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SUMMARY 

This project i s concerned with the p o s s i b i l i t y of 

u t i l i s i n g the e l a s t i c properties of a p l a s t i c material to form 

the converging surface, required for the successful operation 

of a thrust pad. 

A method was devised to form an inclined pad surface, 

without involving accurate machining processes, the p r o f i l e of 

which i s modified under the action of the hydrodynamic pressure 

generated i n the lubricant, 

A model investigation was undertaken, the r e s u l t s being 

presented in the form of dimensionless groups. These r e s u l t s 

show that, over part of the operating range, the compliant pad 

has a better load carrying capacity than that of the inclined 

plane s l i d e r . 

A simple mathematical model was postulated, the r e s u l t s 

of which compare f a i r l y well with those obtained from the 

experimental programme. 
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CHAPTER 1 

1 .1 Introduction 

The hydrodynamic theory of l u b r i c a t i o n , as presented by 

Osborne Reynolds ( 1 ) following the experimental investigations 

of Beauchamp Tower ( 2 ) , has shown that ef f e c t i v e . l u b r i c a t i o n 

of two load-carrying surfaces, with r e l a t i v e motion, requires 

a wedge-shaped space between the surfaces, whereupon a pressure 

i s generated i n the lubricant which forms a film separating the 

surfaces. Generally the lack of any such convergence i n the 

p a r a l l e l - s u r f a c e thrust bearings then in use accounted for th e i r 

poor load-carrying capacity. Nevertheless i t has been shown ( 3 ) 

that a p a r a l l e l - s u r f a c e thrust bearing can carry a considerable 

load, under certain conditions, the necessary convergence being 

caused by thermal dist o r t i o n due to temperature gradients i n 

the bearing pad. 

The t i l t i n g pad thrust bearing, introduced by Michell CO 

i n 1905» not only formed the convergence in a simple way, but 

also automatically adjusted the degree of convergence to an 

optimum value, depending on changes in the applied load or 

s l i d i n g v e l o c i t y . 

Another method of forming the required convergence of the 

bearing surfaces, often used i n large water turbine bearings, 

i s to machine a slope on the thrust pad leaving a small 

proportion of the pad length p a r a l l e l to the runner in order to 

reduce the wear of the pad under conditions of s t a r t i n g and 

stopping. In t h i s type of bearing the degree of convergence 

of the pad i s constant so that under "off-design" operating 



conditions the bearing i s not running with an optimum film 

thickness* 

Both the fixed and t i l t i n g pad bearings can, t h e o r e t i c a l l y , 

only operate successfully for a fixed direction of the r e l a t i v e 

motion between the bearing surfaces, although, by moving the 

pivot point to a central location, the t i l t i n g pad can operate 

i n either direction with l i t t l e l o s s of load carrying capacity 

compared with the conventional pivot location ( 5 ) . This 

apparent anomaly has been explained by considering the thermal 

and e l a s t i c distortions of the pad to form a convergent o i l 

f i l m without the bearing necessarily t i l t i n g ( 5 ) 1 ( 6 ) . 

These experimental and theoretical studies have led several 

researchers to investigate p a r t i c u l a r designs of thrust pad i n 

which a section i s cut away from the non-working face, the 

converging wedge being formed by e l a s t i c d i s t o r t i o n . A.H. 

Bennet and C. E t t l e s ( l ) have described the operation of a 

'cantilever* bearing, figure 1, which has a performance s i m i l a r 

to the conventional pivoted pad. 

An experimental investigation was reported by E.W. 

Hemingway (8) i n which a portion of the underside of the pad was 

removed leaving r i g i d support for the t r a i l i n g edge and the 

sides of a deflecting diaphram, figure 2 . This produces a 

v a r i a t i o n in film thickness i n the r a d i a l direction which reduces 

the side flow of the lubricant r e s u l t i n g in a load carrying 

capacity of t h i s type of bearing somewhat superior to that of 

the pivoted pad. 

These experimental and theoretical studies of the 

performance c h a r a c t e r i s t i c s of thrust bearing pads demon T i t r a t e 



that the generation of the pressure in the lubricant i s 

s e n s i t i v e to the physical shape and dimensions of the wedge 

which can be affected by both thermal and e l a s t i c d i s t o r t i o n s . 

This requires that the items which make up a thrust bearing 

containing a number of pads must be manufactured to fine 

tolerances, and then c a r e f u l l y assembled. 

The manufacturing process also includes a 'tinning' process 

by which the pad working surfaces are coated with a white metal. 

Thus the manufacturing costs of thrust bearings can be large 

compared with p l a i n bearings. 

The present trends i n pad configuration are aimed at 

reducing the complexities, and the cost, by eliminating the 

pivot by using the e l a s t i c d i s t o r t i o n of the pad to form the 

wedge. The configurations reviewed s t i l l Require machining to 

f a i r l y close l i m i t s and s t i l l incorporate a white metal surface 

coating. 

I t i s the purpose of t h i s investigation to examine the 

p o s s i b i l i t y of using the load-bearing and e l a s t i c properties of 

a modern p l a s t i c material i n order to eliminate the need for the 

provision of the pivot and the white metal coating but s t i l l 

r e t a i n good load carrying c h a r a c t e r i s t i c s . 

The intention i s to form the pads in a thick disc of the 

p l a s t i c material by cutting r a d i a l s l o t s at suitable angular 

i n t e r v a l s . The i n l e t side of each pad could then be permanently 

contracted by some form of clamping arrangement thus forming a 

wedge-shaped lubricant space with the runner, shown i n figure 3» 

The pressure generated in the lubricant film w i l l then modify 

l:he p r o f i l e of the working surface of the pari with the p o s s i b i l i 



of the film thickness r a t i o remaining approximately constant 

over a limited range of load* 

There i s a further p o s s i b i l i t y of the pad d i s t o r t i n g i n 

the transverse direction* This should have the effect of 

shrouding the sides of the pad thus reducing the side leakage 

to some extent. 
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CHAPTER 2 

Design and Manufacture of the test equipment 

2 . 1 F u l l s c a l e testing 

When investigating the performance of thrust pads under 

conditions of hydrodynamic lu b r i c a t i o n problems can a r i s e which 

mask the basic p r i n c i p l e s involved. The root cause of these 

d i f f i c u l t i e s i s the f r i c t i o n a l heating of both the o i l , as i t 

passes through the bearing, and the surfaces i n contact with 

the o i l , thus dis t o r t i n g the surface p r o f i l e . The v i s c o s i t y of 

the lubricant, which i s s e n s i t i v e to temperature, can vary 

considerably between the i n l e t and outlet edges of the pad and 

so the effective value to be used i n the presentation of the 

r e s u l t s , usually by dimensionless groups, i s open to conjecture. 

The measurement of small clearances which e x i s t between the 

s l i d i n g surfaces require sophisticated and expensive equipment, 

mainly electronic gauging, which- depend for t h e i r operation on 

the e l e c t r i c a l or magnetic properties of the bearing material 

and as t h i s investigation i s concerned with the f e a s i b i l i t y of 

using non-conducting and non-magnetic p l a s t i c material to form 

the bearing surface then the d i f f i c u l t y i s enhanced. 

The cost of manufacturing a f u l l scale t e s t - r i g and the 

associated equipment, and the work load that i t would have 

imposed on the workshop, was prohibitive at the time when t h i s 

investigation was started. Thus a programme of model t e s t s of 

limited objectives was decided upon, using, as far as possible, 

apparatus already ex i s t i n g in the department. 
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2 . 2 Model Tests 

The use of a model pad i s intended to reduce the variation 

i n the lubricant v i s c o s i t y through the pad and the consequent 

thermal d i s t o r t i o n by reducing the f r i c t i o n a l heating, to 

increase the film thickness and reduce the pressure in the 

lubricant film so that they can be measured by simple 

instruments. 

2 . 3 Pad Form 

Figure (6) shows a schematic diagram of the form of the pad 

f i n a l l y adopted. The deformable pad (B) was made from a rubber 

which could be cast, and cured at a low temperature, onto a 

supporting plate (A) which transferred the applied load from a 

leve r arrangement (figure 5) through the pivots (K) to the pad. 

The pivots, being on the longtitudinal a x i s of the pad, allowed 

the pad to l e v e l i t s e l f i n the transverse direction under the 

action of the hydrodynamic pressure generated in the lubricant 

f i l m acting on the surface of the pad. 

In order to create a convergent film, a bar was cast into 

the rubber at the i n l e t edge ( F ) , two rods were screwed into the 

bar so that they passed v e r t i c a l l y through the pad and supporting 

p l a t e . Tapped holes were provided in the supporting plate so 

that the rods could be locked by the set screws ( E ) . The pad 

was then loaded so that the depth of the pad between the 

supporting plate and the pad surface contracted, the rods were 

then locked in t h i s position and the load removed. The depth 

of the pad at the leading edge remained at the i n i t i a l value 

but. incrua.'iod towards', the outlet edge ol' the pad, thus forming 



a converging wedge with the moving surface. 

I n order to measure subsequent deflections of the pad 

under working conditions, small diameter pins were cast into 

the pad but were attached only to the pad at the lower 

extremities, the upper ends projected through holes d r i l l e d into 

the supporting plate. A datum l i n e was attached to the 

supporting plate so that r e l a t i v e movement between the pins and 

I.hi? (IMI.IIIII l i n o r . m i h l in\ m i v m t i m l by a l . r i t v n I I i u K m i c i ' o i - . i ' . t i po , figure 

This r e l a t i v e movement was the deflection of the working surface 

of the pad. I t was found necessary to f i x small beads of 

a r a l d i t e , coated with primer, to the lower ends of the pins to 

prevent the pins working loose. Each pin was made from 

'hypodermic' s t e e l tubing of 1.5mm diameter, one end of which 

was ground to form a chamfer* This provided a curved surface 

i n the image i n the telescope, f a c i l i l a t i n g the positioning of 

the cros6-hair of the microscope eyepiece. 

Order of Magnitude analysis 

For the purpose of t h i s a n a l y s i s the assumption i s made 

that the load-carrying capacity of the compliant pad i s s i m i l a r 

to that of the t i l t i n g pad, neglecting side leakage. Thus the 

relationship between the mean pad pressure and the optimum film 

thickness at the outlet edge i s given by 

P h 2 = 0.158 ref. 9 o 
JJuL 

I n practice h i s the order of 0.02mm, now i f the value of h 
o o 

i s r e s t r i c t e d to 0.5mm for the model t e s t s , an increase of 

twenty-five fold, then the average pressure i s reduced by a 
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.factor of 625 and can thus be measured by simple mercury 

manometry. I f the bearing speed, lubricant v i s c o s i t y and 

dimensions of the pad are specified, then the temperature 

variation of the lubricant i s given by the relationship 

t = JJuL, x 1.15 = I x 7.25 
ech 0

2 9C 
and so the temperature r i s e w i l l also be reduced by a factor 

of 625 and i s considered negligible. 

Various lubricants were used, the most viscous being castor, 

o i l with a v i s c o s i t y of 1 N-S/m̂  at a temperature of 21°C. The 

r i g was a modified machine manufactured by S. Dennison & Co., 

with a maximum be l t speed of 1 m/s, and could accommodate a pad 

of length 100mm, thus for a minimum o i l film thickness of 0.5mm 

the average pressure on the pad i s of the order of 6KN/m • 

2.5 Pad deflection 

In order to determine the magnitude of the deflections of 

the pad to be expected, again assume that the pad operates as a 

t i l t i n g pad without side leakage. Consider the pad operating 

under a mean pressure of 1.6 KN/m then the outlet film thickness 

would be 1mm with an i n l e t f i l m thickness of 2mm. Now consider 

the mean pressure on the pad to be increased to 6.3 KN/m . I f 

the film thickness r a t i o i s to remain at a value of 2 then the 

i n l e t film thickness would be 1mm and the outlet film thickness 

0.5mm. Thus, as the i n l e t edge does not deflect then the outlet 

edge must deform by an amount equal to 0.5mm. I f i t i s further 

assumed that the deflection at the outlet edge ie the same as 

would occur under a uniform pressure equal to the mean pad 



pressure then the estimate of the required modulus of 
i 

compression can be made as the pad i s required to deflect 0.5mm 
2 

under an increase i n pressure of (6.3 - 1»6) KN/m . The depth 

of the pad was fixed at 80mm, therefore the required modulus 

of compression i s k*7 x 10^ x 80 x 10~"V • -3 i . e . 
u.£? x nu 

about 730 KN/m • A suitable material was chosen, a s i l i c o n e 

rubber manufactured by I . C . I . , which had a modulus of 980 

kN/m2. 
.6 Test Rig 

A simplified general arrangement of the machine i s shown 

i n figure (5)» 

This apparatus was adapted from a r i g manufactured by the 

firm of S. Dennison & Co., for teaching purposes. The 

modifications were such that they did not interfere with that 

function. The moving surface of the model was provided by an 

endless nylon belt ( A ) which ran over two r o l l e r s B & C one 

of which (B) was driven, v i a a hydraulic variable speed device 

(D), by a one-half horsepower e l e c t r i c motor (E) connected to 

the 220v 50Hz, mains supply. The combination of the variable 

drive unit and the b e l t and pulley system enabled the speed of 

the belt to be varied between zero and 1 m/s. The part of the 

b e l t passing beneath the thrust pad, being subjected to the 

hydrodynamic lubricant pressure, was supported by a plate (F) . 

attached to the frame of the machine. The nylon belt dipped 

into a reservoir of o i l and carried a thick film of the 

lubricant to the pad. I t was found that the o i l supply to the 

pad was more than s u f f i c i e n t to give f u l l l u b r i c a t i o n . Each 



10 

r o l l e r was f i t t e d to a shaft which rotated in b a l l bearings 

mounted i n brackets attached to the frame. The bearing brackets 

of the i d l i n g r o l l e r were so attached to the frame that the 

centre distance between the r o l l e r s could be altered in order 

to adjust the tension i n the nylon belt so that i t did not s l i p 

on the driving r o l l e r . The driving r o l l e r was also grooved 

a x i a l l y to prevent an o i l film being generated between i t and 

the b e l t . 

The model thrust pad (G) was suspended over the nylon b e l t 

by means of a cradle pivoted to two brackets (H) which were 

bolted to the frame of the machine. The cradle was formed by 

two levers ( I ) bolted together by a spacing bar ( J ) , which 

allowed only r e l a t i v e angular movement between the l e v e r s , and 

the pad was attached to the cradle by pivots (K) located on i t s 

longtitudinal a x i s and passing through the l e v e r s . The weights 

of the cradle and pad assembly were counterbalanced by a weak 

spring (L) hooked to the spacing. The pad was loaded by standard 

laboratory weights added to the pan (M) which hung from the 

spacing bar. This arrangement allowed the pad to move v e r t i c a l l y , 

due to the hydrodynamic pressure generated in the o i l f i l m , and 

also t i l t i n the direction of the motion of the b e l t depending 

on the position of the weight pan on the spacing bar. The o i l 

res e r v o i r , formed from narrow gauge sheet s t e e l , f i t t e d round 

the r o l l e r s and nylon b e l t . One side of the reservoir was 

slotted to allow the shaft carrying the driving r o l l e r to pass 

through, the o i l l e v e l being below the s l o t . 

I t was found that, during an extended test run, the 

temperature of the o i l slowly increased continuously, temperature 
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r i s e s of 20 C being common, due to the shearing of the o i l by 

the nylon b e l t . This caused thermal disto r t i o n of the pad and 

thus certain parameters, required to be constant for a s e r i e s 

of t e s t s , a l t e r e d . This d i f f i c u l t y was eliminated by f i t t i n g a 

cooling-water tube in the base of the reservoir. The temperature 

of the o i l could then be maintained at a constant value to within 

5°C above ambient. 

The deflections of the pad, o i l film thickness, and the 

•setting up' of the pad were measured by a t r a v e l l i n g microscope 

(N) which was situated on a platform (0) attached to the side of 

the machine. The microscope slideway was placed p a r a l l e l to the 

longtitudinal a x i s of the pad and could be t i l t e d i n any desired 

direction by means of the three adjusting screws (P) i n the base. 

The v e r t i c a l movement of the microscope was measured by-means of 
-2 

a d i a l gauge graduated i n divisi o n s of 10 mm. A mercury 

thermometer (Q) was placed in the o i l at the i n l e t edge of the 

pad and to one side where the depth of the o i l , .due to the 

damming action of the pad, was s u f f i c i e n t to cover the thermometer 

bulb. 
2m7 Manufacture of the model pad 

In section 2.5 the order of magnitude analysis indicated 

the required Modulus of Compression to s a t i s f y pad deflection 

and film thickness requirements. The material used was S i l c o l o i d 

201, a l i q u i d s i l i c o n e rubber compound which cured at room 

temperature when mixed with the appropriate curing agent. The 

curing process could be accelerated by increasing the temperature 

of the rubber, 60°C being the recommended value. 



This material would only adhere to other components i f 

they were f i r s t coated with a primer before casting the pad. 

A useful property of the rubber was i t s transparency, enabling 

the conditions of lubrication within the o i l gap to be viewed 

through the side of the pad. I f the pad was starved of 

lub r i c a t i o n then t o t a l internal r e f l e c t i o n of the l i g h t occurred 

at any point where an incomplete film existed, t h i s region 

appeared as a s i l v e r y patch. 

A square pad of dimensions 100mm x 100mm with a thickness 

of 80mm was chosen, t h i s being the maximum s i z e which the r i g 

could accommodate. A diagram of the pad assembly i s shown in 

figure ( 6 ) . The rubber pad (B) was cast onto a perspex 

supporting plate (A) which was coated with primer. The 

supporting plate was provided with a s e r i e s of holes of 6mm 

diameter ( C ) , a further two holes of 2mm diameter (D) along the 

longtitudinal a x i s of the plate and two holes of (E) 6mm 

diameter. A perspex bar of 12mm square section, with one face 

machined a t an angle to provide a straight and definite edge, 

was cemented onto the upper face of the supporting plate i n order 

to provide a datum l i n e used i n the measurements of the pad 
figure 7 

deflections. A mould^was made from four sheets of perspex 

cemented together, the supporting plate was attached to the mould 

to form the f i f t h side, the remaining side was l e f t open to the 

atmosphere. Steel rods of suitable s i z e were inserted through 

the holes (C) to act as cores. A perspex bar ( F ) , provided with 

two tapped holes (G) was l i g h t l y fixed to the inside face of the 

mould and coated with primer. Two s t e e l rod:; (H) with threaded 

ends were passed through the holes E and w-.r-cwed into the tapped.. 



holes G. A l l the holes and gaps were sealed with a p l a s t i c 

compound and the faces of the mould and the s t e e l rods were 

coated with a release agent. 

The mixture of rubber and the curing agent was deaerated 

i n a vacuum chamber for f i f t e e n minutes and then poured slowly 

into the mould to avoid entraining any a i r * The rubber was 

then part-cured at room temperature for 48 hours to allow the 

rubber to set and then given a f i n a l curing time of f i v e hours 

i n an oven at a temperature of 6o°C. The p l a s t i c compound 

sealing the possible leakage paths softened at t h i s temperature 

but the rubber was already cured enough not to leak. 

The mould and the cores were then removed and the pad was 

suspended over a f l a t glass plate A shown in figure ( 8 ) . One 

edge of the supporting plate rested on a set of s l i p gauges (B) 

and the other rested on the arm of a vernier depth gauge ( C ) , 

the clearance between the bottom of the pad and the glass plate 

being about 2mm. The pins for measuring the movement of the 

pad surface were then positioned in the holes i n the pad l e f t 

by the removal of the cores. 

I n order to ensure that the datum edge on the pad supporting 

plate was p a r a l l e l with the plane of the glass plate, the following 

procedure was adopted. A probe (D) was inserted in the 

appropriate hole (F) i n the pad supporting plate, i t s lower 

extremity resting on the glass plate. The t r a v e l l i n g microscope, 

with i t s slideway placed p a r a l l e l to the longtitudinal a x i s of 

the pad, was adjusted v e r t i c a l l y u n t i l the crosshair in the 

microscope eyepiece j u s t touched the magnified image of the 

upper end of the probe. The probe was then removed and replaced 



i n the appropriate hole i n the t r a i l i n g edge of the supporting 

pl a t e , and.the microscope was then moved along the slideway 

u n t i l the image of the probe was again seen in the eyepiece, 

the adjusting screws on the base of the microscope were used 

to move the microscope u n t i l the crosshair again touched the 

probe image. This procedure was repeated with the probe 

al t e r n a t e l y positioned i n the holes i n the leading and t r a i l i n g 

edges of the pad u n t i l further adjustment of the microscope base 

screws was unnecessary, the microscope then moved p a r a l l e l to 

the glass plate* 

The microscope was then focussed on the datum l i n e on the 

pad supporting plate and the vernier depth gauge was adjusted 

u n t i l the crosshair of the microscope remained on the image of 

the datum -line when the microscope was moved along the slideway. 

The pad supporting plate was then p a r a l l e l to the glass plate. 

A rectangular c o l l a r (£), made from perspex sheet, was 

placed on the glass plate circumscribing the pad, thus forming 

a mould round the pad. Rubber was then poured into t h i s mould 

to a depth of four millimetres and allowed to cure. 

The pad was then removed from the glass plate and the 

surplus rubber, round the edge of the pad, was cut off with a 

sharp k n i f e . 

The pad was then ready to be placed i n the te s t r i g . 
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CHAPTER 5 

Measurement and Procedure 

3.1 Pad adjustment 

The pad supporting plate was kept p a r a l l e l to the surface 

of the b e l t under a l l the varying conditions of load and belt 

speed, in order to simulate the conditions under which a single 

pad would operate i n a f u l l - s c a l e thrust bearing. In order to 

achieve t h i s object, the microscope slideway was made p a r a l l e l 

to the belt using the procedure outlined in section 2.6. When 

t h i s was done with the belt in motion then the microscope s l i d e 

was only p a r a l l e l to a l i n e joining the two points where the 

probes touched the b e l t as the b e l t deflected s l i g h t l y between 

these two points due to the o i l pressure in the-film. The pad 

supporting plate could then be made p a r a l l e l to the microscope 

s l i d e by focussing the microscope on the datum l i n e on the plate 

and adjusting the position of the weight pad on the spacing bar 

so t i l t i n g the pad u n t i l the microscope could be moved along the 

s l i d e without the crosshair leaving the image of the datum l i n e . 

The complete procedure only occupied a time of about f i v e minutes. 

. I t was sometimes required that the pad was to be l e v e l l e d 

under zero load conditions and the belt stationary. In t h i s 

case the spacing bar was loaded in a v e r t i c a l direction u n t i l 

the arms of the cradle contacted adjustable stops, not shown i n 

diagram (5)» The pad was t i l t e d by a l t e r i n g the adjustment of 

those stops. 



Measurement of film thickness 

In order to measure the film thickness along the pad, 

probes were made from s t a i n l e s s s t e e l 'piano' wire of diameter 

s l i g h t l y l e s s than the internal diameter of the hypodermic 

tubing used for the pad-deflection pins. The probes were given 

a s l i g h t i n i t i a l curvature so that, when inserted i n the 

hypodermic tubes, they tended to s t i c k a l i t t l e and were not 

forced out by the pressure i n the lub r i c a n t . 

A glass plate was placed on the nylon belt and positioned 

under the pad* A mass of 1kg was placed i n the weight pan which 

pressed the pad surface against the glass plate. The pad was 

then l e v e l l e d and the distance between the ends of the probes 

and t h e i r respective tubes was measured by the v e r t i c a l movement 

of the microscope. This gave a datum value for zero clearance 

between the pad surface and the be l t at each probe position. 

Under te s t conditions, with the be l t moving!, the probes were 

gently pushed down the tubes u n t i l they judt touched the b e l t , 

a s l i g h t vibration of the pin could be sensed manually at this. 

point. The difference i n heights of the probe and the tube were 

again measured by the microscope. The difference between these 

values and thei r respective datum values for zero clearance gave 

the clearance between the pad surface and the belt under working 
-2 

conditions. This measurement was repeatable to + J x 10 mm 
with the be l t i n motion whereas with the belt stationary i t was 

-2 

repeatable to within + 1 x 10 mm. The increase in error was 

attributed to the vibration of the r i g with the motor running. 

AH the film LliickneGc. measurement depended on the difference 

i n two separate readings then the errors w i l l accumulate 
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according to the square root of the sum of the squares of the 

individual errors, assuming a normal d i s t r i b u t i o n . Thus the 

error expected for the value of the film tnickness i s given by 

e = 1 0 - 2 Y 3Z + 1 2 = 3.16 x I0~2mm = 3.5 x 10"2mm 

t h i s could represent an error of nearly 105$ for some film 

thickness encountered under heavy loads or low v e l o c i t i e s , but 

i n general represented l e s s than k%. 

3 o 3 Measurement of Load 

The pad was loaded by weight pan and standard laboratory 

weights acting through the lever arrangement, as shown in 

figure. (5) with a mechanical advantage of 1*1:3. The pad and 

cradle assembly were balanced by the spring ( L ) which was 

lowered u n t i l the t r a i l i n g edge of the pad j u s t touched the b e l t . 

At low loads and a high b e l t velocity the cradle could l i f t 

by as much as 1mm and as the spring length could only be measured 

to the nearest millimetre then the inaccuracy i n the value of 

the applied load could be as high as 0.125N i n 5N i . e . 2.?#, but 

i n most cases was l e s s than 1#„ 

Another cause of error would be f r i c t i o n in the pivots 

holding the cradle to the frame of the machine. Assuming a 

coeficient of f r i c t i o n as high as 0.3 although the pin i s 

boundary lubricated, then the error i s 1#. 

3 « ^ Measurement of b e l t speed 

The speed of the nylon b e l t was measured by timing a given 

number of revolutions of the b e l t by a hand operated stop-watch. 

The number of revolutions was determined by counting the number 



of times a mark on the belt passed a stationary datum on the 

frame of the r i g . 

This method of speed measurement had two apparent 

disadvantages. The value of the b e l t speed was not an 

instantenous value and the process of setting the speed to a 

predetermined value, one of t r a i l and error, a tedious and lengthy 

procedure. These disadvantages were obviated for the following 

reasons. The methods adopted for measuring the other variables 

gave only average values, e.g. film thickness, due to the 

i n e r t i a of the system so that only the average value of the 

v e l o c i t y was required. 

The experimental procedure adopted required the load on 

the pad to be constant and the speed varied, thus the value of 

the speed did not need to be accuratly predetermined. 

I n order to calculate the belt speed, the. length of the belt 

was measured. A s t r i p of melinex was attached to the b e l t by 

the surface tension of a thin smear of o i l and the point at 

which the ends overlapped was marked and the distance subsequently 

measured. I f L i s the length of the belt in metres and N i s the . 

number of revolutions i n a time i n t e r v a l of T seconds then the 

b e l t v e l o c i t y i s given by 

U = NL 
T 

To estimate the error i n the value of U calculated, l i k e l y 

e r rors i n the values of N, L, and T are assumed. 

The stop watch was graduated in 0.2 second i n t e r v a l s 

therefore assuming a reading error of 0.1S in a total of 

f i f t e e n seconds, the minimum time i n t e r v a l then 



6 u = - N L 6 T = - u 6 T 
2 T T d 

thus the error would be .1/15 x 100# ~ ,67#. A further error 

to be considered i s the reaction time of the operator i n 

manipulating the stopwatch at both the. s t a r t and f i n i s h of the 

timing sequence, but i t i s considered that these errors cancel 

each other. 

The error i n the measurement of the length of the belt i s 

assumed to be _+ 2mm then 

U = NA E)L = U / L 6 L 

... . » * v 

= 2/1082 x 100 = 0,296 

Therefore the expected error i n the calculated belt speed 

= / . 2 2 + .612, = 0 . 7 0 

o5 Measurement, of pressure 

The probes were removed from the hypodermic tubing and 

perspex tubes were inserted into the holes i n the pad supporting 

plate, to a depth of 6mm, to form pressure tappings. F l e x i b l e 

a c r y l i c tubing connected the pressure tappings to a multitube 

mercury manameter which could be read to _+ l/2mm. The a i r was 

bled from the tubes before the readings were taken. 

I t was found that the mercury l e v e l s were taking a long 

time to reach a steady reading, due to the hypodermic tubing 

offering a large resistance to the flow of the o i l required to 

displace the mercury. I t was decided, therefore, to extract 



the hypodermic tubing by cutting out that part of the pad 

constraining the tubing with a small diameter cork boring too l . 

This modification considerably shortened the time taken for the 

mercury l e v e l s to reach equilibrium. The hypodermic tubes had 

to be recast into the pad a f t e r each s e r i e s of pressure t e s t s . 

6 Measurement of the Modulus of Compression 

A block of the pad material was cast to the same dimensions 

as the model thrust pad and positioned between two smooth and 

greased metal p l a t e s . The upper plate was progressively loaded, 

the loads being hung on hangers which were equally spaced from 

the centreline of the block. The deflection of the block was 

measured by a d i a l gauge and noted for each increment of load. 

The slope of the r e s u l t i n g s t r e s s against s t r a i n c h a r a c t e r i s t i c 

gave the modulus of e l a s t i c i t y of the block in compression. 

The value of 980 kN/m was repeatable to within 1#. 

The block was l e f t under load for three hours at a 

constant temperature, but no creep was observed over t h i s time 

i n t e r v a l . 

7 Measurement of Lubricant Viscosity 

The v i s c o s i t y of the o i l over a range of temperatures was 

measured i n a standard U-tube viscometer, calibrated by the 

manufacturer, placed i n a constant temperature water bath. The 

r e s u l t was repeatable to within 0.5$. 

8 Design of Experiment 

The outlet film thickness, h Q , depends on the geometry of 

the pad (L,B,c, A ) , the lubricant v i s c o s i t y , J J . , the s p e e d of 
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the b e l t , V, the e l a s t i c i t y of the pad, E, and the load on the 

pad defined by the average pressure P 

i . e . h Q = function of ( L,8,c,AJJ,V,E,p) 

using A , V and E as the repeating variables in an a n a l y s i s of 

the dimensions then:-

VA =f([L/^[B/4(c/Apv/FA] ,[H,) 

This expression can be re-arranged by multiplying several of 

the I I - terms together thus 

h / A =#L],[c/LMAA:l,[pu/EA]4PC/tA!) 
I n t h i s s e r i e s of model t e s t s L, b, and C are kept constant. 

Hence to =j jA/t] ,[JUu/£ a]{PV£ A|) 

the term A / c i s the i n i t i a l s t r a i n £ of the leading side of 

the pad. 

The group EA i s the uniform pressure P required to 
C 

deflect the pad by an amount A therefore the non dimensional 
RQI a a . 

group EAcan be written P and has an upper l i m i t on i t s 

value of unity. The termjUU/EA r e l a t e s the v e l o c i t y and 

lubricant properties to the e l a s t i c properties of the pad, denote 

t h i s term as U, denote ho/A as H Q 

thus H q = j!(C,U,P) 

£ can be varied by varying A and can be held constant but 

cannot e a s i l y be set to a predetermined value. U can be varied ... 

and can be held constant but not e a s i l y to a predetermined 

value. 

In order to compare the performance of the different 

geometrical forms of the pad i t would be better to re-arrange 



the equation further, by extracting A from the f i r s t and 

t h i r d terms 

i . e . h / L = U (A/O), ( j ^ f ( j 3 C ) \ 
J » pC E A i 

Now the term JJU/PC can be further modified by noting P = W 
bL 

and replacing C by b thus giving Uu L the reciprocal of which 
W 

i s frequently used i n presenting bearing c h a r a c t e r i s t i c s and 

i s termed the 'duty parameter'. Hence an alt e r n a t i v e arrangement 

of the variables gives 

V L -f((AM ̂ _w_), m , ) 

Experimental procedure 

As shown i n the previous section, the variation in the 

outlet f i l m thickness with the independent variables could be 

presented i n the form 

h /L = function of ( ( A / c ) ( W \ ( P /^p) 

I t was therefore decided to divide the t e s t programme into groups 

each with a constant but d i f f e r i n g value of A /C. Each group 

was further divided into s e t s , each with a constant but d i f f e r i n g 

value of P/P. Thus each set consisted of the variation in h /I 
o 

with the duty parameter W , The duty parameter was varied 
JLJLU 

by varyingu , the b e l t speed. 

The test programme was ordered i n the following stages:-



i e The i n i t i a l deformation was developed. 

i i e The pad was loaded and then levelle d with the nylon b e l t 

i n motion* The b e l t motion was never i n i t i a t e d with the 

pad i n contact with the b e l t as there was a high coeficient 

of f r i c t i o n between the pad and the b e l t and the ensuing 

high shear stress caused damage to the pad surface. 

i i i . The r i g was l e f t running f o r sometime i n order that the 

bulk temperature of the o i l could reach a steady value. 

i v . Readings of the pad datum, probe, and hypodermic tube 

levels were taken, by use of the microscope, then the o i l 

temperature and the b e l t v e l o c i t y were measured. 

v* The be l t v e l o c i t y was altered and stage i v was repeated. 

The datum l i n e on the pad supporting plate was l e v e l l e d , 

i f required, -before readings were taken. This procedure 

was repeated f o r several values of the b e l t v e l o c i t y . 

v i . The load on the pad was increased and stages i v and v 

were repeated* This procedure was repeated f o r several 

values of load. 

v i i . The i n i t i a l deformation of the pad was altered and the 

above process repeated. 

Formation of the i n i t i a l pad height was carried out with the 

nylon b e l t stationary, but with the pad located i n the cradle. 

The weight pan was loaded to a predetermined value and the pad 

was levelled as described i n section 3 .1 . The set screws i n 

the pad supporting platie were then tightened, locking the i n l e t 

edge of the pad i n t h i s loaded p o s i t i o n , the load was then 

removed, leaving the working surface of the pad i n a distorted 

form. 



I n order to determine t h i s distorted form and the value 

of the pad height A f a glass plate was placed beneath the pad 

and resting on the nylon b e l t . The arms of the cradle were 

forced against the adjustable stops and the pad levelled with 

the glass p l a t e . The clearance between the surfaces was then 

measured. The pad height could then be calculated by taking 

the difference between the values of the clearance at the i n l e t 

and o u t l e t edges. The pad height could not be set accurately to 

a predetermined value but a rough guide f o r the load required to 

produce a given height could be estimated from 

Load s E x A x pad area/depth of the pad C. 
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CHAPTER *t 

^•1 Analysis of the Elastic Pad 

I t i s well known that the load carrying capacity of various 

f i l m shapes i s affected largely by the r a t i o of the i n l e t to 

ou t l e t f i l m thickness and to a lesser degree by the actual shape 

of the f i l m . 

Let the deflection of the o u t l e t edge under the action of 

the lubricant pressure be 

Y = APC 
E 

The relationship between h Q A and Y can be expressed by 

6 = A -Y but 6 = h 1 - h Q 

-hence h„ - h — = A - Y . 
1 o 

or « < - I A - 1 1 
o 

therefore K = h~ ( A - X PC/E) 

which can be re-arranged to give 

* - £. * ( 1 - Ja. } 

Now the term EA i s the uniform pressure required to deform the 
C 

pad by an amount A , t h i s being an upper l i m i t to the allowable 

mean pressure on the pad. As the f i l m thickness i s evaluated 

along the centre l i n e of the pad then P i n the above equation 

refers to the mean value of the centreline pressure, i f the 

effects of side leakage are to be considered then t h i s i s d i f f e r e n t 

from the value of load on the pad/area and so i s replaced by 



P/C^ where P i s the overall mean pressure and i s the side 

leakage coeficient. 

thus K = A_ x l 1 - X P | where P = E A /C 
ho C P 

On using the same notation as i n section 3-8 

K = l _ r 1 - A. P| with P/^ = P ( 3 . 0 ) 
V c i 1 

Assuming that the load carrying capacity i s the same as that for 

the inclined pad f o r which 

Ph 2 = C. func (K) o 1 
UL 

func. (K) i s well documented ( r e f 9. ) 

Now w r i t i n g P = EA , h™ = H Q A , u JU = E A l l , 1. 
C 

and C = A/> 

then PH 2 = G. func (K) 
o 1 

1.25 U/ 2 

2 
or i f /.35 U/ i s wr i t t e n as V then 

PH 2 = C. func. (K) ( 3 . 1 ) 
o l 

Equations 3*0 and 3*1 can be evaluated to give the relationship 

between P, H q, and V, but, before t h i s can be accomplished, 

estimates of \ and are required. 



Compression of rectangular blocks by a non-uniform pressure 
d i s t r i b u t i o n 

The analysis of the load-carrying capacity of the previous 

section requires the relationship between the deflection at the 

ou t l e t edge of the pad and the mean pressure applied to the pad. 

The solutions of two-dimensional problems i n e l a s t i c i t y 

are frequently sought by means of the Airy Stress function 

s a t i s f y i n g the biharmonic equation 

+ 2 u V + u v = 0 
ox 4 ax2ey2 ey* 

Where the stress components are given by 

O x r - s - ' °y =-=- ' ' xy TTa 
6y 2 dx? ox6y 

This can be shown (10) to be the equivalent to determining a form 

of 0 which makes the strain-energy of the block a minimum. 

The s t r a i n energy of the block i s given by 

v =l,Jj[Sl* 6*y- 2v^6 y + 2(1+vi7x

2

yjdx.dy. 

as the stress d i s t r i b u t i o n does not depend on the e l a s t i c 

constants of the material the V can be set at zero therefore 

or //(tf +(S) 2 +(-fef d^ 
The problem i s to f i n d 0 as a function of x and y which w i l l 

make (k.k) a minimum and s a t i s f y the loading on the boundaries. 

I n order to simplify the problem i t was assumed that the pad was 

subject to the same stress d i s t r i b u t i o n as a block of twice the 



28 

depth of the pad and loaded symmetrically about the y axis 

as shown i n figure ( 9 ) . 

I t was further assumed that the re s u l t i n g d i s t o r t i o n could 

be superimposed on the o r i g i n a l d i s t o r t i o n and that one did not 

af f e c t the other. The f i n a l assumption made was that the 

pressure d i s t r i b u t i o n on the boundary could be expressed as a 

polynomial i n y and remained of t h i s form despite variation i n 

the convergence factor K. 

J.N. Goodier(IQ) outlined an approximate method for the 

stress analysis of a loaded block which can be modified to solve 

the present model. 

The form of the solution sought i s of the form 

n 
0 = S^Gn C+-5) i n which = 1 and 

o 

0 q s a t i s f i e s only the boundary conditions, whereas 

01* 0 2 1 e ^ ° " ' S i v e n o contribution to the stresses at the 

boundaries and contain the adjustable constants by which 

the s t r a i n energy i s made a minimum. Substituting ( 4 .5 ) into 

(k.k) gives a function containing a n and the condition that 

V i s to be a minimum, that i s 

9 V = 0 (4 .6 ) 

gives a set of linear equations i n a n . The stresses 

derived from (4 .5 ) are 

ay2 oy< 9y2 

Bx2 3x 2 Bx2 

6x " 

6y ' 
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T x y = - = - - H a n 

3x8y 3x3y 3 x 3y 

I n the present problem the sides y = +_ are free 

from applied stresses and sides x = ±Q are assumed free 

from shear stresses, the effect of the viscous shear stress 

being considered negligible compared With the effec t of the 

pressure. Thus 
9x 2 3x3y 

2 
and 3 0o i s the assumed hydrodynamic pressure d i s t r i b u t i o n 

3y2 

applied to the sides X = Substituting equations k.7 into 

and d i f f e r e n t i a t i n g the integrand for the condition of 

minimum s t r a i n energy then, on re-arranging 

ffl^aYpA + a^ y a n & n + 2 J ^ Y O n ^ Tdx.dy 
L3y2 * 3y2 d x 2 ^ 3x2 &c3y axdyT 7~ 

=/jr^2p.^n.dx.dy 
"3y 2 3 y

2 

Which gives a set of l i n e a r equations for the Qn 

For the rectangle bounded by x = and y + b the form of the 

stress function i s most conveniently taken as 

0 - 0 O + ( x 2 - a 2 ) 2 ( y 2 - b 2 ) 2 [ d n + Q2 x 2
 + Q3 y 2 ] 

f o r a symmetrical stress d i s t r i b u t i o n about X = 0 . 

Limiting the analysis to the f i r s t term containing 

only then 0 = 0 q + ( x 2 - a 2 ) 2 ( y 2 - b 2 ) ^ ( 4 .9 ) 

and for an asymmetrical d i s t r i b u t i o n about x = o 

0 . 0 o + ( x 2 - a 2 ) 2 ( y 2 - b 2 ) 2 a 1 y C*.10> 
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For the symmetrical case 

a y 2 
6 x = + * a 1 ( x 2 - a 2 ) 2 ( 3y 2-b 2) 

6 y = 4 a 1 ( y
2 - b 2 ) 2 ( 3 x 2 - a 2 ) C f . i i ) . 

T « y = - 1 6 a 1
x y (y 2-t> 2> ( x 2 - a 2 ) 

Thus 6y=o on the side y = b t x y = o o n a l l sides and 

the stress on the surface x = a i s simply on subs t i t u t i n g 
3y 2 

(4 .11) into ( 4 .8 ) one li n e a r equation i n q results 

f 6ft + 256 b 2 + 64 b \ . 9 .5 .5 [ ^ ^ - a 2 ^ - ! ? ) 
a 128 a y b p ' 

(4 .12) 

The pressure d i s t r i b u t i o n applied to the sides x + a i s 

assumed to be of the form 

p = s f l\ Z 2\ + 1 fZ\ ( 1 - yf.A 1 (4 . 1 3 ) 
* * ( « ) ( 

A graph of t h i s pressure curve i s shown i n figure U.1 ) which 

i s shown to be s l i g h t l y displaced from a parabolic d i s t r i b u t i o n . 

thus = S + SY - S Y 2 - S^ 5 = 320b 
2 b b 2 2 b 5 9y2 

Considering the stresses produced by the symmetrical term 

Sy / ? i s u b s t i t u t i n g into (4 .12) 



o o 
= - 1 

Now ± = I 

hence Qi = - 0.0796 a 4 b 

The stresses produced by the symmetrical term S are uniform 

( i e a =0) 

Considering asymmetrical terms, the stress function (4 . 10) 

i s used, re s u l t i n g i n an expression analagous to (4 . 8 ) 

r64*256[bl 2+64[bj 4m 1b =-9^ 1 3gi.dx.dy 
l 7 B s l S l l l a l } 128 WlWW (4 .14) 

and the stress components 

S x = + 4 0 , [ x 2 - a 2 j l 5 y 5 - 5 b 2y] 
6y2 

6 y = 4 Ch<y 2-b 2) 2y (3x 2-a 2). (4 . 15) 

T x y = 2 a, ( x 2-a 2) (xM-ay^fibV+b 1 1) 

For the term S Y the stresses are linear ( = 0 ) 
2 b 

thus the f i n a l term to be considered i s S ^ 
2 b^ 

v;hich on substitution into (4.14) gives, f o r 0, 

- S x 0.0585 
2 

Thus S =( S £ - S . 0.0585 . 4 . ( x 2 - a 2 ) 2 ( 5 y 2 - 3 b y 2 ) \ 2 77? ' 

http://3gi.dx.dy


On adding the components of the stresses together for each 

of the terms of the polynomial approximation to the pressure 

d i s t r i b u t i o n 

(4 .16) 

To obtain the deflection U i n the x direction 

EdU = Vvffy 
dx A A 

:. EU = ./fiydx - iv6 v dx 
0 0 / 

rd 

i t can be seen that 0 '^y = ^ a ^ x = ^ a n (* a 

and can be neglected. 

Thus (4 .16) integrated and the l i m i t s inserted gives for. the 

deflection of the side x = a r e l a t i v e to the (£ of the block, 

w r i t i n g y/b = Y 

U = Sa [ ( I - * 2 ) + \ Y (1-Y 2)+ (.148 ( 3 Y 2 - 1) + .0625 (5Y 3 -3Y)jJ 

Thus the deflection at the t r a i l i n g edge of the pad i s given 

by the value of U at Y = 1 

U = Sa 0.421 
° E~ 

The mean value of the pressure curve P = — S 

therefore the deflection of the ou t l e t edge of the pad, i n 

terms of the mean pressure, i s , therefore 

or 

U = 0.63 Ea 

X = 0.63 



The pressure d i s t r i b u t i o n 

= S { (1-Y 2) + | ( 1-Y 2)) Y = 2 ^ - 1 

has been used to evaluate, the deflection of the outle t edge 

of the pad, but the pressure d i s t r i b u t i o n a l t e r s with the i n l e t / . 

o u t l e t f i l m thickness r a t i o . To approximate to t h i s v a r i a t i o n 

l e t 

= S (1-Y2) + 9Y (1-Y2) 

Where B assumes a value such that the centre of pressure of the 

assumed d i s t r i b u t i o n coincides with that f o r the pressure 

d i s t r i b u t i o n f o r an inclined pad. 

On integrating the above expression and inser t i n g the l i m i t s of 

Y = + 1 P = | S 

then as P ? = ̂  /p YdY 
-T 

7 = ̂  I p [ Y-Y3 + BY 2 - BY3 ] dY 

= B 
5 

hence B = 5 ? ( ? = 2 X - 1 ) 

where x i s taken from published r e s u l t s . 

Table 3«0 gives the values f o r B f o r values of K. 



3h 

K X B A 

0.5 .6 .4 .6 

1 .66 . 7 .7 

1.5 •715 .9 .77 

2 .75 1.07 .81 

3 .8 1.4 .95 

if .835 1.5^ 1.05 

Table 3.0 
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'l-.jj Side Flow 

*f.31 Reynolds equation 

Reynolds equation f o r the varia t i o n i n the hydrodynamic 

pressure generated between two surfaces, with r e l a t i v e motion, 

separated by a lubricant can be shown to be:-

9 |~h 53£ 
ax [ 3x 

JL 
ay 

h 3 JUL 
a y 3x 

This equation cannot normally be integrated d i r e c t l y to obtain 

the pressure as a function of x and y. I t i s possible to 

obtain an approximate solution only by making a drastic 

s i m p l i f i c a t i o n of the mathematics. In t h i s instance the 

assumption i s made that the term hJ 3P i s constant i n the 
ay 

y-direction. This i s equivalent to assuming that the flow i n 

the y-direction, the side flow, i s constant over one_half of the_ 

pad. This assumption overlooks the fact that the flow i n the 

y-direction should be zero at y equal to zero but the constant 

flow can be thought of as an approximate average of the overall 

side flow. 

Thus the second term i n Reynolds equation i s zero and the 

remaining terms, i f solved along the centre-line of the bearing, 

give the same solution f o r the pressure as that for an 

i n f i n i t e l y wide bearing. 

Now h varies across the pad depending on the pressure function, 

making two more assumptions necessary i n order to be able to 

integrate the above expression. The assumptions made are:-

a) that the va r i a t i o n i n f i l m thickness across the pad 

can be approximated by the function 
h = h 1- m 

B/,? 
i n the region 0<y<B/2 C».15) 



Where h Q i s the f i l m thickness on the pad centre l i n e and 
1 m * i s a constant to be determined l a t e r . 

b) that the difference between the f i l m thickness on the 

centre l i n e and the f i l m thickness at the edge of the pad i s 

due to a parabolic pressure d i s t r i b u t i o n and can be calculated 

by the method of section 4 . 2 . 

Thus the expression f o r the deflection i s 

• U = Sc ( 1-Y2 + .148 [ 3Y 2 -1 ) ) 
E 

In the present case Y = y /2B and S = the pressure 

on the centreline. 
Deflection on the centreline U c = PcC ( 1 - .148 ( -?. )) Y=0 

= .704 P C 
c 
E 

Deflection at the edge of the pad U g = PcC ( .296 ) 

E 

and so the difference i n the f i l m thickness at the centreline 

and the edge of the pad i s given by 

U - U = 0.408 P C (4 .16) c e c 
E 

Now the assumed f i l m shape, expression 4 .15, gives, f o r the 
B 

difference i n f i l m thickness at 'y = o and y = — 

h - h = h - h ( 1 - m ) = mh c e c c c 



and so m h = O.4o8 P C/E 
c c 

and so m =0,408 P C (4.17) 
c 

h E c 

The pressure v a r i a t i o n across the pad can now be estimated 

h dp = Constant (q) 
dy 

and on sub s t i t u t i n g h = d -m y) 
B/2 

then 
p = SL f f \ + C o n s t . 

h 5c \ J T 1-my. l 5 / I B/2J B/2 J 

which, on integration and insert i o n of the boundary conditions' 

P = 0 at y = B/2 and P = P c at y = 0 

^ ( 1 - L L ^ ) 2 ) 

(2-nv) ^ P - n ^ l 2 ' 
I B/2J 

gives P = P o ( j _ (1 - mp ^ (4.18) 

m 

In order to f i n d the load carried by the pad, the average 

pressure across the pad i s required 

the mean pressure across the pad = J? J Pdy 
B 

= 2/B P .1_U=2) 2 rty 

c pi. m y 1 L 

= P 
c 

(?-m) (4 .19) 
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Thus expression 4.19 gives the mean pressure across any 

transverse section along the pad i n terms of a leakage 
1/ 

coeficient ( ' 2-m) m u l t i p l i e d by the pressure at the centre 

l i n e of the pad, which has been assumed to be the same as the 

pressure given by an i n f i n i t e l y wide f l a t inclined pad. This 

leakage factor can vary along the pad depending upon the value 

of P j / j j at any section, but i f an average value i s used then 

P = . f P dA av A J c 

i . e . P 
av 111 Pdx 

2-m L J c 

or P = 1 ( P ) theoretical — av — _»_ av ' - - -- — 2-m 

thus 1 becomes the overall leakage coeficient C 
2-m 1 

Evaluating m at the point at which the maximum pressure occurs 

i . e . from.expression 4.17 m =0*41 — P 
c 

h 
c 

but f o r a f l a t inclined pad 

P max 
h 

6 JUUL f _K ] 
, 2 L 4(K+l)(K+2) J 
o 

and K = 2 (K+1) h c — — o 
(K +2) 



thus the required r a t i o of P c i s 
h~ 
c 

h h 0 

c 

ZT L 8TK+D2 J 

Now as W* = P h subst i t u t i n g i n the above o 
JUUL 

expression gives 

L = f f ( - a ) " I 1 

h o c 

Now i f values of K are substituted, with the appropriate valu 

of W* then" i t i s seen that term i n the brackets does hot vary-

much 

K 1 2 3 4 5 

P /h" 1»05 1 1.01 1.02 1.06 c' c 

thus, using a value of 1.06, then 

P =r 1.06 P 
h o c 

On substi t u t i n g i n expression 4.17 

= -4 3 (M 0)( C /E) 

and so C = 1 { 2 - .43 P/H Q) 4.20 



Load Carrying Capacity 

On returning to expression 4.0 

4.0 

i t has been found that X varies with K (section 4.2), the 

numerical results given i n table (3.0 ) °n page 3 A 

A simple straight l i n e law, i . e . 

X = 0.6 + O.iK shown on graph (4.2 ) 

adequately describes that v a r i a t i o n . 

Thus the expression f o r K , equation 4.0, can be modified to 

give 

K = P 
H, 0 

1 - 0.6 

1-0.1JP 1 I 
. l lo °l 

Expression 4.1 can be re-arranged to give 

v - L J o 2 

func (K) C. 

('+.21) 

(4.22) 

Then the three equations 4,20, 4.21 and 4.22 can be solved 

numerically to provide the relationship between H Q P and V. 

The numerical solution of these three expressions i s readily 

accomplished by di v i d i n g the calculation i n t o the following 

steps:-

a) Choose a range of P, and f o r each value of P, 

b) Choose a range of H , and for each value of H , 
o o 

c) Calculate the r a t i o P/Ĥ , then using thece values of 
P, H , P/,H calculate o o 



i ) from expression 4.20 

i i ) K from expression 4.21 

J.i.:i.) read the value of W* from the graph 

at that value of K obtained i n ( C i i ) 

i v ) calculate V from expression 4.22 

The results of t h i s computation are shown i n graph (4-0 ) 

In order to f a c i l i t a t e the presentation and the comparison 

of these r e s u l t s , an empirical relationship of the form 

H = A V n Pm, i s f i t t e d to the above resu l t s . For each value o * 
of the load number P, the v a r i a t i o n of H with the velocity 

o rf 

number V i s expressed as 

H = B v" o 

There are two unknown quantities i n the expression requiring 

two points on the graph to be used i n t h e i r determination, 

the empirical curve w i l l obviously pass through these two points 

but w i l l also pass through the o r i g i n , so i n fact there are 

three accuracy points* The two points on the graph were chosen 

according to the 'Chebyshev Spacing' rule appendix 0*6.4 ) i n 

an attempt to minimise the errors. Thus a value f o r 11 was 

found f o r each curve of constant pressure, these values did 

not d i f f e r greatly, so an average value f o r a l l the curves was 

taken and found to be 0.42. Hence each characteristic has the 

form H q = BV" where B varies with the pressure, graph U.3 ) 

shows t h i s v a r i a t i o n * Using accuracy points of P = 0.25 and 

0.55, the vari a t i o n i s closely approximated by the empirical 

expression 



The complete family of characteristics can now be expressed 

T Y H Q = 0.358 V'k2/P'^S Cf.23) 

I n order to compare the theoretical with the experimental 

results the above expression i s plotted on a graph (5.19 ) 

i n the form 
p.388 H = f u n c t i o n V 

o 

(= .358V" f o r the theoretical case) 

to give but a single characteristic. 



CHAPTER 5 

EXPERIMENTAL RESULTS AND DISCUSSION 

Variation i n o u t l e t f i l m thickness with runner velocity 

The variations i n o u t l e t f i l m thickness with changes i n 

the runner velocity are displayed, on graphs 5»0« 5.1 and 

5«2, as constant applied load characteristics for each of the 

three values of i n i t i a l pad height. The viscosity of the 

lubricant was under p a r t i a l control by means of varying the 

cooling water flow r a t e , but the accurate maintenance of a 

constant value of viscosity from test to test was not possible 

so the graphs are plotted to a base of viscosity x ve l o c i t y . 

The largest pad height was 3»63"im which corresponded to a s t r a i n 
_ _ o f 4.5# which i s about the maximum s t r a i n to which" p l a s t i c -

materials can be subjected without the. phenomena of creep 

becoming a problem and was much higher than that envisaged f o r 

a f u l l - s c a l e pad. 

I t was found that the bearing pad could only be loaded up 

to a certain value whereafter a further increase i n load caused 

the pad to ' f a i l ' . This maximum value of load depended on the 

pad height and increased with increase i n the pad height. The 

applied load at the point of t h i s pad i n s t a b i l i t y represented 

a value of the non-dimensional pressure number, P, of 0.6. The 

mode of f a i l u r e seemed to be the sudden expansion of the outlet 

portion of the pad causing i t to t i l t and contact the b e l t . 

Variation i n the runner velocity made no difference to the 

load causing f a i l u r e * 

The reasons for t h i s phenomenon were the subject of a la t e r 
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investigation* 

5*2 Variation i n outlet f i l m thickness with applied load 

Graphs 5»5» 5*4 and 5»5 are derived from the previous 

r e s u l t s and show the vari a t i o n of the outlet f i l m thickness 

with the applied load, i n the form of the mean applied 

pressure, f o r three values of constant runner velo c i t y . Each 

of the characteristics e x h i b i t s , i n i t i a l l y , a form t y p i c a l of 

those of other types of thrust pads, but at the higher pressures, 

corresponding to a value of P of 0.4, there i s a point of 

i n f l e c t i o n i n each of the curves. I n order.to check the shape 

of these characteristics, a further series of tests were 

performed i n which the velocity of the runner was maintained 

at a constant value while the applied load was increased. The 

results are displayed on graph 5-11 and the characteristic 

again shows a point of i n f l e c t i o n at a value of P i n the region 

of 0.4 a f t e r which the curve droops and i n s t a b i l i t y of the pad 

again occured at a value of P i n the region of 0.6. 

5*3 Comparison between the load carrying capacity of the compliant 
pad and the theoretical characteristics of the inclined plane 
s l i d e r 

The variation i n o u t l e t f i l m thickness with applied pressure, 

fo r a constant value of runner v e l o c i t y , i s displayed on one 

graph (graph 5.6) f o r the three pad heights. Graphs 5.7 and 

5.8 are similar characteristics f o r d i f f e r i n g constant values 

of runner velo c i t y . 

The characteristics f o r the inclined plane s l i d e r are also 

displayed on these graphs. Curve A i s the theoretical 



v a r i a t i o n i n ou t l e t f i l m thickness with increasing applied 

pressure for an inclined plane s l i d e r , of i n f i n i t e width, at 

i t s optimum slope* Curve B i s the theoretical characteristic 

with side leakage taken into consideration. 

I t can be seen t h a t , within the l i m i t s of experimental 

error, the individual f i l m thickness characteristics follow 

closely the same curve up to that point of i n f l e c t i o n noted 

previously. 

The set of characteristics, f o r the highest value of 

runner v e l o c i t y , displayed on graph 5.6 run f a i r l y closely to 

curve B for the lower values of applied pressure but tend to 

give higher values of outle t film- thickness, at the' higher 

pressures, than those predicted for the plane t i l t i n g pad with 

side leakage. The improved values of outlet f i l m thickness 

characteristics i s more marked at the lower values of runner 

vel o c i t y as shown on graphs 5.7 and 5.8. Indeed at the low 

velocity the set of characteristics runs quite close to the 

theoretical curve f o r the t i l t i n g pad of i n f i n i t e width. 

This improved performance occurs only to those pressures 

corresponding to a value of 0.4 for the dimensionless pressure 

number P, whereafter the improvement diminishes. 

Variation i n f i l m thickness parameter with the duty parameter 

Graphs 5*9i 5»10 and 5,11 display the results i n the form 

of the dimensionless groups derived i n section 3.8. The term 

W/ UL i s often used i n presenting bearing performance 

characteristics and i s known as the 'duty parameter 1. Again 

the performance characteristics for the t i l t i n g pad, with 

and without side leakage, are shown. For each of the pad 



heights tested, the vari a t i o n i n o u t l e t f i l m thickness i s 

plo t t e d against the duty parameter fo r constant values of the 

pressure number* I t i s evident that no single curve i s 

produced, as f o r the t i l t i n g pad, and that the f i l m thickness 

i s dependent not only on the duty parameter, but also on the 

pressure numbers 

Pad p r o f i l e and pressure curves 

In t h i s series of experiments a l l the deflection probe 

readings were noted i n order to ascertain the geometry of the 

bearing surface under d i f f e r i n g load conditions but with.the 

runner ve l o c i t y maintained at a constant value. The results 

of t h i s series of tests are displayed on graph 5.12 i n which 

the height of the pad i s shown'using an imaginary line, -drawn 

through the i n l e t edge and running p a r a l l e l to the runner 

v e l o c i t y , as a datum* The p r o f i l e of the pad under conditions 

of zero load were measured with the runner stationary. At low 

pressures the pad surface i s convex, gradually f l a t t e n i n g 

u n t i l a value of P between 0.2 and 0.3 i s reached whereupon 

parts of the pad, towards the t r a i l i n g edge, become concave. 

At a value of P of 0.5 t h i s concavity i s most pronounced. 

The deflection probes were then removed, the pressure 

tappings inserted and the series of tests repeated at the same 

runner v e l o c i t y and f o r the.same values_of load used i n the 

previous tests. The results f o r the f i l m shape and the 

pressure p r o f i l e s f o r the increments of load are shown on graph 

':>.1̂ . Ainu tihowti a r o tlio ct|ii i valetit p lane s l ider prof i I 

which would o c c u r I'm' l.ho ;;nme vu.l.uet; "!' inlet , find ou t l e t f i l m 



thickness. The value of K varres l i t t l e over the range of 

load, remaining at a value of j u s t under un i t y . The pressure 

p r o f i l e s tend to be more symmetrical than those for the 

t i l t i n g pad, especially at the lower loads, but the point of 

maximum pressure moves s l i g h t l y towards the t r a i l i n g edge as 

the load increases. The concave portion of the pad i s seen 

to occur i n the region of maximum pressure. 

Further pad p r o f i l e s were obtained with d i f f e r i n g pad 

heights and are depicted on graphs 5«1^ and 5«15 a l l of the 

p r o f i l e s show the same tendency to concavity at the higher 

loads, although t h i s effect diminishes with increasing pad 

height. 

Pad i n s t a b i l i t y — 

The problem of the apparent f a i l u r e of the pad to carry 

loads over a certain value was the subject of two further 

sequences of te s t s , i n which the pad height and the runner 

ve l o c i t y were held constant. I n the f i r s t sequence of tests, 

the load was applied to the pad, via the cradle, by the loading 

hanger. The lubricant pressure at stations along the centreline 

of the pad was noted f o r each increment of load upto the load 

causing f a i l u r e . I n the second sequence of tests the pad was 

loaded by means of the adjustable stops, the pressure p r o f i l e 

again being recorded for- each value of outlet f i l m thickness 

thus obtained. No i n s t a b i l i t y of the pad was observed during 

t h i s series of te s t s , the stops could be adjusted to such an 

extent that the lubricant was wiped from the b e l t . 

The mean pressure along the centreline of the pad was 



calculated f o r each pressure p r o f i l e using the trapezaidal 

r u l e . The varia t i o n i n outl e t f i l m thickness was plotte d 

against the mean pressure f o r both sequences of tests on 

graph 5»18. The characteristic f o r both series of tests 

coincide up to the load which caused the pad to f a i l i n the 

f i r s t sequence, a value corresponding to a pressure number of 

O.56 but t h i s i s based on the mean pressure along the centre

l i n e , not the overall pad pressure. The characteristic f o r 

the second sequence of tests continues, i n an almost linear 

form, down to zero outlet f i l m thickness at a pressure number 

of 0.9. 

Discussion of the experimental results 

On inspection of—graphs 5.6, 5.7 and 5»8, which compare 

the ou t l e t f i l m thickness against mean pad pressure 

characteristics f o r the compliant pad with the theoretical 

predictions f o r a p l a i n s l i d e r bearing t i l t e d to i t s optimum 

slope, i t i s evident that the compliant pad performs as well 

as the t i l t i n g pad with side leakage at the higher runner 

v e l o c i t i e s or lower pad pressures. As the runner velocity i s 

reduced, or the pressure i s increased, the characteristics 

f o r the compliant pad approach that of the ideal t i l t i n g pad, 

and, although the shape of the pad p r o f i l e w i l l a l t e r s l i g h t l y 

as the i n l e t to ou t l e t f i l m r a t i o increases with reducing 

v e l o c i t y , i t i s thought that the improvement i s due to reduced 

side leakage at the lower outl e t f i l m thicknesses. This 

reduction i n side leakage i s effected by the pad being of a 

concave shape i n a direc t i o n transverse to the direction of 
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motion of the runner, due to the pressure d i s t r i b u t i o n i n 

the lubricant across the pad, which, i n e f f e c t , shrouds the 

bearing. 

At any p a r t i c u l a r value of the mean applied pressure the 

f i l m thickness along the pad centreline reduces as the velocity 

of the runner i s reduced, but as the difference i n f i l m 

thickness between the centreline and the side of the pad 

remains approximately constant, then the shrouding effect i s 

increased. 

I t i s evident that the changing pad geometry under the 

effects of load makes the usual single curve of minimum f i l m 

thickness with duty parameter in-appropriate, as shown by the 

d i s t i n c t separation between the constant applied load curves 

of graphs 5»9i 5*10 and 5«11 f o r the three d i f f e r e n t pad 

heights. These curves again show that the compliant pad gives 

a greater value of minimum o i l f i l m thickness than the t i l t i n g 

pad over the range of operation l i m i t e d by the pressure number 

of about 0.6. 

The ou t l e t f i l m thickness with mean pressure characteristics 

f o r the three pad heights and f o r a l l values of constant 

v e l o c i t y exhibit a point of i n f l e c t i o n i n the curve corresponding 

to a pressure number of 0.4, inspection of the graphs 5.12 to 

5«14 displaying the pad p r o f i l e shows a marked concavity of 

the pad surface at t h i s pressure number. Now graph 5.13 gives 

the results of a series of tests f o r a constant runner velocity 

i n which the i n l e t to outle t f i l m thickness r a t i o remained 

appreciably constant over the range of load. The value of 

the load carrying capacity W* i s also displayed and i s plotted 
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against a pressure number on graph 5.17. I t i s evident 

that the load carrying capacity increases up to a pressure 

number of 0.4 and decreases sharply thereafter, even though 

the value of K i s reasonably constant. This i s i n 

contradiction of the assumption, frequently made, that, once 

the i n l e t to ou t l e t f i l m r a t i o i s f i x e d , then the load 

carrying capacity of the pad i s reasonably independent of the 

shape of the lubricant f i l m . This disagreement i s thought to 

be caused by the concave nature of the pad surface. I t i s , 

therefore, inferred that, as the pressure on the pad i s increased 

then a point i s reached where the res u l t i n g deformation of 

the pad gives a p r o f i l e which i s unfavourable to the generation 

of pressure within the lubricant f i l m . The load, carrying 

capacity number sharply decreases a f t e r t h i s point causing 

the i n f l e c t i o n i n the curves of f i l m thickness at outlet - V -

applied pressure* 

Graph 5*16 shows the v a r i a t i o n i n outl e t f i l m thickness 

with v a r i a t i o n i n the mean pressure along the pad centreline, 

with the load being applied i n the same way as a l l of the 

previous tests i n which pad f a i l u r e was experienced and with 

the load being applied i n a d i f f e r e n t manner, through the use 

of the adjustable stops. These characteristics exhibit the 

same change of slope as noted i n previous tests but whereas 

the tests i n which the pad was loaded by the hanger again 

encountered pad f a i l u r e , the series u t i l i s i n g the adjustable 

stops encountered no such i n s t a b i l i t y , therefore the cause 

of the pad f a i l u r e must l i e i n the manner of loading the pad. 

I t has been observed that the pad f a i l e d when the pressure 



number reached a value i n the region of 0.6, the pad p r o f i l e 

near t h i s value i s shown i n graph 5.1'+ and i t can be seen 

that the pad surface has a region of pronounced concavity. 

I t i s thought, therefore, that any small variations of the 

pad from the horizontal plane, due to the adjustment of the 

pad as outlined i n section 3»1 or to vibrations i n the r i g , 

cause the centre of pressure to move towards the t r a i l i n g 

edge which gives r i s e to an unbalanced turning moment on the 

pad about a transverse axis. The leading edge of the pad i s 

then forced towards the runner which further adversley affects 

the pressure p r o f i l e r e s u l t i n g i n the f a i l u r e of the pad to 

carry the load. 

Comparison between Experimental and Theoretical Models 

The comparison between the prediction from the theoretical 

analysis and the results of the experimental investigation i s 

made on graph by p l o t t i n g the values given by both of 
."588 

the models i n the grouping P°-^ H q as a function of V as the 

theory predicts that 

P„38 8H O = 0.358^2 

The estimated error band i s also p l o t t e d , based on the 

computation of the above expression A6.1 , and i t evidently 

encompasses most of the experimental points. The rather wide 

error band i s caused by the error i n the value of A , used 

i n the calculation of the groups, which i s thought to be due 

to the variations i n bulk temperature of the pad causing the 

t r a i l i n g edge of the pad to expand. The room temperature could 

vary by 5°F during a series of tests and, due to the poor 



location of the r i g the sun's radiation would cause further 

temperature changes* 

The range of the experimental results used i n the comparison 

i s l i m i t e d to those f o r which the value of P i s less than O.k 

because, as shown i n section 5*7, f o r values greater than 

t h i s the load carrying capacity of the pad sharply diminishes 

f o r constant f i l m r a t i o hence the assumption used i n the 

derivation of expression 3*0, that the load capacity i s 

independent of the shape of the pad for a given f i l m r a t i o , 

i s no longer v a l i d * This diminution of load capacity of a 

pad of concave p r o f i l e can be shown by assuming the p r o f i l e 

to be given by the relationship 

h/h = ^ 2 - C^U" f o r a f i l m r a t i o of 2 
o - — 

and by varying n between 0 and say 4 then the p r o f i l e changes 

from concave to convex and the load capacity reaches a 

peak. A6.2 

The value of the pressure number P can also be estimated 

from the theoretical model by assuming that the load capacity 

diminishes when the deflection of the pad, at i t s mid-length, 

i s of such a value that the f i l m thickness at t h i s point i s 

equal to that f o r the equivalent f l a t pad, and that the 

i n i t i a l d i s t o r t i o n of the pad at t h i s point is zero. The 

value of P thus predicted A6.3 i s 0.35 which amply 

supports the conclusions reached from the experimental evidence. 

I Section 5*6 ] 
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5.9 Further Work 

As t h i s model investigation obviated the problems associated 

with the f r i c t i o n a l heating of the lubr i c a n t , then a f u l l 

scale investigation i s required to determine the effects of 

the temperature on compliant materials which could be used 

i n a p r a c t i c a l form of the pad. 

One such material i s ' D e l r i n 1 , which has a modulus i n 
4 2 

compression of 5 x 10 l b / i n • In common with most p l a s t i c s , 
1 D e l r i n ' has a high coeficient of expansion, the modulus 

decreases with increasing temperature, and creep e f f e c t s . 

Delrin i s available i n d i f f e r i n g forms which have d i f f e r i n g 

coeficients of expansion and i t may, therefore, be possible 

to i s o l a t e the effects of thermal expansion on the bearing 

performance. 

Further investigation i n t o the p o s s i b i l i t y of using t h i s . 

type of pad i n Journal bearings as an alternative to the 

t i l t i n g pad type as i t may improve the pressure p r o f i l e by 

delaying the onset of c a v i t a t i o n , and could delay the onset 

of the whi r l i n g phenomena by suitable design. 
5. 10 CONCLUSION 

The results of the experimental investigation of the 

characteristics of a compliant thrust pad show that t h i s 

type of pad can have a superior load carrying capacity to 

a conventional plane inclined pad over part of i t s operating 

range l i m i t e d to values of pressure number of 0.4. 

The load carrying capacity, minimum f i l m thickness and 



s l i d i n g velocity can be related by the expression 

P ° 8 8 H = 0.358 V'k?-
o 

which has been derived from a mathematical model f o r which 

the experimental model gave some j u s t i f i c a t i o n to the 

simpli f y i n g assumptions used. 
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6.0 APPENDICES 

6.1 Estimation of error band 

Assuming accurate values of h Q P and U the error which 

has the largest effect on the computed values of P, H q and 

V i s that for A . 

The ambient temperature could vary by +_ 3°C assume that 

the sun's radiation could vary the bulk pad temperature by 

a further _+ 3°C .*• Total variation could be +_ 6°C. 

Coeficient of l i n e a r expansion of pad material 

= 3*5 x 10~^ mm/mm°c 

tot a l variation = _+ 3«5x10 x8o x6 

- = 2 x 8*K) x 10 mm 
= .168mm 

for A = I.Jhnm bA_ ~ 12# 
A 

A = 363mm 6A a % 

for l\l = P O 3 8 8 H Q l\J = thefunc.V 

effect of bP onl^l *y_ = .388 6P 
P 

P vari e s between .1 and »k 

but dP/P = &A/A ~ 12# 5# 

- 2% 



effect of 6 H q on |̂ 6^ = oH„ = b A = 12#— 
M H0 A 

l i k e l y effect 6U adding the above e f f e c t s 

.•. with A = L^Omm 6jJ = _+ 1756 

A = 3.63«nm 7̂ - = t 7 % 
V 

effect on V V = JJ U C 2 ... dV = yj bA_ 
1.25 E A 3 A 

dV = 3 6A 
V A 

at A = 1.i«Omm dV = + 36# 
V ~~ 

A = 363mm dV = + 15* 
V 

These errors are applied to V = 2 region i n which A = 1.4mm 

and V = .1 region in which A = 3»63mm 

Effec t of Surface P r o f i l e 

In order to simplify the calculations take the film r a t i o 

at 2. 

P r o f i l e s generated by h/h Q = 2/fc ~ [ ^ ] n j 

h X = Z f c - y ? ) = h/h Q 

X = x/1 



now dP = E - 2. Reynolds integrated equation 
x3 x2 

d £ x = h x n 2 - X n ) - 2 ( 2 - X n n 

dx 8 L -I 

with the boundary conditions P = 0 at X = 0 and 1 

the above expression integrates to 

F* = i r 8 B X - / . ( U 3 B ) X f W l + 2 l2+3B)X 2 f U l - (1+B)X 3 

8 1 n+1 2n+1 3n7l 

and 

8 J 2 / n + 1 + 6 / 2 n + 1 - V 3 n + 1 

on integrating W* 
1 

0 UuL 

W x s f c p - 4 l 1 + 3 D ) 4 2(2+3p) - (1 + B) U 
L. (rWWrH2) (2n+1)(2n+2) (3n-1)(3n+2)J 3 

6.3 

The r e s u l t s of the computation are given i n table S.k 



n p \l* 

.333 .524 .106 

.7 .324 .15 

1 .244 .156 

1.5 .173 .164 

2 — .134 .i6 

TABLE 6.1 
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A6«3 Estimation of the c r i t i c a l pressure No. 

Referring to figure 10 f assume that the point at which 

the load capacity i s a maximum when point A on the undeformed 
1 

p r o f i l e i s deflected by the pressure to A . 

Assume point A i s at the same pad height as the t r a i l i n g 

edge B i n the undeformed sta t e . 

h Q = h^ - A +y Q by geometry 

h = h - A +y c 1 J c 

h = h„ + h c 1 o 

on eliminating h„ arid h 
. 1 o 

2 y c " yo 

Now the pad deflection at a point 
E 

Where A i s a deflection coeficient and P i s the pressure 

on the centreline at that point. 

thus Po [ 2 A c - X o ] = A 
E 

or r A and recognising Pc/E = P on the £ 

1 

C O 



In section 4.2 the pad deflections for an assumed pressure 

then P = 1/2.1 = 0.48 

but t h i s value i s that for the mean pressure at the centreline 

of the pad, to obtain an overall mean pressure, the above 

value should be multiplied by the leakage coeficient. Taking 

representative values of V and P of 2 and 0.4 respectively, 

a value of C, % 0.7 i s obtained and hence 

which i s remarkably close to the experimental findings i n 

view of the simplifying assumptions made. 

di s t r i b u t i o n are determined, from which A C = 2 A 0 

V 3 A r 
but i s a function of the film r a t i o Taking a 

for a film r a t i o of 2 i.e value for A 0 = 0.7 

P = 0.34 



61 

6. '+ The Chebyshev spacing rule 

When i t i s required to f i t a function with n arbitary constants 

to a set of ra re s u l t s from an experimental or a n a l y t i c a l procedure 

and n i s l e s s than m, then the problem a r i s e s of selecting the n 

points, termed precision points, from the experimental curve required 

i n order to calculate the n constants in the a n a l y t i c a l function. 

One method i s to choose the accuracy points by means of the 

Chebyshev spacing r u l e . 

I f f ( x ) i s thought of as the analytic function which truly 

represents the curve through a l l of the points and F(x) i s the 

approximating function then the error R(x) 

R(x) = f ( x ) - F( x ) 

Now i f the error R(x) i s expressed as 

R(x) = G ( x - t J ( x - t 0 ) . . . . . . ( x - t ) 

1 2 n 

Where t^ t ^ etc», are the accuracy points. The requirement that 

the error w i l l be a minimum i s s a t i s f i e d i f the maximum and 

mimimum of R(x) are a l l of equal magnitude and alternate between 

the accuracy points. The form of R(x) to give t h i s condition, 

and hence the accuracy points, i s given by a c l a s s of polynomials 

known as the Chebyshev polynomials, the roots of which give t^ 

t., etc. A simple graphical method e x i s t s for finding those roots. 

From the mid point of the range of x draw a c i r c l e of radium one-

h a l f of the internal and inscribe a polygon of 2n sides with two 

of i t s sides perpendicular to the a x i s of x. The projections of 

the Vertices of the polygon onto the x axi s determine the accuracy 

points. The construction for n - 2 i s shown in Ficiiro 11. 
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/ / / / / / / / / / / / 

The " C a n t i l e v e r " t h r u s t pad. 

F i g u r e 1. 



(a) 

(b) 

The'dlaphram* t h r u s t pad. 

Figu r e 2. 



clamp 
. s t e e l backing r i n g 

The compliant t h r u s t pad* 

Figu r e 3 . 



l o n g t i t u d l n a l axle 

\ • I I I • I "I 1 I 
3 

pad 
depth 

N 

moving s u r f a c e 

Schematic diagram of f i n a l pad form 
with the d e f l e c t i o n probes. 

P i g . 4 
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i N 

0 

1/ 

M 

K 

The Test r i g assembly. Schematic diagram. 

Figure 5 
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6 

i n l e t edge 

The pad assembly 

Fig u r e 6. 
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mould 

The pad mould. 
Figure 7. 

Stage I . 
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n 

X 
E B 

The pad set-up f o r moulding. Stage I I 

F i g u r e 3 . 
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Model f o r the s t r e s s a n a l y s i s . 

F i g u r e 9 
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\ 

>5 3 
B 

The model f o r the c r i t i c a l pressure no. estimation. 

Figure 10. 
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Example of Chebyehev spacing applied to two accuracy points 

Figure11 
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Variation of the f i l m thickness no. with v e l o c i t y no. 

Graph 4.0 
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P/P 

B=1.0 

B«0.5 
0.8 

0.8 

The assumed pressure p r o f i l e f o r the stress analyst 8 

graph 4s1 



Variation i n the deflection coeflclent with the 
pad i n c l i n a t i o n * 

graph 4.2 
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B 

•computed points 

* f i t t e d curve 

Variation of B v l t h the pressure no. P 

graph 4.3 
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h mm 

£ =1.4mm 

curve 1 p=2.48kN/m 
2 p=3.26kN/m 
3 p=4.30kN/m 
4 p=6.45kN/m 
5 p=8.40kN/m 

« • • • • * , , , • • *u N/m 
0.5 1.0 

Variation I n o u t l e t f i l m thickness with b e l t v e l o c i t y . 
Constant load curves. 

Graph 5.0 
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hmm h mm 

A =2807mm 

curve 1 p=3.92kN/m 
2 p=7.20kN/m 
3 p=10.9kN/m 
4 p=13.1kN/m 
5 p=16.0kN/m 

s 

Du N/m 

Variation In o u t l e t f i l m thickness with b e l t velocity. 
Constant load curves. 

Sraph 5.1 
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1.04-

0.5+ 

h mm 

curve 1 p= 4.1kN/m^ 
2 2 p>11.4kH/m| 

3 p=20.8kN/m| 
4 p=25.4kN/oJ 

JJu N/m 
' 1 • i ^ • • . . I . . 

0.5 1.0 

Variation i n o u t l e t f i l m ; thickness with b e l t velocity. 
Constant load curves. 

Graph 5.2 
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A =1.4mm 

curve 1 IJusl.ON/m 
JJu*0.5N/m 
JJua0.2N/m 

ffcN/n2 

3.0 4.0 5.0 6.0 7.0 8.0 

Variation i n o u t l e t f i l m thickness with mean applied pressure. 
Curves of constant v e l o c i t y 

Graph 5.3 
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h mm 

A =2BQ7am 

curve 1 Uu=1.0 N/m 
2 Uu=0.5 N/m 
3 Pu=0o2 N/m 

p kN/m 
16.0 12.0 14.0 10.0 8.0 4.0 

Variation In o u t l e t f i l m thickness with mean applied pressure. 
Curves of constant v e l o c i t y . 

Graph 5.4 
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A *3.63mm 

Uu=lN/m 

Uvus0.5N/m 

Uus0.2N/m 

10 15 20 25 

? kN/a' 

30 

Variation I n o u t l e t f i l m thickness with mean applied 
pressure. 

Curves of constant v e l o c i t y . 

Oraph 5.5 



1 Q h_ BIB 
t O k . 0 

1.6 

1.4 

1.2 

1.0 

0.8 

0.6 

0.4 

0,2 

curve a Inclined pad, no side flow 
" b H " with side flow 

+ A = 1.4 nun 
o A = 2.07 mm 
z A = 3.63 ma 

Uusl.QN/m 

F kN/m' 

5.0 10 15 20 25 

Comparison between the compliant pad and the f l a t inclined pad 
of optimum slope. 

Curves of constant velocity. 

Graph 5.6 



h mm 
curve a Inclined pad, no side flow 

" with side flow i i 

+ A s 1.4 mm 
o A = 2.07 mm 
z A a 3.63 mm 

Uu=0.5N/m 

p> kN/m 
25 15 20 10 

Comparison between the compliant pad and the f l a t inclined pad 
of optimum slope. 

Curves of constant v e l o c i t y . 

Graph 5.7 
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b 

p kN/m' 

10 15 20 25 

Comparison between the compliant pad and the f l a t inclined 
pad of optimum slope. 

Curves of constant velocity. 

Graph 5.8 



86 

h Q/L x 10 2 

curve a Inclined pad. no side flow 
b Inclined pad. with side flow 
P/P =0.2 
m = 0.3 
p/fc =0.4 
m = 0.5 

1.4 mm 

0.8 

w/JJuLxlO 

Non-dimensional f i l m thickness against a duty parameter 
Curves of constant mean pressure 

Graph 5.9 
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curve a; Inclined pad, no aide flow. 
b; Inclined pad. with side flow. 

p/$ = 0.2 
P/p* =0.3 
p/S = 0 . 4 

pV& = 0.5 
2.07 mm 

0.8 

0.7 

0.5 

w/UuL z 10 

Non-dimensional f i l m thickness against a duty parameter 
Curves of constant mean pressure 

Oraph 5ol0 
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h /L x 1 0 0 . 8 

curve a Inclined pad, no aide flow. 
b Inclined pad, with side flow. 
p/$ = 0 . 2 

P/P* = 0 . 3 

p/S = 0 . 4 V p/$ = 0 . 5 

3 . 6 3 mm 

0.5 

0 . 4 

a 

I L I I I I l 
2 4 6 8 1 0 1 2 

W/JJUL z 1 0 

Non-dimensional f i l m thickness against a duty parameter 
Curves of constant mean pressure 

graph 5.11 
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.Pad p r o f i l e . 

Graph 5 . 1 2 
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0.217 h mm 
1.06 

W*» 0.105 
JJu = 0.545 N/m 

0.165 mm 

p kN/m 

X mm 
20 40 60 80 100 

i n l e t 

Variation I n f i l m thickness and pressure along the pad. 

Graph 5.13a 
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P = 0.302 
K = 0.94 
Wx= 0.12 

JJu = 0.545Njfo 
0.165 mm 

p kN/m h mm 
10 

60 80 100 20 40 
i n l e t X mm 

Variation i n f i l m thickness and pressure along the pad. 

Graph 5.13b 
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;ju = 0.545 N/m 
A = 0.165 mm p kN/mJ 
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) . l 

10 

20 40 60 80 
i n l e t 

100 
Xmm 

Variation i n f i l m thickness and pressure along the pad. 

Graph 5#13c 



93 

P = 0.508 
0.94 K p kN/m r = 0.07 15 0.545 N/m Du 
0.165 mm 

10 

h am 

20 60 40 80 100 
i n l e t X mm 

Variation i n f i l m thickness and pressure along the pad. 

Qraph 5.13d 
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Pad p r o f i l e . 

Graph 5.14 
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P=0.7 

Sum 

20 60 40 80 100 

Pad p r o f i l e . 

Orapfa 5*15 
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BUS 

0.8 

Pad f a i l e d at t h i s point 
f o r loading by 

weights 

+ Pad loaded by weights 
o Pad loaded by adjustable stops 

0.8 

Variation i n o u t l e t f i l m thickness with the pressure no. f o r 
the two types of loading process. 

Graph 5.16 
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Load carrying capacity • Pressure no. 
Film r a t i o constant. 

Graph 5.17 
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h/h 

n=0.33 

n=1.5 
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0.2 0.4 0.6 0.8 1.0 

Surface p r o f i l e generated by h/h = ~Z ~ n 

o = (-] 

graph 6.0 
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Effect of the surface p r o f i l e on load capacity. 

Oravh 6.1 
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