Durham E-Theses

Bäoklund haps and related connections

Kalim, Sheikh Muhammad

How to cite:
Kalim, Sheikh Muhammad (1979) Bäoklund haps and related connections, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8996/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.
TO MY MOTHER
Bäcklund Maps and Related Connections

by

Sheikh Muhammad Kalim, M.Sc(Punjab)

A thesis presented for the degree of
Master of Science

Mathematics Department
University of Durham
1979

The copyright of this thesis rests with the author.
No quotation from it should be published without
his prior written consent and information derived
from it should be acknowledged.
Abstract

The aim of this thesis is to show a link between solutions of Differential equations, and the integral submanifolds of sets of forms defined on jet bundles. The original idea behind Bäcklund maps was discovered by A. V. Bäcklund around 1875 during research into pseudospherical surfaces i.e. surfaces of constant negative curvature.

The central idea of this thesis is the Bäcklund map, which is a smooth map of jet bundles parameterised by the target manifold of its co-domain. The original system of differential equations appears as a system of integrability conditions for the Bäcklund map.

The map induces an horizontal distribution on its domain from the natural contact structure of its co-domain, which makes possible a geometrical description in terms of a connection, called here the Bäcklund connection; the system of integrability conditions reappears as the vanishing of the curvature of this connection.

The paper by Bäcklund was very obscurely written and perhaps for that reason was ignored for nearly a hundred years. Development of applied mathematics, hydrodynamics, mechanics and fluid mechanics published work raise the interest of Bäcklund maps and related topics.

Chapter I gives a brief account of Jet-Bundles (Pirani) and contact module on Jet-Bundles.

Chapter II summarises different ways of describing integrability conditions associated with Bäcklund maps. It also explains hash-operator, use of contact module and some examples.

Chapter III gives the idea of prolongation and explains with some examples.

Chapter IV discusses the idea of connections associated with Bäcklund maps, given by pull back of contact module of forms on $J^1(M,N_2)$ determine a carton connection. Then shows that the solution of differential equation corresponds to the zeros of curvature tensor of their connection.
I conclude the introduction with a summary of my notation and conventions. All objects and maps are assumed to be in \(\mathcal{O} \); in the application they are generally real-analytic. If \(f : M \to N \) is a map, then the domain of \(f \) is an open set in \(M \), not necessarily the whole of \(M \). If \(M \) is any set then \(\Delta_M \) denotes the original map \(M \to M \times M \) by \(m \to (m,m) \) for every \(m \in M \). If \(\phi \) is a map of manifold then \(\phi^* \) is the induced map of forms and functions. If \(\Theta \) is any collection of exterior forms then \(\phi^* \Theta \) means \(\{ \phi^* \theta \mid \theta \in \Theta \} \), \(d \Theta \) means \(\{ d \theta \mid \theta \in \Theta \} \), \(I(\Theta) \) means the ideal \(\{ \theta \wedge \phi^* \theta \mid \theta \in \Theta \} \) generated by \(\Theta \), where \(\wedge \) denotes the exterior product and \(\mathcal{X} \mathcal{O} = \{ X \theta \mid \theta \in \Theta \} \) where \(X \) is any vector field and \(\mathcal{J} \) denotes the interior product of a vector field and a form. Projection of a cartesian product on the \(i \)-th factor is denoted by \(\mathcal{P}_i \). The end of an example is denoted by \(\square \).
Acknowledgements

I would like to thank my supervisor, Professor T.J. Willmore for many helpful discussions.

I would also like to thank the Government of the Islamic Republic of Pakistan for providing my scholarship.
CHAPTER 1

Let M and N be \mathcal{C} manifolds and let $\mathcal{C}^\infty(M,N)$ denote the collection of \mathcal{C} maps $f: U \to N$ where U is an open set in M. The manifold M will be considered as a space of independent variables and N as a space of dependant variables.

Two functions $f, g \in \mathcal{C}^\infty(M,N)$ are said to agree to order K at $x \in M$ if they have the same value and if their derivatives up to the order K have the same value. It can be shown that this condition is independent of the particular coordinates chosen.

Let

$$M = \mathbb{R}^m$$

$$N = \mathbb{R}^n$$

write

$$\frac{\partial f^u}{\partial x^a} = \frac{\partial g^u}{\partial x^a}$$

f and g are equivalent at x if

$$f(x) = g(x), \quad \frac{\partial^u f}{\partial x^a} = \frac{\partial^u g}{\partial x^a}, \quad \frac{\partial^2 f}{\partial x^a \partial x^b} = \frac{\partial^2 g}{\partial x^a \partial x^b}$$

$$\ldots \quad \frac{\partial^u f}{\partial x^a \partial x^b \ldots \partial x^k} = \frac{\partial^u g}{\partial x^a \partial x^b \ldots \partial x^k}$$
This is a proper equivalence relation where \(a, b, a_1, \ldots, a_k \) range over \(1 \ldots \dim M \). The maps \(f \) split into equivalence classes. The equivalence class of maps which agree with \(f \) to order \(K \) at \(x \) is called the \(K \)-jet of \(f \) at \(x \) and denoted by \(J_x^K f \).

For to determine the elements of \(J_x^K f \), let \(z^a \) are local co-ordinates around \(X \in M \) and \(z^u \) are local co-ordinates around \(f(x) \in N \), then the elements of \(J_x^K f \) are
\[
\begin{align*}
\lambda^e, \quad \tilde{z}^a &= \tilde{f}^a(x), & \tilde{z}^u &= \frac{\partial f^a}{\partial x^a}, & \tilde{z}^a_b &= \frac{\partial f^a}{\partial x^b}, \\
\tilde{z}^a_{ab} &= \frac{\partial^2 f^a}{\partial x^a \partial x^b}, & \tilde{z}^a_{abc} &= \frac{\partial^3 f^a}{\partial x^a \partial x^b \partial x^c}
\end{align*}
\]
where \(a, b, a_1, a_2, \ldots \) range over \(1 \ldots \dim M \) and \(u \) range over \(1 \ldots \dim N \).

In particular case let \(K=3 \) then the elements of \(J_x^3 f \) will be
\[
\begin{align*}
\lambda^a, \quad \tilde{z}^u &= \tilde{f}^u(x), & \tilde{z}^a &= \frac{\partial f^u}{\partial x^a}, & \tilde{z}^a_b &= \frac{\partial^2 f^u}{\partial x^a \partial x^b}, \\
\tilde{z}^a_{abc} &= \frac{\partial^3 f^u}{\partial x^a \partial x^b \partial x^c}
\end{align*}
\]
Where \(a, b, c \) range over \(\dim M \), and \(u \) range over the dim of \(N \).

Jet Bundle

The \(K \)-jet bundle of \(M \) and \(N \) denoted by \(J^K(M,N) \) is the set of all \(K \)-jets \(J_x^K f \), with \(K \) fixed, \(X \in M \) and \(f \in C(M,N) \). Jet bundle is a differentiable manifold having the differentiable structure pulled back from differentiable
Source Map

A point in \(J^K(M,N) \) is represented by \(j^K_x f \) for some \(f \). Then the map

\[
\mathcal{A}: J^K(M,N) \to M
\]

\[
j^K_x f \quad \to \quad x
\]

is called the source map and \(x \) is called the source of \(j^K_x f \).

Target Map

A point in \(J^K(M,N) \) is represented by \(j^K_x f \) for some \(f \). Then the map

\[
\mathcal{B}: J^K(M,N) \to N
\]

\[
j^K_x f \quad \to \quad f(x)
\]

is called the target map, and \(f(x) \) is called the target of \(j^K_x f \).

Standard Co-ordinates

Now the question arises what will be the standard co-ordinates of \(J^K(M,N) \), i.e., elements of \(J^K(M,N) \) when the \(\dim M = m \) and \(\dim N = n \). They will be

\[
(x^a, \overline{z}_a, \overline{z}_{a_1}, \overline{z}_{a_2}, \ldots, \overline{z}_{a_k})
\]

where \(u \) ranges and sum over \(n \) and \(a, b, a_1, a_2, \ldots \) ranges over \(m \).

E.g.,

Let

\[
M = \mathbb{R}^m, \quad N = \mathbb{R}^n
\]

\[
= (x^1, \ldots, x^m) = \mathbb{R}^m
\]

Then for given \(f \) the elements of \(J^1(M,N) \) will be

\[
(x^1, x^2, \overline{z}, \overline{z}_{x^1}, \overline{z}_{x^2}) \quad \text{where} \quad \overline{z} = f(x^1, x^2)
\]

The elements of \(J^2(M,N) \) will be
Contact Form

To give the idea of contact form, let us consider \(\dim M = \mathbb{R}^2 = (U_1, U_2) \) \(\dim N = \mathbb{R}^1 = Z \) and \(f : M \rightarrow N \) then l-jet extension of \(f \) will be \(j^1 f \) \(: M \rightarrow J^1(M, N) \) with the co-ordinate presentation

\[
\begin{pmatrix}
 u_1, u_2
\end{pmatrix} \mapsto \begin{pmatrix}
 u_1, u_2, u_3 = f(u_1, u_2), u_4 = \frac{\partial f}{\partial u_1}, u_5 = \frac{\partial f}{\partial u_2}
\end{pmatrix}
\]

then the l-form on \(J^1(M, N) \) will be

\[
a_1 du_1 + a_2 du_2 + a_3 du_3 + a_4 du_4 + a_5 du_5
\]

where \(a_i, a_j \) are functions of \(u_i \)'s.

\[\begin{array}{ccc}
\text{Now the position is the following} & \\
\begin{array}{c}
J^1(M, N) \\
(M(u_4, u_5))
\end{array}
& \xrightarrow{f} & \\
& \begin{pmatrix}
 u_3 = f(u_4, u_5)
\end{pmatrix}
\end{array}\]

\[
(j_1^1 f) : a_1 du_1 + a_2 du_2 + a_3 du_3 + a_4 du_4 + a_5 du_5
\]

\[
\xrightarrow{\theta = 0} \quad \text{for all } f.
\]

\[\begin{array}{ccc}
\text{but the contact form is} & \xrightarrow{(j_1^1 f)^*} & \theta = 0 \\
\text{this means } a_4 = 0 \text{ and } a_5 = 0
\end{array}\]

Hence

\[
\begin{align*}
a_1 + a_2 \left(\frac{\partial f}{\partial u_1} \right) &= 0 \\
a_2 + a_3 \left(\frac{\partial f}{\partial u_2} \right) &= 0
\end{align*}
\]

most general form on \(J^1(M, N) \) whose pull back is zero is
If \(e_1 \) and \(e_2 \) are contact forms so is \(U_1 e_1 + U_2 e_2 \), where \(U_1 \) and \(U_2 \) are arbitrary functions on \(J^K(M,N) \); thus contact forms comprise a module (Nelson 1967, p.1) over \(\mathcal{C}(J^K(M,N),R) \). This module will be denoted by \(\mathcal{A}^K(M,N) \) or if no ambiguity arises by \(\mathcal{A}^K \) and called the contact module of \(J^K(M,N) \).

Each contact module is finitely generated. In fact \(\mathcal{A}^K \) has basis (Johnson 1962) comprising the forms given in standard co-ordinates by

\[
\begin{align*}
\hat{\theta}^u &= d\hat{z}^u - \hat{z}^c d\hat{x}^c \\
\hat{\theta}_b &= d\hat{z}_b - \hat{z}_{bc} d\hat{x}^c \\
\vdots \\
\hat{\theta}_{b_1 \ldots b_{K-1}} &= d\hat{z}_{b_1 \ldots b_{K-1}} - \hat{z}_{b_1 \ldots b_{K-1}} d\hat{x}^c
\end{align*}
\]

These basis will be called the standard basis for \(\mathcal{A}^K \).

To see whether an ideal of differential forms is closed under exterior differentiation. If \(\theta \) is any collection of forms then the exterior ideal \(I(\theta) \) generated by \(\theta \) is the collection of finite linear combinations \(\sum \eta \wedge \theta \) where \(\eta \) are arbitrary forms, \(\theta \) are forms in \(\theta \), and \(\wedge \) denotes the exterior product. If \(\theta \) is any collection of forms, then \(d\theta \) means the collection of exterior derivatives \(\{ d\theta | \theta \in \theta \} \).
An ideal \(I(\theta) \) is called closed or a differential ideal if
\(I(\theta) \subseteq I(\theta) \).

Theorem 1.1

Prove that \(d\sigma^u = dx^b \wedge \sigma^u_b \)

Proof

Now we know

\[
\sigma^a = dz^u - z\sigma^u dx^0
\]

\[
d\sigma^u = dd(z^u) - dz^u \wedge dx^0
\]

But \(dd(z^u) = 0 \)

therefore \(d\sigma^u = -dz^u \wedge dx^0 \rightarrow 0 \)

we have to prove that

\[
d\sigma^u = dx^b \wedge \sigma^u_b \rightarrow 0
\]

Now putting the value of \(\sigma^u_b \) in R.H.S. of (1) we get

R.H.S.

\[
= dx^b \wedge (d\bar{z}_b^u - \bar{z}_b^u dx^c)
\]

\[
= dx^b \wedge d\bar{z}_b^u - \bar{z}_b^u dx^b \wedge dx^c
\]

But \(dx^b \wedge dx^c \bar{z}_b^u = 0 \)

\[
= dx^b \wedge d\bar{z}_b^u
\]

changing "b" to "o" we get

\[
= dx^c \wedge d\bar{z}_c^u
\]

\[
= -d\bar{z}_c^u \wedge dx^c \rightarrow (8)
\]

comparing A and B we get

L.H.S. = R.H.S.

As we have already proved that \(d\sigma^u = dx^b \wedge \sigma^u_b \)

Similarly we can prove

\[
d\sigma_{b_1}^u = dx^b \wedge \sigma_{b_1}^u
\]

\[
d\sigma_{b_1...b_{K-2}}^u = dx^b \wedge \sigma_{b_1...b_{K-2}}^u
\]

but that \(d\sigma_{b_1...b_{K-2}}^u \) is not a linear combination of the forms in \(\mathcal{U}^K \). Thus \(I(\mathcal{U}^K) \) is not closed.
From the above discussion it has proved that the contact forms are on the jet bundles e.g. a jet bundle of order 1 i.e. $J^1(M,N)$ will have a contact form θ^a where a is the dimension of N and $\theta^a = dZ^a - Z^a_i dx^i$ similarly $J^2(M,N)$ will have contact forms θ^a, θ^b written by

$$\theta^a = dZ^a - Z^a_i dx^i,$$
$$\theta^b = dZ^b - Z^b_a dx^a.$$

Hence $\theta, \theta^a, \theta^b, \ldots \theta^a_{1...a_{K-1}}$ will be the contact forms on $J^K(M,N)$.

Example 1.1 The Sine-Gordon equation

\[
\frac{\partial^2 Z}{\partial x \partial y} = \sin Z
\]

The equation is the zero set of the single function

$$F = Z_{12} - \sin Z$$

on $J^2(M,N)$ where $\dim N = 2 = (x,y)$ and $\dim N = 1 = Z$

And the contact ideal is generated by

$$\begin{align*}
\theta &= dZ - Z_1 dx^1 - Z_2 dx^2 \\
\theta_1 &= dZ_1 - Z_{11} dx^1 - Z_{12} dx^2 \\
\theta_2 &= dZ_2 - Z_{21} dx^1 - Z_{22} dx^2
\end{align*}$$

In the classical notation the last two would be written as

$$\begin{align*}
\theta_1 &= dp - \lambda dx - S dy \\
\theta_2 &= dq - S dx - \lambda dy
\end{align*}$$

Example 1.2 The Korteweg-de Vries equation

The equation may be written as

$$\frac{2Z}{\partial y} + 12Z \frac{2Z}{\partial x} + \frac{2^3Z}{\partial x^3} = 0$$

with $\dim M = 2$ and $\dim N = 1$

The equation is the zero set of the single function

$$F = Z_{21} + 12Z Z_1 + Z_{111}$$

on $J^3(M,N)$ and the contact ideal is generated by
\[
\begin{align*}
\theta &= dz - Z_a \, dx^a \\
\theta_a &= dZ_a - Z_{ab} \, dx^b \\
\theta_{11} &= dZ_{11} - Z_{111} \, dx^1 - Z_{112} \, dx^2 \\
\theta_{12} &= dZ_{12} - Z_{112} \, dx^1 - Z_{122} \, dx^2 \\
\theta_{22} &= dZ_{22} - Z_{122} \, dx^1 - Z_{222} \, dx^2
\end{align*}
\]
Prolongation

A map from a jet bundle to another manifold induces maps of higher jet bundles, called prolongations, which in co-ordinates amount merely to the taking of total derivatives. The construction is as follows:

Let M, N and P be manifolds and let $\phi : J^h(M,N) \rightarrow P$ be a smooth map. The s-th prolongation of ϕ is the unique map

$$P^s\phi : J^{h+s}(M,N) \rightarrow J^s(M,P)$$

with the property that for every $f \in C^0(M,N)$ the diagram

$$\begin{array}{cc}
J^{h+s}(M,N) & \rightarrow & J^s(M,P) \\
\downarrow & & \downarrow \\
J^{h+s}(N,P) & \rightarrow & J^s(\phi \circ j^h f)
\end{array}$$

commutes. If x^a, ξ^a, η^a are local co-ordinates on M, N and P respectively with the above conventions on a and u (and A ranging over $1, \ldots, \dim P$) and if in the standard co-ordinates

has the presentation

$$y^a = \phi^a(x^a, \xi^a, \eta^a, \ldots, \eta^a)$$

and f has the presentation

$$\xi^a = f^a(x^a)$$

then $\phi \circ j^h f$ has the presentation

$$y^a = \phi^a(x^a, f(x), \partial f(x)/\partial x^a, \ldots, \partial^k f(x)/\partial x^a \partial x^b \ldots \partial x^a)$$

so that $j^s(\phi \circ j^h f)$ has the presentation

$$\begin{align*}
\xi^a &= x^a \\
y^a &= \phi^a(x^a, f(x), \partial f(x)/\partial x^a, \ldots, \partial^k f(x)/\partial x^a \partial x^b \ldots \partial x^a) \\
d^b &= (\partial^b \phi^a)(x^a, f(x), \partial f(x)/\partial x^a, \ldots, \partial^k f(x)/\partial x^a \partial x^b \ldots \partial x^a) \\
d^b \ldots d^b &= (\partial^b \phi^a)(x^a, f(x), \partial f(x)/\partial x^a, \ldots, \partial^k f(x)/\partial x^a \partial x^b \ldots \partial x^a)
\end{align*}$$

where

$$d^b = \frac{\partial}{\partial x^b} + \frac{\partial}{\partial x^b} + \frac{\partial}{\partial x^b} + \ldots + \frac{\partial}{\partial x^b}$$
is the total derivative or "hash operator". It comprises a co-ordinate dependent collection of \((\dim M)\) vector fields defined on \(J^1(M,H)\) for \(l^K\).

Solution of differential equation

In jet bundles, a differential equation defines a subset of the jet bundle. It is convenient to define a system of partial differential equations of order \(K\) to be a submanifold \(Z\) of \(J^K(M,N)\) which is the zero set of a finitely generated ideal \(\mathcal{I}\) of functions on \(J^K(M,N)\). If \(F_1, F_2, \ldots, F_q\) is a set of generators, then the system of equations may be written in terms of the co-ordinate presentations of these functions - say in standard co-ordinates:

\[
\begin{align*}
F_1(x^a, Z_a, Z_b, \ldots, \tilde{Z}_a, \tilde{Z}_b, \ldots, b_K) &= 0 \\
F_q(x^a, Z_a, Z_b, \ldots, \tilde{Z}_a, \tilde{Z}_b, \ldots, b_K) &= 0
\end{align*}
\]

Thus the generators define a map

\[F: J^K(M,N) \rightarrow \mathbb{R}^q\]

and a solution of the system if a map

\[f \in C^\infty(M,N) \text{ s.t. } F \circ j^Kf = 0\]

Example 2.1: The Sine-Gordon equation

As an example of the application, consider the Sine-Gordon equation

\[Z_{1,2} = \sin Z\]

\[F \equiv Z_{1,2} - \sin Z\]

The function \(f: M \rightarrow N\) by \((x_1, x_2) \mapsto Z = f(x_1, x_2)\)

is a solution of the Sine-Gordon equation if

\[F \circ j^2f = 0\]

which means that
A Backlund map is a transformation of the dependent variables in a system of differential equations, whereby the first derivatives of the new variables are given in terms of the new variables themselves as well as of the old variables and their derivatives.

Let $\mathcal{M}, \mathcal{N}_1$ and \mathcal{N}_2 be \mathcal{C} manifolds, and let $\Psi: J'(\mathcal{M}, \mathcal{N}_1) \times \mathcal{N}_2 \longrightarrow J'(\mathcal{M}, \mathcal{N}_2)$ be a \mathcal{C} map. Here \mathcal{M} is the space of the independent variables, \mathcal{N}_1 is the space of the old dependent variables, \mathcal{N}_2 is the space of the new dependent variables. We will impose conditions on Ψ which are appropriate for it to be called a "Backlund map".

The first condition on Ψ is that the new dependent variables - the co-ordinates on \mathcal{N}_2 - should be unaltered by the map. This will be the case if Ψ acts trivially on \mathcal{N}_2 i.e. if

\[
\begin{array}{ccc}
J'(\mathcal{M}, \mathcal{N}_1) \times \mathcal{N}_2 & \xrightarrow{\Psi} & J'(\mathcal{M}, \mathcal{N}_2) \\
\downarrow{\rho_{\mathcal{N}_2}} & & \downarrow{\rho_{\mathcal{N}_2}} \\
\mathcal{N}_2 & \xrightarrow{\beta} & \mathcal{N}_2
\end{array}
\]

commutes. Here β denotes the target map.

The second condition on Ψ that the independent variables i.e. the co-ordinates on \mathcal{M} are also left unaltered by the map Ψ, which will be the case if Ψ acts trivially on \mathcal{M} i.e. if

\[
\frac{\partial \xi(x_1, x_2)}{\partial x_1} = 0
\]
commutes. Here P_{b_1} means projection on the first factor and \mathcal{L} denotes the source map.

Now since

$$\psi: J^1(M, N_1) \times N_2 \rightarrow J^1(M, N_2)$$

On the domain of ψ, choose local coordinates

- x^a on M, $a, b, c = 1 \ldots \dim M$
- z^u on N_1, $u, p = 1 \ldots \dim N_1$
- y^A on N_2, $A, B, C = 1 \ldots \dim N_2$

on the co-domain of ψ, choose local coordinates

- \hat{x}^a on M
- \hat{y}^A on N_2

And standard associated coordinates

- \hat{y}^A_b on $J^1(M, N_2)$

Thus the commuting of Fig. 2

$$y^A = y^A$$

And due to the commuting of Fig. 3

$$x^a = x^a$$

The map ψ is fixed completely. If the coordinates \hat{y}^A_b are given as functions, say ψ^A_b on $J^1(M, N_1) \times N_2$. Thus under ψ

$$\hat{y}^A_b = \psi^A_b(x^a, \hat{z}^u, \hat{z}^m_a, \hat{y}^B) \rightarrow (2.3)$$

Now let $f: M \rightarrow N$, and $g: M \rightarrow N_2$ are given with local presentations

$$\hat{z}^u = f(x), \quad \hat{y}^A = \hat{g}(x)$$

Now

$$\hat{y}^A_b = \frac{\partial \hat{g}(x)}{\partial x^b}$$

Now since $\hat{y}^A_b = y^A_b$
Therefore by putting the value of \(y^A_b \) in (2.3) we get

\[
\frac{\partial g^A}{\partial x^b} = \frac{\partial \gamma^A_b}{\partial x^c} + \frac{\partial \gamma^A_c}{\partial x^b} \Rightarrow (2.4)
\]

which, in co-ordinate-free terms would be

\[
\frac{\partial^1 g}{\partial x^b} = \gamma^A_b \left(\frac{\partial^1 \gamma^A_c}{\partial x^b} \right) \Rightarrow (2.5)
\]

i.e. where \(\Delta_M \) denotes diagonal map

\[
M \rightarrow M \times M \rightarrow J^1(M, N_1) \times N_2 \rightarrow J^1(M, N_2)
\]

In fact given \(\gamma \), a map \(g \) satisfying (2.5) can exist only if the integrability conditions for it are satisfied. These integrability conditions, which follow from

\[
\frac{\partial}{\partial x^c} \frac{\partial g^A}{\partial x^b} - \frac{\partial}{\partial x^b} \frac{\partial g^A}{\partial x^c} = 0
\]

are

\[
g^A_{bc} = 0
\]

where

\[
g^A_{bc} = \left[\frac{\partial \gamma^A_b}{\partial x^c} + \frac{\partial \gamma^A_c}{\partial x^b} \right] + \frac{\partial \gamma^A_c}{\partial x^b} \frac{\partial \gamma^A_b}{\partial x^c} = 0 (2.6)
\]

Here \(\gamma^A_b \) and its derivatives are evaluated on the arguments exhibited in (2.4)

Integrability Conditions

There are three different co-ordinate-free formulations of the integrability conditions

(i) In terms of exterior ideals of differential forms

(ii) In terms of modules of 1-forms i.e. (pfaffians)

(iii) In terms of vector fields

First we develop the necessary machinery, for finding the integrability conditions. First of all, the projection

\[
\mathcal{P}_1: J^2(M, N_1) \times P_2 \rightarrow J^2(M, N_1)
\]
induces on $J^2(M, N_1) \times N_2$ a naturally defined module $\mathcal{L}^2_{2,1} \mathcal{U}(M, N_1)$.

Next the projection

$$\tilde{\Pi}_1: J^2(M, N_1) \rightarrow J^1(M, N_1)$$

may be extended to

$$\tilde{\Pi}^2_1 = \tilde{\Pi}_1 \times \text{id}_{N_2}: J^2(M, N_1) \times N_2 \rightarrow J^1(M, N_1) \times N_2$$

and then

$$\Psi \circ \tilde{\Pi}^2_1: J^2(M, N_1) \times N_2 \rightarrow J^1(M, N_2)$$

induces on $J^2(M, N_1) \times N_2$ the module $\tilde{\Pi}^2_1 \mathcal{U}(M, N_2)$. The sum of these two induced modules is denoted $\tilde{\mathcal{L}}^2, \Psi$

$$\tilde{\mathcal{L}}^2, \Psi = \mathcal{L}^2_{2,1} \mathcal{U}(M, N_1) \times \tilde{\Pi}^2_1 \mathcal{U}(M, N_2) \rightarrow (2.6)$$

Let Θ^a and Θ^b denote standard contact forms on $J^2(M, N_1)$ and let Θ^A denote standard contact forms on $J^1(M, N_2)$. Where no ambiguity arises, we shall denote $\mathcal{L}^2_{2,1} \mathcal{U}(M, N_1)$ and $\tilde{\Pi}^2_1 \mathcal{U}(M, N_2)$ by Θ^a, Θ^b and Θ^A respectively. Then Θ^a and Θ^b comprise a basis for $\mathcal{L}^2_{2,1} \mathcal{U}(M, N_1)$ and Θ^A comprise a basis for $\tilde{\Pi}^2_1 \mathcal{U}(M, N_2)$. More over writing Ψ^A_b for $\tilde{\Pi}^2_1 \mathcal{U}(M, N_2)$ here and below the Θ^A have the form

$$\Theta^A = dy^A - \Psi^A_b dx^b \rightarrow (2.7)$$

Imitating the construction of $\mathcal{L}^2_{2,1} \mathcal{U}(M, N_1) = \tilde{\Pi}^2_1 \mathcal{U}(M, N_1)$, we have

$$\mathcal{L}^2_{2,1} \mathcal{U}(M, N_1) = \tilde{\Pi}^2_1 \mathcal{U}(M, N_1) = \frac{\partial}{\partial x^a} + \frac{\partial}{\partial y^b} \rightarrow (2.8)$$

we will prove the properties of this operator in the form of the theorems.

Theorem: If u is any function on $J^1(M, N_1) \times N_2$ then

$$\delta \left(\Pi^2_1 \mathcal{U}(M, N_1) \right) = \frac{\partial}{\partial x^a} \left(\Pi^2_1 \mathcal{U}(M, N_1) \right) dx^a \mathcal{U}(M, N_1)$$

Proof: If u is a function on $J^1(M, N_1) \times N_2$, then Π^2_1 is a function on $J^2(M, N_1) \times N_2$. Since

$$\Pi^2_1: J^2(M, N_1) \times N_2 \rightarrow J^1(M, N_1) \times N_2$$

Now if we take the differential of any function which is on
$J^2(M,N_1) \times N_2$ which is pulled back from $J^2(M,N_1) \times N_2$ will be equal to

$$d\left(\prod_{N_1}^2 u\right) = \tilde{\omega}_a \left(\prod_{N_1}^2 u \right) dx^a \mod \mathbb{R}^2, \gamma$$

Because when we differentiate u with respect to co-ordinates on N_2 we get

$$\tilde{\omega}_a \left(\prod_{N_1}^2 u \right) dx^a \mod \mathbb{R}^2, \gamma$$

which is the required result.

Theorem 2.2
Prove that

$$[\tilde{\omega}_a^2, \tilde{\omega}_b^2] = (\tilde{\omega}_a \psi_b^B - \tilde{\omega}_b \psi_a^B) \frac{2}{\gamma B}$$

When the differentiation is with respect to the co-ordinates on N_2.

Proof

$$[\tilde{\omega}_a^2, \tilde{\omega}_b^2] = \left[\tilde{\omega}_a^2 + \psi_a^B \frac{\partial}{\partial y^B}, \tilde{\omega}_b^2 + \psi_b^B \frac{\partial}{\partial y^B} \right]$$

$$= \tilde{\omega}_a \tilde{\omega}_b^2 + \tilde{\omega}_a \left(\psi_b^B \frac{\partial}{\partial y^B} \right) + \tilde{\omega}_a^2 \psi_b^B + \tilde{\omega}_a \frac{\partial}{\partial y^B} \left(\tilde{\omega}_b^2 \right)$$

$$= \tilde{\omega}_a \tilde{\omega}_b^2 + \tilde{\omega}_a \left(\psi_b^B \frac{\partial}{\partial y^B} \right) + \tilde{\omega}_a^2 \psi_b^B + \tilde{\omega}_a \frac{\partial}{\partial y^B} \left(\tilde{\omega}_b^2 \right)$$

$$+ \tilde{\omega}_b \psi_a^B \frac{\partial}{\partial y^B} \bigg(\tilde{\omega}_a \bigg)$$

$$= \tilde{\omega}_a \psi_b^B \frac{\partial}{\partial y^B} + \tilde{\omega}_b \psi_a^B \frac{\partial}{\partial y^B}$$

$$= \left(\tilde{\omega}_a^2 + \psi_a^B \frac{\partial}{\partial y^B} \right) \frac{\partial}{\partial y^B} - \left(\tilde{\omega}_b^2 + \psi_b^B \frac{\partial}{\partial y^B} \right) \frac{\partial}{\partial y^B} \psi_a^B \frac{\partial}{\partial y^B}$$

$$\longrightarrow (A)$$
therefore (A) becomes
\[
\left(\frac{\partial^2}{\partial y^2} + g_a \frac{\partial}{\partial y} - \frac{\partial^2}{\partial y^2} + g_b \frac{\partial}{\partial y} \right) \frac{\partial}{\partial y} = 0
\]
which is the required result.

Theorem 2.5 If \(X \) is a vector field of the form
\[
X = X^a \partial_a
\]
then
\[
\hat{X}^2, t = 0
\]

Proof \(\hat{X}^2, t \) contains the basis of type
\[
\hat{\Theta} = d \hat{z}^a - \hat{z}_c^a dx^c
\]
\[
\hat{\Theta}_b = d \hat{z}^b - \hat{z}_{bc}^a dx^c
\]
and
\[
\Theta = dy^a - \hat{\Theta}_b^a dx^b
\]
and
\[
\partial_a = \frac{2}{3} x^a + \hat{z}^a_x \frac{2}{3} x^x + \hat{z}^a_d \frac{2}{3} x^x + \frac{6}{5} a \frac{2}{3} y^b
\]
Now we will show that the contraction of \(X \hat{X}^2_a \) with each of the basis of \(\hat{X}^2, t \) is zero
\[
\hat{X}^2_a \hat{X}^2, t = 0 \quad i.e.
\]
\[i) \ \vec{a} \cdot \vec{\omega}_a \perp \Theta^a \]
\[= \vec{a} \left(\frac{\partial}{\partial x_a} + \frac{\partial}{\partial z_a} + \frac{\partial}{\partial y_a} + \frac{\partial}{\partial z_a} + \frac{\partial}{\partial y_a} \right) \left(\frac{2}{\partial x_a} - \frac{2}{\partial y_a} \right) \]
\[= \vec{a} \left(\vec{z}_b - \vec{z}_a \right) = 0 \]

\[ii) \ \vec{a} \cdot \vec{\omega}_b \perp \Theta^b \]
\[= \vec{a} \left(\frac{\partial}{\partial x_a} + \frac{\partial}{\partial z_a} + \frac{\partial}{\partial y_a} + \frac{\partial}{\partial z_a} + \frac{\partial}{\partial y_a} \right) \left(\frac{2}{\partial x_a} - \frac{2}{\partial y_a} \right) \]
\[= \vec{a} \left(\vec{z}_b - \vec{z}_b \right) = 0 \]

Similarly

\[\vec{a} \cdot \vec{\omega}_a \perp \Theta^a \]
\[= \vec{a} \left(\frac{\partial}{\partial x_a} + \frac{\partial}{\partial z_a} + \frac{\partial}{\partial y_a} + \frac{\partial}{\partial z_a} + \frac{\partial}{\partial y_a} \right) \left(\frac{2}{\partial x_a} - \frac{2}{\partial y_a} \right) \]
\[= \vec{a} \left(\vec{t}_a - \vec{t}_a \right) = 0 \]

Theorem 2.4 To prove that

\[\vec{\omega}_a \perp d\Theta^a = \vec{\omega}_a \rightarrow \vec{w} \]

\[\vec{\omega}_b \perp d\Theta^b = d\vec{z}_ab \rightarrow \vec{w} \]

\[\vec{\omega}_a \perp d\Theta^a = (\vec{\omega}_b \cdot \vec{t}_a - \vec{\omega}_a \cdot \vec{t}_b) d\vec{a} \rightarrow \vec{w} \]
Proof

Let us first take L.H.S. of (i)

\[\frac{\partial^2}{\partial x^a} \mid \frac{\partial}{\partial \theta^a} \]

\[= \left(\frac{\partial^2 x^a}{\partial x^u \partial x^u} + \frac{\partial^2 x^a}{\partial z^u \partial z^u} + \frac{\partial^2 x^a}{\partial \theta^a \partial \theta^b} \right) \left(dx^u \wedge d\theta^b \right) \]

\[= \left(\frac{\partial^2 x^a}{\partial x^u \partial x^u} + \frac{\partial^2 x^a}{\partial z^u \partial z^u} + \frac{\partial^2 x^a}{\partial \theta^a \partial \theta^b} \right) \left(dx^u \wedge d\theta^b \right) \]

\[\theta^u \text{ which is the R.H.S. of (i)} \]

Now for (ii)

taking the L.H.S. of (i)

\[\frac{\partial^2}{\partial x^a} \mid \frac{\partial}{\partial \theta^b} \]

\[= \left(\frac{\partial^2 x^a}{\partial x^u \partial x^u} + \frac{\partial^2 x^a}{\partial z^u \partial z^u} + \frac{\partial^2 x^a}{\partial \theta^a \partial \theta^b} \right) \left(dx^u \wedge d\theta^b \right) \]

\[= \theta^u \text{ which is R.H.S. of (i)} \]

Similarly for (iii)

taking the L.H.S. of (iii)

\[\frac{\partial^2}{\partial x^a} \mid \frac{\partial}{\partial \theta^a} \]

\[= \left(\frac{\partial^2 x^a}{\partial x^u \partial x^u} + \frac{\partial^2 x^a}{\partial z^u \partial z^u} + \frac{\partial^2 x^a}{\partial \theta^a \partial \theta^b} \right) \left(dx^u \wedge \left(\frac{\partial A}{\partial x^a} dx^a + \frac{\partial A}{\partial \theta^b} \right) \right) \]

\[= \left(\frac{\partial^2 x^a}{\partial x^u \partial x^u} + \frac{\partial^2 x^a}{\partial z^u \partial z^u} + \frac{\partial^2 x^a}{\partial \theta^a \partial \theta^b} \right) \left(dx^u \wedge \left(\frac{\partial A}{\partial x^a} dx^a + \frac{\partial A}{\partial \theta^b} \right) \right) \]
\[
= \left(\frac{\partial A}{\partial x^a} dx^a - \frac{\partial A}{\partial x^a} dx^b \right) + \left(\frac{\partial A}{\partial x^a} dx^b - \frac{\partial A}{\partial x^a} dx^c \right) + \frac{\partial A}{\partial z^b} d\tau^b + \frac{\partial A}{\partial y^b} d\gamma^b
- \frac{\partial A}{\partial \eta^b} dx^b
\]

\[
= -(\frac{\partial A}{\partial x^a} + \frac{\partial A}{\partial x^b} + \frac{\partial A}{\partial x^c} + \frac{\partial A}{\partial x^d} + \frac{\partial A}{\partial x^e} + \frac{\partial A}{\partial x^f} + \frac{\partial A}{\partial x^g} + \frac{\partial A}{\partial x^h} \right) dx^b
\]

\[
= -(\frac{\partial A}{\partial x^a} + \frac{\partial A}{\partial x^b} + \frac{\partial A}{\partial x^c} + \frac{\partial A}{\partial x^d} + \frac{\partial A}{\partial x^e} + \frac{\partial A}{\partial x^f} + \frac{\partial A}{\partial x^g} + \frac{\partial A}{\partial x^h} \right) dx^b
\]

\[
= (\frac{\partial A}{\partial x^a} + \frac{\partial A}{\partial x^b} + \frac{\partial A}{\partial x^c} + \frac{\partial A}{\partial x^d} + \frac{\partial A}{\partial x^e} + \frac{\partial A}{\partial x^f} + \frac{\partial A}{\partial x^g} + \frac{\partial A}{\partial x^h} \right) dx^b
\]

\[
= (\frac{\partial A}{\partial x^a} - \frac{\partial A}{\partial x^b} \right) dx^b \text{ mod } \sqrt{z^2, \gamma}.
After having this additional material which we have proved in the form of theorems, we come to our original problem.

A differential equation of order K is a submanifold \tilde{Z} of $J^K(M,N_1) \times N_2$ which is the zero set of finitely generated ideal $\sum Z$ of functions on $J^K(M,N_1) \times N_2$. If F_1, F_2, \ldots, F_q is a set of generators, then the system of equations may be written in terms of the co-ordinate presentations of these functions - say in standard co-ordinates

$$F_d (x^a, \bar{z}^a, \bar{z}_b, \ldots, \bar{z}_{b_K} : \bar{f}^A) = 0$$

Then the generators define a map

$$F : J^K(M,N_1) \times N_2 \rightarrow \mathbb{R}^q$$

and a solution of the system is a pair of maps $f \in \mathcal{C}(M,N_1)$, $g \in \mathcal{C}(M,N_2) \Delta f$

$$F \circ (j^k_f \times g) \circ \Delta M = 0$$

Now to find integrability conditions compare (2.5) with (2.8), one sees that (2.5) may be written as

$$\bar{\delta}_{bc}^a = (\bar{\delta}_c^a \bar{f}_b - \bar{\delta}_b^a \bar{f}_c) \circ (j^k_f \times g) \circ \Delta M$$

Consequently the pair (f,g) must be the solution of the system

$$\bar{\delta}^{ab}_{bc} + \bar{\delta}^{ba}_{bc} = 0 \quad (2.9)$$
on $J^2(M,N_1) \times N_2$.

Now taking the exterior derivative of (2.7) we get

$$d \Theta^A = dx^b \wedge d \bar{f}_b \quad (2.10)$$

which by theorem (2.1) can be written as

$$d \Theta^A = \bar{\delta}^{a}_{bc} \bar{f}_{bc} dx^b \wedge dx^c \text{ mod } \mathcal{I} (\mathcal{R}^2, r) \quad (2.11)$$
Also
\[\theta^A = \frac{1}{2} \left[\sigma_c^A \sigma_b^A \mathbf{dx}^c \wedge \mathbf{dx}^e - \sigma_c^A \sigma_b^A \mathbf{dx}^c \wedge \mathbf{dx}^b \right] \]
\[= \frac{1}{2} \left[\sigma_c^A \sigma_b^A \mathbf{dx}^c \wedge \mathbf{dx}^e - \sigma_b^A \sigma_c^A \mathbf{dx}^c \wedge \mathbf{dx}^b \right] \]
\[= \frac{1}{2} \left[\sigma_c^A \sigma_b^A - \sigma_b^A \sigma_c^A \right] \mathbf{dx}^b \wedge \mathbf{dx}^c \]

Therefore when comparing (2.11) with (2.9) one may conclude that the system (2.9) is equivalent to
\[\mathcal{A}^{2, \Psi} \in \mathcal{I}(\mathcal{M}, \mathcal{N}_2) \subset \mathcal{I}(\mathcal{N}^{2, \Psi}) \rightarrow \text{(2.12)} \]

This is the co-ordinate free formulation of the integrability conditions in terms of ideals of differential forms.

\(\text{(i) Integrability conditions in terms of the properties of pfaffian modules} \)

\[\mathcal{A}^{2, \Psi} = \mathcal{A}^{2, \Psi} + \left\{ x \left[\sigma_c^A \sigma_b^A \mathbf{dx}^c \wedge \mathbf{dx}^e \bigg| x \right] \mathcal{A}^{2, \Psi} = 0 \right\} \]

Thus \(\mathcal{A}^{2, \Psi} \) is constructed by adding to \(\mathcal{A}^{2, \Psi} \) the contractions of forms on the left hand side of (2.12) with vectors which annihilate \(\mathcal{A}^{2, \Psi} \), then by theorem (2.4), (2.12) is equivalent to
\[\mathcal{A}^{2, \Psi} \subset \mathcal{A}^{2, \Psi} \]

\(\text{(ii) From equation (2.8) theorem (2.2) and equation (2.9) it is seen at once the integrability conditions } \mathcal{Z} \text{ may be} \)

characterised as the submanifold on which the distribution \(\mathcal{A}^{2, \Psi} \) is completely integrable.

\(\text{Example 2.2 The Sine-Gordon Equation: Backlund's original map} \)

Let \(\dim M = 2 \quad \dim N_1 = \dim N_2 = 1 \)

The co-ordinates are \(x, y \) on \(M \) i.e. independent variables.

\(Z \) on \(N_1 \) and \(\mathcal{Z} \) on \(N_2 \) whereas \(\mathcal{Z} \) is new dependent variable.
Also
\[p = \frac{\partial Z}{\partial x}, \quad q = \frac{\partial Z}{\partial y}, \quad \tau = \frac{\partial^2 Z}{\partial x^2} \]
\[S = \frac{\partial^2 Z}{\partial x \partial y}, \quad \sigma = \frac{\partial^2 Z}{\partial y \partial x}, \quad r = \frac{\partial^2 Z}{\partial y^2} \]

The map originally constructed by Backlund (1875, 1883) is
\[p' = p + 2a \sin \left(\frac{Z + \bar{Z}}{a} \right) \rightarrow \hat{W} \]
\[q' = -q + \frac{2a}{\alpha} \sin \left(\frac{Z - \bar{Z}}{a} \right) \rightarrow \hat{W} \]

Now the integrability condition is
\[\frac{\partial^2 Z}{\partial x \partial y} = \frac{\partial^2 Z}{\partial y \partial x} \]

Differentiating (i) w.r.t. y
\[\frac{\partial^2 Z}{\partial y \partial x} = \frac{\partial p}{\partial y} + 2a \cos \left(\frac{Z + \bar{Z}}{a} \right) \cdot \frac{1}{a} (q + q) \]

putting the value of $(q' + q)$ from (ii)
\[\hat{S} = S + a \cos \left(\frac{Z + \bar{Z}}{a} \right) \cdot \frac{1}{a} \sin \left(\frac{Z - \bar{Z}}{a} \right) \]
\[\hat{S} = S + \sin Z - \sin Z \]

\[i e \left(\hat{S} - \sin Z \right) = (S - \sin Z) \rightarrow (A) \]

Differentiating (ii) by x we get
\[\hat{S} = -S + \frac{2a}{\alpha} \sin \left(\frac{Z - \bar{Z}}{a} \right) \cdot \frac{1}{a} \sin \left(\frac{Z + \bar{Z}}{a} \right) \]
\[\hat{S} = -S + \sin Z + \sin Z \]
\[(\hat{S} - \sin Z) = - (S - \sin Z) \rightarrow (B) \]

From (A) and (B) we conclude that
\[\hat{S} = \sin Z \quad S = \sin Z \]

This means that if Z satisfies $S = Z$ and \hat{Z} is related to Z by Backlund map i.e. by equations (i) and (ii) then \hat{Z} is a solution.
CHAPTER III

In this chapter we will discuss the idea of prolongation in detail. We have already seen in the II chapter that if we consider M_1N_1 and N_2 be C manifolds and $\psi : J^1(M_1;N_1) \times N_2 \rightarrow J^1(M_1;N_2)$ be a C map. If the co-ordinates on M and N_2 are unaltered i.e. to fix the map ψ. If the co-ordinates y^A_b are given as functions say θ^A on $J^1(M_1;N_1) \times N_2$.

Thus under ψ

$$y^A_b = \theta^A (x^a, z^a, \bar{z}_a, \bar{y}^b)$$

And if x, y, are co-ordinates on M and z is co-ordinate on N_1 and z' is co-ordinate on N_2 then we find the integrability condition

$$\frac{\partial^2}{\partial c^2} \theta^A_b - \frac{\partial^2}{\partial b^2} \theta^c = 0$$

and the Bäcklund map

$$\psi' = \psi + 2a \sin \frac{1}{2} (\bar{z} + z)$$
$$\psi' = -\psi + 2a \sin \frac{1}{2} (\bar{z} - z)$$

changes to Sine-Gordon equation. Now we shall see what happens when we get the first prolongation.

Let

$$\psi : J^1(M_1;N_1) \times N_2 \rightarrow J^1(M_1;N_2)$$

be a map for which

$$J^4(M,N_1) \times N_2 \xrightarrow{\psi} J^4(M,N_2)$$

Figure 3.1

$$J^4(M,N) \xrightarrow{\psi} J^4(M,N)$$

Figure 3.2
A map
\[\Psi^1: J^2(M; N_1) \times N_2 \rightarrow J^2(M; N_2) \]
is said to be compatible with \(\Phi^4 \) if the diagram
\[
\begin{array}{ccc}
J^3(M; N_1) \times N_2 & \xrightarrow{\Phi^4} & J^2(M; N_2) \\
\pi^3 \downarrow & & \downarrow \pi^2 \\
J^4(M; N_1) \times N_2 & \xrightarrow{\Psi^1} & J^4(M; N_2)
\end{array}
\]
commutes. In Fig (3.3) we have done the following process
\[\pi^2_1 : J^2(M; N_1) \rightarrow J^1(M; N_1) \]
may be extended to
\[\pi^2 = \pi^2_1 \times \text{id}_{N_2} : J^2(M; N_1) \times N_2 \rightarrow J^1(M; N_1) \times N_2 \]
A map \(\Psi^1 \) compatible with \(\Psi \) is completely determined by
the specification of functions \(\Psi^4_{bc} \) on \(J^2(M; N_1) \times N_2 \)
\[
\Psi^4_{bc} = \overline{A} (\overline{x}^a, \overline{z}^a, \overline{z}_a, \overline{z}_{ad}, \overline{y}^B) \rightarrow (3.1)
\]
Hence the \(\overline{A}^4_{bc} \) are standard co-ordinates on \(J^2(M; N_2) \) and the
arguments of \(\Psi^4_{bc} \) are standard co-ordinates on \(J^2(M; N_1) \times N_2 \).
The appropriate choice of the functions \(\Psi^4_{bc} \) is
\[
\Psi^4_{bc} = \overline{A}^2 (b, \Psi^4_c) \rightarrow (3.2)
\]
The map \(\Psi^1 \) is called the first prolongation of \(\Psi \). This
definition of prolongation is consistent with the definition
of prolongation which is defined in chapter II i.e.
\[J^k(M; N) \rightarrow P \]
Now the following example will clear the idea of
prolongation.
Example 3.1: The Sine-Gordon equation; Bäcklund's original map

Let \(\dim M = 2 \) \(\dim N_1 = \dim N_2 = 1 \).

The co-ordinates are \(x^1 \) and \(x^2 \) on \(M \), \(z \) on \(N_1 \) and \(y = y' \) on \(N_2 \).

The map originally constructed by Bäcklund is

\[
\begin{align*}
\dot{y}_1 &= \dot{z}_1 + 2 a \sin \frac{1}{2} (y + z) \\
\dot{y}_2 &= \dot{z}_2 + 2 \dot{a} \sin \frac{1}{2} (y - z)
\end{align*}
\]

\(\psi : J^1(M, N_1) \times N_2 \rightarrow J^1(M, N_2) \)

\[
(x^1, x^2, z, z_1, z_2, y) \rightarrow (x^1, x^2, y, y^1, y_2)
\]

\(\psi' : J^2(M, N_1) \times N_2 \rightarrow J^2(M, N_2) \)

\[
(x^1, x^2, z, z_1, z_2, z_1, z_2, z_{12}, y) \rightarrow (x^1, x^2, y, y^1, y_2, z_{12}, d_1, d_2, d_{12})
\]

Now we have to find the value of \(y_{11}, y_{12}, y_{22} \) when the value of \(y \) and \(y' \) are given by equation (3.3). We can easily find the value of \(y_{11}, y_{12}, y_{22} \) from the (3.2) relation

\[
\phi_{bc} = \tilde{\phi}'(b \phi_c)
\]

Here \(\phi = 1 \) since \(\dim y = 1 \)

\[
\phi_{bc} = \tilde{\phi}'(b \phi_c)
\]

In general

\[
\tilde{\phi}_a = \frac{2}{3} a + \tilde{z}_a + \frac{2}{3} \tilde{z}_d + \frac{2}{3} \tilde{z}_d + \frac{a}{3} \frac{2}{3} \frac{2}{3} \frac{2}{3} + \frac{a}{3} \frac{2}{3} \frac{2}{3} \frac{2}{3} \frac{2}{3}
\]

But \(\phi = 1 \) since \(\dim N_1 = 1 \)

\[
\tilde{\phi}_a = \frac{2}{3} a + \tilde{z}_a + \frac{2}{3} \tilde{z}_d + \frac{2}{3} \tilde{z}_d + \frac{a}{3} \frac{2}{3} \frac{2}{3} \frac{2}{3} + \frac{a}{3} \frac{2}{3} \frac{2}{3} \frac{2}{3} \frac{2}{3}
\]

Now from equation (3.1)

\[
\phi_{bc} = \psi_{bc}
\]

and

\[
\phi_{bc} = \phi_{bc} = \tilde{\phi}_b \phi_c
\]

so

\[
y_{11} = \dot{y}_{11} = \tilde{\phi}_1 \phi_1
\]
Now
\[\gamma^2_1 = \frac{\partial}{\partial x_1} + z \frac{\partial}{\partial z} + z_1 \frac{\partial}{\partial z_1} + z_2 \frac{\partial}{\partial z_2} + \frac{\partial}{\partial y} \frac{\partial}{\partial z} \]

therefore

\[\gamma^2_1 = \left(\frac{\partial}{\partial x_1} + z \frac{\partial}{\partial z} + z_1 \frac{\partial}{\partial z_1} + z_2 \frac{\partial}{\partial z_2} + \frac{\partial}{\partial y} \frac{\partial}{\partial z} \right) \left(y^2 + 2a \sin \frac{1}{2}(y+z) \right) \]

\[\gamma^2_1 = \left(\frac{\partial}{\partial x_1} + z \frac{\partial}{\partial z} + z_1 \frac{\partial}{\partial z_1} + z_2 \frac{\partial}{\partial z_2} + \frac{\partial}{\partial y} \frac{\partial}{\partial z} \right) \left(y^2 + 2a \sin \frac{1}{2}(y+z) \right) \]

Putting the value of \(y_1 \) we get

\[y_{2x} = \sum_2^{2x} y_2 \left(\frac{\partial}{\partial x_2} + z_2 \frac{\partial}{\partial z_2} + z_2 \frac{\partial}{\partial z_2} + \frac{\partial}{\partial y} \frac{\partial}{\partial z_2} \right) \left(y_2 + 2a \sin \frac{1}{2}(y+z) \right) \]

\[y_{2x} = \sum_2^{2x} y_2 \left(\frac{\partial}{\partial x_2} + z_2 \frac{\partial}{\partial z_2} + z_2 \frac{\partial}{\partial z_2} + \frac{\partial}{\partial y} \frac{\partial}{\partial z_2} \right) \left(y_2 + 2a \sin \frac{1}{2}(y+z) \right) \]

up till now we have got the idea of first prolongation, we can generalize this idea and can find the second, third, -- --
nth prolongation. For example in the above case the second prolongation will consist of the components \(y_{11} \), \(y_{12} \), \(y_{13} \), \(y_{22} \) which we can write

\[
y_{11} = y_{11} = \frac{\partial}{\partial t_1} \bar{y}_{11}
\]
\[
y_{12} = y_{12} = \frac{\partial}{\partial t_1} \bar{y}_{12}
\]
\[
y_{13} = y_{13} = \frac{\partial}{\partial t_1} \bar{y}_{13}
\]
\[
y_{22} = y_{22} = \frac{\partial}{\partial t_1} \bar{y}_{22}
\]

\[
y_{11} = \bar{y}_{11} = \frac{\partial}{\partial t_1} \bar{y}_{11} = \left(\frac{\partial}{\partial \theta_1} + \frac{\partial}{\partial \theta_2} \frac{\partial}{\partial \theta_2} + \frac{\partial}{\partial \theta_3} \frac{\partial}{\partial \theta_3} + \frac{\partial}{\partial \theta_4} \frac{\partial}{\partial \theta_4} \right) \left(y_{11} + 2a \cos \left(\theta_1 + \theta_2 \right) \right)
\]

\[
y_{12} = y_{12} = \frac{\partial}{\partial t_1} \bar{y}_{12} = \left[-2a \cos \left(\theta_1 + \theta_2 \right) - a^2 \cos \left(\theta_1 + \theta_2 \right) \right]
\]

\[
y_{13} = y_{13} = \frac{\partial}{\partial t_1} \bar{y}_{13} = \left[-2a \sin \left(\theta_1 + \theta_2 \right) - a^2 \sin \left(\theta_1 + \theta_2 \right) \right]
\]

\[
y_{22} = y_{22} = \frac{\partial}{\partial t_1} \bar{y}_{22} = \left[-2a \sin \left(\theta_1 + \theta_2 \right) - a^2 \sin \left(\theta_1 + \theta_2 \right) \right]
\]

Putting the value of \(y \), we get

\[
y_{11} = \bar{y}_{11} = \bar{y}_{11} + (\theta + \theta) \left[-2a \cos \left(\theta_1 + \theta_2 \right) - a^2 \cos \left(\theta_1 + \theta_2 \right) \right]
\]

\[
y_{12} = y_{12} = \frac{\partial}{\partial t_1} \bar{y}_{12} = \left[-2a \sin \left(\theta_1 + \theta_2 \right) - a^2 \sin \left(\theta_1 + \theta_2 \right) \right]
\]

\[
y_{13} = y_{13} = \frac{\partial}{\partial t_1} \bar{y}_{13} = \left[-2a \sin \left(\theta_1 + \theta_2 \right) - a^2 \sin \left(\theta_1 + \theta_2 \right) \right]
\]

\[
y_{22} = y_{22} = \frac{\partial}{\partial t_1} \bar{y}_{22} = \left[-2a \sin \left(\theta_1 + \theta_2 \right) - a^2 \sin \left(\theta_1 + \theta_2 \right) \right]
\]

Similarly we can find the other components.
Example 5.2 The differential equation generated by the single function

\[F = z_{tt} + z_z - 6z_t \rightarrow \]

is called the potential equation for the Korteweg-deVries equation because its first prolongation comprises \(4 \), and

\[F_1 = z_{ttt} + z_{zz} + 12z_z z_t - z_{tt}, z_{ttt}, \ldots, \quad (a) \]

\[F_2 = z_{ttt} + z_{zz} + 12z_z z_t - z_{tt}, z_{zz}, \ldots, \quad (b) \]

and (a) is just the Korteweg-deVries equation for \(-z_t\).

A Bäcklund map whose integrability condition is the Korteweg-deVries potential equation (i) was discovered by Wahlquist and Estabrook (1973).

Let \(\dim M = 2, \dim N_1 = \dim N_2 = 1 \). The co-ordinates are \(x^1 \) and \(x^2 \) on \(M \), \(z \) on \(N_1 \) and \(y = y' \) on \(N_2 \). The map discovered by Wahlquist and Estabrook is

\[\psi(t) : J(M, N_1) \times N_2 \rightarrow J'(M, N_2) \]

by

\[d_1 = \psi_1(t) = -z_t - 2t + (y-z) \]

\[d_2 = \psi_2(t) = -z_t + \begin{bmatrix} 4t^2 + 2t + 8t - 2(y-z) + \frac{1}{2}y^3 - 2(y-z) \\ + z_{tt}(y-z) \end{bmatrix} \]

The first prolongation is

\[\bar{d}_1 = \bar{\psi}_1 = -z_t + 2(y-z) \begin{bmatrix} 2z_t - 2 \frac{1}{2}y^3 - 2(y-z) \end{bmatrix} \]

\[\bar{d}_2 = \bar{\psi}_2 = \bar{\psi}_2 = -z_{ttt} + 2(y-z)(16t^3 + 6t^2 + 8t + 2z_t + \frac{1}{2}y^3 - 2(y-z)) + 8(y-z)^2 z_{tt} + 8(y-z)^3 (z_t - 2t) \]

\[\bar{d}_3 = \bar{\psi}_3 = \bar{\psi}_3 = -z_{zz} + 8(y-z)z_t + 2z_t, z_{ttt}, \ldots, \quad (y-z) \]

\[+ z_{ttt}(y-z) + \begin{bmatrix} 2z_t + (2z_t - 4t)(y-z) \end{bmatrix} \]
\[-2z_1 + 4 \left\{ 4t^5 + 2t^2z_1 - 2t (y-z)^2 + z_1^2 + z_1 (y-z) \right\} + z_1 (y-z) \right]\]

Similarly we can find the second prolongation and can find the components \(y_{111}, y_{112}, y_{122}, y_{222} \) as follows:

\[
y_{111} = t_{111} = \tilde{\sigma}_1 t_{11}
\]
\[
y_{112} = t_{112} = \tilde{\sigma}_1 t_{12}
\]
\[
y_{122} = t_{122} = \tilde{\sigma}_2 t_{22}
\]
\[
y_{222} = t_{222} = \tilde{\sigma}_2 t_{22}
\]
CHAPTER IV

Connections

In this chapter there are two related formulations of Backlund maps in terms of connections. We begin by reproducing Ehresmann's definition of a connection, more or less as expounded by R. Hermann (1975 Ch. 4). This version is convenient because in the applications it is natural to introduce the connection first and the structure group afterwards, so that one can not begin, as is usual in most standard treatments by defining the connection on a principal bundle.

Let E and M be (smooth) manifolds and $\Pi : E \to M$ a surjective map of maximal rank. We shall give conditions for $E = (E, M, \Pi)$ to be a local product fibre space, and define a connection to be an horizontal distribution on E. M is the space of independent variables (spare-time) and E is either $M \times N_2$ or the product $(J(M, N_1) \times N_2$ where $J(M, N_1)$ is the jet bundle of infinite order defined below. For the present, however, E is assumed to be finite-dimensional.

For every $\eta \in E$, assume $\Pi(\eta)$ has neighbourhood $U \ni \eta$ there exists a diffeomorphism $\rho_U : U \times F \to \Pi(U)$ (4.1) where F is a fixed manifold. Then $E = (E, M, \Pi)$ is called a local product fibre space with typical fibre F. For every $x \in M$ the fibre $\Pi(x)$ is diffeomorphic to F.

A vector ξ tangent to E at η is called vertical if it is
tangent to the fibre through \(v \), i.e. if \(\pi_* X = 0 \). The subspace of vertical vectors at \(v \) is denoted by \(\mathcal{V}_v \mathbf{E} \). A vector field is called vertical if it is vertical at each point.

If \(\xi \) are local co-ordinates on \(M \) and \(y^A \) are local co-ordinates on \(F \), then \(\pi^\xi_* \) and \(\pi^y_* \) may be chosen as local co-ordinates on \(E \), which will be abbreviated to \(x^a \) and \(y^A \) and called adapted co-ordinates. It follows that

\[
\pi^\xi_* \left(\frac{\partial}{\partial x^a} \right) = 2 \text{ and } \pi^y_* \left(\frac{\partial}{\partial y^A} \right) = 0,
\]

so that every vertical vector field has the co-ordinate presentation \(\sum_i \frac{\partial}{\partial y^i} \), where \(y^i \) are functions on \(E \).

A distribution \(D \) on \(E \) is an assignment of a subspace \(D_v \subseteq T_v E \) at each \(v \in E \). We shall be concerned only with regular distributions, for which \(\dim D_v \) \(E \) has a fixed value, independent of \(v \), denoted \(\dim D \). Moreover we shall suppose that all the distributions which arise are differentiable, which means that each \(\mathcal{V}_v \mathbf{E} \) has a neighbourhood \(W \) in which there are \(\dim D \) differentiable vector fields spanning \(D \) \(E \) for which \(\xi \in W \). If \(X \) is a vector field on \(E \) and \(X(v) \in D_v \) \(E \) for each \(v \), then we can say that \(X \) belongs to \(D \). A distribution \(D \) is called involutive if \([X, Y] \) belongs to \(D \) whenever \(X \) and \(Y \) belong to \(D \). If \(i : \mathbf{E} \to E \) is the natural injection of a submanifold \(\mathbf{E} \) of \(E \) and if \(i_* \pi^\xi_* = \pi^\xi_* \) \(\mathbf{E} \), then \(\mathbf{E} \) is called an integral manifold of \(D \). A distribution \(D \) on \(E \) is called integrable if an integral manifold of \(D \) passes through every point of \(E \). Frobenius's theorem asserts that a distribution is integrable if and only if it is involutive (Bricknell and Clark 1970).
An horizontal distribution E on E is a distribution which is complementary to the vertical in the sense that for each $\gamma \in E$

$$T_\gamma E = V_\gamma E \oplus H_\gamma E$$

if follows that

$$\dim H_\gamma E = \dim M$$

and that

$$H_\gamma E \cap V_\gamma E = 0$$

If E is a given horizontal distribution on E than a vector X tangent to E at any point γ has a unique decomposition

$$X = hX + vX \quad \rightarrow (4.2)$$

where $hX \in H_\gamma E$ and $vX \in V_\gamma E$.

A vector X at γ is called horizontal if it lies in $H_\gamma E$.

In adapted local co-ordinates, horizontal vectors have a basis of the form

$$H_a = \frac{\partial}{\partial x^a} + \Gamma^a_b \frac{\partial}{\partial y^b} \quad \rightarrow (4.3)$$

where Γ^a_b are functions on E which determine and are determined by H. In these co-ordinates the decomposition (4.2) of $X = \delta^a \frac{\partial}{\partial x^a} + \delta^a \frac{\partial}{\partial y^a}$ is given by putting the value of $\frac{2}{\delta^2}$ from (4.3)

$$X = \delta^a \left(H_a - \Gamma^a_b \frac{\partial}{\partial y^b} \right) + \delta^a \frac{\partial}{\partial y^a}$$

$$= \delta^a H_a + \left(\delta^a - \delta^a \Gamma^a_b \right) \frac{\partial}{\partial y^a} \quad \rightarrow (4.4)$$

A vector field X is called horizontal if it belongs to E.

Thus an horizontal vector field is of form

$$X = \delta^a H_a \quad \rightarrow (4.5)$$

where δ^a are functions on E. A curve is called horizontal if its tangent vector at each point is horizontal.

The 1-forms which annihilate and are annihilated by, horizontal vectors are called vertical forms. The vertical forms comprise a $\mathcal{C}(E)$ module.
Theorem 4.1 To prove that vertical forms has a local basis in adapted co-ordinates of the form

\[\theta^A = d\theta^A_a - \Gamma^A_a dx^a \rightarrow (4.7) \]

Proof Now the 1-form can be written as

\[\theta^A = A^A_b dy^b + B^A_b dx^b \]

But since \(A^A_b \) is non singular matrix therefore we can write

\[\theta^A = dy^A + C^A_b dx^b \rightarrow (A) \]

But since there are vertical forms, and by definition of vertical forms

\[H \perp \theta^A = 0 \rightarrow \] where \(H \) is horizontal vectors, and horizontal vectors have the basis of the form

\[H_a = \frac{\partial}{\partial x^a} + \Gamma^A_a \frac{\partial}{\partial y^A} \]

So putting the value of \(H \) and \(e^A \) in (4.7) we get

\[(\frac{\partial}{\partial x^a} + \Gamma^A_a \frac{\partial}{\partial y^A}) \left(dy^b + C^B_b dx^b \right) = 0 \]

\[C^B_a + \Gamma^B_a = 0 \iff C^B_a = -\Gamma^B_a \]

Now putting the value of \(C^B_a \) in 'A' we get

\[\theta^A = d\theta^A_a - \Gamma^A_a dx^a \]

where \(\Gamma^A_a \) are functions introduced in (4.3).

The \(\mathcal{C}(E) \)-bilinear map

\[\mathcal{L} : T^*_\eta E \times T^*_\eta E \rightarrow V_\eta E \]

\[(x_1, x_2) \rightarrow \mathcal{L} \left[h_{x_1}, h_{x_2} \right] \rightarrow (4.8) \]

is called the curvature of \(H \) at \(\eta \). The bilinearity may be verified by the computation.
\[\mathcal{V} \left[h_{x_1}, h \left(f x_2 \right) \right] = \mathcal{V} \left(f \left[h_{x_1}, h x_2 \right] + \left(h_{x_1} f \right) h x_2 \right) \\
= f \mathcal{V} \left[h_{x_1}, h x_2 \right] \]

where \(f \) is any function on \(E \).

It follows from Frobenius's theorem that an horizontal distribution is integrable if and only if its curvature vanishes.

Theorem 4.2 To prove that

\[\mathcal{N} (H_a, H_b) = \mathcal{N}^{B}_{a b} \frac{\partial}{\partial y^B} \rightarrow (4.9) \]

where

\[\mathcal{N}^B_{a b} = \left(\frac{\partial}{\partial x^a} + \Gamma^A_{a b} \frac{\partial}{\partial y^A} \right) \Gamma^B_{a b} - \left(\frac{\partial}{\partial x^b} + \Gamma^B_{b a} \frac{\partial}{\partial y^B} \right) \Gamma^B_{a b} \rightarrow (4.10) \]

and which are called the components of curvature tensor.

Proof

\[\mathcal{N} (H_a, H_b) = \mathcal{V} \left[H_a, H_b \right] \]

Now

\[\begin{aligned} \left[\frac{\partial}{\partial x^a} + \Gamma^A_{a b} \frac{\partial}{\partial y^A}, \frac{\partial}{\partial x^b} + \Gamma^B_{b a} \frac{\partial}{\partial y^B} \right] \\
= \left(\frac{\partial}{\partial x^a} + \Gamma^A_{a b} \frac{\partial}{\partial y^A} \right) \left(\frac{\partial}{\partial x^b} + \Gamma^B_{b a} \frac{\partial}{\partial y^B} \right) - \left(\frac{\partial}{\partial x^b} + \Gamma^B_{b a} \frac{\partial}{\partial y^B} \right) \left(\frac{\partial}{\partial x^a} + \Gamma^A_{a b} \frac{\partial}{\partial y^A} \right) \end{aligned} \]

\[= \left(\frac{\partial}{\partial x^a} + \Gamma^A_{a b} \frac{\partial}{\partial y^A} \right) \left(\frac{\partial}{\partial x^b} + \Gamma^B_{b a} \frac{\partial}{\partial y^B} \right) - \left(\frac{\partial}{\partial x^b} + \Gamma^B_{b a} \frac{\partial}{\partial y^B} \right) \left(\frac{\partial}{\partial x^a} + \Gamma^A_{a b} \frac{\partial}{\partial y^A} \right) \]

Now changing (A to B) and (B to A) in 2nd term

\[= \left(\frac{\partial}{\partial x^B} + \Gamma^A_{a b} \frac{\partial}{\partial y^B} \right) \frac{\partial}{\partial y^B} - \left(\frac{\partial}{\partial x^A} + \Gamma^A_{a b} \frac{\partial}{\partial y^A} \right) \frac{\partial}{\partial y^A} \]
\[\left(\frac{\partial}{\partial x^a} + \Gamma^A_a \frac{\partial}{\partial y^A} \right) \Gamma^B_b \left(\frac{\partial}{\partial y^B} \right) \Gamma^d_d \left(\frac{\partial}{\partial y^d} \right) \frac{\partial}{\partial y^B} \rightarrow (B) \]

Hence

\[\mathcal{L}_X (H_a, H_b) = \mathcal{L}_{ab}^B \frac{\partial}{\partial y^B} \]

where \(\mathcal{L}_{ab}^B \) is given by "B".

If \(X \) is tangent to \(M \) at \(x \), the horizontal lift of \(X \) to any point \(Y \) through the unique horizontal vector \(\mathcal{X} \in H_y \)

\[\mathcal{T} \mathcal{X} = \mathcal{X} \]

If in local co-ordinates

\[X = X(x) \frac{\partial}{\partial x^a} \]

then from (4.3)

\[\mathcal{X} = X(x) \left(\frac{\partial}{\partial x^a} + \Gamma^A_a \frac{\partial}{\partial y^A} \right) \rightarrow (4.11) \]

If \(Y \) is a curve through \(x \in M \) the horizontal lift of \(Y \) through \(\mathcal{Y} \in \Pi \mathcal{X}(x) \) is the unique horizontal curve \(\mathcal{Y} \) through \(\mathcal{Y} \) such that

\[\Pi \mathcal{Y} \mathcal{Y} = \mathcal{Y} \]

If it exists, \(\mathcal{Y} \) is said to be parallel transported along \(Y \) to other points of \(\mathcal{Y} \).

If every curve on \(M \) has an horizontal lift through each point above it, the horizontal distribution is called a connection on \(E \). From now on we assume that all the horizontal distributions introduced are connections.

The functions \(\Gamma^A_a \) introduced in (4.3) are in this case called the connection co-efficients.

Corollary 4.1 If the presentation of \(Y \) in local co-ordinates is \(t \rightarrow \mathcal{Y}(t) \) and that of \(\mathcal{Y} \) is \(t \rightarrow (\mathcal{Y}(t), \mathcal{A}(t)) \) then
\[\ddot{Y}^a(t) = Y(t) \quad (4.12) \]
\[\frac{dY^A}{dt} = \Gamma^A_{\alpha} \left(Y(t), \dot{Y}(t) \right) \frac{dY^a}{dt} \quad (4.13) \]

Proof

\[\ddot{Y}^a(t) = Y^a(t) \quad \text{(By definition)} \]

Now if \(x \in \mathcal{E} \) then the components of

\[X = \left(x^a \frac{\partial}{\partial x^a}, x^A \frac{\partial}{\partial x^A} \right) \]

\[= \frac{\partial}{\partial x^a} + \Gamma^A_{\alpha} x^A \frac{\partial}{\partial x^A} \]

Now in this case

\[Y = \Gamma^A_{\alpha} x^A \]

\[\frac{dY^A}{dt} = \Gamma^A_{\alpha} \frac{dx^A}{dt} \]

\[= \Gamma^A_{\alpha} \left(Y^b(t), Y^b(t) \right) \frac{dY^a}{dt} \]

The equations (4.12) and (4.13) are called the equations of parallel transport.

If \(\mathcal{E} : U \rightarrow \mathcal{E} \) is a local section of \(\Pi \), \(U \) an open set in \(M \), then the co-variant derivative \(\nabla_X \mathcal{E} \) of \(\mathcal{E} \) with respect to a vector \(X \) tangent to \(U \) at \(x \) is defined by

\[\nabla_X \mathcal{E} = \mathcal{V}(\mathcal{E}_X) \quad (4.14) \]
Theorem 4.3
If \(X = \frac{\partial}{\partial x^a} \) and \(\tilde{g}(X) = (x^a, \tilde{g}(x)) \rightarrow (4.15) \)
then
\[
\nabla_X \tilde{g} = (\nabla_X \tilde{g})^A \frac{\partial}{\partial y^A}
\]
where
\[
(\nabla_X \tilde{g})^A = x^A \left(\frac{\partial \tilde{g}^A}{\partial x^a} - \Gamma_a^B(x, \tilde{g}(x)) \right) \rightarrow (4.16)
\]

Proof
\[
E = M \times F = (x^A, y^A)
\]
\(a = 1, \ldots, \dim M \)
\(A = 1, \ldots, \dim F \)

Pu. \(u \times f \rightarrow \Pi_1(U) \)

Now
\[
H_a = \frac{\partial}{\partial x^a} + \Gamma_a^A \frac{\partial}{\partial y^A}
\]

Now
\[
X = u \times X + h \times X
\]
\[
u \times X = X - h \times X
\]
\[
= (x^a \frac{\partial}{\partial x^a} + \tilde{g}^A \frac{\partial}{\partial y^A}) - \tilde{g}^a \left(\frac{\partial}{\partial x^a} + \Gamma_a^B(x, \tilde{g}(x)) \right)
\]
\[
= (x^a - \Gamma_a^B(x, \tilde{g}(x)) \frac{\partial}{\partial y^A}) \rightarrow (A)
\]

Now
\[
\tilde{g}: u \rightarrow E
\]
\[
\tilde{g} \mathcal{X} \times \rightarrow (x^A, y^A)
\]
\[
\tilde{g}_a \mathcal{X} = (x^A, \frac{\partial \tilde{g}^A}{\partial x^b} x^b)
\]

Now putting the value of \(\tilde{g}^a \) and \(\tilde{g}_a \) in "A" we get

\[
\nu(\tilde{g}_a \mathcal{X}) = \left(\frac{\partial \tilde{g}^A}{\partial x^B} x^B - \Gamma_a^B(x, \tilde{g}(x)) \frac{\partial}{\partial y^A} \right)
\]

The section \(\tilde{g} \) is called integrable if \(\nabla_X \tilde{g} = 0 \) for all vector fields \(x \) tangent to \(U \). It is no more than a restatement.
of Ferobenius's theorem to remark that there is an integrable (local) section through each point if and only if the curvature vanishes.

In the cases of interest where the connection will be associated with a Bäcklund map, it may be possible to endow the local product fibre space with some additional structure.

(1) E may be a (differentiable) fibre bundle, with (Lie) structure group G acting on the fibre F; in this case the Lie algebra of G will be denoted \mathfrak{g} and the Lie algebra of vector fields on F generating the action of G will be denoted \mathfrak{g}_F.

(2) The fibre bundle E may be a vector bundle, with F a vector space, G a subgroup of the group of linear transformations $GL(F)$ and H a linear connection.

If E is a fibre bundle, the action of G must be compatible with the diffeomorphisms (4.1) which means that if

\[P_u : U \times F \to \Pi(U) \]
\[P_u^* : U \times F \to \Pi(U) \]

are two such diffeomorphisms, with $U \cap U' \neq \emptyset$, and if for each $x \in U \cap U'$

\[P_x : F \to \Pi(x) \] by \[\gamma \longmapsto P_u(x, \gamma) \]
\[P_x^* : F \to \Pi(x) \] by \[\gamma \longmapsto P_u^*(x, \gamma) \]

then

\[P_x^{-1} \circ P_x : F \to F \]
is an action of some $g_x \in G$ on F, depending smoothly on x.

The possibility of endowing E with the structure of a fibre bundle is of interest here only if the action of G is compatible also with parallel transport by the connection.
This means that parallel transport, suitably composed with the diffeomorphisms (4.1) should yield an action of \(G \). Explicitly let \(x_1 \) and \(x_2 \) be points of \(M \), a curve joining them with \(\gamma(t_1) = x_1 \) and \(\gamma(t_2) = x_2 \). For each \(\eta \in \Pi^\prime(x_1) \), let \(\overline{\gamma}_\eta \) be the horizontal lift of \(\gamma \) through \(\eta \). Then the parallel transport along \(\gamma \) is given by

\[
\overline{\gamma}_\eta : \Pi^\prime(x_1) \rightarrow \Pi^\prime(x_2) \rightarrow (4.17)
\]

Let \(U_1 \) and \(U_2 \) be neighbourhoods of \(x_1 \) and \(x_2 \) respectively for which diffeomorphisms (4.1) are defined and let \(P_1 \) and \(P_2 \) be the maps \(P_1 : F \rightarrow \Pi^\prime(x_1) \) by \(\eta \mapsto P_\eta(x_1, \gamma) \). Implies that \(P_2 \circ \overline{\gamma}_\eta \circ P_1 : F \rightarrow F \rightarrow (4.18) \) is an action of \(g \in G \) on \(F \). If this is the case, \(H \) is sometimes called a \(G \)-connection.

If \(H \) is a \(G \)-connection then (4.18) imposes conditions on the connection coefficients, for it implies that to each curve \(\gamma \) through \(x \in M \) there is a curve \(\gamma \) in \(G \)

\[
\overline{\gamma}(t) = P_\eta(\gamma(t), \gamma(\eta) \delta) \rightarrow (4.19)
\]

where \(\delta \) is the identity of \(G \), \(\gamma(0) = x \) and \(\overline{\gamma}(0) = P_\eta(x, \delta) \) is any point in \(\Pi(x) \).

Theorem 4.4 To prove that if \(f \) is a function on \(E \), then differentiating it along \(\overline{\gamma} \) yields

\[
\omega^\alpha \gamma = \dot{\gamma}^\alpha \omega^\alpha_\alpha \quad \text{and} \quad \Gamma^A_\alpha (x, \gamma) = \omega^\alpha_\alpha (x) X^A_\alpha (\gamma)
\]

where \(\omega^\alpha_\alpha \) are functions depending on the choice of \(\gamma \), and \(X^A_\alpha, \gamma^\alpha_\alpha \) are basis for \(GF \).

Proof Now

\[
\overline{\gamma}(t) = P_\eta(\gamma(t), \gamma(\eta) \delta)
\]
But we know
\[
\bar{Y}(t) = (\dot{Y}(t), \dot{Y}(t) \Gamma^A_a)
\]
\[
= \dot{Y}(t) \frac{\partial}{\partial x^a} + \dot{Y}(t) \Gamma^A_a \frac{\partial}{\partial y^A}
\]
\[
\frac{d\bar{Y}(t)}{dt} = \dot{Y}(t) (\frac{\partial}{\partial x^a} + \Gamma^A_a \frac{\partial}{\partial y^A}) \rightarrow \bar{y}
\]

Now when
\[
\bar{Y}(t) = R(t) (\bar{Y}(t), \bar{Y}(t) \Gamma^A_a)
\]
\[
\frac{d\bar{Y}(t)}{dt} = \dot{Y} \frac{\partial}{\partial x^a} + \dot{Y} \Gamma^A_a \frac{\partial}{\partial y^A} \rightarrow \bar{y}
\]

Equating (1) and (2) we get
\[
\dot{Y} \frac{\partial}{\partial x^a} = \omega^a_\gamma \frac{\partial}{\partial y^A}
\]

Since \(\frac{\partial}{\partial x^a} \) are basis of \(GF \).

It follows that \(x^a \) is non-singular matrix. Then there exist inverse matrix \(X^A_B \).

Multiply both sides of (A) with \(X^A_B \) we get
\[
X^A_B \dot{Y} \Gamma^A_a = \omega_{\gamma} \frac{\partial}{\partial y^A} \frac{\partial}{\partial y^A}
\]
\[
\omega_{\gamma} = \dot{Y} \Gamma^A_a \frac{\partial}{\partial y^A}
\]
\[
\omega_{\gamma} = \dot{Y} \omega_{\gamma} \rightarrow (B)
\]

Now putting the value of (B) in (A) we get
\[
\dot{Y} \Gamma^A_a = \omega_{\gamma} \omega_{\gamma} \frac{\partial}{\partial y^A}
\]
\[
\Gamma^A_a = \omega_{\gamma} \omega_{\gamma} \frac{\partial}{\partial y^A} \rightarrow (4.21)
\]
where
\[x_\alpha = x_\alpha^A \frac{\partial}{\partial y^A} \quad (4.22) \]
is a basis for the Lie algebra \(\mathfrak{g}_F \) and the \(\omega^\alpha \) are (lifted from) functions on the base \(M \). The module \(H \) of vertical forms is generated by
\[\Theta^A = dy^A - x_\alpha^A(y) \omega(x) \quad (4.23) \]
where
\[d = \omega_a(x) dx^a \quad (4.24) \]
are 1-forms which may also be considered to be lifted from \(M \).
Theorem 4.5 To prove that if
\[H_a = \frac{2}{\partial x^a} + \omega^A_b(x) \chi^A_b(y) \frac{\partial}{\partial y^A} \]
where
\[\chi^A_b = \chi^A_d \frac{\partial}{\partial y^A} \]
then the components of the curvature tensor are
\[\nabla^B_{ab} = (\partial \omega_b^Y \chi^Y_a - \partial \omega^Y_a \chi^Y_b + \omega^A_b \omega^Y_a \partial Y_a) \chi^Y_B \]
where \(\partial Y_a \) are the structure constants of \(G \).

Proof
\[
\nabla^B_{ab} = \nabla \left[H_a, H_b \right] \]
\[
\nabla^B_{ab} = \nabla \left[\frac{2}{\partial x^a} + \omega^A_b(x) \chi^A_b(y) \frac{\partial}{\partial y^A} \right] \]
\[
= \nabla \left[\left(\frac{2}{\partial x^a} + \omega^A_b(x) \chi^A_b(y) \frac{\partial}{\partial y^A} \right) \left(\frac{\partial}{\partial x^b} + \omega^B_c(y) \chi^B_c(y) \frac{\partial}{\partial y^B} \right) \right] \]
\[
- \nabla \left[\left(\frac{\partial}{\partial x^b} + \omega^B_c(y) \chi^B_c(y) \frac{\partial}{\partial y^B} \right) \left(\frac{2}{\partial x^a} + \omega^A_b(x) \chi^A_b(y) \frac{\partial}{\partial y^A} \right) \right] \]
\[
= \nabla \left[\frac{\partial}{\partial x^a} \chi^A_b \chi^A_b + \frac{\partial}{\partial x^a} \omega^B_c \chi^B_c + \frac{\partial}{\partial x^a} \omega^A_b \omega^B_c \frac{\partial}{\partial y^B} \right] \]
\[
+ \omega^B_c \chi^B_c \frac{\partial}{\partial x^a} \frac{\partial}{\partial y^B} \]
\[
+ \omega^A_b \chi^A_b \left[\frac{\partial}{\partial y^A} \chi^A_b + \omega^B_c \chi^B_c \frac{\partial}{\partial y^B} \frac{\partial}{\partial x^a} \right] \]
\[
- \nabla \left[\frac{\partial}{\partial x^b} \chi^A_b \chi^A_b + \frac{\partial}{\partial x^b} \omega^B_c \chi^B_c + \frac{\partial}{\partial x^b} \omega^A_b \omega^B_c \frac{\partial}{\partial y^B} \right] \]
\[
+ \omega^B_c \chi^B_c \frac{\partial}{\partial x^b} \frac{\partial}{\partial y^B} \]
\[
+ \omega^A_b \chi^A_b \left[\frac{\partial}{\partial y^A} \chi^A_b + \omega^B_c \chi^B_c \frac{\partial}{\partial y^B} \frac{\partial}{\partial x^b} \right] \]
\[
= \nabla \left[\frac{\partial}{\partial x^a} \chi^A_b \chi^A_b - \frac{\partial}{\partial x^a} \omega^B_c \chi^B_c + \frac{\partial}{\partial x^a} \omega^A_b \omega^B_c \frac{\partial}{\partial y^B} \right] \]
\[
- \nabla \left[\left(\frac{\partial}{\partial x^b} - \frac{\partial}{\partial x^b} \right) \chi^A_b \chi^A_b + \omega^B_c \chi^B_c \frac{\partial}{\partial x^a} \frac{\partial}{\partial y^B} \right] \]
\[
= \nabla \left[\left(\frac{\partial}{\partial x^b} - \frac{\partial}{\partial x^b} \right) \chi^A_b \chi^A_b + \omega^B_c \chi^B_c \frac{\partial}{\partial x^a} \frac{\partial}{\partial y^B} \right] \]
\[= \mathcal{V} \left\{ \left(\frac{\partial \omega_y^A}{\partial x^a} - \frac{\partial \omega_x^A}{\partial y^b} \right) x_y^A \frac{\partial f}{\partial y^B} + \omega_x^A \omega_y^B \left[x_x^A x_y^B - x_y^B \frac{\partial x_x^A}{\partial y^B} \frac{\partial f}{\partial y^A} \right] \right\} \]

Now
\[x_x^A = x_x^B \frac{2}{\partial y^B}, \quad x_y^A = x_y^A \frac{2}{\partial y^A} \]

\[[x_x^A, x_y^B] f = x_x^B \frac{2}{\partial y^B} (x_y^A \frac{2}{\partial y^A}) - x_y^A \frac{2}{\partial y^A} (x_x^B \frac{2}{\partial y^B}) \]
\[= x_x^B \frac{\partial x_x^A}{\partial y^B} \frac{2}{\partial y^A} - x_y^A \frac{\partial x_y^B}{\partial y^A} \frac{2}{\partial y^B} \]
\[= \left(x_x^B \frac{\partial x_x^A}{\partial y^B} - x_y^A \frac{\partial x_y^B}{\partial y^A} \right) \frac{2}{\partial y^A} \]

Now putting this value in (A) we get
\[\mathcal{V}^B_{ab} = \mathcal{V} \left\{ \left(\frac{\partial \omega_y^A}{\partial x^a} - \frac{\partial \omega_x^A}{\partial y^b} \right) x_y^A \frac{\partial f}{\partial y^B} + \omega_x^A \omega_y^B [x_x^A, x_y^B] f \right\} \]

Now
\[[x_x^A, x_y^B] = C_{x^A y^B} x_y^B \]

therefore
\[\mathcal{V}^B_{ab} = \left(\frac{\partial \omega_y^A}{\partial x^a} - \frac{\partial \omega_x^A}{\partial y^b} + \omega_x^A \omega_y^B C_{x^A y^B} \right) x_y^B \]

Theorem 4.5 To prove that
\[d\theta^A = -x_{x^A y^B} \left[d\omega^B + \frac{1}{2} C_{x^A y^B} \omega^B \right] \quad (\text{mod } \theta^B) \]

and also
\[d\theta^A = -\frac{1}{2} \mathcal{V}^B_{ab} \quad dx^a \wedge dx^b \quad (4.26) \]

Proof
\[\begin{align*}
\theta^A &= dy^A - x_{x^A y^B} \omega^A(x) \\
\theta^A &= - \left[d \left(x_{x^A y^B} \omega^A(x) \right) + x_{x^A y^B} \right] d\omega^A(y) \\
&= - \left[x_{x^A y^B} \omega^A(x) - \omega^B(x) \wedge x_{x^A y^B} \omega^B(y) \right] \\
&= - \left[x_{x^A y^B} \omega^A(x) - \omega^B(x) \wedge x_{x^A y^B} \omega^B(y) \right] \\
&= - \left[x_{x^A y^B} \omega^A(x) - \omega^B(x) \wedge x_{x^A y^B} \omega^B(y) \right]
\end{align*} \]
After giving the idea of connection our problem is this, that how a connection may be associated to a Bäcklund map.

\[\nabla;: J^1(M; N_1) \times N_2 \longrightarrow J^1(M; N_2) \]

induces on \(J^h(M; N_1) \times N_2 \) a module of 1-forms \(\nabla^1(M; N_2) \). The pull back of the contact module on \(J^1(M; N_2) \). The forms of this module may be chosen as vertical forms defining a connection on the product space \((J^h(M; N_1) \times N_2, J^h(M; N_1) \langle \Pi_1 \rangle) \). i.e. in this case

\[E = (J^h(M; N_1) \times N_2, J^h(M; N_1), \Pi_1) \]

where \(E = J^h(M; N_1) \times N_2 \)

\[M = J^h(M; N_1) \text{ and } \Pi = \Pi_1 \]

\[F = N_2 \]

we call this connection a Bäcklund connection. The
integrability conditions for the Bäcklund map were the vanishing of the curvature of the Bäcklund connection. The vanishing of this curvature imposes additional conditions which one could not expect to satisfy. Alternatively one might attempt to construct a connection with module of vertical forms chosen to be \(\mathcal{K} \) on \((J^h(M, N_1) \times N_2, \mathbb{M}, \mathbb{D})\) or something of that kind, but \(\mathcal{K} \) is not quite large enough for this purpose, because of the intervention of the highest derivatives of the independent variable \(\mathbb{Z} \).

To overcome the first difficulty one may eliminate the additional conditions by constructing sections of \((J^h(M, N_1) \times N_2, \mathbb{M} \times N_2, \mathbb{D})\) namely jets of maps from \(\mathbb{M} \) to \(N_1 \); thus connecting the \(\mathbb{Z} \) and their derivatives into functions on the base \(\mathbb{M} \). To overcome the second difficulty, one may work with the projective limit \(J(M, N_1) \times N_2 \), where \(J(M, N_1) \) is the jet bundle of infinite order, so that there is no longer any highest derivative. We will discuss these two procedures one by one.

First of all suppose that \(\gamma : J^h(M, N_1) \times N_2 \to (J^1(M, N_2) \to (4.27) \) is an ordinary Bäcklund map with integrability condition

\[
\frac{\partial^{h+1} A}{\partial c} \frac{\partial \gamma_b}{\partial b} - \frac{\partial^{h+1} A}{\partial b} \frac{\partial \gamma_c}{\partial c} = 0
\]

If \(f : \mathbb{M} \to \mathbb{N} \), then one can associate a map

\[
\tilde{f}^h = f^h \times \text{id}_{N_2} : J(M \times N_2) \to J^h(M, N_1) \times N_2 \to (4.29)
\]

Now

\[
J^h(M, N_1) \times N_2 \xrightarrow{P_{h+1}} J^h(M, N_1)
\]

Any contact form in \(P_{h+1} \mathcal{K}(M, N_1) \) is annihilated by the map \(\tilde{f}^h \). Therefore the module \(\mathcal{H}^h = \tilde{f}^h(\mathcal{K}^h) \) on
\[J^0(M, N_2) \] and hence \(J^0(M, N_2) \) is also on \(J^0(M, N_2) \).

It has a basis
\[
\begin{align*}
\Theta^A &= dy^A - \Gamma^A_{\alpha} dx^\alpha \\
\Gamma^A_{\alpha} &= \Psi^A_{\alpha} \circ J_{\beta} \rightarrow (4.30)
\end{align*}
\]

Because here the position is this
\[M \times N_2 \rightarrow J^0(M, N_2) \times N_2 \rightarrow J^1(M, N_2) \]

This module may be chosen as a module of vertical forms defining an horizontal distribution \(H_f \) on the trivial fibre bundle \(E = (J^0(M, N_2), M, \mathcal{L}) \). This horizontal distribution depends on the choice of both the Backlund map \(\Psi \) and the map \(f \). If the \(\Gamma^A_{\alpha} \) factorize as in (4.20) then the \(\mathcal{L}_\alpha \) may be identified with members of a subset of a basis for a lie algebra \(\mathfrak{g}_{N_2} \) of vector fields acting on \(N_2 \), which may be supposed to be the lie algebra of a lie group \(\mathcal{G} \) which is the structure group of the fibre bundle.

\[E = (J^0(M, N), M, \mathcal{L}, N_2, \mathcal{G}, H_f, \Psi) \]

It is not justified to suppose that the \(\mathcal{L}_\alpha \) which actually occur in \(\Gamma^A_{\alpha} \) are themselves a basis for \(\mathfrak{g}_{N_2} \). Since some of the \(\mathcal{L}_\alpha \) might vanish.

Since the \(\Gamma^A_{\alpha} \) are constructed from the \(\Psi^A_{\alpha} \) of the Backlund map, according to (4.30) by substituting for the jet bundle variables \(\mathcal{Z}_a, \overline{\mathcal{Z}}_a \) -- without altering the \(\Psi^A \), it follows that if the \(\Gamma^A_{\alpha} \) factorize for a general \(f \), then the \(\Psi^A_{\alpha} \) factorize, in the form
\[
\Psi^A_{\alpha} = \tilde{\mathcal{W}}^A_{\alpha} (x^b, \mathcal{Z}_a, \overline{\mathcal{Z}}_a, \ldots) \rightarrow (4.31)
\]

where \(\tilde{\mathcal{W}}^A_{\alpha} \) are some functions pulled back by \(\mathcal{P}_{\mathcal{L}_\alpha} \), from \(J^1(M, N_1) \). Conversely, if the \(\Psi^A_{\alpha} \) factorize as in (4.31) so trivially do the \(\Gamma^A_{\alpha} \).
Theorem 4.7. To prove that if

\[\tilde{\gamma}_a = \tilde{\omega}_a^A (x^b, z^c, \dot{z}^a, \ldots) \]

then the integrability conditions

\[\tilde{\omega}^{h+1} A \partial_c \tilde{\gamma}_b - \tilde{\omega}^{h+1} A \partial_b \tilde{\gamma}_c = 0 \]

of the Bäcklund map, take the form

\[\mathcal{N}_b^A x^A_c = 0 \quad (4.32) \]

where

\[\mathcal{N}_b^A = \partial_c \tilde{\omega}_b^A - \partial_b \tilde{\omega}_c^A + \tilde{\gamma}_b^A \tilde{\omega}_c \tilde{\omega}^B_c \quad (4.33) \]

where \(x^A \) are among the basis vectors of \(\mathcal{G}_{N_2} \) while the \(\tilde{\gamma}_b^A \) are structure constants of \(\mathcal{G}_{N_2} \).

Proof.

\[\tilde{\gamma}_a = \tilde{\omega}_a^A (x_b, z^c, \dot{z}^a, \ldots) x^A_c \]

Similarly

\[\tilde{\gamma}_b = \tilde{\omega}_b^B x^B_c \]
\[\tilde{\gamma}_c = \tilde{\omega}_c^Y x^Y_c \]

we have already proved that

\[\tilde{\omega}^{h+1} A \frac{\partial}{\partial x^c} \]
\[\tilde{\omega}^{h+1} A \frac{\partial}{\partial y} \]

Now the integrability condition is

\[\tilde{\omega}^{h+1} A \partial_c \tilde{\gamma}_b - \tilde{\omega}^{h+1} A \partial_b \tilde{\gamma}_c = 0 \]

putting the values

\[= (\frac{\partial}{\partial x} + \frac{\partial}{\partial y}) \tilde{\gamma}_b - (\tilde{\gamma}_b^A + \tilde{\gamma}_b^B \frac{\partial}{\partial y} \tilde{\gamma}_c) \tilde{\gamma}_c \]

putting the values of \(\tilde{\gamma}_c, \tilde{\gamma}_c^A \)

\[= \tilde{\omega}_c^B x_b^A + \tilde{\omega}_c^Y x^Y_c \frac{\partial}{\partial y} (\tilde{\omega}_b^A x^A_b) \]
The integrability condition for the system of differential equation Z is the vanishing of the \mathcal{L} which are functions on \mathcal{J}. Moreover, the curvature of the connection $\mathcal{H}^\star_\mathcal{L}$ is \mathcal{K}, and so the curvature vanishes if and only if f is a solution of the integrability condition for \mathcal{L}. The vanishing of the curvature is necessary and sufficient for the integrability of the connection, in which case there exist maps $g: M \to N_2$ whose graphs are local sections \mathcal{G} satisfying $\mathcal{G}^A = 0$

If in local co-ordinates, g is given by

$$y^A = g^A(x^b)$$

then $\frac{\partial y^A}{\partial x^a} = \Gamma^A_a(x)$ where Γ^A_a is given by (4.30).

As an application of the ideas developed in this section, we describe the construction of linear scattering equations with the help of a Bäcklund map.

Suppose that a Bäcklund map $\psi: J^2(M, N_1) \times N_2 \to J^2(M, N_2)$
is a solution of the Backlund problem for a system Z of differential equations and that the functions ψ^A defining ψ factorize as in (4.31) so that ψ defines a G-connection for some Lie group G, not necessarily unique. Then by Ado's theorem (Jacobsen 1962 p. 202), the Lie algebra \mathfrak{g} of G admits a faithful linear representation, so that if the representation defined by (4.31) is not already linear, it may be explained by a linear one. Thus there always exists a manifold N_2 and another Backlund map

$$\psi: J^h(M_1 N_1) \times N_2 \to J^1(M_1 N_2) \to (4.36)$$

defined by functions

$$\psi_A^A = \omega^A_x X^A_x$$

where X^A_x satisfying the same commutation relation as the X^A_x in (4.31) but being of the form

$$\dot{X}^A_x = \Gamma^A_B x^B_x$$

(4.37)

where \dot{x}^B are local co-ordinates on N_2 and Γ^A_B are constants.

To circumvent the second difficulty we work with the projective limit $J(M_1 N_1) \times N_2$ where $J(M_1 N_1)$ is the jet bundle of infinite order. The procedure is as follows.

The jet bundle of infinite order $J(M_1 N)$ is the projective limit (also called the inverse limit) (Lange 1965 p. 55) of the bundles $J^k(M_1 N)$, defined as follows:

Consider the infinite product $\prod J^k(M_1 N)$, whose elements are sequences $s = (s_0, s_1, \ldots, s_k, \ldots)$ with $s^k \in J^k(M_1 N)$.

Then $J(M_1 N)$ is the subset consisting of sequences related by the natural projection:

$$\overline{J}(M_1 N) = \{ (s_0, s_1, \ldots, s_K, \ldots) \in \prod J^k(M_1 N) \mid \prod s^k = s^l \text{ for all } k \text{ and all } l \leq K \}$$

Two functions define the same point of $\overline{J}(M_1 N)$ if they
have the same derivative about a point of \(M \), then there is a natural projection

for every \(K \), by

\[(\xi_0, \xi_1, \ldots, \xi_K, \ldots) \rightarrow \xi_K \]

with the property that

\[K > l, \quad \Pi^K_L \circ \Pi^K_K = \Pi^L_L \]

i.e. \(J(M, N) \rightarrow J^K(M, N) \rightarrow J^L(M, N) \)

The image of \(\partial^v_x \times \partial^v_x x \times \partial^v_x x \ldots \) in \(J^K(M, N) \) lies in \(J(M, N) \) and defines the infinite jet \(j f \) of any \(f \in C(M, N) \).

The ideas of differentiable function, vector field, form and so on generalize straightforwardly.

A function \(f \) on \(J(M, N) \) is differentiable if for some \(K \) there is a differentiable function \(f_K \) on \(J^K(M, N) \) such that

\[f = f_K \circ \Pi^K \]

More generally a map \(\phi : J(M, N) \rightarrow P \) into a manifold \(P \) is differentiable if for some \(K \) there is a differentiable map \(\phi_K : J^K(M, N) \rightarrow P \) such that \(\phi = \phi_K \circ \Pi^K \).

A curve \(\gamma \) at \(\xi \in J(M, N) \) is a map

\[\gamma : I \rightarrow J(M, N)\]

where \(I \) is an open interval of \(K \), \(\gamma(0) = \xi \), and \(f \circ \gamma \)

is a differentiable (real) function for every differentiable function \(f \) on \(J(M, N) \). Two curves \(\gamma_1 \) and \(\gamma_2 \) at \(\xi \) are equivalent if

\[\frac{d}{dt} (f \circ \gamma_1)_{t=0} = \frac{d}{dt} (f \circ \gamma_2)_{t=0}\]

for every differentiable \(f \). A tangent vector \(X \) at \(\xi \) is an equivalence class of curves at \(\xi \).

If \(f \) is any (differentiable) function on \(J(M, N) \) then \(Xf \)

means \(\frac{d}{dt} (f \circ \gamma)_{t=0} \) where \(\gamma \) is any curve in the equivalence class defining \(X \). But there is a function \(f_K \).
on $J^k(M,N)$ for some k such that $f = f_k \circ \Pi_k$ so that

$$\frac{df}{dt}(t=0) = 0$$

which is the derivative of f_k along the curve $\Pi_k \circ \gamma$ on $J^k(M,N)$.

Moreover, as is easily seen, this derivative is independent of the choice of γ in the equivalence class, and so by the usual arguments may be written

$$X_f = \sum \frac{\partial f_k}{\partial x^\alpha} + \sum \frac{\partial f_k}{\partial \bar{x}^\alpha} + \cdots + \sum \frac{\partial f_k}{\partial \omega_\alpha} = \Pi_k(f)$$

where all the partial derivatives of f_k are evaluated at $\Pi_k(f)$.

If X is a vector field on $J(M,N)$ and f_k is any function on $J^k(M,N)$ then for some $f(K) > K$ there is a function δ_k on $J^k(M,N)$ such that $X(f_k \circ \Pi_k) = \delta_k \circ \Pi_k$, so that the action of X on the f_k is given by

$$X(f_k \circ \Pi_k) = (\sum \frac{\partial f_k}{\partial x^\alpha} + \sum \frac{\partial f_k}{\partial \bar{x}^\alpha} + \cdots + \sum \frac{\partial f_k}{\partial \omega_\alpha}) \delta_k \circ \Pi_k$$

where $\delta, \delta', ... \delta_\alpha, ... \delta_k$ are all functions on $J^k(M,N)$ independent of the choice of f_k. Thus the action of X may be specified by writing

$$X = \sum \frac{\partial f_k}{\partial x^\alpha} + \sum \frac{\partial f_k}{\partial \bar{x}^\alpha} + \cdots + \sum \frac{\partial f_k}{\partial \omega_\alpha}$$

where all the co-ordinates $\delta, \delta', ... \delta_\alpha, ... \delta_k$ are differentiable functions on $J(M,N)$.

Let \mathcal{X} denote the collection of vector fields on $J(M,N)$.

Then a p-form on $J(M,N)$ is a skew-symmetric $\mathcal{C}(J(M,N))$ multilinear map

$$\mathcal{X} \times \mathcal{X} \times \cdots \times \mathcal{X} \rightarrow \mathcal{C}(J(M,N))$$

Thus \mathcal{X} may be defined in the usual way.

If X is a vector at $f \in J(M,N)$ then the vector $\Pi_k^{*}X(f)$ at $\Pi_k(f) \in J^k(M,N)$ is defined by $(\Pi_k^{*}X)\Pi_k(f) = X(f_k \circ \Pi_k)$ for all $f_k \in \mathcal{C}(J^k(M,N))$.
if \(w_k \) is a \(p \)-form on \(J^k(M,N) \) then \(\Pi^*_k w_k \) is a \(p \)-form on \(J(M,N) \) defined pointwise by

\[
(\Pi^*_k w_k)(x_1, \ldots, x_p) = w_k(\Pi^*_k x_1, \ldots, \Pi^*_k x_p)
\]

Thus the contact module \(\mathcal{U}(M,N) \) is the module of \(1 \)-forms on \(J(M,N) \) generated by

\[
\sum_{K=0}^\infty \Pi^*_K \mathcal{U}(M,N).
\]

All these definitions generalize in a rather obvious way to \(J(M,N_1) \times N_2 \). For example if \(\Pi^*_k = \Pi^*_k \times \text{id} \) where \(\text{id} \) is the identity map of \(N_2 \), then a differentiable function for \(J(M,N_1) \times N_2 \) is one of the form \(f_k \circ \Pi^*_k \) where \(f_k \) is a differentiable function on \(J^k(M,N_1) \times N_2 \).

A vector \(\xi \) at \(\xi \in J(M,N_1) \times N_2 \) is a derivation of differentiable functions, the components of a vector may be specified as in (4.38) above, with the addition of a term of the form \(\gamma^A \frac{\partial}{\partial y^A} \) (where \(y^A \) are local co-ordinates on \(N_2 \)) and projections of vectors and pull backs of forms are defined by trivial modifications of the above definitions.

Then if \(\varphi: J^1(M,N_1) \times N_2 \rightarrow J^1(M,N_2) \) is a Bäcklund map, a module of \(1 \)-forms \(\mathcal{U}^* \) on \(J(M,N) \) is generated by

\[
\sum_{K=0}^\infty \Pi^*_K \mathcal{U}^*(M,N).
\]

A straightforward computation shows that if \(\xi \in \mathcal{U}^* \) then \(\xi \) is a vector field of the form \(\xi = \xi^a \partial_a \)

where \(\xi^a \) are functions on \(J(M,N) \) and

\[
\partial_a = \Pi^*_k \left(A^a_{\alpha} \frac{\partial}{\partial y^\alpha} + \frac{\partial}{\partial z^a} + \frac{\partial}{\partial z^b} + \frac{\partial}{\partial z^c} + \ldots \right)
\]

Then by extending the definition of a connection to infinite jet bundles, we can define a connection \(\nabla \) on \((J(M,N_1) \times N_2, P_{\overline{J}} \circ \overline{\Pi}_0, N) \) with \(\partial_a \) as basis for horizontal vector fields and the forms in \(\mathcal{U} \) as vertical forms.

Since for any \(f \in \mathcal{C}(J(M,N)) \)
\[
\left[\tilde{\omega}_a, \tilde{\omega}_b \right] f = (\tilde{\omega}_a \tilde{\omega}_b - \tilde{\omega}_b \tilde{\omega}_a) f \\
= (\tilde{\omega}_a \frac{\partial f}{\partial y} - \tilde{\omega}_b \frac{\partial f}{\partial y}) \frac{\partial}{\partial y} f
\]

It is natural to identify (the vertical part of) \([\tilde{\omega}_a, \tilde{\omega}_b]\) as the curvature of this connection. The vanishing of the curvature is then exactly the system of integrability conditions for the Säcklund map.
references

Bäcklund, A. V. 1883 Om Utor med Konstant negative Konform, Lund universitetts Arsskrift 58.

P. A. E. Pirani, D. C. Robinson and W. F. Shadwick Local jet bundle formulation of Bäcklund transformations.