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INTRODUCTION

In 1940 a paper was published by E.T.Copson and
H.S.Ruse [;D] in which centrally and completely
harmonic spaces were defined. This paper corrected an
earlier one by Ruse [19] which claimed to give the
‘elementary solution', in the sense of J.Hadamard [ii},
of Laplace's equation A,V = 0 in a general Riemannian
space, The properties of the particular spaces for
which Ruse's work was valid were also investigated:
These gpaces, called harmonic spaces, are charactefised by
admitting a solutibn of Laplace's equation which is a
function only of the geodesgic distance from a given origin.
If such a solution éxists for one choice of origin alone
the space is called centrally harmonic, if it exists for
all choices of origin the space is completely harmonic.
It was found that a necessary and sufficient condition
for a space to be harmonic about a point is that &4 ,S
be a function of S alone, where S is the geodesic distance
from the base point.

Much of this and subsequent work on harmonic spaces

is contained in Chapter I. Although most of the results
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known we give several

Praptive prosta mxm wm*y the &awmwm of the
4&%{;&{4;&%% - In faaw%wmm we give an a&%i;: wiive derivetion
¢ T?Ta@ﬁgggﬁ&ama of Copson end Tuse* . A W'
the following ehapters we ave ssncérned only

In some

8 1é &wm::{w ts not mede

pYmOnis spRCES WAy ’w found W

% be symmetric. Howe gmé&mlw @f’iﬁf‘"} Ay
5gwg$@xﬁﬁfh@mﬁg$m@wwﬁ w@a@ﬁnfw%%ﬁ‘ﬁ&@m&@%ama

metrics whieh ave complately hermonic. This &s in faet
our ebject in Uheptdrs I1 and III.

:%’ﬁrmm the ﬁ{}:;gvlww gﬁﬁ&é of a h@‘ﬁ%@ﬁ#n&@%ﬁ
is that of o Tde @x?mp. In Chepter 11, & rter reculiis
some of the olwiesiosl theery uf Lle greups we dexive

propersiss of wetvice ‘awsoeiated with semi simple groups.
with the sdditional sssumption of compsctmess on the

groups Thess metrice sre pesibive J6finite and for the




grouy spaess to be completely harmenis we Yhen show ¥nes
their Lie algelves must be simple and of ren
ve lmmedistely from Usrten's clessification of the

£ One or Lero,

In Ghaptey 111 we firet consider some gémeral
mmetric specés meinly

& global poipt of views We then comsider two podnt

homogensous Rbemsniien spacsa or (*
these ave completely hermonio,
classification of compact and connected () apeces we

nomcoNpaeY symmetric spaves are

esmplotely hammonde.




CHAPTER I

THE GENERAL THEORY OF HARMONIC SPACES

Summary . This first chapter is devoted to the definition
of centrally harmonic and completely harmonic spaces with
positiVeldefinite Riemannian metrics and to results which
have been obtained on such spaces.

In $1 we define a centrally harménic v, and prove
a necessary and sufficient condition due to Copson and
Ruse, in order that a Vn should possess this property.

In &2 we obtain several identities, some of which
hold only with respect to a system of normal coordinates.
By making use of these identities we find explicitly in £3
the solution of Laplace's equation in a centrally harmoniec
v, which depends only on the geodesic distance S from the
base point. We then define the concept of a completely
harmonic‘vn and prove that in such a space the harmoniec
function X (s) is independent of the coordinates of the
base point - a result which greatly simplifies the study
of these spaces. -We then state without proof two theorems
due to T.J.Willmore [30] by means of which one obtains
an alternative characterization of completely harmonic

V. 's.
n




In $4 we describe a méthod by which any required
number of-the 'equations‘of Copson and Ruse' may be
obtained ‘in a centrally harmonic Vn. The method used
is different from that of A.G.Walker [?3], following more
naturally from our initial definitions. Since X (s) has
a singularity at the origin it is found more convenient
in this section to replace it by F(J)/) where (J = & S°4.

In the case of a Vn which is symmetric in the sense
of Cartan, Walker has obtained a necessary and sufficient
set of at most n-1 conditions in order that it be completely
harmonic E26]. We deduce these conditions in & 5 from
the equations of Copson and Ruse and hence show that
spaces of constant curvature are completely harmonic.
Conversely all completely harmonic Vn's for n =2 or 3
are of constant curvature. When n = 4, however, there
exist completely harmonic spaces other than those of
constant curvature; we give their most general metric as
obtained by Walker.

Finally, we prove that decomposable completely
harmonic spaces and simply harmonic spaces are necessarily flat

and in addition show that in a completely harmonic space f(U})
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where the narmenie function X(8) ie a function of §
alone; it does not involve the coordinetes % of the
varieble point P explicitly, but the cooprdinates X = of

the base point O mey appesr as pavemeters. This

definition of & cewtrelly hermonic space is equivalent to
thet g
Theoyem I. In order that & V. be harmonic with respsey

ven initially by Gopson and musel /9],

to & point O 1% is neceusery end sufficient thet lapleceé's
squation has & solution depending only on the gecdesic

distance m

agured from O, |
Denoting diffeTentiation with Pespéct %0 § by a dash,
we Hieve from (1) the

(0 A, g = FIBS+gl9as = IO+ @S

#ince ae is well known, 58 has the velue uni

ty.  Heénce
Leplece's equation
() A, V=0
has & solution of the form @(8) provided #(8) satiafics
(6) F(s)a,s + @y =o.
If the spmes ie centrally harmonic and § the geodesic
diptance measuved Lol the base point ¢ then wsing (3)
the solution of (6) esn be written as

@(s) = Afmp(%fxds)ocs + B,




Conversily ﬂ', m 8 Vo (5) hae @ solution depending

from (4) we have
vi(s)

on & alone, then

“the #@aw&aﬁu%ua of & ghneral g@%ﬁt P are @&V@n By

(3) y = WsT

where -Y‘ are the anpangaty of the unit tangent veotor %o

gl agaré thet ﬁé@@aﬁ&wﬁ from © %o podnts of
V, #re unique. Since (1) ie the eguation of the geodeate




’ L
through O in the direction X\ it follows that at a
point P(yd) of V., we have

ol
"fbx 7ﬁ7 "=

while at O

.,(
[’ﬂa’:o

Let A denote the components of the fundamental tensor
. — X
in the normal coordinate system and write qzxﬂ/ HV A for

ol
the values at O of ‘1’0(/3 ;1 R writing

A= ks

it follows from (1) that

24l = Y g y"‘y’s
Differentiating this equation we have
oy  oub 'Lfdﬁy”

o sm—— —
—

Dy*

v —
M- = \f
P
- while the partial derivatives of higher order are all null.

In a general Vn with Riemannian metric
Dol
()LSL = 8;_‘) ol ol »

Let S denote the geodesic distance between the points

O(ii) and P(xi). Then S is a function of the X's




and of the x'e. Denote cevariant @ifferentiation with
respect Yo the coordinates of O by & berred suffiz
(100 8,0 ) and write ;. § 3 for the veluss at 0 'ef

8130 67 pespeosively, fFow from the equations

/< I'J
9.."5"_.‘ o’
e oLSOT‘g
d/x“ =
S"_' 0('5 = | Ak
we hmvw thet the unit coptraverisnt veclors <=

VS 5. = |

a¥e in the same Girection and are therefore mml. Hence

| ¢ N LY
{3) ‘g?i =9 /g . =59 A

and

X!

Lj =3
( S—'— S 3Ju/b’-‘.

1\&

(4)

In normel coordinates,
)




(2) and (5)

and from
1) tﬁ y - Lf:(,s Y/J

Tt then follows by differentiaving (7) with respect %o
that

y¥'9 Y
g A °</5 ey

wheénce ) V‘ZL-Q« 4o symmetrical in o« and 3
g

integrdl is teken along




The syabdols @‘&, ¥ in the above equation Gemote of

& the square roote of determinante |gy .| o | Fyl

aours
It should slse be remarked that O must net LYsslf be & polnt of
the aye of integraylen for if it wers the integral would |
in gensral be Sivergent. wrom (1) of $1 and (4) of $2 |

4% follows tnat |

) = -@—-("u +.9£_“°33y

Wow in a syevem uf hormel ceopdinetes

«
3___(5:3“)* _@JEL) _onel
Dy* "gdac Y

'z | n-t Y,
n-| - d(&ﬁ‘/”': o(&js ) it
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whsPe

V' denotes the deserminant l‘f; /S"I )

3

Ny
Sx

{2) sen be written ae
_ oddey S
As TS

Eq
Ox*

n-t I

33

& (6) of §2 wity respect to x* we bave

and therefore

£, - A —
(4) I%} =) kgl

But, us is well known,
| W _ g
o “
vhen evaluated at the origin of ao¥mml coordinmstes; hence
the components of e tensor st the poigt sre the same in
either of the two goordinate systems and in partie B
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(5) ¢ AP < g*P

In virtue of (4) and (5) equation (3) becomes
n-t ’/
Iy 1
VAP Bgl&f —~;£L:r
AS )"y
where J is as previously defined. Since the space is
assumed to be centrally harmonic about O we know by theorem I
that Laplace's equation has a solution depending on S alone.

It then results from (6) of §1 that

s ol S

V = ¢(,S) - A/g"/vsl"b TS—;:T
a

which completes the proof.

It clearly follows as a consequence of this theorem

that the funetion/o defined by

is a function of S alone in a centrally harmonic Vn'

Conversely if it is a function of S alone then Vn is centrally

harmonic; /0 is usually called Ruse's invariant.

A Vn is said to be completely harmonic if it is harmenie

about each of its points. We now prove the following
result which is due to A. Lichnerowicz [163 :

Theorem IIT 0 ete the function




-~

X (8) 1s indepentent of the coordinates ¥ of the base
point chosen.
Slace ke @@m;ew of dﬁﬁlﬁ%*ﬁ aqﬁaﬁm (@,f» thesrén

is also symmetric 4% felle
depend u:x@lwﬁ,%w on the coordingtes ¥
/4
— @)
gls)

e goordinstean of the bsae point end

Hence gince

xX(s) =

it is independent of
the theorem is proved.

ding w&a& well kEnewn ¥

iy hermonie V,'s,T. J. Willmore

ytive cherecterisation of sueh spaces( 301,

enultes of potentiel

obtained an alterr
We state without proof the two main theorems from which thie
| dte 8(P p) for the

g&w&@ﬁ&@ »ssy;mm of centre P wnd regius /o o Ifuieas

eharseterisation follows,:

the surface of the w%wm ﬁ( P Y ) is ﬁx&ﬂm& by
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m(u/P//,)n/_'o(r = [—:A-o(o*

where both (n = 1) fold integrale are taken over ?@h&»

: andary of @(F%p), do veing the element of arw&;n
‘!‘h&zﬁ@\w have the following
Theorem IV 1f w ie & function of position with

nbinug cond. -&ﬁz@mm&vw in & completely harmonic

'y, sush that the m
shhere s the velus at the centre, then u swiefied
iaplece’s equation in V,. |
theoren ¥ '
contimnous second derivetives end sstviefying Teplece's

an velue of u over every geodesie

Let 4 be u funotion of position having

equation in 8 V.. If the meen value of every such funotien
over the sur
' velus @8 P , shen "«‘3"@ is centrally hermonie

ouly if V. is completely harmenic

& equations ¢f Copson and Busé.
swa by Copson snd Ruse(/0 J¥het at the base
point of & centrally heymenie V v the yalues teken by the

pygtnre tensor ’ah&;!k and 1ts ¢ovariant derivetives are
not independent but Mtﬁ.mﬁy an infinite sequence of
reletions

3 4t being sesumed thet the Tundamental tensor
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possegssed an infinite number of derivatives at the base
point. In a completely harmonic Vn these relations are
satigfied everywhere and so form a system of differential
equations for the metric tensor gij‘ It will be shown
later that in a Vn which is symmetric as well as
completely harmonic only the first n - 1 equations of

the set are independent, but it is possible that this
result is true without the assumption of symmetry.

A method for obtaining these equations has been
derived by Walker [23] . By means of a recurrence relation,
the coefficients of S in the expansion of f [c.f. $3] as
a power series in S may be calculated up to aﬁy humber of
terms and expressed in invariant form.- If the space is
centrally harmonic these coefficients must in fact be
constants and the set of conditions thus obtained leads
immediately to the equations of Copson and Ruse.

The method which we shall use is to evaluate the
successive derivatives onXzLQ,with respect to S, at the
base point O. We do this by considering not QZJL
itself but a matrix B whose trace is equal to JA\ de.

B éatisfies a recurrence relation, the initial conditions
being the value of B at O. By means of this recurrence

relation the derivatives of the trace of B and hence of

Ao Jl, can be evaluated at the base point and the equations
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of Copason and Muse thereby obtained.
With the notation of §2 we cousider the veetor field

‘ = o.ll..r.‘:
@ x = o

of unit tangent vegtors to geodesics through 0. With
the exception of O iteelf Yhere ls & unigue veotor at
sech point of V.. By mesns of the Ricel identity we

L J
¥ultiplying both sides of (2) by )\ and summing for m
it regulte thet

3 Dy(sx), = (3] N s Ry NN

% @WW% ahmﬂw differentiation along a gectdsto,

Now sinoe )\ are the o gents vector

ponents of 8 unit tey

to a geodesie,

= DX) =0




-'&.—

Vi

@‘ X()/ lmlr [@.}f}/m Xm], . (‘3 \(),M Xw,\ ¢

X;Q” QS}J);W\ XT( |

i

SEYCVIER S PN CVADY

(4) = $ 0N =5 6N, (s,

Using matrix notation,

B = @3) @’\C/‘j

(}]

and

¢y . ¢ W %
e ()= (RO
are square matrices of order n. It follows using (4)

that (3) may be written in matrix form as
~, _ L 4 — 1
(5) SD.B=s1~+8-8
If now we find the value of B at O then by means of (5)
we can evaluate the successive covariagnt derivatives of

B with respect to § at 0. To evaluate B at O write
(3) of $2 as

(6) sN=9'J,




o] -

Then differentiating (6) covarian

(s )

K a3

CTD I SN

o
(@ =]
r

i

/JK

Since xsk_
veotor we deduce from (@) that 8t O
Y
i

9 B -5

when evaluated 8¢ 9, is an a itrery ualt

: rating on (5) wi'eh&} s

(20) S (RB)= S DM +aSM-D 8

and sevaluating (10) at 0 1t reeults using (9) that

(11) ’DS R =
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benste by 4, ¥he #'® sbgolute derivative of the elements

of o matrix 4.
by suscessive operations of D, may be written as
y
S$T+8-8

S B
58,

3]

Sf+280,- B

383 z S’E+l+3r;*lf~—8:.. ‘B»
SB.* : S"[‘3+QSE+6‘7_B;.-2%3

It is essily seen that the general equation is

(22) S8, = S *ab-)SL+ (r-(e-2)f - B - tr-)

-3 1

where ¥ 50, & matrix with » negetive suffix being seve .

Bvalusting (12) at (0) we have

@ 8= ) [ - B




Wow by sumsing 1 end k $n (7) we have

Cr@ = A%(ﬂ)/

$ré tr B denotes the tre

e of the matyix B; end since
pate 1% follows thet
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By meuns of (14) snd (15) any smbey of derivativées

of A Q,_JL can be calowlsted at O feirly quickly. If the
orde sbout O then 1t fellows frem (3) and
henae

gpage 4s hawp

(4) o2 §1 that A ﬁJL 18 8 funetion of B slone and

its derivetives with respect Yo § arve constemts when
alusted a4 Oy that is o say they are indepesdent of ¥he

unit veotor Ak &t 0s I8 follows that the derivetives

of 4 B % O must then satis 2y

, a8 _ o
(lgj d. 1{-0 + l Y l/ - -

O[H.Q‘B : | =L - -~

vhere B's are sualars.
¥ @ball illustrate the methed of caleulstion by
ting the firey few derivetives. Unless otherwlioe
wtated 14 49 %o be underatood thet the m&wiws& gongidered
‘ Prow (14) we have

a7-288,

w
(7

6f, - (388,+138,8,)

=
SO
L4
!




-2 |-
58, =2[,— (488+68,8+LE 8)

2.0f, - (58,8,+108 B +108, 8, +s8, B,)

a~
o
A
12]

sof, (468, +i58 8088 +1S8 B+ 8.8/

~J
Lo
o
u

(18) 8 -

asy 8 = %,
(29) 8

(27,-S5,-% ()

&
>
St
oo
"
ey

22y B - %(30rq_~'2aﬁr-1urrlfzés’;jr,+3‘3lrj)

SRR slues into equations (16) and
btsls the first few squations of Gopson and Buse,

If the space i complévely hawm @fm@ tﬁw% guntions
¥y point, the Kts then being constants since

it follows fyom theovem IIT and (4) of §1 watd, L is

independent ¢f the coordimmtes of the bese points Whenge




for ¢ = 1;2 in 07) w have

(33} R\J XLX’ -
(z“') R lJKR Q“\h)k l ) .8 Kl— NP s b e ;i

K o o
(2 sm%kmﬂ,,,,hxm‘ -2 12K 3! Rw ,ZR'M,,,,%xn PPN

mxﬁ tx fﬂ* te m.\ﬁy-é y_w gﬁzﬁﬁ% g@@m &m@&@e rog dte,

T

gy $3y w&* ma@m% Yo any polnt A€ %
preaerves distances. The symmetry is defined as follows 3
sach polint ¥ (sufficiently nesr to 4) ia tranformed te

the point W' oblained by extending the geodesic WA %o @
‘point M' euoh At the diptence Ma and H'A are aa&al.
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derivative of the curvature tensor vanishes
every point. We shell prove thie in chiapter III

etric apt @es will be considersd in move detetl,
wtric of a V, is analytic then 4t s
sasily seen that %5’ w g¥ ‘ﬂ’lé is alse abalytic., Ite
trac¢e may thes e em;;;;:[ewwﬁ ae 8 gerdes in 8; the
coefticients being given by means of (14) of $4s
Hence the neoeseary and sufficient conditions for V
mpletely harmonic s¥e that (16) end (17) ofl4

& [26]

The necesssfy end sufficient conditions for
. 1ig apalytical metric Yo beé
nic are thet the latent roots of [ should

¥e now prove the fellewin

completely hon

be conetente.

ing en susly¥ier

(x) 38 . =2T

G[H) B{

i

)
N—

)
2]

L)
by
L 2¢ )

T72




"7"&'

Burar =° £70

(2) g = b(8,) ok

g (1) and (2) we have
gebepal

fop some conptanta b. .  Benee usis

srsonte 4 and only if st 8.

o=l

for all ¥, where 6, is independent of divection. By & well
kpown thereem on squere matrices, if W ,....¥ ere the
1etent roots of Sy [ )

2 f
) w1 oo 5@,

L3t

‘The sbove infinite eet of conditvions are then easily . seen

constbants. Whds completes the proof of the theore:

nete 4

rixvs=o.

ot oY Lénst one of the letent roote of [ e serc eince




1t follows as & consequénee of this theorem that
spaces of comstant curvature sre completely nermonic, fer
at every poiut of such a space

The preblem of cherecterizing all cempletsly
harmomia V,'s has been solved for n = 2,3 6F 4. In Teod
when n = 2 or 3 they sre of constant curveture. To prove
this we take first the case n = 2;  Chooss 8 systém of
coordinetes for V, such wm 8% & polnt P we have g, o gaé*
o—— \i Si '/Mi ° S 2+ it eseily follows from (24)

of $4 %nat

By varyisg X and /u cortinuonsly
ture ie everswhere a
Por 4he Gese n e } we nove
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from (23) of §4 that & completely harmonie V, is
aniEinetéin space and 1% is well kuown thet an Eimstein
space of three dimensions is pecessarily of conetamt

wrvature. | |
The cese n = 4 is more 4ifficulv. It hes hewever |

been proved by Walker in[2«land [25]thet eévery completely

harmoni¢ V, ie symmetric and with the exception of apuces

of Mmmm curvature, has a metric of the form

,,ts s £ (R ol nuut) iKE * (2 o+t oly- X cobe-ydlt)”

+ L 206 hn- oyt yode- xolt)®

where

F = I+ ’;_'_K (XL'+7’L-e‘bb*bb),

K 48 sny veal constant but for E< 0O the coordins
restricted so that £70. ;
Pegal by mw been m%awimﬁ by mi@hmmwiwﬂél

ten are

Devomposalble epeces, A V, is said %o be fecomposable if

a decomposable coordinate aystem can be definmed over 1%,
That is Yo say a coordinate system in which the
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}”fﬁ seer ;,;;,% aaﬁawwi,wman4m£& funetions

whose indie

snd 1ast n - P coordinates vespeotively

orem VI, 4 deecmposable completely hermonic Vn i

#E4h the above setriv for the
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let }\' ’ X\ be unit vectors whose last n~r and firet
r componente respectively are gero, Then if the none
zero components of )\ and X\  are Xf and X’juit
follows using (24) of §4 that

X

S 38\ Iy
p“JKRFM’h')\)‘J\’\ 'Qc"J’K Rt,.,,,u)f):’)\ ="3'K;.

But *,%,( X + '>f )y bBeing a unit vector, alsoc satisfies
(24) of §4 end it results that kz w O,

S8ince the Vn is completely harmonic Kﬁz iz & conatant
defined over it and is independent of direction at a point,

whence

1§ Is -
(4) r (.= K. =0.

Let P be a general point of V,» Then by a suitable
trenaformation of coordinates the metric tensor ¢an be
choser such that at P

3z i = ) “J

In this came (4) becomeés at P

ZU,) -

LS




-Lq -

and since [ s veal it follews that

—_ .. yd =0
KK" h%Kxx .
This eguation holds for all unit waﬁ%ﬁwa,\i-&% ¥ and therefore

(8) (“LJ.K +£ ‘r\J‘i.IL =0

and 1% ie sasily verified tuat (5) implies that

.. =0
(kUk' ‘
The curvature tensor thus venishes at P and hence st eve Py

@@iﬁ@‘aﬁ‘?ﬁ. The spece is therefore L1ls% which proves

the theéorem.

Bimply hermonic spaces

Let ¥V be a completely har

enie spage, Then
- S+l = (s) + |
A 2 SAs < s XS+l

and by writing-§ for o in this equstion it follows that X
is sn odd funetion of 8§, Writing

A\ = By

we bave from (135) and {(17) of £ 4 that




L0 AT F)
s 2 oL st AV

4 completely barmonie V, ie sald to be simply harmonic if
FWL) =,
In the e¢see of indefinite métries such spmces are still of

seme interest but it cam easily be shown thet with 8
ibe metrie a simply hermonic space is flat.

- positive defim
Por 48 £{J01) is constent it follows what X, is sere for
ell >0, emd in particular E, is sere, Using the seme

argusent ws. in the preof of thesrem VII the resull then

followa,

Bestrictions on ¥he fumetion f£(JU). It will be notiped
that the left hand sides of equetions (23), (24) and (25)
of §4 are respsetively sl , trl 2, w7 and 1% cen
¢esily be geen that in the general case when ¥ = 2m the

matrix (’E'eg:?m will oceur in (14) of $4 when the metrices
sucetseively evelusted by

within the summation eign ave

means of thig recurrence relstion. Henee equations (17)

of § 4 mey be writtes only with tr (B 9;}3’*' Lo, B (T "
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,3|..

on the left hmnd eide. IMNow Iét P be & genersl point of
8 completely hermonie ¥V, and choose a syetem of coordinates
such thav at P
Jij = §: j
Then 1% follows that at thie point

.
rd c E :&L.

Thus f’ia\& resal, symn
sre therefore real. By an elementary theorem of slgedrs

etric matrix and its latent roots

8 nedegssry and sufficient set of condlitioné thet the roots

of & polynomial of degree n should be real ere that a set

of n - 1 dnequalities between suma of powera of the roots be
satiefied, Hence using (3) we cen obtain (n = 1) inequalities
between traces of @ﬁ@&wﬁ,ﬁflr‘¢ Fvalunting these traces

by means of the equatione of Oopeon wnd Ruse ws obtain
inequelities which must be setisfied by £ and the
tensor 8% P,

surve ture

The eimpleéest inequelity foxr & polynomial
Cra e oo oea, =0
ig that

v
Ina, S(ﬂA)“¢_




,..-31.

or in terms of powers of the roots W ,...w,, that
2
hnSw B(éw). '

ipplying this inequality to the latent roote of | it
follows thet

(5)  ng (‘J."“ l‘” > (s Vf).L
5] :

Hence aince

), 2 ), K =)

where dash denotes differentistion with respeet %o Jl,
we heve frem (23) and (24) of § 4.

SOINEE LS

1f the Mwequality sign holde in (5) then

(s re-sir(simn-g5r!) <o




snd therefore eincs the metrie i positive definite
g,e YQ
=0y )

sisdng 4 with § in thie eguation it followe frem (21) of

. 3 <

L N ] - —" l(' . 3
for all wnlt veetovs }\L at P. Consaqguently; iﬁ/}’ e @
@éndral vector at P then .

3 K . ¢y =0
(KMJ'K'ZA '3*\K9°5)’“/"“

snd therefore

3\(

(53) QK JK kJLK" 'Y hl(g

Subiracting fros (6) a eimiler eguetion with J ené k
interchanged we find

| - 3K, ,
2. Q\NQJ‘(* (eh\jik’t (2\«\&\)'(, TCSV\“?CJ’SMﬁCK)/

whence 1% 1o eagily verified thast

K '
Rt = 0008~ g 00)

and the space ig of constant ourvatuve.
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e aﬁf‘i&m
menifold end & Lde

iu alﬁwm is intros

ant censequences stated, § 4 o




;g» ‘Heny of mwu
d from a study of systems of homogeneous
@m umm «Wfﬁa&ﬁ»mw are w:i;,i‘}jz;;

sldple, ﬁw (o) mevric is &éem,"‘;
group space over mmm it is Mﬁwa is nymw;?igza.
1n § 7, we @ﬁr(;;f)itf?':'.]flf.“.:‘ the (o) :,:‘:;’;,*c Hos of compaet simple
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covered w @ aystem of niighbourhoods ,

nbighvourhiosd 8f the eystem being homeoworphic Yo
some open set in Buelidsan n-space I,

bood will be called & w"‘;,xaimw m f;‘: ourhood,
orrespondence between the point 6

markood in M and the podnte of the ecovrespording

open vt in By desinss a aystem of coordinates in the

"), . Yooy ) e the coordinate sysvems
fSersscting coerdimmve neighbourbosds tn M

eoordinates whieh csn be sxpressed by the equations

. L ' — - s e i
xt =ty ) g loccen

YA M CRTRREN N

be of class £y Similerly,; S de mald to be of eless o0

or analytle if the functions possess sn infinite vumber
enalytion

of derdvetives or are
;A ‘. " , ‘, R o .
Two wieh systéme S and S of tlasw ¥ aye




=T

be | “M‘uxwl«’";’ t :m’ ﬂay GWF@W&Q Wﬂ‘wm @g M; ﬁ!&b -

m;eaég % of ¢lase re An Mﬁmwmmx di. famm&ah&o
B ,‘f\.‘,";,&f&zéﬁ( of @kma » isx an Mimmiaml napifold

narif6148 01" 46ne *“'&%ﬁmﬁﬁawa £ which we assume satisfies the
sbility. Secondly, the msnifold
caryries 8 group dtruetire.  That 1s to say m«u@u@wma

segond axlom of count

thomes - We . denote the: w&ﬁ‘ﬁmﬁ“@ﬁ‘ e and b
L1y the saalytic’ sdraéture andsgrodp

ke are relatsd through the regquiremsnts that the
28

the usual. &muym
by 8 b 0Prabe v - Baet

produck a.b and the inverse & depend analyticelly om

wd

& am& by L@ gm @@arém%&a of a.b end &7 are snalytie

"fmwmm of %&M MWQMMW of a« and b.

he-identity
)i 4e: generated by en

<48 ie well knowny'¥he comporent. of %
slement ¢ of a‘kwe%lwmnl grou;
arbityary seighbourhood of @i In the case of & Lie.
group thiscaffords acpoweriul um
properties of the wmwmm of 8¢ We shall conslder only

rang £or obtaining

coordinate mﬁ.ghhwmwa of ¢ in which the «aew&im"ﬁu
of & Bre werdi this'will ve found e6 etupl: ‘ il

164, wndey, e ‘Gookdinute netghvournsods 6r'¢ ana
of a general point x respectively, in ¢ Lie group @




8 b6 aymbolicelly by medx the w’f.f;’:f:t
¢ covrdinatesn are X+olx" (oL lf), in Uy whese

inates of pointe

Anate system. The funetions

they can be written as

(3) T, = 2y*

F (}/ X / donotes the !

24 ‘e U, + Under 2 .
Ul (x) e for 24xed 1, transforme as & covaw:



”3;’

coordinetes in Uy, (or with 8 different

chotoe of T,)
v, (x)s tor fimed € , trencforms ae » vontrevarient

f & neighbeurhend

veoter at e, If U, is itesl: ot @y
then considering it slso se U,y we hawv
oy guX_ et &
V(4 dx" = 5, o

hence

for a1l &x™y

w o ve- s

oF; in soordinate Lo,

(5) 2% 2 F7 k),

where % is o var

iable point and y o fixed polnt in G,

<x\/+d (xy)) (xy)'= &+ oW) y (xy) "= (x+ obre)x




_‘&_e -

e ‘( 0/

NS S 6’- ) ia non-singular at every point of
G, for if this wers not so then for some y and dy we

id piie «yiﬁifQEQ@QQ?WQéi it follews that
the elements MZ m mm (‘V ) are analy¥ic, he:
the elénmenta of 1% inveree (’0‘; ) &0 also analysies

Bince eguations (8) admit & selution
T = X
iltial values g:ﬁ zx;‘"@ foliows that the
conditiony of (8) are satisfied Ldentically.
ily be ﬁﬁ#ﬁﬁﬁﬂ'ﬁﬁﬁﬁﬁﬂ to




- W

are constants called the constants of structure of the

group G. These constants are not arbitrary, but

satisfy the following equations;

(

(12) Cqu ng& =0

\ < N i

(13) QMC + C G+ Ce e C 0.

my

Evaluating (11) at e, we have
L L 18
(14) v S é
x.@

and since the left hand side of (14) is skew symmetric
in % and p , equations (12) must be satisfied. To prove
(13), differentiate (11) with respect to x¥ and
evaluate at e. We then have

; " a ® QU
(15) U X ﬂ-a‘x * Cd‘lg C’Uﬁ.(y 6::( N \59(.3, gp ) O/

and adding to (15) the two equations obtained by
permuting the suffixes «, (3, Yy  eyelicly, (13)
follows by virtue of (14). The C%k are szid to define

the infinitesimal structure of G.

2. One parameter subgroups.

In this and the following section we shall be
concerned only with the coordinates of points in some

neighbourhood of the identity. For this reason we use.




only' one system of suffixes, writing (v?),(V?) in place

of (v§), (vi).

A local one parameter subgroup of a ILie group G-

is a differentiable curve

N I (IR S G R )
which passes through e and whose points satisfy the
equation .

(1) g9 = glrt) Lsl,1¢], [svt] S

In (1), g(t) denotes the point whose coordinates are
i
g (t), the parameter t being chosen so that g(o) = e.

By the direction vector of a local one parameter sub-

group we mean 1its tangent vector at the identity, i.e.
¢ ' ;
Qﬁkif) ; we denote it by at or symbolically by a.
We now prove the following:

Pheorem VIII. A local one parameter subgroup g(t), with

direction vector a satisfies the system of equations

N

having for initial conditions

(3) 3"(0) = 0

Conversely, the solution of (2) with initial conditions

(3) defines a loeal one parameter subgroup g(t) having a

as direction vector.

The first part of the theorem follows immediately




o“_%_

(4) (x+o"><)x g(t«:d&)g(ﬁ g(au) a olt .

itdng (4) in coordinete fofm by meen d (2)
of §1, we ebvein (2). Bince the mmﬁm of {2) snd (3)
unique; there is & unique locel one parameter subs

group heving & 8s dlveotion veetor.
fo prove the converse, let g(t) dencte the ¥
solution of (2) with indtial conditions (3)s Then 12
ere x = g(t)y ¥ = gle), we have, fyom (7) of

) elearly satisfies (5) and (6), it follows
s of the solutien that
= glets).

and (3); we gee thet the direction

veetor is 8. This completes the proof of Theoven Y/

wur esigpony. 4 o
An




b S

Y
e}

L ¥ thie 48 @8 Follows. "&&% 6
W@ denoke the two dimensional torus
wwgrwa@%wwé in the &1

gram by the 1 / '
ppoeite gldes A -

> )

1@ﬁmﬁaﬁiaﬁu It 18 the menifold of a Lie growp whieh %
he proi L mengional abelisn groups, If
»‘“Tfimvm the &éam&iﬁy'éﬁ'wg, & subgroup gensereved

ubgroup is represented by 8
hrough A, which on meeving e side of the
¢ is sontinued in the same Girdéction from the

sbrresponding point of the side opposite, es shown,
wmﬁ-@ai&%@ ef 8 lﬁmﬁ‘mﬁkimg sn ar“éa wiﬁh,ﬁﬁwwhgﬁﬁ

@fine; for later use, two ﬁyy&ﬁ‘@f
1ieh can be shown to exist in
rrhoods of the idemiity of a lde

coordinete systems w

the first kind, the
coordinates of & point x are giv&m by

('}') /)g"':- (}vt’
where & is the divegtion vector end % a @aramutaw for




whose divectien vewtors arve linearly independs
the poings

iet & and b bé twe vectors in L., We may #appone & and b

to be tangent vestor:




_.4_6‘_

ay o XL Y X7 y~'(¢)

E—=>0 g

we wa in get & veoter st ¢ depending only on & and b
This vester is ¢slled the e:mmw and wrivten [ a, 'a’b:]v

In order to caloulate (1) aifterentiave (9) of §1
with vespect to y© and evaluate at ¢. Then we have

o) él = - 9—-—"——"”F. 00
K J (BX'J ()7'«

(2) ‘Ui

L P = Ft(*x Y/
4 expanding p' as fer as second order terms

in x and ¥;

(4) pr= % +\/L — xtym 7Y, (o/

. .

- (87 l} a8 far as gecond opder temwmae in s by

Bxpunding
mesns of the P

plation m

() (@) = -2 -2l
{5) 4% follow

& thet

Henoe, weing (4) end

@ g = EGy) = —x eyt ey - Gyl

where the expsinsion m ap Yo second order terms in x and y.

m and (6)




e N o

and hence, from (14) of §1, |

\}
; . - v L m .
(1) F(py) = Camxy ¥
s i i, i i, s s as s .
Writing x*=a t, y = b t, where t is infinitesimally

small, it follows from (1) and (7) that

¢ Y
8) [a, 67" = C, o b7

¥ith this multiplication L is called the Lie algebra
of G. TFrom (12) and (13) of §1 and (8), we see that
multiplicétion is bilinear, skew symmetric and satisfies

the Jacobi identity

(9) [Q/ Eb,.C?] + [c, (e, 6]'1 + [:6/ Ky a]] N

Under a homogeneous linear transformation p?,of the
vector space at e, the constants of structure transform

as tensors. For we have, from (8),

L J Riwn _ Il: T £ £, m
PJ C‘JLMO'LA - C{sP,QPMO‘ l’, .
where a and b are arbitrary vectors and Céé are the

transformed constants of structure; consequently

’ N - /'Q »w —
(10) CS& * G Py P Pe

. . 1
where (?}7 is the inverse of (%;) .




s

lgebras. A map b of I
emoTphl bitrary vesl numbers
o #nd 3 ; end for erditrery & and d in L
&) A(xarpb) = <A < BAL
v AL =GR RG],
Leomoryhiam if, in sddition, it Ls ().
wanoe of Lie glwwmg lies in ths fact

Wﬁmm % mﬁ W 118 & loosl Lsbme
Lth Leomoryl ';i..}-a Tie algﬁ? vée ure locelly
S8 %&;&a &% @ TAe

1) 3* 39 8 veotsy subspase of L

2) the @i‘?ﬁfg,:.jj}m-a.eaaa e %'y bEL' imply




,..\}\?

Aytic and its Jagobien ie of maximun

48 anal
@mﬁwmn 2) 48 in fact m condition that the undere
nanifold of the

ng result [9-%1@9%
1f 4 is @ Lie subgroup
! the Lie

Theorem IZ. L6t G be & 148 groupe
af' G, the Iie algedra of ¥ is & subalgebra
algebrs L of G, B
of one &ud enly ¢ X'
W BOANS of this %&m ﬁaima %’}m meiw of *%m exiotence .
of gomnected Lie «mftgg&u@ﬂ of & givm Iile group G becomes
8 gquestion of the e ;f,%_fsf:;.i-‘i#mu of mmwm of the Lie
:fj,{;*sem«‘a of G, We shall see later that this method fer

ning Lie subgroups can be extended to the

' normal Lie subgroups, provided the given
‘ nnected, 7The connected Lie subgroup |
srréeponding to & mzxgebm is ne ‘ closed.
On the oiher hand; & cloped sudbgroup of & Lie £
sutomatically & Lie group which is net mmwamw
sonneesed [ @.mi&’)’]

4+ necessarily

up e

1et G be § Lie group. To sny element x c ¢ there
corresponds en inner mwmtp}aim Ty of the group ﬂ%‘; 1.0,

if & e Gy then




-
T, 2) = xd2 X
ing of the tangent spase L at & onto
;w form, W WV‘

iteslf. In @%w
| (x dz = p(x)ol%

N de 2 veotor fn L ond x S8 8 % of Gp theh we
® the ‘a@w wtor %’ S |

 nes ¥ m 6 Wali‘f“:ﬂ.; of eanonicsl eoex
famw kﬁwﬁ [aets § g] in &

ap w mﬁ.&ws ﬁam, i¢
paneter subgroup and if
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where
. e J
[0‘— lx (()-] = FJ (?\) c
We now gbow that d4n ¥

olp (at : 4
i ) - CKQO'K?J :
oLt
It will then follow that, with the ini¥isl conditions
the functiens p.(x
; ) s p; (¥

pj(a0) = § 4 we can: seteymine
for x € U by integrating the system (2), To prove (2);
let 5 be a point 4n U . 7Then if
-1 -t -t
z = wyxX = (xyxTy )Y,
it follews, ueing (4) end (7) of §3, thav, with xta aly,
B AN Lok .
:Z Y*CJKaYt-‘ke/
where €' is of the third ovder in % and y. ¥We ses,
however, from (1), ‘mm the goordinatee of s ere linesr

in the cosrdinates -6f y. - Hence

) ' < e f . i <o
(3)  Pilacl= 8,7+ C o it
where  C(t) 48 of the sesond order with reapset to %,

gince a*t 1e a 1@@&1 one paremetér subgroup, wé have

 (otest) = B (o] )

where 4t is infinitesimally smell. Whenmce, using (3),

¢, ‘ : A ’
i) £l €L
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_52,

b

#ith the matrix notation

P :<Kj ) (CKchsi T

{2} can be written

o}

)

P
(4) 3-[ = 7P.

: solution of (4) with initial conditions as glwven
is then

‘ L
(5) Pf—‘l*'?t‘*"——-—%'*"“"
2!

P = w(*ﬂ’/ .
1t follows thet the @%@ﬁ%ﬁ@%ﬁ@%ﬁﬁ) ﬁmﬁ'fﬁ?&ﬁﬁiﬁﬁﬁﬁﬁ*ﬁﬁi
points x in & ﬁﬁfﬁi@i&%ﬁiﬁ‘smail'n&ig&%@arhé@@'qf €
Since multiplicetion in G is snalytiec, the relation

D P (ay) = i) p )

showe that the y%'éwﬂ'&ﬁﬁiyﬂiﬁfaﬁ;ﬁvwwy point of G.

Bouations (7) also show that, provided G is connected,
the m&%ﬁiﬁ&ﬂ,@%ﬁ&} for all x € U gensrste 4.

Let G be a connected Lie sctad
Lie subgroup of G. Then the Lie algebra L' of ¥ is a

algebrs of the Lie glgebra L of & {vqf. Theorem z?xza)ia

voup end H & cont

#e now proves




B

- Zheorem X. A necessary end sufficlent condivion for H

to be a normel eubgroup of ¢ is thet L' iy imvariant

- hey U ke a system M ‘canonical coordinat vy of the

‘ ﬁwm; kind. By ellowing ¥ to be mmmwmny mf&l
in (), it follows thet; if L' s inveriant under Ay
then 1t ie taverient under the linesr trensformation by 7 .
conversely, if L* is inveriant under 4 , then it follows
from the form of (5) thet L' is Anvarient under P , and
hence under A,, since G is conneeted, |

: ol in @ and 42 xe ¥ ond §

Y x"y"e H + and hence Xy X"'y"e H .
definitien of the commutstor | wef.p-ly
ir ‘

of § 34

S

A R
X" = e ¢ / Y F bt
11, then Eaz; 19] € L'
Bince x € H;, the vector a belongs to L', therefore L' is

where ¢ is infinitesimally awm

inverisnt under matrices P (x) for all x € U 4nd hence is

inveriant under 4y. This proves the necessity of the

condition, Suppose now that Lt is luvarisnt under A
end let H be the connested Lie suly
L's If g(%) 1s & local o
direction vector is a, then for a

roup of G determined by

% parameter subgroup in E whose
Xy ¥ € @ the set of
points 2.(g(%)) 1ie on a sons paremeter sudgroup whose

dor

direction vector is :‘&%Qd—')«w gtnoe 1* is imverient um




 define r lineay operstors

Ayo @2.(2) € %' and therefore T, (g(t)) ¢ He It
%11&% that there is a mw}s@wrhw@ ¥ of @ in ¥ whieh
is mapped into H by A. &ﬂ: H, being ewmwaa, ia
genernted by V and tmmmm @\m@v p@m“k % e H can be

written X= X Xy7 "X, where X, ¥, """ % BTE in Vs
Henoe, for any ¥y € Gy
N o o
Tyl = YXXa %y T YNY Yy - yx.y' e H
§ is then a normal subgroup of G. This completes the
proof of the theorem.

An imsediste consequence of this theorem ia that @
necenary end sufficdent condition for a connected fe
mh@&'@w H of ¢ %o be normal is that 1%e Lie algedre L
should be am idesl in the Lie algebrs L of @, Por, L H
is noymel, then 1' 18 inverient under 4;, which fmplies
Ve € 'y 1.6, [_n b )ekL' for any b € L. Henee L' is en
ideal, Conversely , 12 L' 48 an ideal, then clearly it is

inveriant under 4., and E is norpal, as proved above.

heracteristic equetion, simple and semi simple
 Lie algebras.

For the remainder of this chapter we consider only

conneoted Lie groipe. -
By means of the matrix 7 (7K(a)/ (CJKO. |we Gan




kl.(g) C G. —

on & given Lie algebra L. They are cslled the

infinitesimel operators of the limear adjoint i
Ape Using (3) of § 4, 1% is easily seen that a
and suffieien
over L to be inverient under A, is thet

t condition for en analytie fﬁﬁ@*i@a f defined

{2)

N <
|9 )~ w$ |
is enlled the charsoterietic determinant, and

(3) A (5,0) =0
‘the charscteristic equetion.
tructure tramsform ss ténsors | oef. (10) of §$3 ], 1%
Tollews that the Torm of (3) i uverient und
traneformation of the coordinstes of L. If the componénts
L are given particular velues &ég Alagw) 1o the
characteristic determ

gince the constents of

et & linear

a’

Lnant relative to the vector ag.
Bimilerly, by considering only veglors e €L, wherde L'
i# 8 subalgedbre of L of asome dimemeion n, we obtein the
.’ﬁﬁﬁﬁﬁéﬁgﬁimﬁiﬁ deterninent relative to L', Ihie ia not
to be aﬁgﬁwﬁﬁa;w&%h the characteristic determinent of Li




which is ouly of order n. Since Oy, is skew aymsstric
in 1 and §, (3) has at least one 2ere root. Writing
(3) &% ﬁ’a&}p@k we. km";;@,i v

<4f) —-) A (CL W) w ‘(’(Q/u + "f’ (o.}w‘r el """6‘)".“'{" (2) w

S “l’ (A); C O\.b

SRR e ‘\. N JI

wooE g atx @it RSO A HE 2 P

QQQ#GQO""Qi#‘debﬁQQQQQ,1 %
e b phhar Yhas Ay Tlamt

. ¥g mots that since Ay ds & group of eulomorphisms. .
of % wm Asm% ants of atructury ane.dnven ;‘s;*&s w&ax .y
@g saoondinetes in L1y @ MAETAR 0% sbye
;ne%lﬁww are  theyefore invazisuta.of A..
8 the minimel lineer subepace of L
7o, AkL slenenta of .4he, Lomms [ 8y B et
Ly is an .ideal in L, (which mey: of.geuxes be L
Mauz,x gﬂ j'm is oalled the derived wleebrm of o ¥e <
ruet the mqmn% Ly byw Iﬁﬁmgﬁélgxiiartgah




where L o is the derived elgebra of L,. Glearly, if
two consecutive members of the s€quence are equal,

then the remeining members coineide with them.

urthernore; if two members ere ot egual, then thelr
dimensions differ by st leset ons, Sinee the dimensions
6f L er '

statiomary. If 1% becomes stationary only with the

¢ finite; the seguence must evéntually become

null derived slgebra, then L is said ¥ bBe solvable.
A Lie algebra is seid 40 be semi-elmple if it conmtalns

no golvable 1desls other than the garo idesl and simple

1f 1% comtains no ideals other than the gexo idesl Zoand L
Lteelf. It follows thet, if L is stmple and if dim L,
ple, If dim L=l, the constanto of

e gre clearly :‘é&m, and hence L is solvableé and

spructur

cannot be pemisgin

ple.

Any tensor formed by the usual methods from the
tenaor ‘%& is called a comitant. Por example, the
ﬁ@#fﬁgﬁ&@%ﬁ of the a'é in mny of the functiona Y gy dn
{4) ayre comitante. 4 comitant te clearly en mw»mm

of Ayy since the Giz‘k‘a are invariants of 4,. et

Ck—--*ﬂ

K- ~~-m
eguations

be » comitant; then by considering the

wo- R aK-=°
\ /
J-- K

(6) C




of aam jiongs the:
dimen;
fuppose i’g € Ax,n Then if e

_ =K
Pa-'a',

it follows from the invariance of the comitent in (6)

sion me

MRS

A ¢
C.
4K

o =0,

mvwmm
[ 2 *Qa i‘%ﬁ ﬁ o
of m&&;;; ndent solutions of (6),; g @mw‘:&%

m meany of the ‘ff-;;-:

reral important conditions
sebts I in order that it be
@i M, 3t follows Zfrom tie

thas, 4f the matrix C

2,) + where 1 tndteates the colusn




‘the vow,is of yemk m < ¥, then L admite

f dimension r-m. This ideal is clearly
olvable end henos L is not semi-simple.

Agein, if &;5 X 0, the equation

dmite el Lndep

péndent selutions, tn whieh case L
site wn ideal of dimension r<l. Henee, if I is simple,

An 1ded is also defined by

J -
Ciggo” =0

; » ' £ "m W
&3 Ckij = C. C C

Prom the @awmmm, 4% follows shat Opy 4 is skew
naetrdie in h end 1, - 1% 4e also skeéw symmetvic iﬂ
1 snd §; for; by (12) and (3) of 51 and (7), we heve

_ 4 ", 14
CV\.:’J+ C"\JL" C CKQ Ck,_ CLM C‘(‘e CV\.J
L

i

Cui(e Com i )+ cl(co Gt

Kh ~4 L4
= O

Anothey imporient eomitant le
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which appears in
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(6) SLJ = CCk Cd-(’.

the sssond equation of (5). W¥e now
state without proof the following two Yneorems of
certan [ pesee3 s
Theorem XII. 5 necesssry snd sufficlént condition for
L %o be semi-simple is thet the metriz (g, ,) &&
non-singuler.

. Let E*‘ 1" be ideals im L. We say L decomposes

into the @irect sum of L' and 1%, and write L & L0+ L4

i L' 5 1" eontaine only the gero element and if the wum
pacee LY end L* fg L.

gheorem KI1I. A semicsimple ma algebra decomposes into

&8 reduced

The yunk of & Lie slgedra is the number of

fune independent coeffiotents q’ in the
charasteriatic eguation [ <. S 5__] 1f the remk of
squations (2) admit at most ¥eq independent solutions
snd siuce the coefficients Y are .
1t follows that £ < req, where L is the renk of % ; "
however, the rank of 4 is g, squation (3) hss a sere root
of order r-q ut lesst, Hente, the Fenk of e Lie elgebra

inveriant under |




_(9'-

doen nov exoeed the _wé.é‘# of the zero root of it

charagteristic equetion. If L is semi-simple, 1% can,
in faet, be shown that equelity holds, andé we have the
following theoren | fip.55 |t

Theorem TIV. If & semi-simple Lie

ite ohavecteristic equation has exsotl

The noneEero Poots ave siu
A8 =

ple, and 1f w is root, then &0

$6. Thne (o) metric of s semi-simple Lie group

in the thaocry of ebstract groups, a simple group is
o n¢ which has no normal subgroups snd & semi-simple
-group is one whieh has no eolvable normel aubgwam.
It will bwe more wmammﬁ for our @urww, however, %o
gefine a Lde group ss being e '
Lie algebre is ma@awivﬂy
' the relationahip between the two concepis
will not be considered in the

queation of
in the case of a Lie group

pregent work.,
Let G be a eemi-simple Lie group of dimemsions ¥y
a0 T 1%s Lie slgebrs




_.(: l-

P

over G. TFor a point dx infinitesimally near to the

identity e, we define ‘
(1) ols (-Q, Wx) T € 3‘:5 oMt oA | |

where dx® are coordinates of the point dx. Let
X and x + dx be two infinitesimally near points in G. .

Right translation by the element x L tekes x to e and

x + dx to (x+dx)x-l. We define dag(x. x+dx) by

(2) A (nredy) = ds’ (Q/@*M)"\").

By means of (1) and (2) of €2 and (1), this can be

written in coordinate form as

(3) ols" = e 3 (1)\: (x)obx Ax” = € 9% Cx/o{m‘*obx/x

‘Since the ﬁi(x), for fixed i, are covariant vectors,
gd1§ﬁ are the components of a second order covariant
tensor. The metric defined by (3) will be called the (O)

metric of G.

€ is chosen to be plus or minus one so as to make 632
positive.
¥ Greek indices indicate a general coordinate neighbourhood

in G and Roman indices a particular coordinate neighbourhood

of the identity.




48" (yxy”) yleron)y™) = obs” (e, ey vy
= ols” (e, Y(Ho‘/x)x"y'y

M"Ty (E’ 3\\_‘) thdl))

heve a7, ¢ 4, end

wh = UL o

ginece s$3-in 2 é@&iﬁanﬁ, it ia an inveriant of AL[:Qgﬁ,fﬁfg

and therefore Byg W w* wd 45 un iovarient of a%y %

: -?’T':i&;ﬁ&ﬁﬂly that the (o) metrie i en inv

HEiant
nder Left translations then holde as a
the identity yx = (yx y"M)y. This completes the

of Ae Inveridance u
result of




values nadjeeels

-bh_.

metric we mean, of course, that the 20

is deotmpodueble. Uince L is sssumed

rom XITT, that L ® LY+ 1Y where

$im IV = nm, dim T¢ = ren. Alad, wince L is not eimple,
O<A<P, Hhlect in L € ] '

a c L' if and only if

ntt ned) + O
a = o =-°-°"-""=&a =¢

we have, frem theor

and » € L* 4f and only 47

0\.I: Ou‘“:""'-'-ot Y"-'Do

(*) after indices which takes wm&n

(") after indices whiech take
Then since L' snd LY are nermal
bgroups of L, 4t is easily seen that

#rite a prime

Jsesen #nd & double priume




—~ (s --

tlmn m& peY éf ;mimg
= g'(t/ " 3,-(@177 lt“] S ﬂ/

hood U of the

%aaxg

form & canomies) coordinate ne:
socohd mmé in 8 [M‘w x&.w]
e ) : ,gn(‘ﬁ“) and ﬁmlw

) save @ % ) form

" the seoond kind for the
ing to L' and L

(18, mn.vf_]

8% x + dx*; x + dx* Ve pointe infinttesimelly neer
% X € U, where ax', dx* denmote infinitesimal
in the primed sad doubily

mﬂrmmams
ates of x. Then
(X«l-o(X)x = la ((74-&“7) 9 a: c‘.tw)g (EM.) 3{(’(’)9'(‘ LT)"‘ . 9 ( t/

=3, U-%-dt) -9 Lt+¢(t)3 th)’__ 3, (- L)
whence, sinve ¥ is a locel subgroup,

primed coordis

.(,




and

(6) L) = vt e
o o s

where x' denctes the point whowe lagt ren coordinates

are gero, and whose first n ¢oordimtes are those of X.
We have alse |

Y (xs )i w i 3@/3“ ww”/* - tmlt’/a ¢ W

Mxﬁ wﬁ‘ﬁei% s oS e w0 inrnast e g o
BT XCRERE NV )

2= 9""‘ (C“i-'-d(.' ) ‘9 (= +°"CT)3{‘C tr) o gnﬂ te '\“2
ammn c'r:» mwm O Cme

(3) ( R+ Ml?”‘\( = Y? 2 )l

g n o

c:warly. % ¢ K ané hmm ywy ‘e K"’; fm:m wm@h m fﬁmwa

, Y "U
o o(l e | ),

where x .denotes the, point whose: Hireb n coordinates are
zexo end whose lsad ren coerdinates are thoee of x. It
resulte from (4), (5), (6), (9) and (10) that, at any
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peint x ¢ U, we have

/
aaaempeanhli 48 We

&g% ¥ bs 8 general point of G. We obiain a

he v;txia tensor 18 therefove

o 3

¢n in the neighbsurhosd Uy of y @8 follows.

€ Uy those of the

point sy™* tn U, Sinee multiplication 1e analytic, it

is eamﬁly seen %kai $he aeerazmat& syaﬁﬁm thus obtatned
”T?@@mﬁ&ﬁg E$ghﬁ ;f;malatiwn\by ¥ is,; however, an

ometry [(eof. Sheovem XV |, and it follews immediately

that the metric tensor is decom nee i%
leconposable over ¢, and the theorem is proved.

We mow caloulate the ehrm%%ﬁm synbols and the

rvature Yensor deb irmined by she (o) metrie (3)s Yor

¢ Caristoffel mymbels of the first kind [I: RIT ] 4

Uy we say the coordinstes of & are

soseble in Uy, He

[}

. A
LI | L

9 g N ‘J
3 «(aﬁ r’a)“?irswﬂ(\’a-a Ew)”’a\rﬁ.a )

, wedng (1,1) of § 1, &t follows fwom the skew
syumetry of Gy g Vhat




"6%’

[:xﬂfyj= ;,3”\)“( ﬁ.;.-u' )

.6‘“\
i

B BT -
y = 30vivy [Pyl

ii' 'U:( ( “(;.3 * \yat.ﬂ),

}]

If we now gonsidex o cooidinate neigbbourheod of €
ouch thet ’
| - < .
f X |
a% ¢, then 1% follows from (14) of §1 and (11) that

cl %S 5‘5

dnc{ v Ry

Pinglly, sinee & right tvensletion is an isometry, the

vature tensor #% & généyal point xcC s

iyl o™
SR AEACEATRAC)

i (13), we have

) ayp = % 3py,




-é?.

Xy avhES P [@i\g, ;Sg, of Ohalsle

X %0 Y . Then (m is setiefied, &nd 4% follows -
B admits a trensisive group of ileometries. ¥e now

oxem IVIIe - underlying sanifeld of & semi~aimple
rouy is symmetric with yea eet 30 the (o
It 48 %m@w mffiolent So w@‘m symetry about

groups. Por AT U is & system of @amg@)';f;iii 1 eoordinetes
of the firet kind, then writing x> = o™, we have,
grom (8) of & 2 snd (11),




4ohes thet @ oné paremeter subgroup ie H
guodeuie neay e, and since wranslutions sre lsonetries,
4% follows Shet the envire gubgroup ie o geodesics

1% &{x,y) denote the distunce between podnts
% 4nd ¥ 48 6. Prom theore

Thip satell

-

s dly) - dCoye) - Al deir)

and

cx m} = ol cm) = ol <é, )

W0 (M%), ﬁwﬁ
+ This completes the ;wwf.

eonrdinates, we have

(SLJ) (&3)/




=T~

» N A
¢C0\) o Ci!kcjh,o' O

Cod
h% Coen Ciner &

i)

)

- 2 Cope Gt o
h, K ,

i)

The terms in the last summation are positive, being the
squares of real numbers and therefore FS(a) is negative
definite. In this ease it follows that the (o) metric
is positive definite.

We now enquire into the existence of semi-simple
Lie groups which are completely harmonic with respect
to the (o) metric (assumed to be positive definite). A
Riemannian manifoid M is said to be completely harmonie
" if every point of M has a neighbourhood which is
eentrally harmonic about this point. By virtue of the
following result we need only consider completely
harmonic simple Lie groups.

Theorem XVIII. ‘A completely harmonic semi-simple Lie

group is simple.

Suppose G is a semi-simple Lie group which is
not simple. Then its (o) metric is decomposable
[cf. theorem XVI]. Assuming G to be completely.
harmonic, it follows from theorem VII of Ch.I that the
manifold of G is loeally flat, and hence, in particular,

Rij = 0. But the scalar curvature of the space of G is




are oompact. °
importance in she theo:

ey @f l&&ﬂar‘xayraﬁva%atian of

Am; ¥ ﬁtﬁ’ﬁyl E??]
xmrgavara B.Gartan hes shown that ean&f#aely the

4;@&@9 was first ‘proved by

Mmm@, Fow the (@) metirie
is @1@ar1y masly%&a aﬁ%«w the ﬁﬂ%ﬁﬁ%ﬁmﬁlfg, sie aralyvie
[of. ps40], and therefore we have, from theorem VI,

. IVIT and (12) of 36, tnat the necessary and
ﬁafﬂieiemﬁ gonditions for a compagt gg;,ﬁﬂ,k,

“ﬁf%a are thet the laﬁanx roots af

SO q_r—-'c NN

Ji Tdw .
b a o o " 3 3 : N 7
where N 48 @ unit veetor, are conatants. An eqiivalent

set of conditions, more conver

the latent yoots of (1) for a genersl vector X ave of

dent in this case, ere that




(2) O aA,a A, - & A

c\J
where the a's are constants and A = Scs)c N
Now, if w 1s a latent root of a matrix A, then

w? is a latent root of A2, and conversely if w2 is a

latent root of A2 then either w or -w is a latent root
of A. Hence, if the latent roots of (1) are those given

in (2), then the latent roots of the matrix

¥ G ( C.i\\') \k)

are functionally dependent, and consequently the
coefficients Vl in the characteristic equation (3) of

§ 5 are functionally dependent. Thus if G is completely
harmonic, the rank £ of its Iie algebra is one or zero

[cf. p.60] . The case L. =0 can be discarded immediately,
since from (5) of §5 we would then have gijaiaj = 0,
which is impossible., For Q,=l, an inspection of Cartan's
classification of the structures of simple Lie groups
shows that the only connected group of rank one is the three
dimensional rotation group. Being an Einstein space of
three dimensions, it is of constant curvature and there-

fore completely harmonie [cf. p.25} . This completes

the proof of theorem XIX.
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CHAPTER TII |
OMPLETELY HARMONIC HOMOGENEOUS SPACES

¥e now use the theory of Chapter II to
finally to obtein
‘ﬁ}:wm spaces which are completely nETROTEG.

consider homegeneous spaces; And

 peference to coset spaces of Lie groups. We show that
such speces cen be given an analytic etructure, from
which 1% follows that any
manifold heving 8 transitive Lie group of homéomorphisms)

homogensous space ¥ (i.ee &

can aleo bBé given an endlytic structure. 7The role of the
suxiliapy funcétions for a Iie group is now taken over; in
the case of ¢ homogeneocus gpace, by the infinitesimal

vectors, Several global properiies of the homogensous

spece thén bécome properties of the infinivesinmal veetors
and conversely. |
In §2; we have collected together séversl results of

arten on symmétric spaces, Our proofs ere in the main

different from those of Cartan in thet no nse ie made of the

theory of forms. We firet

prove the equivelence of aymms

curvaturé tensor in a V, heving an end ytic metric. It
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h wﬁaﬁah tshw& 'mxs mmlt ie mwllﬁ’ qﬁm@ fw -

) *waw Z ;;.,-

N If 3/1& 10 8 coset wﬁ@‘ of a Lae
‘b‘%‘“m by theorem XXIV, @/H samite
gg mmar

ﬂﬁﬁ %&ﬂﬁ‘ @o

- L ends T
‘”’ ‘im §,3 tha t,mw

K

angther clses @f’ @m;xlawly Basmente spaces which are
sgain two point awmm&m.

o ""A"hé\t"i PRIV
§l. “mmfarm%i n gro@n.

ﬁmm%ﬁm

%ﬁgv
fof'd pategion
“growp '@ aReW

téjolegtéat spade s@; ‘Giohinat Wadn g <0 éna X EU retntins



(e) gx ie contimmous simultenecusly

{¢ the identity elem

mw point of M. If €

de point e x' we write:

glx) = x° or gx = x's This supoeintion is subject to

the fellowing conditions:
{8) 1f & denotes the i 'u,;mumy of ﬁg ox = x for all xe%a
(ﬁ) g(&‘ﬁ) (gga )x * where ﬁg@'é G, Zely

,mgﬁm&m

G is #aid to be trensitive on M if, for eny x and
v 40 ¥, theve iz & g in G with g(x) = y, It L ssid to
be gffective on N i glx) = 2 for sll x ¢ ¥ toplies
et of G, We note % 2%, for any
fix6d g, the map X —»>gx la a boméomorphism of ¥ onte
iteelf, for it hes the Mn“ﬁmww Lnverse x—>g B’tm;

Let K he a closed subgroup of a topolegicsl group G
4 1&5’% ¢oset of H in O 18 & set of the fam g8 where
& € 6. Such 8 set 1s closed end any twe either coineids
int, let G/t dencts the set whose elements
avé left cosets of H in a. pefine the nitural map

PG — U

or are dielo

by

pP(b) = | |
We say a set U c G 10 opén 4f ) "’*(i) is an open set
of G« It iw eesily seen that theee open séte define a
topology on ﬁ‘ {. The topeloglical space @’/ﬁ is ealled

the posety space of G by He By definition, p is contimious,

1t 48 aiso an interior mep, for i£ U is en open set in G,



http://wiao.se

LAY £

s ;«.ﬁﬂ'f s To wé this, let
%Mm 9 3 is not in W. Iet W m a miﬁm*bﬁ;‘i%jﬁmw of
3 31 With % A H = 95 ' m& 16% U and V. :’j;iffiz!

) end @W) are &

Por x ¢ ‘Y/H ant
of % by & by

& € G, we dafine the left trenslatien

qx) = P 3p"(x)) ‘
¢ ""&m G 1o easily soen to M E ‘ls




st

¥* this ie w

-7@-

o

Clearly q is continuous, The al@mms ef & which
leavs *g fixed form a cloded gubgroup H = @% of G,
called the %

il

ap of G ot x,, If glx,) " x,
then W(tﬁ;:) = X} mﬁ %m&waﬂy, p % 4 gl(x ‘R ggf;-ln :
9 3.(xo) --_xo ¢ whenoe
is 8 (2=1) map

& € & CQonsequently, there

?j/: Q/H -_—7 M

P(ﬁ) = 90‘0)

2 'm;f"‘f"‘f:&tﬁweﬁ;y on
¢ to M, and i%

@o‘yel@gy B8 & mba@am of 6’%[7 P. 109] Hence, 1£
B33 Xhows: and 31&$ retently been i od Ain
more gensral case [‘l péﬂ]

T Mtﬁa'i}* h. the proog WL

w o_;;;m& w m«a mx*w mmral cane




- and eonseguent)

19

Hy with ¥ , B = V. %e may fuptheér sseumé U amall enough
% pointa of 1533 are defined by means of the above
Let ¥ he the set

of p w Wyweé have |
| F (W) = P(UH))

y £°3(¥) (= X,005) 18 sn open sev in ik
In this case, £ ts a (3+1) map of W onbe X; for 47 f
ingle valued, there would exint 5 relatien of

aH = bH o, bew

and therefore
o =b ,&J he V.
te form, thie equation becomes
3,(¢).- -~ 9,(t") =9, ) - -3, (s“) "‘“') rUV)
whieh is aaﬁf&y possible if

In coordins

in whieh eww 4 = By xmm £ is single velued,
vpy 3% follows that £ 18 &
We have: Shevefore provedthe

inee p 48 &n interior mi




. 8o

¢xiu§$@@@%§$§u logal oross segtion of H.in G B
nedg ;‘:&;@amwa X ﬂ%}‘f K¢ ™ P(E)

g ;;s@aa z, e;x;,gé gg&;.g,wa «ﬂszmt £ is @ mmmg;,;m;l
£ Xon ¥, and qumsly that X is hmﬂﬁma?}z hie

w an open mt w." Fuelmmaa m.-umah e take for the

o war&imwﬁ M aaeh wint in X the coordinates of w:

'eaww iaanékia,g W“‘“ in ¥ PFor & genéeral point
:“;x = p(b) in g’/ﬁ‘ tzm set xb = bX 48 en opsn set
9«; ,’ﬁ&%i&i@ﬁ, WQ‘ mfi% gﬁg’ X —'> gj hy qu ;%*

b

K& N xa iﬂ ﬁmyt Qe geivg: @/H is an ﬁmxﬁié ]
This ammncs thl prcwt m’ ’empmm {?»i;,;
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- In ovder thet ¢ should be en effective
transformation group on the coset space @/H. it is
necessary and spufficient H should amgt%m no none

mumw

Q) Hox = X

tor a1l x ¢ %M, Conversely the st Hy of all g ¢ ¢ such
that g(z) » x for all x in G/H is clestly a subgroup of
E and is normsl in G} for if hyc K, and g ¢ G we have
3‘\»3“3.H =959, H = g H,
and therefore g ; By g*e Bye
1et @ émm‘ﬁ& the 81 subgroup of G leaving the
rariant. Then @ 18 closeds The sudgroy

pednt x ¢ m

E@; defined above i the interse ;‘tf;im of 8ll such subgroups,
- snd ie emwmm eclosed,

xet % dsnote the naturel map

Let K be & hemogeneous space of 4 Lie group G, &nd
supposs Gim W = n and dim G=r. If Ag € G de & point

topelogical
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5 the identity ¢ of ¢ and if
lon dg(x) may be written

sinel vegtors of @, ggmy
ime ¥ linssr operators

(s) 0y . Cg} 3 (v)

e pepsts >‘/"‘ v ete, to dmote ﬁﬁmml amz&ﬂim«a |
neighbourhood of eu |
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nee (5) follews immediately with the boundsry
conditiona y = x when g = ¢, Sinee G is éf";miﬁ’.é':
3&, mm%em {%) are completely integrable,
the integrability conditions in ﬁm waal w&y and

ng (11) of § 1 of Chill; we

¢ J _ "( J - ¥ i(
5*‘32// Z,:(Y) é’p _J)’) é‘(v) C, A '{xv)/
@ [XXpd = XaXg- XX, S

If G e
M - ave m&cp@mﬁcm to within constant ¢oeffis
‘ “?(x) o) fwan:&e ¥ and

iﬁ“fﬂ@“ﬁiw on M, 18

(5) that

10) y = glelx,

Lte (10) in coondinate form as




B Y-

follows from ¥he initiel essumpvion thet, for theme
 values 6f t, we have y = X and hencé thet G is mot
| %mtm&ly, if the inf

independent, G contains no nané“f“;ifi-‘flx"

leaving ¥ pointwise imveriensy for in this case ‘for
8ll % e ¥ we would have some relatien La)f (x) 0
hete g(t) € Hs Un wrwise sta &. we mssune
transformation ‘_?‘f'&.i;,i;:w o be effective.

Theoren ife::~ Iﬁ @ m 8 m«

grovip M transtormations
mm for ¢

p@in@ of B
£ ""i‘i__yom & € @ and x ¢ ¥, Then from the implicit

¥t o EZI Pzw-zg we have thad; for fixed x, 4

né sufficient condition for the #guatione

i, f;j_‘i‘i{ 3} ¥ ) %o heve a solutien for the g's in terms
of the y'e is thet the matrix (‘)”" ") ) ’?‘Cx))
ghould be of raxk n. This prov 'e;‘s mame&:&y of the
conditions and elso shows wm ir (? (+)) 18 of rvenk n,
then 4 is tsmmi%m in come meighbourhcod of x. I%
follows that the orbit of a gmm in B is open and hence




1 41

closed; being the complement of the unio

others, Since X is a@ﬂﬁxygﬁ;ﬂsxxﬂi;l*””*““““

e x&wﬁx&@% aﬁga@zvﬁa t6 §¢$i%&vt ﬁ#fiﬁ&%ﬁ a%ﬁly@ia
metrices
Theorem TEIL. A 16

for a ¥, %o be spmmetrie

of the curvature tensor vayishes

(P - )
ehvg& £

Sinee the space is symmevric sbout éach of its pointe,




 suffiotency of the sondition, we
' noymal ceordinetes abvout a
sinee the partisl deFivatives
of the funfumerntal tensor at |

plynomials in B1gr Puggn

 succenaive coveriant derivatives of Rm & m ? [21 kv]

S

are therefore even funotions of the coordinates, snd
with the tronsform

@i@ﬁ‘fi)} we have T

Y J - J
| 3Ld(>dobx obx, 3,,J(y)oua Wg
Henoce ammw sbhout P is ax; immwry. mﬁ the theoren
is gﬂrm&

Let N be & homogenvous space of & Tde group G; snd
suppose ¥ hes & Riemannian mm@ defined over it sush

thet ¢ 16 the largest continuouns

group of isometriess
the subgroup of 6 leeving & poin® P c ¥ £ixed 1s ealled
the www subgrovp at P, snd we write 1*& as !fip  Binee
% is & Lie group of isometries leaving P fixed, 1t is
not oxly closed in G, but compecy [6, i3 0]

Suppose now that ¥ is & eymmetric space with
rmpﬁ&# %0 this metrie, ma& dencte by O,

the tr¥ensférmation




Phasanr

defines an BRYOMOD;

R7-

phiem ot Gy which is invelutive,

sinee
6; ()!} = X

for eny x € M. At leset locslly, no #lement of G not

in EP is tuverient under
rould bave

9(P) = 3 CP)
| \ = [ x
A0, = 0 hx)

for x ¢ ¥, and conseguently

c‘f\ ’, g = c;’ﬁﬁx)‘: A &)
fhue Q-P Zwa By podntwise inve
this result i alee true, but defore proviag i
consider in move detadl the linesr edjoint grov

dant, The converse of




the Lie algebra R of GL(x) [18.p.243] . With a
system of canonical coordinates of the first kind in

G, this map is defined by
/ d. {)f‘(“t"(_,) / K\ ".
I:(a\_) od ("""‘U - (C QO OLGL
OL(' (o lLJ .

Since f' is a homomorphism, f'(L) is a subalgebra of R.
Let K be the corresponding connected Lie subgroup of
GL(r). Then points

xg = C’;j aLC/
for t small enough, form a coordinate neighbourhpod of
the identity of K. The transformation |

'

0 e (5])
is easily seen to define another coordinate neighbour-
hood U of the identity in K; and since K is connected,
it is generated by U. But A; is generated by the set
of matrices &g CCi' KL) [bf p. 52~] Hence A; = K,
and the theorem is proved. h
| We note that, since the p%'s are analytic functions
[éf.p.SZ] , the homomorphism f is an analytic map of

G onto A Hence, in particular, if G is compact, then

L.
AL is compact.

Let H be a compact subgroup of a Lie group G such

that H contains no non—triviél normal subgroup of G.
The subgroup of A, formed by points having coordinates




r? ‘fa

p‘;(m for h € H is mnéﬂ the linear adjoint growy
gevre of He &hﬁﬁVﬁiﬁ;) is sasily
group of Ape We now prove

s this form oman, 6f course,
be am@iirt;ra«ia by & resl positive definite quadratic form,
Thag the &n
real fon

up &m,) defined above lesveés imwmm &
y; which we my take o be é o y where
dm ¢ = e Buppose iy ‘
of coordinates in L such that the firet n waz:%mtu

of veators in L4 are goxo, Wines L' is imvariant under

H = pony mﬁ gmw@ a aysven

Apey 1% follows that the conjugate space of veotors

whoge 1&&% Pan g@:ﬁr,ﬁim%‘a 816 mr@ 1& iﬂ“@’i& .ﬂ% e e

ﬁ(y y* @wm#qmmly the guadratic form é’ oo

(=1

is invarisas %ﬁex Ageye
Let W, X be ppectively vding i DOUINoOUE
in Gy -c%; ag deftned in ﬁh&emw %, If£ 0= p(ﬁ); where
— P - S thmll‘QUMﬁ Y
p ia the natural map of ¢ on “/H, and if 4 is infinitely

mm ©, dedine the disgtance ds(0,s) by




.Clo._

O‘,S(o,ﬁ) = ’C%MLML/

where dx* are the coardinates of the poinmt |
ax = £(A) in ¥ (ax* ave also the coordinates of 4
itself). For h c H; we have |

A o H = Ao 4 H

and wma@'sm;}.y, the coordipatés of B = h(&) are
 ax v, e 4 e
of A@,, 1t follows that

oLs(O P,) oLS(O B)
This metric defined a
He

thevefore inveriunt

/\/ g ( O] /
noe de(M; ¥) by

_ cLsLCN"‘;\w/_‘\’/) s (g (M) g"(/v))
(x) = OA-S(O/ 3’ 3_(0})
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s (o, 00)= ds (8 £5g (o))
=os{o 97'g (o)),

the metric &a(ﬁ, ;g«) is well defined over @/ﬁ and

ow that &/ﬂ is &m%rﬁ.ﬂ with x;»qgt‘;:ﬁjj ot to this metrie,

¥ith a suiteble eholce of cosrdinates in the Lie
algsbra 5 of G, the sutemorphiem (I effects a limesy
substitution oen L of the form

(2)

o = - at (5“, 2 - con)/
é a S Co'(: .\.(.'/ K ,f/

where & vector in the subspuce L' of L corresponding to




_q 2~

¥

. h s n . )

e fom éitx‘uf is inveriant unde:
sronstormation (2), 1% follows, using the sems

Mw«%m #8 in the proef of theorem IXIV, that

ds (M ) = ots(o 5 3(0))

follows mim (ﬁ} and the special
X [C.F f%o]

me B € By Henge

0Ly, (o) :

' W
RS

o 0
~ 3
- o
~ ~—

snd O, (W) 15 the eame point for any cheics of g
sending O to M, ¥ have therefore shown that G
ayametric sbout 0, Por & generel poist N = g (0), the
sometey (, defined by |

GM = g, &3:|




_‘“°I'b‘“

i - about M, Agsdn O

14 amﬂy ween o be & aym
: g, for suppoee

this completes the pr of o
mé notstion, 1t results, using (2),
owing relations hold in Ls |

faplies (O, bl c L
tapldes [, b]eL’,

b
oLi
(3) “)c—c5 =0




mams (4), 1% resulta that |
sinien métrie as in vheorem XXV , wth
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| ® such that 2o swezg i4es in ¥ 2 1nterse

@m Vo Dot X any peint in v &m S tmg ;;jf.@&é?#a%m
distance from P to X m A, s ECF p. 3] is 8 sealey,
| ‘and i‘&s« value is therefore unal

tered by an isometry.
But V aduite s group of rotations “ ooy ¥ % wg
vezm on ﬁm gewnw s@hﬁm ¢entre ¥ throtgh X
A,s 48 eonst

,.m‘s on this. sphere, maé me@uamw on
ny Gphkere centre P in V. It is then a fungtion of S5
L Lones mm P is & mm%l point in ﬁﬁ, 1% follows
wm ﬁ m «‘f'i;”'_‘jlt‘w&.y KXY Lo :
proved.
e 8y that &
ham»gﬂnw:f:

uz, tnx- any tvm sj,t;‘_eff;.;{;._ |

(Wa: yg) of the sphce such that ‘“xz.*: __»;;;.;

,‘,4"5““2» -

nl m tmm i; ,gft%u&ly mvm by
Ge BiY 'J"e@f f_ 9. ] K -omwe that we restrict *metric spacet




.-q ée

ave the following:
harmonie.

gonnécted (*) gpaces have baen claseified
&b his definition of & two

@a;ﬁwaiw spa

,,;'j}namm B GMI.
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| Let dszl= gij dxi dij be a Riemannian metric for

the (f) space invariant under the group G of all
isometries, and suppose OoJ "= € C";a obx‘\aMJis another
metric for the space (not necessarily positive definite)
also invariant under G. Then, with suitable choice
of coordinates in a neighbourhood of & point P in the

Cﬂ space, we have d32 =fiﬁxi dxi. We then have two
metrics defined on the tangent space at P, each being
- invariant under the linear isotropy subgroup at P.

The intersection of the two  hypersurfaces

Sl sk eoyatn’ =
wherevK is any constant, is therefore an invariant
subspace of the sphere S xix = K. But the linear
isotropy subgfoup is transitive on the sphere, and
consequently this subspace is either null or the
sphere itself. It follows that, for all xi, we have
CSu'xt = = RS

Y
where ¢ is a constant. Hence c ds2 = d§2

at P, and G
being transitive, this relation must hold at every
point of the space. This completes the.proof of
theorem XXVIII.

The spaces mentioned in theorem XXVII are all

symmetric., They are respectively of types BDII, BDII,
AIV, CII(g=1) and FII in Cartan's classification [ 5].
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&Me. sines %Hoy are gompaet; their ocurvatiure is
erywhere pesitive or vere (5. p- 346]. They are not
all of cenmtent curvature. To see¢ this, we may use
1% that, for a ¢ompest nedimensionsl spece of
¢ eurvature X > 0,
6p =0, | $p S n-t
whore BF’ 48 the pth Betsi musber

tion of the Detti mumbers shows thaysthe

the pmm@iw lima) and the cw&ey Pre 3&@%&% vhee
are vomplievely hermonie without being of constant

. ‘;};ﬁ ECP p?ﬂ + and henee there is a group of
‘rotations defined about esch point which is transitive
o6 centre 4% this point. Then for any two

patrs of wmw (wig ; ,\;{,), { Ty y ) with
8(3 xg) & é(y1 3*2), it is only nﬁee #OATY
to % by translation and y, o xg by a rotatiom, It
Ml&em a9 before thet the non-compect ( *) gpaces thus
obtainsd are completely harmeni¢, They are all

meomorphie with Buelidesn spsce (6. p (221], although,

eir metrics are not Juclideans

on sphep

to take b




.—qq.-

: the olses of oompletely
thas obvained 48, in faet; the whele
elase of such spoces. We note in ;mmmlw that %ﬁm
are (") apeces of four aimensio g Ot

@mm metrdos muet be of the form gﬁ.wn on ;mge 26 -
Phere ie, in feot, associated with thie metrs

gi@w paraméter group of motions having & four psremeter
subgroup of rovations, fing

KO-y +2 -2kxy  k(xzet) -kb&t-yr) y o 2 €

2K xy
K{xz+yt

< (xE-y2)

K ()2 -k (xe-72) -l (xx4yt) -x o
i (xt-y2) ¢ (Y642 -2 K2t o £ -x Y
-k (xa+yt) 2Kt k)2 o 3
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