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ERRATA

p44 Be.2 The second paragraph of the Proof
should read:-

The unigue inverse of b is Qﬁ(])‘ For since
p:Ge>G then dpm:T(6)e=>T(G) [84.4).  Also )w(),\,e)o%
is a constant map onto e and therefore so is

dku(@p,d@)od& I84.3 vjl. That is

dhe (4,de)ds( ) = ah-(ap,de)(yyy) [84.3 1i)]
= dAN(Gn(y),y)
= Ay e
plo4 Bl4.4 Line 8 should read:-

all ¢x'€ﬁ since Iq-=i then jejeoJ o.j:'ijq: c.

pl0O5 Bl4.5 The first paragraph should read:-
Since J4=e then of course dj4=e but (-r.,da‘)4

is not necessarily also the identity map.



INTRODUCTION

In a great number of brilliant papers and in a few
books and memorials flie Cartan exploited a new approach
to differential geometry which he called the method of
moving frames or "réperes mobiles”[l,2,51= Unfortunately
the expositions he gave of his methods and ideas appear
to be based to a large extent on intuition and many steps
have been taken to describe his theory with greater
precision. Of great value in this respect has been the
theory of fibre bundles and in this thesis an attempt is
made to introduce precise definitions of some intuitive
concepts like "infinitesimal circuits”, "parallel dis-
placements" and "infinitesimal holonomy groups'" using
this theory and without sacrificing geometrical significance
to the requirements of rigour. In doing this a number of
well established ideas have been generalised and several
new results have been proved.

An important step inhgge application of fibre bundle
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?heory to differential geometry in the large was made in
1842, when Steenrod proved the existence of a positive
definite Riemannian metric by, in fact, showing that the
problem is equivalent to the existence of a substructure
with group the orthogonal group 1141; | éhé;ﬁ élso
developed this approach in his papers publishing in 1946
"Soine new viewpoints in differential geometry in the
large", which explained his ideas and methods [1él In
the same year Chevalley published the first part of his
"Theory of Lie groups" which, although not using bundles
explicitly, defined manifolds, vectors, forms and the
Poisson bracket operation very rigorously [17]. This
book greatly influenced subseguent workers, many of whom
refer to his definitions, the differential map defined by
him being particularly useful.

In 1947 at an international conference on topology
Ehresmann described some of the applications of fibre
bundles and stressed the importance of substructures or
subordinated structures [9). He discussed the effect of
various reductions of the group on a tangent bundle among
them that which he called a nearly complex structure.

This latter idea gave rise to an important field of

research. In 1951 Eckmann and Fr8licher gave integrability

conditions for such a substructure using, however, an



equivalent definition by means of tensors and the
classical methods [18]. Later, at a conference in
1953, Eckmann gave a paper, still using classical methods,
in which he showed that one could always find a connection
in which a given nearly complex structure was, in a
certain sense, parallel and that the integrability
conditions were that a symmetric connection with this
property existed [19]. It is interesting to compare
this result with another result to be published soon in
a papef by Willmore 127]. 'These two apparently
unconnected papers have a number of affinities, in fact
the first result stated above is a particular case of a
general theorem proved here and possibly the second could
be generalised similarly.

The first attempt to give a rigorous definition of a
connection based on the methods ¢f Cartan was published
in 1947 by Ehresmann, who elaborated it later in a paper
given at a congress in 1950 {8, 111. This treats
thoroughly with what he calls "infinitesimal connections"
giving many examples and applications. Fhresmann defines,
roughly speaking, an infinitesimal connection as a field
of planes on a bundle space complementary tc the tangent
planes of the fibre. This infinitesimal connection was

the first generalisation of the classical connection since



Cartan defined an affine conrection in 1923 [1]1. Besides
infinitesimal connections Ehresmann introduces in this
paper the "solder" a particular case of which is used here.

In 1951 Steenrod produced the first vpook on the
theory of fibre bundles [15]. Since then a large
number of papers have appeared applying the theory to
differential geometry. Perhaps it had long been felt
that some of the basic concepts needed to be redefined in
a preecise yet suggestive manner and that the work on
fibre bundles might enable this to be done, for recently
four papers have appeared almost simultaneously defining
connections and other concepts each with either more
geometrical significance than Eisenhart's definitions or
more rigour than Cartan's [29, 3).

The first of these appeared in September 1953, when
work for this thesis had already made good progress.
This was a paper by Flanders which aimed to "set up an
algebraic machinery for the theory of affine connections"
[22]. It is based on the definition of a vector given
by Chevalley and derives the formulae of Cartan and Chern
~in a very rigorous manner.

Another paper two months later by Ambrose and Singer
contains a review of the theory, again using Chevalley's

vectors, but including the infinitesimal connections of



Ehresmann [23]. This paper gives a definition of
curvature and torsion and attempts a geometrical inter-
pretation of these entities, whereas Ehresmann discussed
neither [23 pa34] .

Two other papers appeared in January 1954, one by
Nomi@u and the other by Kabayashi, whose work has
evidently coincided to some extent with mine, for he
states the results of twc theorems I had already proved
{25]. The paper by Nomizu gives the definition of a
connection due to Kozul again using the tangent vectors

as defined by Chevalley [24].

This thesis is &ivided into five chapters and
fourteen sections. The first chapter deals with well
established results and definitions that I will need.

It is divided into three sections, the first being merely
a resume of fibre bundle theory, while in the second
definitions of manifolds, regular maps and other related
ideas are given. ' The third section defines integrable
structures and gives a few examples which show that this
concept is a géneralization of one, already well known.
It might be possible to find integrability conditions

for a general structure and I have given a conjecture on

the problemn. The idea is not original and has also been



noted by Libermann [20]. Nevertheless it is quite
useful and would become very intereéting if general
integrability conditions could be found.

The second chapter contains some more preliminaries
but of a more original nature. The fourth section is on
differentials and I have copied Chevalley in defining a
differential as a map, although I define it in a different
way . It is notwithstanding essentially the same idea
and most of its properties have been derived by considering
those given by Chevalley. The fifth section is on the
solder and twist maps, the former having already been
introduced by Ehresmann is not.new. The twist map,
however, is original and has some very interesting
properties. I was led to this map by considering the
operation of exterior differentiation aud the Poisson
bracket [3, 17]. Both these are defined only for
vector fields or forms given over an open set of the
manifold. Thus one has really to consider the space of
local cross sections of the tangent bundle or principal
bundle and it is difficult to make use of the topology of
the bundle space. The aim here is to characterise such
operations as these two by topological means and it is
to this end that I have introduced these two maps. They

certainly simplify some of the formulae that arise when



using the methods of Eisenhart. The last section of
the chapter proves some theorems on Lie groups that will
be needed and is not really new.

The third chapter is completely original and
contains the basic theorem of this thesis. I have
divided the chapter into two sections - the seventh and
the eighth. The seventh section contains the proof that
the tangent bundle of a bundle space can be fibred in two
different ways; this is one of the results stated by
Kabayashi 125)]. This theorem is then elaborated with
some theorems on subbundles and substructures. The next
section deals with the special case of this theorem that.
occurs in the classical theory and which has some
interesting special properties, for instance, the twist
map which is an iscmorphism. I do not know whether any
of these properties characterize it completely.

The fourth chapter deals with comnnections, curvature
and torsion in three sections respectively. The
definition of a connection as a substructure was
discovered simultaneously by Kabayashi [2s]. It follows
simply and naturally from the preceding theory and a
number of results and definmitions is the logical
consequence. An example is the rigorous definition of

a "parallel displacement around an infinitesimal circuit".



The definition of curvature which is the subject of the
next section is quite unusual. A number of properties
are given but I have not discussed it in much.detail.
The torsion is defined in a manner very similar to that
in which I defined curvature and the two concepts have
not unnaturally a number of correspondingly similar
properties. I have defined the infinitesimal holonomy
group in this chapter using the properties of curvature.
It is quite possible that this generates the holonomy
group, for in the special case of a linear connection
this has already been proved by Ambrose and Singer [ 23].
The last chapter is concerned with special
connections. The first section of the chapter is on
linear connections and it is proved that such a
connection is associated uniquely with a general
connection, thus proving the existence of this specialised
connection. A linear connection is also a field of
planes complementary to ithe tangent planes of the fibres
of the .principal bundle and is thus an "infinitesimal
cénnection” in the sense used by Ehresmann. In fact it
is also proved that the integrability of this field of
planes is equivalent to the semi-integrability of the
connection which is probably equivalent to flatness.

It is also shown that for these special connections the
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torsion and curvature are isomorphisms which have

"square roots". Using this it is shown that from a
given general connection one can derive uniquely a linear
and symmetric connection. The last two sections are
devoted to the interpretation in this theory of work done
by others, the only original section of the chapter being
that on linear connections, although reinterpretation of

ts interests.

-

existing results has
This work on the tangent bundles of fibre bundles
and connections appears to offer a wide field for further
investigations which I hope to continue. I give a
number of conjectures with this in view.
I would like to express my thanks to Dr. T.J. Willmore

for his guidance and for showing me some of his unpublished

bibliography.

80 Notation

t

I have endeavoured to use a consistent, clear and
suggestive notation in this thesis, but this has not
always been possible without introducing too many symbols.

Consequently some symbols are duplicated. I have also
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made use of some unusual conventions which are noted

here.

§C.1 w:—>N means "y is a map of M into N"
m:M=N means "y is a map of M onto N"
nm:Me>» N means "¢ is a one-one map of M into N"

and m:Mé&B N means "y is a homeomorphism of M onto N"

If UelM I will sometimes write n:U—» N instead of

n|U: U= N,

80.2 € will be reserved for the identity map

irrespective of the space on which it acts.
Similarly ®:M & Mxll which maps a space M onto the
diagonal of Mx¥ is defined by ®(x)=(x,x) and is the

symbol for this map whatever the space M.

80.3 In order to avoid the use of indexing sets the
following convention has been made:- iUl means the
set of entities of which a typical entity is U. If I
wish to consider two elements of i_U.ﬂ they will be called

Ul and U2.

80.4 If &F and % are two sets of maps then & is the

set of maps ifog where £€®& and g¢ %X



If -,Tl:Ml-—g Nl and 112:1\/12-—'0 N2 then
(wy s7p) 1Myl —3 Ny, is defined by
(wl,vg)(XaY)=(wl(x),ve(y)). %% will then have
the obvious meaning i(f,g) where f<® and gécég.

80.5 I will use Chevalley's notation for the classical
groups and Euclidean number spaces with a few obvious
moderations L17]. The identity of any group will
always be denoted by e, although I will sometimes use

1 for the identity matrix.

80.6 The notation defined in a section will be presumed
to hold throughout that section, any modification being
temporary unless the reverse is explicitly stated.

It will be found that the different notations in
the various sections are Jjust modifications of a basic
notation for a general fibre bundle. These variations
are generally due to the fact that we wish to consider
a special case of a fibre bundle, such as the principle

bundle or tangent bundle.
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CHAPTER 1 FUNDAMENTAL DEFINITIONS

81 PFibre bundles

I propose here to give a Brief sketch of those parts
of fibre bundle theory that will be used in this thesis
because, although the theory of fibre bundles is well
established, the notation and terminology vary with
different authors and I think it necessary to introduce

this section to establish those we are going to use.

8l1.1 DEFINITION Let B,X and Y be topological spaces and

G a transformation group of Y. Let p:B=aX [80.17.

: _ ) _—1 -

Suppose Ex-gfxo G where m’x.Y¢=h B =p (x) is a set of
maps defined for each x£X. Then E=XL€-}J{ B is the

structure of the fibre bundle B(X,Y,G,&) if:-

a) for any xoé_)_( there exists an open set Uec X, XOGU,
and a map g:UxY & BU=p-l(U) such that ;o’x(y)=p’(x, y)

defines a map p’xéiﬁx for every x£U. The map ¢ is called

a strip map.
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b) if ;d.'":U'xYésaBU. is any other strip map then
g.=8 2 g(x) where g:U~U' — G. {15 p7, 4l.

B is c'all_ed the bundle space, X the base space and

Y the type fibre of this fibre bundle. P is the bundle

projection and BX is the fibre over x.

We shall often use B as an abbreviation for
B(X,Y,G,&) when no ambiguity is likely to arise.

The bundle space has a number of properties in
common with XxY and a few examples of these are given
by Steenrod ‘_15 plB',\. I would like to mention one that
he has omitted:- The restriction of p to any subset

¥e B is an open map if p(W) is open.

The topological product XwY is a fibre bundle with
group e {15 pi4, 5). Such a fibre bundle is called
trivial and we make a convention that the first factor

is always the base space, the second being the type fibre.

8l.2 We will always give & the topology such that for any

strip map &:UxYe=B;; then 3(x,g)=dxo g defines a map

B:UxG &3 T With this topology &(X,G,G,8) is a

U- xfu “x°
fibre bundle called the principal bundle, the map @ being

a strip map of @ [15 p35, 61 .
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There is a lemma that is not out of place here and
which we will often have to\uée. I give a fairly full
proof because, although the lemma is really guite simple,
I have not seen it stated or proved explicitly.

LEMMA Let a) U:UxYé B be a strip map of &;

b) ﬂ:U&GwEU be a strip map of ©;

c) ﬁ:Ue—aEU.be a local cross section of 5,
that is %(x){ﬁx; then any one of these three maps defines
the other two umiquely by the relations ﬁ£'g=ﬁ(x,g)£ﬁ(x)-g.
PROOF Given a) then b) follows by the definition of the
topology on & and given b) then c¢) follows immediately.

It is only necessary then to show that a) follows from c).

Let ¢:U'xYaBU, be a strip map of & and # the strip

map of @ defined from it. Let »:GxY=% Y and F:Geﬁ(}

be defined by v(g,y)=g-y and ;a(g)=e;'l-

Now suppose ¥ is given.  Write 7% ﬁ=g:“”=Ur\U'—4 G.
Then

Be(e,v)o(e,g,6)o(8,€):U"KY =4B, a)

is defined to be a restriction of . This map is in

fact a homeomorphism because it has the inverse
(€700 (& , g, €0 (8,60 g1,

It is easy to see that both these maps are independent

of the strip map 4 and thus define ¥ uniquely.
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We will say that a set of strip maps or of the cross
sections thus associated with them covers X if the union

of the arguments of the cross sections if X.

8l.% Suppose H& G is a topdlogical subgroup and suppose

ﬁx=¢£ HCLEX is given for each x€X, ﬁxémx. Then if

fi= ;z% i, is a structure for a fibre bundle B(X,Y,H,i)
we say that @ is & substructure of & [15 p43, 6).  The

fibre bundle B(X,Y,H,f) is said to be a reduction of
B(X,Y,G,&).

The lemma we have just proved shows that to prove
i is a substfucture of & it is only necessary to
demonstrate a set of local cross sections of & with

values in ii and which cover X.

8l.4 Let B'(X',Y',G',8') be another fibre bundle with

projection p' and let «:B—2 B'. «+ is said to be fibre-
preserving if pb v.p_l=;:X—4)U. In this case T is

called the projection of +.

A map y:BeB' is an isomorphism between the fibre

bundles if it is fibre-preserving, if its projection
-”.}:XéX' and further if there exists J:Y'e» Y’ such that
medie=8' 157.

In this case the principal bundles & and &' are



isomérphic, w*:862 &' being defined by w*(dx)=w.6£.#
for any ¢i€§. Conversely if we are given the
isomorphism yw*:fied ' and a map 7:Y'&Y*: such that

G o yr=moG' then the fibre bundles B and B' are isomorphic.

§1.5 If &(X,G,G,8) is a principal bundle & has a topology
and is the bundle space of another principal bundle Ls1.21.

i

b

owever the map w:Be» 8 defined by —,T(dx)(g)=¢'xa g for
diéﬁ and g€G is an isomorphism between these principal

bundles.

If two fibre bundles have isomorphic principal

bundles they are associated 115 p43, 6]. In this case

we will use the same syhmbols for their structures, groups
and base spaces. |

This inplies in the above case, for instance, that
we use the same symbol for “(¢i) and. dﬁ and write any

principal bundle as &(X,G,G,d).

§1.6 If VX is any subset we write By=p™ (V) snd

_UJ cy s . : :
By= ey B and it is easy to see that BV(V,Y,G,EV) is a

fibre bundle called the restiiction'of B(X,Y,G,8) to the

base space V.
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If Y'e Y is invariant under G, that is G-Y'=Y',
then we may define a fibre bundle B'(X,Y',G,3) called a
subbundle of B 115 p241.

We shall sometimes use an abuse of language and say
that B'€ B is a subbundle when it is really only the

subbundle of a reduction of B.

Bl.7 With the notation of 8l.4 we see that
(BxB') (XxX',YxY',GxG"',8%B') is another fibre bundle

called the product bundle of the fibre bundles

B(X,Y,G,8) and B'(X',Y',G',&').
When I use BxB' as an abbreviation for this product
bundle I shall be careful to say so in order to avoid

confusion with the trivial bundle.

It is very useful to consider an origimnal if simple
concept here. If B(X,Y,G,&) and B'(X,Y',G,B) are
associated fibre bundles we define kzﬁ BixBi=B§B' as the
bundle space of the fibre bundle (B;B')(X,YxY',G,E)
which is isomorphic to (BxB')E(X,YxY',G;E) where
TaeXwX, GeGwG and T< &ixd are the diagonals and
$:85ed G dxd is an isomorphism [80.2, &l.4). This fibre

bundle is called the inner product of the two associated

fibre bundles. It is also associated with them.
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E1.8 The bundle structure theorem is the theorem which
justifies the introduction of fibre bundles into
differential geometry. I ;lViSh to use the proof of
this theorem to define certain maps that I am interested
in and I will therefore sketch it. A more rigorous
and detailed proof may be found elsewhere [15 pl4, 5].

THEOREM Let X and Y be topological spaces and G a

topological transformation group of Y. Suppose i_U"s is

an open covering of X and for any ordered pair Ul’ U,_of

this covering there is defimed g, ,:Ujn U,=» G [80.3].

Then if for U), U, end U €YUY g ,(x) gps(x)=g; 5(x)

for all xéUl(\UeﬂUE a fibre bundle B(X,Y,G,B) is

.uniquely defiqed.

PROOF Put B*=2 (UxY) summation being taken over the
sets U of the covering. Let ® be the equivalence
relation

(x£Uy 137 )= (x€U,585 ()77 )

Then the bundle space B=B*/R..

Let q:B*=3 B be the natural projection and
g*:UxY¢e=n» B* the inclusion map, so that we have a set of
maps ifd*:U*YH B*} corresponding to the covering S[__U7s

The bundle projection p:B=%» X is then defined by
peq(x4€U,y)=x and the maps

i¢=qe¢’*:UxYﬁ p-l(U)} - a)
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are strip maps which define the structure &.

§%;2 If H G is a subgroup the set of maps df H where
¢xéﬁ can be considered as a point in a space which we
call &/H. Then &/H(X,G/H,G,&) is a fibre bundle where
G/H is the space of right cosets [6].

There is a very important theorem about this fibre
bundle, a proof of which will be sketched here as some
details of the proof will be referred to later. The
theorem is well known [15 p441.

THEQREM Let Hc G be a subgroup and let We G/H be an

open set with d:We» G such that Jed=¢ where §:G=p G/H

is the natural projection. . .Then the substructures of

g with group H are in one-one correspondence with the.

cross sections of &/H(X,G/H,G,E).

PROOF Let q:f&i=» &/H be the natural projection.
Suppose e & is a substructure with group H. Then if
we define f(x)=q(ﬁx), f:Xey 8/H is a cross section.

On the other hand suppose [:Xed E/H is a cross
section. We put E=q (%)} |

Let d:U&Ge=bﬁU be a strip map of & then we may also
write d:Ux(G/H)eé»mU/H since © and @/H are associated
[El.S]. Then the map |

Bego(k,d)ed % £:U' & a)
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where U'e U is open is a local cross section of & and the
set of such cross sections clearly covers X so that we
have only to show that ¥ has values in @ [81.37.
Now it is easy to see that qeg=ge(¢,q) from which
qeil=go (€ o) o Lot
=gfo(¢-.-.,-.&)od_lu f=f.
So that ge¥=f and ¥ has values in @ which completes the

proof.

82 Manifolds

I have made as few restrictions &as possible in ny

definition of a manifold not reguiring, for instance, a

=

anifold to be connected or separable, although these
extra hypothesis must of course be made for certain
theorens.

RO-dimensional" manifolds are also allowed which
are -just discrete spaces. This is not done solely for
the sake of completenéss for it is often useful, for

instance, to consider a discrete group as a Lie group.

§2.1 DEFINITION Let M be a Topological space. Let @5

be a set of maps such that to each map f€ GFr there

corresponds an open set U« and an open set EG:Rm, m
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being a fixed integer >/ 0O, such that f:E&U.
If a) the set {UY associated with e!ﬁ? covers M;
b) i_‘Ilo f, is non-singular and of class r for
any pair of maps fl,fz-é @fr;.
then & is called an atlas of the manifold M(R",® )

where @'r is the maximum atlas 9;,6. @r {15 po1, 17 pes, 71.

Any atlas defines a unigue manifold.

m is called the dimension of the manifold and r its
class. If r)l we say the manifold is differentiable.

The notation M(RT, e‘rr) is apt to be cumbersome and
therefore it is usual to speak of the manifold M wi;chout

. specifying the atlas implied.

A np.mber of properties of a manifold can be
extended to a complex manifold M(C™,0L) which is defined
in a similar manner but with the requirement that the
maps in b) be analytic. However it will be assumed that

the manifolds considered are real.

§2.2 The product of two manifolds M(R™,& ) and N(R",%-)
is the manifold of dimension m+n and of class min(r,s)
defined by the space MxN and the atlas & x%  [17 p751).

If w:M—= N we say that w is of class t if
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g_l., weof is of class Pt for all féG‘; and 'géué-.s. We
say that it is regular at x{M- if ¢ is differentiable,
that is t) 1, and if g_% wef has a Jacobian matrix of
maximum rank at f-l(x) {17 p8ol. « is regular if it
is regular at every point of M. This definition of
regularity is consistent because of condition b) in the
definition of a manifold.

If f:E¢2U where EcR" and UeM are open and if £
is regular and of class r then f(—@-‘r.

If Nec i, N having the induced topology we say that
N is a submanifold of class t if the inclusion map
i:Ne>M is regular and of class t [17 p85\. In
particular if N is open it is a submanifold N(Rm,e#;)

anr £ ‘ N
where @r c ¥,

§2.3 DEFINITION Let M(R",®") be a differentiable

manifold. Suppose fl:Eleﬁ Ul and fE:E26=b 112 are two
maps of F . Let le(x) be the Jacobian matrix of

-1 : . .

f]% £, associated with x(-Ul(\U2 so that J,,:U) AU~ L(m),
the real linear group on m variables. Now if J25 and
Jls are defined similarly Jl?.(x)'JZB(X):JlB(X) from the
theory of Jacobian matrices. Thus from the bundle

structure th.eorem any atlas of the manifold defines a

unique fibre bundle TQ@a)(M,R",L(m),5) since L(m) is a
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transformation group of RT [8§1.81. This fibre bundle

is called the tangent bundle of M [15 p22, 7].

We shall use a symbol similar to T(M) for all
tangent bundles, T being an operator associating with a
differentiable manifold its tangent bundle.

We will write TV(M) for ’I‘(M)V for convenience.
TX(M) is the tangent plane at x and éTx(M) is called
a tangent at x. TX(M) is a vector space and a map
w:T(M) T(N) will be called linear if it is fibre-

preserving and TX(M) is linear for every x£€M [15 paul.

§2.4 We note that L(n) leaves O4R" invariant and thus
there is in every tangent bundle & subbundle
o(M)(M,0,L(m),8). The fibre being a point,o(M) is
homéomorphic to M under the bundle projection. This
subbundle is called the bundle of zero tangents and,

following the usual practice, we identify it with M.

B2.5 From the construction theorem to every £€F,
f:Tex U, thepe corresponds a strip map of the tangent
bundle which we call

Of : UnRley Ty (W) [§i.8 a)l

The set of such strip maps we call geb.



If & is an open set in R it is a manifold, an atlas
being just the inclusion map i:Ee» RT.  Hence
Ji:ExRf=> T(E) and the tangent bundle has a reduction
which is trivial. In general we ignore i and identify
EKRm and T(E) to avoid cumbersome notation. Later,
however, a situation will arise where care has to be

taken to avoid confusion due to this simplification.

If UcM is open it is a submanifold U(R™,®r') where
@'er [82.27. HNow 9@F' is a set of strip maps of
TU(M) covering U so that in a very natural way we

identify TU(M) and T(U).

T(i) is itself a manifold of dimensions 2m. The
atlas is defined by the set of maps

d® =§ar=0fe(f,e): ExRe= T(U), where f{&H}.

Finally I would like to make a few remarks on
manifolds of dimension O. In the definition RO is taken
to consist of one point only and L(O) is the identity.
Such a manifold is clearly discrete and analytic.

A necessary and sufficient condition for a
manifold M to be O-dimensional is that, using the

convention in 82.4, T(M)=M.
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83 Integrable Structures

An integrable structure is quite a useful idea and
coordinates some well known concepts. I commenced my
research by trying to develop some necessary or
sufficient conditions for a given substructure of a
tangent bundle to be integrable, but this seems very
difficult and at present I can only make a few
conjectures, the main work of this thesis being concerned
instead with connections and fibre bundles over bundle

spaces.

§%2.1 DEFINITION Let M(R™®, &) be a differentiable

manifold.and T(M)(M,R",L(m),5) its tangent bundle.
Consider Ve M. A substructure @iycd, is said to be

integrable if there exists a set of maps®@*c® such

that the restrictions of ¢g@h* are a set of strip maps
of ﬁv covering V [21]. The reduction of TV(M) is

called an integrable reduction.

A number of workers. have used the idea of a sub-
structure to define important properties of a manifold
and a few examples will be given here to show what the
condition of integrability means in each case. .These

examples will be referred to later.
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I consider a differentiable manifold M(R®, @) and
its tengent bundle T(M)(M,R™,L(m),5). fed is a sub-
structure with group GeL(m). Of course @y may be

integrable without @i being integrable (i, being the

M
same as ii).

§5.2 SCHOLIUM If G=SL(m), the special linear group,

i is said to orientate the manifold. In this case @
is always integrable.

PROOF Consider f€ &, f:E«»U where U is connected.

Let q:MyL(m)==L(m) be the natural projection and
w:R%= R™ the reflection in the origin. Then foa{ @k
and a(fou)oaf_l(x,g)=-g for x€¢U Qnd g€L(m) E§2.21.

Now since U and SL{m) are connected so¢ is i and
hence, since L(m) has only two components, qadf-l(ﬁU)
is either contained in SL(m) when ¢f is a strip map of
i or not in which case @¢(fex) is a strip map of ii.

‘Hence il is integrable.

8%5.% SCHCOLIUM If G is the complex linear group

CL(k)eL(2k) where m=2k, then i is said to be a nearly
complex structure. If it is integrable M admits’ a-
complex atlas OC such that s lceF for some |
o:c¥%= B®. [15 p209, 10, 11 7.
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PROOF Let ®** be the atlas of U such that ¢g@®** is a
set of strip maps of 1. Without loss of generality
we suppose that CL(k) is represented by the partitioned
matrices of the form [A -B ] . In this case we put
a 2k B 4

e(a+ib)= [b‘ £ R°™.

Then ®&* 0 is an atlas defining Ol for the condition
afI].'x°af2.x(CL(k), where fl,fzée-'*, is Jjust the

Cauchy-Riemann conditions for e 1 filo £, to be
complex analytic. Since ®*0c Ol then Oeg le @

since ® is maximal.

§3.4 SCHOLIUM If G is the group which leaves a
k-dimensional linear subspaée of R invariant then
(M) has a subbundle B{M,Y',G,i@) cailed a field of
k-planes. If © is integrable then the manifold has
a laninated structure aniguely defined by @ [16 pg9].
PROOF  Without loss of generality we may suppose
GeL(m) to Ibe the set of partitioned matrices of the
form [A C] where A€L(k) and B€L(m-k).

Let g}ﬁ*g.@} be an atlas such that ¢@®* is a set of
strip maps of ii. If fl,f2€®* then the condition
3Tl e 31, 4G implies, if £t f2(a2,b2)=(al,bl)éRk-.‘Rm‘l_‘,
that b;.is independent of a,. This property defines

the laminated structure.
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The field of k-planes is in fact integrable in the
usual sinse of the word [27]1. Later we will discuss
the Poisson bracket operation and show how the usual

definition of integrable k-planes may be interpreted.

It is possible to show that if M has a pair of
fields complementary to each other and which are
simultaneously integrable then M is an open set of the
product of two other manifolds. This problem is
equivalent to the integrability of a substructure with
group L(k)xL(m-k). It is probably true that if the
complementary fields are each integrable then they are

simultaneously integrable.

8%.5 The last example I wish to give of an integrable
structure concerns a Riemannian metric. Since the
manifolds we discuss are not necessarily separable the
quadratic form does not always generate a true metric
but it is a useful concept. Only positive definite
metrics will be considered, although analogoug results
hold without this restriction. We use the fact that

a positive definite quadratic form over a manifold is
equivalent to a substructure of the tangent bundle with

group the orthogonal group [7].
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SCHOLIUM If G=0(m) then the Riemannian metric
associated with @ is locally Euclidean if and only if
i is integrable [8 p56 1.
;ggzzgl Suppose f£@F, F:EeU. Let :U'«Rl=T(U'),
where U'e U is open, be a strip map of 1. Write
AQx,£)=M7D Of 4L(m).  Then G(x,£)=A%(x,£) A(x,£),
where At is the transpose of the matrix A, is independent
of ¥ and is the symmetric matrix of the Riemannian metric
at x with respect to the coordinate system f.
Clearly if the Riemannian metric is locally flat,
that is, if there exists an atlas ®* gsuch that G(x,f)
it the identity for all f¢&* then @ is integrable.
Conversely if i is integrable, J& * being a set of
strip maps of i with @*c @ , then G(x,f) is the

identity for any f€@*.

83.6 To finish this chapter we will prove a theorem

that is straightforward but essential later see 17 p82 .

n

THEOREM Let M(Rl,er) and N(Rn;Ct) be two differentiable

manifolds. Then the product bundle of their tangent

bundles
(T T(R) ) (M, RER?, L(m )L (n) , &ni)

is isomorphic to an integrable reduction of the tangent

bundle



T(Bin ) (M, R* 2, L(m+n) ,8*).

PROOF ~ An atlas of MwN is @wdk therefore g(Fxh) is
a set of strip maps of ©*. In fact (@ wdk) is also
a set of strip maps of a substructure €« 6* with group
L(m)«L(n). Because if f£,,f,4® and k;,k;¢ 6t then
(£1,k)7% (£5,k5)=(£T% £,, kJ% k,) and the Jacobian
matrix

o~ -l o~ - \

a(Il’kl)(x,y) d(lg,Kz)(x,y)
is the partitiomed matrix
-1

afl.x af2.x

¢ L(m+n)

Now since this group L(m)xL{xn) acts on Rm+n=quR;
in the same way as the group of the product bundle of
the tangent bundles, it is only necessary to show that
the product of the principal bundles &ixll is isomorphic
to ©. This is clearly true, 9(f,k) (3£~ 1,3k™1) being

a restriction of the isomorphism for all f€® and kéd.

In future we will not hesitate to call T(M)»T(Y)
the tangent bundle of MxN, although this is really an
abuse of language.

When considering T(T(R™)) however we must be
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particularly careful as this may be considered as
T(R®%R™®) since T(R™) is trivial and thus again as the
trivial bundle (R E®)xR°® or alternatively by this
theorem as the product bundle T(RE)»T(RM) or
-(Rmkﬁm)x(Rmem). This distinction occurs repeatedly

when every care is taken to avoid confusion.
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CHAPTER 2 DIFFERENTIALS AND OTHER MAPS

B4 Differentials

The idea of defining a differential as a map is
due to Chevalley [17 p78). However the definitions
of tangents and manifolds that he used were quite
different from those given in the first chapter of this
thesis and thus it is necessary to define and discuss

this differential map here.

§4.1 DEFINITIOCN This definition is in three parts.

a) Let Ee€R™ and FeR® be open sets. If m:E~F

is a differentiable map then dw:T(E)—a T(F) is defined by
dﬂ(a1y>=(ﬂ(a), glé'y)
where %g is the Jacobian matrix of % at a, so that
m 9T, /o0

y€R~ and Ja J€R .

b) Let M(R®,®) be a differentiable manifold and
consider f£QF, f:Ee®U. We define

df=9fe (f,6):ExRE=T(E)e=T(U). [82.5].
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¢) Finally let N(R®,&) and L(Rl,Ct) be two other
differentiable manifolds and let wl=M-°N and WZ:L=$1M
be differentiable. Then we define
d(w1°w2)=dﬁl°dw2 .
The map dw thus associated with ahy differentiable map

7 is called the differential of +.

84.2 The consistency of this definition is perhaps

not immediately obvious and we must show that the
condition in ¢) holds for the differentials in a) and b).
If L, M and N are open sets in Rl, R® and R%
respectively this condition is the immediate interpretation
of the theorem on the Jacobian matrices of functions of
functions.
In the second case for fl,fzéﬁk we nust show that

1 1

(dfl)' ¢ Af =d(f, o f,). Now

N

p=dll; e ds
(a£))7% af(a,y)=(4]1,6)ed1T% 01, (£5(a) )
=7, €)(£,(a) 8 5(a) 7)
= (7% £,(a),875(a) y)
where glz(a) is the Jacobian matrix of fzkafg at a (82.5].
This last term is by definition d(f]% £,)(a,y) which
proves that (df))7s af,=d(£]% £,).
Now by definition (dg)™% d(gewjef T)edf for g¢%

and f€& is a restriction of dw; and it is easy to see
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from what I have Jjust shown that such restrictions

define d"l uniquely.

84.5 A large number of very useful properties of the
differential as défined in a) can be extended to the
general case because the maps d® as defined in b) are
bundle isomorphisms. We shall not prove all these
results for they are quite straightforward, but will

just state these which will be needed later.

i) 'The projection of dy is . That is d-n\M=-n
[81.4, B2.41.
ii) de= € and a$=% [80.21.

. - . i s . , . -1 .
iii) This last result implies that if is also

e
. - - - '—1_1 -l'\ -l
differentiable then (dw) ~=d(w ) because d(y ~Dedy=
—-I -—
d(wr & w)=de=¢. We may therefore write dy 1 for both

a(w1) end (am)?t.

iv) If 7:MxN=rM is the natural projection so is
Am: T(M)wT(N) =2 T(#) {83.6].

v) If ¢:M—>N is a constant map so is dv. This
has in fact a converse. If d7:T(M)—% N then 7 is
constant on every connected component of M [17 p80)

vi) If ("1”'2)’ MixM,— NixN, then

d(ary»my) : (M xM,) — T(NxN,) corresponds to
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(@ »dmy) s T(My IxT(M,) — T(N, ) $2(N,) [83.67 .

vii) If 7:MxXN =L and for x€M 7, :N— L is defined
by w (y)=n(x,y) then d(w, )=(dw), where (dw) (7)=dw(x,Q)
so that we may write dmy for both d(“x) and (d“)x'

viii) Any differentiable map is linear [§2.31].
In the case when :MxN— L this implies that

dw(§ ,?)=d-n(x,'z)+d-n(§,y‘) where §€TX(M) and ?é’l‘y(N).

84.4 If the map v is regular it has certain properties
that will be very important [§2.21. These properties
are again exteunsions of simple properties of the
special case a) of the definition and so I will not
give detailed proofs.

be seen from this that Chevalley's

F_.I

it wil
definition of regularity is slightly more restricted

but otherwise eguivalent to that given here [17 1380'!.

Consider a differentiable map w:M— N where M and
N are differentiable msnifolds of dimensions m and n
respectively. Let dw\’I‘X(M)=n :TX(M)—-bT_"(X)(N) so that
[ is a linear map. The properties of such linear
maps enables us to assert the following:-

a) 1 is onto if and only if myn and 1+ is

regular at x;
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b) Tl is one-one if and only if m4n and w is

regular at x.

Further, the classical theorems on the independence
and reversibility of functions of several variables can
be interpreted in the following way:-

® ) VWhen the conditions a) are satisfied there
exists an open set Ue M with x€U such that
-.T‘U:U=$ +(U) is an open map [17 p80O1;

%) .When b) is true then there exists an open set
Ue M with x€U such that w|\U:Ued w(U) and has a regular
inverse [17 p79]1.

We will require these results most often in the
following form.

THEOREM If M(Rm,@) and N(Rn,c}) are differentiable

manifolds and w:M—» N is regular then:-

a) w:M=yN implies m)n, w is open and du:T(M)=% T(N);
b) w:Mes N implies mgn and dw:T(M)ed T(N).

c) T:M&3 N implies m=n, 7 - is regular and

dr: T(M)e T(N).
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§5 The-twist and solder

The solder has been defined by Ehresmann but the
twist is my own conception [11 p42]. Both these maps
prove very useful because they chafactize properties of
differentials without having to refer to each individual
coordinate system. Just how far these maps go towards
characterizing the differential of a differential I do
not know, but it is clear that if a substructure is
integrable it will have some special relation to these
maps and they might be used to characterize integrability
conditions.

The twist has some relation to the "exterior
differentiation of forms" which is used to such-gbod
purpose.by Cartan [ 5, 17] .

Both these maps could be generalised, indeed the
solder is already a special case of the solder as
defined by Ehresmann. We do not require such
generalisations here, however, and so will not discuss

them.

§5.1 Consider differentiable and linear map [1:T(E)—> T(F)

where EcR® and Fe R® are open.. We can write
~ ~N
M (a,b)=(w(a),MN(a)-b) where (a) is some (mxn) matrix.

Let T(T(E)) be written as the trivial bundle



T(E)u.R2 or (ExR®)w(R%R®) writing T(T(F)) 51m11arly.
Then

aM ((a,0), (e,a))=((n(a),F1(a) b)), <%—“ e oo Bar-an)
where %g is the Jacobian matrix of 7w at a and gﬂ b'c is
linear in both b and c.

0N
o If {1 were a differential so that F](a):%g then
gﬂ-b-c is also symmetric in b and c. We can express
these remarks in the following way:-

We denote ((R™0)w(OxR™)) by T™R™) and define

7:T(T(R™)) e T(T(R™))
by +((&a,0),(c,d)9=((a,c),(b,d))
and o : TR e T(RD)
by o ((a,0),(0,d))=(a,d). )

We note immediately that

i) ddye+=Toddq ii) Tleo=peal

The map + may be used in characterizing the
differential of a differential and & in characterizing
a linear map. + is especially useful because the
property it represents is one 5f the most important in

the treatment of integrability conditions.

85.2 These simply defined maps may be extended to

manifolds.
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DEFINITION Let M(R™,®) be a manifold of classjy 2.

If +:T(T(R®)e=x 1(T(R®)) is as defined in §5.1 then we
define veddfeseddf ' to be a restriction of the twist

map 3:T(T(M))exaT(T(M)) for all f€@F.
The consistency of this definition follows
directly from formula i) of 85.1 and we use the symbol

+ for the twist map on any manifold.

85.3 As with differentials we can generalise some of the

properties of + in 85.1, the most important being:-
a) ToT7=6;
b) teddp=ddwey for any map w of class ) 2;
c) the twist 7:T(T(Mel))e=s T(L(MxN))

corresponds to  (5,+):T(T(M))wT{T(N))e=s T(T(M) ) nT(T(H)).

DEFINITION If WeT(T(i)) is invariant under +, that is,

if 7(W)e W we say that it is symmetric.  Similarly if
n'T(T(M))—*T(T(N)) is such that T°n =\-\! T we éay that

F1 is symmetric.

It is interesting to note that if a differential is
symaetric it must be the differential of a differential.

This may seem surprising but it is gqguite simple to prove.
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However I shall not need this result and will not

prove it in detail.

85.4 The solder is a similar generalisation ofa'j11§5.l.

DEFINITION Let M(R™,@) be a manifold of class}) 2.

We define T#(M)c T(T(M)) by T#(M)= Lf-é-)@ aar{r#(m)} .
Then if o= T™(R™)eT(R®) is defined in §5.1,
dfevbddf-l is defined to be a restriction of the sclder

map ;:T¢(Iﬂ)=¢ T(M) for all I€@F.

The consistency of this definition is a conseguence
of the formula ii) of §5.1. In future we will use
. for every solder map irrespective of the manifold to

which it refers.

1#(1i) is pointwise invariesunt under 7. That is,
every point of T (M) is a symmetric set. In fact an
alternative definition of T®(I) is the set of symmetric

points in Ty (T(M)) [88.21.

As before we can generalise a number of properties
of & and T™W) as defined in 85.1. The most important
are:-

a) the solder is linear;
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b) TFUXN)=T*(1) «I¥(N) and the solder
o : TP ) & T (M nN) corresponds to the solders
(6, &) : T#F(UWTF(N ey T(M)xT(N); |

c) If MN:T(M)-—->T(N) is linear and differentiable
then dll :T%()— T#(N) and Meo=cvall.

§5.5 DEFINITION Let [1:T(M)—» T(N) be a differentiable

map such that alfl :T#(l\il) - i‘# (N). Then
oedNeoL:m)— T(N)

is called the linear part of M.

From the property c¢) of the previous paragraph it
follows immediately that if Tl is linear it is identical
with its linear part. Since ¢ is linear, so also is

the linear part, so the name is quite Jjustified.

It must be noted that this definition is slightly
vague as no conditions have been given on [} for the
condition on d1 to hold. As a matter of fact it is
sufficient that [ Dbe fibre-preserving and maps
MeT(M) into Ne T(N). That this is so will not appear
until later, but this will not matter as this definition
will not be used just yet f_§d2] In fact the

definition has been put here for the sake of completeness '
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and could have been left till later.

Let us note a {rery important property of this
linear part. If nl and ﬂ2 satisfy the hypothesis and
r']lor\2 is defined then if the linear parts of r\l and
nz are ni and |-|§ respectively then r\it' ﬂé is the
linear part of r\1°n2.

86 Lie Groups

The theory of Lie groups has been discussed in
great detail elsewhere L171. However this approach is
slightly different from the usual one and we need some
theorems which have not been proved elsewhere so I will

give a brief discussion of the subject.

§6.1 DEFINITION ILet G be a group and let G(R',®) be

an analytic manifold. G is then a Lie group if for
8 :8,€G X(gl,g2)=gl-g2 andr(gl)=gzl define two regular
and analytic maps MN:GuxG =G and PG> G,

In this case N is open and so Ng:G&5G is defined
by Ng(g')=N(g,g') L84.4). ~ The definition implies also
if £€& then Agof{® for all g€G and thus i_&;uf where g(G}
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is an atlas of G l&2.11.

86.2 The theorem to be proved now is essential to this
work and has often been assumed but as far as I know
never stated or proved explicitly.

THEOREM If G is a Lie group so is T(G), the maps M

-and @ being replaced by dMN and dp.

PROOF The identity is e€GeT(G) for %g is regular and
» =€ so that if y€T(G) then _
e+ y=AN(e, y)=dN_(y)=de(y)=y L84 .3 vii) and ii)l.
The unique inverse of ¥ is %P(I). For since
J:GeRG then d}A:T(G)==! T(G) 184.41.  Alsone(& ,,s)o%
is a constant map onto e and therefore so is
dhe(de,dp)eds (84.3 v)I. That is
ahe (de,dp)e dB( y)=dhe (de,dp) (5 ) Les.z i1)]
=d\ ()‘,df#(‘)'))
=)”%M(})=e
The associative law in G may be written
Ao (N,€)=(N,€)o N:GuGHRG =D G
Hence
ahe (AN,de)=(dN,de )e AN:T(G)RT(G) £T(G) =8 T(G)
which is the associative law in T(G).

This completes the proof of the theorem.
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§6.2 Two important subgroups of T(G) are G and Te(G).
That G is a subgroup follows from the relations
an|GxG=) and gulG=p(84.3 1)]. |

Te(G) is a subgroup because if p:T(G)=® G is the
bundle projection then pesd\=»ds(p,p) and podp=pep. So
that if ZléTgl(G) and J €T, (G) then ' leé'i‘gl.gz(G)
and }l éT Il(G) Thus_Te(G) is closed with respect
to multiplication and inversion and is in fact a normal
subgroup.

Te(G) is also abelian because if ¥ ,}2(Te(G) then
1
dm(]l,}2)=d>\().1,e)+<1>~(e,2(2)=]l+),2 [84.3 viii)].

Suppose H*c T(G) is a subgroup then p(H*)=H is a
subgfoup of G so also is iH(G and T(H) if the latter
exists. This follows immediately from the result we

have Jjust used to show that TF(G) is a normal subgroup.

86.4 T(T(G)) is also a Lie group, multiplication being
defined by ddhA. These double differentials have
special properties which lead to the following theorem.

THEOREM The twist +:T(T(G))ed T(T(G)) is a group

isomorphism. The set T#(G) is a subgroup of T(T(G))

and o:T#(G)e= 1(G) is also a group isomorphism.

PROOF That + is a group isomorphism follows from the



symmetry of ddn and ddm 185.37.

Also adN:T#(GG) =y THG) and adp: TG = T‘#(G)
and THGxG) = T#(G)«I%(G) £85.41. So that T%G) is
closed with respect to multiplication and inversion
and is therefore a subgroup.

That o is a group isomorphism follows from the

relations oe ddA=dNe& and & dd/Fd)uu— .

§6.5 I am now going to give a proof of a theorem that
is fundamental in any application of the theory of ILie
groups. It is well known, although the theorem has
been written in a number of different ways [17 plOB}.
It is proposed to give a proof here because the methods
and definitions differ from those normally used aud
also because we will refer to some of the details of
the proof.

THEOREM If G is a Lie group the manifold G(RT,®F) is

parallelisable, that is, the tangent bundle

7(G)(G,RF,L(r),d) has a substructure fied with group

identitx.
PROOF Let N\ and A\ . be defined as in 86.1. Consider

f¢@&F,f: L& U, where e€U. Then iﬁ=5;d'}s§ 9f, where g{G}
is the substructure required.

We note that i\g°f; géGk is an atlas of G and hence
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OQXSOf) is a strip map of & for all g€G. Now
d)\g? gfe(f, E)=d)\g? ar
=d(?\g° £)
=g (N ? £)e(N °f1e)
so that d\s s df=9g (A ef) (h e) and hence
d?\g af a(?\"f))\ (e)—a(k"f)
for all g€G. Hence TIe E.

We

£

o
]

H

ine

M=dde (€,9F_):GxR" — T(G) a)
and note that ﬁg=dhé 6fe€ﬁ where Kg(y)=ﬂ(g,y). This
shows that Mg is onto for each g€G and thus 4 is onto.
Also since dN is open and afe is a homeomorphism ¥ is

open L84.41. Finally ¥ is one-one for if’

u\gl,ofele =U(g, oxl() )) where y ,{ €T_(G) then
gl'}l=g2.52° But gll g2éG and } )2 éT (G) while
G AT (G)=e so that g ‘g&,= 3y leUs6.3].

Thus A:GxR=» T(G) is a strip map of & covering G
so that & is in fact a substructure which clearly has

group the identity.

86.6 DEFINITION We say that a Lie group G is a trans-

formation group of the manifold M(R®,®@F) if there is
given a regular map V:GxM=aM of maximum class such that

»(e,x)=x and ve(&,v)=vs(n,¢) (15 p71.
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This definition implies that~ is an open map so
that -og:Me:sM where vg(x)=‘0(g,x). It is a common azbuse
of language, which we will also use, to speak of the map
g when-\.\g is meant. In this case the map dg means

&vg which may also be written as the map g.

THEOREM If G is a transformation group of the

differentiable manifold M(R®,®}) then T(G) is a trais-

formation group of the manifold T(M).

PROOF The proof is quite trivial. In fact it is
easy to see that dv:T(G)xT(M)=9 T(M) has the required

properties.

86.7 Now the general linear group L(m) is a Lie group
and is a transformation group of the manifold RE,
ILEMA T(L(m)) is isomorphic to the normaliser of the

partitioned matrix where 1 is the identity

Loyl
R |
matrix in L(m). This group we denote by D(m,m) < L(2m).
' 2
PROOF The space of L(m) is an open set in R° so
2
T(L(m))=L(m)xR® {17 piscl. If we write an element of
2
R® in matricial form and denote this set of (inxm)
matrices by ™ then P(L(m))=L(m)xT . Thus
~ :L(m)xR%=% RT being defined by ~(g,y)=g'y it is not

difficult to see that
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av ((g 15) » (¥ 5))=(g"y 78'§+§.y)
where (g,g)4L(n)xM=T(L(n)) so that (
represented by the partitioned matrix
g
{ D(mam)
g8 8
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CHAPTER 3 TANGENTS TC BUNDLE SPACES

87 The tangent bundle of a fibre bundle

In this section it is proved that the fibre bundle
we discuss can be fibred in two different ways. This
fundamental theorem gives rise to a discussion of the

subbundles and maps connecting those two fibre bundles.

7.1 We must first give the definition of a differentiable

fibre bundle that we are going to use. Fhresmann has
given one that is almost ezactly the same {8].

DEFINITION Let B, M and Y be manifolds and let G be

a transformation group of the manifold Y [§6.5]. The

fibre bundle B(M,Y,G,5) is said to be a differentiable

fibre bundle of class:r)].if there exists a set of
regular strip maps each of class r and covering i

whose inverses are also of class »r.

This implies of course that the mahifolds B, ¥ and Y
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are all of class } r. It also implies that the bundle
projection and every map of & is regular and of class r
because the natural projections of M Y onto il and Y are

regular and of class r.

It is easy to sée that if B(M,Y,G,d@) is a
differentiable fibre bundle we may define the structure
of a manitold on & so that the principal bundle & is
also a differentiable fibre bundle and of the same class.

Also if k is of class ) r+l then the tangent bundle

T(M) is a differentiable fibre bundle of class r.

§7.2 If % is a local cross section of & then it defines

a strip map of @& L61.2 ajl. Suppose ¥ is regular and
of class r then it can be seen from the construction
that the strip map defined by it is regular aand of class r°
as also is the inverse of the strip map.

An important theorem of Steenrod states that if M
is separable and metric then any cross section of the
differentiable fibre bundle can be "approximated to" by
a cross section of class r unless r=ua[15 p25]. Thus
in some sense any strip map of.ﬁ can be approximated to

by a strip map of class r.
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87.%2 We are now in a position to prove one of the main

theorems of this thesis.

THEOREM If B(M,Y,G,8) is a differentiable fibre

bundle then T(B) is the bundle space not only of the

tangent bundle to B but also of a well defined fibre

bundle T(B)(T(wm),T(Y),'(G),T*(&)). Further the space

T+*(®) is homeomorphic to T(&).

PROUF It is convenient to use the abbreviation T*(B)
for the fibre bundle T(B)(T(M),T(Y),T(G),T*(&))
reserving T(B) as an abbreviation for the tangent bundle.
With this convention the space T(B) may also be denoted
by T*(B).

If p:B=®Hi is the bundle projection, it is regular
and so dp:T(B)=s T(ki) and dp is the bundle projection for
T*(B) U84.41.

if ¢:Uch=bBU.is a regular strip map of & then
ag: T(UIxT(Y)e= T(B;;) {84.4). We will see that we may
define dF to be a strip map of T*(&). These strip maps
will then define the fibre bundle T*(B).

First we note that ped:UxY=%TU is the natural
projection, so therefore is dpedd:T(U)xT(Y)=m T(U) {84.3 iv)].
Hence dp™+{ T(U)}=ad §E(U)«T(¥)k= T(By) so that

A T(URT(Y e T gy (B)=ap  {T(0)}
and ag:§x T(Y)e T*g('B)=dp-l(§) E
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where ¥4£T(U).

Now consider two regular strip maps
dl :Ul* Y& BU]_ and ¢2 : U2V~Y=h BU2
defining ¢, _ and g, . as usual [81.11. Let
810:U; A U= G be the map defined by gle(x)=p’i].'§ fs .«
50 that 812 is differehtiable and for x{Uth2
p’i}¢’2(x,y)=(x,gle(X)°y)- |

If A:GxY¥Y=% Y defines the transformation group G
then

7% G,m(6,%)0 (6,8 51€) o(,€) {86.61
Thus dg]% dd,=(de,d=)e (d€,dg, ,,de) o(d%,de).  But
Ao :T(G)xT(Y)=2 T(Y) defines T(G) as a transformation
group of T(Y) and de=¢, d%=% 84.3 ii)l. So that

A8 dd, (§ »9)=(§,dgy ()" 9 a)

where dglg:‘I‘(Ul)nT(Ue)-—wT(G) and hence d;a’l and dd2
may be defined as strip maps of T*(d).

Consider the principal bundle E(M,C—,G,ﬁ) and let
B:U;Gﬁﬁiu be the strip map of & associated with &.
Then & is a differentiable fibre bundle and thus we
may define T(&)(T(M),T(G),T(G),T*(®)), a strip map of
T+ (& )being dg.

On the other hand the principal bundle
T*(&)(T(M),T(G),T(G),T*(8)) has a strip map associated
with d¢ which we call dg. These last two fibre bundles



are clearly isomorphic the strip map ag corresponding
to the strip map dg. This follows because in the fibre
bundle T(&)(T(i),T(G),T(G),T*(@)) 1(G) acts on T(G) by
left translations. Thus T(&) and T*(&) are
homeomorphic dg.ag L being a restriction of the

homeomorphisn. This completes the proof of the theorem.

§7.4 As an example of this theorem let {(R",®F) and
¥(R",% ) be differentiable manifolds. It is easy to
see that T*(MxY) is the trivial bundle T(M)xT(Y) whereas

T(MwY) is the product bundle T(il)xT(Y) 183%.51.

If ¢ is a regular strip map of & and k€@ «% then
pek is a coordinate map of the manifold B. Therefore
d(gek) is a strip map of the tangent bundle whereas dg
" is a strip map of the fibre bundle T*(B). There is of

course a relation between then. In fact

ddedke (k,e)=dgedk [s4.1]
=d (ge k)
=9 (dek)e(dek,¢)
so that dgegk=9(dok)e (4, ¢) a)

87.5 The last part of the theorem in §7.3 shows that we

may continue the convention we established identifying
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& and ®@ and also identify T*(&), T*(&) and T*(3).
Thus we identify wge}, dZ(E,J) and dz%’z for )4']3((})
and E<T(M).

This means that we identify d@(x,e) and ddx. But
dB[GxY=B so that d@(x,e)=g(x,e)=g €bec T(&). Thus we
do not distinguish between the maps ddec T*(&) and the

zero tangents @c T(a8).

These identifications enable us to prove the
following very useful lemma:-

LEMMA Let o:BxY =6 B be defined by a(#,,y)=4,(y) then
do\(eg,?)=9§(7) where dw:T*(&)xT(Y)=> T*(B).

PROOF Let w:GxY =Y be defined by ~(g,y)=g'y then if
g is a regular strip map of & the map ge (e ,ﬂ»)c(;a’_l,&)
is a restriction of« . Thus d;do(dr.-,du)u(dﬁ_l,de') is a
restriction of dw.

Consider Ggé’l‘*g(m). Then we may write Gg=dd§°}
for some regular strip map ¢ and some Z(-'I‘(G). In this
case

(8,7 I=an(adge 5,7)
=dp’o(e,d«:)o(d¢>’—l,e)(d¢g° I’?)
=dd°(f=,d'\?)(%,},7)
=d¢§()..y)
=d¢g° 3(7 )=9g(7) .
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A very useful consequence of this lemma is, if
q:T(E)=> & and q:T(B)=2B and P:T(Y)=2 Y are bundle
projections, that gedw=we(qg,D) 184.3). That is

a{og(}=a (e B )} -

§7.6 If B'(4',Y',G',8') is some other differentiable

fibre bundle then the tangent bundle T(BxB') has a
reduction to the product bundle T(B)«T(B') [8§37.6].
In fact from a short scrutiny of the proof in 87.2
one sees tnat the fibre bundle

T*(BxB' ) (T(hihi' ), T(¥xY"'),T(GxG"'),T*(ExB')) is
reducible to the product bundle of T+*(B) and T*(B').
This is a simple consequence of a result on

differentials [84.% vi)l.

The same result also enables us to see that if B

] 3 * A ] — Mk N * ]
and B' are associated then T*(BxB')=T*(B)xT*(B').

87.7 Suppose w:B-2 B' is a differentiable and fibre-
preserving map so that if p:B=s M and p':B'=> M' are
the bundle projections p'e w=mep where  is the
projection of [§1.51. It is easy to see ﬁhat pt
is differentiable so that dp%-dg=d;odp. Thus both

dy:T(B) = T(B') and d:T*(B)—>» T*(B') are fibre-preserving.
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§7.8 The last of these short remarks is about subbundles.

Suppose B'(M,Y',G,&) is a subbundle of B. Then T*(B')
is a subbundle of T*(B) with fibre T(Y'). Before
showing this it is necessary to prove that T(Y') is
invariant under T(G). Now the fact that Y' is invariant
under G may be written ~(GXY')eY' and hence
&vi?(G)xT(Y'jgc-T(Y') where ¥ is defined as in B7.5 .
Hence T*(B) will have a subbundle with fibre T(Y').

That this is in fact T*(B') can be seen from the fact
that if ¢:U%Y=#]%Iiﬁ a regular strip map of & then

g:UnY'en BI'J so that dg:T(U)nT(Y')e=® T’E‘(U)(B.)'

§7.9 The fibres of the fibre bundles are submanifolds
and form a laminated structure of the manifold B {8, isl.
It is clear that the set of tangents to the fibre should
be an integrable field of n-planes, Y being of

dimensicn n. The next theorem describes this
integrable field.

THEOREM Eﬁ(B)c:T(B) is an integrable field of n-planes.
PROOF T (B)= ’Z}% ag §2(1)}= 50 T(B ) since if

;a’xééx ;¢7)’X:Y=)BX and hence ddx:T(Y)g T(Bx). That is

Tﬁ(B) is just the set of the tangents to the fibres of B.

Let dl:Uly.Ye=B and ¢2:U2*Ya==aBU be two
2

Uy

regular strip maps of & and consider xéUl(\UZ' Let
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| kl,kgéc#xqi be such that kIl(x,yl) and kél(x,ya) are
defined wheré dl(x,yl)=¢2(x,y2)=b. Then
3 (Fok; )y (ORR™)=9 (g0 k) ) (B (x,77 )5 (0xB™))
=ag e Ok, ((x,5,),(0R™))  (87.4 &))
=d”’l1.x<iTyl(Y)}
=d¢2.X{Ty2(Y)'§
=9(40 ky)y (OR™).
Now the set of maps like ¢i°kl is an atlas for'B
say {,. We have seen that the strip maps ddL define
an integrable substructure on T(B) leaving (OxR®)
invariant. Thus we have a subbundle which is an
integrable field of n-planes. The subbundle is
clearly &zﬁ T(Bx)=Tﬁ(B).
87.10 Another subbundle of T(B) is the set of zero
tangents B T(B) in fact it is a subbundle of the
subbundle in the preceding paragraph. It will be
proved that it is also a subbundle of Tﬁ(B).
Before doing this however we will define "semi-
integrability" which extends the idea of an integrable
structure a little further [83.1]1.

DEFINITION If ecmﬁ(m) is a substructure where

WeT(M) it is said to be semi-integrable if there exists

a set of strip maps of & where restricted differentials
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are strip maps of € covering W.

The reduced fibre bundle with structure © is then
said to be a semi-integrable reduction of T} (B) We
are mainly interested in the case when W is the whole

of T(M).

THEOREM diﬁC-‘I‘*gﬁ) is a semi-integrable substructure.

The semi-integrable reduction of Tﬁ(B) with this sub-
structure has a subbundle isomorphic to B(M,Y,G,&)
Ls7.51.

PROOF We use the notations of the previous paragraphs

of this section. glg:Ulr\Uz-a G is defined by
812<X)=ﬁ1%£ r'52.):' lhen dﬁz%€d¢2. =dgl2(§) where
R4T(U; AU,) 87.3 a)), so that dd] s dd, =481 5 (%)=g, 5(x)
since dglz\ Ul nU2=g12. Thus dﬁ:Tm(m/ is a seni-
integrable substructure with group G and is clearly
isomorphic to @&.

Since G leaves Ye T(Y) invariant there is a sub-
bundle of the reduction of T*(B) with fibre Y.
bundle space i8 ;;25 d¢x(UxY)— L—zj ¢ (UxY)=BeaT(B).
This subbundle is isomorphic to B(M Y,G,3).

This theorem shows that we may consider the fibre

K
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bundle B as being inbedded in 1*(B).

§7.11 Suppose the principal bundle &(M,G,G,&) is of

class r. Consider a substructure fiec & with group

He G. Then the principal bundle ET(M,H,H,f) may be

of class s&r or may not even be differentiable Y_§’7.l].
If it is differentiable and of class s then T*(&)

is a substructure of T+*(&) as might easily be seen

from the construction of the latter [§7.31. In this

case we will say that the substructure i is of class s.

THEOREM Let f:Me> &/H be the cross section of &/H

defining il 151.91. Then i is of class s if and only

if £ is of class s.

PROOF Let us consider the proof sketched in B1.9 .
'If i is of class s so then is f because the natural
projection g:d=y &/H is of class r) s.

Conversely if the cross section f is of class s
then since G is a Lie group we may choose d:We» G to
be analytic {17 pll0l). Then if £ is of class r s the
map‘ﬁ=¢°(e,d)o¢—% f is of class s. But if the local
cross section‘ﬁ is of class s so is the strip map which
is defined by ¥ and so is the inverse of this strip

map [§7.21. Hence ii is of class s.
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This theorem shows that besides approximating to
strip maps by differentiable strip maps as in 87.2 we
can, under similar conditions, "approximate to" sub-
structures by others of higher class. This is very
useful as substructures play an important part in the

most recent theories of differential geometry.

B8 The tangent bundle of a tangent bundle

We will discuss here a special case of the fibre
bundle defined in the last section which is that used
in the classical theory of connections. It is shown
that the twist is an isomorphism between T*(T(M)) and
a reduction of W('WL(M)) and that there exists three
inbedded fibre bundles isomorphic to T(M).

I do not know whether any of these properties
characterize T*('(M)), although it seems possible that

a suitable selection of them will do so.

§5.1 THEOREM Let M(R™,8%) be a manifold of class) 2.

The twist +:T*(T(M))e T(T(M)) is an isomorphism between

the fibre bundle T*(T(M)) and an integrable reduction of

the tangent bundle T(T(i)).

PROOF Consider f€&F, f:Ee»U. Let k=(f,e) so that k
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is a coordinate map of the manifold JAxRT

If we consider T(T(E)) as the product bundle
T(E)}T(R") then dk=d(f,¢)=(df,de) (84.3 vi), 8..61].
So that writing T(T(E)) as the trivial bundle if
((ay0),(c,d))€I(T(E)) then

dke +((a,b),c,d))=da(f,¢)(a,c),(b,d))

=(df(a,b),de(c,d))
=(df,e)((a,b),c,d)).
That is when T(T(E)) is considered as the trivial
bundle T(E)xT(R") then dke;=(df,€).

Now still considering T(T(E)) as the trivial
bundle ddf=9dfe(df,e) since A% is an atlas for
(M) (82.5, 84.11. But also df=3fvk so that

ddf=reddfe {85.31
=tod(gfek)e
=7odgf edkoe
> =7edgfe (df,¢)
Consequently
10ddf=9df : T(U)rT(R™) e T(T(U)) a)

Let p:T(M)==» M and q:T(T(iM))== T(M) be bundle
projections then dpeddf=qeddf:T(U)«T(R™)=s T(U) both
being the natural projection. Hence qotedgf=qoegdf=dp.dgf
for all f€Q¢ and so

Qo T=dp b)
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That is 7:T*(T(M))e=>T(T(M)) is fibre-preserving, its
projection being ¢ (81.4).

We have already proved that t.d9®F =9d® .  Therefore
since A& is a set of strip maps of T*(T(M)) covering
T(M) and 9d@ is a set of strip maps of T(T(M)) covering
T(M), d@ being an atlas of T(M), + is an isomorphism.

' We have shown that representing P(RY) as REAR™
implies the representation of T(L(w)) as D(m,m) {86.7\.
Hence ddar are the strip maps of a structure with
group D(m,m) which is therefore integrable. This

completes the proof.

Note that since D(m,m)ec 8L(2m) this theorem implies
that T(m) is always orientable [ 83.2, 14 p23].

§8.2 THEOREM TH(u)=T*(2(M)) T, (T(8)) and thus TH(i)

]

is a subbundle of an integrable reduction of TM(T(M))

{§7.9]. T*TM) is thus a fibre bundle and the solder

5 : ™M) T(M) is an isomorphism [ §5.4].

PROOF Let us first prove that T*?M)=Tﬁ(T(M))r\TM(T(M)).
We write T(T(R®)) as the trivial bundle, and hence
+(1(R")) as the product bundle, (R%R")x(R'%R").

So that Tam(T(R™))=(R"«R")«(OxR") and
TRm(T(Rm))=T(Rm*Q)«(RQLRm) and thus



T*TRm)=(Rm*o);(o*Rm)=T§m(T(Rm))r\TRm(T(Rm)).
Now consider £€® ,f:E&sU. Both ddf:T(T(E))e=sT(T(U))
and ddf:T*(T(E))e=»T*(T(U)) are fibre-preserving { §7.7).
Therefore since df(E«0)=Uc T(U), ddf{TL(T(E)J}=T (T(V))
and ddf§15(T(E)X =74(7(U)).  But by definition
T*(U)=dar§1*(E)}
=daf§TA(1(E)) A T.(2(E))}
~T5(T(U)) By (2CW)).
Therefore TH(1)=\J THU)=Ta(T(M))p~ T, (TCD)).
Now dfer =ceddf {85.4), so that if a€E, f(a)=x,
&» 941 (x, (0,y))=600ddf((a,p), (0,¥y))
=dfee ((a,0),(0,y))
=df(a,y)=9f(x,y).
Since 9 is & set of strip maps for T(M) covering i
and ¢d@ is a set of strip maps for the subbundle
T (T(#))e T(2(M)) this proves that e :T¥(i)e=e T(M) is
an isomorphism. This isomorphism maps the diagonal

of L(m)xL(m), which is clearly in D(m,m) onto L(m).

88.2 We remember that M was idcntified with the zero
tangents o(M)e T(M) [82.41. Since o(M) is a subbundle
of T(M) with fibre the point O0€R™ then T*(o(M)) or
T*(M) is a subbundle of T*(T(M)) with fibre T(0)=0.

The subset T*(il) is not, however, T(M)ec T(T(M)). In
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fact the following theorem can be proved quite simply.

THEOREM T T*(M5E=T(M). Further if o:Me>»T(M) is

the cross section associated with the zero tangents
do(®)=7(E)LT*(M).
PROOF  5:T*(T(M))e=d T(T(M)) is an isomorphism [ 88.17.

T+*(M) is a subbundle of T*(T(M)) with fibre O
therefore +{T*(M)} is a subbundle of T(T(M)) with
fibre O, that is, the subbundle T(i).
Further do:T(M)e—» T*(M) so that if §€T(M),
do(§)€T*(lu) and thus 7edo(B)4T(M). That is
+edo(%)=qesedo(8)

=dpedo(S) 188.1 b))
=d(pe0)(8) fes.31
=de(%)=%

Therefore do(§)=TC§){T*(M) since te7=¢ {85.31.

It is a well established simplification to
identify a wmanifold and its zero tangents and this
convention does simplify appreciably the notation.

In adopting it however, and especially when referring
to differentials, one must be very careful to-avoid

writing § when do(gp or T(g) is meant.

88.4 We have now defined three subsets of T(T(M)) which
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we have called T(M), T*(M) and T%(M), all three being
homeomorphic to the base space T(M).

T*(M) is, as we have already seen, a subbundle
of TM(T(M)) which is isomorphic to T(M). Since =
is an isomorphism and leaves T#(M) pointwise invariant
T#TM) is also a subbundle of Tﬁ(T(M)) which is again
isomorphic to T(u) [85.41.

T+*{(M) is a subbundle of T*{T(ii)) with fibre a
point. Now TiT*(Mj§=T(M) and since T(M) is a sub-
bundle of Tﬁ(T(M)) then T*(M) is also a subbundle of
T, (T(4)) which is isomorphic to T(M) [87.101.

Finally T(M) is also a subbundle of both T(T(i))
and TﬁfT(M)jl In the former the fibre is a point and

in the latter it is isomorphic to T'(M).

An intuitive description of these subbundles will
be attempted here, but it must be emphasized that this

has significance only when it stimulates the

imagination.
al bl
I: )
/ /
/
a \I
b

The diagram above is supposed to represent an
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element of T(T(M)) which we will Eéll'\ . It is
the displacement of the tangent ¥ represented by ab
along the tangent ¥' represented by aa'. Thus
\é'l‘i(T(M))n T*g,(‘l‘(M)). Now TE(T(M)) and TE.(T(M))
intersect only if E,E'{TX(M) for some point x€M
which is represented in the diagram by a.

The twist map ¢ sends this element into the
displacement of §' along § by interchanging the
broken and continuous lines.

The set T#(M) will then be those elements for

which a, a' and b coincide;

T*(M) consists of those for which a and a'

coincide with b and b' respectively;

T(M) being then represented by those elements

for which a and b coincide with a' and b' respectively.
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The properties discussed in this section can
be represented by this model which I have found guite
useful. The element =\ can be thought of this way
as an "infinitesimal circuit”, a conception that will
be useful when we discuss curvature and "parallel

transport around infinitesimal circuits”.
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CHAPTER 4 CONNECTIONS, CURVATURE AND TORSION

89 Connections

The idea of a connection has been trecated in a
number of different ways which vary greatly in
complexity and character [3, 22, 23, 24, 29].

This important concept is treated in yet another way
here and it is hoped that this viewpoint will perhaps
prove clearer and simpler than some others. The
definition is of course a generalization of the
classical definition and of shresmann's which
corresponds to a great extent to my definition of a

linear connection L11 p30].

§9.1 DEFINITION Let B(M,Y,G,d) be a differentiable

fibre bundle. Any substructure D(&)c T*(d) with
group G «T(G) such that di<D(H) is called a

f-connection L[25].
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Since this definition only refers to the
principal bundle T*(&) a fi-connection is common to
any set of associated fibre bundles.

Let us make another simple observation. Since
dd is a subbundle of Tﬁ(ﬁ) with group G, the condition
df «D(&) implies that dE=DM(E) where this last symbol

has the obvious meaning [8§7.10].

An important consideration is whether such a
connection exists. We know that with certain
restrictions this is always.so, the proof following
immediately from this definition. From the proof
of the parallelisability of w(G) we see that the coset
space 1(G)/G is homeomorphic to Te(G) and hence to
Euclideaﬁ number space [56.5]. Therefore T(G)/G is
solid. By a well known theorem of Steenrod if M is
normal and is such that every open covering has a
countable subcovering then T(M) also has these
properties and the local cross section 4&/G of T*(&)/G
may be extended to a full cross section L15 p55].

This is equivalent to saying that a connection exists

(s81.9].

§2.2 A notation for elements of a connection which is
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quite suggestive will be used here. Before this can
be done, however, we must prove the following theorem.
THEOREM  Each @~-connection b(ﬁ) determines a unigque

map A:T(M)yd & D(F).

PROOF Let p:5=9 M, p:T(M)=w M and q:T(&)=m & be
bundle projections. Consider (dp,q%S:IKm)——*T(Mj;ﬁ,
noting that peq=pedp {84.3 i)l. We will show that
this map is open, one-one and onto and is thus a
homeomorphism.

Consider GEGDE(E) where q(eg)=6x. Then any
other element of Dg(m) may be written uniquely as
Giog where g€Ge T(G). But q(@g g)=¢ff g so that since
mx=¢£=a the map q:Dg(ﬁ)-+ @ is one-one and onto 187.51
Tnis being true for any'EéTx(M) and any x4€M the map
(dp,q)e®|D(&) is also one-one and onto.

Now dp and g are pundle projections so that
dp| D(&) and q|D(E) are open, being both onto [81.17.
Hence (dp,q)s8|D(&) is open and thus a homeoﬁorphism.
Tts inverse is the map N :T(i)x@,e=p D(&) which was

required.

The element A(w’x,‘g) we will call D;a’g. If &4 is
a strip map oi ®, not necessarily differentiable, and

if B is the local cross section of @ corresponding to it
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then the map OAo(%ep,e)® is a local cross section of
D(®) and thus defines a strip map of D(&) which we
call Dg [81.21. We see that

DF(§,e)= A (Bop(¥),E)
A (2, .8 )=D¢'§

for E{TX(M).

This notation has been chosen so as to compare
this strip map with a differential with which it
shares a very useful property. This is qeD@d=g(P,D)
where D:T(Y) =» Y is the bundle projection. To see
this we notice that qud(§,7)=qu¢’E(7)=q(D¢{§)o'§(7)
and q(Dw’g)=¢§(§) by definition { 8§7.57.

§9.5 Since GeT(G) leaves Ye T(Y) invariant the
connection D(&) determines a subbundle of T*(B) with
fivre Y. This is called D(B).

Now from the definition of Dg and the lemma in
§7.5 Dgfgo g=D(ds g)g and consegquently Dbg=D¢éd}-{l(b)€D(B).
is defined for any (b,f)€BxI(H) independently of
¢’X€iﬁx. In fact we can define a map Q' :B’:.:I(M)@ D(B)
in this way.

It is then useful to think of Dbg as a parallel
displacement of b along the tangent € but this phrase

is not credited with any real meaning as far as this
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thesis is concerned.

89.4 Suppose llc @ is a substructure with group He G
and not necessarily differentiable then it is easy to
see that A(T(M);ﬂi) is a substructure of D(&) with
group H. This substructure we call D(i). If W is
any strip map of i then DY is a strip map of D(d&).
D{(f) is a ﬁ—conneétion if D(@)e T*(ii) which is
of course not necessarily true in facf T+(if) may not
even exist. If D(fi) is a fi-connection we sometimes
say that I is parallel with regard to the connection

D(d&).

Similarly if B'e B is a subbundle of B we can
define D(4') and say that B' is parallel with respect
to D(&) if D(B')e T*(B') thus requiriang the latter to
exist.

This definition is a generalization of a concept
appearing under various disguises in the classical
theory. We will not stop to discuss this unification

here but will discuss the point later [ 8141.

89.5 Suppose G has the discrete topology. Then
T(G)=G and so T*(&) is itself a connection {82.5]. 4An
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impdrtant example of this is when G is Jjust the

identity, that is when the fibre bundle is trivial.

§10 Curvature

The definition Bf curvature that is given here
is a generalization of the classical one, although
it is not easy to see this from the definition
because the approach is rather different from that
normally used. All other definitions of curvature
have either followed Eisenhart or Cartan { 3, 29].

This section depends upon a rather curious

' theorem.

81C.1 We will consider a differentiable fibre bundle

B(M,Y,G,8) of class 2(8§7.11. We are going to
discuss T*(T*($)) and will need to introduce the
following bundle projections:-

p:B=dM, D:T(M)=s M, D:T(G)=> G

Q:T(E)=> &, q:T(T())=oT(M), q:T(T(G))=x T(G)

r:T(T(&)) = T(&)

These have a number of relations with the twist

and among themselves which follow easiby from three

simple properties [84.3 i), 85.3 b), and 88.1 b)l.
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These properties are best described by the following

commutative diagram.

T+ (&)} > [T (77 (a) |
4 dq,

(B) T*(T(M)) 2=t TCT(M)) (B
W' ,q - ‘$ s '
- p
T (M ' 3 (M

/
o
)
-ol

§10.2 THEOREM Consider a differentiable G-connection
D@ eT+*(&) then D(Q@))='1’*@(E))(\TE’;(ﬁ}LT(E)) is a

D(@)-connection {8§7.11].

X A
PROOF Consider A:T(i)xBexD(&) as defined in £9.2 .

Since A has a regular inverse it is alsoc regular and
thus dA :T*(T(M))xT*(E)e> T*(D(B)) 187.6]. Now the
inverse of dA is (ddp,dq)ed% so that
dqedA :T*(T(M))xT*(&) =» T*(&) is just the natural
projection. Hence

i T+ (T(M))xD(B)== T*(D(&) )~ da” {D(E)}=D(D(B)).

Now we have seen that D¢E?g=D(dxqg)§for
(€,¢,)€T(M)xB and g€G.. This may be written as

Ao (&, 8)=dns (A, &) : T(M )G = D(&)
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where x:GxG=d & is defined as in §7.5 . Therefore
dA e (de ,dw)=ddws (dA, de )
that is to say
dh (%,0g) 7(y)=al (X, 6¢° )
for all IéT(G) {88.3]. Hence using an obvious
notation
D, (D(8))=aA (X, Dg(@))
=d£=(KJDd€°G
=dA (\,Dgfg)oG
To complete the proof now we note that if DY
is any local cross section of D(@) then dD o (DBedp,£)eS
is a local cross section of T*(D(&)) with values in
D(D(®)) the set of such local cross sections covering
P{T(MK)) [85.21. Hence D(D{(&)) is a substructure
with group G [81.31. This completes the proof.
If ¢ is any strip map of © then a strip map
Dd of D(&) is uniquely defined so then is the strip
map DDgF of D(D(&)). This acts in a number of ways
like a differential of a differential, although it
is not necessarily symmetric [ 85.3].
Of course as before reDDg=Ddo (q,q) but also
dqeDD#=Dge@p,dD). To see this we note that
dge dds=da o (dq,dP), that is, dq(eﬁg@'):dq(e\?odﬁ(t‘)
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where G,ST*(T*(E)) and T €7(7(G)). The proof then
follows as in §9.2 [87.51].

It is not difficult to see that
D(D(B))=T*(D(B))(\TB(B)(T(B)). If béBX and
NQQTS(T(M)) where géTx(M) then DDbx\is defined to
be D(DbS)KS This element may be interpreted
intuitively as a parallel displacement of b around

the "infinitesimal circuit® % L88.41.

8§10.3% We are now in a position to define curvature.

DEFINITION Given a differentiable &-connection D(&)

let D(D(E)) be defined as in the preceding pdr&graph.
. -]

fhen <eDDge<elDd ~ is defined tc be 2 restriction of

the map R:T(T(&))&> T(T(®)) for any strip map 4 of

. R is then called the curvature of the connection.

This definition is justified by the fact that
D(D(&)) has group GcT(T(G)) which is pointwise
symmetric (8§5.4]. 1In fact any substructure of
T*(T*(&)) with group a subgroup of T#(G) would

define such a map.

810.4 Certain properties of R follow directly from
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definition. Only one or two of them will be

mentioned here.

THEOREM R:T*(T*(&))e T*(T*(6)) is an isomorphism.

PROOF Let g:UxGe EU be a strip map of &. Then
ddpeDDg: T(T(U)IxT(1(G)) = T(T(U)) is the natural
projection and teddp=ddpes. Hence
ddpeR=ddpe eDDge oDDF
=votoddp=4ddp a)
Thus R is fibre-preserving.
Also R(9*9=R°Gx~for any Q,ST*(T*(E)) so that
R(e\or)a?.qe,cr =R(Q,Qor b)

so that R is an isomorphism with projection.€.

Another immediate property is

Re voR=+ c)
Now dpeR=dqeseDDgo - sDDg ™+
=7 oDDgo~ oDDF L {810.1}
=D¢=(§,“d)°7oDD¢'1 s10.2]

=D o(dP,a})eDDg L
-Dgs DF Yo dq=dq
so that
dgeR=dq and reR=r d)
this equation being obtained similarly.

Finally by an abuse of language we may write also
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R:T*(T*(B))ed T*(T*(B)) which is again an

isomorphism.

8§10.5 The holonomy group has played an important
role in differential geometry. It is not proposed
however to discuss it here but a definition of the
infinitesimal holonomy group will be given, which
is a generalization of an important concept due to
Cartan [2].

Consider foT(T(E)) then R(9x3=em{r for some
unique [€T(T(G)) since R is an isomorphism. Then

roR(G,\)=r(9,cT')
| - =r(0)eqM)=r(8y) (87.5]

since reR=r.

Similarly dqaR(e,\'):dq(e )odi)'(r)=dq(9,,\) {&10.2].

Hence Q(F)=dp(T)=e and therefore
r (T;(T(G))nTe(T(G))=T‘:‘(G) (85.41. This enables us
to make the following definition:-

DERINITION The linear subspace of T (G) generated

by the set U‘[ K-____J {9 s R(@O &l is called the

8 «D(D(&))

infinitesimal holonomy group.

If Q*fD1SD(E)) any other element in DxSD(E))
can be written as G*:g and since R(6_ g)=R(6 )e g

A\ X
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then (G,\og)—lo R(G.&og)=g_le G-_loR(Q’\):o g. So that
since & is an isomorphism the elements of the
infinitesimal holonomy group associated with the
elements of DxéD(E)) vary only by the adjoint
group (17 pl23].

It should be possible to prove that the .
infinitesimal holonomy group is the same for any
open submanifold of M with the induced connection,
but I have not yet attempted this problem.

It may also be possible to prove that, given a
connected subgroup HeG, there always exists a sub=
structure of & with a group which has the component
H if Te(H) contains the infinitesimal holonomy

group due to some connection D(&) {237.

810.6 If the curvature R is the identity map then

the connection is said to be flat [22, 25, 29 p84].

In this case the infinitesimal holonomy group consists
of the identity alone. If the last conjecture aﬁove
is correct then this would imply that there existed

a substructure of & with a discreté group. Let us
compare this remark with the following.

If DG&) is seémi-integrable then so is D{(D(&)) | §7.10].



-8l- -

In fact if dF is a strip map of D(&) then ddd is a
strip map of D(D(&)):. Since ddd ié symmetric R is

the 'identity and the connection is flat. A particular
case aofia.semi~integrable connection is when G is

discrete [89.5].

Bl11l Torsion

In this section will be defined a map which we
will call the torsion and which is associated in a
unique manner with a connection on a tangent bundle.
It is defined by means of the twist map in much the
same way as the curvature. In fact there are a
number of .other comparisons that might be made between
the torsion and curvature. Some writers have
attempted to define the torsionlas part of the
curvature but here, although they are in many respects
similar, there appears to be no direct relation between

them [24].

§11.1 We will be considering here a manifold
M(R®,QF) of class ) 2. T(M)(M,R",G,8) is some
differential reduction of the tangent bundle and

D(@)c T*(&) is a @-connection. We let p:T(M)=>M,
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Q:T(T(M))=»T(M) and P:T(G)== G be the bundle projections.
. If 14, £:Ee U, and T*(T(E)) is written as the
trivial bundle T(E)«T(R®) then we define

Ddf=DJfoe (Af,&) :T(E)wT(R®)=T*(T(E))e= T*(T(U)).

Since dpeDYf:T(U)T(R®)=+ T(U) is the natural
projection DAf:T*(T(E))e=»T*(T(U)) is fibre-preserving.
Also geD3f=Qfe(p,P) so that DAf:T(T(E))es= T(T(U)) is
also fibre-preserving i§9.2].

Thus Ddf has some of the characteristics, as had DDd,
of a differential of a differential. It is not however
always symmetric and this leads to the torsioni[compare
§10.31.

1

DEFINITION The map +¢DdfeyeDdf — is defined to be a

restriction of S:T(T(M))e T(T(M)) for all f{GF. The

map S is called the torsion of the connection.

§ll.2 It is necessary to Jjustify this definition by
showing that TeDdfoToDdf-l is independent of If€QF. To

do this comsider f,, fzéGT then we must show that

toDAf.o yoDAf, "=geDAfp voDdf

'y 1 2 2
wherever both are defined, or, since se+y=é€,

Dde"e DAf =7 oDde*u DAf 0.
Let g),(x)=0f] 2 3f, =DIf] o DY, ¢ for all

E£T (M) and suppose f;(a;)=f,(ay)=x. Then, still



considering T*(T(E)) as the trivial bundle,
ToDdf] e DAL 7((ay,b),(c,d))

1‘ Ddfz((agac)a(b’d)) Y.§5-ﬂ

=re (A£]1, ©eDIT 1 DAL, (af,(ay,e),(byd))

=Tb(del,e)(dfz(aeic)’glg(x)'(b’d))

=T°(del,b)(df2(a2,C),(812(X)'b,gl2(X)'d))t§6.7l

_=ToDde

=T°((al7812(x)'c)a(812(X)'ba€l2(x)'d))
=((ay 87 ,(x) D), (g1 5(x)-c,8y(x)-d))

=Daf] e DAL, ((ay,b), (c,d)).

1

Thus teDdfeyeDdf — is independent of f£ & and the

definition is Justified.

It is easy to see that SeteS=y, geS=q and
dpe 5=dp as for the curvature :§10.4 c), d)j.

€ll.% THEOREM A necessary and sufficient condition

for the torsion S to be the identity is that D(T(M))

- be symmetric.

PROOF If S is the identity then every map of DAGH
is symmetric. Therefore if we use the notation of
811.1 since DAf:T(E)R"e= D(T(y)), then

Ddfep=7oDdf: T(E)«RUe= +{D(T(U))}
But T§¢(E)*Rm1=T(E)*RQ: T(E)T(R®)=T*(T(E)) from the
definition of ¢y so that D(T(U))=Tap(T(U))K=Ddf§?(E)mez.
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That is D(T(U)) is symmetric and so therefore is
D(T(M)).
Conversely suppose D(T(M)) is symmetric. Then
if ¥,¥'€T (M) this implies that T(DEE.)GD(T(M)).
But since ge+=dp and dpe+=q then qu(DEg)=§' and
dp.-r(Dgg. )= and hence we must have T(D&,):Dgé $_§9.2-l.
Suppose §=df(a,b) and €'=df(a,c) and that
Daz((a,b),(c,d))=ddf((a,b), (e, y(b)-c+a)) where y(b)
is some matrix really dependent upon both a and b
(86.7]. Then by hypothesis
daf((a,b),(c, y(c)-b))=adfs +((a,c), (b, y(c) b))
=r*ddf((a,c), (b, y(c)-b))
=ro DAf((a,c),(b,0))
= (DEg)
=D§;
=Ddf((a,b),{c,0))
=ddf((a;b),(c,y(0) c)).
So therefore }(c)-b=)(b)-c.. Hence
TeDdf((a,0),(c,d))=reddf((a,b),(c, y(b) c+d))
=ddfe r((a,b),(c, y(b) c+d))
=ddf((a,c),(b,](b)'c+d))
=ddf((a,c),(b,](c)'b+d))
=Daf((a,c),(b,a)
=Ddfe v((a,b),(c,d))
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That is, teDdAf=Ddfe+ for all f€@F and thus S is the

identity.

If S is the identity we say the connection is
symmetric. This theorem shows that this is
equivalent to D(T(M)) being symmetric. This
definition of the symmetry of a connection is iﬁ
fact a generalization of the usual one. This is
more easily seen from the other equivalent condition

T(Dgg.)=1)§'§ for all §,§'€T, (M) and x€M {22, 23].
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CHAPTER 5 SPECIAL CONNECTIONS

812 Linear Connections

The standard definitions_of a connection usually
reqguire implicitly the connection to be linear. This
is because any relaxation of this condition greatly
increases the complexity of the notation and
calculus of the classical theories. Here, although
there is no simplification associated with the
condition of linearity, linear connections have a
number of useful special properties.

It is shown that there are several different but
equiva}ent definitions of linearity. All the strip
maps of a linear connection D(&) are linear and D(B)
is a field of m-planes in T(B), the base space being
a manifold of dimensions m. This fact is used by
Ehresmann in his definition of an infinitesimal
connection and he remarks that a non-linear connection

might be considered as a field of "elementary m—cones"[llp56
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There is a section discussing semi-integrable
connéctions (which are automatically linear) and
proving that the field of m-planes is then integrable.

It is shown that for a linear connection the
curvature and torsion have the property of being
isomorphisms and in this case we can define the
"square root" of these isomorphisms. This leads to
the unigue derivation of a linear and symmetric

connection from any given general connection.

§12.1 DEFINITION Let B(#,Y,G,5) be a differentiable

fibre bundle and D(B)c T*(&) a connection. We say
that D(B) is linear if D(B)r\Tb(B) is a linear sub-

space of Tb(B) for every béB [ 82.3].

THEOREM D(B) is linear if and only if every strip

map of D(&) is a linear map into T(B).

PROOF  Suppose first that D(B) is linear. Consider
El,'gz-é'l‘x(M) and b€B . If& ,(.\;412 we will write
u§i+¢§2=§. Then since D(RBR) is 11near~xDb§1+eDb§2€D(B).
But if p:B=3M and q:T(B)=3 B are the bundle projections
since dp is linear dp(uLDb{+(,Db§2)=¢G>l+(s§2=i and of
course q(«Db +%Dbg )=b so that we must have

s >
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Suppose_ﬂ{U(Ye=]ﬁIis a regular strip map of &
where x4€U. We write D¢£=dd€](§) so that
Z:T(U)—» Te(G). Then if b=g(x,y)

&Dbgl+¢Dbg2=d.D¢(§l,Y)+¢D¢('§2,Y)

=wdg (€, » y(81 ) 7)+pad(E,, 4(8,) y)
=dg(€,x y(5) ) y+b (&) y)
sinée d¢ in linear. But Db§=D¢(g,y)=dxd(§,](§)'y)
therefore él(gl)-y+b((‘§2)=y=7@)'y for all y€Y.

Now consider ‘1_1,72(-Ty(¥) writingo ;+42,=9 .
Then D(§+p%,,%, +49,)=d8(%, y(€)*)=4F(E, y(§) ¥+7)
[B4.3 viii)]. But

Y&y =wy @ ) vy ® o) T+ up 42,

R PAIRIe AL AR P PO B
=¢)(§l)'7l+w(§'2}-‘?2-
Thus since dg is linear
Dﬂf(&",l-!’(ﬁgz,u?l+(:?2)=&dﬁf('§l Y810 0 )adE s y(8,0°9,) |
=wDA(E 191 )+ P8 5170
and hence Dg is linear.

It is clear that any strip map of D(&) can be
written as DY where Y is a strip map of & which is not
necessarily regular L§9.2]. But Dﬁ—loDﬁ is clearly
linear because if yix=¢xo g(x) then Dp’_la DUE ,Vz)=(§,g(x)°?)
for all §4T (M) and g(x)+p is linear in Q[84.3 viii),

§6.21.. Since the set of regular strip maps of & covers
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M every strip map of D(&) must be linear.

Conversely suppose every strip map of D(&) is
linear. Since TX(M)‘y is a linear subspace of
T (MIxT, (M) then D(B)A T, (B)=Dg(T,(M)xy) is & linear
subspace of ‘I‘b(B)=Dd(Tx(M)xTy(M)). '

§12.2 We suppose that M(R®,QF) and Y(R",%-) are
manifolds. Then B is an m+n dimensional manifoid.

THEOREM D(B) is linear if and only if D(B) is a

field of m-planes in T(B) [ 6%.4, 11 p36].

PROOF  Suppose D(B) is linear.  Then, using the
notation of the preceding paragraph, Dg is linear.

Consider kéGEx% y k:Fe3 Ve UxY and let
g(V)=We Bye  Then the map

8=Dgs Jko(g~ 1,6 ) : WxR% By T(W) a)
has the property ge@(b,a)=b from the properties of
g [89.2]. Also if al,agéRm+n and x,%{R since Dd
is linear Q(b,xal+ea2)=xe(b,al)+ee(b,a2). Thus ©
is a strip map of the tangent bundle T(B) and
furtﬁer

0:Wx(R™ 0)e=s D(W).

Since such strip maps clearly cover B, D(B) is a
field of m-planes.

The converse follows immediately from the definition
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of linearity.

Bl2.% There are therefore several possible equivalent
definitions of linearity of a connection. These last
two theorems enable us to use whichever is most
convenient.

If D(&) is linear then so is D(B) where B is any
differentiable fibre bundle associated with the
principal bundle &. However the linearity of D(B)
only implies that of D(&) if T(G) is effective on T(Y)
and I do not know any conditions for this to be m.

It follows immediately from the fact used in
§10.2

ab\ T+ (7(M) 2 D(B)e=y D(D(B))
that if D(B) is linear so is D(D(B)) because dA -,

being a differential, is a linear map.

THEOREM The linear parts of the regular strip maps

of a differentiable @-connection D(&) are the strig

maps of a linear d-connection which is therefore

called the linear part of D(&).

PROOF If 4§ is a strip map of & we will denote the
linear part of Dg by D*d4.

Suppose ¢l and ¢2 are two strip maps of @&. Then
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Dﬁi% Dg, is a linear map £812.1]. But the linear part
of DdI% D4, is D*dIloD*ﬁé and therefore
D*[lloD*d2=D¢’Ile D4, L85.5].  Hence the maps D*g
are obviously the strip maps for a connection which
we call D*(@). To show that this is a &-connection
we must prove that D*(&)c T+*(&).

Now the condition D(&)e T*(d) is equivalent to
the condition that for any regular strip map
g:UxGe2 B

dg™% DF:T(U)xG e T(U)T(G) a)
but this is equivalent to

a8t DB T(UIRD(E) wmp T(UINT(G) b)
because both Z.GCLT(G) and }-T(G)=T(G) are-equivalent
to the condition ZéT(G).

Now from b) the linear part of d¢—¥aDd which,
since d¢ is linear, is aF L D*4 has the property

dg o D*g: T(U)nT(G)e= T(U) T(G)
and that is equivalent as above to saying that

D*(8)e T*(&) and hence D*(&) is a d-connection.

§12.4 If D(@) is semi-integrable there exists a
set of strip maps of D(&) covering T(M) which are
differentials and thus linear [8§4.31. Thus D(&)

is linear and we can prove the following theorem, M
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being m-dimensional as usual.

THEOREM D(&) is sémi-integrable if and only if the

field of m-planes D(&) T(&) is_integrable [11 p37; 8].

PROOF  Suppose first of all that D(&) is semi-integrable.
We refer to 812.2. The map © is a strip map of the
structure defining the field of m-planes. By
hypothesis we may choose # so that Dg=d¢g and
dge9k=Q (Fek)e (d,e) (B7.4 a)l. Therefore
6=Dgedk (4L, €©)=dgedko (41, €)=3(dok) and the
m~-planes are integrable.

Now suppose instead that the field of m-planes
D(B) is integrable. Let &* be the set & with the
new topology of the laminated structure associated
with thesc integrable m-planes L83.41. If i:B%> @
is the identity correspondence it is easily seen to
be regulaf and by definition of &* di:T(&*)=%D(R).

Now if p:&= M is the bundle projection then
dp:D(&)=>T(M) and hence if p*:pei, dp*:T(&*)=> T(M).
But &* is m-dimensional as is M so that p* is regular
and therefore locally a homeomorphism [ 84.41.

Suppose then that p*:W*es U where W*< 6* and
UeM are open. Then %=io(p*lw*)_1 is a local cross
section of &, and since di:T(&*)=4 D(d@) then

dg:T(U) e D(@). dZ is therefore a local cross section
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of D(&).

Now a glance at the lemma of 81.2 shows
immediately that if the cross section ¥ defines-the
strip map 4 of & then the local cross section d%
defines the strip map df of D(&) [87.21. The
set of such differentials covers T(M) and thus D(&)

is semi-integrable. This completes the proof.

It is quite possible that this theorem could be
extended to give conditions for a general substructure
of T*(&) to be semi-integrable.

The problem of the integrability of a field of
m-planes has been widely studied and a large number
of results are known. Later an interpretation of
the integrability conditions for such a field will be
given [814.2]. In this particular case the
integrability condition, which is by this theorem
the condition for D(&) to be semi-integrable, is just
that D(D(&)) be symmetric, that is, that the connection
ve flat [810.6].

§12.5 Consider a manifold M(R™,®) and its tangent
bundle T(M)(M,R",T(L(m)), &). We will show that if

D(&) is a linear connection then the torsion S
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associated with D(&) has some important special
properties.

THEOREM The torsion S:T(T(M))e T(T()) of the

connection D(&) is an isomorphism if and only if

D(%) is linear. In which case S:T*(T(M))e= T*(T(M))

is also an isomorphism.

PROOF Consider f£@&, f:EeU. Then
DAF:T*(T(E))e=> T*{T(U))
is an isomorphism, the strip map DJf being associated
with the strip map ddé¢ (811.11. On the other hand
DAL :T(T(E))e= T(T(U))
is clearly an isomorphism if and only if D4df is linear,
that is if D9f is linear. The strip map dde is in
this case associated with the strip map © definéd
from Dgf by 812.2 a).
Now S8 is an isomorphism if and only if the

restrictions —eDdfe eDdf T

of S are isomorphisms for
evéry €08, But since T:T*(T(U))&e=s T(T(U)) and
DAf:T*(T(E) )e=yT*(T(U)) are isomorphisms and
T=T-l then

TeDdfe +: T(T(E)))e= T(T(U))
is an isomorphism $88.17 . Thus S is an isomorphism
if and only if DAf:T(T(E))ew» T(T(U)) is an isomorphisnm

for every fé@. That is if every map in Ddd" is linear

o~



which is equivalent to D(T(M)) being linear [8§12.17 .
Finally since T(L(m)) is effective on T(R™) this is
equivalent to D(&) being linear.

The last part of the theorem follows from the
fact that ¢:T*(T(M))e>T(T(M)) is an isomorphism and

S=reS™h 7T (T(M))e=d T+ (T(M)) 188.11.

A similar result can be proved analogously for

the curvature.

§l2.6 THEOREM ILet D(&) be a linear connection on

the tangent bundle of the manifold H(RT,3F) and let

S be the torsion. Then S" exists and is an isomorphism

like S and satisfies the relation s% Tg§§7 for every

rational number <.

PROOF  S:T*(T(M))e= T*(T(M)) is au isomorphism with
projection the identity [8§11.2, 6l1.4) . Therefore
we may write S°G§=9§°] where ZéT(D(m)) is defined
uniquely by each GgéT*(ﬂ).

Now let q:T(&)= &, q:T(T(M))=» T(M) and
%:T(Rm)=slglbe bundle projections. Then it follows
from the conventions we have made that E(Q€?o§=qogg
187.51 . Therefore

q(se6g) -B=quoe§
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=qe Og, {811.21
=q(6g) D
=C—l(9§°])°¢§-
Therefore since L(m) is effective on RT
a(eg)=a(ego3) and thus T (L(m)) 187.51.
That is, we may represent Y by a partition
matrix of the form[ i 1] where 4 is the unit matrix
in L(m) {86.7]. 7
Now it is obvious that the partitioned matrix
[}, ] will represent * and thus (e‘le Se@g) =, %
7 1L J s \Fg 2
exists whatever Gng*(ﬁ). We define then
1

O¢e (Qile Soeg)&e 8 ~ to be a restriction of 8" for
every Qgé’l‘*(iﬁ). It is easy to see that
S®: e (T(i) )&= T*(T(M))
is an isomorphism. If we prove that sh -,-oSK=-,-
then it will follow that
s (1 (M) Y= T(T(M))
is also an isomorphism [512.5-1.
Now consider f¢G, f:Ee» U. Let T*(T(E)) be
the trivial bundle T(E)xT(Rm). Then we may write
SeteSeddf((a,b),(c,d))
=So-roddf((a,b),(c,7(b)-c+d))
=Seddf((a,~c),(b,7(b)°c+d))

=ddf((a,c), (ba7(b)°0+7(c)'b+d))
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=gvoddf((a,b),(c,d)) since SegeS=v
=ddf((a,c),(b,d))
where 7(b) and 7(0) are defined as 3 abovg. Therefore
7(b)-c+7(c)'b=0 and consequently K7(b)'c+l7(c)'b=0.
Thus since Se ddf((a,b),(c,d))=ddf((a,b),(c,K;(b)°c+d))
this implies that S's teS"=r.
It follows from this theorem that SﬁrD(ﬁ) is
a connection for any rational number w . Its torsion
is defined by -roSKoDdfo-reDdf-lo S~ where £€@.  But
since 70S"=8"'% ¢ this is just a restriction of

™% SoS'K=Sl-2H. The torsion of S'= D(@) is therefore

SL—ER.

Thus given any connection on a tangent bundle
(arid we know one exists) we may define its linear
part which is a linear connection having torsion S

and another connection SLA%

D(&) which is symmetric-.
Thus a symmetric connection always exists and is

linear.

813 Lie groups

This is a very short section and contains only

a few remarks and no theorems. The particular manifolds
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considered, however, give good examples of some of

the definitions and theorems we have used.

§13.1 Let G(RT,3") be a Lie group and let N:GuG= G
be defined by N(g),8,)=8,'8,- Then G(RT,B) is
parallelisable.

Let M:GxR'e= T(G) be the strip map of T(G)
defined in B86.5 and i the trivial substructure
defined from it. Then T*(fi) is a fi-connection
having some special properties. It is of course

semi-integrable and therefore flat {s10.6].

SCHOLIUM Consider Il ]ZGT (G) then D] Z 'T()n) g 71

ota

PROOF  Let o:Me» T(li) be the cross sectibn of T(M)
associated with the zero tangents. Then
do(y)=7(y)€r*(G) (88.5].

- Now by definition ¢=dk°(o,ﬁe) and therefore
du=ddne (do,dak,) L86.5 a)l . Also U =dNs ¥, and thus
ﬁél()l)=¢;l(8 } ).  Hence

' D}1}2-Dﬁ() ,ﬂ' (I ))
~ak(y ,u‘l(, ))
-dw(; Uy Lt ’Z ))
-ddk(do(zz),g oA ) 187.5]

=dd\(1(}2)ag -1 ‘) ) T(} )eg '71-
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813.2 Now suppose ) ,} (T (G) then let the cross
sections § and §2 of T(G) be defined by El(g) g" 7

and §2(g) g* Jy° That is §,=d\ = o where d}‘Z(])-] Y

/ 1

and similarly §2—d>~)°o.
Since d)\} (= r A and do(),)——.(}) then
dil()) T(}) ] r_§8 31. Thus dzl E2(g) g T(zz)'}l-
Now the "dlfference“ between the maps
Ted§e%, and dg,e§, corresponds to the Poisson
bracket operation. We will show this later in detail
[e14.2]. Here it is better to express that "difference"
by means of the group operation. In fact
-1 -1 =1
QaE %, (8} " ired® e B (edh=ytor(y )7y o (y 0=T
2 =1 Trecfye St Iy TN TN T
which is independent of g«¢G. Since
} ) GT (G) it is not difficult to see that
éT*(T(G))nT (2(6))=1%e) 188.21.
If f:T*(G)eéT(G) is the solder the element
& (T)€T_(G) thus associated with , and y €T (G)
e A Jy e
corresponds to the Poisson bracket of these elements

L 17 p1o2].

B13.% In the paper on holonomy groups Ambrose and
Siuger define an isomorphism between the Lie algebra
of the group of a differentiable principal bundle

8(4,G,G,8) and the Lie algebra of vertical vector
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fields". This isomorphism they call q [231.

A "vertical vector" is just an element of the
subbundle Tﬁ(a)c.T(m), a "horizontal vector" being
an element of D(&) (87.9]. The isomorphism q
maps the cross section § of T(G) defined by
E(g)=g-z into the cross section of T(&) defined
by E*(;dx):ddxo} where XGTe(G).

This example shows how simple some of the
concepts of this subject might become using the

definitions and theorems of this thesis.

814 Integrability conditions

This section contains no original work being Jjust
a summary and interpretation of what is already known
about integrability conditions of three particular
substructures. All three have been mentioned before.

Although we speak of integrability conditions
it is not meant that these conditions are sufficient
for the substructure to be integrable, although they
are necessary. This will be so if the manifold is

analytic but not always in other cases [187.

Let M(R®,&) be a manifold of class y 2 and let
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T(M)(M,Rm,G,E) be_a reduction of its tangent bundle.
We will consider three cases i) a Riemannian metric
ii) a field of k-planes and iii) a nearly complex

structure.

§14.1 If G=0(m) then the structure & defines a
Riemannian metric over M 183.5]. A G-connection is
clearly a connection that preserves this metric in
the classical sense.

It is well known that there exists a unique
symmetric d-connection and the integrability conditions
are that this connection be semi—integrable [5 p48, 29 p31].
I do not know any very simple method of defining
this symnetric &-connection using the methods of this
thesis and thus these integrability conditions do not

suggest any solution to the general problem.

Bl4.2 If G is the group that leaves R OcR™ iﬁvariant
then & defines a field of k-planes [83.4]. Let us
call this subbundle B. A B-connection is one in
which these k-planes are parallel in the classical
sense.

The well known integrability conditions are just

that T%(B) be symmetric. The proof of this fact
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illustrates a number of useful points.

SCHOLIUM The well known conditions for the field of
k-planes B to be integrable are-equivalent to the

| condition that TE(B) be symmetric {17 p87].

PROOF Comsider f¢&f,f:Ee> U, and a regular strip map
g of &, #:UxR'e> T(U). Let §,:Ue B and

'Eert—v By be any two differentiable cross sectionms.
Put ) (x)=df(a,X; )=#(x,0:X,) defining X, similarly
where W{L(u). Then df 3% o £:EeT(E) is such that
df-%ilo f(a)=(a,Xl).

Therefore considering T(T(E)) as the product
bundle T(E)P(R™) ddfedgeaf(a,Xy)=((a,Xy)s (X, ,351-X,))
where %él is a Jacobian matrix [ 84.1)]. Hence

0§ p(x)=ddr ((a,%,), (X, 351 X,))
and g8 (x)=adf((a,X,), (X,,552-X))).
so that '

7008 o€ 5(x)-dE 2%, (x)
=ad£((2,0), (Xp, 321 - X,-322-X, ))
=adr((a,0), (X[ X}, X,1)) 17 p83]
=ag(x, (X007 LX; ,X,1)) {86.7])

Now since By=#(Ux(R% 0)) then T(B,)=d¢(T(U)xT(R%0))
and vodE2¥,(x)-d32 %, (x) is in T(B) if and only if
o [X), X, R 0.  That is, if LX), XS (RS%0)

and the classical integrability conditions are Jjust
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that this is true for all local cross sectionsf,,l
andga. Thus we have established that the
integrability conditions are equivalent to
7o dzl.ga(x)-dgz.gl(x) being in T(B) for all x¢U and
all cross sections of B.

Now since d'geo‘;l':u—sm(B) anyway and since T(B)
is linear, this is equivalent to Ted'gla‘§2:U¢—> T(B)
for all differentiable local cross sections of B.
But it is easy to see that the union of the images
of such maps as dEligz is Jjust Té(B) so that the
condition. is equivalent to -ri_T]’g(Bgc T(B).

Now +{T(B)} =T4(1(:1)) [88.1 b]. So that we
finally have that the integrability conditions are
eyuivaleat to 7{T3(BR} e Tg(8) which is the condition

for Tﬁ(B) to be symmetric.

If B'(M,Y,H,E) is any differentiable fibre bundle
of classy 2 and if D(&) is a differentiable linear
connection this theorem says that the integrabibity
conditions for the field of m-planes D(B') is that
D(D(B')) be symmetric [ 810.2]. Thus the integrability
condition for D(&) is that D(D(&)) is symmetric, which

implies immediately that the connection is flat [§12.4].
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§lﬂ;§ In a recent paper Willmore has given é'proof
that there exists a symmetric d-connection if and
only if these integrability conditions are satisfied,
that is, if T{(B) is symmetric (22). It is in fact
easy to verify that if there exists a symmetric
@-connection Tﬁ(B) must be symmetric but I have not

found a direct proof of the converse.

§14.4 If G=CL(k)e L(2k)=L(m) the structure & is '
called a nearly complex structure [s83.3]. Suppose
the element i1€CL(k), where A is the unit matrix,
corresponds to I€L(2k). Then if &:UxR e T(U) is
a strip map of &, the map ¢e(e,I)n¢-l is independent
of ¥ and defines an isomorphism j:fey & or, by an
abuse of language, j:T(M)e» T(M). j(di)=¢&?I for
all #_€& since I°=1 then Jej=32=e .

This isomorphism J may be taken to define &.
It corresponds to the tensor referred to by Eckmann

and others [18, 19].

A B~connection is one for which the covariant
derivative of this tensor vanishes. To see this we
consider T(L(m)) as the group of matrices D(ni,m) [ 86.71.

Since CL(k) is the normaliser of I then T(CL(k)) is the
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I .
normaliser of the partitioned matrix [ I} which

is just I4T(L(m)) [86.6]. |

Now the condition D(&)c T*(&) implies that for
any regular strip map #:U«GS® &

ag L DA T(U)xG e T(U)T(G) [812.3 a)]
that is dﬁ-glo Ddgé‘l‘((}) for all EG‘I‘X(M) which again
implies that

Ddilo dj°D¢g=D¢’%]§ agg ale d,a%lc Dg,_=dI.

£

Now let f:HBe=a U, fé&, then the matrix
df;lo joafx=J(_x) is the component of the tensor jwith
respect to the coordinate system f at x. J:U— L(m).
We put now r(§)=naf§. ddfg and this corresponds to
the Chrystoffel symbols.

Since Ddélo 1)(31'g =¢';le gf_ for all E{-TX(M) the
eqgquation

Dy)’élo djeDhg=dI

may be written Ddfélodjobdfgﬂ)df;sle DdédIng&%lo Dt
or T (B)eadfgh djeddtgeT (B)71=0175 4 o Tod b 01,
or T (E)daI(E)eT (§)1=d(x)

This last equation is obviously an immediate

interpretation of the vanishing of the covariant

derivative of the tensor.

§14.5 Since 3'2=e then of course d32=£- but (Tadj)2
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cannot be the identity map unless j=e because if
p:T(M)== i and q:T(T(M))=>T(M) are the bundle
projections pej=p. Thus

getedje yedj=dpodjeredj {88.1 b)]

' =dpe vod j

=qedJ=Jeq’
But it is possible nevertheless that (Todj)4=é .

.In fact using the same melhods as in the Scholium of
B14.2 it is not difficult to verify that the
classical integrability conditions are equivalent to

(veaj)*= € 18, 191.

8l4.6 Eckmann has éhown very recently thaf there
exists a d-connection suchn that its torsion
S=(-,-od,j)4 and further that there exists a symmetric
f-connection if and only if the integrability

conditions are satisfied [19). That is if (yedj)*¥=e.

814.7 These three cases do not generalize very easily.
There is however one property common to all three and
that is the existence of a symmetric #-connection.

It might be possible then that if any substructure &
is integrable there exists a symmetric &-connection,

but a proof seems difficult.
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The case when G is the quarternionic gr.oup has
yet to be examincd[EO'l. It would be interesting
to know how a @-connection would be expressed in the
classical theory in this case and it would not be
surprising if, using this classical interpretation
of a d-connection, it were shown that the integrability
conditions were equivalent to the existence of a

symuetric d-connection.
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