W Durham
University

AR

Durham E-Theses

Some aspects of the implementation of a relational
data base sublanguage

Lim, Richard Thuan Chan

How to cite:

Lim, Richard Thuan Chan (1975) Some aspects of the implementation of a relational data base
sublanguage, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk,/8947/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses
e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/8947/
 http://etheses.dur.ac.uk/8947/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

SOME ASPECTS OF THE IMPLEMENTATION OF

A RELATIONAL DATA BASE SUBLANGUAGE

A thesis submitted for the degree
of Master of Science in the
Department of Computing of

the University of Durham

by

Richard Thuan Chan Lim, BSc

e

Faculty of Science
University of Durham January 1975

To my parents

CONTENTS

ACKNOWLEDGEMENTS
ABSTRACT

INTRODUCTION
1.1 Scope of Work
1.2 Historical Review

1.3 Presentation of Work

RELATIONAL MODEL, NORMAL FORM AND RELATIONAL
LANGUAGES
2.1 The Relational Model of Data
2.2 Normalization of Relations
2.2.1 Introducticn
2.2.2 The First Normal Form
2.2.3 The Second Normal Form
2.2.4 The Third Normal Form
2.2.5 Objectives of Normalization
2.2.6 Summary of Normalization
2.3 Relational Languages
2.3.1 Introduction
2,3.2 A Relational Algebra
2.3.3 Relational Calculus
2.3.4 Relational Completeness

2.3.5 Calculus versus Algebra

13

14
14
17
17
18
20
23
27
23
28
28
29 -
29

+ 30

31

THE PROPOSED DATA BASE SYSTEM WITH REFERENCE

TO ALPHA SUBLANGUAGE

3.1 Introduction

3.2 The Proposed Data Base System

3.3 Description of Implemented Data

Sublanguage ALPHA

3.3.1
"3.3.2

3.3.3
3.3.4
" 3.3.5
3.3.6
3.3.7

3.4.1
3.4.2
3.4.3
3.4.4
3.4.5

3.4.6

Basic Characteristics
Structure of Data Sublanguage
ATL.PHA

Basic Symbols

Identifiers

Standard Function Identifiers
Constants

Statements

3.4 Data Sublanguage ALPHA Examples

Queries

Updgtes

Deletions

Insertions

Dropping and Establishing
Data Base Relations

Input and Output Facilities

3.5 Summary of Data Sublanguage ALPHA

32
32
34

38
38

41
43
45
46

47

48
59

60 -

68
70
71

72
73
74

4. DESCRIPTION OF THE TRANSLATOR 75

4.1 " Introduction 75
4,2 Translation Process _ 75
4.2.1 Information Tables 75
4.2.2 The Lexical Analyzer 78
4.2.3 The Syntax Analyzer 82

4.2.4 The Semantic Analyzer and

Table 'Generator’ 85

4.3 Implementation of the Translator 88

4.4 Warnings and Errors %90

5. EXPLANATION OF THE CODING TABLES 92
5.1 Introduction 92

5.2 Outline of the Ccding Tables 93

5.3 Description of the Coding tables 97

6. CONCLUSIONS 103
6.1 General _ 103

6.2 Suggested Improvements to the

Translator - 103
6.3 Suggestion for Further Work 106
REFERENCES 107
BIBLIOGRAPHY 109

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

Some Terminology Associated with
the Relational Model of Data
Relational Algebra and
Relational Calculus

Lexeme Values for Source
Language Symbols

Floyd Production Language
Statements

Implementation of the
Translator

Examples of Tables Produced

by the Translator

110

113

124

125

131

132

ACKNOWLEDGEMENTS

The investigation described here was undertaken in
the Department of Computing of the University of Durham
with the kind permission of Dr-J Hawgood, Head of the
Department.

It is a pleasure for the writer to be able to record
his gratitude to Mr J S Roper, Senior Lecturer in
Computing, who provided the necessary supervision and
constant guidance throughout the course of the
investigation,

The writer is also grateful to Mr M Munro, of the
Computer Unit, for his valuable advice and unfailing
assistance in the development of the computer program
employed in the investigation.

Special thanks are also due to Mr J Blackburn for
his helpful comments on the presentation of-the thesis.
Finally, the financial support received by the

writer from the British Council is gratefully

aéknowledged.

ABSTRACT

A relational model of data has been proposed by Codd [1]

for protecting users of formatted data systems from the
potentially disruptive changes in data representation caused
by growth in the data base and changes in traffic. The
adoption of this relational model of data has permitted the
development of a universal data sublanguage, based on an
applied predicate calculus, called ALPEA, Although ALPHA |
has been intended to be a sublanguage of the languages used
by all terminal users of a shared, formatted data base, only
the semantics of it has been fully described by Codd. L2]
However, before ALPHA can be implemented, it is necessary

to specify the synﬁax of this data sublanguage.

Accordingly, the work described here has involved the
specification of the syntax of this data sublanguage and the
development of a related PL,/1 computer program, called the
translator. The translator carries out the following
functions:

(1) accepts as input a modified fofm of source statements;
these statements.include both data sublanguage ALPHA
statements and computational facility statements -

(ii) checks that conditions are met for the relational
calculus; interactive debugging facilities are prbvided
(iii) produces as output a set of'codihé tables suitable
as input to an interpreter; these tables, a'modified
version of those based on the work of Palmero, £31] are
presented in a precise manner which clearly reflects the
subsequent operations to be carried out.

It is intended that this work will form a basis for

the development cf a data base system.

1. INTRODUCTTION

1.1 SCOPE OF WORK

With the increasing quantity of data in commericial
and industrial enterprises, a need has arisen for the
implementation of a simplified computer language to
manipulate such data. The adoption of Codd's relational

(1]

model of data and the subsequent description of the

(a) [2]

semantics of a data sublanguage (DSL) called ALPHA
has justified the need to specify fully the syntax of this
sublanguage. This work has involved the specification of
the syntax of DSL ALPHA and the development of a related
PL/1 computer program, subsequently referred to as the

(b)

translator. This interactive translator translates
DSL ALPHA statements and computational facility
statements (source) into a set of coding tables (object
code), The listing of the translator is given in a

supplementary volume.

(a) When the computation-oriented components of a language
for data base manipulation are removed, the remaining
language components which support storage and retrieval
of formatted data from shared data bases are referred
tc as a data sublanguage. Hence the term data sublanguage

rather than language.

(b) A translator is a program which translates a source
program into an equivalent object program. The source
program is written in a source language, the object
program is a member of the object language. If the
source language is a high-level language like FORTRAN or
ALGOL, and if the object language is the assembly
language or machine language of some computer, the
the translator is called a compiler. :

2 2MAY 1975

LTRTH |
LigiARY

1.2 HISTORICAL REVIEW

The implications of the corporate data base (c) have

been well aired, L4]

in particular the dangers of amassing
and relating large volumes of data, from the point of

security and the invasion of privacy.

In the conventional data processing system the content
and structure of data is organized around specific
applications (see Figure 1.1). Each application has its
files organized to meet its own requirements although this
inevitably leads to duplicéted and usually inconsistent
data. For example, the departments concerned with payroll,
personnel selection and employee expenses would each have
their own files although much of the data would be common
to all three.

The disadvantages of the conventional approach became
apparent when the computer was used to calculate and extract
for management, information for control rather than
straightforward daté processing purposes. The required
information had to be extracted from a number of files, then
sorted and collated. The resuli was a large cumbersome and
fragile approach known as the Integrated Management h
Information System - IMIS (see Figure 1.2). With this
approach, the increasing number of interdependent files and
Programs presented a major problem such that if any one

link in the chain broke,.the whole system suffered.

(c) A data base is a collection of data structured in such
a way that the currently understood relationships one
to another are known.

Approaches to
Data Management

) U &
DATA =
" APPLICATIONS A B c
| 1
OUTPOT :' | —
Fig. 1.1 Conventional Systems
AN '
— &3
DATA Q &r//!g
SYSTEM = e
I
OUTPUT l
/—--
Fig. 1.2 JIntegrated Management Information System
1\/‘@
N \|
DATA BASE _) 2
I/ I/O I&
0 0
_ APPLICATIONS “a B c
_ OUTPUT ' l ‘ I
Fig. 1.3 Data Base Approach
/\’\/\\
,\q‘,l
DATA BASE T>’”
DBMS SOF‘I‘WARE]
‘APPLICATIONS | A | B [¢
ouTPUT
Fig. 1.4 Data Base Management System

10

' System

The answer to these limitations and problems was seen
to be in the corporate data base - the integration of data,
rather than of applications (see Figure 1.3). This approach
views the data of an enterprise in its entirety, rather
than as belonging to individual applications. Each application
is aware of and extracts only the data it requires from the
data base. However, a major difficulty is that of
structuring the data, and arranging its content, éo as to
meet optimally the requirements of all systems. Each time
a new application is developed or an existing one changed
the data base, and many applications already operational,
require related changes.

The solution which represents the current stage of this
technological progress is known as the Data Base ganagement
@ _ DBMS (see Figure l1l.4). The DBMS can be
regarded as the software supplied to make the data base
approach feasible for all computer users. The system provides
a means of Jefining the data independently of the application
programs (e) so that changes to one application need not
affect the data base and will certainly not affect other
applicotions. It also provides standard means of accessing
the data base, so that the programmer and analyst need no ™~

longer be concerned with details of file design, security

and recovery procedures, and privacy controls.

(d) A data base management system is a method by which data
is stored within, and retrieved from, the data base.

(e) application programs are programs which access the data
base through the data base management system.

11

It is already apparent that the DBMS permits a flexible
system, reducing interdependence between applications and
data to a manageable level, while at the same time providing
the necessary integration of data. Future deveiopments_are
likely to be based on improvements to the facilities
provided by DBMS software. Within a few years all computer
users will regard the DBMS as an essential item of software,
just as now computef users take the operating system for
granted.

Users of large data bases therefore need not know how
the data is organized in the machine (the internal
representation). Activities of users at terminals and most
application programs will remain unaffected when the internal
representation of data is changed and even when some aspects
of the external representation (e.g., tapes, disks, etc.) are
changed. Changes in data representation will often be
needed as a result of changes in query, update and natural
growth in the types of stored informction.

To protect users of formatted data systems from the
potentially disruptive changes in data representation caused
by growth in the data base and changes in traffic, Codd [1]
has proposed a simple tabular view of the data. The =
adoption of such a relational model of data has permitted

the development of DSL ALPHA.

12

1.3 PRESENTATION OF WORK

This first section describes the development made in
the field of data base management, and scope and presentation
of work.

.Section 2 describes ﬁhe relational model of data
" proposed by Codd, where the application programmer and the
interactive user view this data base as a time-varying
collection of normalized relations of assorted degrees.
Codd's concept of further normalization is described. The
two principal types of language for manipulating relations
are also identified. These are an applied predicate
calculus and a collection of operations on relatioﬁs which
are termed a relational algebra.

Section 3 describes the overall strateqy for the
development of a data base handling system with reference
to DSL ALPHA. A description of this ALPHA sublanguage
together with some examples to illustrate its use are given.

Section 4 gives a detailed description of the translator.

Section 5 explains the coding tables 'generated' by
the translator.

Section 6 summarizes this work and draws conélusions. -
Suggested improvements toc the translator and suggestion for

further work are included.

13

2. RELATIONAL MODEL, NORMAL FORM

AND RELATIONAL LANGUAGES

2.1 THE RELATIONAL MODEL OF DATA

Codd and D.';\te_,:s's:I

have shown that casual and oth=r
users of large, formatted data bases need a simple tabular
(relational) view of the data rather than a network view
as typified by the proposals of the Codasyl Data Base Task
Group (DBTG), or a tree-structured view. Sections 2.1 to
2.3 summarize Codd's relational model of data and the two
principal types of language for accessing such data.

The relational model of data is one in which data can
be logically seen in the form of data'base tables called
relations. The term relation is used here in its

mathematical sense, Given sets Dl’ Dyy «+es D (not

n
necessarily distinct), R is a relation on these n sets if

it is a set of elements of the form (dy, dyy «.., 4) where
dj € Dj for each j =1, 2, ..., n. More concisely, R is

a subset of the. Cartesian product Dl_x D2 X 4. X Dn' D. is

3
referred to as the jth domain of R. R is said to be of
degree n. The elements of a relation of degree n are callea
n-tuples Or tuples. Since the null set is a subset of
every set, it is possible to have relations of degree m
where m < n.

The mathematical relationship greater than can be
illustrated by the set of real numbers, X. The Cartesian

product X x X is the set of all ordered pairs of real-

numbers. Any pair (xl, xz) is either true or false for

14

the condition Xy >'x2. The subset of all pairs for which
it is true defines the relation greater than. Definitions
of the more commonly used terms together with some
examples are aiso given in Appendix A.

(a)

.A normalized relation can be represented as a
rectangular array with the following properties:

(i) it is column-homogenous, i.e., in any selected

column the objects are all of the same kind whereas objects
in different columns need not be of the same kind

(ii) each object is a number or a character string

(iii) all rows of a table must be distinct

(iv) the ordering of rows within a table is immaterial

(v) ‘the columns of a table are assigned distinct names and
the ordering of columns within a table is immaterial.

In order that users need not know the column ordering
in a relation the underlying columns (domains), on which
data base relations are defined, are assigned distinct
attribute names. Suppose one of the underlying domains P#
is a set of serial number of parts. A relation with
attributes SUB_P# and SUP_P# then indicates that the role
names (SUB, SUP) attached to the common stem (P#) serve -o
distinguish two distinct applications of the domain P#
within the relation. &An attribute of some other relation
having the stem P# with or without the role name would also
have values from this same underlyiﬁg domain, i.e., serial
number of parts. Additionally the data base relations must
be named uniquely relative to themselves and to the

attribute names.

(a) For explanation, see Section 2.2 .

15

. One attribute (or collection of attributes) of a given
relation which uniquely identifies each tuple of that

(b)

relation is called the primary key.
Basic operations (e.g., projection, join, division) (c)
on relations disprove the contention that tables are
inadequate data structures to support facile manipulation
of relationships between and within the tables.
The relational model of data provides the following
advantages:
(i) an entirely general method of manipulation of data
and referring to it

Q) 41 that

(ii) a high degree of data independence
application programs and terminal activities can be made
independent of changes in physical (or storage)

representation of data

{b) Throughout the thesis the primary key of each relation
is underlined.

(c) 'For definitions, see Appendix B.

(d) Data independence is the concept of separating the
definitions of logical and physical data such that
application progranis and terminal activities need
not be dependent on where and how physical units of -~
data are stored. Logical data is that data as seen
by the user and manipulated by the application
programs; physical data is that data which the system
stores on, or retrieves from some storage media.

The user thus sees the elimination of several
structural concepts (e.g., repeating groups, hierarchic
and plex structures, and cross-referencing structures)
supported by current data base systems.

£51

16

(e)

(iii) a simple structure consistent with the semantics

of the stored information; this makes it possible to use

a logically simple language to interact with the data base.
To interact with this data base the user then needs

to know the following:

(1) the names of the data base relations

(ii) the attribute names of each relation

(1ii) the primary key of each relation (for updates).

2.2 NORMALIZATION OF RELATIONS

2.2.1 Introduction

Codd 5,71

has introduced the concept of normalization
to make the collection of relations in the data bas=z easier
for the users to understand and control, and simpler to
operate upon,

Normalization is a step-to-step reversible process'
of replacing a given collecfion of relations by successive
collections such that the relations have a progressively

simpler structure. The reversibility guarantees that the
original collection of relations can be recovered and

‘ .

|

therefore no information is lost.

(e} The relational model is a representation of the data
in terms of its natural structure only - it contains
absolutely no consideration of storage/access details
(pointers, physical ordering, indexing or similar
access techniques); in a word, no 'representation
clutter'.

2.2.2 The First Normal Form

Conversion to First Normal Form

Consider the relation P, representating PARTS, shown

in Fig. 2.1 .

p (p#, ©PD, QOH, J(J#, JD, JM#, QC))
102 CAD 24 11 SORTER 005 4]
| 32 COLLATOR 079 6 |
105 TOG 144 11 SORTER 005 25 |
24 PUNCH 079 14
57 READER 023 9

Fig. 2.1 An Unnormalized Relation

For each distinct kind of part the part number (P#), part
description (PD) and quantity on hand (QOH) are recorded
together with the project data for each project J using
that kind of part. The projecﬁ data, which is a repeating
groug, consistslof project number (J#), project -
description (JD), project manager number (JM#) and
quantity (QC) of this part committed to this project. The
attributes P#, PD and QOH all have simple values while
the attribute J has relations as its values. The relation .
P is said to be unnormalized as J is a non-simple attribute
of that relation.

The first step of normalization is to split P into

two separate relations:
o Pl (p#, PD, QOH)
‘ PJ, (P4, J#, JD, JIM#, QC) .

} These relations are shown in Figure 2.2 . This conversion

. ' . 18

e

to first normal form is only possible if the unnormalized
relation satisfies the following conditions:
(i) The graph of interrelationships of the non-simple

attributes is a collection of trees, as shown below.

PART (P)

PROJECT (J)

(ii) No primary key has a component attribute which is

non-simple.

Definition of First Normal Form

A relation is in fjirst normal form if it has the
property that none of its attributes has elements which

are themselves sets.

P, (P#, PD, QOH)

102 CAD 24
105 TOG 144

PJ1 (P#, J¢, JD, =~ JM#, QC)
102 11 SORTER 005 4

102 32 COLLATOR 079 6

/ 105 11l SORTER 005 25
105 24 PUNCH 079 14

105 57 READER 023 9

Fig. 2.2 Relations in First Normal Form

19

2.2.3 The Second Normal Form

Conversion to Second Normal Form

In relation PJ1 there are some irregularities in the
dependence of attributes upon the primary key (P#, J#).
Observation shows that JD and JM# are attributes of the
J# component of the primary key while QC is an attribute
of the entire key. These irreqgularities give rise to
the following anomalies:

(i) Unless fictitious part numbers are introduced, data
concerning a new project cannot be recorded until the
pfoject uses some parts (an insertion anomaly).

(ii) 1If only/one kind of part remains in use by a project,
deletion of data concerning that part causes deletion of
the last remaining information on that project while
previous deletions did not have this consequence
(a.deletion anomaly).

(iii) If a raange is made to the value of an attribute of a

i project (e.g., the manager's serial number JM#), the number

of copies of this information to be updated in the data
model dr:pends on the number of parts in use by that project
| at the instant the update is performed (an update anomaly).\
This dependence of attributes upon the primary
key (P#, J#) in PART-PROJECT relation PJl can be removed by
(£)

replacing relation PJ1 by two of its projections:

PJy = Tpy, g4, oc (P9
J2 = T34, ap, omy (BIY) -

(f) For definition, sew Appendix B.

| 20 . _)

The quantity QC of a part committed to a project is an
attribute of the combination of part number P# and project
number J#. Hence, it belongs in the relation PJZ' not in

J2' The resulting relations are tabulated in Figure 2.3 .

Functional Dependence

Consider a relation R with attributes A and B.
Attribute B of relation R is functionally dependent On
attribute A of R if, at every instant of time, each value
in A has only one value in B associated with it under R,
If B is functionally dependent on A in R, then R.A + R.B
else R.A # R,B . TIf both R.A » R.B and R.B + R.A hold,
then at all times R.A and R.B are in one-to-one
correspondence and R.A <+ R.B .,

This definition can be extended for A and B to be
two distinct collections:éf attributes. If B is not
functionally dependent on any proper subset of A, then
B is said to be fully dependent on A in R.

A functional dependence of the form R.A + R.B where

B is a subset of A is called a trivial dependence.

Candidate Keys

Each candidate key K of relation R is a combination of
attributes (or a single attribute) of R with the following
properties:

Pl : (Unique Identification) 1In each tuple of R the value
of K uniquely identifies that tuple, i.e., R.K = R.Q where
@ denotes the collection of all attributes of the

specified relation.

21

P2 : (Non-redundancy) Property Pl is lost when any
attribute of X is discarded, i.e., the number of attributes
in K must be minimal.

Unless all possible values of the attributes of a
relation R are known, property P2 cannot be imposed.

Suppose K is defined to contain attributes D D, and D

1’ 72
Imposing property P2, given the current values that

3.

Dl' D2 and D3 may assume, the key is minimal only if

K contains Dl and D2. However, at some later time, values
may be entered for Dl and D2 which will destroy property Pl
apd therefore attribute D3 is needed to uniquely identify
each tuple in R.

For each relation R in a data base, one of its
several candidate keys is arbitrarily designated as the
primary key of R. The usual operational distihction
between the primary key and other candidate keys (if any)
is that no tuple is allowed to have an undefined value
for any of the primary key components, whereas any other
components may have an undefined value. This restriction
is imposed because of the crucial role played by primary
keys in retrieval algorithms.

Any attribute of relation R which participates in

at least one candidate key of R is a prime attribute of R. _

All other attributes of R are called non-prime.

Definition of Second Normal Form

A relation is in second normal form 1f it is in

first normal form and every non-prime attribute of R is

fully dependent on each candidate key of R.

Suppose R is in first normal form and one or both of
the following conditions hold:.
Cl : R has no non-prime attributes,
C2 : Every candidate key of R consists of just a single

attribute.

bl

Relation R is then said to be in sécond normal form.

P, (P#, PD, QOH)

102 CAD 24
105 TOG 144

PJ2'(P#, J#, Qc)

102 11 4
102 32 6
105 11 25
105 24 14

105 57 9
3, (3t, JD, JM#)
11 SORTER 005
32 COLLATOR 079
24 PUNCH 079
57 READER 023

Fig. 2.3 Relations in Second Normal Form:

2.2.4 The Third Normal Form

Conversion to Third Normal Form

The final step of normalization is best illustrated by
considering the EMPLOYEE relation E tabulated in Figure 2.4 .~

Each employee, identified by a distinct employee

23

E (E4, JC, D#, M#, CT)
1 b Y 12 n
2 c z 13 n
3 c z 13 n
4 d X 11 g
5 a Yy 12 n
6 b w 14 g
7 a X 11 g
8 b z 13 n
9 d X 11 g

Fig. 2.4 A Relation Not in Third Normal Form

serial number (E#)_with a jobcode (JC), is assigned a
department number (D#)., Each department has its own
manager, whose serial number (M#) is recorded, and each
department is involved in contract type (CT) work, either
governmental (g) or non-governmental (n). The non-trivial

functional dependencies in E are exhibited in Figure 2.5 .

————E.E#

7N\

Fig. 2.5 Functional Dependencies in Relation E

Although relation E does not possess the kind of
dependency described in Section 2.2.3, some of its .
attributes are transitively dependent on others and this
gives rise to similar anomalies:

(i) Unless fictitious employee numbers are used, the

D# and CT values for & new department cannot be established

24

before people are assigned to that department.
(ii) If only one employee remains attached to a
department, deletion of that tuple for that employee causes
deletion of the last remaining departmental information
while previous deletions did not have this consequence.
(iii) If the manager of a department changes, more than
one tuple has to be updated and the number of upd;tes
varies with time.

Conversion of relation E to third normal form consists

of replacing E by two of its projections:

=
I

= "g¢, ac, p# (B

3= Tpy, m#, cr (B -
These two relations are tabulated in Figure 2.7 .

Transitive Dependence

Suppose that A, B and C are three distinct collections
of attributes of a relation R (R is of degree 3 or more)
and that the following time-independent conditions hold:

R.A + R.B, R.B # R.A,

R.B - R.C .
This implies that
R.A » R.C R.C +# R.A .

Figure 2.6 summarizes the entire set of conditions on
A, B and C. The condition R.C + R.B is neither prohibited
nor required. Thus C is said to be transitively dependent

on A under R.

25

R.A

Fig. 2.6 Transitive Dependence of C on A under R

In the special case where R.C -+ R.B in addition, both
B and C are transitively dependent on A under R.
Looking at Figure 2.5 it can be deduced that CT, D#

and M# are transitively dependent on E# under E.

Definition of Third Normal Form

A relation R is in third normal form 1f it is in
second normal form and every non-prime attribute cf R is
non-transitively dependent on each candidate key of R.
Relations Pz, sz aqd J2 tanulated in Figure 2.3 are also

in third normal form.

The undesirable insertion, deletion and update
dependencies have disappeared with the removal of the
transitive dependencies. No information has been lost

| since the original relation E may be recovered by taking

and D, on D#,

3 R N
the natural join ‘9’ of E, 3

~.

(g) For definition, see Appendix B.:

26

E, (E#, JC, D#)
1 b)4
2 c 2
3 c z
4 d X
5 a Yy
6 b \
7 a X
8 b 4
9 d X

D3 (Ei, M#, CT)
Y 12 n
z 13 n
X 11 g
w 14 g

Fig. 2.7 Relations in Third Normal Form

2.2.5 Objectives of Normalization

The objectives of normalization are:
(i) to make it feasible to tabulate any relation in the
data base so that all objects are simple
(ii) to obtain a powerful retrieval capability by means of
a simpler collection of relational operations than would
otherwise be necessary
{iii) to avoid undesirable insertion, update and déietion
dependencies in the relations
(iv) to make the relationa} model more informative to
users
(v) to reduce the need for restructuring the collection
of relations as new types of data are introduced and thus

increase the life span of application programs

27

{vi) to make the collection of relations neutral to
usage pattern especially where this pattern varies with
time.
The first two objectives apply only to the first
step of normalization while the last four objectives apply"

to all normalization steps.

2.2.6 Summéry of Normalization

Figure 2.8 summarizes the relationship between the

three normal forms.

UNNORMALIZED FORM

eliminate attributes which
have relations as elements

v

FIRST NORMAL FORM

eliminate non-full dependence
of non-prime attributes on
candidate keys

v
SECOND NORMAL FORH

eliminate transitive dependence
of non-prime attributes on
candidate keys

v
THIRD NORMAL FORM

Fig. 2.8 The Three Normal Forms

2.3 RELATIONAYL: LANGUAGES

2.3.1 1Introduction

A relational model of data, based on normalized
relations of assorted degrees, can be-manipulated by
two principal types of relational language - the

intermediate level, algebraic (typified by the Peterlee

28

IS/1 System) L8]

and the high level, calculus-oriented
data sublanguages, an example of which is described in

Section 3.3 .

2.3.2 A Relational Algebra

In this algebraic approach data retrieval or .
selection is viewed as the formation of a new normalized
relation from the existing collection of relations by
some operation of the algebra. The basic operations of
the relational algebra include the traditional set
operations (Cartesian product, union, intersection,
difference) and the new operations on these .
relations (projection, join, division, restriction).
Definitions of these relational operations are given in
Appendix B, These operations act upon entire normalized
relations as their operands.

The collection of relations in a data base with these
operations forms the relational algebra. These operations

have been implemented on a computer system using APL. €93

2.3.3 Relational Calculus

The relational calculus, based on an applied predicate
salculus, may aiso be used in the formulation of gueries
of arbitrary complexity on any data base consis ting of a
finite collection of relations in simple normal form. A
query, represented as a relation-defining expression {(an
a—expression) in the relational calculus, is translated

into a retrieval algorithm, [10] a sequence of operations

29

on the relations of the data base yielding the response
relation. To facilitate the specification of such a
query; Codd has also introduced a data sublanguage,
DSL ALPHA, based on the relational calculus. An outline
of this relational calculus which includes the definition
of an a-expression is given in Appendix B.

The basis of this retrieval algorithm is ess;ntially
the reduction of an arbitrary a-expression into a
semantically equivalent expression of the relational

algebra. Palmero [3]

has incorporated a number of
improvements to this retrieval algorithm to obtain a more
efficient algorithm. The introduction of the concept

of semi-join as an intermediate object when the tuples

of a relation are retrieved permits the algorithm to
determine dynamically the order in which the relations are

explored. Palmero used instead the y-expression (a

normalized pR-expression) to represent the guery. .

2.3.4 Relational Completeness

An algebra or calculus is relationally complete if,

given any finite collection of relations Rl' Rz, coep RN

~.

in simple normal form, the expressions of the algebra or

(IS

calculus permit definition of any relation definable from

Rys Ryy ..., Ry by oa-expressions (using a set of N range
predicates in one-to-one correspondence with Rl' RZ' ceey RN)s
Both the algebra and calculus described here provide a

foundation for designing relationally complete query

30

(h)

languages.

2.3.5 Calculus versus Algebra

Codd has shown that these two types of language
(the algebraic and the calculus-oriented) for data base
manipuiation are equivalent in the sense that a relation-
defining expression in the relational calculus can be
mapped into a semantically equivalent expression in the
algebra. Although the relational algebra possesses as
much selective power as the relational calculus, the
descriptive calculus approach as oppoﬁed to the
constructive algebraic approcach permits the user to

request the desired data by its properties.

(h) For definition, see Section 3.1 .

31

3. T HE PROPOSETD DATA BASE
SYSTEM WITH REFERENCE

T O ALPHAB A SUBLANGURAGE

3.1 INTRODUCTION

Among languages for data base manipulation, the
intermediate algebraic and the high level calculus-oriented
sublanguages score heavily in protecting users from
representation clutter by using a simple data model and by
treating relations as data objects manipulable in their
entirety.

A data sublanguage may be embedded (with appropriate
syntactic modification)' in a variety of host programming
languages such as PL/1, COBOL and FORTRAN. All computation
of functions is defined in the host language statements; all
retrieval and storage operations in data sublangauge
statements., Arithmetic functions defined in the host
language can be invoked in the data sublanguage statements.
Alterna:ively, the data sublanguage may stand alone (self-
contained §ystem) and is commonly referred to as a query
language, even though it may contain provision for simple
updating, inserting, etc.

Many users in the past were forced to use specialized
query languages to meet their specific needs. The high cost
of supporting a great variety of these languages with
translators has suggested that the common functions in

these translators be identified and programmed once and for

32

all. This, in turn, has suggested adopting as a source
language for these translators a very high storage and
retrieval language. The calculus-oriented type of langquage,
an example of which is DSL ALPHA, appears best suited
for this purpose. The adoption of this calculus-oriented
approach has permitted successive improvements in_.general
retrieval algorithms to be incorporated into data base
systems without affecting users' programs.

A query may be represented in a number of forms as

shown in Figure 3.1 .

Query

N

Natural Relational
Language Calculus
(English) :

Y-expression

Retrieval
Tables

Fig. 3.1 Query Representation

A tabular representation of the queryv. in the form of

(a)

retrieval tables, is also derived from the

(a) Retrieval tables are those coding tables 'generated'
for a query (see Section 5).

33

(b)

Yy—expression which is needed for the understanding
of Palmero's retrieval algorithm. A detailed description
of this retrieval algorithm will not be reiterated here

as a paper on the algorithm is available. [3]

Briefly,
from the 'generated' retrieval tables, the required
relatisns are retrieved from the data base and the
semi-joins and reference relations are constructed and
stored in temporary variables. These semi-joins are then
combined to construct the relation Tp+q where p and q are
the number of free variables and quantified variables
respectively in the y-expression. The quantifier
operations {(projection and division) are then applied to
obtain the indirect response relation T which is then .
combined with the reference relations to construct the
response relation to the query.

Palmero's retrieval algorithm will be used as a basis

for the development of algorithms (e.g., for deleting,

inserting, etc.) to be incorporated into data base systems.

3.2 THE PROPOSED DATA BASE SYSTEM

A schematic representation of the proposed data base

system is presented in Figure 3.2 . The relational

completeness of DSL 7

DHA (i

=) =S o Rk 4 NV WATT A eV am o
pY %Y L4

-y X B "
L., Ay JuUery &xXpressio.e

in the predicate calculus is expressible in ALPHA) makes

(b) It is conjectured that a y-expression is semantically
equivalent to an a—-expression although there are a
number of syntactilic differences between them,

34

it an extremely suitable candidate for implementation.
DSL ALPHA has been implemented as a query and command
language, and an array representation of normalized
relations in the data model has been assumed.

In the proposed data base system the translator
accepts as input a modified version of source statements,
checks that coﬁditions are met ‘for the relationalxcalculus
(interactive debugging facilities are provided) and
prdduces as output a set of coding tables suitable for
interpretation. A detailed description of the working of
this translator is given in Section 4. The data
sﬁblanguage interpreter, which incorporates Palmero's
retrieval algorithm and other algorithms, interpretslthe
coding tables at interpretation time.

A query handling scheme of the proposed data base
system is presented in Figure 3.3 . Paimero's retrieval
algorithm analyzes queries in the form of retrieval tzbles
produced by the translator. The actual retrieval of tuples
from a relation (or relations) in the data base will be
done through system subroutines to preserve physical data
indeperdence, i.e.,'the interpreter will not be aware of
the physical representation-of the data except for the facth
that it will be able to know whether an attribute is a
component of or is the primary key. These: system
subroutines are essentially the operations of the relational
algebra defined in Appendix B. Since all the basic
retrieval power is eﬁbodied in DSL'ALPHA, this retrieval

capability can be implemented once and for all.

35

DSL ALPHA statements
and

computational facility
statements

The data sublanguage
translator checks
that conditions are
met for the
relational calculus
and produces a

set of coding tables

-Tnput is picked
up from
Y coding tables

Data sublanguage
interpreter interprets
the coding tables
using algorithms

Retrieval / Update / Deletion / Insertion /
Dropping or Establishing data base relation /

Input or Output facility

Fig. 3.2 The Proposed Data Base System

Query

The translator
produces a set
of retrieval
tables

/

Interpreter
retrieves data
from the
relational

data base

via system
subroutines

by an algorithm
using semi~joins

System

subroutines to
manipulate the
relational
data base

Response relation

Fig. 3.3 A Query Handling Scheme of the Proposed System

37

Hence the proposed system provides a means of
defining the physical representation of data independently
of the translator and interpreter; and that changes to any
of them will not affect the system subroutines and

vice-versa.

3.3 DESCRIPTION OF THE IMPLEMENTED DATA SUBLANGUAGE ALPHA

3.3.1 Basic Characteristics

The ALPHA sublanguage is a language for manipulating
relations. It permits the following functions:
(i) the addition of declared relations and their
attributes to the system catalog; each declaration of
a relation identifies the primary key for that relation
(ii) the spepification for retrieval of any subset of data
(iii) the addition of new elements or sets to declared
relations
(iv) the deletion of elements or sets from declared
relations
(v) the declaration {(implicit) of variables; each
variable being assigned a value
(vi) the listing of information contained in relations ~.

and values of variables.

Codd's concept of the user workspace in DSL ALPHA has
to be explained. Data flows in and out of the data base
via user workspace as directed by data sublanguage
statements (see Figure 3.4). This data transmission
appears to the user to take place all at once. A workspace

may consist of space in core or disk. A single user has

38

* *
NEW . RELEASE

6€

GET
HoLo”
DATA BASE WORKSPACES
T urpaTe ¥
»
DROP :
putT”

assignment
statement

*
DELETE

*
DSL ALPHA STATEMENTS

Fig. 3.4 Information Flow

or

T

UPDATE

complete
HOLD

start GET

ccmplete
UPDATE

start PUT _

r! busy

complete GET u

3.5 Transmission Control:

complete PUT PUT

<]
n

ready to receive

-
i

ready to transmit

State Transition Diagram

several workspaces in use concurrently.
The workspace provides a data interface between

(c)

DSL ALPHA statements and assignment statements. The
user never applies assignment statements directly to data
residing in the data base, but instead fetches the
desirerd data into one or more workspaces using data
sublanguage'statements, and then applies assignment
sfatements to the data in these workspaces. Thus, at
each instant of time, each workspace holds the array
representation of one relation or a tuple.

A state diagram is given in Figure 3.5 showing
permissible changes of state for any workspace. Whenever
a workspace is in one of the four busy states it is
inaccessible to both DSL ALPHA statements and assignment

statements. In any of the non-busy states assignment

statements may be applied to the workspace.

3.3.2 Struchure of Data Sublanguage ALPHA

The structure of ALPHA sublanguage is determined by:

(1) N, the set of syntactic entities (or non-terminal

(ii) T, the set of basic (or terminal) symbols

ot
W

(0]
o7

(iv) P, the set of syntactic rules (or productions).

(c) Assignment statements are incorporated in DSL ALPHA
for updating purposes.

a1

Notation

A syntactic entity is denoted by its name (a sequence
consisting of letters and hyphens) enclosed in the

brackets < and >. A syntactic rule has the form

<A> 3= X

where <a> is a member of N, and x is any possible sequence
of basic symbols and syntactic entities. The set P

contaeins the syntactic rule

<BAR> t:= |

implying that | is a basic symbol of the sublanguage.
Adopting the convention that all references to this Easic
symbol in other syntactic rules shall be replaced by
<bar> permits the unambiguous use subsequently of the

notation

<A>

N

as an abbreviation for the set of syntactic rules

<A>
<A> 3=

Ne ¢ o €3

<;> =
This particular notation is .called Backus-Normal Form

or Backus-Naur Form (BNF).

42

3.3.3 Basic Symbols

The ALPHA sublanguade is built up from the following

basic symbols:

<BASIC-SYMBOLY> CLETTERD>

I <OIGIT>
| <DELIMITER>

Letters

<LETTER>

N LTECC—HNIOVOZT AU TR GW~IOTMAODP >

Letters do not have individual meaning. They are used

for forming identifiers and strings.
Digits

<DIGIT>

- —— ——— s]
GOo~NCVMSWN=D

Digits are used for forming identifiers, numbers and

strings.

43

Delimiters

<DELIMITER>

<BRACKET> ::3

<OPERATUR>

<ARITHMETIC-UPERATOR> ::

<RELATIONAL-OUPERATORD> 32

<LOGICAL-QPERATOR>

CSEPARATGR> i:=

<ODECLARATGR>

CQUANTIFIER> ::

" KVERBAL-OPERATOR>

<OPERATCR>
<SEPARATCR>
<BRACKET>
<DECLARATCR>
CQUANTIFIERD

CARITHMETIC-GPERATCR>
CRELATIONAL-UIPERATORD
<LCGICAL~-CPERATIR>
<VERBAL~CPERATCRY

——— e [}
L 2 SR

VAIVA
Bl

4

ANO
CR

READ
LISY
RANGE
GET
HCLD
RELEASE
UPCDATE
DELETE
DrRQOP
PUT
NEW

OOuN

KEY
FIXED21
F1XED
FLOATLG
FLOAT
CHAR
CHARVAR

ALL
SGME

Separators serve the

between certain DSL ALPHA

purpose of marking divisions

entities, while declarators and

quantifiers are used to describe the properties of

identifiers.

44

3.3.4 Identifiers

antax

CICENTIFIER> CLETTERD

| <IDENTIFIGR> <LETTERD
| <IDENTIFIER> <DIGIT>

| KIBENTIFIER> _
I <INDENTIFIER> A

CWORKSPACE-NAME> 3= <IDENTIFIERD
CDATA-BASE-RELATICN-NAME> ::= <CIDENTIFIERD
CLOCAL-RELATION-NAME> t:f:= <IDENTIFLER>
CATTR-NAME> ::= <IDENTIFIER>

CVARIABLE> ::= <1UENTIFIER>

CTDENTIF IER-LIST> 1= <IDENVIFIERD>
} <IDENTIFIER-LIST> , <UIDENTIFIERD

CVARTABLE-LISTY> ::= <SVARIABLED
] <VARITABLE-LIST> , <VARTABLED>

.Examples

SUPPLY
SUB_PART
Wl

PART#

Semantics

Identifiers serve'for the identification of workspace
names, data base relation names, local relation names,
attribule names and variables. The length of an identifier

should contain twenty or fewer alphanumeric, hash and

words (see Section 3.3.5).

Names for data base relations and attributes are
chosen by the community of users, while workspace names and
local relation names are chosen by individual users. A

workspace name identifies a DSL ALPHA workspace while °

45

a data base relation name identifies a data base relation.
A local relation name designates a typical tuple of the
relation to which it is specified. It is also used to
provide an alias for a data base relation name/workspace
name used in more than one context in a single statement.
An attribute name identifies an attribute. Users must
not use any data base relation name or attribute name as
a workspace name or local relation name.

Identifiers which represent variables are of type
real or integer, Variables are implicitly declared. An
integer variable has as its first character I, J, K, L, M
or N while a real variable starts with one of the characters

in the range A to H or O to Z.

3.3.5 Standard Function Identifiers

Szntax

AVERAGE
COUNT
MA X

MIN
TaTAL

CFUNCT ION—TDENTIFIER>

<I-FUNCT IGN-IDENTIFIER> LAVERAGE
ICCUNT
IMAX
IMIN

1TOTAL

<BAOL-FUNCT ICN~-IDENTIFIER> s:= TOP
1 BCTVCH

Semantics

The following identifiers are predeclared for the

standard functions of analysis:

(i) COUNT, ICOUNT - counts the number of elements
(ii) TOTAL, ITOTAL - forms the sum of elements
(iii) MAX, IMAX - selects the maximum value

46

(iv) MIN, IMIN

(v) AVERAGE, IAVERAGE

(vi) TOP, BOTTOM -

The standard functions COUNT and ICOUNT are applied
to any finite set while the others are applicable to
finite sets of numbers only. Examples to illustrate the

use of some of these functions are given in Section 3.4 .

-3:3.6 Constants

Szntax

<CONSTANT> ::=- <NUMBERD>

| <STRING-CCNITANT
CNUMBER> 3: <SIGN> CINTEGER-CONSTANTO
' CSION> CREAL-CONSTANT>
CINTEGER-LGHhSTAMTY
CAEAL-COASTANT>

<SIGN>

CINTEGER-CONSTANT> 3= <DIGIT>
| <INTEGER~CONSTAHT> <DIGIT>
CREAL-CONSTANT> 2 « CINTEGER-CONSTANTD
CINTEGUR-CONSTAGTY> o
CIHTEGER-CONSTANTY o CINTEGER-CCHSTANTY>

-

CSTRING~CONSTANT> 3= ¢ <OPEN-STRING> ¢

COPEN-STRING> :t= <CCHARACTERD
| <OPEN=STRING> <CHARACTEH>

CCHARACTERS ::3 LLETTERD
<IGIT>
| <SPECIAL-CHARACTERD

BLANK

<SP€CIAL-CHARACYER)

Vi sae ~ | J oo putaMe—e ~A

a0 «ea-

47

selects the minimum wvalue
forms the arithmetic mean

returns the wvalue true or false.

ExamEles

25

+20.7
~400.579
126.12.48"
" JONES'

Semantics

Arithmetic constants are numbers interpreted according
to the conventional decimal notation. Each number has a
uniquely defined type.

_Strings consist of any sequéhce of at most 20

characters enclosed by ', the string quote.

-3+3.7 Statements

The distinguished symbol S of the ALPHA sublanguage

is the symbol <{sessionv>.

antax
CSESSIONY 3= (STATEMENT-LISTY> STOP
CSTATEMENT-LISTD> :':= {STATEMENTD>

| <CSTATEMENT-LIST> <STATEMENT>
CSTATEMENT> <COMP-FACILITY-STATEMENTY
COUERY-SERUENCE-STATFMENTY
CUPDATE=SEQUERCE=-STATEMENT>
KCELETL~-SEQUENCE-STATEHENT>
CDROP-STATEMENTD>
CPUT-STATEMENT>
"KNEW-STATEMENTD>

The principal statement forms of the sublanguage are
the computational facility statement, query sequence
statement, update sequence statement, delete sequence
statement, drop statement, put statement and new statement.

A principal statement denotes a unit of action. By the

48

http://ri.rF.MENO

execution of a principal statement is meant the
performance of this unit of action, which may consist of
smaller units of action such as the evaluation of
expressions (e.g., qualification expression) or the

execution of other statements.

(i) Computational Facility Statements

Syntax

CCOMP-FACILITY-STATEMENT> :t= <CASSIGNFENT-STATEMENTY
) | <INPUT-CUTPUT-STATEMENTY

CASSIGNMENT-STATEMENTD 2:= <WORKSPACE-NAME> o <ATTR-NAMED> = <RIGHT-PART>

CCRIGHT-PART> :i= ¢ <OPEN-STRINGS ¢ :
A | QAR ITHMETIC-EXPRESSIOND

CARITHMETIC-EXPRESSIONY> = ~ CSCLDHDARYY

)} CSIGN> CSECLHDARYD
| <ARITHMETIC~FXPRESSIUN> & <SECCNDARY>
| <ARITHMETIC-LXPRESSIOUNY> — <SECDIDARY>

CSECUONDARY> 3 <PRIMARY>

| <SFCCHDARY> & <PRIMERYD>
| <SECCANDARY> / <PRIMARY>

CPRIMARY> @ <NUMBER>

=

I <VARIABLE>

| CWUKKSPACE~NAMED . <ATTR-NAMED>
| (<ARITHMETIC~EXPRESSIGHD)

CINPUT-0UTPUT-STATEMENTD> 1= <READ-SIATEMENTD
I CLIST-STATEMENT>

. KREAD-STATEMENT> 33= REAOD (<VARIABLE-LISI>)

CLIST-STATEMENT> 3:3= LIST (<IDENTIFIER-LIST>)

Examples

W.0 = W.Q * (30.867 - 3.469)
READ (ALPHA, BETA)
LIST (W, ALPHA, X, M)

Semantics

Assignment statements are applied only to data in the
workspaces to alter the current values.
A read statement designates a free field input

procedure. Identifiers specified in the read

49

statement are declared to be variables. Values are read,
matched with the variables of the actual variable list

in order of appearance, and assigned to the

corresponding variables. The type of each value must be
assignment compatible with the type of the corresponding
variable. A list statement designates an output procedure
with automatic format conversion. Information contained
in data base relations and workspaces, and values of

variables can be requested.

Precedence of Operators

The sequence of operations within an arithmetic
expression is generally from left to right, with the
following additional rules:

(i) According to the syntax given above the following
rules of precedence hold: |

first : / *

second + -

(ii) The expression between'a left parenthesis and the
matching right parenthesis is evaluated by itself and
this value is used in subsequent calculations.

Consequently the desired order of operations within an
arithmetic expression can be specified by appropriate

positioning of parentheses.

50

(ii) Query Sequence Statements

antax

CQUERY-SEQUEMCE~STATEMENT> ti= <RANGE-LIST> <GET-STATEMENT>

CRANGE~-L IST> ::= <CRANGE-STATEMENT>
-l CRANGE-LIST> <RANGE-STATEMENT>

CRANGE-STATEMENT> :: <RANGE-NAME-PART>

| ~ CRANGE-NAME-PARTD> <QUANTIFIERD>
CRANGE-NAME-PART> ::= RANGE <RELATION-MAME> <LOCAL—RELATICN-NAME>

CRELATION-HAMED 33:= ~<WORKSPACE-NANED>

KDATA-BASE-RELAT]ON-NAME>

GET-STATEMENT> :: CGET-NAME-PARDD>

CGET-NAME-PARTY> : <QUALIFIC:ATION-EXPRESSIOND>

CGET-NAME-PART> : <CQUALIFICATIDN=-EXPRESSIOND <GET-ELEMENT—DRDER[NQ—EXPRESSION>
CGET~NAME-PARTD> CGET-ELEMENT—CRDERIAG=-EXPRESS LOND>

CGET-NAME-PART> ::= GET <WORKSPACE-NAME> <QUOTA> <GET-TARGET-LIST>
GEY <WORKSPACE-NAME> <GET-TARGET-LIST>

<QUOTA> :: { CIDENTIFIER>)

I U <INTEGER-CONSTANT>)

CGET-TARGET-LIST> ::= <GET-TARGETD

| <FUNCTION-DESTGNATORD

| CQUAL-ATTR-LIST> , <I1-FUNCTION-CESIGNATORD

] <GET-TARGET-L{ST> |}

CGET-TARGET> ::= <GET-TAPGEI~FLEMERT)

| <GET-TAEGEY> , <GET-TARGET-ELEMENT>

CGET-TARGEV-ELEMENT> ::= <LOCAL-RFLAT ICN-NAME>
: | <OUAL~ATIR=NAMED

SQUAL-ATTR-NAKE> 33z <ZLCCAL-RELATIGN-NAMED o CATTR-NAMED

CFUNCTTUN~DES[GIHATOR> 232 <FUNCT|GN-IUENTIF!E&> { <FUNCTIGN-ARGUMENTD> }
CFUNCT ION-ARGUMENT> 3= <QUAL-ATTR-NAME>
CQUAL~ATTR-LIST> 13

= <QUAL-ATTR-NAME> .

| CQUAL-ATTR-LIST> , <QUAL-ATTR-NAME>

CI-FUNCTION-DESIGNATOR> ::= <I-FUNCVION-IDENTIFIER> | <I~-FUNCTION-ARGUHMENT>)
CI-FUNCT IDN=ARGUMENTY> 3:= <LOCAL-RELELTION-NAMED o CATTR-}AME -SEGUENCE> o CATTR-NAME>
CATTR-NAFE-SEQUENCED t31= <ATTR-NAMED

I <ATTR-LISTY>)
CATTR-LIST> ::= <ATTR-NAME>

I <ATTR-LIST> , <ATTR~NAME>
CQUALIFICATION-EXPRESSION> 1= <CCMPLEX~QUALIFICATICN>

| <BCOL-FUNCTION~UESTGNATOR>

I <1-FUNCTIGH~DESIGNATOR> <RELATIGNAL-OPERATOR> <NUMBER>
CCOMPLEX -QUALIFICATION> *3= <QUALIFICATION>

f <COMPLEX-CUALIFICATION> QR <JUALIFICATIOND
CQUALIFICATIOND 3= <QUALD

| <QUALIFICATION> AND <CUAL>
CQUAL> 3:= <W-COMPOMENTD

] s <COMPLEX-QUALIFICATIONY $)
CH-CUMPONENT> 33= <MATRIX-THETA

| <W-CGMPCNENTD> | <MATRIX-THETA>
CHMATRIX-THETA> :3= <CTHETA-COMPOINENT)>
] U CMATRIX-THETA>)
CTHETA-CCMPCHENT> 3= CTERM

| CTHETA-CDMPCNENT> & < TERM>

t <KMCNADIC-TERM)

CTERM> ::=
I COYADIC-JGIN~-TERM>)

51

http://otuL-Arrr.-N.iHE

CMOMADIC-TERM> $:= <QUAL=ATTR-NAME> <RELATICNAL-OPERATOR> <CONSTANT>
CDYADIC—JOIN-TERM> ::= <QUAL-ATTR-NAMED> <RELATIONAL~-UFTRATORD <QUAL-ATTR-NAME>
<BOOL-FUNCTIUN-DESIGNATOR> 1= <BOOL-FUNCTION-IDENTIFIER> (<BOOL-FUNCTICN-ARGUMENT)>)
<BOOL~FUNCTICN-ARGUMENT> := <KINTEGER-CONSTANT> , <QUAL-ATTR-NAMED

CGET-ELEMENT-ORDERING-EXPRESSION> 3= <GET-ORDER>
I <GET—~ELEMENT-ORDERING-EXPRESSION> <GET-ORDERD>

CGET-CRDER> ::= UP CCUAL-ATTR-NAME>
| DOWN <QUAL-ATTR-NAME>

Examples

RANGE PART P
~ GET W (P.P#, P.PNAME, P.QOH) : (P.QOH < 25) UP P.WEIGHT

RANGE SUPPLY 2
GET W COUNT(2.S#) : (Z.J# = 5)

Semantics

A query sequence statement constructs the response
relation in a specified workspace.

The range list informs the system that certain local
relation names are used to designate typical tuples of
the corresponding relations. This range list stays in
effect until the resporise relation to the query is
constructed.

The target list in a get statement defines the relation
to be constructed. This list is separated from the
qualification expression (if present) by a colon which can
be taken to mean 'such that'. Any number of distinct
relations may be referenced in the target list. When a
function designator or an image function designator
appears in the target list then only one relation is
referenced. The quota, if specified, indicates to the

system the number of tuples to be retrieved. The

52

qualification éxpression (if present) provides the
selection criteria for tuples of the response relation.
The element ordering expression can be specified to
inform the system that tuples are to be delivered to
the workspace in a particular ordering.

All tuple variables (i.e., local relation names)
appearing in the qualification expression and notﬂin the
target list of a get statement must be quantified
explicitly using the attributes SOME or ALL on range
statements. The quantifier SOME indicates existential
quantification of the associated local relation name
while ALL indicates universal quantification. Tuple
variables appearing in the target list should not be

quantified.

Precedence of Operators

According to the syntax given above the following

rules of precedence hold::

first : < > = <= »>= "=

second : &

third : |

fourth.: AND ~
fifth : OR

Precedence can be imposed upon the logical operators,
AND and OR, separating the w components in the
qualification expression. The w component between a
left bracket $(and the matching right bracket $) is
evaluated and this result is used in subsequent

calculations. Hence the desired order of execution of

53

a logical combination of two or more w components in the
gualification expression can be specified by appropriate

positioning of these brackets.

(iii) Update Sequence Statements

Syntax

CUPDATE—-SEQUENCE-STATEMENT> 3 CUPDATE-MEAD> CRELEASE-STATEMEINT>

| CUPDATE-MEAND> <UCDATE-STATEMENT>
) CUPDATF-BUNY> <KPELEASE-STATEMENT)
} CUPDATE-BCNY> CUPNATE-STATEMENT>
CUPDATE-HEAD> :3= <RANGE-LISTY <HC.D-STATEMENTD
<HOLD-STATEMENTY? ::= <CHUOLD-NAME-PART>
I <HOLD-NAME-PART> : {QUALIFICATION-EXPRESSIAND
| CHOLO-NAME=-PARTD> @ CSUALIF {CATIGN-EXPRESSION> CGET-ELEMENT—GROER ING-EXPRESS [UN>
[<HOLO-NAME-PART> <GET-ELEMENT-ORGE 1 ING~EXPRESSICND>
<HOLD-NAME-PART> ::i= MHOLG CWORKSPACE-NANE> <HOLD-TARGET-LIST>
CHOLO-TARGET-LIST> 3= <H_ Lu-TARGET>
] CLUTAL-RELATION-NAMED>
] U <HGLD-TARGET-LIST>)

<HOLO-TARGET> :: CHOLD—-TARGE T-ELEMENT>

} <HOLD~-TARGET> , <HCLD-TARGET-EL EMENT>
<HOLD-TARGET—-ELEMENT> ::= <QUAL-ATTR-NAME>
CRELEASE-STATEMENT> :2:= RELEASE

CUPDATE-STATEMENT> ::= UPCATE

<UPDATE~BODY> 3:= <UPOATE-HEAD> <CGMP-FACILITY-LIST>

<COMP-FACILITY-LISI> 3 KCOMP-FACTILTTY-STATEMENT>

I <COMP-FACILLTY-LIST> CCOMP-FACILITY-STATEMENT>

Examples

RANGE PART P

HOLD W (P.QOH) : (P.P# = 3)
W.QOH = W.QOH + 5

UPDATE

RANGE SUPPLY 12
HOLD W (Z.s#) : (Z2.P# "= 3)
RELEASE

54

Semantics

A hold statement has the same effect as a
corresponding get statement in regard to the information
made available to a specified workspace. An additional
effect of a hold statement is that it warns the system
to be prepared to return modified data to the tuples
supplying the retrieved data. This returning of modified
data is requested by an update statement. The system
suspends other non-computational facility accesses
until this update is completed or cancelled. Cancellation
is requested by a release statement.

The hold statement (unlike the get statement) is
restricted to a single relation occurring in its
target list. Thus multi-relation updates entail the
use of more than one hold statement and more than one

workspace.

(iv) Delete Sequence Statements

Syntax

KDELETE-SEQUENCE~STATEMENT> :3= <RANGE-LIST> <DCLETE-STATEMENT>

SDELCTE—STATEMENTY> 2= <CLCELETE-NAME-PART>.
| <DELETE-HARE—-PART> : <QUALIFICATICGN-EXPRESSTQON>

TE SLOCAL-RELATITH-NAWMEY

Examples

" RANGE PART P
DELETE P : (P.P# = 5)

RANGE SUPPLY 2
DELETE 12

55

Semantics

A delete sequence statement removes tuples from only
one relation. The gualification expression in a delete
statement is similar to that in the hold statement or
get statement, i.e., it can involve any number of
relations. When a boolean function designator or an
image function designator appears in the qualification

expression then only one relation is involved.

(v) Drop Statements

Svntax

COROP-STATEMENT> ::= <(CRCP-NAME-PARTD>
I <DROP-NAME-PARI> . CATTR-NAME-SECUENCE>

<DROP~NAME-PART> ::= OROP COATA-BASE~RELATION-NAMED>

Examples

DROP PROJECT
DROP PART. (COLOR, WEIGHT)

Semantics

A drop statement removes all information about a
data base relation or its attribute (or attributes) from
the data base catalog.

The-statement DROP R (where R is a relation name)
should be contrasted with

"RANGE R L
DELETE L

(where L is a local relation name) which merely deletes all

56

tuples of R but leaves R as an established, although

empty, relation of the data base.

(vi) Put Statements

antax

CPUT-NAME-PART>

CPUT-KAME-PART> o <PUT—-REST>

CPUT-NAME-PART> . CPUT-REST> <PUT-ELEMENT-DRDER [NG-EXPKESS ION>
CPUT-NAME=-PART> <PUT-EL EMENT-OKDERING-EXPRESSIUN>

<PUT-STATEMENT> =@

<PUT-NAME~PART> ::= PUT <WORKSPACE-NAME> <RELATICN-NANE>

CPUT-REST> ::= CATIR-GRODERING~-EXPRESSION>
CATTR-0RUERING—-EXPRESSICN> ::= <ATTR-NAME-SEQUENCED>

<PUT-0RDERD>

CPUT-ELEMENT~0RDERING-EXPRESSIOGHN> ::=
. | <PUT~-FLEMCNT-ORDERING-EXPRESSION> <PUT-0RDER>

UP <ATTR-NAME>

CPUT-CRDLR> ::=
| OCWN <ATTR=HAME>

Examgles

PUT W1 W2
PUT W PART,.(P#, COLOR, QOH) TUP P#

Semantics

A pﬁt statement inserts tuples located in a workspace
into a relation in the data base, or into another
workspace.

In all put statements only one data base relation is
specified. If the tuples to be inserted are ordered, the
element ordering in that workspace can be specified to

advise the system.

57

(vii) New Statements

Syntax

<NEW-STATEMENT> ::= NEW <CATA-BASE-RELATION-NAMED> <ATTR-RECCRD>

<ATTR-RECORDO> ::= (<ATTR-FIELD>)
} <CATTR-RECORD> (<ATTR~FIELD>)

CATTR-FIELD> ::= CATTR-NAMED> , CATTR-TYPE-LENGTH>
: | CATTR-NAME> o <KEY-TYPE> ¢ CATTR-TYPE-LENGTH>

CATTR-TYPE-LENGTH> 3:= <ATTR-TYPE>
| <ATTR-TYPE> 4 <ATTR-LENGTID

= FIXENZ1
| FIXED

| FLCATLE
| FLOATY

| CHAR

| CHARVAR

<ATTR-TYPE>

ATTR-LENGTH) 3= <LINTEGER-CCASTANTS

<KEY-TYPE> ::= KEY

Examples

NEW PROJECT (J#, KEY, CHAR, 4) (JNAME, CHAR, 1l0)
NEW SUPPLIER (S#, KEY, FIXED) (SNAME, CHAR, 15)

Semantics

A new statement declares a new data base relation.
Each declaration of a data base relation identifies its
attributes, primary key as well as the data types of these
attributes.

The keywords FIXED and FLOAT denote attributes to
be of type integer and real respectively, whereas FIXED31l
and FLOAT16 are the double precision representation,

CHAR and CHARVAR denote fixed and varying length character

strings respectively.

58

3.4 DATA SUBLANGUAGE ALPHA EXAMPLES

Examples to illustrate the use of the implemented
DSL ALPHA are given in the following order:
(i) queries
(i1) wupdates
(1ii) deletions
(iv) insertions
(v) dropping and establishing data base relations
(vi) input and output facilities.

The sample data base which the examples exploit, (d)

consists of four relations as tabulated in. Table 3.6..

~Relation Attributes

FACTORY s#, SNAME, ADDRESS

MATERIAL P#, PNAME, WEIGHT, QOH

TASK - J#, JNAME, PRIORITY

ORDER s#, P#, J#, DATEDUE, QUANTITY

'Table 3.6 Sample Data Base

The relation ORDER satisfies the following conditions:
(1) The set of supplier numbers (S#) appearing in the
ORDER relation is a subset of supplier numbers appearing
in the FACTORY relation.

(ii) A similar constraint applies to part numbers (P#)
relative to the MATERIAL relation.

(iii) A similar constraint applies to job numbers (J#)

relative to the TASK relation.

(d) Exploiting a data base includes queries, updates, etc.

59

3.4.1 Queries

Simple Query

** Find all the part numbers of materials being supplied
by the factories.

RANGE MATERIAL M

GET W (M.P#)
The set of distinct part numbers appearing in the part
number attribute of data base relation MATERIAL is copied
into workspace W. Duplicate values of P# are not
delivered to W. After executicn of this query sequence
statement, W may be treated as a unary relation whose sole

attribute is P#,

Query with Qualification

** Find the part numbers, names and guantities on hand (QOH)
where the quantity on hand is less than 100.

RANGE MATERIAL M

GET W (M.P#, M.PNAME, M.QOH) : (M.QOH < 100)
The set of distinct MATERIAL tuples (P#, -PNAME, QOH)
satisfying the requirement that the quantity on hand is less
than 100 is copied into workspace W. W may then be regarded
as a ternary relation with attributes P#, PNAME and QOH.

A convention called the name inheritance rule permits

the attributes to be referred to by the terms

W.P#, W.PNAME, W.QOH

60

Query with Quota and Element Ordering Expression

** Same query as above, except that no more than six
elements are to be retrieved and elements are to bé
delivered to the workspace in order by increasing P#
(major order) and decreasing WEIGHT (minor order).

RANGE MATERIAL M .

GET W (6) (M.P#, M.PNAME, M.QOH) : (M.QOH < 1l00)

' .UP M.P# DOWN M.WEIGHT

If no element ordering expression is specified and the
data base contains more elements satisfying the specified
qualification than the quota, the system determines which
of the gqualified elements are to be delivered. By
including an element ordering expression along with a
qguota, the user can exert partial (and in some cases,

complete) control over which elements are delivered.

Single Existential Quantifier

** Find the names and addresses of those factories whose
orders have been placed for part number 5.

RANGE FACTORY F

RANGE ORDER O - ~

GET W (F.SNAME, F.ADDRESS) : JO0((F.S# = 0.S#)&(0.P# = 5))
This get statement may be paraphrased as follows: Find the
names and addresses of every factory such that there exists
an order tuple having the‘same supplier number together
with an associated part number of value 5.

Where a quantifier appears at the extreme left of a

qualification, it is moved up to the range statement for

61

where the quantifier is at the extreme left of the

qualification expression (i.e., in prenex normal form).

When this universal quantifier is moved to its

corresponding range statement, the query appears as

RANGE FACTORY F
RANGE ORDER O ALL
GET W (F.S#) : T ((F.S# =

0.5#)& (0.P# = 3))

As T (p & q) is equivalent to "(p) | T(q) where p and q

are monadic or dyadic terms, the — symbol in the above

get statement can be eliminated and the query written

as

RANGE FACTORY F
RANGE ORDER O ALL
GET W (F.s#) : (F.S# 7= 0

Multiple Quantifiers .

*

*

Find the names of all factories, each of which supplies

all tasks.

In this statement the meaning is changed when the ordering

of quantifiers is altered.

GET W (F.SNAME) : VT3O((F.S# = O.S#)&(0.J# = T.J#))

5#) | (0.P# T= 3)

Thus, when the quantifiers are

moved to their corresponding range statements, these

mwmrm o mam 3w Al
appecalL i1 [T 91—

RANGE FACTORY F

RANGE TASK T ALL

RANGE ORDER O SOME

GET W (F.SNAME) : (F.S# =

63

e o~ F ~m

PR P - 1 e oo
OIrQeXl SINOWILI OSi0W3S

O.S#) & (Q.J# = T.J#)

~

Multiple Relation Target List

** For each task obtain as a triple the job number, job
name and supplier address for all factories which supply

that task.

RANGE TASK T

RANGE FACTORY F

RANGE ORDER O SOME

GET W (T.J#, T.JNAME, F.ADDRESS) : (T.J#
o (O.S#

o.J#) &
F.S#)

A multiple relation target list sometimes causes
attributes of a workspace to inherit identical names. An
established data base relation requires that its attributes
be distinctly named. It is, however, possible for an
attribute of one relation to have the same name as an
attribute of some other relation. Consider the
possibility that the attributes JIJNAME and SNAME in the
samplé data base had been named as NAME. A query of the
form .

RANGE MATERIAL M

RANGE TASK T
GET W (M.NAME, T.NAME) ...

will cause these two attributes of W to inherit identical

In such éases when information is transmitted from the
data base into a workspace W in accordance with a target

list of the form

(Ll.Al' L2 .Az, ¢ v o p Ln.An)

the jth attribute of W inherits the prefixed name Rj where

64

Lj is a local relation name whose range is the relation

J
dropped if the unprefixed name does not occur as part of

R. and Aj is an attribute of relation Rj. This prefix is

any other attribute name for that workspace.

Using a Workspace as Just Another Relation

** Find the names and addresses of all factories which

supply at least those tasks supplied by factory PAINTWORKS.

One épproach to formulate this quexy is to decompose
it into two gueries. A unary relation containing the set
of job numbers supplied by PAINTWORKS is first constructed
in workspace Wl. This set is then used to obtain the
required suppliers; names and locations as a binary

relation in workspace W2,

RANGE ORDER O
RANGE FACTORY F SOME
GET Wl {0.J#) : (0.S# = F.S#) & (F.SNAME = 'PAINTWORKS')
RANGE FACTORY F '
RANGE Wl X ALL
RANGE ORDER O SOME
GET W2 (F.SNAME, F.ADDRESS) : (F.S# = 0.S#) &
(0.J# = X.J#)

Multiple w components in the Qualification

** Find the supplier numbers of those factories which

supply the materials for job number 25 or supply part-
number 7 to job number 47.

RANGE ORDER O
GET W (O.S#) : (0.J# = 25) OR (0.J# = 47) & (0.P# = 7)

65

Simple Functions in the Target List

** Find the number of factories which do not supply part

number 5.

RANGE FACTORY F
RANGE ORDER O
GET W COUNT(F.S#) : T30((F.S# = 0.S#)&(0.P# = 5))

Expressing the gqualification expression in prenex normal

-

form and eliminating the symbol, the query is expressed

as

RANGE FACTORY F
RANGFE ORDER O ALL
GET W COUNT(F.S#) : (F.S# ~= 0.S#) | (0.P# 7= 5)

The result to this query is a single value. This value in

the workspace W is referred to as W.S# ,

Booiean Functions in the Qualification

Let X be a tuple belonging to relation R, and let A

be a numeric attribute of R and N be an integer. Then

TOP(N, X.A) has the value true if the A-component of
tuple X has a value which is Nth largest
in R.A (the projection of R on A); -

otherwise its value is false.

BOTTOM(N, X.A) 1is similarly defined, except 'largest'

is replaced by 'smallest'.

** Find the job names of all tasks having the fourth

highest priority.

RANGE TASK T
GET W (T.JNAME) : TOP (4, T.PRIORITY)

66

When a boolean function designator appears in the
qualification expression of a get statement then the
target list and qualification of that statement must refer

to the same relation.

Image Functions in the Target List

In the ORDER relation the set of supplier numbers
associated with a given part number is an example of an
image set. The function ICOUNT applied to this set yields
the number of factories which supply this particular
material.

This kind of construction to generate image sets is
so common that composite functions called I-functions have
been introduced. For example, ICOUNT applied to an ORDER
tuple, the P# attribute and the S# attribute yields the
number of factories which supply the material identified by
the P# component of that CRDER tuple. ITOTAL applied to
an ORDER tuple, and-the attributes P# and QUANTITY yields
the total quantity being suprlied with the material
identified by the P# component of that ORDER tuple. IMAX,
IMIN and IAVERAGE correspond in an analogous way to MAX, MIg

and AVERAGE,

alde b
wn

For each part number supplied to a task, find as a
triple the part number, the job number and the total

dguantity on order for that material supplied to that task.

RANGE ORDER O
GET W (o.P#, 0.J#, ITOTAL(O, (P#,J#), QUANTITY))

In this query image sets of QUANTITY values are conceptually

67

formed for each distinct pair of values (0.P#, O.J#).
The name inheritance rule results in the following

attribute names for the workspace W:

W.P#, W.J#, W.QUANTITY

** TFor each part number supplied to a task, find the
part number, the job number and the number of factories

which supply that material to that task.

RANGE ORDER O
GET W (O.P#, O.J#, ICOUNT (O, (P#,J#), S#))

Image Functions in the Qualification

Image functions can appear in both the target list and

the qualification expression.

** Find the part numbers of materials supplied to more

than three tasks.

RANGE ORDER O
GET W (O.P#) : ICOUNT(O, P#, J#) > 3

3.4.2 Updates

Simple Update

** Alter the job name for job number 20 to CAM.

RANGE TASK T

HOLD W (T.JNAME) : (T.J# = 20)
W.JNAME = 'CAM'

UPDATE

Upon receipt of a HOLD operation the system retains

enough primary key information (associating it with the

68

workspace W) so that it can perform the update properly.
If the value of the primary key in W has changed when the

UPDATE is received, the system flags an error.

Primary Key Update

A distinction must be made between updates of primary
keys (including components) and updates of other attributes
because of the crucial role of primary keys in
identification and search, and the great impact on the

user community of changes in these keys.

** Change the primary key of the task with job number
6 to 7.

RANGE TASK T

CGET W (T) : (T.J# = 6)

RANGE TASK T

'DELETE T : (T.J# = 6)

W.J# = 7
PUT W TASK

The query sequence statement retrievcs the entire TASK
tuple which has 6 in ifs J# component. The delete
sequence: statement then deletes that tuple from the data
base relation TASK (not from W). The assignment statement

alters the primary key to 7. Finally, the put statement

inserts this new tuple into the data base relation TASK,

Multi-relation Update

** A partial shipment of part number 4 has arrived for
job number 5 due on 1 April 1974. Reduce the

corresponding quantity by 40 and increase the quantity

69

on hand for that material by 40,

RANGE ORDER O

HOLD W (O.QUANTITY) : (O.P# = 4) & (0.J# = 5) &
(O.DATEDUE: = '1.4.74"')

W.QUANTITY = W.QUANTITY - 40

UPDATE

The system retains at least the full compound value of the
primary key from the HOLD to the UPDATE, in-ordex to be

able to return the new values to the proper tuples.

RANGE MATERIAL M

HOLD W (M.QOH) : (M.P# = 4)
W.QOH = W.QOH + 40

UPDATE

3.4.3 Deletions

Simple Deletion

** Delete all tuples from the data base relation TASK.

RANGE TASK T
DELETE T

No workspace is required as an information sink and this

applies to all deletions.

Qualified Deletion

- ** Delete all tuples of the data base relation ORDER

involving factory STEELWORKS and task CAG in combination

with one another.

70

RANGE ORDER O

RANGE FACTORY F ©SOME

RANGE TASK T SOME

DELETE O : (F.SNAME = 'STEELWORKS') & (O0.S# = F.S#) &
(O.J# = T,J#) & (T.JNAME 'CAG')

3.4.4 1Insertions

Simple Insertion

** Insert into the ternary data base relation TASK the

3-tuples now located in workspace W.
PUT W TASK

The system checks that no duplicate values of the primary g

key are introduced by the PUT operation.

Partial Insertion

** Insert into the quaternary relation MATERIAL the

(P#, PNAME, QOCH) txiples now located in workspace W.
PUT W MATERIAL. (P#, PNAME, QOH)

The attribute ordering of W is as follows: first P#, then
PNAME followed by QOH . The element ordering in W may be
any ordering.-

The system converts each triple from W into a 4—tuéle
by appending the absent value as the value of

MATERIAL.WEIGHT .,

Ordered Insertion of Bulk Data

** Same as above, except that the element ordering in

W is by P# increasing, and the system is to be advised

71

for efficiency reasons.

PUT W MATERIAL. (P#, PNAME, QOH) UP P#

If it happens that the data base relation MATERIAL is
represented in storage by a set of data ordered on P#,
the system can make this insertion more rapidly if advised
about the ordering in W. This could be important in cases

where the number of tuples to be inserted is large.

3.4.5 Dropping and Establishing Data Base Relations

Dropping a Data Base Relation

** Remove all information about the data base relation

TASK.
DROP TASK

If any of the tuples of TASK still exist, they are deleted.

Dropping one or more Attributes of a Data Base Relation

** Remove all information about the attributes WEIGHT

and QOH from the data base relation MATERIAL.

DROP MATERIAL. (WEIGHT, QOH)

Establishing a New Data Basé Relation

Suppose a new relation has been constructed in
workspace W and it is desired that this relation be
established in the data base for shared use. Before the
data can be copied from W inito the data base, the relation
to be established must first be declared. This involves

giving it a name which is not in conflict with those of

72

other data base relations and naming its attributes in
accordance with community-established rules, identifying
its primary key and specifying the data types of these

attributes.

** Establish the relation now located in workspace W
as a data base relation SUPPLIER, Assume that the
relation in W has identical attributes as data base
relation FACTORY.

NEW SUPPLIER (S#, KEY, CHAR, 5) (SNAME, CHAR, 15)

(ADDRESS, CHAR, 20)
PUT W SUPPLIER

3.4.6 Input and Output Facilities

Input Facility

** Declare two integer variables and assign to them the

values 5 and 1l0.
READ (I, J)

This read statement implicitly declares two integer
variables I and J. The system suspends all other
accesses until the two integer values are read and assigned_

to the corresponding variables.

Qutput Facility

** List the information contained in the relation located
in workspace W , and the values of the variables I and J.

LIST (W, I, J)

73

3.5 SUMMARY OF DATA SUBLANGUAGE ALPHA

The implemented ALPHA sublanguage possesses the
following characteristics:
(1) the full power of the relational calculus - an
applied predicate calculus with tuple variables
(ii) the capability.of specifying any of the operations:
- fetch value or set of values
- change value or set of values
- insert element (i.e., tuple) or set into a relation
- delete element (i.e., tuple) or set from a relation
- declare a relation and its attributes for
inclusion in the established set of data base
relations
- drop a relation or any of its attributes from the
data base ° |
- assign value to declared variable or set of values
to declared variables
- list value of variable or set of values of -
variables, and/or information contained in a
relation or set of relations
(iii) the capability (through range statements) of
delimiting the scope of interaction between a user on

the one hand and the data base on the other.

74

4. DESCRIPTION OF THE

TRANSLATOR

4.1 INTRODUCTION

| As mentioned earlier, the interactive translator carries
outiﬁhe following functions:
(1) accepts as input source statements of the implemented
DSL ALPHA
(ii) checks that conditions are met for the relational
calculus

(iii) produces as output a set of coding tables:

4.2 TRANSLATION PROCESS

Figure 4.1 shows the translation process in detaii:
dotted arrows represent flow of information while solid
arrows indicate program flow.

Analysis of the source statement and construction of
the coding tables are performed in a parallel, interlocked
manner. To do this the»traﬁslator builds up during the
analysis phase a symbol ta?le'ﬁhich is used during both

analysis and construction.

4.2.1 Information Tables

During translation information about identifiers and
constants is stored in the following tables:
(1) symbol table
(ii) constant table
(iii) workspace table

(iv) wvariable table.

75

ANALYSIS INFORMATION
TABLES
_______ - 4+ >
source characters | LEXICAL i
statements . ANALYZER | i
symbol
table
workspace
table
Variable-
table
SEMANTIC ANALYZER| _ _ L 1l
— AND constant
| ‘table
TABLE 'GENERATOR' [—— T 71T~
T
|
|
|
' CONSTRUCTION
I
[TRANSLATOR
1]
coding
tables

Fig. 4.1 Logical Connection of the Translator Parts

76

As each source statement is analyzed, information
about identifiers is stored in the symbol table; This is
a table of identifiers together with their attributes. The
attributes are the type of identifier and any other
information about it which is needed to 'generate' the
coding tables. The constant table stores constants used
in the source statement. The symbol table and constant
table are temporary tables, i.e., they are cleared at the
beginning of & user's session and after a given set
of coding tables has been interpreted.

Information about workspace names used and variables
declared is saved in the workspace table and variable
table respectively for later use. Both of these tables
are permanent tables, i.e., the information contained in
them is valid throughout the user's session.

The symbol table has the form

Lexeme Information
Identifier Value Field
Entry 1
ﬁntry 2
|
Entry N) -

where the identifiers are the act
lexeme values and information field their attributes.
Only entries for local relation names in the symbol table
utilize the information field; this field will indicate
tﬁe attribute of the associated local relation name
(i.e., whether it is free or quantified). The workspace

table has only the identifier argument, and the variable

77

table the identifier argument plus the information field.
This information field in the wvariable table will indicate
the values of the declared variables and such values are

entered by the sublanguage interpreter.

4.2.2 The Lexical Analyzer

The lexical analyzer or scanner is that part of the
translator which scans the characters of each source
statement froﬁ left to right and builds the source program
words or symbols - integers, composite symbols (e.g., 7=,
identifiers, keywords, etc. The internal representation
of these symbols (i,e., lexeme values) are then passed on
to the syntax analyzer. Thus the syntax analyzer never
actually sees the symbols but their lexeme values. These
symbols are arranged into classes and each symbol is
given a representation within a class. For example, the
class of quantifiers are internally represented as

ALL 0l10

SOME 0210 .
Each lexeme value is stored as a four digit number. The
last two digits constitute'the class number and the first
two (if present) the number within that class. Thus the
symbols ALL and SOME are represented by 1 and 2
respectively, within class 10. The different classes of
symbols and their lexeme values are given in Appendix C.

The scanner is a routine called by the syntax
analyzer whenever the syntax analyzer requires a new lexeme
value; When.cglled, this routine recognizes the next
source symbol and passes the lexeme value of this symbol

to the syntax analyzer.

78

The lexical scan thus involves the following sequence
of steps:
(1) Is source symbol a string constant or delimiter? If
it is proceed to step (iv).
(ii) Is source symbol a keyword (reserved word) or
identifier? (see below) If it is proceed to step (iv).
(iii) Assume symbol to be an integer or real number, and
construct its value.
(iv) Assign to symbo; its lexeme value and return this
value to the syntax analyzer.

In (ii) above, the list of keywords is first searched
to see if the symbol is in that list. If symbol is not a
reserved word, it must then be an identifier. A keywoxd
is searched with the technique called hash coding which

(a)

uses some computable function (hash function) of the

numeric representation of the keyword. The hash function,
determines the starting point in the table (hash table) (b)
to search fcr the keyword. The hash table (see Table 4.2)

can be visualized as containing a key field (hash addresses)

and an information field (keywords). A search for a

(a) The hash function used in the lexical analyzer is
N - (N % 22) x 22 (+ denotes integer divide) where
N = |M| ¢+ L ; M being the numeric representation_of the
first four characters of the keyword and r the number
of characters of the keyword. A series of tests were
carried out for the function ¥ - (N * k) x k where
k =5,6,7, ..., 29. The value of k was chosen to be 22
because this is the smallest integer which gives the
hash function a fairly uniform distribution of hash
addresses over the list of keywords.

(b) The hash table has been constructed as a conventional
hash table with external overflow.

79

KEY INFORMATION

COUNT
DELETE
DROP
READ
FIXED31
RANGE
ALL
NEW
KEY

7 GET

8 PUT
STOP
ICOUNT
9 RELEASE
11 HOLD
AND

12 MAX
UPDATE
13 MIN

TOP
IAVERAGE
14 uP

IMIN

15 FLOAT
CHAR
CHARVAR
16 DOWN
IMAX

17 AVERAGE
BOTTOM
18 SOME
OR
ITOTAL
19 TOTAL
FIXED
20 FLOAT16
21 LIST

Table 4.2 Hash Table

80

keyword thus reduces to calculating the function and
performing a sequential search on the entry (or entries)
at the hash address.

As each identifier is encountered the following sequence
of steps are carried out:
(i) Perform a search on the two permanent tables
(workspace table and variable table) to see if that
identifier is in either table., If that identifier is in
either table proceed to step (iv).
(ii) Perform a search on the symbol table to see if that
identifier is in that table. If that identifier is in the
table proceed to step (iv).
(iii) Append to the end of the symbol table that identifier
and its lexeme value.
(iv) Return a pointer to the location of that identifier.,

The type of an identifier is not known until the
analysis of the source statement is complete, and is
determined by the syntactic position of the identifier in
the statement. Similarly, an identifier is inserted in the
workspace table or variable table only when syntactic
context shows that it identifies a workspace name or
variable name respectively. This identification process is™
unique.

Entries for the source statement
RANGE . SUPPLY S SOME

are initially made by the lexical analyzer in the symbol

table as

SUPPLY 37 o)
S 37 2

81

where 37 is the lexeme value for identifier. A '0' in the
information field denotes that the associated local relation
name is free, 'l' denotes universal quantification and
'2' existential quantification. For all other entries it
takes the null value.
When analysis is complete the symbol table shows

SUPPLY 39

S 40 2
where 39 is the lexeme value for the data base relation

name and 40 the lexeme value for the local relation name.

4.2.3 The Syntax Analyzer

The syntax analyzer or parser performs a complete
syntax check on each source statement of the implemented
ALPHA sublanguage.

The parser consists of a sequence of syhtax statements
and a routine which directs the execution of these
statements., This routine uses a syntax stack. The syntax
statements are referred to as Floyd Production Language (FPL)
statements which were generated using a modified version of

.
an algorithm used by DeRemer, [11]

which maps the set of
BNF productions in the data sublanguage into FPL statements.
The FPL statements consist of labelled, mutually exclusive
groups of statements called sections. Each section has a

specific task to perform and is activated by transfer of

control to its first statement.

82

(c)

The syntax analyzer thus consists primarily of a

sequence of FPL statements or productions, each of which

has the form:

L

al b Rn k- | (1) *o00* | s F(x)

where 1 (if present) is a production label

a and » are source symbols (d)

Rn (if present) is the semantic routine

k (if any) is the number of symbols to be removed from
top of stack

1 (if any) is the number of source symbols to be

scanned

x.,,.% (1f any) denote the number of source symbols to be

stacked and scanned
S is a success label
F (if present) is a fail label
x is an error message number (if the fail label is

present).

The first vertical bar (|) indicates the top of the stack; the

symbol to its left represents the one being looked for in the

stack. The appearance of ¥ > and «,,.* on the left of the

(c) This particular syntactic analysis was used for the .

(4)

translator hecause the syntax of the DSI, ALPHA was

not fully specified at the start of the project and
work proceeded with writing the bulk of the lexical
analyzer and the routine which directs the execution of.
FPL statements. It was found that, as work progressed,
it was quite easy to alter the statements of the parser
whenever changes occurred in the specification of the
syntax of this data sublanguage.

The symbol any when substituted for a and/or » matches
any other symbol in the data sublanguage.

&3

next two |'s indicates that the stack is to be transformed.

A production thus indicates pattern matching and usually
a stack transformation. During the execution of the parser
there is a current production from which the symbols a and b
are compared with the symbol at the top of the syntax stack
and the current source symbol respectively. If they do not
match and if the fail label is absent, then the next
production in the sequence becomes current and the comparison
is again made. This continues until a match occurs. When
it does, the seméntic routine is called and x symbols are
removed from the stack. The execution of the actions (1)
and *,,.* will cause the scanner to be called. The
production labelled s then becomes the current production
and matching continvues.

If pattern matching fails at a current producticn and
a fail label is present, a syntax error message will be
printed and an error section of the productions bhecomes
current. |

Suppose the production

T(46): LRNAME | , RL17 1 - | (1) *| <ANAME-SEQL>H
FAIL_1(12)

is the current production. If the top symbol of the stack

is a local relati

[®) namao
" - \was salaslite

a comha, then the following occurs:

(i) the semantic routine R17 of the semantic analyzer is

executed
(ii) - the top symbol is removed from the stack
(iii) the next source symbol is scanned which replaces the

current symbol

84

(iv) the current symbol is stacked and the next source
symbol is scanned which then becomes the current symbol
(v) the production labelled {ANAME-SEQl>H becomes the
current production.

If pattern matching fails, the error message number 12
will be printed and the production labelled FAIL 1 becomes
current.

The FPL statements of the parser are coded up in the
form of tables. The parser thus consists of these tables
and a routine which interprets the tables. The FPL

statements of the parser are given in Appendix D.

4.2.4 The Semantic Analyzer and Table 'Generator'

In'the translator the table 'generation' parts are
fused with the semantic routines of the semantic analyzer.
When a syntactic construct is recognized, the syntax
analyzer calls a semantic routine which executes the

following functions:

(i) checks the consffuct for semantic correctness,

i.e., a construct may be syntactically correct but its
meaning may be incorrect and it is this type of error that
is detected by the semantic-analyzer. These are either
errors that cannot be detected by the syntax analyzer or
errors that can be detected during syntactic analysis but
have been left to the semantic analyzer so as to simplify

the FPL statements,

85

e.g., (a) Correct specification of local relation names

where appropriafe
Suppose a query is expressed as
RANGE FACTORY F
RANGE ORDER O
GET W (F.SNAME, F.ADDRESS) : (F.S# = 0.8#) & (0.P# = 3)
A semantic error will be detected since the local relation
name O appearing in the qualification expression and not in
the target list of the get statement must be quantified.
A semantic error will also be detected for the query
RANGE FACTORY F

RANGE ORDER O ALL
GET W (F.S#) : (F.S# "= 0.,8#) | (0.P# ™= 3) UP O.S#

as the local relation name O appearing in the element
ordering expression is not specified in the target list of
the get statement.
(b) Correct use of function designators
A query expressed as
RANGE MATERIAL M
GET W COUNT(M.P#) : TOP(l, M.QOH)
will cause a semantic error to be detected because
the occurrence of a function designator 'in the target 1list
does not permit the use of a boolean function designator in
the qualification expression of the get statement.
A semantic error will also be flagged for the query
RANGE ORDER O
GET W (O.P#) : ICOUNT(O, P#, J#) > 3.5
as the number of tasks being supplied with the material

identified by the P# component of the order tuple must be

86

an integer constant.
(c) Consistency of attributes specified/declared

RANGE ORDER O _

GET W (O.P#, O.J#, ITOTAL(O, P#, QUANTITY))
A semantic error will be flagged for this query as there is.
one less attribute specified in the attribute list of the
image function designator in the target list of the get
statement.

The newly declared data base relation
'NEW SUPPLIER (S#, KEY, CHAR, 5)(SNAME, CHAR)

will also cause a semantic exrror to be detected as the
attribute length is not specified for the attribute SNAME

cf data type character string.

(ii) £fills in the necessary information (if any) in the
infcrmation tables,

e.g., Identification of certain identifiers after syntactic
analysis

An insertion is made for an identifier in the workspace
table or variable table only when syntactic context shows
that it identifies a workspace name or variable name

respectively. : ' -

(iii) 'generates' the coding tables; these tables, produced
in a form suitable as input to the sublanguage interpreter,
are explained in Section 5. While these tables are being
'generated', checks are made to ensure that the tables do
not overflow,

e.g., Overflow of coding tables

An error message showing implementation restriction

87

will be printed i1f the number of entries made in a coding

table exceeds the maximum number permitted for that table.

(iv) f£ills in values of constants (if any) in the constant
table,

e.dg., Constants encountered in source statements.
The value 5 encountered in the assignment statement
W.P =5

is put in the constant table and a pointer to its location
in that table is returned.

In some of the semantic routines of the semantic
analyzer, a stack is utilized to facilitate the ease of
checking for semantic correctness of constructs and filling
in of tables. Where possible, the same semantic routine
has been used for constructs with similar meaning.

The syntax analyzer . continues to analyze the source

statement once control is returned to it.

4.3 IMPLEMENTATION OF THE TRANSLATOR

The translatof is implemented as the following routines:
(1) MAINPRG and PROG which initialize the FPL statements
of the parser
(ii) parseg which directs the execution of the FPL statements
(iii) SYN_ERR which prints out the appropriate error message
for each syntax error detected
(iv) SEM_RoOU which checks the semantic correctness of each
source statement and fills in the appropriate tables
(v) LEx_aNL Which assigns lexeme values to source language
symbols and adds an entry to the symbol table for each new
identifier encountered.

88

source
statements

charactors

]
|
I
r l
[
!
I
v

LEX_ANL..

prints out
tablon

MAINPRG
AND
PROG

analyzes
statements

consgtruct roturn

PARSE -

. SEN_ROU |e—

-

'ﬂllu in
= tables

¥

coding
tables

| picke up
| information

I
¥

INTERPR

return

SYN_ERR

'Fig. 4.3 Logical Connection of the Translator Routines

89

(vi) INTERPR (e)

which prints out the coding tables.
Figure 4.3 represents a logical connection of these
translator routines. Some further details on the

implementation of the translator are given in Appendix E.

4.4 WARNINGS AND ERRORS

Warnings and errors flagged by the translatoé fall
into three classes:

(1) warnings and errors detected by the lexical analyzef
(ii) syntax errors detected by the syntax analyzer

(iii) severe errors detected by the semantic anal&zer.

| Translation of the.source statement continues after a
warning (or warnings) is flagged,.e.g., a warning message
will be printed if the length of an identifier exceeds
twenty characters.

An error (or errors) detected in the source statement
will cause that statement to be deleted and control tec
return to th= appropriate section. No provision is made
for any sophisticated error recovery procedure as the
translator, being interactive, enables the on-line user to
correct any error quite easily. Error recovery could be
undesirable at times. -

Lexical errors detected in source statements include
élphabetic characters appearing in numbers (e.g., 27.A35),
illegal composite symbols (e.g., <) and characters,

missing end quotes, etc.

(e) As the sublanguage interpreter is not yet implemented,

this routine presently prints out the coding tables
'generated’'.

When a syntax error is detected in a construct one of
the productions, labelled fail_1, fail 2 or fail_3, becomes
current. The source symbols are then scanned until the
end of the statement is reached and no further syntactic
analysis is performed. A current fail_ 1 section indicates
a syntax error in a DSL ALPHA statement, fail_ 2 section
indicates a syntax error in a computational facility
statement and fail_ 3 section an invalid source statement.

A semantic error will cause no further calls of
semantic routines but will allow syntactic analysis to
continue until the end of the statement is reached in
which case a production labelled fail 4 or fail 5 becomes
current. A current fail 4 section indicates a semantic
error in a DSL ALPHA statement and fail 5 section a

semantic error in a computational facility statement.

91

5. EXPLANATION OF T HE

CODING TABLES

5.1 INTRODUCTION

The following tables are 'generated' by the translator:
(i) assignment table (ASS_TAB) |
(ii) attribute list table (AL_TAB)
(iii) attribute table (ATT_TAB)
(iv) dyadic term in one variable table (DTOV_TAB)
{v) dyadic term table (DT_TAB)
(vi) element ordering expression table (OR_TAB)
(vii) get target table (GT_TAB)
(viii) hold target table (KT_TAB)
{ix) identifier table (ID_TAB)
(x) local relation name table (LRN_TAB)
(xi) function and monadic term table (FN_MT _'fAB)
(xii) quota table (Q_IAB)
(xiii) range table (RA_TAB)
(xiv) relation name table (RN_TAB)
(xv) statement table (ST_TAB)
(xvi) w component precedence table (WP_TAB)

(xvii) workspace name table (WN TAB).

These coding tables, logically of the form described

by Palmero, [3]

are presented in a precise manner which
clearly reflects the subsequent operations to be carried

out By the data sublanguage interpreter.

92

The interpreter is invoked after translation of the
following statements:
(i) get statement
(ii) hold statement
(iii) delete statement
(iv) drop statement
(v) put statement
(vi) new statement
(vii) release statement

(viii) update statement

(ix) read statement
(x) list statement
(xi) assignment statement.

Table 5.1 shows the tabular representation of these
statements. Get, hold and delete statements must be
preceded by range statements.

Section 5 is best understood by studying the
DSL ALPHA examples in Section 3.4; the coding tables
'generéted' by the translator for these examples together
with the required information tables are presented in

Appendix F. . ~

5.2 OUTLINE OF THE CODING TABLES

The coding tables are themselves normalized relations;
table 5.2 shows the attributes of these tables. Associated
with each coding table (except those with one object) is
a variable which indicates the number of rows filled in

that table. A zero value for this variable of a table,

93

STATEMENTS TABULAR REPRESENTATION

Get Statement RA_TAB
ST_TAB
WN_TAB
Q_TAB
GT_TAB
DT_TAB, DTOV_TAB, FN_MT_TAB
WP_TAB
OR_TAB

Hold Statement Ra_TAB
ST_TAB
WN_TAB
HT_TAB
DT_TAB, DTOV_TAB, FN_MT TAB
WP_TAB
OR_TAB

Delete Statement - RA_TAB
ST_TAB
LRN_TAB
DT TAB DTOV_TAB, FN_MT TAB
-WP_TAB

Drop Statement ST _TAB
RN TAB
AL_TAB

Put Statement ST_TAB
WN_TAB
RN_TAB
AL TAB
OR:?AB

New Statement ST_TAB
RN_TAB
ATT_TAB
Release Statement ST_TAB
Update Statement ST_TAB

Read Statement ST_TAB
ID_TAB

List Statement ST_TAB
ID TAB

Assignment Statement ST_TAB
ASS_TAB

Table 5.1 ' Tabular Representation of Statements

94

CODING TABLES

RA_TAB

GT_TAB

DT_TAB

DTOV_TAB

FN_MT_TAB

OR_TAB

HT_TAB

Table 5.2

* *

* * * ¥ %

* * % * *

* %

*

* ¥ % %

*%

*
*

ATTRIBUTES

RNAME (relation name)
LRNAME (local relation name)
QUANT {quantifier)

WCOMP (w component)

FUNCT {(function) _

ALIST (attribute list)
ALISTPTR (attribute list pointer)
LRNAME (local relation name)
ANAME (attribute name)
LRNAMEl1l (local relation name one)
ANAME1 (attribute name one)
LRNAME2 (local relation name two)
ANAME2 (attribute name two)
RELOP (relational operator)
WCOMP (w component)

TCOMP (theta component)
RNAME (relation name)
LRNAME (local relation name)
ANAME1 (attribute name one)
ANAME 2 (attribute name two)
RELOP (relational operator)
WCOMP (w component)

TCOMP (theta component)
FUNCT (function)

ALIST (attribute list)
ALISTPTR (attribute list pointer)
RNAME {relation name)
LRNAME {local relation name)
ANAME (attribute name)
RELOP (relational operator)
WCOMP (w component)

TCOMP (theta component)
CONTYPE (constant type)
CONLEN (constant length)
CONPTR (constant pointer)
ORDER (ordexing)

LRNAME (local relation name)
ANAME {attribute name) -
WCOMP1 (w component one)
WCOMP2 (w component two)
OPER (operator)

LRNAME (local relation name)
ANAME (attribute name)

(contd. on following page)

95

CODING TABLES ATTRIBUTES

ATT_TAB * ANAME (attribute name)

KTYPE (key type)

ATYPE (attribute type)

ALEN (attribute 1length)
ASS_TAB OPl (operand one)

OP2 (operand two)

** OPER (operator)

I0P1 (image operand one)

I0P2 (image operand two)
?gzggg } These tables have one attribute only
ST_TAB
WN_TAB
Q_TAB " These tables have one object only
LRN_TaB
RN_TAB

* Values are pointers tc identifiers in the symbol,
workspace or variable tables

** Values are the lexeme values for source language symbols

Null values in attribute/table names marked * and ** imply
that no references are made to either the symbol, workspace,
or variable tables,. or to the lexeme values of source
symbols.

Table 5.2 Attributes of Coding Tables

96

say DT_TAB, during interpretation of a get statement
implied that this table was not 'generated' for that

statement.

5.3 DESCRIPTfON OF THE CODING TABLES

The coding tables are des~ribed in the following
~ order:

(1) RA_TAB

(ii) ST_TAB

(11i) WN;TAB

(iv) Q_TAB

(v) GT_TAB

(vi) HT_TAB

(vii) DT_TAB,.DTOV;EAE, FN_MT_TAB

(viii) OR_TAB

(ix) WP TAB

(x)
(xi) RN_TaB
(xii) AL _TaB
(xiii) ATT_TAB
(xiv) ID_TAB

(xv) ASS_TAB.

The RA TAB is constructed from a range list. For
each local relation name in the Wy component of the
qualification expression, the following entries are made:
(1) whether the local relation name is free (indicated

by '0') or quantified ('l' for universal quantification

97

and '2' for existential quantification)
{ii) the associated relation name

(iii) the w component number.

The entry in ST _TAB identifies the DSL ALPHA statement

or computational facility statement for interpretation.

The entry in WN_TAB identifies a workspace name in

the workspace table.

The entry in Q _TAB identifies the quota. A null entry

implies that there is no quota.

The GT_TAB is constructed from the target list in a
get statement. ‘An entry is made in the following cases:
(1) for each targét element in the target list; such an
entry identifies the local relation name or more commonly
the local relation name and attribute name
(ii) for the occurrence of a function designator in the
target list; such an entry identifies the function

3 - [T - O e NN T
ntifier and function argument

identi
(iii) for the occurrence of an image function designator
in the target list; such an entry identifies the qualified
attribute 1list preceding this designator, as well as the

image function identifier and image function argument.

Only the image function argument utilizes the columns,

98

attribute list and attribute list pointer. This pointer
points to the next attribute name in the sequence
indicated by a row number.in GT_TAB; the last attribute

name in the sequence being indicated by the null 1link.

The HT TAB is constructed from the target list in a
hold statement. An entry 1s made for the occurrence of a
local relation name, or for each target element in the

target list,
DT_TAB, DTOV_TAB, FN_MT_TAB

These tables are constructed from the qualification
expression in a get, hold or delete statement.

DT_TAB, DIOV_TAB - These two tables contain dyadic
join terms only. An entry is made in DT_TAB for each
dyadic join term, and in DTOV_TAB for each dyadic join
term in one variable (i.e., having the same local relation
name) , in the qualification expression. Such an entry
identifies the variables being joined, the attributes
involved in the join, and the relational operator as well
as the component numbers.

FN_MT TAB - An entry is made in FN MT_TAB in the
following cases:

(i) for each monadic term in the qualification
expression; such an entry identifies the local relation
name and attribute name} the relational operator, and the

constant as well as the component numbers. A constant

pointer determines the position of the constant in the

99

constant table, the constant type being indicated by the
numerals 1, 3 or 5 ('1' indicates that.the constant is

an integer, '3' indicates a real number and '5' a
character string). For character strings, the constant
length is also entered;

(ii) for the occurrence of an image function designator
in the gqualification expression; such an entry identifies
the image function identifier and image function argument,
and the relaticnal operator as well as the number. The
pointer determines the position of the number in the
constant table, tﬁe type being indicated by the numerals
1l and 3 (same notation as in (i) above).

(iii) for the occurrence of a boolean function designator
in the qualification expression; such an entry identifies
the boolean function identifier and boolean function

argument. The integer constant in this boolean function

The OR TAB is constructed from the element ordering
expression in a get, hold or put statement. For each
occurrence of the keyword UP or DOWN in this ordering
expression, the following entries are made:

(i) whether the specified ordering is UP or DOWN
(ii) the local relation name (for get/hold statement only)

(iii) the attribute name.

100

The WP_TAB is constructed from two or more w
components in the qualification expression to show
precedence imposed upon the operators. An entry is made
for a logical combination of two w components. Such an
entry identifies the two w components as operands £ogether
with their logical operator. A negative value in any of
the w component attributes implies that a result obtained
from an earlier combination is used as the operand; the

result being indicated by a row number in WP_TAB.

The entry in LRN_TAB identifies a local relation name

in the symbol table.

The entry in RN_TAB identifies a data base relation
name in the symbol table or a workspoce name in the

workspace table.

The AL_TAB is constructed from the attribute name
sequence in a drop statement or put statement. An entry

is made for each attribute name in this sequence.

The ATT TAB is constructed from the attribute record
in a new statement. For each attribute field in the record,
the following entries are made:

(i) the. attribute name

LR ’:ﬁ Inv RSITY \.
-zzMMlﬂ5/}

L a7

lo1

(ii) whether the attribute name is a component of or is
the primary key (indicated by '1l'), or not (indicated

by '0')

(iii) the attribute type ('l' indicates FIXED31,

'2' indicates FIXED, '3' indicates FLOAT16, '4' indicates
FLOAT, '5' indicates CHAR and '6' CHARVAR).

(iv) the attribute length (for character strings).

The ID TAB is constructed from the variable list or
identifier list in a read étatement or list statement
respectively. An entry is made for each identifier in

the variable list or identifier list.

The ASS_TAB is constructed from a Reverse Polish

representation of the assignment statement. An entry is

made for each pair of operands in the Reverse Polish
expression of this étatement. Such an entry identifies
the two operands and the operator following them.
Operands are indicated by various forms; values in the
two image operand columns indicate what the values in
the two operand columns represent correspondiﬁgly.

A 'D' indicates absence of an ©

pointer to an integer in the constant table, -

'2' indicates a pointer to an identifier in an information

table, '3' indicates a pointer to a real number in the

constant table, '4' indicates a line number in ASS_TAB and

'5' a pointer to a character string in the constant table.

l0o2

6. CONCLUSTIONS

6.1 GENERAL

The principal motivation for the relational approach
was the need for a high degree of data independence. Such
a relational model of data, because of its simplicity,
provides a unifying feature for the development of the
proposed data base system with reference to DSL ALPHA. The
user is provided with only.a logical structure and hence
need noct be concerned with the complexity of linkages,
networks, repeating groups and indexes.

The majority of users should not have to learn either
the relational calculus or algebra in order to interact
with such data bases. However, requesting data by its
properties (fhe calculus approach) is far closer to
natura1 1anguage rather than formulating a sequence of
algebraic operations. Thus, a calculus-oriented language
provides a good target language for a more user-oriented
source language. The simplicity of the use of DSL ALPHA
as a high level storage and retrieval language has therefore

been considered the justification for its implementation.

. 6.2 SUGGESTED IMPROVEMENTS TO THE TRANSLATOR

Additional facilities to the implemented ALPHA
sublanguage can be incorporated. Below are two of the
suggested improvements to the translator:

(i) At translation time no provision is made to check

103~

that the data base relations and their attribute names
specified in queries, updates, etc. exist in the user's
data base. Data type compatibility of these attributes is
also not checked at translation time. Such errors will be
detected only during interpretation when the coding-tables -
are interpreted. This can be r2ctified by incorporating

the following facility in the data sublanguage:

{USING-STATEMENT> ::= USING <RELATION-LIST>
{RELATION-LIST> ::= <RELATION-LIST) , <(RELATION-NAME)
{RELATION-NAME>
When each relation name is encountered in the using
statement, the translator will then inspect the relation

(a)

index to find a match for that relation name. When
a match is found the attribute names of that relation .
together with their data types are brought down to
the symbol table and any subsequent occurrence of an
attribute name 'is matched in the symbol table. An error
ie flagged when matchiyg fails. A query will then be-
written as- .

USING .MATERIAL

RANGE MATERIAL M _

GET W (M.P#, M.PNAME, M.QOH) : (M.QOH < 100)
‘The organization of the symbpl table will have to be more

complicated to deal with this facility.

(a) The relation index consists of a 1list of relation
names in the data base.

l04

(1i) The source statements of the data sublanguage can
incorporate the concept of 'implicit' relations equivalent
of the DEFINE command in the Peterlee IS/1 System. £8]
The translator will then produce the set of information
and retrieval tables suitable for storage and subsequent

interpretation.

The following DSL ALPHA statements

DEFINE PARTS
USING MATERIAL
RANGE MATERIAL M
GET W (M.P#, M.WEIGHT) : (M.QOH < 100)

END
will create PARTS and define it as the part nﬁmbers and
weights of those materials where £he quantity on hand is
less than 100. This definition is then translated and the
tables associated with PARTS are stored. If, at a later
time, the response to this query is required, the retrieval
tables will then be interpretad by th2 execution of the

statement
EXECUTE PARTS

to generate the response relation in workspace W.

The execution of the statement
DESTROY PARTS

will destroy the tables stored under file PARTS..

With the above two facilities incorporated in the translator
the system becomes more flexible and secure. Flexibility

is achieved by DEFINE and security by USING in that all

105

attributes can be checked for data type compatibility when
the stored tables are subsequently interpreted, i.e., if a
user changes any of the data types in the data base between
translation and interpretation this can be easily checked
at interpretation time since the attribute names of each
relation together with their types have been stored in the

symbol table.

6.3 SUGGESTION FOR FURTHER WORK

Queries expressed in DSL ALPHA typically require the
following:
(1) that the user defines extra tuple variables which
have as values rows or portions of rows of a relation
(ii) that the user states the query using terms associated

with universal and existential quantifiers.

To overcome these difficulties for the more infrequent
data base user, Boyce and Chamberlin (12,13] have introéﬁced
a natural block Structured English Query Language (SEQUEL)
for expressing queries on a relational data base without
requiring the mathematical sophiistication of the predicate
calculus (bound variables, quantifiers, etc.).

It is suggested that further work could be carried out
on the development of a translator to convert SEQUEL
statements into similar tables as that produced for the

implemented DSL ALPHA. This will involve the respecification

of the syntax of SEQUEL.

106

[1]

[2]

[31]

[5]

[6]

[7]

REFERENCES

Codd, E F, 'A Relational Model of Data for Large
Shared Data Banks', Comm ACM, Vol 13, No 6, pp 337-387,
1970.

Codd, E F, 'A Data Base Sublanguage Founéed on the
Relational Calculus', Proc ACM SIGFIDET Workshop on
Data Desgription, Access and Control, San Diego,
Calif, 1971.

Palmero, E F, 'A Data Base Search Problem', Proc of
the Fourth International Symbosium on Computers and
Information Science, Miami Beach, 1972.

Palmer, I, 'Scicon Data Base Management', Scientific
Control Systems Limited, London, 1973.

Codd, E F, 'Normalized Data Base Structure - A Brief-
Tutorial', Proc ACM SIGFIDET Workshop on Data

Description, Access and Control, San Diego, Calif,

1971,

Codd, E F and Date, C J, 'The Relational and Network
Approaches - Comparison of the Application Programming
Interfaces', Proc ACM SIGFIDET Workshop on Data |
Description, Access and Control, San Diego
1974.

Codd, E F, 'Further Normalization of the Data Base

Relational Model', Data Base Systems, Courant Computer

Science Symposia, Vol 6, Prentice-Hall, New York, 1971.

107

[8l

[o]

[10]

[11]

[121

[13]

Notley, M G, 'The Peﬁerlee IS/1 System', IBM
Scientific Centre Report 0018, UK, 1972,

Palmero, F P, 'An APL Implementation of Relational
Operators and a Search Algorithm', IBM Research
Report RJ 1273, San Jose, Calif, 1973.

Codd, E F, 'Relational Cumpleteness of Data Base
Sublanguages', Data Base Systems, Courant Computer
Science Symposia, Vol 6, Prentice-Hall, New York,
1971.

DeRemer, F L} 'Generating Parsers for BNF Grammars',
Spring Joint Computer Conference, 1969.

Boyce, R F and Chamberlin, D D, 'SEQUEL - A
Structured English Query Language', Proc ACM SIGFIDET
Workshop on Data Description, Access and Control,
San Diegc, Calif, 1974.

Boyce, R F and Chamberlin, D D, 'Using a Structured
English Query Language as a Data Description
Facility', IBM Research Report RJ 1318, San Jose,

Calif, 1973.

lo8

BIBLIOGRAPHY

Codd, E F, 'Seven Steps to Rendezvous with the Casual
User', Proc IFIP TC-2 Working Conference on Data Base
Management Systems', Cargese, Corsica, April 1974,
North-Holland, Amsterdam.

Fike, C T, 'PL/l for Scientific Programmers', IBM
Systems Research Institute, Prentice-Hall, Englewood
Cliffs, NJ, 1970.

Gries, D, 'Compiler Coﬁstruction for Digital
Computers', Wiley, 1971.

Hdpgood, F R A, 'Compiling Techniques', MacDonald/
Elsevier, 1969.

IBM, 'PL/1 (F) Language Reference Manual', IBM Systems
Reference Library, 1972.

Naur, P (ed), 'Revised Report on the Algorithmic

Language ALGOL 60', Comm ACM, Vol 6, pp 1-17, 1963.

Page, E S and Wilson, L B, 'Information Representation
and Manipulation in a Computer', Cambridge University

Press, 1973.

109

APPENDTIX A

SOME TERMINOLOGY ASSOCIATED WITH THE RELATIONAL MODEL OF DATA

PAYROLL (EMPLOY#, NAME, AGE, SALARY, ANNL_INCRE)
1l Brown 30 1800 0.2
2 Smith 21 1500 0.15
3 Jackson 33 1600 0.15
4 Johnson 29 1700 0.15
5 Wright 38 2200 0.25

Fig. A.l1. PAYROLL Relation

Referring to Figure A.l1 the following can be defined:

(i) An object is a unit of information. Objects may be
represented in a computer by chiaracter strings, integers
or real numbers, e.g., Brown, 2200, 0.2 .

(ii) A domain or set consists of objects grouped into
any meaningful fashion, e.g., the set of names, the set

of ages. Each distinct use of a domain in defining a
relation is called an attribute of that relation.

A simple domain is a set all of whose objects afe '
integers, or a set all of whose objects are character
strings. A compound domain is the expanded cartesian -
product * §f a finite number (say k, k2l) of simple domains;
k being the degree of the compound domain.

Two simple domains are union-compatible if both are

domains of integers, real numbers or character strings.

* For definition, see Appendix B.

110

Two compound domains A and B are union-compatible if they
are of the same degree (say n) and for every j .
(=1, 2, ;.., n) the jth simple domain of A is union-
compatible with the jth simple domain of B.

A relationship is defined as an association between
one or several, not necessarily distinct, domains,

e.g., 'has a salary of' is a relationship.

(ii1i) A tuple is an ordered set with an object from each
attribute such that a relationship exists between the
objects, e.g., (1, Brown, 30, 1800, 0.2).

(iv) A relation, when.deélared, is the set of all tuples
(elements) of a given relationship, e.g., the data base
table PAYROLL,

An unnormalized relatioﬁ is one whose attributes have
relations as elements. A normalized relation is one-whose
attributes are simple, i.e., no attribute is itself a
relation. A relation defined on simple attributes only is
said to be simple normal.

Two relations R and S are union-compatible if the
attributes of R and S are identical.

(v) The degree of a relation is the number of attributes
in the relation, e.g., the PAYROLL relation has a degree -
of 5, - |

Relations of degree 1 are called unary, degree 2
binary, degree 3 ternary and degree n n-ary.

(vi) The cardinality of a relation is the number of tuples

in the relation, e.g., the cardinality of PAYROLL relation
iS 5.'

111

(vii) A candidate key of a relation is the minimum

combination of attributes needed to uniquely identify a

tuple of the relation.
(viii) The primary key of a relation is one chosen key of

the candidate keys of the relation.

112

APPENDTIZX B

RELATIONAL ALGEBRA AND RELATIONAL CALCULUS

B.1l Relational Algebra

Of the traditional set operations employed in the
relational algebra, the cartesian product yields an
expanded product while the operations (union, intersection,
difference) are applicable only to pairs of union-

compatible normal relations.

Expanded‘cartesian'Product

Consider two relations A and B. For every aeA, beB
where a = (al, Agy vees am) and b = (bl, b2, ceey bn), the

concatenation of a and b defined by

n : - -
a b = (al, az' LI um, bl' b2' LI BN bn) ?»

is the set of (m+n)-tuples.

The expanded cartesian product of relation A (degree m)

and relation B (degree n) defined by
A ®B ='{(anb) : aéA A beB} , -

yields the relation of degree m+n.

113

Union

The union of two relations A and B defined by
AuB={x : XeA V XeB} ,

1s the set of tuples which belong to at least one of the

relations.

Intersection

The intersection of two relations A and B defined
by
A nB-={x : xA A xeB} ,
is the set of all tuples that are common to the two

relations..

Difference

The difference of two relations A and B defined

A - B-= {x : XeA A x¢B} ,

is the set of those tuples of A which do not belong

to B.

114

Projection

A projection involves generating a new relation from

a given relation by subsetting and reordering attributes.

Suppose r is a tuple
3=

component of r.

of the n-ary relation R. For

1, 2, ..., n the notation r[j] designates the jth

For other values of j, r[j] is undefined.

The notation can be extended to a list A = (jl' j2, ceay jk)

of integers (not necessarily distinct) from the set

1, 2, ..., n as follows:

r[A] = (r[le:

When the list A is empty,
degree n, and A a list of
distinct) from the set 1,

*
of Ron A is defined by

R[A] = {r[A]

R (Dl. D2, D3)
a 6 S
d 4 t
c 2 s
£ 3 u
h 4 t

r[jzjc ev ey r[jk]) .

r[A] = r. Let R be a relation of

integers (not necessarily

2, ..., n. Then the projection
reR} - .
R[3, 2] (Dl' D2)
s 6
t 4
s 2
u 3

Fig. B.1l Relation R and One of its Projections

Projection provides an algebraic counterpart to the

existential quantifier.

* The notation nA(R) is often used to denote the projection
of R on A where 1 is a selection operator.

115

Join

A join involves generating a new relation from two
given relations by concatenating a subset of the tuples
from the first relation to a subset of the tuples from the
second relation.

Let 0 denote any of the relations =, 2, <, <, > and 2.
The 0-join of relation S on attribute A with relation T on

attribute B is defined by
SCA 0 BIT = {(s"t) : seS A teT A (s[A] o t[B1)} ,

providing every element of S[A] is ©-comparable with every
element of T[B] (s[A] is 6-comparable with t[B] if for
every seS and teT, s[A] © t[B] is either true or false,

i.e., not undefined).

T (p, Q)

s (X, Y, Z)
a 2 1l 5 s
h -3 5 4 t
a 5 4
o] 3 2

Ss{z = p]T (X, Y, Z, P, Q)

b 3 5 5 s
a 5 4 4 t

Fig. B.2 Relations §, T and One of the Joins

The most commonly used join is the join on =, which is
known as the equi-join., In the case of the equi-join, two of
the attributes of the resulting relation are identical in
contept. If one of the redundant attributes is removed by

projection, the result is the natural join of the given

relations.

116

Division

If R is a binary relation then the image set of x

under R is defined by

Ay : (x,¥) eR} .

gg (x)

Consider a relation S of degfee m divided by a relation T
of degree n. Let A and B be two attribute-identifying lists
(without repetitions) for S and T respectively, and let

A denote the attribute-identifying list that is
complementary to A and in ascending order. Fo; example,

if the degree m of R were 5 and A = (2,5), then A = (1,3,4).
Providing S[A] and T[B] are union-compatible, the division

of S on'A by T on B defined by
S[A + BIT = {s[A] : seS a T[B] c gg(s[AD} ,

is the set of values s[A] in S such that all tuples in T[B]
are contained in the image set gs(s[KJ). When S is empty,

6 divided by T is empty, even if T is also empty. .

s (x, Y, z) T (P, Q)
1 14 X - X 2
2 14)'4 Y 1
3 14 z Yy 2
4 12 X b4 3 ~
5 12 Y

S[z + PIT = ¢

slY,2][z + PIT = {14}

Fig. B.3 Division of S by T

Division provides an algebraic counterpart to the

universal quantifier.

117

Restriction

A restriction invol?es selecting some subset of the
tuples from a given relation to form a new relation of the
saﬁe or lower cardinality.

Suppose R is a relation, and A and B are two attribute-
identifying lists for R. Let © denote any of the
relations =, #, <, <, > and 2. The 0O-restriction of R on

attributes A and B is defined by
R[A © B} = {r : reR A (x[A] o r[BD} ,.

providing every element of R[A] is 0O-comparable with every

element of RtB].

R (A,

RO K1Y
dWHEOAN (s+}
o Wi UTWw

R[B >C] (A, B, C)

r 6 5
r 7 4

Fig. B.4 Relation R and One of its Restrictions

118

B.2 Relational Calculus

Symbols, Terms and Formulae

The symbols of the relational calculus are given in

Table B.5 .

Individual Constants a, By see
Attribute Identifiers a, b, ...
Tuple Variables

Range Predicates (monadic) P, P

2' e o e
Join Predicates (dyadic) =, #, <, S, >, 2
Logical Symbols 3, V, A, v, ™
Brackets L1)«

Table B.5 Symbols of the Relational Calculus

An arbitrarily specified one-to-one correspondence
Pj <+ Rj (3 =1, 2, ..., N) is established between the
range predicates and the N simple normal relations in the
data base, where Pj indicates membership of tuples in
relation Rj.’

An expression of the form rl[b] where ry is a tuple
variable and b an attribute identifier is called an indexed-.
tuple variable.

The terms of the relational calculus are of two types,
namely range terms and join terms. A range term is a
monadic predicate followed by a tuple variable, e.g., the
range term Pjr indicates that tuple variable r has relation

Rj as its range,

119

A join term is either a monadic term (e.g., rl[a] = .a)
or a dyadic join term (e.g., r1[aJ < rz[b]). The general

form of a join term is
A0 or A0

where),y are indexed tuple variables
a is a constant

© is one of the join predicate symbols,

The well-formed formulae (WFF) of the relational

calculus are defined as follows:

(1) A range term or join term is a WFF.

(ii) If r is a WFF so is °r.

(iii) If r, and r, are WFFs so are T'; v I', and T, A-Fz.
(iv) If r is a WFF in which r is a free variable

(e.g., r[al = 3) then 3r(r) and Vr(r) are WFFs with r as
a bound variable (e.g., 3Jr(x[a] = 3)).

(v) No other formulae are WFFs.

A range WFF is a quantifier;free WFF, all of whose
terms are range terms,. e.d., P5r3 A P6r2. A range WFF
over R.is a range WFF whose only free variable is r
(e.q., Plr A'"Pzr).

A proper range WFF over r is a range WFF (e.g., P4r, ~
P4r A Plr) subject to the following constraints:
(1) The symbol ~ does not appear unless it immediately
follows the symbol A.
(ii) Whenever the same ry occurs in two or more range terms,
the range predicates (i.e., P's) in those terms must be

assoclated with relations which are union-compatible.

* A free variable is one which is not quantified.

120

Alpha Expression

An alpha expression which deflnes the response relation

in the relational calculus is of the form
t ¢t w

where t is a target list and w a qualification expression.
The target list contains k distinct terms

tl' t2, ceey tk each consisting of a complete tuple variable

{e.g., rl) or more commonly an indexed tuple variable

(e.qg., rl[a]). The qualification expression is either a

single w coﬁponent or a logical combination of several

W components, W, @ W, @ W, ..., over a common set of free

3
variables where ® denotes any of the. connectives v, A and A”.

Each w component has the general form

w = U1 A U2.A cee A UP AV

where p is the number of free variables (p21)
U's are cdnjunctions of proper sange WFFs (Ul through
UP) over p distinct tuple variables
v is either null (i.e., does not appear) or it is
a WFF subject to the fwllowing:
(1) every quantifier (ForVv) in V is range- =
coupled, e.q., VP2r2
(ii) 'every free variable belongs to the set whose
rangescare specified by Ul' U2, cesy Up

(iii) V is devoid of range terms, i.e., there are

no terms of the form Piri'

The w component is a range-separable WFF if it is a

conjunction of the form, U, A Uy A een A T

AV
p '

1

121

satisfying the above notation. One consequence of these
requirements is that a range-separable WFF has at least
one free variable, e.g., P4rl A 3P5r2(r1[b] = r2[c]).
The initial step of Codd's reduction algorithm [10]
requires that V in the oa-expression be in prenex normal form

form, i.e., operators (usually —) do not occur to the

*®
left of quantifiers. In this a-expression V has the form

V=20 Q veo Q (61 V.6, V ¢¢a- V B

p+l “p+2 P+g
where g is the number of guantified variables (gq=0)
Q's are range~-coupled quantifiers

each ei is a conjunction of join terms over the variables

rl' r2, Y rp+q' e-g-' o
(rl[a] =.r2[b]) A (rl[a] < 5)

If g=O then V = 91 VB, Vol Vv 8

K'-

The part of V following the Q's is called the matrix.
There should be no negation symbols preceding any join
term in the matrix. - Wherever a join term using relation 0
is immediately preceded by ~, the ~ symbol is eliminated
by replacing © by its complement (the complements of
.=, #, <, £, > and > are ¥,'=, 2, >, < and < respectively),
e.g., "(rz[a] = 25) is equiValenf to (rz[a] # 25).

An alphabetic change is systematically applied (if"
necessary) to the variables in the a-expression so that the
free variables Tys Tyr eees T and the bound variables

P

rp+1, rp+2, ceay rp+q are numbered in the order of their

* "3P1r3(r2[b] = 6) is equivalent to VPer"(rz[b] = 6)

122

%*
first occurrence in the qualification expression.

The following points should be noted:
(i) Tuple variables appearing in the target list t are
never quantifiéd.
(ii) Tuple variables appearing in w and not in t must

be quantified.
An example of an a—expression is

(rl[aJ, rl[c]) : Plr1 A VP2r2((rl[a] = rZLb]) A (rz[c] > 5))

where t (r1[a], rl[c]) is the target list

w = Pir; A VPr,((r;lal = ry(bl) A (z,lc] > 5)) is
the qualification expression.
In the qualification expression,
1 = Fin1
Qé = VP2r2
1 (rl[a] = rylbl) A (r,lel > 5)

@
I

* The first occurrence of a bound variable is with
its quantifier.

123

APPENDTIZX o

LEXEME VALUES FOR SOURCE LANGUAGE SYMBOLS

GET 1l + (infix) 122
DROP 3 { 323
HOLD 4 ¢ 124
RELEASE 5) 223
UPDATE 105 = 324
DOWN 106 ;: ggz
upP 206 as 224
PUT 1 ‘& 125
NEW 8 1 126
READ 9
LIST 109 : 127
ALL 110 v 128
SOME 210 . . 129
STOP 11 (131
RANGE 116) 132
AVERAGE 117 $(133
COUNT 217
MAX 317 $) 134
MIN 417 . - .
- {INTEGER~-CONSTANT> 136
IAVERAGE 118 .
IMAX 318 <IDENTIFIER> 37
IMIN 418 .
ITOTAL 518 (WORKSPACE—NAME) 38
AND 119 {DATA~-BASE~-RELATION-NAME> 39
OR 120 {LOCAL-RELATION-NAME > 40
TOP 121 - (VARIABLE) 41
BOTTOM 221 ' + (prefix) 43
FIXED31l 130
FIXED 230
FLOAT1e6 330
FLOAT 430
CHAR 530
CHARVAR 630
KEY 44

124

APPENDTIX D

FLOYD PRODUCTION LANGUAGE STATEMENTS

The following abbreviations have been used:

EOS
WSNAME
DBRNAME
IDENT
1ELTSTK
INT

VAR
F-IDENT
LRNAME
I-F-IDENT
B-F-IDENT
REL-OP

STR

END-OF-STATEMENT
{WORKSPACE-NAME)>
{DATA-BASE-RELATION-NAME>
{IDENTIFIER)
FIRST~ELEMENT-ON-STACK
{INTEGER-CONSTANT)>

"¢ VARIABLE>
{FUNCTION-IDENTIFIER>
{LOCAL-RELATION-NAME)>
{I-FUNCTION-IDENTIFIER)>
¢{BOOL-FUNCTION-IDENTIFIER>
{RELATIONAT--OPERATOR>
{STRING-CONSTANT>
{REAL-CONSTANT>
{ATTR-TYPE> |

RELEASE

UPDATE

The names for the production labels used in the

Floyd Production Language statements are not meant to

convey any meaning

as these statements have been

optimized and therefore the label names have lost their

significance.

l25

<START> 3 ANY

CSESSIONOH 3 RANGE
DROP

NEW

sTop

EO0S
READ/LIST
<POST—RANGED>H ¢ ANY
<POST-RANGE+IDH 2 GET
HOLD
DELETE
RANGE
sTop
£0S
<RANGEDH ¢ WSNANE
DBRNAME
1DENT
T(18) 5 .. IDENT
CQUANTIFIERDH 2 ANY
ANY
Tt21) = ANY
CSTATEMENTOT 2 RANGE
GET
HOLO
DELETE
LELTSTK
CROP
NEY

PUT

<GET>H 10ENT

WSNAME

<QUOTA>H {
{

<QT—LIST>H H (
F=1DENT

LRNAME

lRNﬂﬁE

<GTELEMENT-CDM>T = ANY
ANY
Ti40) ¢)
Tial) 1 {
Ti42) 3 LRNAME
ANY
Ti44) 2 IDENT

T145) 1 i

ANY
ANY
ANY
ANY
ANY
ANY
ANY
ANY
ANY
ANY
ANY
ANY
ANY
ANY
ANY
ANY |
ANY
ANY
SCME/Z ALL
ANY
EOS
ANY
ANY
ANY
ANY
ANY
ANY
ANY
ANY
AN;
ANY
INT
VAR
ANY

ANY
ANY
ANY
ANY
ANY

ANY

ANY

R63
R7
R7

R7

R7
R63
RS
R8
R8

R60

R2
R2
R3

R4

R62
R6
R18
R18
R1
R1
Rl
R1

R9

R10

R13

R11

R11

R12

la2e6

1=->

2~>

1->

1->
1->

5=->

(1

1)

L3]

L 3]

[1]

.

<SESSIONOH
<KANGF>H
113N

T(146}

EXIT

<START>
Ti1€2)
CPOST-RARGE+1>H
<GETOH
<HOLD>M
Ti1221
CRANGEDH

EXITY
<POST-RANGE>H
T{18)

T118)

118y

CQUANT IFTERDH
T2

1210
<STATEMENTT
<POST-RANGE>H
<POST~GETOH
<REL /UD/COMPYH
<POST-GETOH
<POST-GETO>H
<POST-GETOH
<POST-GETOH
<POST-GETIH
<QUCTA>H
CQUOTA>H
T140)

T140)
<GT-LISTOH
Tisl)

Tisn
CGTELEMENT-COM>T
<GT-ELEMENTOH
<GTLIST-END>T
<GT-LIST>H
T162)

T(46)

T(44)
<GTLIST-END>T

Tl 46)

FAIL_3(1) .

FAIL_112}

FAIL_1(3)
FAIL_114)

FALL_1(5)

FAIL_116)

FAIL_1tT)

FAIL_1U8)
FAIL_L(9)
FAIL_I'(10)

FAIL_L1110)
FATL_1(1Y)

Ti46) 1

CANAME-SEQLIDH 3

<ALISTIDH ¢

Ti51) 3

Ti52) 3

<GTLIST-SEQ>T 3

<GTLIST-END>T 3

T{56)

T(57)

<GTLIST-CONTD>H

CGT-ELEMENTOH 3

Ti63)
<CILONI>H

<GET-0RDEROM =

<QUAL-EXPDH 3

<QUALDH 2
<QUAL#1DH ¢
Ti71) 3
T(72) ¢
T(73)
Tt78) 3

<TERM=-RHS>H :

T(78) 3
TL79) 2
Ti(80)
TtelL) ¢
Ti82) :
vig3) :
T(84) ¢
T{as) =
‘Tige) 3
T{87) 2
Ti88)

CANAME=STU2>H 3

LRNAME
1DENT
t
IDENT
" IDENT
ANY
IDENT
ANY
t
ANY
ANY
10ENT
1-F- [DENT
LRNAME
LRNAME
LRNAME
LRNAME
1DENT
ANY
ANY
ANY
1-F-1DENT
B-F-IDENT
st
«
t
LRNAME
REL-0P
LRNAME
STR
*/-

INT/REAL

ANY

ANY
LRNAME
ANY
{

LRNAME

IDENT

. R17
ANY Rl4
ANY

. R14
) R14
v R1S
) R16
'

ANY

ANY

)

ANY R12
ANY R13
. R11
ANY R11
. R11
ANY R11
ANY R12
4

UP/DOWN

ANY

ANY R19
ARY R20
ANY

t

ANY

ANY R21
EDENT R22
ANy

ANY R21
) R23
ANY R56
ANY RS?
I DENT)

) R24
INT/REAL
LRNAME R21
1 DENT

) R33
1 DENT R34
ANY R35
' R21
ANY R32
ANY

127

1->
3->

sk

x4

'8

L)

CANAME-SEQLOH
Tis1})
CALISTI>H
CALISTI>H
T(S1}

T(S2)
CCTLIST-END>T
<GTLIST=CONTDOH
Ti56)

CCOLONI>H
<GTLIST-END>T
<GTLIST-SEO>T
T(45)

T(5T)
<GTELEMENT-COM>T
T(63)

" <GTELEMENT-COM>T
CGTELEMENT-COMDT
<QUAL=EXPOH
T85)

T(21)

Yia7)

T8l
<QUALIH
<QUAL+1>H
T(12)

T3

TU74)
CTERM=-RHS>H
T(79)

<E/1>T

T(78)

CEZI>T

Tts0)

<£I|>r

T182)

T(83)

T184)

<GE T-ORDERDH
Ti86)

<GE T=NRDERDH
188}
CANAME-SEQ2>H
11(93)

CALIST2MH

FAIL_1112)
FAIL_1U13)

FAIL_14(13)
FAIL_L(14)
FAIL_1112}

FATL_L{15)
FAIL_1(16)

FAIL_UT)

FAIL_L{TD)

FATL_1(16)

FAIL_LILTY
FAIL_L(LA)
FAIL_1(19)

FALL_1120)

FAIL_L121)
FAIL_I(lQ)\
FATL_1(22)
FAIL_1(23)

FAIL_1(23)

CFATL_1123)

FATL_L123)
FAIL_1(24)
FAIL_L1(2&)
FAIL_LM1L}
FagL_1(12)

FALL_1(13)

CALIST2>H 1t

T(93)'3
T194) ¢
T095) 3
KL/I>T @

<QUALEXP-ENDDT =

<ANDZORDT =

CAND/ORSIDT &

<AND/OR+35>T

T1106) 3
T(1on 3
CAND/OR49>T 3

<HOLD>H 3

CHT-LISTOH =

TL115}) 2

<HTELEMENY-COM>T

SHTLIST-ENDDT =
T1120) =
T2l 3
Tt22)

<CGLON2>H @

Tt125) 1
<PUT>H @

<DOTL>H 3
CANAME-SEQIDH :
CANAME-LIST3>H 1

<PUT~ORDtROH 3

IDENT
INENT
ARY
IDENT
ANY
ANY

ANY

AND
ANY
OR
ANY
L]
DELETE
ANY
ANY
ANY
11}
ANY

TDENT

WSNAME

{
LRNAME
LRNAME

IDENT

ANY

ANy

{

ANY
ANY
LRNAME
LRNAME
ANY
ANY
WSNAME
ANY
ANY
ANY
ANY
IDENT
{

1 DENT
IDENT
ANY

ANY

ANY

ANY

ANY
AND
ANY
OR

ANY
ANY

ANY

s}
ANY .
ARY
ANY
ANY

ANY

ANY

ANY

ANY
ANY
ANY

ANY
ANY
ANY
1DENT

WSNAME

- ANY

ANY

ANY

]

)
UP/DQWN
ANY

32
R32
R25

R26

R28
R29

R30

R29

R11
R11
R36

R37

R37

R38

R38

R38

128

1->

1->

1->

s

L X J

x¥

LR

CALIST2OH
T(93)

1(94)

T(95)

T(211)

T

Ti106)
<QUAL ¢ 1>H
CAKD/CRO1>T
<QUALDH
<ANC/OR+3>T
CQUALIH
Yo7}

Ti21)
<GET-CRDERDH
<QUALEXP-END>T
<AND/OR+9>T
1107}
<ANC/ORD>T
CHT~LISTOH
CHT~LISTOH
<HT~LISTOH
T(115)
<HTLIST-END>T
<HTELEMENT=COMDT
T121)
CHTLIST=ENDDT
Ti120)
<COLONZOH
CHTLIST-END>T
T(115}1
<COLON2>H
<QUAL-EXPOH
T421)
<PUT)N-
<NOTI>H

<DOTI>H

<ANAME-SEQ3I>H

<PUT-QRDERDH
<PUT-ORDERDH
CANAME-LIST3I>H
CANAME-L ISTIDH
<PUT-ORDER>H
TL136)

Tiz1)

FAIL_1113)
FAIL_1(14)

FAIL_1112)

FAIL_LL15)
FAIL_1127)

FAalt_1(28)

FAIL_UUT)
FAIL_1(16) .

FAIL_1(15)
FATL_MT)
FAIL_1(29)

~.
FAIL_1130)

FAIL_1(31)

FAIL_1(32)

FAIL_1(32)

T{136) ANY
T3 3 IDENT
ARY

<DOT2OH 3 ANY

ANY

CANAME-SEQ4OH 2 IDENT
(

Tile3) : 1DENT

<ANAME-LIST&>H @ ANY
ANY

TL146) = IDENT

TL14T) = ANY

CAFLELODH 3 ANY

ANY

TLLS50) = 1DENT

<AFIELD*H 3 KEY

TI152) - ATYPE

CAFIELD¢S>H ¢ ANY

ANY

TI155) @ INT/REAL

CREL/ZUD/COMPOH ANY

CREL/UD/COMP#1>H 3 REL/UD

' EQS

stoP

WSNAME

READ/LIST

Ti162) ¢ ANY

<IDENT-LISTDH 3 VAR

WSNAME

IDENT

CIDENT-LIST#3>H 3 ANY

. ANY

Ti168) = -

T(69 t ANY

CARITH-EXPOH 2 +/-
 CARITH-EXP+I>H 3 ot

INT/REAL

VAR

WSNAME

TH1715) -
<CEXPOT 3 PREFIXL=)

CEXP#1D>T 3 ./

<ExPe2>T 1 A&v
o] -

CEXP+4>T ANY

IGENT
ANY

ANY

ANY
ANY
ANY

ANY

ANY
ANY
ANY
ANY
ANY

ANY

ANY

ANY

ANY

1DENT

ANY
ANY
ANY
ANY
ANY
1CENT
ANY
ANY
7,
ANY

¢ /-

R39

R31

R38

R38

R31

R40
R51

R41

R42

R63

/7

R7

R?

R44
R6&

Rbé

R&4b
R&3
RS6

RGT
R48

R46
R49

RSO

R50

129

1->

1->
1->

2=>

1=>

1->

(1)

<PUT-URDERDH
<NOT2>H
<CNT25>H
CANAME-SEQ4OH
121}

T21)

1143}
CANAME-LIST4O>H
T1143)

121}

T(147)

T(1500

T(150)

T2

<AF IELD#3>H
T(152)
“CAFTELNeSOH
T(155)
<AFTELD>H
CAFTELDOH

<REL /UD/CCMP+1>H
Ti200
<REL/UD/COMPOH
Ex1V

T1168)

T(162)
CIDENT-LISTOH
CIDENT-LIST+3>H
CIDENT-LIST+35H
CIDENT-LIST+3>H
“CIDENT-LIST>H
T(210)

Tt169)
{RlGHT—PARF)H
<ARITHE~-EXP+1>H
<ARITH-EXPO>H
CEXPOT

CEXPOT

T(175)

CEXPOT
CEXP+I>T
CEXP42>T
SARITH-EXP#1>H
CEXP#4>T

CARPITH-EXPe1>N

FALL_1133)

FAIL_1(34)

FAIL_1132)
FAIL_1(32)°

FAIL_1(32)

FATL_1(35¥

FAIL_1{36)

FAIL_1137)

FAIL_1(37)

FAIL_L{3T)

FAIL_1137)

FAIL_2(38)
FALL_2(39)

FAIL_2t40)

FAIL_2140)

FATL_2(41)
FAIL_2(42)

FATL_2(43)
FAIL_2(&1)

CEXPe6DT ¢
Ti183) 1

CFIX_IDT 3

CFIX_1455T 3

CFAIL_I>T ¢

CFIX_2>T 3

CFAIL_2>T =

<FIX_3> 2

KFAIL_3>T

<FAIL_4>T

T(L209) 2
T(210) ¢
TL2t1) @

<NUMBER>H

Ti213) ¢
<POST~GETOH 3

<POST-GETe¢1OH

CRIGHT=PARTO>H

(

a

ANY
RANGE
DROP
NEMW
puT
ANY
RANGE
ANY
ANY
ANY
HOLOD
LELTSIK
ANY
ANY
ANY

LELTSTK

ANY.

ANY

ANY
RANGE
GET
HOLD
DELETE
ANY
HOLD
1ELTSTK
ANY

ANY
REL-OP
+/ -
INT/REAL
ANY

H PUT

ANY

ANY

ANY
ANY
ANY
ANY
ANY
ANY
ANY
E0S
ANY
ANY
ANV
ANY
EOS
ANy
ANY
ANY
EDS
ANY

R50

R58

RS9

R59

A58

Rt

R61

RS6
RS7
R63
R7
R7

R&7

130

1~>

1=->

1->

-
|
)

T(183)

1210

CFXPOT
<POST-RANGESH
CFIX_1¢55T
CFIX_L+S>T
KFIN_1e5>T
CEIX_I>T
<POST-RANGEDH
<POST-GET>H
CFIX_I>T
CEAIL_L>T
CREL ZUD/COMPOH
<POST-GET>H
CFIN_T
SFIX_2>T
CFAIL_DT
<POST-GET>H
<FIX_3>T
CFIX_3>T
CFATL_I>T
<POST-RANGEDH
<POST-RANGE>H
<POST-RANGE>H
<POST-RANGEDH
<POST-GET>H
CRELFUD/CTHPYH
<POST-GETOH
<POST-GET>H
CSTATEMENTST
<NUMBERMH
1213
<GET-GRDER>H
<POST-GET+1>H
T(125)
T(168)
<POST-GET>H
<SESSIONDH
<EXP+&>T

CARTTH-EXPOM

FATL_2115)

FAIL_2t5)
FAIL_21(5)

FAIL_1{25)

FATL_1126)

APPENDTIX E

IMPLEMENTATION OF THE TRANSLATOR

The translator has been implemented on the Eorthﬂmbrian
Universities' Multiple Access Computer (NUMAC) IBM 360/67,
owned jointly by the Universities of Durham and
Newcastle-upon-Tyne, and Newcastle-upon-Tyne Polytechnic.
NUMAC provides both interactive and batch processing
facilities and has 1024K bytes of main memory.

The translator is invoked in terminal mode by the

*
MTS command

£SOURCE CLN6 :ALPHA
and in batch mode by the command
E£SOURCE CLN6:B.ALPHA ,

In batch mode th

translator are directed to *sink¥*,

* MTS, the Michigan Terminal System, is the major operating
system in use in NUMAC.

131

APPENDTIX F

EXAMPLES OF TABLES PRODUCED

BY THE TRANSLATOR

132

RANGE MATERIAL M

GET W (M. PR)

SYMROL TABLE

1o MATERIAL

2. K

3. ¥

4o P#
WORKSPACE TABLE

21. W

Q_TAB

GT_TAB
FUNCT
0
FN_NT_TAB
DT_TAB
DTOV_TAB

HP_TAB

OR_TAS8

39
%0
37
37
LRNAME QUANT WCOMP
2 o 0
l .
21
o

ALIST ALISTPTR LRNAME
0 0 2

-X-X-N-]

ANAME

133

4

RANGF MATERIAL M

GEY W {NM.P#, M.PHNAME, H.CQOH} 3 (M.COH < 100}

SYMBOL TYABLE
le MATFRIAL 39
2¢ M) 40
3o W a7
4. P8 a7
5. PNAPE 37
6. QOH 37

00000

HORKSPACE TABLE

21. W
CONSTANT TABLE

FB31
. la 100

CODING TABLES

RA_TAB
RNAME LRNAME QUANT WCOMP
1 2 0 1

ST_TAS N
WN_TAB 21’
Q_Ta8 [

GT_TAB
FUNCT ALIST ALISTPTR LRNAME ANAME

0 -0 0 2 4

o o . 0 2 5

o 0 o 2 6

FN_MT_TAB

FUNCT ALIST ALISTPTR RNAME LRNAME ANAME RELOP WCOMP TCOMP CONTYPE . CONLEN CONPTR
0 0 0 1 e [} 124 1 1 1 [1

134 : '

RANGE MAVERIAL N

GEY W (6) (M,PNy M PNAME, F,QCH} : (M.QOH C100) UP M.P# DOWN M.WEIGHT

SYMBOL TABLE

le MATERIAL 39
2. M 40
3. ¥ 37
4. P 37
Se PNAME »
6. QOH 37
Te WEIGHT kX)

-X-X-X-X-N-¥-]

WORKSPACE TABLE

21. W
CONSTANT TABLE

| 100

RNAME LRNANE QUANT HWCOMP
2 [

HWN_TAB - 21
Q_TAB 6

GT_TAB .
FUNCT ALIST ALISTPTR LRNAME ANAME
. 0 0 0 2 4
0. ' 0 [} 2 S
0 [} "0 ' 2 &

FN_MT_TAB
FUNCT ALIST ALISTPTR RNAME LRNANE ANAME RELOP HCOMP TCOMP CONTYPE CONLEN CONPTR
[+]] 0 1 2 [] 124 1 1 1 0 1

DT_TAB

DTOY_TAD

WP_TAB

DR_TAB ’ . e e P
ORDER LRNANE "ANAME . . -
206 2 L]
106 2 7

135

RANGE FACTORY F
RANGE ORDER 0 SOME
GET W (F.SNAME, F.ADDRESS) 3

SYMBOL TABLE

1. FACTORY

F

3. ORDER
4. 0

5. ¥

6. SNAME
7. ADDRESS
8. S#

9, P8

HORKSPACE TABLE

21. W
CONSTANT TABLE

1. "8
CODING TABLES |

LRNAME QUANT
2 0

3 . o2

WN_TAB 21

GT_TAB
FUNCT ALIST

0 0 o

0 o 0
FN_MT_TAB
FUNCT

¢ 0 0

DT_TAB

LRNAME]
2

ANAMEL
8
DTOV_TAS
WP_TAB

OR_TAB

ALISTPTR

ALIST ALISTPTR RNAME

LRNAME 2
4

(F.58 = 0.54) € (0.PR = 5)

w
-~
[-X-X-N-R-X ¥-X-JX-

WCaMpP
1 .

LRNAME ANAMNE
2 6
2 7

LRNAME ANANE

RELOP

3 4 9 324

ANAME2 RELOP
8 324

136

wCeeGHr
1

WCOMP
1

TCOMP CONTYPE CONLEN CCNPTR

TCOMP

1

RANGE FACTORY F
RANGE FACTORY E SOME

GET W (FoS¥) ¢ (E.SNAME = *JRONWONKS®') & (F.ADDRESS = E.ADDRESS)

SYMDOL TABLE

‘e FACTORY 39
2. F 40
3. E 40
4e W 37
5. S# ”
6. SNAME . 37
7. ADDRESS 37

O000OONOO

WORKSPACE TABLE

CHARS :
1. IRONWORKS

COCING TABLES
RNAME LRNAME QUANT WCOMP
1 2 0 1
1 3 2 1
ST_TAB 1

_ WN_TAB 21
a_tas 0

CT_TAB ’ .
FUNCT ALIST ALISTPTR LRNAME ANANE
o 0 0 2 5

FN_MT_TAB
FUNCT ALIST ALISTPTR RNAME ULRNAME ANAME RELOP HCGMP TCOMP CONTYPE CONLEN CCNPTR
0 . 3 6 324 13 1 5 9

DY_TAB"
LAMANEL AMAMEL LRNA

A ME2 ANAME2 RELODP WCOMP TCOMP
2 7. 3 7 324 1
DIOV_TAR

WP_TAB

QR_TAB

137

RANGE FACTORY F
RANGF DRDER O ALL

GET W (F.S¥) ¢ [F,5¢ ~=0,5#) |

" SYMROL TABLE

FACTORY

gt

ORDER

)

S. W

s#

Py

WURKSPACE TABLE

CODING TABLES

LRNAME QUANT
2 [+}

3] 4 1

21
Q_TAB 0

oT_TAB
FUNCT AL IST
0 0)

FN_MT_TAB
FUNCT
0 0 o
DY_TAB
LRNAMEL ANAME L
2 [&

DTAV_TAB
WP_TAB

OR_TASB

© 37

ALISTPTR
ALIST ALISTPTR RNAME LRNAME

LRNAME2

(0PN ~=3)

39
40
39
%0

7
37

000~ 000

WCONP

LRNAME ANAME
2 [}
ANAME

3 4 7

ANAME 2 RELOP
6 - 624

138 .

RELOP

624

WCOMP
1

WCOoMP
1

TCONP

TCOMP
1

2

CONTYPE CONLEN CONPTR
1 0 1

RANGE FACTORY F
RANGF TASK T ALL
RANGE ORDER Q SCME

GET W (F.SNAME) ¢

SYMBOL TABLE

(F.S# = 0.58) C (0D.JF =

le FACTORY 39
2. F 40
3. TASK 39
4 T 40
S. ORDER 39
6. 0 40
7. ¥ 37
8. SNAME 37
9. S# a7
10. 48 37
WORKSPACE TABLE
2l W
CODING TABLES
RA_TAB
RNAME LRNAME QUANT WCONP
1 2 0 1
3 Y 1 1
5 6 2 1
ST_TaB 1
WN_TAB 21
a_TaB 0.
GT_TAB
FUNCT ALIST ALISTPTR LRNANE
0 0 0. 2
FA_MT_TAB
OT_TAB .
LRUAREL ANAMEL LRNAKEZ ANANEZ
2 9 6 9
6 10 4 10
DTOV_TAB
WP_TAB
OR_TAB

 ooooNa™0OO

TedW)
ANAME
8
RELOP WCOMP 1CunpP
324 1 1
324 1 1

139

KANGE TASK T

RANGE FACTORY F

RANGE DRDER O SOME

GET W (T.JNs TeJNAME, FL ADDRESS) : (T.J& = 0.J8) & (0.50 = F.SH)

SYMBOL TABLE

l. TaASK 39 0
2.7 %0 0
3. FACTORY 39 0
4 F 40 - 0
5. ORDER 39 .0
6. 0 - 40 2
T W 37 0
8. Js a7 0
9. JNAME 37 0
10. ADDRESS 37 0
1. S8 a7 0
WORKSPACE TABLE
21, W
CODING TABLES
RA_TAB
RNAME LRNAME QUANT ueoN
1 S 0 1.
3 P 0 1
5 -6 2 1
ST_TAB 1
WN_TAB 21
Q_TAB)
GT_TAB
FUNCT ALIST ALISTPTR LRNANE ANANME
' 0 0 2 e
0 0 0 2 - 9
0 0 0 s 10
FN_MT_TAB '
oT_TAB :
LRNAMEL ANAMEL LRNAME2 ANAME2 RELOP WCaMP
2 8 s 8 326 1
6 11 & Bt 326 1
DTOV_TAB
WP_TAB
OR_TAB

140

TCOMP

RANGF GRDER O
RANGE FACTURY F SOME

GET Wl (NeJdW) 2 (0SH = F,S8) & (F.SHAME = 'PAINTWORKS®)

SYMaeL TABLE
1. ORDER . 39
2. 0 40
3. FACTORY 39
4. F 40
5. Wl 37
6 JF kxg
T. S# 37
8« SNAME 37

[-X-X-X-T N-N-X-J

WORKSPACE TABLE

CONSTANT TABLE

CHARS
1. PAINTHORKS

CODING TABLES

ANAME LRNAME QUANT wcomp
1 2 [| ‘
-3 4 2 1 .

WN_TAB 21
0_TAB - 0

GT_TAB
FUNCT ALIST ALISTPTR LRNAME ANAME
0 o . [} 2 [}

FN_MT_TAB . ’
FUNCT ALIST ALISTPTR RNAME LRNAME ANAME RELOP weomMp TCOMP CONTYPE CONLEN CGNPTR
0 [+} [} 3 4 8 324 1 1 5 10 1
0T_VAB
LRNAMEL ANAVEL LRNAME?2 ANAME2 RELOP HCOMP TCOMP
2 T 4 7 324 1 1

DTOV_TAB
WP_TAB

OR_TAB

141

RANGE FACTORY F-
RAMGE W1 X ALL

RANGE OROER O SOME

GET W2 {F.SNAME, F.ADDRESS) : (FoSP = D.S#) £ (0.JF = X, J8)

3YMBOL TABLE

1. FACTORY 39
2. F 40
3. X %0
4. ORDER 4 39
5. 0 %0
6. W2 37
7. SNAME 37
8. ADDRESS 37
9. S¥ a7

10. 48 . 37

WORKSPACE TABLE

2l. W1
22. W2

CODING TABLES

RA_TAB
RNAME = LRNAME QUANT WCOMP
1 2 0 1
21 3 1 1
P s 2 1
ST_TA8 Y
WN_TAB 22
o_TAB 0
GT_TAB
FUNCT ALIST ALISTPTR LRNAME
o 0 0 2
0 R 0 2
EN_MT_TAB
DI_TAB
LRNAMEL ANAMF1L LRNAME2 - ANAME2
2 9 5 9
5 10 3 10
" DTOV_TAB
WP_TAB
OR_TAB -

[-Y-X-X-N-NN-N _XN.N-1

ANANME
7
8
RELOP WCaMP
324 3

324 1

142

TCOMP

RANGE ORCER O

GET W (0.S#) : (0.JF = 25) CR (0.JN = 47) € (D.PE = T}

SYy~pOL TASBLE

1. ORDER 19 0
2. 0 40 0
EYR”) o 37 o
4 S » 0
5. 30 37 0
6. P# . 37 0
WORKSPACE TABLE
21. W
CONSTANT TABLE
FB3l
L. 25
‘2. 47
3. 7
CODING TASLES
RA_TAB
RNAME LRNAME QUANT WCONP
1 2 0 1
1 2 0 .2
ST_TAB 1
WN_TAB 21 _ ' . -
" Q_TaAB .0
6T_TAB .
FUNCT - ALIST ALISTPTR LRNAME ANAME
o o 0 2 .
FN_MT_TAB . ,
FUNCT ALIST ALISTPTR RNAME LRNAME ANAME RELOP WCOMP TCOMP CONTYPE CONLEN CONPTR
o o 0 1 2 5 324 1 1 1 o 1
0 0 o 1 2 5 324 2 1 1 0 2
0 0 o 1 2 6 324 2 1 1 0 3
DT_TAB
oTOV_TAB
WP_TAB :
NCOMPL WCOMP2 OPER
1 2 120
OR_TAB ' ’

143

RANGE FACTURY F
RANGE CROER O ALL
GET W CUUNTUIF.S#) 8 (F.S4 ~= Q.S4) | (CaPW ~a= 5)

1. FACTORY 39
2. F . 4C
3. CRCER 9
4. 0 40

L 37
6. S¢ n
1. P# : 37

cCco™000

WORKSPACE TABLE

2l. M
CONSTANT TAALE

FB3l :
l. 5
CODING TABLES

LR NAME QUANT NGOMP
1 2 a 1
3 . v i

WN_TAB 21

GV_TAB
FUNCT

ALISTPTR LANAME
-217 0 2

ALISY ANANE
4] .6
FN_MT_TAB .
FUNCT ALIST ALISTPTR RNAME LRNAME ANAPVE

0 [+] .0 3 4 1

OT_TAB .
: LRNAMEL
2

HEZ RELOP

ANAMEL LRNAMEZ ANA
6 ' . 624

1]
[} 4 [}
DTOV_TAB
- WP_TAB

OR_TAB

144

RELO
624

p

WiOHF
1

WCOMP
1

TCGMP CONTYPE CONLEN CCNPTR

2

1

1

RANGE TASK T

GFT W (T.JUNAFME) & TOPI4,T.PRIORITY)

SYMAMNL TABLE

1. TASK T 39
2. T 4«0
3. W ’ 37
4. JNAME 37
S5« PRICRITY 7

[-N-X-N-J-)

WORKSPACE TABLE

CUNSTANT TABLE

RNAME LRNAME QUANT RCOMP
i 2 0 °
WN_TAB 21
a_TaB ' 0

GT_TAB
FUNCT ALIST ALISTPTR LRNAME ANAME
[-0 0 F 4
FN_MT_TAB . .)
FUNCT ALIST ALISTPTR RNAME LRNAME ANAME RELOP WCOMP YCOMP CONTYPE CONLEN CCNPTR
121 0 0 1 2 s 0 0 0 1 0 1

DT_TAB .
DTOV_TAB
WP_TAB

OR_TAB

145

RANGE ORDER O

GET W (O.PN, O.JN,y 1TOTAL(Q, (PR,J%¥), QUANTITY] |}

1. ORDER 19
2.0 40
3. W 37
4. P8 37
S. Jf 37
6. QUANTITY 37

[-3-X-¥-X-¥-]

21, W
CODING TABLES

RNAME LRANAME QUANT WCONP
1 2 (] 0

WN_TAB 21 -
Q_TAB)

GT_TAB
FUNRC ALIST ALISTPTR LRNAME ANANME

0. ’

[+

518

0

LY X-X-]
osro

ONNN
atwna

F&_HT_TAB
'DI;IAB

OTAGV_TAB

WP_TAB'

OR_TAB

146

RANGE ORDER O

GET W ID.P#, D.J¥, ICOUNTIC. (PN, Jl), SN})

SYMROL TABLE
1. ORDER
2. 0
3. W
4. PO
S J¥
6. S#

HWORKSPACE TABLE

2l W
COCING TABLES

WN_TAB
Q.TAB

GT_TAB
FUNCT
o .
0
218
0

FN_KT_TAB
DT_TAB.
oruv_rAQ

. NP_TAB

NR_TAR

LRNAME
2

21

AL IST

nweroo

QUANT

ALISTPTR

osrac

WCOMP

LRNAME
>

anNNI

- X-X-¥-¥-X-]

ANAME

147

Sowne

RANGE CROER O

GET W (0.P#) t ICOUNTIO, Po, Jf) > 3

SYMBOL TARLE

1. ORDER : 39
2. 0 40
3o W . : 37
4o PH a7
5. J# N

[-3-J-¥-3-]

WORKSPACE TABLE

21. W
CONSTANT TABLE.

COCING TABLES

RA_TAB
RNAME LRNAME QUANT WCOM
1 2 o 0-

ST_TAB r
WN_TAB 21 .
Q_TAB ‘0

GT_TAB .
FUNCT ALIST ALISTPTR LRNAME ANANE
0 0) 2 4
FN_KT_TAB _ '
FUNCT ALISYT ALISTPTR RNAME LRNAME ANAME RELOP WCoMp TCOMP CONTYPE CONLEN CONPTIR
218 4 0 v 2 5 224 0 0 1 0 1

DT_TAB
DTOV_TAB
HP_TAB

" oR_TAB - -

l4g

RANGE TASK T~

HOLD W (T.JINAME} : (T.J# = 20)

SYMBOL TABLE
To TASK 39
2. T . 40
3. W) 37
4. JNAME 37
5. J# 7

WORKSPACE TABLE

21. W
CONSTANT TABLE

FB31l
le 20

RNAME LRNAME QUANT wcomp
1 2 (] 1

HN_TAB - a2l

HT_TAB
LRNAME ANAME
2 4

FN_MT_TAB
FUNCT ALIST ALISTPTR RNAME LRNAME ANANE
0 0 ()] 1 2 5

0T_T48
GTOV_TAB
‘WP_TAB

OR_TAB

W.JNAME = SCAN®

SYMBOL TABLE

1. JNANE - . 37 0
WORKSPACE TABLE

21w
_ CONSTANT TABLE

CHARS
1. CAM

CODING TABLES

ST_TAB .38

ASS_TAB ‘

np1 oP2 OPER 10P1 10P2
21 Y 129 2 2

-1 o 3264 . 5

UPDATE

WORKSPACE TABLE

2'.. “

ST_TAB 105

149

RELOP
324

WCOMP
1

TCGMP CONTYPE CONLEN CONPTR
1 1

1

0

RANGE TASK T
GET W (1) 3 (T.J8 = 6)

SYMUOL TABLE
1. TASK 19
2. ¥ 40

3. 37
4. J8 _ 31

CONSTANT TABLE

FB31
‘- 6

CODING TABLES

LRNAME QUANT
2 [

ST_TAB 1
WN_TAB 21
o_TaB - 0

GT_TAB
FUNCT ALIST

ALISTPTR
0 [9

FN_MT_TAB
FUNCT ALIST ALISTPTR RNAME
0 (1] 0 1

DT_TAB
DTOV_TAB
- WP_TAB

OR_TAB

RANGE TASK.T
DELETE T : (T.J# = 6)

SYMBOL TABLE

1. TASK .) 39
2. 7 %0
3. J8 37

WORKSPACE TABLE

21le M
CONSTANT TABLE

1. .6

_ CODING TABLES

RA_TAB
RNAME

LRNAME
3 2

QUANT
0

ST_TAB 2

LRN_TAB 2

FN_MT_TASB
FUNCT ALIST ALISTPTR
0 o o

RNAME
DT_TAB
DIOV_TAB .

Wa_TAB

LRNAMNE

WCOMP
1

ANAME
2 0

LRNAME ANANE
.2 4

WCOMP
-1

LRNAME ANAME
2 3

150

RELOP
324

RELOP
324

‘wcoRe

1

wComMe
i

TCOMP

TCOMP
1

CONTYPE
1

CONTYPE
1

CONLEN
-0

CCONLEN
Q

CONP TR
1

CCNPTR
1-

Wed8 = 7

SYNMBOL TABLE

1. 48

WORKSPACE TABLE

ST_TAB 38
ASS_TA8
orPl aP2
21 1
-1 1
PUT W TASK

WORKSPACE TABLE

2le M

: " CODING TABLES

ST_TAB 7
WN_TAB - -Zl:
RN_TAB 1
AL_TAB
OR_TAB

k14
QPER 1orP1
129 . 2
324 4
37

10P2

151

RANGE OHRDER O

HOLD W (1,QUANTITY) 3 (D.P2.» 4) & (0.JF = 5) € [D.DATEDUE = "l.4a74%)

SYMBCL TABLE

1. DRDER 3D 0
2. 0 40 (]
. ou 37 0
4. QUANTITY 37 0
5. PW 37 0
b6e J# 37 0
7. DATEDUE ’ a7]

WORKSPACE TABLE

CONSTANT TYABLE

FB31
le 4
2e 5
CHARS
le lobaTé

CODING TABLES

RA_TAB .])
RNAME LRNAME QUANT WCOMP -
1 -2 0 1
ST_TAB &
WN_TAB 21
HT_TAB -
LRNAME ANAME
2 A
FN_MT_TAB T .
FUNCT ALIST ALISTPTR RNAME LRNAME ANAME
(] (/] 0 1 2]
0 [} 0 . | 2 6
0 0 [} 1 2 7
DY_TAB
DTOV_TAB
WP_TAB

OR_TAB

W.QUANTITY = W.QUANTITY - 40 *

SYMBOL TABLE

1. QUANTITY o3t - 0
WORKSPACE TABLE

2le W . .) . ' T
1. 40
CODING TABLES

ST_TAB 38

ASS_TAB .. .
orl or2 OPER 10°1 10P2
21 1 129 2 2
21 1 129 2 2
-2 1 222 4 1
-1 -3 324 4 4

UPDATE

WURKSPACE TABLE

21. W
CODING TARLES

152

RELOP
324
324
324

HCOMP
1
1
1

TCOMP CONTYPE

1
1 1
1 -5

CONLEN CONPTR
0

0
6

1
2
1

RANGE MATERIAL M

HOLD W (M.COH) : (M.PR = &)

SYMBOL TABLE
1. MATERJAL 29
2. M 40
3. QOH 37
4. P8 37

-X-X-¥-]

nIRKSPACE TABLE

21. ¥
CONSTANT TABLE

—— s e s i

FB31
l. ‘

CODING TABLES

RNAME® LRNAME QUANT WCONP
1 2 0 1.

WN_TAB - 21

HT_TAB .
LRNAME ANAME
2 . 3

FN_MT_TAB "~ .
FUNCT ALIST ALISTPTR RNAME LRNAME ANAME RELOP WCOMP * TCOMP CONTYPE CONLEN CONPTR
’ [+ B 0 0 . 2 4 324 1 1 1 0 1 b

DY_TAB
DIOV_TAB
WP_TAB

OR_TAB

W.QOH = W.QOH ¢+ 40

SYMBOL TABLE
1. QOM : a7)
WORKSPACE TABLE

21, W .
CONSTANT TABLE

1. 40
CODING TABLES s L - ’ T . : L -

ST_TAB 38

| oP1 orP2 OPER 10P1 10P2
8 : 21 1 129
21 1 129
-2 1 122
=1 -3 324

SoNN
S NN

UPDATE

WORKSPACE TABLE-

zl. u

CODING TABLES

153

RANGE TASK T-

DELEVE T

SYMBOL TABLE
1. TASK
2. T

CODING TABLES

RA_TAB
RANAME LRNAME QUANT
1 2 0

ST_TAB T2

LRN_TAB 2

FEN_HT_TAB

DT_TAS

DTOV_TAB

HP_TAB

39
40

WCOMP
Q

154

T -

- RANGE ORDER O
RANGE. FACTORY F SOME
RANGE TASK T SOME

‘DELETE O ¢ (F.SNAME = 'STEELWORKS®) € (D.SH = F.S#) £ (0.df = T 00} £ (T.INAME = "CAG®)

S'HQDL TABLE

1. ORDER _ 39 0
2. 0 40 o
3. FACTORY . 29 0
4 F %0 2
5. TASK . 19 o
6 T «a 2.
7. SNAME 37 o
8. s a7 0
9. 38 37 0
10 JNAME . 7 0
CONSTANT TABLE .
CHARS
1. ‘STEELWORKS
2. CAG
COUING TABLES
RA_TAB
RNAME LRNAME QUANT WCOMP
1 2 o 1
3 4 2 . 1
s 6 F 1
ST_TAB 2
LRN_TAB ' 2
L]
FN_MT_TAB
FUNCT ALIST ALISTPTR RNAME LRNAME ANAME RELOP WCOMP TCOMP CONTYPE CONLEN
° 0 o 3 4 1 324 i 1 5 10
° 0 0 5 6 10 124 1 1 s 3
oT_TaB : ' : .
LRNAMEL ANAMEL LRNAME2 ANAML2 RELOP WCOMP TCOMP
2) “ 8 324 1
2 9 6 3 324 1 1
“DYTOV_TAB N
. _ .
HP_TAB

I55

CONPTR
1
2

PUT W TASK

SYMAGL TABLE

1. TASK
YARK SPACE TABLE

CODING TABLES

ST_TAB ' 7
WN_TAB 21
RN_TAB 1
AL;TAB
OR_TAB

37

156

~,

PUT W MATERIAL.U(P#S, PNANE, QUH)

1. MATERIAL
2. P#

‘34 PNAME

4. QNH

WURKSPACE TABLE

2le W

ST_TAB 7
WN_TAB 21
RN_TAB t
AL_TAB
: 2
3
4

OR_TAB

a7
a7
37
k1)

157

PUT W MATERIAL. (PN, PNAME, QDH) UP P#

SYMBOL TABLE

1o MATER]IAL 37 0
2. P8 37 0
3. PNAME 37 0

0

4. QDM . 37
WORKSPACE TABLE

ST_TAB 7
HWN_TAB 21
RN_TAB 1
AL_TAB
2
3
4
DR_TAB o
ORDER LRNAME ANANME
206 (1] 2

15¢g

e

DROP TASK

SYMRUL TABLE

— e o

1l TASK
rOCING TABLES

- 37

159

OROP MATERIAL.(WEIGHT, QOM}

SYMBOL TAEBLE

1. MATFRIAL
2. WEIGHT
3. QOH

CODING TABLES

ST_TAS 3
RN_TAB .1
AL_TAB

2

3

37
37
37

[-X-X-]

160

NEW SUPPLIER (S#y KEY, CHAR, 5) ISNAME, CHAR, 15)(ANDRESS, CHAR, 20)

SYMBOL TABLE’
1. SUPPLIER BT R
2. 54 . 37
3. SNAME . 37
4. ADURESS 37

oCoo

WORKSPACE TABLE

21. M

‘RA_TAB 1

ATT_TAB .
ANAME KTYPE ATYPE ALEN

2 T 5.
3 . o 5 15
4 o 5 20

PUT W SUPPLIER

SYMBOL TABLE |

1. SUPPLIER : EY 0
WORKSPACE TABLE ’

21. W
COCING VABLES

sT_TAB - 7
“WN_TAB . 21
RN_TAB 1
AL_TAB
én_vna

161

READ (1s J)

SYMBOL TASBLE

le 1
2. J

VAR[ABLE TABLE

37
37

162

LIST Wy 14 N

SYMBOL TABLE

le W 37
2. 1 : 37
3 J 3

1C_TAB

W N -

o000

163

