

Durham E-Theses

An experimental study of the factors limiting plant growth in upper Teesdale

Kookorinis, Evangelos

How to cite:

Kookorinis, Evangelos (1976) An experimental study of the factors limiting plant growth in upper Teesdale, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/9157/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
Please consult the full Durham E-Theses policy for further details.

by

FVANGELOS KOOKORINIS

```
Submitted to Durham Universj.ty for the degree of
    Plaster of Science
```

The copyright of this thesis rests with the author.
No quotation from it should be published without
his prior written consent and information derived
from it should be acknowledged.

Dotany Department Durham Univereity January 1976

COATENTS

Page No.
List of Tables 1

1. INTRODUCTION 2
2. EXPERIMENTAL DESIGN MNO RESULTE 6
A. Site Selection 6
日. Growth of p.lants in the: field 6
C. Edaphic comparisen of sjtes 10
D. Chemical contents of Carex fericea tissue 11
E. Pot expreriments with verirus species at Durham 14
F. Pot experiments with barley 22
$G(a) T h e 1973$ cold frame experiment at Tuesdale 26
(b) The 1974 cold frame experiraent at Teesdale 23
3. DISCUSSIUN 36
4. CONCLUDING EUPMMARY 57
5. ACKNOULEDGE:TENTS 60
6: REFERENCES 6:
List of Figures 65
Figures 66
List of Plates 85
Plates 86
APDENDICES
A. METHODS OF SOIL AND PLANT ANALYSIS 94
日. METHODS UF STATISTICAL ANALYSIS 97
L.ist of Appendix Tables 103
C. DATA TABIES 104

LIST OF TABLES

Table No.
Page No.

1. Floristic comparison of Tofieldistalia and Seslerio Maesobromion vegetation at Teesdale and Sunbiggin. 7
2. Element concentration in leaves and roots of C. panicea at Teesdale and Sunbiggin 12
3. Exchangeable cations and phosphorus is suil cores collected at Sunbiggin and Teesdale. 13
4. Total sations, total and extractable phosphorus and pH of Tofieldietalia soils used in pot experiment. 15
5. Clay minerals in soils used in pot experiments. 17
6. Some physical characteristics of soils used in pot exreriments. 18
7. Element concentration in tissue of plants grown in pots (excluding barley). 20
8. Aveiage values for all plants shown in Table 7. 21
9. Element concentrations in leaves of barley. 23
10. Summary of climatic data from Durham and Teesdaje during the barley experiment. 25
11. Results of 1973 cold frame experiment of Seslerio- Mesobromion vegetation. Conc ?ntrȧion of elements in the vegetation. 27
12. Element concentration in Tofieldietalia vegetation at the end of the 1974 cold frame experiment, 30
13. Element concentration in Seslerio-Mesobromion vegetation at the end of the 1974 cold frame experiment. 31
14. Excharijeaiole elements in soil on sites of 1974 cold frame experiment. 33
15. Microclimate data from 1974 cold frame experimeni. 35
16. Effect of climate on concentration of elements in
Barley leaves. 42
17. Effect of micro-clinats manipulation on the concentration of elements in Teesdale vegetation. 44
18. Summary of growth rates obtained in second cold frame experiment. 47.
Summary of rankinge of 'rffective dilutions' and statisticai test. 50

1. InTRODUCTION

Upper Teesdale in the northern Pennines of Cngland (Grid Ref. NY 8129) has long been famous for its rich and peculiar flora, (Backhouse and Backhouse, 1843; Valentine et.al., 1965), which includes pre-alpine, alpine, arctic-alpine and sub-arctic plants (Pigott, 1956), see Table 1. These will be collectively referred to as the Teesdale Rarities. Most of these plants are to be found, some in great abundance, between the 300 and 600 metre contours, which in an area at a latitude of $54^{\circ} 40^{\prime} N$ close to the Atlantic coast of Europe is indeed renarkable.

The Teesdale Rarities are best interpreted as relict fragments of a flora which was widespread in Britain some 10 to 12 thousand years ago (Sodwin and walters, 1967). That tisase 'riagments' have persisted in the area throughout the period is now well authenticated (Turner and Hewetson, 1970), a period of great climatic change during which the asea in question has been transformed from an open periglacial. landscape into one dominated by forest and subsequently by blanket peat.

The contemporary climate of the high western boundary of Upper Teesdale is marginally sub-arctic (Manley, 1942), but the climate of the main area in which the Teesdale Rarities are found is much less extreme, ar! must differ but little from that of other large stretches of the Pennines. Why then is this rich assemblage of species present only in Upper Teesdale?

Recent work has shown that some of the vegetation types which contain large numbers of Teesdale Rarities, although closed in terms of ground cover, are characierised by low standirg crop and productivity (Bellamy et.al.., 1969; Marshall, 1971).

The vegetation of the bulk of these low production, closed communities falls within the compass of the two phytosociological categories Tofieldjetalia_and Sesleriomesobromion_sensus Jones (1973), and are, in the main, found in the proximity of the extensive areas of sugar limestone which are a unique feature of tiof fells of the Upper Teesdale region, (Johnson, 1971).

There setns little doubt that the skeletal soils which have developed over the friable sugar limestone, and are designated as calcareous syrosems (Shimwell, 1969), souid have provided the open refugia necessary for survival of the 'rarities' throughout the post glacial period. The observations of Pigott (1956) concerning refugia in alpine spruce forest and that of Sjebert (1968) on similar refugia in pre-alpine pine forest in Bavaria are of relevarice here; as are those of Turner and Hewetson (1970) who concluded that even during the period of their maximum development, the woodlands of Upper Teesdale were never closed.

Vegetation referable to both the above categories described fur Upper Teesdale are widespread at both higher and lower altitudes in other areas of the Pennines, the only feature unique to the area under study being the presence of the sugar limestone.

Is the presenzo of the Teesdale Rarities simply due to their long term survival on and around the sugar limestone, or do the calcareous syrosems possess some other feature limiting the growth of vegetation, and thus provide unique conditions for the development and maintenance of the unique Teesdale communities?

This thesis presents results of a study of some of the factors uhich may limit the productivity of the Teesdale communties. The
study centres around a comparison of the performance of selected species both in the field in Upper Teesdale, at Tarn Moor in Cumbria and when transplanted to the Durham University Botanic Gardens, (Grid Ref. NZ 2741).

Tarn Moor (Grid Ref. NY 6707) supports a diverse vegetation filst described by Holdgate (1955), which includes areas of Tofieldietalia and Seslerionmesobromion developed in close juxtaposition below springs and seepage Jines associated with a complex of boundaries between glacial drift and the underlying carboniferous limestone. Many of these vegetation units are very open with a total plant cover of less than 50%, and thus appear ideal sites in which the Teesdale Rarities could thrive.

Tarn Moor lies only 17 miles to the S.W.of Upper Teesdale, yet its flora includes only two of the Teesdale assemblage, namely Primula farinosa in some abundance, and Plantagonaritima which is very rare. The Tarn Moor site lies at around 300m above sea level, and has a much more lowland character than Upper Teesdale. The Tofieldeit:alia type vegetation being dominated by Schoenus nigricans, a species ásent from Upper Teescale, and containing abundant Eriophorum latifolium, which is very rare in Upper Teesdale. Similarly the Seslerio_mesobromion of Tarn Moor is rich in lowland species with Festuca rubra and F. ovina being the dominant grasses almost to the exclusion of Sesleria over large areas. Added to this is the fact that Molinia caerulea is an abundant member of the Tarn Moor vegetation, while it is, surprisingly, somewhat of a rarity in the Teesdale area under investigation.

Nevertheless, there are on Tarn Moor large areas of open Calcareous flustiland, and close cropped grass sward developed
on skeletal sojils which would appear to be ideal habitats.for the growth of the Teesdale Rarities.

There is one further striking difference between the two areas mentioned above, and this is the presence of an ore bearing metamorphic limestone on lididybank Fell. Johnson et. al. (1971) noted that the unique relict flora of Teesdale exists for the most part on soils developed from this metalliferous rock.. Marshall (1971) cairied out some analysis of soils from Widdybank Fell and concluded that the levels of $Z n$ and $P b$ were high, although he presented no comparitive data to confirm this. Jeffrey and Pigott (1973) showed that the addition of phosphate to vegetation rich in certain cf. the Teesdale Rarities brougli about an increase in the abundance of cer tain grass specjes with a consequent reduction in the abundance of Kobresia simpliciuscula

As a result of all these observations it was decided to carry out a series of experiments designed to throw light on the relative importance of soil and climate to the continuing existence of the rare plants of Teesdale.

The first tuo sections of the thesis invalve comparative studies of the vegetative performance of selected species, both in situ in field transplants, and in pot culture. The third section is concerned with similar comparitive measurements on communities in situ in Upper Teesdale, the microclimates of which had been altered by enclosure within free standing cold frames.

As many of the experiments are, in the main, a logical progression from one to the next they are reported as such, preliminary discussion of the results of each experiment being included before proceeding to describe and present the results from the next.

2. EXPERTMENTAL DESIGN AND BESULTS

A. SITE SELECTION

Early in 1973 areas supporting uniform stands of vegetation with more than 95% ground cover and referable to associations of the Tofieldietalia and Seslerio Mesobromio sensu Jones (1975) were selected by bye on Siddybank Fell in Upper Teesdale; also near the Sunbiggin Tarn outflow stream on Tarn Moors. For brevity the communities will be referred to as 'flush' and grassland and the sites as 'Teesdale' and 'Sunbiggin' throughout the text. The vegetation of each site was described using the standars field methods of the Zurich Montpetier School of phytocociology (Braun Blanquet, 1961). Results of the survey are presented in the fonm of constancy tables in Table 1.

Apart from the abundance of the Teesdale Rarities in the one, the only stiriking difference pointing to the more louland character of the Sunbiggin area is the abundance of Schoenus niqricans in the'flushes'.

B. 1st EXPERIMENT

AIM

The first question to be asked was, are the communitios at Sunbiggin more productive than their counterparts in Teesdale?

METHOD
It was decided to use species which were abundant in the community at bothsites as phytometers to ascertain the differences, if any. The species selectod were Carex panicea and C. lepidocarpa both of which are aburidant in the'flush' communities at each site, and Sesleria caerulea as one of the

Table 1(a) Constancy tables from the vegetation at Teesdale (T) and Sunbiggin (S)

Table 1(b) Constancy tables from the vogotation at 'leesdale ('I) and Sunbiggini (S)

Seslerio-Mesobromion

	T	S		T	S
Achillea millefolium		III	Potentilla erecta	IV	IV
Agrostis temuis	I I	III	Poterium sanguisorba		I. I
Aira spp.		I	Preissia quadrata	I I	
Alchemilla xanthochlora		I	Primula tiarinosa	V	II . ${ }^{\text {l }}$
Anthoxanthum odoratum	I I		Primula vulgaris		I
Bellis perennis	III	IV	Prunella vulgaris	I I	II. 1
Briza media		I II	Pseudoscleropodiom purum		I
Calluna vulgaris	I I	II	Ranunculus acris		I
Campanula rotundifolia	II	I I	Rhacomitrium lanuginosum	III	
Carex capiliaris	IV		Rhytidiadelphus loreus	II	
Carex caryophyllea	I II	III	Selaginella selaginoides	V	IV
Carex flacca		III	Sesleria caerulea	V	IV
Carex panicea	V	V	Taraxacun officinale		III
Carex pulicaris	II		Thymus drucei	ITi	III
Certraria islandica	II I		Tortella tortuosa	I	
Cirsium arvense		I I	Trifolium pratense		I I I.
Cladonia arbuscula	III		Irifolium repens	I	II
Conopodiun majus		I I	Viola canina	II	
Cornicularia aculeata	I I				
Ctenidium molluscum		I			
Deschampsia caespitcsa	I				
Ditrichum flexicaule	III				
Juphrasia micrantha		I I			
Festuca ovina	III	V			
Festuca rubra		IV			
Galium boreale	II		. .		
Galium hercynicum		II			
Galium saxatile	I I				
Galium sterneri	III				
Galium verum		I I	-		
Gentiana verna	IV				
Gentianella amarella	III	I			
Helianthemum chamaecistus	I I				
Helictotrichon pratense		I II			
Hieracium pilosella	I I				
Holcus lanatus		III	.		
Hylocomium splendens	I I				
Juncus artieulatus	I I		3		
Kobresia simpliciuscula	IV				
Leontodon hispidus		III			
Linum catharticum	II I	IV			
Lotus corniculatus		III			
Luzula multiflora		I II			
Luzula sylvatica	I				
Pinguicula vulgaris	I II				
Plantago lanceolata	I	IV			
Plantago maritima	IV				
Pleurozium schreberi	I I	I I			
Polygala amara	II				
Polytrichum commune	I				

grassland dominants. Their performances were measured dising the single species increment cropping technjque (flarshall, 1971).

At manthay intervals throughout the gawing jeriod of 1973 samples of nomer less than 19 undamaged individuals were raridomly collected from each site by measuring along compass bearings tusing a table of random numbers. Selaction of undamaged (ungrazed) individuals was by visual inspection. At the laboratory, the above ground parts of the plants wera saparater from the roots, the latter wre uiscarded (rexeept in the case of the final cropping) and the former were dried to constant weight at $98^{\circ} \mathrm{C}$.

RESULTS
The complete data ase presented in TableAPG and sumarised in Figs. 1 - 3 , where the 95% confidence limits are shoun by the vertical. bars.

OISCUSSION

The dual standing crop peaks for both the Carices are readily explained by the fact that they are biennial fërenaials, each shot appearing above ground in one season and overwintering before matiration in the second year, similar do:tble poaks for C. panicea were obtained by Reiley (1967). The complex form of the curves however, does not hide the fact that both species show significantly higher above ground biomass at Sunbiggin than they do at Teesdale. The results for Seslerie, although less clear, still indicate significantly better performance at Surbiggin.

If the restlits for performance of those phytametens reflects the performance of the total comumity there is little douht that the higher standing crop and productivity of the Sunbiggin communitios could exclude the Teesdale

Rarities frum the latter site, see Bellamy et.al. (1969). As no study of the tntal hiomass of the communitjes was carried out it is impossible to lake this argument gny further. There is, humever, no reazon to dispute the fact thet for tha phytometers used, growth conditions at Sunbiggin are signifjcantly better than those pertaining in Teesdal.e. These differences could be due to one, or a combination of all three of the follouing:

1. genetical differences between the plants present in the two areas;
2. climatic differences;
3. Bủaphic differences.

E. 2nd EXPERTMENT

AIM

To ascertain what, if any, are the diffcrences in the edaphic conditions betwien tine two sj.tes.

METHOJ

In August, $d t$ the and of the 1973 growing sesson, six quadrats were sElected at random: (method as above) within each of the study sites. A soil core of dianeter 2 con was ramoved from the centre of each using a large cork borer as an auger. Cach core was individually wrapped in polythene for transportation to the laboratory, where they were analysed for the following cations: Al, $\mathrm{Ca}, \mathrm{Cd}, \mathrm{Cu}, \mathrm{Fe}, \mathrm{Mg}, \mathrm{Mn}, \mathrm{Na}, \mathrm{Pb}$, and Zn , as well as for P . See. Appendix A for the extraction and analytical procedures.

RESULTS

Resul.ts of the analysis are given in detail j.ו Table APJ: and are summarised in Table 3. Comparison of the analytical res'נlts shows:

1. that the 'flush' soils of Teesdale are significantly richer in exchangeable $\mathrm{Na}, \mathrm{K}, \mathrm{Mn}, \mathrm{Fe}, \mathrm{Zn}, \mathrm{Cd}, \mathrm{Pb}$ and P than their Surbiggin
counterparts, and
2. that the grassland soils of Teasdale are significantly richer in exchangeable $\mathrm{Ca}, \mathrm{Zn}, \mathrm{Pb}$, and P , and significantly poorer in exchangeable $M g$ and K than those of Sunbiggin.

DISCUSSION
The presence of significantly larger amounts of heavy metals in the Teesdale situation might at least in part account for the lower performance of the phytometors: the observations of Marshall (1971) and of Pigott and Jefferies (1973) are of relevance here, and will be fully discussed in section '3.
D. EXPERIMENT 3

AII

To determine whether the edaphic difference reported above are reflected in the chemistry of the phytometers. In \because ieu of the anount of analytical work required, only one of the phytometera, Carex panicea, was studied in this way.

ME THOD
All material of Carex panicea from the final harvest, described above, was retained after arying to constant'weight, the roots having been washed free of all adhering soil prior to drying. The roots and live leaves were then separated and analysed for the full range of elements studied above. (see Appendix A for methods).

RESULTS

The results are presented in full in Table AP4 and are summarised in

Table 2 Concentration of some elements in leaves and roots of Carex paniceal from 'leesdale and Sunbiggin (mg/g.d.wt.)

in leaves

	Teesdale	isunbigein	s.0.d.
ME	.563	.753	$* * * *$
Al	.154	.173	HS
K	10.05	10.72	$* *$
Ca	5.03	4.76	HS
Fe	.688	.444	$* * *$
Hn	.234	.354	$* * * *$
Zn	.146	.071	$* * * *$
Cd	.0012	.0007	$* * * *$
Pb	.114	.053	$* *$
H	.599	.633	$*$

in roots

$\mathrm{H} s$.463	.663	$* * * *$
Al	1.002	1.451	$*$
K	3.29	4.25	$* * * *$
Ca	9.93	5.53	$* *$
Jie	10.648	7.132	$* *$
Hn	1.179	.708	$* * * *$
Mn	.477	.163	$* * * *$
Cd	.0056	.0015	$* * * *$
Pb	.161	.071	$* * *$
P	.326	.461	$* * * *$

s.o.d. $=$ significance of difference - see Appendix B

1 material collected from Tofieldietalia vegetation (see Table AP4 for details)

Table 3 lixchangeable cations and phosphorus in soil cores collected in Teersdale and sumodegin (mes/e.d.wt.)
Teesdale Sunbjeein s.o.d.

	Poficlictalia		
Ha	.457	.197	$* * *$
Mg	1.030	.755	HS
Al	.058	.025	HS
K	1.585	.292	$* * *$
Ca	80.485	44.535	$* * *$
Mn	.237	.104	$* * *$
Fe	.178	.058	$* *$
Cu	.0055	.005	NS
Zn	.376	.012	$* * *$
Cd	.008	.001	$* * *$
Fb	.119	.015	$* * *$

Seslerio-fesobromion,			
Na	. 210	. 258	15
Mc	.408	1.169	*: ${ }^{\text {\% }}$
Al	. 111	. 115	NS
K	. 835	1.158	**
Ca	76.335	41.210	***
Y n	.100	. 460	NS
Pe	. 139	. 065	nc
Cu	.0046	. 0049	NS
Zn	. 176	. 0148	***
Cd	.0056	. 0022	****
Pb	.181	.0108	***
1 P	. 012	. 009	**

[^0]Table 2. Comparisori of the mean values for each element using the Students t -test indicates that both the roots and leaves of the Teesdale plants are significantly richer in $\mathrm{Fe}, \mathrm{Zn}, \mathrm{Cd}$ and Pb , and significantly poorer in Mg, K and P than in roots and leaves of those growing at Sunbiggir.

DISCUSSION

The results for the metals are in accordance with the edaphic difference demonstrated above for the flush soils, but P, K and $M g$ show the highest concentration in plants growing on the soil with lower exchangeable amounts of these elements.
E. EXPERIMENT 4

AIM
To gain data in an attempt to differentiate between the effects of clinate and soi.l.

ME THOD
Instead of trying to overcome the problems of setting up, maintaining, and monitoring transplant experiments at the two field locations (vandalism could have been a problem at Sunbiggin)s it; was decided to locate them in the University Botanic Garden in Durham Cit: ${ }^{\prime}$ •

The plants selected for study were Carex lepidacarpa, and C. panicea, as they are abundant in both localities, Schoenus nigricans, and Eriophorum latifolium, which are present only at Sunbiggin, and Tofieldia pusil.la which is. one of of the Teesdale Rarities. In order to minimise damage to the Teesdaje communities all plants except Tofieldia were collected from Suabiggin.

Table 4 'rotal cations, total and extractable $F, p l l$
Toficldietaliu soils ued in pot culture experiment (me/g.d.wt.)

	'reesdale	Sunbigerin	s.o.d.
Na	. 361	.087	\#**
Hg_{g}	1.420	1.660	***
A1	27.000	10.633	***
K	1.170	1.119	Jis
Ca	11.000	5.426	***
Hn	1.202	. 454	***
Fe	26.022	8.655	***
Cu	. 022	. 012	***
Zn	1.294	. 098	***
Cd	.015	. 002	***
Pb	.616	. 057	***
Tot. P	. 425	.148	***
Ex. ${ }^{\prime}$. 008	. 005	***
pH	6.7	7.2	***

s.o.d. significance of difference - see Appendix B
(see Table AP2 for details)

Collection was made in late January 1974, the plants being washed free of all soil before being layed on damp filter paper. Using a table of random numbers, 15 individuals of each species were selected, and each planted singly in a 4 inch plastic pot containing flush soil frofil Teestale. The remaining 15 of each species was similarly planted in 4 inch pots containing flush soil from Sunbiggin, and then the total lengths of the live leaves in all the pots were recorded. The pots were then placed in a cold frame for one month, before being embedded in open gravel on a flat surface clear of all obstacles in the Botanic Garden. The pots were arranged in a regularly spaced mosaic. Tine plants were watered everyday with rainwater from a butt, thus supplementing the natural rainfall throughout the study. A further two months were allowed to elapse before measurement of leaf length, at fortnightly interval.s, was begun.

At the end of the experjment the plants were harvested, the roots being. carefully removed from the soil. The live leaf and root material wera separated, washed and oried to constant meight prior to extraction and analysis. (for methods see Appendix A)

RESULT: OF GRO'لTH MEASUREMENT

The complete results are presented in Table .AP10 and are sumarised in Figs 4 - 3, where the \log of the geometric means for each species has been plotted agairst time. The reasons for these transormations are given in Appendix B. The y-axes have been adjusted so that both curves start at the origin, this simplifies visual comparisons. Dnly 4 points on the T.pusilla and 3 points on one of the C. lepidocarpa curves satisfy the requirements of linearity.

The responses, though varied all indicate agreenent in one respect, in no case do the plants show a slower rate of growth on the Teesdale soils.

Table 5 Clay minerals in Tecsdale* and Sunbigein Pofieldietalia soil ussed in pot experiments.

Peesdale
Chlorite or Vermiculite fiontmorillonite
Illite Chlorite
Kaolinite Illite
Bochmite
Kaolinite
Quartz (34%)
quartz (64;)

* the clay minerals in these samples are highly degraded.

Table 6 Some physical characteristics of Tofieldietalia soil used in pot experiment. Moisture and texture expressed as air dry wt. Loss on ipnition as of soil dried at $100^{\circ} \mathrm{C}$.

	Teesdale	Sunbiçgin	s.o.d.
Woisture	4.06	1.47	***
1.0.i.	27.78	8.62	W-H-4
Sand	71.36	76.22	NS
Silt	26.79	16.56	NS
Clay	1.85	7.22	HS

s.o.d. signiricance of difference - see Appendix B for details

In fact from the regression coefficients (coefficirnt of x in the equations) it is clear that in all the five cases the rate of growth was marginal. ly hetter on the Teesdala soils. Overal. comparisnn of the regression coefficients using the students t-test on the difference of the sums shows the difference to he significant with P 人0.ll . From these results i.t would appear safe to conclude that ance the main phase of growth has started, tue Teesdale soil forms a marginally better growth medium for all the species studied, and that soil alone cannot account for the low productivity at Teesdale. There is some evidence that during the early part of the year, the plants did not grow better on the Teesdale soil, this will be discussed in section j_{s}.

RESULTS OF CHEMICAL ANALYSIS

The full analytical results reported in Table AP5, are summarised. Tables 7 and 8..

The data for the leaf analysis shows few significant trends, although the metal content of plants on Teesdale said $1 s$ generally higher; however, data from the root analysis is more definite. In all cases Zn , $\mathrm{C} . \mathrm{d}$, and Pb shows higher concentration in the roots of the plants growing in the Teesdale soil, and in fous cases out of five, fe shows the same effect.

DISCUSSION

Comparison of the relevant soil data, Tables 3 and 4, shows that the Sunbiggin soils used in the experiment have significantly less total Pb, Cd, $\mathrm{Zn}, \mathrm{Cu}, \mathrm{Fe}, \mathrm{Mn}, \mathrm{Ca}$ than the Teesdale soil, the same is true for buth \ddagger otal, and exchangeable P, while the reverse is true for Mg_{g} (although exchangeable Ag is higiter in the Teestale flush soils, Table 3) and there

Table 7 Concentration of some elements in leaves and roots of plants grown in pots (mg/g.d.wt.)
a) In live leaves

	C.panicea			C.lepidocarpa			E.jatifolium			Schoenus nigricans			Tofieldiz cusilla		
	Ts	Ss	s.o.d.	Ts	Ss	s.o.d.	$T s$	Ss	s.o.d.	I'\%	Ss	s.0.2.	T	cis	S0.2.
He	1.57	1.01	***	1.16	.30	*	1.23	.99	NS	1.36	1.70	NS	1.07	1.15	NS
A1	. 21	. 32	ITS	i. 21	1.15	NS	. 35	. 28	NS	. 61	. 12	*	1.22	1.15	NS
K	12.47	14.23	HS	12.11	10.60	NS	9.92	9.17	NS	6.38	10.46	*	6.67	7.50	NS
Ca_{3}	7.48	6.15	lvS	6.41	4.46	NS	7.49	6.65	IVS	8.37	9.69	NS	16.55	14.97	$1: \%$
Fe	. 30	.41	HS	1.11	1.22	NS	. 41	. 38	NS	. 77	. 27	*	1.30	1.18	NS
Zn	. 170	. 092	*	.107	. 046	NS	. 137	. 006	NS	. 109	. 057	NS	.126	. 252	*
Cd	. 0036	. 0015	***	.0025	.0007	**	.0009	.0013	NS	. 0019	. 0012	NS	. 0049	. 0027	* 4
Pb	. 01.46	. 0201	NS	. 0471	. C338	NS	.0139	.0078	NS	. 0250	. 0067	NS	. 0341	. 0145	MS
E	. 996	1.047	NS	1.147	. 762	ISS	. 986	. 932	NS	. 933	. 850	NS	1.509	1.178	13

b) In live roots

Nis	1.07	1.19	*	1.50	1.79	***	1.14	1.31	NS	. 70	. 83	NS	1.20	1.39	183
A1	3.25	2.59	NS	2.77	3.94	*	5.36	3.03	***	4.84	2.52	*	7.46	4.46	tis
K	4.28	3.63	NS	4.44	3.55	: ${ }^{\text {; }}$	4.44	5.35	**	1.71	3.60	**	3.39	4.4 .4	*
Ca	4.14	4.22	NS	3.26	3.92	NS	5.60	4.51	NS	15.67	11.82	**	7.68	6.75	ITS
Fe	5.48	4.20	*	3.17	3.68	ISS	4.47	2.72	-**	5.02	2.83	**	5.72	3.95	*
Zn	. 323	. 078	****	. 209	. 056	****	. 376	. 069		. 290	. 079	**	. 554	. 152	***
Cd	.0109	. 0024	****	. 0103	. 0019	*****	. 0141	. 0016	*****	. 0048	. 0014	**	.0104	. 0026	34*
Po	. 0946	. 0416	***	. 0983	. 0335	****	.1186	. 0229	****	. 1320	.0261	***	. 1622	.0893	**
F	1.736	. 944	***	. 710	. 946	NS	. 809	. 764	NS	. 487	. 589	NS	1.416	1.188	MS

s.o.d. significance of difference - see Appendix B
(see Table AP5 for details)

Table 3 Average concentration of elements in leaves and roots of all the pot experiment species. (mes/i.d.wt.)
in leaves

	Ts	Ss	s.o.d.
$M \mathrm{C}$	1.29	1.10	$* *$
Al	.68	.60	NS
K	10.08	10.66	NS
Ca	9.09	7.83	NS
Fe	.73	.68	NS
Zn	.132	.093	NS
Cd	.0027	.0014	$* * *$
FG	.0264	.0177	NS
P	1.094	.942	$*$

in roots

Mg	1.16	1.34	$*$
Al	4.47	3.27	$* *$
K	3.86	4.13	NS
Ca	6.39	5.75	NS
$\mathrm{Li}=$	4.66	3.49	$* *$
Zn	.337	.081	$* * * *$
Ca	.0106	.0020	$* * * *$
Pb	.1162	.0399	$* * * *$
P	1.047	.886	NG

s.o.d. significance of difference - see Appendix B

Figures derived from results in Table 7

Abstract

is no significant difference for total K concentration. (Again, however the exchangeable K is much higher at Teesdale Table 3).

Abstract

It must be concluded therefore that in the higher temperature of the lowland station at Durham, considerable amounts of the potentially antagonistic heavy metals pass onto the root system of the plants. There are indications that they may be localised there, in that they do not pass into the leaves. Whatever the mechanism, the enhanced concentrations of heavy metals appear to have no drastic effect on the uptake of P or on the performance of the plants studied in that climate. It would appear that in the wasmer climate of the experimental garden ard altered edaphic conditions in the pots, a range of plants can overcone tine problems, if any, of the higher levels of heavy metals present in the Teesdale soils, a?louing sufficient uptake of nutrients for growth.

F. EXPERIMENT 5

AIM
To further investigate the effect of climate and soil using a singin phytometer of genetically pure stock, namely Spring Barley var Julie recommended by the Welsh Plant Breeding Station. Dwing to the almost unlimited supply of seed it was decided to place one set in the field at Teesdale where at least some protecticn was afforded by siting the experimental plot uj.thin the confines of the National Nature Reserve. The other set was maintained in the Durham Botanic Garden.

METHOD

Twenty-five pots were filled with flush soil collected as befare from Teesdale, the same number being filled with flush soil. from Sunbiggin.

Table $9(a)$ Concentration of some elements in leaves of barley grown in pots (mg/g.d.wt.)

Teesdale soil Sunbiggin soil

	Teesdale	Durham	s.o.d.	Teesdale	Durham	s.o.d.
Mg	1.44	1.25	$* *$	1.40	1.22	$*$
Al	.86	.46	$*$.63	.50	NS
K	13.57	13.29	NS	16.12	15.03	NS
Ca	9.90	9.46	NS	8.67	8.49	NS
Fe	.99	.74	NS	.83	.74	NS
Zn	.300	.130	$* *$.184	.071	NS
Cd	.0040	.0009	$* * *$.0009	.0005	NS
Pb	.0488	.0237	$* * *$.0225	.0152	NS
P	1.269	1.421	. NS	1.1 .96	1.037	NS

s.o.d. significance of difference - see Appendix B
(see Table AP. 6 for full details)

```
Table 9(b) Total amount of some elements in the leaves of barley at the end of the experiment (mg/pot)
```

Teesdale soil		Sunbiggin soil	
Teesdale	Durham	Teesdale	Durham
.070	.088	.061	.058
.662	.984	.709	.718
$.40 \overline{3}$.700	.381	.405
.061	.105	.052	.049
.041	.033	.027	.023
.048	.054	.036	.035
.014	.010	.008	.004
.0002	.0001	.00004	.00003
.0023	.0017	.0009	.0007

9(b) is derived from 9a and mean values in Table AP.11, therefore statistical tests were not possible

Three barley seeds were planted in each; pot, and after ecesis the weaker two were removed. Half the pots containing each type of soil were placed in loose gravel. in a regular mosaic at the botanic garden, the other. half, prepared in the same manner, were located at lyiddybank Fell in Upper Teesdali.

At the end of the growing period, all the leaves from each pot were harvested, and dried to constant weight before extraction and analysis.

RESULTS

The full bimmess results are presented in Table Ap 11, the chemical data in Table 9.

Performance was compared using the mean final dey weights in each crop. Analysis of va: iance revealed no significant difference between the grouth of barley on the two soils at Teesdale. In contrast the growth was significantly better on the Teesdale soil than on the Sunbiggin soil ir. the warm?r ciimate of Durham. The overall differences of climate betwean the two stations are summarised in Figs. 9 - 11 and Table 10. The data were obtained from the standard meteorological office recording stations at Widdybank Fell and Durham University.

DISCUSSION

Comparison of the phytochemistry (see Table 9A)is of interest. Barley growing on the two soils, both at Teesdale and Durham show similar results to the prevjous pot experiments, with the plants on the Teesdale soils having higher concentrations of $P, P b, C d, Z n, A 1, F e$ and $C a$ than those on the Sunbiggin soils, only K showirly the revarse trend. The rasults are

```
Table 10
```



```
Me:Mer&ume: ("C)
!ighost ritugecoridel
    26.9
    23.9
Lomert mia.rucorded
Averaco r.jx. 18.9
iveracie nim. 10.1
7.8
lin of lug mitl temy y %or:
8,
7 9
:wriblity (:)
i\because:.recorden
9?
97
#in.recorded 50 50
iverage
Raint:all (mrn)
No of days with C.2 mm or more 12 5
lio of days with 1.0 mun or more 20
18
No of lays with 5.0 mm or more 8
    21
Greatest fall in 24 h. 33.7
    55.9
F'otal rainfall over June, July, iugust 171.7
331.7
```

See Figs. 9-11 for detajis
again in keeping with the overall differences between the soils shown in Tables 3 and 4.

Between site comparison is perhaps more revealing. On the Teesdale soils the concentcations of $A 1, Z n, C d, K$ and $3 b$ are all significantily higher in the leaves of the barley grown at Teesdale when compared with those growr at Durham. In contrast plants groun on the Sunbiggin soils in the two sites show only small differences in the concentration of these elements none of which are significant.
G. EXPERTMIVT 6 (a)

AIM
flanipulation of the In-situ climate of the Upuer Teesdale Vegetation.

METHOD

A trial experiment was carried out in the summer of 1973. Five uniform areas of gressland, selected with the peronission of the Nature Conservancy, were covered with comercial cold frames made of corrugated plastic, the ends being clased with sheets of flat transparent plastic. The experiment was begun in early June, and terminated at the end of August. The cold frames were removed and a photograph taken to record the results. The total above ground vegetation was then harvested from one $20 \times 20 \mathrm{~cm}$ quadrat in the centre of each cold frame plot, and from a similar area 1 metre to the side of each frame. The harvests were separately dried before being extracted and analysed for a range of elements. (The results for K have, unfartunately, been lost).

[^1]| | Outside | Insj.de | S. ${ }^{\text {d }}$ d. |
| :---: | :---: | :---: | :---: |
| Mg | . 733 | . 887 | ** |
| A1 | . 195 | . 054 | *** |
| Ca | 6.250 | 7.180 | * |
| Mn | . 132 | . 130 | NS |
| Fe | .460 | . 3.60 | ** |
| 7 n | . 132 | . 093 | NS |
| Cd | . 002 | . 001 | ** |
| Pb | . 090 | . 041 | NS |
| T | . 761 | . 753 | NS |
| s.o.d. significance of difference - see Appendix B | | | |

RESULTS
The fuli chemical results are shown in Table AP7, and are summarised in Table 11.

Although no measurements were made, it is evident fron plate 2 that the vegetation had grown considerably more robust within the confines of the cold frame. Comparison of the chemistry of the two sels of crops sholus that in all cases the concentration of heavy metals is less in the plants growing within the frames, the differences for Cd, Fe and Al reaching significance. In contrast both $M g$ and $C a$ show the reverse trend while the concentration of p are almost equal in the vegetation from both treatment.s.

DISCIJSSION

Although only an indication, it would appear that one of the effects ot altering (warming) the climate was to cause a reduction in the uptake, or a dilution of the heavy metals and Al, whilst the reverse was true for Ca and Mg . Dn the basis of the success of this. experiment it was decided to repeat it in a more elaborate forin.

EXFERIMENT 6 (b)
AIM
Further study of the effects of manipulating the in-situ environment of the Teesdale communities. Extensive survey of the Widdybank Fell experimental area, had previously indicated the existence of two contrasting types of both 'flush' and grassland vegetation. Field analysis showed that although they were floristically similar, and all had 100% plant cover, one type in each case appeared to be less "productive" than the other. An explanation was sought, and a tentative one found in the fact that the apparently low production communities were sj.tuated much closer to metalliferous deposits than the apparently more productive communities. It was therefore decided
to tentatively label the two types of 'metalalliferous' and nonmetalliferous, and to study how the different facies of the two communities responded to climatic manipulation using further cold frame experiments.

METHOD

The four experimental sites were chosen early in $\Lambda p r i l$ 1974, and cold frames $1^{\prime} \times 4^{\prime} \times 6^{\prime}$ were erected well within the boundaries of each. For the design of the cold frames see Plates 3-5. The top of each cold frame was covered with fransparent polythenesheeting, but the sides were only protected with open nylon net in order to allow free circulation of air, and to avoid the development of excessively high temperatures and humidity. Adjacent to each: frame an equal area was staked out and protected from grazing by the erection of a nylon net barrier.

In order to gain some measure of how muct. these frames effected the climate near the ground, two pairs of recording thermotydrographs were intercalibrated. Dne of each pair was placed inside one of the cold frames, and the other of each pair was placed ir, a standard Stevenson's Screen located adjacent to the frame. The two frames selected for climatic moniitoring were those uhich appeared from their location on the fell to be the least similar as far as their natural. microclimate was concerned. See Plates 3 and 4 .

In order to compare growth throughout the summer, sampling was started on 1 st May and cortinued over eight fortnightly sampling periods. Sampling was completed by the 21st August. In view of the limitations of size, and time availables it was calculated that $\overline{0}$ quadrats, eacl: $10{ }^{2}{ }^{2}$ were the maximum that could be harvested on each occasion. These were located by the use of random numbers, but no area, in whole or in part, was cropped more than once.

Table 12 Cuncentration of some elements in Tofieldietalia vegetation (excluding mosses) at the end of the 1974 cold frame experiment (mg/g.d.wt.)

	ketalliferous			Non-netalliferous		
	uncov.	cover	s.o.d.	uncov.	cover	s.o.d.
Mig	. 601	. 780	****	.86].	. 947	*
Al	. 077	. 089	N:3	. 062	. 047	WS
K	10.00	10.50	WS	9.77	10.14	NS
Ca_{a}	6.45	6.80	MS	3.76	3.53	N
Fe	. 148	. 173	***	. 154	. 145	H
mn	. 163	. 149	ITS	. 321	. 318	NS
Zn	-12	. 146	NS	. 075	. 067	NS
Cd	. CO 20	. 0018	NS	. 0010	. 0009	NS
Pb	. 0154	. 0170	NS	.0087	. 0111	NS
P	. 656	. 649	NS	. 605	. 575	NS

s.o.d. significance of difference - see Appendix B
(see Table AP8 for details)

Table 13 Concentration of some elements in Seslerio-Mesobromion vegetation (excluding mosses) at the end of the 1974 cold.frame experiment (mg/g.d.wt.)

	Metalliferous			Non-metalliferous		
	uncov.	cover,	s.o.d.	uncov.	cover	s.o.d.
Nig	. 942	. 870	IS	.760	. 881	NS
$\Lambda 1$.170	. 122	***	.077	. 059	NS
K	13.46	11.50	*****	13.57	12.91	NS
Ca	5.78	5.96	HS	4.99	5.58	HS
Fe	. 617	. 335	****	. 180	. 169	NS
lin	. 277	. 124	*	. 154	. 171	NS
Zn	.124	. 086	****	. 070	. 065	NS
Cd	. 0019	.0011	****	.0012	. 0011	NS
Pb	.0230	. 0417	\%***	.0194	. 0115	H.*
P	.753	.651	*	.788	.700	*

s.o.d. significance of difference - see Appendix B
(see Table AP8 for details)

The vegetation was cropped to the soil surface. The vegetation from each quadrat was placed into a separate labelled polythene bag, and returned to the laboratory where dead material and bryophytes were discarded. From all the grassland plots, Sesleria caerulea, Festuca vina and Carex panicea were sorted, and each weighed separately after drying. From all 'flush' plots Carex panicea was sorted and treated in the same way. At every time period the remaining plant material from each harvest was bulked, dried and weighed, this is referred to as the remainder.

The final sampling on August 21 st consisted of 12 (flush) or 18 (grassland), 1 dm 2 plots harvested and treated in the same way. 18 replicates of grassland were taken in view of the lower standing crop of this vegetation. After weighing, the plant material was bulked, wet digested, and analysed for the full range of chemicals studied above. At the end of the experiment twelve 2 cm diameter soil cores were removed for chemical analysis.

RESULTS

Full details of the results are presented in Tables AP12 and 13, and are summarises in Tables 12-14 and in Figs. 12-17. The climatic data (Figs 18-21, and Table 15) indicates that the cold frames had their main affect on the maximum temperatures reached with little effect on the lower temperatures. The same is true of humidity, however the effect on humidity was not great.

The covers caused an increase" in growth in all cases, but as the covers were designed to only slightly modify the climate the effect on growth is not apparent in the photographs (Plates 5A-8A). This had been anticipated: and was the reason for carefully monitoring growth by weighing certain parts of the vegetation. The covers appeared to have a greater effect on the

	in ${ }^{\text {I }}$	ieldietalia	soil	in Ses	rio-liesobr	ion soill
	metal	non-metal	s.0.d:	metal	non-metal.	E.O.d.
15	. 0529	. 1125	*****	. 0515	. 0635	**
Al	. 0068	. 0154	**	.0084	. 0067	NS
K	. 0562	. 0765	* -	. 0633	. 0546	WS
Ca	9.88	3.55	****	9.96	10.0	NS
Fe	. 0129	. 0440	NS	. 0121	. 0189	HS
Nin	. 1029	. 1933	***	. 0657	. 0508	***
Zn	. 1570	.c401	****	. 0231	. 0161	**
Pb	. 1342	. 0468	****	.1741	. 0413	**
${ }^{3}$. 0165	.0182	NS	. 0154	. 0125	*
s.o.d. significance of difference - see Appendix B						
(see Table AP3 for details)						
${ }^{1}$ extracted with $0.5 \mathrm{M} \mathrm{Na} \mathrm{HCO}_{3}$						

vegetation of metaliferous sites, because it is only on these sites that the increases caused by the cover reach statjetical significance(Table 18). The cold frames appeared to have little effect in the concentration of minerals in the flustirsites (Table 12), in contrast to the metaliferous grassland site, where 8 of the ten changes reach statistical significance. Both the grouth and chemistry results will be fully discussed in the next section.

quble 15

Sumar; ricrocinnotic ath from tho Fofiellietaije non-hetillifcrous site and the :erlerio-ibsuberion notalifferote site durina the poriod 18. Junc - 21 sumat of the ficlu experiment.

$$
\begin{gathered}
\text { in Sowes. } \\
\text { metiliferous } \\
\text { sito }
\end{gathered}
$$

Tenueruture (${ }^{\circ} \mathrm{C}$)	uncov.	cover	uncov.	cover
\#ifhest may. reccre	20	33	20	29
Lonest l.in.record	0	-2	2.5	-1
dverre max.	13.9	19.6	13.1	19.8
riverse min.	8.1	7.7	8.7	6.6
lo of days with tent $3^{\circ} \mathrm{C}$	63	59	63	48
Jumidity (\because)				
Lowest ming reoord	32	32	39	35
Hishent nituerecord	92	87	77	79
iverage min.	56	50	51	50
iveratemat.	75	80	74	66

lio of days with 0.2 m or more 14

No of days with 1.0 mor more 14
1: of days with 5.C m or more 11
Greatest fall in 2.4 h 23.1
'iotal rainfall from 18 June - 21 August 167:3

3. DISCUSSION

Some discussion has already been presented in the previous section in order to explain the reasonings behind the various experiments. Some of these points will be reiterated below so that the various lines of discussion and conclusions can be presented as clearly as possible.

The analysis of soils and vegetation from Teesdale and Sunbiggin were intended to indicate the extent of any phytogeochemical differences between the two areas. Differences in the exchangeable cation content of sojls from the two localities were established for both 'flush' and 'grassland' soils (Tatie 3), and estimation of the \because © tal cation content in soils used for the pot experiments substantiates the field data for 'flush' soil. (Table 4). Soi.l analysis indicates that the 'flush soil' soil from Teesdale is more fertile than that from Sunbiggin with exchangeable Mg, K, and Ca, as well as P all being higher in the foimer soil (Table 3). Examination of the metal contents (Tables 3 and 4) shows that for the most part, these are also more concentrated in the soils from Teesdale.

In general, then, there are both more riutrients and more heavy metals in the soils from Teesdale; a greater bulk of the soil from Sunbiggin being occupied by quartz (Table 5). Field material of C. panicea was collected for chemical analysis from flushes at both sites; the results (Tabie 2) show that the higher levels of 'nutrịents' $C a, M g, K$ and P, present in the 'flush ssils' at Teesdale were not reflected in the leaf tissue analysis, nor, with the exception of Ca , in the root tissue analysis. In contrast, the heavy inatals Fe, $\mathrm{Cd}, \mathrm{Zn}, \mathrm{Pb}$, and Mn , were more concentrated $i n$ the leaves of Teesdale material and with the exception of M_{n}, the same was true of root tissue. Thus the higher levels of 'nutrients' in the Teesdale soils were not reflected by high concentrations in tine tissues of ㄷ. panicea but the heavy metals were.

The possibility therefore arises, that a large proportion of the exshangeable nutrients in the Teesdale soil are simply unavailable to plants for purely edaphic reasons, in which case the low grouth rates of some species in Teesdale as compared with their growth at Sunbiggin (fig. $1,2 \& 3$) could be accounted for simply by the colder cimate and the lack of available cutrients (c.f. exchangeable nutrients).

The pot experiments were designed to gain information regarding performance of species on the soils from the two localities urider identical climatic conditions. Results were plotted in logarithmic form so that any exponential grouth phases would give linear plots, which could then be treated as simple regresfions. The y - axis has been adjusted so that each pair of lines starts at the same point, thus making visual comparison easier (Fig. 4-8). It can be seen from the siopes and regression coefficients that in all cases growth during the sumar was better on Teesciale soil. The overall difference between tha regression coefficionts. of the two sets of soil is statistically significant ($p(0.01$).

The plants used in pot experiments were selected randomly, therefore the mean starting value for each pair was about the same, however the intercepts of the regression equations show that at the start of the summer season the plants in Sunbiggin soil were somewhat larger than their counterparts in Teesdale soil. (See also detailed data Tables A P10). No detailed measurements were made whilst the plants were becoming established during . the period before May, but the facts indicate that they did grow marginally better on Sunbiggin soil prior to the main growing season. This may have been due simply to the fact that the Teesdale soil was 'colder', loss on ignition (which results at least in part from organic matter) and moisture
content would support this suggestion (Table 6).

The tolerance ranges of the two Carex species (Jermy and Tutin 1968) give no indication as to why they should have grown botter in the Teesdale soil: indeed the sensitivi.ty of $\underline{\text { L }}$. Iepidocarpa to aluninium (Clymo, 1962) suggests that this species might not be expected to grow as well in this soil (Table 4). If closed communities are examined in sites where gradients of pH exist, Eqatifolium, S. nigricans, and I, pusijlla are always found in the more alkaline situations, however the pH of the Sun!iggin soil (pH 7.3) was considerably higher than that of the Teesdale soil (pH 6.7).

The growth curves (Figs. 4 - 8) have been constructed from mean measurements of the surviving species and do not therefore reflect mortality. In mast cases mortality was very low, however this was not so for Schoenus growing in Teesdale soil, where only 4 of the plants survived, compared with 13 of 15 growing in Sunbiggin soil (Table AP10). This is urlikeiy to have resulted simply from drying up; as the Teesdale soill appeared to have a higher moisture content (Tables 5 and 6). It has been suggeated that Schoenus is also sensitive to Nluminium (Sparling 1967) which is another possible reason for the initial failure of this species on the Teesdale soil.

From the above observations it is clear that what little is known concerning the environmental tolerances of plants used in the pot experiments gives no clue as to why they should have grown better on the Teesdale soil. Therefore, it is possible that in the mi.lder growth conditions of Durham the plants were able to take advantage of the more fertile Teesdale soil.

Comparison of field experiments with pot experiments has many obvious pitfalls, however, with this cautionary note in mind it is possible to examine chemical differences in the tissues of C. panicea resulting from the two soils when grown in pots in Durhan, and compare these with differencos in chemical content of field grown plants. Dnce again the concentration of metals was higher in the phants,grown in Teesdale soil, reflecting its metaliferous nature, but $M g . K$ and P showed distinct differences from the field grown material. It was mentioned above that concentrations of these eiements was significantly higher in both werr roots and leaves of Sunbiggin plants than in plants from Teesdale, and thus did not reflect the higher nutrient status of flush sail from the latter area (Table 2). By contrast, in the Durham grown material only one of these'nutrients' was significantly higher in plants on the Sunbiggin soil and this was Mg in the roots, also the significantly higher level of P in the roots of plants, grown on Teesdale soil is particularly noteworthy (Table 7). The summary of all the jlants used in the Durhan pot experiment (Table 8) shous that thesegeneral trends were true of all the species.

Evidence from the preceding experiments suggested that given identical conditions the growth rate of plants grown on Teesdale soil might be higher than those in the soil. from Sunbiggin, it was also noted that under circumstances of the pot experiment the concentration of elements in the plants on Teesdale soil reflected the higher fertility of this soil. At this point therefore the argument could be presented that there is no edaphic reason why vegetation at Teesdale should not have a productivity higher than at Sunbiggin, and that the low productivity
of Teesdale vegetation must be due to climate. However, the problem then arises as to why the rare species do not grow in the numerous other nearby locations uhere the climate is similar to that of Teesdale.

The first indication of a possible answer to this problem was obtained from the barley experiment. Because barley seed is readily available it was convenient to carry out comparisons of growth on the flush soil.s from Sunbiggin and Teesdale in a mild climate (Durham), and in a cold climate (Teesdale). The biomass results are shown in Table AP11, and the chemical composition in Table 9a. The concentration of elemen's in the leaves of barley declines throughout the growing season (Lundegardh, 1951; Goodall and Giregory 1947), therefore considering that performance on the two soils was estimated simply by harvesting the total crop from each pot at the end of the season, it was also convenient to calculate the total amount of each element taken intu the leaves; these are shown in table 9t. From table AP11 it can be seen that there was no significant difference in leaf weight on the tida soils in the cold climate, but in the warmer climate the average leaf weight per pot of Teesdale soil was nearly double the weight produced on pots of Sunbiggin soil. There was very little difference in the amount of 'nutrients' in the leaves of barley from either location when it was grown on Sunbiggin soil but the leaves of plants grown on Teesdale soil contained a much greater quantity when grown in Durham (Table 9.b).

Thus both the growth and nutrient content of barley reflected the greater fertility (and greater metal content) of the Teesdale soil, but results also suggest that this greater growth potential is not realised in the colder climate. This is compately consistent with the results of the other pot experiments, where it: was observed that
the intercepts in the regressjon equations indicate that any growth during the early part of the year (prior to regular measurements being taken) was, if anything better on the Sunbiggin soil. If the greater fertility of the Teesdale sojl is not manifested in colder conditions it i.s reasonable to conclude that the low productivity of the Teesdale soils results from a combination of climate and soil, especially if the suil at Teesdale is 'colder'. However, we are again presented with the quandary that there is nothing peculiar about a soil being 'cold', in contrast the Teesdale flora is unique.

The comparisons of teesdale with Sunbiggin help to create a clearer picture of the extent to which the Teesciale veqetation and sail are unusual, fowever, it had been apparent from the outset of this research programme that results of microclimate manipulation at Teesdale would probably offer greater insite into the problem.

The 1973 experiment involved a very simple cold frame which increased growth of the 'grassland' vegetation on a metaliferous soil (Plate 4), confirming the results of Marshal (1971), who also used a simple completely closed frame. The concentration of elements in the above ground vegatation outside and inside the frame shows one feature very pertinent to the Teesdale situation. The uptake of 'nutrient' elements by vegetation beneath the frame appears to have more or less matched the j.ncrease in growth so that there was no reduction of concentraticn of 'nutrients' in the above ground tissues; by contrast' the concentration of all the metals was lower in the higher productivity vegetation beneath the frame. The results of this experiment provided the first evidence, albeit circumstantial, implicating high metal concentrations with low productivity. Further examination of table 9 is worthwhile at this point. It can be seen in 9 (a) that there was little difference in the total.

Tablel6 fine effect of climate on the element concentrations in Barley leaves, illustrated by expressine the concentrutions in leaves from wormer climate (Jurham) as a ratio of those in leaves from cooler climate (Teesdale)

Teesdale soil Sunbizgin.soil

	m_{6} Durham	rank	mer Durham	rank
	mg Teesdeule	ratio	mis 'Iecsdale	ratio
He	. 83	6	. 87	6
M1	. 53	4	. 58	3
K	. 98	7	. 93	8
Ca	. 96	8	. 98	9
Fe	. 75	5	. 89	7
Zn	. 4.3	2	. 39	1
Cd	.23	1	. 56	2
Pb	. 49	3	. 68	4
P	1.12	9	.86	5
	ass .649		. 918	

1. The ranking indicate the relative'ef'fective dilution" of the element.
2. The biomass ratio is the average biomass per pot in Teesdale divided by the same at Durham.
metal content of the leaves of barley at either location on either soil; in contrast the metal concentration in the leaves was lower in Teesdale on both siils, highly significantly so on the Teesuale one. These resul.ts suggest that unlike the nutrients, the uptake of metals did not match the increased growth.

The 1974 cold frame experiements were cerried out on both flush and grassland sites, and utilised a cold frame which was designed not to raise the temperature too high (unlike the previous experiem.nt and that of Marshal, 1971). Furthermore cold frames were placed on lou productivity (metalliferous) as well. as high productivity vegetation. The growth iff the "remainder" (the total biomass excluding mosses and other onesmeasured) on the uncovered sites was in fact higher on the non-metalliferous sites as anticipa+od (Table 18). However it is interesting to note on the grassland site both S. caerulea and F. ovina had higher growth rates on the metalliferous site.

The effect of the covers was to raise the growth rate of all the vegetation measured, but the fact which is of greater relevance is that these differences reached a level of statistical significance only on the metalliferous sites (Table 18). The effect of covers on both metalliferous sites is especially noteworthy withrespect to the 'renainder' of the herbaceous vegetation (76% of the total). Thus it appears reasonable to conclude that raising the temperature slightly improves growth on metalliferous soils more than on nonmetalliferous ones; in which case we can make a statement of the converse: that cold temperatures exacerbate the effect of growth reduction on heavy metal soils.

The effect of covers was somewhat less on the metalliferous 'flush' si.tes than on the metalliferous 'grassland' site, as might be expected considering the wetness of the foriner and the dryness of the latter.

Table 17(a) Summary table of ratios of element concentration in vegetation from inside and outside the cold frame of the first and second field experiment

1. Figures are ratios of concentration inside the cold frame with respect to the concentration outside. (Derived from Tables 11, 12 and 13)
2. 'The ranking indicates the relative 'effcctive dilution' of the element,
3. The growth ratio is the value of b for total biomass outside the frame with respect to the value for b inside. (The values for b are derived from data in Tables AP12 and AP13)
(Climatic data sumary Table 15). These differences must, at least in part be responsible for the fact that the aggregate improvement in grouth rates caused by the cover on the metalliferous grassland site was $\times 2.1$, compared with $\times 1.8$ or'flush' sites (aggregate derived from 6 values of metalliferous sites in Table 18). Examination of the chemistry of the vegetation shows that just as the effect of covers on growth rates was greatest on the metalliferous grassland vegetation, so the effect on the chemistry was also greatest on this site; note the levels of significance reached on this site (Table 13) compared with all other sites (Tables 12 ar.d 13). With a few exceptions, the concentration of elements is lower in the covered vegeterion, presumably due to the uptake in these cases not quite matching the increased growth. In the light of the foregoing discussion it would be valuainje to know if certain elements are affected more than others when temperature induced growth improvement takes place. Data from the various experiments can yield information on this point, provided allowance is made ror the fact that some 'dilution' will result from the fact that the plants are growing more. As this 'dilution' is the same for all elemenis che effect of cover on the different elements can be seen by simpiy dividing the concentration obtained in the warmer climate, with the concentration in the cooler one. This ratio expresses the extent to which the dilution, resulting from increased growth: was (when it will be $\geqslant 1$) or was not (<1)compensated by the increased growth. This ratio is called the 'effective dilution' in Tables 16 and 17, where figures for all the experiments involving temperature differences are shown; the 'effective dilution' for each element has also been ranked, with 1 as the greatest 'effective dilution'.

In Table 19 the result of averaging the 'effective dilution' for each element is presented. It is; at ance apparent that the metals are

Table 18 Growth rates recorded.jn second. cold frame experiment

```
(see Figures 12-1.7 for details)
```


Tofieldietalia

Plant Material	Soil type	b uncov	b cover	s.o.d.
C. panicea	metal	.00285	.00398	NS
C. panicea	non-metal	.00296	.00298	NS
Remainder sp.	metal	.00393	.00791	$* * *$
Remainder sp.	non-metal	.00474	.00563	NS

Seslerio-Mesobromion

Plant Material	Soil type	b uncov	b cover	s.o.d.
S. cserulea	metal	.00223	.00344	NS
S. caerulea	non-metal	.00186	.00539	NS
F. ovina	metal	.00262	.00482	$*$
F. ovina	non-metal	.00166	.00263	NS
C. panicea	metal	.00142	.00423	$*$
C. panicea	non-metal	.00567	.00621	NS
Remainder sp.	metal	.00302	.00647	$* * *$
Remainder sp.	non-metal	.00409	.00540	NS

s.o.d. significance of difference - see Appendix B
(derived from data in Tables AP12 and AP13, and illustrated in Figs. 12-17)
generally more affected than 'macro-nutrients'. The order is not consistent throughout all the experiments, therefore it was decided to tost concordance of the ranks from different experirents, and the results of this test are also shown in Table 19. The null hypothesis is that there is no concordance between the rankings, and that the order of 'effective dilutions' is purely fortuitous. The χ^{2} figure indicates that there is almost only 1 chance in 1000 that such a degree of concordance could have occurred by chance, therefore the null hypothesis can be rejected with confidence. It appears then that Aluminium and Zinc concentrations in the aerial vegetation are reduced most by temperature induced growth incrrase, with Calcium and Potassint being reduced least; in general the concontration of metals is reduced more than the concentration of 'nutrients'.

From the evidence presented above there appears to be little doubt that the growth of vegetation on the metalliferous soils of Widdybank Fell is lower than vegetation on the non-metalliferous soils, and that a rise in temperature of only a few degrees is suffjeient for the problems of the metalliferous soils to be overcome and differences eliminated (Th.e average b value for all uncovered vegetation on metallifrorous soil is $0 . .16$ and 0.021 for uncovered vegetation on non-metaliferous soil; the respective values for covered vegetation are 0.03 for metalliferous, and 0.028 for non-metalliferous soil: from Täle 18). Also by inference, that the reduction of the concentration of metals in the vegetation may be connected with this increase in productivity. It is not possible, however, to conclude from the evidence whether the reduction of metal concentrations is in any way responsible for, or merely a side effect of, the increased growth.

Abstract

Although there are minor exceptions ta most of the chemical trends discussed, there is one of some importance. This is seen in Table 13, where the higher productivity grassland vegetation under the cover has a significantly higher concentration of lead. If this result is not an analytical error it would appear to eliminate lead toxicity as a major factor in reducing production on the metalliferous sails. In this context it is perhaps significant that in the overall rankings of 'effective dilutions' lead is in the fifth position.

The possibility of heavy metals interacting with phosphorus to reduce productivıty in Teesdale has been suggssted by Jeffrey and figgot (1973), they also state that the available phosphorus in Teesdele soil was low, although available phosphorus was higt:. The data presented in Tables 3 and 4 show that the total and extractable phosphorus Jevels in Teesdale sails were higher than in Sunbiggin soils, this may have contributed at least iri part to the higher summer yrowth rates of plants on this soil in pots. Different amounts of available phosphorus are extracted from the various fractions of soil piÆ二phorus pool according to the method employed (John, 1972); Joffrey and Piggut (1973) give neither figures for phosphorus, nor description of the method used for estimation, which makes a critical appraisal of their work difficult.

It has been demonstrated by several workers that at least one form of heavy metal toxicity is caused by interference with uptake of nutrient elements (ulallace, 1963; Lagerwerff, 1967; Ernst, 1968), which would be consistent with the findings of Jeffrey and Piggot (19973). In the light of the results presented in this thesis, it is necessary.to ask how a rise in temperature might alieviate this effect.

If the mechanism of heavy metal tolerance was known then the effect of

Table 19 Summary of rankings of "effective dilutions" for all experiments (ste Tables 16 and 17 for details)

Al	Zn	Cd	Mn	Pb	Fe	P	Mg	Ca	K
'73 cold frame Ses-Mes. 1	5	4	6	3	2	7	10	9	(8)
'74 cold frame Ses-Mes. metalif 4	3	2	1	10	6	7	5	9	8
'74 cold frame Ses-Mes. non-metalif 2	4	9	7	1	3	3	5	6	10
'74 cold frame Tof. metalif 5	4	2	1	8	10	10	9	6	7
' 74 cold frame Tof. non-metalif 1	2	3	7	10	6	6	9	4	8
Barley Teesdale soil 5	2	1	(4)	3	6	6	7	9	8
. Barley Sunbiggin soil 3	1	2	(4)	5	8	8	7	10	9
$\mathrm{R}_{\mathrm{j}} \quad 21$	21	23	30	40	41	46	52	53	58
$\left(\begin{array}{ll} \\ \left.R_{j}-\frac{R_{j}}{N}\right)^{2} & 306 \\ \hline\end{array}\right.$	306 .25	$\begin{array}{r} 240 \\ .25 \end{array}$	$\begin{array}{r} 72 \\ .25 \end{array}$	2 .25	6 .25	56 .25	182 .25	210 .25	$\begin{aligned} & 380 \\ & .25 \end{aligned}$

[^2]temperature on non-tolerant species might also be easier to understand. Ruther (1967) stated that toleranice does not involve the non-uptake of the heavy metals; Turner et.al. (1966) suggested that tolerance results from accumulation within the cell wall; whereas Ernst and weinert (1972) fourid that the metalbicole, Silene cucubalus, had greater concentrations, of zinc in cell vacuoles. None of these mechanisms indicate any possible way i.n which a temperature synergism might occur, because they do not directly invoke metabolic processes; however the work of Jones (1961) does. As. a result of chromatographic studies with extracts of plants grown in alkaline snil, Jones suggested that tolerance of Aluminium and heavy metals may be achieved by chelation with organic acids in cell sap, therefore plants with an organic acid intracellular buffering system would be more tolerant than those with a phosphate buffering system. This explanation of heavy metal tolerance could accommodate the possibility of lower Lemperature excacerbating the reduction of growth in non-tolorant species growing on the metaltiferous soils of Teesdale, by lowering the rate cf the respiratory processes responsible for producing the organic arids. The possibility of leau directly interfering with root metabolism has already been suggested as a casual factar in the Teesdale situation (Jeffrev, 1969).

Comparison of the respiration rates of rare, and non rare species at Teesdale using field respirometry methods could be very rewarding; however certain facts concerning the respiration of arctic-alpine plants in general are known. Wager (1941) found that respiration rates in the leaves of arctic plants was higher than in leaves of temperate species. for any given temperature; and Warren-wilson (1966) demonstrated that arctic plants have a Q_{10} of about 3. Warren-idilson also showed how the higher respiration rate could be an advantage in cold climates by utilising sugars which would otherwise accumulate and stop assimilation of carbon dioxide, which being a photochemical process is less affected by
temperature, he also pointed out that arctic plants generally contain more sugar in their leaves than non-arctic anes. In his review, Billings (1974) notes that the higher respiration rates of arctic-alpine plants is particularly true of dark respiration. Billings states that temperatures above $25^{\circ} \mathrm{C}$ cause abnormal metabolism in arctic-plants, which is one reason why they cannot compete with temperate ones; abnormal metabolism at high temperatures might be expected of any piant with an intrinsically high respiration rate. Alpjne plants also contain higher levels of anthocyanin than mon-alpine plants, and one suggested function of these pigments is protection against ultra-violet radiation (Caldwell 1972). However, there is defindte evidence that incireased tolerance of high zinc concentrations also occurs in plants with more anthocyanin (Ruther, 1967); Baumeister et al. 1967); alpine soils are usually skeletal, and therefore, likely to contain more metals per unit volume i.han non alpine soils, so that any increased metal tolerance might be of value to alpine species even in their 'normal' situation.

The observations in the above paragrapt. serve merely to emphasise the fact that arctic-alpine plants might be well equipped to cope with metalliferous situations; and of particular interest is the fact that the mechanism of metal tolerance proposed by Jones (1961), involving chelation by organic acids, the high respiration rates of arctic alpine plants, and the effects or increased temperature on the Teesdale vegetation are all consistent.

Zinc and lead are higher in both soils and vegetation at Teesdale, than in the same at Sunbiggin. The zinc levels at Teesdale are well above those reported by Doyle, et al. (1973) for limestones of the Selwyn Mountains in N.W. Canada ($\bar{x} \overline{6} 05$ ppin total $Z n$ in soil, and $\bar{x} 45$ ppm in herbaceous vegetation); however, the concentrations of heavy metals at Teesdale are
much lower than in some of the Central European metallicole situations (Ernst. 1966). Although zinc and lead are the metals traditionally associated with the Teesdale flora, the possibility of Aluminium being a significant factor should not be overlooked. Certain geological strata at Teesdale are known to have higher than normal concentratior of Aluminiun (T. Johnson Durham University, private comminication), which would probably account for the presence of γ - aluminium oxide hydroxide (\varnothing - AlOOH) bsing present at Teesdale and not at Sunbiggin (boehmite in Table 5), as well as for the higher concentration of Aluminium in the former soils (Tables 3 and 4). This difference is expressed in the tissues of most plants used in the comparative experiments. Another point of interest is thai: the average position of aluminium in the 'effective dilution' rankirn, resulting trom improving the climate, is first (Table 19).

There is mech evidence that at least one form of Aluminium toxicity is a result of the Aluminium bringing about phosporus deficiency (Magistad 1925; Wright, 1945; Wright and Donainue 1952; Jorıes, 1961: Czarnowski, et al., i971; Hoyle 1971), and Jackson (1967) points out that the symptoms of Aluminium toxicity resemble phospharus deficiency - one of these symptoms being slower growth. These facts would be consistent with the theory of phosphorus deficiency at Teesdale suggested by Jeffrey and Piggot (1973), and even if Aluminium is not the single determining factor it may play an important contributory role.

I have discussed at length the possibility of reduced plant growth on the metalliferous soil being aggravated by the cold Teesdale climate, but the converse should not be overlooked. Howard-williams (1972) pointed out that the general reduction in height of metallicole vegetation would increase the harehness of the microclimate: this would clearly favour
plants of small stature, or with the appropriate morphological structure. Ernst (1972), working in Central Suthern Africa, found a marked zonation of vegetation associated with heavy metal gradients, and that with increasing concentration in the soil there is a reduction in the size of trees, until in the zones with the highest concentration there are no trees at all. The observations of both these workers are pertinent to the Teesdale situation, where failure of the tree cancpy to close at climax would have favoured the continued existence of the arctic-alpine flora.

This comparative study, involving Sunbiggin Tarn, was undertaken in the hope that light uould be shed upon the Teesdaic problem, therefore, that so much attention has been paid to this comparison ulas a necessary development of the discussion. However, it is apprapriate to conclude with a few words about the comparative approach in general, and Sunbiogin Tarn in particular.

Vegetation compariscios are dependent upon floristics, therefore comparison of an area uith a metallicole filora, uith an area such as Sunbiggin is difficult when elements of the metallisole flora are a major point of the comparison. The ScheuchzerionCaricetea fuscae and the FegturoBrometea classes into which Bellamy et al. (1969) placed the Teesdale vegetation, and into which the Sunbiggin vegetation has been provisionally classified, do not contain any of the continental metallicole groups such as Minuartion_vernae (Ernst 1965) (one specimen of Minuartia verna was recorded at Sunbiggin). However, they do point out that some of the Teesdale rarities, occurring j.n what they call unstable boundary complexes, are referable to continental metalljcole associations. More recently Jones (1973) established the presence of heavy metal associations in the class Violetalia_calaminariae (Oberdorfer, 1970) in Upper Teesdale.

Unfortunately，to add to the difficulties of comparison Dr．Jones has also reclassified the phytosociological taxa．However，the fact that rot all the Teesdale rarities are metalicole species hopefully suggests that the general comparison presented here is not vitiated，in spite of the taxonomic difficulties．

Recherche phytosocijology may，as yet，be unable to answer many questions associated with the Teesdale problem，but a more prosaic view of the Sunbiggin vegetation reveals one fact of some consequence：within yards of the areas utilized in this investigation，other types of vegetation contain sijecies such as Anemone nemorcsa，Oxalis acetosell．a，Thuidium tamariscinum．These woodland relics indicate that Sunbiggin was covered with trees until fairly recent times；palynological examiration of the peat deposits might verify this，and perhaps reveal whether or not Teesdale rarities ever grew at Sunbiggin．

From the foregoing discussion it is concluded that the lack of Teesdale rarities in the extant vegetation cri sunbiggin Fell．can be accounted for by the high productivity of the vogetation，and a recent tree cover； also that most of the difference in productivity between similar vegetation units in Teesdale and Sunbiggin is mainly due to climate． However，the results presented here also suggest tinat ihe very low productivity in some of the Teesdale vegetation may result from an interaction between edaphic and climatic factors．

Manipulation of the microclimate，combined with modern sensitive methods for estimating the heavy metal content and respiration rate of individual plants，could be a Iewarding approach to future Teesdale investigations．

The Teesdale flora is unique, and problematical; the Teesdale combination of climate, elevation, lattitude and metalliferous soil is also unique in the British Isles. When the uniqueness of this ervironmental comhination is fully appreciated the unique feature of the Teesdale flora will, jerhaps, become less problematical.

4. CONCLUDING SUMMARY

Abstract

1. A preliminary phytosucjological survey indicated general similarity between certain types of the vegetation at Widdybank Fell in Upper Teesdale, and parts of Tarin Moor near Sunbiggin, which is located about 17 miles from Teesdale.

Field measurements of C. panicea, C. lepidocarpa and S. caerules suggested that the general productivity of vegetation on Tarn Moor is considerably higher than on metalliferous soil. at Widdybank Fell.
3. Growth rates in the summer of C. lepidocarga, C. panicea, E. laticolium, S._nigricus, and I. pusilla grown in pots at Durham were higher on metalliferous Teesdale soil, indicating that most of the difference in productivity of the vegetation at Teesdale and Sunbiggin is due to climate.
4. There is some evidence that grouth rates of the plants in pois were not higlier on the Teesdale soil in the early part of the season, also growth of barley in pots was greater on metalliferous Teesdale soil in the mild Durham climate, but not in the cold Teesdale climate. These results suggest a possible interaction whereby the nature of the Teesdale soil exaœrbates reduction of growth causer by low temperatures.
5. Experiments with cold frames appear to support the proposition in (4), because slight amelioration of climate caused a greater increase in the grouth of vegetation on metalliferous soils than on non-metalliferous soils.
6. Higher levels of heavy metals in the soil at Teesdale were reflected in the tissues of C. panicea collected in the fiald, but the higher levels of exchangeable 'nutrients' and phosphorus in the Teesdale soil were not; these latter were, for the most part, significantly higher in plants fiom Sunbiggin.
7. Concentrations of both 'nutrients' and heavy metals were greater in plants on Teesdale sail when grown in the milder climate of Durham.
8. Results show that the uptake of 'nutrients' i-ito leaves of barley grown in pots on Teesdale soil in Durham more or less matched the increase in growth; uptake of heavy metals and aluminium did not.
9. When a completely closed cold frame gave rise to a considevable increase in the growth of vegetation on metalliferous soiı at Teesdale, it was found that the concentration of nutrients in vegetation beneath the frame wus the same, or.slightly higher than in the low productivity vegetation outside the frame; in contrast the concentration of aluminium and heavy metals uas was significantly lower in the high productivity vegetation.
10. In all, eight sets of comparative experiments were carried out in which grouth of vegetation in a cold climais was compared with growth in a milder one. The effect of this improved grouth on the concentrations of various elements has been assessed by a ranking procedure. Results of this test show that the 'effective dilution' of aluminium in the above ground tissue is greatest, and that of potassium the least; also that the ! $/$ 'effective dilation' of heavy metals. in general is greater than 'nutrients'.
11. It is pojinted out that certain known facts regarding the respiration of arctic-alpine plants, the mechanism of heavy metal tolerance proposed by Jones (1961), and the resul.ts presented in this thesis, are all quite consistent.
12. It is concluded that the lack of reesdale rarities on Tarn Moor may be due to the high productivity, and a recent tree cover which is indicated by the preserice of woodland relect species in the adjacent communities.
13. It is further concluded. that the conbined presence of arctic-alpine flora of Teesdale is due to a combinat.? on metalliferous soil and adverse climate, which also pobahly helped to prevent the complete closure of the tree canopy during the period wher the fells of Upper Teesdale were wooded.

5. ACKNOUUEDCEMENTS

I wish to express my gratitude to Dr. [.J. Bellamy for his advice and guidance cluring this work. My thanks are also due to the Nature Conservancy staff in Upper Teasdale for their co-operation.

BACKHOUSE, J. and BACKHDISE, J. 1843. An account of a visit to Teesdale in the summer of 1843. Phytologist 1; 892-895

BAUMEISTER, W., [RNST, W. and RUTHER, F. 1967, On sociology and ecology of European heavy metal plant communities. Forschungsber landes Nordrhein westfalen 1803; 7-46.

BEiLAMY D.J. et.al. 1969. Status of the Teesdale rarities. Nature 222; 238-243.

BILLINGS. W.D. 1974. Arctic and alpine vegetation : plant adaptations to colu summer climates. In Arctic Alpine Environments by Ives, J.D., and Barry, R.G. London; 403-473.

BLACK, et.al. 1965. Methods of soil analysis part 2. Agronamy 9. Anerican Society of Agronomy Inc. Wisconsin, U.S.A. 1572 pp.

BROWN, G. 1961. The X-ray identification and crystal structure of the clay mincrals. Minerological Society. London.

BOUYOUCOS, G.J. 1936 Directions for making mechanical analysis of soils by hydrometer method. Soil Sc. 42; 225.-230.

BRAUN-BLANQUET, J. 1961. Pflanzensoziu\&ngie. Springer Verlag.
CALDWELL, Pi.M. (1972). Biologically effective sojar ultraviolet irradiation in the arctic. frct. Alp. Res. 4, 39-43.

CLYMO, R. 1962. An experimental approach to part of the calcicole protilem. J. Ecol. 50: 707-731.

CZARNO WSKI, M.S. HUMPHREYS, F.R. and GENTLE, S.W. (1971). Quantitiative expression of site index in terms E í iortain soil and clamatic characteristics of Pinus radiata plancations in Australia and New Zealand.Ekol. Polska 19. 295-305.

DDYLE, P. et.al. 1973. Trace element content of soils and plants from Selwyn Mountains, Yukon and Northwest Territories. Canadian Jourial of Botany 51; 421-427.

ERNST, W. 1965. Ökologisch-sociologische Untersuchunçan der Schwernmetcilplanzengesellschaften Mitteleuropas under Einschlus der Alpen. Abh. Landesm. Naturk. Mumster., 27 (1); 1-54

ERNST, W. 1960. Ökologisch-Sociologische Untersuchungen an Schwermetall.pflanzengesel schaften Sudfrankreichs und des ostlichen Harzvorlandes. Flora. Abt. B. Bd. 155; 301-318.

ERNST, W. 1968. Der Einfluss der Phosphat-versorgung sowie die Wirkung von ionogensin und chelatisiertem Zink auf die Zink - und Phosphataufnahme einiger Schwerfotallpflanzen. Physiologia Plantarum 21; 323-333.

ERNST, W. i968. Ecological investigations on plant associations in difrerently disturbed heavy metal contaminated. soils of Great Britain. Flora Alat. B. Morphol. Geobot. (Jena) 158; 95-109.

ERNST, W. 1972. Ecophysiological studies on heavy metal plants in Southern Central Africa. Kirkia 8; 125-145.

ERNST, W. and WEINERT, H. 1972. Localization of zinc in the leaves of Silene cucubalus. z. Pilanzenphsiol. 66; 258-264.

GODUIN, H. and. WALTERS, S.M. 196?. The scientific importance of Upper Teesclale. Proc. Bot. Soc. Brit. Isles 6; 348.

GOODALL, D.W. and GREGDRY, F.G. (1947). Chemical compostition of plants as an index of their nutritional stáus. Tech. comm. 1?, Imperial Bureau of Horticillture and Plantation Crups. Aberystwyth 167 pp .

HOWARD-WILLIAMS, C. 1972. Environmental factors controlling the growth of plants on heavy metal soils. Kirkia 3; 91-102.

HOYLE, M.C. 1971. Effects of the chemical environment on yellow-birch root developmert and top growth. Plant and soil 35; 623-633.

JACKSON, U.A. 1967. Physiological effects of soil acidity. Agronomy 12. Soil Acidity and Liming. Ed. Pearson and Adams; 43-124.

JEFFREY, D.W. 1969. The Mineral nutrition of Kobresia and associateu species on Widdybank Fell. Annual Report to the Teesdaie Commitiea.

JEFFREY, D.W. and PIGOTT, C.D. 1973. The response of grasslands on sugar-limestone in Teesdale to application of phusphorus and nitrogen. J. Ecol. 61; 85-92.

JERMY, A.C. and TUTIN, T.G. 1968. British Sedges. Publication of the Botanical Society of the British Isles. 199 pp.

JOHN, M.K. 1972. Extractable phosphorus related to forms of phospini Js and other soil properties. J. Sci. Fd. Agric. 23; 1425-1433.

JOHNSON, C.M. and ULRICH, A. 1959. Anaiytical methods for use in plant analysis. California Agricultural Experimental Station Bulletin 766; 23-77.

JOHNSDN, et.al. 1971. Unique bedrock and soils associated with the Teesdale Flora. Nature 232; 453-456.

JONES. A. 1973. The Phytosociology of Upper Teesdale. Ph.D. Thesis Univarsity of Durham.

JONES, L.H. 1961. Aluminium uptake and toxicity in plants. Plant and Soil 13; 297-310.

KITSON, R.E. and MELLON, M.G. 1944. Colorimetric determination of phosphorus as molyodivanado-phosphoric acid. Industrial and Engineering Chemistry 16; 379-383.

LAGERUEFFF, J.V. 1967. Heavy metal contamination of soils. Americen Assodiation for the Advancement of Science 85; 343-364.

LUNDEEARDH, H. (1951) Leaf Analysis. Hilger and Watts, London 176pp.
MAGISTAD, D.C. 1925. The aluminium content of the soil solution and its relation to soil reaction and plant growth. Soil Science $X X$; 182-225.

MANLEY, G. 1942. Meteorclogical sbservations on Dunn Fell, a mountain station in Northerr: England. Quart. J.f. Met. Snc. 68; 151-162.

MARSHALL, C. (1971) Ecclogical investigation of sume rare plant commurities in the Cow Green area of Upper Teesdeie. Ph.D. Thesis, University of Durham.

OBERDORFER, E. 1970. Pflanzensociologische Exitursions flora fur Suddentschland Llmer, Stuttgert 987 pp.

PIGGOT, D. 1956. The Vegetation of Upper Teesclale in the North: Pennines, J. Ecol. 44; 545-586.

RIELEY, J.D. 1967. Ecology of Carex flacea and Carex paricea. Ph.D. Thesis, University of Durtam.

RUTHER, F. 1967. Vergleichende physiologishe Untersuchungen uber die Resistenz von Schuermettal pflanzen: Protoplasma 64; 399-425.

SIEBERT, P. 1968. Die pflanzensellschaften in Naturschutzgelist
'Pupplinger Au'. Landschaftspflege und Vegetaionskunde Heft i; 75 pp.
SIEGAL, S. (1956). Wonparametric Statistics. McGraw-Hill, New York 3iz pp.
SHIPfELL, 1969. Phytosociology of ealcereous grasslands of the British Isles. •Ph.D. Thesis, University of Durham.

SPARLING, J.H. (1967) The occurrence of Schoenus rigricans L. in blanket bogs II. Experiments on the growth of Shoenus nigricans under contirnlled conditions J. Eccl. 55, 15-31.

TURNER, R.G. et al., R.P.G. 1966. The use of Radiosotopes to investigate heavy metal tolereance in plants. Proceedings of the Symposium on Isotopes and Plant Nutrition and Physiology, 5-9.

TURNER, J. and HEUSTON, U.P. 1970. Stratigraphical and palyrological evidence for the post-glacial environment, and history of the Teesdale flora. Teesdale Symposium, Durham.

VALENTINE, D.H. 1965. Ed. The Natural History of Upper Teesdale. Publication of the Northumberland and Durham Naturalists Trust Ltd. 70 pp.

WAGER, H.G. 1941 . Dn the respiration and carbon assimilation rates of some arctic plants as related to temperature. New Friytol. 40; 1-19;

WALLACE, A. 1963. Some effects of heavy metals or uptake of K and Ca by bush bean plants. In Solute L'ptake by Intact. Plants. Ed. A. Wallace.

WAREN WILSON, J. 1966. The analysis of plant growth and i.ts control in arctic envirormert. Anr. Bot. N.S. 30; 303-402.

WRIGHT, K.E. 1945. Alimirium Toyicity: Micro-chemical tests for irorganice.lly and crganically bound phosporus. Plant fhysiol. 20; 310-312.

WRIMHT, K.F. and DONAHUE, B.A. 1953. Aluminium toxicity studies wi.th radioactive phosphorus. Plant Physiolpgy 28; 674-679.

LIST OF FIGURES

Fig. No.

1 Weights of C. Panicea in the field throughout the growing season.

Wejghts of C. legidocarpa in the field throughout the growing season
beights of S. caerulee in the field throughout the growing season

Growth curves of C. lepidocarpa grown in pots Growth curves of C. panicea grewn in pots Growth ccrves of E. latifolium grown in pots Growth curves of 5 . nigricens grrwn in pots Growth curves of T, pulsilla grewri in pots Teiiperature records during the barley experiment Humidity records during the barlay experiment Rainfall fecords durjng the Larley experiment Growth of C. paricea in Tofieldielalia during the 1974 cold frame experiment.

20 . Humidity records from the metaliferous Seslerio_Mesotromion site used in the 1974 cold frame experiments
. Temperature records from the non-metaliferous Tofieldietalia site used in 1974 cold frame experiment

Humidity records fromthe non-metaliferous Tofieldietalia site used in the 1974 cold frame experiments

Fig. 1 Avc: age weights of individual plants of Carex panicea throughcit growing season on Tofieldietalia

Fig. 2 Average weights of individual plants of Carex lepidocarpa throughout growing season on Tofieldietalia

Fig. 3
Average weights of individuai plants of Sesleria caerulea throughout growing season on Tofieldietalia

Fig. 5 Growth of Carex panicea in pots at Durham

$$
\text { Ts } \mathrm{Ss}
$$

Fig. 4 Growth of Carex lepidocarpa in pots at Durham

Fig. 7 Growth of Schoenus nigricans in pots at Durham

Fig. 8 Growth of Tofieldia pusilla in pots at Durham

Fig. 9 Daily temperature record from Durham, and Teesdale during the Barley pot experiment.

Fig. 10° Daily humidity record from Durham and Teesdale during the Barley pot experiment.

Fig. 11 Daily rainfall record from Durham and Teesdale during the Barley pot experiment.

IN NON-METALLITPROUS SOIL	cover. $y=-3.5694+.00298 x$
	uricov. $y=-1.5964+.00296 x$

IN METAJILIFEROUS SOIL,
cover. $y=-1.6390+.00398 x$
uncov. $y=-1.6072+.00285 x$

Fig.l2 Log of average weights of individual plants of C. panicea throughout growing season on:Tofieldietalia

IN NON \cdot METALLIFEROUS SOIL,

cover. $y=-.3307+.00563 x$
uncov. $y=-.3710+.00474 x$

IN METALLIFEROUS SOIL
cover. $y=-.6723+.00791 x$
uncov. $y=-.2738+.00393 x$

Fig. $13 \begin{aligned} & \text { Log of standing crops of all remainder sp. growing on } \\ & \text { Tofieldietalia }\end{aligned}$ Tofieldietalia

IN NON-METALLIFEROUS SOII,
cover. $y=-1.9163+.00539 x$
uncov. $\mathrm{y}=-1.9001+.00186 \mathrm{x}$

Fig. 14 Log of average weights of individual plants of Sesleria caerulea throughout growing season on Seslerio-Mesobromion
cover. $y=-2.4308+.00263 x$
uncov. $y=-2.4154+.00166 x$

IN MESALIIIFEROUS SOIL
cover. $y=-2.6386+.00482 x$
uncov. $y=-2.6204+.00262 x$

Fig. 15 Log of average weights of individual plants of F. ovina throughout growing season on Seslerio-Mesobromion

[^3]

IN METALLIFEROUS SOIL $\quad \begin{aligned} & \text { cover. } y=-.6288+.00647 x \\ & \\ & \end{aligned}$

Fig. 17 Log of standing crops of all remainder sp. growing on Seslerio-Mesobronion.

```
@-O beneatin cold frame +--+ outside cold frame
```


Fig. 18 Daily temperature record from the metalliferous SeslerioMesobromion site.

๑-O ieneath cold frame
 +--+ outside cold frame

Fig. 19 Daily temperature record from the non-metalliferous Tofieldietalia site.

Fig. 20 Daily humidity and rainiall record from the metalliferous Seslerio-Mesobromion site.

Fig. 21 Daily humidity and rainfall record from the non-metalliferous Tofieldietalia site.

LIST DF PLATES

Plate No.

1. General vieu of study area at Teesdale
2. Result of 1973 cold frame axperiment

3A

3B
4 A
4B Ditto - metalliferous grassland site
$5 A \quad$ Ditto - beneath cold frame nn metalliferous 'flush' si.te
58 Ditto - control area on metalliferous 'flush' site

6A Ditto - beneath cold frame on non-metalliferous 'flush' site

Ditto - control area on non-metalliferous 'flush' site

Ditto - beneath cold frame on metalliferous grassland site

78

BA Ditto - beneath cold frame on non-metalliferous grassland site
8B Ditto - control area on non-metalliferous grassland site

PLATE

FLLATE 3/ 1974 '/'LUUH' JITE MOM-ME FALLIFEROUS

FLATE 94 T970 GRASSLANT IITF WLH-METALLIFEROLS

[^4]

PLATE 5A
METAI LIFEROUS 'FLUSH' BENEATH LOLD FRAME

PLAIt GA NON-METALLIFEROUS 'FLUSH' BENEATH LULU FHAME

PLATE 7A METALLIFEROUS GRASSLAND BENEATH COLD FRAME

PLATE 7B METALLIFEROUS GRASSLAPID CUITROL AREA

FLATE AA MON-METALLTFERDUS GRASSLAND BENEATH CDLD FRAME

PLATE $\ddagger B$ ONETALLIFEROUS GRASSLAND CONTROL AREA

APPENDIX A

SOIL AND PL_ANT ANALYSIS

A. Preparation of plant and soil material for analysis

Plant and soil materiai to be analysed for total cations and phosphorus content was dried in paper bags for 24 hours at $100^{\circ} \mathrm{C}$, and then ground to pass an 8 Oj mesh sieve.

The grinding of plant tissue was carried rist mechanically, and the sail by hand in a pestle and mortar.

Soil to be analysed for exchangeable cations, bicarioonate, extractable phosphate, was prepared in a similar way to the soil for total cations, except that drying touk three days at $30^{\circ} \mathrm{C}$.

B. Total cations in plant and soil material

19. of the material, prepared as described above, was digested with nivic and perchloric acid following the procedure described by Johnson and Ulricht (1959). Cations were estimated by aspirating the diluted and filtered (Whatman No. 42 filter paper) digest directly into a Perkin Elmer 480 atomic absorption spectophotometer.
C. Total phosphate in soil and plant material.

40 inl aliquats of the digest prepared as described above, were mixed with 5 ml of ammonium metavanadate reagent and the colour read at 470 on an Eel flow through spectrophotometer (Kitson \& Melton, 1944).

D. Exchangeable cations in soil

1 g. of soil, prepared as described j.n the first section was shaken with 100 ml normal annonium acetate for an hour, and filtered through whatman No. 42 filter paper. The cations were estimated by atomic absorption speci.rophotometry using a 3 slot burner head because of the high concentration of dissolved solids in the solutions.

E. Available phosphate in soils

Phosperus was extracted with 100 ml sodiun bicarbonaさe by shaking it with 5 g of soil for 30 minutes. 5 ml . of the filtrate (whatman No 40 filter paper) was mixed with ammoniom molybdate and stemmous chloride reagents as described by Black (1965). The colour was read at 660 on ari kel flow thorough spectrophotometer.

F. Moisture in soils

10 g of fine earth sample were dried at $30^{\circ} \mathrm{C}$, then samples of known weight uere placed into weighed silica crucihios, and dried at $105^{\circ} \mathrm{C}$ for 4 hours. After reweighing, the percentage moisture in the soil was calculated as a percentage of the air dry suil. This does not give moisture holding capacity, but as both soils were dried to $30^{\circ} \mathrm{C}$ in the same humidity prior to complete drying, it does give a measure of their relative water holding capacities.

G. Loss on iqnition frrjo soils

The oven dried soil was ignited in a muffle furnace at $800^{\circ} \mathrm{C}$ for 2 hours and reweighed. The percentage loss on ignition was calculated as a percentage of the oven dry soil.

H. Soil texture by mechanical analysis iHydrometer Mothod)

509 of 2 m sieved soil were mixed with water and NaOH in a milk bottle and shaken overnight. Four minutes 48 seconds after transfer to a 1000 ml cylinder the temperature and density of the suspension were recorded in order to obtain an estimate of the percentage sand (international limits). Estimates of the percentage clay were obtained after 2 hours. The percentage silt was found by substraction. Corrections were applied for hydrometer readings and loss on ignition (Bouyoucos, 1936).

I. Soil iualysis for mineral content

50 g of 2 min sieved soil were mixed with water in a milk bottle and sinaken overnight. The clay suspension was carefully emptied into a beaker and placed in the oven at $105^{\circ} \mathrm{C}$ to dry. The dried olay was then ground and used for the identification of the minerals using a PW1130 kilowatt x-ray generator, and x-ray data in the American Service for Testing Materials Index (ASYM ind.). Boehmite standard 10% was used to estimate the armunt of quai iz. (Brown, G. 1961).

APPENDIX B

STATISTICAL METHODS

(a) For the comparison of soil minerals the t-test for equal and unequal size groups was used with significance idicated as follows:

$$
\begin{aligned}
& \text { N.S. }=\text { not statistically significant; *p }<0.1 ; * * p<0.05 ; \\
& * * * p<0.01 ; * * * * p<0.001 .
\end{aligned}
$$

(b) To test growth diffexences of the species in the pot experiments the total leaf length recorded for each pot was transforied into logarithmic form, and the mean \log was taken for each sampling date. The logarithmic transformation was made so that for any period of exponential growth the mean log of total leaf length (y) plotted against the number of days growth (x) would give a straight line; also to stabalise the variance. The model. for the regression equation is $y=a+b x$, the estimate for b is :

$$
\begin{equation*}
b=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sum(x-\bar{x})^{2}} \tag{i}
\end{equation*}
$$

The gradients of each species growing in two types of soil were compared by a t-test, where

for $n_{1}+n_{2}-4$ degrees of freedom where n_{1} and n_{2} are the number of
pairs of observations in each regression; $S_{1}{ }^{2}$ and $S_{2}{ }^{2}$ are the variances due to regressions; they are estimated by :

$$
\begin{equation*}
s^{2}=\frac{\sum(y-\bar{y})^{2}-\frac{\left[\sum(x-\bar{x})(y-\bar{y})\right]^{2}}{\sum(x-\bar{x})^{2}}}{n-2} \tag{3}
\end{equation*}
$$

The formula (2) is a simplified forin of :

$$
\begin{equation*}
t=\frac{b_{1}^{-b_{2}}}{\sqrt{s_{p}^{2}\left(\frac{1}{\sum_{1}(x-\bar{x})^{2}}+\frac{1}{\sum_{2}(x-\bar{x})^{2}}\right)}} \tag{4}
\end{equation*}
$$

$S_{p}^{2}=$ pooled variance of the variances S_{1}^{2} and s_{2}^{2} due to regressions :

$$
\begin{equation*}
s_{p}^{2}=\frac{\left(r_{1}-2\right) s_{1}^{2}+\left(n_{2}-2\right) s_{2}^{2}}{n_{1}+n_{2}-4} \tag{5}
\end{equation*}
$$

Because $n_{1}=n_{2}=n$ the (s) becomes

$$
\begin{equation*}
s_{p}^{2}=\frac{(n-2) \cdot\left(s_{1}^{2}+s_{2}^{2}\right)}{2(n-2)}=\frac{\left(s_{1}^{2}+s_{2}^{2}\right)}{2} \tag{6}
\end{equation*}
$$

Also because $\sum_{1}(x-\bar{x})^{2}=\sum_{2}(x-\bar{x})^{2}=\sum(x-\bar{x})^{2}$. (4) becomes :

(c) To test differences in mineral uptake of the species grown in different soils, analysis of variance for samples of equal or unequal
size was used.

Analysis of variance with samples of equal size

Source of variation Sum of squares Degrees of freedom Mean square Total

$$
\sum \sum x_{i j}^{2}-c
$$

$$
a n-1
$$

Within treatments $\sum \sum x_{i j}-\sum \frac{x_{i}{ }^{2}}{n_{i}}$
a $(n-1)$
s^{2}

Between treatments

$$
\sum \frac{x_{i-}^{2}}{n_{i}}-c
$$

$$
a-1
$$

$a=$ classes; $n=$ observations; $X_{i j}=j$ th observation from the $i t h$ class; $X_{i}=$ class total of $X_{i j} ; \sum X_{i}=$ the grand total; $n_{i}=$ size of the sample in the i th class $; \sum n_{i}=N=$ total size of all samples; $C=\frac{\left(\sum x_{i}\right)^{2}}{\sum n_{i}}$; $F=\frac{S c^{2}}{s^{2}}$ for $(a-1)$ and $a(n-1)$ degreesof freedom.

Analysis of variance with samples of unequal size

Source of variation Sum of squares Degrees of freedom Mean square

Total
$\sum \sum x_{i j}^{2}=C$
$\mathrm{N}-1$
Within treatments $\sum \sum x_{i j}-\sum \frac{x_{i \cdot}}{n_{i}} \quad N-$

Betwəen treatments

$$
\sum \frac{x_{i}{ }^{2}}{n_{i}}-c \quad a-1
$$

S_{c}^{2}

The F ratio $\frac{S_{c}^{2}}{s^{2}}$ has $(a-1)$ and ($N-a$) d.f, the standard error of the difference between the ith and kth class means, with ($N-a$) degrees of freedom is :

$$
\sqrt{s^{2}\left(\frac{1}{n_{i}}+\frac{1}{n_{k}}\right)}
$$

To test the effect of treatments, a comparison of between treatinents mean square with the within treatment mean square (residual) was calculated at the 5% and 1% levels. Where the value of F was significant the difference between means was estimated by using the Least Significant Difference (LSD) with significance indicated in section (a)
(d) In the 1974 cold frame experiment the comparisons of growth wire based on the comparison of the regression lines of the log of individual weigit, or the log of standing crops, on time. The gradients and t-tests calculated as in section (b).
(e) Soil minerals and tissue minerals wヨre compared as in section (c).

Concordance of Rankings

The method makes use of Kendall's coefficient of concordance w. The technique, described in Siegal (1955) is briefly as follows:-

1. Calculate W.

$$
\begin{aligned}
& W=\frac{S}{\frac{1}{12}} K^{2}\left(N^{3}-N\right) \\
& S=\left(R_{j}-\frac{R_{j}}{N}\right)^{2} \\
& K=\text { number of sets to be ranked } \\
& N=\text { number of entities ranked } \\
& R_{j}=\text { sum of ranks for each entity }
\end{aligned}
$$

The null hypothesis is that there is no significant concordance between the ranking. This hypothesis can be tested by calculating as follows :

$$
X^{2}=k(N-1) w
$$

This value is compared with values is a table of χ^{2} for $N-1$ degrees of freedom. If the calculated χ^{2} exceeds the tabulated χ^{2} for any level of significance, that level is the probability of obtaining such a calculated value if the null hypothesis is true, and as such the null hypothesis can be rejected with that lovel of significance.

DATA TADLES IN APPENDIX C

AP1	Chemistry of soil from Sunbiggin and Teesdale
AP2	Characteristics of soil used in pot experiments.
AP3	Chemistry of soil from sites used in 1974. cold frame experiments
AP4	Mineral concentrations in tissues of C. panicea collected in the field.
AP5	Concentrations of certain elements in plant tissues at the end of the pot experiment.
AP6	Concentrations of certain elements in leaves of pot grown barley.
AP7	Concentrations of certain elements in the vegetation at the end of the 1973 cold frame experiment.
AP8	Concentrations of certain elements in the vegetation at the end of the 1974 cold frame experiment.
APg	Weights of C . panicea, C. Lepidocarpa and S. caerulea coliected in the rield.
AP10	Growth data from pot experiment (excluding barley).
APit	Leaf weight of pot grown barley,
AP12	Growth data from Tofieldietalia collected during 1974 cold frame experiment.
AP13	Growth data from Seslerio - Mesobromion vegetation collected during the 1974 cold frame experiment.

Table AP. I
Eschanceable cations and phosphorus in iojieldietalja soil from Teestale and Sunbiggin (mg/g.dry.wt.)

1 \&. air dried soll extracted with 100-mi
NH_{4} acetate

Teesdale
Core No.

	1	2	3	4
Na	.520	.500	.490	.320
ME	1.193	1.033	1.063	.833
Al	.087	.059	.063	.024
K	1.950	2.020	1.530	.840
Ca	86.760	76.860	82.960	75.360
Mn	.290	.247	.228	.185
Fe	.175	.143	.153	.244
Cu	.008	.006	.005	.004
Zn	.444	.399	.389	.274
Cd	-	.010	.009	.006
Pb	.154	.091	.129	.104
F	.007	.006	.009	.009

* Extracted with $0.5 \mathrm{~m} \mathrm{Na} \mathrm{HCO}_{3}$

Sunbigein
Core INo.

Table if. 1 (cont.)

Exchangeable cations and phosphorus in Seslerio-
Mesobromion soil from Teesdale and Sunbiggin (mg/g.dry.wt.)
1 g. air dried soil extracted with $100-\mathrm{ml}$

$$
\mathrm{NH}_{4} \text { acetate }
$$

Teesdale Sunbiggin

Core Ho. Core No.

	1	2	3	4	$\overline{\mathbf{x}}$			1	2	3	4	5	6	$\overline{\mathbf{x}}$		
Na	. 220	. 240	. 240	. 140	. 210	\pm	. 076	. 240	. 240	. 310	. 300	. 310	. 150	. 258	\pm	. 066
Mi_{5}	.463	. 413	. 363	. 393	. 403	\pm	.007	.913	.923	1.083	2.083	1.123	. 893	1.170	\pm	. 481
Al	. 047	. 083	. 277	. 039	. 1111	\pm	.178	.027	. 182	. 043	. 067	. 147	. 225	.115	\pm	. $\mathrm{C85}$
K	. 940	.910	.770	. 720	. 835	\pm	. 169	1.150	1.610	. 680	1.330	.930	1.200	1.158	\pm	. 332
Ca	76.960	81.760	72.160	74.460	76.335	\pm	6.540	45.660	31.060	60.760	32.460	72.460	4.860	1.210	\pm	25.275
Fn	. 087	. 098	.139	. 079	.101	\pm	. 042	. 072	.950	. 018	. 380	. 034	1.310	. 460	\pm	. 576
Fe	. 060	.105	. 342	. 049	.139	\pm	. 218	. 035	.11?	.036	. 028	.097	. 084	. 065	\pm	. 039
Cu	. 004	. 005	. 006	. 004	. 005	\pm	. n 01	. $\mathrm{C04}$.004	. 004	. 004	. 205	. 609	. 005	\pm	. 002
Zn	. 144	. 134	. 229	.139	.176	\pm	. 063	.005	. 055	. 004	. 004	. 011	. 609	. 015	\pm	. 021
Cd	. 006	. 006	. 006	. 005	. 006	\pm	. 001	. CO 2	. 001	.003	. 003	. 002	. CO 2	. 002	\pm	. COL
Pb	. 178	.174	.228	. 144	. 181	\pm	. 055	. 0008	. 008	. 014	. 010	. $\mathrm{C21}$. 004	.Cl1	\pm	. 206
${ }_{7}^{*} P$. 011	. 009	.013	. 014	. 012	\pm	. 003	. 011	. 010	.007	. 009	. 008	. 009	. 009	\pm	. 001

* Extracted with $\mathrm{Na} \mathrm{HCO}_{3}$

Table A. 2
Characteristics of Tofieldietalia soil from Teesdale used in pot culture experiments.
Total cations, total \& extractable \vec{P} (mg/g.dry. wt.), pH.

			le No.			Teesd						
	T1	T2	T3	T4	T'5	T6	T7	T8	T9	x		
Na	. 322	. 358	. 322	. 482	. 478	. 322	. 302	. 292	. 372	. 361	\pm	. 055
${ }^{\mathrm{Mg}}$	1.480	1.600	1.470	1.620	1.590	1.210	1.240	1.410	1.160	1.420	\pm	. 136
A1	23.500	27.900	27.500	28.900	29.700	25.200	25.600	25.900	28.800	27.000	\ddagger	1.577
K	1.170	1.290	1.130	1.230	1.210	3.090	1.050	1.050	1.310	1.170	\ddagger	. 075
Ca	12.700	11.600	10.900	11.900	10.700	10.600	9.900	10.400	10.300	11.000	-	.007
Mn	. 790	1.500	. 950	1.420	1.410	1.610	1.240	. 710	1.190	1.202	\pm	. 246
Fe	23.400	25.000	23.900	27.000	32.700	26.900	26.300	25.000	24.000	26.022	\pm	2.165
Cu	. 023	. 021	. 019	. 022	. 021	. 028	. 026	.020.	. C 26	. 023	\pm	.002
Zn	1.170	1.290	1.400	1.330	1.300	1.210	1.280	1.290	1.320	1.294	\ddagger	. 057
Cd	. 015	. 013	.015	. 016	. 013	. 013	. 015	. 014	. 018	. 015	士	.001
Pb	. 550	. 600	. 630	. 670	. 640	. 650	. 600	. 590	. 620	. 617	\pm	.028
Tot.P	. 375	. 424	. 425	. 467	. 453	. 467	. 410	.396	. 410	. 425	\pm	. 025
- Ext. P	. 010	. 007	. 008	.008	. 008	. 007	. 008	. 010	. 010	. 008	\pm	. 0 Cl 1
pH	6.7	6.8	6.6	6.8	6.6	6.6	6.7	6.7	6.6	$\dot{6} .7$	\pm	0.06

$\%$ moisture, $\%$ loss on ienition and texture ${ }^{*}$ of the above soil

	T1	T2	T3	T4	T5	T6	$T 7$	T8	T9	$\overline{\mathrm{x}}$		
Moist.	4.26	3.85	3.85	4.02	3.85	4.10	4.00	4.21	4.42	4.06	\pm	0.15
l.o.i.	30.05	26.90	26.93	28.29	26.11	28.01	27.31	28.03	28.47	27.78	\pm	0.88
Siand		74.25	71.06		68.77					71.36	\pm	6.79
Silt		25.34	28.19		26.83					26.79	\ddagger	3.52
Clay		0.41	0.75		4.40					1.85	\pm	5.46

[^5]Table AP. 2 (cont.)
Characteristics of Tofieldietalia soil fror Gunbigei:n used in pot experiments.
Total catiors, total \& extractable P ($\mathrm{mg} / E \cdot d r y . w t.), \mathrm{pH}$.
Sunbiggin

Sunbigein												
sample No.												
	Sl	S2	\$3	S4	55	S6	S7	58	S9	\bar{x}		
Na	. 078	. 098	. 082	. 112	. 088	. 088	. 088	. 078	. 072	. 087	\pm	. CO 4
Ng	1.670	1.720	1.730	1.670	1.680	1.570	1.600	1.580	1.720	1.660	\pm	. 0.48
A1	10.300	12.200	11.800	11.000	12.800	8.700	10.900	10.000	8.000	10.633	\mp	1.209
K	1.090	1.210	1.290	1.430	1.110	. 950	.870	1.150	. 970	1.119	\mp	. 135
Ca	5.180	4.640	5.040	8.970	4.020	6.040	4.520	4.850	5.580	5.426	\mp	1.115
Nn	. 420	. 480	. 630	. 500	. 430	. 430	. 470	. 320	. 410	. 454	\pm	. 064
Fe	7.8 CO	9.500	9.600	9.700	10.800	7.900	8.100	7.600	6.700	8.655	+	1.025
Cu	. 015	. 012	. 011	. 014	. 010	. 012	. 015	. 013	. 010	. 012	+	.001
Zn	. 097	. 082	. 099	. 096	. 102	. 130	.098	. 083	.100	. 099	\ddagger	. 010
Cd	. 002	. 002	. 002	. 002	. 003	. 003	. 003	.003	. 002	. 002	\mp	. 000
Pb	. 059	. 056	. 056	. 066	. $051{ }^{\circ}$. 061	. 069	. 0.48	. 052	. 053	\pm	.005
Tot. P	. 163	. 156	. 149	.170	. 142	. 156	. 163	.113	. 120	. 148	\pm	. 015
Ext.P	. 005	. 004	. 005	. 006	. 005	. 007	. 007	.005	. 005	. CO 5	\pm	.000
pII	7.1	7.1	7.3	$7 . ?$	7.3	7.4	7.3	7.4	7.4	7.3	\ddagger	0.09
\% moisture, \% loss on ignition and texture* of the above soil												
	S1	52	S3	S4	S5	S6	57	S8	59			
Moist.	1.47	1.31	1.50	1.59	1.52	1.43	1.55	1.42	1.45	1.47	\pm	0.06
1.0.ị.	8.73	8.26	9.05	9.29	8.35	8.66	9.55	8.42	7.35	8.62	\pm	0.49
Sand		87.03			80.96				60.69	76.22	\mp	34.22
Silt		9.53			12.55				27.58	16.56	\ddagger	23.99
Clay		3.44			6.49				11.73	7.22	\pm	10.4

Table AP. 3 Exchangeable cations in soill from sites used in 1974 cold frame experiment

Magnesium
 (mg/g.d.wt.)

$\begin{aligned} & \text { No N } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Tofieldietalia		Seslerio-Mesobromion	
	metallif.	non-metallif.	metallif.	non-metallif.
1	. 0650	. 1200	. 0700	. 0525
2	. 0625	. 1350	. 0625	. 0600
3	. 0800	. 1325	. 0700	. 0600
4	. 0795	. 1200	.0600	. 0550
5	. 0650	. 1625	. 0550	. 0550
6	. 0650	. 0875	. 0350	. 0550
7	. 0260	. 0900	. 0360	. 0850
8	. 0550	. 1100	. 0525	. 0675
9	. 0305	. 1200	. 0440	. 0725
10	. 0575	. 0700	. 0343	. 0650
11	. 0318	. 0925	. 0365	. 0675
12	. 0245	. 1100	. 0625	. 0675
$\overline{\mathrm{x}}$. 0529	. 1125	. 0515	. 0635

Table AP. 3 (cont.)

M1uminium
 (mg/g.d.wt.)

Table AP. 3 (cont.)

Potassium

(ing/g.d.wt.)

$\begin{aligned} & \text { No } \\ & \stackrel{\text { D}}{\square} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	Tofieldietalia		Seslerio-Mesobromion	
	metallif.	non-metallif.	metallif.	non-metallif.
1	. 0765	. 0790	. 0990	. 0465
2	. 0740	. 0665	. 0865	. 0515
3	. 1215	. 0890	.0940	. 0260
4	.0790	. 0790	. 0565	. 0265
5	. 0765	. 1015	. 0740	. 1415
6	. 0590	. 0840	. 0320	. 0415
7	. 0243	. 0590	. 0790	. 0790
8	. 0590	. 0715	. 0390	. 0390
9	. 0278	. 0815	. 0540	. 0540
10	. 0415	. 0490	. 0270	. 0440
1.1	. 0215	. 0840	. 0440	. 0540
12	. 0138	. 0740	. 0 亿年	. 0515
$\overline{\mathrm{x}}$. 0562	. 0765	. 0633	. 0546

Table AP. 3 (cont.)

$$
\frac{\text { Calcium }}{(m g / g . d . w t .)}
$$

$\begin{aligned} & 00 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Tofieldietalia		Seslerio-Mesobromion	
	metallif.	non-metallif.	metallif.	non-metallif.
1	10.23	3.60	11.13	9.63
2	10.93	5.73	10.73	9.95
3	11.25	4.03	10.43	9.83
4	10.50	3.03	10.85	9.40
5	11.50	4.25	11.50	9.30
6	10.35	3.08	9.48	9.85
7	7.95	3.25	8.55	10.65
8	10.00	3.53	8.73	10.45
9	8.38	3.05	9.58	10.25
10	10.15	2.73	9.05	10.28
11	9.00	3.23	8.83	10.15
12	8.30	3.03	10.68	10.25
$\overline{\mathbf{x}}$	9.88	3.55	9.96	10.00

Table AP. 3 (cont.)

Iron

(mg/g.d.wt.)

号	metallif.	non-metallif.	metallj.f.	non-metallif.
1	.0053	. 0333	. 0040	. 0048
2	. 0513	. 0043	. 0350	. 0105
3	. 0563	. 1550	. 0040	. 0128
4	. 0040	. 1900	. 0023	. 0063
5	. 0093	. 0088	. 0333	. 0023
6	.0055	. 0155	. 0038	. 0105
7	. 0043	. 0198	. 0023	. 0075
8	. 0055	. 0128	. 0208	. 0445
9	. 0023	. 0500	.0030	. 0108
10	. 0043	. 0185	. 0143	. 0215
11	. 0048	. 0108	. 0083	. 0600
12	.0015	. 0090	. 0138	. 0350
$\overline{\mathrm{x}}$. 0129	. 0440	. 0121	. 0189

Table AP. 3 (cont.)

$$
\frac{\text { Manganese }}{(m g / g . d . w t .)}
$$

Table AP. 3 (cont.)

$$
\frac{\text { Zinc }}{(\mathrm{mg} / \mathrm{g} . \mathrm{d} . \mathrm{wt} .)}
$$

Table AP. 3 (cont.)

$$
\frac{\text { Lead }}{(\mathrm{mg} / \mathrm{g} . \mathrm{d} . \mathrm{wt} .)}
$$

Table AP. 3 (cont.)

Extractabie
 Phosphorus
 (mg/g.d.wt.)

Table AP. 4 Element concentration in live leaves and roots of C.ranicen onllecter in Teestabe amb Sunbigin

				Almaniuan		Fot:seriula		Calciun		Iron	
	er	Tees.	Sunb.	Tees.	Sunb.	Tees.	Funls.	'rees.	Eunb.	Teer.	Sun:
	1	. 545	. 720	. 147	. 124	10.15	10.40	4. 77	4.41	. 625	- $34{ }^{5}$
$\stackrel{H}{\square}$	2	.595	.740	.179	. 122	10.65	10.75	5.60	4.85	.730	. 335
\%	3	. 585	. 705	.139	. 113	1.0 .50	10.30	5.07	4.07	.625	. 330
is	4	. 365	. 775	. 183	. 268	10.10	11.00	5.80	5.20	. 8.40	. 585
	5	. 670	.765	. 175	. 232	2.35	10.90	5.15	4.67	.790	-90
	6	. 520	.810	.10?	. 181	9.55	10.95	3.81	5.3)	. 525	$\cdot 50$
	\bar{x}	. 563	.753	. 134	.173	10.05	10.72	5.03	4.76	. 683	. 4


```
AP.4 (cont.)
```



```
Table AP. 5 Concentrations of certain elements
    in plant tissues at the end of the
    pot experiment. (excluding barley)
```


Magnesium

(mg/g.d.wt.)
a) In live leaves

Repl.	C.panicea		C.ledidocrp. E.latifol.				S.nigricans		T.pusilla	
No.	Ts	Ss								
1	1.26	1.24	1.22	. 79	1.24	1.05	1.25	1.85	1.09	1.21
2	1.11	. 41	1.12	. 91	1.02	. 97	1.40	1.65	1. 15	1.15
3	1. 60	1.09	1.25	1.04	1.11	. 95	1.43	1.60	. 96	1.09
4	1.75	1.09	1.05	. 94	1.28	1.00	-	-	-	-
5	2.13	1.21	1.17	. 82	1.51	. 97	-	-	-	-
$\overline{\mathbf{x}}$	1.57	1.01	1.16	. 90	1.23	. 99	1.36	1.70	1.07	1.15

b) In live roots

1	1.09	1.08	1.60	1.74	1.07	1.39	.70	.83	1.18	1.36
2	1.05	1.35	1.39	1.77	1.16	1.33	.68	.83	1.27	1.36
3	1.09	.96	1.39	1.70	.99	1.37	.73	.83	1.15	1.46
4	1.05	1.17	1.48	1.82	1.34	1.26	-	-	-	-
5	1.07	1.39	1.66	1.91	1.16	1.22	-	-	-	-
$\overline{\mathrm{x}}$	1.07	1.19	1.50	1.79	1.14	1.31	.70	.83	1.20	1.39

```
Table AP. }5\mathrm{ (cont.)
```

$$
\frac{\text { Aluminium }}{(\mathrm{mg} / \mathrm{g} . \mathrm{d} \cdot \mathrm{wt} .)}
$$

a) In live leaves

Repl.	C.panicea		C.ledidocrp. E.latifol.				S.nigricans		T.pusilla	
No.	Ts	Ss								
1	. 21	. 66	1.71	1.01	. 19	. 19	. 77	. 18	1.13	1.84
2	. 10	. 10	. 80	1.53	. 33	. 32	. 57	. 10	1.35	. 92
3	. 29	. 38	1.31	1.53	. 31	. 20	. 49	. 08	1.18	. 70
4	. 21	. 23	1.21	. 65	. 36	. 37	-	-	-	-
5	. 22	. 23	1.01	1.02	. 55	. 33	-	-	-	-
$\overline{\mathrm{x}}$. 2.	. 32	1.21	1.15	. 35	. 28	. 61	. 12	1.22	. 15

b) T.n live roots

1	3.04	2.57	2.69	3.25	4.55	3.01	5.47	3.04	7.49	4.90
2	3.22	3.52	1.79	2.75	5.51	2.86	4.30	2.02	8.98	4.92
3	4.13	1.70	2.19	3.69	4.25	3.34	4.75	2.49	5.91	3.49
4	3.62	2.79	3.22	5.61	5.91	2.58	-	-	-	-
5	2.25	2.36	3.95	4.39	6.57	3.36	-	-	-	-
$\overline{\mathbf{x}}$	3.25	2.59	2.77	3.94	5.36	3.03	4.84	2.52	7.46	4.46

Table AP. 5 (cont.)

Potassium

(mg/g.d.wt.)
a) In live leaves

Repl	C. panicea		C.ledidocrp.		E.latifol.		S.nigricans		T.pusilla	
No.	Ts	Ss	Ts	Ss	Ts	Ss	T's	Ss	Ts	Ss
1	8.76	18.45	12.16	11.90	9.27	$10 .+6$	6.38	11.63	6.98	6.67
2	9.10	6.55	12.29	8.00	9.10	9.61	6.63	10.13	7.60	8.22
3	13.52	17.09	11.64	11.51	9.78	8.59	6.13	9.63	3.43	7.60
4	16.07	13.52	12.16	10.34	10.63	8.98	-	-	-	
5	14.88	15.56	12.29	11.25	10.80	9.10	-	-	-	-
$\overline{\mathrm{x}}$	12.47	14.23	12.11	10.60	9.92	9.17	6.38	10.46	6.67	7.5

b) In live roots

1	3.71	3.58	4.62	3.45	5.53	5.92	1.70	3.66	3.75	4.28
2	4.10	3.97	3.84	3.58	4.36	5.92	2.57	3.66	2.67	4.00
3	5.01	3.71	4.49	3.32	3.19	5.40	.87	3.49	3.75	5.05
4	4.49	3.71	4.62	3.97	5.40	5.40	-	-	-	-
5	4.10	3.19	4.62	3.45	3.71	4.10	-	-	-	-
$\overline{\mathbf{x}}$	4.28	3.63	4.44	3.55	4.44	5.35	1.71	3.60	3.39	4.44

Table AP. 5 (cont.)

Calcium

(mg/g.d.wt.)
a) In live leaves

Repl. No.	C.panicea		C.ledidocrp.		E.latifol.		S.nigricans		T.pusilla	
	Ts	Ss								
1	-	8.46	6.89	3.82	8.51	8.68	-	10.89	14.68	14.19
2	-	2.71	-	-	6.22	6.23	8.59	9.22	20.17	-
3	6.66	6.71	6.07	-	7.24	5.91	8.14	8.97	14.81	15.74
4	6.64	5.89	-	5.09	8.22	-	-	-	-	
5	9.14	7.00	6.26	-	7.25	5.79	-	-	-	
$\overline{\mathbf{x}}$	7.48	6.15	6.41	4.46	7.49	6.65	8.37	9.69	16.55	14.9

b) In live roots

1	-	4.40	3.60	3.38	3.75	3.43	-	11.27	7.28	6.93
2	4.52	4.39	2.75	3.86	5.90	4.69	9.38	13.14	7.74	6.13
3	4.47	4.40	3.42	-	5.77	3.70	21.96	11.04	8.02	7.18
4	4.00	4.08	-	4.22	7.06	4.56	-	-	-	-
5	3.56	3.84	-	4.23	5.51	6.15	-	-	-	-
$\overline{\mathrm{x}}$	4.14	4.22	3.26	3.92	5.60	4.51	15.67	11.82	7.68	6.75

Table AP. 5 (cont.)

Iron

(mg/g.d.wt.)
a) In live leaves

Repl. No.	C.panicea		C.ledidocrp. E.latifol.				S.nigricans		T.pusilla	
	Ts	Ss								
1	. 31	. 68	1.49	1.05	. 24	. 33	. 78	. 28	1.02	1.69
2	. 18	. 19	. 75	1.78	. 44	. 48	. 90	. 31	1.73	. 98
3	. 38	. 51	1.30	1.58	. 32	. 27	. 62	. 21	1.1 .4	. 86
4	. 26	. 32	1.01	. 63	. 38	. 35	-	-	-	-
5	. 37	. 34	. 99	1.05	. 68	. 49	-	-	-	-
$\overline{\mathrm{x}}$. 30	. 41	1.11	1.22	. 41	. 38	. 77	. 27	1.30	1.18

b) In live roots

1	3.49	4.39	3.59	3.79	3.34	2.69	4.14	3.48	5.20	4.43
2	7.68	4.81	2.03	3.59	4.68	2.29	4.79	2.43	6.81	4.36
3	4.27	4.01	2.48	3.01	4.00	3.51	6.13	2.58	5.14	3.06
4	4.95	4.60	3.75	4.56	5.84	2.49	-	-	-	-
5	7.02	3.17	3.99	3.47	4.48	2.60	-	-	-	-
$\overline{\mathbf{x}}$	5.48	4.20	3.17	3.68	4.47	2.72	5.02	2.83	5.72	3.95

```
    Zinc
(mg/g.d.wt.)
```

a) In live leaves

Rep1	C.panicea		C.ledidocrp. E.latifol.				S.nigricans		T.pusilla	
No.	Ts	Ss								
1	. 112	. 092	. 107	. 033	. 148	. 037	. 113	. 058	. 130	. 099
2	. 117	. 036	. 088	. 036	. 146	. 061	. 110	. 050	. 102	. 158
3	. 230	. 138	. 133	. 095	. 1.21.	. 141	. 103	. 063	. 146	. 493
4	.175	. 088	. 103	. 036	. 145	. 044	-	-	-	-
5	. 218	. 107	. 103	. 031	. 126	. 046	-	-	-	
$\overline{\mathrm{x}}$. 170	. 092	. 107	. 046	. 137	. 066	. 109	. 057	. 126	. 25

b) In live roots

1	.280	.073	.224	.056	.377	.070	.313	.078	.570	.174
2	.213	.077	.137	.046	.341	.085	.284	.092	.645	.152
3	.282	.059	.161	.056	.351	.065	.274	.068	.446	.130
4	.259	.072	.225	.064	.387	.064	-	-	-	-
5	.581	.108	.298	.060	.426	.061	-	-	-	-
$\overline{\mathrm{x}}$.323	.078	.209	.056	.376	.069	.290	.079	.554	.152

```
'Table AP.5 (cont.)
```


Cadmium

(mg/g.d.wt.)
a) In live leaves

Repl. No.	C.panicea		C.ledidocrp. E.latifol.				S.nigricans		T.pusilla	
	Ts	Ss	Ts	S s	Ts	Ss	Ts	Ss	Ts	Ss
1	. 0027	. 0012	. 0018	. 0005	. 0009	. 0012	. 0018	. 0010	. 0078	. 0034
2	. 0031	. 0009	. 0022	. 0008	. 0009	. 0007	. 0023	. 0013	. 0022.	. 0028
3	. 0036	. 0022	. 0027	. 0005	. 0010	. 0010	. 0015	. 0013	. 0047	. 0019
4	. 0039	. 0019	. 0029	. 0009	. 0007	. 0002	-	-	-	-
5	. 0048	. 0012	. 0030	. 0008	. 0012	. 0032	-	-	-	-
\bar{x}	.0036	. 0015	. 0025	. 0007	. 0009	. 0013	. 0019	.0012	.0049	. 0027

b) In live roots

1	.0125	.0025	.0104	.0017	.0142	.0017	.0048	.0014	.0105	.0028
2	.0086	.0031	.0086	.0014	.0112	.0017	.0065	.0014	.0087	.0023
3	.0098	.0023	.0091	.0017	.0113	.0017	.0031	.0015	.0121	.0022
4	.0125	.0014	.0105	.0025	.0189	.0014	-	-	-	-
5	.0112	.0026	.0130	.0021	.0150	.0013	-	-	-	-
$\overline{\mathbf{x}}$.0109	.0024	.0103	.0019	.0141	.0016	.0048	.0014	.0104	.0026

Table AP. 5 (cont.)

$$
\frac{\text { Lead }}{(\mathrm{mg} / \mathrm{g} . \mathrm{d} . \mathrm{wt} .)}
$$

a) In live leaves

Repl. No.	C.panicea		C.ledidocrp. E.latifol.				S.nigricans		T.pusilla	
	Ts	Ss	I's	Ss	Ts	Ss	Ts	Ss	T's	Ss
1	. 0051	. 0544	. 0572	. 0325	. 0119	.0]1.9	. 0300	. 0100	. 0279	. 0217
2	. 0323	. 0102	. 0793	. 0273	. 0233	. 0017	. 0225	. 0050	. 0186	. 0124
3	. 0068	. 0068	. 0468	. 0221	. 0068	. 0085	. 0225	. 0050	. 0558	. 0093
4	. 0085	. 0170	. 0260	. 0351	. 0119	.2058	-	-	-	-
5	. 0204	. 0119	. 0260	. 0520	. 0153	. 0102	-	-	-	-
$\overline{\mathbf{x}}$. 0146	. 0201	. 0471	. 0338	. 0139	. 0078	. 0250	. 0067	. 0341	. 0145

b) In live roots

1	.0832	.0546	.0910	.0403	.1040	.0208	.1207	.0306	.1705	.0651
2	.0988	.0442	.0480	.0338	.1261	.0273	.1649	.0238	.1736	.0620
3	.0988	.0520	.0936	.0273	.1027	.0234	.1105	.0238	.1426	.1426
4	.1131	.0312	.1183	.0351	.1378	.0182	-	-	-	-
5	.0793	.0260	.1404	.0312	.1222	.0247	-	-	-	-
$\overline{\mathbf{x}}$.0946	.0416	.0983	.0335	.1186	.0229	.1320	.0261	.1622	.0899

Table AP. 5 (cont.)

Phosphorus

(mg/g.d.wt.)
a) In live leaves

Repl. No.	C.panicea		C.ledidocrp. E.latifol.				S.nigricans		T.pusilla	
	Ts	Ss								
1	. 799	1.003	1.235	. 611	. 833	. 833	. 850	. 900	1.364	1.085
2	. 850	1.649	1.066	1.157	. 816	1. 0.0	1.050	. 850	1.767	1.240
3	1.020	. 901	1.105	. 455	. 816	. 867	. 900	. 800	1.395	1.209
4	1.105	. 833	1.144	. 663	1. 156	. 884	-	-	-	-
5	1. . 207	. 850	1.183	. 923	1.309	1.054	-	-	-	-
$\overline{\mathbf{x}}$. 996	1.047	I. 147	.762	. 986	. 932	. 933	. 850	1.509	1.178

b) In live roots

1	1.94	.546	.624	.780	.689	.611	.442	.697	1.271	.961
2	1.95	1.079	.260	.962	.858	.663	.544	.544	1.767	1.054
3	1.92	.858	.507	1.183	.624	.988	.476	.527	1.209	1.550
4	1.30	1.066	.832	.923	.663	.689	-	-	-	-
5	1.57	1.170	1.326	.884	1.209	.871	-	-	-	-
$\overline{\mathbf{x}}$	1.736	.944	.710	.946	.809	.764	.487	.589	1.416	1.188

Table Ap. 6 Concentration of certain elements in leaves of barley at the end of pot experiment

Replato.	Mannesiun (mis.odont.)			
	at Teescala		at Jurian	
	Te	Ss	Ts	Fs
1	1. 4.43	1.55	. 96	-1.15
2	1.61	1.64	1.21	1.21
3	1.61	1.43	1.24	4 l 1.24
4	1.55	1.55	1.27	1.1 .5
5	1.61	1.71	1.15	1.24
6	1.15	1.07	1.32	1.15
7	1.33	1.05	J. 42	1.48
8	1.2 ?	1.1 .9	1.03	1.12
\bar{x}	1.44	1.40	1.20	1.22
		-		
		$\begin{aligned} & \text { Alumin } \\ & \text { (me/c. } \end{aligned}$		
1	. 50	. 43	. 35	. 18
2	. 36	. 17	. 15	.17
3	. 55	. 33	. 41	. 18
4	. 42	. 26	. 37	. 21
5	. 35	. 21	.55	. 29
6	1.08	1.10	. 45	1.03
7	2.02	1.27	. 52	1.22
8	1.57	1.28	. 90	. 75
\bar{x}	. 86	. 63	. 46	- . 50
Fotassiun(ms/e.d.wt.)				
1	18.14	21.55	15.0.4	420.31
2	19.28	24.03	17.j?	2 18.14
3	16.90	16.28	15.97	19.38
4	15.04	20.00	16.90	16.90
5	15.97	21.24	19.33	15.97
6	8.12	7.37	7.68	- 10.35
7	$7 . \mathrm{C} 2$	9.80	7.62	10.53
8	7.97	8.68	6.22	-8.68
$\overline{\mathbf{x}}$	13.57	16.12	13.29	15.03

Table AP. 6 (cont.)

Calciun.
(mg/ty.d.wt.)

Repl. Ho.	at fieesdale		at Durlam	
	Ts	Ss	'l's	Ss
1	9.64	3.48	8.36	8.45
2	10.34	3.79	9.41	9.23
3	9.79	8.79	11.34	?. 21
4	10.28	8.11	9.76	7.52
5	10.07	9.20	8.42	9.04
6	9.80	8.66	9.45	8.48
7	9.90	8.67	9.46	8.49
8	10.00	8.68	9.47	8.50
\bar{x}	9.9	8.67	9.46	8.49

> Iron
> $(m, g / g \cdot d . w t$.

.61	.61	.64	.27
.39	.37	.37	.31
.58	.65	.53	. .29
.59	.49	.42	.31
.49	.54	.66	.35
1.53	1.16	.76	1.37
1.99	1.44	.80	1.31
1.76	1.34	1.76	1.14
.99	.83	.74	.74

Zinc
 (nic/E.d.wt.)

1	.152	.081	.161	.053
2	.130	.081	.105	.056
3	.152	.109	.118	.090
4	.133	.071	.164	.081
5	.155	.065	.164	.105
6	.527	.287	.100	.060
7	.582	.413	.088	.062
8	.572	.365	.142	.063
\bar{x}	.300	.184	.130	.071

Table AP. 6 (cont.)

> Liadmium
> (me/c.d.wt.)

Repl.\%o.	at Tecediale		at Durham	
	T's	Ss	T.	Ss
1	. 0078	. 0003	.6009	. 0003
2	. 0028	.0006	. 0012	. 0003
3	. 0012	.000)	.0003	. 0003
4	. 0006	. 0000	. 0003	. 0000
5	. $\mathrm{ClOg}^{\text {a }}$.60000	. 0006	. 0006
6	. 0097	. 0017	.c015	. 0005
7	. 00018	. 0013	.c013	. 0007
8	. 0042	.0013	. 0013	. 0008
\bar{x}	. 0040	.0009	. 0009	. 0005
	$\begin{aligned} & \text { Leend } \\ & (\operatorname{meg} / E \cdot d . w t .) \end{aligned}$			
1	. 0279	. 0124	. 0136	.rog3
2	. 0279	. 0124	. 0218	. 0124
3	. 0310	. 0124	. 0155	. 0155
4	. 0806	. 0180°	. 0279	. 0124
5	. 0248	. 0341	. 0279	. 0155
6	. 0.533	. 0233	. 0200	. 0250
7	. 0817	. 0333	. 0183	.0167
8	. 0633	. 0333	. 0367	. 0150
$\overline{\mathbf{x}}$. 0488	. C 225	. 0237	.0152

Phosphorus
(mg/g.d.wt.)

1	1.395	1.550	1.736	1.147
2	1.147	1.488	1.426	1.085
3	1.488	1.178	1.0457	1.178
4	1.240	1.023	1.209	1.054
5	1.550	1.209	1.643	.930
6	1.050	. .983	1.483	.850
7	1.333	1.017	1.167	1.217
8	1.950	1.117	1.250	.833
\bar{x}	1.269	1.196	1.421	1.037

TABLEA AP. 7
Concentrations of certain elements in Sesleria-Mesobromion
vegetation fron inside and outoide the cold frames at
Teesdale in 1973
Inside ($\mu \mathrm{g} / \mathrm{g} . \mathrm{d} . \mathrm{wt}$.)
clipned quadrat No.

		2	3	4	5	\bar{x}
Mg	805.0	865.0	845.0	985.0	935.0	887.0 ± 89.6
Al	58.0	62.0	40.0	62.0	46.0	53.6 ± 12.4
Ca	5890.0	7060.0	7870.0	8080.0	7000.0	7180.0 ± 1074.7
Mn	113.5	113.5	206.5	80.5	134.5	129.7 ± 50.3
Fe	157.0	180.0	96.0	234.0	132.0	159.8 ± 64.3
Cu	33.7	46.7	38.7	52.7	32.7	40.9 ± 10.6
Zn	87.7	116.7	75.7	108.7	18.7	93.5 ± 22.6
Cd	0.8	1.7	1.7	1.4	1.8	1.5 ± 0.5
Fb	37	40	57	37	37	41.6 ± 10.8
F	690.0	677.0	828.0	789.0	782.0	753.0 ± 81.9

Outside ($\mu \mathrm{g} / \mathrm{g} . \mathrm{d} . \mathrm{wt}$)

	1	2	3	4	5	\bar{x}
Mg	755.0	685.0	625.0	745.0	855.0	733.0 ± 106.5
Al	176.0	144.0	181.0	274.0	200.0	195.0 ± 60.2
Ca	6340.0	6660.0	6070.0	5990.0	6190.0	6250.0 ± 328.4
Mn	137.5	157.5	138.5	127.5	98.5	131.9 ± 20.7
Fe	327.0	269.0	959.0	349.0	398.0	460.0 ± 350.9
Cu	46.7	95.7	86.7	41.7	106.7	75.5 ± 30.6
Zn	123.7	164.7	122.7	113.7	133.7	131.7 ± 163.5
Cd	2.1	1.9	3.1	1.9	1.9	2.2 ± 0.6
Pb	51	211	77	51	60	$90 . \pm 85.1$
P	789.0	684.0	736.0	809.0	789.0	761.0 ± 63.3

Table AP8 Concentration of certain elements in the vegetation at the end of the 1974 cold frame experiments.

Tofieldietalia

> Magnesium (mg/g.d.wt)

\%	Metalliferous		Non-metalliferous	
	$\begin{aligned} & 5 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 5 \\ & 5 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 0 0 0 0
1	. 560	. 795	. 990	. 875
2	. 505	. 815	. 920	. 870
3	. 625	. 710	. 825	3. 205
4	. 585	. 580	. 700	. 830
5	. 520	. 860	1.035	1.010
6	. 790	. 675	. 825	. 880
7	. 635	. 960	. 865	. 915
8	. 835	. 785	. 785	. 860
9	. 530	. 705	1.005	1.015
10	. 525	. 680	. 825	1.030
11	. 510	. 895	. 845	. 1.015
12	. 590	. 890	. 700	. 855
$\overline{\mathrm{X}}$. 601	. 780	. 861	. 947

Aluminium
(mg/g.d.wt)

Metalifferous
 Non-metalliferous

.047

LSD for any pair of means

p	0.1	0.05	0.01	0.001
LSD	.016	.019	.026	.034

Tofieldietalia

Potassium
(mg/g.d.wt)

Calcium (mg/g.d.wt)

Table AP8 (cont.)

Tofieldietalia

> Iron $(\mathrm{mg} / \mathrm{g} \cdot \mathrm{d} . \mathrm{wt})$

\%	Metalliferous		Non-metalliferous		Metalliferous		Non-metalliferous	
		$\begin{aligned} & 0 \\ & 0 \\ & \text { © } \\ & \text { D } \\ & \text { ¿ } \end{aligned}$	5 5 0 0 0 0 0		$\begin{aligned} & 5 \\ & \vdots \\ & 0 \\ & 0 \\ & \widehat{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		5 0 0 0 0 0 0 0	0 0 6 0 0 0 \square
1	. 133	. 193	. 175	. 145	. 179	. 193	. 408	. 353
2	. 170	. 170	. 155	. 175	. 145	. 149	. 388	. 293
3	.183	. 218	.135	. 130	. 151	. 177	. 263	. 328
4	. 155	. 175	. 170	. 105	. 134	. 123	. 225	. 338
5	. 168	. 148	. 135	. 175	.187	. 141	. 293	.289
6	. 110	. 125	. 155	.180	. 173	. 099	. 283	. 278
7	. 148	. 183	. 165	. 120	. 201	. 186	. 258	. 298
8	. 140	. 160	. 160	. 150	. 172	. 148	. 278	. 318
9	. 123	. 183	.165	. 125	. 167	. 176	. 488	. 308
10	. 115	. 170	. 160	. 160	. 153	. 109	.363	. 363
11	. 173	. 163	. 145	. 140	. 161	. 159	. 313	. 358
12	. 1.50	. 190	. 125	. 130	.137	. 129	. 293	. 290
$\overline{\mathbf{x}}$.147	.173	. 154	. 145	. 163	. 149	. 321	. 318

LSD for any pair of means

p	0.1	0.05	0.01	0.001
LSD	.031	.037	.049	. .064

Table AP8 (cont.)

Tofieldietalia

> Zinc $(\mathrm{mg} / \mathrm{g} \cdot \mathrm{d} . \mathrm{wt})$.

80	Metalliferous		Non-metalliferous		Metalliferous		Non-metalliferous	
	5 0 0 0 0 0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { E } \\ & 0 \\ & 0 \\ & \mathbb{1} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \stackrel{\sim}{0} \end{aligned}$	$\begin{aligned} & 5 \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{\alpha} \\ & \text { N } \\ & \text { م } \end{aligned}$	$\begin{aligned} & \text { E } \\ & \text { 欠 } \\ & 0 \\ & \mathbf{\alpha} \\ & \text { D } \\ & \text { © } \end{aligned}$	
1	. 138	. 178	. 073	. 065	. 0020	. 0025	. 0010	. 0010
2	. 139	. 144	. 076	. 077	. 0013	. 0020	. 0010	. 0010
3	. 127	. 165	. 076	. 069	. 0019	. 0016	. 0009	. 0007
4	. 143	. 138	. 086	. 079	. 0018	. 0020	. 0014	. 0010
5	. 155	. 165	. 080	. 057	. 0023	. 0015	. 0012	. 0008
6	.138	. 129	. 090	. 056	. 0021	. 0020	. 0014	. 0006
7	. 135	. 126	. 070	. 051	. 0029	. 0011	. 0011	.0009
8	. 142	. 129	. 081	. 076	. 0020	. 0018	.0008	. 0013
9	. 14 i.	. 1.63	. 063	. 058	. 0016	. 0016	. 0011	. 0008
10	. 158	. 1.50	. 068	. 081	. 0020	. 0021	. 0008	. 0010
11	. 127	. 128	. 060	. 059	.0015	. 0010	. 0007	. 0009
12	. 156	. 140	. 074	. 071	. 0025	. 0020	. 0010	. 0012
$\overline{\mathbf{x}}$. 142	. 146	. 075	. 067	. 0020	. 0018	. 0010	. 0009

LSD for any pair of means

p	0.1	0.05	0.01	0.001	p	0.1	0.05	0.01	0.001
LSD	.008	.010	.014	.018		LSD	.0002	.0003	.0004
.0005									

Table AP8 (cont.)

Tofieldietalia

> Lead $(\mathrm{mg} / \mathrm{g} \cdot \mathrm{d} . \mathrm{wt})$

0	Metalliferous		Non-metalliferous		Metalliferous		Non-metalliferous	
	$\underline{5}$ 0 0 0 0 م							\circ 0 ¢ ¢ ¢
1	. 0115	. 0300	. 0100	. 0080	. 625	. 705	. 583	. 648
2	. 0170	. 0165	. 0105	. 0160	. 648	. 805	. 515	. 560
3	. 0140	. 0175	. 0025	. 0050	. 650	. 570	. 623	. 580
4	. 0160	. 0150	. 0115	. 0090	. 600	. 665	. 545	. 590
5	. 0140	. 0205	. 0065	. 0065	. 598	. 555	. 663	. 545
6	. 0105	. 0135	. 0095	. 0180	. 678	. 648	. 530	. 480
7	. 0145	. 0140	. 0165	. 0070	. 718	. 620	. 650	. 570
8	. 0170	. 0125	. 0080	. 0150	. 710	. 620	. 583	. 500
9	. 0110	. 0160	. 0085	. 0035	. 630	. 580	. 650	. 608
10	. 0160	. 0145	. 0065	. 0090	. 675	. 713	. 563	. 628
11	. 0140	. 0165	. 0065	. 0100	. 685	. 620	. 740	. 608
12	. 0285	. 0170	. 0075	. 0260	. 660	. 690	. 605	. 580
$\overline{\mathrm{x}}$. 0153	. 0170	. 0087	. 0111	. 656	. 649	. 604	. 575

LSD for any pair of means

p	0.1	0.05	0.01	0.001
LSD	.0034	.0040	.0054	.0070

Phosphorus
(mg/g.d.wt)
Metalliferous Non-metalliferous $\begin{array}{llll}5 & 0 & 5 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & & 0 & 0\end{array}$
.648
.560

580
.590
.545
.480
.570
.500
608
.628
.608
.580
.575

LSD for any pair of means

p	0.1	0.05	0.01	0.001
LSD	.039	.047	.063	.082

Magnesium (mg/g.d.wt)

Aluminium (mg/g.d.wt)

Table AP8 (cont.)

Seslerio-Mesobromion

Potassium (mg/g.d.wt)

	$\begin{aligned} & \text { Potassium } \\ & \text { (mg/g.d.wt) } \end{aligned}$				$\begin{gathered} \text { Calcium } \\ (\mathrm{mg} / \mathrm{g} \cdot \mathrm{~d} . \mathrm{wt}) \end{gathered}$			
\%	Metalliferous		Non-metalliferous		Metalliferous		Non-metalliferous	
$\begin{aligned} & 3 \\ & \vdots \\ & \vdots \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \\ & 0 \end{aligned}$	5 0 0 0 0 0 0 0				$\begin{aligned} & 5 \\ & 5 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			
1	12.90	12.95	8.80	10.90	3.21	3.74	2.51	3.26
2	12.56	11.13	16.00	13.69	6.58	7.33	4.90	5.71
3	12.60	10.05	13.10	1.1 .70	5.92	5.12	6.43	7.73
4	13.07	13.50	14.25	14.50	3.21	4.32	2.40	3.83
5	16.38	13.06	15.75	13.03	7.26	7.45	5.21	6.65
6	11.30	12.25	11.25	12. 15	6.57	6.77	6.48	7.13
7	13.45	12.25	12.30	14.45	3.69	4.46	2.94	4.17
8	16.38	11.69	15.95	13.75	6.56	8. 78	6.07	6.26 .
9	12.80	8.95	12.00	11.60	8.22	5.17	6.43	4.54
10	13.85	11.32	14.50	12.20	3.73	3.55	2.86	4.83
11	15.18	12.75	10.31	14.20	6.59	8.13	5.33	6.33
12	13.00	11.40	13.50	11.65	7.32	6.67	8.43	5.68
13	12.70	9.80	11.45	11.60	4.39	3.98	2.65	3.92
14	15.25	11.60	17.25	14.00	7.91	7.31	5.95	6.59
15	13.35	9.25	13.15	12.00	7.72	6.32	7.03	6.03
16	12.35	12.00	12.75	13.10	2.98	4.06	2.91	4.12
17	13.92	11.95	17.75	14.75	5.90	7.80	4.66	8.05
18	11.20	11.10	14.15	13.15	6.22	6.27	7.53	5.53
$\overline{\mathbf{x}}$	13.46	11.50	13.5	12.91	5.78	5.96	4.98	5.58

LSD for any pair of means

$\begin{array}{lllll}. p & 0.1 & 0.05 & 0.01 & 0.001\end{array}$

LSD $\quad .93 \quad 1.11 \quad 1.47 \quad 1.91$

LSD for any pair of means
$\begin{array}{lllll}p & 0.1 & 0.05 & 0.01 & 0.001\end{array}$

LSD . $94 \quad 1.13 \quad 1.50$
1.95

Seslerio-Mesobromion
Iron
$(\mathrm{mg} / \mathrm{g} \cdot \mathrm{d} . \mathrm{wt})$

Metalliferous Non-metalliferous

1

2	.345	.563	.094	.198
3	.420	.310	.188	.193

4.536 .225 .133 .188

5	.475	.388	.088	.075
6	.485	.355	.253	

7	.751	.235	.168	.473
8	1.488	.313	.098	.156

9	.410	.405	.338
10	.843	.597	.103

$\pm 1.307 .600 .067$. 080

12	.400	.370	.298
13	1.349	.190	.178

. 128
.138
.069 .303 .186 .289 .220
.148 . 110.056 .094 .078
.118 . 115 . 062.119 .137
. 106 . 167 . 271.223 . 279
.183 .130 .058 .108 . 086
.169

LSD for any pair of means
p
$\begin{array}{llll}0.1 & 0.05 & 0.01 & 0.001\end{array}$
LSD . 119 . 142 . 188 . 245

LSD . 044 . 053 . 070.091
LSD for any pair of means
p
0.1
0.05
0.01
0.001
10.05

091

Seslerio-Mesobromion
Zinc
(mg/g.d.wt)

0	Metalliferous		Non-metalliferous		Metalliferous		Non-metalliferous	
	$\begin{aligned} & \text { E } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \text { O } \\ & \text { N } \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	5 5 0 0 0 0 0 0		5 0 0 0 0 0 0	
1	. 070	. 056	. 049	. 045	. 0015	. 0006	. 0005	. 0006
2	. 181	. 144	. 104	. 088	. 0025	. 0020	. 0031	. 0021
3	. 106	. 058	. 065	. 069	. 0023	. 0004	. 0010	. 0011
4	. 117	. 069	. 036	. 042	. 0024	. 0009	. 0006	. 0005
5	. 208	. 126	. 095	. 089	. 0025	. 0015	. 0015	. 0015
6	.143	. 082	. 072	. 067	. 0023 -	. 0008	. 0010	. 0010
7	. 086	. 074	. 043	. 059	. 0011	. 0012	. 0003	. 0004
8	. 148	. 121	. 077	. 084	. 0026	. 0014	. 0021	.0016
9	. 088	. 064	. 071	. 062	. 0013	. 0010	. 0010	. 0008
10	. 100	. 046	. 043	. 056	. 0011	. 0014	. 0003	. 0008
11	. 124	. 144	. 090	. 088	. 0020	. 001.9	. 00.19	.0018
12	. 090	. 063	. 070	. 064	. 0013	. 0008	. 0015	.0009
13	. 102	. 057	. 063	. 035	. 0016	. 0008	. 0004	. 0005
3.4	. 153	. 098	. 119	. 085	. 0025	. 0011	. 0021	. 0020
15	. 102	. 071	. 061	. 039	. 0020	. 0006	. 0010	. 0011
1.6	. 077	. 069	. 036	. 044	. 0010	. 0006	. 0006	. 0006
17	. 156	. 123	. 099	. 103	. 0021	. 0013	. 0026	.0020
18	. 173	. 084	. 066	. 049	. 0028	. 0006	. 0009	. 0011
$\overline{\mathbf{x}}$. 124	. 086	. 070	. 065	. 0019	. 0011	. 0012	. 0011

LSD for any pair of means

\mathbf{p}	0.1	0.05	0.01	0.001
LSD	.0003	.0004	.0005	.0007

Lead
(mg/g.d.wt)

\%	Metalliferous		Non-metalliferous		Metalliferous		Non-metalliferous	
	$\begin{aligned} & 5 \\ & \vdots \\ & 0 \\ & 0 \\ & \hline \\ & \hline \end{aligned}$			$\begin{aligned} & \text { ᄋ} \\ & \stackrel{\circ}{\circ} \\ & \stackrel{0}{\circ} \end{aligned}$	5 \vdots 0 0 0 0 0 0			
1	. 0160	. 0330	. 0195	. 0110	. 705	. 560	. 555	. 525
2	. 0267	. 0750	. 0150	. 0103	. 721	. 825	1.011	. 678
3	. 0275	. 0475	. 0220	. 01.25	. 690	. 558	. 737	. 613
4	. 0160	. 0255	. 0105	. 0155	. 729	. 565	. 780	. 625
5	. 0175	. 0400	. 0163	. 0013	. 928	. 954	. 946	. 773
6	. 0340	. 0550	. 0230	. 0155	. 674	. 640	. 711	. 584
7	. 0184	. 0255	. 0140	. 0140	. 470	. 493	. 645	. 645
8	. 0213	. 0513	. 0105	. 0238	. 895	. 875	. 790	. 805
9	. 0310	. 0540	. 0325	. 0115	. 682	. 451	. 771.	. 671
10	.0146	. 0168	. 0075	. 0165	. 869	. 490	. 790	. 645
1.1	. 0185	. 0575	. 0153	. 0013	. 803	1.089	. 772	. 91.2
12	. 0285	. 0625	. 0345	. 0080	. 755	. 521	. 800	. 648
13	. 0165	. 0225	. 0175	. 0110	. 827	. 438	. 705	. 545
14	. 0322	. 0413	. 0150	. 0088	. 825	. 773	. 991	. 954
15	. 0240	. 0425	. 0300	. 0125	. 769	. 498	. 682	. 708
16	. 0090	. 0240	. 0120	. 0105	. 708	. 480	. 678	. 405
17	. 0261	. 0375	. 0188	. 0113	. 827	. 915	1.044	1.089
18	. 0360	. 0395	. 0350	. 0110	. 674	. 590	. 774	. 766
$\overline{\mathrm{x}}$. 0230	. 0417	. 0194	. 0115	. 753	. 651	. 788	. 700

LSD for any pair of means

p	0.1	0.05	0.01	0.001	p	0.1	0.05	0.01	0.001
LSD	.0056	.0066	.0088	.0114	LSD	.086	.103	.137	.177

Table AP. 9 Weights of individual plants of C. panicea collected in the field at 'reesdale 1973

	March	April	May	June	July	Aug.	Sept.
1	. 0310	. 0476	. 0641	. 0210	. 0758	. 0532	. 0230
2	. 0331	. 0328	. 0324	. 0173	. 0718	. 0548	. 0650
3	. 0852	. 0559	. 0266	. 0152	. 0755	. 1033	. 0540
4	. 0453	. 0477	. 0500	. 0349	. 0651	. 0902	. 0440
5	. 0286	. 0437	. 0587	. 0220	. 0545	. 0615	. 0400
6	. 0181	. 0404	. 0626	. 0128	. 0886	. 0551	.0370
7	. 0240	. 0364	. 0487	. 0366	.025'	. 0828	. 0470
8	. 0520	. 0505	. 0489	.015	. 0217	. 0649	. 0810
9	. 0263	. 0191	. 011.8	. 0246	. 0254	. 0726	. 0550
10	. 0349	.03022	. 0254	. 0112	. 0537	. 1020	. 0550
11	. 0229	. 0303	. 0376	. 0245	. 0093	. 0367	. 0720
12	. 0529	. 0533	. 0536	. 0330	.0252	. 0548	. 0790
13	. 0203	. 0324	. 0445	. 0381	. 0723	. 0417	00900
14	. 0403	. 0520	. 0636	. 0496	. 0806	. 0707	. 0590
15	. 0482	. 0500	. 0517	. 0268	. 0673	. 1166	. 0610
16	. 0327	. 0588	. 0848	. 0465	. 1084	. 0648	. 0340
17	. 0316	. 0428	. 0539	. 0335	. 0531	. 0425	. 0590
18	. 0616	. 0648	. 0679	. 0708	. 0509	. 0400	. 0440
19	. 0282	. 0530	. 0778	. 0423	. 0946	. 0362	. 0680
20			. 0307	. 0422	. 0764	. 0862	.0519
21			. 0842	. 0125	. 0980	. 0701	. 0950
22			. 0760	. 0483	. 0906	. 0535	.0500
23			. 0175	. 0471	. 0390	. 0573	. 0250
24			. 1104	. 0561	. 0272	. 0269	. 0840
25			. 0300	. 0561	. 0329	. 0825	. 0460
26			. 0586	. 0409	. 0360	. 1002	. 0520
27			. 0784	. 0283	. 024.5	. 0794	. 0600
28			. 0499	. 0197	. 0449	. 0339	. 0520
29			. 0324	. 0455	. 0299	. 1006	. 0530
30			. 0422	. 0202	. 0643	. 0731	
31				. 0626	. 0372	. 0460	
32				. 0333	. 0478	. 0570	
33				. 0276	. 0357	. 0775	
34				. 0610	. 0284	. 0375	
35				. 0271	. 0225	. 0818	

Table AP. 9 (cont.)

36		.0174	.0400	.0712
37		.0340	.0130	
38		.0511	.0300	
39		.0603	.0532	
40		.0982		
41		.0867		
42		.0171		
43			.0405	
44			.0425	
45			.0380	
46			.0609	
48			.0780	
49			.0265	

C. panicea at Sunbiggin

	March	April	May	June	July	Aug.	Sept.
1	. 0925	. 0191	. 2906	. 0502	. 1536	. 1018	. 0270
2	. 0826	. 0776	. 0726	. 0833	. 1160	. 1455	. 0350
3	. 0900	.087.4	. 0848	. 0720	. 0530	. 0452	. 0770
4	. 0875	. 1.081	. 1286	. 0558	. 0809	. 0529	. 1120
5	. 2601	. 1803	. 1003	. 1164	. 1269	. 0915	. 0830
6	. 1432	. 1148	. 0864	. 0452	. 0658	. 1186	. 1060
7	. 1482	. 0898	. 0314	. 0284	. 0226	. 0392	. 0350
8	. 0497	. 0871	. 1244	. 0674	. 0388	. 0914	. 1050
9	. 1066	. 1458	. 1850	. 0357	. 0337	. 0856	. 0420
10	. 1038	. 0689	. 0340	. 0465	. 0216	. 1600	. 0820
11	. 0669	. 0427	. 0183	. 0813	. 0321	. 0937	. 0190
12	. 0249	. 0276	. 0303	. 0813	. 0304	. 0532	. 0840
13	. 0738	. 1030	. 1322	. 0768	. 0200	. 0561	. 0450
14	. 1048	. 1549	. 2049	. 0613	. 0695	. 0922	. 1060
15	. 0937	. 0719	. 0499	. 1108	. 0934	. 2587	. 0580
16	. 0332	. 0377	. 0421	. 0818	. 0587	. 1284	. 0.470
17	. 0790	. 2236	. 3681	. 0608	. 0655	. 1611	. 1050
18	. 0994	. 1489	. 1983	. 0611	. 1961	. 1745	. 0670
19	. 0822	. 0890	. 0957	. 1198	. 1489	. 0855	. 0390
20	. 1950	. 1623	. 1296	. 0291	. 1396	. 1293	. 0450
21	. 2119	. 2187	. 2255	. 1427	. 0750	. 0979	. 1280
22	. 0298	. 0598	. 0898	. 0600	. 0841	. 1414	. 0950
23		. 0790	. 0655	. 0994	. 1030	. 0392	. 1210
24		. 2583	. 4340	. 0585	. 0576	. 1880	. 0410
25			. 3726	. 0475	. 0665	. 0537	. 0750
26			. 0676	. 1044	. 1357	. 0568	. 1120
27			. 0995	. 0885	. 0382	. 1500	. 0620
28			. 0304	. 0695		. 1184	. 1180
29			. 0609	. 0947		. 1149	. 1250
30			. 0718	. 0493		. 0346	. 0820
31.			. 0760	. 1049		. 0681	
32			. 1763	. 0520		. 0615	
33			. 0645	. 0377			
34			. 1052	. 0650			.
35			. 1330	. 0950			
36			. 2723	. 0444			

37	.0451
38	.0382
39	.0465
40	.0847
41	.1144
43	.0666
44	.0411
45	.1220
42	.0620

C. Lepidocarpa at Teesdale

	March	April	Hay	June	July	Aug	Sept
1	. 0780	. 0716	. 0652	. 0513	. 0752	. 0213	. 0425
2	. 0785	. 0654	. 0522	. 0711	. 0879	. 0240	. 0335
3	. 0628	. 0626	. 0623	. 0234	. 0579	. 1540	. 0800
4	. 0500	. 0614	. 0728	. 0427	. 0581	. 0652	. 0510
5	. 0818	. 0888	. 0957	. 1066	. 0888	. 0958	. 0530
6	. 0476	. 0816	. 1156	. 0402	. 0804	. 1995	. 0310
7	. 0489	. 1070	. 1650	.029:	. 0613	. 0283	. 0590
8	. 0348	. 0520	. 0691	. 0435	. 0358	. 0995	. 1070
9	. 0753	. 1049	. 1344	. 0383	. 0895	. 0714	. 0480
10	. 0434	. 0436	. 0437	. 0737	. 0800	. 0730	. 0260
11	. 0677	. 0728	. 0778	. 0956	. 0751	. 1910	. 0270
12	. 0717	. 1498	. 2279	. 0167	. 1051	. 1972	. 0840
13	.C542	. 0633	. 0723	. 0649	. 0663	. 0786	.0580
14	. 0323	. 0664	. 1004	. 0451	. 0891	. 1243	. 0640
15	. 0684	. 0954	. 1224	. 0441	. 0847	. 0380	. 0980
16	. 1161	. 1023	. 0884	.0438	. 0669	. 0927	. 0730
17	. 0275	. 0550	. 0824	. 0814	. 1712	. 0591	. 0590
18	. 0475	. 0521	. 0567	. 1118	. 0179	. 0674	. 0880
19	. 0785	.08.3	. 0861	. 0467	. 1379	. 0219	. 0710
20	. 0365	. 0604	. 0842	. 0905	. 1032	. 0411	. 0660
21	. 0375	. 1004	. 1633	. 0492	.1091	. 0738	. 0930
22	. 0725	. 0978	. 1230	. 0536	. 0846	. 0661	. 0540
23	. 0608	. 0554	. 0499	. 0552	. 0934	. 1066	. 0150
24	. 0418	. 0635	. 0852	. 0352	. 1083	. 0701	. 0320
25	. 0759	. 0744	. 0729	. 0749	. 0444	. 0683	. 0730
26	. 0337	. 0522	. 0706	. 1043	. 1176	. 1013	. 0700
27	. 0622	. 1039	. 1455	. 0735	. 1320	. 0889	. 0200
28	. 0875	. 0607	. 0339	. 0318	. 0948	. 0962	. 0790
29	. 0264	. 0391	. 0517	. 1011	. 1124	. 0628	. 1040
30	. 0699	.C621	. 0542	. 0386	. 0794	. 0643	. 0500
31	. 0389	. 0976	. 1562	. 1263	. 0983	. 0703	. 1270
32			. 0234	. 0489	. 0746	. 0603	. 0550
33			. 1052	. 0403	. 0664	. 0516	.0890

34	. 1451	. 1256	. 0239	. 11119	. 0750
35		. 0706	. 0747	. 0845	. 0270
36		. 1138	.1673	. 1316	. 0680
37		. 0338	. 0844	. 1091	. 0280
38		. 0965	. 0388	. 0494	. 0390
39		. 0504		. 0250	. 0590
40		. 0824		. 0458	
41		. 1502		. 0620	
42				. 0216	
43				. 0879	
44	-			. 1137	
45				. 0235	
46				. 0435	
47				. 6997	
48				. 0564	
49				. 0400	
50				. 0764	
51				. 0517	
52				. 0473	
53				. 0567	
54				. 0542	

C. Iepidocarpa at Sunbiggin

	Harch	April	May	June	July	Aug	Sept
1	. 0846	. 1600	. 1154	. 0781	.0900	. 0285	. 0460
2	. 0466	. 6865	. 1263	.1010	. 1487	. 1695	. 1190
3	. 0400	. 1007	. 1614	. 0565	. 1626	. 1332	. 0680
4	. 0852	.0923	. 0993	. 0900	. 0998	. 1299	. 0250
5	. 0847	. 1064	. 1280	. 2448	. 2799	. 0869	. 2120
6	. 0453	. 0617	. 0781	. 2126	. 0482	. 1740	. 0450
7	. 0774	.1673	. 2572	. 0965	. 1975	. 2046	. 0900
8	. 0665	.1093	. 1521	. 1209	. 1497	. 0873	. 1360
9	. 0665	. 0961	.1256	. 0754	. 0873	. 1214	. 0420
10	. 0884	. 1225	. 1565	. 0896	. 0495	. 1040	. 1380
11	. 0819	. 0674	. 0938	. 0916	. 0799	. 1083	. 0970
12	. 1088	.1618	. 2148	. 0995	. 1116	. 1523	. 0820
13	. 0852	. 1738	. 2624	. 0495	. 1104	. 1229	. 0600
14	. 1150	. 1940	. 2729	. 1114	. 0721	. 0407	. 0400
15	. 0900	. 0764	. 0628	. 1803	. 0725	. 0887	. 1030
16	. 1153	.1373	. 1593	. 0583	. 0414	. 0907	. 1630
17	. 0992	. 1041	. 1089	. 0629	. 0321	. 1514	. 1940
18	. 14.37	. 1001	. 0564	. 1294	. 0895	. 0675	. 1120
19	. 3.356	. 1239	. 1121	. 1241	. 0856	. 0865	. 0780
20	. 1085	. 1443	. 1800	. 1376	. 0824	. 0981	. 0770
21	. 0052	. 1045	. 1228	. 1495	. 2177	. 0493	. 0350
22	.0863	. 0740	. 0629	. 1267	. 0994	. 0852	. 0720
23	. 0744	. 0987	. 1229	. 1454	. 0594	. 0836	. 1250
24	. 0663	. 0936	. 1208	. 0936	. 1232	. 1726	. 1840
25	. 0382	. 1296	. 2209	. 0645	. 2511	. 1255	. 2390
26	. 0682	. 1014	. 1346	. 0659	. 0648	. 1202	. 1070
27	. 0343	. 1253	. 2163	. 0698	. 0660	. 1887	. 2050
28			. 1958	. 0625	. 1909	. 0950	. 1500
29			. 1368	. 0740	. 0403	. 0935	. 0500
30			. 1715	. 0453	. 0389	. 2055	. 0400

Table AP. 9 (cont.)

31	. 1228	. 0811.	. 1530	. 1170	. 1190
32	. 0520	. 0664		. 1457	. 1140
33	. 0989	. 1916		. 0685	. 1890
34	. 0606			. 1123	. 1140
35	. 0615			. 1398	. 1000
36	. 0801			. 2671	. 0720
37	. 0643			. 1626	10420
38	. 0846			. 0714	. 2900
39	. 1326			. 0775	. 2820
40	. 2180			. 1904	. 1410
41	. 0882			. 0740	. 2720
42	. 0708			. 1059	
43	. 1614			. 1555	
44	. 0778			. 0429	
45				.1100	
46				. 1015	
47				. 1022	
48				. 1730	
49			.	. 0874	
50				. 1969	

S. caerulea at reesdale

	March	April	May	June	July	Aug	Sept
1	. 0054	. 0069	. 0083	. 0500	. 0318	. 0195	. 0400
2	.0156	. 0204	. 0251	. 0174	. 0337	. 0155	. 0170
3	. 0143	. 0154	. 0164	. 0136	. 0254	. 0139	. 0270
4	. 0318	. 0281	. 0244	. 0398	. 0521	. 0376	. 0240
5	. 0687	.0481	. 0273	. 0537	. 0308	. 0201	. 0230
6	. 0090	. 0067	. 0044	. 022.0	. 0360	. 0249	. 0170
7	. 0330	. 0340	. 0348	. 0280	. 0333	. 0142	. 0410
8	. 0089	.0103	. 0116	. 0216	. 0505	. 0109	. 0110
9	. 0091	. 0218	.0345	. 0261	. 0465	. 0424	. 0100
10	. 0185	. 0316	. 0446	. 0287	. 0633	. 0188	. 0200
11	. 0182	. 0205	. 0227	. 0246	. 0472	. 0379	. 0120
12	. 0161	. 0111	. 0060	. 0085	. 0319	. 0313	. 0240
13	. 0234	. 0237	. 0239	. 03.36	. 0146	. 0157	. 0240
14	. 0139	. 0142	. 0144	. 0268	. 0172	. 0243	. 0300
1.5	.0059	. 0264	. 0468	. 0174	. 0365	. 0405	. 0430
16	. 0186	. 0217	. 0247	.05ぐ	. 0117	. 0197	. 0220
17	. 0157	. 0158	. 0158	. 0231	. 0868	. 0149	. 0200
18	. 0203	. 0205	. 0203	. 0116	. 0327	. 0597	. 0480
19	.0161	. 0336	. 0511	. 0245	. 0600	.0212	.0290
20	. 0137	. 0118	. 0099	. 0155	. 0234	. 0200	. 0240
21	. 0212	. 0336	. 0460	. 0235	. 0364	. 0369	. 0270
22	. 0245	. 0289	. 0332	. 0298	. 0294	. 0512	. 0240
23	. 0088	. 0262	. 0455	. 0570	. 0655	. 0269	. 0550
24	. 0223	. 0236	. 0328	. 0318	. 0453	. 0239	. 0290
25	. 0088	. 0330	. 0170	. 0113	. 0600	. 0516	. 0500
26	. 0108	. 0264	. 0419	. 0170	. 0344	. 0454	. 0290
27		. 0073	. 0091	. 0274	. 0167	. 0182	. 0260
28		. 0183	. 0209	. 0251	. 0326	. 0257	. 0210
29		. 0175	. 0206	. 0235	. 0641	. 0595	. 0690
30		.0203	. 0087	. 0406	. 0236	. 0519	. 0510
31		. 0457	. 0226	. 0332	. 0448	. 0418	. 0400
32		. 0084	. 0077	. 0289	. 0509	. 0143	. 0280
33		. 0298	.0266	. 0237	. 0326	. 0220	. 0160
34		. 0203	. 0317	. 0051	. 0640	. 0254	. 0220
35		. 0239	. 0386	. 0422	. 0425	. 0182	. 0110
36		. 0158	. .0130	. 0265	. 0186	. 0281	. 0450

37	. 0135	. 0347	. 0372	. 0391	. 0210
38	. 0317	. 0206	. 0388	. 0330	. 0420
39	. 0238	. 0132	. 0545	. 0173	. 0280
40	. 0665	. 0685	. 0500	. 0136	. 0110
41	. 0241	. 0242	. 0382	. 0514	. 0200
42	. 0188	. 0173	. 0262	. 0222	
43	. 0164	. 0234	. 0240	. 0195	
44	. 0298	. 0255	. 0224	. 0229	
45	. 0201	. 0285	. 0410	. 0292	
46	. 0261	. 0347	. 0300	. 0333	
47	. 0578	. 0275	. 0320	. 0521	
48	. 0202	. 0311	. 0628	. 0300	
49	. 0347	. 0516	. 0390	. 0335	
50	. 0351	. 0401	. 0520	. 0753	
51	. 0188	.0311	. 0237	. 0353	
52	. 0487	. 0375	. 0414	. 0232	
53	. 0365	. 0171	. 0342	. 0417	
54	. 0478	. 0203	. 0180	. 0680	
55	. 0244	. 0241	. 0148	. 0335	
56	. 0419	. 0248	. 0288	. 0245	
57	. 0519	. 0432	. 042.5	. 0154	
58	. 0154	. 0131	. 0367		
59	. 0140	. 0417			
60	. 0149	. 0603			
61	. 0250	. 0125			
62	. 0260	. 0373			
63	. 0143	. 0315			
64	. 0191	. 0236	.		
65	. 0213	. 0134			
66	. 0243	. 0461			
67	. 0310	. 0489			
68	. 0194	. 0476			
69	. 0077	. 0530			
70	. 0199	. 0338		.	
71	. 0276	. 0216			
72	. 0183	. 0151			
73	. 0101	. 0177			

Table AP. 9 (cont.)

74	.0138	.0238
75	.0127	.0471
76	.0227	.0151
77	.0263	.0577
78	.0571	.0176
79	.0181	.0464
80	.0130	.0294
81	.0188	.0366
82	.0458	.0203
83	.0125	.0211
84	.0212	.0087
85	.0093	.0326
86	.0306	.0097
87	.0280	.0351
88	.0212	.0275
89	.0188	.0605
90	.0142	.0130
94	.0282	.0377
95	.0163	.0430
94	.0234	.0417
9	.0246	.0569
9	.0181	

S. caerulea at Sunbiggin

	March	April	May	June	July	Aug.	Sept.
1	.0336	.0418	.0499	.0246	.0683	.0717	.0260
2	.0130	.0154	.0178	.0164	.0582	.0378	.0190
3	.0169	.0148	.0127	.0330	.0448	.0316	.0440
4	.0098	.0151	.0202	.0161	.0362	.0778	.0310
5	.0160	.0174	.0187	.0373	.0122	.0533	.0400
6	.0125	.0212	.0299	.0315	.0352	.0304	.0340
7	.0084	.0113	.0142	.0415	.0381	.0416	.0300
8	.0382	.0256	.0129	.0500	.0488	.0523	.0530
9	.0350	.0208	.0064	.0721	.1653	.0455	.0320
10	.0227	.0152	.0076	.0301	.0428	.0359	.0200
11	.0376	.0325	.0274	.0218	.0528	.0384	.0190
12	.0640	.0399	.0158	.0318	.0781	.0308	.0300
13	.0211	.0150	.0089	.0241	.0222	.0936	.0300
14	.0115	.0124	.0132	.0317	.039	.0390	.0662

38	. 0130	. 0190	. 0345	. 0738
39		. 0329	. 0386	. 0411
40		. 0336	. 0269	. 0268
41		. 0308	. 0294	. 0788
42		. 0452	. 0831	. 0894
43		. 0523	. 0420	. 0914
44		. 0492	. 0465	. 0610
45		. 0427	. 0712	. 0299
46		. 0122	. 0403	. 0400
47		. 0161	. 031.2	. 0743
48		. 0284	. 0380	. 1330
49		. 0382	. 0349	. 0614
50		. 0286	. 0159	. 0562
51		. 0527	. 0372	. 0900
52		. 0506	. 0359	. 0475
53		. 0364	. 0213	. 0378
54		. 0266	. 0212	. 0360
55		. 0140	. 0394	. 0613
56		. 0181	. 0287	. 0263
57		. 0167	. 0287	. 0400
58		. 0195	. 0363	. 0419
59		. 0196	. 0256	. 0764
60		. 0170	. 0288	. 0596
61		. 0351	. 0254	. 0468
62		. 0163	. 0315	. 0570
63		. 0226	. 0397	. 0540
64		. 0137	. 0382	. 0478
65		. 0299	. 0485	. 0648
66		. 0240	. 0410	. 0442
67		. 0326	. 0237	. 0363
68		. 0482	. 0664	. 0248
69		. 0389	. 0548	. 0300
70		. 0377	. 0247	
71		. 0301	. 0521	
72		. 0251	. 0427	
73	.	. 0470		
74		. 0331		
75		. 0384		
76		. 0244		

cont/

```
l.l./t. = live leaf length/tiller
\sum = total live leaf length
t.n. = tiller no.
P. = pot no.
T = Teesdale Tofieldietalia soil
S = Sunbiggin Tofieluietalia soil
```

Table Aplo (cont.) C. lepidocarpa

	$\begin{aligned} & .2 .73 . \\ & 1 . / t \end{aligned}$	16.5 1.1	5.73 .$/$ t.				.73.				$\begin{aligned} & 5.6 .73 . \\ & 1 . / t . \\ & \hline \end{aligned}$				$\begin{aligned} & 7.73 . \\ & 1 . / t_{0} \end{aligned}$				$\begin{gathered} 73 . \\ \hline \text { t. } \\ \hline \end{gathered}$			$\begin{aligned} & 25.8 .73 . \\ & 1.1 . / t . \\ & \hline \end{aligned}$		
P tm	1	1	2	3	Σ	1	2	$3 \quad \sum$																
T'1	21.0	37.5			37.5	42.0			42.6	37.0	11.5		48.5	31.5	25.0		56.5	21.5	33.0		54.5	7.5	50.0	57.5
T3	21.5	27.0			27.0	31.5			31.5	31.0	12.0	: :.	43.0	29.0	30.0		59.0	23.0	40.5		63.5	6.5	60.5	67.0
T5	19.5	44.5	11.5		56.0	45.0	19.0		64.0	35.0	31.5		66.5	29.0	47.0		76.0	25.5	65.0		90.5	11.5	79.5	3.094 .0
T7	26.0	36.0			36.0	38.5	4.0		42.5	37.5	16.5		54.0	30.0	32.0		63.0	14.0	45.0		59.0		54.0	60.0
T9	31.5	49.5			49.5	58.5	3.0	3.0	64.5	53.5	10.0	9.5	73.0	40.1	20.5	17.0	77.5	31.0	29.5	24.0	84.5	7.0	43.0	25.075 .0
T12	24.0	43.0			43.0	46.0	5.5		51.5	37.0	14.5		51.5	26.5	26.5		53.9	16.5	37.5		54.0	8.0	47.5	55.5
T14	34.0	41.0	2.5	6.0	49.5	49.5	12.0	-	61.5	37.0	$24 \cdot 5$	- -	61.5	32.0	38.5	-	70.5	37.0	58.5	-	95.5	20.0	61.0	9.590 .5
T16	23.5	44.0			44.0	49.5			49.5	43.5			43.5	38.5	14.5		53.0	20.0	24.0		4.4 .0	6.5	28.0	34.5
T18	25.5	40.5	3.0		43.5	43.0	9.0		52.0	34.0	15.0		47.0	29.0	22.0		51.0	14.0	30.0		44.0	5.5	32.5	38.0
T20	13.0	9.5			9.5	10.5			10.5	9.5	1.5		11.0	9.5	9.0		18.5		17.5		27.0	3.5	25.5	29.0
T21	31.5	23.0			23.0	34.5	3.0		37.5	35.0	9.5		44.5	25.0	18.5		43.5	25.0	29.0		54.0	10.0	34.5	44.5
T23	29.5	63.0	11.5	5.5	80.0	65.0	20.0		85.0	51.0	30.0	3.0	84.0	37.0	35.5		72.5	24.5	64.5		89.0	10.5	57.5	78.0
T25	25.5	55.0			55.0	51.0	4.0	8.5	63.5	37.0	19.5	10.5	69.0	23.0	30.5	12.5	66.0	17.0	44.0	13.0	74.C	8.0	$58 . C$	11.577 .5
T27	32.0	51.0			51.0	53.0	5.0		58.0	38.0	17.0		55.0	30.5	29.0		59.5	17.0	36.0		53.C	10.0	48.5	58.5
T29	22.5	10.5		-	10.5	14.5			14.5	25.5	2.5		28.0	24.5	13.0		37.5	23.5	26.0		49.5	14.5	40.0	54.5
\bar{x}	25.36				41.00				46.53				52.13				57.06				62.40			60.93
S2	17.0	37.0			37.0	28.0			28.0	32.5			32.5	16.5			16.5	12.0			12.0	4.0		4.0
S4	23.0	31.0			31.0	43.0			43.0	49.0			49.0	57.0			57.0	60.5			6 C .5	54.0		54.0
S5	27.5	28.0	6.5		34.5	$3{ }^{5} .5$	10.5		46.0	31.5	- 22.5		54.0	17.5	35.0		52.5	9.0	42.5		51.5	-	55.0	55.0
\$8	15.5	30.0			30.C	34.0			34.0	29.0	2.0		31.0	23.5	6.0		29.7	14.0	12.5		26.5	3.5	15.5	2 C .0
S10	20.0	40.0	5.5		45.5	39.5	8.5		48.0	24.5	16.5		41.0	15.0	24.5		39.5		27.5		35.5	2.0	28.0	30.0
S11	21.0	48.5			48.5	32.5			32.5	35.5	4.0		39.5	28.5	13.5		42.0	18.0	21.0		39.0	3.5	34.0	37.5
S13	29.0	49.C	1.5		50.5	54.5	2.5	3.5	60.5	39.5	11.5	5.5	56.5	25.5	19.5	6.0	51.0	11.0	23.0	5.0	39.0	4.0	31.0	35.0
S15	26.5	37.5			37.5	46.0			46.0	38.0	7.0	1.5	46.5	32.5	18.0	-	50.5	24.0	25.0	-	49.0	8.5	32.5	- 41.0
S17	31.0	70.0	13.5		83.5	66.0	25.5		91.5	43.0	36.5		79.5	27.0	47.0		74.0	7.5	59.0		66.5	-	51.5	54.5
519	24.5	50.5	1.0		51.5	51.0	$4 \cdot 5$		55.5	34.5	10.0		44.5	21.5	15.5		37.0	12.0	23.0		35.0	1.5	25.0.	26.5
S22	28.0	51.0			51.0	48.0	6.5		54.5	42.0	15.0		57.0	23.0	24.0		47.0	13.0	30.5		43.5	3.0	35.5	36.5
S24	21.0	38.5	20.5		59.0	39.0	22.5		61.5	31.5	19.0		50.5	26.0	18.5		44.5	11.0	$14 \cdot 5$		25.5	-	7.0	7.0
S26	15.0	. 35.0			35.0	28.5			28.5	22.0			22.0	11.5			11.5	7.0			7.0	2.0		2.0
S28	19.0	23.5			23.0	27.5			27.5	33.0			33.0	38.5			38.5	44.5			44.5	42.5		42.5
S30	14.0	34.5			34.5	30.5			30.5	24.0			24.0	19.0			19.0	10.5			10.5	3.5	2.0	5.5
$\overline{\boldsymbol{x}}$	22.13				43.46				45.83				44.63				40.60				36.36			30.00

'l'able APlo (cont.) C. Panicea

3122	11.0	20.0 7.0	35.0	37.512 .0	49.5
S124	1.0	6.09 .5	15.5	3.515 .0	18.5
5126	13.0	18.013 .5	31.5	20.021 .0	41.0
S128	7.0	16.514 .5	31.0	17.523 .5	41.0
5130	-	$\begin{array}{llll}13.0 & 8.5 & 4.5\end{array}$	26.0	$25.0 \quad 15.510 .0$	50.5
S131	10.0	:1.0 5.5	16.5	12.511 .5	24.0
S133	15.0	29.6	29.0	35.0	35.0
S135	18.0	27.514 .0	41.5	31.518 .0	49.5
S137	20.0	$3.0613 .0 \quad 6.0$	54.0	$29.0 \quad 20.011 .0$	60.0
S139	14.0	23.088	31.5	16.014 .5	30.5
S142	15.0	$23.5 \quad 4.0 \quad 3.5$	31.0	27.588 .53 .0	39.0
S144	8.0	21.54 .5	26.0	$21.0 \quad 5.0$	26.0
S146	16.0	35.513 .0	48.5	28.522 .5	51.0
S148	4.0	19.53 .5	23.0	28.514 .5	43.0
S150	-	11.512 .5	24.0	10.516 .5	27.0
$\overline{\bar{x}}$	11.69		30.93		39.03

Table APlO (cont.) Eriophorum latifolium

	$\begin{aligned} & 2.2 .73 . \\ & 1.1 . / 4 \end{aligned}$	$\begin{aligned} & 17.5 .73 . \\ & 1.1 . / \mathrm{t} . \\ & \hline \end{aligned}$	$\begin{aligned} & 2.6 .73 . \\ & 1.1 .1 \mathrm{t} . \\ & \hline \end{aligned}$	$\begin{aligned} & 17.6 .73 . \\ & \text { 1.1./t. } \end{aligned}$	$\begin{aligned} & 2.7 .73 . \\ & 1.1 . / t \\ & \hline \end{aligned}$	$\begin{aligned} & 17.7 .73 . \\ & 1.1 . / \mathrm{t} \\ & \hline \end{aligned}$	$\begin{aligned} & 25.8 .73 . \\ & 1.1 . / t . \\ & \hline \end{aligned}$
p t.n.	1	1	1	1	1	1	1
q:62	7.0						
T64	9.0	6.0	7.5	9.5	12.0	20.0	32.5
T'66	34.0	31.0	32.5	39.5	45.0	55.5	69.0
T68	6.0						
T70	17.0	5.0	10.5	15.5	20.5	27.0	35.0
T71							
T73	5.0	2.5	1.5	2.0			
175	9.0						
T77	5.0						
T'79	6.0						
T82	8.0						
T84			-				
'186	11.0						
T88	19.0			3.0	3.5		4:5
T90	4.0						
\bar{x}	10.76	11.12	13.00	13.90	20.25	34.16	35.25

S61	20.0	23.0	27.0	37.0	53.0	81.0	97.5
S63	18.0	19.5	25.0	31.5	40.5	43.5	57.5
S65	17.0	13.5	17.0	22.5	30.5	37.0	51.5
S67	12.0	4.0	7.5	12.0	16.0	21.0	25.0
S69	32.0	8.5	12.0	24.5	37.5	46.5	61.0
S72	24.0	9.0	13.5	16.5	22.0	26.0	30.5
S74	5.0	18.0	23.5	27.0	30.0	38.5	51.5
S76	12.0		2.0	2.0			
S78	16.0	12.5	21.5	30.5	49.0	54.0	91.0
S80	20.0	13.5	18.0	27.0	31.0	36.5	51.5
S81	24.0	15.5	27.0	31.0	43.5	50.0	60.0
S83	12.0	2.5					
S85	16.0	23.0	27.5	35.5	35.0	49.0	77.5
S87	19.0	20.0	23.0	28.5	36.0	45.5	60.5
S89	15.0	17.0	22.5	29.0	34.0	43.0	53.5
\bar{x}	17.46	14.25	19.07	25.32	35.23	43.96	59.11

Table APio (cont.) tofieldia pusilla

	.2.73. $.1 . / t$.	16.5 .73. $1.1 . / t_{0}$		$\begin{aligned} & 1.6 .73 . \\ & 1.1 . / t . \end{aligned}$				$\begin{aligned} & 17.6 .73 . \\ & 1.1 . / t . \end{aligned}$				$\begin{aligned} & 2.7 .73 . \\ & 1.1 . / t . \end{aligned}$				$\begin{aligned} & 17.7 .73 . \\ & 1.1 . / t . \end{aligned}$				$\begin{aligned} & 25.8 .73 . \\ & 1.1 . / t . \end{aligned}$			
P En	1	12	\sum	1	2	3	\sum	1	2	3	\sum	1	2	3	Σ	1	2	3	\sum	1	2	3	Σ
r'91	14.0	18.0		7.5			7.5	5.0			5.0	4.5			4.5	4.0			4.6				
T93	24.0	22.5		21.0			21.0	19.0			19.0	18.5			18.5	17.0			17.0	18.5			18.5
T95	14.0	8.0		10.0			10.0	5.5			5.5	2.5			2.5								
T97	25.0	25.0		21.0			21.0	22.0			22.0	19.5			19.5	19.5			19.5				
T99	26.0	31.5		36.0			36.0	42.5			42.5	41.0			41.0	53.0			53.0	44.5			44.5
T102	27.0	22.0		21.0			21.0	19.0			19.0	17.0			17.0	18.5			18.5	8.5			8.5
T104	20.0	6.5		6.5			6.5	5.0			5.0	2.5			2.5								
T106	14.0	13.0		13.5			13.5	10.0			10.0	7.5			7.5	5.5			5.5	7.0			7.0
T108	16.0	18.0		27.5			27.5	21.5			21.5	21.5			21.5	20.0			20.0				
T110	24.0	22.5		21.5			21.5	21.5			21.5	21.0			21.0	18.5			18.5				
T111	23.0	23.5		23.5	2.0		25.5	24.0	1.5		25.5	22.5	4.0		26.5	22.5	5.5		28.0	22.0	7.0		29.0
T113	34.0	8.0		3.0			3.0	2.0			2.0	2.0			2.0								
T195	12.0	13.5		13.5			13.5	14.5			14.5	19.5			19.5	31.5			31.5	41.0			41.0
T117	18.0	18.5		18.0			18.0	17.5			17.5	18.0			18.0	17.0			17.0	16.5			16.5
T119	11.0	16.5		9.0			9.0																
$\overline{\mathbf{x}}$	20.13	17.80					16.96				16.46				15.82				21.13				23.57
S92	10.0	12.5	12.5	9.0			9.0	9.0			9.0	6.0			6.0								
594	20.0	21.5	21.5	$17 . . C$	4.5		21.5	18.5	4.5		23.0	18.0	7.5		25.5	19.0	7.0		26.0	21.0	15.0		36.0
S96	22.0	29.5	29.5	31.5			31.5	34.5			34.5	34.5			34.5	36.0			36.0	42.0			42.0
S98	23.0	32.5	32.5	29.0			29.0	29.0			29.0	25.0			25.0	24.5			21.5				
S100	31.0	35.5	35.5	37.0			37.0	43.0			43.0	48.0			48.0	44.5			44.5	54.0			54.0
S101	24.0	21.5	21.5	22.5			22.5	20.0			20.0	19.5			19.5	21.0			21.0	21.5			21.5
S103	30.0	32.0	32.0	31.5			31.5	27.5			27.5	25.5			25.5	23.5			23.5		18.5		18.5
S105	35.0	37.0	37.0	43.0			43.0	38.0			38.0	42.5			42.5	43.0			43.0	40.0			40.0
S107	17.0	19.0	19.0	18.0			18.0	20.0			20.0	21.0			21.0	30.0			30.0	27.0			27.0
S109	21.0	24.0	24.0	22.0			22.0	20.5			20.5	17.5			17.5	17.5			17.5	10.0			10.0
S112	24.0	30.0	30.0	33.0			33.0	29.5			29.5	25.5		-	25.5	27.5			27.5	18.0			18.0
S114	19.0	20.5	20.5	24.0	2.0		26.0	20.5	2.0		22.5	16.5	2.0		18.5	17.5	2.5		20.0		3.5		3.5
S116	34.0	9.5	9.5	7.5			7.5	6.5			6.5												
S118	45.0	37.512 .510 .5	60.5	39.0	12.5	11.0	62.5	4.7 .0	15.0	10.0	70.0	51.5	16.0	12.0	79.5	50.5	14.5	11.0	76.0	49.5	12.5	10.0	72.0
S120	13.0	16.5	16.5	15.0			:5.0	$1: 0$			17.1:	21.0			21.0	25.0			25.0	20.0			20.0
$\overline{\bar{x}}$	24.53		26.8				27.26				27.33				29.25				31.65				30.20

TABLE AP. 11 Leaf biomass of Barley grown at leesdale and Jurhan; in Teesdale soi.l (f's), in Sumbigoin soil (Ss). ($2 / \mathrm{pot}$)

Repl.Ho.	at I'eesdale	at Durham		
	Ts	Ss	Ts	Ss
1	.0488	.0429	.0446	.0584
2	.0330	.0542	.0433	.0357
3	.0504	.0326	.0442	.0494
4	.0497	.0208	.0620	.0267
5	.0686	.0339	.0216	.0497
6	.0397	.0403	.0269	.0503
7	.0424	.0398	.0352	.0312
8	.0637	.0662	.0376	.0664
9	.0511	.0412	.0392	.0447
10	.0590	.0289	.0650	.0366
11	.0575	.0325	.0597	.0418
17	.0466	.0441	.0564	.0457
13	.0576	.0414	.0358	.0419
14	.0382	.0641	.0523	.0627
15	.0846	.0385	.0334	.0426
16	.0432	.0567	.2004	.0548
17	.0385	.0551	.3997	.0458
18	.0405	.0459	.3094	.0423
19	.0306	.0399	.0627	.0424
20	.0421	.0391	.0584	.0423
21	.0599	.0615	.0279	.0714
22	.0422	.0358	.0403	.0580
23	.0426	.0488	.0343	.0588
24	.0307	.0431	.0388	.0481
25	.0581	.0519	.0222	.0478
\mathbf{x}	.0488	.0440	.0741	.0478

L.S.S. between any pair of moanc
p
L.S.D.
0.1
0.05
0.01
0.001
0.034
0.045

Carex panicea

Repl.No.	Sampling dates							
	1／5	18／5	6／6	22／6	8／7	23／7	7／8	21／8
1	． 0228	－	． 0179	． 0202	． 0249	． 0274	． 0356	． 0499
号 2	． 0458	． 0364	． 0191	． 024 ？	． 0297	． 0322	． 0417	． 0392
¢ 3	． 0136	－	． 0288	． 0265	． 0320	． 0235	． 0365	． 0465
桨 ${ }_{\text {¢ }}$	－	． 0215	． 0501	． 0378	． 0254	． 0283	． 0509	． 0433
最 5	． 0236	． 0305	． 0328	． 0284	． 0335	． 0405	． 0405	． 0505
䍐 6	． 0260	． 0417	． 2296	． 0352	． 0196	． 0219	． 0480	． 0381
$\underset{\sim}{\underset{\sim}{\oplus}} \underset{\sim}{\sim}$	． 0264	． 0325	． 0297	． 0287	． 0275	． 0289	． 0422	． 0445
$\stackrel{\circ}{6}$	． 0033	． 0718	． 0525	． 0212	． 0658	． 0418	． 0411	． 0422
\bigcirc	－	． 0862	． 0235	． 0563	． 0462	． 0322	． 0359	． 0400
$\stackrel{\text {－3 }}{\sim}$	． 0387	－	． 0131	． 0316	． 0389	． 0235	． 0250	． 0458
¢ 4	． 0115	－	－	． 0501	． 0263	． 0283	． 0336	． 0626
\％ 5	－	． 0159	－	． 0113	． 0158	． 0405	． 0327	． 0673
6	． 0922	． 0295	． 0259	． 0077	． 0367	． 0219	． 0626	． 0689
$\overline{\mathrm{x}}$	． 0364	． 0508	． 0287	． 0.297	． 0382	． 0313	． 0385	． 0544
1.	． 0395	． 0273	． 0265	． 0415	． 0323	． 0428	． 0460	． 0426
5	． 0585	． 0230	． 0255	． 0285	． 0450	． 0430	． 0370	． 0425
¢ 3	． 0114	． 0257	． 0257	． 0321	． 0269	． 0353	． 0294	． 0456
$\stackrel{\text { ® }}{ }$	． 0319	． 0155	． 0124	． 0324	． 0332	． 0345	． 0396	． 0375
$\square 5$	． 0179	． 0303	． 0167	． 0385	． 0349	． 0281	． 0576	． 0344
16	． 0203	． 0104	． 0286	．0357	． 0233	． 0226	． 0363	． 0406
最	． 0299	． 0220	． 0226	． 03.48	． 0326	． 0344	． 0410	． 0405
$\stackrel{1}{\square}$	． 0403	． 0169	． 0342	． 0294	． 0258	． 0367	． 0521	． 0524
\％ 2	． 0371	． 0328	． 0375	． 0524	． 0317	． 0410	． 0520	． 0270
${ }_{\square}^{\circ}{ }_{5}{ }^{\circ}$	． 0286	． 0266	． 0195	． 0286	． 0590	． 0396	． 0367	． 0672
\bigcirc	． 0190	． 0172	． 0234	． 0170	． 0395	． 0377	． 0563	． 0369
永 5	． 0187	． 0212	． 0293	． 0320	． 0466	． 0202	． 0512	． 0344
6	． 0124	． 0226	． 0187	． 0230	． 0304	． 0452	． 0368	． 0372
$\overline{\mathbf{x}}$	． 0260	． 0229	． 0271	． 0304	． 0388	． 0367	． 0475	． 0425

Remainder sp．
Standing crops（ $\varepsilon . / \mathrm{dm}^{2}$ ）

$\begin{aligned} & \text { Rep1 } \\ & \text { No. } \end{aligned}$		Sampling dates							
		1／5	18／5	6／6	22／6	8／7	23／7	7／8	21／8
	1	． 1478	． 2570	． 5884	． 5733	． 7152	． 6928	． 8861	1.9063
5	2	． 3575	． 5195	． 5842	． 5231	． 7924	． 5638	1.3951	1.4925
$\stackrel{\circ}{8}$	3	． 0420	． 5509	． 5137	． 5370	． 2478	． 8088	． 9148	． 5691
9	4	． 2908	． 5820	． 9167	． 7781	． 6307	． 9144	． 5861	1.4681
${ }^{\circ}$	5	． 3370	． 4079	． 4796	． 7670	． 5180	1.5431	． 9450	1.2457
$\stackrel{\square}{0}$	6	． 3362	． 3561	． 3422	． 9286	． 6950	1.1626	1.3127	． 4491
$\stackrel{\sim}{*}$	$\overline{\mathrm{x}}$	． 2516	． 4456	． 5708	． 6845	． 5998	． 9476	1.0066	1.1885
－	1	． 1490	． 4402	． 3679	． 3014	． 4447	． 8552	． 4203	． 8911
\square	2	． 0311	． 6500	． 3436	． 3471	． 1885	1.1561	． 6171	． 9147
웅	3	． 0810	． 2529	． 2935	． 3739	． 5131	． 1846	． 5368	． 6219
\％	4	． 2533	． 2933	． 2055	． 3643	． 5454	． 1550	． 6335	1.3740
®．	5	． 3018	． 2832	． 1224	． 1292	． 5200	． 7532	． 7443	． 4898
	6	． 4313	． 2840	． 1383	． 1812	． 2073	1.1111	1.1402	1.0830
	$\overline{\mathrm{x}}$	． 2079	． 3675	． 2452	． 2828	． 4032	． 7025	． 6213	． 8957
	1	． 3668	． 3540	． 4095	1.2592	． 4395	． 8554	1.0839	． 7027
	2	． 0270	． 4891	． 3288	． 3176	1.0080	． 5188	． 6119	． 6032
	3	． 1035	． 6598	． 4626	． 5424	． 7571	． 5475	． 6916	1.1397
号	4	． 2405	． 2772	． 1986	． 8741	． 7805	． 4759	． 8455	1.4836
8	5	． 9722	． 8690	． 3139	． 5199	． 9445	1.2256	1.6939	． 6058
－	6	． 4544	． 1190	． 6298	． 3615	． 3523	． 6102	． 9637	1.0338
－	$\overline{\mathbf{x}}$	． 3607	． 4613	． 3905	． 6458	． 7137	． 7056	． 9817	． 9281
官	1	． 3243	． 3517	． 6096	． 6744	． 7300	1.1827	1.1606	． 6269
\％	2	1.0421	． 9161	1.2076	． 4925	． 6962	1.7001	1.6412	． 9612
∞ \％	3	． 1492	． 6260	． 4941	． 6091	1.0083	1.2557	． 7759	4.1613
第	4	． 1702	． 3305	． 5800	． 5108	． 7552	． 5525	． 4839	1.2939
®	5	． 4282	． 4857	． 1991	． 7019	． 4948	． 4220	1.4902	． 9888
	6	． 2273	． 2383	． 2699	． 4787	． 5923	． 6950	1.1425	1.2999
	$\overline{\mathbf{x}}$	． 3902	． 4914	． 5600	． 5779	． 71728	． 9680	1.1157	1.5553

Table AP． 13 Growth data from the Seslerio－Mesobromion collected during the 1974 cold frame experiment

Sesleria caerulea

		Sampling dates							
		1／5	18／5	6／6	22／6	8／7	23／7	7／8	21／8
	1	． 0047	． 0037	． 0048	． 0053	． 0050	． 0053	． 0057	． 0160
g	2	． 0080	． 0040	－	． 0075	． 0102	． 0056	． 0154	． 0057
$\stackrel{8}{4}$	3	． 0037	． 0055	． 0032	． 0061	－	． 0066	． 0071	． 0073
$\stackrel{4}{\square}$	4	． 0037	． 0036	． 0058	． 0094	． 0115	． 0095	． 0057	． 0072
星	5	． 0053	． 0048	． 0074	． 0068	． 0079	． 0044	． 0055	． 0088
${ }_{\sim}$	6	． 0047	． 0064	． 0081	． 0063	． 0074	． 0083	． 0138	． 0135
官	$\overline{\mathbf{x}}$	． 0050	． 0047	． 0059	． 0069	． 0084	． 0066	． 0089	． 0097
$\stackrel{\square}{0}$	1	． 0055	． 0080	． 00.98	． 0098	． 0218	． 0129	． 0265	． 0267
ω	2	． 0140	． 0077	． 0100	． 009.1	． 0082	． 0133	． 0133	． 0155
B	3	． 0057	． 0209	． 0119	． 0124	． 0200	． 0229	． 0125	． 0194
¢	4	． 0069	． 0102	． 0123	． 0129	． 0165	． 0121	－	． 0273
$\stackrel{\text { a }}{ }$	5	． 0067	． 0325	． 0129	．0077	． 0161	． 0035	． 0252	． 0119
	6	． 0102	． 0094	． 01.28	． 0108	． 0146	． 0257	． 0162	． 0258
	$\overline{\mathrm{x}}$	． 0082	． 0148	． 0116	． 01015	． 0162	． 0151	． 0207	． 0211
	1	． 0132	． 0096	． 0086	． 0252	． 0189	． 0175	． 0199	． 0184
	2	． 0039	． 0081	． 0112	． 0114	． 0123	． 0140	． 0184	． 0066
吕	3	． 0059	． 0097	． 0103	． 0054	． 0219	． 0142	． 0229	． 0226
号 ${ }^{\text {¢ }}$	4	． 0117	． 0103	． 01.11	． 0169	． 0138	． 0276	． 0169	． 0114
	5	． 0132	． 0096	． 0126	． 0173	． 0087	． 0186	． 0127	． 0168
$\stackrel{\text { ® }}{\sim}$	6	． 0089	． 0156	． 0074	． 0268	． 0276	． 0214	． 0133	． 0158
$\stackrel{\sim}{\text { a }}$	$\overline{\text { x }}$	． 0095	． 0105	． 0102	． 0172	． 0172	． 0189	． 0173	． 0153
－	1	． 0048	． 0078	． 0097	． 0198	． 0173	． 0159	． 0273	． 0484
	2	． 0068	． 0056	． 0092	． 0176	． 0176	． 0154	． 0193	． 0251
$\stackrel{\circ}{\circ}$	3	． 0065	． 0108	． 0095	． 0209	． 0237	． 0236	． 0229	． 0682
ค	4	． 0070	． 0079	． 0124	． 0378	． 0180	． 0189	． 0096	． 0300
	5	． 0106	． 0158	． 0074	． 0223	． 0191	． 0228	． 0294	． 0314
	6	． 0230	． 0176	． 0115	． 0236	． 0079	． 0184	． 0371	． 0304
	$\overline{\mathbf{x}}$	． 0098	． 0109	． 0099	． 0237	． 0173	． 0192	． 0243	． 0389

Festuca ovina Mean individual dry weights (g)

	Repl No.	1./5	18/5	6/6	22/6	8/7	23/7	7/8	21/8
	1	. 0011	. 0013	. 0025	. 0027	. 0024	. 0024	. 0035	. 0054
5	2	. 0025	. 0022	. 0027	. 0027	. 0030	. 0025	. 0037	. 0035
\bigcirc	3	. 0024	. 0021	. 0021	. 0039	. 0028	. 0028	. 0037	. 0032
$\stackrel{\text { - }}{\square}$	4	. 0018	. 0017	. 0020	. 00.16	. 0045	. 0042	. 0026	. 0035
日	5	. 0020	. 0020	. 0026	. 0036	. 0039	. 0030	. 0031	. 0037
$\stackrel{+}{\infty}$	6	. 0017	. 0026	. 0025	. 0024	. 0021	. 0034	. 0052	. 0039
$\stackrel{\sim}{\square}$	$\overline{\mathbf{x}}$. 0019	. 0020	. 0024	. 0028	.0031	.0030	.0036	. 0039
\bigcirc	1	. 0028	. 0020	. 0019	. 0027	. 0035	. 0026	. 0048	. 0059
¢	2	. 0032	. 6019	. 0017	. 0026	. 0023	. 0033	. 0056	. 0042
$\xrightarrow{\circ}$	3	. 0022	. 0022	. 0027	. 0029	. 0074	. 0053	. 0037	. 0068
\%	4	. 0023	. 0040	. 0022	. 0044	. 0030	. 0047	. 0037	. 0060
$\stackrel{\circ}{\circ}$	5	. 0025	. 0029	. 0022	. 0032	. 0046	. 0032	. 0043	. 0036
	6	-	. 0028	. 0012	. 0043	. 0024	. 0051		
	$\overline{\mathbf{x}}$. 0026	. 0026	. 0020	. 0033	. 0038	.0040	. 0044	.0053
	1	. 0023	. 0034	. 0031	. 0051	. 0032	. 0049	. 0076	. 0026
	2	. 0018	. 0042	. 0042	. 0055	. 0078	. 0030	. 0025	. 0085
5	3	. 0028	. 0035	. 0037	. 0033	. 0039	. 0043	. 0066	. 0066
$\stackrel{\text { H. }}{\square}$	4.	. 0032	. 0048	. 0028	. 0028	. 0032	. 0041	. 0050	. 0064
	5	. 0025	. 0064	. 0065	. 0028	. 0057	. 0057	. 0031	. 0051
1	6	. 0022	. 0053	. 0032	. 0055	. 0073	. 0061	. 0038	. 0050
-	$\overline{\mathrm{x}}$. 0025	. 0046	. 0039	. 0042	. 0052	.0047	. 0048	. 0057
㐌	1	. 0018	. 0027	. 0039	. 0055	. 0078	. 0042	. 0050	. 0051
${ }_{0}$	2	. 0025	. 0027	. 0039	. 0047	.0043	. 0032	. 0039	. 0077
0	3	. 0017	. 0039	. 0029	. 0066	. 0055	. 0023	. 0033	. 0065
\%. 0	4	. 0022	. 0016	. 0023	. 0049	. 0043	. 0041	. 0053	. 0083
$\begin{aligned} & \text { K } \\ & \boldsymbol{0} \end{aligned}$	5	. 0031	. 0036	. 0029	. 0035	. 0051	. 0048	. 0063	. 0065
	6	. 0029	. 0024	. 0035	. 0054	. 0064	. 0056	. 0052	. 0069
	$\overline{\mathbf{x}}$. 0024	. 0028	. 0032	. 0051	. 0056	. 0040	. 0048	. 0068

Table AP. 13 (cont.)

Carex panicea

Remainder sp．

Standing crops（g．／dm ${ }^{2}$ ）

$\begin{aligned} & \text { Repl. } \\ & \text { No. } \end{aligned}$		Sampling dates							
		1／5	18／5	6／6	22／6	8／7	23／7	7／8	2．／8
	1	． 0464	． 2008	． 4744	． 6482	． 3990	． 4498	． 7348	． 4426
5	2	． 0874	． 5803	． 4815	． 7354	． 3367	． 7950	． 8729	． 5723
8	3	． 2004	． 3936	． 2008	． 4198	． 9380	． 5474	． 6136	． 8299
号 ${ }_{\sim}^{\circ}$	4	． 1.686	． 3493	． 4766	． 5958	． 9414	． 8374	． 4335	． 9709
暏	5	． 2120	． 3775	． 4606	． 4392	1.0011	． 6745	． 6811	． 4799
$\stackrel{\text { ¢ }}{\sim}$	6	． 3481	． 8333	． 5189	． 2409	． 5727	． 6956	． 7775	1.3071
$\stackrel{\rightharpoonup}{-}$	$\overline{\mathbf{x}}$	． 1771	． 4558	． 4338	． 5132	． 6981	． 6666	． 6856	． 7671
$\stackrel{\circ}{\circ}$	1	． 1560	． 8181	． 1071	． 3205	． 7766	． 6338	． 5978	1.1688
ω	2	． 1255	． 2894	． 3098	． 3534	． 4223	． 2830	． 4299	． 4860
${ }_{\sim}^{\circ}$	3	． 0565	． 3762	． 2539	． 21.86	． 4078	． 5297	． 3918	． 4680
H	4	． 1689	． 3858	． 3270	． 4969	． 2484	． 4778	． 5118	1.1498
	5	． 1889	． 6420	． 2934	． 2763	． 3109	． 4254	． 3981	． 5200
	6	． 2361	． 8241	． 1385	． 2655	． 4368	． 7993	． 9796	1.2012
	$\overline{\mathbf{x}}$	． 1553	． 5559	． 2383	． 3219	． 4338	． 5248	．${ }^{5515}$	． 8323
	1	． 0827	． 3128	． 4834	． 4842	． 7242	． 8912	1.0025	． 6044
	2	． 1195	． 2186	． 3933	． 4961	． 6785	． 4370	． 8976	． 8083
吕 ${ }^{\circ}$	3	． 1662	． 2993	． 2848	． 4597	． 7716	． 4966	． 8190	． 9597
ロ	4	． 1303	． 0651	． 5391	． 4015	． 7027	． 4693	． 5152	1.0344
足品	5	． 1634	． 3609	． 4662	． 6322	． 3947	． 6919	． 6346	． 8733
$\ddot{\infty}$	6	． 1991	． 4756	． 2242	． 2312	． 4858	． 5495	1.0267	． 3496
$\stackrel{\sim}{5}$	$\overline{\mathrm{x}}$	． 1435	． 2887	． 3985	． 4508	． 6263	． 5893	． 8159	． 7716
	1	． 0843	． 3314	． 3634	． 7926	． 4424	． 7582	1.0358	． 5495
	2	． 1192	． 3128	． 2940	． 4942	． 4072	． 4225	． 9785	1.0803
－	3	． 0780	． 1927	． 2417	． 6163	． 7836	． 6138	． 4172	． 7912
$\stackrel{\circ}{\circ}$	4	． 2370	． 3319	． 4503	． 7526	． 5732	． 8104	． 7123	． 6083
	5	． 0859	． 4410	． 3203	． 4382	． 4188	． 5066	． 9544	1.8425
	6	． 2474	． 4249	． 3176	． 3483	1.1297	． 5129	． 8624	1.4773
	$\overline{\mathbf{x}}$	．1420	． 3391	． 3312	． 5737	． 5592	． 6041	． 8268	1.0582

[^0]: 1
 Extracted with $0.5 \mathrm{M} \mathrm{Na} \mathrm{HCO}_{3}$
 s.o.d. significance of difference - see Appendix B
 (see Table API for details)

[^1]: Table 11 Results of 1973 cold frame experiment on Seslerio-Mesobromion vegetation in reesdale. Concentration of elements in vegetation inside and outside the cold frame. (mюsses excluded) (mg/g.d.wt.)

[^2]: $s=1762.50$
 $\mathrm{W}=0.4360$
 estimated $x^{2}=27.49$
 Theoretical x^{2} with 9 degrees of freedom is 21.67 for $p=0.01$ and 27.88 for $p=0.001$
 For details of method see Appendix B.
 Data for the ranks in brackets had been lost therefore these have been estimated on the basis of those remaining.

[^3]: rig. 16 . Log of average weights of individual plants of C. panicea throughout growiag season on Seslerio-Mesobromion.

[^4]: PLATE $4 \mathrm{~B} \quad 1974$ GRASSLAND SITE METALLIFEROUS

[^5]: * Three samples with the lowest loss on ignition were taken.

