

Durham E-Theses

Reproductive strategies of six perennial plant species in relation to a successional series

Stewart, Alan J.A.

How to cite:

Stewart, Alan J.A. (1978) Reproductive strategies of six perennial plant species in relation to a successional series, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/9056/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
Please consult the full Durham E-Theses policy for further details.

凹ロRENNエAI DIANMSPECIESIN

Alan JoAo Stowart B．Sc．
（ERet Arglia）

A dissertation subuitied as part： of the reauirements for the degree of MeSce in Actranced Beolosy．
The copyright of this thesis rests with the author． No quotation from it should be published without his prior written consent and information derived
from it should be acknowledged．
University of Durham

September $工 973$.

Abstract

Data are presented on the phenology of dry weight allocation of plant tissue to major component parts for six herbaceous perennials, in relation to a successional sequence. Individual reproductive effort is show to be constant throughout the succession. Reproductive effort at the population level however is shown to be highest jn an early successional quarry site and lowest in an ungrazed grassland site. Populations from the successionally more advanced scrub site generally show a level of reproductive effort between the cther two. Significant intramspecj.fic differences between populations from the three sites are demonstrated for mean total plant dry weight, time of anthesis, leaf area and stem length. These are interpreted as plastic responses to environmental variables and the level of competition. Teaf palatability experiments show that leaves taken from different parts of the succession are not different in their palatability to a generalised herbivore.

CONTHNTS

Page

1. Introduction 1
2. The Paper 5
3. The Sample Sites 6
4. Choice of plant species 12
5. Sampling 20
6. Field data collection 21
7. Methods and techniques 25
8. Results 30
9. Discussion 83
10. Summary 92
Acknowledgements 94
Appendix 95
References 96
Page
11. Synoptin map of sites in relation to Durham 8
12. Wingate Quarry site 9
13. Thrislington Plantation Grassland and Scrub sites 9
14. Carex flacca 14
15. Gentaurea nigra 15
16. Leontodon hispidus 16
17. Plantaco Ianceolata 17
18. Plantago media 18
19. Poteriurn sanguisorba 19
10-15. Plant component parts 36-53
20. Percentage of population flowering 56-58
21. Reproductive effort and weight of flowering sub-sample 59-60
18es23. The pinenology of flowering $61-66$
ch. Individual reproductive effort and leaf veight 67
25-30. The phenology of mean leat area 71.76
22. The phenology of mean stem height 79-81

LIST OF TABIES

Page
l. Species list for three study sites 22
2. Comparison of sites with respect to reproductive effort 54
3. Chi-square test on differences in reproductive effort between sites 55
4. Regression equations for the relationship between leaf area and the cross-product of leaf length and breadth 70
5. Leaf length : breadth ratios 77
J.IST OF PLARTES

1. The Quarry site 10
2. The Grassland site 10
3. The Scrub site 11.

The concept that organisms may adopt fundamentally different strategies for survival and reproduction in a resource-limited environment was suggested by MacArthur and Wilson (1967). At one end of the spectrum where the environment is inherently unstable and changing, genotypes, and ultimately species will be selected that can attain a maximal population growth rate and start to reproduce at an early age. At the other extreme, where the environment is stable and the population size is close to the carrying capacity, there will be strong selection for genotypes that have a greater competitive ability, larger body size, delayed reproduction and fewer, larger progeny.

These two opposing forces were labelled r - and k - selection respectively, after the two parameters in the logistic equation. Plank (1970) lists the correlates with these types of selection, emphasising that the two types represent the opposite ends of a broad continuum, with the majority of species in the natural environment being located fairly centrally.

An alternative to the MacArthur and Wilson concept has been put forward in the field of plant ecology by Grime (197), 197\%). He sugeesta that there are 3 fundamental determinants of vegetation s competition. stress and disturbance. Each represents a selective force that invokes a distinct strategy on the part of the plant: the competitive, stresstolerant and ruderal strategies.

Following the many interesting questions raised by Harper (1967), several studies have beer made on the relative levels of resources that picante allocate to reproduction. Harper and Ogden (1970) looked at allocation between the major components of a plant under varying levels

defined as (total seed production/total net production \times 1.00) was maintained fairly constant (around 21\%) under varying levels of stress and despite seven-fold differences in total plant weight. Under extreme levels of stress however, induced by siall pot size, reproductive effort was severely curtailed and sometimes prevented altogether (no flowering).

Abrahanson and Gadgil (1973) demonstrated the different levels of reproductive effort show by four members of the genus Solidago, occurring in three sites from woodland to open dry sites. They found that the greater reproductive effort exhibited in the more unstable environment (dry site) was more pronounced in comparisons between two distinct species then where two forms of the same species were compared.
mpirical evidence for intramspecific variation in reproductive effort was presented by Gadgil and Solbrig (1972) for various biotypes of Taroxacum officinale Disturbed sites were characterised by individuals with higher seed production and lower competitive ability. In their analysis of whole communities, they found that the disturbed and unstable habitats contained a larger proportion of those \$e officinale biotypes that allocate more resources to reproduction.

Hi.ckman (1975) found complementary evidence in Polygonum cascadense. Again looking at the community as a whole, he showed that greatest allocation of resources to reproduction in this species was found in habjitats with Low species diversity and vegetative cover. Hickman concludes that these differences are environmentally induced and plastic rather than genetically determined.

Several other workers have demonstrated both inter- and intraspecific verriation in reproductive effort in various plant species; Steric (1975) in Anthyllis nulneraria. Gaines et a]., (1974) in

Helianthus sppo, Van Andel and Vera (1977) in Senecio sylvaticus and Chamaenerion angustifoliurn, Vasek and Clovis (1976) in Arctostaphylos glauca and Ogden (1974) in Tussilago farfara.

A possible correlate of the raK strategy continuum is the proportion of resources (whether chemical or dry matter) that a plant allocates to the avoidance or repulsion of herbivores. The theoretical implications of the theory are that plants in stable habitats (at the K end of the spectrum), devoting fewer resources to reproduction, will be able to redirect greater resources towards the physical avoidance (via thorns, hairs etc.) and chemical repulsion (toxins, tannins etc.) of grazing herbivores and parasites. This commitment to defence was estinated by Cates and Orians (1975) using short - term palatability of leaves to two silug species Arion ater and Agriolimax columbianus: Their resuits showed that early succession annuals, from a very unstable habjitats were significantly more palatable than late succession perenuials.

Otie (I975) provides conflicting evidence for' a different ecosystem and using different organisms. Using polyphagous grasshoppers Schistocerca spp.) and plants along a succession in Texas, he found that edibility of plants from early successional stages was in fact less than that of late succession species.

Grime et al., (1968) list the palatability of 52 species of plant to the landosnail Cepaea nemoralis. Of the low percentage (20%) that were palatable to snails, a high proportion of species were associated with disturbed habitats andor fertile soils.

This brief review of the literature published to date on reproductive effort in plants reveals a number of gaps. Firstly, few workers have confined themselves to the variation in resource allocation within species, most concentrating on closelymrelated species within a single
genus, or on the plant community as a whole。 Also, most studies have involved looking at fundamentally different habitats thot represent highly stable or unstable environments. Few studies have looked at the changes along a successional gradient of uniform environmental conditions, where the only variables are time and the stage of development of the plant community. The resultant induced differences in reproductive effort in a plant speciesg if any, are likely to be much smallere Similarly most emphasis has been given to the monitoring of allocation of resources to reproductive versus nonmreproductive plant structures. Such an approach may be too narrowo Information on all major plant parts, or modules may be necessary to reveal not only what plant characters are plastic, but also how different allocations are racilitated by changes in the dimensions of the pl.ant ${ }^{\mathbb{1}} \mathrm{s}$ supportive and photosynthetic structures. Finally, no one has, as yet, published any investigation into the intram specific variability in leaf palatability to generalised herbivores. These aspects of reproductive strategies in plants form the back--bone of this paper.

2.

THE PAPER

This paper reports on work carried out from May to August 1978 on the phenology of dry matter allocation to major component parts in various species of limestone grassland plant, in relation to a successional sequence.

Six common herbaceous perennial species were chosen for the study. The succession was studied in detail at three stages of its development : early colonisation on an open quarry slope, ungrazed specieswrich grassland and partly-closed-canopy, shaded Crataegus monogyna scrub.

Regular removals of samples of the above-ground parts of the six species were followed by separation into component parts, measurement of component dimensions, drying and weighing. This enables an anal.ysis of how the allocation to reproductive and other structures varies over a growing season.

In addition, choice feeding experiments, using leaf samples from different sites, were done with the landmail Cepaeanemoralisa This was done to ascertain whether individual plants from early successional stages were any more (as predicted by the Cates and Orians theory) or less palatable than sanples of the same species from late seral stages.

The three sample sites were all located on the magnesian limestone that outcrops in County Durham (Figure 1)。 The grassland and scrub sites were located within 250 metres of each other. However, the quarry site is 7 km apart from these other two. Since they are all on the same soil series however, this was not considered a problem, from the point of view of comparing the sites.

The open quarry site was located at Wingate Quarry, approximately 13 km SoE of Durham (NZ 373,374) (Figure 2). The vegetation consists of an open colonising comnurity characterised by Sesleria albicans, Foilobium angustifolium and Hieracium spp. The samples were taken from a 50 metre stretch of bank that had been created by quarrying earthworks. The bank is straight, $3 . \ln$ high and faces roughly S.W, ($140^{\circ} \mathrm{W}$), with an approximate average slope of 42°.

The ungrazed-grassland site was located at Thrislington Plantation, approximately 12 km SoSoEo of Durham (NZ 319,328) (Figuxe 3)。 This is listed as a Grade 1 SSSI in the Nature Conservation Review fivature Conservancy Council, 1977) being considered as the best example of Magnesian Limestone grassland. The grassland is a species-rich Sesleria albicans type (Shimwell, 1968) with comdominant Festuca oyina, supporting a number of rare species such as Epinactis atrorubens, Linum anficum and Iistera ovata Samples were taken from the largest area of open grassland, on a gentle $\left(6^{\circ}\right)$ slope facing WoNoW. ($79^{\circ} \mathrm{W}$).

The scrub site was also located at Thrislington (Figure 3), approximately 250 metres NoW. of the previous site within a large area of well-advanced Crataerus monogyn scrub. Rosa nimpinellifolia is also relatively extensive. The field layer is dominated by Sesleria albicans
and includes some rarer species such as Linum anglicum and Anacamptis pyramidalis. The sampling site was located on flat ground, where C.monogyna produces extensive shade, but with small areas of open ground in-between.

Thrislington plantation, encompassing both the grassland and scrub sites is scheduled for quarrying within the next 50 years. The bank used for sampling at Wingate Quarry is also scheduled for removal and levelling within the next year (Doody, 1977).

FIGURE 1.

SYNOPTIC MAP OF SITES IN RELATION TO DURHAM

Figure 2.
WINGATE QMARRY SITE.

Figure 3 .
THRISLINETON GRASSADD \& SCRUS SITES

PLAME 1

TTHE QUARRY STTPE

Wingate Quarry, Co. Durham

PLATE 2

THE GRASSLAND STIPE

Thrislington Plantation, Co.Durham

PLATE 3

THE SCRUB SITE

Thrislington Plantation, Co. Durham

The choice of plant species was made using a set of criteria that would enable efficient sampling and analysis of plant material:

1. The species should be common and widespread in their general
distribution and particularly abundant on the three sites concerned.
2. The species should be typical along the whole length of the successiono
3. Individual plants should be discreet and easily separated from one another. They therefore should be neither creeping (as in Hieracium pilosella) nor rhizomatous (as with most of the Gramineae).
4. The flowering parts of the plant should be easy to separate from the rest of the plant and should be of sufficient size to make individual weighings significant.
5. The seeds produced should be of sufficient size to make weighing practicable.

The six plant. species chosen were:-

Carex flacca Schreb.	"Carnation Grass"
Centaurea nigra L. $_{0}$	"Lesser Knapweed"
Leontodon hispidus. L_{0}	"Rough Hawkbit"
Plantago lanceolata L_{0}	"Ribwort"
Plantago media Io $_{0}$	"Hoary Plantain"
Poterium sancuisorba L_{0}	"Salad Burnet"

All are medium to tall herbaceous perennials with relatively large seeds and inflorescences. Individual plants were, with some care, easily di.stinguishable from each other and therefore extractable. C.flaca, C. rigra and Pospncuisorba $^{\text {nere }}$ less satisfactory in this respect since apparently separate above-ground parts were often found to be comected subterraineously. In such cases; a single above-ground stem was removed
as a submsample of the whole plant. Counting of the number of stems enabled the grossingmup of the data after analysis of component parts. A problem concerning the range of the succession was encountered in the pilot survey. Representatives of the above species were found to be abundant in many quarry, grassland and scrub sites, but mostly absent in examples of the climax Fagus sylvatica woodland. In fact, there was a very sharp discontinuity between scrub and adjoining woodland sites (particularly noticeable at \mathbb{T} hrislington) in terms of the species composition of the field layer. No species were found to be consistently represented in both areas. It was therefore decided to restrict the range of the succession studied to a gradient from open, disturbed quarry to well.odeveloped scrub.

FIGURE 4.

CAREX FLACCA Shreb...
Alter Tefmy : Tutin (1168).

FIGURE 5.

CENTAUREA NIGRA L.

FIGURE 6.

LEONTODON HISPIDUS L.

Figure 7.

PLANTAGO LANCEOLATA L.

FIGURE 8.

Plantago media L.

FIGURE 9.

POTERIUIN SANGUISOREA L.

Permanent sampling plots were marked out in each of the three sites chosen. These were located centrally in relation to the extent of the selected habitat (Figures 2 and 3) and marked out with small pegs so that the same area was used for successive samples.

The sizes of the sampling areas were as follows:-

Quarry site	5×20	metres
Grassland site	10×20	metres
Scrub site	10×15	metres

Sampling involved the temporary laying of a tape to mark the four sides of the sampling rectangle. Random wints within the square were located using random number tables (Rohlf and Sokal 1969). The nearest individual of the chosen species to the selected comordinate was then taken as a single sample.

Removal of all the aboveaground parts (including dead plant material) was made by cutting as near as possible to ground level.e Individual plants were placed in plastic bags ands on return to the laboratorys stored at $5^{\circ} \mathrm{C}$. Analysis of the component parts was subsequently carried out within a week of samplingo

Sample size was at first maintained at 20 individual plants per species per site. Due however to the length of time needed to analyse the samples, this was later reduced to 15 individuals per species per site.

Two extra sets of field data were collected at each site.

The first was a species list of each of the three sites. Using random points within the permanent plotg all species were recorded as present or absent within 1.00 quadrats, using a $10 \mathrm{~cm} \times 10 \mathrm{~cm}$ framea The relative abundances of each species, as shown by the number of occurrences, are Given for each site in Table 1.

In addition, data was collected on the flowering status of the six species at each site. This was done to supplement the data collected in the analysis of component partso For each species, 50 individuals were located by taking 50 randomly-directed paces and recording the individual nearest to the front of the recorder ${ }^{1}$ s shoe. Though not as statistically rigorous as the use of random number tables, this method is far quicker and thus widely used in plant ecology. The flowering status of each individual was scored using the following code:m
O. No inflorescence at all

1. Bud
2. "Forly flower:ing"stage. Flower just opening
3. "Full flowering" stage。 :"
4. "Late flowering" stage Petals decaying
5. Unripe seeds within capsule or pappus
6. Ripe seeds within capsule or pappus
7. Seeds or pappus starting to disperse
8. AlJ seed dispersed. Stalk or flowering head bare.

TABTE 1

SPECTES LIST AND ABUNDANCE IN 100 QUADRAIS TOR THRPE STUDY SITTS

Achillea millefolium 11

Agrimonia eupatoria 9

Anthriscus sylvestris3

Anthyllis vulneraria 9
Astralagus danicus 11
Campanula rotundifolia 8 11

Centaurea nigra 9 26 20 21 . 21

Chamaenerion angustifolium 7
Cirsium arvense
Conopodium majus
Grataegus monogyna
Crepis capillaris
Dactylorchis fuchsii
7
7
6

Epipactis atrorubens
2

Buphrasia officinelis 22

Fragaria vesca
8

Gelium verum
610

Gentianella amarelia $\quad 6$
Gymmadenia conopsea
6
97

Helianthemum chamaecistus
21
Hieracium pillosella
19
4
Hypericum perforatum 7
5

Hypochoeris radicata	17		
Leontodon hispidus	1.6	28	28
Linum catharticum	14	22	19
Linum anglicum		5	
Listera ovata		7	6
Iotus corniculatus	10	13	16
Medicago lupulina	10	7	9
Orchis mascula			5
Plantago lanceolata	11	9	19
Plantapo media	8	16	1.5
Polygela vulgaris		9	9
Poteriun sanguisorba	13	10	18
Prinula veris:	6	4	10
Prumelia vailgaris		8	10
Renunculus bulbosas	9	5	5
Prinanthus minor		$i 1$	15
Rosa pinpinelififolia			2
Rubus fruticosus	3	3	6
Scabiosa columbariu	9	10	7
Senecio jacobaea	11	1.	
Senccio vaigaris	9		
Silene dioica			3
Taraxacum officinale	8		
Thymus drucei	6	5	
Mragopogon pratensis		3	8
Mrifolium pratense	7.5	10	9
Iussilago faxtama	12		

Viola riviniana 2

NOTES: I. Nomenclature follows Clapham, Tutin and Warbure (1962)
2. Figures refer to tine number of occurrences in 100 quadrats oft sizes $10 \times 1.0 \mathrm{~cm}$.
3. *Sesleria albicans $=$ S. caerujea Sulsen calcarea

7. MEIHODS AND MECHNIQUES

A. Analysis of Component Parts

The bulk of the work in the laboratory centred around the separation of each plant sampled from the field into its component parts. A list of these component parts, or modules (Harper, 1977) is given below:

(i)	Leaves
(ii)	Dead Leaves
(iii)	Stems
(iv)	Inflorescences
(vi)	Buds
(vi)	Shoots
(vii)	Seeds
(viii)	Stem leaves (Cent;aurea nigra only)

A number of extra measurements were also made to describe the physical dimensions of the plant more fully:
(i) Maximal height
(ii) Flowering scale (as described in Section 6)
(iii) Length of each stem
(iv) Length of each shoot
(v) Diameter of each bud
(vi) Maximum diamter or length of each inflorescence
(vii) Jength and breadth of each leaf

Since it was not possible to measure leaf area directly, this parameter was calculated from empirically-derived equations, relating leaf area to maximum length and maximum width of individual leaves.

Twenty-five randomly sel.ected leaf samples were collected, for each
site. After measurement of maximum length (including petiole) and maximum width, the outline of each leaf was traced onto paper and cut out. Given the weight and area of a much larger, square piece of similar paper, the area of each leaf could be calculated from the weight of its paper equivalent (measured to four decimal places). The regression of leaf area on leaf length, width and the cross"product of length and width was cal.culated for four plant species at each of the three sites. The dimensions of leaf samples of Carex flacca were not significantly different between sites and were therefore grouped together.

The problem of leafmarea measurement was exacerbated in Poterium sanguisorbaby the occurrence in this species of numerous (up to 25) leaflets on each pinnateleaf (Figure 9). Obviousily these could not be measured individually for each plant sampled, $s 0$ a similar regression to that above was derived for the relationship between the length of the pinnate leaf, the number of leaflets and the total leaf surface area. This was repeated for each of the three sites.

A further problem was encountered with trying to determine the Leaf dimensions of the stem-leaves of Centaurea nigra. Near the top of the stem, these are often too small and too numerous to measure acurately when analysing many samples in a short time (Figure 5). It was therefore deened more sensible to count all those leayes less than 4 cm long and use an empiricallymderived equation (relating number of side leaves to leaf area) to calculate their area. This figure could then be subsequently added to the mainmleaf area.

Once separated into component parts, the plant material was placed in numbered envelopes, thus enabling many samples to be dryed at the same time. Samples were dried at $105^{\circ} \mathrm{C}$ for at least 24 hours. A Mettler balance was used to record weights to four decimal places.

Once recorded, the variables were coded and punched onto computer cards. Subsequent analysis on the $\mathrm{N}_{\circ} \mathrm{U}_{0} \mathrm{M}_{\circ} A_{0} \mathrm{C}_{0}$ computer used programs drawm mostly from "Statistical Packages for the Social Sciences" (Nie et al., 1975)

B. Palatability Experiments

Tests on the relative palatabilities of plants from different stages of the succession involved the use of choice feeding experiments. The helicid Landmsnail Cepaea nemoralis I_{0} was used as a generalised herbi.vore。

Conemoralis has a number of inherent advantages in a study of this nature. It is, firstly, fairly ubiquitous in calcareous environments and was found in reasonable numbers in all three of the sites. It was most numerous at Wingate Quarry. As a herbjivore it has been recorded eating a wide variety of plant species, but has tairly distinct food preferences (Grime et ale, 1968)

As an animal for use in the laboratory, it is very easy to handle, since it is very drought resistant and tolerant of wide temperature fluctuations. Since it requires only a very small space in which to feed, it is ideal for choice experiments involving several replicates.

The amount of plant material consumedin 24 hours varies between 10 and 40 mg . dry weight :(Grime et al., 1968). This order of magnitude is sufficiently large for accurate measurements to be made。

Grime et al. ((1978) found that Leontodon hispidus was one of the seven most favoured (out of 52 possible) food plants for C. nemoralis in choice experiments. Using faecal analysis, Williamson (1976) found that ${ }_{\text {Iohispidus }}$ and Poterium sangui.sorba were the commonest species eateng accounting, at the time of their maximum abundance, for 27.9%
and 10.9% respectively of adult faeces. The relative palatabilities of Carex flacca, Plantago lanceol.ata and P. media hove been recorded as very low (Grime et al., 1968 and Williamson 1976). Centaurea nigra remains unstudied in this respect.

In view of previous findings by the above authors, it was decided to restrict the choice experiments to Conemoralis feeding on Leontodon hispidus.

Forty adult Conemoralis were collected from Wingate Quarry during August 1.978. Individuals were collected and used irrespective of their shell banding and background colour. The snails were placed in circular glass dishes (diameter 15 cm and vertical sides, height 7 cm) with lids and kept in the laboratory at an even $20^{\circ} \mathrm{C}$. While captiveg they were fed on foliage of Hypochoeris radicata, another favoured food plant (Grime et al. . 1968). The snajis were then starved for 24 hrs . before use in the choice experiments.

Each choice experiment involved the presentation of three labelled samples of Leontodon hispidus leaf taken from three sites, for a period of 24 hours. The three leaves used in each experiment were selected for roughly similar size and cut neatly down the middle of the central midrib. One half of each leaf was used in the choice experiment itself; another half was dried at $105^{\circ} \mathrm{C}$ and weighed. At the end of the experiment, the dry weight of each half-leaf remaining was also determined. Making the assumption that both halves of the leaf are of equal dimensions and weight, it was thus possible to determine the dry weight of plant material consumed by the snajil from each of the three leaveso This experiment had ten replicates and was repeated on four occasions using different C. nemoralis individuals.

From the dry weight figures for each experiment i.t was possible to
obtain the total amount of plant material eaten and the percentages of the total taken from each leaf. The basic palatability index used was therefore:-
P.I. $=\frac{\text { dry weight of plant material taken from individual. leaf }}{\text { total dry weight of all plant material consumed. }}$

A. Plant: Component Parts

Collections of the six plant species from the three sites were made at weekly intervals over a period lasting from 24th May to 9th August 1978. Twelve collections were therefore made, each consisting of eighteen samples (six species at three sites). Each sample in turn contained twenty (and later fifteen) individual plants.

The data on the weights of plant component parts (leaves; stems etc.) collected for each individual were converted into percentages of the total plant dry weighto The mean percentage allocated to each component part could then be calculated and plotted, cumulativel. y ; for each weekly sample. The resultant patterns of mean dry weight allocation for the whole of each sample (i.e. representing the average for the ertire populationd are shown in Figures 10 to 15.

It is inmediately apparent that there are fairly major intrem specific differences in the pattern of dry weight allocation when the sample is treated as a single homogenous population. Wi.th the exceptions ö̈ Carex flacca and Centaurea nigra there are distinct differences in the pattern of dry weight allocation between the three sites. The main differences lie in the level of maximum reproductive effort achieved, the stage at which it is reached and the stage at which the growth of inflorescences starts. Reproductive effort is defined here as the percentage dry weight devoted to all reproductive organs (including budss inflorescences and seeds).

The most marked differences in maximum reproduct:ive effort are shown in Plantaco lanceolatia and Potecium sanpuisonbe between the quarry and grasshand sitess Here the differences are 12% and 13% respectively,
representing increases of 52% and 56.5% from the grassland to the quarry site. Similar differences are shown in the times when this stage of peak reproductive effort is reached. Interval.s of six and three weeks respectively between the quarry and grasstand sites are shown by the above two species. Ieontodon hispidus shows a corresponding difference of five weeks. Even greater differences between grassland and quarry s.ites are show by the stages when production of reproductive structures first starts.

Jable 2 gives a summary of the differences between the sites in these three respects. The significance of the differences between sites in terms of reproductive effort was tested usirig chi-square the particular sampies that gave the maximun popuation repooductive effort for each site (taken from Figures 10 - L.5) were used for this comparison, Table 3 gives the results and a summarised ranking of the sites in termis of reproductive effort.
 and Potarium senguiserbal appear to follow the same role, nemely thet reproductive effort is greatest in the quarry site, while the correbponding grassland populations contain plarits with the emallest allocation to reproductive structures. The scrub site shows vaiues betweer the other two sites.

NGes: Most variables were recorder on an interval somie (reproductive effort, proportion of reproducing individuals efo.) but the data does not meet the normajity anc homosedasticity essumpions of raramotic atatistioal tests. The nomporanetric tests used are taken from, and follow the notation of, Siegel. (1956),

Carex flacca and Centaurea nipra appear to be exceptions to this pattern. The former shows a lack of significant differences between the three sites in terms of reproductive efforto C. nigra, though showing a significant difference between the three sites (in terms of reproductive effort), shows a different ordering. Lowest reproductive effort is found in the scrub site, with the grassland population occupying a mid-way pos:ition.

Although significant differences in reproductive effort between the three eites have been shown, it must be appreciated that these observations refer to the plant population of each species, taken as a whole. All the species studied are perennials and may therefore flower in some years and reinain in a vegetative state in otherso Completely random sampling of the population means that estimates of reproductive effort will be biased by inclusion of those individuals that do not flower at all. Although this is a good measure of the regenerative effort of the population as a whole, it is very different from the percentage of resources devoted to production on an individuol scale.

Data collected (from both field observation and laboratory-analysed samples) on flowering stage (measured on a 0-8 ordinal scale) was used to show what proportion of the plant population actually attempts to reproduce. The data was divided into those individuals that remain in the vegetative state (coded 0) and those that exhibit some sort of reproductive structure (coded I to 8). Histograms for each sampling stage are shorm in Figure 16。

As expected with perennials, a substantial percentage of the population in any one year remains in a vegetative state. There are, however, differences between the sites in terms of what proportion of the population attempts to flower. The significance of these differences
was tested using the Friedman two-way analysis of variance, the results of which are given with each graph. The three sites were treated together since the purpose was to demonstrate whether overall differences exist.

The results of the test show that the percentage of the population that attempts to flower does vary between the three sites for five out of six species. The five species that follow this pattern all show that the greatest percentage of plants in the vegetative state are found in the grassland habitat. The quarry habitat, at the other extreme, contains relatively few individuals that do not attempt to flower. The scrub site, located, in this respect, between the other two, contains roughly equal percentages of individuals from both sulwpopulations (the flowerers and non-flowerers). Carex flacc, the only exception, appears to be remarkably consistent in terms of resources allocated to reproduction Generally, since it shows no difference between sites in terms of component parts or the percentage that produce a flowering spikec

The results so far suggest that differential reproductive effort between sites at the population level is chiefly explained by the differences in the proportion of the population that actually attempt to flower. Those individuals that do produce inflorescences or buds form a discrete subwsample of the population.

Treating this sub- eample separately, the mean reproductive effort has been plotted against the mean total dry weight, for cach weekly sample taken. Approximate boundary lines have been drawn to enclose those areas which include means from the same site. (Figure 17).

The positions of boundaries suggest that mean reproductive effort does not; vary between sites. The differences between the three sets of means were tested using the Friedman two way analysis of variance
(with two degrees of freedom). This showed that the levels of reproductive effort for each species were statistically the same for all three populations.

As expected, the total dry weight means vary between the three sites, the significance of which was tested using the same statistic as above. The \boldsymbol{x}^{2} values and the significance level.s for both tests are given underm neath each graph.

Significant differences in total dry weight were found for all species except Carex flacca. The order of increasing plent dry weight was the same (grasslandmscrub-quarry) for four species, Centaurea ni.gra, Ieontodon hispidus, Plantafo media and Poterium sanguisorba. Differences between the grassland and scrub sites were less marked than between the scrub and quarry siteso Elantago lonceolata showed a. different ordering (grasslandmuarrymscrub): which reflects a reduced vigour in the open, disturbed quarry habitat.

Figures 10-1.5 (and Cable 2 in summary) show that differences in the time of peak flowering are often quite large between popolations of the same species. Though the overall phenology of flowering appears similar, sample populations from the three sites are often out of phase with one another. In order to test whether this asynchrony was significant or not, use was made of data collected (from both field observations and laboratorymanalysed samples) on flowering stage, measured on a 0.8 ordinal scale (for sunmary see section 6). The means for each sub-semple, plotted against time (Tigures 18-23) were compared between sites using the Wilcoxon matchedmpairs signedmanks test.
L. higntus, P. lanceotata, Pomedia and Po sanguisorba all show that samples from the quarry site are significantly advanced, in terns of the flowering cycle, in relation to the other two habitatso All
four species show statistically synchronous grassland and scrub populations, despite the marginally earlier flowering (one week) of three scrub samples. $C_{\text {of }}$ flacca and C_{0} nigra are slightly different in that they indicate that all three populations are in synchrony in this respect.

Trom the above findings, it appears that individual allocation of plant resources to reproductive structures does not vary between sites, even though the timing of the flowering cycle in one site may not be in synchrony with that in another. The marked differences in reproductive effort of the population treated as a whole appear to be due to varying percentages of the plant population indulging in flowering. It is thus pertinent to inquire as to what mechanism or factors control whetherg in any one year: an individual commits itself to flowering and seed production or remains in a vegetative state. Does ain individual have to attain a particular leaf-weight before it can attempt to flower? I_{s} there, in facts a critical threshold (which may vary between environments) below which individuals will never flower?

To test this hypothesis, individual plants from a single sample were plotted on a "percentage reproductive effort - total leaf dry weight" graph (rigure 24). The particular sample chosen in each case was the one which gave the maximum population reproductive effort (taken from Figures 10 to 15). The broad scatter of points in each case shows that there is no relationship between these two variables at an individual level. The two subsamples (of flowering and nonwowering individual.s) over.lap considerably in terms of leaf dry weight. Regression lines have not been fitted as these would give spurious correlations, which would not be sicnificanto
FIGURE 10 P.
CAREX FLACCR
QURRRY SITE

FIGURE 10 B.
CAREX FLACCA.

FIGLRRE $10=$
CAREX FLACCA.

SAMPGE NUMBER.

PERCENTAGE
CENTARER NIGRP.

PLANT COMPONENT PPRTS

PLANT COMPONENT PARTS.
QuARRY SITE.

PIANT COMPONENT PARTS.
GRASSLAND SITE.
SEEDS
STEMS.

DEAD
LGAVES.

LEAYES.

PEANT COMPONENT PARTS. FIGIRE 12. C.
LEONTODON HISPIDUS

SEEDS
STEMS
DEAD
LEAVES.
LEAVES.

PIANT COVPONENT TARTS. FIGURE 13 A.
PhANTAGO LANCEOLATA.

PAANT COMOONGNT PARTS.

PIANT COMPONENT PARTS.
GRASSLAND SITE

SAMGLE Number.
PLPNT COMPONENT PARTS.
Stems
LEAVES.
50.
PLANT COMPONENT PARTS.

PhRNT COMPONENT PARTS.
PAANT COMPONENT PARTS.

TABLE 2

Comparison of sites with respect to reproductive effort.
$\left.\begin{array}{lcccc}\text { Species } & \text { Site } & \text { Maximum } & \text { Peak reproductive } & \text { Start of } \\ & & \text { reproductive } & \text { stage (sample } & \text { reproductive effort } \\ \text { effort }\end{array}\right)$

Note: Q, G, and S refer to quarry, grassland and scrub samples respectively.

Table 3
CHI-SQUAPE TEST ON DITPFRENCES IN RTPRODUCTIVE FETFORP BETWEITN STTES

NOTE: " $>$ " signs denote that the first site has a greater population reproductive effort than the second site (after the "greaterthan" symbol.).

PERCENTAGE OF POPULATION FLOWERING.

CAREX FLACCA
A.

CENTAMREA NIGRP
B.

$$
x_{r}{ }^{2}=6.23
$$

$P<0.05$

FIGURE 16 (cont.)
PERCENTAGE OF POPULATION FLOWERING.

LEONTODON HISPIDUS

PERCENTAGE OF POPULATION FLOWERING

PLANTAGO MEDIA

SAMPLE N°.

PERCENTAGe: OF Populations

POTERIUM SANEUISORBA

SAMPLE N°.

FIGURE 17.

REPRODUCTIVE EFFORT AND WEIGHT OF FLOWERING SUB-SAMPLE.

MEAN
REPRODUCTIVE EFFORT (\%).

Mean lug total dry weight

$$
x \cdot r^{2} \text { SIGNIFICANCE }
$$

6.16.N.S.

TOTAL DRY WEIGHT.
$8 \cdot 74$
NS.

$\because r r^{2}$
Signeionnce
ign:-.
12.03

NS.
$15 \cdot 37$
$P<0.05$

REsin los total dry weight
λr^{2}
8.91

Sismificance
LEVEL.
NS.
20.08
$p<0.05$

Figure 17 (cont).

REPRODUCTIVE EFFORT ANO WEIGHT OF FLOWERING SUB-SAMPLE

LCG MEAN TORAL DEY WEIGIT.

LCG NEAN TOTRL WEV WE:GHT.

	$\cdots{ }^{2}$	Sifnificance ?Evel.	$x{ }^{-2}$	Sthntranale ineyt...
Reprovictue griore	4.39	NS	7.77	N.S.
TOTAL DRY UNGEHT	$20.6 \frac{4}{4}$	$p<0.05$	$25 \cdot 7$	$?<0.01$

FIGURE 18

THE PHENOLOGY OF FLOWERING.

$Q=$ Quargy
$G=G R A S S$ Sim $S=$ SCRUR

WILCOXON MATCHED-PAIRS SIENED-RNNKS TEST

SITES COMPARED

QuAREY \& GRASShmmd

GRASSAMAD \& SCRUB	15.8	N.S.
SCRUS \& QUARRY	16.3	N.S.

NOTE FOR EXPMMNATION OF FLOWGRING SCALE, SEE SECTION 6.

FIGURE 19

THE PHENOLOGY OF FLGWERING.

$$
\begin{aligned}
& Q=\text { QWARRY } \\
& G=\text { GRASSRAND } \\
& S=\text { SCRUR }
\end{aligned}
$$

WILCOXON MATCHED-PAIRS SIGNED-RANKS TEST

SITES COMPARED
Quarry \& GRASSAAND
grassland a scrub
Scrub \& QuARRY.
I VALUE
14.0
21.6
15.7

Significince wivel
N.S
N.S.
N.S.

FIGURE 20

THE PHENOLOGY OF FLOWERING.

WILCOXON MATCHED-PAIRS SISNED-RANKS TEST.

SITES COMPARED	TYALUE	SIGNIFICINGE IEYEL
QUARRY \&GRASSAND	8.7	$P<0.02$
GRASSLAND \& SCRUS	22.4	N.S
SCRUB A QUARRY.	11.9	$P<0.05$

FIGURE 21

THE PHENOLOGY OF FLOWERING.

WILCOXON MATCHED-PAIRS SIGNED~RANIKS TEST

SITES COMPARED
QuArry k grassland
grassland a scrub
Scrub \& QuARry

$6 \cdot 2$
17.3
12.9

SIGNiFICANCE LEVEL

$$
P<0.01
$$

NS.

$$
P<0.05
$$

FIGURE 22.

THE PHENOLOGY OF FLOUERING.

PLANTAGO MEDIA

$$
Q=\text { Quapry }
$$

$$
G=\text { GRASSLAN: }
$$

$$
S=S C R U B
$$

WILCOXON MATCHED-PAIRS SIGNED-RANKS TCST:

SITES COMPARED.
QuARRY \& GRASSAMND
GRASSLANO \& SCRUE
SCRUB \& EUARPY.
$T V A L N E$
12.6
17.9
14.5

SGMFMAMCE LEVE:
$12 \cdot 6$
17.9
14.5

$$
P<0.05
$$

$N: S$.
N.S.

FIGURE 23.

THE PHENOLOGY OF FLOWERING.

WILCOXON MATCHED-PAIRS SIGNED-RANKS TEST:

SITES COMPARED
QUAREY \& GRASSLAATD
Grassiand a scrub
Scrub * QuARRY
TVALLE
10.9
19.2
10.3 significamce leves

$$
P<0.05
$$

N.S.
$P<0.05$

FIGURE 24.

INDIVIDUAL REPRODUCTIVE EFFORT AND LEAF WEIGHT.

Bo Leaf Measurcments

Leaf-area could not be directly measured for every plant analysed and therefore had to be calculated from measurements of maximurn length and breadth, using empirically-derived equations. These equations, taken from the regression lines of twenty-five leaf samples for each species (see section 7) aregiven in Table 4. The regressions of leaf area on the cross product of length and breadth are given, since; in each case, they gave better correlation coefficients than regressions using length or breadth only. Separate equations are given for each of the three sites, apart from the case of Carex flacca, where the regression lines were almost identical. The equation for Poterium songuisorba describes the regression line of leaf area on the crossproduct of the length of the pinnate leaf and the number of leaflets. Though less directg these two measurements still gave a correlation coefficient that was significant at the $P<0.01$ Ievel.,

The problem of estimating the total leaf area of Centaurea nigra was complicated by the presence of numerous stem leaves (especially near the top of the flowering stem). Including only those leaves less than 4 cm in length, the regression of area on number of stem leaves was calculated using a random sample of 25 plants. The resultant correlation was significant at the $\mathrm{P}<0.05$ level. Area of stem leaves was added to the area of main leaves to give the total leaf area for each plant.

The phenologies for mean total leaf area are presented for the six species in Figures 25-30. Thi.s gives some interesting comparisons between species and between habitats.

Carex flacca shows no differentiation between sites in terms of leaf area, a resul.t which occords with the findings in relation to reproductive effort. Furthermors, it shows very little variation in

Ieaf area over the whole period of study.
Four of the remaining species show a pattern of differentiation between the sites that directly accords with the measurements of total dry weight (Figure 17). This is that the smallest total leaf area occurs in the grassland, the greatest in the quarry and a mid--value in the scrub site. The species involved are Centaurea nigra, Leontodon hispidus, Plantago media and Poterium sanguisorba. The exception to this rule is P. lanceolata which records a lower peak leaf area in the quarry site than would be expected, judged in comparison with the above four species. This however accords with the data on total. plant weight (Figure 17D).

The advanced growth season in the quarry site is shown in the leaf area phenologies for Leontodon hispidus and plantago lanceolata. The leaf area graph starts to decline (due to the death of individual leaves towards the latcer end of the season. : In P_{0} lanceolata this is seen to such an extent that mean leaf area for the quarry plants finishes at a lower level than that for the grassiland site.

The length breadth ratio of a leaf is a measure of its elongation. A mean ratio was calculated for five species from each site. The data (Table 5) were tested using Student"s "t"-test which showed that significantly Lurger ratios (i.e. greater elongation) were found in the scrub populations of Leontodon hispidus and the two Plantego species. This is seen as a plastic response to the higher levels of shade in this site.

TABLE $\quad 4$

RIGRESSION EQUATIONS FOR THE PRLATTONSHTP BETWEEN ITRAI AREA (A) AND ITHE CROSS PRODUCT OF ITEAF LENGTH AND BREADITI (LB)

Species	Site	Equation	Correlation coeffioient,	Significance
				Ievel
MATN LEAVES			$\underline{\square}$	
Carex flacca	All. sites	$A=0.511 B+1.2$	0.98	P 2.0001
Centaurea nigra	Quarry	$A=0.48 \mathrm{LB}+3.2$	0.99	P<0.0001
	Grassland	$A=0.41 T B+1.5$	0.98	P<0.0001
	Scrub	$A=0.38 \mathrm{IB} 3+2.5$	0.94	P<0.01
Jeontodon hispidus	Quarry	$A=0.595 B+1.4$	0.99	P<0.0001
	Grassfland	$A=0.56 \mathrm{LB}+0.6$	0.95	$\mathrm{P}<0.0001$
	Scrub	$A=0.381 B+2.8$	0.98	$\mathrm{P}<0.0001$.
Plantago lanceolata	Quarry	$A=0.45 J .3+0.4$	0.98	POO.O1
	Graissland	$A=0.52 I B+2.8$	'0. 95	P<0.001
	Scrub	$\Lambda=0.37 \mathrm{~L} B+3.4$	0.97	P<0.001
Plantago media	Quarry	$A=0.6 \mathrm{IB}+0.5$	0.99	P<0.0001
	Grassland	$A=0.59 \mathrm{LB}+0.8$	0.99	$\mathrm{P}<0.0001$
	Scrub	$A=0.42 L B+4.3$	0.99	P<0.0001
Poterium sanguisorba	Quarry	$A=0.17 \mathrm{LN}+1.6$	0.94	P<0.01
	Grassland.	$A=0.221 N+3.9$	0.98	P<0.001
	Scrub	$A=0.23 \pi N+0.2$	0.96	P<0.0.1
	(Where LN	$=$ length of pinna	te leaf x no.	of leaflets)

STIP LEAVFS

$$
\begin{array}{ll}
\text { Centaurea nigra } & \text { All sites } A=.2 .3 N+0.8 \quad 0.87 \quad P<0.05 . \\
& \text { (Where } N=\text { no. of stem Ieaves }<4 \mathrm{~cm} \text { longe })
\end{array}
$$

FIGURE 25.
PHENOLOGY OF MEAN ZEAF AREA.

FIGURE 26.
PHENOLOGY OF MEAN LEAF AREA.

FIGURE 27.

FIGRE 28.

FIGURE 29.
PHENQLOGY OF MEAN LEAF PEGE.
250 PLANTAGO MEDIA.

FIGURE 30

TABLE 5

LEAF LENGIH : BREADIH RATTOS

Species	Site	Mean length : Breadth
		Ratio
Carex flacca	Quarry	36.8
	Grassland	43.3
	Scrub	51.7
Centaurea nigra	Quarry	6.6
	Grass.tand	6.7
	Scrub	8.5
Leontoden hispidus	Quarry	13.5
	Grassland	11.8
	Scrub	18.2
Plantago lanceolata	Quarry	12.0
	Grassland	14.1
	Scrub	23.8
Plantago media	Quarry	2.5
	Grassland	2.6
	Scrub	4.1

| Specjes | Sites Compared | TValue | Significance_level |
| :---: | :---: | ---: | :---: | :---: |
| Leontodion hispidus | Scrub and Rest | 2.98 | $P<0.01$ |
| Plontago lancolata | Scrub and Rest | 4.1 .2 | $P<0.001$ |
| Plantago media | Scrub and Rest | 3.87 | $P<0.001$ |

Norts Poterium emeuisorbe not included since no measure was made of leaf breadth.

C. Stem Measurementis

Data for mean stem heights for each site and species are presented in Figure 31. The differentiation between sites is clear for all species apart from Carex flacca. This species shows a very uniform mean stem height throughout. The other species appear to follow the same ordering in relation to sites. The grassland site contains populations wi.th the shortest stems, while the scrub populations represent the opposite extreme in this respect. Samples from the quarry site show values in between the other two.

The greater height of stems in the scrub site is seen as a response to the greater shading effect induced by the Crataegus bushes. The general height of the field layer is greater in this site, showing that it is a general response on the part of all the herbaceous species to increased shade.

PHENOLOGY OF MEAN STEM UEIGHT

CAREX FLACCA.

CENTAUREA NIGRA.

PHENOLOGY OF MEAN STEM HEIGHT

LEONTODON HISPIDUS
c.

PLANTAGO LANGGOLATA
D.

FIGURE 31 (CONT.)
PHENOLOGY OF MEAN STEM HEIGHT.
PlANTAGO MEDIA.

POTERIUM SANGUISOREG.

MEAN
STEM
HEIGHT
(chs)

SImple No.

D. Palatability experiments

The results for the experimental feeding of Cepaea nemoralis on Leontadon hispidus are given below:-

Site from which leaves	
were collected	Mean consumption (dry
	weight) per 24 hours, in

Quarry	24.1 mg
Grassland	23.8 mg
Scrub	27.3 mg

The differences between the three means (averaged from all replicates) were tested using Student's "t" - test. The ' t ' values for comparisons of quarry with grassland leaves, grassland with scrub leaves and scrab with quarry leaves were $1.08,1.62$ and $1.4 ?$ respectively. None of these results were significant at an acceptable level of probability. It was therefore show that the individual Cepaea did not discriminate between leaves taken from different parts of the succession.

The resul.ts of this study are best considered at two levels; reproductive allocation at an individual and population level. Intram specific differences in the proportion of resources that plants allocate to reproductive structures, though not evident at the individual level, are quite distinct at the population level.

The data presented here show no differences between individuals taken from opposite ends of a succession, in terms of reproductive effort. This accords with previous work by Harper and Ogden (1.970) who found that percentage seed allocation in Senecio vulgaris remained within fairly narrow limits ($18-24 \%$) despite several-fold increases in total dry weight and subjection to a range of soil conditions. Only very extreme stress altered this pattern, when individuals failed to flower at all.

These findings suggest that percentage reproductive allocation in mony species is fairly fixed. In adverse conditions, such as nutrient stress or drought, perenuial individuals may simply not attempt to flower at all. This "all-ormothing" policy would be tactically sensible for the plant, since an attempt to flower, despite submoptimal conditions, would run the double risk of reduced seed viability and a reduced chance of survival for the parent plant.

The differences in reproductive effort between sites at the population level are clearly directly correlated with the number of individual.s that actually flower. The most inherently unstable habitat, the quarry, shows (for four species at least) the highest joint (i.e. population) allocation to reproductive structures. This is entirely in accordance with the MacArthur and Wilson (1967) concept of roselection being the dominant force in unstable or ephemeral environmentis.

Conventional theory would suggest that the influence of K-selection would increase with successional status, since the environment becomes increasingly stable and predictable. The scrub site however appears to contain some populations that have a higher collective reproductive effort than corresponding populations in the grassland site, the latter being successionally less advariced.

The explanation lies in viewing the three different habitats in terms of the level of both inter. and intram specific competition. Ihe quarry site represents a relatively open environment where the plant cover is less dense. As such, the site presents a greater freedori from competition and therefore a greater availability of rosources to each plant. This means firstly that plants can attein a size that ie compatible with viable seedi-production and secondly that the seedling offspring have a greater chance of establishment and survival in the future as seeds rather then vegetative propagules.

The grassland habitat represents the opposite end of the epectioun where, with a much higher plant density, competition for avajuble resources is very fierce. Many individuals will be crowded out before getting a chance to flower and will therefore rarely experience conditions of su:ificiently abundant resources to trigger off the mechanism that indtiates the production of flowering stems. In addition, for those individuals that do manage to flower, the chences of offspring seedling establishment are severely reduced by the dense herbaceous cover. Tomm (1972) found, in permenent plots oif perennial herbs uncer competitive conditions, that the seedling population, though reasonably large, had a very low chance of survivol. Grime (1977) lists low aced production as part of the general competitive strategy in highly competiture habitats. Thus the population as a whole devotes a greater proportion
of the available energy to the growth of persistent vegetative onganss thus conferring advantages in a crovded, competitive environment (Harper and White, 1971!.

The patterns observed in the scrub site are less easily explained. The bjotice limi.ting factors make this habitat a ressonably stressed one for horbaceous perennials. the occurrence of Cxataegus monocran introduces shades and possibly also drought ' (through competition for Wateris as potertially severe stress factors. Stresswtolerant plants hovever aro usuelly shy flowerers (Grime 19'77) 。 It seems more likely that the slightly lower level of competition, aids more frequent flcwering.

The reduced competition in the scrub comuninity may be due to several factors, pable l shows a decline iri the number of grass socies and a reduced abundance of the two dominants: Secterfa albicans and Fistuca rubra. Ihis may well be due to the differential adaptiveness of crasses (as opposed to forbs) to increased levels of shade and jeaf litter deposition by monogna. Sydes fig78\} has show veny convincingly thet Poa trivialis and many other grass spocies are advensely affected by the aubunt of accumulated tree litter. Total surface orea of lititer was shown to be more important than weight; which suggeats that tine juhibitory affect operates through shading. Competition from grasee may be moxe inportent to the perennial foubs than competition from species of similar morphology, through the effects of sheding ait the field layer level. In short, shading and litter deposition from the Grataras bushes may affect the relative abudance of erass speciea, which in turn have the greatest shading effect on the forbs.

Thns it appears thet populations from the guamy behave more like onnales attempting to produce seed fairly frequentily. The grasentod
populations however behave more as true perennials, with less frequent flowering and, possibly longer individual life.

It is clear therefore that the decision whether to flower or not is crucial to the ultimate reproductive effort of the population. It has been shown that total weight of leaves (Figure 24) does not bear any obvious relation to whether individuals flower. This is presumably therefore also true for leaf area. It is possible however that this result overlooks the fact that different component parts may compete for the same fixed supply of resources. Thus, growth in one compartment or module (such as inflorescence stems) may be at the expense of others (such as leaves)。 This j.s clearly shown in the percentage allocation diagrans for ${ }_{2}^{2}$ enecio vilearis given by Harper and Ogden (1970) for IUssilago farfara (Ogden 1974) and for Chrycianthemum segetum (Howarth and Williams 1972), where the start of allocation to flowers and receptacles coincides with a dramatic reduction in the percentage dry weight of leaves. Leaf area: number and dry weight may therefore actually decrease to allow for erowth of reproductive organs. Whe overlap of leaf dry weight for flowering and non-flowering individuals (Tigure 24) may therefore not be altogether surprising. It seems likely that the critical turning point between flowering and non-flowering is induced by the competitive effects of other plants. There may be a particular nutrient which controls this, which is in short supply in the grassland, but which becomes abundant Crelative to the number of individuals) in the less competitive site。

The hypothesis is therefore that competition suppresses flowering, since dense vegetaition canses a greatly reduced chance of seedling establishment and successo lithe renoval of competition jin more open habitats allows a greater total size to be attained as well as more
frequent attempts to flower and produce seed.
The clear demonstration of intermsite differences in time of anthesis beg the question whether this j.s genetic or merely a plastic response to environmental conditionso Clearly the answer to this can only be established by growing seed, collected from different sites, under constant environmental conditions and observing what differences persist.

The likelihood of these differences being genetically fixed is small, due to both the physical and temporal proximity of the three sites. The grassland and scrub sites are adjacent to one another so that there is probably sigrifjeant gene flow and total mixiug of enotypes. Similarly, the quarry bite is not sufficiently long establighec to contain a significently different gene population from the originel granclend that existed before the quarry was created.

Tine of anthesis therefore seems to be in response to mairomental conditions. In the quarry, the relevent liniting factor its probebly summer drought, which forces individuals to complete as much oi their flowering cycle as possible before the full impact is made. In the grassland population, the main limiting factor is not ervironmental but biotic mamely the effect of competition from other individuals. These two limiting factors can be regarded as operating in densitymindependant and density-dependant ways respectively, the former operating at an earlier stage in the flowering season.

This accords with the findings of Law et al. , (1977) who compared populations of Poa annue experiencing predominantly densitymdependant and density-jndependant regulation. They found that the two showed characteristic lifehistory differences that were genetic. Selection under densi.ty-independent regulation produced individuals that had a
shorter pre-productive period, a higher seed output earlier in life and shorter lives in general.

The time of anthesis for the scrub site can be viewed as a midstage between these two. The density-dependant competitive effect is not as pronounced as in the grassland population. It is possible that the slightly earlier flowering is also due to the effects of shade later on in the season, with the gradual extension of the Crataegus canopy and the increased density of the field layer.

The variation in total plant weight, stem height, leaf area and the leaf l.ength : breadth ratio between sites are all environmentally induced. The first three would be in response to available nutrient and water resources, the fourth a response to shadine jn the scrub. The elongation of leaves serves to nable the plani's photosynthetic apparatus to attain a greater height and therefore compete more effectively for light.

Responses to density in the form of dry weight of pient parts has been well documented in the literature (Palmblad 1968; Harper 1977), as have Jeaf area responses to shade (Grime, 1977)。 In this case, all are most probably plastic rather than genetic responses.

The conclusions to be drawn from the data on palatability of Leontodon leaves to Cepaea nemoralis are necessarily very tentative. Tvo arguments can be distinguished. The first takes the data at face value and conclucies that plents from different parts of a succession do not differ in their allocation of resources to herbivore avoidance (or repulsion). The second argument notes that Cepaea nemoralis is a very generalised herbivone; having been reported to accept a. wide varity of fociümplant specjes (Grime et al., 1968; Williamson 1976). It is thus possible that relatively small differences in palatability between
leaves taken from different sites may be ignored by Cepaea, while being quite significant for other more important herbivores, such as the Lepidoptera and Hemiptera.

There are several stumbling blocks in drawing conclusions from a study of this kind. Firstly the range of the succession may be regarded as too narrow. The environmental conditions are all fairly simil.ar m climate, soi.J. series, geology. The onl.y differences are in the percentage gromd cover, the species density and composition and the degree of shade and drought. Arguably these differences are not sufficiently great to induce significant changes in plant response. The studies by Abrahemson and Gadgil (1973) included sites from a very wide range of environmental conditions, from a dry, disturbed site to a hardm wood conmunity. It is possible that a greater range of environmental conditions for this study, as well as greater geographical separation (to eliminate gene flow) would provide some differentiation in terms of individual reproductive effort.

It is generally accepted that perennials, having the choice beiween seed production or vegetative (clonal) reproduction, wi.J.I use the former in unstable habitats that experience density-independant population regulation and the latter in crowded environments, where competitive ability and size are crucial (Harper 1977). Tamm (1972) found that Primula veris inclividuals in a crowded environment were very long lived, flowered very rarely and resorted to the replacement of the few dead individuals by vegetative propagation. It is quite possible that the grassland perennial populations studied have a higher rate of clonal. growth than their counterparts in the unstable quarry site, where individuals behave more like annuals, producing seed every year.

A further difficulty concerns the consideration of root biomass.

The practical difficulties involved in accurately measuring this component would have been formidable. In common with other workers (Abrahamson and Gadgil, 1973; Gadgil and Solbrig, 1972) it was therefore decided to neglect all underground plant tissues.

Much controversy has centred around the choice of plant variables to use as measures of "allocation". The whole concept of allocation is rather vague since it has conotations involving a range of resources: energy, major nutrients and time. Harper and Ogden (1970) have argued that dry weights of component farts are not sufficient since they give no indication of the energetic value of each component (i.e. the production cost to the plant). They have therefore determined the average calorific content of each component and used this to correct subsequent measurements of dry weight. This still begs the question as to whether energy allocation is relevant, since in some cases the content of certain oritical elements may be of paramount importance.

Hickman and Pitelka (1975) argue that time-consuming calorinetry is not necessary to determine energy allocation patterns in plants, since, for four ecologically diverse species, there was no significant difference between the patterns of energy allocation based on calories and those based on dry weight measurements. It would appear therefore that the findings of this siudy are legitimate indications of energy allocation.

The final point concerns the measurement of reproductive effort. Certain workers have used seed as the measure of allocation to reproduction (Harper and Ogden, 1970; Ogden, 1974). This study has used the $d x y$ weight of all reproductive organs : inflorescences, receptacles, buds and seeds. This accords with the methods used by Abrainamson and Gadgil (1973) and Gadgil and Solbrie (1972).

Two arguments are presented in favour of this approach. Firstly, it is the simplest and quickest method for an extensive study such as this. Secondly, it is a more realistic measure of the reproductive potential of a species in a particular site. Seed weight measures the final reproductive achievement after the effects of stress (shade, density etc.) and disturbance (grazing, seed predation etc.) have modified the patterns of allocation。 Dry weight of the whole reproductive structure is a. more accurate estimate of reproductive "intent" or true effort, before this has been modified by external conditions.

The results of this study appear to indicate that individuals within a species adopt fairly fixed strategies towards reproductive eiffort, in terms of the proportion of resources devoted to flowering and seed production. This is atrategically sound for perenniaj. sperjes that con delay reproduction and wait for a season that provides the necessary conditions for seed production. Any other strategy might jeopardise the viability of seed produced and/or the survival of the parent plent.

The differences between populations in terms of the numbers of individuals flowering is clearly a plastic response to environmental conditions, such as shade and drought, and to the density-dependant effects of competition.
I. The phenology of dry weight allocation of plant tissue to major component parts was studied, over a twelve week period in six common herbaceous perennial species. Samples were taken from three field populations, representing a successional sequence from open quarry, through ungrazed grassland, to Grataegus scrub.
2. Reproductive effort, defined as the percentage allocation of dry weight plant tissue to reproductive structures (buds, inflorescences, receptacles and seeds) was calculated for each population, arranged to include all individuals, for each of the sampling periods. The different phenologies showed distinct intrarspecific differences in peak reproductive effort, for four of the six species studied. In thene four species, greatest population reproductive effort was shown in the disturbed quarry site, while the grassland populations showed the lowest values. The scrub site was intermediate between the other two.
3. Data on the relative percentages of flowering (ine. showing some sort of reproductive structure) and nonmflowering individuals in each population showed that the non-flowering percentage was very high in the grassland populations and correspondingly low in the quarry populations. This suggested that most of the intra-specific variation in poprlation reproductive effort was explained by the proportion of individuals that actually flower.
4. Treating the flowering part of the population as a separate subsample, it was shown that average individual reproductive effort was very constant for all three sites, even though there were marked differences in mean total plant dry weight.
5. The data for mean total plant diry weight for the flowering sub-sample showed, for most species, lowest values in the grassland, increasing, via the scrub site, to highest values in the quarry population.
6. Data on the dry weight of leaves in relation to reproductive effort, for individual plants, showed that there was no precise dividing line between those individuals that flowered and those that di.d not.
7. Data on time of anthesis showed that quarry populations, for five species, was advanced in relation to the other two sites, sometimes very markedlyo Generally, the grassland populations were the last to flower.
8. The intra-specific differences in leaf-area and stem height generally followed the same order ; smallest in grass.land populations and lergest in quarry populationso Leaf length : breadth ratios wore found to be greater in the scrub populations of three species.
9. Leaf palatability experiments using Cepaea nemoralis showed that the snails did not discriminate between leaves (of the same plant specjes) taken from different parts of the succession.
10. It is hypothesised that individual perennial plants maintain their reproductive effort in any one year (if they flower) fairly constant, despite changes in the successional status of the habitat. The variation between sites in the number of individuals that flower, the time of antiesis and the various plant physical dimensions is seen as a plestic response to environmental conditions and the degree of competition.

ACKNOWLEDGEMENTS

I would like to acknowledge the help received from Dr K Thompson, my supervisor, in the form of many stimulating and useful discussions and the constructive criticism of the manuscript.

Dr J P Doody (NCC) gave assistance in the choice of sites and useful background information on each.

I would also like to thank Mrs Christina Webb for patiently typing the final script.

Financial assistance for this study was provided by a grant from the Natural Environment Research Council.

SAMPLTNG DATES

Sample Number
1

2

3

4

5

6
7
8
9

11
12

Date when somple was collected
24.5 .78
31.5 .78
7.6 .78
14.6 .78
21.6 .78
28.6 .78
5.7 .78
12.7 .78
19.7 .78
26.7 .78
3.8 .78
9.8 .78

RIFPRENCES

Abrahamson，WoGo and Gadgils M．（1973）。 Growth form and reproductive effort in goldenrods（Solidago，Compositae）．Am．Nat．107，651－661．

Andel，J_{0} van and Vera，$F_{\text {．（1977）．Reproductive allocation in Senecio }}$ sylvaticus and Chamaenerion angustifolium in relation to mineral nutrition．J．Ecol．65，747－758．

Clapham，AoR．＇Gutin，To and Warburg．EoF．（1962）．＂Flora of the British Isles＂。 Cambridge University Press，Iondon．

Cates，RoGo and Orians，GoHo（I975）．Suscessional status and the palatability of plants to generalised herbivores．Ecolony 56， 410－418。

Doody，J．P．（1977）．Ithe conservation of the semi－natural vegetation of the nagresiar Limestone．I．The Durham escarpment．The Vasculum． 62 （3），17－32．
 evidence from wild flowers and some theoretical considerationse An．Nat．106，14－31．

Gaines，MoSo，Vogt：KoJeq Harrick，JoJos，and Caldwell．J．（1974jo Reproductive strategies and growth patterns in Swiflowers（Helianthus）． Am．Nat．103，889－894．

Grime，J．P．（1974）．Vegetation classification by reference to strategies． Nature，250，26－32．

Grime，JoP．（1977）．Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionaxy theory．Am。Nato111．1169．1194。

Grime，J．P．，MacPherson－mbetrart，SoF．and Dearman，RoS．（J．968）An investigation of leaf paiatability using the snail Cepaea nemoralis T_{s} ， J．Fool． $56,405-420$.

Harper，J．I．（1967．）．A Darwinian approach to plant ecology．J．Ecol． 55，247－270。
Harper，JoL．（1977）＂Population Biology of Plants＂．Academic Press．
Harper，JoL．and Ogden，J．（1970）．The reproductive strategy of higher plants．（i）The concept of strategy with special reference to Senecio vulgaris I ．Jo Ecol． 58 ，681－698．
Harper，JoI．and White：J．（1971）．The dynamics of plant populations． Proc．Adv．Study Inst．Dynamics Numbers Popul．（Oosterbeck，197C）． 41－63。

Hickman，JoC．（1975）．Environmental unpredictability and plasti．c energy allocation strategjes in the annual Polygonum eascadense． J．EEOL－63，689．．701。
Hickman，JoC．and Pitelka，$J_{s o} F_{0}(1975)$ ．Dry veight indjeates energy allocation in ecological strategy analysis of plants．Oecologia， 21，117－124。

Howarth，SoFo and Williems：JoTo Ghryanthemum segetum．In Biolgioal Flora of the British Isleso Jo Ecol．60；573－584。（1972）
Jermy，AoCo and Tutin，ToG．（1968）．＂British Sedges＂．Botanical
Society of the British Ifles，Iondon．
Law，R_{0} ，Bradshaw：A．Do and Putwain， Po $_{0}$（I9＇77）．Life history veriation in Poa annua．Erolution 31；233－246．

MacArthur，RoHo，and Wileon，E．O．＂The Theory of Is．l．and Biogeography＂． Princeton Uniwersity Press，Princeton，NoJ．

Nature Conservancy Council and the Naitural Rovironment Research Council （1977）＂A Nature Conservation Review＂（ed．D。Ratciliffe），Cambridee Unj．versity Press，Iondon。
Nie，NoHo，Hull，GoH．，Jenkins，JoG＝，Steinberenner，Ko and Bent；D．Ho （1975）＂Statistical Packages for the Social Sciences＂。 McGraw Hill．

Ogden，J．（197／4）．The reproductive strategy of higher plants II． The reproductive strategy of Tussilage firfara I．J．Ecol．62， 291－324．

Otte，D。（1975）．Plant preference and plant succession．Oecologia 18 （2），129－144．

Palmblad，IoG。（1968）．Competition studies on experimental populations of weeds with emphasis on the regulation of population size． Ecolopy，49，26－34．

Pianka，ErRc（1970）。 On r－and K－selection．Am．Nato 104，592－597． PossmCrajeg，S．（1960－63）＂Drawings of British Plants＂。G。Bell and Sons．London．

Shimuell，DoW．（1968）．The phytosociology of calcareous grassland in the British Isles．Ph．D．Thesis，Durham University．

Siegel，S．（19560．＂Non－parametric Statistics for the Behavioural． Sciences＂。 McGraw－Hill Kogakusha，tokyo．
Sterk，FrF．（1975），Coastal and inland populations of Anthyliis vulneraria．Acta Boto Neerl，24，31．5－321．

Sydes，C．（1978）。 In：The Unit of Comparative Plant Bcology（NERC）． University of Sheffield，Annual Report，1．978。

Pamm，Co．（1972）．Survival and flowering of some perennial herbs． III The behaviour of Primula yeris on permanent plotiso Oikos 23，159－166．

Williamson，Po（1976）。 Natural diet of the landsnail Cepaea nemoralis． Oikos 27，493－500。

Vasek，F．C．and Clovis，J．F．（1976）．Growth forms in Arctostapleylos glauca．Am．J．Bot． 63 （2），189－195．

