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ABSTRACT

This thesis deals with various aspects of proton-pronton
scattering at high energies, in particular the recent CERN-ISR
results.

In chapter one, first we d?scuss briefly the experimental
situation of the total cross—sections and =lastic scattering of
hadrons on protons up to NAL energies. Théh we give a general review
of the methods which have been used for the determination of the total
cross—section in the ISR. The main experimertal features are summarized
at the end of this chapter.

.The results of chapter one motivated a new interest in asymptotic
theorems. In chapter two we discuss scme theoretical aspects which are
model independent, and some physical predictions ip the presence of an
asymptotic growth of Sl

Chapter three is concerned with fitting the data with a variety
of Regge pole and cut models. We cons%der various eikonal-type
prescription for the cut strength.

In chapters four and five we re-examine the data using two
phenomenlogical models; namely : the overlap function model and the
geometrical scaling model, using mainly impact parameter language. It
will turn out that geometrical scaling hypothesis can describe the main
qualitative features of present data.

A number of interpretations have been proposed to explain the
rise of <°F | in the ISR energy range. In chapter six we consider
the question of the rising cross—section. We discuss two mechanisms

proposed to explain the rise of ¢ » where in both mechanisms the

rise of S in the ISR energy range is interpreted as a threshold
effect. Finally we end this work by examining the rise of =% in

impact parameter space.
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(HAPTER (NE

Total cr.ss, and elastic scattering at high eunergies

The plan of this chapter is as follows:-
1. Total cr.ss. of hadrons onproton and elastic scattering
2., Measurements of proton = proten total cr,.s. at ISR

3. Summary of ISR results on p-p elastic scastering

1.1 Total cr.ss. of hadrons on proton.

The experimental situation on the energy dependence of the
total cr.ss. of-TT :, K:, P: on P up to (SP) energies may be summarized
as follows:-

+ -
(i) Thej-P, K P, PP total cr.ss. seem to have reached some kind
of a plateau with little or no energy dependence.
(ii) The pp cr.s. isidecreasing while
(iii) K*P cr.s. is increasing with energy.

But in the past few years with the advent of ISR facilities at
CERN and the preliminary operation of the NAL 400 Gev machine, the
horizon of high energy hadronic scattering have widened dramatically.
In fact only (pp) cr.s. measured at extreme energies, this energy is

available from the ISR where up to 30 Gev protons collide in their

overall center of mass

P1 p2
> & , —>
30 Gev 30 Gev 400Gev
2
S = (P+P,) = (E[+E,) = 3600 GBv S = ( 1+400)2 - (400)% = 800 Gev
ISR NAL
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The results from ISR (which will be discussed in detail in Section 2)
demonstrate that (pp) cr.ss. are rising in that energy range, the
effect was found to be big, of the order 107 for am increase in
energy by a factor of about 2.5 (\r;=23 - J;=53)'

New data from NAL extend the measurements for the other five -
charge particles. All cr.ss. showa rise (Fig. 1) with the exception
of the Ep cr.s. which however doesn't decreazse any more and has
become flat at the highest NAL energy. These measurements demonstrate
that risiﬁg cr.ss. is a general high energy phenomencn.

The fact that K'P cr.s. demonstrate this phénémenon at the
lowest energy is propably related to the fact that it is cr.s. is the
smallest one, and suggest that the rising comporent is present at all
energies but can reveal itself only when the Regge type terms ~o E-aI<
have become very small,

Finally, the difference of particle and antiparticle cr.ss. (as)

(1.

are shown in (Fig. 2) .demonstrating that Aw— approaches'iero,

-4

approximately as S , in agreement with Regge analysis, and pomeranchuk

theorm.

1.2 Elastic Scattering

A collaboration of Michigan-ANL—FNAL—Indiana62) has measured
diffraction scattering at 100 and 200 Gev/c for all six changed particles
up to\t|\<1Gev/c2. In (Fig. 3) the various cr.ss. are superimposed,
normalized to each other at t=0. The data have been fitted to.an
exponential behaviour in t over the t range (007 {|ti (0.3) Gevz

and the resulting slopes are shown in (Fig. 4) in combination with data
at lower energies, fitted over the same t range. A rising slope is

apparent for all particles except the antiproton. The antiproton is

still expanding it's diffraction pattern but it's slope is approaching




the proton slope, while the other five particles all show a shrinking

diffraction pattern especially the exotic K'P and PP reactionms.
Recently (1975)(3) differential cr.ss. have been measured at

Fermilab forTrtP, KtP, and PiP elastic sca. at 50,70,100, 140, and

175 Gev/C incident momentum over the{#| range 0.03 to 0.8 va,

the results cannot be fit with a.simple exponential, but maybe

represented by

g{ = A exp(Bt +ctd) (1)

This form gives a good representation of the data and a typical set
of fits in show in Fig (5). The logarithmic slope b(t) is given by

b (ltl) = E—_ (-&n T ) =B-2C 1tl (2)

2
Fig. (6) shows these Logarithmic slopes at ltl = 0.2 Gev as a functiom
of S. These values of b(0.2) connect smoothly to previous results at
+

other energies. The .“? and k_ slopes show little energy dependence,

while the K' and proton slopes are gradually increasing.

&

2. Measurements of P-P total cr.s. at ISR

The experimental evidence for the rise of the p—p total cr.s. at
ISR seems to be very strong and unquestionable. This genergl opinion
stems from the fact that three different methods used for determination
of the o~ 8ave very consistent result.

In one method ¢?-is obtained from the measurement of the
differential elastic-scattering cr.s. by application of the optical
theorm, in another the totzl number of p—p interactions is counted. In
applying the first method two different approaches have been used to
fix the absolute scale of the elastic cr.s. (a) measurement of the
elastic cr.s. at very small momentum transfere wheré conlomh scattering

is dominant and known in absolute value. (b) and determination of the



machine Luminosity by the Van deer Meer Method,
(1) measurements of p—p total cr.s. by means of the coulomb scattering

(4)

p-p elastic scattering have been measured in the Coulomb-Muclear
interference region (0.001 {; 1tl S; 0.015) for beam momentum of
(11.8 + 11.8) and (15.4 + 15.4) Gev/c. In this experiment the elastic

scattering rate N(t) was fitted to6 the formula.

do— _ 2
where fc and fn are the coulomb and the nuclear amplitudes respectively,
2
. . . . _ay G (t) .
the coulomb amplitude fc is given by fc = Zd-TET—- exp (u¥¢) 4)
A = £ ~ 1
where = fine structure constant = 137
0( _ . ~ &0.08 ~
@ = phase of coulomb amplitude &= o((- =T " 0.577) = 0.025
G- (v) = proton form factor = (1-2.81tl)
while for the nuclear amplitude the familiar form
I .
fn = = | ():+ i) exp (Ibt) (5) was used

Then eq. (3) becomes

28 2 4 c() e Vi B (bt) \(6)
N(t) = K Y( T) c* - (p+d@) _j_q T exp (ibe) + (T5p) (-rf)ex®l

Coulomb C-N Nuclear

From eq.(6) we can see that for gy =40 mb, the Coulomb and nuclear
amplitude are equal for Eit:-:%?L (P is ISR momenta), At P = |§ Gev/c,
GE::GS wrocd  which corresponds to a displacement of the scatteriné
proton 3 cm from the beam axis at the end of the ISR 10m long straight
sections. So in order to enter considerably in coulomb region, we have
to detect protons closer to the beam more than 3cm. (Fig. (7) shows
a general layout of experimental apparatus used to detect particles
scattered in the vertical plane.

Before discussing the results of this method, we have to note an

important remark concerning eq. (4). In fact this eq., involves three



assumptions:
(a) Spin dependent effects are negligible.
(b} The imaginary part of K-amplitude depends exponentially
on the momentum transfere in the small 1tl regicn
1tl 0.015 Gczev
(c) The real and the Imaginary parts have the same t dependence
thus ¢ is. independent of momentum trausiere.
The validity of assumption (a) may be justified as follows, experiments
at lower energies have shown that spin-dependent effecrs, are small
already at 1.5 Gev/c and the currént picture of high energy, strong
interaction renders vefy implasuible the increase of spin effects
with energy, assumption (b) is consistent with previous measurements,
however the validity of this assumption has been recently questioned.
Assumption (c¢) is consistent with result at lower energies, moreover
9 is very small thus the experiment is not sensitive to it's (t)l
dependence,
Fig(8) shows two angular distribution in the C&ulomb-Nuclear

interference region at 11.8 and 15.4 Gev/c. The solid lines indicate

the differential cr.ss. obtained by using the best fit for g and 9
while the dashed lines indicate the separate contributions of Coulomt
and Nuclear amplitude.

The values of e and y as a result of the overall fits to the data at

each energy are shown in the table below (table 1)

ISR momentum equ.Lab. momentum
Gev/c _ Gev/c Tt f
+
11.8 290 38.97 0.7  +0.02- 0.05
B +
15.4% 500 40.2- 0.8 +0.03- 0.06

In the fit three parameters, gg » P and X in eq:(6) were left as a free

parameter, while the slope b was taken from previcus measurements, since




the present experiment doesn't cover z wide enough —t- range to
permit an accurate determination of b.

In Fig (9) tﬁe values ofg obtained in this experiment were

plotted together with data at lower energies, the ratiosf were found

to be slightly positive (Table 1), the analysis of all high energy data

from IHEP, Fermilab, and ISR inditates thatf goes from negative tc
.. . +
positive values, crossing zero at about {280 _ 60) Gev/c

(7

(ii) In this method the total p-p cr.ss. have been obtzined by

measuring elastic scattering at angles arcund 5§ mrad at c.m energies

of 23, 31, 45, 63 Gev, and by applying the cptical theorm. The steps

of the procedure are.the following.

ARet

(a) measuring the elastic differential rate

solid angle A 52 and in the vertical plane around @ = 6 mrad, which

corresponds to a momentum transfere t = p2 62 (p is ISR Momentum)

(b) Determination of the elastic differential cr.ss. by means

of the Luminosity using Van der Meer method

do— :-:L é..&_& N
S5 - A .

(c) having obtained the elastic differential cr.ss. at angles

» in a known

7]

6 mrad, the Coulomb contribution which varied from ~~ 57 at (11.8 + 11.8)

Gev/c to 0.2%7 at (26.6 + 26.6) Gev/c, was subtracted, and the

extrapolation of the nuclear scattering differential cr.s.
Q= W do

dt C P s (8) to the forward direction was
performed using the formula
bt
do— _ rdo- P
e ("’H: )e-..;e ®)

4T { I (cl 3 zl_’- _I~ —L i l'; R {
o7 - 5 ——= y {73y = G IR
€ _ P \j \.\-)-,1 \:’ AL 2._.: P JHJ«Q VL v NS

where

(10)



The ratio § has been previously measured (by method i) and
the average value between Vs = 23 and \Jrs—= 31 Gev was found
to be = 0,025 i 0.035, since the value is compatable with zero,
this value has been assumed in ed. (10). Also the effect of a
sizeable real part on 0‘2-_‘ is very small, for -05§f £ 0.2 onme
has variation of Y. with {AoZ| £ 0.2mb which is much smaller
than the errors quotad in table (2). (see next page)

This method has been applied at the four standard ISR energies
with the results collected in the table (2.).

The main conclusion of this experiment is that the p-p total

, +
er.s. increases by about AYEL = (4.1 - 0.7) mb in ISR energy range.

The present ISR data alone may be fitted by a linear increase with las,
on the other hand Fig. (10) indicate that O goes through a shallow

2 +
minimum around So = 200 Gev where <z =77 = (38.4 - 0.3) mb

[

2
Thus over a wider energy range 100 K s S 2800 Gev the data
: . . N
can be fit to the expression <=~ = "¢ + T (.Qm %—;\
+ %,
where <y = (0.9 : 0.3) mb, Vv = 1.8 - 0.4, such an increase of SZ

A

with energy agrees, within a large errors and over this energy range with
the Froissart limit V = 2, which corresponds to the maximum rate of
interactions allowed by unitarity.

Qi) The pisa--stony(g) Brook collaboraticn has measured the total
interaction rate P’t and cbtained directly the total cr.s. by using the

Luminosity measured with the Van der Meer method.

oz = 5% (12)
) —
The values T obtained by methods (i), (ii), and (iii)

are plotted together in Fig. (10). The agreement between the sets
of data is very good.
Let us finally mention to a new method for measuring Sare

by simultaneously measuring the total collision rate (method iii)

and the elastic scattering differential cr. s. in the diffraction
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region (method ii) one has by eliminating L between eq. (12) and

eq. (10).

qu)& £ (AR /B) ¢\3)
ST, = UL

t P P\t

In this case the measurement of < does not depend on the luminosity

t

of the ISR, thus removing one of the largest uncertainties on the

cr.s. measurement. The results of this fcurth method confirm the

previous measurements.

3. Summary of ISR results on p-p elastic scattering

Fig. (11) shows pp elastic scattering data at large momentum
transfere from ISR (8) together with some lower energy points. The
qualitative experimental properties of pp scattering data over the
ISR energy range can be summarized as follows:-—

(a) shrinking forward peak
The slope parameter Bo (-fm dr) rises by about 107 in the
ISR energy range. €=e |

.(b) Hon EEE; has concave curvature for | el = 0.15 va

et

So that at the highest ISR energy the slope equals (13.1t0.3)

for (0.0 { \¥\& 0¢15)  and (10.8 ¥ 0.2 Geb for 0.17¢it| & 0.31
(c¢) Diffraction minima in j%%? at t = -l.4

The differential elastic cr.s. shows a clear minimum at
t | 1.4 Gév. In ISR interval the position of the minimum displaced
by (0.0810.11) va towards smaller momentum transfere, passing from
(1.45 ¥ 0.10) G8v at s = 31 Gev to (1.37 ¥ 0.03) G&v at Vs = 53 Gev.
(d) The real part of the nuclear amplitude in the forward
. . . - Act —
direction is very small ( ¥= Re/Im = 0.025%0.035) for 23 L vs {31 Gev

(e) The total cr.s. increase by about (10 X 2) % in the ISR

energy range.



(f) The elastic cr.s. increase by (12 hs 4)%, if 10% increase

of the forward slope is assumed. Indeed one has (apart from small

2
- . N
corrections due to (b)) ) ~~ Tt , so that a slower
b
increase if b with energy implies a faster increase of Sy .

(e) :inelastic = ‘T—t— - T

increases by about 107
passing from (32 : 0.4) to (35 z 0.5) mb.

(h) Constant cr.ss. and slope ratios

—
£ ~oars Lo

~ §.296 Gov/mb

€

K

independent of s.

10



(CHAPTER Two.

Theoretical aspects of p-p scattering

The recent results from ISR (I) and the suggestion of a possible
(JL15)2 growth of SES (eq (11) - TI) motivated a new interest in
asymptotic theorems, and models which saturate the Froissart bound.
In the first section of this chapter we recall thke Froissart beund
and the MacDowell-Maftin bound, in the second one we give some physical
predictions in presence of an asymptotic growth of s and finally we
study in section 3 the p-p absorption at ISE,

I. Bounds

(1.1) Froissart bound

(11)

Starting from the existence of a cut off in the partial wave series

(Lukaszuk & Martin 1967)

= R Log § (1)
Max am__r :
[}

and using for g— the formula
(¥

L)

L nax
4T .
o = T % (2 R+1) Iw-\ ‘Ee(slo) (2)

Since Im fe is constrained to the range e S T . £,
(2) b 47 e (3)
eq (2) becomes 4 - 2 |
oz & = 2;— (z L+ )

We find the Froissar t bound

_

oz S

an

The factor

.\'z is of the order of 60 mb, which is two order
LA A)
el
.. . . 2 .
of magnitude greater than the coefficient of the Logs term in

(eq (11) - I)

11



(1.2) MacDowell-tlartin Bound

(13)

This bound on the forward elastic slope parameter Bo

2
o e ra

By

o Y i —g_a (5)

We test (5) against the data on p-p elastic scattering. At "'SP"

energies and above the ratio < /- . for p-p is about 0.175,

taking this value and the total cr.ss. from Fig (10) we find

2 - -
B nintmm = oz ,/18Tog &~ 101 to 11,3 (Cev/e) 2

from the bottom to the top of the ISR energy range. While the
experimental values of B(S,O) over the same energy range are 11,5 2 0.6
to 12,6 - Zo.8 (Gev/ c) . The experimental results are only slightly

(20 - 157) greater than the loweff bound.

Unfortunately the fact that the data are close t-o the bound gives

no useful information about the impact parameter profile of the

elastic amplitude, for example with either a black disc ( o /a" 'll)
Aor a Goussian (‘J_&/UZ \< \/¢ ), the slope parameter is given by

the same formula 2

_ 1l == (6)
RETeT

2. Physical Predictions

(2.1) Behaviour of Cﬁ'& , When T, BIOWS.
(1) Q‘[N L%g s, This implies wa ~ 102g s the
proof goes as follows:

Total cr.s. and elastic cr.s. are related through Schwarz inequality

L
L’mc\i 2 L ma
. \ A < ¢ 2 G *
Z (zis) Tm bl SL X Z (“*‘\\L"H (L, 8 (e “ (#)
. . . 2 2. . .
'whlch gives Y-{_’i U—%_X < S L_ o (3’)
] N5 i vx oL
Now using (1) we find 2 2 ;2

Mo o fum s . (2)




The width of the diffraction peak /A T may be defined by

~ F-(S,o) 2
AT = \ < l /‘j ry's (10)
2
which implies that ATe—~ ’/L‘-"j S ' (11)
. . 2
if S and T:JZ behave like log s

(ii) gy~ logs

In this case the predictions concerning elastic cr.s. are somewhat

changed, one can accept a constant elastic cr.s. with a width

-9 .
ATV ~U E LO'S SJ or an elastic cr.s. behaving like Lags
1

with a width AT~ (logs
(2.2) Rising cr.s., and the real part of the scattering amplitude.

The ratio §f between the real and the imagiaary part of
the scattering amplitude is reiated to the total cr.s. through a
dispertion relation, in 1965 Khuri & Kj.moshita proved that for a cr.s.
which rises indefinitely as a power of Lm-a E the ratio £ goes
to zero from above. For even signature amplitude F (E) (which is
the average between p-p and p-p amplitudes), if T behaves like

Lag E, then Fr (E) (which is dominantly imaginary) behaves like

A3

+ . .
F (EY~ CE (LoJ E) (12)

But it is easy to see that the expression (12) does not have the good

crossing properties since LOg (Eel-“_ ) =Log E+ i T . The

correct one is

fp A A=t
)

+ . . L TP g
F(2)n CE(Lege- Ty fe(tege)+ T (298) D)

and then . R A

A s
2 L3 E

13
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If we assume in addition that the odd signature amplitude is negligible at high

energies since(71: - g seems to decrease fast, one sees that eq (14)

PP PP

apply to the proton-proton amplitude itself.

Various dispersion relation calculations of the forward real part have
been dcne after ISR results. In which indefinitely rising cr.s. were
introduced. In Fig (9)(6) the dashed line represents the results

of such calculations in which it was assumed that asymptoticaly
<’F§=G7Eb = 40 mb, while the continuous line represents the case of

a cr.s. rising as (Log E)Z. It is clear from this figure that

the recent experimental points agree better with the continuous line.
Fig. (12)(6) shows the results obtained by Bantel & Diddeus where it was
assumed that above a certain value of the laboratory energy E, the

total cr.s. becomes constant. These calculations indicated that
measurement of the real part of p-p amplitude at the highest available
energy (2000 Gev equivalent) is sensitive the behayiour of the total p-p

cr.s. up to energies of order of 10,000 Gev.

3. p-p absorption at ISR and Black disc.

The energy dependence of the total, inelastic, and elastic cr.ss.
are illustrated in Fig (13) (12). The inelastic cr.s. increases slowly
and monotonicaliy from about 6 Gev/c to 1500 Gev/c Laboratory momentum.
The elastic cr.s. on the other hand shows a different behaviour, it is
larger than the inelastic one at small energies, then decreases and
theﬁ increases again. Such a behaviour can be considered quite natural,
because at low energies the (real) potential scattering is large, while
with increasing energy it is contribution goes to zero, so that only
the (Imaginary) contribution of diffraction scattering, shadow of the
inelas;ic processes, survives.

For the rest of this section we will use impact parameter language,
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where first we study briefly the black disc picture, and then we

turn to the absorption at ISR.

(3.1) Black disc (6)

The elastic amplitude F(s,t) for small angle, and-high energy
elastic scattering may be written as:~ N
.2
£ q 'Y a N
Flo,£)= _9-_‘(0_¢Ja. e FGay as
m
where Q’-‘—'- \} -t is the bi-—momentum transfere, f(s,a) is

the partial wave amplitude. From unitarity condition f(s,a) is

given by
£ _< 1_28(%* NP L (16)
Gay=5(1-¢ )= 5(ye )
where "l= ;2 I | represents the fraction of the

incident wave which is not absorbed. For mo absorption ™ =1,

and for total absorption "'L =0

Now by introducing the hypothesis that at very high energy elastic

scattering is esseni:ially diffractive (8R =0), eq (16) becomes
Im £(s,a) = - /2 (17)

which gi'ves

o \< I\...‘C(S,ox\ R4 (18)

At the same time Im £(s.a) is constrained (from analyticity) to the

range .
-(a-£P% '9’“"_"—)/“’0
s (19)
Twfay&e ¢ B
Since g, is given by oz = 8 Sa.oto\ T £ 5,0 (20)

we see that the maximum value of T is obtained when the partial

waves amplitu&'é Im f(s,a) follows the limits (18) and (19) as it is

shown in the following figure.
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This is the black disc cf Radius R =/30«5 S 5? which increases at
s

maximum as sz S so that the total cr.s. cannot increase faster

2
than /QM S .

On the "Diffractive" hypothesis (eq. (17) and from unitarity,

o ;9 ot P can be written in the forms.
* < wn

wzztﬂrjua.oca (i-"'L ) (21)

— _ O PN
!-J.“__)L =zt é (-Lc-(b\ (l~ () (22)
o
_ s 23)
o :'z.ujaculﬂ (-~ )

we saw that the Froigsart bound is diffractively saturated when the

partial waves up to a radius R are fully absorbed (i.e. when "’(' L4 ),

. . . 2
~/ N ¢ ~
in this limit we have U—_,L; -~ u;__ =L 2. o~ T [\

This is certainly not the case in the ISR where we have sezen (I-3-h)

that o7y /crz ~s 0.17 in ISR energy range.

(3.2) proton—-proton absorption at ISR.
12
)( )

In Fig. (14 Amaldi has drawn the elastic differential cr.ss.

at the two extreme ISR energies, making use of all the available



information. By introducing the usual simplifying hypothesis that the
real part of the amplitude is zero at all momentum transfere (with
the exception of the diffraction minimum), and £(s,a) is also pure

imaginary (eq (15) becomes _
. _> ..7
«q. o

I.. F(S/‘(‘)zﬁjadq € I\...-C('S/q) (;24)

From Fig (14) and by inverting eq (24) one ca2a work out the partial
wave amplitude Im f(s,a) as a function of the p-p impact parameter
at the minimum and maximum ISR energies. The results of these
calculations are illustrated in Fig. (15)(12), it is evident from
this figure that at ISR the amplitude is quite far from its maximum
limit (Im £(s,a) 4;5). Since the saturation of the Froissart bound
is obtained when, for a certair. range of impact parameter this
maximum limit is reached, we conclude that the increasing cr.s. at

ISR has nothing to do with the saturation of the Froissart bound.

The "opaqueness" SLL(a) =2 6]‘_ is related to the
. —LL(a)
Im £(s,a) through the relation In-f(s,a) = (l— e )/1 (25)

The opaqueness profiles obtained from the curves of Fig (15) are
I (12) . — - ()

plotted in Fig. (16) . The central absorption (l-e )

is about 75% in the ISR energy range, and —£2 (a) is too small

to give a flat behaviour of the partial wave amplitude Im f{s,a,), as

would be necessary in order to observe the Froissart regime.

Since the Froissart bound is not saturated in the ISR energy
range, it comes no surprise that the slope of the forward elastic peaks
Bo increases approximately as lns, while it must have a symptotic
growth Bo ~s lnzs.

Fig (16) contains another important information. By comparing

the shape of 2 (a) and A L2 (a), we find that, in the ISR energy

17



range the opaqueness increment has an average vadius of about 1 fm,
and it is more peripheral than the opaqueuess itself., This is
quite natural, since Fig (14) shows that the increase in the elastic
cr.s. comes mainly from the small momentum transfere which corresponds
to large impact parameter.

In Conclusion: The dynamics of the inelastic processes must
be able not only to explain the increase of <55, but must also

produce an increase of opaqueness which is mainly peripheral.

4
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CHAPTER THREE

The pomeron in proton-proton scattering

Introduction

The asymptotic cr.s. is supposed to be dominated by an even ‘
signature pole, with vacuum quantum numbers, and intercept c{@ﬂ= 1
(because the Froissart bound restricts all J-plane singularities
to o{t4{ 1) which is called the pomeron. Since no particles have
been identified with the pomercn, and since in most processes it
occurs together with several normal Reggeons, it has been hard to
determine the nature of this singularity. Fortunately we have now
good opportunity to learn about the pomeron from p-p system toth
because (i) ISR provides super high eneréy uniquely for this system
(ii) The contribution of the secondary Regge exchanges "R" to the
imaginary part of the amplitude is small (This is because pp
scattering has no resonances.i.e. with exotic (di-barycn) quantum
numbers, then according to the two component theory of duality, one
finds _%Im Re = O.

This chapter is concerned with fitting pp scattering data for
10 {; S ;E; 3000 G%v with Regge pole and cut modeis. In the
first section a parameterrization of the data at low and serpukhov
energies are given. A variety of Regge pole and cut models are
reviewed in sections 2 & 3, only two types of models are able to explain -
the data over the whole energy range satisfactorily. The first one
has Pomeronpole with trajectory aqP(fU = 1,06 + 0.25 t, and a
non-shrinking "core" term. The second has a flat pomeron trajectory
Q(‘m(f) = 1,06 for all t, and strong eiknal-models cuts, which explain

1

both the shrinkage at low \t|and the lake of it at large (ti .



Finally a various speculations which relate the fact that df?(e)>1
to the small triple-pomenon coupling and other remarks are discussed

briefly in section 4 .,

1. The data,"éff

It is well known that up to S = 60 Gg_v the total cr.ss. can be
parameterized by V2
spy= o (@) F A S W
og— (o) represents the pomeron pole, the second term reprecents
the contributions of secondary trajectories, where we have used the
approximation that the intercepts of the secondary trajectories are
given by

= = ‘:D( ’.‘.'\I
O(P’ Q(AL c(o: b1 >

(2)

In the process pp —> ﬁp the trajectories are fp+p’- P-4+ Ao

since the difference between pp and pm cr.ss. are very small, we

neglect I = 1 exchange ( A, 3 ¥ ). On the other hand the fall in
T < (p-p) at low energies means 'that the p and w cannot be

exactly exchange degenerate.

The data from total cr.ss. experiments at serpukhov energies

2 .
(50 \< S & 12c (e ) indicate that modification in this Regge

N
. -\/2
pole picture eq (1) of linearity N S are necessary,
and the vacuum Regge cut was introduced.
T (s) so— (©)xAS - —
. C 4+ leoyg

The final term represents a destructive p @ p cut, which approximately
cancels the fall of the EZV term in serpukhov region, and gives the
levelling-off of the total cr.ss. observed in that region. But the
rapid rise in S are (pp) at ISR is too great to be accommodated by

eq. (3), clearly one needs a strong cuts which then have difficulty

e
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at small s. An alternative explanation, which we will explore in
Sec. 2 & 3 is that 3(6,"’>1, of course if continued indefinitely
such a behavicur would violate the Froissart bound, but eikonalization

could prevent this.(la)

Fig. (17) (10) shows 3—2—-_ (pp) from ISR together with some

lower energy points. From these data we can calculate the effective

trajectory, o« eff’ defined as usualy by
_ - /s
Leq ST = (2ol Yoy S+ F O g

The effective trajectory for pp scattering obtained from ISR
data is shown in Fig. (18) it is essentially a straight line

£ -
g = 106 + 0.25 ¢ (5)

for \t| < 1.2 va, followed by a jump toogff (t) == 1.0
for |t} > 1.8 G%v reflecting the energy indepenfient of the
large |tldata. The effective trajectayy for pp scattering for

S <50C—-‘?év shows a different behaviour. Fig (19), it has the
form o . o 1.06 + 0.4t  (6) for all |t| except in the shoulder
region.

From Figs (18,19) we conclude that we are observing mainly the

pomeron pole out to |t} o< 1.2 G%v, and possibly at lapger |t|
at low S but tha: something quite different controls the large |t}
high S, behaviour.
In the following models, the helicity flip is neglected, and so for each

process there is just a single scattering amplitude, A(s,t) normalized

- s

such that ,
rrals el @
g (S) - .L. I\.A A (Q',Q) (8)

T
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2, A Repgge pole model

Fit (1)

The effective Regge trajectory at ISR energies constructed
in Sec. (i) strongly suggests that the small angle diffraction
scattering may be associated with the exchange of a Regge pole with
intercept > 1. To incorporate .the slope break at \t| o~ O-ISG-;W

there must be two exponentials in the pomeron residue. So we put

P “Liw oo cot at
A (s4)=-Gp (€7 S e” -z e (9
/
where CTz a_ﬁ)-f u(;\’ (La-rj < _il__i'“-) 9

To account for the low energy data, we must add the nun-diffractive
contributions associated with the ﬁ» and w trajectories. These we write

as

¢

o (©)
R C%{t ] at
S) e [;(?\(i)icp(’-j(‘*%)](m)

Here + refers to pp, Ep respectively, *and the cross over of the pp

R L
A=-G§(e

and pp differential cr.ss. has been built into the w contribution, and
the trajectories are assumed degenerate.
To account for the diffraction minimum, and the essentially
, . g . do— 2
non-shrinking, energy independent ;S:; for \ t\ ;> 2.0 Gev at ISR,
we will add an additional term with a destructive phase relative to

the pomeron pole, which we shall refer to as the "core"

i 1‘)((0\ -+
c LT o¢ e
Alt)=G (e? 's) e (11)
where : — 4 \ I (11)
G2+ (L3 s- 5™
DL2.= 0, because of the lack of shrinkage.

The sum of eqs. (9, 10, 11) gives the excellent fit (i) shown
in Figs. (20}, table (1). It is clear from this fit that with eqs.

(9, 10, 11) we can readily explain all the data except for dua (pp)
cl-t
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for low S, large |[t] . The core term which fits this large |t|

region at high S is too small at low &, more important is the fact

that -f%%; shrinks at low s, but not at high S. One may think
that sincea»(eff at large | t{in Fig (19) seems to be a continuation

of the pomeron we can replace eq. (9) by
Wo(”cf a,t.
BT -y 6 6 (12)
A(st)_—G‘(C 5 e Ji-n- >‘“X' -
where the final term is responsible for large |t{ , and has 2
' negative sign to produce a dip at {t| ~ 1.4 G%v. But it is
impossible to get the correct energy dependence of the large | tl

data with eq. (12), because the pomeron slope at small |t| is

“
n

7/
04;?:0.25, vhereas Fig (19) shows that = = 0.4 for large |t|.

Instead we trigd(lo) adding to eq. (9) an effective pomeron term
( °) -+
ﬂ: ) C:ﬁi
A= 9 ( S) € (13)
with trajectory ol _(£)= 1.0 + 0.47t, to represent the effective

it

poimercn trajectory at large \t| , and low S.

Fit, (ii)
The total amplitude now is glven by
£ery= AP AR AS AT
and the sum of eqs. (9, 10, 11, 13) gives the excellent description of
the data shown in Fig., (21) Table (1). |
An important remark concerning the effective pomeron term is that,
though eq. (13) is negligible for (t] <& 1.4 G%v, and eq. (9) is
unimportant for ‘et }b 1.4 G%v but in the shoulder region at

(_'.‘

low energy both terms contribute significantly to “2-— , and the slope
St
of the curve depends crucially on their phase difference a[ﬁ)(1.4) ~ (0.7,
o(ﬁ‘(1.4) 2~z 0.5). Thus eq. (13) cannot be regarded as simply

the continuation to larger \|tl| of eq. (9), wicth a bend in the

pomeron pole trajectory. If it were there would be a zero in the pomeron




ci .l

ey ..ok
contribution at* |t | = 1.4 G%v= and hence a dip in ;j%} . However
if eq. (13) is regarded as just an "effective trajectory" which has
substantial contributions from cuts, this phase difference is quite

acceptable.(lo)

Fit. (iii)

It is also possible to use the R term to explain the large ¢t,
low sdata, if one takes the view that if the ﬁ’and/or w effective
trajectory is rather flat, which may be the case either because their
trajectories are flatter than those of ¢ anmd A2 or because for some
reason, Regge cut effects are more important for p'and/or w more than
for. o ond A2 exchange.

The total amplitude this time is given by

R
feemy =A% A5 A

M€ d () ¢ £

ast T (14)
AR:.-G‘R (e S>R CR [‘,(PE{:\:".(IB e (\f—%o).i—(‘%\e— ]

The additional term here is out of phase with the p at \ti= 1.4 G%v

where

and gives the required 'shoulder', as it is shown in Fig. (22).
The differences between fits. (ii) and (i1ii) are not important,

as far as the pomeron is concerned, because in both cases we have at

ISR energies the pomeron term eq. (9), supplemented by fhe "core" eq. (11)
The above fits leave us with two problems (i) is it necessary

to have of () 1?7 and if so how is this compatible with unitarity?
g

What is the origin of the "core"?. It might be expected that Regge cuts

are relevant to both problems which we examine next.

3. Regge Cut Models

According to the eikonal model the full impact parameter amplitude

is:- . e ’X,WZS,'U)
X (s,b) 7 T Li- e ] (15)

3
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where ?\ = 1 in the conventional eikonal model, but we have included
the possibility of an enhancement factor, as in the absorption model.
One of the advantages of ei.lconalization is that, by imposing
s—channel unitarity on the input via eq. .(15), one ensures that the
amplitude satisfies the Froissart bound even if the input pole does

not. Thus if we write tie pomeron pole as
t
D \, o X (o) Cﬁ’
ig N\ F 16
ATt 6)=-G (e <) € (8

The eikonal function is

e s
g7 CF
hence if b2 < bj = 40((.4(o\—|)la35then "Xﬁ)('s by —> <P » but if
S—r oo
2 iy so from eq.- (15) we find
L* 3B (s L) —>°
v R

x(slb)‘?% for Q(b? (19)

2
/X(S,b)->c Loy b>‘?

with the usual eikonal formula, the scattering amplitude A(s,t) is given

b a5 [ < ’\’X'?( ,b) : ]
Y Al t) =—;I\—S c[.- T3 (LT ) edb (21)
o [+]
\,Ln‘r i (e) \, LT 4(0) \ el
s z -t
——Q—G‘ﬁ?(e S) [/,\(,_ (e g) \ Cp In ,
T M &w Cf? 1€ (21)
which gives (eq. 21)
2 2
. < N ,
-\ - d (o)-1)loy § (22)

Thus saturating the Froissart bound, however this behaviour sets

in only for Log:s ) LF®_ w90
el e

In the following models we shall only consider multi-pomeron cuts,




w #
where the intercept of the pomeron ®{(cy and the enhancement factor ‘A
ﬁ:}

will be taken as parameters,

3.1 o(é;): 1 and strong cuts.
From eq. (21') with oftc) = 1 we find
r G -
B YDA S (23)
T T AGBHN— 6 [ Ty s ]

hence, as long as the input Regge trajectory has a slope, as demanded

by shrinkage of the forward dv—/Jt , the predicted g, vwill rise

with energy because the destructive P § p cut contribution
. ‘ -1 . .
decreases like (R Logs) *. To obtain the actual amount of rise

(4.5 mb) at ISR we need roughly Gp = 85 mb, A\ = 1.5, but then it is

hard to fit the data at lower energies, even with a substantial R

term. More important, the very strong cuts results in a dip at |t\ = O

instead of 1.4 G%v, even with more complicated structure for the pole
residue it is impossible to get the dip out to it = 1.4 G%v, if

the cuts are strong enough to reproduce the ot rise.

L)

3.2 oA ()1 and weak cuts.
P2 _
Once we allow Tr{(e)) 1 the rise in the total cr.s. can be blamed
mainly on the pole, and so the cuts can be weaker. We may thus hope to
adjust their strength so as to ensure that the dip indo—/4it occurs in

the correct place.

26

5

The contribution of a pg jp cut may be written(ls)
O LY LA 2 S (K (24)
: ~ ( - CEVAC I (£t %
- — JE gt ( )
A e) s g Ja=% AGOAGOHA SNL) 5
where the Gribov vertex N[? é b,e| , % ) = \)-T in the enhanced
absorption model
Thus with AP given by eq. (9) we find
2 L (oY \
Aﬂ’(‘?t \ = AG-p , “hET )Z'S(ﬁ.} )=\ . é?tlz
3= (e s (- ) = + (25)
2 C[P
+ 2% (1) exp [Cp(Covayt [ (Rlpras)] 2 expC{Cpra)t /2] -]
2 Cpta, N CETS

ik
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By adjﬁsting A we can make eq. (25), eq. (9) interfer
destructively at \t} ~ 1.4 G%v and get a dip. But then, since the
logarithmic slope of the cut is roughly half that of the pole the
flatness of the pp data for |t|>1.4 Gczav cannot be reproduced.

This defect may be remedied by inserting a t dependence into

N . Limiting ourselves to exponentials, we can put

PP bt +h (t+%a)

N;P”)‘ et 2o Y (26)
giving ) : 2 of (o)~
AP(T;:) _ 2o (é"AETZ). " et [y 2o CCoery/al,

6T 2 (Corl)

‘b ) _ |
+ 2% (i")’».) exp [(C?Tl)cc.;%'r%)t/@cm'fzlo.ra,|)] 2 OXP L(C;p'f?—“\"’%)'t/zj

2.< t2b+ A ’ [ag : .
L 2(Cptizra)

(27)
Thus both b1 and b2 may be used to bring the t dependence of

the cut into line with the data. The contribution of higher .order
PgPeP cut in this model make no difference for |t| {35 c2v
becuase ‘A is very small ()N ~ 0.075.

The sum of eqs. (27) (9) (10) gives the excellent description

(15)

of the data shown in table (2) and Figs (23), , with either b, or b

1 2
non-zero, and the position of the p ®p branch point at cé (t) =
1.14 + G.11lt is in quite good accord with the emergy dependence at

) L
large \t | , Fig (23-b).

An important remark concerning unitarity in this model is that,
from eq. (19) we find that the Imaginary part of the impact parameter
amplitude

2/ =
Im 7X (s,b) —> l/;\as s —> Q@ for \94 o

So the central partial waves violate the unitarity bound, Im X > 1

4
for "N\ < 1. But with our parameters this occurs only for s >4o Gczav
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So there need be no modification of the behaviour q—é- () S

for the anticipated future. However the weak cuts used in this model
are insufficient to ensure the satisfaction of unitarity asymptotically,
and one must expect additional corrections when much higher energies are

achieved.

In this model the pomeron is non-shrinking, and the structure of

/
3.3 b<%;’;>]. 9 5{Y¢=O, and strong cuts.

cJ”?@t:comes from a complicated overlap of terms. The various \ tl
regions of Fig. (17) camnot be identified, even approximately with

single scattering, double scattering etc. even the small |t | regions
depend in an essential way on the superposition of various terms in the
series.

If the pomeron residue is parameterized by a single exponential,

it is impossible to fit the data, because the dip is too close in at

el = 0.6 G%v, but if the pomeron residue is given a two exponential,

a very good fit Of'd—E and Jo—/Jt up to the second maximum can be obtained,
however for | tl‘> 2 the fit falls much below the data, with 3

exponential in the residue

e , L°) . ) R
i i YR _‘9(('-, CP‘& at at (28)
AG)=-Go(eF ) e '@-x—j)+vze'+j e” ]

Used in eq. (17) together with the Reggeon term eq. (14), a gogd fit of all
ISR data can be obtained (Fit (iv), table (1), Fig. (24)). It is oply
deficiencies are that the dip at |t| ¥ 1.4 is perhaps not quite sharp
enough, and it.falls below the data for |ti)3 G%v.
The shrinkage mechanism in this model is quite different from
other models. It stems enﬁirely from interference between the various
| +an

terms in the series, since the n—-particle exchange term~~ S . The

model also has no difficulty in reproducing the lack of shrinkage of
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the | tl >1.8 Gy ISR do/d€ , and the dip depends on the

cooperation of many terms, as it is shown in the figure below

The contribution of the first of our

terms in the multiple scattering series of
fit. (iv). The first & third terms are
positive, while the second & fourth are

negative, The solid line is the sum of

the series.

Though this model is certainly Quite compatible with the data,

but as several parameters were needed for the input pomeren residue it
was unclear whether one was really doing more than finding an eikonal
decomposition of the data. Aiso we know that this sort of fixed pole
( BLQF:LG ) 1is hard to reconcile with t channel unitarity. It seeus
more reasonable that the small {t| shrinkage should be dve to the

slope of the input pole.
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4, Conclusions and Remarks

4,1 Summary of these Fitg,

(a) From the above fits and the variations on them we conclude that

olﬁ?}l, i.e, the rise of ¢ at ISR cannot be due to cuts zlone.

(b) The |t} <: 1.4 G%v data are consistent with a pomeron pole

Cié?)= 1.06 + 0.25 t without multiple scattering correction but
a "core" term for large |t}.

(¢) In the model of sub section (3.2) we saw that the destractive

core term needéd to explain the large |\ t| data, and the diffraction
minimum, can in fact be constructed as a p @ p cut provided one is
willing to allow the cuts to be very weak ( X = 0.07, more than a
factor of 10 smaller than the eikonal/absorétion prescription), and
provided also that one allows arbitrary structure in the pomeron - particle
couplings  (i.e. the Gribove vertices). Ref (15) applied this model also

to T P, L and predicted that a similar minima should be observed

in meson-baryon scattering at FNAL somewhere in the region 1.5 <|t| <2.5 G%v.'

4,2 Carrigan break

Close inspection of ISR data by means of an effective Regge
trajectory has shown that the division of the forward elastic scattering
into t regions separated by the '"Carrigan break” is wholly artifical,(17)
as the energy dependence of ci?‘;ﬁc shows a smooth behaviour across this
so-called break, This structure has been interpreted as a threshold

(14)

effect, or due to pomeron renormalization, but not due to polie / cut

interference, since its position seems to be energy independent.

4.3 eL‘;’)l and the peripheral nature ¢ & Tw. "X .

The behaviour of the pomeron makes it easy to understand why
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the part of the ISR cr.s. increases with s is peripheral. (dg'*/:—-‘t )_{:_ .
is increasing because 5l rf;’)>1, but because of the shkrinkage, do /it
constant, where OJW({-) =1, i.e. for {tl = 0.25, and is

decreasing for large |t}] . Hence the changeA-iT"; » has a zero at

\t! = 0.25, which means that the difference between the impact.
parameter amplitudes A 7X (s,b) is somewhat peaked at I =~ 0.8 fm,
as it is shown in Fig. (25)(10). Thus the peripneral nature cf AI»-.')(

is a perfect Regge pole effect with ol _(0)>1.
f-“) o

4.4 The smallness of o{(°)—1 and the smallness of the triple—pomeron
coupling.

Out conclusion that o é°) %< 1.06 seems to accord well with
various recent speculations abcut how the various partial cr.ss. build
up the total cr.s., and hence the structure of the pomeron.(ls’ 19).

Re (19) proposed a perturbative view of the pomeron. In the
zeroth order perturbative approximation the pomeron is generated by the
sum of purely inelastic (non-diffractive) channels. Diffractive events
of large m.;asses represent the first order, and give the order of
magnitude of the expansion parameter 9 .SZ,,\ :S_E- (g is the triple
pomeron coupling). Double and higher diffractive events will become
detectable at even higher energies and will contribute with higher
powers of S 5. After summation of the peturbation series, our pomeron

pole has intercept (1+g). The amount of the re-normalization being

proportioned to the triple pomeron coupling since
. VA A-Rm5 (29)
. — —_ ~ (S L A /

oL (=G S=Ge =6+ €& st

Thus the smallness of the amount by which 0(1(°) lies above 1 is due

f

to the smallness of the triple pomeron coupling. Of course, the

renormalized pole at X (¢) = 1+ A cannot be the leading J-plane
[ max
singularity of the full scattering amplitude, which must have o/ (o) Sl

¥
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[

But absorptive corrections can produce a set of cancelling Regge cuts,(21’21)

and the leading trajectories then turn out to be of the Schwartz type

w2 /
AHYy=1+R V€, Ri= 4«5 A (30)

However, these corrections will not be evident until Log s :$> b which
O(/
we are very far from reaching.

-
e
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CuaPTER FOUR

Overlap Function Model

This chapter is devoted to studying, within the framework

of the shadow scattering approach, the implication of increasing
.p—p total cr.s. and diffractive structure of p-p elastic scattering (I)
on the inelastic overlap function and its form in t and b-spacs.
The material is organized as follows.

1. S-channel unitarity relation

2. 1inelastic overlap function in momentum space

3. 1inelastic overlap function in impact parameter space.

3.1 G (s,b) (HENZI et al Re. 28)
3.2 G (s,b) (H.I. Miettinen Re. 24 & 33)

4. Impact structure of inelastic diffractionm.
4.1 G (s,b) (N. Sakai & J.N.J. White Re. 22,23)

4.2 Two component analysis of the inelastic
overlap function "Unabsorbed overlap function"

5. Summary & Conclusions.

1. S-channel unitarity relation

It is widely believed that diffraction is the shadow of absorption
due to the existence, at high energies, of many open inelastic channels.

Unitarity in the s-channel gives

+ Y4 o/ a i -,-. " ©
Tl Tle>=2 <4|5=L><L\E\L>T§éﬂrm< \TVEY

I

h .
i = elastic n = lnelastic
states states

or

T st) = e + C (5D )
4ot el in



which defines the overlap function °C . In the forward direction eq. (2)
is the well known optical theorem, the overlap functions are thus normalized

> ( = Pt 2 & Cloy = o

According to eq. (1) the imaginary part of the elgstic amplitude
is built up by two parts : the second term on the right hand side gives
the shadow of the ineiastic channels open, the first term is that of ‘the
elastic scattering itself. Thus eq (1) is a non-linear irtegral equation
for the elastic amplitude. By making use of angular momentum conservation,

we write it in impact parameter space.(za)

2
IVY\ \‘\d(sllp) = ‘\:ﬂ(slb)l + G‘_—h(s,b) %)

Al

p2

Here b is the impact parameter of the collision, and Eh(s,b) =
1%L(s,b). If the phase of the elastic amplitude is known, we can
solve eq. (4) for Im h in terms of G (s,b). Assuming for example,

el
that Re 24 (s,b) =0, we find.

& T
negative sign in front of the square root in order to agree with the

assumption (above) that elastic scattering is 'caused" by the presence

of the inelastic processes. With this normalization the unitarity bounds

0. s

are oL &G () L g o Tl oy L2

n

The eq. (5) connects the inelastic and total overlap functions
at the same impact parameter. This follows from angular momentum
conservation, and makes the impact parameter representaticn very convenient
for the study of unitarity effects.

The functional dependence of the total and elastic overlap function
(éq. (5)) on the inelastic overlap function is shown in Fig. (26). When
the amount of absorption is small the imaginary part of the elastic
amplitude is built up mainly by the inelastic channels. However when the

absorption approaches its maximum value, the elastic overlap function



increases very rapidly and provides an important contributior to the
elastic amplitude. Finally, when the amount of absorption approaches
the upper unitarity limit, the elastic and inelastic overlap functionms
become equal,

The three terms of eq. (4) have a simple physical interptetafion.
They tell us how the total, elastic apnd inelastic cr.ss. are

distributed as a function of the impact parameter.

Q‘“Iot/"lzb = 2 (11 -G }

o
do= [d2h = (t-T=¢g
— /<

(6)

0 = G

A= [k i

- »

dog

AP 5 d2b < ' o and h 1 unitarit
& e b 7) s ¢ ::235 unitarity now

dege /b= Ao fare p dors /420  ®

"Here b is the two-dimensional impact parameter vector"

The study of solution (eq.(5)) with eq. (7) make it easy to understand
Bdo

. '3 = d o
the experimental observed ratios of . - ¢ - (Bo is the
— e
<ot <“ott

elastic slope parameter for (t! § 0.15). For example, for the "Black

"disc" model.

4 41559 Sll

G: (5,b) = ?
n 0 b > R . (9)

e



we find
oo Mo =14 (10)
On the other hand, if G (s,b) 1s approximately Gaussian (as we shall
see later)
we fiud

o & T o Loass (11)

where this inequality corresponds to
o\<G(s,b)atb'=0\<1 ( 12)
If G (s,b) is assumed Gaussian exactly with maximum strength

allowed by unitarity the following Van Hove limits are obtained

(see Fig. (27)).

Y /OE < "= 0,185 (experiment < 0.175)
(13)
'bb /d_‘é:_t =.0.296 (experiment = 0.296)

So we conclude that the small ratio of elastic to inelastic

scattering follows from the strong suppression of the elastic shadow

-

when the absorption deviates from the upper unitarity limit.

2. ‘Inelastic overlap function in momentum transfer

" space (25)

The inelastic overlap function 7 (s,t) can be directly solved

n
from the experimental data. With a reasonable assumption of the elastic

phase one can solve the Im T and Re T from the measured differential
cr.s. and computes the elastic overlap integral by integrating over

angular variables. Finally (t: (s,t) is obtained from
’ n

- T T _ " (14)
Q:n(s,(-)- 1. AN E(s,t)

This procedure has been applied to proton-proton data by the

authors of Re (25) and the results are shown in Fig. (28). The results

w



shown have been calculated by neglecting the real part of the elastic
amplitude at all t values. Repeating the calculations with diffg?ent
phase assumptions they found that the results at small ¢t are insensitive
to the assumed phase, whereas at large t they are sensitive.
A striking observation is that';f changes sign at £, = -0.6 G%v,“
the existence of the zero does ;gt depend on the assumed elastic phase,
and even the posifién of the zero is roughly independent of the phase
"as long as the amplitude is dominantly imaginary in the forward direction".
This observation means that the phases of the production amplitude cannot
be neglected in computing Q:;n (t) because the zero of‘Q;n (t) is
sensitive not only to the absolute values but alsé to the phase.

The solid curve of Fig. (28) represents the parameterization
of de Groot and Miettinen which contains a central and a peripheral

component.

The Central component ( ~~ { (R \r—;f) due to non-diffractive production,

and the more peripheral component ( ﬁv’Jo (R { -t) due to diffractive

processes. Both terﬁs contain a modulating function of the momentum

transfer, which takes inﬁo account that the mon-diffractive (diffractive)

production does not happen in a black disc (in a ring) of radius R, but

in interaction volumes which have smooth edgés.(6)
Since the peripheral component is responsible for the forward

peak in <iU::E /;l*z it would connected naturally with the

increasing cr.s. However Lere one should remember that the identification

of the peripheral or central contribution with diffractive production is

a matter of opinion, and a better understanding can come in going to b-space.

3. Inelastic overlap function in impact
‘ parameter space

(3.) G (s,b) (Henzi & Valin (28))
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The first step in attempting to account for ISR data in terms of
ﬁfs,b) was done by Heckman & Henzi (31). At that time the most
comprel;lensive data available were the small | t{ data which revealed
the slope—break at | t| x 0.13 G%v in d':_;z/;t. In Re (31)
it was shown that this slope variation indv;/dt is accounted by
G.,r(\s,b) Ecl""-_n_/clz\? being a Gaussian in b-space, or equivalently by
AU:T‘ /<€ being an exponential in t-space. The effect originciing

from the non-linearity of the relation.

0 2
Sz et = i QT ) GeeE el ae)
_ ¢
The more recént data on AVE JAR at large {t | revealing
the diffraction dip are not compatible with elg:-/d"'\, being Gaussian
exactly. To describe this dip structure, Henzi & Valin proposed a small

correction "edge" term which produces a flattening (relative to the

Gaussian) of the overlap function at small b.
_ b?-/‘i& __\3" /Li (£ i
2
(s )= (& A = e "4 L e - (17)
G (sb) CGQ;;G;J? P + R*

The main results of Henzi & Valin analysis are the following

(i) Within uncertainties resulting from the experimental errors, the

c—j -"1._'; L‘l"t‘ b = c):

e

parameters p, @ awd O, are energy independent, and P(—_
0.95 through iSR energies.

(ii) On the other hand ' f‘;y shows a clear cut increase with energy and
the range of the Gaussian \F’JF; increases from 1 fm at the lowest
ISR .energy by 5% through ISR energies. (see Figs (29)).

/ ]
(iii) o4 Ge_clrsé -1 % G throughout impact parameter space

C-QW
. . i o -
and through ISR energies, and the maximum of eG_-j is at b = V4B ~
(4
0.65 fm and g*‘_‘ﬂ has a width around this value of similar magnitude.

One particular consequence of (iii) is that the upward concavity

of d7g /At is still due mainly to Ggqy form of G (s,b) and
in

unitarity mechanism as in eq. (16). On the other hand this Gaussian -



form of G (s,b) at large b may not suffice to completely reproduce
N

the local slope changein jg%f(:=1.6)around t ~ = 0.13. 1In other

words G{“(s,b) has a tail at large b beyond that of the dominant

Gaussian as we shall see pext.

3.2) ?“(s,b) (H.I. Miettinen, . (24, 33))

The inelastic overlap function extracted by Miettinen & Pirila (24)
from direct Fourier ~ Bessel transformation of cl‘f_J,/At at S = 5368V -
is shown in Fig (30a, 30b) together with the amplitude Imhy (s.b) and
the eikonal _<2_ (s,b) defined by

: s,
he (v =a(1- € ) (18)

The results of repeating the absve analysis at the other ISR energies

s =21, 30, and 44 Gev are shown in Fig. (3la, 31b). The results

of these analysis may be summarized as follows.
(i) Im hef(s,b) is very neaély a Gaussian over the b2 range from O
to 2 (fm)z, at larger impact parameter it levels off, this large b tail
is directly related to the sharp breaﬁhof the<#£;/dt at t ~_0.13 G%v.
(ii) ,?“(s,b) ben&s down near b = 0, in t space, this corresponds to a
zero of %:f (s,t) around t =2 - 0.6 G%v. Its interesting to notice

"

that if G;v$s,b) would not level off near b = 0,'it would violate the

unitarity limit. This suggest that absorptive effects are at least

partially responsible for the small b flatting.

39

(iii) at b = 0, the value of G,(s,b) is (94 tl)Z of the maximum value allowed
111}

by unitarity (the black disc limit), it stays constant though the ISR
energy range.. The pronton gets bigger bﬁt not blacker as the eﬁe;gy
increases.

(iv) The rise of the total cr.s. comes from a relatively nérrow region

around 1 £fm,
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(v) qu 5,b) has a central profile which peaks at b = 0

4., Impact Structure of inelastic diffraction

¢¢.1y G (s,b) (N. Sakai & J.N.J. White (22))

Ac we have seen in the las;‘sub-sectioﬁ that elastic scattering
has a central profile, however inelastic diffraction, in which ore or
both of the colliding particles get excited, is probably a shadow process.
We may then ask : what is its impact parameter distribution? Does it
also peak at b = 0?

This problem has been studied in detail by Sakai and White (22)
using ISR data (a‘t s = 930 G&v) on S dT5 /4t W‘:ﬁg(diff;active)

as input. The unitarity now reads
| 2 Gty GO
T.. l,\eﬂ(s,b)==‘/—IHd(s,w[+ G (s, )+ NDab) (19)
where Gd(s,v) and Gnés,b) are the overlap functions for diffractive and
non-diffractive final states and each satisfies G (s,b) ;} 0. The main
results of this investigétion are the following.

(1) The aésumptibn of s—-channel helicity conservation for the
diffractive process leads to a diffractive overlap function which is
central (root mean square radius <~ 0.5 fm)

(ii) Thé assumption of t-channel helicity conservation for the
diffractive process leads to a peripheral profile for the diffructive
overlap function (r.m.s, radius 2~ 1 £fm)

(iii) For both cases non—-diffractive processes are peripheral
(r.m.s. radius 2= 1 fm).

The experimental data of low mass diffractive production is known to be

in rough agreement with t-channel helicity conservatien and to completely

disagree with s—channel helicity conservation. However the assumption
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of exact t—-channel helicity conservation is actually not at all
cruc{al for obtaining a peripheral Gd (s,b). Any combination of
amplitudes with a "reasonable" amount of s-channel helicity flip
amplitudes would give a peripheral result for Gd (s,b).
Finally the impact parameter distribution of the various
overlap functions of eq. (19) are plotted in Fig. (32) for /s = 30.5 Gev

in the case of t-channel helicity conservation.

4.2 Two Component Analysis of the inelastic overlap function
"Unabsorbed overlap function" (26, -27)
The measurements of the inclusive proton spectra at the NAL
and the ISR show that at high energies inelastic diff;action and non-
diffractive production populates dffferent regions of the phése space.

If we consider their contributions to the elastic amplitude separately,

unitarity gives.

— e s eye C (5,€) .
L ‘7’;("" ‘E(Slf)“‘ d\\/ T ownd (20)
In the forward direction FTEJ and ’§;c5 are well known,

and they represent the two inelastic cr.s. components (e.g. at 200 Gev/c
we have T (y,0y = 9= = Fwb ¢ Y (50)= 97 23 wk),

= D nd
Away from the forward direction one would like to ask how do these terms
build up the t-dependence of the elastic amplitude, Does the two—component -
model valid for non-zero t values?

Analysis of this type have been done recently ty the authors
of Ref (26) using unabsorbed overlap function (as we saw earlier, the

. 2

occurrence of zero ln‘?f%vw (s,t) at t = -0.6 Gev strongly suggests
that absorptive corrections are important), The unabsorped overlap

function }40 (s,b) is defined through the unitarity relation (assuming the

elastic amplitude is purely imaginary).



o :
]
— S H Gb)
'L;(%"B = | F&(S,wl + 25 Ttn (21)
> o
= | H s+ (1-2H ) H 68
e (22)
which gives o -l" HJ (s, &)
H. (s,b)=[ ]H(s,b)
N " 1-2 H (su) ef (23)
el _
' \
where with these normalization unitarity bounds are © 5; P{(S,b) S;:; :
’ 12!
. (26) C /
Inami et al have constructed |4, from the ISR data on do/d%
: |h -
via eq. (23). At each energy the resulting \4? is well fitted by

g%
the sum of two Gaussian in b-space or equivalent two exponential

in t-space.

o) (0]
ey = HOm v H ) (26
. {
in
_clb"‘ —%bl
=A e + /21_ ¢ (25)

This simple decomposition suggest a two componelnts interpretation,
but before making any connection with diffractive and non-diffractive
components, we must construct the correct amplitudes H :'_’

intld int2
which are given by

0 IO
B ' s H se) H Gy .
H. s, b)) = '-;Ih (51 > ) 2 ’—d ‘N ) (26)
(A
In fact the properties of H el ¢ a/and Z deduced

in2l NI Tngg int

from this analysis over ISR energy range (at s = 550, 940, 2020, and"

2840 Gczev) are similar to. those which one might expect from diffractive



and non-diffractive components.

(i) {2:; (s, 0) contributes almost a constant to o—— ,
ne in
rising from 23.2 to 24.4 mb through the ISR energy range. ~. (s, t)
intl

shows also significant shrinking with increasing energy; these properties

of ET’ agree with multiperipheral expectations. On the other hand

24
in*
z>’ (s, t) has little shrinkage and its part of o—Trises strongly
ins 2 ’ in
with energy from 7.9 to 10.5 mb. These values (22 (s, 0), & (s, 0))
insl int 3
lie so close to estimates of the non—diffractive and diffractive cr.ss. from

triple-Regge analysis(32)

: inz1 ins 2.
with the multiperipheral and diffractive component is strongly suggested.

(ii) In impact parameter space Fz (s, b) i.e, ‘—LJ (s, b),
is central rather than peripheral, and itnincreases with energy. On the
other-hand the shrinkage causes ‘—td (s, b) to decrease with energy
for small b. However the contribu£ions of these_two components produce
a net increase in @ (s, b) wﬁich is peripheral, in agreemeﬁt with the
previous analysis 1I(ISee Fig. (33a, 34 J).

5. Summary & Conclusions

(i) The experimental data looked at in impact parameter space
shows two properties; The long tail in b, which is directly related to
the t slcpe increaée, and the lack of any large deviation from a pure
Gaussian shape in b at small b, which is directly related to the dip in
CAZ;TVQTt. occurring‘at a large t where the cr.s. is very small.

(ii) The energy dependence of G (s, b) reveals two important
in
results : the value of G (s, b = 0) is essentially constant through
in
ISR energy range, and the observed rise of proton - proton total cr.s.

comes from the region around 1 fm.

= 2
A = { AGGuw) 4 b 27
{ 4l .

43

, and the association of = (s, t) and T (s, t)



(iii) If the s—channel upper unitarity were saturated in a
domain around b = o, then the increase of 9 (s, b) would necessarily
have to be peripheral. Since the peripheralizy phenomenon does not
originate from a saturation of this nature, we conclude that this
phenomenon is a dynamical effect.

(iv) The inelastic overlap function of (Henzi & Valin)
_incorporates Geometrical scaling. On the other hand, in the inelastic
overlap function of Inami et al, Geometrical scaling only happeﬁs
approximately and by accident. .Fig. (34) shows how thé increase (s, b)
through the ISR range is made up : only because of big cancellations
between D and ND parts. However the question of Geometriéal scaling
will be regarded in detail in Chapter V.

(v) Why does the amount of s wave absorption stay constant
at b = o, and why at the 947 level? If the diffractive overlap function
G (s,b) is peripheral (the cage of t-channel helicity conservation), does

the increment of G (s, b) have the same peripheral nature? These

questicns and others will be examined in Chapter (VI).




CHAPTER FIVE

GEOMETRICAL ° SCALING IN PROTON -~ PROTON SCATTERING

(36)

Some time ago Dias de Deus has suggested a scaling law for
the inelastic overlap function of hadronic scattering reactions at high

energies.,

ClC.0)=G (b/ResH) n

Wwhere R(s) is the interaction radius of hadrons involved, and contains
all the energy dependence. This Geometrical scaling which was originally
proposed in order to explain the observation of multiplicty scaling in

ineldstic collision.(KNO-Scaling)(az)

, has a very interesting
consequence for elastic scattering. Neglecting real part and spin effects,
it follows from unitarity that the imaginary part of the impact parameter

amplitude scales too

Flbs) = F(L/RM) @
Eq. (2) implies at once the scaling behaviour |
do~ /4 = RYL (RZ¢) (3)
w(d‘érzg(\c—_t) :R;
T in e ! . (4)

t f\J\R
e (5)
Where t, is the position of any particular feature "dip, maximum,

break", and B is the slope parameter B (s, t) = d (Hn do/iit) / de.

The t° property above is part of a more general prediction, that




the shape of <l==— /< € does not change with s, - only the ordinate
and abscissa change scale, as in eq. (3). In Sec. 1 and 2 of this
chapter we derive a scaling low for the elastic differential cross
section, from the geometrical scaling of the inelastic overlap functiom
in the limit ¢ —> o - ( F is the ratio E—i ), then we
make a concrete comparisons and tests of geometrical scaling predictions

eqs. (3,4,5) with proton—proton scattering data. The influence of the

real part will be discussed in the finmal section.

1. Scaling law for the elastic differential
(35)

cross section in pp scattering.

Geometrical scaling of the inelastic overlap function states that:

G (Bs) — > G (3)

tn & > o i+ (6)
where
/5 T /o )

is the scaling variable.

In the shadow scattering limit, i.e. when the real part of the

amplitude approximately vanishes at each impact parameter we have

a ["Vi- (;—M(slb*)-_l = Yo ”
where G”'(J’}S.\ is the elasti lap f i F (8)
o7 P is the elastic overlap function. From eq.

we find that the geometrical scaling in the inelastic overlap function,
implies geometrical scaling in the elastic one.

Sinceithe ratio p of the forward real to imaginary part of the
amplitude is conéistent with being close to zero, |f! & 1%. This makes
it plausible to.think that shadow scattering unitarity limit reach at ISR,
at least for small angles. Using that approximation and neglecting spin

effects we can show that geometrical scaling implies for the function

46
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def'ned as . —
' @ CS,’(‘,’); _l__, ‘l_“f.c _ { (lc_‘_‘(.
a=%0) Ay a=G) = ®
where
(10)
a—— q—__

The existence of the scaling limit

] _:\- /t (11)
@(gt)’;—j? @ C )

This scaling limit can be derived directly from unitarity

. 2
[ e 1-Tomn)lem |
) in s

.-_-\G'“ b = f_’_
—l= 2

= 2
- 49 2 2 S
=2 | [ a8 G )T (ovgr |
using
N Shadsws , .
G;ch,b) R C;—Z((J') (13)
eq. (12) gives
0 =)
| . j TN (14)
i(t) :qﬁiufé(ggz_((’l)g(\,@{}\

(11)

Let us now make a quantitative comparison of the ecaling limit
with the ISR data. This is shown in Figs. (35, a, b). The two curves in
Fig. (35,a) represent the elastic differential cross section as a function of
t at the lowest and highest ISR energies, the change of the curve with
energy is clearly seen. On the other hand Figa (35, b) shows the plot of

A7

G (s Ty = L

il
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as a function of ’t;. , for the saﬁe two curves of Fig. (35, a). The
points every where fall into g ynique curve showing that the scaling law (11)
is in quantitative agreement with the data.

We end this section by giving some examples of models which possess
Geometrical scaling.

(i) Froissart-saturating models:

If an amplitude asymptotically follows the Froissart bound:

—~ 2 s
s
Then from the principles of axiomatic field theory, it was found

(43)

that in this case the amplitude must be an entire function of &~

15
< o (15)

K Fle) [ = F(T)
‘Thus those Eikonal models which asymptotically predict saturation
of the Froissart bound, must satisfy, asymptotically, sz scaling. However
the present data being on the one hand already consistent with ‘¢ scaling,.
are on the other hand not consistent with the black disc 1imitf:1/?:‘ =1

predicted in most of the eikonal models. A more realistic value of q—-/bT;‘
can Se given by optical models, such as Grey disc model & Gaussian
overlap function model.
(ii) Optical Models:
Optical models with fixed opacity can have geometrical scaling, but

dynamical reasons for the radius and opacity remain to be found. Im

the case of Grey disc model we have
G_d ()= (I-) @ (p[‘. ™) (16)

. . . o ) R
where geometrical scaling requlres‘a to be constant. The elastic and

inelastic cross sections are given by

oy /o= = | 4R g;((S,s) an

In o
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o— = 1 § 4v® G - (267) (18)
6
From eqs. (16) (18) we find

T \Q?— (i ‘02'-) (19)

i

A pamn

i

and eq. (16) can be written now in the form
G (s =(1=ye(I-pe-2y @
el 7 '
Using eq. (20) in eq. (17) we find
Ny . it - ax
oz /o (=) [+ @
(a = o corresponds to a black disc)

Again Using eq. (20) in the scaling function eq. (14) gives

dﬁ‘(’t’) i‘j‘( = 73 (22)

This example illustrates the way T scallng can be introduced. The
same sort of analysis in othetr optical models, gives constant j;'/VF;
and the ¢ scaling. However as we mentioned above in such models
the dynamical reasons for the radius R(s) and opacity "constant” remain

to be found.

2, ‘Further Comnarisons and Tests

Here we make a concrete comparison and tests of geometrical scaling
predictions eqs. (3, 4, 5), with high energy proton—-proton data. If the
proton radius R(s) grows with energy, then geometrical scaling accounts for

the growth of g; » constant cross sections and slope ratios c—/;,_. (4 /Ufé'
) A
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and the shrinkage of the forward elastic peak. The combined ISR data

(13)

.on T o U;Q_, amd B, are compatible with a .JZM S growth

of R> (See Fig. 36).
R :R;"'R\

Ro= oS4, R=0-22 ™ (23)
\

Fig. (37, a, b) shows o2/ 2 B/% data, the predictions
of geometrical scaling that these ratios remain constant, seems to hold
down to about 100 Gev/c, below which < /o starts to rise and. [
5/07; starts to fall. It is hard to see whether the pomeron term
has geometrical scaling at lower momenta, since secondary terms get
more‘important there.

The location of the diffiaction dip, is predicted by geometrical

scaling to move in towards smaller || @2 R increases.
s (24)
Dip + - '

Also the ratio of do/dt at the secondary maximum to c\‘-"—/é <
at t = o is predicted to be constant. Hence the rise of the secondary

maximum is predicted to be- a
— o
( ki = K TE (25)
. \ T Sed. /\.’\a?-‘“
Comparison of eqs. (24) and (25) with the ISR data are made in Fig. (38).

Compatibility of slope parameters with geometrical scaling

is conveniently examined through the relation.

. e i
gt ) d SR Al
oL (s6r-1 = (148L)d IR @26)
4 '

The derivation of eq. (26) is straightforward. From geometrical scaling

constraint eq. (3) we find _ .
: .
> ) 4N Uy N 0 ] 4R

27

o S S
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Since the slope parameter, and the effective regge trajectory are

given respectively by

. Y S
‘B(S/t)c.g; ('Q’_“ A€ (28)

. -3 Sa— (29)
;zé;(%ﬂ-a.zms(‘z’“jz)

In terms of these quantities eq. (27) gives eq. (26).

The left hand side of eq. (26) "effective regge trajectory"
is relatively well determined by the data. We will treat the right
hand side ( é{ (¥» €) ) as the prediction of geometrical scaling

/

for this quantity. We show in Fig. (39), o( -F(B'f) deduced from
o : : ef
eq. (26) assuming the dependence of. eq. (23).

R_-_—_ c.?65 -f"O-G‘/X./eV\S (30)

The empirical DL&”_(S,f) calculated directly from the data are

compared. The good agreement of ‘z( I(‘,f) and O&;(E/f) is
Fr _

evidence of geometrical scaling beha\_riour.(34)

Finally we would like to mention to an important remark concerning

| VNS
DZ }_"C(SJQ\):&: a4 R S

the quantity

(31)
~~
This quantity is a critical parameter since it sets the scale for the

geometrical scaling prediction. According to eq. (30) we find

04 (lo)‘c‘&“&x: c:04§
oof § ’ A s

2
5.755+o‘o‘/8/qﬂs (32)

~ 6.01—/5
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Some Problems

In Ref., (41, 39), A. Martin has done the same exercise as above,
He found that o (5, €) and ‘5” (B/-é) are not in agreement. This

€ff
happens because his determination of the critical parameter i;

‘ oL () = € (\wLee)
| eff ‘ = (33)

comes from a fit to the total cross section of the form

-\
<
T = A S 4+ (5 S
(34)
A fit of this form down to S = 15 G%v gives ¢ = 0.07.
. c e a - . ana A R
A comparison of the empirical ULC'[F(J/t) and th-(B’ ) with

€ = 0.07" is shown in Fig. (40). It is apparent from this figure
that geometrical scaling predicts roughly 507 more energy dependence
than is seen, and the geometrical scaling hypothesis disagrees with the
data from | \%1=0.4 to 1.25 (Gev/c)z. .

Similar in compatibilities(37)

of slope parameters with geometrical
scaling are seen in the table below. Whereas the slope in the very

extreme forward direction ( e50wwl-e%) are compatible with geometrical

scaling, the slope Bz is not. This problem is not removed by Kroll's
modification "which we discuss next" since the value of the real part of

the amplitude in this t range are too small to effect the results.

e e nesw needen B
23.5 39.1 2 .4 11.8 11.57 < .30 10.42 £ .17
30.6 40.5 = .5 12.3 11.87 * .28 10.91 ¥ .22
44.9 42.5 % .5 12.8 12.87 ¥ .20 10.83 ¥ .20
52.8 43.2 % .6 13.1 12.40 < .30 10.80 ¥ .20




3. The Influence of the Real Part.

"Kroll's modification"

In many investigations (e.g. Chapter I?), the overlap function
of proton-proton scattering have been studied at ISR energies neglecting
the real part and spin effects. The next step towards a complete analysis
is the inclusion of the real part. The authors of Ref. (44) have
calculated the real part using a dispersion relation betﬁeen the mo&ulus
and the phase of the crossing symmetric part of the amplitude and
assuming Regge behaviour for the crossing add part. Fig. (41) shows the
principal behaviour of the real part in t and b space. Using these
results, the inelastic overlap function has been evaluated via the

unitarity relation

~
| F A (35)

~7

\
TwF-%

G-

in

~/
where F denotes the impact parameter amplitude, and the resulting overlap

function has the same features which we knew before '"the tail at large b,

the peripheral increase with energy'". The most interesting point here is the

~
energy dependence of G and l.. F _at b = o. This is shown in Fig. (42).
. in ~
From this figure one reads that G - and not Im F - is constant from 50
in

to 1500 Gev/c, while Im F at b = 0 is constant only in the ISR region.
The difference between both functions is due to the real part. Solving

eq. (35) for Imﬁuwe find

~ - -
Tw F'=;i|-0»-%“_$(ne§)3% (36)

Although the real part is small, it is not negligible in eq. (36) at b = o
o~
because " 1-G " -at b = o ig small too. However at larger b Re F is
in '
completely negligible so that both functions behave similarly.

o
From the above analysis it turns out the G (and not Im F)
: in
exhibits geometrical scaling above 50 Gev., From this geometrical scaling
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follows only

<31§;: ~ K . (37)
whereas all other relations
2 (38)
~ &
-6’ u/-gol

which follows from perfect. geometrical scaling are disturbed by the
real part, as we shall see next.

(i) The total cross section.

Expanding eq. (36) with respect to \J - (> gives
N
-~ Re F (39)
Tw F = iL ) — 13 o
Pl Y Twe
_ i
The first term in the right hand side scales if G does
in
S
~ ~J \ Re F
T = |y -+ - = (40)
.——L \nn F— I\N\ GS < o Cm
- rv\
Hence
s
T : Re® w1
LwF:T. F (2 |+_—~? gbc‘\of(b\r_‘ﬂ (4D
GS - o . \l\-(y:
51-\’7\%& A

(where P is the momentum of the incoming particle in the stationary target
system)
At t = o, the real part gives a positive correction to Im F
"stronger at smaller energies, weaker at higher energies" which makes
< behaves not similar to S and prodﬁces actually a
minimum in - around 150 Gev " (see Fig. (43)).

(ii) The slope parameter

If the slope parameter is given by



i = T =
— ———— T— AV N .
A=2 T oF t=e (42)
eq. (41) gives
49-
| d P 3 Re F (43)
R T 2% s YT nF \/TG—M

Since the first term on the right hand side dominates, we find

2
T Fe ' e
B:BG__ST—Vs_S g gs. { ~ f_._ glodlo-&i-f-'— (44)
— > MF- H
S,I S \J '_G'.-_h

So, the real part gives the same amount of correction to BG‘-S
and <—— but positive correction to o0 and negative one to R
H:GS P £:5GS & GsS
This makes S flatter than Sarall and B steeper than S In ¢

and gives

2
TR o~ B ~ R _
< % ' &S (45)

This relation is tested in Fig. (44). "It can be seen that it works
very well, However at ISR energies, the real part is relatively small,
and both types of geometrical scaling that is Gs of Gin and Gs of

Im F, agree within the errors.
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(CHAPTER SIX

The origin of the rising cross—section

In this chapter we ccnsider the question of the rising cross-=

section. A possible explanation of this rise (500 £ s <g 3000 Gevz)

N
is the presence of threshold effects. In the first section we show that
the contribution to the total cross-section of single diffractive
dissociation into high missing mass (M) exhibits a logarithmic

threshold increase with ehergy.(lg’ 32, 18)

The delayed threshold of
this effect arises from the simultaneous constraints M:J' S/MQ both
large, and probably correspond to a threshold energy somewhat below

S o~ 200 Gevz.

In Section 2, we discuss another possible threshold mechanism
"Nucleon—Anti Nucleon" production(47’ 56, 57). The delayed threshold
in this case is‘due to the heavy masses of theﬁVA7 pairs. In section
3 the question of the rising cross—section is re—examined (wiéh

theresults of Chapter IV in mind) in impact parameter-space. And

finally we present our conclusion in section 4.

1. Rising cross—-section and triple pémeron.

In view of the success of the "two component model" in accounting
for the observed properties of high energy multi particle prodﬁction,
it was natural to try and see whether it can also account dynamically for
the total cross—section behaviour. The fact that the diffractive component
"with a large répidity gap" is considerably smaller than the short-range-
correlat?on component-"no large rapidity gaps" suggests the possibility of

a perturbative expansion of the high energy total cross—section.(lg-ls) (45)
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If we assume that the (SRC) is described by a "bare pomeron" (by

bare pomeron we mean the physiqal pomeron that governs the cross-

se;tion at intermediate energies, while we regard the re-mormalized ome, as
the one which governs the asymptotic behaviour) one predicts a recurrence
of the pomeron pole at high energies, as in the figure below. The triple
pomeron contribution is the first'term in rhis recurrence series, and
therefore confirmation of its presence and an estimation of its magnitude
gées a long way fowards specifying the series. This series "renormalize"
the position of the input pomeron pole. However, because of the smallness
of the triple-pomeron coupling we need only to consider single diffraction

into high mass, in the ISR energy range.

2 e
o =2 | Y S T YRR e
X

(32

P °
—— —
J— < —
~ Sk, _D D

The (SRC) component "Zeroth order in the triple pomeron coupling"

has the following contribution to the total cross-section
o{(0)- 1
2 S
L= e = [3 (o) S ¢)

This term accounts for the approximately constant proton-proton cross=
section in the region  30-100 Gev2. However at higher energies
diffractive dissociation into high-mass states becomes poesible. The

triple Regge expression for this gives (taking { ={f).
[\

2 7
2 P . G ® 2o () of ()
- =2 g dm g at % il (__S.--)(?( n - ) 2)
D "2 g S ler m Se
6 - .
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2

< (e)
G =R O LIS e pr
G_fP /f:PrP ppp "R F 3

*
N n
m being the nucleon mass
where -GPP FP(6) is the pomeron, protéen coupling, f‘?is the pomeron
signature factor, and ‘3? (P\P“) is the triple pomeron coupling.
The factor 2 in eq. (2) arises from the fact that either proton
may be diffractively scattered.
. . NN a ] )
The lower limit Mo should be chosen high enough to make
the pomeron dominance an adequate approximation in eq. (2). The upper
limit comes from the fact that we are considering terms with one large
(18)

_rapidify gap. If we let A be the minimum gap length which

defines a large rapidity gap, then this implies M? < S  where

- A
r=e |
-~ (4)
" . =0 n
eq. (2) becomes '"replacing also tmin .
S © : o (€) o (0)
[ ) < G- (&) 2 ’ gt
o= S el iy gc_\'t _-S—— i (_S_ ) W( M (5)
» 7 ), s> Jemw = m2 <. 7
M -
]
Assuming a linear trajectory for small t with
oA (o) ~ A (o) > 1 (6)



The integration of eq. (5) over M2 gives:

N T e t
D (o) <m> }m

~ o

Assunming a rapid fall off of the couplings %p (t), we can expand the

term in brackets about t £ 0 in eq. (7), and we find:

2 :
a— = — G (©) /Q/V\ r >

D 6T P Vi'}, (8)
where
_______ 6
Gl = )=t GO (9)
® T P -

We see from eq. (8) that the cross-section of single diffractive
dissociation into high masses, shows a logarithmic rise with energy,
regardless of the function form of G_(t). This result is correct to a
good approximation over a finite energy range. The detailed functional
form of G_(t) will, however, affect the asymptotic behaviour for very.
large s. If we choose vanishing triple pomeron coupling i.e.

/ bt
G[P(Jc) = - G?(o\ te (10)

eq. (7) gives

/7
- 2 61?(0) L. (rs /M; ) (11

QJB (61T Da-rlo(P«Q..( )“‘LJ 3w &M]

Thus vanishing of the triple pomeron coupling, prevents an unbounded

increase of —S— and avoid eventual violation of the Froissart bound.

D
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But the analysis of the data "e.g. Roy & Roberts. Ref 32" shows no
evidence for the vanishing of %P(t)’ at least down to t 2~ _.0.05 G%v.
In fact rather than any tendency to turn over, the data seems to show

a sharping at small t values. If we choose a non-vanishing triple

pomeron i.e.

G e
- (€)= &@) e
pt) T BE -
12)
eq. (7) gives
(<) / N
= «9‘6_9/ £“ o+ 2°((P"Q’“(M°2) (13)

which gives asymptotically " {(.e ;;cK{Jlag >§ b a slow ln (1lns)

increase, But to extent that

/
X L S ' 1
2.><ﬁ, pres KL b (14)

(-3
»

(Which seems likely to be satisfied at NAL and perhaps at ISR
energies, because of the small values of 2’ ), both eqs. (13) (11)
give a direct logarithmic increase, as in eq. (8). When the energy

increases from sl to s2, eq. (8) gives:

U

= 2 L. 32
Ao—= =— G (€) i
D ew ® = (15)

Let us now illustrate how this lns increase in eq. (15) comes

about using the Feynman variable X,

T
X = 1= M - (16)




61

»*
Since the upper limit for M2 is M2 <i rs, we find that the

" lower cut-off "Xo" in X plot is independent of the energy:

* -A
X = | MZ v (17)
N Tl — =z - r =\-¢€
5 .

On the other hand the upper limit in x plot is given by

max < 2 ”
>< - l _ M s w /q/\ _C " ot LJ
e [
< S,

(18)

So for the emnergy S, the region of integration is from-X° to Xl,

1

while for the energy 82’ the region of int;gtation is from Xo to XZ’
i.e. as S increases the threshold on a H; plot moves closer to
zero, (we are integrating up closer to X = 1). This means that the
triple pomeron term, picks up an extra contribution giving an
appreciable increase to S5 (Fig. 45).

According to the analysis of "Roy & Roberts; Ref. 32, and Amati

et al, Ref. 19", the net increase‘*zscﬁ;-” respectively is

Av‘—,.s ('Zab=2°°—“>1°°° G—Cﬂ/c} =3:dDwb
A= (2800 ¢ 60oGH )T ADI-b
D\
Taking into account the numbers obtained by various people who have
played this type of game, it may be tempting to suggest diffraction as
the mechanism for the total cross—section rise; However, aven if we

7
-

grant the numerical equality ZX?S' ~ AT,

CAa— over the same
' in

energy range is 3.8 : 0.8), the situation is still far from clear

as we shall see from the following models.
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(i) D. Anmati et al:(1?)
In this model we have
aL'PCO) =1 Ap ™ Fo - (19)
This gives a constant TRp and the entire rise in the inelastic cross-
section comes from o— . The lns term in__ , together with higher
order terms (double agd higher diffractive egents will become detectable
at even higher energies and will contribute with higher powers of lnsg,
will inevitably lead to a renormalization of the pomeron trajectory =nd
to a violation of the Froissart bound. This problem was treated in Ref.
19, by introducing elastic absorption in order to restore the Froissart
bound, without effecting the énergy dependence eppreciably at ISR.

(55) (32)
(ii) Blankenbeder.

This model can also be described by the series expamnsion of Fig. 1,

it has an explicit prescription for taking into account abéorbtion due to
the elastic and diffractive channels. “The elastic diffraction causes
absorption is already rather generallf believed. Blankenbeclérsss)
argued that also inelastic diffraction should give rise to gbsorption;
This mean, in essence, that one subtracts from CT_B of Fig. 1, the

N

terms of Fig. 2 below; corresponding to initial state absorption, and

an identical set of diagrams for final state absorption,

/

\
e — ’

D

v 2

Fig (2) : Absorptive corrections to the cross-—

section, according to the model of Blankenbecler.(ss)
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Thus - 1is given by

ND
5 o{(?(°)-1
5 (e’ 5 -2y | ®
So, if cﬁ#o|= 1 and iftjs would rise, then the inelastic cross-=
section would go down and not up. In order to prevent - from

inel
going down, one needs an alien mechanism "non-diffractive" which must

give an increase more than o— to re-produce the rise in — .
D inel
This mechanism could be the opening up of new non-diffractive channels

which amounts to assuming a bare pomeron intercept ) >1.
H

(iii) Bishari et a1.(%
In this model, we_stért with o) (o) less than unity, so we get
P

asymptotically a consistent solution. The non—diffractive cross—section

now is given by

3 °{'t?‘°’" S5 A
TT=E v S . Re S ' 21

ND FeR

»

And the rise in the diffractive cross-section, is exactly compensated
by the fall in the non-diffractive cross—section. Thus the entire
rise in c—— has to be attributed to some alien source — e.g. Nucleon .-

incl . '
Anti Nucleon production,

2. Rising cross-section™ NN production

As we mentioned in the preceding section, the work of Blankenbecler
has given sufficient reasons for believing that, the rise of proton-proton

total cross—-section at ISR is non-diffractive in origin. On the other

58 ghows that the T production cross-

(47,56 57
section increases by ~ 6mb at ISR. This observation led several authors

hand, the analysis of M. Antinucci,




to the suggestion that this mighf be the cause of the total cross-
"section rise. Here we study this phenomenon assuming that the
production of NN takes place Multiperipherally. (47)

To start with let us consider the following decomposition of the

non-diffractive proton-proton total cross-section

‘éot (O)
c—N—D.—_O“- +a~(/l/N) @)

| ] © (&)
()= 2£ o | 2)
= |

Where we have assumed in eq. (1), that NN production is purely
non-diffractive,. "Since both the NN production and diffraction are small,
at ISR we ignor their interfereace'. The superscript in eqs. (1) (2)

denotes the rumber of NN pairs present in the final state.

The behaviour of < — (NN)

To estimate the —— (NN), we consider the multiplicity sum rule,

~

0 (<
N eot T ' 3

45 497,
Td?)

fa@(

(4)

It is more useful for our purpose here to define a different

average multiplicity by normalizing with respect to o— (NN).




= > o (6)
< >A/ €o &
L d935 da=
Assuming that and 2 are nearly equal, eq. (4) gives
o p £

<N>=—(4/A7):3§4_€ J::E. M

The quantity {N) is the ;lverage number of NN pairs produced
for events in which at least one pair is produced, hence {N) 1.
Following the analysis of ref. (58), the right hand side of eq. (7) is
shown in fig. (46). Therefore, once ¢{N) is known, S~ (NN) can be found.

Assuming that {N) remains near unity, it follows from Fig. (46)
that for ] §500 G%v:;—- (NN) is 1ess'than 4mb, and for s ¥ 3000 G%v, it
can be as large as 10.2 mb.' Thus the i.ncrease Ao~ in  o— (NN) over the
ISR energies is approximately 5-6 mb, However A o— (NN) will be less
if {N) increases above unity,

Fig. (46) has another important piece of information: _the 1-:
production is negligible below s= 100 Gevz. This delayed threshold,
and the assqmption that { N} remains ;ear unity up to ISR energies can be
understood by assuming the NN production takes place multiperipherally.

Fig. (47.a) shows the production of a NN pair in the central region
"the p distribution is strongly peaked toward the central region". The MP
kinematics can be described by a (highly simplified) constraint,

) o e
- So (8)

o .'v'\—L S
( %\:) ) ( Se
If we take the threshold for each sub-energy ~ 4 Gevz, the MP
threshold for single NN pair production is ~ 64 G%v" with Sq = 1 G%v".
This rough estimate is numerically too low. Typically only above

s = 200 Gev2 NN production is important.(53)
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The configufation for producing 2NN pairs, Fig (47.b), can be
analysed in the similar manner, and one finds that the dynamical threshold
in this case is at s¥3500 Gewzr, just beyond the highest ISR energies.

(o)

The behaviour of O0— |,

Since NN production is small below the NAL energies, the success

(o)

of the two-component picture indicates that 5— , the componeat of

— without NN pairs, is already smoothly behaved at s~ 200 G(Zav.
ND

Therefore the production of pions amd kaons alone generate a "bare pomeron"

with intercept o 50 where both theoretical arguments and numerical estimates

(56)

indicate that this bare pomeron has to be below J = 1. This oA o

is the bare pomeron used in the perturbative treatment of high energy

collision at ISR.(56'18) The iﬁportant questior now is: how c__(o)
behaves as we move into the ISR energy range. Chung- I Tan(“) argued

(from the additive property of the MP models, together vith the observation

(o)

that —o— » 1s already smoothly behaved at NAL), that an increase in NN
production does not lead to a corresponding decrease in the rest of the

non-diffractive cross—section.

Decomposition of the intercept of the pomeron

(o)

-Fig (48) shows - , o— (W), o—

ND

(according to the analysis

of D. Morrison " o— " , and Chung-I Tan " o—(NW)", ref. 47). From this

_ ND
figure we see that the energy dependence of —

(o)

from 3 to 3000Gév cam

be characterized by
(i) A Regge term with an effective intercept o= 0.82 for
S 2
s \( 30 Gev.
(ii) a reasonably flat region between 30 and 130 Gtzav.

(iii) another Regge term with an intercept o« —~ 0.87 - 0.92
[~

for s between 130 and 3000 va.



Since the intercept of the pomeron is decomposed into the
contributions of different hadrons produced through the MP chain, the
above picture, if correct, provides an explicit illustration on how
the pomeron is "dressed" by the opening of new channels. It owes its
"birth" to the pion production, yielding an intercept vy <0.82
(the naked poméron). Dusz to the KK production after 30 va, it is
"renomalized" upward to ~_ by approximately 0.1 unit in J-planz, (the
bare pomeron). Eventually, NN and other possible heavy particle

production ‘'renormalized" this bare pomeron to a "slightly - dressed

one",CNP.
If it happens that the sum of o (0, T ) and D('PCO, ki\
: 3
almost saturate unitarity, so that with o/ (o, NN) added, ©f (o)

. - e P
would exceed unity, the NN production or part of it would cause

superficial violation of the Froissart bound transiently, i.e. the
behaviour of ~z over the ISR energy range is a transient, rather

than asymptotic phenomenon.

3. Rising cross—section in impact parameter space.

The results of Chapter IV "dverlap function model" clearly provides
strong constraints on models which proposed to explain the rise of the
total cross—section at ISR. Any model proposed to explain this rise,
must also be'aﬁle to explain its impact parameter distribution (the
observed rise of the proton-proton total cross-section comes from the
region around b« 1 fermi). Here we examine the two mechanisms of
section 1 & 2 and some others from this point of view.

(i) central dynamics - peripheral rise‘za)
According to this mechanism the peripheral nature of the overall

increment of the inelastic overlap function is interpreted as due to

the sum of
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1. a new central channelg opening up "which cause the rise of

7 inel

", and

2, a typical Regge term "i.e. %;%Z shrinks, TTpel SEaYVS
constant", which gives in impact parameter space a decreasing
central absorption together with expanding radius.

Figs. (49,a,b,c) show how the new central channels could easily compensate
the decrease of the central ab;orption and make the overall increment
of the inelastic overlap function; A G%“(s, b), peak at 1 fermi.

The egtraordinary constancy of %nel (s, b =0) "0.94" at ISR
which comes from the new channeis opening up and the shrinkage of the
5u1k of the cross-section, can be re-produced by using pomeron péle

O(E (t) = 1.06 + 0.35 t. To clarify this point we refer to Fig. (50)
which shows 'gnel (8, b = 0) as a function of the energy. The figure

also shows a curve calculated using the above pomeron pole (the central

production is effectively described by talking the pomeron intercept
to be above one). From this curve we see that gn (s, b = o)'is
decreaéing at low energies, and.passiné though a broad minimum (0.94)
at ISR energies. At energies above ISR gn (s, b = 0) will probably

rise and finally slowly saturate the unitarity limit,

(ii) Geometrical scaling.

Geometrical scaling states that (Chapter V)

G; (o) — G.'_n(ﬁb?s)
We saw in Chapter V that the data satisfy Geometrical scaliﬂg,
e.g. the four curves of figure (31 a) which representlgn (s, b) at
Q_E— = 21, 31, 44 and 53 Gev, can be put on the top of each other,
if we scale them by a suitable s dependent radius. However, in spite of

the experimental success of Geometrical scaling, we don't know whether it
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is systemic or an accident. For instance, the constancy of gn (s, b =0)
according to the above mechanism, only happens because of the big

cancellation between the central channels and Regge behaviour term.

(iii) NN production.

We saw in section 2, with the context of MP model that this
phenomenon could even account for the whole observed increase in i
' However, in impact parameter-space it is hard to see, if the model z:ﬁ
describe properly the impact structure of 23 ¢, (s,b), since it is not
even known if thg model can fit the shape of En (s,b)(za)_

Alternatively, from geometrical picture point of view, in which
heavy particles (e.g. NN) are expected to be produced in a "head-on"
collision. The peripherality of A G (s,b) can be obtained from
this central NN .production, with th;nzimpensation mechanism described

in (1).

(iv) 1Inelastic diffraction.

The inelastic diffractive overlzp function of Sakai & White
(Chapter IV) has a peripheral impact parameter structure (in the case of
t-channel helicity consérvation). This fits well with the picture of
diffracfion being thelcuase for the rise of T 3nel ° However, even if

the overlap function G (s, b) is peripheral, this by no means would

D
guarantee the peripherality of A G (s, b). If A G (s, b) has the ’
D D
same peripheral nature as G (s, b), a qualitative understanding of the
D
mechanism which attributes the rise in ___ to inelastic diffraction,
incl

can be obtained. No quantitative calcuiations of the increment of the
diffractive overlap function exist at present.,
On the other hand the "Two component analysis of the inelastic

overlap function" (Chapter IV), suggests a central diffractive component
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and a multiperipheral one. The multiperipheral component is more
peripheral and shows significant shrinking with increasing energy.

The peripheral nature of the overall increment of the inelastic
overlap function can be interpreted again as due to the increasing
central component together with the shrinking multiperipheral part.
Thus although the rise in inelastic cross-sec:ién can be attributed
to a central diffractive component, the net increase can still be

peripheral.

4. Conclusion

In conclusion we feel that it may well be that there is no
simple explanation for the rise of the total cross-section in terms of
a particular isolated set of processes, but the rise is a much deepéf
collective effect.

In impact parameter space, the rise of the total crossfsection
comes from the region around bl f£fm. we emphasize.hete again that this
peripherality phenomenon is a dynamic31 effect, since the central absorption
does not saturate the unitarity limit. The inelastic overlap function may
be written (Chapter IV) as the sum of "disK'plus "ring" components, and
the peripheral incremeﬁt of the inelastic overlap function may come from
an expanding "disk" cbmponent with radius =~ 1 fm, or from a growing
"ring" component centred at 1 fm.

The association of "“disk" or "ring" components with diffractive
or non-diffractive productions.is model dependent (e.g., in the inelastic
overlép function of Sakai & White it is possible to identify the "ring"
component with inelastic diffraction and the 'disk" component with non—
diffractive production). The question of the physical origin of the rising

cross-section is one of the most interesting problems of hadron's today, and



by solving it we hope that we will be able to learn a lot about

hadron physics.
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TABLE CAPTIONS

Table (1) Parameters of the fits shown in Figs. (20,21
22 and 24)
Table (2) Parameters of the fits shown in Fig. 23.

FIGURE CAPTIONS

EY x
Fig. 1 Total cross-sections of a)™W P , B)K P
c) pTe (Ref.1).
Fig. 2 Energy dependence of the deforence cf total
cross-sections for particle and anti-particle
(Ref. 1).
Fig. 3 Comparison of diffraction scattering at

various energies for Tip s KiP s PP
(Ref. 1).

Fig. 4 Exponential slopes of. diffraction scattering
for t™p , K*p and pTP.
The data have been fitted over the interval

oo L \E( L -3 Geu

(Ref. 1)
Fig. 5 Differential cross-sections for elastic
scattering at 100 Gev/c. i
' (Ref. 3)
Fig. 6 Logarithmic slopes at ~|t] = 0.2 Ge% as
a function of S. (Ref. 3)
Fig. 7 The apparatus used at the CERN-ISR by the
CERN-Rome Collaboration to measure pp elastic
scattering at very small angles (Ref. 4)
Fig., 8 " The differential elastic cross-sections at

&= 23.6 and 30.8 Gev in the Coulomb-Nuclear
interference region (Ref. 4)

Fig, 9 The ratio of the real to imaginary part of the
forward scattering amplitude for pp elastic
scattering versus Lab-momentum. The dotted
line is a result of dispertion calculation,
while the continuous line represents the result
of the calculation in_which it was assumed

that oy ~ (In 8) 2. (Ref. 6)

Fig. 10 Total proton-proton cross—sections measured at the
ISR by the CERN-Roma collaboration, and by the
Pisa Stony Brook Collaboration (Ref. 6)
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Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

11

12

13

14

15

16

17

(23 ¢)

(a) The large angle PP elastic scattering
at various laboratory momenta.

(b) Features of %E%} (PP) in ISR range.

Results of a dispersion relation calculation
of the ratio £ of the real to the imaginary
part of the nuclear amplitude. The various
curves refer to various hypothesis on the high
energy behaviour of the total proton-proton
cross—section ’ (Ref. 6)

Total, inelastic and elastic proton—proton
cross-sections versus the Lab.momentum. (Ref. 12)

Compilation, interpolation and extrapolation
of existing data on elastic proton—-proton scattering
at the makximum and minimum ISR energies. (Ref. 12)

Partial wave amplitude as a function of the proton—
proton impact parameter at the minimum and maximum
ISR energies : (Ref. '12)

Proton~proton opaqueness at the two extreme ISR
energies. In the lower part of the figure the

' opaqueness increment in the ISR energy range is

plotted versus the impact parameter.

Data on proton—-proton elastic scattering from ISR
together with some lower energy points.,

The effective trajectory for pp scattering obtained
from the ISR data. - (Ref. 10).

The effective trajectory for pp scattering for

"8 ¢ 50 Gév (Ref. 10)

Fit (i) "Chapter III. Sec. 2" .using eqs. (9, 10,

" 11), to the ISR data, and lower energy data for

(et < 1 Gév. (Ref. 10)

Fit (ii) "Chapter III. Sec. 2" using eqs. (9, 10,
11, 13). (Ref. 10)

Fit (iii) "Chapter III. Sec. 2" using eqs. (9, 11,
14). ' (Ref. 10)

Fit the (PP) data to Regge cut model (Chapter III
Section 3.2). using eqs. (9, 10, 27). The figures
also show the fits of - P | » data using
eqs. (9, 10). (Ref. 15).

The effective trajectory for pp scattering at ISR
with  «p(t) = 1,07 + 0.22 t and o (t) =
1.14 + 0.11 t (Ref. 15).
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. Fig.

Fig.

Fig.

Fig.

24

26

27

28

29

30

Fit the pp data to Regge cut model 'Chapter
I1I, Section 3.3" using eqs. (28, 17, 14)
(Ref. 10).

The imaginary parts of the impact parameter
amplitudes corresponding to fit (i) (Chapter
ITII) to the ISR data (Ref.. 10).

Solution of the s-channel unitarity relation

"Chapter 4. eq. 5". (Ref. 25)

Ratios of pp cross~sections and elastic slope.
The Van Hove limits correspond te a Gaussian
overlap function of maximum strength allowed
by unitarity. (Ref. 13).

Inelastic overlap function at PL b = 1500 Gev/c.
The solid points are calculated ffom the ISR

data. The solid curve is the Two—component

parameterization, ''Chapter IV. eq. 15" (Ref. 25).

(A) Results of fits "eq.l17, Chapter IV" to data,
a, b, ¢, and d represent the parameters P, Pl' B,
and B1 respectively.

(B) The upper solid curve represents G = G +

G - represénts G casa Gau
edg * = -—-—- Gau’ ’

represents fit with G = G, for ¢ -t (0.6

(Gev/c)z, the lower solid curve represents
5 x% Gedg (Ref. 28)

(A) Impact structure of proton—proton scattering
at q/S = 53 Gev.

(B) The amplitude, inelastic overlap function and
eikonal extracted from experimental data at
Vs = 53 : (Ref. 24)

(A) Inelastic overlap functions calculated from the
N8 = 21, 31, 44 and 53 Gev ISR data.

(B) Difference of the ys = 53 and 31 Gev

inelastic overlap function. " (Ref. 24)

The decomposition of the imaginary part of the
elastic amplitude into its various components.

"eq. (19). Chapter IV". (Ref. 22).
Inelastic overlap function Hin (s, b) and its 9
two components at two energies s = 940, 2840 Gev
in impact parameter space. (Ref. 26).

Difference of the inelastic overlap function at

two energies 8 = 28406 s = 940, The experimental
curve is that obtained from the analysis of Miettinen
& Pirilla. (Ref. 26).
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Fig.

Fig.

Fig.

Fig.

Fig.

35

36

37

38

39

40

41

42

43

44

78

(A) plot of do/d t at the lowest and highest

ISR energies (Ref. 12)
(B) plot of & (%,s) 5;::—-73 J%‘*

as a function of ¢ for the lowest and
highest ISR energies. The points everywhere
fall into a unique curve. (Ref. 35).

Cbmpilation of PP cross—-sections and slope
parameter (for {t] & 0.15). (Ref. 13).

Evaluation -of geometrical scaling predictions

for °—.n.a-/°—¢ r—-..(' 'E;/a-—-c

(Ref. 34).

Evaluation of geometrical scaling predictions
for secondary maximum and dip location
"eqs. 24, 25, Chapter V"' - (Ref. 34).

Effective Regge trajectory as deduced from:
(a) the geometrical scaling prediction of
the right hand side of eq. (26) "Chapter V".

(€)1 (1 -Lge) iR
eff ’ e d X g
(values denoted by shaded
region)
A (5,€)=
®) eff b-Qms( Q€

»

(values represented by data points).
(Ref. 34).

Comparison of the geometrical scaling predictions
with o e££,, obtalned from the ISR data "eq. 33
Chapter (Ref. 41).

Tne structure of the real part in t and b space.
(Ref. 38).
N

Im F and G. at b = 0 as a function of Lab.
momentum (soild lines). The dashed line represents

a result for Im F belonging to the same G, _  but '
without taking into account the real part.
: (Ref. 38)

The momentum dependence of the total, elastic and
inelastic proton-proton cross—sections. The
dashed lines are the results for <= and

of calculation without the real part. (Ref. 38).
“’*t(%/eTk compared with the energy dependence
of a—1a (solid line). The dashed-dotted line

represents the energy dependence of the slope
itself (Ref. 38).
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Fig.

Fig.

Fig.

Fig.

45

46

47

48

49

50

The shaded region in this figure corresponds to the
increase in o— which we go from energy 8, to s,
» (Ref. 46)

{n> = _(N-I\'f) from ' (Ref. 47)

(a) MP production of a single NN pair.

(b) MP production of a two NN pairs
(Ref. 47).

Non diffractive total cross-section without'
NN pairs. ' (Ref. 47).

‘Tllustration of how central channels opening up

may generate a peripheral A Gi (s, b).
(a) The inelastic cross—secticn sgays constant
but do—/i€ shrinks. Gin {s, b)Y decreases

at b = o and increases at b >- 1 fm.

(b) The new central channels compensates the
above central decrease. As a result,  the cross—
section increase appears peripheral.

(¢) The difference of the two overlap functionms.
of b. . (Ref. 24).

Inelastic overlap function at b = 0 wvx. S.

The curve is an illustration of our explnation
for the constancy of Gi (s, b = 0) over the
ISR energy range, calclilated using = @(t) =
1.06 + 0.35 t. (Ref. 24)..
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Fig. f?)

Cumparison of
diffraction scattering
at various energies

i * b4
for n”p, K'p and p7p.

do/dt
da/dt (t=0)
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I'ig. 12(a) The large angle pp elastic scattering at various laboratory momenta..
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