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ABSTRACT 

This work was concerned with the measurement of the variation 

of the combination coefficient between aerosol particles and small 

ions, b, with the radius of the particles. The variation of the 

combination coefficient between uncharged aerosol particles.and 

small ions, ~0 , with radius was also examined. 

The ion-ion recombination coefficient,~, was first evaluated 

from plots of small ion decay in an aerosol-free mylar vessel of 

volume ~.1m3. Small ions were produced from corona discharg~ 

around the tip of a steel needle, set at a high voltage. 14 

measurements of~ were made, giving a mean experimental value of 

( + ) -6 3 -1 2.39 -0.14 x 10 em sec • 

A technique was developed for simultaneous measurements of the 

combination coefficient b and the aerosol pa1:ticle size·· Particles 

were produc~d by bloWirig filtered air over a glowing nichrome wire. 

Methods of number concentration and particle size determination ara 

desc1•ibad. The deca;y of ·the ions. in the presence of the particles 

in the mylar vessel was recorded and compared with a fwuily of 

theoretical ion-aerosol deca;y curves plotted by the computer to 

deter1nine b. A total of 26 b measurements were made and the value 

-6 ~ -1 
r~geu f~om .0.35 x 10 em sec to 

-6 to radii of 0.41 x 10 em to 4.0 x 

-6 3 -1 2.24 x 10 em sec , correspondina 

-6 10 em. The variation of ~0 with 

radius was also investigated in ten of these b measurement 

experiinents. Tho _value of ~0 ranged from 0. 33 x 10-6 om3sec -l to 
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-6 3 -1 . 6 -6 2. 39 x 10 em sec for corresponding radil. of 1. 2 x 10 em and 

-6 4.0 X 10 em. 

Various theoretical models for combination coefficients were 

discussed. The b and ~0 versus radius results were comp_ared with 

theoretically computed values. The discrepancy between ~he generally 

larger experimental valuos and theoretical values for the combination 

coefficients was also discussed. 

* * * 
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CIIAP'l'l~H 1 , -·-------

GE.NEHAL In'l'H.OllUCTION. ··----

}.1 Introduction. 

Few experimental measurements exist to date of the variation 

of the combination coefficient between aerosol particles and sm~.11 

ions, b, with the particle size. 'l'he only nota.ble series of results 

for simul t.aneous measuremento of b and the particle radius ha.ve been 

made by Flanagan (1965), for eleven aerosol particle si:~es ro.nging 

-6 from 0.5 to 5xl0 em. Moreover, there are no known results of the 

variat.ion of the combination coefficient for uncharged aeroGel 

particles with slllall ions, i)o• wi·th the l)articla size. On the other 

hand, theoretical considerations on the Ya~·i".-tiOn of theBe !~IJI!ibination 

coefficients with radius are well established, particularly by 

Brico.rd (1949, 1962), Keefe and "Nolan (1961, 1962 e.nd. 1968) .::L:"ld 

Hoppel (1969, 1974). The purpose of this work is to extend tho 

experimental study of b versus particlo n~.dius and ::J.lso to dett:n:raine 

how ~0 ve~.r.ies with particle radius~ and to comps.re the experirnen·t.al 

results with the theoretical predictions. 

The following section gives a description of the propurtias of 

small ions pertinent. to the proposed work, and then the o•;er~d.l 

pro~lcm of measuring the combination coef~icients is outlined !n 

the final section o.f this chapter. 



1. 2 Some Chara.cteristicn of Small l__g.E_~.:. 

When electrons become detached from atoms or molecules in the 

air, they soon attach themselves to a neutral atom or molecule as 

they cannot exist .freely at normal temperature and pressure. .But 

under the sa.me concH tiona these so formed ions a.lso cannot remain 

stable a.nd hence tend to surround themselves with neutral molecules 

and form into aggregates of approximately 10 to 30 molecules1 becoming 

so called "small ions", with radii of about l0- 6cm. ~!hese throe 

phases leading to ion production require only of the order of 10- 6 

seconds to take place. Wright. (1936) considered the mass of these 

small ions to be equivalent to that of 10 to 12 water molecules, 

while Torreson (1939) considered the size o.f n.n ion to bl:l a.botd; 

that. of 4 molecules of o.x:yg·en. 

The number of small ions present in the air is generally of the 

order of a few hundred per em); \vhere the concen tr!i!.tion o.f positive 

ions ( n 1 ) i.s fo11nrl to be 2~-~ higher than ·that of the nega ti V'9 ions 

(n"). In heavily polluted lower atmospheres the small ion concentration 

i.s reduced to a.s little an 10~~ or less of its normal -.ralua, and the 

same characteristic .is shown in clouds. 

One of the main physipal characteristics of small ions in the 

atmosphere (with given temperature and prP.ssure) is their mobility, 

which describes the speerl f::he ion has in the given environril;:Jnt 

under the action of an electric field o.f l volt per em. Under 

norrne.l conditions the measured positi,n:.~ .Lon raobility (k 1 ) is 
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1.4cm2/v sec and the corresponding naga.tive ion :nobility (k.") is 

sec. The mobility varies with pressure (p) and temperature 

( T) as follo-ws: 

k ( p' t) (I. 1) 

where n a.ncl T are the N.T.P. 'TD.lues. 'rhe conductivity,.J\., of the 
""0 0 

air arises o.s a direct consequence of the concentration of small ions 

and of their mobility, and is given by: 

A ( k
1

1'1
1 

+ k"n")e ( '· 2) 
where e represents the elementary charge. 

Another important cha.ra.c·t;er:lstic of sma.ll :Lons is their d:i.f.fns:i.on 

dn/ -coefficient. Le+. . dz be the concentra·tion gradient of positively 

or negatively charged ions. in a direction OZ at a given point Q. 

2 The flux of ions traversing a. 1 em area centred on 0 a.nd normal to 

dn/ OZ is. equal to -D dz where D is the diffusion coe:fficien t of the 

2 -1 ions, with units of em sec • The mobility and dtffusion coefficients 

are connected by the Einstein relation: 

k 
D ( N.T. P.) ( 1. 3) 

If one nAg~ects the effect of the electric field produced by 

t.he sma.ll ion (sufficiently strGng to polarise neighbouring molecules) 

one can apply results of kine tic theory a.nd obtain a.n expression of 

the mobility in t.:~rms of the m11S :'les m of the small ions and M of "the 



air molecules introducing the mean free path,~, a.nd mean thermal 

-velocity, v, of the air molecules, a.s in the Le.ngevin expression: 

k e" !¥+ M 0·75- ---
M v m 

which is probably the most satisfactory expression for the mobility 

of small ions. This expression will be used in the analy~is of the 

experimental resul·ts to deduce a. va.lue of the mean free path, A , for 

- ~/ a selected value of the ionic mass, m, using the expression v =J 1 M 

~o obtain the meen thermal velocity of the air molecules. 

1 Rival' expressions given by Kennard ( 19 38) for the mobility 

and diffusion coefficierL t ~.r om all ions: V.L 

k ~ fo ~e ( m-t-M _I_ )'h (I. b) mM k6T 

~-FA ( rn+M '\ 'h 
( I.. 7) D k• l mM ·e' / 

have been used by Brica.rd to deduce a value for ,\. He assumed M = m, 

2 6 and assu.med k = 1. 4 em jv sec a.nd fotmd A = l. 3xl0- em. This is 

markedly different from the value deduced from viscosity measurements, 
r 

for air molecules: A 6.4xl0- 0 cm (at N.T.P.). Ond must stress here 

t.hat the assumption M = m cannot apply if we accep.t to any degree 

the idea of the small ion cluster comprising of several molecules. 

Values obtained by other authors will be discussed in Chapter 5. 

In the e.bsence of aerosol pa.rtiele:J, the rat(~ a:t wh:i.ch the 

4 



number of small ions varies with time may be written as: 

dn 
dt ( n' = Yl"-;:. n) 

where n is the number of small ion pairs per cm3, .q the number of ion 

paii.'S produced per cm 3 pP-r second by the ionizing agency, and the 

quantity r;{ is defined as the recombination coefficient of small ions, 

3 -1 having the dimensions of em sec • The recombination coefficient,~, 

indicates the probability of a collision occurring per second when 

the unit volume contains one positive and one negative ion • 

. If the number of ions destroyed per unit time by reco~bination is 

equal to the number produced per second by the source of ions, then 

ionization equilibrium has been at·tained ( a.ssu:ning n' and n" are equal). 

Hence: 

cln 
dt t - e<n 

2 
0 Of": =[! 

where n
110 

is the equilibrium ion ;~onoentration. Intogra"hion of the 

above equation yields: 

n. and n representing the initial and final concentrations 
~ 00 

respectively. If n >>··-neo<> then tanh -l( n110/n) tends to n00/n and the 

above equation simplifies to become: 

oct (I .II) n 

a result which can also be obtained by integration of the equation 

d.n/dt 2 = ~n • This result is widnly uoerl experimen~ally in determining 

c( , by setting q o= 0 a·t a ~iven inwtr..nt in time ( t). In thio work t'1a 

5 
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equilibrium ion concentra.tion noO wa.s alwo.ys strictly comparable w:ith 

n in ion reco!IIbina.tion experim(mts, o.nd. equation ( 1.10) was used. to 

determine the valuH of o<. 

1·3 The Overall Problem. 

The rate of cha.nge of small ions in the atmosphere must include 

t.erms (not required hitherto) allowing for the effect of the atmospheric 

aerosol content. and the fair weather field. In general, we ca.n write: 

rin 
d.t 

whera /31 and ,8l. represent the dissipa·tion constant due to aerosol 

partie les and 1 precipi t~o1:~ion 1 particles (for example, cloud drople ·ts) 

respec-tively. =fi..e fie.ld fe.etor has been evaluated by Gunn ( 1954) and 

accounts for the loss of ions via conduction to c.loud droplets. This 

effect only begins to dominat~ over diffusion losses in field values 

of greater tha.n 0.1 e.s.u •• The field fac·tol.' can normally bo 

neglected in considering ionic equilibrium since the fair weather 

field is only of the order of 1/300 e. s .lt.. f:!xperirnents are carried 

out. in the absence of precipitation particles and so tho fJ
1 

te:z.·m 

c a.n. be i!Srlored for the exporimental condi tiona. So in the case of 

small ion equil:l.brium we are left with the concli tion: 

~nN (I. t3) 
or: 

q = o<:n'" + 
v bZn. ( I . 14-) 

where b = 
( "r}0N + 'tJ If) -' __Q _____ _ 

::!. 
o.nd Z N 4 2N, the total concent~ation of 

0 



part.icler:.;. H is the number of uncharged particles per cm3; N is ·the 
0 

7. 

number of large ions per cmJ; ~is the combina~ion coefficient for 

::llna.ll ions a:ncl unchH.rged ;~.erosol particles; ~ is the combin2.tion 

coefficient for small ion:'J ~1.nrl la.:r.·ee ions of opposite sign. 'L'he 

effects of multiple chnr~8d nuclei have not been included here: for 

atmospheric n11clei of raclius ~6xlo- 6 cm it is a fairly good approx-

imation to consider that only neutral and singly charged nuclei are 

present. From above: 

(3, ( I. 15) 

A solu.t.ion of the equation dn/dt = 2 
q - o<.n - fin can 1101'/ he obtained 

using rela.tion (1.15) :for /3, and denoting ·i;lw concen~_L'atlon of .-.;mall 

ions at t = 0 by !1 ; 
0 

n(t) 
·-

-1- ~/c<no0 ---
n (t) hoo 

where: 

A n oo + 'tt- / r;<.n r;0 

exp ( Ao(t + k') 

k' - in ( 
no .,_ q, / dn,.,) 
Yl" - noO 

The equilibrium ion concentration (n
110

) is·cJ.e;l.rly depenclen·f; upon 

( i) the effective recombination coefficient b 'between smc.ll ions and 

(1.1( 

aerosol particles and ( ii) the particle concentration Z and (iii) the 

ion generation rate q. 

A similar equation to ( .L.l3) lJBU be written for largo ions: 

d._N 
d,t 

(1. 17)(1r lt-- l h ' ; ' d) .. m .tp e c a.r 8-LllB' 1gnore 

Similarly, if large ion equilibrium exists, dl~dt - 0 and: 
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ion equilibrium: 

b 

N +2N one may write in the case of large 
0 

For non-equilibrium the factor f is introduced a.s a measure of the 

departure from equilibriur.~, such that No/N = f ,(where f = 1 for 

equilibrium). 'rhen we have: 

6 -
~0 

As stated in the int::coduction, the pui.'l:iOSe o.f the v:ork dencribcd 

in the following chapta:r.·s is firstly to obt~in a. set of value3 of the 

combin~tion coef!icient b for different values of radii, including the 

( -6 ) range commonly encountered in the a.tmosphere a ,..., 1 to 5xl0 em , and 

secondly to procure measurements of ?')0 versus radius. 'l'he latter 
I 

soc·tion of the experiment ia accomplished by sirnul·taneous measureme!1ta 

z; of b, N , 
0 

of equa.t.ion. 

( z/N ) 
ooO 

(1.20). 

and :radius. "t)o is then evaluated through ·the use 

E:xpe:::-iments involve mea8urements of s·ize and 

concentration of a.erosol pa.rticles produced by a. glowing nichrome 

wire, and the measurement cf the deca.y of small ions in the presence 

of the aerosol particles in a. mylar reservoir, of '-" ... ~lun)e 3.1m3. 

Decay curves .for the small ions obtained for e. particular size and 

concentration of aerosol particles were compared with theoretical 

decay curves plotted from relation ( 1.16) using a' family of curves' 

t..echniqae to e'rahu:J.tf3 ~ (a.nd hencG b ) • Valu8s of 'Y)o could then be 



determined by application of equation ( 1. 20), using the rneasur,~d 

z z 
values of ( /N ) , ( /N )~,·to obtain f a.nd .Q • 

0 0 vv 

It was neceGsary to find a value of ~ for the small ions 

measured in the enclosed storage vessel, in order that all the 

parameters of equation ( 1.16) could be a.ssocie.ted with condi tiom1 

in the storase vessel. The followin.g ch1:tp"ter gives a.n account of 

the method employed for measuring ~ and displays the results 

obtained over the period during which ion-aero::JOl combination 

coefficient measurements were performed. A full survey of the 

experimental procedures undertaken for b a.nd 1]., rue a.surements is given 

in chapter 3. Chapter 4 discusses various t.heoretica.J. 1:10dels proposed 

for predicting the re la.tionships of b and "r]o 'Ni th radius, giving 

particular e.ttenti?n to the importance of iDage capture ~1.ml. tbrr:lr:'l··bod.y 

trapping in calculating the ion- aerosol at vl'i.ehmen t coefficients for 

aerosol particles of small radii. The final ci:la.pter giver~ en fl.nalysis 

of the results obtained from this l'tork and clj,r;cu~'sHs i_;hr::m :i.n. the 

light of theoretical considerationo o.nd previous experimental 

measurements. 

* * * 
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CHAPTER 2. 

SMALL ION GENEHA'l'ION A!fD M!~ASUHgMENTS OF ION 

MOBILITY AND RECQi;lBINATION cor;a;oF:~.2 . .!-_~NT, o<. • 

2.1 Small Ion Production. 

The small ions for this \vork were produced by corona d ischa.rge 

at the point of a steel needle. The design of the ion source apparatus 

was based on the small discharge vessel vthich Nolan and 0 1 Toole ( 1959) 

used for the production of condensation and small ions, but was 

modified to suit the requirements of this experiment. 

The discharge vessel comprised of a brass cylinder llcm long ~;md 

6.3cm in diameter, shown in figure (2.1). The needle used was an 

ordinary steel sewing needle, which was set at a positive potential 

.from an E.H.T. supply; the brass ring and the whole of ·the br8..SS 

cylinder were earthed. The ions produced by corona discharge a.:r:o'i.t.."ld · 

the needle were dissipated by a. fi 1 tered <:iil.· flow 1 and the ions were 

cullec·ted in a. 3.1 m3 recta.ngu~ar mylar vessel, where all expe.J:imenta 

were carried out. 

The positive potential applied to the ne'edle was carefully chosen 

such that it was below the critical voltage for condensa:tion nucleus 

production, bu1. above the critical Yoltaga of ion prouuctica. Nolan 

and Kuffel (1957) have ex&..,Jined -the critical ·vol·ta.ges required for 

nucleus production and for small ion production by point discharg~, 

and have shown that in the latter case the critical voltage wa8 

lower, .foi.' a pa.rttcular needle. 'J'he~r alao found tht'l p:r:edictablc 

10 
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result that th~ critical voltage depended on the sharpness of the 

needles. 

The actual thr~shold vol ta.ge is l.OiYer than this, as illuotrated 

in figure 2.2 below: 

t 
z 

nucleus or 
small ion 
concentration 

I 
I 

~------~---==~--~------------
th'l' h ld ~ . t. 1 res o cr1 ~ca kV-,;. 
voltage voltage 

FIG. 2.2 

The critical voltag~ is thus the voltage at which Z begins to increase 

rapidly. More recent work by No la.n and 0 ''l'oole ( 1959) indlcatas ·that 

the threshold voltage for small ion and nucleus produc·tion a.rl9 the 

same. This infers that although the value of the potential was 

adjusted to be below the critical vol tP..ge for nucleus proo.luciiion 

for all experiments, there may have been a very low concentra:ti.on 

o.f nuclei actually produced. However, the No la.n-Po llak photo-electric 

counting system employed her~ for measuring nuclei concentrations 

(see chapter 3) regtstered less tha."'l 100 particles per cm3 vri ·th 16om .Hg 

overpressure for samples of ions taken from the mylar vessel. This 

low concentration revealed that there was 30 nett increege in nuclei 

in the enclosed apuc~ due ~o the ion production mech; ... niam, ts.ldng 

into account the efficiency of the myl!l.r v.aasel in excluding all 

aerosols from tha laboratory environment. It mF.I.:,· be noted -~hq.t 

concentration measur~ments were not only taken just after producti0n 
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of ions, when condensation nuclei if produced are likely to be very 

3ru&ll; they were also takeu after being stored sufficiently long to 

allow coagulation out of the unobservabli:' sizo region of the 

photo-electric counter, but no significant increase in concentration 

·t~ as observed. 

Corona point discharge is caused by a non- uniform field of 

considerable strength in the region surrolmding th•3 point. Such a 

field is also a very efficient collector of the ions, so that a high 

velocity flow rate is required to free the ions from the electric 

field in order that a high concentration of small ions can emanate 

from the ion source. Hence the relatively inefficient producer of 

'free' ions used by Nole .. n e.nd 0 1 '1.'oolP. (1.959) has betjn mocl:Lf1ed to 

suit the purpose of this work by the introduction of ·the no.J:rovl slit 

1 a', shown in figure 2 .1. '!'he width of 'a' was chosen for a. sui table 

yield of small ions, with the potential in the range of 2 to 3 kV 1 

and with a flow rate of 40 litres per minute. The needle was 

positioned such that its tip was concentric with the slit, as in 

fig11re 2 .1. Such modifications to the o.ppnratus follow the principles 

of the sonic jet small ion generator descri bod by 'Nhi tby and Mc?al'lH.nd 

(1961), but the velocity across the needle poirit her~ was only of 

the order of 1/20 the.velocity of sound. Nevertheless a concentration 

of "'107 ions per cm3 was usually r.ecorded o.t a. distance of about 15cm 

from the source, vrhich proved an adequate initial flux of ions. 

A mul ti-needl.e ion source was also constru.ctetl ( LliJing the Scljne 

principles as the single needle source) in case higher ionic 

concentrations were required, but this was fotmd to be Auperfluouo 

in subsequent experiments. 
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Ionic c0ncentrations were measured using a cylindrical aspiration 

capacitor (small ion t11he), shmvn in plate 1 a.nd schematically ; .. n 

figure 2. 3. Air from the mylar ·;essel wns dra.wn throup;h the 

cylindrical electrode A at a flow rate of 50 litres per ~inute. This 

electrode is shielded from stray electric fields by lJ. larger ea:t•'thed 

concen·tric cylinder and tnsulated from it by P.T.F.'l!:. rings. A 

poai ti ve polarising val tage is applied t.o electrode A which causes 

iona of the same sign to be deflected tov1ards the central rod B, 

insulated from the other two electrodes by the P.T.F.E. spacer, C. 

A solid state Keithley electrometer (model 602) connected to tho 

central electrode B r~cords the resulting ion curront. Th~ ~ir was 

drawn through the io.n tube by means of a.n electr.io pump and the .fl(lVI 

was mo••i tared by '·1 0 to 100 litre/min rotameter. 

If V is the potential difference between the cylinder A and the 

central Ellectrode B, then the electric intenf:lity, E, e.t ::!. point r froiil 

the central axis is: 

E v ( 2. 'l) 

where a and b are defined in figure 2. 3. Ions of mobtli ty w move a 

redial distance dr = wEld t in time d t. Consider an :i.on starting at 

the outer cylinder A and mo•ring imH!.rds toward the central electrode 

B; the time taKen to traversP, tile :radial d il:ltanoe dr is: 

d.t 
d.r­

wE (2.2) 

The total time tak~n ~o get from the outer cylinder A to the central 

lj 



PLAT~ 1. Measurement of Small Ion Concentration. 



\ 

I 
i 

I 

I I 

'+-:J 
.0 

~a 
N 

w 
u.. 
1-
a.. 



olectrode ll is: 

t (a}- b') 
----I 

2 ( 2. 3) 
During this time air will have moved a di:'ltance ut along the Gylindar, 

where u is the velocity of the a.ir flow. If this distance is less 

than L, then all inw.-:1.rd moving ions will be collected. Hence all ions 

are collected if u < 1/t or: 

u. < 
( 0..2 - b1

) ..Qo~e INJb 

2 cvVL (2.4-) 

So we can define a cr.i tical mobility w , and for e. particular V a.nd c 

volume flow rate Q ( = u-rf(a2 ~ b
2
)) all ions with mobility w will c 

be captured, where w is given by the r~la.tion: c 

:::: 
A ,) - 0./o 
~c .-trt 1 o 

2-rr \fc L 
I ' 

( 2- 5) 

By va.rying "the voltage, V a mobilj_ ty spectrtJl fol.' the small :tons can 

be obtained experimentally using the method descr1bed by I::~ra.el (1971). 

The concentration of small ions is plotted a~ a function of the applied 

lt . f' 2 4 I 1 1 t' .L t' . t ... ""P ( J.. - .,.di) vo age, as l.n l.gure • ~ a:x:·ae a 1ows ·nao, · no .ln e:c-:::ep" v_ • dV 

on tha ordinate axis gi ve3 directly the total numbe:t• of ions with 

mobility w ~ w , where w
0 

is ca.lculE~ted from the corresponding V values .... c 

(P-quation 2.5). Hence OP- OP' gives the numb•sr of small io:1s trapp13d 

in the vol tag~ range V 1 to V (corresponding to the ruobili ty range .. c c 

Exp,~rimental results of small i0n mo ~ili ty using t£ds ·~ec.imique 

are shown in figures 2.5 and 246. Small ions were L·.troduoed into th•J 

mylar vessel for 3 minutes, and than the vesRel was 'closGd off' for a 

period of time sufficiently long for th~ small i0ns to ettnin a state 

14 
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of equilibrium (about 10 minutes). The resulting ion concen·tL·ation 

("" 2000 per cm3) was sampled by the ion tube a.t 30 l:f. tras/min. for 

voltages ranging from 0 to 6 volts. It was necessary to calibr.ate 

the electrometer before commencing the experiment so that it w6uld 

display a reading of zero with zero volts across the co-cylindrical 

condenser. Without this adjustment a small negative ionic conc~ntration 

was recorded for zero volts. 

In the experiment the electrometer was connected to an ultra­

viola~ recorder so that a continuous record of purrent was recorded 

for each voltage chosen. Each point on figure (2.5) corresponds to 

an electrometer reading averaged over 90 secondo, l.:'.fter a-llowing for 

the log·ari"tluuic r·iue due ·i;o ·i;he reaponee time oi the elcc·tr·ometez.·. 

Tangents at chosen values of V enabled the mobility apect:!.'um in 

figure 2. 6- to be deter.mined. Values of the _paramo·~ers in eql!a.t:f.on 2. 5 

were: a = 1.742cm, b = 0.635cm, ~ a 37-3cm, Q ~ 30 litres/min. The 

mean mobility ia estimated to be o.68cm2v- 1sec··l. 

Aii. e.xperimen·~ was devised to estimate the number of small ions 

produced per second at the slit of the ion source. This involv~d 

having the ion aspirator flush with the ion sourcei th~ ion uource 

had been designed to fi·t snugly into the outer cylinder of the ion 

aspirator. With 20V acr':'SS the ion tube, and a flow ra·~e of 50 litreo 

per mtnute across the needle, a. t::i.rne-averaged val•le of 1.1 x 10-9 A 

ws:t.s :r.ecnrded on ·the electrome·~er. This value was obtained by analysis 

of the continual ·traca on the U/V recorder output: flucttlations in 

the output only amounted to a maximum o.f ~ of the ma.gni tude o.f the 

reading. This corresponds to a concentration of 8. 3 x w·l ions par 

cm3. Th~ initial absolute valu~ o.f the small ion concentration is 

15 



difficult to determine, since the decay of ions at such high 

concentrations is very rapid, as found by Whitby and McFarland (1961). 

However with· a flow rate of 50 1itres/min. through the narrow orifice 

(7mm diameter) the time taken to rea.ch the electrodes is only of the 

order of a few hundredths of a second. Hence 108· ions per cm3 as an 

order of magnitude would appear to be a good estimate for ·the 

ionisation rate 1 q 1 of the source. 

2.3 Measurement of the Recombination Coefficient,~. 

Determination ~1' the recombination coefficient, of. was made using 

the se.me arr~mgement as for the mobility mt.!asur~ment. Decay of 

small ions in a closed space with no sourc~ has been examined by 

\lfhi tby and McT!'ar··- 1nd ( 1961), and they have shown that the concentration· 

of ions left after time, t is independent of ·the size and sha.po of 

the closed spaco, and hence that the decay n"l.·te of the cloud of ions 

is only dependent on the properties of the c:loud i·tself. ~~he 

diffusion of ions to the boundary of ·the vessel should h0 1-'rever be 

considered as an agent in the decay of the ions; this has been 

examined by Flanagan (1965). He modified. the equation for small 

ion decay in the presenee of o.eroaol par-ticles by the incluoion of 

a diffusion lose term, D V 2n, in the equation: 

+ bln _ ot.-r1 2 ( 2- 6) 

with the boundary f.ll)n.ditit:m that n "" 0 a-t; the walls of the vessel. 

For equilibrium condi tiona in a spherical vessel this equa.t:i.on has 

t.he solution: 

16 



n (2. 7) 

... ,here k 2 - bZ_ /D and ne - q/bZ. F ,. a b ll f' ad" s 60 i• lf th •• ~ - O- a oon o r 111. em ,na l;l 

) -1 rlid th of the rectangular mylar vessel , and w:i th k "" 0. 5om , the 

diffusion loss is negligible apart from within the region e.bou·t lOom 

from the balloon wall. The diffusion loss for air free of aerosol 

. 2 o<. 
particles was est-imated from equa.tion 2.7 by putting k .. n/D. 

This effectively calculates the loos of positive ions by diffusion 

and recombination, and estimates showed the:t the diffusion loss 

would again be negligible within about lOcm from tha walls o.f the 

vessel. In all experiments in this work the ion-tube was projectod 

about 30cm inside the mylar vessel, so that the diffusion loas was 

unlikely to affect the results. 

T.l::e name me .. ;Hod was applied for every o( determination. Ini tia.lly 

the mylar balloon was almost completely filled Y7i th fil tcred air: 

then the small ions were introduced into the vessel v:l.a a filt~red 

air flow of 40 11 tree per minuta, until the ini tir:l.l concentra·tion was 

of the order of 10,000 ions~ when tha air flow ·to the needltl was 

switched off. The particle decay was monitored on tho U/V recorder 

with the electrometer set on the appropriate scale for curren·t 

measurement. In each experiment a trace of the decay Wf'.s obtained 

on U/V paper starting from an ini·tial concentration of around 4000 

particles (where the time, t, "'~s arbitrarily sat to zero) to the 

equilibrium value of ganeral).y arolmd 2000 particles. l!,igur.e 2.7 

is a re1pl:lca of tho decay recorded in the fi.fth experiment to measure 

o<. This curve was analysed to give a value for ot. through the use of 

equation (1.10) from chapter 1. A value of tile equilibrium concentratj.on 
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n was talten after leaving the apparatus running for 10 minutes. 
00 

Samples of the concentration along tho dece.y curve were taken every 

30 seconds for 3 minutes starting from tho ini tia.l concentra·tion 

chosen, at t = 0. Then values of tanh-l(noofn) wert:> plottad versus 

time, and from the slope of the graph(= n ~), the value of~ could 
oa 

be determined. Figure 2~8 shows the result of this procedure for 

the decay curve given. The error barB on the graph were evaluated on 

the assumption that all concentration readings from the U/V pape-r 

were accurate to! 0.1 em (or! 32 ions). Thie entails that as the 

value of nf/ gets larger, the error increases. The tanh-l function 
n 

tends tovuu·d infinity as nf/ approaches uni t,y and it magnifies the error n 

as the concentrF;;~ion a.ppro~ches the t~quili briu::n value. The best 

straight line was fitted through the point a e.nd ~~ va.l11e fo:r: c<.. c9.lculated 

from its slope. 'l'he error in o< was estimated by drmting lines of the 

maximUJn and minimum realistic slope ·tlu:ough t:.;,.e error bars. 

Two sets of oe. measuJ.•ements were carriP.d out, one preliminary 

to the first aet of b measurements, tho second after the second set 

of b (e.nd Y]o) measurements. The results for the 14o<.de•lie:rm:i.nationa 

carried out are tabulated on. ~he following page. The weighted mean 

of all the results gives a value of 2.39 ("! 0.14) x 10-6 for rl... 

This is noticeably different from the accepted value of 1.6 x 10- 6 

for tho atmosphere ( Chalmers, 1967), but comparable with the ve.lue 

of 2.5 x 10- 6 obtained by Whitby and McFal·land, where in'1eB·tiga.l;1ons 

were carried out under similar condi tiona o.t' high concernratio:.J. of 

ions. The value of c< -6 = 2.39 x 10 was used in the ~xperimental 

determinations of b, for combination between ions and part:l.cl.es. 

HJ 



Table 2.1 Results of~ ~rmi~!ttoE!~ 

Set and Run No. nf (ions. em-~) 

(1). 1 1~93 (:!: 32) 2.52 (:!:0.10) 

2 1961 " 2 • 6 5 ( :!:o • 2 7) 

3 2379 " 2 • 41 ( :!:o • 21) 

4 1929 " 2 .13 ( :!:o • 1 7) 

5 2025 " 2 • 2 2 ( !o • 12) 

6 1993 II 2.60 (:!:0.10) 

( 2). 1 1639 " 3.03 ( !o. 30) 

8 1639 II 2.84 (:!:o. 32) 

·9 154) II , "'"' t+o 19) J.o'j'j \- o, 

10 2025 " 2. 11 ( :!:o. 16) 

11 1704 II . 2. 3 3 (:!:o. 17.) 

12 1639 II 1.96 (:!:o.ll) 

13 1993 II 2 • 51 ( !o • 14) 

14 1915 II 2. 54 (!o. 28) 

---

* * 
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CHAP rn •;•r• .J. . .L tJJ..\. .. -------

01!, CONiB!NA~rJ9J! ..... .90:i';F.F'ICI"SNT~). o AllD _Q.n_ :tiTI~ su··!!­

MICfiOM.E'l'HE AEHOSOL PJd"{TICL.E:S OF' RADIOS r. 

~ .1 The Meciw.nism of ~ub-microm~_!re Aerosol Particle P-roduction. 

Particles were produced by blowing filtered air over a glowing 

nichrome wire, which was enclosed in a cylindrical container, lBcm 

in die.meter. '.i'his c,ylinder ha.d couical ends, so that the airflow 

through the inside was a.s stream-lined as possible. A 50cm length 

of 24 s.w.g. (0.0559cm) nichrcmc wire was used, which was coiled 

a.round the shank of a Gallenkamp immersion thermocouple (type 

PX-096), consisting of <J. pla:~irmm-iridiu.m jtmction surround eel by 

an aluminous porcelain shea·th of' l em external diameter. The 

thermocouple was connected to the a.pprQpriate pyrome l;er (type 

PX-075). The ends of the nichrome wire weru connected to a power 

supply, capable of delivering a current. of 10 A with a poten tia.1 

difference of 18 V across the specimen. 

~he production of condensation nuclei by a heated wire was 

first observed by Coulier in 1075. Since t.hen, many in,restigators 

researching the beh::wiour of aerosols have used thl:lse nuclei as o. 

Sl)llrCe of su·, .. micromet:ce paT:ticles. Megaw and \fiffen ( 1964), using 

n0u trnn o.cti Ya.tion techr . .:.ques, have d emonstro.ted that the nuclei 

produced by heated wires contain atoms of the constituent of the 

wire; for nichrome ~lr~ the nuclei consist mainly of chromium. 

20 



0 1 Connor and Roddy (1966) distinguish be-tween 1 tra.nsi•:mt' a.nd 

1 permanent 1 nucleus production from hea·~ed wires. 'fhe ·trans ion t 

type of nuclei are due to surface contamination, and are prod11:ced 

at lower temperatures than the threshold tl-~mperature for permanent 

nucleus production. All the 'layers' of contamination nuclei will 

be driven off the wire if the current is increased enough for the 

wire to glow brightly. Each wire used was sub,jected to a. current 

of 8 A for an hour, before experimental investigations into the 

aerosol particle size and concentration were made, to remove all 

the transient type nuclei from the environment under study. The 

wire is then said to be 1 fatigued 1 a.nd only capable of permanent 

nucleus production. O'Connor and Rodely che~ked that the production 

was indeed permanen·t by keeping a 13cm length (5t! s.w.g. dia.mater) 

n 
\'i'ire heated to about 900-c continuously for ::~aven da.ys while passing 

filtered air over it at a f1ow rate of 3 litres per minute. The 

value of Z varied diurnally by almost 40~~ of the average value of 

266000, but did not show a tendency to decrease with tirua. ~hese 

fluc·tua.tions may ho.ve been due to changes :i.n room temperature. 

Small nuclei are produced in this WEW and subse,luent:ly grow 

by coagulation. Previous work by Nolan and Kenna.n ( 1949) und 

0 1 Connor and Roddy ( 1966) indic a.~e that the minimum size measureable 

using a diffusion method 'ia about. lxl0-7cm. Low concentrations 

anJ high flow rates are required for thE ~inimum size, to suporess 

co agulc..ti.on before the pa::-:tic les are measured. for size a.nd 

concentration. In this work, howove:r., a range of sizes is required., 

so the facility of storage is necessary to allo~ particles to 

21 



coagulate, and the mylnr vessel wa.s used for this purpose. 'l'he ini ·~·i. r~.l 

concentration of nu6lei from the wire was varied by me3ns of the 
I 

current through the wire. In experiments, currents rane;ed from 

6.8 A to 8.5 A (with corresponding temperatures of 570°C and 700°C). 

A high flow rate of 40 li tres por minute was pa.ssed over the wire 

to decrease the degree of heterogeneity of the nuclei, ~nd to ensure 

t.hat a large concentration of nuclei could be transpor.ted per 

second into the mylar vessel ( without large diffusion lof:IS to the 

inter-connecting :i" pneuflow tubing ) • '/ii th this arran.gemen·t, a 

concentration of upto 200,000 particles per cm3 could be recorded 

from the mylar ves::~el a.fter 4 minutes wi·th a high . em~rent 

through the wire, and conversely a noncentration of around 30,000 

particles pt!r cm3 aftr-:r ·the same time had elapsed ·;lith n low 

current. With a sui table time for storage a size rell§:E-) :from (L 5 
.. 

t 5. lo- 6 . . . d f . t. l . . . . . · .o £. ern was oo-ca~ne or exper~mc-m·ca. ].n·ro<n;:t.ga:;;::.ons. 

2..!-.?.._TI!~- M~ a.surement of Concentra.tivn of Sub-m:lcromotre Aero so~ 

Particles. 

•rhese condensation nuclei are so minute tha·t they ca.nnot be 

~een with any optical. microscope directly, .but their presence can 

be shown by conversion in to ·droplets, which magnii.';.e s their size 

several ·time·;. The· number of nuclei can then be counted a.:o:suming 

that each droplet is formed from only one nuclf.lus. 'l'he formation 

of droplets around the condensation nuclei in a fixed volume of 

air saturated with water vapour can be achieved b:y ere a.ting a 

22 



selected supersaturation through the increase of the pressure 

in the vessel. The sudden expansion of the enclosed volume of 

air occurs adiabatically with a resultant degree of super-

saturation in the vessel. 

Concentration measurements for this work were m~e. with a 

photo-electric condensation nucleus counter, whare the concentration 

is obtained by measuring the extinction of a. light beam passing 

through the fog formed by the expansion using a photocell. This 

is known as a relative condensation nucleus counter, for the 

droplets are not counted directly. The one used was a standard 

direct beam photo-~lectric counter, following the specific~tions 

of Nolan and Pollak (1946), and shown schema-tio<:d.ly in figu:i:'G "I , 
.) • .1 •• 

~he vertic..:.l brass tube shown is 60cm long and 3. 05cm :i_n 

diameter, and is lined with moist blotting paper, creeting a 

saturated atmosphere inside. The ends of the tube are seRled 

by glass plates and rubber compression rings. Th·3 inner sidtHl 

of the glass plates are coated with a plastic demist film which 

prevents quantities of w:1ter condensing out on the surfaces. A 

lamp system is fitted at the top producing a pa.rallel bEHI.m o.f light 

which strikes a photo~ell at the bottom. The photocell current (I ) 
0 

is set at a convenient value by adjusting the statie power supply 

to the lamp. Air s-amples under investigation for nuclei a.re drawn 

through the fog-tube for a. time sufficiently long to ensure that 

the previous content is completely removed a.'1.d the fog-tube is 

filled with the air under investigation. Filtered air is pumped 
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into ·tho counter until ,<J.n overpresoure of l60mn1 Hg is re~:1.chod.. 

This is maintained for sufficient time to a.llow the uii~ to 

become saturated with water va.pour and lose its heat of compression. 

The pressure is then released and the photocurr~nt (!
0

) is measured, 

The sudden expansion cools the 1:1oist air aYld the resulting fog 

causes a drop in the photo current to a new value (I). 

Nolan and Po lla.k ( 1946) have determined experimenta.lly the 

relationship between extinction, E :.: (I - I) /I and the concentration, 
0 0 

Z and tabulated their resul·ts for various overpressures, The 

absolute values of concentration measurements with the Photo-

electric counter are accu·ra.te ·to within 101~· 

Tho photocell_current was amplified Go thP.t I 1-1.nd l 
0 

cou.ld 

be recorded on a digital voltmeter (of 0 - ~OOmV ronga) with a 

pape:c-tape. printout. The arnpli fie:r circuit used is shown in 

figure 3.2. 

The 820Jl resisto·r across the ou·tput of the amplifier 

effectively converts the var·inble current output to c'. 0 -· 200Jr~'/ 

of the aillplifior' s ·vol·~ar;e output ·.'las tested by va.:ryine the 

current to "the lamp supply, and p·lotting thtl direct photocell. 

output versus the voltage output recorde~ on the digital voltmater. 

This plot is shown in figure 3. 3, Yerifying that the choice o!' 

r~sistors gives a linear output with sufficient gain over the 

range of intereRt. 
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FIG. 3.2 THE INVERTING AMPLIFIER 
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It was necessa.ry .for all experiments to have a.n automatic 

syst.em for concentration measurements, and hence all the electrics.lly 

operated so;I.enoid valves, the galve.nometer a.nd the digital vol·tmeter 

were connected to a. Hota.set programme timer, with a two minute 

cycle time. The cams on the timer discs were a.d justed to give 

the following mode of operation : 

TIME (sees) 

0 

58 

67 

81 
I I 

I 86 

86.5 

90.0 

100 

112.5 

120 

FUHCTION OF '.riMER 

open va.lves l a.nd 2 

close valves 1 a.nd 2 
open valve 3 

close va.lve 3 

photocurrent to D.V.M. 

~rigger D.V.M. 

open valve 4 

trigge1.· D.V.M. 

current from photo­
cell cut off 

close valve 4 

reopen v . .:-..lves 1 and 2 

OPERATION 

a.ir sam_;>le drawn through 
counter using pump, flow 
measured with rote.meter 

filtered air pumped in 
until required overpress-
ure J.S reached ( l.60mm Hg) 

record I 
0 

sudden expansion 

record. I 

(cycle repeats) 

The vo.lvo numbers here refer to dia.gra¥1 3.1. '.i'hese timings 

comply with the nP.ce ssa.ry conditions stated by No l "'.n D.nd Pollak 

for satisfac~~ry operation of tha counter. The time bet~een 

the expansion a.nd the se~ond trigger of the D.V.M. wa.s fixed so 

as to giv"l the minimUJn extinction reading, a.ncl was equa.l to 

3.5 seconds. 
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PLATE 2. The Photo-electric Counter Sys tem. 



With the counter operating continually in thi~ mode, and 

\ti th a.n avara.ge air flow-rate of 5 litres per lilinute through 

the counter. during the first half of each cycle, it was necessary 

to remoisten the blotting po.per in the counter every 20 hours, 

to ensure that eac.h sample became saturated wi t:1 water vapour. 

All metal to metal screw- thread connections to the counter 

were sealed with .P.T.Ii'.E. to.po, and the counter system was tested 

for leaks before commencement of use. Plate 2 shows the assembled 

counter oystem. 

'l'he rela.ti n he+.ween the fra.ction of aerosol particles 

penetrating a Sf-}r:Les o.f na.rro·,y chct.Y'InE:ls a.nd the diffusion 

coefficient of the particles was fir:3t investi~sc•.tcd by Townsund 

(1900), and was first applied to atmospheric particles by Nolm1 

a.nd Guerrini (1935) U8ing a 0iffusion b~ttery containing a mAmber 

of parallel rectangular channels. Timoney, working with Nolan 

and Guerrini, developed a.n equation for the J.i.f fusion loss of 

particles in the parallel pla~e battery which was later corrected 

by Gormley in an <"-ppendix t~ a paper by Nolan and Nolan ( 1938). 

If the particle co~centration entering tho box is Z and the 

concentration emerging from the bnx is Zv' then: 

Zy_ 
z 0· 910 e-o< + 0· 053 e .. -·1!·4- o< + 

3·77 bDLC 
aQ 
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Here Q is the volumetric fl0\'1 ra.te, C the nu.mber of cho.nnels, 2a 

the spacing between the pe.rfl.llel platea, b the he:i.ght of the channels 

perpendicular to the direction of air flow, L the length of the 

diffusion tube 1:.1.nd .D the diffusion constant of the aerr)uol particles. 

The quantity k is a constant for a given box. Two diffusion 

batteries were used for this work: the battery for l::;.rger size 

.:.6 
aerosol par·tioles (in the 1 - 5xl0 em range) hnd k

1 
-- -·7 -1 5. 704xl0 ern , 

whereas the battery for the smaller si.ze range (0.25-

-6 -1 
had k 2 = 8.545xl0 em • 

-6 ) lxlO em 

The discussion above refers to monodisperse aerosols, whereas 

most aerosols are polydisperse. Pollak and r.letnieks ( 1957, 19~)9) 

found that. v1hen using the Nolan and Guerrini method to measure 

the diffusion coef:ficien t for po lydtsperse e.er,:>so ls; the vo.lues of 

D calculated by mea.ns of equation ( 3 .1) frolll experimental ob::~erve.tions 

increased. with the ra·te of flow. These authora proposed to mal-::e u:~e 

of this result for the determination of the siza distribution of 

the heterogeneous aerosol (from the distribution of diffusion 

coefficients). The aerosol is resolved into a number of discrate 

size components by using the so called 1 e::dHJ.u.stion' •r.ethod, which 

is described in their 1957 paper. This lengthy proceduro was not 

adopted in this work, for several size determinations were required 

here. 

Natura.l aerosols and aerosols in ·the laboratory a.re commonly 

found ns a continuous size distribution of particles which follows 

a log-normal probability law, where the probnbili ty c1en3i·ty is 

given by: 
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r 2 .~.n· h 
where rg is the geometric mean size and #a is the geometric 

standard deviation. Megaw and Wiffen (1963) showed experimentally 

(using electronmicro-photographs) that aerosols produced by atomising 

a 0.1% solution of .Potassium permanganate and allowing the drops 

to evaporate, and by heating a tungsten wire to a. tempera.ture of 

0 1000-1200 C in a current of filtered nitrogen both closely followed 

a logarithmic probabili ·ty law. For such an aerosol only the P<"trameters 

r g and fja are needed to define the size distribution. 

Fuchs et al. (1962) have devised an indirec·~ r.iG-thod by which 

- t.hese t\·;o parame tei·s can be obtained with the diffusion battery. 

~hey used the penetration equation of DeMarcus (1952) as a atarting 

point: 

(., '7.) ;J.:J 

Using an electronic computer tht;ly plotted a system of curves 'l..v/Z = f(y) 

(where y = 1/kQ) for aer~sols having a logarithmic probability 

z distribution, so that experil!lental values of v/ Z could be compared 

with them. This was done for several value.s of the mean geometric 

particle l:'ad iUS r g from 10-1 to 10-5 Cffi, and for Y:J.lues of #, from 

1 (correspon1lng td a monodisperse aerosol) to 2.5. Thece curves 

aro shown in figure 

nl d 'n correspon s to 
0 

3.4, which is copied from Fuc:hs' a paper. (Here 

zv/z , and log l.8852y =log (
1
/kQ). Millikan's 

equatl.on ( 1923) was •1sed to ~·elate the diffusion coefficients to 
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the pa.rticle radii, on the assumption that the p.~:;.rticles are spherico.l s 

D 
k T ( + A ).. I r- + B ( 'r.;,.. ) e - c r-1"' ) 
----~-------------------------- ( 3. 4-) 

where A = 6. 53xlo- 6 em is the mean free path of the air molecules, 

-4 -2 ( 0 
"'} = l.83xl0 dyn s em is the viscosity of the a.ir at 23 C and 

760mm Hg), A= 1.246, n = 0.42 and C ~ 0.87. These values ware 

found by J;ii llikan for oi 1 droplets. There ts a. vn.riation in the 

value of the constants with the nature of the droplet (Iiii llikan, 

1923; Wasser, 1933). However the uncertainty in the value of the 

particle radius due to this variation doea not exr:!eed 2-~~. 

'l'he important feature of Fuchs's method i~> tha.t ea.ch fv.rnily 
• r> 

f f ·1 .. "·t 'h '·'/ o._ curves or :;~. partict.l..Jtr r ancl varyJ.ng 1::51- J.n ·ersec·r. w. en v. ,.,. 
g I " LJ 

has a value between 0.4 e:1.nd 0.45. Hence i~ the ail·-f1.ow throu.gh 

the diffusion battery is adjusted such that the value of 
2

v/Z is 

between these va.lt.les, then the radius obtained 1d th t!!:i.s flow-rate 

will be the geome·tric mean radius of the aerosol. lga a.nd r c a.n 
J g 

be obtained fo:r:· a particular a.erosol under study by deterr.-d.ning 

'Talues of Zv/ Z for 'three c1 ifferent nir-flows, (with une Ya.lue 

between 0.4 and 0.45). 'rhe results a.re plotted on tracing paper 

with Zv/ Z as abscissa, log( 1/kQ) as ordinate, <l.ncl hav:i.ng the same 

scale as figure 3.4. Com:parison of these points vd th the theoretical 

families of curves then yields values of 8} and rg. l1·legaw and Wi.ffen 

( 1963) report that good. agreement has been fo,md in experiments in 

which the geome·~ric mea:1 size of various aaroools as given by Fuchs 1 s 

me·thod ha.s been compared with that obtained from elect.rom:ticro-

photographs of samples of the aerosols. 'rhe Puchs method has been 

use~ in thie work for all rletermina~ions of aer~sol size. Figure 3.5 
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shows t.he extra.polat:ton curve used between Fuchs 1 s v-alues of ·the radius, 

to determine ·the in termed :La. te radius values. 

-. 

3. 4 Ion-tube Meaouremen ts on Chargef._J'artic les. 

When large ion equilibrium exists in aerosols, due to frequent-

collisions with small ions, then the Bo 1 tzmann distribution law ca.n 

be appU.ed to the nuclei if the electrical energy is included. Ke.efe, 

Nolan and Rich (1959) have shown that under these conditions: 

( 3. 5) 

where Z is the total number of aero so 1 particles ~:)er unit vo luru~1, N
0 

is the '!;otal numb::_(: of uncharged particles per unit volume and p is 

the number of charges per particle. Experimental results of Nolan 

and Kennan ( 1949) for values of z /N for nuclei of different sizes 
0 

produced from hot platinum give good a.greement- with this hypothesis. 

A conventional ion-tube is normally used to measure the ratio Z/N • 
0 

The ion-tube used for for this work is shown in fi~1re 3.6. The mode 

of action of the ion-tube is well desc:ribecl :in a paper by ·r. A..Rich 

( 1959). Using b and h as defined in the diagram, thf.'l critical 

m.obili 1~y at which all charged particles passing through the tube a1.·e 

c a.p turcd j .. s given by: 

Qh 

where Q. is the flow rate 3 -1 in em sec , a.nd V is -the voltage ?~ross the 
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plates. A v.ol tage of 2.5kV was chosen in tho experiments. ·rhis 

ensured th:;d~ all singly charged particles vii th :r.a.d ii less than 

1 r.: ) -4 .:JX.O ·em we·re captured with a flow rate of 3 li tJ.•es ner .t minute, 

using the· tables of Fla.na.gs.n and '.l.'a.yler ( 1967). An Americium of.. .fo:i..l 

source of strength 125 fC (shown in figure).6) we.s placed in line to 

ensure that the aerosol under study was in charge equiliQ.rium. Tests 

wore ma.de to make certain that the rl.. -source did not produce condensation 

nuclei. With the r:J. -source in line, the ion-tube was used for 

measuring ( lfo/ z)oa • The equivalent ra.dius of nuclei could then be 

de te.rmined using the tables of Me tnieks and Pollak ( 1961) for (No/ z),., 

versus radius-. Prelimino.ry experiments showed that the value of the 

e qui val en·~ :r:adius measu:ced with the ion-tube differed by only 5% from 

tl1e value of the geotnetric 

b a t.t.ery. 

In this work, the ion-tube was primarily used to measure 

'.l.'h.e diffusion battery method was used for size d.eterm"infl.tion, (giving 

-6 ) . (rt I more accura·te values of size fo:r: r < l.OxlO em from wl11.Ch o z)w 

could he determined f:t?om Me tnieks and Pollak's ta.bles. Hence for the 

majority of time, the o< -source wa.l3 removed, and the ion~·l;ube - in 

conjunction with the diffusion batteJ.'Y - was ·then capable of measuring 

t.he departure of the aerosol from charge equilibrium. 'fh is procedure 

was adopted for the measurement of 'r]o versus radius, outlined in the 

next. sect.ion of this _chap·ter. 

l.!..l__Experirnen tal De termination of b versus radius and !}a yersus radius. 
I 

Now tha.t. an experimental val-...e for o< ht:•.d been o·bta.ined; a.nd 

having checl<:ed that the photo elec·tr.;,c counter, the diffusion ba·t.t,;ry 
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PLATE ). Electrical Instrumentation associated with the 

Experimental System. 



PLATE 4. A General View of the Experimental System. 



a.nd thE~ ten- tube were wor.kin.g aa:tisfactor.i ly, the tna.in set of 

experi.m~nts in this work we:r.e J:efl.dy to br~ pcJ:formecl. 'J~he J.ay-o•1t 

of the apparatus for this is shown in figur.~ 3. 7 and l.n the ·two 

photographs, plates ~ 2nd 4. Inter-connecting pneufloiV !" tubing 

was ma.de as short as possible to minimize diffusion losses. As with 

the 0( determination, the aerosol particles were ini tia.lly d.re,wn 

t.hrough the small ion-tube and then through. 1" diameter rubber tubing 

to the rotameter and pump. The fl0\'1 rate employed was 50 li t:ees per 

minute. The sample line to the counter, through the diffusion 

battery or large ion-tube or equal volume tube (·~a ti1e diffusion 

battery) was all of i'' pneuflow tubing, conn~cted to the main sample 

line from the mylar vessel hy a. 1 Y1 plece. (It should be noted here 

t.hs.t rotamet.er readings through the sm;.J.ll ion-tubr~ were only ma.de 

with no flow of air through the photo-electric counter, so the:~ one 

junction of the 1 Y1 was effoctivel~ blocked.~ Tha choice of routes 

i:;.o the counter was determined hy two-way electrical solenoid valves. 

For measuring b versus radius the following proceduro wa.8 adop·hed. 

The mylar vessel vra.s filled with fil tercel e.ir using pump A.. Aerosol 

particles were introduced into the vessel using pu.mp B w:ith a 40 litros 

per minute flow rate. If small particles were required, then filtered 

air from pump A was us~d to fill the vessel for the majority of the 

tim~~, wi·t.h aerosol production uoing pump B only for the lELs·t; few 

minutes before the vessel was full. This production time for. small 

part . .i..cles of sh~P. ra.nging from 0. 5 to l.Ox.t0-
6cm varied .fran: t~ro to 

twenty minu·tes. If large particles ·.vere required, th~:~n ·the aerosols 

were produced for l:.l. much longer time; .from one hour duration .for 

particles ~ 2.0xlo- 6cm upto 80 minutes for tho la~geot particles 

ob.tain.ed, For the large particles the amount of filtered a.ir pumped 
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into the veone.l was reduced, and for the largest partieler; no filtered 

air was pumped into the vessel from pump A. It should be mentioned 

here that the current through the nichrome wire was varied fol' 

different size requirements as indicated in section 3.1. 

Concentration measurements were then made every two minutes on 

samples of the aerosol. 'l1he aerosol was stored for a period depending 

on the size required' for each experiment. l!,or small particles this. 

was between 10 and 20 minutes, a.nd for larger particles for more than 

an hour. During this time, air was passed through tho diffusion 

battery with trial flow rate values to determine which flow reading 

z would give a value of v/z of between 0.4 :md 0.45. The size wa.a 

then determined accurately using the following a.n.OJ.lysia sc~eme, 

with concentration readings every two minutes: 

(1) 

( 2) 

( 3) 

( 4) 

( 5) 

(6) 

z 

z 

'7 .., 

z 

z 

z 

(7) z 

(a) 

(9) 

,. 
L. 

z 

v 

v 

v 

) 

l 
) 

~ 
~ 

measurement withairflow throngh equal vo:Lu.r.e tube. 

measurement through diffusion batter,y wi·~h ~1a.rne 

flow rate as for ( 1), ( 2) and ( 3). 

measurement •:lith airflow through equa] volume -~ube. 

( s a.me flow rate) • 

For the very small particles there YTa.s of·~en insufficient time 

z 
before reading (1) to find the correct flow ra:~e for 'v/z to be ""0. 4, 
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so it. becp.me necessary to perform a preliminary exp;riment to obtain 

th:i.s vallle. After flushing with filtered air, the vessel would agatn 

be filled using exactly the flame i)arameters for aerosol procluction as 

in the ·trial run, and then the main experiment could be carried ou·t, 

using the flow rate value previously obtained. The geometric means 
•7 . 

of the six Z and three Zv readings were taken to give the ratio uv/ Z' 

generally around 0.42; the size measurement was rejected if .the ratio 

was out.side the limi·ts of 0.34 and 0.50. Immediately a.fter the last 

Z measurement (number(9)) small ions were pumped into the veosel from 

the lovrer ion source for a time long enough for the ion concr,mtration 

inside (measured on the U/V recorder connected to the smEl.ll ion-tube 

via t.he Keithley electrometer) to be above 4000 iona p8r 3 em • Then 

t.he flow rate to the needle was stopped and the decay of ion':! in aide 

the vessel was recorded on the U/V paper, e.s in the mothod for 

determining 0( , outlined in Chapter 2. When the ions had reaehed 

e qui lihrium, aerosol cone en tra:tion measurements were again "taken and 

another size mea.su:cemen"t made, identical as before. It ·;1as not 

possible to maice aerosol concentration reaC.ings durine the ion decay 

time as the electro-magnetic valves interfered with the electrometer 

when they were switched on or off. A check on the Yalue of noO was 

made five minutes af·ter compl~tion of ·the decay run. The decay time 

(from n ·to n ) varied be tween two a.nd six minu·tes, so there 1vas no 
C) 00 

apprec:ie.ble gap of tirne between the two size de te:r.mina·ticns, a.nd in 

most. cases increo.se of size over this time due ·~o coagulation was 

miaim~l. For experiments where some coa~1lation was found to occur 

the flow .r.ate through the diffusion battery was reduced slightly 

for the second size determination. Geomotric means were again taken 

to evaluate the average size and concentration during the deca.y of' 

t.he ions. 
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An experimental decay run is sho1•m in figure :;.a. The initial 

ion concentratlon corresponding to ·t. = 0 was chosen to be 4000 :i.ons 

per cm3• The geometric mean size for this aero so 1 sample was found 

-6 to be 2.02xl0 em, and the avera.ge concentration of nuclei during the 

run was 1:; ,810 particles per cm3• 'rhe corresponding set of theoretical 

curves for this decay, plotted by computer, is shown in figure 3.9. 

These curves represent a plot of the solution (1.16) of dn/dt = q- o(.n
2

- ~n 

for values of fo from 0.005 to 0.050 (in steps of 0.005). Families 

of curves as in figure :;.8 were plotted for a particular va.lue of n , 

ranging from n
00 

= 100 ions per cm 3 to 1500 ions per cm3, at 50 unit 

i.ntcn·vals. (For the larger values of n 00 , the values of j3 plotted 

were from 0.001 to 0.015, a.t 0.001 in·tervals. These sets of curves 

ccr:res_pond to "t.ti.e decay of io:ns in s.s.rnples of small sized -pa~rticles., 

where the value of ft will also be relatively small unlcsb tho 

concentration of particles was vary large, wh5 ch did not e.pply in any 

of the experimental runs.) E'igure 3.9 is the theoretical set of curves 

w.i.th the value of n 
00 

closest to that obtained experimentally in 

figure 3. 8. A comparison of the experimental dece.y curve with the 

family of curves for the fir.ot two minutes giYes a value of /3 of 0.034. 

P. . -6 3 -1 From the relationship~= bZ 1 b is then determined to he 2.46xl0 em sec • 

The eJ.•ror in b was evaluated .from the error i:n (3 and the e:cror in Z. 

'l1he error in [!; was estimated from the fluctuation of the c~xparimental 

decay curve from the theoretically .computed curves. The error in Z 

was taken as 0% for all experiments, corresponding to the ac:curat;y 

of the photo-electric counter. For the aboYe quot~d b value tho 

+ -6 3 -1 error was found to be - 0.27xl0 em sec • 

l!'or the me~t.ourement of "rl versus ra.dius one o::..tra mea.su.r,.)ment ,o 

has to bo introduced in the experiment, that of the number conc~:)~ltr~;~.tion 

of uncharged particles, N. This is achieY'3d using the i(ln-·tabe: 
0 
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ao indicated in section 3.4. 'rhe a.nal,ysis scheme for 'lo measurement 

was as fo !lows: 

( 1) z l ( 2) z measurement with airflow through the equal 
) voltune tube. 

( 3) z ) 

( 4) z ) 
v 

~ ( 5) z measurement through diffusion battery, with sa.me v 

~ flow rate for (1), ( 2) and ( 3) . as 
( 6) •z 

"v 

z ( 7) 

(8) 

(9) 

z ~ 
) 
) 
) 

measurement vn lin airflow ·t:hrough aq;Hl..l. voJ.HP.J.e tube, 
( s arne flow r1:1.ta) • 

(10) 

( ll) 

z 

N ) 
0 ) 

~0 ) 

measurement with ion-tube, (usm8 flew rata). 

Ion decay measurement. 

S_tages (1) to (11) in reverse order. 

The geometric mean value of N was found, corresponding to the avora.ge 
0 

value during the decay. b was det.ermined using the method rlescribed 

above, and then ~0 could be calculated from equation ( 1. 20), where f 

II .i-J I ) and .t Values Were determined from the measured valUI?S Of c· 0 ~ o.nd 

(No/ z) ao using the ion- tube and diffusion battery respect:L vely. 
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The ftlll resul t3 of b versns radius a.nd ~0 versus j:'a.clius 

experimsnt.s are tabulated in chapter 5, whe~·e they arc eJ.so plotted 

gra.phically. 

* * 
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CHAP'l'.ER 4. 

TIIEOHE'l'ICAI, CALCUJ!.ATIONS OE' COMBINA'l'ION COEFFICIENTS. 

Combination coefficients between small ions and aerosol particles 

have been well studied for the situation v1hen the radius of the 

p arti.cle in larger than ·the ionic mean free path, using the diffusion-

mobility equation: 

r- 2 ( D dYl 
&.r- + J.U l<n) = 

dv,., . 
c,ons~. = rf; ( 4- · 1) 

( the ionic C1v.;<) 

where D is tho diffusion coefficient, K the mobility and n the 

concentration of small ions, and U is the electric potential at 

dist.ance r from tho centre of the particle, of rad"iu.:; a. Brica.~·d 

( 1949) made s.llowance for the image che..rge of the nucleus in the 

expresS~ion for ·tte poten-tia.l g·radient, bu·t his expressions for the 

combination coefficients required modification in the ca.se of a ~the 

'ioni.c mean free path. The sru..1e author in 1962 i-ntroduced the mean 

free pe:lili, A, of the ion:::~ into ·ti:1e oah:ul~:~:ticns by dafi:ning f.l. 

11 limi ting sphere" of rad i1.\S d +a conc~ntr.ic >'lith the aero~o 1 pH.l'Uo le, 

where l.l is of the order of the size of the. mean free path of the 

small ions. 'l'he small ions undergo their last collision outside this 

sphere, so that in the layer of thickness D. the ions move around a.s if 

in ~mpty spo.ce, travelling at the mean thermal velocity, c. 
Smolukowski ( 1918) had calculated. th~ value of 6. assuming that the 

departure of tue diffusing small ions from the external su:i·face is 

equa.lly probable in all di.Lections, and Bricard used his resuU; for 

a value of A given by: 

I [ (a .,_A )3 -
3Act 
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whic:h gi-..res IJ. =).. for small a, and 1::. = A/2 .for 
1
a

1 
n1ry large. Outside 

the sphere of radius ~+a the diffusion-mobility treatm8nt holds, 

whereas inside the sphere collis:i.on trea·tmen-t of kinetic theory is 

applicable. 'rhe ionic flux r/. reaching the particle iss 
c:L 

Vlhere n is the small ion concentration at ·the outer surface of the 
a+ A 

shell. At equilibrium:-

( 4·4-) 
Bricard substituted ·the R .II. s. of equation ( 4. 4) in thP- diffusion­

mobility equ.a.tion (4 .1) and obtained the coefficients ~ lp anci. ''?..p 
(of nuclei carrying elementary charges of the same~ s:i.gn a.s of the :'lmall 

iotl:'J a.nd of opposite sign respectively) in a similar ·;;a-:;·. to his 

previous method. 

Bricard (1965) showed that in particular for uncharffed particles 

·the c·ombination coefficient ~0 reduces to: 

11 o . .,'l- c 
c + --
4-D 

!~wever, these modified values of the combination coefficient were 

evaluated with the simplification of neglecting the inage charge. 
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Keofe, No lau a.nd Rich ( 1959) dis cuss how the ratios of the 

combination coefficients 't] /~0 , 'Y!
1 Y'YJrl , 1'f~7t/23 etc. (where ~0 is ~he 

combination coefficien·t for uncharged nerosol particles, ~ is the 

coefficitmt for collisions between singly-charged aerosol particles 

and ions of opposite sir.sn, '¥]'2-' is the coefficient for collisions 

.which change doubly-charged to singly-charged pa:rticles a.nd vice-versa 

for .. ,11) can be obtained by application of the Boltzmann distribution 

law; for under equilibrium conditions, 

!J- No If' N, ( L)-. 1) 
~0 N, ~ ll. N,, 

where N
0

, H
1 

and N
11 

are the number concentrations of uncharged, singly 

and doubly charged particles respectively. K~efa a.nd Nolan (1961) 

extended ·this study to the influence of image forcr:H3 on the 

c·ombina:tion coefficient 1J
0
of small ionB with uncharger.1 a.e.r:o~;ol nuclei, 

'l'hey considered three C?-Ses for different ranges of ra.dius, a, of the 

nuclei; (i) a >A, (ii) a~ A and _(iii) a ..... ,\. S:i.zB ra.ng\':!S (ii) and 

(iii) ara of more relevance here. When the size of t:-ae tmch.!:!.rp;ed 

parti.cles is h~'lCh smallar than the mea.n free path of th~. smDJ.l ions, 

the effeetive c::.tp"ture cro:Js-section is enha.ncecl beyond the geomatrica.l 

size due to the attraction of the imac;e charge. VIi th this t::ons:ideration, 

Keefe and Nolan obtained. the following equation, assuming a Ma.xwellia.n 

velocity ·d.istribution of the small ions: 

~0 -- :r o.2 c ( 1 + j ) 
In the cnse where a is of the order of A (typical of atmospheric 

nuclei) the volume around the nucleus is split into twG regions, as 

described earlier. 17o is then modifiecl as: 
I 

1f ez. ) 
2.a.J<T ·---~0 

+ a./,>...' 
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I 
wher.e A is the effective diatance out from the r.uclear surface ·to 

the boundary betwof:n tho regions. For smo.ll ra.d5.i ( < lo- 6cm) this 

t " t -'~ t 1 th f f ( 4 8 ) f 1 1 · · f 1 r .... 5 ) equa. ~on enua aware · e · orm o. • . ; ·or a.rge ra.cA1.1 "> ... v em 

't]o tends to "ffXca. 
I A was evaluated by equating this a.s;ymp·totic 'value 

to t.he re~JUl t calculated for large nuclei in case. ( i), (a.,_)\); l'Jo = 41f"ad. 

Hence: 

~0 
I+ 

Keefe, Nolan and Scott ( 1968) extended the study on the effects 

of the image cha.rge attraction to the combination of small iono and 

cha.rged nuclei. Figure (4.1) sho·Hs the ima.ge cap-ture sphere for the 

case when the small ion is attracted toward8 the nucl~us. The radius 

of the image capture sphere, s 
0 

a, is the nliniillum a.psitle.~ di:.:d;a.!tCe 

for. ion ·traji:!Ctories with COl.Tesponding impe.:-t pe.rum;::ter b a.. Orbits 
0 

with impa.ct parameter ba > b a. will escape captur·e after passing 
0 

through an apse, whereaa those with ba ~ b a will spiral into tho 
0 

nucleus. 

Ions move under an attractive force towards 0: the central 

force. Hence the angular momentum of an ion a."bout 0 rema:i.ns constant. 

When the ion is at th?. apsidal distance, sa, the rP..dial componfm t of 

i"to velocity in the equation of conservation of energy bacoml~B zero. 

Using l;his fa.ct, and including t~he image force term in the paten tial 

ene:-::gy expression, the following equat:ior1 can be derivaci fo::.:· c;·Ja.rged 

sph::lrical targe·ts: 

+ + 
y 
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e
2

; 2 where Y = amc , b aJld o are the norrn.~Llitlcd impact parameters 

&nd apaidal distances respectively. p io the numbe:c of oJ.ect:r0nic 

charges on the nucleus and is nr1gative for attraction. •rhe mintrnum 

value of the larger root of this equation is that for the closest 

passing orbit which just. escapes capture. 'rhis minimum va.lue occurs 

when the tvto roots are equal; when b = b and s == s in dingra'l! (1\..l). 
0 c, 

In thi.s situation the captura cross-section for ions approaching in 

a given. direc·tion with velocity c is ~nhanced to 1f'h a 2/-rl"' 2 The 
0 113. 

enhancement factor (denoted E.F.) is th1.1.S b 2 • 
0 

Keefe e t al obtained values of b 
2 

from graphs of b
2 

cJ.gainst s 
0 

for various values of p and Y, a.nd then plotted the enhancement factor 

( E,. F. ) a "' · t he e · "' d d c e d f Y .. • t t .; .,. · :!., 
2 3 I·> kT c go.~ns a, w. · r a ~"' e u rom , .:-e .... tg 2.nc "' 1 '-

(for T = 290K). Curves for p = 1, 2 and 3 v1ere e-v-aluated fo:t:· 1-.·o·i.;h 

t.he at·tre.c ti -v-e a··d the repul siye cases. These curves come togethe:t• 

for large values of the radius, where -the ellhan•;ement .fo.ctor is 

·approximately given by: 

6 2 
0 

··1- 2 ['( ( t· 12) 

'l'his expression is also obtainod for tmohn.J:eed a.erosol pa.rt:i.cl€nJ (p = o), 

dh
2

/ put:t.ing ds = 0 in equation (4 .11): this resuli;. 1'/oulcl be expected 

~ince the relative importeJ1ce of the image force w.i-th respect to the 

coulomb force' increase·a a.s the radius i:ncrea:ses. Also for larger 

radii the geometric cross-section dcminates over the elecb~ice.l 

forces aJld he.~~e the E.I<'. ia smnll. 

The V3.riation of the normalised image ca:pturo d:Lstance, s , with 
0 

aerosol particle rad:i us can be found directly .from the minimum 



condition of (4.11), where for the a.ttractive case~: 

I _]_ - + -y So ( 2 )'l 5o - I 

and y e2 -
3a.kT 

As Y ~ 0, a -4-co and s tends to unity; but for Y ~co, a -J~>O, and 
0 

p(s 
2

- 1) 2
_..;,. s , giving the endpoints of the attractive curves 

0 0 . 

s = 1.49 (p=l), S = 1.35 (p=2) and s ~ lo29 (p~3). 
0 0 0 

To obtain realistic values of B.F. for various radii, Keefe et 

al. made an average over the Maxwellian velocity distribution of the 

small ions. Formulae were derived by trial from the single velocity 

b
0 

2 values which ha.d been ev-aluated over a. wide ra.nge. of Y values, 

as indicated earlier. Five values of p we-r.e includP.d, and for the 

attractive case, the equation: 

I + (2p- ~.)Y +· 2/Y(I---;pY) 
gave a. fit to within 2%. 'l'he average enlw.ncemen·t .f.'ac·t;or u.sing t!le 

Maxwellian small ion velocity distribution, f(c), is exp:t·eBsed by: 

c 
J0

00 

c bo2 
f(c) de, 

s; f(c)dc 
E. F. 

Substitution of b 
2 

values from (4.14) and integration eives: 
0 

E.F 

for the attractive case, where y = e 2/ 2 akT• The table .4.1 compares 

valuos of the enhance·ment fa.c·tor e1fa.luated by Keefe et al. ( 1968) 

2 
from a single velocity ( b ) and those evaluated f.:-om the velocity 

0 

2 
distribution cb>, for the p=l attractive case: 
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--·--=-r--- ----- .. 

X 10 em 1 ; 10 30 100 
---- ------· 

b. 2 
9-5 4-27 2.31 1.64 1 

0 

< b~ l2o5 5.29 2.61 1. 'l5 
-

A comparison of theae two aettl of results has shown the.t for small 

nuclei, integration over the Maxwellian velocity distribution can 

be replaced by using a single particle equivalent initi~l enerey of 

2 !me = kT, whereas for large nuclei the equivalent initial energy 

turns out to be 1.25kT. 

For the special case of p=O, integration over the Maxwellian 

distribution gives: 

r- r-
t:. I. 

. r:;;:-­
;-- J 11 ~ 

') 

Equati-=:.g (4.12) :i.nd (4.17) gives11mo'- = 8kT, £•.nd hence the equivalen·t 

single velocity of the distribution is the mean velocity. 

Hoppel (1974) compared the ralati ve impo:r:t ance of irr.age co.p"i.:ure 

and tllreo-body trapping; the latter effeot being· deso:r::i.bed in his 

1969 pape1•. Both effects were then encompassed in a atngle theory 

and used to calculate values of the combination coeffiaionts. 

The three- body trapping distance, ~ , is determined by the amouu·t 

of kinetic energ'J lost by the ion approaching the nucleus in its last 

collision with a molecule: if the '"nergy removed by the molecule is 

1 arge enough, the ion will become trapped in the coulomb fj,eld of the 

nucleus. $ is defined as the average separation distance whertl the 

average energy removed from the ion by the third body ia just 



sufficient to ensure cap·ture. Three-body trapping becomes important 

when ~ is greater than s a, the image capture dieta.nce. This doe~J 
0 

no·t occur for neutral nuclei, but for ions e.nd nuclei v!i th charge of 

opposite sign there is a critical nuclP.ar radius below which three-· 

body trapping becomeo irnportan·t. 

Hoppel used a modifi.cation of Ne:tanaon' s ( 1959) three- body 

recombination theory to determine empirical values of the ion-ion 

trapping distance for various atomic masses of the small ion. 

Natanson 1 s expression for the ion-ion recombination coefficient can 

be written as: 

where k is the mobili·ty, A the mean frae path, c the mean relative r. 

vcloci ty of the ions; d is the ion-ion trapping distt:.\noe Ei.nd .f(g) 

represents the proba.bili ty that either ion suffers a coll:i.sion 

while traversing th~ trapping sphe:rel 

wheret I + 2[e-t + ~~-l] and 

r 1 . r 
Figure (4.2) gives the recombination coefficient as calculated from 

equation (4.18) as a function of trapping distance for seYers.l -;-a.lues 

of ionic mass. Values of the menn free path were found using the 

( ) 2 -1 ·-·1 Langevin expression 1.5 , with a value of 1.2 em volt sec fork, 

4 -1 -and using a value of 4. 58 x 10 em sec fo:r. ,, , the averagP. thermal 
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6 -6 ·velocity of the molecule. A value of 1. 2 x 10 em fo::: the ion-ion 

tra.p_ping distance d was d•~terminod for ca.lculations using Nolan's 

(1943) value for ol and an atomic ma£iS of 150 fl. m. u. 

The ion-aerosol particle trapping distance is d.::termined from 

the ion-ion· trapping distance by calculating the kine"t:lc energy gained 

l>y one of the ions between the separation distances d and d+ ~ (in ·the 

1 aboratory system): · 

E 
e?.. J. -----
2 2cl ( r1+>..) 

E gives the excess kinetic energy which an ion must possess if it is 

to lose sufficiant energy upon collioion Yli th a molecula "to ensu1.·e 

trapping. The ion-aarosol particle trapping distance S is ·thus 

determined by: 

¢ (o) 

where the electrostatic potential energy 1(~), incJ.uJ.ing both coulomb 

and image charge forces, is given by: 

oe2 

-- ~ ( 4. 22) 

l!'igure (4.3) shows the variation of~ \'lith .radi1.1s (determined by (4.21)) 

co;npared with the corresponding variation of's a, determined by Hoppel 
. 0 

using the aubati tu·tion ·b.mc2 = kT. It is apparl'mt from this d.iag-ram 

tha.t tho effec ~ of three-body trapping is importan·t .for ae::oaoJ. particle 

... 6 . 
radii bulow 1:\bout 2.0 x lt: em, btrt can be ignored above this value. 

Hoppal applied a collision ·treatment in3ide the sphere of radius 
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& +A to compute the flux of ions Ib, anterlng the ~-sphere 1 and 

found: 

:: 

where c :I. a the average Yeloci ty, ~ is the enhancement of ions 

entering the 5-sphere resulting from electrical forces: 

1- . ( 4--24) 

f(x) is the total probability tha·t an ion pas~ing through the S -sphere 

will be captured, and ia given by: 

f(~) = I (4-·25) 

an ion must have to just miss the aerosol pa.L'ticJ.e, dete:r..·m:i.·ned by: 

Sln e be 
( 4. 'Zf>) -c 

~ 
where: 

( s.o.y· [ b1. I - i ( s. ct) ::__}_(!)_ J .. (4-.17) 
kT c. 

Outside -the sphere of radius (o +)..) diffusion - mobility theory 

holdB. Hoppel showed that the total flux of ions to the aerosol 

particle from this outside region is given by: 

I 9J:C,.> 
e. k'T 

t-2 

as dei.·ived from the diffusion- mobili·ty equation (4.1), and using 

the condition that the ion density at a large distance from the 

ae~;:oaol pa.rticle is n • 
0 

He then ~atched tho diffusion - mobility 
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solution to the inner conditiona given by IS and obta'i.neri tho following 

expression for the attachment coefficient: 

Fa (LJ--.19) 
P(o+>.)fKT 

e + FcS JoO 1 ¢(o.7e)jkT 
-- e J_ 

f1r::D a... ot~ xz. «.x 
a. 

Equation (4.29) io valid ford> s a. •. If s a.-;:.- S, 
0 0 

then 7 is obtained by replacing S by s a. nnd li' 5 becomes: 
s a o 

0 

1( et 2 c ( E . F.) ( 4--.30) 

where the E.F. here refers to the values computed by Keefe et al. (1968) 

in the image capture theory. The value of c we.s e•re.lua.ted from: 

c = J 8kT 
, '\ 

( 4. 31) 

and with an ionic mass of 150 a.m. u. and a temperature of 2U8K; c =• 

4 -1 2.01 x 10 em sec • 

Hoppel calcule.tecl values of ·!;he combina·l;ion coeff:i..cientc; ~0 , 7 and 

?12 (u2ing the Keefe and Nolan notation) for different radii using 

equation (4.29). Under equilibrium conditions it can be shown that: 

b = 
2?o[1+~] 

-""'------ ? 
I + ;}_L 

'1· 
neglecting the effect of triply charged aerosol particles. The 

variation of b VIi th radius can now be evaluated using Hoppel' EJ values. 

12 
of ?o' ~, and~ , and the results for this are given. l.n chapter 5. 

Values of b versus radius from Keefe and Nolan ( 1962) are alao shown. 

Values of ~0 veraus radius from Bricard (1962), Keafe and Nolan (1962) 

o.nd Hoppel ( 1974) e.re presented end· compared with tho experimental 

r9 :.·11 ta. 
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CHAPTER !L_ 

1-'Jlli.... EXPERIMEN'l' AL RESULTS OJ' b MCD tlo VE@J!§. 

RADIUS GOMPARED WITH VARIOUS THEORETIC AJ,_MOD~J.&: • 

.2·1 _:!j:xperimental Results. 

Tables 5.1 and 5.2 show the results o.r all the b and ryo 

measurements made at different radii. •rhese measu:r.ements are plotted 

graphically in figures 5.1 and 5. 2. Two sets of b vera us ra.uiua 

experiments were carried out: the .first set corresponcls to run~; where 

only the combination coeffic::lent b vras evalua.ted, and the second set 

corresponds to runs ~vhere boU1 b and ~0 we!'e de tarmined. The run 
. I 

nu.1ubera are tabulatecl in chroilological order. '.(lha expe~imental 

procedure used for both these sets of measur: . .-nente is. given in section 

Figure 5.1 illustraten the wide ve.ria-tion in b v~.J.u~~s 0bt~.i"c1ed.. 

The values tabula·tod in table 5. 2 seem to follow a more linear tt'l'md. 

Twc parumeters &re considered to be responsible for the fluctuation 

in b •lalues; n , the initial concentration of small ions, and z, _the 
0 

concentration of ·the aerosol particles. n here refers to the initial 
0 

conl-:(mh·a.tion of ions into the mylar vessel, before se-tting the time 

t .. 0 (for nt=O = 4000 io~s per cm3). This initial concentration was 

protf.l.bly of the same order as the pa.rticl"' concentration for Z leas 

than or equal to approximl:l.tely 15,000 particles per ~;). This :lni tia.J. 

concentration of j.ons could be reduced in t\•to ways: (1) by having a 

high concentration of aerosol particles, z, whict would 1 quen~h' the 
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!.~ '1.1 Variation of b with Hadius. 

Ru~ no ~T Geome~~ic mean oize Concen"tl:a·~ion of 

1 

2 

3 

4 

5 

6 

1 

8 

9 

10 

11 

12 

13 

14 

15 

16 

I of a.eroool particles. aero so 1 particlP.s. 

(1o-6cm). (cm-3). 

0.52 

0.70 

0.41 

0.44 

0.45 

0.42 

0-51. 

1.39 

2 .. :.0 

1. 72 

2.02 

15460 

1087.0 

12900 

16190 

19850 

15010 

18580 

24000 

1'(280 

12500 

9130 

260'(0 

13810 

29400 

13620 

11160 

b 

( -6 3 -1) 10 em sec • 

------·-------1 

o. 34 (:!:0.04) 

0.55 (:!:o.o6) 

o. 35 (~0.04) 

0.36 (!0.04) 

0.43 (:!:0.05) 

0.3"] ("~0.04) 

o. 48 ( !o .. o6) 

o.67 (!o~07) 

1.16 C~o .·15) 

2.24 ("!:0.29) 

).0'{ (:!:0.41) 

1. 34 (:'.:o.l6) 

2. 46 ( ~0. 27) 

o. 61 ( ~=o. oa) 

1.10 

1. 57 



v; 
I-' 

,. 

Run No. 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

-6 
~:!ze (10 em) 

1.49 

2.65 

4.00 

4.17 

L26 

2.29 

2.43 

2.E8 

2.12 

2.31 

TABLE 5. 2. Variation of b .:md n with radius 
0 

-----
I Concentration of 

aerosol particles 
-3 · (em ) 

2604.0 

41320 

22310 

12160 

9310 

25540 

21250 

13220 

37730 

30350 

1 

I 

N 
_Q 

N 

5.0 

1.8 

1.4 

3.6 

2.7 

4.8 

4.3 

4.1 

.1 

.o 

f [:t~ R. 

-- '--

L 0.75 6.67 

3 0.68 2.76 

) 0.78 1. 79 

l 2.16 1. 70 

1 1.27 10.05 

l 1.48 3.30 

I 1.41 3.08 

) 1. S3 2.68 

I 0. :>9 3.68 

I 0.63 :.3 .28 

b 11
0 

-6 3 -1 
(10 em sec ) -6 3 -1 

(10 em sec ) 

0.58 (±0.06) 0.35 (±0.04) 

1.21 (±0.15) 1.01 (±0.13) 

2.24 (±0.22) 2.39 (±0.13) 

2.06 (±0.27) 1.95 (±0.'25) 

0.50 (±0.06} 0.33 (±0.04} 
I 

0.94 (±0.11) 0.79 (±0.09) 

1.10 (±0.16} 0.94 (±0.09) 

1.13 (±0.11} 1.02 (±0.10) 

1.19 (±0.14} 0.86 (±0.10) 

1. 36 ( ±0 .18) 1.03 (±0.13} 



FIG. 5.1 VARIATION OF b WITH RADIUS 
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high flux of ions, and (2) by careful manipulatj.on of ·the a.ir supply 

to the needle j_n the ion source. Thaae two constraints WAra in 
f 

general applied to the second set of l~ns which are hence mora 

represantati ve of condi tiona found ua.1;ura.lly in ·the atmosphere. The 

Vai.'i a·t:Lon of b with concentration of aerosol particles is show.n in the 

diagram by the symbols on each expertmental point. Larger Yal,leB of 

Z tended to give the s.:naller values of b, but this ve.riation also 

depended on n , which was not recorded since this would have required 
0 

t.•apid changing of the sensitivity scale of the electrometer just before 

each decay. 

h2_Qcmparison w:i.th Other F~~me~tal Resu].:..ts. 

The variation of small ion concentration with time· in tho pr~eeence 

of ar·tificial nuclei in a sea.l•~Hl :::oom has be:" n oxa.mined by Burke e:nd 

D"-'-lU (1969). 'l'ho;:; i"ou.nd that Ya.lues o.f '11he cor:;ld.na"tion coefflc:Ltmt, b 1 

deduced by Keefe and Nolan (1962) for equilibrium conditions, depended 

on the nucleus concentration, which malnly controlled the ionic 

conc~ntration. However, experimental value~ of combination coofficient 

b VH:ll.'f3 not determined • 

. i?l9nagan ( 1966) .describes two series of meaourementa o t' b versus. 

radius. Small ions were produced .in a tetrahedral •Tassel of aluminium 

walls by having Cabal t 60 sourees in the 'Ticini ty. '.[!he ioni ze.t1on 

rate could be V3.riecl according to the position of ·the source a. 

Aerosc)l particles were p:..•oduced by passing filtered air over glowin.g 

nichrome wire and also by bubbling filtered air through water, for a 

larger sizP. range of particles. The radius of the part:l.cles was 

mea.st•.red by the diffusion battery method. 



In the first series of experiments tho ionic concentration {n) 

t1a.s meaS1..1.red fo:r dii'feren·t aerosol par·!;icle conc:entrattonl:l (Z) and 

the ionization rate kep·t con.sta.nt. The vessel \vas fill ad with 

aerosol particles and both Z and n were me&surl":ld. Fi 1 te:red air was 

then pumped in and new values of Z and n were reaordad. This process 

was continued until the vessel contained no aerosol particles. The 

size of the particles was measured during the run, and the ionization 

ra·te detax·mined by measuring the ionic concentration in filtered air 

both before and after the run. b was evaluated by plotting n varaua 

Zn/(q _ Z s.nd. calculating 

average. 

n 2) for each point and then taking the 

In the other series of cxncriments th~ ioni~ation rate fo) W88 
c ' ~, 

varied by the poai tinning of various Co 
60 

aourcen near "tho ba.lloQi1. 

'.rhe ionization J:ate p.t·oduced by ett.ch source .tad been mensu.~ed in ll, 

separa.te set of experiments. The concentration, Z a&"1d aize of tha 

aerosol particles in the vesselwore first measured, and then n was 

det.ermined fo1• diffo.rent value1:1 of q. ThAn Z am~ size were again 

measured after a. neoeasa.l'i ly long Jliime lap so a.nd ·tha llle an of" t.l:le t'rl'O 

measuremen·ta was used for each run. n was plotted a~ainct q and b wa.s 

c alcuJ.a·t;ed from the linear relationship q = bZrt in the r.eg).on. !1 :. 0 to 

1000 ions cm-3,(neglecting the n2 term). Table 5.3 on the following 

page·~ ::lllmmarises the reau.l ta of the two series of experiments. These 

rc::a.ll ts compa.l'e fairly ''rell with the lower v·aluea of b p:r.eaented in 

figure 5.1. Tha accuracy of Flana,g·a.n's rauii measu:r.emen·~s are queried, 

for "thll length of time nec*Hisa~y for each run should Allow l'o:r: 

notj . .:.:eable coa.gulat:i.on of the particles within the v&aael. Fl~1ag·an. 

in the second ser.ies of experiments wa.a required to make seven separate 

53 



measurements of the ionic concentration for different ioniz e;ticn 

rates before he could obtain a second value of the particle raclius. 

'1'able_5. 3 Ueeults of Flanagan (1965). 

,-----·--,--r---- ----.----

Radi ua. 

(lo-6cm). 

3·46 

3·49 

5.83 

"' I;~ ...., . .,., 
0.68 

1.41 

1. 57 

1.61 

2.57 

}.43 

.I 
I 
I 
I 

0 - 25,000 

0 EO 33,000 

0 - 11,000 

., ~"' nnn -.,_,_...,._ 

60p000 

32,400 

12,610 

9,593 

13,330 

27,070 

q 

ion pairs. 

6.6 

12.6 

4.7 

/"\ 1 '),'"' 
"' .-. ... v 

II 

II 

II 

II 

II 

II 

II 

b 
-3 -1 em sec ( -6 3 -1) 10 em a•Jo 

1.89 (~0.12) 

2.26 (:!:o .12) 

3 • 1 3 c:o • 17 ) 

'"' "II:: ( +,"' f"\"1 ' .. ., ";f ..A.J \ -v ;rV.L.J 

0:50 (:!:0.02) 

0.76 ( :!:o.o3) 

o .. cn (!0.04) 

1.00 (~0.06) 

L6:5 (~0.07) 

2~05 (:!:o.lo) 

2.36 (:!:0.10) I L4.31 j_ 4.321 
-'---· ____ j 

.l.~__!~gretica.l models for b versus radius~ 

'table 5· 4 shows values of b for different aerosol :t:ailii 

computed from Hoppa]. (1974) compared wi·th values gi·Hm by Keefe and 

No lau ( 1962). Hoppel 1 a values were evaluated using oqlla.tion::~ ( 4. 29) 

to (4.32) with an io:nic mass of 150 a.m.uq o. LHli.'l.!l free path, A , o·r 
-6 - 4 -1 2.1 -~ 10 l-:m, and mt1D.!l ion veloni·ty, c, of 2.0 x 10 em ~eo • Va.luoa 



of tht: ·trapping dis-tancea used are given in chapter 4. Keefe and 

Nolan's b values were obtained from the variation of ry0 wit.h. I.'a.diuo 

according to_ equation (4.10) by applying the Boltzmann equilibl.'.ium 

nondition: 
1! 2 + '!..~.' + ~1?. b/.: I + ..... 1 = ~0 c; 2 '2. ,{i' 

2 

( 5.1) 

where R ... exp.(e /2akT). This exp1•eseion takes account of multiple 

charged nuclei. For' these b values the emall ions were r..:onsidt-)red as 

a cluster of eleven water molecules, following the suggestions of 

Wright (1936). 

6 -6 \ and x 10 em for 1\ • 

1 Radiu-:-l 
I -6 ) 
~ 10 em • 

b (Hoppel) _ 

( -6 3 -1) 10 em sec · • 

was then used for c, 

1

1 b (Keefe and Nolan) I 
( -6 3 -1) 10 em sec • -------+ 

0.2 0.037 I 
Oo4· 

0.6 

0.8 

1.0 

2.0 

0.103 

0.179 

0.261 

o. 343 

o. 749 

1. 72 

l ::: l: :·82 
. 10.0 5.00 

------- --

0.)55 

o. '190 

1.7'7 

2.86 

4.00 

.._ _________ _ 

These two setfl of theoretical values lie slightly b~llow the 

lower e·xperimental vr.:tues of b on figure 5.1. An inv::~stig~d;ion ~va.s 
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me.de into the effect of increasiri.g the value of c,-<. j_n Hoppel' a 

theoretical model from 1.4 to 2.4 x 10- 6, which was obtained 

ex.peJ.•imentally in chap·ter 2. This involved extra:pola·iiing the 150a. m. u •. 

curve in figure 4.2 so ·that the ion-ion trapping distance ,d could be 

obtained for o< .. 2.4 x 10- 6 • -6 '!'his gave a value of rl =? 4. 5 x 10 em. 

Calculations of the combination coefficient ? were then ma.de using 

Hoppel's me·thod (chapter 4), :for aerosol particle radii of 0. 4, 1.0 

and 4.0 x l0- 6cm. An ionic mass of 150 a.m.u. was used, a.s indicated 

above' and Hoppel I B value for a \'laS used. The mean free pa.th used 

-6 . 
wa.s 1. 2 x 10 em, which was evaluated from tho experimental va.lne of 

the mobility (chapter 2), using equation (1.5), with m. = 150 a.m.u. 
l.O.n 

and M 1 1 = 28.8 a.m.u. The integral in the denominator of equation mo ecu e 

( 4. 29) was solved numarica.lly on the COi11puter for each a.eroaol radius 

chosen using the Romberg it~=ation method. Values of ? calculated 

-6 for the 0. 4, 1.0 and 4.0 x 10 em ca~es were bigger the.n the 

cori'esponding values calculated by Hoppel by factors of l. 84, L 6B 

end 1.08 respectively. However, since b is detormined f~om~ 

b 

and only the coefficien·t ~ is affected by the changE-l in o<. (as ryo arld 

"'fJ 
11 are n·ot evaluated on the basis o.t' 3-body trapping th"-'~ory), -the net · 

increasa in b for the three radii is only of the. ordor of: "J}~, 9% n."ld 

3~~ rflspe,~tively. This does not account for the discrepe.m~y bo·~ween 

tte lMIP:":' expe:r.imen tal b va.J.uer1 and theoretical va.luea. The 

uncel'·tain·~y i~ the values of m. , A , and c are ·the more li:<Hly 
1.on 

c a.ua~s of difference. For example, Hoppel ( 1974) showed that dP.c:.t·eaai!lg 

·the ionic maas from 150 to 60 a.rn.u. would increase ?u by u_pto 5o;t,, 
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d i rJI --6 r an ncrea.se' by 15'7., 1'o1.· particle radii less "than 4 x 10 em. :.f 

one a.eaumeo a. similar percentage increase fo1• ~ 1\ i. t (;an be shown 

that the value of b ia increased by 46~~, 41% a:nd 30% for particle 

-6 radii of 0. 4, 1.0 and 4.0 x 10 em respectively. 

Unfortunately the theoretical models for the calcula.tton of 

attachment coefficients between ions and nuclei do not t-ake into 

account the relati v•l concentrationo o.f n and Z, so a direct 
. 0 

comparison of the experimental and theoret:lca.l values of h is difficult 

for the larger values of b obtained. 

5. 4 Compa-rison of ~o versus Radius Val~~ a with Theor;L:_ 

Figure 5. 2 ehov1s a. plot of aU. the expe:r.ima:nta.J.ly determined 

values. It was ;_·.upossi ble to obtain values of 1o for radius; 

a. < 1.0 x l0-6cm by this method, since in this case the relative 

number of clwrgeu particles is less than 11% of the total part:i.cle 

concentration and is therefol·e approaching the limiting accurac:,' of 

the photo-electric cou11ter. As shown in table 5. 2 these -~0 values 

were e.ll evaluated from ·the second set of'. b versus raditts runs. 

Theoretically calcula-ted va.lues computed from Br.j.card (1962), Koef'e 

and Nolan (1962), and Hoppel (1974) a.ro given in table 5·5- ~l1i1e 

values of m \ and c used by Keefe and Nolan and Hoppel are ion' 1\ 

discusaed in the pr~vious section. -6 Bricard ua~d a value of 1.5 x 10 

for A, based on the Langevin expreAsiona for• diffuoion anli mobility, 

(given in chapter 1). He assumed that amall ions are single molecules 

with oit.her an extra electron or with an electron missing, and that 

- 4 -1 
mion ~ mmo lecule, wi tn c = 4. 59 x 10 em sec • '!'his is con·trary to 

""'"' _,I 



tha idea of a small ion consisting of a cluster of mol~culea. The 

ryo valueD from Brica.rcl al."e computed front equa:Uone (4.2) and (4.6). 

'rhey arl3 noticeably smaller than the other two Sf.!ts of ~0 values 

given, mainly due to the fact that the image .t'oJ~ce te:~:m has bea-n 

neglected in this derivation. 

Table 5 ._5 Theorettca1 Models for l'}o versus Uadiua. 

Radius. (Dricard) (Keefe and Nolan) (Hoppel) 

(10- 6cm). ( -6 ~ -1) 10 em sec ( -6 3 -1) 10 om aec ( -6 3 -1) ,10 em Aec 

0.2 0.0057 -
,-

0.019 

0.4 0.022 I 
I 0.056 - I I 

0.6 0.049 - 0.1202 
. 

o.a I 0.083 - 0.157 

1.0 0.124 0 .19'1 0.218 

2.0 o. ~96 0.553' o. 575 

4.0 1.099 1.48 1.40 

6.0 1.886 2.54 2325 

I 8.0 - 3.65 -
L 10.0 - I - I 3 .• 98 ___ I 

"-

The experimental points give fairly good agreement with Keefe 

and Nolan 1 s and Hoppel 1 a 'Y-Jo values. As ~ith the b versus radiua 

res1.~1. ts, the theoretical valueo are som~w'.1.t lower: the mesa, 

:nean vel.oci ty and mean frei:t path of the ions could ap-11in account 

i'or this. 
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hl._ Conclusion~-

The comparison between the experj_mentnl results and ·theory 

indicates that the technique adopted here for measuring combination. 

coefficients 't]o and b with radius is satisfactory providing careful 

control is ap_plied on the ini tia.l ion concentration entering the 

mylar vesseL 'l1he h~g.hcn: b 'lalues obtained indicate that theories 

for calculating tho attachment coefficients could require modification 

in conditions o.t' high ionization, or when the· ionic conoen·~rELtion is 

of the same order as the particle concentration~ li'inally, agreement 

needs to he sought on the v.r.luea of m, c and A of the smo.11. ions 

before expe:L'imen~a.l and ·i;heo:retic~:~.l resul t::1 ca.n h•::: a.ccu:r.a:tP.ly 

c ompa:r.ed. 
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