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ABSTRACT

Magnetostriction measurements have been made on a thin film
uniaxial garnet Tb2LulFe5012 with a double crystal diffractometer.

A value of the magnetostriction constant All was determined from an analysis

1
of the measurements which employed a least squares technique. The value
obtaineqd, Alll = (8.12tl.00)x10_6, was in agreement with an expected value
obtained by a linear weighting of the pure Rare Earth Iron garnet measurements
of another author. Small (<lO_5) magnetostriction measurements in materials
possessing only 180° magnetic domain walls, where an épplied magnetic field

is needed, have not previously been reported. The measurement given here

made use of the fine resolving power of the double crystal diffractometer,

and of a specially constructed electromagnet. A description of these two
instruments has also been given. A review of magnetostriction measurements
using single crystal X ray diffraction techniques points out the main
limitation here of a comparatively low resolving power. Also, without an
applied magnetic field, magnetostriction measurements by the X ray diffraction
technique can only be made in crystals which have magnetic domain walls other
than of the 180o type. Measurements made on different parts of the sample,
and even at different parts of the rocking curve, showed considerable variation.
This was attributed to local strains in the crystals used. A topographic
study of the samples, using the double crystal diffractometer, revealed some

of the strains which can be responsible for the local variation in magnetic
anisotropy. Such an "in situ" study displays the power of this particular
measurement technique over the commonly used electrical resistance strain gauge
me=hod. In the latter, various defects in the crystal structure may not be
rc;euled during the course of measuremcent. Variations in individual magneto-

striction measurements may be related almost simultaneously to the defects in

the crystal structure when the X ray double diffraction technique is used.
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Chapter 1

Magnetostriction

1.1 Introduction

Magnetostriction is the lattice deformation which accdmpanies
the magnetization of a magnetic crystal. Literature on the subject is
extensive, going back to the last century when Joule (1842) reported the
expansion of an iron bar as it was magnetized in a given direction. The
effect is quite small, corresponding typically to a strain of 10_5. Study
of the effect may throw light on the nature of the internal forces at play
in a magnetic crystal. The phenomenon is also of use in investigating
magnetization processes, and analyzing magnetization curves. Calculations
of magnetostriction versus magnetization curves have been made by Akulov
{1931) for iron single crystals. Such calculations are unambiguous when
the magnetization proceeds in a known manner. The theory for the magneto-
striction of nickel single crystals in terms of the magnetization has been
given by the same author (1956). A schematic representation of magnet-
ization and magnetostriction versus applied field is shown in Figure 1l.1l.
It may thus be seen that there exists some relation between the magneto-
striction and the state of magnetization of a crystal. A knowledge of the
magnetostriction of a magnetic material is of practical importance, being
required for the production of electromechanical transducers and bubble
domain devices for example.

A comprehensive discussion of magnetostriction, including a
historical review, has been given by Lee (1955), while a more recent account
by Birss and Isaac (1975) pays particular attention to the effect in

magnetic oxide materials.
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Fig.1.1 Schematic representation of magnetization, linear and volume

magnetostriction of iron as a function of magnetic field strength. All ferro -

magnetics show essentially the same behaviour.Lee (1955)

Fig.1.2 Magnetization of a uniaxial crystal.




1.2 Magnetostriction and magnetization

When a crystal is magnetized from the demagnetized state by a
field which is applied in a given direction, two types of magnetostriction
are associated with the process. As the crystal is taken from an average
demagnetized state, a displacement of magnetic domain boundaries occurs
followed by rotation of the magnetization.vectors towards the direction
of the applied field till technical saturation is reached, that is, till
the magnetization of the crystal is uniform in one Airection. When the
crystal is taken beyond technical saturation, an increase of the spontaneous
magnetization occurs within the single domain. An anisotropic magneto-
striction is associated with the process up to the state of technical
saturation; beyond this point an isotropic volume magnetostriction occurs.

For a given domain structure, if the magnetostriction within
each domain depended solely on the magnitude of the saturation magnetization
within the domain, then no magnetostrictive strain would accompany the
magnetization process. The observation that bulk magnetostrictive
deformations occur as a crystal is taken from a demagnetized to the saturated
state is therefore an illustration of the anisotropic nature of the strains
within a domain, and also of the dependence of the strains on the orient-
ation of the saturation magnetization with respect to the crystallographic
axes. The anisotropic deformation within each domain is referred to as
the spontanecus magnetostriction, that is, the magnetostriction associated
with the appearance of spontaneous magnetization. At any stage during the
magnetization process, the bulk magnetostriction of the crystal as a whole
is therefore correlated with the average magnetization via the spontaneous
magnetostriction within each domain. On completion of the process, when
the domain magnetization vectors are all aligned, the bulk deformation

reaches a value referred to as the saturation magnetostriction. The




volume magnetostriction is proportional to the magnitude of the applied
field. The two types of striction may be treated separately, and the

work of this thesis is concerned with the anisotropic effect.
1.3 Magnetostriction in cubic crystals

Formally, the origin of spontaneous magnetostriction is taken
to be a strain dependence of the magnetic energy associated with the crystal.
On this basis, a decrease in magnetic energy is produced by the occurrence
of appropriate magnetostrictive deformations, the tendency to deform spon-
taneously being opposed by the increase in elastic energy associated with
increasing deformation. Thus the equilibrium strains are those for thch
the "magnetic" forces and "elastic" forces are equally balanced.

In order to obtain a satisfactory expression describing the
magnetostriction for a single crystal, account must be taken of the symmetry
of the crystal. Such an account is given in detail by Birss (1964).

The strain is given here for the case of a cubic crystal. The
st;ain in any direction in the crystal, whose direction cosines are Bl,Bé
B3l(that is, the direction of measurement has these direction cosines) with
respect to the Cartesian coordinate system x,y,z, can be shown to be given

by the expression

dg = e.. .
— 1JBiBj (1.1)
where eij are the components of the sitrain tensor. (Repetition of the i

and j here denotes summation from 1 to 3.) The axes.of the coordinate

system coincide with the crystal axes. It is then assumed that the strain
depends in some way on the direction of the magnetization with respect to
these axes, that is, that eij = f(al, Uy a3), where the a's are the direction
cosines of the magnetization. The problem then is to find tﬁe form of the

function f(al, 02, u3). It turns out that the form which f takes is




completely determined by the requirements of lattice symmetry. The energy
terms which are relevant are the magnetocrystalline anisotropy energy at
zero strain, E;, the magnetostriction energy, EM and the elastic energqgy, EL'
Magnetocrystalline anisotropy means that the magnetization of a
magretic body has preferred directions in which it is relatively easy for
the body to be magnetized. This means that the free energy depends on the
orientation of the magnetization with respect to the directions character-
izing the body. The energy required to rotate the magnetization from a
"hard" to an "easy" direction is the anisotropy energy. This subject is
given an adequate description by Chikazumi (1964).
E; depends only on the o, whilst EL depends only on the components

of the strain tensor eij' EM is assumed to be a function of both eij and

ui. For a cubic crystal then these terms are:

0 2 2 2 2 2 2 :
= (
EK Kl (ala2 + a2a3 + a3al) (1.2)
2 2 2
EM = Bl (alell +uze22 + a3e33) (1.3)

+ 232 (alaze12 + aza3e23 + a3ale3l)

2 2 2
EL = %911 (611 * &0 * €33
*Cro (88, T 8083 t €33%,) (1.4)
2 2 2
* 20, (e, T eyy teyy)
where Kl is the first anisotropy constant, Bl 2 are the magnetoelastic
’

coupling constants introduced by Kittel (1949), and the c's are the elastic
constants of the material. In order to see the strain dependence of the
anisotropy energy, Kittel expanded the latter in a Taylor series:

K SIME 15k

_ 0 o 2 )
E, = Eg +[6EK e, + 5[5 E, + oo (1.5)
Gei. Geijdekz

The first term refers to the anisotropy energy at zero strain. The second

term, describing the interaction between the magnetocrystalline anisotropy




and the state of strain, is called the magnetoelastic energy density.

Se, .
1)

The components of GEK]Oinvolve products of the magnetoelastic coupling
constants Bi with the direction cosines ai. The final term is formally
regarded as the magnetostrictive contributions to the elastic stiffness
constants, describing the lowering of the intrinsic symmetry of the lattice
by the magnetostriction. It can be seen then that the terms Ei and EM are
given by the first two terms in the series expansion.

The three terms E;; EM, EL are added together and the sum is
minimized with respect to the eij's. The equations thus obtained are solved
to give the equilibrium strain components. An expression for the strain is

then found using equation (l.1l). For a demagnetized crystal, with a

perfectly random distribution of domains, %& = 0. In this state, the mean

values a? and a o, are equal to 1/3 and o respectively both when [100] and
i i

[111] are the easy directions. The expression finally obtained is

- 2,2 2,2 _ 1y
dg = 1 (alBl + a + a383 3) (1.6)

By (e 0,B Byt apagBaBy t ayuyBaBy)

c44

To obtain the strain when the magnetization is along [100], parallel to the

measurement direction, then al =1, a2 = az = 0 and Bl =1, 82 = 83 = 0, thus
&= B2 7 o (1.7)
€172 3

wWhen the measurement direction and the magnetization are parallel to [111],

the strain, with a, = Bi = l//g, is

%& = —32 D1 = Alll (1.8)
33 3
Aloo and Alll are the magnetostrictions obtained when the crystal is

magnetized along the [100] and [111] directions respectively from the state




of demagnetization. A corresponding value for the Al may be obtained,

10

and this can be shown to be given by

1 3
Mio® Thoo t7 M (1.9)
Equation (1.6) may be rewritten
aL = 3 2 2 2,2 2,2 1y
) > Aloo (alBl + 0282 + a3B3 3) (1.10)

* 3%y (wgayByB, +ajaiB By + ajaBlB)

The ideal demagnetized state is not always easily obtained.

Thus in any experiment Aloo and Alll are usually obtained from measurem?nts
of the strain difference which occurs between different directions of magnet-
ization of the crystal.

A two constant expression might not always account adequately for
the measurements of magnetostriction for a given crystal. For such cases,
a higher order approximation in the expression for EK may be taken, that is,
the third term of equation (1.5) may be included. In this way, a five
constant expression is obtained. The magnetostrictions of iron and nickel
are usually expressed in terms of a five constant expression. However, the
two constant expression accounts for many results quite adequately.

For a uniaxial material, it is shown by Chikazumi (1964) that when

the angle between the magnetization and the uniaxial direction is changed from

O to ¥, as shown in Figure 1.2, the elongation changes by an amount given by

A@R) = 3 (1 - cos’®) (1.11)
L 2

where A is the magnetostrictive deformation along the uniaxial direction.
1.4 Quantum mechanical formulation

The classical formalism, in which the magnetization is coupled to
the strain by magnetoelastic coupling constants has been extended by Callen

and Callen (1963) to a quantum mechanical approach in which the ionic spins




are coupled to the various permitted strain modes. The coupling is

included in a Hamiltonian which is made up of the following terms:

H=H,6 +H +H +H (1.12)
M e me o

These four terms are respectively the intrinsic magnetic energy, the

elastic energy, the magnetoelastic coupling and the intrinsic anisotropy
energy. The Hamiltonian was constructed for a crystal of Cubic symmetry.
The anisotropy energy is that given by the single ion model. For a
discussion of this model, reference may be made to Chikazumi (1964).

In this, the orbital electrons are coupled to the electrostatic crystal
field which has the symmetry of the lattice. The ionic spin thus sees

the crystal lattice via the mechanism of spin orbit coupling. The isotropic
exchange interaction, which is strain dependent, is then modulated by the
anisotropy. The terms Hme and Ha are taken as pertgrpations on the

unperturbed Hamiltonian H whilst He appears as a classical additive texm.

M
The equilibrium strains are then obtained formally by minimizing the free
energy again with respect to the strains.

The single ion approach has been extended by Callen and Callen
(1965) to include other crystal symmetries, and also to include possible
two ion interactions, where significant magnetoelastic coupling arises from
the strain modulation of the anisotropic exchange interactions between two

ions. Callen (1968) has reviewed magnetostriction measurements in terms

of their correlation with the single ion and two ion models.
1.5 Structure and magnetostriction in garnet materials

The measurements to be descriped in Chapter 8 involve the magneto-
striction in the rare earth iron garnet material TbZLuFeSOIZ' A description
of the relevant aspects of the crystal structure of the rare earth garnets,

and of the magnetostriction, will be given here.




1.5.1 Structure

The .composition which typifies the garnet structure is Y3Fe5012,

+ 3+
yttrium iron garnet. The possibility of substitution of Y3 and A% for

+
Mn3+ and Si4 in the natural garnet Mn3A22813012

and Keith (1951). They thus obtained for the first time the garnet

was pointed out by Yoder

Y3A2.SO12 free from silicon. Various substitutions may be carried out
which yield many materials with interesting and technologically important

properties.

3+

+
The Fe3 ion may be substituted by a trivalent ion such as Cr

+ + + + +
A23 ’ Ga3 , Sc3 ’ In3 R Co3 , or by a pair of tetravalent and divalent ions

+ + 4+ 2+ 4+ 4+ 2+ 4+ 4+
such as Ti4 and Cd2 , 2r and Co , Si or Sn and Mn , Z2r or Hf

and Co2+ or Niz+, Ge4+ and Cd2+, or by a pentavalent ion V5+, Nb5+, Ta5+.
The Y3+ may be substituted by an ion of rare earth from Pm3+ to
Lu3+, whose atomic radii are comparable. Substitutions may be carried out
completely or partially.
The crystalline structure has three types of cation sites:
dodecahedral, octahedral and tetrahedral. The large yttrium ions are in
a dodecahedral position. The Fe3+ ions with small ionic radii are located
in a tetrahedral (3Fe3+) position with four nearest oxygen ion neighbours,
amd in an octahedral (2Fe3+) position surrounded by six oxygen ions. Each
yttrium ion is surrounded by eight oxygen ions. The fact that all of ‘he
sites are occupied by cations contributes to the high stability of the ;
compound. The various aspects of the structure are shown in Figure

1.3. The crystal lattice is cubic centre with a unit cell parameter

0
(typically) of a = 12.4A. Each unit cell contains four formula units.
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Fig.1.3. Coordination about an oxygen ion in fhe garnet grossularite.

(Makram and Vichr (1975)).



1.5.2 Growth of garnet materials

Growth processes for the production of garnet materials have been
described by Makram and Vichr (1975). These include the Czochralski
method and the flux method. Gadolinium gallium garnet (Gd3Ga5012 or G.G.G.)
crystals have been grown by the C;ochralski technique. G.G.G. single
crystals are widely used as substrate material onto which magnetic garnet
thin films are deposited epitaxially.

There are two important processes for the growth of such thin
films. Liquid phase epitaxial growth of mixed rare earth garnets onto
G.G.G. substrate has been described by Shick et. al. (1971), while chemical
vapour deposition has been used, and described, by Robinson et. al. (1971}
to grow mixed garnets on SmGa garnet and SmGdGa garnet substrates. In
both cases the thin films were used for bubble domain devices. The
structural perfection of the substrate plays an important role in determining
the quality of the thin film produced.

The strain inducing imperfections which occur during the growth
of the substrate are dislocations, growth striations and facet regions.
Cockayne and Roslington (1973) have described how almost dislocation free
crystals have been obtained by careful alteration of the rotation rate
during the Czochralski growth process. With few exceptions, dislocations
observed appear to be generated from the seed/crystal interface. During
growth, the crystals develop a solid/liquid interface which is convex t;
the melt. When the growth direction belongs to <111>, facets of the gype
{21i} and {110} form at low rotation rates (l0-50 revolutions per minute).
The facets produce a macroscopic strain. However, it is observed that the
crystals containing facets arec dislocation free, tbat is, the facets serve
to block dislocation propagation from the seed over the volume of crystal

they occupy. When the rotation rate is increased to typically B80-100
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revolutions per minute, the interface becomes planar so that facets no
longer form, and the macroscopic strain effect is eliminated. Thus if the
rotation rate used throughout growth is low, and then increased at the end,
G.G.G. substrate materials free from both localized and macroscopic strain
centres may be produced. Dislocations appearing at the seed have also

been rendered ineffective by the formation of a narrow neck ahead of the
main portion of the boule, as was pointed opt by O'Kane et. al. (1973).
Dislocations in the form of helices and closed loops, which appear in the
substrate, and which do not have their origin at the seed, have been studied
by Stacy (1974a) and Miller (1973). They can be prevented by addition of

excess Gd203 to the melt.

1.5.3 Effects of substrate defects on the perfection of the thin films

(i) Dislocations. Stacy (1974b) has studied the extent to which
imperfections in the substrate are replicated in the epitaxial layer.

The magnetic layers grown on dislocation free substrates remain free of
dislocations when no other localized strain centres (e.g. inclusions) are
present. Generally dislocations do not readily form in garnets. The
large lattice parameter (a ==12.4g) together with a reluctance to form
partial dislocations, leads to dislocations with a large Burgers vector,
and thus a large energy of formation. Misfit dislocations between the
garnet substrate and the epitaxial layer are not likely to be observed.
Matthews and Klokholm (1972) have pointed out that when the substrate layer
lattice misfit exceeds about 10_3, as is just the case here, the stress is

relieved by cracking instead of by nucleation of dislocations.

(ii) Facets. It has been shown by Cockayne et. al. (1973) and Glass (1972)
by X ray diffraction measurements that in the faceted regions of a G.G.G.
crystal the lattice parameter is slightly larger than that of the unfaceted

regions (Aa/a =:1o'4). When a garnet platelet containing a facet region
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is used as a substrate for an epitaxially deposited magnetic layer, the
strain associated with the facet is carried on through into the film.

Stacy (1974b) has shown this with a comparison of X ray topographs of the
substrate and of the film layer immediately above. Hansen et. al. (1973)
have pointed out that such strain can cause a local change in the magnetic
anistropy in the film. It was suggested by Cockayne et. al. (1973) that
the origin of the facet strain lies most likely in the segregation of oxygen

in the facet region.

(iii) Growth striations. Growth rate fluctuations during Czochralski
growth give rise to compositional variations, which appear as growth
striations in a double crystal X ray topograph. Growth rate fluctuations
occur for all Czochralski grown crystals. Although growth striations provide
one way of studying interface shape history, the strain associated with them,
typically <5 x 10_5, does mean that rocking curves obtained on a double
crystal X ray diffractometer will, owing to the striations alone, be
typically 12 to 15 seconds of arc wide at the intensity half height.

The strain fluctuations owing to striations in the substrate
crystal may not always be transferred into the magnetic film. Basterfield
et. al. (1968) have pointed out that there is a strain anisotropy associated
with the striations. In the substrate crystal the strain associated with
a particular striation is normal to the striation surface, and is zero in
the plane of the striation. Only those strain components which are parallel
to the substrate surface are carried over into the epitaxial layer. If a
series of striations with strain amplitude "e" intersects the substrate
surface at an angle O, the strain amplitude transmitted to the epitaxial

layer will be e.sinze.



12

1.5.4 Magnetostriction in garnet materials

Detailed calculation of the magnetostriction for a real material
is a more formidable problem than that of the magnetocrystalline anisotropy.
For the former, further complication is introduced in that evaluation of
strain potentials involving the first derivatives of energy density terms
is necessary. Also, in order to calculate the magnetostriction constants
from the magnetoelastic constants, a knowledge of the elastic constants is
required. For the magnetic oxides, the available experimental data are
sparse. Consequently, detailed calculations of magnetostriction constants
have been carried out for only a few materials (for example, calculations
weré made for ferrite materials by Tsuya (1958), and on the magnetostrictive
beh;viour of Co2+ in spinels by Slonczewski (1961)).

Magnetostriction measurements were made by Callen et. al. (1963)
on yttrium iron garnet (Y.I.G.), in which the magnetization is due solely
to the Fe * ions. The results were compared with the phenomenological
equations of the single ion theory, and the agreement wés good. Measure-
ments by Clark et. al. (1968) on partially substitutéd dysprosium yttrium
iron gar?et shows that the magnetostriction is linear in rare earth concen-
tration. This observation is evidence for the validity of the single ion
model in the garnets. It is possible to relate the rare earth magneto-
striction to the rare earth magnetization by subtracting the Y.I.G. con-
tributions from the overall magnetostriction and magnetization. Thus where
a significant magnetoelastic coupling arises from the strain modulation of
the anisotropic exchange interactions, the rare earth magnetostriction can
be considered as the sum of contributions from the different sublattices.
Measurements on 10% Yb3+ ions in Y.I.G. and Ce3+ ions in Y.I.G. by Comstock
and Raymond (1967) were accounted for by the anisotropic exchange interaction
between rare earth and iron ions, rather than by the single ion crystal field

model. A similar report is also made by Smith and Jones (1967) for measure-
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ments on Yb substituted Y.I.G. The marked effect of small amounts of
terbium impurities in Y.I.G. has been demonstrated by Belov et. al. (1966)
in poly-crystalline samples.

Magnetostriction measurements have been made by Iida (1963, 1967)
on a whole series of rare earth iron garnets. These measurements are to
be referred to again in several of the later chapters. The most detailed
study of magnetostriction in rare earth iron garnets has been carried out
by Clark et. al. (1964, 1966) on Gd, Dy, Ho and Er iron garnets. Here
the single ion theory was applied as it was to Y.I.G., but account had also
to be taken of the third magnetic sublattice.

It perhaps should be pointed out that in the case of Neel
collinear ferrimagnets, the crystal is considered to be made up of
individual sublattices. Each has its own magnetization with different
temperature dependences. When the separate sublattice magnetoelastic
coupling constants are of opposite sign, and the behaviour with temperature
is different, then magnetostriction compensation points may occur, that is,
tempgratures may occur where the magnetostriction is zero. Correspondingly,
magnetization compensation points may occur also. At the latter points,
the measurements of Clark et. al. (1964, 1966) on Dy, Ho and Er iron garnets
dip sharply to zero, since there the sublattice moments do not remain

parallel to the applied field.
1.6 Uniaxial anisotropy in garnet films

Thin films of magnetic garnet materials grown by the method of
liquid phase epitaxy or chemical vapour deposition usu;lly have an induced
uniaxial magnetic anisotropy. This is superimposed on the normal cubic
magnetocrystalline anisotropy. Heinz et al. (1971) have pointed out that
the dominant source of the uniaxial anisotropy observed in magnetic oxide

films formed by chemical vapour deposition onto non-magnetic substrates is
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magnetostriction. The magnetic films are normally in a state of mechanical
stress owing to a mismatch beﬁween lattice constants and thermal expansions
of the film and subs;rate. If the film is magnetos;rictive, then this
stress produces a uniaxial magnetic anisotropy.

Kurtzig and Hagedorn (1971) have studied the non cubic anisotropies
in thin film garnets. It was noted that the thin films Y3 Feq.l Ga0.9 O12
and Tb2.4 Er0.6 Fe5 012, grown by chemical vapour deposition, retained their
induced anisotropy to within 10% after long anneals at 1350°C. It was also
observed that strain relief had a strong effect in all of a large number of
cracked films. Near a crack in a film, the domain walls appeared wider,
and the domains, which have a vermicular appearance in the garnet films, were
darker owing to the rotation of the easiest axis of magnetization away from
uniaxial direction, usually the film normal, towards the normal to the plane
of the crack. These observations indicate that the non cubic anisotropy in
these films is mostly strain induced.

In the films grown by liquid phase epitaxy, however, the effect
of similar annealing is to reduce the induced anisotropy. Measurements by

Shick et al. (1971) showed that when films of Eu, EBr. Ga

2 Bry G3, , Fe, 3 0,, and

Eul Er2 Gao.7 Fe4.3 012 were annealed at 1250°C in oxygen, the respective
losses in induced anisotropy were 100% and 96%. The above observations of
the effects of strain relief near cracks were extended to films grown by
liquid phase epitaxy, and no effect was observed.

The uniaxial anisotropy in these latter films is thought to be
induced mostly by ordering resulting from the growth, and not by strain.
Such induced anisotropy is similar to that described by Rosencwaig and Tabor
(1971) and by Callen (1971). Their descriptions were for the case of induced
anisotropy under certain growth faces of bulk grown mixed garnet crystals.

Callen (1971) showed that pair ordering of a rare earth ion with

its first and second nearest tetrahedral-iron ions is achieved by preferential




15

occupation of particular rare earth sites. The mechanism is seen most
clearly if just nearest neighbours are considered. For some rare earth
sites, the nearest neighbours are to the left and the right (X sites), for
others they are in front and behind (Y sites), and for others they are above
and below (2 sites). If, for example, the growth plane is {00l), then the
crystal spacing at the growth surface is severely strained in the z direction
but not in the x or y directions. This strain is, of course, later alleviated
as new planes are added and the old surface becomes the riew "bulk". As a
rare earth ion leaves the melt and settles into a site on the surface, it
finds that the nearest ligand of a Z site is displaced, whereas those of

the X or Y sites are not. Depending on size and compressibility, this will
almost certainly lead to a preferential occupation of -the new ions among the
different rare earth sites. The model was then extended to second nearest

tetrahedral neighbours, which are the source of the observed anisotropy.
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Chapter 2
Strain gauge measurement of magnetostriction
2.1 Techniques for magnetostriction measurement

Since early observations of magnetostriction by Joule (1842),
the phenomenon has challenged experimentalists to devise a number of
measurement techniques, and thus to determine the parameters which describe
it in the many different materials. Optical interferometry was used as
early as 1893 by Lochner to study the effect in a bar of iron, while Lloyd
(;929) used a combination of optical, mechanical and electrical methods for
his study. The value of Young's modulus for a ferromagnetic material
changes when its state of magnetization is varied. This phenomenon is known
as the AE effect, and has its origin in the magnetostrictive deformation.

It has been studied, for example, by Street (1948).
2.2 Electrical measurement of magnetostriction

The most widely employed technique of magnetostriction measurement
is that involving the resistance strain gauge. In this method, introduced
by Goldman (1947), a typical experimental arrangement may be given as follows.
A sample with cubic crystal structure is cut in the shape of a disk, whose
flat surface is parallel to the (110) plane. On one flat side of the disk,
a resistance strain gauge, of composition for example of platinum (92%)
tungsten (8%), is cemented to the crystal in the direction [boq , and on the
other side a sécond strain gauge is cemented to the crystal in the direction
[110], at right angles to the first gauge. The gauges are incorporated in
a D.C. Wheatstone bridge network. The magnetization is rotated in the plane
of the disk. From ‘the variation in the resistance of the gauges, as they
strain along with the magnetostrictive strain of the sample, expfessions for

the sample strains may be deduced, which are then expressed in terms of the
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magnetostriction constants of the material. Bozorth and Hamming (1953)
measured the strain along two crystallographic directions as the field was
rotated through 90° by lOo intervals. They then employed a least squares
method to solve a set of linear equations and thus obtained "a most probable
value" for each of the five magnetostriction constants of the material being
studied.

Similar measurements of magnetostriction may be made using a
capacitance bridge technique. The sémple is coupled to one of the plates
of a capacitor, as described by Corner and Hunt (1955) for example. The
variation in capacitance as the crystal strains in the magnetic field is

then used to obtain values for the magnetostriction constants.

. 2.3 Errors arising in strain gauge measurements

Greenough et al. (1976) have studied the application of the
resistance strain gauge technique to the measurement of magnetostriction in
iron single crystals. Particular attention was paid to the various sources
of error involved, and thus a set of values for the five magnetostriction
constants was obtained.

The errors may have a variety of origins and are described as

follows.

(i) Field misalignment. The initial alignment of the applied
magnetic field is not always easily accomplished, especially when the sample
is concealed in a cryostat or furnace. The typical error in the magnetic

field setting is & 1°.

tii) Strain zero error. This is closely allied to the problem of
magnetic field alignment and arises from the uncertainty in the position of
zero strain levels. The previous error, along with this, may be taken
account of to some extent in the curve fitting procedures used in the

analysis of the results.
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(iii) Gauge misalignment. This source of error, which arises from a
misalignment of the strain gauge with a given crystallographic direction, is
one of the more difficult to treat. Experimental data will almost certainly
contain erroxrs due to gauge misalignment of up to I lo. Corrections which
take account of the major contributions to these errors need to be applied

to the analysis of the results.

(iv) Magnetic anisotropy. Owing to magnetocrystalline anisotropy,
the angle between the direction of the external applied field and the magnet-
ization vector in the sample may be different from zero unless a saturation
field is applied. Suitable corrections may be made for this during the
analysis of the results by considering the sum of the anisotropy energy,
the energy of magnetization of the sample in the épplied field, and the de-
magnetization energy which arises owing to the sample shape. The total
energy is minimized with respect to a given crystallographic direction and
the magnetization direction, and the equilibrium angé. values are found.
This is compared with the angle between the external field and the reference
direction, and thus with a knowledge of the differences between these two

angles, the appropriate corrections may be made for the effects of anisotropy.

(v) Form effect. A ferromagnetic material will tend to decrease in
volume and increase in length along the direction of magnetization, since
the demagnetizing energy is lowered by the reduction in volume and the change
in the demagnetizing factor. The latter is a constant of a particular
sample, dependent on its shape. When a sample is magnetized, the uncompen-
sated magnetic poles at the surface give rise to a reverse field, the de-
magnetizing field. The shape dependent demagnetizing factor relates the
energy associated with the demagnetizing field, the demagnetizing energy,
to the saturation magnetization of the sample. The dependence of the de-
magnetizing energy on the lattice deformation gives rise to a further type

of magnetostriction referred to as the form effect.




19

When the ratio of the thickness to diameter of a disk shaped
sample is small, it may be seen that the contribution of the form effect
to the measured magnetostriction is also small, and is usually neglected

for such samples.

(vi) Calibration and latent errors. Calibrations both of the strain
gauges and of the bridge networks are required, and these may lead to errors
which need to be corrected.

Some latent inaccuracies are produced, for example, by deviations
from the recommended strain gauge installation procedures. These lead to
variations in glue line thickness, or elasticity of the bond, which affect
the apparent gauge factor. The latter, which is the factor relating the
relative change in resistance to the relative change in lattice spacing, may
vary, and normally does, from one strain gauge to another.

Also, slight variations in composition from one crystal to another,
or any departures from a perfect single crystal strugture may affect the
results. An example is the case of subgrain boundaries occurring in the
crystal. If the strain gauge is placed across a number of such boundaries,
then a given lattice direction will not always be in line with the gauge.

The contribution to the magnetostrictive deformation owing to the resultant
change in direction cosines of the measurement direction is proportional to
the angle of misorientation across the boundary to first order. The total
error may then amount to several percent. If just the strain gauge technique
is used, then the influence of impurities and defects on the magnetostriction
constants is impossible to assess.

Callen et al. (1963) used the strain gauge technique to measure
the magnetostriction in garnet materials. They have pointed out that a
large magnetoresistive effect, which occurs as the magnetic field is applied
to the sample, especially at low temperatures, needs to be corrected for in

the experimental procedure.
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2.4 Examples of magnetostriction measurements

In order to illustrate the considerable spread of various authors'
measurements of the magnetostriction constants of iron, Greenough et al.(1976)
have collected together a series of values, which is shown in Table 2.1. A
survey of the literature has yielded a similar set of data for nickel single
crystals, and these magnetostriction constants are shown in Table 2.2, All
the measurements in the tables were made by means of the resistance strain
gauge technique, and are given for room temperature. The averages of the
different values are given for each constant, together with the signs which
occur in individual series. Also, the maximum variation about the mean is
given for each constant.

It can be seen that the maximum variations about the means are
considerably greater for ﬁickel, although the variations are quite serious
for both cases. It is noted however that the last two sets of measurements

for nickel are in considerable agreement with one another.
2.5 Disadvantages of the strain gauge method

There are several fundamental sources of error which must be met
in all measurement techniques which involve the use of an applied magnetic
field. Examples are the effect of magnetocrystalline anisotropy, and the
contribution to the magnetostriction from the form effect. However, gauge
misalignment, along with variation of gauge factor from one gauge to another
and the effect of magnetoresistance are disadvantages which are characteristic
of the strain gauge technique. In the report by Iida (1967) on the measure-
ments on rare earth iron garnets, the author points out thaf at 78°k the un-
certainty in gauge factors leads to a systematic error possibly as large as
20%. The fact that the method is "indirect", involving further calibration

corrections, is a further disadvantage.



Table 2.1

Previous measurements of the magnetostriction constants

of iron

Webster (1925)
Kaya and Takaki (1936)

Carr and Smoluchowski
(1951)

Gersdoxf (1961)
Radeloff (1964)
Lourens and Viljoen {1966)

Williams and Pavlovic
(1963)

Mean values
Sign

Maximum Variation about
mean

h

1

6

. h5 x 10
hy h,

-31.0
38.0
31.0 -31.0
36.2 -34.0
36.1 -33.0
30.0 -28.0
34.3 -31.4
+ -
12.5% 10.8%

119%




Table 2.2

Previous measurements of magnetostriction constants

. 6
of nickel hl cee h5 x 10
By h hy
Bozorth and Hamming (1953) -68.8 -36,5 -2.8
¢ Ci19 3
Tatsumoto and Okamoto
(1965) -45.0 -47.0 -4.0
2 2%)
Benninger and Pavlovic
(1967) -85.0 -80.0 -10.0
Bower (1971) -98.5 -43.1 +0.1
+ +
F1.49 Eos o9
Lee and Asgar (1971) -94.3 -42.5 -0.7
Mean values -78.3 -49.8 -3.5
Sign - - + or -?
Maximum Variation about
mean 42.5% 60.6% 185.7%

-7.5 +7.7
Fs.2) (¢ 3.1

~51.0 -62.0

-6.0 +12.0

+3.4 +0.2
< 0.6) £ 0.9

+0.2 +1.5
-12.2 -8

+ or -? + or -?

318% 665%
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It is perhaps a reasonable observation that not a great deal of
attention has been paid to the structural perfection of many of the samples
studied, especially in the light of the considerable variety of results
which have been obtained. The X ray technique used in the work of this
thesis, and which will be described later, allows not only "direct" measure-
ment of the magnetostrictive deformation in the sample, but almost simultan-
eously allows an assessment of its structural quality also. Thus the
results obtained may be considered to a greater extent in the light of the

oerfection of the specimen.
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Chapter 3
Magnetostriction measurements by X ray diffraction techniques
3.1 Magnetic domains

Below the magnetic ordering temperature, a spontaneous magnet-
ization exists inside a volume of ferromagnetic material, owing to the
quantum mechanical exchange interaction between the spin magnetic moments.
Because of the magnetocrystalline anisotropy, the magnetization lies
favourably along some crystal directions. The gyeneral features of the
magnetic configurations existing inside a given material have been discussed
by Chikazumi (1964). A spherical single crystal specimen is considered.

If the specimen is composed of a single domain, as shown in Figure 3.1 (a),
then because of the uncompensated magnetic poles appearing on the surface,
there is an associated magnetostatic energy. One way to avoid this is to
make the inner magnetization rotate inside the sphere, as shown in Figure
3.1(b). There are then no magnetic poles, but instead the neighbouring
spins make some angle with one another, so that some amount of exchange energy
is stored. The choice between the two possibilities is essentially
datermined by a comparison of the two kinds of energy, which are dependent

on the shape and volume of the specimen and on the exchange interaction.

A minimization of total energy leads to the specimen having some stable
magnetic structure, If the crystal has large magneto crystalline anisotropy,
the inner magnetization is forced to point parallel to an "easy" direction.
For crystals with easy directions along a <100> direction, the domain
structure may look like that shown in Figure 3.1(c), whilst for crystals with
uniaxial anisotropy, the inner magnetization must point either parallel or
anti-parallel to the easy direction. In either case, the magnetostatic
energy is much less than that associated with the single domain of Figure

3.1(a). The domains, regions of uniform magnetization, are separated by




Fig.3.1(a). Single domain structure Fig.3.1(b). Domain structure of a
material with small crystal anisoftropy.

Fig.3.1(c). Domain structure of a Fig.3.1(d). Domain structure of a

material with large crystal material with uniaxial anisotropy.

anisotropy.
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domain walls, relatively very thin layers in which the magnetization
gradually rotates from its direction on one side to its direction on the
other. Because the direction of magnetization is different on either side
of the domain wall, the magnetostrictive deformation in a given direction

may also be different on either side, as pointed out by Tanner (1976).

This latter difference provides the mechanism for contrast in the observation

of magnetic domains by X ray-diffraction topography.
3.2 Observation of domains by X ray topography

Observation of magnetic domains using X ray topography was first
reported by Merz (1960), whose work is discussed in Chapter 4. The ferro-
magnetic domains studied were in cobalt zinc ferrite.

Magnetic domains in Fe-Si single crystals were observed by
Polcarova and Lang (1962) using Lang's (1959) method of projection topography.
Some of the important points they outlined regarding the use of X ray topo-

graphy in the observation of domains are given as follows.

l. As well as surface configurations, the method shows up interior
structures which are not observed by the colloid technique {(described

by Williams, Bozorth, Shockley (1949)).

2. Domains, dislocations and low angle boundaries can be seen simultaneously

on the same topograph.

In a series of works since these first X ray observations,
Polcarova, along with Lang (1971), Kaczer (1967), Gemperlova (1969) and
Bradler (1972), have studied the X ray diffraction contrast of domains in
Fe-Si single crystals. The studies with Lang (1971) have led to a proposed
fire structure for some of the domain walls, whilst those with Bradler (1972)
produced a measurement of one of the magnetostriction constants for this

material. The latter work will be discussed later in this chapter.
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In Fe-Si, the easy directions are along the cube axes <1l00>.
Using transmission and reflection topography on a thin platelet cut parallel
to the (00l) plane, Polcarova and Kaczer (1967) were able to observe 90o
walls and fir tree closure domains. A schematic representation is shown
in Figure 3.2. The 180° domain walls were not visible, but their position
could be determined from the position of the 90° walls and fir trees. Other
topographs were taken using different diffractions from the one used above.
It was noted that the 90o walls lie in (110) and (110) planes, and it was

noted that the walls became invisible if diffraction planes on the [.110] zone

o]
or [110] zone were used. That is, no 90 walls or fir tree branches appeared
in these diffractions. The direction of the zone axes is determined by the
vector:

Q = m, - m (3.1)

where ﬁz and ﬁl are unit vectors in the direction of magnetization on both
sides of the wall. The rule for the disappearance of the domain walls on

X ray topographs is that
°. g =0, (3.2)
where g is the diffraction vector.

Referring to Figure 3.3, it can be seen that planes with [}
not perpendicular to o deviate on crossing the 90° wall, For Fe-Si then,
the crystal has cubic structure when no magnetization exists, and a slightly
tetragonal structure when the magnetization is present.

The lattice outside a plane (l11l0) 90° wall undergoes only magneto-
strictive deformation. For the planes which deviate across the wall, the
latter may be conceived as a coherent twinning boundary. No 180° walls

are observed at all, as the magnetostrictive deformation is the same on

opposite sides of the wall. 180° domain walls may be made visible at the



Fig.3.2 Schematic diagram of the domain structure of Fe:Si. In X-ray
topographs only 90 walls are visible. 180" wall positions are determined

from the position of fir tree domains.

Fig.3.3 Lattice misorientation across 180 walls in iron. Planes with g

~

not perpendicular to Ap are seen to deviate on crossing the 90" wall.

All planes are continuous across the 180  wall.
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surface of a sample in some cases when there is a strain relaxation effect
as the wall meets the surface (see Sery et al. (1977)). The magnetostrictive
deformation inside the wall is compensated by the elastic deformation, so

that the total deformation is the same as that outside the wall.

3.3 Magnetostriction measurements with Lang topography

. . . -5
Because the magnetostriction constant is typically small (2x10

for iron) the difference in interatomic spacing and plane miso;ientation is
very small in neighbouring domains. Therefore, the difference in Bragg
angle in going from one domain to the next is much smaller than the typical
divergence (>2' arc) of the primary X ray beam used in Lang tobography.
The Bragg condition is fulfilled for both domains simultaneously, different
domains are visible sumultaneously,; and there is just a change in contrast
at the walls. Thus with the Lang method in this instance, the difference
in Bragg angle, owing to misorientation of the diffraction planes across the
domain wall, can not be measured and the magnetostriction thus can not be
found.

However, if a material with a larger magnetostriction constant is
to be studied, it is possible to measure the misorientation in_going across
a wall from one domain to the next. Such an experiment has been performed
by Petroff and Mathiot (1974). They have determined the spontaneous magneto-
striction coefficient of terbium iron garnet, Tb3Fe5012, by X ;ay diffraction
at 77°K and 4.2°K. The garnet is ferromagnetic below.568°K, its easy axes
being along <l1l1ll1>. The magnetostrictive distortion.then is along <111>,
and a rhombohedral structure of the lattice results. Magnetic domains can
appear and are limited by 710, 109° and 180° walls. In an X ray topographic
study of (110) plates by the same authors, a Ni type structure was observed,
in which the walls at 71° are in {110} planes, and the 109° walls are in

{001} planes. 180° walls were not visible, in agreement with previous
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remarks. It was noted that at low temperatures, the 71o walls are
practically the only ones present. In the experiment then, the (110) plate
is mounted in a cryostat and positioned on a Lang camera. The geometry of
the domains in the plate is shown in Figure 3.4.

In the domain denoted by I, the magnetization direction is [I11].
In domain II, the magnetization is in the [ili] direction.

For certain reflections there appears an angular misorientation
between the type I and II domaiuns. Because the resultant magnetostrictive
distortion here is rhombohedral and not tetragonal as for Si-Fe, equations
for magnetoelastic equilibrium may be quite different. It isbbointed out
by Mathiot et al. (1973) that domain rules regarding domain contrast are not
verified. Although Polcarova's rule has been supported by observations on
Y.I.G., Patel et al. (1973) have observed domain contrast in Co substituted
orthoferrites contrary to the predictions of Polcarova's model. Thus the
.whole subject can become quite complex.

The change in aggle across the wall, 6(A?lll, is proportional to
the component of strain, the equilibriuﬁ‘value of which is found by minimizing
the energy density, and in Mathiot's experiment is given by: eij = %'Alllx

ui uj, where u are -direction cosines of the magnetization. For the

i,]

final expression for 6 (AO; two angles characteristic of the problem are

« e

1-11'

used. These are, ¥, the angle of asymmetry between the entrance surface and
the normal to the reflecting plane, and ¢, the angle between the trace of

the wall on the entrance surface and that of the reflection plane. Then:

o . 2 _
s§(80), ;1 = V2 A yy Sin 2 ¢ cos” ¥ [tan © - tan ¥] (3.3)

1

It is noted that the change is proportional to tan O and so rises with in-

m
creasing order of reflection. Also 6(AO) is a maximum for ¢ = /4, that is
for the reflecting plane whose trace on the entrance surface is at 45° to

that of the wall. &(A@) = O for ¢ = '/2 and O.
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Fig.3.4 Domain geometry of crystal plate sfudi.ed by Mathiot and
Petroff. (1974).

Table 3.1(a). Results at 4.2'K. Table 3.1(b). Results at 77K.
Reflection dlAB)sec. 2, x100 Reflection d(AB)sec. >\mx106
88,8 260 2198 12,1212 105 519
121212 435 2151 121212 106 52
8,868 250 213 2,64 80 542
21272 455 2250 412,78 120 578
8 816 410 2267 L 812 100 482
3,12 265 2183 0,%,2 102 © 513
3,1, 2 160 2253 0, 4,4 80 £23
6 24 315 2132 0,88 95 501
2 64 325 2200 8 816 90 486
4128 440 2121
L0,2 250 2202
40,72 237 2088
4,0, % 187 2189
4,0, 4 322 2107
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The measurements made at 77°% and 4.2°k are then shown in Table
3.1(a) and Table 3.1(b). The results are seen to agree with those of other
authors, and thus display a technique for the measurement of the magneto-
striction constanf without the use of an applied magnetic field. Similar
work extended to Dy.I.G.and Y.I.G.has been reported by the same authors

(1975) .
3.4 Measurements with large magnetostriction materials

In the first half of the sixties, Rhyne et al. (1963) reported
"giant" magnetostriction in the heavy Rare Earth elements.

The constants describing the magnetostriction were evaluated by
Darnell (1963) from X ray measurements of the crystal cell dimensions of Dy
in its ferromagnetic state below 860K, and for Tb in its ferromagnetic state
below 220°K. The maximum observable single crystal magnetostrictions are
estimated to be about 5x10_3 for both materials, this being at 22°K.

It was pointed out that when such large values of magnetostriction
are apparent, it becomes a matter of choice whether one wishes to consider
the magnetized crystal in terms of magnetostrictive distortions superimposed
on the original symmetry, or in terms of a new structure of lower symmetry.

Magnetostriction tetragonality of about 5x10_3 in FezTiO4 has
been observed by Ishikawa et al. (1971). Here the structure determination
below the magnetic ordering temperature, 142°k, was made by X ray powder
analysis. The diffraction lines showed a splitting completely explained
by the tetragonal distortion.

Clark et al. (1976) has made measurements of the large magneto-
striction constants of some rare-earth iron compounds, notably TbFe. and

2

DyFez, along with the ternary and quaternary alloys of the form RnyRzFe2

(R = Ce, Pr, Sm, Tb, Dy, Ho, Yb). These cubic rare earth iron materials

are the only known compounds possessing such huge room temperature magneto-
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strictions. It is found that Aloo << Alll' Alll/AIOO being more than

600 for DyFe The values of All are deduced from the splitting of

2° 1

selected X ray diffraction lines and values are shown in Table 3.2.
3.5 Studies of NiO

The distortions of the NiO lattice owing to its magnetic ordering
have been studied by several authors, using X ray methods. The magnetic
structure of NiQ, which is antiferromagnetic, has been studied by Roth (1960)
using neutron diffraction and optical methods, and by Slack (1960) who,
besides X ray diffraction, also used optical methods.

The ordering below the ordering temperature TN is shown schemat-
ically in Figure 3.5(al. The spins lie in ferromagnetic {111} planes. The
antiferromagnetic ordering results in a slight rhombohedral distortion,
which is seen as a contraction of the original cubic unit cell along one
of the-<lll> axes. It is pointed out by Darnell (1963) that such structure
change (as with FeO, CoO and MnO also) is not usually considered as magneto-
striction, since application of normal fields causes no change in magnetization
and thus no dimensional change. The distortion is referred to then as ex-
change striction.

Because this contraction may occur along any of four equivalent
directions in the parent cubic crystal, crystallographic twinning which is
related to the antiferromagnetic ordering may take place. These twin
structures then describe a type of antiferromagnetic domains, referred to
as T (twin) domains. Regions of different contraction axes are separated
by T walls, which can belong to {901} or {110}, as shown in Figure 3.5(b).

Another type of domain wall exists in NiO, called an S (spin
rotation) wall. This type of wall separates regions of the crystal in which
there is no change in contraction axis, but merely a rotation of the spin
within the ferromagnetic sheets. The magnetostrictive distortions associated
with such variations ol spin are considerably smaller than the "exchange"

striction associagted with the T domains.


http://sni.ii.Lur

Fig.3.5(a). Antiferromagnetic structure of NiO. The open circles are
oxygen atoms. The spins lie in (111) but the the direction within the
ferromagnetic {111} plane is not specified. The coniraction axis is

[111] and the rhombohedral cetl shown has o= 90" 4'.

—— e e

(001)

T~ .%(oon
A

(100)

Fig.3.5(b). T walls in NiO. The T walls are shaded. A single ferro-
magnetic sheet in adjoining T regions is shown and the magnetization
in adiacent sheets is antiparallel. The magnetic axis is [110). The

wall in A is [(00N)II and that in B is 1(110)1.
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The rhombohedral angle of NiO at 300°K has been given by Slack (1960)
from X ray measurement to be 90°4.2'. Also a measured value of facial tilt
angle of the (112) plane across a T wall was given as lltl', leading to a
fractional change along {111} of 1.3x107°,

An X ray diffraction study of T domain distortion has been
described by Kohn and Iida (1969). Their experimental arrangement is shown
in Figure 3.6(a). When a given area of the specimen has a perfect crystal
structure, a homogeneous straight line diffraction pattern is expected on
the photographic film. When the adjacent areas are misoriented with respect
to each other, the diffraction pattern shift of one area leads to an overlap
or gap on the film. This is shown schematically in Figure 3.6(b). From
the amount of shift, the angle of misorientation is estimated. The sma}lest
detectable misorientation was about 0.3 arc. Observed misorientation
angles for twin planes (0l10) and (110) were 10' and 7°. Other misorientations
of about 1' were observed and were thought to be related to "images" of
S walls, suggesting a spontaneous magnetostriction of about 10-4.

In order to investigate the sensitivity attainable with a single
crystal and geometrical slit arrangement a single crystal diffractometer was
constructed at Durham University. The collimation of the primary beam was
made by two vertical slits which were 30um and 80um wide, separated by 90cms.
The horizontal divergence of the beam then was not less than 30 seconds of
arc. With the {444} reflection and MoKa1 radiation, not only was the Ka
doublet separated, at 1l4' arc, but a splitting of the Kalpeak of slightly
more than 6' arc was observed. The width of the beam incident on the crystal
was estimated to be about 100um, wider than the 1lOuym T domain width which has
been quoted by other workers. It is thought that this splitting was related

to some T wall misorientation. However, the useful sensitivity of the

arrangement was thought to be at its limit at this stage.



Fig.3.6(a) Sketch of X ray diffraction arrangement.

X Linear X ray source {Mo Ke,)

M Bent quartz plate monochromator, radius 200 mm

S Slit

C Specimen mounted on a holder rotatable around the
vertical axis

P Photographic plate

N

N\

[001]
0]
.ﬁ.“ﬁ“\ \ specimen

Fig.3.6(b) A schematic illustration of a shift of the pattern

due to the misoriention of the lattice.
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The magnetic anisotropy, magnetostriction and magnetic domain
walls for the case of S domains have been treated both theoretically and
experimentally by Yamada (1966) . It was shown that the magnetostrictive
distortions are given by an orthohombic deformation exx—eyy and a monoclinic

+ -
deformation e . The values obtained experimentally were (9 - 3) x 10 3

ZX

and (1.6 : 1) x lO—5 respectively. The experimental arrangement shown in
Figure 3.7 involved a combination of double crystal (described in Chapter 4)
and Berg Barrett topography (described recently by Tanner (1976)). The results
did not agree with the predicted values of 2.4 x 10—4 and -1.5 x 10_4
respectively. It was also pointed out that the value of the orthorhombic
deformation was larger than that determined from other methods of measurement
at that time. Crystal imperfections were said to be partly responsible, and
also the amount of spontaneous magnetostriction seemed to change locally
depending upon the strain distribution produced by the crystal inperfections.
It was stated that the value of the striction obtained by measuring "overall"
strain may be said to have become smaller as compared with the value obtained
by measuring "local" strain, as in the case of Yamada's work. Nakahigashi
et al. (1975) repeated measurements similar to those above using Berg Barrett
topography. The values obtained for the deformations were larger and of the
corxrect sign as predicted theoretically by Yamada. The improved results

were explained by the better quality of crystals used compared with Yamada's

experiment.
3.6 Low magnetostriction measurement

It has been seen so far that magnetostrictive distortions of the
order lO_3 may be deduced by using fairly simple monocrystal techniques such
as the powder method and the single crystal goniometer. For values of the
order 10_4, the Lang technique has been used, whilst for deformations

approaching values below this, which will be described in detail in Chapter 4,




Fig.3.17

Schematic drawing of double crystal arrangement used
by Yamada et al. (1966)
X X ray source
S Slit
M Ge monochromator
C Specimen
F Photographic film.
Table 3.2 Magnetostriction of RFe2 Compounds. Clark et al. (1976).

A, x106
TbFe2 2460
SmFe2 -2100
DyFe, 1260
ErFe2 - 300
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a double crystal method has been used. The more typical value of magneto-
striction of about 10_5 has been measured by Bradler and Polcarova (1972) who
studied the relative inclination of the lattice planes on either side of

90° domain wall in Fe-3% Si. The experimental arrangement used is shown

in Figure 3.8(a). The second crystal was rotated through the reflecting
position and the intensity of the reflected beam was measured by a scintill-
ation counter. The result of their measurement is shown by the curve in
Figure 3.8(b). Also topographs were taken at the different angular positions
and the blackening recorded for two neighbouring domains was studied with a
photometer; this led to a similar curve. From the separation of the de-

composed curve, a value of Xl was found to be 2.7 x 10_5, in agreement

6]0)
with other authors' results. It was pointed out that errors in the rocking
curve widths ohserved were probably due to a small misalignment of the crystals
and an uncertainty in reading the angle of crystal rotation, the total error
being 2". Thus it was claimed that the magnetostriétion value quoted does
not exceed the accuracy of those values given by other methods.

All the methods of magnetostriction measuréments discussed in
this chapter have the common advantage that no magnetic field is required in
deducing the values of spontaneous magnetostriction. The case where only

180° walls exist is discussed in the following chapter. The previous methods

may not be applied to this case, as has been indicated.



F 4
/ gt ~~
~ Fe-Si \\\ \
(1) S, Ce " C
el [ ]
30
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S, Ge S, Fe-Si P C

Fig.3.8(a} Schematic diagram of double crystal arrangement used by
Bradler and Polcarova (1972). (i) plan, (ii) elevation. F, focus, S, S,
slits, P, photographic plate, C. counter.

Fig.3.8(b). 1, measured reflection curve. 2 &3 obtained by numerical

decomposition of curve 1.
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Chapter 4

Proposed method of magnetostriction measurement and review of

double crystal diffractometry

4.1.1 The use of a double crystal X ray diffractometer for the

measurement of magnetostriction

The disadvantages of measuring magnetostriction by the most widely
used technique, the resistance strain gauge, have been outlined in Chapter 2.
An important point is that the method allows just indirect contact with the
crystal lattice planes, The use of X ray diffraction techniques to measure
magnetostriction, as described in Chapter 3,-provides one way of overcoﬁing
this difficulty. The successful use of X rays requires crystals of good
lattice perfection. However, once this requirement is fulfilled, the
fundamental nature of the results obtained may be emphasised.

One of the drawbacks in using the X ray diffraction techniques
which have been discussed is that they may not be applied to the measurement
of the magnetostrictive distortion in crystals which contain only 180°
magnetic domain walls.

It can be seen then that there is room for at least one further
measurement technique which may be entirely different from those already
discussed, or which may be based on some combination of aspects of the two
mentioned above.

The basis of the measurement technique used, and which is being
described in this thesis, can be seen through a differentiation of the Bragg

equation which keeps the wavelength, A, constant.

A = 2d sin O
O = 2d cos OA®@ + 2Ad sin ©
+Ad = =40 (4.1)

d tan ©
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This equation relates the fractional change in lattice spacing, Ad/d,

to the change in Bragg angle, A@, which occurs when the lattice spacing

is changed by Ad. When a crystal is mounted on a diffractometer and
rotated through the Bragg angle, the rocking curve represents the relation
between the Bragg reflected X ray intensity, I, recorded in the detector,
and the rotation angle, ©O. From Figure 4.1(a) it can be seen that the
maximum change in intensity for a change A@ occurs oa either flanks of
the curve.

A magnetic field of sufficient strength to saturate a magnetic
crystal can be rotated to change the direction of magnetization in the crystal.
If the crystal is set on the flank of the rocking curve, the fractional
change in lattice spacing, Ad/d, which accompanies the rotation of the
magnetization, may be related through equation (4.1), and the rocking curve,
to the change in the reflected X ray intensity.

For a typical value of Ad/d of 10-5 and a Bragg angle of 45°
it can be seen that the value of AO is about 2 seconds of arc. For the
sensitivity required to measure AQ in the way described, rocking curves of
the order of 10 seconds of arc width are needed. It has been seen in
Chapter 3 that Polcarova and Bradler (1972) obtained narrow rocking curves
by using a double crystal X ray diffractometer, and such an instrument was
employed in the work of this thesis. The general theory of the double crystal
diffractometer is described in section 4.2. The geémetry of the experimental

arrangement is shown in Figure 4.1(c).
4.1.2 Previous X ray techniques involving an applied magnetic field

In an X ray study of ferromagnetic domains in cobalt zinc ferrite,
Merz (1960) described his magnetostriction measurement technique which involves
essentially the same principles as those described above. However, there are

some important differences between his work and the project described here,
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Merz Observed domains in cobalt zinc ferrite crystals using a
double crystal diffractometer and the Berg Barrett method. The crystals
had been magnetothermally annealed, such treatment leaving the magnetization
in a known direction. A magnetic field was applied perpendicular to this
direction and the crystal was rotated until the domains which had been shown
to be reflecting in the original Berg Barrett micrographs were agaiﬁ shown
to be Bragg reflecting. From the rotation he deduced a value for the
magnetostriction.

Although a double crystal camera had been used here, no special
mention was made of the high sensitivity which may be achieved with such an
instrument. In fact, it was stressed that a material with a large magneto-
striction (the value of AL/% for cobalt zinc ferrite is -335 x 10_6) was
deliberately chosen, and so the sensitivity aspect of the experimental
arrangement was essentially ignored. The minimum width in any of the rocking
curves which were recorded was 63 seconds of arc, indicating that the crystal
lattice perfection was not of the highest possible.

The magnetic field used in Merz's work had a maximum achievable
value of 5000 Oe. In Chapter 5 the magnet used in thg present work will be
described and the magnetic field obtainable will be shown to be considerably
higher. Thus from the point of magnetic fieldstrength alone, the present
apparatus to be described may be applied to a wider choice of materials.

It should perhaps be pointed out that experiments studying the
effects of a magnetic field on the reflection of X rays from a crystal set
in the Bragg condition have quite a long history. de Broglie (1913) per-
formed an experiment along these lines and "Physical Review" records a series
of such experiments by Compton and Trousdale (1915), Compton and Rognley
(1920) , Becker (1922), Yensen (1928) and Stearns (1930). All were designed
to determine the nature of the ultimate magnetic particle. None of the
experiments was successful in observing any change in Bragg;reflected X rays

when a magnetic field (typically 1000 Oe) was applied to the crystal lattice.
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4.2 Theory of the double crystal diffractometer

4.2.1 Introduction. The geometrical arrangement of the double crystal
diffractometer has been referred to in several previous sections. Generally
it has been seen that X rays are Bragg reflected from one crystal, the
reference, and then the X rays are furthexr Bragg reflected from a second
crystal, the specimen. The advantage of a double crystal diffractometer
over a single crystal instrument is principally due to the greater angular
resolving power attained. This increase is caused by the selective action
of the first crystal upon the incident beam. Monochromatic constituents
of it are diffracted in paréllel bundles in the beam leaving the crystal.
The theory describing the operation of a double crystal diff-
ractometer was presented by Compton and Allison (1935).' From this, some
of the elementary properties of the instrument may be éeen. In the foll-
owing, a resume of that theory which applies to the setting of the diff-
ractometer used in the work of this thesis will be given. A general
equation for the instrxument will be developed. The-functions appearing in
this equation depend in part on certain angles which are important in the
operation of the instrument. Thus these angles, together with some
assumptions as to the experimental arrangement will be.considered first.
Finally it will be shown how the important properties of the instrument may

be obtained from the general equation.
4.2.2 Settings of the diffractometer

It is assumed that the two axes of rotation of the crystals lie
in a vertical plane, and that they are accurately parallel. Further, it is
necessary that the reflecting crystal planes are parallel to these axes.

The discussion is applicable to the case of the X rays being reflected from
the crystal surface, but is not adequate to cover the case of transmission

through a crystal slab.




Ftg.4.1(a). Rocking curve showing the position of the crystal on the flank

of the curve used for high strain sensitivity,

Fig.4.1(c). Type 2,(+,-) position of double crystal diffractometer. For zero

dispersion the crystals are parallel and their lattice spacings are equal.
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The positions of the two crystals fall into two main classes.
These are shown in Figures 4.1 (b) and (c). The first type is the (+,+)
or {(n,n) setting. Here, the rays incident on the reference crystal and
leaving the specimen crystal are on the same side of the ray between the
crystals. The second type is the (+,-) or (n,-n) setting. Here the rays
incident on the reference crystal and leaving the specimen crystal are on
opposite sides of the ray between the crystals. The (+,-) setting was

used in the work reported here.
4.2.3 Beam divergence

The vertical divergence, ¢, of the ray is the angle made with
its projection on a plane which is perpendicular to the axes of the instrument.
The functions appearing in the instrument are symmetrical with respect to rays
lying above or below this plane.

The horizontal divergence, a, of a ray is the angle made with its
projection on a vertical plane containing the central ray, the ray which
passes through the geometrical centre of the slit aperture. The value of a
may be defined as positive or negative depending on whether the glancing
angle made by the ray on the reference crystal is greater or less than the

glancing angle of the central ray.
4.2.4 Rays incident updn the reference crystal

Three quantities characterize a ray in'the beam incident upon the
reference crystal. These are (A,a,¢), the wavelength, and the horizontal
and vertical divergences respectively. The glancing angle of such a ray
may be found in terms of a and ¢§. If the ray with a = ¢ = O makes the
glancing angle ¢(é,nA), then for small a and ¢, it can be seen from Figure

4.2 that the required glancing angle is:

1
¢(Xo,nA) + a - §-¢2 tan @ (Ao'nh) (4. 2)




|
8(A.n) I

(A.0.4)

8l n)-%tano

Fig.4.2. Incident ray on first crystal may be designated by three symbols

{X,oc.¢). Glancing angles shown are those made by rays (,\.,o'en,O) and (A.0.4)
when the glancing angle of the central ray (X,0,0) is 8(3,n).

9()~_,nﬂ) —~

reference specimen

813.n)

Ftg.4.3. For n,> n,, the specimen crystal passes from shorter to longer
w#avelengths when rotated clockwise.



IR

37

Ao may be thought of as some characteristic wavelength such as the centre
of a spectral line or an absorption limit.

The deviation of the angle © (K,nA) from the glancing angle
(A,a,9) is now required. This deviation is the argument of the reference
crystal diffraction pattern function which will appear in the general equation.
0 (A,nA) is the reference angle corresponding to A in the nth order. It may
be written

0 (A,nA) =0 (Ao,nA) + (X - A°)§%; 5] (Ao,nA) (4.3)
The required angular deviation is the difference of (4.2) and (4.3). If the
diffraction pattern of the reference crystal approaches that of a perfect

crystal and this deviation,

a - i-¢2 tan © (A ,n.) - (A = A) 33—-0 (A ,n.) (4.4)
2 4 o! A o '\Ao \ o!..A !

is more than a few seconds of arc, then the intensity of reflection of ray
(A,a,¢) from the reference will be very small. Theoretically, however, each

ray incident on the reference is reflected at least to some extent.
4.2.5 Rays incident on specimen crystal

It is assumed that the method of operation is such that the
rocking curve is obtained from rotation of the second crystal alone.
Oo (Ao,nB) is the exact Bragg angle obtained from the Bragg equation when

the wavelength Ao is reflected in order n The reflection of a given

B’
wavelength Ao will take place through certain small ranges about the glancing
angle(@o,nB). It is convenient to speak of the deviations of the specimen
from this characteristic angle. The deviation which it is necessary to
consider is very small and is represented by 8. As with a, this may be
decided as being positive or negative by definition.

Let the specimen crystal be set so that its angular deviation is

B from a position where the glancing angle of the central ray upon it is
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0 (Ao,nB). The glancing angle of the central ray upon the specimen crystal

is then ©O (Ao,nB) - B, and the glancing angle made by the ray (A,o,¢) is:
9 (a n)-8+a—-];¢2tan9()\ n.) (4.5)
o''B 2 o' B )
The deviation of the glancing angle of this ray from the angle 0 (k,nB) is

1l 2
- B +a- §-¢ tan © (Ao,nB) - (X - Ao) ) 0 (Ao,nB) (4.6)

P
o

This deviation is the argument of the single crystal diffraction pattern

function of the specimen crystal.
4.2.6 Power in element of incident beam

The power in an element of the beam incident on the reference

crystal may be written

Gla,$) J(x - Ao) da dX 49, where the element has wavelengths
between A and A + dA, and horizontal and vertical divergences da and d¢
respectively in the vicinity of values o and ¢. The geometrical function G
depends on such parameters as slit aperture shape, and intensity distribution

in the focal spot. The function J gives the distribution of energy in the

incident spectrum.
4.2.7 General equation

After diffraction of this incident beam from the reference, the
power in the resultant beam will depend on the deviation of the glancing
angle from the angle O (A,nA). Such a dependence is given by the single
crystal diffraction pattern function, which is called the C function. Hence
the power in the elementary beam after diffraction from the reference crystal
can be written:

1.2
= <]
5 9" tan (Ao,nA)

G, J (A -24)C, [a -
- - 3
A =2 )(¥R) 0 (]

dAdodé (4.7)
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This is subsequently diffracted by the second crystal. Again the diffracted
beam depends on the deviation from the glancing angle 0O (Ao,nB), and this
dependence is given through the C function for the specimen crystal. Upon
integration, the entire intensity reflected from the specimen is then written:

¢ A o

P’(B) = J\ m J‘ max m
-0 A \[ a G(a,d) J (A—Ao)
m min - m

1 2 ]
c, la-59¢" tano (a_,ny - <A—Ao).37°> 0 ( m,)]

_L 42 - (- 3
C [-B+a > ¢ tan G(Ao,nB) (A Ao)( /

B ) 0 Oy

dadAdé ° (4.8)
This general equation for the double crystal instrument is written assuming
that the change in the C functions with wavelength may be reflected. This
is the same as assuming that the range of wavelengths eovered in any rocking
curve is very small. The limits of A in any practical case do not extend

farther than the limits of the range of wavelengths reflected by the reference

crystal, which depend upon the horizontal divergence of the beam incident

upon the reference.
4.2.8 Dispersion

In order to find the dispersion expression, the limiting case is
considered in which the diffraction patterns of the two crystals are so narrow
that no appreciable cont}ibution to P”(B)occurs except when the arguments of
both C functions are zero. Such an assumption is, however, unphysical. It
corresponds to an elementary treatment in which it is assumed that there is
a perfectly discrete Bragg angle for any incident wavelength. If such a
case were to be true, then no power would be diffracted from a divergent
incident beam at any position.

The arguments are equated to zero:

L2 = (A=A ) (@ : =
a-5¢ tan O Aun,) - A=A )(E/50 ) O (y_,n,) =0 (4.9)

- - — - - a =
B +a > ¢ tan 6 (A ,T]B) (A=A ) ( /aA )8 (A ) o] (4.10)
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o is eliminated from these two expressions, and the following equation is

obtained:

2
B _% [tan 6 (AO’nA) - tan 0 (AOIHB)]

- (A=A (YOO 4ny) - Ye(Ao.nB)] =0 (4.11)
Yko Yko

The symbol D is introduced, where

D = ae(Ao.nA) - Be(Ao,nB) (4.12)
oA oA
(o] (o]

From a differentiation of Bragg's equation, nA = 24 sin 8, D may be

written as:

D = "a - g (4.13)
2dcose(Ao,nA) 2dcose(ko,nB)
or, D = %_ [ tanG(Ao,nA) - tane(xo,nB) ] (4.14)
o

If equations (4.13) and (4.14) are substituted in equation (4.11),
then the following may be written:

=1 2 -
B = > Dlo¢ + D(A Ao) (4.15)

The dispersion of the double crystal diffractometer when the spécimen is
rotated is defined naturally as dg/da. If equation (4.15) is differentiated

in this way then

dag = D, (4.16)

da

that is, the dispersion may be written

Dispersion = dB =

1 [tan 8(A_ /m,) - tand (A ,ny) |- (4.17)
dA A

Thus for the (+,-) position, where n > nA, the dispersion is negative.
B
For the arrangement shown in Figure 4.3 the sense of rotation of the specimen

crystal to pass from shorter to longer wavelengths is clockwise, and vice

versa for positive dispersion.
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4.2.9 Properties deduced from general equation

If it is assumed that the C functions of the two crystals are

identical, i.e. CA = CB = C, and G(Ao,nA) = B(Ao,nB) = 0, then the general

equation is written:

¢m Amax 0'm
P (B) = \[ \[ J\ G (a,9) J(A-A) (4.18)
-¢m Amin olm
1.2 20
¢ [a—5¢"tan8-(A-2 ) (*°/ 31 )]

2 26
¢ [a-B-1¢"tand-(A-2 ) (/3 )]dadrd¢
2

To interpret this expression, it is necessary to consider the character-
istics of the functions C, J and G. If the crystals are nearly perfect,
C is negligibly small everywhere except in a narrow range of its argument
close to zero. The range in crystals of good lattice perfection is close
to the width of the single crystal diffraction pattern, which is about

10 radians.

G(a,¢) may be considered to be the product of two functions:
Gla,$) = Gl(a) G2(¢) (4.19)

Gl and G2 are finite over a range of some minutes of arc, which is usually
the extent of the horizontal and vertical divergence of the beam. Thus the
range over which these functions are finite is about 100 times the range over
which C is finite. In most cases the term %-¢2tane is very small, of about
diffraction pattern width order.

Some of the characteristics of the rocking curves obtained in the
(+,-) parallel setting may be obtained from equatioﬁ (4.18) if the above
considerations are kept in mind.

Firstly, for any monochromatic constituent of the beam of wavelength

A, the effective values of a lie very close to the value (A—Ao)(ﬂe/alo). If

this were not true, then the argument of the first C function would be large,
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and thus the function itself very small. This then is what is meant in
saying that the action of the reference crystal is to separate the beam into
monochromatic parallel bundles.

Secondly, the value of the function P”(B) can only be significantly
different from zero over a small range of the deviation B. If B were large,
then in order for the second C function in equation (4.18) to have a reasonable
value, a - (A-Ao)(ae/aho) would need to be large, so that the total argument
could be sufficiently small. But if this were the case, then the first C
function would be negligible since its argument would be large, and thus the
entire integrand function would be negligible. Hence the parallel position
rocking curves have widths comparable to those of the diffraction pattern of
a single crystal.

Thirdly, it can be seen from eguation (4.17), with 4 = 4_ that

A B

the dispersion for the setting under discussion is zero when nA = nB. This
can be further seen by noting that the effective wavelength range reflected

by the specimen crystal is at any position, B, independent of B, and covers

the relatively large range:

A=A it BAO (4.20)
96 ™

This is so, since for a very small value of B, it is sufficient that
o - (EG/BAO)(A—AO) be small for an appreciable value of the integrand product
to be obtained. This condition is satisfied by values of A very close to the
value A = Ao + (9A/238) «, and since the range of a is - L <o < +um,
equation (4.20) may be deduced. Therefore, in the (+,-) parallel setting
the beam entering the detector from the specimen crystal at any position on
the rocking curve contains effective contributions from every waveiength

reflected from the reference crystal, which is another way of saying that

the dispersion is zero.
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Finally, integration of equation (4.18) with respect to o may be
considered, whilst A,¢ and B are held constant. Thus the entire integrand
is considered to be a function of a. It has been seen that the only
pertinent values of o under these conditions lie in a narrow range near
(ae/axo)(x—xo). The change of the slowly varying function Gl(a) is neglected,
and so

G, (o) = G, {(A-X )368/3X) (4.21)
1 1 o o)

Also, the angular range in which the important values of a are found, A and
¢ being constant, is several seconds of arc, whilst the range of o given by
the limits of the integral is Zam, which is several minutes of arc. Hence
the limits of the o integration may be extended to * = without the value of
the integral being affected, If the limits are extended to * «, then use
may be made of the theorem which states that if the function F is finite and

continuous everywhere then

\f F(a)do = J\ F(a - a)da (4.22)

where a is any constant. If the argument of the first C function of
equation (4.18) is replaced by k&, where k is a constant and & is the variable.

then equation (4.18) may be rewritten:

Ao + (dAO/BO)am ¢m

4ray = 90, - -
P7(B) = Kk G, (( /SAO)(A AOHG2(¢)J(A Ag) dear
Yo © (axo/aa)am - ¢m
\[ c(R)c(r-g)as (4.23)
or P(B) = K c(L)C(2-B)ag (4.24)

The constant K is proportional to the power of the beam incident on the
.reference crystal. The change to the variable £ may be interpreted as a

change in the unit of angle, the unit being k radians.
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Using the theorem mentioned above then, the important result is obtained
that the shape of the rocking curve in the (+4,-) parallel positions is
independent of the width or the height of the aperture slits and of the
spectral energy distribution of the radiation used. This assumes that the
diffractometer is adjusted correctly, with the axis of rotation being parallel
to and passing through the crystal faces.

In summary then, the properties of the diffractometer as deduced
from the general equation of the instrument in the (+,-) parallel setting may

be given as follows:

l. The action of the reference crystal is to separate the beam into
monochromatic parallel bundles

2. The parallel position rocking curves have widths comparable to those

N

of the diffraction pattern of a single crystal, typically 10~ radian
3. The dispersion is zero
4. The shape of the rocking curve is independent of the height or width
of the aperture slits, and of the spectral energy distribution of the

radiation used.
4.3 Measurements with the double crystal arrangement
4.3.1 Early measurements

The first measurements using a double crystal diffractometer were
made to investigate the quantities : coefficient of reflection and half width
at half maximum of the rocking éurve. The important works on the coefficient
of reflection were those by Compton (1917), Bragg et. al. (1921), Davis and
Stempel (1921). The crystals used were natural crystals of calcite and rock
salt. Compton measured for this the ratio of the energy of wavelength A
reflected from the second crystal to the incident energy of the same wavelength.

There was some debate as to what should be defined as the coefficient of
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reflection, Some surprise was expressed by Davis, at the large value of
the percentage reflection when the crystals were in the parallel positions.
His results gave a percentage reflection greater than 50%.

Rocking curve widths were investigated for various characteristic
X ray wavelengths, and comparisons made with theoretically obtained values.
Theoretical values were obtained, for example, by calculating the value of

P (B = 0) (see equation (4.8)) and then finding the value of 8 for which

% P (B = 0) would be obtained. Some typical results of Allison (1932) and
by Parratt (1932) are shown in Table 4.l. It was noted by Richtmyer et.al.

(1933) that the rocking curve widths decreased after suitable polishing and
etching of calcite. An important point regarding early work was that finely

sersitive measurements were made with cleaved natural crystals.
4.3.2 Double crystal topography

The first measurements made with the double crystal diffractometer
concentrated on comparing experimental results with theoretical predictions
for the performance of the instrument. The X ray beam reflected from the
second crystal was monitored by an ionisation detector and no variation
across the section of the reflected beam was investigated. The double
crystal diffractometer was developed by Bond and Andrus (1952) as an
instrument for examining the topography of atomic planes. The rescolution
of the method went beyond that obtained by Wooster and Wooster (1945) who
used just a single crystal arrangement to investigate a number of diamonds.
The arrangement used by Bond aﬁd Andrus is shown in Figure 4.4 (a). It can
be seen here that although the reflecting planes of the two crystals are
parallel, the setting is asymmetric. The use of asymmetric reflection on
the first crystal acts to broaden the reflected beam and thus a wider field
of the specimen surface may be inspected. If symmetric reflections are

used, then just a narrow band of the crystal is scanned. The K characteristic



Table4.1 Results obtained by Allison and Parratt on w (width at half height)
for calcite specimens in the (1,1) position; values are given for three samples

together with some calculated values.

Radiation w (calcite V) w (calcite IlIt w (calcite II) w (calculated)
Mo K, 7.2" 2.6" 3.9 2.3"
Cu Ke, 7.8" L.9" 5.6" L9

reference reflecting planes

X ray

detector

film

-

specimen

X ray source

Fig.4.4(a). Double crystal arrangement used by Bond and Andrus (1952).



Xray source X ray source

.

shutter

detector? detecior?

Fig.4.4(b) Multiple Bragg reflexion arrangement used by Hart (1968).

Fig.4.4(c). Schematic diagram of experimental arrangement used by Kohra
and Takano (1968). F, Xray source, M, monochromator, S,, slit for selecting

K, S,.slit, (, specimen, P, photographic plate, A, rotation axis.
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line is usually used when the topographs are taken, since it is intense
compared with the rest cf the spectrum. However, this line consists of a

doublet, Ko.. and Ko,., and these components reflect at slightly different

1 2

angles. Hence two overlapping pictures are given unless the plate is placed
as close to the specimen as possible, when the offset can be kept to a few
thousandths of a centimetre.

In simple terms, if the reflecting planes of the two crystals are
not parallel, no ray can be reflected from both crystals. If a minor part
of the second crystal is slightly misorientated, this part will not reflect
most strongly at the same angle setting as does the major part of the crystal.
If the second crystal is rotated to make the minor part reflect most strongly,
the major part reflects less strongly. The emulsion plate will show in each
case from which part of the crystal the strong reflection came.

In any one exposure, if.the crystal is set on the flank of the
rocking curve, where the variation of intensity with angle is approximately
linear, the relative change in intensity can be related to lattice distortion
by the simple geometrical expression of Bonse (1962).

AL =k (tan © Ad * n_. n, 40) (4.25)

T T 9t
k is the slope of the rocking curve at the point where the crystal is
positioned, typically los. ng is a unit vector normal to the incidence plane.

Dt is a unit vector parallel to the tilt axis of the crystal. This expression
is found to give a good description of most of the contrast observed in double
crystal topographs.

Bond and Andrus used double crystal topography to study the im-
perfections in natural quartz crystals, which had remained invisible when
ordinary tests such as etching and single crystal reflection had been used.

The method was further adopted by Bonse and Kappler (1958) to study the strain

field around dislocation ocutcrops in Germanium single crystals.
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4.3.3 Device grade materials and highly perfect materials

Single crystals of naturally occurring quartz found the first
large scale application in the manufacture of guartz oscillator plates, and
have been used extansively in the optical industry for the construction of
polarizing optical systems. Although effort is now put into growing crystal-
line quartz, earlier on, sufficiently perfect quartz crystals were available
in large enough quantities for the needs of the oscillator industry. The
same has not been the case for other technologically important materials.
Isherwood and Wallace (1974) have pointed out that the far-reaching advances
in materials technology in the past two decades have relied on the production
of good quality single crystals. Production techniques developed by Dash
(L958) who grew samples of Si, and Tweet (1958) who grew specimens of Ge,
made possible the supply of these two materials in the dislocation and planar
defect-free form. These materials have been essential for the transistor
industry. Materials such as gallium arsenide (GaAs), indium antomonide
(InSb), gallium phosphide (GaP), (A2203) and calcium tungstate (Caw04)
which have been used for the production of optical components, microwave
devices, lasers and radiation detectors also do not occur with high perfection
in nature. They regquire a well controlled growth pfocess. More recently
rare earth iron and rare earth gallium garnets have been important in the
productién of magnetic bubble memory cells. Many methods by which crystal
defects may be detected have been developed as crystal growing techniques
have improved. Of these, the double crystal method is the most sensitive
to minute lattice strain. It has been able to image strain regions in crystals
of less than one part in ten millions. At this stage other techniques would
renler the appearance of a perfect structure.

Hart (1968a) has used an extension of the double crystal arrangement
to make some high precision, non dispersive measurements of relative lattice

parameters for Si. The arrangement is shown in Figure 4.4(b). The reference
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crystal and sample crystal are mounted on the two axes of a double crystal
diffractometer, and rocking curves are obtained by rotating the sample.

It can be seen that there are two sources and two detectors. The (n,-n)
rocking curve (from source 2 to detector 2) and the (-n,n) rocking curve
(from source 1 to detector 1) are recorded simultaneocusly. If both crystals
have the same lattice parameter then both detectors record a peak simultan-
eously at the sample setting 8 = O, when the Bragg planes of the two crystals
are precisely parallel. When the two crystals have different lattice
parameters, dA and dB‘ the two detectors record rocking curve peaks at
different angular settings B of the sample crystal. It is noted that the
instrument now operates in transmission. Through the Bragg law for the

case of symmetric transmission, the expression A = 2 tan 0 Ad/d (4.26)

is obtained. The system is non dispersive. and rocking curves of .‘I.O.-6
radian full width at half height may be attained. If the centroid positions
are measured to within 0.1% of the peak width, then equality of Bragg angle
can be detected to within lO_LJ radian, which implies that equality of lattice
parameter can be detected with uncertainties of one part in 109. Preliminary
measurements were made on two Si wafers which were known to have lattice
parameters equal to better than two parts in 107. From the displacement of

7 s 0.6 x lO_7 was found.

the two rocking curves a value of Ad/d of 1.2 x 10

A major trouble with sensitive measurements is that the actual
measurable quantity is easily cloaked by some error in the system. In this
particular case careful alignment of the two crystals is needed.

Various arrangements based on transmission through the crystals,
or multiple reflections at the crystal surfaces may be used as extensions of
the above, depending on the experimental requirements.

Silicon crystals grown by the Czochralski technique contain oxygen

as an impurity, which leads to the formation of impunity bands perpendicular

to the growth axis. Highly perfect low oxygen float zone silicon (LOPEX)
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crystals have predominant oxygen bands leading to lattice parameter
fluctuations of only one part in ten millions. Hart (1968b) has used
double crystal topography with high order Bragg reflections and short wave-
length X rays to attain adequate strain sensitivity and high spatial
resolution to observe these lattice parameter fluctuations. Two pairs of
wafers were used, cut parallel to (i12) and (LIO) surfaces. With the first
pair a full width at half height of only 0.34 seconds of arc was obtained,
giving a rocking curve slope of k = -6.3 x lO5 and a contrast +1 for a
lattice parameter fluctuation of 6d/d = -1.6 x 10-8. The corresponding
values for the second pair were 0.29 seconds, k = 6.8 x lO5 and 64/4 =
+1.3 x 1078

The topographic technique has been used by Baker, Hart et al.
(1975) to study the variation in lattice parameter across crystals of Gads
containing various amounts of dopants of Si and Te. Topographs were taken
of one side of the crystal, which was then rotated by 180° for a further
topograph to be taken of the reverse side. The expressions for AI/I were
obtained from optical density measurements on the two topographs and Ad/d
obtained after elimination of the term Dg'Dt AG. Such measurements gave

Ad/d to 1 part per million at points 350um apart along lines across the sample.

4.3.4 Measurement of lattice parameter differences between epitaxial

layers and substrates

The double crystal diffractometer arrangement has been used by
Hart and Lloyd (1974) to measure the difference in lattice parameter between
a substrate of gdadolinium gallium garnet and a layer of mixed garnet
GdO.SYbO.3Ga1Fe4012 which was grown epitaxially on;o it. The difference
éa

in lattice parameter for such materials has a value typically of /4 > 10_4.

¥2.2

In such a case the composite rocking curve which would be obtained from a
substrate/layer system with a single crystal arrangement may be resolved into

its Lwo components with standard curve titting routines. However the two
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rocking curves may be well resolved with considerable time saving when the
double crystal arrangement is used. Typically a couple of hundred seconds
separate the rocking curves which have widths typically of 13 seconds of arc
for the substrate and 20 seconds for the film, and angular resolutions of
about 1 second of arc were available with Hart's arrangement. Thus with
careful alignment, accurate comparison of the lattice parameters become
quite routine.

Similar measurements were made by Estop et al. (1976). Aluminium
substituted gallium arsenide layers Azx Gal_ As were deposited on substrates
of GaAs by liquid phase epitaxy. Both crystals have a different lattice
parameter at room temperature, and a double crystal diffractometer was used
to measure accurately the difference in lattice parameter between the epitaxic

layer and the substrate.
4.3.5 Some variations of the double crystal arrangement

From the differential form of Bragg's equation, Ad/d = -~ABcotO
it can be seen that as the angle © approaches 900, the sensitivity of the
instrument will increase accordingly. It is rare that allowed reflections
with Bragg angles very close to 90° will be found if characteristic X radiation
is used. In order to make use of the high sensitivity, white X rays may be
used. Double crystal diffractometers based on this principle have been
described by Sykora and Peisl (1970) and Bottom and Carvalho (1970). One of
the problems associated with the arrangement is that the value of O needs to
be known exactly. Practically speaking, this can be difficult. In Sykora's
instrument the problem is overcome by keeping the angle constant. The system
is then passed through the condition of non-dispersion and double Bragg
reflection by varying the lattice parameter of one of the two crystals through
an alteration of its temperature. A lattice parameter change of the other
crystal caused by defects can then be determined from the temperature diff-

erence of the two crystals necessary to give a maximum scattered intensity.
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A further problem lies in the X ray beam being absorbed along
the path in the diffractometer. High Bragg angles imply high order
reflections, which are of less intensity than those of low order. The
X ray beam being white will be of relatively low intensity in any case.
Absorption along the X ray path, which is quite long (about 3 metres here)
is therefore a problem. The system then needs to be evacuated. With good
crystals it has already been pointed out that in most cases adequately
sensitive measurements may be made at a lower Bragg angle with characteristic
radiations. Okazaki and Kawaminami (1972) have pointed out that high angle
diffractometers are useful for accurate measurements on crystals of not so
good quality. They used the instrument for measurement of the variation of

the lattice constant of potassium nickel fluoride, KNiF_, over a wide range

3
of temperatures. One of the problems enccuntered was a geometrical one,
that the low temperature crystal obstructed the beam so that the highest
Bragg angle which could be used was less than 890, but at this angle the
X ray path is quite long. The Bragg angle used in Sykora's arrangement was
89.6°.

Kohra and Takano (1968) have described a modified arrangement of
the double crystal diffractometer shown in Figure 4.4(c) which can be used
for the topography of distorted crystals. The first crystal is bent. A
divergent monochromatic beam is reflected from this. The source and focus
of the reflected beam lie on a circle whose curvature is equal to that of the
bent reference crystal. The reference crystal and photographic plate are
rotated in an oscillatory fashion about the same axis. The resultant exposure
on the plate is similar to a Lang topograph in detail. However in the latter
method the angular divergence of the incident beam is reduced by a slit

system to a few minutes of arc so only the Ka, component is diffracted from

1

the specimen. Thus if a lattice plane misorientation goes beyond the

angular divergence of the incident beam, then the part of the crystal affected
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will not diffract. In the method proposed by Kohra, all the distorted
regions are passed through the diffraction condition as the specimen
oscillates. The whole crystal can thus be studied. In principle, the
facilities available with the diffractometer to be described in Chapter 6
could also be extended in use, beyond that described in this thesis, to

include an arrangement such as Kohra's.




53

Chapter 5
The Electromagnet. Design and Construction
5.1 Magnetic fields used in the measurement of magnetostriction

The magnetostriction measurement techniques which have been
described in the previous chapters can be effectively divided into two
types. One type is that in which the magnetostriction constant is obtained
from measurement of the crystal plane misorientation across a domain wall,
and here no magnetic field needs to be used. The second type is that in
which the constants are obtained by measuring macroscopic strain using a
variety of methods, e.g. the strain gauge technique, the electrical
capacitance technique, etc. In these latter measurement techniques, a
magnetic field needs to be applied in various directions relative to the
crystal axes of a single crystal.

In Table 5.1 a summary of the magnetic fields used in the measure-
ment of the magnetostriction of some interesting magnetic materials is given.

When magnetostriction measurements are made, the magnetization is
pulled wholly into the direction of the applied field. For the state of
saturation to be reached in such a way, the applied magnetic field needs to
overcome the demagnetizing field of the specimen and also its anisotropy
field. The first of these problems is simplified to some extent through
the choice of a specimen shape for which the demagnetizing factor has a
suitably low value. The second problem however depends only on the size
of the applied magnetic field versus the anisotropy field. As can be seen
in the table, fairly moderate fields can be used to achieve the state of
saturation in the transition elements cited and in the garnets. Somewhat
higher fields have had to be used in the rare earth element measurements.

The anisotropy fields in tﬁese latter materials are considerably higher.
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Table 5.1
Material Magnetic field Author
Co Up to 17k Oe Alberts and Alberts (1963)
Fe 7k Qe Lourens and Viljoen (1966)
Ni 5k Oe Birss and Lee (1960) )
8k Oe Benninger and Pavlovic (1967) )
Dy Up to 26k Oe Legvold (1963)
Ho Up to 26k Oe Legvold (1963)
Tb Up to 30k Oe Rhyne and Legvold (1965)
Gd Alstad and Legvold (1964)
Er Up to 30k Qe Rhyne and Legvold (1965)
R_Fe O Up to 14k Oe Iida (1967)

3775712

(R = Sm, Eu, G4, Tb, Dy, Ho, Er, Tm, Yb, Y)

5.2 Fields obtainable from different types of electromagnet

The magnetic field values used in laboratory experiments may be

divided into four® groups. The groups are:

(i) weak , < 1 Oe

(ii) moderate ;, 1 Oe -+ 20 kOe
(iii) strong , 20 kOe =+ 100 kOe
(iv) very strong . > 100 kOe

The production of weak magnetic fields is accomplished straightforwardly by
the use of simple wire coils through which an electric current is passed.

The main problem is that of screening the field produced from other unwanted
components; for example the earth's magnetic field, and the stray fields
from electric cables in the laboratory. In the lower part of the moderate
field region, up to values of about 1 kOe, again fairly simple coil systems

may be used. Higher electric currents are required and a larger number of
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turns is used. However, the power level is low enough so that air cooling
suffices.

Depending on the experimental requirements; for example uniform
magnetic field, uniform magnetic field gradient; different coil configur-
ations are used to give the desired electric current distributions. Adequate
details of these various magnetic fields and their production can be found
in the book by Zijlstra (1967).

If the air core of a solenoid is filled with a high magnetic
permeability material (iron, low carbon steel), the field from the solenoid
may be used to magnetize the material. In this way a magnetic field can
be produced in an air gap in the iron. Fields in the region 1-20 kOe can
thus be produced. The magnetization of the iron reaches saturation at a
fluse density of 21 k Gauss, and it becomes more difficult to produce
magnetic fields beyond 20 kOe using soft iron electromagnets. A simple
soft iron electromagnet arrangement is shown in Figure 5.1.

For the strong magnetic fields, beyond 20 kOe, arrangements which
combine the field contribution from the soft iron with a field contribution
from the electric solenoid may be used. A suitable arrangement, which shows
an axial symmetry of the core and solenoid, is shown in Figure 5.2 (a).For

such an arrangement, a typical specification might be:

Bsolenoia 84,000 Oe
HFe : 36,000 Oe
Htotal : 120,000 Oe
Solenoid current : 104 ampares

Magnetic fields in the strong region may also be produced by
solencids made of a superconducting material, for example NbTi, NbSn, NbZr.
These operate at low temperatures, < 18°k, and thus require cryogenic systems

to be built around them.




Gap field=H Oe

soft iron

N turns

Fig.5.1 (a),

Fig.5.1 (b). Basic magnetic and electric circuits. The magnetomotive force
is 0.4xNi, the air gap of fthe main load is d. The electromotive force

is V and the main load is the resistance R.




solenoid

™~
iron

Fig.5.2(a). Cross section of electromagnet with cylindrical symmetry.

5

N D
SEN)

Fig.5.2(b).

Typical parts of electromagnet, 1, air gap, 2, pole pieces, 3, core, 4, yoke,
5, magnetizing solenoid.
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As one goes into the region of very strong magnetic fields
using a conventional electromagnet it can be seen that the contribution from
the iron circuit becomes less and less important. The iron may be omitted
from the system and high power solencids used alone. The magnetic fields
produced from these high power solenoids, and the technical problems assoc-
iated with their production, have been discussed by Bitter (1939). High
power water cooled magnets, with and without iron, have also been discussed
by Bitter (1961).

Magnetic fields greater than 150 kOe are produced using a pulsed
magnet. In this arrangement a large electrical charge is passed through a
coil of low inductance. In the system used in Amsterdam, 9 megawatts are
taken from the mains supply for 1 second. The field builds up to a maximum
40C kOe for about 0.1 sccond and then dies off over about 5 seconds.

The production of the strong and very strong magnetic fields
generally takes place in laboratories which are built especially for this
purpose because of the magnitude of the technical problems involved.

For the magnetostriction measurement described in this thesis,
it was decided to construct a low carbon steel-core electromagnet, as this

could provide an adequate field of at least 1O kOe over a suitable volume.
5.3 General description of magnetic fields and iron core electromagnets

5.3.1 The quantities used

The important quantities used in the description of the field of
a magnet are the magnetic flux, flux density (induction), B, fieldstrength,
H, and magnetomotive force. Tﬁe flux and flux density are easily visualised
as lines of force emerging from the magnet. The flux is then defined as the
number of lines of force passing through a certain cross section and the flux
density as the number of lines of force passing through unit area. To main-
tain a certain flux density over a given length, a magnetic potential is
required, and the gradient of the magnetic potential is the field strength.

The magnetic potential is generated by Lhe magnetomotive fForce.
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5.3.2 General equations

In vacuum, or in another non-magnetic material, E is related to

H by the permeability, so thet

B = Vs H (5.1)

In the S.I. system of units, uo is equal to 41rx10_7 henry/metre. For
magnetostatic fields it is more convenient to put uo egual to 1 and
dimensionless. There is then no difference in magnitude and dimension

of B and H and both may be measured in the same unit, the gauss. Thus for
magnetic fields in non-magnetic materials the flux density and fieldstrength
have not only the same dimension but also the same numerical value, and this
leads to the use of field strength, where flux density is intended. In non-
magnetic materials though, this does not lead to any confusion. The unit
oersted for field strength distinguishes the magnetomotive force per cm from
the flux density. The distinction is useful in magnetized matter, where,
because of the presence of magnetic dipoles, less magnetomotive force is

required to maintain a given flux density. The following relation between

B and H can be written:

B =H+ 41 Ma (5.2)

where y is the magnetic moment per cubic cm of the material and a is a
factor depending on the geometry of the medium. In an infinitely long bar,
the value of o is 1, then

B=H+ 4w M= ug (5.3)
where U is the permeability of the material. For iron, u is very large,
so hardly any magnetomotive force is needed to cause a magnetic flux to pass

through the material. Magnetostatic fields can be described by Maxwell's

equations written in the following form

0 ’ (5.4)

g
t W
]

0.4nni

-
It
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where E and H are in gauss and oersteds, and n is the number of current

loops per square cm and i is the current contributing to the field. The
first equation states that the flux entering a certain volume and the flux
leaving it are equal. The second equation gives the relation between the
current loops and the magnetomotive force present in the system. It can

be rewritten via Stokes' law as

fﬂ.d,} = 0.47 Ni (5.6)

This means that the magnetomotive force acting in a certain closed path is

equal to O.47m times the total number of ampare turns, Ni encircled by the path.
5.3.3 The magnetic circuit

The two equations are illustrated by a magnetic circuit. This
mndel shows a resemblance to an electrical circuit consisting of a resistance
and a battery, as is shown in Figure 5.1(a) and (b). The coil in the mag-
netic circuit is equivalent to the battery in the electric circuit. It has
Ni° ampare turns, which generate a magnetomotive force (m.m.f.) of 0.4mn Nio.
The high permeability iron around which the coil is wrapped is equivalent to
the electrical leads connecting the battery and the resistance. The iron
has a low magnetic resistance, and the air gap is where the main part of the
magnetic resistance is located. Thus the m.m.f. O.4n Nio sends a flux
density B across the gap of width 4. The magnetic potential over the gap
is Hgd, and if the rest of the material provides no magnetic resistance i.e.

u = =, then Hgd = 0.4m Ni. This means that the fieldstrength, H, 2 is actually

L

written as

H =B -4n M (5.7)

In most ferromagnetic materials 4maMaB, so provided E is low, H, is very small.

L

For increasing B however, 4mM approaches a maximum value 4w Mo which is a

-~

constant of the material. If B exceeds 4ﬂ_§o, Hg increases rapidly and the

material is said to be saturated. For soft iron 4= Mo£= 21400 gauss, and
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so saturation effects are observed for flux densities approaching this

value.
5.3.4 The demagnetizing field and the stray field

The action of B on the magnetic dipoles in the magnetic material
is to align them in the direction of E. Inside the material, the north
poles of one set of dipoles are compensated by the south poles of the next
dipoles, so no magnetic "charges" are present. At the air gap, as is shown
in Figure 5.3, no compensating poles are present, and so there are magnetic
surface charges én the faces open to the air gap. The flux density in the
air gap can be thought to result from the action of these surface charges,
and can be calculated for different geometries of the gap. The surface
charges also produce a field in the flux conducting bars. This field is
opposite to that originally present and so is referred to as the demagnetizing
field. The demagnetizing field is stronger if the gap is larger. The
result of the appearance of the demagnetizing field is that the flux density
near the air gap face is lower than at a point more remote from the gap.

The equation Y.B = 0, however,'requires that the total flux passing through
any plane is constant. As the flux density inside the material decreases

nearer the gap, the area in which the flux flows must increase. Thus the

surface charges "push", with their demagnetizing field, the lines of force

outside the magnetic circuit. This part of the flux that crosses the air

gap midplane outside the air gap is called the stray flux.

If the flux density in the material is known, then calculation of
the gap field amounts to calculating in the first place the stray flux.

The stray flux can also be described by using the magnetic
potential of the circuit. In Figure 5.4 the two ends of the circuit have
an opposite magnetic potential fv, where the gap field Hg = v/d. A closed
loop is formed, indicated by the dotted line, and the potential gained or
lost in this loop is integrated, gudx; this value must be zero since there

a
are no ampere turns in the loop. Hence
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Fig.5.3. Inside a magnetized medium the + and - poles of the magnetic dipoles

compensate each other. The uncompensated poles appear on the surface and
gener.afe a flux density B, in the air gap.
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Fig.5.4 Stray flux of a magnetized pair of poles. The potential at the face of
the air gap *V givec rise to a flux density in the gap, B,, the field strengths of
fhe gap field and the stray field are H,and Hyrespectively.
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stray g int

Even if the internal field, H

Hie! were neglected, there would nevertheless

be a stray field, and only a fraction of the flux passing through the bar

would appear in the air gap.
5.32.5 Units

A diagram showing the essential parts of an electromagnet is
given in Figure 5.2b.

In the design of magnets and magnetic fields, the units used in
the formula tend to be mixed, on the grounds of convenience, for example,

the Fabry formula (Bitter, 1961) gives the field due to a solenoid

H= G [wx]*’ (5.9
pa
G is a geometry factor, W is the power in megawatts, A is a space factor,
p is in ohm cms, a is in cms and H is in kilogauss.

In the calculations which will follow, the units used will be
oersteds for fieldstrength, gauss for flux density, cms for distance and
ampere turns for magnetomotive force. However, in Table 5.2 a comparison

is shown for convenience of some units in the Gaussian and S.I. or mks A

system.

5.4 The equations used for the design of electromagnets
5.4.1 Some sources of reference

The three important references used in the design of the electro-
magnet described in this thesis are the works by Montgomery (196l1), Zijlstra
(1967) and Kroon (1968). Montgomery's work describes the calculation of the
gap fields by means of equivalent surface poles or surface charges. The
calculations are given for a variety of iron pole piece geometries. He re-

iterates the calculations, by considering distributed volume dipoles.
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Table 5.2
Comparison of unif systems

Gauss mksa

Oe=10" Am ... magne tic field strength... Amp/ metre

Gauss =10° Vs.mi%.. magnetic induction ... Volt second/metre’




6l

Finally he analyzes a number of existing magnets, and gives a method by
which the performance of a magnet might be predicted. The method is based
on the measured properties of the particular magnets analyzed.
Kroon's book describes the calculations of the gap field. He
also presents a method for calculating the stray flux and thus the total
ampare turn requirement, and generally he gives a comprehensive account of
the basic information required for the design of a laboratory electromagnet.
Z2ijlstra gives a more mathematical treatment of the magnetic
potential, potential gradient, field gradient etc. He also gives a detailed
calculation of the field of an air core solenoid. The equations for an air
core solenoid are taken from Zijlstra's book. The equations for the gap
field of the iron pole pieces are taken from Montgomery and Kroon, whilst the
equations for the stray flux are taken from Kroon. A description of the
magget performance prediction by Montgomery is alsc given. In any case,

the material from the three works overlaps to some extent.
5.4.2 Equations for an air core solenoid

A cylindrical core of rectangular cross section is considered as
shown in Figure 5.5. The density of turns is considered to be the same at
every point, and to each point a current density is attributed, which is
also uniform throughout the cross section. The field Hx is required at a
point on the x axis, which is taken as the origin. The magnetic potential

at the origin may be written
v= I a, x (5.10)

The contribution da to the coefficient a, caused by the circular current

1d0 flowing through the element 40 is then

2
da1 =-1 p~ dp dxo (5.11)

2 —
(xz + p2)3/2
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p is the distance of dd from the x axis and X is its % coordinate. da_ is

integrated for the coil with inner radius p_, and outer radius p, (= ap,) and

1 2 1

extending axially from xo = 0 to xo = Bpl. Then from

al—l Hx 82—1 .
—_% = g - X = oI .
. A al 1 e! az (5.12)
dx X=0 dx X=0

the fieldstrength is given by

X

H (0) = T plsﬂn (u+(a2+82) L’)
; 1+ 1+ 8d

Tey Fy (5.13)

where Fl is then a geometrical constant.

5.4.3 Equations for the gap field from the iron pole pieces

It is sometimes said that the tapered pole piece causes the flux
to "converge" on the air gap. However the field in the pole is usually
parallel to the axis, so that no convergence exists. Also, the part of the
flux appearing in the air gap is, as a rule, a small fraction of the total
flux in the yoke. Thus there is certainly no "lens focussing" action, but
some concentration of flux density occurs. Only the geometry of the pole
and the properties of the magnetized medium determine the field in the gap.

The surface charge density on the pole is assumed to be constant,
which means that the magnetization of the pole is constant. As the flux
density in the pole does vary, this assumption will be valid only for
completely saturated poles.

The field between two uniformly and axially magnetized rods is
considered, as shown in Figure 5.6(a). If o is the magnetization per unit
volume, it is also the uniform charge per unit area. If the area dA is
measured normal to the direction of magnetization, then the field arising

from any infinitely long pair of cylindrical rings of radius r and section

dr is




area element =dA = 2nrdr cos8=x/z

Fig.5.6(a) Arrangement for caiculation of gap field from consideration of surface

magnetic charge distribufion.

Fig.5.6(b) Cylindrical flat poles.

Fig.5.6(c) Tapered poles with coinciding apices.
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dH = 2ko 2w rdr sin2 © cos © (5.14)

2
r

This is integrated over several different pole geometries. For cylindrical

flat poles, see Figure 5.6(b), the field is

1
H=4m k 0 x r dr
o (x2+r2)3/2
=41 k o0 (1L - cos O) (5.15)

For poles with coinciding apexes, see Figure 5.6(c), the field is

r

2
H=4m1 k ¢ [ l - cos O + r cot O ¥ dr ]
r1 r3(cot2 0+ 1)
H=4r ko (1-cos @+ cos 0 sin2 Ben r, ) (5.16)

r
1
The first two terms, 4m kX ¢ (1 - cos 0), represent the contribution of the

2
flat face, and the last term 4m k o (cosOsin © n rz) represents the

1
contribution of the conical surface.

These represent the interesting cases of relevance for the work
discussed in this thesis. Other geometries may also be discussed. 4w k ¢
represents the maximum saturation flux density, which is 21400 gauss for iron.
Thus for flat pole pieces, the limiting field is 21400 Oe, which is reached

o .
at © = %90 , i.e. the gap is then zero. For conical pole pieces however,

this limiting value can be exceeded by suitable choice of r, and r, and 0O,

5.4.4 Equations for the stray field

The amp;re turns, Ni, present in the magnetizing solenocid, provide
a magnetomotive force, 0.4w Ni. Some of this drops over the "leads" of the
magnetic circuit, and the remainder in the air gap. The total number of
ampare turns consumed depends on the geometry of the circuit; the magnetic
properties of the material and on the flux density in the air gap. To
estimate the magnetomotive force, the magnet is split into the gap and the

iron path.
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As was mentioned in section 5.3, the main difficulty in the

design of electromagnets is the calculation of the integral S(H + Hi)dx,

stray
which represents the magnetic potential required for the entire magnetic
circuit except the air gap. It should be possible to calculate exactly

the quantities such as flux density, stray flux, magnetic potential, and so
on, as they form part of rather simple differential equations. The boundary
conditions for the general case of tapered poles, and the non linear relation
between the magnetic fieldstrength, gi, and the flux density B, provide com-
plications which make it necessary to use somewhat rough approximations.

The first approximation is that the field strength §g in the gap is perfectly
homogeneous (and thus also the flux density gg). Tﬁus the magnetic
potential across the gap can be written Vg = 2Hg_d.

The second approximation is described as follows. In the
material of the poles and cores, the flux density and fieldstrength are
assumed to be parallel to the core axis, and both quantities are assumed
to @epend only on the axial x coordinate. The flux density is assumed to
be homogeneous in the radial direction.

The third approximation can be seen after considering Figure 5.7(a)
and (b). In (a) the lines of force are shown for a pair of poles. On the
conical surface the lines of force of the stray flux are perpendicular to
the conical surface, £esulting from the boundary conditions for the field
strength. In Figure 5.7(b) a contour is described by the dotted line, over
which there is no potential increase or decrease because no current windings
pass through the loop. As a result of the first two approximations, the
potential at the conjcal surface at x + d from the air gap mid plane is

X
V(x) = Hgd + Hi dx (5.17)
O

Following the path further, it can be seen that




rt
_____ ———f —— ——=xX

l.2d J

Fig.57(a) For the calculation of the stray flux it 1s assumed that the lines of

force inside the poles are parallel to the axis, at the boundary between pole

and air the flux is perpendicular to the surface.

Fig.5.7(b) Magnet pole having a face-radius r,, taper 8, and half air gap d. The
pole is assumed to be magnetized parallel to the x-axis. The dotted rect -
angle represents a contour described to find the magnetfic potential V(x) of
the pole and the stray field H,.
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x+d
V(x) = Hsdx (5.18)
o
where Hs is the stray field. Eliminate V(x) to obtain
x+d X
Hsdx = Hgd + Hidx . {5.19)

(o}
The third approximation is then that

x+d
Hsdx = Hs(x+d) (5.20)
o
This means that the stray field strength at a certain distance from the axis
is constant in the axial direction.
The latter two assumptions are justified on the grounds that it
is the average value of the field that counts and not the exact distribution.
The three assumptions in summary are: that the magnetization is
parallel, that there is no radial dependence, and that'HS = V(x)/(x+d).
A pole, as shown in Figure 5.8, is considered. The taper of the
pole is ©, so ; = rg + kx, where k = tanO. According to the assumption

made, the stray field flux density is written

X
B_= _1 [Ba+ H dx ] (5.21)
(x+4d) *
o]

As the flux leaves the pole normal to the surface, the stray flux d¢s leaving
aside the pole between x and x+dx is taken as the product of BS and the

surface of revolution between x and x+dx, that is,
X X

¢ = 2m [k2+1]!2 dx  r_+kx [ B d+ H, dx ] (5.23)

o x+d (o}




Fig.5.8 Geometry of a magnet pole used for stray flux calcutation. The flux
density in the gap is B,. The flux density of the stray field at the pole between
(x +d) and (x+d)+dx is B,.
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and the total flux passing through the pole is

2
= +
¢t b rg Bg ¢s
2
=B ™ (r + kx) (5. 24)
pole g
where Bpole denotes the flux density in the pole, For low and medium gap
X

fields where the pole is not at saturation the term ‘[ Hidx can be neglected.
o

If the drop in magnetomotive force in the pole can be neglected,
the flux density in the pole can be calculated directly. The integral for

the stray flux becomes simple and the stray flux is written:

b= 2 B & [ k%41 ]% [ kxt (r -kd) &n  x+d ] (5.25)
a

For x/4 and rg/d substitute E and pg respectively so then

_ 2 2 Y 2
by = By I, 2[ k%41 17 [ ke + (p ~k) &n (E+1) ]/pg

B wr’ S(E) (5. 26)
g g

where S(E) is the stray function which can be calculated for various values
of the taper angle.
At the end of the pole the flux enters the core. The stray flux

extending from the core can be calculated from
(5.27)

where S is the stray function of a pole with zero tapering. The values of
p; and 4@~ will be explained more fully later when the actual calculation with
this equation is described.

The total flux passing through the core is found to be

¢t core ¢g + ¢s pole * ¢s core (3.28)

To obtain the required number of ampEre turns per solenoid, or the magneto-

motive force to operate the magnet, the relation

Ni = Hd4 (5.29)
O.4n
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is used where 24 is the gap in cms, H is the fieldstrength, N is the number
of turns in the solenoid, and i is the current in ampares.

To prevent loss of ampére turns over the yoke the flux density
in the yoke has to remain far from the saturation value. If the yoke is

made of cast steel the acceptable value for the flux density is 15000 Gauss.
5.4.5 Montgomery's comparison

Montgomery considered a variety of magnets with tapered pole tips
by way of comparison. The maximum fields for some thirty six magnets at a
variety of pole diameters, polc tips and yaps were predicted from the
equations derived on the basis of the model of homogyeneous surface charges.
The actual fields lay between 90% and 120% of predicted fields for all magnets.
85% of the magnets were abie to be predicted within : 4% by use of an

empirical factor F(rl,r ,Rg,Bc). This is written

2

F(rl,rz,zg,ec) = 2 + loglo 2ri - rl - Bc (5.30)

Qg r2

The remaining 15% are magnets where Bc is small and the yoke contribution is
high and the actual fields are higher than predicted by about 20%.

The parameters on which the F factor depends are shown in the pole
piece diagram in Figure 5.9. In this figure the ratio of the measured iron
field to the predicted iron field is plotted as a function of F. For the
magnets considerxed by Montgomery the representative points lay in the areas
indicated and the figure may be used to predict whether a particular magnet
design will produce a maximum field less than or greater than that actually
calculated. The figure shows that magnets with a large gap, and/or r2/r1
approaching 1, and/or a long core, tend to produce less field than predicted
and magnets with a small gap, large r2/rl and short cores, produce greater
ficlds. The poor results at wide gaps arise from two sources. The first

is that saturation takes place in the core near the yoke. The second is that
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the magnetization may not be parallel to the axis at the pole edges, which
reduces'the gap field. Magnets having short cores (Q.C/r1 small) show a
better performance due to the fact that magnetization of the yoke will
contribute also to the gap field.

It is difficult to compare magnets as there exists no universal
criterion, and as will be seen, the magnet design arrived at in this thesis
has its own peculiarities and the magnet shows considerable differences at

least from the others in the laboratory here.
5.5 Geometrical and experimental requirements of the magnet

Four basic requirements of the magnet were known at the outset.
These requirements were used as original design criteria. They may ke given

as follows.
(a} Magnitude of Gap Field

It can be seen from Table 5.1 that some magnetostriction work can
be done using magnetic fields of up to 10Ok Oe. Fields of up to 15k Oe
would make measurements on Rare earth garnets possible. It has already been
stated that the saturation flux density of iron is 21.4 kilo Gauss. To
produce gap fields greater than 21k QOe, a contribution to the field would be
required from the solenocid, or a pole piece geometry where rz/rl is high and
the taper angle is large would be needed. It will be pointed out in more
detail in section 5.6 that neither of these situations may be allowed. The

figure decided on then is a minimum field of 1Ok Oe.
(b} Pole piece gap

It was decided that a pole piece gap of 4cms be used. This
would give sufficient room for low temperature apparatus, or the goniometer
system required, to be easily inserted, beside the fact that a reasonable
amount of space is required for the X ray beam enfering and leaving the

specimen area.
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(c) Taper angle of pole pieces

From the equation Ad = -AOQ (see Chapters 3, 4) it is seen
d tan@

that the sensitivity of the double crystal camera increases as 0 approaches
90°.

A taper half angle of 42° would enable a Bragg angle of slightly
more than 87° to be used, if needed, whilst in the meantime the field may
be rotated through 90° without the pole pieces getting in the path of the
X ray beam. This is illustrated in Figure 5.10. If the field does not
need to be rotated, much lower Bragg angles may be used when lower order
Bragg reflections are required. The specimen needs to be at the centre of
the gap volume, and so that the tips of the pole pieces do not block the path

of the beam, a taper half angle of 42o was decided on, and the apices of the

pole piece need to be coincident.
(d) Rotation of magnetic field

Benninger and Pavlovic (1967) measured the magnetostriction of Ni
by taking data points at 10° intervals of the angular setting of the magnet
over a total of 90°. The method was forxrmulated by Bozorth and Bamming (1953).
If the method of measurement being described in this thesis were extended to
cover Bozorth and Hamming's technique, it is clear that the field would need
to be rotated. Since different Bragg angles are used in individual exper-
iments, the angular setting of the magnet would need to be changed in any

case.
5.6.1 1Iron circuit

A gap of dcms together with a taper % angle 42° leads to the pole

piece geometry shown in Figure 5.11. From the equation

H = 4mM, (1L - cos® + cos@ sin2 O &n r2 ) (5.31)

|



]
X-ray beam pole piece

Fig.5.10 Schematic diagram of geometrical arrangement of magnet pole pieces and

X-ray beam if high 3ragg angles are used and magnet needs to be rotated through 90.

solenoid B=142
= 5.4cms.
r,= 1.8cms.
= 9.8cms.
core f
circutar cross
section
50cms.

yoke of rect-

angular cross -

section

Fig5.11 Schematic diagram showing front view of half section of original magnet

design, and cross section of space available for solenoid.
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it can be seen that for a gap field of 10k Oe, the value of the magnetization
MO is about 12 kilc Gauss. As 10k Oe is a minimum figure being aimed at, a
value of about 15k Gauss would be better. This would be in accordance with
the value mentioned previously on which the stray flux equations are based.
The value of & in Figure 5.11 is decided on by considering
Montgomery's empirical prediction factor.
F=2+ loglo

A

2r1} - - 8 (5.32)
g

Using a value of § about 5.5cms, it can be seen that the value of F is 1.49,

measured iron field

- . 9 i £3 .
From Figure 5.9 it can be seen that the ratio predicted iron fleld

between 1.0 and 1.1. To provide suitable "leads" in the magnetic circuit,
it wae derided to have s ynke of rectangular cress gection (20cms = 26cma)
as indicated in Figure 5.11.

If the magnetic field required to produce a flux density of about
12 kilo Gauss in soft iron is calculated from the expression for the field of
an air core solenoid, it is seen that only a few Oersteds are required, and
the current reguired is less than 1 amp;re. However when the air gap provides
the "resistance" in the magnetic circuit, the current requirement increases

for the same solenoid as is now shown by the stray field calculations.
5.6.2 Stray flux and ampare turn requirement

(i) Gap flux
The gap flux is

¢ gap = onry B (5.33)

101828 Gauss cm2 if Bg = 10 kilo Gauss

(ii) Cone stray flux
The cone stray flux is

¢
s
cone

2 2 b
Iy B2 [ x“+1 17 [ KE+(p _-K)&n (E+1) ]l (5.30)

(o]
1384860 Gauss cm> g
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(iii) Core stray flux

The core stray flux is

o = ﬂrz s“€) 4 , k=0 (5.35)
core a”
S“(E”) is the stray function for a taper angle of zero. a is the

length of the core between the conical section and the solenoid.

The values of the parameters used in caléulations are summarized
in Table 5.3.

In order to estimate the total ampare turn requirement per solencid,
the total flux can be treated in two ways. The flux from the core, cone and
gap can be divided by the respective area of each component to give an average
flux density.

For the core, the average flux density is 1486 Gauss. The average

distance (D) over which this is taken per solenoid is 13.8cms. From
Ampere turns = Ni = HD/O.4w

16300 ampere turns are required.

For the cone, the average flux density is 3044 Gauss. This is
taken over an average gap of 6.5cms, and 15858 amparé turns are required.

For the gap, the flux density is 10 kilo Gauss. This 1s taken
over 2cms, and 15909 ampEre turns are required. The total ampére turn
requirement is then about 48000 ampare turns.

If the total flux requirement is considered to Se taken over the
cross section of the core, then an average flux density of 6500 Gauss is
obtained. This is considered to be taken over a distance per solencid of
16.5cms. This leads to an ampEre turn requirement of about 85000 ampare
turns. The actuwal value required should probably be taken somewhere between

the two values at about 65000 ampare turns.




taper

2d

tan ©

Table 5.3

= /d

42

l.8cms

9.8cms

4cms

1.5
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5.6.3 Solenoid

In considering the iron circuit in Figure 5.1l1, it can be seen
that the cross sectional area available for the solenoid is 4cms x 12.5cms
= 50 square cms. It was decided to make the solenoids from soft copper tape.
The tape would be wound into pancakes and the pancakes connected together to
produce the final solenoids.

At this stage, the design depends on what standard sizes were
available for the cross section of the copper tape. The three standard sizes

which were considered to be most suitable were

(A) 0O.64cm x O.lébcm
(B) 0.64cm x O.24cm

(C) 0.95cm x O.lé6cm

The length of each solenoid using the different tapes was estimated. Allowing
0.15cm between each winding and 0.15cm between each pancake for spacing, and
for passing cooling fluid through the solenoid, the number of turns possible
for each solencid was estimated. Thus from the ampare turn requirement given
above, the current was found. Using the resistivity of copper as 1.7 x ].0_6
ohm cm, the power dissipation also was found. A summary of these calculations
applied to each cross section of strip is given in Table 5.4.

From these calculations, it is seen that the power levels are
prohibitively high.

Even if a thinner strip, say of O.lcm x O.lcm cross section was
used, so that the number of turns is 5000 and the current requirement is about
15 amps, the resistance goes up to about 64 ohms. Thus the power level is
still at least 9000 watts per solenoid.

Also, to produce an iron circuit as described, the cost for cast-

ing and machining is becoming prohibitive. If more room is allocated for

the solenoid, or if rz/r] is increased, this problem will be aggravated.



crcss section

of conductor

possible no. of turns

per solenoid

current

resistance

power dissipation

Table 5.4

Solenoid

(A)

0.64cm

x O.l6cm

204

318 amps

30 kwatts

(B)

0.64cm

x 0.24cm

163

398 amps

0.16 ohms

25 kwatts

(C)

0.95cm

x 0O.l6cn

147

440 amps

0.15 onms

29 kwatts
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5.7 Final design
5.7.1 Basic idea

From the problems mentioned, it can be seen that some way of
maintaining the pole piece geometry needed to be found whilst sufficient
space could be allocated for the ampére turn requirement without the path
of the X ray beam being blocked, or the dimensions of the iron circuit
becoming too large.

It was decided to consider having the solenoids placed below the
pole pieces, with their axes vertical instead of horizontal as in the
original design. Such an arrangement is shown in Figure 5.12(a). As can
be seen, a cross sectional area of l2cms x 26cms = 312cm52can be used for
the solenoid. If the copper strip of cross section 0.95 x 0.16cm2 is used,
and an allowance of 0.l1l5cms is given between windings and pancakes, it is
seen that about 900 turns per solenoid can be obtained. The ampére turn
requirements for the gap and the cone will be the same as those for the

original design.
5.7.2 Stray flux and total ampére turns requirement

The stray flux from the curved parts of the pole pieces, corr-
esponding to ¢ . will not be so easy to calculate even on the assumptions
core
made in the stray flux equations. On the basis that the area of the curved
surface would be near one quarter of the surface area of a sphere of radius
20cms, i.e. about l250cmsz, and the surface area of the core originally used
is about 33Ocm52, the stray flux function is taken to be about four times

that used in the original calculation. The total stray flux for this part

of the pole piece is then

¢ = 1978840 Gauss cms2
score

This leads to an average flux density of 1650 Gauss which if taken over an
average distance of 26.5cms leads to an ampére turn requirement of about

L
35000 ampere turns.
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Thus the total ampare turn requirement is about 32000 for gap
and cone plus about 35000 for core, i.e. 67000 ampare turns. This means
that with 900 turns per solenoid, the current requirement would be in the

. _ LY
region of 75 amperes.

For a solenoid of about 900 turns, using the copper strip of
dimensions 0.95cms x O.lécms, the estimated resistance is 1 ohm. Thus the

pewer dissipation per solenoid is about 5600 watts.
5.7.3 Solenoid

For a proposed cross sectional area of 26cms x l2cms it can be
seen that 23 pancakes may be wound, with 39 turns in each.

The copper strip of 0.95 x 0.16cm2 cross section was used.

The windings are jinsulated from each other by wrapping nylon
fishing line of C.5mm thickness about the copper strip. This caused the
pancakes to be wound somewhat tighter than originally envisaged. The pan-
cakes were separated by strips of nylon l2cms by 2cms. Six of these weré
placed symmetrically between pairs of pancakes.

The pancakes were connected together by copper tags which were
sol@ered to them, so that the sense of the current in the solenoid at any
poi;t would be always clockwise, or always anti-clockwise, depending on the
aﬁplied voltage. A photograph of the solenoids under construction in situ
on the yoke of the magnet is shown in Figure 5.13.

The solenoids are contained in watertight containers. These
consist of concentric brass tubes closed at the top and bottom by tufnol
circular plates. The inner tube just fits over the vertical cylindrical
yoke sections.

Diagrams describing the detailed construction of these solenocid
containers are shown in the first appendix. The solenoid is insulated from
the brass walls by nylon sheets wrapped around the innér and outer curved

surfaces of the solenoid.
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5.7.4 Iron circuit

In the original design, the magnetization data for the iron cir-
cuit was taken from Kaye and Laby (1956) for low carbon (0.1%) mild steel.

The actual material available was British Low Carbon Steel Grade A,
The magnetization data for this was supplied by British Steel Research
Association. It is not too different from that of the Kaye and Laby data
and is shown in Figure 5.14,

The iron circuit consists of three pieces cast in shape, shown
in Figure 12(b). The surfaces which are machined are also indicated. The
casting was done at Jopling's Steel Foundry, Sunderland, and the machining
of the pole pieces took place in the Department of Engineering at the
University of Warwick. The rest of the machining and construction was
varried out in the Physics Department, Durham University.

Each pole piece is secured to the yokes by two bolté which pass

through the pieces into the yoke.
5.7.5 Rotation

The iron yoke is mounted on a steel plate which ig turn is mounted
on a turntable of diameter about 120cms.

Six adjusting screws are fixed to small blocks on the surface of
the steel plate, around the outer edge of the base of the yoke. By means
of these, the yoke may be centred fairly accurately on the turntable so that
the axis of rotation passes through the centre of the pole piece gap.

The turntable was mounted on four wheels which located the turn-

table onto a track so that translation of the magnet might also be effected.
5.7.6 Water cooling

As the expected power dissipation might be over 5000 watts, water

ccoling was incorporated into the design of the magnet.



Magnetization (kilogauss)

24

22

1]

02t O Low carbon steel (0.1%(} (Kaye

and Laby).
10

o

R

British low carbon steal Grade A.

A A A A e A A

100 200

Applied field (oersted)
Fig.5.14. Magnetization data of Kaye and Lahby (19%6) and of the British Steel
Research Association.
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A closed circuit cooling water system has been used. This
consists of the magnet in series with a heat exchanger, water pump and
header tank. These were connected by reinforced clear plastic piping of
2.5cms inner diameter.

The heat exchanger was constructed on the basis of experience
drawn from the water cooling system of another magnet in the laboratory,
for which the heat dissipation was 7000 watts per solenoid. Asroil did not
prove to be an effective coolant in this system, distilled water was used,

the water capacity of the present water circuit being about 50 litres.
5.7.7 Magnet calibration Curve

The magnetic field in the gap has been measured with the use of
a Hall probe. The calibration curve is shown in Figure 5.15,

It is seen that the field of 1Ok Oe has been reached at a lower
value of the current than had originally been calculated.

This indicates that the magnetization has increased more than
expected with current, and that the stray flux has remained lower than expected.
This might be explained by considering that for a certain distance from the
gap the surface charge density becomes less the furthér away from the gap.
The part of the pole which is saturated is taken into account for the cal-
culation of the gap field and the rest of the pole where the charge density
is lower will contribute only a fraction to the field. However, it is noted
that beyond 10000 Oe, the field in the gap increases only very slowly. In
this region, the iron must be approaching magnetic saturation and as the
field from the solenoid itself cannot contribute to the gap field in this
particular magnet construction, the gap field will not exceed a maximum of
0.82 Mmax which is about 15.5k Oe.

The homogeneity of the field has also been investigated. The
field was measured at various parts of the gap volume as indicated in Figure

5.15. A calibration curve is given for each location in the gap.
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5.8 Suppliers' list

A list of materials' suppliers is given in the second appendix.
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Chapter 6
The double crystal diffractometer
6.1 Basic design

The double crystal diffractometer consists of two vertical,
parallel axes which are mounted in a single monolithic brass casting.
Figure 6.1 gives the important dimensions of the instrument. The novel

features of the design are:

1. the mounting positions for the crystal samples are below the main

bodywork.
2. the separation of the axes is comparatively large.

In the final experimental arrangement, a magnetic field is appliecd
to the specimen crystal. This field is supplied by the electromagnet
described in Chapter 5. It would be difficult to mount this magnet above
the diffractometer. Also, the reference crystal needs tu be kept free from
the path of any part of the magnet, which may be rotated. Thus the two

requirements of the design, as mentioned above, are immediately apparent.
6.2 Bodywork

The main brass body of the diffractometer is supported at its
four corners on a large steel gantry, which is bolted to the floor. In this
arrangement the crystals are located about 85cms above the floor level.

The uppermost surface of the instrument is smoothly machined.

Two circular inverted T grooves, one concentric with each axis, have been
milled into this surface. These enable additional aéparatus, such as
detection equipment, to be attached directly to the bodywork.

The diffractometer is kept cool by water which passes througa a
duct enclosed inside the brass casting. The location of this duct is: shown

in Figure G.1.
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Each of the two goniometers used with the diffractometer is
supported on a vertical axle, the central line of which represents the
rotation axis for each crystal. These axles, made from aluminium, are
supported in the bodywork by pre-loaded bearings which allow their smooth
rotation. The axles may be fixed to the rotation mechanisms by clamping

rings.

6.3 Rotation axes, driving mechanisms

Each rotation axis is driven by a stepper motor, which acts via
a gearbox, micrometer and armature combination. This arrangement is shown
in Figure 6.1.

The reference crystal is normally mounted on the "coarse" axis.
The armature to this has a radius shorter than that of the armature to the
“"fine axis, on which the specimen crystal is mounted. It is useful to know
what angular rotation corresponds to one step of the motor for each axis.
This information, together with other details of the rotation axes driving

mechanisms, is given in Table 6.1.

Table 6.1

Details of rotation axis driving mechanisms

"coarse" axis "fine" axis
stepper motor 48 48
steps per revolution
gear box ratio 20:1 90:1
armature length (mm) 146 292
angular rotation of axis 0.932 0.103

for one step of motor
(secs. arc)
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For finer adjustment of the coarse axis, a piezo electric
control is also attached to the armature.

For manual control of the rotation axes when setting up and prior
to clamping, an armature is attached to each axle above the top surface of
the diffractometer. Again, the extra sensitivity required for the fine axis
is provided by the armature to this being of considerable length ( ~ 70cms).

The total angular rotation range for the "coarse" axis is approx-
ihately 5° and for the "fine" axis is also approximately 59, When the limits
of these ranges are reached by the armatures (attached to the micrometers),
microswitches operate to reverse the sense of rotation.

The pulses required to drive the stepper motors are supplied from
a pulse generator which coperates in forward and reverse at variable speeds.

digital display enables the pulses fed to the motor to be monitored. The

I
¥

pulse generator may also operate between set limits which are shown on

further digital displays.
6.4 X ray source

The X ray source is housed in a portable tube shield which in turn
is mounted on a freely standing support. This may then be easily moved
about the reference crystal. Ideally the tube shield ought to sﬁand on a
circular rail concentric with the rotation axis of the reference crystal.
This modification is to be made after the work‘for this thesis is finished.

A considerable intensity of X rays is incident on the reference
crystal. Thus the path between the source and the reference, and the
reference crystal itself are closely shielded. An X ray collimator system,
whose slit width is adjustable, is placed in the path of X rays between the
source and the reference crystal.

The X ray tube is powered by a nearby Philips generator, and may
operate up to 50kV at 24mA. The tube shield is fitted with an electrically

operated shutter.
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6.5 Detection apparatus

When the experimental arrangement does not include use of the
magnet, a scintillator coupled to a photomultiplier tube may be used to
monitor the final rocking curve. When doing this, the detector is mounted
on a 'G' shapea support which is attached to the main body of the diffract-
ometer at the circular T slot. The signal from the photomultiplier is fed
directly into a ratemeter. The output of the ratemeter is given visually
on an analogue scale and audibly through a speaker.

When the magnet is being used, the signal from the photomultiplier

is decreased almost to zero owing to deflection of the electrons in the tube

by the Lorentz q v x B interaction. In this case a Xe gas proportional
detector is employed. The details of this are given in Tablie 6.2.
Table 6.2

Details of Xe gas filled proportional detector

Body
Material Aluminium
0.D. (mm) 19.1
length (mm) 93
Window
Entry Beryllium
size (mm) ' 6 x 16
thickness (mm) 0.02
EHT (volts) 1810
Energy range (keV) 6 - 30

termination flying leads




Proportional detector

1U'!

X ray source
Pre-amplifier

Scalar /ratemeter

X-Y recorder

Fig.6.2 Schematic diagram of detection apparatus. R, reference, S, specimen,

G, stepper motor drive.
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It was noted that the energies of the Ka., absorption edges for

1
Cu and Mo are 9keV and 17.5keV respectively, which fall within the range of
the detector. The energy range of Ar is 3keV - 12keV. Thus the choice of

Xe i5 obvious if Mo and Cu radiations are to be used.

The proportional detector is mounted in a protective brass/copper ‘
casing which is attached to a circular brass rail, concentric with the
specimen crystal axis and scaled in degrees.

The signal from this detector is fed, via a ére—amplifier, into
another ratemeter. This second ratemeter is an Ecko model, which is able to
provide the E.H.T. voltage for the proportional detector, The output of
the ratemeter is shown visually on an analogue scale. Also incorporated is
a scalar counter/timer system and the rocking curve may be plotted using this.

The rocking curve may be displayed automatically on an X-Y recorder.
The ratemeter provides an output which may be fed onto the Y axis. The
angular rotation of the crystal through the rocking éurve is fed from the
shaft of the stepper motor through a cog wheel gear and helipotentiometer
system onto the X axis of the recorder. This detection arrangement is shown
in Figure 6.2.

The final experimental arrangement is shown in Figure 6.3.
6.6 Double crystal topography

Double crystal topographs may be taken in either the (+-) or the
(++) setting with this apparatus. The arrangement in the (+-) setting was
that shown earlier in Chapter 4. The detecting plate is simply mounted in a
light tight plastic seal, and is supported on a stand near the specimen crystal.
The X rays which pass through the plate may be monitored by the photomultiplier
during the exposure so that any drift which might occur from the peak diff-

raction curve may be compensated.
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CHAPTER 7

Alignment of the diffractometer
7.1 Various examples of double crystal diffractometer

In Chapter 4 reference was made to several works involving the
double crystal diffractometer. The equipment used by Merz (1960) had an
axes separation of a little more than 50 cms. The separation of the axes
of Hart and Lloyd's kl975) diffractometer was apparently less than this.
The relative closeness of the axes suggests that alignment of the diffractometer
would be relatively simpler than in the case of well separated axes. This
would be especially so in the case of Hart and Lloyd's arrangement, in which
the first axis is a commercially available precision single axis goniometer.
In the cases of Okazaki (1973), Sykora (1970j and Bottom (1970}
the Bragg angles were high, and geometrical requirements of fitting the
apparatus together without blocking the X ray path led to larger separations
of the axes. In Okazaki's equipment this was 60 cms, whilst in Sykora's
equipment the total path length of thg X ray beam was 3 metres. The longer
path length suggests a considerably more tedious alignment task. Bottom
suggested an initial coarse alignment procedure using a laser beam for crystals
with the reflecting planes parallel to the surface. However, this method is,
as suggested, only useful for such cases. Often the reflecting planes are
not parallel to the surface of the crystal. The obvious example of this
is the case of asymmetric reflections. However, even when crystals are used
which have been cut so that the surface is parallel to the reflecting planes,
there is often a deviation of typically a couple of degrees between the
surface and plane. With the diffractometer described in Chapter 6, where
the axes are separated by more than HO cms, use of a laser beam for alignment
when such crystals are mounted can lead to the beam diffracted by the first
crystal being several centimetres off target by the time it passes the second

crystal axis.
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Also, it has been mentioned (Chapter 6) that the X ray source
shield is free standing and mobile. With the help of suitable angular
markings around the reference axis, the tube shield may be roughly aligned
by eye.

Okazaki's alignment procedure is quite elaborate, involving
rotation of several major parts of the apparatus. When the total experimental
arrangement includes other large pieces of apparatus, as is the case of the
work of this thesis, it is important to keep the alignment procedure as

simple as possible.
7.2 Alignment

The alignment procedure adopted naturally involved two parts,
alignment of the reference (first) crystal and furﬁher alignment of the
specimen (second) crystal.

The circular entrance window of the photomultiplier tube detector
was 2 cms in diameter. The larger entrance window, together with the faster
response time, made this more suitable than the proportional detector during
alignment. If the photomultiplier tube is placed so that its entrance
window is at the specimen crystal position, then the setting of the X ray
tube source and the first crystal needs to be made fairly critically, and
in no;mal cases this would involve considerable time spent in triél and error.

The photomultiplier tube can however be supported on an optical
bench, which is mounted below the diffractometer along the direction of the
line joining the two crystal positions. This arrangement is shown in
Figure 7.1(a). The photomultiplier tube is placed close to the reference
crystal, so that with reasonable setting of this crystal and the X ray tube
the entrance window of the detector is likely to be in a position to accept
a given diffracted beam. The photomultiplier tube is gradually moved back

towards the second crystal position. If, as this happens, the diffracted



(2) Optical bench arrangement.

S Specimen, R Reference, P Photomultiplier, O Optical bench, D Diffractometer.

X M-ray source, S, Slits

{b} Horizontal alignment.

}
| o

P
S
X
lc) Vertial alignment.
D
g >
[ N
P R
J
0 X

Fig.7.1 Diagram showing features of alignment procedure. -
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beam can be seen to be deviating from the line joining the two crystal
positions, compensatory adjustments may be made to the X ray tube shield
position. In order to check that the beam from the first crystal passes
exactly through the rotation axis of the second crystal, a lead collimator
of a couple of mms gap is placed just before the second crystal position,
so that the vertical centre line of the collimator gap lies parallel to the
second crystal rotation axis, and passes through the line joining the two
crystal positions, This latter line can be checked for being fairly close
to horizontal by similar use of the lead collimator. The arrangements are
shown in Figure 7.1(b) and (c) respectively.

The second crystal, mounted on its goniometer so that the
reflecting planes are parallel to those of the first crystal (this is discussed
in more detail later}); is put in place on the diffractometer. The photo-
multiplier tube is mounted on a ' G' shaped support shown in Figure 7.2(a).
The entrance window is fairly close to the specimen crystal. However, the
lower arm of the support is parallel to the expected direction of the beam
diffraéted from the second crystal, and the position at which the photo-
multiplier tube is suspended from this arm may be varied, as indicated in
Figure 7.2(a). Thus once the second reflection has been picked up by the
photomultiplier, the latter may be moved away from the crystal along the lower
arm., When this adjustment is completed, the proportional detector, whose
cylindrical axis is vertical, is placed directly in front of the entrance
window of the photomultiplier. At this stage, the entrance window is about
12 cms from the second crystal, which is a little more than the minimum
clearance required so that the magnet pole pieces may be moved into position
without interfering with the aligned diffractometer. The final arrangement
is shown in Fiqure 7.2(b).

The first attempts at actually picking up the second reflection

made use of the stepper motor on the specimen crystal axis. The crystal was



Fig.7 (a) Schematic diagram showing diffractometer with detector support.
X X-ray source, D Diffractometer, R Reference, S Specimen, B, Photomultiplier,

6 Detector support.

Fig.7.2{b) Final arrangement showing proportional detector, F,. in position.
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put into the approximate reflecting position, and the motor scanned through

a maximum angle of about 2 degrees at a time (defined by the maximum possible
displacement of the micrometer shaft). This procedure was, however, quite
time c<onsuming. It was decided that a long armature (70 cms) be attached

to the specimen crystal axis above the upper surface of the diffractometer.
It was found that by slow, careful manual adjustment of the angular position
of this long armature, with the rate meter time constant and full scale
deflection values being at the lowest settings, the reflecticn from the
specimen crystal could be located. In fact this manual procedure proved

to be considerably easier than had been originally anticipated.

Finally, slight adjustment normally needs to be made to the
goniometer setting of the second crystal in order to bring the reflecting
planes of both crystals as close as possible to being parallel, and thus to
maximize the peak reflected intensity and to narrow the rocking curve down

as much as possible,
3. Effect of absorption of X rays in air

In order to estimate the effects of absorption of X rays by air,
some simple calculations were performed for MoKa, and Cuxa, wavelengths.
The following information regarding the X ray absorption parameters for air
was taken from the "Handbook of Chemistry and Physics" (196l). Radiation
traversing a layer of substance is reduced in intensity by a constant fraction,
U, per centimetre. After penetrating to a depth x, the radiation has intensity
given by

1= Ioe_”x

where Io is the intensity at the surface. u/p is the mass absorption
coefficient, where p is the density of the material. At a temperature t

and under a pressure of H cms of mercury, the density of air is given by:

p = 0.001293 _H , where the units are in ygrams per
1 + 0.00367t 70
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cubic centimetre. At t = 20°C, H = 76 cms of mercury, the density p is
0.001205 gms cc L.

At a wavelength of 0.73, the mass absorption coefficient of
oxygen is 1.22 and of nitrogen is 0.87. A simple weighting of these was
made to produce the mass absorption coefficient for air of 0.94. If the
path length between the two crystals is considered, that is about 82 cms,

a value of I/Io of 0.90 is obtained, which corresponds to MoKa radiation.
Similarly for radiation of wavelength 1.53, a weighted mass absorption
coefficient was found to be 8.18, where the individual mass absorption
coefficients for nitrogen and oxygen are 7.50 and 11.10 respectively. For
the same path length, the value of I/Io comes out to be 0.45. This
corresponds to the case of CuKa radiation. Use of CuKa radiation will Le
described in more detail in Chapter 8.

It can be seen that for MoKa characteristic radiation, not a lot
would be gained in evacuating the X ray path of air. In fact a length of
steel tube (80 cms) was placed between the two crystals when the diffractometer
was aligned. The ends were sealed off with mylar windows and the tube could
be evacuated. The rate meter reading at the rocking curve peak was noted
with an air path between the two crystals, and hardly changed at all when the
X ray path was evacuated. It is fortunate that there was no need to include
the evacuated tube in the experimental arrangement as such an addition would
certainly have proved to cause an inconvenience when the magnet was being

moved into place.

4. 1Initial test alignment

The first crystals to be mounted on the diffractometer were samples
of device grade silicon. This initial test alignment was useful for two
purposes. Firstly it was needed to be seen that the proposed method of

alignment would in fact be suitable. Secondly it was necessary to check
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that the diffractometer, as it had been constructed, would give potentially
sufficient sensitivity to make it worthwhile in continuing with the magneto-
striction experiment.

The silicon crystal used was of plate-like form. Two samples
were taken from the same original specimen, whose surface was approximately
parallel to a {111} plane. The orientations of the crystals, each being
mounted on separate goniometers, were checked with the help of Laue photo-
graphy. The interpretations of the Laue photographs were made with a
Gfenninger chart and a standard (00l) stereographic plot according to the
description given by Cullity (1956).

It was noted that the (11ll) plane was not in fact parallel to the
surface. The plane and surface were deviated by an angle of two degrees,
as measured with the goniometer, and the Grenninger chart. The necessary
adjustments were applied to the settings of the goniometers to make the
orientations of both crystals identical, as well as could be ascertained with
Laue photography. It was seen by eye with the help of a variable angle set
square that both crystals were tilted on the goniometer by two degrees.

One of the goniometers was mounted on the reference axis. It was
checked by eye that the rotation axis passed through the crystal face, and
with the help of a fluorescent X ray beam detector it was seen that the X ray
beam was incident at the position where the rotation axis passed through the
crystal face. Such checks are somewhat easier when the reflecting plane is
exactly parallel to the surface, but some doubt exists in knowing whether the
rotation axis is exactly parallel to and passes through the reflecting plane
when there is a deviation between the plane and surface.

The alignment of the first crystal proceeded, as has been described,
to the point where the second goniometer could be mounted on the second axis.
The (444) reflection, with Bragg angle 26.960, was used. For lattice para-

meters and X ray wavelengths, the "Handbook of Chemistry and Physics" (1961)




89

was used. Before this was carried out, however, the goniometer on the

first axis was removed and replaced by the second goniometer and crystal.

With nothing else adjusted at all, it was noted that the diffracted beam

from this second crystal also passed through the lead collimator, placed
before the "second crystal" position as described previously. As the width
of the collimator was about two millimetres, this test implied that the
orientations of the two crystals were themselves the same approximately to
within an angle given by tan_1 0.2/82.5 = 0.15°. This angle compares
favourably with the tilt angle of 10~ arc quoted by Bottom (1971) who used

a laser beam for the coarse alignment. In the first stage of the alignment,
the collimator between the X ray source and first crystal was about 100um in
width and about 0.5 cm in height. With an X ray tube setting of 6mA and
50kV, ample diffracted intensity was availakle. The second pari of ihe
alignment now proceeded as described. The collimator slit width was in-
creésed to 1.5mm. The initial rocking curve width obtained was about 24" arc.
However, after a slight adjustment of the tilt of the second crystal was made,
a rocking curve width of 5" arc was obtained. This is shown in Figure 7.3.
The rocking curve is fairly symmetric, and although narrower rocking curve
widths have been quoted in the literature, one can see that from an inspection

of the slope of the flank, a 15% change in signal, which may easily be detected,

implies a value of A0 of 0.5" arc. This in turn, at a Bragg angle of
GB = 26.960, implies a relative change in "d" spacing of Ad = 5 x 10—6.
d

This corresponds to a typical value of magnetostrictive strain.

5. Instrumental errors

The errors associated with X ray diffraction measurements have
been discussed by Bond (1960). The discussion was extended by Bottom and
Carvalho (1970) to cover the case of the double crystal diffractometer. The

errors listed by Bond are given as follows:
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(i) Error owing to lack of knowledge of X ray wavelength
(ii) Error associated with the determination of the zero position
on the angular scale
(iii) Absorption erxor owing to different distances traversed in the
crystal by X rays of different wavelength
(iv) Error owing to the effect of refraction
(v) Errors owing to polarization factors, which in general are
very small except at large values of O
(vi) Eccentricity error owing to misalignment of the goniometer
rotation axis with the diffraction surface of the crystal
(vii) Axial divergence errxor which is associated with the finite
height of the collimator slit
(viii) Cry
(ix) Angle reading error

(x) Dispersion error

Errors (i) and (ix) may here be considered toegether. From the
differentiated forms of Bragg's equation Ad = -AQ , it can be seen that
d tan@

in order to obtain the fractional change in "d" spacing no knowledge of the
wavelength is required. However, knowledge of O is required. O could be
determined with some collimator slits system with an error of typically some
minutes of arc. @ may also be determined from Bragg's equation using
accepted wavelengths and lattice parameters given in the literature. An
error also is associated with this. In the work of this thesis the latter
method was employed. If the geometrical centre of the Kal reflection (usually)
from the first crystal is always used, then whatever error exists with this
method, it will always at least be consistent.

The zero error will be non effective in the case of the presgnt

instrument.
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The effects of absorption, refraction and polarization factors,
errors (iii) to (v), are to cause displacements of the peak of the diffraction
maximum. In the case of the double crystal diffractometer, it is not the
absolute position of the rocking curve maximum that is required but the
.displacement of the rocking curve. Hence these effects may be neglected.

The eccentricity error (vi), has been discussed in the previous
section. It depends essentially upon the care used in the construction of
the device.

The effects of using collimator slits in the instrument have been
discussed in Chapter 4. It has been seen that the shape of the rocking curve

does not depend on the slit widths. If collimator slits systems are used

for angle determinations then there are axial tilt errors associated wit
the length of the slits.

An error can occur in the determination of Ad/d if the crystals
have tilts (error (vii}). If the normal to a set of diffracting planes makes
angle A with the plane of the incident and diffracted rays, then the wave-
length diffracted is given by n)A = 2d sin@l cosA, where Gl is the apparent

Bragg angle. If Al is the angle of tilt of the first crystal and A2 the

angle of tilt of the second crystal, then: n) = 24 sin(-‘)l cosA 1

and: n)x = 24 sin02 cosA 2

When the lattice spacing of the specimen crystal has changed, then
the second of the above two equations may be written:

nA = 2(d + Ad) sin (62 ~ AQ) cos Az.

Al' A, and O, are eliminated from these equations to give:

2

(=

= (1 - cos AD + cot 02 sin AG)/(cos AO - cot 02 sin AOQ)

|!>
o

which may be rewritten with approximation as:

Ad = 40 cot 0, + 80° .
q 2
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1f Al = A2, then Ol = 02, and no error is introduced in the measurement of

the change in lattice spacing. If Al # A2, then sin 02 = (cos Al/cos Az)

sin Ol, and 02 # Ol. The efforts made to minimize the effects of tilt in
the present case have been described in the previous section, At best, it
may be said that the angles associated with tilt could be kept to about 10~
of arc with some certainty. However, after slight adjustment of the second

crystal to reduce the rocking curve width, it is hoped that A, becomes

1

sufficiently close to A so that any tilt error may be small,

2'
The expression for dispersion has been given in Chapter 4.

In the particular measurements to be described in Chapter 8 the reference

crystal lattice spacing differs from the specimen crystal lattice spacing

such that Ag = 1.5 x 10-3. The value of é%- (where A is the wavelength
of Moxal radiation) is then equal to 1.2 x 10—4, and the value of

. -4
[tan 6 (A_,n,) - tan @ (A ,n)] has magnitude 4.2 x 10 .  Thus the

-7
additional reflection width 8B owing to dispersion is approximately 5 x 10
radians, or lO-l seconds of arc. Thus it can be seen that reliable

measurements of small lattice strain may still be made.
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Chapter 8
Magnetostriction Measurements
8.1 Iatroduction

A study has been made of the magnetostriction in the material

Tb LuFe_O

9 501 5" The method used was that outlined at the start of Chapter 4.

In this method, the rocking curve was obtained from rotation of the specimen
crystal, which here was the second crystal. The latter was set on the flank
of the curve. When the magnetization was changed from one direction in the
crystal to a direction perpendicular to the first, the mévement of the
recorded X ray intensity along the flank of the curve was noted, and from this,
a value of one of the magnetostriction constants was obtained.

A study of the mixed rare earth garnet mentioned above was useful
for several reasons. As will be pointed out later, there are 180o domains
only in the sample. It has been pointed out in Chapters 3 and 4 that X ray
techniques, which have been used to study magnetostriction without the help
of.an applied magnetic field, yield the spontaneous magnetostriction constants
only of the materials which have magnetic domain walls other than of the
180° type.

The expected values of the magnetostriction constants of the
material are fairly low (<10_S). Thus a measurement of one of them using the
double crystal diffractometer took advantage of the high resolving power of the
instrument. Also, it will be seen that the magnetic field required to rotate
the magnetization through 90° from the axis of easy magnetization was fairly
high, and the measurements which have been made have required that the magnet

described in Chapter 5 be used to almost its full capacity.
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8.2 sSamples

The rare earth iron garnet (R.I.G.) samples used in the experiments
were kindly supplied by Dr W.T. Stacy of Philips Research Laboratories. The
garnet 'I‘szuFeSO12 was deposited in the form of a thin film on a substrate of
non magnetic gadolinium gallium garnet (GGG) by liquid phase epitaxy. The
substrate has been Czochralski grown, and was in the form of a circular thin
platelet. There was a deposit of film on either side of the platelets. The

G.G.G. substrate of a further garnet Eu , which was

2.7%%.37%4.3*%.7%12

similarly grown, was also employed in the experiment. A description of both

these garnets is given in Table 8.1.
Table 8.1

Description of garnet films

Composition Eu2_7Luo_3Fe4-3A20_7012 szLuFeSO12
Thickness (pm) 4pum 3.8um
Platelet diameter (cms) 2.1 2.0

-6 : -6
Expected value of Alll +1.5 x 10 + 7.2 x 10

In the above table, an expected value of the magnetostriction
constants, Alll,_has also been given. As Bobeck et. al. (1970) have pointed
out, such expected values may be determined by linear wéightings of the
respective magnetostriction constants of the pure rare earth iron garnets.
The experimental room temperature valuesof the R.I.G. series have been

determined by Iida (1967), as was pointed out in Chapter 1. The values are

shown in Table 8.2, and these values have been used in the linear weightings.




Table 8.2

Room Temperature Rare Earth Garnet Data

Alll(x 10_6) Lattice constant (X)
Sm -8.5 12.53
Eu +1.8 12.52
Gd -3.1 12.47
Tb +12.0 12.43
Dy -5.9 12.39
Ho -4.0 12.37
4 -2.4 12.36
Ex -4.9 12.35
Tm -5.2 12.33
Yb -4.5 12.30
Lu -2.4 12.27

Bobeck et. al. (1970)
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8.3 Observations of domains by the Faraday method

The garnet platelets are coloured and transparent. The 180o domains
in the thin films may be rendered visible by the Faraday method, described by
Craik (1975). A beam of polarized light passing through a magnetic material
undergoes a rotation of its plane of polarization owing to the component of
the specimen magnetization lying along the direction of propagation. The
angl-: of rotation depends on the magnitude of the sample magnetization and the
distance the light travels through the sample. The sense of the rotation is

determined by the magnetization directiocon. In the arrangement used here,

shown in Figure 8.1(a), white light is passed through a piece of polaroid,
then through the sample, further throuch a second polaroid, and finally into
an optical microscope. At the crossed position of the polaroids, the contrast
for each domain is the same. If the polaroids are offset from the crossed
position by a small angle B, then the intensity of light entering the optical
microscope, which is focused on the garnet film, is proportional to sinz(Biu),
where o is the angle of Faraday rotation. It can thus be seen that the .
contrast of the domains is a maximum when o = B. The domains observed were
of the usual vermicular nature characteristic of such magnetic uniaxial £ilms.
As a garnet film was deposited on both sides of the substrate platelet, two
sets of domains were able to be brought into focus.

The uniaxial anisotropy field has been determined by the technique
described by Kurtzig and Hagedorn (1971). A magnetic field was applied
parallel to the plane of the sample platelet. This caused rotation of the
magnetization within each domain towards the direction of the applied field.
As the latter was increased, the Faraday contrast between adjacent domains
decreased, and the separation between adjacent domain walls also decreased.
The minimum field required to rotate the magnetization into the plane of the

sample was assumed to be the uniaxial anisotropy field, which then could be
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Fig.8.1(a) Arrangement for observation of domains in garnet thin films by the

Faraday magnetooptical method.
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Fig. 8.1(b) Arrangement for determination of uniaxial anisotropy field by the

magnetooptical method.
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determined within about 15%. The magnetization was known to have rotated
into the plane of the sample when all the domain contrast was eliminated.
The experimental arrangement is shown in Figure 8.1 (b). The
magnetic field indicated in the diagram was supplied by the magnet descriﬁed
in Chapter 5. The considerable free volume around the conical pole pieces
made the positioning of the microscope gquite an easy operation. The microscope
itself had no ferromagnetic parts, and so did not move when the field was
switched up.
Various parts of the sample were investigated. Each was mounted
on a glass plate and fixed in position by a very small amount of araldite.

It was noted that for the parts of the Tb2LuFe sample investigated, the

512
magnetic domains disappeared when the applied field reached 6.5 to 7.5k Oe.

It was thus concluded that the uniaxial anisotropy field lav in this region
also. However, as will be pointed out later, the anisotropy may be greater
than this in some other parts of the film specimen. Kurtzig and Hagedorn
(1971) investigated the anisotropy of a thin film of ErzEulFe4.3Gao.7o12
deposi:ed by liquid phase epitaxy on the (1lll) surface of a Gd3Ga o substrate.

5712
This was seen to have a uniaxial anisotropy field of 6.5k Oe. A similar, but
more elaborate technique of anisotropy field investigation has been described
by Krumme et.al. (1972). However, the method of Kurtzig and Hagedorn (1971)
had the advantage of simplicity. It would have been more difficult to fit

the apparatus described by Krumme between the pole pieces of the magnet, even

though a considerable spare volume was available.

8.4 Alignment

The alignment of the diffractometer with the garnet materials
essentially followed the procedure outlined in Chapter 7. Laue photographs
were taken of both samples, and these indicated that the (111) plane was

parallel to the sample surface in each case. The correct positioning of
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the samples relative to the diffractometer axes then, with the help of a
variable angle set square, was comparatively straightforward.
A summary of the Bragg angles which could be used for the garnet

szLulFeSO12 is given in Table 8.3.
Table 8.3

Bragg angles used with szLulFeSO12

Reflecting planes Bragg angle
o
(12,12,12) 36.6
o
(14,14,14) 44.0
o
(16,16,16) 52.5
Radiation Moxal
o]
Wavelength 0.709A
. o
Lattice constant 12.38A

The value of the lattice constant used was obtained from a linear weighting
of the relevant values shown in the second part of Table 8.2, which gives the
lattice constants of the pure R.I1.G's. Initially, experiments were carried
out with a standard laboratory electromagnet which had conical pole pieces.
This was before construction of the large electromagnet was complete. A
Bragg angle greater than 30° had to be used, since only then would no part

of the magnet be positioned in the X ray beam path. It can be seen then
from Table 8.3 that (12,12,12) was a suitable reflection for use here. In
later experimental work, when the magnet described in Chapter 5 was employed,
the minimum Bragg angle which could be used was 42°. The (16,16,16) reflection
therefore was the most suitable reflection here. It was observed that the
intensity of the (14,14,14) reflection was considerably less than that of the

(1l6,16,16) reflection.
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Hart and Lloyd (1974) have pointed out that their second crystal
was used as the reference crystal. In the present experimental arrangement,
it would have proved quite difficult to shield the first crystal adequately
with lead if the magnet had been located at the same position. Therefore,
in all the experimental runs, the magnetic field was applied to the second
crystal, and the first crystal was the reference crystal.

When the large electromagnet was in position, stray magnetic field
measurements were made with a Hall probe. It was noted that the maximum
observable stray field at the first crystal position was 50 Oe. The substrate/

Eu2 7Luo 3Fe4 3A2 was used as the reference crystal, and it was thought

0.7°12
that such a small field would not have caused the crystal to move at all.

It was actually observed that when this crystal was freely mounted on a glass

late, it showed no visible signs of movement till magnetic fields of several

o]

k Oe had been reached. The reference crystal, therefore, was mounted against
a circular brass ring, and held in position by a very small amount of araldite,
as indicated in Figure 8.2.

When the reflection from the second crystal (referred to as the
second reflection) was being located, it was observed that the reflection from
the substrate was more intense than the reflection from the film by a factor
of 3 to 4. The second reflection from the substrate was initially found to
be typically 12 seconds of arc wide at the peak half maximum, while the second
reflection from the film was found to be typically 20 seconds of arc wide.
These widths agree quite well with those quoted by Hart and Lloyd (1974) and
Stacy et.al. (1974a). The two reflections were separated by several hundred
seconds of arc, in agreement with similar observations of Hart and Lloyd (1974)
and Estop et.al. (1976). The increased width of the film second reflection,
as pointed out by Hart and Lloyd (1974), was due to the small film thickness.
Also some dispersion was introduced when the film reflection was used. This

has been treated in Chapter 7. As time proceeded, the widths of the rocking
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Fig.8.2 Schematic diagram of reference crystal mounting arrangement.



Fig.8.3 (a) Film reflection rocking curve used to obtain the result of figure 8.9(e).
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Fig.8.3(b) Film reflection rocking curve used to obtain the result of figure 8.9(f).
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Fig.8.3(c) Film reflection rocking curve used to obtain the result of figure 8.9(i)gll)
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Fig.8.3(d) Film reflection roctking curve used to obtain the result of figure 8.9
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curves, especially of the film reflections, became progressively larger.

This was thought to be due to handling of the crystals, and to the effects
of the glue used. Final film second reflection widths were typically 30
seconds of arc. Some of the rocking curves observed are shown in Figure

8.3.

8.5 Goniometer arrangement

A considerable time was spent in trial and error before a suitable
goniometer arrangement was devised for the specimen crystal. A review of
the various arrangements which were tried will be given here. They are
shown diagramatically in Figure 8.4.

It has been pointed out in section 8.2 that the samples were
circular platelets. It is obvious that the sample could not be mounted on
the goniometer with wax, as it would then have moved when magnetic fields of
several thousand oesteds were applied. Initially, one side of the plat:let
was attached to a three circle goniometer by some araldite glue, which was
allowed to set in its own time. The arrangement is shown in Figure 8.4 (a).
The diffractometer was aligned, and the rocking curve from the substrate
reflection was observed. It was noted that the rocking curve was about 30
seconds of arc, and could not be decreased when the tilt was altered. Since
the beam was incident at position A in the diagram (8.4(a)), it was concluded
that the glue was causing the crystal to strain. The diffractometer was re-
aligned so that the beam diffracted from the first crystal was incident at
position B on the second crystal. A narrower rocking curve of width 15
seconds of arc was obtained. However, when a magnetic field of 2k Oe was
applied to the specimen, it was noted that the rocking curve shifted quite
considerably. The substrate rocking cyrve was not expected to shift at all
when the magnetic field was applied. It was concluded that as the crystal
was fairly large, and was only anchored at one point, some twisting of the

sample was taking place as the magnetic field was applied.
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Fig.8.4 Various goniomefer arrangements tried for mounkting specimen cryst al.
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In order to try and solve the dilemma of preventing the crystal
from moving in the field whilst not introducing any extra strain in the crystal,
the holder shown in Figure 8.4(b) was constructed. The crystal was positioned
at tine inner rim of an aluminium ring (A), and clasped around its perimeter
by the rubber ring (B). A third ring (C) of aluminium held B against A
with the help of some small brass screws. The result obtained was encour-
aging. The film reflection rocking curve was observed to shift in the ex-
pectea direction when the magnetic field was applied. The maximum field
obtainable with the laboratory electromagnet however was only 2.5k Oe, and
magneto-optical measurements described in section 8.3 showed that this field
was not of sufficient magnitude to cause the magnetization in the film to
rotate from the uniaxial easy directions into the film plane.

At this stage, use was made of the specially constructed electro-
magnet described in Chapter 5. The fields taken from this went initially
up to 9k Oe. It was immediately observed that the rocking curve of the
substrate reflection shifted a good deal more than was expected when a
magnetic field of about 9k Oe was applied. The angular position of the magnet
was varied over a range of three degrees, and it was observed that the shift
changed from positive at one end of the range to negative at the other. The
maximum rocking curve shift recorded over this range of magnet positions was
10 seconds of arc. The shifts observed are shown in Figure 8.5. It is to
be noted that the stray field of the magnet covers a considerably larger
volume at a greater field strength than the stray field of the original
standard laboratory electromagnet. Although the three circle goniometer
chosen was of aluminium construction, it was subsequently discovered that the
small locking screws were of steel, and these screws were responsible for the
large shift observed.

As none of the commercial goniometers available was completely non-

magnetic, it was decided that a special goniometer be built. The one shown
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in Figure 8.4(c) was constructed from brass and copper. It consisted
essentially of a small brass block against which the sample was mounted,

and whose tilt could be adjusted. The tilt adjustment was provided by the
leaf spring and screw mechanism shown in the diagram. The non-magnetic base,
needed to attach the goniometer to the rotation axis of the diffractometer,
was taken from a standard goniometer.

As the crystal was so large, it was never certain that any twisting
effects in the magnetic field were being completely eliminated. It was
decided then that a small segment of the sample be used. Some araldite glue
was evenly smeared very lightly over an area of the brass mounting block (A)
of the goniometer, the sample segment was gently laid flat on the layer of
araldite, and the glue was allowed to dry slowly in its own time. Again
the substrate reflection rocking curve was very wide. It was thought,
however, that the effect of adjusting the tilt of the crystal was to induce
some strain in the crystal directly behind the crystal, since the tilt
adjusting screw was located against the brass mounting block. A similar
goniometer shown in Figure 8.4(d) was constructed. However, in this arrange-
ment the tilt adjusting screw was located near the top of the brass crystal-
mounting-block. The latter also was modified in the latest construction
so that it had a narrow neck in which a small hole was drilled. The point
of the tilt adjusting screw located in this. The neck served to prevent as
much as possible any strain that might have been induced by the leaf spring
and adjusting screw from being transferred into the rest of the brass mounting
block and the crystal.

When the crystal which had been mounted on the goniometer shown in
Figure 8.4 (c) was remounted on the latest goniometer, the rocking curve of
the substrate second reflection was found to be 17 seconds of arc in width.
With the previous goniometer on which the crystal had strained, widths of
between 40 and 50 seconds of arc had been obtained.

TRAY Wl
V“““ ointe

12 APR 1978

BEQTION
LIBRARY




102

The magnet was positioned so that the magnetic field was aligned

parallel to the plane of the sample. Therefore when the field was increased,

the magnetization in the £ilm would be rotated from the uniaxial easy directions

inte the plane of the film. The crystal was adjusted so that it was positioned

on the flank of the substrate reflection rocking curve. The beam diffracted

from the second crystal was detected by the gas proportional tube and the

pulses from this were counted by the scalar. The magnet's angular position

was altered over a range of five settings, each pair separated by one degree.

At each setting the scalar was set to count for two minutes, once with zero

applied field and once with an applied field of 8.95k Oe. The scalar readings

for each of the two minute intervals are shown in Table 8.4. It can be seen

from the number of counts for each interval has a counting error, taken as

the square root of the number, of slightly more than 1%.

Table 8.4

Effect of magnetic field on substrate second reflection

Relative Magnetic Counting
angular setting field time
of magnet * (k Oe) (seconds)
o o 120
8.95 120
Tl o) 120
8.95 120
T2 o} 120
8.95 120
~ 1 o 120
8.95 120
2 o 120
8.95 120

* The relative angular setting is shown in degrees.

Counts

7581
7834

7987
7699

7606
7909

7320
7506

7787
7737

O is taken to mean that

the field is parallel to the sample. Then 1 and 2 are the number of degrees
the magnet is moved from the O setting, clockwise and anticlockwise as

~.ndicated.
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The actual position of the crystal was changed along the rocking curve by
approximately three seconds of arc, and the number of counts then observed
for a two minute interval changed by about 40%. From these observations,
it was therefore concluded that the crystal itself was not changing its
position in the applied field. Similar observations were made at four
subsequent stages, on various pieces of the sample, throughout the period
that the experimental work was carried out. The apparatus was then ready
for magnetostriction measurements to be carried out on the film. These
measurements are described in section 8.8. However, in the following two
sections, the effects of temperature and measurements with Copper Ka

1

radiation will be described first of all.
8.6 Effect of temperature change on the rocking curve position

The measurements made on the samples were carried out at room
temperature. An investigation was carried out in order to determine the
effects of any net temperature changes which might occur during the course of
the experiments. The "warm" junction of a thermocouple thermometer was
attached to the goniometer close to where the crystal was mounted, so that
the temperature recorded by the thermometer was very nearly equal to the
temperature of the crystal. A film reflection rocking curve was plotted out
on the X. Y recorder at a crystal temperature of, for example, 16°C. Warm
air was then passed around the goniometer, and a steady temperature of, for
example, 28°%¢c was reached. A further rocking curve was recorded at this
elevated temperature. The observed shift of the rocking curve was determined
by the difference in the position of the centroids of the two rocking curves
recorded. A typical result is shown in Figure 8.6. It can be seen that the
difference in centroid positions is approximately 17.5 seconds of arc. If it
is assumed that the temperature change is linear over the range being considered,

it can be seen that there is a shift in the rocking curve of close to 1.5
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seconds of arc per degree centigrade net change in temperature. It will

be seen that the change in rocking curve position magnetostrictive strain

is about twice this, and therefore temperature effects may be a serious
source of error. The temperature changes were reduced by adequate
ventilation of the laboratory so that heat from electrical apparatus did

not build up. The diffractometer was water cooled, and this also helped

to stabilize the temperature of the specimen. A check of the temperature
with the thermometer throughout an experimental run showed that it did not
vary by more than i l/40. Another method of checking that the temperature
remained constant was to monitor the reflected intensity for a given interval
of time without the applied field before and after monitoring the reflected
intensity with the applied field, and to note that both recorded intensities

were the same. This particular method was more often adopted. and will be

described further in section 8.8.
8.7 Measurements with Copper Kal radiation

A comparison of Bragg angles and orders of reflection for Cul(a1

and MpKa, characteristic radiation is given in Table 8.5. The values are

1
Table 8.5

Comparison of Bragg angles and orders of reflection for Cul(a1

and MoKo., radiation

1
CuKal MoKal
Wavelength 1.5408 0. 7098
Reflecting planes (8,8,8) (l16,16,16)
Bragg angles 59.5° 52.5°

given for the lattice planes of the garnet szLuFe It can be seen

5912°

that for comparable Bragg angles, the order of reflection of CuKu1 radiation
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is considerably lower than of MoKal radiation. It has been pointed out

in Chapter 7 that the absorption of MoKul radiation over the X ray beam
path length is considerably less than of CuKOtl radiation. This fact is

moxe than balanced by the lower order of reflection of CuKul radiation for
similar Bragg angles, and it has been observed that for similar operating
conditions of the diffractometer and X ray generator, the recorded reflected

X ray intensity of CuKa, wavelength was considerably greater than that of

1

MoKal wavelength. Further it has been noted that the peak intensity of the

reflection from the film szLuFeso12 was greater than that of the reflection
from the substrate, in agreement with similar observations of Hart andlLloyd
(1974). In the present case, it was noted that the intensity ratio was
approximately 2:1. These facts certainly would have made the use of CuKa1
radiation more attractive.

The energy of a photon of CuKa1 radiation is lower than that of a
photon of MoK.al radiation. Thus the threshold level setting of the prop-
ortional detector counting system needed to be set fairly low in this case
so that a reasonable counting rate could be obtained. An unfortunate
subsequent observation was that the magnetic field from the electromagnet
had a detrimental effect on the ratemeter reading. The latter decreased
almost to zero when the magnetic field was increased to about 10k Oe. No
such effect was observed when MoKul radiation was employed, and a much
higher threshold level could be used.

Some attempts were made to shield the detection apparatus from the
magnetic field; these involved enveloping the various parts of the equipment
with some high permeability iron metal foil. However, the ratemeter reading
still decreased by just as much when the magnetic field was switched on.

No magnetostriction measurements therefore were made when CuKa, characteristic

1

radiation was being employed.

—
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8.8 Magnetostriction measurements

8.8.1 Measurement from rocking curve flank

It can be seen in Figure 8.3 that the flanks of the rocking
curves are linear over a considerable part. Use of this fact was made in
order that the magnetostriction measurements could be made. The flank of
a given rocking curve was plotted in the following way. The crystal was
set to reflect, for example, at the point "A" on the rocking curve of
Figure 8.3(a), and the reflected intensity was monitored by the detector/
scalar for a set time. The crystal was rotated by 30 steps of the stepper
motor to position "B", the reflected intensity similarly monitored, and then
again at position "C". The interval separating each pair of points A,B and
B,C can be seen to be equal to 3.09 seconds of arc from a consideration of
the calibration of the diffractometer rotation axes, given in Chapter 6.
The crystal was set at a position on the straight line flank passing through
the points A,B,C. For given values of the applied magnetic field, from
zero upwards, the Bragg reflected intensity from the specimen crystal was
monitored. In this way the "movement" along the flank was measured for
each value of applied field was measured, and from this, the value of the
magnetostrictive strain was deduced from the differential form of Bragg's

equation.

8.8.2 Value of magnetostrictive strain

From Table 8.1 it can be seen that the expected sign of Alll for
the sample is positive. This means that in its normal uniaxial state, the
film is strained by the effect of magnetostriction and the strain is such
that there is an expansion along the [lll] direction. From equation 1.10,
it can be seen that when the magnetization is in the [lll] direction, along
with the measuring direction, the value of the magnetostricéive strain,

relative to the demagnetized state, is equal to All If then the magnet-

1
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ization is rotated to a direction perpendicular to [lll], for example

[1io] or [511], the magnetostrictive deformation relative to the demagnet-
ized state then becomes _%-Alll' Thus the change in magnetorestrictive
deformation as the magnetization is rotated from the [111] direction into

the plane of the sample is such as to give a compression along [lll], and

the magnitude is

3
A — = 3 Alll (8.1)

This can also be seen from equation 1.11 for a uniaxial crystal. The

value of ¢ is put equal to 90° and A here is then Alll'

8.8.3 Samples and operating conditions

Five pieces of the original circular platelet were studied, and the
magnetostriction measurements were taken from four of these. The sizes and
shapes are shown in Figure 8.7. Four of the pieces were from the outer
regions of the platelet, and one, the largest, was taken from the middle.

The size of the X ray collimator slit, shown in Figure 7.l1l(b),
was 5mm in height by 1.5mm in width. It was found that if these dimensions
ﬁere decreased by very much, then the reflected intensity (from the second
crystal) became impractically low. With the smaller samples, the peak
intensity of the rocking curve was typically 30 counts per second. With the
largest sample, the peak counting rate was typically 90 counts per second.
This indicates that there was some vertical divergence of the beam incident
on the second crystal, that is, the beam height was greater than the height
of the smaller crystal segments.

When the measurements were being made, the X ray generator was
operating at a maximum of 50kV and 24mA. MoKa., radiation was used. The

1
reflecting planes were (16,16,16).



Fig.8.7 Sizes and shapes of samples of Tb‘Lu'FeSOIL film on G.0.G. substrafe.
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8.8.4 Measurements

The measurements were made as described in section 8.8.1. If,
for example, the crystal was positioned on the high angle side of the rocking
curve, it can be seen that the reflected intensity was expected to increase
when the magnetic field was applied. In such a case then, the measurements
in the applied field were made at position B in Figure 8.3 before the
reflected intensity was monitored at C. In this way, no reversal of the
stepper motor drive system had to occur, and therefore no backlash effect was
introduced during the measurement. A schematic representation of a typical
set of results, shown as a "movement" along the flank of the rocking curve for
given values of applied field, is given in Figure 8.8.

In all, fifteen sets of measurements were made from the four pieces

of sample. The displacements along the flank of the rocking curve were
converted to the corresponding values of AO. Figure 8.9 shows plots of AQ
versus applied magnetic field made for each experimental run. With each plot,

the following information is given: rocking curve width, rocking curve peak
intensiity, average "square root" error on the scalar readings, counting time
and sample number (as given in Figure 8.7).

It has been seen in section 8.6 that a check needed to be kept on
the effect of temperéture on the position of the rocking curve. In some of
the measurements, the crystal was positioned, for example, at the point B on
the rocking curve as mentioned above. This peak has been called the "zero
field" or "base" point. It was monitored for the given interval before and
after all the measurements with the applied field had been made. Any diff-
erence then in the "base" point was considered to be due to the effects of a
net temperature change during the course of the experimental run. An even
closer check was to monitor the "base" point before and after each 1né1vidual

application of the magnetic field. This was done for the remainder of the

measurements not checked by the first method. These methods are called
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Fig.8.9 Plots of measured values of movement, A8,along rocking curve flank

versus magnetic field strength, and one upon field strength.
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"method 1" and "method 2" respectively. The maximum movement of the

"base" point during the course of each run is shown in Table 8.6; this

is given as the percentage change in the scalar reading for a given interval
of time, and thus represents the maximum error in the magnetostrictive strain

measurements, which is due to the effects of temperature instability.

Table 8.6

Percentage error in strain measurement owing to movement

in "base" point

Experimental Method of "base" Maximum change in measured

run point checking intensity at "base"
A method 1 0.7%

B method 1 0.7%

fo - -

D method 1 0.2%

E method 1 2.0%

F method 1 10.9%

G method 2 7.0%

H method 2 2.3%

I method 2 1.0%

J method 1 1.7%

K method 2 2.0%

L method 2 4.5%

M method 2 1.6%

N method 2 1.6%

(o] method 1 2.0%

Oftan in the experimental runs which were checked by method 2, the

percentage changes of base point were considerably less than the maximum
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values shown in Table 8.6. Comparison of the percentage changes in
"base" point with the square root counting errors given in Figure 8.9 shows
that most of the former "temperature" errors are quite small.

A puzzling observation was the decreasing change in reflected
intensity at high field values, especially in the results, G, I, and L.
It was thought that perhaps some slight movement of the crystal was occurring
at these high values of the field, although with the goniometer arrangement,
and crystal mounting technique being used, this was unexpected. However,

the sample used in these particular measurements is the largest of the four.
8.8.5 Treatment of measurements

It can be seen that a considerable number of the magnetostrictive
strains measured show no tendency to saturate. This observ;tion was made
when the first sets of measurements were being carried out. Here, only
field values of up to 8.95k Oe were used, since the magnet cooling circuit
was not complete. When the cooling system was ready, just high field
measurements were made under the assumption that these would correlate with
the previous lower field measurements. This explains the absence of low
field measurements in some experimental runs and of high field points in
others. Since most of the results showed no tendency to saturate, it was
difficult to extrapolate the results to infinite field and thus to obtain a
valﬁe of the Alll magnetostriction constant, as indicated schematically in

Figure 8.10.

In order to obtain a value of All the results are extrapolated to

1’
infinite magnetic field. The usual procedure adopted in magnetostriction
measurements is to plot AL/L versus AE. Here AQ is plotted against 1/H.
The unit value of magnetic field was taken as 1Ok Oe. The plots are shown

for each experimental run in Figure 8.9 alongside the corresponding plots of

AO versus H. A straight line was fitted to each plot by the method of least




squares.
ordinate
magnetic field.

in Table 8.7.

Value of ordinate intercept in least squares fit of A® versus l/H

Experimental run

A 5.99

B 6.53

C 4.98

D 4.86

E 4.63

F 3.26

G 2.10

H 3.22

I 2.67

J 1.17

K 0.98

L 2.53

M 2.78

N 2.04

0 1.82
An average of these was found. With a value of OB equal to 52.50, the
- relation |

a = - A0 (8.2)
L tanOB

together with relation (8.l1) is used to obtain an average value of Al

Table 8.7

Intercept (AO, seconds of arc)

The value of the intercept of the straight line on the

11

111

obtained for each was taken to be the value of A@ at infinite

The series of values of AD intercepts obtained is shown



Fig.8.10 Magnetostriction as a function of the field intensity. Chikazumi (1964).



112
|
|
|

+ -6
Mgy < (8.12 - 1.00) x 10

where the standard error has been quoted. This method of obtaining the

value of Al oversimplifies the behaviour of A0 with 1/H. From a consideration

11
of Figure 8.10 it would be expected that the value of AQ would level off at low

values of 1/H and thus the value of A obtained from the least squares fit is

111

an overestimate of the actual value by about 1l0%.

8.9 Double crystal topographs

Double crystal topographs were taken of the substrate saﬁple 2 and
of the substrate of a fifth piece of the original platelet, which was of
similar dimensions to those of sample 2. The experimental arrangement for
taking double crystal topographs has been described in Chapter 4. The
detection plate was placed as close to the specimen as possible. For the
topographs described here, symmetric reflections in the ({4,-) parallel
positions were used. The procedure used for processing the nuclear emulsion
plates is essentially that described by Tanner (1976). All the details of
the two topographs are given in Table 8.8. The reference crystal was the
same as that used in the magnetostriction measurements. Topographs 1 and 2
are shown in Figures 8.11 and 8.12 respectively.

The featuresof the topographs include bright and dark curved bands,
which are growth striations. Such features in G.G.G. grown by the Czochralski
technique have also been revealed by Stacy (1974b) who also used the method of
double crystal topography. From the black and white contrast of the bands,
an estimate may be made of the variation in lattice parameter in the sﬁbstrate
owing to the compositional variation arising during the growth process. From
the rocking curve width used in topograph 1, a value of A0 may be taken to
be 9 seconds of arc. Similarly from the rocking curve width used in
topograph 2, A@ may be taken to be 13.5 seconds of arc. From the relation

AL = -AO . which omits the lattice rotation term of equation 4.25, values

k) tano




Reflection
Radiation
Exposure

X-ray generator
setting

Plate type
Rocking curve
_width.

Table 8.8

Details of topographs 1&2

Topograph 1

{16,16,16)

Mo K.,

36 hrs.

50 kVv.

24 mA.

Hford LL,SOF

18" arc.

T

Topograph 2

(8,8,8)

Cu K,

20 hrs.

50 kV.

2L mA.

Ilford LL,SOH

27" arc.
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of the strain A% are found to be 3.3 x 10_5 and 3.8 x 10_5, that is, the
L

strain owing to growth striations may have an average value of 3.5 x 10-5.

Components of this strain may be transferred into the magnetic film, as has

been pointed out in Chapter 1.

A further feature present in topograph 1 is a bright oval region,

labelled A. This has the appearance of a facet region, the strain of which
is transferred into the film. It has been seen that the anisotropy of the
crystal may vary when such strains are present in the film. The facet
observed is very similar in appearance to those made visible by Stacy (1974b).
The crystal used for topograph 1 was one of those used for the magnetostriction
measurements. It was taken from the outer region of the crystal platelet,

as were sample 1 and sample 4. It has been concluded that these featurgs of

the crystals have been a contributory factor to the varlation of the resulis
obtained. Each experimental run of the pairs of results (G,H), (L,I) and

{M,N) was made on the opposite side éf the respectiveé rocking curve to. the

other run. It can be seen that there is considerable difference in measure-

ments made even on different parts of the same rocking curve.
8.10 Conclusions

Several conclusions have been drawn from the measurements which
have been carried out in the work of this thesis. They may be summarised
as follows.

1. The double crystal diffractometer which has been built has a sensitivity
5

such that strains of the order of 10 ~ - 10'-6 may be measured. Such

measurements of course require crystals of good lattice perfection.

2. Provided that the position of the samples may be kept sufficiently stable
"in the applied magnetic field, "small" values (A < 10_5) of magnetostriction

may be measured.
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3. The magnetostriction measurements are not reproducible for different
parts of the sample, or even for different parts of the rocking curve.
The measurements depend on the state of local strain, and an "overall"

or "average" value is taken from the series of measurements obtained.

4., The value of Alll which has been obtained agrees, within the experimental
error, to the expected value obtained by linear weightings. The method
of measurement analysis is, however, expected to lead to an over-estimate

of the actual value.
8.11 Suggestions for further work

Now that the double crystal diffractometer and magnet are in full
operation, magnetostriction measurements may be extended to a whole series of
materials. The requirements of these materials are that they be of good
lattice perfection and that their magnetization may be saturated by the
magnetic field available.

Work on magnetostriction measurements by the strain gauge technique
is currently in progress in the Durham group also. An interesting invest-
igation would be to compare magnetostriction measurements made with the double
crystal diffractometer and then with strain gauges.

Magnetic domains have been observed in Ni by Chikaura and Nagakaura
(1975) with X ray topography, and more recently by Kuriyama et.al. (1976),
who used transmission topography on Czochralski grown single crystals. An
interesting extension of Bradler and Polcarova's (1972) work on Fe:Si could
perhaps cover the case of Ni, in which domain walls are of the 71o and 109°
type. The spontaneous magnetostriction constant determined in this case

would be A since the easy directions are <1l11>,

111’
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Schematic diagram showing tufnol end plate arrangement, in cross section.
Water sealing is provided by rubber rings L,,l,,0 and fibre washer F, and
is effected by the tightening of screws passing along C, through brass

ring R,, tufnol end plate T and brass ring R,, and by means of threaded
rods which pass along C, and which connect top and bottom end plates. 8,

B, outer and inner brass cylinders between which is solenoid.




Appendix 2

List of Suppliers for magnet parts:

Iron: Joplings Steel Foundry, Pallion, Sunderland

Extrudgd rubber channel: North East Rubber Company, North Shields
O rings (8%ins diameter): James Walker, 20 Broad Chare, Newcastle
Tufnol sheet: Tuckers Ltd (Teesside), Murdock Road, Middlesbrough
Pole piece bolts: H Osborn Ltd. Tel. Newcastle 20311

Plastic tubing: Peter Plastics, Chain Bridge Road, Blaydon

Brass sheet: Righton National Metal Services, Newcastle

Copper: J Smith & Sons Ltd., 52 Third Avenue, Brierley Hiil, Staffs.
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