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ABSTRACT 

This thesis deals with various aspects of proton-pronton 

scattering at high energies, i n p a r t i c u l a r the recent CERN-ISR 

r e s u l t s . 

I n chapter one, f i r s t we discuss b r i e f l y the experimental 

s i t u a t i o n of the t o t a l cross-sections and e l a s t i c scattering of 

hadrons on protons up to NAL energies. Then we give a general review 

of the methods which have been used for the determination of the t o t a l 

cross-section i n the ISR. The main experimental features are summarized 

at the end of t h i s chapter. 

The r e s u l t s of chapter one motivated a new i n t e r e s t i n asymptotic 

theorems. I n chapter two we discuss some theoretical aspects which are 

model independent, and some physical predictions in the presence of an 

asymptotic growth of <j> 

Chapter three i s concerned with f i t t i n g the data with a v a r i e t y 

of Reggs pole and cut models. We consider various eikonal-type 

prescription for the cut strength. 

I n chapters four and f i v e we re-examine the data using two 

phenomenlogical models; namely : the overlap function model and the 

geometrical scaling model, using mainly impact parameter language. I t 

w i l l turn out that geometrical scaling hypothesis can describe the main 

q u a l i t a t i v e features of present data. 

A number of interpretations have been proposed to explain the 

r i s e of vJ i n the ISP. energy range. In chapter s i x we consider 

the question of the r i s i n g cross-section. We discuss two mechanisms 

proposed to explain the r i s e of -r~. , where in both mechanisms the 

r i s e of i n the ISR energy range i s interpreted as a threshold 

e f f e c t . F i n a l l y we end this work by examining the r i s e of -~—X i n 

impact parameter space. 
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1 

CHAPTER QNE 

Total c r . s s . and e l a s t i c scattering at h i g h energies 

The plan of this chapter i s as follows:-

1. Total c r . s s . of hadrons on proton and e l a s t i c scattering 

2. Measurements of proton - protpn t o t a l c r . s . at ISR 

3. Summary of ISR re s u l t s on p-p e l a s t i c s c a t t e r i n g 

1.1 Total c r . s s . of hadrons on proton. 

The experimental situation on the energy dependence of the 
+ + + 

t o t a l c r . s s . of -fr ~, K~, P" on P up to (SP) energies may be summarized 

as follows:-
+ 

( i ) The i f -P, K. P, PP to t a l c r . s s . seem to have reached some kind 

of a plateau with l i t t l e or no energy dependence, 

( i i ) The pp c r . s . i s decreasing while 

( i i i ) K +P c r . s . i s increasing with energy. 

But i n the past few years with the advent of ISR f a c i l i t i e s at 

CERN and the preliminary operation of the NAL 400 Gev machine, the 

horizon of high energy hadronic scattering have widened dramatically. 

In f a c t only (pp) c r . s . measured at extreme energies, t h i s energy i s 

available from the ISR where up to 30 Gev protons c o l l i d e i n their 

o v e r a l l center of mass 

PI P2 
-> 4 > • 

30 Gev 30 Gev 400Gev 

S = (P 1+P 2) = (E 1+E 2) = 3600 GeV S = ( 1+400) 2 - (4 0 0 ) 2 - 800 Gev 

ISR NAL 

1 5 APR 1976 
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The r e s u l t s from ISR (which w i l l be discussed i n d e t a i l i n Section 2) 
demonstrate that (pp) c r . s s . are r i s i n g i n that energy range, the 
ef f e c t was found to be big, of the order ]0% for an increase i n 
energy by a factor of about 2.5 ( = 2 3 -> j-~=53). 

New data from NAL extend the measurements for the other f i v e 

charge p a r t i c l e s . A l l c r . s s . show a r i s e (Fig. 1) with the exception 

of the pp c r . s . which however doesn't decrease any more and has 

become f l a t at the highest NAL energy. These measurements demonstrate 

that r i s i n g c r . s s . i s a general high energy phenomenon. 

The fact that K +P c r . s . demonstrate t h i s phenomenon at the 

lowest energy i s propably related to the fact that i t i s c r . s . i s the 

smallest one, and suggest that the r i s i n g component i s present at a l l 

energies but can reveal i t s e l f only when the Regge type terms <~< £ 

have become very small. 

F i n a l l y , the difference of p a r t i c l e and a n t i p a r t i c l e c r . s s . ( ) 

are shown i n (Fig. 2) ̂ .demonstrating that A ' J approaches Zero, 
-k 

approximately as S , i n agreement with Regge a n a l y s i s , and pomeranchuk 

theorm. 

1.2 E l a s t i c Scattering 
(2) 

A collaboration of Michigan-ANL-FNAL-Indiana has measured 

d i f f r a c t i o n scattering at 100 and 200 Gev/c for a l l s i x changed p a r t i c l e s 

up t o | ^ l G e v / c . I n (Fig. 3) the various c r . s s . are superimposed, 

normalized to each other at t=0. The data have been f i t t e d to- an 

exponential behaviour in t over the t range (O'Oj- $\t\ <J.0.3) Q 6 V2 

and the re s u l t i n g slopes are shown i n (Fig. A) i n combination with data 

at lower energies, f i t t e d over the same t range. A r i s i n g slope i s 

apparent for a l l p a r t i c l e s except the antiproton. The antiproton i s 

s t i l l expanding i t ' s d i f f r a c t i o n pattern but i t ' s slope i s approaching 
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the proton slope, while the other f i v e p a r t i c l e s a l l show a shrinking 

d i f f r a c t i o n pattern es p e c i a l l y the exotic K +P and PP reactions. 
(3) 

Recently (1975) d i f f e r e n t i a l c r . s s . have been measured at 
± + + 

Fermilab for-ff P, K -P, and P~P e l a s t i c sea. at 50,70,100, 140, and 
2 

175 Gev/C incident momentum over the 1^1 range 0.03 to 0.8 Gev, 

the r e s u l t s cannot be f i t with a simple exponential, but maybe 

represented by 
|2 " - A exp(Bt +ct 2) (1) 

This form gives a good representation of the data and a ty p i c a l set 

of f i t s i n show i n Fig ( 5 ) . The logarithmic slope b(t) i s given by 

b ( I t ! ) = | — < £ « ! p ) = B-2C I t l (2) 

2 
Fig. (6) shows these Logarithmic slopes at l t l =0.2 Gev as a function 

of S. These values of b(0.2) connect smoothly to previous r e s u l t s at 
+ 

other energies. The and k slopes show l i t t l e energy dependence, 

while the K + and proton slopes are gradually increasing. 

2. Measurements of P-P t o t a l c r . s . at ISR 

The experimental evidence for the r i s e of the p-p to t a l c r . s . at 

ISR seems to be very strong and unquestionable. This general opinion 

stems from the fa c t that three d i f f e r e n t methods used for determination 

of the o— t gave very consistent r e s u l t . 

I n one method ^ i s obtained from the measurement of the 

d i f f e r e n t i a l e l a s t i c - s c a t t e r i n g c r . s . by application of the op t i c a l 

theorm, i n another the to t a l number of p-p interactions i s counted. I n 

applying the f i r s t method two different approaches have been used to 

f i x the absolute scale of the e l a s t i c c r . s . (a) measurement of the 

e l a s t i c c r . s . at very small momentum transfere where conlomh scattering 

i s dominant and known i n absolute value, (b) and determination of the 



machine Luminosity by the Van deer Keer Method. 

( i ) measurements of p-p t o t a l c r . s . by means of the coulomb scattering 
(4) 

p-p e l a s t i c scattering have been measured i n the Coulomb-Nuclear 

interference region (0.001 ^. l t l ^. 0.015) for beam momentum 6f 

(11.8 + 11.8) and (15.4 + 15.4) Gev/c. In t h i s experiment the e l a s t i c 

s cattering rate N(t) was f i t t e d to the formula. 
N(t) oA%f - i r l f + f l 2 (3) at c m 

where f £ and are the coulomb and the nuclear amplitudes respectively, 

the coulomb amplitude f £ i s given by f £ = -2o< ̂ t^'"^ exp (£o(0j (4) 

where = fine structure constant °* y^y 

°< 0 = phase of coulomb amplitude « < * ( ' ^ ^ j y " °- 5 7 7) ~ ° « 0 2 5 

G-(t) = proton form factor — ( l - 2 . 8 1 t l ) 

while for the nuclear amplitude the f a m i l i a r form 

f = -rrr ( P + i ) exp (£bt) (5) was used n ATT / 

Then eq. (3) becomes 

N ( t ) = K [< - ^ - ) 2 G \ ^ ) - ( ? + o | 0 ) 2 k ^ f ^ - e x p ( J b t ) + CftU^tW'Wty 

Coulomb C-N Nuclear 

From eq.(6) we can see that for cr^ 40 mb, the Coulomb and nuclear 

amplitude are equal for — ~ (P i s ISR momenta), At P = 15 Gev/c, 

/Q ~ 3> v^rcvct. which corresponds to a displacement of the scattering 

proton 3 cm from the beam axis at the end of the ISF. 10m long s t r a i g h t 

sections. So i n order to enter considerably i n coulomb region, we have 

to detect protons closer to the beam more than 3cra. ( Fig. (7) shows 

a general layout of experimental apparatus used to detect p a r t i c l e s 

scattered i n the v e r t i c a l plane. 

Before discussing the r e s u l t s of t h i s method, we have to note an 

important remark concerning eq. ( 4 ) . In f a c t t h i s eq. involves three 



assumptions: 

(a) Spin dependent effects are n e g l i g i b l e . 

(b) The imaginary part of N-amplitude depends exponentially 

on the momentum transfere i n the small l t l region 
2 

l t l ^ 0.015 Gev 

(c) The r e a l and the Imaginary parts have the same t dependence 

thus p i s independent of momentum transfere. 

The v a l i d i t y of assumption (a) may be j u s t i f i e d as follows, experiments 

at lower energies have shown that spin-dependent e f f e c t s , are small 

already at 1.5 Gev/c and the current picture of high energy, strong 

interaction renders very implasuible the increase of spin effects 

with energy, assumption (b) i s consistent with previous measurements, 

however the v a l i d i t y of th i s assumption has been recently questioned. 

Assumption (c) i s consistent with r e s u l t at lower energies, moreover 

f i s very small thus the experiment i s not se n s i t i v e to i t ' s ( t ) 

dependence. 

Fig(8) shows two angular d i s t r i b u t i o n i n the Coulomb-Nuclear 

interference region at 11.8 and 15.4 Gev/c. The s o l i d l i n e s indicate 

the d i f f e r e n t i a l c r . s s . obtained by using the best f i t for and ̂ , 

while the dashed l i n e s indicate the separate contributions of Coulomb 

and Nuclear amplitude. 

The values of and ^ as a r e s u l t of the ov e r a l l f i t s to the data at 

each energy are shown i n the table below (table 1) 

ISR momentum equ.Lab. momentum 
Gev/c Gev/c f 
11.8 290 38.9* 0.7 +0.02- 0.05 

+ + 
15.4 500 40.2- 0.8 +0.03- 0.06 

In the f i t three parameters, , JJ, and K i n eQ-(6) were l e f t as a free 

parameter, while the slope b was taken from previous measurements, since 
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the present experiment doesn't cover a wide enough - t - range to 
permit an accurate determination of b. 

In F i g (9) the values of y obtained i n th i s experiment were 

plotted together with data at lower energies, the r a t i o s were found 

to be s l i g h t l y positive (Table 1 ) , the analysis of a l l high energy data 

from IKEP, Fermilab, and ISR indicates that j? goes from negative tc 

positive values, crossing zero at about (280 * 60) Gev/c 

( i i ) I n th i s method^' the t o t a l p-p c r . s s . have been obtained by 

measuring e l a s t i c scattering at angles around 6 mrad at c m energies 

of 23, 31, 45, 63 Gev, and by applying the op t i c a l theorm. The steps 

of the procedure are.the following. 

(a) measuring the e l a s t i c d i f f e r e n t i a l rate , i n a known 

s o l i d angle A-5~L and i n the v e r t i c a l plane around 6 = 6 mrad, which 
2 2 

corresponds to a momentum transfere t = p 6 (p i s ISR Momentum) 

(b) Determination of the e l a s t i c d i f f e r e n t i a l c r . s s . by means 

of the Luminosity using Van der Meer method 

JE!Z=I ̂ - L * J L * ( 7 ) 
(c) having obtained the e l a s t i c d i f f e r e n t i a l c r . s s . at angles 

6 mrad, the Coulomb contribution which varied from 5% at (11.8 + 11.8) 

Gev/c to 0.2% at (26.6 + 26.6) Gev/c, was subtracted, and the 

extrapolation of the nuclear scattering d i f f e r e n t i a l c r . s . 
= j SL. t o t h e ^ o r w a r d d i r e c t i o n was 

performed using the formula 

L4^) e <9) 

(d) Application of the op t i c a l Theorm 

where 



The r a t i o J has been previously measured (by method i ) and 

the average value between NTS"= 23 and \ j s ~ = 31 Gev was found 

to be - 0.025 * 0.035, since the value i s compatable with zero, 

this value has been assumed i n eq. (10). Also the e f f e c t of a 
i 

sizeable r e a l part on O^t ^ s very small, for - 0 . 5 ^ . ^ ^ 0.2 one 

has v a r i a t i o n of with | A.'̂ r̂ -| £ 0.2mb which i s much smaller 

than the errors quotad i n table ( 2 ) . ( s e e n e x t page) 

This method has been applied at the four standard ISR energies 

with the r e s u l t s collected i n the table (Q.}. 

The main conclusion of t h i s experiment i s that the p-p t o t a l 
+ 

c r . s . increases by about = (4.1 - 0.7) mb in ISR energy range. 

The present ISR data alone may be f i t t e d by a l i n e a r increase with Ws, 

on the other hand F i g . (10) indicate that goes through a shallow 
2 + 

minimum around S = 200 Gev where <TZ = <Tr = ( 3 8 . 4 - 0.3) mb 
o ~ 

. 2 

Thus over a wider energy range 100 Ĉ. s ^ 2800 Gev the data 

can be f i t to the expression T ~ = • a - j , + rTp ( j l ^ (11) 

where = (0.9 - 0.3) mb, V = 1 . 8 - 0 . 4 , such an increase of 

with energy agrees, within a large errors and over t h i s energy range with 

the F r o i s s a r t l i m i t V = 2, which corresponds to the maximum rate of 

interactions allowed by u n i t a r i t y . 
(iii<> m, • (9) ,, . , „ , 

The pisa-stony Brook collaboration has measured tne t o t a l 
interaction r a t e R and obtained d i r e c t l y the t o t a l c r . s . by using the 
Luminosity measured with the Van der Meer method. 

(12) R t 

The values *zr^_ obtained by methods ( i ) , ( i i ) , and ( i i i ) 

are plotted together i n F i g . (10). The agreement between the sets 

of data i s very good. 

Let us f i n a l l y mention to a new method for measuring cj—•£ 

by simultaneously measuring the tot a l c o l l i s i o n rate (method i i i ) 

and the e l a s t i c scattering d i f f e r e n t i a l c r . s. i n the d i f f r a c t i o n 
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region (method i i ) one has by eliminating \— between eq. (12) and 

e q' ( 1 0 )" _ , ^ r ^ £ (A l W * - ^ 

In t h i s case the measurement of o~£- does not depend on the luminosity 

of the ISR, thus removing one of the largest uncertainties on the 

c r . s . measurement. The r e s u l t s of t h i s fourth method confirm the 

previous measurements. 

3. Summary of ISR r e s u l t s on p-p e l a s t i c s c attering 

F i g . (11) shows pp e l a s t i c scattering data at large momentum 

transfere from ISR (8) together with some lower energy points. The 

q u a l i t a t i v e experimental properties of pp scattering data over the 

ISR energy range can be summarized as follows:-

(a) shrinking forward peak 

The slope parameter B = -7-7- (Xvi S^£T\ r i s e s by about 10% i n the 

ISR energy range. 
2 (b) Jk« has concave curvature for I t l — 0.15 Gev 

+ Glv 
So that at the highest ISR energy the slope equals (.13.1-0.3) 
for ( o-Ol ^ \*=l<^: 0'\5 ) and (10.8 - 0.2 Gev . f o r O . n . ^ j t j ^ 0.31 

(c) D i f f r a c t i o n minima i n • at t = -1.4 

The d i f f e r e n t i a l e l a s t i c c r . s . shows a clear minimum at 

\ t \ — 1.4 Gev. In ISR i n t e r v a l the position of the minimum displaced 

by (0.08-0.11) Gev towards smaller momentum transfere, passing from 

(1.45 - 0.10) Gev at \Ts = 31 Gev to (1.37 1 0.03) Gev at v/T = 53 Gev. 

(d) The r e a l part of the nuclear amplitude i n the forward 

d i r e c t i o n i s very small (y~ fc/Im = 0.025-0.035) for 23 <js~-^31 Gev 

(e) The t o t a l c r . s . increase by about (10 - 2) % i n the ISR 

energy range. 



( f ) The e l a s t i c c r . s . increase by (12 - 4 ) % , i f 10% increase 

of the forward slope i s assumed. Indeed one has (apart from small 
a. 

corrections due to (b)) «=r-fl
 / ^ , so that a slower 

increase i f b with energy implies a f a s t e r increase of s t " ^ £ 

^ ^'"inelastic ~ r 3 " ~ t •"•°eje. increases by about 10% 

passing from (32 - 0.4) to (3 5 - 0.5) mb. 

(h) Constant c r . s s . and slope r a t i o s 

^ 0.175 ? 6.296 Gev/mb 

independent of s. 
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CHAPTER TWO 

Theoretical aspects of p-p scattering 

The recent r e s u l t s from ISR ( I ) and the suggestion of a possible 

) growth of ^ j — (eq (11) - I ) motivated a new i n t e r e s t i n 

asymptotic theorems, and models which saturate the F r o i s s a r t bound. 

In the f i r s t section of t h i s chapter we r e c a l l the F r o i s s a r t bound 

and the MacDowell-Martin bound, i n the second one we give some physical 

predictions i n presence of an asymptotic growth of <T~^i a n < i f i n a l l y we 

study in section 3 the p-p absorption at ISR. 

I . Bounds 

(1.1) F r o i s s a r t bound 

Starting from the e x i s t e n c e o f a cut off i n the p a r t i a l wave s e r i e s 

(Lukaszuk & Martin 1967) 

I — = Log s 
.Mqx am. 

(1) 

and using for <j—- the formula 
L. 

I _ . 
<H rr 

Since Im £J> i s constrained to the range 

(2) 

£ 1 
L 

eq (2) becomes (3) 

We find the Froissar t bound 

(4) (Log s ) £ ^ w\ 

i s of the order of 60 mb, which i s two order The factor 

of magnitude greater than the c o e f f i c i e n t of the Logs term i n 

(eq (11) - I ) 



(1.2) MacDowell-Martin Bound 
(13) 

This bound on the forward e l a s t i c slope parameter B Q 

2. 

We t e s t (5) against the data on p-p e l a s t i c s c a t t e r i n g . At "SP" 

energies and above the r a t i o °^£/="7^ f o * P~P i s about 0.175^ 

t a k i n g t h i s value and the t o t a l c r . s s . from F i g (10) we f i n d 

& minimum = O"^ / \ % "iTcr^. ~ 10.1 t o 11.3 (Gev/c)~ 2 

from the bottom to the top of the 1SR energy range. While the 
+ experimental values o f B(S,0) over the same energy range are 11.5 - 0.6 

+ -2 

t o 12.6 - 0.8 (Gev/c) . The experimental r e s u l t s are only s l i g h t l y 

(10 - 15%) greater than the lower bound. 

U n f o r t u n a t e l y the f a c t t h a t the data are close t o the bound gives 

no u s e f u l i n f o r m a t i o n about the impact parameter p r o f i l e of the 

e l a s t i c amplitude, f o r example w i t h e i t h e r a black d i s c ( ^ ^ j g ^'^3-) 

or a Goussian (.*T£j>/'r£ ^ /V ) i the slope parameter i s given by 

the same formula I "2. 5 ^ _ — ^ - (6) 
& /ATT 

2. P h y s i c a l P r e d i c t i o n s 

erows (2.1) Behaviour o f Vj ̂  , when cj 
2 2 

( i ) ^tL L o S s» T n i s i m p l i e s <^r^ l o ^ B t h e 

proof goes as f o l l o w s : 

T o t a l c r . s . and e l a s t i c c r . s . are r e l a t e d through Schwarz i n e q u a l i t y 

which gives r' — f L o — ~Y~ s S C 7— 

Now using (1) we f i n d z , . 2. 
»v 

CJ2 / 



The w i d t h of the d i f f r a c t i o n peak ^ T may be defined by 

A T ~ \ * & > \ ( 1 0 ) 

which i m p l i e s t h a t A T I / ^ 

2 
i f rr—r and -T— „ behave l i k e log s 

(11) 

( i i ) r̂-£" l o g s 

I n t h i s case the p r e d i c t i o n s concerning e l a s t i c c r . s . are somewhat 

changed, one can accept a constant e l a s t i c c r . s . w i t h a w i d t h 

_Q_ 

i-^j £" ^ 3 or an e l a s t i c c r . s . behaving l i k e Lags 

w i t h a w i d t h A~T/^> ( l o g s ^ 

(2.2) R i s i n g c r . s . and the r e a l p a r t of the s c a t t e r i n g amplitude. 

The r a t i o between the r e a l and the imaginary p a r t o f 

the s c a t t e r i n g amplitude i s r e l a t e d to the t o t a l c r . s . through a 

d i s p e r t i o n r e l a t i o n , i n 1965 Khuri & Kimoshita proved t h a t f o r a c r . s . 

which r i s e s i n d e f i n i t e l y as a power of B the r a t i o goes 

to zero from above. For even signature amplitude F + (E) (which i s 

the average between p-p and p-p amplitudes), i f ̂ 3—• behaves l i k e 

Lag E, then F + (E) (which i s dominantly imaginary) behaves l i k e 

F ( e j ^ ^ E l ^ I j t j ( 1 2 ) 

But i t i s easy t o see t h a t the expression (12) does not have the good 
* 1 J 

c r o s s i n g p r o p e r t i e s since L°g (Ee ) = Log E + i T T . The 

c o r r e c t one i s 

and then - r , J* -^(i \ (14) 
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I f we assume i n a d d i t i o n t h a t the odd signature amplitude i s n e g l i g i b l e at high 

energies s i n c e ^ — _ seems to decrease f a s t , one sees t h a t eq (14) 
PP PP 

apply t o the proton-proton amplitude i t s e l f . 

Various d i s p e r s i o n r e l a t i o n c a l c u l a t i o n s of the forward r e a l p a r t have 

been dene a f t e r ISR r e s u l t s . I n which i n d e f i n i t e l y r i s i n g c r . s . were 

int r o d u c e d . I n F i g (9) the dashed l i n e represents the r e s u l t s 

of such c a l c u l a t i o n s i n which i t was assumed t h a t asymptoticaly 

c r — = 0"̂ --, = 40 mb, w h i l e the continuous l i n e represents the case of 
2 

a c r . s . r i s i n g as (Log E) . I t i s c l e a r from t h i s f i g u r e t h a t 

the recent experimental p o i n t s agree b e t t e r w i t h the continuous l i n e . 

F i g . ( 1 2 ) ^ shows the r e s u l t s obtained by Bantel & Didderis where i t was 

assumed t h a t above a c e r t a i n value of the l a b o r a t o r y energy E, the 

t o t a l c r . s . becomes constant. These c a l c u l a t i o n s i n d i c a t e d t h a t 

measurement of the r e a l p a r t of p-p amplitude a t the h i g h e s t a v a i l a b l e 

energy (2000 Gev e q u i v a l e n t ) i s s e n s i t i v e the behaviour o f the t o t a l p-p 

c r . s . up t o energies o f order of 10,000 Gev. 

3. p-p a b s o r p t i o n at ISR and Black d i s c . 

The energy dependence of the t o t a l , i n e l a s t i c , and e l a s t i c c r . s s . 

are i l l u s t r a t e d i n F i g (13) ( 1 2 ) . The i n e l a s t i c c r . s . increases slowly 

and monotonical'iy from about 6 Gev/c to 1500 Gev/c Laboratory momentum. 

The e l a s t i c c r . s . on the other hand shows a d i f f e r e n t behaviour, i t i s 

l a r g e r than the i n e l a s t i c one at small energies, then decreases and 

then increases again. Such a behaviour can be considered q u i t e n a t u r a l , 

because a t low energies the ( r e a l ) p o t e n t i a l s c a t t e r i n g i s l a r g e , w h i l e 

w i t h i n c r e a s i n g energy i t i s c o n t r i b u t i o n goes to zero, so t h a t o n l y 

the (Imaginary) c o n t r i b u t i o n of d i f f r a c t i o n s c a t t e r i n g , shadow of the 

i n e l a s t i c processes, s u r v i v e s . 

For the r e s t of t h i s s e c t i o n we w i l l use impact parameter language, 
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where f i r s t we study b r i e f l y the bl a c k d i s c p i c t u r e , and then we 

t u r n t o the ab s o r p t i o n at 1SR. 

(3.1) Black d i s c (6) 

The e l a s t i c amplitude F ( s , t ) f o r small angle, and h i g h energy 

e l a s t i c s c a t t e r i n g may be w r i t t e n as:-

— U d a e + (15) 
I T J 

where — |̂ — t i s the bi-momentum t r a n s f e r e , f (s,a) i s 

the p a r t i a l wave amplitude. From u n i t a r i t y c o n d i t i o n f ( s , a ) i s 

given by 

* <v^«^('-e )-T('-\e ' (̂16) 

where '>£_ = e represents the f r a c t i o n of the 

i n c i d e n t wave'which i s not absorbed. For no absorption fY[_- 1» 

and f o r t o t a l absorption ^ = 0 

Now by i n t r o d u c i n g the hypothesis t h a t a t very h i g h energy e l a s t i c 

s c a t t e r i n g i s e s s e n t i a l l y d i f f r a c t i v e ( 8 ^ = 0 ) , eq (16) becomes 

Im f ( s , a ) = \-\ j-X (17) 

which gives o ^ I C v ^ C s , ^ ^W* ( 1 8 > 

At the same time Im f ( s . a ) i s constrained (from a n a l y t i c i t y ) to the 

range 

- 6 x - ^ ^ T y / ^ ( 1 9 ) 

Since ^3—t i s given by ^ — _ g-^ 

we see t h a t the maximum value of -3—^ i s obtained when the p a r t i a l 

waves amplitude Im f ( s , a ) f o l l o w s the l i m i t s (18) and (19) as i t i s 

shown i n the f o l l o w i n g f i g u r e . 



o -S 
1 

r = /a co -S-
1 0 5 

OL 

This i s the black d i s c of Radius R =^3<X which increases a t 

maximum as M s so t h a t the t o t a l c r . s . cannot increase f a s t e r 

than 

On the " D i f f r a c t i v e " hypothesis (eq. (17) and from u n i t a r i t y , 

— y T 3 — <VYV;S c r ; — q can be w r i t t e n i n the forms. 

^ - ^ T T J a d d 0 ~ \ ) (21) 
o 
1^ 

= -2.TT J <\oU 0 - \ ) 
(23) 

i n 

we saw t h a t the F r o i g s a r t bound i s d i f f r a c t i v e l y s a t urated when the 

p a r t i a l waves up t o a radius R are f u l l y absorbed ( i . e . when ^ < ^ 4. ) 

i n t h i s l i m i t wc have <o-rfi 2^ <rr. 2^. /2_ ~ 

This i s c e r t a i n l y not the case i n the ISR where we have seen ( I - 3 - h ) 

t h a t *=rZtJL ^ °**^ * n I S R e n e r 8 v range. 

(3.2) proton-proton absorption at ISR. 
(12) 

I n F i g . (14) Amaldi has drawn the e l a s t i c d i f f e r e n t i a l c r . s s . 

a t the two extreme ISR energies, making use of a l l the a v a i l a b l e 
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i n f o r m a t i o n . By i n t r o d u c i n g the usual s i m p l i f y i n g hypothesis t h a t the 

r e a l p a r t of the amplitude i s zero at a l l momentum t r a n s f e r e ( w i t h 

the exception o f the d i f f r a c t i o n minimum), and f ( s , a ) i s also pure 

imaginary (eq (15) becomes 

(24) 

From F i g (14) and by i n v e r t i n g eq (24) one can work out the p a r t i a l 

wave amplitude Im f ( s , a ) as a f u n c t i o n of the p-p impact parameter 

at the minimum and maximum ISR energies. The r e s u l t s of these 
(12) 

c a l c u l a t i o n s are i l l u s t r a t e d i n F i g . (15) , i t i s evident from 

t h i s f i g u r e t h a t at ISR the amplitude i s q u i t e f a r from i t s maximum 

l i m i t (Im f ( s , a ) ^ 2 ) - Since the s a t u r a t i o n of the F r o i a s a r t bound 

i s obtained when, f o r a c e r t a i n range of impact parameter t h i s 

maximum l i m i t i s reached, we conclude t h a t the i n c r e a s i n g c r . s . a t 

ISR has n o t h i n g t o do w i t h the s a t u r a t i o n of the F r o i s s a r t bound. 

The "opaqueness" S^. (a) = 2 S x i s r e l a t e d t o the 

Im f ( s , a ) through the r e l a t i o n Im*f(s,a) = (.1- £ J 13- (25) 
The opaqueness p r o f i l e s obtained from the curves of Fig (15) are 

(12) - (P) p l o t t e d i n F i g . (16) . The c e n t r a l absorption (1-e ) 

i s about 75% i n the ISR energy range, and —£~i-(a) i s too small 

to g i v e a f l a t behaviour of the p a r t i a l wave amplitude Im f ( s , a , ) , as 

would be necessary i n order to observe the F r o i s s a r t regime. 

Since the F r o i s s a r t bound i s not saturated i n the ISR energy 

range, i t comes no s u r p r i s e t h a t the slope of the forward e l a s t i c peaks 

Bo increases approximately as I n s , w h i l e i t must have a symptotic 
2 

growth B^ I n s. 

Fi g (16) contains another important i n f o r m a t i o n . By comparing 

the shape of — Q L _ (a) and A i l ( a ) , we f i n d t h a t , i n the ISR energy 



range the opaqueness increment has an average r a d i u s of about 1 fm, 

and i t i s more p e r i p h e r a l than the opaqueness i t s e l f . This i s 

q u i t e n a t u r a l , since F i g (14) shows t h a t the increase i n the e l a s t i c 

c r . s . comes mainly from the small momentum t r a n s f e r e which corresponds 

to l a r g e impact parameter. 

I n Conclusion: The dynamics o f the i n e l a s t i c processes muse 

be able not o n l y to e x p l a i n the increase of <o \fi^ji but must also 

produce an increase of opaqueness which i s mainly p e r i p h e r a l . 



CHAPTER THREE 

The pomeron i n proton-proton s c a t t e r i n g 

I n t r o d u c t i o n 

The asymptotic c r . s . i s supposed to be dominated by an even 

signature p o l e , w i t h vacuum quantum numbers, and i n t e r c e p t o^foj= 1 

(because the F r o i s s a r t bound r e s t r i c t s a l l J-plane s i n g u l a r i t i e s 

to o ( i o ) ^ l ) which i s c a l l e d the pomeron. Since no p a r t i c l e s have 

been i d e n t i f i e d w i t h the pomercn, and since i n most processes i t 

occurs together w i t h several normal Reggeons, i t has been hard t o 

determine the nature of t h i s s i n g u l a r i t y . F o r t u n a t e l y we have now 

good o p p o r t u n i t y t o l e a r n about the pomeron from p-p system both 

because ( i ) ISR provides super h i g h energy uniquely f o r t h i s system 

( i i ) The c o n t r i b u t i o n of the secondary Regge exchanges "R" t o the 

imaginary p a r t of the amplitude i s small (This i s because pp 

s c a t t e r i n g has no resonances i . e . w i t h e x o t i c (di-baryon) quantum 

numbers, then according to the two component theory of d u a l i t y , one 

f i n d s I m R o - 0. 

This chapter i s concerned w i t h f i t t i n g pp s c a t t e r i n g data f o r 

10 ^ S 3000 Gev w i t h Regge pole and cut models. I n the 

f i r s t s e c t i o n a p a r a m e t e r r i z a t i o n of the data a t low and serpukhov 

energies are given. A v a r i e t y of Regge pole and cut models are 

reviewed i n sections 2 & 3, only two types o f models are able t o e x p l a i n 

the data over the whole energy range s a t i s f a c t o r i l y . The f i r s t one 

has pomeronpole w i t h t r a j e c t o r y o( L^) = 1.06 + 0.25 t , and a 
r 

n o n-shrinking "core" term. The second has a f l a t pomeron t r a j e c t o r y 

^ ^ ( t ) = 1.06 f o r a l l t , and strong eiknal-models c u t s , which e x p l a i n 

both the shrinkage a t low \t|and the lake o f i t a t l a r g e ( t j 



a o 

F i n a l l y a v a r i o u s speculations which r e l a t e the f a c t t h a t °^j/°))>l 

to the small triple-pomenon c o u p l i n g and other remarks are discussed 

b r i e f l y i n s e c t i o n ^ 

1. The d a t a , U.. ' e f f 

2 
I t i s w e l l known t h a t up t o S - 60 Gev the t o t a l c r . s s . can be 
parameterized by jij 

< j — ( tP ) represents the pomeron p o l e , the second term represents 

the c o n t r i b u t i o n s of secondary t r a j e c t o r i e s , where we have used the 

approximation t h a t the i n t e r c e p t s of the secondary t r a j e c t o r i e s are 

given by . 

V A t w J (2) 

I n the process pp — ^ pp the t r a j e c t o r i e s are jp+p- y- t o -t ^ 2 

since the d i f f e r e n c e between pp and pm cr . s s . are very s m a l l , we 

n e g l e c t 1 = 1 exchange ( i y ) . On the other hand the f a l l i n 

(p~p) at low energies means t h a t the p and w cannot be 

e x a c t l y exchange degenerate. 

The data from t o t a l c r . s s . experiments a t serpukhov energies 
a 

(50 v<l S *C C-CV ) i n d i c a t e t h a t m o d i f i c a t i o n i n t h i s Regge 

pole p i c t u r e eq (1) of l i n e a r i t y • (\ 5 a r e necessary. 
and the vacuum Regge cut was i n t r o d u c e d . 

The f i n a l term represents a d e s t r u c t i v e jp ® p c u t , which approximately 
_y 

cancels the f a l l of the s ^ term i n serpukhov r e g i o n , and gives the 

l e v e l l i n g - o f f of the t o t a l c r . s s . observed i n t h a t r e g i o n . But the 

r a p i d r i s e i n <j-£- (pp) a t ISR i s too great t o be accommodated by 

eq. ( 3 ) , c l e a r l y one needs a strong cuts which then have d i f f i c u l t y 



a t small s. An a l t e r n a t i v e e x p l a n a t i o n , which we w i l l explore i n 

Sec. 2 & 3 i s t h a t ^ ^ ^ l , o f course i f continued i n d e f i n i t e l y 

such a behaviour would v i o l a t e the F r o i s s a r t bound, but e i k o n a l i z a t i o n 
(14) 

could prevent t h i s . 

F i g . (17) shows (pp) from ISR together w i t h some 
a t 

lower energy p o i n t s . From these data we can c a l c u l a t e the e f f e c t i v e 

t r a j e c t o r y , °<e££» defined as usualy by 

(4) 

The e f f e c t i v e t r a j e c t o r y f o r pp s c a t t e r i n g obtained from ISR 

data i s shown i n F i g . (18) i t i s e s s e n t i a l l y a s t r a i g h t l i n e 

°iff = 1 , 0 6 + 0 , 2 5 ' ( 5 ) 

< 2 
1.2 Gev, followed by a jump t°o< f f ( t ) ^ 1.0 

2 

f o r \t\ ^ 1.8 Gev r e f l e c t i n g the energy independent of the 

l a r g e ( t \ d a t a . The e f f e c t i v e t r a j e c t o r y f o r pp s c a t t e r i n g f o r 

S ^ 5 0G-^> shows a d i f f e r e n t behaviour. F i g ( 1 9 ) , i t has the 

form — 1.06 + 0.4 t (6) f o r a l l \t\ except i n the shoulder 

r e g i o n . 

From Figs (18,19) we conclude t h a t we are observing mainly the 
2 

pomeron pole out to \ t ) Osrl.2 Gev, and p o s s i b l y at l a r g e r \ t | 

at low S but t h a i something q u i t e d i f f e r e n t c o n t r o l s the l a r g e ^ t j , 

h i g h S, behaviour. 

I n the f o l l o w i n g models, the h e l i c i t y f l i p i s neglected, and so f o r each 

process t h e r e i s j u s t a s i n g l e s c a t t e r i n g amplitude, A ( s , t ) normalized 

such t h a t d t 16 TT ^ 

O — /cx - i - I u A < ^ 0 (8) 



2. A Regge. pole model 

F i t ( i ) 

The e f f e c t i v e Regge t r a j e c t o r y a t ISR energies constructed 

i n Sec. ( i ) s t r o n g l y suggests t h a t the small angle d i f f r a c t i o n 

s c a t t e r i n g may be associated w i t h the exchange o f a Regge pole w i t h 

i n t e r c e p t ^ 1. To inco r p o r a t e the slope break at OiO'iSG-^ 

there must be two exponentials i n the pomeron r e s i d u e . So we put 

ff> , -LZTT °t9
i6> C f f t a + -

where ^ a - t ^ (jUr^ s _ i _ I T ) (9) 
f 

W T C<1 ( S — -!— <L IT ̂  ( 
? If 

To account f o r the low energy data, we must add the n o n - d i f f r a c t i v e 

c o n t r i b u t i o n s associated w i t h the p and w t r a j e c t o r i e s . These we w r i t e 

as 

Here + r e f e r s t o pp, pp r e s p e c t i v e l y , *and the cross over of the pp 

and pp d i f f e r e n t i a l c r . s s . has been b u i l t i n t o the w c o n t r i b u t i o n , and 

the t r a j e c t o r i e s are assumed degenerate. 

To account f o r the d i f f r a c t i o n minimum, and the e s s e n t i a l l y 

n o n - s h r i n k i n g , energy independent - ~ f o r \ t \ \ 2.0 Gev a t ISR, 

we w i l l add an a d d i t i o n a l term w i t h a d e s t r u c t i v e phase r e l a t i v e t o 

the pomeron p o l e , which we s h a l l r e f e r t o as the "core" 

A ^ ^ C ^ ^ ' s y e c (id 

where C = GL + ( U r ^ S -

o t / = 0, because of the lack of shrinkage. 

The sum o f eqs. (9, 10, 11) gives the e x c e l l e n t f i t ( i ) shown 

i n Figs. ( 2 0 ) , t a b l e ( 1 ) . I t i s c l e a r from t h i s f i t t h a t w i t h eqs. 

(9, 10, 11) we can r e a d i l y e x p l a i n a l l the data except f o r .ibE- (pp) 
ci-fc 



f o r low S, l a r g e j t | . The core term which f i t s t h i s l a r g e j t | 

r e g i o n a t high S i s too small at low s, more important i s the f a c t 

t h a t -̂ -2T7 shrinks a t low s, but not at h i g h S. One may t h i n k 

t h a t sinceo(e££ at l a r g e | t | i n F i g (19) seems t o be a c o n t i n u a t i o n 

of the pomeron we can replace eq. (9) by 

where the f i n a l term i s responsible f o r l a r g e | t | , and has a 
2 

negative s i g n to produce a d i p at { t ( 1.4 Gev. But i t i s 

impossible t o get the c o r r e c t energy dependence of the l a r g e 1 t l 

d ata w i t h eq. ( 1 2 ) , because the pomeron slope a t small | t | i s 
o^'—0.25, whereas F i g (19) shows t h a t ^ ^, — 0.4 f o r l a r g e | t | . 

(P " 
Instead we t r i e d adding t o eq. (9) an e f f e c t i v e pomeron term 

w i t h t r a j e c t o r y o4 t c ) = 1.0 + 0.47t, t o represent t h e e f f e c t i v e 

pomercn t r a j e c t o r y a t l a r g e \ t | , and low S» 

F i t . ( i i ) 

The t o t a l amplitude now i s given by 

and the sum of eqs. (9, 10, 11, 13) gives the e x c e l l e n t d e s c r i p t i o n o f 

the data shown i n Fig. (21) Table ( 1 ) . 

An important remark concerning the e f f e c t i v e pomeron term i s t h a t , 
2 

though eq. (13) i s n e g l i g i b l e f o r \ t | 1.4 Gev, and eq. (9) i s 
2 

unimportant f o r \ t | ^ 1.4 Gev but i n the shoulder r e g i o n a t 

low energy both terms c o n t r i b u t e s i g n i f i c a n t l y t o — , and the sloDe 

of the curve depends c r u c i a l l y on t h e i r phase d i f f e r e n c e "^^p (1*^) ^ (^ 

(1.4) <±Z 0.5). Thus eq. (13) cannot be regarded as simply 

the c o n t i n u a t i o n t o l a r g e r \ t l o f eq. ( 9 ) , w i t h a bend i n the 
pomeron pole t r a j e c t o r y . I f i t were there would be a zero i n the pomeron 
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2 <Jo-c o n t r i b u t i o n at | t I ~ 1.4 Gev. and hence a d i p i n -7— . However 

i f eq. (13) i s regarded as j u s t an " e f f e c t i v e t r a j e c t o r y " which has 

s u b s t a n t i a l c o n t r i b u t i o n s from c u t s , t h i s phase d i f f e r e n c e i s q u i t e 

ui (10) acceptable. 

F i t . ( i i i ) 

I t i s also possible t o use the R term t o e x p l a i n the l a r g e t , 

low sdata, i f one takes the view t h a t i f the p and/or w e f f e c t i v e 

t r a j e c t o r y i s r a t h e r f l a t , which may be the case e i t h e r because t h e i r 

t r a j e c t o r i e s are f l a t t e r than those of f ^YVP! A2. or because f o r some 

reason, Regge cut e f f e c t s are more important f o r p'and/or w more than 

for. f> arrji A 2 exchange. 

The t o t a l amplitude t h i s time i s given by 

* ( P P) - A^-t A % < 4 R 

where R _ . \^€tr c<£ a 3 " t . (14) 

2 
The a d d i t i o n a l term here i s out o f phase w i t h the jp a t \t\~ 1.4 Gev 

and gives the r e q u i r e d 'shoulder 1, as i t i s shown i n F i g . (22). 

The d i f f e r e n c e s between f i t s , ( i i ) and ( i i i ) are not i m p o r t a n t , 

as f a r as the pomeron i s concerned, because i n both cases we have a t 

ISR energies the pomeron term eq. (9), supplemented by the "core" eq. (11) 

The above f i t s leave us w i t h two problems ( i ) i s i t necessary 

to have y 1? and i f so how i s t h i s compatible w i t h u n i t a r i t y ? 

What i s the o r i g i n of the "core"?. I t might be expected t h a t Regge cuts 

are r e l e v a n t t o both problems which we examine next. 

3. Regge Cut Models 

According to the e i k o n a l model the f u l l impact parameter amplitude 

(P 
l s : " . l\0C^M 

X = T L U € J (15) ] 



where /\ = 1 i n the conventional e i k o n a l model, but we have included 

the p o s s i b i l i t y of an enhancement f a c t o r , as i n the a b s o r p t i o n model. 

One o f the advantages of e i k o n a l i z a t i o n i s t h a t , by imposing 

s-channel u n i t a r i t y on the i n p u t v i a eq. ( 1 5 ) , one ensures t h a t the 

amplitude s a t i s f i e s the F r o i s s a r t bound even i f the i n p u t pole does 

n o t . Thus i f we w r i t e the pomeron pole as 

The e i k o n a l f u n c t i o n i s 

X * V s b > - \~*%)V^^± ( 1 7 , 

^ cf<*H .7-,. 

hence i f b ^ b Q = 4o^ioy^LSpthen (s b ) — * ^ "° » ̂ u t ^ 

t a ^ ^ ^ 0 so from eq. (15) f i n d 

^s>Hy ^ ^£ ( 1 9 ) 

o^b) — > c x., (20) 

With the usual e i k o n a l formula, the s c a t t e r i n g amplitude A ( s , t ) i s given 

by N ^ s r * ( ' t AAb' 
I ' [ i - e ^ 3 ^ ^ y o a b (2i) 

=i.f£^i r; s i ! — 1 
n-l H - " J L S T T ^ -J C (21) 

which gives (eq. 21) 

L i w A w ^ - ^ r - ( i ( o ) - 0 ^ ̂> <22> 
Thus s a t u r a t i n g the F r o i s s a r t bound, however t h i s behaviour sets 

i n o n ly f o r Log': S ^> ^ 3 - 0 
I n the f o l l o w i n g models we s h a l l o n l y consider multi-pomeron c u t s , 
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where the i n t e r c e p t of the pomeron ^IO} and the enhancement f a c t o r 
fp 

w i l l be taken as parameters. 

3.1 = 1 a n d strong c u t s . 

From eq. (21) w i t h = 1 we f i n d 

hence, as long as the i n p u t Regge t r a j e c t o r y has a slope, as demanded 

by shrinkage of the forward c ^ / ^ t : , the p r e d i c t e d Q— w i l l r i s e 

w i t h energy because the d e s t r u c t i v e P ® P c u t c o n t r i b u t i o n 

decreases l i k e (°(Logs) . To o b t a i n the a c t u a l amount of r i s e 

(4.5 mb) at ISR we need roughly = 85 mb, *X = 1.5, but then i t i s 

hard to f i t the data a t lower energies, even w i t h a s u b s t a n t i a l R 

term. More important, the very strong cuts r e s u l t s i n a d i p a t | t | - 0.5 
2 

instead of 1.4 Gev, even w i t h more complicated s t r u c t u r e f o r the p o l e 
~, 2 

residue i t i s impossible t o get the d i p out t o \ t l — 1.4 Gev, i f 

the cuts are strong enough t o reproduce the <J~\ r i s e . 

3.2 C/.i°>Sl and weak cu t s . 
fP ' 

Once we allow c ^ l O U the r i s e i n the t o t a l c r . s . can be blamed 
(P ^ 

mainly on the p o l e , and so the cuts can be weaker. We may thus hope t o 

a d j u s t t h e i r s t r e n g t h so as t o ensure t h a t the d i p i n d ^ — ^ i r , occurs i n 

the c o r r e c t place. 

The c o n t r i b u t i o n of a jp g> |p cut may be w r i t t e n 

where the Gribov v e r t e x f\J (fc^fc, -fc. } =: — t^ i e enhanced 

absorption model 

Thus w i t h A p given by eq. (9) we f i n d 
2 



By a d j u s t i n g ^ we can make eq. ( 2 5 ) , eq. (9) i n t e r f e r 
2 

d e s t r u c t i v e l y a t \t\ n 1.4 Gev and get a d i p . But then, since the 

l o g a r i t h m i c slope of the cut i s roughly h a l f t h a t of the pole the 
2 

f l a t n e s s of the pp data f o r | t | ^ 1 . 4 Gev cannot be reproduced. 

This defect may be remedied by i n s e r t i n g a t dependence i n t o . 

N^p. L i m i t i n g ourselves t o exp o n e n t i a l s , we can put 

N p p - ^ e ( 2 6 ) 

(27) 
Thus both b^ and b2 may be used t o b r i n g the t dependence o f 

the cut i n t o l i n e w i t h the data. The c o n t r i b u t i o n of higher order 
2 

(P g |P 8 IP c u t ^ n t h i s model make no d i f f e r e n c e f o r \t\ ^ 5 Gev 

becuase i s very small ( ^ ~ 0.07). 

The sum of eqs. (27) (9) (10) gives the e x c e l l e n t d e s c r i p t i o n 

of the data shown i n t a b l e (2) and Figs (23 ) , ̂ \ w i t h e i t h e r or b^ 

non-zero, and the p o s i t i o n of the [P ® (P branch p o i n t a t ( t ) = 

1.14 + O . l l t i s i n q u i t e good accord w i t h the energy dependence a t 

lar g e | , * F i g (23-b)'. 

An important remark concerning u n i t a r i t y i n t h i s model i s t h a t , 

from eq. (19) we f i n d t h a t the Imaginary p a r t of the impact parameter 

amplitude 

Im % (s,b) — * |/^ as s - — > CO f o r W r < ^ 

So the c e n t r a l p a r t i a l waves v i o l a t e the u n i t a r i t y bound, Im % ^ 1 
/ 8 2 f o r Ov. £ 1. But w i t h our parameters t h i s occurs o n l y f o r s \^Q Gev 
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0/ 

So there need be no modification of the behaviour Q-̂ - (s ) ' V ^ 

for the anticipated f u t u r e . However the weak cuts used i n this model 

are i n s u f f i c i e n t to ensure the sa t i s f a c t i o n of u n i t a r i t y asymptotically, 

and one must expect additional corrections when much higher energies are 

achieved. 

3.3 ^ [ p * / 1 9 ^ff=G> a n d s t r o n 8 cuts. 

In t h i s model the pomeron i s non-shrinking, and the structure of 

d^/CiTr comes from a complicated overlap of terms. The various \ t | 

regions of Fig. (17) cannot be i d e n t i f i e d , even approximately with 

single scattering, double scattering etc. even the small | t \ regions 

depend i n an essential way on the superposition of various terms i n the 

series. 

I f the pomeron residue i s parameterized by a single exponential, 

i t i s impossible to f i t the data, because the dip i s too close i n at 

t t | 0.6 Gev, but i f the pomeron residue i s given a two exponential, 

a very good f i t of. er~£ and do-y/jt up to the second maximum can be obtained, 

however f o r | t | ^ 2 the f i t f a l l s much below the data, with 3 

exponential i n the residue 

A P , , r f f f ? 0 > c t ? V * - j t ^ (28) 

A ( s / t ) = -Cr^(e S ) e g - x - s ) - r - * e ' + j e J 
Used i n eq. (17) together with the Reggeon term eq, (14), a good f i t of a l l 
ISR data can be obtained ( F i t ( i v ) , table ( 1 ) , Fig. (24)). I t i s only 

deficiencies are that the dip at I t | - 1.4 i s perhaps not quite sharp 
2 

enough, and i t f a l l s below the data for | t | > 3 Gev. 

The shrinkage mechanism i n t h i s model i s quite d i f f e r e n t from 

other models. I t stems e n t i r e l y from interference between the various 

terms i n the series, since the n-particle exchange t e r m ^ S . The 

model also has no d i f f i c u l t y i n reproducing the lack of shrinkage of 



the | t l ^>1,8 Gev ISR <^o~/jt , and the dip depends on the 
cooperation of many terns, as i t is shown i n the f i g u r e below 

-4 
10 

10 

\o 

Q 

\*A G 

The contribution of the f i r s t of our 

terms i n the multiple scattering series of 

f i t . ( i v ) . The f i r s t & t h i r d terms are 

p o s i t i v e , while the second & f o u r t h are 

negative. The s o l i d l i n e i s the sum of 

the scries. 

Though t h i s model i s certainly quite compatible with the data, 

but as several parameters were needed for the input pomeron residue i t 

was unclear whether one was r e a l l y doing more than f i n d i n g an eikonal 

decomposition of the data. Also we know that t h i s sort of fixed pole 

( fsi^p-O ) i s hard to reconcile with t channel u n i t a r i t y . I t seeas 

more reasonable that the small | t I shrinkage should be due to the 

slope of the input pole. 
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4. Conclusions and Remarks 

4.1 Summary of these F i t s . 

(a) From the above f i t s and the variations on. them we conclude that 

o ^ f f ^ l , i . e . the r i s e of fc at ISR cannot be due to cuts alone. 

(b) The \ t | ^ 1.4 Gev data are consistent w i t h a pomeron pole 

0( (?)= 1.06 + 0.?.5 t without multiple scattering correction, but 
fP 

a "core" term f o r large | t | . 

(c) I n the model of sub section (3.2) we saw that the destractive 

core term needed to explain the large \ t ( data, and the d i f f r a c t i o n 

minimum, can i n fact be constructed as a jp ® jp cut provided one i s 

w i l l i n g to allow the cuts to be very weak ( ) - 0.07. more than a 

factor of 10 smaller than the eikonal/absorption p r e s c r i p t i o n ) , and 

provided also that one allows a r b i t r a r y structure i n the pomeron - p a r t i c l e 

couplings ( i . e . the Gribove v e r t i c e s ) . Ref (15) applied t h i s model also 

to"\\" f* |4 P and predicted that a similar minima should be observed 
2 

in meson-baryon scattering at FNAL somewhere i n the region 1.5 ( | t | (2.5 Gev. 

4.2 Carrigan break 

Close inspection of ISR data by means of an e f f e c t i v e Regge 

tra j e c t o r y has shown that the d i v i s i o n of the forward e l a s t i c scattering 

into t regions separated by the "Carrigan break" i s wholly a r t i f i c a l , 

as the energy dependence of d — shows a smooth behaviour across t h i s 

so-called break. This structure has been interpreted as a threshold 

e f f e c t , or due to pomeron renormalization, but not due to pole / cut 

interference, since i t s position seems to be energy independent. 

4.3 " ^ p ' ^ l and the peripheral nature <Q> A, % . 

The behaviour of the pomeron makes i t easy to understand why 



the part of the ISR cr.s. increases with s i s peripheral. ( d ^ / J t J 

i s increasing because °^p°'^l» but because of the shrinkage > ±<r/i t 

constant, where ^S^) s 1» i.e. f o r | t | — 0.25, and i s 
if 

decreasing for large | t ( . Hence the change A , has a zero at 
\ t l — 0.25, which means that the difference between the impact 

parameter amplitudes A *X (s,b) i s somewhat peaked at t> ̂  0.8 fm, 

as i t i s shown i n Fig. ( 2 5 ) ^ 1 0 \ Thus the peripheral nature cf A T ^ ^ 

is a perfect Regge pole effe c t with o(to) \\. 

4.4 The smallness of o ( ( c ) - i and the smallness of the triple-pomeron 
f? 

coupling. 

Out conclusion that °4 5,°) — 1.06 seems to accord well w i t h 
vf 

various recent speculations abcut how the various p a r t i a l cr.ss. b u i l d 
(18 19} 

up the t o t a l cr.s., and hence the structure of the pomeron. ' 

Re (19) proposed a perturbative view of the pomeron. I n the 

zeroth order perturbative approximation the pomeron i s generated by the 

sum of purely i n e l a s t i c (non-diftractive) channels. D i f f r a c t i v e events 

of large masses represent the f i r s t order, and give the order of 

magnitude of the expansion parameter « SU> ~ *-s fc^e t r i p l e 

pomeron coupling). Double and higher d i f t r a c t i v e events w i l l become 

detectable at even higher energies and w i l l contribute w i t h higher 

powers of s. After summation of the peturbation series, our pomeron 

pole has intercept (1+g). The amount of the re-normalization being 

proportioned to the t r i p l e pomeron coupling since 

Thus the smallness of the amount by which l i e s above 1 i s due 

to the smallness of the t r i p l e pomeron coupling. Of course, the 

renormalized pole at = 1+ A cannot be the leading J-plane 

s i n g u l a r i t y of the f u l l scattering amplitude, which must have ^ Co) £l. 
? 



(21 21) 
But absorptive corrections can produce a set of cancelling Regge cuts, ' 

and the leading t r a j e c t o r i e s then turn out to be of the Schwartz type 
o u - o = i - ^ 0 n - y f ^ * 4 « f f A < 3 0> 

However, these corrections w i l l not be evident u n t i l Log s JrL which 

we are very f a r from reaching. 



CHAPTER FOUR 

Overlap Function Model 

This chapter i s devoted to studying, w i t h i n the framework 

of the shadow scattering approach, the implication of increasing 

p-p t o t a l cr.s. and d i f f r a c t i v e structure of p-p e l a s t i c scattering ( I ) 

on the i n e l a s t i c overlap function and i t s form i n t and b-spac?.. 

The material i s organized as follows. 

1. S-channel u n i t a r i t y r e l a t i o n 

2. i n e l a s t i c overlap function i n momentum space 

3. i n e l a s t i c overlap function i n impact parameter space. 

3.1 G (s,b) (HENZI et a l Re. 28) 

3.2 G (s,b) ( H . I . Miettinen Re. 24 & 33) 

4. Impact structure of i n e l a s t i c d i f f r a c t i o n . 

4.1 G (s,b) (N. Sakai & J.N.J. White Re. 22,23) 

4.2 Two component analysis of the i n e l a s t i c 
overlap function "Unabsorbed overlap function" 

5. Summary & Conclusions. 

1. S-channel u n i t a r i t y r e l a t i o n 

I t i s widely believed that d i f f r a c t i o n i s the shadow of absorption 

due to the existence, at high energies, of many open i n e l a s t i c channels. 

U n i t a r i t y i n the s-channel gives 

i = e l a s t i c n = i n e l a s t i c 
states states 

or (2) 

-to1 
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which defines the overlap function rC • In the forward d i r e c t i o n eq. (2) 

is the well known optical theorem, the overlap functions are thus normalized 

(s,o>>=cr- < ^ C ^ o ) = ̂ 7 <• ^ ( v ^ x < 7 T - (3) 
t o t -fco-t e i V < A 

According to eq. (1) the imaginary part of the e l a s t i c amplitude 

i s b u i l t up by two parts : the second term on the r i g h t hand side gives 

the shadow of the i n e l a s t i c channels open, the f i r s t term i s that of the 

e l a s t i c scattering i t s e l f . Thus eq (1) i s a non-linear i n t e g r a l equation 

for the e l a s t i c amplitude. By making use of angular momentum conservation, 

we w r i t e i t i n impact parameter space. 

Here b i s the impact parameter of the c o l l i s i o n , and \\ (s,b) = 
T 

-Fi(s,b). I f the phase of the e l a s t i c amplitude i s known, we can 

solve eq. (A) f o r Im h. i n terms of G (s,b). Assuming f o r example, 

that Re h (s,b) = 0 , we f i n d . (5) 

negative sign i n front of the square root i n order to agree with the 

assumption (above) that e l a s t i c scattering i s "caused" by the presence 

of the i n e l a s t i c processes. With t h i s normalization the u n i t a r i t y bounds 

are a<£ Q~ 

The eq. (5) connects the i n e l a s t i c and t o t a l overlap functions 

at the same impact parameter. This follows from angular momentum 

conservation, and makes the impact parameter representation very convenient 

for the study of u n i t a r i t y e f f e c t s . 

The functional dependence of the t o t a l and e l a s t i c overlap function 

(eq. (5)) on the i n e l a s t i c overlap function i s shown i n Fig. (26). When 

the amount of absorption i s small the imaginary part of the e l a s t i c 

amplitude i s b u i l t up mainly by the i n e l a s t i c channels. However when the 

absorption approaches i t s maximum value, the e l a s t i c overlap function 



increases very rapidly and provides an important contribution to the 

e l a s t i c amplitude. F i n a l l y , when the amount of absorption approaches 

the upper u n i t a r i t y l i m i t , the e l a s t i c and i n e l a s t i c overlap functions 

become equal. 

The three terms of eq. (4) have a simple physical i n t e r p r e t a t i o n . 

They t e l l us how the t o t a l , e l a s t i c and i n e l a s t i c cr.ss. are 

di s t r i b u t e d as a function of the impact parameter. 

<lZL I *JL I " " , n \ (6) 

J O T - / d 2 b 
t n 

c - • ^ b r e a d s 

^ =• \ <• • . . . 
» J , (7) ^ and s channel u n i t a r i t y now 

-to-* ' * ' - ( 8 ) 

"Here b i s the two-dimensional impact parameter vector" 

The study of solution (eq.(5)) with eq. (7) make i t easy to understand 

the experimental observed r a t i o s of C — — (Bo i s the 
'"^ofc. """-tot 

e l a s t i c slope parameter f o r ( t l ^ 0.15). For example, f o r the "Black 

disc" model 
1 ô . b <: Fx 

o b > R 
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we f i n d 

^ <= - i d o ) 
On the other hand, i f G (s,b) i s approximately Gaussian (as we sha l l 

see l a t e r ) 

we f i n d 

where t h i s inequality corresponds to 

o ^ G (s,b) at b = 0 ^ 1 ( 12) 

I f G (s,b) i s assumed Gaussian exactly with maximum strength 

allowed by u n i t a r i t y the following Van Hove l i m i t s are obtained 

(see Fig. (27)). 

/cr-£— ̂  =0.185 (experiment - 0.175) 

(13) 

^> /a— , = 0.296 (experiment — 0.296) 

So we conclude that the small r a t i o of e l a s t i c to i n e l a s t i c 

scattering follows from the strong suppression of the e l a s t i c shadow 

when the absorption deviates from the upper u n i t a r i t y l i m i t . 

2. In e l a s t i c overlap function i n momentum transfer 
space (25) 

The i n e l a s t i c overlap function ^ (s>t) can be d i r e c t l y solved 
f n 

from the experimental data. With a reasonable assumption of the e l a s t i c 

phase one can solve the Im T and Re T from the measured d i f f e r e n t i a l 

cr.s. and computes the e l a s t i c overlap i n t e g r a l by integrating over 

angular variables. F i n a l l y ( s , t ) i s obtained from 

This procedure has b e en applied to proton-proton data by the 

authors of Re (25) and the results are shown i n Fig. (28). The res u l t s 



3 ? 

shown have been calculated by neglecting the re a l part of the e l a s t i c 

amplitude at a l l t values. Repeating the calculations w i t h d i f f e r e n t 

phase assumptions they found that the results at small t are insensitive 

to the assumed phase, whereas at large t they are sensitive. 

A s t r i k i n g observation i s that changes sign at t cr -0.6 Gev,.. • o i n 
the existence of the zero does not depend on the assumed e l a s t i c phase, 

and even the position of the zero i s roughly independent of the phase 

"as long as the amplitude i s dominantly imaginary i n the forward d i r e c t i o n " . 

This observation means that the phases of the production amplitude cannot 

be neglected i n computing CO because the zero of ( t ) i s 

sensitive not only to the absolute values but also to the phase. 

The s o l i d curve of Fig. (28) represents the parameterization 

of de Groot and Miettinen which contains a central and a peripheral 

component. 
« CO = or- t C f i ^ ^ * ^ ^ C " ) 

The Central component ( ^> J (R \J~ - t ) due to non-diftractive production, 
I 

and the more peripheral component ( J q (R \) - t ) due to d i f f r a c t i v e 

processes. Both terms contain a modulating function of the momentum 

transfer, which takes i n t o account that the no n - d i f t r a c t i v e ( d i f f r a c t i v e ) 

production does not happen i n a black disc ( i n a ring) of radius R, but 

i n i n t e r a c t i o n volumes which have smooth edges. 

Since the peripheral component i s responsible f o r the forward 

peak i n /<J"^- i f c would connected na t u r a l l y with the 

increasing cr.s. However here one should remember that the i d e n t i f i c a t i o n 

of the peripheral or central contribution with d i f f r a c t i v e production i s 

a matter of opinion, and a better understanding can come i n going to b-space. 

3. In e l a s t i c overlap function i n impact 
parameter space 

(3.1) G (s,b) (Henzi & Valin (28)) 
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The f i r s t step i n attempting to account f o r ISR data i n terms of 

G(s,b) was done by Heckman & Henzi (31). At that time the most 

comprehensive data available were the small \ 11 data which revealed 

the slope-break at | t | - 0.13 Gev i n d ' ^ r / j t . I n Re (31) 

i t was shown that t h i s slope v a r i a t i o n i n /«A "t- i s accounted by 

G.(s,b) = J ^ r r ^ / c ^ b being a Gaussian i n b-space, or equivalently by 
e^ r J^ /"^'t. being an exponential i n t-space. The e f f e c t o r i g i n e t i n g 

from the non-linearity of the r e l a t i o n . 

co 2. 

o 
The more recent data on «=J"̂ p /J"t- at large ( t | revealing 

the d i f f r a c t i o n dip are not compatible w i t h d7^-/daW being Gaussian 

exactly. To describe t h i s dip structure, Henzi & Valin proposed a small 

correction "edge" term which produces a f l a t t e n i n g ( r e l a t i v e to the 

Gaussian) of the overlap function at small b. 

G(w=G- -G. = p e > b? & C l 7 ) 

The main results of Henzi & Valin analysis are the following 

( i ) Within uncertainties r e s u l t i n g from the experimental errors, the 

parameters p t f â eX Cb • are energy independent, and p (~ i - ^ - oJ^ V» -<z) — 

0.95 through ISR energies. 

( i i ) On the other hand t?> shows a clear cut increase w i t h energy and 

the range of the Gaussian \J"3Z/ £> increases from 1 fm at the lowest 

ISR energy by 5% through ISR energies, (see Figs (29)). 

( i i i ) © ^ ^ I ' j ^ " * ^. u 0. throughout impact parameter space 

and through ISR energies, and the maximum of Qr. i s at b = i/^B -

0.65 fm and has a width around t h i s value of similar magnitude. 

One pa r t i c u l a r consequence of ( i i i ) i s that the upward concavity 

of A^ji /J~t- i s s t i l l due mainly to Gga<jL form of G (s,b) and 

u n i t a r i t y mechanism as i n eq. (16). On the other hand t h i s Gaussian 



3 it 

form of G. (s,b) at large t> may not suffice to completely reproduce 
i \r> 

the local slope changeiii 6) around t c£ 0.13. I n other 

words G, (s.b) has a t a i l at large b beyond that of the dominant i rs 
Gaussian as we s h a l l see next. 

(3.2) G (s,b) (H.I. Miettinen, . (24, 33)) 

The i n e l a s t i c overlap function extracted by Miettinen & P i r i l a (24) 

from d i r e c t Fourier - Bessel transformation of c l ' ^ / j t a t \J S =» 5 3 G e V 

i s shown i n Fig (30a, 30b) together w i t h the amplitude Iml^j (s.b) and 

the eikonal (s,b) defined by 

e ) as) 

The results of repeating the above analysis at the other ISR energies 

s = 2 1 , 30, and 44 Gev are shown i n Fig. (31a, 31b). The r e s u l t s 

of these analysis may be summarized as follows. 
2 

( i ) Im h^(s,b) i s very nearly a Gaussian over the b range from 0 
2 

to 2 (fm) , at larger impact parameter i t levels o f f , t h i s large b t a i l 
2 

i s d i r e c t l y related to the sharp break of the J ^ j / c i t at t cs-0.13 Gev. 

( i i ) ,G (s,b) bends down near b = 0, i n t space, t h i s corresponds to a 

zero of l^f ( s , t ) around t — - 0.6 Gev. I t s i n t e r e s t i n g to notice 

that i f G„ (s,b) would not level o f f near b = 0, i t would v i o l a t e the 

u n i t a r i t y l i m i t . This suggest that absorptive effects are at least 

p a r t i a l l y responsible for the small b f l a t t i n g . 

( i i i ) at b = 0, the value of G.(s,b) i s (94 - 1 ) % of the maximum value allowed 

by u n i t a r i t y (the black disc l i m i t ) , i t stays constant though the ISR 

energy range. The pronton gets bigger but not blacker as the energy 

increases. 

( i v ) The r i s e of the t o t a l cr.s. comes from a r e l a t i v e l y narrow region 

around 1 fm. 



(v) G,^(s,b) has a central p r o f i l e which peaks at b = 0 

4. Impact Structure of i n e l a s t i c d i f f r a c t i o n 

(4.1) G (s,b) (N. Sakai & J.N.J. White (22)) 

As we have seen i n the l a s t sub-section that e l a s t i c scattering 

has a central p r o f i l e , however i n e l a s t i c d i f f r a c t i o n , i n which ore or 

both of the c o l l i d i n g p a r t i c l e s get excited, i s probably a shadow process. 

We may then ask : what i s i t s impact parameter d i s t r i b u t i o n ? Does i t 

also peak at b = 0? 

This problem has been studied i n d e t a i l by Sakai and White (22) 

using ISR data (at s = 930 Gev) on c — * ̂ ^ 7 A l t ^ L I T ( d i f f r a c t i v e ) 

as input. The u h i t a r i t y now reads 

where G (s,v) and G (s,b) are the overlap functions f o r d i f t r a c t i v e and 
d nd 

non-diftractive f i n a l states and each s a t i s f i e s G (s,b) ̂  0. The main 

results of t h i s investigation are the following. 

( i ) The assumption of s-channel h e l i c i t y conservation for the 

d i f f r a c t i v e process leads to a d i f f r a c t i v e overlap function which i s 

central (root mean square radius 0*5 fin) 

( i i ) The assumption of t-channel h e l i c i t y conservation for the 

d i f f r a c t i v e process leads to a peripheral p r o f i l e f o r the d i f f r a c t i v e 

overlap function (r.m.s. radius ^ 1 fm) 

( l i i ) For both cases non-diftractive processes ar»?. peripheral 

(r.m.s. radius — 1 fm). 

The experimental data of low mass d i f f r a c t i v e production is known to be 

i n rough agreement w i t h t-channel h e l i c i t y conservation and to completely 

disagree w i t h s-channel h e l i c i t y conservation. However the assumption 
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of exact t-channel h e l i c i t y conservation i s actually not at a l l 

cr u c i a l for obtaining a peripheral (s,b). Any combination of 

amplitudes with a "reasonable" amount of s-channel h e l i c i t y f l i p 

amplitudes would give a peripheral r e s u l t for Ĝ  (s,b). 

F i n a l l y the impact parameter d i s t r i b u t i o n of the various 

overlap functions of eq. (19) are' plotted i n Fig. (32) f o r \f~s = 30.5 Gev 

i n the case of t-channel h e l i c i t y conservation. 

4.2 Two Component Analysis of the i n e l a s t i c overlap function 

"Unabsorbed overlap function" (26, 27) 

The measurements of the inclusive proton spectra at the NAL 

and the ISR show that at high energies i n e l a s t i c d i f f r a c t i o n and non-

d i f f r a c t i v e production populates d i f f e r e n t regions of the phase space. 

I f we consider t h e i r contributions to the e l a s t i c amplitude separately, 

u n i t a r i t y gives. 

(20) 

, . f 

In the forward d i r e c t i o n U, and ^ . are well known, 

and they represent the two i n e l a s t i c cr.s. components (e.g. at 200 Gev/c 

we have •= <qr ^ L ^ (<,/0)^v^_ - 1 5 

Away from the forward d i r e c t i o n one would l i k e to ask how do these terms 

b u i l d up the t-dependence of the e l a s t i c amplitude, Does the two-component 

model v a l i d for non-zero t values? 

Analysis of t h i s type have been done recently by the authors 

of Ref (26) using unabsorbed overlap function (as we saw e a r l i e r , the 
2 

occurrence of zero i n ( s , t ) at t 0£ -0.6 Gev strongly suggests 

that absorptive corrections are important). The unabsorped overlap 

function |H° (s,b) i s defined through the u n i t a r i t y r e l a t i o n (assuming the 

el a s t i c amplitude i s purely imaginary). 



1 £j? eJ? 1 " (21) 

(22) 

which gives O , \\.Q^'^ _ 

l ^ L 1-2 N A t J J eje (23) 

where with these normalization u n i t a r i t v bounds are ° ^ H^ S' b^ 

Inami et a l have constructed H, from the ISR data on d<i-/'cJ'fc 
• 

v i a eq. (23). At each energy the r e s u l t i n g \\m i s well f i t t e d by 

the sum of two Gaussian i n b-space or equivalent two exponential 

i n t-space. 
(24) 

i • 2-

- fit e -r £ c (") 

This simple decomposition suggest a two components i n t e r p r e t a t i o n , 

but before making any connection with d i f f r a c t i v e and non-diftractive 

components, we must construct the correct amplitudes H, '-• r7 

which are given by 
O 

(26) 
n 

I n fact the properties of H ' * ̂  . f 1 and ^ deduced 

from t h i s analysis over ISR energy range (at s = 550, 940, 2020, and 
2 

2840 Gev) are similar to. those which one might expect from d i f f r a c t i v e 
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and n o n - d i f f r a c t i v e components. 

( i ) , C- (s, o) contributes almost a constant to ̂ 3 » 
i w r i i n 

r i s i n g from 23.2 to 24.4 mb through the ISR energy range. ^ s* t^ 
"i o -1 

shows also s i g n i f i c a n t shrinking with increasing energy; these properties 

of agree with multiperipheral expectations. On the other hand 'in 
(s, t ) has l i t t l e shrinkage'and i t s part of rises strongly 

* i n : 2 ^ i n 
with energy from 7.9 to 10.5 mb. These values ( ^ (s, o ) , ( s , o)) 

i n : 3- i n t 3 -
l i e so close to estimates of the non-diffractive and d i f f r a c t i v e cr.ss. from 

( 32) 
triple-Regge analysis , and the association of / f ( s, t ) and (s, t ) 

i n i ^ - in-.3, 
with the multiperipheral and d i f f r a c t i v e component i s strongly suggested. 

2 
( i i ) I n impact parameter space H (s, b) i . e . (s, b ) , 

i n 
i s central rather than peripheral, and i t increases with energy. On the 
other hand the shrinkage causes |—f (s, b) to decrease with energy 

for small b. However the contributions of these two components produce 

a net increase i n H (s, b) which i s peripheral, i n agreement w i t h the 
i n 

previous analysis (See Fig. (33a, 34 ?)• 

5. Summary & Conclusions 

( i ) The experimental data looked at i n impact parameter space 

shows two properties: The long t a i l i n b, which i s d i r e c t l y related to 

the t slope increase, and the lack of any large deviation from a pure 

Gaussian shape i n b at small b, which i s d i r e c t l y related to the dip i n 

^ " ^ " / d t , occurring at a large t where the cr.s. i s very small. 

( i i ) The energy dependence of G (s, b) reveals two important 
i n 

results : the value of G (s, b = o) i s essentially constant through 
i n 

ISR energy range, and the observed r i s e of proton - proton t o t a l cr.s. 

comes from the region around 1 fm. 
A . . ( A G - ^ » ^ (27) 
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( i i i ) I f the s-channel upper u n i t a r i t y weTe saturated i n a 

domain around b = o, then the increase of G (s, b) would necessarily 
i n 

have to be peripheral. Since the p e r i p h e r a l i t y phenomenon does not 

originate from a saturation of t h i s nature, we conclude that t h i s 

phenomenon i s a dynamical e f f e c t . 

( i v ) The i n e l a s t i c overlap function of (Henzi & Valin) 

incorporates Geometrical scaling. On the other hand, i n the i n e l a s t i c 

overlap function of Inami et a l , Geometrical scaling only happens 

approximately and by accident. Fig. (34) shows how the increase (s, b) 

through the ISR range i s made up : only because of b i g cancellations 

between D and ND parts. However the question of Geometrical scaling 

w i l l be regarded i n d e t a i l i n Chapter V. 

(v) Why does the amount of s wave absorption stay constant 

at b = o, and why at the 94% level? I f the d i f f r a c t i v e overlap function 

G (s,b) is peripheral (the case of t-channel h e l i c i t y conservation), does 

the increment of G (s, b) have the same peripheral nature? These 

questions and others w i l l be examined i n Chapter ( V I ) . 



CHAPTER F I V E 

GEOMETRICAL SCALING IN PROTON - PROTON SCATTERING 

Some time ago Dias de Deus has suggested a scaling law f o r 

the i n e l a s t i c overlap function of hadronic scattering reactions at high 

energies. 

GC*M - & (\o/ten) u ) 

Where R(s) i s the inte r a c t i o n radius of hadrons involved, and contains 

a l l the energy dependence. This Geometrical scaling which was o r i g i n a l l y 

proposed i n order to explain the observation of m u l t i p l i c t y scaling i n 
( / 0 \ 

i n e l a s t i c c o l l i s i o n (KNO-Scaling) , has a very i n t e r e s t i n g 

consequence for e l a s t i c scattering. Neglecting r e a l part and spin effects 

i t follows from u n i t a r i t y that the imaginary part of the impact parameter 

amplitude scales too 

Ffb,s) = F f b / / U 5 ) } • ( 2 ) 

Eq. (2) implies at once the scaling behaviour 
d ^ / j - t - R 7 - £ ( R * * ) ( 3 ) 

(5) 

Where t i s the position of any pa r t i c u l a r feature "dip, maximum, 

break", and B i s the slope parameter B (s, t ) = d ( J t > ? - / J - c ) / d t . 

The t property above i s part of a more general p r e d i c t i o n , that 



the shape of c4'^— /J t . does not change with s, - only the ordinate 

and abscissa change scale, as i n eq. (3). In Sec. 1 and 2 of t h i s 

chapter we derive a scaling low for the e l a s t i c d i f f e r e n t i a l cross 

section, from the geometrical scaling of the i n e l a s t i c overlap function 
Re F in the l i m i t • > c> ( p i s the r a t i o - — - ) , then we -1 Im r 

make a concrete comparisons and tests of geometrical scaling predictions 

eqs. (3,4,5) with proton-proton scattering data. The influence of the 

real part w i l l be discussed i n the f i n a l section. 

1. Scaling law for the e l a s t i c d i f f e r e n t i a l 
(35) 

cross section i n pp scattering. 

Geometrical scaling of the i n e l a s t i c overlap function states t h a t : 

where 

(6) 

(7) 

i s the scaling variable. 

I n the shadow scattering l i m i t , i . e . when the real part of the 

amplitude approximately vanishes at each impact parameter we have 

where i 9 t n e e l a s t i c overlap function. From eq. (8) 

we f i n d that the geometrical scaling i n the i n e l a s t i c overlap function, 

implies geometrical scaling i n the e l a s t i c one. 

Since*, the r a t i o / of the forward r e a l to imaginary part of the 

amplitude i s consistent with being close to zero, | $\ 4 This makes 

i t plausible to think that shadow scattering u n i t a r i t y l i m i t reach at ISR, 

at least f o r small angles. Using that approximation and neglecting spin 

effects we can show that geometrical scaling implies for the function 
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defined as "TL , „ / i„—. , i 

where 

2 : = ( 1 0 ) 

The existence of the scaling l i m i t 

This scaling l i m i t can be derived d i r e c t l y from u n i t a r i t y 

\ f - j u ^ i - f ^ i ^ I * < 1 2 > 

I T 1 o ««* 

using 
£- C ^ ) »G-(|3 3 as) 

eq. (12) gives 
c/a _ ^ 

Let us now make a quantitative comparison of the scaling l i m i t 

with the ISR data. This i s shown i n Figs. (35, a, b ) . The two curves i n 

Fig. (35,a) represent the e l a s t i c d i f f e r e n t i a l cross section as a function of 

t at the lowest and highest ISR energies, the change of the curve with 

energy i s clear l y seen. On the other hand Figi; (35, b) shows the p l o t of 

0 6/£ i 
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as a function of , for the same two curves of Fig. (35, a). The 

points every where f a l l i n t o a unique curve showing that the scaling law (11) 

is i n quantitative agreement with the data. 

We end t h i s section by giving some examples of models which possess 

Geometrical scaling. 

( i ) Froissart-saturating models: 

I f an amplitude asymptotically follows the Froissart bound: 

S Q * 
(43) 

Then from the principles of axiomatic f i e l d theory, i t was found 

that i n t h i s case the amplitude must be an en t i r e function of 'c^— 

Jts~~ rcs/o / r f s c o = ±cz~) (i5) 

s — 

Thus those Eikonal models which asymptotically predict saturation 

of the Froissart bound, must s a t i s f y , asymptotically, scaling. However 

the present data being on the one hand already consistent with scaling, 

are on the other hand not consistent w i t h the black disc l i m i t / " T = 1 

predicted i n most of the eikonal models. A more r e a l i s t i c value of a— /<#t-
i n 

can be given by o p t i c a l models, such as Grey disc model & Gaussian 

overlap function model. 

( i i ) Optical Models: 

Optical models with fixed opacity can have geometrical scaling, but 

dynamical reasons f o r the radius and opacity remain to be found. I n 

the case of Grey disc model we have 

where geometrical scaling requires*a*to be constant. The e l a s t i c and 

in e l a s t i c cross sections are given by 

- £ c^O <17> 
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^ T - ^ n j d b 9 " Cr (IP ) (18) 

From eqs. (16) (18) we f i n d 

and eq. (16) can be w r i t t e n now i n the form 

Using eq. (20) i n eq. (17) we f i n d 

(20) 

(21) 

(a = o corresponds to a black disc) 

Again Using eq. (20) i n the scaling function eq. (14) gives 

This example i l l u s t r a t e s the way scaling can be introduced. The 

same sort of analysis i n other o p t i c a l models, gives constant ^ J " / 0 ^ 

and the r ^ scaling. However as we mentioned above i n such models 

the dynamical reasons f o r the radius R(s) and opacity "constant" remain 

to be found. 

2. Further Comparisons and Tests 

Here we make a concrete comparison and tests of geometrical scaling 

predictions eqs. (3, 4, 5 ) , with high energy proton-proton data. I f the 

proton radius R(s) grows w i t h energy, then geometrical scaling accounts for 

the growth of o — , constant cross sections and slope r a t i o s a — A _ C 
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and the shrinkage of the forward e l a s t i c peak. The combined ISR data 

r̂ £" o ̂ ^ji i(Mv^ are compatible^*"^ with a Jh\ S growth on 
of R2 (See Fig. 36). 

fc.- o . ^ , R = o ^ (23) 

Fig. (37, a, b) shows ^/"^ * data, the predictions 

of geometrical scaling that these ra t i o s remain constant, seems to hold 

down to about 100 Gev/c, below which <r~£ A^e s t a r t s to r i s e and. 

£? /cr~^ s t a r t s to f a l l . I t i s hard to see whether the pomeron term 

has geometrical scaling at lower momenta, since secondary terms get 

more important there. 

The location of the d i f f r a c t i o n dip, i s predicted by geometrical 

scaling to move i n towards smaller a3 vJ—:— increases. 

(24) 

Also the r a t i o of «\<r~/J"t- at the secondary maximum to <±<*~/^ ^ 

at t - o i s predicted to be constant. Hence the r i s e of the secondary 

maximum i s predicted to be ^ 

* (25) 

Comparison of eqs. (24) and (25) with the ISR data are made i n Fig. (38). 

Compatibility of slope parameters with geometrical scaling 

i s conveniently examined through the r e l a t i o n . 

oL f . f v l = 0+8^) j j L R Y j J L s e«) 
The derivation of eq. (26} i s straightforward. From geometrical scaling 

constraint eq. (3) we f i n d 

(27 
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Since the slope parameter, and the e f f e c t i v e regge t r a j e c t o r y are 

given respectively by 

In terms of these quantities eq. (27) gives eq. (26). 

The l e f t hand side of eq. (26) " e f f e c t i v e regge t r a j e c t o r y " 

i s r e l a t i v e l y well determined by the data. We w i l l t r e a t the r i g h t 

hand side ( •:>£. ( f t . ) as the prediction of geometrical scaling 

fo r t h i s quantity. We show i n Fig. (39), o/ (JJ ir) deduced from 

eq. (26) assuming the dependence of eq. (23). 

(30) 

The empirical ^"O calculated d i r e c t l y from the data are 

compared. The good agreement of o/. and °^ A%y^-) i s 

evidence of geometrical scaling behaviour. 

F i n a l l y we would l i k e to mention to an important remark concerning 

the quantity 

o x . 

This quantity i s a c r i t i c a l parameter since i t sets the scale fo r the 

geometrical scaling prediction. According to eq. (30) we f i n d 

^. oh5 



Some Problems 

In Ref. (41, 39), A. Martin has done the same exercise as above. 

He found that c/ ( s a n d °̂  (B -£ ) are not i n agreement. This 

happens because his determination of the c r i t i c a l parameter £, 

(33) 

comes from a f i t to the t o t a l cross section of the form 

e -v/2-
<rr~ - A S -f 6 S 

(34) 
2 

A f i t of t h i s form down to S = 15 Gev gives £, = 0.07. 

A comparison of the empirical G/<=) and ^ t ] -with 

£ = 0.07" i s shown i n Fig. (40). I t i s apparent from t h i s f i g u r e 

that geometrical scaling predicts roughly 50% more energy dependence 

than i s seen, and the geometrical scaling hypothesis disagrees w i t h the 
2 

data from \xr|*0.4 to 1.25 (Gev/c) . 

Similar i n compatibilities 6f slope parameters w i t h geometrical 

scaling are seen i n the table below. Whereas the slope i n the very 

extreme forward d i r e c t i o n ( u/wd- (b, ) are compatible with geometrical 

scaling, the slope B2 i s not. This problem i s not removed by K r o l l ' s 

modification "which we discuss next" since the value of the r e a l part of 

the amplitude i n t h i s t range are too small to e f f e c t the r e s u l t s . 
23.5 39.1 1 .4 11.8 11.57 - -30 10.42 - .17 
30.6 40.5 1 .5 12.3 11.87 1 .28 10.91 - .22 
44.9 42.5 - .5 12.8 12.87 1 .20 10.83 - .20 
52.8 43.2 - .6 13.1 12.40 - .30 10.80 - .20 
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3. The Influence of the Real Part. 

"Kroll's modification" 

I n many investigations (e.g. Chapter I V ) , the overlap function 

of proton-proton scattering have been studied at ISR energies neglecting 

the r e a l part and spin effects. The next step towards a complete analysis 

i s the inclusion of the r e a l part. The authors of Ref. (44) have 

calculated the r e a l part using a dispersion r e l a t i o n between the modulus 

and the phase of the crossing symmetric part of the amplitude and 

assuming Regge behaviour for the crossing add part. Fig. (41) shows the 

p r i n c i p a l behaviour of the r e a l part i n t and b space. Using these 

r e s u l t s , the i n e l a s t i c overlap function has been evaluated v i a the 

u n i t a r i t y r e l a t i o n 
— ^ . "3. 

Q.m = I ^ F - L l f l (35) 

where F denotes the impact parameter amplitude, and the r e s u l t i n g overlap 

function has the same features which we knew before "the t a i l at large b, 

the peripheral increase with energy". The most in t e r e s t i n g point here i s the 

energy dependence of G and l w . F-" „at b = o. This i s shown i n Fig. (42), 
i n ^ 

From t h i s f i g u r e one reads that G - and not Im F - i s constant from 50 
i n 

to 1500 Gev/c, while Im F at b = o i s constant only i n the ISR region. 

The difference between both functions i s due to the r e a l p a r t . Solving 

eq. (35) f o r ImF we f i n d 
x - ? * > \ <- F v ^ 1 ! ( 3 6 ) 

Although the r e a l part i s small, i t i s not negligible i n eq. (36) at b = o 
,—' 

because " 1-G " at b = o i s small too. However at larger b Re F i s 
i n 

completely negligible so that both functions behave s i m i l a r l y . 

From the above analysis i t turns out the G (and not Im F) 
i n 

exhibits geometrical scaling above 50 Gev. From t h i s geometrical scaling 
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follows only 

^ (37) 

whereas a l l other relations 

PL 
(38) 

which follows from perfect geometrical scaling are disturbed by the 

rea l part, as we shall see next. 

( i ) The t o t a l cross section. 

Expanding eq. (36) with respect to J"7-Cr- gives 

\ f^L F~ (39) 

V/ I-GT 
The f i r s t term i n the r i g h t hand side scales i f G does 

i n 

^ —J \__ Re F 
(y b ^ ^ \ - C-

Hence 

(40) 

3. 

F = T - W * " ^ 7 ^ l 4 1 > 

(where P i s the momentum of the incoming p a r t i c l e i n the stationary target 

system) 

At t = o, the real part gives a positive correction to Im F 

"stronger at smaller energies, weaker at higher energies" which makes 

<j"*~77 behaves not similar to a — and produces actually a 
in 

minimum i n < j — ^ around 150 Gev (see Fig. (43)). 

( i i ) The slope parameter 

I f the slope parameter i s given by 



^ - ^ - r - r - / ^ ^ o (42) x ^ r 

eq. (41) gives 

L3. u /UP (43) 
V/|-G-. 

Since the f i r s t term on the r i g h t hand side dominates, we f i n d 

^3 

(s-S — — r- G-S I C r P" J i / 

So, the real part gives the same amount of correction to 

and but positive correction to and negative one to 

This makes r-j-r— f l a t t e r than q . - , and B steeper than n—— , ^ t i n r m 
and gives 

- r r & A b> . ( 4 5 ) 

This r e l a t i o n i s tested i n Fig. (44). I t can be seen that i t works 

very w e l l . However at ISR energies, the r e a l part i s r e l a t i v e l y small, 

and both types of geometrical scaling that i s Gs of G^n and Gs of 

Im F, agree w i t h i n the errors. 
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CHAPTER SIX 

The o r i g i n of the r i s i n g cross-section 

I n t h i s chapter we consider the question of the r i s i n g cross-

section. A possible explanation of t h i s r i s e (500 ^ s ^ 3000 Gev ) 

i s the presence of threshold e f f e c t s . In the f i r s t section we show that 

the contribution to the t o t a l cross-section of single d i f t r a c t i v e 

dissociation i n t o high missing mass (M) exhibits a logarithmic 
(19 32 18) 

threshold increase with energy. ' ' The delayed threshold of 

t h i s e f f e c t arises from the simultaneous constraints /V̂  /\A both 

large, and probably correspond to a threshold energy somewhat below 

S ~ 200 Gev2. 

I n Section 2, we discuss another possible threshold mechanism 

"Nucleon-Anti Nucleon" p r o d u c t i o n ^ ' . The delayed threshold 

i n t h i s case i s due to the heavy masses of the /V/V pairs. I n section 

3 the question of the r i s i n g cross-section i s re-examined (with 

theresults of Chapter IV i n mind) i n impact parameter-space. And 

f i n a l l y we present our conclusion i n section 4. 

1. Rising cross-section and t r i p l e pomeron. 

In view of the success of the "two component model" i n accounting 

for the observed properties of high energy m u l t i p a r t i c l e production, 

i t was natural to t r y and see whether i t can also account dynamically f o r 

the t o t a l cross-section behaviour. The fact that the d i f t r a c t i v e component 

"with a large r a p i d i t y gap" i s considerably smaller than the short-range-

correlation component "no large r a p i d i t y gaps" suggests the p o s s i b i l i t y of 
. . , . . . . ^ . (19-18) (45) a perturbative expansion of the high energy t o t a l cross-section. 
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I f we assume that the (SRC) i s described by a "bare pomeron" (by 

bare pomeron we mean the physical pomeron that governs the cross-

section at intermediate energies, while we regard the re-normalized one, as 

the one which governs the asymptotic behaviour) one predicts a recurrence 

of the pomeron pole at high energies, as i n the figure below. The t r i p l e 

pomeron contribution i s the f i r s t term i n . j h i s recurrence series, and 

therefore confirmation of i t s presence and an estimation of i t s magnitude 

goes a long way towards specifying the series. This series "renormalize" 

the position of the input pomeron pole. However, because of the smallness 

of the triple-pomeron coupling we need only to consider single d i f f r a c t i o n 

i n t o high mass, i n the ISR energy range. 

"Fig. 1 " ^ ^ST"' + + ^ f i f V l 

The (SRC) component "Zeroth order i n the t r i p l e pomeron coupling" 

has the following contribution to the t o t a l cross-section 
olio)- 1 

o — - P ^ S (1) 
SRC 'PPff 

This term accounts for the approximately constant proton-proton cross-
2 

section i n the region 30-100 Gev . However at higher energies 

d i f f r a c t i v e dissociation i n t o high-mass states becomes possible. The 

t r i p l e Regge expression for this gives (taking {p — f f ) . 
aA 2 1^ • 

I , Vvx\ V\ V / j \ 
3> * a K-r (-31 

0 ' 
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^ f p / p pfP ' ppP P ( 3 ) 

m being the nucleon mass 

where i s the pomeron, proton coupling, £ i s the pomeron 
• P P 11 ' tP 

signature fac t o r , and ^ ^ ^ ^ ^ J i s the t r i p l e pomeron coupling. 

The factor 2 i n eq. (2) arises from the fa c t that either proton 

may be d i f f r a c t i v e l y scattered. 

The lower l i m i t ^ should be chosen high enough to make 
it 

o 
the pomeron dominance an adequate approximation i n eq. ( 2 ) . The upper 

l i m i t comes from the fa c t that we are considering terms with one large 
(18) 

r a p i d i t y gap. I f we l e t A be the minimum gap length which 

defines a large r a p i d i t y gap, then t h i s implies M / f S where 
_ A 

r - e 
(4) 

eq. (2) becomes "replacing also t . 

^.-^ d£ Lit — -E— 6- 1 ff ̂  'j (5) 

6 

Assuming a linear t r a j e c t o r y f o r small t w i t h 

o/ ( o ) — ^ M ~ 1 (6) 
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2 The integ r a t i o n of eq. (5) over M gives: 

_ _ » ("^ S,A_ ? V - a ^ l 
» ( i t a ) h ^ ) * U^a ) - r J(7) 

Assuming a rapid f a l l o f f of the couplings G ( t ) , we can expand the 
IP 

term i n brackets about t * 0 i n eq. (7), and we f i n d : 

3 0 y> s 

^ — - 77ZL G~ ) («) J> 1 6" IP M'9" 

where 

(9) 

We see from eq. (8) that the cross-section of single d i f f r a c t i v e 

dissociation i n t o high masses, shows a logarithmic r i s e w i t h energy, 

regardless of the function form of G ( t ) . This r e s u l t i s correct to a 

good approximation over a f i n i t e energy range. The detailed functional 

form of G ( t ) w i l l , however, affec t the asymptotic behaviour for very. 
P 

large s. I f we choose vanishing t r i p l e pomeron coupling i.e.. 

p p 
eq. (7) gives 

(U) 

Thus vanishing of the t r i p l e pomeron coupling, prevents an unbounded 

increase of . 3 - and avoid eventual v i o l a t i o n of the Froissart bound. 
"ID 
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But the analysis of the data "e.g. Roy & Roberts. Ref 32" shows no 
2 evidence for the vanishing of G ( t ) , at l e a s t down to t i -0.05 Gev. 

fP 

In fact rather than any tendency to turn over, the data seems to show 

a sharping at small t values. I f we choose a non-vanishing t r i p l e 

pcmeron i . e . 

p 1? 
(12) 

eq. (7) gives 

(13) 

which gives asymptotically " (.e. p. o< /J2^S ^ io " a slow In ( I n s ) 

increase. But to extent that 

2. — « \=> (U) 
. IT /\A2_ 

(Which seems l i k e l y to be s a t i s f i e d at NAL and perhaps at ISR 

energies, because of the small values of at/ ), both eqs. (13) (11) 

give a d i r e c t logarithmic increase, as i n eq. ( 8 ) . When the energy 

increases from s i to s2, eq. (8) gives: 

A a — - ^~ GrCt) — ^ - (15) 

Let us now i l l u s t r a t e how th i s Ins increase i n eq. (15) comes 

about using the Feynman variable X, 

X ^ l - ^ - (16) 



6 1 

2 *2 

Since the upper l i m i t for M i s M ^ r s , we find that the 

lower cut-off "X0" in X plot i s independent of the energy: 

On the other hand the upper l i m i t i n x plot i s given by 

(18) 

So for the energy S^ the region of integration i s from Xq to X̂ , 

while for .the energy S_, the region of integration i s from X to X., 
t» ty O Sm 

M 
i . e . as S increases the threshold on a — plot moves closer to 

s 

zero, (we are integrating up closer to X = 1 ) . This means that the 

t r i p l e pomeron term, picks up an extra contribution giving an 

appreciable increase to rr~& 45). 

According to the analysis of "Roy & Roberts, Ref. 32, and Amati 

et a l , Ref. 19", the net increase A A-=>—* resp e c t i v e l y i s 

3 L-oJa 

Taking into account the numbers obtained by various people who have 

played t h i s type of game, i t may be tempting to suggest d i f f r a c t i o n as 

the mechanism for the t o t a l cross-section r i s e . However, even i f we 

grant the numerical equality An— A r:r7~ - fa. a— over the same 

energy range i s 3.8 * 0.8), the si t u a t i o n i s s t i l l f a r from clear 

as we s h a l l see from the following models. 



( i ) D. Amati et a l : ^ ' 

I n t h i s model we have 

V ° > = L ' 3 ^ ^ ^ ° ' ( 1 9 ) 

This gives a constant <x"jjjj and the entire r i s e i n the i n e l a s t i c c r o s s -

section comes from ^ — . The Ins term i n ^ , together with higher 
D D 

order terms (double and higher d i f f r a c t i v e events w i l l become detectable 
v 

at even higher energies and w i l l contribute with higher powers of I n s ) , 

w i l l i nevitably lead to a renormalization of the pomeron tr a j e c t o r y and 

to a v i o l a t i o n of the F r o i s s a r t bound. This problem was treated in Ref. 

19, by introducing e l a s t i c absorption i n order to restore the F r o i s s a r t 

bound, without effecting the energy dependence appreciably at ISR. 

(55) (32) 

( i i ) Blankenbeder. 

This model can also be described by the s e r i e s expansion of F i g . 1 

i t has an e x p l i c i t prescription for taking into account absorption due to 

the e l a s t i c and d i f f r a c t i v e channels. 'The e l a s t i c d i f f r a c t i o n causes 

absorption i s already rather generally believed. Blankenbecler^^^ 

argued that also i n e l a s t i c d i f f r a c t i o n should give r i s e to absorption.' 
This mean, i n essence, that one subtracts from a of F i g . 1, the 

ND 

terms of F i g . 2 below, corresponding to i n i t i a l state absorption, and 

an i d e n t i c a l set of diagrams for f i n a l state absorption. 

\ 
3 r 

- 5 

Fig (2) : Absorptive corrections to the c r o s s -

section, according to the model of Blankenbecler. 
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Thus a i s given by 
ND 

o/ (<0 -1 
a (? 

a («J S _ n r^r— _ 1 (20) 
• f p e p 0 1 cc" 1" 3T J 

So, i f o[io\ = 1 and i f o — would r i s e , then the i n e l a s t i c cross-
.|f- D 

section would go down and not up. In order to prevent a from 
i n e l 

going down, one needs an a l i e n mechanism "non-diffractive" which must 

give an increase more than a — to re-produce the r i s e i n a D i n e l 
This mechanism could be the opening up of new non-diffractive channels 

which amounts to assuming a bare pomeron intercept <=>t(o) S I . 

( i i i ) B i s h a r i et a l . ( 5 4 ) 

In t h i s model, we s t a r t with o/to; l e s s than unity, so we get 
P 

asymptotically a consistent solution. The non-diffractive cross-section 

now i s given by 

Hp r P/p - rpf>ff w1* 

And the r i s e i n the d i f f r a c t i v e cross-section, i s exactly compensated 

by the f a l l i n the non-diffractive cross-section. Thus the entire 

r i s e "m <— has to be attributed to some a l i e n source - e.g. Nucleoli -
i n c l 

Anti Nucleon production. 

2. Rising cross-section'^- NN production 

As we mentioned i n the preceding section, the work of Blankenbecler 

has given s u f f i c i e n t reasons for believing that, the r i s e of proton-proton 

t o t a l cross-section at ISR i s non-diffractive i n o r i g i n . On the other 
(581 

hand, the analysis of M. Antinucci, shows that the P production c r o s s -
(47,56,57 

section increases by ^ 6mb a t ISR. This observation led several authors 
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to the suggestion that t h i s might be the cause of the t o t a l cross-

section r i s e . Here we study t h i s phenomenon assuming that the 

production of NN takes place Multiperipherally. 

To s t a r t with l e t us consider the following decomposition of the 

non-diftractive proton-proton t o t a l cross-section 

Where we have assumed i n eq. ( 1 ) , that NN production i s purely 

non-diftractive, "since both the NN production and d i f f r a c t i o n are small, 

at ISR we ignor their interference". The superscript i n eqs. (1) (2) 

denotes the number of NN pairs present i n the f i n a l s t a t e . 

The behaviour of q — (NN) 

To estimate the o — (NN), we consider the m u l t i p l i c i t y sum r u l e , 

^ ) > a j * 4r. * ° (3) 

(4) 

I t i s more useful for our purpose here to define a d i f f e r e n t 

average m u l t i p l i c i t y by normalizing with respect to o — (NN). 

<^/V> - 3 — (A/%) - + 
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Assuming that and - — are nearly equal, eq. (4) gives 
c4_£ =1 £ 

The quantity <(N^ i s the average number of NN p a i r s produced 

for events i n which at l e a s t one pair i s produced, hence <N> ^ 1 . 

Following the analysis of r e f . (58), the r i g h t hand side of eq. (7) i s 

shown i n f i g . (46). Therefore, once i s known, sr-(NN) can be found. 

Assuming that <NS remains near unity, i t follows from F i g . (46) 

that for s ^.500 Gevw- (NN) i s l e s s than 4mb, and for s - 3000 Gev, i t 

can be as large as 10.2 mb.• Thus the increase A°~ i n o — (NN) over the 

ISR energies i s approximately 5-6 mb. However A <3— (NN) w i l l be l e s s 

i f N^ increases above unity. 

F i g . (46) has another important piece of information: the p 

production i s negligible below s- 100 Gev . This delayed threshold, 

and the assumption that < N^ remains near unity up to ISR energies can be 

understood by assuming the NN production takes place multiperipherally. 

F i g . (47.a) shows the production of a NN pair i n the central region 

"the p d i s t r i b u t i o n i s strongly peaked toward the c e n t r a l region". The MP 

kinematics can be described by a (highly simplified) constraint, 

2 
I f we take the threshold for each sub-energy ev- 4 Gev , the MP 

— 2 2 threshold for single NN pair production i s ^ 64 Gev" with s = 1 Gev". 

This rough estimate i s numerically too low. T y p i c a l l y only above 
2 — (53) s = 200 Gev NN production i s important. 
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The configuration for producing Q. NN p a i r s , F i g (47.b), can be 

analysed i n the similar manner, and one finds that the dynamical threshold 

i n t h i s case i s at s-3500 Gev, j u s t beyond the highest ISR energies. 

(o) 
The behaviour of ° . 

Since NN production i s small below the NAL energies, the success 
(o) 

of the two-component picture indicates that — , the component of 

— without NN p a i r s , i s already smoothly behaved at s^200 Gev. 
ND 

Therefore the production of pions kaons alone generate a "bare pomeron" 

with intercept <J , where both t h e o r e t i c a l arguments and numerical estimates o 

indicate that t h i s bare pomeron has to be below J = 1 . ^ ^ This o( Q 

i s the bare pomeron used i n the perturbative treatment of high energy 

c o l l i s i o n at ISR. ̂ ^ ' ^ ^ The important question now i s : how 0 — 

behaves as we move into the ISR energy range. Chung- I T a n ^ ^ argued 

(from the additive property of the MP models, together v i t h the observation 

that o — i s already smoothly behaved at NAL), that an increase i n NN 

production does not lead to a corresponding decrease in the r e s t of the 

non-diftractive cross-section. 

Decomposition of the intercept of the pomeron 

Fi g (48) shows ^-j— , , M ? j \ a-—-^ (according to the analysis 
ND ^ '* _ 

of D. Morrison " a - " , and Chung-I Tan " <^-(NN)", r e f . 47). From t h i s 
ND (o) 2 figure we see that the energy dependence of ^ — from 3 to 3OO0Gev can 

be characterized by 

( i ) A Regge term with an e f f e c t i v e intercept 0.82 for 

s ^ 30 Gev. 
2 

( i i ) a reasonably f l a t region between 30 and 130 Gev. 

( i i i ) another Regge term with an intercept oi, ~ 0.87 - 0.92 
o 2 for s between 130 and 3000 Gev. 



Since the intercept of the pomeron i s decomposed into the 

contributions of different hadrons produced through the MP chain, the 

above picture, i f correct, provides an e x p l i c i t i l l u s t r a t i o n on how 

the pomeron i s "dressed" by the opening of new channels. I t owes i t s 

" b i r t h " to the pion production, y i e l d i n g an intercept =•< £T0.82 
— 2 (the naked pomeron). Due to the KK production a f t e r 30 Gev, i t i s 

"rencmnalized" upward to We by approximately .0.1 unit i n J-plana, (the 

bare pomeron). Eventually, NN and other possible heavy p a r t i c l e 

production "renormalized" t h i s bare pomeron to a " s l i g h t l y - dressed 

one", of . ' IP 
I f i t happens that the sum of (0, T ) and C°, 

fl? (P 
almost saturate u n i t a r i t y , so that with (o, NN) added, (o) 

fP P 
would exceed unity, the NN production or part of i t would cause 

s u p e r f i c i a l v i o l a t i o n of the F r o i s s a r t bound t r a n s i e n t l y , i . e . the 

behaviour of — r over the ISR energy range i s a t r a n s i e n t , rather 

than asymptotic phenomenon. 

3. Rising cross*- sect ion i n impact parameter space. 

The r e s u l t s of Chapter IV "overlap function model" c l e a r l y provides 

strong constraints on models which proposed to explain the r i s e of the 

t o t a l cross-section at ISR. Any model proposed to explain t h i s r i s e , 

must also be able to explain i t s impact parameter d i s t r i b u t i o n (the 

observed r i s e of the proton-proton t o t a l cross-section comes from the 

region around b ~ 1 fermi). Here we examine the two mechanisms of 

section 1 & 2 and some others from t h i s point of view. 

( i ) central dynamics - peripheral r i s e ^ ^ 

According to t h i s mechanism the peripheral nature of the o v e r a l l 

increment of the i n e l a s t i c overlap function i s interpreted as due to 

the sum of 
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1. a new central channels opening up "which cause the r i s e of 
rT—7 - 1 1. and i n e l 

2. a t y p i c a l Regge term " i . e . shrinks, err , stays 
ri-fc- i n c l 

constant", which gives i n impact parameter space a decreasing 

central absorption together with expanding radius. 

F i g s . (49,a,b,c) show how the new central channels could e a s i l y compensate 

the decrease of the central absorption and make the o v e r a l l increment 

of the i n e l a s t i c overlap function, A G- ( s , b ) , peak at 1 fermi. 
\'v\ 

The extraordinary constancy of %nei (s» b 5 8 o) "0.94" at ISR 

which comes from the new channels opening up and the shrinkage of the 

bulk of the cross-section, can be re-produced by using pomeron pole 

(t) <= 1.06 + 0.35 t . To c l a r i f y t h i s point we r e f e r to F i g . (50) 

which shows § n e ^ ( s , b = o) as a function of the energy. The figure 

also shows a curve calculated using the above pomeron pole (the central 

production i s e f f e c t i v e l y described by talking the pomeron intercept 

to be above one). From th i s curve we see that G ( s , b = o) i s 

decreasing at low energies, and passing though a broad minimum (0.94) 

at ISR energies. At energies above ISR G^ ( s , b = o) w i l l probably 

r i s e and f i n a l l y slowly saturate the u n i t a r i t y l i m i t . 

( i i ) Geometrical scaling. 

Geometrical scaling states that (Chapter V) 

G. » 0 —> Gr 
i n i n r*C* j 

We saw i n Chapter V that the data s a t i s f y Geometrical s c a l i n g , 

e.g. the four curves of figure (31 a) which represent G^ ( s , b) at 

\) s = 21, 31, 44 and 53 Gev, can be put on the top of each other, 

i f we s c a l e them by a suitable s dependent radius. However, i n spite of 

the experimental success of Geometrical s c a l i n g , we don't know whether i t 



i s systemic or an accident. For instance, the constancy of ( s , b = o) 

according to the above mechanism, only happens because of the big 

cancellation between the central channels and Regge behaviour term. 

( i i i ) NN production. 

We saw i n section 2, with the context of MP model that t h i s 

phenomenon could even account for the whole observed increase i n 0 — . 
i n 

However, i n impact parameter-space i t i s hard to see, i f the model can 

describe properly the impact structure of A § n (s>b)» since i t i s not 

even known i f the model can f i t the shape of G ( s , b ) ^ \ 

A l t e r n a t i v e l y , from geometrical picture point of view, i n which 

heavy p a r t i c l e s (e.g. NN) are expected to be produced i n a "head-on" 

c o l l i s i o n . The peripherality of A G (s,b) can be obtained from 
_ i n c l 

t h i s c e n t r a l NN production, with the compensation mechanism described 

i n ( i ) . 

( i v ) I n e l a s t i c d i f f r a c t i o n . 

The i n e l a s t i c d i f f r a c t i v e overlap function of Sakai & White-

(Chapter IV) has a peripheral impact parameter structure ( i n the case of 

t-channel h e l i c i t y conservation). This f i t s well with the picture of 

d i f f r a c t i o n being the cuase for the r i s e of <3~~ n̂ĉ  • However, even i f 

the overlap function G ( s , b) i s peripheral, t h i s by no means would 
D 

guarantee the peripherality of A G ( s , b ) . I f A G ( s , b) has the 
D D 

same peripheral nature as G ( s , b ) , a q u a l i t a t i v e understanding of the 
D 

mechanism which attributes the r i s e i n ^ to i n e l a s t i c d i f f r a c t i o n , 
i n c l 

can be obtained. No quantitative calculations of the increment of the 

d i f f r a c t i v e overlap function e x i s t at present. 

On the other hand the "Two component analysis of the i n e l a s t i c 

overlap function" (Chapter I V ) , suggests a c e n t r a l d i f f r a c t i v e component 
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and a multiperipheral one. The multiperipheral component i s more 
peripheral and shows s i g n i f i c a n t shrinking with increasing energy. 

The peripheral nature of the ove r a l l increment of the i n e l a s t i c 

overlap function can be interpreted again as due to the increasing 

central component together with the shrinking multiperipheral part. 

Thus although the r i s e i n i n e l a s t i c cross-section can be attributed 

to a central d i f f r a c t i v e component, the net increase can s t i l l be 

peripheral. 

4. Conclusion 

In conclusion we f e e l that i t may well be that there i s no 

simple explanation for the r i s e of the t o t a l cross-section i n terms of 

a p a r t i c u l a r isolated set of processes, but the r i s e i s a much deeper 

c o l l e c t i v e e f f e c t . 

In impact parameter space, the r i s e of the t o t a l cross-section 

comes from the region around V=>-̂1 fm. we emphasize here again that t h i s 

p e r i p h e r a l i t y phenomenon i s a dynamical e f f e c t , since the central absorption 

does not saturate the u n i t a r i t y l i m i t . The i n e l a s t i c overlap function may 

be written (Chapter IV) as the sum of "disk"plus " r i n g " components, and 

the peripheral increment of the i n e l a s t i c overlap function may come from 

an expanding "disk" component with radius ~ 1 fm, or from a growing 

"ri n g " component centred at 1 fm. 

The association of "disk" or "ring" components with d i f f r a c t i v e 

or non-diffractive productions i s model dependent (e.g., i n the i n e l a s t i c 

overlap function of Sakai & White i t i s possible to identify the " r i n g " 

component with i n e l a s t i c d i f f r a c t i o n and the "disk" component with non-

d i f f r a c t i v e production). The question of the physical o r i g i n of the r i s i n g 

cross-section i s one of the most inte r e s t i n g problems of hadron's today, and 



by solving i t we hope that we w i l l be able to learn a l o t about 

hadron physics. 
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Fig . 3 Comparison of d i f f r a c t i o n scattering at 
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(Ref. 1 ) . 

Fig . 4 Exponential slopes of. d i f f r a c t i o n scattering 
for tr^p , i ^ p and p * p . 
The data have been f i t t e d over the i n t e r v a l 
o*©7- ^ \*= \ ^ G • 3 G-
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F i g . 5 D i f f e r e n t i a l cross-sections for e l a s t i c 
scattering at 100 Gev/c. 
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2 
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a function of S. (Ref. 3) 

Fi g . 7 The apparatus used at the CERN-ISR by the 
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a t v a r i o u s l a b o r a t o r y momenta. 
(b) Features of sLU (PP) i n ISR range. 
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ISR energies (Ref. 12) 

F i g . 16 Proton-proton opaqueness a t the tv7o extreme ISR 
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F i g . 17 Data on proton-proton e l a s t i c s c a t t e r i n g from ISR 
together w i t h some lower energy p o i n t s . 

F i g . 18 The e f f e c t i v e t r a j e c t o r y f o r pp s c a t t e r i n g obtained 
from the ISR data. * (Ref. 10). 

F i g . 19 The e f f e c t i v e t r a j e c t o r y f o r pp s c a t t e r i n g f o r 
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F i g . 20 F i t ( i ) "Chapter I I I . Sec. 2" using eqs. ( 9 , 10, 
11), t o the ISR data, and lower energy data f o r 
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F i g . 21 F i t ( i i ) "Chapter I I I . Sec. 2" using eqs. ( 9 , 10, 
11, 13). (Ref. 10) 

F i g . 22 F i t ( i i i ) "Chapter I I I . Sec. 2" using eqs. ( 9 , 1 1 , 
14). (Ref. 10) 

F i g . 23a, b) F i t the (PP) data t o Regge cut model (Chapter I I I 
Section 3.2). using eqs. (9, 10, 27). The f i g u r e s 
also show the f i t s of -jt~ P \i r

v~ data using 
eqs. (9, 10). (Ref. 15). 

F i g . (23 c) The e f f e c t i v e t r a j e c t o r y f o r pp s c a t t e r i n g a t ISR 
w i t h ^ f p ( t ) = 1.07 + 0.22 t and <^ c ( t ) -
1.14 + 0.11 t (Ref. 15). 



F i g . 24 F i t the pp data t o Regge cut model "Chapter 
I I I , Section 3.3" using eqs. (28, 17, 14) 

(Ref. 10). 

Fig.- 25 The imaginary p a r t s o f the impact parameter 
amplitudes corresponding t o f i t ( i ) (Chapter 
I I I ) t o the ISR data (Ref. 1 0 ) . 

F i g . 26 S o l u t i o n of the s-channel u n i t a r i t y r e l a t i o n 
"Chapter 4. eq. 5". (Ref. 25) 

F i g . 27 Ratios of pp cross-sections and e l a s t i c slope. 
The Van Hove l i m i t s correspond t c a Gaussian 
overlap f u n c t i o n of maximum s t r e n g t h allowed 
by u n i t a r i t y . (Ref. 13). 

F i g . 28 I n e l a s t i c overlap f u n c t i o n at P L b = 1500 Gev/c. 
The s o l i d p o i n t s are c a l c u l a t e d from the ISR 
data. The s o l i d curve i s the Two-component 
p a r a m e t e r i z a t i o n , "Chapter IV. eq. 15" (Ref. 2 5 ) . 

F i g , 29 (A) Results of f i t s "eq.17, Chapter IV" t o d a t a , 
a, b, c, and d represent the parameters P, B, 
and B^ r e s p e c t i v e l y . 
(B) The upper s o l i d curve represents G =» ̂ Qau * 
G e d g , •__„ represents G ^ 
represents f i t w i t h G = Gg a u f o r 0 ^ - t ^ 0.6 
(Gev/c)^, the lower s o l i d curve represents 
5 x G . (Ref. 28) 

edg 
F i g . 30 (A) Impact s t r u c t u r e o£ proton-proton s c a t t e r i n g 

a t sfS = 53 Gev. 

(B) The amplitude, i n e l a s t i c overlap f u n c t i o n and 
e i k o n a l e x t r a c t e d from experimental data at 

VVT = 53 (Ref. 24) 

F i g . 31 (A) I n e l a s t i c overlap f u n c t i o n s c a l c u l a t e d from t h e 
>JT' - 2 1 , 3 1 , 44 and 53 Gev ISR data. 

(B) D i f f e r e n c e of the \fs~ = 53 and 31 Gev 
i n e l a s t i c overlap f u n c t i o n . (Ref. 24) 
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e l a s t i c amplitude i n t o i t s v a r i o u s components, 
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F i g . 33 I n e l a s t i c overlap f u n c t i o n H^^ ( s , b) and i t s ^ 
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F i g . 34 D i f f e r e n c e of the i n e l a s t i c overlap f u n c t i o n a t 
two energies s = 28406 s = 940. The experimental 
curve i s t h a t obtained from the a n a l y s i s of M i e t t i n e n 
6 P i r i l l a . (Ref. 26). 
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F i g . 35 (A) p l o t of ei<r-/d t at the lowest and hi g h e s t 
ISR energies (Ref. 12) 
(B) p l o t of J ' t / O e i r a J ^ J 1 

as a f u n c t i o n of f o r the lowest and 
highest ISR energies. The p o i n t s everywhere 
f a l l i n t o a unique curve. (Ref. 3 5 ) . 

F i g . 36 Compilation of PP cross-sections and slope 
parameter ( f o r I 11 4 0.15). (Ref. 1 3 ) . 

Fi g . 37 E v a l u a t i o n of geometrical s c a l i n g p r e d i c t i o n s 

(Ref. 3 4 ) . 

F i g . 38 E v a l u a t i o n of geometrical s c a l i n g p r e d i c t i o n s 
f o r secondary maximum and d i p l o c a t i o n 
"eqs. 24, 25, Chapter V" (Ref. 34). 

Fi g . 39 E f f e c t i v e Regge t r a j e c t o r y as deduced from: 
(a) the geometrical s c a l i n g p r e d i c t i o n o f 
the r i g h t hand side of eq. (26) "Chapter V". 

(values denoted by shaded 
region) 

(values represented by data p o i n t s ) . 
(Ref. 3 4 ) . 

F i g . 40 Comparison of the geometrical s c a l i n g p r e d i c t i o n s 
w i t h o( obtained from the ISR data "eq. 33 
Chapter e V" (Ref. 4 1 ) . 

F i g . 41 The s t r u c t u r e of the r e a l p a r t i n t and b space. 
(Ref. 3 8 ) . 

F i g . 42 Im F and G. a t b = 0 as a f u n c t i o n of Lab. 
momentum ( s o l i d l i n e s ) . The dashed l i n e represents 
a r e s u l t f o r Im F belonging t o the same but 
wi t h o u t t a k i n g i n t o account the r e a l p a r t . 

(Ref..38) 

F i g . 43 The momentum dependence of the t o t a l , e l a s t i c and 
i n e l a s t i c proton-proton cross-sections. The 
dashed l i n e s are the r e s u l t s f o r ~ c and 
of c a l c u l a t i o n w i t h o u t the r e a l p a r t . (Ref. 38). 

F i g . 44 < t*~ rt-CV^"^ compared w i t h the energy dependence 
of a — \„ ( s o l i d l i n e ) . The dashed-dotted l i n e 
represents the energy dependence of the slope 
i t s e l f (Ref'. 38). 
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F i g . 45 The shaded r e g i o n i n t h i s f i g u r e corresponds t o the 
increase i n — which we go from energy s. t o s ? 

3* (Ref. 46) 1 

F i g . 46 < n > a — (NN) from (Ref. 47) 

F i g . 47 (a) MP p r o d u c t i o n of a s i n g l e NN p a i r . 
(b) MP p r o d u c t i o n of a two NN p a i r s 

(Ref. 4 7 ) . 

F i g . 48 Non d i f t r a c t i v e t o t a l c r o s s - s e c t i o n w i t h o u t ' 
NN p a i r s . (Ref. 4 7 ) . 

F i g . 49 I l l u s t r a t i o n of how c e n t r a l channels opening up 
may generate a p e r i p h e r a l A G. ( s , b ) . 
(a) The i n e l a s t i c c r o s s - s e c t i o n s?ays constant 

b u t J ^ / A t s h r i n k s . G. ( s , b) decreases 
i n x ' 

a t b = o and increases a t b >̂ 1 fm. 
(b) The new c e n t r a l channels compensates the 
above c e n t r a l decrease. As a r e s u l t , the c r o s s -
s e c t i o n increase appears p e r i p h e r a l . 

(c) The d i f f e r e n c e of the two overlap f u n c t i o n s 
„ o f b. (Ref. 2 4 ) . 

F i g . 50 I n e l a s t i c overlap f u n c t i o n a t b = 0 vx. S. 
The curve i s an i l l u s t r a t i o n of our e x p l n a t i o n 
f o r the constancy of G. ( s , b = o) over the 
ISR energy range, c a l c u l a t e d using < ^ p ( t ) =' 
1.06 + 0.35 t . (Ref. 24 ) . 
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F i g . 12(C) The large angle pp elastic scattering at various laboratory momenta. 
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