t u r e 
model. This i s p a r t i c u l a r l y u s e f u l i n e x p l a i n i n g how the 
number of e l e c t r o n spins per atom p a r t i c i p a t i n g i n the 
spontaneous magnetization may be n o n - i n t e g r a l , as i s the 
case i n the three common ferromagnetic elements. 



1 . 1 . 2 . The Domain Concept 
This was the second hypothesis put forward by Weiss. 

Since the f i e l d needed t o increase magnetization from 
zero t o s a t u r a t i o n i s very small compared w i t h ^the. molecular 
f i e l d i t must be assumed t h a t some form of process 
i n v o l v i n g r e o r i e n t a t i o n of domain magnetization d i r e c ­
t i o n s i s t a k i n g place r a t h e r than an increase i n the 
i n t r i n s i c magnetization. Therefore magnetization curves 
can "be analysed i n terms of domain w a l l displacements, 
i r r e v e r s i b l e and r e v e r s i b l e , and the r o t a t i o n of the 
magnetization d i r e c t i o n i n domains. Even so t h i s does 
not give any idea of the size and shape of domain s t r u c ­
tures. B i t t e r (1931) was the f i r s t to take measurements 
on domain sizes by making the domain w a l l s v i s i b l e w i t h 
a magnetic c o l l o i d . U n f o r t u n a t e l y most of t h i s e a r l y 
work was c a r r i e d out on mechanically s t r a i n e d surfaces 
so t h a t the observed s t r u c t u r e d i d not bear any resem­
blance t o the un d e r l y i n g s t r u c t u r e . I t was not u n t i l 
1935 "that Landau and L i f s h i t z proposed t h e o r e t i c a l domain 
s t r u c t u r e s . They poin t e d out t h a t a domain c o n f i g u r a t i o n 
c o n s t i t u t e d a system of minimum energy. Each of the 
forms of energy in v o l v e d i n these considerations w i l l be 
de a l t w i t h , i n d e t a i l , i n the next section. 
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1 .2 . Domain Energy Co n t r i b u t i o n s 
1 . 2 . 1 . Exchange Energy 

When equation 1.1 i s summed over a l l values i j 

E t , • -2TS*£u»* t- ( 1 . 2 ) 

i s obtained i f only nearest neighbour i n t e r a c t i o n s are 
considered. E i s the exchange energy and </>. . the angle ex l j 
between the spin vectors. I n a domain where the spins 
are p a r a l l e l the exchange energy i s zero but t h i s i s not 
the case when dealing w i t h the region between domains. 

2 

I t i s then e s s e n t i a l t o know the value of 2JS or more 
o f t e n 

A - ^ A " a 
when considering energy d e n s i t i e s , a being the l a t t i c e 
constant. 

Of the several determinations of J, K i t t e l (1949) 

favours the one r e l a t i n g the experimental value of C i n 
the Bloch Law 

I = I 0 (1 - CT 3 /2) ( 1 . 3 ) 

f o r the temperature dependence of s a t u r a t i o n magnetiza­
t i o n at low temperatures t o J by means of 

f o r a body centred cubic s t r u c t u r e . This gives J = 205k, 

where k i s Boltzmann's constant, 
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—6 and A = 2 .0 x 1 0~ ergs/cm. Measurements by F a l l o t 

0936) i n d i c a t e t h a t f o r L$> s i l i c o n i r o n a value of A of 
—6 

1.7 x 10" ergs/cm should be used. The value of YQ, the 
energy per u n i t area of a 9 0 ° w a l l w i t h i t s normal i n a 
[001 ] d i r e c t i o n , i s 0 .9 ergs/cm 2 f o r i r o n and 0 .7 ergs/cm' 
f o r s i l i c o n i r o n , using t h i s value of A. Neel (I924I1.C) 

using a d i f f e r e n t method obtained a value of Y f o r i r o n 
of 0 .7 ergs/cm . Stoner (1950) obtained a value of 0 .62 

ergs/cm f o r i r o n from the r e l a t i o n s h i p given i n equation 
( 1 . 1 7 a ) . However he point e d out the inaccuracies i n the 
eva l u a t i o n o f Y o due t o the many u n c e r t a i n t i e s i n the 
d e t a i l e d treatment of exchange i n t e r a c t i o n e f f e c t s . 

1 . 2 . 2 . Anisotropy Energy 
Upon i n v e s t i g a t i n g the magnetization curves of 

ferromagnetic c r y s t a l s i t can be seen t h a t d i f f e r i n g 
amounts of energy are r e q u i r e d t o magnetize specimens i n 
d i f f e r e n t c r y s t a l l o g r a p h i c d i r e c t i o n s . The d i r e c t i o n 
r e q u i r i n g the l e a s t amount of energy i s c a l l e d the easy 
d i r e c t i o n and i s the [100 ] d i r e c t i o n i n i r o n , the [111] 

d i r e c t i o n i n n i c k e l and the [0001] d i r e c t i o n i n cobalt. 
The energy required t o magnetize a specimen can be 
expressed i n terms of the d i r e c t i o n cosines a i of the 
magnetization vector w i t h respect t o the c r y s t a l l o g r a p h i c 
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axes. For a cubic system only even powers of oĉ  are 
consistent w i t h symmetry requirements and a good repre­
s e n t a t i o n o f the energy of magnetization E per u n i t 

8X1 

volume i s given "by an expression of the form 

KUXuftu?;) • ( 1 . 5 ) 
Terms i n v o l v i n g higher powers of may also "be introduced 
hut the constants K^, etc. are u s u a l l y of r a p i d l y 
decreasing magnitude. The values of the anisotropy 

5 / 3 
constants f o r pure i r o n are = Zj.. 2 x 10-̂  ergs/cnr and 
K 2 = 1.5 x 10^ ergs/cm^ at room temperature. F i g . (2a) 

shows the v a r i a t i o n of f o r s i l i c o n i r o n w i t h v a r y i n g 
amounts of s i l i c o n . 

The p h y s i c a l o r i g i n of anisotropy i s r a t h e r a 
d i f f i c u l t problem. Exchange energy, being only a f u n c t i o n 
of the angles between spins, does not lead t o anisotropy. 
A consideration of the i n t e r a c t i o n of magnetic dipoles 
l o c a l i z e d at l a t t i c e p o i n t s does give r i s e t o small a n i s o t ­
ropy e f f e c t s but these show l i t t l e agreement w i t h e x p e r i ­
mental evidence. 

The most promising approach so f a r i s to consider 
t h a t the magnetization, t h a t i s the e l e c t r o n spins, i n t e r ­
act w i t h the c r y s t a l l a t t i c e by means of the o r b i t a l 
momenta of the elect r o n s . Recently t h i s has been developed 
by Fletcher ( 1 9 5 5 ) , using the c o l l e c t i v e e l e c t r o n theory, 



8. 

f o r the e v a l u a t i o n of f o r n i c k e l at absolute zero. 
He obtained a value f o r of - 5 x 1 0 ^ ergs/cnr' compared 
with the experimental value of -8 x 10 ergs/cm. 

1.2 .3 . Magnetoelastic Energy 

When a c r y s t a l undergoes mechanical s t r a i n there i s 

an a d d i t i o n a l energy due to the i n t e r a c t i o n "between the 

magnetization and the mechanical s t r a i n . T h i s i s known 

as the magnetoelastic energy and i s equal to zero f o r an 

uns t r a i n e d l a t t i c e . I t i s the r e v e r s e e f f e c t of magneto­

s t r i c t i o n , the change i n length upon magnetizing a f e r r o ­

magnetic substance. A formal theory of magnetostriction 

was developed by Becker and Doring (1939) by minimising 

the t o t a l energy of a c r y s t a l i . e . the anisotropy energy, 

the m a g n e t o s t r i c t i v e energy and the e l a s t i c energy. 

Thus i f a s t a t e of constant s t r e s s i s considered, the 

change i n length i n a d i r e c t i o n s p e c i f i e d by d i r e c t i o n 

c o s i n e s (3̂  and by magnetization c o s i n e s i s 

Ajflf'tf'tf-i^M^M* WA*̂ *./M> (1.6) 
+ higher terms. 

I t i s more u s u a l to express the constants h^ and '-hgin terms of 

the l o n g i t u d i n a l magnetostrictions Xjqq and ^ - j - ) » t n e 

changes i n length measured along the d i r e c t i o n s of mag­

n e t i z a t i o n i n the [100] d i r e c t i o n and the [111] d i r e c t i o n 
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r e s p e c t i v e l y . 

Where 3 h i " Noo 

3 2 = and 

Pig. (2b) shows the v a r i a t i o n of \ '1 00 and X| ̂  f o r various 
percentages of s i l i c o n i n s i l i c o n i r o n at room temperature. 

I n an analogous way to the method of Becker and 

Doring, mentioned above, an e x p r e s s i o n can be worked out 

f o r the energy a r i s i n g from the m a g n e t o s t r i c t i v e d i s t o r ­

t i o n when a specimen i s i n a s t r e s s f i e l d . I f the s t r e s s 

i s defined by the s t r e s s tensor and the s t r a i n by the 

s t r a i n tensor A., then the energy E i s given by 

I f A i k i s expressed i n a power s e r i e s of cc^ up to the 

second order, t h i s leads to 

I n our case the most i n t e r e s t i n g type of s t r e s s i s the 
o 

pure tension cr dynes/cm . I f t h i s has d i r e c t i o n c o s i n e s 

(Y.YoY,) then 

(1.7) 

E > - ^ [ i t f ' I t f * V i H ^ (1.8) 

n i k = cr Y i Y k 

and 

(1 .9) 
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A much quoted equation i s that obtained from equation 
(1 .9) by pu t t i n g ^ Q Q = >^1^ = \ and expressing the 
angles i n terms of e, the angle between the s t r e s s and 
the magnetization. I t i s 

E<r 3 crwo x6 (1.10) 

T h i s i m p l i e s that i f X i s p o s i t i v e then the s t r e s s energy 

i s a minimum when the magnetization i s r o t a t e d i n t o the 

s t r e s s d i r e c t i o n . Note that the magnetostriction i n t h i s 

case i s i s o t r o p i c . 

1.2.i+. Magnetostatic Energy 
The l a s t energy expression to be considered i s the 

energy of a magnetic vector i n i t s own f i e l d and i s known 

as the magnetostatic energy. The energy i s given by 

where I i s the magnetization and H i s the f i e l d a r i s i n g 

from the magnetization, the i n t e g r a t i o n being c a r r i e d out 

over the volume of the specimen. Perhaps the most impor­

tant s i t u a t i o n to be worked out i n domain theory i s the 

magnetostatic energy of p a r a l l e l s t r i p s of po l e s of 

a l t e r n a t e s i g n . The method i s that due to K i t t e l (1949). 

Let the s t r i p s l i e i n the x,y plane, the y a x i s being-

p a r a l l e l to the a x i s of the s t r i p s . The-.surface density 

p of magnetic poles i s expanded as a F o u r i e r s e r i e s E/d 
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and the s o l u t i o n f o r the p o t e n t i a l $ expressed thus 

(1.12) 

i s determined from the boundary conditions, 

[ffl -K] 
As the magnetostatic energy f o r a two dimensional problem 

i n ( x , z ) can be w r i t t e n 

E m g can be found. I n the case of magnetization normal 

to the s u r f a c e , and s t r i p s of width D 

Vs = *852 I 2 D 
I n cases where the magnetization vector makes a small angle 

8 with the sur f a c e of the specimen the a l t e r n a t i n g pole 

density i s given by I s i n 8. Shockley ('\9Li.8) has shown 

that i n t h i s case the magnetization can move s l i g h t l y from 

the easy d i r e c t i o n g i v i n g an e f f e c t i v e p e r m e a b i l i t y 

I n the s t r e s s f r e e case, t h i s can be shown to be given by 

K- «• Hf ( L i s ) 

f o r a (100) surface of a cubic system. T h i s i s introduced 
2 i n t o a c o r r e c t i n g f a c t o r 7-77+ f o r the magnetostatic 

energy. 

file://'/9Li.8
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1.3. Bloch Walls 

A ferromagnetic may be considered to be made up of 

a system of domains, each one being magnetized along a 

d i r e c t i o n of easy magnetization. The region between two 

such domains i s known as a Bloch Wall a f t e r some prelim­

i n a r y work on i t s energy and t h i c k n e s s by Bloch (1932). 

Neel has shown that the component of magnetization 

normal to the boundary, must not only be the same on both 

sid e s of the w a l l but a l s o i n the t r a n s i t i o n region. Let 

us consider the energy a s s o c i a t e d with f r e e p o l e s formed 

when the w a l l makes a small angle e to the zero pole 

p o s i t i o n . The pole d e n s i t y on the w a l l w i l l be tf2 I s i n e 

and the f i e l d produced normal to the w a l l w i l l be 2IV2 Tsin 

The magnetic energy w i l l be 2111 s i n e per u n i t volume 

which i s 2 x 10^ s i n e ergs/cc f o r i r o n . . Thus the energy 

of the system would i n c r e a s e g r e a t l y i f magnetic poles 

were formed on the boundary w a l l . With t h i s i n mind i t 

i s p o s s i b l e to v i s u a l i z e two main types of boundary i n 

i r o n , a 180° boundary with i t s normal moving i n a (100) 

plane and a 90° boundary with a normal i n a (110) plane. 

Since the magnetization v e c t o r s r o t a t e from one easy 

d i r e c t i o n to another i n the boundary w a l l , the w a l l energy 

must be expressed by 

ET0TAL = E a n + E e x 
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At e q u i l i b r i u m i t can be shown that the exchange and 
anisotropy c o n t r i b u t i o n s to the t o t a l energy are equal. 
Let the magnetization v e c t o r I be s p e c i f i e d by the co­
ordinates (e,0) where e i s the angle between I and the 
normal to the w a l l (x d i r e c t i o n ) and 0 i s the angle 
between the p r o j e c t i o n of I on the w a l l and the y d i r e c ­
t i o n . The w a l l energy can be expressed by 

- 4 * (1.16) 
limit* of umtl 

As the angle between spi n s i n adjacent l a y e r s i s s i n ed$ 

P u t t i n g E ^ = pf one obtains 
° an an 

do Jjt 
(1.17) 

where Y o, (a a p ) 2 (1.17b) 

i s a u n i t f o r the energy per u n i t a r e a of boundary w a l l . 

P i g . 3 shows the v a r i a t i o n of <f> with distance 

through a 180° w a l l making an angle of 1 0 with the [\ 00] 

d i r e c t i o n . The e f f e c t i v e width of the boundary i s the 

dis t a n c e AB which can be expressed a n a l y t i c a l l y by 

(1.18) 

where {<t> , \ ) ( <t> , \ ) are the f i r s t and t h i r d p o i n t s of a' * a 
i n f l e x i o n and 
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•o-(V) 
T h i s above treatment i s due to L i l l e y (1950) and deals 

only with boundaries with normals i n the [100] , [ 11 o] 

and [111] d i r e c t i o n s . The r e s u l t s are shown i n the 

t a b l e below. 

Values of Energies i n Y / Y O 

Type of Boundary Normals [100] [110] [111] 

90° 1.000 1.727 1 .185 
I r o n 

180° 2.000 2.760 

S e v e r a l workers have d e a l t with a general expression 

f o r the o r i e n t a t i o n of a 90° Bloch Wall i n i r o n . Graham 

(1958) solved the problem g r a p h i c a l l y , whereas Kaczer and 

Gemperle (1959) took 4% 

where, once again f i s the reduced dependence of the 

anisotropy energy and i s a polynomial of the f o u r t h degree 

i n cos <p. The i n t e g r a l i s however one of an e l l i p t i c 

f u n c t i o n and so was solved n u m e r i c a l l y , to an accuracy of 

about 

The energy of the w a l l , expressed as a f u n c t i o n of 

<J/t the angle between the normal of the w a l l and the [100] 

d i r e c t i o n becomes 

I 8 H 2 7 l | . - I ' l l M t Q ^ * 0 - S b i S i t t V ( 1 # 1 9 ) 



« Tak" ergs/cm* 
2-2 I 

1-8 
1a 

i 1*6 
UJ 

1-4 

1-0 60 90 30 

Y Energy of 90 wall of wall orientation 1b. 2b function as 
1( a. b ) Chikazumi and Suzuki ( 1955 ) 

2 ( a , b ) Kaczer and Gemperie ( 1959 ) 

Y / s i n 1a , 2o 
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T h i s r e l a t i o n s h i p i s shown i n F i g . L\.. Also shown i s an 
approximation to the s o l u t i o n "by Chikazumi and Suzuki 
(1955). Upon obtaining 4% 1 

4% 2JS^ where g(e,</>) i s the anisotropy energy and A = ——• , 
St 

they express the anisotropy energy by a F o u r i e r s e r i e s 

thus 

and then approximately 

where % * 9 ^ 

They obtain the r e s u l t 

(1.20) 

(1.21) 

(1.22) 

T h i s can be seen to be quite a good approximation i n the 

range ip 0 ° - 6 5 ° to the more exact work of Kaczer and 

Gemperle. ( F i g . I4.). 

The e f f e c t of s t r e s s on w a l l energies w i l l be d i s ­

cussed l a t e r . 

1.k* Domain Systems i n I r o n 

Domain s t r u c t u r e s are a f u n c t i o n of the shape, s i z e 

and o r i e n t a t i o n of any p a r t i c u l a r c r y s t a l . A few simple 

s t r u c t u r e s w i l l be considered and i t w i l l be shown how 

they compare with experimental work. 
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A c r y s t a l cut as shown i n P i g . 5 has a main (100) 
surface and i s "bounded b y [ l 0 0 ] edges. E v a l u a t i n g the 
energy f o r a s u r f a c e area L, one obtains 

Wall energy -

D 

and magnetoelastic energy due to c l o s u r e domains 
_ 1 C x 2 Dt 
" 2 ° 1 1 A 1 0 0 2 

Minimising the sum of these energies w i t h r e s p e c t to D, 

one obtains 

^C11 h oo 

I n a paper by Bozorth, Williams and Shockley (1949), 

s t r u c t u r e s s i m i l a r to t h i s were observed. By taki n g 

measurements near the corner of a c r y s t a l with a (100) 

s u r f a c e and [110] edges, values of D as a fu n c t i o n of L 

were obtained. The measurements d i d not agree very w e l l 

with the DotL 2 r e l a t i o n s h i p , probably because the edges 

of the c r y s t a l were not i n [100] d i r e c t i o n s . ( P i g . 6 ) . 

Systems s i m i l a r to the above except that the main 

(100) surface i s bounded at the ends by (111) planes have 

been i n v e s t i g a t e d i n the range L>1cm by Martin (1957), 

L 1 - .1 cm by Carey (1960) and L l e s s than .1 cm by 

Martin and Bloor (1959). The t h e o r e t i c a l r e l a t i o n s h i p i s 

D = l . 3 2 f Li 
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and the experimental r e s u l t s agree q u i t e w e l l with t h i s . 

A s i m i l a r s t r u c t u r e to the one mentioned above i s 

observed on a (110) surface of p o l y c r y s t a l l i n e s i l i c o n 

i r o n with the magnetization i n the s u r f a c e easy d i r e c t i o n 

t h i s case therefore the c o n t r i b u t i o n s to the domain energy 

are the magnetostatic energy and the w a l l energy. T h i s 

g i v e s as a minimum energy condition 

f o r a s i n g l e c r y s t a l with no c l o s u r e domain. T h i s r e l a ­

t i o n s h i p has not been v e r i f i e d experimentally. 

Bates and h i s co-workers (Bates and Neale (1950), 

Bates and Mee (1952) and Bates and Hart (1956)) have done 

much i n t e r e s t i n g work on a Ne'e! cut specimen ( see F i g . 7) 

with magnetic f i e l d s of v a r i o u s s i z e s along the d i r e c t i o n 

i n d i c a t e d . They have been i n t e r e s t e d f o r the main p a r t 

i n the v a r i a t i o n of D with the t h i c k n e s s L i n the [110] 

d i r e c t i o n and the applied f i e l d H. Prom the l a t e r measure­

ments they were able to check some t h e o r e t i c a l measurements 

of Ne'el (1944a). 

separated by 180° w a l l s . There are no clo s u r e domains i n 

YL D 
1.7 I 

1.5 Observation of Domains 

The two main methods of domain observation are the 

B i t t e r p a t t e r n technique introduced by B i t t e r (1931) and' 
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a much l a t e r technique u s i n g the K e r r Magneto-Optical 
E f f e c t , developed "by Fowler and F r y e r (195U)» 

The B i t t e r technique c o n s i s t s of p l a c i n g a c o l l o i d a l 

suspension of i r o n oxide on the ferromagnetic under 

i n v e s t i g a t i o n . The p a r t i c l e s are drawn to regions i n 

which the magnetic f i e l d gradient has a l o c a l maximum. 

These regions are u s u a l l y i n t e r s e c t i o n s of a Bloch Wall 

with the surface of the specimen. C o l l o i d i s a l s o a t t r a c ­

ted to s c r a t c h e s which l i e normal to the magnetization 

d i r e c t i o n . T h i s a f f o r d s a u s e f u l technique f o r the 

de t e c t i o n of magnetization d i r e c t i o n s . The main disad­

vantage of the method i s that i t i s impossible to obtain 

p a t t e r n s with specimens of low anisotropy and consequently 

r e l a t i v e l y wide w a l l s , because of the low s t r a y f i e l d at 

the Bloch Walls. Another disadvantage of the method i s 

that the c o l l o i d a l s o l u t i o n tends to dry and s t a i n the 

su r f a c e of the specimen l i m i t i n g the maximum time a v a i l ­

able f o r i n v e s t i g a t i o n s to much l e s s than an hour. 

The normal B i t t e r technique has been supplemented by 

a method of Craik (1956) f o r observing- domains under high 

magnification. He prepared c o l l o i d i n a s o l u t i o n of 

'C e l a c o l ' which when dri e d formed an un d i s t o r t e d t h i n 

f i l m . This was then peeled o f f the surface and examined 

under an e l e c t r o n microscope. 
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The Kerr Magneto-Optical method s u f f e r s from n e i t h e r 
of these aforementioned disadvantages. The p r i n c i p l e of 
the method i s that the r o t a t i o n of the plane of p o l a r i z a ­
t i o n of r e f l e c t e d l i g h t depends upon the amount and 
d i r e c t i o n of magnetization at the surface. I n the case 
where the magnetization v e c t o r i s p a r a l l e l to the surface 
the Kerr r o t a t i o n i s zero at normal incidence and reaches 
a maximum of about 5' at 60° incidence. I t i s therefore 
a very c r i t i c a l technique to s e t up and a method of 
reducing the background noise has to be used. T h i s con­
s i s t s of superposing the p o s i t i v e photograph of the mag­
n e t i c a l l y s a t u r a t e d specimen on the negatives of the 
specimen i n v a r y i n g s t a t e s of magnetization and p r i n t i n g 
the combined photographs. The disadvantage of t h i s method, 
therefore, i s i t s complexity which outweighs those of the 
B i t t e r technique f o r observations on i r o n and s i l i c o n - i r o n . 

I n order to use these techniques the specimen must be 

prepared so as to remove the mechanically deformed l a y e r 

on the su r f a c e caused by p o l i s h i n g . T h i s i s done e i t h e r 

by annealing or by e l e c t r o p o l i s h i n g , d e t a i l s of which w i l l 

be given l a t e r . 
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1.6 Previous Work on the E f f e c t of S t r e s s on Domain 

S t r u c t u r e s 

D i j k s t r a and Martius (1953) i n v e s t i g a t e d the e f f e c t 

of s t r e s s e s , up to the y i e l d point, a p p l i e d to a (110) 

surface of p o l y c r y s t a l l i n e s i l i c o n - i r o n sheet. When a 

t e n s i o n a l s t r e s s was applie d along a [100] d i r e c t i o n no 

change of p a t t e r n was observed. A s i m i l a r s t r e s s along 

a [110 ] d i r e c t i o n proved more i n t e r e s t i n g . At a s t r e s s 

of about 0.1 kgm/mm the domain s t r u c t u r e changed to one 

where the main magnetization d i r e c t i o n s ,/are the easy 

d i r e c t i o n s nearest to the d i r e c t i o n of s t r e s s . At higher 

u n s p e c i f i e d s t r e s s e s a second type of s t r u c t u r e appeared 

which was not in t e r p r e t e d . Both of these s t r u c t u r e s w i l l 

be considered i n more d e t a i l l a t e r . 

K i r e n s k i i , Dylgerov and Savchenko (1957) applied 

t e n s i o n a l s t r e s s e s along a [100] d i r e c t i o n on a (110) 

s u r f a c e of s i l i c o n - i r o n and found t h a t at about 15 kgms/mm' 

a marked change of s t r u c t u r e occurred. Domains tended to 

s p l i t up by the formation of new w a l l s between the e x i s t i n g 

ones. No explanation f o r t h i s was made. The e f f e c t of 

s t r e s s e s along a [100] d i r e c t i o n of a c r y s t a l s u r f a c e a 

few degrees o f f a (110) plane was i n v e s t i g a t e d . The 

e l i m i n a t i o n of the dagger c l o s u r e domains was explained 

i n a q u a n t i t a t i v e manner as due to the r o t a t i o n of the 

easy d i r e c t i o n i n t o the surface. S i m i l a r work to t h i s 
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has been c a r r i e d out by Shur and Zaikova (1958). 

The work on (100) s u r f a c e s seems to have been mainly 

l i m i t e d to i n v e s t i g a t i o n s of maze pat t e r n s produced by 

s t r a i n s a r i s i n g from the mechanically p o l i s h i n g of a 

sur f a c e . I n a paper Chikazumi and Suzuki (1955) put 

forward a model i n which the main domains are magnetized 

normal to the s u r f a c e . T r i a n g u l a r domains at the s u r f a c e 

c l o s e the f l u x , and the w a l l s forming them are zig-zag i n 

nature. They showed how the system v a r i e d with s t r e s s 

and p r e d i c t e d a t h e o r e t i c a l r e l a t i o n s h i p between t h i s and 

the zig-zag angle. Bates (1957) has suggested modifica­

t i o n s purely on q u a l i t a t i v e grounds, f o r the system when 

under high s t r e s s e s . 

Maze type p a t t e r n s were produced on s i l i c o n - i r o n 

s i n g l e c r y s t a l s by Kaczer (1958) by the a p p l i c a t i o n of 

e x t e r n a l f o r c e s . He applied a uniform compression to 

the s i d e s of a c y l i n d r i c a l c r y s t a l of i r o n and found that 
o 

the s t r e s s p a t t e r n s appeared at 10 kgms/mm , though no 

measurements were taken on them. Photographs show them 

to be hi g h l y i r r e g u l a r . 

Stephan (1956), (1957) c a r r i e d out i n v e s t i g a t i o n s on 

s t r e s s p a t t e r n s on (100) s u r f a c e s obtained by quenching 

specimens from v a r i o u s temperatures. At f a i r l y high 

s t r e s s e s complicated zig-zag s t r u c t u r e s were formed by 

the s p l i t t i n g of main zig-zag boundaries. He c a l c u l a t e d 
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the magnitude of the i n t e r n a l stresses by f i n d i n g the 
magnetic f i e l d s needed t o destroy the stress p a t t e r n . 
By t h i s method he obtained s t r e s s values up t o JO kgms/mm . 

External forces have "been applied to maze pa t t e r n s 
"by Suda ( 1 9 5 6 ) . He needed.!;to;:.apply a stress of 60 kgms/ 

2 

mm "before the s t r u c t u r e changed t o an e f f e c t i v e l y stress 
f r e e p a t t e r n of dagger domains. Again the experiment was 
only q u a l i t a t i v e . 

The a p p l i c a t i o n of t e n s i o n a l stresses t o surfaces a 
few degrees o f f a (100) plane of s i l i c o n - i r o n was inves­
t i g a t e d "by Bozorth, Williams and Shockley (19U9) > though 
again only q u a n t i t a t i v e l y . They showed how f i r tree 
s t r u c t u r e s changed under such conditions. 

1.7 Object o f I n v e s t i g a t i o n s 
D i j k s t r a and Martius a p p l i e d stresses t o t h e i r p o l y -

c r y s t a l l i n e s i l i c o n - i r o n sheet by s t r e t c h i n g w i t h a 
c a l i b r a t e d spring. This method i s i n h e r e n t l y inaccurate, 
unless s t r a i n gauges are used, as the s t r a i n i n the 
specimen w i l l be determined by the average Young's Modulus 
of d i f f e r e n t l y o r i e n t a t e d g r a i n s . By using t h e i r work as 
a s t a r t i n g p o i n t , and at the same time e x p l a i n i n g the 
s t r u c t u r e s more f u l l y w i t h s p e c i a l reference to the 
t r a n s i t i o n a l p e r i o d , i t was hoped t o develop a s t r a i n i n g 
technique which was more s u i t e d t o work on small s i n g l e 



23. 

c r y s t a l s and also p o l y c r y s t a l l i n e sheet. 
I t was then hoped t o v e r i f y Chikazumi and Suzuki's 

t h e o r e t i c a l p r e d i c t i o n s "by applying u n i d i r e c t i o n a l 
stresses along the [110] d i r e c t i o n on a (100) surface. 

Further work could he c a r r i e d out on a (100) surface 
by applying a stress along a [100] d i r e c t i o n and examin­
i n g the nu c l e a t i o n processes t a k i n g place when the hulk 
of the magnetization changes from one surface easy d i r e c ­
t i o n t o the other. At the same time q u a n t i t a t i v e 
measurements could he made on the e f f e c t of stress on f i r 
trees. Recently Spacek ( 1 9 5 7 ) , (1958) (1959) has i n t r o ­
duced a theory e x p l a i n i n g these and i t was- hop'edi-that . t h i s 
might he used to ob t a i n a t h e o r e t i c a l r e l a t i o n s h i p between 
the size of the f i r t r e e s and the applied stress. 

The work of Chikazumi and Suzuki could then be 
extended to a (110) surface. By using a scratch technique 
very l a r g e loads of over 100 kgms/mm can be applied. 

I t was w i t h these problems i n mind t h a t the f o l l o w i n g 
work was c a r r i e d out. 
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CHAPTER TWO 

PREPARATION OF SPECIMENS 

2.1 I n t r o d u c t i o n 
Specimens of Goss type (110) surface s i l i c o n i r o n 

sheet, 0.37 mms t h i c k , w i t h g r a i n size v a r y i n g from 1 mm 
to 10 mms, were obtained from the Steel Company of Wales. 
A chemical analysis showed the main c o n s t i t u e n t s besides 
i r o n t o be 

3.10% S i l i c o n 
0.012+% Phosphorus 
0.005% Sulphur 
0 . 002+% Carbon 

This sheet proved u s e f u l f o r most of the experiments on 
(110) surfaces but specimens were needed w i t h (100) 

surfaces. I t was ther e f o r e decided t o grow s i n g l e 
c r y s t a l s of i r o n , though l a t e r (100) cube t e x t u r e d p o l y -
c r y s t a l l i n e sheet, of s i m i l a r thickness and g r a i n s i z e t o 
the Goss type sheet, was obtained from the G.E.C. of 
America. 

2.2 Growth of Single Crystals 
The raw m a t e r i a l f o r these experiments was obtained 

from B. I.S.R. A. S h e f f i e l d . I t was decided to use t h e i r 
pure Swedish i r o n A.A.K. , even though the y i e l d p o i n t 
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12 kgms/mm i s f a i r l y low, i n preference t o t h e i r s i l i c o n 
i r o n which contains a ^rather h i g h amount of non-metallic 
i n c l u s i o n s . The main i m p u r i t i e s i n the i r o n are 0.02% 
carbon and 0.02% s i l i c o n . 

The c r y s t a l s were grown "by a s t r a i n and anneal method 
f o l l o w i n g the technique of Holden and Holloman ( 19^9 ) . 

The specimens are so shaped (see Fig. 8) t h a t r e c r y s t a l l i -
s a t i o n i s l i m i t e d to a small volume of c r i t i c a l l y s t r a i n e d 
m a t e r i a l . Grains formed i n t h i s region grow i n t o the 
lesser s t r a i n e d regions g i v i n g f i n a l l y a l a r g e grained 
product. 

Holden and Holloman found t h a t they needed a c e r t a i n 
c r i t i c a l g r a i n s i z e , 32 grains/mm , "before s t r a i n i n g the 
specimen to o b t a i n maximum g r a i n growth. Several small 
pieces of i r o n , x f " x , were t h e r e f o r e heated up t o 
various temperatures t o f i n d the c o n d i t i o n s needed to 
produce t h i s g r a i n size. The t e s t pieces were held at 
t h e i r maximum temperature f o r 1 8 hours then allowed to 
cool at 60° per hour, i n an atmosphere of wet hydrogen. 
This was obtained by bubbling c y l i n d e r hydrogen through 
water maintained at 62°G. Pig. 9 shows the v a r i a t i o n of 
g r a i n size w i t h the temperature of anneal. A specimen, 
shaped as i n Pig. 8, was machined from the bar of 
Swedish i r o n and then heated, under the same conditions 
as the t e s t pieces, at the c r i t i c a l temperature 860°C. 
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I t was then s t r a i n e d the c r i t i c a l amount, a change i n 
width at the centre of 1.6%. This corresponded to an 
applied load of 1.2+ tons. The s t r a i n e d specimen was 
then annealed i n pure dry hydrogen at 890°C f o r 72 
hours f o l l o w e d by c o o l i n g at a r a t e of 70°C/hour. The 
hydrogen was p u r i f i e d by passing c y l i n d e r hydrogen over 
p l a t i n i s e d asbestos at 300°C - 2+00°C to remove oxygen 
and then through a phosphorus pentoxide tube to remove 
water vapour. 

Using t h i s technique c r y s t a l s up t o 2+ cms x 1.5 cms 
x .63 cms were obtained. 

2.3 O r i e n t a t i o n of C r y s t a l s 
The c r y s t a l s were i n i t i a l l y o r i e n t a t e d t o w i t h i n 

3 ° by r e f l e c t i n g l i g h t from etch p i t s and measuring the 
angle w i t h an o p t i c a l goniometer. By using an etchant 
c o n s i s t i n g of 1 p a r t concentrated n i t r i c a c i d and 2+ p a r t s 
water f o r 5 minutes, w e l l developed p i t s w i t h (100) faces 
were formed. 

A more accurate determination was then c a r r i e d out 
using a back r e f l e c t i o n X-ray technique. The specimen was 
set at a f i x e d distance from the f i l m , 3 cms f o r con­
venience, and knowing t h i s the angles d e f i n i n g s p e c i f i c 
zones of the c r y s t a l could be worked out. Three i n t e r -
setting zones were chosen on the f i l m and by p l o t t i n g these 
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on a sterogram as a f u n c t i o n of 0, the angle of the zone 
axis t o the f i l m , and a, the angle between the v e r t i c a l 
d i r e c t i o n and the axis of the zone, the angles between 
the zones could be worked out. These angles were then 
compared w i t h a t a b l e of angles between prominent zones 
f o r the cubic system, see B a r r e t t (19U3) . The indices 
( h , k , l ) of a face which i s common to the zones (u,v,w) 
and (u',v',w') can be evaluated from the r e l a t i o n s h i p 

h = vwf - v'w 
k = wu' - w'u 
1 = uv' - u'v 

This method i s capable of determining the o r i e n t a t i o n of 
a c r y s t a l t o w i t h i n + ^° w i t h the apparatus used. 

2.!j. C u t t i n g and Shaping the Crystals 
Next i t was necessary t o cut c e r t a i n c r y s t a l l o g r a p h i c 

planes i n the o r i e n t a t e d c r y s t a l s and also t o cut c e r t a i n 
shapes from the p o l y c r y s t a l l i n e sheet. I t i s e s s e n t i a l 
t h a t t h i s c u t t i n g i s as s t r a i n f r e e as p o s s i b l e since t h i s 
w i l l reduce the amount of reannealing needed. Also i f 
the specimen i s badly s t r a i n e d then i t could p o s s i b l y 
r e c r y s t a l l i s e on annealing. 
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2.U«1. Apparatus 
For the above reasons i t was decided to c a r r y out 

the c u t t i n g operations using an electrospark technique 
[Nosov and Bykov (1956) ; Cole, Bucklow and Grigson ( 1 9 6 1 ) ] . 

I n t h i s method an e l e c t r i c discharge passes between two 
electrodes and. erodes the c o n t a c t i n g areas away. As 
the specimen i s the anode i t wears away at a greater r a t e 
than the t o o l , the cathode. 

The apparatus used i s shown i n F i g 10 (a and b ) . 
The perspex rod P which c a r r i e s the c u t t i n g t o o l i s 
l o c a t e d i n a v e r t i c a l plane by means of three r o l l e r 
races, one of which i s spring loaded. The c u t t i n g arm 
i s counterbalanced by an adjustable weight M. F r i c t i o n 
i s reduced to a minimum i n the system by c a r r y i n g the 
load on two p u l l e y s f i t t e d w i t h b a l l races. 

The c u t t i n g i s c o n t r o l l e d e l e c t r o m a g n e t i c a l l y by 
means of a s o f t i r o n core f i t t e d i n t o the top of the 
perspex rod, which moves i n s i d e a small solenoid S. This 
has 3 ,000 turns of 30 s.w.g. copper wire g i v i n g a f i e l d 
of about 500 oersteds/amp. The c o n t r o l works i n the 
f o l l o w i n g way. When the machine i s sparking there i s a 
small current f l o w i n g through the solenoid. This i s cut 
o f f when the distance between the electrodes i s too great 
f o r a spark to pass and so the t o o l moves downwards, due 
to the e f f e c t i v e increase i n weight, u n t i l sparking once 
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more takes place. 
The specimen i s mounted on a t w i n arc goniometer, 

both arcs being accurate to w i t h i n 1 0 ' . The goniometer 
i t s e l f can r o t a t e about a v e r t i c a l axis over a scale which 
can be read to about 1 5 ' , and can move i n a h o r i z o n t a l 
plane a maximum of 1 cm on two s l i d e s at r i g h t angles. 
Thus the specimen can be set up at any desired angle w i t h 
respect t o the c u t t i n g t o o l t o an accuracy b e t t e r than 
t h a t w i t h which the o r i e n t a t i o n of the specimen has been 
determined. The anode i s mounted i n a perspex tank 
15 cms x 15 cms x 10 cms which contains the coolant, 
transformer o i l , which was chosen f o r i t s low v i s c o s i t y 
and high d i e l e c t r i c constant. This prevents the elec­
trodes melting and f u s i n g . The power i s derived from a 
mains r e c t i f i e r capable of g i v i n g 100 watts. 

2.i|. 2. Working Conditions and Results 
Various charging p o t e n t i a l s , ranging from 25 v o l t s 

to 100 v o l t s were t r i e d w i t h a f i x e d capacitance 1 

The r a t e of c u t t i n g was d i r e c t l y p r o p o r t i o n a l to the 
voltage. At maximum voltage t h i s was ^ cu. mm/min/;. 
vcni."̂  l e n g t h of electrodes. The surfaces produced were 
examined under a microscope and found t o be p i t t e d to a 
depth of 10-20 microns. As the depth of the p i t s seemed 
independent of applied voltage the apparatus was normally 
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run at 100 v o l t s . 
Several metals were t r i e d as c u t t i n g t o o l s . Steel 

eroded at almost the same r a t e as the i r o n and s i l i c o n 
i r o n c r y s t a l s , whereas "brass and copper wore away at 
about h a l f the r a t e . Due to i t s ease of machining and 
a v a i l a b i l i t y , brass was always used i n preference t o 
copper. 

The surfaces so prepared showed very l i t t l e contam­
i n a t i o n from the decomposition of o i l and cathode m a t e r i a l . 

I n some cases the surfaces were found to be a degree 
or so from t h a t desired. A convenient method f o r o b t a i n i n g 
the desired o r i e n t a t i o n was by f i n e g r i n d i n g . The specimen 
was f i x e d by means of a goniometer head t o a spring loaded 
h o r i z o n t a l arm which moved, about an accurat e l y v e r t i c a l 
arm, across a s t e e l p o l i s h i n g wheel once every minute. 
The surface of the specimen was f i r s t set up p a r a l l e l t o 
the surface of the wheel by covering the l a t t e r w i t h mark­
in g blue. The specimen was then r o t a t e d by means of the 
goniometer head, the same one as used i n the electrospark 
apparatus, t o the desired o r i e n t a t i o n . Wet carborundum 
was used as an abrasive i n grades v a r y i n g from 2i+0 to 3P. 

2.5 P o l i s h i n g and Annealing 
The specimens were p o l i s h e d by hand using successive 

grades of emery:/ paper from 1F to 2+/0. They were then 
polished on a r o t a t i n g wheel using Hyprez Diamond Compound 
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of grades 8 micron, 3 micron and ^ micron as abrasives. 
The c r y s t a l s so prepared were then annealed. F i r s t 

annealing i n a stream of pure dry hydrogen, p u r i f i e d as 
described before, at 820°C f o r 8 hours f o l l o w e d by a 
30°C/hour cool was t r i e d . This proved unsuccessful as a 
t h i n l a y e r of i m p u r i t y formed on the surface n e c e s s i t a t i n g 
f u r t h e r p o l i s h i n g . A method was then t r i e d of p l a c i n g 
the specimen i n a si l i c a tube i n s i d e a s t e e l vessel (see 
Fig. 1 1 ) . This was f i l l e d w i t h hydrogen, sealed, then 
annealed as before i n a stream of pure hydrogen. Once 
again a clean surface was not obtained. 

However good r e s u l t s were obtained using a vacuum 
furnace. The vacuum was obtained using an Edwards 2M2 
Mercury D i f f u s i o n Pump working w i t h a r o t a r y backing pump. 

The heater was of 0 .012 inch diameter tungsten wire wound 
11 1 on a / 1 6 " diameter grooved, / 3 2 " p i t c h , s i l i c a tube. 

This was surrounded by a i n t e r n a l diameter m u l l i t e 
tube to reduce heat losses. I n order t o keep the temper­
ature, which was measured w i t h an i r o n constantan thermo­
couple, at 830°C, a s a t i s f a c t o r y temperature of anneal, 
I4.O watts were d i s s i p a t e d . Even at t h i s temperature the 
pressure was kept as low as 0 .08 microns. S a t i s f a c t o r y 
s t r a i n f r e e domain s t r u c t u r e s were obtained a f t e r anneal­
ing at 830°C f o r 3 hours and c o o l i n g at 300°C/hour. 



32. 

Even though domain s t r u c t u r e s could he seen at t h i s 
stage i t was found necessary t o remove the s l i g h t 
scratches remaining by a l i g h t e l e c t r o p o l i s h . The 
apparatus used was very s i m i l a r t o t h a t described by 
Bates and Mee (1950) having a s t a t i o n a r y cathode and 
r o t a t i n g anode. Stainless s t e e l cathodes were used i n 
sizes varying from 2" diameter t o i+ i " diameter depending 
upon the size of the specimen being polished. The 
specimen was attached t o the r o t a t i n g spindle by means of 
a small horseshoe magnet. This, and any p a r t of the 
specimen not needing p o l i s h i n g , were coated w i t h a la y e r 
of polystyrene cement. I t was found e s s e n t i a l f o r good 
p o l i s h i n g , t h a t the centre of r o t a t i o n of the anode should 
l i e outside the specimen. The e l e c t r o l y t e used was made 
up of 133 ccs g l a c i a l a c e t i c a c i d , 25 grams chromium 
t r i o x i d e and 7 ccs water. 

By using a Wheatstone Bridge net, as described by 
Bates and Mee, the optimum p o l i s h i n g c o n d i t i o n s , which 
correspond t o maximum c e l l r e s i s t a n c e , were found. A 
t y p i c a l voltage r e s i s t a n c e graph i s shown i n Fig. 12 . 

Using an anode r o t a t i o n of 70 r.p.m. good r e s u l t s were 
obtained w i t h a c e l l voltage of 25 v o l t s f o r a s i l i c o n 
i r o n specimen, and 23 v o l t s f o r a pure i r o n specimen. 
The current density was 0 .25 amps/cm2. 
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When the specimen had. "been vacuum annealed a f t e r 
mechanical p o l i s h i n g , a 5 minute e l e c t r o p o l i s h was 
s u f f i c i e n t t o produce a smooth surface. However i n some 
cases, when the specimen was too large f o r the furnace, 
i t had to he e l e c t r o p o l i s h e d d i r e c t l y a f t e r mechanical 
p o l i s h i n g . I n these cases p o l i s h i n g times of up to 30 
minutes were necessary, r e s u l t i n g i n r a t h e r uneven sur­
faces. 

2.6 Observation of Domains 
Before observing the domain s t r u c t u r e the specimens 

were demagnetized by exposure t o a decreasing a l t e r n a t i n g 
magnetic f i e l d . A magnetic c o l l o i d technique was used 
f o r the observation of domains. The c o l l o i d recipe used 
was t h a t of Elmore (1938) w i t h one s l i g h t d i f f e r e n c e . I t 
was made up to a concentration 2+ times t h a t described by 
Elmore. The s t a i n i n g of the surface by the c o l l o i d was 
not a serious problem as t h i s took about £ an hour. 
Often the experiment could be c a r r i e d out i n t h i s p e r i o d , 
and i f t h i s was not possible the surface could be cleaned 
by soaking i n absolute alcohol. 

The domains were observed using a Cooke Troughton & 
Simms r e f l e c t e d l i g h t microscope at m a g n i f i c a t i o n s v a r y i n g 
from 50x t o i+OOx, although the most u s e f u l m a g n i f i c a t i o n 
was found t o be 1OOx. Photographs were taken w i t h a Leica 



31+. 

35 mm camera which was coupled to the microscope by means 
of an adaptor w i t h a focussing eyepiece. The f i l m used 
was I l f o r d Pan F, chosen f o r i t s high c o n t r a s t and small 
g r a i n size and was developed i n ID 11. Exposure times 
between 1 second and 10 seconds were found necessary 
depending upon l i g h t i n g c o n d i t i o n s . 

Measurements on the f i l m s were c a r r i e d out by pro­
j e c t i n g the negatives onto a ground glass screen at 10x 

m a g n i f i c a t i o n by means of a Durst 609 enlarger. This 
allowed d i r e c t measurements t o be made w i t h a r u l e r and 
p r o t r a c t o r on the ground glass screen. 
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CHAPTER THREE 
EFFECT OF EXTERNAL STRESSES UP TO THE YIELD POINT 

ON A (110) SURFACE 
3.1 Tensional f o r c e along the M 1 0 1 d i r e c t i o n 
3 . 1 . 1 . I n t r o d u c t i o n 

Dykstra and Martius (1953) studied the e f f e c t o f a 
te n s i o n a l s t r e s s , a p plied "by means of a c a l i b r a t e d 
s p r i n g , along a [11-0] d i r e c t i o n on a (110) surface o f 
s i l i c o n i r o n p o l y c r y s t a l l i n e sheet. I n t h i s s e c t i o n the 
r e s u l t s obtained "by applying t e n s i o n a l stresses by d i r e c t 
l oading and by c a n t i l e v e r bending w i l l be compared. 

3 . 1 . 1 . 1 . E f f e c t of Stresses on Magnetization D i r e c t i o n s 
I t i s important i n i n t e r p r e t i n g new domain s t r u c t u r e s 

to consider the e f f e c t of stress on magnetization d i r e c ­
t i o n s . I n a zero stress system the magnetization d i r e c ­
t i o n i n a s i n g l e domain i s governed s o l e l y by the magnetic 
anisotropy energy. I n a domain under stress, a f u r t h e r 
energy term, given by equation ( 1 . 9 ) must be taken i n t o 
account. 

Consider a compressive s t r e s s <r dynes/cm applied 
along the [001] surface d i r e c t i o n of a specimen w i t h a 
(110) surface. The energy e^Q 0-J] associated w i t h magnet­
i z a t i o n along the [001] d i r e c t i o n equals + ̂  ^OO w h i l e 

the energy of magnetization along the [010] and [100] 
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d i r e c t i o n s remains zero. I t i s t h e r e f o r e conceivable 
t h a t a system o r i g i n a l l y magnetized along the [001] 

d i r e c t i o n could change under t h i s stress to a system 
magnetized mainly along the [010] d i r e c t i o n . 

t h a t above t h i s s t r e s s the magnetization w i l l r o t a t e 
from the [0 0 1] d i r e c t i o n to the [110] d i r e c t i o n as 
these two minima are separated "by an energy maximum. 
To f i n d the stress r e q u i r e d t o do t h i s , i t i s necessary 
t o consider the general case w i t h the magnetization 
making an angle a w i t h the [0 0 1] d i r e c t i o n w hile s t i l l 
l y i n g i n the (110) plane. The t o t a l energy i s then 

the f i r s t term "being due t o magnetoelastic energy and the 
l a s t two due to anisotropy energy. 

Minimising t h i s w i t h respect to a, three roots are 
obtained, 

f o r magnetization along the The energy ^ 1 1 0 ] 
[110J d i r e c t i o n i s /u and so ta k i n g the values of K>| 

f o r s i l i c o n i r o n , the energy E equals and [110 
at a stress of 23 kgms/mm This does not mean E 

E TOT 3 <r Aloo anx<k * K.wV/iwV • K . ^ V 

cos a = 0 

s i n a = 0 

and cos a = + 3 * ^ QQ 
3K 1 



37. 

p 
The f i r s t two are minima up t o cr = 2K̂  = 91 kgms/mm . 

3 X 1 0 0 

The maximum given "by the t h i r d equation corresponds at 
zero stress t o a = 5 5 ° . As the stress increases, the 
angle "between the maximum and the [001 ] d i r e c t i o n , the 
d i r e c t i o n o f st r e s s , "becomes smaller u n t i l a t cr = 91 

kgms/mm i t equals zero. When <xmo = 0 the [001 ] d i r e c -
t i o n "becomes a p o i n t of i n f l e x i o n and so above t h i s 
c r i t i c a l s t r e s s the magnetization w i l l r o t a t e i n t o a 
[110] d i r e c t i o n . I t i s i n t e r e s t i n g to note t h a t there 
i s no r o t a t i o n away from the c r y s t a l l o g r a p h i c axes "before 

2 
t h i s s t r e s s of 91 kgms/mm . 

I t can r e a d i l y "be seen t h a t s i m i l a r r e s u l t s can be 
2 

obtained by applying a t e n s i o n a l stress cr dynes/cm along 
the [110 ] d i r e c t i o n . Once again, t a k i n g a t o be the 
angle between the magnetization d i r e c t i o n and the [001 ] 

d i r e c t i o n and d i f f e r e n t i a t i n g the t o t a l energy w i t h 
respect to a, three t u r n i n g p o i n t s are obtained 

s i n a a 0 

cos a = 0 

and s i n oc = 2 K1 - f<r( 7̂  Q 0 + > 1 1 1 ) 

At a s t r e s s given by s i n a = 0, the [ 0 0 1] d i r e c t i o n again 
becomes a p o i n t of i n f l e x i o n w h i l e the [1 1 0] d i r e c t i o n 
s t i l l remains a minimum. This stress i s given by 
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3 ^ 0 0 + k , ^ ) 
o 

= 22/L|. kgms/mm 
Pig (2d) shows the v a r i a t i o n of y i e l d p o i n t f o r various 
percentages of s i l i c o n i n s i l i c o n i r o n due t o Yensen 
( 1 9 1 5 ) . The value of the y i e l d p o i n t f o r the s i l i c o n 
i r o n used i n the f o l l o w i n g experiments i s about 2+0 kgms/mm' 
Therefore as these experiments are c a r r i e d out i n the 
e l a s t i c range the only favourable d i r e c t i o n of magnetiza­
t i o n i n the surface must be the [001 ] d i r e c t i o n . 

This treatment shows t h a t i t needs stresses greater 
than the y i e l d p o i n t to make the [110] d i r e c t i o n an easy 
d i r e c t i o n and the stresses r e q u i r e d to change the magnet­
i z a t i o n from a [001] d i r e c t i o n , given by ^ Q 0 1 ] = 2 °~^100' 

to a [010] d i r e c t i o n , ^ 0 1 0 ] = °' m u 8 t t e g r e a t e r than 
zero. I n f a c t the l a t t e r change-over stress i s very 
dependent on the specimen shape and the r e f o r e the energies 
of the two domain systems, and f a c t o r s such as these must 
be taken i n t o account when working out the change-over 
st r e s s . 

I t i s i n t e r e s t i n g to consider the e f f e c t of the 
compressive s t r e s s cr dynes/cm along the [110] d i r e c t i o n 
on the two easy d i r e c t i o n [100] and [010] which make an 
angle of 1+5° t o the d i r e c t i o n of stress. This w i l l apply 
t o some work i n chapter four. I f t h i s magnetization vector 
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makes an angle a t o the [100] d i r e c t i o n i n the (001) 
plane, the t o t a l energy can be expressed as 

U- 2 
Upon minimising t h i s w i t h respect to a, three r o o t s are 
obtained 

s i n a = cos a = / V 2 

and s i n a cos a = ~ 3°"^111 

The r o o t s f o r a = J^5° give a maximum up t o a stress of 
351 kgms/mm at which they become p o i n t s of i n f l e x i o n . 
Above t h i s stress the [110] d i r e c t i o n i s a minimum. The 
easy d i r e c t i o n s are given by 

cos a s i n a = "3a*^111 

Pig. 13 shows the v a r i a t i o n of the easy d i r e c t i o n s w i t h 
s t r e s s . I t i s very i n t e r e s t i n g to note t h a t they r o t a t e 
i n t o the stress d i r e c t i o n as the st r e s s i s increased due 
to the f a c t t h a t i s negative. At stresses below 
the y i e l d p o i n t t h i s r o t a t i o n i s almost n e g l i g i b l e , the 
maximum amount being jL | ° . 

3 . 1 . 2 . Experimental Technique 
3 . 1 . 2 . 1 . D i r e c t Tension Method 

The f i r s t attempt to s t r a i n p o l y c r y s t a l l i n e specimens 
was made by d i r e c t l y loading the specimens w i t h weights. 
One end of the specimen, 5 cms x 1 cm x 0 .035 cms, was 
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clamped by means of screws t o a block, f i x e d on the 
substage of the microscope, w h i l e the other end was 
s i m i l a r l y f i x e d i n a .movable block. This was connected 
to the weights by means of a s t e e l wire running over a 
p u l l e y . The height of the p u l l e y was so arranged t h a t 
w hile under tension the specimen was h o r i z o n t a l . The 
disadvantages of t h i s system were the d i f f i c u l t y of 
applying high stresses and the u n c e r t a i n t y of the exact 
stre s s i n the g r a i n under i n v e s t i g a t i o n . As i t was 
thought unwise t o use specimen widths less than 0 .75 cms 
due t o spurious edge e f f e c t s , loads of the order of 

o 

U0 kgms only produced stresses of about 15 kgms/mm . At 
these loads the specimen tended to s l i p out of i t s holders, 
so t h a t other attempts were made to anchor the specimens 
more f i r m l y . None of the methods t r i e d were very s a t i s ­
f a c t o r y f o r i f they held the specimens securely they 
tended t o create l a r g e unmeasureable stresses. The method 
used by D i j k s t r a and Martius, one of e l e c t r o s p a r k i n g holes 
i n the specimens and applying the load through p i n s , was 
t r i e d but found unsuccessful. The p i n s ripped out o f the 
holes at f a i r l y low stresses. 

A micro-temsile t e s t apparatus was k i n d l y loaned 
by King's College M e t a l l u r g y Department. The springs i n 
t h i s machine were c a l i b r a t e d by s t r e t c h i n g a uniform m i l d 
s t e e l rod of 0 .15 cm r a d i u s . The distance between two 



scratches on the rod, j u s t over 7 cms apart, was measured 
by means of a t r a v e l l i n g microscope t o an accuracy of 
0.002 cms. By p l o t t i n g the extension of the springs 
against the extension of the rod, and knowing the value 

11 2 

of Young's modulus (20 x 10 gynes/cm ) f o r m i l d s t e e l , 
a mean value of the f o r c e applied on s t r e t c h i n g the spring 
a f i x e d amount could be worked out. This was 677 + 35 

kgms/cm. The specimens were gripped i n taper jaws and 
had t o be 20 cms long due t o the u n w i e l d l y nature of the 
apparatus. They were cut as wide as p o s s i b l e , 2-3 cms, 
so as t o include as many gra i n s as po s s i b l e . The g r a i n 
size was much l a r g e r , 5-10 mms i n diameter, than i n the 
sheet used by D i j k s t r a and Martius i n which grains were 
about 1 mm i n diameter. The microscope was set up on the 
t e n s i l e machine. A g r a i n was chosen near the centre of 
the s t r i p w i t h i t s [110] d i r e c t i o n along the axis of 
tension. This was done by l i n i n g up the domain p a t t e r n 
w i t h one p a r t of a crosswire i n the eyepiece, the other 
p a r t having p r e v i o u s l y been l i n e d up w i t h the axis of 
tension. An accuracy of + 1 0 was obtained. 

The s e n s i t i v i t y of the experiment was not very good. 
The t r a v e l l i n g microscope could be read t o only 0 .005 cms 
as during the experiment there was not enough time to 
take a series of readings. This corresponded t o 2 kgms 
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which works out, f o r the size of specimens mentioned 
above, t o a stress of about 2 kgms/mm . 

Magnetic f i e l d s were applied along the axis of the 
s t r i p by means of a p a i r of Helmholtz c o i l s 7 cms i n 
diameter and each containing 300 t u r n s of wire. Although 
i t was not necessary t o know the value of the applied 
f i e l d t o a very h i g h accuracy, + 1 0 oersteds, the c o i l s 
were c a l i b r a t e d by means of a fluxmeter and search c o i l . 
They gave a l i n e a r c u r r e n t / f i e l d r e l a t i o n s h i p up t o a 
f i e l d of 90 oersteds at 1 amp. A v e r t i c a l f i e l d was 
applied by means of a small solenoid 3 . 5 cms i n diameter, 
1.2 cms deep, c o n t a i n i n g 300 t u r n s . This was placed on 
the specimen, and the f i e l d on i t s surface was c a l c u l a t e d 
to be 100 oersteds at 1 amp. The magnetic f i e l d s were 
used t o help i n the determination of magnetization d i r e c ­
t i o n s f o r which purpose values between 10 and 20 oersted 
were u s u a l l y necessary. 

The r e s u l t s obtained from t h i s method corresponded 
d i r e c t l y to those obtained by D i j k s t r a and Martius. 

3 . 1 . 2 . 2 . Bending Technique 
There are two main disadvantages of the technique 

j u s t described. The need f o r very long specimens v i r ­
t u a l l y r u l e s out s i n g l e c r y s t a l work. Also the apparatus 
cannot be used f o r applying compressive forces. This i s 
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necessary, f o r instance, when dealing w i t h a s i n g l e 
c r y s t a l having a (100) surface. The main domains are 
magnetized along the le n g t h of the specimen, the [ 0 0 l ] 
d i r e c t i o n , and the only method o f r o t a t i n g the magnetiza­
t i o n i n t o the other surface easy d i r e c t i o n [loo] , i s by 
applying a compressive f o r c e , along the [ 0 0 l ] d i r e c t i o n . 

The work on a (110) surface was repeated, using a 
"bending technique t o s t r a i n the specimens, t o see i n what 
way the presence of a stress g r a d i e n t across the specimen 
a f f e c t e d the r e s u l t s . 

Consider a s t r i p of thickness t , clamped at one end, 
"bent i n t o an arc of radius r. I f the c e n t r a l p a r t of the 
s t r i p i s considered t o be at zero stress then the change 
i n l e n g t h at the top surface equals 

t 
2r 

I f the v e r t i c a l displacement of the end of the specimen 
i s A, and the l e n g t h of the specimen L then 

cos L = r-A 
. r L 

As *-/r i s f a i r l y small, cos L / r can be taken, t o a f a i r l y 
good approximation, t o be 

, .Mil2 

2 
And the s t r a i n &1, i n ^he surface layer i s given by 

L 
= t & ( 3 . 1 ) 

L L * 
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As t h i s s t r a i n applies, to a l l the surface l a y e r , a 
knowledge of the value of Young's modulus i n any p a r t i ­
cular g r a i n allows the stress i n t h a t g r a i n t o be evalu­
ated. Benford (19^+6) obtained the f o l l o w i n g values of 
Young's modulus f o r various d i r e c t i o n s i n a s i n g l e 
c r y s t a l o f 3.2$ s i l i c o n i r o n . The u n i t s are dyne cm" . 
Y[ioo ] 1 - 3 G x 1 ° 1 2 Y [no] 2 - 0 6 x 1 ° 1 2 Y [ m ] 2 - 8 1 x 1 ° 1 2 

For a specimen of thickness 0.035 cms and bending arm 
2 cms, a stress of 30 kgms/mm i s produced w i t h A = 2 rams. 
I t was found possible t o i l l u m i n a t e a specimen w i t h 
L = 2 cms f a i r l y evenly by a d j u s t i n g the p o s i t i o n of the 
l i g h t source up t o values of A of k mms, so long as a high 
m a g n i f i c a t i o n (about UOOx) was not used. 

Pig. (11̂ .) shows the apparatus used. Specimens were 
compressed by a l e v e r p i v o t e d at i t s centre. A was c a l ­
culated d i r e c t l y from tha micrometer d e f l e c t i o n of the end 
of the l e v e r as a = b. The block B, which h e l d the speci­
men f i r m l y , was movable so t h a t the bending arm could be 
adjusted from 1.5 cms t o 3 cms according t o the sensi­
t i v i t y r e q u i r e d . For applying extensional forces a l e v e r 
p i v o t e d at one end was used, w i t h the r a t i o of the arms 
a:bs1;1.5. A s p r i n g at the end nearest the p i v o t kept the 
l e v e r i n constant contact w i t h the micrometer. 
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I n c a l c u l a t i n g the s t r e s s produced L was measured 
t o an accuracy of 1 p a r t i n 500, while A, the micrometer 
reading, could "be read t o / 1 0 0 mm. which corresponds t o 
1 2 

/ 1 0 kgm/mm i n the above example. The thickness t o f 
the specimen was measured t o an accuracy of about 1%. 

Prom these considerations the stress a p p l i e d t o the 
specimen could be obtained t o an accuracy of 1-2%. 

3 . 1 . 2 . 3 . S t r a i n Gauge V e r i f i c a t i o n 
The stresses i n s i l i c o n i r o n s t r i p s , 5 cms x 1 cm x 

0.033 cms, were checked w i t h s t r a i n gauges. A surface 
of the. specimen was roughened w i t h 2/0 emery paper and a 
Tin s l e y Type 6E s t r a i n gauge, of 100 ohm resistance was 
stuck t o i t w i t h 'Durofix'. The gauge was l e f t f o r 3 

days t o dry thoroughly. 
The resistance of the gauge was measured i n a 

Wheatstone net, which also contained a dummy gauge t o act 
as a temperature compensator (see Pig. 1 5 ) . Even so the 
curre n t was u s u a l l y switched on h a l f an hour or so before 
a reading was t o be taken. The f i x e d r e s i s t a n c e was 
taken as 9 ,900 ohms and the bridge balanced w i t h R2 t o an 
accuracy of / 1 0 ohm. 

The r e l a t i o n s h i p between the s t r a i n and the change of 
resistance of the gauge i s given by 

&k - M L R S 
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where S i s the gauge factor, 2.18 f o r the gauges used. 

Using eq. (3.1 ) , A . _ E 2 , ̂  0s 
6"R ~ t.R . s . 

Pig. (16) shows a t y p i c a l A, cfR s t r a i g h t l i n e graph f o r 

a s p e c i f i c value of L . Using the g r a d i e n t s of these 

graphs and p l o t t i n g them against L should give a 

s t r a i g h t l i n e with gradient /t.R.S. according to 

equation (3*1). The experimental values are shown i n 

Pig. ( 17 ) . The experimental value of the gradient i s 

1.i(.5 x 10~^ while a t h e o r e t i c a l value, using R = 

9875 ohms, t = 0.033 cms and S = 2.18 gives I.J4O x 10"-5. 

Allowing f o r experimental e r r o r t h i s shows that the 

method i s quite s u i t a b l e over the range of A's and L ' s 

used and that there was probably no sagging at the 

supports. 

3 . 1 . 3 . Experimental R e s u l t s and D i s c u s s i o n 

3 . 1 . 3 . 1 . Zero S t r e s s P a t t e r n 

The zero s t r e s s s t r u c t u r e has been i n t e r p r e t e d i n 

s e c t i o n 1.1;. The domain spacing i s governed by the sum 

of the Bloch w a l l energy and the magnetostatic energy. 

Graham (1957) c o n s i d e r s the o r i e n t a t i o n of a 180° 

domain w a l l i n such a system. I f y q i s the energy per 

u n i t area of a 180° w a l l with i t s normal i n a [100] 

d i r e c t i o n , then the t o t a l energy f o r u n i t surface area 
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of specimen of t h i s w a l l i s y^2tf where t i s the 
t h i c k n e s s of the specimen. There i s an energy minimum 
"between t h i s p o s i t i o n and that where the normal to the 
w a l l i s i n a [110] d i r e c t i o n and the t o t a l energy i s 
1.38vY 0t. I n h i s c a l c u l a t i o n s , using the expression of 
L i l l e y f o r the w a l l energy, Graham ignores the terms 
containing K 2 # T h i s i s "because i t s value i s not known 
at a l l a c c u r a t e l y , see Tarasov (1939)» and i f i t s maxi-
mum value of 150 x 10 ergs/cc f o r pure i r o n i s taken, 
the energy so produced only accounts f o r a few percent 
of the major term. The r e s u l t i n g expression shows a 
minimum f o r the Bloch w a l l energy at X = 13°, where X 
i s the angle "between the w a l l and the [100] d i r e c t i o n 
( P i g . 18). Graham t r i e d to confirm t h i s theory e x p e r i ­
mentally "by examining two s i d e s of a s i l i c o n i r o n (110) 
surfaced sheet. The r e s u l t s were not at a l l c o n c l u s i v e 
as there was no obvious c o r r e l a t i o n between the two 
domain p a t t e r n s . He explained t h i s "by suggesting that 
the w a l l s could bend from one minimum energy plane to 
another, g i v i n g a range of displacements from 0 to 
t,. tan, 3 2 ° . 

3.1.3.2. T r a n s i t i o n a l Range 

When a t e n s i o n a l s t r e s s i s applied along the [110] 

d i r e c t i o n , the i n i t i a l p a t t e r n s t a r t s to break up at 
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q 

s t r e s s e s between 0.7 and 1.5 kgms/mm . T h i s i s a gradual 

process, the s t r e s s at which i t s t a r t s s l i g h t l y v a r y i n g 

from p l a c e to plac e i n a s i n g l e g r a i n . I t i s followed "by 
p 

a t r a n s i t i o n a l range, of about 1-2 kgms/mm , i n which 

there i s no v i s i b l e domain s t r u c t u r e a f t e r which s t r e s s 

p a t t e r n I s t a r t s to form. 

The s t r e s s e s at which the change over took p l a c e 

v a r i e d from specimen to specimen though always i n the 

above s t a t e d range. E x a c t l y the same range of va l u e s 

were obtained using t e n s i o n a l s t r e s s e s by both d i r e c t 

p u l l i n g and bending. 

I t i s p o s s i b l e that the o r i g i n a l domain w a l l s s t i l l 

e x i s t i n the t r a n s i t i o n a l p e r i od and that the s t r a y f i e l d 

at t h e i r i n t e r s e c t i o n with the c r y s t a l surface i s too 

weak to a t t r a c t any magnetic c o l l o i d . I n order to con­

s i d e r t h i s p o s s i b i l i t y i t i s n ecessary to c a l c u l a t e the 

e f f e c t of s t r e s s on domain w a l l t h i c k n e s s e s . 

The e f f e c t of s t r e s s on Bloch Wall Thickness 

The e f f e c t of an e x t e r n a l l y a p p l i e d s t r e s s cr dynes/ 

cm on the Bloch Wall t h i c k n e s s can be c a l c u l a t e d by 

adding the s t r a i n components A ' i j so produced to those 

due to magnetostriction A;; .-. As the e f f e c t of s t r e s s on 

domain w a l l t h i c k n e s s e s i s an extension of the e f f e c t of 

magnetostriction we w i l l f i r s t l y deal with the treatment 
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by L i l l e y of the l a t t e r e f f e c t . 

Equation (1.8) can "be w r i t t e n i n terms of the s t r a i n 

components A i ^ thus 

2 

(3 .3 ) 

where c^-j are the e l a s t i c compliances. 

To t h i s must be added the e l a s t i c p a r t of the energy 

(Becker and Uoring 1939 P. 11+6). 

i 

Under these zero s t r e s s c o n d i t i o n s the v a l u e s of A ^ can 

be obtained by minimising the sum of equations (3.3) and 

(3.2|) with r e s p e c t to A±^ g i v i n g 

2 

A 
I L 2 ^ * c J 

For a 180° boundary with the adjacent domains magnetized 

i n the [001] and [ 0 0 d i r e c t i o n s , the magnetization 

d i r e c t i o n i n the w a l l i s given by (- s i n X s i n 0, cos \ 

s i n 0, cos </>j where the normal to the boundary i s s p e c i ­

f i e d by (- cos \ - s i n "X, o ) . 
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S u b s t i t u t i n g the co-ordinate values f o r the magneti­
z a t i o n i n the Bloch w a l l i n equations 3.3 and 3 . k and 
s u b t r a c t i n g from t h i s energy the energy of magnetization 
i n the adjacent domains, the reduced magnetostriction 
energy term 

i+ V.3.5; 

i s obtained. T h i s i s added to the c r y s t a l l i n e anisotropy 

energy term * _ 

M. = U» UA 
where p g ^ 

The t o t a l anisotropy energy term, taking i n t o account 

magnetostriction can now be expressed by 

f a . = ( i * T ' ) i ^ v - r ^ V ) (3 .6) 

where s .1*,.-. 

and ^ K 

Using these expressions and equation (1.18) L i l l e y obtained 

(3 .7) 

I n order to add the s t r a i n t e n s o r s due to the applied 

s t r e s s to those due to magnetostriction i t i s necessary to 

express the a p p l i e d s t r e s s i n terms of s t m n tensors A'^. 
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The general r e l a t i o n s h i p between the s t r a i n 

components A i j and the s t r e s s components i s given by 
Am ' • s r ttt u » s„"n M • s ,Jt M * * s„TT,» 

Where are the s t i f f n e s s constants. 

For a cubic system the above expression reduces to 

the f o l l o w i n g matrix 

s11 S 12 S 12 0 0 0 

S 12 S11 S 12 0 0 0 

S 12 S 12 S11 0 0 0 

0 0 
° Skk 

0 0 

0 0 0 0 S. , 0 
kk 

0 0 0 0 0 s , , 

For a t e n s i o n a l s t r e s s O" dynes/cm i n a d i r e c t i o n s p e c i ­

f i e d by d i r e c t i o n cosines (y, » ^2'Y3^ t h e s t r a i n e x p o ­

nents are given by 

flu * c r s . » U » * 
a U * c r [ s „ V • I V * * ; ) ] 

A « ' «r [ $ . V < S a l C * tf)] (3 .8) 

For cubic c r y s t a l s the e l a s t i c constants C j j are r e l a t e d 

to the s t i f f n e s s constants S j ^ by 
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SiX = Cu • CM. 

$ ^ s J _ 

Now consider what e f f e c t an a p p l i e d t e n s i o n a l f o r c e 

cr dynes/cm 2 along the [110] d i r e c t i o n has on the domain 

w a l l s i n a [001 ] d i r e c t i o n . The r e s u l t i n g s t r a i n com­

ponents are 

y e . 

a , ; . 

1 ( CM - CÎ HCN + 2c.») 

- C C , i 
( CM - CnHctx v 2c, a) 

A* * i T = « 0 

The s t r a i n components due to magnetostriction according 

to L i l l e y are 

A n * ftu " A 3 i - o 
An* An = ~ 2Ai£*£il_ 4 _ N 

2 ( 2 c a * t J (3 .9) 

fll^l = 3\KK> lei* » Cw) 
2 l 2 c „ • CM) 

Adding "both s t r a i n components, the reduced anisotropy 

energy term "becomes 
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Therefore the e f f e c t i v e w a l l t h i c k n e s s b/b can he 
o 

c a l c u l a t e d f o r v a r i o u s stresses-: and v a r i o u s w a l l 

o r i e n t a t i o n s s p e c i f i e d hy X. I t i s r a t h e r complex 

mathematically to evaluate the s t r e s s r e q u i r e d to 

produce a given f i n i t e w a l l width f o r a given X. There­

f o r e consider the requirements f o r the w a l l to become 

i n f i n i t e l y t h i c k . These are e i t h e r 

1 - = 0 or 

t» = -1 

As the s t r e s s e s needed to s a t i s f y : t ' = -1 are much higher 

than those f o r 1 - M1 = 0, we s h a l l d e a l with t h i s l a t t e r 

r e l a t i o n s h i p . 

I t becomes r' = [X - 1 , (3.10) 

By s o l v i n g equation (3.10) f o r various v a l u e s of X, a 

s e r i e s of va l u e s of s t r e s s which make the w a l l i n f i n i t e l y 

wide are obtained. These v a l u e s are shown i n F i g . (19). 

I t can be seen t h a t t h i s s t r e s s i s 8 kgms/mm f o r the 

eq u i l i b r i u m value, at zero s t r e s s , of the w a l l (X = 1 3 ° ) . 

The s t r e s s value only f a l l s i n the range 0.7 - 1.5 kgms/ 

mm̂  f o r v a l u e s of X 0 - 3 ° . 

The minimum p o s i t i o n of the w a l l has been worked out 
2 O at a s t r e s s of 1 kgm/mm and was found to l i e at X = 12 . 

I t t h e refore seems u n l i k e l y that t h i s s o r t of mechanism 

can e x p l a i n the disappearance of the Bloch w a l l i n the 
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t r a n s i t i o n range. F u r t h e r information might "be found out 

about t h i s region "by using a magneto-optical method f o r 

observing the domain s t r u c t u r e . 

3 . 1 . 3 . 3 . S t r e s s P a t t e r n I 

S i m i l a r observations to those of D i j k s t r a and Martius 

were recorded. A s e r i e s of photographs ( P l a t e I ) show 

the development of these domains and a l s o of the.~; more compl 

p a t t e r n I I . The previous workers showed that the s u r f a c e 

s t r u c t u r e i s a c l o s u r e s t r u c t u r e magnetized i n the [001] 

d i r e c t i o n , with the main domains magnetized i n the [100] 

d i r e c t i o n s ( F i g . 20) . This can be deduced from the f a c t 

that a v e r t i c a l magnetic f i e l d of about 10 oersted p o l a ­

r i z e s the magnetic c o l l o i d and causes i t to c o l l e c t on 

a l t e r n a t e Bloch w a l l s . As the s t r e s s i s i n c r e a s e d the 

w a l l spacing d decreases while the concentration of c o l l o i d 

at these w a l l s i n c r e a s e s . T h i s l a t t e r f a c t was explained 

by D i j k s t r a and Martius as due to an opening up of the 

c l o s u r e domains and consequently the appearance on the 

s u r f a c e of s t r i p s of the main domains. T h i s i s probably 

not true. A s i m i l a r occurrence on a (100) s u r f a c e was 

explained by Chikazumi and Suzuki. They proposed t h a t 

an i n c r e a s i n g s t r e s s decreases the depth of the c l o s u r e 

domains causing the normal component of the magnetiza­

t i o n vector to vary across the w a l l . The pole d e n s i t y so 
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formed i B p r o p o r t i o n a l to the appli e d s t r e s s . There­
f o r e the s t r a y f i e l d at the w a l l i n c r e a s e s with i n c r e a s ­
ing s t r e s s . 

T h e o r e t i c a l Considerations of Domain S t r u c t u r e 

D i j k s t r a and Martius considered the e f f e c t of a 

t e n s i o n a l s t r e s s cr dynes/cm on t h e i r proposed domain 

s t r u c t u r e . 

The energy per u n i t s u r f a c e area of the zero s t r e s s 

s t r u c t u r e can "be expressed as 

E'd + tv h ..^ o j1- (3.11) 
o 

Where E ' d Q i s the magnetostatic energy term. A t e n s i o n a l 

s t r e s s along a [110] d i r e c t i o n has no e f f e c t on the above 

terms. 

The energy of the s t r e s s p a t t e r n I per u n i t surface 

area i s 
( t - 1 • iA <r/t- A \ • E'cft 
U rz i \ i k ) (3.12) 

2 2 1 

The magnetostatic energy term E' = f\ .71 s i n -&'2\is the 
V 1 + M+ ; 

same i n equations (3.11) and (3.12) "because the s u r f a c e 

magnetizations i n "both cases are i n the same d i r e c t i o n , 

and consequently the d e v i a t i o n of the [001 ] d i r e c t i o n 

from the s u r f a c e , 8, i s the same. 
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I f equations (3.11) and (3.12) are each d i f f e r e n ­
t i a t e d with r e s p e c t to d Q and d r e s p e c t i v e l y , "both equi­
l i b r i u m spacings can be c a l c u l a t e d as a f u n c t i o n of 
s t r e s s . The zero s t r e s s p a t t e r n spacing i s given by 

d. 

and i s independent of s t r e s s . 

The spacing i n s t r e s s p a t t e r n I i s given by 

a = 
( 3 * 1 3 ) 

I f the v a l u e s of d and d are s u b s t i t u t e d back i n t o 
o 

equation (3.11) and (3. 1 2 ) , and the two energies equated, 

the f o l l o w i n g r e l a t i o n s h i p f o r the t r a n s i t i o n a l s t r e s s 
^ c r i t i s o l 3" t a ; i- n e d« 

Taking experimental values of t = 0.035 cms 

I = 1608 

Y = 1.3 dynes/cm 
2 o one obtains cr,„ H + = 0.05 kgms/mm f o r 8 = cpix 
2 o 

and cr • + = 0.01+ kgms/mm f o r 8 = 1 , 
The l a t t e r value compares d i r e c t l y with a t h e o r e t i c a l value 

p 
of 0.2 kgms/mm derived by D i j k s t r a and Martius. The 

experimental v a l u e s obtained are 10 times l a r g e r than the 

t h e o r e t i c a l v a l u e s . 
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1 2 

I f /d i s p l o t t e d against cr (from equation 3.13) 

a l i n e a r r e l a t i o n s h i p should be obtained, i f y i s indepen­

dent of s t r e s s , with a gradient given by p*j~ ^ 100 . The 
0 N d ty 

—E'8V2 
i n t e r c e p t on the cr a x i s i s given by . 

^A100 

The e f f e c t of a compressive s t r e s s cr dynes/cm 

applied along the [001 ] d i r e c t i o n g i v e s s i m i l a r r e s u l t s 

to the case studied above. Once again a s t r e s s p a t t e r n 

takes over from the zero s t r e s s p a t t e r n as the s t r e s s i s 
increa s e d . The energy of the f i r s t system i s given by _» 

I 
and that of the second by 

The r e l a t i o n s h i p obtained f o r the e q u i l i b r i u m spacing of 

the s t r e s s p a t t e r n I i s 

J V * 3X... 
T h i s d i f f e r s from equation (3.13) by only a f a c t o r of 2 

i n the s t r e s s term. 

E f f e c t of s t r e s s on the main domain w a l l s 
2 

Consider the e f f e c t of a t e n s i o n a l f o r c e cr dynes/cm 

ac t i n g along the [101] d i r e c t i o n on the main Bloch w a l l 

of s t r e s s p a t t e r n I . I f the adjacent domains are considered 

to be magnetized along the [ 0 0 l ] . [ 0 0 l ] d i r e c t i o n s then the 

normal to the w a l l i s i n a [010] d i r e c t i o n . 
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The s t r a i n tensors are given by 
A„'s A j 5 » (Tc.i 

ZUM- C.»)U». 
A„ l

 2 - q-Ct An' * z 
U « - c J ( c w v 2 c J * c*«* 

and A^'s Ai3 a O 

Using the same method as described before, the reduced 

anisotropy energy becomes 

As X = 0 f o r the w a l l under c o n s i d e r a t i o n , the w a l l 

energy i s given by ( L i l l e y 1950) 

i . 2 [(|.T')* • T'-i-W-lx-M] 

where Yq i s the energy of a 90 w a l l with i t s normal i n 

a [001 ] d i r e c t i o n . The r e l a t i o n s h i p between Y/Yq and 

a- i s shown i n Pig. (21) . A s i m i l a r r e l a t i o n s h i p can be 

c a l c u l a t e d when i s a compressive s t r e s s a c t i n g i n a 

[010] d i r e c t i o n . I n t h i s case the s t r a i n components are 

U„-C.0UH* 2C ( 1) 
A u ' s ~<T I C« » CtQ 

U„-C.JU" fr 2c.») 

l c w - Cn)(c» • 2c l x) 
A»x • Aw • A»i • o 

T h i s g i v e s (i'L r 4 3 X^a^. X^[3X I O 0 U»i-Cu) 4 2<r] 
If 

The Y/Yo,cr r e l a t i o n s h i p obtained from t h i s i s a l s o shown 

i n P i g . (21) . 
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Results 
D i j k s t r a and Martius f i t t e d t h e i r experimental 

r e s u l t s w i t h a s t r a i g h t l i n e graph of gradient 1.5 x 1 

(See Pig. 23). They d i d not s t a t e the thickness of the 
specimen, except as an order of magnitude, but "by t a k i n g 
3 = 0.032 cms y = 1.35 ergs/cm and s u b s t i t u t i n g i n 
equation (3.13) the value of the g r a d i e n t becomes 1.66 x 
10"^". Their experimental p o i n t s d i d not f i t the s t r a i g h t 
l i n e r e l a t i o n s h i p very w e l l as there appeared a marked 
ki n k i n the graph at about 30 kgms/mm . The i n t e r c e p t on 

p 
the stress axis i s +16 kgms/mm . The t h e o r e t i c a l i n t e r -

—E'8^2 o cept i s given by cr = , which f o r an angle of 1 
^1 00 

degree between the [001] d i r e c t i o n and the surface works 
2 o out to -0.08 kgms/mm and f o r an angle of \ t o -0.02 

2 

kgms/mm . Prom t h e i r stress f r e e p a t t e r n i t can be seen 
t h a t the i n c l i n a t i o n must be of t h i s order of size as 
the surface i s f r e e from closure domains. 

2 2 The v a r i a t i o n of +16 kgm/mm and -0.1 kgms/mm 
between experiment and theory suggests some inaccuracies 

1 2 

i n t h e i r experiment. Pig. (22) shows a t y p i c a l /d <r 
r e l a t i o n s h i p obtained by applying a t e n s i o n a l s t r e s s along 
the [110] d i r e c t i o n . The p o i n t s seem to f i t q u i t e w e l l 
the curve drawn w i t h a gra d i e n t 

3 h 00 
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where c i s a m u l t i p l y i n g f a c t o r f o r the v/all energy and 
i s a f u n c t i o n of st r e s s . Ycr_0 i s the value of the w a l l 
energy at zero s t r e s s . The experimental values f o r t h i s 
p a r t i c u l a r curve are t = 0.032 cms X = 27 x 10""̂  and 
Y^Q = 1.35 ergs/cm . I f E' i s a f u n c t i o n of s t r e s s , 
which w i l l be discussed l a t e r , i t w i l l have a n e g l i g i b l e 
e f f e c t on the shape of the curve. I t had "been hoped t o 
c o r r e l a t e the i n t e r c e p t on the stress a x i s , which i s 
p r o p o r t i o n a l to E' , v/ith d Q, the stress f r e e domain 
spacing "but the e r r o r involved i n e x t r a p o l a t i n g the 
curved graph, and the very small values of i n t e r c e p t s , 
made the er r o r s f a r too large. A f a i r l y l a r g e range of 
i n t e r c e p t s f o r d i f f e r e n t specimens was found, v a r y i n g 
from -3 kgms/mm t o + 5 kgms/mm . This was probably due 
to d i f f e r i n g amounts of r e s i d u a l s t r e s s i n the specimens 

For comparison a t h e o r e t i c a l graph, t a k i n g i n t o 
account the v a r i a t i o n of w a l l energy w i t h s t r e s s , i s 
superimposed on the experimental p o i n t s of D i j k s t r a and 
Martius (see Pig. 23) . By t a k i n g the same zero s t r e s s 
g r a d i e n t , and an i n t e r c e p t of +9 kgms/mm a b e t t e r f i t i 
obtained than w i t h the s t r a i g h t l i n e r e l a t i o n s h i p . 

Also shown on Fig. (22) are the experimental p o i n t s 
obtained by applying a te n s i o n a l s t r e s s along the [110] 

d i r e c t i o n by bending the specimen. They give the same 
1 2 
/d , o~ r e l a t i o n s h i p as obtained w i t h a t e n s i o n a l p u l l , 
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a l l o w i n g f o r experimental e r r o r s . As the r e s u l t s on 
stre s s p a t t e r n I are i d e n t i c a l i n both cases i t seems 
t h a t t h i s "bending technique w i l l g ive u s e f u l r e s u l t s 
when applied t o other specimens. 

Pig. (2L\) shows r e s u l t s obtained by compressing 
the specimen, by bending, along a [001 ] d i r e c t i o n . I n 
the example shown, the p o i n t s are f i t t e d w i t h a curve of 

gr a d i e n t 3X, o c / ^ 2 t c V = 0 a n d ^ n t e r c e ^ t ^=0 kgms/mm . 
The f i t would have been much b e t t e r had the p o i n t s been 

2 
f i t t e d w i t h a curve of i n t e r c e p t cr = 3 kgms/mm . Again 
i n t e r c e p t s i n the range -1 t o +3 kgms/mm were obtained 
w i t h d i f f e r e n t specimens. 
Chain s t r u c t u r e 

A f a c t not observed by D i j k s t r a and Martius was the 
growth of a chain s t r u c t u r e on the surface of the speci­
men along the w a l l s of stress p a t t e r n I . Photographs of 
t h i s s t r u c t u r e are shown i n Plate 2. A t y p i c a l growth 
sequence i s described below. 

p 

Stress 28 kgms/mm t- Small e l l i p t i c a l l y shaped 
domains, length ~ / l 0 d , formed, seemingly at random, 
along the w a l l s by the s p l i t t i n g of the w a l l . 

'2 

Stress 31 kgms/mm These have grown to a l e n g t h 
of about d w i t h a corresponding increase i n width. 
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Stress 35 kgms/mm The number o f l i n k s has increased 
u n t i l there i s no s t r a i g h t w a l l l e f t , j u s t a continuous 
chain s t r u c t u r e . At t h i s s t r e s s , each l i n k i s s t i l l 
e l l i p t i c a l l y shaped. 

2 

Stress 37 kgms/mm :- up t o the y i e l d p o i n t : - the 
l i n k s have become b a r r e l shaped, being up t o " ' d / i | i n width 
and d-2d i n length. 

I f a v e r t i c a l f i e l d was applied, a l t e r n a t e chains 
disappeared i n d i c a t i n g t h a t F i g . (25a) i s probably a 
reasonably good r e p r e s e n t a t i o n of the f a c t s . As no c o l l o i d 
was p o l a r i z e d over the surface of the chain under the 
inf l u e n c e of a v e r t i c a l f i e l d , the d i r e c t i o n of magnetiza­
t i o n must l i e i n the surface of the specimen. An attempt 
to discover the magnetization d i r e c t i o n using the scratch 
technique proved u n s a t i s f a c t o r y . C o l l o i d was not a t t r a c t e d 
to scratches running i n e i t h e r the [001] or [110] d i r e c ­
t i o n . The conclusion t h a t they are small demagnetized 
regions must be excluded from simple energy considerations. 
I t seems probable t h a t they are regions magnetized i n [001] 

and[00T] d i r e c t i o n ^ the r e d u c t i o n i n closure domain', 
volume energy being s u f f i c i e n t to compensate the formation 
of f r e e poles on t h e i r undersurface ( F i g . 25b). These 
s t r u c t u r e s d i d not form on a l l examples of stress p a t t e r n 
I . 
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I t i s i n t e r e s t i n g t o compare t h i s s t r u c t u r e w i t h 
the one observed "by Bates and Hart (1956) on a (110) 
surface of s i l i c o n i r o n . A s t r u c t u r e the same as stress 
p a t t e r n I was observed on a s i n g l e c r y s t a l o f s i l i c o n 
i r o n , measuring 1.25 cms x 0.58 cms x 0.025 cms w i t h a 
f i e l d of 10 oersteds applied along the [110] surface 
d i r e c t i o n . This f i e l d favours the [100] and [ 010] easy 
d i r e c t i o n s . At a f i e l d of about 30 oersteds the domain 
w a l l s at the surface broadened and assumed a chain l i k e 
appearance. A f u r t h e r increase i n f i e l d caused the 
chains t o become wider and at t h i s stage they appear, 
from photographs, t o be the same as those observed on 
the s t r a i n e d specimen. 

However Bates and Hart suggested t h a t the chain 
s t r u c t u r e was formed by the s h r i n k i n g of the closure 
domains, due t o an increase i n the magnetic f i e l d , and 
there f o r e the appearance of s t r i p s of f r e e poles between 
the closure domains. This i n d i c a t e s t h a t the chains are 
i n f a c t magnetized along the [100 ] d i r e c t i o n , which i s not 
the case f o r those observed on the s t r a i n e d specimens. 

3.1.3.U* Stress P a t t e r n I I 
2 

At t e n s i o n a l stresses i n the range 20-30 kgms/mm 
2 

and compressive stresses between 13-20 kgms/mm a second 
type of domain s t r u c t u r e developed. This was c a l l e d 
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s t r e s s p a t t e r n I I . Once formed i t grew at the expense 
of p a t t e r n I w i t h increasing s t r e s s , u n t i l at stresses 
nearing the y i e l d p o i n t i t covered nearly the whole of 
the surface, Pig. (26) shows the percentage area of 
p a t t e r n I I as a f u n c t i o n of s t r e s s f o r a t y p i c a l speci­
men. 

The s t r u c t u r e consists of main zig-zag w a l l s , w i t h 
a spacing "between 1 .5 and 2 times t h a t of stress p a t t e r n 
I , running i n a [001] d i r e c t i o n . A v e r t i c a l f i e l d caused 
a l t e r n a t e main w a l l s t o disappear (see p l a t e 3) while a 
f i e l d i n a [110] d i r e c t i o n caused a l t e r n a t e areas between 
these w a l l s t o increase and decrease i n s i z e . This 
suggests t h a t the main un d e r l y i n g domains are magnetized 
i n the [100] and [Too] d i r e c t i o n s , as i n s t r e s s p a t t e r n 
I , but separated by 180° w a l l s w i t h normals i n the [010] 
d i r e c t i o n . 

Between these main w a l l s l i e s a complicated surface 
s t r u c t u r e . Under a high m a g n i f i c a t i o n t h i s was seen to 
consist of a l t e r n a t e l y wide and narrow domains at an 
angle 0. to the [110] d i r e c t i o n . The spacing of these 
sub s i d i a r y domains v a r i e d across the main domains. A 
v e r t i c a l f i e l d caused a l t e r n a t e walls to disappear i n d i ­
c a t i n g t h a t they are probably small closure domains under­
neath which i s a domain s t r u c t u r e a l t e r n a t e l y magnetized 
up and down. 
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Upon in c r e a s i n g the stress 0 was found t o decrease 
as shown i n Fig. (27 ) . 

Proposed Closure Structure 
The proposed s t r u c t u r e f o r the closure domains i s 

shown i n Pig. (28) . I t i s s i m i l a r t o t h a t described by 
Mar t i n (1957). He examined the surface s t r u c t u r e on a 
(100) surface of s i l i c o n i r o n i n the form of a f l a t disc. 
The edges of the disc were of the (0,k, ) f a m i l y . By 
t h i s means he was able t o observe d i r e c t l y the s t r u c t u r e 
beneath a (111) face. He found t h a t near the edge of 
the disc the main 180° w a l l s t r u c t u r e branched i n t o what 
he c a l l e d an echelon s t r u c t u r e , which nearer the surface 
subdivided again. The s i m i l a r i t y between the two systems, 
one where there i s no easy d i r e c t i o n i n the surface, and 
the other where the easy surface d i r e c t i o n i s made un- ' 
favourable by applied stresses i s obvious. 

As a model f o r the t h e o r e t i c a l analysis of t h i s type 
of s t r u c t u r e a s i m p l i f i e d echelon system w i l l be considered 
i n which the spacing of the secondary s t r u c t u r e i s constant 
i n w i d t h across the main domain and the angle to the [110 ] 
d i r e c t i o n i s only 0 and not 0 and 9O°-0. 

I n order t h a t there are no f r e e poles on the w a l l ABCD 
the values of a. and oc0 must be r e l a t e d to 0 by 
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tan a 2 = s i n ft 
42 cos ft - s i n ft 

and tan a, = s i n (3 
42 COS ft + s i n ft 

The volume of the closure domains, f o r u n i t w i d t h of 
domain i s x_ tan a i + /d-x\ 2 tan a 9 

I f t h i s i s minimised w i t h respect to x, one obtains 
x _ tan <x0 

d-x tan oĉ  
which becomes i n terms of ft 

x _ s i n ft + 42 cos ft 
d-x = 42 cos ft - s i n ft 

I f an experimentally observed value of ft = 30° i s taken, 
the r a t i o - r*— becomes 2.5. This agrees w e l l w i t h a 
measured value of 3. 

A f u r t h e r s i m p l i f i c a t i o n , the assumption t h a t the 
w a l l energy Y i s independent of stress i s made i n a con­
s i d e r a t i o n of the energy of the system. 

The t o t a l energy i s made up of the Bloch w a l l energy 
and the magnetoelastic energy, the magnetostatic energy 
being zero. 

The t o t a l l e n g t h of w a l l s KM + AB + NO f o r the system 

i s given by L * * Y L 
w » I 

a \ u, I 
And the w a l l energy of KM, AB etc per u n i t surface area i s 

t ( & A, B | 
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The l e n g t h of w a l l s ABODE can "be approximately expressed 
by 3Y 

2 s i n p 
Domains l i k e KA'MB1, NS0R,• . - magnetized at r i g h t angles 
t o the "bulk magnetization,therefore c o n t r i b u t e an amount 
of e l a s t i c energy given "by ̂  C11 1̂ o-O • p e r volume 

Volume = <i 

1 1 z " P I ^ L Uu J .VH J (3.16) 

A compressive stress or dynes/cm 2 i n the [001 ] d i r e c t i o n 
acts on the surface closure domains. 

The volume of these = g t a m 1 t a m 2 
^ tana^ + tanocg 

Therefore the s t r e s s energy 

= T^72 ^ I O O ^ 3 1 1 P 

S u b s t i t u t i n g 2d1 =d and a=DV2 i n equation (3.15) and (3.16) 

the t o t a l energy of the system becomes 

I b J l 1 0 0 P ±fi[l 5 U * /J 2 J (3.17) 

Minimising the t o t a l energy w i t h respect t o (3 gives 

By s u b s t i t u t i n g experimental values, of d and a/d i n t o 
equation (3.18) a t h e o r e t i c a l curve i s obtained r e l a t i n g 
(3 and (r, see Pig. (27) . Even though the a/d i s taken as 

(3.18) 
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a mean value, the curve agrees q u i t e w e l l w i t h the 
experimental p o i n t s . 

I f the t o t a l energy i s minimised w i t h respect t o 
d another r e l a t i o n s h i p i s obtained 

As i t i s extremely d i f f i c u l t t o e l i m i n a t e (3 between these 
equations, the r e s u l t may be te s t e d numerically by sub­
s t i t u t i n g 

P = 3 0 ° 
2 

<r = 20 kgms/mm 
and a = 6 x 10*"3 cms. 

i n equation ( 3 . 1 9 ) . This gives a value of d = 6.2 x 10"^ 

cms, t h e r e f o r e a/d = 10. The observed value was a/d = 5. 

Change-Over from P a t t e r n I t o Pa t t e r n I I 
Although t h i s closure s t r u c t u r e f i t s the experimental 

r e s u l t s w e l l , i t does not e x p l a i n why i t should be more 
favourable a t hi g h stresses than the stress model I . 

Section 3 . 1 , 3 . 3 . shows how the main domain w a l l ̂ energies i n 
the stress model I increase w i t h t e n s i o n a l and compressive 
stresses. Now consider the e f f e c t of stress on the main 
domain w a l l s of stress p a t t e r n I I . 

I f the domains are considered t o be magnetized i n 
[001 ] , [OO't] d i r e c t i o n s , the w a l l normal w i l l be i n the 
[010] d i r e c t i o n and the stress co-ordinates f o r an exten-
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s i o n a l s t r e s s <r dynes/cm 2 w i l l "be [ o i l ] . 

The reduced a n i s o t r o p y energy f o r t h i s system i s 

U n f o r t u n a t e l y t h e s i n <p cos $ t e r m makes the i n t e g r a ­

t i o n , necessary t o o b t a i n t h e w a l l energy, t o o d i f f i c u l t . 

N e v e r t h e l e s s i t can he seen t h a t t h i s energy w i l l decrease 

w i t h i n c r e a s i n g s t r e s s . I f i t i s supposed t h a t t h e change 

over between t h e two p a t t e r n s depends o n l y on the en e r g i e s 

o f t h e main w a l l s t r u c t u r e s t h e n t h i s c r i t i c a l energy 

would be expressed by V 2 Y J J = Y j . I f "the energy o f w a l l 

I I i s taken as c o n s t a n t t h i s corresponds t o a s t r e s s o f 

38 kgms/mm ( F i g . 2 1 ) . The v a l u e i s p r o b a b l y l e s s than 

t h i s as t h e energy o f w a l l I I decreases and so compares 

f a v o u r a b l y w i t h t h e e x p e r i m e n t a l v a l u e s o f 20-30 kgms/mm . 

Using t h i s s u p p o s i t i o n t h e changeover s t r e s s when t h e 

the system i s under a compressive s t r e s s cr dynes/cm i n a 

[ l o o ] d i r e c t i o n can be e v a l u a t e d . The s t r a i n components 

i n w a l l I I are 

A«» a - a" icu • Cti.) 

ft» - A n * *»«T 

Ai, = A», • A*3i = 0 
T h i s g i v e s a v a l u e o f t h e reduced a n i s o t r o p y o f 

p!k= i (<--<«) V..<̂ V 
which i s independent o f s t r e s s . 



70. 

A more e x a c t v a l u e o f t h e change-over s t r e s s can 

now "be c a l c u l a t e d . Prom P i g . ( 2 1 ) a v a l u e o f 19 kgms/ 
2 

mm i s o b t a i n e d . As t h e e x p e r i m e n t a l v a l u e s l a y "between 

13-20 kgms/mm i t seems l i k e l y t h a t t h i s mechanism con­

t r i b u t e s a major term i n t h e e v a l u a t i o n o f t h e change­

over s t r e s s . 

3 . 2 . T e n s i o n a l Stresses a l o n g t h e f l O O l d i r e c t i o n 

3 . 2 . 1 . The s u r f a c e a (110) p l a n e t o w i t h i n one degree 

I n t r o d u c t i o n 

The s t r a i n f r e e s u r f a c e i s c h a r a c t e r i s e d by 1 8 0 ° 

B l o c h w a l l s i n a [ 1 0 0 ] d i r e c t i o n . A t e n s i o n a l s t r e s s i s 

a p p l i e d a l o n g t h e m a g n e t i z a t i o n d i r e c t i o n making i t more 

e n e r g e t i c a l l y f a v o u r a b l e t h a n t h e o t h e r easy d i r e c t i o n s . 

D i j k s t r a , M a r t i u s , Chalmers and Gavanagh (195U) 

a p p l i e d such s t r e s s e s up t o t h e y i e l d p o i n t on p o l y c r y s -

t a l l i n e s i l i c o n i r o n and f o u n d no change i n s t r u c t u r e 

whereas Shur and Zaikova ( 1958) f o u n d t h a t s t r e s s e s 

g r e a t e r t h a n 10 kgms/mm caused a r e d u c t i o n i n t h e domain 

spacing. They d i d n o t make any measurements o f domain 

w i d t h a g a i n s t s t r e s s . 

R e s u l t s 
T h i s work was r e p e a t e d u s i n g a bending t e c h n i q u e f o r 

a p p l y i n g t h e t e n s i o n a l s t r e s s e s . Stresses up t o the 

y i e l d p o i n t appeared t o have no e f f e c t on t h e domain 
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s t r u c t u r e . S l i g h t changes o f s t r u c t u r e o c c u r r e d near 
i n c l u s i o n s and o t h e r s u r f a c e i m p e r f e c t i o n s b u t the main 
spac i n g remained unchanged. 

T h e o r e t i c a l C o n s i d e r a t i o n s 

The domain spa c i n g d i s g i v e n "by 

where E' = 1 . 7 I 2 s i n 2 5 2 

The e f f e c t o f s t r e s s on t h e components o f e q u a t i o n (3.20) 

w i l l "be c o n s i d e r e d . 

W a l l Energy 

As t h e s u r f a c e o f t h e specimen makes an angle o f 

one degree or l e s s w i t h t h e [ 0 0 1 ] d i r e c t i o n t h e s t r e s s 

w i l l "be c o n s i d e r e d t o a c t al o n g t he [ 001 ] d i r e c t i o n . 

The s t r a i n t e n s o r s produced "by a s t r e s s o f cr dynes/ 

cm 2 are 

U„- c.iHc,,* 2c») 

(c«, «* c, JU„ • 2c,,.) 
A* * A'„ -- o 

T h i s g i v e s an e x p r e s s i o n f o r t h e reduced a n i s o t r o p y o f 

X = 3X,oo [ 3Xleo (c w - c u) • 2a- ] 
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A graph o f t h e v a r i a t i o n o f w a l l energy w i t h s t r e s s f o r 
X=0 i s shown i n P i g . ( 2 1 ) . I f t h i s i s approximated by 
a s t r a i g h t l i n e t h r o u g h t h e o r i g i n , t h e w a l l energy y 
a t a s t r e s s o f cr kgms/mm- can be r e l a t e d t o t h e energy 
Y 0__q a t zero s t r e s s by 

* = V = 0 [ 1 + 0.018a-] 
I f t h e w a l l energy i s c a l c u l a t e d f o r v a r i o u s s t r e s s e s 

and v a r i o u s values, o f X, u s i n g e q u a t i o n ( 1 . 1 7 ) and then 
1 

m u l t i p l i e d by a f a c t o r c o s ( / ^ _ x ) > t o "take i n t o account 

the t h i c k n e s s o f t h e w a l l , t h e v a l u e o f X c o r r e s p o n d i n g 

t o t h e minimum e f f e c t i v e w a l l energy can be c a l c u l a t e d 

as a f u n c t i o n o f s t r e s s . T h i s i s shown i n F i g . ( 2 9 ) . 

W i t h i n c r e a s i n g s t r e s s t h e w a l l r o t a t e s away f r o m t h e 

(100) p l a n e u n t i l a t a s t r e s s o f 20 kgms/mm i t l i e s i n 

the (110) p l a n e . T h e r e f o r e t h e i n c r e a s e i n e f f e c t i v e 

w a l l energy w i l l n o t be as l a r g e as shown i n P i g . ( 2 1 ) . 

For example a t zero s t r e s s X = 1 3 ° and 
r e f f 

V = 0 
= 2.63Z+ 

w h i l e a t 10 kgms/mm2 X = 31 ° and 

= 3 .125 
T e f f 

V = 0 
I f t h e change i n d was dependent on t h e w a l l energy alone 

then w I 
V = 1 0 _ 3 .1 25 

<V=0 ^ 2 ^ 5 
= 1.09 

At cr = 2+0 kgms/mm2 t h i s f r a c t i o n i s 1 . 2 1 . 
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One would t h e r e f o r e expect t h e w a l l energy t o i n c r e a s e "by 
the amount shown above. 

M a g n e t o s t a t i c Energy 

As 8, the angle between t he [001.] d i r e c t i o n and t h e 

s u r f a c e , has been c o n s i d e r e d t o t e n d t o zero, t h e s t r e s s 

cannot have any e f f e c t on t h e e f f e c t i v e p e r m e a b i l i t y or 8. 

One would t h e r e f o r e expect t h e domain spacing t o i n c r e a s e 

s l i g h t l y w i t h s t r e s s due t o t h e i n c r e a s e i n w a l l energy. 

However i n t h i s case, when 8 tends t o zero, t h e 

m a g n e t o s t a t i c energy p r o b a b l y depends upon f r e e p o l e s 

formed a t the g r a i n boundary. T h e r e f o r e the o r i e n t a t i o n 

o f the s u r r o u n d i n g g r a i n s and t h e e f f e c t o f s t r e s s on them 

may w e l l be i m p o r t a n t . 

I n o r d e r t h a t t h e domain s p a c i n g remains c o n s t a n t t h e 

m a g n e t o s t a t i c energy must i n c r e a s e a t the same r a t e . 

3 . 2 . 2 . S u r f a c e a few degress o f f a (110) p l a n e 

I n t r o d u c t i o n 

When t h e [ 0 0 l ] d i r e c t i o n makes, an angle o f between 

3 and L\. degrees w i t h t h e s u r f a c e a system o f c l o s u r e 

domains are formed on the s u r f a c e t o reduce m a g n e t o s t a t i c 

energy. T h i s c l o s u r e s t r u c t u r e c o n s i s t s o f dagger l i k e 

domains magnetized a l o n g t h e (ob'T] d i r e c t i o n i n a main 

domain magnetized i n a [001] d i r e c t i o n . I n o r d e r t h a t 

t h e r e are no f r e e p o l e s on t h e main p a r t o f t h e dagger 
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s t r u c t u r e , t he w a l l s s h o u l d l i e a t equ a l angles t o the 
[ 1 1 0 ] d i r e c t i o n and t h e r e f o r e i n t e r s e c t a l o n g a [001 ] 
l i n e . The a n g l e which these w a l l s make w i t h t he 
[ l 0 0 3 and [ 0 1 0 ] d i r e c t i o n s w i l l be governed by the 
minimum energy o r i e n t a t i o n o f a 1 8 0 ° w a l l . T h i s has 
been shown a t zero s t r e s s t o be 1 3 ° . 

A s e r i e s o f photographs ( p l a t e 4) shows the e f f e c t 

o f s t r e s s on t h i s s t r u c t u r e . As t h e s t r e s s i n c r e a s e s t h e 

daggers become s m a l l e r i n b o t h l e n g t h and w i d t h and t h e 

main 180°waUsbecome more d i s t i n c t . At a s t r e s s o f about 

20 kgms/cm the dagger s t r u c t u r e disappears a l t o g e t h e r . 

A s m a l l v e r t i c a l f i e l d , a p p l i e d a t t h i s s t r e s s , p o l a r i z e s 

t h e c o l l o i d over a l t e r n a t e domains showing t h a t t he mag­

n e t i z a t i o n v e c t o r s s t i l l make an angle w i t h the s u r f a c e . 

Shur and Zaikova (1958) observed these changes and 

on p u r e l y q u a l i t a t i v e grounds, as t h e y d i d n o t a p p l y 

v e r t i c a l f i e l d s t o a s c e r t a i n the m a g n e t i z a t i o n d i r e c t i o n , 

suggested t h a t t h e disappearance o f c l o s u r e domains was 

due t o t h e r o t a t i o n o f the m a g n e t i z a t i o n v e c t o r s i n t o t h e 

s u r f a c e . 

T h e o r e t i c a l C o n s i d e r a t i o n s 

E q u a t i o n 1.10 shows t h a t f o r i s o t r o p i c m a g n e t o s t r i c ­

t i o n t h e s t r e s s energy i s g i v e n b y 
2 

E = -3_ cr>\ cos e 
°" 2 
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where e i s t h e angle "between the s t r e s s and. m a g n e t i z a t i o n 
d i r e c t i o n s . I f t h i s i s m i n i m i s e d w i t h r e s p e c t t o e, i t 

g i v e s t h e l i m i t i n g d i r e c t i o n i n t o w h i c h t h e m a g n e t i z a t i o n 

d i r e c t i o n r o t a t e s when t h e s t r e s s energy i s much l a r g e r 

t h a n t h e a n i s o t r o p y energy. T h i s i s e=0. 

The more g e n e r a l case when ^4= \ j QQ N O W ^ E 

c o n s i d e r e d . The m a g n e t i z a t i o n d i r e c t i o n c o s i n e s are 

fcos a, s i n a. s i n a\ and the d i r e c t i o n cosines o f t h e 
V ' 42 - 7 r ) 
s t r e s s a~re ( c o s ;y, s i n y, s i n y \. 

V 42 42 ) 

The d i f f e r e n t i a l o f the energy w i t h r e s p e c t t o a g i v e s 

2 

I f t h e s i n y t e r m i s n e g l e c t e d t he e q u a t i o n becomes 

1 X b0>&**2ot = X , „ AtaKie>2eC 
o*£ hwv2oC = to*\t 2X,M (3.21) 

XlC9 

T h i s e q u a t i o n corresponds t o a p o s i t i o n o f minimum energy. 

S u b s t i t u t i n g i n t o e q u a t i o n 3 .21 
X-,^ = - 5 x 10" 

X 1 0 0 = + 27 x 1 0 " 6 

and y = 5 ° 

g i v e s t he r.e.sult a = - 1 ° 5 0 ' 

The l i m i t t o which t he m a g n e t i z a t i o n tends a t h i g h s t r e s s e s 

i s 1 ° 5 0 ' away f r o m t h e easy d i r e c t i o n , and the s u r f a c e 

d i r e c t i o n . 
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E f f e c t o f S t r e s s on e f f e c t i v e p e r m e a b i l i t y 

The method used i s t h a t due t o K i t t e l (19i+9). I f 

t h e m a g n e t i z a t i o n v e c t o r makes an angle <fi w i t h t h e [001 ] 

d i r e c t i o n the a n i s o t r o p y energy can be w r i t t e n 

E = Kd>2 

an Y 

S i m i l a r l y , n e g l e c t i n g t h e e f f e c t o f X^^, the magneto-

e l a s t i c energy i s g i v e n by 

where a i s d i r e c t i o n o f s t r e s s . 

The energy due t o a s m a l l f i e l d H, a p p l i e d normal 

t o t h e s u r f a c e 

E H = HI0 

M i n i m i s i n g t h e t o t a l energy w i t h r e s p e c t , t o 0 g i v e s 
x H i s 0 = 

2K - 3X, 00 era 

T h i s g i v e s a s u s c e p t i b i l i t y 
/ i s 2 

2K -. 3 X 1 0 0 o u 

and an e f f e c t i v e p e r m e a b i l i t y 

M = 1 + u m s 2 

2K - 3X, 00 OCX 

For t h e s t r e s s term t o have any e f f e c t on the a n i s o t r o p y 

term cr must be about 1 0 4 kgms/mm . 

T h e r e f o r e up t o 20 kgms/mm the s t r e s s has a neg­

l i g i b l e e f f e c t on t h e e f f e c t i v e p e r m e a b i l i t y . 
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C o n c l u s i o n 

I t has t h e r e f o r e been shown t h a t t h e cause o f t h e 

disappearance o f the dagger s t r u c t u r e i s n o t due t o a 

r e d u c t i o n o f the m a g n e t o s t a t i c energy by e i t h e r the 

r o t a t i o n o f the m a g n e t i z a t i o n v e c t o r i n t o t h e s u r f a c e 

or by an i n c r e a s e i n t h e e f f e c t i v e p e r m e a b i l i t y . 

The i m p o r t a n t f a c t o r must be t h e r o t a t i o n o f the 

p o s i t i o n o f minimum energy o f the 1 8 0 ° w a l l , s p e c i f i e d by 

X, as shown i n F i g . 29 . At zero s t r e s s t h e r e d u c t i o n o f 

m a g n e t o s t a t i c energy, due t o the f o r m a t i o n o f daggers 

must be b a l a n c e d by t h e w a l l energy o f these s t r u c t u r e s . 

As t h e s t r e s s i n c r e a s e s t h e v a l u e o f X i n c r e a s e s , thus 

i n c r e a s i n g the area o f Bloch w a l l f o r a s p e c i f i c s u r f a c e 

area o f dagger. Also t h e energy o f t h e w a l l per u n i t 

area i n c r e a s e s . The w a l l energy w i l l now be g r e a t e r t h a n 

the r e d u c t i o n o f m a g n e t o s t a t i c energy and so the s i z e o f 

the dagger must decrease t o r e s t o r e t h e energy balance. 

At a s t r e s s o f 20 kgms/mm the dagger w a l l s s h o u l d 

be normal t o the s u r f a c e , and t h e r e f o r e would not c o n t r i ­

b u t e any r e d u c t i o n i n t h e m a g n e t o s t a t i c energy. There­

f o r e one would expect t h e daggers t o d i s a p p e a r a t t h i s 

s t r e s s . T h i s agrees v e r y w e l l w i t h t h e observed v a l u e . 
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CHAPTER POUR 

THE EFFECT OF EXTERNAL STRESSES UP TO THE YIELD 

POINT ON (100) SURFACES 

1. A compressive s t r e s s a p p l i e d along t h e [ 011] 

d i r e c t i o n on a (100) s u r f a c e . 

1 .1. I n t r o d u c t i o n 

A compressive f o r c e a p p l i e d i n the [ 0 1 1 ] s u r f a c e 

d i r e c t i o n , as shown i n s e c t i o n 3 . 1 . 1 . 1 . w i l l make t h e 

easy [ 1 o o l d i r e c t i o n normal t o t h e s u r f a c e more f a v o u r a b l e 

e n e r g e t i c a l l y t h a n t h e two easy d i r e c t i o n s l y i n g i n t h e 

s u r f a c e . I t i s t h e r e f o r e e q u i v a l e n t , i n these r e s p e c t s , 

t o a t e n s i o n a l f o r c e i n t h e [ 1oo] d i r e c t i o n . T h i s 

system has been c o n s i d e r e d by Chikazumi and Suzuki ( 1 9 5 5 ) . 

The s t r u c t u r e formed under t h i s s t r e s s c o n s i s t s o f main 

domains magnetized normal t o t h e s u r f a c e , t h e f l u x b e i n g 

c l o s e d by t r i a n g u l a r domains magnetized i n one o f the 

s u r f a c e easy d i r e c t i o n s , see F i g . 30 . The Bl o c h w a l l 

o f the c l o s u r e domains i B shown t o be z i g - z a g i n n a t u r e . 

T h i s i s because t h e o n l y r e q u i r e m e n t f o r no f r e e p o l e s 

t o f o r m on t h e w a l l i s t h a t t h e normal t o t h e w a l l s h o u l d 

l i e i n t h e (110) p l a n e . As t h e w a l l energy i s a f u n c t i o n 

o f o r i e n t a t i o n t h e w a l l w i l l l i e i n i t s minimum energy 

p o s i t i o n . T h i s p o s i t i o n corresponds t o an angle o f <p -

6 2 ° ( F i g . l\) , v/here 2ip i s t h e angle between a d j a c e n t 

s t r i p s o f z i g - z a g s u r f a c e . The minimum</?= 6 2 ° i s e q u i v a -
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l e n t t o a) = 1 0 6 ° , or b e i n g t h e observed z i g - z a g angle 
a t t h e s u r f a c e . 

Chikazumi and Suzuki a p p l i e d t h i s model and i t s 

v a r i a t i o n w i t h changing s t r e s s t o t h e maze s t r u c t u r e 

formed on a m e c h a n i c a l l y p o l i s h e d s u r f a c e and t o the 

s t r a i n p a t t e r n produced by a deep s c r a t c h i n a [001 ] 

d i r e c t i o n on a ( 1 0 0 ) s u r f a c e . I n n e i t h e r case were 

t h e y a b l e t o v e r i f y q u a n t i t a t i v e l y t h e i r e x p e r i m e n t a l 

c o n s i d e r a t i o n s . 

i l . t . . 2 . E x p e r i m e n t a l D e t a i l s 

S i n g l e c r y s t a l s o f s i l i c o n i r o n were p r e p a r e d i n 

s t r i p s 4 cm x 1 cm. x 0 .032 cm w i t h t h e main ( 100 ) 

s u r f a c e p l a n e bounded by edges i n t h e [ 0 1 1 ] d i r e c t i o n s . 

T h i s i s known as t h e Neel c u t . The specimens were 

compressed a l o n g the [011] d i r e c t i o n , o r the [ O i l ] 

d i r e c t i o n u s i n g the b e n d i n g t e c h n i q u e . I t was p o s s i b l e 

t o r e p e a t t h i s work on p o l y c r y s t a l l i n e m a t e r i a l as a 

p i e c e o f 3% s i l i c o n i r o n cube t e x t u r e d sheet, w i t h 

average g r a i n d i ameter o f about 5 mras and t h i c k n e s s 

0.032 cms, was o b t a i n e d f r o m the General E l e c t r i c 

Company, U.S.A. T h i s was c u t i n t o specimens o f approx­

i m a t e l y t h e same s i z e and shape as t h e s i n g l e c r y s t a l s . 
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I 4 . . I . 3 . R e s u l t s 

The r e s u l t s o b t a i n e d f r o m t h e s i n g l e c r y s t a l work 

wâ .e r a t h e r d i s a p p o i n t i n g . The zero s t r e s s s t r u c t u r e 

was n o t t h e same as t h a t d e s c r i b e d by Nee l , b e i n g much 

more complex, p r o b a b l y due t o t h e presence o f random 

s t r e s s e s i n t h e m a t e r i a l . Upon a p p l y i n g a com p r e s s i o n a l 

f o r c e along t h e [oil] d i r e c t i o n t h i s p a t t e r n d i s a p p e a r e d 

at about 15 kgms/mm and a f t e r a s h o r t t r a n s i t i o n a l 

range o f s t r e s s t h e s t r a i n p a t t e r n as d e s c r i b e d by 

Chikazumi and Suzuki appeared. U n f o r t u n a t e l y t h e 

s t r u c t u r e was n o t a t a l l r e g u l a r and r e l a t i o n s h i p s 
1 2 

between / d ( d b e i n g t h e domain s p a c i n g ) and s t r e s s o r 

between u) and s t r e s s c o u l d n o t be o b t a i n e d . The p a t t e r n s 

appeared v e r y much l i k e those o b t a i n e d by Kaczer ( 1958) 

by a p p l y i n g a compressive f o r c e o f c y l i n d r i c a l symmetry 

t o a s i n g l e c r y s t a l o f 2$ s i l i c o n i r o n c u t i n a c y l i n d r i ­

c a l shape 1 cm l o n g and 8 mms i n dia m e t e r . He fo u n d t h a t 

t h e z i g - z a g s t r u c t u r e appeared a t about 10 kgms/mm- , which 

must be m u l t i p l i e d by V"2 t o compare d i r e c t l y w i t h t h e 
2 

r e s u l t o b t a i n e d i n t h e above experiment i . e . 17 kgms/mm . 

However v e r y good r e s u l t s were o b t a i n e d upon s t r a i n ­

i n g t h e p o l y c r y s t a l l i n e s i l i c o n i r o n specimens. P l a t e 5 

shows a t y p i c a l s e r i e s o f photographs t a k e n at v a r i o u s 

stages o f s t r e s s . 
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At a s t r e s s of about 1 kgm/mm the i n i t i a l s t r u c t u r e 

"began to break up and disappear. A f t e r a t r a n s i t i o n a l 

range of about 3 kgms/mm with no apparent domain 

s t r u c t u r e ^ t h e s t r e s s p a t t e r n appeared w i t h zig-zag 

w a l l s running along the [001] d i r e c t i o n . A v e r t i c a l 

magnetic f i e l d caused a l t e r n a t e w a l l s to disappear, 

showing the presence of a v e r t i c a l component of magneti­

za t i o n . As the s t r e s s was i n c r e a s e d the domain spacing 
1 2 

decreased. F i g . 31 shows a t y p i c a l /d , or graph. The 

same p a t t e r n s were a l s o photographed at a magn i f i c a t i o n 

of l+QOx, so that measurements could be taken on the z i g ­

zag angles. Even so, the e r r o r involved i n measuring 

these proved f a i r l y high and i n order to obtain s a t i s ­

f a c t o r y r e s u l t s 50 measurements had to be taken at each 

value of s t r e s s . These r e s u l t s are p l o t t e d i n Pig. 3 2 . 

T h i s type of s t r e s s p a t t e r n remained on the surf a c e 

of the specimens up to the l i m i t of the experiments, i . e . 
o 

45 kgms/mm , and no other s t r u c t u r e was formed. 

4.1 . 4 . T h e o r e t i c a l Considerations 

4.1 . 4.1. V a r i a t i o n of domain spacing with s t r e s s 

The p o l y c r y s t a l l i n e case only w i l l be considered 

i n an attempt to i n t e r p r e t the observations made under 

these s t r e s s c o n d i t i o n s . The i n i t i a l s t r u c t u r e c o n s i s t s 

of 180° w a l l s i n a [001] d i r e c t i o n . The energy fo r u n i t 
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s u r f a c e area of t h i s system, under the i n f l u e n c e of a 
compressive s t r e s s cr dynes /cm 2 a c t i n g i n the [ 011 ] 
d i r e c t i o n , can "be w r i t t e n as the sum of the magnetostatic, 
magnetoelastic, and domain w a l l energies thus 

t "being the thickness, of the specimen. 

Assuming 2Ŷ Q = Y^g^ = Y> and assuming that y i s 

independent of o r i e n t a t i o n , the energy of the s t r e s s 

p a t t e r n f o r u n i t s u r f a c e area becomes 

U J if i U.2) 

The e q u i l i b r i u m spacings of the two systems can "be found 

by minimising expressions (4«2) and 1) with r e s p e c t 

to d and d 0. The s t r e s s p a t t e r n spacing thus obtained i s 

given by 

where y i s the energy of the main v e r t i c a l w a l l . 

I f the magnetization on e i t h e r side of the main w a l l 

i s considered to be i n [ 001 ] and [ 0 0 l ] d i r e c t i o n s , then 

the s t r e s s cr dynes/cm 2 i s a p p l i e d i n the [l 1 o] d i r e c t i o n 

and the reduced anisotropy energy i n the w a l l i s 
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As X=0, the v a r i a t i o n of w a l l energy with s t r e s s has 
p r e v i o u s l y "been evaluated and i s shown i n F i g . 2 1 . 

Upon s u b s t i t u t i n g values of t = 0 . 0 3 2 cms, \ j QQ = 
—6 2 

26 x 10 , Y = 1 . 3 5 ergs/cm and A = 50 (corresponding 
to 8 = 1 ° ) i n t o equation (L).. 3 ) , a value f o r the i n t e r -

1 2 2 cept on the s t r e s s a x i s at /d = 0 of - | kgm/mm i s 

obtained. 

A t h e o r e t i c a l graph, t a k i n g i n t o account the 

v a r i a t i o n of w a l l energy with s t r e s s i s shown i n Pig. 31• 
1 2 

I t has an i n t e r c e p t of /d = 0 of 0 and a gradient given 
by i N 00 . The experimental p o i n t s would be f i t t e d more 

° Yt 
2 

c l o s e l y by taking an i n t e r c e p t of about 7 kgms/mm . A 

range of i n t e r c e p t s between -1 and +8 kgms/mm was 

obtained f o r d i f f e r e n t specimens. As explained before 

t h i s i s probably due to random s t r e s s e s i n the m a t e r i a l . 

The c u t - o f f value, that i s the s t r e s s at which the 

energies of the two systems are equal, was c a l c u l a t e d i n 

the same way as described i n s e c t i o n 3 . 1 . 3 . 3 . f o r the 

( 1 1 0 ) surface. For a value of S = 1 ° i . e . A = 50 t h i s 

becomes 0 . 0 2 kgms/mm which i s about 20 times s m a l l e r 

than the observed,value. 

Z4.. 1 . 2 . V a r i a t i o n of zig-zag angle with s t r e s s 

I n t h e i r treatment of the v a r i a t i o n of zig-zag angle 

with s t r e s s , Chikazumi and Suzuki did not consider the 



e f f e c t of s t r e s s on the Bloch w a l l energy of the c l o s u r e 

domains. They assumed that the only e f f e c t of s t r e s s 

was to vary the magnetic pole density formed on these 

w a l l s . 

The e f f e c t of s t r e s s on the w a l l energy w i l l now be 

considered. Chikazumi and Suzuki c a l c u l a t e d the v a r i a ­

t i o n of the energy per u n i t area of the average plane of 

the zig-zag w a l l y / s i n <p "by approximating the anisotropy 

energy g(e,0) with 2g Q cos2(^ ^ where g Q = &Ll±pl t 

The d i r e c t i o n cosines (e,0=O) can he w r i t t e n i n terms of 

the angles e and * thus ( J ^ l M , -u*lt»*)) 
Therefore q , \C\w?(b*%)[ \ * 3 u * * U * ^ ) J 

By s u b s t i t u t i n g the magnetization d i r e c t i o n c o s i n e s and 
1 1 

the s t r e s s d i r e c t i o n c o s i n e s ( O , ^ > ^ ) i n t o equation 

( 1 . 9 ) , the magnetoelastic energy becomes 

I f the zig-zags are symmetrical about the [0113 d i r e c t i o n 

then the above energy expression represents the e f f e c t of 

s t r e s s on one p a r t of the z i g - z a g w a l l and 

represents the energy of the other p a r t of the w a l l . 

At a f i r s t approximation l e t the s t r e s s energy of 

the t o t a l w a l l be given by 
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as the second term i n each expression i s smaller than 

the f i r s t . The t o t a l anisotropy energy now becomes 

Pig . 33 shows a s e r i e s of curves of y/sin ip against <// f o r 

va r i o u s values of the compressive s t r e s s . Up to about 

200 kgms/mm i t can be seen that <Am^n remains e f f e c t i v e l y 

constant while the value of w a l l energy at ̂  . i n c r e a s e s 

with s t r e s s . Chikazumi and Suzuki approximated t h e i r 
2 

zero s t r e s s curve using a ( ^ ~ ^ m j _ n ) r e l a t i o n s h i p thus 

Y = C + 6 . 7 3 x 1 0 " ^ ( ^ m l n ) 2 ^ A K 

where ip i s expressed i n degrees. As t h i s i s d i f f e r e n t i a t e d 

w ith r e s p e c t to <p to f i n d the v a r i a t i o n of ip with s t r e s s , 

the value of C i s not important. However upon t a k i n g 

measurements on the graphs i t was found that the m u l t i -
2 

p l y i n g constant of (ip ~ ^ m j _ n ) v a r i e d w i t h s t r e s s and t h i s 

i s shown i n Pig. 3k» T h i s v a r i a t i o n may be represented 

approximately by a l i n e a r r e l a t i o n s h i p of the form Y = C + 6 . 7 3 x 10"^(1 + 3 . 9 2 x 10" 3 <r) ( ^ m i n ) 2 VAK 
2 where cr i s expressed i n kgrns/mm"1 

Chikazumi and Suzuki minimised the w a l l energy term 

with the f r e e pole energy term 
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E = const + 1 . 2 3 x 1 0 " ^ m 2c^ 2 

m. s 

where c i s the amplitude of the zig-zag and tin the pole 

density-_is given "by 
m = ° ' 1 8 W x x 

T i s a t e n s i o n a l f o r c e normal to the s u r f a c e . When 

dea l i n g with a compressive f o r c e cr along the [ 011 ] 

d i r e c t i o n t h i s becomes 
m =048 ^ppcr 

^ I 

Experimental v a l u e s of c were found to vary between 

2 . 8 x 10 - ^" cms and 3 . 7 x 1 0~^ cms. However by taking 

the value used i n the c a l c u l a t i o n s of Chikazumi and 

Suzuki of 1+ x 10 ̂  cms, the v a r i a t i o n of zig-zag angle OJ 

w i t h cr becomes 

cr (kgms/mm2) = 2 x 1+29 1 + 3 . 9 2 x 1 0 " V ^min - 6b 

U) + 25 

T h i s i s shown i n P i g . 3 5 . The v a r i a t i o n of U) with cr i s 

much l e s s than that derived by Ciikazumi and Suzuki and 

i n the experimental range 0 - 5 0 kgms/mm i s e f f e c t i v e l y 

constant. The experimentally measured value of to at 

k5 kgms/mm2 i s 9 0 ° + 3 ° which i s 1 k ° l e s s than the value 

at 5 kgms/mm . 

Section 3 . 1 . 1 . 1 . shows how the easy d i r e c t i o n s 

deviate from the c r y s t a l l o g r a p h i c axes under the in f l u e n c e 
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of a compressive fo r c e i n a [ 011] d i r e c t i o n . At about 
50 kgms/mm2 t h i s d e v i a t i o n i s only 5 ° and i t i s d i f f i c u l t 
to see how t h i s would a f f e c t the value of the zig-zag 
angle. 

I4. 2 . A compressive s t r e s s a p p l i e d i n a [ 011 ] d i r e c t i o n on 

a su r f a c e a few degrees o f f a ( 1 0 0 ) plane. 

I4. 2 . 1 . Experimental D e t a i l s 

Specimens of p o l y c r y s t a l l i n e cube textured sheet were 

cut i n t o s t r i p s 4 cms x 1 cm x 0 . 0 3 2 cms with edges i n 

[ 1 1 0 ] and [ 1 1 0 ] d i r e c t i o n s and compressed along the [ 0 1 1 ] 

s u r f a c e d i r e c t i o n . Grains with a zero s t r e s s s t r u c t u r e 

c o n s i s t i n g of f i r t r e e c l o s u r e domains were examined. 

These g r a i n s are o r i e n t a t e d so that the [ 0 0 1 ] d i r e c t i o n 

makes an angle of between . 5 ° and 1 . 3 ° with the s u r f a c e 

see Bozorth, Williams and Shockley ( 1 9 4 9 ) . P l a t e 6 shows 

the v a r i a t i o n of the domain s t r u c t u r e with s t r e s s . 

4 . 2 . 2 . R e s u l t s 

At a s t r e s s of between 1 and 2 kgms/mm the f i r t r e e 

s t r u c t u r e broke up and i n i t s p l a c e appeared, a f t e r a 

2 kgm/mm t r a n s i t i o n range, a zig-zag s t r u c t u r e with the 

zig-zag w a l l s l y i n g i n the [ 0 1 0 ] d i r e c t i o n . Between the 

zig-zag w a l l s were arrowhead c l o s u r e s t r u c t u r e s with the 

arrowhead p o i n t i n g i n the [ 0 0 1 ] d i r e c t i o n . A small v e r t i ­

c a l f i e l d caused a l t e r n a t e zig-zag w a l l s to disappear and 

c o l l o i d to c o l l e c t over a l t e r n a t e areas between the z i g -
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zags. I n most cases no c o l l o i d c o l l e c t e d on the arrow­

heads though i n a few cases i t c o l l e c t e d over one s i d e 

of each s t r u c t u r e . 

As the s t r e s s i n c r e a s e d the zig-zag spacing 

decreased as did the s i z e of the arrowheads. At a s t r e s s 
2 

of between 10 and 15 kgms/mm the arrowheads disappeared 

altogether. As soon as t h i s happened the c o l l o i d on the 

s u r f a c e of the c l o s u r e domains was concentrated i n t o a 

l i n e running i n a [010] d i r e c t i o n along the centre of 

each domain. At t h i s stage a v e r t i c a l f i e l d showed an 

a l t e r n a t i n g s t r a i g h t l i n e and zig-zag s t r u c t u r e with the 

l i n e deposit much c l o s e r to one zig-zag than the other. 

This type of s t r u c t u r e p e r s i s t e d up to the y i e l d 

point. 

i | . 2 . 3 . I n t e r p r e t a t i o n 

The a p p l i c a t i o n of a s t r e s s causes the formation of 

a domain s t r u c t u r e with main domains magnetized n e a r l y 

normal to the surface and w i t h closure domains magnetized 

i n the [ 0 0 l ] d i r e c t i o n . As the magnetization i n the 

c l o s u r e domain i s not p a r a l l e l to the s u r f a c e a f r e e pole 

dens i t y I s i n 8 i s formed on each domain ( P i g . 3 6 a ) . This 

i s demonstrated by the p o l a r i s a t i o n of c o l l o i d on a l t e r n a t e 

domains upon the a p p l i c a t i o n of a v e r t i c a l f i e l d . The 

magnetostatic energy due to these poles, i s reduced by the 
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formation of arrowhead c l o s u r e domains which must he 
magnetized i n the [ 0 1 0 ] and [oto] d i r e c t i o n s . Thus 
i f t h i s d i r e c t i o n i s p a r a l l e l to the s u r f a c e no c o l l o i d 
i s deposited on the arrowheads. However i f the [ 0 1 0 ] 
d i r e c t i o n makes an angle 8̂  with the s u r f a c e , c o l l o i d 
w i l l "be c o l l e c t e d over the arrowhead and, as i t i s c o l l e c ­
ted over h a l f of each arrowhead i n turn, each h a l f must 
he magnetized i n opposite d i r e c t i o n s ( P i g . 3 6 b ) . As the 
s t r e s s i s i n c r e a s e d the magnetization d i r e c t i o n i n the 
arrowheads becomes more and more unfavourable, thus 
causing them to decrease i n s i z e . 

Upon the disappearance of the arrowheads the s t r a y 

f i e l d at the s u r f a c e becomes much s i m p l i f i e d . I t c o n s i s t s 

of a pole s t r e n g t h I cos 8 at the zig-zag w a l l s with 

I s i n 8 between them. Consider the e f f e c t of t h i s type 

of pole d i s t r i b u t i o n on the concentration of magnetic 
—6 

c o l l o i d . I f the width of the zig-zag w a l l i s 10~ cms 
—6 

then the pole d e n s i t y at the w a l l i s I x 1 0 " gauss/sq cm. 

The d i s t a n c e from the w a l l at which t h i s f i e l d equals that 

on the s u r f a c e I s i n 8 i s given by r where 
1 * 2

1 Q " 6 = I s i n 8 
r 

o —2 

Taking M r = 10 cms. T h i s i s a very approximate value. 

The separation of the zig-zag w a l l s i s 0 . 0 5 mm, then i f r ~ 
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2 x 10~^cms, any c o l l o i d c l o s e r to the w a l l than t h i s 
value of r would be drawn towards the w a l l . T h i s type 
of mechanism would therefore cause the c o l l o i d to be 
concentrated i n a narrow s t r i p 10 cms wide at the centre 
of each c l o s u r e domain. The a p p l i c a t i o n of a v e r t i c a l 
f i e l d would cause a l t e r n a t e p a i r s of l i n e s and zig-zag 
w a l l s to disappear as i s seen experimentally. 

4.2.1}.. Conclusion 

This type of s t r a i n s t r u c t u r e has been observed 

p r e v i o u s l y . I n a recent paper, Bates and Carey (1960) 

described t h i s s t r u c t u r e v/hich they c a l l e d a band s t r u c ­

ture. I t had formed on g r a i n s i n a sheet of cube textured 

p o l y c r y s t a l l i n e s i l i c o n i r o n m a t e r i a l , but was mainly 

removed by annealing. Bates (1957) proposed a model f o r 

the formation of t h i s type of l i n e and zig-zag s t r u c t u r e . 

I n t h i s model the l i n e s at the surf a c e are due to the 

appearance of the [ 100] domains at the su r f a c e caused by 

branching Pig. ( 3 7 ) . T h i s type of branching i s s i m i l a r 

to that described by L i f s h i t z (1944) . Bates suggested 

that t h i s type of branching only occurred at high s t r e s s 

d i f f e r e n c e s between the c l o s u r e domains and the main under­

l y i n g domains. Unfortunately t h i s does not agree with the 

experimental r e s u l t s which have been obtained. F i r s t l y , 

on the b a s i s of h i s model, a v e r t i c a l f i e l d would produce 

a domain s t r u c t u r e at v a r i a n c e with that observed. 
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Secondly t h i s type of s t r u c t u r e was observed on specimens 
under r e l a t i v e l y small s t r e s s e s and i s obviously depen­
dent on the o r i e n t a t i o n of the s u r f a c e and not on the 
s i z e of the s t r a i n . 

h* 3. A s t r e s s applied along the [001 ] s u r f a c e d i r e c t i o n 

l+. 3.1. I n t r o d u c t i o n 

T h e o r e t i c a l l y a s i n g l e c r y s t a l of i r o n with a (100) 

surface, bounded by [001] and [ 010 ] edges has a domain 

s t r u c t u r e c o n s i s t i n g of main domains magnetized along 

the length of the specimen ( F i g . 5 ) . F l u x c l o s u r e i s corn-

p l a t e d at the ends of the specimen by means of t r i a n g u l a r 

domains. I f a compressive s t r e s s i s applied along the 

length of the specimen, the d i r e c t i o n of magnetization of 

the main domains w i l l become l e s s favourable than the 

other easy d i r e c t i o n s . Therefore i f the t h i c k n e s s of the 

specimen i s much l e s s than the width, i t seems l i k e l y 

from energy c o n s i d e r a t i o n s that the s t r e s s p a t t e r n w i l l 

c o n s i s t of main, domains magnetized i n the [010] d i r e c t i o n 

separated by 180° Bloch w a l l s . 

I n the previous cases, the change over from the 

s t r e s s f r e e p a t t e r n to the s t r e s s e d p a t t e r n has been 

separated by a range of s t r e s s i n which there has been 

no v i s i b l e s t r u c t u r e . I n t h i s case, as there are domains 

i n the s t r e s s f r e e case magnetized i n the t r a n s v e r s e 
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d i r e c t i o n e.g. spikes and f i r t r e e s , i t seems l i k e l y 
that growth processes w i l l "be revealed. These can 
"be observed as w e l l as the value of the s t r e s s at which 
the change-over occurs. 

4 . 3 . 2 . Nucleation Processes 

Nucleation processes, which take p l a c e when a domain 

s t r u c t u r e changes from one mode to another c h a r a c t e r i s e d 

by a l a r g e r number of phases, have been studied by many 

workers notably Bates and Martin ( 1 9 5 6 ) and Goodenough 

( 1 9 5 k ) . I n the main they have been concerned with the 

formation of domains of r e v e r s e and t r a n s v e r s e magnetiza­

t i o n , which are created i n going from a s i n g l e phase, 

magnetically s a t u r a t e d s t a t e , t o a s i x phase demagnetized 

s t a t e . T h e i r r e s u l t s d i f f e r e d by the order of 100 from 

t h e o r e t i c a l estimates by K i t t e l ( 1 9 4 9 ) which give the 

lower l i m i t f o r the c r i t i c a l r e v e r s e f i e l d to i n i t i a t e 
2K 

n u c l e a t i o n to be ^ . T h i s i s probably due to the 

exi s t e n c e of high f i e l d s i n the v i c i n i t y of non-magnetic 

i n c l u s i o n s . 

The processes involved i n n u c l e a t i o n are r a t h e r 

i n t e r e s t i n g . Bates and Martin showed that f i r s t l y 

t r a n s v e r s e domains were formed at non-magnetic i n c l u s i o n s . 

The formation of domains of r e v e r s e magnetization took 

pla c e at lower f i e l d s and was more d i f f i c u l t to observe. 
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They suggested t h a t these were produced "by encounters 
"between 90° w a l l s and large surface p i t s . 

We s h a l l be concerned w i t h two cases. One where 
the zero stres s case i s a f o u r phase system, which under 
the in f l u e n c e of s t r e s s , changes t o a two phase system. 
This i s i n f a c t the reverse of a n u c l e a t i o n process. I n 
the second case the stress f r e e system i s a two phase 
mode which, under the i n f l u e n c e o f s t r e s s , changes to a 
d i f f e r e n t two phase mode v i a a f o u r phase mode. 

3.3 . Experimental Observations 
Single c r y s t a l s of i r o n 3.5 cm x 1 cm x 0.03 cms, 

w i t h the magnetization of the main domains d i r e c t e d 
along the le n g t h o f the specimen, the [001 ] d i r e c t i o n , 
were compressed i n t h i s d i r e c t i o n using the "bending 
technique. Also s i m i l a r l y shaped specimens of po l y -
c r y s t a l l i n e s i l i c o n i r o n sheet were compressively stressed 
along the d i r e c t i o n of main magnetization i n s u i t a b l y 
o r i e n t a t e d g r a i n s , i . e . those w i t h the surface not more 
than 1° away from a (100) plane. 

Measurements of the r a t i o o f the surface areas of 
magnetization i n the two easy surface d i r e c t i o n s were made 
f o r varying st r e s s conditions. Two t y p i c a l graphs of 
experimental r e s u l t s are shown i n Pig. 38 and Pig. 39. 

I n a l l cases, independent of the mode of growth, the bulk 



(a) (b) 
Square domains from which transverse domains grow 

FIG. 40 

(a) 

(b) 
Tensional force in X direction increasing from 
The process shows the formation of domains 
magnetization A 

( C ) 
(a) to (c) 
of reverse 

FIG. 41 
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of the magnetization i s r o t a t e d through 90° i n a stress 
range of at>out 6 kgms/mra . The stress at which t h i s 
change-over was i n i t i a t e d seemed somewhat v a r i a b l e , 

2 2 ranging from 0.5 kgms/mm t o 7 kgms/mm . Although "by 
p 

f a r the m a j o r i t y of cases l a y "between 0.5 kgms/mm and 
2 

3 kgms/mm . Presumably t h i s i s due to random stresses 
i n the specimen as i t was not p o s s i b l e t o r e l a t e t h i s 
v a r i a t i o n t o the type of transverse magnetization growth. 
Nature of growth of transverse magnetization 

I f the zero s t r e s s p a t t e r n consisted of a f i r t r e e 
s t r u c t u r e , w i t h no spikes on the main domain surfaces, 
the transverse growth took place by means of square 
domains on the main w a l l s , w i t h the diagonal along the 
le n g t h of the w a l l . Although the f i r t r e e s were magnetized 
i n favourable d i r e c t i o n s they d i d not grow i n size (see 
Plate 7.). The square domains appeared t o grow at random 
along the w a l l s presumably from p o i n t s of high stress. 
Usually the square domains consisted of two t r i a n g u l a r 
domains, magnetized i n opposite d i r e c t i o n ( F i g . i+Oa), although 
i n a few cases more complicated s t r u c t u r e s ( P i g . 1+0*0 were 
observed. I n a l l cases there i s a c o n t i n u i t y of magnetiza­
t i o n across the domain w a l l s , although at f i r s t t h i s d i d 
not seem to be so. Measurements of the angles of the 
'square' showed them t o vary between 80° and 99° and i t 
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was noted t h a t g e n e r a l l y opposite angles were supplemen­
t a r y . 

On small grains, of about 0.5 cm diameter, i n the 
p o l y c r y s t a l l i n e m a t e r i a l , there was u s u a l l y only one 
such square domain, which grew w i t h i n c r e a s i n g stress 
u n t i l i t occupied the whole of the gran. There were more 
transverse domains on the s i n g l e c r y s t a l specimens so 
t h a t the intermediate stage, equal areas magnetized i n 
the [010] and [001] d i r e c t i o n s , was very complicated 
c o n s i s t i n g of many small domains bounded "by 90° w a l l s . 

As the stress was increased f u r t h e r the area of 
magnetization i n the i n i t i a l d i r e c t i o n became l e s s , u n t i l 
i t was confined to small square domains s i t e d on the main 
Bloch Walls. The way these areas decreased w i t h increas­
in g s t r e s s was r a t h e r i n t e r e s t i n g . The transverse domain 
became elongated and f i n a l l y broke o f f from the main w a l l 
forming a spike on a domain o f reverse magnetization 
( F i g . U O . 

I n those cases where the surface was e x a c t l y a (100) 

plane, the only t r a n s v e r s e l y magnetized areas were small 
spikes formed e i t h e r at non-magnetic i n c l u s i o n s or on 
domains o f reverse magnetization. Growth u s u a l l y took 
place from both types of spike, the process being the 
reverse t o t h a t described above. 
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U»3»k» T h e o r e t i c a l Considerations 
I t i s important t o know whether the square domains 

are only surface s t r u c t u r e s or whether they penetrate t o 
a reasonable depth. I t i s possible to i n f e r t h i s from 
the angles p^ and P 2 (see Pig. I4O) of the square, 
assuming t h a t no f r e e poles form on the domain w a l l s . 
I f the surface i s e x a c t l y a (100) plane then the condi­
t i o n t h a t there are no f r e e poles on the w a l l i s given by 

P 1 = P 2 = 90° 

no matter to what depth the domains penetrate. 
However i f the surface makes an angle 8 w i t h the 

[010] d i r e c t i o n , the surface angles ^ and P 2 are r e l a t e d 
to ip the angle between the domain w a l l and the [011 ] 

d i r e c t i o n by 
tan p. = 

cos 8 [1 - sf2 tan S i tan ip J 

and tan P 2 = -^-j n + 42 t a n ~ ] 
I tan tp J 

The t a b l e below shows the v a r i a t i o n of fi^ and P 2 w i t h 1// 

f o r S = 1 ° . 

<p° 70° 60 50 U.0 30 20 10 5 

P1 W 3 58' im° 36' UU°26» U3°U8' 1+3° 7' 1̂ 0 11 ' 37° 57' 

P 2 U5° 16' 45° 26' U5°37' l+5°52' ^6°16' i+7° 1' 4 9 ° 1 9 ' 5U° 32' 

As p^ = p 1 and P 2 = p^ i t can be seen t h a t i n the above 

range P3 + P̂  + P2 + = 1 8 ° ° « 
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The graph i n F i g . 39 shows the v a r i a t i o n of surface 
magnetization with stress. This can now be modified so as 
to express the r a t i o of the volumes of magnetization 

0.01 mms. This i s n e g l i g i b l e compared w i t h the t h i c k ­
ness of the specimen 0.32 mms. As f a r as can be deduced, 
the r a t i o of the volume magnetization against stress can 
be represented by the dotted l i n e i n Fig. 39. The change 
over takes place i n , at the most, a 2-3 kgm/mm range. 

The energies of the zero s t r e s s s t r u c t u r e and the 
f i n a l stress s t r u c t u r e w i l l now be considered. The zero 
stress s t r u c t u r e i s shown i n F i g . 5". The f i n a l s t r u c t u r e 
has the same form as t h i s only the main domains are mag­
ne t i z e d along the [010] and[0fQ] d i r e c t i o n s . 

The energy of the i n i t i a l s t r u c t u r e under the e f f e c t 
of a compressive s t r e s s cr dynes/cm^ i n the [00l] d i r e c ­
t i o n can be w r i t t e n as the .sum o f the magnetoelastic and 
w a l l energies thus 

minimising t h i s w i t h respect t o D gives the f o l l o w i n g 
expression f o r the domain spacing 

against stress. For most of the s t r u c t u r e s ip i s less 
than 24.5° which represents a depth o f domain less than 

E « r / PL J 1 
l— U . 5 ) 
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. The energy of the f i r s t system can now be w r i t t e n , 
s u b s t i t u t i n g equation (4 .6) i n t o equation (4„5) 

v L. 1 

S i m i l a r l y the energy of the second s t r u c t u r e per u n i t 
surface area can be w r i t t e n 

By t a k i n g y constant and p u t t i n g Y = 1 cm and L = 4 cms 
curves are obtained as i n Pig. 42 f o r the v a r i a t i o n o f 
the energies of the two systems w i t h stress. The second 
system can be seen t o become more favourable than the 

p 
f i r s t at 0.0075 kgms/mm . I f L = 4 mms and Y = 1 mm t h i s 

2 

would be increased t o 0.024 kgms/mm . When considering 
such small v a r i a t i o n s of s t r e s s , the assumption t h a t the 
w a l l energy remains constant i s p e r f e c t l y v a l i d . 

Change over values can be ca l c u l a t e d f o r surfaces a 
few degrees o f f a (100) plane, under the e f f e c t of the 
compressive f o r c e , by adding a magnetostatic energy term 
t o equation ( 4 . 5 ) . 

The r e s u l t i n g . e n e r g i e s f o r a u n i t surface area 
become . _ _ — - — r — . 

811(1 ^zJUAZo • k m l - y W < M » 3 « U » M 
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Taking L = L\. cm and Y = 1 cm. 
S1 = 0 S 2 = 2° E1 = E 2 at 0.0b. kgms/mm2 

S1 = S 2 = 0 E1 = E 2 0.01 kgms/mm2 

S1 = 0 S 2 = 1° E
2 = E i ° - 0 2 kgms/mm2. 

Whatever the conditions considered, the energies of the 
two systems "become equal a t stresses the order of 100 
times smaller than the observed change over s t r e s s . 

There are two main reasons f o r t h i s . Kersten (1930) 
has shown t h a t i n c o o l i n g a ferromagnetic through i t s 
Curie temperature stresses are set up of magnitude XgY. 
Upon t a k i n g Y as Y^QO* a s t h e magnetization vectors l i e 
along the easy d i r e c t i o n s , a stress of 0.65 kgms/mm i s 
obtained. Therefore stresses greater than t h i s must be 
applied to change the d i r e c t i o n of magnetization even i f 
the specimens have been p e r f e c t l y annealed. 

Secondly the equating o f the energies of the two 
systems does not take i n t o account the energy of the 
intermediate system. This has been observed t o be a 
f a i r l y complicated s t r u c t u r e w i t h large areas of Bloch 
w a l l . Besides the energy needed to create t h i s domain 
w a l l there i s also energy needed to move i t from one 
p o s i t i o n to another. The system i s so complejc t h a t i t 
seems impossible to work out any rigo r o u s model of what 
happens without a d e t a i l e d knowledge of the s t r e s s and 
st r u c t u r e inhomogeneities i n the specimen. 
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If..k» The stress applied along the [010] d i r e c t i o n on a 
surface 3 ° o f f a (100) plane. 

4. if.. 1. Experimental d e t a i l s and Results 
Specimens of p o l y c r y s t a l l i n e cube tex t u r e d s i l i c o n 

i r o n sheet, I4. cms x 1 cms. x 0.032 cms were compressed 
along the [010] d i r e c t i o n . Grains o r i e n t a t e d w i t h the 
d i r e c t i o n of magnetization, the [010] d i r e c t i o n , i n the 
surface and w i t h the other surface easy d i r e c t i o n , the 
[001] d i r e c t i o n , making an angle of about 3 ° w i t h the 
surface, were observed. Plate 8 shows the change i n 
s t r u c t u r e under st r e s s . At a stress of about 1 kgms/mm 
the o r i g i n a l domain s t r u c t u r e disappeared. This was 

2 

f o l l o w e d by a t r a n s i t i o n a l range of between 1 kgm/mm and 
3 kgms/mm i n which no domain s t r u c t u r e was apparent. 

A f t e r t h i s a domain s t r u c t u r e appeared. I t consisted 
of very small f i r t r e e l i k e s t r u c t u r e s j o i n e d end t o end, 
so as to fom a continuous l i n e . At low stresses these 
' l i n e s ' seemed r a t h e r randomly o r i e n t a t e d but as the 
stress increased the spacing of the l i n e s decreased and 
they r o t a t e d so as to l i e along the [001] d i r e c t i o n , at 
r i g h t angles to the compressive f o r c e . Upon the a p p l i c a ­
t i o n of a v e r t i c a l f i e l d c o l l o i d was deposited over 
a l t e r n a t e l i n e s . 
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Therefore the s t r u c t u r e was i d e n t i c a l t o t h a t 
observed by Bozorth, Williams and Shockley (1949) on 
(100) surfaces w i t h the [001] d i r e c t i o n making an angle 
of between 1 . 9 ° ana 3 . 9 ° t o the surface. A block d i a ­
gram of the s t r u c t u r e i s shown i n Fig. 43. 

The main domains are magnetized along the [ 001 ] 

d i r e c t i o n which has been made more favourable than the 
[010} d i r e c t i o n by the compressive f o r c e . The v e r t i c a l 
component of magnetization I s i n S i s closed by surface 
closure domains magnetized i n the [010] d i r e c t i o n . These 
do not cover the whole of the surface l e a v i n g narrow 
s t r i p s of the u n d e r l y i n g s t r u c t u r e which are observed as 
l i n e s of f i r t r e e s . As the s t r e s s i s increased the 
closure domains become more unfavourable and t h e i r 
volume i s reduced by a decrease i n the domain spacing. 
The v a r i a t i o n of domain spacing d^ was measured and 

1 2 

Figs. 44, 45. show /d^ p l o t t e d against the stress cr f o r 
two t y p i c a l specimens, one w i t h S = 3 ° and the other 
s = 4 ° . 

2 

At stresses above 12 kgms/mm the domain spacing d^ 
remained constant but the width d 2 of the [001 ] domain 
at the surface increased so reducing the volume of the 
closure domains even f u r t h e r . 

J 
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4.h*2. T h e o r e t i c a l Considerations 
At a f i r s t approximation i t i s assumed t h a t the 

[ 001 ] domains are "bounded "by s t r a i g h t l i n e s at the surface, 
as shown i n Pig. 1+3. I n order t h a t no f r e e poles are 
formed on the closure domain walls the angle a i s given 

tan a = s i n S 
As 8^3°> to a good approximation a equals 8. 

The e f f e c t of stres s on the system w i l l now "be 
considered. The t o t a l energy of the system consists of 
the sum of the magnetostatic, magnetoelastic, and w a l l 
energies. 

Magnetostatic Energy 
The method of e v a l u a t i n g the magnetostatic energies 

has "been described i n s e c t i o n 1.2.1+. The pole density 
can be represented by the square wave shown i n Fig. 46a. 

A f o u r i e r analysis of t h i s gives the f o l l o w i n g expres­
sion f o r the pole density 

and the magnetic p o t e n t i a l 

I 
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A can be evaluated from the boundary conditions. The 
magnetostatic energy density E can be shown to be 

TRo s 

IT* L*? Kz'P / 
K . . 

Taking the f i r s t term only, n=1 , as the higher terms 
r a p i d l y diminish 

E m.i. -

Magnetoelastic Energy 
The volume of the closure domains/unit surface area 

2 
= d^ tan S 

The energy of these domains consists of the stress 
energy - y 2 c r \ | 0 0 , where cr i s i n dynes/cm , and the mag-
n e t o s t r i c t i v e energy ^C^ ̂  Xj Q q . 

Therefore T o t a l magnetoelastic energy = 

I P W 2 / 
Wall Energy 

The w a l l energy of the closure domains/unit surface 
area = * ^ , wh i l e t h a t of the main domain w a l l s = * 

cos S 
t being the thickness of the specimen. W r i t i n g D = 
d^ + d 2 , the t o t a l energy of the system becomes 
E _ = ( u . • t W • i b l ^ * * ( < u < 0 u » N Tiax \ 

2 U , * 4 j 1 1 2 / 
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Minimising the t o t a l energy w i t h respect t o leads t o 
a r a t h e r complex expression 

uJaa.+a,)* la,.^) 1 n* liu.'d,)/ 

ma.vdO Uia,*dt>j Wu,*a,V q-l ,e0 " " V i v a , 
Taking dg = nd^ and assuming t h a t "both n and y are con­
stant i n the stress range under consideration,an expres­
sion of the form 

1 n = mcr + C 

i s obtained, where m = i X j 0 0 ^ 1 tan 8 
2 

I n the stress range 0 - 1 0 kgms/mm , the w a l l energy 
w i l l increase by a f a c t o r of 1 . 2 , while n w i l l increase 
from about 0 .02 t o 0 . 2 , This means t h a t ( l + 2 n ) w i l l 
increase by about 1.L). times. I t t h e r e f o r e seems reasonable 

1 2 

to consider t h a t the r e s u l t i n g r e l a t i o n a h i p of /d^ 
against <r should be approximately l i n e a r . The experimental 
r e l a t i o n s h i p s are shown i n Pig. and Pig. ^ 5 . The 
gradient obtained from the specimen w i t h S = 3 ° i s 

— S 
3 .9 x 10 ^ while a t h e o r e t i c a l value talcing n = 0 . 1 , 

y = 1.3 ergs/cm 2 and t = 0 . 032 cms i s 3 . 0 x 1 0 ~ 5 . The 
gradient obtained from the specimen w i t h S = 1+° i s 
6.1+ x 10~^ which compares w i t h a t h e o r e t i c a l value o f 
I4.7 x 1 0 " ^ . Considering t h a t the g r a i n o r i e n t a t i o n was 
determined t o an accuracy of +?°, the agreement i s q u i t e 
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good, although i n both cases the t h e o r e t i c a l value i s 
about 25% low. The experimental values of the i n t e r -

1 2 2 2 cepts at /d,j = 0 are 0.07 kgms/mm and 5.5 kgms/mm 
o 

compared w i t h a t h e o r e t i c a l value "between-1 kgm/rnm and 
0. 

The case when d^ remains constant and d 2 increases, 
t h a t i s above cr = 12 kgms/mm , cannot be simply c a l c u l a t e d 
using t h i s model as the approximation of s t r a i g h t l i n e 
i n t e r s e c t i o n s of closure domains at the surface looses i t s 
v a l i d i t y . 

l±. 5. The e f f e c t of stress on f i r tree s t r u c t u r e s 

Z4..5.I. I n t r o d u c t i o n 
The f i r s t work on (001) surfaces w i t h the [ 0 1 0 ] 

d i r e c t i o n i n c l i n e d at a small angle S, to the surface, 
was c a r r i e d out by Bozorth, W i l l i a m s and Shockley (19U9)« 

They found small closure domains along the main 180° 

domain w a l l s . These they c a l l e d f i r t r ee structures, and 
t h e i r v a r i a t i o n w i t h 8 was examined. 
8 less than £° no f i r trees formed. 
S 0o5° - O .65 0 F i r trees form and grow to D / 2 (D being 

the main domain spacing) 
S O .65 0 - 1.30° P i r t r e es f i l l more of p a t t e r n u n t i l 

they e l i m i n a t e the main domain w a l l at the 
surface. 



Block diagram of a fir t ree structure . Spacek (1957) 
The side walls of the fir tree each make an angle (J> with 
the [110] direction 

FIG. 47 

[010] 

[100] 

Plan view of fir tree structure 

FIG. 4 8 
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8 1.3° - 3*9° F i r tree "branches increase i n l e n g t h 
u n t i l a l l but a narrow s t r i p of u n d e r l y i n g 
domain i s v i s i b l e at the surface. 

They suggested t h a t the f i r trees were e l l i p t i c a l cones, 
and c a l c u l a t e d t h e o r e t i c a l values of t h e i r w i d t h and 
separation on the assumption t h a t the branches n e u t r a l i s e 
the f l u x of the underlying domains. Due t o t h e i r e l l i p ­
t i c a l shape f r e e poles were assumed to be formed on the 
under surface of the closure domains as w e l l as on the 
surface of the specimen. They estimated the size of the 
magnetostatic energy so produced by r e p l a c i n g the f i r t r e e 
system by p a r a l l e l s t r i p s , of width D and pole density 
+ I s i n 8, running along the [110 ] d i r e c t i o n . The r e s u l t ­
i n g magnetostatic energy equals 

Li* j * u u r * ) / i ] * 
Recently a more rigorous model f o r the f i r t r e e s t r u c t u r e 
has been proposed by Spacek (1957) (1958)- The normals 
to the f i r t r e e w a l l s l i e i n a (110) plane t h e r e f o r e no 
f r e e poles are formed on them. The angle between the 
(001) plane and the w a l l i s s p e c i f i e d by the angle <//. 
The proposed s t r u c t u r e i s shown i n Fig. Zj.7. A plan view 
of a f i r t r e e system i s shown i n Fig. I4Q. 

I n e v a luating the v a r i a t i o n of a, the angle at the 
spike of the f i r t r e e , w i t h 8, Spacek assumed t h a t the 
width of the f i r trees equaled D/2 and t h a t a = b. The 
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model used by Spacek f o r c a l c u l a t i n g the magnetostatic 
energy of the system consisted of s t r i p s of width Ett, 

r i 7 5 m a (.110J d i r e c t i o n , w i t h magnetic pole d e n s i t i e s 
I s i n S, 0, - I s i n 8, 0. This gave a value of the 
magnetostatic energy which was p r o p o r t i o n a l to Da. Of 
the r e s t of the energy expressions, the magnetoelastic 
energy was independent of a. The w a l l energy expression 
consisted of a term f o r the area of the Bloch w a l l m u l t i ­
p l i e d by one f o r the v a r i a t i o n of w a l l energy w i t h 
o r i e n t a t i o n . Upon minimising the t o t a l energy, magneto­
s t a t i c , magnetoelastic and w a l l , w i t h respect t o a he 
obtained. 

The v a r i a t i o n of a w i t h 8 f o r a s p e c i f i c value of D 
(0 .06 cm) i s shown i n Pig. U3. Although no systematic 
experimental values of a as a f u n c t i o n of 8 have been 
measured, Bozorth, Williams and Shockley d i d show t h a t 
f o r S = 1° a = 7 ° , which agrees q u i t e w e l l w i t h Spacek's 
work. 

Kaczer p o i n t e d out th a t the v a r i a t i o n of Bloch w a l l 
energy w i t h ip, and consequently a, used by Spacek was 
i n c o r r e c t , and t h a t the r e l a t i o n s h i p obtained by him (see 
Pig. 1+) should be used.. Transforming the Y,^ r e l a t i o n s h i p 
i n terms of Y and a using 
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tan a 1_ tan 5 
2 V2 tan ̂  

and not equation (20) (Czech J. Phys. 2 719 1957) a 
series of curves f o r various values of S are obtained. 
Upon f i t t i n g the curves w i t h a parabola of the form 

Y-A = K(a-m) 
the equation r e l a t i n g oc and S (t h e equivalent t o eq. U»7) 
becomes . „ „ _ c . — 

vt%-**m**xrai*S* o ns * I4\ too* j 

K 
M u l t i p l y i n g through by 1 o \ c a l l i n g 10m = G and B = 
sin 2S x 1 o \ the above equation becomes 

U.8) 

The values of the constants, using the c o r r e c t w a l l 
energy values, are shown i n the ta b l e below. 

s G 6 x 10~ 2 C/D B A/K 

20 1.22 12.1+ .339 .267 

ho 1 ,6k 5^.9 1 .26 .322 

1° 2.m 289 3.01+ .72U 

2° 3.35 659 1 2.17 .369 

h° U. 71 271+7 1+8.7 .350 
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The r e s u l t obtained by s o l v i n g equation 8) graphi­
c a l l y f o r various values of 8, again talcing D = 0.06'- cms, 
i s shown i n f i g . U9» The r e s u l t s can be seen t o be much 
lower than those given by Spacek. At 8 = 1°, a = 3° 
which i s roughly h a l f the experimental value. 

I4..5.2. Proposed Magnetostatic Model 
The model used by Spacek f o r c a l c u l a t i n g the magnet-

o s t a t i c energy gives a r e s u l t p r o p o r t i o n a l t o a. As he 
has assumed a=b a change i n a w i l l only a l t e r the scale 
of the f i r t r e e p a t t e r n along the main w a l l , and not the 
r e l a t i v e amounts of f r e e pole and zero pole along u n i t 
l e n g t h of w a l l . Under these circumstances i t i s d i f f i c u l t 
t o imagine how a change i n a w i l l a l t e r the magnetostatic 
energy. Besides the ra t h e r curious r e s u l t obtained by 
t h i s method, i t i s extremely l i m i t e d i n i t s a p p l i c a t i o n s . 
The v a r i a t i o n of magnetostatic energy w i t h other para­
meters, the separation of f i r t r e e s b, and the w i d t h of f i r 
t r e e y, cannot be evaluated. 

As the r i g o r o u s s o l u t i o n of the magnetostatic energy 
involves a r a t h e r complicated two dimensional i n t e g r a ­
t i o n , the f o l l o w i n g model (see Pig. i+6b) i s proposed f o r 
the s i m p l i f i c a t i o n of the problem. I f the pole d e n s i t y 
i s t o be represented by a square wave, then i t seems 
l o g i c a l t h a t the p e r i o d should remain 2D. However as t h i s 
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represents i n one dimension, x d i r e c t i o n , what happens i n 
the y d i r e c t i o n too, i t seems l o g i c a l t o assume t h a t the 
e f f e c t i v e pole s t r e n g t h at the main domain w a l l i s 
I s i n s(^^jf w h i l e t h a t "between y and -| (cen t r e of the 
domain) remains at I s i n S. I n the l i m i t , when a->o and 
y = D/2 the model used i s a t r i a n g u l a r wave. 

Consider the general case w i t h a, y and b not 
p a r t i c u l a r i s e d . Upon representing the wave w i t h a 
Fourier expansion, the f o l l o w i n g pole density expression 
can he obtained 

The p o t e n t i a l $ i s given by 
ft UnmdUl 

2 a / 

1 it L****l**b z îa»b)/n-2ffa,\ J M a / 
J I * T/ 

From these the magnetostatic energy per u n i t surface area 

n«l msl 

f 1 = ^ ^ % • k (HP*) 
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The i n t e g r a l can be evaluated between 0 and /2, the 
same energy density being obtained f o r any i n t e g r a l 
value of k. 

The energy d e n s i t y = 
» * *** x 

As the expression decreases r a p i d l y ( t h e second term 
n=3 i s V27th the magnitude of the f i r s t term) w i t h 
i n c r e a s i n g n, i t i s a reasonable approximation to con­
sid e r the f i r s t term only. Taking 2D = d: d 1 = D/2-y: 
and b = 2ya, the f o l l o w i n g energy density expression 
can be obtained 

Em s * g I ^ * T > f a 4 I D * ^VLhV 
TTX L**2^«C- IT I a,* lyaL) V ] 

When the e f f e c t i v e p e r m e a b i l i t y fj.+ i s taken i n t o account 
2 

a c o r r e c t i o n f a c t o r + m u l t i p l i e s E . 
\ +/J* m. s. 

And 

I n the l i m i t , when the f i r t r e e s disappear y-O and 
e s l f e I x ~ ^ S T > 

which i s the value, t a k i n g only the f i r s t term i n the 
se r i e s , given by K i t t e l (1949) f o r p a r a l l e l s t r i p s of 
wid t h D and pole density + I s i n 8. 
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^.5.3. A p p l i c a t i o n to stress f r e e case 
U. 5.3.1. The r e l a t i o n s h i p "between a and 8 

The r e l a t i o n s h i p "between a and S can "be evaluated 
by s u b s t i t u t i n g the magnetostatic energy given i n 
equation (k»9) f o r "the one used by Spacek. Taking the 
same c o n d i t i o n s as, used by Spacek namely 

Therefore the magnetostatic energy per u n i t surface area 
i s independent of a under these c o n d i t i o n s . 

Evaluation of the magnetoelastic energy 
The volume of a s i n g l e f i r t r e e : branch = 1 D^sinfS 

1272 tan ip 

The number of f i r trees f o r a u n i t l e n g t h of main w a l l 

= 1 
42 D tan T + k^2 D tan 8 

tan ifi tan ip 

Therefore the volume of f i r t r e e s t r u c t u r e s i n a surface 

area /2 i s 

The magnetoelastic energy i s independent of ip, and conse 
quently a, as i t i s derived from the product of the f i r 
t r e e volume and the magnetoelastic energy density. 

y = — and a = 2k ya 
Spacek put k=1 

J? s i n 2 8 
12^2 tan S DV2 (1+k) 
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Bloch Wall energy 
As both the magnetoelastic and magnetostatic energies, 

are independent of a the e q u i l i b r i u m value of a must be 
found from the w a l l energy term alone. 

Spacek gives the surface area of a s i n g l e f i r t r e e 
branch as 

D 2 tan 8 
272" s i n >p 

To t h i s must be added a second order term which takes i n t o 
account the f a c t t h a t the f i r t r e e w a l l s l i e at 1+5° t o the 
main domain w a l l . 

The surface area becomes 
i2 + s T>2 i _„3x „ „ c . 2 , D tan 8 D tan S cos 4) /, ^ n\ 

2V2 s i n 0 + 472 R . 3(// ^ * 1 U ; 

s i n -

The t o t a l Bloch w a l l energy f o r the f i r trees e x i s t i n g i n 
a surface area ^ / 2 . i s 

The energy of a 90° Bloch w a l l has been expressed by 

Kaczer (1959) as 
Y = Y Q (1.7271+ - 1.2289 cos ip + 0.5015 cos 2^) 

Taking the value of Y Q used by Spacek, the w a l l energy 
f o r a surface area ^ / 2 i s given by 
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M inimising t h i s w i t h respect t o ip, the equation 

i s obtained. 
This equation was solved g r a p h i c a l l y f o r various 

values of 8. The values of ip were converted t o a, and 
the r e s u l t i n g a8 r e l a t i o n s h i p i s shown i n Pig. 50. The 
value of a f o r 8 = 1° i s 10° which seems i n q u i t e good 
agreement w i t h a v a i l a b l e experimental r e s u l t s . 

I t i s important to note t h a t these values of a are 
independent of D and k, whereas Spacek's theory showed 
a t o be s t r o n g l y dependent on D and also k. This l a t t e r 
f a c t i n v a l i d a t e s the r e s u l t s of Spacek because as 8 
var i e s from 0 t o 1.5°» k changes from oo t o 0, and by 
p u t t i n g k = 1 Spacek ignores t h i s l a r g e range of v a r i a ­
t i o n . 

1+.5.3.2. V a r i a t i o n of F i r t r e e spacing a w i t h 8 
Unfortunately there are no experimental r e s u l t s 

showing the e f f e c t of i n c l i n a t i o n of the [010] d i r e c t i o n 
t o the surface upon the f i r t r e e angle a, i n order to 
confirm the t h e o r e t i c a l r e s u l t s obtained above. As 
Bozorth, Williams and Shockley (19U9) d i d make measure­
ments of the v a r i a t i o n of a w i t h 8, these can provide a 
basis f o r the c o n f i r m a t i o n o f t h e o r e t i c a l r e s u l t s under 
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z e r o s t r e s s c o n d i t i o n s . T a k i n g y = ' D / 2 . 

The m a g n e t o e l a s t i c e n e r g y of t h e f i r t r e e domains 

J3or a s u r f a c e a r e a D / 2 "becomes 

The w a l l e n e r g y f o r s u r f a c e a r e a D / 2 

2/I o^L& t t i M t S • 

(U.11) 

(U.12) 

The m a g n e t o s t a t i c energy f o r a s u r f a c e a r e a / 2 

ETOTAL = Em.e + ^VALL + Em. s. 

M i n i m i s i n g t h e t o t a l e n e r g y w i t h r e s p e c t to a g i v e s t h e 

f o l l o w i n g e x p r e s s i o n 

By s u b s t i t u t i n g v a r i o u s v a l u e s o f S i n t o t h e above 

e q u a t i o n , and a t the same ti m e t h e v a l u e o f ip c o r r e s p o n d ­

i n g to t h i s ( a s shown i n p r e v i o u s s e c t i o n ) , the v a l u e o f 
a/D e q u i v a l e n t to a s p e c i f i c S can be c a l c u l a t e d . The 

r e l a t i o n s h i p i s shown i n P i g . 51* I t shows t h a t a t 

S = 55 ' a = 0 w h i l e a t 8 = I4I f a-*». Between t h e s e l i m i t s 

a v a r i e s v e r y r a p i d l y w i t h S. The r e s u l t s o b t a i n e d by 
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B o z o r t h (19U9) show t h a t a t S = 1° 18' a = 0, a t 8 = 1 ° 
a 1 

/D = / 1 7 and i n the range S O ' t o 30 ' t h e r e a r e no f i r 

t r e e s i . e . a-*». A l s o i n the ran g e S 30 ' t o 40 ' y i n c r e a s e s 

from 0 t o D / 2 . 

The t h e o r e t i c a l v a l u e s show a r e a s o n a b l e agreement 

w i t h e x p e r i m e n t a l r e s u l t s . 

k»5»U' S t r e s s a p p l i e d t o f i r t r e e s t r u c t u r e 

U.,5»h»1 • E x p e r i m e n t a l r e s u l t s 

Specimens o f p o l y c r y s t a l l i n e s i l i c o n i r o n were 

strained "by "bending, so t h a t i n p a r t i c u l a r g r a i n s showing 

f i r t r e e s t r u c t u r e an e x t e n s i o n a l f o r c e <r dynes/cm was 

a p p l i e d a l o n g the d i r e c t i o n of m a g n e t i z a t i o n o f the main 

domains. T h i s c o n t r i b u t e s an energy - ^ QO ^ e r u n i ^ 

volume to the main domains making them more f a v o u r a b l e 

t h a n t h e f i r t r e e s t r u c t u r e . T h e r e f o r e a r e d u c t i o n i n 

f i r t r e e s i z e would be e x p e c t e d w i t h i n c r e a s i n g s t r e s s . 

T h i s was o b s e r v e d e x p e r i m e n t a l l y . As the s t r e s s was 

i n c r e a s e d the l e n g t h o f t h e b r a n c h e s y d e c r e a s e d u n t i l a t 
2 2 s t r e s s e s v a r y i n g between l± kgms/mm and 1L kgms/mm th e y 

d i s a p p e a r e d a l t o g e t h e r . Two t y p i c a l g r a p h s of y a g a i n s t 

<r a r e shown i n F i g s . 52 and 53. P i g . 52 shows t h e 

v a r i a t i o n f o r a Q = 0 ( t h e s u b s c r i p t r e p r e s e n t s the z e r o 

s t r e s s c o n d i t i o n ) and an e x p e r i m e n t a l v a l u e , of a of 11+°, 

w h i c h c o r r e s p o n d s t o 8 = 1° L 0 ' . The se c o n d g r a p h P i g . 53 

shows the v a r i a t i o n f o r a Q = 2 y oa, the v a l u e o f a = 7° 
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i n d i c a t i n g 8 t o "be 2+0'. 

An i m p o r t a n t r e s u l t o b s e r v e d was t h a t the number o f 

f i r t r e e s p e r u n i t l e n g t h of t h e main w a l l remained 

c o n s t a n t w i t h v a r y i n g s t r e s s . As f a r as c o u l d be 

measured a a l s o r e m a i n e d c o n s t a n t w i t h s t r e s s , a l t h o u g h 

t h i s a n gle became v e r y d i f f i c u l t ' t o ' m e a s u r e - w h e n t h e l e n g t h of the 

f i r t r e e t e n d e d to z e r o . 

l4..5«U«2. T h e o r e t i c a l C o n s i d e r a t i o n s 

The v a r i a t i o n o f the f i r t r e e a n g l e a w i t h s t r e s s 

does not depend upon the v a l u e o f t h e w a l l e n e r g y Y m ^ n > 

a t t h e minimum p o s i t i o n , b u t depends upon the s i z e o f 

^min* s e e m s l i k e l y however, upon c o n s i d e r i n g p r e v i o u s 

work on t he v a r i a t i o n of ^ m j _ n w i t h s t r e s s , t h a t i n t h e 

range 0 - 15 kgms/mm ^ m i n w i l l r e m a i n e f f e c t i v e l y con­

s t a n t . I t w i l l t h e r e f o r e be assumed t h a t a r e m a i n s 

c o n s t a n t . 

C o n v e r t i n g v a l u e s o f ip t o a i n e q u a t i o n s (2|. 1 1 ) , 

(U. 12) and (U.13) and adding an e x t r a term due t o the 

e f f e c t o f s t r e s s on the main domains, the t o t a l energy 

of t h e system, f o r a s u r f a c e a r e a D / 2 , can be w r i t t e n a s 
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I f the l e n g t h of t h e f i r t r e e a t z e r o s t r e s s i s y Q and 

t h e i n i t i a l s e p a r a t i o n o f the f i r t r e e s a . th e n t h e 
o 

number o f f i r t r e e s p e r u n i t l e n g t h o f main w a l l 

= 1 
2 y 0 a + a 0 

When the l e n g t h o f t h e f i r t r e e changes to y 

a = a Q + 2 y Q a - 2ya 

S u b s t i t u t i n g t h i s i n t o e q u a t i o n g i v e s 

LI 3 <*• * l^oL J Z 

T h i s e q u a t i o n can now he m i n i m i s e d w i t h r e s p e c t t o y. 

T a k i n g a Q=0, and 8 = 1 ° , w h i c h c o r r e s p o n d s t o the f i r s t 

c a s e to be c o n s i d e r e d , one o b t a i n s . 

,.o, [ , . i ( a ) . - « ] * • o - m J 
+ I S I t - l ^ ) » o 

S o l v i n g t h i s e q u a t i o n g r a p h i c a l l y a s e r i e s o f v a l u e s o f 

( y / D ) a r e o b t a i n e d c o r r e s p o n d i n g t o v a r i o u s v a l u e s o f S, 

w h i c h a r e shown i n F i g . 5k* I * can ^ e seen t h a t y / D 

d e c r e a s e s w i t h i n c r e a s i n g s t r e s s u n t i l a s t r e s s o f .5 
2 v kgms/mm i s r e a c h e d when a r e d u c t i o n of v D i s accompanied 

by a r e d u c t i o n i n s t r e s s . E x p e r i m e n t a l l y t h i s would mean 

t h a t f i r t r e e s c o u l d not e x i s t w i t h y / L l e s s t h a n .28. 

At a s t r e s s o f .5 kgms/mm t h e f i r t r e e s would d i s a p p e a r . 
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As t h i s does not agree w i t h t h e e x p e r i m e n t a l v a l u e s 
( P i g . 52) t h e i n s t a b i l i t y , b e l o w sr. s p e c i f i c v a l u e of 
y/D c o u l d p r o b a b l y be br o u g h t i n t o l i n e w i t h t h e o r y 
by a r e d u c t i o n i n a w i t h s t r e s s . N e v e r t h e l e s s t h e 
v a l u e of the s t r e s s r e q u i r e d t o ca u s e t h e f i r t r e e s t o 
d i s a p p e a r i s e x p e r i m e n t a l l y a f a c t o r of 10 t i m e s l a r g e r 
t h a n t h e t h e o r e t i c a l v a l u e . 

A f a m i l y o f c u r v e s s i m i l a r t o P i g . 5k can be 

o b t a i n e d f o r v a r i o u s z e r o s t r e s s c o n d i t i o n s . As S de­

c r e a s e s , the c u r v e s s t i l l r e m a i n t h e same shape b u t 

0" d e c r e a s e s and (^/D) i n c r e a s e s . F o r i n s t a n c e , max v ' 'max ' 
o 

when a Q = 2 y Qa ( 8 = 24.5') a v a l u e of < r m a x of 0.08 kgms/mm 

was o b t a i n e d . T h i s does n o t compare v e r y w e l l w i t h t h e 

e x p e r i m e n t a l v a l u e of 2+ kgms/mm (Pig. 53. ) 

I4.5.24.3. C o n c l u s i o n 

The p r o p o s e d m a g n e t o s t a t i c energy model, combined 

w i t h the f i r t r e e s t r u c t u r e p r o p o s e d by Spacek, g i v e s 

r e s u l t s which a r e i n q u i t e good agreement w i t h experiment 

when d e a l i n g w i t h the s t r e s s f r e e c a s e . However i t seems 

to b r e a k down when d e a l i n g w i t h the f i r t r e e s under s t r e s s . 

T h i s seems t o i n d i c a t e t h a t the model i s f a i r l y good i n 

p r e d i c t i n g the v a r i a t i o n o f m a g n e t o s t a t i c energy w i t h a, 

bu t n o t so a c c u r a t e when d e a l i n g w i t h t h e v a r i a t i o n o f y. 
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CHAPTER F I V E 

THE EFFECT OF SCRATCHES ON ( 1 0 0 ) AND ( 1 1 0 ) SURFACES 

5.1. S c r a t c h e s on a ( 1 0 0 ) S u r f a c e 

The work of Chikazumi and S u z u k i , i n w h i c h t h e y 

o b t a i n e d s t r a i n p a t t e r n s on ( 1 0 0 ) s u r f a c e s o f s i l i c o n 

i r o n by d rawing a deep s c r a t c h on the s u r f a c e o f the 

specimen, has been d e s c r i b e d i n s e c t i o n i | . 1.1. T h i s 

work was r e p e a t e d and i d e n t i c a l e x p e r i m e n t a l r e s u l t s 

were o b t a i n e d . From the w i d t h o f the s c r a t c h produced, 
— 2 

1.1 x 10 cms, and the s i z e o f the a p p l i e d l o a d , 1 kgm, 

the p r e s s u r e on t h e s c r a t c h can be c a l c u l a t e d to be 

a p p r o x i m a t e l y 100 kgms/mra . The d i s t r i b u t i o n o f s t r e s s e s 

n e a r the s c r a t c h i s not known, though Chikazumi and 

S u z u k i assumed them to be t e n s i o n a l f o r c e s n o r m a l to the 

s u r f a c e . 

A z i g - z a g s t r u c t u r e i s o b s e r v e d w i t h t h e z i g - z a g 

w a l l s r u n n i n g a l o n g the [001 ] d i r e c t i o n when t h e s c r a t c h 

l i e s i n a [010] d i r e c t i o n ( s e e p l a t e 9 ) . The z i g - z a g s 

f i r s t appear a t a d i s t a n c e of about 2.6 x 1 0~^ cms from 
-3 

the edge of the s c r a t c h and d i s a p p e a r a t about 9 x 10 

cms from the s c r a t c h . I n t h i s range the domain s p a c i n g 

r e m a i n s c o n s t a n t a t 10~^ cms, w h i l e the z i g - z a g angle 

v a r i e s from about 60° n e a r e s t the s c r a t c h t o 105° 

f a r t h e s t away. A t y p i c a l v a r i a t i o n i s shown i n F i g . 55. 



1 21 . 

Assuming t h a t the s t r e s s p a t t e r n i s due t o a t e n -

s i o n a l f o r c e , cr dynes/cm n o r m a l to the s u r f a c e , t h e 

domain s p a c i n g d i s g i v e n "by 

^Noo r 

Where L i s the t h i c k n e s s of t h e s t r u c t u r e . 

The z i g - z a g angle s t r e s s r e l a t i o n s h i p , o b t a i n e d by 

Chikazumi and S u z u k i i s shown i n F i g . 57. 

I f L i s t a k e n a s 0.2 mms, the v a l u e u s e d by 

Chikazumi and S u z u k i , a v a l u e o f cr = 32 kgms/mm can be 

c a l c u l a t e d from e q u a t i o n (5 .1)» whereas the v a r i a t i o n of 

m i n d i c a t e s a change of s t r e s s a l o n g t h e s c r a t c h from 
2 2 0 kgms/mm t o 370 kgms/mm . These two r e s u l t s a r e not 

e n t i r e l y i n c o m p a t i b l e as i t may be t h a t L i n c r e a s e s w i t h 

d e c r e a s i n g d i s t a n c e from t h e s c r a t c h so t h a t w i t h cr 

i n c r e a s i n g a t t h e same r a t e , a c o n s t a n t v a l u e o f d would 

r e s u l t . 

What i s d i f f i c u l t to imagine i s how a c o m p r e s s i v e 
2 

f o r c e o f 100 kgms/mm can change i n t o an e x t e n s i o n a l 

f o r c e o f 370 kgms/mm o n l y 2.6 x 10 J cms away from i t s 

p o i n t o f a c t i o n . I t l e a v e s t h e v a r i a t i o n o f uv w i t h cr, 

o b t a i n e d by Chikazumi and S u z u k i , i n some doubt. I t w i l l 

be n o t i c e d t h a t i n t h e i r d e r i v a t i o n t h e y i g n o r e d the 

e f f e c t of s t r e s s on B l o c h w a l l energy. 
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The e x t e n t to w h i c h t h i s e f f e c t s t h e U),cr r e l a t i o n ­

s h i p w i l l now be c o n s i d e r e d . 

U s i n g t h e n o m e n c l a t u r e as i n s e c t i o n l+. 1 . k* 2 ., t h e 

a n i s o t r o p y e n e r g y o f the w a l l , t a k i n g i n t o a c c o u n t the 

e f f e c t of the t e n s i o n a l s t r e s s cr dynes/cm 2 i n a [ 1 0 0 ] 

d i r e c t i o n , i s g i v e n by 

8 8 
( 5 . 2 . ) 

U s i n g t h i s v a l u e o f g o ' and w o r k i n g out the v a l u e s o f 

y / s i n Jj f o r v a r i o u s v a l u e s o f dj. the v a l u e of di . f o r a >' r r» rmm 
p a r t i c u l a r v a l u e of cr can be e v a l u a t e d . The v a r i a t i o n i s 

shown i n P i g . 56 and tp can be seen t o v a r y c o n s i d e r a b l y 

w i t h cr i n the r a n g e 0 to 60 kgms/mm . T h e r e f o r e i n t h i s 

c a s e t h i s i s t he main c o n t r i b u t i o n t o the v a r i a t i o n o f U), 

w i t h s t r e s s , t h e f r e e p o l e e n e r g y c o n t r i b u t i o n b e i n g 

n e g l i g i b l e by comparison. 

C o n v e r t i n g the a n g l e s di t o cu u s i n g 

0) = 2.09 >p - 25.1 

the uj,-cr v a r i a t i o n as shown i n P i g . 57 was o b t a i n e d . 

E q u a t i o n ( 5 . 2 ) t e n d s to z e r o when 

Thus f o r a p a r t i c u l a r v a l u e o f <p t h e v a l u e of cr, c r c r i t , 

a t w h i c h the energy of t h e w a l l t e n d s t o z e r o c a n be 

e v a l u a t e d . T h i s c o r r e s p o n d s t o z e r o a n i s o t r o p y , and 
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consequently i n f i n i t e w a l l t h i c k n e s s and the disappearance 
of the zig-zag s t r u c t u r e . The v a r i a t i o n i s shown i n 
F i g . 58. I f t h i s i s superimposed on the graph i n F i g . 57 
the value of the cut o f f angle U) . + = k3° i s obtained. 

These r e s u l t s are most i n t e r e s t i n g . They show that 

the value of o~ along the p a t t e r n v a r i e s from only 
2 2 10 kgms/mm to 2+5 kgms/mm which agrees f a r "better with 

the e v a l u a t i o n of <r from the domain spacing than that 

obtained "by Chikazumi and Suzuki. More important s t i l l , 

they p r e d i c t a cut off value f o r 10 at 1+3° while i n 

p r a c t i c e a value of about 5 0 ° was obtained ( s e e Pig. 5 5 ) . 

5 . 2 . S c r a t c h e s on a (110) s u r f a c e 

A s c r a t c h was r u l e d i n a [110] d i r e c t i o n on a (110) 

surface of s i l i c o n i r o n using a b a l l pen loaded with a 

one kgm weight as was used on a (100) s u r f a c e . 

P l a t e 10 shows the domain s t r u c t u r e observed. I t 

con s i s t e d of s t r e s s p a t t e r n I I extending from the edge 
_ p 

of the s c r a t c h f o r 1 .2 x 10 cms. The main w a l l s of t h i s 

s t r u c t u r e were i n a [100] d i r e c t i o n being spaced 2.0 x 

10~^ cms apart. ( F i g . 5 9 a ) . S t r e s s p a t t e r n I I then 

merged i n t o s t r e s s p a t t e r n I which extended f o r a f u r t h e r 

3 .5 x 10~^ cms. 

The change over from s t r e s s p a t t e r n I to s t r e s s 

p a t t e r n I I at surface compression s t r e s s e s of about 
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2 
20 kgms/mm was explained (see s e c t i o n 3.1.3.U-) as due 
to the v a r i a t i o n of the main w a l l energies of the two 
systems under s t r e s s . The e f f e c t of a t e n s i o n s t r e s s 
or dynes/cm along the normal to the s u r f a c e , on these 
energies w i l l now be considered. 

The energy of the main w a l l i n p a t t e r n I i n c r e a s e s 

under the s t r e s s by an amount given by 

10* » 

The energy of the w a l l given by t h i s reduced anisotropy 

has been shown i n F i g . 21. 

The energy of p a t t e r n I I a l s o i n c r e a s e s , t h i s time 

the reduced anisotropy energy i s 

Unfortunately the e v a l u a t i o n of the w a l l energy, which 

i n v o l v e s an i n t e g r a t i o n of P'£**2 i s made very complicated 

by the s i n 0 cos 0 term and has not been c a r r i e d out. 

However i t seems l i k e l y that i t does not i n c r e a s e as 

r a p i d l y with s t r e s s as the p a t t e r n I energy because the 

s t r e s s term i n v o l v e s ^ ̂  which i s much smaller than XJQQ. 

I t i s therefore probable that even under a t e n s i o n a l 

s t r e s s cr, p a t t e r n I I w i l l become more favourable than 

p a t t e r n I at high values of s t r e s s . 

fit 
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Prom the zig-zag spacing on the (100) surface the 
s i z e of the normal extensive f o r c e <r can he found to 
he 30 kgms/mm . Thi s cannot he the only s t r e s s i n the 
system as the zig-zag w a l l s l i e normal to the s c r a t c h 
and not p a r a l l e l to i t . This i m p l i e s the exi s t e n c e of 
a small compressive f o r c e cr normal to the s c r a t c h , see 
Pig* 59. The s i z e of t h i s w i l l not a f f e c t the s t r e s s 
energy of the system as the magnetization d i r e c t i o n of 
"both the cl o s u r e domains and the main domains are normal 
to i t . 

Assume that the s t r a i n s produced by the s c r a t c h e s 

are the same on the (100) s u r f a c e and the (110) s u r f a c e . 

T h i s seems reasonable because near the s c r a t c h the 

specimen has been deformed beyond the y i e l d point. 

I n a l l examples l e t the s t r e s s normal to the surf a c e 

be given by cr , that p a r a l l e l to the s c r a t c h by cr , and 

that normal to the s c r a t c h by cr y. Therefore <rz and cr y l i e 

i n the surf a c e . 

I n the (110) system, the extensive f o r c e cr ' i s 

r e l a t e d to the t e n s i o n a l f o r c e cr , normal to the (100) 

s u r f a c e , by 
cr 1 cr x _ x 
Y 110 Y 100 2 

, 30 x 2 .06 kgms/mm 
^x = 1.23 
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To s i m p l i f y the c a l c u l a t i o n s , i t w i l l be assumed that 
s t r e s s p a t t e r n I e x i s t s over the area occupied "by s t r e s s 
p a t t e r n I I . T h i s w i l l not a l t e r the s i z e of the domain 
spacings. 

Consider the energy of the system under the two 

f o r c e s cr' and cr . 
x y 

The volume of the c l o s u r e domains/unit s u r f a c e area 
d 

~ 272 

The energy of these domains/unit s u r f a c e area f o r com­

p r e s s i v e s t r e s s cr 
y 

= 2 ^100 2^2 ' 

S i m i l a r l y the energy of the main domains ^ 0 0 272 

The domain w a l l energy/unit s u r f a c e a r e a 

Neglecting the magnetostatic energy which has "been shown 

before to "be n e g l i g i b l e i n t h i s case, and the e f f e c t of 

s t r e s s on domain w a l l energy, the e q u i l i b r i u m domain 

spacing d i s given by 

At a s p e c i f i c d i s t a n c e from the s c r a t c h , where cr x = 

30 kgms/mm on a (100) surface, on a (110) s u r f a c e 

d = 2 ,0 x 10~^ cms. Assuming the t h i c k n e s s t of the 

s t r a i n e d l a y e r to be the same i n both cases i . e . 0 .02 cms 
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and allowing f o r the f a c t that the observed spacing on 

s t r e s s p a t t e r n I I i s V*2d, a value of 

cr = -1 6 kgms/mm «y 
can be obtained from equation ( 5 . 4 ) . 

T h i s i s obviously an unreasonable r e s u l t f o r 

although t h i s e x tensive s t r e s s , normal to the s c r a t c h , 

i s needed to e x p l a i n the s t r u c t u r e on a (110) s u r f a c e , 

i t would mean that on a (110) s u r f a c e the zig-zag w a l l s 

should l i e p a r a l l e l to the s c r a t c h . 

Even though the t e n s i o n a l f o r c e normal to the 

surface e x p l a i n s the zig-zag s t r u c t u r e on a (100) surface 

very w e l l , i t seems necessary to consider other s t r e s s 

d i s t r i b u t i o n s to i n t e r p r e t the s t r e s s p a t t e r n s produced 

on a l l s u r f a c e s . 

5 . 3 . S t r e s s p a t t e r n s due to compressive s u r f a c e s t r e s s e s 

A p p l i c a t i o n of e x t e r n a l s t r e s s e s to a (100) surface 

has shown that zig-zag s t r u c t u r e s can be produced by 

compressive f o r c e s a c t i n g along the surf a c e easy d i r e c t i o n s . 

Therefore i t w i l l be assumed that the s c r a t c h pro­

duces compressive f o r c e s cr and cr i n the su r f a c e with no 
y z 

force normal to the surface. For a (100) s u r f a c e the domain 
spacing d w i l l depend upon cr , which has been shown pre-

z 
v i o u s l y to be 30 kgms/mm . For the zig-zags to e x i s t 

normal to the s c r a t c h c r x r . 
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A (110) Surface 

Using the same s t r u c t u r e as was considered when 

dealing with a t e n s i o n a l s t r e s s normal to the surface 

( s e e previous s e c t i o n ) the energy of the system can he 

w r i t t e n 

Minimising t h i s with r e s p e c t to d, the e q u i l i b r i u m spacing 

as a fu n c t i o n of s t r e s s i s given by 

3X I M 
( 5 . 5 ) 

S u b s t i t u t i n g i n t o equation 5«5 the va l u e s used before g i v e s 

cr = 36 kgms/mm 

As the normal to the s c r a t c h on a (110) and (100) surface 

i s a [010] d i r e c t i o n , the above s t r e s s obeys the r e q u i r e ­

ments of a (100) surface a l s o as 

cr >cr y z 
Th i s s t r e s s d i s t r i b u t i o n can now be applied to a s i m i l a r 

s c r a t c h i n a [001] d i r e c t i o n on a (110) s u r f a c e . P l a t e 11 

shows the s t r e s s p a t t e r n obtained. At the di s t a n c e from 

the s c r a t c h considered above, 6 x 1 0 ^ cms, there i s no 

s t r e s s p a t t e r n . Instead the zero s t r e s s s t r u c t u r e , with 

magnetization along the 001 surface easy d i r e c t i o n , 

e x i s t s . 
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I n t h i s case the s t r e s s normal to the s c r a t c h i s 
given "by 

^ f z f - 0 6 kgms/mm2. 

I f a s t r e s s p a t t e r n e x i s t e d , the main domains would "be 

magnetized i n a [010 ] d i r e c t i o n , and the s t r e s s energy 

a s s o c i a t e d with t h i s d i r e c t i o n of magnetization i s 

2 ^y h_00 
z 

= ^ . 2 X, 0 0 

The energy a s s o c i a t e d with magnetization i n the s u r f a c e 

easy d i r e c t i o n 

| ^ 0 0 ^z 

= ^ 5 Noo. 

A s t r e s s p a t t e r n would not be expected to e x i s t as the 

su r f a c e easy d i r e c t i o n remains e a s i e r than the other 

p o s s i b l e magnetization d i r e c t i o n s . T h i s agrees with the 

experimental observations. 

5.1+. Suggestion f o r the v a r i a t i o n of ay with d i s t a n c e from 

the s c r a t c h 

The proposed system of s u r f a c e s t r e s s e s seems to 

agree quite w e l l with experimental r e s u l t s at a f i x e d 

d i s t a n c e 6 x ^0~^ cms from the s c r a t c h . No suggestion 

has been made as to the v a r i a t i o n of these s t r e s s e s , with 

d i s t a n c e from the s c r a t c h . T h i s i s because i t i s impos-
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s i b l e to i n f e r t h i s from the surface s t r u c t u r e as the 

v a r i a t i o n of the t h i c k n e s s of the s t r a i n e d l a y e r with 

d i s t a n c e i s not known. 

The v a r i a t i o n of s i z - z a g angle with d i f f e r e n t s u r f a c e 

f o r c e s cr = cr i s shown i n F i g . 35. I f cr equals 
a ^ t/ 

2 

36 kgms/mm at a l l p o i n t s along the zig-zag s t r u c t u r e then 

w should remain constant. 

Consider how the zig-zag angle a l t e r s f o r values of 
2 2 cr ranging from 60 kgms/mm to 2?0 kgms/mm with crz y 

2 
constant at 30 kgms/mm . 

The anisotropy energy term i n the ex p r e s s i o n f o r the 

w a l l energy can he w r i t t e n 

8 

The t a b l e "below shows the val u e s of Y 2
 t n e s t r e s s 

d i r e c t i o n c o s i n e s f o r v a r i o u s values, of cr . 

r v kgms/mm2 
Y 2 Y 3 

c r y z kgms/ 

60 6 3 ° 26' 2 6 ° 3 V 67.08 

90 7 1 ° 3hr 18° 26* 91+. 89 

150 7 8 ° 1+2' 1 1 ° 18» 153.1 

200 81° 29' 8 ° 31 ' 202.8 

270 8 3 ° UO' 6 ° 20' 273.0 
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Pig. 60 shows the v a r i a t i o n of <p . with cr . i t " i s 
nun z 

therefore p o s s i b l e that the decrease i n 00, and consequently 

if/f with decrease i n d i s t a n c e from the s c r a t c h can be 

explained by the i n c r e a s e i n cr . The value of tu, not 
«y 

allowing f o r the e f f e c t of f r e e pole formation on the 

w a l l s f o r cr = 300 kgms/mm-.. i s 7 1 ° . 

However t h i s treatment does not p r e d i c t a cut o f f 

value of ID. T h is i s only one way of d e a l i n g with the 

problem of a v a r i a t i o n of to with constant zig-zag spacing. 

One could consider cr i n c r e a s i n g with L i n c r e a s i n g at the 

same r a t e or the v a r i a t i o n of a compressive f o r c e normal 

to the s u r f a c e tr , so that cr - cr remained constant while 
x y x 

cr i n c r e a s e d . The a c t u a l s t r e s s v a r i a t i o n i s probably a z 
combination of a l l three. 

5 . 5 . S t r e s s P a t t e r n s on the Scratches 

The scratched s u r f a c e s were e l e c t r o p o l i s h e d f o r 7 

minutes. This was enough to remove the damanged l a y e r 

caused by the load but l e f t the surrounding stress; p a t t e r n 

very much as before. 

No domain p a t t e r n s were observed on s c r a t c h e s on the 

(100) plane. The s t r u c t u r e on the s c r a t c h i n a [100] 

d i r e c t i o n on a (110) surface i s shown i n p l a t e 12. I t 

c o n s i s t s of domains magnetized i n the easy d i r e c t i o n 

n e a r e s t the surface separated by 1 8 0 ° Bloch w a l l s . The 

domain spacing i s r a t h e r v a r i a b l e but the order of 

1 . 5 x 1 0~^ cms. 
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A s c r a t c h i n a [110] d i r e c t i o n produces a domain 
s t r u c t u r e c o n s i s t i n g of Bloch w a l l s i n a [ 110 ] d i r e c t i o n 
with a spacing of about 1 c m s , as shown i n p l a t e 13. 
A small v e r t i c a l magnetic f i e l d p o l a r i z e d the magnetic 
c o l l o i d on a l t e r n a t e w a l l s i n d i c a t i n g that the s t r u c t u r e 
i s s t r e s s p a t t e r n I with s u r f a c e c l o s u r e domains and main 
[100] domains. Therefore the domain s t r u c t u r e changes 
from s t r e s s p a t t e r n I to s t r e s s p a t t e r n I I and back to 
s t r e s s p a t t e r n I , with d i s t a n c e from the centre of the 
s c r a t c h . 

Any explanation of the p a t t e r n s on a s c r a t c h on a 

(110) surface by a combination of s t r e s s e s f a i l s to 

e x p l a i n the non-appearance of a domain s t r u c t u r e on a 

s c r a t c h on a (100) surface. 



CHAPTER S I X 



133. 

CHAPTER SIX 

SUMMARY Off RESULTS 

The work on the e f f e c t of a t e n s i o n a l f o r c e i n a 

[110] d i r e c t i o n on a (110) s u r f a c e proved quite s a t i s ­

f a c t o r y . The . r e s u l t s of D i j k s t r a and Martius, and also 

t h e i r i n t e r p r e t a t i o n were found to he i n a c c u r a t e and not 

comprehensive. The accuracy of the experiment was im­

proved by using a bending technique, while a more d e t a i l e d 

i n t e r p r e t a t i o n of the r e s u l t s was c a r r i e d out. This 

involved a t h e o r e t i c a l study of the e f f e c t of s t r e s s on 

Bloch w a l l s and the proposal of a s t r u c t u r e f o r s t r e s s 

p a t t e r n I I , both of which agreed w e l l with experimental 

r e s u l t s . The main gap i n t h i s work i s the l a c k of know­

ledge of the domain s t r u c t u r e i n the t r a n s i t i o n a l s t r e s s 

range between the zero s t r e s s p a t t e r n and the s t r e s s 

pattern. I . However, i n t e r e s t i n g information might be 

obtained of t h i s region i f the specimens were examined 

by the K e r r magnetoeoptical e f f e c t . 

The main i n c o n s i s t e n c i e s i n t h i s work, and a l s o work 

on (100) s u r f a c e s seemed to be the r e s i d u a l s t r a i n i n the 

specimen which i s i n a supposed s t r e s s f r e e s t a t e . Even 

though specimens were prepared using the most s t r a i n f r e e 

methods p o s s i b l e , and then w e l l annealed, measurements 
2 

seemed to i n d i c a t e i n t e r n a l s t r e s s of up to 10 kgms/mm . 
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A t e n s i o n a l f o r c e i n a [100] d i r e c t i o n on a (110) 

s u r f a c e gave r a t h e r negative r e s u l t s . Theory p r e d i c t s 

an i n c r e a s e , admittedly very small, i n the s t r e s s range 

used, i n the domain spacing, whereas experiment showed 

t h i s spacing to be constant. Previous workers i n d i c a t e d 

that under such circumstances the domain spacing had 

decreased. T h i s problem could be b e t t e r r e s o l v e d by 

using a specimen with a s i m i l a r y i e l d p oint and magnetic 

anisotropy as i r o n but with a much higher magnetostric­

t i o n constant. I t would mean that the e f f e c t of s t r e s s 

would be much more pronounced than i n the case of i r o n . 

50% n i c k e l i r o n might be u s e f u l with i t s low anisotropy 

5 x 1 9 ergs/cm and X equal to 25 x 10" , although the 

magnitude of the anisotropy i n d i c a t e s that a magneto-

o p t i c a l method would probably be necessary. 

The explanation of the removal of dagger s t r u c t u r e s 

from a su r f a c e , a few degrees o f f a (110) plane, by the 

a p p l i c a t i o n of a t e n s i o n a l s t r e s s along the [100] d i r e c ­

t i o n , as due to the r o t a t i o n of the minimum energy p o s i ­

t i o n of the 180° w a l l and not the r o t a t i o n of the magnet­

i z a t i o n d i r e c t i o n i n t o the su r f a c e , was supported by 

experimental evidence. 

The a p p l i c a t i o n of a compressive s t r e s s i n a [110] 

d i r e c t i o n on a (100) s u r f a c e gave experimental v e r i f i c a ­

t i o n f o r the r e l a t i o n s h i p between the i n v e r s e square of 
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the zig-zag spacing and the applied s t r e s s . The r e s u l t s 
of the r e l a t i o n s h i p "between zig-zag angle and s t r e s s 
were r a t h e r v a r i a b l e due probably to small s t r e s s 
i r r e g u l a r i t i e s i n the specimen. I n these r e s p e c t s a 
homogeneous c r y s t a l , such as an i r o n whisker, would be 
u s e f u l even though d i f f i c u l t i e s i n manipulation and the 
a p p l i c a t i o n of small s t r e s s e s would have to be overcome. 

A mo d i f i c a t i o n of the theory of Chikazumi and Suzuki 

shows that i n t h i s s t r e s s range the zig-zag angle should 

remain e f f e c t i v e l y constant. However, the same modifica­

t i o n , when applied to the v a r i a t i o n of zig-zag angle with 

s t r e s s , d i r e c t e d normal to the s u r f a c e i n a [100] d i r e c ­

t i o n , p r e d i c t s a d i f f e r e n t v a r i a t i o n to the above one, 

with a s p e c i f i c cut o f f value. Unfortunately an e x p e r i ­

mental v e r i f i c a t i o n was not p o s s i b l e . 

The main drawback of the experiments on a (100) 

s u r f a c e concerning the change of the magnetization from 

one surface easy d i r e c t i o n to another, by the a p p l i c a t i o n 

of s t r e s s , was the complexity of the systems under obser­

v a t i o n . R e s u l t s showed that the change over occurred i n 

a very small s t r e s s range, perhaps l e s s than 1 kgms/mm . 

More u s e f u l information about the mechanism of change 

over would probably be obtained by using an i r o n whisker 

which has a much s i m p l i f i e d domain s t r u c t u r e . 
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F i r tree s t r u c t u r e s were i n v e s t i g a t e d . The papers 
of Spacek, i n which he proposed a new f i r t r e e model, were 
c r i t i c i s e d with r e s p e c t to the expression f o r the mag-
n e t o s t a t i c energy of the system. Using another expression 
f o r t h i s , r e l a t i o n s h i p s between the s i z e of the f i r t r e e s 
and the o r i e n t a t i o n of the s u r f a c e were evaluated f o r 
s t r e s s f r e e systems. These agreed w e l l with the a v a i l a b l e 
experimental r e s u l t s . Unfortunately these are r a t h e r 
incomplete and there i s room f o r systematic work on 1) 
the v a r i a t i o n of the angle of t i p with the i n c l i n a t i o n of 
the surface to a (100) plane, the domain width, being 
f i x e d : 2) the v a r i a t i o n of the angle of the t i p with the 
domain width, the i n c l i n a t i o n of the s u r f a c e being f i x e d i 
3) the v a r i a t i o n of the f i r t r e e spacing with the i n c l i n a ­
t i o n of the s u r f a c e to a (100) plane. 

The a p p l i c a t i o n of a t e n s i o n a l s t r e s s along the 

d i r e c t i o n of magnetization i n the main domains caused the 

f i r t r e e s to decrease i n s i z e , as expected, but not as 

p r e d i c t e d by theory. T h i s i s e i t h e r due to a f a u l t i n 

the theory or, once again, to i n c o n s i s t e n c i e s i n the zero 

s t r e s s s t a t e of the specimens. 

S t r e s s p a t t e r n s were a l s o obtained by s c r a t c h i n g the 

specimens. T h i s method i s of l i m i t e d use because of the 

l a c k of knowledge of the s t r e s s d i s t r i b u t i o n s so produced. 
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Zero stress pattern. No 180 walls are v i s ib le though 
markings on the surface indicate that the magnetization 
l i e s along the (PCO] direction. 

Compressive stress of 0.5 kgms/mm applied along the 
[001] direction. The photograph shows that there i s 

no v i s ib le domain structure. 

Scale 
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'J 
Stress 2.8 kgms/mm i n [00i] d i r e c t i o n . A v e r t i c a l 
f i e l d of 20 oersteds has "been epplied. The photograph 
shows stress p a t t e r n I , w i t h the surface closure 
domains magnetized i n the [001] d i r e c t i o n . 

•yx-A-M 

X (#5 X 

X X v. 

Stress kgms/mm . Stress p a t t e r n I I can he seen at 
the edge of the photograph. I t occurs at t h i s low stress 
"because of the presence of a v e r t i c a l f i e l d . 
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Stress 6 kgms/mm . Increase i n area of P a t t e r n I I and 
decrease i n Pattern I spacing. V e r t i c a l f i e l d of 15 
oersteds applied. 

- , _ 

• 

Stress 6 kgms/min . V e r t i c a l f i e l d a pplied i n the opposite 
d i r e c t i o n t o t h a t i n the above photograph. C o l l o i d can "be 
seen to "be p o l a r i z e d on a l t e r n a t e w a l l s of Stress Pattern 
I s t r u c t u r e i n the two cases. 
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V e r t i c a l f i e l d 15 oersteds. S t r e s s 10 .3 kgms/mm 

^pr~ I 4 
a : 

1 s * * 

i \ 
S t r e s s 25.6 kgms/mm2. V e r t i c a l f i e l d 15 oersteds. The 
photograph shows a f u r t h e r decrease i n P a t t e r n I spacing. 
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Stress 25.6 kgms/mm . Ho magnetic f i e l d . 
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Chain s t r u c t u r e at a stress of 36 kgms/mm No magnetic 
f i e l d has "been applied. 

r 

Stress 36 kgms/nmi*. A small v e r t i c a l f i e l d has caused 
a l t e r n a t e chains to disappear. 

Scale 
0 005 mm 
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S t r e s s 27 kgms/mm . No magnetic f i e l d . Small e l l i p t i c a l l y 
shaped domains have s t a r t e d to n u c l e a t e along the w a l l s at 
the s u r f a c e . 
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The co-existence of S t r e s s P a t t e r n I I and the chain 
s t r u c t u r e i s shown above. 
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ft 85 51' 7/7 
A high m a g n i f i c a t i o n photograph, taken of a quenched 
s i l i c o n i r o n specimen, shows S t r e s s P a t t e r n I I i n d e t a i l . 
The main 'zig-zag' w a l l s ere i n d i c a t e d "by arrows. I n 
"between them l i e the complex c l o s u r e s t r u c t u r e . 
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V e r t i c a l f i e l d of 15 oersteds has been appl i e d causing 
a l t e r n a t e 'zig-zag' w a l l s to disappear and a m o d i f i c a t i o n 
of the c l o s u r e s t r u c t u r e . 
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The d i r e c t i o n of the v e r t i c a l f i e l d i s the r e v e r s e of 
that i n the previous photograph. 

PLATE 3 



VVVv » v 
\ 

[001] 
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[110] 

The photograph shows a t y p i c a l zero s t r e s s dagger s t r u c t u r e 
formed when the [001] d i r e c t i o n make8 an angle of about 3° 
with the s u r f a c e . The main 180 Bloch w a l l s are not very 
coherent. 
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T e n s i o n a l s t r e s s of 1.55 kgms/mm has been appli e d along 
the (OOfj d i r e c t i o n . There i s a l s o a sm a l l v e r t i c a l 
magnetic f i e l d . 

S c a l e 
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Stress 1+»13 kgms/mm . There has "been an i n i t i a l growth i n 
the size of daggers. A small magnetic f i e l d , applied i n a 
v e r t i c a l d i r e c t i o n , i s present i n a l l the photographs of 
plate i+. 

• 

• . < 1 • 

• 

P. SB 

Stress 10.6 kgms/mm The main 1 80 walls are more 
d i s t i n c t . Daggers are smaller now 

PLATE h 



Stress 20.9 kgms/mm . The daggers have almost disappeared. 
The p o l a r i z a t i o n of magnetic c o l l o i d hy the v e r t i c a l f i e l d 
shows that the magnetization has not rotated i n t o a surface 
d i r e c t i o n . 
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v 

Stress :25. kgms/mm . The domain structure now seems to 
consist of simply 180 Bloch walls. 
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Zero stress pattern on surface which i s a (100) plane to 
within £ 0. The dark l i n e , indicated with an arrow, i s a 
guide to the stress d i r e c t i o n . 
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A compressive stress of 3.71 kgms/mm has been applied 
along the D1 CO di r e c t i o n . A v e r t i c a l magnetical f i e l d 
makes alternate zig-zag walls of the closure structure 
v i s i b l e . Scale 
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Stress 5.06 kgms/mm . A v e r t i c a l f i e l d of 15 oersteds exists. 
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Stress 8.62 kgms/mm . The increasing stress causes a 
reduction i n the domain spacing. 
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S t r e s s 12.00 kgins/mm''. 
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2 [eaaurementa of the va r i a t i o n or oo t r e s s 15.3U kerne/nun w i t h s t r e s s cannoL Toe raade f r o m photographs a t t h i 
magni f i c a t i o n . 
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Zero stress photograph. The 0 00] d i r e c t i o n makes an 
angle of about 3 wi t h the surface 

i < • 

S i 

A Compressive stress of 2.50 kgras/mm has "been applied 
along the [11 dJ direction. There i s a v e r t i c a l f i e l d of 
10 oersteds normal to the surface. The presence of arrow­
heads and zig-zag walls are shown. 

Scale 
plate 6 0 0-1 mm 
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Stress 6.23 kgms/mm . V e r t i c a l f i e l d applied. Colloid 
deposited over ha l f of each arrowhead. 

it 

Stress 10.3 kgms/mm . V e r t i c a l f i e l d of 10 oersteds applied. 
The "band and zig-zag structure i s c l e a r l y shown. There i s a 
reduction i n the size of arrowheads. 

PLATE 6 



v. 

9» 

Stress 10.3 kgms/mm . The v e r t i c a l f i e l d i s i n the 
opposite d i r e c t i o n to that i n the previous photograph. 
The band structure can be seen to be more d i s t i n c t where 
the arrowheads have disappeared. 

p 
Stress 15.U kgms/mm . No v e r t i c a l f i e l d . 
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Zero stress. A small square domain can be seen on the 
l e f t hand side of the photograph. The thic k black l i n e 
i s a guide to the d i r e c t i o n of stress. 

V 

m 

A compressive stress of 1.2 kgms/mm has been applied along 
the [010] direction. The square domain has grown i n size. 

Scale 
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S t r e s s 3.2 kgms/mm The square domain has grown f u r t h e r . 
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S t r e s s 5.7 kgms/mm . The g r a i n i s now c o m p l e t e l y magnetized 
i n t h e [100] d i r e c t i o n except f o r t h e s u r f a c e c l o s u r e domains. 
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Zero stress photograph. Domains magnetized along the [010] 
directions. The B)01j d i r e c t i o n makes an angle of 1+ with 
the surface. 
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A compressive stress of 0.7 kgms/mm has "been applied along 
the [010] direction. The d i r e c t i o n of stress i s indicated by 
the "black l i n e . 
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Stress 1.6 kgms/mm . No v e r t i c a l f i e l d applied 
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Stress 2.5 kgms/mm . The domain spacing i s s t i l l rather 
variable. 
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Stress 7.9 kgms/mm . The domain spacing i s much closer 
than at lower stresses. 
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Scale 
The dark l i n e across the centre of the photograph i s not 
on the surface of the specimen. The zig-zag spacing can 
he seen to remain constant at a l l distances from the scratch. 
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Scratch on a (110) surface. Stress Pattern 1(1) changes to 
Stress Pattern 11(2) and hack to Stress Pattern 1(3) with 
increasing distance from scratch. 

Scale 
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0 0-1 mm 

The photograph shows that the domains adjacent to the 
scratch are magnetized along the [100] surface easy-
direction. No stress pattern, caused by the scratch, 
can he seen. 
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The dark l i n e normal to the scratch i s used f o r orien t a t i o n 
purposes. A v e r t i c a l f i e l d has been applied. 

Extent of 
h Scratch 

The v e r t i c a l f i e l d has heen reversed. 
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i 

\ 1̂ \ • 

E l e c t r o p o l i s h e d scratch on a (110) surface. Dark l i n e 
runs along l e n g t h of scratch. A v e r t i c a l f i e l d of 10 
oersteds has "been applied. 

1 

; 
» 

\ 
* 

; 

> 4 

V e r t i c a l f i e l d has been reversed. C o l l o i d deposited 
mainly on a l t e r n a t e Bloch Walls. 

PLATE 13 


