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INTRODUCTION

Given a'randomhwaniab%ew*-V&hﬁmguwatwa&uwwuamgpgce
- E, suppose that X,;, Xz, ... is»amgequen@eﬁ@ﬁwimd@pen&qnt
{

random variables each of which has tnewsamewwr9frfbwvﬁon
n ;
as X. - If 5 denotes the nth partial sum X - X; of this

=1
sequence, we can think of S, as the posiiion in E at time
n of a pafticle which starts at the origin at time zero
and receives the random displacement X, at time j, and we
refer to the sequence {S,} as the random wélk-(R.W.)
generated by the random variable (R.V) X. Throughout this
thesis the state-space E is either k-dimensional Euclidean
space E, or the lattice L, of points in E, with integral
coordinateis, and 'k > 2. - This is the only feature that the
three topics discussed have in common.

If P*(B) = PbsneB for an infinite number of integers n}
it is known that for any R.W P#*(B) = 1 or O for every subset
- B of E, and the problem of deciding whether a given set B is
a 1-set (i[e. P¥(B) = 1) or a O-set (i.e. P*(B) = O) has
received sbme attention., In the special case of the simple
R.W on L, for k > 3 this question was answered completely
by Tto and McKean [19], and their solution was extended by
Lamperti [21] to a.large class of R./W*'s., It is obvious from

A
the form of Ito -and McKean's criterion that earlier attempts

<t URIVES
S eni B
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to find a condition of-tne“fnTm ZJﬂfbkék}“# + o necessary
and sufficient for B to be a 1-s§iBwere doomed to failure,
yet conditions of this form which are e;tnerlnecessary or
sufficient are not without interest, - In chapter I such
conditions are derived for the simple 3-dimensional R.W
from ?to and McKean's criterion and are shown to be the
best possible of this form. - It is also proved that no
condition of the more general type - X -f(g) = 4+ m can be
necessary and sufficient for B to agiéset.

- When we know that the particle is almost certain to
visit a set we can defi;e a R.V whose value is its position
when it first does so. This R.V will be a function of the
starting point of the R.,W and if in the iattice case the
absorbinb set is taken to be a coordinate axis its character-
istic function is easy to calculate in terms of the
characteiistic function of X. Thus in Chapter ‘-II we derive
from the simple 3-dimensional R.W a doubhy infinite sequence
which we investigate firstly for fixed a and b

3 |

—> + ©.: In the latter case one

. 1) 1
of R.V s Fab
and then as r = (a2 + b?)
might expect there to exist a norming function d(r) such

that Fab?d(r) has a non-degenerate limiting distribution as

r—> + ©. This fails to happen, and it fails to happen in
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such a way that we are lead first to postulate and “then -to
prove that a non-degenerate 1limiting distribution exists'for
}oglFaBT/d(r) for suitable choice of d(r). Though no-attempt
is made to extend this analysis to the general RW om Lz it

is not difficult to see that the argument leading to the
non-existence of a limiting distribution for Féb/d(r) can be
generalised. However the method used to investigate log‘Fabl
depends upon specific properties of the simple R.W and does
not seem to apply in general. It is interesting that,
according to Ridler-Rowe [28], in the similar problem
concerning the time at which a R.W first hits an axis the
logarithmic change of scale leads to a limiting distribution
in the general case.

When the state-space E is the positive half-1line the
renewal function H(x) = %OP{Sn £ x} has an obvious physical
interpretation and has b:gn much studied. The central result
is the ‘Renewal Theorem, which, if X is a non-lattice R.V,
says

lim ;{-H(x + a) - H(x)} = a m™1, where 0 < m =£.X) ¢ o.
X —>4=
From our point of view H(x + a) - H(x) is the expected number

of visits of the particle to the interval (x, x + a) and as

such it 'makes sense when X can take positive and negative values:
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several 'authors have shown that the Renewal Theorem:still
holds -in this -case tf-m > 0.  When X tak?s values inm E,
for k > 2 the analogue of H(x) may fail to exist but
- G(A) = E~P{§ﬂ € A} exists for any bounded Borel-measurable
set A, :;?ess k = 2 and X has zero mean.  This function |
was studied in 1952 by Chung [7] who proved that if X
has non-zero mean lim - G{A + x} = 0. Except for a slight
|x| =
weakening of the conditions under which this holds, due to
Feller [56], the literature contains no improvements upon
this 'Rebewal Theorem in higher dimensions'. The bulk of
the presgnt work, however, is devoted to an investigation
of the rate at which G(A -+ x) —> 0 as |x| —> + ®.  Since
when X has non-zero mean m one might expect the behaviour of
‘G(A + x) for large values of |x| to depend upon the angle
between x and m, the problem considered in Chapters III and
IV is that of finding the asymptotic behaviour as x — + ®
of G(A +ixj), where J is any fixed vector.  The solution
presented uses a straight-forward Fourier analytic argument
and applies under conditions which are not particularly
restrictive unless k > 4, when the existence of moments
of X of order higher than the second is required. - In the

zero mean case we are able, in Chapter V, to find an

asymptotic estimate for ‘G(A +x) which holds as-|x] = + ®



-5-

in any manner, but again the reswlt for k > 4 is marred _
by a probably superfluous conditionr on the h igher moments

of X.

Note Since the completion of this thesis F. Spitzer has
published a theorem [p. 307, Principles of Random 7Valk,
Van Nostrand, 1964] which is stronger than thecorem 1.1 of
chapter V. He shows that our assumption (5.1.3) is

superfluous.
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. CHAPTER 1

§ 1. If the distribution of X on L, is given by

P{X = (£ 1, 0y ..., O)} P{X = (0, £ 1, O, ..., 0)}

A

2k °*

the particle has.at time n probability "fiof moving to each

P{X (0O, Oy v.ous O, + V)4
each of its 2k neighbours, and X generates the simple k-
dimensional R.W. Blackwell [1] proved that any R.W on L (K > 1)
has the property that P*(B) = P{Sne B for an infinite number

of integers n} = 1 or O for any subset B of L; [this also
follows from the O or 1 law of Hewitt and Savage [(17]}] and Tto
and McKean [19] characterised the O and 1 sets for the simple
k-dimensional R.W. (k > 3) by what they.caliled Wiener's test.

This, for k = 3, is

@ -n A = ]
(1.1) Z 2 C(Bn) < + 0o &==> P*(B) = o *

n=1
where G(an) is the 'discrete capacity' of the set Bn, the

intersection of B and the spherical shell 2" ¢ la| < LA

~Since Tto and McKean also showed that

.*(1,2) k, C(R) ¢ €(A) ¢ kaC(R), where C(R)

is the Newtonian capacity of the set X derived from the set of
lattice points A by centreing at each point of A a unit cube
with edges parallell to the coordinate axes, we may replace

N N -
C(Bn) by C(Bn) in (1.1). In this chapter we use this

'# . kys kay ... denote positive constants.
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‘classical' form of (1.1) and some results of classical
potential theory to investigate criteria of the form

> f(|b]) = + ® for B to be a 1-set.
b eB

Plainly, since the capacity of a set depends intrinsically
upon its geometrical configuration, we cannot hope to get a
condition of this type which is both necessary and sufficient
for B to be a 1-set. This is made explicit in §.3 where we
prove;
(1.3) there is no positive f such that

 f(b) : + ® &> P*(B) =
beB

[(1.3) is well~-known: according to Breiman [4] it has been

1
0

proved by P. Erdds and B. J. Murdoch (unpublished)]

In 8.4 we prove;
-1 -
(1.4) z INE =+ o => Px¥(B) =1,

> :

(1.5) z T—f- =+ and B a set of coplanar points

- _QEB El 2
==> P*(B) = 1,

1

1. T =
(1.6) I T5TTogln]

beB

+ ®mand B a set of collinear points

=> P*(B) = 1.
[Here, and throughout this chapter we adopt the convention that,
in sums of this form T%T = 1 when b = Q and log|b| = 1 when
2} ¢ 1.]

On account of (1.3) it is no surprise that there is quite
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a gap between (1.4)-(1.6) and our only necessary condition:

(1.7) Px(B) =1 = Z 1. -+ ©. This gap cannot be
be B ‘-p-—l-
narrowed; for we show in §.6 that, given an arbitrary

positive-valued function f with lim f(x) + o,

X—>+®
(1.8) there is a O-set with Z f(1b|) = + o,
pep 1&l3
(1.9) there is a O-set in a plane with X £ EP) = + ©,
pes 1212
(1.10) there is a O-set in a line with Z f£(Ibl|) + o,

peB lkllog|bl ~
and given an arbitrary non-negative function f with

lim f(x) = 0,
x —>+m

(1.11) there is a 1-set with X f(.b ) < + .
beB Ikl

§.2 1In this section we gather together what we require from
classical potential theory. 1If G is a compact regicn in Eg
and v(x) is a function which is harmonic throughout Es,
vanishes as |x| — + ®mand is equal to one on G, then G has

Newtonian capacity C(G) given by

1

(2.1) c(G) an

r[ %1 ds, where S is any smooth surface

.S. n

containing G. C(G) may also be characterised by (see, e.g.
Brelot |5, p.50]) ‘

(2.2) c(G)

max g e(dx): e > 0, e = 0 off G



1 for all v.

and P( f )
¢ Tyxl ¢

e(dx)

L pA
The geometric operation of symmetrization with respect

to a plane P changes a solid B into another solid B’

characterised by:

(2.3) B' is symmetric with respect to P.

(2.4) Any straight line perpendicular to P that intersects

one of B and B' intersects the other. Both intersections have

the same length, and the intersection with B' consists of

just one line segment, which is bisected by P.

We will use the fact [Polya and Szegl, [25]) that

symmetrization of a solid does not increase its capacity.

Lemma 2.5 The capacity of any solid consist?ng of n non-

' #+

intersecting unit cubes is greater than or equal to kgn .

Proof This is a particular case of the Poincarée-Faber-Szegd

(3V§GQ)1 , where V(G) is the volume of the
4n .
region G. See, e.g. Polya and Szegd [26, p.63].

inequality, C(G) >
Lemma 2.6 The capacity of any solid consisting of n unit

cubes whose centres are coplanar lattice points and whose

faces are parallel to the coordinate axes is not less than
k4 n%°

Proof First, note that we can reduce the general situation to
the case when the centres lie in a coordinate plane by_

symmetrization with respect to a suitably chosen coordinate

plane. Now the solid consisting of such an arrangement of
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cubes is cylindricaly, and it is a special case of a theorem

of Polya and Szeg¥ on symmetrization with respect to a line
{for a definition of this operation and a proof of the theorem
see Polya and SzegB [25, pp.8-11]} that the capacity of any
cylindrical solid is never less than the capacity of a right
circular cylinder that has the same volume and the same
altitude as the given solid. Thus (2.6) is a conseguence

of the right hand side of:

right clrcular cylinder of
(2.7) k5a > C(radius a(>1) and altitude 1

To establish (2.7) note that it is an obvious consequence of

) > kga.

(2.2) that G; € G, —» C(G,) € C(Gp). Now the cylinder

contains an oblate sbheroid S, of semi-major axes (4, %, %)

and is contained in an oblate spheroid S; of semi-major axes

(1, a, a).
._ in
Since C(Sg) = 2C(S,) = a EAE__E , where e? = 1- %a so that
sin~le . .
0<e< 1, the fact that = is bounded for O L e £ 1

proves (2.7) and hence the lemma.
Lemma 2.8 The capacity of any solid consisting of n unit
cubes whose faces are parallel to the co-ordinate axes and
. . k7 n ;
centres are collinear is not less than Toan . {Here agaln
: ogn
log n = 1 when n = 1}.

Proof Symmetrization with respect to a suitably chosen

co-ordinate plane reduces the general case to the case in
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which the line of centres lies in a co-ordinate plane and
then symmetrization with respect to a plane perpendicular to
the line of centres allows us to consider rhe cubes to be
adjacent, when they form a rectangular block. Thus (2.8)

is a consequence of the right hand siae of:

(2.9) Eﬁ_ﬂ.; c{ rectangular n x 1 x 1 block} » kg . n |
logn logn

Now the plock contains a prolate spheroid §; of semi-major
axes (%, %, %) and is contained in a prolate spheroid S, of

semi-major axes (n, 1, 1) and, if n » 2 C(S3) = 2C(S,) =

ne/log %{% , where e°= 1 - %2. Since £ < e < 1 and
2
n? 1 t z = (: t : £ n%, this establishes (2.9) for n > 2
and it can obviously be extended to cover the case n = 1 by

suitable adjustment of k8 and kg,

Lemma 2.10 The capacity of a solid consisting of n unit cubes
whose centres are collinear and equally spaced at a distance
2d 4+ 2 apart and whose faces are parallel is not less than

k1on provided d > log n.

Proof Calling the cubes Ay, Ay, ..., An with centres

n
81y 83y .y a write A =rg1 Ar and in the characterisation

(2.2) of capacity set e(dx) = k,.dx when x ¢ A. Then given

10
any y we may renumber Ay, ..., A, in such a way that
min |y - a.| =-|y - a,] and |y - 2,13 (r - 1)(d + 1)

|gxrgn
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e(dx)
for r = 2, 3, ..., n. If |y —2,|>1, then P (y) = |
k | ax Y X1 and if |y - a,] € 1
10 A (]Z__Erl'|.§.1°£|) N (ll’irl‘@)’ L =11 X
r 3
dx dz
then P,(y) € k —=r =
- 10 Zz
10 (Jx-3, g1 2] (lz+k-a, 1)
k [ 0z k
< = 41 .
< %40 . 10
(lzlg2) 12!
Thus Py(y) € k.n~.k,. and P, (¥} ¢ €10 < 10 ¢5r 132
us Falll s Kyp-¥q9 Pl S T defr-1-v2) S (r-1)d 72
2
n n-1 1 n-1 1
= ) A - 1
and so P(y) r§1 Pr(y) ¢ k10(k1_1 +r§1 rd)' Since r§1 -
1 oYy
§ 1+ log n, k11 + E.r§1 < is bounded for all n by the

assumption that d > logn, and so P(y) { 1 for all y for some

choice of k10

§.3 In this section we prove (1.3), which says that there is

> 0. Then C(A) 3 j k,o dx = nk
A

no positive-valued function f such that:

(3.1) Z f(b) ¢ + ® &= P*(B) = é

beB
We use a 3-dimensional version of the argument by which
Breiman [4] proved (1.3) for a 1-dimensional R.W.
Denoting by An the spherical shell of lattice points

n+1} and by I(n, my, a) the rectangular block

fa : 2" g lai < 2
ofrlattice points

{2 : 2" +m<a, g2™M1+a)+m 0Ca; g 2%, 0< a5 ¢ 27,
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we have

4 I,» where I, = I(ngs m,, a,) and {n.}

is an increasing sequence of positive integers

Lemma 3.2 If I =

wee

{m.,}{ a sequence of non-negative integers and {a,j a sequence
of positive real numbers satisfying, for each r 2> 1,

n
(3.3): 1€ aq_and 2 ap > 1,

then
x 1 N . _1
(3.4): X T 5t @ &= Px(I) =,
r=1 log.a.'_r.
Proof

Note that a, is necessarily less than one (otherwise
A
I, $: A“r) and that I, is a solid rectangular block
n Nr n
[2 rur] x [2 "ap] x 2 T (where [x] denotes the largest positive

n
integer { x). Thus the capacity C(?,) of ?, is [2 Ta_] x

r
Nr
capacity of a rectangular block 1x 1x —p{7—— > and (2.9)
[2 "ar]
. . RLLE SN .
implies that 2 C(T,) converges together with
-n n nr
by r 2 1 i
2 . [2 Tapla—RT s nT = ny— 3 this
) [2 rar] lcg 2nr log _ﬁf‘—_-
[2 "a,] [2 Ta,])
plainly converges together with ! T and so (3.4)
log —
Gr

is a consequence of Wiener's test (1.1) and (1.2).
We now argue by contradiction, and assume the existence
of a function f satisfying (3.1). Writing

F(n, m, a) = hX f(a), we define g(a) for O £ o £ ap by
ael(n,m,a)
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(3.5) g(a) lim inf inf F(n,m,u)}'
n—> + @® \m:I{n,myalgA, ’

where 1 > a, = sup{a : for every n»1 3 m with I(n,m,a)gAn§ >0.

Lemma 3.6 Within its range of definition g(a) is non-decreasing
and g(a + B) » gla) + g(p). g(a)'< @ for 0K a ¥ for some

r> o.
Proof The first assertion is immediate. As for the second,
take a > 0, B > O such that a + B < a, and write m' = m+[2nu].
Then I(n, m', B) = {a : 2" +.m o+ [2na]<aig 2™ (1 + B)+m

+2"a], 0 < a; ¢ 2"p, 0 < a5 ¢ 2"} € { a:2M(1+a)+4m<a, g

2"(14a+p)+n, 0 < a,  2"(a+p), 0 < as £ 2"} , so that
-I(n, my o) and I(n, m 4+ B) are disjoint subsets of I(n, m, a+B).

We therefore have,

(3.7) F(n, m, a+p)= by f(a) > S f(a) -
ael{n,mya+p) I(n,mya)
+ by f(a) = F(n,mya) + F(n,m,p)
I(nyn’ ,p)

for all n and m. Now {m : I(n, m, a+B) < Anj e{m:I(n, my, a)c An}
and {m’ : I(n, m, a4B) <A} s{m’ : I(n, W, B) € An} , whence,

for every n,

(3.8) inf F(n,m,a’) > inf F(nem,a) ,
m:I(n,m,u+ﬂ)glAn m:I(n,m,a)CAp
(3.9) inf F(n, n’ ,p) > inf F(nym,B)

miI(nsmya+B)c A, m:I(ny,m,p) €Ay
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(3.7), (3.8) and (3.9) in (3.5) yield

g(a+p) = lim inf { inf F(n,m,a+p%}
m

n—> +o :I1(nym,a+B) €A,

> lim inf inf F(nsmya) + inf F(n,m,p)
n—> +o m:I(n,mya)¢< AL m:I{n,myB) < A,

> lim inf inf . E(nym,a) =
n—> +o m:I(nymya)& A,

+ 1lim inf inf ' F(n,m,Bi?
n— + o (m:I(n,m,B) <A,

= g(a) + g(B).

Suppose finally that g(a) = + o for all 0 < a £ a,. Then
[+
. 1 y
§ oy with r§1 Tog 1 < + mwe see that
al‘

given any 0 £ a,

F(n,O, a,)ﬂH1D§s n—+® for .each gq.Thus there is a sequence of
positive integers N, such that F(n, 0, a,) > k,;, > O for all

n > N, and hence an increasing sequence of integers n, with

n
r

2 a > 1{ and n, > N, for every r. Then by Lemma 3.2
L ® .

1=u I{n,, O, a,) is a O-set yet X_ f(a) =% F(n,, 0,.-0, )=t
r=1 : 2l - r=1

this contradiction implies that for some ¥ -in [0, ag]
g{(¥) < + @, and hence by the first part of the lemma
gla) < + o for 0  ag ¥ .

It follows from Lemma 3.6 that g(a) £ kyaa for 0 £ a K ¥
and some positive k,9 < + ®. For if ae (0,9 ) write ¥ = 6a + B
where O B < a, and note that g( ¥) = g(na + ) > g(na)

Thus H%fl

> ng(a) by repeated applications of the lemma,
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 al¥) _ a1 _al¥) < mr)

N na n  (n#1)a ¥ C Kis <@
1 o 2 - e
‘Now taking {as}with Z‘.1 lggﬁ: = + @, PEI a, < + o

'and 0 < u, XY ¥ for each r we can f1nd a sequence of 1ncreasing

Ny

_p051t1ve 1ntegers {n }with 2 "a, >.1 and

._inf © " F(ngsmaa, )¢ :ak13 Gy

Thus there exists a sequence of positive 1ntegers {mJ such-
that I(n,,m,,a,)__ n, and F(n,,m,,u,) £ 2k13u for every T..
Then,i3=.ﬁ Ifn,,m,,a,) is, by Lemma 3.2, a 1-set and-yet

z T(i)i&' b F(n,,m,:u,) < 2k137EE:Ng, < 4-xn;

ael r=1 TrEE

‘This is the required contradiction and it establishes (1. 3)
§.4 (1.4), (1.5) and (1.6) -are ea51ly deduced from the -

-esiimates of-§.2.

Proof of‘(1:4) - T -
Given a set B of lattice points with X 1. = + o,
pes B
let N' be the number of points in B ,'the 1ntersection of B

and the spherical shell An. Then, since each be By has

Bl 32" .
- a Np
(4.1) 2 3N = + @,
- n=1 2 ' 1
N k)
. and theréfore, since o -%— < @ would contradict (4.1),
' o 1 nei ' :
.. = N'3' .
(4.2) Z n = + .
n=1 2”
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-But, by Lemma 2.5, the capacity of ﬁh is not less th;n'

’
—n e A

ksN 3, and so 2 27"&(B))
n 121 n

Proof of (1.5)

+ ® , making B a 1-set.

1

From the assumption that Z =55 = + o we have
£ B b|2
Nn =
(4.3) —n =t @,
.n=1 2
-and hence
.= Nné
(4.4) 2 —— =+ .
n=1 ¢

Since the points of B are coplanar, Lemma 2.6-app1ies_and-gives._
c(B g is i ans” e
( n) > k4Nn : this in (4.4) means that B is a 1-set.

Proof of 1.6

This time;we have, by assumption,
| N

(>
(4.5) 3 pdi log2 nZ1 —F—-&_f =+ o,
n=1 2'n T 2 '1log2

and, by Lemma 2.8,

(4.6) C(Bn) > k7N“/logNn°

Since N is. Ngcessarily less than %f (2n+1+1)3, which is’

3n
less that e for all but a finite number of values of n,
v N .
(4.5) implies that 3 -TTJL——-ﬁé + ®, which with (4.6) means
n=1 2 logNp :
that B is a 1-set.
For (1.7) we do not need anything as complicated as

Wiener's test.
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Proof of (1.7)
It is well-known (and proved in Chapter V for a géneral

class of R.W's) that |b|. E(number of visits to b) is bounded

for all large énough |k|. Thus the convergence of I ° T%_

- ' ' . beB 'S
means that E(number of -visits to.B) is finite and hence ‘
P#(B)_= O, and since B is either a O-set or a 1-set this is

equivalent to:

o Ppx(B) =1 =—> = T‘—r'=_+m,
S o beB :
.which.is (1.7).
§.5 1In prder.to show that the conditions'(1.3)—(1,7)-are the
" .be'ét possible of their type, we need somé information about
series of positive terms.

Lemma 5.1 Given an arbitrary monotone sequence‘(kn) of

positive terms with lim N, = + o there exists for each
- - n>+w ' .
e > 1 (b_) with;
(5.2) ©0g b_<& 1,
> -]
(5.3) 2 b < + o,
n
) n=1 .
. 4G -
(5.4) & (b )™ =+ .
n=1
Proof

Let m, = 0 and m, for 3 > 1 be the first n for which

A 2 ja andnmj > m,

1 . _ - oA
j-1° Let bn = 577:{ when n = m. and bn =0

'3
when n # my for any j. Then'(5.2) is clearly satisfied and since



b = % b = 5 —

: > S
n=1 " §=1 e i=1 s
® . cn : @ ® 4
S(b Pr = 8 (bp. A, > & —tp0= £ ¥ .
B M R S A P

(5.3) and (5.4) are also satisfied for each choice of § in
1

0< dg 3

Lemma 5.5 Given an arbitrary monotone sequence (hn) of

positive terms with 1lim Ln = + o there exists an increasing
n=-»>+o
sequence of positive integers nj with;

(5.6) & <.+ o,
J=1 7J

Ans

(5.7) & ===+ .

j=1 M3

Proof Let &, be the first value of n for which M, > r,

let m, = O and ko = 2 and define m, and kr inductively for
r > 1 by:

(5.8) m, = max{2ra, (r, Mp-y + ke + 1} ’

m,+k, m, +k +1 .
(5.9) = Tclag s 1,
n=m, n=m,

Now let (nj)_consist of all numbers of the form
m, + s, where 0 L s £ k,, arranged in increasing order. Then
(5.6) holds, for, by (5.9)

k
? L8 2 A-¢ 8 Lo,
=4 B r=1 s=o MetS Py I® .

J
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Since (5.8) and (5.9) together give

;, 4 _ kle 1 ;
— mg+s ~ __  mr+s mg+ke+1
s=o0 s=0
N k&+1 4 A
z me+s = 2r2
s=o0
1
> 2r2 *
(5.7)hholds, for
azn: nj E mrgkr L E N ke 1
j=1 nj Fx=l s=m, s 7 r=l r s=o Mp+5
i _
2 r§1r‘ >ra -t @©.
Lemma 5.10 Given an arbitrary monotone sequence (M) of
positive terms with lim An = O there exists an increasing
n—>+m

sequence of positive integers nj withs

(5.11) % - ,

j=1 "3

T
(5.12) % < + .

. n.

J=1 J

/ . ] . . A

Proof Let ¢, be the first value of n for which Kn < 7o
let m, = ko = O and define k, and m, inductively for r 2 1 by:

(5.13) m, = max {2, & , my_y + ky_y + 1},

ko+1 1

me +5

k 1
(5.14) § < ;'g

[7]
I M-
()

Now let (ny) consist of all numbers of the form m, + s, with

.

0K sg k,,,i;ranged-in increasing order. Then (5.12) holds,
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for by (5.13) and (5.14)

kn' mr+kr )\.s =) ml'+
) —;l = $ z < Z xmr Z
j=1 j r=1 s=m, r= =

Also we have, from (5.13), m, 2> 2¢r, and therefore

A T A TR W R IR S
s=o Mr#s s=o Mets me+ke+1 r 2r 2r
whence

1 ke 4 a 1
b s 2 = — > 5 2 TSt ®,
j=1 '3 r=1 s=o ° r=1

so that (5.11) holds.
8.6 - The assertions (1.8)-(1.11) are now proved using the
results of 8.5.

Proof of (1.8) Given an arbitrary positive function f with

lim f(x) = + ® , we are required to exhibit a O-set B with
X —2>+w
s £(B]) _ , : o
=+ ©., It-is sufficient to do this in the case
beB |2 3
that f(x) is monotone: for if g{(x) = inf f(y), g(x) increases
Y2 X
monotonically to + mand is less than or egual to f(x), so that
b b .
any O-set with 2z RE = + ® necessarily has Z iil=ll= + © .
pep 12 . pe 1BI3
Now if in Lemma 5.1 we put M = f(27) and o« = 3 we get a

n

sequence (b,) with;

(6.1) 0 b <1,

(6.2) &£ b <+ @,
n=1
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- -]

(6.3) T b1 £(2")
n=1

+ @ .

Letting Bn be the set of all lattice points lying

within a sphere of radius bn2n_1 centred at the point

n-1 . . @ .
(3.2 » O, O0), it is easy to see that B = U Bn is a O-set,
n=1

N\
for Bn is certainly contained in a sphere of radius

n=-1

2 b, + 1, and so has capacity less than or equal to
2n_1bn+1, whence, by (6.2),
- y b .

$ 27"c(Brg¢ 2 F2+72¢+ o,

- n 2

n=1 n=1

Moreover N 3> k (2n-1b )3 for some k,, > O, thus

n? "14 n 14 ’
b ® b - n Kig 3

g H2l . 8 g H2l, o3y 2o, M8 pie(2f),
beB = n=1 beBp - n=1 (2 ) n=1

and by (6.3) this last series diverges.

Proof of (1.9) Again we may take f(x) to be monotone, but
this time we put A, = £(2") and @ = 2 in Lemma 5.1 to get a
sequence (bp) with:

(6.5) % b < + @,
(6.6) 5 bi £(2") = + o .

Let B consist of all lattice points of the form (ay, 2a390)

lying within a sphere of radius 2n-1bn centred at the point

(3.2"7%, 0, 0). Then N_ 3 k, (2" 'b )2 and since B is
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certainly contained in a right circular cylinder of height

1 and radius 2n-1bn+1 its capacity is not more than

k5(2“'1bn+1), by (2.7). Therefore, by (6.5) and (6.6)
respectively,
o =N Py an =N
-z 2 C(Bn)<k5§ 5 t2 <+ o
n=1 n=1
and
b b N
f(l”|) = & PX i;+§+% > .E N(n) -—;%%f%
beB li2 n=1 be B = n=1 (2 )
kig o 2
-3 n _
' ) 1 § f(2) bn = + @,

so that B is the required O-set.

Proof of (1.10) Once more we may assume that f(x) is monotone

and so can use Lemma 5.5 with A, = £(2") to find an
increasing sequence of positive integers n j with;

(6.7)
j

n M8

1.,o,
13

nj
-f-(-.z__-_).<+m.

(6.8) 1 nj

b

n M

Let B_ consist of the 2" lattice points of the form
(ay, 0, 0) with 2" £ 23 « 2™ ifoa = ny for some j: let Bp

be the empty set if n £ ("j)" Then by (2.8) the capacity of

A kg2nj '
an is not more than njlog2’ so that
=N A -nj n . k8 ® 1
2 2 c(B)= 8 27 cB,1¢&, % Lc+o
n=1 4 j=1 3° % leg2 ;4 njy
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and B is, by (6.7), a O-set. However, by (6.8) .
J J

£(|R £F(|b f{2 ) 2
p = P -U—T > 5 atm =

ns
J .
> 202 ") ., 5.
=1

3 njlog2

3
ns

V8

Proof of (1.11) Given an arbitrary non-negative function

f(x) with lim f(x) = 0, consider g(x) = sup f(y). Then
X —>+0 y>x

g(x) decreases monotonically to zero and is always greater than

| b
or equal to f{x), so that any 1-set with X b <t o
beB =

b
necessarily has X £ W~ & + @ . Thus we need only
|b| -

be B -
establish (1.11) for an arbitrary f(x) decreasing monotonically
‘to zero. Writing in Lemma 5.10 A, = f(27) we find an

increasing sequence of positive integers nj with;

= 1
(6.9) £ — =+ o,
j=1 J..
\ nj
(6.10) % ﬂ%———l <+
=T
Let B, be the empty set if n f(nj): let B for n = nj consist
: _on
of all points of the form (2"+2rn, O, 0) for 0 < r < L%;] -1,
o . 2n] .
Then an consists of [5;7] unit cubes whose centres are
J

collinear and equally épaced at a distance 2nj apart and whose

ns
J

faces are parallel. Since 109[%;f] < njlog2 - log2nj < ny - log2nj,
J n:

X . . 2 °J

Lemma 2610 applies if n; > 2 and gives C(ﬁhj) > k10[2nj]

5k, 2

Z 716 n3

Thus



n:
£(2 3)
an
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CHAPTER 1I1I

8.1 If (S,) is the simple 3-dimensional R.W and D is any
line of lattice points parallel to an axis, the fact that

the 2-dimensional R.W (S;) derived by projecting $, onto a
plane perpendicular to D is recurrent (that is,

P{§$ = a2 for an infinite number of values of n} = 1 for every
38 ¢ La) is sufficient to show that P*(D) = 1. Thus a
particle which starts at any point a8 of Ly and performs the
simple R.W is almost certain to visit D, and in this chapter
we are interested in its position when it first does so.
Plainly there is no loss of generality in taking D to be the
Xg axis and the particle to start at a point (a, b, O) in the
X35 X3 plane. Then we can define a R.V. Fab as the x4
coordinate of the point at which (§n) first visits D by

k - -
(1.1) P{F,, =k}=f, =HSF D, ..., 53_1‘! Dy, 8§ = (0,0,k)

for some n > 1 | So = (a, by 0)} .

In 8.2 the characteristic function ¢ab(e ) of Fap 1s
found, and its behaviour as ® —> 0 and r = (a® + ba)%-——> +
is studied. In 8.3 we deduce results about fgb as k —» + ®
with a and b fixed and in 8.4 and 8.5 investigate the R.V's
F as r—> + o©.

ab

8.2 LetIP: be the n-step transition probabilities, defined

bc
by,
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Pipe = 1 if n = 0 and (a, by ¢c) = (0, O, O)
O if n =20 and (a, by, c) # (0, 0, 0)
(2.1)
= P{§n = (a, b, c)|§o = (0, 0, 0)} for n > 1.

Define q:bc by,

n

abc - 0 if n =0

q

(2.2) “
= P{§4{D, S2£D, .. §“_1{Ds §n = (0, 0, C)lﬁo =

= (a, b,O)} for n » 1,

n+
qOOC

) hits
a particle starting at (a,b,O)ﬁ first {returns to}'the X3
(0,0,0)

axis at time n and position (O, O, c).

_ - n
so that, if (a, b) £ (0, O?,{qabc is the probability that

Note thatVP{§n = (0, O, c)|§o = (ay b, 0)} =

n
P{§n = (0, O, c)|§°= (-a, -b, o); = Pabc’ and let A, be the

event { S = (a, b, 0), §n?= (0, Oy ¢)4 - Then for n » 1

we can decompose An by time and place of first hitting D into

the mutually exclusive events BX ={ 85, (ag b, 0),

_§.1}.(D, --,§;{1 D, §r=(os 0, k)_9 .S_n
r -

Markov property P{B{|S = (a, by 0)} =.P{§ = (090,¢)|8,=(0,0,k)}

(o, O, C); . By the

.P{S1#D, .. S._1¢ Dy S, = (0, 0, k)|8, = (a4b,0)} =

n-r
00¢-k

T

=P abk °’

Q

so that, for n > 1,
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n=-r T

n
00é=%k Yabk

(2.3) P, . = P{A ls, = (2aj0,0)} =

HnMs

@
z P
b 4 1 Ky

If (a, b) # (0, 0) we also have, by definition,

: (o] _ [0} _
(2.4) Pabc = Yabc (= 0).
s 4 n _ 2 ice _n
Writing Pab(e) = 2 e  Pape?
c=-0 _
Qn (6) = g eice qn
ab abc’
c=-0

we notice that IPab(G)I 1, |Qab(e)l<1 for all real © so we

may multiply (2.3) and (2.4) by e1c@ and sum over -all integers
c to get

2 PP (e) = £ p°O7 I (e) .f 1

( -5) ab = ey 00 (e) Qab ) .Tor n ; )

o)

(2.6) P, (8) = @2, (8) (= 0).

Taking real s with |s| € 1-we can introduce the double
generating functions

: _ = n n - n n
Pap(18) = 2 Pp(0)sT 1, Gy (sy0) = ngo a;, (@)s”,

and in terms of these (2.5) and (2.6) become

(2.7) Pab(s,e) = Qab(s,e) poo(s,e).

o) = B (B PN o180

Now P
% n=o0 c=-®

ab(
= 3 etc® b Pgbcsn’ the interchange of
c=-m n=o :

order .of summation being justified for |s|<1 by the absolute

. & n :
convergence ofﬂthe sum, 51n°ec=§m)Pabc { 1. If ¢(g) is the
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characteristié function of the R.V. X which generates (S.),

. n
(e) = E(ell'g) = l(cose + cosB_ + cosO3), and, since S
— 3 1 -] n

has characteristic function ¢n(g)-for n» 1 if §o = (0o, 0, 0),

_)gi(aet+bea+c93)

(2.8) P3/ . = TE%Tf f}j 8" (e d©,de,de; for n » O.

Cc
: 1 M. -i(a®,+b6,+c6,)
Thus i Pabcs = (2n)? 1im JJJ e 1 2 3
1 - (sPiB) de,de,de
1 - s g) 1 2 3

—~1(a®,+bBa3+cHy)
= o ”J —1-e8(8)

d91dead93 for |5‘<1’

since |sg(8)l| |N+1 £ |s IN+1 —> 0, so that if we write

, 1 m o ~i(a8,+b8y)

*ab(sg 93) = TzZm)e 11J7 T s¢(9) -d8,dea
we have

ice _1 ~ic®
(2.9) Pab(s,e) = _E Py | ¥ b(s, 63)e 3deg.
c=~m -

For each s with |s|< 1,

3 —sine m -i(a8,+b0y)

{v (5593)} = =3 H deldea

exists and is finite for all O3, so that Dini's convergence
theorem applies to (2.9) to yield
(2.10) Pab(F"e) = Wab(ss 8).

From (2.7) and (2.10) we have an explicit expression for

. R n
Qab(s,e). Moreover, 51ncec_%:.mqabc £ 1,



- n & n ice _ ice g n n
(2.11) Qup(s48) = £ s" I af e’ = T e £ anpcs
n=0 c==-00 c=- =
- n n ’ n _ .C
and as s 1 néo Qapc® ¢. to nZo Qabe ~ fan- ¢

c

ab
cC=-® .

= 1, we can let s increase ‘to one in (2.11) and apply the

Since § f

"P{particle-starting at (a, b, 0) hits x, axis}

theorem of dominated convergence to get
E elCQ c

f b = ¢ab(9)s

(2.12) lim Qab(s,e) = a

sM - c==m
where ¢ab(9) is the characteristic function of the R.V F_,

defined onp.26.But if ©5 # O (mod 2u)
n -i(a8,+b8;)

. 1 rre
i%T Vap(%:83) = 373 1% 1= T (c050,7c050,+c0505) d6,de;
]
S i cosaB,cosb, oo
(2m)® 1) 97 - % (cos®,+c0s8,+c0508;) 1%%¥3
= gab(GS)’

so that, if (a, -b) #Z (0, 0), by virtue of (2.7), (2.10) and

(2.12)
9ap(©) .
. g (8) = §§:TET if @ # 0(mod 2m)
. = 1 if 8 = O(mod 2m).

In the case that the particle starts from the origin
(a, b) =-(0, 0) and although (2.3) and (2.5) still hold for
o — e L] .
n > 1 we have Pook = bko (this, the Kronecker delta, is one
if k = 0 and zero otherwise} while qgok = 0. Therefore the

analogue of (2.7) is


http://onp.26.But
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(2.14) P (ss8) - P (8) = P_ (5,0)Q,  (5,8) - P, _(€)Q] (®)

and since Pgo(e) = 1, Q° () = 0, this reduces to

= 1
(2.15) QOO(S,S) =1 - poo(s,g) .

Just as (2.13)

(2.16) B ()

follows from (2.7), (2.15) leads to

1 - -——%57 if 8 £ 0 (mod 2n)
=1 if © = 0 (mod 27n).

Thus thé behaviour of the characteristic functions
¢ab(e) is completely determined by the behaviour of the
functions gab(e)' some of whose properties are the content of:
- Lemma 2,17 For all (a,b) and & # 0 (mod 2m)

(2.18) 0 <“gab(9) < + ©® .

There exists constants k; and ky independent of 8, a, b
such that:

(2.19) : |gab(9) - % Kd(r|9|)| < ky for 0< |6} g =

and (a,b) f (O, O)’

3 1
(2.20) : |g°o(9) - = log TeT | < ks for 0 < |8 ¢ m,
where r = (a2 + bz)ﬁ and Ko is the Bessel coefficient of

zero order and imaginary argument,
Finally we have the asymptotic estimates:

- =3
(2.21) degoo(Q) M-S as 8 J O
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2
(2.22) &= 4

3
403 (6)m—27 as © 0.

00

Corollary to Lemma 2.17 For all (a,b) and all @ # 0 (mod 2m)
(2.23) o< g_,(8) ¢ 1.
Proof of lLemma 2.17

If we write, for 6 # O(mod 2m)

<] T cos aa-cos bf
gab(g) (2n)* 14 3-cosB-cosa-cosp
3 rl e_l(a°+ba)da_§
(2u)= 3-cosB-cosa-cosf
3 iy i(aa+bp) % t(3-cos6-cosa-cosp)
_ o - a - . - - - -
= Ton)s I'[ e i e dt da dp,
Tt o-t(3-cose )
the fact that [| [ e t137¢080-c0sa=cosBlyy 45 ap ¢ + @
-1 o
allows us to interchange thée order of integration to get,
_ S =t(3-cos®) 1. -iaa_tcosa
(2.24) gab(e) =3 g e i o ;L e e da

™ .
?% J-e 1bﬁetcos|3dﬁ dt,

-1

-t(3-cose)1a(t)1b(t)dt,

-]
3T
o
where Ia(t) is the modified Bessel coefficient of order a.
Since_Ia(t) and Ib(t) are positive when t > 0, the first
assertion follows from (2.24).
‘Noting that gab(e) is an even function ot ®, take

0 < & ¢ m and write ' |
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_ .3 "™ cosaa ¢osbB da_dB

g ¥
ab 2n2 . . a8, . 3B, . 38
00 sin 2+s,1n 2+51n 5
na
_ _6 osaa _cosb
Sar []ERE seee by, (00.

The inequalities

e e ]
w € sin <3
8\ ? . 8 _ 02 . 4
Os(E) - s:.nai—é(cose- 1+ 7))« g. 2’
both hold in the range 0 { ® { 7 and lead to
3 Thol 1 4
(2.26) 1h (8] € 303 II‘{ a5 . aB. .38 ~ of+pites | dedp
oo | sin®S+sin®5+sin
2 2 2
3 nn a i g + 9 3n2
<ar J{ CUTHTL dasp < I .
--1--]
. 2 | tosaa cosbf T . C . .
Since ii a8 + B3 + 62 dadp = Ko(rlel) if r> 0, (2.19) will

follow from (2.26) if we can show that the error involved in
replacing the region of integration (0 L a g nm, 0K B M)
in (2.25) by the region (0 g a, O { B) is, for (a,b) # (0, 0),
bounded for all 0 < & ¢ w uniformly in a and b, To do this
we use the following versiorn of the second mean value

theorem for 2-dimensional integrals, which has been proved by
Hobson [18, p. 572].

Theorem 2.27 If y(a,p) is integrable and P(a,yp) is non-

negative, monotone decreasing in a and B and integrable in
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(A1 < G $ Aag B1 s a s Ba);l there exists As; Bs with
€ Az and B, ¢ Bj (;Ba such that

. -.2 Aus B._g
i | Bla,B)y(asp)dadp = f(A,, By) { g ¥(ay3) dadp.
1

1B 1
For if a2 + b? > O there is no loss of generality in
taking |a| > 1, since gab(a) = gba(e)’ and taking R > n we
1
82 + a? + pa

can apply Theorem 2.27 with f{a,B8) - and

¥(ayp) = cosaa cosbp in the region (n £ a { R, O L B £ W)
to get
R ™ cosaa cosb 1 A B
(2.28) I I £0s3g cosbf dadf, = J cosaa da I cosbp dp.
mn o 6% + a2 + B2 e2+n° m 0
B
Now B { n so that || cosbp dp| = and a # O so that
. 0
.k 2 ‘ 1 .
cos aa do| £ 7.7 € 2. Mcreover, as is
l'.l'J' | N Ial N ? eaRu+ aa + BE
integrable in (n { oy, O B & m), lim [] cos3a cosbf 4 4g
R—>+m no g2 4 42 4 2

e? ; a? + g° e'a(92+ﬂa)%
hat —_——— =

cosaada o e
o 0%+a®+p? 2 (e? + p2)%

n® . |
exists and equals [ [ tosas 1€osbp dpda.  Using the fact
' onn
) t

(Exdelyi [12, p.7]

we can let R = + o in (2.28) to get

i " ~a(0?+p2)% |
2.29) | 2 I,cosbBe P dp - T? cosaa cosbf dadp | € kas
: 25 (e + p?) 3 oo 62 + a? + p? h

where ky; is a finite constant independent of ©, a, and b:
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® -a(e2+p?)
Since [ ;;:Eiepa)é P dg = K _(|e|r) (Erdéiyi [12, p.17])
o ]
® ~a(e2+p% ;. © -ap = -B
and ljc?gfﬁi K dgl" g [ ep dp € | 33— dp < +
k1 i m

(2.25), (2.26) and (2.29) prove (2.19).

When a = b = the argument is more direct, for

0
_ 3 non da_dp
900(9) = (2n)= :L ;% 3-cos8-cosa-cosf
-2 ] dg
2m J {(3-cos@-cosa)2-1}#
27 dg.
T 2n

y 28 ’a&'ﬁ. 3.:.29, .; é& %
o (sin 2+sin 2) (A®sin o+sin 2)

)
3
where A2 = 1 + sin®7
[) "9
‘. sine 5
= __2Adt
2n

£ {}°+(ta+A3)sinag}é{£5+Aasinag(ta+Aa)}é ’

a
where t = Atan 7

T dt
n

where k = —L—

o (1+t3')éi‘;‘k"at‘3)é ’ 1+sin?® %

and k? + k'2 = 1. Thus we have

e Bkees
(2.30) 9o (&) = <= K(k),

K denoting the complete elliptic integral of the first kind,
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"
Now sinﬁ (2+sin2g)"a
k! = 2 2 Nfg’ as 8 |, 0
1+ sinag W2 ’
. : s efs 1 1
and it is not difficult to see that |log ;-, - log al

is bounded for 0§ © ¢ m. Since it is known (Erdélyi
{14, p.318]) that |[K(k) =~ 1liog %,| is bounded for all k, this
is sufficient to establish (2.20).

The representation (2y30) allows us to write down
expressions for the derivatives of goo(e) in terms of
K(k) and E(k), the complete elliptic integral of the second
kind, for the derivatives of E and K may aiways be expressed
in térms‘of E, K, and elementary functions. We can then use

the known asymptoetic estimates for E and K, the results being

(2.31) g2 (8)

> . . - 1 '
-3 E,ﬁntan%:(2+sin2%)} - ﬁ% as @ ¢ 0,

w _é_ _51n3611+,'sin39) 'h(
(2.32) goo(e) e { .

. 39 s 2 B
sin 2(2+§1n 5
. sin®e(sin*S + 2sina%-2)
+ s Py {cose - — ) —
: 28 : 38 : 28
sin 2(2+51n 5 1 + sin 5
—o7 25 © ! 0,

which are (2.21) and (2.22) respectively.

L1

§.3 By assertion (2.20) of Lemma 2.17, ¢00(9)4r1 - n
31093
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as & |, 0. Moreover éig igab(e) - goo(e)j exists and

equals -3 ¢ where -for (&, b) £ (0, 0)

ab’
n
(3.1) 0<c,, = Tij%? I{j%§%§§§&§9§§%ﬂ da dp < © ,
MCahb . .
so that ¢ab(e):mr1 - =7 as © J 0. It follows immediately

logx
from a theorem of Pitmane[ﬁA] that if.Fab(x).is the

distribution function of the R.V Fa

b
ﬂCab .
(3.2) Fab(x)nv 1 7Togx 25 % —> + ©
MCab as X —> -
A ’
2log | x|
where coo = %. However the .behaviour of the individual

probabilities fz for large k depends on deeper properties

b
of ¢ab(Q). Since ¢ab(e) is"an even function of ©

g =2 } g (8)coskeds
ab LS ab ’
-1 W
= o i ¢;b(e) sin k 6 d 8, if k £ O,

so we are interested in the';symptotic behaviour of the
Fourier coefficients of a function which has a singularity

like S, S at & = 0. As the standard theorems do not

e(log%)a
seem to apply in this case, we prove a lemma that is more
general than we need and extends a theorem of Zygmund

[30, p.190, theorem 2.24] to the case § = 1 (Hhis notation),
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The lemma does not seem to-hold without a condition like (3.6).
Lemma 3.3 Let b(x) be a nén-negative function satisfying;
(3.4) b(x) is of bounded v%riation in-every interval e , m)
with e> 0O;

(3.5) b(x) is slowly varying as x ) O (that is for every

d> 0, x 2 b(x) is an incredsing, and 2 b(x) is a decreasing,
functien of x for all small enough positive x);

(3.6) b(x) = 0, and the convergence is ultimately

lim
x 0
monotone i

m
Then a_ = I b{x) sin nx dx ar
o

b(1) as n—> + © .
X n -

(S E ]

Proof of Lemma 3.3

8/ 62/n
Write a '= J + 42 b(x) sin nx dx;
° fﬂ/ /n b )

and call the integrals I,, Iz, I3, and 14 respectively.

Since, by assumption (3.6), b(x) is an increasing function
of x throughout some neighbourhood of zero, we have for all
large énoughb? .

R " b(x) |SEBX| gy ¢ b b(—),
so that if.°1< 1

(3.7) 411|  1 S b1 for m > n, (& ).
//ﬁfjr) .
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Again b(x) is monotoné in (%1, %3) for all large

enough n, and the second mean value theorem-{Hobson [18,
I '

p.565]} shows that for some &, € g ?a
I = 78 2LAX (X gy = p(da) j"n 210X gy 4 p(2F) j’a 2iox gy,
5, 5, n
Now J sirx dx = %, and therefore
o
.n-‘

slox gy 4 gp(2a)-5(d)

(3.8) 1, - In(1) = {B(21) - ()
. | _ 8,
}3 sinx 4,

€

1, %1 sing 1 . sinx |
+ b('a') [ " dx + b(—n') ] = dx.
) 3,

B _,
Using the facts that | | 51—;‘%‘-dx | is bounded for all A and B,
A

A . °
| i% dx| g A, lg' s10X gy | {% , in (3.8), we have
Ia -2 b(23) (22 )
3. 1 . b(® , ,.
(3.9) /b(;) 2 1<k —— |+ — -+ ey %
{ b sed) b(d) .

for n > ng(dp,).
+ By assumption (3.5) we can choose b3 > O such that
Eﬁll is a decreasing function of x in (0, %3), and then we

can apply Bonnet's mean value theorem {Hobson [18, p.565]§

to Is to get for some ﬁ1$'53 ,



d 4 ! b(=3) )‘n
I, = | Q%fl sin nx dx = —;ﬂ— .n [ sin nx dx,
32/ ' 2 %3/,
M nﬁn
and since [n [ sin nx dx| = l | sinx dx| ¢ 2,
ba/n . by
- ba
a b(=")
b(=)
n

Remembering that a well-known property of slowly varying

functions is that 1lim %%%?l = 1 for every fixed d» > O,

xJ,0

{ Zygmund.[ 30, p.186ﬁ it is plain that given arbitrary € > O
we can make each of the right hand sides of (3.7) (3.9)and (3.10)

less than % for all n )

b3 large enough.

no(E) by choosing &, small enough and
The proof is then concluded by noticing that

I being the Fourier coefficient of a function of bounded

49

variation, 15(3(%) as n —> + ©, and therefore is
1

O(b(F))as n—> + .

Theorem 3.11 For each fixed (a, b)

. k 1 n
lim {lk|(log|k|)2 £ =% C.ps
k ;:m ab_,. 2 ab
=1 yfa=p =
where 'the constant Cab =3 if a b 0
i
- 1 - 1=cosaa cosbp
T (2n)2 Li 2-cosa-cosp da dp

iff_(a, b) # (0, 0).
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_ 9.,(@)
Proof When a = b = 0, ¢;boe) = ——=—— | so that
]
g2 (98)
-k _ .k _ 1+ T b(e) . | :
foo = foo = Tn £ & sin'k® d8, for k > 0, where
g' (e) X '
b(e) = - 8 =22 L —1— 56 |, 0 by
® (&) 3 (1log:)?
goo ‘e

(2.20) and (2.21) of Lemma 2.17. Thus b(®) is slowly

varying as & J O, and since

, _ _ 3sine T T da dg
900(9) = f _J;'(S-cose—cosa-COSB)2

(2m)2 -m
it is plain that b(©) is non-negative in (O,n) and of bounded
variation in (e, m) for every € > O. Moreover the

asymptotic estimates of Lemma 2.17 show that

b (o) - 299;3(9) ) ggofe) + eggo(e){v - 60
g2 (e) 93,08 36(1ogg)®

so that b(®) is,monotone in some neighbourhood of zero.
Thus Lemma 3.3 applies and establishes the theorem for a = b 0.
. gab(e) goo(e)_scab+hab(e)

For (d,p) £ (0, 0), write §,,(8) = 3515y = 940(©)
here h. . (0) = ——3— [ : { 1
where h_, ) = (273 ii (1-cosaa cosbf) 3-cosa-cosp

1. .
3—cose-coéa-cosﬁ}. dadp

Since, for k # 0,
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gk =-J;'T B . (8)cos ko de
ab 2n - Tab
T h.p(©)
= 2L § { 3cab cos ked® + z— | —2B—= cos kede
L (9) e 2n < 900(9)
-3Cab " cos k8 1 ™ hap(8)
= ab de + — ——=+ co0s kO©de
2 _J“goo(e) e ,J (8
1T. h '
=3C,, £ 4 o= | hap(O) . kede,

ab "oo0 . 2m (9)

“n %0
it suffices to show that

T h e
(3.12) k(log k)2 [ _Eﬁi_l cos kB d&é —>» 0 as k — + o .
0 goo(e)
Now,
0« ] - 1 1 - cos 8
X  2-cosa=-cosp 3-cosB-cosa=-cosp (2 cosa-cosp)(3-cosa~cosp-cosO)

2
ks©

g —
(a®+82)(a?+p2+02)
for all ©®, a, B in (~m, mw). Since d-cosaa cosbp is bounded for
2 2\-% a? + pF
(ay b) # (0, 0) and (a® + B°) is integrable in

hap(8)

(lal € my [B] ™)y it follows that =23

is bounded in (0, w).

Again, for 0 ¢ 8 ¢ n,

i 4= j dad
o« h'b(e) _ 3siné [] 1-cosag cosbf adp

T (2%)e .4 (3-cos@-cosa~cosp)®

38 op 1=-cos aucosbg
2 Il 3 da dp
-1 4(9!+u +g2)2
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and a similar argument shows Fhat feh;b(e) is bounded in this

range. v _
happ(8), _ 9dool(8)h3p(8)-h,y(8)g5,(8)
(9)j - ' B

920(9)

-
Then, if V_, (8) = 53 {900

the above estimates, together with those of Lemma 2.17, show
that Véb(e).e(logé)a is boundéd in some neighbourhood of

zero. Thus, for k # O,

" hap(0 "y
J —32%5% cos k& d& = - [V b(e) sin ko db,
2 900 ‘ o ia

and this latter, being the.Fogrier coefficient of a function of
bounded variation, is O(%) as 'k — + © . This proves (3.12),
and hence the theorem.

Theorem 3.11 naturally implies (3.2), which for (a, b) = (0, 0)
1
is:

ﬂ 1
as. x —> + o,

6logx

(3.13) Foo(x) ~e -

A3
6109 x| as x —> - o.

Now if 826 denotes the xz co-ordinate of the lattice point at
which the R.W. starting at (0, O, O) returns to the xg axis for

. the nth time, it is plain that

s =F' + F® 4+ ... +F
00 Q0 00

n
oo’

where the Fgo are independent R.V's having common distribution

function Foo(x). Foo(x) has infinite moments of all orders
(-]

(that is, for every p > O I:|k|deo
-

°(x) = + o ) and, as noted
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by Levy [22], this means that for nq(an), (bn) does

a Sn

0500 * b, have a non-degeﬁerate limiting distribution

function as n —> + ® . However Darling [10] showed

that the fact ((3.13)) that Foo(x) and 1-F°°(x) are slowly
varying as x —> + ®and x —> - o respectively, leads to a
limit theorem of a different kind, and we can easily deduce

from his Theorem 4.2 t?at
il

(3.14) 1im {P{|ST |7 < x} = 0 if x £ 1
n —>+t® .00 R
= eS100X ¢ 4 > 1,

Also, if S:b denotes the xg coordinate of the lattice
point at which the R.W starting at (a, b, O) hits the xg-axis
for the nth time,

n _ 1 ‘ n-1
Sab = Fab + Foo + 1.0 + Foo s
' . n n
and (3.14) holds with S in place of §__.
ab Qo0
§.4 An obvious question to ask about the R.V's F is

ab

whether or not there exists!a norming function d(r) such that
Fab/d(r) has a non-degenerate limiting distribution as

r —> + .. The analogous question for the simple 2-dimensional
R.W is easily answered in the affirmative, the norming

factor being merely the distance between the starting point

and the absorbing axis, and the limit a Cauchy distribution.
However, in our case it turns out that the only possible

limiting distribution is degenerate, with distribution function

coawt T
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Go(x) given by

(4.1) Go(x)

1 1if x 21

0 1f x € 0.
We employ the following stancdard theorem (see, for

example, Lukacs [23, p.54])s

Theorem 4.2 Let (Fn(x)) be a sequence of distribution
functions and denote by (¢nke)) the sequence of the
corresponding characteristic functions. The sequence
(Fn(x)) converges weakly to a distribution function F(x)
if, and only if, the sequence (¢n(9)) converges for every
© to a function @(®) which is continuous at 8 = O.
@(6) is then the characteristic function of F(x).
Plainly, it the distribution ot %?f) is to tend to a
limit, d(r) will be of constant sign for all large ehough
ry, so without loss of generality we can take d(r) to be

positive. Fab/d(r) then has distribution function

Fab(xd(r)), and therefore characteristic function
¢ab(af%7): suppose ‘p(8) = lim '¢ab(j%;7) exists for all
r =>+m .
©. Note that p(0) = 1,and assume first of all that
1im inf d(r) = 2D < + @ . 'Then we can find a sequence
r —>+m . .
(r ) with rn'r+ wand D d(r,) 3D for all n. Since the

representation (2.24) shows that gab(e) is a positive

monotone decreasing function for 0 < 8 g n, for any
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0 < G.Q nD we have

Q.
9..(=
=) ab'3D
(4.3) ¢ab (d(rn>) £ 5. for (a, b) # (0, 0) and all n.
oco'D”
Now 0 < £ < I so 1 - cos"jL is bounded away from zero
aD X3 3D Y ’
and g_, g%) is the 2-dimensional Fourier coefficient of an

integrable function., Thus, by the Riemann-Lebesgue Lemma,

lim g (jL
r o ab'3D

and is plainly discontinuous at @ = 0. Hence, by Theorem

= 0, and therefore p(8) = 0 for 0 < & £ nD,

4,2, if 1lim inf d(r) < + o® there is no limiting distribution.
r =+ ' ' ‘

If lim d(r) = + o, it follows from Lemma 2.17 that
r —>+o
for all & > 0, ' |

©, TO.
K _( =)
: _ : o d{r)’
(4,4) op(®) = r11m+co Tog d(1)

Assume that lim inf‘iLLl < + ®. We can then find a
r —>+m

r
sequence (rn) with r_ T + oand L

. d(rp)
uniformly in n: since 0 < Ka(z) < + o for z > O,

bounded away from O

r.e
. Ko('d?rn)

therefore p(®) = O for all © > 0.  Thus.to get a non-zero

) is bounded uniformly in n for each ® > O, and

limit we must have'g%gl -—> + mmas r —> + . But

¥
Ko(z)h/ log 5 as z J 0, so that by (4.4)

. dr .
. lo logr
6) = lim 299378, _ 1 - =28z __ _
& ? rn—;+q>{1°9dr} © logd(r) €
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for every 8 » 0, where ¢ is independent of © and lies
between zero and one. If c is less than one, p(8) is
again discontinuous at & = O, and if ¢ equals one g(®) is
one for all 8, and is therefore the characteristic function
of the degenerate distribution function Go(x). This
establishes our assertion that Fab/d(r) has no non-degenerate
limiting distribution.

As a particular case of the above argumen;, conslider

what happens when d(r) = P we have,

8 i SFab .
.p(TE) = E(e’ =F7) —> 0 for © >0 and 0 < B g 1,
r
(4.5) 1
—> 1 - E for € > 0 and B > 1.

This suggests that the distribution of Fab is too spread out

to lie completely within the interval (-rP, rB) for 1large

values of r however large B is. Moreover, if
Lgb = P{|Fab|< rB} and we write N _ for [rp] + 8,
n
k 1 .
1B = = £5 = I =L g . (8)coske de
ab .
ab |k <P | ki< 2m -L ab
- .
_a sin N,©
= J ¢ab(e) —T——:;— de
sin 3
B s n(Nz
< 22"y e,y sin(gpe)
(4.8) B £ ¢ab(rp) “'E'E;'E de
2r sinz F

According to (4.5) the integrand in (4.6) tends, as
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r = + o, for each @ > 0 to O or léﬂ srge according as

pg1orp>1.

[~ -] : . . '
f S;Pe de = % , the obvious conjecture is

Since
o)

(4.7) 1im PL|F. .| < 2P} =1 <1 46 > 1
r —>+m { ab } B

0 if B 1.
(4.7) is proved in 8.5, where we use additional
properties of ¢ab(9) to show that the error involved in

replacing the integrand in (4.6) by its limit is 0(1) as

r — 4+ .
If we write F! = loglFabl when |Fab| >0
= O when Fab = 0,
« Fab o
the events {IFabI < rB} and {ngr ¢ B} coincide, so that

(4.7) is essentially a limit theorem of the standard kind

for the R.V's F! However it seems to be impossible to

b
get any information about the characteristic function of
Féb from our knowledge of ¢ab’ so the usual methods of
proving such a theorem do not apply.

§.5 For the proof of (4.7), two lemmas are requiréd, in
each of which r > O and B > 1. Also, without loss of
generality we can and do take a » b 3.0, since ¢ab(e) =

¢AB(9), where A = max(|a|, |b])s B = min(lal,|bl).
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There exists b(r) such tha

for l%gi £ g, and 8(r) logr —> 0

Proof
The

(Edwards

gab(e) =

so that

gab(..'e) <

relation —— _r

2n Z - cosa

[11, p.207]) gives

t0g B (8) g slr)
as r —> + .

n

n -
% J{(3-cos@-cosp)3-1} é{a ~cos@-cosp+/(3-cos@~cosp) -1}
)

cosbpdp

-a

max {3-cos@-cosp + /(3-cosB~

ogpgm

z | 2-cos0+ J(2-cosB)9-1} °

Thus ¢eb(9

is an inc

max

;og; Logn

cosp)a-1}

df .

RYER

gOO
£ {2-cose+ J(2-cos6)5-1}"

réasing function of 8 in (O,

cosp- —c0s0 )8~ 1§ﬁ

(o).

s moreover 2-co080+y/(2-c086)2 1

g,.(0) ¢ {2-cos 193L 4 y(FIg

) and a » % > 0, so
o8 L%gi)aJ1}‘§ = §(r).

Since 2-cos6 + J(2 cos@)a = 1Ar1 48 as 8 J 0,

d(r) v
and this
g mmna 5.2
(i%, Lgaz

z, depend

. OS]r
podoas” P oo, 7 loslirdgh),,

proves the leéemma.

If the total varlation of ¢ab(

) is ng, then Vﬁ £ 3logp fo

§ only on B.

‘ﬁ'(l%-gi) = r-ﬁ’

®) in the interval

r allr» o where
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Proof For & # O(mod2n)

. n .
_ —3sin® rr cosaa cosbB da d,

;b(e) (2n)2  Zn 3-cosa-cosf-cosB

so for 0 < 8 K n |g;b(e)|$ - géo(e). In this range we also

have, from (2.24), 0 < gab(e) £ goo(e)’ and therefore

185008 1= 7ray 1950(@)a), 000 (8)g, ()] < Eiu% :
00 gOO
Thus
l?gr logr g g (r'B)
. 0+ T
vB = _]r_B 18:,(8)de g -2 JQ-B aﬁﬁ%g} de = 2log{§§§TT3§;)§.

Since this last function is independent of a and b and, by
assertion (2.20) of Lemma 2.17, tends to 2logp as r —> + o,
the lemma is established,

Lemma 5.2 will be used i% conjunction with the following
version of the second mean vaiue theorem for functions of
bounded variation (Hobson [18, p.570]).

- Theorem 5.3 Let v(x) be a funftion of bounded variation in
the interval (s, ‘t) and u(x) be any functiop.integrable in

(sy, t). Then if V(s, t) is the total variation of v(x) in

(sy, t) and M = max |f'u(x)dx|,
. s Lo Tt &
I v(x) u(x) dx' < M{|v(s)|+ V(x, t)}.
s

Proof of (4.7)

Take B > 1 and-consider, in the notation of p.u7 .

n
g _ 1 sinN;©
Lab Tom i ¢ab(e) —o  4e.

sin =
2
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sin N 9/51n7 is less in absolute value than ‘, which
' siny®
in (0, m) is less than % . Therefore, by Lemma 5.?,
1| m sinNyp
(5.4) = | ¢ab(6) ___1@_ de | b(r) loglogr -2 0asr—> + ©.
logr sin 3
I
since |N_ - rP| ¢ 1 for all r,
B
Nr Nr e N"T .. g
sin—g 6-sin@| = 2|cos(—f + 1) sin(—F5 )=
P - B 2 B 2
2sin = for0C O,
and in this range we also_have
8. - sin~ §
0 < 1 _ X _ {27P 91-
= 2rBsin—gg ° © sin *gg
21‘ . 2r
A8 \a
< 3!(215) _ _m8
S e.=8x  asr2f ]
P
If p=1+a
l.ogr ' a Nr
rT.og sin Nr© .oq T logr¢ g. SinTE e ;
"o ab(e)sin g @ -;}_ Jo ab(rB) sin —QF °
2 2r
and if we write
N, . Ny
SinEE e _ sin® sin 74 & - sinb in6 4 ‘ 1
2ePeindy 8 { 2r® sin 2 o sin {2 Boyn-8-" © i
r n— r —
2rﬁ 2r 2rp

theaabove estimates ﬁhow that for all largeuenough r

rtlogr LS o s r%logr

. e - sin=—ge - sine -1 _ . _logr
B, (oF) [ ZT2F - J de, gx ﬂJo de = ~ieal

2rB sin E?F
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r%logr ' r%logr
',] B! 1—) 51n9{2r sm_e_ - de'\ 2502 B |o 8de
° 2rf
JL_(logr)a
96 r
s0 that logr
a
. S sinNr® t logz ., 8 .\sin6 . |_
(5.5) i;T (o ¢ab(e) .0 de ~ 2 J‘ ¢ab(;5) =——=de }=0.
r @ )

Now take any R > 1 and recall that O ¢ (G)

for alkl © (Corallary to Lemma 2.17) and that 1lim- g (j%)
ab'‘r
r—>+

is 1 - % for 8 > 1 and all ® > 0 ((4.5)). Then, by the

theorem of dominated convergence, we have

. . R .
lim J‘ B, TP 8.y £ind 4o i1 - -;—; I —5;”9 de,
o) (o]

r—>+® ©
R sin® n
and since lim é de = DR
R—>+mw o
R
: . 2] sind -1
(5.6) 1lim {J'ﬁab(;g). 2; de - % ﬁE—g = f,(R),
r—>4+m 0
where 1im f,(R)
R—>+wm
Since \[ _129 de| g % for all B > a > O, Lemma 5.2 and

Theorem 5.3 together show that for all large.enough r
rulogr
: B, sin6 2 R
¢ab(rﬂ) ) de| R-{ﬂab(;v) + 3logB}

[

so that

r®logr
(5.7) 1lim sup |[ ab(f%),sz;e de| £ fa(R),

r—>+@® R
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where lim {4,(R) = O,
R —>+cw ;

It follows from (5.6) and (5.7) that

a
r logr \ )
(5.8) 1im sup g (& 2L08 4o 1 Bo1b oo (g
. X 1s ’
r >+ lfo ab rﬁ T e 2 B '

where 1lim f,(R) = O. Since the left hand side of (5.8)
"R+ ' '

is independent of R, (5.8) implies that

r®logr _
(5.9) 1lim [ g, (5 H08 g = 1 21
r —>+m o©

(5.9), together with (5.5) and (5.4), is

r —>+® B

so we have proved (4.7) for g > 1.
1+
However, for every e > 0, O L:b < I_ab sy wWhence

I

1.
5

0 g lim inf-uz g lim sup L} g 75— for every £> 0,
~N _.
r >+ b= 2+ ab X 1+e
- : . (B 1
and (4.7) for B = 1 follows. Since O £ Lab < Lab for
B < 1, this means that lim LB = 0 for p < 1, so that
ab
T =>4+

(4.7) is established for all B.
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CHAPTER I1II

§.1 If (S ) is a R.W on E, generated by a RV X and I
n .
is the half-open interval (a, b], define G(I) by

G(I) = E(n : S € I) = nzjo Pla < S_ g bf.

Suppose that F(x), the distribution function of X,
increases only at multipiés of a fixed numbgr (the
"lattice" casg) and that d is the largest positive number
with this property. Then the Renewal Theorem asserts that
if 0 <K m = E(X) { @wand I + x is the shifted interval

(a + x, b+ x] /

-1
(1.1) 1im o(Mg [xa) = {0 NI

x =>4+
where N(I) is the number of points of I of the form rd for
some integer r and m-1 is to be interpreted as zero if m = +
If there is no d with the above property 'we have the "non-

]
lattice™ ease, and, with a similar proviso about m, the
" Renewal theorem takes the form
= im-::]'Il
0

(1.2) lim G(I + x)
X =2+

where. |I| is the length of I(= b-a).

: {In the case that X can take only positive values (1.1)
was proved by ErdBs, Feller and Pollard [15], but can be
derived from Kolmogorov's edrlier work [20] on Markov chains,

and (1.2) is due to Blackweil [2]. Chung and Wolfowitz [8]
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extended (1.1) to the general case, and Balckwell [3] did the
same for (1.2)4.

It is natural to look for a similar result for a R.W
(§n) on E, when k > 2. This was first done by Chung [7]
in 1952, He showed that if (gn) is generated by a R.W X
whose distribution function F(i) does not degenerate into
a one-dimensional distribufion function, and if at least one
component of m = E(X) is finite and non-zero, then for any
compact set A in E,

(1.3) lim G(A + x) = O,
|L|"9+m

- -]
where G(A) = X P{§n e A}, x is a k-dimensional vector of
n=o
length |x|, and A + x denotes the translated set {a + x:a e A{.

Feller {16] showed that (1.3) also holds when each component
of m is infinite, but apparently no other investigations of
G(A + x) have been made.
In this chapter and the following one we prove that
if 0 < |m| < ®wand certain other conditions are satisfied’
k-1

=3 G(A + xj) has, for each fixed vector j, a limit as

Xx —» + owhich is non zero if and only if j is parallel to
the mean vector m. This theorem is in some ways analogous
to (1.1) and (1.2), since, like them, it makes explicit the

intuitively obvious fact that G(A) behaves differently when
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A is moved off in the direction of the mean and when it is
moved off in any other diréction.
Our proof involves Fourier inversion and the use of Green's
Theorem, and unfortunately it only applies in the following
two situations:
(A): (§n) is an aperiodic R,W on the lattice L,

satisfying

(B): (S.) is a R.W on E, generated by a R.V X
X.u
2.4,

(1.4) 1im sup |B(u)| < 1, where B(u) = E(ei
|u| =+

However there is a natural mapping from L, onto any k-dimensional
lattice L which would allow us to extend ocur results for
case (A) to the more general situation in which (§n) is an
aperiodi¢c.RW. on L. (1.4) is the k-dimensional version of a
condition under which the Renewal Theorem (1.2) was first
proved: the k-dimensional Riemann-Lebesgue Lemma shows that
it is satisfied in the impoftant case when the distribution
function F(x) of X has a non-vanishing absolutely continuous
component,

In 8.2 we present some definitions and preliminary
results for a k-dimensional R.W, but the rest of the chapter
is devoted to the planar case, k = 2,

8.2 A R.V X on E, is said to be strictly k-dimensional if
there is no k - 1 dimensional hyperplane D of E, such that

P{X ¢ D} = 1. '
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Lemma 2.1 If X is strictly k-dimensional and

02 = E(|X]|?)< + o, Qu) # # E((X.u)®) is a positive
definite quadratic form.

Proof Suppose the lemma is false: then for some u° Z 0
E((L.go)a) = 0. Let D% .be the k-1 dimensional hyperplane

which contains Q0 and is perpendicular to go. Then

- X.u® = Igolo(perpendicular distance between X ana D°),
and E((L.go)a) = 0 = P{perpendicular distance between
X and D° > 0} = O, so that X lies on B° with probability

one, which contradicts the ;above definition.

(2.2) Corollary to Lemma 2.1 For some constants O < k, £ ks <to,

kylul? ¢ Qlu) € ka|ul® for all u.

Lemma 2.3 If o¢2= E(|X|?) < + ©and p(u)

= B{e X (4 4 iux - 3(U.X)?)} = B(u) - (+ + i mu - Qu)),
then [p(w)| = O(]u|?) as lul —> o,

Proof Rao and Kendall [27] prove the 1-dimensional analogue

of Lemma 2.3, and we borrow from the following remark: for

each integer n » 1 and for all real y

: n . ;.o yvn+d
(2.4) M= g LT () ()T

] ] 9
oo T° (n+1)!

where |9n(y)| £ 1 and |Gn(y)—1| £ ;l%la . Putting n =1

and y = u.X in (2.4), the existence of 0® means that the

expectation of both sides eiist, whence



plu) = E(e®:d) = 4 4 iim-g - Eiel(i-g)(X.u)aj

so that

p(u) = 3E[@,(x.u) - 1)(X.u)%},

and thereforé
| (U) ;a
(2.5) m lf Jolxl? e, (ux) -1]dF(x).

Given arbitrary ¢ > O, we can find X(g) such that

I

if |x|2dF(x) < =, and since |8;(y) - 1] 2 for all
x|>

X 2
real y this means that IJ..; |x]2|8,(u.x)-1|dF{x)< e. Now
|x|>X

“u . ,
‘91(3-1) - 1] £ 1=Jlél y, SO0 there exists d (&) > O such that

|8y(u.x)-1] £ £5 for |x|€ X and |u|l €& . 1In (2.5) this is,
for |ul <»,
u)

..l_l +%‘{

|ul® 2 5 1x]? dF(x) < &y

i v

and this proves the lemma.

Lemma 2.6 If X is a R.V taking values on the lattice L, and

E(|£|n) < + , then for r =0, 1, ...n, each derivative of
P(u) of the rth order exists and has period 27 in each of

the coordinate variables u;, ... u,.

Proof Since X takes values on L, there are non-negative

numbers p_ = P{X = a} such that



-5Q~

(2.7) P(u) = £ pagelded ',
aeL,

and as each a ¢ L, has intéger coordinates, the conclusion

for r = O follows. Since E(|Xx|™) =g P_ |a|”
f Be Lk

we may differentiate under ‘the summation sign in (2.7)

a < + o,
r times (r = 1, 2, ..., n) to conclude the proof.

A random walk (§n) on a lattice L is said to be aperiodic
if the set H = {a : Piﬁn'=,gf > 0 for some n} is not
contained in any proper sub-lattice of L.
Lemma 2.8 If (§n)'is an apériodic R.W on-L, generated by a
R.V X with characteristic function g(u), then:
(2.9) P(u) =1 = u, = 0 {(mod 2m) for E = 1, ..., kj
(2.10) if S is any closed subset of E: = { v, I€ n} which

s=1

‘does not contain 0, inf |1-@(u)| > O.

U e S
Proof The smallest lattice containing H is L(H) =
r .
{b+ b=2% A\, a for some integers A, and vectors a, & H}.
s=1

If H) is the subset of H consisting of all a with P, > O,

then plainly L(H) = L(Ho), and the aperiodicity assumption

means that L(H) = L_. Thus every member of L, is expressible
r

as 3 A, 2, with a, e H_. Now take any u with g(u) = 1, and
s=1

notice that

‘R{1 - B(u)} = g; (1 - cos u.a)P,s
0
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so that u.a = 0 (mod 2n) fbr every a € H_ , and hence, by
the previous remark, for.e;ery 2¢e L. In particular,
taking a to have sth coord{naté one and all other coordinates
zero, we have _
u, = 0 (mod 2m), for:s = 1, 25 ... ko
This proves (2.9) and implies that if B(u) = 1 and
U Er, then u = 0. Since 11"¢(i)| > 0 for all u and B(u) is

continuous in Er, this establishes (2.10).

Lemma 2,11 If (§n) is an aperiodic R.W on L, generated by
a strictly k-dimensional R.V Y with E(|X[®)= 03%< + @,

then for any a £ L,

n T -i(a.u) du 1 T } e 1244,

. . u _ u
; (2m)k :Li:" ¢ 1-pf(u) ~ (2m)* e 324(0)

provided that if k = 2 m = E(X) £ O

G({g}) =p1;@

Proof Since §n has characteristic function

. nom . :
'¢n(£),:P{§n = a} = TE%TT J..Tlﬁn(g) e-lg'idg.- Take real p
-n -1

with 0 < p € 1 and 1look

a
@™ © L 1 —3 '
5z e P{S =a} = ‘(—2—})—“ o o] AM(u)e T 2ay

n=o n=o -n -7
. ) N+1
- 1 __ ] won 1‘{P¢(£X -iu.a
= 2m)* lim Jeo e —°= du
' N —=>+om-n -u 1‘9¢(£) ‘ -
1 . na "- e_’i_l_‘_._a_ ¢
= Tzor e T e

N+1

for (p¢(g) —> O for each u, and the interchange of
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limiting processes is legalised by the Theorem of Dominated

Convergence, the dominatingﬁfunction being 2(1 - p)_l. To

complete the proot we have to show that
-IUc m “I

lim J du = fﬁ —~iu.a . _ -, _
P ¢~1-" g DB(U) . _nq—z“—- «du. * Since R{1 - ?(H)j =
£ (1 -cosua) P, )0, [A-pf(u)] = |1-p+e(1-Alu)]

ae Ly -
plt - Alwl,
and it therefore suffices to show that (1 - ¢(g))—1 is
absolutely integrable in Ey.  Now |1-g(u)| = |Q(u)-im.u-p(u)|
ll1Q(u)-im.u|-lp(u)|{|s and by (2.2) and Lemma 2.3
lQ(u)-im.u| > ky|ul® and |p(u)| = o(|ul?) as |u|—> o.
Therefore for some 8> O |1 - g(u)| > #|Q(u)-im.u| for ail

|lul ¢ » . Since, by (2.10) sup |1-B(u)} < + o,
o E[Ek\{lu|>b§)

it ﬁerely remains to check thgt (Q(u)dim.u)”® is integrable
in-Jul € 8 . If k > 3 this follows from the fact that
lQ(u) | > kylul®, and if k = 2 ,we have to apply a change of
variable and ncte that for any 0O < b’<-+ @©.

IJ

dv, dv ) dv, dvg
-y tki(vi+vE )=+m=,v1§é

— <;%J'_j' <+ o,
1 O'{2v1(v§+vg)j
- Turning now to the 'non-lattice' case (B), we need the

following consequence of (1.4).
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Lemma 2.12 If 1im sup |@(u)| < 1, then sup |@(u)] < 1
luf—>+o |u|>s
for every 3 > O,
[~ -] [- -]
Proof Since R {1 - g(u)} = [.v] (1 - cos u.x)dF(x)
- =

and 1-cosa = 2sin3 % > 2sin? % cos?® % = § sin®qa = 1(1—cos2u)
1
for all a, R {1 - B(u )4 }'Z R{1 - g(2u) )} and hence

(2.13) & {1 - Blu)} > n1R{1°¢2-!§

for any n » 1. Let lim sup,|¢ (u)] =1 -e. Then for some
_ lu|—=>+a
u<+ o sup |Blu)| €1 - 5. Now gu) = E(ei(-i'g))is a

uj2u . —_—
characteristic function, and so also is [@B(u)|? = #(u), B(u).

Given & > O .we can pick N such that 2V > f and apply (2.13)
to |@f(u)|® with n = N to get for every |u| > b ,
- 1Bl 3 v - 1B wiry > g
In case (A) Lemma 2.11 .provides a representation of

G(A) as a Fourier integral whenever A is a bounded subset
of L,, and we would like a ¢imilar formula for case (B).
It transpires that we need only consider G(A) when A is an
interval of E,(that is, for some g, t A = I(a, t) =

{xt |x,-a, | t, for s =1, 2, ..., k}) and we also employ
the device (used by Chung and Pollard [7] for 1-dimensional

Renewal Theory) of considerihg the integrated version of

G(I(a, t));
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li

h, h, ' hy hy = e
(2.14) L(a, h) = [. .J G(I(a, t))dt = J..] 5 P{8eI(a,t)}dt.
0 0 0 nz=o .
Lemma 2.15 If 8§, is a n.w on E, generated by a strictly

k-dimensional R.V. X with E(Iila) =02 < + wand

1im sup [B(u)| < 1, then fdr any g ¢ E, and h with
u —>+m' ;

o<h,<.+oo(s=1,2, cos k)

e ) =% J..f ’;’—(‘%‘Tﬁ—) emieeu gy,

where D(h, u) ='%r l:E%?ﬂ;ﬁL s provided that if k = 2

m = E(X) £ Q.

Proof Starting from the st@ndard inversion formula for
k-~dimensional characteristi¢ functions we may derive, just

| .
as Lukacs {23, p.51] does for k = 1, the integrated version:

h,l. h,k 1 Sy
(2.16) [-..] P{X eI(a, £)}dt!i= o [. ] D(h, u)¢(u)e el gy,
[o] (o] ' -l =0

Applying (2.16) to each of the characteristic functions

g"(u), we have for 0 < p < T

® n h.l h.l . ;. 1 ® m_ m- n-
g e [ Pls e I(g, £)jdt == T [..[ D(h,u){ef(u)}"e'e 4
n=o [#) o n=o I?w -
® o N+1
it T st HEHATT ey
- -} - -} E, -1&.2 .
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N+1
ince | 1-leflu
since 1 ig¢( u)} | € 12 'for all u and N and D(h, u)

is a non-negative function which is integrable over E,. This

last remark, together with Lemma 2.12, shows that for every

8 >0
-ig.u
; D - . Dt(h -
lim  [..] ‘%T'¢%3§ du = J]..] T%B%g% e "2+2 dy
p A1 |ul 3o TTRARA T al e AR
~ hau
' k N ,g—b_'.' k 2
and since D(h, u) = TT 2sip < T %‘- y the estimates

used in the proof of Lemma 2.11 show that for some & > O

. - D(h,u) -iqu «- D(h,u) -i
lim . e =2= ==du = [.. =z a4 gy,
1 {aids T-ef(w)". {uidergto © =
® n h1 h_k i .
Thus 1lim Z f..J P{§nE,I(g.£Q}g£ exists, and since
™1 n=0 o ©

hy, hy @ i
the integrand is positive it equals [..[ {1lim Z pnpignel(ggi)}§gi
G o pT™n=o :

In investigating the Fourier integrals which occur in
Lemmas :2,11  and 2.15:, rep;ated use will be made of the
following version of Green's Theorem [Courant and Hilbert
[9, p.2571}.

Theorem 2.17 If S is a bounded subset of E, with piecewise
smooth boundary g and y,(u) and its first and second
derivatives and yy(u) and its first derivatives are all

continuous and integrable in S + o , then
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(2.8) [ Jl4s 92 4y 4 Yii. Yyajdu = [o.f ve SH

t
where §% denotes differentiation along the ocutward drawn

normal to g . If, in addition, the second derivatives of
¥a(u) exist and are continuéus and integrable in S + o
then .

(2.19) 125.,]'{ ¥2 V2¥1-929? yajdu = _$'.0.,,|“Ha g—g - ¥ 2—1;;@.
§.3 When k = 2 it is obvious from Lemmas 2.3 and 2,11
that for case (A) the folloWing guestion is c¢rucial to our
investigation:

(3.1): if f(g)nu'q( Qs {ul — 0 and F(R) =

JJ elu.R f(u) du, how does F(R) behave as |R|—> + o ?

In this section we give an answer to (3.1) which also applies

to case (B).

o . k -
Theorem 3.2 Suppose f(u, 3)'= P(U)iisi v {1 + g(u, R)§»

where P is a positive definitg quadratic form, g, is a unit

-

vector and g satisfies:

(3.3) for each R eI} and Qg ‘exists and gs %9' and Sq are

- au:_ aua Uy aUa
continuous in S(d, d) = {|u,]|€ d, |ua|< d};
(3.4) g — O uniformly in R as |u| = 0;
(3.5) |g| ana |P(u) - iey.u||'Vgl| are bounded in S(d, d)

uniformly in R.
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If es is a unit vector orthogonal to g,, denote by
|
T(d,, d,) the region{ |V |< 3, | Vol 3§, where v, = g,.u

and vy = €5.u., Then for any &> 0O

(3.0 RIY [ B pum)an - ke [ s au} 0
“ - ‘{Sgg.d) e 2 Té- Plu)-iey.u =

, d53)
as |R|— + o,
Proof Writing R for |R|, lete be a function of R to be
chosen later with ¢ (R) ¥ O as R*+ @ . Then if
S; = T(Es Eé), sa = S(ds d)\II-T( €y Eé) and Ss = T(bsb)\T( Es

(3.6) takes the form.

(3.7) lim Réikal1 + I - kalg} = O,
R—>+w - *

where I, =

Now let M(g) = sup { #up lg(u, R)|}s then
u &S, Rt E,

assumption (3.4) implies that M(&)¥ 0 as € k0.
If P,(v) = P(u), then P, is also positive definite, so

that Py(v)(v} + vg)“ is bounded away from zero, whence

4
- du € £ dv, dv
1721 < Mle) gH IP(g)-ig1._LJ_| ) M(€>V1=_g Vg"eﬁ [Py(x)=iv, |

£

8
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2 ;
dv, dva

(ve + vi)®

z

T
o

€
2=0
= dw, dwga

kaMi(e ) [ T
e ] 2(wa (wi+w3))®

(3.8) = l<5g%'m(a), ;
Applying Green's Theorém (2.18) to I, with §, = %% eiﬁnﬁ
and §y5 = f(u, R), we have for every R,
=—la'é B g oge. d.U.-f;EEJ' E—;%(ely-ﬂ)fdg.,
(

d)uT(e o %)
where g and T~ are the boundaries of S and T, respectively.

Plainly ia% e“'H"B

£ R for all u and n, and since P(u) is
bounded away from zero on o (d,d), assumption (3.5%) means

that

g1 |f 5%( lu. R)f(u, R) dg| is bounded for all
G(d9d)
R. Also from (3.5) we have
R [ LB £y, ) g g & Ir 2 I
- — AN 6 - .
(. 4 o8 . : e g ) 1P()71E ]
€
= kg | TP + bty
6 v1=-a|p1(v1’€ )=iv, | [Py (vyy-e B)-iv, |57 73
.
+ k J { ! + ! —dv
CH . L|Py(e svy)-ie | [Py(-egvg)+ic [ 2
Va=- €%
L
E dv €% dv - -
gy = Ll _ -3
0 ) .

A third consequence of (3.5) is that



for plainly |v P(u)| is bounded in S,. Now for some D < + o,

Ss = S(d, d)NT(e,ef) € € T(D, D)\ T(e, ef), and

. dv,dv DD dv, dv
_.__1__3....._. LN L et l -]
I .I _E 'é P?(_\_’_)"‘V? < kgl J V1+Vg
{e< |vy <D, € B¢ v, DR vyzevg=ek

Qq dw
” Ew%&wa)
< kio E-é ’
so that we finally have, for all R,
S (3.9) |1al€ (kya + kg, s-#) R™?

An“exactly similar calculation on I, leads to

-%,,-1
(3.10) |Iz| £ {kqq * ka3 sl Z{R
and if we now put & = %, (3.8), (3.9) and (3.10) yield
L kg tkgk
lim sup R !P I, + Ig -~ kaIsI XY '*t‘ga—Ll ’

R~=>+0
and since we can take A arb{trarily large, (3.7) is

established and with it the'theorem.
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The second part of the answer to (3.1) is contained
in:
Theorem 3.11 If P(u) = P,u3+2P,5u,u, + Pyu} is a

positive definite quadratic form and e is a unit vector,

then for any > O

;g o8 TiR(u.e)
lim R®? | [ =———— du,du; =0 if g # (1, 0)
R—>+ow -b =} P(H)_iul I

Proof In Theorem 3.2 write f(u, R) = —ag—— e, = (1, 0),
&> =(0, 1)y, ka = 1 and d =& . Then g(u, R) =

2
P,uy + 2P12u1ua_

Paug-iul » Wwhich is less absolute value than

Pyuy, + Pyaup, so that (3.4) is satisfied, Since g has
continuous first derivativés and is bounded in S¢ ,%), (3.3)

and (3.5) will be satisfied if |[P{u) - iu,||V¥g| is bounded

in S(345 ). Since |P£g?‘iU1l is bounded in this region,
|Paui-iu, |

it plainly is. The conclusion of Theorem 3.2 when

R = Re is

5- b .
(3.12) 1im R® [ ] i L1y miRue)y, Lo,
R >+ b P(u)-iu, Pyu3-iu,
S b
. _ . . du _ du
Consider the case e, = 0. Since _JA-iu = 2A £ PEI]

= 2tan * % ’
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-iRuge .
5 e =0 du, duy = 2 ? e iRUz8a 4,477 o7 dus
~3 Ppud-iu, ~b stz
= 4 T cos{Ruge, ) tan~ ] ——13 dug
5 2 Pauj
R
= 4.n . i cos(Rugey )dug,
0

where we have used Bonnet'$ mean value theorem (Hobson
-1

b »
[18, p.565]), tan —5 being monotone decreasing in

Papuj
(0O, %), Since ¢ =+ 1, this last integral is O(%) as
R — + o, and this, together with (3.12), proves the

theorem when e, = 0.

If e, # 0, consider for x > & ,

b . X .
) = [ e 1Rua§g dug [ e iRu,e, du,
Uz =-b b Pyud-iu, °
X iRu, e -iRe, x ~-iRe,d
181 1 1
Since 31 du, - Lire 3w 2 3
) ana‘lul Rel PaUg-lx Png"ib
' x =iRu,e
1. T e 11
+ Re, J(Pnug—iu )2 duy
b S : -
. du, du o2 =1 2psuj
and I | P3uz+ujy ] Paul tan -——b dus £ + @,
UQ=-b N d i

we have, by dominated convergence and the Riemann-

Lebesgue Lemma,

1 ) @ e-iRgg
1im J(x) = — | S du, du
x>+ ® : Re, Up=-2% 4 Paug-iu, ~ 17
-iRe,d b _-iReyu .
— le 1 e~ 23 - ol
Re, -'[5 PouE-15 dug = 0(3) as R—>+ o
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b -3 ;
< < =iR(u te
Similarly J | e ('ir) du; dup O(l) as R—>+ @,
Ug==-% - . Paug-iu, R
and therefore, if e, # O,
1 -3 _i.Rgo!_e_ ' b‘ ® .
(3.13) 1lim R2 ér S 4y du, - ] ] e iRu.e du, du,
i PouZ-iu b : T T E. !
R—> +w - T Up==b ==Pjui-iu,
< Oﬂ
Now if A > O, .
-iBu
J EK_:—%% =2me By B> 0

-G

=0 if B < 0.
Thus if e, « O the second integral in (3.13) vanishes
for R > O and then (3.13) and (3.12) prove the theorem.

1f ey > O we have, for R > O,

-3 -} - 2
l'b "]’. e IRE-,E dUl d.Ua = 2n . e lRUaea e Rpauae‘-dua
ua'=_6 — Pa Ug"iui ' -b .
[+ -] = - 2 .
=on { l- e lRUaeg e Relpauadua-I(R)j,
-
where

. L _ .
R%lI(R)l = Ré| 1Beau e Re,Pau du
lu

. e
>

L *2 . 2 @ - 2
< 2rT [ TREAFRUT 4y o [y e ©1Pau% 4y,
d R
Since Pge, > 0, this last ihtegral vanishes as R—=»> + o ,
and the theorem is espablished if we notice that

(Erdé1lyi [12, p.121]]



-72-

; . =i -R 5 U3 -Re2
RE | eTiRuses TRe1Pouz —/ I ZRes

s elpa 4e‘1p2 i

I
!
for this last only has a non-zero limit as R-> +
when ¢ = (1, 0), the 1imit then being ﬁL .
2

§.4 We are now in a position to state and prove our

results for k = 2. In case (A) we haves

Theorem 4.1 Let (§n) be an aperiodic R.W on L, generated
by a strictly 2-dimensional R.V X. Assume

(4.2) m = E(X) =m £,, whére €l = 1 and 0 <« m <+ @ ;

(4.3) o2 = E(|X|?) < + .,

lSuppose that_{a is a unit vector orthogonal to _ﬁl, and
if Qu) = E(4(X.u)?) let @{u) = Q,(y) when

vy = u.dys vy = u.€s. Then, if Q,(0, v,) = A?vd and
[xi] denotes the vector wiéh components [lej, [xja], for

each unit vector j, !

N(A) if 5 = ¢

=1

(4.4) lim {x% G(A + [xi)}

X —»+m 2AJE; o

0 if j £ &,

where A is any bounded subcet of L, having N(A) members.
|

Proof Since G(A) = ¥ G({gj), it is sufficient to prove
aeA
the theorem when A has a single member a. Therefore,
- 3
by Lemma 2.11, we have to evaluate lim %§%§§l , where

X—> +®

-~
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Toon e‘12(1+[&l])

J(x) = = du
" .'l,, _J,, 1 - #lu)
A T m e-ixu.i 1+ glu, x)
NCRENES " TTelw-ig,.u
and g(u, x) = Q(u) - im.g;e—igu(g}[xi]—xi) .

(u)
Now P(u) and its first derivatives are continuous in

S(n, n), and therefore for.each x so are g(u, x) and its
first derivatives, Since {a + [xj] - xj| < la| +

| i@jl-[le])a + (xja—[xja])ﬂfés Lg‘ + JE, and, by Lemma
Q(u)-im.,u

2.3,‘ Tim0 -?fzﬁif7‘= = 1,ig-9 O uniformly in x as
2 —

lul = 0. Now Lemmas 2.3 and 2.8 imply that Q—%%-Z—t%‘-—*’-

is bounded in S(m, n), and since |V @g(u)| < m<+ @, it
follows that |g(u, x)| and'IQ(E)-im.g|l?Lg(g,x)| are

bounded in S(m, w) uniformi& in x. Thus the conditions

of Theorem 3.2 are satisfigd with R = -xj, and its conclusion

is that for any d > 0 g
g~ixJ.u L -
(4.%5) 1lim - %(j(x) 1 (ijb) - m“Q(g)—igl.;)_o'

X —» +@ m
- Now
-ixj.u 4 -ix
e == du = [ e by -Ydv
T(5,%) m~1Q(u)-ig, .u -5 m™1Q, (yv)-iv,

where j' is a unit vector which equals (1, O) if and only if
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’ |
j = £,, and Theorem 3.11'shows that

é J oV ' '
lim x j] NEETT dv = 0 if j* # (1, 0)
X->+@ -3 v
QﬂZ m% “pn s
I = ——A—_ 1f l’: (1,0)

Thisy in (4.5), proves the theorem.
In case (B) we have:

Theorem 4.6 Let (S,) be a,R.W on E, generated by a

strictly 2-dimensional R.V X. Assume

(4.7) m = E(X) = m€&,, where |[£;] = 1 and O < m < + @ ;

(4.8) 02 = E(|X|?) < + o ;
(4.9) 1lim sup |B(u)| < 4, where @(u) = E(e’2-Y)
MUl = o

Suppose that g; is a unit Vector orthogonal to €,, and
if Q(u) = E(B(X.2)?) let Q(1) = Qy(y) when v,=u.£;,

Vg = ga.g;. Then, if Q,(0, va) = Av2 and A is any .
Jordan measurable subset of 'E; with measure |A|, for
any unit vector i

(4.10) 1lim {x%G(A + xi)}
X=» + 00

!
P
ja.

"
I

=0 if j £ £,.
Proof It is sufficient to e@tablish (4.10) when A is

@ bounded intérval of E,. Fbr if (4.10) holas for every

such interval 1, consider thé case when A =s§1 Is‘ Then,
n
since U I.=u Ig, where the Ig are mutually disjoint
s=1 s=1 !
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n
14) = £ G(1f), (4.10)
1 s=1

intervals, and plainly G(,

i
$

e

holds for every A of thisiform. But given an
arbitrary Jordan-measurable A and an arbitrary z > O
there exists sets A; A, such that A, £ A = Ay, A, and Ag
are unions of finite numbers of intervals and

|A,] + ¢ = |A] »|As| -.e. Plainly

Py E

n € ALt xi} € P{S e A+ xjl< PIS e A + xj}

for all x and j, ana so, for each x > O

x’k‘Gi_A1 + xj} < xéG{A + xij < x%G{Aa + x__‘;_f
Now let x -»+ @, and denofe the right hand side of
(4.10) by (i) to get for ‘every i ,

(JAl- e)N(3) < [ALIN(j) <« 1lim inf x'é G{A + xii
- X —» +0@ -

< lim sup x% G{A + xjt < |Az|n (i) < (|A]l+ ) N (J)
X—>  +0m: : - :

Since £ is arbitrary, this implies that lim x%G(A+;i) =
' ' X—>» +®

'y A(j)s so that (4.10) holds for arbitrary Jordon-

measurable A.
We are thus left to prove that for every g ana h with
O<h1<+m,0<ha<+wg

(4.11) 1im  x% 6{I(a, h) +/xi} = ah,hgh (3).
X > +m®

Instead of (4.11), we prove

II'
(4.12) 1im  xBL(a + xi, h) = 03 hE N (§),
X —> +@ - -

-
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where L(a, h) fo [ G{I(a, t)}jdty, dt,. For, if

0< g, < hy, © <ge.<h2,'

hy hg |
I | ofi(a, )} dt, dty = L(a, b) + L(a, a) - L(a,(h,,g,))
9, 9,

- L(ls(91’ ha))9
so that (4.12) implies
1 by by
(4.13) lim xT [ [ GlI{a+xj, t)}jdt, dt, =
X >+ 9, 92 -

Since G{I(a, t)} is a non-decreasing function of t, and

t, we have, for every x > db
3 : : 3 Mohs o

(4.14) x=G{I(a+xj,a)f(hy~g,)(hs~g,) € x J I G{ I{a+xj,t)}dt,dt,

91 92

|
< %% 6{1(a+xi, h)f (hy-9;)(hs=ga),
and it therefoze follows from (4.13) that

lim sup x G{I(u+x3, g)j < (hy + g,)(hy + g5) k(i)
X — + '

.
g lim inf x=G{I(g + xj, h)}.
X — +0© '
If we let h,V¥ g, and h, L g, in tne first inequality and

g, h, and g,Mh, in the second, this becomes

lim sup x%GiI(g + xj, @)} < 49,9, M(J)
X —» +m -

lim inf uxé G{I(a +.xj, h)} = 4hy hy £ (J).
x —> +o - -

Thus (4.11) is a consequence of (4.12).
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In order to prove (4:12) we have to evaluate, according

to Lemma 2.15, 1lim x%j§x2 h
: X ~2>+® n? » where

® ® o =iu.(xj+a)
J(x) = _I Im D(B_s E) 61. - ¢(.‘i) dil.'

Taking any 8> 0O, split the region of integration in the
above formula into S(d, &) and E5 \\ S(&, &), calling the
corresponding integrals J,{(x) and Jy,(x). Then Jy(x)

= _ lim - J5 (x5 R), where

R—=+m
s ~ig.u
J.(x, R) = ]A e~ixj.u  D(h,u)e du.
S(RyRNG'd,8) 1 - Blu) =
Applying Green's Theorem (2.18) with y,(u) = -&2 —ixi.g’
. D(h o g
Vo () = ?47%:%1 g 12U , we have for every R > b,
(4.15) Jo(x, R) ==t ] e XL 8y gy, (u) du +
S(R,R)\ S(5,3)
T [ nase™ Ly (u) ar
R,R), T (65)
If w(s) = sup [1-g(8)|=* , by Lemma 2.12 w(3) « + o
ufs(3,3)

for every & > 0. Since the second integrand of (4.15) is

dominated by w(3d) D(h, u) ard

R "R

. _-"2 . 1- 2h

J D(h, u) dul““ﬁé J co: hy ug du, € R%" ,
u,=-R |u3|=R =R Ui

the contribution from ¢ (R)R) vanishes as R—=> + @ . This
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remark also shows that

| n. e—ixi.g ¢9(u)|d6 | < 8(hy, + hp)iw(d)
-t -— - B 52 ’
o (d,0) ) " .

and since it is easy to check that |V ya(u)| is integrable
in E,\ S(b, d), Ja(x) = 1im  Ju(x, R) exists and is
R> +®

Ot%) as x>+ o for every § > 0.

We can now apply Theorem 3.2 to

J(): i R
SRR L

(w) © du.

For if we notice that withdut loss of generality we can
take £, = (1, 0), Za = (0, 1), (the theorem in the

general case following by a change of coordinates from
D(h, u) e‘ig._.g -
1-B(4) -
_iﬂi (1 + g(u) . |
mTQ(u)-iu, ° it follows from Lemma 2.3 that
1

lim (u)
lu|»o0 4

are continuous in S(%, 3), and since Lemmas‘2.3 and 2,12

this particular case), and write

= O.. Plainly g(u) and its first derivatives
imply.that %j%f%?ﬂ‘ is bounded in S(3, ¥), the fact that
the first dérivatives of D(h, u) are bounded in this
régign allows us to check that g(u) and

lQ(u) - imuy || v g(u)| are béunded in S(&, d). The
conclusion of Theorem 3.2, Qith R = -xj, is that for any

&, > 0
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"ixjaﬂ

L b, b
(4.16) 1lim x2 {74 (x) -"fl yl hihZe - 0.

X - 40 51 ..'bl 4(0’(_\.]_)-iulm) d-!.i

Now Theorem 3.11 telys us that

d d -ixj.u
.1 .1 o
1im x2 _ ' gTETTT;t du = 4n® )\ (3) ,
X = +00 -5, =3, ‘= 1

and this in (4.16) establishes (4.12), and hence Theorem

4'6.
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CHAPTER IV

§.1 Theorems 4.1 and 4.6 of the previous chapter are

the special cases k = 2 of the following theorems.

Iheorem 1.1 Let (§n) be an aperiodic R.W on L (k » 2)
generated by a strictly k-&imensional R.V X.

Assume

(1.2) m = E(X) = m|g,|, where 'fi‘= 1 and 0 < m < + o© 3
(1.3) 02 = E([X[?) < + @ ;

(1.4) £ {1515} <+ o

Suppose that él, f;, s e sy sfk are orthonormal vectors and

if Q(u) = E{#(X.u)?} let Q(u) = Q(x) when v, = u. &, for

s =1, 2, ..., k. Then Qo(va, vs, ceey Vi) = Qu(0yvayeaavy)
is a positive definite quadratic form with non-zero determinant

e

A, and if j is any unit vector and [xj] has components

[xj,] for s = 1, 2, ...k,

=1, I k=3 -
(1.5) lim {x%é‘_-G(A + [xi])} = —?éél—. (%)2n-~ if j = &
x> +® ‘ ‘ 2" 'n -

=0 if j # £,
where A is any bounded subset of L, having N(A) members.
- Iheorem 1,6 Let (§n) be a E.W on E,(k > 2) generated
by a strictly k-dimensional R.V X. Assume that (1.2),

(1.3), (1.4) and
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lu.X,,

(1.7): 1im sup |B(u)| < f; where @(u) = E(e
lul &2 ©

hold. Then if A is any Jordan measurable subset of E,

having measure |A]| and j is any unit vector,

- . I (T
(1.8) 1lim {x L-;:1G(A+xj),} —E%%l_ 0%)2 ifrj= £
- X Pt ) - 20 Tl :

In §.2 and §.3 we give a detailed proof of these
theorems when k = 3. Since the limits in (1.5) and (1.8)
involve only the first and second moments of X, assumption
(1.4) means that cur conditions fﬁr k 3 4 are unlikely to
be best possible. We therefére restrict ourselves to
giving, in §,4, only a sketch of the proof for this case.

At first sight the appearance ot the factor m—g in

the above results is rather surprising, especially for the
case k = 3. In one-dimensiénal renewal theory it 1s plain
that by increasing the mean. ot the R.V.X one increases the
average size of the steps which the particle takes, and
since with probability one ihe particle drifts off to + o,
the effect or this will be #o diminish the probability of the
particle visiting any fixed{set. Though this effect is
still present in k(> 2)-space, there is another one as well.
To see this, consider the ldttice case when the congitions

of Theorem 1.1 hold with ¢, = (1, 0, O, ...0) so that
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E(X,) = m and g(X,) = 0 for s = 2, 3, ..., k.

If S£1) S(z) Jenote the p}ojections of S

_—r ' ——

onto the x,
axls and the (xg, xs,...xkj hyperplane, respectively, it
1s reasonable to suppose that the long term behaviour of

(1) and 5(2) will be 1ndependent. Then

(1.9) o(lg} + Ix &i1) = 5 pslt) = (a3, 8(2) < g)

n=o0
~ g pstt

o= kD) el = 9) as xdw
n=o

Just as in the 1-dimension51 case, one effect of increasing
- -1

m will be to diminish ¥ P(S (1) . = [x]). However, the
n=g .

Central Limit Theorem indicates that only those terms in
(1.9) with nm = x = O(/x) make a significant contribution
for large x, Thus increasing m will pick out terms

P{§£2) = O} with smaller values of n, and these terms will
therefore be larger., We cag carry this crude argument a
stage further by noting that the local version of the

Multidimensional Central Limit Theorem gives

1 3
2*7'a (nn)E32

as n '—)'I'-(D.

s, = o v

It is therefore plausible that

ofio} + [x €.~ 2 1 p(sl = kD). p(sl® =)
Inm-x|=0(xé)



A — 5 pis(1) = [x]) = k-1
2% 1A |am-x|=0(x}) ‘i'i n [xD) =)

e

ﬂ{(JL)j;f. 1_ 5 9{5(1) = {x]}
Tt gkt |nm—x|=o(x%) n }
m k-1 1 a | .

N("x) 2 - A2k‘1. m d8% X _— + @

the last step depending upék the one-dimensional Renewal
Theorem, _

§.2 When k = 3 Lemmas 3.2.11 and 3.2.15 again show

that we must investigate thé asymptotic behaviour of the
Fourier transform of a function which has a singularity

=1 at thelorigin. However, if we try

like {Q(u) - im.u}
to prove a straightforward édnalogue of Theorem 3.3.2

it turns out that when we apply Green's Theorem we get a
non-vanishing contribution from the surface integrals. To
overcome this difficulty we introduce a further technical
device in the following theorem.

Theorem 2.1 Suppose that thg coordinates u and v are
connected by v, = u.e,, wheré the ¢, form an orthonormal

triad, and denote by S(&,, d,, d3) and T(d,, d5, d45) the

regions {|u, | £3,, s =1, 2, 3} ana {|V,]| € 8,, 5 = 1, 2, 3}

- iv.R’ .
respectively. Let eig'ﬂ f(u, R) = kye {1+ les R){
P(va, va)=iv, ’

where P is a positive definite quadratic form, |R!/|-|R| is
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bounded for all R and g satisfies:

(2.2) for each R, g, KLk , and é%—%—— exist and are

dv,
continuous in S(w, w, w) for s = 1, 2, 3 and t =1, 2, 3;
(2.3) lg| , |P- 1v1\|-3 | and |P- 1v‘|3\5;—59—| are bounded

in S(m, m, n) uniformly in R for s = 1, 2, 3 and t = 1, 2, 3;

(2.4) |g}| —= 0 uniformly in R as |v|— O.

Then, if f(u, R) and %ﬁ-(g; R) (s = 1, 2, 3) are periodic

with period 2n in each u,(s = 1, 2, 3)
(2.5) lim ,[ lim sup |R| JJJ e+13°ﬂf(g_3) du -
5 ¥ O~-\‘|3|—>+m,B_eL3 1s(n,m,n)
" ‘ e"'il-&’dv
k T -
! JJJ P(va,va)?iv1 =0,

T(81tB,8,0)

for every O <« § <« 1.

Proof Since P(vy, vg) is positive definite, kag(v3+ vg) &

P(vgy vy) € kg(v3 + v3) for all vp, vg, where O < kg, gks <+ ©.
Writing R and R/ for |R| and.|3’| respectively, let e,(R)

and EQ(R) be functions, to be'ghosen later, which decrease

to zerc as R increases to + @ and satisfy

(2.6) €3 € ¢, min(1, k:f) ‘

for all R. Then if §, = T(e;, €a» Eg)y S = S(m, n; m)N\S,

1+p

and Sy = T(»% 5, 4)\S,, (2.5) takes the form

(2.7) lim { 1lim sup Rlk,I, + Iy = kyIg}}
"534 0 R-»+m, RslL,

e
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iop  +iv.RY ; .
where I, = ]rj e == g(u,R) . +iu.R
i d Ip= e ='=f(u,R)du
S1 P(v, sVa)=ivy Loy %2 SIQIJ (u,R)du
| +iv.RY
| and I5 = [[[ e dv,
| gY ]P(va,v‘,g)-ly1 A
Defining M(e) = . sup 3 {sup |g(x.R)|§, we
veT(e,e8,e®) Rel,

see that (2.4) implies that M(e)d O as e¥ 0. On account

of (2.6), §, & T(el,e?,s?) and therefore

dy
|1,] < M(e,y) JS“ [P(vasva)=iv,y]|
1

- dv

< M(ey) £JJ CHOEEIEE
1
koe, €2 &2

. . 1
-kaey 0 © {(w31+w§.+w§)waw3§E
(3.8) <& kgeM(e,).

By an application of Green's Theorem (3.2.19),

12 = IgJ- f(Hs' 5) val_%a el_“_-ﬂ}d2
© va -
= - %a IS eld-R o, f(u, B)du + 33 _”e'l-g'ﬁiﬂ Vf-iR.nfldo
SE aa™

where g and ™ are the boundaries of S(m, w, w) and

T(e,y €2,y €2) respecitively.' 0 consists of the six plane

faces g i(s) (s = 1, 2, 3), where @ t(s) = fu, = +m,
lutlsn for + # s}. By assumption f(u,R) and ¥ f(u, R).are

periodic with period 2n in eagh variable, and if R e Lg the
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same is true of 913'5. Iheﬁefore the contributions from

the faces d+(s) and T(s) cancel for each s, and the total
contribution from the integral over o is zero. Now
assumption (2.3) means that the contribution from T s

less in absolute value than
. l kg R kg
M + SOt — o
i} |P(vasva)=iv, | |P(vaova)-iv,|?

fdg . Since

= “V'1|= Exsl"alésaﬂval‘lsiaf
has area 8e3 and on it |P(v3;v3)-iv1|» g1
™, =hi|v1|sal, |val= €q5 [val & g3}
has area 8e,e; and on it |P(Vg,ve)=iv, | » koe3, and
™5 =f{lvy| 2e,5lval & €,,|vil = €5} has area Be, ey and on it

|P(vgsva)=-iv,| » kged, this last integral is dominated by

e2  2¢ £
8k5R{E-‘;- + T2 } + Bkg {ZB2

Kata }. Again from (2.3) and

the fact that P(vg,ve)-iv, and its first two derivatives are

bounded in S(m, m, w) we have
k
-

|P(V3’Va

|V2f(u,"R)| )-1V1IJ:“ for all ue S, and all R.

Thus

. _iu.R .' ] . Y
Hil eld-S Vaf(u, R) du] 5% ks ]H |P(v2,-v;)-iv1|3

{yfs,




and therefore

k a 8k 2 2¢€
_.i.. ‘22 2E 3 S%s (&3 | <82
(2.9) lIa|<Ra 7 * Re {ei + Eﬁegj R {81 +ka€a |
for all Re L,.
Again by Green's Theorem;
«qv ge 1 +iRl dV
Ip = 2 - = e¥iD
? éng { - E P(Va'vﬂ) iv,
= oA orrr QRN g g o]
X TR TRl
1 ¢« iRf.y 1 Rin
- N v e d
! ETaﬁ"J£4u$1s) e” T el {P(Vavva)'ivtj P(Va'Va)‘ivtg g

’
{P(va,v )= 1v1

Since |P(vg,yv,)=ivy|®]|V® {| ana

: "y . 1
[P(vaysva) iv1||1.{pa(va,vs

S5 Qas(ﬂ, , ) for all small @nough b, our previous estimates

)*1v;§| are bounded in S{(w, w, n) and

apply ané show that

(2.10) |1, - & 1, |$ kg {right hand side of (2,9)} for all
R

d & bo, where
1 R{

ooy iRfy _Ria _
Iy 'LAJ5> e {n. ¥ ip(ba,va)-{vli p(v Vg )- ivlidﬂ .
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Kap . R!
|P(v,,v,)-1vlla |P(vasva)=iv,]

Plainly |I,|= Jj {dg , and
)

™~d
if we splitT™(®s) up just as we split ™ (e) up and apply
the same estimates, we fina that

(2.11) 1T, 0 & k.o £,(8) + RI£,(0)

10
-2 . B
-2 . 2P 1-p , 2b
where f,(3) = 8{s 2P 4 Lot f.(0) = 8l Py o)
so that for 0« B <1 1lim f,(3)
' ¢ O
Now let &, = <= {where ¢ = 1
= 2, —
! R’ R% min{ 1,k3?!}

so that (2.6) is satisfied} anad let R—> + @ with R e L,

in (2.8), (2.9), (2.10) and (2.11) to get

lim sup {R|k111 + I, - k,1,}}

< (1 + k k9)( g . EQP + ——5) + kyfa(8).

Since we can choose ¢ to be arbitrarily large, this
reduces to

lim sup {Rlk Iy + Ip = kyIzl}g fa(0),
R->+w,ReL,

and since 1lim f,(d) = 0, this is (2.7), which proves the
b ¥ o
theorem,

Obviously Theorem 2.1 will not apply to the non-lattice

case, so we need:
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Theorem 2.12 Suppose that u and v are connected as in
Theorem 2.1 and that S(d,, 3,, %,) and T(3,,5,,5%,) denote

the same regions as in Theorem 2.1. Let elRH'i-f(g) =
iRv. 37 k(1 + g(v))
elRY.J AL

y where, P is a positive definite quadratic

form, |j| = 1 and g satisfies;
2 .
(2.13) g, %ﬂ and 9%q exist and are continuous and
v, 8 v,0 v, -

. dg - . aag
|g|, |P(Va,V3)-lV1‘|av | and |P(Va.,Va)—1V1|a‘ v V‘| are
8 L]
bounded in S(d, d, d) for some d » O for s = 1, 2, 3,

t=1’ 2’ 3;

(2.14) lim Jg(x)| = 0.
y|-0
: 82 f{u .
Then, if f(u), %iiél and Eiféﬁ% are continuous and
- u .

absolutely integrable in 5(d, d, d) = {g £ s(d, d, d)}

ITJ elRU-J f(u)ay -

-0

(2.15) 1lim lim sup.{ﬂ
3 § 0o R>+ o

iRv.j’

K . e e e -
1Tgi4+p,b,b) Plvasvaloin

dy

Proof 1If we examine the proof of Theorem 2.1 we see that

for every 0 <« g «1.

the periodicity of f(u, R) and its derivatives and the fact
that R ¢ Ly are used only to show that the integral over
the boundary o(m) of S(m, mw, m) vanishes. Since the

f(u) and g(v) of Theorem 2.12 satisfy, in S(d, d, d) instead
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of S(m, m, w), the other aséumptions of Theorem 2.1, the

argument used to prove Theorem 3.1 applies again and yields

(2.16) 1lim 1lim sup R'III feiRH'lf(g)dg -
. 64/0 R_> +0 S(d,d,d')

v iRv.jf '
O P[RR i Lé%lD o,
T(s ' *B,5,5 )P VarVa/m1iVy :

where 1(a) = ] elR(L-1) ¢y fru) - tRed £(u)}du.
gld .

1f J(Y) = III eiRQE'i)f(g)dg, (2.15) would follow
S(Y,Y,Y)\S(d,d,d)

from (2.16) and

(2.17) 1lim sup{R| lim J(Y) + légl\} = 0.
R—>+ Y=>+® '

However Green's Theorem (3.2.1%) shows that for eacy y » d

and each R,

I = - 5 I eiRU.D gap(y)gy - 1ldl
S(Y,Y,Y)\S(d,d,d) == R

P {f elRU-df 1 vf(u) - iRn.if(u)}du.
R2 /. XL
o(Y)
Now, by assumption, |f(u)| and |v ffy)| are integrable in

S(d,d,d), and this implies that

lim I{ elR(u.3). {n.
Y- +og(Y)
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Since V2f(u) is also integrable in S(d, d, d),

. /
lim  J(Y) + lﬁgl exists and is O(E%J as R—>+ ® by the
Y—>+©

Rieman-Lebesgue Lemma. This is more than enough to establish
(2.17), and hence the Theoren.
Qur analogue of Theorem 3,3.11 is:

Theorem 2,18 If e is a unit vector and O < 8 <« 1

P(vg,vy)=ivy dv - w(g)l}:O

(2.19) 1lim {1lim sup]R 4'_I'_l"
8vo R —>+wm 5 +B

T( 30,2 )
for any positive definite quadratic form P, where w(e) = O
2
when & £ (1, 0, 0), = 2%— when ¢ = (1, O, 0), and det (P) = D2,
Proof For the moment write 179 = 3!, and consider first the
§ - nd '
case e, = 0. Since [ Aqv = 2tan” | &=, the integral in
_'s' -1V A
(2.19) reduces to
d .
« 1 _~iR(egvytegvy,) -1 3!
2:L ;L e tan /P(va,va)dvz dvg .

Calling this integral I,, the 2-dimensional version of Green's

Theorem (3.2.18) shows that RI, = -ilp+ie;la+iegI, where
b

_ .o ‘iR(eaVa"'e,’!V,a)_ ' _Q__ - -1 —A'—.—
Ia - _Ib] e {egava tan P(VQ,V3) +
d -1 » !
e_-aav3 tan _ P(Va,va)}dvad"as
s -iRegd -1_ 8! _+iRead, -1 ____ b!
Is = R 1Reav%{e tan P(vg.0) e tan P(va)-b)dva’

-3
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b 4 3
- . "iRe:ng -1Reab "1 bl - 1Reab -1 b‘
1, -;L e {e tan  FTa,vay T © tan EF;TV;T}dVS'

_ba_%#a(vasVa)

.0 -1 ¥4 - . C .
Since 5;: tan Flva,va) ~ 8542 (va,va) ° which is integrable
near O, lim:' I, = O by the Riemann-Lebesgue Lemma. Plainly
R—> +m®

the bracketed term in I, is integrable in (=-d, d) so

lim I = O by the Riemann Lebesgue Lemma unless ez = O.
R-» +m@

In that case

d
. -1 b/ -1 -2
—— dvg < 4wd
15| < 2|eleb{tan Plva t) + tan P(va,-b)} 3 md,
so that lim lim sup |Iz| = 0. The same remarks apply to I4 and
Yo R—» +
therefore lim lim sup {R|I,|} = O; this proves the theorem
o R—= + ©
when e; = Q. ]

If.el # 0, consider for X > b

X 5 b _-iRy.g
J (x) = | ) - dv
+( ) viib’ ;E ;L P(vg,vgkiv, -
Since ,
7 o~ iRv e, . = jr. e 1ReLX o o~1Re,d |
Y P(vg,va)-iv, 1 Re,“P(va,vsy)-ik P(vgsvy)-id
Rel B! (P(Vasva)'iv1)a 12

and

dVadVa . + ©

we have, for every & » O



e-iRelb’ b‘ e-iR(e?Vg"’eaVa)
(2.20) R 1lim J (X) = " ’ - dvaydv
Keto T ) ie, 14 P(va,vy)-id4 2= "3
+ L ? fr g tRe. ¥ gy
: J. s 2
J: vi=bl_b(p(v2’v3) 1V1)

This last term vanishes when R->+ ® , by the Riemann-

Lebesgue Lemma, and since the other term on the right hand

b 2
< dvy, dv 4

side of (2.20) is dominated by ‘; . 2 < T
1l g |P(vasvg)-id ]| !

(2.21+) 1im 1lim sup {R} lim J_(X)|} = O.

Wo R—=>+ o X+
-5/ b b o~iRe.y
Similarly, if J_(X) = [ [ f - dv, we have
vizox =y b P(Vaaval-ivy

(2.21-) lim 1lim sup {R| lim J_(X)|} = o.
o R—= + © X>+®

The theorem will follow from (2.21+) and (2.21-) if we
can show that whenever e, » O,

(2.22) 1im 1lim sup { |RJ(R) - w(e)|} = O,
8¥o R—> +o
5 b @ . =-iRe.yv
o " 1RE.Y

where J(R) = [ [ ’ . . dv . Since, when
-Jb -Jb V;='-=n p(v‘?’v3)-1v1 ’

A >0,
® eTiBv o one™B fB >0
J A-i dv =
_'m 1V
0 "if B< O ,

J(R) vanishes when e, < O, and so equals w(e) identically, ard

when e, » O
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—iR(eaVa+e;3V;) e-Relp(Va ng)dv2 dVa

&
J(R) = 21 [] e

2.“{'].]- e_.-iR(eava+.e3-v3) e"Rexp(Va-"s)dva dVS -JI(R)};

e - 24,2
Here R|J,(R)| <R [ e Reaka(vB+v) 4 gy,
viv3ye?

- I
e elka(wa+w3)dwa duwg s

w3+wiZR8?
so plainly lim R|J,(R)| = O,
" R+
Since P(vy, v,) is positive definite there is a rotation
of coordinate axes taking P(vy, v,) into plwi + piwj, where
1

Way Wy are new rectangular coordinates anada p3 - 0, p} » O.

Then, writing .z, = (p;)t Wy 24 = (pg)é wg and noticing that

pips = Det(P) = D?, we have
er -1iR sVs) .=ReP(
] e (esvatesvy) _~ReyP(vg,va) dvgdvg
-l

 ® _iR(e} : “Re. (22428 -
[ e iR(edzg+edzg) -Rey(z3+23) d2,dz,
-l -

1
D

- 2 «° - 2
cos(Redzy)e Re,z3 dzy | cos(Redzy)e Re123d23

- 4
D
o

e _(ela+e}a)R
‘RDe, € 4ey )
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Thus lim RJ(R) = O unless ela + e}* = O, when
R s+
. 2n2 N 1 .
lim RJ(R) = Do However e}2 + e;2 = O if and only

R->+m b
. . 2n2

eg = ey = 0, and in this case e, = 1 and Do = w(e).

1

(2.22) is therefore established, and with it the theorem,

§.3 Proof of Theorem 1.1 when k = 3.
Since G(A) = Z G({a}), it is sufficient to prove the
eA

theorem when A has a single member a.:  Therefore, by Lemma

3.2.11, we have to evaluate lim xJ(x) s, where

3
x &+ (27
T mTow e-ig-(i+fxi])
Ix) = [ | [ du.
_y oA - pu)
In Theorem 2.1 put R = -(a + [xj]) (so that R e L, for all

-1
X)y f(ﬂs B) = (1 - ¢(£)) ’ P(Vasva) =
m 'Q, (va,Vvs), k; = m and B = -xj’, where i = &, .3 for
s =1, 2, 3 (and the ¢, are those of Theorem 1.1). Then
by Lemma 3.2.1 P is positive definite and by Lemma 3.2.6

the pericdicity condition holds for zu) and its derivatives.

1_
hl. 3 %
Also |R*|= x and |xj - [xill = {= (xi, - Lxi,1)2}% < 43,
s=1
so that ||RlI - |R'|| & |a| + 43 for all x.
Qo(va,vg)-imy, iv.b(x)
Now g(l’R) - Q;(l)‘imv1+91(l) © -
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where py(x) = p(u) (the function introduced in Lemma
3.2.3) and b(x) has componants b,(x) = &, .(xj-a-[xj]),
each of whi¢h is bounded for all x. Thus ell'g(x)-—>1

uniformly in x as le& 0, and since, using Lemma 3.2.3,

Qgﬁva,va)-imvl Qo(va,va)-imv, -91(4)'?mvx
Q(¥)-imvy+p(x) - Qu(x)-imv, * Qy(v)-imvy+p,(v)
o (1 - nalehyviradiavatateny o, (¥)
G (&) - imv, Q1(l)‘imvf+p1(l)}

{1+0 (1)} {1+ 2 ‘ ); as |v| -0,

OCx

1+ 0(1) as |v|-=>0,

g{yy, R) —0 as |l|—90 uniformly in R. This is condition
(2.4), and clearly the existence of g% ((1.3)) implies
Qo-imvl l

Qy(v)-imv,+p,(¥)

that (2.2) is satisfied. Since |

~imv o
|Q°(V3:V%2u) .| is bounded in any subset of S(m, w, m)

not containing the origin (Lemma 3.2.8), and it tends to
one as |v|->0, it is bounded throughout S(m, w, mn). This,
together with the fact that |b(x)| is bounded for all x
shows that (2.3) is satisfied. The conclusion of Theorem
2.1 1s

(3.1) lim lim sup {x|J(x) - I(x,3)]|} = O,
bJ/o X —» +0®



-97-

1+5 s < d
b LI e—lx(i ) dy

1+8 -a _'lb Qo(va »Va )-imvl

where I(x, &) = | and 0 < B < 1.

v1=-b
Now Theorem 2.18 tells us that
1

(3.2) 1lim 1lim sup|xI(x, 3) - = w(i‘)] = 0,
dbo x =+

where w(j’) o if i’ # (1, 0, 0),

2
= 2; if 3!

= (1, 0, 0).

Noting that D2® = Det(m-1Qo(va,v3)) = ia A

and that
j* = (1, 0, 0) if and only if j = £, (3.1) and (3.2)
together imply

(3.3) 1im 1im sup |xJ(x) - (29)3x(3)| = 0,
o x — +® =

where N (j) denotes the right hand side of (1.5) when
k = 3 and N(A) = 1. Since both J(x) and )\(i) are

independent of b, (3.3)reduce§ to

. J .
lim %5&§% = M(3),
X = +®

and this is Theorem 1.1 for k = 3 and N(A) = 1.

Proof of Theorem 1.6 when k = 3

The argument used on pp74-76 of Chapter III needs only
trivial modifications to apply to the case k = 3, when it
shows firstly that we need only establish (1.8) when A
is a bounded interval I({ay, h), secondly that (1.8) when

A = I(a, h) is a consequence of



(3.4) lim x L {a + xj, h} = hih3h§ A (),
X =>4+

and finally that we can take ¢, = (1, 0, 0), €, = (0, 1, 0)
and €3 = (0, O, 1) without loss of generality. From Lemma

3.2.15 we have the representation

® ™ @©

' D(h,u) e iulxite) J(x)

;
1 - flu) W=

(3.5) L{a + xj, h) ==5 [ [ ]

w
-0 w0 =00

D(h,u)e *¥:2  h2h3nd (1 + g(u))
1 - g(u) T 8m m~1Qo(ugz,us )-iu,

and if we write f(u) =

in Theorem 2.12 we have,

(3.6) lim lim sup {x|J(x) - I(x, )|} = O,
ddo x —> +®
5 TB 5 -ix(j.u) dy

where I(x, d) = ’ s -
’ J 14B =5 - Qo(uzyug)=-imu,

s provided that
Up==3

the conditions of Theorem 2.12 are satisfied. Since
- D(hy, u) and its derivatives of the first two orders are
continuous, bounded and absolutely integrable in E, and,

by Lemma 3.2.12, sup |1-f(u)] « + © for every d > O,
lul >d '
the calculations of p.96 together with the fact that
. h2p2p2
lim D(h, u) = —2=2-2  ghow that these conditions are
|u|->o 8

satisfied for any d » 0.

Just as before Theorem 2.18 yields
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lim lim sup |xI(x,d) - (2m)% n(j)| = O,
Yo x —> +o@ =

and this in (3.6) is

lim 1lim sup |xJ(x) - w®*nindn3r (j)]| = o,
o x — +o

which establishes (3.4) and hence Theorem 1.6 when k = 3.
8.4 When k is even and greater than three the proofs ot
Theorems 1.1 ana 1.6 follow the same lines as those given in
chapter III for the case k = 2: the proofs when k is odd ana
greater than three are similar to those of 8.3 of the present
chapter.

Consider, for example, the lattice case 1.1 when
k = 2¢€. Assumption (1.4) and Lemma 3.2.6 mean that all
derivatives of P(u) of the first <€ orders exist, are
bounded, have period 2m in each variable and are continuous
in Ey. Since {1 - #(u)}™" is integrable in E; for
s = 192, ..., we can apply Green's Theorem (3.2.18)
€~ 1 times to the representdtion in Lemma 3.2.11 of
G({g}),to get, the surface integrals cancelling out in the

usual way,

) . . m k() .
(471) “c({a}) = (211:)1: HQTHZA [ o732 &Y (1-g(u)) " My au,

where O = a.¥ and a ¢ L,. Now
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- - —ai &1
f(u, a) = {Ef 1{1_%(£)j {f_;%;g%%ﬁl j is a polynomial

"1 with coefficients which are

of degree ¢ -1 in {1 - @(u)}
functions of a and the derivatives of P(u) of the first & -1
orders. Since the ¢£th derivatives of ﬁ(g) exist and are

bounded, EJ}KE,Q) is integrable in E: and therefore, by

Green's Theorem and the Riemann-Lebesgue Lemma

T m :
(4'2) G({ag) = (€~ 1) {|a|3}€ 1 I“I‘ e 1a.u ( ¢Ei;

)
(2“ -1 =7 j
+ O“gl-‘?j as |a| >+ o.
i
im.af? {1+ g(u,a)f

£-1 {-13 m
If we write i

Qf

—

T P
~—
e lic
S
you oy

k

the usual estimates for f(u) (Lemma 3.2.3) and its
derivatives show that g(u, a) —>Ouniformly in a as
Igl—vo. As the first derivatives of g(u, a) are well-
behaved, we have a situation analogous to that treated in
Theorem 3.3.2, and the conclusion of that Theorem is,

essentially, that when « = 1

5 . P oiv.a g(u,a
(4.7 am Ulal® Joo] e (Q(u)-im.0)f 98§ = 0.

However a similar calculation shows that (4.3) holds when

¢ >1 and that the error incurred in replacing the region of
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integration by T(d, &, .,., &) is also 0(|5|-%) as
|al|—>+o for any & > 0. The same argument also shows

that for each b e L, and each unit bector j,

- & ~iu.(b+[xj])_ -ixu.j, du
(4.4) 1 .. ib_ 3 u _
x-—l-;’n+coix 4‘-(6‘!‘..6){9 ) j-ifi'(y_)- m.gj‘;'o’
so that, by (4.2), (4.3) and (4.4)
é-1 omixu.d
(4.5) G({k + [xi]})w 1(72,,—)7)" (A= ! [ Tao-iz.o?

CT(d,..3)

as x>+ ©.
All that is required now is the following 2 ¢~dimensional

version of Theorem 3.3.11:

: . é e hxu.] _ - o
el e Gl ) TR (ZoTTa Yo if 3=hs
=0 if 1 # £,

and this is proved in the same way as Theorem 3.3.11.
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CHAPTER V

§;1 It follows from Lemmas 2.11 and 2.15 of chapter III
that, when X has zero mean and finite second moments and

k » 3, G(A) exists for every bounded subset A of L, in the
lattice case and for every Jordan measurable subset A of
E, in the non-lattice case. We now investigate the
behaviour of G(A + x) as |x|—=>»+ ® in this case, and once
again can consider only the situations (A) and (B) of

chapter III. -Qur results are:

Theorem 1.1 Let (§n) be an aperiodic R.W on L,(k » 3)
generated by a strictly k-dimensional R.V X. Assume
(1.2) E(X) = 03

(1.3) if k < 4 E(I_)g_l2+x ) < + © for some ¥ > 0;

(1.4) if k > 4 E(|X|*-2) < + o.

Then Q(u) = % E{(X.u)?} is a positive definite quadratic

form so for some positive real numbers Q; and orthonormal

vectors j,,

(1.5) Q(u) = ¥ @ (u.i,)?.
s=1

If, for any x, x* denotes the 'vector having sth component

X

—4%L , and A is any bounded subset of L, having N(A)
]

members,
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k=2

- . - npl=3%) N(A)
t1.6) lim |_y|"- 2%6(A + x)} = e,

|x|-»+ oyxel, { } (ﬁ)k 27 4na

k
where & = Det(Q) = = Q,.

Theorem 1.7 Let (§n) be a R.W on E,(k » 3) generated by
a strictly k-dimensional R.V X. Assume that (1.2), (1.3),

(1.4) and

(1.8)s lim sup |@(u)] < 1, where g(u) = E(etd-X)

jul=»+w

hold. Then if A is any Jordan measurable subset of E,

having measure |A|,

k=2
(1.9) 1lim {I_X.*lk 2 6(a + x)} = E/TT)%'E 4:15 :

|x|-»+o

These two theorems are proved in §.2 and §.3 when
k = 3, and in §.4 we lndicate how the method of proof extends
to the general case.

An interesting consequence of Theorems 1.1 and 1.7 is
that, according to Lamperti [21], his generalization of
Wiener's test holds for every R.W satisfying the conaitions
of one of these theorems, " A note at the end of Lamperti's
paper implies that Spitzer has proved a theorem equivalent
to 1.1 when k = 3, but the other results seem to be new.

§.2 Assumption (1.3) appears to be essential: it allows us



-104~

to make use of:

Lemma 2.1 If p(u) = E[eig”i - (1 + iu.X - 8(u.X)?)}

= #(u) - {1+ iu.m - Qu)} and |x|**

1% % > 0, plu) =O(|2|2+x)

¢ + o for some

as |u| - 0 and

. 147 ;
"_a“ap(%.) =0 a7t ) as |ul-=»0, for s = 1, 2, .., k.

Proof Fo:r |u|l » O and 0 « ¥ < 1,

iu.x

lo(u) | < .l E - (1 + iu.x - B(u.x)?)|dF(x)
xlglul-1
w Tl {2 % fullxl+ Blel?|xl®er(x)
|x|>{ul=-1
. a a
< [ooor BBy 2 uleisle )
lxllul <1 lullx)> 1 '
< |£|2+X T F 2+Y 7 2+4% 7 L 2+%
R oo T olxd dF(x) + 5 |ul [ Jixl dF (
5 k1|u|£+3'

The existence of the second moments allows us to

differentiate under the integral sign to get

dp(u) . | TT x {etE o 1 - 1u.x}dF(x),
Ou, -® -

and a similar argument now establishes the second part of

the lemma.

x)
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Proof of Theorem 1.1 when k = 3

Obviously we need only establish (1.6) when A has a

single member, and we can take this member to be 0O,

without loss of generality. For if
- 1
(2.2) lim {lx*] 6,(x)Y =777
|lx|-»+o,xeL,
* .
where GG(L) = G(LQ}+ x), then lim {Ixlc({af+x)}

|x|-> +®,xeL,

ke

' 1
= lim {To T - lx* + #G(x + 3)} =
ll‘.g.-}-m, -’-‘-E"L.'! |a*+x*‘ o } 4 A
v, Ie(x)
Lemma 3.2.11 now tells us that Ggo(x) = lim ——iTg for
R ) (2
X € La, where
T onoomn ix.
L) =] | Je
= - -1 -ns+1-a(u d u.

Since P(u) and its first derivatives are continuous and,
if ¢ » 0, |ie+1—¢(g)}_1| is bounded throughout S(m, m, =),

we can apply Green's Theorem (3.2.19) to get for every

e > 0,
_ ﬂ' o —e-l-— u du
ela) = LT TR
Ly i 'IT_ e‘Lﬁ-E X ' r:.-x- e-]_l_g
JRRE I A U crr vy L IS IR A
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When x € Lay e ¥ X has period 2n in each variéble, and

as the same is true of @(u) (Lemma 3.2 6), the second

integral vanishes and for every.e > O and

(2.3) I (x) = T—T— igi - +-—;gg

Now let V(d) = {u: Q(u) < #%}: then by Lemma

3.2.8 inf
ueS(mym,m)\V(d)

R {1‘¢(£)} 7z 0, ‘E+1-1

X e L

)}2 e-ig'i du.

|1-g(u)| > O for each d > 0. Since

]
(_q)‘la < [1-g(u)]®

and this is integrable in S(m, w, m) N V(d).
Moreover | ¥ g(u)| < E(|X|)<+ o so that by dominated

convergence, for every & > O,

-iu.x
L - eTiN Xy 9 g(y)
¢ >0 s(}[‘!i,n>\v<a) fe+1-plu)]e 4 -

[ eTieex x.WB)
mymINV(s) (1-g(u)}? -
and this last is Of |x|} as

S(w,

jx|? + ©, by the Riemann-Lebesgue
Lemma. Therefore

(2.4) G (x) = =+ 1 ox. Vg(u)e tE-X
ol X (2102 |%]2 e;rg ,\”J) T i

1

+ O(T;T) as |x|—=+ o .

The c¢rux of the proof is that we can now replace

P(u) by its asymptotic estimate, 1 ~ Q(u). ' To see this,
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let
X vQuy) X. V@(u)
£ (2) PR b
e ferQ(u)l® 7 {er1-g(u)}e
% vply) v Q ] ;
T f{e+1-plul}e P il 1(6er(g))5 T Teriglan®’
- X9 p(u) o x-v8(d).pln) ’ 1

B} Lera(w)jlerplw] tera(@) T ET-E)

Then for all & 0,

Jxllgptu) |, lxl-l g |let)| | .
£ (0l € [1-g(w)|® ! L Qlu) | 1=gu) | tqra) ¥ |1-¢(g)[}’

and Lemma 2.1 shows that this last function isCD(|gjr-3)
as |u|=»0, and is therefore integrable over V(d) for all

small enough ®. Hence, by dominated convergence,

rr emlu.x = [ e~lu.x ;
11 f (u)dy = f (u)du,
e+2 iJJ) c. g 4755 é{i ) o 270K

and Riemann-Lebesgue Lemma now shows that this last is
O(|x]) as |x|—> + ® . Hence, when x & Lg,

(2.5) 6, (x) = m‘? n e, k) + O(qi]') as x|+ @,

o x. VQ(u) Au.x
{) {e+a(u)jz

To evaluate lim J(e, x), we introduce new variables

h\i J(e, )=”
where ey, X é{

ebo 3
of integration by writing v, = u.j,= 3 Updpy or, in
d = r=1 3
view of the orthogonality of the J,, Uy, = T Vv, 3.

r=1

}.
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3
Then . 25 Y,Qv,
J(E,L) - I],J e-l_Y_.y_ ] _§=13 dy,
. . .3\g
,.—V-‘ 5 Qve sba; (e+S§1Q,vn)

where y = x.j,, so that y, = Q? x¥. Hence, writing

W, = Qlilé'vl
3
z Qxyw,
Sew) =2 ] e et
{|w| < o}

Now there is another orthogonal change of variables which

3 3 *
takes 3 QyxFfw, into Xzp (where X2 = y QZx2)

s=1 s=1
and x*.w into y*.z Then |y*| = |x*| ,

-iy*.z
2X . g Zy€
(2.6) J(e,x) = F N fe+]z|2}® dz,
{1zl b} -
and it is easy to check that
3 .2 x|2
X s=1

Introducing spherical polar co-ordinates Py e, B, (2.6)

becomes

_2x & % 2n -1p(y ¥cosecosfy Fcos@sinf+yssine)
e, x) =5 [ ] e :
o 0

-0 .
2 gssigecosedndedﬁ

(e + p2)2
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i1
2 2n
) 3 L = * 3 v =1 * -
_2x f p2dp M e ipyasin® _; o .. ode [ e ipylcos(# u)cosed¢
A b (e+p®)? _n o
2
v
where y*3= y*3+ y*3, tan o = 7% . If J, (x) denotes the
1
 Bessel function otf the first kind of order \ ,

2m Lo
2F o-ipyZcos(f-a)cosedp=]" e ipyjcos@cosp i
- -~ o
o

and by Sonine‘s second finite integral [29,
11
Z o—ipygsine

I Jo(pyzcose)sinecosede
-1
i
= -2i | sin(py¥sine)J (py}cos®)sinecosede
Jays (oly*l)
& ya */ ly
1% et

O N

= -2i (3)

I}

2nJo(pchose),

.376]

Making use of (2.7), it foliows from (2.6) that

3

3 . -

- a, . 232
iA|x*|% o (e%07)

v,

2 as py O and |Ly(p)| i
2

(2.8) J(e, x) =

Now J%é(p) ~ P

S

J%é(p|5*|)dp-

-a
bounded for all real p, so /o Jas (plx*])| is integrable
o p %é pila

in (O, d) for each X and.b. Therefore, by dominated convergence,

4|x|22é‘1'r3/2 ® -3/
lim J(e,x) = —= Jay (plx*|) p 72d
e = =% % "
5 % o xx| ~3
4|x|22%n 72 = A
. = — J ( ) 2 dj.
(2.9) il>|5f| £ %é plp p
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Our previous remarks show that Ja/(g.)p-s/a is absolutely
a

x
integrable in (0, ® ), and [13, p.22] [
0

J%(p)dp = 'é(%)é ,

so that (2.9) in (2.5) gives .
L alx|z2B% oo #

lim larle @)} = e - —a— ¥2)

| x| +oxelg

1
4uan

This is (2.2), and it establishes the theorem when k = 3.

§.3 pProof of Theorem 1,7 when k = 3

‘With some slight modifications the argument of pp.74-76

of chapter III applies again and shows firstly that we
need only establish (1.9) when A 1is a bounded interval

I(as h) and secondly that (1.9) when A = I(a,h) follows from

(3.1)  1im {|x*|L{a + x, h}} = 2ihEh3

x|+ 4n
) IL* +2,_*|
Since lim { } =1 for each g, there is no
|x|=>+0 | x*]

loss of generality in taking @ = O, and Lemma 3.2.15 shows

that (3.1) then becomes

. 12h%hihd
(3.2) Mm  {|x*| lim I(e, x)} = ——=2,
|x|>+o ey o 44
where h
- -]
Dlh,u) ,-iu.x 4,

I(e, x) = l_-J;'r e+1=g(u)
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Now we can apply Green's Theorem (3.2.19) to get for each

E > o, .
. . _(.'I‘lsi)e-l'g'i
I(e, x) = 1lim rlj , du
X >+ -X e+1-pP(u)
- -x- D 32) -iu.Xx
) x—l;Tmil—la J_.Jx.f S S AR e 2T B
i . -ix.u
+ 2 l n.x e == D(h,u) dg
1 ch)  e+1-g(u) }
_ -i A . _:D(.b_!g) -'i!.i
- lx® 'I.'L;I 2 U B() L
. 1 -1 . . e
since <€ and lim D(h,u)|dg = 0.
er e iy ] o

Some slight calculation shows that for each s ‘63 D(h,u)|
L]

is bounded near QO and integrable over Ez. Since, by

Lemmas 2.7 and 3.2.12, |1—¢Lg)|-1 is integrable near O and

bounded in any closed region not containing Q, the

Theorem of Dominated Convergence shows that

and the Riemann-Lebesgue Lemma shows that this last is
o(|xl|) as [x]>+ o .
If V(8) once again denotes the set {u:Q(u) < 33},

p |1—¢5(g)|_1 < + ® for each -+ O, by Lemma 3.2.12.
V .

sU
i 4

(3)
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Then, since D(h, u) is a positive integrable function

and ]V Q(g \ is bounded, the same argument applies again

and shows that for any & > 0,
-ju.x D(th)-L-M dEi - 0

i-L_L. lim J"l' il
evo {ufiis) ° [er=glu}e

lim |
|x|—>+® |x|?
Thus (3.2) is equivalent to

e~ iu.x D(h,u) x,9 @(u)

{.l.ﬁl lim IJEI, == _{.__7_:;?_ (ﬁ}a

|x]2 eyo V

du}

lim

(3.3)
|| >+

' in2h2h2h?
sa

2h2 h?
Since D(h, - Dihahy o(|ul), as |u|=»0, we can again use
8 :
+ hahaha

Lemma 2.7 to approximate to the integrand of
For if g (u) = D(h, )__Q
€ {e+1-g( u)ja 8

(3.3)

u)

D(h, u) f_(u) -

€
where fe(g) is the function of p107. On that page it is
shown that f (u) is dominated by a function which is
integrable in V(%) for all small enough 3. Plainly
I y 88 |£|"'> o,

ELQL"11 |o(h, w) “j!£ULL\ =

Q?(u)
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and therefore, by dominated convergence and the Riemann-

Lebesgue Lemma,

3. L ] -

* LETET] - .

= lim {ll-ﬁ 1im JJJ g (ule tedgy)
|x}=+® 1x12 evo V(b)

It was established in the previous section that

d_\.l_}:'g‘ﬂi

*
(3.5) lim { |'§ 1im 1A ’

|x|s+o gV o r[ )13+Q(”)§
and (3.4) and (3.%) prove (3.3), and hence the theorem when

k=3,

.4 The;proofs of Theorems 1.1 and 1.7 when k > 3 follow
the same lines as the proofs given in §.2 and §.3 for the
case k = 31 consider the (easier) lattice case 1.1,
Assumption (1.4) means that all derivatives of @Z(u) of

the first k-2 orders exist, are bounced, have p;iiod 2n in
each variable and are continuous . in EE. We can therefore
apply Green's Theorem k-2 times to the Fourler integral for

Go(x) (Lemma 3.2.11) to éet

n n
(4.) Sota) = 7w Lge) Rl M P e £

=T =0

where Q= x.¥_and x e L,. (4.1) is the analogue of
(2.3), and once again the error incurred in replacing the

region of integration by V(d) and 1-@(u) by Q(u) is
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O{lil-(k_z)} as |x|~»+ @ . 1In 82 we showed that

. e e -l- a.
lim JU L_”~e+Q(u)} e X dy."’——'l“lz" LEL a6 |x|-o+ o,
evo V{d) A lxx|

and a more complicated argumeﬁt of a similar type shows

that in k-dimensions é
1 “iu.x ﬂ 2n*i|x|=
Lm [...f s e E T 5
V(b)
as |x|=+ o,

which is all that is needed to conclude the proof.
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