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ABSTRACT

We describe the construction of the Veneziano model for strong
interaction scattering amplitudes and its generalisation to multi-

particle production processes, and examine some of its properties.

In chapter one we introduce the ideas which form the input to
the Veneziano model. In chapter two we study how they may all be
simultaneously realised in a_compact form and how we may extend the
model to incorporate multiparticle production processes. We also
indicate in this chapter how the model may be used in experimental

applications, and what difficulties the simple model faces.

In chapter three we examine how we may incorporate all the
terms of the complete Veneziano expression into one term, provided

certain trajectory constraints are satisfied.

In chapter four we study an alternative five-point amplitude
having a different structure to the conventional tree graph. In
chapter five we extend this amplitude to the case with an arbitrary

number of external lines.



1.

CHAPTER I

INTRODUCTION

The S-matrix approach to the study of elementary particle
theory was first proposed by Heisenberg (l). The guiding idea under-
lying it is that one should deal only wiéh'quantities that, as well as
describing our microscopic system, are also directly measurable.
Scattering probability amplitudes are such gquantities. More
recently this approach has been-reconsidered and emphasized by several

people, notably Chew (2), in the 'bootstrap! programme.

We review briefly the fundamental general assumptions underlying

the present S-matrix theory:

(i) Unitarity: this is the statement of the conservation of
probability. As probability is the square modulus of the amplitude,

unitarity turns out to be a non-linear condition.

(ii) Analyticity: +this is the mathematical expression for
causality. It is mainly used in the form of dispersion relations,
which hold in the classical theory of light dispersion as a conseguence

of a precise time-relation between cause and effect.

(iii) Crossing: this is a purely relativistic property that

connects two different processes obtained one from the other, by



interchange of one initial and one final particle of the process.

Figure 1 shows two processes connected through crossing.

k= QupsV <o tx(pieps) >0

Figure 1. Crossing. The two scattering processes (a) and (b) are
described by the same scattering amplitude A(s,t) in

different regions of the (s,t) plane.

In addition to these fundamental assumptions, there are further
constraints which we may impose on our scattering amplitudes. We
recall some of the main features of the applications of Regge-pole

theory.

The Regge—pole approach to strong interactions has been
developed from analogy with potential scattering and has led to the
well-known asymptotic formula for the scattering amplitude A(s,t) at

large energy s and fixed momentum transfer t.

Sa(t)[e—inaFt) £ 11

A(s,t) = B(t) (1.1)

sin ma(t)



where a(t) and B(t) are the Regge trajectory and residue function

respectively, and the intercepts

a(tn) = n (1.2)

give the values of the masses m, = ~[fn of the particles exchanged
in the t-channel. In this way the Regge model gives rise to a
very important connection between the s-channel asymptotic

behaviour and the t-channel resonances.

In the early stages of Regge theory, in analogy with potential

scattering, the following features were apparent:

(i) The Regge formula (l.1) had no direct relation with

resonances in the s- and u-channels.

(ii) It was impossible to have reasonable crossing properties

except in a very artificial way.

(iii) Trajectories reached a certain value of J and then
started to decrease. This was due to the fact that in a two-body
problem with short-range potential, the centrifugal barrier does not

allow large J resonances to exist.

In recent years Regge theory has grown further and further away
from its potential scattering origin. The changes in approach have

been so great that it is now conceivable to think about representations



in which resonances and asymptotic behaviour are taken into account

simultaneously in a crossing symmetric way.

First of all it was realised, on the basis of both theoretical’
and experimental indications, that in elementary particle physics
the trajectories could have a completely different shape from that
suggested by potential scattering, and be regularly increasing with
enefgy in a large energy range. The extreme idealisation of this
point of view is provided by straight-line trajectories, a(t) = a+bt,
which interpolate an infinite number of equally spaced resonances
of zero width. We may illustrate this last point by writing a
dispersion relation for the trajéctory function «, If o increases
linearly, as above, then the dispersion relation will require two

subtractions and may be written as, (é),
1
= + = 1 A S .
a(t) at + b+ - /‘dt A (1.3)

From equation 1.3 it can be séen that the.condition for
linearity is that Im @ be small. It is a well known result in
Regge.theory that the width of the resonance is préportional to Ima
so that a necessary and sufficient condition. for the resonances to be
narrow 1s that the trajectory be approximately linear. The present

experimental evidence indicates that this is so.

We may note here that in the zero width approximation, the



unitarity condition will be violated, since the scattering amplitude
becomes arbitrariiy large near a pole and thus gives eventually a

probability greater than one.

There is also considerable theoretical'evidenqe for indefinitely
rising trajectories;- as pointed out by Mandelstam (&),this could be
connected with the essential many body nature of elementary particle
physics. With increasing t, more and more channels open and the
appearance of new thresholds compensates the decrease (due to

centrifugal barrier) of the two-body part of a(t).

A second important new feature has come from the study of
analyticity at t = O togethgr with the Lorentz transformation
properties of Regge poles. These new requirements have led to the
prediction that Regge trajectories are members of large families (5).
For example, each trajectory a(t) must be accompanied by an infinite
set of daughters whose values at t = O are a(0) - n. The possible
intercepts of these daughters with integer values of J lead to extra
particles, so that the elementary particle spectrum in this

enlarged Regge-Lorentz scheme becomes more rich and complicated.

The analytic properties of scattering amplitudes coupled with
their asymptotic behaviour have been further exploited in the form of
finite energy sum rules (6). They were originally proposed by
Igi (7) in 1962, but their general power has only been realised more

recently (8, 9, 10, 11, 12).



For concreteness, we consider N scattering, where the s- and
u-channel processes are the same, Keeping t fixed, it is convenient
to replace s by a variable with simple symmetiry properties under

5 e U. The usual choice is the variable

v = 2238 (1.14)

with m the nucleon mass. We consider an amplitude that is anti-
symmetric under the crossing s €+ u..
F(v) = -F*(-v) (1.5)

and that satisfies the fixed t dispersion relation

S Im F(o')dv
F(o) = [ (1.6)
0

a |y

v'e -

The integration is defined over the right-hand cut in s and includes
the pole term, even if it occurs at negative v. As t is fixed, we

show only the variable v of F.
The following 7nlN amplitudes are antisymmetric under s ¢« u:
- - + +
Al( ), DB( ), -DAI( ), B( ) (1.7)

where the superscripts (%) denote the linear combinations of the
I = % and I = %- amplitudes for which the isospin crossing matrix is

diagonal,



() %F(1/2)+%F.(3/2)
(<) _ 1_(2) 1_(32)
F = BF‘ 3F (1.8)

A' is defined by

A' = A+ ———— . mB (1.9)
m® - ¢

where A and B are the invariant amplitudes of mN scattering, free of
kinematic singularities and constraints. A' and B are usually referred

to as the helicity-non-flip and helicity-flip amplitudes respectively.

At high energies we assume that the amplitudes F(v) can be

represented by a sum of Regge-pole contributions, each of the form

Be) (11 - e (E) 2]

(1.10)
r'(1 + a(t)) sin na(t)

If the leading Regge term has ¢ < =1, then it will obey the super-

convergence relation
[o0]
/P Im F(v)do = 0 (1.11)
0

However, suppose that there are contributing Regge poles with «
greater than -1. If we subtract these contributions from F then the

resulting amplitude will satisfy the superconvergence relation



[ [ Im F(v) - Q.Z_l P—f—i—%—é—) ] v =0 (1.12)

Both terms on the left hand side diverge if evaluated separately.

To write the relation in a convergent form suitablg for practical
applications, we therefore cut the integration off at some v = N,
assumed large enough so that the Regge representation (1.10) is
valid for v > N, and express the high energy behaviour by the Regge
terms whose o is below —1..

N

Of I:Im F(v) - 2 1 __—P(l iiai) u:i ] v

o, >-
1

(1.13)

Performing the integration, we obtain the following finite energy
sum rule,

N o

8, = %[ Im F(v)dvo = Z N (1.14)

o ail o (1+a)l(1 + a)

We observe that all the Regge terms enter the sum rule in the same

form, regardless of whether a is above or below -1 .



The generalisation to sum rules for higher moments is straight-

forward. For even integer n, we obtain

N o

s = X [un Im F(v)dv =2 i (1.15)

noootl A (1+a+n)l(l+a)

Finite energy sum rules can be similarly derived for symmetric functions;
however, the above derivation only gives finite energy sum rules for
even (odd) integer n for the antisymmetric (symmetric) part of the
physiéal émplitude. Sum rules may also be-derived for moments

07 F(v) where 7 is not integral. These so-called continuous moment

sum rules involve in general, both the real and imaginary parts of the

amplitude (13).

The physical content of eguation a.lh)is nothing more than just

the énalytic properties F(v) and its assumed asymptotic behaviour.

The important feature is that these properties have been expressed in

a manner particularly convenient for phenomenological exploitation.

The left-hand side is an integral over the "low-energy region from O up
to the energy N, while the right-hand side is expressed in terms of
those parameters that characterise the amplitude for high-energies,
i.e« V>N Equation 1.14 can therefore be regarded as a consistency
relation connecting scattering at high- and low-energies imposed by

analyticity, thus providing a new form of bootstrap.
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The applications of finite energy sum rules to phenomenological

analyses can be divided into three types, differing only by emphasis:

() wusing low energy data to predict high energy parameters,

such as Regge intercepts and residue functions;

(b) resolving ambiguities in the low energy region by means

of high energy data;

(¢) making simultaneous fits of high and low energy data in

a manner consistent with analyticity.

Obviously, since high energy data are in general less accurate than
those at lower energies, (a) and (c) above far outweight (b) in

importance.

We consider in particular mN charge exchange, T p — 7on (11).

This process is described solely by the mN amplitudes A' (=) and B(').

(0]

At high energies we assume that the m p —» 7w n amplitudes are

dominated by p Regge pole exchange. We may now write our finite

(=)

energy sum rules for A'(_) and VB S, and S as:
N | ot
[Im 1) aw = 8 (1.16)
A _ (1+ )T (1+ ay)
N ) %ot
[Im oB(™ (v)av = B, (1.17)
O (2+ap) (1+ap) b
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The usefulness and accuracy of the finite energy sum rules
depend mainly on the available data. A particularly favourable case
is the sum rule at t = O, where by means of the optical theorem, the
imaginary part of the amplitude is simply related to the total cross-
section. With the accurate measurements of total cross-sections already
available, one can make very accurate predictions of Regge parameters

att-—-Oo

To evaluate the left-hand side of these sum rules for t £ O,
phase shift analyses are used, which for 7N scattering are reliable
up to Op, ~ 1.13 BeV. This is usually takep as the upper limit of
integration N. Concerning the choice of N, we note that in the case
t = 0, where one uses the known total cross-—sections, one should choose
N at that energy where the 'wiggles' become smaller than the

systematic error. This occurs at around DL = 4.0 BeV.

Using the results of phase shift analysis, Dolen, Horn and
Schmid (11) were able to predict many of the high energy features of

the A'(—) and B(_) amplitudes of nlN charge exchange, for example;

: N . (-)
(i) the spin-flip amplitude vB is larger than the non-flip
amplitude A'<_) by an order of magnitude at t = O. This explains

the near forward peak in mN charge exchange.

(ii) B(—) has a zero near t = -0.5 BeV=. This explains the so-

called 'wrong-signature nonsense' dip in %% for mN charge exchange.
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(iii) 1In an effective one-pole model, the p maés is predicted,

and a trajectory a, which is 0.1 to 0.2 lower than the one

ff
measured at high energies.

Obviously sum rules are not limited to mN scattering or the
p-pole alone. Such sum rules can be derived for any assumed
asymptotic behaviour, such as sums of Regge poles, or even Regge cuts.
The sum rules derived in each case will afford a means of checking
phenomenologically whether the assumed high-energy behaviour is

consistent with the low—energy scattering data.

However, based on only two theoretical concepts, namely
analyticity and asymptotic behaviour, finite energy sum rules, being
so general, have low predictive power, their use being restricted to
that of a phenomenological tool for data analysis. Their use is

greatly strengthened when supplemented by the following assumptions;

1. Down to fairly low energies (~2 GeV/c), scattering
amplitudes are already well approximated by the exchange of a few

Regge poles.

2. The imaginary part of a scattering amplitude is dominated

entirely by direct channel resonances.

If we now consider again equations (1.16) and (1.17), taking into

account our new assumptions, we see that on the right we have the

p-exchange amplitude and on the left we assume that Im A'(-) and
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Im B(-) are dominated by the direct channel resonances which occur
in 7N scattering. Equations (1.16) and (1.17) then become a
relation between the masses and widths of nucleonic resonances and

the Regge parameters o and B of p-exchange.

The relation between resonances in the direct channel and the
exchanged Regge pole 1s of great theoretical significance since the
Regge poles themselves are supposed to be connected to resonances
in the exchange channels. This significance is best appreciated in
reactions such as nm — 7nn when the direct and exchange channels
are identical. Equation (1.14) then becomes a consistency
requirement involving the p-trajectory on both sides, which can be
used to restrict the trajectory parameters. This is then the so-

called finite energy sum rule bootstrap.

Further consequences of finite energy sum rules plus the
assumptions (1) and (2) may be deduced. Analyticity implies in
addition further sum rules for various moments of the amplitude, as
we have seen. In each case, the contribution of resonances on the
left must add in such a way as to build up the Regge exchange on
the right. Now the higher moment sum rules will emphasise the
higher mass resonances. The only way for all the sum rules to be
satisfied will be to have the integrand itself approximately equal

to the Regge amplitude.

Clearly, this 'duality' (14), or equivalence between the direct

channel resonances and the Regge ﬁole exchange should not be taken
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too literally, at least in the low energy region where the resonance
amplitude shows large fluctuations as a function of the energy. It
is supposed to hold only in the average sense when the resonance
amplitude is integrated over a small (~ 1 Gev) interval. It is this
'semi-local average! over the resonanée contribution which is supposed

to be approximately equal to the Regge amplitude.

A demonstration of this surprising fact has been given by Schmid
(lg) . He took the Regge parameters as determined from fits at high
energy to extrapolate the p-exchange amplitude in =N scattering down
to energies ~ 2 GeV. Then, performing a partial wave analysis in
this, he obtained for each partial wave a loop on the Argand diagram
very similar to those obtained by phase-shift analysis as evidence for
nucleon resonances. Moreover, these 'pseudo-resonances! were shown
to lie approximately on a linear rising trajectory. Indeed, on
closer examination it was found that such a behaviour of partial wave
phases is an almost automatic consequence of the Regge form of the

amplitude, for an exchanged trajectory with finite slope (12).

At this point, we note that one notable exception to the
assumptions (1) and (2) above is the Pomeranchuk trajectory which
cannot be considered dual to resonances in the sense described
above. It is at present unclear how the Pomeron will fit into any

duality scheme. However, as a first approximation, we may assume
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that the Pomeron contribution is additive to the dual part of the

. . . - +
amplitude. We write for the full amplitude A ADual APomeron B
where ADual has all the prescribed duality properties. In all

that follows we assume that we are dealing with the dual part of the

ampli tude.

We may thus see that as a result of both theoretical and
phenomenological studies, especially those based on finite energy
sum rules and duality described above, we now have quite a good
knowledge of the properties possessed by hadronic two-body scattering
amplitudes. A simple closed expression, incorporating all these
constraints, and providing a framework in which such loosely defined
terms as duality can be given a clearer meaning, has been given by

Veneziano (16). We now proceed to describe this representation.
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CHAPTER II
THE VENEZIANO MODEL

2.1 The four-point amplitude.

We have indicated in our introductory chapter the properties
which we expect our scattering amplitudes to satisfy, and have
summarised the reasons for their assumption. These properties may

be conveniently summarised as follows:

(1) analyticity,

(2) crossing symmetry,

(3) Regge asymptotic behaviour,

(h) the presence of daughters,

(5) resonances on linearly rising trajectories,

(6) 'duality® .

The Veneziano amplitude (16) is a particular example that satisfies
all these properties. It is thus a good theoretical 1aborétory in

which to study hadron collision amplitudes.

For simplicity we consider a system with only one family of
neutral bosons, where all particles lie on the same Regge trajectory
(or on its daughters), the lowest member of which has spin-parity
JP =0". Our trajectory thus has a negative intercept (assuming a

positive slope). We consider first the four-point amplitude
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describing the process
ot + 0" » o" + 0" (2.1)

The amplitude is given as a sum of three terms, each corresponding

to a particular permutation of the four external lines, i.e.
Te = V(1:2,5,4) + V(1,2,,-|-,3) + V(1:3:2;h‘) (202)

(see figure 2.1). Veneziano (16) gave for V(1,2,3,4t) the form:

v(1,2,3,4) = Ba(-1 - a5, -1 = 0p3) , (2.3)
where G, = Ggg = oyt al s,
(2.k4)
_ 2
and s;, = (p, + 1)
1
and B,(x,y) = /\ qu v v (2.5a)
5 _ )

r(i1+x) r'(1+y)

or equivalently B, (x,¥)

(2.5b)
r(2+x+y)

the variables u and v in (2.5a) being subject to the constraint
v = 1-u (2.6)

The other terms in (2.2) are readily obtained by a permutation of

indices. We refer to the variables u and v in (2.5a) as being
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conjugate to the variables x and y. The properties of the amplitude

(2.3) are well known. We review them briefly.

(i) The beta function defined in (2.5) is symmetric in x and y,
which by (2.3) and (2.4) implies that V(1,2,5,h) is invariant under

a cyclic ﬁermutatioﬁ Or an inversion in érdering.of the external lines.
Thus,

V(1)2)3)}+) = V(E,B,’-l-,l) = V("":B:eyl) (2-7)

In what follows we shall regard all orderings related either by cyclic
permutations or inversions to be equivalent. The three terms in
(2.2) correspond to the three non-equivalent orderings of the
éxternal lines. The invariant properties (2.7) of B4 thus imply

that the amplitude (2.2) is completely crossing symmetric.

(ii) The function B4 is analytic apart from a sequence of poles at
ﬁegative intergers of x (hence also y by symmetry). The poles in x
occur in the integration region near u = 0, and can best be studied by
expanding the integrand in (2.5a) in a Taylor series about u = 0.

Integrating the series term by term one sees that the residue at

x=-f -1 is given by
1 - at(—u)?
Res {34(}(,3[)} = *[ —_— :l (2.8)
X=-4-1 . 33 du

u=0

This is clearly a polynomial of degree £ in y. Hence the pole must
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represent some particle with maximum spin £ . However, the
polynomial being in general not identical to the Legendre polynomials
Pz(y), there will also be components of lower spin. These are the

daughter states, which are degenerate with the parent states.

(iii) There are no coincident poles in x and y.. These double poies
would only occur when both u and v are zero in the integrand (2.5a).
Such unwanted features are prevented by the constraints of duality

imposed on u and v, i.e. v = l-u (2.6).

(iv) The asymptotic behaviour of our amplitude (2.2) may be readily
established. Because of symmetry, we need only show this for one
channel, say s;, —> ® for fixed s,5 » We must be careful in taking
this limit as the amplitude has a sequence of poles along the real
S, axis, so that the limit s,, = = along the real axis cannot
strictly exist. We therefore take the limit of 815 approaching o
along a ray at an infinitesimal angle to the real axis. We need
only consider the first and third terms in (2.2), as the second term
v(1,2,4,3) vanishes exponentially as s,, = « . Using the gamma
function representation (2.5b), and the standard properties of the
gamma, function and taking fhe limit s,, = « as defined above, we
obtain the result:

-i Mg

g (1+e . ] Uog

(2.9)

(o' s

H
»
13

- . 12)
< S5, = I'(oyg) sin Ta,g

Sog fixed
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This is the usual Regge expression, with the appropriate signature

factor.

Having now proved the Regge behaviour and also the existence
of resonance poles in the amplitude, duality becomes an automatic
consequence, since the same function has been shown explicitly to
contain both the direct channel resonance poles and the crossed channel

Regge exchange amplitude,

Thus all the properties (1,2,...6) listed at the beginning of
this chapter are satisfied by the Veneziano amplitude given by

equations (2.2) - (2.6).

We note here that each of the terms in the complete Veneziano
expression (2.2) may be expressed as a summation over the poles in

either of the two dual variables concerned, thus

(2.10)

S ®n (s53) cp (s52)
V(1,2,3,k) = Z = Z

n S12 ~ (Slz)n n a3 T (323 n

If we consider an amplitude with only s- and t-channel resonances,
for example =¥n~ - w'n” , then the Veneziano expression will reduce
to a single term V(s,t), (= V(1,2,3,4) in figure 1), and allows the
simplest interpretation of duality in terms of resonances only. It
leads to a complete expansion of the amplitude either in terms of the

resonances exchanged in the s-channel, or equivalently in terms of

t-channel resonances.
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2.2 Interpretation via quark dvality diagrams.

One of the most important steps in the study of the Veneziano
model wasits interpretation via legal quark duality diagrams (17, 18).
These diagrams exhibit in a simple visual form the duality between
the s- and t-channel descriptions of strong interaction scattering
amplitudes and the assumption that in every channel the scattering
proceeds via non-exotic resonances. By non-exotic resonances, we
mean here mesons which do not belong to SU(3) singlets or octets and
baryons which do not belong to SU(3) singlets, octets, or decuplets,
i.e. those resonances outside the naive quark model, for example

(q@)Y with N # 1.

We shall assume that all the incoming and outgoing particles
as well as the poles in all channels are not exotic and may therefore be
mathematically represented by three—quark or quark-antiquark

combinations. The rules for drawing a legal diagram are very simple:

1. There are three types of lines, corresponding to the p, n, and

A quarks., Lines do not change their identity.

2, Every external baryon is represented by three lines running

in the same direction.

%. Every external meson is represented by two lines running in

opposite directions.



L. The two ends of a single line cannot belong to the same

exbternal particle.

5. In any B = 1 channel (s, t, or u) it is possible to "cut"
the diagram into two by cutting only three quark lines (and not
hg + a, etc.). Similarly in any mesonic channel we should be able

to split the diagram by cutting only two lines (and not 2q + 2q, etc. ).
The physical assumptions involved are the following:

(a) All baryons are in the 1, 8, or 10 SU(3) multiplets and

can be mathematically described as three—quark structures.

(b) All mesons are quark-antiquark structures in the 1 or 8

SU(3) multiplets.

(c) The scattering amplitude in any channel is givep by a sum
of single particle states, It is of course the alternative
expansion of the functions B4 given by equation (2.5), in terms of
an infinite number of poles in one or other of the dual variables

which characterises duality.

The diagrams describing forward meson-meson scattering (or at
least all the independent ones) are shown in figure 2.2a. Diagrams
describing forward and backward meson-baryon scattering are shown in
figures 2.2b and c, respectively. The duvality property 1s clearly
demonstrated since the diagrams can be viewed either as a sum of

single particle states in one channel or as a sum of such terms in the
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other channel. It is clear from the diagrams that in meson-meson
and meson-baryon scattering there is at least one self-consistent set
of amplitudes which satisfy duality and resonance dominance in the

s- and t-channels. On the other hand, figure 2.2d demonstrates

that in baryon - antibaryon scattering there is no way of describing
the amplitude by a sum of non-exotic mesons in both the s- and t-
channels. At least one of these channels must have (2q + 23)
intermediate states contrary to the basic rules. The inconsistency
between the duality requirement and the resonance dominance
assumption in baryon-antibaryon scattering is not a new result (12),

but here it is deduced in a trivial way from the simple diagrams.

These diagrams enable us to make a number of experimental
predictions. If a scattering amplitude with a two-particle final
state is completely explained by a sum of direct channel resonances,
its imaginary part at a given energy may be approximated by the
contributions of the resonances in the neighbourhood of that energy.
The real part of the amplitude at the same energy will not be
described in terﬁs of nearby resonances. The reason for this
distinction is, of course, the fact that the imaginary part of a
resonant amplitude is large around the resonance energy, while the
main influence of a resonance on the real part of the amplitude is
spread over a wider energy range and actually vanishes at the

. -+ .
resonance energy. If a process such as elastic K'p scattering does



2k,

not exhibit any s-channel resonances, only the imaginary part of its
forward amplitude will vanish (except for the Pomeranchuk term).

The real part of the K+p ampliéude will not vanish and will have
contributions arising from resonances occurring in the u-channel -
those that appear in K p scattering. Only if both the s- and u-
channels of such a process do not show any resonances will the real
part of the amplitude also vanish in the resonance-dominance approxi-
mation. We may thus see that if a certain process cannot be
described by the duality diagrams, only the imaginary part of its
amplitude is predicted to vanish. The real part may be fed by the
u-channel process, and only when the latter also corresponds to an
illegal diagram, both the real and imaginary part of the amplitude

will vanish (again, except for the Pomeranchuk term).

All predictions that can be made, are based on searching for

diagrams which cannot be described by a legal diagram, for example:
1. All processes of the form
KB - =B';5y =B -* K°B'; K'B -» KOB',
where B, B! are any one-exotic baryons, cannot be répresented by legal

diagrams and hence are predicted to have purely real amplitudes at

small t values. Examples of the above types are:

Kp- 72 772° > K%; X'n- K% .
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One way of testing the above predictions is to measure the
polarisation of the final particles. A purely real amplitude

leads to zero polarisation. However, such tests are especially
inadequate since a negligible imaginary part (~5% of the total cross-

section) can lead to an appreciable polarisation (~20%).

+
2. The transitions m —¢ are not allowed by the diagrams.

Hence o(nN — o¢N) =0, o(mN - ¢A) =0, etc. This is in good
agreement with experiment, as the production of ¢ mesons in =N

scattering is known to be rare (20).

On the basis of these diagrams, many other predictions can be
made, simply by searching for processes which cannot be described by
a legal diagram. However, due to the difficulty of separating the
real and imaginafy parts of most scattering amplitudes, it is
extremely hard to test many of the predictions. The ones that can
easily be tested, for example (2) above, agree with experiment, but
can also be derived using various combinations of assumptions, such
as SU(3) invariance, universality, additivity of single-quark
amplifudes, and cannot be considered as crucial tests of the basic

diagram rules.

The assumptions involved in our basic diagram rules are
stronger than the requirement that the exotic SU(3) amplitudes vanish

in all channels. What we assume in addition is that (4q + q) or
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(2q + 2q) intermediate states are illegal even if they happen to

belong to a singlet or an octet.

We now examine the idea of exchange degeneracy which
essentially stems from the idea of duality inﬁroduced in Chapter I.
Consider, for example, the charge-exchange process Kop - K'n. Now
it is impossible to draw any legal diagram for this process, the
channel being exotic, and indeed no resonances are known to exist in
this channel, implying that the imaginary part of the amplitude
vanishes. Duality suggests that the resonance contributions and the
Regge exchanges are essentially the same. From the discussion of

finite energy sum rules given earlier, we see that

N N
[ Im F dvo = [ Im F do (2.11)
res Regge
0 0 ’
ifImF =ImF foro>Nand mF =Im F for © < N. Thus
Regge Res
we require that Im FRegge = 0. This is readily achieved if the two

t-channel trajectories p and A,, of opposite signature, satisfy
wo(t) = o (£),  By(t) = -8, (t) (2.12)

and if there is a similar relation between the u-channel Yge and Yi*
trajectories. The contributions of the exchange-degenerate partners
to Im F then cancel. The mesons and also the Y¥ resonances appear

consistent with these requirements (see ref. 1k).
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Difficulties arise when we consider processes for which
Pomeranchon exchange is allowed, as we indicated in Chapter I. It
is clear from the positivity of cross-sections, that there is no
trajectory which is exchange degenerate with the Pomeranchon. Thus,
for example, the exotic K'p — K'p channel will have a regular
Pomeranchon contribution, whereas the absence of resonances implies
that the K'p amplitude should be purely real. To overcome this
problem, Harari (gl) suggested that the Pomeranchon should not
contribute to thé direct channel resonance, but instead its contribution
should be associated with the non-resonating background. The
Pomeranchon is therefore excluded from the finite energy sum rule
bootstrap and its contribution to an elastic amplitude may be regarded
as the cumulative effect of all the inelastic channels. Such a
separation between the Pomeranchon and the other Regge trajectories
is possible because the finite energy sum rule bootstrap involves only
a linear constraint. The situation obviously becomes much more
complicated if one considers the non-linear relationships required

by unitarity.

2.3 Incorporation of isospin.

We may use this interpretation of the Veneziano model via
quark duality diagrams to incorporate isospin. We follow the treat-

ment of Chan and Paton (gg). As we have introduced it in section 2.1,
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the Veneziano amplitude is limited to only neutral mesons. Chan
and Paton have proposed a very simple general method for

incorporating isospin into the model, preserving all the desirable
properties, and giving no unwanted states of high isospin, avoiding

the presence of exotic resonances.,

The Veneziano amplitude for the four-point function for

spinless neutral particles takes the form (2;2),

T, = V(1,2,3,k) + V(1,2,4,3) +V(1,3,2,4) (2.2)

each term corresponding to a distinct non-equivalent ordering of
the particles, and itself invariant under any cyclic permutation of

the external lines.

We wish to introduce isospin into this four-point amplitude in
a way which will ensure (i) cyclic symmetry for identical external
particles; this guarantées crossing symmetry, and (ii) absence of
poles with isospin larger than one. These poles wouid correspond
to exotic resonances. This is dictated by experimental evidence.
The solution takes the form of simple isospin factors multiplying
the terms in the sum, (2.2), with each term and hence each cyclic
ordering of the externél lines, corresponding to a different isospin
factor. In terms of the duality diagrams, we associate each incoming
particle with the corresponding isospin BU(2)) matrix, and the quark

lines linking these particles with SU(2) contractions, each diagram
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representing an SU(2) trace. Each trace is then multiplied by the
appropriate Veneziano term exhibiting dual poles in the Mandelstam

variables concerned. We distinguish the following cases:

(a) Pions (I = 1) only as external lines. Give each external
particle i the isospin label a; (aj = 1,2,3) and let 7, (a = 1,2,3)
denote the 2 X 2 Pauli matrices, where as usual m, = " + n7),

o

T, = é%(n+ -m), Mg = T . Then the desired isospin factor for

the term corresponding to the ordering (1 2 3 4) is simply the trace

1
ETT(Tal Ta2 Tas Ta4) (2°13)

The property (i) follows immediately from the properties of traces.
The property (ii) follows since the product of any number of 2 X 2
matrices is again a 2 X 2 matrix and hence can represent only a

combination of isospin O and isospin 1.

This four-point amplitude incorporating isospin has also been

given by Lovelace (23).

As an immediate consequence of the isospin factor (2.15), we
obtain the generalised exchange degeneracy between the isospin zero
and one trajectories coupled to two pions (the p-f degeneracy).

This follows simply from the identity

(2.14)

T = + i
a Tb 6ab J'eabx Tx
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which implies that any two-body pole occurs in both isospin states.
However, when the summation in (2.2) is performed, the I = O and
I = 1 poles will occur on opposite éignature trajectories because

of the opposite symmetry in the two terms of (2.14) under the

interchange of a and b.

(b) Pions (I = 1) and kaons (I = 2 ) as external lines. The
rules in this case are most conveniéntiy sfated by introducing the
3 X 3 A matrices of SU(}). We use these matrices, however, only
as a device to ensure the correct-isospin structure without making
any SU(3) assumptions of mass degeneracy or coupling constant
relatiéns. Two each external line we associate a A-matrix as

follows
T, O 0 K 0O O
a _
0O O 0O 0 K O

Then the isospin factor corresponding to the ordering (1 2 3 4) is

simply

a Ny Ay ) (2.16)

Tr(dg A
B § 2 3 4

Equation (2.1L4) obviously satisfies conditions (i) and (ii) above,

and in addition forbids poles with strangeness greater than one.

Taking particular combinations of external particles will imply

further exchange degeneracies. For example, in the case where
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K

1) K_, m., m_ are the external lines. The isospin factors for

2? '3 4

the orderings (1 2 3 4) and (1 2 4 3) are given by (2.16) as

K, K, T T and K, Kz Ty Ty 2 but zero for the ordering

3 4 4 78 o

(1 32 L4)., The absence of a Veneziano term corresponding to the
ordering (1 3 2 4) implies exchange degeneracy of the I = &

trajectories (k%(890) and K*(1k0O) ) .

2.4 Satellite terms.

We observe here that a term like

F(m— alz)F(n - (123)

vil23k4) = (2.17)

I(m+n+p- (.112' %)
has the same basic properties as the expfession given in equation (2.5).
The first poles appear at «;, =m and U,y = 1 instead of zero
(we will take m, n = 1) and the asymptotic behaviours correspond

respectively to

Uog~n-P %o M-P

S)o and 523. (2.18)

with n+p, (m+p) > 0; this corresponds to daughter behaviour.
Poles in s;, (s,4) will have polynomial residuesin s,q <Slz)
provided p-< 0. We are therefore at liberty to add such-térms,
called "satellite", to the initially considered solution (2.5)

without modifying any of the desired properties we require.

Satellites can be added to eliminate unwanted daughter contributions
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and in particular odd daughters (24), if we want to show trajectories
spaced by two units of spin as corrésponding to the minimum number
of trajectories. Satellites will not affect the leading high energy

behaviour directly obtained from equation (2.5).

2.5 The Lovelace amplitude for nm scattering.

We now consider the four-point amplitude of Lovelace (gé) for .
pions, incorporating isospin. We consider ntn” elastic séattering.
The amplitude should show a string of poles in both s and t channels
located on the linearly rising p and f trajectories. The ntn* u-
channel is exotic, implying exchange degeneracy of these two
trajectories and resonances in both s- and t- channels should then
be spaced by one unit of spin instead of two. We take for the nf T

amplitude

r(1- cxx(s)) r(1- ay(t))

r(1-a,(s)-a (t)

ny(s,t) = -B (2.19)

where B is a constant and x and y label the trajectories in the s-

and t-channel. Here both correspond to the p-f degenerate
trajectories. We have taken (2.19) as the simplest tentative
amplitude for nhn scattering, as opposed to more complicated terms
involving satellites. Using the isospin formulation of section (2.3),

we may now write the following amplitudes,
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A(n*n™ - ntn7) -BVpp(s,t)

A(n*n® » ntn®) = -—g(pr(s,t) + pr(t,u) - pr(u,s) )
A(n%7° 5 %% ) = -g(pr(s,t) + pr(t,u) + pr(u,s) )
(2.20)

An important point concerning equation (2.19) is that the

amplitude vanishes when

ap(s) + ap(g) = 1 (2.21)

Now we recall that Adler's self-consistency condition (22) derived
from current algebra, states that the amplitude for wnw scattering
vanishes in the limit of zero four-momentum nf one of the pions,
the remaining pions being kept on the mass-shell, In this 1limit

s=%t =u-= miz. Assuming linear trajectories, we see that (2.21)

can be identified with the Adler zero if ap(uz) = % » provided

W2 = m;!, where m. is the physical pion mass, Taking the p-mass as
764 MeV, this gives ap(o) = 0.48 which is in good agreement with the

intercept of the p-trajectory, determined empirically from Regge fits.

The Veneziano model was greatly strengthened when it was
generalised, in certain idealised cases, to multiparticle production
processes involving an arbitrary number of external lines, where all

the properties (1, ceey 6) listed at the beginning of this chapter



are consistently maintained. With these generalisations, the real
power of the Veneziano amplitude become evident, as they allow to
treat on a similar footing two-body collisions and multiparticle
reactions, for which we need a common framework before unitarity can

be fully used. We now describe this extension.

2.6, Generalisation to multiparticle production processes

This extension has been given by a number of authors
independently (26, 27, 28, 29, 30,31, %2). The treatment in this

section follows that of Chan (28, 29).

We again consider an idealised system with only bosons and
without internal symmetry. All bosons in the model belong to the
same family, 1i.e. they lie either on the parent trajectory which
contains a spinless particle, or on its daughters. The extension
of the Veneziano model to the N-point function with spinless external
particles is a straightforward generalisation of the equations (2.2) -

(2.6). In analogy to (2.2) one first writes

Ty = Zv(l, 2, ves, N) (2.22)

where the sum runs over all the non-equivalent orderings of the
external lines, there being altogether (N-1)! /2 terms. We need
consider for the moment only one such term, say that corresponding to

the ordering (1, 2, ..., N). This is expected to be invariant under
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any cyclic permutations of the external lines so that complete

crossing symmetry of (2.22) is guaranteed.

We require that V should contain poles corresponding to the
trajectory @ in all possible Mandelstam channels which can be formed
in the diagram of figure 2.3 without changing the order of the
external lines. We may enumerate these channels by means of dual
diagrams (33). To the diagram of figure 2.3 we associate an N-sided
polygon, as shown in figure 2.4, Possible Mandelstam channels for
figure 2.3 are then in one-one correspondence with diagonal lines
Joining any two vertices of the polygon. To each diagonal

P = (i,j), we associate a dynamical variable

-1-a, 3 (2.23)

Il
>
=]
"
(]
Il
|
-

where o

]
OQ

+

R

‘m-

i,J i,J
} (2.24)

+
and S. (Pi P.,

]

v t 2
17 P,)

For each P = (i,j), we introduce a variable up conjugate to Xp -

Two Mandelstam channels are said to be dual to each other if
they correspond to diagonals which intersect on the dual diagram.
This is just a generalisation of the usual concept of dvality in the
four-point function (14) between, say, the s and t channels which are

clearly dual in the sense defined above.
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Clearly dual channels cannot have coincident poles, since no
Feyrman tree diagram exists with both trajectories as internal
lines, whereas between non-dual channels, coincident poles are
possible. To ensure this, the equation (2.6) generalises to tﬁe

set of equations

u, = 1-Tug (2.25)

where P runs over all the channels dual to P. It is clear then
that two variables corresponding to duval channels cannot vanish
simultaneously. Although (2.24) represents as many equations as
there are variables, (i.e. N(N-3)/2), they are not all independent.
The whole set can be solved in terms of (N-3) independent variables.
Now, by definition, independent variables can vanish simultaneously.
They must therefore correspond to allowed coincident poles, or
equivalently to non-intersecting lines on the dual diagram,
Although in principle any set of N-3 non-dual variables can be chosen
as independent, it happens that the most convenient are those sets
corresponding to poles in a multiperipheral diagram, for example
ul,j (j = 2,35.4.,N-2) corresponding to the diagram figure 2.5, or
the associated dual diagram figure 2.6. In terms of u '. as

1,3
independent variables, the solution of (2.25) yields:

= (- "D~ )a - wf—l:q) (2.26)

P,q 1 - 1
( wb_l,q_l)( wb,q)
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where Vs = W e % opeg Y (2.27)

W, . = u = 0, by definition.

and Uy 4 1,N-1

We may illustrate this for the case N = 5. Equations (2.25) then
become
u, = 1 -1 1, - 5 u. = 1-u ‘ u .h
1,2 5,1 2,3 2,3 1,2 73,

1-u u

SR _
3,4 Y2,3 M5 0 s 35k 75,1
s g = 1 - s Yy o (2.28)
The solutions for u2;3, uB;M and uS;l in terms of u1;2 and uh;S
(= u, 5) are from equation (2.26),
2
, l--ul,2 _ 1—-uh,5
u2 3 = - ; u3,)+ = -
J — -
1= oW s L=y oW s
Us g = 1 - U oWy s (2.29)

Under a cyclic change of independent variables from Uy g (3 =25...,N-2),
. - : - R Y

3,..0,N-1), (figure 2.7), the Jacobian can

(figure 2.5), to u. . (j
2,

be written as

>
I

g = (DY (j—z > (2.30)
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where J, = I (ui .)J—l_l, i=2,3..,N-2
i<y
J = EJMJ'-';N‘]-
and Jd, = T (u _)J_l_l, i = 3,4,...,N-1
i<y 1sd : :
J = )-I-,S,...,N

(2.31)

Moreover, in terms of u | (i = 3, ceey N-1) we may express the

25

dependent variables as

(L-v  H1-v_ . )
up . = Pp,a-1 p-l,9 (2.32)
4 1 -v 1 -v
( P"‘lyq—l)_( P:q)
where Ve = u2,r u2,r+l cen u2)s (2.33)
and ug,2 = uE,N = 0 Dby definition,

which is the same as (2.26) after a cyclic permutation of the external

lines.

We may now write the generalisation of (2.5a) as

o S 1 .
By(1,2,000,N) = /' ... /P jzé au, (jﬁz > g (up)
° ° (2.34)

where the last product is taken over all the N(N-3)/2 channels.

Under a change in variables in (2.34) from u to uglj, we obtain
2 2
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from (2.30)

S 1 Yy 1 X5
BN(1,2,...,N) = Of ...O[ ji[B duz,j (3; ) g ("P)
(2.35)

with up given by (2.32). This means that BN is invariant under a

cyclic permuation of the N external lines, thus guaranteeing
complete crossing symmetry of our full amplitude (?.22). Using
the same arguments as references (26), (28) and (29), which are
similar to those for the four-point funétion we have already given,

we may show that By as given by (2.34) is analytic in x except

1,3
for simple poles at X, j = -1, -2, ... . By cyclic invariance
J .

Just proved above this is extended to Xp for all channels P,
(analyticity and duality). Moreover, because of the conditions

(2.25) there are no unwanted coincident poles.

The residue at the (Z+—1)th pole in x; 3
. 2

is given, in analogy
to (2.8) as,

L

1 d
res { Lo} - [~ —p @ | (2.36)
a =4 2! du .
lJJ 1JJ ul,j=0
! N-2 1 Xp1
where Q = /\ I du; o (-—— ) i (uP,) (2.37)
k=2 7 NJ1optd(1,))
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Since when ullj =0, us = 1 for all P dual to (1,j), the differentiation
2

in (2.3%6) can yield at most a polynomial of total degree £ in the

variables Xp 5 which are momentum transfers in the channel (1,3j).

This means of course that the pole at al j
2

= £ has maximum spin £,
giving rise to a linear trajectory. The cyclic symmetry of BN then

implies such a trajectory for all Mandelstam channels.

In the limit when x, . = (i = 2,...,N-2) at fixed values
2
of X 3 (1 = 2,.44,N-2) and
K5 = Oyoyge Xy, /%y g0 37 302,

namely the multi-Regge limit corresponding to figure 2.5 with 1 and N
as incoming particles, it has been shown by a straightforward
extension of the proof given by Bardakci and Ruegg (26) for the
Reggeisation of the five-point function that BN(l,...,N) has the

proper Regge limit

N-2 =, .
B — il (X ) 1,1'—1

N GN(X1 pre %] N o Ks""’KN—2)
i=2 ’

i,i+1

(2.38)
where the Residue G factorises (34). The asymptotic form of (2.38)
is by itself insufficient to guarantee the correct multi-Regge

behaviour of the full amplitude (2.22). For the special case of

N =5, it has been shown that of the twelve terms in (2.22), four
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have the double-Regge limit and give the signature factors as
required (35, 36), while the rest vanish exponentially as the term
v(1, 2, 4, 3) does in the four-point function. For general N, a

similar result is extremely likely.

Our general N-point amplitude thus has all the expected

properties (1, ... 6) listed in section 2.1 .

The functions BN also have the attractive property of being
consistent with the bootstrap hypothesis. Consider, for example,
the pole in B

(1,2,...,N) at « = 0. Since in our present

N 1,J
idealised system, all trajectories are identical, this pole should
represent the same spinless particle as the external particles we

started with. Bootstrap consistency would require that the residue

at the pole factorises into beta functions of lower orders, or

explicitly,
Res By (1,2,...,N) = Bj+1 (1,2,000,35 I)
2 .
X BN_j+1(I, j+l,...,N)

That this is indeed so may readily be seen from equations (2.36) and

(2.37) with £ = 0. Since, on putting u = 0 according to (2.25)

1,3
ug = 1 for all P dual to P = (l,j), one essentially cuts the N-point
tree diagram into halves corresponding exactly to the reduction in

figure (2.8).
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We may extend the bootstrap idea further. The same arguments
as we have used above would lead us to interpret the residue (2.3%6) at
al,j = 1 as the amplitude for a (j+1)-particle process in which a
particle with a 'spin-like! quanfum number £ is produced, the particle
then decaying info (N-3) sﬁinless ones. By a 'spin-like' quantum
number, we mean heré, as in the original Veneziéno model,-not a pure
spin state of angular momentum £, but a mixed state with maximum
spin £, plus a whole sequence of daughters with angular momentum
less than £. Moreover, each component with a definite spin may still
contain several levels. The question then arises whether it is con-
sistent at all to consider the pole at GP = I as representing a

finite number of single particle states, and if so, what is the

spectrum or level structure.

If a pole represents a single level only, then unitarity requires
that its residue should factorise. If it represents a finite number of
single particle states, then the residue should be expressible as the
sum of a finite number of factorised terms. A first requirement for
consistency in our present problem, therefore, would be that the
residue at @ = { be expressible as a sum of factors, where the number
of terms does not increase indefinitely with the number of external
lines. That this requirement is satisfied has been shown by Fubini

and Veneziano (37) and Bardakci and Mandelstam (38).



Because of the cyclic symmetry of the functions BN’ it is
sufficient to establish this assertion for one Mandelstam channel,

say, P = (1,j). Starting from an expression for B  first derived

N
by Bardakci and Ruegg(34)

1 ~a, -1 -l-a

1,2
BN(]-}Q; e -,N) = /; dul,z d.'l:l.l,3 see dul,N—2 . u1,2 .o .ul,N_g

-1
1,2)

-l1-a

-1
) B’h... (1-u

) ~y-2,N-1
1,N-2

-a
x (1-u 2’3(1—1.1

1,3

-2a' (p,.p )+a0+(x'
x (1-w etk :

) (L-w w20’ (py_5-py_p oo+
2,3 e N-3,N-2

1 1
—2a.p2.p5 ‘2“_(PN-A'PN-1)

“ae (1 - WN—)-I-,N—Q

X(l _W2,LL)

~20' (py- Py 1)
2" Py_1
X eee (1_W2,N—2) : s (2.40)

using the notation introduced earlier in this section, these authors

show that BN can be written in the form
1 1
BN(1,2,...,N) = [ du' f dau" o' (u',p') ¢"(u",p")

1

1,3
. 1 ? . " 1 2
X/; d'ul,j F(ul,j’ u- 5 pl s 0w, P ) ful,j.)

(2.41)
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where u' and p! refer to variables to the left of the line (1,j) in
figure é.s, naﬁely: Ukt (k' = 2,...,3-1) and p,’ (it = 1,;..,3),
while u" and p" refer to'the-variables to the right-of (1,3), namely:
Uy g (k" = j+1,...,N-2) and pi" (i" = J,e.0,N). Moreéver, they
were aﬁle to show that the fUnctién F in equation (2.41) can be

expressed in the form:

00

F o= exp[ Z -(ibj-):lan} (2.h2)

with ¢ = p (™) (2.43)
n o - )

where ¢ is a constant and P'(n) (P"(n) ) are fbur—yectors depending
only on the variables u', p' (u",”p"). Expanding F in (2.42) as

a power series in ul,j fhuslgives us the residues automatically as

a sum of factorised terms. In particular, the residue at «a =1

1,
2
is given by the terms with (ul j) , in the expansion of (2.42).
3
Clearly, the number of factors of the form (2.43) contained in such
a term depends only on the functional form of (2.42) and not on the

number of external lines. This is what we wished to prove.

Although from the arguments above one is able to show that any

pole in the model can be consistently interpreted as a superposition



hs,

of a finite number of factorised levels, the number of levels required
is extremely large. It can readily be seen that the number of
factors for a given £ is the same as the number of ways of choosing

non-negative integers f_ which satisfy the equation

k

£, + 20, + 3Lyt ...t KL F ... = L. (2.4h)

For large £, this number increases as exp aNI with a = 2ﬂ/J% .
Thus the number of levels increases exponentially with the centre of

mass energye.

We may note further, from equations (2.41) - (2.43) that the
residues at the poles are expressed as scaiar produéts of four-
dimensional tensors. This reflects the Lorentz invariance of the
present approach and explains the lack of kinematical singularities.
However, because of the minus sign of the Lorentz metric, this also
means that the time components of these tensors will in general have
negative residues, and correspond to ghost states. Fubini and
Veneziano (éz) were able to show,with the help of a Ward-like
identity inherent in the beta function,that leading'ghosts at least
are compensated by similar poles with positive residues. However,

ghosts on lower trajectories are not so compensated.

2.7 Alternative forms.

Several equivalent forms of the generalised beta function have

been suggested which are found to be useful for different purposes
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(a) Series form of Hopkinson and Plahte (30).

By expanding the integral of (2.34) in a power series in
various ways, one can obtain BN in ferms-of an infinite series of
beta functions of lower order. Such series expansions, considered
in some detail by Hopkinson and Plahte (ég) yield a practical
iterative method for the numerical evalﬁation of the beta functions.
In particular, for the five-point function of Bardakci and Ruegg (26),

(see also (39) ),

LA - -1 —®y5-1
0 ©
1-u, g1 1 - u, ~¥g4-1
“ ( ( )
1 U, s 1- U U,
-a_. -2
51
x (1 - u12u45) (2.45)

) in a binomial series, we may

by expanding the term in (1 - u U,

obtain

k 4
B5(1,...,5) = j{;(-l) <’k > B, (X545 X45 k) B4(x12+-k, Xas)
k=0 ’

(2.46)



b7,

where Zo= Xy - X, = Xy, (2.47)
and where we have written =x.. for x, . .
1J 1,J

Using the gamma function representation of B4 ,» this may be

rewritten as

B5(1,...,5) = B4(x12, x23) B4(x34, x45)

X gFa(X1ps Xg50 =25 Xyp+ Xogr Xgat Xg3 1)
(2.48)

where F(a,, a,, a b, b_;

o 1) is a standard hypergeometric series.

3; 1’

This series converges when

Re [1 + (Xlz + Xzs) + (X34 + X45) - X

s ¥ 2T Xgg ] > 1

(2.49)

i.e. when Re(xy;) 1is positive. Thus we have found a
representatioh for B5 which has a much larger range of convergence
than the integral. This series (2.48), is the starting point for
any method of calculating Bg numerically (40). This has been done,
and the programme used successfully in thé phenomenological study of

five-line processes (41, L2) .
(b) Koba-Nielsen parametrisation.

An interesting representation considered by Koba and Nielsen (ég)

is based on their deduction that each wvariable uP introduced in
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section 2.6 can be expressed as an anharmonic ratio of four out of
N-points on the unit circle, where the N points correspond to the
N external lines, such that the dvality constraints (2.25) are
automatically satisfied. We write
Z. = 2,.)(2, - Z,
- { s 70— ) (2:50)

1] Y
(Zi 2541025 = 23 4)

where the points z; are in one-one correspondence with the external
particles, This parametrisation enables us to write the term in
the N-point amplitude corresponding to the ordering of the particles
(1,2,...,N) in the form of a cyclic symmetric contour integral

Y

N

_l .
B (1,2,...,N) = ]P... /an T dz Il (z. - z,) L
N ® k=1 Fisi<ysy 9 1

(2.51)

where Zj = exp(i Gj) are N ordered points on the unit circle in

the complex z-plane such that:

0, <6, «or <O <O +2m (2.52)

The %j are defined by

g _aij -1 H i,j adjacent lines
= -_ + + . i = + = i+
Yij aikj aik akj ; J k+1=1+2
-a, L+ oo, + q - ]
1kl...kr3 1kl"'kr kl...krg kl"’kr 5
J=k,*1l=...=k +r=i+r+1 (2.53)
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Here, we have labelled a channel with the indices of all those
particles appearing in that channel. Where a term is undefined,

such as aik K j for r+2 >N-2, it is set equal to zero.
lil.r

Taking the case r 22 and j-1i =r+1 <N-3, so that each of
the a's in the last line of equation (2.53) is defined, and assuming

all trajectories are identical, linear of fhe form

1 2
a, ., . = oyt a(p, +p, +* ... t+D ) (2.5k4)
1112-.-1r ] ll 12 lr

then the kinematic conditions arising from four-momentum conservation

demand that Yij takes the simple form

YlJ = —2(1- pl . pJ (2'55)

The ordering of the points z, is the same as the ordering of

k

the particles, and z, may be thought of as representing particle k.
The differential dGS is defined by
dzr dzS dzt

de, = (2.56)
(Zs - Zr)(zt B Zs)(zt - Zr)

where Zr’ zS and zt are three arbitrary but fixed points such that:

6 <6, ,<8
r 8

L <6, +eam (2.57)

The integration in the remaining (n-3) variables is over those parts
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of the circle consistent with the constraint (2.52). Our expression
(2.51) is independent of the choice of r, s and t énd of the values

assigned to 2,5 Zg and z It may readily be shown to be exactly

£
equivalent to the Chan form, equation (2.34).

The expression (2.51) has also been given by Plahte (43). Apart
from a constant factor, it 1s equal to the formula given by Koba and
Nielsen (32). An elegant interpretation of this representation has
been given by these authors using the formalism of projective

geometry.,

The representation of the N-point amplitude given here is very
compact and manifestly crossing symmetric, and has been particularly
useful in certain aspects of the formal developments of dual theories,
for example in the problem of factorisation (4l) and in the

functional approach to dual theories (45).

2.8 An application of the multi-Veneziano amplitude.

An interesting application of the five=point function has been
given by Rubinstein, Squires and Chaichian (46) in the study of the

process (Pn) threshold annihilation into three pions.

The process was first studied by Lovelace (gé) who used the
fact that at threshold the pn system has the same quantum numbers as
the pion to relate this process to wn scattering, one of the pions

having (mass)® of 4MZ, M the nucleon mass. However, the method of
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extrapolation was arbitrary and no justification was given. A single
Veneziano nn term was used, but instead of a leading one, a satellite
without the leading trajectory was taken , so the amplitude did not
have the correct Regge behaviour. Although some of the features of
the data were predicted, particularly the dip in the centre of the
Dalitz plot of the two final n'n~ combinations, the fit was not

very satisfactory.

Rubinstein, Squires and Chaichian start from the assumption
that, when the external particles lie on leading trajectories, a
good approximation to the amplitude is provided by the leading
Veneziano terms. It is now necessary to construct physically
acceptable five-point functions. They must satisfy the following
conditions: all desired poles, leading Regge behaviour in all
channels, no spin-zero ghosts when trajectories have positive

intercepts.

These authors then demand that the relevant piece of the five-
peint function, i.e. the invariant non-flip amplitude, reduces
to the leading term in each channel when we go to a pole on a
leading trajectory. In particular, this gives the important
restriction that the amplitude does not have the nucleon pole in both
baryon channels simultaneously, since otherwise we would obtain an

incorrect =N — 7N non-flip amplitude.
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They take for that part of the amplitude which has poles in

the Nﬁ—channel, corresponding to the configuration of figure 2.9

p p p B 1 T
A = o, F(alz, -1, ag, -5, o @ - 3/2)
B p p B b B 1
+ C((I34 "%)F(alz - 1; ags - 1; (xs4“ %: (145— 1, als - ?)
S (2.58)

where ¢ is a constant and the terms not written come from non-

cyclic reordering of the external particles of figure 2.9, and

Fla,,, Gy, ¢ s1) = Bg(1l, 2, 3, 4, 5) (2.59)

o ¢4

127 72387 347 Tas?

with B, given by (2.45). o refers to either the N or the A

trajectory.

It is now necessary to evaluate A at threshold, i.e. s, = Lv2,
At this point, assuming linear trajectories of universal slope, it is a

good approximation to take afs =3= o, MM?) so that the

)
amplitude is given by the residue of the pole at a,_ = 3. This

45
immediately eliminates all terms coming from different reordering in
figure 2.9, as the only other reordering which contains the S,s Poles

are those having exotic mesons, which we assume do not exist.

Using this amplitude, a very good fit to the data is obtained,
with our one free parameter c. This may be regarded as good evidence

for the validity of using the leading five-point term.
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2.9 Difficulties of the naive model.

In spite of incorporating many desirable properties in a
simple compact form, the Veneziano model is not free from difficulties.
By far the most serious of these are (i) the.question of unitarity

and (ii) the problem of ambiguities.

(i) The model amplitude (2.34) is not unitary. This can
easily be seen since the function has only poles on the real axis,
whereas a unitary amplitude should have cuts corresponding to
thresholds of elastic and inelastic channels, while its poles,
corresponding to resonances ,should move off the real axis onto the

unphysical Riemann sheet.

Attempts to 'unitarise' the Veneziano model have been made.
On a phenomenoclogical level one may simulate the effects of
unitarity by introducing an imaginary part to the trajectory function o,
The poles of the model amplitude will then move off the real axis,
but their residues will now, in general, not be polynomials in the
momentum transfers, and the foregoing arguments will only be

approximately valid.

A further approach aims at what amounts to a complete theory
of strong interactions. The Veneziano amplitude is considered as
the Born term in a perturbation expansion in which duvality is

consistently maintained. General rules for constructing loop
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diagrams consistent with duality which correspond to the higher

terms in the perturbation series, have been given by Kikkawa, Sakita
and Virosoro (47). In order to guarantee unitarity in the sense of
perturbation theory, the internal propagators of loop diagrams should
represent a complete sum over all possible intermediate states,

while the coupling constants of the internal lines should be

identical to those occurring in the tree diagrams. A study of the
level structure and factorisation properties of tree diagrams is
therefore necessary. This was initiated by Fubini and Veneziano (37)
and Bardak¢i and Mandelstam (38), as we have discussed in section 2.6,
and extended by Fubini, Gordon and Veneziano (48) using an elegant
operator formalism. This allows one to construct all diagrams

with any number of closed loops for this idealised system. However,
such diagrams were found to be badly divergent (49). Possible cases

have recently been proposed by- Oleson (50) and by Neveu and Scherk (51).

(ii) A natural question to ask is whether our expression (2.3h4),
satisfying the properties (1,...,6) listed at the beginning of this
chapter is in any sense unique. That this is not so has been
demonstrated for the four-point amplitude by the ambiguity due to
satellite terms, discussed earlier in section 2.4. A similar
ambiguity exists in the generalised Veneziano model. One may choose
to modify the integrand in equation (2.3% by a function fN(up)' So

long as fN(uP) is cyclic invariant and well behaved in the region of
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integration, the resultant function will have the same pole structure
and asymptotic behaviour. The factorisation requirement will impose
additional constraints on fN(uP). However, considerable freedom
still remains. The problem has been investigated by Gross (52) who
found that the number of levels increases in general when satellites
are introduced, but remains finite for a wide class of functions
fﬁ(uP) Which may be used to modify the integrand in (2.34). In
other words, the consistency condition concerning the number of
daughter levels removes but little of the large ambiguity due to

satellites.

In addition to the above theoretical difficulties, the
idealised system which provides the framework for the Veneziano
model is over simplified and should be treated only as a theoretical
laboratory. To construct a more realistic system we should have to
take into account properties such as (a) internal symmetry,

(b) positive intercept trajectories, (c) meson trajectories with

abnormal parity, (d) baryon trajectories,

The solution to (a) to incorporate isospin has already been
discussed for the four-point function in section 2,3. The extension
to the n-point amplitude is straightforward and is given by Chan
and Paton (gg). The solution again takes the form of simple
isospin factors multiplying the terms in the summation (equation (2.22))

with each term and hence each cyclic ordering of the external lines,
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corresponding to a different isospin factor. As well as maintaining
the conditions (i) and (ii) given in section 2.3, we also wish to

ensure factorisation so as to preserve bootstrap consistency.

For the case of pions (I = 1) only as external lines, the
desired isospin factor for the term corresponding to the ordering
(1, 2, ..., N) is simply the trace,

1
g'rr(ra T, eee T ) (2.60)

1 8z ey

where the T's are as defined in section 2.3.

The properties (i) and (ii) follow as before. To see the

factorisation property, we note the following identity:

1 1 1
tPr(t ... T ) = [5Tr(t ... 7T )] [5Tr(" eee T )1
2 2 2

81 &N 2 By Bl N

+Z[ Tr('r 'raM 'raI)] [%Tr('ra T eee T )1

a I TMt+l - N
I

(2.61)

where Ta are again the Pauli matrices. The two terms in equation
“I
(2.61) correspond respectively to intermediate states of isospin

0 and 1.

The extension to include kaons as external lines is straight-

forward using the Gell-Mann X\ matrices. The isospin factor
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corresponding to the ordering (1,...,N) is then simply

Tr(X A ..o A ) (2.62)
8, 8, N

One might attempt a similar solution for the problems (v) and (c),
say, for example, by taking traces of y-matrices instead of T and A,
Unfortunately this leads to unphysical solutions with parity.
degenerate doublets and ghost states. However, if we regard our
model as only the Born term to a future unitarised theory, such
features might not be unacceptable and even necessary in a purely

mesonic system with linear trajectories and without unitarity (Qé).



Figure 2.1 Diagrams corresponding to the three terms in the

sumation (2.2). We may equlvalently write

T = V{s,t) + V(u,s) + V(t,u).

/an—Jr\ | "“;T—::\ ’L/"‘:T“l

Figure 2.2a. Quark duality diagrams for forward meson-meson
scattering,
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Figure 2.2b Figure 2.2c . Figure 2,24

Quark duality diagram Quark duality diagram Tllegal guark duslity
for forward meson- for backward meson- diagram for baryon-
baryon scattering baryon scattering antibaxyon scattering

Figure 2.3 Diagram representing the term in the N-point amplitude wiich
corresponds to the ordering (1, 2, ..., N) of the external
lines



Figure 2.4 The dual diagrem asssociated with flgure 2.3.
The diagonal shown is denoted by the indices (1,3).

Figure 2.5 Diggram representing the sget of independent variables
(=4 .l
uy (3 = 253520.4N-2)
’r.]

» Y L] . 2 'y ~ Y ~

Figure 2.6 The set of variables Uy (3 = 2y00.,0-2) of
-9d

of figure 2.5, represented on the dual disgram.
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Figure 2,7 Diagram representing the sek of independent
variebles u, p {5 = Bg00egN=-1)

’

et

Figure 2.8 Disgrem illusgtrating the bootstrap consistency of
the N-polat smplitude

Figure 2,9 pn threshold annihileticn lnto three plons
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CHAPTER IIT

A CONTRACTED FORM OF THE GENERALISED

VENEZIANO AMPLITUDE

In this chapter we show how we may incorporate all the
#(N-1)! terms of the multi-Veneziano formula, (2.34), in one term,
provided certain trajectory constraints are satisfied; thus constructing
an amplitude invariant under all N! permutations of the external lines.

This work is based on a paper by Fairlie and Jones (5k).

For simplicity, we take first the four-point function.

Consider the expression

~1-a -
T /‘ x| P -x 2° ax (3.1)

— 00
We split the integration range into three parts and write

0 1

- _1- ~1- 1-
T, = /\(x) “12 (x-1) “es dx + /\ (x) “12 (1-x) "0 dx
1 0
S _1-
+ /ﬁ (-x) “12 (1-x) “20 dx (3.2)

In the first term we change the integration variable from x to 1/x,

X
x-1

and in the third to . We may now write
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1 1
0 o0y ~a, -1 ‘“12“1 —azs—l
Ta =.[ X (1-x) dx+/\x (1-x) dx
0 0
, —o, -1 &y otlsg
+[ X (1-x) dx (343)
0

We now write the complete Veneziano four-point amplitude (2.2 - 2.6)

as
1 1
~o -1 -~ -1 -0, -1 —a -1
T, = X (1-x) dx + X (1-x) dx
¢} 0]
1
—a, -1 o -1
13
+f x (1-x) =% ax (3.4)
0]

We see that the two expressions (3.3) and (3.4) are-identical,

provided the trajectory constraint

o, + o +o._.+1 = 0 (3.5)

is satisfied.

Thus the expression (3.1) represents the complete Veneziano
four-point function, invariant under all 2l permutations of the
external lines, providing the trajectory constraint (3.5) is satisfied.
We may rewrite this as

+ + +1=0 .
aij ajk % _ (3.6)

for any three external lines.
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This representation of the amplitude may not be too useful as
the integrand is non-analytic. However, it does exhibit the
correct signature factor when the asymptotic behaviour of equation
(3.1) is examined for 8., ™ @ . Splitting it up into three terms

as in (3.3), we may write

r(-e,) I'(-tpg) N r(-o,) Pop,+ayq+1)

T =
4

F(—alg -« l—|(a2:3 + 1)

23)

r(-a, ) I'(a 24—a23+-1)
+ e / (3.7)
P(oy, + 1)

Now, taking the 1limit of 515 approaching'u> along a ray at an
infinitesimal angle ® the real axis, and using the standard properties
of the gamms function, we see that the second term vanishes, and the

remaining two terms combine to give

-1 o
7 [1+ e 23] o q
Ta = . (@' s;,)
Soq fixed

exactly the expression we obtained previously, (equation (2.9)).

We may extend this contracted form of the amplitude to the five-

point function by writing, in analogy with (2.45),
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X [1-tz] (3.9)
We now split the integration range into twelve regions and transform
the variables in the twelve regions as shown in table 3.1l. Then
just as equation (3.1) decomposes into three parts, equation (3.9)
decomposes into tﬁelvé contributions of the form (2.45), each
contribution being associated with a definite non;cyclic
permutation of the external lines (1, 2, 3, L, 5) corresponding to
the twelve terms in the summation (2 EM), provi vided the trajectory

function satisfies the constralnts

a, ., + o, + - o + = .
i3 " %k T % T %ge P L 0 (3.10)

where i, j and k are any three externasl lines. The non-cyclic
permutations associated with the various transformations are given
in the last column of table 3.1l. Thus, provided our constraints
(3.10) hold, the expression (3.9) will represent the complete five-
ﬁoint Veneziano amplitude, iﬁvariant under all 120 permutations of
the external lines,

On the basis of the two cases given, it would seem reasonable
to suppose that in order to incorporate all 3(N-1)! terms of the
N-point Veneziano amplitude, (2.34), into one éerm,.all we have
to do is extend the limits of-inteération (2.34) from (0, 1)

to (-m, o) for each of the N~ 3 integration variables uij’
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(3 =2, veey, N-2), and introduce moduli into the integrand. We

write

N S N-2 1 X5
Ty = f [ o au, - 1I)[ Iu?l (3.11)

The integration range is now split into %(N—l)l regions, and under
a particular transformation of variables, each term in the
summation (2.22) is recovered, provided certain trajectory
constraints are satisfied, of which (3.6)and (3.10) are particular

examples for the case of N = 4 and N = 5 respectively.

In order to demonstrate this contraction explicitly, it is
convenient to use the Koba-Nielsen parametrisation (32). In this
representation, we may write the four-point amplitude corresponding
to the ordering of the external lines (1,2,3,4) according to (2.51)

as.:
o -1 i3
n,0250) = [ faelt 1oam 1)

(3.12)

where z5 = expiej (j = 1,04.,4) are four ordered points on the

unit circle in the complex z-plane such that

6, <6,<6,<6, <6 +2n (3.13)

The Yij are given by equation (2.53).
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Using the fact that
i(e, +0,)
(z. —z.l) = iexp(———&-é——-‘l—>|zj—zi (3.14)

we may rewrite (3.12) as
B (1.2I3.h) = /p /ﬁdG_q' I a6 1 |z, -z |Yij
P Al g | - L] - .
4 ® k=1 ¥ 1sicysy 901

(3.15)

The ordering of the points Zj is the same as the ordering of the
external particles. The differential dG, is defined by (2.56) as
dzr dzs dzt

ac. = (2.56)
(Zs-_zr)(zt'_zs)(zt-_zr)

or equivalently by

a6_ de_ a8,
G, = L8 (3.16)
2 -2 ||z, -2 ||z, - 2| |

where Z.s Zg and z, are three arbitrary but fixed points such that

t
6 <686 <8, <O +271 .
r s t r

The integration in the remaining variable is over that part of the

circle consistent with (3.13).
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Writing (3.15) out in full, we obtain

L ~-Qg,—1 -a_ -1
-1 34 o3
B,(1,2,3,4) = /n... /ﬁ ag, knl dek-{ |2, - 7| |z -2,

=1 o

-0 -1 - | 23+oc34 on12+oc23
7 -7 lzs—zll

12 l4
|Z4"Z

X lzz-zll

ll 4 2|

(3.17)

The complete four-point amplitude is written as a sum of three terms,

(equation (2.2), as
T4 = 34(1,2,3,u) + B4(1;2)u;3) + 341;5)2;h) (2-2)

Now, B,(1,2,4,3) and B,(1,3,2,4) may be written in the form (3.17)
simply by interchanging the indices (3 «» 4) and (2 > 3) in (3.17)
respectively. The integrand in all three terms will now be identical

provided our trajectory constraint (3.6) is satisfied,

aij + ajk + aki +1 = 0 (3.6)

with i, j, k any three external lines. Now, as we have stated,

the ordering of the points z,_ is the same as the ordering of the

k

external lines, therefore:

in B(1,2,3,4) : 6, < 6,<6,<86,<6 +2n (3.18a)

in B(1,2,4,3) : 6, <6, < 6, < By <6 +2m (3.180b)
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in B(1,3,2,k) : 6, <6,<6,<06, <6,+2n (3.18¢)
Let us fix 6,, 6,, and 6, subject to
6, <0, <0, <6 +2n (3.19)

consistent with equations (3.18a,b, and c). We now integrate

with respect to 65 1in each of the three terms in the summation
(2.2) over the range defined by the equations (3.18), i.e. for
B,(1,3,2,4) over the range (91,62), for B,(1,2,3,4) over the range

(6,5, 6,) and for By(1,2,4,3) over the range (e,, 61+-2n).

Choosing 6, as zero, we may now write

en , b —a, -1
- - _ ij
T, = f dGg L de, S |zj zil (3.20)
o k=1 1<i<jsh

We emphasize that this is conditional on our constraint (5.6) being
satisfied. We state again that three of the Gk are fixed, the

integration in the remaining variable being taken over the whole of
the unit circle (0, 2m). Our result is, in fact, independent of

the choice of the variables kept fixed, and of the values assigned

to them.

We may easily demonstrate that equation (3.20) is exactly
equivalent to the expression (5.1), by making the substitution,

according to (2.50),
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(z, -2,) (25 - z4)
w, = = - (3.21)
(z, -2.) (2, - 24)

Equation (3.20) then reduces to

oo

-, -1 -a_ -1
12 23
T, = f |y, | |1-u, ] du, (3.22)
- 00 °
The extension to the N-point amplitude in this notation is clear:
using the identity (3.1#), we may express the N-point amplitude
corresponding to the ordéring of the external lines (1,2,...,N),
equation (2.51) as:
. i
By(1,2,...,N) = f...fdGs I ae i} ]zj—zil

k=l T 1<i<j<N

(3.23)

Yij is defined by eguation (2.53). The differential 4G, is
defined as before in terms of three arbitrary, but fixed points Z..s
Zg and Zt' The integration in the remaining (N-3) variables is

over those parts of the circle consistent with
0, <6y < ... <O <O +2m (2.52)

where the ordering of the points Zy is the same as the ordering of

the external lines.

Similarly each of the L(N-1)! terms in the summation of the
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complete amplitude (2.22), corresponding to non-equivalent orderings

of the external linés, méy be written in this form, obtained from
(3.25), simply by interchanging indices. The integrand in each

term will be identical, provided a certain set of trajectory constraints

are satisfied. These may be deduced from (2.53).

For N = 2n and 2n + 1 (n integral), there are (n-1) separate

constraints,
- — = - + +
%71t “ikj © Yk T %

-, .t oo, + . -
ik k] ik, k, k. k;J k. k,

= -— + -
%k ek 3 T Bk ek, T %kpeeak g T ko aek
r r

= -~ I o 48 + I 4
1k1"'kn_13 1kl...kn_1 kl...kn_lg kl"'kn—l
(3.24)

For n = 2, equations (3.6) and (3.10) result for the four-and five-

point amplitudes respectively.

For n = 3, using equation (2.55), we see that these constraints

simply reduce to,
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- - = - + +
ij 1 %r; T %x T %

1
-2a' p; . D (3.25)
for any three external lines i, j, k.

The region of integration in the (N-3) variables in each of
the terms in the summation will be over_a different part of the
unit circle for each variable, defined by the ordering of the
external lines, as in (2.52) for the ordering (1 2 ... N). When
we sum over all thé tefms ih (2.22) the integrétion regions will
sum to the whole of the unit éircle for each of the (N-3) variables

independently.
The complete amplitude TN’ in (2.22), may now be written as

2n 27

o, XN -aij—l
Ty =[ f a6, T ae i Izj—zi|

- <icig
5 5 k=1 ISi< j<N (3.25)

This expression is exactly equivalent to that given earlier,(3.11).

As we have already mentioned, though elegant, this
representation suffers from the considerable drawback of having a
non-analytic integrand. However, as we demonstrated explicitly for
the four-point amplitude, the correct signature factors are exhibited
in the appropriate asymptotic limits. Although we do not demonstrate
it explicitly here, it seems very likely that this will also be true

for the higher-point functions.
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We emphasize that the expression (3.25) is only valid provided
our trajectory constraints (3.24) are satisfied. We now examine

these constraints in greater detéil.
The constraints resulting from (3.24) for the four- and five-
point functions, as given by equations (3;6) and (3.10) are:

+ =
aij ajk ta .t 0 (3.6)

+ - + = .
aij + o L aijk 1 0 (3.10)

These constraints have also been given by Koba and Nielsen (55),
and are similar in structure to the constraint invoked by Veneziano
(15) to incorporate wrong signature zeros in the nm - 7w helicity-

flip amplitude:

aij + ajk'+ aki = 9 (3.27)

If the scattering particles all have mass p and the trajectory

functions are given by

= + a : p. )2
aij o a.(pi + Pj)

} (3.28)

then the kinematic conditions arising from four-momentum

= + o + + 2
% 5k o d_(pi N )

conservation demand that:
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’ } (3.29)

and o u = -1

The constraints on the trajectories given by the higher order
functions (N = 6) in equation (3.25) are obviously consistent with

this.

This enables us to rewrite the expression for the complete
N-point function, invariant under all N! permutations of the
external lines as

271 27

N -2a' p, . p,
TN=f f dg,” T as, T z. -z - *+ 9
5 A k=1 * 1<i<jsy 9 ?

(3.30)

In this form we see that TN extrapolates off the mass shell

in the simplest possible way; by setting Py = 0, the integral over

N
pointed out by Fairlie (56).

6. gives 2m multiplied by the (N-1) point function. This was first

Also, using (3.14), we may rewrite (3.30) as a contour integral,

N -20'p. .p.
- -1 _ - TiT]
Ty = [ /qu3 kn dz.: Il (zj zi)

=1 1<i<j<N
(3.31)

However, the price to be paid for all this simplicity is too high.

Either a' or u2 is negative, which is physically unacceptable.
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This model with aj = 1 has been used, however, quite frequently by
a number of authors in the harmonic oscillator approach to dual

resonance models (21), because of its simplicity.
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TABLE 3.1
New variables Integration range Permutations
original variables associated with
transformations
t Z
1 (x, ¥) (0, 1) (0, 1) 123ks5
2 -——L— 1- &11) éo 1) 13245
T-xy’ Y ' ;
1 1
3 <-}5,y> (Z5=) (0, 1) 13k25
L 1 (0 1 ) (1, ») | 124 35
XZY:y 1 ’ '
5 1-xy, —= 2,1 (1, =) 14235
Xy, T-y Z° _ ’
1 1 '
6 <;,§> (]_)oo)lgl,oo) 1k 325

1 1
l-—-;c,-l-_—'> .(—00, 0) Fl, ) 1253k
=, 1—y> (-=, 0) (0, 1) 125043
10 1-x, ;&) (0, 1) (=, 0) 12354
11

=L, 1-5> (£,0) (=, 0) 12453

12

(
(
9 (ﬁl—%,) (1, ») o, 0) 15251k
(
(
(

¥y
1-%,%) (=,2) (=, 0) 1h2553

Thé first column gives the transformations of the variables t and z
in equation (3.9) operative in the regions specified by the entries
in the second and third columns.
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CHAPTER IV

A FIVE-POINT AMPLITUDE INVOLVING THE INTERACTION

OF TWO CLASSES OF HADRONS

L,1 Introduction

The interpretation of the Veneziano model via quark duality
diagrams introduced in chapter two for the four-point function,
extends in a straightforward manner to multiparticle production
processes., For example, a five—point meson process can be
represented by the quark duality diagram shown in figure k.1. The
-entire amplitude can, in principle, be described in terms of any of
the five ordinary diagrams in figures 4.2 (a) ... (e). Figure k.1
includes-all these possibilities, and indiéates that every one of
them may be a complete description. Quark duality diagrams for five-
point meson-baryon processes, MB — MMB, are shown in figure 4.3.
Figures 4.3(a) and (b) are characterised by the property that in
figure 4.3(a) two of the quarks constituting the baryon have no
interaction with the external mesons, while in figure 4.%(b), only
one of the baryon quarks is such a 'spectator' quark.

The usual Veneziano five—poinf function; constructed in
chapter two may be regarded as corresponding to the Feynman diagram
of figure 4.k in the sense that the Veneziano amplitude has

resonances in those channels where the Feynman diagram has intermediate
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states. By interchanging the external lines, we may cobtain eleven
further Veneziano amplitudes which make up the complete Veneziano

expression.

A model has been proposed by Burnett and Schwarz (§§) in
which they attempt to write a Veneziano-type five—point_amplitude
describing the interaction between three -'elementary' mesons and
a single baryon, where only mespn—baryon—faryon coupiings are
allowed (see figure 4.5). Five other diagrams obtained by
permutiné the three mesén lines amongst themselves are assumed
dual with figure k.S5. This process may be described in terms of
a quark duality diagram by figure L.6, where mesons 1, 2 and 3
interact with quarks 1, 2 and 3 respectively. In this diagram,

none of the quark constituents of the baryon are spectator quarks.

Such a process has resonances in six channels (in contrast
to the usual five-point Veneziano amplitude which haé resonances
in only five channels), containing the particles (A,i) or (B,i),
with i = 1, 2 or 3, and can be represented by the-Feynman aiagram
of figure h.7, where again resonances occur in those channels
where the Feynman diagram has intermediate states. We require
the amplitude associated with figure 4.5, or equivalently 4.6 or
h.?, to possess the property that we can exhibit it as a double sum
of poles with polynomial residues in the channels (pA + p,)%,
(pB + pg)® say, or in any of the channels obtained_by permuting the

meson lines 1, 2 and 3.
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We derive in this chapter a representation of the amplitude
for such a process similar in structure to that of the usual
Veneziano five-point amplitude, i.e. we write the amplitude in

the form

s T f [ duyy dugy I T {“Ai—aAi—l uBi-aBiul}
(b.1)

Further motivation for the study of such an amplitude has
been given by Susskind (22) in an harmonic oscillator theory of
dual resonance models. - Hére the baryon quark constituents emit
and absorb the external mesons one at a time, the process being
governed by a quark—-quark-meson coupling constant. A prescription
is derived for obtaining meson-baryon scattering amplitudes, a
separate contribution being given for each of the cases of zero,
one and two spectator quarks. In the case of no spectator quarks,

the expression derived is essentially the same as we derive here.

We will use techniques developed by Mandelstam (60) in the
study of the amplitude associated with figure 4.7, and sﬁow how
other representations such as that given by Fairlie and Jones (él)
are related to Mandelstam?s expression. We then examine in _
section three the decompésition of this amplitude in terms of a
series representation similar to that of Hopkinson and Plahte (gg)

for the five-point amplitude. In section four we examine the
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asymptotic behaviour of our amplitude in the Regge limit. In
section five we examine the parametrisation of this amplitude in

terms of the Koba-Nielsen variables (32).

The generalisation of the problem proposed by Burnett and
Schwarz is to an n-point process involving the interaction of (n-2)
mesons with a single baryon, illustrated in figure h.8, where éll
diagrams obtained by permuting the meson lines amongst themselves
are assumed dual with figure 4.8. The process may equivalently
be represented by the Feynman diagram of figure h.9, where the
amplitude has resonances in those channels where the Feynman

diagram has intermediate states.

The generalisation derived by Mandelstam (60) to processes
involving an arbitrary number of external lines_(Eé 6) describes a
different set of interactions to those discussed—here; The
generalisations coincide only for the case of five external
particles. In chapter five, we clarify the distinction between
the generalisations proposed by Mandelstam and those proposed here.
We then use the techniques developed by Mandelstam to derive an
expression for the amplitude illustrated by the Feynman diagram of

figure 4.9. The treatment is as given by Jones (62).

Finally, we note here that within the unitarisation programme

of Kikkawa, Sakita and Virosoro (47), we assume that the amplitudes
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we have constructed here should be added to the conventional tree

graph amplitude, as part of the Born term.

L2, The five-point process of Burnett and Schwarz.

We derive here a representation of the five-point amplitude
associated with the Feynman diagram of figure k4.7. Associated with
each of the six channels, (Ai), (Bi), (i.= 1, 2, 3) will be a
variable uAi’ uBi' Only two of these will be independent. Each
channel will have a trajectory function in or aBi' The five-
point amplitude will then have the form of equation (4.l1). We now

derive formulas expressing the dependent u's in terms of the

independent u's. The formulas must satisfy the following:

(i) It must be possible to set the u's for two non-overlapping
channels simultaneously equal to zero, since the amplitude can have

simultaneous resonances in two such channels.

(ii) If any u is set equal to zero, the u's for all over-
lapping channels must be equal to unity since the residue at a

pole in any channel must be a polynomial in the overlapping variables.

(iii) If any u is set equal to zero, the remaining integration

must reproduce the ordinary four-point Veneziano amplitude.

As a starting point to derive these constraints we take a

formula proposed by Virosoro for a five-point amplitude with
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resonances in all ten channels (see figure 4.10), which has been
generalised to processes with an arbitrary number of external lines
by Collop (63). Five of his variables u; ; are independent; the
other five are determined by the five equations,
+ + = L,
b e e S U A W 2 (4.2)

i,j,k,2 = 1,...,5; i<j<k<1Z.

Since our amplitude has resonances in only six channels,
we must set the remaining u's equal to unity. We obtain in the

notation of figure 4.7 the three equations

Upp Upp * o Upy = 1

Upp Upg + Yy Upy = 1

Uz gy T g Uy = 1 (+.3)
together with,
3 3
2 W, = 2 EuBi -2 (k)
i=1 i=1

The five equations have no non-trivial solution, and we cannot

obtain our required amplitude as a special case.

An obvious modification we can make is to take equations

(4.%) together with,

Uy T t Yz = Upy T Upy F o Ugse (&.5)
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Call this the set of equations (a).

It is a simple matter to verify that this set of equations
satisfies the conditions (i) ... (iii) above. For example, if

we take U5 = 0, and solve equations (4.3) and (4.5), we obtain

*1

Yap T Yao T Uz T |
} (4.6)

1

Up1 * Upo

The - sign is excluded by the range of integration in
equation (4.1). It follows from (4.1) that the remaining integral
is as follows:

1

fo T gy vy

(&.7)

This is precisely the four-point Veneziano formula for the Feynman
diagram obtained by contracting the external vertices A and 3 of
figure 4.7. Provided that the Jacobian factor J behaves suitably,

our conditions (i) ... (iii) are met .

However, this is not the only set of equations we can derive
satisfying the conditions (i) ... (iii) above. There are various

other possibilities:

(b) takes equations (4.3) together with

Upy Vg F Uyt Uyt gty = b (.8)
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However, the variables in this set of equations are related to the
variables in the set of equations (a) by a simple transformation.
Taking the set of equations (a) and making the transformation of

variables

. I S
Upg T Mg 3 ¥py <y Upy (+.9)

with A defined by

1+ i JoBy
22 = {-—-—-—-———-} (4.10)
17 ivepy
where o = qu uB2
B = u
A2 YB3 (L.11)
7 = Uz Vg

the variables in s uB£ will satisfy the set of equations (b).
As the variables in the two sets of equations differ only by a
scaling factor, the representations we obtain for the amplitude in
(4.1) will differ only in the Jacobian, which is in any case non-
unique, and in a function

z("m = %)

(Ay™ (h.12)

multiplying the integrand. The exponent reduces simply to
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a'(pﬁz- KE), so that in the case of equal mass external baryons
the extra factor reduces to unity. The ambiguity may be regarded
simply as a reflexion of the ambiguity due tb satellites discussed
in chapter two.

(c) A further possibility, with the conditions (i) ... (iii)
above satisfied, is the set of equations given by Fairlie and

Jones (61):

uy = 1o, (- ug) ~ Uy (2 - ) }_

(k.13)
ug; = L qu(l =) - ug (1= 9Aj)
with i,j,k = 1, 2 or 3
idifk.
The six equations (4.13) readily reduce to four independent
equations
Ugy o Py -l o= U U, tug, -1
= a1 Ypo T Yo Upg
= Ypo U3 T Yaz Um2
= Wy Uy * g Ups (L.1k)

so that four variables may be expressed in terms of two as desired.
Again, by making a simple transformation of the variables in the
set of equations (a), we may arrive at the set of equations given

here. The transformation is:
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up. (.15)

il
ljd;::
o
—
g
;:(:F
oo
1
=
!

Again, we may interpret this ambiguity as a reflexion of the

ambiguity regarding non-leading terms.

Yet further possibilities may be derived, such as that
proposed originally by Burnett and Schwarz (2§), but the equations
here do not appear to generalise readily for arbitrarily large

numbers of external particles.

We are now faced with a choice of which set of equations to
take. Neither set of equations is distinguished by the simplicity
of solution of the equations. All three sets of equations (a), (b)
and (c) are readily generalised to the n-point amplitude. The
ambiguity can probably be resolved by recourse to a consideration
of the simplicity of the spectrum of the amplitude (22), and to the
asymptotic behaviour. On these bases, we take the set of

equations (a) to consider in detail.

The proof that this amplitude has single-particle poles at
the correct positions and with the correct angular momenta goes
through in identical manner to that for the conventional tree graph

Veneziano amplitude.



83.

For this set of equations (a), the Jacobian in equation

(4.1) may be defined as:

u (u,, + )
;o AL Ugz \Wa1 T Upsz (4.16)
Yy T T s

This Jacobian transforms correctly when the pair of

integration variables ( uBl) is replaced by any other pair of

gAB,
non-overlapping variables, but it is not uniquely defined by this
requirement since it is subject to the usual ambiguity associated
with non-leading Veneziano terms. The Jacobian would have the
correct transformation properties if the denominator were omitted,
but such a choice is unsuitable when we generalise to the n-point
function. If the variables uA5 or uy, are set equal to zero,
the Jacobian reduces to unity. We have thus completed our
verification that (h.?)-is identical to the four-point Veneziano
formula. If we had omitted the denominator in the Jacobian, this
would not hold, as with gAB = 0, the Jacobian would then be equal
to two.

We now give an interpretation of the set of equations (a)
which is useful for generalisation to the n-point amplitude. The
Feynman diagram of figure 4.7 contains three plane polygons AB12,
AB23, AB31, Associate variables Vij’ W. ., xij with each polygon,

1J
corresponding to the integration variables of the associated plane
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Veneziano diagram. The v's, w's and x's are defined in terms of

the u's as follows:

Va1 T Ya1 Yo Vg1 = U1 Yap
Wap = W Upg Vgo T Upp Uyx (+.17)
Xz = Yaz Upy ¥gz = Upz Ya1

The rule for constructing the v's, w's and x's is to take the u

for the channel in question, and to multiply it by the u's for all
the channels which consist of the particles in the original channel
together with particles which do not form part of the relevant

polygon. We can now rewrite equations (4.3) as:

vpp t g =L
Wpp T Wp, = 1 (4.18)

Xpz t Xgz = 1

These equations are precisely the equations that the variables
would satisfy if they were regarded as Veneziano integration

variables for the plane polygons.

4,3 Series representation

We examine the solutions to the equations



Upg Upp T o Yp = 1
Upo Upz ¥ Wyg Up, = 1

Upz Upy * Uy Upz = 1

+ +
u g tu u

Introduce the notation

Upy Ugp = @5 YUy = 1-c
Upp Upgs = By Wyup, = 1-8

Upz Vg = 75 Uy Vg = 1-7

Then aBy = (1 -a)(1-B)(1-~-7v)
ds)
and y o= 14—
(1-a)(1-B)
(1-a) (1-B)
(1)t = 1+ ———e
af

We now solve for the u's in terms of « and B .

The solutions are

N < 1+0B -0 afl-y) .
u = ——— R H =
Al 1+aB—B> 5 “B1

po T %z o Vg T Vpo T U3

(

1+of-8

85.

(4.3)

(L.5)

(4.19)

(4.20)

(k.21a)

(+.21b)

(1-a)y

1+ aBf~a

)

1-B
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l+af-a \ B l1+aB-B (1-a) (1-B)
W - (Fam) s - (F)
l+ap-B 1-y 1+ B -« 14

uZ - (ﬂ) (1—6)7; w? - <1+af3_f_3>. B(1-7)

l1+ap-B l-« l1+af-«a o

(k.22)

with 7 given in terms of a« and B by (4.21)

The five-point amplitude under consideration is given by (4.1)

11 u,.,. +u,+tu S S | -a -1
a1 © Ypo T Ups Al A2
F_ = du, , dug, . (u 1) (u 2)
[ c[ ’ { Uy %30 * vp3) * .
—a -1 ~o_ -1 ~a -1 —o -1
x () *7 (ugy) B ) P (u55) 3

(k.23)

where we have taken a specific form of Jacobian factor (4.16).
Now, using (4.22) above, after a little algebra, we can show that
u, +tu,t+tu 1~y y
Al " Yap T s B B
duABduB1 = <- - > dadB = <-———*~——-— > dadf

uyp U3y *ups) p (1-a)(1-B)
(4.24)

Now, substitute (4.22) together with (%.24) into (4.23), and using

(k.21), we obtain after some manipulation,
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5

1 1 -(xAl—l —aB3—1 ( aA3+0L53 a27%1 afB2) -1
_ f[dadﬁ(a) (B) (1-0)
00

(1- B0y OO0y 5y ) -

X B)

2( +a 40

, B a1 %3 %81 %83 %2 ~%gp)
< {1+—-—-————-}

(1-0) (1-B)
{1 - B(1 - a) }ﬁ‘;(pf— pZ ) (t.25)
X
1 - a1l =B8)

where we have taken

aAi = o+ o! (PA + pi)2 (4.26)

and similarly for o. , (i =1,2,3).
For the sake of simplicity we take
2 _ 2
Py = Dy (k.27)
i.e. we take the external baryons identical, on mass shell. We

now expand the term { 1 in a series:

{1 ' (1—ajﬁ(31—f3)} 2 ( >( (1~a)(1-8) >

(4.28)
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where
S VL TR YL T Tl (k-29)

to obtain,

FS ) i fl/; . < i) (a)—aA1+r—l - OL)zl-r—l

r=0 0“0
- _tr-1 z,~r-1
x (B) B (1-8)° (4.30)
with
_ 1 _ - _
2y = 3oy ot o -, -Gy - a,)
(k.31)
z. = (e, + o + -, - _ -0 )
o 2%y T %1 T %3 T %o T %3 T %o
l.€.
> Z
F5 = 2<r>F4(—aAl+ r, zl—r).F4(—aB5+r, zz—r)
r=0 ‘ ' (k.32)
where
y r(x)r (y)
_ x-1 ¢4 yy-1 _ Xy
o) = [ aew e - TS (4.53)
0

i.e. the ordinary Veneziano four-point function.

E: <’z ) P(-QA14-r)P(zl—-r) . P(—aB3+-r)P(22-r)

= F(zl—-aAl) F(zz-aBs)

(h.3h)



Now

Plooyy +r) = Tloeyy) (o),

Plotgy + 1) = [(-a,)(-ap,),
wheré

(-w)_ = (-@)(-a+1) ... (-u+r-1)
Also
L(z,)
r(z, ~r) =

r'(z,)

(-1)7 (-2, + 1),

and similarly for [I(z, - r).

Also we have

so that

(z, - 1)(z, - 2) ...

(z,

89.

(4.35)

(4.36)

(L.37)

(1+.38)

_qu)r(—aBB)r(_Z)r(_l)r

=
Ry o= Fala, o) Byn, <) ) y
o . T r=0

+ 1)r(—ze+:l)r r!

(+.39)

The summation is a standard hypergeometric function, so that we may

write,
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Fg = F,(z,, —(xAl)F4 (22, -ocB5)

X SFZ{—aAl’ —aBB, _Z; —Zl+1) —Z2+1; _1} (’4-.)4-0)

where z, z

12 Z, are given by (4.29) and (k.31) respectively.

Similar expressions for F_ may be obtained by permuting the

meson lines 1, 2 and 3 among themselves.
The hypergeometric function converges for

Re{—zl+l—z2+l+aA1+d.B5+z} > 0

i.e. Re{oaA1 Tt o + a‘B5} > -l (4.41)

We have thus found a representation for our five-point amplitude
which has a much larger range of convergence than the integral

representation.

The series provides the simplest method of determining the
pole structure of our amplitude. The beta function F4(x,y) has
simple poles in each variable at the non-positive integers, so

using the symmetry properties of our amplitude, it has simple poles

at the non-positive integers in each argument separately. There

are thus various advantages to be seen in the series representation:

it exhibits clearly the physical interpretation of the amplitude and

the dynamical assumption underlying it. The series may also be
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useful for numerical evaluation of the amplitude, to which the

integral is not easily applicable.

4.h  Asymptotic behaviour.

We now examine the asymptotic behaviour of our amplitude in

the double=Regge limit. Single Reggeisation can similarly be

established.

From (4.%) and (4.5) the solutions for Up1r Yoo Upps Upsz in

terms of QAB, Upy may be written:

o = Upz up; (up; - uAB) tx®
Al 2(uA3 uBl-l)

_ Uas “Blqu3 - ugy) T X2
“B3 2(uA5 uBl-l)
. - ‘“A5(“1312 - Sy ug *2) B XF
A2 2‘1 - s uBl)(l - EuA3 uBl)

_u31(9A§ - Oyp gy 2) ¢ x2

Upp = '

2(1 -y ug) (1 - 20y 5 )

where X = {uA'D’Z u_Bl2 (u'Bl_uAB)Z + ’-L(l-uA5 u‘Bl)s}

(k.h2a) |

(4.42p)

(4.k2c)

(k.424)

(k.b3)
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We take the positive roots in (k.42 a...d) to avoid results like
Uyq = —uB3 which we cannot allow, as we must have two independent
variables. We take the integral representation for our amplitude

as in (4.23). We consider first the double-Regge limit associated

with the exchange of Regge poles with the quantum numbers of the

meson-baryon system, choosing the particular graph of figure 4.1la.

We take all a's real and negative, and consider the limit

S, S
A3 B .
SA}’ SB3 - - ; —~§———é = K, fixed
12
Spy»  Sgpo fixed. (bbb )

Now, there are various constraints amongst the s's from which we may

deduce the behaviour of Sp1 and Sho in this limit. We have
sgy * Sgo t S12 - Sp3 = C constant (4.kbs5)
50, sg1 ~ 1o (L.46)
+ + - = h.oh
and Sp; * Spap T S1z ~ Sp3 c (k. h7)
S0, Spp ™ TS, (4.48)

We take the limit s;, = + o in order that we may have aBl and @5
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negative. Then K, defined above in (4.4h) is positive.

We also define

a3 "3

al2

~

(4.49)

Now, substitute equations (4.42) into (%.23) and make the

following change of variables:

uBl = exp.(—x-ly.r ) 3 uA5 = expg_y.l ) -(’-I-.SO)
with X = - EEL ; ¥ o= - (b.51)
B3 %3 :

The outline of the proof we give here is now almost identical to
the treatment given in Bardakci and Ruegg (26), though the algebra
is more complicated owing to the complex nature of the solutions

(4.42). With these substitutions, we obtain

¢ %o

F. o= (_aAB) Al _(—aBE) T _(u.sa)

S *p1 “Oppml %7l
I = [/\&we@{;y+w—*ﬂ—}x y
0 0

- -1
[ (x', ¥')] B2 ux', y)

53] DG, 75 )]

(4.53)



where
1
Kl(x.',yn') = E’l'_u“_(x_' ,y-') ; kz(x.',y.‘) = = “BE(X_"V_')
I ) - -1
M) = lug ey P2 k) = Iy ()] A

| 3 a2, g
n(x',y') = 2 ps V) (4.5%)
S i “Al_(x,"y_') ! UBBQ_"y.') B

i=
s s ! 1
Upys Upo etc. are obtained as functions of x' and y' from
equations (4.42), using the substitutions (k.50) .

The range of both x and y and x' and y' is between 0 and « .

In this range, the following statements hold:

(i) |xi| < M, i=1,...,0

Iul < M, where M is a fixed constant,

independent of all variables,

(0 € x' € o, 0 < y' £ o, %Gsr %o < 0). (+.55)
(ii) 1t A, = 1, i=1,2.
- x',y'—0

1t I = 1 (+.56)
x',y'=0 -
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it }\3 (X' V' GB5)
x',y' >0 - .
;x.,y fixedg

aB3_)-°°

exp(=x) (%.57)

1t A (LY, a,) = exp<_—l-;={g> (4.58)
jx',y'—aou S
X,y fixed
o, ~> =00

A2 .

The above limits are all uniform in both variables in the

neighbourhood of x', y' = 0. We now write,
P P o P P = ©
I={f[+f[+[/+[/}dxdyx[Integrand]
00 Po O0OP PP
I = Io(P) + I,(P) + I,(P) + I (P) (+.59)

where P is a constant independent of all the s's. Now, given

an €, we choose P so large that

.| < e |1 < e |l < ¢ (+.60)

independent of SA3 and SBB, which follows from the fact that the

}‘i and p are bounded.

At the same time, keeping P fixed and taking and s

A3 B3
sufficiently large, we can satisfy the following:

P P 1 1
Sxy “CpoTt =0A1T
lIo(P)-f[ dxdy eXP{-X—y—-E- x B y | < €
' 0O 0

(4.61)
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which follows from the existence of uniform limits for the }‘i and 1 .

Finally, we can also have,

o P P
5 -0 -1 - -1
I{[f-ff}dxdxexp{—x-y——sﬁ—w}x B2 yAl | <e
0 O 0 0

(k.62)
Combining (4.59) ... (4.62), the following limit is derived,
© o _ 1 -« -1 Sxy
1t 1 =f[dXdY{XaBE yAl eXp(—x-y——N—>}
) K
%SA3,8B3—>—00 ; 0 O
K, fixed (4.63)
We may then write
«
Al B2
Fg = ('SA3) (‘5133) g (4.64)
(double-Regge limit) : ' ) ] ) .
where o o
%ot %1 Ol %yt 5%y
g = (a) X y exp -x-y - —
i ak
; 0 O
(4.65)
where K is given by (4.44) and we have taken

«, ., = as,,+Db (L.66)
ij ij _

This is the usual Regge behaviour.
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We have here assumed that the procedure of changing the
integration variables and taking'the limit inside the integral is
valid.

The above expressions are also valid for complex QAB and QBB
as long as Re QAB <0, Re QBB < 0.

To reachthe right-half plane in these variables one has to rotate
the line of integration of x and.y in equation (4.53) from the
positive axis to a complex direction. In this manner, one can

establish (4.63) for any complex direction with the exception of

the real axis.

Regge behaviour can similarly be proved for all other double-
Regge limits associated with the exchange of Regge poles with the
quantum numbers of the meson-baryon éystem. However, Regge
behaviour does not hold for processes where the exchanged Regge
pole does not occur in a mésonébaryon channel. Consider as an
example the diagram of figure 4.1lb. We considef the Regge limit

associated with this diagram,

S S
‘A2 "A3 .
s ) s - -~ H ———tte - K, fixed
A2’ "A3 s
Bl
Spos S;5 Tixed (4.67)

Constraints amongst the s's similar to (4.45) and (4.47) enable us

to determine the behaviour of s,; and S in this limit. We

obtain,
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S ~ =8

Al S ~ =5

e B3 B1 (4.68)

Now, we wish to take all the a's ( i =1,2,3) real and

“ai’ %py?
.negative in order that our expression (4.23) for the five-point
amplitude converges. However, from the above equation (4.68),

we see that if we take QAE and % rgal and negative, then

qu and aB3 must be real and positive, and the integral diverges.

An identical argument holds for the Regge limit{ associated with the

graph of figure L.llec.

4.5 A parametrisation using the Koba-Nielsen variables.

The usefulness of the Koba-Nielsen parametrisatidn of the
variables uij’ defined in equation (2.50), is that expressed in
this way, the duvality constraints such as (2.28) for the conventional

five-point tree graph amplitude, are automatically satisfied.

For the amplitudes we are considering, the Koba-Nielsen
variables do not form natural solutions of our constraint
equations (4.3) and (4.5), and hence are not so immediately useful
for the description of our amplitude. However, a modified form
of the prescription has been suggested by Mandelstam (60). We

associate the points z

oy Zps Z1s Zg and z_ with each of our

3

external lines; we define the harmonic conjugate of Z; (written Ei)’

with respect to Zp and Zp by
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(z; - 2)(7; - 75

= -1 (L.69)
(25 = 25)(Z; - 2y)

with i =1, 2, 3.

We now express o, B, and y of (4.19) as

. (z, - ;A)(z2 - zB) s (Z, - ZA)(_Z3 - zB)
(z, - 22)(;A - zB) (Eé - ZS)(ZA - zB)
, o Bammll m ) (4. 70)

(Z4 - zl)(;A - zé)

Defined in this way, the condition (4.20), afy = (1-a)(1-B)(1-y) is
automatically satisfied, with the Ei's defined in (4.69).

We now define @ in the obvious way,

(2, - ZA),(Z2 - 2y

R
)]

(%.71)
(zl - Eg)(;A - zg

and similarly for 5 and ;.

Using (4.22), we may now write the solutions for (in ﬁAi)’

(up; Up;) as:

(wy4%4)

(ZA“ZQ (2,-2,) { (2g~25) (25-Z) }%
(

[(%A—ZB)(QB—;A)j% zs—El)(zl—Es)(ZZ—El)(zl—Ez)

(b72)
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and
(2g-2;) (2,2, (25-2,) (z,-2,) L
(UBG-B) = _B e —y ~. — 2~ — .x2
s [(ZA—ZB)(ZB—ZA)]Z.{ {ZS'Zl)(ZL_Zs)(Za_Zl)(Zl_zz) }
(4.73)
where
) ey (aaeee) (33) _—

(2y-2,) (7,72,)  (1+oB-B) (1+aB-B)

and similarly for (?A2 aAE)’ (uA3 ﬁAB)’ (u:B2 Eﬁe) and (uB5 EBB)'

Our five-point amplitude may be written in the form
1 1 3
Fs = [ [ { (duy Gy ) (dugdig, ) (575 075) ifl [(uAiuAi)
) B

X (u'.BiEBi)_aBi—l] }%
(4.75)

1
where (duAld.'ﬁAl)2 etc. are really only single differentials as

ﬁAl is a function of Wy qe This may be rewritten as,

Fg = f [{ (dzAd'ZA)(dzBdEB) Erl (dzid'i'i)

1=

x iz[l H (zA-zi)('Ei—zA)}—aAi_l {(ZB-zi)(Ei-zB) i ]x

/ over



101.

1
(e, +a 4o o -0 0 )
x [(z. - %.)(z, -z.)} ALTAj Bi BY AKX Bk
. . 1 J J i
1,J=

(i<3)

(k.76)

The summation in the exponent of the term [(ZB—gA)(;A—zB)]

is taken over all channels. Also, we take dZA = d;A, and
dEﬁ = dzB . The region of integration is as discussed earlier

in section 2.7. We have-omitted from the integrand a term
analagous to (dGs~ ) defined in (2.56) for the tree-graph amplitude.
- This essentially forms a constant multiplier of the amplitude. Up
to a constant factor, our two expressions (4.75) and (4.76) are

jdentical.

Assuming the trajectories are all identical, linear, of the
form (4.26), then the exponent of X in the last term, under the
kinematic conditions arising from four-momentum conservation,
feduces simply to,

‘xl

> (2f -pf) (b.77)

In keeping with section L.3, we take p&z = pﬁa and ignore this

term.
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Assuming similar conditions the exponent of the term

[(Zi - Zj)(zj - Zi)] reduces to
- 2a! pi.pj + o(M®) (+.78)
where we have put I@? = péz = M2 , M the mass of the external

baryons.

Similarly the exponent of the term '[(?A - ZB)(ZB - gA)]

reduces to

-20' p,.pp + @' MZ + 3a(u®) (4.79)
2 2 2 2-
where we have taken p,” = p, = pg; = K5, H the meson mass.

The important point about this representation is that the
momentum dependence of each of the above two terms is simply
- 2a! pi.pj and -2a"pA :pB; respectively. Such a ?epresentation
enables us to write our amplitude in a very compact way, and will
certainly be useful in any attempt to incorporate the process we
have considered into the functional integration approach to dual

theories that has been proposed recently (45).
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Figure 4.1 Quark duality diagram for a five-point meson process
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Figure 4.2 The various alternative descriptions of figure b.1.
_ Every one of the five descriptions (a)...(e) may in
principle e a complete description of the amplitude.
They should be summed over all possible intermediate
states (1,..-;5) which are marked by dashed lines in
figure 4,1 ' :



spretrdwe ydeaZ oaa9

e gm o e err g v s e T T . — e = - —~ .
qutod=24T) TACET. 2y 3ursossoadsas waiBetr uwnuls g heh BINFTA




-
Figure 4.5 The Burnett and

jo 3l 45}

chwarz five-point process.
aryon lines;

A and B are the

1, 2 and 3 the
meson lines,

o

nd Schwarz

3

3
process



h SICITT YITM POGRIOQuEss Weilwip Ueumibsd oul 6t oXndT

- N B



Figurel,l0 The Feynman diagram associated with the five-
point function of Virozoro
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Figure 4,11 Relevant diagramg for examining double-Regge
limits
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CHAPTER V

THE GENERALISED AMPLITUDE INVOLVING THE

INTERACTION OF TWO CLASSES OF HADRONS

5.1 Introduction

The natural extension of the Burnett and Schwarz process
would describe the scattering of four mesons off a baryon target,
represented equivalently by figure 5.1, or by the Feymman diagram
of figure 5.2, resonances occurring in those channels wheré the
Feynman diagram has intermediate states. The diagrams obtained
by permuting the four mesons amongst themselves are assumed dual
with figure 5.1. There are thus fourteen channels in which

resonances can occur in this six-point amplitude:

Upss Ups i =1,2,5 - two particle channels

=1,2,3, i <J - three particle channels.

o
e
-
[}
1

In this chapter we give the extension of our prescription for
this amplitude, both for the six-point and for the general n-point
function assoéiated with. figure h.8, or equivalently with the
Feynman diagram of figure %.9. The treatment is essentially that
given by Jones (62), and uses the techniques developed by

Mandelstam (60) in his generalisation to a different set of processes.
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The five-point function given in chapter four of this thesis,
and that considered by Mandelstam (60) coincide, i.e. the same
amplitude is under consideration. » Fér.the six-point and higher
amplitudes, the generalisations considered here, diverge from thcse
derived by Mandelstam. The generalisation to the six-point
amplitude suggested by Mandelstam describes an amplitude which may
be associated with the Feynman diagram of figuré 5¢3. This
amplitude has resonances in eleven channels. This is an example of
a minimal non-planar diagram with only one pair of crossed internal
lines in the nomenclature of Mandelstam. We use 'minimal' in the
sense that the set of channels in which resonances occur do not
contain as a subset any set of channels which form a complete set
for the ordinary planar Veneziano amplitude with the same number of
external lines. In this sense, the diagrams we consider are minimal
non-planar, but they do contain more than one pair of crossed
internal lines. The Feynman diagram associated with the general
n-point amplitude of Mandelstam (60) is shown in figure 5.4, where
again we understand that resonances occur in those channels where the
Feyrman diagram has intermediate states. The quark duality diagram
for this extension describes a contribution to the n-point production
amplitude of mesons off a baryon target in which n, mesons interact -

with quark number one, n

o With quark number two, and ng, with quark

number three, where the three quarks are the baryon constituents and
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n, tn, +n, = n-2.- Thus, if indeed a quark structure under-
lies hadronic processes, Mandelstam's extension should be necessary
f§r the description of such production processes. It is clear
that Mandelstam's extension and that given here are special cases
of a more general mathematical problem to construct meson-baryon

amplitudes with a single baryon line, where the baryon is

constituted from N quarks,

5.2 Generalisation to the n-point amplitude.

We are concerned in this section with deriving expressions for
the general n-point amplitude associated with figure 4.8 (or
equivalently with the Feynman diagram of figure h.9), but before we
proceed. to this general case, we shall cqnsider the six-point diagram
(figure 5.2). There are fourteen channels in which resonances can

occur:

(a1), (a2), (a3), (ak),
(1), (B2), (B3), (BY),

(a12), (A13), (Alk), (A23), (A2k), (AZL),
or equivalently (B3k4),(B24),(B23),(B14), (B13),(B12).

To each channel there will correspond an integration variable u,
and a trajectory function &, and we subscript the variables with
the indices of all the particles in the channel, The six~point

amplitude will be given by the integral |,
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111

- -1
-1 p
/p/q/\duAl dug,, dgAIB J [ I u, ] (5.1)
000

The three integration variables may be replaced by any other triplet,
and the Jacobian factor must be defined in such a way that it is
independent of the choice. The product is taken over all fourteen
channels. We wish to derive eleven constréint'equations; so that
we may express eleven of the u's in terms of three of them. It is
here that the interpretation given at the end of section 4.2 becomes
relevant. The Feymman diagram of figure 5.2 contains four 'nén—
planar' five-point diagrams: AB123, AB124, AB134, AB23k. Associate
variables vij’ Wij’ xij’ yij with each polygon, defined in terms
of the u's according to the prescriptions given at the end of
section 4.2, The required équations now result by demanding that

the v's, w's, x's, y's are related by the rules for the five-point

amplitude given by equations (4.3) and (k.5).

The equations that result are:

(1) wyy ug, Upgp Uyys T Wy Vg Wy Upo) =1
(2) wyp vz Wyp W), T Wg Upy Wyg Uy, = 1
(3) wpp upy Wuip Uaos * Upy gy Upg) Yz, = L

(h) wpy ups Wpgo Upyy T U Vg Upos Yym = L
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(5) wpy vpo Wayz Upgy t Upp Upy Yoz Yo = L
(6) Ups Ul Yayz Yoz * gy Ups Yag) Wy = L

() wpp wpyo * Wy Wy * Wy W) = Vo Wz t Vs Wao) * Uy Taos
(8) wpy Wpgp * Wy Vpps T Upy Upo) = Uy Wz FUps Wy, toUp, Uygg
(9) Wy Wt Yo W) F Ups Upa) = Upy Wos FUpy Upga t Ups Uy

(10) wpy Wpyz + Uyp Wos + Uy Wya = Upy Yoy Uy Uy tUp Yo

(5.2)
The final equation is determined by the condition that conditions
(1) ... (iii) of section 4.2 with (iii) suitably modified, must be
satisfied. The generalised condition (iii) now reads: if there is
a pole in any of the two particle channels, iee. if any of the
Uy OF Up. is equal to zero, the remaining integral must be the
integral for the five-point amplitude derived in section h.2,
associated with the Féynman diagram of figure 4.7, since the diagram
obtained by constracting any pair of vertices (Ai) or (Bi) (i=1...k)
of figure 5.2, is the diagram of figure 4.7. Also, if one of the
u's assoéiated with a three-particle channel is set equal -to zero,
the remaining integral must be the product of two ordinary four-

point Veneziano integrals.

These conditions define our final equation as:
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(11) upy upy *+ Wy Uy + 5 Ups Uy, Uy,

= Upgo Yash F Pa13 Yol T Yl Yaos (5.3)

We may thus express eleven of our u's in terms of three independent
u's, and write our amplitude as a three dimensional integral as
desired.

It is an elementary through father tedious matter to verify
that conditions (i) ... (iii) mentioned above, with (iii) in the
modified form indicated, are satisfied by equations (5.2) and (5.3);
(iii) is conditional of course on the Jaeobian factor behaving
suitably. We shall show this presently, though we shall first

generalise our constraints to the n-point amplitude.

Associated with the n-point amplitude of figure 4.9, it is an
elemeﬂtary matter té show that there are(?n—2 - 2) channels in which
resonances Occur, Again, to each channel there will correspond an
integration variable u and a trajectory function o , and we
subscriﬁt the variables with the indices of all the particles in the
channel. We require to write the‘népoint amplitude in the form of

an (n-3)-dimensional integral:

| I
f [ dvn_B[ g u P } (5.14)
0 0

where th_E is a volume element, equivalent in the six-point case to
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aV, = duyy dup, duy, gt (5.5)

We must now write the constraint equations between the
various u's to show that (n-3) of them are independent. The method
should be obvious. For example the seveﬁ—point process
associated with figure 5.5 contains five "non-planar' six-point
diagrams. There are thirty channels in which resonances occur in
this amplitude. If we define the vij's, Wij's etc. associated
with each polygon in terms of fhe u's according to the
prescription already given, and demand that they are related by
the rules for our six-point amplitude, then we will obtain twenty-
five equations relating the u's. The twenty-sixth equation is
defined by demanding that the equations (i) ...(iii), with (iii)
in the generalised form are safisfied. We thus have a self-
generative process for determining the constraints for the n-point
amplitude; the Feynman diagram associated with this process
(figure 4.9) contains (n-2) non-planar (n-1)-point diagrams.
Associated with this process there are 2n—2 - 2 channels in which
reéonances can occur. Defining the v's, w's etc. aé already
indicated, and demanding that they are related by the rules for
the (n-1) point function already derived, we obtain (2n_2-n)
relations amongst the u's. One more relation is derived by
demanding that the conditions (i) ...(iii) with the factorisation

property (iii) in a suitable form are satisfied. We thus have
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oM 2 _nw1 rdaﬁpmsmmngme—E u's, thus allowing (n-3) of

them to be independent. This will be shown explicitly, presently.

We now examine the nature of the constraint equations
amongst the u's for the general n-point function. In order to
do this it is useful to look at the constraint equations in a suffix

notation for the first few values of n.

n =4 - the ordinary four-point Veneziano amplitude.

n-2
There is only one (I o > constraint

2
ZuAi I (5.6)
i=1

n=>5 There are four constraints,

n-2
three <' 5 > of one type

2
}: Uy Ypyy = 1 (5.7)
i=1
143
Summations is over any two of the three meson lines, a different

equation resulting from each of the three choices; J is the

other meson line,

n—-2
and one < 3 ) of a second type
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3 ' 3
}: Yas T }: Ups (5.8)
i=1

i=1

n =6 There are eleven constraints,

n-2
six < o > of one type
2
}: Ui Yask YAig Ywike < 1 (5.9)
i=1 .

Summation is here over any two of the four meson lines, a different
equation resulting from each of the six choices; k and £ are the

other two meson lines;

n-2
four <’ 3 > of a second type
b) b} -
}: Was Ypsg T }: Up; Upjj (5.10)
i=1 i=1

n-2
and one ( > of a third type

L
1 i
E: Yy lpy = }: Ypij UBij (5.11)
=1 i,3=1 :
i#3

Summations are taken as already indicated. No terms are repeated

on the right hand side of 5.11.



112.

n = There are twenty-six constraints,

n-2
ten < 5 > of one type

1

2
E: (a3 Uasic Y52 Aim “Asks “As tm PAdmk “Aiktm )
i=1 (5.12)

n-2
ten > of a second type

3 3
E: Ui Yasj Uik YAigk }: Upi Upij “Bik “Bijk (5.13)
i=1

i
n-2
five < L > of a third type
4 L
}: Yai Ypi Yaij YBij o }; Yaik "Bix “Aijk "Bijk (5.14)
i1 i,k=1 '
itk
© n-2
and one < >
: 5
5 5
}: Yai Ui Yaij YBij T }: Yaiy "Bij Maijk “Bijk
i,3=1 i,3,k=1 )
143 1454k (5 5)

The summations are again taken as already indicated.
The pattern and inference is obvious; for the n-point function, the

constraints on the u's can be separated into (n-3) distinct classes,

n-2 n-2 | n;2 N\ )
< 5 > of type 1, < 5 > of type 2, ..., <'n—2 ) F=-) of type n-3.
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The total number of constraints is thus

n-2 o

il n- ~

) (L) - # e
T

r=2

as we stated earlier in this section without proof. We are thus
able to show explicitly that we can express our n-point amplitude
as an (n-3)-dimensional integral; this, was not possible with the

schemes proposed in (60) or (61), except in certain limiting cases.

We are now able to look at the constraint equations’ for the
n-point amplitude. There are (n—3) distinct classes of equations.
We label each class of equationé by-the number of equations in
that class, 1ie. the class r contains < n;2 ) equations with
r=2, «os, n-2. We now look at each class of equations

individually, for the n-point amplitude.

Class of equation r =2

Il
—

2
) Iy (5.16)
p P _
i=1
{p: (A1) (n-1)}
The summation is taken over any two of the (n-2)-meson
lines. For each term in the summation, the prodﬁct is taken over

all channels containing the two particles (A,i) together with any or

none of the remaining (n-l4) mesons. We see that for the cases
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n=U 5,6, 7 we reproduce equations (5.6, 7, 9, 12).

Class of equations r = 3

3 3
T u = II (5:17)
;Z; p P ;Z; P R
{p : (A1) (n-5) ) {p: (Bi)(n-5)}

Summation is taken over any three of the (n-2) meson lines. For
each term in the summation, the product ié taken over all channels
containing the two particles (A,i) or (B,i) together with any or

none of the remaining (n-5) mesons. Equafions (5.8, 10, 13) are

reproduced for the cases n =5, 6, 7.

Class of equations r =4

L

II u
E: P °p g P
i=1

fp: (a1)(n-6)} {p: (Bi)(n-6)]}

= }: I v Il u
j k=1 P P
s4k  {p: (Aij)(n-6)} {p : (Bij)(n-6)}

(5.18)

No terms on the right hand side are repeated. The interpretation
in terms of sums and products is as already indicated. Equations

(5.11) and (5.14) are reproduced for the cases n =6 and n = 7.
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Similar equations can be written down for higher values of r,
r € n-2, but they suffer from considerable notational complexity,
and we do not write them here. We content ourselves with the fact
that we have developed a process whereby we can derive all the
constraints on the u's for the general n-point process. This is

essentially an adaptation of the programme given in (60).

There remain two questions: the first concerns the final
equation in each case (the class r = n-2) which we must put in 'by
hand' to ensure the conditions (i) ...(iii) of section 4.2, with
(iii) in a suitably generalisedhférm, ére éatisfied, e.g. equations
(5.8) for n =5, (5.11) for n = 6, (5.15) for n = 7. For the

n-point function, this-equation takes thé form

n-2
}5 (uAiluBil)KinlizuBiliz) e (gAiliz i g Biji .. i
il,iz,..,in_5=1 :
n-2
= Wy, o Upe & ) oo (W, . . .. L)
;;. o Alll2 31112_ _ Alll2 .e ln—huBlllz . ln—h
ll 12 ln_h
(5.19)

This equation is only defined for n = 6. For n-5 = 0, -1, the
equations are as listed (5.6) and (5.8). TFor the case of n =6, T

equation (5.19) reproduces (5.11)-and-(5.15) respectively. We state
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this last equation for completeness. This set of equations for

the n-point function now has all the required properties.

The second question concerns the Jacobian for the generalised

amplitude, which we now examine.

Jacobian factor

Consider first the five-point amplitude associated with

figure 4.7. We may rewrite 4.1 as

1 1
3 -, . -1 -aB.—l
Al i

[ 1 { ) ™ ) ™} (5.20)

0O 0 B ) ; | ) '
where dV, = du,, dug, Jt (5.21)

u +u,,.,tu

with J—l = Al A2 A3 (5.22)

Upo u'Bl_(uAE * uBl_)

We now wish to generalise this expression first to the six-point
amplitude of (5.1) associated with figure 5.2, then to the general

n-point amplitude of (5.4) associated with figure L4.9.

Choose as integration variables for the six-point function
those of (5.1), leee wygs uBQ’ QA13 . We wish to find an expression
for J™1 which reduces to an expression of the form (5.22) whenever

Uyq OT Up, 1s equal to zero, and reduces to unity when quB = 0.
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Consider the two five-point diagrams AB134 and AB234 contained
in the Feymman diagram of figure 5.2. Associate variables xij’ yij
with these polygons, defined in terms of the u's according to the

prescription given at the end of section 4.2. We may now write

J™t in (5.1) as

st

-1
duy, dugy duyyg J

Ygz T Yy

< *p1 Ah(xB1+X h)> <VA23’133(3’A2 * ¥g3)

st 13

]
o
$::

(5.23)

i.e. J1 is the product of two five-~point Jacobians associated

with the two polygons. In terms of the u's

Uag Ya1e T Yaz Yaos T YAl Yol

Upl Up1 Yaoh A5h( Al Va0l T VB 9A5u)

gt o=

Upo Upsl * Upz Yol T Up), Yyns

Upz Yo Yo Uaol (Uao Ypto * Ups o), )

(5.24)

This Jacobian transforms correctly when we replace the triplet

of integration variables ( ) with any other triplet.

Up1s Ypo W13

Also, when we take Upg = O, Tl becomes
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+ +
Ugo 7 Ups T Up) (5.25)
Up3, uA12(uB5 * Uyyp) -

- the usual five-point Jacobian, and similarly when Ups = 0.
When we take gAlB = 0, the Jacobian reduces to unity, as we would
expect, (the ordinary four-point Veneziano formula has unit

Jacobian factor).

This procedure can easily be extended to the general n-point
function. The Jacobian can always be expressed as a product of
(n-4) five-point like Jacobians, associated with (n-4) five-point
diagfams contained in our n—pqint diagram of figufe 4;9. We

consider the case of odd and even n separately.

2N-1 meson lines i.e. n = 2N+l-point function.

We take as our variables of integration

u

AL’ u

L 1o
Uy w1, UB N+1 N#27 °UC° VB N41 W2 ... 2N-1

The five-point diagrams with which we associate our variables vij’
Wij’ Xij’ yij’ etc. are defined by the particles A, B together with

one of the groups:
(1, 2, 3); (2, 3, 4); ee.. (N-2, N-1, N);
(1, W2, W3); (2, N3, N+h); .... (2N-3, 2N-2, 2N-1);

(2N-2, oN-1, N); (oN-1, N-1, N)
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i.e. a total of 2N-3 (= n-U) five-point diagrams.

2N - meson lines i.e. n = 2N+2 - point function.

We take as our variables of integration,

u

AL’ u

A 10 ceee U

Al2 ... N
Us w+12 UB 1 N2’ "t UB N+l N2 ... ON-1

In this case the five-point diagrams with which we associate our
variables v,., W.., X.., ¥..» etc. are defined by the particles
1] 1J 1J 1J
A and B together with one of the groups
(1: 2, 3)3 (2: b)) h); e (N‘E: N-1, N)5
(N+1, N+2, N+3); (N+2, N+3, N+k); .... (2N-2, 2N-1, 2N)

(N-1, N, 2N); (2N-1, 2N, N)

i.e. a total of 2N-2 (= n-L4) five~point diagrams.

In each case the Jacobian is written as a product of (n-I4)
five-point Jacobians associated with each of the (n-L) - fi%e—point
diagrams. Defined in this way the Jacobian factérs have the right
transformation properties when the integration variables are changed
to an alternative set, and reduce to a suitable product of lower-
point Jacobians when any one of the integration variables is set
equal to zero.

This completes our prescription for generalising our amplitude

to processes with an arbitrary number of meson lines.
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5.3 Koba-Nielsen parametrisation

The representation we proposed in section 4.5 for our five-
point amplitude may be extended in a straightforward way for the six~-
point amplitude. The details, which are rather complicated and
tedious are given in the appendix. Here, we simply quote the
result.

Provided that we maintain our restriction R; = péz, we may
write for our six-point amplitude associated with the Feynman

diagram of figure 5.2.

=

F, = / [{(dzAd'EA)_(dzBdEB) ]—T _(dzid'i'i)

- di=1

x ;1;1 [ (CRERICE ZA)}'aAifl {(ag- 22, - ZB)}"“B-l-l ]
x _'Ll;_l [(zi—Ej)(zj—Ei) Tij
(3<3)

1
3 (a0 o0 0 o )+ ) )
oo -] 05 )

1
2

(5.26)
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1
where K, ., = E{ % T %5 T %1 T %5 T %k T %z T %k T %Bs
%5y T %5 T ik T %Bak T %ae T aBiL'}
(5.27)

We have omitted from the integrand those functions corresponding

to X in (4.66) for the five-point function, since their exponent

. a' , o 2
18 2(PA. —PA) .

Assuming the trajectories are all identical, linear of the

form,
= 1 + 2
%3 o *+ a'(py + ;)
= + a +p, +p.)2 .
LY o *+ o' (py +p; +p,) (5.28)

and similarly for aBi’ aBij’ then the kinematic conditions arising
from four-momentum conservation demand that the exponent of the

term [(zi - Zj)(zj - Zi)] reduces to

= - ! . + 1 .
where we have taken pA? = pﬁa = M?, M the baryon mass, and the

exponent of the term [(;A - zB)(zB - ZA)] reduces to,

-2«'p, . py * a'M® + ha(u®) (5.30)
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where we have taken pl2 = p22 = p§ = pf = uz , 4 the meson mass.,.

As for the five-point function, the momentum dependence of each of
the above two terms is simply —2a'pi. pj and —2a'pA. Py
respectively.

We conjecture that similar expressions can be generated for
the higher order functions. The only modification that we make

will be to extend the limits in the products from 1 to n-2 for the

n-point process, in (5.26).

5.4 Concluding remarks.

We have shown in the last two chapters how we may construct
Veneziano-like multiparticle amplitudes corresponding to processes
involving the interaction of two classes of hadrons, where each
channel in which resonances occur contains one particle from one
class, and any number from the second class. The motivation for the
study of such amplitudes was derived from the work of Burnett and
Schwarz, and the consideration of a certain type of meson-baryon
quark duality diagram. The method we use is essentially an
adaptation of a prescription described by Mandelstam for a
generalisation of the multi-Veneziano amplitude to a different set
of processes. The two generalisations coincide for the case of n=5.

For this case we have examined the asymptotic behaviour and found that
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a multi-Regge behaviour was obtained when the exchanged Regge poles
occurred in meson=baryon channels. We were also able to derive a
series representation for our five-point amplitude which would form
the basis of any attempt to compute the function numerically.
Although we do not examine these properties specifically for the
n-point function, we know that any four— or five-point function
that we factor out of the n-point amplitude will have Regge

behaviour and will have a series representation.

A parametrisation of our amplitudes in terms of Koba-Nielsen
variables is not immediaﬁgly obvious, However, a modification
proposed by Mandelstam (60) is used which enables us to express our
amplitudes in a compact form, which is readily seen to generalise

when the external baryons have the same mass.

Although we have examined the factorisation properties of our
constraints in so far as when a resonance occurs in.a particular
channel, the appropriate lower point fﬁnctions result; we have not
examined the residues at any pole to determine the spectrum of
resulting particles on the leading trajectory, (375 :§).

Mandelstam (60) haé—examined this problem. For the five-point
function his discussion is relevant here. In order to obtain the
simplest possible spectrum various factors are introduced into the

amplitude. For the five-point function they are of the form
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_p2°p3 pa'pl

) ~P1-DPs =
[1 - a(l=a)] [1 - B(1-B)] [1 - 7(1=-7)]

(5.31)
They do not alter the essential properties of the amplitude that we
‘have examined, such as the pole structure, the symmetry properties
and the asymptotic behaviour, but the series representation will be

considerably complicated.

If we are to describe processes in which not all the particles
are identical, we may well have to include amplitudes of the form

we have constructed.



Figure 5.1 The six-point generalisation of the Burnett and
Schwars process

\ //

//3 H\

Figure 5.2 The Feymman diagram associated with figure 5.1
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Figure 5.3 The Feynman diagram associated with the six-point
generalisation of Mandelstam (60)

/3

Figure 5.4 The Feynman diagram associated with the n-point
generalisation of Mandelstam



Figure 5.5 Feymman diagram associated with our seven-point
amplitude



APPENDIX

The derivation of equation (5.26).

With reference to eguation (5.2), we define

* = Yar'earstaih PTE T Uaapitaasaok
P = MpoUps¥aiotaol ; 1-B = uAB'uBE;uAIBuABH
7 = Ualpagstans 1=7 = Wy Upaty ol
& = Uy Up a3 1-8 = Ya1Ysuta12%a13
A= uppUputagotips ) L=2 = kB2 A14 Ak
b= UagUpstaretarh B S b P
(A.1)
satisfying the fo]_‘l.owi'ng',
w6 = (1-a)(1-B)(1-7)(1-8)
ax(l - y)(1 -u) = (1 -a)(1 - 2A)yu -
u(l - B8 = (1 - p)B(1 - A)(1 - B) (A.2)

Effectively we may now solve for all u's in terms of any

three of o, B, 7, 8, A, n .

We now parametrise a, B, etc. in terms of the Koba-Nielsen

variables
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L (Z, - ZA)(Z2 - zp ; 5 - {Eé - ZA?¥Z3 - ZB)
(gl - 22)(2A - zg (Z, - zs)(;A - zB)
(Z, —H;A)(z4.:ﬂzB . (z, - ;A)(zl - zB)
Y = = - 5 = ——
.(Es - z4)(;A -zg (%, - zl)(;A - zB)
k (2, - 2,) (24 - 7 (%, - 2,)(zg - 25)
= 5 L=
(Eé - z4)(;A - Zg (Ei - zs)(gA - ZB)

(A.3)

such that the relations (A.2) are automatically satisfied, with

Eg defined as in (4.69).

@ is defined in the obvious way;

(i m)G ) | C(ak)
(z, - 2,)(z, - zp)

and similarly for B; ¥, ete.

The solutions to- the constraint equations (5.2) and (5.3) for

the six-point amplitude may be written as:

oau(l -8) 6 ¢ ¥

() T (a)

By A 3

o B A E ¢V r

. (b)
yu(l - 8) 6
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Boryu EOV

4 - . . T c
(4y5) arn(l - 8) 0 ()
- Mi-8) (- )t toe . (@)
“ab T apBp 7° ¥ .

( )4_u(1—5).(1-°ﬂ)4. 3 ; “
B’ T By A o> 0 o ¥ ©
()t e —o2 ] ()
* = . . T f
BT 1S tev
'(“B')4 ) B 7 u . ¢ - ()
5 an(l -8) E6V .
. yA(1 - 8) | ¥ - (0)
BT T e tes ‘
. (1= B) ot N
(uy1)* = — ;; - T (i)
oy :
By (1l - 8) ok .
u )4 = —— , — . 1 (J)
(ugy5 " ov
ay pu X VE
(gyqp)* = —— - — - 17 (k)
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(ppz)% = ———— « — . T7F ' (2)
AZ3 B(1-8) Ve
(o)t = el E L (m)
u = — . — . _ m
A2l A oE
- (1-8)% m@-2) o -
u . — o« 7 n
Az B° oy ot
(2.5)
where
1+ uy - 1+ on-a
6 = ————— ¢ = ————
1+ pyy -9 1+ ax -2
1+aB -« 1+By -8B
y = ———— £ = 5
1+o0B-pB 1+By -7
m(1-8)(1-B) + ayau + aBy(1-3)
r = : (A.6)
u(l-a)(1-3) + p(ra+ yu) + AM(1-7)(1-38)
Now, we wish to write our six-point function in the form
= 5 o o~ -1 el
F, = f [{(duAlduAl)(du_BgduBg)(duAleuAIB)(J J )
l -a -1 -a_.-1 L - . -1 3
~ Ai ~ Bi , ~ Aij
x o T (uyT) - (up; ;) AERECNPUVEY }
i=l i,j=1

i<j

(A.7)



The exponent in the. integrand of the term (68) will be
1l e 4+ -—a. -a, + - + +
b1 Al %a2 T %3 T % T %81 T % T %3 T %mu
T %12 T %13 T %k T %es T %aou t “A3u} (4.8)

B .A. °

using the kinematic constraint of four-momentum conservation and
linear trajectories of the form (5.-28). Exactly similar arguments
apply to the exponents of ¢, ¥, &, and ' in (A.7). Taking

pA2 = sz » Wwe ignore these terms.

0 ) 0 ' '
We may now write the remaining parts of the Uy, 'S and uAij s

as

(up8py)* = I:(Ei -7y (2 - ZA)] 4

x{ (ZJ—Ek)(Ej_Zk)(zj_'zl)(gj—ZZ)(zk—EZ)(Ek-ZZ) }

(Zi_gj')(zi_ zj)(zi—Ek)(Ei-zk)(zi-'i'z)('ﬁi—zl)

X xAi (A.10)

and similarly for (uBl %1)4, and



(uA. 'ﬁA' )2 = |
I [(zy - 25)(z5-2,) I
o (,-2,) (5,%,) (B2 ) (2,-2,) )
(%;-= )(z ~Z. )(z -z )(z -z )(z -2, ) (2, -2, )(zJ z,,)(z ~Z,)
X xAij (A.11)

where i, j, k, £ are the four meson lines,

and
(zo=-2.)(Z_ ~2_) 52
1 2 "B’‘'"2 B
R A R T )}
> 2
(24— 25) (Zg - 2,)
X - X _ 1 3 "B B
A3 Al Yy { (zq - ZA) (Es' ZA)
1{(ZZ—ZA)(22—ZA) }2
X.Bl - XB2 - Yy (ZZ_ZB)(Ea_ZB)
1 (2g=2,)(Fg-2,) 2
1 3 “A/'Y3 A
XBB = X = 37{ " }

(25~ ZB)(ZS_ zB)

(zg—zA)(E.'Z-—zA)(zs—zB)(E's—zB) 2
iz " y{<z 2 ) (- 2)(2g-2,) (5, ~z )}
2 B 2 B 3 A 3 A




. { (2, - 25) (3, - 25) (2, - 2,) (3, - 2,) }2

X =
A3k (7, - 2y ) (2, - 2y ) (2 = 25) (2 - 23)
where
v o= (F72,) (2,72, ) (2ym25) (2,-25) (242, ) (7, -2, ) (2 ,25) (2, -2)
(A.13)

These terms appear very complicated. However, their

exponents in the integral representation of Fg are all of the form
2 2
const. (pg - D, ),

for example, the exponent of the term

is

< (2, - 2) (2, - 2) )

(2 - ZA) (Ez— ZA)

1 - - -
2 (aBl Flgy T %y T %o T %gn %Azl ) (A.1k)

1
which reduces simply to -92-— (p]32 - pA2 ), and hence we may ignore

these too.

So, finally, we may write for our amplitude Fe s
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: L
F, = /ﬁ... /ﬂ{:(d;AdZA)(dzBdEB) .Hl (dzidﬁi)
1=

L -, =1 - - -1
' ~ A ~ i
X 121 [{ (;A-zi)(zi—-;A) * {(ZB-—zi)(zi--zB)}-aB1 }
L K, L2
X I[ [(zi—%'j)(zj-%’i)] J [(ZA—ZB)(ZB—ZA):' }
i,j=1
(i<3)
(A.15)
1 - -
where Ky o = w{ey, + oo, + ot ap, =0 -Gy - @, - G,
55 7 %5 " %mix T %Bik T % T %}
(A.16)
1‘- .
and L = 3 Z N (A.17)
i,J=1 '
(i<3)

which is just the expression (5.26).

As we stated in section 4.5, we have omitted from the
integrand a term analagous to (dGéd') defined in (2.56) for the tree
graph amplitude, which forms a constant multiplier of the amplitude.
Up to a constant factor, our two expressions (A.7) and (A.15) are

., identical.
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