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ftbstract of Ph.P. thesis entitled

'Some two-cimensionsl Narkov rrocesses',

subiitted to tre University of Durham oy C.J. Qidler-lowe.

This thesis is primzarily concerneca with the mzthemeatical analysis of some

Markov crocesses which takes place on g two-climensionut lattice of points.

in the first two chapters, mathemi.tical models of two biolojicul phenomenz
are considerea, nameiy the competition for survivial between two species, and
the elTect of an zpidemic on & pcpuiction. These models arz ontainec by a
knosn rethoc whica permits czrtein random vcorietions in tne population sizes.
For tne model of the competition rrocess, it is found that one of the species
almost certzinly becomes extinct, and the likelihood of the extinction of a
given species is investigated. Also, tre expecteiion of the the time.at which
extinction occurs is bounded, irrespective cf the initiazl state, anc en esti-
mate is mace of the total number of births and decths thut occur before this
time. For the epidemic mocel, it is found that the epidemic alnost certeinly
dies out, and the expectation oi -the time at which tnhis eveni first occurs is
estimeted when the r1nitia. -opuletion is large. Vairious cuestions on the

eventual stete c¢f the porulaticn gre zlse consicdered.

In the third cnapter, a clzss of recurrent two-timensionzit random walks
in cCiscrete time Ls considered. A limiting law is found for the probability
distribution of first passzze times which is identicai to the limiting law in
the enalogous situation for Brownien motion. The method is also applied to
certein continuous time random waiks and to certeir randcm walks in three

di.ensions.

The lzst probleiz considered is the distributicn of points at which a simple
unsynmetric discrete time random walk mckes its first passeage throuygi the bounda-
ries of the half end guarter planes. The Limiting distribution is found to be a

fore ot either normal distrioution or stable Jistribution of order half.
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Introduction

This thesis is chiefly concerned with the mathematical
analysis of some Markov prccesses which have a two-dimen-
sional lattice of points as their state space. The general
background to this work may be found in the book 'Introduction
to Probability Theory' by W. Feller [7], and reference is
made to somc well known propertices of characteristic func-
tions, which may be found, for instance, in the boock
'Characteristic Functions' by E. Lukacs [16]. The back-
ground to the work on processes in continuous time may be
found in the paper 'The calculetion of the c¢rgodic projection
for Markov chains and processes .with a counteble infinity of

states' by Kendall and Reutoer [13].

In chapters 1 and 2, some probabilistic models of
certain biological phenomenn are considered, namely the
competition for survival between two species, and the effect
of an epidemic on a population. Models of these phenomena
in continuous time may be ohtained by specifying the birth
and death rates for particular states of the populations,
although a complete mathematical solution is then difficult.
This approach, using theoretical or lkonte Carlo methods, has

received much attention veccntly, in particular in papers by
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Bartlett [1], [2], Kendall [12], and Reuter [20]. Chapters
1 and 2 are a continuation of the work of the last mentioned
paper, 'Competition Processes' by Reuter, and contain

results on the limiting behaviour of the models.

In the case of the competition between two species,
considered in chapter 1, suppose m and n denote the
number of individuals of each species, and let. am, ymn be
the birth and death rates of the species of size m, and
Bn, 8dmn the birth and death rates of the species of size n.
In 'Competition Processes', Reuter has shown that it is almost
certain that onc of the species becomes extinct, and it is
now found that the expected time for this to happen is
bounded. The probability that 2 given species survives the
other is investigoted in the case when the totzl population
is large, and it is shown that thce behaviour of the process
then approximates to that of a simple random walk with
transition probabilities prroporticnzl to the death rates

ymn, dmn. In fact if

' L
ny - md ~ t{mb(y+8))° as m and n - 0,

then the probability that the specics of size n survives

the other tends to

t

18

.
| - 2

J e U /2 du.
-0

W
A

J



The expected number of births and deaths that occur before
one of the spccics becomes extinet is a2lso investigated, and
again this depends only on the decath ratcs when the initial
population is largce. If m and n oare the initizl popula-
tions, and E(n,n) is the expectsd number of births and

deaths that occur, then

m and n -» 0,

E(m,n) ~ (y+8) min (n/y,n/d), a

0

All the functions whose limiting behaviour is considered here
are functions of position which are characterised by being
the least positive solutions of certain inequalities. By
finding sufficiently good solutions of these inequeclities,
and by cocmparing the process with other simpler processes,
the limiting behaviour of thesc functions is found when the

initial populeation is large.

Similar approximations arce applied in chapter 2 to a
problem on the cpidemic process. For thec given model, it is
shown that, if m ond n @are the initial numbers of suscept-
ibles and infectives respectively, then the expectation of the
time when the infectives first die out completely is proport-
ional to log{m+n) when (m+n) is largc, and n > O.

Also, if pij(t) denotes the transition probebility that the

process, initially in state 1, 1is in state j at time t,



then, for the epidemic model, pij(t) tends to a unique
limit nj as t tends to infinity. Various questions are
examined on the ratc of convergence, with respect to j, of

the series ) % ..
J J

At the beginning of chapter 3, the known result is noted
that the simplc one-dimensional random walk and one-dimensional
Brownian motion possess the same limiting laws for their
di stributions of first passage times, i.e. the probability
that the first passage through the origin, starting at a

2
distance y, occurs before time ty tends to

1

T _.2/,

1 - (Z/ﬂ)%Jt e 177 du, as y = o,
(0]

which is the positive stable distribution of order 4. The
analogous problems are then investigated in the two-dimens-
ional case. Btarting from a result due te F.Spitzer, it is
shown that the probability that the two-dimensional Brownian
motion reaches a disc about the origin before time ra,
starting at a distance r, tends to 1 - Za-l as r tends
to infinity, where a > 2. The generating function for the
distribution of times of first passage through the origin is

then found for a general recurrent two-dimensional random walk.

Then, by using a Tauberian argument of a type due to Karamata,



it is found that the same limiting law holds for the random
walk under suitable conditions. An interesting corollery
to the last result is its application to the limiting be-
haviour of the distribution of first hits on an axis for a
restricted class of recurrent three dimensional random walks.
It follows that, when the random walk starts at a distance r
from the axis, the probability that the size of the displace-~
ment parallel to the axis is less than ra, when the first

1

hit occurs, tends to 1 - o as r tends to infinity,

where a 2 1.

The approximations used in chapters 1 and 2 involve
examining the behaviour of a particularly simple type of
random walk cn a two-dimensional lattice, and in chapter 4
more extensive consideration is given to a completely un-
symmetric simple random walk. McCrea and Whippie [17] in-
vestigated the case of a simple random walk on a rectangular
region, and extended their result to various infinite regions.
Later Henze [11] obtained the transition probabilities on the
whole plane for the simple random walk, and from these
obtained the transition prcbabilities on the half plane with
an absorbing boundary by using a reflection argument. By

employing a gencralisation of a2 transformation used by Henze,



and earlier by McCrea and Whipple, the characteristic function
of the distribution of first hits on the boundary of the half
plane is now found. Then, using methods given by Gnedenko
and Kolmogorov [9], limiting laws with error terms are found
for the distribution of first hits when the random walk starts
at a large distance y, say, from the boundary. Thus, if
the expected step of the random walk is not parallel to the
boundary, the distribution of first hits obeys a type of
central limit law, with mean and various proportional to y.
However, if the expected step is parallel to the boundary,

the probability that, when the first hit occurs, the displace-
ment in the direction of the expected step is less than tcy
(where c¢ is a positive constant) tends to

g - e 2]
L & b
t -
1—(2/7:‘7'! -eu/z du, as y - ® when t > O,
0

and O, . as y » o when ¢t < O.
By using a reflection argumsnt, these results are applied to
obtain similar results for the distribution of first hits on

the boundaries of the quarter piane.

The author is very grateful to Professor G.E.H. Reuter
for suggesting these preblems, for his helpful advice and

encouragement, and for many useful comments during the



preparation of this thesis. He is also grateful for dis-
cussions:with Pr. R.A. Pone¢y, particularly on the threc di-
mensional results at the end of chapter 3. The author also
wishes to thank thc Department of Scientific and Industrial
Research for a grant to pursuc this research, and iirs. M.E.J.

Thyer for typing the manuscript.



Chapter 1.

Competition between Two Speciecs

1.1. This chapter begins with the description of a contin-
uous time stochastic process which was used by Reuter in
'Competition Processes’ [20] as a model of the competition

bcerween two species.

Let xt be a time homogeneous Markovian random variable
with a continuous time parameter t, let Xt take values on
a countable set E, and let ipii(t)} be the corresponding

matrix of transition probabilitics, i.e.

pij(t) = PI‘{X = jlxt = i}:v i,j€eE, t ,t2>20

t -+t o =
o Q

where Pri{B|{C] is the conditional probability of event B,
given that event C occurs. The competition process is
determined by specifying the matrix of transition rates

Q = {qij;' defined by

where



4, 20, i43,
1 = - >
( ) qi qj.i >z 0,
pX o] = q <™
i i
jAr

Let the state space E consist of the elements (m,n),
where m,n =0, 1, 2, ..., but (0,0) is excluded. Then

for i = (m,n), with m,n > O, define the transition rates by

q; 5 = @m, J =(m+1,n),
955 fn, j= (m,n+1},
;5 = Yoo, j = {m=-1,n),
qij = dmn, j=(m,n-1).

where a, B, ¥, 8 are all positive constants, and otherwise
put qij = 0. Then qij =0 if i = (m,n) 1lies on one of
the axes m =0, n = OC. The states i for which q = o
are called absorbing. Let A denote the set of all such

states, which, for the process just defined, consists of the

positive parts of the m and n axes.

The following results weore proved by Reuter in [20].
There is a uniquc matrix !pij(t); of transition probabilities

corresponding to the givcd matrix Q = !qij;’ and a process




starting from any point (ia,n), with m,n > O, is almost
certain to reach some stat: in A, and will remain there.
Also the cxpected time to recach A is finite for every starting

point.

It is demonstrated later that the proof of the last result
may be extended to show that the expected time to reach A is
bounded for 21l starting points. Yost of this chapter is
however concerned with examining by =znalytical methods the
asymptotic behaviour as the starting point goes to infinity
(i’ for -the probability that the process is absorbed in =z
given onc of the m 2xis and n axis, and (ii) for thec overage
number of transitions that cccur before reaching A. {In both
cases it is found that the asymptotic behaviour is just as if
the rates am and fn were ignoraod.

In this model, if m and n denote the populations of

species 1 and species 2 say, then am and fin are the respec-

tive birth rates, and +ymn and dmn the respective death
rates. As soon as onc of m and 1n becomus zero, the

process is stopped at the point where onc of the species first

bccomes coxtinct.

The rcsults may be intcerpreted as follows. Whatever the

initial populations are, it is almost ccrtain that onc of the



species becomes coxtinct, and the expected time for this to
happen is boundcd. The asymptctic bchaviour as the size of
the initial populations goes to infinity is found (1) for the
probability that a given species survives the other, and (ii)
for the expected number of births and deaths that occur before

onc population becomes cxtinct.

1.2. In this scction the behaviour of the probability

that the process is absorbed in a given onc of the m axis and
n axis is exominced. Firstly it is shown that the absorption
probability cf the continuous time process is identieal with
that of a ccrtain discrete time process. Then the following
lemmas arc uscd to provide a crude estimate in Lemma 5 of the
behaviour of the absorption probability, and, from this, the

main result is proved.

Buppose a matrix with'properties (1) defines a
unique continuous time process ipij(t)} on a countable sct
E which contains a subset C, cach member of which is an
absorbing statc, i.c. a; = O when i€ C. K2ndall and

Reuter in [13], Theorcm 8 (iii), showed that the absorption

probabilities {xi}, where
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(2) xi = Pr[Process reaches C starting from 1}, i €E,

.

are the least non negative solution {yif of

L
JEE

qu Yj =0, i€E,

(3)
yi=1, iEC.

Now consider a second process on E in discrete time, definad

by the one step transition probabilities

o = - >

Py 5 (1 Sij)qij / a; a >0,

D = =0

pij 61.] ’ qi ’
where 813 is the Kronecker delta., Clearly C is also a
set of absorbing points for this process. It is known (seg

Feller [7], Chapter XV, section 8) that the absorption prob-
abilities, as in the definition (2), for the discrete time

process are the least non negative solution {yi} of

T p..y, = 1ieE
jEE 1JyJ yiv H

yi =1, iec.

Since conditions {3) and (4) are identical, the absorption
probabilities for the continuous time process may be calculated

by observing the corresponding discrete time process.
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Lemma 1 is a simple generalisation of condition (4), and
provides a useful characterisation of the absorption probabil-
ities. Let p be a discrete time process with one step
transition probabilities ipij! on a countablc set E, and
let C be a subset of absorbing states in E. Let {xi}

be the set of absorption probabilities

xi = Pr{p rcaches C starting from i}, i € E.

Lemma 1. The absorption probabilities {xi} arce the least

non negative solution of

i €E,

~<
1

>3 Py ¥y

3 )
J J

yi > 1. iC,

and x:_L satisfies these conditions with equality.
Proof: Let

x: = Pr[p reaches C within at most s steps starting at i},

iekE, s >0,

(@

(5)and x, =1 or O, according as i € C or not.

0w e

Clearly x, satisfies

=

+
(6) x.Sl=Zp..xS, i€k, s20,
i A B T
J
s+1 s .
X 2 X, 16335201
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By definition, xg < yi. Suppose that, for some s > O,
s
x, < 3, for 211 i € E. Then
s+1 s
X = x~ <« < i c E
i § Pij X5 ¢ g Pij Y35 7Y; ieks,

It follows by induction that

(7) x: < Yo i€E, s2>0.

To complete the proof of the lemma, let s =+ ¢ in (6) and (7).
The next lemma proves some simple monotonic properties,
which are required later, for a certain type of proceés Pe
Suppose that p has the state space of all points (m,n),
where m, n=0, 1, 2, ..., but (0,0) is excluded, and
suppose¢ that each point of the positive parts 6f the m - and
n axes is absorbing. Lett C be the positive part of the n
axis, and let xs(m,n), x(m,n) be the probabilities corres-
ponding to x:, xi, defined in Lemma 1, with i = (m,n).
Suppose the one step transition probabilities of p are given,

for i = (m,n) with m, n > 0, by

Pij = @ j = (m+1,n),
Py = b, J = (m,n+1),
p.. = c, J = (m-1,n),

ij
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p,. = d, J = (msn"l))

where a, b, ¢, d 2arc non negative constants and a+b+c+d = 1.

Lemma 2. For m, n>0 and s > 0O,

(8) xs(m-l,n) > Ks(m,n) > xs(m,nfl),

(9) x (m-1,n) 2 x (m,n) > x (m,n-1).

Proof: Clearly from (5), x?(m—l,n) > xo(m,n) > xp(m,n-l)
when m, n > O. Assuming (3) holds for all m, n > Q0 for

some fixed s 2 O, and using (6), it follows that for

axs(m+1,n) + bxs(m,n+1) + cx“(m-1,n) + dxs(m,n—l)

o
—
=)
=}
~—
1]

IA

+
= x° 1(m—l,n),

whilst for m = 1, n > O, 2 0,

(4]

s s
x (m,n) < x (m~1,n) =1

{/\

s+1 .
(m~1,n) for all m, n > 0, and

&§+1
Hence x  (m,n) < x
.. s+1 s+1, .
similarly x " (m,n) > x {m,n-1). Thus the first part of

the lemma follows by induction, and the second follows on

letting s - ¢,

It is now possible to show how the bechaviour of a

axs(m,n) + bxs(m-l,n+1) + cxs(m~2,n) + dxs(m-l,n-l)
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process with non constant transiticn probabilities may be
compared with that of a process which has constant transition .
probabilitics . Suppose P is a second discretce time
process on thc same state space as p, with the axes
absorbing again, and let X(m,n) bke the probability that P
is absorbed in the positive part of the n axis starting from
(m,n). Suppose that, corresponding to the transition
probabilities a, b, ¢, d to neighbouring states for the
process p, P has transition probabilities A, B, C, D

which arc not necessarily constant functions of (m,n).

Lemma 3. Suppese the transition probabilitics satisfy
(10) A <8 B2b, C>ec, Ds<d, A+B+C+D =1,

when m, n > O. Then X(m,n) > %(m,n) for all m, n > O.

Proof: Using the convention in Lemma 1, (§), it follows that

X(m,n) xo(m,n). Suppose that for some s > O,

v

X(m,n) xs(m,n). Then using the iterative cconstruction (6),

v

it follows that for m, n > O,

+1
x> {(m,n)

ax“(m+1,n) + bx“(m,n+1) + ex"(m-1,n) + dx (m,n-1)

It s
Axs(m+1,n) + Bx (m,n+1) + st(m-l,n) + Dx (m,n-1)

i

+(a-A)xs(m+1,n)+-(b-B)xS(m,n+1)+-(c-C)xs(m-l,n)+-(d-D)xS(m,n-l).



But from (8) in Lemma 2, and(10), (a—A)xS(m+1,n) <

(a-A)xs(m,n), and similarly (b-B)xs(m,n+1) < (b-B)xS(m,n),

| etc. Hence

x’+1(m,n)

1A

AX(m+1,n) + BX(m,n+1) + CX(m~1,n) + DX(m,n-1)

+

{(a-A) + (b-B) + (c=C) + (d-D)}x°(m,n)

X(m,n),

using the last part of Lemma 1 applied to P. Clearly

+
x° 1(m,n) < X(m,n) on the positive parts of the m and n

axes. Hence, by induction, xs(m,n) < X(m,n) for all s > O,

and then x(m,n) < X(m,n) on letting s -» o

The foliowing lemma gives the kehaviour of x(m,n) in

a particularly simple case which is used in Lemma 5.

Lemma 4. Suppose b =0 and c > a > 0. Then there is &

constant k such thet, given & > C,

x(m,n}) > 1 - ¢ when n > md/{c-a) + kjg

where k = {d(c+a—4ac)/(c-a)3f% .

Proof : It is noted first that x{m,n) is O and 1 on the

positive parts of the m and n axes respectively. For 0

real and [6} < 1, let

, ® n
the) = néo x(m,n) 6, when m > Q,
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and let V.(6) = 2. x(0.n) 8" = =2—. Then from th
o = Z , = +—5" en from the

differcncec equation of the type {4) satisfied by x{m,n), it

follows that Vm(e) satisfies

(11) av .,(8) - (1-dé)v (8) + cv _.(6) = O, m >0,

with vm(e) bounded by (1-|e])"1“ The gencral solution of

(11) is

bl

m
Hul + Ku2'

wvhere H and K are arbitrary constants, end u1 and u,

arc the roots of

2
au” - {(1~dB}u + ¢ = O.

Since = ¢/a > 1, one of the roots has modulus > 1,

“1Y2
and the corresponding term in the gencral solution is unboun-

ded. Hence the bounded sclution of (11), satisfying the

boundary condition for vo(e), is

(12) v_(8) = { 0 } {p-ae) - [(1-a6)2 - 4{1(;]""}"‘

1-8 2a

Suppose m is tenporarily fixed, and, noting the inequality
(9) in Lema 2 and also that x(m,0) = O, consider a random

variable Zm with

Pr[Zm= n} = x(m,n+1) - x(=m,n), n > 0.
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Then for 'Bl € 1, the generating function of the distribu-~
tion of 2 is
)

n

o
n§0 {x(m,n+1) ~ x(m,n)} o"

1-0 .
{_éi_} Vm( e)

{(l—de) - [(l-de)2 - 430]%]m
2a

o
n§0 Prizm— n} ©

1

from( 12),

= Gm(e) say.
The form of Gm(G) may be explained as follows. Let the
random variable 2 be the number of steps (0,-1) taken
before the displaccement in the m direction rcaches -1.
Then Zm is in fact the sum of m independent random
variables, each with the szm® distribution as Z. Hence 2
has the generating function Gl(e) = ;E Priz = n{6  and z_

has the generating function Gn(G) = {Gl(e)fm.
I

Since G (1) =1, it follows that Z_  is finite with
probability 1. By successively differentiating Gm(e) at
@ =1, it is easily found that the distribution of Zz_ has
first moment u = md/(c-2),

: 2 -3 2
snd variance ¢ = md{c+o~-4dac)(c-a) * = k'm say, where k

is independent of m. Also, by the Tchebychev inequality,
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3]

<

Pr{Z > u+h} < pr{|zn~ ul > nl ¢ =, h > O.
' h

m
To complete the proof, let h = -g = k{(w/e)e Then if

€
n > md/(c-a) + ky((mfe) = u+h, it follows that

1 - x(m,n) = Pr[Zm > n} < Priz_ > p+h§ < €.

The process P defined ia the discussion preceding Lemma 3

is now identified with the discrete time process correspo-

nding to the competition process in the woy described at the
beginning of this section. A crude estimete is obtained for
the probability X(m,n) that P reaches the n aoxis, and it
is interesting to comparc this estimate with results described

by Neyman, Park and Scott in [18], scction 3.

Lemma S. Supposc the process P is defined by

A(m,n) = am/(ao+fo+ymn+démn), B(m,n) = Bn/(am+Bn+ymn+dmn),

¢(m,n) = ymn/( amtBn+ymn+dmn), D(m,n) = dmn/( am+Bn+ymn+dmn),

for m,n > 0. Then for every positive € and 1, there is

a constant k such that

m( Sy~ L) + x,

X(m,n) > 1 - &, when n >
C-1
and X(m,n) % &, when n £ m{S5¢ "-7n) - k.
Proof: It is only nececssary to prove the lower bound, since

the upper bound follows on intcrchanging the roles of m and
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n, using the result of Reuter in [20_  that the process

is certain to reach the axes, and using the result obtained in
the discussion at the beginning of this section. The proof is
divided into iwo parts. In the first part, by comparing P
with a second process p it is shown that, for large m and n,
P behaves almost as if o and [ were ignored, and P reaches
a certain line m =M, n > N with prcbability at least 1 - &/2,

when the starting point (m satisfies

o'

~1 )
(13) my 2 M, =n,2 mo(ﬁy +7) + k.

In the sccond part, a similar approximation shows that

X(m,n) > 1~¢/2 when O<mg<M, n?2 m(6y-1+ﬁv + K. Thus if
N is large enough, P rcaches the n axis with probability at
least 1 - &/2, starting from any point of the line

m=M, n2> N. Combining thig with the first part, the Strong

Markov Thcorem shows that x(nb,no) > 1 - & when {(13) holds.

(i) Consider the region m > M, m > N, where K and N
arc positive integers to be chosen later, An estimate is now
found for the probability that P reaches the line

m=M, n>N. A second process p is constructed cn this
region and it is supposed temporarily that the boundary points

absorb both processes. For m > M, n> N, let
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(£1/(v+8) 2 (/2 + £+ 4 8) = alm,n),

a =
b =¢< B(m,n),
c=Y/(%+§+Y+5)SY/(%+£+Y+6) = ¢(m,n},
d=1-a->b-c,

where d > D{m,n) if

1 - (")/(Y+5)- Y/(— + E + &)

v

&/(% + g + y+8), m > M,n > N.

The last condition holds if

(14) By ,

| M

Z|g

(a+p+05)

Also, since a » 0, ¢ = y/(y+8), d = &/(y+8) as M, N - o,

there exist fixed integers ‘MO and NO such that

(13) d/(c-a) < 5«[1 + /2, M2>M,, N2N.
Suppose

(18) M=M and N> max{No, Ma(a+ B+ 8)/(py)}.

Condition (14) now holds, so that P and p now satisfy the
conditions (10} of Lemma 3 applied to the region m > M, n > N,
Also Lemma 4 may be applied to p. Hence there is a constant

k  such that for all starting points (m

o o,no) satisfying

(17) m, > M, n, 2N+ (mom M)a/(z- a) + kofz(mo- M)/a}%,
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Pr{P reaches the line m = M, n > N}

> Pr{P reaches thc line m =M, n > N
before the line m > M, n = N}
> Pr{p reaches the line m = M, n > N

before thc line m > M, n = NZ

i~ ¢e/2

v

(ii) A rough cstimate is now found for the probability that
P reaches the n axis. Consider the region m > O, n > Nl’
where N1 is an integer to be chosen later, and suppose thot

the boundary points of the region are temporarily made absorbinge.
Another process Py (similar to p in part (i)),is constructed
on the same region with the boundary points still absorbing.

For m>0Q, n > Nl’ let

a,= (‘%‘)/(‘Y'*’ &) > (%)‘/'(_%4'%"" Y+8) = Al(wm,n),

1
bl = 0 < B(m,n),
c, = ¥la+p+y+b) < Y/(%+-E;+ y+8) = ¢(m,n),
d1 =1 - al - b1 - cl,

where d1 > D(m,n) if

1~ (_%-;)/(Y+ §) - v/(a+B+x+8) 2 E’/(%+g+ y+8), m>0,m > N«
1
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This holds if

1 - (F=V/(x+8) = o/(arpeysd) 2 8/(y+8),
1

and, since this holds for all large enough Nl' choose N1 to

be the least such integer. P and p1 now satisfy conditions

(10) of Lemmz 3, applied to the region m > O, n 2 Nl' and
Lemma 4 may be applied to pl. Hence there is a2 constant k1

such that for all starting points (m,n) sotisfying

: ' 1
(18) m>0,n>N+md/(c,~-a)+k {amel?,
1 1 1 1 1
X(m,n) = Pr{P reaches the n axis}
> Pr{P reaches the line m = 0, n > Nl

before the line m > 0, n = Nl}

v

Pr{p1 reaches the line m =0, n > N

before the line m > O, n = le

1 - g/2.

v

Now, using (16) and (18), choose N to be the least integer
such that N > max{No, Ma( a+B+6)/{ By), N+ Mdr/(cl- a1)+-kiJ(2m/e)}.
M is chosen in (16). Then, using (15}, (16), (17) and (18),
choose k > O such thet

(19) m(&T_1+n) + k>N + (mii)d/(c-a) + k0[2(m-M)/e}%, m> M,

- xL
(20) m(dy 1, n) + k> N1+ mdr/(cl- al) + kl{zm/sgz, 0<m< M.
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It follows immodiatcly from (2G), and the result of part (ii)
that

X(m,n}) > 1 - ¢, 0O<m<M n?> m(BY—1+n) + k.

Also, noting the above definition of N, and using (19) and the
results of {i) and (ii), it follows on applying the Strong Markov

Theorem ( see Chung [3], I, section 13) that when

my 2 M, ng 2 mo(GY—1+-ﬂ) + k,

- prip re o arting £
X(mo,no) r{P reaches the n axis sterting from (mo,no)}
> Pr{P reaches the line m = M, n > N
and then reaches the n axis}

= I Pr{P first reaches the line m =M, n > N at
>

(M.r), and then reaches the n axis} -

= %  Pr{P first reaches the line m =M, n > N
r >N
at (M,r)}

X Pr{P reaches the n axis starting from (M,r)}

> (1-g/2) 5 Pr{P 1 firat reaches the line m = M,
r N
n>N at (M,r)]
2
> (1-¢/2)
Z 1 - Ee

This completes the proof of Lemma 5. By employing a slightly
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more elaborate proof which allows ¥ and N to depend on the
value of the starting point (m,n), it is possible to replace

the term mm + k in the lemma by another proportional to JFE

The asymptotic behaviour of X(m,n) is obtained by
comparing X(m,n) with x(m,n), where, for the rcmainder of
this section, x(m,n) is the probability that = process p, as
described just before Lemma 2, with a = b = 0, ¢ = y/(Y+6),

d = &/(y+5), reaches the n axis. The following lemmas are
needed for the moin proof. Lemma 6 1is a generclisation of
Lemma 1.

Lemma 6. Let {pij} be the transition matrix of =z Rkarkov pro-

Cess on a countable statc space 8, ond suppose the non empty set
R of all abgsorbing pq;nts is reached almost certainly from any
initial state. Let K be a subset of S, disjoint from R,
Define the boundary of K to be the set L of poiats j not
in K for which there exists i in X such that pij > 0.

Let wi be the probebility that the process is absorbed in a
subsct C of R storting from i in 3, and suppose there

exist {vi} defined on KU L such that
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vy

v
€
e
Mm
t

Then vi > wi when i € K.

Proof i Definé wiS =w, when s >0 aoand 1 &S -~ K, wg =0

when i €K, and

s+

w1=2p s
J

iJ.WJ.. iek, s>0.

i

Then, noting the definition of K UL, and using simple induc-
tion arguments based on the above equation and similar to those

used in Lemma 1, it follows thet

wigvi,, i€k, s >0,
+
v swtlew,, ies, s>o0.
i i i
Hence there exists G. = lim w,s such that w, < w, when
i s%¢ i i i

ie8, and Wi Sv, when i &RKUL. Ailso

w = w i eK
v, i-ipij_ wJ, s
o J
w, 2L p, . W, 1 €8 - k.
i . i g
J
Hence 1 +;Ji-w120 since wi <1, and
+Wo—w, > v - ies
14w, wi_;pij(l wJ. wj),

J

Since absorption in R is certain, and 1 + w, - wi = 1 when



i &R, it follows from Lemma 1 that 1 -+ ;_ - w, 21 when

ies, i.e. wi > wj. Since wi < wi also, the required

result now follows, i.e.

W, =W, <V, when i € K.
i i i

Lemma 7. Consider the process p defined before Lemma 6.

For each positive & and 7 there is a constant k such that

m( &y 1'+Tr) + k,

x(m,n) > 1 - ¢, when n >
x(m,n) < €, when nSnﬂMan)—k.
ny - md) L
= . z @ . >
Also x{m,n) = & { m5(Y+5)j +0(m?) as m e, where
1 t 2
3(t) = o [ et /2 du, - < t < o
N J—m
Proof: Consider the random variazbles Z and Zm, s

defined in the proof of Lemma 4, but applied to p in the
present cocse. Clearly x(m,n) = Prfzm < n}, and it is easily
found that Z = 2 hag the gencerating function

0o
n n C
nko ¢ 9 =T,

1l
CILM 8 =~
)
o1
N
"
2.
[4>]
i}

G (6
1( )
Then, since 'Zm is the sum of m independent random variables

each with the same distribution as Zl'

5 00
Gm( ) = n§0
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Proceeding as in Lemma 4, it now follows that Zm is finite
with probability 1 since Gm(l) =1, and Z_ has mean md/c
and variance md/cz. The first part of the lemma follows on
applying the Tchebychev inequality, and noting thzot ¢ = Y/(y+5),
d = 8/(y+8). Also Zm is the sum of m independent random
variables each with the same distribution as Zl’ and the
distribution of Zl may easily be shown to have a finitc third
moment, so that it follows from a result on convergence to the

rormal law given by Gnedenko ond Kolmogorov in [9], $40, Theorem

1, that
n - mde /%
x(m,n) = Pr{zZ < n} = & —=r* O(m 2), as m - oo.
" \ (mde™ ) .

This completes the procf of the second port of the lemm on

noting the definitions of c¢ oand 4.

The following lemma is a trivial consequence of Lemmas 5 and
7, and is needed in the proof of the moin result of this section

which follows ite.

Lemma 8. Given positive € and mn, there is a constant

k > O such that

-1
X(m,n) < % and x(m,n) < %, wvhen n < m{8y .~q) - k,
€ € -1
X(m,n) > 1 ~ 5 ond x(m,n) > 1 - 5 when n > m(8y ") + k.
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ny - md

Theorem 1. X(m,n) - @{m} - O uniformly as m+n - 0o,

(T -u%/z
where ¥(t) = (Zﬂ)_zj e du, - < t g oo,
~00
Proof : For ony non negotive ﬁungtion v(m,n), 1let

Av(m,n)

(Gm+ﬁn+ymn+6¢n)v(m,n) - amv(m+1,n) - @nv(m,n+1)

-~ yan v(m-1,n) - dmn v(m,n~1)

am{v(m,n) - v(m+1,n)] + Bniv(m,n) - v(m,n+1)}

+ymn{v(m,n) - v(m-1,n}! + Smniv(m,n) - v(m,n - 1)}.

Then Av(m,n) > O corresponds to the condition vy >z pijvj
J

applied to the discrete time process associated with the compe-
tition process, as described at the beginning of this section.
Now consider Ax(m,n). By using the generzting function Gm(e)
in the proof of Lemma 7, and by interchanging the roles of m

and n, it follows that

x(m,n) = ngl /mtr-1 at =1 - m;I ‘m+r-1 cFa” m,n > O
o r=0 \ m~1 - r=0 Q n-1 ? ! *

Also x(m,n) =0 and 1 on the positive parts of the m and
n axes respectively.

Hence for m,n > O,

Ax(m,n) = am{x(m,n) - x(m+1,n)} + Bnf{x(m,n) - x(m,n+1)]}

+ y+8)mn{x(m,n) - cx(m-1,n) - éx{m,n~1)}

/
m+n-1 m.n ‘mtn-1\ m.n
—ctm<n_1>cd—pn(m_1>cd ,

\
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(a~p)(mtn~1)'c™a"

(21) i.e. A x{(m,n} = I E
Case (i): Suppose a = B. Then A x(m,n) =0 when m,n > O.

Since x(h,n) satisfies the appropiate boundary conditions on
the axes, it follows from Lemma 1 that x(m,n)>X(m,n). The
same argument applics to 1 - x{m,n) and 1 - ¥(m,n) on inter-
changing thke roles of m and n, and noting that absorption

in the axes is certain for both processes. Hence

1 - x({m,n} > 1 ~ X(m,n). Thus in the case a = [, the result

is actually X(m,n) = x(m,n).

Case (ii): Suppose « < 8. Then A x(m,n) < O and
Af1-x(m,n)} > O. The argument previously applied to 1 - x(m,n)
and 1 - X(m,n) shows that

(22) X(m,n) > x(m,n), m,n > O.
The next part of thc proof shows that for evvery positive ¢

there is a function v{m,n) and a comstant M such that

X(m,n) < v(m,n) ¢ x(m,n) + ¢, m+ n > M.
To construct v(m,n), 1let
(23) v(im,n) = x(m,n) + p(m,n] + €2, m,n > O,
where

{24) p(m,n) = <é:f> P b f(m+n).
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e
f(m+tn) is choscn later, and the coofficient <mnn> cmdn acts

as a normalizing factor. Then
Av(m,n) > O if and only if 4p{m,n) > - Ax(m,n), m,n > O.
On substituting thc cxpression (24) for p{m,n), with m,n > O,

Ap(m,n) = (am+ﬁn+ymn+5mn)<m:n> cmdnf(m+n)

s,

+n+ . +n+ +
-qm<% n 1\ cm+1dnf(m+n+1) _ ﬁn(% n 1>,cmdn 1f(m+n+1)

m+1- n+i-
/l+_‘ = ’ +'—' - .
—ymn\élfll " 1dnf(m+n--1) - 5m mnfll cta” lf(m+n‘1)

) m.n
(m+n)ic d

= TE:TTTTE:TT: {(Y*ﬁ)[f(m+n)'- f(m+n—lj]+ <§ + g) £f(rm+n)

- <TE%§T; + ;TE%TT (m+n-1) f(m+n+1)}

(m+n)1cmdn

(25) Let w(m,n) = ICEHES
(26) and £(m+n) = A m+n)¥,

where u is a constant with O < p < 4, and X\ is chosen later.

Then for wm+n > G,

Xp(m+n)H—1 > f(m+n+1) = £(m+n) > Xp(m+n+1)“-1.

Hence
Ap(m,n) > ©™(m,n) {(Y+§)7‘+L(.m+n)“-1 + <ﬁ- + E )M,mn)“
(27) - (ac+ﬁd)< % + % )[h(m+n)9 + Xp(m+n)P-1]}

= 1(m,n) l(m+n)H-I{H(Y+5) ~ P(G'G’f[id)'(% * %) - (ﬁ-a)(m+n)<§' 3\}

n
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Now choose
=1
" . d (y+8) -1 2c
28 . = — .&_‘L_ —
(28) n mln{zc,< 3 )c <1+d }
| -1 | -1
(29) Suppose |n-mdc l <nm+ k, i.e. In—m&y I <mm + k,

where k 1is chosen according to Lemnma 8. Then, for all

large encugh m and n,

- . mn

np<1+~§> + kc( %4—&)
n 1.1
n'c{1+m(d/czl“q)—k} * kc<;+;>

< T]p<1+—259> + O(m 1y + O(n"l)

‘ﬁ-'g‘(m+n] < c(nm+k )( m+n)
1 n

IA

By applying the definttion (28) of 1, and using (29) again,

it follows that
N 4+ 5 - - | -
(ﬁ"%’(mm) < Eg‘%"d—) + 0(m ™) + On7Y), [n-mac™?| < nm + k.
Applying this last incquality to the inequality (27) for
Ap(m,n), it follows that there exists a constant MO such that
l“l'.-l IN /
Ap(m,n) > t(m,n)Mm,n)" "u(y+5)/3

(30)

when m + n > Mo, In-m&YrI, < nm + k.
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Now choose X such that

(31) M u(y+8)/3 > B - a,

(32) A nin ( >c d (n+n)“‘ > 1.
m+n=MO

Then, using the expression (21) for Ax(m,n), the inequalities
(30), (31), and the definition (25) of t(m,n}, it follows that

(33) Ap(m,n) > - Ax(m,n), m+n > MO, In— méy—ll < nm + k.

Also, by the inequality (32) and equations (23), (24), (26),
(34) v(m,n) 2 p(m,n) > 1 > X(m,n), m+n="HM..

Since k is chosen according to Lemma 8, it follows from (23)

and Lemma 8 that

(35) X(m,n) < % < vim,n), n < m(éy—l—rﬂ - k,
(36) X(m,n) 1% x(m:n) + 'g's V(m,n)r

n > m(&y tem) + ke
Now consider the region m + n > M_, ln- m&y_ll < nm + k.

By the inequality (33) and equation (23), Av(m,n) > O on this
region. By the inequalities (34), (35) and (36),
v(m,n) > X(m,n} on the boundary of the region, where 'boundary'

is used in the sense of Lemma 5. Herice by Lomma 6,

(37) v(m,n) > X(m,n), m+n >N, |n-md "l < nm o+ K.
5 Y gt




From the standard proof of the de Moivre Laplace Limit Theorem,

(e.g. see Feller [7], Chapter VII, Theorem 1),

<m+n> o 0<?m+-n)"%> . as m+ n - .

m

W ’

/ - _L\
Hence from (24) and (26), p(m,n) = Q({m+n)- 2/ as m+n - 00,
\

where u - % < O. Thus there exisis M > M, such that

h

0 < p(m,n) < E, m+n > M.

Therefore, combining (22), (23), (37), (35) and (36), it now

follows that

v
o
in

x(m,n) < X(m,n) < vim,n) ¢ x(m,n) + €, m+ n

But € > O is arbitrary. Hence X(m,n) - x(m,n) > O

uniformly as m + n - 0.

It is shown in case (i) that X(m,n) = x(m,n) when a = f,
and in case (ii) that X(m,n) - x(m,n) - 0 umiformly‘as
m+n->w when o< B. When a > f the proof of case (ii)
may be applied with the rolvs of m and n intercnanged;
noting that both proccsses P and p are almos£ certain to bé
absorbed in the axes. Hence X(m,n} - x{(m,n) = O uniformly
as m+ n ~> 0o in all cases. Theorem 1 now follows from Lemma

7 if the additional condition n < 2mSy ! holds. But if

n > 2m67-1, it follows from Lemma 8 that X(m,n} » 1 uniformly
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n md
as m + n - (©, lJ;grifgﬁ} + 1 uniformly as m + n - ®,

i

alsoc. Henee Theorem 1 follows.

1.3. It was proved by Reuter in [20] that the expected time
taken by the centinuocus time competition process to reach the
absorbing states is finite for every starting point. In this

section, the proof of this result is extended a2s follows.

Theorem 2. Fer the competition process, the expected time to
reach the set A of absorbing states from any non absorbing

state is boundcd.

Proof: Let ﬁ(m,n) now denote the expectcd time to reach
A from (m,n)
The criterion (C) given by Reuter in [20] shows that if there
exist finite wu(m,n) > 0 such that

tu(m,n) > 1, m,n > O,
where

(38) tu(m,n) = (am+ Bn+ ymn+ &mr)u(m,n) - eamu(m+ 1,n)

~ Bnu(m,n+ 1) - ymnu(m- 1,n} - Smnu{m,n- 1),
then the procesc almost certainly reaches A, and
7(m,n) € u{m,n) < ©. A bounded set of u(m,n}, which are a

modification of thosc used by Reuter in [20], is now constructcd.
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Let

(29) u(m,n) = h{z-.m-ll-—l-.r-z-%f} + 11_]%‘2- pm- pn}, m,n > O,

where h, k and p, with p < 1, =zre constants to be determi-
ned later. The term 2——1—- —1-1 is suggested by the domin-
m+n n+1 i =
ance of the coefficients +ymn, Smn in (38) when m and n
) m n . .
are large; the torm {2— p-p } provides the correction
needed near the axes m =0 and n = C. €learly u(m,n) > 0

when m,n > O. On substituting the expression (39) for wu(m,n)

intc that for Au(m,n) in (38),

Au(m,n) = h

P ey

- am _ n L am Sm -
(m+1)(m+2) (n+1)(n+2) m+1 n+1}

+ 2kmpm_1(yn- ap) + 21<npn_1( &m=- Bp).

R 5
Let @ = mln{z, i 2—5} Then

2q’

(40) tu(m,n) > h{ e By, m
m n m+l n+l

S

+ kfypm+ €5pnf , m,n > 0.

Now choose B and h such that

(41) -%E = i- min(vy,5) and % min(vy,8) = 1.

Then for m and n > B, it follows from (40) and (41) that

{ - ﬂ'.:?. + -1- min('{_,é)}

Au(m,n) = 5

\'4

P = -

min(+y,&)

= 1.
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If m and n >0, but m or n < B, then, using (40),

Au(m,n} > - h(a+B) + k min(y,&)pM

v

=1,

if k 1is suitably chosen. The two cases (i) m and n > B,
and (ii) m and n>0 but m or n < B, cover the region
m,n > C. Hence Au(m,n) > 1 when m,n > O, and it follows

from the criterion that <(m,n) < sup u(m,n} < .
m,n > 0

1.4. It is shown by Chung ([3], Part II, § 19) that the
spatial distribution of the successive steps of a continuous
time process is the same as that for the corresponding 'jump
process'. Phus, in the case of the competition process, the
expected number of steps taken before absorption in the axes is
the same as that for the associated discrete time process P,
described at the beginning of scction 1.2. and in Lemma 5.

This last process is now comparaed with the process p described
just before Lemma €, using mcthods similar to those of section
1.2. The asymptotic bechaviour of the expected number of stcps
taken beforc absorption is shown to bec the same for P as for
p, and may bc calculated directly for the latter. The follow-

ing lemmas are needed, the first being well known.
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Lemma 9. Let {pij} be the transition matrix of a discrete
time Markov process on a countable set S which contains a sub-
set A of absorbing states. Suppose the process is almost
certain to rcach A, and let ei to be the exmected time for
this to happen if i is the initial state. Taen {ei§ is
the least non negative solution of

y121+)%pi:‘yj, ies - A.

J

Proof : Without loss of gencrality, let the states of A be

considered as one state, and lct the c¢xpected number of steps

taken before time r be

of = oIy slefym piy ) ¢ rl- gy
-r- :é; Pias
where p;} is the r step transition probability, and
pfa‘ = Oy

If e, < o, then
1

and as r - 6o,

?l [ s=-1

rit-pd = r B, Infy - ey
@ 3] s~1

- £r+1 s{plA piA ;
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r
Hence e, > e, os T > Clearly ei = 0, and, when
ie8 -A4,
5 r r-1 g4
1+ . .e. = 1 + R D,
. le J i ; le{r séo pJA}
J J
r
s
={(r+1) -
(x+1) - 25 pyy
r-1
= g, .
i
i.e. r+
(42) i.e S oo p o
i ij 3
Suppose there exist yi 2 0 such that
> 1 + i } - A
yi > 1 ; pijyj s ies A

J

Clearly Yy > eg = 0. Suppose that for some r>0, yi > e; when

ies. Then using the iterative construction (42),

- r r+i
> + % . > + 3 = € i eS8 - A,
y; 21 % pijyb 21 s pijej e, ies i
J
Since ez = 0 £ Ya for r > 0, 1t follows by induction that

r
Yy > ei for all r >0 and 1i € S. Letting r -» e in the

inequality y, 2 ez and in (42), it follows that

e, ies - A

y. 2e.,, ie8, &and e, = 1+ ; piJ ;

i i
J
Now let E(m,n) be the expected number of steps taken by
the process F before absorption in the axes, and let e(m,n)

be the corresponding quantity for process p. gince, at each

non absorbing state, P is less likely to move towards the
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axes than p, it would seem intuitively that E{m,n) > e(m,n)

when m,n > O. This is now proved algebraically.

Lemma 10. E(m,n) > e(n,n) for all m,n > O.
r
Proof: It follows from Lemma 9 that, defining ¢ (m,n) in

i the same way as e:,

er+1(m,n) =1 +ce (m- 1,n) +de (m,n- 1), myn >0, r > 0.

By using methods similar to those of Lemma 2, or fairly obvious

probabilistic considcerations, it can be shown that

(43) er(m—l,n) < er(m,n) and er(m,n—I) < er(m,n), m,n >0, r > O.
Clearly E(m,n) > eo(m,n). Suppose that, for some r » O,
E(m,n) > er(m,n) for all m,n > O. By applying an argument
rather similar to that of Lemma 3, and observing that

C(m,n) = ymn/(am+ Bn+ ymn+ Smn) < v/ (y+8) = ¢
and similarly D(m,n) < d, A(m,n) >¢C, B(m,n}) > 0, 1it follows,

using (43), that

1 + AE(m+ 1,n) + BE(m,n+ 1) + CE(m- 1,n) + DE(m,n~- 1)

i}

E(m)n)

, r
1 + Aer(m4-1,n) + Ber(m,n+ 1) + Cer(m- i,n) + De (m,n~ 1)

[\

1+ ce’(m-1,n) + de"(m,n~1) + {(C~c) + (D-d) + A+B} e"(m,n)
+ (C-c){er(m-l,n) -~ er(m,n)} + (D-d){er(m,n-l) - er(m,n)}

+ A{er(m+ 1,n) - er(m,n)} + Bier(m,n+ 1) - er(m,n)}
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1 + ce'(m- 1,n) + der(m,n— 1)

v

er+1(m,n).

Hence, by induction, er(m,n) <« E(m,n) for all m,n > O and

r > 0, and the lemma follows on letting r -¢o.

An estimate of the behaviour of e(m,n) is now obtained.

Lemma 11. Given ¢ > O, there is & constant Xk such that

m m —_—

P e(m,n) > (1~¢) z n > md/c + km.

Proof: Let Vv(6,8) = nZ, €(m,m) 6"¢" where |61, IF] < 1.
?

It follows from the equation

e(m,n) = 1 + ce(m~ 1,n) + de(m,n- 1), m,n > 0,

that V(6,8) is the solution cf

V(9.8) = rrgiia—gy * (c0+ #BIV(0,9)
iee. V(8,8) = s’

(1-8)(1-8)(1-cb-dd) °

On expanding this gencrating function, and identifying coeffici-

ents,

. m-1 n-1 i+ ig
(a4) slmm) =38, Lo ((3") c'd

Suppcse m is temporarily fixed, and let

a = % je(m,n+ 1) ~ e(m,n)}, n > 0.




It follows from (44) that & = 0. Let

Y n
w(g) = nZo an¢
—"oom':.lii+n n.,n
= nfo i%o © (47) a8, using (42
‘ 11
. 1mfc l
G == T e
(45) i.e. W(O) FERe J

Then as n - o, e{im,n) increases monotonically to

co

m m
= - Y = -
néo 2T ¢ (1) c’

ola

so that the first inequality in Lemma 11 holds. Now let Si

be the sum of i independent random variables, each having the

gene rating function {lf - }, w#ith mean &/c and finite

. 2 . . .
variance ¢  say. Then S,1 nas mesn id/c and variance

2
ic”, so that by the Tchebychev inequality, if n > id/c,

Pr{Si > n} < Prf[Si- id/c| 2 n-id/c} < ioz/(n-iq/c)z.

Hence, using (45),

a
=n n

-1 i
= P >

mo .z rzsi > nj

;W lio‘2
Swak T 2

(n~ 1d/c)
2
mo

< zn- m¢ﬁ§7?

L E,




provided that n - md/c > _ 2,  Taking k = o/f€ completes

the proof.

An upper bound is now found for the difference

E(m,n) -e(m,n).

Lemma 12. E(m,n) = e(m,n) + O(log min{m,n) ) .,
Proof: E(m,n) is the least non negative solution of
2 + . i
y, 21 ?pijya ’ i £A,

where i = (m,n), and the p represent the transition

i3
£13 45, - . S:‘ o E 1 =
probabilities for the process P ince pij (1 513' )qij/qi

when i & A, the above condition may be rewritten as

+ 2 i g=
02aq +3aq.y,, iéa,
J
i.e. 2 aq . ly.~y.) 2 a., i £ A.
S s 1 1 bR
ki Y J

For the competition process this condition becomes

Ay(m,n) = amf{y(m,n) - y(m+ 1,n)} + gnf{y(m,n) - y(m,n+ 1)}
(14.6) + ‘Ymn{y(m,n) - y(m- l,n)] + 6mnfy(m,n) - y(m,n- 1)}

> am + fn + ymn + Omn.

Now let y(m,n) = e(m,n) + p(m,n), where p(m,n) is to be

chosen later.

m-1 n=-1 i+J

From (44), e(m,n): iéo j;o ( 5 )cidj, where C='$/(Y+6),d= d/(Y+5).




Then (46) holds if
n- m=1 s 3 g
_ z (m+J) n J} - Bniiéo (nnl)cld l
(&7) + (y+8)mn{e(m,n) - ce(m- 1,n) - de(m,n- 1)} + Ap(m,n)

> am + Bn + (y+&)m,n.

On observing that

n=-1 m+j, m_j m+j, m_Jj -1
< <
jgo ( m )C dv < __0 ( ) av < ¢ )
n+i 1 n -1
and similarly ( <d ,
and also e(m,n) = 1 + ce(m~ 1,n) + de(m,n- 1},

it follows that condition (47) holds if

(a8) Ap(m,n) 2 20 m + zﬁd_ln.

(1) ree pmm) =RV oy a8 )

where A, p end B < 1, are positive constants to be chosen

later.

min(m,n) 4

Let ’L‘(m,n) = réo ;:;—1' .

Then t(m+1,n) - 1(m,n) = ;%; if m<n, and O otherwise,

and similarly for ~t(m,n+ 1) - t(m,n). Hence condition (48)

hold if

o _om _gn mn[min(y.ﬁ)l'}

m+2 ~ n+2  1+|min{m,n)]

+ p.mﬁm_l(yn- af) + pnﬁn—l(ém- Bd) > 2ac” 'm + 2{3d_1n.




Choose @< 1 such that a @ < y/2, g < &/2. Then the last
condition holds if
AMA[min(y, 8)][max(m,n)] - o= ] + pzp'lq/z i gﬁn'lﬁ/z
30) > 2ac 'm + 2pd”In
Choose A and M such that this inequality holds when

max(m,n) > M. Choose u such that

- Ma+B) + pg{min(y,8)] g2 5 2(a.c'1+(3d"1)m.

Then (50) holds when max(m,n) < M. Hence Afe(m,n)+ p(m,n)} >0
when m,n > 0, and it follows from Lemmas 9 and 10 that
e(m,n) < E(m,n) < e(m,n) + p(m,n)

it is clear from the definition (49) of p(m,n) that

p(m,n) = O(log min(m,n)), which completes the proof of the lemma.

Lemmas 11 and 12 may now be combined to prove -

Theorem 3, E{m,n)~ (v+8) min(m’y,n/8). uniformly as m and n»o.

Proof: It follows from Lemma 11 in its original form, and in
the form where the roles of m and n are interchanged that
given € > 0O,

m L m
> e(m,n) > P (1-¢) - O{m?), as m -> e with n > —.

ols

i
Similarly % > e(m,n) > -z-;- (1-€e) ~0O(n?), as n » w with n g =.

The theorem then follows on applying Lemma 12, and substifuting

for ¢ and d.
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Chapter 2.

An Bpldemic Model.

2.1 The process considered in this chapter is a stochastic
mcdel of an epidemic in continuous time, used by Bartlett in [1],
and is constructed in the following way. Let the state space
consist of the clements (m,n), where m,n=0, 1, 3, 3, ...,
and, as in chapter 1, let the process be specified by its matrix

of tramsition rates Q = {qjjf. For i = (m,n), where m,n > O,

let
q 4= Amn, J=1(m=-1,n+1),
q, ;= um, j=1(m,n~-1),
AGs= Vo j=1{(m+1,n),
qij= e , j={mm+1),

where X, p >0 and v, € > 0O are constants. Otherwise let
qij = 0. Since Mmn = O on the n axis and pn = O on the
m axis, such a process cannct escape from the region

m2>0, n20. Although the process differs from the model
considered by Reuter in [20] in having fewer transition rates,

Theorem 1 in [20] shows that there is always a unique trene

aition matrix {pij(t)] corremponding to the given matrix Q.
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If m and n denote the respective numbers of susceptible
and infectious individuals in a populatipn, then Mmn represents
the rate of infeection, pn the rate of removal of infectives,
v the birth raote of the susceptibles, aﬁd £ the rate of
immigration of new infectives. The main results obtained are
(i) the expected time for the infectives first to die out behaves
as Hrl log(m+ n) when the starting point (m,n} goes to
infinity, (ii) the stationary distribution of the irreducible
process, with v, € > 0, converges gecmetrically on the state
space, so that the process tends tc spend most of itz time near
the origin, and {(iii) when v is small, the stationary distri-
bution for the irreducible process, with v, £ > O, approxim-
ates to the stationary distribution for the reducible process

with v =0, £ > C.

2.2 In this section, all the points of the m axis are made
absorbing, so that the expected time for the infectives first to
to die out now becomes the cipected absorption time. Let
r(m,n) be the expected absorption time for the process start-
ing at (m,n). Sufficienfly close upper and lower bounds are
now found for t(m,n) to shcw that <t(m,n) ~ “-1 log(m+n) as

m+n->0 with n > 0.
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Lemma 1. lim sup __f_(_l'.l_l_!i < p—l..
At ———— ) . 1()g(m.n) -
m+n =
n>o0
Proof : An upper bound u(m,n) is constructed using the

criterion (C) given by Reuter in [20]. This criterion shows
that absorption is certain and <t(m,n) < u{m,n) when u(m,n)

is finite, nonncgative and satisfies
tu(m,n) > 1, m >0, n>0,

where
( Au(m,n) = Mmnf{u(m,n) - u(m=-1,n+1)} + wniu(m,n) - u(m,n-1)}
1)

+ viu(m,n) = u(m+ 1,n)} + efu(m,n) - u(m,n+ 1)}.

Let u{m,n) be defined for m,n > 0 by

l+c MD 1 m 1 f1_5m+n
2 2 ew— — )
(2)  u(mn) rZo 751 7 A r2o e Nweerios) * B (1)

where ¢ > O is an arbitrary constant, and A, B, p, with

p <1, are positive constants to bz chosen later. The first
term in the expression (2) for u(m,n} is suggested by the
dominance of the term with ccefficient un in the expression
(1) for Au(m,n) when m =0 and n is large, and similarly
the second term in the eXpression (2) for u(m,n) is suggested
by the dominance of the term in (1) with coefficient Mmn when
mn is large. The last term in (2) provides the correction

necded near the origin. On substituting thc expression (2)
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for u{m,n) in (1),

] ' |
_ li+cy un v+e 1 m+n- %
Au(m,n) = { m j {m+n+1' - m+n+2J + Bp {Em- p(v+ s)}

1 m-1 1
r+1)(m+n+1-r) - )\mnréo {(r+1)(m+tn+1~r)

m
+ .A{ ( Amn+pun+v+€) réc, 7

m 1 ' m+1 1 m 1

- “nréo (r+1){m+n-r) vr-éo (r+1)(m+n+2-r) eréo (r+1){ m+n+2-r)

5 {1.:;} {En-\}'sl‘ + Bp-m-m { un - P(\H‘f);'

m+n+1 [

oal—dm 3 L "
(mn)(n+1) _ "P rZ0 (r+i)(mtnti-r)(min-r)  (m+2)(n+1)

Hence when m > O, n > O,

Au(m,n)

v

J1+c\|_ un-y-¢ | m+n .
! in+n+lj +Bp {un- p(v+ )}

(3)

+ A Am | 'Z‘,“ 1 - v
2(m+1) HrZ20 (r+1)(mtn+i-r) (m+2)(n+1)|"

The following inequalities are needed to deal with the above

expression.

' m+n
1 1 { 1, 1|

m
r=2=0 (r+1)(m+n+1i-r) < m+n+2 r=0 |r+l m+n+1-rJ
(4)
_(-:) log(m-i-_n_)_1 o
= —"-_m+n j as m+n (D.

Hence there is a constant Kk such that

m 1

(5) rZo (rri)(minrior) < k, m2¢C, n>0.

}
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Now choose p < i such that

(6) ' plv+e)

i

V]

Then using (3) and (4), it follows that when m > O

TR N _ (o Log(m+n) v__I
Bu(m,n) > - {T}(”‘e’ *A {z -0 ) ET e

Hence, by choosing suitably large Lk) and A,
(7) Au(m,n) 2 1, m>0C, n>0, m+n 2 M.
Suppose m = O. Then using {3),
1+c| jun-v-¢ N y ]
> . -2 +
Au(m,n) > { | { = } \ {n+1 ey

Since A has already been chousen, there exists N0 such that

(8) Au(m,n) > 1z, m=0,n2N,.

Let M = max (MO,NO). Then using (3), (5) and (85),

Au{m,n) > - {lisl(v+a) - A(kp+v) + B pM u/z,

n>o, m+rn < M.

Hence B may be chosen such that

(9) Au{(m,n) > 1, n>0, m+n <M= max (MO,NO).

On combining the inequalities (7), (8) and (3), it follows that
Au(nm,n) > 1 when m >0, n > 0. Hence the mean absorption time
7(m,n) < u(m,n) < ®w. Then using (2) and (4)

u(m,n) ~ (1+c) u-l log (m+n) as m+ n - oo
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Since ¢ 1is arbitrary, the lemma follows.

A lower bound is now found for the mean sbsorption time
(m,n). It is shown firstly that the process initially at
{m,n), with n > 0, reaches a distance from the m axis of
order m+n, with probability approaching 1 as m - 6o

-1

Secondly it is shown that <«(m,n) > p—l r§1 r . On combin-

ing these two results, a lower bound is obtained which gives

1jm inf t(mtn) -1
m a8 % logim+n) N
Lemma 2. For cach & > @, the process initially at (m,n},
with n > 0, reaches a distance at least (1-8)(m+n) from the
m axis with probability approaching 1 uniformly in n as -

m > 0.

Proof: Consider the region m > M, n > O, where M 1is an
integer to be chosen later, and all the boundary points are
treatcd as absorbing. Let x(mo,n.o} be the probability that
the epidemic process initially at (mo,no) reaches the line
m=M, n >N, where N 4is an integer to be chosen later.

It follows from the discussicon at the beginning of section 1.2
in chapter 1 that x(mo,no) is also the probability that the
corresponding discrete time process reaches the line

m=%, n >N starting at (mo,no). This discrete time
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process is now compared with a subsidiary process on the same
region defined by the following transition probsbilities: for

i =(m,n), with m > M, n> 0, let

)% v
= a==> o _
pij w2 Mmn+un+v+e ’ J (mt1,n-1),
. - = u+e un+e o _
(10) P;; =4 =5 2 SR TE j = (m,n-1),
le ¢ 1 M - '}dnn+pn+v+e ! J = (m— 1,n+1 ) ,

where M is chosen to make c > C. Let x(m

0,no) be the

probability that the subsidlary process reaches the line
m=M,n3>N, starting at (mo,no). Using a proof similar to

that of Lemma 3 in chapter 1, it is now shown that

X(mo,no) > x(mo,no) when m 2 M, n, 2 O.

0

In the iterative construction for x(m,n), let the r

step absorption probabilities be defined by

0

x (m,n) = 0O, m>M, n>0,

r

b 4 (m,n) =1, m=M, n2>N, r20,
and xr(m,n) = 0 elseyhere on the boundaries for r > 03

and for m > ¥, n>0, r > 0,

m,n)

r+l
(

) r r r
(11) X ex (m-1,n+1) + dx (m,n~1) + ax (m+1,n).

As in Lemmas 1 and 2 of chapter 1, it is easily shown that
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[\

r
(12) x'(m-1,n+1) > x(m,n) 2 x (m,n-1), m> M4, n >0, r 2 O,

+
x (m,n) < x° l(m,n) + x(m,n), as r >0, n>M, n> O.
It follows from Lemma 1 in chapter 1 that X(m,n) satisfies

(13) Am
X{m,n)= (-Tn)x(m-l,n+1) + (%E)X(m,n--l) + (%)X(m+1,n) + (&)X(m,n+1) ,

for m>HM, n >0, where q=q(mn) = \mn +pun + v + & .
Clearly X(m,n) > xo(m,n). Suppose that, for some r > O,
X(m,n) > xr(m,n). Then usiag (11), (12), (13), and the
inequalities in (10), when m > M, n > O,

_X(m,n)

v

(damn )x (m-1,n+1) + ( x" (m,n-1) + (ﬁ)xr(m+1,n)+ (ﬁ-)xr(m.nﬂ)

fcxr(m-l,n+1) + (—Nqﬂl - c)xr(m-l,n-i-l)}
+ {dx (m,n~1) + [( )x (m n-1) + l-—)x (m,n+1) - dxr(m,n—l)]}

+ {ax"(m+1,n-1) + [(-a)x (m+1,n) - ax (m+1,n-1)]}

> cxr(m-l,n+1) + dxr(m,n—l) + axr(m-!-l,n-l)
+ (T- L)X (m~1,n+1)+ (L—— d)x (rn n-1)+ (%- a)xr(m+1,n-1)
> " Hm,n) + (222 - o)x(m,n) + (22 - a)x(m,n)+ (2 - 2)x"(m,n)

xr+1(m,n) + {m%:ﬁ - (.:+d+a)}xr(m,n)

r+1

(m,n).

Hence, by induction, X(m,n) > xr(m,n) for all r > 0, and,
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letting r - oo,

(14]) X(m,n) 2 x(m,n), m>M, n>0.
An estimate is now found for x(mo,no), with
!
(15) M= [m 7], X = [(1- 8)(m+ n )],

where the brackets [.] here denote the integer part of the
contents. The subsidiary process is compared with processes
having the same one step transition probabilities, but acting
on various fegions whose boundaries are assumed to be absorb-
ing in each case. Then if (mo,no) is the initial point,

x(mo,no)= P{Process on the region m > M, n > O

reaches the line m =M, n > N}

b P{Process on the region m > M

1

reaches the line m = M, n > Nj
- P{Process on the region m2>2 M, n > O

reaches the m axis}

Hencce

(18)
x(mo,no) > P{Process on the region m > M, m+n> M + N
reaches the line m =M, n 2> N}

- PiProcess on the region n > 0O Coootae s

reaches the m axis},
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where the first term on the right of (16) follows from the
structure of the transition probabilities. Although thc
process on the region m > M, m+n 2 M + N takes place on a
diamond shaped lattice, this may easily be reducoed to the usuel

squarc lattice by the transformation

m-M¥=m", m+n-~ (M+N) =n",
(17)
- M = 4 + - + = !
and m M = m), my* B, (M+N) Ty »
and the boundaries m =M, m + n =k + N become the axes

For i =(m',n") with m’, n’ > 0, the transition probabili-

ties ( 10) become

\% 7 )
Py =2 = g » j=(m+1,n"),
(18) =C—I-L+€+v J:(m’_l,*nl),
ij M !
+
ij=4d -%E? , j=(m,n-1).

Lemma 4 in chapter 1 may be applied when ¢ > a, i.e. when
M is large enough, to give
(19) P{Process rcaches the n’ axis] > 1 - 60,
i

. ’ r P S =
if o'y 2 mod/(c a) + k(mo/oo) ,

-3, L
where k = {d(c+ a=- 4ac)(c~-a) 3}2.

Let & =m -%. Then from (15) and (18}, k = OImo"l/L*} » and
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da/(c-a) =C)imo_%}. Then (19) holds if

> Ofm b"lf} + 0{(m(')){;}

n’ m’
0 0 (0]

i.e. m, * ng - (M+N) 2 (mO—Mi')O{mO-%} + ﬁf(mo-r-‘{)%},

using (17). It follows from the definitions (15) of M and

N that the last inequality holds uniformly in no for all

large enough mo. Thus (1%} holds for all large enough mo,

say mo > MC, amd may be rewritten as
(20) P{Process on thc region m > %, m + n > M + N reaches
the line m=M, n>N starting frem (mo,no) ]

.

-z

21 -m

0 ’ mOZM-

0
Also, by observing only the displacements in the n direction
for the subgidiary process starting from (mo,no), it follows

that for all large enough mD,

+
P{Process on the region n > O reazches the m axis} = (_?.::_q)no
O 1y
R
Om, ™43,
1
where n_ > 1, M= [m ?], and a, d, ¢ arec dofined in (18).

¢} 0
Hence by combining the inequalities (14), (16), (20) and (21),

IA

(21)

L
2}, uniformlyinn_ asm_ - o,

X(m ,no) > x(m ,no) >1 - Olm o o

0 0] 0
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and the lemma now follows from the definition of X(mo,no).

A rough lower bound for the expacted absorption time
7(m,n) is now obtained by comparing the epidemic process with

a process which has only the transition rate pn,

i.e. q = qij = un when i = (m,n), j = {myn-1) and n > O.
-1 0

Lemma_ 3, 7(m,n) 2 u 2,7 -

Proof : Using the construction method given by Feller, (see

Feller [6] or Reuter [19]), let the r step transition proba-

bilities be defined by

) _ ~qt
(22)
- t
r+1 _ q,t -q,(t-5) r :
pij (t) = Bije + J e 1 Z.qikpkj(s)ds, r20,t>0.
1

o k£

As mentioned in section 2.1, there is a unique transition matrix
{pij(t}} corresponding to the Q matrix for the epidemic

) T
process. Hcnce pij(t) - pij(t) as 1 - 0, Let the Laplace
transforms of pi}(t) and pjj(t) with respect to t be

r
15(6) and ¢ij(e) respectively. Then

ﬁ:j(e) *2513(6), " as r - B> Q.
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On taking the Laplace transforms of equations (22),

T
0 _ ij
ﬂi\](e) - qi+ e ’
(23) -
g1 0g) - 51 . 3 9P 5 0)
ij qi+ lvz:l qi+e '
and on letting r - o,
By a8, :(0)
= —lg- w —
(240 By j(0) = = v 5 =t

lql

Now supnose the absorbing statecs, i.e.

8 >0

r 2 0, 6-_> 0.

e > 0.

the states of the m

axis, are classed as onc state, A say. For the epidemic
process, let
r r
n(e) = éij(e), & (9) ﬁ (3), when = (m,n), j = A.
Then using equations (23),
(o]
(25) 2, o(0) =0, n >0,
9 r -— / =
(26) @m’n(e) = 1/0, n=0,r 0.
T*logy o ' un gt
(27) 2, a0} = {Q+e}<p 1t 8 ISl L (8)
v
+ {q+6} mid , n(e) * !q+6E§m n+1(e)’
when n > O, where q = q(m,n) = Amn + un + v + €.

Now compare & n(e) with wn(e),

the Laplace transform
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of the probability that the process, with the transition rates
q; = qij = un when i =(m,n), j = (m,n-1), 1is in the state

0O at time t. It follows from (24) that

] = KB
(28) ¥ (@) “n+eYn_1(6)
_un_ u(n-1) 1
= p_n-f-e M(n-l)+6 XX 6 ’ n 2 0.
Clearly, using (25) and (26),
0 , .
n(6)=6n o 6 <Y (6], n>o0, 6>0.

Suppose that for some r 20, & n(E)_) < \lfn(e)for m,n » 0,0 > 0.
?

Then from (27) and (28)

r+i1 Amn { n
Qm,n(e) < {q+6} (6) lE‘:Te]w (6)+{ +6J'y (6)+{q+6j n+1 ®)
Ann+v+e n _Emke
s{ e }w(e)+{£;-§ { [2a(©)
= ‘Yn(e)
Hence by induction, @mrn(e) < ‘i’n(eu) for all m, n, r and 6, and

on letting r >, & (0) < \rn(e) for all m, n end 6, It was
?

shown by Reuter in [20] that the expected absorption time

f( ) = 1i {
wWm,n) = lim

1-96 @m.nte)}
6 -» D+

Hence (m,n) > 1lim

{1-6 v (6N - -1
6 -» 0+

T8 j s 1ﬂr-—zi1 oo
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which completes the proof of this lemma.

N t{m,n) -1
4, : 3 LY A .
Lemme 4. n3R 8 Toglmn) 2 ¥
n ¢)
Proof : By Lemma 2, for ceach positive § and T there

exists M such that the cpidemic process initially at (mo,no),
with m > i, recaches a distance at least (1-6)(m0+ no) from
the m axis with probability at least 1-m. Let the event

E(m,n) be defined by

& m,n) = {The epidemic process initially at (mo,no)
reaches a di stance at least (1-5)(mc+no) from the
m axis for the first time et (m,n)}
Then, using Lemma 2, and the Strong Markov Theorem for contin-
uous time (see Chung, [3], II, secticn 9), it follows that,if
m, 2 M,
R Maefy) =

E{absorption time of the proccess initinllyet (O,no)}

v

m}sngiﬁbsorption time: | E(m,n)_} P {E(m,n)}

v

I € {Time to reach m axis after first
m,n

reaching (m,n) | E(m,n)} P {E(m,n)}

i}

_nZnE{Absorption time of the process
ity

initially at {m,n)} P {E(m,n)}
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Z‘.n *(m,n) P[E(m,n)}

m,
> . ing w(m,n)} 2 P{E(m,n)}
Y m,n
n 2 (1-86)(m +n_) !
w1 -
2 z vt (1-7)
< < =0 +
1<rz(1 o)(m0 no)
-1
~ - I .‘.
(1-m)p log(mc no) as my + ny *> .
If however my < M, it follows directly from Lemma 3 that
o
-1 -1 -1
T(mo’“o) 2 u él ro o~y 1og(mo+no) as my + n, > oo
'c(mo,no) 1-n

Hence lim inf

+
mo n0->oo

>
nOO

Toglmgrng) * 0

But m may be chosen arbitrarily small, and therefore the

lemma followsa

On combining the results of Lemmas 1 and 4, the following

is obtained.

Theoren 1. 7(m,n) =

E{Absorption time of the epidemic process initially at (m,n)}

-1
~ u  log(m+n), as m+n - 00, n > C,

2.3 In this section, the stationary behaviour of the irred-

ucible epidemic process, with v and € > 0, is examined.
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Since the process is irreducible, the transition probabilities
pij(t) have limits xj independent of i as t = e It is

shown firstly that the prbcess is non-dissipative, i.e. Ix =1,

J
before thc rate of convergence of I ﬂj is considered. Let
ﬂj = %{m,n) when j = (m,n) with m,n > O.

Theorem 2. I w(m,n) =1
—_——— m,n
Proof: The criterion (D) given by Reuter in [20] may be

generalised, with only a slight alteration in the proof, by
replacing the single state I, (in the notation of [20]), by a
finite sct. The gencralized critericn shows that, since the
epidemic process is irreducible, and is uniquely specified by

its transition ratcs as ment ioned earlier, a sufficient condition
for the process to be non dissipative is the existence of a

function wu(m,n) > © such that

tu(m,n) > 1 for all but a finite set of (m,n), with m,n 2> O,
where
(2¢) Au(m,n) = Man{u(m,n) - u(m~1,n+1)} + unfu{m,n) - u(m,n-1)}

+ viu(m,n) - u(m+1,n)} + efu(m,n) ~ u(m,n+1)}.

Let u(m,n) =m + n + Cpé/(l—p), wherz C and p are positive
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constants, with p < 1. ‘Then
(30) Au(m,n) = yn - v - ¢ + an-l(hmnp- un+ ep), m,n. > O.

Let C=(1+v+¢)/e, and p=4. Then

(31) Au(m,n) = 1, n 2

v
O
=}
"
o]

Using (30), choose N such thet

(32) Aa(m,n) > 1, m

v
O
=}
v
Z

and then choose M such that
(33) tu(m,n) > 4 m>M 0<nc<N.

On combining (31), (32) and (33) it follows that Au(m,n)

v
[

on all but 2 finite set of (m,n), with m,n 2 0, and the

criterion then shows that the process is non-dissipative.

It is now shown that the stationary distribution converges
geometrically on the state space, with a uniformity in v which
is used later. The following simple lemma is needed to obtain

)
bounds on the =(m,n)s.

Lema 5. For any finite gset A,
z ) G PR z T dys e
iehAjEA J iéAajea Y

Proof : It is known (see Kendall and Reuter, [13], Theorem 8)
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that I =
i

iqij = 0 for each i, i.e.

= I =x.q,

z R.Q,. = %.q. .
i 5 17§ 373 at; JJja

On summing the left and right hand sides of the above equation

over Jj €A,

z 21:(_1}=.L‘{E.:q
JEA{“'?J YU seplag i

z + I }xq.= x I + I }'nq
1-e. Jea{i#;a 1450 Y yealagy apglie
ieA 1£A a€EA afkA
i.e. z z R.Q, . = 1 Z T,
jeA 1A T joaggas 0

which proves the lemma, since the series considered above are off

positive terms and are convergent.

Theorem 3. For each & ard h > 0, with b5+ h/(h+e) < 1,

there exists a constant k such that

z ﬂ(mln) < k(""‘::"'&)np R>0,0<vy<h,
m+n 2R v ;
and hence w(m,n) = 0[(—-”—-- + a)m"'n} .
v+ &
Proof : Suppose O < v <h and let
A={(mmn) :m<M m+n<M+tN}, where M > O, N > 1.

On applying the lemma to the competition process, with this




definition of A,

(34) z ®(m,n)\mn + z %{m,n)un
m=M+1 O0<m<M
1 <n<N-1 m+n = M+N+1
= I ®(m,n)v + z w(m,n)(v+¢e).
n=M O <m<M
0<n<N-1 m+r = M+N
Hence
(35) T (m,n) + b #x(m,n)
m=M+1 O<m<M
1 <n< N-1 m+n = M+N+1

e |
B ETCER VAT 2, ®mm) e o D atma)}

O0<ngN=-1 m+a = M+ N

If & > 0 is constant, there exist integers MO’NO such that

vi e -
(36) T[N 1V ] <6, MxzM, N2Nj, 0<v<h
Now let B(H,N) = z =«x(m,n) and C(#,N) = 2 x(m,n),
m=M O<m <M
O<ng<N-1 m+n = M+N

Then it follows from (35) and (36) that
(37) {B(#+ 1,8) - =(M+1,0)} + {c(M+ 1,N) - =m(K+1,N)]

< &{B(M,N) + c(m,N)}, M2Hu, N2N,, O0<vy<h

Since =(M+ 1,N~- 1) < the left hend side of (35), it follows
from this, on replacing N by N+ 1 and using {36) and (37),

that
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(38} n(M+1,N)

n(m,n) +

In

{mﬁnhﬁvii)fﬂmﬂ ]} {

z
=M
O<ng

In 8

N m+

6 {[B(MN) + C(M,N)] + [C(M+1,N) - =n(M+1,N) ]}

A

5 (1+8) § B(M,N) + C(M,N) }, MMy, N2N,, O<v<h.

A

Also, by epplying the equation I m 95 = 0 with j=(M+1,0),
i

(39) x(M+1,0) (v+e) = ={M,0) v + =(M+1,1) p ,

so that, on using (37),

(40) =(M+1,0) = (_2_) x(M,0) + (_u_) x(M+1,1)

V+E
LY

( ) B(M,N) + (%) {B(M+1,N) - =(M+1,0) }

(o * %) poywm +cmi,
M_>_'M0, NzNO, O<v <h ,
Hence, on adding the inequalities obtained in (37), (38)
and (40),
(41) B(M+1,N) + c(M+1,N)
< [8+8(1+8) + o B} {B(M,N) + C(u,N)] ,

M2My, N2N,, O<v<h.,

O’
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Since 0 is arbitrary, it follcws from (41) that, given any
5 >0, with & + h/(h+e) < 1, there exist M and N such that
B(M+1,N) + C(M+1,N) < {2 + &) {BOGLN) + c(M,N) |,
l\'IleIl, Nz]W]_, O<v <h .,

Clearly for N fixed, say N = Nl’ and for R > Ml +l\5_, it

follows that

"\MynNn ) < ’ ) 12
mﬂsz (,}_Mzg_Nl{B(MI& + C(M, 10 )
Sy B o + 31" ™M 1B0g,N) + o0 ,N )]

Of (3% +5)%1.

Hence the theorem follows when k is suitably chosen,

It is now possible to deduce from Theorem 3 that, as
v + 0+ , the stationary distribufion =(m,n) of the epidemic
process tends to that for the process given by the limiting

case v =0.

Theorem 4., For all small enough values of v,

£ w(mn) = {O)M,

m>Mn>0

where (O(v) is independent of M , and,




..69-
as v » 0+ ,

0

w(0,n) » [ (&) }/{ T (8)/rt ]}

r=0 H

and =x(m,n) » 0, when m >0 ,

Proof: The proof of the first part follows easily from (34)

and (39) which show that, for all M>0, N>1,

N-1 N-1
(42) AM(M+l) I w(M+l,n)n <v I x(Myn) + (v+e) £ =(m,n),
n=1 n=0 O<m<M
mn=N+N

(43) x(M+1,0) < (.g;) n(M,0) + (%-) w(M+1,1) .

Letting N -» o in (42), it follows that

[o o] o]
Z n(M+1,n) n ¢ ({) £ =(M,n), X > 0.

44
( ) n=1 n=0

Hemce, using (43) and (44),

co oo
Z =(M+1,n) = n(M+1,0) + Z =(i+ 1,n)
n=0 n=1

o0
() #(#,0) + (1 +£) % =(m+1,n)
n=1

1A

{(2) + (1 +8) (D] T x(m,n)
n=0

iIn

00
=O(v) £ =(11,n),
n=0

where O(v) is independent of M. The first part of the

lemma follows on iterating the above inequality , and the last
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part of the lemma is a trivial consequance.

To obtain the behaviour of ={(O,n) as v -» O+ s apbly

0, n<N}, for N2 1.

Lemma 5, now with A = {(m,n) : m

then
N-1 N=-2
(45) Z w(o,n)v + ®(0,N~1)e = "2 x(1,n)An + pNz(O,N),
n=0 n=1
N-2
where the sum I #®(1,n) is null wien N < 2. It then
n=1

follows from (42) with ¥ = O that

N=2 ©
2 a(1,m) M < v I w(0,n) =Qv)

n=1 n=0
so that from (45),  =(O,N) = (fﬁ)ﬁ(o,u- 1) +()(v), and thus
(46) #(0,n) = (0,0) (F)"/n! +Q(v)

where in this casc C)(v) may cepend on n. Given arbitrary
constants 1 and h > O, it follows, using Theorem 3, that

there exists a2 fixed integer N such that

(a7) z #(m,n) > 1 -7, 0O <y <h,
m+n <N
o0
(48) (D)8t <n.
n=N+1

By the first part of the theorem, it follows from (47) that

1- 3 =(0o,n) < +0(v), 0<v<h.
n <N
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Hence from (46),

N
Il-’K(0,0)E(%)n/n'.I S'r]+0(\)). O<vy<h,
n=0

and from (48).

I1-7(0,0) T (§)"/ n! |

n=0
N ®

< 11-(0,0) T (§)A! | + =(0,0) £ (£)"/n
n=0 n=N+ 1

< 2n +0(v)

- 27, as v ~> 0O+,

o0 -
But 7 is arbitrary, so that  lim  %(0,0) = {3 (£)% a4} 1,

"o

n=0 H
. . 3 sy , , °°gr.
Therefore, using (46), vlimb+ﬂ(0,n) = {(ﬁ) Al A s (n) /ol
. r=0

which completes the proof of Theorem 4.

The actual limiting values of ={m,n) 2s v - O+ may
also be found by using a result of J. Lamperti ([14] ’ §4,
Example) on the convergence of stationary solutions. Let the
stationary distribution of the epidemic process be denoted by
iﬁi} when v 2 O, where for convenicence the states are now
labelled i =0, 1, 2, ... . Svpposec the matrix of jump
transition probabilities is defined by p, = (1- 5i‘j)qij/ q,-

1J

Then, for the given epidemic process, I pij =1 when vy >0,
J
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and qij’ qi and pi are all continucus to the right aty = O.

J
In the following arguments, the values of the quasitities con-

sidered when v = 0 are distinguished by a tilde if necessary.

The problem is to show ﬂi - *i as vy - O+,

A criterion ‘given by Foster ([8], Thecorcm 2) may be gener-
alised to show that the jump process contoins on ergodic set of

states if therc exists a non negetive solution {u(m,n)} of
Au(m,n) > Amn + pyn + v + €

for all but = finite number of (m,n) with m , n > O, where

Au{m,n) is defined as in (29). A solution is given by

u(m,n) = Am + Bn + Cp?/(l-p),

where A, B, C and 0 are constants, with A > B + 1 > 2,p= 1,

end C chosen such that Ce - Ay - Bz > v + g. It follows
that the jump process is ergodic when vy > O, and, when v = 0,
the jump process possesses on ergodic subsct of stotes (the n
axis)}, which is rcached with probability 1 from any other state.
It is well known (c.g. sece Kendall and Reuter, [13], Theorem 1)

that there exists a unique non negative solution Izil of

(49) L z.p.. = z, for cach j, with &£ z, = 1.
i i

It is also known (scc Kendall and Reuter, [13], Theorem 8)
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that
; ﬂiqij =0 for each Jj, with Eﬁi =1,
i i
50 i-e- L . . . = ¥l 3 -r 3 7 -
(50) ?qulle Ij%j for each j, with ini 1,
i £y = - . T 9 *he -
since p, (1 6ij)qij/qi it follows from Theorem 3 when

v > 0, ond from calculating ﬂi explicitly when v = 0 that

L ®.q, <€ Therefore, since the non negative solution of

J
(49) is unique, it follows from (50) that

(51) 2z, = ﬁiqf/; ﬂjqj for cach j,dhen v > O.
J
Hence
i."\ 7 zi
(52) w, = [==)/ 5 —— for ecch  j, when vy > O.
1\ 5\

Now :let O be 2 state which is ergodic for all v > 0
(e.g the origin (0,0) in the m n plane). For v > O,

define xi = zi/z0 so that

E ﬁipij = xj, for all j when vy > 0, with Xy = 1.
Lamperti's result in [14] is applicable %o irreducible recurrent
processeé, but may easily be extended to cover the present
situation for the jump process carresponding to the epidemic

process. From this it follows that there exist {Xif such

that x_ - xi as v = 0+, and
i




(53) TXp..=X, with X_ = 1.

Clearly z, =x /% x, wvhen v >0, since x, = z,/z_. and
i i P i i’ 0

z 2, = 1. It is now shown that I Xy > X xi < as v = O+,
i i i
so that z,= xi/ I x, - Xi/ b xj. Then, from (53) and the

J J

uniqueness of the solution of (49), it follows taat
Z, =X, /T X, and z >Z, as v = O+.
i A | i i
J
For the given process, Theorem 3 shows thet for cach

8 > 0, there cxists N such that

I =®,q, < 8¢ when O < v < yv_ say,
i >N it . 0
Hence it follows from {(51) that since q, 2 € and ¥ ™y = 1,
’ i
% = L = T m.d. <O R.E = O.
2, = \iqi/ij 595 os/Z; e )
i>N i>N J J

when O < v < vy . Then, since x, =z ./ 2,
(o] i (8]

i
& .
(54) I ox <<, 0 < v < vy
i>N Q
and thercforc
-;- = 5 x, + 2 =x. < 7‘>h+-6-,
o i<NY isxn?t i1<nt %
i.e. -1:'-_5“< zx, 0<v<vo.
% 1<n*?




Therefore lim sup <—1—> < 00,

v » 0+ zO
. 1 X . .
Thus, since -z- =3 xi, the series 2 xi is bounded as
0 i i

v » 0+, and from (54) converges uniformly for all small

enough v > 0. It is then easily shown that ¥ X, < ¢ and
P |
i
in->EX as vy > 0+.
i i
It has now been shown that zi -> z:,l as v = 0+,

where, from ( 52),

z
)/ z f1> when v > O, and
q
J
(55) 7 =
— /! - 1
® =i =Y/ & (") .
t(5) s'%
i ~ i
It remains to show that 7\'.i e "Tfi. But
24 2 11
I—==-3 = | < = |z -%|/ + ZE, | =—-%=
1Y i % i b 1R i Y]y T
Since q, > € when v >0, =z =»>7%, and X 2z =3 Z =1,
i i i . .1
i i
it follows that
Z‘z.—z.l/ <s_12|.4-'z'u|->0 as v - 0+
10101 4 = L1 *
Also by dominated convergence, since q:.L - a:. ’
L z L. _L - 0 as v > 0+ .
i ql q.
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Hence E zi/q:.L - g Zi/ﬁi as v -+ 0+ , and the result now

follows from (55) .
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Chopter 3.

The limiting behoaviour of first hitting times for a general

recurrent random walk in two dimensions

3.1. Firstly consider the problem of first hitting times in
one dimension. For a2 simple random walk on the integers
0, #1, +2,... , with transition probabilities pij = 5 Wwhen

j=1i+1, Feller ([7], Chapter TII) has shown that the

probability that, starting at 0 , tihe first passage through ¥y
occurs before time ty2 tends as y * ® to
-z

(1) L= (e *:_)f

2
-2/
e /2 ds ,

which is the positive stable distribution of order % . In
the case of one-dimensional Brownian motion, it may be shown
(see Lévy, [15], Chapter III) that the corresponding first
passage probability has exactly the value (1) for all y .

It is shown in the following sections that this analogy carries
over into two dimensions, and the limiting behaviour of the
distribution of first hitting times is found for 2 random walk
on a lattice, in both discrete and continuous time, and for
Brownien motion. As a corollary, the limiting behaviour of the

distribution of first hits on an axis is found for a restricted
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¥ ’
class of three-dimensional recurrent random walks.

3.2, The first hitting time problem is now investigated for
two-dimensional Brownian motion. Let T(r) be the time at
which the first passage through a2 disc of radius & occurs,
when the starting point is at a distence r from the centre of
the disc, F.Spitzer [21] has shown that the Laplace transform

of the distributiom of T(r) is given by

®  _at KO(I"/-Q_?:)
(2) tio e Pi{T(r) <t} dat = ;3;?37??5 ’

where the real part of A is Dpositive, and Ko is the
modified Bessel function of the second kind and zero order.
By inverting this transform, the following limit may be

obtained,
Theorem 1. For each a>2 , P{T(r)<r*}] » 1—20.-1, as r=+oo.

It is interesting to compare this result, and the analogous
result of Theorem 2 later on, with the following result of Doney
[4] for the symmetric random walk in discrete time and on a
three~dimensional lattice. I’ such a process starts at
(x,y,0) , with r==(x2+y2)1§ , the probability that, when the

first passage through the 2z axis occurs, the magnitude of the
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displacement in the =z direction is less than ¥ » Where

a>1l, tends to l—c._l as r-*oo,

Proof of Theorem 1: On applying the complex inversion formula

for the Laplace transform tc (2), (see Widder [25]),

L ot Mok
PiT(r) <t} = 1im Ak f S KEB)

: —  d\
T >0 K1 c-1iT A Ko(r'-‘-’/z)\-)

(3)

, 1
1 ctit e” K, (rt 2V2z)

n ; =T
TR 2Rl oojr K (at 2V23)

where the second integral follows on substituting z = At , and
noting that ¢>0 1is arbitrary in this case. Suppose t =r
where o >2 is fixed. Then the limiting behaviour of
P{T(.r)sro'} may be obtained on integrating by parts in (3),
thereby introducing suitable dominating factors. Firstly let

(a) K (r’t_%@) 1(0[1'1'-':"/2 V2(c+iu) ]
g \u;) = - T = - = -
r Ko(et72V3z) K [ar %2 v3(erin))

R z = c+iu.

o 1 T ec+:i.u
Then PiT(r)<r } =TEL’1°n<1> o -f'c =T gr(u) du ,

and, on integrating by parts,
(e *

(5) PIT(r)<r®] = lim 3 X[T(g% *3r(“)] “

}: [ec+iu a ec+iu ‘
- iZc+iuiagr(u) - (c+iu)2 gr(u) du
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The following properties of X,(z) are now needed, (see Watson
[23]) i~ 1In the half plane with the real pert of =z positive,
K,(z) and K'(z) are analytic, and K,(z) has no zeros;
(6) K,(z)~ -1log z , snd K'(z)~ -1/z , as z=0 ;
(7) and K.d(z) ~e ¢ (27c/z)_15, and I%’(z)*- - ? (ZTE/Z)%-, as z-2w .
Using (6) and (7) to construct bounds for K, » it follows from

(4) that, when a>2 , gr(u) is bounded for all u , and

gr(u) »> 1 - 2cn-l as r 2> o for all fixed u . Hence

ec+iu | T
> 0 -
(8) stemy &) @
Also, by applying dominated convergence, with lgr(u)'

bounded for all r and u ,

1 T ec+iu 1 ? ec+iu ( ) 4
lim lim =~ [ ————— u) du = lim == —— g \u; du
750 Ten 2% -1 (c+iu)? gr( ) r+oo 2% -0 (c43u)e T
1 c+iu
m = —— lim du
2 o (orta)? [ 1im g (u)
(9) - (1_211'1) _l_ <}° _EC_-’-}u_ du
2% -0 (c+iu)2
=] - 2(1-'1 s
o  x(c+iu) c+iT X\
since .21_ f —-e—-—.z_ du = 1lim -.)—1:_— I .e—-é_ ax 3
T =0 (c+iu) Taoo Rl coig )\

which is the inversion formula for the function h(x) with
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Laplace transform )\-2’ i.e. h(x) = x . Now consider
1-0/2 -
-0/2 Ko'[rl'“"/2 Va(eriny]
V2(osin) g [or™/2 Volorin)]
s ar /2 K [222 Valeriu)) Kifer™/2 Valorw))
Va(orin) [ Kofar /2 VE(erTe)] |

Using (6) and (7) to comstruct bounds for K, and K', it

follows that when a > 2
..d_'. = 3 ‘:'2'
e gr(u) = O(lc+.Lu| ),

where the right hand side is independent of r , and

4a
du

dominated convergence

g, (u) »0 as r > when u is fixed. Hence by applying

. N ],: ec+iu (d }cn eC+lu fd
lim lim gr(u}du 1im {du (u)J“ du

r+*c T+ =T %+ iu Idu = r2oo ~oo C+ iu
(10) o ec+iu§ a 3
‘ = - >
-:roo ¢ +iu Lx}-'gi du gr(u)‘j du

Therefore, on combining (8), ($) and (10) with (5), the proof of

Theorem 1 is completed.

Theorem 1 may easily be extended to a more general region

which is bounded and contains an open subset, by comparing the
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first hitting times with those for discs contained in and

contained by the region.

3.3, Suppose that a general recurrent random walk in
discrete time and on a two-dimensional lattice of points
(xl,xz) where X{s Xy = 0, #l, +2,... , is defined as follows.
Let {Xn} , n=1,2,... , be & sequeance of independent
identically distributed random variables, taking two-
dimensional values with integer components. Consider a
particle moving at random, whose position at time n is given
by Sn=So+11+...+Xn, n=90,1, 2,... , where So is the

position at time 0, Let the characteristic function of the

distribution of Xn be

o(0) = €™M} = 1 ™ T px =xi ,

where 0=(91,5‘ ), x=(xl,x and B.x = 6,x + 8,x, .

2) L 22
Suppose the process defined by the random variable Sn is
irreducible, and can in fact reach any point of the lattice
with positive probability. As pointed out by F.Spitzer [22],

a number theoretic argument shows that this last condition is

1 only if both

equivalent to the condition thai ¢(9)
compcnents of € are multiples of 2x . Suppose also that

the random variables Xn have izero mean and a finite moment
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of order greater than 2 , i.e. Sixn=0} , and there exists
5 >0 such that E:{lxnlz”éi < » , where lxnl denotes the
length of the vector Xn . Under these assumptions, the
foliowing result, which is analogous to that for two-

dimensional Brownian motion, may be cbtained.

Theorem 2. Let T(x) be the time taken for the process to

reach the origin starting at position x . Then for each a > 2,
P{T(x) < fx[®} » 1- 20,_1 as X > o0y

where 'xl denotes the length of the vector x .

The following two lemmas ere needed,

Lemma 1, Let an(x) = P{T(x) >n} , and let
o0
A(x,z) = & an(x) z® , where 0<z<l . Then
n=0
i0.x
l-e” "
I - d8
1-z0( 0
A(X,Z) = 2 <)19 H

where the double integration is with respect to the components
of 8, end is to be taken over the square -7t_<_91_<_1t, -R < 02

unless otherwise stated.

Proof’: In the customary notation let pxr; be the probability

that the process reaches y at the n th, step, starting




. 0
x , with pxy

the process reaches

from

starting from x .

=&
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. Let £l
y xy
y for the first time at the

n th. step

The generating function for f;; , with

x # 0 , may be obtained by using the formula

0

=f.0 Poo

On multiplying this by

n>1, with x A0,

n 2

n . o
z, with 0<z <1l , and summing over

be the probebility that

H

1.

® n n o n=l np ;0 n n ® r r
p M= 51 - %7 £ Doy 2
n=1 Tx0 n=1 r=0 X0 p00 ne1 X0 % pZg 00
where all the above sums are finite. Hence
® n n © r r
(11) EO fyo = nﬁo p..z / rEO Poo 2 x £ O.
~ ( Ysnl = £ _ £F
Since an~x) = P{T(x) >n} = r=g+l <0

It follows that when

A(x,z)

(12)

x#0 and O<z<l,

2 a (x) 2

n=0

0
z

n=_

[o 0]
z
r=n+l

oo r-1
) z
r=1 n=0
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e e}

It is shown independently, in Lemma 2 {21), that EO pg; =,
n=

Hence, since the process is irreducible, it follows from the

general theory (see Feller [7]) that the process is recurrent

® an
and 0 X0 1. ©Now (11) and (12) may be combined to give
n=
oC
1- 2 T2
A(X,Z) = n=n
1-2z
(13) © : o ® o
r=o oo n=0 Fx0

U

- ® r T
(1-2) L Py 2

1t 9(8) = €{e*®¥n} , then [(6)1" = gle*®5nls =0} , ana.

n

o = Bls =y lsg=x)

= P{sn;y-xlso=oj

4_1‘2' .r,f [¢(e)]n e-ie--(y—x) a6 ]

Vs

o B .
® n n ¥ Z I [o(0) e-le.(y-x) a6

H z =
ence nZo ny z 2o Z;E
S S 6) " =10 (v=%) 44
(14) 25 11 eI e
-ji6, (y-
- 1 fr & 1 () x) ae

where the summation and integration may be interchanged since

the function considered has modulus < 2 , and is therefore

absolutely convergent under summration and integration over




- 86 -

the given limits. The lemma is now completed by using (13)

and (14) to give

de
axz) = S TTae® - M e @
(1_3) .” -l——Z_(Pm

]-ee

ﬁ—”p ) a6

= as

(1~2) .” = '_(T

The result for the asymptotic behaviour of the first

hitting time T(r) for two-dimensional Brownian motion
depends on the behaviour of the Laplace transform

© At . .

(1)' e P{T(r) <t} dt when A is near 0 and r is large.
The behaviour of the generating function A(x,z)

ncgo P{T(r) >n} 2" is now examined when 2z is near 1 and x

is large.

Lemma 2. If z=1-7n, with n>0 small, then

2 loglx| - £(x,m) + O(1)
-nilog n + Q(1)}
klxl 1 - Jo(u)

2 I [ du 3
O a1+ u/enlxl?)

A(x,z) =

H

with f(x,m)

where {}(1) and the constants ¢, k > 0 are independent of x

and mn, and Jo is the Bessel function of first kind and

zero order,
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Proof: Consider the behaviour of ¢(2) near ©9=0.

Following a method due to P.Spitzer [22], let

h(u) = etd (1-+iu-u2/2) .
Suppose Ejlxn|2+53 < oo, Then a constant d may be chosen
such that
[h(u)| < a lu|2+5 for all real u ,

and, by applying Schwarz's inequality,
lefn(e.x )1 < agtle.x 2

a Ei (e“a)l + 5/2 (xnnxn)l +5/2}

A

d_,612+6 gilxn,2+6z

O(lel??) .

in

b4

1]

i.e. €[h(e.xn)}

Now let n(6) = 2 E{{(e.xn)zi , which is a positive definite

quadratic form in the components 61, 69 of 6 , Then

o(6) = £1e*% 0}

11 + i(0.X ) - (8. )%/2 + n(e.x )}

1 -3€(6.X )} + €in(e.x )]

e, o(8) = 1 - u(8) +0(]8]?*%y .

Hence if m and © are both small,
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1 - 2p(8) = 1 - (1-n){1 - u(e) + O6|**®)]
= fn+ue)l {1 + 0(lel®)] ,
so that
5
(15) l-zl<p(6) = ErL] :9%2)) for all small enough 71 and 6,

]
The quadratic form u(®) may be reduced to r° by making a
transformation involving & rotation and a linear change of

scale in the © plane, say

61 = r{oi cos(¥-¥,) + o, sin(¥-y,)1 ,
(16)
6, = r{-oi sin(y-¥,) + o, cos(¥-y )1 ,

where r and YV are polar coordinates, and Oy Oy and ¢o

are constants. Hence (15) may now be rewritten as

' )
(17) < = -1491521 , rer, s MEM

1"Z¢Z 5 NM+r

where r and n, are suitable small constants.

Now consider the numerator and dencminator of the
expression for A(x,z) in Lemma 1. The numerator may be

written as
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iz o o pme
de = == ae
1-29(9) lo, 1,10, <= 1-29(0) *
r>r
° 1_ei6-x 0’2 2
J'f l—_;?;m( 1«:‘2)rdrd\lr,
le I,IG ‘<7l:
1 2 —
r<r
=0

where r(012+022)is the Jacobian of the transformetion (16).

Since ¢(6) is continuous, and ¢(6)=1 only if both 61
and 6, are multiples of 2x , 9(6) is bounded away from 1
if © 4is bounded away from ( in the region Iell, |62, < T,
It follows that the above integral over r >ry is bounded
indspendently of x and z when 0<z<l . To tackle the

integral over rgr_, Ssuppose firstly that
x = (|x| cos \lrl, |x| sin 1111) . Then using (15),
8.x = rlx| {Gl[cos ¥ cos(q;-\];o) - sin mlfl sin(:\lr-llro)]
+ 0’2[cos A sin(ll!—\'-,to) + sin ¥ cos(\ll-\l;o)]i
(18)
= rlx| {aq cos(y-y +¥) + o, sin(¥-¥ +¥;) ]
= cr |x| cos(¥-¥,) ,

where c¢ and \112 are constanis, and c¢ is independent of x.

Then, if ngm , it follows from (17) that
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If l_eie-x' r dr 4y
le‘,,le2l_<_7t l-Z‘PZej I
r<<r
- 0
- 15 (-ettxy L=t ‘*—l r dr a¥
rsro n |"1"
= 5 -5 e e s 0T Iy ar oy
rer r r (TH"-")
- 0

Clearly the contritution to the integral from the term (J(r

is bounded, independently of x and n . Using (18),

21‘7\'. (1- eie.x) a¥ = 2x - 2}_7"- ei 2r ,x' cos(:q;-q;z) ay
¢=0 2(‘)u
. |
= 9% - {) Jer |x| cos Y g

2
2x - l:glg cos(er [x| cos ¥) ay

2xf1 - 3 (er|x[)},

since Jo has the representation (see Watson [23])

/2

J (u) = 2_ [ cos(ucos ¥) ay .
© 0

Since J (u) 1 +O(u ) as u-0, and Jo(u) =O(u—%) as

u~> oo, (see Watson [23]), it follows that when x is large,

I[ (1_ 19 X) 12
rsr BT

r
Jrdr dp = 27tr£:(0 f1- Jo(crIXI)i -

R TE-

u=

2% loglx, + O(ZL) ’

6-2)
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where k=cr = and (1) are independent of x and n when
S . 1
n < -qo Also

@-e%) — 10— raray = I Codo(er |xD) i

rsr r2(n+r2) =0 r2(n +r2)

klxl 1 - Jo(u)

é uf1+18/c%n x| ¢}

du

= 2n

= f(x,‘r]) .

Hence
1 _eie.x 5
(19) If m dé = 'K(G" + ’:Ez)iz laglxl + £(x,m) + O(l) }

where O(l) is independent of x and m when mn < no .

The integral in the denominator of the: expression for

A(x,z) in Lemma 1 may be written as

: 0 de r dr d
Il d = Ir — 0i+<§) I! ———<—-‘g

-zg(6 1-z¢(6) 1-z¢(8
T29(8) ™ Jo |,]o | <x 1720 loy [, l6,] <= 2720
>r
r>z rsr,

The integral over r >T is bounded independently of x and =z

when 0 < z <1, since <p(6) is then bounded away from 1

in the range of integration. Using (17) the integral over

TLT with mng Mo ? may be written as
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& 6
Jv[ I‘drd = ff 1+L"-<£lr‘dl”dw
rgr 1-29(6) n+r?
=70 r<r,
r
)
= 2n [ __r_gr_z + Q)
r=0n+r

-% logn + (JQ) ,

where ()(1) is independent of nsm, and x . Hence

, de 2 2
{20) N m = 7t(crl+c§)i- logn O(l') } ’
and the lemma follows on combining (19, and (20). Also

from (20),

! dae

oo
) 5 —
(21 < I 1 -2p(6

no_ : 1 =
R =

2% 1 2

which is the condition required in Lemma 1 .

Proof of Theorem 2: Let B(x,t) =

2 a (x). Then, on
ngt B
substituting z:e_x, with A small, say O<7\-<)\o sy in
Lemma 2,

e—l

}° t dtB(X,t) A(X,E:—.}\)
(22) O ~
2 loglx]| - hix,n) + JQ)

~Mlegnh + Q)]

where O(l) is independent of x and A , and

k| x| 1 - J (u)

= flx,l-e ) =
(23) h(x,A) = £(x,1 ) =2 { ufl + u?/c2(1-e"M) |x| 2}

du.
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The Tauberian Theorems 98 and 108 in [10] use a method
due to Karamata to obtain the asymptotic behaviour of a
function from the behaviour of its Laplace Stieltjes transform,
with respect to A say, near A =0 , Since A(x,e—x) is
the Laplace transform of a series of positive terms, this real
variable method may conveniently be modified here, by
considering A(x,e_x) for large values of x as well as for

small values of A , to obtair the behaviour of B(x,|[x|%)

when o > 2 .

By Theorem 99 in [10], fcr each real function g,
Riemann integrable on (0,1) , and for each & > 0 , there
exist polynomials

S

such that

L1 o 20
fa)
=

i
p(u) = T p v’ and q(u) =
s=0 S

s=0Q 'S

(24) p<g<q and et iqe™®) - ple )t at <.

o8

Then, since B(x,t) increases with t,

-\

(o] o0
o™ a(e™) aB(nt) 2 [ o7 p(e) aB(x,t)
(e o] <\ 3 1 —
(25‘) 0 s=0 S t
’ i © —(s+l)rt
= I I a,B(x,t
s=0 Py 0 ( )
i )]
- % p_ Alx, (s+l,l;
s=0 °
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Using (22), with A small,

s+1)7\} _ 2 1log Ix| - hix,(s«1)a} + 0(1) ‘

~(
Afx,e = _(s+1) - j_l.:g}\ ; O(l) E
(26) log {x
- T (sil) )\glloglx + As(:{’l) ,
where
O {h[x, (s+1)A + !-26.‘5’.
(27) A(xn) = Qlnlx, (41 2] | O(logx) ,

(s+1) A log A
where (J(.) is now independent of x and X, as A = O+ ,
but may depend on s . Let g(u) = at when e <ugl,
and O otherwise, i.e. g(e-t) = e’ when 0O<t<l, and O

otherwise, Then, since B(x,0) = 0 , it follows from (25)

and (26) that

B(x,x'l)

oo
é e~ M g(e-)\t) dtB(x,t)

i I 2 lcz)g[x[ }
4 -
sEO Ps\” (s+l)Alognr * As(x’)‘>

-(2_1‘25.Lx_|> sijfo ps (S+1)_l ¥

A log A

v

i
I p

L pg 8,)

But P. € dt

Qg °s

10 eosis
[ Al

o0
[ et
¢}

0 pg e

py (s+1)7 .

o0
fe?p(et)dt
> 1l-€,

using (24) and the above definition of g. Hence

-1 (1-e)2 log|x|
(28) B(x,\ ) 2z - A log A

i
+ L Pg 8_(x,)\)
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So far A has been small but independent of x . Now let
A= lxra’, where o >2 is fixed. Then, since

-1
Jo(u) = l-D(uz) as u-0, Jo(u) =0(u™2) as u-c, and
il_e_(s+1)7\'z 'xlz ~ (S+1) lx'-a+l ’ as X 2 oo,
it follows from (23) that hix,(s+1)\] = 0(1) as x> x.

Therefore, using (27) with A = |x|™®, and a>2 fixed,

a, 1
As(x,k) = ‘xl O(mr) as X » oo,
where O() may depend on s , so that from (28)
a ¢ 2 1
B(x:'x, ) 2 ‘xl { al_l—s) + C(m)} 85 X 2> 0.

Since €>0 1is arbitrary, it now follows that

o
x._lz

x|%

i

lim inf

X?oo

Bxl s a>2.

The previous argument may be repeated similarly beginning with

the ineguality g < g to obtain

: B(x, Ix|™) 2
e M < b

Hence for a>2, B(x [x[*) ~ 2[x|%6 , as x+ .
The behaviour of PiT(x) > lxla'} 85 X 2 oo 1is now
easily obtained since

B(x,t) = £ P{T(x)>n},
ng<t
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where P{T(x) >n} is monotonically decreasing as n

increases. Thus, if o >2 and & >0,

B(x,‘x|a+6) - B(x, [x|®) < |x lc'+5 PiT(x) > |x]|%] ,

'x|q+('5

and on dividing both sides by and letting x » o,

lim inf P{T(x) > fx|%3 > 2 (a+5)_1

X = 00
Hence, since O > 0 is arbitrary,

%1%} -t

lim inf P{T(x) > >2a ", a>2.
X+ oo
Similarly B(x, |x|*) P [x|%* P{T(x) > [x|®%} ,
so that lim sup PIT(x) > [x]|%} < Za-l , a>2.,
Hence lim P{ T(x‘) [x[*] = 2q 1 a>2,
X » 00

which completes the proof of Thecrem 2 .,

The following deduction may be made easily now.

Corcllary. Theorem 2 holds when the origin is replaced by

any finite set of points S8 , znd lxl by the distance r

of the starting point from § .

Proof: Suppose y is a point in S. Then for each o > 2
P{ Process.reaches S by time r° }

(29) . > P{ Process reaches y by time r" ]

-'1—20,-1 as r * oo,
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Suppose a >2 and & > 0. Then by a simple application
of the Strong Markov Theorem (see Chung [3], I, section 13 )

it follows that

+0
P { Process reaches the origin by time r>' }

> P { Process reaches S by time ¢ ,» and then reaches the

origin within a time r& of first hitting S }

= I PfProcess first reaches S by time r> starting at y ]
yeES

x P{ Process reaches the origin by time 2 starting at y|.
The second term in each of the last summands tends to 1 as

r > ®, Since S is finite, it then Tollows that

lim sup P{Process first reaches S by time r} <1 - 2(a+8)-1.
r -+ oo

The corollary follows on combining this inequality with (29)

end noting that & may be chosen erbitrsrily small.

Saks The first hitting time problem is now investigated
for a random walk on the same two-dimensional lattice, but in
continuous time. Let {pxy(t)f be the matrix of
transition probabilities, and suppose that the process is

]
specified by the transition rates 0) = where
p y ny( ) %, yox ?

_—.-q £ oo,

00
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Since the transition rates qu are bounded, & short
functional analysis argument shows that if P(t) = {pxy(t)}
end Q = {qu} , then P(t) 4is uniquely determinsd and
P(t) = e* . Hence if

_ i6.x
ZlE I et¢(6) e—16.(y—x) de
i3

3

then t
ny( )

where the double integration is to be taken over the range

—1(591 L™, =K< 62 <% unless otherwise stated. Suppose that

o(8) = -u(8) +O(l6]%*%)

where 08>0 , and u(6) is a positive definite quadratic

form in the components 61 and 62 of 6. This is equivalent
to the condition that the firs% jump positions have zero mean
and a finite moment of order greater than 2 . Since the real

part of @(6) is not positive,

[ oM py (1) at = T {2y gy o80(8) ~10-(r%) 4} gt

0] 4
_ 1 © -(A-@B))t ., , ~i6.(y-x)
(30) = P i {6 e at} e ae
_ 1 efie'(y_x)
= Mz ff ——y i

when X\ >0, where the order of integrztion may be changed

since ths integral is absolutely convergent under the given
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limits of integration.

To obtain the Laplace transform of the first hitting time
probabilities, firstly let gyo(t) be the probability that

the process first reaches 0 later than time t, starting

from x #0 . Then

t
Pro(t) = = [ ppo(t-s) a.g,,(s) .

e

and B(x,t)

Then since gxo(s\ decreases as s increases,

Pro) = o A Pyolt) at
- T oM t ‘
= doe 1= L poolt-s) dg(s) fas

®  -As © -t )
= - £O dsgxo(s) t£0 e poo(t) at

'As 1 %° P -As
=By L [e Beo(=)] 2 Lo Te(s) as

-As

oo
A
= poo(x) f1 - A sLO e dSB(x,s)
Hence using the above and (30),
A p) l 16 *
® At Pog(M) - Fxo(W) a Z 57 %
g e dtB(x,t) = x ) = y .
N JI

00 ¢Z65
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The methods used in the discrete time case may now be applied
to show that Theorem 2 and its corollery alsoc hold in the
continuous time case, except that , in the prcof of the
corollary, the continuous time version of the Strong Markov

Theorem is now needed ( see Chung, [3], II, section 9 ).

3.5. The following result is now obtained from Theorem 2.
Suppose a random welk, in discrete time, and on a threes-
dimensional lattice of points (x,y,z) where x, y, z = 0, +1,
+2,... , is defined as follows, Let Xh sn=1, 2,,.. , be
a sequence of independent identically distributed random
variables, with values on the three—dimensional lattice,

whose components in the x y plane have the properties of

the two-dimensional random variables defined at the beginning
of section 3.3 . Suppose also that &n cannot simultan-
eously possess non zero components in the 2z direction and
the xy plane, and that the: z direction component has zero
mean and finite variance. Suppose the position of the

random walk at time n is given by Sn = S° + X1 + oees + xn ’
n=20,1, 2,... , where So is the irnitial position at time O.
Let Z be the point of the 2z axis which is reached first

1
starting from (x,y,0), with r = (xz-byz)z .
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Corollary. If a >1, P{ |z |<r »l—q.-l as r - o,

As mentioned at the beginning of section 3.2 , this
result was proved directly in the important cese of the simple

symmetric random walk by Doney [4].

Proof of corollary: If the initial position is (x,y,0),

with r = (x2+y2)% , let T be the total number of steps

taken before reaching the 2z axis for the first time, H the

total number of non zero horizontal steps taken parallel to

the xy plane, and V the total number of zeroc steps and

steps taken in the verticel 2z directions. (Thus T = H + V.)
By observing only the motion parallel to the xy plane,

it follows from Theorem 2 that, if a > 2,

(31) P{T_<_r°‘} -> 1--2a.-1 as r * o .

Now suppose a >1, & is small, with 0<6 <a-1, and
A >0 1is large. Then for all large enough r ,

pilzl <r®} » Pflzl < 2r®0}

> Pilz] < 7\.r°'-6, T5r2<c'-6) }

3
(32) P“Z,.S AT, T_<_r2(°'-6) |

v

Pir<r2@) ) | p{lz| savE} .

v

2 3 APRI%ES /l

Nkl SRARY
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Clearly from (31)
(33) pio < r2(88) 1, 1 1 (amg)t as T +co.
and it remains to show that the second term P“Z‘ > Xﬁ} is
small,
(34) Let mn =% min(p,l-p) ,

where p is the probability that Xn has zero x and y

conxponeﬁts. Then
Pf|z| > T}

P{|z| >MT, nT< V< (1-n)T}

\ _—
(35) + Pilz| >wT, n >V or V >(1-n)T}

P{lz| >a/W7TTm), V>mr] + PIVenT] + P[V>(1-q)T},

I

gince NT <V dimplies V >nH >nr . Now put

P{lz] sWV(In) , V >nrl
= £ Plz| sWe/T=n) | vav] P{v=v],

v >nr

(36)

and,using T =H + V ,

P{V < mH/(1-n)}

2 P{V < m/(1-n) | H=h] P{H=h]

P{V < T}
(37)

Then let the one step transition probabilities of the random

walk be denoted by (i) Poy for non zero steps parallel to
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the xy plane, where the auffices of P, &ve two dimens-
ional vectors, and (ii) %p for zero steps or steps parallel
to the 2z axis, where the suffices of quﬁ are scalars.

Then for all a and o ,

= ; nd = _
]z::) Pab + g qO:B l ? and g qaﬁ p

If the random walk is initially &t vector position a in the

xy plane,

P{H=h, V=v, Z=z} =

(38)
h+v-1
p p -..p ,'Ja. q unoq .
81740( ) a8 "y a 810 0% oo Uyy 2
G.
J
Hence P{V=v, Z=2} = E P{H=h, V=v, 2=z}
‘h+v=1
={Z[ = )p ces P Jt 2, ..o g
h %#O( v as %PlO qj O%_ %hlz’
and
P{V=v} = § P{V=v, Z=z]|
h+v~1} \i
- E z ene -
{?[ai;lo v )P as *** Pa loHP
Thus
PlZ=z, V=v
PZ= V= = = :
(ame | v=v) = ElEzad 2 (S0a/?) e (3 /0D

and it follows that the conditional distribution of stéis in

the vertical direction has zero mean end finite variance.
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The central limit theorem ( see Gnedenko and Kolmegorov [9],
S35, Theorem 4 ) then shows that the conditional
probabilities in (36) have a limit as v - o which is O(x'l).
Hence there sxists a constant ¢ such that
(39) lim sup P{ |z| >WV/TT=1), Vsnr} < % .

r - oo

Similarly from (38)

P{H=h, V=v} = & P{H=h, V=v, Z=2}
hev-1] v
= I p eee P ( ) P
8, #0 "88 8,10V V
and
-h
P{H=h} = £ P{H=h, V=v} = 3, p wes D (1-p)7.
"Thus
PiH=h, V=v}] (h+v-l h v
P V= = = = -
{V=v | H=h} Theh v ) (1-p) p .

Considering the conditional probabilities in (27) and using

the definition of mn in (34), it follows that

P{V < mh/(1-n);| B=h] < 2 (o2 (1-p)0 o7 .
)

The last expression is the tail of a negative binomial

distribution, which has mean hp/(1-p) and variance hp/(l—p)%

It is easily shown, using Tchebychev's inequality ( e.g. see
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Feller [7], Chapter IX ), that this tail tends to zero as
h-+o . Hence, since H >r in (37),
(40) P{V <nT} » 0, as r - oo
Similarly it may be shown that

(41) P{V> (1l-n)T}~> 0, as r oo,

Therefore, on combining (39), (40) and (41) with (35),

. 1
lJI.‘m_’solép P{lz| >WT] < 5 s
and thus, on combining (32) and (33),
lim inf Pf[2] <%} » 1 - = - &
T oo - - i ca"'& l *

But 0 may be chosen arbitrarily small, and \ arbitrarily

large, so that

(42) lim inf P{|2} <%} > 1 - %
r—> o

Now suppese a>1, 6>0 and e€>0 , where 6§ and e are

both small. Then, for all large enough r ,

P{lz]| > r®} > (2] > g 140 }
> P{ | 2] >er°’+6, T >r2(°'+5)§
(43)
> PHZI >evT , T > r2(°'+6)_3

Pf T L) } - Pilz] <eVT}

v
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From (31) it follows that
(1) p{r>r2(ed)y 5 1

— as r 2> oo,
a+0

Using methods similar to those used earlier to consider
P{{z] >MWT}, it may be shown that there exists a constant c

such that

lim sup P{|z| <evT}] < ce .

T * 0

It now follows from (43) and (4 ) that

s o 1 i
l]i'm_’lo.n? p{lz] > r*} 2 755 - ce.

But € and & are arbitrary, so that

lim inf P{[z] > e} > -i'j , a>1.

I - o0 -

The corollary now follows on combining the last result with (42).
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Chapter /4.

A Simple Unsymmetric Random Walk in the Helf

and Quarter Plznes

4.1, Suppose a particle performs a simple random walk on
a two-dimensional lattice of points (x,y), where x,y = O, +1,

+2,... , and let Kn be the position of the particle at time n.

Let the one step transition probabilities be defined by

P oyxt,y') = P =Gy ) =), n= 2,0,
which takes the values p,, q, When (x',y') is immediately to
the right or left respectively of (x,y), and takes the values
Py 9y when (x',y') is immediately above or below
respectively (x,y), where Pq» 95 Py 4, are positive
constants and p,+q,+p,+q, = 1.  Henze [11] has shown that

the n step transition probabilities
n 1 r
Y (st;x ’y') = Pan+m=(X',.y‘)lhm=(x,y)}, n,m > 0,

are given by

X'=X yl_y
2n (Pl) 2 [P2)2

-— — X
n? (9 L)

r Vplqlcosa + szqzcosﬁ)ncos a(x'-x) cos B(y'-y) da 4B ,
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where the double integration is to be taken over the square

-t <@ <K, =% <P <=®, unless otherwise stated. By

IA
In

using a reflection argument, lisnze in [ll] showed that, if
each point of the x axis is made absorbing, the n step

transition probabilitiss in the upper half plane become

{ T\
! n ' f / 2y n t
(1) P (%y;x",5") - =1 p (x,-y;x",5")
\F2/
xX'=x Y=
_ (Pz\ 2N
L \.ql/ 4p/
(2)

i (-Jplqlcosa +-¢p2q2cosﬂ)ncos a(x'-x) sin By' sin By do 4B,

where miltiplying by (qz/bz}v replaces p2y by q2y in
p(x,-y3;x',y'), and thus the negative term in (1) accounts
for those paths in the whole plane which reach ihs x axis
before (x',y')s A similar ergument shows that the n step
transition probabilities in the positive quarter plane with

absorbing axes are given by

fovx'=x o h\y'=y
cinll AR LAY

hﬂz \qu \92f

I P; 9 €Os0, +'V§;E2cosﬁ)nsin ax' sin ax sin By' sin By do dB.
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Various questions are now investigated on the distribut-
ion of Tirst hits on the axes in the half and quarter planes.
Tor the upper half plane case with By # q2, it is shown that,
starting at (0,¥), the distribution of first hits on the x
axis, given that the axis is reached a2t all, obeys the central
limit law as ¥ = o  But when p, = q, and py # q,, the
distribution of first hits oa the x axis, when suitably
normalised, tends to the stable law cf order % as y = oo,

In the case of the gquarter plane, it is found that similar
results hold for sach axis considered, except when the expect-
ed step of the random walk i:s perpendicular to the axis

considered.

L.2. In the case of the random walk in the upper half
plane, let S(y) be the point of the x axis which is reached

first starting from (0,y), if the x axis is reached at all,

and let S(y) be undefined ctherwise. Using (2) and the
transformation
(3) 2 J;;Eécosh po=1l-2 Vp1dicos @, with p > 0.

Henze [11.] showed that

1 Pl‘ \ 'K -
5;1@;} \5‘) e

(4) Pis(y)=m} =
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By changing the path of integration in the complex o plans,
4t 18 now possible to obtain the characteristic function
¢y(u) of the distribution of S(y), where
ius(y) & o ium
o, (2) = E1SU)} = T pls(y)en &*.
m=-o0

The transformation (3) may be generalised for complex o by

putting
1 -2 @lcos o
(5) L = — ’
' 2Vpy
end then letting
' A
(6) §=2- (PP,

To meke ¥ analytic, the & plane is cut along -1 < & < 1.
Then ¥ is an analytic function of a, with o = u+iv , if the

o plane is cut along

u = 2rm, r=0,+l,+2,... ’
(7) N W
1-2vpy0, 1+ 2Vpou,

< cosh v < —

2Vp,q) 2 ¥pyq;

For real o, ¥{(a) = e ™ and is even, so that (4) becomes

: 1 Py % (?2 - % ® .
(8)  Pls(y)=n} = 27(;1'> @) 1 Y emiom g
\ ¥ -~
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Now let & = log ’/5;7‘11 .  Then

P, + 9 1-2Ypya,
cosh a = v < =
. 2] -"
2 qul « plql

with equality only when p, = g,. Hence from (7), vla) is
analytic in the region -m ¢ u <=®, 0 < Iv' < ‘al, where
c. = u+iv, except for singularities at o = +ia when p2=q2,
at which {(a) is continuous. Therefore, using Cauchy's

theorem for contour integrals, it follows from (8) that

P{S(y)=n} =
. A m oy N
-n-ia R®-ia % P-\T /P, \- e
{1 +1 +1 1}z _1)2 “2) 2 qy(q)) o7Iem 4
-K -f-ia 7-ig M4/ \%2
9 . oo > m
( ) 1 e ( Py _12 ¥ /pl Z  -iam
=3= [ —= Y(a)p (=" e da,
* o x-ial\ 92, J \ql /
R YO
= o elu)~ e dz ,
-7
where 1
P2 -2 ' ] .\/_
(10) o(u) = ‘12) ¥(u-ia), a = logVp,/q, .
It is easily verified that -(S—u- {o(u)}¥ is Riemann integrable

over -% < U < ®, so that io(u)} is of bounded variation
over -m < u <. Therefore by Jordan's test [o(u)}Y is
equal to the sum of its Fourier seriss, and thus, from (9)

and (10), the characteristic function of S(y) is
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(11) o (u) = 3 P{s(y)em} o™ = fp(u)}'.

==c0

By considering only the behaviour of the random walk in the

Y direction, or by using the above formula, it follows that

(12) T PIS(y)=n} = {o(0)}¥ = [min(1,q/p, 8.

m=-oco

Suppose Wr is the displacement in the x direction
between the time when the line y = r is first reached,
supposing that this event does occur, and the time when the
line y = r-1 is first reached, if this event occurs at all,
Then the random variables Wr’ r=1,2,... , are independent,
and each has the same distribution as S(1) and, from (11),
the characteristic functior o(u). Thus S(y) = W1+...+W& s
where this sum must be undefined if one of the summands does
not occur. By applying ar. improved version of the central
limit theorem when P, £ q2 s the following result may be
obtained, with an error term which is used when the quarter

plane case is considered leter.

Theorem 1. If Py £ 4 s then as y » o,

= @{ngi}- + O™

where the last term is independent of m ,

Pi{s(y)<mi

[min(1,q,/p,) 1
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P1=9

02 p1+ql . pz"'QQ (Pl—q-l)z
- 2

and 3(t)

1]
6]
2]
)
ot

n

- t _‘,2/()
(N2r) I e 7€ ds.
- Co
Proof: It is easily found that, when p, # 4

¢'(0)

p''(0)

2 2 .
—(‘T +u ) ml-n(lsqz/pz) »

and ¢(u) has a finite fourth derivative at u = 0.

Hence, using (12), Q(u)/min(l,qz/pg) is the characteristic
function of a random variable which is finite with probabili-
ty 1, has mean p , variance 02, and a finite third
moment. Since S(y) is the sum of ¥y independent random
variables, cach with the characteristic function ©(u), the
theorem now follows from a result on convergence to the
normal law given by Gnedenks and Kolmogorov in [9] Q40,

RN |

Theorem 1,

The conncction between the limiting beheviours in the
cases P, > q, and P, < 1, is in fact a special case of a
general result obtained by 9'N. Waugh in 'Conditioned Markov

Processes' [24].
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When p, = q, , it follows from (12) that the x axis is
rcached with probability 1 . However the analysis used
vihen Py # 45 clearly breaks down when p, = 95 since ¢(u)
is then not analytic at u = 0 . A method given by
Gnedenko and Kolmogorov in [9], §39 and §40, is now adapted
to cover this case. Theorem 1 in [9], §39, may be modified
as follows by replacing the second condition and adding an

extra condition.

Theorem. Let A, T, and & > 0 be constants, F(x) a non
decreasing function, end G(x) a function of bounded
o .

variation. Suppose f(t) = [ eit¥ dF(x) =and g(t) =
oo oo
I et ag(x) . If
- 00

1. F(-00) = G(~0) and F(eo) = G(o0) ;

2. There exists m_ > 0 such that F(x) and G(x) =
O(enox) as X = oo ;

3. 6'(x) exists for all x and [G'(x)| <4 ;

tt’dtzﬁ;

5. For t real and 1 > 0
f(t+in)-g(t+in) =()(lt+inl) as t >0 and 1 - O+,
then to every number k > 1 there corresponds a finite

positive number c¢(k) depending only on k such that
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£

e c(k)

=i

|F(x)-6(x)] < k

Proof: As in the proof of the original theorem, it is
sufficient to consider the case A = T = 1, and then introduce

the functions

3 L
00 = & ()
So , lt] > 1,
and n(t) = )2(1—|-t!)5 : 3 < ltl <1,
\l—6t“+6't'3, 0< [t <3,
where n(t) = [ e H(x) ax
-0

It is easily verified, using condition 2 and partial
integration when x < 0, that the integrals for f£(t+in) and
g(t+in) converge locally uniformly for real t and uniformly
for m when 0 < m < constant < Tiy It may then be shown
that f(t+in) and g(t+in) are continuous in 1 when

0 < mn < constant < Ny » locally unifiormly for real t . On

integrating by parts,

flestploalinn) . 7 30) (p()6)] ax,

oo

Let v (e) = I H(ey) VGGG &, 0gmen,
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Then if 0 < m < Ty

fleneeiin) n(e) = £ o*™ v (0 ax |

and, since vn(X) is integrabls over C—a%dﬂ and is of

bounded variation over any finite interval,

h(t) at .

1 T -itx £(t+in)-g(t+in)
= k[ TRYX AXHIMCE
v(x) = am e -i(t+in)

Hence, using the definition of vn(x) and noting that

h(t) = 0 for ,tf > 1,

o0 LI . .
L H(x-y) eV Fy)-6(y)] dy=§ I et ﬂt+fing;f§;;ln) h(t)at,

The proof of the modified theorem now follows without any
change from the methods used after equation (3) in the proof

of the original theorem,

The following result may be obtained using this last
theorem, with an error term which is needed later when the
quarter plene casec is considerad. The actual limiting
behaviour of S(y) might be anticipated by firstly observing
only the vertical motion of the random welk and using a
result for the first passage time through the x axis
analogous to that given by Feller in [7] (Chapter III,
section 8(c)) for the limiting behéviour of the first

Passage time of the simple random walk in one dimension.
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The limiting behaviour of S(y) is then obtained by an
argument similar fo that used in the last section of
chapter 3 .
Theorem 2. Ir Py > qy and Py = Q5 then s y =+ oo,
/ev?) + QO(y~ L
P{s(y)sm} = 6(m/ey”) + U(y )

where the last term is independent of m, c=(p1-q1)/2p2

-

and G(x) is now the distrbution function

s x <0,
G(x) = 1 0 _52 /2
(2/n)2 [, e /€3as x >0,
x-ﬁ'
which is the positive stable éistribution of order % .
Proof': The proof consists of satisfying the conditions of

the previous theorem with suitsble valuss of A, T, Ny? and
e, 'taking
2

F(x) = P{s(y)gecy xi
Condition 1 is satisfied since the x axis is reached with
probability 1 . If the motion in the x direction only is
considered, without the x axis being absorbing, it is
easily shown that the random walk reaches a distancc m > 0

to the left of its starting point with probability (ql/pl)m.
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It follows that

P{s(y)<x} < (Pl/ql}x when x < 0,

2
so that condition 2 is satisfied with m_ = cy~ log(pl/ql) .

By using the same type of contour change &s in (9), which
establishes that ¢(u) is the characteristic function of the
distribution function P{S(y)<x} , it is easily verified that,

if u isreal and 0 < v < log(pl/ql) ,

T Pis@)mm] o) o fo(uriv)]Y.

m=-o00

Hence, if 0 <7 < cy2 10g(p1/'311) )

‘}o _i(t+in)x

?o ei(t-f-in)x

- OO

v o]

i(t-i-in)c-ly—zx ]
[ e a PIs(y)gx}

- 00
{ 't+i1j)}y
cy

But from (5), (6), (7) and (10), if a = -i 1og‘/;l/ql + u,
3

where u is small and -g <arg u < 5 s then as |u| -0,

1 - icu +0(‘u‘2) ,

and o(u) = ¥ju - i log P'L7;L-§

ft+in) ar(x)

4, F15(y)sey°x]

N
i

Nj=

+Q(lul)

1 - (-Zicu)

1 .
taking argj(-2icu)?} = -’2-(—% + arg u) with --,J;- < arg u 5_%[-.
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Henoe f(t+in)

1]
G
‘ o+
&
iz
S’
<

‘.. cy2 Y ;
1 1-1-2 —_ +
_J og{1- | 1C[cy2} W ey2 )J
(13) -t+-: i 1_ t . R
_ [oos fEHiMVIZ | O+
) ey 21(.(ﬁy )- + oy
% .
e-[_—21(t+17|)] {L . O(_E;FLFU);
cy< /)
_t+12![ -0 . Also, USlT\g[E}, it follows that
cy
w .
gasin) = T oM agiy)
(14) B

1
e—[-21(t+in)]2

Therefore, from (13) and (14) with y fixed, condition 5 is

satisfied. Also since

ct

i 1
|e—(21;)2| _ o -tB
it follows from (13) and (14) with m = 0 that

J [l o ot g gff])
O™, - as y > o .

(VB

Therefore condition 4 holds with T =y and € =0(y_1).
Condition 3 is satisfied with A a suitably chosen constant

and independent of y , so that all the conditions of the

modified theorem are now satisfied, and theorem 2 follows

immediately.




L.5. The results of theorems 1 and 2 are now applied to
find the limiting distribution of first hits on the x and y
axes of the quarter plane. If the randem walk in the upper
half plane starts at (x,y), let 8(x,y) be the point of the
x axis which is reached first; if the x axis is reached at all.
Also, if the random walk in the positive quarter plane starts
at (x,y), let T(x,y) be the point of the x axis which is
reached first, if the x axis is reached at all and the y-axis
is not reached earlier. By applying the reflection argument

mentioned in section 4.1, it follows that,when x, y, and m > C,

9;\x
(15) P{T(x,y)=n} = P{s(x,y)=m} - (;—) P{S(-x,y)=m},

1
P{S(,y)=n} - (i—i)’” P{S(x,¥)=-n}.

(16) and P{T(x,y )=m}

(17) Also let PiIT(x,y) >m} = P{S(x,v) >m} - R{x,y;m) .

The problem is now considercd in various cases, in each of
which the expected step of the random walk is non zero.
These cases are determined by the direction of the drift
vector, that is the direction of the expescted step of the

random walk,

Case (i): Py 39 5 Py <4, - It is krown that, if such a

random walk in the whole plane starts at (x,y) with x, y > 0,
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the v axis is renched with probability 1, and the y axis with
probability (qj/pl)x . Therefore
P{T(x,y)>0}
= P{The random walk in the upper half plane hits the x axis}
- P{The random walk in the positive quarter plane hits the

¥ axis, and does not hit the x axis earlier}

1 - P{The random walk in the right hand half plane hits. the

v

y axis}

1 - (a/p)* -

Hence, if the random walk starts at (x,y) in the positive
quarter plane, the probability that the x axis is reached first
tends to 1 as x =+ o, Also, if 6 dis finite and

x+uy+0ovy > 0 as x and y -oo, it follows from (15) and

Theorem 1 that

P{? x -_x+ ) 5 61
y }

P{T(x,¥) >x+uy+dcVy}

PIS(xy) > xewyedolyl + O((a,/b,)0"
-1 -3(8) .

Thus, when the random walk.sterts st (x,y), the distributien of
first hits on the y axis tends to the normal distribution with

the expected hit at x+yy and variance 0'2y as X andy = oo .
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Case (ii): Py < Qqs Py < qg -
Put P{T(x,y) >0} = P{5(x,¥) >0} - R(x,¥;0) ,

where, using (16), (17) and Theourem 1,

(o0}
R(x,y;0) = I (Pq/\'h)m PZS(x,y)-—m}
Mm==d
E A = m
< Ploy <8(x,y) <0) + 2 (p/q))
mn:xy
1
= Oy®7®) as y > 0o,
where 0 < g < %. It then follcws from Theorem 1 that as ¥
PiT(x,y) >0} = P{S(x,y) >0} - o(1)

1 - cz(_l‘Ii;Y-) « o(1).

In this case u = (P1°ql)/lp2_q2] < 0, 50 that if 6 is a

finite constant and x+uy ~ 8ovy , i.e.

x ¥ % ‘15( Pitqy Po*ly 13
= ol (B, B
lp_]_"qll lpz_(].zl ‘Ipl-qll \(pl—ql)z (‘P2"_2)

as x and y » «©, then the probability that the random valk
starting at (x,y) reaches the x axis first tends to
1 -2(-6) =2(9) . Similarly, if x+uy+6cV¥ > 0 as x and y

=+ | then by applying (17) and Theorenm 1,

P(T(x,y)—}(rxwy) g e} = PIT(x,y) > x+uy+ OV y]

P{ 8(x,¥) > x+uy+Bovy } - R(x,y ;x+py+6ovy)
1-2(9),

¥
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since 0 < R(x,y x+uy+boVy) < R{x,y;0) » 0 as y » o . Thus,
as in case (i), when the random walk starts at (x,y) the
limiting distribution of first hits on the positive x axis as
x and ¥+ oo 18 the same as for the normal distribution with
variance 0'2y, and mean x+uy, where the mean is the point at
which the drif't vector meets the x axis. By symmetry,
equivalent results hold for the first hitting probabilities on

the y axis.

Case (iii): P, > Qs Dy > qg - It follows from Theorem 1
that the same limiting distributions as in case (ii) may be
obtained in this case for the rzndom walkx starting at (x,y),

if the hitting probabilities for the x and y axes are divided
by (q2/P2)y and (ql/pl)x respectively.  Therefore the
probability of hitting either axis, starting from (x,y), tends

tc Oas xandy -

Case (iv) ¢ Py < qps Py = 4y -
Put P{T(x,y) >0} = P{S{x,y) >0} ~ R(x,y;0) ,

where, using (16), (17) and Theorem 2,

[e.0]
R(x,50) = 3. (p/9))" PIS(%,y)=-n}
< BlysS(oy) <0} + 2 (p/g;)"
m >y

1
= 02 as y > oo .
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It then follows from Theorem 2, with c¢ = (ql—pl)/2p2 now,

that as y = o

P{r(x,y) >0} = P{8(x,y) >0} - o(1)
X
= — + 1 .
(52) O

Therefore, if © is a non negative constant and x~ fcy” as
x and y %+, the probability that the x axis is reached first,
starting from (x,y), tends to G(8) . Similarly, if

x - ecy2 >0 as x and ¥ + oo, then by applying (17) and
Theorem 2 ,

P{l‘izwztzs R _e}
cy2

P{T(x,¥y) > x-ecy2}

il

. 2 2
HS(x,y)>x-8cy”} - R(x,y;x-6cy")

+ G(e) ,

since O S_R(x,y;x-ﬁcyz) < R(x,y;0)+0 as y=+c . Thus the
distribution of first hits on the positive x axis has the same

limiting behaviour as in the corresponding half plane case.

Now consider the first hitting probabilities on the
positive y axis, and let Tz(x,y), Sz(x,y), H?.am’ia:f'2 be the
quantities for the y axis corresponding to T(x,y), S(x,y), u

and o respectively for the x axis. Clearly Mg = 0 =and

(oé)z = 2p2/|pl—ql] in the present case. It then follows
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from (15) and Theorem 1, with the roles of x and y interchanged,
that as x and y +» o
P{Tz(xs.Y) >0; = P{SQ(X’ZY) >0§ - PZSZ(X,—}T) >0}
1
=1-8(-y/o¥x) - {1-2/oyx)} + O(xF) .
Therefore, if © is a non negative ccnstant and y ~ GGEVx as
x and y » oo, the probability that the y axis is reached first,

starting from (x,y), tends to &(8) -2(-6) . Similarly, if

y+6qyx30 8S X 2 o0,

(2 o)

PiT,(x,y) > +60,/x]

P{S,(x,y) >y +00,/x] - Bls,(x,y) >y + 00,/x]

1 - 3(8) - {1 —@('94-;_?;)} +0(x-12_) .

Therefore if y ~ eocéVx as x and y * oo,

P{% >e} » 1-%(8) - Il-f:»(a+2e° )}

= 2(6+26)) - 8(9) .
Thus the limiting distribution of first hits on the positive y
axis, for the random walk starting at (x,y), is the same as
for the normal distribution with variance (62)2 and mean x ,
( where the mean is the point at which the drift vector meets

the y axis ), except that a non negligible term must be
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subtracted, which corresponds to the probability of hits from
the reflection of the starting point in the x axis. The
limiting results for the probtebilities of hitting the x or y
axes first are clearly complementary, although they are

written in different forms for convenience.

Case (v)* P > Qs Py = 4, - An argument, similar to that
used in caese (i), shows that the probability that the x axis is
reached first, starting from (x,y), tends to 1 as X » o .
Also, epplying (15) and Theorem 2, with ¢ = (pl-ql)/sz now,
it follows that,if 6 is finite and }:+ecy22,0 as x and

Yy * oo,

p{I(xy)-x | e}
( qyz -

PiT(x,y) >x + E-cyzf

P{S(x,y) >x+8cy°} - O((q;/p,)%)

1-0G6(6) +0(1) .

Thus when x and y -+ e, the disiribution of first hits on the
positive x axis for the random walk starting at (x,y) behoves

Just &s in the half plane case.

The results for the behaviour of the first hitting
probabilities in the remainingcases for the orientation of the

drif't vector now follow from the cases already considered by
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interchanging the roles of x =and y. To the f'irst order of
approximction, the limiting distribution of first hitting
probabilities on an axis of the quarter plane is therefore the
same as for the half plane case, except when the drift vector

is directed perpendicular to and towards the axis considered.
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