W Durham
University

AR

Durham E-Theses

A general purpose imverting indexing system

Pereira, B.H.

How to cite:

Pereira, B.H. (1975) A general purpose inverting indexing system, Durham theses, Durham University.
Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8952/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses
e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/8952/
 http://etheses.dur.ac.uk/8952/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

The object of +the thesis is to study the use of Inverted Pile organization
in & research envircrrent. The rmain reascn for the selection of this
subject ie the proliforation of information processing systens, leading
to duplication of pregramming snd maintenance cfforie.

Seae other conciderations to be taken into sccount include provision

of Data Irdaperdence by use of Data Description Directories, together
vith User-Priendliness using tabular processing concep%s based on the
Helational Model of Dotae.

A coupvter system has therefoere been develeped which cinbedies the zbove
concepts in a practical system which is general purpose - jeeos it coula
ve used to process sny type of data provided it is presented 1n 2

tabulaor forime

This syctem -~ cazlled the General FPurpose Invarted Indexing Sysitem - has
been vritten in FL/1 and operates on the Northumbrian Universities
ultiple Access Computer (NUMAC) IEN System/300 liodel 67 under conircl
of the Vichigan Terminal System (MT5). It comprises 24 modules totalling
about 20C0 FL/1 siatemenis and includes the major functiozns reguired in
e peneral purpose system, including Pile Descripiion, Set-Up of Inverted
Tndexes and Frocessing of Jueries.

The thesis first degeribsg inverted file corganizatlion councepts, and thexn
goes on to show how they ars applied in a general purpose system. The
components of the Gereral Purpcse Inverted Indexinz System are then
descrited, together with “heir interaction and operation. The lcgilcax

end performance capabilities are de¢fined snd analysed; followed by
recomuendations 28 tc how the system may be improved by future

erhancement s,

B.H.Pereira,

April 1275.

A
I
3
b
.:>

UNIVERSITY OF D

FACULTY OF SCIENGE

M.Sc. THESIS

A GENERAL PURPOSE iNVERTED INDEXIN

B.H.PEREIRA - APRIL 15875

g
S, g [
et o b

TARLE
L

AR A '~,‘"r' F”fl(,“
OF L L

o

;
Y

CHAPTER 1: INTRODUCTION TO THE THRESIS
feTe Background

162 Development aunl Impiementation
163, Testing, Results and Discussion
Te4e Content of the Thecis

15« Acknowledgements

CHAPTER 2: INVERTED FILE ORGANIZATION
2e1s Selection of File Organizaticn NMethod
2.2. Basic Frinciples

2+3. Retrieval using an Inverted Pile
2.4, Updating an Inveried FPile

2ebe Practical Implementations

2.6, Inverted File Choracteristics

CHAPTER 3: DESIGN PHILCSOPHY

3ete

Jele

3.3,

3ebe

Introduction

34747« Characteristics of Research Data Processing

3.1¢2. The Tabular liethod of Data Storsa e

3e1.3., Implications of the Tabular Method for Reseasrch
Files

3ele4. Description of the Files

3e1.5. Use of the Inverted File Organization Methed

3¢.1.6. Practical Implementation of Inverted Tndex ng
Coricepts

3e1.7. Updating of Inveried Indexes

3.1.8. Processing of Queries

3¢1.9. Definition of System Components

Pata Managenment

3e¢2e¢1e Control cf Direct Access Spece

3e242. Storage of Data within Sub-Files

3¢243. Date Nanagement Utility Progrems

3¢?+4. Data Manasement Frocessing Routines

Pile Descrin'ion Directories

3+3.17. Stora ge cf Lirectories on ihe Index File

y

3:2+2« Use of the File Description Dircctories
3+3.3. TFile Description Frocessing Prograns
Inverted Index Frocessing

3adele Storage of Inveried Indexes on the Index File

o5
Q
{o

N W N

7

10
10
ie

15

16

16

17

NN
o O

oy
[Y

31:50

CHAPTER 4:

4-10

4eZs

443

3ebeda

Summary

SY

BSIGW PHILOSCVHY conta

Searching on Inverted Index
3pescilficuvicn of Search Criterie
Inverted Index Processing Yrograms

and Furthor Design Considerations

STIM DESCRIPIICN

Introduction

Date Storage and Types

4e2e14
4e2e24
4423
4e2ehe
40245

Index File Control Sub~File
¥ile Name Directory Sub-File
Pield Name Dirsciory Sub-File
Index Conirol Sub-iile

Value and fddress Sub-Pile

Description of the System lodules

4e3e1s
4e3e20
443630
4.364.

Data Management
Directory FProcessing
Inverted Index Processing

Tata Conversion

Interrelation of the System Modules

TS Dependencies

4051,
4.5.2.
4e¢5.3.
4e5.4.

Sterogze and Retrieval on the Index File
Invocation of a Sort from a PL/1 Program
Logging of CPU Usage

Emptying Work Files following Sorts

CHAPTER 5: SYSTEW CPERATION

S5ele

5e2s
5¢3e
S5eds
5.5
546
S5¢Ts
5e8e

Introduction

5¢1¢1¢ MTS Job Conirol

5¢1¢2« Standard logiczl Files
Be1e3e Physical Filee

5¢1e4., PL/1 List I/0

5¢15. Test Data File

Conversion of Fasic Data to Tabuler Form

of the Dlank Index File

Deseriptions

e
ion of Inverted Index Sires

Creation of Inverted Indexes

Processirg of YComplex™ Querics

FPage

NN R
(U IERNS TS

(S, BN G BN BN AR %4
S W YO

un

(N2 AN A9) I N |
b I Q2=

AN
® O

(1 BN |
(Ve BN o]

&
€3
65

W

bai

CHAFTER ©: SYSTEu OPERATION contd

5.9, Deletion of Inverted Indexes 69
5.10. Deletion of Fiie Descriptions T2
5¢11. Report Utilitics T2
5.11¢1¢ Index File Status Report 7e
5¢11.2. Directory Report T2
5¢11.3¢. Inverted Index Report 5

CHAPTER 6: PERFORNANCE TESTING

6ele Sumnary 78
6.2, Methods of Performance Measurement T8
6.2+« Creation of Inverted Indexes 78
6.2.2. Processing of "Complex" Queries 80
6.3. High Energy Fhysics Daetabank 81
6:3.1« Counversion to Tabular Form g2
6.3.2. Inverted Index Creation 83
6¢3e3. Frocessing of Queries 84
5.4. Archaelczical Data 87
6ed4ele Inverted Index Creation &
6.4.2. DProcessing of Queries 90
CHAPTER T7: ANALYSIS DISCUSSICN AND RECCHMENDATICHS
7.1« Introduction a5
7.2« Analysis of pPerformance Testing Data 95
7.2.1 Inverted Index Creation g6
Te2.2. Query Processing 101
7¢3. Improvement of System Performance 104
7e3e1s Provision of iLarger Block Sizes on the Index
File 105
Te3.2. Improvement of Data Kanagement ElTiciency 105
7e3e3s Improvement in Comparison Efficiency 106
7.3.4., Index Creatiocn - Improvement of Abstracting
Efficiency 107
7¢3.5. Index Creation - Improvement of Sort
Efficiency 107
Tehe Functional Enhancements to the Sysiem 107
Tsebele A Compleve Informetion Retrieval System 108
Toehe2s Addition of Interactive Frocesssing 108
Tedoelde Provision of Update Fecilitlies 109

Teded Processing oi Outpuv Lists 109

Pope
APPEMDIA A: QLOSSARY OF TrRES 110

APPENDITX B: BIBLIGGHRAYPHY 113

AFPENDIX C: SCURCE LISTINGS 115

LIS™ OF RIGUARS

s e e

Tage
2.1. TInverted File - tkills Index 9
3.7 Index File Creation 19
3.2, Allocation of Sub-Files 20
3.3. Logical Processing of Sub-Files 22
3.4, File Deccription Directories 25
3.5, Inverted Index FProcessing 28
3.6+ Levels of Processing N
4.1, Interrelation cf System lodules 51
5,1, IXUSTP - Set Up a Blank Index File GO
5.2. IXPNEW - Load a File Description 62
5.3, IXPIXC - Estimation of Index Sizes 64
Se4eo IXUSTX - BExtension of Index File 66
5.5 JXPIXC = Create an Inverted Index €8
5.6, IXPIXS - Processing of "Complex" Queries 70
5.7 IXPIXD - Delete an Invertcd Index A
5.8, IXPDEL - Delete & File Description 73
5.9, IXUSTR - Index File Stetus Report T4
5.90s IXUDRP - Directory Report 76
5¢11. IXUIXL - Inveried Index Kepori T7
6.1, Index Creation - High Energy Fhysics 85
6.2. Query Frocessing - High Fnergy Physics &8
6.3« Index Creation - Geographic Data 91
6.4. Geographic Data - Query Search Areas 93
6.5. GCuery Processing - Geographic Data 94
7.1. Graph Index Crecation Time vs. No. of Records a7
7.2. Index Creation - CPU Times per Index Entry 99

7.3. Graph Query Processirg Time vs. No. of Records 102

200

WDLCTIoH vy T

The sime of this thesis ace definsd 10 be a study of ihs nse of Inverted
Mle ciganization in a vegearch cnvironment. The reasons for the selection
of this subject are az follows:

1. Proliferation of Infcrmation Hezirieval Systems.

Varying disciplines within the university research

environment use computer facilities tc store and access

]

data. This leads to a situation where a number of researcher
could be writing virtvally identical programs to accomplish
the same data processirg functions. The consegquences of this
approach are & considerable duplication c¢f programming en
maintenance effort.

2. A Common Information Retrieval Svstems.

tn alternative approach might be to design a single gensral
purpose information retrieval system which can handle
differing user requirements. To do this, it weuld be necessary
to examine rescerch requirements for data procegsing; &nd

from this to design a system which embodies the major
characteristics of research data processing.

3. Selection of Inverted File Creanization.

A characteristic of informestion retrieval systems ig that the
emphasis is placed on fast retvieval of information raiuer
then on speed of update of the Data Files. The In verted List
method of Iile organization is a prime candidate For
consideration; as it allows fast index searching, but teads
to be inefficient in updating situations.
The Inverted Pile organization method is thersfore defined a5 ihe
foundation stone on which a system might be constructed. However, from
ctudies of current thinking on #ile Crganization and Data DBase concepls,
two other building blccks might be defined

1. Data Indenendsnce.

The trend in File Organization is towards files that can be
meidntained independently of progrems. The advantages cf this
approach are that files can be maintained inderendently of
the programs, without necessitating re—-compilation ¢f the
programs. The provision of Daia Independence has been studied
in a number of Daota Management syctexs and included in the
CODASYL Date Rese Task Group Report (CODASYL(1G7%) - 2

references) as a possible indussry standerde.

Phe requirewent for Date Independence ig provided by an

<4 “?« \,l T

b
£
o
[xa
@
‘ad
[
—
o
3’
;l

interface between *he user and the rhysica

mezne of & Duta Deseripiion Table (or similar names}. A1l
user accoes 4c she Date File is tiarcugh the Dasta Description
Table us’ug the required FPile and Field names.

2. The Reletiornl Hodel of Datis.

A prime rcguirement of fuiure infermation systems is that
they ewmploy some entirely genreral method of storage mnd
processing of datae. The relstional caleuinug, based om the

Relational Model of Data, is a method very suited %o this

requirement, as describsd by CODD(1970) end NOTLEY(1272).

The major consequences of use of this approsch is that it

provides:

(&) An entirely gencral methed of manipulating data.

(b) A maximum degree of machine and data independence.

(¢) The simplest possible deta structure (i.c. a relation
or table) ccansistent with the semartics of the storsd
information.

Therefore, in order that the system may make use of the

Relational Model of Data, it would bhe necessary to g-.ore

the data in a Relational or tabular form. It would alsc he

necessary to provide outputs from the sysiem in a form

best suited for processing by Relation cperaticns e.g. Select,

Join etc. The method fer this would be to provide ouiput

lists in sequence for further processing.

A system is therefore to be designed and implemented which embodies the
above concepts in a practical system which is general purpose - i.ec. it
could be used to process any type of data provided it i5 presented in

a tabular form. A general method of defining queries and displiaying the

=)

results should also be provided,

1e2. Development and Innlementation

In line with the objectives defined above, a General Purpose Inverted
Indexing System has been designed and implemented. It is written in

PL/1 and runs on the Northumbrian Universities Multiple Access Computer
(NUMAC) 1BN System/360 Model 67 under control of the Michigan Terminal
System (XTS). It contains 24 modules - 10 Mzin Programs and 14 Subroutines
or Macros totalling sows 2000 PL/1 statements. There are three main

levels of processing with associated functions:

1e Dota Nanagenent.

FPacllities are nrovided t0 set up an Iadex File where inveried

indexes sbstracted fiom varicve Date Files wiay be siored,

opment_cid Tondrmentation conld

The dirvect access space within the Index ¥lle dc centroliced

within the system. ALY I/0 coding iz contained within a

number of routines which rzy be accessed from uigher levels

of the system. Processing functions provided are:

(a) Set Up a Blank Index File. Tuitialize the direct mccess
space within the Index File beforc any indexes are loaded.

(v) Extend an Existing Index File. Increase the amcunt of
direct access space available within the Index File.

(¢) Status Report on Index Iils. Display current file status
such as amount of spsce in use or available.

2, File Description Direcliories.

Within the Indsx File, Directories may be set up to degcribe
the physical storage characteristics ot Data Files, Dach
entry describes the File Name, together with associated rield
Names and Characteristics for one Data File. Functions
provided are:

(&) Add a File Description to the Directories.

(b) Delete a File Description freom the Directories together

with any asscciated inverted indexes.

4

(c) Directory Display Report. Display contents of Dirveciorie

3. Inverted Index Yrocessing.

The number of fields in a Data File which are to be indexed
are dependent on the user's decision. He is provided with
the fecllowing processing functions:

(a.) Create an Inverted Index for a specified Field.

(b) Delete an Inverted Index for a specified Field.

(¢) Define and Process (ueries using the Inverted Indexes.
(d) Display the Contents of a specified Inverted Index. This

report is primarily intended for system debuggings

1.3 Testing, Results and Discussicn

Initial system testing was carried out using a osmall file of data on
cheracteristice of Minicomputerse.
This wae then followsd by examination of two aspects of system performance
essential to the viability of an inverted file organization method:

1e Creation of Inverted Indexes.

2. Irecessing Realistic Queries.

To provide daia for testing, two sete of research data were used:

1¢ A abotraci from the IDurham High Encrgy Physics databank

- ond Diceussion contd

1o, Resulr

e

H o]

to provide warious Data Flles for processing of hetween
2000 ard 10000 records {(approximately).
2. Geograph’ec Data frow the Northern Archaeological Survey in
a file containing approximately 3300 records.
A number of ruas were carried out and analysed, from which the follewing
sample results and discussion are abstracted:
1, The CPU time %aken ca the IBM System/360 Model 67 to create
sufficient inverted indexes to meet the query requirements

for the two Taeta Pile

o}
(=N

is shown in the following specimen

times:

(&) High Energy Physica ~ Create inverted indexess on 7 fields
from 9635 recovrds at an average of 00,0132 seconds CPU
timz per index ensry:

i

Total CPU time required = 890 seccnds = 15 minuiesn.

(b) Geographic Data - Create inverted indexes on 3 fields

(s

from 3280 records at an average of 0.,0109 seconds CP
{ime per index entry:

Total CPU time reguired = 107 seconds = 1.75 winutes.

2+ A number of queries of varying complexity were defined and

3

solved. The solution time is dependent on a number of factor:

T
including the complexity of the query, the number of mperlsons

and the rnumber of records found. The maximuin time taken o
answer the largest, most complex query was 40 seconde of CryU
time.
Following analysis and discussion of the results,; a number of recommendatisr
are presented as to how the performance and function of the system may be
improved. The means of performance improvement would be rationalization
of PL/1 coding and provision of larger block sizes for Disk I/0.
Functional enhancements recommended include Interactive Processing,

Language Prccessing and Display Pacllities, and Update Processing.

1.4, Content of the Thasis

The thesis is composad of scven Chapters and three Appendices. A brief

description of each ¢f these components follows
1

Chapter 1: Introduction to the Thesis.

The background cf the thesis is introduced, folicwed by
t

2

comments cn the development, implemeniation and vesti

a Cencrel Purpose Inverted Inde:

1.
1)}
4]
G
o
(e
o
o]

xing System. Thi
shows where various items of information may be found; and

followed by acknowledgementis,

1ede Content

of ithe

-
Ce

4.

5e

6.

Te

S

10.

6 Creanizatiocn.

Cnapter

The beasic

6 -

Ilonverted ¥ile organization are

o

described with perticular reference to its applicability
in a research enviromment. wo commercial implermentations -
TDMS and 3System 2000 are described and analysed.

Chapter 3: Degipn Fhilecevnhy,

The main requirements for research data processing are
identified, =

of Inverted File organization, tabular Data Filesand File

nd a design philosophy developed making use

&

Descripticn Directories.

Chapter 4: System Description.

The description of the system logic is presented here. Topics
covered are the conditions for Data Storage end Types, a
descriptiocn of the System Kodules, their interrelstion, and
dependencies of the system on the Michigan Terminal Systen
(MT3) under which it runs.

Chapter %: System Operation.

s

The use of the system is explained with reference to & small
Data File cf NMinicomputer data. The system operation under
MTS is explalned, together with associated Job Control, Input
requirements, and Display of resulis.

Chapter 6: Performance Testirg.

Two research data files - High Energy Physics and Gecgraphic
Data on Archaeclogical Sites - are usad tc provide Performance
Testing data for Index Creation and Query Processing.

Chapter 7: Aralysis, Discussion and Recommendations.

The Ferformuance Testing results are analysed and discussed.
Recomnmendations are made as to how both the performance and
function of the system might be improved by fuiure
enhancenmenis.

Appendix A: Glossary of Terms.

Words and phrases defined for use in description of the
Ceneral Purpose Inverted Indexing System are listed and
thelr meaning explained.

Apprendix B: Biblioeranhv,

The literzture references mentioned in the text of the thesig,
e.g. CODD (1971}, are listed.

Arrendix C: Source Listincsg,

PL/1 Source Jode listings for 211 the modules in the sysiem

are displayed.

145, frknowledeonents

The author would 1like tn acknowledge 1n purticular the assistornce of

<

b

tor Tecoturer in Comruiing. Ho h

his Supervisor - Wr,J.S5.Roper, S

Ol

oy
&3

by his constructive comments end advica contridbutsd greatly fo the

T

T

5
gpecification and imclementation of the concepte that have reen researched
in this thesis,
In addition, thanks are offered to Ir.C.Coopexr »f the Physics Depariment
and lir.P.Clack of the Archaeological Department for zllowing tihe use of
their research data with which to test the system, as well ss for

discussions on their rescarch data prccessing requirements.
p g q

CHAFTER 23+ INVIRTED PILE ORGANIZATICH

2els Selection of Pile Crianization Fethod

File searching may be regarded as a two-step process:
1« An input key or field value is decoded or translated to
a list of record addresses in a Data Pile of all records
coentaining that key or field valuc. The most common method
is by the use of an Index or Key Directory.
2. A random access search of the Data File is then made to
retrieve the required records.
The number of access paths that are provided to the Data File will
depend on the retrieval requirementse Two main types of retrieval
requirement may be identified:

1+ Commercial Systems.

Commercial data processing systems emphasise the currency
and accuracy of their Data Files. The maJor requirement is
that these files mayvbe quickly updated. The enquiries tend
to be on one key only and falrly standard in structure.

2. Library Systemse.

Information systems have evolved from filing systems thai
could no longer contain the increasing volume of reference
material. Until recently, Information Retrieval has referred’
to a context in which bibliographic informestion (which is
relatively static) is assembled for unpredictzble reference.
Computer-based information retrieval systems are particularly
used in areas of high technical content, e.g. medicine and
chemistry. '
The major requirement here is for fast retrieval in respounse
to unpredictable queries. Multiple keys may have to be accessed
to quickly answer the queries.
The requirement for information retrieval in research work might fairly
be classified under the second heading of Library Systems. There are
varying types of search file organization which offer multiple access
paths to the data such 2s Inverted List, Nultilist etc. DODD(1969),
LEFKOVITZ(1969), and ROBERTS(1972) all describe and compare these
varying techniques. Each offers certain advantages and disadvantages
dependent on the processing requirements. CARDENAS(1973) goes one step
further in developing a methodology, a model and 2 programmed system
to select an appropriate file structure for a specific situation.
Results of theoreticai and simulation comparisons made in the referencas
quoted above indicate that the Inverted File Organization method is
most suited to a file processing environment in which speed of retrieval

is esseﬁtial and frequent update minimal; which describes to a major

2:1. Selection of Pile Orsanization ilethod contd

extent the processing of research data.
This chapter examines the basic principles of Inverted File Organization,
takes as examples its application in two practical implementations =

TDMS and System 2000, and summasrizes the basic characteristics,

2.2. Basic Principles

In an Inverted File Crganization methed, all record addresses are
contained within the Index. This normally results in a much larger

Index than fop other search file organizetions; although the total

storage requirement is often no greater because pointer linkeges are

not stored in the Data File records. Figure 2.1. shows a specimen

Inverted File for a Skills Index. The format shown here could be
physically stored with the Index and Deta as separate files.

Storage efficiency could in fact be further improved if the keys or

field values were not individually cited within the record itself by
removing the keys into the Index. This may however complicate updating

of the Data File.

The lists in the Index are variable length records that must be maintained
in a given sequence for efficient manipulation. Both the meintenance of
the lists as variable length records (which can be quite diverse in

size), and their waintenance in sequence, can contribute to certain
programming complexities that are absent in other search file organizations

(such as Multilist), although they buy much in performence.

2.3. Retrieval using an Inverted File

The Inverted File Organization was originally developed to minimize the
time needed to retrieve data from the required Data File «t the expense
of updete time, The ideal file structure for information retrieval would
read only the desired data records from direct access storage and no
others; performing all prelimirary searching in main menory. If the
complete Inverted Index could be held in main memory, it would achieve
this goal. However, even if the inverted lists must be held on direct
access or secondary storage, one access can read a list pointing to many
more records than could be read in one access; so that even in this
situation, the number of accesses is less than would be required to seerch
the records themselves. It is this ability to perform the search on the
required conditions befére the Data File is accessed that makes the
Inverted File so fast on retrieval compared to other search file

orgenization methods.,

FIGURE 2.0: INVERTED FILE - SKILLS INDEX

INDEX INVERTED ON

SKILL ,LANGUAGE ,LOCATION

FIELD VALUE COUNT LIST
PROGRAMMER 31245
SYSTEMS ANALYST | 4 | 1,3,6.7
FRENCH 3] 3,56
GERMAN 111
RUSSIAN 2| 2.7
AMSTERDAM 21 1.2
LONDON 3| 3,4,7
PARIS 2| 5,6

DATA FILE SEQUENCED BY NAME

NO. NAME - SKILL LANGUACE LOCATION
1 | ANDERSON,R | SYSTEMS ANALYST | GERMAN | AMSTERDAM
2| ATLEY T PROGRAMMER RUSSIAN | AMSTERDAM
3 | BAKERA. SYSTEMS ANALYST | FRENCH | LONDON

4 | CONWAY.J. PROGRAMMER _— LONDON

51 CURRY W. PROGRAMMER FRENCH | PARIS

6| CURTIS.B. SYSTEMS ANALYST | FRENCH | PARIS

71 WILSON,N. SYSTEMS ANALYST | RUSSIAN| LONDON

10

2s+3. Retrieval using ap Inverted File contd

The contents of each Znverted Index entry are as follows:

1« Key or Field Value being indexed.

2« Count giving the number of records in the Data File

containing this Key or Field Value.

3. List of Record Addresses, the number given in 2. above.
The Cocunt value may be used to facilitate AND and OR operations by
selecting the shortest lists for scanning, if the search permits such
a choice. The potentizl advantage of this avproach can be very great
if the two lists are very different in length. For example, if one
wished to find a Graduate who could speak both Spanish and Portugess
in a Skills Index, it might be easier to first intersect the Spanish
and Portugese lists, and then intersect the resultent list with the
Graduate list; rather than start with the Graduate list.
Union and Intersection operations on Inverted Lists are facilitated if
each list is maintained in collating order of record addresses. In this
case, two lists can be either intersected or their union found in one
pass through both lists. For this reason, inverted files are almost

always kept in collating sequernce.

2.4, Updating an Inverted File

An Inverted File is difficult to update. To add a record, tres inverted
list corresponding.to the value for each field in the record that is
indexed must have a pointer to the new record édded. The necessity of
keeping each inverted list in order (to speed up searches) tends to
increase the complexity of this operation. One method of simplifying
this process is to allow extra space at the end of each inverted 1list
to allow for a small number of additions.

Conversely, the deletion of a record from a Data File accessed by an
Inverted Index similarly requires the modification of inverted lists
corresponding to the value of every field in the record indexed, with
the same problems. |

The complexity of the update problem is reflected in various approaches
to attempt to improve the update efficiency of Inverted Files such as
work by VOSE & RICHARDSON(1972) and INGLIS(1974).

£¢5e Practical Implementations

It is of interest at this point to investigate two practical implementations
of Inverted File Organization with reference to their capabilities and
limitations.

N

11

245 Practical Tmplewentations contd

Te

2

The two sysiems are:

Time Sharasd Dota Management Svstem (TDHS).

This systen, develcped by SDC in the U.S. is described by
BLEIER & VORHAUS (1968). It is designed toc operate under

the control of a time-sharing executive on IBN System/360
Models 50 and larger.

In this system, the inverted structure has been devzloped

to support the user who needs to find answers to unpredictable
questions. The inverted structure is totally organized and
sorted by component value and cccurrences of each value
(examples of "components" are Name, Height, Weight, Sex etc).
Any value of any component in the file may be used as a key
for retrieval. The organization of the inverted structure
groups all potential keys into blocked tables in a manner
that minimizes storage requirements and access requests.

The user defines his Data File within a dictionary which
contains the names and synonyms of all the ccmponents in

the Data File, the hierarchy to which they belong, the
maximum number of characters for each component in the lcad
process, and all the legality statements associated with each
component .«

Bleler & Vorhaus find that with this type of file structure,
the size of the data base has very little effect on the

speed of retrieval. The important limiting factors in retrieval

time are the number of Becolean expressions, the number of

unique values per component in each Boolear expression, and

the number of occurrences of the desired wvalie in each

Boolean expression.
To obtain fast retrieval, some penalties must be paid. First,
the inverted structure requires as much space (if not more)

than the data itself. Secondly, the structure is difficult

‘to maintain. Two types of updating are allowed: On-Line and

Batche. To accomodate On-Line updating, a small number of
spare words of storage are allocated at locad time in every
block of tables. Where Batch updating is required, the file
is unloaded and reloaded. -

Syatem 2000.

This system was developed by MRI Systems Corporation in the
U.S. and iz marketed in the U.K. by CAP. It 1s described in

a Géneral Information Manual - MRI (1972). System 2000 Operatés

2¢5. Fractical Implemenitations contd

on IBM System/360 and 370, CRC 6000 and CYBER 70 and

UNIVAC 1100 sexries computer systens.

Basic Sysiem 2000 provides the uszer with a couwprebhensive

set of data Pase management capabilities. These include the

ability to define new date bases, modify the definition of
existing data bases, and 1o retrieve and update values in
these data bases.

System 2000 data bases consist of three separate but integrated

parts: the definitibn, the logical entries, and two sets of

pointers. Cne set describes the interrelationships of the
data values and the other, the Inverted Index, indicates
locations of data values. At the time the data base is
defined, the user determines which values are to be inverted.

The major part of data base search takes place within tlhese

sets of pointers before any data values are accessed.

Various features supplied by System 2000 include:

(a) Logical page size for the data base may bLe specified,
thus providing for efficient access to various sizes of
data base.

(b) Logical entries may be retrieved using 2 WHERE clause
which allows operators such as Equal, CGreater Than etc.
as well as Boolean processing.

(¢) Varying data types arc supported together with varying
field lengths.

(d) The system may be processed either in Batch Kode or
On~-Line.

It should be noted that both TDMS and System 2000 provide:
1. A directory to describe Data Files.
2+ All logical file processing requirements.,
3. The ability to formulate queries with Boolean processing.
4. The systems may be run either in Batch or On-Line modes.
No mention is made in the System 2000 Manual of how Cn-ILine Updaie is

accomodated.,

2.6, Inverted File Characteristics

LEFKOVITZ (1969) presents a summary of the properties of various
search file organization methods. Those relating to the characteristics
of Inverted File Organization might be presented as follows:

1o Total retrieval time in answer to a query is very fast

in comparison to the other methods. This is due to the

13

2.6, Inverted File Characierisiics contd

2

3e

4.
56

5.

search being carried oul whelly in the index where lists

cf record addresses are processeda »
Pre=-gearch reirieval sitatistics may be easily obtained by
determining the ccunts for the field values being accessed.
Programmirg an inverted list organization is more difficult
than other search file organizations due t¢ problems in
creating and maintaining varisble-length index lists.
Update time is long compared to other methods.

The direct access storage requirement can very depending

on whether the keys are abstracted from the Data File into
the Index or not (if not a double update problem emerges).
"Complex" queries involving Boolean processing may be quickly
answered, depending on fthe numbter of fields within the

data record indexed (degree of inversion).

Thus, Inverted File Crganization might be effectively used in information

retrieval requirements where the data records are relatively stable

(small amounts of update) but fast retrieval is required.

14

CHAPTER 3: DESIGN PHILOSOPEY

Je1s Introduction

In a university research environment there is a continuing requirement
for data from many varying disciplines to be stored and accessed by
computer processing methods. This proliferation of many different types
of data files, each with their own processing pregrams, leads to
considerable duplication of programming effort and increased maintenanca'
requirements.

It was therefore decided to investigate an alternative approachk: to
design a single file processing system that could handle differing

user requirements. In this M.Sc. project, the Inverted File organization
method has been studied in order to design and implement a General

Purpose'Inverted Indexing System.

3.,1.1. Characteristics of Research Data Processing

In order to be able to implement any general purpose system, it is first
necessary to be able to define the characteristics of current systems.
Common factors should be identified as well as any variations. The
design process sets the most acceptable common factors as standard

but also defines what must be done to bring variations into line with
the standard.

The major characteristics of how research data is stored and accessed
may be defined as follows:

1. Research data is stored in files.

2. The files are made up of logical records.

3. Some form of blocking of logical records may take place.

4. File access may be serial or direct.

5. There may be varying record types - e.g. some form of
hierarchical organization.

6. The logical records are made up of fields.

7. The fields may be stored as many different date types.

8. The fields may be variable in leagth.

9. There may not be the same number of fields per record -
e.g. repeating groups.

10. The general processing mode for the files after they have
been created is the answering of queries. Any update sesens
to take the form of the addition of a large number of
new racords to the file - e.g. addition of & new batch

of experimental results.

3412+ The Tabuler Nethod of Dats Stcrage -

To be able to define a common épproach, it is necessary to consider

what form of data storage might be acceptable. Probably the most

generalized acceptable form of data storage from the point of view

of the user is a table., Implications of a tabular view of storage and

consequent processing have been thoroughly researched by CODD (1970)

in his work on the Relaticnal Model of Data. In a further paper on

Normalized Data Base Structures, CODD (1971) has this to say about

the simplicity and applicability of a tabular approach:
"The complexity of the physical fepresentations which these
(file management) systems support is perhaps understandavle,
because these representatlions are selected in order to
obtain high performance in access and update. What is less
understandable is the trend towards more and more complexity
in the data structures with which application programmers
and terminal users directly interact. Surely, in the choice
of logical data structures that a system is to support,

there is one consideration of absolutely paramount importance

- and that ig the convenience of the majority of users.”
"To make formatted data bases readily accessible to users
(especially casual users) who have little or no training

in programming we must provide the simplest possible data
structures and almost natural languagee ccececscocccccocs
The casual user at a terminal often has occasion to require
tables to be displayéd or printed. What could be a simpler,
more universally needed, and more universally understood
data structure than a table? ¥hy not permit such users to

view all the data in a data base in a tabular way?"

Jele3s Implications of the Tabular Method for Research Files

By presenting the data in a tabular form, a number of common factors

may be identified for the storage of research data:

1« Research data is stored in files.

2. The files are made up of loglical records.

3. There is only one record type per file.

4. Each logical record is made up of fields.

5« There are the same number of fields in each record.

6. All fields are of fixed length.

T The acceptable data types are defined and standardized.
Note that no mention is made in the above list of blocking or fils

16

3.,1.3. Implications of the Tabular Methed for Regsearch Files contd

access, as data storsd in a tabular forr may be blocked or unblocked,

serial or direct, as required.

3.1.,4. Description of thes Files
Having therefore defined a method of data storage as a tabular file,

that file may now easily be described by an entry in a File Description
Directory. A directory of this type wculd contain a number of records,
each of which describe the record structure of one data file. Setting
up of a File Description Directory would provide a measure of data
independence, as all access to the data files would be made through

the Directory.

3e1.5. Use of the Inverted File Orgenization Method
The next consideration in the design philosophy must be the provision

of indexing capabilities. In a commercial data processing environment,
this is fairly straightforward as each record is normally indexed
only on cne pre-defined key field. However, in a scientific and/or
research environment, the problem is more complex. To be able to
answer queries, it may be necessary to index on more than cne field.,
The philosophy of inverted indexing is quite amenable to this,
providing as it does the concept of indexing on one field through a
number of fields (partial inversion) to all the fields in the rescord
(total inversion). In addition, as discussed by LEFKOVITZ (1969),
the inverted file organization method is most suited io a file
processing environment in which the speed of query processing 1is
essential and update minimal; which describes to a major extent the

processing of research data.

3.1.6 Practical Implementation of Inverted Indexing Concepts

From the theoretical consideration of inverted indexing concepts, what
is now needed is the practical ability to implement these concepts.

A facility should therefore be provided to enable the user to create
indexes on specified fields at will. The index creation would take
place through and be linked to the File Description Directory. As the
number of indexes is the prercgative of the user, there would be no
way of knowing prior to creation of the indexes how many indexes there
‘would be. In addition, there is the probability that during the course
of the user's research, that either new indexes would need to be

created or existing indexes desiroyed.

17

3,1.6. Practical Implementation of Inverted Indexing Concepts contd

It would therefore scem reasonable to contain the indexes within soue
direct access space which is controclled either directly or indirectly
by the user; because to leave this tc the operating system would
entail a considerable overhead in creation/deletioun of files with

associated job control requirements.

3e1e7« Updating of Inverted Indexés

As discussed in Section 3.1.1., any update in a research environment

generally seems to take the form of the addition of a large number of
new records to the file. LEKFOVITZ (1969) states that inverted file
organizations are extremely inefficient in update. As the provision
of update facilities would necessitate extremely ccmplex space
management facilities with corresponding decreases in query access
speed; the update facility required as mentioned above will take the

form of deletion and re-creation of the appropriate inverted indexes.

3+.1.8. Processing of Queries
An Index File is being considered which is controlled by a File Description
Directory, created from Data Files, and providing access to Data Files

in answer to processing queries. It would be desirable to be able to

answer all queries within a given basic framework of logical selection

conditionse.

3¢1.9., Definition of System Components

Three main areas may be defined for the design philosophy of a General
Purpose Inverted Indexing System. These are:

1. Datz Management.

The control of direct access space within an Index File.

2. File Description Directories.
The ability to describe the structure of records within
Data Files.

3. Inverted Index Processing.

To be able to specify creation of inverted indexes, perform
logical processing, and deletion of inverted indexes as
required by query requirements.

Each of these areas is discussed in more detsil in the following sections.

18

3.2+ Data Management

If separate indexes are to be set up and maintained for each field
indexed, it will be necessery to contain these indexes within some
direct access space which is controlled by the user; because to leave
this to the operating system would entail a large overhead in creation
of files with associated job control requirements. It 15 therefore
recommended that a data management method for creating and maintaining
control of the direct access space required for the various inverted

indexes be implemented.

3e2ele Control of Direct Access Space

To explain the processing involved, it is first necessary to define

the terms used. The Index File conteins a number of physical records
called Blocks, each of which is the same pre-determined length and is
directly addressable. The first block in the Index File contains
control information. On creation of the initial Index File, 2 chain of
direct access pointers is set up anchored to the first block (Control)
through all the blocks in the system to provide an availablility chain
(See Figure 3.1). All pointers on the system are forward. To store
inverted indexes and cther information on the Index File, it may be
necessary to allocate a number cf blocks to a particular usage. One

or more blocks chained together for this purpose are called a Sub-File.
When sub-files are allocated, the overall Index File availability

chain is modified to branch round the blocks allocated (See Figure 3.2).
Conversely, when a sub-file is deleted, the blocks contained within

are returned to the availability chain.

Thus on-line space allocation and recovery within the Index File is
available to the user through access from higher levels of the inverted
indexing system. '

Jo2e2e Storage of Data within Sub-Files

Processing within sub-files is forward sequential. Read and Write

routines within the Data Management routines but accessed by higher
levels of the system automatically keep track of positions within
chains of blocks which make up a sub-file.

For example, a higher level routine would request the writing of a
number of bytes to a sub~-file from a given position. The appropriate
data management routines would simply write this data to the sub-file
making all allowances for overflow of physical blocks if required.

FIGURE 3.1: INDEX FILE CREATION

10 BLOCKS - 9 AVAILABLE

BLOCK
NO. PTR. CONTENTS OF BLOCK
1 2| FILE CONTROL SUB-FILE
2 3| AVAILABLE
3 L | AVAILABLE
b S| AVAILABLE
5 61 AVAILABLE
6 7 AVAILABLE
7 8 AVAILABLE
8 9 AVAILABLE
9 10 AVAILABLE
10 N| AVAILABLE

N - NULL POINTER

19

FIGURE 3.2: ALLOCATION OF SUB-FILES

10 BLOCKS - 6 AVAILABLE

BLOCK
NO. PTR. CONTENTS 'OF BLOCK
1 5 FILE CONTROL SUB-FILE
2 N SUB-FILE 1 BLOCK 1
3 A SUB-FILE 2 BLOCK 1
IA N SUB-FILE 2 BLOCK 2
5 b AVAILABLE
b 7 A'\/A‘ILABLE
7 8 AVAILABLE
8 S AVAILABLE
S 10 AVAILABLE
10 N AVAILABLE

N-NULL POINTER

20

21

J.2.20. Storage of Data within Sub-Files contd

Figure 3.3 shows an example of ﬁ.aubffile cecmprising 2 blocks - 3 & 4.
The sub-file position pointer is pointing to the start of a estring

of numbers in block 3. A Read command is given to get 10 bytes from

the sub-file. The data managesment routines read 4 bytes from block 3,
detect an overflow, chain to block 4, snd then read the remaining 6
bytes into the data area requesied. Following completion of the Read,
the sub-file position pointer is set to point to the next byte following
the string.

34243« Data Management Utility Programs

A number of utility programs are required to set up, extend, and display
the status of the Index File. A brief description of each of these
programs follows:
1. Index Creation Utility.
This program is run before any File Descriptions or Inverted
Indexes are loaded. It sets up the JTndex File Control
Sub-File (1 bdlock) containing control information and
sets up the initial availability chain through the direct
access blocks.
2. Index Extension Utility.
If the available space in the Index File is becoming filled,

this program may be run to extend it with modification of
the availability chain. The File Control information is
updated. '

3. Index Status Utility.
This program is used by the user/systems progracmer to

determine the current statis of the Index File; paying
particular attention to the number of blocks presently

available.

3.,2.4., Data Management Processing Routines

A number of routines are used by the data management system to process
the data contained on the Index File. These are generally called from
higher levels of the system. The main routines are:
1. QOPEN.
Generally invoked at the start of a run, it brings the
Index File Contrel Sub-File into main memory, where it

remains for the duration of the run.

22

FIGURE 3.2: LOGICAL PROCESSING OF SUB-FILES

vV - SUB-FILE POSITION POINTER

BEFORE READ COMMAND

3 b 1234

4 N {567830

READ COMMAND: GET 10 BYTES FROM SUB-FILE

AFTER READ COMMAND

3 b 1234

AV
A N 1567890

RESULT: CHARACTERS "1234567890° READ

Je2.4. Data

23

Management Processing Routines contd

2

3.

4.

Se

6.

Thie routine is called éither at the end of a run or when
an error'occurs. It takes the Index File control
information in main memory including any modifications

made during the run and writes it back to the File Control
Sub-File.

CREATE.

The first available block on the Index File is made
available to the user as the start of a sub~file, and the
availability chain is modified to by-pass it.

DESTROY. _

The address of the first block in a sub-file is supplied

to the system and the blocks thus released are returned

to the Index File availability chain.

READ.

The address of some data within & sub-file is supplied to
the system togeilier with the number of bytes to be read.
The date is transferred from disk into an ares in main
memory specified by the calling routine. On completion of
the read process, the sub-file pcsition pointer is modified
to point to the next address in the sub-file.

WRITE.

The address of some data within a sub-file is supplied to
the system together with the number of bytes to be written.
The data is transferred from an area in main memory
specified by the calling routine to disk. if a request for
a write means that the current limits of a sub-file will

be extended (as in creation of an inverted index), a further
block is iransferred from the Index File availability chain
to be added onto the end of the sub-file in process. On
completion of the write process, the sub-file position
pointer is modified to point tc the next address in the
sub-file.

3.3, File Description Directories

Once the basic Data Management routines for the Index File have been

provided, it now becomes necessary to be able to describe to the system
‘the necessary data file and field specifications. To be able to describe
a file it 1s necessary to have available the following information:

1o File Name and No. of Flelds in each record.

24

3,3, File Description Directories contd
2. For -each Field: Field Name, Type and Length.
To this basic information, the syster may add such information such

as file and field numbers, run statistics, pointers to indexes etc.

3.3.1. Storagze of Directories on the Index File

Within the Generasl Purpose Inverted Indexing System, the storage of
file and field information may be carried out by building a set of
sub-files. More than one file description together with associated

indexes may be stored on the system at one time. The sub-files used
for the File Description Directories (see Figure 3.4) are as follows:
1. File Name Directory Sub-File.
This sub-file is pointed to from the overall file control
information contained on the Index File Control Sub-File.
It contains the following information for each file

description stored:

(a) File Name.

(b) File Number.

(¢) Number of Fields.

(@) A Pointer to the Field Name Directory Sub-File for

this file name.
2., FPield Name Directory Sub-File.

This sub-file is pointed to from the rarent file name eniry

in the File Name Directory Sub-File. It contains the following

information for each field within the record:

(a) Field Name.

(b) Field Number.

(c) Field Type.

(d) Field Length.

(e) Run Statistics.

(£) A Pointer to the Inverted Indsx Sub-Files for this field
(if indexed). Otherwise, a null pointer is stored.

3.3.2. Use of the File Description Directories
Accessing to Inverted Indexes always takes place using the following

procedures:
1. A file and associated f£ield name is provided.
2. Froz & pointer in the Index File Control Sub-File, the
File Name Directory Sub-File is accessed.
3. A search is made through the File Name Directory Sub~File
"for the required entry. '

23

FIGURE 3., FILE DESCRIPTION DIRECTORIES

——POINTER FROM INDEX FILE CONTROL SUB-FILE

FILE NAME DIRECTORY SUB-FILE

FILE 1 FILE 2
—D NO. OF NO. OF
NAME |NO. FIELDS PTR.} NAME|NO. FIELDS PTR.JETC.

FIELD NAME DIRECTORY SUB-FILE

FIELD 1 FIELD 2
L TYPE LENGTH., x |
NAME[NO| (T, T/erioe |PTR.|NAME|NO.ETC.
\V4

*POINTER TO INVERTED
INDEX SUB-FILES (OR NULL)

t. 26

343e2. Use of the File Description Direciorlies contd

4.

5e

6.

If found, the associated Field Name Directory Sub-File is
accessed. 3

A search is mede through the Field Name Directory Sub-File
for the required entry.

If found and the field is indexed, a search of the Inverted

Index Sub-Files may commence.

34343, File Description Processing Programs

The user has the ability to add and delete file descriptions from the
Index File at will. To this purpose the following processing and utility

programs should be provided:

1.

2.

3.

File Description Addition Program.
The user may store a file description onto the Index File.

This contains the file name and associated field information.
At this point, no indexes have been created.

File Description Deletion Programe.

The user may decide to delete a file description from the
Index File. This deletion process not only deletes the fils
name and associated field name information, but will also
delete any inverted indexes in existence associated with

that file name. The space previously occupied by the sub-files
is returned to system availability.

File Descripticn Display Utilitv.

A report may be produced on demand which displays the

current File Description Directories status: file descriptions
presently stored in the system together with associated
field information.

3.4, Inverted Index Processing

Having loaded and stored file descriptions on the Index File, it is

now necessary to provide the system user with the ability to determine

the degree of inversion of the selected file {i.e. hcw many fields are

to be indoxed). Conversely, the user should also be provided with the

opportunity to decrease the degree of inversion by deleting indexes
for specified fields. Thus it should be possible to vary the fields

that are indexed with changing research requirements.

3,4.1. Storage of Inverted Indexes on the Index File

Within.the General Furpose Inverted Indexing System, ths storage of

e particular inverted index may be carried out by the building of a

21

3.4.7. Storace of Inverted Indexes on the Index File contd

set of sub-files., Sezrching through the subt-files is carried out by

a form of Skip Sequential organization. An inverted index is built

on two levels (see Figure 3.5) as follows:

Te

2.

Index Contrel Sub-File.
This sub-file is accessed by a pointer in the field name
entry in the Field Name Directory Sub-File with which it

is associasted. It provides the top level in a two-level

tree structure for index searching. The first field in the

Index Control Sub-File contains a count of the number of

control entries. This is followed by a number of entries

each containing the following information:

(2) The highest key (or field value) on a physical block
at the second level of indexing - the Value and Address .
Sub-File.

(b) & pointer to the location within the physical block
of the key stated above in (a).

Value and Address Sub=-Fille. |

This sub-file is accessed from the Index Control Sub-File

via a series of pointers. The first pointer in the Index

Control points to the start of the Value and Address Sub-

File, while the other pointers indicate the highest field

values (or keys) on a number of physical blocks through

the Value and Address Sub-File. This sub-file is so named

because it coniains the base indexing data by which e

gpecified field value may be connected tc a Data File

record., Each entry in the Value and Address Sub-~File

contains the following information:

(a) Field Value.

(b) No. of records in Data Fille containing field value -
1list length.

(¢) A list of addresses of all records cn the Data File
which contain that fileld value.

Jede2e Searching an Inverted Index

Searching of a specified inverted index is carried out by the following

processes:
Te

2.

Determining whether an inverted index exists for a specified
file and field name.
Searching the Index Control Sub~File until the approprizte

"control entry is reached.

FIGURE 3.5: INVERTED INDEX PROCESSING

INDEX CONTROL SUB-FILE

——POINTER FROM FIELD NAME DIRECTORY SUB-FILE

28

NO. OF BLOCK 1 BLOCK 2
—{ICONTROL|HIGHEST HIGHEST
ENTRIESE KEY PTR. KEY PTRIETC.
VALUE & ADDRESS SUB-FILE
AV4
BLOCK 1
FIELD| LIST ADDF. ADDR. ETC HIGHEST =TC
VALUE|LENGTH 1 |77 N -IFIELD VALUE| ™ "
\V,
BLOCK 2
HIGHEST
ETC... N
FIELD VALUE ETe

ETC.

3.4,2. Searching an Invartsd Index conid

3. Using ths pointer contained in the control entry, access
the eppropriate physical block in the Valus and Address
Sub-File. ,

4. Search Value and Address Sub-File until the appropriate
field value is reached.

5« Return a list of record addresses stored for the appropriate

entry.

Jed4e3. Specification of Search Criteria

The required inverted indexes having been created, the user should then

be able to specify various search criteria and have a list of record
addregses satisfying those criteria returned.
The "Basic" query that the sysiem should be able to answer may be
defined as a Selection Condition in the following form:
SELECT filenzme fieldname operator fieldvalue
where:
filename is the name of the Data File to be searched.
fieldname is tne name of the field to be searched within
the above file name.
operator specifies the type of search that is ito be made.
Suggested operators for a general purpose system might
be Equal, Not Equal, Greater Than, Greater Than or Equsal,
Less Thén, and lLess Than or Equal.
fieldvalue is the valﬁe sgainst which the inverted index is
to be searched.
From the "Basic" query or Selection Condition, a "Complex" query may
be defined in which more than one Seleciion Conditions are linked
together. The Selection Conditions would be linked by a logical cperator
such as "AND" or "OR". For example, one "Complex" query might be defined
as follows:
Selection Condition 1 AND Selection Condition 2 AND
Selection Condition 3 OR Selection Condition 4 AND
Selection Condition S.
The "OR" operator represents a delimiter between a number of "AND"
processes which will be considered together. Almost &ll “Complex"

selection queries may be answered using this method.

‘3.4.4. Inverted Index Processing Programs

The basic requirements for a user to be able to process inverted indexes

will be the ability to creste and delete inverted indexes on speéified

i 30

3.,4.4, Inverted Indsx Prccessing Programs contd

fields, perform selections on "Complex" queries, and display the status
of particular inverted indexes. Therefore, the following proceseing and
utility programs should be provided:

1« Create an Inverted Index.

On provision of a specified file and field name which are
contained in the File Description Directories, the basic
Data File should be accessed to create an inverted index.
Safeguards should be provided to ensure that creation of
the inverted index does not overflow the current size of
the Index File.
2+ Delete an Inverteé Index.
The inverted index for a specified file and field name may

be deleted on demend by the user, and the space previously
occupied returned to system availedility.

3. "Complex" Query Frocessing.

The user may specify a "Complex" query which initiates a

search of the Index File and returns a list of all Data

File record addresses which satisfy the search criteria.
4. Inverted Index Display Utility.

A report may be prcduced on demand which may display

information from an inverted index for a specified field

namee.

3,5. Summary and Further Design Considerations
The design philosophy for a General Purpose Inverted Indexing System

may be defined as a hierarchy of processing functiocns (See Figure 3.6).
Various processing functions may be defined at the various levels;
however the main access by the user will take place at Level 2 where
file descriptions are added and deleted, and at Level 1 (the top level)
where inverted indexes are created, searched and deleted. Apart from
the creation and extension of the Index File at level 3, the Data
Management routines are only accessed through upper levels.
The scop2 of the design might be stated as the maintenance of a General
Purpose Inverted Index. It should be borne in mind that the system
might reasonably be incorporated into anlarger system with the following
interfaces:
1. The passing of a2 set of commands (together with associated
paranmeters) to Inverted Index processing functions.
2+ The return of address lists to the main system for further
‘processing. ' |

Provision should be made for performance monitoring of system functions.

31

FIGURE 3.6: LEVELS OF PROCESSING

PROCESSING

FUNCTIONS
CREATION INVERTED |
DELETION INDEX LEVEL 1
SELECTION PROCESSING

FILE
ADD'TT'ON DESCRIPTION LEVEL 2
DELETION DIRECTORIES
CREATION DATA
EXTENSION MANAGEMENT LEVEL 3
NOTE:

DISPLAY UTILITIES AT ALL LEVELS

32

CHAPTER 4: SYSTEM DESCRIFTICN

4.1. Introduction

The General Purpose Invertad Iﬁdexing System is written in PL/1 and
operates on the Northumbrian Universities Multiple Access Computer
(NUMAC) IBM System/360 Modal 67 under conircl of the Michigan Terminai
System (MTS). It contains 24 modules - 10 Main Programs and 14
Subroutines or Macros. A naming convention for the modules has been
established:
1. Each module has a 6 éharacter name under which it is stored
in Object or other form on the MTS system.
2+ The first 2 letters of the moﬁule name are always IX.
3. The third letter of the module name gives the type. A
number of differert module types have been specified:
M Macro - A group of PL/1 statements previously stored
and invoked at Compile time by the PL/1 Preprocessor.
D Data Management Routines - This set of modules
controls and processes all disk I/0 on the system.
P Processing Routines - X¥odules which use the Data
Management Routines for processing of Directories and
Indexes.,
u Utility - A number of Utility Programs which perform
various system functions.
C Conversion - This type of module would generally be
user-written. It would be requircd if the original
Daté File was not in a tabular form, and therefore
must be converted.
4, The last 3 letters of the module name uniquely identify
the module.
Within the modules, a convention has been established in that all PL/1
External names are prefixed by the letter Z. Thus, the Procedure which
is stored under the name IXDOPN, would have the Entry Point ZDOPN.
In this chapter, the following information is presented:
1. Data Storage and Types.
2. Description of the System Modules.
3. Interrelation of the System Modules.
4., MTS Dependencies.,
A basic assumption is made that the reader is familiar with the PL/1
programming language. Where reference is made to the use of MTS, the
facilities provided by the system are fully discussed to provide the

‘non-MTS user with e concept of the functions being used.

4.2, Data Storage and Types

As explained in the Design Phiiosophy, the Index File is stored on a
disk file which is made up of a number of directly addressable fixed

length blocks. A nuater of these blocks from 1 to n may be linked to

form a sub-file, in which processing 1s always seqentially forward.
Five types of sub-file may be identified:

1.

24

3.

4.

S5e

Index File Control Sub-File.

This sub-file compriées 1 block (the first on the Index
File) which contains conirol information.
File Name Directory Sub-File.

Contains the names of all file descriptions which are
stored on the Index File. It is designed so that extra
file names may be readily added; also file names can be
deleted. The sub-file is pointed to from the Index File
Control Sub-File.

Field Name Directory Sub-File.

Conteins the names and characteristics of all fields which

are associated with a particular file name. The sub-file
is pointed to from the appropriate file name entry in the
File Name Directory Sub-File.

Index Control Sub-File.

The first level of inverted index. Contains a number of

entries, each of which point to a particular position on
the Value and Address Sub-File where the inverted index

is actually stored. The sub-file is pointed to from the

appropriate field name entry in the Field Name Directory
Sub-File.

Value and Address Sub=-File,

This sub-file contains the actual inverted index. Each
entry contains a field value, the number of data records

in which the value is found, and a list of record addresses.
It is accessed through a number of pointers contained in
the Index Control Sub-File.

The control over access to all sub-files is carried out by using e
disk pointer which is declared in PL/1 as follows:
DCL 1 ZPOSN EXTERNAL,

2 BLOCK RINARY FIXED(31,0),
2 OFFST RINARY FIXED(15,0);

"Thus, when any Index File processing operation is to take place, BLOCK
is set to the block required, while QFFST is set to the position

required within the block. After completion of the processing operaticn,

4.2, Data Storage and Types contd
BLOCK and OFFST are set by the system tc point to the next position

in the sub-file in process., Thus sequential access to sub~files is
provided.)
The physical storage of information on each of the sub-files described

above is now examined in more detail.

4.2.1. Index File Control Sub-File
The control information stored on this sub=file may be divided into two
portions. The first considers the overall control of the Index File

including space allocation and recovery, while the second covers the
processing of the File and Field Name Directory Sub~Files.
(2) Index File Control Record.

Length 16 bytes. Start position is Block 1, Offset 1.

Field Name Description Initial Value
FAVAL First available block on file 3"
NOBLKS Total number of blocks on file Entered
NABLKS Number of available blocks NOBLKS -~ 2
DASIZE Size of data area 251"
FIXPTR Pointer to File Name Directory 2’

'The File Name Directory Sub-File is initially defined as starting
at the first available block in the blank Index File. Therefore,
Block 2 is allocated for this purpose, while the first available
block is Block 3.

*ihe current implementatioh of the system under MTS uses 255 byte
blocks. Thus the first 4 bytes of each block are reserved for a

chain pointer,
(b) Directory Control Reccrd.

Length 10 bytez. Start position is Block 1, Offset 17

Field Name Description
 DINUM Total file name entries
(existing or deleted)
DLNUM No. of deleted file name entries
DLPTR Pointer to 1st deleted sntry
FILEN Length (bytes) of a file name
entry
FLDLN Length (bytes) of a field name
entry

4,2.2+ File Name Directory Sub=-File

Initial Value

0

28

32

The File Name Directory Sub-File contains the names of all the file

names stored on the Index File at any one2 time. It is accessed ZFrom

A.2.2¢« File Name Directory Sub-Flle contd.

the Index File Control Record and controlled from the Directory
Control Recorde. Within the Directory Control Record, a count of the
total number of file name entries (whether existing or deieted) is
kept. The addition of a new file name either involves adding a new
entry to the end of the existing sub-file cr inserting the new entry
in a space left by a previously deleted eniry. The format of a File

Name Directory entry is as follows:
Length 28 bytes. Start position of sub-file is Block 2, Offset 1.

Field Name Descrigtion' Initial Value
FDPTR Pointer to Field Name Directory Set by system
FLNUM File Number (or deletion pointer) o]
NOFLDS Number of Fields Entered
FLNAM File Name Entered

Searching of the File Name Directory is carried out by means of a

sequential scan.

4,2.3., Field Name Directory ub-File
The Field Name Directory Sub~File for a particular Data File is linked
to that file name in the File Name Directory Sub-File. It contains a

number of field name entries, the number being stored in the associated

file name entry. The format of each field entry is:

Field Name Description Initial Value
FDIXPTR Pointer to Inverted Index (if -1 (Null)
existing)
FDNUM Field Number -
FDTYP Field Type -
FDLEN Field Length -
FDSTAT Usage Statistics (not in use) 0]
FDNAM Field Name -

The length of each entry is 32 bytes.

The storage of field values in the Inverted Index is deperdent on
provision within the field name entry of two items of information -
Fleld Type and Field Length. It is defined that all field values must
be fixed length and that the allowable types are:

Type No. Description length(bytes) PL/1 DCL
1 Character 1 - 255 CHAR(n)
2 Halfword Binary 2 BIN FIXED
3 Fullword Binary -4 BIN FIXED(31,0)
4 Single Precision Floating 4 BIN FLOAT(21)
Point : '
5 Double Precision Floating 8 BIN FPLOAT(53)

Point

: 36

4.2¢3. Fleld Name Directory Sub-File conid
If an inverted index for a parficular field does not exist, the pointer
to the index is set to null (-1).

4,2.4. Index Control Suk-File
The Index Control Sub-File is a top level index for an Inverted Index

created for a specified field. It is constructed as follows:
(a) No. of Entries on Index Control Sub-File.
A field of 2 bytes in length containing the number of entries.
(b) Index Control Entry '
Each Index Control Entry contains 3 fields:
1. Field Value. Length and type dependent on Field Type.

specified. Contains the highest value on a Value and
Address Blocke.)
2. Block Address. Block number on which field value is stored -~
fullword binary.
3., Offset Position. Start byte of field value on block
referenced - halfword binarye.
A search of the Inverted Index starts with a scan of the Index
Control Entries. When the correct entry is reached, a branch is
made to the required Block and Offset position in the Value and
Address Sub-File,

4.2¢5. Value and Address Sub-File

There is one entry in the Value and Address Sub-File for each unique
field value for the field being indexed, Each entry containe two values
plus a list:

1« Field Value. lLenzth and tyne dependent on Field Type
specified.

2. No. of Addresses. The number of data records which contain
the field value specified - fullword binary.

3. list of Addresses. A list of record addresses. In this
implementation, these are sequential (or direct) record
numbers within the Data File., Fullword binary.

4.3, Description of the System Modules
As stated in 4.1., each module within the General Purpose Inverted

Indexing System is uniquely identified. Thoe uses of the modules can
"be broken down intc 4 major system functions:.

1. Data Management.

2+ Directory Processing.

3. Inverted Index Processing.

37

4.3, Description of the Syctem Modules contd

4, Dete Conversion.

Each of these system functicns in relation to the modules used is

examined in more detail in the following sub-sections.

4.3.,7. Data Management

1.

2

3e

Module Rame IXMSPM

Module Type Macro - PL/1 Declarations.

Module Description Data Management Areas and Variables.

PL/1 Declarations are made for disk I/0 aresas and processing as
well as the Index File Control Record. These statements are included
in other modules by the use of the PL/1 Preprocessor statement
%INCLUDE.

Module Name IXUSTP

Module Type Utility - Main Program.

Module Description Set up a Blank Index File.

Before any processing can be carried out on the Index File, it is
necessary to set up the blank file on disk. This program sets up
the File Control Sub-File on Block 1, as well as a blank File Name
Directory Sub-File on Block 2. It processes one input commend -
the total number of blocks to be provided on the Index File. After
setting up control information, an availability chain through all

available blocks is inivialized.

Module Name IXUSTX

Module Type Utility - Main Frogram.

Module Description Extend arn Existing Index File.

In the course of use of the Index File, it may be found that there

is insufficient space available to accomodate all the required

Inverted Indexes. This program enlarges an existing Index File by
chaining on extra available blocks. It receives one input command -
the number of blocks to which the file is to be extended. The
availability chain is extended from the existing blocks through

the added blocks and the control information is updated.

4e3.1« Data Management contd

4. -

5

6.

T.

Module Name IXUSTR

Module Type Utility - Mein Program.

Module Lescription Display Index File Status.

This program accesses the Index File Control Record and displays
basic file status information such as the block size, data area

size, total number of blocks end number of available blocks.

Module Name IXDOPN »

Module Type Data Management Routine - Subroutine.
Module Description Open the Index File,

During processing of the Index File, the control information
contained in the Index File Control Sub-File is held in main
memory for fast-access. This routine is called at the beginning
of a Directory or Index Processing run to open the Index File,
load control informaticn, and initialize variables.

Module Name IXDCLS

Module Type Data Management Routine - Subroutine.

Module Description Close the Index File.

At the end of a Directory or Index Processing run, the control
information contained in main memory is written back to disk
together with any modifications made during the run. This routine
is called at the end of the run to restore the control information
to the Index File Control Sub-File and clcse the Index Pile.

Module Name IXDCRE

Module Type Dats Management Routine - Subroutine.

Module Description Create a New Sub-File,

During Directory or Inverted Index Processing, it may become
necessary to create new sub-files; e.g. when a set of field names
is entered with a naw file name, or when =2 new inverted index is
to te created. This routine creates a sub-file of length 1 block.
The block address is returned to the calling program in the system
position indicator ZPOSN. The availability chain is adjusted to

branch round the block just removed to form the sub-file.

39

4,3.1¢ Data Management contd

8.

9.

10.

Module Nams IXDDST

Module Type Date Managemant Ruutine - Subroutine.

Module Description Destroy an Existing Sub-File.

As for sub-file creation, it may also become necessary at various
times to destroy a sub-file; e.g. if arn inverted index is deleted.
This routine is called with the system position indicator ZPOSN
containing the address of the first block in the sub-file to be
deleted. The blocks thus released are returned to the Index File
avallability chain.

Module Name IXDREA

Nodule Type Data Munagement Routine - Subroutine.

Module Description Read N Characters from a Sub-File.

Data is read from any sub-file on the Index File using this routine.
The required procedure for calling the routine is as feollows:

(a) Set the system position indicator ZPOSN to the specific
block and offset position within the sub-file where the
read is to start.

(b) Pass to IXDREA as parameters the number of characters to
be read, together with an I/0 area into which the results
of the read operation are to be put.

On completion of the read, the system position indicator is set to
the next position following the data read.,

The key consideration in the use of this routine is that it provides
data as requested by the calling routine irrespective of the physical
storage of that data. For example, some datz may be requested which

is contained partly on one block and partly on the next block in

the sub-file. The read routine will assemble ani concatenate the

portions of the data to be returnsd intact to the calling rocutine.

Module Name IXDWRT
Module Type Data Management Routine -~ Subroutine.
Module Description Write N Characters to a Sub-File.
Data is written to any sub~file on the Index File by this routine.
The required procedure for czlling the routine is as follows:
(a) Set the system position indicator ZPOSK to the specific
block and offset position within the sub-file from where
~the write is to start.

4e3.1. Data Management contd

11.

12.

(b) Pass to IXDWRT as parameter3 the number of characters to
be written, together with an I/0 erea from which the input
to the write operation is to be taken. |

On completion of the write, the system position indicator is set

to the next offset position following the data moved. If the write
request involves going beyond the current boundary of the sub-file,
the sub-file is automatically externded.

This routine operates in the same way as the read routine, in that
data is written as requesied irrespective of the physical storage
of the data.

Module Name IXDMOV

Module Type Data Management Routine - Subroutine.

Module Description Move the Sub-File Pointer.

This routine is utilized by the routines IXDREA and IXDWRT to move
the system position indicator ZPOSN. It processes the condition

when deta being read or written acrcss & block boundarye.

Module Name IXDOSF

Module Type Data Management Routine - Subroutine.

Module Description Add N Blocks to a Sub-File.

When a sub-file is being extended, this routine is called to add a
specified number of blocks to a sub-file. The blocks are obtained
from the system availability chain, which is adjusted to branch
round the blocks removed to add to the sub-file.

4.3.2. Directory Processing

1.

2.

_Module Nanme IXMDPH

Module Type Macro - PL/1 Declarations.

Module Description File and Field Name Directory Areas.

PL/1 Declarations are made for the Directory Control Record for
control of the File and Field Name Directory Sub~Files as well as

the definition of storage for current file and field name information.

Module Name IXPFND

Module Type 4 Directory and Index Processing - Subroutine.
Module Description Find a File Name on the Directory.

Af the start of all the Directory and Inverted Index processing

programs, a file name is read in. This routine determines whether

. i1

4.3,2. Directory Processing contd

3.

4.

the file name entered is on the File Neme Directory Sub=~File. If =
match is found, the Directory entry number and position is returned.
If no match is fourd, the value zero and the positicn at the end of

the directory is returned.

Module KName IXPNEW
Module Type Directory Processing - Main Program.
Module Description Add a File Description to the Directory.
This program loads a new file name together with associated field
names and descriptions onto the File and Field Name Directories.
The input to the program comprises:
(2) The file name and number of fields on each record.
(b) A number of cards as stated in the number of fields above,
each of which cortain a field name, type and length.
Allowable field types are:

Type No. Storage Length
1 Character 1 - 25%
2 Halfword Binary 2
3 Fullword Binary 4
4 Single Precision Floating Point 4

5 Double Precision Floating Point 8

All fields processed must be fixed length. File and field names may
be up to 20 characters in length.
The input file and field information is edited for:

() Potential duplication of file names.

(b) Invalid field type.

(c) Field length inconsistent with field type.
If there are no errors in the input data, a Field Name Directory
Sub-File is created and loaded with the field name descriptiouns,
followed by the insertion of a File Name Directory entry. This is
either at the end of the existing directory or in available space
left by a previotsly deleted file name entry.
The program is written so that multiple file descriptions may be

entered in one run.

Module Name IXPDEL

Module Type ' Directory amd Irdex Processing -~ Main Pregram.
Module Description Delete a File Descripticn from the Directory.
Thiec program deletes a file name entry from the File Name Directory

tdgethef with the associated Field Name Directory Sub-File and

d,3.,2. Directory Processinz contd

attached Inverted Indexes.
The input to the program is the file name to be deleted. After a
check to see if that file name exists on the directory, the following
procedure is followed:
(a) Any Inverted Indexes referenced from the Field Name
Directory Sub-File are deleted.
(b) The Field Name Directory Sub-File is deleted.
(c) The file name entry in the File Name Directory Sub-File
is deleted. .
In all the above steps, the space recovered is returned to system
availability.
The program is written so that multiple file descriptions with

associated indexes can be deleted in one run.

5+ MNodule Name IXUDRP

Module Type Utility - Main Program.
Module Description Display Contents of File and Field Name Directories.
This program is run to display in a forrmatted printout all the
current file descriptions stored on the File Name and associated
Field Name Directory Sub-Files. Information displayed for each file
includes:

File Name, Number of Fields.

For each Field: _

Pield Name, Type, Length, Whether Indexed and Run Statistics.

4343+ Inverted Index Processing

1. Module Name IXPIXC
Module Type Index Processing - Main Program.
Module Description Create an Inverted Index.
The Inverted Index Creation Program operates in two modes - first,
it may be used tc estimate the space requirements on the Index File
for an inverted index before it is created; and second, it is used
to actually the required inverted index. The input and processiné for
both modes is as follows:

{(a) Estimation of Index Pile Space Required.

The input to the Index Creation program %o perform an
estimate comprises the file name, the processing option
'EST!', followed by a series of field names. For each field

name a calculation is carried out based on the nunmber of

'. i3

4.3.3. Inverted Index Processing contd

(v)

records in the Data File (RECCTR), the field length (IFLC)
and the data area size in the Index File blocks (DASIZE)
as follows: i
RECVA = 1 + {(RECCTR * (IFLC + 8)) / DASIZE);
RECIC = 1 + ((2 + (RECVA * (IFLC + 6))) / DASIZE);
RECTOT = RECVA + RZCIC;
where RECVA 1s the no. of Value and Address blocks,

RECIC is the no. of Index Control blocks, and

RECTOT is the total no. of blocks.
The calculation produces in RECTOT the maximum number of
blocks that might be used in the index to be created. This
assumes the worst possible case where every field value
within the specified field is unique, and hence will
generate one index entry.
When Estimate processing is carried out for a number of
fields, the total number of blocks required is accumulated
and printed out at the end of the run. Thus the potential
space requirements for a set of indexes based on one Data
File can bte evaluated in one run.

Creation of an Inverted Index.

The input to the Index Creation Program to create an
inverted index consists of a file name, a processing option
and one field name. The available processing options 'NO'
and 'YES' refer to the action the Index Creation Program
must take if it finds an existing index against the field
name specified. If the processing option is 'NO°', this
indicates that aay existing index against the field name
gpecified is to be deleted before the new index is created;
while, if the processing option is 'YES' and an existing
index is found, the run is to be cancelled before index
creation takes place.

The Creation Program divides into four stages:

Stage 1. The input file, processing and field information
is procecsed within the File and Field Name Directories to
validate and obtain control information such as field type,
length and position within the data record.

Stage 2. The Data File is read and the field name and
record address abstracted from each data record into a

temporary file. At this point, this calculation of the

"maximum index size is made (as described above in {(&)).

4,3,3. Inverted Index Processing contd

2.

If there is not eﬁough space on the Index File to hold

the index to te created, the run is terminated.

Stage 3. The temporary file of indexing information is

sorted into ascending sequence by the following sort

fields - Fiedl Value (Major) and Record Address (Minor).

The output from the sort is stored on another temporary

file. '

Stage 4. Here the new Inverted Index is created. First, if

a previous index exists, it is deleted. Then, if there is not

enough space on the Index File to hold the new index, the

run is terminated.

Two sub-files are created - Index Control as well as Value

and Address, into which the indexing information is processegd.

The Index Control Sub-File holds a number of field values

which are highest on Value and Address blocks, together

with pointers to the actual entries. Note that there is

not necessarily one Index Control entry for each Value and

Address Block - for example, a Value and Address RBlock

might only contain a portion of a long Record Address list

without any field value on that bdlocke.

At the end of the run, the Field Name Directory is updated

with a pointer to the Inverted Index and the run terminated.
Measurements of the CPU time used in various portions of the run

are taken and printed out at the end of the run.

Module Name IXPIXD
Module Type Index Processing - Main Program.
Module Description Delete an Inverted Index.

This program is invoked when it is required fto delete a specific

inverted index. The file and field names are entered and edited

against the File and Field Name Directories. If there is an
existing index, the sub-files comprising it (Index Control together
with Value end Address) are deleted and the space recovered
returned to system availability. Lastly, the Field Name Directory
pointer to the Inverted Index is set to null and the run is

terminated.

4.,3.3., Inverted Index Procegsing contd

3.

4.

Module Name IXPCMP

Module Type - Index Processing - Subroutine.

Module Description Compare Two Field Values and Return a Result.
In processing an inverted Index during a search, it 1s necessary

to compare various field values e.g. tre input search value against
a field value on the Inverted Index. This routine is called from
IXPSEL where the search through a specified index is made. Input

to the routine couprises the field type being processed {(passed

as an EXTERNAL variable), two fields containing values to be compared
and e field in which the comparison result is returned. Processing
in the routine takes place as follows:

(a) A branch is made to varying portions of the routine
according to the field type passed (e.ge+ Character,

Fixed Binary or Floating Point - see allowable Data
Types).

(b) A comparison between the two fields (passed as parameters)
is made using the appropriate field type.

(¢) The compare result field (also pacsed as a parameter) is
then loaded with a value indicating the result of the
comparison:

-1 Less Than
0 Equal
1 Greater Than
(d) A return is made to the calling routine.

Module Name IXPEDT
Module Type Index Processing - Subroutine.

Module Description Edit Selection Input Data.

The processing of selection queries calls for the ability to answer
"Complex" queries, in which & number of selecticn conditions are
combined by AND or OR logical processes. To be able to perform
these "Complex" selections, it is first necessary that all the
Selection Conditions be gathered togethser and edited before a
search is commenced. This editing process takes place within this
module which is invoked by the main "Complex" selection processing
program IXPIXS.

Each Selection Condition is entered in the form:

fieldname operator fieldvalue

4.3.3. Inverted Index Processing contd

the flle name having been éntered beforehand. The file and field
names are checked for validity against the File and Fleld Name
Directcries, Valid cperators are: ‘
Equal (EQ), Not Equal (NEQ), Greater Than (GT), Greater Than
or Equal (GTE), less Than (LT), and Less Than or Equal (LTE).
The field value entered in character form is converted into the
appropriate data type and stored.
Each Selection Condition entered is stored as an entry in an array
of Selection Conditions (ZSTAB). The contents of each entry in the
array are as follows:
(a) Search Condition Fumber. Each entry is sequentially -
nunbered from 1 to n.
(b) Level Number. The initial level number entered for each
entry is 1. Howevaer, when aan 'OR' logical process is
entered following a Selection Condition, the level number
is incremented by 1.
(¢) Index Block Numbter. This is the address of the Index Control
Sub~File for the Inverted Index to be searched.
(d) Search Type. A number equivalent to the appropriate operator
above (e.g. Equal is Search Type 1) is entered.
(e) Field Type. The field type is used in comparison processing
ty subroutine IXPCMP.)
(f) Field Value Length. This is the field length to be used in
allocating storage for an index search.
(g) Field Value Pointer. A pointer to the area wherz the field
value is stored.
If eny errors are detected in editing the input selection information,

an edit flag is set which prevents further processing past the edit

stage.
5. Module Name IXPSEL
Module Type Index Processing - Subroutine.

Module Description Select Recorde according to Input Parameters.
This routine receives as a parameter an entry number in the array
ZSTAB of Selection Conditions generated in IXPEDT. From the contents
of the array entry, a decision is made as to what type of search is

required on the inverted index specified.

4e3.3. Inverted Index Processing contd

- The possible,seargh types are:

Type No. Search Type

Equal -
Not Equal

Greater Than

Greater Than or Equal

Less Than

O N w2

Less Than or Equal

From this point a branch is made to portions of the program which

search the index in the required way. There are in fact 4 portions

which perform the following types of select processing:

Equal

Not

Equal

Greater Than / Greater Than or Equal

Less Than / Less Than or Equal
Within each type, the method of inverted index search differs. The

processes involved in each type are as follows:

(a) Equal.,

(b)

(c)

A search is made through the Index Control Sub-File on
the search value entered. When a point is reached at
which the field value on the Index Control Sub-File is
equel to or less thLan the search value, a branch is made
to the Value and Address Sub-File and the search continued
until a match is either made or not made. The record
addresses found are then returned irn a temporary file.
Not Equsl.

A branch i1s immediately to the Value and Address Sub-File
where a sequential search is carried out. Every field
value not equal to the search value is accessed and the
record addresses stored cn a temporary file.

Greater Than / Greater Than or Equal.

A search is made through the Index Control Sub-File using
the search value entered. When a point is reached at which
the field value on the Index Control Sub-File is equal to

or less than the search value, a branch is made to the Value
and Address Sub-File and the search continued until a match
is either made or not made. 4 sequential search from the
match/no match point in the Value end Address Sub-File is

then carried out and all fielgd values answering the

- condition entered are accessed and the record addregses

stored on a temporary file. The search continues until the

443.3, Inverted Index Processing contd

6.

end -of the Value and Address Sub-File is reached.

(d) less Than / Lass Than or Egjusl.

As for Kot Equal processing, a brauch is immediately made
to the start ¢f the Value and Address Sub~File, and a
sequential search carriesd out. Zvery field value up to

a match or no matcn (depending on the search condition)
on the search value is accessed and the record addresses

stored in a temporary file.

Mcodule Name IXPIXS

Module Type Index Processing - Main Program.

Module Description Select Records using Inverted Indexes.

This program is invoked for the purpose of answering "Complex"
selection queries. A number of input Selection Conditions are

entered to make up the content of a "Complex™ query. The Selection
Conditions entered are stored in an array (ZSTAR) together with any
'AND' or 'OR' logicel processes specified. The editing of the input
information and storage on the array is carried out ty calling the
IXPEDT subroutine. If errors are detected during the editing of

input information, & flag is set in IXPEDT, which when examined

in the main program terminates processing before index searching
commences. '

After editing of the input is complete, searching the various indexes
may commerce. To search each index, the array of selection conditions
is accessed and an entry number passed toc the IXPSEL sutroutine

which returns a list of record addresses for that search in a
temporary file together with a coun® of how many addresses were
found.

A number of temporary files are used in stcrage and processing of

intermediate information. These are used as both input and output

in 'AND' and 'OR' logical processing. The logic behind processing
of "Complex" queries and its applicatiocn in this program is as
follows:
A "Complex" query may be regarded as a number of Selection
Conditions separated by 'AND' and 'OR' logical processes.
The 'OR' logical process may be regarded as a delimiter
between a set of 'AND' logical processes. Thus the 'AND’
processes are evaluated first, followed by the 'OR' processes.
For example, consider the following "Complex" query:
SC1 AND SC2 AND SC3 OR SC4 AND 5C5. |
where SCn are Selection Conditions. 3election Conditions 1-3 form

Y

4.3.3. Inverted Index Processing contd

~one group, while Selcticn Conditions 4 & 5 form another. The processing

carried out by the program will be as follows:

() Call IXPSEL with SC1 and obtain a 1list of record addressées.
(1)

(b) Call IXPSEL with SC2 and obtain another list of record
addresses (L2).

(c¢) Sort L! and L2 together in ascending sequence to form a
resultant list (L3).

(d) Perform 'AND' logical proceséing on L3 by reading and
passing only those duplicated record addresses to an 'AND'
1ist (L1).

(e) Call IXPSEL with SC3 and obtain a 1list of record addresses
(r2).

(f) Repeat processes (c) and (d).

(g) 'OR' processing requested - end of 'AND' processing. Transfer
contents of L1 to 'OR' list (14).

(h) Repeat processes (a) to (d) for SC4 and SC5 to obtain
another 'AND' 1list (L1).

(1) End of query. Add contents of L1 to 'OR*' list (14).

(3) Sort L4 into ascending sequence and store in 11,

(k) Perform 'OR' processing on L1 by reading and passing all
unique record addresses (ignoring duplicates) to the final
'OR' 1list (L4).

(1) Display or pass back to enquirer the list of record addresses
obtained.

At the end of the run, the CPU time used in the program is displayed

broken down into times foc the various sections of the program.

Module Name IXUIXL

Module Type Utility - Main Prograa.

Module Description Display Contents of Inverted Index.

This program is primarily designed for debugging the General Purpose
Inverted Indexing system, although it may be also be invoked by a
user. The input is a file and field name followed by a processing
option. Depending on the processing option (ALL or other), a specified
inverted index may be displayed in its entirety (Index Control and
Value and Address Sub-Files), or the Index Control Sub-File only.

The formatted printout displays & complete specified inverted index.

4.,3.4. [lata Conversion .
The processing of Data Files by the General Purpose Inverted Indexing

System is dependent on the data being available in a tabular form. If
the basic data is not in this form, it must be converted by a user-
writien program.
For example, some experimental data used in work on this thesis was
stored on card images in this form:

Master Card '

Other Card(s)

Data Cards
There was one Master Card which might or might not'be followed by onme
or two Other Cards together with & number of Data Cards. A tabular
record would include unique information from one Data Card together
with Master Card information which would be duplicated on multiple
tabular records. A program was therefore written to convert the original
data from its hierarchical form to a tabular form suitable for processing

by the General Purpose Inverted Indexing System.

4.4, Interrelation of the System Modules
The method of linkage of the various system modules is shown in Figure

4.1. The module names across the top of the table are the Called
Modules; while those down the side are the Calling Modules. Some modules
are both calling and called, and therefore appear in bcth lists.

4,5. MTS Dependencies
The General Purpose Inverted Indexing System is written in PL/1 and
operates on the NUMAC IBM System/360 Model 67 under the Michigan Terminal

System (MTS). To use the MTS system, it was necessary to introduce

various portions of system~dependent coding for the following purposes:
1. Storage and Retrieval of Directory and Index Information
from the Index File on a direct ancess device.
2. Invocation of a Sort program from within the Index Creetion
and Selection modules.
3. Use of MTS routines to log the CPU time usage in processing
Index Creation and Selection requests.
4. Invocation of en MTS System Command within the Index Selection
mcdule to scratch temporary work files when nc longer
. required.
‘Eachof these MTS system dependencies is examined in more detail in the

following sections.

FIGURE 4.1: INTERRELATION OF SYSTEM MODULES

O
m

r.._
m

| XMSPM
| XMDPM
IXDOPN
IXDCLS
IXDCRE]|
IXDDST|E
IXDREA|G
IXDWRT|S

IXDMOV| &

IXDOSF |V

IXPFND

IXPCMP

IXPEDT

IXPSEL

CALLING MODULES

IXUSTP

IXUSTX

xX | X
x | X

IXUSTR

>
>
=

IXUDRP

IXUIXL

IXDOPN

IXDCLS

X X XX
>
>
Pas

IXDCRE

IXDDST

IXDREA

IXDWRT

(XOMOV

IXDOSF

IXPFND

IXPNEW

IXPDEL

IXPIXC

IXPIXD

X X | X | X
X | X | X | X
X[X | X | X

I XPEDT

X IXITXITX [X |IX}X{X|XIX[X]IX|XIX]}]X]|X

XXX | X | XX

X X | X | X | X

IXPSEL

X IX|Ix | X |x|[|X|X

IXPIXS

X | X I X [X[X | XX

X

USING PL/1 PREPROCESSOR

4,5.1. Storage and Retrieval on the Index File

In the original design for the'General Purpose Inverted Indexing System,
it was intended that the possible block size within the Index File should
be adjustable based on parameters input at Index File setup time. Thus,
a particular implementor could select the maximum block size for his
memory space available, thus decreasing Index Control Sub-File entries
and the number of comparisons and disk accesses required for a search.
However, on examination of facilities available to a PL/1 programmer
for direct access on the MTS system, it was found that the only facilities
provided performing the same functions as PL/1 Regional(1l) were two
subroutines IHEREAD and IHERITE which provide direct access to MTS Line
Files.
The MTS Line File is primarily used by the on-line user for file storage
with the facility for direct access to a specified line (or record). It
was therefore decided to take the standard software provided so as to
minimize time that might be spent in developing alternative access
methods.
However, some basic limitations in the use of Line Files had to be
accepted: These were:
1+ An MTS record in a Line File (or line) may be variable in
length but has a maximum allowable length of 255 bytes.
2. The maximum allowable size of an MTS Line File is 25% Pages
(where 1 Page = 4096 bytes). If a block size equivalent to
to the maximum record length stated above was selected, the
maximum Index File size would be approximately 4000 blocks.
Another way of stating this would be to say that the maximum
allowable Index File size is approximately 1 million bytes.
3. To save space in an on-line environment, MTS performs a
process known as Trimming on Line Files which removes all
trailing blanks from a record, whether fixed or variable
length. To be able to process fixcd length Index File blocks
in which control of space is carried out from within the
General Purpose Inverted Indexing System, it was necessary
to override this automatic facility. This is done by specifying
- all Line Files used as Not Trimmed (@-TRIM).
Therefore, the Index File consists of 255 byte fixed length blocks
which may be accessed directly using the MTS FL/1 Subroutines IHEREAD
and IHERITE.
‘The PL/1 Declarations for the Index File and the direct access routines

are contained within the Data Menagement macro IXMSPM where they are

4.5:1. Storage and Retrieval on_the Irdex File contd
defined as follows: : .
/* **x%% NTS DEPENDENT FILE AND I/0 DEFINITIONS ***%* x/
DCL ZINDX FILE UPDATE;
DCL (IHEREAD,IHERITE) ENTRY
(,BIT(32),DEC FIXED(9,3),FILE);
DCL ZBUFF CHAR(25%5) EXT,
ZMOD BIT(32) INIT ((32)'0'B) EXT,
ZLINE DEC FIXED(9,3) EXT;
/* DEFINE DATA AREA SIZE FIELD FOR ALLOCATING STORAGE */
/* ®xxxx INTPIAL VALUE OF 255 IS NTS DEPEKDENT ***xx x/
DCL ZSIZE BIN FIXED EXT INIT(255);
The PL/1 name of the Index File is ZINDX, ZBUFF is the block 1/0 area,
and ZLINE is the Line or record numter. ZMOD is a bit string used to
select sequential or direct processing. To use direct processing, a

certain bit of ZKOD must be turned on:

/* TURN ON INDEXED BIT OF ZMOD - ***x% MTS DEPENDENT **%x# %/

SUBSTR(ZMOD,31) = '1'B;
The above declarations are then used for reading and/or writing to
and/or from the Index File. For example, if it were required to read
block/record/line number 1 into main memory, the following statements
would be executed:

ZLINE = 1;

CALL IHEREAD(ZBUFF,ZMOD,ZLINE,ZINDX);
Subroutines IHEREAD and IHERITE are used in all Data Management routines
as well as in Utilities IXUSTP and IXUSTX.

4.5.2. Invocation of a Sort fcom a PL/1 Program
At three points within the General Purpose Inverted Indexing System

there is a requirement to sort records into a specified sequence, In

the Index Creation program, it is required tc sort records containing
& Field Value and associated Record Address into ascending sequence;
while in the Index Selection program, a sort is required in two places
to obtain lists of record addresses in ascending sequence. A Sort program
is provided by the MTS system which may be invoked from a PL/1 progranm
as follows:
1. First, the Sort Parameters are defined:
- DCL F1 -FIXED BIN(31) INIT(1) STATIC,
SORT ENTRY,
PLIRC RETURNS (FIXED EIN(31));

*®

4:5.2., Invocation of g Sort from a PL/1 Program contd

followed by a data'strucﬁure defining the Sort parameters:
DCL 1 CSA STATIC, etc.
2« The Sort program is called from the PL/1 program:
CALL PLCALL(SORT,F1,CSA);
3+ On return from the Sort pregram, a check is made for errors
by interrogating the variable PLIRC which contains a sort
return code: '
IF PL1RC = O THEN;
ELSE DO;
/* ERROR PROCESSING */
END; i
The input to the sort is placed in a temporary file invoked in the Sort
program; while the output from the sort is placed in another temporary

file to be used by the calling program.

4:5.3. Logging of CPU Usage

To obtain some meesure of performance on the MTS system, it isg necessary
to know the CPU time uced in processing. MTS provides the ability to do
this by means of the TINE subroutine (not to be confused with the PL/1

TIME function) which allows various time measurements to be taken from
the MTS system. The option selected records the CPU time usage (in
milliseconds) for a program at any stage measured from a datum point.
This facility is used to measure the CPU time used in various portions
of the Index Creation and Szlection programs.
The method of use is as follows:
1e¢ First, the areas for use by the TIME subroutine are defined:
/* CPU TIME PROCESSING AREAS */
DCL TIME ENTRY,
P3 FIXED BIN(31) INIT(3) STATIC,
CKEY FIXED BIN(31) INIT(1),
CPR FIXED BIN(31) INIT(0),
CCRES BIN FLOAT(21),
CRES BIN FIXED(31),
CRESA(5) FIXED BIN(31);
2+ To measure the CPU time used between two points in the program,
the following statements ere executed:
~/* GET .AND STORE CURRENT CPU TINE STATUS */
CALL PLCALL(TIME,PB,ADDR(CKEY),ADDR(CPR),ADDR(CRES));
CRESA(1) = CRES;

4,543, Logging of CPU Usage contd)
/* PL/1 STATEMENTS TO BE TIMED */
/* GET AND STORE CURRENT CPU TIME STATUS */
CALL PLCALL{TINE,P3,ADDR{CKEY),ADDR{CPR),ADDR(CRES));
CRESA(2) = CRES;
The current CPU time ir milliseconds is stored at the various
positions in the program in CRESA(1) and CRESA(2).
3. At the end of processing, the following statements are
executed to get and display the CPU time used:
CCRES = CRESA(2) - CRESA(1);
CCRES CCRES / 1000.0;
PUT FILE(REPORT) SKIP(2) EDIT .
(*EDIT CPU TIME(SECONDS) = ',CCRES)(4,7(10,3));
These statements retrieve the start and end CPU times,
calculate the CPU time used in milliseconds, convertit it

to seconds, and then display the result.

4,5.4, Emptying VWork Files fcllowing Sorts
The MTS Sort program invoked from the Index Selection program makes

use of temporary MTS Line Files (temporary files are identified by a
minus sign preceding the file neame used).
A problem however arises in that these temporary files may be used more
than once in the processing of a "Complex" selection guery. However, the
MTS system, despite OPEN and CLOSE statements in the PL/1 program,
continues to maintain control information concerning the number of records
in the temporary file as last used. This can cause errors if the temporary
file is used more than once as input to a further sori because of
discrepancies between the expzcted and actual number of records on the
temporary file.
Therefore, after each sort, the control information is reset to zero by
use of the MTS system command EMPTY. Processing of this command is carried
out as follows:
1. First, the areas used are declared:
/* PARAMETERS TO EMPTY SELECT WORK FILE */
DCL F2 FIXED BIN(31) INIT(2) STATIC,
CMD ENTRY,
EMPTCMD CHAR(10) INIT('Z£EMPTY -W '),
, EMPTLEN BIN FIXED INIT(10);
2. The code to invcke the EMPTY command:
/* ENPTY FPREVIOUS SELECT WORK FILE */
CALL PLCALL(CMD,FZ,EMPTCMD,ADDR(EMPTLEN));

4.5.4+. Emptving Work Files following Sorts contd

In the above case the tempcrary file is called -W.

A current limitation cf the General Purpcse Inverted Indexing System is
that invccation of the ENMPTY system cormmand from a terminal requires a
confirmatory response from the terminal user: '0OK'e. This tends to slow
down the speed of processing of a query and increases the entry
requirements for the terminal user. Thus, the current system is being

tested in batch mode only.

CHAPTER 5: SYSTEM OPFRATION

541« Introduction

This chapter deals with the practicél prcblems of use of the General

Purpose Inverted Indexing System. The topics covered are as followa:
1« Conversion of Basic Data to Tabular Form.
2+ Setup of the Blank Index File.
3. Loading of Pile Descriptionse.
4. Estimaticn of Inverted Index Sizes.
5 Extension of Index File,
6. Creation of Inverted Indexes.
T« Processing of "Complex" Queries.
8. Deletion of Inverted Indexes.
9., Deletion of File Descriptions.
10. Report Utilities.
However, before considering each of these operations in detail, some

points concerning the use of MTS and PL/1 should be explained.

54141« MTS Job Control
Linking of PL/1 modules is carried out at execution time by use of the
MTS RUN command. Together with the Indexing System modules, the MTS PL/1
Library must also be linked., This linkage is simply accomplished by
entering the names of the modules to be linked separated by a plus sign.
Thus, the linkage of 3 Indexing System modules together with the PL/1
Library would be accomplished by the following command: '

£RUN IXUSTR+IXDOPN+IXDCLS+*PL1LIB etc.

The system commands are normally entered on punched cards. If a2 command

is longer than one cards, it might be extended onto other cards by
punching a minus sign in card column 80. In the examples shown, if the
command is longer than one line, the minus sign is used tc indicate a

continuatione.

H5e1e2¢s Standard Logical Files

Standard logical file names are used in all programs as follows:

INFILE Input of all processing parameters.

REPORT Printed output generated by the programs.

ZINDX The Index File.,

ZDATA The Data File currently in use.
In addition, other temporary work files are used in the Index Creation
_and Selection programs. These are discussed in the appropriate processing

‘descriptions.

5e1e3. Physical Files

All physical files used on the Indeiing System are defined using the

MTS file name modifier Not Trim. This ensures that the records witiin

the files are fixed length without the standard MTS option being applied
(truncation of trailing blanks on KTS Line Fiies). The modifier is applied

to the physical file name thus:
IXFILEG@=TRIM

5.1.4. PL/1 1ist I/0

All input to the processing programs (on INFILE) is carried out using

PL/1 List I/0. This mode of input allows for entry of commands to the

PL/1 program without any formatting statements. However, the following

rules apply:
1. Character information is entered surrounded by single
quotes, e.g. 'MINICOMPUTERS'.
2, Numeric information is entered normally, e.g. 20.
3., Each item of data entered to the programs must be separated
from the preceding item by either a comma or at least one
blank. In all the examples quoied, & blank is used as a

data item separatore.

5.1050 Test Data Fille

In consideration of use of the General Purpose Inverted Indexing System,

a test Data File is used. This is a file containing information on
characteristics of Minicomputers. As used for testing, this file contains
94 records - a small file, but sufficient to demonstrate the workings of
the system. The sections on system operation follow the steps involved

in the creation and processing of a set of Inverted Indexes based on

this test Data File,

5.2+ Conversion of Basic Data to Tabular Form

The first requirement for creation of Inverted Indexes from a Data File
is that the Data File be held in & tabuler form. This means that each
record must have the same number of fields, eack of which is fixed
length and using the allowable system data types. If the record is

held in some other form, e.g. hierarchical - a header record followed
by a number of associated data records, it must be converted to tabular
.form by a ﬁrogram specislly written by the user. Even when the data is
'already held in tabular form (say on punched cerds), a program might

still be written %o convert this data into various internal data typese.

5.2, Conversion of Rasic Dsta to Tabular Form contd
The MINICOMPUTER information file to be loaded was originally stored

on punched cards., However, a program was written to convert it to a

tabular form with internal data types sucn as character, half and full
word binary, and full word floating point. The MTS Job Control to
execute the conversion program (named -IPMTEST) was:

£CREATE MCFILE

£RUN -IPMTEST+*PL1LYB PARSINFILE=*SOURCE* REPORT=*SINK* -

ZDATA=MCFILE®-TRIM

Input to the conversion program came for the card reader (*SOURCE*),
printed ocutput went to the printer (*SINK*), and the tabular Data File
with internal data types was stored on an MTS Line File with no
truncation of trailing blanks (MCFILE@~TRIM).

5e3s Setup of the Blank Index File
Before any processing can be carried out on the Index File, it must

first be set up. This involves the setting up of basic control

information such as block size, number of blocks, size of index fields

etc. as well as creation of an availability chain through all unused
blocks. In its present form, the sole input to this program is the number
of blocks required.

NOTE: In a system in which varying block sizes could be set up according
to requirements, the block size for the Index File would be entered to
this program. . »

It is first required to create the Index File with a nominal number of

blocks - enough to hold the initial File and Field Name Directory entries.

Therefore, it is defined that an Index File is to be created with 20

blocks called IXFILE. The input to the MTS system would be:

£CREATE IXFILE '
£€RUN IXUSTP+*PL1LIB PAR=INFILE=*SOURCE* REPORT=*SINK* -
ZINDX=IXFILE@-TRIM
20
£ENDFILE
Pigure 5.1. shows the output listing from the above program,

5+4. Loading of File Descriptions
After creation of the blank Index File, the next step is to load the
description of the Data File to be processed onto the File and Field

Name Directories. A number of Tata File descriptiong may be entered in

one File Description Addition run. The input format for each File

FIGURE 5.: IXUSTP- SET UP A BLANK INDEX

FILE

INDEX SETUP UTILITY

NUe. fF BLIICKS SPECIFIED

20

BLOCK SIZC SPECIFIED 255

IRDEX SETUP STARTED
INDEX SETUP SUCCESSFULLY COMPLETED

END OF RUN

60

5.4, Loading of File Degcriptions contd

Description with associated Field Names and Cheracteristics is as
follows:
file name no. of flelds
followed by one card for each field containing:
field name field type field length
The file and field names may be up to a mavimum of 20 characters in
length. There are five allowable field types with associated field
lengths:)
Type No. Description : Length (bytes)
Character String 1 - 255
Half Word Binary 2 '
Full Word Binary
Single Precision 4
Floating Point
5 Double Precision 8
Floating Point

Checking is carried on input data for vaiidity according to the above

W N -

rules.
It is required to load onto the Index File a description of the Data
File on Minicomputers. Each record contains 12 fields of varying data

types. The input to the MIS system would be:

£RUN IXPNEW+IXPFND+IXDOPN+IXDCLS+IXDCRE+IXDDST+IXDREA+IXDWRT+IXD-

MOV+IXDOSF+*PL1LIB PAR=INFILE=*SOURCE* REPORT=#SINK*
ZINDX=IXFILEG-TRIM

*MINICOMPUTERS' 12

'"MANUFACTURER' 1 23

*MODEL' 1 18

'"WORD LENGTH(BITS)' 2 2

'MININUY MENORY(K)' 2 2

'MAXINUM MEMORY(K)' 2 2

'CYCLE TIME(MICROSEC)' 4 4

BASIC COST(£)' 3 4

'MEMORY COST BASIS(X)' 2 2

'FORTRAN' 1 1

YALGOL' 1 1

'BASIC' 1 1

*COBOL' 1 1

£ENDFILE

Figurg 5.2._shows the cutput listing from the above program.

FIGURE 5.2: IXPNEW - LOAD A FILE DESCRIPTION

FILE NAME MINICOMPUTERS ENTERED
NUMBER OF FIELOS = 12 :

Fadokkx SUB-FILE CREATED 'y 8LAOCK 3
FIELD niAME MANUFACTURER y NUMBERED

FIELD TYPE *7¢ 1 zMTiRED, CHARACTER STRINMG

FIELD <AME MODEL y NUMBERED
FIELD TYPE NG. 1 ENTERED, CHARACTER STRING

FIELD MNAME wiRO LENGTHBITS) v NUMBERED

1 ENTERED
LEMGTH 23

2 ENTERED
LENGTH 18

3 ENTERED

FIELD TYPE nU. 2 ENTERED, BT4ARY FIXEU(Ll2,0) LENGTH 2

FIELD MAME MIMIMUM MEMORY (K) y NUMBERUD

4 ENTEXED

FIELD TyYrPE mNle 2 ENTERED, 8I4ARY FIXED(15,90) LeENGTH 2

FIELD NAME MAXIMUM MEMACRY(K) y NUMBERED

S ENTERED

“
FIELD TYPE nd., 2 CUTHEREDy #INvARY FIXED(L15,0) LENGTH 2

FIFLD “'AME CYCLE TIMEZ(MIZRTSEC), “UMBERED
FIELD TYPE NU. &4 ENTER=D, 3IWARY FLLAT(21)

FIELD NAME BASIC COST{Z2) ¢+ NUMBERED

o EVTERED
LENGTH 4

7 ENTERED

FIELD TYPE nYe 3 =WTeREDy BIMARY FIXED(31,0) LENGTH 4

FIELD ™MAME MEMORY C7ST 8ASIS(K), MUMBERED

8 EMTERED
2

FIELD TYPE wtie 2 ENTESRED, 0I4naARY FIXED(1540) LENGTH

*%%%% QVER SUR-FILE PROCESSIMG AuDS BLAOLK

FIELD “AMz FORTRAY y MUMBERED
FIELD TYPE U« 1 ENTEREDy CHARACTZR STRING

FIELD NAME ALGuUL » NUMBERED
FICLD TYPE wl, 1 ENTERED, CHARACTER STRING

FIELD ~AME B8ASIC y NUMBERED
FIELD TYPE YN 1 EVTcERED, CHARACTER STRIVG

FIELD NAMZ COBROL y NUMBERED
FIELD TYPE NO. 1 ENTERED, CHARACTER STRING

END 1F RUN

4

9 ENTERED
LENGTH 1

10 EMTERED
LENGTH 1

11 ENTERED
LEMGTH 1

12 ENTERED
LENGTH !

62

: 63

5.5, Estimation of Inverted Index Sizes

Before the required inverted indexes are created, it may be necessary
to determine whether there is sufficient space avallable on the Index
File. This may be done by invoking the 'EST' or Estimate option in
the Index Creation program. The fields which are to te indexed are
named and & calculation carried out based on the Data Area size, the
Field Length and the number of records in the Data File. The assumption
is made that each field value within the Data File is unique go that
there are as many index entries as there are data records. Thus
the maximum possible Inverted Index size is calculated., In actual
creation of inverted indexes at a later stage, this estimated size is
used to determine if processing can continue if space is available.
It is required to estimate the index size for a number of fields to
be indeied on the file containing Minicomputer specifications. The
general format of the input command is:

file name option (in this case 'EST')

followed by a number of field names
The fields tc be entered for estimation are Manufacturer, Cycle Time
(Microsec), Bacsic Cost(£), FORTRAN, ALGOL, BASIC and COBCL.
The maximum possible index size in blocks for eachfield is calculated
and a summary total displayed at the end of the run.
The input to the HTS system would be:

£RUN IXPIXC+IXPFND+IXDOPN+IXDCLS+IXDCRE+IXDDST+IXDREA+IXDWRT+IXD~

MOV+IXDOSF+*PL1LIB PAR=INFILE=*SOURCE* REPORT=*SINK* -

ZINDX=IXFILEG-~TRIM ZDATA=MCFILE@-TRIM ZISRT=-AG-TRIM -
ZOSRT=-B@~TRIM |
'MINICOMPUTERS' 'EST!
'MANUFACTURER' 'CYCLE TIME(MICROSEC)' 'BASIC COST(£)'
'PORTRAN' 'ALGOL' 'BASIC' *COBCL' '
. £ENDFILE
Logical files ZISRT and ZOSRT are used iﬁ the Index Creation program when
the index is actually being created to act as input and output files
(temporary) for a sort of the field values and reccrd addresses generated
into ascending sequence.

Figure 5.3. shows part of the output listing from the above program.

5.6, Extension of Index File

Now that an estimate of the Index File size requirements have been
‘obtained, it may bte that currently there are insufficient blocks available
to accomodate the maximum index sizes specified. It would then be

neceséary to extend the Index File to obtain extra available blocks. The

FIGURE 5.3; IXPIXC - ESTIMATION OF INDEX SIZES

CREATC AN TNMVERTED [MDEX

PROCESSING FILE MINGICUMPUTERS

INDEX PRECESSInNG ON FIELD MANUFAJTURER REQUESTED

FILE MIWICOUMPUTERS RECURD LENGTH = 61

FIELD MaMUFACTURER LEMGTH = 23; START POSITIOM = }
NUMBER UGF INDEXING RECORDS = 94

MAXIMUM M0, PF 3LOCKS REQUIRED = 14

ESTIMATE OPTION IaVUKED = NO FURTHER PRECESSING

INDEX PRMCESSIMG 7™ FIELD CYCLE TIME(MICRESEC) REQUESTED

Flbe MISICOMPUTERS RECCGRD LENGTH = 61

FIELD CYCLE TIME(MICRUSEC) LENGTH = 4y START PUSITION = %
MUMBER TF IMDEXIMG RECTRDS = 94

MAXIMUM NOo UF B3LOCCKS REQUIRED = 6

ESTIMATE PPTIONM INVLKED = <L FURTHER PRI'CESSING

INDEX PRDCESSTQG.UV FIELD BRASIC CTOST(g) REQUESTED

FILE MINICHUMPUTERS "RECURD LENGTH = 61

FIELD BASIC COST(X) LENGTH = 4y START POSITION = 5.
NUMBER tiF INUEXING RECNHROS = 94

MAXTIMUM NU. OF 3LUCKS REQUIRED = 6

ESTIMATE OPTIUN INVOKED = NIi FURTHZIR PROCESSING

INCEX PROCESSING un FIELD FORTRAN REQUESTED

FILE MINMICUMPUTERS RECURD LENGTH = 61

FIELD FORTRAN LENGTH = = 1y START POSITITY = 5
NUMBER OF [nDEXING RECURDS = 94

MAXTHMUM NO. UF RLUCKS REQUIRED = 5

CESTIMATE GOPTINY INVUKED = Ny FURTHER PROCESSING

- ETC....

5.6, Extension of Index File contd
Index File Extension Utility program chains through the currently
available blocks and =xtends the availability chain to the added blocks.
The input to the utility is simply the new number of blocks to which
the Index File is to ve extended (which must be greater than the previous
number of blocks). Thus the input to increase ths Index File to 60
blocks would be:

£RUN IXUSTX+*PL1LIB PAR=INFILE=*SOURCE* REPORT=*SINK* -

ZINDX=IXFILE@-TRIM

60
£ENDFILE
Figure 5.4. shows the output listing from the above program.

5.7« Creation of Inverted Indexes
If sufficient space is now available on the Index File, then inverted

indexes for specified fields may be created. This is performed using
the Index Creation program IYPIXC, which may be used to create only
one inverted index at a time. This is opposed to the use of the Estimate

option for this program which allows analysis of space requirements for
multiple fields. The format of entry to create an inverted index on a
specified field is:

file name cption fleld name

The file and f£ield names must be contained on the File and Field Name
Directories. There are twc available processing options for inverted
index creation. In the course of creation of an inverted index on a
specified field, it may be discovered that the field is already indexed.
Two courses of action are available:

1« The existing index is not to be deleted. Therefore the
proposed index creation is to be cancelled. For this option
enter 'YES'.

2. The existing index may be deleted, the space occupied
recovered, and the index creation may continue. Here, the
processing option used is 'NO?.

Consider the.example where an inverted index is to be created for the
field Menufacturer on the Minicomputers Data File, deleting any previous
index if existing. The NTS input would be:

€RUN IXPIXC+IXPFND+IXDOPN+IXDCLS+IXDCRE+IXDDST+IXDREA+IXDWRT+IXD-

MOV4+IXDOSF+*PL1LIB PAR=INFILE=*SOURCE* REPORT=*SINK* -

ZINDX=IXFILE@~TRIM ZDATA=MCFILEQ~TRIM ZISRT=~A@-TRIH -
~ Z20SRT=-B@-TRIN ' '

'MINICOMPUTERS' 'NO' 'MANUFACTURER'

EENDFILE

FIGURE S.4: IXUSTX - EXTENSION OF INDEX FILE

TWDEX EXTENSIUN UTILITY

NUe UF BLUCKS SPECIFIED = 60

BLNCK SIZE SPECIFIED = 255

INDEX EXTENSICN STARTED

INDEX EXTENSIGN SUCCESSFULLY CUMPLETED

END OiF RUN

66

67

5.7. Creation of Inverted Indexes contd

-

Figure 5.5. shows the output listing from the above program. Note the
logging of CPU time used in the various portions of the program.

5.8, Processing of "Complex" Queriles

Processing of queries against the appropriate inverted indexes is carried
out by the Index Selection program I{PIXS. It accepts "Complex" queries
in the form of a file name followed by & number of Selection Conditions
delimited by 'AND', 'OR!' and 'END' logical conditions. A Selection
Condition is specified thus:

field name operator field value
The available operators are Equal (EQ), Not ZEqual (NEQ), Greater Than
(GT), Greater Than or Equal (GTE), Less Than (LT), and Less Than or
Equal (LTE).
For example, a Selection Condition to retrieve all records on Minicomputers
manufactured bty Data General would be specified thus:

'MANUFACTURER' 'EQ' 'DATA GENERAL?®
A complex query might be specified thus:

SC1 AND SC2 OR SC3 AND S5C4 END
where SCn refers to a selection condition similar to that specified
above, When evaluating the expression, the selection conditions linked
by 'AND' logical operators are first evaluated (common records in two or
more searches); followed by 'OR' processing of the resulting 'AND! lists
(each unique record occurrence eliminating duplicates). The end of all
selection conditions being entered is signified by the entry of the 'END!
logical operetor.
At the present stage of development, the Index Selection Program returns:

1« The number of records in the Date File which satisfy the

selection conditions entered.
2. A 1list of the record addresses (sequence number in the Data
File) which are sorted in ascending sequence.

In further enhancements, the program might well be enlarged to provide
the above two options as well as absiracting from the Data File into
& temporary file those records which satisfy the query. The user might
then choose to further process these records in various ways.
A typical "Complex” query on the Minicomputers Data File might be
expressed as follows:

What Minicomputers manufactured by Data General or Digital

Equipment have a basic cost of less than £30007?
As explained in Chapter 4, the MTS EMPTY command is used within the

Index Selection program to purge the contents of work files during

FIGURE 5.5: IXPIXC - CREATE AN INVERTED INDEX

CREATE AN INVERTED INDEX

PROCESSING FILZ MINICOMPUTERS

IMDEX PROCESSIMG 7Y FIELD MAMUFACTURER REQUESTED
FILE MINICOMPUTERS RECORD LENGTH = 61

FIELD MANUFACTURER LENGTH = 23, START PNSITIA =
NUMBER OF INDFEXING RECORDS = 94

MAXIMUM Y0, 7F BLTCKS REQUIRED = 14

Fh%4r SUR-FILE CRZIATED LN BLDCK 5

kg% SUp-FILE CREATLD 770 BL7CK 6

xxkikx YER SUB=FILE P<OCESSING ADOS BLOCK 7

gakak WER SUP=FILE PRNCESSTIG ADLS BLELK &

E&kE WER SUB-FILE PRUCESSING A0S BLULK 9

£xkk OYER SUA=FILE PROCESSIVG ADDRS AL7CK 10

INDEX CREATINY STATISTICS

NG. GF FIELC VALUES ENTEREZD = 30
NGCo. OF INDEX CUNTRUL ENTRiES = 5
EDIT CPU TIME(SECUNDS) = 0.063
ABSTRACT CPyU TIME(SECUNDS) = 0e526
SURT CPU TIME(SECUNIS) = 05385
CREATE CPU TIME(SELQYDS) = 0.481

1]
—
[]
o
s
Ji

TUTAL CPU TIME(SECHNDS)

EnD UF RUN

5.8, Processing of "Complex" Queries contd

a selection run. Uniess precautions ‘are taken, MTS commands are
displayed in the selection listing. This is avolided by writing the
Selection program output to a temporary file -SLIST and listing it
following completion of the program. Thus, the MTS input to answer
the above query would be as follows:

£RUN IXPIXS+IXPEDT+IXPSEL+IXPCMP+IXPFND+IXDOPN+IXDCLS+IXDREA+IXD~

MOV+IXDOSF+*PL1LIB PAR=INFILE=*SOURCE* REPORT=~SLIST -
ZINDX=IZFILE@~TRIM ZWADD=~-W@-TRIM ZAADD=-ACG-TRIM -
ZOADD==0@-~TRIM '

'MINICOMPUTERS"

'MANUFACTURER' 'EQ' 'DATA GENERAL' 'AND'

'BASIC COST(£)' 'LT' '3000' 'OR'

"MANUFACTURER' 'EQ' 'DIGITAL EQUIPMENT' 'AND'

*BASIC COST(£)' 'LT' '3000' 'END!

£ENDFILE

£LIST -SLIST

£ENPTY -SLIST
The ENMPTY command purges the contents of the temporary file ~SLIST in
cagse another invocation of the Selectlion program is to be carried out
immediately following the above query.
The logical files ZWADD, ZAADD and ZOADD are used as work files for
YAND' processing, 'OR! processing, and sorting within the Index Selection
program., ,
Figure 5.6. shows the output listing from the above program. The search
finds 9 records on the Data File which satisfy the Selection Conditions
and displays their addresses. Note the logging of CPU time used in various

portions of the program.

549, Deletion of Inverted Indexes-

If an inverted index for a particular field name is no longer required,

it may be deleted and the space recovered for system availability. The

input commands teo the Index Deletion Program IXPIXD comprises two items:
file name field nsame

Thus, if the inverted index for the field COBOL in the Miniéomputers

file is to be deleted, the MTS input would be:
€RUN 1XPIXD+IXPFND+IXDOPN+IXDCLS+IXDDST+IXDREA+IXDWRT+IXDMOV+IXD~-
OSF+*PL1LIB PARSINFILE<*SOURCE* REPORT=*SINK* ZINDX=IXFILE@~TRIM
'MINICONPUTERS' 'COBOL'

4 £ENDFILE
Figure.5.7« shows the output listing from the sbove programo

70

FIGURE 5.6: IXPIXS - PROCESSING OF “COMPLEX" QUERIES

SCLECT RECURES USTNG IavERTED [filEx

PROCESSI vG FIbe MINICIOMPUTERS

wicksk SELECT COVOITIOY 1

SEARCH 1HNCCx On {MANUFACTURER) EQ (DATA GEMERAL)
wxckss | GGICAL DELIMITER AND ENTERED

k%% SeLECT CuNDITIEN 2

SEARCH I&DEX D¢ {RASIC COST(L))y LT (3500}

sokdokd LPGICAL DELIMITER ™R OEMTERED

kkdwds ScLECT CONDITION 3

SEARCH INDeEx Jv (MANUFACTURER) EQ (DIGITAL EQUIPMEMT)

wxkxk L 51 CAL DELIMITER AND ENTERED

wwdckx SELECT CudDUTION 4
SEARCH [I"NDEX "y {BaSIC CLsST(x)) LT (3000)

stk LoGICAL DELIMITER END ENTERED

SELECT PROCESSIMVS pPHaSE

- . —— - —— A —— - - . o e

ADDRESS DISPLAY PHASE

- ————_———— i —— o ——" - — -

NU. NF RECURD ADURESSES = G = LIST FOLLOWS
14 15 io 17 18 28
31

INDEX SeELECLTIOw STATISTILS

- ——————— —— —— ———— S WA G e B AR e - -

NO. HF COMPARISENS = 127

EDIT CPU TIME(SECUNIS) = 0.186
AND CPU TLIHT{SECHNDSY = 1.564
UR CPU TIPMZ(SECUNDS) = 0.337
LIST Crd TIMc(SECHNLS) = 0.087
TOTAL CPU FIME(SECLNDS) = 2.194

END OF RUHN

29

33

FIGURE 5.7: IXPIXD- DELETE AN INVERTED INDEX

DELETE I#HOEX FROM [4veRTeED FILE

DELETE IMDEX 7N MINICUMPUTERS (CuBRL
H%xk¥x SUR-FILE BLOCLK 31 DELETED
kxkdx UB=-FILE 3L1CK 32 DeLEBTED
wkk SUB-FIL® ALUCK 30 DELETED

END OF RUM

1

5.,70. Deletion of File Descriptions
If a File Description with associated Field Names, Descriptious and

Inverted Indexes is no longer required, it may be deleted and the space
occupied recovered for system availability. The input specifying
a deletion command to the File Description Deletion program IXPDEL
is simply the file name to be deleted.
Thus, if the entire information on Minicomputers is to be scratched
from the Index File, the MTS input would be:
£RUN IXPDEL+IXPFND+IXDOPN+IXDCLS+IXDDST+IXDREA+IXDWRT+IXDNOV4IXD=-
OSF+*PL1LIB PAR=INFILE=*SOURCE* REPORT=*SINK* ZINDX=IXFILEG-TRIM
'MINICOKPUTERS®
£ENDFILE) A
Figure 5.8. shows the output listing from the above program. Note that
the field name COBOL is defined as not indexed, the inverted index for
COBOL having been deleted in the run described in Section 59. above,

5411« Report Utilities
In addition to the Index Setup and Extension Utilities previously

described, three other utility programs are provided within the General

Purpose Inverted Indexing System. They are:
17 The Index File Status Report.
2. The Directory Report.
3. The Inverted Index Report.
Each of these utilities is described below.

S5¢1141s Index File Status Report

The current status of the Index File is displayed, including the block
and date area sizes, the total number of blocks in the Index File and
the total number of available blocks. The MTS Job Control to invoke the

Index File Status Report is:
£RUN IXUSTR+IXDOPN+IXDCLS4*FL1LIB PAR=REPORT=*SINK* -
ZINDX=IXFILE@-TRIM
Figure 5.9. shows the output listing from the above program.

5.,11.2, Directory Report

A complete listing of the entries on the File and associated Field Name
Directories may be displayed using the Directory Report Utility. The
‘Directory Control Information (number of file name and deleted entries)
'is first displayed, followed by the File Descriptions, together with
Field Names, Type, Length and Whether Indexed. The MTS Job Control #c

73

FIGURE 5.8: IXPDEL - DELETE A FIiLE DESCRIPTION

DELETE A FILE 0SSCRIpTINY

FILE NAME MINICORPUTERS T BE DCLETED

DELETE FIFLD NAYE “ANUFACTURER , - INDEXED
xddckk Sua-FILE ALNCK T o NELETED

wxoxwsk SUB-FILE 3Li.CK 7 DELETED

xkkEk SUs-FILE 3ALECK 3 DeLETED

skt SUR-FILE RLULK 9 DELETED

wrkEk SURB-FILE 2LNCK 10 DELETEN

x#k4% SUg—FILE BLUCK 5 DELETED

DELETE FIELD HAME MODEL , = MOT IMDEXED

DELETE FIELD NAME #JRO LENGTHIBITS) y = NOT IUDEXEU
DELETE FIZLD JAME MINIYUM MEMORY(K) y = MOT IYDEXED
DELETE FIELD NAME MAXIMUM MeMYRY(K) y = NOT IMDEXED

DELETE FIELD MAYFE CYCLE TIMe(MICRTSEC), = [*OEXED

sk SUB-FILE BLLUK 12 DELETED
Aok SUA-FILE BLUOLK 13 DELETED
xR SUH-FILE 3LULK t4 DELETED
RA&xdk SUB-FILE ALTCK 11 NDELETED
DELETE FIELD ~AME BASIC CorSTLL) s+ - INDEXED
%%k Sys-FILE SLOCK 16 DELETED
*xxx%k SyB-FILE RLUCK 17 DELETED
rxgxx SUA-FILE ALTCK 13 DELETED
wxkxx SUB-FILE SLICK .19 DELETED
w&xexx SUB-FILE BLOCK 2C DELETED
sokxx%k SUB-FILE 3LUCK 15 DELETED

DELETE FIELD WAME MEMORY C2ST BASIS(K), = NOT InNDEXED

DELETE FIELD WAME FORTRAN s = IMDEXED
Fdkukx SUP-FILFE 3LUCK 2?2 DELETED

xack®k SUR~-FILE ALTCK 23 DELETED
Ckaddok SUB=-FILE RLOOK 21 OELETED

DELETE FICLU MNAME atGel y = IMDEXED
Hkdokk SUPR-FILFE 2L00K 25 DELETED

Fdokd % SuURB-FILE ALucK 26 DELETZO

cAokkk SyUB~FlLE 3LicK 24 DELETED

DELETY FIELD waME BASIC s = INDEXED
unkxk SUR-FLLE ARLUCK 28 DELETED \
wkckk SYE=FILE ALUCK 27 OcLETED

R%xkxk SUB=-FILE 3LULK 27 DOrLETED

DELETE FIELD “MAME CUBELL y = NDT INDEXED
kiokgk SUHK-FILE RLUCK 3 DelLETED

RXxkk® SUB-FILE BLUCK 4 NELETED

END UF RUN

FIGURE 5.9; IXUSTR - INDEX FILE STATUS REPORT

INDEX FILE 5TATUS REPERT

—-——— - A ———— - —— - -

]
[pS]
[
W

BLOCK SIZE (BYTES)
DATA AREA SIZE = 2ol

NUMBER UF PLUCKS 1IN INDEX FILE = 6C
NUMBER F AvATLABLEZ BLOIOCKS = 28

END UF RUN

74

5,112« Directory Report contd

invoke the Directory Report is as follows:
£RUN IXUDRP+IXDOPN+IXDCLS+IXDREA+IXDMOV4+IXDOSF+*PL1LIB
PAR=REPORT=*SINK* ZINDX=IXFILEG~TRIM
Figure 5.10. showa the output listing from the atove program.

5,113, Inverted Index Report
A specified inverted index may be displayed in full or in part by
invocation of the Inverted Index Report Utility. This program is
primerily a debugging aid developed by the author in proving the
General Purpose Inverted Indexing System. The information that may be
displaeyed includes the contents of the Index Control and Value and
Address Sub-Files. The input format is:

file name field nane option

There are two options available:
1. If the entire contents of the Inverted Index are to be
displayed, enter the option 'ALL'.
2, If the Index Control information only is to be displayed,
enter the option 'IXC'.
The MTS Job Control to display the Inverted Index for the field
FORTRAN in the Minicomputers file would be:
£RUN IXUIXL+IXPFED+IXDOPN+IXDCLS+IXDREA+IXDMOV+IXDOSF+*PL1LIB
PAR=INFILE=*SOURCE* REPORT=*SINK* ZINDX=IXFILEG~TRIM
'MINICCMPUTERS' 'FORTRAN' 'ALL'
£ENDFILE
Here the option to display the entire Inverted Index has becn selected.
Figure 5.11. shows the output listing from the above program.

FIGURE 5.10: IXUDRP - DIRECTORY REPORT

[I\PLAY CFEODATA DESCRIPTIL b ol 0Ty

DIRECTORY COMTRTL [VEORMAT [

NUMBER UF FILE NAME ENTRIES = 1
NUMUBER iF DELETED InNTRIES = 0

FILE NAME = MIGICUMPUTERS

FILE NUMBER 1, NUMBER (OF FIELDS = 12

1
ot

FIELD NAMZ MANUFACTURER y NUMBER
FIFLD TYPE CHARACTER STRINGy o =
FIELD STATUS INDEXEU, TIMeS ACLESSEU = 0

FIieLD wnaME MhDEL y NUMBER
FIELD TYP: CHARACTHER STRI 4G, LONOGTH = 18
FIELD STATUS wOT INUExEU, TIMES ACCESSED = e

1}
N

FIELD NAME WARD LENGTH(BITS) y NUM3ER = 3
FIELD TYPS BIVARY FIXID(19,0), LENGTH =
FILELD STATUS NUT [HUEXED, TIMES ACTESSED

1]
)]
o

FICLD NAME MIAIMUM MEMDRYIK) y NUMBER = 4
FIELD TYPE BIMARY FIAED(1o,C)s LENGTH =
FIELD STATUS ~NJT IMOEAED, TIMES ACCESSED

]
n
o]

FICLD rtAME MAX[MUM MEMORY(K) sy NUMBER = 5
FIELO TYPE BIGARY FIAE(109C)y LeniGIH =
FIELD STATUS “7T IMDEXED, TIMzS ACCESHED

(2N}

i
O

FIELD wAME CYCLE TIME(MICROSEC), NMUMBER
FIELD TYPE BINARY FLUOAT(21)y LENGTH = 4
FISLD STATUS IMDEXzD, TIM=S ACCESSED = O

|
o

i
~

FIELD NAME BASIC CuST(Z) y NUMBER
FIELD TYPE BIVARY FIXEDI3L,9), LENGTH = 4
FIELD STATUS [40EXEvL, TIMES ACCESSED = 0

FIELD NAME MEMORY CH:ST BASIS(K) s NUMBER -
FIELD TYPE BINARY FIXKED(15,8), LENGTH =
FIELD STATUS U7 INUOFXED, TIMES ACCESSED

n
n
[02]

It
o

i
D

FIELD MAME FUORTRAN s NUMBER
FIELD TYPE CHARACTER STRING, LENGTH = 1
FIELD STATUS T 4DEXED, TIMES ACCESSED = 0
FIELD "AME ALGOL y MUMBER 10
FIELD TYPE CHARACTER >TRINS, LENGTH = 1
FIELD STATUS 1 UDEXE0,y TIM=S ACCESSED = Y

FIeLD maMe sASIC y MUMBER il
FIELO TYPE CHARACTER JT?I\u LEMGTH = 1

FIELD STATUS THOEXED, TIME /\chsggu = 0

FIELD “MAME CMAOL y NUMBER
CFLELD TYPE CHARACTER STRING, NOTH = 1
FIZLD STATUS 1VDEAED, TIMeS ACCESSED = 0

,\ _n
W
[
5]

EnD PF RUN

(i

IXUIXL - INVERTED INDEX REPORT

FIGURE 5.11:

26
18
69
99
134
133
el
el

el

16
08
89
GG
<Y
it
e

I1

49

Co
91
L9
16
1%
1¢
12
01

€9

Ll
99
a6
0%
0¢
¢l
6

19

Y 40 ON3

. tE
HE 15 ag G he e
2 Gl Y1 2L il 0l
¢Q 29 N9 64 1 A0)]G
3/ Ry L% 9% Y vy
6¢ RE 1C 9¢c (39 e
62 Be 12 92 174 Y7
61 81 21 91 61 51
8 L G % ¢ é
SMATTI4 1ST - ¢ = SASSIUAGY dHuITW du Tul
A J0VA Q1314
Y6 (R 61
VA" £G rAS) ¢l 9 1
SMNI104 1SI7 - €1 = S$ASSIVOOV a¥éOIIY 40 °ON

N 3INIVA Q1314

- . . B S T AR G A Ve W A G S W G TR M e T MM AR S Gme N G e e

ANOTLYWECANT ¥O0T¢ SSIVAAV ANV ANTVA

89 13s440 2¢ M¥478 N A3 LSIHOLIH S1
A 3AINTIVA 0313

1 = SZ0TY $SIYaavY chv ANIVA JO - ON

- - . v S — - —— A) G . S Gmn A GV - A AN = R A e e -

NOTIYWEOANT ¥IUT9 T0HLINGD XA0NT
1 HLIO9N3T *ONT¥LlS VILOVMVHD JdAL U131
NVeleOd) SyILNAWUNINIW NG XFONT AVIdSTA

XJONT QI LWIANT MV AVILSTA

CHATPTER 6: PURPORMANCE TESTING o " 78

6.1. Sumravy

The General Purpose Inverted Indexing System has been implemented and

}..J

shown to be able to logically process small files, as shown by the
examples of system operstion on a file of Ninicomputer information
containing 94 records {see Chapter 5). However, there is also a need
to determine the system performance when it is asked to process larger
quantities of data using more realistic queries.
It was therefore decided to exemine two aspects of system performance
essential to the viability of an inverted file organization:

ie Creation of Inverted Indexes.

2. Selection using "Complex™ Queries.
To provide daia for testing, two sets of research data were used:

1. An abstract from the Durham High Energy Physics databank.

2. Data obtained in the Northern Archasological Survey.
This chapter examines in detail how the systen performance might be

measured, and how experiments wers carried cut cn the regearch dats.

6.2. Methods of Yerformance NMeasvrement

In consideration of how the system performance might be measured, it
was found that two types of information needed to be gathered:

1. Display of numbers for a given operation. These numbers
might either be abstracted from the Directories or
accumulated during the course of a run.

2. Determination of CPU time used in various parts of a
program. The method for this was defined in Chapter 4
(Section 4.5.3).

The numbers and CPU time gathered and displayed are discussed below

in relation to the particular programs.

6.2.1. Creation of Inverted Indexes

A number of items of information are collected and displayed when an
inverted index is created for a specified field: ‘
1. Pile and Field Names.

These are obtained from the input request for index creation.
The field type may be obtained from the display of the
Directories for that Data File.

2+ Record Length.

The total length of the Data Record is displayed.

3. Pleld Lensth and Start Position.

fne length of the field to be indexed together with its

starting position wifhin'ﬁhe Data Record,

'602.1.

7Y

Creation of Inverted Indexss contd

4.

5e

6.

Te

8.

S.

10.

11,

12.

13

Kumber of Tndexine Hecordge.

The number of records in the Data File (and hence the number
of receord addresses to be stored in the inveried index when
created) is couated and disgplayed.

Maximum Munber of Plocks Heguired.

During the execution of the creation program, an estimate

is made of the maximum inverted index size in terms of the
number of blocks required. This information, which represents
the worst possible case where each field value is unique, is
displayed.

Actual Humber of Blocks Used.

When the inverted index is actually created, the blocks on
the Index Pile allocated for this purpose sre noted and their
numbers displayed. By counting these, the actual number of
blocks used is determinad.

Rumber of Field Values Entercd.

The number of unique field values found on the field veing
indexed is counted and displayed. This figure, together with
the number of indexing records, can provide an average list .
length for each inverted index entry.

Number of Index Control Entries.

The number of field value/pointer entries in the top level
of inverted index (the Index Control Sub-File) are counted
and displayed.

Edit CPU Time(Seconds).

The amount of CPU time used in editing the input data against
the Directories is logged and displayed.
Abstract CFU Time(Seconds).

This CPU time measurement shows the time taken to access the

Data File and abstract the field value and asscciated record
address into a temporary file.
Sort CFU Time(Seconds).

The abstracted information is then sorted into field value

and record address sequence. The CPU time used is displayed.
Create CPU Time(Seconds).

Here the CPU time taken to create the inverted indexes (Index

Control and Value and Address Sub-Files) is logged and
displayed. '
Totsl CPU Time(Seconds).

The above CPU times are totalled and displayed.

L

6.2.2. Processing of "Complex" Queries

The follcwing items of information are gathered and displayed when

processing a "Complex" query:

1.

2.

3e

4o

S5e

6.

Te

8.

S.

File Tllame.
The Pile Name as entered as a command and edited by the
system for validity is displayed.

Selection Conditions.

Fach Selection Condition entered is numbered and displayed.
From the field names specified, the appropriate informetion
méy be obtained - type and length from the Directories; and
number of unique field values and average list lengths from
the index creation listing.

Logical Delimiters.

Three types of logical delimiters are permitted: AND, COR and
END. These are displayed in their required positions to
separate (AND and OR) or terminate the Selection Conditions
(END).

Number of Record AddressceSe.

The number of record addresses satisfying the input query
is displayed. If no records are found, an appropriate
message 1is printed.

I1ist of Record Addresses.

The record addresses satisfying the query conditions is
displayed. This display is primarily for logical testing
purposes.

Number of Comparisonse.

In the course of processing Selection Conditions, comparisons
of the search field value are made against various norticens
of the jnverted index. The number of these comparisons is
accumulatsd and displayed.

Edit CPU Time(Seconds).

The amount of CPU time used in editing the input against

the Directories and creating the ccntrol array with selection
instructions is logged and displayed.
AND CPU Time(Seconds).

The time taken to logically AND the various lists together
is recorded and displayed. This may include sorting.
OR CPU Time(Seconds).

The CPU time taken to logically OR the resultant AND liste
together is logged and displayeds

$£:.2.%0 ITccessing of "Complex" Queries contd
10. List CPU Time(Ssconds)e

The final list of record addresses ig listed and the time

displayed.

11. Total CPU Time(Seconds).

The above CPU times are totalled and displajed.

6.3, High Energy Physices Databank

The Durham High Energy Physics Databank is used by the Physics Department
of Durhaw University to store and access data concerncd with high energy
physics experimentse. It is storzd in card image form on a private disk
on the NUMAC system in the form of a number of files. The current size
of the databank is 20 files, each containing approximately 2000 cards.
Thus the current fille size is approaching 40000 recordse.
In use of this information for performance testing on the General Purpose
Inverted Indexing System, a sub-set of the first 10000 records was taken.
The reasons for not using the entire databank were twofold:
1. The maximum allowzble Iine File size on the MNTS system is
255 pages. At 4096 bytes per page, this represents a maximum
size of appréximately 1 million bytes avallable for storage 4
of control information and dats. While thic problem could
be circumvented by concatenation of a number of Line Files,
performance testing using this maximum as an upper limit
was selected because of the next consideration: CPU time
requirements.
2. Preliminary estimates of time to create inverted indexes
(which were borne out later by experiment) suggested that
to create the required inverted indexes for the entire
databank would take approximately 1% hcurs of CPU time on
the NUMAC System/360 Model 67. As this would be only one
of a number of runs, it was determinred that experiments
using a smaller number of records would be more economical
.(provided that they gave an adequate measure of system
performance).
The decision to use a maximum of 10000 records in the High Energy Physics
Detabank was therefore taken.
Before considering the creation of the Data File, inverted index
creation and processing, it is probabdly worth stating (in the view
of the author) that there is no logical reason why the entire databank
should not be processed using the General Purpose Inverted Indexing

System. A number of recommendations for modification and improvement

6.3, High Fnergy Physics Databank conid

of the system are presented in Chapier 7.

6.3.1.vConversion to Tabular Form

One problem immediately emerged in the use of the High Energy Physics
Databank for performance testinge. This is that the data (in card image
form) is organized in a hierarchical fashion, while the General Purpose
Inverted Indexing System requires data to be presented in a tabular
form. A description of the data format follows.

The daia is divided into 'experiments', each of which has a Master Card

describing the reference, process and type, and units of measurement .
No conversion has been carried out on the deta, and values presented in
graphical form have been measured by ruler, and the original values
calculated.

After the Master Card comes the Decay Card which specifies the way in

which the final state resonesnces were identified. A Comment Card may

appear after this. Neither the Decay or Comment Cards necessarily occur
in an experiment.

At present the Decay and Comment Cards are read as 80 byte alphsnumeric
lines, and are not interpreted further.

These cards are then followed by a number of Data Cards relating to the
experiment. The number of Data Cards may be anything from zero (where an
experiment has been obsoleted) to hundreds of readings. Some of the
information on the Data Card duplicates that held on the liaster Card for
that experiment.

To construct a tabular Data File that could be used to create inverted
indexes, it was therefore necessary to write a program to convert from
hierarchical to tabular form. In creation of the tabular Data File, it
was also decided for reasons of space to exclude the data contained on
the Decay and Comment Cards (which was being stored for information
rather than as a basis for retrieval).

The output from the conversion program was a tabular Data File named
HIGH ENFRGY PHYSICS containing the following 13 fields:

1. EXPERIMENT NO. Fullword Binary Length 4.

2. STATUS SYMBOL Character String Length 1.
3. REFERENCE Character String Length 29.
4. PROCESS CODE Character String Length 13.
5. INPORMATION CCDE Character String ILength 10.
6. ENERGY CODE Character String Length 10.
T« ARGLE CCDE Character String Length 10«

8. ENERGY . Floating Point Length 4 .

.

: §3

_6*3°1° Conversion to Tabular Form contd
9., ANGLE " Ploating Point Length 4.
10. OBSIERVABLE Floating Point Length 4.
11. ERROR Floating Point Length 4.
12. PGINT KO. Halfword Binary length 2.
13. WIDTH Ploating Point Length 4.

Thus a record of length $9 bytes was constructed. Fields 1 - 7 are

taken from the Naster Card, and thus will be duplicated on the data
records on which the Data Card information is alsc loaded (Fields

8 - 13). '

By running the conversion program on the original Line Files in the
databank, a number of tabular data files were created which could be
concatenated to provide input to the Index Creation program of

various sizes: 2000, 4000, 6000, 8C00 and 100C0O records (approximately).

6.3.2. Inverted Index Creation

To be able to accommodate the type of queries initially expected on the
High Energy Physics databank, it was decided that invertcd indexes would

need to be created on the followirg seven fields:

Fleld No. Description Type Length
1 EXPERIMENT NOe. Fullword REinary 4
4 PROCESS CCDE Character String 13
5 INFORMATION CODE Character String 10
6 ENERGY CODE Character String 10
7 ANGLE CODE Character String 10
8 ENERGY Floating Point 4
9 ANGLE Floating Point 4

To test the effects of Data File size on Index Creation verformance,
the creation runs were to be run using differing numbers cf records.
As described above, tabular Data Files were created. The number of
records used for each run were 1980, 4077, 6163, 7941 and 59635
respectively. The procedure prior to the runs was as follows:
1. Set up the blank Index File with an initial allocation
of 20 blockse.
2. Load the description of the Data File onto the File
and associated Field Name Directories.
3. Run an esﬁimate of the total blocks required for the
number of records to be processed.
4, Extend the Index File to provide anough space to accomodate
the number of blocks estimeted avove.

The Data File with the requisite number of records was then accessed for

6.2.2s Inverted Index Creation contd

each field in turn in an Index Creaiilon run.

Results obtained from the set of runs are shown in Figure 6.1. grouped by
field. Some ancmalous results were obtained dvring the test runs (denoted
by an asterisk). These figures were checked by later reruns, but appeared
to give substantially the same resulise.

The results obtained from the Index Creamtion runs aire analysed in

Chapter 7.

6.3.3. Processing of (ueries
j %3

In discussion with Dre. Cooper of the Physics Department, seven queries
were defined. The first four were variations on the same type of query
with the expected number of records (in qualitative terms e.g. none)
to be found from each query; while the last three defined standard type
queries on the databank. The format of the gueries was as follows:
1+ PROCESS CODE PI+ P=PI+ F AND INFORMATION CCDE D

Amount of records satisfying query: large.

The query however cannot be answered with Just 2 Selection

Conditions as there are 6 Information Codes classified

under D: D(MB/G2), D(MUB/G2), D(LB/ST), D(LUB/ST), D(NB/G2)

and DLUB*3LT2. Using the rules defined for specification of

complex queries, the query may be defined using 12 Selection

Conditions as follows (Note: the above Process Code is stored

as PI+ P):

'HIGH ENERGY PEYSICS'

'PROCESS CODE' 'EQ' ' PI+ P' 'AKD'

'INFORMATICN CODE' 'EQ' 'D(LB/G2)' 'CR!

'PROCESS CODE' 'EQ' ' PI+ P! 'AND'

'INFORMATION CODE' 'EQ' ‘D{MUB/G2)' 'OR'

'PROCESS CODE' 'EQ' ' PIt+ P? tAND®

'INFORMATION CODE' 'EQ' 'D(MB/ST)? 'OR!

'PROCESS CCDE' 'EQ' ' PI+ P' 'AND!

YINFORMATION CODE' 'EQ' 'D{MUB/ST)' 'OR!'

'PROCESS CODE' 'EQ! ' PI+ P' 'AND!

'INFORMATION CODE' 'EQ' 'D{(NB/ST)' 'CR'

'PROCESS CODE* 'EQ' ' PI+ P' 'AND?

'INFORMATION CODE' 'EQ' 'DMUB*SLT2' 'END!

2. PROCESS COLE PI+ P=PI+ P AND INFORMATION CODE DU
Amount of records satisfying query: none.
. The query is defined with 12 Selection Conditions as above in

1. using 6 Informaticn Codes classified under NU: DU(MB/G2),

S

ERGY PHYSIC

CREATIO

INDEX

Al
[

b.

FIGURE

SLINS3Y SNOTVWONY

€EQL6 €90ZC <C768WC G9LGE €500 L b GGl 9€L GES6

Gz/Ltl 800CC S07E€l 1626 <ZS00 L L 8¢cl L09 V764

1/99G 8EESL 080%L <6571 L1900 L L 00l LL7 €916

¢6lZe S8O°LL 0gsLL glEL 1800 l L L9 ClE LLO7

LLVBL LL7S 999G EEQY 13070 L L £e 415 0861 0l | 9

SQECTC L76°LC L ESCHR GCLZEL 135070 LC 8l 8G! 9EL GE96

LLVETCL LGBCC 0SER7 666¢CS 19070 Ll ol el LGS L76L

GZeL8 ELLLL LECEE %SL9E 1800 7¢ 9l 0l LL7 £9LG

cC0es 9LS’LL 7096l €84°1¢ 19070 Sl £l LS ZLe L2077

LL6CC 8¢LS 0764 676 0S00 Ll L 7€ [4=) 086l Ol L S

0Z8'ZLL 78€8Z 0077 GL61L7 19070 75 6¢ LSl 698 GESG |

082°¢6 8L5€C L99¢CE €£.69E 900 75 9¢€ 7€l 914 V764

§62°0L creel ZLLve w77LLZ 0800 97 £e S0l 395G €813

29€'86 9S0°¢L 799777 x6L5€7 €900 Y€ c 04 89¢€ LL0OY

0G60C 9G4S 7889 <88 03800 Pl 6 7€ 6Ll 086! £l L 7

2786 6520¢ €050 6669€ 1900 899¢ L6 LSl 087 9E96

98808 GSowZ €LLGC LEL0E LS00 Z7e 98 eEl 96€ L7064

48279 83976l LGEBL 1S7EC 09070 661 0L 301 LOE £919

L8EDY SZ9°CL 94v¢l 0ZZ'SL 0S0°0 901 £7 VL £0< LLOY

g0¢6l /428G ¥S6S E9E€L <800 13 8l 7€ 66 066l 7 £ L

IVLOL|3LV3Y0| LY0S | '1Sdv | LIa3 | SAIM [SFIYINIISHO013 [SHO019 BOS0IIYHONI TddA L 'ON

JNOINNTICELNOD| 40 'ON | 40 "ON ONIX3ANI :

(SANO33S)a3sn 3WIL NdD 40 'ON | 4O°ON |TVNLOV| LS3 | 40 ON gn3ld

s

DEX CREATION - HIGH ENERGY PHYSICS

N

i
i

NTU:

I
i

0

~
e

FIGURE 6.1 (

S1INS3H SNOTVNONY,

89/°C0lL ¢lL7l7 0€50€ G97EE 1S00 LS5¢ 7¢¢ §7¢ 087 GE96
76198 19£'GE 906€Z /889C 0S00 7Led 6l 60Z S6E 1764
Sv6.9 T6SLZ SS06L LECLC LSOO 086l 5S1 691 LOE £3L9
gvlLcy €688, 882¢¢L L06'€l 0900 1971 LLL LU €0 LL07
76572 GLS6 S665 0869 2900 968 0% £9 66 086l 7 6
G778l GLEZE ,9Z0€L 76794 1SOC 005 L7 9Ll 087 €96
€QOLZL 97897 60€SY 99887 <900 98 L2l 87l 96E V764
€086 6EELZ S8ELE 6186E 0S00 Q77 00l L1l LOE €919
90695 909'€l <¢ELCZ 805CC 05800 S0¢ LS SL £0¢ LLG7
%7757 6069 1098 €596 1900 SO GE LE 66 086l 7 g.
16568 6499¢ £998Z 6vL7€ 03800 L 9 5G| SE/ SE96
SYGEL LS7CC €LvEC L76°LC 900 L 9 8l L0S L76L
GZZLS SEZLL €478l . 9591Z 19070 9 5 00l VL7 €919
g9geLe 8vZllL 6281y 6%C7L 0900 G 7 LS 4% LL07
LLe8L 089S b2s 0¢0L 0300 S 7 £e Sl 0g6l _< L
IVLOL|3ivadol 1H0S |Lsgv | LI03 | SA3M [S3PINZSHI0 T SUD0IGRAHO0IIRONT TIJAL| 'ON
. INOINNTIOYLINOD] 40 "'ON | 40 'ON [ONIXIAN A
(SANOD3S)A3SN 3WIL NdD 40 'ON| 40 'ON|1¥NLOV| "LS3 |30 ON ai=13

-}

6.3.3. Yrocessing of ouerieg contd
DU(KUB/C2), DU(EB/ST), DU(IUB/ST), DU(KB/G2) and DU(MB/ST L.
3. PROCESS CODE PI+ P=P FI4+ AUD INFORMATICON CODE D

Anount of records satisfying query: none.
The query is defined with 12 Selection Conditicns as in Query
1. using Information Codes classified under D and the above
Process Code stored as P PI+.
4, PROCESS CODE PI+ P=P PI+ AND INFCRMATION CODE DU
Amount of records satisfying query: sone.
The query is defined with 12 Selection Conditions as in Query
1. using Information Codes classified under DU and the above
Process Code stored as P | PI4+.
The above four queries therefore each have 12 Selection Conditions,
comprising 6 ANDs and 5 ORs. Each Selection Condition 1s an Equal
Compare.
5. ANGLE CODE CTHETA AND ANGLE > 0.5
The Angle Code CTHETA is stored as CTH. The query is entered
to the system thus:
*ANGLE CCDE' 'EQ' 'CTH' 'AND!
YANGLE' 'GT' '0,5' 'END*
6. ANGLE CODE T(GEV) AND ANGLE < 0.2
This query is defined as in 5 above.
7. ENERGY CODE P(GEV) AND ERERGY > 5.0
This query also is defined as in 5 above.
Therefore, the above queries each have 2 Selection Conditions containing
1 AND. Each query contains an Equal Compare and a Range Search (Greater
Than or Less Than).
Results obtained from the set of query runs are shown in Figure £€.2.

These results are analysed in Chapter 7.

6.4. Archaeological Data

The locaticn, period, type and cther information on archaeological

sites is stored by the Archaeological Department on a MTS Sequential File
and accessed to answer queries. The current file size is 3280 records

at 18 bytes per record, the records being blocked with a factor of

400,

6.4.1. Inverted Index Creation

The archaeological Data File described above was stored in a tabular

form, bptva small conversion program was required to present it in a

form for use in the Index Creation program comprising some 24 PL/

88

SSING - HIGH ENERGY PHYSICS

CE

RY PRO

F_

QUE

FIGURE 6.2

Z89'9 8970 €8BY0 7E€YG LLIO 8l €6l SE96

612G 8LL0 48EC €5E€ ISED €l 6Gl L764

L8 820 LEED QL0 Z8Z0 £l Sl €919

60G°L 00 00 LZZL LLZO 0 8L LL07 ‘

6llt 00 00 8v60 LLZO 0 07 0861 S 9 cl 7

090761 00 00 0847, ©S.70 0 LEL GE9H

7€l 00 00 Z.L&61L SGSEC 0 LEL L76L

LLEDL 00 00 4200l 6420 0 601 £919

S0G'L 00 00 €2l 8LCO 0 L LL07

A 00 g0 - 0760 LLZC 0 87 0eol S 9 Zl 3

LEOQL G0 00 95846l /LLZ0 0 6S1 GE96

58ETl 0C 00 9l0EL %9E0 0 051l 1764

<l9L 00 00 6814 8LZO 0 EL €919

06's 00 00 0¢9S 8LZ0 §) gll LLOYT

7T 00 00 v%60 9.20 0 87 0861 S 9 4 14

1966E OL8'L 000¢C 148SE 0870 OLGl LEL €96

ZLLZZ 0690 9660 S90S 1L9E0 667 LEL L 764

SeELl 690 OI8O €8GGL 08C0 667 St €913

L7€EL Z6%0 6990 0leLL 8.0 SOE 1Ol LLO7

L8G1 00 00 L0Y1 SLC0 0 87 0861 S 9 4% 8

AVLOL | L1Si3 g0 ANV | LIG3 | ANNO4 J13 NI 'SONOQ2
SQH0JFY| SANOT (SA¥0T3Y, s¥O0 | SANV | 1037135 ON

(SONOJ3S)a3sN FWIL NdD 40 ON| S0 ON| SO0°ON| 40'ON| 40 'ON | 40 'ON| AY3IND

e

CS

g
i

RIES - HIGH ENERGY PHY

—
=

FIGURE 6.2 CONTD:

PROCESSING QU

7117 L€7 €0ST LLLTT 900 | 0g0e Ll SE%

S667C 96T 6697 786l ZSLO | 9L €SC LYBL

0,58l 1Ll OlgL €105l 9400 | 8LEL ZT €918

5GL7L E€60L 8lTL TEE6 900 | 764 €0L LLOY

2179 9¥S0 LTL0 290G LL0O0 | L9€ SS 086l | 0 L 4 L

65067 299 6791 6576l 6400 | LGEL 6671 SE96

/76l 0S€L 629 Svl9L OSLO | €60L 67EL 176L

olLi OLOL 9Ll 488l 800 | 88 Lyeh €9lS

Gl36 ¢890 8780 826 LLOO | wLy W60L LLOT

§975 BEE0 9SG0 447 LL00 | 961 zee 086l | O r z 9

79CLL C€60 L60 8EVSL LL00 | €54 957l SESE

z9g’sl 0760 ELLL wLlEL GSL0 | 659 GlEL L6/

9970 eS80 0460 09L0L 6400 | 639 6801 €919

7686 L0L0 9980 SSZ8 SO0 | 467 €TL LLOY

0Z6c 6LY0 6290 S6LY LLOO | 042 WE 086l | O r 4 G

TvLoL| 1SI7 | ¥0 | GNY | 1103 | ONNOS 3714 NI 'SANOD

SQH003Y| SAWOD 505003 SYO | SONV |13313S) ON

(SONOJ3S)T3SN IAIL NdD 40 'ON | 40 'ON | 40 'ON | 40°ON| 40 0N | 40 'ON | AZ3N0

- HI

6e4.1. Inverted Index Creution contd

statements. The reason for this is trhat at present the General Purpose
Inverted Indexing System processes only Date Files in the form of
unblocked records on zn KIS Line File {a restriction that could be easily
removed at a later stage).

The output from this run was & tabular Data File named NECGRAPHIC DATA

containing the following 9 fields:

1. SQUARE REFERZNCE Character String Length 2.
2. EASTING . Halfword Binary Length 2.
3¢ NCORTHING Halfword Binary Length 2.
4. ACCURACY Halfword Binary Length 2.
5« PERIOD Halfword Binary Length 2.
6. TYPE Halfwcrd Binary Length 2.
7+ CONDITICON Halfword Binary Length 2.
8. PERSCN REF. Halfword Binary Length 2.
9. EXTRA Halfword Rinary Length 2.

The first three fields - SQUARE REFERERCE, EASTING and NCRTHING uniquely
identify by a Grid Reference an archaeological site. To be able to
acdommodate the queries initially expected, it was decided that inverted
indexes would be created on these three fields. -
The procedure for the runs was as follows:

1. Load the description of the Date File onto the File and
associated Field Name Directories.

2. Run an estimate of the total blocks required for the number
of records to be processed. In this case, as the Index File
being used also held the High Energy Physics data previously
mentioned plus available space, no extension of the Index
File was required. -

3. An inverted index for each of the fields SQUARE REFERENCE,
EASTING and NORTHING was created and stored on the Index
File.

The results for the creation runs on the archaeological data are shown

in Figure 6.3. and are analysed in Chapter 7.

6.4.2. Processine of Queries

In discussion with Mr. Clack of the Archaeological Department, a basiec
query requirement was defined., In this query, it is required to find

the sites which are located within a ceriain area., This search request
may be qualified by further search parameters such as the period, type

or condition of the sites.

91

APHIC DATA

r

~r
Q6

o

~
GE
[

ATION

4 X’QE

FIGURE 6.3:

Zelee leoBL €£9'9 4S9E€0L LSLC 06cc L0} 147" g€l 14 c £
€679 G906, 6598 LL70L <GS0 LGle 704 80l 9€1L 14 Z 14
6Y50€ 84L8 Le66 7Z9lL 8GO0 £ € 7S 9€l 4 L L
VL0l BLy3yd| 140S | Lsgv | L1a3 | SA3IM [S3AYLNIISHMO018ISHI0T1aHLIONT 3dAL | ON
INDINNICHLNOD} 40 'ON | 30 ON :
(SONQJ3S)03sN 3WiL Ndl 40°0ON | 40 'ON [IvNL1OV| "LS3 REl=

INDEX G

SgY023y 08Z¢ SNIVLNOO F1id

92

6.4.2. Frocessing of Gueries contd

Tt was therefore decided to define a set of queries based on the basic
search reouired. The format of the queries was:
’ Find all sites within Square Reference NZ where the Basting is
Greater Than or Equal to 1000 and Less Than or Equal to N1,
and the Forthing is Greater Than or Equal to 1000 and Less Than
or Equal to Ni.
The values of N1 specified were 1500, 2000, 2500, 3000, 3500 and 4000
respectively to give 5 queries. Figure 6.4+ shows the areas covered by
each query. The format of the query as presented to the Index Selecticn
Program is (taking N1 - 1500):

'GEOGRAFPHIC DATA! _

'*SQUARE REFERENCE' 'EQ' 'NZ' 'AKND!

'EASTING' 'GTE' '1000' 'AKD!

*EASTING' 'LTE' *1500' 'AND'

'NORTHING' 'GTE®* *1000' 'AKND!

*NORTHING' 'LTE' *1500' 'END'
Thus, each query contains 5 Selection Conditions ccntaining 4 ANDs. The
Selection Conditions comprise one Equal Compare and four Range Searches
(GTE or LTE).
Results obtained from the set of queries are displayed in Figure 6.9.

and analysed in Chapter 7.

FIGURE 6.4: GECGRAPHIC DATA - QUERY SEARCH AREAS

PROCESSING SQUARE REFERENCE NZ

4000
3500
5
3000 :
A
)
<
T 2500
o 3
O
=
2000 ;
2
1500
1
1000
([aw] O o (o0 (a») ([@®) [a»)
O (@») (@) [em] (a») (@p] [a)
(] LN (a»] Tl [am) O (a]
— < [@\N] N ™ ™ ~t

EASTING

KEY: {1] QUERY NO. 1
ETC.

94

NG - GEOGRAPHIC DATA

ggize £€S70 €590 9980E 7<C0 8EE 87¢8 9
Lit€ §9€0 ZeSTC 97662 1270 bLC ZE8L S

L7E6Z GEZC 6G70 CEY8C 1{Z0 87l 78E4 7
c0vLz 1LV 86E0 LL9SZ 2270 68 0783 £
00662z 7Ll'0 80 9ldSe 1Zl0 7€ 77¢€9 4
1G6%7¢ 1800 0CEC 8lE£WC Zll0 £ LLS l
IVLOL | LSIT 40 anNyv L1a3 | dnnod

SQH003Y, 'SJdWO03 | ON

(SONOC3ZS)A3sN INIL NdD 400N | 40 ON |AY3N0

SANV % "SNOILIONCO NOILI3TES §

SQJ033Y 08cCE SNIVINGOD Fid

»
WIT AT R - .
LoD RGN 9 5

CHALT R 71 ANALY

Jele dntpoduction
The Gereral Furpose Inverted Indexing Syetew has been set up and is
working on the LUMAC I System/3060 Ncdel £7 under MTS. It was originally
logiczlly tested using a Data File of linicomputcer data (sece Chapter 5);
and this was followed up by Ferformance Testing using Data Files of
High Energy Physics and Geecgraphic data (see Chapter 6). This chapter
nsiders the following peints arising from the above work:
1. Analysis of the Performance Testing data obtained and
discussion of the results.
2. Identification of various ways by which the performence of
the system might be improved.
3. Definition of areas in which the function of the system

could be further developed.

7.2. Analvsis of Yerformance Testing Tata

L.

Performance Testing was carried out on two Date Files - High Energy
Fhysics, and Geographic Data on Archaeclogical Sites. The procedure
in each case followed the same sequence:

1. Ensure that the Data File is in a Tabular unblocked form.
If not, a program must be written to convert it from its
original form. For the High Energy Yhysics Late which was
stored in a hierarchical form, this involved writing & full
conversion program; while for the Geographic [ata, a program
simply to unblock the original Data Pile sufficed.

2. Load the File Description into the Index File Directories.

3. Determine which fields in the Data File nead to be indexed
to answer the rcequired queries.

4, Run an estimate of the Index File space required for the
inverted indexes specified and allocate enough space to
accommcdsate them.,

5. Create the required inverted indexes on the Index File.

€. Run realistic queries using the Index Selection program
and display the results.

In analysing the performance of the system, it was decided to concentrate
on the two portions of the system which consumed most CrU time. These
were:

1. Index Creation.

2. Query Processinge.

Coding was inserted in the appropriate programs to record the CPU time

used in the various portions of the program, runs were made, and the

96

Tede Avulysis of Yerformunce Testing Data contd

results 1logged (see Chapter €).

It may be of some nelp at this point to define the author's concept

of performance testing. This may be expressed as follows:
The objective cof Performance Testing on the system is to
determine the system performance in processing realistic
quantities of data, where a realistic quantity using an
actual Data File will almost always be in excess of 1000
records. The processing of this data is to duplicate the
processing methods that might be used in other systeus.
Thus, the performance figurcs obtained are meant to provide
guidelines as to how the system will react to real-life
situations, rather than to analyse the internal performance
of the system in detail.

Anzlysis and discusszion of the resultis obtained for Index Crestion

and Selection follows below.

Tecels Inverted Index Creaticn

As discussed in Chapter 6, two Data Files were used for performance
testing - the High Znergy FPaysics Databank and Geographical Data on
Archaeological Sites,

In testing on the High Energy Physics data, it was decided that inverted

indexes would need to be created on 7 fields:

Field No. Name Iype
1 EXPERIMENT NO. Fullword Binary Length 4.
4 PRCCESS COLE Character String Length 13.
5 INFORVATICN CODE Character String Length 10.
6 ENERGY CODE Cheracter String Length 10.
1 ANGLE CCIE Character String Length 10.
8 ENERGY Floating Yoint Length 4.
9 ANGLE Floating Point Length 4.

Inverted indexes were created for these fields in iturn from tabular
Data Files absiracted from the main datzbank corteining 19€C, 4077,
6163, 7941 and 9635 records respectively. The timings in CPU time uszed
(second:) against number of records are graphed in Figure 7.1. The
numbers in the graph indicate the above field numbers in the Tabular
High Energy Physics recoxrd.)

Next, in processing the Gecgraphic Data, it was decidcd to create

inverted indexes on 3 fields:

FIGURE 7.1: GRAPH INDEX CREATION TIME VS. NO. OF RECOKDS

NOS. IN GRAPH ARE FIELD NOS.- HIGH ENERGY PHYSICS
150 b
140
130 5

//8
120 8
110 ///
9
/
1
100 &* / 4/

/ D17
g0 4 /6/

@

80

60

CPU TIME USEDI(SECONDS)

50

40

20

10

1980 t077 6163 7941 9635
NO.OF RECORDS '

“ANOMALQUS RESULTS

Tesle Invericd index Crootion contd

Picld lo.

P
i

w N

SQUARE RIFPERENCE Craracter String Lengih 2.
EASTING Halfword Binary Length 2.
NORTHING Halfword Binary Length 2.

Inverted indexes were created for these fields from a tabular Data

File containing 3280 records.

Analysis of the results obtained from the above runs yields a number

of points for considerations:

Te

3.

For creation of an inverted index on a specified field,
there appears in most cases to be a linear relationship
between the number of records in the Data File (and hence
the number of field values to be processed) and the CPU
time used. Therefore, it should be possible to be able

to predict approximately the time that would be taken

to create an inverted index for a specified number of
recordse.

On looiing at Figure 7.1., it appears that differing amounts
of CFU time per entry are required for inverted index crsztion
on different fields. The average Tigures for both the High
Energy Physics and Geographic Dzta indexes are shown in
Figure 7.2. (anomalous results are excluded). An average
taken over all the High IZnergy Physics index creaticn rurs

gives an overall average CEU time of 0.0132 seccnds/eniry.

There appears to be varying correlations in index creation
times between like field types.

For example, in the High Energy Physics Pata File, fields
5, 6 and 7 are all Character Strings of length 10 bytes.
While fields 6 (ENERGY CCDE) and 7 (ANGLE CODE) give virtually
identical creation %times, field 5 (INFORMATICN CODE) uses
considerably mere CPU time and may (if the result for 9635
records is not anomzlous) have not a linear relationship
but an almost exponential one to the number of records.
Similarly, for High Energy FPhysics alsc, both fields 8
(ENERGY) and 9 (ANGLE) are both Fullword Floating FPoint
numbers of length 4 bytes, but give very different creation
rates.

Conversely, in the Geozraphic Data fields indexed, fields 2

BASTINC) and 3 (NORTHING) give virtually cimilar results.
&

99

FIGURE 7.2: INDEX CREATION- CPU TiMES PER INDEX ENTRY

1. HIGH ENERGY PHYSICSIEXCLUDING ANOMALOUS RESULTS)

FIELD FIELD FIELD AVERAGE

NO. TYPE LENGTH CPU TIME
1 3 4 00100
4 1 13 00115
5 1 10 00137
6 1 10 00093
7 1 10 00093
8 4 A 00145
9 4 / 00111

AVERAGE = 00132 SECS/ENTRY

2. GEOGRAPHIC DATA
FIELD FIELD FIELD AVERAGE

NO. TYPE LENGTH CPU TIME
1 1 2 0.0083
2 2 2 00117
3 2 2 00116

AVERAGE = 00109 SECS/ENTRY

136

Te26le Tnveried wip_contd

4. The yeasens Tor varying correlations found in 2. above

may bve due %o variatlons in either (o) field length, or
+

-

(b) the average list length when the inverted incex has

been created.

It was thevefore decided to analyse the CPU time used in

the various portions of ithe Index Creation program with

the follcowing resulis:

(a) The time taken to Edit the input index creastion command
is minimal and constante.

(b) In the Abstract and Sort phases, there appears to be
no correlation with either field lengih or average list
length (the latter not Teing surprising as the inverted
index has not yet been created).

(c) In the Create stage when the inverted index is finally
formed, there appears to be a direct correlation = The
chorter the average list length, the longer the creatiocn
time per entry (as again would be expected as more disk
1/0 must take place with more vwriting to disk of unique

field values).

5. Analysis of the CFU time spent in the various phases of the
Index Creation program gives the following percentage
breakdown:

Edit O.1
Abstract 39.7
Sort 33.9
Create 26.3

Consideration for performance improvement should therefore
be aimed at the Abstract, Sort and Create phases,.

6. There appear to be some anomalous resulis in creating inverted
indexes on the High Energy Physics data -~ these were rerun
but again gave similar results. No explarnation is advanced
for these results, nor is further investigation recommended
es later recomrendations for performance improvements would
tend tc extensively modify the system operation.

From the above analysis, we may arrive in summary &l specimen CPU times
on the NULAC IFN System/360 iodel 67 for creation of sufficient inverted
indexes on a Data File to meet a specified dewand:

1. High Enersy Physics.

Create inverted indexes on 7 fizlds frem 9635 ’r‘r‘cordc a
an average of 0.0132 sececuds CI'U time per entry:

Total CPU Time reguired = 830 seconds = 15 minutes

Te2el. Inverted Index Creaiion conid

o M - remacy vy by s . .
e G2OEE)J!zlc }lﬁ.."vu,a

Create inverted indexes on 3 fields from 3280 records at
en average of 0,0109 secords CIU time per entry:

Total CPU Tire required = 107 seconds = 1.75 mirvutes

T.2.2« Uuery Processing

As described in Chapter 6, a number of queries were defined and solved
using the General Purpose Inverted Indexing System. Three main types
of query could be defined:
A. GQueries 1 - 4 on the High Energy Fhysice inverted indexss.
These were all gueries containing 12 Selection Conditions
linked by 6 AND and 5 OR logical proccsses. It should be
noted that queries 2 and 3 find no records on the Data File
satisfying the search criteria - the effects of this are
discussed later. All of the Selection Conditions involved
Equal Compares on Character fields. Dach query was run on
inverted indexes created from varying sizes of tabular Lata
Files abstracted from the datatank containing 1980, 4077,
6163, 7941 and 9635 records respectively.
Be. Queries 5 - 7 on the High Energy Physics inverted indexes.
These each contained 2 Selection Conditions linked by 1
AND logical process. Each query contained 1 Selection
Condition giving an Equal Compare on a Character field ANDec
with 1 Selection Condition performing a Range Search on a
Floating Point field. Each query was run on inverted indexes
created from varying sizes of tabular Data files abstiracted
from the databank containing 1980, 4077, 6163, 7941 and
9635 records respectivelye.
C. Queries 1 - 6 on the Geographic Data inverted indexes.
These queries each contained 5 Selection Conditions linked
by 4 AWD logical processes. In each query, the first Selection
Condition required an Equal Compare on a Character field
followed by 4 Selection Concitions each containing a hange
Search on a Binary field. The queries perforred varying
searches on inverted indexes created from a Data FPile containing
3280 records.
The timings for query types A and B (the High Energy rhysics queries)
as expressed in CPU time (seconds) arainst number of records in the

Data File are giaphed in Figure T.3.

192

FIGURE 7.3: GRAPY QUERY PROCESSING TIME VS, NO_OF RECORDS

NOS. IN GRAPH ARE QUERY NOS. - HIGH ENERGY PHYSICS

/1

40 i

35

30

25

CPU TIME USED(SECONDS)
B
\
\ N AN
wn N (@)}

15 5 / ~ 3
4 b
~
10
5
3%94:::::::;34—»
Ot

1980 LG77 65163 7941 8635
NO. OF RECORDS

183

[elele tmory Procesoing contd

Analysis of the results obtained from proecessing the above queries

raises the following points for consideration:

1.

3.

4.

Inspectiocn of Figure T7.3. would appear to show that there
is no linear correlastion between CPU time used to answer
queries and the number of records in the inverted indexes
accessed. This would be as expected, as perusal of the
coding would appear to show that reirieval times would be
dependent on a number of factors - number of Zelection
Conditions, nuwmber of comparisons made, and number of
addresses found.

Further analysis of the CPU time used in the component

phases of the Index Selection program gives the following

results:

(2) The time taken to Edit the input Selection Conditions
would appear to be dependent on the number of Selection
Conditions entered.

(b) The time used in the AND phase is probably dependent or
the number and itype of Selection Conditions, the nunber
of comparisons required against the inverted index
entries (each of which requires & call to a subrocutine),
and the nuzber of addresces found (1liszt lengths for
sorting).

The type of Selection Condition would probably affect
performance in that a range search (less Than, Less Than
or Equal, Greater Than, Greater Than or Equal) would
probably take longer than an Equal Compare due to the
number of comparisons required.

(c) The time used in the CR and List stages would appear to

be directly proportional to the number of record addresses

found .
Analysis of the CrU time spent in various phases of the Index

Selection program gives the following percentage treakdown:

Edit 1.4
AND 90,2
CR 4.6
List 3.8

The ARD processing phase would therefore eppear tc be the
prime candidate for examination with a view to performance
improvements.

No anomalous resulis appear to have been obtained.

. 104

L

Tel 2. Guery Irocescsivs contd

From consideration of the types of queries and the analysis of the
results, three representative results may be defined, the factors
involved shewn, and ire CFU time used displayed as follows:

1e Query Type A,

High knergy Physics Select Query 1.

Data File contains 9635 reccordse.

12 Selection Conditions, all Equal Compares linked by
6 ANDs and 5 ORs.

Koe. of comparisons 137, Records found 1510.

CPU Time required = 39.961 == 40 seconds.

2. Query Tvpe B

High Energy Physics Seiect Query 7.

Data File contains 9635 records.

2 Selection Conditions comprising 1 Equal Compare and
1 Range Search linked by 1 AND.

No. of comparisons 277, Records found 2030,

CPU Time required = 27.727 = 28 seconds.

3. Query Type C.

Geographic Data Select Query 6.

Data File contains 3280 records.

5 Selection Conditions comprising 1 Equal Compare and
4 Range Searches linked by 4 AlNDs.

No. of comparisons 8248, Records found 338.

CPU Time required = 32.186 2= 32 seconds.

7.3+ Improvement of System Ferformance

The areas in which the performance of the General Purpose Inverted
Indexing system may be improved are defined by analysis of the CPU
time spent in the phases of the Index Creation and Selection prcecgrams.
Breakdown of the totals 1n this way shows the following phases in
which most CPU time is used:
1¢ In the Index Selection program, just over 90% of the
CPU time is spent in the AND phase, where searching of
the appropriate inverted indexes takes vlace together
with AND processing and the sorting of lists of record
addresses.
2. In the Index Creatlion program, almost all of the CPU time
is used in the Abstract, Sort and Create phases; so that

each nmust be examined.

Te3s dnprovement of Sveoten Performance contd

Examination of the coding rceveals a nunber of methods by which
performerce may be improved:

1. Improvement of disk I/0 efficiency by allowing larger
block sizes on the Index ¥File (Ref: Index Selection -

AND phase and Index Creation - Create phace).

2. Novement of data mansgement processing from separate
routines into the Index Creation and Selection programs,
thus eliminating PL/1 Calls to the present Data ‘
Management routines (Ref: Index Selection - AND phase and
Index Creation - Create phase).

3. Incorporation of the current comparison routine iunto the
rain Index Selection search module thus eliminating PL/1
Calls to this routine (Ref: Index Selection - AND phase).

4. Jmprovement of efficiency of abstraction of field value
data from Data Files together with record addresses in the
Index Creation program (Ref: Index Creation - Abstract
phase).

5¢ Improvement of the efficiency of the sort in the Index
Creation program by blocking the input and output records

(Ref: Index Creation - Sort phase).

Te3als Provision of Larcer Block Sizes on the Index File

In the initial design of the system, it was intended that the user
would have the option of specifying the blecck size (in bytes) required
for the Index File at Setup time. As discussed previously in Chapter 4,
the maximum record (or Line) size in an MTS Line File is 255 bytes, so
the system was therefore built round this limitation. Also, a Line File
can have a maximum size of only 1 million bytes.
However, the possibility of a change to a different operating system
was considered when the system was implemented, so that the current
system contains TS dependent disk I/0 code only in the Data Management
routines as well as in the Setup and IExtension Utiiities.
Therefore, tc improve performance by reducing the amount of disk I1/0,
it would btc recommended that the General Purpese Inverted Indexing
System Ve converted to work under the IRN System/360 or /370 full
Operating System, together wiith replacement of the LTS disk I/0 coding
with an 0S direct access method such as PL/1 REGICHNAL{1).
The advantages of this conversion would be as follows:

1s The user would be able to specify as an input parsmeter

v

to the Index Fille Sc¢tup program the largest block size

106

Te3ede Frovision of Lurger Plock Bizes on the Index File contd

possible dependent on buifering consideraticns in main

memory, thus decreasing the amocunt of disk I1/0 required.

n
.

The process of searching an inverted index is a two-stage
one. First, a scarch is made through the top level of index =~
the Index Control Sub-Mile. When a match is obtained, a
branch is made 40 search the appropriate block in the Value
and Address Sub-~File indicated by the Index Control Sub-File
entry.

As the number of entries in the Index Control Sub=File is

to some extent dependent on the block size initially
specified at setup time, use of larger block sizes would

be expected to decrease the search time in the Index Control
Sub-File,

3. The system would no longer be restricted by conditions for

uging Line Files placed upon it by INTS.

7e3.2¢ Jrprovement of Date Ianacement Efficievcy

Both the Index Creation and Selection programs meke frequent use cof

the Data lienagement routines provided to both read and write inforraticen
from disk. The criginal systerns design provided continuity from one
physical block to the next independent cof positioning of data within
the blocks, so that any request for data would be passed to the Data
Management routines. Thus the situation has arisen that in the course
of a run, many PL/1 Calls may be made for Data kanagement service, each
Call having a certain amount of CPU overhead attached.

It is therefore suggested that the Data lManagement coding required to
access the inverted indexes should be incorporated into the Index
Creation and Selection programs where they are most used. Block I/0
areas would be provided within these modules and disk I/0 directly
invoked The existing Data ilanagement routines could be retained and
used by other portions cof the system where performance was not so
important.

In this way, the CPU overhecad involved at present FPL/1 Calls to the
Data Nanagcment routines would be removed from future considerations

of system performance.

7e3.3. Inprovement in Corparison Efficlency

The Index Seclection program makes frequent use of a comparison routine
which is accessed by a PL/1 Ccll. In this routine; varying comparisons

are made dependent on the field type and a result returned.

167

7.3.3. improvement in Compsarison Ifficizncy ccuot

As in T.3.2. above, performance could bve iwmpreoved by incorporating the
comparison code into the Index Selectien program where it is exclusively
used. Thus, the CPU overhead involved in PL/1 Calls from the Index

Selection program to the Comparison routine would be climinated.

Te3.4. Index (reation -~ Improvement of Abstracting Efficiency

There oare two recommendations as to how system performance could be
improved in this phase. First, input tabular Data Files could be processed
in a blocked form (initisl implementation of this not being immediately
feasible because of the limitation on MTS Line File record sizes, as

well as the problems of not being able to specify record sizes prior

to the entry of system commands). Second, the coding involved with
abstracting the field value from its appropriate place in the record
which is at present based on use of the PL/1 Substring (SUBSTR) function

could be examined to see how it could be made more efficient.

7.3.5. Index Creation - Imnrovement of Sort Efficiency

At present, input and output to the Sort phase of the Index Creation
program are not blocked., As in 7.3.4. above, this is due to limitations
in MTS record sizes on Line Files together with the problems ¢f not
being able to specify record sizes prior the entry of a system command
identifying the fieid which is to be indexed.

Further work ito determine how abstracted field values with associated
record addresses could be input to the Sort in a blocked form would

improve the system performancee.

Te4. Functional Enhancements to the Svstem

The recommendations for performance improvement described above would
have the effect of converting the General Iurpose Inverted Indexing
System from an experimental implementation to a system with the
capability for processing problems on much larger Data Files. However,
it is also considered that a number of improvements might enhance both
the function and the user-iriendly =aspects cof the system. The following
possibilities might be considered:
1« Incorporation of the present system in a complete
information retrieval system.
2. Addition of Interactive processing to the present Batch
retrieval capabilities,
3. Addition of iimited update capability to Data Files with

corresponding update tu inverted indexes.

198

Telo Tunctiona

dhaad

onhoancens

to to the Hvetem contd

4. Trovigion of varying means of output firom Index Selection.

Tedoela A Complete Infurrmation Retricval System

The General Purpcse Inverted Indexing System was designed tc investigate
the application of inverted file organization in a research environment.
In the irmplementation, the functions involving the processing of the
inverted indexes are treated as a virtually separate entity independent
of the Data File (with the exception of abstraction of field values
during Index Creation). The input to ithe system is a series of values
which taken in contexi provide system comuands; while the output from
the syslem is a number of record addresses obtained from an index search,
The major functional enhancement to the present system would be tc uce
it as the Data lanagement section in a complete Information Retrieval
system. The overall system would provide:

1. An information retrieval language with which to invoke
various functions, among which would be the data management
capabilities of the present system.

2. Provision of s modular structure which provides
extensibility of functions and a common means ¢f invocation.
The functions provided by the present system would te:

(a) Create a File Description.

(b) Delete a File Description with associasted inverted

indexese.

(c) Create an Inverted Index on a specified field.

(d) Delete an Inverted Index.

(e) Answer queries by searching Inverted Indexes.

3+ Data manipulation and Report Generation facilities fow

processing data cobtained from either answering of queries
or other socurces.

The present system utilities would be incorporated in the future system

as Data llanagement Utilities.

Tede2. Addition of Interactive Frocessing

The current system operates in baich mode only due to limitations in the
use of KTS in the Index Selection program. The provision of interactive
retrieval and processing facilities should be considered in any functional
enhancement. This would have a direct bearing on provision of an
information retrieval language as emphasis should be placed .on the

user-friendliness of the system.

19§

2463 Jrovision of lip Facilditics

At present, if 2 record in the Date File is modified, the only way to
modif’y the corresponding index entry is to delete the aprropriate
inverted index and then re-create it. while this way be adequate in
most cases due to minimal update requirements (modifications simply
being deferred until a major restructuring of the Data File becomes
necessary) it would be reasonable in an enhanced system to provide

an update capability. This would allow the user to add, delete, or
update in place data records with corresponding modification of the
appropriate inverted indexes. This might be done by leaving a certain
arount of frce space following each inverted index entry to accommodate
additions.

Jeded. Processing of Qutput Iists

The present output from the Index Selection program comprisecs two sets
of information:

1« The number of record addresses found satisfying the

entered Selection Conditionse.

2, A list of record sddresses.
while these outputs were satisfactory for proving and testing an
experimental system, they would probtably be inadequate in a producticn
system. Jhile tke number of record addresses found could be either
used or displayed, a display of record addresses (used in the research
system for manual checking of results) would serve no useful
purpose.
Three possible outputs from the Index Selection program might be defined
for an enhanced system:

1e The number of record addresses found.

4

2. A 1list of record addresses stored on a work file for

further processing.
3+ An abstract of the records in the Data File satisfying the

query stored on a work file for further processing.
A feedback from output to input could elsoc be provided by including the
facility of entering a list of record addresses ¢btained from a previous
query into a further set of Selection Conditions.
An example of this type of use would be an interactive user having
defined a query being presented with a result in the form of a large
list of record addresses. Rather than display these &t once tecause the
query may not have been defined in enough detsil, = further query would

be defined which would narrow dowri the area of search.

APPEUDIN A: GLOSSARY CF TIRWS

&

NOTE:s AXl terms desrribed below relate to pomenclature used in development
of the General Purpose Invertsd Indexing Systvem. It is assumed that

the reader is familiar with File Organiznation concepis,

The terms are presenived in the order in which they are introduced in

the text, followad in each case by the Chapter and Section or Sub=~Section

reference in which they first appear.

Data File (1.1.)

A Tile of information held in tabildar form. The fite containsg a nunber

of data records, each of which containg the same number and tyne of data

fields.

Index File (1.2.)

A direct access file on which & number of File Descriptions together with

associated Inverted Indexes may be stored. The space within the Index Zile

is controlled by the system,

Block (3.2.1.)

A fixed lengih directly addressable physical record within the I-.dex File,
The Index File is initially set up with a forward availability chain

through all the blocks for space allocation and recovery.,

Sub-~-File (3,2.1.)
A number of blocks on the Index File chained together for a particuler

usage. Processing within Sub-Piles is forward seguential,

Index File Control Sub-File (3.2.1.)

A Sub-File comprising ome block (Block Nes 1) on the Index File which

contains control informaiion for both space allocation and recovary and
control of the File Name Directory Sub-~File (sse below). Tt is breught
into wain memory at the start of a run and remains there t1i1l the end,
when it is written back to disk. ‘

File Name Directorv Sub-Pile (3e3e1.

Conteins the names of all Data Filcs described in the system together

with the number of fields,

Field Name Directory Sub~File (3.3.1)

There is oue of thece Sub-Filez for each Fils Name on ihe File Name
Pirectory, and it contains . names and characteristics of each field in

the data record.

111

Index Contrel Swh~File (3.4.1.)

Provides the top level in a ftwo-level tree structure Tor inverted index
searching. It is pcinted to from the Tield name entry in the appropriate
Field MName Direciory Sub-IFile which is to be indexed. It centains a

nunber of pointers ts various points in thie botiom level of the inverted

index (Value and Address Sub=-Pile -~ gee Halow)e

Value and Address Sub-File (3.441.)

The bottom level in thre inverted index created for a specified field. I¥
contains the ficld velues and associated inverted lists abhetracted from

the Data File at index creation timc.

Selection Condition (3.4.2.)

-~

The basis on which queries on the system may be formulated. 1% specifies
a search on a specified field for either a single field value or a number
of field values according to & selection operator e.ge. Equal, Greater Than,

Less Than etce.

Jogical Cperator (3.4.3.)

An instruction to perform a Boolean logical operation on twic lists of
record addresses cbtained from the system. Available logical operators

are ALND and OR.

"Complex" Query (3.4.3.)

A query on a Data File formulated by a number of Selection Conditiors

separated by logicel Operatorse.

Data Management (3.5.)

The lowest level (3) of the system. Conirols Index File setup and prccessing
including disk I/0.

File Description Direcciories {(3.5.)

The next level {(2) of the system, which controls the File Name and

associated Field Fame Tirectcry Sub-Files.

Inverted Index Processins (3.5.)

oc¢
The top level of the system (1). The functions vrovided here include

inverted index crsation and query procescsing.

Index File Control KRecord {4.2.1.)

Contained within the Index File Jontrol Sub~File, this record controls

this Index ®»ile space allceation and TecovVery.

112

Directory Control Recovd (4.2.1.2

Thie record is containved within the Index File Contrcl Sub-iklle and
controls the allccation of file name eniries on the File Hanme Directory

Subh~File.

4
APPENDIX Br DIBLIOORAILY » 13

BLEIER AND VCRHAUS {i968)
File Orgenizaticn iu the SDC Time-Shared Data Management System.

Bleier,R.E. and Vorhauea A.H, Proc IFIP 1958, pp 1245 - 1252,

CARDENAS (1973)
Eveluation and Selection of File Organization = a Model and System.

A.F.Cardenas, Comm ACM, September 1973, Vol. 1€, No. 9e

CODASYL (1971)
CODASYL Data Base Task Group Report - April 1971,

CCDASYL (1971)

Feature Analysis of Gerneralized Data Nanagement Systemse.
iblished by CODASYL Data Base Task Group, Nay 1971.

Chapter 1 in Computer Bulletin, Vol. 15, No. 4, April 1971,

coDD (1970)
A Relational liodel of Data for Large Shared Data Eankse

E.F.Codd, Comm ACM, June 1970, Vol. 13, Nc. 3.

copp (1971)
Normalized Date Base Structures -~ a Brief torial.

E.F.Codd, IBM Research Report RJ 935, November 1971.

DODD (1969)
Elements of Data Management Systems.
George C. Dodd, Gereral liotors Research Laboratories.

Computing Surveys, Vol. 1, No. 2, June 19569,

INGLIS (1974)
Inverted Indexes and Hulti-List Structures.

Inglis, . Computer Journal, Vol. 17, Lo 1, February 1974.

LEPKOVITZ (1969)
File Structures for On-Line Systense.

D.Lefkovitz, Spartan Books, 1969.

NRI (1972)
System 2000 Data Rase Management System. General Inforwation

MRI Systems Corporation (US), 1972,

ii4

ROTL®Y (1972)
The Peterlee 1IS/1 Systeme

W.G.Notley, IF¥M UK Scientific Centre Report UKSC-0018.

ROBEKRTS (1972)

File Organization Technlques.

D.CG.Roberts, pp 115 « 174, Advances in Computers (Book), Vol 12,
)

M.Rubinoff (Editor), Acadermic Press, 1972

VOSE AND RICHARDSCN (1972)
in spproach to Inverted Index Msiintenance.

Vose,il.R. and Richardson,d.S. Computer Bulletin, Vol. 16, No. 5, May 197%Z.

iid

APPENDIX C: SOURCE LISTINGS

£SIG MSV1 Pw=BLAAK P=1{7 PRINT=19 PROLTE=CNTR 'B.H.PEREIRA'
**xL AST SIGACN hAS: 16:26652
USER "MSVI™ SIChzD CN AT 2J:134.15 ON 01-27-7%5
£SET CNMUSKP=ON
ECUPY *SCURCE*® *SINK#
/% IXMSPM —~ MTS DEPEZNLENT FILE AND I/C DEFINITICNS #/
CCL ZIWCX FILE UPDATE;
CCL (IFERZAD,IHERITZ) ENTRY
{(y211(22),050 FIXED(S,3),FILE);S
CCL IBLFF CHAR(Z55) EXT,
- - IMCC 3IT(Z2) INIT ((32)*Q'B) EXT,
ZLINE C=C FIXED{S43) EXT;
/* LTFINZ DATA ARZA SIIZE FIELL FCR ALLCCATING STCRAGE %/
/% Akrde INITIAL VALLE OF 255 1S MTS CEPENCENT ¥¥#3%x %/
CCL Z5128 BIN FIXED EXT INIT(Z55):
/% LEFINE BLCCK AND CFFSET INCICATGR #*/
CCL 1 ZPDSN EXT,
Z BLCCK BIN FIXED(31,01),
<« CFFST BIN FIXEL;
/* LCEFINZ STCRAGE FCR INDEX FILE CCNTRCL RECCRLC */
CCL ZICAREA CHAR{16) EXT,
ICPTR FTR EXy;
CCL 1 ZCTRL BASED(ICPTIR),
.¢é FAVAL BINM FIXZIC(31,0),
2 (NCBLKS,NABLKS) BIN FIXZC(314Q}),
< CASIZt BIN FIXED,
Z2 FIXPTR BIN FIXED;
/% CEFINE 1/C ARZA ANLC WRITE SWITCH FOR PRCCESSING BLOCKS #/
CCL ZICPIR PTR EXT;
CCL 1 ZICAR EASEDI(ZICPTR]),
<« hAVAL BIN FIXEC(31,0),
¢ LARZA CHARUZE1); /* »#%%%x NTS CEPENCENT ##¥4%% 2/
CCL ZWRSW EBIN FIXEL IRIT(Q) EXT;
/* LEFINE STCRAGE FCR BLGCK IN CCRE INCICATCE #/
CCL ZAaBLk BIN FIXZC(Z1,0) EXT;

iib

£CCPY *SCURCE®* #SINK®
J* IXUSTP - SET UP A BLANK INCEX FILE #/
ZUSTP: PRCC OPTICNS{FALIN);
/* THIS FRCGRAM SETS LP A BLANK INCEX ANC INITIALIZES
REQUIRED VALUES =/

/% [EFINE INFUT AND PRINT FILES */

CCL INFILEZE FILE INPUT, RZFLRT FILE OLTPUT;

ZINCLUCE IXMSIPM;

ZINCLULE LXMEPM;

7% TURN CN INCEXED BIT OF ZMOC ~ #%¥%%x MTS CEPENDENT **%4%x x/

SUBSTR{ZMCL,21) = *3i'E;

/* PAKE CSNTRCL RECCRL ANCD I1/C PROCESSING AREAS ACCRESSABLE */

ZCPTR = ACCR(ZCAREA);

ZICFYR = ACDR(ZIBUFF);

/% MAKE CIRECTCRY CCATROL RECCRD ACDRESSABLE #*/

ZOPTR = ACCRUZIDAREA):

/* CARLC INPUT GIVES THE NUMBER OF BLCCKS TC Et INITIALIZED *)

/%% Exdk WHEN MNCT RUNNING UNCER MTSs. IT WILL ALSC BE

NECESSARY TC READ IN THE BLCCK SIZE INTC 2SIZE #4%**x %/

GET FILE{INFILE} LTST(NCBLKS);

/% FRINT HEALING AT INPUT PARAMETERS #*/

PUT FILE(REPCRT) SKIP(2) ECIT
C(YINDEX SETUP UTILITY')}(A);

PUT FILE(RZPCRT)Y SKIP EDIT
{¥s==z==s==========3=s=z1) {A)

PUT FILE(REPCART) SKIP(2) ELCIT
{*NC. CF BLOCKS SPECIFIEC

PUT FILE(REPCRT} SKIP(Z) ECIT
{YBLOCK SIZt SPECIFIED

PUT FILE(RZPCRT) SKIP(2) E£CIT
{*INCEX SETUP STARTEC*){A)

/% INITIALIZE INDEX FILZ CCNTRCL INFCRMATICN */

FAVAL = 2; /% RECORC 2 RESERVEL FCR FILE NAME INCEX %/

'YSNCBLKS)(2,F(6))3

[}

YL ISIZEI{A,FLE));

NABLKS = NCBLKE = 23
CASIZE = ISIZE - 43
FIXFIR = 23

ZBUFF = ZCAREA;

/% INITIALIZE CIRECTCRY CCANTRCL RECORD AND MCTVE IT INTO
THE INCEX FILZ CONTROL RECCRD */

CINLM

‘ul
CLNLM = 33
CLPTR = 03
FILEN = 283
FLCLN = 223

SUBSTR(ZEUFF,17,10) = 1CAREA}
/* WRITE INDEX FILE CCNTRCL BLCCK #*/
/% WRITE INDEX FILE CCNTRCL BLCCK */
ILINE = 13
CALL INERITE(ZBUFF,ZMCL»ZLINKE,ZINDX)S
/* INITIALIZE AND KRITE BLANK INDCEX BLCCK #/
NAVEL = =13
ILIM = 23
CALL IFrE RITC(ZBUFFQZPED’ZLINE’ZINDX,'
/* INITIALIZE AVAILABILITY CHAIN IN REMAININC BLCCKS */
DO I = 3 TC NCELKS:
IF I = NCBLKS TEEN NAVAL
ELSE NAVAL

-1;
1+1 ;3

ILINE = I3
CALL IFERITE{ZBUFF,ZMCOsZLINELZINDX)

ENC 3
/% END GF SETUP = PRINT MESSAGE ANC EXIT */
PUT FILE(REPLRT) SKIP(2} ECIT
(YINCEX SETLP SLCCESSFULLY CCMPLETED')(A
PUT FILE({REPCRT) SKIP(2) SCIT(*END OF RUN'I(2)
ENLC IUSTPS

)i

1

118

ECCPY *SCURCE®* *SIRK»

IUSTX:

/% IXUSTX -~ EXTEND AN EXISTING INCEX FILE */

PRCC OPTIZNS(MAINI;

/% THIS PRCGRAM ENLARGES AN EXISTING INCEX BY CHAINING ON
EXTRA AVAILASLE BLCCKS. NOTE ThAT THE PRCURANM ASSUMES
EXTENSICN CF A FILE OR CATA SET IN PLACE IS FOSSIBLE -

. THIS MAY PE MYS CEPENDENT #*/

/* LEFINE INPUT AND PRINT FILES #*/

CCL INFILE FILE INPUT,

- . - REFGRT FILE CUTPUTS

TINCLULE IXMSPM3

ZINCLUCE IXMLPMS

/% LEFINE EXTENSION SIZE STORAGE */

CCL RFINX BIN FIXED(21,0);

/% TURN TN INCEXED BIT GF ZMOL = #»#%#% MTS CEPENDENT #**%3%x #/

SUBSTRIUZMOC,21) = "1'E;

/% MAKE CONTRCL RECCRC ANL 1/C PRCCESSING AREAS ACCRESSAELE */

2CPTR = ACCRUZCAREA);

ZICFTR = ADDRIUZBUFF)3

/* PAKE CIRECTCRY CONTROL RECCRD ACDRESSABLE 3/

ICPIR = ACCRI{ZDAR:EA::

/% CARL INPUT CGIVES THE NULMBER OF BLCCKS SPECIFIELC */

/% *vpx WHEN NOT RUANING UNCER MTS, IT WILL ALSC BE
NECESSARY TC REAC THE BLCCK SIZE INTC 2SIZS *43%% %/

GET FILE(INFILE)} LISTINFINX);

/* FRINT HEALING AND INPUT PARAMETERS */

PUT FILE(REPCRT) SKIP(2) ECIT

{*INCEX EXTENSICN UTILITY'")(A);

PUT FILE(REPCRT) SKIP EDIT

PUT FILE(REPCRT) SKIP(2) ECIT

{*AC. CF BLOCKS SPECIFIEC = "4 NFINX)(A,FL€))3
PUT FILE(REPCRT) SKIP(2) ECIT

{*BLCCK SYZZ SPECIFIED = *'SZISIZE)(A,F(€));
/% CET INDEX FILE CONTRCL INFGRMATION */
ILINE = 13
CALL IFEREAD{ZBUFF,ZMCC,ZLINE,ZINDX)S
ZCAREA = ZBUFF;
IDAREA = SUBSTRUZIBUFF,17:,1C);
/% LETERMINE IF BLCCK ENTERED EXCEEDS PRESENT AC. CF BLCCKS.

IF NCT PRINT AN ZRRCR MESSAGE AND EXIT #*/ '
IF NFIAX > NCBLKS THENMN 3
ELSE DGs
PUT FILE(REPCRT) SKIP(2) ECITY

(*NUMBER OF BLCCKS ENTERED CCES NCT EXCEED PRESENT NC. CF ELOCKS')(A)3

STX1:

GC TC $1X4;
ENC 3
/% FRINT START OF INDEX EXTENSION MESSAGE */
PUT FILE(REPCRT) SKIP(2) ECIT
{*INDEX EXTEINSICN STARTEC')(A)}3
/% LOOP THROULCH AVAILABITY CHAIN TO CETERMINE LAST AVAILABLE
BLOCK ON THE CURRENT FILE #*/
IF FAVAL = -1 THEN BC;
FAVAL = NOBLKS + 13
GG 10 STX33
ENC3
ZLINE = FAVAL;
CALL IREREAD(IBUFF,ZMCC,ZLINE,ZINCX) s
IF MAVAL = -1 THEN GC TO STX2;

STXxz:

STX3:

STX4:

ZLINE = NAVALS

€C 30 STXi;

/% ¥E NCh HAVE THE LAST BLCCK CN THE AVAILABILITY CHAIN.
LPDATE THE FGRWARC POINTER AKC WRITE IT TC THE NEW INCEX #/

NAVEL = NCELKS + 13

CALL IFERITE(ZBUFFsINLC,2LINE,ZINDX) S

/% NOw SET UP CHAIN THROUGK THE REST OF THE NEw BLCCKS */

DG 1 = (NCBLKS 4 1) TC NFINXS

IF 1 = NFINX THZN NAVAL
ELSE NAVAL

1

Hou

&+ we

o 1 13
S 2. ILINE = 13
CALL IFERITZUZBUFF,ZNCO,ZLINE,ZINDX)S
ENC ;
/% MODISY THE INDEX CCATRCL RECORD AND WRITE IT BACK %/
NABLKS = NABLKS + (NFINX - NOELKS) 3
NCELKS = NFIAX; -
IBLFF = ICAREA:;
SUBSTYR{ZBUFF,17,10) = 2DAREA3
ZLINE = 1
CALL IFERITE(2BUFF,ZMCCZLINE,2ZINDX) S
/* FRINT SUCCESSFUL JCB COMPLETION MESSAGE %/
PUT FILE(REPCRT) SiIp(2) ECIT
{YINCEX EXTENSICN SUCCESSFULLY CCMPLETEC')(A);
/% E2INT END CF RUN “ESSAGE ANC EXIT */
PUT FILEU(REPCRT) SKIP{2) ECIT('ENC OF RUN')(2);
ENC 2USTX;

120

SCOPY #SCURCE*® #SINK*

/% IXUSTR - CISPLAY STATUS CF INDEX FILE ¥/
ZUSTR: PRCC GPTICNS(MAIND;

/* CEFINE PRINT CUTPUT FILE */

CCL REPCRT FILE CUTPLT;

ZINCLUCE IXMSP¥;

/% CPEN THE INKCEX FILE %/

CALL ICCEN:

/* CISPLAY REPCRT HZACING #/

PUI FILE(REPCRT) SKIP(2) ECIT

(*INCEX FILZ STATUS REPCRT')(A);
PUT FILE(REPCRT) SKIP ECIT

/% CISPLAY FILE STATUS INFCRMATICN */
PUT FILS{REPCRT) SKIP(2) ECIT

(*INCEX CONTRCL INFCRMATION')I{A)S
PUT FILE(REPCRT) SKIP EDIT

PUT FILE(RZIPCRT) 3SKIP(2)} ECIT

(*BLOCK SIZE (BYTES) = *,ISIZE)(A,FL€))3
PUT FILE(REPCRT} SKIP(2) ECIT

('CATA AREA SIZE = *,CASIZE}(A,F(6));
PUT VILF(REPCRT) SKi»{2) ECIT

{'NUMBER OF SLCCKS IN INCEX FILE = *,NCBLKS)(A,F{10));
PUT FILE(RSPCRT) SKIP{(2, ECIT

{'NUMBER OF AVAILABLE BLGCKS = *,NABLKS)(2,F(13))3
/% FRINT END CF RUN MESSAGE, CLOSE INDEX FILE AND EXIT */
PUT FILE(RSPCRT) SKIP(2) ECIT('END OF RUN'ILA);
CALL ZLCLS:
RETLRN;
ENC ZUSTR;

21

SCCPY #SCURCE* #*SINK#

ZDCPN:

/% IXDCPh - CPEN THE INCEX FILE */

PRCCS

/% THIS RCUTINE CPENS THE INCEX FILE, LCADS CCNTRCL INFCRMATION
ANS INITIALIZES VARIABLES */

TINCLUCE IXMEPHM

ZINCLUCE IXMLPMS

/* TURN Cix INCEXED BIT OF MCD ~ #3#%%% MYTS CEFENCENT *%%3% %/

SUBSTRUZFLL,ZL) = 1183

/*_F+AK: CINTRCL RECCRC ANC I/C PROCESSING AREAS ACCRESSAEBLE %/

ZCP iR = ECCR({ZICAREA);

ZICFTR = ACDRI(ZIBUFF};

/* MAKE CIRECTORY CCNTRCL RECCRC AUCRESSABLE */

ZICPTR = ALCRUZICAREA);

/* REAL INCZx FILE CCNTRCL RECCRC INTC CCRE #/

ZLINE = 13

CALL IFEREZAD(GZBUFFZMCLyZLINEZZINCX)S

ICAREA = IBUFF;

/* MOVE CIRECTCRY CCANTRCL RECCRD INTC PRCCESSING AREA */

ICAREA = SUBSTREZBUFF,17,1C);

/* SET ZFCSN TC POinT TG START CF INCEX */

ELTfX = FIXPIR;

CFFSY = 13

/% SET BLCCK IN CORE INDICATCR TG NULL */
ZAELK = =13

/% SET WRIIEZE INDICATCR TC 2ERC */

ZWREW = L3

/% (OMFLETION CF OPEN RCUTINE #/

RETLRN;

ENL ZDCPMN;

122

SCCPY #SCURCE* #TINK#

IDCLS:

/% IXDCLS = CLCSE THE INCEX FILE */

PRC (3

/% THIS RCLTINE TERMIMNATES PRCCESSING CN THE INCEX FILE #/

TIMCLULE IXMIPM;

ZINCLULE IXMLPPF; ’

/* 1F TEE WRITZ INCICATCR IS SET, WRITE THE LAST ELCCK BACK
FROM TEE I/C ARZA TC CISK %/

IF ZHRSh = 1 THEN LC3

- ZLINE = ZABLK;

CALL IYERITE(ZBULFFSZNCL,ZLINESZZINCX)S

ENE :

/% THE LAST ELCCK EAS NOh BEEN WRITTEN. WRITE INCEX FILE
CONTRCL RECCRE BACK TC CISK */

IBLFF = IUAREAS .

/% MOVE CIRECTCRY CCANTRCOL RECCRD INTC CUTPLT ELFFER */

SUBSTR(ZELFF217413) = ICAREA;

ILINE = 13

CALL IFERITE({ZBUFF,ZNCC,ZLINE,ZINCX)

/* COMFLETION CF CtCSE RCLTINE */

STCE;

ENC ZDCLS;

123

ECCPY #SCURCE* #S1hK#

ZCCRE:

CREL:

/% 1XDCRE - CREATEZ A NEW SLB-FILE */
FRCC3
/% IHIS RCLUTINE CREATES A CNZ-ELCCK SUB-FILE CN RECLEST ¥/
/* LEFINE PRINY COUTPLY FILE */
CCL REFCRT FILE CUTPLT;S
ZINCLUCE IXMEPHM]
/#% IF KO STORAGE 5 AVAILABLE, PRINT AN ERRCR MESSAGE ANC
 TERMINATE PRCCESSING */
IF_ FAVAL = -1 THEN CC3
FLT FILE(REPCRT} SKIP(Z2) ECIT
{*NC BLCCKS AVAILABLE - JCE TERVMINZTEL')(A);
CaLL ZLCLSs
ENC 3
BLLCK = FAavAL; .
/* FIRST CHECK TC SEE IF THE BLOCK RECUIREL IS IN CCRE »/
IF {ABLK = BLCCK TEEN GC T1C CREL:
/% If THEE FREVICULS BLCCK IN TrE I1/C AREA HAS BEEN LPCATEL,
PRITE IT EACK TC CISK ANC RESET THE WRITE INCICATCR %/
IF 2WREw = 1 THEN LT3
ILINE = ZABLAN,;
CALL IFERITE{ZELFFZNCC,ZLINE,2INEX)S
JAVESK = T3
ENC;
/% pCw GET THE REQUIRELD BLCCK ¥/
ZLIME = ELCCK;3
CALL IFEFZAD(ZEBUFF4INCL,ZLINELZINCX) S
ZAELK = ELCCK:
/* RESET THE PCINTERS TC INCICATE NEW VALUES »/

FAVEIL = NAVAL;
NAVEL = =13
IWR'H = i3

/% PRINT SLB-FILE CREATICN MESSAGE */
PUT FILE(REPCRT. 3SKIP{(2) ECIT

{t¥%2% SUB-FILE CREATEL ON BLCCK *,ELCCK)I(A,F(6));
/* CECREMENT THE NUMBER OF AVAILABLE BLCCKS EY 1 #*/
NAELKS = NABLKS = 13
/* SET CFFSET 10 1 »/

CFFET = 13
/% SUB-FILL IS CREATEL -~ EXIT */
RETLRN;

ENC ZODCRE;

124

£CCPY *SCURCE* *SINK*
/% IXDLST - LESTROY A SU3~ FILE */
IDDST: PRCCS

/* IHIS ROUTINE DESTRCYS A SUB~FILE CF N BLLCKS AANC RETURNS
THENM 1T TRZ AVAILABILITY CrAINe THE ACDRESS CF THE FIRST
ELOCK IS FASZED IN ZI0DPCSN */

ZINCLUCE IXMSPM; TCL REPCRT FILZ OQUTPLT;

/* CEFINE A WCRK ARZA TO STCR:Z FIRST AVAILABLE BLCCK %/

CCL WKACLR BIN FIXELI(Z2I1,u)3

/% STORE FIRST AVAILABLE BLOCK IN WCRK AREA */

WKALDR = FAVALS

/* MOVE ALCRESS OF SUB-FILE TC BE CESTRCYEC INTC FAVAL %/

FAveL = BLOCK:

/* CHECK TC SEE IF THE FIRST BLOCK IS IN CCRE ¥/

IF 2aBL¥ = BLCCK THZM GC TC CST2;

/* IF THE PREVIGOUS BLCCK IN THE I/C AREA HAS BEEN UPDATEL,
wRITE 1T BACK TC CISK AND RESET THE WRITE INCICATCR */

IF IMRSW = 1 THeN OG3

ZLINE = ZABLK;
CALL IFERITE{IBUFF,2MOC,ZLINE, ZINDX);

LWRSW = 03
ENC:
/% GIT YEE REQUIRFD BLGCK */
DST1: ZLINE = BLOCK;

CALL IFEREAD(ZBUFF,ZNMCC,yZLINE,ZINDX)S
ZABLK = ELCCK;
/% FRINT A MESSAGE SAYING BLOCK IS TC BE DELETEC */
DSTZ2: PUT FILE{REPCRT) SKIP EDIT
(s34 SUB-FILZ BLCCK *,BLOCK,' DELETEC')(A,F(6),4);
/* ADD 1 TC THE AVAILABLE MNUMEER OF ELCCKS */
NABLKS = NABLKS + 13
/% LHECK TC SEE IF THIS IS LAST BLOCK IN CHAIN %/
IF NAVAL = =1 THEN;
ELSE CC3

BLCCK = NAVAL;

GC TC 0STi; /% BRANCH TO GET ARCTHER BLGCK */
ENC;
/% LINK UP DELETED SUB~-FILE CHAIN WITH AVAILZBILITY CHAIN,

SET WRITE INDICATCR TO 1 AND EXIT */

NAVAL = »KADLR;
IWRSH = 13
RETLRN;

ENC IDCSTs

ECCPY *SOURCE#® *SINK#

ZDREA:

REAL:

LABRC1:

REAZ2:

REA3:

/* IXDREA - GET NREAC CHARACTEIPS FROM A SUB-FILE %/

PRCCINRELLD,PAREA) S

/% THIS RCUTINE GETS KREAC CHARACTERS FRCM THE SUS-FILE
FOINTED TC BY ZPCSN ANLD MOVES THEF INTO THE AREA PAREA.
(N COMPLETICH THZ LFFSET PCOINTER IS SET TL THE NEXT

~ (FFSET POSITION FCLLOWING THEZ DATA MOVECD #/

ZINCLUCE IXMSPM;

/% CEFINE A LABEL RETLRN VARIABLE %/

ECL LABRL LABEL;

/* LEFINE MASK OVZR PASSEC DATA AREA */

CCL PARE2 CHAR(85G0J4);

/* FOVE PASSELC NCe. CF CHARACTERS PARAMETER INTC A WCRK AREA */

NWCFR = AREAL;

/% SET 1P A CCUNTER FCR TRANSFERRING DATA */

MWCRK = 1;

/% CET THE INCICATED BLOCK INTC CGRE */

LABRD = LABRC1;:

GC 10 GET3;

/* EEFCRE STARTING TIC MOVE DATA, CHECK TC SEE IF THE QFFSET
1S WITHIN THE RANCGE OF THE CURRENT BLCCK, AS IT MAY HAVE
FESN MCCIFIED BY A FORWARD PSEUCO MCVE WEICH PRCCESSECL
TJME LCFFSET ¥/

IF CFFST > DASIZE THEN;

ZLSE GC TC REAZ2;

/* 1F CFFSET 1S GREATER THAN CATA AREA SIZE, THEN SET CFFSET
T2 CATA AREA SIZE AND THEN CALL ZCMCV WITE THE REMAINING
MUMEER CF CHARACTERS TC 8t MOVEL */

NCFAR = LFFST - DASIZE;

CFFSY = CASIZE;

CALL ZCMCVINCHAR) S

/% LHECK TC SZE IF READ CAN BL SATISFIEC WITH THIS ELOCK */

IF {DASIZE + 1 - OFFST) >= ANWCRK THEN CC TC REAZ;

/* CHECK TO SEE IF PCINTER TC NEXT BLOCK IS AULL */

IF BAVAL = -1 THEN E£C;

PLT FILE(RZPCRT) SKIP(2) ECIT
{'ATTEMPT TO READ CVER END GOF SUE-FILE')(A);
CALL ZCLCLSS

ENC 3

/% ¥E CAN MOVE A C: RTAIN NUMBER CF CHFARACTERS INTC THE CATA
AREA, SET UP THZ NUMBER OF CHARACTERS TC EE MCVED */

NCHARS = DASIZE + . - CFFST;

/* MOVE THE CHARALACTERS INTC THE CATA AREA */

SUBSTR(PARZA,MWORKNCHARS) = SUBSTR(CAREA, GFFST,RCHARS).

/% SET PCINTERS TGO NEW POSITICNS */

MWCRK = MKCRK + NCHARS;
KWCRX = NWCRK = NCHARS;
CFFEY = 13

/% LOAL NIZXT BLOCK ACDRESS ANC BRANCE TC REAL IT ¥/

BLCCK = MNAVAL;

GC 10 Repls

/¥ FINAL MCYE CF DATA %/

SUBSTR(PAREA,MhORKsNWCRK) = SUBSTR(CAREA,CFFST,NhCRK);

/% SET CFFSET TO ITS NEW VALUE */

CEFST = CFFST + NWCRK;

/% WE MUST NCW CHECK IF OFFSET 1S NOw GREATER THAN THE CATA
ARSA SIZZ. THIS WILL OCCUR IF THE CFFSET IS SET TO 1, AMND
? REAL EQULAL TC THZ DATA AREA SIZE IS REQLESTEL. IF SC»
WE MUST CHAIN TU TRE NEXT BLOCK OR ACC & MEW BLCCK, SET

LABRLZ:
REA4:

GETB:

GETB.L:

THE BLCCK TC POINT TO YHE NIEXT BLCCK ANC ThRE CFFSET TC i ¥/

IF £FFST > DASIZE THEW CG;

LFFST = 13

IF NAVAL = =1 THEN;

ELSE GC TC REA4;

NBLKS = i3
CALL ZCCSFINELKS)S
LABRD = LAERC2; GO TC GETE;

BLCCK = NAVAL;
ENL .
/* END CF READ ROUTINE - ZXIT %/
RETLAN; .
/% CETE = IN-LINE CGCING FCR GETTING A BLOCK INTC CORE */
/% CHECK TC SEE IF THE 8LCCK RECUIREC IS IN CCRE #/
IF ZABLYX = BLCCK THEN GG TC GETBL:
/% IF THE PREVIOUS BLCCKX IN THE I/C AREA HAS BEEN UPDATEC
®RITE IT BACK TO CISK AND RESET THE WRITE INCICATCR #/
IF I%RSW = i THEN DOC;
ILINE = LABLK;
CALL IFERITE'ZBUFF,ZNCC,ZLINE,ZINDX);
IWRSH = 03
ENC:
/% BOW GET THE RECVIREC BLCCK %/
ZLINE = BLCCK;
CALL IFEREAD(ZBUFF,ZMCC,2LINE,ZINDX);
ZABLK = ELCCK;
G0 TO LABRD;
ENC ZDREA;

127

£CCPY *SCURCE*® #SINK*

IDWRT:

WRTLl:

/% IXDWRT - PUT NHWRYE CHARACTERS TG 2 SUE-FILE ¥/

PRCCINWRTE,PAREA):

/% THIS REUTINE WRITES HWRTE CHARACTERS FRCM THEZ AREA PAREA
INTC THE SUB=-FILE PCINTED TC BY THE VARIAELE ZIFCSNe CK
COMPLETION THF CFF3ET PCINTER IS SET TO THE hEXT CFFSET

~ POSITICN FCLLOWING THZ CATA WRITTEN COLY */

ZINCLULCE IXMSPM;

7% [EFINE A LABEL RETURN VARIABLE %/

CCL- - LABWRT LABEL;

/* ELEFINE MASK OVER PASSEL DATA AREA ¥/

CCL PAREA CHAR(2Q02);

/% ¥OvE PASSELC NUMBER CF CHARACTERS PARAMETER INTC A WORK
LREA #%/

NWCRK = AKRTE;: -

/% SET uP A CCUNTER FCR TR#NSFERRXNG DATA #*/

MWCEK = 13 :

/* GET THE INCICATEC BLOCK INTC CGRE #/

LABFPRT = LABWRT1;

GO 10 CET8;

/* FEFCRE STARTING TC MOVE DATA, CHECK TC SEE IF THE OFFSET
1S WITHIN THE RANGE OF THE CURRENT BLCCK, AS IT PMAY KAVE
EZEN MCCIFIEZED BY A FORWARED PSEULCO MCVE WHICH PRCCESSEC
ThE OFFSET %/

LABWRT1:IF CFFST > DASIZE THEN:

WRTZ:

WRT25:

WRT3:

ELSE GO TG WRT2:

/% IF CFFSET 1S GREATER THAN CATA AREA SIZE, THEN SET CFFSET
10 CATA AREZA SIZ: AND THEN CALL ZCMCV WITEH THE REMAINING
NUMBER CF BYTES TC BE MCVEL #*/

NCE2R = CFFST - DASIZE;

CFFST = CASIZES

CALL ZCMCVINCHAR};

/% CHECK TC SEE IF WRITE CAN BE SATISFIEL wITH THIS BLCCK */

1F IDASIZE + 1 » OFFST) >= NWCRK THEN €C TC WRT4;

/* WE CAN MOVZ A CZRTAIN NLMBER CF CHARACTERS IATC THE OLTPUY
ARCA, SET LUP TH:Z NUMB:ER CF CHARACTERS TC EC MCVELD %/

NCHEARS = [ASIZE + . - CFFST;

/* MOVE TBE CHARACTERS INTC THE 1/C AREA %=/

SUBSTR(DAREA,CFFSTHNCHARS) = SLBSTR{PAREA+¥rCRK,NCHARS);

/% SET PLINTERS TO NEw PCSITICNS */

MWCRK = MWZRK + NCHARS;

NWCEK = NKCRK = NCHARS3

CFFST = 13
/% SET WRITE INDICATCR T0 1 %/
IWREW = 13

/7% CHECK TC SEE IF PCINTER TC NEXT BLOCK IS NULL #/

IF hAVAL = -1 THEN GC TG WRT3;

/7% LDAC NEXT BLOCK ACCRESS ANL BRANCE TO REAL IT */

BLCCK = NAVAL3

GC TO nWRTL;

/* CETERMINE THE NUMBER CF BLCCKS 7O BE ACLCEC AN CALL THE
{VER SUB-FILE RCUTINE TC CREATE THEF ¥/

NBLKS = 1 + ((NWORK = 1) / CASIZE};

CALL ZCCSFINDLKS):

/* »E NCW HAVE THE EXTRA BLCCK CCNTINUE PRCCESSING ON
FRESEANT BLCCK #/

LABWRT = LABWRT2;

GG 10 GET28;

/*% ERANCE TO GET THE NEXT BLOCK =/

128

LABWRT2:GC TO WRTZ5;

/% FINAL MIVE CF DATA =/

WRT4: SUBSTR(DCAREA,CFFSTsNWCRK) = SUBSTR(PAREL,MACRK,NWCRK);
7% SET CFESET TO ITS KEW VALUE AND SET WRITE INCICATOR */
CFFST = CFFST + NWORK;:
IWRSW = 1j
/% pE MUST NCW CHECK IF OFFSET IS NCw GREATER THAN THE DATA
AREA SIZE. THIS WILL OCCUR IF THE CFFSET IS SET TC 1, AND
A WRITS ECUAL TG THE DATA AREA SIZE IS REQLESTEC. IF SO
WE MUST CFAIN TC THE NXT BLOCK QR ACC A MEw BLCCK, SET
. THZ BLCCK TC POINT TO THE AEXT BLCCK ANC CFFSET 1O 1 %/
IF CFFST > DASIZE THEN DO;
CFFST = 15
IF NAVAL = =1 ThEN;
ELSE GC TC WRT5;
NELKS = 13 :
CALL ZLCSFINBLKS)3
LABWRT = LABWRT3;
€C 10 GETB;
LABWRT3:
WRTS: BLGCK = NAVAL;
ENC 3
/* END CF ¥RITE ROUTINE - EXIT */
RETLAN;
/% CETE = IN-LINS CCCING FCR GETTING A BLGCK INTC CCRE */
/% FIRST CHECK TG SS& IF THE ELOCK REGUIREC IS IN CCRE */
GETB: IF ZABLK = BLCCK TEEN GO TC GETB1;
/* IF THEZ PREVIOUS BLCCK IN THE I/C AREA HAS BEEN UPDATEC,
VRITE IT BACK TC CISK AND RESET THE WRITE INCICATOR */
IF ZWRSW = i TEEN CG;
ILIKE = ZABLK;
CALL IHERITE(ZBULFF,ZMCD,ZLINE,ZINDX);
IWRSH = 03
ENC;
/* MOW GET THE REQUIREC BLCCK */
ILIME = BLECKS
CALL IFERZAD(ZBUFF,ZMEC,ZLINE,ZINCX) S
ZABLK = BLCCKS
GETBi: GG TO LAEWRT;

ENC ZDWRT;

124

£COPY *SCURLE® *SINK=*

IDMCV:

MOVl

MOvZ2:

/% 1XDFCV - MOVE THE SUB-FILE PUINTER %/

PRCCINCEAR};

/%* IHIS RCUTINE MCVES THE CFFSZT POINTER WITHIN A SUB-FILE.
CNLY FCRWARC MOUVENMENT IS PERMITTEC. IF AN CFFSET BEYCAD
THE SLB-FILE BOUNCARY IS RECUESTEC, NEW BLCCKS ARE CHEINED

[N AS REQUIRED =/

/% ALL CALLS TC ZDMCV ARS GENERATEC 8Y ZCREA ANL 2CWRT. THESE

-~ CALLS ARE CNLY MADE WHEN A MOVE IS RECUIREC CUTSIDE A

© ELOCK ¥/

/% ESELCC MCVES ARZ GENERATEC IN CTHER RCUTINES EY MOVING THE
CFFSET FORWARC AS REQUIRED %/

FIMCLUCE: IXMSPM;

/% L[EFINE A LABCL RETLRN VARIABLE #/

CCL LABMCY LABEL;)

/% SET P NUNBER OF CHARACTERS OFFSET IS TC EE MCVELC ¥/

NWCRK = NCHAR;

/% START A LCCP TO GET FCRWARC BLGCKS, BUT FIRST CHECK TC
SEE IF MORE BLOCKS MUST BE ADDED #/

M = NWCRK - CASIZE + CFFST;

NWEBLK = 1 + ((M - .} /7 DASIZE);

/* CECRENEAT NUMBER CF CHARACTERS CFFSET IS 1C EBE MOVED %/

NWC 8L = AWCRK = DAS'ZE + CFFST = 1;

CFFSY = 13

IF MAVAL = =) THEN GC TG MCV3;

/% GET NEXT BLOCK INTC CORE AND CHECK FOR ERNC CF LCGP %/

BLCEK = NAVAL;

LAEMOV = LABMNCV1:

GO 10 CETE;

LABMCV1INWELK = NWELK = 1;

MOV3:

IF AWBLK = 3 THEN GC TC MCV4;

GO 10 MCVL:

/% NEEC FMORE BLOCKS - CALL OVER SUB=FILE RCUTINE TC CREATE
THEN %/ :

NBLKS = AhEBLK;

CALL ZCCSF(NELKS);

/% YE NCh HAVE THE EXTRA BLOCKS. CCNTINUE PRCCESSING ON THE
FRESENT BLCCK */

LAB»JV = LABMCOV2Z;

GO T9 CGETES

LABNMCV2:GC 30 MCV2Z;

MOV4:

GETE:

/* wE ARE NCw AT THE BLOCK WHERE THE CFFSET FCINTER IS5 TC BE
FOSITICNEC. LCAC THE NEh OFFSET */
CFFST = CFFST + NHORK;
/% END CF MOVE RCUTINE - EXIT »/
RETLRNS
/% (£TB - IN-LINE CCLCIANG FCR CGETTING A BLOCK INTC CGRE */
/% FIRST CHECK TG SEE IF THE EBLOCK REQUIREC IS IN CCRE */
IF IABLK = BLCCK TEEN GO TC GETB1;
/* IF THE PREVIOUS BLCCK IN THE I/C AREA HAS EBEEN LPCATEL,
WRITE IT BACK TC LISK AND RESET THE WRITE INLICATGR */
IF IWRSK = 1 THEN CCj;
ILINE = ZABLK;
CALL IRERITE(ZBLFF,ZMCO,ZLINE,ZINDX])S
IWRSH = £
ENL
/* NOW GET TEHE REQUIRED BLCCK */
ILIME = BLCCK;
CALL IHEREAD{ZBUFF,ZNCC,ZLINE,ZINDX)S

GETEZ:

ZABLK = BLCCK;
GC 10 LADNCV;
ENC ZDMCV;

1

9
J

fi

131

£CCPY *SCURCE® *SINK®*

/% IXDCSF - ACLC N SLCCKS TC A SUB-FILE %/

IDCSF: PRCCINELKS);
/% THIS ROUTINE IS CALLEC WHEN EXTRA BLCCKS ARE TC BE ACLEC
T3 A SUB=-FILE %/
TINCLUCE IXMEPMS
/% L[EFINE A LABZL RETURN VARIABLE #*/
CCL LAECSF LAEELS
/% STORE THE CURRENT BLCCK POUSITION IN A WCRK AREA */
CCL WKACCRY EIN FIXEC(31,C);
WKALDR1 = BLCCK:
/* LOCATE FIRST AVAILABLE STORAGE SPACE. IF NCNE IS AVAILABLE,
PRINT A MESSAGE AANC STGP THE RUN %/
IF FavaL = -1 THEn GC TC CSF1l;
ELSE GC TC CSF1:5;
OSFl: PUT FILE(REPORT) SKIP{Z) EDIT
(.*NO BLOCKS AVAILABLE - JOB TERMINATEL®*)(A);
CALL ZLCCLS:
/% SET UP FORWARD PCINTER IN CRIGINAL LAST BLCCK */
OSF1S: BLLCCK = WKADCRL;
LABCSF = LABCSF1;
GC 70 GETBS
LABCSF1:NAVEL = FAVALS
IWRSH = 13
BELC (K = FAVAL;
/* START A LCCP TO CREATE THE NEW ELCCKS */
OSF2: LABCSF = LABCSF2;

GO 10 CGET8;
/% PRINT A MESSAGE INCICATING BLOCK HAS BEEN ACLEL */

LABCSFZ:PUT FILE(RSPCRT) SKIP ECIT

GETB:

(*#2#%x* CVER SUB=~FILE PRUOCESSING ADDS BLCCK *,BLCCKI(A,F(6))3
/* LECREMENT THE NUMBER OF AVAILABLE BLCCKS EY 1 */

NAELXS = NABLKS - 13

/% SET LP POINTERS %/

FAVAL = NAVAL;
IWREW = 13
NBLKS = NBLKS = i3

/* END CF LOCP */
IF NBLKS = 2 THEN;
ELSE CO;
/* IF THERE IS NC AVAILABLE STCRAGE, PRINT A MESSAGE */
IF FAVAL = -1 THEN GC TO CSF1;
BLCCK = FAVAL;
GO 10 CSF2;
ENC:
/% RESTCRE CLRRENT BLCCK PCSITION FRCM WCRK AREA */
BLCCK = WKADCR1;
/* SET FCRWARC PCINTER TO NULL AND EXIT %/
NAVAL = =13
RETLRN;
7% CETB = IN-LINE CCLING TC GET A BLCCK INTQ CCRE */
7% FIRST CHECK TG SEE IF ELCCK REGUIREC IS IN CCRE #/
IF ZABLK = BLCCK THEN GG TC GETBL:
/% IF THE PREVIOUS BLCCK IK THFE 1/0 AREA HAS BEEN LPDATEC,
WRITE IT BACK TC CISK AND RESET THE WRITE INCICATGR */
IF 2WASW = 1 THEN 0G;
ILINE = ZABLK; .
CALL IHZRITE{ZBUFF,ZNMCD,ZLINE,ZINDX);
ZWRSH = (3

132

ENC 3
/* MOW CET THE REQUIREC BLCCK »/
ZLINE = ELCCK;
CALL IFERZAD{2BUFF,ZNMCC,ZLINE,ZINDX}3
ZABLK = BLCCK;

GETBL: GO TO LABCSF;
ENC ZDCSF3;

ECCPY *SCURCE#* ASIhK#
/% IXMCPM - [EFINE STCRAGE FCR DIRECTCRY CCATRLL RECGRC */
CCL ZDAREA CHAR(1D) EXT,
ZDPTR PTR EXT3
CCL 1 ZCCTRL BASECU(ZLPTRI,
2 (CINUMsULNUMCLPTR,FILEN,FLDLN)} BIN FIXECS
/* CEFINE STCRACE FCR CURRENT FILE NAME CIRECTCRY ENTRY #*/
CCL 1 FLENT ALIGNELD,
- 2 FOPTR EBIN FIXED(31,C),
FLNUM BIN FIXED,
NCFLLS BIN FIXED,
FLNAM CHAR{2C);
/% CEFIN: STCRAGE FUR FIELD NAME CIRECTCRY ENTRIES »/
CCL 1 FUENT ALIGNED,
z SCIXPTR BIN FIXED(31:2),
FCNUM BIN FIXED,
FETYP, BIN FIXED,
FOLEN BIN FIXED,
FCSTAT BIN FIXED,
FONAM CHARL2G);

NN RS

NN R RO R R

i

J

134

SCCPY %SCURCE* %S INK#
/% IXPENC - FIND A FILE NAME CN THE CIRECTCRY */
IPFNC: PRCC{FILENAME}:

/% THIS RCUTINE DETERMINES WHETHER A FILE MAME ENTERED IS
(N THE CIRECTCRY. IF A MATCE 1S FCUNC: THE CIRECTGRY
ENTRY NUMBER AND PCSITICN 2RE RETURNEC. CTHERWISE ZERC

~ #ND THE PCSITION AT THE ENC OF THE CIRECTCRY ARE RETURNED */

*INCLUCE IXMEIPM;

TINCLUCE IXMLCPM;

/% CEFINE TEMPORARY STCRAGE FLR ELOCK AND CFFSET */

OCL IBLCCK BIN FIXEC(21.,0),

IOFFST BIN FIXEC;

/% CEFIMNE IPFNC ENTRY AND RETULRN PARAMETERS */

CCL ZPFENC EHTRY RETURAS (BIN FIXEC(15,0));

/% CEFINC PASSED FILE NAME ANC RETURN NUMBER */

CCL FILENAME CHAR(2C),

REINC BIN FIXEC(15,9):

/% START A LCCP TG PRICESS THE DIRECTCRY EANTRIES. IT IS
ZSSUMEL THFAT THE PCSITICN INCICATCR IS SET TC THE START
CF THE CIRECTCRY */

CC ¥ = 1 TC CINUM;

/% STORE PCSITICN BEFCRE REACING */
ARLCCK = BLALK;
1GFFST = OFFST;
/% GET A DIRECTCRY EATRY */
CALL ZCREA(FILEN,FLENT)S
/% CHECK FOR A CELETEC ENTRY ¥/
IF I = FLNUM THEN;
ZL3E GC TO FNC1;
/% CHECK FOR A MATCE ON FILE NAMES */
IF FILENAME = FLKAM THEN;
ZLSE GC TG FND1:
/% WE EAVE A MATCH = SET PCSITION ANC NUMBER AND RETLURN
TC CALLING RCLTINE =/ .

BLCCK = IBLOCK;
CFFST = ICFFST3
RETNC = FLNUM;

RETURN(RETNG);
/* END CF CIRECTCRY PRCCSSSING LCQP */
FNCis ENC S
/% 1O MATCH FCUND - RETURN ZERC TG CALLING RCUTINE */
RETN = 03
RETURN{RETNG);
/% END GF ROLTINE */
ENC IPFNC;

SCCPY *SCURLEX #SINKY

LPNEW:?

NEWL ¢

/* IXPNEw - ALL A FILE CESCRIPTION TC THE INVERTEL INDEX */

PRCC CPTICNS(MAIN);

/* THIS PRCGRAM LOACS A NEw FILE NAME wITH ASSCCIATED
FIELC NAMES AND CESCRIPTICAS CNTG THE DATZ LESCRIPTICN
CIRECTCRY */

/¥ CEFINZ INPLT AND CLTPUT FILES */

CCL INFILE FILE INPLT,

- REPCRT FILE CUTPLY;

FINCLULCE IXMEPMS

TINCLUCE IXMLPM;

/* CEFINE TEMPCRARY STCRAGE FCR BLOCK ANC CFFSET »/

OCL IBL.CK BIN FIXEC(314C)s

IOFFST BIN FIXEC;

DCL JBLZCZK BIN FIXEC(21,0)3

/% CEFINE ROLTINE FCR SEARCEING DIRECTCRY */

CCL ZPFNL ENIRY RETURNE: (BIN FIXEC(15,0));

/% LEFINE INFUT FILE NAME AND NO. CF FIELDS STCRAGE */

CCL FILENAMZ CHAR(23),

NF1ELCS EIN FIXFD;

/% CEFINE FIELD TYFZ CHARACTER STRING %/

CCL FIELCTYPE CHMRIZC) VARS

/% 23D OF INPLT PRNCESSING #/

CN ENCFILES(INFILE) GC TG NENWH3;

/% (ONVERSION ERRCR PRCCESSING */

CN CONVERSIOAN BEGIN;

PUT FILE(REPCRT) SKIP(2) EDIT

{*CONVERSICN ERROR IN INPUT CATA')(A);
REVZRT CCNVERSICN;:
IERRCR = 1;

ENC;

/% FRINT STARTUP MESSACGE */

PUT FILE{RZPCRT) SKIP(2} ECIT

(*ACC A NfW FILE DESCRIPTION'){(A);

PUT FILE(REPCRT) SKIP EBIT

/* BRING CONTRGL BLOCKS INTC STORAGE */
CALL ZICCFEN;
/% SET ZPCSN TC PGINT TG START OF INCEX ANC ERRCR SKITCH TC

IERC */
BLLCCK = FIXPTIR;
CFFST = 13
ISERROR = G}

/% CET TFE FILE NAME AND KUMBER OF FIELDS */
CEYT FILE(INFILE) LISTUFILENAME,NFIELCS);
/% CISPLAY INPUT DATA */
PUT FILE(REPCRT) SKIP{Z2) ELIT
(YFILE NAME ', FILENAME,' ENTEZRED')(A,A(20),A)5
PUT FILE(REPCRT) SKIP ECIT
{*hUMBER CF FIELCDS = *,NFIELDS)I(24F(6))3
J* SEARCY DIRECTGRY FCR FILE NAME. IF VALUE RETLRNEC BY ZPFND
1S NCT ZERO THEN A FILE GF THE SAME NAME ALREALY EXISTS =
WRITE ZRRCR MESSAGE ANE EXIT */
1F ZPFNC(FILENAME) = ¢ THENS
ELSE CC3
PUT FILE(REPORTY) SKIP{2) EDIY

(*FILE NAME *,FILENAME,' ALREACY £XISTS IN THE DIRECTIGRY')(A,A(20),A)3

IERRCR = 13
ENC 3

136

/* STGRE END CF DIRECTCRY POSITICN IF REGQUIREL »/

IBLCCK = ELOCK;
IGFFST = CFFET3
/* ILLCCATE LISK SPACE TQ STCRE FIELDS AND STCRE START BLOCK */
CALL ZICCRES
JBLLCK = ELOCK;
/% START A LCCP TO REAC IN THE FIELD NAME CESCRIPTICNS
. &MD STCRE THEM %/
LO I = TC NFIELDS:
o GET FILELINFILE) LISTIFCNANM,FOTYP,FOLEN);
.- /% CISPLAY FIELL NANCD ¥/
PUT FILZ{REPCRT) SKIP(Z) ECIT

('FIELL NAME '",FCNAM, ', NUMBERED *;1,° ENTERED'")I(A,A(2C)sA,Fl6));

NEWl:

J* SET ERROR CHECK CCNDITION TC ZERQ */
ICCNC = 03
/* YERIFY TYPE 1 ENTRY - CHARACTER ¥/
I¥ FCTYP = 1 TFHEN DC;
! FIZLCTYPE = '(CHARACTER STRING';
IF FCLEN < 1 | FCLEN > 256 TREN ICCNC=13
GO TC NEWLl3
ENC;
/* VERIFY TYFZ 2 ENTRY - BINARY FIXEC(15,C) *»/
IF FCTYP = 2 THEN DG;
FIFLCTYPE = 'YEBINARY FIXED(15,C)°;
IF FCLEN = 2 THEN;
ELSE ICCNC = 13
GO TC NEWl;
ENC;
/* VERIFY TYPZ 2 ENTRY - BINARY FIXEC(21,C) */
IF FCTYP = 3 TEEN DC3
FI1ZLLCTYPE = YEINARY FIXEL(31,8)°;
IF FELEN = 4 THEN;
ELSE ICCNC = 13
GO TC NEW1s
ENC;
/* VERIFY TYPE 4 ENTRY — BINARY FLCAT(Z1) */
IF FCTYP = 4 THEN CC3
FIELCTYPE = 'EINARY FLCAT(21}*;
IF FCLEN = 4 THENS
ELSE ICOND = 13
GO TC NEWl3:
ENC;
/* YERIFY TYPE 5 ENTRY = BINARY FLCAT (52) ¥/
IF FCTYP = 5 TEEN DGC;
FIELCTYPE = 'EINARY FLCAT(53}%;
IF FCLEN = 8 THEN:
ELSE ICCND = 13
GO TC NEWl:
ENC;:
/% INVALID FIELC TYPE ENTEREC - PRINT MESSAGE AND
SET CVEZRALL ERROR CONCITICN #*/
FUT FILE(REPCRT} SKIF ECIT
{*INVALID FIELDC TYPE NCes '"FCTYP,* ENTERED')
fAF12)4A)3
IERRCR = 13 :
GG YO NEW23
/% CISPLAY FIELL TYPE AND LENGTH ENTEREC »/
PUT FILE(REPCRT) SKIP ECIT

(PFIELL TYPE NCe 'FCTYP,® ENTEREC, '"»FISLOTYPEs' LENGTE *,FOLEN)

{A F{2)9A0A3A,F(3)) 3

I
(1)

137

/* IF INCORRECT LENGTH ENTERED, PRINT A NMESSAGE ANC
SET CVZRALL ERPCR CONCITICN *»/
1F ICONE = 1 THEN DC;
PUT FILE(REPORT) SKIP EDIT
(*INCCRRECT FIZLDC LENGTH ENTEREL*)(A);

IERRCR = 1i;

ENC 3

/* CTHERWISE STCRE REMAINING FIELC DATE */

ELSE DC3
FOHNUNM = 135 /% FIELD NUWMBER %/

- FOIXFTR = =1; /% NULL INCEX FCINTER */

FOSTAY = 4 /% RUN STATISTICS ZERC */
CALL ZDWRTUFLCLN,FCENT)S

ENCS

/* END CF FIELD NAME PRCCESSING LCGCP */

ENC3; .
/* CHECKh FCOR ERRORS IN LUACING FILE NAPE ANC FIELC CATA #»/
IF IERROR = 1. THEN DC3;

/% PRINT ERRCR MESSACE AND EXIT ¥/

PUT FILZ{REPCRT) SKIP(2) ECIT

{ *ERRORS DETECTEC IN INPUT DATA - FILE CESCRIPTICN REJECTEC')(A);

/% CESTRCY FitoL NAME SULBFILE #/
BLCCK = JBLOCK;
L2LL 2ZLC5TS
GC TC N:SW)3
ENC 3
/* IF THERE ARE NO ENTRIES: ALD ENTRY AT ENLC CF CIRECTCRY #*/
IF CLPTR = O THEN ©BC3;
/% IPOSN IS SET TO END CF CIRECTCRY %/
FLALVM = CINUM + 13
/*# INCRENENT NUFBER CF ENTRIES BY 1 ¥/
CINUM = CINUN + 13
/% SET IPOSN TC PCINT TC END OF CIRECTCRY */
ELCCK =]1BLCCK;
CFFST = IOFFST;:
ENC3
/% THERE IS A& SPACE FRCM A PREVIOUS CELETICN #*/
ZLSE DG
/* RESET ZPOSN TC START CF DIRECTORY #/
BELCCK = FIXPTIR;
CFFST = 13
/% RESET ZPOSN TC PCINT TO CELETED ENTRY %/
CFFST = CFFST + {(CLPTR ~ 1) % FILENS
/* GET LELETED £L0CK INTC CORE TC UPCATE CELETION
CHAIN */
IELCCK = BLCCK3
ICFFST = GFFST3:
CALL ZLREA(FILEN,FLENT);
/% UPDETE POUINTERS %/
IDLMMY = FLNUN;:
FLALYM = CLPTR;
CLPTR = IDUMMY;
/* RESTCRE BLCCK AND CFFSET POSITICN *»/
ELCCK = IBLOCK;
{FFST = IOFFST; .
/% CECREMENT NULMEBER CF CELETED ENTRIES BY 1 #/
CLANYY = CLNUY - 13
ENC; .
/* SET LP NUMBER OF FIELDS YO BE ENTERED */
NCFLDS = NFIELCS:

NEW3:

./* LOAC FILE NAME ANC FIELD DATA PCINTER INTU FILE NAME

CIRECTCRY ENTRY %/
FLNAM = FILENAMES
FOPTR = JBLOCK;
/% WRITE FILE NAME ENTRY TC CIRECTCRY */
CALL ZLWRTIFILEN,FLENT);
/* ERANCE TO PROCESS ANCTHER FILE CESCRIPTICN #/
GG 10 NEwd;
/% END CF INPLT PROCESSING - PRINT A MESSAGE ANC EXIT */
PUT FILE(REPCRT) SKIP{2) ECIT{'END OF RUN'I(A);
CALL ZCCLS;
RETLRN;
ENC ZPAEWw;

e

>

- 134

ECCPY *SCURCE*® *SINK*

IPLEL:

DELE:

/* IXPDEL - DELETE A FILSE CDESCRIPTICN ERCF THE INVERTED INDEX =/

PRLCC OPTICASIMAING;

/* THIS FRCGRAM DELETES A FILE NAME ENTRY IN THE CATA
LESCRIPTICN DIRECTLCRY TCGETHER WITH FIELC CESCRIPTICON
AND INCEXING CATA %/

/* [EFINE INPUT AND CUTPUTY FILES */

CCL INFILZ FILE INPUT,

- REPCRT FIlLE OQUTPLT:

TINCLULE IXMSPNM;

TINCLUCE IXMLPM;

/* LEFINE ROLTINE FCR SEARCHINC CIRECTCRY #*/

CCL ZPFAC ENTRY RETURANS (BIN FIXED(15,0));

/* LEFINE INPUT FILE NAME STCRAGE #/

CCL FILERAME CEAR{Z2J): .

/% LEFINE TEMPCRARY STCRAGE FCR BLOCK AND CFFSET */

CCL 1IBLCCK,JELOCK) BIN FIXEC(31,9),

{ICFFST,JCFFST) BIN FIXED;

/% TEMPCRARY CATA AREAS FCR INCEX CELETICN */

CCL DISPAREA CHARI(FLLEN) CTL;

CCL FOULR 2IN FIXED iInlIT(4),

FOURCHAR CHAR({4) BASEC(FCURPTR),
YOURPIR PTR,
KBLCCK BIN FIXEQ(31,0)%

/% END CF INFLT PRCCESSING =/

CN ENDFILE(CINFILE) GC TO CELCS

/% PRINT STARTUP MZSSAGE %/

PUT FILE(REPCRT) SKIPI(2) ECIT

{*CELETE A FILE CESCRIPTION')I(A)

PUT FILE{(RZPCRT) SKIP ECIT

({t==========z=z=====z=z=s3==z=3xV)(p);

/% ZET CCNTRCL BLCCKS INTC STCRAGE */

CALL ZCCPN;

/* SET ZFCSN TC POINT TC START CF INCEX %/

BLCCK = FIXPIR;

CFFST = 13

/* CET TEE FILE NAME TG BE DELETED */

GET FILECINFILE) LIST(FILENAMZ);

/% LCI1SPLAY INPUT DATA =%/

PUT FILE(REPCRT) SKIPI(2) ECIT

{'FILE NAME *,FILENAME," TC BE CELETEC')(4:A(20),0);

/* SEARCH CIRECTORY FCR FILE NAME. IF VALUE RETULRNEL 8Y
ZPFND IS ZEROs THEN FILE NAME ENTERED DCES NCT EXIST CN
THE DIRZCTCRY - PRINT AN SRROR MZISSAGE ANLC BRANCH TGO
PROCESS THE NEXT CELETICN REQUEST */

IF 2PFNCIFILENAME) = £ THEN CC;

PUT FILE(RZPCRT) SKIP(2) EDIT .
{(*FILE Y,FILENAME," IS5 NCT IN THE CIRECTORY?)
(AsAL20)4A) 3

¢C 10 LELES

ENCs

/* ZPOSN PUOINTS TQ THEE APPRGPRIATE FILE NAME EANTRY. GET IT
INTC STCRAGE »/

IBLCCK = BLOCK;

ICFFSY = CFFST3

CALL ZCREA(FILENSFLEINT);

/¥ SET IPCSN TG POINT TO START OF FIELL NAME ENTRIES */

JBLCCK FCPIR;

JOFFST 1;

n u

- 140

T /% START A LCCP TO EXAMINE EACH OF THE FIELC SPECIFICATICNS.

IF THE FIELL 15 INCEXEC, THE INDEX ENTRIES ARE CELETEC */
CC I = 1 TC ACFLDS:
/% CET A FIELC NAME ENTRY */
BLCCK = JBLOCK;
CFFST = JCFFST:
CALL ZCREA(FLDLN,FDENT);
JBLCCK = BLOCK;
JGFFST = CFFST;
If FDIXPTR = =1 THEN [C;
. PUT F'L:(R:PORTJ SKIP(2) EDIT

(*DELETE FIELD NAFME *,FCNAM,", = NCT INDEXED')(A,A(23),A)3

ENC 3
‘ELSE DC3
PUT FILE(REPCRT) SKIP{2) EDIT

{'CELETE FIELD MANE ¢ ,FDNAM,', - INCEXED')(A,A(20),A);

DELC:

/% GET START ALCLRESS CF VALUE ANC ADCRESS SUE-FILE AND
CELETE IT */
BLCCK = FDIXPIR;
CFFST = 33
ALLCCATE DISPAREAS
CALL 2CREA(FLLEN,DISPAREA)S
FREE DISPAREA;
FOLRPTR = ADur(KBLCCK);:
CALL ICREA{FCUR,FOURCHARI];
BLCCK = KBLCLK;
CALL ZLCSTs
/% DELETE INDEX CONTROL SUB~FILE AND SET INCEX PCINTER
TG ALLL =/
BLCCK = FDIXPTR]
CALL ZLCST3

FCIXPTR = ~1;
ENL;
/* END CF FIELC PROCESSING LOCP */
ENLC3

/* L[ELETE FIELC SPECIFICATICNS */

BLLCCK = FOPTR;

CALL ZLCST;

FDPIR = =13

/* FETLRN FILE STUORAGE TCO CIRECTORY AVAILABILITY ANC UPCATE
THE CCNTRCL INFORMATION */

FLNEM = ' 3

IWCRK = FLKNUVN;
FLALM = CLPTR;
CLPTIR = IHCRK;
CLNUM = CLNUM ¢ 13
NCFLDS = 03

/% wWRITE VTHE REVISED ENTRY WITH CONTRCOL INFCRMATICN BACK TC
DISK #/

ELC(K = IBLOCK;

CFFST = ICFFET;

CALL ZCWRT(FILEN.FLENT);

/% BRANCKF TC PROCESS KEXT CELETION REQUEST */

GO 10 CELES

/% END CF PRLGRAM = PRINT A MESSAGE ANC EXIT */

PUT FILE(REPCRT} SKIP(2) ECIT('END CF RU“')(A).

CALL ZCCLS:

RETLRN;

ENL IPCEL;

141

ECCPY *SCURCE* *SINK#
/% IXULRP -~ CISPLAY CCNTENTS CF CATA CESCRIPTICA CIRECTCRY */
ZUCRP: PRCC OPTICNS(FAINDYS
/% THIS FRCGRAM PRINTS CUT A LIST CF FILE NAMES TCCETHER
WETH ASSOCIATED FIELD MNAMES IN THE CIRECTCRY. FIELD
PROPERTIES 4Rk ALSC CISPLAYED %/
/* CEFINE PRINT QUTPLT FILE %/
CCiL REFCRT FILE CUTPLT:
TINCLUCE IXMSPM;
FLANCLUCE IXMLOPM;
/* [EFINE TEMFCRARY STCRAGE FCR BLCCK ANC CFFSET %/
CCL IBLOCK BIN FIXEL(31,01),
IGFIST BIN FIXED3S
/* LCEFINE CUTPUT MESSAGE AREAS */
CCL (FIZLCTYPE,INBEXMSG) CEAR(20) VAR3:
/% CPEN THE INDEX FILE */
CALL ZCCPN;3
/% LISPLAY REPCRT HEALING */
PUT FILEI(REPCRT) SKIP(2) ELCIT
{*CISPLAY CF DATA DESCRIPTION CIRECTCRY'}(A);
PUT FILE(REPCRT) Snip EDIT

/* LiSPLAY DIRzCTOPVY STATLS INFCRMATION %/
PUT FILE(REPCRT} SKIP(2) ELIT
(*CIRZCTCRY CONTROL INFCRMATIOAN'){A);
PUT FILE(REPCRT) SKIP ECIT
(- ——— —— -="){(A)3}
IWCRK = CINUM -~ DLNUNM;
PUT FILE(REPCRT) SKIP{2) ECIY
(*AUMBER CF FIL: NANE ENTRIES = '»IWCRK)(A,F(6));
PUT FILE(REPCRTY) SKIP(2} ECIT .
(*hRUMBER OF UESLZTED ENTRIES = *,CLAUNMI(A,F(6));
/% CHECK FOR NC DIRECTCRY ENTRIES #*/
IF LINLM - DLNLA = 3 THEN GC TC CRP23
/% START A LCCP {1) TC PRLCCESS FILE INFGRMATICN #*/
£0 1 = 1 TC LINUM;
/7* REAL IN A CIRECTCRY ENTRY AND STORE PCSITICN CATA »/
CALL ZLREA(FILEN,FLENT);
IBLLCK = BLOCK:
ICFFST = GFFSTs
/% (HECK FCR A DELETEC ENTRY #*/
IF 1 = FLNUM THEN]
ELSE 60 TO DRP1:
/* WE FAVE A DIRECTCRY ENTRY. CISPLAY FILE NAME INFCRMATION *»/
PUT FILE(REPLCRT) SKiP(2) ECIT
(*FILE NAME = ',FLNAM)I(A,A(20));
PUT FILE(REPCRT) SKIP EDIT
(Vo s e m e e) {A)
PUT FILE(REPLRT) 3KIP(2) ECIT
(*FILE NUMBER ',FLNUNMs*'y NUMEER OF FIELDS = ¢4 NOFLCS)(2,Fl€)yAyF(6));
/7% SET IZFOSN TC START CF FIELC DESCRIPTICNS »/
BLLCK FOPTR;
CFFST 1;
/* START A LCOP (J) TC PRCCESS FIELD INFCRMATICN #*/
CC 4 = 1 IC NCFLDS;
/% GET A FIELD ENTRY %/
CALL ZCREA(FLEOLNsFUENT); .
/% SET UP FIELD TYPZ AND INCEXING INFORMATICN */
IF FDTYP = 1 THEN FIELOTYPL = 'CHARACTER STRING';

won

DRP1:

DRP2:

IF FDTYP

o,
[

= 2 THEN FIELCTYPS = ‘BIMARY FIXEC(15,3}%;
IF FDTYP = 3 THEN FIELCTYFE = 'BINARY FIXEC(21,0)%';
1F FDTYP = 4 THEN FIELCTYPE = *SINARY FLCATI{21)?®;
IF FDTYP = 5 THEN FIELCTYPE = *BINARY FLCAT(E3)';
IF FDIXPTR = =1 THEN INCEXMSG = *NCT INDEXED?';

Ei.SE INCEXNSG = 'IKCEXELD';
/% LISPLAY FIELD NAME INFCRMATION */
PUT FILE(REPCRT} SKIP(2)} E£IT
{3FISLL NAME *,FCNAN, "', NUMBER = ®,FCALM)
: (A 2120)yA,FL6));
PUT: FILE(REPCRT) SKIP EDIY
{*FIZLL TYPE *oFIELOTYPE,'s LENGTH = *,FCLEN)
(A A A FL6)) 5
PUT FILE{RZIPCRT) SKIP EBIT
(YFIELC STATLS ', INDEXMSG,', TIMES ACCESSEL = ',fCSTAT)
(A,A A FL6)); .
/* END Cr FIELD PRCCESSING (J) LCOP */
ENC3 :
/* FESET POSITION ANC LCOP BACK TG GET ANOTHER FILE NAME
ENTRY */
BLCCK = IBLOCK;
CFFST = IGFFST:
/% END OF FILE NAMZI PRCCESSING (1) LCOP */
ENC: .
/* FRINT END CF RUN MESSAGE, CLOSE INDEX FILE AND EXIT */
PUT FILE(REPCRT) SKIP(2) ECIT(*END OF RUN'}{2);
CALL ZLCLS;
RETURN;
ENC ZUDRP:

ECCPY *SCURCE#® #SINK¥

IPIXC:

/% IXPIXC - CREATE AN INVERTEL INDEX */
PRCC OFTICNS(MAINI;

/* THIS PRCGRAM CREATES AN INVERTED INCEX FRCM THE VALUES
CCNTAINSC WITHIN A SPECIFIEL FIELD NAMED WITHIN A FILE */

/% CEFINE INPLT ARG CLTPUT FILES */
CCL INFILZ FILE INPLT,
REPCRT FILE OUTPLT;
ZINCLUCE IXMSPM;
ZINCLUCE IXMCPM;
/% CPU TIME PRCCESSING AREAS */
CCL TIME ENTRY,
P3 “IXED BIN(31) INIT(2) STATIC,
CKEY FIXEC BIN(31) INIT(1),
CPR FIXEC BIN(31) INIT(Q),
CCRES BIN FLCAT(21),
CRES BIN. FIXEC(31),
CRESAYS) FIXED BIN(31);
/% CEFINE ROLTINE FCR SEARCHING CIRECTTRY #/
CCL ZPFAC ENTRY RETLRAS (BIN FIXED(15+0))3
/% CEFINE INFLT FILT AND FIELL NAME STCRAGE #/
CCL (FILEKAME.FISLONAME) ChAR(20);
/% LEFINE A PPCCES3\iG GPTICN AREA */
CCL POPT CHAR(3) VAR;
/% CEFINE WORK AND STCRAGE AREAS FCR STAGE 1 CF
CCL (IRLC,IFSP,IMSW,IFLC) BIN FIXEC EXT,
DFCNAM CHAR(20),
IFCTYP BIN FIXEC,
IBLCCK BIN FIXEL(31,0) EXT,
IOFFST BIN FIXED EXT;
/* CEFINE CATA AND SCRT INPUT FILES */

CC:. IDATA FILE RECCRC SEQUENTIAL INPLT ENVIU(ZES
' H

ZISRT FILE RECCRC SEGULENTIAL EANVIUL255)
/* LEFINE RECCRD PRCCESSING AREAS */
/% »kx%k MTS CEPENDENT #*%%%%k #/
CCL {RECAREA,ABSAREA) CHAR{(255) VAR;
CCL ABSMASK CRAR{813Z) BASED{ABSPTR),

ABSPIR PIR;
CCL 1 ABSREC CTL ALIGNED,

Z RECNC BIN FIXEC(31,0),
2 IXFLLC CHAR(IFLC):

/% LEFINE RECCRD CCUNTER ¥/
DCL RECCTIR BIN FIXEC(21,0) INITHIG)S
/% CEFINZ INLCEX 5IZ= CALCULATION VARIABLES »/
CCL (RECYAZRECICRECTCT) BIN FIXED:
/% CEFINE BLCCK ESTINATE CCUNTER #/
CCL ESTBLOCK BIN FIXEL INIT(Q):
/% SORT PARANETERS */
CCL FL FIXED BIN{31) INITU(1) STATIC,

SCRT ENTRY,

PLIRC RCTURNS (FIXED BIN(31}):
CCL 1 CSA STATIC,
z AL CEAR(Z2) INIT{'S="),
22 CHAR(2), .
A3 CHAR(4) INIT(®,,55%)s
84 PIC *399°*,

26 PIC *999*',
27 CRARIL13} INIT(? 0=5ea~rR1N..'1.

SIS NI NI N SN

AS CrARL21) INIT(*,B1,:1,4 I=TA3"TRIV"'

PRCCESSING */

}3),

),

28 PIC 999,
£S5 CHARI{3]) INIT(* R='},
AlZ FIC *{6)S*,
212 CHAR(5) INIT(*,ENC)3
/% LEFINE SORT QUTPUT FILE %/
CCL 20SRY FILE RECORLC SEQUENTIAL ENV(U(255))3
/* CEFINE WORK AND STCRAGS AREAS FCR STAGE 4 PRCCESSING #/
CCL DISPAREA CHAR{FDLEN} CTL;
CCL {JBLCCK,KBLGCK} BIN FIXED(3140),
- [JCFFST,KOFFST) BIN FIXECS
CCL FOULR 2IN FIXED INIT(4):
CCL TWC BIN FIXED INITH(2)3
DCL FOURCHAR CHAR{4) BASEC(FCURPTR),
TWCLRAR CHAR(2} BASED(TWCPTIR],
{FCURPTR, TWOPTR} PTIR;
CCL {NVAR,FSWCH,SPCTR) BIN FIXED;
/% TEFINE PREVIOUS FIZLD VALUE STCRAGE */
CCL PREVAREA.CEAR{IFLC) CTL3S
/% LEFINE WORKING STCRAGE FOR NOe CF RECCRC ACCRESSES
FGSITION AND NUMBER %/
CCL HBLLCCK BIN FIXEC(21,3),
WCFFST BIN FIXCIC,
NRECA BIN FIXED(31,0);
/* 3AVE AREA FCR CURrENT FIELLC VALLE ANC BLCCK ACLCRESS %/
CCL SAVEAREA CHAR{IFLC) CTL,
SAVEBLCCK BIN FIXEC{31,3),
SAVECFFST BIN FIXZC;
/* INDEX BLOCK PROCESSING SWITCH */
CCL IXSWCH BIN FIXCL;
/% MALLE AND ACDRESS BLCCK PRCCESSING AREAS #/
CCL LMCVE BIN FIXED,
LABIX LAEBEL3;
/* [EFINE FIELLC VALUE COUNTER */
DCL FVCTR BIN FIXEC(3i,0) INIT(O);
/% END CF INPUT FILE PROCESSING */
CN ENDFILECINFILE) GC TO IXC9; _
/% BRAEXARRAEF R ARXERRAFAR R AR ER AR R AASFARREEEN A AR RS A ARAR IR */7

/% IHIS PRCGRAM DIVICES ITSELF INTC FOLR STAGES AS FOLLCwS: */

LIV (¥

LS]

/% 1. PROCESS DATA CESCRIPTION CIRECTICRY TC CBTAIN */
/% CCNTRGL INFCRMATICN. */
/* Ze ABSTRACT VALLES ANDC RECCRC ACCRESSES FRCM THE */
/% CATA FILE TC A TEMPCRARY FILE. */
/% 3. SCRT TEMPORARY FILE RECCRCS BY ASCENCIRG VALUE */
/% AND RECORD ALCCRESS ANL STCRE CN ANCTHER TEMPORARY */
/* FILE. */

/% 4. LCAC INDEX INFORMATICN CANTQ THE INVERTEC INDEX. */
/7* it*#t*####t#####**##t####*1#*#4#*#####****Q#*#####*#*t*# */
/* INITIALIZE RUN STATISTICS FIELDS %/ :
NVAE = 03
tc 1 =1T1¢C 5;
CRESALI) = O3
ENC3
/% GET AND STCRE CURRENT CPU TIMS STATLS */
CALL PLCALL{TIMZsP34ACCR(CKEY)}ACCRICPR)ACCRICRES))S
CRESAll) = CRESs: o
/x »sxs% START STAGE 1 = PROCESS CIRECTCRY INFCRMATICN *#%%% %/
/7% BRINT STARTUP MISSAGE */
PUT FILE(REPCRT) SKIPI12) ECIT
{'CREATE AN INVERTED INCEX')(A)}
PUT FILE(REPCRT) SKIP EDIT

I1XCC:

{$===z=z=z==x=s=zss=zx=zz=z=z==xl 1{A)S
/% BRING CONTRCL BLCCKS INTC STORAGE »/
CALL ZLCPN;
/% GET FILE NAME ANC PRCCESSING CPTICN ¥/
GEY FILEC(INFILE) LISTIFILENAME,POPT)S
PUT FILE(REPCRT)Y SKIP{(2) ECIT
{*PRCCESSING FILE ',FILENAME)(A,A(20));

i

/* SEARCH CIRECTGRY FCR FILE NAME. IF VALUE RETULRNED BY
IPFND IS ZERGs THEEN NO MATCH HAS BEEN FCUNC - PRINT AN

» ERRCR MESSAGE AKRD EXIT ¥/
IF ZPFNCAFILENAME]} = € THEN DC3
PUT FILE(REPCRT) SKIP{2) ECIT

(*FILS ", FILENAME,*IS NOT IN THE CIRECTGRY')

(A AL20),4);
CALL Z2CCLS:
ENC 3

/% 7P0S,H PGINTS TO THE APFRCPRIATE FILE NAME ENTRY. GET IT

INTC STCRAGE */
CALL ZCREA(FILEN,FLENT);
/% CET TRE FIELD NAME */
GEY FILE(INFILE) LIST(FIELCNANE):
/* TISPLAY INPUT FIS'C NAME %/
PUT FILE(REPCRT} SKIP{2) EDIT

C(YINDEX PROCH=SSING CN FIELD *,FIELCNANME,' REQUESTEL®*)

(A AL20)4A);

li

.

/* SET ZPCSN TC POINT TO THE START OF THE FIELC NAME ENTRIES */

BLC(K
CFEST

FCPTR:
13

/% SET FILS RECORD LENGTH CCUNTER TC ZERC, FIELC START

POSITICN TC 1, ANC MATCH SWITCH TC ZERQ */

IRLC = Q3
IFSF = 13
IMSA = CZ

/* START A LCCP TC PRCCESS FIELD CESCRIPTICNS #/

CC 1 = 1 TC MCFi.CS;

/% STGRE FISLC MNAME ENTRY PCIATER IF MATCH SWITCH

IF IMSk = ¢ THEN DQ3
IBLCCK BLOCKS
ICFFST OFFST s

(]

ENC3
/* GET A FIZLC NAMZ ENTRY »/
CALL ZCREA{FLCLNFDENT)S

IS 2ERC ¥/

/% INCREMEINT RECORD LENGTH CCUNTER BY FIELC LENCTE */

IRLC = IRLC + FDLEN;
/% CHECK FCR MATCH CN FIELD NAME */
IF FDNA¥ = FIZLDNAME THEN;
ELSE GO TC IXC13
/% SET MATCH SWITCH TC 1 »/
IMSk = 13
/* STORE FIELC LENGTE */
IFLC = FCLEN;

/% STORE NAME AND TYPE CF FIELC BEINC INCEXEC */

CFCMNAM = FDNAM;
IFCIYP = FOTYP;

/* IF THE FIELD IS INCEXEC PRINT A WARNING MESSAGE %/

IF FDIXPIR = -1 THENS
ELSE CC;
PUT FILE(REPCRT) SKIP(2) EDIY

{"WZRNING - FIELD NAME ENTEREC IS ALREACY INCEXEC®)(A)3
/* TEST FOR CANCEL CPTICN. IF 'YES®, NC FLRTHER

iah

PROCESSING #/
IF PCPT = *YES? THEN CO3
PLT FILE(REPCRT) SKIP(Z) ECIT
(YCANCEL OPTICN INVCKED = NC FURTHER PROCESSING')(A)S
CC TC IXCS;
ENC:
ENC3
/% IF A FATCE HAS NCT BEEN MACE, INCREFENT FIELL START
POSITICN PY FIELD LENGTE JULST PROCESSED */
IXCiz IF IMSh = O THEN IFSP = IFSP + FOLEN;
/% EHD OF FIELC NAME PRCCESSING LCCP */
ENC:
/% CHECK FCR A MATCH CN FIELD NAME ENTERED. IF NCT, PRINT
ERRCP MESSAGE AND EXIT #/
IF IMSW = ¢ THEEIN DO
Pt'T FILE(REPCORT) SKIP(2) EDIT
{*FIELL NAME '",FIELDNAME,?' CCES NCT EXIST IN FILE ',FILENAVME)}
(A)A(Z-):A,A(ZC));
IF PGPT = *EST* THEN GC TO IXCO;
ELSE GO TO IXC9;
ENLC 3
/% CISPLAY STATUS INTZRMATIGN CBTAINED FROM CIRECTCRY SEARCH */
PUT FILE(REPCRT) SKIP(2) ECIT
{"FILE *,FLNAM.* RECCRD LENGTH =t JRLCI{A,A(ZC)A,F(6)):
PUT FILE{REPCRT} SKIP(2) ECIT
(YFIELL "o LFDNAM,' LENGTH = *,IFLC,*, START POSITICN = *,IFSP)
(A A(20)sAsFl6) A FLE)) S
/% #%k¥k IND STAGE . - PRCCESS DIRECTORY INFCRMATICN **%*% %/
/% CET AAD STCORE CURRENT CPU TIME STATLS */
CALL PLCALL{TINE:P3,ACCRICKEY)ACCR(CPR),ACDR{CRES))}
CRESA(2) = CRES;
/% *¥xxk START STAGZ 2 - ABSTRACT INCEXING INFCRMATICN #*%%%x %/
/% RANCEF ROULNC REACINGC AND ABSTRACTING INCEXINC INFORMATICN
IF ESTIMATE GPTICN HAS BEEN INVCKED AND DATA FILE ALREALCY
REALC */ :
IF §OPT = *EST' & RECCTIR == Q THEN GC 7TC IXC253
/* SET UP ENC CF DATA FILE PRCCESSING »/
ON ENDFILE{ZCATA} GC TO IXC3;
/% PLLCCATE STCRAGE FCR ABSTRACT PROCESSING EREA 3/
ALLCCATE ABSRECS
ABSFTR = ACDR{ABSREC);
/% SET RECCRLC CGUNTER T0 1 */
RECCIR = 13
/* (PEN FILES TO BE PRCCESSED %/
CPEN FILELZDATA):
CPEM FILE(ZISRY) GUTPLT:
/% GET A RECCRLC #/
IXCz2: REAL FILE(ZDATA)Y IMTC(RECAREA);
/* ERANCF ROLNC ABSTRACTING INCEXING INFCRFMATICHN IF
ESTIMATE CPTICK HAS BEEN INVOKEC #/
IF FOPT = 'EST* THEN CC TC IXCZ53%
/% ABSTRACT INCEXING CATA AND SET LP RECCRC ACCRESS %/
/% sEExsdsdakd NOTE - CCULC BE MADE MCRE EFFICIENT »/
IXFLD = SUBSTRIRECAREA,IFSP,IFLC);
ReChD = RZCCTIR; :
/* WRITE INDEXING RECCRD TC SCRT INPLY FILE #/
ABSARERA = SUBSTRUABSPASK,1,IFLC+4)3
WRITE FILE(ZISRT) FRLCMUABSAREA);
/% IHCREFENT RECORD CCUNTER AANC BRANCH TC PRCCESS ANCTHER
RECCRL */

1XC25:

IXC3:

IXC35:

I1XC4:

1y

RECCTR = RECCTR + 1;
GC TC IXC2;:
/% CLOSE FILES =%/
CLCSE FILE(ZLCATA);
CLCSE FILZ{(ZISRT);
/* LECREFENT RECCTR BY 1 %/
RECCTR = RECCTIR - 13
/* [ISPLAY NC., OF RECCRDS */
PUT FILE(REPCRT) SKIP(2) EDIT
{*AUMBER OF INCEXING RECCRCS = ' RECCTR)I{A,F{&));
/* CALCULATE MAXIMUM NC. CF VALUE & ADCRESS PLCCK REGUIRED */
RECVA = 1 + ({RECCTR * (IFLC + 8)) 7/ DASIZE);
/* CALCULATE MAXIMUM NC, CF INCEX CONTRCL BLCCKS REQUIREL #*/
RECIC = 1 + ({2 + {RECVA * (IFLC + 6))) / CASIZE);
/* CALCULATE TCTAL NCe. CF BLOCKS REGQUIREC ANL CISFLAY #/
RECIOT - RECVA + RECIC;
PUT FILE(REPCRY} SKIP(2) ECIT .
{YMAXINUM NOo CF BLCCKS REQUIRED = *,RECTCTI(A,F(6));
/* TEST FCR ESTIMATE CPTICN. IF *EST'y NC FURTHER PRCCESSING %/
IF FOPT = 'EST* THEN L[C;
PUT FILE{REPCRT) SKIP(2) EDIT
{*ESTIMATE QOPTILN INVCKEL - NO FURTHER PRCCESSING')(A)3
/*% TINCREMENT NC. OF ESTIMATED BLCCKS */
JESTBLOCK = ESFHLCCK + RECTOT;
GG TC IXCOs:
ENC 3
/% IF FIELD IS NOT INLCEXEC, CHECK TO SEE IF TEE CALCULATED
MAXIMLF INCEX SIZE EXCEELS AVAILABLE SPACE CN THE INDEX
FILE. IF SC BRANCF TO PRINT A CANCEL MESSACE =*/
IF FDIXPTR = -3 & RECTCT > NABLKS THEN GC TG IXC7;
/% d%x%3x SEND STAGE 2 = ABSTRACT INCEXING INFLCRNATICN *%%%% x/
/% CET ANC STCRE CLRRENT CPU TIME STATLS */
CAL. PLCALL(TIME,P3,ACCR{CKEY) ACCRICPR),ACCRICRES));
CRESA{Z) = CRES:
7% Akkkx START STAGE 3 - SCRT INCEXING INFCRMATICN #%%%x3 %/
/% SET UP VARIABLE YALUES IN SCRT CONTROL STATEMENT */
/% CETERNINE CATA TYPE OF MAJCR SGRT FIELD #*/
IF IFDIYF = 2 | IFDTYP = 3 THEN [C; /* BINARY %/
(SA.A2 = *'BI';
CC TO IXCa;
ENC3
IF IFDTYF = 4 | IFDTYF = 5 THEN DC; /% FLOATING PCINT */
CSALA2 = *FL';
GG TO IXC4;
ENC;
CSALA2 = 'CHY; /% CHARACTER */
/% SET LENGTE CF MAJCR INCEXING FIELD #*/
CSA.A4 = IFLC: '
/% SET RECCRLC LENGTH TC BE SORTED = INPUT ANC CLTPLT %/
CSA.A6 = IFLC + 4;
CS2.AB = IFLC + 4;
/* SET NUMBER CF RZCCRDS TC BE SORTECD */
CSALALC = RECCIR;
/% CALL SCRT AND CHECK FUR ERRCRS %/
CALL PLCALL{SCRT,Fi1,CSA);
IF FLIRC = J THEN;
ELSE CO;
FUT FILE(RSPCRT) SKIP(2) ECIT
{(*ERROR CETECTED IN SCRT - NO FURTHER PRCCESSIANG')(A)3
GG TC IXC9;

ENC3:
/% #xex% END STAGE 3 = SGRT INCEXING INFCRMATICN #34%% %/
/* (ET AND STORE CURRENT CPU TIME STATLS */
CALL PLCALL{TIME,P3,ACCR(CKEY),ACCRICPR),ACCRICRES));
CRESA(4) = CRES;
/% #%%%% START STAGE 4 - CREATE INVERTEC INCEX #44%% %/
/% CET FIELD NAME INFGRMATION FOR PRCCESSING %/
BLCCK = IBLOCK;
CFFST = ICFFST;
CALL ZCREA(FLLCLN,FDENT);
/* 1F FIELC 1S ALREZACY INCEXEC, CELETE THE PREVICLS INDEX #/
IF FDIXPTR = =1 THEN;
ELSE LC;
/% GET START ACCRESS GF VALUE ANC ACCRESS SULB-FILE
AND CELETE IT */
BLZCK = FDIXPTR:
CFFST = 3;
ALLOCATE DISPAREA;
CALL ZLREAUFCLEN,DISPAREA);
FREE DISPAREA;
FCURPTR = ADCRI(KBLOCK);
CALL ZCREA(FCUT, CURCHAR);
BLCCK = KBLOCK;
CALL ZCDST;
/% DELETE INDEX CONTROL SUB~FILE AND SET INCEX PCINTER
TC MLLL */
BLCCK = FOIXPTR;
CALL ICCST;:
EDIXPTR = =1;
/%* CHECK TO SEE IF THE MAXIMUM SPACE REGUIREC EXCEECS
THE SPACE AVAILABLE CN THE INCEX FILE. IF SO BRANCH
TC PRINT AN ERRGR MESSAGE */
IF RECTCT > NABLKS THEN GO TC IXCT7;
ENLC3
/% CREATE A NEW INDEX CONTRCL SUB-FILE */
CALL ZCCRE;
FDIXPTR = BLCCK;
JBLCCK = BLOCK;
JOFFST = 3;
/* CREATE A NEW VALUE AND ACDRESS SUB-FILE */
CALL ZCCRE;:
KELOCK = BLOCK;
KOFFST = 1;
/* SET UF CONTROL INFCRMATICN FOR CREATING INCEX %/
NVEB = 03 /* NO. OF VALUE AND ACCRESS BLOCK ENTRIES */
FSWCH = G; /% FIRST TIME SWITCE */
SPCTR = 13 /* SPACc CCUNTER ON VALLE AND ACDRESS ELGCKS #/
J* ELLLCCATE A WORK AREA FCR PREVICUS FIELD VALLE #/ :
ALLCCATE PREZVAREA;
/% (PEN SCRTEC ABSTRACT FILE FCR PROCESSING #/
CPEN FILE{ZOSRT) INPLT;
/* ALLCCATE # SAVE AREA FCR CURRENT FIELC VALUE #/
ALLCCATE SAVEAREA;
/% START A LCCP TO READ IN INCEXING INFCRMATIGN */
Lo 1 =1 TC RECCTR; .
/% CET A RECCRC INTC THE PRGCESSING AREA */
READ FILE(ZOSRT) INTCUABSAREA);
SUBSTR{ABSMASK,2,IFLC+4) = SUEBSTR{ABSAREA,1,IFLC+4);
/* IF FIRST TIME THRCLGH, SET FIRST TINE SWITCH ANC BRANCH
ROUND CHANGE OF FIELD VALUE PROCESSING %/

IXCs:

LABIX2:

IXCé:

IF FSHCH = 0 THEN DCs

FSWCH = 13
CC TC 1IXC53
ENC3
/% CHECK FCOR CHANGE IN FIELD VALUE */
IF IXFLDC = PREVAREA TEHEN GC TC IXCé6;
/* STORE KUMEER CF RECCRD ACDRESSES FCR PREVICULS FIELD
- VALUE w/
BLC{K = WBLOCK;
CFFET = WCFFST;
FGLRPTR = ADLCR(NRECA);
CALL ZCWRTI(FCLR,FOURCEAR);
/* STCORE FIZLC VALUE AND CURKENT BLCCK ACDRESS CN VALUE
ENC ALDRESS SUB-FILZ IN SAVE AREA */
SAVEAREA = IXFLD;
SAVEBLCZK = KELOCK;
SAVEOFFST = KCFFST;
/% SET INCEX .CONTRCL SWITCH TC 2ERG ¥/
IXSWCH = 33
/* STORE FIELLC VALUE CN VALUE AND ACCRESS ELCCK #*/
BLC (X = KBLOCK;
CFFST = KGFFST;
CAL! ZCWRTUIFLC,IXFLC13
KBLECK == BLOCK;
KGFFST = CFFET;
/* INCREMENT FIELD VALUE CCUNTER %/
FVCIR = FYCTR + 13
/* CHECK FGCR VALUE ANC ACDRESS BLCCK CVERFLCR */
LMCVE = IFLC3
LABIX = LABIX1S
GC 10 CFLGs
/* RESERVZ SPACE FCR NC. CF RECGRD ACDRESSES CN VALUE ANC
+DDRESS BLCCK, SET INITIAL NO. TCQ ZERC, AND STCRE WRITE
FOSITICN #/
BLCCK = KSLOCK;
CFFST = KCFFST:
WBLLCK = EBLOCK;
WOFFST = CFFST:
NRECA = 03
FOULRPTR = ADCRINRECA):
CALL ZEWRT(FCUR,FQOURCHAR);
KBLCCK = S8LOCK:
KOFFST = CFFET;
/% CHECK FCR VALUE ANLD ADLCRESS BLCCK COVERFLCOh */
LMCVE = 43
LABIX = LABIX2;
GG 16 CFLGS
/* MOVE CCNTENTS OF PRESENT FIELLC TO PREVICLS FIELL AREA */
PREVAREA = IXFLD;
/* WRITE RECCRD ADDRESS TC VALUE AND ACDRESS BLLCK */
BLCCK = KELOCK;
CFFST = KOFFET;
FOURPTR = ADCR{RECNC);
CALL ZCWRT{FCUR,FOURCEAR);
KBLCCK = BLOCK; :
KGFFST = CSFFET;
/* CHECK FCR VALUE ANC ADECRESS BLOCK OVERFLCh */
LMEVE = 43
LAEIX = LABIX33
GC 10 CFLGS

LABIX3:

IXC7:

./* INCREMENT NC. OF RECORLC ACCRESSES BY 1 %/

KRECA = NRECA + 13
/% END UF INLCEX PRCCESSING LCCP #*/
ENE3 .
/* STGRE NUMEER CF RECCRD ACDRESSES FOR LAST FIELC VALUE »/
BLLCK = wW3LOCKS
CFFST = WOFFETS
FCLRPTR = ADCR(NRECA};
CALL ZICWRTI(FCUR,FOURCHAR);
/% CETERMINE IF LAST RECORL OM INDEX IS LAST RECCRC CN A
J ELOCK. IF NCT. A FINAL INCEX CCNTRCOL SUB-FILE RECCORC
FUST BZ WRITTEN CLT (UNLESS IT IS ALREACY THERE) */
IF IXSwChH = C THEN OC3
ELUCK = JBLOCKS
CFFSY JOFFST:
CALL ZUWRT(IFLC,SAVEAREA);
FCLRPTR = ACDDR(SAVEBLCCK);
CALL ZCWRT(FOUR,FOURCHAR);
TWCPTR = ACDR(SAVECFFST);
CALL ZCWRT{TWC,TWOCHAR);
NVAB = NVAB + 13
/* SET INDEX CCMTRCL SWITCH BACK TC 1 #/
IXSwlH = 13

ENC3 .

/* STORE NUMBER CF VALUE AND ACORESS BLGCKS CN INCEX CONTRGL
SUB-FILE */

BLCCK FCIXPTR;

CFFET i;

TWCETR = ACDR(NVAB);

CALL ZCwWRT{ThC,THWOCHAR);

FREE PREVAREA,SAVEAREA;

/% STORE FIELD ENTRY INFORMATICN */

€0 3 IxCe;

/% NO SPACE AVAILABLE ERRCR PRCCESSING - PRINT A MESSAGE AND
EXIT #7 .

PUT FILE(REPCRT) SKIP(2) ECIT

(*MAXINUM SFACE RZQUESTED FCR INDEX EXCEECS AVAILABLE SFACE CN FILE')

IXC8:

(A);
BLCCK = IBLOCK:
CFFST = IGCFFST;
CALL ZCWRT!FLCLN,FLOENT);
FREE ABSREC;
/* 1F ESTIMATEC NUMBER OF BLOCKS IS GREATER THAN 2ERQ,
THEN L1ISPLAY »/

IXC9: IF ESIBLCCK > € THEW DG

PUT FILE(REPCRT)} SKIP(3) ECIT
(*TCTAL NOs CF SSTIMATEC BLGCKS = *,ESTEBLCCK)I(A,F(€));

ENC:

/7% xksx END STAGE 4 = CREATE INVERTED INDEX #*#43x */

/% CET AND STCRZ CURRENT CPU TIME STATLS */

CALL PLCALL{TIVEZ,4P3,ACCR{CKEY);ACCR{CPR)ACCRICRES))S

CRESA(S} = CRES;

/* CALCULATE AND DISPLAY CPU TIME USED IN THE VARICUS STAGES
€S CREATING THZ INCEX. BY-PASS THIS SECTICN IF ESTIMATE
(PTICAN SPECIFIEC */

IF FOPT = *EST' THEN;

ELSE CC3
PUT FILE(REPCRT)} SKIP{2) ECIT
[*INCEX CREATICN STATISTICS*)(A)S
PUT FILE{REPCRT) SKIP EDIT

OFLC:

OFLCL

(tomm o m *)(a);
PUT FILE(REPCRT} SKIP(2) ECIT

('NC. CF FIELL VALUES ENTEREC = *,FVCTR)(A,F(6));
PUT FILE(REPCRT) SKIP(2) ECIT

{*"NG. CF INDEX CCNTRCL ENTRIES = *,NVAE)(2,F(6));
CCRES = CRESA(2) - CRESA(L);
CCRES = CCRES / 1033463

PUT FILE(REPCRT) SKIP(2) ECIT

CRES
CCRES

CCRES
CCRES

CCRES
CCRES

ENC 3
CCRES
CCRED .

{'ECIT CPU TIMEISECCNELS) =

{*SCRT CPU TIME(SECCNDS) =

n o

{*TCTAL CPU TIME(SECONDS) =

'ZCCRESI(A,F(10,3))3

CRESA(3) - CRESAL2);

CCRES 7/ 1006.C;

PUT FILE(REPCRT} SKIP{(2) ECIT

{*ABSTRACT CPU TIME(SECONDS) = $,CCRESI{A,F(10+3))3
CRESA{4) - CRESA(3):

CCRES / 1000.Cs

PUT FILF{REPCRT) SKIP{2) ECIT

CRESA(5} - CRESA(4);

CCRES 7 102%.03

PUT FILE{REPCRT) SKIP(2Z) ECIT

(*CREATE CPU TINME(SECCNLS) = *yCCRESI(A,F(10+3))3

CRESA(5) - CRESA(1);
CCRES /7 1000.3;
PUT FILE(REPCRT) SKIP(2) ECIT

'+CCRES)I{A,F(1G,3))3

/* ZND CF PRCCESSING - PRINT A MESSAGE AND EXIT #/
PUT FILE(REPCRT} SKIP(2) ECIT('ENC OF RUN'I(A);
CALL ZICCLS;

RETLRN;
/* CFLC -

IN-LINZ CCCING FCR CETERMINING THE HICHEST

FXELD VALUE ON A BLCCK AND INCREMENTING THE ANUMEER
F VALUE ANC ACLCRESS BLCCKS */

/% INCREN NT SPACE CCULNTER BY LENGTH CF CATA EEING NRITTEN */

SPCTR + LMQOVE;

/* IETERMINE IF THZ SPACE COUNTER VALUE IS GREATER THAN
THc DATA ARZA SIZE (CVERFLCW) */

IF SPCTR > DASIZE THEN;

SPCTR

ELSE GC TC CFLOZ;

/% 1F THE INLCEX CONTRCL INFCRMATICN HAS NOT ALREALCY BEEN
WRITTEN,

IF IXShCE =

/* WRITE BLOCK ADDRZSS ANLD FIELD VALULE FRCOM SAVE AREA TO
INCEX CCNTRCL BLCCK *=/

JBLOCK;

CFFST = JCFFETS

CALL ZCWRT{IFLC+SAVEAREA);

FOULEPTR = ADCR{SAVIBLCCK);

CALL ZOWRTIFCUR,,FOURCHAR) ;

ACDR{SAVE(UFFST):

CALL ZCWRT{TWC,TWOCHAR)

BLOCK;

CFFETs

/% INCREMENT NCe OF VALUE ACDRESS BLCCKS BY 1 *»/

BLCCK

TWCFTR

JBLCCK
JCFFST

NVAE =

WRITE IT TC THE INCEX CONTROL SUE-FILE */
1 THEN GC TC CFLO1;

NVAR + 1;

/% SET INDEX CCNTROL SHITCF TC 1 */

IXSWCiH

/% SET SPACE CGUNTER TC RELEVANT PCSITION IN NEw BLGCK */

SPCIR

i

SPCTR - DASIZE;
/% END OF OVERFLGW PRCCESSING #*/

*yCCRES)(A,F(10,31))3;.

OFLC2: GO 10 LABIX;
ENC ZPIXC;

e

-~
-

-

SCCPY *SCURCE* *SINK*

ZPIXC:

/* IXPIXC - CELETE A SPECIFIEC INDEX */
PRCC CPTICNSIMAINI;
/% THIS PRCGRAM DELETES AN INCEX FCR A SPECIFIEC FIELD VALUE */
/* CEFINE INPUT ANC CLTPUT FILES ¥/
CCL INFILE FILE INPUT,
" REPCRT FILE OUTPLT;
LINCLUCE IXMSPM3
SINCLUCE IXMCPM3
/% CEFINE INPLT FILE ANC FIELC NAMES */
CCL {FILENAME,FIELLNANME) CHAR(2D);
/% CEFINE ROUTINE FOR SEARCHING CIRECTCRY #*/
CCL ZIPFMNC ENTRY RETURNSI(BIN FIXEC(15,0))3
/% CEFINE PRCCESSING WCRK AREAS %/
pCL DISFARZA CHAR(FDLEN) CTL:
CCL {WBLCCK,CRBLOCK) BIN FIXED(21,3).
WOFFST BIN FIXEC,
FGLRCHAR CHAR(4) BASEC(FCURPTR),
FOLRPTR PTR,
FOLR BIN FIXED INIT(4);
/7% FRINT STARTUP MESSAGE #*/
PUT FILE(RZPCRT) SKIF(2) ECIT
('CELETE INDEX =ROM INVERTED FILE')(A):
PUT FILE{REPCRT) SKIP EDIT
('.—.::::::::::::::::::::==========‘)(A);
/% BRING CCNTRCL BLOCKS INTC STORAGE */
CALL ZCCFN3
/* GCET TFZ INPUT CATA AND CISPLAY IT */
CET FILECINFILE) LIST(FILENAME,FIELDMNANE);
PUT FILE(REPCRT) SKIP{2) ELIT
(*CELETE INDEX LN ' JFILENAME,*(*,FIELDNANE,*2 ")
(A, A(2C)2A0AL23)4A) ;5 _
/* SEARCF CIRECTORY FCR FILE NAME. IF VALUE RETLRNEL 8Y
ZPEAD 1S 2ERJ, THEMN NO MATCH HAS BEEN FCUWND - PRINT
AN ERRCR MESSAGE ANC EXIT */
IF ZPFND(FILENAME) = $ THEN DC3
FUT FILE(REPCRY) SKIP{2) ECIY
{*FILE *,FILENAME,' IS NCT IN THE CIRECTCRY*){A,A(20)4A)3
CALL ZCCLS:
ENC 3
/% IPOSN PCINTS TO THE APPROPRIATE FILE NAME ENTRY. GET IT
INTG STCRAGE */
CALL ZLREA(FILEN,FLENT);
/% SET ZPCSN TC POINT AT THE START OF THE FIELC NAME ENTRIES =/
BLCCK = FCPTR3
CFFLT = 13
/% START A LCCP TO PRCCESS FIELD CESCRIPTICNS %/
CC 1 = 1 TC NCFLDS;
/% GET A FIELD NAME ENTRY */
WBLCCK = BLOCK: WOFFST = OFFSTS
CALL ZCREA(FLCLN,FDENT);
/% CHSECK FOR A MATCH CN FIELD NANME */
IF FDNA¥ = FLZLCMAME THEN;
. ELSE GG TC IXC1l;
/% IF THE FISLC 15 NCT INDEXED, CANCEL RUN ¥/
IF FOIXPTR = =} THEN CC3;
PLT FILE(REPORT) SKIP(2) ECIY
('FIELD *,FISLCNANE,* IS NCT INCEXEC')(A,A(20),A)3
CALL ZDCLS;

IXCls

IXC2:

i5d

ENC;
/% WE HAVE A VALID INDEXEC FIELCe BRANCKE RCUND
ERRCR PROCESSING */
GC TC 1xL23
/% END CF FIELD NAME PROCESSING LCCP */
ENC 3
/% NG MATCE CN FIELC NAME. PRINT AN ERRGR MESSAGE AND EXIT */
PUT FILE(REPCRT) SKIP(2) ELIT
(PFIELL NAME ° oFIELENAME,' NCT FCUND IN FILE ',FILENAME)
: (A 2(2C)sA5A1(2G));
CALL ZLCLSS
/* (ET START ACDRESS CF VALUE AND ADCRESS SUE-FILE AND
CELETZ IT »/
BLCCK = FOIXFTR:
CFFET = 33
ALLCCAT: CISPAREA;)
CALL ZCREA(FCLEN,DISPAREA)S
FREE DISPAREA;
FOURPTR = ADCRI(DBLZCK):
CALL ZLCREA(FCULR,FOURCHAR) G
BLLCIK = CBLOCKS
CALL ZECOST;
/% L[ELETE INCEX GONTRCL SUBFILE AND SET INCEX PCINTER TO
wuLL */
BLCLh = FOIXPTRS
CALL ZLDST;
FOIXPTR = =13
/* WRITE BACK UPDATEC FIELC NAME ENTRY */
BLCCK = WEBLOCKS
CFFST = WOFFST;
CALL ZCwWRT(FLLLN,FDENT);
/%* END OF PRCGRAM -~ PRINT A MESSAGE ANT EXIT */
PUY FILE{REPCRTY SKIP(2) ECIT('END OF RUN'}I(A);
CALL ZCCLS:
ENC ZPIXLC:

ECCPY *SCURCE* *=SINK¥

IPCNMP:

CMPL:

CMP2:

CMP3:

CMP4:

CMP5:

/% IXPCMF - CCMPARZ ThC FIELD VALUES ANG RETULRN A RESULT */

PRGCICNMPAREAL,CHPAREAZ,CMPRET)

/% THIS RCUTINE COMPARES TwC FIELD VALLES wKICH ARE PASSED
TC IT. THE TYPE CF CCMPARISCN IS CETERMINEC EBY ThE FIELCD
TYPE CEFIREDC THRCUGH AN EXTERNAL VARIABLE. & BINARY VALUE
CF -1, & CR +1 1S RETURNED ACCCRDINC TO THE CCMPARISCN
GIVING LESS THAN, EQUAL CR GREATER THAN RESULTS. */

/7* [EFINE COMPARISCN CCUNT FIELD *»/

CCL- ZCCMP BIN FIXED(31,0) EXT INIT(O)3

/* CEFINE FIELD TYPZ INDICATCR */

CCL ZFTYP EIN FIXED EXT3

/* CEFINE CCMPARE AREAS FCR VARIOQUS FIELD TYFES */

CCL CMPAREAL CHAR(*) CTL,

CMPPTRLI FTRs -
CMPYYP12 BIN
CMPTYP13.BIN

FIXEC(15,C) UNALICNED BASEC(CMFPTR1),
FIXEC(31,C) UNALIGNED BASEC(CNFPTR1),
CMPTYP14 BIN FLCAT(21) UNALIGNED BASED(CMFPTR1),
CMPTYPL15 BIN FLCAT(53) UNALIGNED BASED(CMPPTR1);
CMPAREAZ CRHAR({*) (TL,

CMFPTIR2 PTR,
CMPTYP22 BIN
“MPTYP23 BIN
CMPTYP24 BIN

CCL

FIXEC(15+C) ULNALIGNED BASEC(CNFPTR2),

FYYeD(31,0) UNALIGNED BASEC(CNFPTR2),

FLOAT(21) UNALIGNED BASED(CMFFTRZ),
CMFTYP25 BIN FLCATI(S53) UNALIGNED BASEC(CMPPTR2)3;

/* LEFINE RETULRN VALUE */

CCL CMFRET BIN FIXED;

/* INCREMENT NCo. OF CCMPARISONS BY 1 */

ICCMP = ICCMP + 13

/% MAKE YARICUS FIELC TYPES ACCRESSAELE #*/

CMPFTR1 = ADCR{CMPAREAL);

CME FTRZ = ADCR(CMPAREA2);

/%
1F
IF
IF
IF
/*
IF

CETERFMINE
IFTYP = 2
IFTYP 3
IFTYP 4
FTYP 5
(HARACTER

[LI)

FIZLD TYPE
TEZN GC TC
THEN GC TC
TEEN GO TC
THZK GC TC
CCMPARISCN

ANC BRANCH ACCCRCUCINGLY »/
CFMPL:

CrP25

CMP33;

CMP4;

*/

(MPAREAL < CMPAREAZ THEN GC TCQ CMP53

IF (MPAREAL CMPAREAZ THEN GC TC CMP6;
CO 10 CMPT;

/* EBINARY FIXEC(15,3) CCMPARISCN */

IF C(MPTYPLZ < CMFTYP22 THEN GC TO CMPS;
IF CMPTYFl2 CMPTYP2Z THEN GC TQ CMP63
GG 10 CMP73;

/% EINARY FIXEC(31,4) COMPARISON */

IF CMPTYPI3 < CMPTYPZ2 THEN GC TC CMP5;
IF CMPTYPL2 = CHMPTYP22 THEN GC TO CMP63
CC TO0 CMP;

/* EINARY FLCAT{21) CCMPARISON */

IF CMPIYPl4 < CMPTYPZ4 THEN GC TQO CMP53
IF CMPIYFI4 = CMPTYPZ24 THEN GC TO CMP&;
GO TO CMPT3

/% EINARY FLCAT(53) COMPARISON */

IF (MPTYPLS < CMPTYPZZ THEN GC TO CMP5;
IF CMPTYPL5 = CMPTYPZ5 THEN GL TC CMP6;
GG 10 CMPT;

/% LESS THAN CONDITICN */

CMPRET = =13

. 158

RETULRN;

/* EQUALS CONCITION %/
cMpPe: CMPRET = O3

RETULRN;S

/% CREMTER TPAN CONCITION */
CMPT: CMPRET = 13

RETURN;

/* END OF CCMPARISCN RCUTINE #/

ENC ZPCHP;

-—

By

5

£CCPY #SCURCE* *SINK#

ZPEDT:

/% 1XPECT - EDIT SELECT INPLT CATA %/
PRCCIFILENAME FICLUNANME,OPERATCR,FIELDVALUE) S
/* THIS RSUTINE ACCEPTS AS INPUT ONE SELECT CCNCITICN,
CETERMINCGS IF IT IS VALIC. AND IF SC STCRES THE RELEVANT
FRCCESSING INSTRLCTIONS CN & TABLE */
/* CEFINE CUTPUT FILE #*/
CCL REPCRT FILE OUTPLT;
ZINCLUCE IXMSPM;
ZINCLUCE IXMLPM; _
/* CSFINE INPUT FILE NAME, FIELD NAME, SELECTICAN CPERATCR
AND FIELD VALUE PASSELC AS FARAMETERS */
DCL (FILENAME,FIELCNAME) CHAR(20),
OPERATCR CHARI{3) VAR,
FIELZYALLE CHAR{Z25S5) VAR;
/* CEFINE FIRST TIMZ SWITCH FCR ECITING FILE NANME #*/
CCL 2ECShW BIN.FIXEC EXT INITIL)S
/* CEFINE ROLTINE FCR SEARCHING DIRECTCRY */
CCL ZPFNC =NTRY RETURAS (BIN FIXEC(15+0))3
/% CEFINE EDIT ERRIR FLAG FGR RETURN */
DCL ZECTF BIN FIXED IMT INIT(Z)S
/* CEFINE TABLE AND NC. GF ENTRIES FCR STCRING SELECT
CONCITICNS ENTERFT #/
CCL 1 ZSTAB(2J) EXTs /% MAXIMUM 22 CONCITICNS PER CUERY */
2 SCAUM BIN FIXZL, /* SEARCH CCNCITICN NLNBER */
LVNUM BIN FIXEC, /% LEVEL NUNMBER %/
IBADCR BIN FIXED(31s9), /% INDEX BLCCK NUMBER */
STYPE BIN FIXEL, /* SSARCH TYPE #*/
FIYPE BIN FIXED, /% FIELD TYPE */
FVLEN BIN FIXEC, /% FIELD VALUE LENGTH ¥/
FVPTR PTR; /* POINTER TO FIELC VALUE STCRAGE AREA »/
CCL ZSTINC BIN FIXED EXT INIT{(G); /7#% NUMBER CF EATRIES */
/% CEFINE SEARCH FIELLC VALLE AREA #*/
CCL SCHPTIR PTR,
SCETYPLT CHAR(FDLEN) CTL,
SCHETYPZ BIN FIXEC(15,0) UMALIGNEC BASELC(SCHFTR),
SCHTYEZ BIN FIXSC(31,U) UNALIGNEL BASEC(SCHPTR),
SCHTYP4 BIN FLCAT(21) UNALIGNED BASEC(SCHPTIR),
SCHTYPS EIN FLCAT(53) UNALIGNEC BASEC(SCHPTR);
/% SEARCF FOR FILE NAME FIRST TIME TERCUGH CAhLY */
IF 2EDSW = 1 THEN GC TC IXEDS;
/% SET ECIT SWITCH TC 1 */
2ECSH = 1;
/% CISFLAY FILE NAMS IN PRCCESS */
PUT FILE(REPCRT) 5KIP{2) ECIT
(YFRECESSING FILE " FILENAME)(A,A(20))3
/* SEARCF CIRECTCRY FCR FILE NAME, IF VALUE RETLRNEC BY
ZPFNC 1S ZERO, THER NG NATCH HAS BEEN FCUNC =~ PRINT
AN ERRCR MESSAGZ ANC SET ERROR FLAG ¥/
IF ZIPENCUFILENAME) = . THEN OC;
FLT FILE(REPCRT)Y SKIP(2) ECIT
{'FILE ',FILENAME,' IS NCT IN THE CIRECTCRY')
(As;Ai20)24)3
CALL ZCCLS:

NN N RN N

ENC 3

/% IPOSN POINTS TO THE APPRCPRIATE FILE NAME ENTRY. GET IT
INTC STCRAGE */.

CALL ZCREA{FILEN,FLENT);

/% CISPLAY INPUT DATA */

IXECS: PUT FILE(REPCRT) SKIP{2) ECIT
{r3%ex% SELECT CCNDITION *,ZSTNCI(A,FL2));
PUT FILZ(REPCRT)Y SKIP EDIT
("SZARCH INDEX CN (",FIELDCNANME.') %,
CPERATCR,® {S,FIELCVALLE,')?*)
(A AL20) sheArAsAyA)
/% SET ZFPSSN TC PGINT AT THE START OF THE FIELC NAME ENTRIES */
BLCCK = FOPTR;
CFFST = 13 :
/% START A LCCP TO PRCCESS FIELD CESCRIPTICNS #/
0G-1 = 1 TC NCFLDS;
/% CET A FIELC NAME ENTRY =»/
CALL ZLREA(FLCULNSFCENT);
/% CHECw FCR A MATCH CN FIELD NAME »/
IF FONAM = FIELDNAME THEN;
ELSE €0 1C IXELQ03
/% 1F InE FIELC 1S NCT INCEXEC SET ERRCR FLAGC #/
IF FOIXPTR =,-1 THEN LCGC;
PUT FILE(REPCRTY SKIP(2) EDIT
(VFIELC '.FIELCNAME,® NOT INCEXED - SSQUENTIAL SEARCH RECLIRED')
(A A(20)}eA);
2ECTF = 13
GG TO IXESQ:
ENC: |
/% yE HAVE A VALID FIELD NAME. BRANCH RCUNLC ERRCR PROCESSING */
GG 10O IXE2Q:
/* END GF FIELC NAME PRCCESSING LCCP */
IXE1Z: ENLC3;
/% NO MATCH CN FIELD NAME. PRINT AN ERROR MESSAGE AND SET
ERRCR FLAC */
PUT FILE(REPCRT) SKIF(2) ECIT
(*FICLL NAME * o FIELCNAME,' NCT FCUND IN FILE ',FILENAME)
(A, A{2C)2A,A12C))
ZECTIF = 13
€0 10 IXESOs .
/% EDIT ENTEREC OPSRATCR FCR VALIDITY ANC ASSIGN SEARCH TYPE */
1F CPERATGR = 'EQ' THEN DC;
STYPE{ISTNG) = 1; /* EQUAL */
€C TO IXE303;

—
x
m
[)%}
«
(1)

ENC:
IF (PERATCR = °*NEQ' TREN CC;
STYPE(2ZSTNC) = 25 /#% NOT EQUAL */
GG TG IXE30:
ENC3
IF CPERATIOR = *G7' THEN DC;
STYPE(ZSTNG) = 2; /* GREATER TEAN */
G0 TQO IXE30:
ENC;
IF CPERATCR = °*GTE* THEN CC;
STYPE(2ZSTNG) = 4; /* GREATER THAN CR ECLAL */
GC TC 1IXE30;
ENLC;
IF CPERATCR = 'LT' TFEN DC; :
STYPE(ZSTNG) = S; /* LESS THAN */
GC TC IXE30; :
ENC; '
IF CPERAJCR = °*LTE' THEN DC;
STYPE(ZSTNO) = &; /#* LESS THAN OR EQUAL »/
GG TO IXE30; '
ENC;

IXE3L:

/% INVALIC OPERATOR EANTEREC - PRINT AN ERRCR MESSAGE ANC
SET ERACR FLAG */

PUT FILE(REPCRT) SKIP{2) ECIT
{*INVALIC OPZRATCR *',CPERATOR,* ENTEREC')}(A,8,A);

ZECTIF = 1;

GG T0 IXE50;

/% SET UP FIELD YYPE »/

FIYFELISINC) = FLTYP;

/* LEFINE COAVERSICN ERROR PRCUCESSING FOR INFLUT FIELC VALUE */

CN CONVERSION BEGIN;

-2 - PUT FILE(REPORT) SKIP(2) EDIT

{'CCNVERSICN ZRRCR IN INPLT FIZLD VALUE 'HFIELCVALLE)(A,A);
IECTF = 153 |
CL TC IXESQ;

ENC;

/% ALLCCTATE STCRAGE FCR FIELD VALUE ANC MAKE IT AECRESSAELE */

ALLCCAT: SCHTYPi

SCHFTIR = ACDP(‘CHTYPI).

FVPIR(ZSTAC) = SCHPTR;

/* CONVERT INPUT FIELC VALUE (1F NECESSARY) */

IF FTYFE(ZSTAC) = 2 THEN CC;
SCKTYPZ = FIZLIZVALUE; /% BINARY FIXEC(15,0) */
GC TC IXE4Q;

ENC; .

IF FTYPE(ZSTNC) = 3 TEEN OC3
SCrTYP2 = FIZLCVALUE; /* BINARY FIXEC(21,Q) #*/
GC TC IXE49;

ENC3

IF FTYPE(ZSTNC) = 4 THEN DG3
SCRTYP4 = FIZLLOVALUE; /# BINARY FLCAT{Z1l) */
CO TO IXE4Q:

ENC 3

IF FIYPE(ZSTNC) = 5 THEN DC3
SCRTYPS = FIELCVALUE; /% BINARY FLCATI(Z3) */
GC TC IXE40;

ENC;

SCETYPL = FIELCVALUE; /% CHAR(*) */

/* STORS INDEX BLCCK ACDRESS: FIELDC VALUE LENGTE ANDC RETURN */

IBAIDR(ZSTNQ) = FDIXPTIR;

FVLEH(ZSTKC) = FDLEN;

RETURN;

ENC ZPEODT:

£CCPY #SCURCE#® *SINK#

IPSEL:

/% IXPSEL - SELECT RECCRCS ACCCRLING TC INPUT PARANETERS */

PRCCITABNG)

/% THIS RCUTINE RECEIVES AS A PARAMETER AN ENTRY NUMBER IN
A TABLE. FRCM THIS NUMBER A TABLE CF SELECT CCACITIONS
1S LCCKED LP AND ThE RELEVANT SELECT PRCCESSINC INVCKED.
CUTPUT FRCM THE RCLTINE IS A NUMBER GF RECCRL ACCRESSES
STQREL IN A TEMPGRARY FILE CN TISK ¥/

/* [EFINE QUIPUT FILE */

CCL REPCRT FILE CUTPUTS

/* CEFINE BLCCK AND CFFSET INCICATCOR */

CCL 1 ZPCSN EXT,

2 BLCCK BIN FIXEL(31,81,
2 CFFST BIN FIXED;

/% CEFIME TAELE ENTRY NUMBER PASSEC AS PARAMETER */

CCL TABNC BIN FIXED;

/% [EFINE TABLE FOR STCRING SELECT CCNCITICNS ENTERED */

CCL 1 ZSTAB(zl) EXT, /* MAXIMLM 25 CONCITICNS PER CUERY */

SCNUM BIN FIXED,; /* SZARCH CCNCITICN NULMBER #/

LVYNUM BIN FIXELC, /% LEVEL NUFBER */

18ACCR BIN FTXEC(31,9), /% INCEX BLCCK ACCRESS */

STYPE BIN FIXEC, /#* SCARCH TYPE */

FIYPE 2IN FtazCls /% FIELD TYPE */

FVLEN BIN FIXEC, /% FIELD VALUE LEANGTE ¥/

Z FYPTR PTR; /# POINTER TO FIELD VALUE STCRAGE AREA #/

/% CEFINE FIELLC TYPE AREA */

CCL ZFTYP BIN FIXED EXTs

/% CEFINE SEARCH FIEZLL VALLE AREA %/

CCL SCHPTIR PTR,

MSKARZA CHAR(255) BASELC{SCHPTR),
SCHARZA CHAR(IWLEN) CTL3
/% LEFINE START ANC FINISH FIELD VALULES ANC PFCSITICNS */
CCL {SVALVE,FVALUE} CHAR(CIWLEN) CTL,
SBLCCK BIN TIXEC(2.,0)3
/* CEFINE INLEX PROCESSING VARIABLES %/
CCL NVAR BIN FIXED, FWCRK BIN FIXEC(31,0), HhCRK BIN FIXED,
TWC BIN FIXED INIT(2), FCLR BIN FIXEC INIT(4):
DCL FOLRCHAR CHAR{4) BASEL{FCURPTRI,
TWCCHAR CHAR(2) BASED(TWCPIR},
(FCLRPTRyTWOPTR) PTR;
/* CEFINE PREVIOUS FIZLD VALUE AND PCSITION #/
CCL PVALLE CRAR{IWLEN) CTL,
PBLOCK BIN FuXEC(31,01,
POFFST BIN FIXEC(1540)3
/* CEFINE CURRENT FIELC VALUE ANC POSIVICN ¥/
DCL CVALLE CEARUIWLER) CTL,
CBLCCK BIN FIXEC(21401),
COFFST BIN FIXZCUi5,0)3

/% CEFINE NO. CF RZCCRC ACCRESSES FOR CNE FIELC VALUE */

CCL NRECA BIN FIXED(3L,0)3

/* CEFINE TOTAL NO. CF RECCRC ACCRESSES FOUNC */

CCL ITREC BIN FIXEC(31,2) EXT;

/% CEFINE RECCRD ABCRESS WCRK FILE */

DCL IWACC FILE RECORC SEQLENTIAL ENVIF(240,4));

/% INITIALIZE SEARCH FIELC TYPE FOR ZPCMP #/

IFTYP = FTIYPE(TABNC)S

/* [ETERNMINE START ANC FINISH CF SUB-FILE PCSITIONS */

/% FLLCCATE STCRAGS FGR START ANC FINI'SH FIELC VALUES */

IWLEN = FVLENITABNCI);

SEXE SR SESSRY

IXSi0¢:

IXSic5:

IXS1i3s

ALLCCATE SVYALLE,FVALLE;

/* DETERMINE PCSITICN COF SEARCH FIELD VALUE 3/
SCHFTR = FVYPTRI{TABNGC);
/* PLLCCATZ STCRAGE FCR SCARCH AREA ANC FOVE IN CATA ¥/
ALLCCATE SCHAREAS
SCHAREA = MSKAREA;
/* CETERNMINE NC. OF VALUE ANC ACCRESS ENTRIES ¥/
BLCCK = IBACCRITABNG);
CFFET = i3
TWCPTR = ADDR(NVAB);
CALL ZCREA{TWC,TWOCHAR);
/% LOOP 70 PRCCESS INCEX VALUES ANC STCRE KICHEST VALUE */
FOLRPTR = ACCR(FWIRK);
TWCFTR — ADDR (HWORK);
DO I = 1 TC AVAB;
CrLL ZCREAUIWLEN,FVALUE);
ChiLL ICREALFOUR,FCURCHARI];
CALL ZCREA(THS,TWQCHAR);
/* IF FIRST ENTRY STCRE BLOCK ADCRESS */
IF I = 1 THEN SB8LOCK = FWORK;
ENLC3
/* CET ANC STCRE LGWIZT VALUE */
BLCCK = SBLOCK:
CFFSY = 1;
CALL ZCREA{IWLEN,SVALUE);
/% SET NUKEER CF RECCRLCS FCURC TC ZERG */
ITREC = (3
/% CETERMINE THE SEARCH TYPE CCDE AND BRANCH TC THE
APPRCPRIATE PROCESSING RCUTINE */
IF STYPE(TABAC) THEN GC TC IXS1Q0;
IF STYPE(TABACG) THEN GC TC IXS260;
IF STYPE{YABNC) ! STYPE(TAENC) = 4 THEN CC 10 IXS$308;
IF LTYPE{TABAC)] STYPE(TABNC) = 6 THEN GC TC IXS510;
/¥ THE FCLLOWING STATEMENT SHCLLLD NEVER BE PRCCESSEC AS
THE SEARCK TVPE HAS ALREADY BEEN CHECKEL #%/ ’
PUT FILE{REPCRT) SKIP(2) ECIT(*#**4* SYSTEM ERRCR 1')(A);
CALL ZCCLS;
/% #¥4%x% START OF SELECT PRCCESSING TYFE 1 = EQUAL ¥%%3% %/
/% LETERMINE IF FIELLC VALUE ON WHICH SEARCH IS CEFINED
IS WITHIN THE RANCE CF FIELD VALUES WITHIMN THE INDEX. IF
MIT PRINT A MESSACGE ANC EXIT */
CALL ZPC¥P{SCHAREA,SVALUEsHNWORK);
IF FPWORK = =1 THEN GC TC IXS1<5;
CALL ZPCNP(SCHAREA,FYALUE,EWCRK);
IF HHORK = 1 THEN;

[I T '}
LS TUR LN o

ELSE G6C TO 1IXS11C;
PUT FILE{REFCRT) 3SKIP(2) ECIT
{ear¥ed SCLECT CCNDITION NCo *H»SCNUMITAENC))(A,F(2))3
PUT FILE(REPCRT} SKIP EDITY
(*FIELC VALUZ SPECIFIED IS NCT IN INCEX')(A);
GC 10 IXSRT12;
/% SET PREVICUS FIZLLC INFCRMATICON TO START CF INLCEX %/
ALLCCATE PVALUE,CVALLUE;

PVALUE = SVALLES
PEBLCCK = SBLCCK:
PCFFST = 13

/% START A LCGP TO PRCCESS THE INCEX CCNTRCL ENTRIES */
BLCCK = IBACCR(TABNG);

CFFST = 2;

CO I = 1 TC NVAB;

IXS1153

IXS123:

IXS$125:

IXS128:

IX520G:

ST,

/% CET AN INCEX CCNTRCL ENTRY */

CALL ZCREA{IWLEN,CVALLE}S

FOURPTR = ACCRI(CBLCCK);

CALL ICREA(FCUR,FOURCFAR);

TWCFTR = ACDR{CCFFST);

CALL ZCREA{TWC,THWOCHAR);

/% COMPARE THE SEARCH VALUE WITH THE CLRRENT ENTRY VALUE */
CAaLL IPCMP{SCHAREA,CVALUE sFWORK) §

IF EWORK = 3 THEK GC TC IXS125; /* EQUAL */

IF FWORK = =1 THEN GC TC IXS12E5; /* LESS TRAN */

/% SOVE CURRENT ENTRY INFCRMATION INTO PREVICUS */

PVALUE = CVALUE;

PBLLCK = CBLCCK;

PCFFST = CCFFST3 i

/* END CF INCEX CONTRCL PRCCESSING LCOP */
ENCs

/% THE FCLLOWING STATEMENTS SECULD NEVER BE FRCCESSED */ |
PUT FILE(REPCRT) SKIP{2) ECIT('#%4%x SYSTEN ERRCR 2')(A)S
CALL ZCCLS;
/* SET ZPOSN TC PREVICUS */
BLC(K = PBLOCK;
CFFST = FCFFST;
/* CET A VALLE AND ACCRESS ENTRY #*/
CALL ZCREA(IWLENsCVaLLE)S _
/% COMPARE THE SEARCE VALUE WITH THE CURRENT ENTRY VALUE */
CALL ZPCFP{SCHAREA,CVALUE yHWORK);
IF FWORK = o THEN GG TC IXSi27; /% ECUAL */
IF FWORK = =1 THEN GC TO IXS1.5; /% LESS THAMN - NCT FOUNC */
/% SKIP TC NEXT ENTRY */
FCURPTR = ADCR{NRECA)};
CALL ZCREA(FCUR,FOURCEAR);
CFFST = CFFST + 4*NRECAS
€0 10 IXZ1233
/* WE FAVE DETECTED AN EQUAL CCNCITICN IN THE INCEX CONTROL
ENTRIESe SET THE PCSITICN INCICATCR TC PCIAT TC THE
NUMEER CF RECCRDS */
BLCCK = CBLOCK;
CFFST = CCFFST + IWLENS
/% CETERMINE NC. OF RECCRCS IN LIST ¥/
FCUFRPTR = ACCR(NRECA);
CALL ZCREA(FLUR,FOURCHAR) S
/% SET NUMBER CF RZCCRC ACCRESSES FOUNC */
ZTREC = NRECA;
/* START A LCCP TO GET ANDC STCRE RECCRL NUNMBERS */
FCUEPTR = ACCR{FWURK);
LS I = 1 TC MRECA;
CALL ZCREAUFOUR,FCURCHAR);
/* STORE RECORC NUMBER CN ACLRESS WORK FILE */
WRITE FILE{ZWACC) FRCM(FCURCHARLS
ENC3
FREE SVALUE,FVALUE,PVALUE,CVALUES
FREE SCHAREAS
GO TO IXSRET; '
/% *x%*3% €ND CF SELECT PRCCESSING TYPE 1 - ECUAL LE L L
/% skxsx START OF SELECT PROCESSING TYPE 2 = MNCT EQUAL ###%%x %/
/% SET PCSITICN INCICATOR TC START OF VALUE AN ACCRESS

SUB-FILE #/
BLCCK = S$8LOCK;
CFFST = 13

ALLCCATE CVALUES

IXSelh:

IXs2ivse

IXS3{3s

{*FIELE

IXS3C5:

/% CET A FIELC VALUE »/

CALL ZCREA(IWLEM,CVALLE);

/* CETERMINE NUMBER CF RECCRDS ON THE LIST */

FOLRPTR = ADCR(NRECA);

CALL ZCREA(FCURsFOURCEAR]);

/% IF SEARCH VALUE ECUALS CURRENT FIELC VALUE BRANCE RCUND
CISFLAY PRCCESSING */

CALL ZPCNMP{SCHEAREA,CVALUE ,HWORK)S

IF FWORK = THEN D03

o CFFST = CFFST ¢+ 4 * ANRECA;

-2 - GC TG IXs£210;

ENC3

/* INCREMENT TCTAL NUNMBER CF RECORC ACCRESSES FLUNC %/

ITREC = ITREC + NRECA;

/% START A& LCOP TO GET ANC STCRE RECCRC NUMBERS */

FOULRPTR = ADCR(FWORK):

LG I = 1 TC MRECA;

CALL ZCREA(FOUR,FOURCHAR);
/* STORE RECORC NUMBER CN ACCRESS wWORK FILE */
WRITE FILE{ZWALE) FRCM{FCURCHAR);

ENC;

/* FINC CUT IF CURRENT FIELD VALUE IS FIGHEST CAN INCEX. IF
NOT BRANCH BACK TC CET ANOTHER FIELL VALUE #/

CALL 2P MP(CVALUE,FVa _UEsHWORK) S

IF EWJORK = 2 THEN;

ELSE GC TC IXxS2CZs

/* FREE PRCCESSING AREAS AND BRANCH TC SCRT ANL CISPLAY
RECCRLC NUNMEBERS %/

FREE SVALUE,FVALUE,CVALUE]

FREE SCHAREA;

GO 10 IXSRET:

/% A%x%% END CF SELECT PRCCESSING TYPE 2 = NCT EQUAL *¥33¥% *x/

/% r#*xx%x START GF SELECT PRCCESSINC TYPES 2 ANC 4 -
CREATER THAN AND GREATER THAN CR ECUAL #*4%x %/

/% CETERMINE WHIZTHER THE FIELL VALUE OMN WHICF THE SEARCH IS
CEFINEC IS WITHIN THE RANGE OF FIELC VALUES WITHIN THE
INDEX. IF BELCW, LCISPLAY ALL RECORD NUMEBERS; BLT IF AECVE,
CISPLAY A MESSAGE AND EXIT */

CALL ZPCMP(SCHAREA,SVALUE,HNWCORK);

ALLCCATE PVALUE,CVALUES

IF FWORK = -1 THEN OC;

BLCCK = SBLCCK;
CFFST = 13
CC TC IxS8325;

ENC3

CALL ZPCMPUSCHAREA,FVALUE +HWCRK) ;

if RWORK = 1 THEN;

ELSE GO TC IXS3C5;
PUT FILE(RZPCRY) SKIP(2) ECIT
{oexd SELECT CONDITION NCo *oSCNUMITABAC)I{ASF(2))3

PUT FILE(REPCRT} SKIP EDIT

VALUE SPECIFIEC 1S GREATER THAN HICHEST VALUE CAN INCEX'"J)(A)3

GG TC IXSRT2:

/* SET PREVICUS FIZLLC INFCRMATICN TQO START CF INCEX */

PVALUE = SVALUES :
PBLCCK = SBLCCK3:
PCGFFST = 1;

/% START A LCCP TO PRCCESS THE INDEX CCNTRCL ENTRIES */
BLCCK = IBACCRUTABNG)
CFFST = 23

IXS2.¢

e

-

IXS318:

IXS325:

IXS3

(%

<>

‘CC 1 =1 TC AVAB;

/* CET AN INCEX CONTRCL RECCRE %/

CALL ZCREA{IWLENSCVALLE)};

FCLRPTR = ADCR(CBLCCK);

CALL ICREA(FCUR,FOURCEAR);

TWCFTR = ACDRI(CCGFFST);

CALL ZICREA(TRC,TWOCEAR);

/% COMPARE THE SEARCK VALUE WITH THE CURRENT ENTRY VALUE */

CALL ZPCMPISCHAREA,CVALUZ,HWORK);

If FWORK = 0 THeN OCs /% £CQUAL */
.. BLCCK = CBLOCK;

CFFST = COFFST3

CALL ZCREAUIWLEN,CVALUE);

CC TC IXS320:

ENLC 3

IF FWORK = =1 THEN GC TC IXS3103 /* LESS TFAN */

/% MOVE CURRENT ENTRY INFCRMATION INTO PREVICUS */

PVALUE CYALUE;

PBLICK CB8LCCK;

PCFFST = CCFFST;

/* END CF INCEXx CONTRCL PRCCESSING LCOP */

ENLC s

/% THE FCLLOWING STATEMENTS SHCULD NEVER BE FRCCESSEC */

PUT #ILE(REPCRT) SKar72) SCIT(*#*%%xx SYSTEM ERRCR 3')(A);

CALL ZCCLS:

/% SET ZPCSN TC PREVICUS */

BLCCK = FBLOCK;

CFFEST = PGFFET;

/% CET A VALLE AND ACCRESS ENTRY */

CALL ZCREA(IWLEN,CVALLE);

/% COMPARE THE SEARCEF VALUE WITHIN THE CURRENT ENTRY VALLE */

CALL ZFCMP(SCEAREA,CVALUE sHWCRK);

IF *WGRK = J THEN GC TC IXS32C: /% ECQUAL */

IF FWORK = =1 THEN GC TG IXS33C; /* LESS THAN ¥/

/% SKIP TC NEXT ENTRY */

FCURPTR = ADCR{NRECA);

CALL ZCREA{FCUR,FOURCEAR);

CFFST = CFFST + 4 % NRECAS

GO 10 IXS315;3

/* CETERMINE IF SEARCF TYPE CCCE IS 4 - GREATER THAN ECQUAL.
IF ST SET ZPUSN TC POINT TC IT, OTHERWISE SET ZPCSN TC
FOINT TC NEXT ZINTRY %/

IF STYPE(TABANC} = 4 THEN GC TL IXS3303

/% FINC CUT IF F1ELLC VALUE IS HIGHEST IN INCEX. IF 50, BRANCH
TO ENC CF SEARCH */

CALL ZFPCMPICVALUE,FVALUE,HWCRK);

IF FWORK = O THEK GC IC IXS325;

/* SKIP TC NEXT ENTRY */

FCURPTR = ADCR{NRECA);

CALL ZLREA(FCLR,FOLRCHAR);

CFFST = CFFST + 4 * NRECA;

/* CET A FIELC VALUE %/

CALL ZCREA{IWLEN,CVALLE);

/* CETERMINE NUMBER CF RECCRCS ON THE LIST %/

FCURPTR = ADLR(NRECA); .

CALL ZCREA(FCUR,FOURCHAR);

/% INCREMENT TCTAL NUMBER CF RECCRC ACCRESSES FCUNC %/

ZTREC = 2TREC t NRECA;

/% START A LCCP TO GET AND STCRE RECCRLC NUNMBERS */

FOLRPTR = ADCRIFWORK) 3

LG I = 1 T8 NRECAS
CALL ZCREA(FCUR,FCURCHAR);
/% STORZ RZCCRC NUMBER CN ACCRESS WORK FILE #*/
WRITE FILE{ZWALE) FRCM(FCURCHARD G
ENC 3
/* FINC CUT IF CURRENT FIiELO VALUE IS FIGHEST CN INDEX, IF
NOT BRANCHE T3 GET ANCTHER FIELL VALLE */
CALL ZPCMP{CVALUESFVALUE,HWCRK] S
IF FWORK = 0 THEN;
- ELSE GC TC 1xS325;
/*_FREE PROCESSING AREAS ANC BRANCH TG SCRT ANC CISPLAY
FECCRC NUMBERS */
IXS325: FREE SVALUE,FVALUE,PVALUE,CVALLE;
' FREE SCH-AREA;
GO TO IXSRET:
/% %*kx%~ END CF SELECT PRCCESSING TYPES 3 ANLC 4 -
CREATER THAN AND GREATER TYhHAN OT EQLAL ##31%% 3/
/% #¥xxx START OF SELECT PRCCESSING TYPES 5 ANLC € -
LESS THAN AND LESS THAN CR EQUAL »#33x ¥/
/* CETERVINE IF THE FIELC VALLE CN WHICH TEE SEARCH IS
CEFINEC IS LESS THAN TrE FIRST VALUE CN THE INCEXe. IF SC»
CISFLAY A MESSAG:Z AND EXIT */
IXS50G: CALL ZPCPP(SCHAREZA,SVALUE,HWORK) S
IF FdORX = =1 THEN?
ELSE GC TO IXSE2CS;
PUT FILE(REPCRT) SKIP(2) ECITY
{taakd SELECT CCNDITICA NCo *oSCNUM{TRAENCIILA,FL(2))5
PUT FILE{REPCRT) SKIP EDIT
(*FIELC VALLE SPECIFIEC IS LESS THAN LCWEST VALUE CN INCEX*)(A);
CC 10 IXSRT23
/% SET IFCSN TC START GF VALUE AND ACDRESS SULE-FILE %/
IXSE.5: ALLCCATE CVALUES
BLCCIK = SBLOCK;
CFFET = 13
/* GET A FIELC YALUE */
IXS51¢: CALL ZEREA(IWLEN,CVALLE);
/% COMPAREZ THE SEARCE VALUE WITH THE CURRENT ENTRY VALUE */
CALL ZPCMP{SCHAREA,CVALUE,HWORK) S
IF FWORK = U THEN GO TC IXS515; /% EQUAL *»/
IF FWORK = 1 THEN GO TG IXS5203 /* GREATER TRHEN */
GC 10 1XS$523; /* LESS THAN -~ ENC CF SEARCH */
/% CETERMINE IF SEARCF TYPE CCLCE IS 5 - LESS THAN. IF SO,
GO 1C =KD CF SEARCE, OTEHERWISE CISPLAY IT */
I1XS5.5: IF STYPE{TABNC) = 5 THEN GC TC IXS5253
/* CETERMINE NCe OF RECGROS ON LIST ¥/
2% FOURPTR = ACCRINRECA);
CALL ZCREA(FCLR,,FOURCHAR)
/* INCREFENT TCTAL NUMBER CF RECORL ACCRESSES FCUNC */
ITREC = ITREC + NRECA;
/% START A LCCP TO GET AND STCRE RECCRC NOS. */
FCLRPTR = ADCR({FWORK);
CGC I = 1 TC NRECA;
CALL ZCREA(FCUR,FOURCHAR);
/% STORES RECCRC NUMBER LN ACCRESS WORK FILE #*/
WRITE FILS(ZWACD) FRCMUFCURCHAR);

IXS

An
[\8]
[

ENC3

/% FINC CUT IF CURREINT FIEZLD VALUE IS HIGHEST CN INDEX. IF
NOT BRANCE TO GET ANCTHER FIELD VALLE */

CALL ZPCFP(CVALYE,FVALUE;HWORK);

IF HWCORK = (THEN;

. g

[XS525:

IXSRET:

IXSRTZ:

ELSE CC 7T IXS51¢;
/* FREE PROCESSING AREAS ANLD ERANCH TO SCEBT ANLC CISPLAY
RECCRL NUMBERS */
FREE SVALUE,FVALUE,CVALUE;
FREE SCHAREA;
/% »¥%k%% END CF SELECT PRCCESSING TYPES & ANC & -
LESS THAN AND LESS THAM CR EQUAL #3%3% 3/
/* 1F NUFEER CF RECORC ACCRESSES EQUALS ZERC, PRINT A
MESSACE ANC EXIT »/
IF zTREC = 3 THEN DG;
-~ - PUY FILE(REPCRT) SKIP(2) ECIT
(raxxx% SELECT CCNDITICN NGe "+SCNUMITAENC))I(A,F(2));
ELT FILE(RZEPCRT) 3SKIF ELIT
{*NC RECLRDS SATISFYING SCARCH PARAMETERS FCUND'I(A)
ENC;
/* FETULIA TO MAIN PRCCRAM ¥/,
RETLRN;
ENL ZPSEL; '

E£CCPY *SCURCE®*

IPIXS:

/% IXP1IXS

STy

*SINKH

- SELECT RECCRDS USING INVERTED INLCEX 3/

PRCC OFTICNS(MAIN);
/% FHIS PRCGRAM DETERMINES ALL THE RECCRLS SATISFYING A

NUMBER

CF INPUT SELECTICN CCNEDITICNS INPUT FCR SPECIFIED

FILE ANC FIELD NANES =%/

/% LEFINE

ANC FlE

INPLT FILZ NAMS, FIEZLD NAME, SELECTICN CPERATOR

LD VALUE AREAS ¥/

CCL {FILENAME FISLDNAME} CEHAR{20),
- .. BPERATCR CEARI(3) VAR,

FIELCVALLE CHAR(Z2255) VARj;

/7% CPU TIME FRCCESSINC AREAS #/

CCL TIME ENTRY,
P3 FIXED BINI{31) INIT(32) STATIC,
CKEY FIXEC BIN(31) INIT(L),
CPR FIXEL BIN(31l) INIT(O),

CCRES

BIN.FLCAT(21),

CRES BIN FIXED(31),
CRESA{5) FIXED BIN{(31);

/* LEFINE

INPLT ANC CUTPUT FILES */
CCL INFILE FILE INPLT,
REPCRT FILE GUTPUT: '

/* LeFIME TAELE FOR SYCRING SELECT CONCITICNS ENTERED */
PCL 1 ZSTAE(Z20) EXT, /* MAXIMLM 203 CCNCITICKS PER QLERY #/

2 SCNUY BIN FIXEC, /% SEARCH CCNCITICN NULNBER */

2 LVRUM BIN FIXED, /* LEVEL NUVBER %/

2 IBADCR BIN FIXED(21,J)s /* INCEX BLCCK ACLRESS 3/

z STYPE BIN FIXEC, /% SEARCH TYPE */

2 FTYPE BIN FIXEDs /* FIELL TYFE */

2 FYLEN BIN FIXZD, /% FIELC VALUE LENGTE #*/

Z FVPTR PTR; /* PUINTER TO FIELD VALUE STCRAGE AREA %/

/* EFINE NUFMBER OF ENTRIES IN TABLE *»/
CCL ZSTNC BIN FIXECD EXT INIT(G);

/* LEFINE ERRCR RETURN VARIABLE #*/

CCL ZECTF BIN FIXED EXT INIT(C);

/* CEFINc COMPARISON CCUNT FIELD %/

CCL ZCCHP BIN FIXEC(31,0) EXT INIT{D):
/* {EFINE SZARCH CONCITION DELIMITER */

CCL DELINMITER CHAR(3) VAR;

/% CEFINE FIRST TIME SWITCH #/

CCL FSWCH BIN FIXED:

/% CEFINE SELEZCT PRCCESSING FILES »/

ECL {ZwWACC,ZAACD,ZCACLC) FILE RECCRLC SECUENTIAL ENVIF(240,4));
/% LEFINE TOTALS FCR AND/CR PRCCESSING */

CCL {ANCICT,CRTOT) EIN FIXEC(21,0)3

/x CEFINE A WCRK AREA TO PRCCESS RECCRLC ACCRESSES #/

ECL FKLRK

BIN FIXEL(21,:0),

FOLRCHAR CHAR(4) BASEC(FCURPTR),
FOLRPTR PIR3;

/* CEFINE PREVICUS LEVEL NLMBER STCRAGE */

CCL PLAUVM BIN FIXED;

/* LEFINE TABLE ENTRY NUMBER PASSEC AS PARAMETER #/

CCL TAENC EIN FIXED;

/% LEFINE TOTAL NUMBER CF RECCRDS FOLNC IN SELECTICN */
ECL ZTREC BIN FIXEC(31,0) EXT3:

/* SORT PARAMETERS */
CCL Fi FIXED BIN{31) INIT(1) STATIC,
SORT ENTRY,

PLIRC

RETURNS (FI1XED BlN(Bl)l;

168

ccL 1 CSA STATIC,
21 CHAR{13} INIT(*S=Bl,sl,4 I=='),
A2 CHARILLY,
A2 CHEAR{19) INIT(®G~TRIM,FBy44240 C=="),
24 CFHARIL1),
45 CHAR{ZB) INIT('2-~TRIM,FEBs4+240 R='),
AE PICYI6)3,
. 27 CrHAR(S]) lNIT(':ENO)3
/% FARAMETZRS TO EMPTY SELECT WORK FILE */
CCL F2 FIXED BINU3L) INIT(Z) STATIC,
—~ -CMLC ENTRY,

WMPTCMD CHAR(13) INIT('L£EMPTY =W '),

OMPTCMD CHAR{LC) INIT(*LEMPTY -0 '),

EMPILEN EIN FIXEC INIT(12):
/* CEFINE PREVIOUS RECCRD ALDRESS AREA *I
CCL PWCRK BIN FIXED(21,0)3
/% FRINYG STARTUP MESSAGE */
PUT FILE(REPCRT) SKIP(2) ECIT

{*SZLECT RECCRCS ULSING INVERTEC INCEX')(A);

PUT FILE(REPCRT) SKIF ECIT

LSS IR ST S I N O NI)

/% INITIALIZE RUN STAVISTICS FIELDS #/
0C ¥ =1 TC &3
CRESALI) = 0

ENC;

/% GET AND STCRE CURRENT CPU TIME STATLS */

CALL PLCALL(TIME,P3,ACCRICKEY),ACCRICPR) 4ACCRICRES));

CRESA(1) = CRES;

/% CET CCNTRCL BLOCKS INTG STCRAGE */

CALL ZLCPN;

/% Asxx% START OF INPLT CATA ECIT PHASE ##%%4 #/

/% PRINT START GF :SCIT PHASE MESSAGE */

PUT FILE(REPCRT) SKIP(2) ECIT

{*INPUT ECIT PFASE')(A);

PUT FILE(RSPCRT) SKIP ECIT

R *1(A);

/% THE SELECT INPUT CATA IS ENTEREDC BY A FILE NAME FOLLOWED BY
A NUMEER CF SELZCT CONCITICNS SEPARATED BY LCGICAL
[ELIMITERS. THE FCRMAT CF A SELECT CGADITICM IS:

*FICLDNAMEY 'CPERATOR® '"FIELCVALLE'

FIELDNAME IS THE NAME CF THE FIELC WITHIN THE
FILE PREVICUSLY NAMEC.
CPERATCOR 1S THE TYYPE COF SEARCH TC Bt CARRIED
CUT, ALLOWEC CPERATORS ARE ECQUAL(EC), NOT
EQUALINEG),y GREATER THAN(GT)s CREATER THAN
CR ZGEULAL(GTE);s; LESS THANILT), LESS THAN CR
EQUAL(LTE). '
FISLDVALUE IS THE VALUE CN WHICH THE SEARCH 1S
TO 23t CARRIED CUT.
THE ALLOWABLE LCGICAL CELIMITERS BETWEEN SELECT CONDITIONS
ARE:
ANC = PERFCRM AN 'ANC' QOPERATICN,
CR - PZRFLEM AN *CR' GPERATIGN.
ENC = ENLC CF ALL SELECT CCANCITICNS ENTERED.
A MAXIMUNM CF 2. SEARCE CONCITICNS ARE ALLCWEL PER CQUERY *»/
/% CET TEE FILE NAM: TC BE PRCCESSED */
GET FILEUINFILE) LISTHFILENAME); .
/% SET CCNCITICN ANC LEVEL NUMNBERS TC INITIAL VALLES */
ISNLM = £

IXS1G4s

IXSiL5:

ILNLM = 13
/* INCREFENT TABLE ANC CONCITICN NUMBERS. THEN LCAC INTO
TABLE */
ISMLM = ISNUNM + 13
ISTND = I5TNC + 1;
SCNUMUZSTNC) = ISNUM;
LVNLMIZSTING) = TLNUM;
/* (HECK TC SEE IF NC. OF SZARCH CCONCITICNS EXCEECS 20 #*/
IF ZSTNC > 20 THEN LC;
/% PRINT AN ZRRCR MESSAGE, SET ERRCR FLAG AND BRANCH
R TC ENC COF INPLTY ECIT PHASE */
PLT FILE(REPORT) SKIP(2) EOIT
(*FAXIMLM 20 STARCH CCNCITICNS ALLCWEL PER CLERY')(A);
IECTF = 13
CC TC IX5105;
ENC;
/* CET T+E INPUT SELECT CthITICN */
GET FILE(INFILE) LIST(FIELCNAME,CPERATCR,FIELCVALUE);
/% CALL IPEDT WITH INFULT FARANETZRS #*/
CALL ZPECT(FILENAME,FIELDNAME ;CPERATCR,FIELCVALLE];
/* FEAL IN A SEARCH TONDITICN CELIMITER #/
GET FILE(INFILE)Y LIST(CELINITER);
/% CISPLAY LCCICAL DELIMITER #/
PUT FILZ(REPCRT) SvTe(Z2) ECIT
{ea%dks LGGICAL DELIFITER *,CELINMITER,Y ENTEREC')(A,A,A)3
/* PROCESS DELIMITZR AND TAKE APPRCPRIATE ACTICN */
JE CELIMITER = %AND' TEZN CC TC IXS100; /* GET MCRE DATA %/
IF CELIMITER = °*OR*' THEN CC
ILAUM = TLNUM + 1; /% CHANGE LEVEL NUMBER %/
GC TC 1XS103; /* GET MORE DATA */
ENC;
IF CELIMITER = *ENU' THEN; /% ENC CF INPUT #*/
EL:E DL /% ERRGR IN CELINMITER INPUT */
PUT FILE(REPCRT) SKIP(2) ECIY
{*I.YALIC CELIMITER ENTEREC')(A);
ZELCTF = 13
ENC;
/* CHECK FCR ERRCRS IN EDITING. IF SCs» STOP RUN #/
IF ZEDTF = I THEN CG;
PUT FILE(REPCRT) SKIPL2) ECIT
(*EXCEPTICN CONDITICN IN ECIT PHASE - STCP RLA')(A);
IERASW = 13
GC TC 1IXxs220;
ENC;
/% %*xx%% SND CF INPUT LCATA ECIT PHASE ##¥43%
/% CET ANC STCRE CURRENT CPU TIME STATLS */
CALL PLCALL{(TIME,P3,ACLCRICKEY)ACCRICPR),ACCR(CRES))
CRESA(Z) = CRES;
/% Axkak START CF 'AND' PRCCESSING PHASE #4%%% #/
/% FRINT START OF SELECT PHASE MESSAGE */
PUT FILE(REPCRT) SKIP(Z) ECIT
{*SELECT PRUOCESSING PHASE')(A):
PUT FILE(REPCRT) SKIF ECIT
(e et Dt DD DL L TR t)(A);
/* THE TABLE CF SELECT CCMCITICNS GENERATEC IN THE INPUT
EDIT PHASE IS NCw PROCESSEL TC ARRIVE AT & FINAL LIST
CF RECCRD ACDRESSES SATISFYING THE SELECT CCACITICNS.
FANC® PROCEZSSING IS CARRIEL GUT FIRST, FOLLCWEL BY 'QR?
FROCESSING AND PRINTING OF SEARCH RESULTS. #*/
/* SET FIRST TIME SWITCH TG ZERQ */

IXSzCC

-1

FSwiH = {3

/* SET ERRCR SWITCHES TG ZERQ */

IERRSYH = 3;

NCRECS = 03

/% CPEN $CR' FILE FCR CUTPLT »/

CPEMN FILE{ZOALCC) CUTPLT;

/% SET ANLCTCT AND CRTCT TC ZERC */

ANC10T = 03

CRICT = 43

/% MAKE RECORLC ATDRESS WCRK AREA ACODRESSABLE %/

FCLURPTR = ACCR(FWORK);

/% START A LCCP TO PRCCESS TABLE ENTRIES */

/% tkkxat3sxd */ 00 1 = 1 TC ISTNC:

/% CHECK IF FIRST TIMZ SWITCH IS5 ZERC. IF SC SET IV TO
1 ANC BRANCH TO PRCLCESS FIRST TABLE ENTRY */

IF FSW(H = O THEN 2C3

FSnCH = 13
GC 70 1IXS200:

ENC;

/* CHECK TC SEE IF TFE PREVICUS ANC CURRENT LEVEL NUMBERS
ARE THE SAME. IF SC BRANCH TO *ANEC' RECCRL ALCRESSES #*/

IF FLNLM = LVNUMILI) THEN GC TC IXS24E5;

/% P CEANGE CF LEVYSL NUMBER INMPLIES THAT AN 'CR' FAS BEEN
S¢ECIFIEDe THE ReNULTS FRCM PREVICUS 'AND! PRCCESSING
IRE DUMPEC TO THE 'OR' FILE BEFORE FURTHER 'ANC' PROCESSING
STARTS (IF THERSZ ARC NCT Z£RO RECCRC ACCRESSES). */

IF ANDTCY = § THEN GC TO IXS52403

/* CLOSE WCRK FILE FCR OQUTPUT %/

CLCSE FILE(ZWALED):

/7% (PEN WCRK FILE FCR INPLT */

CPEM FILZIZWALL) INPLT:

/% TRANSEER CCNTENTS CF WCRK FILE TC °*CRY FILE #*/

CG ! = 1 TC ANCTCT:

REAT FILE{ZWACC) INTC(FCURCHAR):
WRITE FILE(ZCACL) FRCM(FCURCHAR)

ENC;

/* CLOSE WORK FILE FCR INPUT */

CLCSE FILZ(ZwACD);

/% IDC *AND' TCTAL TC 'OR* TCTAL */

CRTCT = CRTOY + ANDTCT;

/% CPEN WCRK FILE FCR CUTPLT */

CPEM FILELZWAEL) OUTPLT;

/* SET TABLE ENTRY NUMBER AND PASS TC ZPSEL TC PERFORM
SELECT ANC PLACS RESULTS IN WCRK FILE */

TABNO = 1

CALL ZPSELI(T2EBND);

/* CHECK TC SEE IF NC. OF RECCRDS SELECTED IS ZERC. IF SC
SET ANDTOT TO ZERC, CLCSE WCRK FILE AND BRANCH TG END
CF TABLE ENTRY PRCCESSING LCCOP. CTHERWISE SET1 *ANCt TCTAL
10 MUMBER CF RECCRLCS SELECTED AND BRANCH TC ENLC CF TABLE
ENTRY PROCESSING LCCP */

IF 2TREC = O THEN DC;

ANCTCT = 03
CLCSE FILE(ZWACL);
CC TC IXS210;

ENC;

ANCTOT = ZTRECS

CC 10 IXS212:

/% NO CHANGE IN LEVEL NUMBERS. IF *ANDY TOTAL IS ZERC BRANCH
FOUNDC *ANLC' PROCESSING */

N

IX52C5: IF ENCTICY = € THEN GC TQ IXS210;

n

P

(@}

/* SET TEBLE ENTRY NULMBER AND PASS TC ZPSEL 1C FERFCRM
SELECT ANC PLACZ RESULTS IN HGRK FILE */
TAEND = I;
CALL ZFSEL(TABND);
/* CHECK TO SEE IF NUMBER CF RECGRCS SELECTEL IS LERCe IF SO
SET ANDTOT TG ZERC, CLCSE WCRK FILE AND BRANCH TC END OF
. TABLE ENTRY PROCESSING #/
IfF ZTREC = O THEN 00;
- ANCTCY = 23
©~ - CLCSE FILE{ZWALLC);
GG TC IXS21y;
ENC; :
/* INCRZMENT NUMBER CF RECCRDS IN WORK FILE ANC CLCSE »/
ANCIOT = ANDTQT + ZITREC:
CLCSE FILZ(ZWACD); .
/% SET UP SORT PARAMETERS ANC EXECLTE %/

CSP.A2 = *W*;: /% INPUT IS WORK FILE */
CSA.A4 = YA'Y; /% QULTFLT IS 'ANC* FILE %/
CS2.A6 = ANDICT; /* NUMBER OF ACCRESSES TO BE SCRTED */

CALL PLCALL(SCRTsF1,C%A);
IF FL1RC = O THEN;
ELSE DGC3
PUT FILE{(REPOPT! SKIP(2) EDIT
{*ERRCR RETURN FRCM SORT A*)(A);
IERRSW = 13
GC TC 1xs5229;

ENC;

/* EMPTY PREVICUS SELECT WCRK FILE %/

CALL PLCALL(CMC,F2,WNPTCML ACCRIEMPTLEN))

/% CPEN *AND' AND WCRK FILES FGR YANC' PROCESSING */

CPEM FILE(ZAACL) INPLT;

CPEr FILE(ZWALLC) CUTPLT;

/* SET PREVICUS RECCRC ACLRESS TC ZERO #/

PHWCERK = ¢;

/* CANC' PROCESSING — THE *ANC' FILE (IN SECUENCE) IS READ
AND IFf TWC SUCCEZCING RECORL ACCRESSES ARE TFE SAME THAT
ADDRESS IS TRANSFERREC TC THE WCRK FILE #/

JHCRK = ANCTCT:

ANCTAT = Q3

BC J = 1 TC JUWCRK;

REAC FILE(ZAACC) INTC{FCLRCHAR}3:

IF FWORK = PHCRK THEN DC;
WRITE FILE(ZWALC) FRCM{FCURCHAR);
ANDTCT = ANDTCT + 1

ENC:

PHCRK = FWGRK;

ENC;

/% CLOSE *ANC' FILE FCR INPUT #/

CLLCSE FILE(ZAALD)

/* ENC CF TABLE ENTRY PROCESSING MOVE CURREANT LEVEL IRTC
FREVICUS ANC PRCCESS ANCTHER ENTRY (IF ANY) #/

PLNLM = LVAUNM(]I);

/% END CF I LCCP =/

/X BEXXIERARY %/ ENCS Lo

/* END CF PRCCESSING SELECT CCADITICNS. CUNP THE RECORO
FOCRESSES FRCM PREVICUS 'AANC' PROCESSING 1C THE QR
FILE {IF NUMBER CF RECCRC ACORESSES NCT ECLAL IC LERQ #*/

IF ANRTCT = C THEN GC TC IXS215;

/% C(LOSE WCORK FILE FCR CUTPLT */

IXs2

[

An

CLC3E FILE(ZWALD);

-
-

/* CPEN RORK FILE FCR INPUT */
CPEM FILE(ZWALD} INPLT;
/* TRANSFZR CCNTENTS CF WCRK FILE TO *'CR* FILE #/
CC 4 = 1 YC ANDTOT;
REAC FILSUZWADC) INTC(FCURCHAR);
WRITE FILEVICACL) FRCM{FCURCHAR) S
ENC3
/* CLOSE WCRK FILE FCR INPLT ¥/
CLCSE FILS(ZWALCD);
/*_AQD "AND' TCTAL TC ‘'OR*' TOTAL ¥/
CRICT = CRYSY + ANDICT;
/7% CLOSE 'CR* FILE FCR QUTPLT */
CLCSE FILE(ZCACD);
/% #xx%xx SND CF ¥ANC* PROCESSING PHASE **2%% x/
/% CET AhC STCRE CURRENT CPU, TIME STATLS */
CALL PLUALL(TIME,P3,ACCR(CKEY),ACOR{CPR}yACCR(CRES));
CRESA(2) = CRES;
/% *%x3* START OF *CR' PRCCESSING PHASE #**¥* %y
/* CHECK TC SEE IF CRTCT IS 2ERQ. IF SC PRINT A MESSAGE ANC
EXIT */
IF CRTCT = J THEN DC;
PLT FILE(REPORT) SKIP(2) EDIY
{'NC RECCRDS SBATISFY SEARCH PARANETERS'I1(A);
NGRECS = 13
GC TC 1XS220;
ENE 3
/% SET UF SCRT PARAMETERS AND EXECUTE */

CSA.A2 = 'C'; /* INPLT IS 'CR FILE' %/
CSR.A4 = YW'; /% QUTPLT IS WORK FILE */
CS#.A6 = SRTCT; /* NUMEBER CF ACDRESSES TC BE SCRTEC */

CALL PLCALLI(SCRTSFL,CSA);
IF LLRC = O THEN;
ELSE L03
PLT FILE(REPCRT) SKIF(Z2) ECIT
(*ERROR RETURN FRCM SORT B'}{A);
IERRSWH = 13
GC TC 1X5220;
ENC
/*% C(PEN WCRK FILE FGCR *CR' PRCCESSING »/
CPEN FILE{ZWACL) INPLT;
/* CPEN 'CR' FILE FCR *'OR* FPRCLESSING #*/
CPEM FILE(ZOALC) OUTPLT;
/% SET PREVICUS KECCRLC ACCRESS TO ZERQ */
PWLRK = £33
/% *QR' PROCESSING - THE WCRK FILE (IN SEQUENCE)} IS READ
AND EACH RECORD ALCRESS CONTAINED IS WRITTEN TC TEHE
O0R FILE (CDUPLICATES ICGNCRED) */
JWCERK = CRTOT;
CRICT = £3
EC « = 1 TC JWCRK;3
REAC FILE(ZWALL) INTC{FCLRCHAR)S
IF FYORK = PHCRK THEN;
ELSE DC3
WRITE FILE{ZCALD) FRCM(FCURCHAR);
CRTQT = CRTCT + 13
ENC3
PWCRK = FHWORK;
ENLC:
/7% CLOSE WCRK AND *QR* FILES #/

CLCSE FILE(ZWALD);
CLTSE FILZ{ZCALCD);
/¥ Adx%k2 END (F YORY PRUOCESSING PHASE #%x33% 3/
/* GET AAD STCGRE CURRENT CPU TIME STATLS %/
CALL PLCALLITIME,P3,ACCRICKEY)ACDR(CPR),ACCRICRES)):
CRESA(4) = CRESS
/% #%x%3% START 0OF ACCRESS CISPLAY PHASE *#%23%2 ¥/
PUT FILE(RZPCRTY SKIP(2) ECIT
/* FRINT START OF LUISPLAY FPHASE MESSAGE #*/
(*20CRESS DISPLAY PHARSE*)(A):
PUT FILE(REPCRT) SKIP EDIT
(temmrr e e ee—- *){A);
/7% CISPLAY FINAL LIST CF RECORD ACLCRESSES #/
CPEN FILE(ZOALL) INPUT;
PUT FILE{REZPCRT) SKIP(2) ECIT
{*AMCe CF RECORLC ACDRESSES = *,CRTCT,* - LIST FOLLCWS')
(A F{6):A); .
PUT FILE(REPLRTY SKIP;
£ J =1 TC CRIOT:
REAZ FILE{ZOACLC) INTC(FCURCHAR):
PUT FILE(REPORT) EDIT(FWCRKI{F(8));
END:
/% s%x%k¥x END (OF ADDRESS DISPLAY PHASE #%%*% %/
/7% {(ZT AND STCRE CHRKENT CPU TIMZ STATLS */
IXS22us CALL PLCALL(TIME yP3,ACCR{CKEY)ACCRICPR),ACCR(CRES))
CRESA{Z} = CRES:
/% EMPTY PREVICUS SELECT WCRK FILE */
CALL PLCALL(CMC9F2:WMPTCMLC,ACCR{EMPTLEN));
/* EMPTY PREVICUS SELZCT *CR* FILE =/
CALL PLCALLICMC 3F2,CNPTCME,ACCR(ENPTLEN)) ;
/* IF ERRGR SWITCH IS SET, BRANCH ROUNC STATISTICS */
IF IERRSw = 1 THEN GC TC IXxS2:z5;
/% CALCULATE AMD DISPLAY CPU TIME USEC IN SELECTICN PHASES */
PUT FILE{REPCRT} SKIP({Z2) ECIT
(*INCEX SELECTICN STATISTICS')(A):
PUT FILE(REPCRT) SKIF EDIT
(v — - ~==1)(A);
PUT FILE!REPCRTY SKIP(2) ECIT
(*AC., CF COMPARISONS = ',ZCCMPI(A,F(E));
CCRES CRES2(2) - CRESALlL1):;
CCRES = CCRES / 10337323
PUT FILE{REPCRT)} SKIP{(Z2) ELCIT
(*SCIT CPU TIME(SECCNECS) = Y,CCRES){A,F(10,3));
CCRES = CRESA(2) - CRESA(2);
CCRES = CCRES / 193(90.3;
PUT FILE{REPCRT} SKIP(2) ECIT
{*ANC CPL TIME(SECONCS) = '+CCRES){A,F(10,3));
IF NORECS = 1 THEN CCRES = Q3
ELSE CCRES = CRESA{(4) - CRESA(2);
CCRES = CCRES / 18OGC.C3s
PUT FILE{REPCRT) SKIP(2) ECIT
(*CR CFU TIME(SECONLCS) = Y4CCRES)(A,F(10,2))3
IF MORECS = 1 THEN (CRES Cs
ELSE CCRES CRESA(S) - CRESA(4);
CCRES = CLRES / 100C.8: -
PUT FILE(REPCRT)Y SKIP(2) ECIT
{(PLIST CPU TIME(SECCACS) = *,CCRES){A,F{10,2));
CCRES = CRESA(5) - CRESA(1l);
CCRES = CCRES / 12CJ.¢s
IXS225: PUT FILE(REPCRY) SKIP(2) ECIT

{*TCTAL CPU TIMEZ(SECCNDS) = *,CCRES)(A,F(1Ce3))3
/% END CF PRCGRAM — FRINT MESSAGE AND EXIT */
CLCSE FILE(ICACC
PUT FILE(REPCRT) SKIP(2) ECIT('ENC OF RUN')(2);
CALL ZCCLS3
/* END CF PRCGRAM */
ENC ZPIXS3

SCCPY *SCURCE* *SINK#

PAVED I

/* JXUIXL = CISPLAY INVERTED INDEX STATLS */
PRCC OPTICNS(NAINDY;
/* THIS PRCGRAM DISPLAYS AN INVERTED IMNDEX FCR A SPECIFIED
FILE ANDC FIELD NANE */
/% LEFINE INPUT ANC CLTPUT FILES */
CCL INFILE FILE INPLT,
REFCRT FILE QUTPUT;
ZINCLUCE IXMSpNM;
TINCLUCE IXMCPpM; ‘
/* ZEFINE INPUT FILE ANC FIELC NAME STCRAGE #/
CCL (FILENAME,FIELDCNANME) CHAR(20);
/% DEFINE PRCCESSING CPTICN AREA %/
CCL POFT CHAR(3) VAR;
/* LEFINE ROLTINE FCR SEARCHING CIRECTCRY #*/
CCL ZPFAL ZNTRY RZTURAS (BIN FIXEC(15,8));
/% LEFINE STGRAGE FUR FIELL BEING CISPLAYEL #/
CCL DISPAREA CHARIFCLEN} CTL,
DISFPTR PTR,
HBINARY EIN FIXET{(i5,C) UNALIGNEC BASEC(CISFPIR),
FBINARY BIN FIXZZ(31,2) UNALIGNSD BASEC(CISFPIR),
SFLCAT BIN FLUAT(21) ULNALIGNEL BASEC(DISFFIR]),
UFLUAT BIN FLOAT153) LNALIGNED BASEC(DISFFTR):
/* LEFINE CONTRGL PRCCESSING AREAS ANC VARIABLES #7
CCL NVAB S8IN FIXED, FWCRK BIN FIXED,
NWCRK BIN FIXZD(21,0), MWCRK BIN FIXED(31,0),
FOLR BIN FIXED INIT(4), ThC BIN FIXEC INIT(2);
CCL FOURCHAR CFAR(4) BASEC(FOULRPTIR),
THCCHAR CHARU(2) BASEL(TWCPTIR);
CCL {FCURPTR,TWGPTR) PTR;
/% CEFINE LABEZL FCOR LCISPLAY GF RESULTS CODINC #/
CCL LABCS LABEL;
/% CEFINE FIELC TYPE CHARACTER STRING #*/
CCL FIELCTYPE CHARIZ2I) VAR
/* LEFINE STCRE ARZA FCR FIGREST KEY #*/
CCL STCRARZA CHARIFCULEN) CTL;
/* FRINT STARTUP MESSAGE %/
PUT FILE(REPCRTY SKIP(Z2) ECIT
{*CISPLAY AN INVERTED INCEX')(A);
PUT FILE(REPCRT) SKIP =DIT
{'==s=s=2====z=zs==z=zzz====z1 Y(A);
/* BRING CCNTRCL BLGCKS INTG STORAGE */
CALL ZCCFPN;
/* CGET THE FILE AND FIELD NAMES INTO STCRAGE #*/
GET FILECINFILE)} LIST(FILENAME,FIELDNANE,PCPT):
/% LISPLAY INPUT DATA %/
PUT FILE(REPCRT) SKIP(2) ECIT
(*CISPLAY IMDEX CN '2FILENAMES * (' ,FIELCNANE, "))
(A A(2C1,A5A(2C),A);
/% SEARCH CIRECTCRY FCR FILE NAME, IF VALUE RETLRNED BY
IZPFAC 1S ZERC, THEN NO MATCH HAS BEEN FCUNC - PRINT
AN ERRCR MESSAGC AN EXIT #/
IF ZPFNC{FILENAME) = 2 THEN OC;
PUT FILE(REPZRT) SKIP(2) £DIT
{*FILE *yFILENANE,* IS NCT IN THE CIRECTORY')
A ALZu) 4A);
CALL ZCCLS;
ENC;
/* 2PCSN PCINTS 7O THE APPRCPRIATE FILE NAME ENTRY. GET 1IT

i

IXL1:

IXLz:

IXL3:

v

INTC STCRAGE »/
CALL ZCREA(FILENSFLENT);
/% SET ZPUSH TC POINT AT THE START GF THE FIELC NAME ENTRIES */
BLC(K = FCPTR;
CFFST = 1;
/% START A LCCP YO PRCCESS FIELD CESCRIPTICNS #/
CC I = 1 7C NCFLDS;
/* CET A FIELL NAME ENTRY %/
CALL ZCREA(FLLCLN.FDENT);
/% CHECK FCR A MATCH CN FIELD NAME %/
IF _FDNAM = FIELDNAME TKEN;
ELSE CO TC IXL1;
/* IF THE FIELC IS NCT INCEXELD THEN CANCEL RULN *7
IF FDIXPIR = -1 THEN [C;
PUT FILE{REPCRT) SKIP{(2) ECIT
{'FIZLD Y,FISLCNANE,* IS NCT IANCEXEC')
{AsALZI),A);
CALL ZCCLS:

ENLC

/* ¥E HAVE A VALID FIZLD NAME. BRANCK TC DISFLAY INCEX */
GO TO IxLZ;

/* END CF FIELC NAME PROCESSING LCCP */

ENC;

/* M) MITCH CN FIELU i.AMZ, PRINT AN ERRCR MESSAGE ANC EXIT */
PUT FILE(REPCRT) SKIP{2) ECIT
(*FIELL NAMZ *,FIELCNAME,* NCT FCUND IMN FILE ',FILENAME)
{AsA(2C),A5A(2C)):
CALL ZCCLS;
/% SET IPCSN TC DISPLAY INCEX CONTROL INFORMATICN BLCCKS */
BLCCK = FOIXFTR;
CFFET = 13
/% SET UP FIELLC RECEIVING AREA ANC MAKE BINARY ANC FLDAT
»ASKS ACDRESSABLE %/
ALLCCATE CISFARCA;
CISFPTR = ADCR{GISPAREA);
/* SET UP FIELC TYPE »/
IF FDYYP = 2 THE&N DO
FIELCTYPE = 'BINARY FIXED(15,0)*;
GC TC 1IXL3;
ENC3
IF FDTYP = 3 THEN DO;
FIELCTYPE = 'BINARY FIXEC(31,0)°%;
CC TC IXxL33
ENC;
1F FDTYP = 4 THEN OC;
FIELCTYPE = 'BINARY FLCAT(21)*;
CC TC 1IXL33
ENC3
IF FDTYP = 5 THEN [G:
FIELOTYPE = 'BINARY FLCAT(53)';
GC TC IXxL3;
ENLC:
FIEIDTYPE = 'CHARACTER STRING®;
/% DISFLAY FIELD TYPE AND LENGTH %/
PUT FILE(REPCRT) SKIP(2) ECIT
[*FIELC TYPE 'yFIEZLCTYPE,'y LENGTH 'oFCLEN)(£,A,A,F(3));
/% LISPLAY INCEX CONTRCL BLGCCK INFCRMATICN */
PUT FILE(REPCRTJI SKIP(2) ECIT
[*INCEX CONTRCL BLOCK INFORMATION')(A);
PUT FILE(REPCRT) SKIP EDIT

LABLS1:

(t- e ')(A);
/* CET NUNSER CF VALUE ANC ACLRESS BLCCKS ANC CISPLAY #/
TWCFTR = ACOR (NVAB);
CALL ZCREA{TWC,TWOCHAR);
PUT FILE(RZPCRT) SKIP(2) ECIT
{"NC. CF VALUE AND ACCRESS BLOCKS = *,AVAE) (A,F(3));
/% START & LCCP TO PRCCESS INCEX CCNTRCL BLCCKS #/
FOLRPTR = ADCR(NWORK);
TWCFTR = ACDR(KWORK);
CO I =1 TC NVAB;
.. CALL ICREAU(FDLEN,DISPAREA);
CALL 2CREA(FCUR,FCURCHAR);
CALL ZLREA(TWC,TWCCHAR);
/% CISFLAY FIELC VALLE #/
LABSS = LABDSi;
CC TC LISP; ,
/% CISFLAY BLCCK ADCRESS */
PLT FILE(REPCRT) SKIP ECIT

(1S HIGHEST KEY CN ELGCK ',NwWCRK,'y CFFSET 'yFWCRK)LA,F(E),AFl6));5

IXL4:

LABDSZ:

IXL5:

ENL;

/% SET UP ZPCSN TO CISPLAY VALLE AND ACORESS BLCCKS */
BLC(K = FOIXFTR:

CFFST = 3 + FLOLEN;

CALL ZLREA{(FCLR4FOURVIAR)

BLCCK = ANWCRK;

CFFEYT = 13

/* STORE HIGHEST KEY CN FILE IN STCRE AREA */
ALLCCATE 5TORARZA;S
STCFAREA = DISPAREA;
/* ERANCF TO END IF CCMPLETE CISPLAY NCT REQUESTELC %/
IF FOPT = PALL' THEN;
ELSE CC TC IXL5:

/% UISPLAY VALUE AND ACDRESS ELOCK INFCRMATICN #/
PUT FILE(REPCRT) SKIP(Z) ECIT

{*VALUE AND ACCRESS BLCCK INFORMATION')(A);
PUT FILE(RZPCRT} SKIP ECIT

/% CET AND DISPLAY FIELD VALUE */
CALL ICREA(FCLEN,DISPAREA);
LABLCS = LABDSZ;
GG 10 LlIse;
/% CET ANC DISPLAY NC. CF RECCRD ADDRESSES #/
FOURPTR = ACLCR{MWORK);
CALL ZCREA(FCUR,rQURCEAR);
PUT FILE{REPCRT) SKIP EDIT
(*ANC. CF RECURL ALDRESSES = ', MWCRK,' = LIST FOLLOWS')
(AyFl6),A)s
/% CET AMND DISPLAY RECCRLC NUMBERS */
FOLRPTR = ADLRINWORK);
PUT FILE(REPCRT) SKIP;
CC I = 1 TC MWCRK;
CALL ZCREA(FCUR,FCURCHAR);
PUT FILE(REPCURT) EDIT{NWCRKI(F{8));
ENC;
/% DETERNMINE IF THIS IS LAST FIELD VALUE #*/
IF CISPARSA = STCRAREA THEN:
ELSE GC TO IXLa4s
/% FREE STCRAGE ARZAS, CLOSE INDEX, PRINT ENLC CF RUN MESSAGE
IND EXIT ¥/ '
FREE DISPAREA,STURAREA;

DISP:

DISP1:

PUT FILE(REPCRT) SKIP{2) ECIT('CND OF RUN*JI(A);

CALL ZGCLS:
RETLRN;
/% CISP = IN-LINE CCCING TC DISPLAY FIELL VALUES #/
IF FDTYP = 2 THEN OC;
PUT FILE(REPGRT) SKIP{2) ECIT
("FIELD VALUE ' HEINARY)(A,F(6));
, GC TC CISP1;
ENC3
If FDTYP = 3 THEN DC;
2. FUT FILE(REPCRT) SKIP(2) ECIT
{("FIELC VALUE *,FEINARY) (A,F(1CJ);
€C TC CISPi;
ENC;
IF EDTYP = 4 THEN DC;
PLT FILE(REPORT) SKIP(2) ECIT
(*FIELD VALUE ',SFLOAT)(A,F(20,7));
GO TC C.ISPl;
ENC3
IF FOTYP = 5 THEN OC;
PLT FILE(REPORT) SKIP(2) ECIT
(*FIELD “ALUE *,DFLOAT)(A4F(20,7))3
GG TC CISP1;
ENC; .
PUT FILE(REPCRT) SKIP(2) ECIT
('FIELD VALUE *,DISPAREA)(A,A);
CC TO LABDS;
ENC ZUIXL;

I

SCCPY #*SCURCE* *SINK#
/% IXCEHY — CCNVERT PHYSICS CATA TC TAEULAR FCRY */
ZCPHY: PRCC GPTICANS(MAINDG
/* L[EFINE FILES */
CCL REFCRT FILE QUTPLT,
INFILE FILE INPLT,
IPFYS FILE RECLCRC SEQUENTIAL ENVIF(EQ))
I0ATA FILE RECCRL SEGQUENTIAL ENVIF(SS))
/% CEFINE I/C PRUCZESSING AREAS */
CCL - INAREA CHAR(8D),
ZICAREA CHAR{99);
/% CEFINE POINTER ANC FILE STRUCTURE FCR CLTFUT RECCRDS #/
CCL PHYSETR PTR;)
CCL 1 FHYSICS BRASEC(PHYSPTR) UNALIGNED,
Z FXPNC BIN FIXEC(31,0);
ZSYME CHAR{1),
KREFER .CHAR(2S5),
FCCDE CHARI{13),
ICCDE CHAR{1C),
ECCDE CHARI(1G),
ANGLE CHAR(121Y,
ENRGY BIN FLCATI(21),
ANGVR BIN FLLAaT(21),
CBSRYV BIN FLCAT(21),
ERROR BIN FLCAT{21),
PNTNC BIN FIXED,
wICTE BIN FLCAT{(21);
/% CEFINE ENC EXPERIMENT NULMBER */
CCL IXFENC EIN FIXECD(21,0)3
/% CEFINE CURRENT ZXPERIMENT NUMBER */
CCL CXFNC BIN FIXZED(31,0)3
/% [ZFINE RECCRD CCUNTER %/
CCL NRECS BIN FIXED(21,0)3
/* [EFINE PRCCESSING SWITCHES #/
CCL (LSWCH,DSWCH) BIN FIXEC:
/% CEFINZ DECAY/CUNMMENT DECISICN AREA */
CCL DCCEC CHAR(1};
/% skx*x% DEFINE AREAS TO CCNVERT PHYSICS FLCATING POINT
INPLT *kk¥% */
CCL (S1+S2,52+54) BIN FLOAT(21),
(E1L,E29524E4) BIN FIXELS
/* CONVERSION ERRCR PRCCESSING - STORE A NLLL CATA RECCRC */
CN CONVERSION BECIN;
PUT FILE(REFCRT) SKIP{2) EOITY
{*CONVERSICN ERROR IN RECORD NCe 'HMRECSI(A,FLE})S
REVERT CCNVERSICN;

MRl R MR DN R A

ENRCY = C.0;
ANCVR = (.03
CBSRY = $.03
ERRCR = £.03
PNING = C3§
WICTH = &3
CC 10 PHYA45;
ENC3

/* MAKE FILE STRUCTURE ADCRESSABLE */
PHYSPTR = ADCR(ZIOAREA);

/% SEY LSHWCH TC ZZRC %/

LShCH = (3

/% CPEN FILES AND PRINT A STARTUP FMESSAGE %/

PHY1:

PHYZ:

PHY3:

PHY4

PHY45:

PHYS5:

" CPEM FILE(IPFYS) INPUT;

CPEN FILE(ZDATA)Y GUTPLTS
PUT FILE(RZPCRTY SKIP(2) ECIT
{('CCNVERT PHYSICS DATA TC TABULAR FORM'I(A);

/% REAC IN END EXPIRINENT NUMEER AND DISFLAY ¥/

GET FILE(INFILE) LISTUIXPAC);

PUT FILE{REPCRT} SKIP(2}) ECIT

) {*PRCCESS LP TCL EXPERINMERT NUMBER ', IXFNC)(A,F{6))3

/* SET ANUMBER CF RECCRCS STOREC TGS ONE */

NRELS = 13

/% REAC IN THE FIRST CARD (MASTER) */

READ FILE(IPHYS) INTC(INAREA};

/* CET MASTER CATA ANC STCRE IN FILE STRUCTURE %/

CET STRING(INARZA} ECIT

{EXFNO,SSYMB,REFER,PCCLCE,ICCGCE,ECCCE,ANCLE,LCCCEC)
(F{S) A (1)4A025),A012),2(10]), A(lO),A(lC),X(l):A(I)),

/* END CF INPLT FILE PRCCE“SIAG */

IF EXPNC > IXPNO THEN GO TC PRYT;

/* 10 SAVE SPACS CN THE TABULAR CATA FILE, CECAY ANC CCONMMENT
INFCRMATICN CARDS CN THE ORIGINAL DATA FILE ARE NOT
STCREC */

/* LETERMINE IF A CECALY OR CCMMENT CARC FOLLCWS THE CARD JUSY
REAC. IF SC, READ IT ANC BRANCH BACK TO TEST FCR A FURTHER
{3CAY CR CCYMEN) LARD. IF NCT, BRANCH TC FRCCESS FIRST
CARC CR NEXT MASTER CARLC ¥/

IF CCDEC = * v THEN CGC 7O PHY33

REAL FILE(IPFYS) INTCUINAREA);

GET STRING(INARZA) ECIT

{CCCECY[XTT9),A(1))3

CC 10 PEYZ:
/% SET CSwWCH TC ZERGC */
CSWCH = €3

/% GEAL 2 CATA CARD ¥/
READ FILE({IPFYS) INTC({INAREA);
/% GET EXPERINMEMT NCo. AND CCMFARE IT WITH CURREANT EXPERINENT
MO %/
GET STRING(INAREA) ELIT(CXPNCI(F(5},%(751);
IF EXPNG = CXPNO THEN;
ELSE CC TC PRY5;
/% WE HAVE A CATA CARC., SET CSWCH TO 1, STCRE CATA INFQ,
WRITE RECCRC TO DISKs; INCREMENT RECCRC CCULNT ANC BRANCH
T0 REAC ANCTHER DATA CARC %/
CShWCH = 13
/% #iex% NECESSARY TC CONVERT PHYSICS FLCATING PCINT INPUT
BECAUSE PL/1 WILL NCT ACCEPT A BLANK IN THE EXPCNENT
WHERE A PLUS SICN IS EXPECTED ¥%%3% %/
GET STRING(INARZA} ECIT
(S1sE19S24E2,52,E3,54,E4sPNTNC,WIDTH)
{1X{28) 54 (FU6,3)sX{1)F(3)),F(E)sF{623)9X(1))3

ENRCY = S1 * 1. *% E1;
ANGWR = S2 # 10e ** E2;
CBSEV = §3 % 1C, % E3;
ERRCR = S4 * 10. ** E4;

WRITE FILE(ZCATA) FRCM(ZICAREA);
NRECS = ARECS + 13
CU 10 PHY4;
/* (HECK TC SEE IF THERE IS NC DATA. IF NOT, ELANK CUT CATA
AREAS AND WRITE TC CISK ¥/
IF [SWCE =) THEN;
ELSE GO TC PEY1l;

PHYES

PHYT:

PHY®:

ENRCY

= .08
CBERY = C.03;
ERRIR = £.353¢
PNTMD = {3
WICIH = G}

WRITE FILE{ZCATA)} FRCNMIZICAREA)]
/% ADD 3 TC ANC. OF RELCRCS STCRED #/
NRECS = NRECSE + 13
/% IF LSWCH IS 1 GC TC ENC CF PROCESSING */
IF L3WCH = 1 THEN GC TC PHYS8;
ELSE GC TC PHY1:
/% END CF INFUT FILE. SET LSHCE TO 1 ANC CHECK FCR CSWCH
EEING ZERC */
LSWCH = 13
IF [SWCE = O THEN GG TC PHY6;

/% LISPLAY NC. OF RECCRDS STCRED,y CLCSE FILES ANC EXIT */ .

NREC(S = NRECS .~ 13
PUT FILZ{REPCRT) SKIP(2) ECIT
{*ANC., CF RECGRCS STCRED = *",NRECS)I{A,F(6)):
CLCSE FILE(IPHYS)
CLCSE FILE(ZICATAY;
PUT FILE(REPCRT) SKIP(2) ECIT{'END OF RUN')L2);
RETLANS
ENC ZI(PHY;

[,

