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ABSTRACT 

This t h e s i s describes a study of the separation of Cerenkov l i g h t 

and p a r t i c l e f r o n t s i n l a r g e cosmic ray a i r showers. The work was 

c a r r i e d out d u r i n g the w i n t e r s of 1975/76 and 1976/77 at the B r i t i s h 

U n i v e r s i t i e s J o i n t A i r Shower array a t Haverah Park. 

A d e s c r i p t i o n of the work t o date on Cerenkov l i g h t i n a i r showers 

i s given t o complement the study. A t h e o r e t i c a l treatment, based on 

computer s i m u l a t i o n s , o f the separation i s given as w e l l as the 

experimental r e s u l t s obtained d u r i n g the two seasons. 

A d e s c r i p t i o n of a more advanced experiment studying Cerenkov 

l i g h t i n E.A.S. i s also presented. The experimental work described 

was the r e s p o n s i b i l i t y o f the author. 
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- CHAPTER ONE -

The Cosmic Radiation 

1.1 I n t r o d u c t i o n 

Mankind receives i n f o r m a t i o n about the observable universe v i a a 

number of mechanisms; most, however comes from studies of the 

electromagnetic spectrum. I n f o r m a t i o n c a r r i e d by t h i s means i s 

i n d i r e c t , as theo r i e s have t o be elaborated to r e l a t e the observed 

r a d i a t i o n w i t h c o n d i t i o n s a t source. However, the matter contained 

i n what have become known as the cosmic rays can be regarded as the 

only p r e s e n t l y a v a i l a b l e means of studying m a t e r i a l which has 

o r i g i n a t e d outside the s o l a r system. 

The cosmic r a d i a t i o n consists of energetic n u c l e i , e l e c t r o n s and 
9 

gamma rays. I t covers a large gamut of energies from 10 eV (below 

t h i s energy p a r t i c l e s can be considered t o be l o c a l phenomena) t o 
20 

energies i n excess of 10 eV. Wilson i n 1901 f i r s t n o t i c e d t h a t 

there e x i s t e d a background of h i g h l y p e n e t r a t i n g r a d i a t i o n , but was 

unable t o i d e n t i f y i t s source. I t remainded f o r Heiss (1912) t o 

show t h a t the r a d i a t i o n was of e x t r a - t e r r e s t i a l o r i g i n . E a r l y work 

on the r a d i a t i o n concentrated on studying the p h y s i c a l nature of the 

p a r t i c l e s and t h e i r i n t e r a c t i o n s at high energies. Many of the 

fundamental steps i n understanding the behaviour of p a r t i c l e s have 

come from cosmic ray s t u d i e s ; t h i s i s p a r t i c u l a r l y so i n the case of the 

meson, which owes most of i t s t h e o r e t i c a l and experimental development 

to cosmic ray s t u d i e s . Since the advent of acc e l e r a t o r s much of the 

work p r e v i o u s l y c a r r i e d out by studies of the r a d i a t i o n can be 

achieved under c o n t r o l l e d c o n d i t i o n s * consequently, i n recent years 

more a t t e n t i o n has been devoted t o the a s t r o p h y s i c a l aspects of the 

r a d i a t i o n , 

From an a s t r o p h y s i c a l view p o i n t the i n t e r e s t i n the r a d i a t i o n can 

be d i v i d e d i n t o three c a t e g o r i e s : -
UWVf 
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( I ) the energy spectrum of the r a d i a t i o n ! 

( I I ) the mass spectrum of the r a d i a t i o n 

' ( I I I ) s i t e s of o r i g i n of the r a d i a t i o n 

The observed energy spectrum i s shown i n f i g u r e 1-1 , two important 

features can be noted; these are changes i n slope atad.0 ^ and 10 
16 

eV. These changes have been i n t e r p r e t e d as i n d i c a t i n g a t 10 eV 
a decrease i n i n t e n s i t y due to d i f f u s i o n of the p a r t i c l e s w i t h lower" 

19 

charge out of the galaxy a n d a t 1 0 e V w i t n c o n t r i b u t i o n s from e x t r a -

g a l a c t i c p a r t i c l e s becoming dominant. Greisen (1966) i n d i c a t e d t h a t 

i f the e x t r a g a l a c t i c p a r t i c l e s had a s u f f i c i e n t path l e n g t h then 

i n t e r a c t i o n s w i t h the 2.7 K background would become important. H i l l a s 

(1975) discussed the e f f e c t of other u n i v e r s a l mechanisms which would 

reduce the i n t e n s i t y of the highest en e r g e t i c p a r t i c l e s . H i l l a s also 
19 

i n d i c a t e d t h a t above 5.10 eV the energy spectrum should steepen 

d r a m a t i c a l l y . This e f f e c t has not yet been observed, but the 

apparent f l a t t e n i n g of the spectrum dt these energies appears t o 

be con t r a r y t o these expectations. I f t h i s f l a t t e n i n g can be 

v e r i f i e d then i t e i t h e r severely l i m i t s the possible s i t e s of o r i g i n 

of the r a d i a t i o n or has strong i m p l i c a t i o n s f o r present cosmological 

models. 

Due t o the i s o t r o p i c nature of the cosmic r a d i a t i o n no d i s t i n c t 

sources qan be seen. The i s o t r o p y i s thought t o r e s u l t from the 

i n t e r a c t i o n s between the charged p a r t i c l e s and the g a l a c t i c magnetic 

f i e l d . The p a r t i c l e s w i l l s p i r a l i n the f i e l d w i t h a radius of curvature 

much less than the expected source distance; t y p i c a l l y 1 parsec and 
12 

100 parsec r e s p e c t i v e l y . However, a t low energies,E£,^10 eV, s o l a r 

modulation e f f e c t s have been observed, i n d i c a t i n g a s o l a r o r i g i n f o r 

some of the p a r t i c l e s at t h i s energy. At t h i s energy, as w e l l , there 

have been i n d i c a t i o n s of a focusing of the r a d i a t i o n down the l o c a l 

s p i r a l arm, i n d i c a t i v e of a g a l a c t i c o r i g i n of the r a d i a t i o n . At 
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18 ' the very highest energies, E^l.0 eV, s t a t i s t i c s are beginning t o emerge 

which show a c e r t a i n a n i s t r o p y , probably caused by the enhanced 

c o n t r i b u t i o n of e x t r a g a l a c t i c p a r t i c l e s . Thus although no complete 

p i c t u r e of the o r i g i n s has been e s t a b l i s h e d , observations are 

beginning t o i n d i c a t e , not n e c e s s a r i l y i n d i v i d u a l s i t e s but regions 

where the r a d i a t i o n i s l i k e l y t o have o r i g i n a t e d . 

1.2 Extensive A i r Showers 

The steepness of the primary energy spectrum, see f i g u r e 1-1- , means 

t h a t the p a r t i c l e s of the highest energy have an extremely low f l u x ; 
16 —2 ~2 e.g. the f l u x a t 10 eV i s 1 m /2 yearscompared t o 1 m /3000 years a t 

18 
10 eV. I t can be seen t h a t w i t h o u t recourse t o excessive patience 
or cost the primary beam cannot be observed d i r e c t l y a t these energies. 

However the atmosphere presents i t s e l f as an absorber of thickness 
2 

1030 gm /cm , which i s l a r g e compared t o , say, the mean f r e e path 

o f a proton. Consequently, the primary w i l l i n t e r a c t several times 

w i t h a i r n u c l e i before reaching ground l e v e l . The secondary p a r t i c l e s 

and t h e i r progeny produced by these i n t e r a c t i o n s make up an extensive 

a i r shower (EAS) which can be observed over a l a r g e area. 

A c c e l e r a t o r studies i n d i c a t e t h a t a f t e r a primary - a i r nucleus 

c o l l i s i o n the m a j o r i t y of p a r t i c l e s produced w i l l be p i - mesons. 

A f t e r the i n i t i a l i n t e r a c t i o n the primary w i l l continue w i t h about 

h a l f i t s energy and c o l l i d e again t o produce more pions, and so on. 

The charged pions produced w i l l e i t h e r i n t e r a c t w i t h a i r n u c l e i t o 

produce more pions or w i l l decay t o muons which s u r v i v e t o the 

obser v a t i o n a l plane. The n e u t r a l pions produced w i l l decay almost 

instantaneously t o two gamma rays which produce an e l e c t r o n - p o s i t r o n 

p a i r which v i a bremsstrahulung create more photons and so an 

electromagnetic cascade develops. This cascade i s c o n t i n u a l l y 

replenished by the hadronic cascade f o l l o w i n g the primary through 

the atmosphere. Although i n terms of number of p a r t i c l e s the 



electromagetic cascade i s the l a r g e s t i t only c a r r i e s 10% of the t o t a l 

energy of the shower. The most energetic component i s the hadronic 

cascade. The e l e c t r o n and muon component of an EAS have a wide 

l a t e r a l spread and can be detected over 1 k i l o m e t r e from the passage of 

the primary. This allows f o r the use of widely spaced detectors t o 

Overcome the problem of a low f l u x a t high energies. By sampling the 

the d i s t r i b u t i o n of p a r t i c l e s at ground l e v e l i t i s possible t o o b t a i n 

i n f o r m a t i o n about the primary. The m a j o r i t y of the world's arrays 

use t h i s technique, o f sampling, to c o n s t r u c t the ground l e v e l s i t u a t i o n 

i n a shower; the normal means of d e t e c t i o n being the s c i n t i l l a t i o n 

l i g h t produced i n e i t h e r l i q u i d or p l a s t i c s c i n t i l l a t o r s . There are 

exceptions^ the most notable d e v i a t i o n away from the normal s i t u a t i o n 

being the deep water tanks at Haverah Park. These det e c t o r s observe 

the Cerenkov l i g h t produced by the passage of a charged p a r t i c l e through 

tanks of 1 metre thickness c o n t a i n i n g c l e a r water. The cheapness of 

these tanks f a c i l i t i a t e s the use of l a r g e d e t e c t i n g areas. I n the 

core of a shower, hodoscopes, cloud chambers and f l a s h tubes have been 

employed t o study the hadronic cascade. This s o r t of study i s only 

f e a s i b l e f o r the low energy showers as the cascade has t o pass d i r e c t l y 

through the d e t e c t o r , an u n l i k e l y occurence a t high energies. 

Techniques have been developed by which observations of e.g. the r a d i o 

emission or s c i n t i l l a t i o n l i g h t from the e l e c t r o n i c cascade can be used 

to give d i r e c t evidence of the s t r u c t u r e of the e l e c t r o n i c cascade, 

with o u t recourse t o e x t r a p o l a t i o n from ground l e v e l . One of these 

techniques, Cerenkov emission, w i l l be described i n g r e a t e r depth i n 

the next chapter. 

1.3 The Mass Spectrum of the Primary Beam 
12 

At low energies ( E p less than 10 eV) the d i s t r i b u t i o n of masses 

has been a c c u r a t e l y measured by studying the passage of the primary 
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through nuclear emulsion stacks flown i n balloons. The observed mass 

spectrum i s shown i n Table 1-1 from two experiments. The comparison 

f i g u r e s show t h a t the cosmic ray beam at these energies i s enriched 

w i t h 'heavy' n u c l e i , when compared t o the u n i v e r s a l abundance d i s t r i b u t i o n . 

At energies higher than these i t becomes i n c r e a s i n g l y d i f f i c u l t t o measure 

the mass d i r e c t l y and no f i r m estimate has been made. I t i s at these 

energies, however, t h a t the mass spectrum becomes i n c r e a s i n g l y important 

as i t s t r o n g l y r e l a t e s to the problem of determining an o r i g i n f o r the 
18 

r a d i a t i o n . I f i t i s t o be assumed t h a t the r a d i a t i o n up t o 10 eV 

i s of g a l a c t i c o r i g i n , then i t would be expected t h a t p a r t i c l e s of low 

charge would d i f f u s e out o f the galaxy sooner than those of higher charge. 

Thus the beam at high energies would be expected t o be enriched i n heavy 
n u c l e i . This tendency has been observed by J u l i u s s o n (1975) f o r 

13 

energies up t o 10 eV/nucleon. I f i t can be shown t h a t the beam i s 

of uniform composition then i t places severe l i m i t s on the sources of 

the p a r t i c l e s and on the s t r u c t u r e and s t r e n g t h of the g a l a c t i c 
19 

magnetic f i e l d . Above 10 eV i t i s d i f f i c u l t t o imagine anything 

other than a p u r e l y p r o t o n i c beam of e x t r a g a l a c t i c o r i g i n , as the a c c e l e r a t i o n and 

propoga.tion processes would preclude heavier m a t e r i a l ^ and s u f f i c i e n t 

mechanisms cannot be found, a t present,.within the galaxy t o account f o r 

the h i gh energy. 

I f the tendencies observed at lower energies were e x t r a p o l a t e d t o 

the a i r shower r e g i o n } t h e n i t can be seen t h a t the m a j o r i t y of the cosmic 

rays i n the region 1 0 1 6 t o 1 0 1 8 eV would c o n s i s t of the i r o n peak 
10 20 

elements. Figure 1—2 shows the energy spectrum from 10 t o 10 eV^ 

showing the c o n t r i b u t i o n from various element groups, Figure 1-3 shows 

an i n t e r p r e t a t i o n of t h i s d i s t r i b u t i o n , a f t e r J uliusson (1975). This author 
16 

i n t e r p r e t s t h e beam composition to be p u r e l y i r o n from 10 eV, the 

p o s i t i o n of the 'knee' i n the energy spectrum. When the 'ankle' a t 

1 0 1 9 eV i s considered then i t appears t h a t Juliusson's a n a l y s i s r e q u i r e s 



Table 1-1 

e n e r g y 
t o t a l no. 

O f 
events 

% protons 
and 

neut rons 

% of 
c< par t ic les 

% of 
heavier 
particles 

reference 

3 . 7 x 1 0 1 1 4 6 8 0 1 3 7 
Malhotra et al 

(1966) 

12 
> 1 0 1 1 2 4 6 1 6 3 3 

Mc C usker 
(1967) 

universal 
c omposiiion = * 9 9 < 1 < - 0 2 
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m o d i f i c a t i o n to account f o r the expected e x t r a g a l a c t i c c o n t r i b u t i o n . 

The existence of t h i s 'ankle' requires f u r t h e r work t o e s t a b l i s h i t 

unequivocably and u n t i l the mass a t a i r shower energies has been 

measured none of these speculations can be j u s t i f i e d . 

1.4 This work 

I t i s the aim of t h i s t h e s i s to give a d e s c r i p t i o n of the recent 

work which has been c a r r i e d out on the Cerenkov l i g h t emitted by a i r 

showers. A d e t a i l e d d e s c r i p t i o n o f a p o t e n t i a l l y u s e f u l parameter, 

the separation of the Cerenkov l i g h t f r o n t and the p a r t i c l e f r o n t , i s 

given. I t i s hoped t h a t t h i s parameter may be used t o complement 

other studies r e l a t i n g t o i d e n t i f y i n g the mass of the primary beam. 

Chapter 2 reviews the work which has been c a r r i e d out on Cerenkov 

r a d i a t i o n from l a r g e a i r showers. 

Chapters 3&4 provides an experimental and t h e o r e t i c a l treatment of 

the delay between the Cerenkov l i g h t and p a r t i c l e f r o n t s i n extensive 

a i r showers. 

Chapter 5 discusses the f u t u r e studies of the l i g h t to be c a r r i e d out 

by the Durham U n i v e r s i t y group. 
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- CHAPTER TWO - ' 

Cerenkov L i g h t i n Extensive A i r Showers 

2.1 I n t r o d u c t i o n 

I t was f i r s t suggested by B l a c k e t t (1948) t h a t Cerenkov r a d i a t i o n 

emitted by cosmic ray p a r t i c l e s i n the atmosphere would make a s i g n i f i c a n t 

c o n t r i b u t i o n to the general n i g h t sky br i g h t n e s s . G a l b r a i t h and J e l l e y 

(1953) tested t h i s proposal f o r the general enhancement by considering 

the s i t u a t i o n d uring an EAS when a l a r g e number of p a r t i c l e s are 

a v a i l a b l e t o r a d i a t e over a short period of time (10's of nanoseconds). 

Thus, i f a r e c e i v e r w i t h a short time constant i s used, d u r i n g an EAS 

i t i s possible t o consider the n i g h t sky brightness as a s t a t i c source, 

w i t h the Cerenkov c o n t r i b u t i o n being t e m p o r a r i l y increased. I n t h e i r 

experiment the authors used a p h o t o m u l t i p l i e r w i t h a simple o p t i c a l 

arrangement, which was placed at the centre of an array of Geiger -

Mull e r tubes. They noticed a coincidence on 22 out of 50 

occasions between the p h o t o m u l t i p l i e r s i g n a l and the discharge of one 

or two of the Geiger - Muller tubes. A s e r i e s of l a t e r studies by the 

same authors, G a l b r a i t h and J e l l e y (1955), at the Pic du Midi Observatory 

produced i n d i c a t i o n s of the o r i g i n of the r a d i a t i o n ; namely t h a t i t 

was p o l a r i s e d and had a spectrum c o n s i s t e n t w i t h Cerenkov r a d i a t i o n . 

Nesterova and Chudakov (1955) produced s i m i l a r conclusions from a 

program of work i n the Soviet Union. 

2.2 T h e o r e t i c a l Considerations 

2.2.1 Preamble 

Before d e s c r i b i n g recent r e s u l t s of computer s i m u l a t i o n s of the 

r a d i a t i o n from l a r g e showers, i t i s necessary to consider why the o r i g i n 

of the l i g h t i s t o be expected to be aCerenkov mechanism r a t h e r than 

other mechanisms. Most of the discussion which f o l l o w s i s taken from 

the reviews of Cerenkov l i g h t by Boley (1964) and J e l l e y (1967). 
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I f the case of one e l e c t r o n i s considered, the expected energy loss 

E per u n i t path l e n g t h h due to the Cerenkov e f f e c t f o r e l e c t r o n s of 

l o c i t y v * between \ and d\ has been given by Frank and Tamm (1937) ve 

Equation 2.1 

Assuming the r e f r a c t i c e index, n, i s constant over the region of 

atmosphere . considered here by i n t e g r a t i n g over 4OO0<^< 7000 A, f o r 

high energy e l e c t r o n s t h i s reduces t o : 

%.<g . t O m. « X O / C I M Equation 2.2 
Xu 

whe r e ^ q = i ^ - l , which assuming no v a r i a t i o n w i t h a l t i t u d e gives, from 
3 

Boley (1964),8.2 x 10 ph o t o n s / r a d i a t i o n l e n g t h . Therefore f o r each 

e l e c t r o n reaching ground l e v e l there w i l l be about 10^ photons produced. 

This approximate c a l c u l a t i o n , which i s a s l i g h t over-estimate i n d i c a t e s 

the l a r g e a m p l i f i c a t i o n produced by the Cerenkov e f f e c t . I f other 

mechanisms f o r l i g h t p roduction are considered, then Table 2-1 from 

J e l l e y (1967) shows c l e a r l y how Cerenkov dominates over a l t e r n a t i v e 

production mechanisms. The exception i s recombination l i g h t ; a new 

experiment described by Bergeson (1975) i s a t present under c o n s t r u c t i o n 

to use t h i s l i g h t f o r a study of the highest energy cosmic rays. 

Having shown t h a t Cerenkov l i g h t can be produced i n s u f f i c i e n t 

q u a n t i t i e s d u r i n g an EAS t o be observed, i t becomes necessary t o 

consider whether other forms of l i g h t from the n i g h t sky could e f f e c t 

any proposed observations. F i r s t l y the continuum r a d i a t i o n from the 

n i g h t sky, which peaks towards the red end of the spectrum (showing 

an increase i n f l u x s i x - f o l d from 3500 A t o 6500 A ) . The Cerenkov 

r a d i a t i o n has, from equation 2.1, an inverse square r e l a t i o n s h i p w i t h 

i n c r e a s i n g wavelength, so the spectrum of the l i g h t w i l l peak towards 

the blue. Thus the n i g h t sky although l i m i t i n g the dynamic range of a 
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proposed experiment does not severely i n t e r f e r e w i t h the d e t e c t i o n of 

Cerenkov l i g h t . 

A l l e n (1955) gives the transmission of l i g h t through the atmosphere, 

which increases from 63% at 4000 A t o 83% at 5000 A. Again although 

l i m i t i n g an experiment these f i g u r e s i n d i c a t e t h a t the atmosphere w i l l 

not c a t a s t r o p h i c a l l y e f f e c t the r a d i a t i o n . A d e t a i l e d d e s c r i p t i o n of 

the e f f e c t of aerosol a t t e n u a t i o n and Rayleigh s c a t t e r i n g can be found 

i n Elterman (1968); these e f f e c t s are s u f f i c i e n t t o r e q u i r e i n c l u s i o n 

i n any s i m u l a t i o n of the r a d i a t i o n . J e l l e y (1967) discusses the 

e f f e c t of d i s p e r s i o n , d i f f r a c t i o n and r e f r a c t i o n and he concludes t h a t 

they do not s i g n i f i c a n t l y e f f e c t the Cerenkov l i g h t produced i n the 

atmosphere. 

The conclusion J e l l e y a r r i v e s at concerning the e f f e c t of d i s p e r s i o n , 

d i f f r a c t i o n and r e f r a c t i o n i s important i n the context of l a r g e EAS. 

The mean angle of emission of Cerenkov l i g h t has been shown by J e l l e y 

to be 1.3° so the l i g h t r e t a i n s i n f o r m a t i o n about the d i r e c t i o n of the 

e m i t t i n g e l e c t r o n . I f t h i s d i r e c t i o n can be maintained throughout the 

atmosphere, then the l a t e r a l ground spread of the l i g h t a t ground l e v e l 

can be r e l a t e d t o the l a t e r a l spread of the electrons higher i n the 

atmosphere. This maintenance of d i r e c t i o n a l i t y w i l l be shown i n 

s e c t i o n 2,,4 t o have important consequencesfor studies of the l o n g i t u d i n a l 

cascade. 

2.2.2 Simulations of Cerenkov L i g h t 

I t i s the i n t e n t i o n i n t h i s s e c t i o n t o o u t l i n e the s i m u l a t i o n s of 

Cerenkov l i g h t , as w e l l as i n d i c a t i n g t h a t parameters of ground based 

observations can be u t i l i s e d i n studies of the p h y s i c a l nature of the 

primary p a r t i c l e . I t i s not the i n t e n t i o n t o describe i n d e t a i l the 

v a l i d i t y of any model used i n the presented s i m u l a t i o n r e s u l t s , since 

i t i s intended t h a t parameters can be found which are e f f e c t i v e l y model 

independent. 
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I n any study of the cosmic r a d i a t i o n i t i s v i t a l to have a means 
whereby ground based o b s e r v a t i o n s can be i n t e r p r e t e d i n terms of the 
nature of the primary. I t i s w i t h t h i s aim i n view t h a t s i m u l a t i o n s 
of EAS have been c a r r i e d out where the progeny of the i n i t i a l i n t e r a c t i o n 
have been followed down through the atmosphere, thereby c r e a t i n g a 
p i c t u r e of the expected ground based s i t u a t i o n . The Cerenkov l i g h t 
emitted during an EAS i s i n e x c o r a b l y l i n k e d to the electron-photon 
cascade, so i t i s t h i s cascade and how i t r e l a t e s to the g e n e r a l 
development of an EAS t h a t i s of importance i n Cerenkov l i g h t s t u d i e s . 
The f o l l o w i n g parameters and t h e i r r e l a t i o n to the g e n e r a l development 
of an EAS w i l l be considered: 

I ) the l a t e r a l spread of the l i g h t 

I I ) the p u l s e p r o f i l e s 

I I I ) the shape of the l i g h t f r o n t 

a) The l a t e r a l spread 

Considering the unique r e l a t i o n of Cerenkov l i g h t to the l o n g i t u d i n a l 

cascade of the e l e c t r o n s a r i s i n g from the f a c t t h a t the observed photon 

f l u x i s the i n t e g r a l ,over a d e t e c t o r s angle of view, of the complete 

cascade. I t i s t h e r e f o r e to be expected t h a t the i n t e g r a l over a l l 

core d i s t a n c e s of t h i s photon f l u x i s r e l a t e d to the t o t a l number of 

e l e c t r o n s and hence the primary energy. Dyakanov e t a l (1973) have 

shown t h a t the Cerenkov l i g h t f l u x i s e f f e c t i v e l y independent of model 

and depends, almost l i n e a r l y , on the primary energy, F i g u r e 2-1 . Data 

from Protheroe and Turver (1977) show however the expected f l a t t e n i n g 

of the l i g h t d i s t r i b u t i o n r e s u l t i n g from the d i f f e r i n g depths of 

i n i t i a l i n t e r a c t i o n caused by c o n s i d e r i n g the average cascades of 

proton, alpha and i r o n n u c l e i p r i m a r i e s . I n measurements a t Haverah 

Park the photon d e n s i t y a t 200 metres, 0 ( 2 0 0 ) , has been found to be an 

adequate primary energy e s t i m a t o r . F i g u r e 2-2 shows an e a r l y 
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c a l c u l a t i o n f o r the expected l a t e r a l d i s t r i b u t i o n f o r proton i n i t i a t e d . 

showers at v a r i o u s e n e r g i e s ; F i g u r e 2-3 shows the l a t e r a l d i s t r i b u t i o n 
17 

f o r a sample of showers a t 10 eV, both from Smith and Turver (1 9 7 3 ) . 

From these two f i g u r e s i t can be seen t h a t a t a core d i s t a n c e of about 

200 metres the photon d e n s i t y i s v i r t u a l l y independent of cascade 

development and only r e l a t e s to primary energy ( f o r energies£^10*^eV). 

b) P u l s e P r o f i l e s 

Boley (1964) f i r s t suggested t h a t the temporal s t r u c t u r e s of the 

l i g h t s i g n a l contained information on the e l e c t r o n cascade development. 

Kalymkov e t a l (1975) have suggested t h a t the FWHM of a Cerenkov 

pulse i s r e l a t e d to the depth of maximum. T h i s r e s u l t has been extended 

by Protheroe and Turver (1977) to i n c l u d e other temporal c h a r a c t e r i s t i c s 

of Cerenkov p u l s e s . By c o n s i d e r i n g the e l e c t r o n cascade i n terms of 

e i g h t i n d i v i d u a l sub-showers and then by us i n g the Cerenkov l i g h t 

emitted by these sub-showers, the o r i g i n of the pul s e shape may be 

e s t a b l i s h e d . F i g u r e 2-4 shows the e l e c t r o n cascade and i t s i n d i v i d u a l 

components, i n d i c a t i n g the height of o r i g i n of the i n d i v i d u a l showers, 

F i g u r e 2-5 shows the r e s u l t a n t l a t e r a l d i s t r i b u t i o n s . F i g u r e 2-6 

shows how the ground l e v e l Cerenkov p u l s e s a r e c o n s t r u c t e d from the 

sub-showers. At core d i s t a n c e s r ^ 150 metres i t can be seen t h a t the 

Cerenkov p u l s e maps d i r e c t l y the e l e c t r o n cascade. Consequently, the 

r i s e time of the p u l s e r e f l e c t s the s i t u a t i o n around the s t a r t of the 

cascade, the FWHM the s i t u a t i o n about maximum, and the f a l l time the 

decay of the shower. The experimental consequences of t h i s a r e 

d i s c u s s e d i n s e c t i o n 2,4. 

c ) The Shape of the L i g h t F r o n t 

The e a r l y experimental work on Cerenkov l i g h t i n d i c a t e d t h a t the f i r s t 

l i g h t o r i g i n a t e d a t an a l t i t u d e of about 2 km , see e.g. Boley (1961) 

and Bradley and P o r t e r ( 1 9 6 0 ) . T h i s appears to be i n c o n t r a s t w i t h the 

ex p e c t a t i o n s from c a l c u l a t i o n s mentioned above; however, when i t i s 

considered t h a t these r e s u l t s came from measurements made a t c l o s e core 
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d i s t a n c e s , r<^50 metres, where i t i s expected t h a t the l i g h t would be l o c a l 

i n o r i g i n . F i g u r e 2 —7 shows f i t s f o r a s p h e r i c a l f r o n t a t v a r i o u s l e v e l s 

through a p u l s e . I t i s c l e a r from the cu r v a t u r e of the 10% p o i n t t h a t 

the f i r s t l i g h t o r i g i n a t e s high i n the atmosphere, a l s o that the f i t s f o r 

the v a r i o u s other l e v e l s confirm the suggestion t h a t the l i g h t i n the 

Cerenkov pulse maps the l o n g i t u d i n a l cascade of the e l e c t r o n s . The j u s t i f i c a t i o n 

for choosing a s p h e r i c a l f r o n t can be seen from the small d e v i a t i o n from 

the c a l c u l a t e d p o i n t s . 

2.2.3 Summary 

The s i m u l a t i o n r e s u l t s have h i g h l i g h t e d which shower parameters can be 

e f f e c t i v e l y used to d e s c r i b e the development of an EAS. We expect t h a t 

the primary energy can be estimated to w i t h i n 20% by measuring the l i g h t 

f l u x a t 200 metres. I t has a l s o been shown that the p u l s e shape parameters 

r e f l e c t the development of the e l e c t r o n i c cascade, thus emphasising the 

p o s s i b i l i t y of being able to measure c e r t a i n parameters w i t h i n the 

l o n g i t u d i n a l cascade. T h i s i s of g r e a t importance to s t u d i e s of the mass 

spectrum of the primary beam. Although no parameter r e l a t e s d i r e c t l y to 

the mass of the primary i t i s hoped that by c o n s i d e r i n g the shower as a 

whole t h a t i t w i l l be p o s s i b l e to i d e n t i f y the mass; see f o r example Dixon 

(1974), who considered the f e a s i b i l i t y of mass i d e n t i f i c a t i o n u s i n g 

c l u s t e r a n a l y s i s . 

2.3 Measurements of Cerenkov R a d i a t i o n 

The unique r e l a t i o n s h i p between the Cerenkov l i g h t and the l o n g i t u d i n a l 

cascade have a l r e a d y g i v e n r i s e to s t u d i e s to i d e n t i f y the mass of the 

primary beam u s i n g Cerenkov l i g h t . However, no experiment has y e t been 

able to i d e n t i f y the mass independently of the model f o r the high energy 

i n t e r a c t i o n s used i n the a n a l y s i s . K r e i g e r and Bradt (1971), f o r example, 
16 „ 

concluded from t h e i r experiment t h a t the beam around 10 eV i s of mixed 



i 

50.0 m CORE DISTANCE CORE DISTANCE= 0.0m 
1.0 

0 .5 

0 loo 35 f 150 50 0 100 0 

2 0 0 . 0 m CORE DISTANCE 100.0m CORE DISTANCE 
1.0 

0 .5 

0 i 150 100 50 150 O 100 50 0 

500.0m CORE DISTANCE 350.0m CORE DISTANCE 
1,0 

4 
3 0 .5 

0 
150 100 50 0 150 100 50 0 

TIME ( n s ) TIME ( n s ) 



T : i ~i i 1 — T 

200 

50% (2.68 km) 

150 

q 90% (3.77 km) 

100 (5.33 km) 0% 

50% (6.28 km) 

10% (7.67 km) 

50 

o 200 400 600 Core D i s t a n c e (m) 



composition,, However, they a l s o i n d i c a t e that t h e i r r e s u l t s could be 

i n t e r p r e t e d i n terms of a pu r e l y p r o t o n i c beam, 10% of which i n t e r a c t s 

w i t h the atmosphere w i t h an i n e l a s t i c i t y of u n i t y . The problem of 

choosing a model i s h i g h l i g h t e d by comparing the CKP and s c a l i n g 

model, Cocconi e t a l (1961) and Feynman (1969) r e s p e c t i v e l y . F i g u r e 

2-8 compares the obs e r v a t i o n s of Hammond e t a l (1978) w i t h those of 

Kalmykov(1975), i n d i c a t i n g a l s o the e x p e c t a t i o n s from s i m u l a t i o n s f o r 

the two d i f f e r e n t models. (N.B. Hammond e t a l c o n s i d e r d e t e c t o r 

response i n t h e i r c a l c u l a t i o n s . ) 

At Haverah Park the Durham group has developed an a r r a y of 8 photo-
17 

m u l t i p i e r s to observe Cerenkov r a d i a t i o n i n showers of energy ^ 

Figu r e 2r9 shows the geom e t r i c a l l a y o u t of the a r r a y , the Cerenkov 

d e t e c t o r s were, w i t h the exception of the one on hut 12, co l o c a t e d w i t h 

the deep water tanks forming the e s t a b l i s h e d p a r t i c l e a r r a y . The 

e f f e c t i v e bandwidth of the system was 35 MHz, thus a l l o w i n g some 

measure of the p u l s e s t r u c t u r e to be r e t a i n e d . Although o p e r a t i n g i n 

good weather c o n d i t i o n s f o r only 60 hours during the w i n t e r of 1975/76 

enough information could be gathered to confirm t h a t Cerenkov l i g h t can 

provide a v a l u a b l e means of studying f l u c t u a t i o n s i n shower development. 

The a r r a y was run i n c o n j u n c t i o n w i t h the p a r t i c l e a r r a y , from which 

a p a r t i c l e a n a l y s i s was ob t a i n a b l e f o r comparison. A d e t a i l e d account 

of the o p e r a t i o n of the experiment can be found i n Wellby (1978), and 

only a b r i e f account of the main r e s u l t s w i l l be considered here. 

F i g u r e s 2-10, 2-11 and 2-12 show the c o r r e l a t i o n between r i s e , top and 

f a l l time of the pul s e and core d i s t a n c e ; a l s o shown a re the r e s u l t s of 

of s i m u l a t i o n s f o r A =4 and 5:6 a t a s i m i l a r energy. F i g u r e 2-13 shows 

the v a l i d i t y of choosing 0(200) as the primary energy e s t i m a t o r . A 

p r e l i m i n a r l y study of the observed f l u c t u a t i o n s was a l s o made. By 

c a l i b r a t i n g the observed q u a n t i t i e s i n terms of the change i n z e n i t h angle, 



100 

I wHM 
nsec ) 

50 

S Kalmijko v e t a l 
CKP A=l (1975) 

O Hammond e t a l 0978) 
S c a l i n g A=56 

600 400 200 

Core D i s t a n c e (m$. 



i i 

2 • 

Z2 u ! 
! 

12 
1 0. 

3 * 

23 
N • 

0 300 m 
_ 1 

SCALE 

oerenkov l i g h t ana 54 m'-
• p a r t i c l e d e t e c t o r s 
© c e n t r a l 3̂ f m p a r t i c l e 

d e t e c t o r 
a ..Cerenkov l i g h t and \0 rrr? 

p a r t l e i e-~&&L@£ t o r s 
• Cerenkov l i g h t d e t e c t o r s 



T 

se tim e 
0% - 90%) 
n sec 

40 

2 0 f 

yy 

/ 
/ 

/ / 

y-y 
0^ 

_ A=56 

200 400 

Core D i s t a n c e (m} 

600 

op t i m e 
90% - 90%) 
nsec 

40 h 

20 

T 

/ 
/ 

/ 
/ o 

A=4 

, A=56 

Core D i s t a n c e (m<) 



F a l l Time 
(90% - 50%) 

n sec 

A=D6 

200 400 600 

Core D i s t a n c e (m) 



I 1 

enkov L i g h t 
imary energy 
' s t i i r i a t o r 

2.00 ) 

V o 

10 
( soo w p a r t i c l e Array P r i m a r y Knergy e s t i m a t o r 



- 1 4 -

and primary energy, i t was p o s s i b l e to i n t e r p r e t the r e s u l t s to g i v e 

changes i n depth of maximum of i n d i v i d u a l EAS independently of any model 

c o n s i d e r a t i o n s . By t h i s means i t was found t h a t the technique was 
/ -2 

s e n s i t i v e to changes i n development of the order of ̂ ^100 g cm 

Wellby (1978). Unfortunately, due to the s p a r c i t y of events, i t was 

not p o s s i b l e to r e l i a b l y use these r e s u l t s to determine the mass of 

the primary,, 

2.4 A n a l y s i s of the Temporal S t r u c t u r e of Cerenkov R a d i a t i o n 

R e f e r r i n g to the r e s u l t s d e s c r i b e d i n s e c t i o n 2 . 2 . ( b ) , i t was seen 

that beyond a core d i s t a n c e of 150 metres the Cerenkov pulse shape maps 

the e l e c t r o n i c cascade d i r e c t l y . T h i s f a c e t can be used to o b t a i n 

d i r e c t evidence of the growth of the cascade. For example, the shower 

f r o n t a t the 10% l e v e l on the r i s i n g edge can be regarded as a sphere, 

whose c e n t r e i s the region where the shower reaches 10% of i t s development. 

T h i s , as f i g u r e 2-7 showed, can be extended to the f r o n t s defined by the 

times of a r r i v a l a t other l e v e l s w i t h i n a p u l s e . I t i s t h e r e f o r e 

p o s s i b l e to r e c o n s t r u c t a shower i n terms of percentage development 

of the e l e c t r o n i c cascade. No measure i s made of the abs o l u t e e l e c t r o n 

number a t these p o i n t s , but t h i s can be obtained by c a l i b r a t i n g the 

Cerenkov d e t e c t o r s i n terms of an abs o l u t e photon f l u x . 

T h i s technique has been d e s c r i b e d by Orford and Turver (1976) and 

Hammond e t a l (1978). I t was used to o b t a i n i n f o r m a t i o n about the 

e l e c t r o n cascade d i r e c t l y , see f i g u r e 2-14 f o r the average of measurements 

during the w i n t e r 1975/76; the r e s u l t s of the observing season 1976/77 w i l l 

be found i n Waddoup (1978). One of the b e n e f i t s of the technique has 

been the a c c u r a t e shower a r r i v a l d i r e c t i o n s which have r e s u l t e d by 

j o i n i n g the p o i n t s i n f e r r e d i n the atmosphere; furthermore, the 

i n t e r s e c t i o n of t h i s l i n e w i t h the ground i s the conv e n t i o n a l c o r e . 

The technique o u t l i n e d above hinges on the Cerenkov l i g h t from high 

a l t i t u d e s a r r i v i n g before the l i g h t emitted lower i n the atmosphere 
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When the mode of propagation of the electron-photon component i s considered 
i t becomes c l e a r that the l i g h t a t l a r g e core d i s t a n c e s should a r r i v e 
before the p a r t i c l e s . T h i s could provide a f u r t h e r independent measure 
of cascade development. Also a d i r e c t o b s e r v a t i o n of the delay of the 
p a r t i c l e s behind the l i g h t , would confirm the b a s i c assumptions i n h e r e n t 
i n the above technique. A d e t a i l e d experimental and t h e o r e t i c a l treatment 
of t h i s d e l a y i s d i s c u s s e d i n the next two c h a p t e r s . \ 



- CHAPTER THREE -

The s e p a r a t i o n of the p a r t i c l e and l i g h t f r o n t s 

I n t h i s chapter the t h e o r e t i c a l and experimental nature of the 

s e p a r a t i o n between the two f r o n t s i s examined. Simple t h e o r e t i c a l 

c o n s i d e r a t i o n s as w e l l as the r e s u l t s from d e t a i l e d s i m u l a t i o n s a r e 

cons i d e r e d . The r e s u l t s from p r e l i m i n a r y o b s e r v a t i o n s made d u r i n g 

the w i n t e r of 1975/76 are presented. 

3.1 I n t r o d u c t i o n 

F o l l o w i n g the s u c c e s s f u l r e a l i s a t i o n of the technique of r e l a t i n g 

p u l s e s t r u c t u r e to the s t r u c t u r e of the l o n g i t u d i n a l cascade, i t was 

thought t h a t , as the technique depended on the f i r s t l i g h t o r i g i n a t i n g 

high i n the atmosphere, a measurement of the s e p a r a t i o n between the 

f i r s t l i g h t and the f i r s t p a r t i c l e s may confirm the v a l i d i t y of the 

assumptions made, as w e l l as supporting the r e s u l t s of re c e n t s i m u l a t i o n s . 

C l e a r l y the l i g h t and the p a r t i c l e s have a common o r i g i n , so i f i t can 

be shown that the s e p a r a t i o n of the two f r o n t s i n c r e a s e s uniformly w i t h 

e.g. depth of cascade maximum, then the s e p a r a t i o n of the two f r o n t s 

would be an important independent parameter r e l a t i n g to the geometrical 

d i s t a n c e bestween the common o r i g i n and ground l e v e l . 

The Cerenkov l i g h t w i l l t r a v e l a t a v e l o c i t y of c / ^ , where ^ 

i s the r e f r a c t i v e index of a i r . The p a r t i c l e s c a u s i n g the l i g h t must be 

t r a v e l l i n g i n excess of t h i s v e l o c i t y to produce the r a d i a t i o n . However, 

i f core d i s t a n c e s g r e a t e r than 50 meters are considered, then i t has 

been shown by Hammond e t a l (1978), t h a t the f i r s t l i g h t w i l l have 

o r i g i n a t e d high i n the atmosphere. Co n s i d e r i n g a photon being emitted 

from the a x i s of a shower at a he i g h t h and a t a time t = 0 and i t being 

detected a t ground l e v e l a t a core d i s t a n c e of r , then the time of 

d e t e c t i o n i s g i ven by: 

t ( h , r ) = Jl?7p ̂  H ({o - * ) ( I - a v p (-JhE/*)) 



-17-

where H i s the atmospheric s c a l e h e i ght (7.2 km;) and ^ Q t h e r e f r a c t i v e 
index of a i r a t sea l e v e l . The f i r s t term accounts f o r path l e n g t h 
d i f f e r e n c e s and the second r e f e r s to r e f r a c t i v e index d e l a y s . F i g u r e 
3-1 shows t h i s s i t u a t i o n g r a p h i c a l l y f o r the e m i s s i o n of a photon a t 1 km 
and H kms, i t i s assumed t h a t the p a r t i c l e s c a u s i n g the e m i s s i o n are 
t r a v e l l i n g between h and 1 km at c. Obviously, i f the p a r t i c l e s are 
t r a v e l l i n g slower than t h i s then the value of the core d i s t a n c e where 
the a r r i v a l of photons l a g s behind the p a r t i c l e s would be reduced. 

I f the p a r t i c l e s c a u s i ng the emission of the Cerenkov l i g h t high 

i n the atmosphere are to a r r i v e before or c o i n c i d e n t w i t h the l i g h t a t 

ground l e v e l then they must have undergone only s m a l l path l e n g t h d e l a y s . 

I n other words the e l e c t r o n s must have a w i t h i n - p u l s e t i m i n g sequence 

s i m i l a r to the Cerenkov l i g h t , i n t h a t the e l e c t r o n s observed to a r r i v e 

f i r s t must be able to t r a c e t h e i r o r i g i n d i r e c t l y to the top of the shower. 

Considering t h a t the atmosphere i s about 30 r a d i a t i o n lengths t h i c k then 

t h i s must mean t h a t the e l e c t r o n s do not undergo s c a t t e r i n g s u f f i c i e n t 

to d e v i a t e them s i g n i f i c a n t l y away from the passage taken by the l i g h t . 

When i t i s considered t h a t the rras f o r shower e l e c t r o n s i s of the 
o 

order of 12 , then i t i s untenable to c o n s i d e r t h a t the e l e c t r o n s have 

not undergone p e r p e n d i c u l a r as w e l l as t r a n s v e r s e motion, before being 

observed. I n essence then the p a r t i c l e s w i l l undergo path l e n g t h 

d e l a y s w h i l s t the l i g h t w i l l not, so i t i s to be expected t h a t the 

Cerenkov l i g h t w i l l a r r i v e before the p a r t i c l e s , by an amount r e l a t e d 

to the core d i s t a n c e of o b s e r v a t i o n and the height a t which the l i g h t 

and the e l e c t r o n s can be s a i d to have been c o i n c i d e n t . 

3.2 S i m u l a t i o n s of the s e p a r a t i o n of the p a r t i c l e and l i g h t f r o n t s 

I n order to extend the simple arguments shown above so t h a t the 

e x a c t r e l a t i o n s h i p between the s e p a r a t i o n and conventional shower 

parameters can be understood, i t was n e c e s s a r y to study the r e s u l t s of 
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computer s i m u l a t i o n s . I n t h i s s e c t i o n the r e s u l t s of the work c a r r i e d 

out by Protheroe (1978) are d i s c u s s e d . The model f o r the high energy 

i n t e r a c t i o n used i n t h i s study was t h a t of s c a l i n g and any c o n c l u s i o n s 

reached must be t r e a t e d as p r e l i m i n a r y u n t i l c o n f i r m a t i o n of an a c c e p t a b l e 

model i s made. Where necessary, comparisions between the r e s u l t s from 

d i f f e r e n t models are shown. 

I n order to understand the nature of the d e l a y between the two 

f r o n t s i t i s n e c e s s a r y to understand the i n d i v i d u a l n a t u r e s of the two 

f r o n t s . F i g u r e 3-2 shows the expected f r o n t f o r p a r t i c l e s a r i s i n g from 
17 

a d i s t r i b u t i o n of showers a t 5x10 eV and f i g u r e 3—3. shows the l i g h t f r o n t 

f o r the same showers. Obviously one f a c t o r of importance here i s the 

time at which the f r o n t can be s a i d to have a r r i v e d . F i g u r e 3-4 shows 

the e f f e c t of s e t t i n g a lower d i s c r i m i n a t i o n t h r e s h o l d f o r a r r i v a l of 

the p a r t i c l e s . Before making comparisions between the f r o n t s i t i s 

n e c e s s a r y to decide what the experimental s i t u a t i o n w i l l be. As w i l l 

be shown l a t e r measurements were made at Haverah Park during the w i n t e r 

of 1975/76 of the s e p a r a t i o n between the two f r o n t s at the 10 p a r t i c l e 

l e v e l i n deep water d e t e c t o r s and the 10% l e v e l on. the l i g h t s i g n a l . 

So to o b t a i n the d e l a y between the two f r o n t s i t i s merely a matter of 

s u b t r a c t i n g the two curves shown i n f i g u r e s 3-2 and 3—3. T h i s i s shown 

i n f i g u r e 3-5. From t h i s i t i s p o s s i b l e to o b t a i n more understanding 

of the shape of the f u n c t i o n . The l i g h t f r o n t i s e s s e n t i a l l y s p h e r i c a l 

w i t h an o r i g i n w i t h i n the region d e f i n i n g the 10% growth p o i n t i n the 

shower. The p a r t i c l e f r o n t however i s f l a t t e r and cannot be simply 

d e f i n e d i n terms of a simple sphere w i t h a p a r t i c u l a r o r i g i n w i t h i n 

the shower. I t s f r o n t a r i s e s from a complex sum of a l l the 

c o n t r i b u t i o n s to the p a r t i c l e d e n s i t y coming from v a r i o u s p o i n t s 

w i t h i n the shower. To d i s c o v e r the e f f e c t of v a r i o u s shower parameters 

on the s e p a r a t i o n of the two f r o n t s the e f f e c t of these parameters on 

the two i n d i v i d u a l f r o n t s has to be c o n s i d e r e d . 
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F i g u r e 3-6 shows the time to the 10% l e v e l i n the o p t i c a l p u l s e 

f o r showers of v a r i o u s masses and e n e r g i e s . From t h i s i t can be 

e s t a b l i s h e d t h a t t h i s time i s v i r t u a l l y i n v a r i a n t w i t h cascade 

development. So any c o n s i d e r a t i o n of change i n mass and energy on 

the time delay can be understood i n terms of a change i n the development 

of the e l e c t r o n component. F i g u r e s 3-7 and 3-9 show the i n t e g r a l 

p u l s e f o r - t h e e l e c t r o n component fo r showers of d i f f e r i n g masses and 

e n e r g i e s . From t h i s expected v a r i a t i o n s i n the time delay can be 

seen. I f the a r r i v a l time of the p a r t i c l e s i s s a i d to be when 0.3 
2 

v e r t i c a l l y e q u i v a l e n t muons (VEM) are i n c i d e n t on 1 m ( t h i s i s e q u i v a l e n t 

to the 10 p l e v e l i n c e n t r a l d e t e c t o r s a t Haverah P a r k ) , then the f o l l o w i n g 

c o n c l u s i o n s can be drawn. F i r s t l y ^ an i n c r e a s e i n primary energy w i l l 

cause a decrease i n the delay and secondly an i n c r e a s e i n the mass w i l l 

cause an i n c r e a s e i n the d e l a y . These v a r i a t i o n s are c o n s i s t e n t w i t h 

the b r i e f a n a l y s i s d e s c r i b e d above when the changes i n depth accompanying 

a change i n e i t h e r energy or mass are c o n s i d e r e d . 

A more i n t e r e s t i n g r e s u l t can be drawn i f the time to a p a r t i c u l a r energy 

d e p o s i t i o n i s p l o t t e d a g a i n s t depth of. maximum. F i g u r e 3-10 shows the 

s i t u a t i o n s / f o r those showers d i s p l a y e d i n f i g u r e s 3-7 +•<? 3—9, the d i f f e r e n c e 

being t h a t the d i s c r i m i n a t i o n l e v e l i n t h i s i n s t a n c e i s 0.2 VEM. T h i s 

i n d i c a t e s t h a t i f the delay and the depth of maximum are known, then the 

mass and energy can be unique l y determined. However, the dashed l i n e 

i n d i c a t e s the s i t u a t i o n f o r a CKP s i m u l a t i o n r a t h e r than a s c a l i n g model. 

So although, the s i t u a t i o n could be used to d e s c r i b e the mass i t i s 

extremely model dependent; but i f , f o r example, a delay of 70nsec w i t h a 

depth of maximum of 800 g cm i s observed then although not i n d i c a t i n g 

mass ( u n l e s s the s c a l i n g model was proved) i t would r u l e out the CKP 

model. I t should be s a i d at t h i s p o i n t t h a t the broadness of the 
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of the e l e c t r o n p u l s e s shown i n f i g u r e s 3-7 to 3-9 i s due to the l a r g e 
c o l l e c t i o n area used i n the s i m u l a t i o n . Although t h i s does not e f f e c t 
the l e a d i n g edge of the pulse, i t means t h a t the width of the p u l s e 
cannot be determined; a more comprehensive d e s c r i p t i o n of the s i m u l a t i o n 
i s given i n Protheroe (1978). 

3.3 Observations of the s e p a r a t i o n of the l i g h t and p a r t i c l e f r o n t s 
during the w i n t e r 1975/76. 

During the w i n t e r of 1975/76 an a r r a y of 8 p h o t o m u l t i p l i e r s was 

operated i n c o n j u n c t i o n w i t h the p a r t i c l e a r r a y a t Haverah Park. 

Fig u r e 2.9 shows the l a y o u t of the a r r a y during t h i s season. I t i s 

beyond the scope of t h i s t h e s i s to d e s c r i b e the a r r a y i n d e t a i l ; a 

d e s c r i p t i o n can be found i n Wellby (1978), and some of the r e s u l t s were 

des c r i b e d i n s e c t i o n 2.3. Although no s e p a r a t e experiment was d e v i s e d 

to measure the delay between the two f r o n t s i t was p o s s i b l e to measure 

the s e p a r a t i o n by c o n s i d e r i n g the t r i g g e r i n g arrangements of the o p t i c a l d e t e c t o r 

a r r a y . T h i s arrangement i s shown i n f i g u r e 3-11. The t r i g g e r i n g of 

the r e c o r d i n g o s c i l l o s c o p e s occurred a f i x e d time a f t e r the 10 p l e v e l was 
2 

achieved i n the c e n t r a l 34 m of deep tank d e t e c t o r . Although there 

was then no d e t e c t o r s i t u a t e d i n the v i c i n i t y of the c e n t r a l p a r t i c l e 

detector,,there was one s i t u a t e d a t hut 12 (see f i g u r e 2-9) 50 metres 

d i s t a n t from the c e n t r e of the a r r a y . By assuming a plane f r o n t f o r 

the l i g h t over t h i s s h o r t d i s t a n c e , i t was p o s s i b l e to t r a n s f o r m any 

timing information from hut 12 to t h a t expected i f the d e t e c t o r had been 

s i t u a t e d a t the a r r a y c e n t r e . Thus the time of the s t a r t of the sweep 

of the r e c o r d i n g o s c i l l o s c o p e s can be r e l a t e d d i r e c t l y to the 10 p l e v e l , 

so the d i s t a n c e along the time-base of the o s c i l l o s c o p e s from the sweep 

s t a r t to the 10% l e v e l i n the hut 12 o p t i c a l p u l s e can be r e l a t e d to 

the delay between the p a r t i c l e and l i g h t f r o n t s . The o p t i c a l p u l s e 

i s delayed by an amount s l i g h t l y g r e a t e r than the c o i n c i d e n c e window, 

t h i s was to enable the o p t i c a l p u l s e to be p o s i t i o n e d w e l l i n t o the 
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sweep of the o s c i l l o s c o p e . So, i f the p a r t i c l e s and l i g h t were c o i n c i d e n t 

at ground l e v e l then the o p t i c a l pulse would be at a time T Q along the 

time-base, where T Q i s the l e n g t h of the coincidence window minus the t o t a l 

delay of the o p t i c a l pulse. From t h i s the a c t u a l delay between the two 

f r o n t s i s given by:~ 

I n t h i s study, as nanosecond accuracy was d e s i r a b l e t o o b t a i n an 

accurate determination of the nature of the delay, i t was thouglt e s s e n t i a l 

t o use only those events which s a t i s f i e d r i g i d s e l e c t i o n c r i t e r i a . The 

c r i t e r i a used were e s t a b l i s h e d t o ensure t h a t the events chosen were 

c o n s i s t e n t l y accurate i n a l l parameters. F i r s t l y , because of the 

response time of the deep water tanks a l a r g e p a r t i c l e d e n s i t y i n the 

c e n t r a l d e t e c t o r was considered t o be important. I n view of t h i s no 

events were used which had a c e n t r a l d e n s i t y less than ten times the 

threshold l e v e l ( l O p ) . 

The accuracy of core l o c a t i o n would also e f f e c t any conclusions as 

the delay has a strong core distance dependence. So events were r e j e c t e d 

i f they f e l l o utside the confines of the 500 metre p a r t i c l e array. 

Events w i t h a l a r g e z e n i t h angle ( $ ^ 40°) were also r e j e c t e d . 

3.3.3 Results 1975/76 

During t h i s w i n t e r a t o t a l of 17 events were recorded, which, 

s a t i s f i e d a l l the s e l e c t i o n c r i t e r i a described above. Figure 3-12 

shows the observed delay, normalised f o r the r e v e r s a l described i n 

s e c t i o n 3.3.1, p l o t t e d against core distance. 

A m u l t i p l e regression of the observed delay against r , p(500) and© 

Time Delay = T_ - T obs 
3.3.2 S e l e c t i o n c r i t e r i a f o r observed events 

gives: 
r P Equ. 3.1 

Standard e r r o r on estimate 1.5. nsecs s.d. 6 nsecs. 
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3.4. I n d i v i d u a l shower measurements 

The technique described above only allowed f o r a s i n g l e measurement 

to be made w i t h i n one shower, thus only the average c h a r a c t e r i s t i c s of 

a sample of showers can be estimated. However, f o r a small sample of 

showers f u r t h e r measurements could be made w i t h i n snowerf. The i n d i v i d u a l 

p a r t i c l e times f o r detectors 2,3 and 4 were recorded f o r the z e n i t h 

angle and azimuth determination of the U n i v e r s i t y of Leeds p a r t i c l e -

array. 

These p a r t i c l e detectors were colocated w i t h atmospheric Cerenkov 

det e c t o r s ; consequently, when there e x i s t s a coincidence between a 

p a r t i c l e and l i g h t response i t was possible to measure the f r o n t separation 

across the shower. The problems of t i m i n g inaccuracies r e s u l t i n g from 

low p a r t i c l e d e n s i t i e s are increased f o r these detectors as they tend t o 

be f u r t h e r from the core of a shower and consequently have low recorded 

d e n s i t i e s . The times used i n t h i s s e c t i o n do however correspond t o the 

2 p l e v e l so t h a t a lower d e n s i t y c r i t e r i a can be used. Due t o the 

s p a r c i t y of events of t h i s s o r t , the c r i t e r i a described i n s e c t i o n 3.3.2 

were relaxed so t h a t events were only r e j e c t e d i f the l o c a l d e n s i t y was 

less than 5 times the t h r e s h o l d . Consequently a l l the r e s u l t s described 

i n t h i s s e c t i o n should be regarded as e x p l o r a t o r y . As i t was impossible 

to c a l c u l a t e w i t h any degree of c e r t a i n t y the absolute value o f the 

delay at each l o c a t i o n i t was decided t o study the gr a d i e n t of the 

parameter w i t h core distance. This was achieved by normalising the 

p a r t i c l e and l i g h t times so t h a t a t the array centre both the p a r t i c l e 

and l i g h t times were i d e n t i c a l t o zero. A f t e r t h i s the two f r o n t s were 

subtracted a t each l o c a t i o n , thus g i v i n g a measure of the delay at various 

p o i n t s on the ground. Figure 3-13 shows the r e l a t i o n s h i p between the 

delay and core distance f o r 8 showers; the delay here i s T l i g h t - T p a r t i c j e s 
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as the delay has been normalised,a negative value does not n e c e s s a r i l y 

imply t h a t the p a r t i c l e s a r r i v e d before the l i g h t . The average slope was found 

to be 19.6 ns'ec increase i n t h i s delay per 100 metres change i n core d i s t a n c e . 
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- CHAPTER FOUR -

Further measurements of the separation of the 
l i g h t and p a r t i c l e f r o n t s 

Following the e x p l o r a t o r y work described i n the previous chapter i t 

was thought t h a t more accurate r e s u l t s would be obtained using a detecto r 

w i t h more accurate t i m i n g c a p a b i l i t i e s - a p l a s t i c s c i n t i l l a t o r . This 

chapter describes the f i r s t attempts at making such measurements du r i n g 

the w i n t e r of 1976/77 at Haverah Park. A comparison w i t h other 

parameters i s given as w e l l as a discussion of the r e s u l t s , f r o m the two 

seasons. 

4.1 S c i n t i l l a t o r s versus Deep Water Detectors 

Before d e s c r i b i n g the r e s u l t s o f t h i s experiment i t i s necessary to 

consider the r e l a t i v e merits i n t h i s context of a p l a s t i c s c i n t i l l a t o r 

when compared t o the deep water detectors at Haverah Park. The main 

advantage of a s c i n t i l l a t o r i s i t s f a s t response to a p a r t i c l e f l u x , which, 

i n the context of t h i s experiment was extremely important. A s c i n t i l l a t o r s 

bandwidth i s e f f e c t i v e l y l i m i t e d by the bandwidth of the p h o t o - m u l t i p l i e r 

which detects the s c i n t i l l a t i o n l i g h t , i n t h i s instance a type 53 AVP 

having a r i s e time of less than 2 nanoseconds. The s c i n t i l l a t o r w i l l 

also respond to the passage of one e l e c t r o n , although t h i s f a c e t was not 

h e a v i l y r e l i e d upon. The deep tanks a t Haverah Park detect the Cerenkov 

l i g h t emitted by a charged p a r t i c l e as i t traverses 1 metre of c l e a r water. 

To detect the l i g h t p h o t o m u l t i p l i e r s are dipped onto the surface of 

the water, the p h o t o m u l t i p l i e r w i l l then d e t e c t the l i g h t a f t e r i t has 

been r e f l e c t e d o f f the sides. I f has been estimated t h a t the l i g h t w i l l undergo 

seven r e f l e c t i o n s before i t i s i n c i d e n t on the face of the p h o t o m u l t i p l i e r ^ 

Tennant (1968). I t i s t h i s s t r a g g l i n g o f the l i g h t paths which accounts 

f o r the slow response time of the tanks. I t was t h i s slow b u i l d up of a 

pulse which prompted the change to a p l a s t i c s c i n t i l l a t o r f o r t i m i n g the 

a r r i v a l of the p a r t i c l e s . 



However, the deep tanks have a strong advantage, i n t h a t t h e i r 

r e l a t i v e l y cheap cost of production f a c i l i t a t e s the use of la r g e d e t e c t i n g 
2 

areas, 34 m i n the case of the 500 metre array at Haverah Park. The 
2 

s c i n t i l l a t o r used i n t h i s experiment had an e f f e c t i v e area of 1/3 m . I t 

i s to be expected t h a t the t i m i n g accuracy w i l l , t o a la r g e e x t e n t , depend 

on the l o c a l e l e c t r o n d e n s i t y around a d e t e c t o r . I f the l o c a l e l e c t r o n 
2 

number i s less than, say, 10/m then, i t i s reasonable t o assume t h a t any 

of the detected e l e c t r o n s would have come from any p a r t of the shower 

d i s c ; i f a di s c of 3 metres thickness i s considered, Bassi e t a l (1953), 

then t h i s could lead to a t i m i n g j i t t e r o f 20 nanoseconds. I f conversely, the 
2 

den s i t y was i n excess of 50/m , then i t would be expected t h a t a t l e a s t some 

of the detected e l e c t r o n s would have come from the leading edge of the d i s c . 

Figure 4-1 shows the expected e l e c t r o n number p l o t t e d against core di s t a n c e . 

From t h i s , we see t h a t i f a core distance of 250 metres i s used as a 

maximum^then there w i l l always be i n excess o f 20 p a r t i c l e s i n the d e t e c t o r . 

The geometrical p r o j e c t i o n of the de t e c t o r in an i n c l i n e d shower has also 

to be considered. I f a shower i s i n c i d e n t on the array a t an angle of 

G then the e f f e c t i v e area of a t h i n d e t e c t o r reduces by a f a c t o r of cos ( 9 ) . 

I f a maximum l o c a l z e n i t h angle of 30 degrees i s considered then the core 

distance c r i t e r i a mentioned above would reduce to about 220 metres. 

4.2 I n i t i a l Observations 1976/77 

During the w i n t e r of 1976/77 a few minor m o d i f i c a t i o n s were made t o 

the atmospheric Cernekov l i g h t a rray. The major improvement being the 

r e l o c a t i o n of the c e n t r a l p h o t o m u l t i p l i e r from l o c a t i o n 12 to l o c a t i o n 1 

i n f i g u r e 2-9, the centre of the p a r t i c l e a rray. To improve the dynamic 

range of the outer d e t e c t o r s , 7" p h o t o m u l t i p l i e r s i n co n j u n c t i o n w i t h 

1/2 metre dishes were s i t u a t e d alongside the e x i s t i n g 5" p h o t o m u l t i p l i e r s . 

A f u l l d e s c r i p t i o n of these improvements w i l l be found i n Waddoup (1978). 
2 

I n October 1976 a p l a s t i c s c i n t i l l a t o r , of area 1/3 m was operated 
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i n the v i c i n i t y of a 7" p h o t o m u l t i p l i e r viewing the n i g h t sky d i r e c t l y . 

The purpose of t h i s a c t i v i t y being t o i n v e s t i g a t e the f e a s i b i l i t y o f 

using such a small p a r t i c l e d e t e c t o r f o r t i m i n g measurements, the 

apparatus was run separately from the main Cerenkov array so as t o cause 

a minimum of disturbance. The outputs of the two detectors were 

separated by delaying ,the s c i n t i l l a t o r response by approximately 100 nsecs. 

A f t e r t h i s delay the two signals were mixed and delayed f o r about 2yUseconds 

using a lumped delay l i n e , the f i n a l s i g n a l being displayed on a f a s t 

recording o s c i l l o s c o p e and photographed. The e x t r a delay was used so as 

to enable the 150 metre p a r t i c l e array to make a coincidence. The low 

bandwidth of a delay l i n e does not e f f e c t the short t i m i n g measurements 

being made, as r e l a t i v e a r r i v a l times are being considered r a t h e r than 

d e t a i l e d pulse s t r u c t u r e s . During the period of running of t h i s 

arrangement of detectors no shower data \jMre. a v a i l a b l e as the t r i g g e r i n g 

came from the 150 r a t h e r than 500 metre array and shower analyses are 

only a v a i l a b l e f o r 500 metre events. This means t h a t no comparison could 

be made w i t h conventional shower parameters. However, by considering the 

coincidence c r i t e r i a and the geometry of the 150 metre array, an expected 

median core distance of the detectors can be estimated f o r a d i s t r i b u t i o n 

of showers. The two detectors were s i t u a t e d a t l o c a t i o n 12 i n f i g u r e 2.9. 

A t r i g g e r i n g of the o p t i c a l array occurred when there was a coincidence 

between the centre and any two of the three 150 metre p a r t i c l e d e t e c t o r s . 

I f i t i s assumed t h a t on average a shower w i l l cause a t h r e e - f o l d 

coincidence i f i t f a l l s w i t h i n 150 metres of the three tanks, then most 

of the showers recorded w i l l l i e between 100 and 300 metres of l o c a t i o n 

12, the peak of the d i s t r i b u t i o n would be about 200 metres. 

To o b t a i n the exact delays of the two d e t e c t o r s , i t was necessary t o 

measure the propagation times of the two d e t e c t o r s . This was achieved 

by f l a s h i n g a l i g h t e m i t t i n g diode i n the f i e l d of view of the atmospheric 

file:///jMre
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Cerenkov p h o t o m u l t i p l i e r and i n the s c i n t i l l a t i o n m a t e r i a l . From t h i s 
the r e l a t i v e propagation times were obtained; consequently the a c t u a l 
separation of the p a r t i c l e and l i g h t f r o n t could be seen. Figure 4-2 
Shows the observed d i s t r i b u t i o n of times, normalised f o r propagation 
delays. 

4.3 Observations of the time delay i n c o n j u n c t i o n w i t h the main Cerenkov 
l i g h t array 

4.3.1 I n t r o d u c t i o n 

I n order to understand more f u l l y the r e l a t i o n s h i p between the 

separation of the two f r o n t s and shower parameters, i t was necessary t o 

operate a s c i n t i l l a t o r i n the v i c i n i t y of a n i g h t sky p h o t o m u l t i p l i e r 

w h i l s t the main p a r t i c l e and Cerenkov array were running. I t was thought 

important to have both p a r t i c l e and n i g h t sky Cerenkov d e t e c t o r i n f o r m a t i o n 

to enable c o r r e l a t i o n s t o be made w i t h conventional shower parameters and 

the new i n f o r m a t i o n r e l a t e d to the l o n g i t u d i n a l development of a shower 

coming from studies of the temporal s t r u c t u r e of the Cerenkov l i g h t pulse. 

To minimise the data analysis i t was thought prudent t o l o c a t e the 

s c i n t i l l a t o r w i t h one of the main Cerenkov l i g h t p h o t o m u l t i p l i e r s ; from 

core distance considerations i t was decided t o l o c a t e the s c i n t i l l a t o r 

at the centre of the array, near t o the c e n t r a l p h o t o m u l t i p l i e r and the 

c e n t r a l deep water tanks. To ensure a minimal disturbance of the o p t i c a l 

a r r a y , i t was decided to, d i s p l a y the a r r i v a l time of the e l e c t r o n s as a 

time marker t r i g g e r e d by the s c i n t i l l a t o r . This marker, a 10 nanosecond 

wide pulse, was delayed by about 100 nanoseconds to avoid any i n t e r f e r e n c e 

w i t h the o p t i c a l pulse. The time marker and the o p t i c a l pulse were then 

mixed i n s i t u a f t e r the l a t t e r had been a m p l i f i e d . The combined outputs 

were then sent down approximately 50 metres of high q u a l i t y cable t o the 

recording s t a t i o n . Here the pulses were delayed using high q u a l i t y cable, 

f o r about 2 microseconds to p o s i t i o n the pulses w i t h i n the d i s p l a y window 

generated by the 150 metre p a r t i c l e array. 
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To analyse the trace s , the photographs of the os c i l l o s c o p e screen 

were enlarged to about twice l i f e - s i z e and measured using a standard 
g r a t i c u l e . The os c i l l o s c o p e time base v e l o c i t y was 100 nanoseconds /cm. 
and approximately 60 nanoseconds / cm a f t e r enlargement. The exact p r i n t 
timebase could be measured using accurate timemarkers displayed on each 
t r a c e . P r i n t s could be measured t o b e t t e r than 0.5 mm, thus a l l o w i n g 
f o r t i m i n g accuracies b e t t e r than 5 nanoseconds. 
4.3.2. Results - E a r l y 1977 

The Cerenkov a r r a y was running f o r about 60 c l e a r jhoonless dark hours, 

and f o r about 20 of these the s c i n t i l l a t o r was i n t e g r a t e d i n t o the system. 

During t h i s w i n t e r 19 showers occurred which had s u f f i c i e n t Cerenkov data 

f o r a f u l l a n alysis of the type described i n s e c t i o n 2.4, and 9 of these had 

a coincident p a r t i c l e marker. I n a d d i t i o n t o these a f u r t h e r 2 events were 

i n coincidence w i t h a main array event w i t h p a r t i c l e analyses from the 

Leeds U n i v e r s i t y group. Five of the 9 Cerenkov events also had p a r t i c l e 

data a v a i l a b l e . 

As the time delay was a new parameter i t was thought wise t o make 

i n i t i a l comparisons w i t h shower analysis based upon p a r t i c l e data r a t h e r than 

the Cerenkov l i g h t , data. (This also allowed a more d i r e c t comparison w i t h 

the r e s u l t s of the previous year. ) During t h i s phase of the experiment 

no attempt was made to measure a b s o l u t e l y the propagation delays through 

the p h o t o m u l t i p l i e r and the s c i n t i l l a t o r . This does not a f f e c t the r e s u l t s 
it 

to be presented as only qua^ative conclusions were sought and only the 

gradients of any r e l a t i o n s h i p w i l l be considered. Figure 4-3. shows the 

r e l a t i o n s h i p between the observed time delay as seen w i t h the s c i n t i l l a t o r 

and the time delay deduced from the p o s i t i o n of the o p t i c a l pulse along 

the timebase. This l a t t e r measurement i s i d e n t i c a l t o the measurements 

presented i n the l a s t chapter, except t h a t the abissca has not been 

normalised f o r timebase r e v e r s a l . As both abissca and the ord i n a t e 

represent measurements of the same t h i n g , then i t would be expected t h a t 
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the g r a d i e n t of the r e l a t i o n s h i p would be u n i t y . The slope, as the time 

t o the o p t i c a l pulse i s reversed, should be, as observed, negative. The 

s i t u a t i o n i n comparing the separation as measured by a s c i n t i l l a t o r and 

the deep tanks i s s i m i l a r i n concept t o comparing the time t o the 10 

p a r t i c l e and 2 p a r t i c l e l e v e l s i n the deep tanks. Figure 3-4 showed the 
18 

time t o these values f o r 10 eV proton shower. From t h i s i t i s cl e a r t h a t 

f o r i n c r e a s i n g core distance w i t h a s i m i l a r type of de t e c t o r the time 

d i f f e r e n c e between the 2 and 10 p a r t i c l e l e v e l s increases. This time w i l l 

be f u r t h e r increased i f the detecto r f o r the 10 p a r t i c l e l e v e l has a much 

slower response time, as i s the case. These two e f f e c t s w i l l move 

the observed delays i n f i g u r e 4-3 t o the r i g h t thus reducing the value of 

the slope. 

Figure 4—4 shows the r e l a t i o n s h i p between core distance and the 

separation f o r events having a 500 metre array response. The m u l t i p l e 

regression of the time delay upon shower parameters was found t o be;-

TD = 3.4 r 0 ' 2 4 8 o(500) - ° - ° 7 6 (sec 6 ) " 1 ' 1 2 r>Sec. 
/ v>e 

(standard e r r o r on estimate 1.2 nsec , standard d e v i a t i o n 4 nsec) 

The small number of observed events c o i n c i d e n t w i t h Cerenkov showers 

presented any accurate comparison w i t h the data r e l a t e d to the l o n g i t u d i n a l 

cascade. 

4.4 Conclusions from 1975/76 and 1976/77 

4.4.1 I n t r o d u c t i o n 

The r e s u l t s presented i n the previous chapters i n d i c a t e t h a t the time 

delay between the p a r t i c l e and atmospheric l i g h t f r o n t s i s a r e a d i l y 

measurable q u a n i t y . Although a p a r t i c l e d e t e c t o r w i t h poor t i m i n g 

c a p a b i l i t i e s was used i n i t i a l l y , convincing c o r r e l a t i o n s were made w i t h 

conventional shower parameters. The r e s u l t s obtained d u r i n g the w i n t e r 

1976/77 i n d i c a t e d t h a t a small area p a r t i c l e d e t e c t o r could be also used 

to measure the delays at small core distances. 
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4.4.2 A n a l y s i s of 1975/76 Data 

The r e l a t i o n s h i p between core d i s t a n c e and time delay shown i n 

f i g u r e 3.12 can be understood i n terms of the su p e r i r a p o s i t i o n of two 

f r o n t s of d i f f e r i n g c u r v a t u r e . F i g u r e s 3-2 and 3-3. showed the 

c a l c u l a t e d d e l a y behind the tangent plane f o r p a r t i c l e s and Cerenkov 

l i g h t . By d i f f e r i n g these i t was p o s s i b l e to o b t a i n the c a l c u l a t e d 
17 t 

delay between the two f r o n t s . At shower e n e r g i e s of 5x10 eV^, t h i s •+ to o-z°o^ 

was found to l i e between 25 and 30 nanoseconds f o r protons and about 

25 nanoseconds f o r i r o n . The observed delay a t t h i s energy (y£>(500) 
_2 

= 1 m ) was found to be 23 nanosecond a t d i s t a n c e s between 100 and 

200 metres, i n c l o s e agreement w i t h s i m u l a t i o n r e s u l t s . 

Any change of a parameter withyo(500) and z e n i t h angle r e l a t e s to 
the d i f f e r e n t developments of the shower through the atmosphere. 

The time delay was observed to decrease by 27 nanoseconds f o r an 

i n c r e a s e of one decade of primary energy, a t 158 metres core d i s t a n c e . 
17 

F i g u r e 3-7., showing the e f f e c t of an i n c r e a s e i n energy from 10 to 
18 

10 eV, i n d i c a t e s t h a t w i t h i n t h i s energy range the delay should decrease 
by about 20 nanoseconds over the decade a t a core d i s t a n c e of 158 metres. 

When i t i s considered t h a t the range of observed e n e r g i e s i n t h i s sample 
16 17 

was from 5X10 to 5x10 ey i n t h i s case the expected decrease should be 
17 18 

g r e a t e r than t h a t f o r 10 eV to 10 eV. T h i s shows t h a t the observed 

dela y s a r e i n c l o s e agreement w i t h the r e s u l t s of s i m u l a t i o n s . 

A r e l a t i o n s h i p between the observed d e l a y s and z e n i t h angle was a l s o 

noted. A change i n z e n i t h angle w i l l cause a change i n the t h i c k n e s s of 

the atmosphere through which the shower develops beyond mazimum. Z e n i t h 

angle can be r e l a t e d to changes i n depth of maximum p o s i t i o n above the 

obs e r v a t i o n l e v e l . 
-2 

Atmospheric t h i c k n e s s (g cm ) = 1030. s e c ( 8 ) 



* f h i s change i n /.enith a n g l e can be? d i r o c t l y r e l a t e d t o a change i n 
-2 

terras o f cm . The observed r e l a t i o n s h i p between t i m e d e l a y and z e n i t h 

a n g l e can t h e r e f o r e be r e l a t e d t o a v a r i a t i o n w i t h cascade d e v e l o p m e n t . 
] 7 

A t a b o u t 3.0 " eV and a t a c o r e d i s t a n c e of 200 m e t r e s t h e t i m e d e l a y 

i n c r e a s e s by about 5 nanoseconds f o r 100 grannies o f e x t r a atmosphere 

between d e p t h o f maximum and o b s e r v a t i o n l e v e l . A l l t h e s e r e s u l t s are 

summarised i n 'fable 4 — 1 . 

The measurements o f t h e d e l a y a t d i f f e r e n t p o i n t s w i t h i n an 

i n d i v i d u a l shower were d i s c u s s e d i n s e c t i o n 3-4. A l t h o u g h t h e 

r e s u l t s p r e s e n t e d were of a v e r y p r e l i m i n a r y n a t u r e c e r t a i n i n d i c a t i o n s 

s h o u l d be n o t e d . The mean g r a d i e n t was f o u n d t o be 19. nanoseconds/100 

m e t r e s , i n c l o s e agreement w i t h t h e v a l u e s f r o m s i m u l a t i o n s d e s c r i b e d 

above. There was no p o s s i b i l i t y o f o b s e r v i n g a change i n t h e g r a d i e n t 

w i t h p r i m a r y energy as a l l t h e d e l a y s were n o r m a l i s e d so t h a t any o f f s e t 

due t o a p r i m a r y e n e r g y w o u l d be l o s t . 

4.4.3 A n a l y s i s o f 1976/77 d a t a 

The f i r s t c o n c l u s i o n f r o m t h e o b s e r v a t i o n s made d u r i n g t h i s season 

i s t b a t ; f r o m f i g u r e 4-2 a *rean v a l u e o f t h e d e l a y i n showers o f a b o u t 
17 " 

3,. 10 eV, was 40 nanoseconds w i t h a s t a n d a r d d e v i a t i o n o f 18 nanoseconds. 

The e x p e c t e d c o r e d i s t a n c e f o r t h i s sample o f showers was w i t h i n t h e r e g i o n 
17 

100-300 i n c t r o s . F i g u r e 3-5 showed t h e c a l c u l a t e d d e l a y f o r a SxlO eV 

p r o t o n i n i t i a t e d shower o f 40 nanoseconds a t 200 m e t r e s . 

The 8 showers w i t h a measurement o f t h e d e l a y as w e l l as a p a r t i c l e 

a n a l y s i s f r o m t h e U n i v e r s i t y o f V-cds g r o u p wore c o r r e l a t e d , i n t h e same 

manner as t h e e v e n t s d e s c r i b e d i n t h e p r e v i o u s s e c t i o n . The a c t u a l • 

c o e f f i c i e n t s o f t h e c o r r e l a t i o n a r e however s i g n i f i c a n t l y d i f f e r e n t . T h i s 

can be u n d e r s t o o d as t h e quanta, t y b e i n g measured i s d i f f e r e n t i n t h e two 



season:?. D u r i n g 197!">/7G t h e d e l a y was measured f r o m t h e 10 p a r t i c l e l e v e l 

i n t h e deep d e t e c t o r s and d u r i n g t h e season 1976/77 f r o m a d i s c r i m i n a t i o n 

l e v e l s e t j u s t above t h e n o i s e f r o m t h e o u t p u t of t h e s c i n t i l l a t o r ; t h i s 

was l o w e r t h a n t h e 10 p a r t i c l e l e v e l i n t e r m s of energy d e p o s i t e d f o r 

d i s c r i m i n a t i o n . The s i t u a t i o n i s s i m i l a r i n c o n c e p t t o c o m p a r i n g t h e 

d e l a y measured f r o m t h e 10 p and t h e 2 p l e v e l s . F i g u r e 3-4 showed t h e 

e f f e c t on t h e s e p a r a t i o n o f l o w e r i n g t h e d i s c r i m i n a t i o n l e v e l f r o m 10 p 

t o 2 p. From, t h i s i t can be seen t h a t t h e g r a d i e n t o f t h e r e l a t i o n s h i p 

f r o n t s e p a r a t i o n v e r s u s c o r e d i s t a n c e i s r e d u c e d i f t h e d i s c r i m i n a t i o n 

l e v e l i s l o w e r e d . A l s o by c o n s i d e r i n g f i g u r e 3-7 s h o w i n g t h e t i m e t o a 

p a r t i c u l a r e n e r g y d e p o s i t i o n a t 158 m e t r e s , i t can be seen t h a t t h e 

e x p o n e n t o f t h e f r o n t s e p a r a t i o n v e r s u s e n e r g y ( ^ ( 5 0 0 ) ) f u n c t i o n s h o u l d 

d e c r e a s e w i t h d e c r e a s i n g t h r e s h o l d . 

Tho f u n c t i o n shown i n s e c t i o n 4.3.2. f o r TD (ryQ(5OO),0 ) has an 

i n c r e a s e d e x p o n e n t fox- t h e r and f> ( 5 0 0 ) t e r m s . The a p p a r e n t change i n 

s i g n o f t h e z e n i t h a n g l e t e r m e x p o n e n t has n o t been e x p l a i n e d . F u r t h e r 

work v i l . : have t o be done t o c o n f i r m t h i s change, a l t h o u g h as t h e 

e x p r e s s e d e f f e c t o f z e n i t h ah«.rlo i s s m a l l and i t i s c o n c e i v a b l e t h a t t h e 

s m a l l n e s s o f t h e d a t a s e t c o u l d mask any o f z e n i t h a n g l e e f f e c t s . 

T a b l e 4T2 summarises t h e i n f o r m a t i o n p r e s e n t e d i n t h e p r e v i o u s two 

s e c t i o n s . No a t t e m p t has so f a r been made t o measure t h e e r r o r s 

occurr.»\g i n t h i s s t u d y . I t has been e s t i m a t e d t h a t p r i n t m e a s u r i n g 

a c c u r a c i e s a r e o f t h e o r d e r o f 4-5 nanoseconds a f t e r a d j u s t m e n t f o r 

t i m o b a s e n o n - l i n e a r i t y has been made.- So t h e s t a n d a r d e r r o r o f 1.2 

nanoseconds and t h e s t a n d a r d d e v i a t i o n o f 5 nanoseconds i s o f t h e same 

o r d e r as t h o e x p e c t e d p r i n t m e a s u r i n g i n a c c u r a c i e s . I t w o u l d r e q u i r e 

a much l a r g e r sample o f o b t a i n a q u a n t a t i v e e s t i m a t e o f t h e e x p e r i m e n t a l 



e r r o r s . However, even f r o m t h i s l i m i t e d .sample o f showers i t can be 

seen t h a t t h e s e p a r a t i o n o f t h e two f r o n t s i s on o b s e r v a b l e q u a n t i t y , 

w h i c h v a r i e s a c c o r d i n g t o the e x p e c t a t i o n s o f s i m u l a t i o n s and s i m p l e 

arguments c o n c e r n i n g b a s i c shower d e v e l o p m e n t . 



TABLE 4-1 

Comparison of s i m u l a t i o n w i t h e x p e r i m e n t a l determination 
of the time d e l a y . 

nsec/lOOm nsec/decade nsec/decade nsec/lOOgm 
@ 1 0 1 7 e V i n ! ? e r g y i 8 1 0 1 6 - l017eV ( f r ° m 

10 - 10 eV x a n g l e ) 

56 
Obser­
ved 

28 

25 

23 

20 

20 

(27 

50 

50 

27) 

TABLE 4-2 

Comparison of r e s u l t s from two seasons of o b s e r v a t i o n f o r 
f r o n t s to standard shower parameters 

P I T - T O T£> = Ar^Bp0 (9)* *9 

A ^ £ V 

1975/76 12.2 .393 -0.136 .526 

1976/77 3.9 .248 -0.076 -1.12 
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- CHAPTER FIVE -
Future Work 

I t i s the i n t e n t i o n i n t h i s chapter to o u t l i n e the f u t u r e developments 

of the s t u d i e s of Cerenkov l i g h t to be c a r r i e d out by the Durham U n i v e r s i t y 

group. A d e s c r i p t i o n of a new experiment which has been deployed i n the 

U.S.A. i s given, as w e l l as a d e s c r i p t i o n of how a sm a l l a r r a y of d e t e c t o r s 

measuring the s e p a r a t i o n of the two f r o n t s w i l l be in c o r p o r a t e d i n t o t h i s 

experiment. 

5.1 The problems of observing Cerenkov l i g h t a t Haverah Park 

Studies of Cerenkov l i g h t , although having the advantage of a f l u x 
5 

10 times that of the p a r t i c l e f l u x , have s e r i o u s d i f f i c u l t i e s as the 
4 

observat i o n s have to compete w i t h the gen e r a l n i g h t sky b r i g h t n e s s , 10 
-2 -1 

photons m s , and s c a t t e r e d man made l i g h t . That some of the l i g h t 

o r i g i n a t e s high i n the atmosphere means t h a t o b s e r v a t i o n s must be made during 

c l o u d l e s s c o n d i t i o n s . From these two c o n s i d e r a t i o n s i t can be seen t h a t 

the p e r f e c t o b s e r v a t i o n a l s e t t i n g would be one f a r removed from sources of 

man-made l i g h t and i n a c l i m a t e which allows f o r long periods having c l e a r 

sk3.es. N e i t h e r of these p r e r e q u i s i t e s are s a t i s i f e d a t Haverah Park, which 

i s s i t u a t e d about 3 mil e s from Harrogate and has about 10 c l e a r moonless 

n i g h t s through the w i n t e r . To put these c o n s i d e r a t i o n s i n t o p e r s p e c t i v e 

during the w i n t e r of 1975/76 only 60 hours of reasonable weather and 

moonless c o n d i t i o n s e x i s t e d . T h i s g i v e s a duty c y c l e of 'et£2%. When i t 

i s considered that during t h i s period the a r r a y had to be kept a t f u l l 

o p e rating s p e c i f i c a t i o n , i t i s obvious that t h i s i s expensive i n terms of 

manpower and c o s t . 

An experiment has been developed, which, i s deployed a t a s i t e of 

good 'seeing' i n the U.S.A. I t i s expected t h a t the a r r a y e f f i c i e n c y w i l l 

be g r e a t e r than 10%. A f u r t h e r change i n the new experiment has been the 

s h i f t from analogue to d i g i t a l r e c o r d i n g techniques. 

http://sk3.es


5.2 Analogue . v s . d i g i t a l recording techniques 

The present a r r a y a t Haverah Park r e l i e s on a combination of delay 

c a b l e s , o s c i l l o s c o p e s and cameras to record an EAS. Thi s combination 

reduces s e v e r e l y the bandwidth of the system. The major l i m i t a t i o n being 

the 500 metres of delay c a b l e , although the c a b l e s are of e x c e p t i o n a l l y 

high q u a l i t y ( D e l t a E n f i e l d 4303's) the response to a 2 nanosecond wide 

spike has been found to be a r i s e time of about 9 nanoseconds and a FWHM 

of 18 nanoseconds. With the development of s t u d i e s of the temporal 

s t r u c t u r e of the l i g h t p u l s e s , see Orford and Turver (1976), i t has 

become e s s e n t i a l that any new system has a s u p e r i o r temporal response. 

Obviously i f the p u l s e s could be analysed l o c a l l y , a t the d e t e c t o r , then 

there would be no l i m i t a t i o n coming from the use of long lengths of c a b l e . 

I t was decided t h e r e f o r e t h a t the new experiment would a n a l y s e the p u l s e s 

i n s i t u and s t o r e the info r m a t i o n i n a d i g i t a l format. 

The major disadvantage of a d i g i t a l system being t h a t w i t h an 

analogue system an a p o s t e r o r i d e c i s i o n i s r e q u i r e d to decide what 

parameters can be u s e f u l l y measured, w h i l s t a d i g i t a l system r e q u i r e s an 

a p r i o r i d e c i s i o n . An analogue r e c o r d i n g technique i s more f l e x i b l e as 

any parameter w i t h i n the bandwidth of the system can be measured, w/hilst, 

w i t h a d i g i t a l technique any a d d i t i o n a l experiments have to be i n t e g r a t e d 

i n t o the system, p o s s i b l y a t g r e a t c o s t . T h i s i m p l i e s t h a t before 

embarking on de s i g n i n g a d i g i t a l system c a r e f u l c o n s i d e r a t i o n has to 

be given as to whether the new system i s measuring parameters which can 

be e f f e c t i v e l y a n a l y s e d . I n the new experiment the Cerenkov p u l s e 

w i l l be r e c o n s t r u c t e d by measuring the charge w i t h i n narrow (5-10 nanosecond) 

s e q u e n t i a l s l i c e s through the s i g n a l from the p h o t o m u l t i p l i e r . F i g u r e 5-1 

shows a p o s s i b l e c o n f i g u r a t i o n of these s l i c e s . As w e l l as these s l i c e s 

the system w i l l measure the t o t a l p u l s e area and time of a r r i v a l . 

Consequently, a conventional a n a l y s i s can be c a r r i e d out us i n g the area 
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and time of a r r i v a l to determine the l a t e r a l d i s t r i b u t i o n and a r r i v a l 
d i r e c t i o n of the l i g h t . By r e c o n s t r u c t i n g the pu l s e u s i n g the s l i c e 
i n formation i t would be p o s s i b l e to c a r r y out an a n a l y s i s of the form 
d e s c r i b e d i n s e c t i o n 2.4 above. 

5.3 The Array 

5.3,1 The Geometrical l a y o u t 

A l l previous measurements of Cerenkov l i g h t by the Durham U n i v e r s i t y 

group were made a t Haverah Park. The geometry of t h i s a r r a y , which 

was d i c t a t e d by the p o s i t i o n of e x i s t i n g f a c i l i t i e s and was shown i n 

f i g u r e 2-9. F i g u r e 5-2 shows the l a y o u t f o r the new experiment. The 

main d i f f e r e n c e being the outer d e t e c t o r s which have been moved i n by 

100 metres from 500 to 400 metres and then r o t a t e d through 60 degrees 

w i t h r e s p e c t to the i n n e r r i n g of d e t e c t o r s . The reason f o r t h i s change 

being t h a t a f t e r studying the response of v a r i o u s a r r a y shapes to a 

l i k e l y f l u x of showers, i t was found t h a t t h i s shape would have the 

g r e a t e s t number of 7 f o l d responses w i t h core d i s t a n c e s up to 700 metres 
17 

f o r showers of energy 3.10 eV, (Orford 1977 , p r i v a t e communication). 

As w e l l as t h i s i n c r e a s e d response, an a r r a y of t h i s shape, from simple 

c o n s i d e r a t i o n s , f a c i l i t a t e s a more rigo r o u s d e t e r m i n a t i o n of the r a d i u s 

of c u r v a t u r e of the shower f r o n t s . I f the f r o n t s a r e s p h e r i c a l , which 

to the experimental accuracy of previous experiments they have been 

found to be, then the arrangements of the d e t e c t o r s i s an important con­

s i d e r a t i o n i n the degree of n o n - s p h e r i c i t y which can be observed. I f the 

l o c a l z e n i t h angle as determined by groups of three d e t e c t o r s a r e used to 
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determine shower d i r e c t i o n and c u r v a t u r e then i t i s c l e a r t h a t each 
group of t h r e e must d e f i n e the v e r t i c e s of e q u i l a t e r a l t r i a n g l e s f o r 
a l l the p r o j e c t e d d i r e c t i o n s to c o i n c i d e . F i g u r e 5-3 shows the 
s i t u a t i o n s c h e m a t i c a l l y f o r 2 dimensions, where the i n f e r r e d d i r e c t i o n s 
are p r o j e c t e d to define the o r i g i n of the l i g h t f r o n t . From t h i s 
c o n s i d e r a t i o n , i t was thought t h a t f o r other techniques of a r r i v a l 
d i r e c t i o n and c u r v a t u r e determination, an a r r a y composed of i n t e r l o c k i n g 
e q u i l a t e r a l t r i a n g l e s , as i s the new a r r a y , would reduce s e l e c t i o n e f f e c t s 
caused by t h e r a d i u s of c u r v a t u r e being determined from an e s s e n t i a l l y 
random s e t of p o i n t s . Any n o n - s p h e r i c i t y would a l s o become more 
immediately apparent as, f o r example, a p a r a b o l i c f r o n t would produce 
a l i n e r a t h e r than a point source i f t r i a n g l e s of d i f f e r i n g s i z e s were 
employed. 

The p r o j e c t e d a r r a y w i l l be t r i g g e r e d i f a c o i n c i d e n c e i s found 

between the c e n t r e and any two of the i n n e r r i n g d e t e c t o r s . T h i s 

sampling w i l l ensure t h a t most the showers are c e n t r a l l y placed, thus 

i n c r e a s i n g the average number of d e t e c t o r s which show a response to an 

event. 

5.3.2 The D e t e c t o r s 

The d e t e c t o r s used w i l l be s i m i l a r to those t e s t e d a t Volcano Ranch, 

Albuequerque, New Mexico during the w i n t e r of 1976. A d e s c r i p t i o n of 

t h i s experiment w i l l be found i n Waddoup (1978). The system c o n s i s t s 

of a p h o t o m u l t i p l i e r , viewing the n i g h t sky d i r e c t l y , whose output i s 

d i g i t i s e d i n s i t u and passed to a c e n t r a l r e c o r d i n g s t a t i o n i n d i g i t a l form. 

The p h o t o m u l t i p l i e r and i t s e l e c t r o n i c s are housed i n a weather proof 

aluminium box, which i s kept a t a constant temperature. A b l i n d covers 

the p h o t o m u l t i p l i e r during the day to minimise the p o s s i b l e b l e a c h i n g of 

the photocathode by exposure to d i r e c t s u n l i g h t . 
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S i m i l a r p h o t o m u l t i p l i e r s , RCA 4522's, to those used r e c e n t l y a t 

Haverah Park are employed. However, they are run under s l i g h t l y 

d i f f e r e n t c o n d i t i o n s , i n that although the interdynode p o t e n t i a l w i l l 

be the same the number of dynodes used i s lower, thus reducing the 

p o t e n t i a l of the photocathode. T h i s m o d i f i c a t i o n was made to reduce 

the p o s s i b l e d e t e r i o r a t i o n of the photocathbde or dynode r e s i s t o r s 

n o t i c e d during the l a s t two ye a r s a t Haverah Park. A consequence of 

t h i s change has been a s m a l l e r output p u l s e , a maximum height of 1 mV i s 

expected. To overcome t h i s the output i s a m p l i f i e d by a f a c t o r - of 100 

by a combination of a VV100 (a 100 MHz p h o t o m u l t i p l i e r a m p l i f i e r from 

Le Croy Instruments I n c . ) and a d i s c r e t e 100 MHz 10 x a m p l i f i e r . 

F i g u r e 5-4 shows s c h e m a t i c a l l y the p o s t - a m p l i c a t i o n e l e c t r o n i c s . 

F i r s t l y the s i g n a l coming out of the a m p l i f i e r i s s p l i t two ways; one 

Channel going to the d i s c r i m i n a t o r u n i t , the othe r to a f u r t h e r fanout 

stage. The l a t t e r produces seven p u l s e s which a r e used to determine 

the pulse area and the in f o r m a t i o n on the segments of the p u l s e . 

At the h e a r t of the d e t e c t o r i s a. seven channel charge to time 

c o n v e r t e r (QTC), which u t i l i z e s the h y b r i d i n t e g r a t e d c i r c u i t QT 100 B 

(from Le Croy I n c . ) . T h i s u n i t measures the charge on the input d u r i n g 

the p e r i o d of an e x t e r n a l l y operated gate. The gate p u l s e s are i n i t i a t e d 

by the d i s c r i m i n a t o r module as soon as the d i s c r i m i n a t i o n l e v e l i s reached. 

The output from the d i s c r i m i n a t o r i s fanned out 6 ways, so t h a t the gates 

can be operated a t d i f f e r e n t times. By d e l a y i n g the gates by p r e s e t 

amounts i t i s p o s s i b l e to a n a l y s e each channel a t a s l i g h t l y d i f f e r e n t 

time and thereby b u i l d i n g up a p i c t u r e of the p u l s e . The seventh channel 

i s u s e d to a n a l y s e the output from the i n t e g r a t o r u n i t . 

The time of a r r i v a l w i l l be determined by u s i n g a time s t r e t c h e r , a 

d e t a i l e d d e s c r i p t i o n of t h i s module can be found i n Waddoup and Stubbs 

(1976). The s t r e t c h e r w i l l be s t a r t e d by a p u l s e from the d i s c r i m i n a t o r 
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module a t a known time a f t e r d i s c r i m i n a t i o n , i t w i l l be stopped by 
a p u l s e from the ce n t r e which w i l l be i n i t i a t e d a known time a f t e r a 
shower coin c i d e n c e i s made. The output from t h i s module i s a TTL pu l s e , 
whose l e n g t h i s a f i x e d f a c t o r times the s t a r t - stop time, i n t h i s 
insi;ance,x75. The output from the QTC a.re TTL p u l s e s whose lengths are 
p r o p o r t i o n a l to the measured charge. A l l these outputs w i l l be analysed 
u s i n g a v a r i a b l e r a t e s c a l e , w i t h maximum r a t e 20 MHz. The in f o r m a t i o n 
w i l l be clocked down to the c e n t r a l c o n t r o l f a c i l i t i e s by 64 1 m i l l i s e c o n d 
p u l s e s ; the i n f o r m a t i o n w i l l be s t o r e d there on magnetic tape. 

The apparatus d e s c r i b e d above has been c a l i b r a t e d and the f o l l o w i n g 

c o n c l u s i o n s can be drawn: 

( 1 ) The pu l s e a r e a w i l l be known to 1000 mV n s e c . 

( 1 1 ) The w i t h i n p u l s e areas w i l l be known to w i t h i n SO mV n s e c . 

( I l l ) The time of a r r i v a l w i l l be known to b e t t e r than 1 nanosecond. 

The system w i l l be operated so th a t the standard l i g h t u n i t (SLU) used 

at Haverah Park w i l l correspond to about 300 mV nsec, a SLU corresponds to 

the l i g h t output from a r a d i o a c t i v e p u l s e r Nel30, 2000 photons. Therefore, 

these f i g u r e s can be compared to the p r e s e n t o p e r a t i n g s p e c i f i c a t i o n s of 

Haverah Park, these can be summarised as: 

( 1 ) P u l s e area to b e t t e r than 3SLU's 

(11) Within p u l s e timing to b e t t e r than 2 nanoseconds 

(111) Time of a r r i v a l to b e t t e r than 1 nanosecond 

By a n a l y s i n g the p u l s e s i n terms of the Nyquist sampling r a t e i t i s p o s s i b l e 

to o b t a i n a maximum frequency which can be used i n the F o u r i e r transform 

of the pul s e ; a sampling r a t e of 10 nanoseconds g i v e s a maximum frequency 

of 50 MHz, t h i s i s comparable to the Haverah Park bandwidth. However, i t 

has been found t h a t Cerenkov l i g h t p u l s e s can be paramaterised, so th a t the 

r e l a t i o n s h i p between the s i z e s of the r e l a t i v e s l i c e s can be used to 

r e c r e a t e the Cerenkov l i g h t p u l s e to w i t h i n 2^3 nanoseconds of i t s r e a l 

s t r u c t u r e . Thus, although the maximum frequency without p r i o r knowledge, 
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i s 50 MHz ,the p u l s e s can be r e c o n s t r u c t e d to nanosecond accuracy. 

5.3.3 The c e n t r a l r e c o r d i n g system 

The major departure from the operating philosophy of the present 

Haverah Park a r r a y i s t h a t the a r r a y w i l l be under computer c o n t r o l . 

The c e n t r a l r e c o r d i n g s t a t i o n w i l l c o n s i s t of a computer, which logs the data 

from the d e t e c t o r s as w e l l as monitoring the environmental s t a t u s of e a c h 

d e t e c t o r . A l s o i n c o n j u n c t i o n w i t h t h i s there are v a r i o u s analogue 

r e c o r d e r s which monitor, e.g. the n i g h t sky b r i g h t n e s s and each d e t e c t o r 

anode c u r r e n t . 

A f t e r an event the computer i n i t i a t e s a c a l i b r a t i o n so t h a t any 

change i n g a i n can be immediately i n c l u d e d i n the a n a l y s i s . I t then r e c o r d s 

each d e t e c t o r s temperature and anode c u r r e n t , so t h a t any d e t e c t o r o u t s i d e 

of i t s normal o p e r a t i n g c o n d i t i o n can be flagged. 

Shown i n f i g u r e 5-5 are the p u l s e s from each d e t e c t o r recorded during 

the i n i t i a l running of the a r r a y . I t "was one of the l a r g e s t showers recorded and 

i t c l e a r l y shows the s l i c e i n f o r m a t i o n can be used to r e c o n s t r u c t the 

various pulse p r o f i l e s . The r e s u l t s of a b r i e f a n a l y s i s are a l s o shown. 

5.4 Future Developments of Measurements pf the S e p a r a t i o n of the 
P a r t i c l e and L i g h t 

A s i n g l e measurment of the time delay between the p a r t i c l e and l i g h t 

f r o n t s w i l l be i n c o r p o r a t e d i n t o the r o u t i n e data c o l l e c t i o n of the new 

a r r a y . I n i t i a l l y , the s i t u a t i o n w i l l be s i m i l a r to the measurements 

made at Haverah Park, d e s c r i b e d i n Chapter 4. A s c i n t i l l a t o r w i l l be 

deployed i n the v i c i n i t y of the c e n t r a l p h o t o m u l t i p l i e r . The time 

between the a r r i v a l of the two f r o n t s w i l l be measured u s i n g a time 

s t r e t c h e r , i n the same manner as the a r r i v a l time of the l i g h t i s 

measured. The s t r e t c h e r w i l l be s t a r t e d by the o p t i c a l s i g n a l and 

stopped by the s c i n t i l l a t o r p u l s e a f t e r i t has been delayed by a s u i t a b l e 

amount. 
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The considerations discussed i n the previous chapter concerning the 

core distance of the s c i n t i l l a t o r need t o be modified f o r t h i s experiment, 

as the array w i l l be operated at about 1500 metres above sea l e v e l . Here 

the l a t e r a l d i s t r i b u t i o n of e l e c t r o n s w i l l be steeper, so t h a t the core 

distance at which the small area s c i n t i l l a t o r can be used may have t o be 

reduced. 

I t i s hoped t h a t l a t e r an array of p a r t i c l e d e t e c t o r s w i l l be set up 

to measure the delay of the p a r t i c l e s w i t h respect t o the l i g h t at various 

points w i t h i n the showers. Each w i l l u t i l i s e a time s t r e t c h e r i n the same 

manner described above. The detectors would be most u s e f u l l y s i t u a t e d 

w i t h 200 metre o p t i c a l d e t e c t o r s , although i f core distance considerations 

preclude such a s i t i n g , then they could be operated independently w i t h 

t h e i r own p h o t o m u l t i p l i e r s . M o r e x w i l l have to be c a r r i e d out, f i r s t l y 

t o understand more f u l l y the response of a s i n g l e s c i n t i l l a t o r t o a 

p a r t i c l e f l u x , and secondly, t o develop a b e t t e r understanding of the 

r e l a t i o n s h i p between the time separation and a showers development. 

Although the s i m u l a t i o n s described i n Chapter 3 were adequate t o develop 

t h i s new measurement, they were not s u f f i c i e n t l y r i gorous t o d e f i n i t e l y 

i d e n t i f y the delay w i t h s p e c i f i c aspects of shower development. Further 

s i m u l a t i o n s w i l l also have to be c a r r i e d out t o understand the delay 

higher i n the atmosphere, 

5.5 Concluding Remarks 

The new array w i l l run at a l o c a t i o n adjacent t o the Fly's Eye 

experiment described by Beregeson (1975). A combination of the r e s u l t s 

of these two experiments a f t e r a period of simultaneous o p e r a t i o n would 

allow a p u r e l y o p t i c a l m u l t i - p a r a m e t r i c analysis of showers t o be obtained. 

As both techniques study the development of the l o n g i t u d i n a l cascade 

d i r e p t l y , i t would be possible t o determine the depth of Ne maximum to 
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high p r e c i s i o n . Furthermore, the d e t e c t i o n of a l a r g e number of showers 

by the Cerenkov array alone, w i l l c o n t r i b u t e t o the improved understanding 

of cascade development; of showers w i t h primary energy of approximately 
17 

10 eV. 
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