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"I could have done it in a much more complicated way", said the

Red Queen, immensely proud.

Lewis Carroll, Alice in Wonderland

Science is a subversive activity that flourishes best when no one

is looking.

Anon
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ABSTRACT

This investigation is concerned with the elasto-hydrodynamic
squeeze-films generated by the normal approach of two surfaces. It is
inspired by the excellent functioning of healthy animal joints under
the adverse conditions of high load and low, or even zero, sliding
speeds.

The effects on the film of four features are examined from both the
theoretical and expsrimental viewpoints. These four features are the
elasticity of the materiasls bounding the film, the permeability of these
materials, an extreme interpretation of the concept of "weeping" lubri-
cation and the presence of a lubricant enrichwent in the film. This
latter feature is considered only in its theoretical aspects.

It is shown experimentally that when a thin layer of rubber is used
as the soft boundary of the film, entrapment occurs, due to ths high
poisson's ratio involved. The agreement between theoretical predictions
and experimental results for the effects of permeability and of a
"weeping" mechanism is good.

The models, as examined, are found to be dominated by viscous forces
rather than the inertia of the moving surfaces.

It is found that high permeability of the surfaces tends to decrease
film 1ife and that high flexibility tends to increase it. However, very
low permeability material appears to promote slight "weeping" tendencies
and hence prolong film lives.

The effect of an additive confined to motion in the fluid flow is
found to be small unless present at extremely high concentrations and in
joints it seems likely to be effective only at very thin films.

When the additive is confined not only to the film but also prevented
from flowing in the film, squeeze times are found to be increased by
several times. The increase is not considered to be enough to make the

mechanism totally convincing as a mode of operation of an animal joint.
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Chapter 1

INTRODUCTION

The aim of hydrodynamic lubrication is the maintenance of a full
fluid film between surfaces that move relative to one another. This is
as true when the motion is normal approach as when the motion is rolling,
sliding or a combination of the two.

Much of the effort in lubrication research has been directed towards
problems occurring in rolling and sliding situations; relatively little
effort has been expended in studying the other branch of the subject,
that of normal approach, in which so-called "squeeze films" are generated.

The study of the behaviour of such films is by no means of purely
academic interest since cyclically loaded Journal bearings generate squeeze
films and these occur whenever reciprocating motion is counverted to rotary
motion.

Traditional bearing surfaces have been metallic and at low sliding
or rolling speeds, the hydrodynamic lubrication tends to break down and
damage to the surfaces results. Recent work (1) in the use of a soft
layer has shown that full hydrodynamic lubrication can continue in situ-
ations of extremely low sliding velocities. A very common example of the
bearing in which both low éliding speeds and full film lubrication exist
similtaneously is the animal joint. This bearing consists of two thin
layers of low modulus material separated by a fluid film and having a
stif'f backing.

The film is a water-like fluid known as synovial fluid with an
additive of extremely high molecular weight called hyaluronic acid. The
sof't layers are cartilage and exhibit some degree of permeability. The
' stiff backing is bone.

The various roles that the additive, the permeability and the
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elasticity of the cartilage play have by no means been agreed upon and
indeed, the two most publicised current theories of the functioning of
joints are diametrically opposed (2, 3).

This bearing is of interest to engineers not only because of the
long duration of its squeeze films but also because of the extremely low
frictional forces observed.

Scope thus clearly exists for an investigation of the basic
behaviour of squeeze films in the hope that the action of an animal joint
may come to be better understood and also that the design of mechanical
bearings in which these films are generated may be improved.

This thesis therefore describes the construction of a mathematical
model of a squeeze film, its numerical and partial theoretical solutions,
and some experimental comparisons with the theoretical work. The effects
on normal approach of permeability and of elasticity of the sgqueeze film
boundary, and of additive in the fluid, are alsc examined.

Whilst this model was clearly inspired by the efficient behaviour of
animal joints, it can lay no claim to describe them accurately or even
adequately. The mathematical description of the model is a description
only of the model, not of a joint, and thus its predictions relate only
to its idealization of a squeeze film.

The work described in this thesis must also be considered as a pre-
liminary, wide-ranging look at the whole field of normal approach. It
is to be hopsd that rigerous investigations of specific saueeze film
situations will follow from this initial work.

Since the two mechanisms proposed in modern times to explain joint
lubrication, known as "boosted" and "weeping" lubrication, have so far
lacked adequate mathematical description, even in idealized situations,
it was hoped that the model would enable comparisons to be made between

the two theories to decide which was more effective in maintaining full




film lubrication. It was considered that the model might also be
applicable to the squeeze f'ilms that occur in machines.

Chapter 2 then, contains the mathematical description of the model,
starting with an isoviscous lubricant and rigid impermeable boundaries.
An interpretation of the concept of "Weeping" Lubrication is next
attempted and the problem of the inclusion of the elastic effects of a
thin layer is considered at the same time. Permeability is introduced
into the model and finally the effect of an additive, whose flow is con-
fined to the film, is examined.

The assumptions of previous workers that the integral of the éressure
distribution over the area of the film is equal to the applied load on
the film, and that the time rate of elastic displacement of the thin
layer is negligible, are examined with the alm of producing accurate film
thiclmess-time curves.

The few analytical solutions to the governing equations are included
in this section.

Chapter 3 is concerned with the numerical solution of the model.

The limitations of the numerical methods used, notably in describing
accurately the velocity of deformation of the thin layer by a process of
numerical Aifferentiation, and the inclusion of this quantity in the
solution of the flow in the elastic permeable layer are considered.

Chapter 4 introduces a dimensional analysis of the model based on
the use of four repeating variahles, the non-dimensional groups including
two length parameters instead of the more usual one. Justification of
this step is given.

Chapter 5 describes the experimental work that was carried out in
order to check the theoretical solutions. The problem of film thickness
measurement is considered and observation of the two phenomena, entrapment

and cavitation, is described. A comparison of the experimental and




theoretical results is incliuded.

Chapter 6 presents the theoretical predictions of the mathematical
model. The effects of permeability and elasticity of the thin layer and
of an additive in the lubricant are examined. The implications of these
effects on the theories of "weeping" and "boosted" lubrication are dis-
cussed.

Chapter 7 contains a discussion about squeeze films in general and
the problems of their mathematical treatment. Also included is a con-
tinuation from the previous chapter of the discussion of the possible
mechanisms operating in animal joints.

Finally a short description of an early simple finite-element,

applicable to lubrication problems is given in Appendix III.




NOTATION

The notation listed here refers to the theoretical description of

the models and does not necessarily correspond to the symbols used in

the computer programme.
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flexibility of the elastic layer (8'//18 )
non-dimensional flexibility ( AL / Rz P)

surface areas of an annulus in the plane of the film.
(—— MJ /é'n' '2 Ra)

n-th coefficient of a power series.

concentration of additive in the lubricant film.

initial separation of centres of undeformed surfaces.
integral of the film pressure over the area of the film.
acceleration due to gravity.

film thickness at radius r.

non dimensional film thickness (L"r / P)

force producing closure of the film with no inertia

effects considered.

volume of additive in an annular volume of the film

various numerical constants.

a force (Mj) producing closure of the film.

~ volume of an annular region of the film before and after

a time AT

mass of the top boundary of the film, produces closure

of the film under the action of gravity.
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ratio of viscosity of an additive to the viscosity of

the base fluid ( i/ /7,)

concentration of an additive in a region of the film

before and after a time At

hydrostatic pressure of the fluid in the porous material.
pressure in the film at radius r.

pressure in the film at its ocentre.

flowrates through the surfaces of an annular region of

the film,

radius of curvature of the top surface of the film.
distance of a point from the axis of symmetry.
radius of a flat disc.

initial thickness of the soft layer.

time.

inerement of time.

non=-dimensional time ( t L/Z Rz )

radial flowrate in porous material.

void ratio of undeformed porous layer.

displacement of the centre of the top surface above the

undeformed lower surface,
non-dimensional displacement ( X / p )
time derivative of above.

2
non~dimensional derivative <x 7Zi R A P)

acceleration of the top surface.

w X W 2
non-dimensional acceleration ( x 72 R / L P)
L




N & n.

m

)

N

o~
°

g

S

NSU

& "lumped" approach velocity.
a deformation of the thin layer at radius r.
axial co-ordinate in porous layer.

compressive strain in axial direction of porous

elastic material.

permeability of porous material in radial and axial

directions respectively.
viscosity of fluid in the film.
initial viscosity of fluid in the film.

viscosity of fluid in porous layer, and in the film

if no additive present.
viscosity of pure additive.
axial flowrate in porous material.

velocity of deformation of elastic layer (positive

upwards).

flowrate in axial direction across the boundary of

the porous elastic material.




Chapter 2

THEORETICAL DEVELOPMENT OF THE MODEL

2.1 Introduction

This discussion is best followed with reference to diagram 1.

One reason that comparatively little work has been done in the
field of normal approach lubrication may be found in the fact that the
process is time-dependent and both experimental and theoretical work
are more difficult than in +the steady-state processes of rolling or
sliding.,

For these steady-state problems, the numerical solution of Reynolds'
Equation involves two successive integrations of the equation to find
the load carrying capacity (F) of a film. In normal approach, however,
these two integrations at time t, say, must be followed by a substitution
of F into the equation of motion of the moving surface and this must be
integrated twice over a period of time 8t to produce new values of film
thickness and relative velocity of approach for a time t + ot. The
integrations of Reynolds Equation are then repeated and this cycle must
be carried out many times to produce a profile of the various perameters,
such as film thickness, against time.

Despite the absence of the usual "downstream boundary", calculations
in squeeze film situations are very much more difficult than in steady
rolling or sliding films.

Two approximations have been made by several people (4, 5) in the
tackling of normal approach. First, the mass of the moving surface has
been assumed to be zero, i.e. the load applied to the film has no inertia.
With this assumption, the variation of film thickness with time is

defined by:




P o((a/rux) - - applied force

where the integral is taken over the area of the film.

In 2.2 an expression is derived to show the difference betwsen this
assumption and the more accurate one of the moving surface having con-
siderable mass.

The other approximation has been concerned with the evaluation of
the rate of deformation of an elastic boundary under the pressures
generated in the squeeze film. The relevant term in Reynolds Equation
is (3.‘-~ Wo) where X is the velocity of the rigid surface and W, that of
the elastic boundary. X is a function of time alone, W, however depends
on time and radius, being zero for all time at the outside edge of the
film and a considerable fraction of X near the centre of the film at
commencement and termination of the normal approach.

A typical approximation replaces (i—Wo) by 15_ and Reynolds Equatiocn
is then solved for various values of Ziand:r, the variation of X with
time being found by recourse to the assumption of 'zero inertia' described
above. The equations describing normal approach with and without this

assumption are presented in 2.3 and 2.4 and compared in 6.2 and 6.3.

2.2 Rigid Impervious Boundaries

The governing differential equations reduce to their simplest form
when two rigid, impervious surfaces approach each other through an
isoviscous lubricant, see diagram 1 (in which W, = O ).

Reynolds Equation becomes

3k _ bpTE ()
oT h.
for any point in time.

If the upper surface is parabolic and the lower flat, then
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fqr= 3c+'ra/;2R (2)

- /i

and we can integrate (1) to produce
/
P = 372Ra‘c<’/;,:_/;;> (3)

using the boundary condition Er O at T = T,

whence

With no loss of generality, we can change the boundary condition
to E= O at 7= o0, Using the former boundary condition, integration

of (3) produces

F=--3T7x% ()

&

2 x hi

With the latter boundary condition, a rather simpler integration produces

Fe AR (5)

The equeation of motion of the top surface is:

substituting from (5) we obtain

_éTTRa:Zi _ Mj

oC

M )

|

If the system is dominated by viscous florces then a first approximation
is found by putting X=0 and integrating. This gives:
(- M3 /femp Rt (7)
x= Pe

where the condition x=3 at € =0 has been used. For convenience, let

B = — (M /67 R*)

then x - BXx

and 52 R’x (8’ )
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An exact solution can be found to equation (6) by writing

n= oo

x= C,+ Cit+ e (9)
h =20

Substitution of this series into (6) and the equating of coefficients

yields:

C.-1[Ss-¢.] /& (10)
C3={3-[C"/B—C’]_C‘ C,}/(o (n)
Ca= {i (%5 f”/w} Cr G

a=r-2L

< 7 Ca Ca-a / ~ .
- a (a—1) / Co (2)

a = a.

and

(12) being valid for n 2 k-
From {6), if the film closes due to an applied force (F) whose

inertia is neglected (or zero) then

~T Zrn R)T
Dc=]>.e( e )

and this is then an exact solution to the equation of motion.
The dominance of the viscous forces in the model and hence the

accuracy of (7) is illustrated in Chapter 6.1.

2.3 "Weeping Lubrication"

McCutchen (2) has proposed the concept of “"self-pressurized
hydrostatic lubrication", known conveniently as "weeping lubrication"

to explain the functioning of animal joints. He suggests that, as a
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joint is loaded, fluid is sxpelled from the cartilage into the film.
Because the stiffness of cartilage without any fluid in its pores is very
low, the rate of expulsion of fluid, and hence the rate of deformation

of the cartilage, is controlled by its permeability.

It is possible to devise a simple mathematical model to describe an
extreme form of this "weeping lubrication", diagram (2). Such a model
requires an elastic layer with zero radial permeability and infinite axial
permeability, and whose constituent meterial is incompressible (i.e.
deformation occurs by closure of the pores). As the layer is deformed,
fluid is thus forced out of the pores in an axial direction.

Since the ﬁaterial is elastic, we must consider the question of
the stress distribution in this layer and its interaction with the fluid
pressures.

Were the elastic layer to be considered as a semi-infinite solid,
then it would be possible to devise an iterative process solving first
the Reynolds Equation and then the elasticity egquations. However this
process does not always converge (5) and because the material we are con-

sidering is a thin layer, then an approximation can be made of the form

S, = £

i.e. the deformation at a point is proportional to the local pressure on

the surface. Thus

- - - VIR
S.= AR (13)
The development and examination of the accuracy of this step can be traced
through references (6), (1) and (7) and a discussion éf it is included in
Chapter 7.

If we define

W, = - (rate of deformation of elastic layer)
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and W, = volume rate of flow of fluid out of the porous
elastic layer,

then at any point on the surface,

Very conveniently, Reynolds Equation

ok _ 6n T (jc—wo_wa>
k.
6724-3?-/[{_ (M~>

Because of the nature of our interpretation of "weeping lubrication",

becomes

r
oF
oT

the problem of calculating the rate of deformation of the elastic layer
is avoided and it is thus possible to make some progress towards analytical
solutions of the squeeze film.
The simplest case of interest is when the top surface of the film
is a flat rigid disc of radius S.
Reynolds Equation is

_B_E 6"7"a~5c
or ) }23

where

h = =+ AR
h g
The equation is separable and can be integrated to give:

/
2= 2{lezt sl 22T

>

B (9
= A 2 | | — |
P _ _;5 [1272 [1— SJ + ] 5




1,
if ¢ <0 then Ps =—}A' as a first approximation and:
v H 2 ] ‘/‘I'
P = %lc_ [__’;_Q 9:__[1-—5] — | (1¢)
x

At the centre of these discs, the film thickness is

l?,,= x + AF

thus, from (16),

= (-ragxAs)t (17)

Thus for constant speed of approach, the film thickness is constant.
At first sight this is a surprising result, in that the displacement,
is not involved. However it well illustrates the fact that the film is
provided by lubricant 'weeping' from the elastic layer and that the rate
of weeping is connected to the rate of deformation.
It is possible to produce a similar solution to the problem when the
top surface is paraboloidal with a radius of curvature R. |
In this case, the Reynolds Bquation is still
é@ — 6@7‘3&:
oT h2

However

Fa)

b= =+ T4, + A

Numerical integration of this equation for various values of J'C, "Z and X
shows that the pressure curve resembles a parabola over the central region
of the film, for values of X <O

If, then, we substitute an expression of the form

E—':' ,Q'__,ﬂa'ra
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into (14) and equate co-efficients of powers of r, we find an expression
of the form:

po (R21)" - (=) (9

Since the expression will be in error for large r, it cannot be integrated
with respect to r to produce the force F. Thus the equation of motion of
the top surface cannot be solved.

However, for <0 , (18) is an excellent fit to the pressure curve
over the important central region of the film, see figure (3).

In this central region, the film thickness is
LY
h. = x+ Tzg + AR
and, from (18) this is

b _ (-6R=7A)"

Thus not only is the film thickness constant over the centre of the film,
it is also constant for a constant speed of approach, as was found in

the case of a flat disc.

2,4 Impermeable Elastic Layer

If the "weeping lubrication” is to be an effective mechanism for
maintaining fluid between approaching surfaces, then it should produce
substantially thicker f'ilms f'or longer periods of tiwe than other possible
mechanisms operating under the same loads and geometry.

One such mode of operation is to consider the thin layer as
impermeable in any direction but still retaining its elasticity, see
diagram (1).

This gives a Reynolds Equation of the form
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ok _ bpr (%-w) (19)

Once again we must simplify the elasticity equations with expression (13)
so that

I’h'—" 7c+; + AR

Now W, = - (rate of deformation of the thin layer) so that, using (13),

’ 3t 3t

Several authors (4, 5) have solved similar equations by replacing the
awkward function (3— W, ) by a velocity of approach X , assumed independent
of r.

The Reynolds Equation can then be integrated for ranges of values of
X. and X and the life of the film found by assuming F to be a constant
with respect to time.

Neither of these assumptions need be made if we maintain the approxi-
mation (13). With this approximation, it is possible to integrate (19)
twice numerically for some given values of X ,X and W, and thence to find
new values of these quantities at some later instant of time. The full

procedure is described in Chapter 3.

2.5 Rigid Permeable Thin Layer

If we return to the model described in Chapter 2.2 and replace the
lower rigid layer by a permeable rigid layer we have the situation
described in figure (4), in which W, = O.

Equation (1) becomes

2P _ 'é_:"z:;: (72:— Wg_) | (Qo)

T

-
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where W, is the volume rate of flow of fluid per unit area out of the

porous layer into the film.
k . ’r-a
: - x -+
Again M1, “ar

It is now necessary to describe the flow in the porous material. D'arcy's

Law for the flow of fluids through porous media,

-(4.4,) 3 ”
, > (@)
W= _(ﬁz/?>§—i )

gives us the flowrates u and w in the radial and axial directions

|

’a

respectively and is a widely accepted description of the behaviour of
fluids in porous media.

fq_ and ;/_2_ are the permeabilities of the material in the radial and
axial directions respectively, having units of area and being a function

of the size of the passages and their tortuosity.

P
We can now say w, = - (¢z/7 %;

where _a_ﬁ_ is evaluated at the surface.

oz

A relation is needed between u and w and this is provided by the

equation of continuity,

ou . u . 9w o (23)
oT T -4

I

On the question of permeability, whether the material is isotropiec,
or not, will depend on its method of manufacture. Thus é’_ and ¢Z will

be kept separate in this theory and not be assumed to be equal.
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(21) and (22) can now be combined to describe fully the flow in the

porous layer, i.e.
ifj a
L iff+(/§li\aP
g/ az*

|
d 1 T 9T

This is a form of Laplace's Equation.

The use of the co-ordinate X has been confined to describing the
film and the motion of the top surface, the co-ordinate z has been intro-
duced to refer only to the porous material.

The boundaries of the region in which the Laplace-type equation (23)
must be solved consist of streamlines on three sides and the film on the
fourth side.

Wu (8) has considered a similar situation in which two rigid discs
approached one another, one disc having a thin porous annular region. He
has solved this analytically by separation of variables in Laplace's
Equation and produced a series solution for pressure in 7 and z and thus
substituted for w, in Reynolds Equation.

Such a2 solution could be found for eguation (23) were our discussion
of squeeze films to be confined to isoviscous lubricants aﬂd rigid
boundaries. However such a solution is somewhat inflexible and cannot
easily be adapted to films of non-isoviscous lubricants between elastic
solids. Numerical solution of such systems automatically includes the
problem of rigid boundaries and constant viscosity fluids as & special

case.,.

2.6 Pormeable Elastic Layer
As discussed above, the next complication to consider is the intro-
duction of elasticity efflects into the porous material considered above,

Equation (22) becomes
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du U M — Wo
= 4+ 4 —
R (- A E) @)

wherse T is the thickness of the thin layer, and

W, = — A_a_E_
ot

Equations (21) remain valid, but the local values of'gg and g‘ will
r p-2
no longer be constant but will become functions of the deformation. Thus
under any system of loading on the material, these permeabilities will
vary with r (but not with =).
Remembering this, equation (23) changes to

(&) 35

- %
" g 5= 4 (T-AP)

The variation of ﬂi_and ¢£ with deformation must now be considered.

T.+ aP[J. 4 o@ (ﬁs)

Inevitably more assumptions must be introduced. These are:~

1) That gé_and ¢£ are equally affected by surface deformation.

2) Deformation of the porous layer is accomplished entirely by
closure of the voids in the material, i.e. the actual material

of the layer is incompressible.

3) The permeability is proportional to the void ratio in the layer.
Thus if V' is the fractional volume of voids in the undeformed layer, we

6-4V 4.4V

for the undeformed

material and for the deformed material at some radius r,
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5/ / ( \/—é,y
r % | — €,
and (25>
?{ /Z V" éq’
z - 2 | — €.,
where €,.1is the compressive strain in the material in the axial direction.

Now €, = S* = AE

- a——

from (1)4.) .

S

!

Thus in equation (25) we can say that ( a )remains constant under any

C'ad

'r )
The Reynolds Bquation is

ok éli(i-m—m) (27)

loading and that

L34 _ A (=0T (
;é D+ (T-aP)(vT- AR)

oo/

—

oT 5

where W, = — A EE_— and —éi
5t 7, ©=

SURFAcCE

W, is evaluated as a flowrate relative to the moving surface of the

elastic layer.

W, is a velocity of the lower surface relative to a co-ordinate system

2.7 ILubricant Additive and Permeable Elastic Layer

. The lubricant in animal joints is not a simple iso-viscous Newtonian
fluid (9). The viscosity is grossly dependent on shear rate and it also
contains a low concentration of a substance called hyaluronic acid. This

additive has a molecular weight of 106 and appears to form 'complexes'
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when in solution in the fluid. It cannot flow through the pores of the
cartilage and, at very thin films, when the base synovial fluid has been
forced away from the high pressure zone, it is believed to form gels of
very high viscosity providing a form of boundary lubrication.

This can be modelled in an idealistic manner by enriching the fluid
film of the model described in 2.6. The additive will be free to move
about the film but not through the porous layer. The non-Newtonian aspects
of synovial fluid have been ignored.

If we know the variation of the concentration of this additive with
respect to radius, an approximate, new concentration can be found for a
time At later. Consider the annular volume shown in figure (5). Let the
volume of additive in this region be Ja and the concentration of the

additive

,VA = '3h '/QLA

Now over a period of time A%t the nett flow out of the annulus of the

additive will be
ot (@, AN — B AN)

The increase in volume of the annular region will be
at A, (= —w)

Thus the new concentration is

[N )

Ng = {'SA - At (W; As Na - @ A Nv\)

€X))
{Lp, + At Aa(’.""w")}

Obviously'Qgcan be removed by looking at the continuity of the annular

volume, i.e.

%A — @A — @A + (-w) A, =0

whence
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N8= NA [ — At

@ A, - @ A (NVA/A - ’) (2q>
La + Ot A;\ (D'C—Wo>

The numerical calculation of the distribution of additive is described
in Chapter 3.
It is however necessary to make two final assumptions before the

problem can be solved.

1) A relationship between concentration of additive and the
resulting viscosity of the fluid must he postulated. Workers
in the field of joint lubrication (9) have suggested that the
relation of synovial fluid viscosity and concentration of

hyaluronic acid is a linear one. Thus at a concentration c,
7=7(|+c(m?—f)) (30)
< [+

where

M= 7 /77

'? being the viscosity of the puré additive
! .

7 the viscosity of the solvent.
[~

2) The fluid in the porous materisl ic pure solvent at viscosity YLIa.
However if the concentration of additive at some point in the
film becomes unity, then no flow can occur of fluid from the
film into the porous material at that point. Flow can occur
though if the concentration is less than unity. For the

purposes of numerical computation it is not reasonable to have

a step changs in flowrate from some current value W= - }é AP

Z, 02 [suprace
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to zero as concentration changes fromc< | to ¢ =1, Thus the

assumption is introduced that ¢ is proportional to concentration
surface

of solvent, i.e. it falls linearly to zero as concentration of additive
approaches unity. This complication is described mathematically in

Chapter 3.

2.8 'Dowson' Enrichment Model

Dowson (3) has suggested that since the permeability of cartilage
appears to play little part in the lubrication of joints, at least until
the film is almost closed, the additive, hyaluronic acid, may be bonded
in some way to the surface of the cartilage. This would prevent it from
moving sideways with the base synovial fluid when the joint is loaded.

Thus the concentration will be inversely proportional to the film thickness.

This can be presented mathematically by

c= C; ha/h.

where c({ is the initial concentration and AL is the film thickness at
some radius at the commencement of the normal approach.

This model is discussed in detail in Chapter 6.5.2.
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Chapter 3

NUMERTICAL SOLUTION OF THE MODEL

3.1 Intreduction

Whilst the analytical formulation of the differential equations
involved in normal approach presents no difficulties beyond the intro-
duction of several approximations and assumptions, the numerical or
analytical solution of them is extremely difficult. As already
mentioned, two basic assumptions in previously published solutions
have been the equality of applied load and the load carrying capacity
of the film and the neglect of the velocity of deformation of the
elastic material.

Neither essumption was made in Chapter 2 and this has led to diffi-
culties in the numerical solution of the equations., The first assumption
is not particularly important but an accurate description of the rate of
deformation is vital to determine the flow in the squeeze film. In the
case of this velocity, the difficulty in describing il accurately has
been the major factor in limiting the application of the model to systems
with low values of flexibility.

Unfortunately the model does not lend itself to a neat numerical
solution. It would have been more elegant to be able to consider the
solution of the normal approach as the solution of a rectangular finite
difference network, which was to be solved for nodal pressures. One co-
ordinete would have been spatial (radial) and the other temporal. (In
the case of a porous material the network would have been three
dimensional with two spatial co-ordinates (r and z)). However the'
equations derived in Chapter 2 are not suitable for this type of treat-
ment. The Reynolds Equation links points in the radial direction, with

an expression of the form
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[é”&] - :S: x)i) Q—E

oT t 3'&
in which x and x are not constants but are dependent on previous values
of x, x and X . The latter are derived from some evaluation of F,
which in turn depends on the integration of previously determined
pressures.

The best way to describe the numerical procedure that has been
devised to satisfy the Reynolds Equation end the equation of motion is
to consider the development of the method starting with the treatment
of the simple model with rigid impermeable boundaries and continuing to
the meore complex models.

The models are treated in the same order as they were in Chapter 2.

3.2 Normal Approach with an isoviscous lubricant and rigid boundaries

3.2.1 This subsection describes the direct method of solution of the
equations for this model and the flowchart for this approach is shown in
fig. (6).

For given x and > at time T s Reynolds Equation is integrated twice
from the starting point =17, to the centre of the film. The second
integration gives us the value of the quantity F. This is then substi-
tuted into the equation of motion to find * at that instant. New values
of x and * can then be found for a time €+ OT |, The first integration
of Reynolds Equation is performed by a 4th-order Runga-Kutta method, the
second integration, of the pressure distribution to find F, by Simpson's
Rule. The choice of formulae to find x and * at £+ OT from values of
X and & at time € is not critical and even the simplest formulae work

tolerably well, i.e.

D'C_l:.f- act.At

JC-E +At and
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2
X e = Xe + x, At +fi(At)/;2

The initial conditions chosen for the normal approach are x=7, 5‘-=°,

x = -§ at time t=o0.

36242 Numerical problems of the direct solution

The curves of distance/time and velocity/time computed from these
initial conditions and by the method described above, are shown in fig. (7).
It was found that the trajectory eventually becomes unstable for values of
£ > 4o.

It is from these curves that a numerical procedurs has been devised
that supersedes the direct approach before this instability becoumes
evident and dominates the curves.

The curves can be cc;nsidered in three parts, the dividing line
between the first and second regions occurring at around £~=3

The effect of the initigl conditions is most marked in this first
region (1‘5 <3 ) and here the use of equal increments of time is a suitable
approach to the solution of the squation of motion. However, after t=3
the trajectory closely follows that calculated in Chapter 2.2, see figs.
(64, 69). We can see that JC= B> and also that x << 3_ . To calculate
X accurately requires that F be known extremely accurately, since 0.01%
errer in F will produce an error of 1% in X . By reducing At in order
that x and * become more accurate, and hence F becomes more accurate, we
introduce more errors by increasing the number of steps needed. Indeed,
whatever finite difference method is used to calculate x and X , the
trajectory finally goes unstable, producing a spurious solution.

This is of course to be expected when solving an equation of the

form 4_1_ = ,z x. by finite difference methods (10). Obviously a

dt
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~

different approach is required to tackle the trajectory when t >3,
This can be easily accbmplished if some assumptions are introduced

regarding the behaviour of the film. These assumptions are

1) that X, having risen from -g to +0.01g (approx.) then approaches
-

zero as t —> o9,

2) that (-X), having risen to a maximum, then falls to zero as

X —=> 0.

These assumptions can be summed up by saying that the trajectory should

follow the form described in 2.2.

3¢2.3. Indirect Solution of Equation of Motion

We now have a check on whether a calculated acceleration is accurate.
From -’E= 3 the trajectory can be calculated by using equal increments of
velocity instead of time. Thus the velocity reached at 'E’-‘-'?a is divided
into about 50 increments and these increments in velocity become the
change in velocity between each double integration of Reynolds Egquation.

Obviously, for each value of X for which we calculate F we need to

postulate a value of X . This is done in the simplest possible way, i.e.
x, = % + D()
X, = A x;— X,

With these values, we can integrate to find F and thus the acceleration

‘.36.1= F-;/M—— 3_ (BI)

Now we are assuming that the trajectory closely follows the solution found

in 2.2 so we can say

Y o Bz Ga)

B
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If the values of X in (31) and (32) are equal, within some specified
limits, we can then progress to calculate Fz with:-

If, however, the two values of * are sufficiently different from one
another, then the value from (31) must be corrected.

It can be seen then that the method is indirect in that X is not
used to calculate the trajectory but only used as a check on its
accuracy.

The acceleration is corrected by correcting X, in Ei by an amount

proportional to the error in X , since

F >~ —é6mrmy paﬁc(DC)—, <33>

a
F, is then recalculated with the corrected value of 3a_and-the acceleration
compared with (32).
The process is convergent very rapidly because 1% error in X =>
0.01% error in F.

The time taken between steps can be found from

At = (xal-xn)/(x, + %z))

As will be realized, the above procedure produces a trajectory very

similar to one that would be obtained from the assumption
F=T (,u_ /"’F=O>
This is because, for the values of B chosen, the model is dominated by
viscous forces. TFor larger B however, the trajectories calculated for
the model and for the system F = I would no longer by closely comparable.
Whilst the analytical solution-has been found for the above case

(if we neglect differences in spatial and temporal boundary conditions),

there are no known analytical solutions for the other models proposed in

L
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Chapter 2 and their solution has been based completely on the method

outlined above.

3.3 "Weeping lLubrication"

The numerical solution of the model representing "Weeping
Lubrication" is very similar to that of 3.2 elthough the mode of operation
of the model appears at first sight to be quite different.

Reynolds Equation remains as

& - 677 % /)3 (34)

T
However, h¥ = X -+ %R + A E the last term being the addition

tc the problem. This addition hes dramatic effects on the film thickness/
time curve but the computation is almost unchanged.
The Runge-Kutte method employed in 3.2 is quite suitable for solving (3l4)

even though it is no longer a linear differentisl equation.

3.4 Elastic Impermeable Surfaces

The equation for the film thickness, h, remains as in 3.3 but it is

now necessary to include the rate of deformation of the elastic layer in

the Reynolds Bquation since calculation of [aer requires evaluation of
a‘f +

(;.C— Wo)l
Our treatment of the elasticity part of the problem has produced

the simplification

_ of
W, = A'(at,

There is no explicit description available for é%{; , thus its value
T

must be implied by the equations of the model and hence these equations

must be sufficient to solve the model completely, i.e..alz must be
3t
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determined from the information already available.

Since the equation of motion is concerned with E i(m), the
aree of film

oF,
only equation from which {——ag can be obtained is the Reynolds Equation.
™

Unfortunately Reynolds Equation, when integrated once, gives us [E:It

—

ot

ation. A formula of the type

X ARG ORE

must be used.

and to calculate [BE«J from this involves a process of numerical differenti-

v+

Numerical differentiation is a process that should be avoided if at
all possible. A large time increment will produce truncation errors, a
small increment will produce errors due to inaccuracies in the evaluation
of [P,]t s Since E,L , and ,_{_P']é will be almost equal,

] T
Thus it is the problem of calculation of é__ﬁ which is the weak
Ot |-

point in the numerical calculation of the trajectory. The weakness is
inherent in the existing mathematical treatment of the model and cannot
be eliminated by different difference formula, although this approach was
tried to the extent of using a least-squares approach (fitting a parabola
through five values of pressure at the same r, and successive values of t).

The effect of this weakness makes itself felt in limiting the model

'y -3
to situations of low flexibility, i.e. A = |0,
r A0
Besides the errors inherent in the evaluation of él: there is an
ot
~

instability which occurs in the Runge-Kutta procedure.

The integration by Runge-Kutta formulae commences at ¥ Ya and

W,=0 (since E_ =0 for all t). As the integration approaches the centre

part of the film, w,,-—>5c and so [_@_ﬁr —= ¢ . Thus w,>X isa
ot
T

condition that must always be satisfied (remembering thet x is -ve),

-
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When [Eifi —> (O , small errors in the evaluation of P, are
it
sufficient to cause the solution to oscillate and increase exponentially,
2
eventually causing an 'overflow' condition in the computer ( }El >0 5-)i

This can be overcome fairly easily by a smoothing process. If, for

example, we represent the rate of deformation of the elastic layer by

Wo = TA_@—{[E]{;_ [P’J‘é, } then éﬁf} + is zero when the relative

or
velocity of approach of the two surfaces is zero, i.e. x =W,

From this was can find [F:]{ y e
2

[EL;L = %—x + [E]'E,

This gives us a limiting value which [}2}.£ must approach as T —=0
2
This condition has been written into the programme to suppress the

oscillation and is used to calculate [E?]t if either condition
a

2], > (Bl 285 wo 28] 5o

A

occurs while [E:]{ is being found by use of the Runge-Kutta procedure.
l ~~
See fig. (60) in which oscillation has been suppressed in t =1 and

¥ < 0.035.

3.5 Elastic Permeable Surfaces

The cases of rigid and elastic permeable layers can be treated
together, since the rigid is merely a special case of the elastic (though
an important one). The introduction of a permeable layer into the model
increases the problem of numerical solution by many times. Typical
computing times for the two co-ordinate models (in r, t) are in the

region of 15 seconds; for the three co-ordinate problem (r, z,t) the time
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can be 9 minmutes.

It was decided to represgnt the pressure distribution in the porous
layer by a finite difference technique and to solve the resulting equations
by iteration, using the method of successive corrections, simultaneously
with the Reynolds Equation integration. This was considered desirable
for the following reasons:

1) The mesh had to be fine enough to ensure that W, was represented

accurately in Reynolds Equation.

2) The pressure distribution would not change much over the periocd
of one increment of time or velocity (i). Thus it would be
economical to use a previous pressure distribution as the

starting point for ‘the next series of iterations.

For a large mutrix, the iterative approach is faster than inverting
a matrix and solving exactly for pressure every time. Calculation of the
trajectory involves solving the mesh some 50 times and the number of nodes
ranged up to 2,757.

The order of solution of the nodes is shown in fig. (8).

Reynolds Equation is altered to

—g—% = QZA—E < X = W — w') where
P

v

W, = — ¢z (ap)' and —_ = [e]f;— fﬁ t,

. 6'2( . A

CE SYRFACE

in a finite difference approximation.
The smoothing applied to Reynolds Equation, as described in (36),

is altered and is derived from
(J— — Wp — W:l.) =0

In the porous layer, equation (25) must be solved and the following finite
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difference approximations are used.

a’P] Pz—m T g—'ﬂn - 2 #
a7y @)*

1,

I

|
-

éf] r-m = Frem (37)
or 1 2 DT

!

a:f] f:-! + Pru — 2 Pz
7], ©a

A one-dimensional matrix was chosen for f; since it is quicker to "read"

and "write" to a one~dimensional array than a two-dimensional one in the

computer.

-~

D+ is a constant, chosen as %_D . Az however will vary

with the deformation of the surface and so

(n-1) where m is the number of nodes in the
z-direction. The number of nodes in the r-direction is 10m-9, i.e. the

mesh has a radial : axial length ratioc of 10 : 1.

When the node I is on one of the boundary streamlines, (such as

z=0 say) then in (37) we replace o vy B

At (r=0), the quantity —= g—f in both the Reynolds Equation and

Assume the pressure distribution is parabolic about 7T=0, then
&
E = ’zs + ,ﬁu T say.
2
LP] - 24

or®

A
po

é-_P = ‘;Z ‘gib
or

Now js’ E and E, E‘_ if o= A7 This can be solved for P,

in either Reynolds Equation or equation (25).



http://uapj.auj.au

3h

The convergence of a mesh such as the one described above ‘is
approximately first order and this can be speeded up by the use of
'Aitken's § method', which estimates a final value of

P= 8 - (-6 lerr.-20.)
Obviously the mesh size and the number of iterations required to solve it,
to some specified accuracy, has an upper limit, defined by the size and
speed of the aveilable computing power.

The number of nodes in the mesh varies as m and the necessary number
of iterations will vary approximately as m or 7"lalso. Thus halving the
step length A2 will incfease computing time by 8 or 16 times.

The largest velue of m used in the computing was m = 17, i.e. total
number of nodes in the porous layer = m(10m - 9) = 2737. Since the
pressure at any one node may only change by a small amount between calcu-
lations (i.e. during one increment of time or velocity) a small number of
iterations is permissible. Typically the pressure change per increment
may be 1%, in which case, 8 or 16 interations is sufficient to produce
film preésures consistent to 0.1%. The shape of the matrix (the radial
length being 10 x the axial length) helps to produce a faster rate of con-
vergence than for a square matrix.

There is one instability in what one would imagine to be a well
behaved system of equations and this occurs for A#0. There are two
components to the pressure distribution in a porous region, one due to the
aprlisd prescures on the boundary of the re

. .
gion (cerrespcndlng

to the
complimentary function of equation (25)) and the other due to the rate of
deformation of the region (corresponding to a particular integral of

equation (25)). This latter component involves the term W, , i.e. jﬂi
ot

r

the problems of calculation of which we have already discussed. Unfor-

tunately for some values of K and ¢ » the computer programme is unable to

produce a correct trajectory when this particular integral is included in
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the calculation. This must be attributed to difficulty encountered in
describing W, accurately. The solutions in which it has been necessary
to neglect this particular integral are clearly marked and the problem

is discussed further in Chapter 6.

3.6 Normal Approach and Variable Viscosity

The equations derived in 2.7 were written in finite difference form
and, for a given initial distribution of concentration of additive, the
concentration at a time At later can be found from them. The calculation
must commence at the centre of the film, where @ =0 . After this central
concentration has been found, @ can be calculated and this is substituted
into the next innermost annular region as @, . The calculation proceeds
to r = T, and takes place immediately before the simultansous solution of
Reynolds Equation and equation (25).

The viscosities are then found from (30). As pointed out in 2.7, it
is necessary to assume that the surface permeability declines as the
concentration of additive increases. For the purposes of computation,
we assume that the permeability is affected to a depth A= below the

surface (see fig. (9)).

Whence, as

w = —f ()

then
o= g (1-m) (8- 6)

where Ng is the current value of concentration.
The calculation of nodal pressures immediately below the surface is
not so straightforward. Consider the continuity of the element shown in

fig. (9): for the upper half of the element, we have
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af

+ L é_g{_,_'] Coe-w) oy, G9)
AT e 57| T T FT-Ar)
and for the lower half;

[af’+ oP[L J_[ad*ﬂ (wew) o w5y

(25:2/5) (TLIQ.ﬂ)

Now w, = -— 2?;51 (,fl - ﬁ’)
31 A=z

w w, = — 4 (f-F)
?: A=

R A A A I T CY)

so, adding (38) and (39) and simplifying, we have
/= + /['L -+ aa‘é'] + 2 g
= £ ol t T g aom

(-0}~ (2-R) | = L
T-AR) @, (2-Ng

if L ad—/ — /l/ﬂa/é’
¢;, ﬁ pi orT

We now have an expression in finite difference form for the evaluation

of P
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Chapter 4

DIMENSIONAL ANALYSIS OF NORMAL APPROACH

The film thickness and pressure at the centre of the film are the
quantities in which we are most interested. Their relationship to the

other parameters of the system can be expressed in the following manner:
=§ ¢ ¢5 V . c T (i
l,:{t) A‘ z) Y’,L; 7,; ’IQ’R ) .)7,) J ’7‘, 40)

where S' and ¥, are unknown functions. The three viscosities 7. 7 7
refer to the film at the commencement of normal approach, to the ;orous
layer, and to the additive respectively.

Examining the Reynolds Equation for a porous layer with an additive

present, we have:

8 _ bpr (x-w, + b (é—”)
5: - 1113 (TJC W +1 02 Jsurpace

For the same system, the flow in the porous layer is given by

BP, [Led 3] L 4 X0 wa

ov" or &

¢J‘Y ¢ 32 ——[———g:

In both equations, 7, only occurs with ¢£ or ¢L. ‘We can thus repléce

%‘r)dz)?o in (40) by d,/z and ﬁz/y

We have reduced the fourteen variables in (40) to thirteen. Normal
dimensional analysis would reduce these thirteen to ten dimensionless
groups. If, however, we follow the technique due to Morrison, described
in detail in (11), these thirteen parameters can bé reduced to nine groups.
The method is based on the introduction of extra length dimensions, per-
pendicular to one another. In the system we are considering, the choice
of length dimensions is an obvious one since the model is best described
in cylindrical co-ordinates and it possesses axial symmetry. Only two

length dimensions are needed to describe the model, these are in the radial
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and axial directions. All the parameters concerned with the model can
now be described in terms of mass (M), a redial length (Lg), an axial
length (Lp) and time (t). The ratio Le/Lp is no longer dimensionless.
The choice of dimensions for the parameters of the model is not arbitrary
but, for the technique to be valid, must be such that the differential
equations of the model are dimensionally homogeneous.

With this in mind, the dimensions of the parameters are presented as:

A M™ L tf
4, #. Ly

L MLyt
Z,Z,z,y MLy L7t
R n - Le
T, h,P, x [ p

% Lyt

9, % Ly t7°

B t

t t

c Vv dimenaimboso.

The derivation of the dimensions for L is straightforward if L is
considered as a force in the axial direction. A is defined as &/P, an
axial deformation divided by an axial force acting on unit area in the
plane of the film,

To explain the units derived for viscosity, we consider Newton's

Law of Viscosity, i.e.

=7 ou (L*i>
o x
T is a radial shear stress, with units P’Ln't-1//4fgz (remembering that

tangential lengths all have the dimension Lg ). jlﬁ; has the units
ox
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Lot

for 7Z shown above.

Inserting these dimensions into (41) gives the dimensions

It remains to decide the dimensions of the various terms containing
'Pressure' in the two governing equations (25) and (27). Consider the

[ S
terms -B/P and a/Pz . When these equations are derived from con-

oT oT
sideration of the forces acting in a radial direction on an element of fluid,
it is implied that P is a pressure acting in a radial direction on a face
of that element, the orientation of that face beiﬁg perpendicular to the
radius vector.
The dimensions of P must then be MLe t ™ /La Ly. Similar arguments

. aa F 2 a P . .
are valid for the terms = and s in which we deduce
ﬁ surface

that the dimensions of P here are r"’”—pf-z L k>. Ve now have the unusual

situation of one parameter "pressure" having two distinct sets of

dimensions simultaneously. Morrison argues that this is quite legitimate.
Using the dimensions derived &bove and f&, L, R, D as the repeating

variables, we can present the non dimensional form of (40) as

éy)(ﬁ/kl)=£lfl-,m- ?57 ¢7 c)l{z)jn(m)

v/ \ L 7R 77 ip,f

/\

Ordinary dimensional analysis, using L, R and ?i would replace D everywhere
in (42) by R and also introduce the extra group P/R (42) will of course
reduce to this form if R and P are merged to produce only one length
dimension. |

Ultimately, the judgement of any dimensional analysis must be based
on its usefulness in understanding the relationships between the various
non-dimensional groups. In this respect (42) is an improvement over the
simpler approach.

(l'i/y) is preferable to (h/R) - see the 'rigid' solution in Chapter 2.

The equation (7) becomes
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N

—_—

~
and ~ /l/ —'t/"ﬂ"
x = —- 3 €

(L) e

i
>x

I

and ¢g %Q and ¢6 &% represent the effect of a permeable layer

_/’{ ;:/;

707 Z.7 -
on film thickness and pressure. Indeed, Wu (8) has chosen to use jé:’?;

r

as his non-dimensional group in a squeeze film with rigid boundaries and
iso-tropic permeable layers.

It is more convenient to write (42) in the form

LR =g (B0 E oy 0,7 R

o) l)

L]

:F:and $i refer to the geometry of the model and both of these have
remained constant, at 20 and 1/5 respectively in both experimentel and
theoretical work. V has taken experimentally determined values when
the theoretical and experimental results were compared but has remained
constant at 0.25 in the theoretical predictions presented in Chapter 6.
Similarly é:and a:vwre allowed to differ for the purpose of
correlating theory and experiment but with one exception, described in
Chapter 6.2, the two permeabilities were otherwise considered equal.
The range of values of the repeating variables and the non-dimensional

groups used in the experimental and theoretical work and also encountered

in animal joints is shown in figure (10).




Chapter 5

THE EXPERIMENTAL WORK

5.1 The Apparatus

Whilst large computers can now handle programmes which solve
complicated mathematical models, it is extremely desirable that an
independent check be kept on the results from such numeriecal procedures.
Such & check might be hopsd to confirm the hypotheses con which the
model had been based or to illustrate inadequacies or over-elaboration
in the model. Bearing in mind the number of assumptions introduced in
Chapters 2 and 3 concerning squeeze-film behaviour, it was considered
important that some experimental results be obtained that could be
compared with the predictions of the numerical work.

The transisent nature of normal approach lubrication is an added
complexity to experimentation and the approach to the design of the
experiments has been dicteted by practical limitations rather than the
concept of an ideal experiment.

The easiest configuration with which to work and one similar to
an animal joint was considered to be two surfaces approaching each other
under the action of gravity.

The choice of geometries for the film shape lay among these three
possibilities.

1) Two cireular fiat suriaces

2) One flat and one cylindrical surface

3) One flat and one spherical surface.

The first possibility can be ruled out despite its axial symmetry because
of the extreme difficulty in preventing the upper surface from rotating

about either of its horizontal axes during its approach towards the lower

(fixed) surface.




The second possibility lacks axial symmetry but rotation about only
one axis needs to be prevented (a horizontal axis perpendicular to the
axis of the cylinder).

The third possibility combines axial symmetry and freedom from the
rotational difficulties inherent in the other two geometries. It is the
obvious choice.

The rig was constructed around this latter geometry and is shown
in figures (11 & 12). The lower boundary of the squeeze film (H) consists
of a thin disc of test material, some 150 mm diameter bonded on to a flat
(surface ground) mild steel plate (E), 9 mm thick and 220 mm by 170 mm in
area. This steel plate is fixed rigidly by four Allen screws on to the
baseplate. The height of a test piece above the baseplate can be varied
in increments of 0.05 mm by insertion of packing between the baseplate
and the test piece backing plate. The baseplate is 9 mm mild steel plate,
some 0.5 m square and could be levelled by means of four feet which rest
on & work-bench,

A horse-shoe electro-magnet (B) with surface ground faces is
suspended above the test piece from a rectangular arch (A) constructed
of 19 mm square bar. Ths feet of the arch ars screwed to the baseplate
at each side of the test piece so that interchange of specimens can be
carried out without disturbing any other part of the rig.

Between the magnet and the specimen fits the moving part of the rig.
This consists of two halves, the upper half (C) being a flat steel plate,
the lower half (D) being the upper boundary of the squeeze film. This
upper half clamps against the faces of the electro-magnet and carries
the lower half rigidly suspended about 20 mm below it. The lower half
has, of course, a spherical lower surface. This spherical form was
produced on & copying lathe from a template of 300 mm radius.

Although any horizontal movement or any slight rotation of the
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spherical surface about a horizontal line would not change the geometry
of the squeeze film, such motion was considered undesirable since the
purpose of the experiments was to examine fluid films under pure normal
approach. Also the instrumentation of the rig was designed to measure
phenomena on the axis of symmetry of the film and any motion of the
upper surface, other than vertical translation, would move this axis of
symmetry either in a horizontal direction or out of the vertical.

Two constraints then were added to the moving part of the rig to
prevent any of these undesirable motions. The first constraint consisted
of three horizontal lightweight arms (I) radiating out at 120° intervals
from the upper rim of the spherical surface. These arms were pinned to
pillars (J) at the outer edge of the baseplate and were of 10 mm width and
1 mm depth. Their length was 300 mm, hence the large size of the base-
plate. Free vertical movement of the spherical surface was thus unaffected
but horizontel translation was inhibited. Rotation about a horizontal
axis was minimized by constructing an arch F from the plate C over the
magnet B and its support A. From this arch, a dowel G fitted into a
vertical P.T.F.E bush mounted in the crossbar A. Loading of the rig was
accomplished by fitting a load carrier (not shown) to each corner of the

steel plate C. This completed the construction of the rig.

5.2 Instrumentation

Initially it was hoped to measure three parameters as they varied
with time during normal approach. These three were displacement of the
upper surface, central film thickness and centreal film pressure. Not.
surprisingly, displacement was found to be the easiest to measure. A dis-
placement transducer reading to 0.0025 mm was mounted vertically on the
crossbar A and recorded the vertical displacement of F at a point on the

axis of symmetry of the film. The transducer was of the inductive type



and its probe was loaded against F by a light spring. This was found to
be quite satisfactory and the probe followed the motion of F with no

sign of any time-lag. The signal from the transducer was fed to a strain
bridge operating at 5 Kiz.

Measurement of pressure in the centre of the film was not so
straightforward. In rolling or sliding situations where the pressure at
any particular point is constant with respect to time, use of a pressure
tapping in the wall of the bearing is a satisfactory method to record
pressure. However if this method were to be used in a squeeze-film, it
would be found unsuitable on three counts. First, the presence of a
tapping changes the film shape and hence the pressure gradients in the
region of the tapping, second, since all pressure measuring devices require
some physicel movement of a diaphragm, there will be a flow from the film
to the measuring device through the tapping. This flow will have two
effects; there will be a pressure difference between the entrance to the
" tapping and the diaphragm, and the flow into the tapping will lower film
pressuras near the tapping. The third drawback to this method is that
the pressure reading is purely dynamic and is not capable of measuring
static stress due to deformation of the thin layer by the spherical
surface,

A commercial pressure transducer was connected to the centre of the
film via a tapping but it was considered unsuitable for the reasons given
above.

To overcome these difficulties, a direct approach was tried by
building in a small stiff diaphragm at the centre of the spherical surface,
figure (12). The centre of the top face of D was cut away until only a
thin circular diaphragm of 5 mm radius and 0,75 mm thickness was left.

On to the centre of the back of this diaphragm was mounted a semi-

conductor strain gauge, the active part of the device being 0.5 mm by
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1.5 mm in size. The gauge factor of the device was nominally 100 and so
very small strains could be detected. For fluid prassures of 1O6N/m2,
the deformation of the diaphragm was calculated to be 1l.5 x 10-3 mm.,
This was considered an acceptable deperture from sphericity for the top
, surface. The strain gauge and a dummy formed a half bridge which was
| connected to a strain bridge instrument with a carrier frequency of
5 KHz., Calibration of this transducer was achieved by applying known
uniform hydrostatic pressure to the spherical surface. The calibration
was linear.

Error will be present in recordings from the transducer because
squeeze film pressures will not be uniform over the area of the diaphragm.
However peak pressures will occur in the centre of the film and it is in
its centre that the diaphragm will be most sensitive. Drift of the half
bridge was minimized by creating a sealed environment around each gauge
and since the rig operated at a reasonably constant room temperature,
variation of' gauge fac¢tor with temperature was ignored.

The two strain bridges used to measure pressure and displacement
hed D.C. outputs and these were fed to an Ultra-violet Oscillograph which
produced permenent records of the time variation of these parameters,
Paper speeds of up to 1000 mm/s could be used and the galvanometers

employed had natural frequencies of 100 Hz. They were linear up to 60 Hz

in fesponse. However none of the signals recorded had rise-times less

than 0.02s.

Since the problems of measurement of film thickness vary with the
nature of the lower surface, the attempts made to measure films are
described separately in the following sections.

To continue the pattern of the previous chapters, the various

experiments are described in the flollowing order. First, rigid impermeable

squeeze films, second, "weeping" lubrication, third, lubrication with an




elastic impermeable layer, and fourth, the squeeze films with elastic
permeable layers. No experiments were carried out to test the effect
of additives in the lubricants.

All the experiments had several features in common and it is con-
venient to describe them now. The thickness of the layers of test
materiels were all nominally 5 mm and the area of each specimen approxi-
mately equal to the area of the spherical surface. Each specimen was
tested with three different lubricants, all being mineral oils. They
were provided by Shell Research Ltd. and denoted as HVI 160, HVI 650,

LVI 1100. At room temperature the viscosities were approximately 3 poise,
15 poise and 75 poise giving a ratio of 5 between successive viscosities.
Also three loads wers applied to the film, The lowest load was 4,330 kg
and was merely the weight of the rig with no extra loads applied. The
other loadings were 6.145 kg and 7.960 kg. This upper limit corresponded
to the highest value of flexibility that the computer programme could
accept without going unstable. It was also within the safe limit of
pressures generated in the film in the experiments where the stiff plastics
and wetal were used as the lower surfaces. The initial height of the top
surface above the undeformed lower surface was set at nominaily 0.25 mm,.
The various parameters of interest in the experiments are listed together
in figures (10 & 71).

Before each run, the current in the electro-magnet coils was reduced
to the minimam necessary 4o support the plate C and spherical surface D.
This was to minimize the effects of retentivity in the iron core on the
initial part of the normal approach. The only effect of this retentivity
was to produce a slight uncertainty in the zero position of the time
scale of the pressure and film thickness curves. This was not considered
to be important and had no effect on the expsrimental results.,

With regard to experimental error, it was considered that the Ultra-

Violet Oscillograph traces could be measured to less than tl% FSD
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(1L mm in 100 mm). The strain-bridge instruments were quoted as being
accurate to il% FSD also. Thus both pressure and displacement traces
will be accurafe to within :2% FSD. Since the film thickness is

deduced from the sum of the displacement and deformation (with the latter
proportional to pressure), the error in film thickness curves will be
1&% PSD. This value covers most of the scatter on the experimental
reéults.

The dependency of gauge factor in semi-conductor gauges on tempera-
ture is well known. However the variation was qQuoted by the manufacturers
(Electro-Mechanisms Ltd.) as being &% over a 100 F° range. This is
negligible since all experiments weré conducted at normal room temperatures.

Because the pressure transducer records strain produced by a non-
uniform pressure distribution, there will be a systematic error in the
recorded pressures. Thus the accuracy of the transducer can only be
estimated by comparing the experimental values with computed values.
Whilst the agreement in the experiments with rubber was not so good,

that in the porous plastic tests was excellent.

5¢3 Rigid Impermeable Boundaries

The lower surface of the squeeze film in this case was a mild steel
plate that was surface ground to a roughness of 0.25 microns c¢.l.a. If
the surfaces are considered rigid, the film thickness can be derived
directly from the recording of displacement. This assumption has been
used to plot the curves of film thickness and pressure, shown in figures
(13) and (14). The staggering of the origin of co-ordinates has been
done in the interests of clarity, and the three graphs could equally well
have been grouped together under headings of load rather than viscosity.

The results from all three oils have produced a reasonable agreement
between measured and theoretical film thicknesses and the main discrepancy

occurs after t = 30 when the experimental values are 0.025 -~ 0.05 greater



than the theoretical. Possible causes of this are first: friction due
to the constraints fitted to the upper surface, and second: deflection
of' the diaphragm under the generated film pressures. There is no
evidence of friction being present in the experiments described later
with other materials and a look at the various pressure/time curves
suggests that the flexibility of the system is not quite zero. Departure
of the experimental curves from the theoretical occurs at %f= 25 and the
final static pressures recorded were s'ﬁihDOO. Thus the model has
produced film thicknesses greater and pressures less than the theory
would lead one to predict.

If we consider the diaphragm as being of uniform thickness and
built in on its edge, its deflection (8) under a central load (L) is
given by

S = Lo 120-9)/KrEW

where a is the radius and h the thickness. For the loads used in the
experiments, this expression produces a deflection at the centre of
Lol x 10-3 mm. This is 0,017 expressed as a non-dimensional film
thickness and is sufficient to account for most of the observed discre-
pancies.

It was considered that the high pressures predicted by the theory
might damage the diaphragm or its strain gauge and so these experiments

were conducted as the final part of the experimental work.

5.4 The 'Weeping' Thin Layer

As described in Chapter 2, the concept of self-pressurized hydro-
static lubrication can be realized in its extreme form by a thin layer
of material on a rigid backing, the thin layer having zero radial
permeability and infinite axial permeability. It was attempted to

produce a material which had these properties in the following way:
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On to a steel plate was cast a disc of silicone rubber (Silcoset 101
manufactured by ICI Ltd.), some 150 mm dia and 5 mm thick. The surface
of the steel was primed to achieve bonding between the rubber and steel -
addition of a curing agent caused the liquid rubber to set over a period
of 24 hours. Care was taken to remove air from the liquid by subjecting
it to a pressure of 5-10 mm mercury for 30 minutes.

Against the upper surface of the liquid rubber was pressed a clean
unscratched perspex surface. After setting of the rubber the perspex
was removed by prising it free from the surface. In the central region
of the rubber disc, 2500 vertical holes were punched to model the concept
of weeping lubrication. The pattern of holes was a grid 50 mm square
containing 50 holes per side. The spacing of the holes was thus 1 mm
and the diameter of each about 0.6 mm at the surface. Froduction of the
grid was achieved by using the table of a milling machine which was
indexed in both horizontal directions.

For the actual manufacture of sach hole, a large bore hyperdermic
needle (0.6 mm bore) was used with the tip ground by trial and error to a
shape which preduced a clean round hole.

Drilling of the rubber was found to be quite unsatisfactory and it
produced a very rough, torn surface. For the first few holes punched,
the core was removed by the needle but since these early cores blocked
the bore of the needle, later cores were merely pushed down into the
rubber as shown in diagram (15). This caused a slight rising of the
punched surface above that of the untouched surroundings. To fill the
holes with fluid, the fluid was poured on to the surface and the specimen
placed undervacuum for several hours.

Measurement of the flexibility of the material was done directly on
the rig. The rigid spherical surface was lowered towards the rubber
until just touching. On releasing the top surface, the deformation of

the soft layer was measured. This was repeated several times and for
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three values of load.

The flexibility for the theoretical comparison was calculated from
this deformation, knowing the load applied and assuming a parabolic
pressure distribution. (This latter assumption is already implicit in
the treatment of the elasticity equations in the programme and indeed
in all the theory of Chapter 2.) Slightly different values for A were
found f'or the three loads indicating a decrease in flexibility as the
deformation inereased. These values are shown in the graphs of results
for this model, figs. (16-21).

It was also necessary to measure an ‘'experimental' value of flexi-
bility. In the absence of a direct measurement of film thickness, it
became necessary to deduce it from the measured displacement curve and
a calculated deformation curve. Since deformation and pressure have
been assumed proportional throughout this work, the central deformation
of the soft layer could be found in an experiment from the measured
pressure and an experimental flexibility.

This flexibility was calculated from the recorded static pressure

end the measured static deformetion {described as above). Since the

predicted final pressures were ~20% greater than the recorded static
pressures, the values of flexibility for the theoretical and experimental
models were not equel. They are shown in figs. (16-21).

Initial separation of the surfaces was found from the final value
of displacement and the total deformation either measured statically or
calculated from the final recorded value of pressure,

The same method of production of the thin layer and calculation of
film thickness was used for the experiments with an elastic impermeable
layer (with the exception of the hole punching).

Originally it was attempted to measure film thickness directly by
recording the capacitance between the steel upper surface and a small

electrode buried 0.1l - 0.05 mm below the rubber surface. In order that
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only the central film thickness would be measured, the electrode was

6 mm square and had four holes drilled in it before insertion in the
liquid rubber during casting. However it was found that the presence

of the electrode disrupted the pattern of holes in the rubber and also
that its area was so small that the peak capacitance measured was of

the order of 1 - 2 pf. Consequently there was substential drift associ-
ated with the measurement of this signal. Also the capacitance varied
with the deformation of the rubber even in static conditions. The direct
measurement of film thiclkness was thus abandoned and replaced by the
indirect method described above.

With this indirect approach, the main source of error was in
measuring the total displacement of the top surface. Whilst 95% of the
displacement occurs within 3 seconds of release, even with the LVI 1100
0il, the other 5% may take up to several minutes.

The results are plotted with the corresponding theory in figs. (16-21).
Since the non-dimensional flexibility contains the gquantity L, there are
three separate graphs for film thiclmess and pressure. This applies to
the presentation of the results for the elastic impermeable material also.

The agreement between theory and experiment is excellent. However
the results are shown only to t = 120 and as already mentioned, the
theoretical final pressure attains a value somewhat in excess of the static
experimental values (t—=>oo). This could be due to the non-uniform
pressure distribution applied to the diaphragm (parabolic in the theory
but not necessarily so in practice) and also to the fact that the calibra-

tion of the diaphragm was based on a uniform hydrostatic pressure.

5.5 The Elastic Impermeable Layer

The material for the thin layer for these experiments was identical
to that used for the 'weeping' lubrication tests, with the exception of

the holes. Direct measurement of film thickness was attempted but failed
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for the reasons previously given. However it was of use in a qualitative
manner for an interesting phenomenon which occurred during testing of
the rig.

It was found that rapid separation of the two boundaries of the
film produced cavitation of the fluid in the central region of the film.
This manifested itself on the pressure and film capacitance traces in a
most peculiar manner and the relevant traces are shown in fig. (22). It
should be noted that both curves are a qualitative record of events
since the position and severity of the cavitation was variable.

Presumably the dip in the pressure trace occurs as the bubble is
forced out of the central region - replacement of the air by oil would
lead to a slower rate of closure of the film.

Confirmation of the presence of air was found by removal of the
magnet, the crossbar and all the moving part of the rig and replacing
the latter by a perspex disc with a lower surface of spherical form with
the same radius of curvature as used in the steel version. By closing
and opening the film by hand, a small cavitated region could be induced
to form at the centre of the {film. A photographic record of this
formation is presented in fig. (23).

During actual experiments, care was taken to avoid rapid separation
of the surfaces and consequent formation of air bubbles. The phenomenon
was more readily inducible in the models with higher viscosities.

The results are shown in figs. (24-29). The pressure traces show some
deviation from the theoretical at large values of %: as happened in the
experiments with the "weeping" material. However the gross discrepancy is
found in the curves of film thickness. For all three flexibilities of the
model (i.e. the three loading situations), the difference between theory
and mean experiment values is five or six times the standard deviation of
the experimental curves. This is significant and it requires some

explanation,
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It is proposed that the cause of this discrepancy lies in the
phenomenon of entrapment. This effect has been described and experi-
mental evidence obtained for it by Christensen (5) and Dowson & Jones
(12).

The approximation inherent in all the work in this thesis is that
the surface deformation of a thin layer is proportional to the fluid
pressure at that point on the surface. In the case of the "weeping
material" the presence of the holes produces two results. One is that
the transfer of strain from one small deformed region to another is
rendered more difficult because of the small amount of material left
between successive holes. The other result is that the Poisson's Ratio
of the layer will be almost zero despite any solid piece of the consti-
tuent material - the rubber, having a value of 0.495. This is due to
the rubber being able to expand sideways into the holes when compressed,
resulting in a decrease in the volume of the holes. Indeed this effect
has been assumed in the theoretical treatment of the "weeping" model.
The overall result of the punching of the holes is thus to make the
resulting layer agree well with the theoretical analysis.

However the situation in the solid rubber layer is very different.
With a Poisson's Ratio of 0.495, the material is virtually incompressible

under the loads applied in the experiments. Thus compression of the

central region of the thin layer must result in a rise in the surface
level elsewhere. This was illustrated when the spherical surface was in
dry contact with the rubber. The resulting area of contact was considerably
greater than that calculated from the measured deformation.
Direct evidence for entrapment, however, was considered to be
necessary and, to this end, two qualitative optical experiments were carried
out to examine film shape during normal approach.
The first of these experiments was extremely simple and is shown
in fig. (3Qa).

The two boundaries of the film were a semi-reflecting glass plate




54

and & silvered piece of silicone rubber that had been cast in a ‘watch-
glass'. Interference fringes were observed and were circular, but

instead of moving outwards from the centre, as one would expect from the
theory, they were observed to be moving inwards and outwards from a

narrow annular region. A sketch of them is shown in fig. (314). Although
semi-silvering of the glass plate and silvering of the rubber improved

the definition of the fringes, they could be observed with neither surface
coated. Despite the rapid movement of the fringes during the squeeze
process, 50 were counted moving inwards from the annulus and it appeared
that about 25 could be seen between this annulus and the centre at any

one time.

The other experiment was slightly more sophisticated and involved

using a Vickers Microscope - the optical set-up is shown in fig. (30B).

The fringe pattern was projected on to a screen and initially, fringes

could be seen moving outwards from the centre but, as the sphere approached
the rubber, entrapment could be seen to occur (31B). In the first experi-
ment, the loading, the flexibility and the radius of curvature of the

system were all similar to the values used in the rig during the experiments.
In the second exberiment, the load was not known but was less than 5 Newtons
and the radius of curvature was only 15 mm.

Since the loads in the theoretical analyses and corresponding
experimental models were equal, it would seem that higher pressures exist
in the central region and lower pressures elsewhere in the film than are
predicted by the computed theory. Clearly a full theoretical treatment
and an experimental record of the development of the entrapment (perhaps

on cine film) is called for in systems of high flexibility.

5.6 The Blastic Permeable Layer

To test that part of the programme describing the effect of a

permeable layer on squeeze film behaviour, experiments were carried out
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with two permeable polythenes, both being 5 mm thick and manufactured
by Porvair Ltd. Specimens 150 mm square were bonded on to steel plates
to form the test pieces. Measurement of the permeabilities of these
two materials presented some diff'iculties.

Axial permeability was easily measured in both cases but the radial
permeability presented two problems, neither of which was immediately
obvious.,

Initially test pieces were prepared as shown in fig. (324) and the
values of permeability derived from these tests wers found to be very
small - about 1% of the axial permeability. Microscope examination of
the faces of the specimens (through which fluid had to flow) showed that
the heat generated in the mechanical cutting of the faces during the
preparation of the specimens had melted the surface material and virtuslly
sealed both faces.

To overcome this problem, new specimens were prepared, see fig. (32B),
in which fluid could flow through surfaces whose structure had not been
altered in any way. Due to the small flowrates expected with mineral oils,
water was used initially for the tests and gave very inconsistent results
due probably to a swelling reaction between the polythene and water.

The use of water was thus abandoned and a mineral oil HVI 55 was used
as the fluid. A pressure head of 2 m of liquid was used (instead of the
original 300 mm) and measurable flow-rates obtained. It was found that
the ratio ¢L/Zﬁ, was 2,26 for the more permeable material and 2.31 for
the less permeable one.

The void ratio of the two materials was found by weighing samples
before and after impregnation with oil.

The calculation of flexibility of the polythenes presented various
problems since deformation due to loading by the spherical surface was too
small (0.025 - 0,035 mm) to be measured accurately and was anyway subject

to some time variation. Also the final static pressures differed somewhat
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from specimen to specimen although the flexibility of all must have been
the same. (It was necessary to use one specimen for each oil since once
a lubricant had been forced into the polythene by vacuum technique, it
could not be removed.)

Fortunately, however, it was found that the pressure trace of the
actual results could be divided into two parts. The first part corresponded
to a hydrodynamic lubrication regime, the second part to elastic contact
of the two boundaries of the film. The recorded pressures during the
hydrodynamic regime were substantially lower than the elastic contact
pressures in all cases so it was decided that the highest value of
flexibility calculated from elastic contact pressures would be used in
the calculation of experimental film thicknesses and also in producing
the theoretical trajeotory. 3Since the flexibilities of the elastics weres
at least an order of magnitude lower than those of the rubbers, it was
not vital that they were known with high accuracy. The results are
N presented in figs. (33-44) and show excellent agreement with the theory
over the lubrication regime. There was of course no theory developed for
the rise in pressure after contact, neither were any experiments carried

out with enriched lubricants.
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Chapter 6

THEORETICAL PREDICTIONS OF THE MODEL

Before discussing the details of the various theoretical models
examined, some gensral comments can be made about the resulté.

In order that the large computing timetable could be completed, it
was considered necessary to ensure that "turn-round" time for each
programme submitted to the computer was less than 24 hours. This
imposed an upper limit of 10 minutes on the running time for any one
programme. The time limit produced problems only for the models in
which permeability was involved, and, in these cases, the permeability
was assumed to be zero over the initial part of the trajectory (t< &).
This assumption effectively halved the running time and brought all
models within the 10 minute time limit.,

Only for the extremely permeable models did this approximation
noticeably affect any of the trajectories. In these cases a separate
cmmmrmnwwtmpakd04€<6mswﬂwmdMWmmtma%wl
value of permeability was used. This corrected any discrepancy.

The end of all the curves was caused‘by either impact of the top
surface on the lower, completion of the calculation or lack of computing
time, This lack of time was due to a rapid rise in sensitivity of
acceleration to small changes in position when the film thickmess was
small.

To maintain the continuity of the previous chapters, the same order
of discussion of models is used, starting with the rigid impermeable

model and ending with various concepts of enrichment in the lubricant.

6.1 The Rigid Impermeable Model

This was the simplest model to solve numerically and the resulting
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variations of film thickness and pressure with time agree well with that
predicted by the simple "exponential" solution to the equation of motion
derived in Chapter 2.

This is due to the predominance of viscous forces in the models
examined and the resulting accelerations being correspondingly small,

Comparisons between the analytical and the computed solutions can
conveniently be divided into two parts; showing the effect of spatial
and temporal boundary conditions respectively. Figures (7) and (45)
show how the velocity, displacement and pressure curves develop when
the normal approach commences. The effect of the condition ;:= 0 at
% = 0 is clearly shown and seems limited to t < 3. Figures (64) and (69)
show small discrepancies between analytical and computed values over the
rest of the trajectory (f > 3). This is no doubt due to the different
radial boundary conditions in the two cases,

In the analytical solution the radial boundary condition was ;{= 0
at T zo6, in the computed model it was %ﬁ: Qat r = 17%. The value of

o~v
Sﬂﬂ;\:’- EoUF for ,% &£ Y< oo is not necessarily negligible.

6.2 The"Weeping'Lubrication Model

The only progress towards an analytical solution to the weeping
model was an approximate expression for the pressure profile with a
condition X € O, This expression has been applied to two arbitrarily
chosen instants of time in two computed solutions of the model - see
fig. (3). The agreement is excellent.

The description of the rest of the results from the programme can
be conveniently divided into two parts, pertaining respectively to models
whose flexibilities are equal to or less than 10-3 and those greater than
10-3. This division is due to the fact that the behaviour of models with

elastic thin layers can only be calculated for values of flexibility not

greater than 10_3. Thus the more flexible weeping models have no
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corresponding impermeable models with which to compare.
A =107

The initial accelerations developed in the weeping model for
3= 10-'3 can be seen to be very similar to those far the rigid model.
This also applies to the variations of central pressure, velocity and
displacement with time, see figs. (45-48).

Figures (49) and (50) show the variation of pressure and film
thickness with time and the shape of the curves, as shown, is quite
unexceptional. For 3’55 10-3, the resemblance to those of the elastic
impermeable model is quite striking. These two models are compared in
fig. (51). The effect of the "weeping" material can be seen to be quite
small and ineffective in maintaining substantially thicker films than
the impermeable model.

Thus, for A = 1072 at least, the claim of a 'weeping' model in
improving squeeze film lubrication is quite unjustifiable, especially
when it is remembered that the experimental work produced sound evidence
for entrapment, and consequent thicker films, in the impermeable model.

The 'weeping' model that was proposed in Chapter 2 can be considered
as the extreme case of an elastic porous material whose radial permeability
is very low and its axial permeability very high. Thus any deformation
of the material must be accompanied by flow of fluid out of the surface

of the layer.

In figures (52) and (53) the curves of film thickness and pressure
are shown for two such layers, also, for comparison, the 'weeping',
impermeable and two isotropic permeable models of egual A have been
included.

It can be seen that these anisotropic permeable models behave very
similarly to the weeping model. Due to numerical difficulties in the

initial stages of the squeeze film, it was necessary to make ¢L==C>
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over the period‘¥ < 6. Since the difference between the 'weeping'
; and impermeable curves at %’= 6 is small, this was not thought to affect
the resulting curves significantly.

To return to the 'weeping' material, the film thickness for t < 6
is shown in fig. (47) The shape is surprising and not at all what
would be expected. Confirmation of this behaviour with the anisotropic
model was attempted but failed.

Numerical difficulty in this was was due to the presence of the

terﬂ1¢¥!:122—- in the equation for evaluating pressures in the porous
, (T-R 1.

material (equation 25).

~ o 1073
A =10

Due to the absence of the term wp in the Reynolds Equation for this
model, the difficulties encountered in the other models with regard to
its evaluation are avoided and hence the behaviour of the 'weeping' model
can be calculated for extremely large values of KI(X = 1), typical of
human joints.

Film thickness and pressure is shown in fig. (54) for some of these
very high values.

The curves are most extraordinary and it is very debatable whether

such an increase in film thickness does occur in practice. It is diffi-

cult to explain the curves in physical terms although it must be attempted.
On initiation of the normal approach, several events occur guite

rapidly. These are: the acceleration rapidly changes from x = — & to

x = 3./30 and thence slowly falls to zero as the normal _approach

proceeds. The pressures - which must rise quickly to reduce the absolute

magnitude of the acceleration - produce large deformations due to the high

values of flexibility. Also the displacement changes only slowly since

the rapid change in acceleration produces quite small velocities and

since the diff'erence between deformation and displacement of the top
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surface is positive, the film thickness increases over the period of
initial pressure rise.

The rapid rise in pressure is not prevented by considerations of the
rate of deformation of the elastic layer since fluid always flows out of
the surface at a rate equal to the rate of deformation.

Since the material is very flexible, the displacement, X, soon
becomes negative and hence the expression for film thickness, derived
in Chapter 2.3, becomes valid. Thus the film is parallel over all but
the initial stages of the trajectory. (For A = 0.5, x < O when T > 9.)
If cartilege were found to behave in such a manner, then 'weeping'
lubrication would be a very effective mechanism in Joint performance.
Indeed one might say that the thin layer in the model is being 'wrung
out' by the application of the load. For A= C.5, the final compressive
strain in the thin layer is 0.69. It would be useful to perform some
experiments in which film thickness could be measured, or calculated,
for very flexible weeping materials in order to investigate this

phenomenon further.

6.3 The Elastic Impermeable Layer

The pressure and f£ilm thickness curves for this model are shown in
figures (56) and (55). Their shape is much as would be expected with
the more flexible systems producing thicker films and lower pressures.

Development of the pressure profile is shown in fig. (57). It can
be seen that the distribution slowly approaches that of the static
elastic-contact parabolic shape as %'-%> e

Figure (58) shows the rate of deformation of the elastic surface
and the most important feature is that nowhere could this velocity be
considered constant by any stretch of the imagination. The device of a
velocity of approach constant with respect to radius has been used by

several authors, as discussed in Chapter 2.
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More interesting features of the model are found in its behaviour
immediately after the commencement of the normal approach. For T < 6,
the system is completely dominated by the effect of wg in the Reynolds
Equation. This term prevents rapid change in pressure with respectto
time (as observed above), and the overall effect is that the model
appears to behave as if it had less "damping" than the weeping model
(in which wo is absent).

This is best seen in the curves of acceleration and central pressure
in figures (46) and (45). Both graphs show oscillations whose severity
increases as A increases. The central velocity of deformation of the
elastic layer is shown in fig. (48) along with the corresponding curve
of %. The condition W, > * (both normally negative) causes W, to
equal;; until the pressures have risen sufficiently to produce small
values of %. This occurs until & = 3 in the system?\’ = 10, Thereafter
Wo decreases in magnitude and is normally less than;;/lo for the rest of
the trajectory. Corresponding to this behaviour of wg, the film thickness
remains constant over the period ¥ < 3 and the pressure profile is flat
in the central region - this is shown in figure {(59).

Whilst neither of these last two features is intuitively obvious,
or readily acceptable, they are consistent with the treatment of the

elasticity equations in Chapter 2.

6.4 Elastic Permeable Layers

As already mentioned, the introduction of the term Wo Zs
o (T-A.PR)

into the differential equation describing flow in the porous material
produces an instability in the numerical analysis., This instability
results in longer running times on the computer and also to more frequent
programme failures.

Thus the bulk of the results presented represent models in which this

term has been ignored. To investigate this approximation three computer
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runs were attempted, at & = 1077, with this term included. They are
shown in figures (60) and (65). It is seen that the total effect is small,
it is of course zero for é£'= 0. The effect on the other curves
(A <10™7) will be less and will be zero for A = O.

Therefore the curves presented in figures (60-69) are an accurate
representation of the effect of a permeable elastic layer.

The most interesting feature is that the central pressure actually

declines before closure of the film in the more permeable cases. The

film pressure in the region ELE l < O will howsver tend to
02 | surface

increase to counteract the efflect of this decline on the force exerted
on the top surface by the fluid.

Also interesting is that the film thickness,and thus time taken for

N

the film to close, increases as A increases.

Whilst these ocurves are for values of A far smaller than those that
occur in joints, it is interesting te note that ?6 > 2x 10-7, a

joint ~

value which would produce curves indistinguishable from those ofsﬁ =0

for any of the values of A shown, if the term W2 % ___ is excluded.
B, (T- A.L)
Without this term, flow will always be from the centre of the film

into the porous layer and then radially outwards. This is because
equation (23) cannot have a maximum (or minimum) except on its boundaries.
However this is no longer true when the equation is changed to (25). Now
we can have a maximum pressure inside the material., Such a maximum could
produce "weeping" and the curves shown in figures (60) and (65) for
isotropic layers of A= 10-5 and é?= 2 x 10-7, and ¢?= 10_4 appear to be
doing just this, although only marginally.

Thus a material with A= 10'-3 and a permeability similar to that
of cartilage can act as a "weeping" layer. Since the effect will be
less marked at lower K; then presumably it will increase with increase in

K.
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Finally, one point should be noted. In the impermeable cases, it
has been assumed that the layer behaves solely as described by S, a<'fi
i.e. the constituent material can be compressed. However, in the
permeable models, the equations demand that any change in the volume of
an element be accompanied by an equal outflow of fluid from that element.
Thus if the permeability of an elastic porous layer were decreased, then
its response to loading would become slower and at zero permeability,
the material would be effectively rigid. This slight contradiction is
present throughout this work but it only affeets layers of low permeability

and low void ratio.

6.5 Enrichment in Normal Approach

The examination of enrichment was accomplished with two slightly
different models of squeeze films. The first corresponded to that
described in Chapter 2 where an additive is included in the fluid, the
molecules of which are too large to be able to flow in the porous layer.
The unenriched fiuid can of course flow through this region.

The other model was one suggested by Dowson (3) and, by its nature,
expected to be much more effective in maintaining fluid films. Hsre the
additive is considered bound in some way to the surface of the elastic

layer whose permeability is taken to be zero.

6.5.1 Enrichment with permeable elastic lavers

The relevant parameters for this model are flexibility, permeability
(the material considered to be isotropic), initial concentration of
additive in the fluid, and the ratio of the viscosity of the additive
to that of the unenriched fluid.

Since the purpose of examination of these models is to attempt to
draw some conclusions about joint behaviour, the highest flexibility for

which the programme would work (10-3) was chosen for all the calculations.
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Also, from exploratory runs of the programme, it was found that the
effect of an additive was not marked over the range of time that the
trajectory could be calculated.

Thus the highest possible value (104) that could be deduced from
published values was chosen for the ratio of viscosities (3). Also the
We e in equation (25) was ignored since its inclusion

v (T-A.P.
would not have helped increase the additive's concentration in the central

quantity

region of the film.
Of the other parameters, three values of permeability and initial

l

concentration were chosen; 2 x 10-7, 10-5, and 5 x 10" " for the permea-
bility giving a ratio of 50 between successive runs and 3.5 x 10_3,
3.5 x 10—2 and 3.5 x 10-'1 for the initial concentrations, spaced at one
order of magnitude intervals. The first values of these quantities are
those most widely quoted as typical of animal joints (9, 13).

It should be noted that no value has been published for the radial
permeability and, for the purposes of this model, the material has been

3

assumed isotropic. Also the concentration of 3.5 x 10 ° is a gravimetric
value and may not be accurate as a volumetric ratic, given the nature of
the Hyaluronic Acid molecule.

The initial viscosity used in all these computing runs and in the
non~dimensional groups was that produced by adding the initial concen-
tration of additive to the base fluid.

Of the values used in the model, only the extreme case of highest
permeability and highest concentration produced results discernibly
different from those models with no additive. The relevant curves are
shown in figure (70).

At %’ﬁ'— 60, the central region attains a concentration of unity
with a consequent rise in pressure and cessation of flow into the porous
layer. The film remains parallel and entrapment, due to high central

pressures, does not occur.
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The conclusion we can draw from this is that enrichment with
permeability and concentration corresponding to typical joint values
will only be effective at very thin films, when it will produce boundary
lubrication.

This conclusion is of course only valid for the flexibility 10_3
and a typical joint value is 0.5, which is many times greater than the

model value.

6.5.2 The concept of "Boosted Lubrication"

"Boosted Lubrication" was first proposed by Dowson (3) and in
concept is extremely simple. The system is considered impermeable and
the additive is considered to be bound in some way such that it cannot
flow sideways (i.e. radially). Thus for c¢ < | , we can say c:ag/%{, as
already given in Chapter 2.

It was originally intended to compute results for this mechanism
for elastic models. However the radial variation of viscosity produced
problems in evaluating wgp accurately and forced this approach to be
sbandoned. Various medels with zero flexibility have already been
examined by Dowson (3), but it is worth repeating the analysis in a
slightly different format,.

For the model of Chapter 2.2,

of - x /02 |
3r 67 /Av X

and

c = Cilq;//z, Cec<)
also

7 = 7o(|+ C(M,—')) (o)
whence
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7

Now l’i = P + T/2R  where ;1; is the film thickness at t = 0.
L\

Also h, = X + T4, for all t

S0

A,; == ll,. -+ (P*x)

7 = Z{H ¢ (M-1) + cb-cp-xh)’(n,-,)

=g [ 1+ & @2} s )

L(L

It can be seen that the effect of enrichment is represented by one

parameter, ke

<)

S

AN

= then & ‘S!zr S)

since O = C¢

It is interesting to note that the values guoted for joints, c¢i= 0.0035
and Mr = 10}+, give k5 = 0.974, & value very near to the upper limit of
- 1.

Integrating (1),

. | P—-3°° {H—Qj(';‘: )

(-]
where

o
’\‘

E_ =p at ¥ = oo

Two further integrations give:-

Coark 4o+ (5HaF) 6

6 T log )f; which is the same as (7). Letting
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A,
then o0 T7% . = 1.95
é’o
for X = 0.01
.
t:.q-'“ = 7.66
-éo

If we change the model to one which is perhaps more realistic in

terms of animal joints, i.e. two parallel circular rigid plates, then
we have

x3 p*
where o _ / T = % v 31' and F"—_—. PS
*=EE, =T =
FP
Two integrations give
Poo st {[30-4)+ 24] - -4 3y
G = T5 5 3(-dk)+ =& - (3-4& S
d 47
where
Yy =0 ot =1

putting k. = 0,974 and ¥= 0.1 we get:-

£

—_° %74 = 6,58
£,
for X = 0,01,
P4
_toam 65.0
£

(-]

It is seen then that the mechanism works quite well in retarding
closure of the film.
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This latter example of parallel circular flat plates has been
treated by Dowson (3) and he has calculated an improvement of 126 for
% = 0.1, compared with the value of €.58 quoted above.

The discrepancy between results is due not to the calculation of
'boosted' squeeze film times but to the model with which the 'boosted’
mechanism is compared. Equations (45) and (46) have been deduced by
considering the 'non-boosted' model to operate with a constant viscosity
.

Dowson's comparisons have been with a model of constant viscosity
70. The difference between ?‘_’ and Z’ is sufficient to account for the.

difference in squeeze-film ratios.




70

Chapter 7

DISCUSSION

This chapter can be conveniently divided into two parts, the first
relating generally to elastohydrodynamic squeeze films and the second

particularly to squeeze films in animal joints.

7.1 Sgueeze films and elastic permeable thin layers

The work described in this thesis has been a preliminary investi-
gation of normal approach and the effect on the generated squeeze films
of several types of thin layers. Inevitably the treatment of the subject
has been broad at the expense of depth. This has manifested itself in
the major approximation inherent in the work, the description of the
behaviour of thin layers under load.

The accuracy of the statement S =< P can be examined by solving the
full elasticity equations for a thin layer deforming under fluid pressure.
This has been done for a Jourmal Bearing by Hooke, Brighton and 0'Donoghue
(7). They found that the approximation was valid for a Poisson's Ratio
(P) of 0.4 or less but gave large arrors for a value of 0.495, a value
typically found in Rubbers.

Further justification can be found by examining the correlation
between experiments and theoretical predictions using this approximation.
The evidence f'rom this source confirms the findings of Hooke. Bennett (1)
found good agreement between experimental and theoretical friction values
using plastics of Poisson's Ratio of O.4. The tests described in
Chapter 5 using the porous plastics agreed well with the programme but
due to low A, hardly constituted a rigorous test of the approximation.

The tests with the "weeping" layer with V= 0.0 gave excellent

agreement, but the experiments with the solid rubber )= 0.495 gave large

discrepancies.,
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In conclusion then, the approximation S =< P is justifiable as
a first step in the investigation of squeeze films with low moduli thin
laysrs of ¥ £ 0.4. Consideration of future theoretical work in this
field would appear to face severe difficulties.

Hooke (6) has said that the full analysis is only 12 times longer
than the simplified in terms of computing time but this is an average
figure and at high eccentricities the ratio was considerably higher.

This inecrease in computing time might be acceptable in the two-dimensional
case (r, t) but is out of the question for the three dimensional (r, z, t).
Closely connected with this gquestion is the problem of evaluating
the rate of deformation of the elastic layer. In the case of high flexi-
bility, where both surf'aces will move many times their initial separation,

i.e. F\@_P., o — % , a full elasticity treatment would fail if it did not
?t

describe the rate of deformation accurately.

It would also be desirable to tackle the problem of calculating
squeeze films near the end of the approach when both surfaces have very
low (nearly equal) velocities. The programme described in Chapter 3
became slower and slower in converging at these thin films. Christensen
(3) has described similar troubles with his numerical methods.

On a more cheerful note, the neglect of the inertia of the top
surface by Herrebrugh, Christensen (2, 3) has been shown to be a
reasonable assumption in squeeze film calculations. The dominance of
viscous forces in the rigid impermeable model has been well illustrated
for the loads examined.

Comparison of the 'weeping' model described in Chapter 2 with
anisotropic porous models suggests that it gives a fairly accurate
description of the extreme case

The effect of flexibility on the squeeze film has been seen to be
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much as expected, with thicker films and lower pressures than the rigid
case. Also the presence of a porous layer has been shown in most cases
to close the films faster although with interesting pressure/time
variations. The exceptions to this are discussed in the next section.
On the experimental side, whilst the results have been generally
satisfactory with regard to agreement with theory, there are two
situations which require further exploration. Both are concerned with
film thickness measurement. The first is an optical study of normal
approach towards solid thin layers of materials with varying Poisson's
Ratio to study the ocourrence of entrapment. The second is & model with
high flexibility (K<= 0.1 - 0.5) and with the "weeping" characteristics
produced in the experimental work by punching holss in a rubber layer.
This latter model would attempt to confirm experimentally the surprising

results of the corresponding theoretical model described in Chapter 6.2.

7.2 The relevance of this work to animal joints

It remains only to discuss whether understanding of the operation
of animal joints has been increased by the work described in this thesis.

An indication of the baifling complexity of the subject is that two
authorities (2, 3) can propose diametrically opposed theories of their
operation.

Whilst the models that have been examined, both theoretically and
evperimentally hear some relationship to the structure of animal joints,
it is not the author's intention to pronounce definitely in favour of
one or the other. It is possible however to make some comments on the
concepts of 'boosted' and 'weeping' lubrication.

The most striking feature of the theoretical models examined was

found in the 'weeping' model described in Chapter 2. At high flexibilities

(0.1 - 045), dramatically thick films developed which would suggest that
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such a material would constitute an ideal layer for a low-friction
bearing. Howsver, until some experimental evidence is forthcoming that
such a material can be found and shown to operate in this manner, the
model must remain an interesting theoretical speculation.

Of more relevance are the results from the model in which additives
have enriched the film. From the curves shown and discussed in the
_ previous chapter, it is clear that such an enrichment mechanism will
only be effective with very thin films. It will form an excellent
boundary lubrication mechanism at the termination of normal approach.

The system proposed by Dowson (3) is much more powerful in retarding
closure of the film, as equations (45) and (46) show; it operates for the
apparently quite low values of concentration and viscosity of additive
found in animal joints. Turther evidence about the role of Hyaluronic
Acid in actual joints is needed, however, before one can accept the
mechanism as being an accurate representation of physical processes.

The computer runs with concentrations higher than 0.0035 are not
necessarily just of academic interest because 0,0035 is a gravimetric
concentration and the programme is designed te use a volumetric value.
The shape and activities of the Hyaluronic Acid molecule - or molecular
complex - appear to be quite complicated (9).

Another possible model for an animal joint is represented by an
elastic isotropic porous layer in which the term ONQQQ/QLCF-PKJ ) has
baen ineluded. This is probably the closest mcdel 4o the gonecpt of
"weeping lubrication" as expounded by McCutchen (4). The behaviour of
the high permeability models is unexceptional but for the lower values
(2 x 10'7, 10™%) it appears that the film thickness is marginally greater
than for the impermeable model. Thus the material is showing slight
signs of "weeping". The lower value of permeability (2 x 10-7) corres-

ponds tb a value typically quoted for cartilage.

One crucial quantity which it appears has not yet been measured is
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the permeability in a radial direction. All figures that have been
quoted refer to the axial direction - no doubt due to the difficulty

of radial measurements. A value of ¢£//aL greater than unity would
encourage "boosted" lubrication, a value lower than unity would suggest
"weeping". Clearly a theoretical analysis at high flexibility and
varying radial and axial permeabilities would help decide this conflict

of theories.

7.3 GConclusions

This investigation has shown that it is possible to examine squeeze
films and the effect on them of various types of boundary in reasonable
detail. It is to be hoped that it lays a firm foundation for future
investigations into normal approach in gensral and in particular,
investigations of the phenomena of entrapment in elastic impermeable
surfaces and of the increase in film thickness with respect to time as
found in the "weeping" models of high flexibility. Also the extension
of the computing beyond'z’= 10"3 would be a major development.

One other extension of the models considered would be to examine
the effect of large scale surface undulations on the squeeze film; Dowson
has suggested that such roughness is an important feature of joints (14).
This effect could be simulated by allowing the thin layer surface to
undulate sinusoidally with radius.

From the point of view of animal joint operation., this work can be
looked upon as a synthesis of the various features involved-in their
efficient operation. The synthesis approach was considered to be more
logical, and easier, than attempting the analysis of the complete, and

very complex, animal joint when operating under natural conditions.
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APPENDIX IT

The Computer Programme

The following listing is the computer programme that was used
for all the results quoted in this thesis. The languege is P.L:l
(Programming Language One) and was run on the Northumbrian Universities

Multiple Access Computer (NUMAC), an I.B.M. 360/67 machine.

The programme has been divided into small sections with headings
of 'comment cards' to clarify its structure. It is, however, basically
two nested 'Do-Loops', the outer one controlling the number of steps
taken to calculate the trajector&, the inner one controlling the number

of iterations on the pressure matrix for any particular model.

It should be noted that a few internal alterations must be made to

the programme to run certain models - e.g. the "Weeping" mechanism.
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APPENDIX IIT

A Finite Element Approach to Laminar Fluid Flow

by

R. Norman

SUMMARY

A finite element method for the solution of problems involving
laminar isoviscous flow between rigid boundaries is presented using
a minimization principle. Results of some simple flow situations
are calculated to illustrate convergence of the method to the exact
solution. It is shown that knowledge of the downstream boundary
condition in the case of a rigid cylinder rotating against a rigid
plate is not necessary for the calculation of its pressure distri-

bution,

INTRODUCTION

In both Structural and Fluid Mechanics, traditional methods
of solution have relied on the development of general governing
differential equations which have then to be solved, usually

numerically and often with awkward boundary conditions.

The great success of finite element methods in structural
mechanics avoiding such differential equations suggests that similar
success may be cbtainable in fluid mechanics, reference (1). This
paper describes the development of such a method and, it is hoped,

points the way to a new approach to other hydrodynamic problems.
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DEVELOPMENT OF THE METHOD

In deriving the following equations, three assumptions, all

consistent with the simple derivation of Reynolds Equation in one

dimension, are made:-

1. The flow is laminar and unidirectional,

2. The fluid is isoviscous,

3. The boundaries of the system are rigid.

An obvious choice for a finite element for thin film flow is
shown in fig. (1). The top and bottom of the element are the
boundaries of the system, the vertical sides are arbitrary bounds
and the element is of unit width (at right angles to the paper).
The two boundary velocities are considersd parallel tc each other

and the pressure constant across the thickness of the film.

5 . - - r4_,-
e / / /

E h——ﬁz PQ.

s S s ~ 7 - - L 7

—
N4

F16. (1)

The first step is to define a function, minimization of which,

over the whole system, with respect to the pressures at interelément

faces will



4 3,

yield the correct pressure distribution, i.e. one that satisfies

Reynolds Equation in one dimension.

&

3 2

Such a function is § = f [%Eﬁ '(%5) - h.(U1 + U,). (QED dx (1)
whole
system

A full justification of this function can be found in Reference (2).

This function can be approximated as:-

L 3 2
h aP dapP
v = z S (—) - h (U +U)_(—> dx (2)
over all J; 12n {dx 1 2 dx
the elements

3
Since q = > (U + ) _k . Ef we can rewrite (2) as
2 T2 \ax
Don, +u) far ap
¢ = T [ -2 % (F)- 0 (F) ] &
over all 0 2

the elements

| _ L
= = (U1 + UZ) h1.(P? - P1) + o r x -(%§>~ dx (%)
over all 2 - “o
the elements
- q(P2 - P1)
where h = h,I + ax and ¢ = h2 - h1
L

The integral in (4) can be evaluated by substituting a polynomial

in x for the pressure distribution through the element,

P = a, +ayx+ a.3x2 (5)
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Since we want to describe the element completely in terms

of P, and P, we must reduce the three unknowns in (5) to two.
This can be done by imposing a continuity condition on the
element of zero nett flow into the element,

h, R
J'o Udx = jo U dx (6)

These integrals are evaluated by using

(2 - haz) (dp> V-0

U = 21 ax h 2+ 0y
dp
and 3= = &, + 2a3x from (5)
Equation (6) gives us the relation
3 3
a, = M7 =By 3N (U + U, - hy)
3 _3—'2 *3; =a2F+G say
2L h2 L h2
Whence
= —(U 4U)
wr 2; - ) ° (h.P h,P,) - (h h,) + a L + LEE + QEE
2t2 T Mt/ T W - 8 & 1T T TS 3
over all
the elements
-q(%-—ﬂ)}
Now since
Y T T ()
a, 1 0 P1 0
3 [ = ﬁ $-+< o
=1 1 p2J
a P LG
2 L+ LaF L+ L2F 2
\ ./ u i kj \_ )
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h
and g = J 1 U dx with little error,
o

we have { explicitly as a function of the pressures at the intere-
element faces through the system. Minimization of ¢ with respect

to these pressures will yield the pressure distribution through the

system,
i.e. we say{-g-lg,L = 0 (?7)
i
i — 1 ton + 1 say for n elements in a system.
3.3
Y h,"h,7, 4. P, (U, + U2)
Now F[= 3 3 - +1, =1 + 3 . =
1 B(hi + hi + 1) ,nL.L Pi“'i' 1 6(hi + hi . 1)
B .3 3
y , h h
3 4 4 3 i=1"43
RN R R T I 62 .+ b
N i1 i i-1
B P (U, + U,)
1, 4 i-10 _ 31 2 = |5 hlB_ , by + hih- ,
i P, 6(hi _qthy )
b . 3
~n-h:.L +phl_1hi

d2|
Note: —Jal is +ve
dp

since only the (i -~ 1) th and the(i)th elements contribute terms

in P, to ¢ (see fig. 2))
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P A . P < -
(i-1)th | (Dth .
PL—I element R element Fir
~ A s s

FiG. (2)

el s

P < T £ £ L T
P R A R s 74 (ﬁnown)
7 Rl A A L e —

In a typical lubrication problem, say with 5 elements, equation (7)

takes the form

) (\
L * P »*
1
*» &® L *
Pé
& L] * P L
o%. =0 = 5
% oo 18 [+ 4
i—» 1to6 . s« s -
P
5
L ] » %
Pé J
L - A\ \.)
where * indicates a term independent of Pi (a constant). Normally
the first and last pressurces (P(1) and P(G) in equation (8)) are

known and so equation (8) would be solved from line (2) to line (5)

inclusive to yield P<2) to P(5).

Once assembled, this matrix equation is easily solved by
digital computer and, in itself, should present few computational

problems. With the narrowness of its band (note that the matrix is

(8)
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symmetric), a large number of elements can be used if desired. The
diagonal term is not dominant however and the speed of convergence
of iterative solutions to matrix equations is dependent on this

dominance.

CONVERGENCE OF THE METHOD

Three simple situations were solved by Gauss-Seidel iterative
procedures for their pressure distributions and convergence of the
method with increasing number of elements used is presented in tabular

form.

CASE 1. LAMINAR FLOW THROUGH A NOZZLE

Using Reynold's Equation in its one~dimensional form, the

pressure mid-way through the nozzle, P was found to be 1.741 units.

M
Number of Elements Used Error as % of PM - POUT

1 - 6.25

2 + 1.89

L + 0.57

8 + 0.15

Dimensions

length = 5 cus

h1 = 0.5 cms
h2 = 0.25 cms
PIn - 2 units
P

our = 1 unit
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CASE 2, A SIMPLE TILTING-PAD BEARING

Reynolds Equation gave the maximum pressure as 2.5 x 107 dynes/

cm2 at 3.33 cms from the inlet.

Number of % Error in % Error in Pos- of
Elements Used Max®l Press. Max® Pressure
1 -33.33 -25.00
2 +10.68 - 7.05
l+ + 3.25 - 003"{'
8 + 1.08 - 0,21
32 + 0.05 - 0.01
Dimensions
length = 5 cms
h1 = 0.01 cms
h2 = 0.005 cms
viscosity = 1 poise
PIN = 0
Four = 0
velocity U1 = 500 cms/sec

U2 0
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CASE 3, A RIGID CYLINDER ROTATING AGAINST A RIGID PLANE

For this case, the element shape no longer conforms to the
bearing geometry and to compensate for this, the number of elements

used must be somewhat larger than in the previous examples.

Element lengths (as a fraction of the radius of the cylinder)

were chosen as 1/ The length of the system

2 L
1000 71000 ¢ /1000

was taken equal to the cylinder diameter.

Element Length/ % Error in 9 Variation in Flowrate
Radius Max™ Pressure From X = =0.05 to 0.0
4/ 1.03 5.69
1000 *
2/ 0.32 1.39
1000 *
1 0.13 0.3
/1000 i .
Note: Error is +ve if & is +ve, =-ve if & is ~ve
—_— dx dx
Dimensions
Radius = 5.71 cms

5.71 x 10-4 cms

Clearance h°

viscosity 1.11 poise
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W = 300 r.p.m,
. Pressure = 0 at x = Y
and Pressure 7& 0

Fic. (5)  CASE 3
The physical condition that the fluid cannot sustain a negative
pressure was included in the computer programme by equating to zero,
any pressures that were calculated as negative in the Gauss-Seidel
procedure. This was done immediately after the calculations on each
line in the matrix had been performed, not at the end of a complete
iteration. The resulting pressure distribution was found to terminate

at the same exit point as used for the computation of the exact curve

from Reynolds Equation (in which the exit point satisfied the condition

- dP/

P dx

= 0).

This is a most useful feature of this method since it removes
the need for knowledge of the position of this exit point prior to
calculation of the pressure distribution. Christopherson has shown
theoretically the dependence of the position of the exit point on the
Principle of Minimum Energy Dissipation (3). (A physical description

of § in terms of energy dissipation and work done on the system can
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be made if so desired, reference (4)).

Failure tolimpose this condition on the fluid results in the
Full-Sommerfeld Solution to the problem. Although interelement
continuity is not enforced_over the system, no solution of the pressure
curve can be correct unless it satisfies the continuity condition to
a high degree of accuracy. We can see that this is so in the above

table.

It should be pointed out that in this method, flowrate is
calculated from the pressure gradient at entry to an element and this
gradient can be somewhat in error without affecting nearby pressures

(compare % flowrate variation with % pressure error in the above table).

CONCLUDING REMARKS

The three worked examples above show that the element developed
is quite powerful in that halving element length reduces errors by a
factor of about three. Whilst not as powerful as some structural
finite elements that have been devised, this is more than compensated
for in its simplicity, its almost total lack of matrix algebra
involved.in computation of results and in its very low storage require-
ménts. Once assembled, the matrix needs only three quantities for

each of its rows. This allows the use of a large number of elements,
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NOMENCLATURE

a,, disposable constants used for the description of the
1" 2, 3 . . .
pressure distribution.

F, G, constants involving geometry, viscosity and bearing speeds.
h film thickness.

i subscript for a typical element.

n number of elements used in a system.

L element length

P pressure at some point

1, 2 subscripts referring to inlet and outlet of element when

applied to P and h.

q flowrate through a cross section of an element.
U velocity of fluid at any point
U1, P velocity of lower and upper hearing surfaces.
o an
dx
n viscosity of the fluid.
] A function whose minimum value yields the pressure
distribution.
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DIAGRAM 71

EXPERIMENTAL DATA

RADIUS OF SPHERICAL SURFACE (R) = 300 mm
INITIAL SEPARATION OF CENTRES OF SURFACES (D) NOMINALLY 0.25 mm

At 25°C, VISCOSITIES OF HVI 160, HVI 650, LVI 1100 were 0.21, 1.28, 6.3 Ns/m°

respectively.

TMPERMEABLE RUBBER LAYER '"WEEPING" RUBBER LAYER
THICKNESS, T = 5.34 mm THICKNESS, T = 5.34|mn
MASS OF TOP MASS OF TOP
SURFACE, M (kg) be33 6.15 7.96 SURFACE, M (kg) e 33 6.15 7.96
EXPERTMENTAL EXPERTMENTAL
s (m/N) 0.42 0.38 0.38 A (am/N) 0.53 0.51 0.50
THEORETICAL THEORETICAL
A (mz’/N) 0.3, | 0.32 | o0.3: A (m’/N) 0.5 || 0wk | 0.2
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DIAGRAM 71 (CONTINUED)

THE “"HIGH PERMEABILITY" MATERIAL

VOID RATIO, V = 0.29

THICKNESS, T 5.11 mm

A (EXPERIMENTAL AND
THEORETICAL)

1.53 x 10”2 mm’/N

1.28 % HOlm EBN

2

AXIAL PERMEABILITY, & 2.9 x 10™2 mm

Z

N.Nm

THE "LOW PERMEABILITY" MATERTAL

VOID RATIO, V =

THICKNESS, T =

A (EXPERIMENTAL AND
THEORETICAL) =

RADIAL PERMEABILITY, ﬁ. =

AXIAL PERMEABILITY, & -
).

Bh) -

0.12
L4fb mm

1.46 x 102 mmo/N

9 x 1077 BEm

2.08 x HOIm EEN

2,31
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