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ABSTRACT 

The main idea o f t h i s t h e s i s i s t o review the N'- resonances. 
The past two years since the discovery o f ̂ f- p a r t i c l e s a t SPEAR 
and BNL have been the most e x h i l a r a t i n g o f p a r t i c l e physics i n 
many years. I n the f o l l o w i n g pages we t r y t o summarize the 
great amount o f i n f o r m a t i o n which has been gathered i n t h i s short 
p e r i o d . 

I n Chapter one, we summarize the experimental data about 
t h e p a r t i c l e s , i . e . t h e i r masses, l i f e t i m e s and decay modes. 
We have also presented a summary o f the known spectrum o f the 
r f - f a m i l y . 

I n Chapter two, we review b r i e f l y SU(3) group and quark 
model. Then we discuss the need f o r the extension o f SU(3) 

group t o SUC1!-), and f i n a l l y we consider the c l a s s i f i c a t i o n o f 
elementary p a r t i c l e s i n SUCW) group and the i n t r o d u c t i o n o f 
charmed p a r t i c l e s . 

I n Chapter t h r e e , the idea o f i n t e r p r e t a t i o n o f ̂  p a r t i c l e s 
as bound states o f charmed quarks and antiquarks (cc) has been 
presented. 

I n Chapter f o u r , some other i n t e r p r e t a t i o n s , which have been 
advanced f o r the new resonances, are discussed. Two sections 
are devoted t o the phenomenology o f p a r t i c l e s i n Han-Nambu 
colour scheme and i n Harari's model and some other models such as 
the weak boson i n t e r p r e t a t i o n and the Iwasaki's model are 
discussed b r i e f l y i n t h i s chapter. 
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CHAPTER ONE 
EXPERIMENTAL OBSERVATION OF ̂ -PARTICLES 

This Chapter involves the experimental data about the 
- p a r t i c l e s . In section (1.1) the quantum numbers and decay 

modes of ̂ (3.1) w i l l be discussed. Section (1.2) i s devoted 
to the properties of ^ ( 3.7). In section (1 . 3 ) the structure i n 
the v i c i n i t y of *+.l w i l l be discussed, and f i n a l l y i n section 
( l A ) the observed p a r t i c l e s related to the ^ family w i l l be 
considered, 
1.1 - Experimental Observation of ^ ( 3 . 1 ) -

In November 1971** Auhert et a l ^ reported the observation 
of a heavy p a r t i c l e (which they called J ) , with massM=3.1 Gev. 
and width approximately zero i n the reaction 

P + 8 e »- e V + o-nvjiU^ 
The experiment was performed at the Brookhaven National 
Laboratory 30 Gev. a l t e r n a t i n g gradient synchrotron. In 

(2) 
independent experiments at the same time, a SLAC-LBL group 
has observed sharp resonant peaks around 3.1 Gev. (they 
suggested naming t h i s structure "^(3.1) and we sha l l use t h i s 
notation from now on) i n the c o l l i d i n g beam processes: 

e e — ^ / > " e V 
at SPEAR. The observation of t h i s resonance was also confirmed 
by DESY people ̂  l a t e r on. Mass spectrum showing the 
existence of "Y as reported by Auhert et a l i s shown i n Fig ( 1 ) . 
Fig (2a) shows the cross section for reaction e + e^-^rV—> hadrons 
as measured at SPEAR and Fig (2b) and (2c) show the cross section 
for e++ e" — = r a n d e + e" respectively, versus energy i n the 
angular range |CcS©|<.o-6 1 where Q i s the angle between the 
outgoing p o s i t i v e lepton^^d--£he incident positron. The mass of 
^ as determined at the3tfaJftWdS?S laboratories i s summarized i n 

SECTION 
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table 1. The t o t a l area under the resonance (the integrated 
cross-section), which i s the only parameter that does not 
depend on the machine resolution and i t i s also related to the 
p a r t i a l widths as w i l l be seen l a t e r , i s defined as: 

where <S~ i s the resonant cross-section. This integrated cross 
section for the ̂  a f t e r corrections for the effect of i n i t i a l 
state r a d i a t i o n (these are the effects caused by the emission 
of a photon by the incident e + or e" ) as measured at SPEAR i s 
Lvv= (<j^«^c*£ = l o 4 o o + !5oo nb-rto-s/ U) 

Results from ADONE for Y l ^ a r e about 30$ lower than (1): 
' -Jill T 

LABORATORY MASS (Mev) 
SLAC (SPEAR) 

DESY (DORIS) 

(>+) 
FRASCATI (ADONE) 

3095 + h 

3090 + 31 

3100 (error not given) 

Table (1) - Mass of ^ - p a r t i c l e . 
Total and Leptonic Width of t h e ' t -

The data of Fig 2 are used to determine the mass M, and the 
p a r t i a l widths F^g , , and to electrons, muons, and 
hadrons respectively. Assuming that the t o t a l width i s 

T= Pee^iy^ + F~l a n d u s i n S a Breit - Wigner shape f o r the ^ , 
then the cross-section f o r the reaction e + e " _ ^ ' v y — c a n be 
described by the B r e i t - Wigner formulas 

where i s the p a r t i a l width to the channel f , and J i s the 
spin of y . We know from the properties of the J that p i s 
very small i n comparison to M, so we can expand equation (2) i n 
/S - M = E - M to obtain; 
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I n order to obtain a simple r e l a t i o n between the p a r t i a l width 
and the observed cross section we integrate over energy; 

^ j - J ^ V 6 ^ - — h T — — p — W 

Using J = 1, which w i l l be discussed i n the quantum numbers of 
\p, we can obtain: 

and 
r « Tee. 

Such relations are used to determined the 'y widths, the resu l t s 
(5) n as determined at SPEAR are shown i n table 2. \^iL and 

[̂ Af- are i n good agreement, as expected f rom - e Un i v e r s a l i t y , 
and the width of the "vp about 70 Kev i s about a factor of a 
thousand smaller than the width one might expect f o r a normal 
hadron resonance of t h i s mass and t h i s i s what makes t h i s 
p a r t i c l e so remarkable. 

He e U-..8 + 0.6 Kev 
p lf.8 + 0.6 » 

1** " 

r 69 + 15 » 
Tee/P 0.069 + 0.009 

ftw/f 0.86 + 0.02 

O r / f e e 1.00 + o.o5 

Table (2) - widths and branching r a t i o s of t h e 1 ^ . 
Quantum Numbers of the'Y -

I f we accept the t r a d i t i o n a l b e l i e f that the electron has 
only electromagnetic and weak i n t e r a c t i o n s , the only known 
p a r t i c l e which can couple to e + e" system i s the photon. And 
since ^ i s produced i n e + e~ a n n i h i l a t i o n , our f i r s t guess i s 
t h a t , i t i s presumably a vector state which couple to e + e- pairs 
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through a v i r t u a l photon intermediate state and so i t has the 
PC — -

same quantum numbers as the photon J = 1 
The determination of the quantum numbers j ^ f o r i s 

made by a study of interference between resonance and quantum 
electrodynamlc (QED) amplitudes and by examination of angular 
d i s t r i b u t i o n of leptons for ̂  decays. Interference i s most 
easily studied i n the channel because a resonant 
amplitude sharing the quantum numbers of the photon should show 
strong interference with the known S-channel QED amplitude, 
while the interference i n the e + e " — * r e + e" i s much smaller 
than the j*- - channel. So we consider the interference between 
two reactions: (5) 

a n d
 e*e- r - ^ / V " a ) 

The amplitude f o r reaction (5) i s : , 

and the amplitude f o r reaction (6) i s described b y a simple 
Breit-Wigner formula: , » 1/ P 

Assuming J = 1 fo r the ̂  , cross-section w i l l have the following 
forms , , i n * 

Fig (3) shows the sum of the amplitudes which contribute i n t o 
^ . ( 8 ) . The r a t i o of to e + e" yields i s used to 
exhibite interference e f f e c t s 0 This r a t i o f o r the detected 
angular range | CU<> o\ <o - 6 i s shown i n Fig (*0 and also 
the curves representing no interference, i . e . J = o, and maximum 
interference, i . e . , a pure = 1 state are shown. The data 
agree with maximum interference p r e d i c t i o n . The angular 
d i s t r i b u t i o n of e pair and pairs are shown i n Fig ( 5 ) . The 
muon pairs and electron pairs a f t e r subtraction of the QED . 
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d i s t r i b u t i o n s are consistent with the angular d i s t r i b u t i o n s 

s u f f i c i e n t to confirm the J p c = l" assignment f o r the ̂  • 

Hadronic Decays of ̂ ( 3 . 1 ) -

i t decays into even or odd numbers of pions. Assuming one 
photon exchange leads to r e s t r i c t i o n s on the f i n a l state as 
follows: 
a- Since p a r i t y i s conserved i n electromagnetic i n t e r a c t i o n s , 
the f i n a l state p a r i t y should be P= - 1 . 
b- Since photon couples only to I = o or I = 1 s t a t e , the f i n a l 
state isotopic spin can be zero or 1. 
c- The f i n a l state charge conjugation number i s - 1 . 
d- When the f i n a l state contains only pions, using G - C (-1)* 
and C = -1 leads to two important r e s u l t s ; f i r s t l y odd number of 
pions for I = o , and secondly even number of pions f o r 1 = 1 . 
These r e s t r i c t i o n s together with the fact that decays i n t o both 
even and odd number of pions lead to a v i o l a t i o n of isospin. 

The d i r e c t decay of ̂  i n t o hadrons i s shown graphically i n 
Fig (6a), while Fig (6b) shows i t s decay i n t o hadrons via an 
intermediate photon, and Fig (6c) shows the decay of ̂  i n t o muon 
pairs. I n Fig (6b), the f i n a l state should be the same as the 
non-resonant f i n a l state produced I n e + e" a n n i h i l a t i o n at the 
same energy and need not conserve isospin and can be d i f f e r e n t 
from the states produced i n Fig (6a). We can determine the 
contr i b u t i o n of (6b) i n the t o t a l width, because the r a t i o between 
(b) and (c) must be the same as i t would be i f the ^ was not 
present i n the diagram, i . e . , about: 

(1 + U i 0 ) expected f o r a simple 1 state. This i s 
PC 

The isospin of ̂  can be determined by observing whether 

ft ^ 1 . 5 

then £L. ̂  o o7 ^o lg 
So using the data in table ( 2 ) , I /-11 r 

r 
o-o7 

and using p _ p^p ̂  Vu^Y^ 
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and (c) the ^ decay to J*- p a i r s . 
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we deduce [V ^ 0 * 6 8 

r 
Thus we conclude that I f ^ couples to photon, (a) contributes 
68$, and (b) l8# and the leptonic modes lk% to the width of 
the ̂  . 

To t e s t this hypothesis, the comparison of the r a t i o of a l l 
pion state cross sections to muon pair cross sections on and o f f 
resonance are shown i n table (3)» where the data at 3.0 Gev are 
used as off-resonance sample. The r e s u l t i s that a l l of the 
even number of pion production (G even, I odd) are due to the 
intermediate photon decay (Fig 6b), while most of the odd pion 
production comes from the d i r e c t ^decay (Fig 6a), and i t seems 
that "^decays d i r e c t l y i n t o a pure I G = o~ state. 

Fig (7) shows the invariant mass squared r e c o i l i n g against 
four charged pions at 3-0 Gev and the Y • The difference 
between the two case i s quite remarkable, at 3.0 Gev no 
structure can be seen, while at the "Vp , a ffc peak i s v i s i b l e . 

Various decay modes of the 'Y which have been i d e n t i f i e d or 
searched for i n the SLAC - L B l / ^ magnetic detector with the 
r e l a t i v e branching r a t i o s are shown i n table h. 
1.2 - Experimental observation of ^(3.7) -

The discovery of "^(3.1)» the very narrow resonant state 
coupled to leptons and hadrons, raised the question of the 
existence of other narrow resonances also coupled to leptons and 
hadrons. Therefore a systematic search began and w i t h i n 10 days 

(7) 
of the discovery of ̂  , the SLAC - LBL group at SPEAR found 
another resonance i n the process e + e~ — h a d r o n s (we s h a l l 
refer to t h i s resonance as 'Y )• The mass of'Vj' as determined 
at SPEAR and DORIS i s shown i n table ( 5 ) } and Fig (8) shows the 
t o t a l cross-section for the reaction: 

^ £ ^^l' ^VjroAi 



S t a t e C ^ / (T v c 

/ /r-"i° 

37i .27T 7T 

37T r 37T_ 

4 - o 
3/T 37T 7T 

> 5 - 2 

M o ±0-54 

>4-5 

Table 3 -comparison o f a l l p i o n s t a t e p r o d t t c t i o n to^/*- p a i r 

p r o d u c t i o n a t 3 « 0 Gev and the "^-
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as measured at SPEAR and the integrated cross section i s 

j ^ A O ^ t - V ? 00+ 900 ffe* 

r\^' was not seen i n the reaction 

p-v-Be * / > ~ + < ^ T H 

at Brookhavens 

The Quantum numbers and decay width of the ̂  -
Since 'Y' i s produced i n e + e" a n n i h i l a t i o n , our f i r s t 

guess i s again that i t has the same quantum numbers of the 
photon, i . e . , J P C = 1 . The confirmation of t h i s guess can 
be obtained by the study of interference effects i n the same way 
as was done for t h e ^ . 

The t o t a l and p a r t i a l widths of ^ can be determined i n 
the same way as was done for the ̂  . Since the branching r a t i o 
i n t o leptons i s much smaller than the non-resonant e + e~ 
sca t t e r i n g , the Universality has to be used,, i . e . , f^g,-
The properties of ̂  as determined at SPEAR are shown i n table 
6. The width of ^ i s much larger than that of ̂ , but i t i s 
s t i l l much less than would be expected f o r a hadron i n t h i s mass 
range. 

In studying the decay products of ̂  , approximately one-
ha l f of i t s decays lead to ̂  and i n a majority of these decays, 
\y i s accompanied by two pions; 

I n two d i f f e r e n t ways the presence of ̂  among the decay products 
/ 

of 'Y can be seen. In the f i r s t way, the reaction 

i s considered. Fig (9) shows the invariant mass spectrum of the 
two oppositely charged p a r t i c l e s of highest momenta for every 
decay. Two distinguished peaks are v i s i b l e i n Fig ( 9 ) , one 
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F i g 9 - The di s t r i b u t i o n of / + / ~ invariant mass for the 
highest momentum oppositely charged p a r t i c l e p a i r from each 
<Aj/ event. Electron p a i r s are excluded. 
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around 3.7 due to the muon pairs production with the f u l l beam 
energy; i . e . , \j>'decays to y c pairs plus the d i r e c t 
production of muon p a i r s , and another peak i s around 3.1 which 
represents decay of ̂  to muon pairs and therefore confirms the 
decay mode (9) . The r e s u l t f o r branching r a t i o of reaction 
(9) i s : P ( q / ^ * + a w 4 l U ^ t 

r e v - + * u ) 

The value of 0.5^+ 0.10 has been reported by DORIS for t h i s 
branching r a t i o . 

The second way of observing ^ i n the decay products of 
^ i s through the reaction: 

y t J T % 7 T ~ ( i f ) 

Fig (10) shows the spectrum of missing masses r e c o i l i n g against 
a l l combinations of 1X*1\ • There i s a clear enhancement at 
the missing mass of 3095 ± 5 Mev due to t h e ^ , which confirms 
the decay mode (11). The r e s u l t f o r the branching r a t i o of 
t h i s reaction i s 

- 0-3*- ± 0-0 ^ 

Fig (11) shows the Computer reconstruction of the decay 

+ -

From equations (10) and (12) we gets 

=. o-5"6 ± 0 03 
P ( r ' — ^ - t + ^ y ^ j w 

which shows that more than h a l f of the °^ decay to ̂  occurs 
mainly with emission of TT+lf • Using Fig ( 9 ) , the branching 
r a t i o 

P ( Y — > ^ - l - C L W i j t k o i j j ) 
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P i g |0- The d i s t r i b u t i o n of missing mass r e c o i l i n g against a l l 
p a i r s of oppositely charged p a r t i c l e a at y 



F i g 11 - A computer reconstruction of the decay *V/— 
where M*—> 6*e" from the SIAC-LBL magnetic detector at 
SPEAR. The event i s seen i n the x-y projection where z i s 
the beam and magnetic f i e l d direction. 
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can be determined from the jCy- events i n the ^ peak. 
Equations (13) and ( l 1 * ) show that the data are consistent with 
the hypothesis that decay to ̂  i s accompanied mainly by 

7f + /V or neutrals. 

Observing the decay mode (11) make us to expect the mode 

I f ^ >• ̂  decay proceeds e n t i r e l y via the reaction 

which the JV 7T system i s i n a state of d e f i n i t e isospin, we 
.can calculate the equation (13) by using the Clebsch-Gordan 
c o e f f i c i e n t s : 

F i r s t we forget about the difference between the fl* and /T 
masses. Since ^ has zero isospin, according to the decay 

^"^F IT Tf j 'y'can have isospin zero, one, or two. 
For each case we expand the ̂  state i n J[ 71 states 
according to equation (15) and by using i t we can calculate the 
values of the branching r a t i o i n (13). For I = o; 

then 

and 

r (V-* f k V ) - ( - \ 
and 

and then 

r ~ I 3> 



2h 

S i m i l a r l y for 1 = 1 : 

Then 

and 

And f i n a l l y f o r 1 = 2 ; 

and 

So f i n a l l y we can w r i t e ; 
For I = o 

2> 
I 

/3 * 1 - 2 . 

(U) 

I f we consider the mass difference between 7T and i n the 
above calculations, the values of the branching r a t i o w i l l 
d i f f e r s l i g h t l y from those i n equation (16) and we w i l l have the 
following equation instead: 

, I - 1 

(17) 
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Now, we compare equations (13) and (17) to decide about the 
isospin of ^ , c l e a r l y isospin zero i s prefered. We can also 
calculate the branching r a t i o ; 

1-o.U - 0-37 F<>r I = o 

1= \ 

(18) 
Comparing equations (1*+) and (18) also confirms the choice of 
I = o f o r ^ , and the difference between the two equations 
for I = o shows that there are other 

'\p' :neutr<ils 
than j u s t ^Jl0/!0 with branching r a t i o s 10% of the 
t o t a l . To look f o r such modes, we consider the missing mass 
d i s t r i b u t i o n for reaction 

• 
i n Fig (12). There i s no peak at low mass indi c a t i n g a decay 
of i n t o a single low mass p a r t i c l e , such as a g or Jl , 

so there i s no evidence for modes l i k e — = » '"^ Y or 
'„ 5, 'vp 7T° , and they must have very small branching 

r a t i o i f they exist at a l l . Among other candidates are the 
decay mode ^ ' — > ^ \ . Fig (13) shows the subtraction of 
4f> of the ^ /T+H spectrum from the 
-vp'—r-> y + ^ J I^J spectrum. There i s a peak around a mass 
squared of 0.3 (Gev/C2) which confirms the decay mode "^-^^P7 

with branching r a t i o ; 

The only other mode with reasonable quantum numbers i s 
> ^ Y l ( which could occur d i r e c t l y or through an 

intermediate state; ' v j > ' — — 
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1 

Missing Mass Squared, Mr 
fvr: 

L*p'f~ events 

[Mtp'rf cemtrslned to 31 6*t) 

n H> 
O O i 

(Musing M*S5) 2 , 6»/ 

F i g . 12 Missing mass d i s t r i b u t i o n f o r r e a c t i o n 
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f ^ * anything 
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Mf (OeV*) 

F i g . missirrg mass squared t o the j corresponding t o 
\y' > •v|»+a«^|TLt-J - 3 / i . ( 4 , / — * 4* • 
The s o l i d l i n e i n d i c a t e s the missing mass squared spectrum o f 
events i n which the* Y and an a d d i t i o n a l charged p a r t i c l e are 
detected, hut the detected p a r t i c l e s are not k i n e m a t i c a l l y 
compatible w i t h 

T 
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The observation of such resonances has been reported by SPEAR, 
DASP, and DESY people and they w i l l be discussed i n section 
UM i n d e t a i l . 

Other Y Decays -
No decays to ordinary hadrons have been i d e n t i f i e d for Y 

i n contrast to the ^ which has many decay channels to ordinary 
hadrons as mentioned i n table (̂ O. Adding up the 'Y-—s> -
decays with 57#, the Y'—> tf—^fl-K^TUV»J (including 
e + e", jT t a n d hadrons) w i t h 5#» and -"Sf—> X - * Y ^VuuJrofl 

with 10 - 20JS, and we make the l i m i t 10% f o r the d i r e c t hadronic 
decays (which i s obtained from the estimation that for any 
specific hadronic decay the measured p a r t i a l width f o r the Y ' 

i s about a factor 3 smaller than for the Y ), then there remain 
10 - 20% of a l l decays of the r 4' / which are s t i l l missing. 

// 

1.3 - Experimental Observation of (^ . l ) -
After the discovery of the r>p ( 3 . 1 ) i a systematic search 

f o r other narrow resonances i n e + e" a n n i h i l a t i o n began. I n 
the f i r s t run of t h i s search ^ ' ( 3 . 7 ) was discovered. The 
search continued, and i n the experiment performed at Stanford 
Linear accelerator centre, data were taken at centre of mass 
energies between 2.if and 5.0 Gev$^ Aside from the very narrow 
resonances ^ and , the cross section varies between 32 and 
17 nb over t h i s region with structure i n the' v i c i n i t y of *+.l Gev 
(we s h a l l r e f e r to i t as f ) . The experimental results from 
SLAC - LBL are shown i n table (7 ) , and Fig (lHa) shows the t o t a l 
hadronic cross section versus centre of mass energy and the r a t i o 
R of to the t h e o r e t i c a l muon pair production cross section 
versus Ec.m. i s shown i n Fig ( l ^ b ) . Aside from the narrow 
resonances indicated i n Fig (l^ f a ) , the cross-section f a l l s smoothly 
with centre of mass energy from 2.h to 3.8 Gev, where i t rises 
sharply, peaking near ^.1 Gev before f a l l i n g again. I n Fig ( l ^ b ) , 
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Cct.ter-oJ-Kf-.au 
Energy 
^c.m. 
(CcV) -

Int.i:CT>led 

L 
t r . b r 1 

Averagn Delect Ion 
El'f lc le.rry 

c 

KOMI Q,(ir^';d 
M u l t i p l i c i t y 

<"••„> 

lint Hnd'.atlvr 
Correction 
ncas' T 

7c-tui Crosa 
Sec", loo 

(no) 

2.1. 26.1 o.uo * 0.02 3.31 * 0.12 1.02 31.8 t 3.6 
2.6 l b . l 0.37 t 0.03 3.ie + 0.15 1.02 3?.5 t 
2.8 1U.9 0.33 • 0.03 3.37 o.:B 1.02 29. <• . U . l 
3.0 152.0 0.U3 * 0.01 3.55 O.Ofc 1.02 23.3 1 ?.0 
3.1 16.7 O.'iO « O.Olt 3.51 • 0.21 1.02 22.5 * 3A 
3.2 50.8 o.ua t 0.02 3.89 • 0.12 i.29 21.» t 2.3 
3.3 22.7 0.03 3.3). + -..19 1.17 18.9 ! 2.6 
3.k 25.'' 0.51: 0.03 3-93 • 0.19 1.12 18.7: 2.U 
3.6 33.1. 0.52 ? 0.03 It. 00 • 0.17 1.07 39.1: 2.2 
3-8 1*21.9 0.50 t 0.01 3.87 • 0.05 1.21 19.7: 1.7 
k.O 18.3 0.52 • O.CU 3.90 • 0.20 1.03 2U.5 t 3.3 
k . l 26.5 0.50 t 0.03 It.Clt • 0.17 O.90 31.8: 3.6 
(•.2 70.5 o . n : 0.02 u . 00 * 0.10 1.02 23.1 t 2.7 
"••3 31.3 0.50 • 0.03 l».02 • 0.18 1.C0 23.fi t 2.3 
».U 21.3 O.58 t 0.0* U.UO • 0.2U 1.08 19.6 ! 2.5 
h.6 * .7 0.63 * o.ou U.62 + 0.23 1.08 i->.3: 1.9 
b.e TfcT.? 0.50 : 0.01 W.31 • o.ou 1.05 13.2 1 1.5 
5.0 193.0 0.57 1 0.02 1..32 + 0.09 1.0'-. 17.7: 1.5 

Table 7 - Table of experimental quantities r e l a t i n g t o the measurement 
of the t o t a l hadronic cross-section f o r the centre of mass energies 
covered i n t h i s experiment 

http://Cct.ter-oJ-Kf-.au
http://tr.br1
http://23.fi
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R i s approximately constant a t a value o f 2.5 from 2 A t o about 
3.8 Gev, r i s e s d r a m a t i c a l l y between 3.8 and ^ f . l Gev, and a t 5 Gev 
i t has a value of about t w i c e t h a t o f i t s value a t 2 A Gev. The 
enhancement shown i n Fig (1*0 suggests e i t h e r a broad resonance 
i n Cj centred at h.l Gev, or a new t h r e s h o l d phenomena r e l a t e d 
to the increase i n R, or both. 

While the present u n c e r t a i n t i e s i n (TT do not permit to 

d i s t i n g u i s h between these p o s s i b i l i t i e s , we can estimate 
parameters d e s c r i b i n g t h i s s t r u c t u r e . Assuming i t t o be a 

s i n g l e resonance (Although t h e r e are arguments t h a t i t i s most 
l i k e l y not a s i n g l e s t a t e ^ and i t i s d i f f i c u l t t o t e l l the 
number of s t a t e s ) , we f i n d a peak a t U-.15 Gev, having a t o t a l 
w i d t h o f 250 - 300 Mev, and r i s i n g from a l e v e l o f about 18 nb 
ou t s i d e the peak t o about 32 nb a t the t o p . The i n t e g r a t e d 
t o t a l c r o s s - s e c t i o n corresponding t o the peak i s about 5500 nb. 
Mev, a value comparable t o t h a t o f the ^ and • 
Furthermore, assuming t h i s resonance t o have sp i n 1 l i k e •"^f 
and *y , we f i n d a p a r t i a l w i d t h t o electrons o f roughly M- Kev. 
The p a r t i a l w i d t h t o e l e c t r o n s i s comparable w i t h those o f 
and (approximately 5 and 2 Kev r e s p e c t i v e l y ) , w h i l e i t s t o t a l 

w i d t h i s much gr e a t e r . No enhancement i n the cross s e c t i o n f o r 
l e p t o n pairs-, i s observed near -̂.1 Gev as expected, because t h i s 
resonance would have small branching r a t i o t o l e p t o n s . 

l A The Observation o f Other P a r t i c l e s Related to the ^ -
Family -

A f t e r the discovery o f * T » a n d Y s s e a r c n f o r other 
resonances continued and some other p a r t i c l e s were found which 
we b r i e f l y present them i n the f o l l o w i n g : 
a - The r e l a t i v e l y small ^ " bump around *+A5 r e p o r t e d by 
E. Elchten et a l i n August 1975. Later more precise data 
published showing the resonance having mass (M+A + 7) Mev and 
f u l l w i d t h (33 + 10) Mev and p a r t i a l w i d t h t o e l e c t r o n p a i r s 
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equal t o (0.H4 + O.l1*) Kev. F i g (15) shows the R versus Ec.m. 
i n c l u d i n g more recent data. 

i 

b- Looking f o r r a d i a t i v e t r a n s i t i o n s o f ̂  (3 .7 ) , SLAC people 
found a resonance at 3*^15 (they c a l l e d i t ) C ) which can decay t o 
• ^ n S ^ i r , / T V ^ K ~ < W rr+n" or. K + K~-

c- The same group found another resonance 0((3.51) which can 
decay t o i|n~» 6 n ~ j and fV+TT K*̂  K . This resonance was 
observed by DESY^°\)eople a l s o , and they r e f e r r e d t o i t as Pc. 
The branching r a t i o products f o r the decay sequence ryV — 
<% _^ Y ^ i s reported t o be (3.7 + 1.1)36 

d- I n the same s o r t o f r a d i a t i v e decays two other OC states 
have been observed namely | ) ( (3.^5)» andX (3 .55) w i t h the 
branching r a t i o products equal t o (1.2 + 0,6)%, F i g (16) shows 
the observation o f % states and t a b l e (8) shows the summary o f 
the hadronic decay modes o f the X states w i t h the r e l a t i v e 
branching r a t i o . I n F i g (17) the % ( 3.m), and y. (3.5) peaks 
i n the mass p l o t s o f ^ f T * , &j\±, ft 4 fl~ K + , 7T + H " or 
K^*K are shown. 
e- Looking f o r r a d i a t i v e decay o f ^ (3.D, DESY people 
observed another resonance 0^.(2.85) i n the r e a c t i o n 

I > H 

and l a t e r i t was confirmed by DASP people. 
f - There i s a r e p o r t o f multihadronic f i n a l s t a t e s produced i n 
e + e" a n n i h i l a t i o n ( I D showing the observation o f a s t a t e w i t h 

p + x + - j ± "+ 
mass 1865 + 15 Mev/C which decays t o K f] and K ' f i Tl H 
This s t a t e i s suggested t o be a charmed p a r t i c l e and i t w i l l be 
discussed i n charm p a r t i c l e s production i n chapter 3« 

Some p r o p e r t i e s o f the new p a r t i c l e s are summarized i n t a b l e ( 9 ) . 
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Fig. 15 — R versus CM. energy including more recent data 
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J) n+7l" ^ K + K ~ f o r f t j - processes . 



37 

Name Ma is Width j p jr; Decay Modes 

309 S 70 kcV r 

-

e*e ,v*v , hadrons (vis Y) 
Many hadronic modes (G=-l, 1=0) 
Y+x(2800) 

3684 225 kcV r - c +e , lladrons ( v ia y) 
yM' (3510), Y+X(3410) 
TTTTljl , niji 

M100 100-200 McV r - ? 

, . , . 1 1 •wj.-»S0 50-80 McV r - ? 

>:("nc?) A.2U00 ? :- YY.FP 

X 
i 

3410 narrow p = ( - n J 4 

+ 

4n ,67I,HT:KK,TTIT or 

Y<K?) 

3510(or 3260?) narrow ? 

4 

+ Y* ' 
wide or 
two narrow 
states? 

9 

1 

+ 47r,6iT,irTtKK 
yHt) 

Table 9 - A short p a r t i c l e data table f o r the ̂ - f a m i l y . 
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CHAPTER TWO' 
SYMMETRY GROUPS AND ELEMENTARY PARTICLE PHYSICS 

This chapter i s devoted t o the d e s c r i p t i o n o f symmetry 
groups i n elementary p a r t i c l e physics. I n s e c t i o n (2.1) the 
group SU(3) and quark model are described. I n s e c t i o n (2.2) the 
SlK1*) group and the c l a s s i f i c a t i o n o f elementary p a r t i c l e s i n 
SU(1+) group are discussed. I n s e c t i o n (2.3) charm spectroscopy 
and the idea o f charmed p a r t i c l e s are introduced. 

2.1 - SU(3) and Quark Model -
I n the study o f the elementary p a r t i c l e s , the symmetry 

groups have an important r o l e , because we do not have a 
s a t i s f a c t o r y dynamical theory t o describe the i n t e r a c t i o n s o f the 
elementary p a r t i c l e s . But des p i t e t h i s l a c k o f d e t a i l e d 
knowledge o f dynamics, much i n f o r m a t i o n can be obtained by 
studying the symmetry p r o p e r t i e s o f elementary p a r t i c l e 
i n t e r a c t i o n s * 

F i r s t attempts t o int r o d u c e a symmetry group i s back t o the 
years since 1936, when B r e i t and h i s c o l l a b o r a t o r s p o s t u l a t e d 
t h a t nuclear forces were charge independent. Then t h e 
symmetry under r o t a t i o n s i n the space o f i s o s p i n as an 
approximate symmetry o f the s t r o n g l y i n t e r a c t i n g p a r t i c l e s were 
proposed. This l e d t o the f a c t t h a t p a r t i c l e s could be grouped 
i n t o m u l t i p l e t s , each member o f .which had approximately t h e same 
mass, but d i f f e r e n t charge and each m u l t i p l e t i s l a b e l l e d by the 

2 

eigenvalue o f i s o s p i n I = i ( i + 1) where i can take on 
in t e g e r or h a l f i n t e g e r values. Each member o f a m u l t i p l e t . 
d i f f e r s i n the eigenvalue o f I ^ which i s associated w i t h 
e l e c t r i c charge. The basic p o s t u l a t e i s t h a t the proton and 
neutron are represented by a two-component column v e c t o r : 

i r > - C ) 1 i « > = i ; CM 
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Transformations between P and N states are then e f f e c t e d by the 
Hermitian operators 1^, I2 and I3. A general t r a n s f o r m a t i o n , 
f o r which these operators are the i n f i n i t e s m a l generators, can 
be w r i t t e n ass 

where 0^ , and <^ 3 are parameters. The set o f such 
tra n s f o r m a t i o n s form a group SU(2). The generators are ( 2 x 2 ) 
Hermitian matrices as f o l l o w s : 

- I 

where the diagonal one, 13 , i s i d e n t i f i e d w i t h the a d d i t i v e 

quantum number I ^ . 
However, a f t e r the discovery o f hyperons and the 

i n t r o d u c t i o n o f hypercharge, p h y s i c i s t s began t o enlarge the 
SU(2) group t o a l a r g e r approximate symmetry. Then i n 1961, 
G e l l Mann^ 1 2^ and Ne'eman^) independently proposed a 
c l a s s i f i c a t i o n o f the s t r o n g l y i n t e r a c t i n g p a r t i c l e s i n t o the 
8-dimensional r e p r e s e n t a t i o n o f SU(3). The r e s u l t i n g symmetry 
scheme has had considerable success i n p r o v i d i n g a 
phenomenological framework f o r d e s c r i b i n g experimental data on 
elementary p a r t i c l e s . 

The group SU(3), which i s the g e n e r a l i z a t i o n o f the i s o s p i n 
group i s accomplished simply by considering the group o f 
U n i t a r y Unimodular tra n s f o r m a t i o n s on three basic three-component 
column vectors u, d, and s; 



Then a general three component splnor can be w r i t t e n as: 

' Vs/ 
which transforms according t o 

where Q can be expressed i n terras o f the generators o f the 
group 

where the generators o f the group a r e : ^ - ^~\\ 
\\ 1 J 

0 o 

o o 

o 

of 
o o o 

0 

c 
\ 

where \ 3 , and \^ are two generators which can be 
simultaneously diagonalized and they can be i d e n t i f i e d w i t h the 
a d d i t i v e quantum numbers I3 t h i r d component o f i s o s p i n , and y 
hypercharge r e s p e c t i v e l y e 

To consider the SU(3) m u l t i p l e t s , we begin w i t h t h e simplest 
n o n t r i v i a l one, the t r i p l e t which has the f o l l o w i n g quantum 
numbers: 

s » I I , . v > - l ° ' - 0 
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and the corresponding weight diagram i s shown i n F i g ( 1 8 ) . 
There i s also another independent t r i p l e t ( 3 ) , which i s dual 
t o the fundamental t r i p l e t ( 3 ) , w i t h the corresponding weight 
diagram as shown i n F i g ( 1 9 ) . Other SU(3) m u l t i p l e t s can be 
obtained from the combinations o f 3 and 3 » 

Then the £ baryons and pseudoscalar mesons can be d i s p l a y e d 
i n t o SU(3) o c t e t s which are shown i n F i g ( 2 0 ) . A c t u a l l y the 
existence o f the meson was not known i n 1961; i t was 
p r e d i c t e d by t h i s c l a s s i f i c a t i o n which i s c a l l e d the e i g h t f o l d 
way. The members o f the m u l t i p l e t s so formed are not 
degenerate i n mass and the mass s p l i t t i n g i s roughly equal t o ffi-p 
as compared t o the i s o s p i n s p l i t t i n g o f a few Mev. For 

example the masses of P and (si d i f f e r by 1.3 Mev, w h i l e the 
(P -/\ ) mass d i f f e r e n c e i s 177 Mev, and i f t h i s mass s p l i t t i n g 
i s l i n e a r l y r e l a t e d t o the s t r e n g t h o f the symmetry breaking 
i n t e r a c t i o n , then the SU(3) breaking i n t e r a c t i o n should be 100 
times stronger than the SU(2) breaking electromagnetic i n t e r a c t i o n 

Another great triumph o f SU(3) has t o do w i t h the 3/t>+ 

baryon resonances, these are grouped i n t o the 10-dimensional 
r e p r e s e n t a t i o n o f SU(3), i . e . , a decuplet as i s shown i n F i g (21) 
The XL was p r e d i c t e d as the t e n t h member o f the m u l t i p l e t o f 

* + + Vto *- ,*+ -*° j — 
N , N * , N , N , V , V , V , > a»* - ' 

A search a t the Brookhaven Laboratory i n 196U- confirmed the 
existence o f -O-with the same p r o p e r t i e s p r e d i c t e d by the 
e i g h t f o l d way. 

A f t e r the e i g h t f o l d way had been e s t a b l i s h e d , Gell-MannVJ-^'' 
and Zweig^ 1-^ independently suggested t h a t corresponding t o the 
fundamental t r i p l e t o f SU(3) t h e r e should e x i s t a fundamental 
t r i p l e t o f p a r t i c l e s u, d, and s. These p a r t i c l e s , named quark 
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y 

V 
Fig I f f - Fundamental t r i p l e t of SU(3) 

A 
Fig 1-9 - Weight diagram of 3* 
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by Gell-Mann, and ace by Zweig, are to be the building blocks 
which compose a l l of the mesons and baryons. Two of these 
p a r t i c l e s should form an isospin doublet, while the t h i r d one 
should have I = o and they must have the usual t r i p l e t 
hypercharge and presumably ordinary spin one-half. Antiquarks 
which have a l l additive quantum numbers reversed correspond to 3 . 
Then we can suppose that the mesons are bound states of quark-
antiquark p a i r , while baryons are three-quark bound states. This 
predicts singlet and octet mesons, and s i n g l e t , octet and 
decuplet baryons, exactly as observed. So here we have an 
explanation of the e i g h t f o l d way. But t h i s also gives the 
quarks f r a c t i o n a l baryon number and charge (table 10) which are 
c e r t a i n l y something new and so f a r f r a c t i o n a l l y charged p a r t i c l e s 
have not been found. Nevertheless, quarks are convenient f o r 
i l l u s t r a t i n g the mathematical structure of the SU(3) symmetry* 

However, the application of SU(3) considerations to weak 
interactions leads to unnecessary high rates of strangeness-

o o 
changing neutral currents and to large value of Ks~ Kj, mass 
difference. These facts together with the discovery of new ^ 
and 7( states which can not be accommodated i n SU(3) m u l t i p l e t s 
may mean that the successful SU(3) symmetry scheme should be 
enlarged t o SU(^). 
2.2 - SUCO and Strong Interactions -

The SlKU-) symmetry for strong i n t e r a c t i o n was f i r s t 
proposed i n the basis of hadron-lepton symmetry (by Bjorken and 

(16) 

Glashow ) , since the extra quark completes the symmetry 
between quarks and the four leptons , J*- and ) ^ • Later 
SU(1+) symmetry was suggested from the gauge t h e o r e t i c a l point of 
view by Glashow, Iliopoulos and M a l n i ^ ^ . Since using SU(3) as 
the symmetry group to make a renormalizable u n i f i e d gauge theory 
of weak interactions leads to unacceptably high rates f o r 
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Table 10 - The quantum numbers of quarks 
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semileptonic t r a n s i t i o n s l i k e 

that involve a neutral \b±b\ ~\ hadronic current, and to large 
value of the Kj, - Kg mass difference which arises from a 
second order weak i n t e r a c t i o n S = 2, K°—>K° t r a n s i t i o n . So 
the gauge theories are incompatible with SU(3) as the f i r s t 
symmetry, and we must consider a group of higher order with 
SU(3) as a subgroup. Then t h i s larger group w i l l introduce new 
quantum numbers and new hadrons. The simplest p o s s i b i l i t y i s 
to consider the group SUCU-) which adds a fo u r t h charmed quark C 
to the conventional u, d, and s> and introduces a new quantum 
number called charm ( c ) , with the conventional quarks having 
c = o, while the f o u r t h one has C = 1. 

Accepting SUĈ -) as the basis of a gauge theory with the 
general charged (V - A) type hadronic current: 

where ^ i s the quark column vector (c, u, d, s ) and the matrix V 
i s of the forms 

V 
O i 
O i 0 

with 
CcsG S»r\6 

Si* 0 

Then the corresponding neutral current 

W0 = l [ w , W + ] 
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contains no \fc>s\ -\ term. I t i s also required to suppose 
that the strong i n t e r a c t i o n i s approximately SU(U-) i n v a r i a n t , 
then the above mentioned processes are depressed by a factor 
G ( S M ) 2 where SM i s the scale of SUC1*) breaking.. With the 
choice 

- 3 

theory reaches the experimental l i m i t s f or these processes and 
thus the problem of neutral strangeness changing t r a n s i t i o n s 
i s solved and we can say that the charm hypothesis i s a device 
to solve the problem of the decay K ° — ^ ̂ J* o We discuss 
some of the properties of SUĈ -) group i n some d e t a i l i n what 
follows. 

The generators of the group SU(*f) are as follows: 

Iq \ o o ^ I o " ̂~ 

[ 0 o o 

o a ° ° \° ° 
\ o 0 o o \ o 0 

o o 

'o o 

\ \ 

X 
\ 

\ 

X 
A-
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where \ i , \ g and ^ j ^ - are the three generators which can be 
simultaneously diagonalized. Therefore we have at our disposal 
three additive conserved quantum numbers, I3 t h i r d component 
of i s o s p i n , y hypercharge, and c a new quantum number called 
charm, corresponding to these generators. 

The fundamental quartet of the group contains, i n addition 
to the three conventional u, d and s quarks, a fourth quark c 
with the same charge as the u- quark. The quantum numbers of 
these four quarks are shown i n table (11). (There are d i f f e r e n t 



I I 3 5 c B Q 

u 1 1 0 1 
2 2 3 3 

J 2. 2 0 1 
3 0 1 

3 s 0 O -1 _ 2. 0 _L 3 
c & O 0 ->3 1 \ 

3 v 3 

Table ).| - Quantum numbers of the fundamental quartet 
of suPO 
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F i g JUL- Fundamental quartet of SU(U). 
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conventions used by d i f f e r e n t authors, but we w i l l follow 
the Gaillard etal's convention ^ ^ ) ) ^Y\e quantum number c i s 
an additive quantum number l i k e hypercharge y • The Gell - Mann-
Nishijima formula i s Q s + '/z I 6+ S + 0 
and hypercharge and strangeness are connected by: 

To assign hadrons i n the SUC1*) representations, we must 
look for the lowest representations of the group, although 
there i s no a p r i o r i reason why the p a r t i c l e s and resonances 
observed i n nature should belong to the lowest representations, 
t h i s i s an appealing guiding idea. So we must look at the 
possible p a r t i c l e assignments r e s t r i c t i n g ourselves to the lower 
representations. The decomposition of the products of lower 
dimensional representations of SUCW) are shown i n table (12), 

and t h e i r contents i n SU(3) subraultiplets i n table (13). We 
see from table (13) that besides the uncharmed c =.o SU(3) 

submultiplets, there appear charmed SU(3) submultiplets. The 
corresponding p a r t i c l e s would be stable with respect to decay 
i n t o uncharmed p a r t i c l e s . 

2.3 - Charm Spectroscopy -
Now we t r y to assign baryons and mesons to SU(lf) 

representations. I n the case of baryons, the SU(3) octet of 
spin £ baryons i s enlarged to a 20 - p l e t , since besides the 
states containing only the conventional u, d and s quarks which 
form the known octet of (•£*) baryons, there are other states 
which carry one or two charmed quarks.. There are nine baryon 
states containing one charmed quark which s i x of them are 
symmetric i n the remaining two ordinary quarks while three others 
are antisymmetric. There are also three baryon states with 
two charmed quarks which make a t r i p l e t of (£ + ) baryons with 
c = 2. So there are altogether 20 states of (£ + ) baryons 
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Table |2- Product decompositions of representations in SU(h). 
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which form an i r r e d u c i b l e representation 20 of SU(M-). These 
states are l i s t e d i n table (1*+), and the corresponding weight 
diagram i n the three dimensional pl o t of I 3 J V and C i s shown 
i n Fig (23). S i m i l a r l y the SU(3) decuplet of spin 3/2 baryons 
changes to another 20 - plet and the corresponding weight diagram 
i s shown i n Fig (21*). 

For the mesons, each nonet (octet + s i n g l e t ) of mesons 
made of u, d and s quarks i s replaced by a 16 - p l e t , which the 
new mesons are : an isodoublet c u and c d (usually called D), 
c s (usually called F ), the a n t i p a r t i c l e s of these, and a 
hidden charm c c state (usually called '<|c , cf) ̂  t ... ) . I t 
should be noted that s i x of these new mesons carry the charm 
quantum number C = + 1, the exception i s c c which has c = o and 
that i s the reason for c a l l i n g i t a hidden charm state. 
To w r i t e down the quark contents of the meson states i t i s 
useful to consider a matrix array by l a b e l l i n g the rows by the 
quark symbols and the columns by antiquark symbols, then f o r the 
pseudoscalar mesons $ , . . 

•c A. ) c c J 

e 
I f D 

0?J 

+ • . , ' n .C, 

The l i s t o f the charmed pseudoscalar mesons and t h e i r quantum 
numbers are shown i n table (15) and the corresponding weight 
diagram i s shown i n Fig (25). S i m i l a r l y the vector mesons 
make another 16 - p l e t , and again we can make a matrix array 
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2. + 

C = l CSS I » o -2 

C = 2 xiiL e c u r I 
0 

2 

C = 2 * s CCS 1 = o _| 

+ 
Table 1 I f - charmed 1/̂  Baryon state 
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to show the quark contents: 

D 

D U ) 
V 

IS 

The charmed vector mesons are l i s t e d i n t a b l e ( 1 6 ) , and the 

corresponding weight diagram i s s i m i l a r to that of the 

pseudoscalar mesons. 

I n strong i n t e r a c t i o n s i s o s p i n , strangeness and charm a r e 

conserved, while i n weak i n t e r a c t i o n s these quantum numbers 

ar e not conserved i n g e n e r a l . 
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CHAPTER. THREE 
H'-PARTICLES AS CC BOUND STATES 

This chapter i s devoted to the i n t e r p r e t a t i o n of ̂  p a r t i c l e s 
i n Charm scheme. I n section (3.1) the ^ p a r t i c l e s w i l l be 
considered as cc bound states. I n section (3.2) the Zweig's 
r u l e i s discussed. The section (3-3) i s devoted to the 
•"^-spectroscopy and i t s comparison with the charmonium 
predictions. I n section (3 A ) the t r a n s i t i o n s involving 
" ^ p a r t i c l e s w i l l be discussed. I n section (3.5) the missing 

decays of ̂  (3«7) are discussed. And f i n a l l y section (3.6) i s 
devoted to the discussion about the charmed p a r t i c l e s . 

3.1 - The ̂  p a r t i c l e s as cc bound states _^ 0^ 
To i n t e r p r e t the new resonances we should concentrate on 

hadronic models, because there are many reasons i n d i c a t i n g that 
the new parti c l e s are hadrons, such as; 
i - Their decays predominantly respect strong i n t e r a c t i o n 
symmetries l i k e I - spin and G - p a r i t y . 
i i - Their strong coupling, 

fa', $ r™ 
iii- (T (fp-^H'te-O •+ P) has forward d i f f r a c t i v e peak ten times 
bigger than electromagnetic. 
These together with many other reasons make us to believe that 
they are hadrons. Since these p a r t i c l e s have very narrow widths, 
we must consider models involving new hadronic degrees of freedom. 
There are two obvious ways of extending SU(3), the usual 
symmetry group of the strong i n t e r a c t i o n s . One i s 
SiU3)-r>suu)>S, where G i s some new symmetry. The other i s 
SU(3) — ? SU(N) , N̂ ,//. The best known example of the f i r s t 
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scheme i s the Han - Nambu colour scheme (G = SU(3)). The 
best known example of the second scheme i s the t r a d i t i o n a l , 
charm model with N = h but other p o s s i b i l i t i e s are open (fancy, 
g e n t l e n e s s f o r N = 5, 6, . . . ) . 

In t h i s chapter we concentrate on the c l a s s i f i c a t i o n of 
°y p a r t i c l e s i n charm model and the colour model i n addition to 
some other models w i l l be discussed i n the next chapter. 

In the charm model, we explore the characteristics of 
^ part i c l e s with the view t h a t ; 
a - The ^(3.1) i s a pure 1 ^ cc sta t e , partner of 
( i t i s called o r t hoc harmonium 1 by Appelquist et a l ^ * ^ , i n 
analogy with positronium). 
b - The ̂ ( 3 . 7 ) i s a r a d i a l l y excited 2 S± cc s t a t e , possible 
partner of • f ' ( l b o o ) , (called orthocharmonium 2). The fact that 
much of the time ^ decays i n t o ^ and two pions shows that 
i s an excited state of ^ and confirms, our assumption. Also the 

which i s again another confirmation of the above assumption. 
c - F i n a l l y y (h.l) structure i s second recurrence, broadended 
because i t i s s i t t i n g above the threshold f o r producing charmed 
meson pairs DD, FF, etc, (Although the very recent data suggests 
that the structure at h,l region i s most l i k e l y not a single state) 

I f t h i s i s the case, the new par t i c l e s should be accompanied 
by a host of others carrying a nonzero charm quantum number. The 
charmed p a r t i c l e s should have properties; even more dramatic than 
those of the above states. The lowest one should decay only 
weakly and have l i f e t i m e s of order 10"^ sec. I f the large 
e + e*^->hadrons cross section near V Gev i s related to the threshold 

leptonic decay width of ^ i s about h a l f that of y , 
S Ke 
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f o r the production of charmed p a r t i c l e s then t h e i r masses should 
be between Gev and 1.95 Gev (the lower l i m i t i s due to the 

narrow width of ^ and the upper l i m i t i s given by the r i s e of R 
near 3.9 Gev). 

The main objection against t h i s i n t e r p r e t a t i o n i s very narrow 
widths of the ^ and ^ which i s much below the average widths 
of mesons with strong or f i r s t - o r d e r electromagnetic decays. The 
usual explanation i s the Zweig's r u l e which w i l l be discussed 
i n the next section. 

3.2 - Zweig's Rule -
Zweig's ru l e (or more properly Okubo, Zweig and I i z e i k ' s 

r u l e ) states that a t r a n s i t i o n which can only be described by a 
disconnected quark diagram, i n which the p a r t i c l e s can be 
divided into two groups such that quark l i n e s do not cross from 
one group to the other, i s forbidden whereas the connected 
diagrams such as the diagrams corresponding to the decays 

are allowed. In fact the Zweig's rule was f i r s t stated to 
describe the r e l a t i v e suppression of the decay §—>3TT 
compared to <̂  — > KK as an imperical r u l e . Then i t was 
generalized f o r a l l meson decays. I t states that the two quarks 
i n a meson state do not a n n i h i l a t e . To explain the r u l e i n a 
simpler way, we can compare i t with the fact that i f we break a 

dipole in t o many pieces, each piece i s s t i l l a dipole and has two 
poles. Fig (26) shows some examples of Zweig's rule allowed 
t r a n s i t i o n (connected diagram) and disallowed ones (disconnected 
diagram). Decays ̂ —*- BTV j « K (or generally ^—-> charmless 
hadrons) correspond to disconnected diagrams and they are 
supposed to be zero as a f i r s t approximation, and the decay"vp-V^-h-
ordinary hadrons i s also forbidden i n lowest order. 



6if 

Lb) 

, <* t 

F i g , ?6 - a ) connected, diagram f o r tho decay (p—>>• K K 
b) Disconnected- diagram f o r the decay 

c) Disconnected, diagram f o r the decay ' — ^ T^Tl ^ 
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However the suppression of disallowed <fy decays i s 0(10^) 
i n the r a t e , i . e . , i f we compare * FT with U—~> 3 F 
which i s allowed by the r u l e , we have 

•i If 
whereas the suppression of disallowed ^ decays i s 0(10 - 10 ) , 
i . e . , I 

which shows that the Zweig's r u l e i s getting better and better 
when mass increases. Various explanations proposed for t h i s 
extra suppression. One i s based on the gluon exchange and the 
fact that gluon coupling decreases as the exchanged mass increases, 
thus i t explains the suppression of the ^ coupling r e l a t i v e to 
the <p coupling. 

I t should be noted t h a t , the Zweig's rule does not r e a l l y 
explain anything, i t i s Just a ru l e which appears tp work 
approximately, although we r e a l l y do not know why. There are 
various ways to understand the approximate v a l i d i t y of t h i s r u l e . 
One way i s to accept that i t i s v a l i d i n the l i m i t of perfect 
SU(3) or SU(lf) symmetry, then the symmetry breaking w i l l lead 
to the approximate v a l i d i t y of t h i s r u l e , i . e . (J? i s not a pure 
ss state and have small admixtures of uu and d3 and s i m i l a r l y the 

and ^ won't be pure cc states and these admixtures other than 
ss and cc w i l l cause the breaking of the Zweig's r u l e f o r <p and j 

decays respectively. 
Another way of looking at the v i o l a t i o n of the Zweig's ru l e 

i s i n the language of the topological expansion. I t i s supposed 
that the diagrams which break Zweig's r u l e are non-planar as i t i s 
shown i n Fig (27) for the decays <$—^ 3T1 and <|>>'vp/TfT 
There are reasons to believe that non-planar corrections decrease 
with energy, which may explain why the rule i s better for ^ than 
(fy ( t h i s i s called asymptotic p l a n a r i t y ) . 
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Fi-K- ?7-Nonplanar diagrams f o r the decays 
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From the above discussions we conclude that the decay of ^ 
in t o ordinary hadrons i s highly suppressed. Furthermore, i f the 
charmed p a r t i c l e s masses are greater than or equal to 1.5 Gev, 
decays l i k e ^ — > DD would be energetically forbidden, so ^ 
would be very narrow. 

As long as the ̂  i s below charm-anticharm threshold, i t w i l l 
remain narrow too. This i s an important difference between the 
^ and J 5 which has a number of open channels i n t o which to 
decay and i s consequently very broad. The very narrow width of 
'"f (3«7) means that the lowest charmed p a r t i c l e must be above 
18̂ -0 Mev i n mass as mentioned i n the beginning of t h i s chapter. 

3.3 - The Spectrum of Quark - Antiquark Bound States and / v f — 
Spectrum -

The discovery of ̂  and ^ arised the prediction of other 
states of charmonium with masses less than 3*7 Gev. To 
investigate these predictions, we consider the spectrum of ^ 
bound states and compare i t w ith the recent data about the ^ 
spectrum. 

We consider the spectrum of a state ^£ wi t h o r b i t a l 
angular momentum L, since the spin of a quark i s there are 
two p o s s i b i l i t i e s S = o, 1 f o r each value of L. We use the 
f a m i l i a r notation of H-atora; S,P,D,... states as are shown i n 
table (17). In Fig (28), the so-called charmonium l e v e l scheme 
i s shown, as predicted i n December 

1 9 7 l f (21 ) 
when only ̂  and ^ 

were known. 
In a coulomb p o t e n t i a l , the f i r s t P state i s degenerate with 

second S st a t e , 
3S 3P 3 J 
is zp 
IS 
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while i n a harmonic-oscillator p o t e n t i a l , i t l i e s halfway between 
the f i r s t two S states; 

3? -
2.5 3j-

IS 
(21) 

For the charmonium spectrum, Appelquist et a l , supposed an 
intermediate r e s u l t , and with t h i s assumption they predicted 
the mass region of these states. They also suggested that non 
of the P-states are coupled to e + e", but they are produced by 
the r a d i a t i v e decays of orthocharmonium 2. The experimental"^ 

(9) 
spectrum on July 1976 i s presented i n Fig (29). The 
comparison of charmonium scheme wi t h Fig (29) shows a dramatic 
q u a l i t a t i v e success. There are at least three C - even states 
between ^ and ̂  ' ; 0<. ( W > ) J ̂ (Z*Soo) and %(35"5"°) which are 
presumably related to the P - states s i t t i n g between and"^' 
i n Fig (28). There may be a f o u r t h state 9C(3<+*f5") probably the 
pseudoscalar partner of , i n analogy with the state 
which i s usually taken to be the pseudoscalar partner of the ̂  . 
3A - Qualitative Features of processes Involving ^ Particles -
a - The hadronic decays -

'Y—r> hadrons and "ty —> hadrons are forbidden by Zweig's r u l e 
and i n fac t the observed hadronic widths are much narrower than 
anticipated. For example, f o r the i f we assume that i t has 
the same suppression factor as that i n ^decays, we would expect 
pvj/ ^ Z - i f li€V , whereas the actual width for ̂  i s measured to 
be p ^ ~J~JO K«V . This i s due to the extra suppression of the 
Zweig's ru l e f o r ̂  as was mentioned i n section (3.2). The 
quark diagram showing the decays l i k e ^ — ^ hadrons are shown i n 
the following; 
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^'(4414) 

*'(4I00) 

^(3684) 

* (30915) 

X(28SO) 

X135S0) 

XI3500) 
>^X(3450> 

X(341S> 

Fig.. 29-The experimental ^spectrum on July 1976 
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— c j 

b - The Cascade decay -
. The decay ̂ ' > ,NV TTTT i S a i s o forbidden, but the 

suppression i s expected to be less; strong. I n terms of 
e f f e c t i v e coupling we have: — 2. 

to be compared with the suppression f a c t o r ; 

> ^ A T i s shown i n Fig The quark diagram f o r the decay ^ — 
(26). 
c - The ra d i a t i v e decays -

/ 

The decays ̂  ^ % \ hadrons and ^ > ̂  -f hadrons 
are also forbidden by Zweig's r u l e , unless the f i n a l state 
hadron contains a cc component. Quark diagrams f o r these two 
cases are shown i n the following f i g u r e s . 

- ? 

V 5 ? 
1c 

c -
a) 

The observed decays of type (a) are; 

and the decays of type (b) are; 

^ > TT0C(2-8) 
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with widths of order 1-10 Kev.. This i s smaller than the 
width f o r the decays of type; 

and there i s no convincing explanation f o r t h i s difference. 
However the observation of decays (1) and (2) i s a further 
confirmation of the charm scheme where one would expect p-wave 
excitations of the cc system to be between the ̂  and °4' • 
d - 'Y Decays -

Comparing with the p a r t i a l width f o r the cascade decay of ^ 
we expect at most a t o t a l width of about 10 Mev from cascade 
decays of ^ " ; 

..a 
whereas the observed width f o r i s 250 - 300 Mev. This large 

i i " 
width can be understood only i f ̂  i s l y i n g above the threshold 
f o r charmed meson pair production. Then i t w i l l decay i n t o 
states such as; D P > F F 

n 
D" O" 

which are unsuppressed decays according to Zweig's r u l e ; 

^- c 

3.5 — The Missing Decays of *Y (3-7) -
According to decay modes of ̂ 'discussed i n chapter one, we 

summarize the known decay modes of 'y and t h e i r contributions i n 
the t o t a l width i n table (18). I t was attempted to i d e n t i f y 
d i r e c t hadronic decays of ^'as was done for ̂  , but no d i r e c t 
hadronic decay with a branching r a t i o of more than 1% has been 
seen. Upper l i m i t s f o r the decays into jf fl" and % f[ J\ IT 



i|)'-f^+anything 

i|w it 

*YY 

57% 

32* 

•̂-»T*"any thing 
+ -
o e 
+ -

Vi u 
hadrons 

5% 

1% 
i 

1% 

3% 

^hadrons 

included i n v» * •*• YY1^ 
i 

' Table \ Known decay modes ofY* 



of about 0.1$ and 0,7% respectively have been i d e n t i f i e d by 
SLAG' people which are much smaller than those f o r ̂  decays i n 
table h of chapter one. But, using the fact that for any 
specific hadronic decay the measured p a r t i a l width f o r i s 
about a factor of 3 smaller than f o r the °V , we have estimated 
the l i m i t of 10% f o r d i r e c t decays of ̂ ' i n table (18). I t can 
be seen from the table (18) t h a t , we can only account for about 
(80 - 90)% of ̂ 'decays and the remaining (10 - 20)% of the 
decays are not accounted f o r . Among candidates f o r these 
missing decays are modes such ass 

LO + Y. (2.-8) 

I 

or several decay modes ^ ^ o % with too many 'Y. states. 

3.6 - Charmed Particles -
As mentioned i n the previous chapter, t h i s model predicts 

some new charmed hadrons which t h e i r existence i s the c r u c i a l t e s t 
of t h i s notation. So we b r i e f l y review some of t h e i r properties 
i n what follows: 
a - Decays of charmed pa r t i c l e s -

The charmed p a r t i c l e s could decay weakly i n t o the usual 
hadrons and leptons, and for short enough l i f e t i m e could have 
escaped detection. I f we accept the hadronic charged current to 
be of the form: 

- * «> ii - f t - ) t Jo** +
 s s '"<^ + 5 ^ ° X - ^ f c + K - f c ) 

mentioned i n chapter 2, i t can be seen that among the emitted 
hadrons at least one strange p a r t i c l e should be produced. Since 
f o r example i n the case of semi-leptonic and leptonic decays, the 
following selection rules for the decay amplitudes can be given t 
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from the hadronic charm changing current (1) • 
and 

so the dominant semi-leptonic decay modes for the states cd and 
cu (usually called D), and cs (usually called F) are; 

where '(<", etc., indicate the hadronic f i n a l states: with SU(3) 
quantum numbers of K", etc., but they can be states with 
d i f f e r e n t spin - p a r i t y . 

For purely leptonic decays we consider the simple case of 
two body decays l i k e ^—^ J%)) and p + - — . These are 
l i k e decays and according to the calculations done i n Ref. 
(19) t h e i r decay width can be calculated by using 

and 

K 

and 

we get; 
g _\ 

and 
1 -I 
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The semileptonic decays o f a charmed hadron i s due t o a 
semileptonic decay o f c quark according t o the fundamental 
processes; 

c — ^ s + i - t ^ 

and . „+ , 

whil e other quarks or antiquarks i n the i n i t i a l hadron act as 
spe c t a t o r s . Then the r a t e f o r such a decay when sum over f i n a l 
s t a t e s would be the same as f o r muon decay; 

where the mass o f c quark i s taken t o be Mg ̂  1.5 Gev. 
For non-leptonic decays which are due t o the elementary 

process; 
£ S-t-w. -t-d 

w i t h a s i m i l a r estimate the t o t a l decay r a t e would be; 

From the comparison o f these estimates one can get; 

p ( Mow- Ici^Lm'c) 

These r e s u l t s are not c e r t a i n and the t o t a l decay r a t e s . o f 
charmed p a r t i c l e s may vary from the above estimates by as much as 
a few orders o f magnitude. 

I t i s not c l e a r how many o f the D and F decay modes should 
be multibody, but i n Ref.(19) f o r D s and F s w i t h mass about 
2 Gev using a simple algebra leads t o the f o l l o w i n g e s t i m a t i o n : 

which overestimates, the two-body decays, 
b - Production o f charmed p a r t i c l e s -

S u f f i c i e n t l y l i g h t charmed p a r t i c l e s may be detected v i a 
t h e i r t r a c k s i n emulsions, and under extremely favourable 
circumstances perhaps also i n bubble chambers. Since the 
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s h o r t e s t t r a c k t h a t can be detected i n a bubble chamber i s a few 
m i l i m e t e r s , using 

\ ̂  ~ |o X[M (G<M) s«t a n d t n e m e a n p a t h xength 

transversed by the p a r t i c l e JL XcZ. - t we can conclude 
t h a t i t seems u n l i k e l y t o i d e n t i f y a charmed p a r t i c l e w i t h mass 
greater than about 2 Gev v i a i t s t r a c k i n a bubble chamber. But 
emulsions are s e n s i t i v e t o t r a c k s about several tens o f microns, 
so we expect t o see charmed p a r t i c l e s w i t h masses le s s than about 
h Gev. 

I n the f o l l o w i n g subsections we discuss some o f d i f f e r e n t 
experiments which are used t o search f o r charmed p a r t i c l e s . 

C- Production o f charmed p a r t i c l e s i n e* e~ a n n i h i l a t i o n -
I f the increase o f t h e branching r a t i o , 

above h Gev i s r e l a t e d t o the t h r e s h o l d f o r the production of 
charmed mesons, t h e i r mass should l i e between 1,8k Gev and 1.95 
Gev where the lower l i m i t i s estimated regarding t h e narrow w i d t h 
o f ^'(3»6SM-^ w h i l e the upper l i m i t i s chosen by the r i s e o f R 
near 3»9 Gev as was mentioned before. I n order t o search f o r 
i n c l u s i v e production o f charmed mesons, an experiment performed 
at SPEAR at Gev^ 2 2^ t o l o o k f o r narrow peaks i n i n c l u s i v e 
two and three body s t a t e i n v a r i a n t mass d i s t r i b u t i o n s i n various 
modes. The r e s u l t s are shown i n t a b l e (19) which shows no 
s i g n i f i c a n t peaks. I n another experiment done by the same 
group^ ̂  r e c e n t l y search f o r narrow peaks i n i n v a r i a n t mass p l o t s 
o f two, t h r e e , and f o u r body systems were performed a t energies 
between 3.9 and K.6Q Gev. The r e s u l t s are shown i n F i g (30) 

which shows small peaks f o r fy f[ (near 1.7^ G E V \ 
C 2 
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Decay mode Mass region (Gi-V'/f) 
1.5-1.85 1.85-2.4 2.4 

0.51 0.49 0.19 

0.48 0.38 0.18 

K°7T* 0.26 0.27. 0.09 

. 0.54 0.33 0.09 

0.25 018 0.08 

0.57 0.40 0.27 

it*ir- 0.13 0.13 0.09 

K*K" 0.23 012 0.10 

Table 19 - Limits on narrow width resonance production at k.8 Gev 
o £ T r l i m i t s a r e f o r i n c ^ s i v e cross section i n nb and are at' the 90$ confidence l e v e l . 
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and K +K~(at 1.98 GeV) but s i g n i f i c a n t peaks i n the i n v a r i a n t 
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mass spectra o f K" I f 1 " and K T! H . The l a s t two 
peaks are c o n s i s t e n t w i t h being decays o f the same s t a t e w i t h 

mass 1.865 + 0.015 ££I and width l e s s than Mev. Since t h i s 
C 2 C 2 

s t a t e can be produced i n a s s o c i a t i o n w i t h systems o f higher masses, 
i t leads t o the t h r e s h o l d energy f o r i t s production above the 

(3-68H') but j u s t below the broad s t r u c t u r e i n the t o t a l 
hadronic cross s e c t i o n a t about h Gev. This i s the s t a t e which 
i s supposed t o have the p r o p e r t i e s expected f o r a charmed meson; 
o o * 

D o< O i . e . , i t s narrow w i d t h , the f a c t t h a t i t decays 
i n t o states o f strangeness S = +1, and i t s production i n 
a s s o c i a t i o n w i t h systems o f even higher masses. 
d - Production by strong i n t e r a c t i o n processes -

These processes w i l l proceed i n analogy w i t h the strong 
production o f strange hadrons i n which o r d i n a r y hadronic 
r e a c t i o n s can produce strange p a r t i c l e s i n p a i r . S i m i l a r l y we 
expect t h a t charm conservation leads t o re a c t i o n s such ass 

Tl~? ^ Mc 3 c 

and _ if. n 

VV ^ N T 

I v M c B 

where Mc and are charmed mesons and charmed baryons r e s p e c t i v e l y 
w i t h opposite charm quantum numbers. The search f o r processes o f 
these k i n d can be performed by l o o k i n g f o r the weakly decay o f 
charmed p a r t i c l e s t o charged hadrons p a r t i c u l a r l y those i n v o l v i n g 
strange p a r t i c l e s , t o d i l e p t o n s o f opposite charge p a r t i c u l a r l y 
f o r Q~ , or t o a combination o f hadrons (K or "IT ) and 
leptons ( i ! ^ } . Some experiments o f these kinds was done at 

(23) 
CERN , and no suggestive evidence have been observed. 
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I n the above mentioned s e c t i o n s , we have considered how the 
new narrow resonances observed i n e + e"—>hadrons and 
p + Be-*e + e~ + anything could be understood i n terms o f charm. 
We have also discussed the p r o p e r t i e s o f charmed p a r t i c l e s . I t 
seems t h a t t h i s i s a f a i r d e s c r i p t i o n o f the new resonances 
although t h e r e are few problems such as: 
i - For q u i t e a long time the most serious d i f f i c u l t y o f t h i s 
d e s c r i p t i o n was the lac k o f evidence f o r the existence o f 
charmed p a r t i c l e s . But the recent experiments performed a t 
SPEAR shows the evidence f o r a s t a t e expecting t o be a charmed 
meson which means t h a t the model can get r i d o f t h i s serious 
problem. The observed s t a t e i s supposed t o be D° or D°* and we 
are expecting t o f i n d i t s charged partners D or D • 
i i - Another weak p o i n t o f the charm model i s the h i g h value 
o f the branching r a t i o R. The value R 2 5«5 was observed f o r 
energy W — ^.5 Gev, w h i l e regarding the quantum numbers o f the 
quarks i n charm scheme as shown i n t a b l e (11) we f i n d the value: 

(where the f a c t o r 3 i s due t o c o l o u r ) which i s smaller than i t s 
observed value f o r energies above the charm t h r e s h o l d . The 
c o n t r i b u t i o n o f t h e strange quark t o R i s £, the c o n t r i b u t i o n o f 
non-strange quarks i s , and t h e c o n t r i b u t i o n o f t h e charmed 

1+ 
quark t o the value o f R i s — • So we expect the c o n t r i b u t i o n o f 

* h D D p a i r i n R t o be - i n charm scheme, but the observed increase 

o f R at W ^ k Gev i s 2.5 - 3 which i s tw i c e t h e expected value 
i n charm scheme. 
i i i - The known mesons (around 1600 - 1700 Mev) have average decay 
m u l t i p l i c i t i e s ^ 3.5-- 4 (e.g. Jj> and gj mesons). Proton 
a n t i p r o t o n a n n i h i l a t i o n a t r e s t have > ~ . We estimate 
C.n'^r-'i-l f o r an average D meson. This gives average charged 

m u l t i p l i c i t y <̂  y\ ^> ~* 2->S-2«7 P® r D meson and -~ 5—5-5" 
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f o r each D D p a i r , but exper i m e n t a l l y the average charged 
m u l t i p l i c i t y above \i ~ h Gev i s *f r a t h e r than the expected 
value 5 - 5»5« 
i v - We expect the charmed quark couples more s t r o n g l y t o the 
strange quark than t o the o t h e r s , so we expect the observation 
o f decays such as D ° — K n + and — 5 > K~ H t TTf, — and 
f o r long time t h i s was another weak p o i n t o f t h i s model since 
experimentally the number of such decay modes were sm a l l . But 
the recent observation o f K Tl and K . fl * f t U~ p a r t i c l e s 
i n e + e~ a n n i h i l a t i o n a t SPEAR may mean t h a t t h i s problem i s 
solved. 
v - We expect few £ a n d J<)) decay modes, but t h e events o f the 
type <£+ eT ^ £"*"•+ K~+^c-oirals which are observed a t 

lap • 

SPEAR -'are too much and i t i s c a l l e d "anomalous events" 
i n the data. There are many p o s s i b i l i t i e s f o r the o r i g i n o f 
these events and a l l are associated w i t h the produc t i o n o f a p a i r 
o f p a r t i c l e s , each w i t h an a d d i t i v e conserved quantum number 
which i s zero f o r e + e" system. Two examples are the 
production and decay o f a p a i r o f new heavy leptons and the 
production o f a boson p a i r w i t h a quantum number such as charm. 
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CHAPTER FOUR 
SOME OTHER INTERPRETATIONS FOR ^ PARTICLES. 

I n t h i s chapter we discuss some other explanations suggested 
to i n t e r p r e t the ^ resonances. From the f i r s t days o f the 
discovery o f <v^,(3«i) the t h e o r i s t s began t o suggest models t o 
i n t e r p r e t t h i s new p a r t i c l e . Many i n t e r p r e t a t i o n s were proposed 
and most o f them have some problems as w e l l as some good f e a t u r e s . 

(25) 
Some authors ' suggested t h a t the °^ p a r t i c l e s could be 

i n t e r p r e t e d as n e u t r a l weak bosons. They supposed the gauge 
s t r u c t u r e S U ( i ) L X U<-OyX UCO^y U U ) L where SUd) x U U ) y i s the 
o r d i n a r y gauge freedom i n Weinberg-Salam model and UlO-XUtO, 
i s the right-handed and left-handed Fermion number gauge. Then 
the symmetries act on a left-handed doublet L. - ( ^ ) ^ and- o n a 
right-handed s i n g l e t « The lagrangian i s constructed out o f L 
a n d p l u s o r d i n a r y gauge f i e l d s A and "ZM. plus a scalar meson Then the vector and a x i a l vector mesons are d e f i n e d 

by , 

and ^ and ̂ ' are considered to be and ^u. r e s p e c t i v e l y . 
A c t u a l l y t h i s i n t e r p r e t a t i o n encounters several problems and the 
most serious one i s the decay w i d t h o f ̂  f o r ' vf—r^+ZTT which 
t h i s model can not make the w i d t h f o r t h i s decay greater than the 
l e p t o n i c decay width f o r ̂  . 

Another model was suggested by I w a s a k i ^ ^ i n which 
i s assigned t o a vector meson cc, as i n the charm scheme, w h i l e Y 
i s assigned t o an exotic meson cc(uu + dd). This model 
p r e d i c t s two resonances, cc(uu - dd) w i t h 1=1 and cc ss w i t h I=o 
between^ 3.7 Gev and«^*+.l Gev, and suggests t h a t the s t r u c t u r e of 
the t o t a l c r oss-section a t the v i c i n i t y o f ^ . l Gev i n e + e~ 
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a n n i h i l a t i o n i s duo t o these two resonances and the th r e s h o l d 
e f f e c t o f the charmed hadron p a i r p r o d u c t i o n . The model also 
p r e d i c t s a resonance a t about 6.2 Gev w i t h t he quark s t r u c t u r e 
cccc. The observation o f a resonance a t 6.0 Gev by E a r t l y 

(27) 

e t a l x " i n high energy P-Be i n t e r a c t i o n s can be a c o n f i r m a t i o n 
o f t h i s model, but t h i s resonance has not been observed i n e + e~ 
a n n i h i l a t i o n at SPEAR. I f t h i s model was t o be taken s e r i o u s l y , 
then we would, of course, need t o consider the other states 
c o n t a i n i n g two quarks and two antiquaries, e.g. Uuuu, et c . Most 
assignments o f the " o l d " resonances i n the quark model do not 
in c l u d e such s t a t e s . I t i s possi b l e o f course t h a t these states 
are so broad t h a t they have not been seen (e.g. .(UUUUj c a n e a s i l y 
break up i n t o ( ( u u ) + (uu) ) . The same t h i n g does not apply i n 
Iwasaki's model because i t i s not s u f f i c i e n t l y massive. Some 
discussions o f these type o f states has been given i n the MIT Bag 
M o d e l . ( 2 8 ) 

R.M. B a r n e t t ^ ) proposed a model c o n s i s t i n g o f three charmed 
quarks Cu , d , s ) i n a d d i t i o n t o the three o r d i n a r y uncharmed 
(u,d,s) quarks and t r i e d t o constru c t hadrons out o f these s i x 
quarks, p a r t i c u l a r l y the i n t h i s model i s considered t o be 
, ' — ' ' - ' ("i n") (U U + d d )/2. Also the same author i n another paper v-> ; 

reviewed several models w i t h more than four quarks. 
H. F r i t z s c h ^ ' ^ has proposed a new i n t e r p r e t a t i o n o f "VY-

resonances based on f i v e quarks (u,d,s,C,U) instead o f four i n the 
charm model. The a n d a r e bound states o f the two new quarks 

i _ 

C and U; i . e . ̂  i s mainly a CC s t a t e and. ̂  i s mainly a UU s t a t e 
but t h e r e i s a r e l a t i v e l y small mixing f : 

^ - C o i f C-C + Svw^UO 

y = - ^CC 4 Cos ̂  uQ 
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Among other i n t e r p r e t a t i o n s are the t h r e e - t r i p l e t models and 

Harari's model which we w i l l discuss i n more d e t a i l i n the 
f o l l o w i n g s e c t i o n s . 

k.l - The T h r e e - T r i p l e t models -
The t h r e e - t r i p l e t model w i t h double SU(3) symmetry was f i r s t 

proposed by M.Y. Kan. and Y. Nambu^2) ±n 1965 w i t h a view t o 
avoid some o f the ki n e m a t i c a l ^nd dynamical d i f f i c u l t i e s involved 
i n the s i n g l e - t r i p l e t quark model, such as non i n t e g r a l e l e c t r i c 
charges, spin s t a t i s t i c s f o r quark models o f baryons, r a t e o f the 
decay IT°—>Yt e t c . The concept o f t h i s model i s t h a t there are 
three times as many quarks as the naive SU(3) model w i t h the 
corresponding quantum numbers and weight diagram shown i n t a b l e 
(20) and F i g (31) r e s p e c t i v e l y . I t was supposed t h a t t he nine 
members o f the three t r i p l e t s - > t t c ^ } "t iot ) <* =1 > i > 3 be 
combined i n t o a s i n g l e m u l t i p l e t ; 

Then two d i s t i n c t sets o f 3U(3)' operations on T were imagined, one 
is the SU(3) a c t i n g on the indexed f o r each m u l t i p l e t , w h i l e the 
other SU(3) acts on the index i , which mixes corresponding 
members o f d i f f e r e n t t r i p l e t s . T i s then a r e p r e s e n t a t i o n (3»3 ) 

• 
o f t h i s group SU(3) x £U(3) . According t o t h i s model, the 
meson and baryon states are TT and TTT combinations r e s p e c t i v e l y , 

/ 

and the SU(3)' x SU(3) contents o f these 81 and 729-plets are; 

b,3*)x(3*,3l = lg>0+ 0,0* + (8,8) 
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2. 

\ 

0 = 0 

F i g 31 - The weight diagram of the t h r e e - t r i p l e t model 
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i - 3 

o - I - J -
2. 

, * 1 

V 1 t 0 0 0 - 1 0 6 - 1 

Q I 0 1 o -1 - \ I 0 6 

Table 2-°- The quantum numbers of the quarks i n three t r i p l e t model 



9 
89 

The l o w - l y i n g meson and baryon states are (8,1), (1,1) and (8,1), 
(1,1), (10,1) r e s p e c t i v e l y . 

As f o r the baryon number assignment t o the t r i p l e t s , the 
simplest p o s s i b i l i t y would be t o assign an equal baryon number, 
i . e . B = £ t o them. I n t h i s case the t r i p l e t s themselves would 
be e s s e n t i a l l y s t a b l e , and t h e i r nine members vould behave l i k e 
an o c t e t plus a s i n g l e t o f "heavy baryons". Another simple 
p o s s i b i l i t y may be B = ( l , o , o ) f o r ( t , t , t ) . 

$ 2 3 

Some other d i s t i n c t models c o n s i s t i n g nine quarks, w i t h 
v a r y i n g degrees o f s i m i l a r i t i e s between them, have been proposed. 
The paraquarks o f Greenberg^33) which were proposed even before 
Han and Nambu model, consists o f a s i n g l e SU(3) t r i p l e t o f 
parafermions o f order 3j i f the Green-Component f i e l d s are t o be 
taken as independent f i e l d s , then t h i s model contains nine quarks. 
The basic features o f Han and Nambu t h r e e - t r i p l e t model were 
independently proposed by Tavkhelidze. Miyamoto has considered 
s l i g h t l y d i f f e r e n t i n t e g r a l l y charged t h r e e - t r i p l e t s w i t h i n the 
framework o f SU(9) symmetry. Another t h r e e - t r i p l e t model was 
proposed by T a t i i n which the quarks are assigned a spin o f 
magnitude one w i t h the symmetry group SU(3) x So(3). Also G e l l -

0*f) 
Mann has proposed the paraquark model i n v e r s i o n i n which the 
a d d i t i o n a l index ( r e f r e d t o i t as Green index i n Greenberg's 
model) i s c a l l e d c o l o u r . A l l these nine quark models w i l l have 
f o r t h e i r r e s p e c t i v e symmetry groups e i t h e r SU(3) x SU(3) or 
SU(3) x So(3) s t r u c t u r e , where the f i r s t SU(3) i n each case i s the 
usual one, while the second groups SU(3) or So(3) are the ones 
f o r the symmetry o f the hidden v a r i a b l e s . I t should be noted 
t h a t now, i n f a c t , most people b e l i e v e t h a t quarks do possess 
colour and i t i s proved t h a t the idea o f colour i s consistent w i t h 
the cc i n t e r p r e t a t i o n o f "fand f i . e . , we b e l i e v e t h a t i n the 
charm model the four quarks appear i n three c o l o u r s . But what i s 
d i f f e r e n t i n t h i s chapter i s about the assignment o f | and f as 
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colour o c t e t s i n s p i t e o f the o r d i n a r y hadrons which are s i n g l e t s 
i n colour space as w i l l be discussed l a t e r on. 

I n the case o f colour quarks, t h e r e are a set o f three 
i n d i s t i n g u i s h a b l e SU(3) quarks, a l l t h e i r quantum numbers are t o 
be i d e n t i c a l except a new quantum number c a l l e d colour which 
appears i n r e d , yellow and blue (by convention) f o r d i f f e r e n t 
SU(3) quarks. The e l e c t r i c - c h a r g e assignments to the t h r e e 
i n d i s t i n g u i s h a b l e sets of SU(3) quarks i s : 

where Q_ X 3 - v ^ - T n i s model i s i n compatible w i t h both the 
TT°—>2-% decay rates and the t o t a l e +eI*hadrons cross sections 
i . e . the 7f°—> 2-X decay r a t e becomes; ^ 

w i t h -£^(oy=\.'2.3 and 

then ^ = 7*^ ^-^ which i s i n p e r f e c t . agreement w i t h experiment, 
wh i l e the nearest value calculated- by Steinberger was 13.8 ev. 
I n the asymptotic energy l i m i t , the r a t i o R defined by 

i n the parton model f o r spin £ partons i s given by 

Then the colour quark model gives R=2 which i s t h r e e times those 
f o r the Gell-Mann-Zweig quarks. 

Now consider the Han-Kambu t h r e e - t r i p l e t s regarding c o l o u r . 
There are three ( r e d , blue and y e l l o w ) t r i p l e t s which are 
d i s t i n g u i s h a b l e as i t i s shown i n t a b l e ( 2 0 ) , i n c o n t r a s t t o the 
colour quarks introduced by Ge11-Mann. The value o f R i n t h i s 
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case i s R=*f, which i s con s i s t e n t w i t h data f o r energies ^h- t o 5 
Gev. 

Now we construct hadrons from these new quarks. Ordinary 
hadrons are colour s i n g l e t s . For instance a pion which i s 
1 TT4 >̂ «- \ U ^> i n the o r i g i n a l SU(3) model, becomes i n the 

colour model; 

t h e r e f o r e o r d i n a r y hadrons are co l o u r l e s s made o f the three 
c o l o u r s , i t i s i n t h i s sence t h a t colour SU(3) i s a hidden 
symmetry. Newly discovered mesons are colour o c t e t s as w i l l be 
discussed l a t e r . C onstructing the photon depends on using G e l l -
Mann colour quarks or Han-Narabu scheme. For uncoloured quarks 
w i t h the charges 

u d s 

f - i - i 

t he photon may be w r i t t e n ass 

so i n the Gell-Mann scheme c o n s i s t i n g three i d e n t i c a l t r i p l e t s 
w i t h the charges: 

u d S 

R f X 3 -i 

B £. 
3 - i _ i 

~3 
Y 2. 

3 o 

the photon may be w r i t t e n as: 

IA_ spin smjjftt Colour S'mjl^ 



A H 

B 
6 

D 

i 8 

F i g Three t r i p l e t s i n colour model 
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which i s obvious t h a t ^ i s colour s i n g l e t . I n Han-Nambu model 
c o n s i s t i n g t h r e e d i s t i n g u i s h a b l e t r i p l e t s w i t h the f o l l o w i n g 
charges: 

u d s 

R 0 -1 -1 

B 1 o o 
Y 1 o 0 

the photon can be w r i t t e n as: 

which i s obvious t h a t ^ i s not colour s i n g l e t here, i t can 
exCite e i t h e r as colour s i n g l e t ( ]_ ) or as colour o c t e t ( \ ) 

The ( ) pa r t contains the f a m i l i a r vector mesons ) 
/ 

which are colour s i n g l e t s , while the ( .L,S ) piece can e y c i t e 
vector mesons which are s i n g l e t s of SU(3) and o c t e t s o f SU(3). 
I f colour i s conserved by strong i n t e r a c t i o n s , then these ( \>S ) 
states w i l l not decay t o the ( 8? L ) hadrons by strong i n t e r a c t i o n 
and so they w i l l be narrow. The ^ p a r t i c l e s are assigned t o be 
such C A_ 3^ ) states i n t h i s model. 
Phenomenology of P a r t i c l e s i n Han-Nambu colour scheme(35) 

The long l i f e t i m e o f the ̂ a n d suggests t h a t these p a r t i c l e 
possess a quantum number t h a t prevents t h e i r strong decay i n t o 
o r d i n a r y hadrons. A n a t u r a l candidate i s c o l o u r , where i n the 
colour model the inva r i a n c e group o f the strong i n t e r a c t i o n s i s 
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enlarged from 3U(3) t o SU(3) x Gcolour which i r \ the Han-Nsmbu 
scheme Gcolour i s also SU(3). The quarks i n Kan-Nambu model 
have i n t e g r a l charge and transform under SU(3) x SU(3) according 
to the (3>3 ) r e p r e s e n t a t i o n . The electromagnetic c u r r e n t 
transforms according t o the ( l ) S ) © ( 8 . > L ) r e p r e s e n t a t i o n and 
the e l e c t r i c charge i s given by: 

where X and V are the i s o s p i n and hypercharge o f the colour 
/ 

SU(3) group. I n t h i s model, the o r d i n a r y hadrons are 
supposed t o be colour s i n g l e t s , w h i l e ^ and ̂  are colour o c t e t s 
and we p o s t u l a t e the exact colour symmetry f o r a l l strong 
i n t e r a c t i o n s t o make ^ and ̂  so narrow. But the colour 
symmetry i s v i o l a t e d by electromagnetic and weak i n t e r a c t i o n s , 
because o f the production o f the v i a a s i n g l e X i n the e + e~ 
a n n i h i l a t i o n . 

I f we f o r g e t about the electromagnetic and weak i n t e r a c t i o n s , 
then the masses H of Colour mesons should s a t i s f y t he Gell-Mann-
Okubo mass formula; 

, 2. 2. 

where & , lo > and C are constant and "J i s the spin o f the 
meson. We r e f e r t o a colour o c t e t meson by the symbol (V,C) 
where V shows the c h a r a c t e r i s t i c s o f the meson i n usual SU(3) and 
i t s s p i n - p a r i t y , and C = ( TT, K , K , *} j represents the t r a n s f o r m a t i o n 
property i n the colour S5U(3). For example ( ^ J * ^ ) r e f e r s t o the 
colour o c t e t n e u t r a l vector meson w i t h t r a n s f o r m a t i o n p r o p e r t i e s 
l i k e and ̂  under the SU(3) and SU(3) r e s p e c t i v e l y . Then the 
'Y and ^ i n t h i s n o t a t i o n can be i n t e r p r e t e d as: 

and 
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where we have used the n o t a t i o n ( ) = ̂ C- f o r s i m p l i c i t y . 
These are not the only assignments introduced f o r the new 
resonances, f o r example Stech made the assignments; 

^ f ) 

V - W > i ) 

but we f o l l o w the n o t a t i o n i n reference ( 3 5 ) • I n t h i s p i c t u r e 
the masses of fct = C K*> "| ) and ( ̂  w i t h the 
assumption o f exact colour symmetry i s c a l c u l a t e d t o be; 

f i ( K Y

c ^ 3-3,7 G«v 

Assuming t h a t C i n equation ( 1 ) i s independent o f the colour 
which means t h a t the spin dependence o f ^ ( 1 ) does not depend on 
co l o u r , then the mass o f c o l o u r - o c t e t pseudoscalar mesons would be 

I n t h i s p i c t u r e UJ* s ^ t ^ - i ) ' <f>t
 = ^(^-"O are the e x c i t e d 

states o f ^ c and 4c r e s p e c t i v e l y . M. Krammer et a l ^ ^ w i t h 
s i m i l a r estimates and using the masses o f "V and ̂  and the 
l e p t o n i c width o f ̂  as input have pr e d i c t e d the f o l l o w i n g 
recurrences f o r ^ and Y • 

n s u ( 3 ) x s u ( 3 ) C mass (Gev) 

o 
1 

o 
1 

2 

3.105 

*+.l8 + 0 .03 

5.03 +. 0.13 

3.695 

U.63 + 0.08 

5. lkL + 0.13 
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S i m i l a r c a l c u l a t i o n s by D. Schildknecht give the r e s u l t s f o r the 
masses o f the recurrences f o r ^ a n d ^ ' a l i t t l e d i f f e r e n t from 
those i n the above t a b l e . 

Now we b r i e f l y summarize the main features o f the colour 
model and mention the d i f f i c u l t i e s w i t h which we are faceds 

1- The process ^ — > o r d i n a r y hadrons i s forbidden t o occur since 
they correspond t o SU(3) colour o c t e t - s i n g l e t t r a n s i t i o n s . Also 

can not decay s t r o n g l y i n t o any hadron system w i t h a coloured 
meson l i k e ( TTc+H TT ) mode because i t i s forbidden 
e n e r g e t i c a l l y as i t can be seen from the predicted, masses f o r 
coloured mesons mentioned e a r l i e r . So ^ would be narrow as i t is 

seen experimentally, 
i ± 

2- The decay ^ ^ -t-TT -tTl i s an or d i n a r y strong decay in 
the colour model but i t i s suppressed by Zweig's r u l e i n 
analog analogy t o 

TT 
(I 

4> 71 
TT 

3- R a d i a t i v e decays o f the type ^ > 0 "+ o r d i n a r y hadrons are 
allowed, i n co n t r a s t t o the charm scheme wher.e the hidden charm 
p a r t i c l e can not loose i t s hidden charm by photon emission, the 
coloured vector mesons can t u r n i n t o a normal hadron j u s t by 
r a d i a t i n g away i t s colour v i a a c o l o u r - o c t e t photon 
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A t y p i c a l r a d i a t i v e width such as t h a t f o r i*)—=*>n % i s o f 
order 1 Mev, but f o r the colour case the estimated width are 
l a r g e r by roughly two orders o f magnitude than the observed 
extremely narrow widths of the new p a r t i c l e s . I n references ( 3 6 ) 
and ( 3 5 ) some c a l c u l a t i o n s have been used t o reduce these 
estimates f o r r a d i a t i v e widths of *\ and o b t a i n more reasonable 
estimations. 
h— V/e expect only J -=- ° neighbours o f ̂  and '"V ( j u s t l i k e 

and Jf) K- ) experimentally several s t a t e s are 
found which have not got J - o (several 9C s t a t e s ) . These 
problems together w i t h the fact t h a t t he pre d i c t e d states by the 
model haven't been observed make i t u n l i k e l y t o accept the ̂  and 

being coloured s t a t e s . 

*+.2 - A New Quark Model f o r Hadrons (K a r a r i ' s Model) 
I n t h i s s e c t i o n we consider a new model f o r the spectrum o f 

hadrons which d i f f e r s from a l l previous schemes, but i t contains 
some o f the ideas o f charm and colour models. At f i r s t , i t 
seemed to be the most p l a u s i b l e model f o r d e s c r i b i n g the new 
p a r t i c l e s because most o f i t s p r e d i c t i o n s were i n good agreement 
w i t h the data. But w i t h the recent d a t a , i t seems t h a t t h i s 
model w i l l be i n some t r o u b l e . 

I n t h i s model the b u i l d i n g blocks o f hadronic states are s i x 
quarks instead of 3 or h or 9 i n 5U(3) , SUP+) or t h r e e - t r i p l e t 
model r e s p e c t i v e l y . Three of these s i x quarks are the usual 
SU(3) t r i p l e t ( u , d, s ) , wh i l e the other three make a new SU(3) 

a n t i t r i p l e t o f heavy quarks which includes an isodoublet ( t , b ) w i t h 
e l e c t r i c charges (•§, -£) together w i t h an i s o s i n g l e t ( f ) w i t h 
e l e c t r i c charge £. The weight diagrams o f these t r i p l e t and 
a n t i t r i p l e t are shown i n F i g (330 and the corresponding quantum 
numbers i n t a b l e (21). 



H-0 Bif lot 

- l/l 

ri 

H>l MllttlpM 

I 
• I .Fig.33 - The ordinary'U(up), d(down),s(singlet) quarks and the 

'proposed heavy t ( t o p ) , "b(bottom),r(right) quarks. 
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u 2 
S £ 

d -£ -£ 
s -£ 0 

t t £ 
b -£ -£ £ 
r 4 0 if 

3 

t a b l e 21 - The quantum numbers o f the quarks i n 
' H a r a r i ! s model. 

As i t i s obvious from t a b l e ( 2 1 ) , three o f these s i x quarks 
( i . e . u, t , r ) have Q = -§ w h i l e the others ( d , s, b) have Q = -£, 
t h i s s p e c i a l choice o f quarks charges w i l l lead t o the r i g h t 
values o f R as w i l l be seen l a t e r . The heavy quarks possess 
a new a d d i t i v e quantum number which i s named heaviness by 
H a r a r i . The new quarks c a r r y the heaviness H.=l, w h i l e the usual 
quarks have H=o. The antiquarks i n t h i s model make an H=o 
a n t i t r i p l e t together w i t h an H.= -1 SU(3) t r i p l e t . Another 
assumption of the model i s t h a t each o f these s i x quarks can come 
i n three c o l o u r s , but no coloured hadrons e x i s t . 

One of the successful p r e d i c t i o n s o f t h i s model i s the value 

o f R = (J"( c*e" >• ) I - t P r e d i c t s t h a t , below the 
threshold, f o r the production o f heavy mesons ( i . e . the energy 
domain where the heavy quarks are not e x c i t e d ) , the value o f R 
would be; 

where the c o e f f i c i e n t 3 i s due t o c o l o u r . For the values o f 
energy above the t h r e s h o l d f o r the production o f heavy mesons, 
t h i s scheme predicts the f o l l o w i n g value f o r R; 

R-i[>(|.)+3(-^=5 



100 

With the assumption t h a t the heavy mesons are produced above 
h Gev, we see t h a t these values o f R are i n good agreement w i t h 
the observed values o f R (Fig lh i n Chapter one). 

To construct the mesons out o f these quarks, we must look 
at the combinations o f (6) and (6); 

6 0 6 = (8 + 1 ) © (6 +3) © (6 + 3) © (8 + 1 ) 
p 

So f o r each 3 value, there are 36 meson states which appear i n 
SU(3) m u l t i p l e t s as f o l l o w s ; 
a- Those states made o f o r d i n a r y quarks make the usual o c t e t 
and s i n g l e t o f mesons w i t h K=o. 
b- Those states c o n t a i n i n g only one heavy quark make nine heavy 
mesonswith H = l which appear i n (6 + 3) m u l t i p l e t s o f SU(3) and 
nine other states w i t h K= -1 t h a t appear i n ( 6 + 3 ) m u l t i p l e t s o f 
SU(3). The weight diagram f o r these states are shown i n F i g (3'+). 

c- There are nine meson states made of a heavy quark and a heavy 
a n t i q u a r k , so they w i l l c a r r y H=o. These states appear i n o c t e t 
and s i n g l e t . Three o f these s t a t e s , namely the three n e u t r a l , 
non-strange vector mesons, can couple d i r e c t l y t o the photon. 
The states ^ > ̂  and 'are assigned t o be an SU(3) s i n g l e t , the 
1=omember of an o c t e t , and the 1=1 member of the same o c t e t made 
of heavy quarks and heavy antiquarks r e s p e c t i v e l y . The quark 
contents o f and are; 

The consequences o f these assignments f o r the °^ - p a r t i c l e s can be 
summarized as f o l l o w s : 
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Qt(t3+ra> 
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Fig 34- The predicted H-l.heavy mesons and their quark content. 

3 1 MAY 1977 
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1- The above i d e n t i f i c a t i o n s o f and *y" together w i t h the 
charge assignments f o r the t , b, and r quarks as i n t a b l e (21) 
lead t o the p r e d i c t i o n ; 

This i s r a t h e r comparable w i t h the corresponding experimental 
values 

p ̂ -*eV ) « 4-8 

> e e W^Kev ( l f i t i s c o n s i d e r e d a s a s i n g l e 

resonance). 
2- ^ (but n o t ^ ) can not decay t o KK or K K because i t i s 
SU(3) forbidden. The decays ^ ' > *| and r 4 " — > ^ T T + T f 
are allowed. 
3- The masses o f ^ and can be used t o give the mass 
d i f f e r e n c e s among the heavy quarks. For t and b quarks we can 
w r i t e m(t) = m(b) because o f i s o s p i n conservation. For t and r 
quarks, v/e suppose t h a t t h e r e i s a l i n e a r r e l a t i o n between meson 

/ // 

mass and quark masses, then from the quark contents o f ^ and 
we get; 

m(t) - m(r) <~> 350 Mev. 
This means t h a t the r quark i s the l i g h t e s t one among the heavy 
t , b, and r quarks which confirms t h a t l a r g e r hypercharge correspond; 
to the lower mass ( t h i s i s i n f a c t an e m p i r i c a l r u l e f o r quarks and 
baryons). 
h- The model p r e d i c t s two other states around ^ . l Gev n a m e l y + 

and " , which complete the 1=1 m u l t i p l e t . This can be 
somewhat r e l a t e d t o the recent suggestions t h a t i n f a c t the 
s t r u c t u r e i n the v i c i n i t y o f h.l Gev i s nnt a s i n g l e resonance and 
there are more than one p a r t i c l e c o n t r i b u t i n g t o the wide bump at 
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h.l Gev. 
5- I n t h i s model, a l l P-wave ^ - p a r t i c l e s are supposed t o be 
above h,l Gev, which c o n f l i c t s the p r e d i c t i o n o f charm scheme 
suggesting the o , 1 and 2 narrow mesons located somewhere 
between ^ and . But the discovery o f Y("i«q0 • 'X('i'b) 
and confirms the charm p r e d i c t i o n and t h i s i s a weak 
poi n t of the H a r a r i model. 
6- As i t v/as mentioned before, i n t h i s m o d e l , , ^ , and ^ are 
l 3 S s t a t e s , and the r a d i a l e x c i t e d states must be much 

heavier and they would be very wide. The model also p r e d i c t s 
four strange p a r t i c l e s around 3*8 Gev having quantum numbers 

•* - ̂  
l i k e K and K . I t i s also p r e d i c t e d t h a t the nonet o f 
pseudoscalar bound states o f heavy quarks and heavy antiquarks be 
around 3-*+ Gev. 
7- For the heavy mesons w i t h K = + l , i t i s supposed t h a t the l i g h t e s t 
one i s P + w i t h quark contents rs and isospin. I=o. I f we accept 
t h a t the r i s e i n R i s due t o the production o f a p a i r o f heavy 
mesons, then m(P +) must be around 1800 Mev because the r i s e i n R 
a c t u a l l y begins somewhat, below the ̂  mass. The model also 
suggests that the lowest l y i n g heavy mesons ( w i t h H = + l ) have only 
weak decay and by d e f i n i n g the charged weak cur r e n t ( i n the way 
which leads t o the absence o f a l l \ £ ^ s \ = 1 > | & H | = 1 n e u t r a l 
c u r r e n t s ) , the major decay modes o f the nine heavy mesons are 
pr e d i c t e d to be; 

a- P + decays Leptonic - J?"V ; Semileptonic - ^ f ^ K ^ K ^ > 

«° K* JL*V » e t c . nonleptonic - T\* \ > K + K °, J\ f ^ f T , n + 71°n° 
+ + b- Q decays = Both Q- and have decay modes s i m i l a r t o 

those f o r P+. The heavier may have r a d i a t i v e decay t o the 

l i g h t e r one. 
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c- Q decays = (For both Q- and ) : Semileptonic -
\<V^j K T1°| v>,KV J ^ t f , e t c . ; nonleptonic - K , K~n +> 
K°1, |<~fT +n°, KTTT+ "| ; k ° Tl"* T\" > i<° ( T 0 n O , e t c . Again the 

heavier Q can have r a d i a t i v e decay i n t o the l i g h t e r one. 

d- R + decays = Semileptonic - K°SCv ? K° T\°flV, K~ V?X*\) e t c . ; 

nonleptonic - K°^, K~n +TT f, K° IT^H0, K°R* *[ , 
— o — ° 

e- Ru decays - Both R- and R have decay modes s i m i l a r to those 
6 o 

f o r Q°. 

f - R~ decays - I t can not decay i n t o H=o mesons and i t s leading 
decays v ; i l l be i n t o R°+ Q -tv> 
g- I t i s stated t h a t the heavy mesons can be discovered, i n e + e" 
a n n i h i l a t i o n or i n n e u t r i n o r e a c t i o n s , but t h e i r discovery as 
peaks i n e + e ~ c o l l i s i o n s would be more d i f f i c u l t than f o r the 
charmed p a r t i c l e s because they w i l l have smaller production cross 
s e c t i o n since the same should, be shared among nine heavy 
mesons instead o f th r e e charmed ones. There i s no evidence 
f o r such mesons yet and t h e i r discovery would be a c r u c i a l t e s t 
o f t h i s model. 
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CONCLUSION 

The past two years since the discovery o f ^ ( v * ) at SPEAR 
and EML have been the most e x h i l a r a t i n g f o r p a r t i c l e physics i n 
many years. The number o f e x c i t i n g new dis c o v e r i e s and the 
amount of new experimental i n f o r m a t i o n are i n c r e d i b l e (at l e a s t a 
dozen t o t a l l y new hadronic states i n the mass range 1.8 Gev t o 
1+.5 Gev have been discovered w i t h i n 20 months from the discovery 
of the f i r s t ' VP- p a r t i c l e , which means t h a t every 10 days a new 
s t a t e has been discovered). Few t h e o r i s t s could r e s i s t the 
temptation t o drop t h e i r c u r r e n t problems and t o begin sketching 
out t h e i r speculations. 

Besides the discovery o f many new s t a t e s , the experiment 
shows a c l e a r t h r e s h o l d i n R (the r a t i o of the t o t a l hadron 
cross-section to the simple QED cross - s e c t i o n f o r ^ - p a i r 
p r o d u c t i o n ) , below 3.5 Gev R i s approximately constant w i t h a 
value around 2.5 while above 5 Gev i t i s again roughly constant 
but at a l e v e l approximately twice t h a t o f the lower energy 
region. This t h r e s h o l d s i g n a l s the beginning o f a new physics 
as much as the new p a r t i c l e s do. The t h e o r i s t s t r i e d t o 
con s t r u c t t h e o r e t i c a l models d e s c r i b i n g these new events. I n 
t h i s t hesis we considered some o f the t h e o r e t i c a l models suggested 
to describe the nev; p a r t i c l e s and t r i e d t o understand the problems 
associated w i t h ench case. Our conclusion i s t h a t the charm 
model, c o n t a i n i n g three o r d i n a r y u, d, s quarks together w i t h a 
new heavy quark c a r r y i n g a new quantum number charm which i s 
conserved i n strong and electromagnetic i n t e r a c t i o n s , i s an 
a t t r a c t i v e model, although there are a few problems. The 
discovery o f the narrow s t a t e at 1,865 Gev expecting to be a 
charmed meson, and more r e c e n t l y another candidate f o r charmed 
meson at I .876 Gev make t h i s model more v i a b l e . 

Another model (which seemed t o be a v i a b l e model f o r long 
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time) c a l l e d Harari's model, c o n t a i n i n g the standard l i g h t 
quark t r i p l e t ( u , d, s) together w i t h a heavy a n t i - t r i p l e t 
( t , b, r ) , appears t o be i n some t r o u b l e w i t h the recent data. 
Non of the models c o n t a i n i n g more than s i x quarks seems 
s u f f i c i e n t l y a t t r a c t i v e t o warrant the increase i n new hadron 
s t a t e s . So the most l i k e l y model which can e x p l a i n the new 
states consists o f h quarks ( u , d, s, c) each appears i n t h r e e 
colours which means t h a t the model consists o f a l t o g e t h e r 12 
quarks. 
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