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ABSTRACT

The finite element method was employed to solve two-dimensional,
unsteady, incompressible, viscous fluid flow problems. A practical
computation procedure is presented, A complete finite element computer
program has been developed. The numerical technique is based upon a
general formulation for the Navier-Stokes equations making use of a
combined variational principle finite element approach, Solution to
the system of algebraic equations is approached by the Gaussian
elimination scheme. The time-dependent Navier-Stokes equations are
expressed in terms of a stream function equation and a transport
equation, A variational functional of the stream function and a
pseudo-variational functional of the vorticity of the respective
boundary value problem is presented. The pressure distribution and
velocity profile are determined from stream function. Two numerical
examples are presented and compared with present papers. Some new
ideas about the numerical method, obtained through numerical experiments,

are presented and discussed.
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Chapter 1 INTRODUCTION

The Navier-Stokes equations governing the fluid flow problems, are
known to haQe appiications to a large class of engineering problems.
Exact solutions of such a viscous fluid flow problem are not currently
available. The necessity of providing reasonable estimates for
complicated flow phenomena leaves research engineers very little choice,
The numerical approach seems to be one of the very few acceptable tools.

Even the numerical methods face difficulties arising from the non-
linearity and complexity of the boundary involved. The present high-
speed, large storage digital computers have now made it possible to
solve the Navier-Stokes equations. Numerical solution of the Navier-
Stokes equations utilising modern high-speed computers have been developed
by a number of investigators,

A finite-difference approach presented by Fromm and Harlow (57) has
had considerable success in solving problems. Lee and Fung (79) used a
method which combines the conformal mapping and finite-difference
technique to analysis viscous flow problems. Mills (91) employed the
finite-difference scheme to solve viscous flow through a pipe orifice
at low Reynolds numbers, Rimon (105) also used this scheme to get
solutions of the incompressible time-dependent viscous fluid flow past
a thin oblate spheroid. Dennis and Chang (35) employed it to study
problems of steady flow past a circular cylinder. Using this approach,
Greenspan (51) was doing numerical studies of steady, viscous, incompressible
flow in a channel with a step. He also presented in a second paper (52)
some useful equations to determine wall vorticity at some special solid
wall surface, Lin, Pepper and Lee (83) employed the finite-difference
techniques to analyze separated flows around a circular cylinder. Macagno
and Hung (87) made a study of a captive annular eddy using the finite-
difference method. Roscoe (108) has been using a new finite-difference
approach to study the threeLdimensionglﬁugxier-Stokes equations. Carlson

/:A |. ¥ k.,.n_-’:."l\-\\



and Hornbeck (24) analysed the laminar entrance flow of an incompressible
viscous fluid in a square duct using the finite-difference procedures.

From these numerous studies, it seems to show that the applications
of the finite-difference method have been limited due to complexities
in the developed computational procedures. It seems to require large
amounts of computer time and storage. Another important disadvantage of
the finite-difference methods is the fact that these methods rely mostly
on meshes of very regular and symmetric patterns. Great computational
difficulties are encountered if the geometric configuration of the fluid
flow is complicated and cannot be readily transformed into a mesh of
rectangular pattern (25,62,63,77).

These difficulties can be overcome with the finite-element method.
The finite-element has, in general, certain advantages over the finite-
difference approach, These are the ease with which irregular geometries,
non-uni form meshes and imposition of appropriate boundary conditions can
be applied (4,16,21,37,62,96,97,100,117).

The finite-element method, developed initially for structural and
solid mechanics, has been applied to some fluid flow problems. Structural
and non-structural elements may often be identical in shape and, further,
be represented by similar mathematical expressions. The major difference
between the elasticity and fluid flow problems lies in the boundary
conditions to be satisfied (14,21,22,100).

Oden (95) has presented a theoretical finite element analogue for the
Navier-Stokes equations, but without a practical numerical method, Olson
(100) presented a numerical procedure to investigate steady incompressible
flow problems using stream function formulation. Some useful practical
techniques can be learned from his paper. Yamada, Yokouchi and Ohtsubo
(129) used the pressure-velocity - formulation to analyse steady flow
problems. Tong (124) presented results for steady flow using this method

with pressure and velocities as dependent variables, Skiba employed



a variational approach and rectangular elements to obtain results for
steady convection flow in a rectangular cavity. R,T-S Cheng (25) suggested
a versatile and widely applicable quasi-variational formulation to solve
the time—depéndent Navier-Stokes equations, Bratanow,Ecer and Kobiske
(16,17) studied unsteady incompressible flow problgms using a perturbation
technique for treatment of the nonlinearities in the variational formulation
of the vorticity transport equation, and employing higher-order finite
elements for a consistent.solution of the governing equations and in
describing the boundary conditions. Baker (4,5,6) used a Galerkin method
and triangular elements for unsteady flow.

Atkinson, Brocklebank,Card and Smith (2) studied creeping flow around
a sphere, flow through a converging conical section, and developing flow
in a circular pipe using the stream function formulation., They employed
three-node triangular elements with stream function and its first two
derivatives specified at each node. This kind of formulation requires
less computer storage than velocitypressure formulations, since there is
cinly a single equation to be solved. However, the necessity for first
order continuous (C(l)) elements would tend to make extension to three
dimensional work difficult. Tong and Fung (124) used the stream function
formulation as well to investigate slow-viscous flow in a capillary in
the presence of moving particles suspended in the flow. Their work has
direct application to the biomedical problem of determining the influence
of red blood cells on the flow in capillary blood vessels, Taylor and
Hood employed the pressure-velocity formulation to study the problem of shear
induced fluid flow past a cavity. Because the same interpolation functions
were used for both pressure and volocity for this problem, the accuracy of
the solution is open to question. They have recently presented a
formulation using higher order shape functions for velocities than

pressure (117). Tay and Davis (116) used variational principle to



study the problem of convection heat transfer between parallel planes.
Bratanow and Ecer (20) employed a variational approach to analyse the
three-dimensional unsteady flow around oscillating wings, and to study
unsteady aerodynamics (17).

Using quadratic polynomials shape functions for velocity and linear
polynomials shape functions for pressure, Kawahara and Yoshimura (71)
solved steady flow problems by the Newton-Raphson method and perturbation
method, and analysed unsteady flow problems by the perturbation method.
Laskaris (77) developed a numerical procedure to study two-dimensional
compressible and incompressible, steady state, viscous fluid flow and
heat transfer problems, .The numerical scheme he presented is based on
a general formulation for the system of hydrodynamic equations, taking
into full account nonlinear convective terms, viscous terms, and heat
conduction terms, and using the method of weighted residuals applied
over discrete, distorted rectangular elements of the fluid flow regions.
Leonard (80) employed the Galerkin's method to solve perturbed compressible
flow problems. Issacs (69) used a transformation similar to that used
for quadrilateral isoparametric elements to derive a curved cubic
triangular element which has as nodal parameters the value of the function
and its two derivatives, and employed this kind of element to study
potential flow problems. He compared the triangular element with a
standard isoparametric element, and concluded that this kind of triangular
element will give similar accuracy at a significantly lower cost. Brebbia
and Smith (110) employed linear interpolation functions, a lumped mass
system and a simple Etiler time integration scheme to analyse the two-
dimensional, unsteady, incompressible, viscous Navier-Stokes equations.
The results are not only extremely accurate to describe the natural
physical phenomena of the problem of vortex street development behind

a rectangular obstruction but also highly economic in computer time,



There are still many other good papers concerning numerical treatments
of the Navier-Stokes equations. Some of them are chosen and will be
presented in the references.,

In the present work, the finite element method was employed to solve
two-dimensional, unsteady, incompressible, viscous fluid flow problems.

A practical computation procedure is presented. A complete finite

element computer program has been developed, The formulation car be
modified to cover a number of different situations. The same computer
program can be used with only minor modification to solve other similar
problems, The numerical technique is based upon a general formulation for
the Navier-Stokes equations making use of a combined variational principle-
finite element approach, applied over discrete finite elements of the

fluid flow domain where the unknown fluid variables are expressed
continuously in terms of interpolation functions and unknown parameters,
Solution to the system of algebraic equations is approached by the

Gaussian elimination scheme. It is believed that this numerical procedure
is also suitable for a general three-dimensional problem. The time-
dependent Navier-Stokes equations are expressed in terms of a stream
function equation and a vorticity transport equation, A variational
functional of the stream function and a pseudovariational functional of
the vorticity of the respective boundary value problem will be presented.
The pressure distribution and velocity profiles are determined from

stream function,

As in the conventional procedure of time-dependent fluid flow,
analysis was often carried out by the incremental method, assuming that
the values calculated in the preceding step keep constant during the
subsequent small time increments, This commonly used idea is also
followed here. To circumvent the nonlinearity in the Navier-Stokes

equations, the unsteady flow problem is assumed to be linear in the stream



function and vorticity at each time step. Steady-state solutions are
achieved by allowing the time-dependent solutions to converge.

To demonstrate the effectiveness of this numerical scheme, two
numerical expamples are presented and compared with present papers,
The numerical procedure used seems to be failry stable, and flow trends
seem to be well represented. Some new ideas about the numerical method,
obtained through numerous numerical experiments, are presented and
discussed. Although their validity for all kinds of numerical schemes
has not been ascertained yet, it is hoped to bring these observations to

people's attention,



Chapter 2 VARIATIONAL FORMULATION OF NAVIER-STOKES EQUATIONS

2.1 Principles of Variational Calculus

In this section, some fundamental principles of variational calculus,
which will be used in the subsequent analysis are presented.

Variational calculus is concerned primarily with theory of maxima and
minima, but the functions to be minimised or maximised are functionals.
The variational calculus, in general, has alwasy been closely associated
with realistic problems of continuum mechanics. Usually the functionals
whose extreme values are sought are expressions of some form of system
energy. For example, in fluid mechanics, for an incompressible, inviscid
flow, the kinetic energy is a minimum. And another example is the
principle of minimum total potential energy for elastic continua.(45,63,127)

Let us consider a simple functional expressed as

!
¢ =] F(*¥ % Y ) dx 1)

where

F is an arbitrary function of one independent variable, X,

Y (X)

__ ¥
”‘I’*'—ax

ij
1*&1 = é?;(l

Now the variation of the functional is defined in a manner similar to

the calculus definition of a total differential

§F =T sv.+ 2 sy + BE- s 2

It is obvious that there is an analogy between finding the minimum
or maximum of a function via ordinary calculus and finding the minimum

or maximum of a functional via variational calculus, (37,63,127)
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So extending the concept of ordinary calculus, the following

equation is obtained.

N e A R

Extending the principles of ordinary calculus again, it can be
learned that the first variation is also a commutative operator with
hoth differentiation and integration if the integration limits are not
to be varied, (37,63,127)

So the following equations may be written.

§(| Fax) = [(sF)dx -

d¥ y _ d
§( A% ) olX (§) (2-5)
And equation (2-3 ) becomes
§¢ { (g"Fr- 5#’*‘3,", ETu (SXH- )d.X=O (2-6)

Integrating each item by parts, the following equation is obtained.,

b= (B - (B )+ L (2E-)) 5y dx

(91& X ( 3 Viox ))5"/’\:7

X2

[ )en])

=0 (2-7)

Becauseéhﬁ andSﬂﬁk are arbitrary admissible variations, the integrand
and remaining terms of equation (.2-7 ) must vanish. Thus the necessary

conditions foryb(x) to minimise @ (x) are as follows:

i gtx(gfh o(x‘(a*/ru)=0

(2-8)




[ OF 9F Ve M —
L 9% %(awxx)]sﬂlf lx, =0 (2-9)
¢ X2
aF . —
L( 3¥x )&% ]x. 0 (2-10)

Equation ( 2-8 ) is the governing differential equation for the
problem and is called the Euler-Lagrange equation, or just the Euler
equation, The other two conditions give the necessary boundary conditions,

From equation (2 — 9) the following equation may be written. (37,63,127)

aF _ d_ (oF )"2 -0 |
3% dX \ oV (2-11)

X,

o A4 (R)) 0

Y (A2) = 0O (2-12)
and from equation (2 ~- 10) gither
Xz
_9F — 0 (2-13)
aqkh( X
or
Xz
X X,

Equation (2 - 11) and (2 - 13) are called natural boundary conditions. If
they are satisfied, they are called free boundary conditions, Equations
(2- 12 ) and (2 - 14) are called geometric boundary condtions or forced
boundary conditions. It may be mentioned here that the Euler-Lagrange
equation expresses only a necessary and not a sufficient condition for a
minimum, So the solution of an Euler- Lagrange equation may not yield

a function that minimises a given functional. (See later Section 2.3

Variational Formulation).



-10-

One of the principal advantages of thé finite element method
employing a suitable, valid variational principle is. that only the |
geometric boundary conditions need to be specified. The natural boundary
conditions are automatically incorporated in the formulation, Tﬁat is
why all the boundary conditions  have only been enforced on }1gid
boundaries in this work and why the'natural' boundary cbnditions ére
always left for the program.to approximate when a suitable vafiational
principle-finite element method is employed to deal with test proﬁlems;
Through numerical experiments it has been found that when a combined
variational principle-finite element method is employed, the'natu;al'boundary
conditions had batfer not be specified again, otherwise the results
may be in error., (21,37,42,63,100,127,131) (see Chapter 4).

A functional of two independent variables has the form

SO=[] FOY %Yo, Vo, Vi, Ty Jix Ay 29

Proceeding in a similar way, it is not difficult to derive the Euler-
Lagrange equations and boundary conditions for the above functional,

The Euler equation for equation (2-15) is

.ji__

)* axay ( g«’/:r‘y) 3¥‘ a‘\lfw)

(4%%2:) -jl—- 31Vv ) _jﬂ;%__ = 0

(2-16)

Similarly, Euler-Lagrange equations and boundary conditions for
other functionals may be derived. Some more detailed discussions and
applications will be presented in Section 2.3.

2,2, Nav1er-Stokes Equations

The full Navier-Stokes equations representing a balance2 of viscous

forces, inertia forces, and pressure forces are capable of describing
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some of the most interesting phenonmena in fluid mechanics. For unsteady,
incompressible, two-dimensional, viscous fluid flow with inertia, the
Navier-Stokes equations for analysing the motion of the fluids can be

written as
- (2-17)

S5 U(VR) =5 F-F VP~V Vi

L

where

2 = velocity vector = {u,v)
t = time
v = differential operator = 2 +.3_+_§_
X Y ~ oZ ..
P = density of the fluid
-—h
F = body force vector
V = kinematic viscosity of the fluid
P = pressure
2 2 2
2 : ) a 2
= Laplacian operator = + +

v P P 3R "Tavr e
u = velocity in X direction
Y = velocity in Y direction

in consistent units.

The equation of continuity for incompressible fluid is
V- =20 (2-18)

The velocity components u and v may be expressed in terms of a

stream function‘#ﬁ as

u =-2%_

C4 (219)

The vector

74

(w,v]
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may be written as

o= [ _2¥
a = (35, -5x ] (2-20)

Using equation (2-19) , fluid rotation or vorticity is defined as the
averageangular velocity of any two mutually perpendicular line elements of
a fluid particle.

In vector notation, the following equation can be written:

=i

—p
W=V *r (2-21)

A weltrknown vector identity shows that for any function P having

continuous first and second derivatives,

VxvyPpP =20 (2-22)
At the same time, the following equation may be written

VxF = 0 (2-23)

Taking the curl (VX ) of both sides of equation (2-17) gives

W (Tey)w =V VW

at (2-24)

From equations (2-20) and (2-21), the stream functions are related

to vorticity as follows:

9y = -w (2-25)

Now the pressure distribution is to be calculated. The pressure
field can be obtained by integrating the momentum equation. But, in
general, it seems that a Poisson type equation yields more accurate numerical
computation results and uses less computer time than the direct methods
based on the momentum equation (16,21,77). So the Poisson type equation

will be derived first. ©Equation (2-17) can be written as
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17 SR 17 S 17 G - O B - 1
3t A ax V5 e F«~ 7 5%
*U *u
+V[ax3+ay=]

(33U, (23 38U ., U\, AV U .. U \
\ax 3t /o ax "% o)\ ax oy TV axay /

- L3k | ¥, , (39U , 33U )
IX*IX ay*ar

Similarly, from equation (2-17)

v AVA AV ., AV _ |~
3t "% ax "V 3y PFYPav

Differentiating it with respect to y gives

a_ 3V ./ 2Uu av av 9’1!
ay ot +la>’ 2N +“ax3y) ( )’ a\/'

P # 37 . 37 av
*V( axe 3y & ayZ 3y

Combining equations (2-29) and (2-27) gives

au_, v au 2’u
2 (3% ) (5% ax= r2 98 YV axay
VvV 3’
“axay +( ) ay?r
= L £ %P ? 23
=4 (G 5)- v (e ) i

gau _, & _ v . 2% 3V
ayiax ' 9% ay ' Tay ay J

(2-26)

(2-27)

(2-28)

)

(2-29)

(2-30)
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the following can be written (2-18)

V-U=0

From equation (2-18) it is easy to get following relations:

@ _uw 3 U g v F W _ (2-31)
axt ax ayr IR IX: Y  ayz 23y
) U AV _
at ( Ix * 2y =0 (2-32)
and
J'u U ,,, v v _ i
Uaxt "V ey " Uaxey "V 3y T O (273%)
Substituting equations (2-31), (2-32) and (2-33) into equation (2-30)
gives
AU 2 Jv_ U AV V¥ I g2 I 2
(ax)+2 ax 3y +( 3y ;—FV? pVP (2-34)

In the absence of body forces, the following equation can be obtained

v (28
vP=-p(( BV (3525 By) e

or

25 — __ av_ 3L U _ v
VP =-~2¢(5% 3y X 3y (2-36)

2 Y2 3ax? EYEY (2-37)

=2p (3555 - (&5 ))

= - P GL

(2-38)
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where

Q=2[ 2L 2U _ U v

9X aYy aX 3y (2-39)
_ 2 az-v, al 2
_"2[%':% axe ( axg; ) ]

The analysis of unsteady, incompressible, two-dimensional, viscous
fluid flow involves the simultaneous solution of equations (2-24) and (2-25),
Once theﬂp’andtklfield are known, the pressure distribution can be
calculated from equation (2-37).

2,3 Variational Formulation

Basically, the finite element method represents an approximate
procedure for satisfying the problem in terms of its variational formulation.
If the governing differential equations were all linear the variational
formulation would be straightforward. The non-linear terms in the Navier-
Stokes equations seem to have precluded the existence of an associated
variational principle of the classical kind. It is found that the Navier-
Stokes eguations cannot be derived from a ciassical variational principle
unless one of the terms ax (Vx_(Z) or _L(.'[ Vﬁ] is zero (41), However,
it has been shown that 'pseudo' principles can be obtained provided some
terms are not allowed to vary when the first variation is performed. The
pseudo-variational functional finite-element method has the advantage of
simplicity and reduced computation. It is not a true variational method
since from another point of view it can be regarded as a Galerkin method
used with a particular approximattion scheme.(21,25,63,100,127)

Equation (2-25) and (2~-37) are in the form of Poisson's equation, for
which a direct variational formulation exists. From theorems of
variational methods, by inspection, the variational functionals for equations

(2-25) and (2-37) can be written as follows

b = £ [ (BFV+ (T IA-[wrdh o
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$; = _éj [( ) (%;L)ZJM—JA pPada (2-41)

where

2 2 2
@ =2 (£ % (F)]

and A is the region of interest. The variational functionals ¢2 and ¢3
exist such that the Euler-Lagrangian equations of equations (2-40) and
(2-41) are simply equations (2-25) and (2-37). The functions ’¢r and P
which satisfy the required boundary conditions and which give the functional

integrals ¢2 and ¢3 are solutions of equations (2-25) and (2-37).

Similarly, by taking 3:?as an invariance, a variational functional ¢,
— AW A4 oW,
b, = [, w2F dA L[u,w < rvw g ]o(A

(2-42)

(3% (ay)]fiA
exists (16,19,25,41) such that upon taking the first variation of Ql, the
vorticity transport equation, equation (2-24) will be recovered. The
functiony satisfying equation (2-24) and its boundary conditions minimise
¢1. Segregating stream function aﬁd vorticity solutions according to
different instants of time reduces the problem to one of consecutively
minimising ¢l and ¢2. This can he conveniently accomplished by the finite
element method. (21,25,63,100,127)

A disadvantage of the procedure is that it is not known whether or not
a particular pseudo-functional will yield convergence or not until it has
been tried, since a mathematical criterion for convergence is not yet
available. (21,25,93,100)

Norrie and Vries (93) suggested that if a certain functional does not

converge, one has no choice but to modify it; such a change alters the
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stiffness matrix and may result in convergence.

Some experience with the method assists in choosing an appropriate
functional on intuitive grounds. Norrie and Vries postulate that: 'The
process will converge if the terms which dominate the physical behaviour
of the system are included are those terms in the functional which are
not iterated upon but are used only in the minimisation procedure". (93)
One of the disadvantages of the use of stream function-vorticity formulation
is that unless the velocities are entirely prescribed on all boundaries it
is often impossible to establish the values of stream functions on some
positions of the boundary. This is particularly serious in multinle
connected boundaries, such as are presented by flow around obstacles etc,
To overcome these difficulties it is necessary to introduce additional

constraints on the rate of boundary work, (see Section 6.1, example one)
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Chapter 3 FINITE ELEMENT MODEL

3.1 Introduction

The finite element method is based on the use of series expansions
within subdomains or elemehts, into which the domain of interest is
divided. It is a general numerical technique which provides an approximate
piecewise continuous representation of the unknown field variables in terms
of polynomials, sometimes called interpolation functions or shape functions
and model parameters (22,33,37,77,127).

The continuous region is subdivided into a finite number of elements
where the nodal values and/or the partial derivatives of the dependent
variables at prescribed points, nodes of elements, become the unknown
parameters of the problem, The finite-element representation of the
dependent field variable must be able to provide an improved approximation
to the true solution as successive subdivisions of the domain using smaller
and smaller elements is attempted.

The basic steps of the solution procedure are as follows (22,33,37,127).

1. Discretisation of the continuum,

2, Selection of interpolation functions,

3. Evaluation of the matrices of the elements,

4. Assembly of the element equations,

5. Application of the boundary conditions,

6. Solution of the system equations,

7. Calculation of any other unknown field variables.

3.2 Matrix Formulation

Different finite-element models were chosen for representing the
variations of streamfunctions, vorticities and pressure. Fig.3-1 shows
a typical finite element. The stream functions and vorticities were

assumed to vary linearly over each finite element as
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L (Xa,‘)i),"k- LWy

X, Y4.), V4, wr,

$0%,94), % .0

0

Figure 3-1 Triangular finite element

e)

T, y)
) te) e ) "_ef y
YOx, v, t) = [H(t), H, (8), H3 (8] { T*¥(x,Y)

(3-1)
Te(x,Y)

QU y)
Qtx, W) (3-2)

@)

“x,Y)

(e

WOy t) = [ Ht), Ht), Hie))

where the T's and Q's are the trial functions and the superscript (e)

indicates the £th element, At the nodal points of this element, points

1, J

j and k in Fig.3-14, wi,¥j, @3, and Y kok are

Y(t) = HERITO X, %) + Hi A6 RO, Yi)

+H 1) TP, %)

Wilth)= HP£) QP 0, %) + HIwt) @5 0, % ) (3-3)

+ Htteydy o, i)

V)= HEt) T, %) + H3 (1) 7%, %)
+ HS (T, ¥

W;lt)= HIL) QX %) + HEe) 820, %)
+ He) 8570, )

Yilt) = HIUEYTO Ky, Ye) + HIXO) T X, Yoe)
+H O TR0, V)

Wy (t) = HEEYQO, Yed + HELE) QT O, Yo
+ HP) 0 (Xe, Y )




-20-

In matrix form, equations (3-1) may be written as

¥ (t) HEt)
(e)
Y = [C7] )
Ve (1) H®ct)
(3.4)
and [ ot (et )
wyw | = [D"] 2t
W CE) H(¢)
where
o T, Ye) T, %) 3“)0(;‘, ¥%)
(C9T = | 1oy, ¥;) T2 0. %) B0, 3)
T Ok, W) T (X, Ye) T, W) | (3-9)
and
e Q7 1%:, % ) f’LXi, %) ;e)O(z, %)
[o]= c'e)‘X.;. %) Q2°0%;, %) 0. %)
Q7 Yo @7 Xk, %) Q5% O, i)

In order to express Hn's in terms ofﬂkn's orln's uniquely, equationg

(3-4) can be written as

€)

H, tt) :
Iee; — ce)]" ¥ ()
2w = (C ¥ (t)
Hz(¢) Y, () (3-6)
and
'(e)(t) e w; (1)
ow [ = [DY) wj &)
H;e’(t) Wk ()

So equations (3-1) and (3-2) give
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©)

H%t)
YOy ) = [TO%), TE0Y), %, y) ] { Ha ()
Lit)
(%W
= (7 Bowy, Ty, 7%, 1 () '{ ¥ (e }
%)) g
Y (t)
= [ Nx,y), Nitx,9), NS, Y) ) { ¥ )
UV (t)
where

(N by, MDY, Netxvo )= [ Ty, E”Bx,y)l‘l;“"’(x,\))] [C‘”}'l

and
{ '(e)(t) 1
Wy t) = (€)@ ) 0uy)] { Hew
H:®t) j
W, ()
= (6%, &0, » Qo w][0°]" { Wj (t)l
Lot )
w; (t)
= [P,y L), L500W] { wy et
ux(t) (378
where

[ Lc‘e)(x,‘/), L':’LX,Y) L :‘f)(x, ) ] = [Q'f(x,y), Q:e)(x'y ), Q;e %X, y )] [Dw;]—.l

For a triangular element, if Tn's and Qn's are taken to be 1,x and ¥y
then

Nty = LP09) = (i + bix+ Ciy)/ 20

(3-9)
in which

A = Xd \/K—xlg YJ
b: Y= %
Ci Xk = X
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with the other coefficients obtained by a cyclic permutation of subscripts in

order i, j,k and where

S S
2A = || X %
o Xe W

where /A is the area of the element,
Equations(3-7) and (3-8) may be expressed by the following matrix

equations,

¥,y t) = (W% {ywl (3-10)

Oyt = [ ML) {wee)

(3-11)
where T denotes the transpose to the column matrix,
The gradients of '\/((e) and (A)(e) are
aye { IN® IT
X L X {yr} (3-12)
aztfﬁ) _ aA/“') T
2y { 3y } {vee)
(3-13)
)
AW . [N
IR ax ] {wt)}
(3-14)
aww) —_ { aN(G) }T{WCt)}
2y 2y
(3-15)

The finite element models were employed in discretising the variational
functionals in equations (2-40), (2~41) and (2-42), Substituion of equations

(3-10), (3-11) and the last equations into equations (2-40) and (2-42) gives
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b, = L\m [{ N‘”}T{w} ] a[W“”}’fw}] dA®
ATl %a“f’}‘fwll

[i"'ﬂ} W‘] (25T 1] ) [ Ivren] J aa®

UJA‘“’( [{—M ] [{ ayw)}wa}]z)dA(e)

= A“’[[Nw)} {w}] Q[fN:;]wan dA® (5169

[ (5% - - 39 [{Ne] ]|

+ _\ZJ_L,,,,([{ aﬁ?}wa}]z+ “ g';/e)}f{w}]z)dﬁ(e)

and
b= 4o (2T <[ (BT Jn
)Am( N(e)} ]] {{N(e)xT{w}] Mce) -
The_finite element solution to the problem involves picking the nodal
values of a)and'qrso as to make stationary the functionals ¢1 and ¢2. To

make ¢1 and ¢2 stationary with respect to the nodal values of vorticity and

stream function respectively, the following conditions are required,

NN

dP(w) = Z—aa'é‘of,—‘?— L = 0 (3-18)
=i

§b, () = ZM & = 0 (3-19)
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where NN is the total number of nodes. Since theébdi‘s andéxyyi's are

independent, equations (3-18) and (3-19) can hold only if

ah(w) _ (3-20)
Wy

a l'v - 0

3Y: (3-21)

Hence from equations (3-21) and (3-17), for a typical node i the

following equation is required
3%;‘2_]&”[{%%@]1{,\” 2l { Nw)} v} 2 ]dAm

el e ] aa
= 0

Utilising equation (3-11), equation (3-22) may be written as:

fio 1Y 28+ { 57T 2] vy e
L\W? we)NL dA® = 0 (3-23)

(3-22)

In matrix form, for the entire element the following equation is obtained

(KeJ {¥ )7+ {5417 = {0}

(3-24)

where

© _ aNs  aNj , M _aN; e)
Y¥iy A«»[ I X 3y Y 4A
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Similarly, from equations (3-20) and (3-16), for a typical node i the

following equation is required

aout 5 N Aﬁ at

[A(e) ( a’\l’“’ 3 IX 3‘4"‘2’ aw"’ ) M dA(e)

v fo (2 [ {3101 ] 28 o[ 35 Tt| )

= 0

In matrix form, for the entire element the following equation is

obtained.
(K] ®{w)®+ [Ka]® {0} {50} = fo}

where . (3-25)
ng =V K%j

K‘i-:ﬂ - L\w Ni Nj dA©

Ne V® ™ ey aw"’-’)d-.-e

) -
Suk N P> ax

fo

In solving a fluid flow problem with the foregoing elements, the usual
assemblage process for finite elements is followed as well, For the

assembled system the foregoing equations become

(Ky]{¥}+ { Sy} = {6} (3-26)

[ Kw]{w] + { K} {] + {80} = {0) (3-27)

where

M N
A7 Z L(e)[ TR TIME T ]”‘A

(3-28)
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S = =3 [ W hida®

€=

K@%f= U k&hﬂ

M

Kw‘) ezﬂ Lte) N N oA

M

Swt — ZL\M N,,( aq},ﬂ) aw«z) ) ,ll/(e) 20@ )A,A(e)

2% Yy
4=. 3y %

where M is the total number of elements.

3.3 Integration of the Matrix Equation

(3-29)

(3-30)

(3-31)

(3-32)

To integrate equations (2-24) and (2-25) with respect to time, the

method suggested by R.T-S Cheng (25) is used. Cheng considered two

solutions ‘\lfﬂ, and (A),Lat the Nth time step and 'l/f.m. and (A)m\ at a time

increment 8t later. Then the governing eguations may be expressed as

follows:
aUOn + 1# 3 3#%« QLOH _ 2
e - Te-E - VW
and
g71"kn+| = = C&%n

And the assembled system equations may be written as follows:

(KeJ ¥} {Seh. = {0}

(K {whpt  (Kao) {0}t 1S0ln = {0}

(3-33)

(3-34)

(3-35)

(3-36)



-27~

where

Ky = i JA‘" (_B.Mx___L_ _ML_'V@_ )dAm (3-37)

Sve = - 2,-&“” W N dA® (3-38)

Koy =V Ky (3-39)
M
M @®
- :ﬂ!ﬂ Yv’. Wy e
Sw,; - ;Le) N"( ayn )M)(s-u)

The iterative solution procedure starts by assuming an initial values
forGn (i.e,Wo). Then the 4FN,|(i.eq A}y ) is found from equation (3-35)
and used as the source function to determine thelln+l (i.eW) from equation
(3-36). This process is repeated until steady state is reached. Using
a two~-point finite difference formula, the term { dJ}'n+1 can be written

as follows ( 25 )

. _ W _ Whni = Wn } _
{w}ﬂﬂ - 2t }mu - { at (3-42)
so that equation (3-36) becomes

[[ K"’] + 3T [KWJ] {wl.,, = _A'T [Kob]fwln' {Swl, 3-43)

which can be solved at successive time steps for the column vector of nodal
values of vorticity. The coefficient[[Kw]+§f[K®]]is symmetric, banded,
and positive definite, Numerical solutions of equations (3-35) and (3-36)
were obtained by the Gaussian elimination method. Cheng reports that the
iteration procedure was always stable for sufficiently small &+, As a

guidline, [&t should be chosen so that

At < 01(06€)Re (3-44)
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where A1 is the charactertistic length of an element.(25,63,127)
It has been observed that such a procedure for time dependent problems

does not fulfil the requirements of the calculus of variation, This is

because during variations of vorticity, the term g“J is treated as an
invariance, This principle is, therefore, referred to as pseudo-
variational principle.

3.4 Evaluation of the Matrices of the Elements

Equations (3-35) and (3-41) may now be explicitly evaluated using the
definition of the interpolation functions, For linear triangular elements

the following euqgations can be obtained.

0,+ bX + CY
Px,y) = N
e — a; + + G
MT(XY) = 2a (3-45)
— Lzt b + QY
ste)cxly) - Az + :A + G
I Xe Y
where 2A = I I X, Y = 2x (area of triangule)
| T X %
a, = Xa¥z - XY, (3-46)
bl = Yz - 73
Ci = Xz - X2

The other coefficients are obtained by cyclically permuting the

subscripts. From equations (3-45) the followingequationScan be obtained

—aNe . _bi
X 24
—aM . G T = 1,23
Y 248 (3-47)

Substitution of equations (3-48) into equation (3-37) gives:

g = 5[ (R - e
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( bi bj . Ci Gi - o(.A'e’

@\ 24 28 242 24

(e)
e=]
c /
= Z -4-—6" bi bd + (.r,(_d J (3-48)
en|

To evaluate

M
= _ (’e) )
NI }-_ EA‘ o N; dA (3-38)

o
’

(e)

Some special considerations are required. Wn can be treated as a

constant within the element, and from the integration formula (22,33,61,63)

the following equation may be obtained.

T— & e)
S v = L —— Wn
Py (3-49)
Hr the term(ﬂn(e) may be linearly interpolated in terms of its nodal values
as (25,63,127)
@ @) @ . ©)
W' = Wi N+ W N, WhsN3
(3-50)
in which case equation (3-38) may he written as follows:
_ (e) &) @) N (;-:;51 )
Sy, = e)(wm 2 NaN; + (Wns 3N,,)dA

€=t

Again, employing the integration formula, the following equation may be

obtained
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(3-52)

20n +  Wm + WY
Wi

M
- - te) >
(o= ~L7z | @ w8 - i
| ne )

Similarly, from the integration formula, equation (3-40) may be written

as
M
A _ Al A ALE
Kiog = ) [ NojdA
e=| (3-40)
M
- -
. 12
ey (3-53)

Now the equation (3-41) is to be evaluated

3 9 9"/)(” 3(4) ©)
Suw; XL,N» m T ﬂ) A (3-41)

e=1

into equations (3-12) - (3-15) gives

Substitution of equations (3-47)

b b
—ZIEW(WN)"' '{g Yoy + Tlg Yarnn)

e _ ()

3IX

C
i" { v } f"kmﬂ} = Téq/"-("'f')"' —zc"za 'k(moi' ?Coiv;mﬂ )
(3-54)

@) e). b bs

5 L (2] - B B e
G

+ 22 Win

Cas
—z%‘%""‘izc‘;n
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Substitution of the last equations into equation (3-4l) gives

M

S = ) [ e[ (55 Vw53 Yo 5 Yot
(R Wi + 32 Win + 2 Win)
- (TbbL Fena ¥ %y’uw) * Tbg"‘/‘izv-f»)
(2 W + 2 Wk + 52 L) | A
= ei:' 4-’A‘ [ (C:me., + G¥iensy +C3"l‘§m+u)
(bilm * buldin + byWsn )
- (bc"hmu * baWaney + b;"f’;mﬁ))

(Cthn * Gl + C2COm) ]fAfe)NidA(e)

(3-55)

M
= Z F‘A [ (C. u-nﬂ)"'c‘%’,m-) *‘C:"P'sc-n-n))
et
(b‘w“‘- + byldn + b3llan )
_(l"qkt‘"m"'"!"l’imm + bs'\i"srmh))
(€l + Callhn + CsWsa) |

At present, the governing equations and elements can easily he
incorporated into the computer programs.

3.5 Pressure and Velocity Distributions

Now the pressure and velocity distributions are to be calculated,
It may be mentioned here that serious attention must be given to the choice
of interpolation functions for pressure and stream functions. To achieve
the same order of approximation for stream functions and pressure, the
interpolation functions for stream functions should be higher by one order
than the interpolation functions for pressure. So quadratic triangular
elements were used for the stream functions, and linear triangular elements

for the pressure (see Fig.3.2).
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Figure 3-2: Triangular element with corner nodes 1,2,3 and
mid-edge nodes 4,5,6.

3
Py.t) = 5 MoLYR(E)

i=|
eyt = Z; N (X,Y) Yz (£)

N, = L*- Li(Li+L3)
N. = La-L(>L+L)
Ns = &3 - L3(L + L)
Ne = 4LL;
Ne = 4L,

Ne = Ulals

AJI = L; = natural coordinates
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3
PPoyty = ) MR Pitt)
uv=l

T (3-56)
= [N} fpw]
and 6
Yy t) = ) MR E)
i=1
= {No) T iy )] (3.57)
where
N = LP- L(L+Ls)
M = L3 - Lz(lj + Ll)
Ns L: - L3(Ll + L)
Ne = 4LLs (3-58)
ﬁds = Q‘tﬂ L2
Ne = 4 Lals
th = L; = natural coordinates
(e)
The gradients of P'7° are
aEfU
o = X } {Per }
(3-59)
P aN?
o s R
Substitution of equations (3-59) and (3-56) into equation (2-41) gives:
NPT NP z
b = £l (2ol + [{ A )] s
p (e (3-60)
— o M {Pt2]} )adA
Minimisation of the functional gives
a®s(p) - NPT ]aNf
9P L(e)([ 1 fP(t)} (3-61)

+ [{JLS {p(f_)}]jﬂf OLA“Z) IA‘”PQN )
= 0
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The last equation may be written concisely as

[KP](e){P(t)}(e)"' {Sp}ce) - fO} (3-62)
where
e N NS . oM oM
K;’*J - Lw:( X ax ayt ?97 )dA‘e) (3-63)
e = ~fuo ONTRLA® G-a)
N PV _v
@ = "2[9x= 2y~ Taxay )] (3-65)

Referring to equations (3-57) and (3-58), the derivatives in equation

(3~-65) may be written as

_'%T - {axz} {‘\H (3-66)

= -2—‘2;(&:.- ba- by) Y

+-—“§(b,- by - b)Y

s o2 (b b - b)Y

+ ZBAI'!?: «\Iﬁ + 25321 Y+ Zb;g: 1/,‘
o S { }
3y ?YI

( C‘ C:. - CS)'.vf‘

ZCF
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lczz (Cz- CB"CI)%

(3-67)
ZA; (CS - l - C‘)"I(S
- 2C|C3 ,% 26&51 -v,: ZC:CS V
and
32% — 1N
Ry { MY } 1]
= 4—&( 2C|b|" C| b;‘ CBbl— Clbz° C‘bo )w—.
* q_&( 2Cabi Caby~ Csba- Ciby - Caby) VW,
* #( 2C3by- Caby - Ci by - Cabz - Gabs) Y
+ ;a ( Cibs + CSL|)1PQ
(3-68)

+ 5 (Crbat Cab)Yi

0!7‘ (Czln; + Lg L‘_)"IP'S

To simplify these calculations as much as possible, the following

equations are assumed,

V. = ey

2 (3-69)
Y =;‘l’_=2_"k._
f%a_"&_;_‘kx_

For a solution domain of M elements, the system equations are of the

form

[keI{pctr} + {Se} = fo]

(3-70)
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which can be solved for the column vector of nodal values of pressure, { P }.
Now the velocity distribution is to be calculated, The most usual
procedure of describing incompressible velocities is by using the following
equations (3-71) in a direct manner, It is straightforward. At present,
an alternative way is presented here. For a two-dimensional fluid flow,

the velocity components u and v may be expressed in terms of a stream

function 1/ (x,y) as

R

78 3y
- .2 (3-71)
v - 2X

The variational functionals for equations (3-71) can be written as

follows:
— A - 3!& e)
Polit) = IA’”(;' Wy w)dA (3-72)

P (v) = L\w( —'Z_Vz +_33XL v)dA(e)

The interpolation functions for stream functions should also be higher
u v
by one order than Ni and Ni , the interpolation functions for u and v,
So a quadratic interpolation function for stream function and a linear

one for fluid velocity components are adopted.

3 ®
we = Y M W
L=1

3 (3-73)
ve = ) Ny
'L:I

Ve = 2 N

where

Ni“' = Niv = [+ = natural coordinates

<
I

Li- L(Li- L3)
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N, = LI-L(L43+L)

Ng = (3-La( L+ L) (3-74)
Ne = 4L,L3
Ne = 4L,
Ne = &laly

Substitution of equations (3-73) and (3-74) into equations (3-72) gives

buty = £ fpo (N1 -2 3T

[fA/“}Tsu}] )dA®

(3-75)

priry = £ ([(ny 1] 2 (13
[va}va} ])dA(e)

Minimization of equations (3-75) gives

9—3 u_l:( = ‘&e){N“}T{u ud,Aw) L«» 2 {"P}N"'O(-A“)
= 0
and (5769
S o [NV AR [ { BT IM A
= 0

From equations (3-76), the element equations may be written as follows:

[Ru]le)fu}te) _ [Q,u.](e) {,\P}(ﬁ)= {D}

(3-77)

[Rv](a {v‘&u’.‘) + [ av](ei {'\k'}(e) - {o}
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where

©) _
RU-t‘.J' = gAle) N:'.u M'“'O(.A(e) (3-78)
@ —
ij - Km; NY Nj’v oA’
(e) = [ AN 4,
Quy = o 3y MdA®
aN; -
B = e o AR (@79

The assembled system equations become

(Ru]{u} - (Qu]{w]
[Ro]{vi+ (@] {wi

fo}
fol

(3-80)

which can be solved for the column vector of nodal values of velocity

components u and v, Matrices [Qu] and [Qv] have been evaluated using

equation (3-73), (3-74) and (3-79). Matrices[Qu] and[Qv] are given

in Appendix A.
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CHAPTER 4 BOUNDARY CONDITIONS AND NUMERICAL PROCEDURES

4,1 Boundary Conditions

In this section, some general ideas about boundary conditions are
discussed. A fluid flow problem, governed’ by a system of partial
differential equation, is defined only when a proper set of initial and/
or boundary conditions is given. The boundary conditions are such an
important part of the definition of a problem that the patterns of two
flow fields can be completely different from one another simply due to
some differences in the flow boundaries, in spite of the fact that both
flow obey the same system of indefiniée differential equations. One
cannot exaggerate the importance of the effects that boundary conditions
have on the fluid flow analysis. In mixed initial- and boundary - value
problems major troubles must arise if the boundary conditions are not
properly handled (33,92,128),

Through theoretical considerations and numerical experiments, it is
found that even though the patterns of two fluid flow fields are the same,
boundary conditions may still be different, It seems that boundary
conditions depend not only on fluid patterns but also on the kind of
finite element formulation used or on the kind of field variables
employed, and on which kind of interpolation function adopted. For
example, to solve the same fluid flow problem, if velocity and pressure
are used as field variables, then the boundary conditions for this
formulation are different from those when stream function and vorticity
are used as field variables. For another example, when a fluid flow

problem is solved by using a velocity-pressure formulation, unless a
2u
I X?
to be assumed zero which normally would be valid for creeping flow only.
U _
A

boundary condition being assumed in this interpolation function at the

high order element is used the value of second derivative has

This seems to be equivalent to a high order element being used and

same time (62,132 ).
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The boundary conditions for a stream function-vorticity formulation
problem are of three general types; 1) the specifications of the values
which stream function or vorticity must assume along the boundary; 2)
the specifications of the values of the component of the gradient of V}
or¢) at the normal to the boundary; 3) the provision of some algebraic
relation which connects the value of yﬁ or (J to the values of their normal
components along the boundary (16,55). In fact, it is usual for values
to be specified at some parts of a boundary and for gradients to be
specified at other parts (see example one, Chapter 6). When several
differential equations are to be solved simul taneously, there is no need
for the boundary conditions for each equation to be of the same type (55,
63).

In . example one (see Section 6,1), since the flow is considered
to be fully developed at the downstrgam end, the gradients of stream function
and vorticity with respect to the flow direction should vanish at the
boundary. These provide the normal boundary conditions at the downstream
end, There is no need to specifiy the values of stream function and
vorticity at this boundary. (21,25,55,63,100,110,127)

The mixed type boundary value problem, such as that appearing in
example one, causes no difficulty in itself, provided a scheme can be
found for specitying boundary conditions associated with first derivatives
of stream function and vorticity. For example, to impose the boundary
conditions for the example one, the relations jﬂk;—-— 2w

aX T AR

be incorporated into the element stiffness matrix, This will give an

= § can just

alternate form for the element stiffness matrix which can then be used

for elements having node on downstream edge. The disadvantage is that such
elements must then be incorporated into the computer programe and used as
need arises., This scheme has been ussd in this computer program. An

alternate way is to consider the boundary conditions as constraints,
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The set of equations is expressed as the gross assemblage stiffness equation.
The detailed procedure can be found from the papers of Bratanow (16,18)
or Martin (88),

The 'natural boundary conditions are somewhat arbitrary, since there is
little agreement in the field of fluid mechanics as to what the proper ones
are, The choice is therefore made on the basis of practicality (33,100).
Usually, the'rigid'boundary conditions are used, And the programe is left
to seek its own approximation of the'natural'boundary conditions (see
Chapter 6). (100)

A rigid wall may be either of two types, no-slip or free-slip. The
latter may be considered to represent a plane of symmetry, rather than a
true wall (58,128). In the examples to be presented, no-slip boundary
condition would be considered.

To satisfy the condition of no-slip at solid walls, the'normal and
tangential gradients of stream function must vanish at these boundaries.

The tangential conditions are satisfied by setting stream function constant

along these boundaries. Howaver special attention is required to determine
the boundary formulae for the normal conditions. To determine the

boundary values for the wall vorticity, application of the no-slip boundary

condition alone is not enough, At a point (Xo,Yo) on the wall, the

vorticity may be calculated from the relation, (25,63,121)

(A)(Xo,Yo ——LL-(Xo Yo)

21T (4-1)

where n is the coordinate normal to the wall. Using a Taylor series
expansion, at a point (X1,Yl) along the normal direction, a small distance

from the wall, the following equation may be obtained.

2 2 -
VW) = ¥(%,Yo)+n ;z’,_ (%o, %)+ == %%_(x.,y,) (4-2)
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Since the no-slip condition dictates that

9
aln(xo, Yo) = 0 (4-3)
then the vorticity on the wall may be calculated by

Wote, %) = [ Y0 %) - Prixi )] (4-4)

Wall vorticity is then given in terms of the stream function
evaluated at the wall and a small distance away from the wall. If
(X1,Y1l) is not a nodal point, the stream function1¢r(X1,Y1) may be obtained
by interpolation between stream functions of the neighbouring nodal points
of (X1,Yl) (25,63).

There are several other ways to compute the surface vorticity, which
can easily be found (4,33,110,128), Equation (4-4) is called the first-
order one-sided difference formula. This formula gave numerical results
in excellent agreement with the exact solution (128). It is found that
the second-order one-sided difference formuia sometimes led to unstable
results, The detailed discussions may be found from Wu's latest paper
(128). To play safe, this program employs the first-order one-sided
difference formula. When using this formula, use of a finer mesh round
the corners is to be encouraged, This is not only because there are big
variations of values of stream function round the corners but also because
it is hoped to force the effects of the corners to spread into the fluid
in every direction, by using a finer mesh in regions adjacent corners
(see Sec.7.6.1.).

For each system of equations there are a number of sufficient and
necessary boundary conditions. For example, for a viscous flow the
condition of no-slip is sufficient to determine the flow field. No

other condition may be imposed on the rigid wall (92,100).
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When a problem of viscous flow is treated by a numerical technique.
A certain mesh is used. At the interior mesh-points the governing
equations are substituted by a matrix equation. At each computational
step, information is transmitted from each point to its neighbouring
points via the numerical computation. In this way, the boundary mesh-
points influence their neighbours and transmit the effects of the
boundary conditions into the flow field, Moretti (92) maintained that
if houndary conditions are not proceeded properly, the risk of over-
specifying the boundary conditions themselves is faced and, in all
probability these overspecified boundary conditions will not be consistent
with the natural of the boundary and the limiting forms of the equations
of motion (62,92).

It is not possible to isolate any portion of a fluid field and
obtain the solution in only that portion. The difficulty arises from
the boundary conditions, It is easier to deal with a fluid flow
problem on a larger or entire flow field thah just on a part of the whole
flow field.

Some more detailed discussions about boundary conditions will be
presented in example problems later.

4,2 Numerical Procedures

The present scheme for solution of the assembled system equations
(3-35) and (3-43) uses an iterative method to obtain self-consistent
stream function and vorticity fields.

The solution to equation (3-35) requires specification of stream
function or its normal derivatives on all boundaries, The initial
vorticity is not known anywhere. Usually an initial guess of zero
vorticity is often appropriate. Equation (3-35) is then able to be
solved for the stream function. Using the results of stream function,
the wall vorticity can be obtained from equation (4-4), And then we can

use values of wall vorticities and stream functions to solve equation
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(3-43) for the vorticity. The velocity boundary conditions provide
derivative boundary conditions on stream function. On the boundary,
stream function and the normal and tangential derivatives may all be
specified, After the vorticity field has been determined, the values
of vorticity can be treated as a source function, and solve the stream
function for the next time instant from equation (3-35).

Once the new stream function field has been determined the wall
vorticity for the new time instant can be cbtained by solving equation
(4-4) again. Then equation (3-43) is resolved by adjusting the boundary
vorticity. This procedure is repeated until a self-consistent stream
function and vorticity field is obtained. This procedure not only
circumvents the nonlinearity of the governing equation but also leads
to a linear algebraic system (25,63).

Employing the foregoing procedure, solutions of stream function and
vorticity can be obtained for creeping flow, Once a convergent Stokes
solution was determined, this solution can be used as the initial conditions
of vorticity in the calculation for a solution of the governing equations
at a small Reynolds number. These solutions of stream function and
vorticity for a small Reynolds number are considered as the initial
conditions when the numerical solution of vorticity and stream function
for a bit higher new Reynolds number are solved. This procedure is
repeated such that the solution at a lower Reynolds number is used as
the initial conditions for the higher Reynolds number until the solutions
of stream function and vorticity for a desired Reynolds number are reached
(25,63).

To get an accurate result, the smaller the increment of Reynolds
number is, the better,

The procedures of the numerical solution are summarised as follows:
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These boundary conditions

Define suitable boundary conditions for both must be kept through this

. . s calculation,
stream function and vorticity,

Assume an initial vorticity distribution,

Compute stream function from equation (3-35).

Find the boundary vorticity values from equation (4-4)

Solve the vorticity of Stokes flow for the next time instant.

from equation (3-43).

L-Convergence ?

Read a new small Reynolds number,

Treat the vorticity field of Stokes flow as a new
initial vorticity distribution.

Compute stream function from equation (3-35).

Find the boundary vorticity values from equation (4-4),
Solve the vorticity for the next time instant

at the small Reynolds number from equation (3-43).

L-Convergence ?

Read a bit higher Reynolds number

Repeat the foregoing procedure until desired Reyqolds
number is reached.

Compute pressure distribution.

Compute velocity distribution,

Solution is complete,
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Chapter 5 COMPUTER WORK

5.1 Introduction

As far as actual applications of the finite element method are
concerned, it seems that computer programs play most important and
practical roles. The main portion of this chapter is to explain how
a digital computer can solve fluid flow problems by the finite element
method. Some descriptions and a simplified flow diagram for the finite
element work are also presented. The analysis was programmed in
'FORTRAN 1V' computer language.

The flow chart (Figure 5-1) shows how the system is used to solve
a fairly straightforward problem,

Considering the flow chart of Figure 5-1, the boundary conditions
and other data areread in at once before any of the calculation is
commenced. If the tail end of the data is incorrect then this error
will be detected before a significant amount of computer time has been
wasted.

The input data is divided into the following main sections,

Control data: number of nodes, numher of elements, and

maximum value of iterations,

Coordinate data: the coordinates of the nodes.

Element data: description of the topology of the element

interconnections.

Initial and boundary
conditions: description of the problems.

The chief purpose of the drawing scheme is to check the coordinate
data of elements and the element topology. From a drawing of the finite
element mesh, mistakes in the data are easily recognisable.

5.2 Some Descriptions

During the early stage, when the programmes were developing, serious
problems of computer storage and the addresses for arrays were faced.

To overcome these difficulties, a sub-routine called DYNMIC supplied by
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The data is read from cards or file
etc. and stored in some arrays.

Stop.

Boundary conditions are
correct?

The finite element mesh can be drawn at
this stage to ensure that the input data
is correct.

The elemnts are analysed individually

and merged into system equations,

The system equations are solved in order

to find some primary unknowns.

Some other unknowns are calculated from
the results which have already been
determined,

Figure 5.1. Simplified Flow Chart
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the computer unit of the University has been used,

This method makes use of the fact that FORTRAN allows the definition
of arrays with unknown dimensions within sub-programmes. The old main
program is converted into a subroutine having as arguments the name and
size of each array requiring dynamic allocation, This subroutine is
called MAINPR. A small main program is required to write. This small
main program will read in the array dimensions and calculate the space
required for each array and pass this information to the subroutine DYNMIC,
the arguments of which are identical to those for MAINPR. Subroutine
DYNMIC acquires space for the arrays and calls MAINPR passing the arguments
given to it, having inserted the correct addresses for the arrays.,

The subroutine SOLMIX is used for solving matrix equations. Within
SOLMIX a subroutine SOLVE is called. The subroutine SOLVE solves this
kind of equation.

A(1,J) x X(J) = C(I)
for X(J) by Gaussian elimination scheme. There are a lot of this kind
of present sub-program which can be used. The subroutines SOLMIX and
SOLVE used here were written by Professor J.F.Booker of Cornell University
(63).

The main advantages of the finite element program are as follows:

(1) Complicated boundary conditions can be involved without difficulty.

(2) Changing the type of boundary condition requires only the change of
input data, and there is no need to change the computer programmes.

(3) The convergence of the calculation can be observed by printing the
values at selected points after each iteration,

The main disadvantage is that the achievement of a successful solution
depends on the choise of the correct convergence parameters. For some
problems, it might take a long time by trial and error before what kindsof

values of parameters are the most appropriate to use are known, So it
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is important to write down and keep the information about these control
factors. It may be useful when this program is used later,

5.3 Simplified Flow Diagram for the Finite~Element Programmes

A flow chart outlining the finite element procedure is presented as

follows:
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Finite Element Analysis of Incompressible Unsteady Viscous Flow.

Start

(1) Read, echo print and check data
(2) Cycle for each element and form (See

system matrices, Fig.5.3)
(3) Solve eq.(3-35)

(1) Insert the no-slip boundary conditions (See
(2) Solve eq.(3-43) Fig.5.4)

Yes4‘<‘>'
onvergence’
(See

N
© Fig.5.5)
Solve eq. Vzﬁﬂ = = Wn
Z
N
(1) Calculate @ (See
(2) Form matrix Sp Fig.5.6)
(3) Ccalculate P g.9-
(4) Form matrices [Ru], [Qu] and [Qv]
(1) Calculate U,V (See
(2) Write results Fig.5.7)
Stop

Figure 5.2
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Figure 5.3

Read in data

Print out data and
Draw the finite ele-
ment mesh

f”,/"\—_—

Cycle for each element and form
system matrices

aN: 3N Ni 9N
Ky = SAt¢>( %’yL—:)’)L

V&hﬁé‘“ VI(ﬁﬁﬁ
Key = Ky

- - « { ACe)
Sﬂg = AF’U)anLdJ\

€}
)dA

V“an+. = -t
[KV’] {'Y’Lﬂ= {S*}n

CALL SOLMIX
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Figure 5.4

Insert the no-slip boundary condition

W = 'h?:i [V‘wmﬂ) - 'W{ma)]

From matrix Sw

S W RSP P

IR

(SMI] =—— (Kw]* [Ka) At

A

{812} —— (Ka] {w],

{SM3}-— {sm2} /At - {Sal,

Wn . 2 w e
Lo o e - Tha o~ v

[[Ko] + e [Keo ] ] e =
A_lt' [K&’]fw}n- { Swln

[5M1] {0}, = (s43]
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Figure 5.5

YES

NO

ICOUNT = ICOUNT + 1

|

Form matrix S?

Sﬂhi = "KCOM,AAEULA

l

P Vonet = - tn
(Ke] (¥ha= {S‘V}n

CALL SOLMIX
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Figure 5.6

2
o= —op [ ST ()]

i

Form matrix Sp

S = ~[PniadA

|

Vip = -p@
(Kel {P}+{Se] = fo}

CALL SOLMIX

|
4

Form matrices ﬁhﬂ'. Bmd
and (Qv])

Ru.tj = I N N_,,-v dA
Gluji = I '%%452‘ r%g‘ﬁtl\

Qv;t = f %‘A;{i N.vyd'A
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CALL VELSTS

{sM5] <— (Qu] {¥1
{sM6] «—-(8&]{v]

CALL SOLMIX

(Ru] {U} = {SMS}
[Ru]{V] {sme]

|

WRITE
RESULTS

w\/f
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Chapter 6 TEST EXAMPLES

6.1 Example One

6.1.1.Introduction

To test the effectiveness of this formulation, and program, and
therefore to assess solution accuracy, convergence, and stability, a
fluid flow between plane, parallel plates was chosen. The main reason
why it was selected as the first example is that this problem retains the
total non-linear character of the Navier-Stokes equations (4i6,25). For
the reason of symmetry, only one-half the problem region was considered,
The coarsest finite element mesh which was plotted by the computer is
illustrated in Figure 6-1.

6.1.2.Entry Length

The entry length plays an important role in this kind of problem.
The fact that the duct length is insufficient can lead to unstable
resulsts, So the entry length will be discussed first. The entry length
is defined as the axial position at which the centre-line velocity reaches
99% of its fully developed value (11,24,55,56). This length can be
determined by experimentation in which every parameter but the entrance
length is held fixed (14,39,55,56). Schlichting (136) has shown that the
entrance length is only a linear function of the Reynolds number for
parallel plate channels and pipes. This is true only if the shape of the
inlet velocity profile is kept the same (55). Hai (55) concluded that
the entrance length necessary for flow development is a function of channel
height, Reynolds number and shape of the entrance velocity profile for the
flow regions considered here. Laughaar (39) suggested that the entry
length for an incompressible isothermal laminar of a Newtonian fluid flow in
a circular pipe can be obtained from the following simple equation.

Xc = Re xD x K (6-1)

where
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Xc = hydrodynamic entry length for circular pipes.
Re = Reynolds number = vav . D, P
U
% = Density
M = dynamic viscosity
D = pipe diameter
K = constant (Laughaar suggested that K = 0.057)

After Xc is derived, the entrance length for a fluid flow between plane,
parallel plates can be obtained.

6.1.3.Initial and Boundary Conditions

Now initial and boundary conditions will be discussed.
Initial Condition:

The duct is initially filled with water of density of 1.0, which is
instantaneously accelerated by application of a uniform velocity of unity
upstream of the duct. The equivalent vorticity initial condition is
vanishing everywhere. Of course, this is by no means the only initial
condition which can be used. But in this problem, it is employed to test
the praogram,

Boundary Conditions:

Referring to what has been discussed in chapter 4, the following
conditions are employed (see Fig.6-2).

(i) To make sure that there is no mass injection cross the upper

wall, the following equation should be given:
1# = constant along AB (6-2)
where the constant is determined from the mass flux entering the duct.
(ii) One of the difficulties of this problem is that it is not
suitable and not even possible to define values of velocity on the downstream
edge. This does mean it is difficult to establish the values of stream
functions along downstream edge. To overcome this difficulty, some

additional constraints along this edge were introduced.
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Because the flow becomes parallel along the downstream edge, the
normal derivatives of both vorticity and stream function must be vanishing

to enforce the flow parallel at the exit. So,

¥ _ B
an along BD (6-3)
.17V

an. = 0

(iii) From symmetry, in the centre-line of the duct, the vorticity and

streamfunction may be defined as follows:

¥ o= 0

along CD (6-4)
Ww = 0
(iv) For uniform flow at the duct entrance, the following equations
can be given
along AC (6-5)

w = 0
where K is constant.

(v) The no-slip condition is most important (see Chapter 4), The

formula used to calculate wall vorticity is as follows:

WX %) = 2 [Y(xe %)= ¥Ox,%)] (4-e)

6.1.4.1teration Technique

To obtain a starting solution, Stokes' flow was assumed. And stream
function and vorticity fields were calculated by giving Re=0, After the
Stokes'flow solution was obtained, the iteration process was used to
calculate the flow at successively larger Reynolds numbers. The solutions
of stream function and vorticity at a lower Reynolds number are used as
the initial conditions for the solutions at the next higher Reynolds number .

It was found that the numerical scheme was stable if a sufficient small
At was chosen.

6.1.5.Discussion and Conclusion

At the entry section where a velocity discontinuity is occurred at




_61_
point A (see Figure 6-3(a)), the singularity introduces a considerable
disturbance to the solution. Serious numerical errors may be encountered
in the calculation unless sufficiently small elements are used.

In fact, because the boundary conditions are contradictory at the
point A, the approximate solution will not be able to satisfy such boundary
conditions exactly.

In actual computation, two types of entrance onditions at the
discontinucus point have been tested.

Case 1, U decreases to zero from point E to point A as a parabola
function, The velocity profile for this kind of entrance condition was
shown in Figure 6-3(b).

Case 2, U decreases to zero from point E to point A as a linear
function. The velocity profile for the entrance condition was presented
in Figure 6-3(c).

The phenomena shown in Figures 6-3(b) and 6-3(c) seem to agree well
with Tong and Fung's (124) results (see Figure 6-4),

The input data used is presented in Appendix I. Its main results for
streamfunction and vorticity from this computer program are given in Table
6-1, From this table, it is found that the results seem to be along with
those of Baker and Gqsman (4). The streamline contours are presented in
Fig,6-5. Its main contour program is given in Appendix C. Results for
velocity and pressure are shown in Figures 6-6, 6-7 and 6-8. From Figure
6-6 and 6-8, it is found that the velocity and pressure results from this
program seem to be along with those of Goldstein (49) and Yamada (129) as
well, Some streamline contours from this program for slightly higher
Reynolds numbers are presented in Appendix D. The streamline contours of
Baker (4) for Reynolds number of 200 are shown in Appendix E. It is seen
that the contours compare reasonably well thus indicating that the present

program seems to be accurately representing the phenomenon.
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TABLE 6-1

Steamfunction and wall vorticity distribution

%//L Streamfunction }p’ Wall vorticity Ww
F.E.M.* F.D.M.* This ** F.E.M.* F.D.M,* This**
(Baker) (Gosman) prog. prog.
0.047 0.980 0.976 0.967 4,04 5.05 6.67
0.095 0.982 0.980 0.981 3.55 4.44 3.54
0.156 0.983 0.982 0.982 3.57 4,14 3.43
0.228 0.983 0,983 0.984 3.58 3.71 3.10
0.379 0.983 0.984 0.984 3.60 3.28 3.08
0.521 0.984 0.985 0.984 3.30 3.12 3.08
1.000 0.983 0.985 0.984 3.51 3.06 3.15
[~ “
| e
(i) ]
I L —
—x—
(2) * Re = 2 00
* : Re = 0,002




-63-

A B
E i
¢ 1 2 3 4 5 D
(a)
0.0
A B
h 0.5 L

0.0 0.5 1.0 1.5 Um
uh)
0.0 —
| /
h .
0.5 A B

ro L ——" J

T -
1,

0.0 0.4 0,8 1.2 6 Um

(c)..

Figure'G—G Velocity distribuiion for flow between parallel plates,

A: Velocity distribution at the entrance,
L: Velocity distribution for fully developed flow,
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(a) Case 1

/.

d

-~

[
(b) Case 2
Figure 6-4 Tong & Fung's Results (124)
A: Vi.locity distribution at the entrance.
B:

Velocity distribution for fully developed flow,
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Figure 6-5

Streamline contours in flow ie“ween parallel plates,
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h 051‘
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(a) Results from this program
1.0
\ \
A
0.5} A B
0.0 ] —- + $ : "l_;'
0.0 0.4 0.8 1.2 1.6 m

(b) Results of

Goldsteig

A: Velocity distribution
B: Velccity distribution

Figure 6-o

Velocity distribution for

at the entrance,
for fully developed flow,

flow between parallel plates
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6.2 Example Two

6.2.1.Introduction

The next application was to the internal fluid flow in a channel of
arbitrary cross section. The geometry of an example flow passage was
shown in Fig.6-9. This type of geometry could provide a good test and
dmonstration for this solution procedure because the constriction causes
rapid changes in strgam function and vorticity near the constriction region.
The coarsest finite élement discretization evaluated were illustrated in
Figure 6-10,

6,2,2,Boundary Conditions and Iteration Technique

It has been shown that the entrance length is reduced as the shape of
the entrance velocity profile approaches that of the fully developed profile.
And this entrance length is reduced to zero when the entrance velocity
profile is identical with the fully developed profile at which point the
flow is fully developed at this entrance to the channel (55). So
Poiseuwille type flow was used at the upstream edge in view of the fact that
larger values of X1 (see Figure 6 -9) would imply a rapid growth of computer

time required. That is

3 L 3 — :
= y-3Y on AF (6-6)
2\ 3
At the downstream edge (EG) Poiseuille type flow was also assumed,

It is worth emphasizing here that the values of X_ need be provided large

3
enough. Extending the concept of entrance length discussed in example one
to this example, it is known that at higher Reynolds number, after passing
the constriction, the fluid flow would have to travel a much longer distance
x3 before it was returned to a Poiseuille type flow. If the provision of
X3 was not adequately specified in the finite element mesh, the numerical
procedure may become unstable, Even when the calculations are convergent,

wrong results or results which are not expected, for example, a result from

a different boundary condition, may still be obtained.

From the governing equation VLW = -W and equation (6-6), the
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following boundary condition should be specified

W = 3Y on AF and EC (6-7)

On the solid wall, the no-slip condition was applied as well. And
the firsi-order one-sided difference formula (equation (4-4)) was employed
to calculate wall vorticities. It is worth mentioning here that this wall
vorticity formula is mainly not suitable for fields containing corners with
high curvatures. Thom and Apelt in their useful book "Field Computations
in Engineering and Physics" (121) suggested some helpful schemes to deal
with this difficulty. Greenspan (51,52) also suggested some other
formulae to solve this problem. However, no matter what kind of scheme
is being used, it should be stressed that it is most important to use a
finer mesh in the constriction regions. 1f the elements used are small
enough, then the first-order one-sided difference formula can still be
employed. The key point is that the effects of the corners must be forced
to spread into the fluid field in every direction. It is worth emphasizing
here that the finite element method is simply a man-made method. It is
important to help the method by letting "him" work as close to the
phenomenon which occurs physically as possible.

Referring to chapter 4 again, in which some ideas about boundary
conditions have been presented, the following boundary conditions may be

specified (see Figure 6-9).

1# = 0 on TG (6-8)
v o= | on KBCDE (6-9)
w =0 on TT _ (6-10)

At time t=o, values of vorticities are assumed to be zero everywhere,
And these values are considered as the initial conditions when the numerical
solutions of stream function and vorticity for creeping flow are solved.
After the convergent creeping flow solution was obtained, this solution
was used for the initial conditions of stream function and vorticity in

the iteration process to calculate the flow at a small Reynolds number.
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This process was carried out such that the solution at a low Reynolds
number was used as the initial conditions for the solution at a higher
Reynolds number (see Chapter 4). It has been found that the iteration
procedure was always stable for sufficiently small At. Through numerical
experiments, it is found that a high curvature at point C (see Figure 6-9)
has profound adverse effects on both numerical stability and accuracy.
Even with the same mesh size, the high-curvature body requires a time step
that is an order of magnitude smaller than that for a low-curvature body
in order to achieve stability (105). This is due mainly to the very steep
gradients of the vorticity in the field created by the high curvature. The
same gradients also cause severe problems with respect to loss of accuracy
(105). In order to avoid large errors, and accelerate the speed of
convergence, it seems that two kinds of time steps, At, and a smaller one
A.tz, may be used in low-curvature regions and high-curvature ones
respectively. (In this example, this kind of scheme has not been employed
yet,)
6.2.3.Conclusion

The input data used is presented in Appendix F. Its main results for
stream function and vorticity from this program are given in Appendix G.
The stream line contours are presented in Figure 6-11. The contours seem
to be along with those of Lee and Fung (79) (see Figure 6-12). Results
for wall vorticity are shown in Figure 6-13. From this figure, it is
found that in the Stokes limit the flow patterns are symmetric . before and
after the constriction, no separation occurred at this limit. This
result seems to agree well with both the solutions of Cheng (25) and those
by Lee and Fung (79). The slight discrepancies among the results for the
vorticity on the wall of Stokes flow from this program and those of Cheng
(25) and Lee and Fung (79) are probably due to the differences in the
geometries of constrictions and the coarseness of these meshes being used.

The velocity results are presented in Figure'6-l4. They seem to be in
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good agreement with the solution of Cheng (25). The pressure results are
given in Figure 6-15. The slight discrepancies between the solutions for
pressure from this program and those of Lee and Fung (79) are also probably
due to the differences in the geometries of constrictions and the coarseness
of the finite element grid.

The results seem to compare reasonably well thus indicating that this

program seems to be accurately representing the physical phenomenon,
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Chapter 7 DISCUSSION

Although the numerical schemes to solve the Navier-Stokes equations have
been discussed, some realistic difficulties can still occur when the schemes
are carried out, In this chapter, some problems will be discussed. And
some observations about the numerical procedure, obtained through numerous
numerical experiments, will be presented and discussed. These observations
may be useful in the finite element analysis.

7.1 Convergence problems

The problem of convergence is one of most important problems in a
numerical analysis. When the foregoing process is applied to the Navier-
Stokes equations, divergence can take place in parts of the field. Emphasis
has already been put on the need for care with the method of determining
the boundary values of vorticity, but even if these are known and fixed the
field may still diverge if the mesh size is too large (33,42,100,121),

To prevent divergence, Thom (121) suggested that at each point the value
of &) may be adjusted from the old value (Jp to the newly calculated value
Jn+l. In ather words, () its full movement may be given. Thom claims
that the movement should be restricted by combining &n and@Wn+l in the
proportion . r:1 where r is positive. However, if r is too large, it is
obvious that the rate of advance would be very slow,.

In the calculations for wall vorticity, sometimes, it happens that
to repeat this operation many times will result in an unstable oscillation

of the field. Thom and Apelt (121) suggested that new boundary values

W, =@, + K [@n+1) - @n)v)
w w w
may be used instead of original ones, where K is less than unity. The
best value of K can only beestimated by trial and experience. As a start
they suggested X = 0,5, In order words the boundary values are only
moved about one-half of the amount indicated by equation (4-4),
Lee and Fung (79) also employed a similar manipulation, They combined

the conformal mapping and finite-difference techniques to investigate
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problems of viscous flow in a locally constricted tube. They found that
the calculation was straightforward for Re < 15. But when Re = 20, the
.numerical procedure failed to converge. To improve the matter, they

used an under-relaxation factor. They claim that the values of the
vorticity cdwere given one half their theoretical changes in each iteration.
In this way they got the results for Re=25,

Although incorporation of the under-relaxation technique seems to be
able to accelerate the speed of convergence, and improve the possibility
of convergence, there is still no, to the best knowledge of the author,
apparent theoretical justification for such a manipulation of the relaxation
factor.

Some comparisons between the results of using a relaxation factor and
not using this kind of factor have been made, and presented in appendices.
Note that when TURFl=1 (see Appendix D) the relaxation factors were
never used, and when TURFl = 0.1, the relaxation factors used were O,l.

7.2 Storage problems

In many finite element problems the amount of ¢ore store required is
too great for the computer being used and it is necessary to use backing
store. Sometimes a peripheral such as a magnetic disc on a magnetic
tape deck can be used automatically within a program. The non-linear
matrix, because of its size, may be stored out of core, the high-speed
disc being the next best place.

There are lots of ways to improve storage problems: such as:
employing the techniques of the front solution, substructuring, overlaying,
equivalence, or dynamic allocation, etc. Some important methods of them
will be briefly discussed here,.

7.2.LFront Solution (33,37,67,134)

Theoretically the front solution is quite simple. There is a large
linear set of simultaneous equations with the n stream functions {\k}

of the fluid flow field as unknowns. When all the information relating to
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a particular variable is complete then that variable may be eliminated
since an expression for it in terms of the other variables in the problem
can be obtained. Some unknowns can be eliminated before the complete
"stiffness matrix" is formed and therefore the whole of the "stiffness
matrix" is never needed in core at one time. Irons (67) has developed

a good front solution program for finite element analysis to solve
symmetric positive-definite equations, Hood (134) has also presented
another front solution program which may be used for the solution of
unsymmetric matrix equations, Using these schemes, core requirements
and computer time may be considerably reduced.

7.2.2,Banded Solution (33,37,116)

Using the fact that the stiffness matrix is square and symmetric and
all non-zero terms are concentrated in a narrow band either side of the
leading diagonal, great economies of storage are possible by storing only
the band.

To solve equations (3-35) and (3-43) directly by using, say, the
Gauss-Jordan elimination procedure would be very inefficient in terms
of computer time and storage, since that does not take advantage of the
banded nature of [K'V’) and [ [ Kw] + [K\'v] / At ] .

It appears that the most efficient procedure is to store those elements
ot [K‘V] and[ ['Kw] + [Kw] /At] ~ those are within the band rowwise
in two vectors respectively, say [A] and' [ 5 ], and émploy a modified
Gaussian elimination scheme with back substitution which takes advantage
of the banded nature of [KW] and [[Kw] + [KW] / At] . In this
procedure, Gaussian elimination and back substitution need only be carried
out up to the lower and upper edges respectively of the bands, Thus the
zeros of [l(.\r] and[[Kw] + [K\ir] / At] outside the band are not operated
upon and are actually not stored in [K?]'and [{ Kw] 4-[KW] / At] .

With this method of solution, it will be necessary to know the width of the

bands and the location of the diagonal elements within the bands at every
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row of [K"F] and([Kw] + [KW] /At].

7.3 Computer time problems (6,14,25)

There are also a lot of methods to save computer time. But if the
computer program has been prepared, then the following suggestion may be
a helpful way to reduce the computation time used,

It is found that the initial flow configuration does not change the
steady, -state solution, Regardless of the initial conditions employed,
the procedure does indeed converge to the same solution, Therefore,
provided that there is no interest in the transient solution to the problem,
the analysis can be started at a good initial guess with attendant saving
in computer time, The solution obtained with a coarse mesh can be
utilized as the guess for a finer mesh.

7.4 Boundary conditions

It has been shown that all boundary conditions require detailed attention.
But sometimes, even if the significance of boundary conditions has been noticed,
it is still not impossible to face the problems of how to specify suitable
boundary conditions for a given problem. A practical way, but not a good
way from points of view of computer storage, to overcome this kind of
problem is presented here.

It is pointed out that the difficulty in boundary conditions, sometimes
can be by-passed if the region to be considered is changed. Usually, a
bigger region or the whole region of the problem can be used instead of a
smaller or half the region, For example, to study the problem of vortex
street development behind some obstructions in. channel of finite width, the
boundary conditions in the centre line are not quite obvious. So in this
case, the best way to deal with this kind of problem is just to use the
total region of the flow field instead of the half symmetric one. (see
Figure 7-1). (110)

7.5 Finite-element mesh

A likely distribution of contours of field variables of interest is best

be predicted in advance. Then the mesh is arranged to be as similar to
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the predicted distribution as possible. For example, a finer mesh should
be arranged for the regions where the variations of streamfunctions or
vorticities are more pronounced,

If there is no idea at all about the distribution of contours of
field variables, an alternative way suggested here is that a coarse mesh
can first be made to analyse the problem. It is possible to get some
ideas of values of results from this analysis based on the coarse mesh,
Andthen, these values may be used as a guide to arrange a better mesh.
Bearing in mind that an appropriate mesh used can save computer storage,
and computation time, but a bad mesh can even make the calculation unstable,

7.6 Some Obeservations

Through numerous numerical experiments, some observations were made.
They may be useful in the future applications of the finite element method.
Although their validity for all kinds numerical schemes has not been
ascertained yet, it is hoped to bring these observations to people's
attention,

7.6.1.The transmission phenomena of a mesh line

To save computer time and storage, it is best to reduce the number
of elements to as few as possible. However to improve and guarantee the
accuracy and stability of a calculation, it is hoped to increase the
number of elements used to as many as possibhle, This situation is like
a famous Chinese proverb which says "It is difficult to make a horse fat
without giving it enough food", Usually, if the number of elements is
reduced too much, then inevitably some of the accuracy will be lost, and
convergent results can not even be reached, However, even if this is
the case, a coarse mesh is often forced to be employed in a complex region,
even though a finer grid should have been used, in view of the limitation
imposed by the computer. In this case, the best way to do this is to

improve the '"quality" of the mesh being used, It is found that mesh

lines seem to have an ability of giving effect to the calculation by
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transmitting or spreading newly calculated values into nodes of neighbouring
elements, It is known that any numerical method is simply an instrument
to help people do what they want to do, and analyse what they wish to analyse,
If the instrument is hoped to work properly, then it should be used in a
proper manner, 1f the finite element scheme, the instructment, is helped
by using a good mesh employing the nature of a mesh line, it is not
impossible, while adopting a coarse gridwork in a calculation, to get a
satisfactory and accurate and stable result. It is5 found through numerical
experiments that in a region on which a high curvature is found, more mesh
lines should be used there, The higher a curvature is, the more mesh lines
should be used. And it is better to do the mesh symmetrically unless the
effect of the mesh on some directions is hoped to intensify through the
calculation, To illustrate the idea, an example is presented.

Figure 7-2 shows an obstacle in a fluid flow or a hole on a plate.
The curvatures of points B and D are the same, and so the same number of
mesh lines is suggested. The curvature at point A is the highest, then
the numer of mesh lines -used should be more than those at points B,C and
D. Note that all the mesh lines are symmetrical. Furthermore, not only
to save storage but also to reduce computer time, in a region where
begger unsymmetric variations of results are expected, the number of mesh
lines there should be increased unsymmetrically. It is significant for
a user of a finite element program to learn the effect of a shape function
on the choice of a mesh for a calculation and to have an idea about the
actual physical phenomena described by the problem. For example, from the
foregoing discussions, it is obvious to conclude that the optimal mesh for
a viscous fluid flow depends alsoc on Reynolds number, See Figure 7-3.
A mesh for case A should be different from that for case B, If the same
mesh is used to analyse the two cases, then there will be a lot of computer
time and storage wasted in analysing for case B. Bearing in mind that to

help the procedure predict the actual physical phenomena, a suitable mesh
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density for each node must be used to enable the procedure to force and
spread the effect of governing equations in the regions of interest,

7.6.2.Maximum stable time step At wmax.

3

Through numerical experiments it is found that the maximum stable
time step:At max also depends on Reynolds number, mesh size, surface
curvatures of bodies, etc.

For the example one, if the input data shown in Appendix I is uséq,

the values for Atmax are

Re = 0.002 , At max = 0,00001
Re = 1. , At max = 0.0001
Re = 2. , At max = 0,0001
Re = 3. , At max = 0,0002
Re = 4, , At max = 0,0002
Re = 5. . At max = 0.0004
Re = 6. , - At max =  0.0004

It may be mentioned here that 1£ is difficult to determine exactly when
At max is reached. Thus, all values must be considered as approximate,
The parameters which affect the ;ones of convergence would also include
maximum stable time step, Renolds number, mesh size,etc.
To accelerate the speed of convergence and to make the results stable, these ..
parameters should be tried.

7.7. General discussions

It has been found that the finite element solution algorithm is
capable of predicting some natural physical phenomena without resort to special
deviées. The finite element method is able to define the nodal points and
elements arbitrarily to permit flexibility and easy accommodation of the
complex boundary. 'Employing the knowledge of fluid dynamics concerning
the anticipated solution distribution, a smaller element in regions
containing larger spatial derivatives of the dependent vapiables can be

used. Some of the other major advantages of the finite-element method
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over finite difference ones are that different shapes may be represented
automatically, various boundary conditions may be satisified in a straight
forward manner, different element sizes may be used to get maximum
efficiency. A finer mesh can be used to gain details of the fluid flow
field exactly where desired. Generally significantly fewer equations are
required to provide a given accuracy. (16,62,77,100).

As far as computational efforts are concerned, a computer program for
the finite element computation seems to be more complicated than its
counterpart for the finite difference method. However, the complication
stems from the intrinsic generality of the finite element, The generality
of the finite element method usually leads to the computer program to be
applicable to a class of similar problems (19,25,33).

However, just as a Chinese saying has it "There is nothing in the world

e
.

which is perfect The finite element method also suffers from some
disadvantages. It is known that error analysis is very important in
numerical methods. However, up to now, there does not seem to be a method
which can be used to calculate the truncation error incurred by using a
particular kind of eiement shape. With the finite difference method, on
the other hand, the truncation error involved in any finite difference
formula can be analysed using the calculus of finite difference. However,
it is expected that the truncation error incurred will be comparable with
that of a finite difference mesh of the same size, so it is possible to
get some ideas about the order of approximation of a particular element
shape. When a higher order of approximation to the unknown function is
sought, the situation may become more complicated with the finite element
method. With the finite difference method, increasing the order of
approximation presents no real difficulty (25,116),

It can be shown that the finite element approach converges to the
exact solution as the number of elements is increased. Solution convergence

with finer finite element mesh is very significant for numerical solution

of non-linear equations like the Navier-Stokes equations, An insufficient
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number of points on the solid boundary, at which no-slip boundary conditions
are specified may cause unsatisfactory results. The no-slip condition
determines the amount of vorticity created at the solid surface. The
highest values of the wall vorticity and the vorticity gradient, which
govern the spreading of vorticity in the fluid flow field are found on
the solid wall (20,25,79,121).

The coefficient matrix[{ kw]+[ k¥ ] / At] is symmetric, banded,
and positive definite, To keep the bandwidth of the coefficient matrix
to a minimum, the nodal points should be ordered in such a way that the
difference in nodal point numbers for any element be a minimum (25,33),

The three-node triangular element seemed to give quite accurate results.
If the sizes of the elements are small enough, the approximation of the
unknown function with the element is adequate. Owing to the simpler
formulation and the ability to cater for arbitrary boundary shape, the
three—-node triangular element seems to be adequate for most purposes
(63,116),

Although convergence is expected for higher Reynolds number, such
a study was discontinued, in view of the fact that for higher Reynolds
number fluid flow field, the channel between parallel plates or a
constricting internal passage must be elongated and finer mesh must be
used to get stable results, thus necessitating that the number of mesh

points be increased so mush as to be impracticable for this computer.
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Chapter 8 CONCLUSIONS

A general numerical procedure for the analysis of two-dimensional,
time-dependent,incompressible,viscous fluid flow is presented. A finite-
element computer program is developed.

Using a combined variational principle-finite element method,
difficulties arising from the nonlinearity of time-dependent Navier-

Stokes equations have been remedied, The numerical results obtained by
the method have revealed very similar properties to known solutions of
similar problems. In the Stokes limit, the flow patterns are symmetric
before and after the constriction, no separation occurred at the limit.
The high~curvature body requires a time step that is an order of magnitude
smaller than that for a low-curvature body in order to achieve stability,
In order to avoid large errors, an extremely fine mesh must be used in

the regions of large gradients of the vorticity.

The accuracy of the finite element scheme depends basically on the
number of nodal points in the finite element mesh, the time step, and order
of the numerical integration procedure, Stable results can be obtained
for a sufficiently small time step. The simple time integration scheme was
found to be sufficiently accurate for present tests. To maintain the accuracy
of the calculation, the number of iterations required increases slightly with
Reynolds number,

Finally, some important points would be stressed as follows:

(1) The maximum stable time step At max also depends on Reynolds number,
grid sizes and the shape of a body.

(2) Even if the finite element formulation used is the same, the zones of
convergence for different problems may not be ident;cal. The zones of
cénvergence also depend on the nature of the flow problem,

Reyndds number, mesh sizes, time step, the way of constructing a mesh, and
the shapes of obstacles, etc.

(3) The boundary conditions at the body surface play a decisive part in

the solution procedure.
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(4) The topology and number of elements of a mesh also depend on the
natural boundary conditions used. Many elements would be required to
reasonably approximate such natural boundary conditions as occurred in
test problem one,

(5) The fact that the numerical procedure will be convergent if At
used is small enough means that the inertia terms play a stabilizing role
in the scheme.

Using the finite element method, the region of low pressure of a body
in flow, which accounts for most of the drag force may numerically be
calculated. When the velocity of the fluid increases, a symmetric eddies
can be produced behind the body which are alternatively shed. For low
Reynolds number cases, this phenomenon can be predicted and the shedding
frequencies can be found by employing the finite element method (135).
These problems are interesting in the design of offshore structures.

It appears that the finite element method may be powerful to
predict the natural physical phenomena of a fluid flow field. The next
major fields for study would include stability and convergence problems
as well as further research into applications of the method to the

design of offshore structures.
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APPENDIX G
Nodal points Streamfunction Vorticity

1 1. 2,934

2 0.995 2,820

3 0.942 2.387

4 0.839 1,953

5 0.695 1,519

8 0.519 1.085

7 0.296 0.560

8 0.0 0.0

9 1.0 2,857
10 0.994 2.679
17 1.0 2.633
18 0,995 2.467
25 l.0 2,177
26 0.996 2,071
33 1.0 1.271
34 0.998 1.368
42 0,999 0.588
49 1.0 0.007
72 1.0 20,785
77 1.0 29.091
78 0.913 14.613
79 0.908 14,665
84 1.0 21.323
111 1.0 0.005
113 0.999 0.585
120 1.0 1,267
121 0,998 1.364
128 1.0 2,173
129 0.996 2.068
136 1.0 2,631
137 0.995 2,465
144 1.0 2.855
145 0,994 2.678
152 1.0 2,934

153 0,995 2.820
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Nodal points Streamfunction Vorticity
154 0.942 2,387
155 0.839 1,953
156 0.695 1.519
157 0.519 1.085
158 0.296 0.600

159 0.0 0.0
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