Studies of some organonitrogen derivatives of chromium and iron

Eales, Richard James

How to cite:
Eales, Richard James (1977) Studies of some organonitrogen derivatives of chromium and iron, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/9065/

Use policy
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:
• a full bibliographic reference is made to the original source
• a link is made to the metadata record in Durham E-Theses
• the full-text is not changed in any way
The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
Please consult the full Durham E-Theses policy for further details.
STUDIES OF SOME ORGANONITROGEN

DERIVATIVES OF CHROMIUM AND IRON

by

Richard James Eales, B.Sc.

A thesis submitted to the University of Durham for the degree of Master of Science

April 1977
MEMORANDUM

The work described in this thesis was carried out in the University of Durham between October 1974 and September 1975. It has not been submitted for any other degree and is the original work of the author except where acknowledged by reference.
ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to Dr. M. Kilner, under whose supervision this research was carried out, for his continual advice and encouragement.

I am indebted to the Science Research Council for a maintenance grant.

R. J. Eales
1977
The thesis describes synthetic and structural studies of ketimino- and amidino- complexes of chromium, and comparisons of their properties with the analogous molybdenum and tungsten derivatives. Studies of an amidino-complex of iron are also described.

The reaction of h^5-$C_5H_5Cr(CO)_3Br$ with R_2CNLi ($R = \text{Ph, p-tolyl, t-butyl}$) produced green complexes h^5-$C_5H_5Cr(CO)_2(N:CR_2)$. Substitution of carbonyl groups in the latter could not be achieved with triphenylphosphine under a variety of conditions. The spectral properties of the complexes are discussed and compared with the corresponding molybdenum and tungsten systems.

Reaction of Fe(CO)$_4$I$_2$ with (p-tolyl)NLi.CMe:N(p-tolyl) produced an unidentified yellow powder. Subsequent reaction of this powder with alumina produced the orange air-sensitive complex Fe(CO)$_4${(p-tolyl)NH.CMe:N(p-tolyl)}. This complex gave no reaction with N-bromosuccinimide. Spectral data for the complex is given and discussed.

Exploratory investigations of the reaction between h^5-$C_5H_5Cr(CO)_3Br$ and RNLi.CR':NR ($R = \text{p-tolyl, R}' = \text{Me}; \ R = \text{Me, R}' = \text{Ph}$) gave evidence for the formation of a cyclopentadienyl chromium dicarbonyl amidino complex but its instability prevented its isolation. An investigation of the reaction between Ph$_2$CNLi and h^5-$C_5H_5Cr(CO)_3HgBr$ is also described. A small quantity of h^5-$C_5H_5Cr(CO)_2(N:CPh_2)$ was detected.
The Chemical Society have requested the name 'methyleneamine' be used for the (unknown) compound CH_2NH and that derivatives be named accordingly. Hence compounds containing the units $\text{R}_2\text{C}:\text{N}$ are known as di-alkyl or di-aryl methyleneamino derivatives depending on the nature of the group R.

In this thesis, however, the older, but rather clearer term, 'ketimino' will also be used for this group, partly for the sake of brevity and partly because such terminology clearly distinguishes 'imino' from 'amino' derivatives.
CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER 1</th>
<th>Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>General considerations</td>
</tr>
<tr>
<td>2.</td>
<td>Organonitrogen derivatives</td>
</tr>
<tr>
<td>3.</td>
<td>The methyleneamino - group as a ligand in metal carbonyl systems</td>
</tr>
<tr>
<td>4.</td>
<td>The amidino group as a ligand in transition metal systems</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 2</th>
<th>A survey of cyclopentadienyl chromium carbonyl complexes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>Introduction</td>
</tr>
<tr>
<td>B.</td>
<td>Syntheses and reactions</td>
</tr>
<tr>
<td>C.</td>
<td>Metal - ligand bonding</td>
</tr>
<tr>
<td>D.</td>
<td>Structure, bonding and physical properties of some representative complexes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 3</th>
<th>The synthesis and properties of some new ketimino - derivatives of chromium</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>Experimental</td>
</tr>
<tr>
<td>B.</td>
<td>Discussion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 4</th>
<th>The synthesis and properties of a new amidino - derivative of iron</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>Experimental</td>
</tr>
<tr>
<td>B.</td>
<td>Discussion</td>
</tr>
</tbody>
</table>
APPENDIX 1 Exploratory investigations of the reaction of lithioamidines with h^5-C$_5$H$_5$Cr(CO)$_3$Br
A. Experimental 69.
B. Discussion 70.

APPENDIX 2 Exploratory investigations of the reaction between Ph$_2$CNLi and h^5-C$_5$H$_5$Cr(CO)$_3$HgBr
A. Experimental 71.
B. Discussion 72.

APPENDIX 3 Experimental details and starting materials 73.

REFERENCES 76.
CHAPTER 1

INTRODUCTION
1. General Considerations

The scope and extent of transition metal carbonyl chemistry has increased dramatically over the past decade, resulting in, amongst other things, improved industrial processes and a better understanding of some naturally occurring reactions. The stability of many organometallic complexes can be traced back to the so-called "synergic" effect, operative in the bonding of metals with carbonyl and \(\pi \)-bonded organo - groups, and which refers to the simultaneous \(\sigma \)-donation of the lone pair, or \(\pi \)-electrons, from, for example, the carbon of a carbonyl group or \(\pi \)-bond of the ethylene molecule respectively, together with back donation from non-bonding \(d \)-orbitals to antibonding \(\pi \)-orbitals of the ligand. Each process has the effect of mutually increasing the other and for carbonyls results in a metal-carbon bond order of greater than one and also a stronger bond than would be possible by combining the separate effects of \(\sigma \)-and \(\pi \)-bonding. Such a synergic effect prevents excessive charge build-up on the metal and thus allows the carbonyl group to stabilise the metal in low oxidation states. Replacement of a carbonyl group by another ligand will result in competition for metal electron density between the new and remaining ligands and the outcome will depend upon the relative \(\sigma \)-and \(\pi \)-bonding capabilities of the ligands concerned.

Replacement of carbon monoxide from a binary metal carbonyl by a stronger Lewis base with a lower \(\pi \)-bonding capacity has the effect of increasing the electronic charge build-up on the metal and reducing the competition to dissipate the charge. Consequently the metal-carbon bonds are strengthened. Organic amines and ammonia are strong Lewis bases having no \(\pi \)-bonding capacity, and consequently their introduction into a carbonyl complex strengthens
the metal-carbon bonding to the remaining carbonyl groups via increased $d_{π} → π^{*}$ bonding. Successive replacement of carbonyl groups by R_3N groups becomes increasingly difficult, and a stage is reached when the remaining groups are unable to dissipate further charge build-up e.g.¹

$$\text{Cr(CO)}_6 + \text{liq.} \text{NH}_3 \xrightarrow{120^0} \text{Cr(CO)}_3(\text{NH}_3)_3 + 3\text{CO}$$

Thus further substitution past the $M(\text{CO})_3L_3$ stage is not possible in this case. However, if the ligand L has $π$-acceptor properties (e.g. NO, CN^-, C_2H_4), the charge build-up at the metal is somewhat reduced. Consequently it may be possible to effect further replacement of CO from the $M(\text{CO})_3L_3$ complex.

2. **Organonitrogen derivatives**

The importance of organonitrogen groups in transition metal chemistry, particularly in the field of homogeneous catalysis where organonitrogen-metal intermediates are postulated,²⁻³ has long been recognised. More recently, interest has been focused on the versatility of the bonding in unsaturated organonitrogen groups, especially those containing carbon-nitrogen and nitrogen–nitrogen multiple bonded systems, the reactions of which, in the presence of transition metal carbonyl complexes, have recently been reviewed.²

3. **The methyleneamino-group as a ligand in metal carbonyl systems**

There are a number of ways in which the methyleneamino-group may bond to a transition metal and in this respect is is a very versatile ligand.
The neutral ligand, $R_2C\text{NH}$, as in complexes of the type, $[\text{Mn(CO)}_3(\text{Ph}_2\text{C}:\text{NH})_2\text{Br}]$, σ-bonds to the metal via the nitrogen lone-pair and thus acts as a 2-electron donor. Backbonding is also possible from filled metal d-orbitals into π^*-orbitals on the ligand. The MNC system will necessarily be bent, due to sp^2 hybridisation at nitrogen (fig. 1.1.)

As the anionic ligand, $R_2C{:N}^-$, there is the possibility of donation of 1 or 3 electrons, depending on the involvement of the nitrogen lone pair in the bonding. For maximum orbital overlap it is thought that the MNC skeleton should be linear. In this situation nitrogen would be sp hybridised and the lone pair in a pure p orbital (of the correct symmetry to overlap with metal d-orbitals); bonding would then involve electron donation via σ- and $p_n^* \rightarrow d_\pi$ bonding and back donation via $d_\pi \rightarrow p_n^*$ bonding (figs. 1.2 and 1.3).

If the MNC skeleton were bent then σ-donation and $d_\pi \rightarrow p_n^*$ back donation would still be possible, but the lone pair would now occupy an orbital which in the limit would approximate to sp^2 (fig. 1.4). Although Ebsworth has calculated overlap integrals for nitrogen bonded to silicon and concluded that substantial $p_n \rightarrow d_\pi$ bonding from a nitrogen lone pair to vacant silicon d-orbitals is possible in a non-linear system, it is not expected to be as extensive as in a linear system. There is also the increased possibility in non-linear systems that the lone pair will donate to a second metal atom forming nitrogen-bridged dinuclear species (fig. 1.5).

Finally there is the added possibility, as with all unsaturated ligands, of lateral co-ordination of the $\text{C}:\text{N}$ group to form a
Fig 1.1 $d_{\pi}-\pi^*$ bonding involving a neutral methyleneamino ligand

Fig 1.2 $p_{\pi}-d_{\pi}$ bonding involving a linear $C=N-M$ skeleton

Fig 1.3 $d_{\pi}-\pi^*$ bonding involving a linear $C=N-M$ skeleton
Fig 1.4 \(\pi \)-bonding involving a bent \(C = N - M \) skeleton

Fig 1.5 \(\pi \)-bonding involving one of the bridging \(C: N \) groups
π-complex analogous to olefin complexes.

Studies carried out so far on ketimino-derivatives of molybdenum and tungsten suggest that in mononuclear complexes the ligand assumes a near linear MNC skeleton. A crystal structure of the complex \(h^5-C_5H_5Mo(CO)NCOBu_2 \) shows a small deviation from linearity of \(8^\circ \), thought to be due to crystal packing. The short MO-N bond length of 1.87Å indicates considerable multiple bonding between the metal and nitrogen.

A number of ketimino complexes of molybdenum, tungsten and iron have been prepared and investigated. \(^6\) \(^-\)\(^1\) \(h^5C_5H_5M(CO)_2Cl \) (\(M = Mo,W \)) reacts with \(Bu^tCNLi, Bu^tCNSiMe_3, Ph_2CNSiMe_3 \) and \((p\text{-tolyl})_2CNLi \) to give the corresponding ketimine complexes \(h^5-C_5H_5M(CO)_2(N:CPh_2) \) (\(R = Bu^t, Ph, p\text{-tolyl} \)). Some dinuclear complexes containing bridging ketimino-groups have also been prepared. Examples are \([h^5-C_5H_5M(CO)(N:CPh_2)]_2 \) (\(M = Mo, W \)), \([Fe(CO)_3N:CPh_2]_2 \) and \(Fe_2(CO)_6(I)(N:CPh_2) \).

However, ketimino complexes are not the sole products obtained in reactions of \(R_2C:N^- \) systems with transition metal derivatives. With \(h^5-C_5H_5M(CO)_2Cl \) (\(M = Mo,W \)), under certain conditions, 2-aza-allyl complexes, of formula \(h^5-C_5H_5M(CO)_2(R_2CNCR_2) \) (\(M = Mo,W \)) are formed. \(^7\) \(^-\)\(^1\)\(^3\) \(^-\)\(^5\) \(^-\)\(^-\)\(^\text{15}\) \(^-\)\(^\text{17} \) The aza-allyl group acts as a 3-electron ligand and is formed by "condensation" of two \(R_2C = N^- \) units, the extra nitrogen atom appearing as cyanate ion together with the carbonyl group lost.

Chapter 3 of this thesis describes the preparation and properties of some new ketimino complexes of chromium. The work was carried out in order to extend the ketimine work previously done for molybdenum and tungsten to the corresponding
chromium system and to compare the properties and structures of any new complexes obtained. As a comparison to the h^5-$C_5H_5Cr(CO)_3Br/ R_2CNLi$ system, the reaction of h^5-$C_5H_5Cr(CO)_3HgBr$ with Ph_2CNLi was also investigated. This work is described in appendix 2.

4. The amidino group as a ligand in transition metal systems

The amidino group R^1NCRNR^1, behaves as a 3-electron-donor to a transition metal and is isoelectronic with both the allyl and the carboxylato-groups. It may fulfil its 3-electron-donor role by bonding through either (i) one nitrogen atom or (ii) more than one skeletal atom. The latter is preferred for the complexes $[h^5C_5H_5M(CO)_2(RNC(Ph)NR)]$ ($M = Mo, W; R = Ph, p-tolyl$) so far prepared for two reasons. In the first place, complexes of the type $[h^5C_5H_5M(CO)_2N^1R^1N] (M = Mo, W)$ are not known and attempts to prepare them have failed. Secondly, the amidino complexes $[h^5C_5H_5M(CO)_2(R^1NCRNR^1)]$ ($M = Mo, W$) are found to have carbonyl stretching frequencies at positions close to those found for the corresponding 2-aza-allyl complexes, $[h^5C_5H_5M(CO)_2(R_2CNCR_2)]$ ($M = Mo, W$), and at lower frequencies than those for the corresponding methylenamino complexes, $[h^5C_5H_5M(CO)_2(N:CR_2)]$ ($M = Mo, W$), indicative of the greater degree of electron donation expected from a bidentate ligand.

For the amidino group, a number of modes of bidentate attachment are feasible (fig. 1.6). Structure (A) has a completely delocalised, pseudo-π-allyl arrangement, (B) has localised σ,π-bonding in which a $M-N$ σ-bond is supported by olefinic-type bonding through the $C = N$ double bond, (C) has the chelate ring completed by lone-pair donation from the second nitrogen atom, and (D) has a σ,σ-
Fig 1.6 Possible modes of bidentate attachment of the amidino group

Fig 1.7 Equilibrium between structures of type (C)
attached delocalised group with the metal lying in the NCN plane. There is also the further possibility of a rapid equilibrium between structures of type (C) as shown in fig. 1.7. For the complexes, \([h^5C_5H_5M(CO)₂(R¹NCRNR²)](M = Mo, W)\), the choice of any specific mode is rendered difficult by the equivocal nature of the spectroscopic data. In the light of findings with other 3-atom 3-electron-donor ligands, structure (D) appears to be the most likely and makes the ligand strictly comparable with bidentate carboxylate, carbonate groups, etc.

A number of amidino derivatives of transition metals have so far been prepared.18-22 The amidino group, like the allyl and carboxylato groups, is also capable of bridging two metal atoms. Examples of complexes of this type are \([h^5C_5H_5Ni(PhNC(Ph)NPh)]_n\), \([Mo₂(PhNC(Ph)NPh)₄]21 and \([Re₂(PhNC(Ph)NPh)₂Cl₄]22\).

Chapter 4 and Appendix 1 of this thesis describe the preparation and properties and the attempted preparations of some new amidino complexes of iron and chromium. The work was carried out in order to extend the amidine work previously done for molybdenum, tungsten and manganese to chromium and iron and to compare the properties and structures of any new complexes obtained. In addition, a comparison with the corresponding chromium- and iron-ketimine systems also proved to be useful.

The synthesis and general features of the chemistry of cyclopentadienyl chromium carbonyl compounds are also relevant to this research and are reviewed in Chapter 2.
CHAPTER 2

A SURVEY OF CYCLOPENTADIENYL CHROMIUM CARBONYL COMPLEXES
In this chapter, the preparation, reactions and properties of cyclopentadienyl chromium carbonyl compounds are reviewed. The purpose of this review is to place the work done on ketimino complexes of this type, described in chapter 3, in perspective with studies made on other cyclopentadienyl chromium carbonyl compounds. Throughout this review, h^5-C$_5$H$_5$ (i.e. when the ligand is bonded to the metal via all of the ring carbons) has been abbreviated to Cp.

A. Introduction

The chemistry of transition metal carbonyls has been the subject of many thousands of research papers, most of them published during the last twenty years. The first cyclopentadienyl chromium carbonyl compounds, obtained by reacting Cp$_2$Cr with carbon monoxide under pressure, were prepared by Fischer and Hafner in 1955. The vast majority of cyclopentadienyl chromium carbonyl compounds so far prepared obey the inert gas rule and so are diamagnetic. An exception is CpCr(CO)$_3$ which has one unpaired electron and is paramagnetic. To obey the inert gas rule, a monocarbonyl species ($n = 1$ in CpCr(CO)$_n$L) would require ligand (s) L to donate 5 electrons, a dicarbonyl species ($n = 2$) would require L to donate 3 electrons and a tricarbonyl species ($n = 3$) would require L to donate 1 electron. The only known tetracarbonyl species is the cation CpCr(CO)$_4^+$.

B. Syntheses and Reactions

1. Routes into cyclopentadienyl chromium carbonyl chemistry

Cyclopentadienyl chromium carbonyl compounds are most conveniently prepared starting from either Cp$_2$Cr or Cr(CO)$_6$.
(a) **from chromocene**

Chromocene reacts with carbon monoxide under pressure at 150-170° to give bluish-green \([\text{CpCr(CO)}_3]_2\)^{25},

\[
2 \text{Cp}_2\text{Cr} + 6\text{CO} \rightarrow [\text{CpCr(CO)}_3]_2 + 2\text{C}_5\text{H}_5
\]

If hydrogen is included in the reaction mixture, yellow \(\text{CpCr(CO)}_3\text{H}\) (m.pt. 57-58°) is obtained,

\[
2 \text{Cp}_2\text{Cr} + 6\text{CO} + \text{H}_2 \rightarrow 2\text{CpCr(CO)}_3\text{H} + 2\text{C}_5\text{H}_5
\]

The dimer, \([\text{CpCr(CO)}_3]_2\) absorbs hydrogen under pressure to give \(\text{CpCr(CO)}_3\text{H}\)^{29} \([\text{CpCr(CO)}_3]_2\) can be converted to the anion, \(\text{CpCr(CO)}_3^-\), by reaction with Na/naphthalene in THF.\(^{30}\)

Sublimation of \([\text{CpCr(CO)}_3]_2\) under high vacuum at 80°K gives the yellow-green paramagnetic complex \(\text{CpCr(CO)}_3\)^{26} while refluxing in toluene results in the loss of carbon monoxide to give \([\text{CpCr(CO)}_2]_2\)^{31} \([\text{CpCr(CO)}_3]_2\) is useful as a catalyst in the selective hydrogenation of conjugated polyenes,\(^{32}\) in which \(\text{CpCr(CO)}_3\text{H}\) is an intermediate.

It reacts with \(\text{Cp}_2\text{M}\) (\(\text{M} = \text{Ti}, \text{V}, \text{Cr}, \text{Co}, \text{Ni}\)) in benzene at room temperature to give \([\text{Cp}_2\text{M}][\text{CpCr(CO)}_3]^{33}\) which also has considerable catalytic activity.

The acidic hydride, \(\text{CpCr(CO)}_3\text{H}\), reacts with aqueous alkali to yield the yellow anion \(\text{CpCr(CO)}_3^-\).\(^{25}\) It is very air-sensitive and readily converted to the dimer, \([\text{CpCr(CO)}_3]_2\), by the action of heat\(^{34}\) or air.\(^{35}\) \(\text{CpCr(CO)}_3\text{H}\) reacts with BF\(_3\).Ms\(_2\)O in benzene at 70° and under a pressure of carbon monoxide to give the yellow salt, \([\text{CpCr(CO)}_4]^+ [\text{BF}_4]^-\).\(^{27}\) The latter is insoluble in most organic solvents, and decomposes in methanol or water.
(b) from chromium hexacarbonyl

Chromium hexacarbonyl reacts with the alkali-metal cyclopentadienides, C₅H₅M (M = Li, Na, K), in DMF at 130° to give the anion, CpCr(CO)₃⁻. 34, 36, 37.

\[\text{Cr(CO)}₆ + \text{C}_5\text{H}_5^- \rightarrow \text{CpCr(CO)}₃^- + 3\text{CO} \]

CpCr(CO)₃H may be prepared from the anion by acidification with glacial acetic acid. 34 It is purified by vacuum sublimation. The dimer, [CpCr(CO)₃]₂, can be obtained by reaction with tropylium bromide, 36

\[2\text{CpCr(CO)}₃^- + 2\text{C}_7\text{H}_7\text{Br} \rightarrow [\text{CpCr(CO)}₃]₂ + \text{C}_{14}\text{H}_{14} + 2\text{Br}^- \]

The crude product is purified by precipitation with methanol/water, washing with pentane and sublimation. The deep green crystals, so obtained, are sparingly soluble in organic solvents to give yellow or green solutions, depending on the concentration. Solutions of the anion, CpCr(CO)₃⁻, may be precipitated as purple-brown [Cp₂Cq⁺ [CpCr(CO)₃]⁻, 25 green [Cr(C₆H₆)₂]⁺ [CpCr(CO)₃]⁻ or yellow [CpCr(CO)₃]₂Hg. 25, 36 [Cr(C₆H₆)₂]⁺ [CpCr(CO)₃]⁻ is paramagnetic with 1 unpaired electron. The paramagnetism is due to Cr(I) in the cation.

(c) other routes

(MeCN)₃Cr(CO)₃ reacts with Me₃MC₅H₅ (M = Ge, Sn) in refluxing THF under a carbon monoxide atmosphere to give Cp(CO)₃CrMe₃. 39, 69 If C₅H₆ is used instead of Me₃MC₅H₅, CpCr(CO)₃H is formed.

A summary of some of the more important reactions of cyclopentadienyl chromium carbonyl complexes is given in figure 2.1.

2. Complexes with chromium-carbon σ-bonds

The only known chromium complex of the general formula
Fig. 2.1 Some of the more important reactions of cyclopentadienyl chromium carbonyl complexes.
GpM\textit{(CO)}\textsubscript{3}R (R = alkyl, aryl) is GpCr\textit{(CO)}\textsubscript{3}CH\textsubscript{3} and this is thermally unstable. For M = Mo, W, however, a variety of complexes are known. The chromium complex GpCr\textit{(CO)}\textsubscript{3}Me may be prepared in low yield from GpCr\textit{(CO)}\textsubscript{3} by reaction with methyl iodide in THF40.

CpCr\textit{(CO)}\textsubscript{3}CH\textsubscript{3} reacts with a number of phosphines, L, to give acyl complexes CpCr\textit{(CO)}\textsubscript{2}LCOCH\textsubscript{3} (L = PPh\textsubscript{3}, P(p-CH\textsubscript{3}OC\textsubscript{6}H\textsubscript{4})\textsubscript{3}, PPhMe\textsubscript{2})41. This is the only well-defined example of the so-called "carbon monoxide insertion" reaction for cyclopentadienyl chromium alkyls.

3. Complexes with chromium-metal or metalloid bonds

Cyclopentadienyl chromium carbonyl complexes containing chromium-metal or metalloid bonds are too numerous to describe in detail, and so only a brief outline will be given.

(a) Zinc, cadmium and mercury

Of the complexes [CpCr\textit{(CO)}\textsubscript{3}]\textsubscript{2}M (M = Zn, Cd, Hg), the mercury derivative is the most well known and studied. It can be prepared from the anion CpCr\textit{(CO)}\textsubscript{3}- as described before or from the reaction between [CpCr\textit{(CO)}\textsubscript{3}]\textsubscript{2} and Hg or Hg\textsubscript{2}Cl\textsubscript{2} in THF31. [CpCr\textit{(CO)}\textsubscript{3}]\textsubscript{2}Zn and [CpCr\textit{(CO)}\textsubscript{3}]\textsubscript{2}Cd can be prepared from [CpCr\textit{(CO)}\textsubscript{3}]\textsubscript{2}Hg by metal exchange reactions42.

All three complexes are yellow crystalline solids. The mercury derivative, being the only air-stable one, is a very useful starting material for the preparation of a whole range of related complexes. Reaction of [CpCr\textit{(CO)}\textsubscript{3}]\textsubscript{2}Hg with X\textsubscript{2} (X = Br, I) in CH\textsubscript{2}Cl\textsubscript{2} gives purple crystalline CpCr\textit{(CO)}\textsubscript{3}X\textsubscript{43}, which is unstable, particularly in solution or in the air. With a deficiency of X\textsubscript{2}, both CpCr\textit{(CO)}\textsubscript{3}X and CpCr\textit{(CO)}\textsubscript{3}HgX are formed. The latter can also be
obtained by reaction of HgX₂ in acetone with [CpCr(CO)₃]₂Hg, or, for X = Cl only, by reaction of HgCl₂ with [CpCr(CO)₃]₂.

(b) transition metals

Some complexes containing chromium-chromium bonds have already been mentioned, notably [CpCr(CO)₃]₂. There are a series of complexes related to this dimer, in which one of the chromium atoms is replaced by a transition metal, and which contain a chromium-transition metal bond. Examples are [Cp(CO)₃CrMo(CO)₃Cp] and [Cp(CO)₃CrW(CO)₃Cp].

Apart from compounds of the above type, the number of cyclopentadienyl chromium carbonyl complexes containing chromium-transition metal bonds is very small, being mainly confined to the copper, silver and gold group. The complexes [CpCr(CO)₃]₂M⁺ (M = Cu, Ag) may be obtained from the reaction between CpCr(CO)₃ and CuCl or AgNO₃. A similar gold complex is not known although CpCr(CO)₃AuPPh₃ may be prepared from CpCr(CO)₃H and Ph₃PAuCl in THF. In this case the corresponding copper and silver derivatives are too unstable to be isolated.

(c) group III

The only compounds in this category are the two thallium complexes, CpCr(CO)₃Tl and [CpCr(CO)₃]₂Tl. They are prepared by the reaction of CpCr(CO)₃Na with either thallium (I) nitrate or thallium (III) chloride respectively. The reaction of [CpCr(CO)₃]₂ with thallium metal gives a mixture of the two complexes.

(d) group IV

The vast majority of cyclopentadienyl chromium carbonyl
complexes containing chromium-metal or metalloid bonds, which have so far been prepared, are with group IV elements. The anion, CpCr(CO)$_3^-$, is the most convenient starting material for the preparation of many of these complexes. It reacts with Ph$_3$MX (M = Ge, Sn, Pb; X = halogen) to give yellow or yellow-green CpCr(CO)$_3$MPh$_3$. Analogous methyl derivatives are also formed by the reaction of Me$_3$MBr (M = Ge, Sn) with CpCr(CO)$_3^-$.

The mixed methyl chloro complex CpCr(CO)$_3$GeMe$_2$Cl can be obtained from GeMe$_2$Cl$_2$. Photolysis gives the dimeric [CpCr(CO)$_2$GeMe$_2$]$_2$ in low yield. All these complexes are generally fairly unstable, decomposing readily in the presence of air or water.

A number of silicon derivatives may be similarly prepared from CpCr(CO)$_3^-$ e.g. CpCr(CO)$_3$SiH$_3$, CpCr(CO)$_3$SiMe$_2$H, CpCr(CO)$_3$SiMeClH and CpCr(CO)$_3$SiCl$_2$H using SiH$_3$Br, SiMe$_2$HCl, SiMeHCl$_2$ and SiHCl$_3$ respectively. The hydrogen in each of the latter three compounds may be replaced by a chlorine on treatment with carbon tetrachloride. The silicon-chromium bond in CpCr(CO)$_3$SiH$_3$ is readily cleaved by HCl at room temperature to give CpCr(CO)$_3$H and SiH$_3$Cl.

The dimer, [CpCr(CO)$_3$]$_2$, is also a useful starting material for the preparation of complexes with group IV elements. It reacts with R$_3$SnH (R = PhCH$_2$, Ph) in benzene at 80° to give CpCr(CO)$_3$SnR$_3$ and CpCr(CO)$_3$H. Reaction with SnX$_2$ (X = F, Cl, Br, I) is brought about by heating or u.v. irradiation in a suitable solvent and gives a mixture of [CpCr(CO)$_3$]$_2$SnX$_2$ and CpCr(CO)$_3$SnX$_3$. The former compound contains a Cr-Sn-Cr unit. The percentage yield of the dichromium product decreases in the series $F > Cl > Br > I$. Indeed for $X = F$, only [CpCr(CO)$_3$]$_2$SnF$_2$ is formed. There are two main...
mechanisms involved in this reaction. The "direct" route involves insertion of SnX₂ into the chromium-chromium bond of [CpCr(CO)₃]₂,

\[[\text{CpCr}(\text{CO})₃]₂ + \text{SnX₂} \rightarrow [\text{CpCr}(\text{CO})₃]₂\text{SnX₂} \]

The "indirect" route gives, firstly, a mixture of CpCr(CO)₃X and CpCr(CO)₃SnX₃. The CpCr(CO)₃X decomposes under the reaction conditions whereas the CpCr(CO)₃SnX₃ reacts further with [CpCr(CO)₃]₂ to give [CpCr(CO)₃]₂SnX₂,

\[\text{CpCr}(\text{CO})₃\text{SnX₃} + [\text{CpCr}(\text{CO})₃]₂ \rightarrow [\text{CpCr}(\text{CO})₃]₂\text{SnX₂} + \text{CpCr}(\text{CO})₃\text{X} \]

The importance of the "indirect" route increases in the series F < Cl < Br < I and is also more important for the u.v. irradiation than for the thermal reaction. Similar complexes containing three different metals may also be obtained e.g. [CpCr(CO)₃]₂ reacts with CpM(CO)₃SnX₃ (M = Mo, W; X = Cl, Br, I) to give [CpCr(CO)₃][CpM(CO)₃]SnX₂.

(e) group V

A number of cyclopentadienyl chromium carbonyl complexes containing arsenic and antimony are known. They are most conveniently prepared from the anion, CpCr(CO)₃⁻, by reaction with compounds of the type R₂MX (where R = alkyl group; M = As or Sb; X = halogen). E.g. Me₂SbBr gives CpCr(CO)₃SbMe₂.⁵⁶ Reaction of this product with W(CO)₅·THF or (norbornadiene)W(CO)₄ results in the expansion of the coordination of the antimony to give CpCr(CO)₃Me₂Sb→W(CO)₅ or [CpCr(CO)₃Me₂Sb→]₂W(CO)₄ respectively. Reaction of CpCr(CO)₃SbMe₂ with bromine in cyclohexane gives CpCr(CO)₃SbBr₂Me₂,⁵⁷

\[\text{CpCr}(\text{CO})₃\text{SbMe₂} + \text{Br}_2 \rightarrow \text{CpCr}(\text{CO})₃\text{SbBr₂Me₂} \]

This is an oxidative-addition reaction, there being no cleavage of
the element-metal or element-carbon bond as in related systems. Thermal or solvolytic decomposition of the product gives CpCr(CO)$_3$Br,

\[\text{CpCr(CO)}_3\text{Sb Br}_2 \text{Me}_2 \rightarrow \text{CpCr(CO)}_3\text{Br} + \text{Me}_2\text{Sb Br}, \]

showing that halogen-cleavage in such element-transition metal compounds must be regarded as an addition-elimination process.

Reaction of CpCr(CO)$_3^-$ with Me$_2$AsCl in a non-polar medium gives orange CpCr(CO)$_3$AsMe$_2$, which is unexpectedly stable. It may be quaternised, using methyl iodide, to form the pale yellow salt [CpCr(CO)$_3$AsMe$_3$]$^+$ I$^-$. With the dihalogen compound, MeSbBr$_2$, CpCr(CO)$_3^-$ reacts to form a complex containing a Cr-Sb-Cr bond, i.e. [CpCr(CO)$_3$]$_2$SbMe. Similarly, mixed transition metal compounds such as [CpCr(CO)$_3$][CpM(CO)$_3$]SbMe (M = Mo, W) may also be obtained.

4. **Complexes with chromium - non-metal bonds**

Examples of cyclopentadienyl chromium carbonyl complexes containing chromium bonded to most of the non-metals can be found. Some of the more interesting elements involved are phosphorus, the halogens and nitrogen. The latter, in the form of nitrosyl complexes, will be discussed in the next section.

Substitution of carbonyl groups by phosphine ligands is a very common reaction for these complexes e.g. [CpCr(CO)$_3$]$_2$ reacts with PPh$_3$ in ethanol to give [CpCr(CO)$_2$PPh$_3$]$_2$. Other phosphines give similar though less stable products. On heating in a suitable solvent, [CpCr(CO)$_3$]$_2$Hg reacts with phosphines and phosphites to give complexes of the type [CpCr(CO)$_2$L]$_2$Hg (L = P(OMe)$_3$, PPh$_3$, P(OPh)$_3$).
The halides, CpCr(CO)$_3$X (X = Br, I), prepared from [CpCr(CO)$_3$]$_2$Hg and X$_2$, are very unstable. The chloride is not known. Reaction with mercury metal, as a suspension in THF, reforms the chromium-mercury bond to give CpCr(CO)$_3$HgX.

The most well-known complex of this type containing a chromium-sulphur bond is CpCr(CO)$_2$(S$_2$CNEt$_2$). This, also, may be obtained from [CpCr(CO)$_3$]$_2$Hg, by reaction with (Et$_2$NCS)$_2$S$_2$ in benzene. [CpCr(CO)$_3$Hg(S$_2$CNEt$_2$)] is formed additionally.

5. Nitrosyl complexes

The most important cyclopentadienyl chromium mixed nitrosyl-carbonyl complex is CpCr(CO)$_2$NO. It may be prepared from [CpCr(CO)$_3$]$_2$ by reaction with NO in benzene or from CpCr(CO)$_3$ by reaction with N-methyl-N-nitroso-ptoluenesulphonamide in ether. If CpCr(CO)$_3$ is treated with NOCl in THF, a mixture of [CpCr(CO)$_3$]$_2$ and CpCr(CO)$_2$NO is formed. Excess NOCl results in the conversion of the CpCr(CO)$_2$NO to CpCr(NO)$_2$Cl.

CpCr(CO)$_2$NO reacts thermally or photochemically with PPh$_3$ to give CpCr(CO)(NO)PPh$_3$. Further substitution to CpCr(NO)(PPh$_3$)$_2$, in the presence of excess PPh$_3$, is difficult. Photolysis of CpCr(CO)$_2$NO in cyclooctene solution also results in the substitution of one carbonyl group forming CpCr(CO)(NO)(C$_8$H$_{14}$). The π-bonded cycloolefin in this compound may be replaced by various monodentate ligands, L, to give CpCr(CO)(NO)(L) (L = C$_2$H$_2$, C$_2$H$_4$, C$_2$(COOMe)$_2$, C$_{12}$H$_8$, C$_7$H$_{10}$, C$_4$H$_2$O$_3$). NaN(SiMe$_3$)$_2$ attacks one of the carbonyl groups of CpCr(CO)$_2$NO.
to give \(\text{CpCr}(\text{CO})(\text{NO})\text{CN}^-\). This can be characterised as the olive-green monohydrate \(\text{NaCpCr}(\text{CO})(\text{CN})(\text{NO}).\text{H}_2\text{O}\),\(^{70}\) in which the hydration water is bound to the nitrosyl group by hydrogen bonds. Phenyl lithium also attacks a carbonyl group of \(\text{CpCr}(\text{CO})_2\text{NO}\), forming \(\text{CpCr}(\text{CO})(\text{NO})\left[\text{C}(\text{OLi})(\text{Ph})\right]\). This in turn reacts with \([\text{Me}_3\text{O}]\text{BF}_4\) in \(\text{H}_2\text{O}\) to give \(\text{CpCr}(\text{CO})(\text{NO})\left[\text{C}(\text{OME})(\text{Ph})\right]\).\(^{71}\)

A somewhat unrelated nitrosyl complex is the cation \([\text{CpCr}(\text{NO})_2\text{CO}]^+\). It may be prepared from the reaction of a mixture of \(\text{CpCr}(\text{NO})_2\text{Cl}\) and \(\text{AlCl}_3\) (1:3) with carbon monoxide under pressure.\(^{72}\) On removal of the benzene solvent and hydrolysis with concentrated \(\text{NH}_4\text{PF}_6\) solution, \([\text{CpCr}(\text{NO})_2\text{CO}][\text{PF}_6]\) is formed,

\[
\text{CpCr}(\text{NO})_2\text{Cl} + \text{AlCl}_3 + \text{CO} \rightarrow [\text{CpCr}(\text{NO})_2\text{CO}]\left[\text{AlCl}_4\right]
\]

\[
[\text{CpCr}(\text{NO})_2\text{CO}]\left[\text{AlCl}_4\right] + \text{NH}_4\text{PF}_6 \rightarrow [\text{CpCr}(\text{NO})_2\text{CO}][\text{PF}_6] + \text{AlCl}_3 + \text{NH}_4\text{Cl}
\]

6. **Complexes with substituents on the cyclopentadienyl ring**

Cyclopentadienyl chromium carbonyl complexes in which there are substituents on the cyclopentadienyl ring are quite numerous but do not fall within the scope of this review. However, for comparative purposes, a brief outline will be given.

\(\text{AlCl}_3/\text{CH}_3\text{COCl}\) attacks the cyclopentadienyl ring of the nitrosyl complex \(\text{CpCr}(\text{CO})_2\text{NO}\) to give the red acetyl derivative \(\text{CH}_3\text{COOC}_5\text{H}_4\text{Cr}-(\text{CO})_2\text{NO}\).\(^{76}\) Reaction of \(\text{Cr}(\text{CO})_6\) or \((\text{MeCN})_3\text{Cr}(\text{CO})_3\) with \(\text{Me}_5\text{C}_5\text{COCH}_3\) (5-acetyl-1,2,3,4,5-pentamethyl-cyclopentadiene) gives the air-stable green complex \([h^5-\text{Me}_5\text{C}_5\text{Cr}(\text{CO})_2]_2\),\(^{73,74}\) which is isoelectronic with \([\text{CpCr}(\text{CO})_2]_2\). Although the pentamethyl cyclopentadienyl complex, \([h^5-\text{Me}_5\text{C}_5\text{Cr}(\text{CO})_3]_2\), analogous to \([\text{CpCr}(\text{CO})_3]_2\), is not known, a whole range of its derivatives have been prepared.\(^{75}\) Examples are \(h^5-\text{Me}_5\text{C}_5\text{Cr}(\text{CO})_3^-\), \([h^5-\text{Me}_5\text{C}_5\text{Cr}(\text{CO})_3]_2\text{Hg}\), \(h^5-\text{Me}_5\text{C}_5\text{Cr}(\text{CO})_3\text{X}\) \((\text{X} = \text{SnPh}_3, \text{HgCl}, \text{I})\) and \(h^5-\text{Me}_5\text{C}_5\text{Cr}(\text{CO})_2\text{NO}\).
C. Metal – ligand bonding

1. Cyclopentadienyl group

In the cyclopentadienyl metal complexes considered in this review, the metal is effectively equidistant from all five carbon atoms of the cyclopentadienyl ring. The bonding is most conveniently discussed in terms of the LCAO-MO approximation. Thus, assuming a regular pentagon for the cyclopentadienyl ring, the \(\pi \)-molecular orbitals which are formed from the set of \(p_n \)-orbitals of the ring may be represented as shown in figure 2.2. There are five MO's, lowest in energy being orbital (e) which is strongly bonding. In addition there are two degenerate pairs of orbitals, one pair (c,d) weakly bonding and the highest in energy (a,b) antibonding.

The bonding between ligand and metal consists of two interrelated electron donations. Electron density is transferred from the cyclopentadienyl group to the chromium via overlap of filled ring molecular orbitals on the ligand (c,d,e) with vacant orbitals of appropriate symmetry on the metal. A simultaneous feeble back donation process operates from the filled metal orbitals to empty antibonding molecular orbitals (a,b) on the cyclopentadienyl group. Undoubtedly other ligand-metal orbital interactions also play some part in the overall bonding but are less important.

2. Carbonyl group

The nature of the bonding involving the carbonyl group and transition metals has been discussed briefly in chapter 1. Bonds between transition metals and carbon monoxide and related ligands involve the overlap of a filled ligand orbital with a vacant metal orbital of appropriate symmetry and the simultaneous back donation of electron density from filled metal orbitals to empty \(\pi \)-antibonding
Atomic orbitals

Molecular orbitals

Fig. 2.2 π - molecular orbitals available for bonding between the cyclopentadienyl group and a transition metal.
orbitals of the ligand. The C=O bond is thus weakened relative to uncomplexed carbon monoxide, and this is borne out by infrared studies of a number of transition metal carbonyl complexes. A simplified diagram of this simultaneous donation and back-donation is shown in figure 2.3.

3. Nitrosyl group

Bonding of the nitrosyl group to a transition metal in the types of complexes under consideration is similar to that of the carbonyl group though slightly more complex. The nitric oxide molecule contains one more electron, located in a π- antibonding orbital, than carbon monoxide and in most cases may be formally regarded as a three-electron donor when complexed to transition metals. This three-electron donation may be thought of as the transfer of one electron to the metal, the resulting nitrosonium ion being isoelectronic with carbon monoxide and bonding similarly. In these complexes the M-N=O bond is linear. Complexes containing bent M-N=O bonds (with no carbonyl analogues) are also known. In the extreme cases, only a σ-bond is formed and then the nitrosyl group may be regarded as a one-electron donor.
Fig. 2.3. The "synergic effect" operative in bonding between carbon monoxide and a transition metal, M.
D. Structure, Bonding and physical properties of some representative complexes.

1. Simpler cyclopentadienyl chromium carbonyl complexes

(a) \([\text{CpCr(CO)}_3]^2\]

Many reactions of \([\text{CpCr(CO)}_3]^2\) imply that the Cr-Cr bond is weaker than the corresponding Mo-Mo and W-W bonds in the related complexes \([\text{CpMo(CO)}_3]^2\) and \([\text{CpW(CO)}_3]^2\). The strength of this metal-metal bond and also the bond lengths observed result from a balance of the attractive bonding forces between the metal atoms with the repulsive forces between "adjacent ligands" coordinated to the different metal atoms. The structure of \([\text{CpCr(CO)}_3]^2\) is similar to its molybdenum counterpart, \([\text{CpMo(CO)}_3]^2\), and it is unlikely that the "adjacent ligand" interactions would allow the Cr-Cr bond in \([\text{CpCr(CO)}_3]^2\) to be markedly shorter than the already long Mo-Mo bond in \([\text{CpMo(CO)}_3]^2\). Thus the constraints imposed by the structure prevent the optimum overlap of orbitals and the result is a weak Cr-Cr bond. The consequences of these "adjacent ligand" interactions may be eliminated either by cleavage of the Cr-Cr bond or by insertion of another atom (e.g. Hg) between the two \([\text{CpCr(CO)}_3]^2\) moieties. Therefore, these types of reaction take place much more readily than with \([\text{CpMo(CO)}_3]^2\). The thermal decomposition of \([\text{CpCr(CO)}_3]^2\) to \([\text{CpCr(CO)}^2]^2\) also results in the reduction of the "adjacent ligand" interactions by the loss of two carbonyl groups and the adoption of a trans structure.

Hence, as expected, the crystal structure of \([\text{CpCr(CO)}_3]^2\) reveals a long Cr-Cr bond. It is in fact 0.06 Å longer than the Mo-Mo bond in \([\text{CpMo(CO)}_3]^2\). The \([\text{CpMo(CO)}_3]^2\) molecule is exceptionally sterically crowded and interaction between the ligands is
very significant. For a given M-M distance these repulsions are more severe when M = Cr than when M = Mo because the various Cr-ligand distances are shorter than the corresponding Mo-ligand distances. This results in a longer and weaker metal-metal bond in \([\text{CpCr(CO)}_3]\)_2 than in \([\text{CpMo(CO)}_3]\)_2.

The i.r. spectrum of \([\text{CpCr(CO)}_3]\)_2 \cite{31,85} indicates a centrosymmetric trans structure in the solid state, whereas in solution this isomer is in equilibrium with a gauche species (see fig. 2.4.). In very polar solvents such as DMF or DMSO, \([\text{CpCr(CO)}_3]\)_2 ionises completely to \([\text{CpCr(CO)}_3S]^+\) and \([\text{CpCr(CO)}_3]^−\) (where S is a coordinated solvent molecule). The presence of \([\text{CpCr(CO)}_3]^−\) is confirmed by the two absorption bands at approximately 1770 and 1880 cm\(^{-1}\) (cf. \([\text{Et}_4\text{N}]\) \([\text{CpCr(CO)}_3]\) in DMSO; \(\nu_{\text{CO}} = 1768, 1878\) cm\(^{-1}\)). Neither \([\text{CpMo(CO)}_3]\)_2 nor \([\text{CpW(CO)}_3]\)_2 ionise in these solvents.

Proton n.m.r. \cite{79} shows that \([\text{CpCr(CO)}_3]\)_2 exists as a solvent- and temperature-dependent mixture of anti and gauche rotamers. In addition, the line width of the signal (in both non-polar and polar solvents) shows a reversible broadening on increasing the temperature. This is most easily explained by the presence of small concentrations of paramagnetic species in equilibrium with the normal diamagnetic isomers. These paramagnetic species may result from the dissociation of \([\text{CpCr(CO)}_3]\)_2 into stable \(\text{CpCr(CO)}_3\) radicals, i.e. a temperature-dependent equilibrium of the type,

\[
\text{CpCr(CO)}_3 \quad \longleftrightarrow \quad 2 \text{CpCr(CO)}_3,
\]

is indicated, in keeping with the extraordinary length of the Cr-Cr bond.

The mass spectrum of \([\text{CpCr(CO)}_3]\)_2 \cite{80,81} (table 2.1) exhibits no
Fig 2.4 The three staggered configurations of \([\text{CpCr(CO)}_3]_2\).
Table 2.1

Mass spectrum of $[\text{CpCr(CO)}_3]^2$

Chromium-containing ions of intensity ≥ 1

<table>
<thead>
<tr>
<th>Ion</th>
<th>Relative Intensity (based on $\text{CpCr}^+=100$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CpCr(CO)_3^+</td>
<td>10</td>
</tr>
<tr>
<td>CpCr(CO)_3^+</td>
<td>11</td>
</tr>
<tr>
<td>CpCr(CO)_2^+</td>
<td>6</td>
</tr>
<tr>
<td>CpCr(CO)_2^+</td>
<td>23</td>
</tr>
<tr>
<td>CpCr(CO)^+</td>
<td>17</td>
</tr>
<tr>
<td>CpCr^+</td>
<td>100</td>
</tr>
<tr>
<td>$\text{C}_3\text{H}_3\text{Cr}^+$</td>
<td>25</td>
</tr>
<tr>
<td>Cr(CO)^+</td>
<td>17</td>
</tr>
<tr>
<td>Cr^+</td>
<td>220</td>
</tr>
</tbody>
</table>
ions containing two chromium atoms in marked contrast to the spectrum of $[\text{CpMo(CO)}_3]^2_2$. Since ions of the type $\text{Cp}_2\text{Cr}_2(\text{CO})_n^+$ ($n = 0 \ldots 4$) observed in the spectra of $[\text{CpCr(CO)}_3]^2_2M$ ($M = \text{Zn}, \text{Cd}, \text{Hg}$)\(^{42}\) (table 2.2) seem to have considerable stability, it is likely that the weak Cr-Cr bond in $[\text{CpCr(CO)}_3]^2_2$ breaks before ionisation in the mass spectrometer. Indeed, the sublimation temperature of $[\text{CpCr(CO)}_3]^2_2$ ($\sim 100^\circ, 0.1 \text{mm.Hg}$)\(^{81}\) is much lower than that of $[\text{CpMo(CO)}_3]^2_2$ ($\sim 150^\circ, 0.1 \text{mm.Hg}$). Thus, it is very likely that the dimeric $[\text{CpCr(CO)}_3]^2_2$ dissociates to monomeric CpCr(CO)_3 during the process of vaporisation and ionisation which occur prior to observing the mass spectrum. Further evidence for this is the fact that the peak of highest m/e value in the mass spectrum of $[\text{CpCr(CO)}_3]^2_2$ corresponds to CpCr(CO)_3H^+. Formation of CpCr(CO)_3H may occur if the radicals obtained by vaporisation of $[\text{CpCr(CO)}_3]^2_2$ abstract protons from other species available in the mass spectrometer.

(b) CpCr(CO)_3H

CpCr(CO)_3H is a volatile yellow crystalline compound, very soluble in organic solvents such as benzene and ether. It is unstable even at room temperature, the chromium-hydrogen bond being readily broken e.g. by oxidation or heat to give $[\text{CpCr(CO)}_3]^2_2$ or by the effect of alkali to give CpCr(CO)_3^-. It is a powerful reducing agent and a weak acid.

The n.m.r. spectrum of CpCr(CO)_3H in C_6H_{12}\(^{82,84}\) shows two singlets at 5.22 and 15.46 γ corresponding to C_5H_5 and Cr-H respectively. Calculations by Lohr and Lipscomb\(^{83}\) have shown that 90% of the high field shift for M-H in CpM(CO)_3H ($M = \text{Cr,Mo,W}$) is due to the presence of an excess of negative charge on the hydrogen, and that the increase in $\gamma(M-H)$ with increasing atomic
weight of M is due to increasing electron density on the hydrogen.

(c) \text{CpCr(CO)}_3^-

The anion, \text{CpCr(CO)}_3^-, is a base of medium strength. It is protonated by aqueous acetic acid but not by water. For the series of anions \text{CpM(CO)}_3^- (M = Cr, Mo, W), the nucleophilicity increases on descending group VI.86-88 Thus, the second order rate constant for reaction with methyl iodide follows the order, \text{CpCr(CO)}_3^- < \text{CpMo(CO)}_3^- < \text{CpW(CO)}_3^-.88 \text{CpCr(CO)}_3^- forms a number of adducts with Lewis acids. These may be bonded directly to the chromium atom, e.g. with \(\text{H}^+\) and \(\text{CH}_3^+\), or though the oxygen atoms of one of the carbonyl groups, e.g. with \text{AlPh}_3 and \text{Al(THF)}_33+.89

2. Complexes with chromium-metal or metalloid bonds

(a) Zinc, cadmium and mercury

\([\text{CpCr(CO)}_3]\text{Hg}\) is a yellow crystalline solid which is fairly soluble in organic solvents. The chromium-mercury bond is remarkably stable, a concentration of 1\% sodium amalgam in THF at 25\(^\circ\)C being insufficient to break it. In addition, only slight decomposition occurs when \([\text{CpCr(CO)}_3]\text{Hg}\) is sublimated (130\(^\circ\), 0.1mm Hg).36

The i.r. spectrum of \([\text{CpCr(CO)}_3]\text{Hg}\)85 in the solid state is best interpreted in terms of a single isomer with a skew configuration of \text{CpCr(CO)}_3 groups about the linear Cr-Hg-Cr system. The i.r. spectra for the zinc and cadmium analogues42 indicate that they adopt a similar configuration. In DMF, however, conductivity and i.r. data shows that \([\text{CpCr(CO)}_3]\text{Zn}\) is largely dissociated.90 Thus, whereas the complex \([\text{CpCr(CO)}_3]\text{Zn}\) has a centrosymmetrical trans
structure, the conformations of its derivatives $[\text{CpCr(CO)}_3]_2X$ vary with the nature of the bridging ligand X. For the cationic complexes where $X = \text{H}$ or I, the structure is centrosymmetric, for $X = \text{Zn}$, Cd or Hg, a skew configuration with a linear $\text{Cr}-X-\text{Cr}$ arrangement is indicated; yet for $X = \text{GeR}_2$, SnR_2 or PbR_2, a bent $\text{Cr}-X-\text{Cr}$ system is observed.

The mass spectra of the complexes $[\text{CpCr(CO)}_3]_2M$ ($M = \text{Zn}$, Cd, Hg) are characterised by substantial loss of the metal, M. The spectrum of the zinc complex shows a considerably greater proportion of ions with $\text{Cr}-M$ bonds still intact, suggesting that the Zn-Cr bond in $[\text{CpCr(CO)}_3]_2\text{Zn}$ is significantly stronger than the Cd-Cr bond in $[\text{CpCr(CO)}_3]_2\text{Cd}$ or the Hg-Cr bond in $[\text{CpCr(CO)}_3]_2\text{Hg}$.

(b) Transition metals

Infrared spectral data for the complexes $[\text{Cp}_2M][\text{CpCr(CO)}_3]$ ($M = \text{Co}$, Cr, V, Ti) are shown in table 2.3. For $M = \text{Co}$ and Cr, the ν_{CO} frequencies are similar to those for the ionic compounds $\text{CpCr(CO)}_3\text{Na}^+$ and $\text{CpCr(CO)}_3\text{Et}_4\text{P}^+$ suggesting a very polar metal-chromium bond. However, there is a distinct increase in frequency of the carbonyl stretching vibration in the compounds $[\text{Cp}_2\text{V}][\text{CpCr(CO)}_3]$ and $[\text{Cp}_2\text{Ti}][\text{CpCr(CO)}_3]$, evidence for a considerably more covalent metal-chromium bond. The shift to shorter wavelengths of the carbonyl bands may be explained by the decreased negative charge of the chromium atom.

Similarities between the infrared spectra of $[\text{CpM(CO)}_3]_2\text{Ag}^-$ salts and their neutral $[\text{CpM(CO)}_3]_2\text{Hg}$ ($M = \text{Cr}$, Mo, W) analogues imply that the two series are isostructural with linear $M-\text{Ag}-M$ and $M-\text{Hg}-M$ systems. The lower ν_{CO} frequencies of the silver anions are attributed to their negative charge.
Table 2.2

Mass spectra of \([\text{CpCr(CO)3}]_2M\) (M = Zn, Cd, Hg)

Metal-containing ions of intensity > 1

<table>
<thead>
<tr>
<th>Ion</th>
<th>Relative Intensity (based on (\text{CpCr}^+ = 100))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(M = \text{Zn})</td>
</tr>
<tr>
<td>(\text{MCP}_2\text{Cr}_2(\text{CO})_6^+)</td>
<td>58</td>
</tr>
<tr>
<td>(\text{MCP} \text{Cr(CO)}_3^+)</td>
<td>5</td>
</tr>
<tr>
<td>(\text{MCP} \text{Cr(CO)}^+)</td>
<td>5</td>
</tr>
<tr>
<td>(\text{MCP} \text{Cr}^+)</td>
<td>-</td>
</tr>
<tr>
<td>(\text{M}^+)</td>
<td>7</td>
</tr>
<tr>
<td>(\text{Cp}_2\text{Cr}_2(\text{CO})_4^+)</td>
<td>1</td>
</tr>
<tr>
<td>(\text{Cp}_2\text{Cr}_2(\text{CO})_3^+)</td>
<td>48</td>
</tr>
<tr>
<td>(\text{Cp}_2\text{Cr}_2(\text{CO})_2^+)</td>
<td>12</td>
</tr>
<tr>
<td>(\text{Cp}_2\text{Cr}_2(\text{CO})^+)</td>
<td>19</td>
</tr>
<tr>
<td>(\text{Cp}_2\text{Cr}_2^+)</td>
<td>51</td>
</tr>
<tr>
<td>(\text{Cp}_2\text{Cr}^+)</td>
<td>145</td>
</tr>
<tr>
<td>(\text{CpCr(CO)}_3^+)</td>
<td>8</td>
</tr>
<tr>
<td>(\text{CpCr(CO)}_2^+)</td>
<td>33</td>
</tr>
<tr>
<td>(\text{CpCr(CO)}^+)</td>
<td>36</td>
</tr>
<tr>
<td>(\text{CpCrO}^+)</td>
<td>4</td>
</tr>
<tr>
<td>(\text{CpCr}^+)</td>
<td>100</td>
</tr>
<tr>
<td>(\text{Cr}^+)</td>
<td>93</td>
</tr>
</tbody>
</table>
Table 2.3

Infrared spectral data for some CpCr(CO)$_3$X complexes

<table>
<thead>
<tr>
<th>Complex</th>
<th>V$_{CO}$ cm$^{-1}$</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na$^+$ CpCr(CO)$_3$$^-$ (KBr)</td>
<td>1876</td>
<td>1695</td>
</tr>
<tr>
<td>Et$_4$P$^+$ CpCr(CO)$_3$$^-$ (Nujol)</td>
<td>1892</td>
<td>1765</td>
</tr>
<tr>
<td>[Cp$_2$Co][CpCr(CO)$_3$]</td>
<td>1888</td>
<td>1765</td>
</tr>
<tr>
<td>[Cp$_2$Cr][CpCr(CO)$_3$] (Nujol)</td>
<td>1890</td>
<td>1881</td>
</tr>
<tr>
<td>[Cp$_2$V][CpCr(CO)$_3$]</td>
<td>2020</td>
<td>1928</td>
</tr>
<tr>
<td>[Cp$_2$Ti][CpCr(CO)$_3$]</td>
<td>2020</td>
<td>1930</td>
</tr>
<tr>
<td>CpCr(CO)$_3$SiH$_3$ (Nujol)</td>
<td>1995</td>
<td>1943</td>
</tr>
<tr>
<td>CpCr(CO)$_3$CH$_3$ (KBr)</td>
<td>2006</td>
<td>1938sh</td>
</tr>
</tbody>
</table>
(c) **Group III**

The infrared spectrum of CpCr(CO)$_3$Tl in THF shows three strong carbonyl bands, consistent with C_3 symmetry and similar to the spectra of CpCr(CO)$_3$MR$_3$ ($M = $ Ge, Sn, Pb). The presence of a chromium-thallium bond means that all three bands are shifted to a higher frequency relative to those of CpCr(CO)$_3^-$. However, the relatively small increase in frequency compared with that observed in the tin (IV) or mercury (II) covalent derivatives indicates that the metal-metal bond is fairly polar.

(d) **Group IV**

The x-ray structure of CpCr(CO)$_3$MR$_3$ ($M = $ Sn, Pb; $R = $ Ph) shows, as expected, that the two groups CpCr(CO)$_3$ and MR$_3$ are joined only by a chromium-metal bond. The environment about the metal M is tetrahedral with the chromium atom displaying 7-coordination (assuming the occupation of three coordination bonds by the cyclopentadienyl group). The chromium-metal bond is approximately the same length as the sum of the metal radii, suggesting partial double bond character. The mass spectra of some similar complexes ($M = $ Ge, Sn; $R = $ Me) has also been studied.

The expected structure of [CpCr(CO)$_3$]$_2$SnCl$_2$ with Sn(II) chloride inserted into the chromium-chromium bond of [CpCr(CO)$_3$]$_2$ is confirmed by a recent crystal structure determination. The corresponding distances and angles in each CpCr(CO)$_3$ group are the same and show little variation from those in [CpCr(CO)$_3$]$_2$. The environment about the tin atom is distorted tetrahedral.

The i.r. and n.m.r. spectra of [CpCr(CO)$_2$GeMe$_2$]$_2$ are consistent with a trans-bridged structure (see fig. 2.5).
Fig. 2.5 Trans-bridged structure of \([\text{CpCr(CO)}_2\text{GeMe}_2]\)_2
3. **Complexes with chromium-non-metal bonds**

Derivatives of this type are very common. For example there is a whole range of phosphine complexes. Very useful information on the structure and isomerisation of such compounds may be obtained from i.r. and n.m.r. data.

An interesting series of phosphine complexes is

\[\text{CpCr(CO)}_2(L)\text{COCH}_3 \ (L = \text{PPh}_3, \ \text{P(p-CH}_3\text{OC}_6\text{H}_4)_3, \ \text{PPhMe}_2) \]

containing an acyl carbonyl group. These complexes have a distorted square pyramidal structure with the cyclopentadienyl group occupying the apical position and the terminal carbonyl groups trans to one another in the basal plane. The assignments are made on the basis of their \(^1\text{H} \) n.m.r. spectra (table 2.4). The cyclopentadienyl resonances all appear as doublets due to P-H coupling. The PPhMe\(_2\) derivative shows a doublet for the ligand methyl protons (\(\delta = 1.88 \) ppm, \(J_{\text{P-H}} = 8.5 \) Hz) indicating that the molecule possesses a plane of symmetry and therefore exists as the trans isomer in solution. These observations parallel those made for analogous molybdenum acyl complexes. The two strong terminal carbonyl stretching bands and the characteristic acetyl carbonyl stretching band at approx 1640 cm\(^{-1}\) in the i.r. spectra of these complexes (table 2.5) support their formulation as acetyl derivatives. Comparison of both the proton n.m.r. and i.r. spectra of the chromium complexes with the corresponding molybdenum acetyl derivatives suggests that there is considerably greater electron density at the metal atom in the former. In the n.m.r. spectra the \(\text{C}_5\text{H}_5 \) chemical shifts are 0.4-0.5 ppm upfield relative to the molybdenum analogues whereas in the i.r. spectra the terminal carbonyl stretching frequencies are uniformly 10-20 cm\(^{-1}\) lower for the chromium complexes.
Table 2.4

'H-NMR spectral data for CpCr(CO)$_2$(L)COCH$_3$ in acetone - d_6

<table>
<thead>
<tr>
<th>L</th>
<th>C_5H_5 group</th>
<th>$COCH_3$ group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>δ ppm</td>
<td>JPH Hz.</td>
</tr>
<tr>
<td>PPh$_3$</td>
<td>4.58 (doublet)</td>
<td>2.0</td>
</tr>
<tr>
<td>$P(p-CH_3OC_6H_4)_3$</td>
<td>4.60 (doublet)</td>
<td>2.1</td>
</tr>
<tr>
<td>PPhMe$_2$</td>
<td>4.48 (doublet)</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Table 2.5

IR spectral data for CpCr(CO)$_2$(L)COCH$_3$ in CCl$_4$

<table>
<thead>
<tr>
<th>L</th>
<th>ν_{CO} cm$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ν_{CO} cm$^{-1}$</td>
</tr>
<tr>
<td>PPh$_3$</td>
<td>1932 s</td>
</tr>
<tr>
<td></td>
<td>1856 vs</td>
</tr>
<tr>
<td></td>
<td>1644 m</td>
</tr>
<tr>
<td>$P(p-CH_3OC_6H_4)_3$</td>
<td>1929 s</td>
</tr>
<tr>
<td></td>
<td>1850 vs</td>
</tr>
<tr>
<td></td>
<td>1642 m</td>
</tr>
<tr>
<td>PPhMe$_2$</td>
<td>1924 s</td>
</tr>
<tr>
<td></td>
<td>1841 vs</td>
</tr>
<tr>
<td></td>
<td>1643 m</td>
</tr>
</tbody>
</table>
The infrared spectrum of \([\text{CpCr(CO)}_3]_{2}\text{Mn(py)}_4\) (py = pyridine)\(^9\) shows three strong absorptions in the carbonyl stretching region at 1902, 1805 and 1652 cm\(^{-1}\) (nujol mull), one conspicuously lower than the other two. The corresponding molybdenum complexes \([\text{CpMo(CO)}_3]_{2}\text{Mn(py)}_4\) and \([\text{CpMo(CO)}_3]_{2}\text{Mg(py)}_4\) show similar absorptions at 1905, 1818 and 1650 cm\(^{-1}\) and 1918, 1828 and 1667 cm\(^{-1}\) respectively. X-ray diffraction studies indicate that the magnesium atom in \([\text{CpMo(CO)}_3]_{2}\text{Mg(py)}_4\) is in an octahedral environment, coordinated by four equational pyridine ligands and two axial oxygen atoms, one from each \(\text{CpMo(CO)}_3\) group. The C-O bond in the bridging Mo-C-O-Mg group is longer than that in the terminal carbonyl groups. By analogy with the spectral assignments for the complex \([\text{CpMo(CO)}_3]_{2}\text{Mg(py)}_4\), the band at 1652 cm\(^{-1}\) in the spectrum of \([\text{CpCr(CO)}_3]_{2}\text{Mn(py)}_4\) is attributed to a C-O group bridging between chromium and manganese and coordinated to the latter via the oxygen atom. The two high frequency absorptions are associated with terminal carbonyl groups.

4. Nitrosyl complexes

\(\text{CpCr(CO)}_2\text{NO}\) is the simplest mixed carbonyl-nitrosyl of cyclopentadienyl chromium. Mass spectral evidence\(^{98}\) (table 2.6) suggests that the carbonyl groups are eliminated more easily than the nitrosyl group, and hence less strongly bound. This is also borne out by the reactions of \(\text{CpCr(CO)}_2\text{NO}\). Triphenylphosphine, for example, replaces a carbonyl group, in preference to the nitrosyl group, to give \(\text{CpCr(CO)}(\text{NO})(\text{PPh}_3)\).\(^{64,65}\) The reaction stops at the monosubstitution stage\(^{99}\) because the substitution of the strong \(\pi\) -acceptor carbonyl group by triphenylphosphine results in an increase in electron density at the chromium atom. The
Table 2.6

Primary ions in the mass spectrum of CpCr(CO)$_2$NO

<table>
<thead>
<tr>
<th>Ion</th>
<th>Relative Intensity (based on CpCr$^+$ = 100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CpCr(CO)$_2$(NO)$^+$</td>
<td>26.</td>
</tr>
<tr>
<td>CpCr(CO)(NO)$^+$</td>
<td>21</td>
</tr>
<tr>
<td>CpCr(NO)$^+$</td>
<td>13</td>
</tr>
<tr>
<td>CpCr(CO)$^+$</td>
<td>2.0</td>
</tr>
<tr>
<td>CpCr$^+$</td>
<td>100</td>
</tr>
<tr>
<td>C$_3$H$_2$Cr$^+$</td>
<td>4.5</td>
</tr>
<tr>
<td>Cr$^+$</td>
<td>80</td>
</tr>
</tbody>
</table>
carbonyl group in the monosubstitution product CpCr(CO)(NO)(PPh₃)
ists more strongly bound, due to increased M→C back-bonding,
and hence more difficult to replace, than the carbonyl groups in
CpCr(CO)₂NO.

The nucleophiles, NaN(SiMe₃)₂ and PhLi both attack a
carbonyl group of CpCr(CO)₂NO in preference to the less acidic
nitrosyl group.

A study of the changes induced in the infrared spectrum of
CH₂Cl₂ solutions of CpCr(CO)₂NO by the addition of various Lewis
acids Ln(MeC₅H₅)₃ (Ln = Sm, Ho) verifies that, in
CpCr(CO)₂NO, the nitrosyl group is a better Lewis base than the
carbonyl groups. The existence of an isonitrosyl (Cr=N-O-Ln)
linkage is confirmed by the band at 1635 cm⁻¹. The formation of
the isonitrosyl group weakens the N=O bond since the lanthanide
metal withdraws electron density from the oxygen atom. In addition
the Cr-N bond is strengthened due to increased back donation from
filled chromium orbitals into π-antibonding orbitals of the N=O
group. The two carbonyl bands in the infrared spectrum of the
adduct are shifted to high frequency relative to those in the
uncomplexed CpCr(CO)₂NO. This is due to the fact that the presence
of the stronger π-acceptor -NOLn(C₅H₅Me)₃ group in the adduct
reduces the extent of π-bonding between the chromium atom and the
terminal carbonyl groups resulting in weaker Cr-C bonds and
therefore stronger C-O bonds.

Temperature-dependent 'H n.m.r. measurements on CpCr(CO)(NO)
(CH = CH) indicate intramolecular mobility of the π-bonded C₂H₂
ligand in solution. At low temperatures, the ligand appears to
assume a favoured rotameric position, whilst above room temperature
Table 2.7

CpCr(CO)$_2$NO/Lewis Acid adducts in CH$_2$Cl$_2$ Solutions

Infrared spectra in the CO and NO stretching regions

<table>
<thead>
<tr>
<th>Lewis Acid</th>
<th>VCO cm$^{-1}$</th>
<th>VNO cm$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>2018 s</td>
<td>1945 s</td>
</tr>
<tr>
<td>Sm(MeC$_5$H$_4$)$_3$</td>
<td>2038 s</td>
<td>1973 s</td>
</tr>
<tr>
<td>Ho(MeC$_5$H$_4$)$_3$</td>
<td>2038 s</td>
<td>1973 s</td>
</tr>
<tr>
<td>> 2 Ho (MeC$_5$H$_4$)$_3$</td>
<td>2038 s</td>
<td>1973 s</td>
</tr>
</tbody>
</table>
a propeller-like rotation of the \(\text{C}_2\text{H}_2 \) group about the \(\text{Cr}-\text{C}_2\text{H}_2 \) bond axis takes place. Depending on the solvent, the free activation enthalpy, \(\Delta G^\ddagger \), of the \(\text{C}_2\text{H}_2 \) rotation varies between about 12 and 14 Kcal/mole.

Similar measurements on \(\text{CpCr(CO)(NO)(CH}_2 = \text{CH}_2) \) indicate that the ethylene ligand undergoes a hindered rotation about the \(\text{Cr}-\text{C}_2\text{H}_4 \) bond axis. In this case the activation barrier for the rotation, \(\Delta G^\ddagger \), is approximately 11-12 Kcal/mole.

5. Complexes with substituents on the cyclopentadienyl ring

Of the cyclopentadienyl chromium carbonyl complexes of this type, most work has been done on the pentamethyl derivative, \(\text{[h}^5-\text{Me}_5\text{C}_5\text{Cr(CO)}_2]_2 \). Its crystal structure\(^{100,101} \) shows that it is an unbridged binuclear \(\pi \)-complex with a short metal-metal multiple bond and four terminal carbonyl groups. The cyclopentadienyl rings are trans w.r.t. the chromium-chromium axis and staggered w.r.t. each other, the methyl groups being bent from the cyclopentadienyl plane. The carbonyl groups are staggered w.r.t. the chromium-chromium axis. \(\text{[h}^5-\text{Me}_5\text{C}_5\text{Cr(CO)}_2]_2 \) is diamagnetic implying that it contains a triple metal-metal bond if the effective atomic number rule is not to be broken. The chromium-chromium distance of 2.28 Å lies between that reported for chromium II acetate (2.36 Å)\(^{102} \) and that for \((\text{C}_3\text{H}_5)_4\text{Cr}_2 \) (1.97 Å)\(^{103} \) both of which are reputed to contain quadruple bonds, and compares with the distance of 3.28 Å for the very long chromium-chromium bond in \(\text{[CpCr(CO)}_3]_2 \)\(^{79} \).

All the reactions\(^{75} \) of \(\text{[h}^5-\text{Me}_5\text{C}_5\text{Cr(CO)}_2]_2 \) involve cleavage of the metal-metal bond. In addition, intramolecular carbon monoxide transfer is often observed. This is most probably due to the close
proximity of the carbonyl groups to the metal atom to which they are not bonded. The overall structure makes the triple bond rather inaccessible to attack by large groups, although this is not the case with small molecules such as nitric oxide. Its mass spectrum74 shows a number of bimetallic ions in contrast to that for [CpCr(CO)\textsubscript{3}]\textsubscript{2},80,81 in keeping with its greater bond order.
CHAPTER 3

THE SYNTHESIS AND PROPERTIES OF SOME
NEW KETIMINO - DERIVATIVES OF CHROMIUM
In this chapter the synthesis and properties of some new dialkyl and di-aryl ketimino complexes of chromium are described.

A. Experimental

1. Preparation of h^5-C$_5$H$_5$Cr(CO)$_3$Br

h^5-C$_5$H$_5$Cr(CO)$_3$Br was prepared from $[h^5$-C$_5$H$_5$Cr(CO)$_3$]$_2$Hg by a modification of the method of Manning and Thornhill. Thus, $[h^5$-C$_5$H$_5$Cr(CO)$_3$]$_2$Hg (3.0 g., 5 mmole) was dissolved in chloroform (50 ml.) to give a yellow solution, which was frozen in liquid nitrogen. A solution of bromine (0.27 ml., 5 mmole) in chloroform (10 ml.) was syringed onto this, and the mixture allowed to warm to 0°. The solvent was removed under vacuum (0°, 0.05 mm Hg) and the residue extracted with cold ether (70 ml., 0°). The ether extract was filtered (the sinter was kept cold by a jacket of cotton wool soaked in liquid nitrogen) to give a purple solution and a yellow solid, identified by i.r. spectroscopy as h^5-C$_5$H$_5$Cr(CO)$_3$Br and h^5-C$_5$H$_5$Cr(CO)$_3$HgBr respectively. The purple h^5-C$_5$H$_5$Cr(CO)$_3$Br solution was immediately frozen in liquid nitrogen.

A solution of the lithioketimine (5 mmole) in ether (10 ml.) was added to the ether solution of h^5-C$_5$H$_5$Cr(CO)$_3$Br (5 mmole), frozen at -196°. The mixture was allowed to warm to room temperature with stirring, and left at room temperature for 1 hour, the colour changing from purple to dark green. After filtering, the solvent was removed under vacuum (room temperature, 0.05 mm Hg). The residue was extracted with toluene and filtered to give a dark green solution and a blue precipitate, the latter showing a positive lithium flame test. The toluene was removed under vacuum (room temperature, 0.05 mm Hg).
and the residue extracted with hexane. A large amount of bluish-green material remained in the flask and would not extract with hexane. This was identified by i.r. spectroscopy as the dimer, $[h^5-C_5H_5Cr(CO)_3]_2$.85

The hexane extract was filtered and then evaporated to dryness (room temperature, 0.05 mm Hg). The product was sublimated under vacuum (0.01 mm Hg) onto a cold finger cooled by an ice-salt mixture, and identified by mass spectroscopy as $[h^5-C_5H_5Cr(CO)_2(N:CR_2)](R = \text{Ph, p-tolyl or Bu}^t)$. Under these conditions, the temperatures required for sublimation were as follows: for $R = \text{Ph}$, approx. 75°; for $R = \text{p-tolyl}$, approx. 85°; and for $R = \text{Bu}^t$, approx. 40°.

The phenyl and para-tolyl derivatives were contaminated with the corresponding ketone, i.e. benzophenone or di-p-tolyl ketone, and so were obtained as green oils. It was not possible to separate the product from the ketone by varying the temperature of sublimation. The ketones may well be thermal decomposition products of the ketimino-chromium complexes.

The t-butyl derivative was obtained as green leaf-like crystals. The only other volatile product of the reaction was the azine, $\text{Bu}_2^t\text{CNNCBu}_2^t$, (identified by mass spectroscopy), which was removed by a prior sublimation (room temperature, 0.01 mm Hg.).

Properties: All three complexes readily dissolved in most organic solvents to give green solutions which decomposed slowly, even at -25°. For this reason, it was not possible to crystallise the complexes from hexane or toluene. The green crystals of $h^5-C_5H_5Cr(CO)_2(N:C\text{Bu}_2^t)$ melted at 92-3° with decomposition. They were stable in air for short periods. The action of water on the complex $h^5-C_5H_5Cr(CO)_2(N:C\text{Ph}_2)$ caused some (but not complete)
decomposition to a non-carbonyl species.

Infrared spectra: All three complexes showed two strong sharp absorptions in the carbonyl stretching region (table 3.1). The two Vco bands observed for a solution of \(\text{h}^5-\text{C}_5\text{H}_5\text{Cr(CO)}_2(\text{N:CBu}_2^t) \) in pentane showed no splitting on cooling from room temperature to \(-100^\circ\), and no new bands were seen. An absorption at 1626 cm\(^{-1}\) for the \(\text{h}^5-\text{C}_5\text{H}_5\text{Cr(CO)}_2(\text{N:CBu}_2^t) \) complex (nujol mull) can be assigned to \(\text{V}_\text{c}=\text{N} \).

Mass Spectra: The parent ion \([\text{h}^5-\text{C}_5\text{H}_5\text{Cr(CO)}_2(\text{N:CR}_2)]^+\) was observed for all three complexes. The major chromium-containing ions are listed in table 3.2. In addition, peaks were observed for the following organic fragments:— for the complex \(\text{h}^5-\text{C}_5\text{H}_5\text{Cr(CO)}_2(\text{N:Ph}) \) at m/e 181 (Ph\(_2\)CNH\(^+\)), 180 (Ph\(_2\)CN\(^+\)), 104 (PhCNH\(^+\)), 103 (PhCN\(^+\)) 90.5 (Ph\(_2\)CNH\(^2+\)), 77(Ph\(^+\)) and 51.5 (PhCN\(^2+\)). and for the complex \(\text{h}^5-\text{C}_5\text{H}_5\text{Cr(CO)}_2(\text{N:CBu}_2^t) \) at m/e 84 (Bu\(_t\)CNH\(^+\)) and 57(Bu\(_t\)\(^+\)). The spectrum of \(\text{h}^5-\text{C}_5\text{H}_5\text{Cr(CO)}_2(\text{N:C(ptolyl)}_2) \) was not recorded below m/e 120.

\(^1\)H n.m.r. spectra: The data for \(\text{h}^5-\text{C}_5\text{H}_5\text{Cr(CO)}_2(\text{N:CBu}_2^t) \) is shown in table 3.3. Two singlets with intensity ratio 5:9, corresponding to \(\text{h}^5-\text{C}_5\text{H}_5 \) and Bu\(_t\) protons respectively, were observed in all solvents. There was no splitting of these peaks on cooling solutions in toluene from ambient to \(-26^\circ\) or on cooling solutions in CS\(_2\) from ambient to \(-60^\circ\).

Analyses for chromium:

\(\text{h}^5-\text{C}_5\text{H}_5\text{Cr(CO)}_2(\text{N:CBu}_2^t) \) Found, 16.15%; Expected, 16.59%.

None of the complexes could be crystallised from a hydrocarbon solvent. In addition the products obtained by sublimation, in particular the phenyl and para-tolyl derivatives, were contaminated and did not give satisfactory analysis figures.

3. Reaction of \(\text{h}^5-\text{C}_5\text{H}_5\text{Cr(CO)}_2(\text{N:CBu}_2^t) \) with PPh\(_3\)
A solution of h^5-C$_5$H$_5$Cr(CO)$_2$(N:CBu$_2^t$) in hexane was heated under reflux for 2 hours with a solution of triphenylphosphine in the same solvent. There was no change in the positions of the Vco absorptions in the i.r. spectrum. Similarly, there was no reaction in toluene after refluxing for 5 hours, nor in monoglyme.
Table 3.1

Infrared spectral data for $h^5-\text{C}_5\text{H}_5\text{Cr(\text{CO})}_2(\text{N:CR}_2)$ complexes: Vco bands

<table>
<thead>
<tr>
<th>R</th>
<th>Solvent</th>
<th>Vco cm$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph</td>
<td>Hexane</td>
<td>1979</td>
</tr>
<tr>
<td>P-tolyl</td>
<td>Hexane</td>
<td>1976</td>
</tr>
<tr>
<td>But</td>
<td>Hexane</td>
<td>1965</td>
</tr>
<tr>
<td>But</td>
<td>Ether</td>
<td>1960</td>
</tr>
<tr>
<td>But</td>
<td>CS$_2$</td>
<td>1956</td>
</tr>
<tr>
<td>But</td>
<td>Nujol Mull</td>
<td>1961</td>
</tr>
</tbody>
</table>
Table 3.2

Mass spectral data for \(h^5-C_5H_5Cr(\text{CO})_2(N:CR_2) \) complexes; Cr-containing ions

<table>
<thead>
<tr>
<th>Ion</th>
<th>(R = \text{Bu}^+)</th>
<th>(R = \text{Ph})</th>
<th>(R = \text{p-tolyl})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(m/e)</td>
<td>R.I.</td>
<td>(m^*)</td>
</tr>
<tr>
<td>(h^5-C_5H_5Cr(\text{CO})_2N:CR_2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(h^5-C_5H_5Cr(\text{CO})N:CR_2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(h^5-C_5H_5CrN:CR_2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(h^5-C_5H_5CrNCR +)</td>
<td>200</td>
<td>344</td>
<td></td>
</tr>
<tr>
<td>(h^5-C_5H_5CrR +)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(h^5-C_5H_5Cr(\text{CO})N:CR_2)</td>
<td>257</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>(h^5-C_5H_5Cr(\text{CO})_2)</td>
<td>135</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>(h^5-C_5H_5CrN:CR_2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(h^5-C_5H_5Cr +)</td>
<td>117</td>
<td>156</td>
<td></td>
</tr>
<tr>
<td>(Cr +)</td>
<td>52</td>
<td>44</td>
<td></td>
</tr>
</tbody>
</table>

R.I. = Relative Intensity
Table 3.3

N.M.R. data for h^5-$C_5H_5Cr(CO)_2(N:CBu^t_2)$

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Temperature</th>
<th>$\gamma(C5H5)$</th>
<th>$\gamma(Bu^t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_6D_6</td>
<td>Ambient</td>
<td>5.40</td>
<td>9.14</td>
</tr>
<tr>
<td>Toluene</td>
<td>Ambient</td>
<td>5.39</td>
<td>9.12</td>
</tr>
<tr>
<td>Toluene</td>
<td>-26°</td>
<td>5.53</td>
<td>9.22</td>
</tr>
<tr>
<td>CS$_2$</td>
<td>Ambient</td>
<td>4.39</td>
<td>8.30</td>
</tr>
<tr>
<td>CS$_2$</td>
<td>-60°</td>
<td>4.72</td>
<td>8.67</td>
</tr>
</tbody>
</table>
B. Discussion

1. The preparation of \(h^5-C_5H_5Cr(CO)_3Br \)

To achieve the best yields of \(h^5-C_5H_5Cr(CO)_3Br \), the initial addition of bromine to \([h^5-C_5H_5Cr(CO)_3]_2Hg \) was done at \(-196^\circ\). This ensured that, on warming, the reactants were fully mixed before the temperature for reaction was reached, since above this temperature even a slight local excess of bromine was sufficient to cause considerable decomposition of the product. Throughout the preparation the temperature was not allowed to go above \(0^\circ \), due to the unstable nature of solutions of \(h^5-C_5H_5Cr(CO)_3Br \).\(^{43}\)

In addition, sufficient bromine was used to cleave one of the Hg-Cr bonds in \([h^5-C_5H_5Cr(CO)_3]_2Hg \) only. \(h^5-C_5H_5Cr(CO)_3HgBr \) was thus formed as a by-product (and subsequently used in a later reaction). If enough bromine was used for the reaction,

\[
[h^5-C_5H_5Cr(CO)_3]_2Hg + Br_2 \rightarrow h^5-C_5H_5Cr(CO)_3Br + h^5-C_5H_5Cr(CO)_3HgBr
\]

\[
h^5-C_5H_5Cr(CO)_3HgBr + Br_2 \rightarrow h^5-C_5H_5Cr(CO)_3Br + HgBr_2,
\]

to go to completion, the HgBr\(_2\) formed, being soluble in ether, reacted with the lithioketimine, in the subsequent reaction, in preference to \(h^5-C_5H_5Cr(CO)_3Br \). As \(h^5-C_5H_5Cr(CO)_3HgBr \) is insoluble in ether, it could be removed from the reaction mixture by filtration, and so did not interfere.

2. The dicarbonyl complexes \(h^5-C_5H_5Cr(CO)_2 \) (N:CR\(_2\))

\(h^5-C_5H_5Cr(CO)_3Br \) reacts with lithioketimines, LiNOR\(_2\) (R = Ph, p-tolyl, Bu\(^t\)), to form the dicarbonyl products \(h^5-C_5H_5Cr(CO)_2^-(N:CR\(_2\)) \). There was no evidence for the formation of complexes
containing the 2-aza-allyl group as had been the case for the reaction of \(\text{h}^5\text{C}_5\text{H}_5\text{Mo(CO)}_3\text{Cl} \) with \(\text{Ph}_2\text{CNLi} \).\(^7,15\)

The introduction of a methyleneamino group into the \(\pi \)-cyclopentadienyl chromium complex thus results in the loss of one molecule of carbon monoxide. The methyleneamino group may act either as a three-electron donor and conserve the noble gas configuration of the metal, or as a one-electron donor in which case the noble gas configuration is broken. I.r. spectroscopy together with a comparison with the molybdenum and tungsten analogues, \([\text{h}^5\text{C}_5\text{H}_5\text{M(CO)}_2(\text{N:CR}_2)]\) (\(\text{M} = \text{Mo, W} \)), leads us to believe that the group is behaving as a 3-electron donor to a single metal.

A comparison of the infrared spectral data for the complexes, \([\text{h}^5\text{C}_5\text{H}_5\text{M(CO)}_2(\text{N:CR}_2)]\) (\(\text{M} = \text{Cr, Mo, W; R} = \text{Ph, p-tolyl, Bu}^t \)), is shown in tables 3.4 and 3.5. All complexes show two strong sharp carbonyl absorptions characteristic of a dicarbonyl species at relatively low frequencies compared with the starting materials. Loss of carbon monoxide and the consequent increase in \(\pi \)-bonding between the metal and the remaining carbonyl groups are unlikely to account alone for the significant changes in stretching frequencies observed when one anionic group is replaced by a similar bonding group. Indeed the positions of absorption are entirely consistent with the methyleneamino group acting as a three-electron donor.\(^104,105\)

For \([\text{h}^5\text{C}_5\text{H}_5\text{M(CO)}_2\text{NCR}_2]\) (\(\text{M} = \text{Cr, Mo, W} \)), the frequencies of the two carbonyl absorptions decrease in the series \(\text{Cr} > \text{Mo} > \text{W} \). This should be in keeping with the \(\text{M-C} \) bond strengths increasing in the order \(\text{Cr} < \text{Mo} < \text{W} \). This trend is generally (but not always) reflected throughout the chemistry of carbonyl complexes of metals.
Infrared spectral data for $\text{h}{5}\text{-C}_5\text{H}_5\text{M(OC)}_2(\text{N:CR}_2)$ complexes

Table 3.4.

<table>
<thead>
<tr>
<th>M</th>
<th>R</th>
<th>Solvent</th>
<th>Vco cm$^{-1}$</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr</td>
<td>Ph</td>
<td>Hexane</td>
<td>1979 1912</td>
<td>This work</td>
</tr>
<tr>
<td>Cr</td>
<td>p-tolyl</td>
<td>Hexane</td>
<td>1976 1909</td>
<td>This work</td>
</tr>
<tr>
<td>Cr</td>
<td>But</td>
<td>Hexane</td>
<td>1965 1891</td>
<td>This work</td>
</tr>
<tr>
<td>Cr</td>
<td>But</td>
<td>CS$_2$</td>
<td>1956 1878</td>
<td>This work</td>
</tr>
<tr>
<td>Mo</td>
<td>But</td>
<td>Hexane</td>
<td>1967 1883</td>
<td>8</td>
</tr>
<tr>
<td>W</td>
<td>But</td>
<td>MeC6H${11}$</td>
<td>1954 1867</td>
<td>8</td>
</tr>
<tr>
<td>Mo</td>
<td>p-tolyl</td>
<td>CS$_2$</td>
<td>1965 1883</td>
<td>11</td>
</tr>
<tr>
<td>W</td>
<td>p-tolyl</td>
<td>CS$_2$</td>
<td>1948 1866</td>
<td>11</td>
</tr>
</tbody>
</table>

Table 3.5

<table>
<thead>
<tr>
<th>M</th>
<th>R</th>
<th>Solvent</th>
<th>Vcn cm$^{-1}$</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr</td>
<td>But</td>
<td>Nujol</td>
<td>1626</td>
<td>This work</td>
</tr>
<tr>
<td>Mo</td>
<td>But</td>
<td>Nujol</td>
<td>1618</td>
<td>8</td>
</tr>
<tr>
<td>W</td>
<td>But</td>
<td>Nujol</td>
<td>1620</td>
<td>8</td>
</tr>
<tr>
<td>tBu$_2$CNH</td>
<td>Nujol</td>
<td>1610</td>
<td>108</td>
<td></td>
</tr>
</tbody>
</table>
of the chromium triad. The inertness to substitution of \(W(CO)_6 \) relative to \(Mo(CO)_6 \) and \(Cr(CO)_6 \) is well documented\(^{106}\) and has been attributed to the lanthanide contraction affording an inordinately strong W-C bond.\(^{107}\)

For \([h^5-C_5H_5Cr(CO)_2(NCB_2)] (R = Ph, p-tolyl, tBu)\), the frequencies of the two carbonyl absorptions decrease in the series Ph>p-tolyl>Bu\(^t\). The Bu\(^t\) group donates more electron density than do the p-tolyl or phenyl groups resulting in an increased M-C bond strength and a decreased C=O bond strength.

On cooling a pentane solution of \(h^5C_5H_5Cr(CO)_2(N:CBu\(^t\)) \) down from room temperature to \(-100^\circ C\), the two VCO bands observed showed no splitting and no new bands were seen. This is in contrast to the corresponding molybdenum system, \(h^5C_5H_5Mo(CO)_2(N:CBu\(^t\)) \), where reversible i.r. and \(^1H\) n.m.r. spectral changes in the temperature range \(28^\circ \) to \(-45^\circ \) were reported.\(^6\) These changes were interpreted in terms of conformational changes about the multiple metal-nitrogen bond. The structure of the molybdenum complex is shown in fig. 3.1. Steric properties of the Bu\(^t\) groups require the Mo-N-C unit to be approximately linear. The solid state and low temperature forms are thought on the basis of their i.r. data to be the same conformer, the most sterically favourable staggered form (A).

The d-orbitals involved in the \(d_\pi - p_\pi \) bonding will be of similar energies and rotation about the Mo-N bond should be a low energy process. The high temperature form may be either the staggered conformer (B) or the form with free rotation.

The tungsten system, \(h^5C_5H_5W(CO)_2(N:CBu\(^t\)) \), like the chromium system, did not show these reversible i.r. and \(^1H\) n.m.r. spectral
Fig. 3.1 Structure of $\text{h}^5-\text{O}_5\text{H}_5\text{Mo(CO)}_2(\text{N:C} \text{Bu}_2^t)$ showing two possible conformers.
changes. It is thought that, if similar conformational changes occur to those of the molybdenum complex, the rotational process may be much more rapid and may require a significantly lower energy. This may arise because of the slightly different sizes of the metals, which for tungsten will reduce the steric interactions between the t-butyl groups and the remainder of the complex, particularly the cyclopentadienyl group. Interconversion of tungsten conformers appears to be rapid at the temperatures of the measurements, and a time-averaged signal is observed.

The \(C = N \) stretching frequencies for all three complexes, \([h^5-C_5H_5M(CO)_2(N:CBu_2^t)] (M = Cr, Mo, W)\) remain little changed from that of the free methyleneamine at 1610 cm\(^{-1}\). Bonding to carbon, boron, beryllium, aluminium and silicon results in a significant increase in the corresponding frequency, and is believed to be indicative of linear skeletons in \(R_2C = N = X \) systems, where \(X = ^{+}CR_2, BR_2, BeR', Al(NCR_2)_2 \) and \(SiMe_3 \).\(^{109-111}\) As the coordinating element becomes heavier, \(\Delta v \), the difference between 'VCN' for the complex and VCN for the free methyleneamine, becomes less,\(^{109}\) and the small changes for transition-metal derivatives are in keeping with this trend. Thus the overall process of \(\sigma, \rho_\pi - d_n \), and \(d_\pi - \pi^* \) bonding leaves VCN little changed from that of the methyleneamine. The first two types of interaction produce electron donation to, and the last electron withdrawal from the metal. The process of \(\sigma \) and lone-pair donation causes VCN to move to higher energy,\(^{109}\) and since VCN for transition-metal derivatives remains little changed, \(d_\pi - \pi^* \) bonding may effectively balance the donation process.

The mass spectra of the three complexes \(h^5-C_5H_5Cr(CO)_2N:CR_2 \) (\(R = Ph, \) p-tolyl, \(Bu^t \)) all showed the presence of the parent ion and
peaks corresponding to the loss of one or both carbonyl groups from it. There was a number of differences between the spectra of the three compounds, however. The most intense peak in the spectrum of the But complex was for the ion \([C_5H_5Cr(NCuBut)] + (m/e 200). The corresponding ions were not seen for the Ph and p-tolyl complexes. For the Ph complex, the most intense peak was for \([C_5H_5CrPh]\), whereas there was no evidence for the corresponding ions in the spectra of the tBu and p-tolyl complexes. The presence of two metastable peaks at m/e 251.5 and 231.8 in the spectrum of \(h^5-C_5H_5Cr(CO)_2(NCuCBut)\) confirmed the stepwise loss of carbon monoxide from the parent ion,

\[
[h^5-C_5H_5Cr(CO)_2 (NCuCBut)]^+ m/e 313
\]

\[
\downarrow \text{m}^* 251.5
\]

\[
[h^5-C_5H_5Cr(CO) (NCuCBut)]^+ m/e 285
\]

\[
\downarrow \text{m}^* 231.8
\]

\[
[h^5-C_5H_5Cr (NCuCBut)]^+ m/e 257
\]

The 'H n.m.r. spectrum of \(h^5-C_5H_5Cr(CO)_2(NCuCBut)\) showed single signals for But and \(h^5-C_5H_5\) in positions typical of such groups. On cooling solutions in toluene to -26\textdegree and solutions in CS\textsubscript{2} to -60\textdegree, these signals moved to high field. However, there was no splitting of the peaks. The signals in CS\textsubscript{2} were considerably downfield compared to those in toluene and C\textsubscript{6}D\textsubscript{6}. There is a possibility that reaction occurred between the complex and the carbon disulphide solvent. This could not be investigated further, however, due to the highly unstable nature of solutions of the complex in this solvent.
CHAPTER 4

THE SYNTHESIS AND PROPERTIES OF A

NEW AMIDINO - DERIVATIVE OF IRON
In this chapter the synthesis and properties of a new amidino complex of iron is described. The attempted isolation and identification of the intermediate in the preparation is also described.

A. Experimental

1. Reaction of \(\text{Fe(CO)}_4\text{I}_2 \) with \((\text{ptolyl})\text{NLi}\cdot\text{CMe}_2\text{N(ptolyl)}\)

A suspension of the lithioamidine \((10 \text{ mmole})\) in ether \((20 \text{ ml.})\) was added to a solution of \(\text{Fe(CO)}_4\text{I}_2 \) \((4.22 \text{ g., } 10 \text{ mmole})\) in ether \((100 \text{ ml.})\), frozen at \(-196^\circ\). The mixture was allowed to warm to room temperature, with stirring, and left at room temperature for 1 hour, the colour changing from brown to very dark green. After filtering, the solvent was removed under vacuum \((20^\circ, 0.05 \text{ mm.Hg})\). The residue was extracted with toluene and filtered to give a very dark green solution and a little grey precipitate, the latter showing a positive lithium flame test. The product would not crystallise from toluene. Addition of hexane brought down a sludge. This was filtered off, washed with hexane and dried under vacuum \((20^\circ, 0.01 \text{ mm. Hg})\) to give a yellow powder.

Properties: The yellow powder dissolved in solvents such as ether, monoglyme, toluene and carbon tetrachloride but not in hexane or pentane to give greenish-yellow solutions which did not decompose on standing. The solid was air-stable but very hygroscopic.

Infrared spectrum: Absorptions in the carbonyl stretching region are shown in table 4.1.

Mass spectrum: The mass spectrum \((70^\circ, 12 \text{ eV})\) of the yellow powder showed a strong peak at \(m/e\ 238\) corresponding to the amidine ligand \([\text{ptolyl}]\text{NH.CMe}_2\text{N(ptolyl)}]^+\). The only iron containing fragments
observed were at m/e 56 corresponding to [Fe]$^+$ and m/e 420 corresponding to $[\text{Fe} \{(\text{ptolyl}) \mathrm{N.CMe:N (ptolyl)}\}]^+$.

2. Reaction of the yellow powder with alumina

A dark green solution of the yellow powder in toluene, prepared as above, was reacted with excess alumina. On mixing thoroughly, the colour changed from dark green to deep orange. The mixture was filtered, the toluene removed under vacuum (20°, 0.05 mm.Hg) and the residue extracted with hexane and filtered to give an orange solution. An i.r. spectrum showed the presence of a small amount of Fe(CO)$_5$ in addition to a new unknown species. The solution was reduced in volume (20°, 0.05 mm. Hg) and cooled to -25°. A mass of orange needles were obtained. These were filtered off, washed with cold hexane and dried (20°, 0.01 mm.Hg), and identified by mass spectroscopy and analyses as $\text{Fe(CO)}_4 \{(\text{ptolyl}) \mathrm{NH.CMe:N (ptolyl)}\}$.

Properties: The orange crystals were extremely air-sensitive. They dissolved in most organic solvents to give orange solutions, which decomposed on standing. Solutions in hydrocarbon solvents decomposed slowly, solutions in CS$_2$ within a day and solutions in CCl$_4$ within minutes. Non-carbonyl species were formed. Refluxing or u.v. irradiating a solution of the complex (0.02 g.) in hexane (10 ml.) resulted in its decomposition to a non-carbonyl species, with the formation of a little Fe(CO)$_5$, as indicated by i.r. spectroscopy. The orange crystals decomposed below 80° when heated in a sealed tube.

Infrared spectrum: The main absorptions in the i.r. spectrum of $\text{Fe(CO)}_4 \{(\text{ptolyl}) \mathrm{NH.CMe:N (ptolyl)}\}$ in various solvents are shown in table 4.2. The four carbonyl absorptions were all very sharp. On leaving the orange crystals in the glove box for a few days, the i.r. spectrum (nujol mull) changed slightly, the three carbonyl absorptions below 2000 cm$^{-1}$ developing shoulders on the low frequency side.
Table 4.1

Infrared spectral data for the yellow powder obtained from the reaction of Fe(CO)$_4$I$_2$ with (ptolylNLi.OMe;Nptolyl)

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Vco cm$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>KBr disc</td>
<td>1963s, 2032s, 2098s</td>
</tr>
<tr>
<td>Toluene</td>
<td>1963s, 2018m, 2038s, 2052s, 2098s</td>
</tr>
<tr>
<td>Ether</td>
<td>1967s, 2018m, 2034s, 2054s, 2098s</td>
</tr>
<tr>
<td>CCl$_4$</td>
<td>1970s, 2020s, 2042s, 2056s, 2098s</td>
</tr>
</tbody>
</table>

Table 4.2

Infrared spectral data for Fe(CO)$_4$(ptolylNH.OMe;Nptolyl)

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Vco cm$^{-1}$</th>
<th>Absorptions in the 1550-1650 cm$^{-1}$ region</th>
<th>VNH cm$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nujol mull</td>
<td>1930s, 1949s, 1967s, 2054m, 1600m, 1621m, 3246w</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexane</td>
<td>1931s, 1950s, 1968s, 2057m, 1603m, 1621m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS$_2$</td>
<td>1925s, 1943s, 1962s, 2056m</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mass Spectrum: The major ions in the mass spectrum (70°) of Fe(CO)$_4$(ptolylNH.CMe:Nptolyl) are listed in table 4.3. The parent ion, [Fe(CO)$_4$(ptolylNH.CMe:Nptolyl)]$^+$, and all four ions, [Fe(CO)$_n$(ptolylNH.CMe:Nptolyl)]$^+$ (n = 0, 1, 2, 3), corresponding to stepwise loss of CO groups, were observed.

Analyses: Found, Fe, 13.1, 14.1; C, 58.8; H, 3.0; N, 7.1

FeC$_{20}$H$_{18}$N$_2$O$_4$ requires Fe, 13.8; C, 59.1; H, 4.5; N, 6.9

1H n.m.r. spectrum: The n.m.r. spectrum of Fe(CO)$_4$(ptolylNH.CMe:Nptolyl) in deuterobenzene showed broadish peaks at 2.11T (0.6) and 3.78 and 3.86T (total 7.2) and sharp peaks at 8.55T (6.9) and 9.40T (3)

3. Reaction of Fe(CO)$_4$(ptolyl NH.CMe:Nptolyl) with N-bromo succinimide

A solution of Fe(CO)$_4$(ptolylNH.CMe: Nptolyl) (0.01 g.) in toluene (5 ml) was stirred with a solution of N-bromo succinimide (0.005 g.) in the same solvent (20 ml). No reaction was detected by i.r. spectroscopy.

4. Reaction of Fe(CO)$_4$I$_2$ with alumina

A solution of Fe(CO)$_4$I$_2$ (0.4 g., 1 mmole) in hexane (50 ml.) was stirred with excess alumina. The dark red solution became very pale yellow. I.r. spectroscopy identified the product as Fe(CO)$_5$.
Table 4.3

Mass spectral data for Fe(CO)$_4$ (ptolylNH.CMe:Nptolyl)

<table>
<thead>
<tr>
<th>Ion</th>
<th>M/e</th>
<th>R.I.</th>
<th>M*</th>
<th>Fragment Lost</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Fe(CO)$_4$(ptolylNH.CMe:Nptolyl)]$^+$</td>
<td>406</td>
<td>2.5</td>
<td>268.4</td>
<td>CO</td>
</tr>
<tr>
<td>[Fe(CO)$_3$(ptolylNH.CMe:Nptolyl)]$^+$</td>
<td>378</td>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Fe(CO)$_2$(ptolylNH.CMe:Nptolyl)]$^+$</td>
<td>350</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Fe(CO)(ptolylNH.CMe:Nptolyl)]$^+$</td>
<td>322</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Fe (ptolylNH.CMe:Nptolyl)]$^+$</td>
<td>294</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[ptolylNH.CMe:Nptolyl]$^+$</td>
<td>238</td>
<td>61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[ptolylN(CMe)]$^+$</td>
<td>132</td>
<td>71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[ptolylNH$_2$]$^+$</td>
<td>118</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[ptolylNH]$_2$]$^+$</td>
<td>107</td>
<td>6.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[ptolyl]$^+$</td>
<td>91</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Fe]$^+$</td>
<td>56</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R.I. = Relative Intensity
B. Discussion

Fe(CO)$_4$I$_2$ reacts with (ptolyl)NLi.C(CH$_3$)$_2$N(ptolyl) to give an unidentified yellow powder which reacts in turn with alumina to give Fe(CO)$_4${(ptolyl)N(H)C(CH$_3$)N(ptolyl)}. For the noble gas configuration of the metal to be conserved, the neutral amidine ligand must be regarded as a two-electron donor. There have been very few examples of metal carbonyl complexes containing a neutral amidine ligand reported. The chromium complex, Cr(CO)$_3$[PhN(H)C(Ph)NPh]21 has the amidine group acting as an arene, with a bond from one of the phenyl groups to the metal atom. In this case, the neutral amidine acts as a 6-electron donor. The complexes [(NO)$_2$M{H$_2$NC(Ph)NPh}]$^+$ (M = Fe, Co) 112 also contain a neutral amidine group. The mode of attachment is not clear however.

Some possible modes of attachment of the neutral amidine ligand, acting as a 2-electron donor to a metal, are shown in fig. 4.1. Structure (D) is ruled out for Fe(CO)$_4${(ptolyl)N(H)C(CH$_3$)N(ptolyl)} as it is not compatible with the complex showing a VNH absorption.

Fe(CO)$_4${(ptolyl)N(H)C(CH$_3$)N(ptolyl)} is an extremely air-sensitive orange crystalline solid. Its infrared spectrum showed four sharp carbonyl absorptions, the general appearance of the carbonyl-stretching region being indicative of a tetracarbonyl species. The VNH absorption occurred at 3246 cm$^{-1}$ (nujol mull). The infrared spectrum of Cr(CO)$_3${PhN(H)C(Ph)N(Ph)}21 showed a weak peak at 3405 cm$^{-1}$ (CH$_2$Cl$_2$ solution) corresponding to VNH but shifted some 100 cm$^{-1}$ to higher frequency from that in the free amidine. A nujol mull infrared spectrum of Fe(CO)$_4${(ptolyl)N(H)C(CH$_3$)N(ptolyl)} changed slightly after the crystals were left at room temperature under nitrogen for a few days, the three carbonyl absorptions below 2000 cm$^{-1}$ developing
Some possible modes of attachment of the neutral amidine ligand, $RN = C(R') - NHR$, acting as a two-electron donor to a metal (Groups R and R' are not shown).
shoulders on the low-frequency side. The new species is possibly an isomeric form of the first.

The mass spectrum of Fe(CO)$_4$ \{\(\text{ptolyl})\text{N}(\text{H})\text{C}(\text{CH}_3)\text{N}(\text{ptolyl})\}\ showed the presence of the parent ion and peaks corresponding to the loss of 1,2,3 or 4 carbonyl groups from it. The most intense peak in the spectrum was for \(\text{[Fe}((\text{ptolyl})\text{N}(\text{H})\text{C}(\text{CH}_3)\text{N}(\text{ptolyl}))\]}^+\), i.e. the parent ion less four carbonyl groups. The only observed metastable peak was for the following transition,

\[
\text{Fe(CO)}\{((\text{ptolyl})\text{N}(\text{H})\text{C}(\text{CH}_3)\text{N}(\text{ptolyl}))\}^+ \rightarrow \text{m/e 322}
\]

\[
\text{Fe}\{((\text{ptolyl})\text{N}(\text{H})\text{C}(\text{CH}_3)\text{N}(\text{ptolyl}))\}^+ \rightarrow \text{m/e 294}
\]

The 'H n.m.r. spectrum of Fe(CO)$_4$\{\(\text{ptolyl})\text{N}(\text{H})\text{C}(\text{CH}_3)\text{N}(\text{ptolyl})\}\ in C$_6$D$_6$ showed peaks at 9.40 γ (3), 8.55 γ (6.9), 3.86 and 3.78 γ (total 7.2) and 2.11 γ (0.6). A n.m.r. spectrum of the free amidine, \text{ptolyl}\text{NH}.\text{C}(\text{CH}_3):\text{N}(\text{ptolyl}), in C$_6$D$_6$ as a comparison showed peaks at 8.71 γ (3), 8.09 γ (6.1), 4.47 γ (0.6), and 3.15 and 3.09 γ (total 7.5). Tentative assignments of these peaks are given in table 4.4.

The yellow powder obtained from the reaction of Fe(CO)$_4$I$_2$ with \text{ptolyl}N\text{Li}.\text{C}(\text{CH}_3):\text{N}(\text{ptolyl}) may be an iron carbonyl iodide amidino-complex such as Fe(CO)$_4$I \{\(\text{ptolyl})\text{NC}(\text{CH}_3)\text{N}(\text{ptolyl})\}\ or Fe(CO)$_3$I - \{\(\text{ptolyl})\text{NC}(\text{CH}_3)\text{N}(\text{ptolyl})\}\. There is not a lot of evidence to support this however, although the mass spectrum did show a peak corresponding to \text{[FeI}((\text{ptolyl})\text{NC}(\text{CH}_3)\text{N}(\text{ptolyl}))\]}^+\).

The yellow powder reacts with alumina to give Fe(CO)$_4$\{(\text{ptolyl}) - \text{N}(\text{H})\text{C}(\text{CH}_3)\text{N}(\text{ptolyl})\}\. It is possible that a free radical mechanism
Table 4.4

N.M.R. data in C\(_6\)D\(_6\) for [Fe(CO)\(_4\) (ptolyl)N(H)C(CH\(_3\))N(ptolyl)]
and [(ptolyl NH.C(CH\(_3\)):N(ptolyl)] and tentative assignments

<table>
<thead>
<tr>
<th>Tentative Assignment</th>
<th>Expected Relative Intensity</th>
<th>[Fe(CO)(_4)(ptolylN(H)-C(CH(_3))N(ptolyl))] (\gamma) values and relative intensities</th>
<th>[(ptolyl)NH.C(CH(_3)):N(ptolyl)] (\gamma) values and relative intensities</th>
</tr>
</thead>
<tbody>
<tr>
<td>>NC(CH(_3))N -</td>
<td>3</td>
<td>9.40 (3)</td>
<td>8.71 (3)</td>
</tr>
<tr>
<td>p-tolyl group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>terminal CH(_3)</td>
<td>6</td>
<td>8.55 (6.9)</td>
<td>8.09 (6.1)</td>
</tr>
<tr>
<td>p-tolyl group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ring C - H</td>
<td>8</td>
<td>3.86 (7.2)</td>
<td>3.15 (7.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.78</td>
<td>3.09</td>
</tr>
<tr>
<td>N - H</td>
<td>1</td>
<td>2.11 (0.6)</td>
<td>4.47 (0.6)</td>
</tr>
</tbody>
</table>

Relative intensities are based on an intensity of 3, taken for the >NC(CH\(_3\))N - peak.
is involved, and that the alumina breaks up the yellow complex into Fe(CO)$_4$ radicals. These could then pick up free amidine molecules to give Fe(CO)$_4$\{(ptolyl)N(H)C(CH$_3$)N(ptolyl)\}. Alternatively, the Fe(CO)$_4$ radicals could react with one another to give Fe(CO)$_5$, identified as a minor product of the reaction. Thus possible mechanisms are as follows [where Am = (ptolyl)NC(CH$_3$)N(ptolyl), AmH = (ptolyl)N(H)C(CH$_3$)N(ptolyl)],

Yellow powder ("Fe(CO)$_4$IAm")

\[\begin{align*}
\text{Al}_2\text{O}_3 & \quad \text{Fe(CO)$_4$} \\
\text{AmH} & \quad \text{Fe(CO)$_4$IAm} \\
\text{Fe(CO)$_4$IAm} & \quad \text{Fe(CO)$_5$}
\end{align*} \]

As a comparison, Fe(CO)$_4$I$_2$ was treated with alumina and Fe(CO)$_5$ was obtained. Again, this is most easily explained by a free radical mechanism e.g.,

\[\text{Fe(CO)$_4$I$_2$} \quad \rightarrow \quad \text{Fe(CO)$_4$} \quad \rightarrow \quad \text{Fe(CO)$_5$} \]

A number of reactions were carried out with Fe(CO)$_4$\{(ptolyl)N(H)C(CH$_3$)N(ptolyl)\} in the hope that they might throw some light on its structure. The purpose of these reactions was to bring about a rearrangement of the Fe(CO)$_4$\{(ptolyl)N(H)C(CH$_3$)N(ptolyl)\} to produce a species containing the amidine ligand acting as a 3-electron donor e.g.,

\[\text{Fe(CO)$_4$AmH} \quad \xrightarrow{\Delta \text{ or hv}} \quad [\text{HFe(CO)$_3$Am}] \quad \xrightarrow{\text{N-bromo succinimide or halogenated Solvent}} \quad \text{XFe(CO)$_3$Am} \]

(X = halogen)
However, these attempts were unsuccessful. Refluxing or u.v. irradiating a solution of the complex in hexane resulted in considerable decomposition, with the formation of a little Fe(CO)$_5$, again probably by a free radical mechanism. Reaction with CCl$_4$ resulted in rapid decomposition to a non-carbonyl species. There was no reaction with N-bromo succinimide in toluene.

The reaction of Fe(CO)$_4$I$_2$ with the lithioamide, (ptolyl)NLi.C(CH$_3$):N(ptolyl), and subsequent reaction of the product with alumina is thus quite complex and rather different from the reaction of Fe(CO)$_4$I$_2$ with lithioketimines. In the latter case, complexes of the type $[\text{Fe(CO)}_3\text{N:CRR}'_2$ and $[\text{Fe}_2(\text{CO})_6\text{I(NCRR')}]$ (where RR' = Ph$_2$, p-tolyl$_2$ or Ph Bu*) are formed when Fe(CO)$_4$I$_2$ is treated with RR'CNLi in ether at ambient temperature.$^9,^{14}$
APPENDICES
Appendix 1

Exploratory investigations of the reaction of lithioamidines with h^5-$C_5H_5Cr(CO)_3Br$

A. Experimental

Reaction of h^5-$C_5H_5Cr(CO)_3Br$ with RNLi.CR':NR (i) $R = p$-tolyl, $R' = Me$; (ii) $R = Me$, $R' = Ph$

A suspension of the lithioamidine (5 mmole) in ether (20 ml.) was added to an ether solution of h^5-$C_5H_5Cr(CO)_3Br$ (5 mmole), prepared as in chapter 3, and frozen at -196°. The mixture was allowed to warm to room temperature with stirring, and left at room temperature for one hour, the colour changing from purple to dark green. The solvent was removed under vacuum (20°, 0.05 mm.Hg). The residue was only slightly soluble in hexane to give, on filtering, a green solution and leaving a large quantity of greenish material in the flask. This was mainly h^5-$C_5H_5Cr(CO)_3$, as identified by i.r. spectroscopy.

For (i) ($R' = Me$, $R = p$-tolyl), the i.r. spectrum of the green hexane extract was very similar to that obtained for the ketimine complexes, h^5-$C_5H_5Cr(CO)_2(N:CR_2)$ ($R = Ph$, p-tolyl, But), showing two strong sharp carbonyl absorptions at 1892 and 1964 cm$^{-1}$. For (ii) ($R = Me$, $R' = Ph$), however, the i.r. spectrum of the hexane extract showed the presence of only a very small amount of carbonyl-containing product.

The solvent was removed under vacuum (20°, 0.05 mm.Hg) from the hexane extract. A mass spectrum of the residue showed only the presence of the amidine ligand.
B. Discussion

It was not possible to isolate any well-defined amidino-chromium complexes from the above reactions. However, there is infrared spectral evidence for the formation of a new carbonyl species from the reaction between h^5-C$_5$H$_5$Cr(CO)$_3$Br and $\{$(ptolyl)NLi.\cdotCMe:N(ptolyl)$\}$. The two strong sharp carbonyl absorptions in the i.r. spectrum of this species are very similar in position and intensity to those for the ketimine complexes, h^5-C$_5$H$_5$Cr(CO)$_2$(N:CR$_2$) ($R = \text{Ph, p-tolyl, Bu}^+$), prepared in chapter 3. Hence it is likely that the species formed is of a similar structure e.g. h^5-C$_5$H$_5$Cr(CO)$_2$$\{$(ptolyl)$N$-$C(Me)N$(ptolyl)$\}$. This would also be in keeping with the corresponding molybdenum and tungsten systems. h^5-C$_5$H$_5$M(CO)$_3$Cl ($M = \text{Mo, W}$) reacts smoothly with lithio-amidines, RNLi.CR':NR, to form complexes of composition h^5-C$_5$H$_5$M(CO)$_2$[RNG(R')NR], which show two strong sharp carbonyl absorptions in their i.r. spectra. In these complexes, the amidino-group acts as a 3-electron-donor-ligand. A comparison of the i.r. data in the V$_{CO}$ stretching region for the above complexes is shown in the following table:

<table>
<thead>
<tr>
<th>Complex</th>
<th>Solvent</th>
<th>V$_{CO}$ cm$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$"h^5$-C$_5$H$_5$Cr(CO)$_2$${$(ptolyl)$N$C(Me)$N$(ptolyl)$}"$</td>
<td>Hexane</td>
<td>1964 1892</td>
</tr>
<tr>
<td>h^5-C$_5$H$_5$Mo(CO)$_2$[PhNC(Ph)NPh]</td>
<td>CCl$_4$</td>
<td>1970 1890</td>
</tr>
<tr>
<td>h^5-C$_5$H$_5$Mo(CO)$_2$${$(ptolyl)$N$C(Ph)$N$(p-tolyl)$}$</td>
<td>(CH$_2$Cl)$_2$</td>
<td>1956 1868</td>
</tr>
<tr>
<td>h^5-C$_5$H$_5$W(CO)$_2$[PhNC(Ph)NPh]</td>
<td>(CH$_2$Cl)$_2$</td>
<td>1965 1877</td>
</tr>
<tr>
<td>h^5-C$_5$H$_5$W(CO)$_2$${$(ptolyl)$N$C(Ph)$N$(p-tolyl)$}$</td>
<td>(CH$_2$Cl)$_2$</td>
<td>1949 1852</td>
</tr>
</tbody>
</table>
Appendix 2

Exploratory investigations of the reactions between Ph₂CNLi and h⁵-C₅H₅Cr(CO)₃HgBr

A. Experimental

1. Preparation of h⁵-C₅H₅Cr(CO)₃HgBr

h⁵-C₅H₅Cr(CO)₃HgBr was prepared from [h⁵-C₅H₅Cr(CO)]₂Hg by the method of Mays and Robb. Thus, a solution of [h⁵-C₅H₅Cr(CO)]₂Hg (1.51 g, 2.5 mmole) in acetone (50 ml.) was stirred at room temperature with a solution of HgBr₂ (0.91 g, 2.5 mmole) in the same solvent (30 ml.). The solvent was removed under vacuum (20°, 0.05 mm.Hg) to give h⁵-C₅H₅Cr(CO)₃HgBr as a yellow solid.

2. Reaction of h⁵-C₅H₅Cr(CO)₃HgBr with Ph₂CNLi

A solution of Ph₂CNLi (5 mmole) in ether (10 ml.) was added to a suspension of h⁵-C₅H₅Cr(CO)₃HgBr (5 mmole) in the same solvent (80 ml.) frozen at -196°. The mixture was allowed to warm to room temperature, with stirring, the colour changing from orange to yellow-brown. On filtering, a yellow solid and a yellow-brown solution were obtained. The yellow solid was mainly [h⁵-C₅H₅Cr(CO)]₂Hg as shown by i.r. spectroscopy. It also contained a little h⁵-C₅H₅Cr(CO)₂(N:CPH₂) (identified by mass spectroscopy). The i.r. spectrum of the yellow-brown solution showed four peaks in the carbonyl stretching region, at 1879(s), 1897(m), 1952(s) and 1980(m) cm⁻¹. The nature of the carbonyl compound(s) present could not be determined, however.
B. Discussion

In the reaction of \(\text{h}^5\text{C}_5\text{H}_5\text{Cr(CO)}_3\text{HgBr} \) with \(\text{Ph}_2\text{CNLi} \), there is no evidence for the formation of a chromium-mercury ketimine complex such as \(\text{h}^5\text{C}_5\text{H}_5\text{Cr(CO)}_3\text{Hg(Ph}_2\text{CN)} \). The major product of the reaction is \([\text{h}^5\text{C}_5\text{H}_5\text{Cr(CO)}_3]_2\text{Hg}\), which could be formed according to,

\[
2 \text{h}^5\text{C}_5\text{H}_5\text{Cr(CO)}_3\text{HgBr} + 2 \text{Ph}_2\text{CNLi} \rightarrow [\text{h}^5\text{C}_5\text{H}_5\text{Cr(CO)}_3]_2\text{Hg} + 2 \text{LiBr} + (\text{Ph}_2\text{CN})_2\text{Hg}
\]

(or \(\text{Hg} + \text{Ph}_2\text{CNNCPh}_2 \))

\(\text{h}^5\text{C}_5\text{H}_5\text{Cr(CO)}_2(\text{N:CPh}_2) \) is a minor product of the reaction. A possible equation for its formation is as follows,

\[
\text{h}^5\text{C}_5\text{H}_5\text{Cr(CO)}_3\text{HgBr} + \text{Ph}_2\text{CNLi} \rightarrow \text{h}^5\text{C}_5\text{H}_5\text{Cr(CO)}_2(\text{N:CPh}_2) + \text{LiBr} + \text{CO} + \text{Hg}.
\]

There was limited mass spectral evidence for the formation of \(\text{Ph}_2\text{CNNCPh}_2 \) but no evidence for any free metallic mercury.
Appendix 3

Experimental details and starting materials

1. General Techniques

All the reactions described were carried out in an atmosphere of pure, dry nitrogen in two-necked round-bottomed flasks. Air-sensitive solids were handled in a glove box. Liquids and solutions were transferred as required, by syringe, against a counter current of nitrogen.

2. Nitrogen supply

Nitrogen was drawn off from a tank containing liquid nitrogen and delivered to a multiple outlet system. Traces of oxygen were removed by passing the gas through a tower containing copper at 400°. A constant pressure of nitrogen was maintained in the system by connecting one outlet to an oil bubbler.

3. Glove box

The purity of the nitrogen atmosphere in the glove box was maintained by continuously recycling it through a trap cooled with liquid air to remove volatile material, a tower containing copper at 400° to remove traces of oxygen and a tower containing phosphorus pentoxide to remove traces of moisture. All external tubing was of polythene, and the gloves used were made of "Butasol" rubber.

4. Solvents

Solvents were degassed on the vacuum line before use and stored under nitrogen. Hydrocarbon solvents and diethyl ether were dried over extruded sodium wire. Chlorocarbon solvents and carbon disulphide were dried over molecular sieve. Monoglyme was freshly distilled, under nitrogen, from LiAlH₄.
5. **Starting materials**

\[\text{[h}^5\text{-C}_5\text{H}_5\text{Cr(CO)}_3]_2\text{Hg}, 36 \quad \text{Fe(CO)}_4\text{I}_2, 114 \quad \text{(ptolyl)}_2\text{CNH}, 115 \quad \text{Ph}_2\text{CNH}, 116 \quad \text{(ptolyl)}\text{NH.C(CH}_3\text{)}_2\text{N(ptolyl)} 117 \quad \text{and MeNH.CPh:NMe were prepared by methods described in the literature.} \]

Solutions of lithioketimines were prepared by adding a solution of n-butyl lithium to a frozen solution of the appropriate ketimine or amidine at -196°. The mixtures were stirred at room temperature for about 20 minutes before use.

Di-t-butyl ketiminolithium was also prepared by adding a solution of t-butyl lithium to a frozen solution of t-butyl cyanide at -196°, and then stirring the mixture at room temperature for approximately 20 minutes.

Alumina was activated by heating under vacuum (100°, 0.01 mm.Hg) for two hours.

All other starting materials were of standard reagent grade.

6. **Instrumentation**

(a) **Infrared spectra**

Infrared spectra in the range 4000 - 250 cm\(^{-1}\) were recorded on a Perkin-Elmer 457 grating spectrometer. Samples were in the form of mull, KBr discs or solutions in a suitable solvent, as appropriate.

(b) **Nuclear magnetic resonance spectra**

Proton magnetic resonance spectra were recorded on a Varian A56/60D spectrometer, fitted with a variable temperature controller, and operating at 60 MHz/sec. Samples were in the form of solutions
in carbon disulphide, toluene or perdeuterobenzene, as appropriate. The external reference standard was tetramethyilsilane.

(c) Mass spectra

Mass spectra were recorded on a A.E.I. MS9 mass spectrometer at 70 eV (except where otherwise stated in the text) and an accelerating potential of 8 kV, with a source temperature between ambient and 220° (depending on the sample) and electromagnetic scanning. Samples were introduced by direct insertion into the ion source.

7. Analytical methods

Carbon, hydrogen and nitrogen were determined using a Perkin-Elmer 240 Elemental Analyser. Chromium and iron were determined using a Perkin-Elmer 403 atomic absorption spectrophotometer.
REFERENCES
23. M. Kilner, personal communication.

68. H. Alt, M. Herberhold, C.G. Kreiter and H. Strack,
 317, 226.
 1973, 60, 125.
 1974, 96, 749.
 1963, 1133.
 88, 5121.