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Abstract

The aim of this thesis is to show a link between solutions of Differential

equations, and the integral submanifolds of sets of forms defined on jet
bundles, The original idea behind Bécklund maps was discovered by A, V.
Bdcklund around 1875 during research into pseudospherical surfaces i.e.
surfaces of constant negative curvature,

The central idea of this thesis is the Bécklund map, which is a smooth

map of Jet bundles parameterised by the target manifold of its co-domain,

The original system of differential equations appears as a system of
integ@rability conditions for the Biécklund map,

The map induces an horizontal distribution on its domain from the

natural contact structure of its co-domain, which makes possible a geom-
etrical description in terms of a connection, called here the Bdcklund

connection;. the system of integrability conditions reappears as the van-

ishing of the curvature of this connection,

The paper by Bdcklund was very obscurely written and perhaps for that

reason was ignored for nearly a hundred years, Development of applied
mathematics, hydrodynamics, mechanics and fluid mechanics published work

raise the interest of Bdcklund maps and related topics,

Chapter I gives a brief account of Jet-Bundles (Pirani) and contact

module on Jet-Bundles,

Chapter II summarises different ways of describing integrability-

conditions associated with Biécklund maps, It also explains hash=-

operator, use of contact module and some examples,

Chapter III gives the idea of prolongation and explains with some

examples,

Chapter IV discusses the idea of conneotions associated with

Bicklund maps, given by pull back of contact module of forms on J1(M,No)

determine a carton connection., Then shows that the solution of

differential equation corresp

their connection,
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I conclude the introduction with a summary of my notation and conventionsa,
All objects and maps are assumed to be in '8; in the application they are
generally real-analytic, If f:M=$N is a map, then the domain of f is an open
set in M, not necessarily the whole of M, If M is any set thenA M denotes
the original map M—pM x M by-m)-) (mym) for every m&M, If $ is a map of
manifold then¢* is the induced map of forms and functions, If O 4s any
.collection of exterior forms then” Pmeans {¢*9/960_})de meana{dO{O 69},
1(0) means the ideal{‘zl\OlOe 9, ..a#. erated byg , where denotes A\
the exterior product and XJO means X16/o 99} where X is any vector
field and _| denotes the interior product of a vector field and a form,
Projection of a cartesian product on the i-th factor is nenoted by Bh.

The end of an example is denoted by [].
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CHAPTER 1

Qo
Let ¥ and N be & manifolds and let C (M,N) denote the

collection of'tf maps f:U—> N where U is an open set in M,
The manifold M will be considered as a space of independent

variables and N as a space ot dependant variadles.

Two functions f, g GQ(?(M,N) are said to agree to order
¥ at XEM if they have the same value and if their
derivatives up to the order X have the same value. It oan
be shown that this condition is independent Qf the

rarticular co-ordinates chosen,.

Let
m
M= R
1¥
write A . -
d= S (XX, ....... .
L "WA
3’-?(\»,)&:- I X«)
' f and g are equivalent at x 1if —t LA, W
f =30, 25 . 73 7Y . 2
B o 2 mad S ok
K4 K4
S )
Y I Tl N W R ¥l




This is a proper equivalence relation where a, b, a3 , - =~
ap range over l-- dim M. The maps f split into

equivalence classes, The equivalence class of maps which

agree with f to order K at x is called the X-jet of f at x

and denoted by jﬁf.

For to determine the elements of Jif, let x* are loocal
co-ordinates around X € M and 7 are local co-ordinates

around £(x) € N, then the elements of j%f are

e - -4
SELTw, F - Uw 7 Lo
o EE adAL I WY
I L > - ‘3‘8—(&)

el &L e
where a, b, aj, 8,y --- range over l---- dim M and u range

over l---- dim N.

In particular case let X=3 then the elements of jif will

be
. —t
@w U 1 L
)&"Z,_%-Lx.) 2 =25 TZ =9F%
’ B Y T
T%Lbc.=' 2

F o L} o
Where a, b, ¢ range over dim M, and u range over the dim of N.

Jet Bundle

The K-jet bundle of M and N denoted by JX(M,N) is the
set of all K-jets jif, with X fixed, X € M and £ € g(M,N).
Jei bundle is a differentiable manifold having the

differentiable struoture pulled back from diflerentiable




mani.olds M and WM,

Source Map

A point in J"(M¥,N) is represented by j“f for some £,
'hen the map

d: T(MH)——-)M

éx§l————+7t

is called the source map and x is called the source of fo-

Yarget Map

A point in JK(M N) is represented by J§f for some £,
Then the map

% 3-(N|ﬁ)-———a.w
Qx% — §(x)

is called the target map, and f(x) is ocallea the target of
AL

Standard Co-ordinates

Now the question arises what will be the standard

co-ordinates of J (M,N) 4,6 elements of JK(M N) when the
din M « m and dim N = n,

They will be
(x., 2,2, &y B &K)

where u ranges and sum over n and a, b, a}, a3, ===-
ranges over m.
e.g.

Let

™M

|
F& , N = R
LN
(X, x) = Z
Then for given f the elements of JI(M,N) will be
1 :
<l x, &, ?ﬂé > Eﬂé..) wWhere E = &(ﬁw,"é)
L, N1
The elementis of J2(M,N) will be




T,
<:zq:,)Lb Z, 1}2: e 'i:E. y 1;2? ’ 'Ejki_
) 'ar-\ '3”-;, XY I X

Whese
Contact Form Z = g'(‘ﬁ-.,}h_)

To give the idea of contazt form, let us consider
dim ¥ = B2 g (U3, U2) dim N « Rl = 2 and £ ; M—w N then
1-jet extension of f will be jlf ¢ M—» JL1(M,N) with the

co-ordinate presentation

g 2"
(ll.‘,u-;)%——" (u”u,,,,u.s: g—(k\,‘h.), l1= _‘_‘_ ,If 5!;-2")

r L%
then the l-form on JI(M,N) will be
aydu,+ &, 4%+ A duy+ ayduy + &g dug

where a,® are functions.of U’s,

now the position is the following
A
NNCE)

(Ua, Uy, Uy, U Ur)

*M(Q:Ua) 7
(.3,,_%) s ol @ duy - ayduy 40 duy, yacdug

— Al A Ay O (?ﬁ'—-o&uﬁ- *A\\)

((h’f) A“%)"' % ((h ) ‘h‘f)

—_—> (A)

but the contact form is

(5)6 = o sh ol .
this means 8, =« oand ag =z o

Hence

. 1"“1'5(2&‘)
d’ + aﬁb (~ 7un. =

w0ost zeneral form on Ji(M N) whose pull back is 'zero is




-a (%) du, - AN LIS +a, duy
r0 duy + 0 dug

i.e

oy (s - @Y b = () du)

6 - cl'%-—-\uix-— ?/ Aa
If e; and e, are contact forms so is U; @3AUzep, where Uy
and U, are arditrary funotions on JK(M,N); thus contact
forms comprise a module (Nelson 1967. p.l) over '6 (JK(M,N),R).
This module will be denoted by AN(M,N) or if no ambiguity

arises by and called the contact module of JX(M,¥).

Each contact module is finitely generated. In fact ./\r

Kas basis (Johnson 1962) comprising the forms given in

standard co-ordinates bdy

-ty

D= 4T - Z A
AL
G;, = Ai‘; "ﬁbc. Ao
—u e
Gl L S
(S "LK-' L'.....-- LK-' 5'--. . LK—l

These basis will be called the standard basis for.j\i{.

To see whether an ideal of differential forms is olosed

under exterior differentiation. If e is any colleotion of

forms then the exterior ideal I(6) generated by € is the

collection of finite linear combinatlonszv‘,'\e Where

are arbitrary forms, © are forms in 6, and A denotes the

exterior product. If 6 is any collection'of forms, then d@

nieans the collection of exterior derivatives {"'9‘969‘




An ideal I(®) is called closed or a differential ideal if

1(de) £ 1(8).

Theorem 1:1 Prove that 48 - axPA é%b

Proof Novw wWe know

& o daz¥ - zoMax®
aé* = dd(z%) - d%c‘_*l\ dx®
But dd(2z%) « o
therefore dé% » -42d%A dx®— @
we have to prove that
ad* 2 axPA & —y)
Now putting the value of ep in R.E.S. of ()

we got

R.H.S.
= oLx,/\LolE - 'éh_i!—")
L b A AT - AN

But  ola® I\JU- 'Eu
- OL)L N\ dk1t

changing "b" to "o" we get
; W,
= leFVNn J~1E¢,
R [
= —dZ A A5 (B)
comparing A and B we got

L.H.S. = R.H.S.

O

As we have already proved that de® = dxPA e}
%mJMﬁ’ e ﬁ-l.k ’ruu-e.

aLl;b -] GL)L A é"h

—
4\95.--5 3= AN By byea

but that d°bb1 bK 2 is not a linear combination of the

forms 1nw. Thus I(U{(,) is not closed,

10
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From the above discussion it has proved that the contact
foruns are on the jet bundles e.g. & jet bundle of order
1l i.e. ﬁa(M,N) will have a contact form &% where.u is the
dim N and BF = 47 - Z%3x° similarly J2(M,N) will have

contact forms &%, & written by

—
Hence @ » eu R eM, wessera s 9 will be the contact forms

a-~¢a '
on JX(M,¥). A

Example 1:1 The Sine- Gordon equation

V2 . S
Y

The equation is the zero set of the single function
F= 73,

on J2(M,N) where dim N w 2 = (x,y) dim N s 1 = 2

And the contact ideal 1is generated by

@- de_ 7 olx! _ 2, da™
E) = OLTE - :E" ULX- — ‘Z:gLoLH.
6. o\.“Z:-a.—'Z‘a, B At

In the classical notation the last two would be written as

db - Adx ...Sol'a

- dg - $dx - kdy
d

Example 132 The Kortwes-devries equation
.The equation may be written as
W 182 284 P2
] X D3
with dim M » 2 din N = 1
The equation is the zero set of the single function

F: = '?Ea.+.|2.1§ 75'*".2ﬂ“

on J3(M,N) and the contact ideal is geonerated by
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. a

b
9& = d%a,‘ Z-A,B Ax
' l
9‘" = AE"" & Ax"zul oAx
\ 2
Oia = d Y% —E\\Rix - -ZtalA’L

\ 2
J-Z:.a. - 7‘}&:\‘*" - }aa&*x

eu.- =

1
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CHAPTER II

Erolongation

A map from & jet bundle to another manifold induces
maps of higher jet bundles, called:prolongations, whithiin
co-ordiqates amount merely to the téking of total
derivatives, The construction is as folloWSl
Let M, N and P be manifolds and let ¢: '3— MN)— P

be a smooth map. The s.th prolongation of ﬁ?’is the

unique map
S +S ifg”
Pe:3Gam) — T NP
with the property that for every f’ € ¢ (M,R) the diagram

h-&s 'JJ.__—_+ J (“’p)

M -ms‘h/’gs(%ﬁf)

A

Commutes. If?L .'i'. 3 are loocal co-ordinates on M, N and
P respectively with the above conventions on a andw ( and A
ranging over 1, --- dim P) and if in"the standard co-ordinates
has the presentation :
(R K )
3 = ? > ) Fo, T, L S o
and £ has the presentation

e § - —’41 Q:)

2

then ¢ o:)hf ha.s the preaentation

5t o 1§~§?tn) ')
y'= POE T, -L—- ) ¢,

a
s h -ax-‘--- --?
so that j (¢ 0j"f) has the presentation

7L = ® ‘ U
A
¢ (&, s,u,) 'a&m 2y p) “é"’ “) L
A e\...ﬁ‘eu-ﬂ A 7::;’.‘;...7& )]
3= (A '*)(" 4"“’ 75""’ Ry = )
; Aty
‘A heS Gad &-ﬂ By X Byl
dy..... by = (? bg-r{,fs_ ) #b )( x, ;m,w.,,
where '
e e g— )
1t = — '__‘-—_-—- “Jv¥€l
L = %N-\'+ zb %‘{“4- zbh %“5‘—?’-:—:;-{2--\“.

f?it"kﬂ



is the total derivative or "hash aperator". It comprises
8 co-ordinate dependent collection of (diml) vector fields

defined on JL(M,H) for 1 2K.

Solution of differentisl equetion

In jet bundles, a differential equation defines a subset
of the jet bundle. It is convenient to define a system of
partial difrierential equations of order X to be a submanifold
Z of JK(M,N) which is the zero set of a finitely generated
idealliéff functions on JK(M,N). If F;, Fp -- Fq is a set
of generators, then the system of equations may be written
in terms of the co-ordinate presentations of these functions -

say in standard co-ordinates

. a —u — -
, &

3 x.,z)z-“-.........
Thus‘the %znerators define a map
F: 3 (M,N) — R?

and a solution:of the system if a map
K
F o & %- =0

Exauple 231 % The Sine-Gordon eguation

As an example of the application, consider the Sine-

Gordon equation

—Z'& = Sw ?
The function f: M -»N
by (xq, x2)|——a Z w £ (x1, x3)

is a solution of the Sine-Gordon equation if

FO‘JLS': 0

which means that
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'BL,S("UX") _ e (‘f("u"\-)) = 0 |
M, i L, X% . D

Backlund Map

A Baciklund map is a transformation of the dependent
variables in 8 system of differential equations, whereby the
first derivatives of the new variables are given in terms of
the new variables themselves as well as of the old
variables and their derivatives

Let M, N1 and N2 be € manifold, and let
¥ T(My M) X Ny T'(M, 1)
be a ¢ wap. Here M is the space ol the independent
variables N3 is the space of the old dependent variabdbles.
N2 is the space of the new dependent variables. We will
impose conditions on s}»which are appropriate for it to Ve

called a ""Bacizlund map".

The first condition on~is that the new dependent
variables - the co-ordinates on N2 - should be unaltdred by
the map. This will be the case if -y acts trivially on

Nz i-e. if

TNy G4(m,N»)
.g{aufe ] P (3
Na

com:-.utes. Here P denotes the target map.

The second condition on<y that the independent variables
i.e. the co-ordinates on M are also left unaltered by the

map~4s,, which will be the case 1l W acts trivially on M i.e, if
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3 (e, N)xNa ¢ s T'(M,N)

Pha .

JfmNy + M
comuwutes. Here Pt.means projection on the first factor

and chenotes the source map.

Now since

W Jl(l\-'!,Nl) z No —->J1(M,N2)

On the domain of W/, choose local co-ordinates
a

X~ on M &, b, ¢ «~==a @ 1 =cex din M
™ on Ny A, p e 1 ew== dim N3
y* on ¥,  A.B.C. = 1 --=- dim N,
on the co-domain of ¥, choose local co-ordinates
x® on M
fA on Ny

And standard associated co-ordinates
/A
¥y on Jl(M;NZ)

Thus the commuting of Fig. 2

yA - yA

And due to the commuting of Fig. 3

/
xanxe‘

The map \Wis fixed completely., If the co-ordinates §{ are
given az functions, say V% on Jl(M,Nl) x No. Thus under W
1 A
Now let f: M—> N, and g1 M — Ny are given with locel
presentations A
I - —U A
2= foo A 4= d
A x
Now ‘ab - ?3( )
YL

Now s.ince §% =;g
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Theref ore by putting the vale of y% in (2.3)

Ve get A A A < B
Py _ i, (;?,', oo, 25:.(_:_), 3('0 —> (&%)
X o

which, in co-ordinute-free terms would be
33 = yoli'sxg)o By —> @)
i.e. where A;Penotes diagonal nap
M—p U x U=3T1(i1,N1) x Ny —=pIl(M,N,)
In fact given\r , & map & satisfying (2.5) can exist only
if the integrability conditiona tor 1t are satisfied, These

integrability conditions, which follow from

2 2. 2t

C b
e X X o FE T
A
‘3J=c ©
Where -

We 4 e I ?\?_’5_'5;,. _Is —
- 11_ (3 + (3 .c
T LRgT BRI T T j—@9

Here ﬂ/% and its derivatives are evaluated on the arguments

exhibited in (2.4)

lgiggggg;;;jx_csnditions
There afe three different co-ordinate-free formulations
of the integrability conditions
(i) In terms of exterior ideals of differential forms
(ii) In terms of modules «f 1-forms . (pfeffians)

(i1i)In terms of wvector fields

First we develoyp the necessary wachinery, for finding

the integrability conditions. Pirst of all, the projection

PAq : Jz(g,nl) X F2 e=d T2, 1)



Lo

induces om J4(M,Ny) x Ny o naturally defined modufe
PR (M Ny) .
Next the projection
=T a2 (M, ) —» 3t (d,0Ng)
may be extended &o

~ A .- . '
Wy = %%x 1dyiys Ja(m,ﬂl) X Hg-—?Ji(M,NL) x No
!
and then
=2 2 . 1
YOTT ¢ T (MyNg) % Yo e==pT" (M,H2 )
A~ P

indvuces on J?(M,Nl) % ¥o the wmodule ‘rg Tﬁi(;,ﬁz). The

sum of these two induced .,oc’nlm
~ A
AT ol A, )+ T L, ) — @6

Let & and &) denm-e standard con uact £ orns on JZ(M,Ni) and
fet 6® denobe standard contact forms on 1(1~-',N.>) Where

no ambiguity arises, we shall denoteP&, 9 f{, 6 and
~r X 7A L

T, Y & vy &%, 5: and ot respectively, Then 6% and iy

counrise a basns I or PL (/L(M,H,)ana o comprise & basis
~ik %

ior'\T| \\’ (/L(M H‘_) lore over writing \VAb for ’ﬂi \yg here

and below the eA have the form
ﬂ
6 d;—- \\’b OL)L ._____.)(9\7)
Imitating the construction of ‘Sﬁ; cLﬂk"
"?
?&—%a—"""\'& faas -an+2&.'a-a+ —?‘-\-\‘a— aae
> (-8)

wve will prove the properties of this aperator in the form

Fal

of the theoreuuss.
11‘__}190:-"6_3'_ If w is any function on gt (M,Ny) x Nn then

* &
(T u_) Trﬁ W) A wod S .
Proof If uw is a function on J (r.a,..l)xrl.t’hen 'Tfl

Since

a &
T (M) X N — ':S"(M,N.)x N

. . . 2,
is a function on J (:.I,Hl) x Wp

Q
=]
|_l
H
@
I3 A,
o]
o
ot
3
(o]
oY)
'.J.
iy
(4}
Lo}
o
3
¢t
l. ']
o]
3=
0
Lo
m
o}

ny function which is on
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72 (My,Ny) x Ny Which is pulled back from J (N N;) x Np will

‘be equal to \r

Ydxt 4 A
OL(:TF|UU) 'DJL (‘ﬂr W L V)
Because when we difierentlate u with respect to co-ordinates

on N, we get "aa_ (TT'?)A)L wod \ﬁ;&*

which is the required result.

theorem 2.2 Prove that ~ A
~ L
NI (?w fom b Ha) %‘aa

When the differentiation is with respect to the co-ordinates
on N2

Proof

[’5¢+‘t‘m?""’ o ‘?b X

(~r )

,3 33.(“ e )4-\\1 "’JA &) )'r‘f., 5 o3P
“5" "5 (*!1‘5‘07 ‘h, 2 Q"m) ‘l’s?"“(*“ aa")

A -

—“‘?Z““tﬁ i)
‘\"\'a.?_t"_ ?'"b'\‘ Ya Yo '2;5&' 733“ b &

] A
'a; 2
-%L(‘h 7,a»)""\’v» 98 (3 )- h‘ ia'i %

o _.
~ ¥ o L6 2t

n 2. _ Ao
m*\,%}*‘i’m“\'b %“ 246 ?5%‘?3”

2
""“l’b‘\' 03 ;;?

= (%'i.,. 15 )Tb 298 ( b""n 935)'11 2"
—_— R)



333— ’ab
thereiore (A) becones
2
& “'b 2

b"\'d.) CY)

which is the required result

Theorem 2.3 If X is a vector field of the form
a A~
X=X Bp
then
xy At

a
Proot U al

contains the basis of type
e | R
8 = 42 Zt_ob(:—
/“ -—Y I C-
eb = d% b —ého&x’
A A b
and 6?‘: 3 ‘t’
- .,.. ZE, —=u -
o ~2
Now we will show that the contraction of X "9, With each
s
of the basis of t/\,a'~r is zero
0 ~a

X B0 \ AT

e

20
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e
XRa 18 | 8
= - N 0 w ? - d.,:L
L+ T et la e Ml (d2-2
':;("%?&* = ad D2y 2y )J(

¢*) Y 9«) sb, —_— B ?-s)j(d'?’z’b“f
& n y2 L H T, Tt Ta oy s
= A(Fat & S a9y
A .\/‘Q /‘k )
= X (Z,, - ?i&,) - o

Similarly g & A
X ga,,\ & A
— St 33_ A L
9, - 4 -
L X R B T R e (4
o, A A '
= X (Tw - \‘h\> =°
Theorem 2.4 o f‘,\,.w Qo X

! AN |
’Ba, ,.A 0(/6“ = 8. —— 4
~ 2 —t4 —Y .&_

va A mAAS D r R
%i,\ OtBA= (’aé ‘\@u"‘ Cn *-rb)o\x_ wed VL W
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Proof Let us tfirst take L.H.S. of (1)
Y 1 4%
= (Tt Bt g 2y %B) 1 (dxnadz )
—" A I

=t
= A,Z'q_"" Z&C %

- €3 which is the R.H.S. of )y

Now for (ii)

taking the L.H.S. of ¢(ii)

a
Dl 4F, . .
= (Lot Tt A %"‘: Ta '335)—-\ (dl_,\ b‘-)

= 475, which is R.H.S. of (11)

Similarly for (iii)

taking the L.H.S. of (1ii)
~ 3 A
Pa ) d6

B
=(° A_+ ’-_3;_2*":/2:-& ?;%:L-‘- T“—:%EB)J

Adx® A 'a;r.,,u + ’31’5 dz +9“|’b)

? 2.
(Gt i a‘**‘fa- sge)_l

(9% AP A d Py '3‘1’b danl'E-l—?‘fb o(x”/\(q
> x> ﬁ ?2-
+ 91’» A A o\a )
23°




"DJL“ ?'ﬂ.& o :a? )
A M A
+ 'a._i\'_&. Ol/z:— Z &’3‘1’5 olx.b.\..'aﬂﬁa. Ay®
=3 ed — ——, %
B 3¢ b
- Tq_ \rb dl
‘Th
== (24 472, e 2, 20, 27 Yok
2 “3x S%L “""35"’:?-3 *
A
+ (e doty 20 7 ’ah AT+ M Ay
ClLiy ck-a e, 238
A A
= - (242 T Y 4E, e f, 9 -
(( -al&*- %& ¢ ,)-_2\;‘- \r& .g:a!é AR
+ 'f"fux+z 91@,(”2 ath i tod A
J,. e ALY
A A |
=- (?_Ih-\— 2, e [ 'Z: >, +~r >, ) Ao
'a—'-é;\ '3'&' ?a@
+('a~r¢ f'z_- pACES ", 'a-ﬁl o+l ra—r& )ow
X =

= (%i ‘12, %‘:"\P )AL waod. \/L:z *.

¢
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After having this additional material which we have proved

in the form of theorems, We.come to our original problem.

i . . ' ~
A difierential equation of older K is a submanifold Z of

JK(M,Nllni N2 which is the zero set of finitely generated
ideal Zz of functions on JK(M;i!]_) x N2. Iz P, Fop ~--
Fq is a set of generators, then the system of equations may
be written in terms of the co-ordinate presentations of
these funotions - say in standard co-ordinates

| _ A
FOST i‘b >----------fi\,.......g"?’)“
L K

J~=|).......)1,.

Then the generators define a map

F: :}- (M,M)) X No— Flﬂ’
and a solution of the system is a pair of maps féC(M N1),
g€C(;m2) A. &
F O(Ji‘cxs) oAy .o
Now to find integrability conditions compare (2.5) with (2.8),

one sees that (2.5) may be written as

3,"_ ("3% “\65 ~b‘\'e.) (34"3) AM

Consequently the pair (f,g) must be the solution of the

systen

N&A
Oc Yo — fab‘\'c"o -_— @-

on JZ(M,_NI) x Np.

Now taking the exterior derivative of (2.7) we get
do¥a dx A "L‘Yb————-?(ﬂ\")
which by theorem (2.1) can be writien as
dot = B to A A das mod T (A®Y)
—> @)
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Also . _ 4
- 2 { ~R A b
Ae"a.qi \_’5: $ dbadat_ Be v AxEA ., 1
A A‘ b c A A e’
- ja\?éc,‘,bo\x_ A dn& 2, e A A dx 3
.~ A ~2 A L e
Therefore when comparing (2.11) with (2.9) one may conclude

that the system (2.9) is equivalent to

'-‘{ﬁ“? AN (M, Na) ¢ 'I(J"La’“')
—> @13)

This is the co-ordinate free formulation of the integrability

conditions in terms of ideals of differential forms.

ej; tegrebility conditions in terms of the properties of
faffian modules

~a’ ") N* NI.,\r
AL A Dasd ¢ avtonno | ™l

/ s
Thus is constructed by adding to |JqL the contractione

of forms on the left hand side of (2.12) With veotors which
~
anuihilate U/\,’*Ehen by theorem (2.4), (2.12) is

equivalent to ﬁa)‘r C_ ﬂaa ‘1’

diiyrrom equation (2.8) theorem (2.2) and equation (2.9) it
~

is seen at once the integrability conditions Z may be

characterised as the submanifold on which the distribution

~2A
A ’\ris completely integeable.

Lxample 2.2 The Sine-Gordon Equations Backlund's o:iginal map

Let dim M = 2 dim N7 = dim Np o 1

''he co-ordinates are x, y on M 1i.,e. independent variadles,

" : P
Z on Ny and 7 on No whepe Z is new dependent variabdble.
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b= 2¢ Y= 2% T 'afg
a:. d '}
Qs PE b *2
?K?a, p ‘aai’

The map originally comstructed by Backlund (1875, 1883) is

\; P+ aa S\m.(2+'2-)___..) W
== -1/ 4- $n- (:15.-7Ei>'———-4? J:
Now the integrability condition is
X 2L >
’an?a Bn'?a
ui.fierentiating d) w.&. k ‘3
'4.
=2t 4 an G (BEE) L (V*T)
739’!- 23

putting the value of {q”+ q) fromii)

S-- S+0-caas(2+2-)9~ S»..,(z 'Z-)
=S+ S»...z_s«.,.':':
"-(s hz) = (S-%z)—> W

Difierentiating di)by x we get
4

/
= - & €8 (Z-2).L 2a & (&
5, Se g s (T2) 4 (E£2)
. . 7/ .
Cz —Sa+Swz+ Sz
z . .
(S-nZ2)= = (S-z2)—>®)
From @ and (B) we conclude that
’ . V4
S;'=. S\v-;E SS = S‘v-;z
This means that if 2 satisfiesfﬁﬁg@pnd i’is related to 2
by Baciclund map i.e. by equations (i)ana (iiy then 5 is a

solution.



27

CHAPTER III

In this chapter wé will discuss the idea of
" prolongation in detail. We have already seen in the II
chapter that if we consider MyN3 and N2 be % manif olds and
1 J1(4;N1)x Np—> J1(M;N2) be a € map. If the
co-ordinates on M and N2 are unaltered i.e. to f£ix the map

. If the co-ordinates §ﬁ are given as funotions say-#% on -
stuymy) x wa.

Thus under ¥
A

A a Lt =M 5)
d = 1, (272,21
And if x, y, are co-ordinates on M and Z is co-ordinate on

N3 and 2”is co-ordinate on N> then we find the integrability

r-’& A ~* A
Pt~ D Yo
and the Baoklund map -

F=p+aa va.l-(z--l- z)
Y =Y+ B S»w-k (Z.-Z)

changes to Sine-Gordon equation. Now we shall see what

condition

hapﬁens when we get the first prolongation.
Let
Wi T8 )x Np —pTl(M; N2)

be a map for which

ATEYCA L N R LT (VTN TmmxNa _ §  TA(M,N,)

g b | o
P

Na

JA(NLMD ol o
3‘3(&\‘3 3.4 | £|'8ur¢ 3.3
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conxutes. A map
w1, 32(3;81) x Ng —> J2(M,N2)

is said to be compatible with if tge diagram
32 (ra, Na)xNs —{% J "(M,Ny)

s ™

J4(04,N4) xNa 7 J4(M,N,)

comunutes. In Fig (3.3) we have done the following
process
“%1 : J2(M-,_m1) —7 J1(M3M)
nay be extended to '
~2 2 - 7y o) 1 - .
T = TE x 1dnp ¢ J2(M39)) x Np— JL1(MzN1) x W2

A map~r1

compatible with - 1is completely determined by

the speciiication of functions*?%o on J2(M5N1) x N2

Under w1 A - 8

4 (2.2 72 )—>(3:1)
= ;E > —2

35:. \rbc_( )Z) a’ ‘_J. 3

Hence the §%° are standard co-ordinates on J2(M;N2) and the

arguments of‘P%c are standard co-ordinates on J2(M3N1) x N2.

The appropriate choice of the functions‘?ﬁc is
A ~ A

Ve = 2 (bY) — 32)
The map™! is called the first prolongation of‘. This
definition of prolongation is consistant with the definition
ol prolongation which is defined in chapter II i.e.

K(M,N)_____)P

Now the following example will clear the idea of

prolongation.
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Example 3.1:; The Sine-Gordon equations Backlund's original me
let dim M g oy dim §1 « dim N2 = 1.
The co-ordinates are x! and x¢ on M, Z on N} and y = y’on n2.

The map originally oonstructed by Backlpna is

:-; = 24 24 Sl (y+E)
3/ (i ..9. ‘X(g.;)
1= Yo =- B+ 22 Snir(3-2)

Y 'JJ(M,NQ x Ny —> J'(M, M)
(x!’ )L: Z, 2, % 3)\—_—’ Qe) JL':, .3) Jt,é:.)

‘J“(M M) X Ng — fM Na)

(K' )L,Z' z.,z& 2")2,& z ,3)_’_’
’ Al
’ (\g, 59 d> du ama;ul;
ID.?%:.’. when the
v.a.w.e of a’q..ela.’are given by equation (J3.3). We can

Now we have to finu the vaius of n" ,3

easily fina the va.ue of y“, y'a ) yaafrom the (J3.2)

relation
A ~a A
The = 9 (L \1'?_)
here A = 1 Since dim y =]
~ X
Yoo = D (bYe)
in general A _y -~ A ?—
TS A
_”éa_ ,,L+Z '2‘*-2'&%:( "\’a..aa
but . = 1 Since dim Ny = 1 4
~2 - Z <z &+ -——-"’7()
o= Tut T 92’ Yo °d

now from equation (3.1)

3bc. = \‘\'bt- and
355"‘ \\'bb’ ﬁ"’bab ‘rc_ 8o
~ Q2
dy =¥y = 21 h
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From {(A)
N oW R
e rZ22 Z2 2 +
‘79) 3! * 4 13154- :Eh '31t;¥. 1 9&q ~ri 153
‘+heref ore -
-{ 2. 24+2 2
3"-(3,,3“'2. 92"' "o

Ir (Bt 5 T G B (e dase &La&)g.a)) |

& +2a %L ()
= [ 42a6aL (J+2).4 (9,42 )-: Zé ‘e Gt taﬂ).(l- -"- &y x )

. N \
rutting the vaiue of A we ge;é’*““"‘"i‘aﬂ’)(&&‘&-',-,(ﬂv-k‘

24,426 LG D) 25+ 2ehu g (ge2) 42 2 Gkl 2)+ 2,
+(Zra ey 3+ 2))(a st G+2))

22 + 2 a Gsp(g+2) [ 2r11 ]+ o R (4 2)
2(2, + 90 3 G L (g+2) + 2 W (3+2) )

~T 2. 2
Yes= datas (L3 Tt % 5 Bt ’3)(*‘)

2 (242 8L (-
(B AR R (AR eD)E)

(-nrasisGaw)
o - B +ad et d 32) L Q- B ) EAT G L -2)(K)
— Zud (- 22l L (3-2)) (AL 6L 3-2) )

rutting the va.ue or y, we get

~ it (-2 (a2 ad ML (3-2)) -2 20 L)

“Tat (R4 L (g-2)) (D et (3-2))
=-2,-T 'Z..C-M-tu-z)[&wu:) + datp (d-2)
= 20 ZF, - 242, s (y-2) 4 AR S (3-2))

Similarly we ocan get .
~R ~& - .
dia = *fia = J,‘{' (7| \1'1"'?&\“) = S‘”‘é

up till now we have got the ldea oi iirst prolongaiion, we

can generalize tnis idea ana can f£ind the secoud, thira, ~- ==
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$ th prolongation. ror example in the above case the svcuna
proiongaiion will cousistv ot the oompoilents 3"' ’ y"a )
’ Jaaa which wWe can write
~a
3“!=‘ﬁn".al1m
~ L
dua= Yua =9, tia
~
diak = a2 = 9 v
~ L
daaz = fur =9 Y

Yuu= i = '%‘.ﬁ' - G'n'*-&' ::;{ 2,,‘%242 ?,z?,-.ﬁt W ?.;-a) (zi,faa.z,f-s{-ma)o&kgaj

Yz Zu- 20 D B)Ll ez s (32, +2)
P 3 ENE R L)L) r 30 630+ )

+Z2a 8L (42)+ (2, +2ahy La+'é))(a=~2'.5~'~t‘-2+1)-_¥
| + & Ga(3+R)

han

= Bur@e 2) -0z Ry Ger) e s e )
FE (e lirz)+ T8 -2 6 R (r2)
+ 2,‘(.. LR L(9+2)- & W .lita+2-))

FZ, (Reey GrE))+ 23 61 () S L (94)

puiting the vaiue of “y,", we geot

= 2, 402+ 08L G+2))(-a B L (9 B)+ TGS +‘z=))

"
£ 2 (s L3+ )+ BCs (4 E)- 28 KL+ 2))
*27(CeR ) a5 A Ly+%)

t 2, (a0 63 L (42)) 4+ 2P (342t (9+2)

3m = ‘Tlu:zm*'.z‘u("“"“(?*’z)— ba* RMy+ Z))
+% (-4 wklita+z))+ 2, (.zm Co-s-l,-_(}rz—»
+4e i (g2) (alysrz)

similarly we can iind the other components.


http://pj.oio.iga

ixauple 5.2 uwhe difterential equation generated by the
single function

F'-'é 2“, +_E'L_‘ 62' — Ly
ie called the potential equation ror the sorteweg-dewries
esquation because its first prolongation comprises Jj)and
F"" znm"" Zl&"' |3~Z|.zu"“'°'(°” }y,
Fa= Za+ Ern-2F o)

ana giy \a) is just the korteweg-aewries equation for -15'.

A Backlund map whose integgability oondition is the
rorteweg-devries potential equation i)was discovered by

wahlquist and sstabrook (1973).

Let dim M « 2 dim 111 w dim No = 1
the co-ordinates are x! and x2 on M, Z on N1 and y = y' on nj.

The map ciscovered by wWwahlquist and kstabrook is

Y T (M, ) % N ———s T(M,N)

by
1
§i= %) = -2 - ak+ (y-2) 7
dv = hlt)s =2+ Y ybraez-aet 2052, v 502y |t
-+ Z" (3-%)
The first prolongation is =

e e ]

aﬂ— =\ ‘5:—'1"5: .-z' K2 7—(3—2)(“%-'} 8,(_32_';_& ?',_-}- 'E”Ti‘t)
+3(2-2)%, + 8(y-2Y(2-2ak)

~L
dur Yooz D= ~F, 8L 123 2 t+¢, 3-2)
T -2+ (B @3- 4t)r-2))
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+ & (. h
i-az,\» I ‘_q(— P2t - 26 (5-2) 4 2)+2,(3-®)
+2.,(a—2)& ]

sinilarly we can find the second prolongation and can find

the components 3m> y"a, yn.l. , 71\-\' as follows
J : ~ L
m = “l’m = ’Bl ‘rll
P3N
aua = HFha = 0\ ha

3|-19~ = ax = 51\—‘1’&

p o1
;4&& = a2k = 9,
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CHAPTER IV

Connections

In this chapter there are two related formulations of
Baoxlund maps in terms of aomnmections. We begin bdy
reproducing Ehresmann's definition of a connection, more or
less as expounded by R. Hermann (1975 Ch. 4). This version
is convenient because in the applications it is natural to
introduce the connection first and the structure group
afterwvards, so that one can not begin, as is usual in most
standard treatments by defining the connection on a

principal bundle.

Let E and ¥ be (smooth) manifolds and Mt E—>N e
sur jective map of maximal rank. We shall give conditions
for E = (E, M, 17 ) to be a local product fibre space, and
define a connection to be an horizontal distridbution on E.
M is the space of independent variables (spare-time) and
E is either M x Np or the product (J(¥jN1) x N2 where
T(¥3¥1) is the jet bundle of infinite order defined below.
For the present, however, E is assumed to be finite-

dimensional.

For every\‘\le E, assumem’whas neighbourhood W 4."
there exists a diffeomorphtsn.
-1
Bl: WxfF—— (W) ——> &
where F is a fixed manifold. Then E = (E;M; 77 ) is called
a local product fibre sqffe with typical fibre F. For

overy X EM the fibdre rﬂ'(l)is diffeomornhic to F.

A vector ¥\ tangent to E at‘, is oalled vertical if it is
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tangent to the fibre through 1 i.e. 1r'|Tx=o The sub-
space of vertical vectors at ‘bis denoted by yvﬁ A
vector field is ocalled vertical if it is vertical at each

point.

If % are local co-ordinates on M and y* are local
co-ordinates on F, then'ﬁ)&and PTL'J may be chosen as local
co-ordinates on E, which will be abbreviated to x* and yA
and called adapted co-ordinates. It follows that

-ﬁ; ( ,‘> a.nd T[’ (-s- A)e.o so that every vertical

vector field has the co-ordina.te presentation ? ="A >
A T

where S are functions on E.

A distribution D on E is an asaignment-of a aubbpaoe
D’»EC. TVVE at aaolh\LéE. We shall be concerned only
with regular distributions, for which dim D:\‘,E has a fixed
value, independent of‘v , denoted dim D. More over we
shall suppose that all the distriﬁutiona which arise are
dif erentiable, which means that each “,éE has a
neighbourhood W in whioh there are dim D differentiable
vector ifields spanning DS E for whioch gé W, If X is a
vector field on E and x(\‘,) € D»E for ea.ch"b then we can
say that X belongs to D, A distribution D is ocalled
invalutive if [x, Y} belongs to D whenever X and Y belong
to D. Ifi. E’_-)E is the natural 1njeotion of a
submanifold E'of B and if L (Ts\' ?) q(E for every tbe 5‘
then E is called an intezral manifold of D. A distribution
D on E is called integrable if an integral manifold of D
passes through every point of E. Frobenius's theorem
asserts that a distribution is integrable i1f and only if 1t

is involutive (Bricknell and Clark 1970).
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An horizontal distridbution H on E is a distridution

which is complementary to the vertical in .the sense that

for each W é E

TWE = VE ® 4, B

W Y i
if follows that
dim Hw E w dim M
and that H’ g nv,v B =
If H is a given Horizontal distridbution on E than a: veotor
X tangent to E at any point‘b has & unique decomposition
X= hxs+ vx — - 2)

where {\xe H'VB and 1P X € v\.\!

A vector X at \vis called horizontal if 1t lies in H E

In adapted local co-ordinates, horizontal vectors have a

basis of the form A

Ha,""' %;_a."" o JA—_——’G'B)

where PGL are functions on E which determine and are

determined Yy H. In these co-ordinatee the deoomposition

(‘1 2) of X = S 3,‘_4_4-% A is given by putting the

value of ?q'irom (4.3)

(Ha. ra, pan)+s ?3
sm(s—sm%-—*"”

A vector field X is called horizontal if it belongs to H.
Thus an horizontal vector field is of form
a

Q.
where S are functions on E. A ourve is called

horizontal if its tangent vector at each point is horizontal.

The 1-forms which annihilate and are annihilated by,
horizontal vectors are called vertical forms. The vertical

&
forms comprise a C(E) module
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»

f-{oen®) slomo, wreh |ouo

Theorem 4.1 To prove that vertical forms has a local

basis in adapted co-ocrdinates of the fornm
| A , A A a
6 =4y - o dr—> &7
Proof Nzw the Al-form can ;:‘e written as
b
- df X
6 = Ag d + BbA
But since A% is non singular matrix therefore we can write
hodfy clad |
=4+ C d—n A
But since there are vertical forms, and by definition of

vertical [ orms
A .
H_.le =0 —m>» 5
where H is horizontal vectors, and horizonfal vectors have
the basis of the form
M= 2, +Ta 2oa

A

So putting the vaiue of H and e in i)we get

2 N2 6 B .}
(’Bn“ﬁn W‘)J (AJ + C, dx ) = o
& B
C = B
a,-l'l'; -° c‘¢.=_P¢B
Now putting the vaiue of cg in 'A' we get
A A
= 0‘- - A o(.x_k
6= 48 - T

where [z' are functions intrecduceced in{4.3).

The C(E)-bilinear map
\J/I,: ‘T;» E )k—T:v & —> \/ﬁ,‘E?
(X1, %) —— vl bx,, h0] — &-8)

is called the curvature of H at 7b . The bilinearity may
be verified by the computation
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B, W52 o v (5 [hns ]l xdslen)
= v ‘-e\xl) e\x ’X

where S is any function on E.

It follows from Frobenius's theorem that an horizontal

distribution is integrable if and only if its curvature

vanishes.

Theorem 4.2 To prove that

Vi (Ha, Hl,) = '-/12_‘, 235 | —> 4-9)

® ' A B
\/\ab'-' (%La."' rf %‘ah) \_E"' (':';',:b"' R :;-5.4)\-‘4_"?@-"7

and which are ocalled the components of curvature teusor.

\/\'(Ha.,l-h,)- g [Hq, (-l;]
Now = q}-‘L‘an‘+-‘Ta' ';af‘) |E;;j ‘15 3a£3
= T g aaﬂ’ B+ T8 %5“]

(e B (B )~ (B T8 )

= C
égssub*— :%lz_ 3 ‘7L ﬁ“33¢‘ r;. _—}? 4’r;-r; Aa?
akE > ol 'au*ax"":_ga%- 4= IE 9yn;u$
T 2980 TL f:? 511‘275 r:i _[;%’ %%‘/'
/.3 A D A % _f{f
?‘a\;_\_ fa rb ) cTAS ar& +R? 19“6> %7-4
Now changing (A to B) and (B to A) in Zn:Lterm ?
A )
18 + 1 far" '3\1 + F =8
( S,e a ?7 e aﬁ 9
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-
- | (e R B - (B TV 5a)TE) 356

—% &)
\/\l (Hq, Hb) ‘/La.b -336

" where ‘/\J is given by "B"

Hence

If X is tangent to M at x, the horizontal 1ift of X
to any *»im\'wéir'#s the unique horizontal vector-;\'eﬂ':"“'
T X
If in local co-ordinates a
X = X0

then from (4.3)
X o % Ao
X = xtn 2.+ Ta ,aan)_,——} . 1)

If Y is a ouz,'ve through x(M the horizonte.l 1if¢ of y

through“/eTr(x.)is the unigue horizontal curve Y through

‘l, such that "‘To-—y— _ Y

If it exists, is said to be parallel transported along

——

\[ to other points of \/

If every curve on M has an horizontal'iift through each
point above it, the horizontal distridution is called a
connection on E. From now on we assume that all the
horizontal distributions introduced are oonnectiona.-

A
The functions [:L introduced in (4.3) are in this case

called the connection co-efiicients.

e L

co-ordinates is ks Y({—)and that of )f is f\-—;(Y({-) Y(t))

then

Corollary 4.1 If {he presentation of ){ in local
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- Yeb & 1)
Tk V (Y(H ) ch) ‘“ ___—-;m 13)

Proof

., o
Y b)) = Yt) (By definition)

Now if X& E then the components of
a
7 (X ?—— ) a. )
o 2
= x -—-— -
2% r’* a"‘

Now in this case

a

b B LY

= .‘—‘“' (ch)) Y((’)) 072"
The equations (4.12) and (4.13) are called the equations

of parallel transport,

If 6"- UL—,E: is a local section of.“‘r, u. an open set
in M, then the co-variant derivative ‘%gg of ér with

respect to a vector X tangent to u at x is defined by

Vx6 = V(&eX) —> (4.14)
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) A
It X = ?’g and  £(X)= ()?,5@;)._;(4.15)
x
then (v 6) g

where a |
(V 6) X (95 ra. (x, 6()!)))-——) (4.16)
E?‘: M XF = )
a- \).......g.. 3 OLWM

A=l,............., Ao F

Pu . lLX F -———""9_"—(“-)
H = r\ﬂ- 73

Now

X= X+ hX
Px = X- hx

- (€28 %)- (35
7_(56_‘13)2 —> (M)

Now

6 : u._--?Ei

X \-———)(X)\J>
A
= 6
5,‘7\ ()( g,,_ )
a A

Now putting the value of S and g in "A®

we get
V(6xr)= (26X - [ x)

The section 618 called integrable if-?(‘-.:for all vector

fields X tangent to U. It is no more than a restatement
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of Ferobenius's theorem to remark that there is an integrabdle
(l1ocal) section through each point if and only if the

curvature vanishes,

In the cases of interest where the oonnection will be
associated with a Backlund nap, it may be possible to endow
the local product fibre space with some additional structure.
(1) E nmay be a (difierentiable) fibre bundle, with (Lie)
structure group(S acting on the Fibre P; in this case the
Lie algebra of 6 will be denotedg and the Lie algebdbra of
vector fields on F generating the.action of (5 will be
denoted &' F.

(2) The fibre bundle E may be & veotor bundle, with P a
vector space, 65 a subgroup of the group of linear

transf ornations <5[_6F)and HE a linear connection.

If E is & fibre bundle, the action of (9 must be
compatible with the diffeomorphisms (4.1) which means that

if ot
PL: WXF — (W)

el PN
V4 Ve
/’ .
are two such diifeomorphisms, with U.ﬂu, not empty, and if

for each

x eunu
Px: F——T00 by 4+ Pu (0,3)
P{: F——T (0 &5 Jr> PCC0Y)

th
en Px‘) Ex . F'———-) F?
is an action of somea é@ on F, depending smoothly on X.
n

The possidbility of endowing E with the structure of a
fibre bundle is of interest here only if the action of (B

is compatible also with parallel transport'by the connection
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H. This means that parallel transport, suitably composed
with the diifeomorphisms (4.1) should yield an a.otion of 5.
Explicitly let x; and Xo be points of Ia,y a curve jo:.ning
them with Y({')gx. and Y((’)a)( For each W é'“'(’\) let
Y-;‘/ be the horizontal 1ift of Y through®|, . Then the

parallel transport along Y is given by

Let U; and U2 be neighbourhoods of x1 and Xg respectively

for which diffeomorphisms (4 1) are defined and let Py and

P, be the ma.ps Pi: F____,,Tl'(x,) by 3\__, Pu.( pJ)implies that

Pao Tyo P : F—> Fe— & 19
is an action OfaeGOH F. If this is the case, H is

sometines called aG-oonneotio_n.

If His & (p —connection then (4.18) imposes
conditions on the connecotion co efficients, for it implies

that to each curve X through x€M there is a ourvoa 6
4.

Yoy = P Yo, Sy ¥ s (4.19)
where s)— © the ldentity of G Y20t Yoy = P 063)

is any point in 'n'c;,)

Theorem 4.4 To prove that if f is a function on E, then

differentiating it along Y ylelds

Y Wy g
r; (% z) = W) Xald)

where L\,& are functions depending on the choice of Y
A

and X ° a.re basis for 6 F.

Proof Now

T Rl W), HO9)
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But we know

T a A

Y = (‘?({—), Yu-)\"u)
Yu—> ¥ Yeor o 2 25

- I
Lo - Yoo (B + T8 2, ¥,

Now when 5
?((:_) = Pu (V&) 35L6) %)

Ay, b+ S LB — i
—ze = ¥ 5t Hy W '

Equating (1yand (2)we get

o
2?5 3"
Since flare baa of GF .
% = |
It followa that o is non-singular materix. Then

there exist inverse matorix XA'
¥nltiply both sides of (A) with )(P we get

X Y Ta = Wy X, X3 = Wy

"y Ay,

& e, O~

lA)xf = jf' Lm&a/ iy.cfi)
Where '

- (Td %)

Now putting the vaiue of (B) in _(A) we get

A (P
Y\" Axa

RA = L:éLL xeL )

Now to sum up: if now E a (E‘, M,-“.,F, (G, H) is a fibre
bundle with typical fibre F structural group (;, and

(; -conunection H, then in adapted co-ordinates x* (from the
base) and yA (from the fibre) a basis for horizontal vector
fields has the iorm

5 A
Ho= St (o AL —'gﬂ —> (4 21)
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where A

- X 2
ok
is a basis for the lie algebra GF and the wa’ are (lifted

trom) functions on the base M. The module H of vertical

forms is ienerated by

dy?_ )&L;)w(n____) (4.23)

where ol °L

are l-forus which may also be considered to be lifted from

M.
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Theorem 4.5 To prove that if

Hy = 2=+ & oo x:(p %‘ﬁ
rk} A 0
where xoL - Xol 75‘9[}

theBn the components o‘fB’the curw::turep teyr.zsorpar-e
a b
ko= (¥ |ak- 2o G e C ) Xy

where CY are the structure constants of

—> (4.25)

16)

a
i A Pb.?..
Soe P[22 GRG0 50t 4 % el

w Vlad e i? BB o5
2 ? S
=V {(%}-‘. wa, ng 753") 'B——Ebl+ wb XP 933)

6 % GL A ra

ok BB, Pox® N\ PBL-\

W w 2. +Wix
+w“’x°"xc ?y T "'aa;' 3® ° P’JBPIB

A
v L A * QR 2% o, g
%F . nw W opw 9TA L WXy
'”I;&I« o & 'v?";; ok 3" & Y
BB 2% {.awsw?x Ll
YRR S b P <3}°1x*+ "“ja? L

w"‘f 2%

= 93, W X L 4+ D X9

v{"f&x)’ 2P 5 Y 9yt ‘”:\’ o %gé




-( B'ax% _ ngaq;é) 2.5

L o JEsk _oul y B'a!rb_\_w w‘;‘_x&,*ﬂ%

Now putting thil value in (A) we get
o™ 9!—" \

Now I?(J‘, )(?fx (Lw*.?’)(\(

therefore
5 Y N
JU, = dwp _ WLy G W d )X
ab -a,dk. E;ZL o b ‘3
Pheore. 4.5 To prove that
c B 8
aLe’L..xY [AwYe i C P“”\‘“’ | (ed6®)

de" -\ JL LEA AL > 426

Proof

A ala x%k(:’) UJ¢L;?
&9 - _t&x&(a)/\wcn)-\— A L) %w(k)}
[x z)o‘.WLn)"wLx)A?‘é&%)Aa




)
- ‘.){.(‘a)dcjcx)- :;u)/\w%*) ?x .‘ X (35]

faa A A
= - \'.x AS iy - -li-wtn)/\wvw Qxﬁ 9;;;_ >§ "’.:;g)]

- - {xﬂde(x) Ji w(m/\ wPoo AXY]

Ao Tdu s & daat
= —)\de.w -'-.-t{Cle/\. ]

for the (diypart

dd' = - xY‘_AwY+l— Coqi SA wh }

= "XY\_?:’" LS A +J§¢'-,L w oll/\w?'dn}
- A 1 C 3 9;"..7“’ e doende

= = L/Lau,d’t A dx®

After giving the idea of connection our prublem is this,
that how a conﬁection may be associated to a Backlund map.
(g m) x Ny, — Jl(ayN,)
induces on Jh(M,Nl)x No & module of l-forms\‘t\,\];(m,‘ No)-
The pull back of the contact module on JI(M, N2). The forms
of this module may be chosen as vertical forms defining a
connection on the product space (..Th(M,Nl) x No, Jh(M;_Nl) PAI)
i e, in this case -
5 e (IBOMyNy) x Wy, IB(WyNy), ¥ q)
where & o Jh(M;Nl) z Np
M oa TR(M,N)) andTl « P4,
P = N,

we call this con ection a B'a:cl-:lund connection, The
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integrability conditions for the Backlund map were the
vanishing of the ourvature of the Backlund connection.

The vanishing of this curvature imposes additional oonditions
which one could not expect to satisfy. Alternatively

one might attempt to eonstructu%\oonnaotion with module of
vertical forms chosen to be JL”;n (.rh(ra;_wl) x Na, M, dv)
or something of that kind, dut ‘qs not quite large
enough for this purpose, because of the intervention of the

A,
highest derivatives of the independent variabdle ;E.

To overcome the first difficulty one may eliminate the
additional conditions by constructing sections of
(Jh(miul) x No, M x ﬁg, dxid) namely jétn of maps from M to
Nj; thus connecting thé'i?band their deriva%ivea into
functions on the bdase M. To overcome the seoond difficulty,
one may work with the projective limit J(M3;N3) x N2, where
J(i3N1) is the jet bundle of infinite order; so that thers
is no longer any highest derivative. Ve will discuss these

two procedures one by one.

First of all supnrose that “W; Jh(MgNl) x Nz-—?(Jl(M,Nz)

—» (4.27) is an ordinary Backlund map with integrability

condition N‘H-' A ﬂk.{-\ A
’ac_ \rb - ‘Db "'rc. =e

If f: M--»N, then one can agssociate a map
A, 0 f
,.3({' =4 §x ui,;; MR N TMIIN, 5 (4.29)
Now o i
3 (M, N)x Ny L_——->P"" J (n,N)

_ * '
Any contaot foru 1n?£ JQAM,N}) is annihilated by the map

! . ’ xR K Ny
- . Therel ure the molule - (/L on
3 S ICE
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~y X & | .
J°(M, Na) and henoce Jevf- \-r (/L(M;Ns)ie also on J°(MgN2)
It has a basis
oh- J-J - Y"af A
A
\-\ “ra.° J ‘(’

Because here the position 1s this

MXN, = TIM, H)—s T e, 1Y Ma —> Ttm, Na)

This module may be chogen as & module of vertical forms

-3 (4.30)

defining an horizontal distridbution Hye ,‘P on the trivial
fibre bundle E &« (J°(M§1'l2), M, oL). ‘This horizontal
distribution depends on the ochoice of both the Baoklund
map \1’ and the map £. If the rf factorize as in (4‘.20)
then the L may be identitied with members of a sudbasset of
a bagis for a lie algebra Qﬂ\?f vector fields acting on Njp,
which may be supposed to be the lie algebra of a lie group (p
which is the st;ucture group of the fibre bundle.

E=(TMyM,d M, 65 He o)
It is not justified to suppose that the lwhich actually
occur in ‘-‘3 are themselves a basis ior GN . Since some
of the t:I;Lmight vanish. v

Since the £ are constructed from the\l’: of the
Backlund map, according to (4.30) by substituting for the

— =Y

jet bundle variables 2‘, Za. ~~ = without altering the yA,
it follows that if ther'g factorize for a general £, then
the ¥4 factorize, in the form

AS ~ b"""/"‘- A
Ya = * ( Zn.," - >X'L‘.a) _4(4.31)

where LJtare some functions pulled back byPQ_ from

Jh(}.'I5N1). Conversely, if the \Pﬁ factorize as in (4.351) so
. A
trivially do the [“a .
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To. =

then the in

. To prove that if

P G 8
B (x5 TR,

tegrability conditions

~h+t A ~h4) A

e o

of the Back

~ o\ ’k
L/\'C_bx* = 0

Gty ~d Btle Ll .
\ﬁ’&.: 24 -vb“ ,ba-ru + Ych &’f__% (4.33)

where

4ﬁ

where )&Lare among the basis vectors of £§

A

4
Proof
A
Similarly

= Oy % =°

lund map, take the form

A
) X L)

~d —U U
Yo = <Lidb & 7;L)

C
\‘EL = O%L )(Y'(a:>

we have already proved that

~2 b+

Q. =

Cc
rzf+)

‘:Dk? >

% &+4 C

2
De %%5"

A
'TBB.r’*r \*1’ %;;B»

Now the ntegrability oondition is

putting the

_ <:‘%;L-+’
. gfﬂ\h,

putting the

“PL f\‘ +|
C.) Y - Q’Q

#* O+ p

~f,_ ‘\’b'a“r"'

i '3_7*; -2,
I

va.lues of S

T
v

C _ are siructure constants of GN
2

while the

L
) X )

¥ 0
b + \11; 1%;15

)t

38»

% (wPXP)-\- :l):r Xc; %&(wbls)ﬁp)
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The integrability condition for the systém of differential
equation Z is the vanishing of the kawhich are functions
on Jh(M,giz. Moreover the ourvature of the connection

He ¥ 1is J&'&* (/i:band so the curvature vanishes if and
only if f is a solution of the integrability condition fmr*—.
The vanishing of the curvature is necessary and sufliicient

for the integrability of the connection, in whioch case there

exist naps g3 M =»No whose graphs are looal seotions

gg M_'—?T(Ml‘)-)(4 34) satisfying {é QA

If{ in local co-ordinates, g is given by

= 3 Arxb) — (4.35)

then ?33;(',“' r“_’ (L) where Fa is given by (4.30).

As an application of the ideas developed in this seotion
we describe the oconstruction of linear scattering equations

with the help of a Baoklund map.

suppose that & Backlund map 1 .Th(M, N1) x N2'—7-71(M,N2)
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is a solution of the Backlund problem for a system Z of
difierential equations and that the functions #Pé defining!*!
factorize as in (4.31) so that Y+ defines a.G -connection
for some lie group c; , not necessarily unique. Then by
Ado's theorem (Jacobsen 1962 p. 202), the Lie algebra 45’ of
(; admits a faithful linear representation, so that if the
repregsentation defined by (4.31) is not already linear, it
may be explained by a linear one. Thus there always exists
a manifold N, and another ﬁgcklund map

1 BN x Ny —2 JL(MyN2) —> (4.36)

deflned by functiona

fo= Wy X2

Where )<J. satiafying the same commutation.relation as the
)( in (4 51) but being oi the forn

%= TEa §° —> WIT)
where y are local co-ordinates on N2 and TE are oconstants,
To circumvent the second difiiculty we work with the
projective limit J(MjN;) x Np where J(M3N1) is the jet

bundle of infinite order. The procedure is as follows.

The jet bundle of infinite order J(MyN) is the projective
limit (also called the inverse 1limit) (Lange 1965 p.55) of
the bundles Jk(M,N), defined aaogollows:

Consider the infinite product II Jk(M;N), whose elements

are sequences g = (go . g!)"’&z::")w“h SKG (M5 ¥).

Then J(MgN) is the subset consisting of sequences related

by the natural projection:

K
PIGA DT i(f,,s,,... .o-")é'“- J(M,ﬂ)\'\'g § i

for ali ¥k and all Q_4 K
Sy

Two functions define the same point of U(M3N) 1if they
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have the same derivative about a point of M, then there is
a natural projection
for every ¥, by

(Cor b ome i) > €

with the property that

K-7/ L ‘ITL o TK. = e
:Y(M,H)-—-;» T et M) —2, 3 (M)
The image ofA -ﬁ- X Ax*x. x]“%x.... in _\TJ (",N) lies in
J(My¥) and defines the iniinite jet j f of any £( c(v N).
T'he ideas of differentiable funotion, vector field, form and

8o on generalize straight forwardly.

A funoction £f on J(M,N) is differentiadle if for some K

there is a dififerentiable function £y on Jk(M,H) such that

§ = % 0T

Yore generally a map $: J(M,N) —> P into a manifold P is
difrerentiable if for some K there is a difierentiable map
hos e Sk o= e T
A curve Yat ge J(M,N) is a map
‘ ‘bft :E mcr— :}2:54)’4)

Where I is an open interval of H, Y(o)-.—.. S , and &o}‘

is a dif:erentiable (real) function for every differentiable
function £ on J(M N). TWo curves Y| e.ndY at S are
equivalent if ( ) = (_g. )

o S (Fo¥di, = Hene,

for every difi:erentiable f. A tangent vector X at j; is

an equivalence class of curves a} jg.

{r £ is any (ditgferentiable) funotion on .1(M,N) then X{f
neans °L OY where is any curve 1n the
T (5o ¥y more Y

equivalence olass defining X.. But there 1s a function fk
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on Jk(m N) for some k such that f « kaTk so that

1\% ({. °Tr°Y) ,which is the derivative of fiy along the

curve T-OY aw JL((M 0.

More over, as is easily seen, this derivative is
independent of the choice of Y in the equivalence class,

and so by the usual arguments may be written K

XE =8 "’"K e + § ?5.-%&+---—--+S ,, FE —>(4.38)

where all the partial derivatives of f are evaluated at'n;(gy

if X is a vector field on J(¥,N) and fk is any function
on J \" H) then for some {(K))Kthere is a :unotiongt on

(M,N) such that X(+K° K) 3Q°TQ- y 80 that the

action of x on the fK is gi

R
YO (O W oW VR WL A

Q_AA Q.-—--qK
where i o 8, all functions on M,N
£, 5, S iq. . (M, )

independent of the choice of Iy. thus the action of X may
be specii ied oy wr:j.t;:l.ug/‘l ——
2 bt §

2__ +-
52+ §
X= S > g 22 a ﬁq'./‘t Gy - Ay 9%‘"“”
wihere ali the co-ei’x‘ioients?, S -...are airierentiable
)

tunctions vn JIM,N).,

et i denote the coLiection orf veotor fielus on J(M,N).
0 .
ihen a p-form on J(M,N) 18 a skew-gyummetric C(J(M,n)) -

maltilinear map

XAKR oo X)(——_"" E(TCM)N))

rhus x_) (J may be defined in the usual way.

if X 18 a vector atféj(n N) then the vector—n_* X(g)
atT&(&)é'&'}‘w,N} is delined by('r x)-S—K=, )((-S-Ko \<>
ror all _SK e C C‘J‘ CM;”)>
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x
if W, is a p~form on Jk\M,H) then ‘I Wy is & p-form on
K

J(M,n) defined pointwise by

(TFK NK) ()(,,-----, X\’) = Wi (Tr‘(" X,)-_...)'ﬂ‘:* x\’)

vhus the contuct mouule\/l(M,N) is the moouiv or 1l-forms

o0 K
S T, UM, ).
K=o ‘<

All these definitions generalize in a rather obvious way

N .
to J(1,N;) X N2. VFor example if TrK—.-‘TK* \d where 1d

on J(M,¥) generated by

is the identity map of N5, then a difirerentiable function
- ~J
for J(H,N))x Ny is one of the form -g-Ko _lTk where fx is a

dif ferentiable funotion on Jk(M,Nl) X No.

A vector £ at Sé.)(?e!,nl) x ¥Wp 18 a derivationof
diflerentiable tunctions, the components or a vector may be
speciried as in (4.58) above, with the aduition of a term
oL the 1.'orm'”\, %EA (Where yA are local co-ordinates ouvn iNp)
and projections of vectors and pulli backs of {orms are
uetined vy trifiing moaifications of the above derinitions.
vhan it ‘k: Jh\m,ﬁl) X NY =P dl\M,mg) is a Backlunu map,

a modudle of l-formsL/Q,on J{M,n) 1s generated by '

ok
a

A streight {orward oomputation shows that
K= Q_N
it XJt/Lgc then X is a vector tield of the form X-_=.§ ga\_
wuere are luuctions on J(M,N) and
~ S —A —t ) .
BT o B30t SR Tt R T
a =T Yo 297 7 Fa TE" I
then by extending the uefinition of a cunnection to
iniinite jet bunuies, w¢ can uerine a connection H«y on
(J(M,N7) x Ny, P4;°|' ,M) with ﬂaa’as basis tor horizontal
(-]
vector rielas and the 1orms in L/Q;ras vertical rorms.

[~ ]
Since for any £ § ¢ (J(MaN))
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~ ~ ~ OV ~ N
={’a¢,?ﬂ 5 =(’2¢9b - b ‘al*)f;
i~ P Y El-
"'(ga.ﬂg\‘&”;bvev“\'a gaa
It is natural to identify (the vertiocal part of)
~ X ,
’adu;ia;l as the ourvature of this connection. ‘'he

vanlsning of the curvature is then exactly the system oi

integrability conditions for the sBaeklund nap.
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