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SYMOPSIS

Criterion for the comparison of numerical methods for optimising
a function of a finite number of variahles are suggested

firstly in general terms, then more specifically. The general criteria
lead one to examinc algorithms which are hybrids of line

searches and methods for solving nonlinear equations.

Methads for sclving nonlinear equations.are to a greéter or
lesser extent based on methods which solve affire equations,

It is shown that for two of these general methods while apparently
having the same effect, namely diagonal matrix reduction,

one essentially performs reduction to lower triangular form

and the other reduction to upper friangular forni. It is pointed
out that the specific criteria are sometimes gualified by
misconcentions about MNewton's algorithm for solving nonlinear

equations,

The specific criteria are used to comparz some well known
algorithms which are discussed in the text. |t is argued that
algorithms which posses all the desirable qualities are likely
te perferm hetter than those which only posses a few. . 0On this
basis Davidon's(1975)'algorithm should rival modified Mewton
algorithms. Davidon's algorithm may be unecessarily complicated
and simpler forms are suggested which also possess all the desired

qualities.
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CHAPTER 0 Preliminaries

0.1 Mathematical programming

------ Mathematical. programming, ‘the optimisation of a-Function
of many variables, possibly subject to constraints, is often the
final step in the solution of proklems in engineering design and
operations research.e.q. '
minimise vaste;
minimise cost;
max.imise output;
maximise profit,
It is to te hobed that the function to be optimised gives a good
description of the real system, waste, cost etc., in response
to the variables under the control of the decision ﬁakar. f
the function to be optimised gives a sufficiently good description
of the situsation it is supposed to model, the position of
the optimum of the function will approximate the 'best' choice

of the decision variables.

In general, only a numerical approximate to the position of
the optimum of a function (if one exists at all) can bz found
and this only by an iterative process in which successively
better approximations are constructed. The function may be

so intractatle (e.g. one thousand variables) that an analytic
proof of the existence of an 6ptimum is almost impossible.
Intuittion, however, may suggest that such an optimum

exists and in addition provide initial estimates to start the
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iterative process. |t is to be hoped that the- intuitive

estimates are good enough so that the algorithm converges.

The ehgineef or .operations researcher has. to choose one of a
proliferation of computer programs available today to optimise

the function. The choice between the different algorithms

depends on the problem and on the criteria. Two reasonable
criteria. are;:

rapid convergence and

rohustness.

The first criterion is fundamental, computer time is costly,

It is, however, in competition with the second criterion, the
ability to perform well on all problems., This second discriminant
is an expression of idealism, the search for the panacea to all
problems. This is toc much to hope for but there is a possibility
of reducing the choice to just a Feﬁ algorithms. The reasons for
vanting to restrict the choice are

as follows. The engineer or opeTatibns researcher will most

likely want to ontimise different fﬁnctions from time to time,

so familiarity and cenfidence with a particular program

vill speed up the process and reduce the number of errors,
Familiarity with the mechanism of a particular élgorithm will

also aid the detection of reasons for failure of the program.

Two more criteria could possibly be added -to the above:

minimal storage;

simplicity.

The first could really -be said tc come under the heading of
robustness. One wants the program to viork on functions with

a large number of variables as well as on small problems..

Advances in computer design will allow larger storage with

more rapid access so the criterion should be measured,Pefhan,ns
the fractional storage for a given size of problem.” The difficulty

of storage in extremely large optimisation problems at the




moment may necessitate familiarity with at least two algorithms:
. one for moderately sized problems, the other for very large proklems.
Cne can, however, imagine the develonment of computers with rapid
recall storage so large that the formulation of models which
required the maximum amount of storage would not ke feasible

or even desirable. The second suppiementary criterion, simplicity,
is atbractive on two accounts. Firstly, the detection of sources

of program failure is made that much easier} this is especially
desirable if the user is not a mathematician. Secondly,
simplicity leads to an easier understanding of th2 process and so
to confidence in the final result. Brodlie(1977) states: ''In

my opinion any modification which complicates an algbrithm has

to justify itself by a significant improvement in performance.
Similarly any modification which simplifies an algorithm —ithout

- - 3 3 N - - o
of course impairing its performance— is especially welcome,

A distinction is usually drewn between constrained and unconstrained
optimisation, ATgorithms.for constrained optimisation are in -
general adaptations of methods for unconstrained optimisation,
Furthermore, constrained problems. can be solved by the direct use

of unconstrained techniques., It is sometimes possible to take
account of a constraint by a changs of variables. By cafefuf choice
it can happen that the new variabies are not subject to any
constraint. Unfortunately this is not always the case tut by .

the use of penalty functions a constrained prohlem can.alwvays be
converted into an unconstrainecd one. The penalty function method
consists of adding to the okjective another function, the penalty,
which takes very small values in the constrained variable subspace
but very large values outside it. From the desire for robustness

it is reasonable that interest should be concentrated on the

efficient solution of the unconstrained problem,

Perhaps the most obvious class of algorithms for unconstrained

optimisation is that ‘which uses alternating directions. Each iteration



consists of searche$ made in turn along-a complete set of

linearly independent directions. The process is then repeated,

not necessarily with .the same set of directions.. The direction

set can be updated in-the light' of previous information.

Another direct search strategy,which is useful for functions which
are not well defined.g;g; observations subject to experimental errar,
is design.search. A maximal iitial set of linearly independent
points (points which form a simplex). is systematically

altered, replacing points with improved estimates of the

optimum while retaining the simplex structure.

Direct methods are attractive because of their simplicity and because
they make only modest demands on storage. Although'the_methods

are heuristic they have proved to be robust and rarely fail

to reach a local minimum. The drawback is that the rate of-
convergance is sometimes painfully slow. In many applications

the function to be optimised is continuously diFfferentiable

and without top much difficulty the derivatives can be supplied to the
program. ‘In such cases, at the optimnum of the ﬂmctfon the derivative
is zero. This gives a second handle to the solution of the
optimisation problem which can only help speed convergenée:

the optimum is also the solution to a set of nonlinear equations.
This suggests some hybrid of methods for solving nonlinear

equations with strategies for optimisation. |In general the

use of derivative information leads to a substantial increase

in the speed of convergence.

The speed of convergence of algorithms which use gradient
information can be compared theoretically by means of order

of convergence, number of function evaluations énd housekeeping
operations argpementé. The order of convergence comparisons
areyhowever, confined to certain classes of functions which

are sometimes so restrictive that most applications do not

fall into one of the ciasses or the problem is so complicated




that it is impractical to show that it falls into ones of the
classes. (Dixon's(1972) proof that with accurate line searches.a;ubsdtof
the Huang(1970) algorithms.generate identical points is an '

exception.)

The speed of convergence and robustness of different algorithms
may be compared experimentally by finding the time to reach.

a prescribed degree of precision on certain test functions

e.g. Himmelblau(1972). This means of comparison has the drawback
that the efficiency of an algorithm depends to a considerable
extent on the details of the implementation. Broyden{1972)

says ''We realize that the reputation of an update may well

be due as much to an artful choice of checks, safeguards and
program constants with which it is surrounded as to the properties
inherent in the update itself, and are only too conscious

that a- good update may be enhanced, and a poor one disgﬁised,

by such-devices." This philosophy is exemplified by Dixon's(1972)
Theorem: experimental comparison of Huang(1970) algorithms

showed marked differences to one anothar. Because of

NDixon's Theorem this result can be put down to sensitivity

to inaccuracies in the line searches.

A recent trend (Larichev and Gorvits(1974)), ""the middle way"’

is to compare algorithms at-different stageés of the optimisation
process. Almost all test functions have, topographically speaking,
a narrow, steep walled curving valley, the floor of which gently
descends to a unimodal minimum. Stages of optimisation can be .
classified as descent into the valley, advance along the floor

of the valley and search in the vicinity of the extremum,

The present work investigatesasnﬁnarapfruuMWathe comparison of
algorichms [which have been given various names such as quasi-lNewton
and variable metric) which are distinguished by the fact that

they are a hybrid between the solution of a set of nonlinear



equations and the direct search. method of alternating:direﬁtions.ﬁ
The idea is to motivate and promote certain properties of
algorithms and to suggest that algorithms. which possess. most

of the. properties are more likely to perform tetter than
algorithms which possess only one .or two of the properties.

These desirable attributes of algorithms are far from new but
will in some cases be motivated in less usual ways. The

analysis reveals ways of constructing algorithms which have

all the recommended properties.

All present methods for ‘the solution of nonlinear equations

are based to some extent on the solution of linear eﬁuations.
Chapter One examines this basis. Two of the desirable
properties of updates, positive definiteness and s&wwnetrr

are usually motivated by -appealing to Mewton's method.

It is argued that this is to scme extent misleading and

other vossible motivations are put forward, Chapters Two .

and Three synthesise twoe classes of algorithm which solve.
linear equations-in 2 finite number of steps, the secant and
conjugate direction methods. These classes are presented

in their most fundamental form. It is shown that the conjugate
gradient method is essentially reduction to lower triangular
.form and the secant method is associated with reduction

to upper triangular form. Chapter Four proposes the desiratble
properties and compares somz well known algorithms on their
basis. The synthesis of Chapters Two and Three suggest ways

of constructing other algorithms which possess all the desiratle
properties. An appendix lists all the algorithms compared

and pages in the text which refer to them.




0.2 Notation

Unless otherwise specified the notation in the text will be as
Follows. Lower case Greeknleiters will denote scalars. Lower -
case Latin letters from the beginning and end of ‘the alphabet
will be used for column vectors, elements of real Euclidean
space.Rn. _Letters from the middle of- the alphabet will be
used as subscripts and superscripts. - Thus, for example,. xi

will be the ith component of the vector x while x; is the ith -
vector in a sequence {xi}of vectors, If f is a function

from n-dimensional Euclidean space to n-dimensional Euclidean’
space,denoted'F:Rn—v Rn,and {xi} is a sequence of vectors in

R, then {Fi} is the sequence of vectors {F(xi)}.

The notation (x,y) stands for the convex subset of points
expressible in the form Ax.+ (1-2)y where A is an element of the
open uﬁt interval of the real line. This is thus a generalization
of the notatiion uséd for open fntarvals of the real line;

closed and half open intervals are defined correspondingly.

Upper case Latin letters will be used for matrices. The subset,
ran(A) will denote the space spanned by the columns of A and

nul (A} wili denote the null space of A. The matrix A' stands

for the transpose of A whereas xTy stands for the inner product

of vectors x and y. The symbol L will he used for the operation
of taking the orthogonal complement e.g. nul(A) = ran(AT);,

The notation Ak, Nk, A& and Ak'will represent the following submatrices
of A respectively: the first k rows, the first k columns , the
last k rows and the last k columns. Thus, AE is the kth principle
submatrix of A, Square brackets enclosing matrices and vectors
.separated by commas e.g. [B,x,C] will represent g matrix

whose columns are the columns of are the columns of the constituent

matrices in left to right order,



Given functions A:R" - R and f:R" + R" the derivatives at X,
DAIx and Df|  will denote those linear functions which best
apprgximate A?x) - A(xo) and f(x) - f(xo) j;jii

AMhexg) = Alx ) + DA|_(h) + o(h)

Flhixy) = Fxg) +F| °(h) + o(h).

That is DA| ~ can be thought of as a vector and

Dff - can be thought of as a matrix. Thus, Dx is the gradient
vector and DDA the Hessian matrix. CThe notation

0(h) represents some. quantity such that iim o(h)/ihl = constant

_ fhi=0 ™
where lhl is some norm of h; when the constant is zero a

lover case o is used.)




CHAPTER 1 Optimisation and nonlinear equatfons

1.1 Staterment of the problem

Mathematical programming is concerned with finding 6umerical_
approximations to x* (for purposes herein x* is an element

of n-dimensional Euclidian space R") which is specified by

‘a subspace T'C R" which contains it and a function A:T - R for which
Alx®) < 2(x) for all x e I'-x¥.

That is,A(x*).is the minimum value the function X takes on TI:

Ax#) = inf(x(r)). (If a maximum is sought this can be achieved
'by.usins -x.) IfT = R" the ﬁroblem is said to be unconstrained,
otherwise it is constrained, The constraints are usually given

in functional -form and fall into two classes: eguality constraints,
e(x*) = G ee Rﬂ m<n,; which reduce the dimension of the protlem

and inequality constraints, b(x*) = be R?; p < n, which give

rise to houndaries. In many applicaticns the constrainad subspace
is. a reasonable geometric okject., |If for example with equality
constraints, the derivatiQe, De has maximal rank the constrained
sutspace will be a manifold with dimension n-m. (For inequality
constraints the function b:RP » 2" has to te transversal

(Guillemin and Poliack (]974).)

1f, as will usually be assumed, A is continuously differentiable
and the proklem is unconstrained, the optimum also satisfies
DAJ‘* = 0, a set of 'n' nonlinear equations. Points at which the
gradient is zero are not necessarily clohal minima, They may,
for example, he maxima, saddle points or just local minima.
It is thus not sufficient just to solve the set of noniinear’

equations; some hyhkrid with a
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search technique not only speeds .convergence; it also tends
to prevent convergence to any point'which-is not, at least,

a local minimum,

Given a set of nonlinear equations f(x*) = 0 to be solved the
problem can be turned into one of.optimisation.~uFor example,
minimise fo subject to f(x*) = 0. There is thus a formal
similarity between the following problemsé
equality constrained optimisation— minimise A subject to e = J;
unconstrained optimisation— - " " D) = 0;
set of nonlinear equations— TN " f = 0.
Thus, any method for solving -one problem can be adapted to

solving the others. There appears to ke a difference in
dimensions, .The first problem, equality .constraint, is in
reasorable cases (when the subspace is a mani fold), say, an

n-m dimensional probklem. If A(x¥) is an optimum on the subspace,
then the projection of the gradient Dxlx* onté the tangent space
at x* must ke zero, The tangent space will have dimension n-m

sO togetwer with the m constraint equations,'e = 0, there is a total

L] t - -
of n nonlinzar enuations,

1.2 tonlinear eaquations

This section attemnts to examine the bases of methods for solving

sets of nonlinear(nonaffine) equations F(x*) = 0. Since primary’

interest is in optimisation it will be assumed that f has 'n
components. There zre a number of well developed methods
for solving sets of affine(linear) equations so it is natural
to try and forrulate the nonaffine broblem so as to appear

affine. If A is continuously differentiahle)
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by the mean value theorem,
fFixy) = flxy) + J{x;-x5)
vhere the ith row of the matrix J is

Dfl] » 0 €8, g1, 1=1....n.
;%1 + (1- i) X,

A  matrix J = [jl,jz,.....,j&] may alternatively be constructed
as follows (Hicks(1971)). Define

- -1, i Py i+l

fi(xl;xz;u) = f(x%,x%,..,xé y(axy + (1=0)x1),x17 4eeyx])

then '

n

n -~ 1 . 3 -l -~ .
Fxy) - fxy) ifﬂ fi(xl;XZia)lb = f;lfodmafi/aa

= Jxg3x,) (g =%,)

i+1 n .

. Vo : :
<here j. = ad b/ ax -1 i
vhere J -[Ud(‘l.ﬂ /X lxl I ,(ze_(]_a)xi)’xl ’...XI

§ 290X
The matrix J{x,,x;) is not necessarily symmetric in its arguments nor
is- it .in general a symmetric matrix., It can ke seen from its
construction that
R ( = nrl
i Xa3X =
lllxz_}le\ﬂz,)l) DF'XI
so that when .f = DX
lim J(x93x1) =0(Dx]_ )|
1 X1

X2—>'>’.
the Hessian matrix,

X1

The nonlinear problem is then to solve the set of equations
0 = fx¥) = F(x) + J(x¥;x) (x*-x)

for x*. If J(x*;x) were a known function of x,the solution
vould be given by

x* = x = J (%) f(x)
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where 4~ is a particular generalised inverse of J (Rao and P1#riUﬂTD)
As, of course, J(x*;x) is unknown all that can be hoped for is an
approximation B to J or Bj'to J” so that

Xy = x; - B fy _ | | (1.2.1)

is a better approximation to x* than x; was.

By "better approximation’ is usually meant |xp=x#| < |xj=-x*|

for some norm-l;l. From a practical point of view (and, in fact,
the only thing it is possible to cheék)“better"mgans Al(x5) < alxy).
Functions A for which A(x;) < A(x;) implies that |xp-x*| < |x;-x*]
would certainly make convergence proofs easier. Broader'claSses..
of functions  for which A(x)-A(x*) has some of the properties

of [x-x%| could be expected to make some convergence proofs possitle.
, the set I"E = {x/ ])_'.-x‘-'-'isa} is bounded. (Mu,\ku;(l'ﬂS))’ .

thus one possible class of functions is given by those

Almost by definition

for which the level sets L= {x/A{x)ge} are bounded. From

the properties of the Euclidean metric, if x3 is an element

of the lina segment {xp,x)) then

| x3=%*] € max{|xy-x*], [xp-x*]| 1.

A function for which

Axz) s max(A(xy),2(x2)}, x3 e(xz,xlf

is said to be quasiconvex and this provides another useful class

of functions.

The approximation 1.2,1 may be improved by a line search

X2 = X1- HB-Fl where y is chosen so that x(xy) is

sufficiently less.than A{xy). This is a most natural
hybrid between the method of solution of nonlinear equations

and direct search techniques. Xaving found one fhproved

value the procedure is iterated. The distinguishing feature

of the different algorithms is the vay in which the
approximations B or B at each iteration are chosen. An

important factor in the speed of convergence is the amount of

vork needed in each iteration. A trend which began with Fletcher's

and Reeves'(1964) implementation of the conjugate gradient method
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vas to perform exact line searches, for this is necessary

for the success of the conjugate gradient philosophy.

If u is taken to be unity the amount of work required is minimal;

if an exact search is required the computing cost of each |

iteration could be high. A paper by Fletchef(lS?O) marks the recent
iendanCy to inexact line searches which give a sufficient

decrease in the objective function for the expenditure of a moderate

amount of work.

The amount of work will be reduced if the direction of search,
-B]fy, can be quaranteed, by suitable choice of By, to be
downhill; that is, a descent direction. From the Taylor series

AY

T.- e
A(—".z) = )\(Xl) - uf'lBl'Fl + 0(u2|81~f1[2)

it is clear that if fIBIfi is nonzero then for sufficiently
small yu the objective function can certainiy be reduced., The
reduction would ke expected to vary.as lf¥é{f1|2/[BIF]]2.

I f fIB;fl is positive the search can be restricted to positive

p with a consequent reduction in computér time. Thus, in order
to speed convergence, a desirahle property of the approximations
B is that they are positive definite. With 1,2,1 in mnind,

a further restriction —p is limited toa preassigned neighbourhood

of unity— could bte considered.

The different algorithms are classified by the way in

which the approximations B or B are updated. They may depend

on information at the previous step and may even depend on
information gafhered at all previous steps. The less information
an update requires the less étorage will be required. |{f the
approximate is symmetric this could mean a substantial saving in
storage for large problems. An inportant requirement of an

algorfthm is that it should not fail
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due to .updates becoming singular. For some algorithms _
there i§ a tendency that once an approximate becomes singular
all subsequent -approximations are singulér and
subsequent stepg_are-restricted_td a subspace of R" (Broyden (1972)
Even if in theory the updates are positive definite,in

practice they may become singular due to round off error

and inexact line searches. The way to avoid this problem

is, of course, to keep a check on the singularity of the update
and make corrections when necessary. This in general

could be a complicated, time consumming business unless

the updates are stored in a fashion that makes it immediately

apparent what their condition is. [If the updates-are

“symmetric they may be stored in terms of factors eigz

B = LTL where L is lower triangular and" frowm the
diagonal e]ements.of L it is clear if there is a danger of
singuiarity. A singularity can easily be cured by amending

the offending'diagqngl element. Hot only does storage in this
form give a check on-the condition of the update, it also allows
one to easily check for positive definiteness., Symmetry '

of the update ié, thus, a desirahle proberty'ﬁoth from the
point- of view of storage, but perhaps more importantly,because .
of Us factorisations. Recent work (Goldfarb(1976);

Brodlie, Gourday and Greenstadt(1973)) has beenconcerned. with

updating the factors directly.

Tvio of the oldest updates are described in the remaining
part of this Chapter. The following two Chapters are devoted
to methods which use progressively more assumptions about

the linearity of the function to be optimised.
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1.3 Newton's and the steepest descent approximation

If the initial point x; is 'near' to the optimum x* and

J(x;x;) is a slowly varying function of Xy

Jxy3xy) = Drl = DDAI

the Hessian at ;1, could be expected to be a reasonable approximation
to J(x*;x;). " This is Newton's approximation; it is symmetric but is
only positive definite if x3 is sufficiently close to x*.  This
objection can be overcome by factorising and modffying the

factors if required,as described in Section 1.2; this is called

the modified Mewton method.

Another objection. to Mewton's method is the requirement
that the Hessian be determined at each step. This involves
the evaluation of n? scalar fuﬁttions, the equivalent of n
evaluations of f, and-this depending on the complexity of the
functions could be a costly operation. The cost is not only
in computer time but also manhdurs to evaluate the correct
analytic expressions for the second derivative and computer
code them. In a problem with a large number of variakies this
could be a.formidatle task. The latter prol:lem can be overcome
by finite difference approximations to the second derivative.
This may be even more desirable when one realises that what -js reaﬂy
required is an approrlmatlon to J(xf-xl) the rows of

which are given by Df Iaix*+(l—n Yxy

A problem that cannot be avoided with Newton's method is the

need (o solve a set of linear'equations:
fFlxp) + J{xp3x1) (x9-x3)

involving 0{n3) arithmetic operations per iteration., (This
of course can be done by factorising the Hessian which neatly
ties in with any modification which is needed.) Many authors

have suggested that in looking for alternatives to
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Newton's method,one is trying t01aﬁproximate the Hessian
matrix and in conseguence the approximation should be both
“symmetric and positive definite. It is clear from Section
1.2 that one is really tiying to-app;oximate.J(x*;x) which
in general is neither symmetric nor positive definite. What
could be saidb bereasonable is that the approximation B
should tend to J(x*;x*)r the Hessian at x* which is both

symmetric and.positive definite.

A long way from the optimum and without any.prior'kﬁowledge,_

the most reasonable choice of B  is the unit matrix, for = this

gives the search direction as the direction of steepest descent.

This is the line along which the function initially decreases

most rapidly., The steepest descent approximation is transparently
symmetric and positive definite. In practice the function

decreases rapidly at first., 'As the algorithm progresses to fhe,second&taﬁg
advance aiong a steep sided gently descending valley, the -
search directions will be almost at right angles to the line.

of the valley floor. Thus, consecutive points tend fo 219239

along the valiey sides making little progress. What is aPFarently
neaded is an'algorithm that starts out life as steepest

descent and as it approaches the optimum develops into Newton's

algorithm,.

If the boundaries of the level sets of the function A

are concentric hyperspheres about the optimum,the steepest
descent algorithm reaches the optimum in a single step.

This suggests changing the coordinates so as to make the level
sets as near as possible spherical. This is known as scaling.
If a steerest descent step is made in coordinates y with

T . . .
Ty = x then in the x coordinates the step made is

Xp = X1 = jﬁTTTfl.
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This in effect is a symmetric positive definite approximation
TTT to J{x*;x). Since any symmetric positive definite
matrix may be factored in -the form TTT,_a step made with

such an approximation can be thought of as a change of scale..
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CHAPTEP. 2 Secant approxinmations

This Chapter begins the analysis of secant approximations which
appear in various guises. The philosophy is to make a linear fit
to knovn function valuess, HMNewton's algorithm can be seen to lie
just at the edge of this broad defipition as it is the limit'

in wvhich the points where the value is sampled approach the
intial point. When a difference approximation is made to ths
Hessian this implementation lies within the secant philosophy;
the apnroximation islfitted to funqtion'values taken along the

coordipate directions, Various other secant updates will he discussed.
2.1 The bhasic idea

Suppose a step is generated hy B] an approximate to J,

Xo = Ky = uB;ﬁ;.from Section 1,2 Af; = Jy18xy, where Af, = fo- §
and &xy; = xz= xy;. 1f x; and xp are close to the optimum and J

is slowly varying J(x%;x5) will ke approximately equal to J,, .
This suggests making the new approximate , Ez; fit the same

equation as Jpy: Afp = BaAxy..

As with Newton's algorithm this is hardly justifiable at large
distances from the optimum. It does, hcovever, ‘present the possibility

of starting an algorithm with the steepest direction and then

- makinga minimal change from the unit matrix in order that the

update fits the previous step.

The strategy of secant approximations is, then, to approximate
Jy [l R g H

J by linear fits to known function values. The number of

- previous steps which are fitted distinguish,




to some extent, the possitle secant algorithms. Let the kth-

step be generated by B

BkAxk = —ukf

l;.
~

Xegl ™% This is

shown symbolically in the Figure.

where Axi=

The approximate Bk+1 is chosen to

fit the previous. k steps

aF 1K (2.1.1)

5 . :
where Axlk = [Axl,sz,...!AxPj and AFl'e [AFI,AFZH...Afk].
The X will for the moment be assumed linearly independent.

A general solution of 2,1.1 can be written in the form (Rac and Mitea (1471))

B = AF k(Axlk)—L + C

(2.1.2)
K ,

k!
. ‘w|k -L ., . o ]k .

where (4X'7)." is a left inverse of AX'" (not unicue) and

the null snace of C contains the range of AX!k. A

inverse is (Raocand Mitea (1971)

.

re

yeneral form of lef

ky-L . |y -t

(aX (¥, a% Y,

k

where Yk is a k<n matrix such that the rank of YkAXlk is

equal to the rank of AXIk which is assumed to ke k., |If

Z, is a kxn matrix for Which'rank(ZkAX|k) = k, axlk(zpaxlk)"1zk

is idempotent and therefore a nrojector. It projects onto

the range of AXlk along the null space of Zk {the orthogonal

p— .
complement of the range of Zk)' One form of CP is then

c

_ - L S
L Hk(l AX (LkuX ) Lk)
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vhere H is arbitrary and the second factor projects onto the null

k
space of Zk along the range of AX,k .

A canonical .choice for 2.1.2 is

L k T ky=1 1k
Bk+| = B1’_+ (AFlk - B.lAXl )(Ax‘k Ayl ) AXI C : (2.].3)

that is Yk = Zk== Axlk and Hk = B;. This represents the

minimal departure from By, the initial approximation, for if
¢ is orthogonal to the range of Axlk'then B € = gc.
This is the general ised secant approximation of Barnes.(1965).

It is neither symmetric nor positive definite.

If 'n' linearly anependent steps. Ax, can he taken with the

secant approximation 2.1.2 the-lnverag (/\Yl ) -t is unique'

and uk=ﬂ_0. 1 f, moreover, the system of equations f = 0

is affine J is a .constant and En becomes equal to J after

n steps. A further step gives the exact sclution. The

n-step secant algorithm can be started with the sfeepest

descent step and if applied to an affine equation; as desdfibe% the
final step is the lewton step. For the nonlinear case, |
having mada a fit to the previous n steps the algorithm

can be restarted or the n directions can he systematically

updated by more recent information.

The difficulty with the n—steb secant approximation is

that it cannot in general te guarenteed that the steps_{Axi}
generated by the {E.} will be linearly independent. One

way to avoid this problem is to take side evaluations. This
is shown symbolically in the Fiqure over the page. The steps

are generated as before
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but Bk+1 is chosen to fit side

evaluations

ko zlk
By 10X AF

_where Aki = Xiq " xi and

A?i = f..q - f.. The a%, may be

chosen as before to be the:.steps

Ax. or memters of a linearly

independent seot {ri}, say. If the latter is the case, twice
as many function evaiuations are needed. The update BL+], as
N
above, is given by
=1k L slky-i - '
B .= AFI Y, ax! + : 1.5
eay= AF (Y, 0007) Y+ € (2.1.%)

where the rank of,YkAi‘k is k and the null space of 5: contains
the range of AK!k. An obvious choice it to take {Axi} as

the ccordinate directions.{ei} possihly scaled, then

3 =-AE(A§)"1 where_(Ag)-I.is diagonal. This is a difference.
approximation to the Jacobian, albeit a poor one. (The difference
approximation to the Jacobian can be made either in the rows

or the columns, as here. The difference approximation here

is not, however, taken at one point but is gradually built

up. For examp]e,'starting with the unit matrix the.difference
approximation to af/axlixfcan be found and this used to replace
the first column of the unit matrix; a step is then generated by
this new approximation., A difference approximation to Bf/alex

is made and this used to renlace the second column. and so on.)

In general the updates of the above form are not symretric nor
positive definite. Updating those n-step secant élgorithms

which are symmmetric and positive definite( if 8 is to te
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symmetric positive definite then so must its inverse B), if

such exist, is likely to be a complicated business. For most

of the rest of this Chapter interest will be in those algorithms
which fit only the previous step. Forms of these exist which
are symmetric and positive definite. The final section in
Chapter Three will return to algorithms which solve affine

equations- in n+l steps.
If the update has only to fit the previous step,a general form is
By = AFy /y ax + C) (2.1.5)

. . T, y.
vhere £14x = 0. As before, one choice of C; is H;(I- szT/z 6%)
with Hy arbitrary. |If H; = By, the initial appreximate, a
matrix multiplication is avoeided since 8jAx = -uAf. ° Vhen
y = z, the Initial approximate is only modified bty a matrix of rank
one:
X . T,.T
3, = By + (Af - Bjax)z /z Ax (2.1.€)

The canconical choice y = 2z = 8x, gives Eroyden's(1865)
algorithm, for which Boc = Ejc for-any c orthogonal to the
previous search direction Ax. The Broyden(1965) undate

is neither symmetric nor positive definite. |If the initial
approximafion is poor the algorithm is unstable (it generates
directions which are not descent directions). Powell(1570)
has given a synmetric adaptation of Broyden's update in which

B8 is updated by a matrix of rank two.

A symmetric form of 2.1.¢ is obtained by taking z = (Af - BjAx),
which gives the complement of Davidon's (1943) symmetric rank
one update. Not only is it the complement(Af is interchanged
with Ax and B with B_),it is the inverse of Davidon‘s(1963)

as can ke seen in Section 2.2 using the Sherman-Morrison formula.
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This algorithm is not positive definite'and is notoriously
unstable. |t is, however, attractive for reasons explained in

Sections 2.2 and 3.3.

If C; = B (1 - szT/zTAx) the most general-symmetric update

of the form 2.1.5 is

By = B + AFAFV/AF Ax + BiAxAx Bi/Ax'B18x |
+-§(Af/AfTAx - BIAx/AxTBle)(Af/AfTAx - Blﬂx/AxTBlbx)T

where € is arbitrary. This is the complementary single parameter

ranik two Broyden(1967) family. This family is the family of

inverses of the Broyden(1967) family but the inverse of a

particuiar memSer is not equal to its complement., A subclass

of this family has the potential for positive defﬁnitehess

(provided the line scarches are carried out to a prescribed

accuracy) as will be discussed in Section 2.2.
2.2 The.complementary secant approximations .

To find the next step in the secant approximation, as with
Newton's approximation, it is necessary to solve a set of linear
equations. This in general requires 9(n3) operations. (An
exception is the impnlementation by Gill and Murray (1972): the
approximate E is stored in terms of its Cholesky factors and

these are updated directly.} |If B2 and E; are nonsingular
approximations which differ by an elementary matrix (rank one),
2.1.5, then the Sherman-Morrison formula gives a simple expression
for By, the updated approximate to J , in terms of the initial

approximate B] to J:
- - - T - T.-
B = B; + (Ax - ByAf)z By/z BAf.

The undate as might be expected fits the nrevious step,

BoAf = Ax.
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This suggests that instead of making a linear fit to J, a linear
fit to J” could be made. That is, for the k step complementary

secant approximation B;+] is determined by fitting the k previous

Then as for the usual secant approximation

= Ax‘k(YkAF‘k)"'v +C

B K Kk

k1

where the rank of Y AFIk is k and the null space of €, centains the

Kk k
range of 5Flk. It is clear that little is to be achieved by
taking side evaluations since if the LR, are taken to be linearly
independent there is no guarantee the the A%i vill be linearly

independent.
The one step complementary secant update is
- T, T :
By = Axy /y Af + €, (2.2.1)

where CyAf = 0, If Cy = B, (1 - AFZT/ZTAf) a matrix multiplication
is not avoided as it vas Fdr.the one step. secant update. However,
0(n?) operations are needed for matrix multiplication as opposed
to 0(n3) for solving a system of linear equations, Taking

z = y gives the rank one updates and the canonical choice

z =y = Af is the complement of Broyden's(iSﬁS) algorithm

By = By + (Ax - B AF)Af /afTaf

for which Byc = Bic for all ¢ orthogonal to af. This, like its

counterparf is neither symmetric nor positive definite.

The symnctric rank one update, Davidon(1963)
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B, = By + (Ax - BjAf) (ax - BIAF)T/(Ax - BIAF)TAf-

is attractive because, for an affine function, not only does
it fit the immediately previous. step, .it fits all previous
steps. This will be discussed further in Section 3.3. As’
stated above the algorithm is not stable but various implementations

have been proposed which greatly.improve its reliability.

A symmetric rank two form of 2.2.1 is the single parameter

rank two Broyden (1967) family.

By, = B + AxBX' /8% AF - B’IA'fAfTBI/AFTBI/_\;f ' (2.2.2)
+ E(Ax/DREF - BTAF/LFTBTAF) (Ax/ox AF - B Af/AF B AF)T

This family includes the most widely used optimization algorithms
such as DFP(Davidon—F]g{cher-Powell(l963ﬂ\~&h £ =0, and

BFGS {Eroyden—Flet‘Cher_—Gol'dférh-Shanno(:l‘ﬂO)) with £ = AfTB;Af.

It is a subclass of the Huang(1970) -family: members of the

Huang family sc}vé an affine equation in n+l steps when exact

line searches are used. The reason for this is that they generate’
a set of conjugate directions . The Huang family is generalised

in Section 3.1, ‘Dixon(1972) has shown that a subclass

of the Huang algorithms, which includes the Broyden family,

generate the same sequencé of points when exact line searches

are made. If exact line searches are performed,Athe subclass

of the Broyden family with £ 2 D are positive definite. For -
inexact line searches the same subclass is positive definite if and

only if af ax > 0.

The symmetric rank one algorithm (Davidon(1963)) solves an

affine eguation in n+l steps with arbitrary step size. The
drawvback with the algorithn is tﬁat is that the approximations to J
are not positive definite. The subclass of the Broyden{1967)

family for which £ 3 0 gives positive definite updates if the



26

line searches are performed sufficiently accurately 50 that
-‘Aftﬁx > 0. To reach this degree of accuracy-could be ’

expensive. Only if the line searches are accurate will this class

solve an affine equation in a finite number of steps. What wou]d

be desirable 16 . a symmetric positive definite algorithm

vhich solves an affine equation in a finite number of steps

with arbitrary-step lenqth, Davidon(1975) has produced just

such an algorithm which has a.form similar to'2.2;2;

By = B 4 ZZT/ZTy - BInyBI/y.“B;y
- - e To- T
+ ¢(z/zTy - bly/yT51Y)(Z/ZTy - Byy/y Bry)

where z = Ax - B1Af + Bjy and yTz = yTAx =Af'z. This can be

rearranged into the form 2.2.1:: By ==Ax2T/zTAF + Cy where

¢, =8, (I - AFZ /2 aF)
_ - T- S |
+ (Bly + §z/2'aF - B]y/y Bi&F) (2/2 Af- B1y/y"B;Af)

showing that it is a complimentary one step secant algorithm.
Davidon chooses vy so that Bz can fit all previous steps for

an affine function. Exactly how this can happen is investigated
in Chapter Three.. The parameter $ is chosen so that the

update is positive definite and _ the condition numbker

of BjBy is wminimised:
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CHAPTER 3 Conjugate directions

This Chapter examines the use of conjugate directions in optim}sation
with special interest in their relation to and use within the

secant framework. The ahalysis is more general than is usual
vhen discussing the use of conjugate directions in optimisation.,

It is arqued that most of these generalisations are unlikely to

be helpful in producing algorithms, Section 3.3 does, however,

give some ideas. for constrdq;ing aldorithns with the same properties

as Davidon's(1975) algorithm.
3.1 Conjugacy

The secant approximations involve fitting a hyperplane te known
function values., The approximations inthenextsection assume linearity
in the equations to he solved: f = Ax - h=0. The solution

of this set of equations is essentially tha problem of finding

an inverse for the matrix A, The inverse of certain matrices,

for exampie lower triangular matrices, are relatively easy to find.
Methods which find the generalised inverse in a finite number -

of steps depend on reducing the matrix to a form for which the
inverse .is easy to find. The reduction of a matrix,.A, is essentially
the problem of finding pre and post multiplying matrices RT and S
such that RTAS'haslzeros in prescribed positions, This can
alternatively be thought of as choosing vectors r and s so that

rTAs = 0. If this condition is true s is said to be A-conjugate

to r or the pair (s,r) are said to te A-conjugate. If also (r,s)

is A-conjugate, or equivalently (s,r) is AT—conjugate, the pair (s,r)
are said to be A-biconjugate. - Orthogonality is clearly a special

case of conjugacy.
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3.2 Reduction to lower triangular form

Suppose that A, S=.[51,52,¢...,.55]_and R= [rl,rz,......rn]

are nonsingular matrices and R AS =L is a lower triangular

‘matrix, that is rIASj='0 i < j, then motivated by the usual

method of conjugate directions Stewart(1973) gives the

following algorithm for solving Ax*- b =:0. Given arbitrary

X1, the sequence {Xk}z+: generated by
: T.oT :
Xip = X T s;rifi/rifs, (3.2.1)

terminates on x*. By the assumptions of nonsingularity,

the algorithm can always be carried to completion. The easiest
way to understand the performance of the algorithm is the
following. The matrix can be regarded as a linear transformation
from R" to Rn; Let the domain of A be equipped with a basis
formed from the columns of S and the range with a hasis formed
from the columns. of (RT)—]. With these bases the transformation
is given by the matrix L, If xz = C the algorithm is nothing
more than the usual recursive method for solving the triangular

system of equaticns:
T
Ly = z, x =35y, z=Rb.

A second proof that is pertinent to optimisation is the

following. 1t is easy to show inductively that fi is orthogonal

n

tO F1l2yeeealiy and since the range of R is R, f must

n+1
ke identically zero. From the peint of view of minimising
the quadratic |

T
2(x) = Ix Ax - bx

where A is symwetric positive definite, after i £ n steps A



is minimised on the variety through the current point spanned. by
Flaf2yeneeels 4 (since X is strictly convex). This,of course,
is- the emergence of the parsllel subspacentheorem.(which is used

in some algorithms for optimisation without derivatives):

If x and y are minima of the quadratic X on
parallel subspaces.(e.g; varieties generated by
rl.rz,.....;ri_l) then x~-y (proportional to éi)

is A-conjugate to the SUbeaoe.

In the usual conjugate direction method (e.g. Luenkerger(1973))

the step direct-ions_'éi serve the additional purpose of de&cribhﬁathe
variety containing the minimum, The above generalisation,

thus, provides a second SCt{ri}igl to delineate the variety"

containing the minimum,

The second proof can be restated in a vay which will prove

useful later. It can be seen that

kaI% nkfl where

- - T, T _ N _ T, T,
Fo= (1 = As r /rAs )( Ask-lrk—l/rk—lA‘k—l)""'(' AslfI/rIAal).

From conjugacy it follows that

ORsirE/r?Asi)Fk= 0 for i gk ' (3.2.2)

’

so that F, is idempotent (Fkaz Fk). That is,F is a projector.
From 3,2.2 the range of Fk is the orthogonal complement of

the range of R'k. In a similarway it can be shown that the
range of FZ is the orthogonal complement of theranae of ASlk.

Since any projector projects along the orthogonal cnmplement of

the range of its transpose, I, must project along the range

k
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of asl®. That is,

F o= 0 - nslk (| ¥Taglky-TglKT
=1 - Aslk(LTE)'TR'kT,
F = 0.
n
The-residueszei== X, = xX* are related in a similar fashion
€41 = Eke] where

T PO AN T T T T
E, (1 skrkA/rkA“k)(' ' sk-lrk-TA/rk-lAsk-l)"'(I 51 A/rAsy)

is a projector which projects onte the orthogonal complement

of the range of ATle (which bT conjugacy is the same as the range.
of Sn—kl) along the range of S_k. (The pronf is the same as for

F, and is given in detail.by Stewart(1973).) That is,

1S

£, = I - Slk(LTE5-1n|kTA
) n—k!(srl n-k

O n

The algorithm 3.2.1 is, of course, useless unless matrices R and
S can be found. Chanter One suggests taking s. proportional to

B;fi when 3.2.1 becomes

L T, Tao-
Xigp = % = i Fi BT/ ABTEL L | (3.2.3)

The requirement r}As = 0 for j < k implies that

k

r}AB;fk = 0, for j < k.
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The algorithm is constructed so that r}fk =0, j <k,

as shown above, which suggests that

-T.T o ' .
B, A Fy=proe Jj <k o (3.2.4)

for some constant p. |f this is the case

AB;TATrj =0, j<k

vihere ABk = By Ek, and
T T T,

ABk A ri. = prk - Bk Ark,

One possibility is then

ST _ T T, TaT, =TT T, TT
B p1= B, *Pru/uA B, A r t /t A _ (3.2.5)

. : . ’ T -
for some Uy and £, in the orthogonal complement of ron (A le,).

Since s, is proportional to Ax,

{B"'ﬂrr = Ax TATL TaTr = pr;ATrj =0, j < ki

kT Kk se

Ax K and B"Afk are both members of the orthogonal complement
of the range of A P!k -1 (which.is the range of s"” k+]l). 1f

the update is JUSt to depend on the information from the previous
step (to minimise storace) then it is reasonakle to take

Uy and t, as linear combinations of ﬂxb and Bkak "With .this
choice 3.2.5 is a generalisation of the Huang (1970} class of
updates. Setting My = Axk reproduce; the Huanglclass.

Condition 3.2.4 rewritten as

=T =
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wvhere rj = Aij and Aff:ﬁ“ATrj, can te compared with fitting
of the hyperplane in the complementary secant approximation
with side evaluations, ~Sechon 2.2,

--='- y< k|
BkAFj ij, 1
Thus,the conjugate direction algorithm 3.2.3, 3.2.5 can be seen
to fit a hyperplane to the transpose oF'p_JA using side
evaluations along rj. If A and B, are symmetric

and p=1 this is a complementary n-step secant

appreximation with side -evaluations,

luang (1570) showed that all the Huang class generate the

same directions when applied to an affine equation,‘ That is,.
the S
this is truc for all members of the above genesralised Huang

are the same up to modulous. The following shows that

class. Firstly, since r}F =0 for j <k

k

¥ A/rL_

Ek+1f

T, T e ' -
= (=g rdmne ) (-5 ey IARPEREELILI

kri

so that the divections are indépendent of Uy and p. .Because
of this p could be iteration dependan;,pk, without affecting
the conclusion. Since t, is a linear combination of Axi and
BiAfi it is clear that ti is a linear combination of

Bify1, Brfa,.......Bif, so that s, is also a Iinedr-cqmbination

of Bifyy Bi1fa,......Bf This can be written as

K*

RTABIFU—] = L or RVAESF = LU

vhere F =T[F1,F2,.....$A]and U-] is an upper friangu]ar matrix.
That is, R AByF can te factored into the product of upper and
lover triangular matrices. Since P, A and B;F are assumed

nonsingular, U is uniquely determined up to the scaling of its rows
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(Householder (1064) §1.4).. Thus, given 5& a linear combination of
B;fl, B;fz,.....BIfk it is unique up to modulous. Apart from

scaling, then,

S] = —Bif'l

i
1
o
L |
—+
+
[9e]

*k

The requirement r}ASi = 0 for j < i implies that Gij,= r}AB;fi/r}Asj:

k-1 T, T. .-
s, = ={l -5, ,s.r.A/r.As )B;f.
k ( S A A A R
T-.
= —Ek_]BIFk

where Ek is the projection matrix defined earlier in this section,
. T . .
The projector Ek projects onto the orthogonal complerment of
k T,k . . .
$'  along the range of A Rl . This shows the relationship to
the projection implementation of the conjugate direction method

e.qg. Zoutendijk(1969).

It is difficult to justify the implementation of the above
generalised conjugate direction algorithm,. 3.2.1, as a hybrid
search method. Only in the case r. = si,.the usual conjugate
direction method, is the step taken tc the minimum of a gquadratic
along the search direcfioh. Even then, the search has to be
exact to maintain conjugaty and achieve termination in n+l steps.
Van Wyk(1977) suggests line searches along the side steps ree
This seems hardly likely to accelerate the chvergénce for a
general nonlinear function as the searches are not in the step

directions.

N feature of the generalised conjugate direction algorithm is that

the choice of r, can be deferred until after s, has bteen determined.
xS
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Stewart (1973) shows how different choices of & lead to other well
known matrix reductions. The usual method of conjugate directions,
re = Sis leads to diagonal reduction. Another way to achieve
diagonal reduction is described in the remainder of this section.

Given matrices A and ByF are nonsingular, let V be another

. . . T, o~ .
nonsingular matrix such that V AB;F can be factored into.

LDU where L is lower triangular, U is upper triangular and

D is diagonal. "Then

where 8" = L™ and 5= BTFUTY. That is,the pairs (si,rj) are

biconjugate for i # j with re @ linear combination of

Viseroans v Again S and R are determined uniquely up to

K
scaling (Householder{1964). Thus,up to modulous Sy, is

determined as in 3.2.6 and r, can he given by a similar expression:

k-1 k-1 . T,T, T T
-s - . . ) .
k -k-j.=19kjrj (1 zj"“ rj.,.l\ /.l’jll.'_;j)vk F;(°.l Vi

s —

In addition to the sequénce generated ty 3.2.1, the
sequence generated by

- - T T, : -
X417 T RS/ Asy ' : (3.2.7)
also terminates on x*, vhen A is symmetric, for arbitrary

initial point ;1. This is kecause for symmetric A, STAR

is lower triangular. |If B;: 1 (i.e. the initial step is the
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the steepest descent) and vy = ?k then since fk(?k) is orthogonal
tO F1, F2pecne k 1(51, 52,.... “Sp- ) which are linear
comhlnat|ons of fl, Fopenudf - ](Fl, Fareeuef, ) it follows that
ff O(ff _0)fm‘t<kh Hmweau= Pij

so inh this 5|tuation the algorithms 3.2.6 and 3.2.7 reduce to

= 0 for i-1#.j

_T T

Sipt= ~Fie1 ” Tci+1f.+15 /T8y
T T

Firr="Fier — Hiaf 4171/ /" f.

After a little translation in coding this can be seen to be
Fletcher's(1975) biconjugate gradient algorithh which is a
generalisation of the Festenes -Stiefel(1952) conjuqafe oradient
algorithm. A discussion of hiconjugation applied to affine

problems is given.in Wilkinson's(1345¢h6) book. It is to bte noted

‘that this type of algorithm suffers from numerical instabilities

(Fi;h Fi) because of lack of symmetry. |1t is hardiy likely
that the generalisation will prove useful for the nonlinear
case,

3.3 Reduction to upper triangular form

The n-step complimentary secant update

(3.3.1)

T LI T L o ky =1 .
B,y = aXUU(Y 0Py 4 B (1 - aFTHZAFTT) TZ)) + Ky
where HL,AFIk = () is somewhat attractive because with exact
arithnatic it will solve an affine system at the (n+lkt step
without exact line searches. The cne sfep complementary
secant update
B, . = y // A+ E Al - AF ZT/ZTAf ) + b 2 2)
kel = VYT PSS "l O (3.5.
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where G Af = 0, is attractive because of its 53mpncﬂ7:

L4
This al?owt one to identify those members which are symmetric -
and positive definite e.q. some members of the Broyden family,
Furthermore, another subfamily the Huang class, which éontain$
the Broyden family, are able to solve an affine system at
the (n+)st step viith accurate line searches. It is natural to
ask if there is a subclass which will solve an affine system
in a finite number of steps but without exact line searches.
That is, under what choices of Vi and 2, ‘will 3.3,2 generate
3.3.1. Tracing 3.3.2 hack to B; gives

T L ALy S SN

ke 1Pk F Tisabia T t Gk
vhere

. R PV T T, T

PJk {1 AFJAJ/_JA.j)(I rJ+] JP]/LJ+]=EJ+1)......(| Aszk/zkﬁfk)
and

K T T T T T T
o = [Pont /Y I0F L Py ya 2t s e Py /8y ]

The discussion in Secticon 2.1 shows that P1h must te a nrojector
but from its construction

Plk = | - AFIkUkZIkT - where £ = [21,22,.......zn] ond

. “ : . kT ky =1 .
where U is upper triangular. Thus Uy = (Zl AF|<) and since
the.inverse of an upper triangular matrix is triangular it follows

that a necessary condition for 3.3.2 to generate 3.3.1 is that
KT,k

AF!™ is upper triangular., Itecankbke shown that P.k is a

. . ) - . . - . .
rrojector if Z AF is upper -triangular i.e. ir szFi=- ¢ for j > i.
The proof foliows that which showed Fk vias a projector

Section 3.2. The matrix ij projects onto the orthogonal
complement of the subspace generated by Zj"""'zk along the
the subspace generated by zsfj......Afk. Mote that, because

ochstandﬁy-the'ranga of ij includes the span of Afl,.....Afj_i.
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[kT

From Section 2.1 it is clear ‘that Q must be a left

inverse of AFlk or alternatively

y}PJ.H kAf'i/y}Af-ir {‘ > .
» 0 otherwise

If ZTAF is upper triangular then as described ij is a projector and
P‘+| kAfi= 0 1gj<igk .
dT AFL k> jyion

Thus,if Q' is to be a left inverse of AF, vy Afi = 0 for j > i

e

T . ‘s
or Y AF must be upper triangular. Thus necessary conditions

; - T
for 3.3.1 to be generated from 3.3.2 are that Z AF and YT&F
are unpper triangular. It iseasy to convince oneself that these

conditions are also sufficient.

Section 3.2 shows how,given a matrix T, to construct a matrix
S, with 5y, a.linear combination of ty, t2500.0ty SO that

R and S reduce A to lower triangular form. Inspired by this

it should be possible, given a matrix V=-[Vl,.......vn]_,'

to find a matrix. Y, with'yi a linear comkination of vy, ....v,,

T
such that ¥ Af is upper triangular. If y;=v; and

el =T T, .7
Yo = (0 =y g 8F, /88, v e (0 - yiafy/afry )y (3.3.3)

then by induction zzAfi = 0 for k > j. This is precisely
the technique adopted by Davidon (1975). " Davidon, hovuévcg chooses.

Vi to be a vector which for an affine system is already orﬂwao“a] to

2=
afq, ﬁfz,......Afk_z then Yi becomes -

, T, T - |
Vie = U=y g 6F 78R )z (3:3-4)




38

For the affine system of equations:in Section 3.2 (the method

of conjugate directions) the problem is to reduce A to lower
triangular form. For an affine system the problem here, the
n-step secant approach, is to find a matrix Z such that

ZTAF = ZTAAX is upper triangular. That is, it is necessary-

to reduce A to upper triangular form. Suppose there is a matrix
V such that there is & factorisation of VTAAX into LU

where L is lower triangular and U isupper triangular then

ZT-= Lf‘VT By an arguement similar to the one in Section

3.2,Z is unique up to scaling of its columns.

Suppose an update 5;,]

the k previous steps

when applied to an affine system fits

VL LR | |
By AF = By ABX!T = X

then for any vector v

T nn- ke _

v (A5k+] - 1)AAX!'T = 0

so that one choice of Zk+1 is
i -T T

Ziq= (= B AV,

WYhan A is symmetric, as it is in optimisation, the natural

for then

choice is Vk+1 = Axk+]

2l = B T B8 - (3.3.5)

This is the choice used by Davidon(1975). The symmetric rank

one undate (Davidon(1863)) also uses this form. Thus, both these




algorithms are n-step secant methods when applied to an affine

function. An alternative to 3.3.5 is side evaluations

-T =~

(3.3.6)

2161 = B 7 By
or 3.3.6 can be used to generate a second orthogonal set.
A symmetric rank two form of 3.3.2 is (Powell (1977))"
BD . = B+ 0g(ax: -B af ) (ax, ~B af )"
k+1 T Tk U e k "K'k
+ 0y ( (8% ~BOAF n +w (ax BAf))+~’:)w il
1 (8%, -8, A I 2" M
where
~ T T
eo(Axk_EkAfk) Afk + U]_\'.’kl.\.fk= 1,
T
el(AX L'\‘I ) AT " + ezv.szﬁf“= 0
and v s A- conjuqate €O AXy,..... .. A, _q. Fny of the forms

3.3.3, 3.3.% and 3.3.6 can be used for w . |f 8; and 8, are
zéro this is just the symmetric rank one update(Davidon(1968)).
The free parameter can be chosen so that the update is positive
definite. For the Davidon(1975) algorithm vy, = E;yk so Davidon
uses a complicated projection method to ensure

cenjugacy to - previous steps.
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CHAPTER & Summary and conclusions

Desirable gen=sral features of techniques for numerical optinisation
of a function of a finite number of variakles are:

rapid convergence;

robustness;

simplicfty.

Minimal storage, which is useful for handling problems with a

large number of variables, is tc be considered as incorporated in
robustness. In a large number of applications the function

to be optimised is continuously differentiable which gives

an additional means by which to achieve rapid convergence. -

in this situation the algorithm can ke a hybrid hetwecen a line sezarch

and a method for solving nonlinear equations.

Hethods for solving nonlinear equations are based to a greater

or lesser extent on methods for solving affine eguations. Most of
these are .in some way related to secant methods, Chapter Two.

in the secant approacﬁ,an approximation to J(x*;x) or

J (x*;x) (Chaptar One) is made by making a linear fit to krown
function values. With Newton's method a linear fit to n+l
function values, in the vicinity of x, is made at one iteration.
This is seen more clearly when a difference approximation is

used for the Hessian. The simultaneous fit to n+1 points is then
followed by a line search and this completes the iteration.

In the n-step secant method, e.g. Barncs(1965) a linear fit

is made to n+l points btut the fit is made over n iterations.

The fits can he made to previous steps or to side evaluations.

Mewon's method using difference approximations can be seen as
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a fit to side evaluations made along the coordinate directions.)

The one-step secant algorithms, Chapter Two, are initially
content with fitting just the previous step. This allows a
great deal of arbitrariness but if the gradient is assumed
affine the arbitrariness can be utilised so as to make an n-step
secant fit., This involves the notion of conjugacy which is related
to reduction of -the fundamental (Hessian) matrix'(Chapter Three).
There are two basic approaches., The first, lower triangular
reduction, makes a fit to the transpose of the inverse of the
fundamental matrix, Section 3.2. This method requires exact
step lengths. The second method, reduction to upper triangular
form, is more closely related to the more usual secant method,
Section 3.3, The step lengfhs for this method can ke quite
arbitrary. Hote that when the matrix approximations are
symmetric and the fundamental matrix is symmetric

both methods lead to diagonal reduction and so appear similar.
Thus, in general, the majority of algorithms which attempt to
solve nonlinear equations are related to the secanf method and

a large.number of these use conjugate directions in order to
make a linear fit. This is the reason for the title of the

Thesis and it is thzse algorithﬁs which will be compared.

A successful algorithm should be atle to cope adequately with

each of the three stages of optimisation: descent into the valley,
advance aiong the floor of the valley and search in the vicinity
cf the optimum, Chapter One. A long vay from the optimum and
without any previous information, the steepest descent direction
is the natural initial choice, The update should differ from

this by a minimal amount.

To ensure advance along the valley floor an improvement should

be made in the objective function at each step. From Chapter
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Two, this can be achieved if the approximating matrices areA
positive definite. Accurate line sgarchés are costly so it
is reasonable to terminate the search-whénra_éréassigned reduction
in the objective: function ‘is achieved. The firSt;proCeduré in
the search should be to investigate the value of the function
when the step parameter p is set to unity and only if this fails
to.satiéfy the search condition should the: search be continued,
This can be done by making a polynomial fit to the objective

and gradient values.

Symmetry of the.apprbximating matrices is attractive on a-
number of accounts. Firstly, for an affine equation lack

of symmetry in the approximating matrix leads to numerical
instabiltity (WElkinson(lé65) Chapter £). "Secondly, a symmetric
update can be thoucht of 'as a rescaling with a steepest descent
step. Yith spherical symmetry the stcepest descent step reaches
the optfmum, Thirdly, if the updates are symmetric only about
haif as much storage is required and this can be important for
large problems. Finally, and perhaps the most important need
for synmetry, the undate can be stored and hopefully upda ted

in factored form so that a check on nonsingularity and positive

definitensss can be made and if necessary corrected.

In the final stage of the optimisation the gradient will be
almost affine. The ability to solve an affine equation in

a finite number of steps is thus an attractive feature of

an algorithm. 1t should, however, he. regarded as less important
than positive definiteness and symmetry. ''‘Quadratic termination
is desirabie if it is not achieved at the expense of stability"
(Broyden(1972). Methods which solve affine equations exactly

do so in general by deriving the fundamental matrix or its
inverse. The approximating matrix then fits all previous

steps or side evaluations.




L3

Newton's .algorithm only fits the previous steps when the equations
to be solved are affine. The n-step secant algorithm fits

the previous steps or side evaluations whether or not the eguation
to be solved . is affine., Algorithms such as Davidon's{1975)

and the Broyden family(1967) only fit all the previous steps

when the equation to be solved is affine. The relatfonship
between families of a]gorithms which are one-step secant is shovn
in the fellowing Venn diagran.-

Huang (1270)

Broyden (19£7)

reduces affine reduces affine

enuation to lower equation to upper

triangular fornm triangular form

Even theugh wihen the Hessian is symmetric and the updates are
symmetric, algorithms which cause reduction to lower and upper’
triangular form have the same effect, namely diagonal reduction,
their nature is very differnt. 0One requires precise step lengths

but for the other arbitrary steps will do. The symmetric rank

one update (Davidon(1965)) lies in both camps. Algorithms which

lie in the shaded region, such as Davidon(1¢75), have up until

‘recently been neglected.
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In ordef to perform well at all stages of the optimisation

process an algorithm should ideally start with the unit matrix
(steepest descent) and progress through positive definite

symmetric matrices until arriving at the fundamental matrix
(Hessian) when applied to-an affine system. Even though one

is attempting to approximate J(x¥;x), a matrix which is in”

genera! neither positive definite nor symmetric, positivé
definiteness and symmetry of the updates is of primary importance.-
for they ensure reasonable performance at all stages of the
optimisation process. O0f secondary consideration is sfarting

with steepest descent and deriving the Hessian or inverse Hessian’
for an affine equation. These enhance the algorithm in the .initial
and final stages. As described atove accurate line searches

are not very economical and if the algorithm has the atove
properties with arbitrary line searches this is an added bonﬁs.

If an algorithm derives the Hessian or its inverse for an affine
equation then of course it fits the previous step, Algorithms
which fit the previous step but do not derive the Hessian matrix
may then be thought of as intermediate. They do tend to enhance
convergence in the second amd final stages but not as well as those algevithms

which derive the Hessian,

Some important algorithms referred to in the .text which are
based on secant thmopyan& Conjugate dicections are comparead

in the Takle on the following page wusing the criteria of the

‘above paragraph. Newton's modified algorithm refers to the

incorporation of safeguards for positive definiteness. Although
the algorithm does not in principle start with a steepest descent
step,one or two such steps could te made so as to initialise the
algorithm. The BFGS and DFP algorithms vihen used with inexact
searches appear from experience to ke more efficient than when used
with exact searches. This shows that having to make exact line
searches is nof compensazd by quadratic convergence. Hote, however,
the difference between these two algorithms and the'steepest descent
algorithm. An entry in the third row of the table obviously
makes .a significant difference in the performance so it must tend to
reduce zigzagging behaviour which is a danger in the second stage

(Section 1.3).
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In the Broyden family the BFGS(Broyden(1970), Fletcher(1970),
Goldfarb(1970) and Shanno(1970)) update when used with inexact

line searches is reportedly the best. The reason for this is

not completély clear tut is related to conditioning. The definition
of conditknﬁnsuuayShanno(1970)-— the update that makes zTB-z.'

a maximum for arbitrary z is optimal — picks out the BFGS update.
This, hm:.éver,_-_is not the usual definition of the condition number of a mateix.
Davidon's(1975) definition is much closer; he tries tO'minimisé

‘the ratio of the largest to the smallest eigenvalue; of BkBk+1'

This definition picks out the BFGS update but 2lso the DFP(Davidon(1959),
Fletcher and Powell (1963)) update. This,v:hile sugaesting the
superiority of the.DFP and BFZS updates over the rest does

not - explain the difference betuween them.  In the opinion of the author
the defintion of conditioning' should bear in mind the cfiteria
which'términate the search. For example, Section 2.1 suggests

that the segarch could be terminated when AT Mg >slfk8;fk|2/|8;fk|2
for some preassigned e, This is clearly going to be affected

by the conditioning.

The table suggests that Davidon's(1675) update and the like,
Section 3.3, if necessary optimally conditioned, could rival

the modified Newten's update (with positive definite corrections
vhen necessary). Davidon's algorithm has the complication of
requiring.a projection matrix within each iteration. Some of tHe
alternatives of Section 3.3 may prove equally as good. ‘One of
these could possibly be chosen so as to make factorisation easier
or so0 as to make direct update of the factors easier. There

is more freedom than the Broyden(19€7) family kecause,not only

is there.a free parameter, the choicecfthe second conjugate set{wkg
is also free. (If side evaluations are used to generate the second
set the algorithm will have the same number of function calls’

as Mewton's algorithm when difference approximations to the second

derivative are made.) In any event this class of algorithms should

nrove of current interest.
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APPEND 1X

The algorithms compared in the Table, page 45, are referred to

on the following pages of text:

Nthon 15, 16, 18, 20, 21, 23, 4o, 43, #h, Lé

Steepesf descent lé, 41, h2,'hh

DFP(Davidon(1959), Fletcher and Powell(1063)) 25, Li, Lé
Barnes {(1965) 20, 49

Broyden(1965) 22, 2k

S5R1 Syminetric rank one (Davidon 1283) 22, 24, 25, 38, 39,'43
Powell (1970) 22

BFGS (Broyden(1970), Fletcher (1970), Goldfarb(1970) and Shanno(1970))
25, 4b, L6 '

Davidon{1375) 26, 27, 37, 38, 39, 43, L6

Note the Huang family contains the Broyden family which contains

the BFGS and DFG algorithms. These families of algorithms are referrad .
to on the following pages:

Broyden (1967) 23, 25, 3G, 41, 43, 46

Huang(1970) 5, 25; 3"5 32| 361 i‘3
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