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" I c o u l d have clone i t i n a much more complicated way", s a i d the 

Red Queen, immensely proud. 

Lewis C a r r o l l , A l i c e i n Wonderland 

S c i e n c e i s a s u b v e r s i v e a c t i v i t y t h a t f l o u r i s h e s best when no one 

i s looking. 

Anon 
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ABSTRACT 

This investigation is concerned with the elasto-hydrodynamic 

squeeze-films generated by the normal approach of two surfaces. I t is 

inspired by the excellent functioning of healthy animal jo ints under 

the adverse conditions of high load and low, or even zero, s l iding 

speeds. 

The effects on the f i l m of four features are examined from both the 

theoretical and experimental viewpoints. These four features are the 

e las t ic i ty of the materials bounding the f i l m , the permeability of these 

materials, an extreme interpretation of the concept of "weeping" l u b r i ­

cation and the presence of a lubricant enrichment in the f i l m . This 

l a t t e r feature is considered only i n i t s theoretical aspects. 

I t is shown experimentally that when a th in layer of rubber is used 

as the soft boundary of the f i l m , entrapment occurs, due to the high 

poisson's rat io involved. The agreement between theoretical predictions 

and experimental results for the effects of permeability and of a 

"weeping" mechanism is good. 

The models, as examined, are found to be dominated by viscous forces 

rather than the inert ia of the moving surfaces. 

I t i s found that high permeability of the surfaces tends to decrease 

f i l m l i f e and that high f l e x i b i l i t y tends to increase i t . However, very 

low permeability material appears to promote slight "weeping" tendencies 

and hence prolong f i l m l ives . 

The effect of an additive confined to motion i n the f l u i d flow i s 

found to be small unless present at extremely high concentrations and i n 

joints i t seems l i ke ly to be effect ive only at very thin f i l m s . 

When the additive is confined not only to the f i l m but also prevented 

from flowing i n the f i l m , squeeze times are found to be increased by 

several times. The increase is not considered to be enough to make the 

mechanism to t a l l y convincing as a mode of operation of an animal j o i n t . 
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Chapter 1 

INTRODUCTION 

The aim of hydrodynamic lubrication is the maintenance of a f u l l 

f l u i d f i l m between surfaces that move relative to one another. This is 

as true when the motion is normal approach as when the motion is r o l l i n g , 

s l iding or a combination of the two. 

Much of the e f fo r t in lubrication research has been directed towards 

problems occurring i n ro l l i ng and sl iding situations; relat ively l i t t l e 

e f fo r t has been expended in studying the other branch of the subject, 

that of normal approach, i n which so-called "squeeze f i lms" are generated. 

The study of the behaviour of such fi lms is by no means of purely 

academic interest since cyclically loaded journal bearings generate squeeze 

f i lms and these occur whenever reciprocating motion is converted to rotary 

motion. 

Traditional bearing surfaces have been metallic and at low sliding 

or r o l l i ng speeds, the hydrodynamic lubrication tends to break down and 

damage to the surfaces results. Recent work ( l ) in the use of a soft 

layer has shown that f u l l hydrodynamic lubrication can continue in s i t u ­

ations of extremely low sl iding velocit ies. A very common example of the 

bearing in which both low sliding speeds and f u l l f i l m lubrication exist 

simultaneously is the animal j o i n t . This bearing consists of two thin 

layers of low modulus material separated by a f l u i d f i l m and having a 

s t i f f backing. 

The f i l m is a water-like f l u i d known as synovial f l u i d with an 

additive of extremely high molecular weight called hyaluronic acid. The 

soft layers are cartilage and exhibit some degree of permeability. The 

s t i f f backing is bone. 

The various roles that the additive, the permeability and the 

jOltflOt 
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elas t ic i ty of the cartilage play have by no means been agreed upon and 

indeed, the two most publicised current theories of the functioning of 

joints are diametrically opposed ( 2 , 3)« 

This bearing is of interest to engineers not only because of the 

long duration of i t s squeeze fi lms but also because of the extremely low 

f r i c t i o n a l forces observed. 

Scope thus clearly exists f o r an investigation of the basic 

behaviour of squeeze fi lms in the hope that the action of an animal j o in t 

may come to be better understood and also that the design of mechanical 

bearings i n which these f i lms are generated may be improved. 

This thesis therefore describes the construction of a mathematical 

model of a squeeze f i l m , i t s numerical and part ia l theoretical solutions, 

and some experimental comparisons with the theoretical work. The effects 

on normal approach of permeability and of e las t ic i ty of the squeeze f i l m 

boundary, and of additive in the f l u i d , are also examined. 

Whilst this model was clearly inspired by the e f f i c i en t behaviour of 

animal jo in t s , i t can lay no claim to describe them accurately or even 

adequately. The mathematical description of the model is a description 

only of the model, not of a j o i n t , and thus i t s predictions relate only 

to i t s idealization of a squeeze f i l m . 

The work described in this thesis must also be considered as a pre­

liminary, wide-ranging look at the whole f i e l d of normal approach. I t 

is to be hoped that rigorous investigations of specific squeeze f i l m 

situations w i l l follow from this i n i t i a l work. 

Since the two mechanisms proposed in modern times to explain j o in t 

lubrication, known as "boosted" and "weeping" lubrication, have so fa r 

lacked adequate mathematical description, even in idealized situations, 

i t was hoped that the model would enable comparisons to be made between 

the two theories to decide which was more effective i n maintaining f u l l 
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f i l m lubricat ion. I t was considered that the model might also be 

applicable to the squeeze fi lms that occur in machines. 

Chapter 2 then, contains the mathematical description of the model, 

starting with an isoviscous lubricant and r i g i d impermeable boundaries. 

An interpretation of the concept of "Weeping" Lubrication i s next 

attempted and the problem of the inclusion of the elastic effects of a 

thin layer is considered at the same time. Permeability is introduced 

into the model and f i n a l l y the effect of an additive, whose flow is con­

fined to the f i l m , is examined. 

The assumptions of previous workers that the integral of the pressure 

distr ibut ion over the area of the f i l m i s equal to the applied load on 

the f i l m , and that the time rate of elastic displacement of the th in 

layer is negligible, are examined with the aim of producing accurate f i l m 

thickness-time curves. 

The few analytical solutions to the governing equations are included 

i n this section. 

Chapter 3 is concerned with the numerical solution of the model. 

The l imitat ions of the numerical methods used, notably in describing 

accurately the velocity of deformation of the thin layer by a process of 

numerical d i f ferent ia t ion, and the inclusion of this quantity in the 

solution of the flow i n the elastic permeable layer are considered. 

Chapter 4 introduces a dimensional analysis of the model based on 

the use of four repeating variables, the non-dimensional groups including 

two length parameters instead of the more usual one. Jus t i f ica t ion of 

this step is given. 

Chapter 5 describes the experimental work that was carried out i n 

order to check the theoretical solutions. The problem of f i l m thickness 

measurement is considered and observation of the two phenomena, entrapment 

and cavitation, is described. A comparison of the experimental and 
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theoretical results is included. 

Chapter 6 presents the theoretical predictions of the mathematical 

model. The effects of permeability and e las t ic i ty of the thin layer and 

of an additive in the lubricant are examined. The implications of these 

effects on the theories of "weeping" and "boosted" lubrication are dis­

cussed. 

Chapter 7 contains a discussion about squeeze fi lms i n general and 

the problems of their mathematical treatment. Also included is a con­

tinuation from the previous chapter of the discussion of the possible 

mechanisms operating i n animal j o in t s . 

Finally a short description of an early simple finite-element, 

applicable to lubrication problems is given in Appendix I I I . 
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NOTATION 

The notation l i s ted here refers to the theoretical description of 

the models and does not necessarily correspond to the symbols used i n 

the computer programme. 

f] f l e x i b i l i t y of the elastic layer [ $ > r / ^ ) 

p non-dimensional f l e x i b i l i t y 

A( f\x surface areas of an annulus in the plane of the f i l m . 

Q n-th coefficient of a power series. 

^ concentration of additive in the lubricant f i l m . 

i n i t i a l separation of centres of undeformed surfaces. 

p~ integral of the f i l m pressure over the area of the f i l m . 

£j acceleration due to gravity. 

^ f i l m thickness at radius r . 

7* non dimensional f i l m thickness ^l\r^J^ ^ 

^ force producing closure of the f i l m with no inert ia 

effects considered. 

"^g volume of additive in an annular volume of the f i l m 

before and after a time A t 

I various numerical constants. 

1^ a force (M<j) producing closure of the f i l m . 

Lfi. L, 

M 

volume of an annular region of the f i l m before and af ter 

a time A t 

mass of the top boundary of the f i l m , produces closure 

of the f i l m under the action of gravity. 



6" 

ratio of viscosity of an additive to the viscosity of 

the base f l u i d ( / ^ , ) 

iy ^ concentration of an additive in a region of the f i l m 

before and after a time 
At 

p hydrostatic pressure of the f l u i d i n the porous material. 

v 

pressure in the f i l m at radius r . 

p pressure in the f i l m at i t s centre. 
'o 

(P ( p <p9 flowrates through the surfaces of an annular region of 

the f i l m . 

radius of curvature of the top surface of the f i l m . 

T~ distance of a point from the axis of symmetry. 

^ radius of a f l a t disc. 

"J" i n i t i a l thickness of the soft layer. 

•£ time. 

^ £ increment of time. 

£" non-dimensional time ( ~t L / ^ ) 

^ radial flowrate i n porous material. 

void rat io of undeformed porous layer. 

X displacement of the centre of the top surface above the 

undeformed lower surface. 

~x non-dimensional displacement 

X time derivative of above. 

•jc non-dimensional derivative 

• • 

X- acceleration of the top surface. 
. . 
X non-dimensional acceleration 



a "lumped" approach velocity. 

a deformation of the th in layer at radius r . 

axial co-ordinate i n porous layer. 

compressive strain i n axial direction of porous 
elastic material. 

permeability of porous material i n radial and axial 
directions respectively. 

viscosity of f l u i d i n the f i l m . 

i n i t i a l viscosity of f l u i d i n the f i l m . 

viscosity of f l u i d i n porous layer, and i n the f i l m 
i f no additive present. 

viscosity of pure additive. 

axial flowrate i n porous material. 

velocity of deformation of elastic layer (positive 
upwards). 

flowrate i n axial direction across the boundary of 
the porous elastic material. 
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Chapter 2 

THEORETICAL DEVELOPMENT OF THE MODEL 

2 . 1 Introduction 

This discussion is best followed with reference to diagram 1. 

One reason that comparatively l i t t l e work has been done i n the 

f i e l d of normal approach lubrication may be found i n the fact that the 

process is time-dependent and both experimental and theoretical work 

are more d i f f i c u l t than i n the steady-state processes of ro l l i ng or 

s l id ing. 

For these steady-state problems, the numerical solution of Reynolds' 

Equation involves two successive integrations of the equation to f i nd 

the load carrying capacity (F) of a f i l m . In normal approach, however, 

these two integrations at time t , say, must be followed by a substitution 

of F into the equation of motion of the moving surface and this must be 

integrated twice over a period of time At to produce new values of f i l m 

thickness and relative velocity of approach fo r a time "t + . The 

integrations of Reynolds Equation are then repeated and this cycle must 

be carried out many times to produce a p ro f i l e of the various parameters, 

such as f i l m thickness, against time. 

Despite the absence of the usual "downstream boundary", calculations 

in squeeze f i l m situations are very much more d i f f i c u l t than i n steady 

r o l l i n g or sl iding f i lms . 

Two approximations have been made by several people ( 4 , 5 ) i n the 

tackling of normal approach. F i r s t , the mass of the moving surface has 

been assumed to be zero, i . e . the load applied to the f i l m has no iner t ia . 

With this assumption, the variation of f i l m thickness with time is 

defined by: 
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= applied force 

where the integral i s taken over the area of the f i l m . 

I n 2.2 an expression is derived to show the difference between this 

assumption and the more accurate one of the moving surface having con­

siderable mass. 

The other approximation has been concerned with the evaluation of 

the rate of deformation of an elastic boundary under the pressures 

generated i n the squeeze f i l m . The relevant term i n Reynolds Equation 

is Wo) where ^ i s the velocity of the r i g i d surface and W„ that of 

the elastic boundary, i is a function of time alone, V̂o however depends 

on time and radius, being zero fo r a l l time at the outside edge of the 

f i l m and a considerable f rac t ion of x near the centre of the f i l m at 

commencement and termination of the normal approach. 

is then solved for various values of i_and x , the variation of x with 

time being found by recourse to the assumption of 'zero iner t ia 1 described 

above. The equations describing normal approach with and without this 

assumption are presented i n 2 .3 and 2 . 4 and compared i n 6.2 and 6 .3 -

2.2 Rigid Impervious Boundaries 

The governing d i f f e ren t i a l equations reduce to their simplest form 

when two r i g i d , impervious surfaces approach each other through an 

isoviscous lubricant, see diagram 1 ( i n w h i c h W D = 0 ) . 

Reynolds Equation becomes 

A typical Vx-Wo) by 3s- and approximation replaces Reynolds Equation 

0 

for any point i n time. 

I f the upper surface is parabolic and the lower f l a t , then 
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L = -x + T a / 2 ft 
whence . 

d r 
and we can integrate ( l ) to produce 

using the boundary condition — O at T~ = 

With no loss of generality, we can change the boundary condition 

to ^ - O at T= oO. Using the former boundary condition, integration 

of ( 3 ) produces 

p =• 3-77- ?7 X ^ 

V/ith the l a t t e r boundary condition, a rather simpler integration produces 

F = - fc) 
The equation of motion of the top surface i s : 

F - M 3 = 

substituting from ( 5 ) we obtain 

DC 

I f the system is dominated by viscous forces then a f i r s t approximation 

is found by putting 3c =• O and integrating. This gives: 

( - M 3 / £ i r ^ a ) . t (7) 

where the condition x= J? at ~t=0 has been used. For convenience, l e t 

B = - (M, /£iri2 **) 
T H E N = B J C 

and ft) 
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An exact solution can be found to equation (6) by writing 

Substitution of t h i s series into (6) and the equating of coefficients 

y i e l d s : 

C z - I I S K - C . I / C . O°) 

and 

C c. c n-i n--n *>.8 

/ ' c , c •<c 
2 . 

i a ) a. / 0 
(12) being v a l i d for 1 

From (6), i f the f i l m closes due to an applied force (2-) whose 

i n e r t i a i s neglected (or zero) then 

:x = P. e 

and t h i s i s then an exact solution to the equation of motion. 

The dominance of the viscous forces i n the model and hence the 

accuracy of (7) i s i l l u s t r a t e d i n Chapter 6.1. 

2.3 "Weeping Lubrication" 

McCutchen (2) has proposed the concept of "self-pressurized 

hydrostatic l u b r i c a t i o n " , known conveniently as "weeping lubrication" 

to explain the functioning of animal j o i n t s . He suggests that, as a 
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j o i n t i s loaded, f l u i d i s expelled from the cartilage into the f i l m . 

Because the s t i f f n e s s of cartilage without any f l u i d i n i t s pores i s very 

low, the rate of expulsion of f l u i d , and hence the rate of deformation 

of the c a r t i l a g e , i s controlled by i t s permeability. 

I t i s possible to devise a simple mathematical model to describe an 

extreme form of t h i s "weeping lubrication", diagram (2). Such a model 

requires an e l a s t i c layer with zero r a d i a l permeability and i n f i n i t e a x i a l 

permeability, and whose constituent material i s incompressible ( i . e . 

deformation occurs by closure of the pores). As the l a y e r i s deformed, 

f l u i d i s thus forced out of the pores i n an a x i a l direction. 

Since the material i s e l a s t i c , we must consider the question of 

the s t r e s s distribution i n t h i s layer and i t s interaction with the f l u i d 

pressures. 

Were the e l a s t i c layer to be considered as a semi-infinite s o l i d , 

then i t would be possible to devise an i t e r a t i v e process solving f i r s t 

the Reynolds Equation and then the e l a s t i c i t y equations. However t h i s 

process does not always converge (5) and because the material we are con­

sidering i s a thin layer, then an approximation can be made of the form 

i . e . the deformation at a point i s proportional to the l o c a l pressure on 

the surface. Thus 

The development and examination of the accuracy of t h i s step can be traced 

through references (6), ( l ) and (7) and a discussion of i t i s included i n 

Chapter 7« 

I f we define 

V 

W a = ~ (rate of deformation of e l a s t i c l a y e r ) 
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and \M3l= volume rate of flow of f l u i d out of the porous 

e l a s t i c layer, 

then at any point on the surface, 

Very conveniently, Reynolds Equation 

b 77 
1" 1 

becomes 
fa 

5-r 
Because of the nature of our interpretation of "weeping lu b r i c a t i o n " , 

the problem of cal c u l a t i n g the rate of deformation of the e l a s t i c layer 

i s avoided and i t i s thus possible to make some progress towards a n a l y t i c a l 

solutions of the squeeze f i l m . 

The simplest case of int e r e s t i s when the top surface of the f i l m 

i s a f l a t r i g i d disc of radius S. 

Reynolds Equation i s 

2 T DC 

where 
•x + A.E 

The equation i 3 separable and can be integrated to give: 

I 
2 

i f ~x>o then F|=0 and: 

2E.fr l a ? ^ f S 4- 6 s) 
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i f 3 C < 0 then ' s = ~V^T as a f i r s t approximation and: 

(ti) 

At the centre of these d i s c s , the f i l m thickness i s 

h 
thus, from (16), 

(n) 
for X < O 

Thus for constant speed of approach, the f i l m thickness i s constant. 

At f i r s t sight t h i s i s a surprising r e s u l t , i n that the displacement, 

i s not involved. However i t well i l l u s t r a t e s the fact that the f i l m i s 

provided by lubricant 'weeping1 from the e l a s t i c l ayer and that the rate 

of weeping i s connected to the rate of deformation. 

I t i s possible to produce a s i m i l a r solution to the problem when the 

top surface i s paraboloidal with a radius of curvature R. 

I n t h i s case, the Reynolds aquation i s s t i l l 

Numerical integration of t h i s equation for various values of i , ^ and 

shows that the pressure curve resembles a parabola over the central region 

of the film, for values of X-^O 

I f , then, v/e substitute an expression of the form 

However 

3.R 

P - A, — T 
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into (14) and equate c o - e f f i c i e n t s of powers of r , we find an expression 

of the form: 

Since the expression w i l l be i n error for large r, i t cannot be integrated 

with respect to r to produce the force F. Thus the equation of motion of 

the top surface cannot be solved. 

However, for x<0 , (18) i s an excellent f i t to the pressure curve 

over the important central region of the film, see figure ( 3 ) . 

I n t h i s central region, the f i l m thickness i s 

and, from (18) t h i s i s 

Thus not only i s the f i l m thickness constant over the centre of the f i l m , 

i t i s also constant for a constant speed of approach, as was found i n 

the case of a f l a t d i s c . 

2.4 Impermeable E l a s t i c Layer 

I f the "weeping lubr i c a t i o n " i s to be an effective mechanism for 

maintaining f l u i d between approaching surfaces, then i t should produce 

substantially thicker films for longer periods of time than other possible 

mechanisms operating under the same loads and geometry. 

One such mode of operation i s to consider the thin layer as 

impermeable in any direction but s t i l l retaining i t s e l a s t i c i t y , see 

diagram ( l ) . 

This gives a Reynolds Equation of the form 
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V, 

Once again we must simplify the e l a s t i c i t y equations with expression (13) 

so that 

I = X + J> + A. ? 

Now W„ = - (rate of deformation of the thin l a y e r ) so that, using (13), 

Several authors (4, 5) have solved s i m i l a r equations by replacing the 

awkward function ( x — v V 0 ) by a velocity of approach 2L , assumed independent 

of r . 

The Reynolds Equation can then be integrated for ranges of values of 

X- and «E and the l i f e of the film found by assuming F to be a constant 

with respect to time. 

Neither of these assumptions need be made i f we maintain the approxi­

mation (13)• With t h i s approximation, i t i s possible to integrate (19) 

twice numerically for some given values of ̂  , and WQ and thence to find 

new values of these quantities at some l a t e r instant of time. The f u l l 

procedure i s described i n Chapter J>. 

2.5 Rigid Permeable Thin Layer 

I f we return to the model described i n Chapter 2.2 and replace the 

lower r i g i d layer by a permeable r i g i d l a y e r we have the s i t u a t i o n 

described i n figure (4), i n which \M0-= o. 

Equation ( l ) becomes 
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where W ^ i s the volume rate of flow of f l u i d per unit area out of the 

porous layer into the f i l m . 

Again 2 « 

I t i s now necessary to describe the flow i n the porous material. D'arcy's 

Law for the flow of f l u i d s through porous media, 

a. — — 

W = 

\ 

y (*•) 

J 

gives us the flowrates u and w i n the r a d i a l and a x i a l directions 

respectively and i s a widely accepted description of the behaviour of 

f l u i d s i n porous media. 

^> and £Z^are the permeabilities of the material i n the r a d i a l and 

a x i a l directions respectively, having units of area and being a function 

of the size of the passages and t h e i r tortuosity. 

We can now say w a = -hi 

where ^ ̂  i s evaluated at the surface. 

A r e l a t i o n i s needed between u and w and t h i s i s provided by the 

equation of continuity, 

d T~ T O ZZ. 

On the question of permeability, whether the material i s isotropic, 

or not, w i l l depend on i t s method of manufacture. Thus ^_and ^ w i l l 

be kept separate i n t h i s theory and not be assumed to be equal. 
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(21) and (22) can now be combined to describe f u l l y the flow i n the 

porous layer, i . e . 

a. + Z 7~ + / — I ^ — = O ( 3 3 ) 

This i s a form of Laplace's Equation. 

The use of the co-ordinate x has been confined to describing the 

f i l m and the motion of the top surface, the co-ordinate z has been i n t r o ­

duced to r e f e r only to the porous material. 

The boundaries of the region i n which the Laplace-type equation (23) 

must be solved consist of streamlines on three sides and the f i l m on the 

fourth side. 

Wu (8) has considered a s i m i l a r s i t u a t i o n i n which two r i g i d discs 

approached one another, one disc having a t h i n porous annular region. He 

has solved t h i s a n a l y t i c a l l y by separation of variables i n Laplace's 

Equation and produced a se r i e s solution for pressure i n *r and z. and thus 

substituted for wx i n Reynolds Equation. 

Such a solution could be found for equation (23) were our discussion 

of squeeze films to be confined to isoviscous lubricants and r i g i d 

boundaries. However such a solution i s somewhat i n f l e x i b l e and cannot 

e a s i l y be adapted to films of non-isoviscous lubricants between e l a s t i c 

s o l i d s . Numerical solution of such systems automatically includes the 

problem of r i g i d boundaries and constant v i s c o s i t y f l u i d s as a special 

case. 

2.6 Permeable E l a s t i c Layer 

As discussed above, the next complication to consider i s the i n t r o ­

duction of e l a s t i c i t y effects into the porous material considered above. 

Equation (22) becomes 
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2 i ± + J± + £«L _ - Wo /- v 

where T i s the thickness of the thin la y e r , and 

W n * - p. 3 e 
a t 

Equations (2l) remain v a l i d , but the l o c a l values of ̂  and ^ w i l l 

no longer be constant but w i l l become functions of the deformation. Thus 

under any system of loading on the material, these permeabilities w i l l 

vary with r (but not with z . ) . 

Remembering t h i s , equation (23) changes to 

The va r i a t i o n of j2^. and ^ with deformation must now be considered. 

Inevitably more assumptions must be introduced* These are:-

1) That and ^ are equally affected by surface deformation. 

2) Deformation of the porous layer i s accomplished e n t i r e l y by 

closure of the voids i n the material, i . e . the actual material 

of the layer i s incompressible. 

3) The permeability i s proportional to the void r a t i o i n the layer. 

V i s the f r a c t i o n a l volume of voids i n the undeformed layer, we 

can say 

for the undeformed 

material and for the deformed material at some radius r, 
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and V ( ^ 0 

where ^ . i s the compressive s t r a i n i n the material i n the a x i a l direction. 

£ A P 
Now = J=!r = l U r from ( l i f ) . 

T T 
Thus i n equation (25) we can say that Aj^a^remains constant under any 

loading and that r" 

M = - fl 0-i/).7~ feE 
& a-r ( T - f l P ) ( l / T - f l l ? ) ter 

The Reynolds Equation i s 
_ 6yr__ / x - \A/ 0 - vA/a\ (27) 

at 3: SiMFAcE 

i s evaluated as a flowrate r e l a t i v e to the moving surface of the 

e l a s t i c layer. 

«w0 i s a velocity of the lower surface r e l a t i v e to a co-ordinate system 

fixed i n space and times 

2.7 Lubricant Additive and Permeable E l a s t i c Layer 

The lubricant i n animal j o i n t s i s not a simple iso-viscous Newtonian 

f l u i d (9). The v i s c o s i t y i s grossly dependent on shear rate and i t also 

contains a low concentration of a substance c a l l e d hyaluronic a c i d . This 

additive has a molecular weight of 10^ and appears to form 'complexes' 
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when i n solution i n the f l u i d . I t cannot flow through the pores of the 

cartilage and, at very thin films, when the base synovial f l u i d has been 

forced away from the high pressure zone, i t i s believed to form gels of 

very high v i s c o s i t y providing a form of boundary l u b r i c a t i o n . 

This can be modelled i n an i d e a l i s t i c manner by enriching the f l u i d 

f i l m of the model described i n 2.6. The additive w i l l be free to move 

about the f i l m but not through the porous laye r . The non-Newtonian aspects 

of synovial f l u i d have been ignored. 

I f we know the variation of the concentration of t h i s additive with 

respect to radius, an approximate, new concentration can be found for a 

time At l a t e r . Consider the annular volume shown i n figure (5)« Let the 

volume of additive i n t h i s region be T A and the concentration of the 

additive 

Now over a period of time A* the nett flow out of the annulus of the 

additive w i l l be 

(ft A3Nfl - (P, A, Ny) 
The increase in volume of the annular region w i l l be 

Thus the new concentration i s 

At A, Nfl - <p, H, iVyjj I T * N a 
At A* ( 

( ? 0 

Obviously <P$ can be removed by looking at the continuity of the annular 

volume, i . e . 

% Aj - <P, A, - <fc ̂  +- C 
whence 
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M 8 » M f l-h- At 4 f ft/la - <8 A. - ') 

The numerical calculation of the dist r i b u t i o n of additive i s described 

i n Chapter 3« 

I t i s however necessary to make two f i n a l assumptions before the 

problem can be solved. 

l ) A relationship between concentration of additive and the 

resulting v i s c o s i t y of the f l u i d must be postulated. Workers 

i n the f i e l d of j o i n t l u b r i c a t i o n (9) have suggested that the 

re l a t i o n of synovial f l u i d v i s c o s i t y and concentration of 

hyaluronic acid i s a l i n e a r one. Thus at a concentration c, 

6 ° ) 

where 

^ being the v i s c o s i t y of the pure additive 

^ the v i s c o s i t y of the solvent. 

2) The f l u i d i n the porous material i s pure solvent at vis o o s i t v W . 
1° 

However i f the concentration of additive at some point i n the 

fi l m becomes unity, then no flow can occur of f l u i d from the 

film into the porous material at that point. Plow can occur 

though i f the concentration i s l e s s than unity. For the 

purposes of numerical computation i t i s not reasonable to have 

a step change i n flowrate from some current value M£= 
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to zero as concentration changes from c < | to c =/. Thus the 

assumption i s introduced that ^ I i s proportional to concentration 
Isurface 

of solvent, i . e . i t f a l l s l i n e a r l y to zero as concentration of additive 

approaches unity. This complication i s described mathematically i n 

Chapter 3-

2.8 'Dowson' Enrichment Model 

Dowson (3) has suggested that since the permeability of cartilage 

appears to play l i t t l e part i n the lubrication of j o i n t s , at l e a s t u n t i l 
1 

the f i l m i s almost closed, the additive, hyaluronic acid, may be bonded 

in some way to the surface of the c a r t i l a g e . This would prevent i t from 

moving sideways with the base synovial f l u i d when the j o i n t i s loaded. 

Thus the concentration w i l l be inversely proportional to the f i l m thicknes 

This can be presented mathematically by 

where c i i s the i n i t i a l concentration and hi i s the f i l m thiclcness at 

some radius at the commencement of the normal approach. 

This model i s discussed i n d e t a i l i n Chapter 6.5-2. 
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Chapter 3 

NUMERICAL SOLUTION OF THE MODEL 

3.1 Introduction 

Whilst the a n a l y t i c a l formulation of the d i f f e r e n t i a l equations 

involved i n normal approach presents no d i f f i c u l t i e s beyond the i n t r o ­

duction of several approximations and assumptions, the numerical or 

a n a l y t i c a l solution of them i s extremely d i f f i c u l t . As already 

mentioned, two basic assumptions i n previously published solutions 

have been the equality of applied load and the load carrying capacity 

of the f i l m and the neglect of the velocity of deformation of the 

e l a s t i c material. 

Neither assumption was made i n Chapter 2 and t h i s has led to d i f f i ­

c u l t i e s i n the numerical solution of the equations. The f i r s t assumption 

i s not p a r t i c u l a r l y important but an accurate description of the rate of 

deformation i s v i t a l to determine the flow i n the squeeze f i l m . I n the 

case of t h i s velocity, the d i f f i c u l t y in describing i t accurately has 

been the major factor in l i m i t i n g the application of the model to systems 

with low values of f l e x i b i l i t y . 

Unfortunately the model does not lend i t s e l f to a neat numerical 

solution. I t would have been more elegant to be able to consider the 

solution of the normal approach as the solution of a rectangular f i n i t e 

difference network, which was to be solved for nodal pressures. One co­

ordinate would have been s p a t i a l ( r a d i a l ) and the other temporal. ( I n 

the case of a porous material the network would have been three 

dimensional with two s p a t i a l co-ordinates ( r and z ) ) . However the 

equations derived i n Chapter 2 are not suitable for t h i s type of t r e a t ­

ment. The Reynolds Equation l i n k s points i n the r a d i a l direction, with 

an expression of the form 
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i n which x and are not constants but are dependent on previous values 

of x, if. and 5t . The l a t t e r are derived from some evaluation of F, 

which i n turn depends on the integration of previously determined 

pressures. 

The best way to describe the numerical procedure that has been 

devised to s a t i s f y the Reynolds Equation and the equation of motion i s 

to consider the development of the method startin g with the treatment 

of the simple model with r i g i d impermeable boundaries and continuing to 

the more complex models. 

The models are treated i n the same order as they were i n Chapter 2. 

3.2 Normal Approach with an isoviscous lubricant and r i g i d boundaries 

3*2.1 This subsection describes the direct method of solution of the 

equations for t h i s model and the flowchart for t h i s approach i s shown i n 

f i g . ( 6 ) . 

For given x and >=• at time ~t , Reynolds Equation i s integrated twice 

from the s t a r t i n g point T= T\ to the centre of the f i l m . The second 

integration gives us the value of the quantity F. This i s then s u b s t i ­

tuted into the equation of motion to find i at that instant. New values 

of x and i can then be found f o r a time "t"+ . The f i r s t integration 

of Reynolds Equation i s performed by a 4th-order Runga-Kutta method, the 

second integration, of the pressure d i s t r i b u t i o n to find F, by Simpson's 

Rule. The choice of formulae to find x and " at i + from values of 

£ and 3c- at time ~t i s not c r i t i c a l and even the simplest formulae work 

tolerably well, i . e . 

-fc v-A-t * ^ and 
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***** = + *± + * 

The i n i t i a l conditions chosen for the normal approach are x = P J
 : > c = 0 j 

?= = ~3 at time "t= CP. 

3.2.2 Numerical problems of the direct solution 

The curves of distance/time and velocity/time computed from these 

i n i t i a l conditions and by the method described above, are shown i n f i g . (7)« 

I t was found that the t r a j e c t o r y eventually becomes unstable for values of 

i > IhO. 

I t i s from these curves that a numerical procedure has been devised 

that supersedes the direct approach before t h i s i n s t a b i l i t y becomes 

evident and dominates the curves. 

The curves can be considered i n three parts, the dividing l i n e 

between the f i r s t and second regions occurring at around i — 3 

The effect of the i n i t i a l conditions i s most marked i n t h i s f i r s t 

region ( i t ) and here the use of equal increments of time i s a suitable 

approach to the solution of the equation of motion. However, aft e r i-3 

the tr a j e c t o r y closely follows that calculated i n Chapter 2.2, see f i g s . 

(64, 69). We can see that ^ — B i t a n d a l s o t h a t £ <c< ̂  . ^o calculate 

V- accurately requires that F be known extremely accurately, since 0.01$ 

error i n F w i l l produce an error of 1J? i n ̂  = By reducing At in order 

that * and i become more accurate, and hence F becomes more accurate, we 

introduce more errors by increasing the number of steps needed. Indeed, 

whatever f i n i t e difference method i s used to calculate and i , the 

tra j e c t o r y f i n a l l y goes unstable, producing a spurious solution. 

This i s of course to be expected when solving an equation of the 

form __ ^ by f i n i t e difference methods (10). Obviously a 
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different approach i s required to tackle the tr a j e c t o r y when ~t > S. 

This can be e a s i l y accomplished i f some assumptions are introduced 

regarding the behaviour of the f i l m . These assumptions are 

1) that 3c, having r i s e n from -g to +0.01g (approx.) then approaches 

zero as ~L ^ 

2) that having r i s e n to a maximum, then f a l l s to zero as 

X — > o. 

These assumptions can be summed up by saying that the trajectory should 

follow the form described i n 2.2. 

3.2.3. Indirect Solution of Equation of Motion 

We now have a check on whether a calculated acceleration i s accurate. 

Prom "t = ^ the tr a j e c t o r y can be calculated by using equal increments of 

velocity instead of time. Thus the veloci t y reached at "t - 3 i s divided 

into about 50 increments and these increments i n velocity become the 

change i n velocity betv/een each double integration of Heynolds Equation. 

Obviously, for each value of 6c for which we calculate P we need to 

postulate a value of x. . This i s done i n the simplest possible way, i . e . 

= -ic, -h A 6*) 

With these values, we can integrate to find F and thus the acceleration 

x , - V „ _ 3 . ( 3 ' ) 

Now we are assuming that the trajectory c l o s e l y follows the solution found 

i n 2.2 so we can say 
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I f the values of 6c i n (3 l ) and (32) are equal, within some specified 

l i m i t s , we can then progress to calculate F 3 with-.-

x 3 = i , +• 3l A (>) and * 3 =• 2 x 3 - o c , 

I f , however, the two values of i are s u f f i c i e n t l y different from one 

another, then the value from (3 l ) must be corrected. 

I t can be seen then that the method i s in d i r e c t i n that i s not 

used to calculate the trajectory but only used as a check on i t s 

accuracy. 

The acceleration i s corrected by correcting X^, i n by an amount 

proportional to the error i n x , since 

fr - - flai ( » " " ' ( 3 3 ) 

F a i s then recalculated with the corrected value of sc^ and the acceleration 

compared with (32). 

The process i s convergent very rapidly because 1$ error i n * =^> 

0.01$ error i n F. 

The time taken between steps can be found from 

At = fx, -f- A6*) 

As w i l l be r e a l i z e d , the above procedure produces a t r a j e c t o r y very 

si m i l a r to one that would be obtained from the assumption 

,— _-r- f * A \ 

= J , *A I'! = LJ J 

This i s because, for the values of B chosen, the model i s dominated by 

viscous forces. For larger B however, the t r a j e c t o r i e s calculated for 

the model and for the system F = I would no longer by closely comparable. 

Whilst the a n a l y t i c a l solution has been found for the above case 

( i f we neglect differences i n s p a t i a l and temporal boundary conditions), 

there are no known a n a l y t i c a l solutions for the other models proposed i n 
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Chapter 2 and t h e i r solution has been based completely on the method 

outlined above. 

3.3 "Weeping Lubrication" 

The numerical solution of the model representing "Weeping 

Lubrication" i s very s i m i l a r to that of 3.2 although the mode of operation 

of the model appears at f i r s t sight to be quite different. 

Reynolds Equation remains as 

However, U — X -+• - f A P the l a s t term being the addition 
' f /a. r T 

to the problem. This addition has dramatic effects on the f i l m thickness/ 

time curve but the computation i s almost unchanged. 

The Runge-Kutta method employed i n 3-2 i s quite suitable for solving (34) 

even though i t i s no longer a l i n e a r d i f f e r e n t i a l equation. 

3.4 E l a s t i c Impermeable Surfaces 

The equation for the film thickness, h, remains as i n 3.3 but i t i s 

now necessary to include the rate of deformation of the e l a s t i c l a y e r i n 

requires evaluation of the Reynolds Equation since c a l c u l a t i o n of l^j? 

Our treatment of the e l a s t i c i t y part of the problem has produced 

the s i m p l i f i c a t i o n 

There i s no e x p l i c i t description available for \z—Z. 
a-fc 

, thus i t s value 
T 

must be implied by the equations of the model and hence these equations 

must be s u f f i c i e n t to solve the model completely, i . e . ^ I must be 
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determined from the information already available. 

Since the equation of motion i s concerned with 

only equation from which 

£ the 
. area of f i l m 

a t ] 
~^£\ can be obtained i s the Reynolds Equation 

Unfortunately Reynolds Equation, when integrated once, gives us 

and to calculate 
a t 

[el 
from t h i s involves a process of numerical d i f f e r e n t i ­

ation. A formula of the type 
r 
0 Pr 

- U 

r 

or 
must be used. 

]t ) M,. 

Numerical d i f f e r e n t i a t i o n i s a process that should be avoided i f at 

a l l possible. A large time increment w i l l produce truncation errors, a 

small increment w i l l produce errors due to inaccuracies i n the evaluation 

of jKj^_ i since , and \f*\{. w i l l he almost equal. \fL\. , and ,.v i , 

Thus i t i s the problem of calculation of I o 'r< which i s the weak 

point i n the numerical calculation of the tr a j e c t o r y . The weakness i s 

inherent i n the e x i s t i n g mathematical treatment of the model and cannot 

be eliminated by different difference formula, although t h i s approach was 

t r i e d to the extent of using a least-squares approach ( f i t t i n g a parabola 

through f i v e values of pressure at the same r , and successive values of t ) . 

The e f f e c t of t h i s weakness makes i t s e l f f e l t i n l i m i t i n g the model 
-3 to situations of low f l e x i b i l i t y , i . e . S\ ~ \0. 

Besides the errors inherent i n the evaluation of 
r 

lag 
[a* J 

there i s an 

i n s t a b i l i t y which occurs in the Runge-Kutta procedure. 

The integration by Runge-Kutta formulae commences at f ~ TOL and 

v^o — O (since f̂ . = 0 f ° r a H t ) . As the integration approaches the centre 

part of the fi l m , w„ — > it- and so \ ̂ £ I q . Thus WB > i s a 

condition that must always be s a t i s f i e d (remembering that x i s - v - e ) . 
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Yihen •Q , small errors i n the evaluation of P̂ . are 

s u f f i c i e n t to cause the solution to o s c i l l a t e and increase exponentially, 
^7S• eventually causing an 'overflow' condition i n the computer ( | ?r \ 10 ) 

This can be overcome f a i r l y e a s i l y by a smoothing process. I f , for 

example, we represent the rate of deformation of the e l a s t i c layer by 

A t then 
3 r 

i s zero when the r e l a t i v e 

v e l o c i t y of approach of the two surfaces i s zero, i . e . = W 0 

From t h i s was can find j^-J^. » i , e * 

This gives us a l i m i t i n g value which £jP~j ̂  must approach 

This condition has been written into the programme to suppress the 

as T 

o s c i l l a t i o n and i s used to calculate 
P i t . 

i f e ither condition 

O 

' 1 > a ) 
> o 

occurs while i s being found by U3e of the Runge-Kutta procedure. 

See f i g . (60) i n which o s c i l l a t i o n has been suppressed i n i = 1 and 

-r < 0.035. 

3.5 E l a s t i c Permeable Surfaces 

The cases of r i g i d and e l a s t i c permeable layers can be treated 

together, since the r i g i d i s merely a special case of the e l a s t i c (though 

an important one). The introduction of a permeable layer into the model 

increases the problem of numerical solution by many times. Typical 

computing times for the two co-ordinate models ( i n r, t ) are i n the 

region of 15 seconds; for the three co-ordinate problem ( r , z,t) the time 
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can be 9 minutes. 

I t was decided to represent the pressure d i s t r i b u t i o n i n the porous 

layer by a f i n i t e difference technique and to solve the resulting equations 

by i t e r a t i o n , using the method of successive corrections, simultaneously 

with the Reynolds Equation integration. This was considered desirable 

for the following reasons: 

1) The mesh had to be fine enough to ensure that w/^was represented 

accurately i n Reynolds Equation. 

2) The pressure dis t r i b u t i o n would not change much over the period 

of one increment of time or velocity C ^ ) . Thus i t would be 

economical to use a previous pressure dis t r i b u t i o n as the 

s t a r t i n g point for the next s e r i e s of i t e r a t i o n s . 

For a large matrix, the i t e r a t i v e approach i s f a s t e r than inverting 

a matrix and solving exactly for pressure every time. Calculation of the 

trajectory involves solving the mesh some 50 times and the number of nodes 

ranged up to 2,737. 

The order of solution of the nodes i s shown i n f i g . ( 8 ) . 

Reynolds Equation i s altered to 

where 

/if) - fcl-K* 
law...... — 

lo V 

and 
••IK f MCE A—J 

i n a f i n i t e difference approximation. 

The smoothing applied to Reynolds Equation, as described i n (36), 

i s altered and i s derived from 

I n the porous layer, equation (25) must be solved and the following f i n i t e 
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difference approximations are used. 

p a e "A 

fi. 
> (B7) 

A one-dimensional matrix was chosen for since i t i s quicker to "read" 

and "write" to a one-dimensional array than a two-dimensional one i n the 

computer. 

AT- i s a constant, chosen as • & z however w i l l vary 

with the deformation of the surface and so 

A s 
Cpn-0 where m i s the number of nodes i n the 

z-direction. The number of nodes i n the r-direction i s lOin-9, i . e . the 

mesh has a r a d i a l : a x i a l length r a t i o of 10 : 1. 

When the node I i s on one of the boundary streamlines, (such as 

z = o say) then i n (37) we replace fx+i by ' r - i . 

At ( T = O ) , the quantity ^ — i n both the Reynolds Equation and 
o f 

out! uapj.auj.au I J-» UHUCJL J U I S U . 

Assume the pressure d i s t r i b u t i o n i s parabolic about r=0 , then 

e = I + l say. 

Now = £ and fi» F£v i f T = T h i s c a n b e solved for £ 'J - 'o 
in either Reynolds Equation or equation (25). 

http://uapj.auj.au
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The convergence of a mesh such as the one described above i s 

approximately f i r s t order and t h i s can be speeded up by the use of 

'Aitken's S method1, which estimates a f i n a l value of 

p - i» _ (p. - p..,)>4^ P~ - ae.,) 
Obviously the mesh size and the number of iteratio n s required to solve i t , 

to some specified accuracy, has an upper l i m i t , defined by the size and 

speed of the available computing power. 

The number of nodes i n the mesh varies as tn and the necessary number 
a. 

of iterat i o n s w i l l vary approximately as * or •*1 also. Thus halving the 

step length A2 w i l l increase computing time by 8 or 16 times. 

The largest value of m used i n the computing was m = 17, i . e . t o t a l 

number of nodes i n the porous layer = m(lOm - 9) = 2737* Since the 

pressure at any one node may only change by a small amount between calcu­

lations ( i . e . during one increment of time or velocity) a small number of 

iter a t i o n s i s permissible. Typically the pressure change per increment 

may be 1%, i n which case, 8 or 16 interations i s s u f f i c i e n t to produce 

f i l m pressures consistent to 0.1%. The shape of the matrix (the r a d i a l 

length being 10 x the a x i a l length) helps to produce a f a s t e r r ate of con­

vergence than for a square matrix. 

There i s one i n s t a b i l i t y i n what one would imagine to be a well 

behaved system of equations and t h i s occurs for A*0 . There are two 

components to the pressure d i s t r i b u t i o n i n a porous region, one due to the 

applied pressures on the boundary of the region (corresponding to the 

complimentary function of equation (25)) and the other due to the rate of 

deformation of the region (corresponding to a part i c u l a r i n t e g r a l of 

equation (25)) . This l a t t e r component involves the term w„ , i . e . 

the problems of calculation of which we have already discussed. Unfor-

tunately for some values of f\ and <p , the computer programme i s unable to 

produce a correct t r a j e c t o r y when t h i s p a r t i c u l a r integral i s included i n 



35 

the calculation. This must be attributed to d i f f i c u l t y encountered i n 

describing iv„ accurately. The solutions i n which i t has been necessary 

to neglect t h i s p articular i n t e g r a l are c l e a r l y marked and the problem 

i s discussed further i n Chapter 6. 

3.6 Normal Approach and Variable V i s c o s i t y 

The equations derived i n 2.7 were written i n f i n i t e difference form 

and, for a given i n i t i a l d i stribution of concentration of additive, the 

concentration at a time At l a t e r can be found from them. The calculation 

must commence at the centre of the film, where f>, = O . After t h i s c entral 

concentration has been found, <P3 can be calculated and t h i s i s substituted 

into the next innermost annular region as <Pt . The calculation proceeds 

to r = T-,, and takes place immediately before the simultaneous solution of 

Reynolds Equation and equation (25). 

The v i s c o s i t i e s are then found from (30). As pointed out i n 2.7, i t 

i s necessary to assume that the surface permeability declines as the 

concentration of additive increases. For the purposes of computation, 

we assume that the permeability i s affected to a depth below the 

surface (see f i g . ( ? ) ) • 

where W6 i s the current value of concentration. 

The c a l c u l a t i o n of nodal pressures immediately below the surface i s 

not so straightforward. Consider the continuity of the element shown i n 

f i g . (9)s for the upper h a l f of the element, we have 

Whence, as 

then 
4^. A - w ^ ( 
77 \ ' V x_ 
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L f t p j_*P[JL+± fdM (Wo. - w b ) 
0 * ) 

and for the lower half 

Wc) 

? Now 

and 

also 
4- - £ ( / - v . ) 

and 

so, adding (38) and (39) and simplifying, we have 

3 w. ft 

Yfe now have an expression i n f i n i t e difference form for the evaluation 
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Chapter 4 

DIMENSIONAL ANALYSIS OF NORMAL APPROACH 

The f i l m thickness and pressure at the oentre of the f i l m are the 

quantities in which we are most interested. Their relationship to the 

other parameters of the system can be expressed i n the following manner: 

where 5, and are unlcnown functions. The three v i s c o s i t i e s f£ fl) 

refer to the f i l m at the commencement of normal approach, to the porous 

layer, and to the additive respectively. 

Examining the Reynolds Equation for a porous layer with an additive 

present, we have: 

For the same system, the flow i n the porous layer i s given by 

-r j + 

I n both equations, 7 0
 o n l y occurs with <^ or <^ . 'fie can thus replace 

We have reduced the fourteen variables i n (40) to t h i r t e e n . Normal 

dimensional analysis would reduce these thirteen to ten dimensionless 

groups. I f , however, we follow the technique due to Morrison, described 

i n d e t a i l i n ( l l ) , these thirteen parameters can be reduced to nine groups. 

The method i s based on the introduction of extra length dimensions, per­

pendicular to one another. In the system we are considering, the choice 

of length dimensions i s an obvious one since the model i s best described 

i n c y l i n d r i c a l co-ordinates and i t possesses a x i a l symmetry. Only two 

length dimensions are needed to describe the model, these are i n the r a d i a l 
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and a x i a l directions. A l l the parameters concerned with the model can 

now be described i n terms of mass (M), a r a d i a l length ( L R ) , an a x i a l 

length (Lj>) and time ( t ) . The r a t i o Lit/i-p i s no longer dimensionless. 

The choice of dimensions for the parameters of the model i s not arb i t r a r y 

but, for the technique to be v a l i d , must be such that the d i f f e r e n t i a l 

equations of the model are dimensionally homogeneous. 

With t h i s i n mind, the dimensions of the parameters are presented as 

L 

% • I <?, •? 
U 

Lp f 

8 

t t 

c . V 

The derivation of the dimensions for L i s straightforward i f L i s 

considered as a force i n the a x i a l direction. A i s defined as S/P, an 

a x i a l deformation divided by an a x i a l force acting on unit area i n the 

plane of the f i l m . 

To explain the units derived for v i s c o s i t y , we consider Newton's 

Law of Viscos i t y , i . e . 

-r - r? 2t± ^ 0 

*TT i s a r a d i a l shear s t r e s s , with units M LK -t~ly/l.^ (remembering that 

tangential lengths a l l have the dimension ) . ^ u~- has the units 
d X 
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Inserting these dimensions into (41) gives the dimensions 

for ^ shown above. 

I t remains to decide the dimensions of the various terms containing 

'Pressure' in the two governing equations (25) and (27). Consider the 

terms and • When these equations are derived from con-
d r d-r 1 

sideration of the forces acting i n a r a d i a l direction on an element of f l u i d , 

i t i s implied that P i s a pressure acting i n a r a d i a l direction on a face 

of that element, the orientation of that face being perpendicular to the 

radius vector. 

The dimensions of P must then be ML n't y/^a l~y. Similar arguments 

are v a l i d for the terms 3 ^/^z" a n <^ / > ^ n which we deduce 

' o Z I surface 

that the dimensions of F here are L-P~t We now have the unusual 

situation of one parameter "pressure" having two d i s t i n c t sets of 

dimensions simultaneously. Morrison argues that t h i s i s quite legitimate. 

Using the dimensions derived above and 1£. , L, R, D as the repeating 

variables, we can present the non dimensional form of (40) as 

Ordinary dimensional analysis, using L, R and ^ would replace D everywhere 

i n (42) by R and also introduce the extra group ?/fl (42) w i l l of course 

reduce to t h i s form i f R. and P are merged to produce only one length 

dimension. 

Ultimately, the judgement of any dimensional analysis must be based 

on i t s usefulness i n understanding the relationships between the various 

non-dimensional groups. I n t h i s respect (42) i s an improvement over the 

simpler approach. 

(}*/p) i s preferable to ( V / O ~ s e e * n e ' r i g i d ' solution i n Chapter 2. 

The equation (7) becomes 
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Jt/cw 
3T = e 

and 

also £ /.M 1 ^-V^TT 

and ^ and ^ ^ represent the effect of a permeable layer 

on f i l m thickness and pressure. Indeed, Wu (8) has chosen to use ^-A^" 

as his non-dimensional group i n a squeeze f i l m with r i g i d boundaries and 

iso-tropic permeable l a y e r s . 

I t i s more convenient to write (42) i n the form 

r and 1^ refer to the geometry of the model and both of these have 

remained constant, at 20 and "Vfj respectively i n both experimental and 

theoretical work. V has taken experimentally determined values when 

the t h e o r e t i c a l and experimental results were compared but has remained 

constant at 0.25 i n the theoretical predictions presented i n Chapter 6. 

S i m i l a r l y and ^ were allowed to d i f f e r for the purpose of 

correlating theory and experiment but with one exception, described i n 

Chapter 6.2, the two permeabilities were otherwise considered equal. 

The range of values of the repeating variables and the non-dimensional 

groups used i n the experimental and theoretical work and also encountered 

i n animal j o i n t s i s shown i n figure ( l O ) . 



Chapter 5 

THE EXPERIMENTAL WORK 

5.1 The Apparatus 

Whilst large computers can now handle programmes which solve 

complicated mathematical models, i t i s extremely desirable that an 

independent check be kept on the r e s u l t s from such numerical procedures. 

Such a check might be hoped to confirm the hypotheses on which the 

model had been based or to i l l u s t r a t e inadequacies or over-elaboration 

i n the model. Bearing i n mind the number of assumptions introduced i n 

Chapters 2 and 3 concerning squeeze-film behaviour, i t was considered 

important that some experimental r e s u l t s be obtained that could be 

compared with the predictions of the numerical work. 

The transient nature of normal approach l u b r i c a t i o n i s an added 

complexity to experimentation and the approach to the design of the 

experiments has been dictated by p r a c t i c a l limitations rather than the 

concept of an ideal experiment. 

The easiest configuration with which to work and one s i m i l a r to 

an animal j o i n t was considered to be two surfaces approaching each other 

under the action of gravity. 

The choice of geometries for the f i l m shape l a y among these three 

p o s s i b i l i t i e s . 

1) Two c i r c u l a r f l a t surfaces 

2) One f l a t and one c y l i n d r i c a l surface 

3) One f l a t and one spherical surface. 

The f i r s t p o s s i b i l i t y can be ruled out despite i t s a x i a l symmetry because 

of the extreme d i f f i c u l t y i n preventing the upper surface from rotating 

about either of i t s horizontal axes during i t s approach towards the lower 

(fixed) surface. 



42 

The second p o s s i b i l i t y lacks a x i a l symmetry but rotation about only 
one axis needs to be prevented (a horizontal axis perpendicular to the 
axis of the c y l i n d e r ) . 

The t h i r d p o s s i b i l i t y combines a x i a l symmetry and freedom from the 

rotational d i f f i c u l t i e s inherent i n the other two geometries. I t i s the 

obvious choice. 

The r i g was constructed around t h i s l a t t e r geometry and i s shown 

in figures ( l l & 12). The lower boundary of the squeeze f i l m (fl) consists 

of a thi n disc of t e s t material, some 150 mm diameter bonded on to a f l a t 

(surface ground) mild s t e e l plate (B), 9 mm thick and 220 mm by 170 mm i n 

area. This s t e e l plate i s fixed r i g i d l y by four Allen screws on to the 

baseplate. The height of a t e s t piece above the baseplate can be varied 

i n increments of 0.05 mm by i n s e r t i o n of packing between the baseplate 

and the t e s t piece backing plate. The baseplate i s 9 mm mild s t e e l plate, 

some 0.5 m square and could be l e v e l l e d by means of four feet which rest 

on a work-bench. 

A horse-shoe electro-magnet (B) with surface ground faces i s 

suspended above the t e s t piece from a rectangular arch (A) constructed 

of 19 mm square bar. The feet of the arch are screwed to the baseplate 

at each side of the t e s t piece so that interchange of specimens can be 

carried out without disturbing any other part of the r i g . 

Between the magnet and the specimen f i t s the moving part of the r i g . 

This consists of two halves, the upper h a l f (C) being a f l a t s t e e l plate, 

the lower h a l f (D) being the upper boundary of the squeeze f i l m . This 

upper h a l f clamps against the faces of the electro-magnet and c a r r i e s 

the lower h a l f r i g i d l y suspended about 20 mm below i t * The lower h a l f 

has, of course, a spherical lower surface. This spherical form was 

produced on a copying lathe from a template of 300 mm radius. 

Although any horizontal movement or any s l i g h t rotation of the 
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spherical surface about a horizontal l i n e would not change the geometry 

of the squeeze f i l m , such motion was considered undesirable since the 

purpose of the experiments was to examine f l u i d f i l m s under pure normal 

approach. Also the instrumentation of the r i g was designed to measure 

phenomena on the axis of symmetry of the f i l m and any motion of the 

upper surface, other than v e r t i c a l t r a n s l a t i o n , would move t h i s axis of 

symmetry either i n a horizontal direction or out of the v e r t i c a l . 

Two constraints then were added to the moving part of the r i g to 

prevent any of these undesirable motions. The f i r s t constraint consisted 

of three horizontal lightweight arms ( i ) r adiating out at 1 2 0 ° intervals 

from the upper rim of the spherical surface. These arms were pinned to 

p i l l a r s ( j ) at the outer edge of the baseplate and were of 10 mm width and 

1 mm depth. Their length was 300 mm, hence the large size of the base­

plate. Free v e r t i c a l movement of the spherical surface was thus unaffected 

but horizontal t r a n s l a t i o n was in h i b i t e d . Rotation about a horizontal 

axis was minimized by constructing an arch F from the plate C over the 

magnet B and i t s support A. From t h i s arch, a dowel & f i t t e d into a 

v e r t i c a l P.T.F.E bush mounted i n the crossbar A. Loading of the r i g was 

accomplished by f i t t i n g a load carrier (not shown) to each corner of the 

steel plate C. This completed the construction of the r i g . 

5.2 Instrumentation 

I n i t i a l l y i t was hoped to measure three parameters as they varied 

with time during normal approach. These three were displacement of the 

upper surface, central f i l m thickness and central f i l m pressure. Not: 

surprisingly, displacement was found to be the easiest to measure. A d i s ­

placement transducer reading to 0.0025 mm was mounted v e r t i c a l l y on the 

crossbar A and recorded the v e r t i c a l displacement of F at a point on the 

axis of symmetry of the f i l m . The transducer was of the inductive type 
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and i t s probe was loaded against F by a l i g h t spring. This was found to 
be quite satisfactory and the probe followed the motion of F with no 
sign of any time-lag. The signal from the transducer was fed to a s t r a i n 
bridge operating at 5 KHz. 

Measurement of pressure i n the centre of the f i l m was not so 

straightforward. In r o l l i n g or s l i d i n g situations where the pressure at 

any p a r t i c u l a r point i s constant with respeot to time, use of a pressure 

tapping i n the w a l l of the bearing i s a satisfactory method to record 

pressure. However i f t h i s method were to be used i n a squeeze-film, i t 

would be found unsuitable on three counts. F i r s t , the presence of a 

tapping changes the f i l m shape and hence the pressure gradients i n the 

region of the tapping, second, since a l l pressure measuring devices require 

some physical movement of a diaphragm, there w i l l be a flow from the f i l m 

to the measuring device through the tapping. This flow w i l l have two 

effects; there w i l l be a pressure difference between the entrance to the 

tapping and the diaphragm, and the flow i n t o the tapping w i l l lower f i l m 

pressures near the tapping. The t h i r d drawback to t h i s method i s that 

the pressure reading i s purely dynamic and i s not capable of measuring 

s t a t i c stress due to deformation of the t h i n layer by the spherical 

surface. 

A commercial pressure transducer was connected to the centre of the 

f i l m via a tapping but i t was considered unsuitable f o r the reasons given 

above• 

To overcome these d i f f i c u l t i e s , a direct approach was t r i e d by 

building i n a small s t i f f diaphragm at the centre of the spherical surface, 

figure ( 1 2 ) . The centre of the top face of D was cut away u n t i l only a 

t h i n c i r c u l a r diaphragm of 5 nun radius and 0.75 mm thickness was l e f t . 

On to the centre of the back of t h i s diaphragm was mounted a semi­

conductor s t r a i n gauge, the active part of the device being 0.5 mm by 
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1.5 mm i n size. The gauge factor of the device was nominally 100 and so 

very small strains could be detected. For f l u i d pressures of 10^N/m^, 

the deformation of the diaphragm was calculated to be 1.5 x 10 ^ mm. 

This was considered an acceptable departure from sphericity for the top 

surface. The s t r a i n gauge and a dummy formed a h a l f bridge which was 

connected to a s t r a i n bridge instrument with a carrier frequency of 

5 KHz. Calibration of t h i s transducer was achieved by applying known 

uniform hydrostatic pressure to the spherical surface. The ca l i b r a t i o n 

was l i n e a r . 

Error w i l l be present i n recordings from the transducer because 

squeeze f i l m pressures w i l l not be uniform over the area of the diaphragm. 

However peak pressures w i l l occur i n the centre of the f i l m and i t i s i n 

i t s centre that the diaphragm w i l l be most sensitive. D r i f t of the h a l f 

bridge was minimized by creating a sealed environment around each gauge 

and since the r i g operated at a reasonably constant room temperature, 

varia t i o n of gauge factor with temperature was ignored. 

The two s t r a i n bridges used to measure pressure and displacement 

had D.C. outputs and these were fed to an U l t r a - v i o l e t Oscillograph which 

produced permanent records of the time v a r i a t i o n of these parameters. 

Paper speeds of up to 1000 mm/s could be used and the galvanometers 

employed had natural frequencies of 100 Hz. They were l i n e a r up to 60 Hz 

i n response. However none of the signals recorded had rise-times less 

than 0S02 s = 

Since the problems of measurement of f i l m thickness vary with the 

nature of the lower surface, the attempts made to measure films are 

described separately i n the following sections. 

To continue the pattern of the previous chapters, the various 

experiments are described i n the following order. F i r s t , r i g i d impermeable 

squeeze f i l m s , second, "weeping" l u b r i c a t i o n , t h i r d , l u b r i c a t i o n with an 
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e l a s t i c impermeable layer, and fourth, the squeeze films with elast i c 

permeable layers. No experiments were carried out to test the effect 

of additives i n the lubricants. 

A l l the experiments had several features i n common and i t i s con­

venient to describe them now. The thickness of the layers of test 

materials were a l l nominally 5 mm and the area of each specimen approxi­

mately equal to the area of the spherical surface. Each specimen was 

tested with three d i f f e r e n t lubricants, a l l being mineral o i l s . They 

were provided by Shell Research Ltd. and denoted as HVT 160, HVT 650, 

LVT 1100. At room temperature the viscosities were approximately 3 poise, 

15 poise and 75 poise giving a r a t i o of 5 between successive v i s c o s i t i e s . 

Also three loads were applied to the f i l m . The lowest lead was 4*330 kg 

and was merely the weight of the r i g with no extra loads applied. The 

other loadings were 6.145 kg and 7*960 kg. This upper l i m i t corresponded 

to the highest value of f l e x i b i l i t y that the computer programme could 

accept without going unstable. I t was also with i n the safe l i m i t of 

pressures generated i n the f i l m i n the experiments where the s t i f f p lastics 

and metal were used as the lower surfaces. The i n i t i a l height of the top 

surface above the undeformed lower surface was set at nominally 0.25 mm. 

The various parameters of interest i n the experiments are l i s t e d together 

i n figures (10 & 7 1 ) . 

Before each run, the current i n the electro-magnet coi l s was reduced 

to the minimum necessary to support the plate C and spherical surface D. 

This was to minimize the effects of r e t e n t i v i t y i n the iron core on the 

i n i t i a l part of the normal approach. The only effect of t h i s r e t e n t i v i t y 

was to produce a s l i g h t uncertainty i n the zero position of the time 

scale of the pressure and f i l m thickness curves. This was not considered 

to be important and had no effect on the experimental results. 

With regard to experimental error, i t was considered that the U l t r a -
Violet Oscillograph traces could be measured to less than -1% FSD 
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( l mm i n 100 mm). The strain-bridge instruments were quoted as being 

accurate to -1% FSD also. Thus both pressure and displacement traces 

w i l l be accurate to w i t h i n -2% FSD. Since the f i l m thickness i s 

deduced from the sum of the displacement and deformation (with the l a t t e r 

proportional to pressure), the error i n f i l m thickness curves w i l l be 

-1$ FSD. This value covers most of the scatter on the experimental 

results. 

The dependency of gauge factor i n semi-conductor gauges on tempera­

ture i s well known. However the v a r i a t i o n was quoted by the manufacturers 

(Electro-Mechanisms Ltd.) as being over a 100 F° range. This i s 

negligible since a l l experiments were conducted at normal room temperatures. 

Because the pressure transducer records s t r a i n produced by a non­

uniform pressure d i s t r i b u t i o n , there w i l l be a systematic error i n the 

recorded pressures. Thus the accuracy of the transducer can only be 

estimated by comparing the experimental values with computed values. 

Whilst the agreement i n the experiments with rubber was not so good, 

that i n the porous p l a s t i c tests was excellent. 

5.3 Rigid Impermeable Boundaries 

The lower surface of the squeeze f i l m i n t h i s case was a mild steel 

plate that was surface ground to a roughness of 0.25 microns c.l.a. I f 

the surfaces are considered r i g i d , the f i l m thickness can be derived 

d i r e c t l y from the recording of displacement. This assumption has been 

used to plot the curves of f i l m thickness and pressure, shown i n figures 

(13) and ( l 4 ) . The staggering of the o r i g i n of co-ordinates has been 

done i n the interests of c l a r i t y , and the three graphs could equally w e l l 

have been grouped together under headings of load rather than viscosity. 

The results from a l l three o i l s have produced a reasonable agreement 

between measured and theoretical f i l m thicknesses and the main discrepancy 

occurs a f t e r t = 30 when the experimental values are 0.025 - 0.05 greater 



than the t h e o r e t i c a l . Possible causes of t h i s are f i r s t : f r i c t i o n due 

to the constraints f i t t e d t o the upper surface, and second: deflection 

of the diaphragm under the generated f i l m pressures. There i s no 

evidence of f r i c t i o n being present i n the experiments described l a t e r 

with other materials and a look at the various pressure/time curves 

suggests that the f l e x i b i l i t y of the system i s not quite zero. Departure 

of the experimental curves from the theoretical occurs at t — 25 and the 

f i n a l s t a t i c pressures recorded were p'— 4000. Thus the model has 

produced f i l m thicknesses greater and pressures less than the theory 

would lead one to predict. 

I f we consider the diaphragm as being of uniform thickness and 

b u i l t i n on i t s edge, i t s deflection (S) under a central load (L) i s 

given by 

where a i s the radius and h the thickness. For the loads used i n the 

experiments, t h i s expression produces a deflection at the centre of 

4«3 x 10~"^ mm. This i s 0.017 expressed as a non-dimensional f i l m 

thickness and i s s u f f i c i e n t to account f o r most of the observed discre­

pancies. 

I t was considered that the high pressures predicted by the theory 

might damage the diaphragm or i t s s t r a i n gauge and so these experiments 

were conducted as the f i n a l part of the experimental work. 

5 .4 The 'Weeping' Thin Layer 

As described i n Chapter 2 , the concept of self-pressurized hydro­

s t a t i c l u b r i c a t i o n can be realized i n i t s extreme form by a t h i n layer 

of material on a r i g i d backing, the t h i n layer having zero ra d i a l 

permeability and i n f i n i t e a x i a l permeability. I t was attempted to 

produce a material which had these properties i n the following way: 
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On to a steel plate was cast a disc of silicone rubber (Silcoset 101 

manufactured by IC I L t d . ) , some 150 mm dia and 5 nun thiok. The surface 

of the steel was primed to achieve bonding between the rubber and steel -

addition of a curing agent caused the l i q u i d rubber to set over a period 

of 24 hours. Care was taken to remove a i r from the l i q u i d by subjecting 

i t to a pressure of 5-10 mm mercury f o r 30 minutes. 

Against the upper surface of the l i q u i d rubber was pressed a clean 

unscratched perspex surface. After setting of the rubber the perspex 

was removed by p r i s i n g i t free from the surface. I n the central region 

of the rubber disc, 2500 v e r t i c a l holes were punched to model the concept 

of weeping l u b r i c a t i o n . The pattern of holes was a g r i d 50 mm square 

containing 50 holes per side. The spacing of the holes was thus 1 mm 

and the diameter of each about 0.6 mm at the surface. Production of the 

g r i d was achieved by using the table of a m i l l i n g machine which was 

indexed i n both horizontal directions. 

For the actual manufacture of each hole, a large bore hyperdermic 

needle ( 0 . 6 mm bore) was used with the t i p ground by t r i a l and error to a 

shape which produced a clean round hole. 

D r i l l i n g of the rubber was found to be quite unsatisfactory and i t 

produced a very rough, torn surface. For the f i r s t few holes punched, 

the core was removed by the needle but since these early cores blocked 

the bore of the needle, l a t e r cores were merely pushed down i n t o the 

rubber as shown i n diagram ( 1 5 ) . This caused a s l i g h t r i s i n g of the 

punched surface above that of the untouched surroundings. To f i l l the 

holes with f l u i d , the f l u i d was poured on to the surface and the specimen 

placed under vacuum f o r several hours. 

Measurement of the f l e x i b i l i t y of the material was done d i r e c t l y on 

the r i g . The r i g i d spherical surface was lowered towards the rubber 

u n t i l j u s t touching. On releasing the top surface, the deformation of 

the soft layer was measured. This was repeated several times and f o r 
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three values of load. 

The f l e x i b i l i t y f o r the theoretical comparison was calculated from 

t h i s deformation, knowing the load applied and assuming a parabolic 

pressure d i s t r i b u t i o n . (This l a t t e r assumption i s already i m p l i c i t i n 

the treatment of the e l a s t i c i t y equations i n the programme and indeed 

i n a l l the theory of Chapter 2 . ) S l i g h t l y d i f f e r e n t values f o r A were 

found f o r the three loads indicating a decrease i n f l e x i b i l i t y as the 

deformation increased. These values are shown i n the graphs of results 

f o r t h i s model, f i g s . ( 1 6 - 2 1 ) . 

I t was also necessary to measure an 'experimental 1 value of f l e x i ­

b i l i t y . I n the absence of a direct measurement of f i l m thickness, i t 

became necessary to deduce i t from the measured displacement curve and 

a calculated deformation curve. Since deformation and pressure have 

been assumed proportional throughout t h i s work, the central deformation 

of the soft layer could be found i n an experiment from the measured 

pressure and an experimental f l e x i b i l i t y . 

This f l e x i b i l i t y was calculated from the recorded s t a t i c pressure 

and the measured s t a t i c deformation (described as above). Since the 

predicted f i n a l pressures were ~ 20$ greater than the recorded s t a t i c 

pressures, the values of f l e x i b i l i t y f o r the t h e o r e t i c a l and experimental 

models were not equal. They are shown i n f i g s . ( 1 6 - 2 1 ) . 

I n i t i a l separation of the surfaces was found from the f i n a l value 

of displacement and the t o t a l deformation either measured s t a t i c a l l y or 

calculated from the f i n a l recorded value of pressure. 

The same method of production of the t h i n layer and calculation of 

f i l m thickness was used f o r the experiments with an elast i c impermeable 

layer (with the exception of the hole punching). 

Originally i t was attempted to measure f i l m thickness d i r e c t l y by 

recording the capacitance between the steel upper surface and a small 

electrode buried 0 . 1 - 0.05 mm below the rubber surface. I n order that 
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only the central f i l m thickness would be measured, the electrode was 

6 mm square and had four holes d r i l l e d i n i t before insertion i n the 

l i q u i d rubber during casting. However i t was found that the presence 

of the electrode disrupted the pattern of holes i n the rubber and also 

that i t s area was so small that the peak capacitance measured was of 

the order of 1 - 2 pf. Consequently there was substantial d r i f t associ­

ated with the measurement of t h i s signal. Also the capacitance varied 

with the deformation of the rubber even i n s t a t i c conditions. The direct 

measurement of f i l m thickness was thus abandoned and replaced by the 

i n d i r e c t method described above. 

With t h i s i n d i r e c t approach, the main source of error was i n 

measuring the t o t a l displacement of the top surface. Whilst 95$ of the 

displacement occurs w i t h i n 3 seconds of release, even with the LVI 1100 

o i l , the other Jfo may take up to several minutes. 

The results are plotted with the corresponding theory i n f i g s . (16-21). 

Since the non-dimensional f l e x i b i l i t y contains the quantity L, there are 

three separate graphs f o r f i l m thickness and pressure. This applies to 

the presentation of the results f o r the e l a s t i c impermeable material also. 

The agreement between theory and experiment i s excellent. However 

the results are shown only to t = 120 and as already mentioned, the 

theoretical f i n a l pressure attains a value somewhat i n excess of the s t a t i c 

experimental values (t-*<=«»). This could be due to the non-runiform 

pressure d i s t r i b u t i o n applied to the diaphragm (parabolic i n the theory 

but not necessarily so i n practice) and also to the fact that the c a l i b r a ­

t i o n of the diaphragm was based on a uniform hydrostatic pressure. 

5»5 The Elastic Impermeable Layer 

The material f o r the t h i n layer f o r these experiments was i d e n t i c a l 

to that used f o r the 'weeping' l u b r i c a t i o n t e s t s , w i t h the exception of 

the holes. Direct measurement of f i l m thickness was attempted but f a i l e d 
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f o r the reasons previously given. However i t was of use i n a qu a l i t a t i v e 

manner f o r an interesting phenomenon which occurred during testing of 

the r i g . 

I t was found that rapid separation of the two boundaries of the 

f i l m produced ca v i t a t i o n of the f l u i d i n the central region of the f i l m . 

This manifested i t s e l f on the pressure and f i l m capacitance traces i n a 

most peculiar manner and the relevant traces are shown i n f i g . ( 2 2 ) . I t 

should be noted that both curves are a q u a l i t a t i v e record of events 

since the position and severity of the cavitation was variable. 

Presumably the dip i n the pressure trace occurs as the bubble i s 

forced out of the central region - replacement of the a i r by o i l would 

lead to a slower rate of closure of the f i l m . 

Confirmation of the presence of a i r was found by removal of the 

magnet, the crossbar and a l l the moving part of the r i g and replacing 

the l a t t e r by a perspex disc with a lower surface of spherical form with 

the same radius of curvature as used i n the steel version. By closing 

and opening the f i l m by hand, a small cavitated region could be induced 

to form at the centre of the f i l m . A photographic record of t h i s 

formation i s presented i n f i g . ( 2 3 ) . 

During actual experiments, care was taken to avoid rapid separation 

of the surfaces and consequent formation of a i r bubbles. The phenomenon 

was more readily inducible i n the models with higher vi s c o s i t i e s . 

The results are shown i n f i g s . (24 - 2 9 ) . The pressure traces show some 

deviation from the theoretical at large values of t , as happened i n the 

experiments with the "weeping" material. However the gross discrepancy i s 

found i n the curves of f i l m thickness. For a l l three f l e x i b i l i t i e s of the 

model ( i . e . the three loading s i t u a t i o n s ) , the difference between theory 

and mean experiment values i s f i v e or six times the standard deviation of 

the experimental curves. This i s si g n i f i c a n t and i t requires some 

explanation. 



53 

I t i s proposed that the cause of t h i s discrepancy l i e s i n the 

phenomenon of entrapment. This effect has been described and experi­

mental evidence obtained f o r i t by Christensen (5 ) and Dowson & Jones 

( 1 2 ) . 

The approximation inherent i n a l l the work i n t h i s thesis i s that 

the surface deformation of a t h i n layer i s proportional to the f l u i d 

pressure at that point on the surface. I n the case of the "weeping 

material" the presence of the holes produces two results. One i s that 

the transfer of s t r a i n from one small deformed region to another i s 

rendered more d i f f i c u l t because of the small amount of material l e f t 

between successive holes. The other r e s u l t i s that the Poisson's Ratio 

of the layer w i l l be almost zero despite any s o l i d piece of the consti­

tuent material - the rubber, having a value of 0 .495« This i s due to 

the rubber being able to expand sideways into the holes when compressed, 

resulting i n a decrease i n the volume of the holes. Indeed t h i s e f f e c t 

has been assumed i n the theoretical treatment of the "weeping" model. 

The overall result of the punching of the holes i s thus to make the 

resulting layer agree well with the theo r e t i c a l analysis. 

However the s i t u a t i o n i n the s o l i d rubber layer i s very d i f f e r e n t . 

With a Poisson's Ratio of 0 .495» the material i s v i r t u a l l y incompressible 

under the loads applied i n the experiments. Thus compression of the 

central region of the t h i n layer must resul t i n a r i s e i n the surface 

l e v e l elsewhere. This was i l l u s t r a t e d when the spherical surface was i n 

dry contact with the rubber. The r e s u l t i n g area of contact was considerably 

greater than that calculated from the measured deformation. 

Direct evidence f o r entrapment, however, was considered to be 

necessary and,to t h i s end, two q u a l i t a t i v e optical experiments were carried 

out to examine f i l m shape during normal approach. 

The f i r s t of these experiments was extremely simple and i s shown 

i n f i g . ( 30A) . 

The two boundaries of the f i l m were a semi-reflecting glass plate 
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and a silvered piece of silicone rubber that had been cast i n a 'watch-

glass' . Interference fringes were observed and were c i r c u l a r , but 

instead of moving outwards from the centre, as one would expect from the 

theory, they were observed to be moving inwards and outwards from a 

narrow annular region. A sketch of them i s shown i n f i g . (31A). Although 

semi-silvering of the glass plate and s i l v e r i n g of the rubber improved 

the d e f i n i t i o n of the fringes, they could be observed with neither surface 

coated. Despite the rapid movement of the fringes during the squeeze 

process, 50 were counted moving inwards from the annulus and i t appeared 

that about 25 could be seen between t h i s annulus and the centre at any 

one time. 

The other experiment was s l i g h t l y more sophisticated and involved 

using a Vickers Microscope - the o p t i c a l set-up i s shown i n f i g . (30E). 

The fr i n g e pattern was projected on to a screen and i n i t i a l l y , fringes 

could be seen moving outwards from the centre but, as the sphere approached 

the rubber, entrapment could be seen to occur (31B). I n the f i r s t experi­

ment, the loading, the f l e x i b i l i t y and the radius of curvature of the 

system were a l l similar to the values used i n the r i g during the experiments. 

In the second experiment, the load was not known but was less than 5 Newtons 

and the radius of curvature was only 15 mm. 

Since the loads i n the theo r e t i c a l analyses and corresponding 

experimental models were equal, i t would seem that higher pressures exist 

i n the central region and lower pressures elsewhere i n the f i l m than are 

predicted by the computed theory. Clearly a f u l l t h e o r e t i c a l treatment 

and an experimental record of the development of the entrapment (perhaps 

on cine f i l m ) i s called f o r i n systems of high f l e x i b i l i t y . 

5.6 The El a s t i c Permeable Layer 

To test that part of the programme describing the effe c t of a 

permeable layer on squeeze f i l m behaviour, experiments were carried out 
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with two permeable polythenes, both being 5 mm thi c k and manufactured 

by Porvair Ltd. Specimens 150 mm square were bonded on to steel plates 

to form the test pieces. Measurement of the permeabilities of these 

two materials presented some d i f f i c u l t i e s . 

A x i a l permeability was easily measured i n both cases but the r a d i a l 

permeability presented two problems, neither of which was immediately 

obvious. 

I n i t i a l l y test pieces were prepared as shown i n f i g . (32A) and the 

values of permeability derived from these tests were found to be very 

small - about 1$ of the a x i a l permeability. Microscope examination of 

the faces of the specimens (through which f l u i d had to flow) showed that 

the heat generated i n the mechanical cutting of the faces during the 

preparation of the specimens had melted the surface material and virt u a l l y -

sealed both faces. 

To overcome t h i s problem, new specimens were prepared, see f i g . (32B) , 

i n which f l u i d could flow through surfaces whose structure had not been 

altered i n any way. Due to the small flowrates expected with mineral o i l s , 

water was used i n i t i a l l y f o r the tests and gave very inconsistent results 

due probably to a swelling reaction between the polythene and water. 

The use of water was thus abandoned and a mineral o i l HVT 55 was used 

as the f l u i d . A pressure head of 2 m of l i q u i d was used (instead of the 

or i g i n a l 300 mm) and measurable flow-rates obtained. I t was found that 

the r a t i o ^/(ZC was 2.26 f o r the more permeable material and 2 .31 f o r 

the less permeable one. 

The void r a t i o of the two materials was found by weighing samples 

before and af t e r impregnation with o i l . 

The calculation of f l e x i b i l i t y of the polythenes presented various 

problems since deformation due to loading by the spherical surface was too 

small (0 .025 - 0.035 mm) to be measured accurately and was anyway subject 

to some time v a r i a t i o n . Also the f i n a l s t a t i c pressures dif f e r e d somewhat 
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from specimen to specimen although the f l e x i b i l i t y of a l l must have been 

the same, ( i t was necessary to use one specimen f o r each o i l since once 

a lubricant had been forced into the polythene by vacuum technique, i t 

could not be removed.) 

Fortunately, however, i t was found that the pressure trace of the 

actual results could be divided into two parts. The f i r s t part corresponded 

to a hydrodynamic l u b r i c a t i o n regime, the second part to e l a s t i c contact 

of the two boundaries of the f i l m . The recorded pressures during the 

hydrodynamic regime were substantially lower than the e l a s t i c contact 

pressures i n a l l cases so i t was decided that the highest value of 

f l e x i b i l i t y calculated from elast i c contact pressures would be used i n 

the calculation of experimental f i l m thicknesses and also i n producing 

the theoretical trajeotory. Since the f l e x i b i l i t i e s of the elastics were 

at least an order of magnitude lower than those of the rubbers, i t was 

not v i t a l that they were known with high accuracy. The results are 

presented i n f i g s . (33-A4) and show excellent agreement with the theory 

over the l u b r i c a t i o n regime. There was of course no theory developed f o r 

the rise i n pressure a f t e r contact, neither were any experiments carried 

out with enriched lubricants. 
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Chapter 6 

THEORETICAL PREDICTIONS OF THE MODEL 

Before discussing the details of the various theoretical models 

examined, some general comments can be made about the results. 

I n order that the large computing timetable could be completed, i t 

was considered necessary to ensure that "turn-round" time f o r each 

programme submitted to the computer was less than 24 hours. This 

imposed an upper l i m i t of 10 minutes on the running time f o r any one 

programme. The time l i m i t produced problems only for the models i n 

which permeability was involved, and, i n these cases, the permeability 

was assumed to be zero over the i n i t i a l part of the tr a j e c t o r y ( t < 6 

This assumption e f f e c t i v e l y halved the running time and brought a l l 

models within the 10 minute time l i m i t . 

Only f o r the extremely permeable models did t h i s approximation 

noticeably affect any of the t r a j e c t o r i e s . I n these cases a separate 

computer run over the period O < <̂  6 was performed i n which the actual 

value of permeability was used. This corrected any discrepancy. 

The end of a l l the curves was caused by either impact of the top 

surface on the lower, completion of the calculation or lack of computing 

time. This lack of time was due to a rapid r i s e i n s e n s i t i v i t y of 

acceleration to small changes i n position when the f i l m thickness was 

small. 

To maintain the continuity of the previous chapters, the same order 

of discussion of models i s used, s t a r t i n g with the r i g i d impermeable 

model and ending with various concepts of enrichment i n the lubricant. 

6 . 1 The Rigid Impermeable Model 

This was the simplest model to solve numerically and the r e s u l t i n g 
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variations of f i l m thickness and pressure with time agree well with that 

predicted by the simple "exponential" solution to the equation of motion 

derived i n Chapter 2. 

This i s due to the predominance of viscous forces i n the models 

examined and the resulting accelerations being correspondingly small. 

Comparisons between the a n a l y t i c a l and the computed solutions can 

conveniently be divided i n t o two parts; showing the effect of s p a t i a l 

and temporal boundary conditions respectively. Figures (7) and (45) 

show how the v e l o c i t y , displacement and pressure curves develop when 

the normal approach oommences. The effect of the condition = 0 at 

t = 0 i s clearly shown and seems l i m i t e d to t < 3« Figures (64) and (69) 

show small discrepancies between an a l y t i c a l and computed values over the 

rest of the t r a j e c t o r y ( t > 3)» This i s no doubt due to the d i f f e r e n t 

r a d i a l boundary conditions i n the two cases. 

I n the a n a l y t i c a l solution the r a d i a l boundary condition was P, = 0 

at r =oo, i n the computed model i t was Pr= 0 at r = /g . The value of 
_ f\f 

[%tt«'- £ cPr f o r T<£C>6 i s not necessarily negligible. 

6.2 The"Weeping'Lubrication Model 

The only progress towards an a n a l y t i c a l solution to the weeping 

model was an approximate expression f o r the pressure p r o f i l e with a 

condition x <=. O. This expression has been applied to two a r b i t r a r i l y 

chosen instants of time i n two computed solutions of the model - see 

f i g . (3). The agreement i s excellent. 

The description of the rest of the results from the programme can 

be conveniently divided into two parts, pertaining respectively to models 
-3 

whose f l e x i b i l i t i e s are equal to or less than 10 and those greater than 

10 ^. This d i v i s i o n i s due to the fact that the behaviour of models with 

e l a s t i c t h i n layers can only be calculated f o r values of f l e x i b i l i t y not 

greater than 10"^. Thus the more f l e x i b l e weeping models have no 



59 

corresponding impermeable models with which to compare. 

A ^ 10 

The i n i t i a l accelerations developed i n the weeping model for 

A = 10 can be seen to be very similar to those for the r i g i d model. 

This also applies to the variations of central pressure, velocity and 

displacement with time, see f i g s . ( 4 5 - 4 8 ) . 

Figures ( 49 ) and ( 5 0 ) show the variation of pressure and f i l m 

thickness with time and the shape of the curves, as shown, i s quite 

unexceptional. For A 10 , the resemblance to those of the e l a s t i c 

impermeable model i s quite s t r i k i n g . These two models are compared i n 

f i g * ( 5 l ) • The effect of the "weeping" material can be seen to be quite 

small and i n e f f e c t i v e i n maintaining substantially thicker films than 

the impermeable model. 

Thus, for A ^ 10 at l e a s t , the claim of a 'weeping1 model i n 

improving squeeze f i l m lubrication i s quite u n j u s t i f i a b l e , especially 

when i t i s remembered that the experimental work produced sound evidence 

for entrapment, and consequent thicker f i l m s , i n the impermeable model. 

The 'weeping1 model that was proposed i n Chapter 2 can be considered 

as the extreme case of an e l a s t i c porous material whose r a d i a l permeability 

i s very low and i t s a x i a l permeability very high. Thus any deformation 

of the material must be accompanied by flow of f l u i d out of the surface 

of the l a y e r . 

I n figures ( 5 2 ) and ( 5 3 ) the curves of f i l m thickness and pressure 

are shown for two such lay e r s , also, for comparison, the 'weeping', 

impermeable and two isotropic permeable models of equal A have been 

included. 

I t can be seen that these anisotropic permeable models behave very 

s i m i l a r l y to the weeping model. Due to numerical d i f f i c u l t i e s i n the 

i n i t i a l stages of the squeeze film, i t was necessary to make j 4 . = ^ 
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over the period t <. 6 . Since the difference between the 'weeping' 

and impermeable curves at t = 6 i s small, t h i s was not thought to affe c t 

the resulting curves s i g n i f i c a n t l y . 

To return to the 'weeping' material, the f i l m thickness for t ^ 6 

i s shown i n f i g . ( 4 7 ) The shape i s surprising and not at a l l what 

would be expected. Confirmation of t h i s behaviour with the anisotropic 
i 

model was attempted but f a i l e d . 

Numerical d i f f i c u l t y i n t h i s was was due to the presence of the 

term w°'ffo - i n the equation for evaluating pressures i n the porous 

material (equation 2 5 ) . 

A ^ 10 

Due to the absence of the term w0 i * 1 the Reynolds Equation for t h i s 

model, the d i f f i c u l t i e s encountered i n the other models with regard to 

i t s evaluation are avoided and hence the behaviour of the 'weeping' model 

can be calculated for extremely large values of A Â = 1 ) , t y p i c a l of 

human j o i n t s . 

Film thickness and pressure i s shown i n f i g . ( 54 ) for some of these 

very high values. 

The curves are most extraordinary and i t i s very debatable whether 

such an increase i n f i l m thickness does occur i n practice. I t i s d i f f i ­

cult to explain the curves i n physical terms although i t must be attempted. 

On i n i t i a t i o n of the normal approach, several events occur quite 

rapidly. These are: the acceleration rapidly changes from x- - g_ to 

o and thence slowly f a l l s to zero as the normal approach 

proceeds. The pressures - which must r i s e quickly to reduce the absolute 

magnitude of the acceleration - produce large deformations due to the high 

values of f l e x i b i l i t y . Also the displacement changes only slowly since 

the rapid change i n acceleration produces quite small v e l o c i t i e s and 

since the difference between deformation and displacement of the top 
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surface i s positive, the film thickness increases over the period of 

i n i t i a l pressure r i s e . 

The rapid r i s e i n pressure i s not prevented by considerations of the 

rate of deformation of the e l a s t i c layer since f l u i d always flows out of 

the surface at a rate equal to the rate of deformation. 

Since the material i s very f l e x i b l e , the displacement, x, soon 

becomes negative and hence the expression for f i l m thickness, derived 

i n Chapter 2 . 3 , becomes v a l i d . Thus the film i s p a r a l l e l over a l l but 

the i n i t i a l stages of the trajectory. (For A = 0 . 5 , x < 0 when t > 9 « ) 

I f c a r t i l a g e were found to behave i n such a manner, then 'weeping' 

lubr i c a t i o n would be a very e f f e c t i v e mechanism i n Joint performance. 

Indeed one might say that the thin l a y e r i n the model i s being 'wrung 

out' by the application of the load. For A = 0 . 5 , the f i n a l compressive 

s t r a i n i n the thin layer i s 0 . 6 9 - I t would be useful to perform some 

experiments i n which f i l m thickness could be measured, or calculated, 

f o r very f l e x i b l e weeping materials i n order to investigate t h i s 

phenomenon further. 

6 . 3 The E l a s t i c Impermeable Layer 

The pressure and f i l m thickness curves for t h i s model are shown i n 

figures ( 56 ) and ( 5 5 )• Their shape i s much as would be expected with 

the more f l e x i b l e systems producing thicker films and lower pressures. 

Development of the pressure p r o f i l e i s shown i n f i g . ( 5 7 )• I t can 

be seen that the d i s t r i b u t i o n slowly approaches that of the s t a t i c 

Figure ( 5 8 ) shows the rate of deformation of the e l a s t i c surface 

and the most important feature i s that nowhere could t h i s v e l o c i t y be 

considered constant by any stretch of the imagination. The device of a 

velocity of approach constant with respect to radius has been used by 

several authors, as discussed i n Chapter 2 . 

elastic-contact parabolic shape as t 
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More interesting features of the model are found i n i t s behaviour 

immediately a f t e r the commencement of the normal approach. For t <£. 6 , 

the system i s completely dominated by the e f f e c t of w0 i n the Reynolds 

Equation. This term prevents rapid change i n pressure with respect to 

time (as observed above), and the overall effect i s that the model 

appears to behave as i f i t had l e s s "damping" than the weeping model 

( i n which wo i s absent). 

This i s best seen i n the curves of acceleration and central pressure 

i n figures ( 4 6 ) and ( 4 5 ) - Both graphs show o s c i l l a t i o n s whose severity 

increases as A increases. The central velocity of deformation of the 

e l a s t i c l a y e r i s shown i n f i g . ( 4 8 ) along with the corresponding curve 

of x . The condition w„ & •*• (both normally negative) causes w„ to 

equal * u n t i l the pressures have r i s e n s u f f i c i e n t l y to produce small 

values of x. This occurs u n t i l t = 3 i n the system A = 10 . Thereafter 

w0 decreases i n magnitude and i s normally l e s s than^/lO for the re s t of 

the trajectory. Corresponding to t h i s behaviour of w0, the f i l m thickness 

remains constant over the period t < 3 and the pressure profile i s f l a t 

i n the central region - t h i s i s shown i n figure ( 5 9 ) • 

Whilst neither of these l a s t two features i s i n t u i t i v e l y obvious, 

or readily acceptable, they are consistent with the treatment of the 

e l a s t i c i t y equations i n Chapter 2 . 

6 . 4 E l a s t i c Permeable Layers 

As already mentioned, the introduction of the term 5° r-\ 

into the d i f f e r e n t i a l equation describing flow in the porous material 

produces an i n s t a b i l i t y in the numerical a n a l y s i s . This i n s t a b i l i t y 

r e s u l t s in longer running times on the computer and also to more frequent 

programme f a i l u r e s . 

Thus the bulk of the r e s u l t s presented represent models i n which t h i s 

term has been ignored. To investigate t h i s approximation three computer 
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runs were attempted, at A = 10 , with t h i s term included. They are 

shown i n figures ( 6 0 ) and ( 6 5 ) . I t i s seen that the t o t a l effect i s small, 

i t i s of course zero for ^ = 0 . The effect on the other curves 

(A 10 J) w i l l be l e s s and w i l l be zero for A = 0 . 

Therefore the curves presented i n figures ( 6 0 - 6 9 ) are an accurate 

representation of the effect of a permeable e l a s t i c l a y e r . 

The most interesting feature i s that the central pressure actually 

declines before closure of the fi l m i n the more permeable cases. The 

fi l m pressure i n the region J O w i l l however tend to 
"d I surface 

increase to counteract the effect of t h i s decline on the force exerted 

on the top surface by the f l u i d . 

Also interesting i s that the f i l m thickness,and thus time taken for 

the fi l m to close, increases as A increases. 

Whilst these ourves are for values of A f a r smaller than those that 

occur i n j o i n t s , i t i s interesting to note that <t> — 2 x 10~^, a 
' j o i n t 

value which would produce curves indistinguishable from those of (f> = 0 

for any of the values of A shown, i f the term " «g i s excluded. 

Without t h i s term, flow w i l l always be from the centre of the f i l m 

into the porous layer and then r a d i a l l y outwards. This i s because 

equation ( 2 3 ) cannot have a maximum (or mini mum) except on i t s boundaries. 

However t h i s i s no longer true when the equation i s changed to ( 2 5 ) . Now 

we can have a maximum pressure inside the material. Such a maximum could 
produce "weeping" and the curves shown i n figures ( 6 0 ) and ( 65 ) for 

~ -3 2r - 7 7* -L isotropic l a y e r s of A = 1 0 and (5 = 2 x 10 , and (A = 10 appear to be 

doing j u s t t h i s , although only marginally. 
~ -3 

Thus a material with A = 10 and a permeability s i m i l a r to that 

of c a r t i l a g e can act as a "weeping" l a y e r . Since the effect w i l l be 

l e s s marked at lower A, then presumably i t w i l l increase with increase i n 

A. 
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F i n a l l y , one point should be noted. I n the impermeable cases, i t 

has been assumed that the layer behaves solely as described by <*< fl 

i . e . the constituent material can be compressed. However, i n the 

permeable models, the equations demand that any change i n the volume of 

an element be accompanied by an equal outflow of f l u i d from that element. 

Thus i f the permeability of an e l a s t i c porous layer were decreased, then 

i t s response to loading would become slower and at zero permeability, 

the material would be e f f e c t i v e l y r i g i d . This s l i g h t contradiction i s 

present throughout t h i s work but i t only affects layers of low permeability 

and low void r a t i o . 

6 . 5 Enrichment i n Normal Approach 

The examination of enrichment was accomplished with two s l i g h t l y 

different models of squeeze fi l m s . The f i r s t corresponded to that 

described i n Chapter 2 where an additive i s included i n the f l u i d , the 

molecules of which are too large to bo able to flow i n the porous l a y e r . 

The unenriched f l u i d can of course flow through t h i s region. 

The other model was one suggested by Dowson ( 3 ) and, by i t s nature, 

expected to be much more effective i n maintaining f l u i d f i l m s . Here the 

additive i s considered bound i n some way to the surface of the e l a s t i c 

l a y e r whose permeability i s taken to be zero. 

6 . 5 . 1 Enrichment with permeable e l a s t i c layers 

The relevant parameters for t h i s model are f l e x i b i l i t y , permeability 

(the material considered to be i s o t r o p i c ) , i n i t i a l concentration of 

additive i n the f l u i d , and the r a t i o of the v i s c o s i t y of the additive 

to that of the unenriched f l u i d . 

Since the purpose of examination of these models i s to attempt to 

draw some conclusions about j o i n t behaviour, the highest f l e x i b i l i t y for 

which the programme would work ( l 0 ~ ^ ) was chosen for a l l the calculations. 
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Also, from exploratory runs of the programme, i t was found that the 

effect of an additive was not marked over the range of time that the 

trajectory could be calculated. 

Thus the highest possible value ( 1(A) that could be deduced from 

published values was chosen for the r a t i o of v i s c o s i t i e s ( 3 ) . Also the 

quantity w « i n equation ( 2 5 ) was ignored since i t s inclusion 
<t>-, Cr- . P-) 

would not have helped increase the additive's concentration i n the central 

region of the f i l m . 

Of the other parameters, three values of permeability and i n i t i a l 
- 7 - 5 -h-

concentration were chosen; 2 x 10 , 10 , and 5 x 10 for the permea­
b i l i t y giving a ratio of 50 between successive runs and 3.5 x 10~^, 

-2 -1 

3 . 5 x 10 and 3 « 5 x 10 f o r the i n i t i a l concentrations, spaced at one 

order of magnitude i n t e r v a l s . The f i r s t values of these quantities are 

those most widely quoted as t y p i c a l of animal j o i n t s ( 9 , 1 3 ) -

I t should be noted that no value has been published for the r a d i a l 

permeability and, for the purposes of t h i s model, the material has been 

assumed iso t r o p i c . Also the concentration of 3 « 5 x 10 ^ i s a gravimetric 

value and may not- be accurate as a volumetric r a t i o , given the nature of 

the Hyaluronic Acid molecule. 

The i n i t i a l v i s c o s i t y used i n a l l these computing runs and i n the 

non-dimensional groups was that produced by adding the i n i t i a l concen­

tr a t i o n of additive to the base f l u i d . 

Of the values used i n the model, only the extreme case of highest 

permeability and highest concentration produced results discernibly 

different from those models with no additive. The relevant curves are 

shown i n figure ( 7 0 ) . 

At t — 6 0 , the central region attains a concentration of unity 

with a consequent r i s e in pressure and cessation of flow into the porous 

layer. The fi l m remains p a r a l l e l and entrapment, due to high central 

pressures, does not occur. 
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The conclusion we can draw from t h i s i s that enrichment with 

permeability and concentration corresponding to t y p i c a l j o i n t values 

w i l l only be effective at very thin films, when i t w i l l produce boundary 

lu b r i c a t i o n . 

This conclusion i s of course only v a l i d for the f l e x i b i l i t y 10 ^ 

and a t y p i c a l j o i n t value i s 0 . 5 , which i s many times greater than the 

model value. 

6 . 5 . 2 The concept of "Boosted Lubrication" 

"Boosted Lubrication" was f i r s t proposed by Dowson ( 3 ) and i n 

concept i s extremely simple. The system i s considered impermeable and 

the additive i s considered to be bound i n some way such that i t cannot 

flow sideways ( i . e . r a d i a l l y ) . Thus for c <c \ , we can say J/^} as 

already given i n Chapter 2 . 

I t was o r i g i n a l l y intended to compute r e s u l t s for t h i s mechanism 

for e l a s t i c models. However the r a d i a l variation of v i s c o s i t y produced 

problems i n evaluating w0 accurately and forced t h i s approach to be 

abandoned. Various models with zero f l e x i b i l i t y have already been 

examined by Dowson ( 3 ) , hut i t i s worth repeating the analysis i n a 

s l i g h t l y different format. 

For the model of Chapter 2 . 2 , 

CO 
and 

c iUiA 
also 

whence 

1- Z( I 4- Ci 
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Now where i s the f i l m thickness at t 

Also hr = X +- for a l l t 

= 0 . 

so 

l - l + o - * ) 

7 - 2{ 
A. 

I t can be seen that the effect of enrichment i s represented by one 

parameter, k y 

r — — J — " 

where ^ y « 1 / -f- ^ 7 ^ 7 7 ) 

since L bhen O ^ J p x 

I t i s in t e r e s t i n g to note that the values quoted for j o i n t s , ci= 0 .0035 

and M r = 10>+, give ktj = 0 . 9 7 4 5
 a value very near to the upper l i m i t of 

v i . 

Integrating ( l ) , 

_ -3£ R P = 

P r D at = o4 

/ + 
where 

Two further integrations give:-

Ln which i t ^ •= O a t > — \ 

Jlr = O "̂ c> — ^ ^" log which i s the same as (7 ) • i f 

k5 = 0 .974 , and 5" = 0 . 1 , 

Letting 
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then = 1 .95 

f o r % = 0 .01 

= 7 . 6 6 

I f we change the model to one which i s perhaps more r e a l i s t i c i n 

terms of animal j o i n t s , i . e . two p a r a l l e l c i r c u l a r r i g i d plates, then 

we have 

5 * V* 

where £ = x / p £ = ^ ^ S ^ a n d P = P s" 
' ) Li —Zf 

Two integrations give 

where ^ 

putting kj. = 0 . 974 and > = 0 .1 we get:-

= 6 .58 

for 3" = 0 . 0 1 , 

1* g - ™ » - = 6 5 . 0 

o 

I t i s seen then that the mechanism works quite well i n retarding 

closure of the fil m . 
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This l a t t e r example of p a r a l l e l c i r c u l a r f l a t plates has been 

treated by Dowson ( 3 ) and he has calculated an improvement of 126 for 

5? = 0 . 1 , compared with the value of 6 .58 quoted above. 

The discrepancy between r e s u l t s i s due not to the calculation of 

'boosted 1 squeeze f i l m times but to the model with which the 'boosted' 

mechanism i s compared. Equations ( 4 5 ) and ( 4 6 ) have been deduced by 

considering the 'non-boosted' model to operate with a constant v i s c o s i t y 

V 
Dowson1s comparisons have been with a model of constant v i s c o s i t y 

. The difference between Q and ^ i s s u f f i c i e n t to account for the 

difference i n squeeze-film r a t i o s . 
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Chapter 7 

DISCUSSION 

This chapter can be conveniently divided into two parts, the f i r s t 

r e l a t i n g generally to elastohydrodynamic squeeze films and the second 

p a r t i c u l a r l y to squeeze films i n animal j o i n t s . 

7 .1 Squeeze films and e l a s t i c permeable thin layers 

The work described i n t h i s t h e s i s has been a preliminary i n v e s t i ­

gation of normal approach and the effect on the generated squeeze films 

of several types of thin l a y e r s . Inevitably the treatment of the subject 

has been broad at the expense of depth. This has manifested i t s e l f i n 

the major approximation inherent i n the work, the description of the 

behaviour of thin layers under load. 

The accuracy of the statement § P can be examined by solving the 

f u l l e l a s t i c i t y equations for a thin layer deforming under f l u i d pressure. 

This has been done for a Journal Bearing by Hooke, Brighton and O'Donoghue 

( 7 ) . They found that the approximation was v a l i d for a Poisson's Ratio 

(j?) of 0 . 4 or l e s s but gave large errors for a value of 0 . 4 9 5 , a value 

t y p i c a l l y found i n Rubbers. 

Further j u s t i f i c a t i o n can be found by examining the correlation 

between experiments and theoretical predictions using t h i s approximation. 

The evidenoe from t h i s source confirms the findings of Hooke. Bennett ( l ) 

found good agreement between experimental and theoretical f r i c t i o n values 

using p l a s t i c s of Poisson's Ratio of 0 . 4 . The te s t s described i n 

Chapter 5 using the porous p l a s t i c s agreed well with the programme but 

due to low A, hardly constituted a rigorous t e s t of the approximation. 

The t e s t s with the "weeping" layer with 1)^ 0 . 0 gave excellent 

agreement, but the experiments with the s o l i d rubber i?st 0 .495 gave large 

discrepancies. 
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I n conclusion then, the approximation S P i s j u s t i f i a b l e as 

a f i r s t step i n the investigation of squeeze films with low moduli thin 

layers of 0 ^ O.if Consideration of future theoretical work i n t h i s 

f i e l d would appear to face severe d i f f i c u l t i e s . 

Hooke ( 6 ) has said that the f u l l analysis i s only 12 times longer 

than the simplified in terms of computing time but t h i s i s an average 

figure and at high e c c e n t r i c i t i e s the ra t i o was considerably higher. 

This increase i n computing time might be acceptable i n the two-dimensional 

case ( r , t ) but i s out of the question for the three dimensional ( r , z, t ) . 

Closely connected with t h i s question i s the problem of evaluating 

the rate of deformation of the e l a s t i c l a y e r . I n the case of high f l e x i ­

b i l i t y , where both surfaces w i l l move many times t h e i r i n i t i a l separation, 

i . e . ^ • ^ J f c s - ' j c , a f u l l e l a s t i c i t y treatment would f a i l i f i t did not 

describe the rate of deformation accurately. 

I t would also be desirable to tackle the problem of calculating 

squeeze films near the end of the approach when both surfaces have very 

low (nearly equal) v e l o c i t i e s . The programme described i n Chapter 3 

became slower and slower i n converging at these thin f i l m s . Christensen 

( 3 ) has described s i m i l a r troubles with h i s numerical methods. 

On a more cheerful note, the neglect of the i n e r t i a of the top 

surface by Herrebrugh,Christensen ( 2 , 3 ) has been shown to be a 

reasonable assumption i n squeeze f i l m calculations. The dominance of 

viscous forces i n the r i g i d impermeable model has been w e l l i l l u s t r a t e d 

f or the loads examined. 

Comparison of the 'weeping' model described i n Chapter 2 with 

anisotropic porous models suggests that i t gives a f a i r l y accurate 

description of the extreme case 

The effect of f l e x i b i l i t y on the squeeze f i l m has been seen to be 
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much as expected, with thicker films and lower pressures than the r i g i d 

case. Also the presence of a porous layer has been shown i n most cases 

to close the films f a s t e r although with interesting pressure/time 

var i a t i o n s . The exceptions to t h i s are discussed i n the next section. 

On the experimental side, whilst the r e s u l t s have been generally 

s a t i s f a c t o r y with regard to agreement with theory, there are two 

situations which require further exploration. Both are concerned with 

f i l m thickness measurement. The f i r s t i s an optical study of normal 

approach towards s o l i d thin layers of materials with varying Poisson's 

Ratio to study the occurrence of entrapment. The second i s a model with 

high f l e x i b i l i t y (A £=• 0 .1 - 0 . 5 ) and with the "weeping" c h a r a c t e r i s t i c s 

produced i n the experimental work by punching holes i n a rubber lay e r . 

This l a t t e r model would attempt to confirm experimentally the surprising 

r e s u l t s of the corresponding theoretical model described i n Chapter 6 . 2 . 

7 .2 The relevance of th i s work to animal .joints 

I t remains only to discuss whether understanding of the operation 

of animal j o i n t s has been increased by the work described i n this t h e s i s . 

An indication of the b a f f l i n g complexity of the subject i s that two 

authorities ( 2 , 3) can propose diametrically opposed theories of th e i r 

operation. 

Whilst the models that have been examined, both t h e o r e t i c a l l y and 

exTDei'imsrtallv. bes1* snmp wsla+.'innshin t n thn st.nip.+.iiT'fi of animal i o i n t s . 

i t i s not the author's intention to pronounce d e f i n i t e l y i n favour of 

one or the other. I t i s possible however to make some oomments on the 

concepts of 'boosted' and 'weeping' lu b r i c a t i o n . 

The most s t r i k i n g feature of the theoretical models examined was 

found in the 'weeping' model described i n Chapter 2 . At high f l e x i b i l i t i e s 

( 0 . 1 - 0 , 5 ) , dramatically thi c k films developed which would suggest that 
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such a material would constitute an ideal layer for a low-friction 

bearing. However, u n t i l some experimental evidence i s forthcoming that 

such a material can be found and shown to operate in t h i s manner, the 

model must remain an interesting t h e oretical speculation. 

Of more relevance are the r e s u l t s from the model i n which additives 

have enriched the film. Prom the curves shown and discussed i n the 

previous chapter, i t i s clear that such an enrichment mechanism w i l l 

only be effective with very thin films. I t w i l l form an excellent 

boundary lub r i c a t i o n mechanism at the termination of normal approach. 

The system proposed by Dowson (3) i s much more powerful i n retarding 

closure of the fi l m , as equations (45) and (46) show; i t operates for the 

apparently quite low values of concentration and v i s c o s i t y of additive 

found i n animal j o i n t s . Further evidence about the role of Hyaluronic 

Acid i n actual j o i n t s i s needed, however, before one can accept the 

mechanism as being an accurate representation of physical processes. 

The computer runs with concentrations higher than 0.0035 are not 

necessarily j u s t of academic in t e r e s t because 0.0035 i s a gravimetric 

concentration and the programme i s designed to use a volumetric value. 

The shape and a c t i v i t i e s of the Hyaluronic Acid molecule - or molecular 

complex - appear to be quite complicated (9). 

Another possible model for an animal j o i n t i s represented by an 

e l a s t i c isotropic porous l a y e r i n which the term (w»'ft,y/0tfr''̂ '*) ) has 

been included: This i s probably the closest model to the concept of 

"weeping lubr i c a t i o n " as expounded by McCutchen (4). The behaviour of 

the high permeability models i s unexceptional but for the lower values 

(2 x 10"7, 10~4) i t appears that the film thickness i s marginally greater 

than for the impermeable model. Thus the material i s showing s l i g h t 

signs of "weeping". The lower value of permeability (2 x 10~7) corres­

ponds to a value t y p i c a l l y quoted for c a r t i l a g e . 

One c r u c i a l quantity which i t appears has not yet been measured i s 
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the permeability i n a r a d i a l direction. A l l figures that have been 

quoted refer to the a x i a l direction - no doubt due to the d i f f i c u l t y 

encourage "boosted" lubri c a t i o n , a value lower than unity would suggest 

"weeping". Clearly a theoretical analysis at high f l e x i b i l i t y and 

varying r a d i a l and a x i a l permeabilities would help decide t h i s c o n f l i c t 

of theories. 

7 . 3 Conclusions 

This investigation has shown that i t i s possible to examine squeeze 

films and the effect on them of various types of boundary i n reasonable 

d e t a i l . I t i s to be hoped that i t lay s a firm foundation for future 

investigations into normal approach i n general and i n part i c u l a r , 

investigations of the phenomena of entrapment i n e l a s t i c impermeable 

surfaces and of the increase i n f i l m thickness with respect to time as 

found i n the "weeping" models of high f l e x i b i l i t y . Also the extension 

of the computing beyond A = 10 would be a major development. 

One other extension of the models considered would be to examine 

the effect of large scale surface undulations on the squeeze film; Dowson 

has suggested that such roughness i s an important feature of j o i n t s (14). 

This effect could be simulated by allowing the thin l a y e r surface to 

undulate sinusoidally with radius. 

From the point of view of animal j o i n t operation, t h i s work can be 

looked upon as a synthesis of the various features involved i n t h e i r 

e f f i c i e n t operation. The synthesis approach was considered to be more 

l o g i c a l , and easier, than attempting the analysis of the complete, and 

very complex, animal j o i n t when operating under natural conditions. 

of r a d i a l measurements. A value si A of greater than unity would 
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APPENDIX I I 

The Computer Programme 

The following l i s t i n g i s the computer programme that was used 

for a l l the re s u l t s quoted i n t h i s t h e s i s . The language i s P.L:1 

(Programming Language One) and was run on the Northumbrian Un i v e r s i t i e s 

Multiple Access Computer (NUMAC), an I.B.M. 360/67 machine. 

The programme has been divided into small sections with headings 

of 'comment cards' to c l a r i f y i t s structure. I t i s , however, b a s i c a l l y 

two nested 'Do-Loops', the outer one controlling the number of steps 

taken to calculate the trajectory, the inner one controlling the number 

of iterat i o n s on the pressure matrix for any pa r t i c u l a r model. 

I t should be noted that a few i n t e r n a l alterations must be made to 

the programme to run certain models - e.g. the "Weeping" mechanism. 
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APPENDIX I I I 

A F i n i t e Element Approach to Laminar F l u i d Flow 

by 

R. Norman 

SUMMARY 

A f i n i t e element method for the solution of problems involving 

laminar isoviscous flow between r i g i d boundaries i s presented using 

a minimization p r i n c i p l e . Results of some simple flow situations 

are calculated to i l l u s t r a t e convergence of the method to the exact 

solution. I t i s shown that knowledge of the downstream boundary 

condition i n the case of a r i g i d cylinder rotating against a r i g i d 

plate i s not necessary for the calculation of i t s pressure d i s t r i ­

bution. 

INTRODUCTION 

In both Structural and F l u i d Mechanics, t r a d i t i o n a l methods 

of solution have r e l i e d on the development of general governing 

d i f f e r e n t i a l equations which have then to be solved, usually 

numerically and often with awkward boundary conditions* 

The great success of f i n i t e element methods i n s t r u c t u r a l 

mechanics avoiding such d i f f e r e n t i a l equations suggests that s i m i l a r 

success may be obtainable i n f l u i d mechanics, reference ( 1 ) . This 

paper describes the development of such a method and, i t i s hoped, 

points the way to a new approach to other hydrodynamic problems. 
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DEVELOPMENT OF THE METHOD 

I n deriving the following equations, three assumptions, a l l 

consistent with the simple derivation of Reynolds Equation i n one 

dimension, are made:-

1. The flow i s laminar and unidirectional, 

2. The f l u i d i s isoviscous, 

J>. The boundaries of the system are r i g i d . 

An obvious choice for a f i n i t e element for thin film flow i s 

shown i n f i g . ( 1 ) . The top and bottom of the element are the 

boundaries of the system, the v e r t i c a l sides are arb i t r a r y bounds 

and the element i s of unit width ( a t r i g h t angles to the paper). 

The two boundary v e l o c i t i e s are considered p a r a l l e l to each other 

and the pressure constant across the thickness of the film. 

a, 
L 

FIG. (l) 

The f i r s t step i s to define a function, minimization of which, 

over the whole system, with respect to the pressures at interelement 

faces w i l l 
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y i e l d the correct pressure distribution, i . e . one that s a t i s f i e s 

Reynolds Equation i n one dimension. 

Such a function i s = j 

whole 
system 

h i /dP> 
1211 h.C^ + U 2) dP 

dx, dx (1) 

A f u l l j u s t i f i c a t i o n of t h i s function can be found i n Reference ( 2 ) . 

This function can be approximated as:-

over a l l ~o 
the elements 

J 121) (dxy h.(U n + U 2) dP 
dx, dx (2) 

c. h (u. + u j hr* /dPl ., 
Since q = 1 2 - j we can rewrite Kd) as 

2 12T) ' ̂ dx/ 

over a l l o 
the elements 

h (U., + U 2) dP 
dX : - CI 

fdP 
,dX; dx 

r 

over a l l 
the elements 

dx 

- q(P 2 " 

where h = h. + cvx and a = 2 1 J 

The integral i n (4) can be evaluated by substituting a polynomial 

i n x for the pressure distribution through the element, 

P = a^ + a^x + a^x (5) 



Since we want to describe the element completely i n terms 

of and we must reduce the three unknowns i n (5) to two. 

This can be done by imposing a continuity condition on the 

element of zero nett flow into the element. 

dx 

These i n t e g r a l s are evaluated by using 

T I ( z 2 - hz) /dp\ ( U 2 - V 
U = — 2 T j (dx-) + h Z + U1 

dP and -r- = a_ + 2a,x from (5) dx 2 3 

Equation (6) gives us the r e l a t i o n 

h 3 - h ?
3 3T\ (U + U )(h - h ) 

a 3 = ^ !

2 - a 2 + \ % 2 - = a 2 F + G say 
2L h. L h. 

Whence 

- ( u i + V 

over a l l 
the elements 

( h 2 P 2 h1P1> - (h- - V 
L L" 

a 1 + a 2 2 + ~ 
GL-

q ( P 2 - P-,) 

Now since 

R 2 

V. J 

-1 
+ L + L 2 F 

P. 

2 

V- J 

r ~\ 

0 

+ \ 
-L 2G 



A5-

h 
and q = JJ dx with l i t t l e error, 

we have i|i e x p l i c i t l y as a function of the pressures at the i n t e r e -

element faces through the system. Minimization of ijr with respect 

to these pressures w i l l y i e l d the pressure di s t r i b u t i o n through the 

system, 

i . e . we say­ s'!!. V = 0 (7) 

1 to n + 1 say for n elements i n a system, 

Now \ r l 1 + 1 

^ i j " 3(h. 3 + h . 3
+ 1 ) % L 

+1, -1 

i + 1 

(û  + u2) 

J 
6Ch.3

 + h . 3
+ , j 

3 *f H 3 5 h./ h. - + h. + h. „ + 5 h. h.-' „ i i + 1 i 1 + 1 ^ i i + 1 

h 3 h 3 
n i = 1 h i 

3(h. 3_ 1 + h ^ ) ^ _ 1 

-1, + 1 
P i - 1 

r -
(un + u2) 

6 ( h ±
3 _ 1 + h. 3) 

5 h. 3_ 1 h. + h . ^ 1 

+ h. + 5 h. - h.^ i i - 1 I 

[Note: i s +ve 

since only the ( i - 1) th and t h e ( i ) t h elements contribute terms 

i n P ± to (see f i g . (2)) 
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element Pi (Otk 
eiertie.n't 

FIG. (2). 

Pi 

In a t y p i c a l l u b r i c a t i o n problem, say with 5 elements, equation ( ? ) 

takes the form 

8P, = 0 = 

1 to 6 

r ~\ 

y + i 

p. 

r (8) 

where * indicates a term independent of P^ (a constant). Normally 

the f i r s t and l a s t pressures (P,-„v and P,.-« i n equation (8)) are 

v U \oj 

known and so equation (8) would be solved from l i n e (2) to l i n e (5) 

i n c l u s i v e to y i e l d P ^ j to 

Once assembled, t h i s matrix equation i s e a s i l y solved by 

d i g i t a l computer and, i n i t s e l f , should present few computational 

problems. With the narrowness of i t s band (note that the matrix i s 



symmetric), a large number of elements can be used i f desired. The 

diagonal term i s not dominant however and the speed of convergence 

of i t e r a t i v e solutions to matrix equations i s dependent on t h i s 

dominance. 

CONVERGENCE OF THE METHOD 

Three simple situations were solved by Gauss-Seidel i t e r a t i v e 

procedures for th e i r pressure distributions and convergence of the 

method with increasing number of elements used i s presented i n tabular 

form. 

CASE 1. LAMINAR FLOW THROUGH A NOZZLE 

Using Reynold's Equation i n i t s one-dimensional form, the 

pressure mid-way through the nozzle, P M was found to be 1.7VI units. 

Number of Elements Used Error as % of P M - P. OUT 

2 

1 - 6.25 

+ 1.89 

+ 0.57 
8 + 0.15 

Dimensions 

length 5 cms 
0.5 cms 

h. l2 0.25 cms 

IN 

OUT 

2 units 

1 unit 
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PM 

2-5 

FICr. (3) , £AS£ 1. 
CASE 2. A SIMPLE TILTING-PAD BEARING 

n 
Reynolds Equation gave the maximum pressure as 2.5 x 10 dynes/ 

2 
cm a t 3»33 cms from the i n l e t . 

Number of 
Elements Used 

1 
2 
if 
8 

16 
32 

$ Error i n 
Max"1 Press. 

-33.33 
+10.68 

+ 3.25 
+ 1.08 
+ 0.26 
+ 0.05 

% Error i n Pos 1 1 of 
Maxm Pressure 

-25.00 

- 7.05 
- 0.3^ 
- 0.21 

- 0.03 
- 0.01 

Dimensions 

length 
h„ 

v i s c o s i t y 
P I N 
P0UT 
velocity 

U. 

5 cms 
0.01 cms 

0.005 cms 

1 poise 
0 

500 cms/sec 

0 



F f C (li). CASE a . 
CASE 3. A RIGID CYLINDER ROTATING AGAINST A RIGID PLANE 

For t h i s case, the element shape no longer conforms to the 

bearing geometry and to compensate for t h i s , the number of elements 

used must be somewhat larger than i n the previous examples. 

Element lengths (as a fracti o n of the radius of the cylinder) 
1 2 k 

were chosen as / 1 0 Q 0 I /-IOOO a n d ^lOOO" T h e L E N S T H o f t h e system 

was taken equal to the cylinder diameter. 

Element Length/ 
Radius 

% Error i n 
Max1" Pressure 

% Variation i n Flowrate 
From X = -0.05 to 0.0 

7. 1000 

V. 1000 

1, 
/ 1000 

1.03 

0.32 

0.15 

5.69 

1.39 

0.3'i 

dP Note: Error i s +ve i f -r— i s +ve, dx 
.» dP . -ve i f i s -ve dx 

Dimensions 

Radius 

Clearance h 

5.?1 cms 

5.71 x 10 cms 

vi s c o s i t y 1.11 poise 



0) = 300 r.p.m. 
Pressure = 0 at x = - 1 

and Pressure ^ 0 

x = l 

ncr. (s) , CASE 3. 
The physical condition that the f l u i d cannot sustain a negative 

pressure was included i n the computer programme by equating to zero, 

any pressures that were calculated as negative i n the Gauss-Seidel 

procedure. This was done immediately a f t e r the calculations on each 

l i n e i n the matrix had been performed, not at the end of a complete 

i t e r a t i o n . The r e s u l t i n g pressure distribution was found to terminate 

at the same e x i t point as used for the computation of the exact curve 

from Reynolds Equation ( i n which the e x i t point s a t i s f i e d the condition 

P . « / f c . 0 ) . 

This i s a most useful feature of t h i s method since i t removes 

the need for knowledge of the position of t h i s e x i t point prior to 

calculation of the pressure d i s t r i b u t i o n . Christopherson has shown 

th e o r e t i c a l l y the dependence of the position of the e x i t point on the 

Principle of Minimum Energy Dissipation (3) . (A physical description 

of \|r i n terms of energy dissipation and work done on the system can 
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be made i f so desired, reference (*0). 

F a i l u r e to impose t h i s condition on the f l u i d r e s u l t s i n the 

Full-Sommerfeld Solution to the problem. Although interelement 

continuity i s not enforced over the system, no solution of the pressure 

curve can be correct unless i t s a t i s f i e s the continuity condition to 

a high degree of accuracy. We can see that t h i s i s so i n the above 

table. 

I t should be pointed out that i n t h i s method, flowrate i s 

calculated from the pressure gradient at entry to an element and t h i s 

gradient can be somewhat i n error without affecting nearby pressures 

(compare % flowrate variation with % pressure error i n the above t a b l e ) . 

CONCLUDING REMARKS 

The three worked examples above show that the element developed 

i s quite powerful i n that halving element length reduces errors by a 

factor of about three. Whilst not as powerful as some s t r u c t u r a l 

f i n i t e elements that have been devised, t h i s i s more than compensated 

for i n i t s si m p l i c i t y , i t s almost t o t a l lack of matrix algebra 

involved i n computation of r e s u l t s and i n i t s very low storage require­

ments. Once assembled, the matrix needs only three quantities for 

each of i t s rows. This allows the use of a large number of elements, 

POOH "i M o v a fyiy-il a ^ a f o n i r o . — " — — "x— «• s 
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NOMENCLATURE 

a^, g -z disposable constants used for the description of the 
* pressure distr i b u t i o n . 

F, G, constants involving geometry, v i s c o s i t y and bearing speeds. 

h fi l m thickness. 

i subscript for a t y p i c a l element. 

n number of elements used i n a system, 

L element length 

P pressure at some point 

1, 2 subscripts r e f e r r i n g to i n l e t and outlet of element when 
applied to P and h. 

q flowrate through a cross section of an element. 

D ve l o c i t y of f l u i d at any point 

, 2 v e l o c i t y of lower and upper bearing surfaces* 
LUX / 

11 v i s c o s i t y of the f l u i d . 

i|l A function whose minimum value y i e l d s the pressure 
distri b u t i o n . 

2 9 NOV 1971 
union 
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