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ABSTRACT

For a complex semi -simple Lie algebra g, Richardson's dense orbit theorom
sives a map between conjugacy classes of parabolic subalpgebras in g and conjugacy
classes of nilpotent elements. Unfortunately, this map is not surjectiv:, in gene-
ral, and hence does not give a direct classification of the nilpotent conjugacy
classes in g. Despite this, the theorem is used by Bala and Carter to produce an
indir-ct classification of the nilpotent conjugacy classes in g.

The map is not injective, either, and this thesis attempts to discover a
necessary and sufficient condition for two parabolic subalpgebras to give the same
nilpbtent conjugacy class under the above map. Springer conjectured that associated
parabolics would give the same nilpotent conjugacy cléss. The problem was also
raised in another form by Dixmier in his work concerning the distribution of nil-
potent polérisable elements in g. He conjectured a generalisation of Kostant's
results on the regular nilpotent elements. We prove both these conjectures correct
s, the method of proof being inspired by Dixmier's work.

Unfortunately, the necessary and sufficient condition is clearly more comp-
licatgd than this and we give two examples (one trivial, one non-trivial) of
non-associated parabolics giving the same nilpotent conjugacy class under Richard-

son's map
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INTRODUCTION

Let G be a simple algebraic group over an algebraically
closed field k. Let P be a parabolic subgroup of G (i.e.

a subgroup of G that contains a maximal connected solvable
subgroup). P decomposes as a semi-direct product P = L.U.
where L is a reductive subgroup of G (called a Levi subgroup)
and U 1s the maximal normal subgroup of P consisting of
unipotent elements (the unipotent radical of P).

One central theorem in the classification of the con-
jugacy classes of unipotent elements in G by Bala and Carterl
is the theorem of Richardson12 which states that there exists
an element u in U such that the P - conjugacy class of u is
open, dense in the unipotent radical U. This theorem gives
a map between conjugacy classes of parabolic subgroups of
G and conjugacy classes of unipotent elements in G, by
associating to each parabolic subgroup P the conjugacy
class of its dense orbit elements. In general, this map
is neither injective nor surjective. All unipotent
conjugacy classes in G do not arise as the dense orbit of
a parabolic subgroup on its unipotent radical and two non-
conjugate parabolic subgroups can give rise to the same
unipotent conjugacy class. The problem we are concerned
with, 1s to discover a condition for two non-conjugate
parabolic subgroups to give the same unipotent conjugacy
class.

Two parabolic subgroups P and Q are said to be
associated if their Levli subgroups are conjugate. Springer

conjectured that assoclated parabolic subgroups have

conjugate dense orbits and this conjecture is proved



correct in a paper8 produced in collaboration with R.W.
Richardson. In SL (n, K), it follows that the map introduced
above 1s a bijection between classes of associated parabolic
subgroups and unipotent conjugacy classes. Unfortunately,

in general, there are non-associated parabolic subgroups
which have conjugate dense orbits and two examples of this
situation, one trivial and one non-trivial, are given in

this thesis.

In this thesis, the original method of proof is used,
in the case where g 1s a complex semi-simple Lie algebra
and G its adjoint group. In the paper (attached as an
appendix) the result is proved in general by a neater proof.
The method of proof was inspired by Dixmier's work on polar-
isations4, in connection with the classification of infinite
dimensional irreducible representations of finite dimensional

Lie algebras.

Let g be a complex semi-simple Lie algebra with G its
adjoint group. Then G acts on g via the adjoint action.
Let P be a parabolic subgroup of G, with Lie algebra p. P
decomposes as a direct sun{L+4i, corresponding to the Levi
decomposition P = L.U of P. Richardson's theorem, in this
case, states that there exists an element e in_g_such that
the P-orbit of e (under the adjoint action) is open, dense

in W.

Ozeki and Wakimotoll have proved firstly, that all
polarisations are parabolic subalgebras (i.e. the Lie algebras
of parabolic subgroups in G), and secondly that any nilpotent

element e which admits Q as a polarisation, belongs to the



dense orbit of P acting on the nilpotent radical u.
Dixmier4 describes elements of g which admit a
polarisation as limits of certain semi-simple elements.
In particular, this gives a way of describing a nilpotent
element in the '"dense orbit" as a limit of certain semi-
simple elements. This approach enables one to prove
Springer's conjecture and also to answer certain questions
raised by Dixmier as to the distribution of those nilpotent
elements, which admit a polarisation.
Finally I would like to thank my supervisorm Professor
R.W.Richardson for all his help over the past two years.
I alsco acknowledge my source of finance, the Science Research

Council.



CHAPTER ON.

Let g be a semi-simple Lie algebra over the complex
field.

Let G be its adjoint group. G acts on g via the
adjoint representation.

1.1) Definition

A Borel subalgehra of g is a maximal solvable subalgebra
of g.

1.2) Definition

A parabolic subalgebra of g is any subalgebra containing

a Borel subalgebra.

Let p be a parabolic subalgebra of g. It is well known

that p decomposes as a direct sum L + n where L is a

reductive subalgebra (a Levi subalgebra) and n is an

ideal in p (the nilpotent radical).

1.3) Theorem (Richardson)

i) There exists an e in n such that e belongs to only
a finite number of conjugates of n.

ii) Let G.n = % g.e : for all g in G, e in n-% Then
G.n is a closed subvariety of g of dimension equal
to dim g - dim E/n.

g il

1ii) G.n contains a unique dense class C of the same

dimension as its own. In this case, C n n is

dense in n and forms a single class under P.
Proof

12

See Prop 6 p. 23.

Remark
Throughout this thesis, underlined lower case letters

will denote subalgebras of g and the corresponding upper




case letters will denote the corresponding subgroup of G.
e.g8. p and P above.

Choose a Cartan subalgebra E of g and let‘f denote the
root system of g with respect to h

Choose_ﬂ_a fundamental system of.§-and let J be a subset
of_rr.

Let §" denote the set of positive roots of ¢ determined
by the choice or 11 and let?ﬁ& denote those roots which are
integral linear combinations of the elements of J.

Let g6 denote the l-dimensional root subsnace of g

corresponding to the root r in?E:

g has a direct sum Cartan decomposition

it
)
+
s
s

g=1

Let p; = h +‘§E.5r +-jg-5r. This is the standard

parabolic subalgebra associated to the subset J.

Every parabolic subalgebra of g is conjugate to a unique
standard parabolic subalgebre,Pk? for some subset K of_Trl
In this case, n; = ;Ez gr is the nilpotent radical and one

r;w§*<§:
J =r

can take L =h + f;“g as the Levi subalgebra in the Levi
J_

(_\.V\.E_;

|

decomposition.
We now define a partition of the semi-simple elements as
follows:

Let LgJ = E Xin :r (X) =0 r in ?§}
=% 0 otherwise'i

1.4) Definition

The cone g§J assocliated to J, is the G-orbit of the



subspace LﬁJ

If Y€ g, let gY denote the centraliser of Y in g

1.5) Definition

~
The extended cone g3 5 equals

! . = , . Y
%Y in gg; | dim g = L+ llei,where
L is the rank of g.
1.6 Remark
e Y_ S —
If Y& hg, then g _£+Z g, _l_,J
’lv\‘i')_j
1.7 Lemma

The cones ggJ form a partition of the semi-simple elements
of g
Proof

Let s be a semi-simple element of g.

Up to conjugacy, one can assume that s & h
- Z r in$ : r (s) = O %

ﬂ} is a root system. (see Bourbaki® cor. p 145).
2

e

Let
By Bourbaki“ p. 165 prop 24, one can choose a fundamental
. f . /
system'TT of ¢ such that there exists a subset J of-Trwhich
forms a fundamental system for ;E.

Y
Up to conjugacy, one can assume that-n'= Tr and that sézg§J

Two subsets J, K of the fundamental roots can give rise to the
Same cone ggjy- We will now derive a condition for this to
happen.

1.8) Definition

Two parabolic subalgebras p and g are associated if their

Levi subalgebras are conjugate, under G.



1.9 Lemma
Let _Ll} L2 be two Levi subalgebras of g containing

l’(;. Let their root systems be_§l and §2. Then Ll’ l,:g are

conjugate under G if and only if’@l, and§}2 are conjugate under
the Weyl group W.
Proof
If El’ ?_{2 are conjugate under W, then clearly, L—l’ Lg
are conjugate under G.

Suppose that X'Ll = L for some x in G. Then X.E

=2
and L are Cartan subalgebras in L o hence there exists a y

in L, such that X.E = y.h

2
-1

So, y'x. h = h and y- 1

x € Ny (L), the normaliser of

L in G.

-—

Thus, y"lx corresponds to an element w in W such that
-1 ' -1
w. L 1 =y * L 1 = 7 L 2 = .Lz
Let:réf§l_and let erci E 1 be an element of the root space

corresponding to r.

€l

Then w. e, = e (.- SO wir)e £, d.e.w ($,) e &,

Similarly, w i (§2) c z:l’ which proves the lemma.
1.10 Lemma
The following conditions are equivalent:

1) p; is associated to p,

2) 83; = B8z
Proof

Assume that P is associated to P -

—

By lemma 1.9, there exists a w in W such that w (E%) =<,

Via the normal identification, one can get an action of the



Weyl group on the Cartan subalgebra.
Under this action

w(th) = g X in g : (w_l(X)) O r in

il

e

J
# 0 otherwise%

2 X in E : w (r) (X)

0O r in E?J

#Z O otherwise %

LZ’k.

i.e. g3; equals g3z,
Assume that g% 3 equals 8-
By remark 1.6, it follows immediately that LJ is conjugate to

L.



We will now digress to give a brief survey of Dixmier's
work on the infinite dimensional irreducible representations
of finite dimensional Lie algebras. The reference for this
chapter is (3).

Let A be a ring.

2.1 Definition

An ideal P is primitive if P is the kernel of an
irreducible representation of A.

Let g be any finite dimensional Lie algebra over an
algebraically closed field. There is no satisfactory method
of classifying the infinite dimensional irreducible represent-
ations of g.

Let U(g) denote the universal enveloping algebra of g.
Regard g as being contained in U(g) via the Poincare-Birkhoff-
Witt theorem.

To study the representation theory of g, one can study
the representation theory of U(g), as the following proposition
shows:

2.2 Proposition

Let V be a vector space, R (resp R') be the set of
representations of g (resp U(g)) in V. For all e in R, there
exists a unique el in R ’ which extends @ and the map e — Q’
is a bijection of R into R’

Proof

See (3) Cor. 2.2.2 p. 73.

Dixmier proposed that, instead of attempting to classify the

infinite dimensional irreducible representation of g, one



should determine the set of primitive ideals in U(g)
(denoted by Prim U(g)).

In order to study Prim U(g), one needs the idea of an
induced representation.

Let B be a Lie subalgebra of g and let © be a represent-
ation of h with representation space W.
Let U(b) denote the universal enveloping algebra of‘k.

Form V = U(g) & W where one considers

U(h) as acting U(g) by right multiplication.

U(g) acts on V, via left multiplication.

Let T be the representation of g corresponding to the action
of U(g) on V. Then T is the representation of g induced by

g
6’, denoted by Indp (p)-

For the case of g a nilpotent Lie algebra, the problem
of determining the structure of Prim U(g) has been completely
solved, using polarisations.

Let g* denote the dual of g.

Let P belong to 5* and let h be a Lie subalgebra of g.

2.5 Definition

é is subordinate to f if C\kis a l-dimensional represent-

ation of \'_\

2.4 Definition

h is a polarisation of f if the dimension of h is maximal
among the set of subalgebras of g subordinate to f.

Kirillov has proved the following programme, for g a
nilpotent Lie algebra, over an algebraically closed field of
characteristic zero.

i) for all f in 5*, there exists a polarisation h of f.



i1) given f, h as in (i) then Indﬁ ( @h) is
irreducible. )
Regard Indg (Q‘ ) as a representation of U(g), via 2.2.
Denote the kernal of Indg (CL\) in U(g) by P(f, h)
iii) P (f, h) is independent of h
call it P (f).
There is, therefore, a map Dix: g*———————> Prim U(g)

f

> P (f)

iv) Dix is subjective

v) P (fl) =P (f2) if and only if f,, f, are in the
same orbit for the adjoint group G acting on g*.



CHAPTER THREE

Let g be a complex semi-simple Lie algebra, G its

%
adjoint group and let g denote the dual

Let f ¢ g*

set gf = § Ying: £ (TY, 2]) = 0 for all z in g}

3.1 Definition

A polarisation p of f is a Lie subalgebra p of g

such that

i) ¢} - 0
[P, D]

Ty

=

ii) dim p = (dim g + dim g

Remark

Condition (i) is clearly equivalent to definition 2.3
above.

Condition (ii) is equivalent to definition 2.4 by Dixmier
(3) p. 54%.

Let B denote the Killing form of g.

As B is non-degenerate, one can identify g and g* Via B
to get the following definition:

3.2 Definitio

Let X € g.

A polarisation E of X is a Lie subalgebra Q of g such that
i) B (X, [p, pl) = O
ii) dimp = % (dim g + dim g¥).

3.% Definition

An element X in g is called polarisable 1f it admits a

polarisation.
The following result gives the connection between nil-

potent polarisable elements and Richardson's dense orbit theorem

(1.1).



3.4 Theorem (Ozeki and Wakimoto)

Let X € g and let Q be a subalgebra of g
The following are equivalent:

i) p is a polarisation of X

i1) p is a parabolic subalgebra of g and the space/X, p |
coincides with the nilpotent radical of Q.

See (11) Thm 2.2 p. L4y,
3.5 Corollary

The nilpotent polarisable elements are precisely those
elements which occur as the dense orbits of parabolic sub-
groups on the nilpotent radicals of their corresponding
subalgebras.
Proof

Let X be a nilpotent element in g and let p be a polar-
isation of X.

By 3.4, p is a parabolic subalgebra of g and the space
|X, p|coincides with the nilpotent radical n of p.

As p is self-normalising, -[X, g] e p implies that
X € p.

Write X = | + n where LeL and nen

and p = + n is a Levi

L
decomposition for Q.
[X, Q]gp_ implies that[L, L] = 0
i.e. that L belongs to the centre of L (%)
L is a reductive subalgebra and, hence, its radical is its
centre 3 (L).

As p = L @ n is a direct sum, the radical of p = K(L) + n

i.e. by (*), X € radical of p.



But X is nilpotent, so X € n

PN

As /X, p| = n, dimp* = dimp - dimn

or dim Zg (X) = dimp - dimn -
Where ZE (x) = S p in P : p.X = IX%

i.e. dim P (X) = dim g or E—zij = g

In order to study the polarisable elements of g, Dixmier
introduced the partition of the semi-simple elements as in
Chapter I and proved the following result:
3.6 Theorem (Dixmier)

The polarisable elements in & are precisely the union
of the g;J as J runs over all subgets of .
Proof

See (4) Prop 2.6

3.7 Definition

Let X € g
X is regular of dim g = L (the rank of g)

If J 1is the empty set,

then
a) the cone g4 1s precisely the regular semi-simple
=T
elements
b) the closed cone'éu; is the whole of g
and ¢) the extended cone gw is the regular elementsof g
For thlS case, Kostant has proved the following: ‘

3.8 Theorem (Kostant)

1) The set of regular nilpotent elements in g is non-empty
and forms a single orbif under the action of_G.

ii) The set of all regular nilpotent elements isvdense in
the set of all nilpotent elements of g

Proot

. See Kostant (9) Cor 5.5 p. 1000

-



Dixmier conjectured that this result holds for an

arbitrary cone Q. We prove this conjecture correct.
=1



CHAPTER FOUR

Before proving Dixmier's conjecture which, as we shall
see, also proves that associated parabolics have conjugate

dense orbits, we will prove a technical lemma.

4.1 Lemma
Let p be a parabolic subalgebra, letn = §Y in p:
B (Y, p) = 03}

then Q is the nilpotent radical of Q.
Proof

As B 1s G-invariant, assume that

where J is a subset ofmﬂ‘, the fundamental roots.

Let e belong to n and let

e = H +,§:Cr e, + 5- Cn. €,
) INE
where N S
e € 3
Heh, c, and e, ¢ g,
As een, B (e, g) = B, h) = B(e, g) = 0
for all s in }J, r in It\%_
- -3

Recall two orthogonality properties of the Cartan decomposition

i) B (gr, gs) = 0 ifr+s X% O
ii) B (e h) = 0 forallrin§

See Humphrey's (7) p. 36.

By i) and ii) above

B (e,g,) = O if and only if ¢ = 0 for all s in % |
B(e,n ) = O if and only if H = O
B (e,g,) = O for all r in 3T

Hence e ¢ n if and only if e belongs to the nilpotent
radical of p.

We are now in a position to prove our main result.



4,2 Theorem
Let 835 be as above
i) The nilpotent elements in gg; form a single G-orbit
and this orbit is G(S)i) where j:lsis the dense orbit -
of PJ acting on the nilpotent radical EJ.
ii) The nilpobent elements in g;I form a dense subset
of the nilpotent elements in égJ.
Remark
We will prove that the set of nilpotent elements in
'EEJ is precisely G(gJ).
Proof
Firstly, we will prove part i).
Let e be a nilpotent element of g%&.
Then there exists a sequence Vs Yps eeeVpees tending to
e (v, in gs;)
As y_ < gz, sety, = g, (x)) g in G, x_ in L:r
If X & LgT, then le, EJ] = QJ and, by 3.4, B is a polar-
isation of X.
So, g (EJ) is a polarisation of g, (x_ ) = y,£ for all i.
Consider the Grassmanian of L+ (1% 1"|§'>4_\) planes in g

As the Grassmanian i1s compact, one can consider a sub-

sequence
g,(ps)-- - & (r ;) which tends toa limit Q.
Clearly, Q is a polarisation of e 3.0 7

. . G ; :
C nsider the map < /PJ —_— G‘(BJ)
é = gPJt——'7 g (p J)
This is well defined and continuous

P; is a parabolic subgroup of G, so G/PJ is complete



By Mumford (10) Thm 2 p 11k,

G/PJ is compact in the Haus%dorff topology.

So B, B,

éq ) éﬁ tending to a
As & is continuous, & (g; )
fe. @ = g (p,) for some
By Cor. 3.5, e ¢ G (523)

has a convergent suhsequence,

limit g.
(&, )---

g

tends to < (g)

To prove part ii) one proceeds as follows:

Let e be nilpotent in éa‘I

then

by similar arguments to part i) there exists a P

to p; under G, such that
1) B (e, Lp pl)

and il) eep

By lemma 4.1 B (e, [ p, £]>=

conjugate

= 0

B([e, pl>,p) = O

implies that [Te,_g] _§ Q, the nilpotent radical of p

By the proof of Cor 3.5, [ e,
that e én.

So, the nilpotent elements in

The result follows from Thm 1.

pl €n and e nilpotent implies

é§J are precisely G (QJ).
3

Associated parabolic subalgebras have conjugate dense

orbits.
Proof

Up to conjugacy, one can

assume that the parabolic sub-

algebras are the "standard" subalgebras p; and p,.

The result follows by lemma 1.

10 and thm 4.2



CHAPTER FIVE

Unfortunately, non-associated parabolics can have
conjugate dense orbits. The object of this chapter is to
give two examples (one trivial and one non-trivial) of non-
associated parabolics having conjugate dense orbits.

We will need to know when two parabolic subalgebras are
associated in terms of their Dynkin dlagrams of their root
systems.

5.1 Lemma

Let ¥ be an indecomposable root system. Two parabolic
subsystems of § are equivalent under the Weyl group of:§
if and only if their Dynkin diagrams are the same, except
that in ng hnzZJ there are two non-conjugate systems of the
type Ail+ Aig'--- *‘Aik where
satisfying (L, + 1) + (L, + 1) +--- + (L

L are odd integers

12 Loree Iy

gt 1) = 2m, and in

E7 there are two non-conjugate systems of type A, + A A_. and

3 1775

Ay
(Note: it is understood that root lengths are taken into
account when defining equality of Dynkin diagrams).
Proof

See Dynkin (5) Thm 5.4 p. 146.

We will now consider the simple Lie algebra with root
system of type B,.
This can be represented by (2L = 1) by (2L + 1)

complex matrices (gu) such that

:_.-—.'.—a
i 2l+2-j,2L+2-1

On the antidiagonal (i.e. those aijsuch that



L+ J = 2L + 2 the entries are zero;
Choose as a Cartan subalgebra the diagonal matrices in
this model i.e. matrices of the form
diag fa, ... a2, O, - a, e - aui -
Choose the positive root vectors to be of the form

E

-—

'i',j_E2L+2- oL 42 - i whereJ>1, t+ J¥2L+ 2 and

Js

Eijis the matrix with 1 in the L%IDW, fé column and zeros
elsewhere. '
Given a diagonal matrix X, set wi(x) = ag
1<itel
Then the fundamental root system corresponding to the given

positive root vectors is iwl - w2, w2 - wj,.;..wrr LI WLE

In this case, w;, 1s the short root and Wy - Wos Wy = wj,

*...i W, - W _are the long roots (all of equal length).
The Dynkin dlagram is : _ o
WioW, vy . Wi, wL

Consider the case of the root system B2. . The two fundamental
roots i x, ng are of unequal length. By lemma 5.1 the
rank -1 parabolic subalgebras E,ﬂ R 2'& detefmined by «, and X,
are not associated.

However, it is well known that the rank-l parabolics have

a unique class of nilpotent elementé as the_conjugacy class of the
dense orbits (the subregular elements). See Steinberg (13)

p. 145. Thm 1.

To give a non-trivial example of non-associated parabolic
sub-algebras which have conjugate dense orbits, we use a
method of Gersterhaber (6) which gives, indirectly, a method
of calculating the hilpotent'conjugacy class which is the

dense orbit of a given - parabolic subalgebra.



In the model of BL given above, parabolic subalgebras

can be represented by square blocks positioned along the
diagonal or, in effect, by partitions of 2L+ 1 of the form
O VD N R

Example for B

2
P“l = * > ¥ Q
L+ * O %
O O] O]x* =
O O C)] * sk

The partition is (2, 1, 2).
5.2 Lemma

If C, D are GL21 + 1" conjugate matrices contained in the
model of Bl then they are conjugate under the adjoint group of
B,.
Proof

See Gerstenhaber (6) Prop 2 p. 549.
Hence, conjugacy classes of nilpotent elements in Bl can be

represented by partitions corresponding to the Jordan canonical

form of their corresponding GL21 + 1 " conjugacy class.

Gerstenhaber's method allows one to compute the partition
corresponding to the dense orbit class from the partition
corresponding to the parabolic subalgebra.

Let_(pl ...pk) be a partition of (21 + 1) corresponding to a
parabolic subalgebra of BL'
Reorder the partition to get (p’, .. pL ) such that p| 2 Iiz" z

Form the dual of this reordered partition to get Q = (ql...qr).

4

Py



Then, perform an operation (orthogonalisation) on this
partition to get a partition (Q)o

Orthogonalisation is defined recursively _

If r

1 and q; is odd, then (Q), = (a,)
If r =1 and q; is even, then (Q)o =_(ql<l, l)_

For r71 if q; is odd then (Q), = (q;) + (a5 Q)

if q; = q, then (Q)ol=_(qlq2)*-(q3-~ q,.)q

if q; > a, and qi even then (Q)o'= (qy - 1) +
| (a, + 1,77 a),

The partition obtained by this process gives the conjugacy

_elass of the dense orbit of the parabolic subalgebra

corresponding to the initial partition.

The example of non-associated parabolics having conjugate

dense ofbits is found in B

5
Let ﬁ<l,ké,k3,K4,K5 be the fun@ameﬁtal root system of Bg
‘and consider the subsets; ’1 K, K} A’s 3 and S,V 1 .0(2 Ky K'Sg One |
~is of type A3 + Al, while the other is of type A2-+ B2. Hence,
by lemma 5.1 their corresponding:parabolic subalgebras are not
associated. |

Consider first the subset cf type'A3-+ A]

This gives the partition (4, 3, 4).

25
Reorder and form the dual to get (3, 3, 3, 2).
Orthogonalise to get that the dense orbit partition is
(3, 32, 3, 1, 1).

Now consider the subset of type A

oV By

This gives the partition (3, 5, 3)
Reorder and form the dual (3, 3, 3, 1, 1)



Orthogonalise to get that the dense orbit partition is

(3: 33 33 lJ l)'

So p and Q Wy wo Ky “53 have conjugate

dense orbits.
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APPENDIX



CONJUGACY CLASSES 1IN PARABOLIC SUBGROUPS OF

SEMISIMPLE ALGERRAIC GROUPS, II

By D.S.Johnston and R.W.Richardson

Let P be a parabolic subgroup of a connected semisimple algebraic
group G and let UP denote the unipotent radical of P, In another paper of
the same title [7] it was shown that there exists u e UP such that CP(u),
the P-conjugacy class of u, is an open subset of UP ; ghe proof required
the assumption that G has only a finite number of unipotent conjugacy
classes, but G. Lusztig [5] has recently shown that this is always truc.

Let QP denote the open P-conjugacy class in U Now let Q be another

p*
parabolic subgroup of G and let L (resp. M) be a Levi subgroup of P (resp. Q).
The parabolic subgroups P and Q are associated if L and M are conjugate sub-—
groups of G. In a conversation with one of the authors, T.A.Springer
conjectured that if P and Q.are associated parabolic subgroups, if u € QP and

v e ., then v and v are conjugate in G. In this note we shall prove that

Q’
this conjecture is correct. We shall also prove the analogous result for
the Lie algebra E;Of G, subject to certain restrictions on the characteristic
of the base field. |
Our proof ic based on an idea introduced by Dixmier [3] in connection
with "polarizations" of an element in a complex semisimple Lie algebra.
Roughly speaking, Dixmier's idea is to represent elements in QP as limits of

P-conjugates of certain semisimple elements in the centre of the Levi subgroup L.

- Our main result allows us to answer several questions raised by Dixmier in

[3]. The connection with Dixmier's paper is briefly discussed in the final

section of the paper.



1. Proof of the Naiq Theorem

Our basic reference for alpgebraic groups and algebréic geometry is [1]. '
All algebraic groups and algebraic varieties arc taken over an algebraically
closed base field k.

Let G be a connected semisimple affine algebraic group, let T be a
maximal torus of G and let B be a Borel subgroup of G which contains T.
Let ¢ denote the set of roots of G with respect to T, let ¢+ be the set of
positive roots corresponding to B and le: A C ¢ be the corrasponding sat of
simple roots., For each root o € ¢, let Ua denote the corresponding one-
" dimensional unipotent subgroup and let X, k = Ua be an isomorphism of
algebraic groups. If teTandce k, we have txa(c)t_l = xa(a(t)c).

If 6 is a subset of &, we let [G] be the set of all roots which are
linear combinations with integral coefficients nf the clements of 6. We
set mg = @+ v [6] and T, = {a € ¢+|a ¢ [e]}. Let Pe denote the "standarg"
parabolic subgroup corresponding to 6; Pe is generated by T and {Uala £ ne}.
Let Ly denote the "standard" Levi subgroup of P and let U, denote the uni~

) 7

potent radical of Pe ; Le (resp. Ue) is generated by T and {Uala € [ e])

and U, . Set

(resp. by {Uala £ Te]). Pe is the semi-direct product of Ly 5

'Ze = {t ¢ Tla(t) = 1 for every a ¢ [ 6]}; Zq is the centre of Ly. We let

© such that a(z) # 1 for every root o ¢ [6];

Z,' be the set of all z ¢ Ze

0
. ; o .
Ze' 1s a dense open subset of Ze . For later use we note the following

characterization of Ze':

.1z ={z¢ ZG(L6)0|ZG(Z)° = L}

The proof of 1.1 is elementary and will be omitted.
We let G act on G by conjugation. Thus, if x ¢ G, then G(x), the
G-orbit of x, is the conjugacy class CG(x). If X is a subset of G and H a

subgroup of G, then H(X) = {hxh-llh € H and x € X}.



LEMMA 1.2. Let z € Z . Then the centralizer of z in Uy is the

“trivial subgroup {1}.

Proof. Lec ve U,. We may write v uniquely in the form

0
v = |aE:T0 xa(ca), where each c, € k and the product is taken in a fixed
(but arbitrary) order. Ve have zvz™! =711 x (o(z)c ). If v #1,
: , GETy "G o
then C, # 0 for some o and thus zvz™! # v.
LEMMA 1.3. Let z ¢ ze' . * Then Py (z) = Ujz.

Note: Uez denotes the set {uzju e U,} , not the orbit Ug (2).

]
Proox. Let x ¢ PB' We may write x = vy, with v ¢ Uy and ¥ ¢ Lg-

We have

1,-1 _

xzx 1270 = vyzy"lvTlzTl = yavTlz7) ¢ Uy -

_Hence xzx ! ¢ U,z and Po(z) = Ug(z) CUgz. Py Lemma 1.2, the orbit Ug(z)

6
has dimension equal to dim Ugz. By a theorem of Kostant and Rosenlicht (see

[9, P, 35] for a proof) every orbit of a unipotent group on an affine

variety is closed. Thus Pe(z) = Ue(z) = Uez.

Remark. For k of characteristic zero, the Lie algebra analogue of
Lemma 1.3 is proved by Dixmier in [3] and our proof is based on his.

We shall need the following elementary result....

1.4. Let the affine algebraic group H act morphically on the
algebraic variety X, let P be a parabolic subgroup of H and let Y be a
‘closed P-stable subset of X. Then H(Y) is a closed subset of X.

For a proof, see [9 s D 68] .
LEMMA 1.5. c((z:)ue) is the closure of G(Z, ).

Proof. (Z;))U is the radical of Pos in particular it is a normal

0

subgroup of P It follows from l.4 that G((Z;))Ue) is closed in G. By

6



1.3, Z; Ug C G(Zé ) and it is clear that Ze'Ue is an open dense subset of

(Z;))Ue. This proves Lemma 1.5.

PROPOSITION 1.6. (1) Every unipotent element in C(ZaUe) is confaiﬁed
in C(UO) . (i1) C(UO) is closed and G(QP ) is open in G(Ue) .

6

Proof. Let x € ZOUe and write x = zv, 2z ¢ Z0 and v ¢ UO' Let

T i Py Py /UB be the canonical homomorphism. If x is unipotent,
w(x) = m(z) is both unipotent and semisimple, hence m(x) = e and x ¢ Ug-

This proves (i). It follows from 1.4 that G(Ue) j.s closed. Since QP is
. ‘ 6

an open subset of Ug» G(QP ) is an open subset of G(Ue) .

6
THEOREM 1.7. Let P and Q be associated parabolic subgroups of G and

let u ¢ QP’ v e QQ. Then u and v are coujugate in G. Moreover G(UP) = G(UQ).
Proof. After conjugating, we may assume that P = Pe and Q = P¢ » Wherc

@ and ¢ are subsets of A. The Levi subgroups Le and L¢ are conjugate in G.

It follows from 1.1 that G(Z; ) = G(ZJ ). Hence, by Lemma 1.4,

n o - o \ _ .. oy x s Hy o

a((Ze )UO) G((ZW )U¢ ) - Prop931t10n 1.6 (}) implies that G(ue) G(U¢)

and 1.6 (ii) then shows that u and v are conjugate 1in G.

2, The analogue for Lie algebras

We denote the Lie algebra of an algebraic group G, P UP’ etc., by the

0°
correspox_mding lower case German letter & Py Yp» eﬁc.

Let G be a semisimple algebraic group of adjoint t;pe. (In
~ characteristic zero, one may equally well start with a semisimple Lie algebra
8 and let G be the adjoint group °f_§f) We assume that the characteristic
of k is "good" for G. For definition and some consequences, see [8,

pp. E-12 - E—19] ; 1if char(k) is either O or >5, then it is good for every G.

The assumption that char(k) .is good for G implies in particular that g has



only a finite number of nilpotent conjugacy classes [8, p.E-19] .  Hence,
by [ 7], if P is a parabolic subgroup of G, there exists an open P-orbit AP
on the Lie algebra by
Let the notation be as in section 1. If a € ¢, then du @ t + k

denotes the differential of a.

*
2.1. (1) The set {da|a € A} is a basis of the dual space t.

(ii) If e CAand if vy e T

g» Chen the set {duje € 8} U{dy} is a linearly

. *
independent subset of t.

Proof. 2.1. (i) is an immediate consequence of the fact that G is of
adjoint type. 2.1.(ii) follows from the definition of good characteristic

and the following well-known result:

r
2.2, Let G be simple, let A = {al,...,ar}, let a = z mjaj be a
i=1

. :
positive root and let B = Z nj“j be the highest root. If a prime p
. j=1

divides one of the non-zero mj's, then p divides one of the nj's.

Let z, = {x e t|da(x) = O for every a ¢ [6]} and let

6
.fé = {z ¢ gelda(x) # 0 for every a e 1, }.
LEMMA 2.3. (i) 2 is the Lie algebra of Ze
) ' ' R
(ii) If o # A, then_.ﬁe # {0}. (iii) %9 = {x ¢ &OLEg(x) —.&0 }.

and is the centre of _2,6.
The proof of 2.3 follows easily from 2.1 and will be omitted. We
remark that it does require both the assumption that G be of adjoint type

and that the characteristic of k be good for G.

LEMMA 2.4. Let z € Zg - Then Pe(z) =z+u

e.
For k of characteristic zero, this is proved by Dixmier in [3]. With
the assumptions made on G and char(k), the same proof goes through in our

case.



LEMMA 2.5. G(z, * u,) 1s the closure of Gdi ).

0 0

FPROPOSITION 2.5. (1) Evéry nilpotent element in C(Ee + BG) .5

contained in G(ye). (ii) G(He) is closed in g and G(AP ) is open in G(ue).
- e L

THEOREM 2.7. Let P and Q be associated parébolic subgroups of G and

let v e Ay, vedAl Then u and v are conjugate in g. Moreover

qQ

Gup) = Clu

Q-

The proofs of Lemma 2.5, Proposition 2.6 and Theorem 2.7 are
essentially the same as those of (respectively) Lemma 1.5, Proposition 1,6

and Theorem i.7. We omit the details.

Now we can drop the assumption that G be of adjoint type.

THEOREM 2.8. Let H be a semisimple algebraic group and assume that
the characteristic of the bhase field k is good for H. Let P and Q be

associated parabolic subgroups of H and let u e A,, Ve A Then u and v

P’ Q"

are conjugate in h. Morcover H(EP) = HQHQ).

Proof. By Chevalley's theory of isogenies (see Exposes 19-24 of [2],
in particular Expose 23, Théor2me 1, pp. 23-04), there exists a semisimple

group G of adjoint type and a central isogeny n : H=+ G. Let Nh (resp. Ng)

denote the closed subvariety of all nilpotent elements-of h (resp. g).
Since n 1is central, the kernel of dn : h + g consists of semisimple alements.
It follows easily from standard properties of the Jordan decomposition inﬂh

‘and g (see [ 1, p. 355] ) that dn maps Nh bijectively onto Ng' Moreover,

if V is a connected unipotent subgroup of H, dn maps v isomorphically onto
the Lie algebra of n(V).
Let P' = n(P) and Q = n(Q). One checks easily that P' and Q' are

associated parabolic subgroups of G and Up =-n(UP), UQ' = n(UQ). Since P'

and Q'vare associated, Proposition 2.7 gives that G(Ep') = G(EQ')' But



since {dn) o (Adh) = (Adn(h)) o (dn) for every h ¢ H and dn maps Nh

bijectively onto N?, we see immediately that H(HP) = H(gQ). Since H(u)

(resp. H(v)) is the only open orbit in H(ﬂP) {resp. H(EO)’ we must have

Hu) = H(v). Thus u and v are conjugate.

Remarks. (a) For the groups SLn(k), SOn(k) and Spn(k) (char(k) # 2
in the latter two cases), Theorems 1.7 and 2.8 are consequences of the
results of Gerstenhaber in [4]. (b) Tor H of tvpe A and not of adjoint
rype, 211 - 2.5 do not necessarily hold. | For such groups a detour such as
we have used (proving for the adjoint case and then "lifting” to h via a
central isogeny) seems to be necessary for the proof of Theorem 2.8,
However, one could probably give a (long and tedious) proof by using the
result for SLn(k) (proved by Gerstenhaber) and checking cases. If H does
‘not have any normal subgroups qf type A, then dn : h - gﬂis an isomorphism
becaﬁse of-the.restrictions on the characteristic of k and the detour is

unnecessary.

3. Connections with the work of Dixmier

Let g be a semisimple Lie algebra over an algebraically closed field

—

of characteristic zero and let G be the adjoint group of g. Let xe g. A

polarization of x is a subalgebra p of g such that (i) 2 dimp = din1g4-dhngg(x)

and (1i) (X’LBLP]) =0 (here ( , ) denotes the Cartan—Killing form of_g).
An element x £ g isApolarizable if it admits a polarization; Dixmier shows
in [ 3] (sce also [6]) that a nilpotent element x €8 is polarizable if and
only if there g#ists a parabolic subgroup P of G such that x ¢ AP ; in this

case p is a polarization of x. -
)

Now let the notation be as in the previous section and let X denote the

closure of G(gé ). One checks easily that if x € X, then dim G(x) < 2 dim u

]




Let X° = {x ¢ deim Gix) = 2 dim 30}. Then X~ is an open dense subset of X
and C(AP )y C X, In conmnection with applying polarizatiens to some problems
in the infinite-dimensional representation theory of g, Dixmier asks the

. W

following questions:

(a) 1Is G(l\P ) the only nilpotent conjugacy class in X~ ?
6

(b) Is every nilpotent conjugacy class in X in the closure of G(AP )?
: 0

It follows immediately from the results of gectio; 2 that the answer
to both of these questions is "yes'. Leg Y denote the set of niipotent
elements of X and let I({Y) denote the ideal of Y in k[x], the algebra of
polynomial functions on X. Let J = k[)(]c be the algebra of G-invariant
polynomial funciions on X and let J¥ = {f ¢ J[f(O) = 0}. Dixmier also asks

the following question:
“(c¢) 1Is J" a set of ideal generators for T(Y)?

Let J be the ideal generated by Jv. By using the Nullstellensatz,
it is not difficult to show that I(Y) is the radical of .J. Thus (¢) 1is
equivalent to asking whether J is a radical ideal. We have no conjecture

as to the answer. It seems to be a difficult questionm.,
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